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Abstract

In this thesis, we study some implications of the non-commutative space-times, by study-

ing certain models in the κ-deformed space-time and Doplicher-Fredenhagen-Roberts

(DFR) space-time.

We study the quantisation of scalar field (in κ-deformed as well as DFR space-times)

and Dirac field (in κ-deformed space-time) using their deformed equations of motion.

We obtain deformed (anti-) commutation relations between non-commutative field and

its adjoint, by considering the usual form of the oscillator algebra. By demanding

this (anti-) commutation relations between non-commutative field and its adjoint to

be undeformed, we get the deformed oscillator algebra, which is a general feature of

the non-commutative field theories. Further we have analysed the consequences of this

deformed oscillator algebra by studying the Unruh effect in κ-deformed and DFR space-

times and find that the Unruh profile is modified due to the non-commutativity. Using

the global phase transformation symmetry, we have constructed the number operator

corresponding to the κ-deformed Dirac field from its deformed equation of motion and

we show that this number operator has a mass dependent correction term.

We also study the effects of the non-commutativity in the astrophysical objects such

as superdense star. We analyse the superdense star in non-commutative space-time by

generalising the core-envelope model having a perfect fluid distribution to the κ-deformed

space-time. We construct the Einstein’s equation in the κ-deformed space-time and its

solutions give the expressions for the pressure and density of the superdense star in κ-

deformed space-time. We further show that these equations admit physically acceptable

solutions. In this study, we also obtain a bound on the κ-deformation parameter.

Finally, we analyse the notion of maximal acceleration in the non-commutative space-

time. We derive the κ-deformed corrections associated with the maximal acceleration

from the 8-dimensional κ-deformed line element and the κ-deformed uncertainty rela-

tions. From this we then obtain the expression for the maximal temperature associated

with thermal radiation in the κ-deformed space-time and using this we obtain another

bound on the κ-deformation parameter. We also show the emergence of maximal accel-

eration from the 4-dimensional κ-Minkowski space-time, which reduces to a finite value

in the classical limit.
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Chapter 1

Introduction

1.1 Motivation and overview

A complete quantum description of gravity is still an unsolved issue in theoretical physics.

The quantum theory of gravity is to be understood as a theory that provides a micro-

scopic description to gravity so that general relativity will become consistent with the

principles of quantum mechanics. The quest for such quantum gravity theories has a long

history; various approaches such as string theory [1], loop quantum gravity [2], causal

dynamical triangulations [3], Horava-Lifschitz gravity [4], asymptotically safe gravity

[5], non-commutative geometry [6], etc., have been developed and studied rigourosly.

Most of these studies predict the existence of a minimal length scale [7–10], below which

quantum gravity effects become important.

The non-commutative geometry [6] provides a geometrical framework to incorporate

this fundamental length scale naturally and thus model quantum gravity effects. In

the framework of non-commutative geometry, to capture the effects of quantum gravity,

spectral action principle was developed [11]. The crucial ingredient in this approach is

the spectral triple (A,H,D), which consists of symmetry algebra A, Dirac operator D,

and a Hilbert space H, on which D has a well defined action. By using this spectral

action, gravity on the non-commutative space-time has been studied [11]. In [12], the

standard model coupled to gravity has been studied in this framework.

Though recent activities on non-commutative geometry and construction and study

of physical models on non-commutative space-time is due to its connection to quan-

tum gravity, non-commutative space-time was originally introduced, way back in 40s.

Heisenberg suggested to use non-commutative space-time as a possible way to remove

the divergences that render quantum field theories ineffective. It was anticipated that

1



Chapter 1 Introduction 2

the fundamental length scale naturally incorporated in the non-commutative space-time

theories would regularise the UV divergences, by providing an upper cut-off in the mo-

mentum integration. This has been a major motivation for Snyder to replace the usual

picture of the space-time continuum with the notion of a quantised space-time having

a Lorentz invariant discrete space-time structure. With this in mind, in [13] a non-

commutative space-time has been introduced and this is known as the Snyder space-time.

The space-time coordinates of Snyder space-time satsify

[x̂µ, x̂ν ] = iλ2Mµν , (1.1)

where λ is a real parameter having the dimension of length and Mµν is the Lorentz

generator.

Following this, the Lorentz invariant equations of motion for the electromagnetic field

and its solutions had also been derived in this quantized space-time [14]. However, it was

shown that algebra associated with the non-commutative space-time in [13] lacked the

translational invariance, and this translational invariance has then been recovered in [15]

by interpreting the coordinate operators as the generators of the Lorenz transformations

in the 5-dimensional de-Sitter space.

Non-commutativity has been found to arise in different string theory models. It has been

shown that certain string theory and the M-theory models lead to non-commutative

gauge theory [16–18]. Under compactification limit of certain string theory models

Moyal space-time, a non-commutative space-time, has been shown to emerge [19–21].

The Moyal space-time coordinates obey

[x̂µ, x̂ν ] = iθµν , (1.2)

where θµν is a constant tensor (of length square dimension). Numerous features of the

Moyal space-time has been studied extensively over the past decades [22, 23].

Using Weyl-Moyal correspondence, one can map the functions defined on the non-

commutative space-time with its counterpart in the commutative space-time. As a

result, Weyl-Moyal map induces a new multiplication rule, called the ?-star product,

between the functions defined on the commutative space-time. The Moyal star product

between two arbitrary functions f(x) and g(x) is defined as [20, 22–24]

f(x) ? g(x) = e
i
2
θµν∂

µ
x∂

ν
y f(x)g(y)

∣∣∣
x=y

. (1.3)

In general one can study physical models on the non-commutative space-time by di-

rectly using the functions defined on-commutative space-times. Alternatively one can
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also analyse the physical models in the non-commutative space-time by working with

the commutative functions, but with the above modified product rule. Different non-

commutative field theories have been constructed and analysed in the Moyal space-time

using this star product formalism.

Moyal star product, given in Eq.(1.3), contains infinite number of higher derivative

terms and these terms result in bringing non-local and non-linear effects into non-

commutative models. Therefore the presence of such non-local and non-linear terms

in the non-commutative field theory models show characteristic features different from

their commutative counter parts. The non-commutative field theory in Moyal space-time

has been shown to exhibit effects such as mixing of ultraviolet and infrared divergences,

known as the UV/IR mixing [22, 23, 25]. This UV/IR mixing in Moyal space-time has

also been found to appear as a quantum anomaly of the twisted-Poincare symmetry [26].

Such UV/IV divergences have also been found to exist in other non-commutative space-

times such as κ-deformed space-time and Snyder space-time [27, 28]. These non-local

and non-linear terms has also been shown to introduce novel, stable soliton solutions in

the non-commutative field theory [29].

Seiberg-Witten map [21] is another important result obtained from the studies of string

theory models, which is extensively used for studying the non-commutative field theories.

Seiberg-Witten map shows an equivalence between non-commutative gauge theories and

the gauge theories on commutative space-time. This mapping has been used to analyse

various properties associated with the non-commutative space-times [30–32]. Different

aspects of the Cherns-Simons theories defined in the Moyal non-commutative space-time

have been analysed with the help of Seiberg-Witten map [33–37]. The Seiberg-Witten

map has also been used to study the quantum hall effect in the Moyal plane [38]. This

map has also been used to study the renormalisation of the photon self-energy to all

orders [39].

The algebra of symmetries corresponding to the non-commutative space-times is de-

scribed by deforming the Poincare algebra, such that these deformed algebras reduce to

the usual Poincare algebra in the commutative limit. In [40, 41], Hopf-algebra structure

has been used for analysing the symmetries associated with the non-commutative geom-

etry. Further, it has been shown that the deformed Poincare algebra, which preserves the

Hopf algebra structures, can be obtained by twisting the classical Poincare algebra [42].

The symmetry algebra of the Moyal space-time has been shown to be twisted-Poincare

algebra (which is a Hopf algebra), where the coproduct of the Lorentz generator has

been deformed due to the twist element [43]. The symmetry of the Snyder space-time

has also been described using the deformed Poincare symmetry [44].
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The statistics of the particles lying on non-commutative space-time is connected with

the symmetry algebra of the corresponding space-time. In [45], Weyl-moyal product

has been used to study the spin-statistics and the CPT theorem in Moyal space-time.

Using the deformed coproduct structure associated with the twisted-Poincare algebra,

a twisted statistics has been obtained of the particles in the Moyal space-time [46, 47].

The concept of non-commutativity has been also extended to curved space-times and

this has been used to describe the gravity in non-commutative space-time. Deformed

diffeomorphism invariant Einstein-Hilbert’s action has been constructed in the Moyal

space-time from the twisted diffeomorphism algebra [48, 49]. This twisted diffemor-

phism has been used to show that the solution for two dimensional non-commutative

gravity is the same as that for the commutative theory [50]. In [51], deformed Einstein’s

gravity has been obtained by applying Seiberg-Witten map to certain non-commutative

gauge groups. Another remarkable prediction of the non-commutativity is the emer-

gence of gravity from the non-commutative field theories [52–54]. Such predictions have

been made using the Seiberg-Witten map. Various attempts to construct the non-

commutative gravity theories have also lead to the study of the possibility of having a

complex metric tensor [55–58]. In [59], the deformed gravitational equations have been

derived by generalising the Moyal product to the curved space-time.

The non-commutativity of the space-time allows to model the space-time uncertainity

relations, which is argued to emerge when gravity and quantum mechanics are brought

together. When we probe the structure of the space-time at short distance, using high

energy probes, the gravitational effects become extremely strong, and this results in the

formation of black hole over that region of space-time. The horizon of this black hole

restricts us from probing the space-time below the horizon created. Thus the study

of quantum gravity seems to introduce space-time uncertainty relations. In [60, 61],

a Lorentz invariant non-commutative space-time has been obtained by incorporating

Einstein’s theory of classical gravity into Heisenberg’s uncertainty relation.

The κ space-time, a Lie-algebraic type non-commutative space-time, has been shown to

appear in the low energy limit of certain loop quantum gravity models. Loop quantum

gravity theories also use the discretised space-time structure to describe the quantum

geometry of the space-time. Symmetry algebra of the background space-time associated

with the low-energy limit of the loop quantum gravity is shown to be κ-Poincare algebra

[62]. The κ-deformed space-time coordinates satisfy

[x̂µ, x̂ν ] = ix̂λC
λ

µν , (1.4)

where C λ
µν = aµδ

λ
ν − aνδ λ

µ and aµ has the dimension of length.
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κ-Minkowski space-time has also been found to be the space-time corresponding to

the doubly/deformed special relativity (DSR) theories [63, 64]. The special theory of

relativity (STR) cannot accomodate a frame independent description of the minimal

length scale, due to the Lorentz-Fitzgerald contraction. Therefore the STR is modified to

incorporate the minimal length scale as an additional fundamental constant, apart from

the velocity of light c and this modified relativity principle is known as doubly/deformed

special relativity [65]. One of the major consequence of the DSR theory is the modified

dispersion relation. This is known to result in the velocity of the photon acquiring

energy dependent corrections. Different aspects of the DSR theory have been disscussed

in [65–68].

The effective theory that emerges when the gravitational degrees of freedom are removed

from the 2 + 1 dimensional gravity coupled to matter fields has been shown to be the

non-commutative field theory on the κ-Minkowski space-time [69–71]. Further, the phase

space of a point particle in 2 + 1 dimensional gravity has been shown to be equivalent

to the phase space of DSR anti de Sitter algebra [72]

The symmetry algebra of the κ-deformed space-time has been constructed it has been

referred in the literature as (deformed) κ-Poincare algebra [63, 73–77]. The symmetry

algebra of the κ-Minkowski space-time has also been defined alternatively using the usual

Poincare algebra. This has been achieved by deforming the explicit form of the Poincare

generators in a specific manner. This symmetry algebra is known as the undeformed

κ-Poincare algebra [78–80]. Further it has been shown that the co-product sector of this

undeformed κ-Poincare algebra is deformed [78–80]. The twisted statistics has also been

obtained in the κ-deformed space-time from the twisted flip-operator that commutes

with the deformed coproduct of the symmetry group [81].

Several characteristic features of the κ-deformed space-time and its consequences have

been studied over past years. Different field theory models on the κ-Minkowski space-

time and their properties have been analysed meticulously in recent times. The κ-star

product compatible with the κ-Poincare algebra has been used to study the interaction

vertex of the non-commutative scalar φ4 theory [82]. In [83], the quantisation of the

κ-deformed scalar theory has been studied and deformed oscillator algebra has been

obtained, using the twisted flip operator. Dirac equation has been constructed in the

κ-Minkowski space-time and using this, it has been shown that the charge conjugation

is not the symmetry of the κ-deformed Dirac equation [84]. Gauge theory on the κ-

Minkowski space-time has been obtained in [85, 86], using the notion of the κ-deformed

star product and Seiberg-Witten formalism. κ-deformed Maxwell’s equations, which

are invariant under the undeformed κ-Poincare algebra, has been derived using the

Feynman’s approach [87, 88].
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Recently some attempts have been made to understand the κ deformation of the curved

space-time and gravity. The κ-deformed geodesic equation and its implications have

been studied by extending the Feynman’s approach to κ-deformed space-time[89]. In

[90], κ-deformed modifications to the metric tensor has been analysed using the non-

commutative version of the co-tetrads and the κ differential calculus.

One of the major problems associated with physical models defined on non-commutative

space-times is the violation of Lorentz invariance. The break down of the Lorentz sym-

metry in non-commutative field theory has shown to exhibit certain effects like vacuum

birefringence [91]. Lose of Lorentz/Poincare symmetry also makes the particle inter-

pretation of field quanta ambigous. Hence it is important to construct and study the

Lorentz invariant non-commutative space-time and field theories in such space-times.

Doplicher-Fredenhagen-Roberts (DFR) space-time [60, 61] is one such non-commutative

space-time, whose coordinates obey

[x̂µ, x̂ν ] = iθ̂µν , [x̂µ, θ̂νρ] = 0, [θ̂µλ, θ̂νρ] = 0. (1.5)

The symmetry algebra of the DFR space-time has been described using DFR Poincare

algebra [92]. Various field theory models in DFR space-time have been studied in recent

time [93–95]. Aspects of general relativity has also been analysed in DFR space-time

[96, 97].

Lagrangians associated with non-commutative field theories are constructed by requir-

ing to get well known commutative result in the appropriate limit. But this guiding

principle alone cannot lead to a unique Lagrangian for the non-commutative field the-

ories. Absence of unique Lagrangian render the usual quantisation schemes ineffective

for quantising these non-commutative field theories. But on the other hand one can

direclty obtain the equations of motion corresponding to non-commutative field theories

in an alternate manner. This is obtained from the quadratic Casimir of the correspond-

ing deformed Poincare algebra. These non-commutative field theories can be quantised

using their equations of motion alone by using the Takahashi-Umezawa quantisation

procedure [98–100]. This procedure provide the quantisation rules just from the equa-

tions of motion, without requiring the Lagrangian. In this thesis we use this method

to quantise κ-deformed scalar field, κ-deformed Dirac field and Doplicher-Fredenhagen-

Roberts-Amorim scalar field and also obtain their deformed oscillator algebras of the

corresponding creation and annihilation operators.

The effects of the non-commutativity are expected to be more strong in an extremely

strong gravitational background. Astrophysical objects such as superdense star [101] is

a suitable candidate for studying the non-commutative effects. In this thesis we study
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the superdense star in non-commutative space-time by generalising the anisotropic core-

envelope model to the κ-deformed space-time.

Apart from the dynamical properties, one also need to understand the kinematical

aspects of the non-commutative space-time. Different kinematical properties of non-

commutative space-time can be analysed and in this thesis we study the notion of max-

imal proper acceleration [102, 103] in non-commutative space-time. We derive here

the non-commutative corrections to the maximal acceleration, in κ-deformed and DFR

space-times, and further study the implications.

In the next subsection, we will provide a summary of essential definitions and tools

required for the studies taken up in this thesis.

1.2 κ-deformed space-time

In this subsection, we summarise essential results concerning the realisation of the κ-

deformed space-time and its symmetry algebra [78]. The discussions in this section will

set our notations for the later chapters.

κ-deformed space-time is a Lie-algebraic type non-commutative space-time, whose space-

time coordinates satisfy Eq.(1.4). With the choice aµ = (a,~0), Eq.(1.4) becomes

[x̂0, x̂i] = iax̂i, [x̂i, x̂j ] = 0. (1.6)

Here we observe that the spatial coordinates of the κ space-time commute among them-

selves, but space coordinates do not commute with time coordinate. Thus one finds

that the κ space-time preserves the spatial isotropy. Note that a in Eq.(1.6), has the

dimension of length and 1
a = κ - the deformation parameter used in literature, giving

the name κ space-time.

Field theory models on the κ space-time were constructed using the star product formal-

ism, where the usual notion of the pointwise product, between the coordinates (and their

functions), is replaced with the star product, which is invariant under the κ-Poincare

algebra [76, 77]. Alternatively, one can also construct and study the field theory models

using the realisation method, where the non-commutative cvariable is represented in

terms of the functions of commutative coordinates and their derivatives [78, 79]. It has

been shown that the realisation approach is equivalent to the star product formalism in

the κ space-time [80]. In this thesis, we will be using the realisation method [78–80] to

study the various aspects of physics on κ-deformed space-time.
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The non-commutative coordinate x̂µ is written in terms of the commutative coordinate

xµ and its derivatives ∂µ as [78]

x̂0 =x0ψ(A) + iaxj∂jγ(A)

x̂i =xiϕ(A),
(1.7)

where A = ia∂0 and

ψ(0) = 1, ϕ(0) = 1. (1.8)

Substituting Eq.(1.7) in Eq.(1.6), one gets

ϕ′(A)

ϕ(A)
ψ(A) = γ(A)− 1. (1.9)

Two possible realisations of ψ(A) are ψ(A) = 1 and ψ(A) = 1 + 2A [78]. Now onwards

we choose ψ(A) = 1. Thus Eq.(1.7) and Eq.(1.9) becomes

x̂0 =x0 + iaxj∂jγ(A)

x̂i =xiϕ(A),
(1.10)

and
ϕ′(A)

ϕ(A)
= γ(A)− 1. (1.11)

Some of the allowed choices of ϕ are e−A, e−
A
2 , 1, A

eA−1
, etc., [78]. In [78–80], it was

shown that different choices of ϕ corresponds to different realisations.

One can also realise x̂µ in an alternate way as

x̂µ = xνϕ
ν
µ. (1.12)

We choose a specific realisation for ϕνµ (which keeps only the linear terms in the defor-

mation parameter a) as [88, 89],

ϕνµ = δνµ − iaαδνµ∂0 − iaβδν0∂µ − iaγδ0
µ∂

ν , (1.13)

where α, β, γ ∈ R are dimensionless parameter. Substituting Eq.(1.13) and Eq.(1.12) in

Eq.(1.6), we get γ = α+ 1.

We will study both these realisations in latter chapters.

In general, the symmetry algebra of the κ-Minkowski space-time is described using the

κ-Poincare algebra. As a result, the commutation relations of the Poincare algebra

get deformed due to the a dependent correction terms. However, one can also realise

the symmetry algebra using the usual Poincare algebra, but by deforming the explicit
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form of the generators in a particular way. This algebra is known as the undeformed

κ-Poincare algebra [78].

The Lorentz generator of the undeformed κ-Poincare algebra satisfies [78]

[Mµν ,Mλρ] = Mµρηνλ −Mνρηµλ −Mµληνρ +Mνληµρ. (1.14)

By demanding the commutation relation between the Lorentz generator and the κ-

deformed space-time coordinate to be linear in Mµν and x̂µ, i.e,

[Mµν , x̂λ] = x̂µηνλ − x̂νηµλ + ia(M0µηνλ −M0νηµλ), (1.15)

and using the Jacobi’s identities, we get the explicit form of the Lorentz generators of

the undeformed κ-Poincare algebra as

Mij =xi∂j − xj∂i

Mi0 =xi∂0ϕ
e2A − 1

2A
− x0∂i

1

ϕ
+ iaxi∂

2
k

1

2ϕ
− iaxk∂k∂i

γ

ϕ
.

(1.16)

But the commutative derivative, i.e, ∂µ, do not transform as a 4-vector under the un-

deformed κ-Poincare algebra. To rectify this one uses Dirac deivative, Dµ [78] which

transform as a 4-vector under this algebra. Thus we have

[Mµν , Dλ] =Dµηνλ −Dνηµλ

[Dµ, Dν ] =0,
(1.17)

where the components of the Dirac derivative are defined as

D0 =∂0
sinhA

A
+ ia∂2

k

e−A

2ϕ2

Di =∂i
e−A

ϕ

(1.18)

satisfying

[Dµ, x̂ν ] = ηµν(iaD0 +
√

1 + a2DαDα) + iaηµ0Dν . (1.19)

The Casimir corresponding to the undeformed κ-Poincare algebra is defined using the

Dirac derivatives as,

DµD
µ = �

(
1 +

a2

4
�

)
(1.20)

where � represents the κ-deformed Laplacian,

� = ∂2
k

e−A

2ϕ2
− ∂2

0

2(1− coshA)

A2
, (1.21)
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satisfying

[Mµν ,�] =0,

[�, x̂µ] =2Dµ.
(1.22)

Note that the quadratic Casimir defined in Eq.(1.20) will be used for constructing the

Klein-Gordon equation in the κ space-time, discussed in the later chapters. Further we

use the Casimir, given in Eq.(1.20), to obtain the κ-deformed dispersion relation as

4

a2
sinh2 A

2
− p2

i

e−A

ϕ
+
a2

4

( 4

a2
sinh2 A

2
− p2

i

e−A

ϕ

)2
= m2. (1.23)

We find that in the lim a → 0, the above expression reduces to the usual dispersion

relation for a massive particle in the flat space-time.

We have seen that the non-commutativity of space-time necessitates the modification

of the generators of the undeformed κ-Poincare algebra. Action of the generator of the

symmetry algebra is modified by the non-commutativity of the space-time. We obtain

the deformed Leibnitz rule for the generators of the undeformed κ-Poincare algebra by

evaluating [Mµν , f(x̂)] using Eq.(1.15) [78]. Thus the κ-deformed Leibnitz rule for Mµν

is given as

Mi0(f̂ · ĝ) =(Mi0f̂) · ĝ + (eAf̂) · (Mi0ĝ) + ia
(∂j
ϕ
f̂
)
· (Mij ĝ),

Mij(f̂ · ĝ) =(Mij f̂) · g + f̂ · (Mij ĝ),

(1.24)

where f and g are arbitrary functions of x̂µ.

Similarly the κ-deformed Leibnitz rule for the Dirac derivative is obtained (by evaluating

[Dµ, f(x̂)] using Eq.(1.19)) to be

D0(f̂ · ĝ) =(D0f̂) · (e−Aĝ) +
( iaD0 +

√
1 + a2DαDα

1 + a2DαDα
f̂
)
· (D0ĝ)+(

iaDi
iaD0 +

√
1 + a2DαDα

1 + a2DαDα
f̂
)
· (Diĝ),

Di(f̂ · ĝ) =(Dif̂) · (e−Aĝ) + f̂ · (Diĝ).

(1.25)

From the modified Leibnitz rule, the coproducts for the generators of the undeformed

κ-Poincare algebra is written as

∆Mi0 =Mi0 ⊗ 1 + eA ⊗Mi0 + iaDje
A ⊗Mij ,

∆Mij =Mij ⊗ 1 + 1⊗Mij ,
(1.26)
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∆D0 =D0 ⊗ e−A +
iaD0 +

√
1 + a2DαDα

1 + a2DαDα
⊗D0 + iaDi

iaD0 +
√

1 + a2DαDα

1 + a2DαDα
⊗Di,

∆Di =Di ⊗ e−A + 1⊗Di.

(1.27)

From the above, we observe that the coproduct sector of the undeformed κ-Poincare

algebra is deformed. The deformed coproduct can also be obtained from the κ-deformed

twist element [104–106], instead of obtaining from the modified Lebinitz rule.

1.3 Doplicher-Fredenhagen-Roberts space-time

In this subsection, we provide a brief discussion of the construction of the Doplicher-

Fredenhagen-Roberts (DFR) space-time [92], which is obtained by extending the Moyal

space-time. We also discuss the symmetry algebra of DFR space-time and the Casimir

operator associated with it.

The NC space-time coordinates satisfying the Moyal space-time algebra (see Eq.(1.2))

violates the Lorentz symmetry due to the presence of the constant θµν tensor. It has been

shown in [60, 61] that one can obtain a Lorentz invariant NC space-time by assigning a

Lorentz transformation for the NC parameter θµν . This NC parameter has further been

promoted to a coordinate operator θ̂µν [107]. The resulting NC space-time is known as

the DFR space-time, whose space-time coordinate operators are x̂µ and θ̂µν respectively.

The DFR space-time algebra is given by

[x̂µ, x̂ν ] = iθ̂µν , [x̂µ, θ̂νρ] = 0, [θ̂µλ, θ̂νρ] = 0. (1.28)

The DFR space-time algebra has further been extended by incorporating the canoni-

cal conjugate momenta operators k̂µν corresponding to θ̂µν (apart from the conjugate

momenta operator p̂µ associated with x̂µ). This is called in the literatures as the ex-

tended DFR space-time [92] or DFRA space-time [108]. The DFR space-time coordinate

operators and their conjugate momenta satisfy the following commutation relations,

[x̂µ, p̂ν ] =iηµν , [x̂µ, k̂νλ] = − i
2

(ηµνηρλ − ηµληνρ)p̂ρ,

[p̂µ, p̂ν ] =0, [θ̂µν , k̂ρλ] = i(ηµρηνλ − ηµληνρ)

[p̂µ, θ̂νλ] =0, [p̂µ, k̂νλ] = 0, [k̂µν , k̂ρλ] = 0.

(1.29)

Eq.(1.28) and Eq.(1.29) forms the DFRA space-time algebra [108]. We see that the

above algebra is closed (see [92] for the constistency conditions of the above algebra,

using Jacobi identities).
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The Poincare algebra associated with the DFR space-time is given as [92]

[Mµν ,Mλρ] =i(ηµρMνλ − ηνρMλµ − ηµλMρν + ηνλMρµ),

[Mµν , p̂λ] =i(ηµλp̂ν − ηνλp̂µ),

[Mµν , k̂αβ] =i(ηµβ k̂αν − ηµαk̂νβ + ηναk̂βµ − ηνβ k̂αµ),

[p̂µ, p̂ν ] =0, [k̂µν , k̂ρλ] = 0, [p̂µ, k̂νλ] = 0.

(1.30)

The explicit form of the Lorentz generator associated with the DFRA-Poincare algebra

is defined as [92]

Mµν = x̂µp̂ν − x̂ν p̂µ +
1

2
θ̂µαp̂

αp̂ν −
1

2
θ̂ναp̂

αp̂µ − θ̂µλk̂ λ
ν + θ̂νλk̂

λ
µ . (1.31)

The Casimir operator corresponding to the DFRA-Poincare algebra is given as [92]

P̂ 2 = p̂µp̂
µ +

λ2

2
k̂µν k̂

µν , (1.32)

The dispersion relation in the DFR space-time can be written using the Casimir operator

given in Eq.(1.32), as

p̂µp̂
µ +

λ2

2
k̂µν k̂

µν = m2, (1.33)

where λ is the non-commutative parameter having the dimension of length. We see that

in the limλ → 0, the DFR dispersion reduces to the usual dispersion relation in the

Minkowski space-time.

1.4 Organisation of the thesis

This thesis focuses on the study of various aspects of physical models on non-commutative

space-times such as κ-deformed space-time and DFR space-time. This thesis is divided

into seven chapters.

In chapter 2, we study the quantisation of the Lorentz non-invariant non-commutative

fields by using the Takahashi-Umezawa quantisation scheme [98–100]. This scheme do

not require the explicit form of the Lagrangian. Instead, it uses the equations of motion

alone for the quantisation. This method is particularly suited for quantisation of non-

commutative field theories as Lagrangian of these theories are not unique while equations

of motion are unique.

Starting from the κ-deformed Klein-Gordon equation, valid up to first order in a, we

derive the deformed unequal time commutation relation between deformed field and its

adjoint, using the undeformed oscillator algebra. By demanding an undeformed unequal
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time commutation relation between the deformed field and its adjoint, we obtain a

deformed oscillator algebra (valid up to first order in a). Using the deformed equations

of motion, we derive the energy-momentum tensor and Lorentz generator (corresponding

to the undeformed κ-Poincare algebra) of the κ-deformed scalar field. The number

operator, corresponding to the deformed scalar field, is also derived from the equations

of motion. Implications of this deformed oscillator algebra to Unruh effect is analysed

using the method of Bogoliubov coefficients [109].

In chapter 3, we study the quantisation of κ-deformed Dirac field. Using κ-deformed

Dirac equation (valid up to first order in a), we derive the deformed unequal-time anti-

commutation relation between deformed field and its adjoint. In this derivation we

assume that the fermionic oscillator satisfy the usual algebra. Next, by imposing the

unequal time anti-commutation relation between the κ-deformed Dirac field and its

adjoint to be undeformed, we show that the fermionic creation and annihilation operators

obey deformed oscillator algebra. The energy-momentum tensor and Lorentz generator

for the κ-Dirac field are derived from the deformed equations of motion. We construct the

conserved currents corresponding to parity and time-reversal symmetries of κ-deformed

Dirac equation. Further, we show that it is impossible to construct a conserved current

associated with charge conjugation symmetry, showing that the Dirac particle and its

anti-particle satisfy different equations of motion in κ-deformed space-time[110].

In chapter 4, we derive the equal time commutation relation between the DFRA scalar

field and its conjugate, where we assume that the corresponding creation and annihi-

lation operators satisfy the usual oscillator algebra. We then show that imposing the

condition that the commutation relation between the field and its conjugate is the same

as that in the commutative space-time, leads to the deformation of usual oscillator al-

gebra. Unlike the κ-deformed fields, here both these deformed commutation relations

derived are valid to all orders in the non-commutative parameter. We also derive the

conserved currents, corresponding to translational and Lorentz symmetry, for the DFRA

scalar field. Further, we analyse the effects of non-commutativity on the Unruh effect

by analysing a monopole detector coupled to the DFRA scalar field, showing that the

Unruh temperature is not modified, but the thermal radiation seen by the accelerated

observer gets correction due to the non-commutativity of space-time [111].

In chapter 5, we study the effects of the non-commutativity in an astrophysical object-

namely superdense star by generalising the anisotropic core-envelope model of a su-

perdense star [101] to κ-deformed space-time. The equations of state, connecting the

pressure and density, are obtained by solving the κ-deformed Einstein’s field equation,

valid up to first order in a. From the κ-deformed law of density variation, we show

that the non-commutativity enhances the density of the superdense star. Using the
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κ-deformed law of density variation and the positivity condition on the tangential pres-

sure, we obtain different bounds on the κ-deformation parameter. We also show that

the κ-defomed strong energy condition takes the same form as that in the commutative

space-time. By showing that the velocity of sound inside the star is less than the velocity

of light, and from the positivity conditions of the pressures and density, we show that

the super dense star model obtained in the κ-deformed space-time is stable [112].

In chapter 6, we analyse the maximal acceleration [102, 103] in the non-commutative

space-time. We study the maximal acceleration in κ-deformed space-time and anal-

yse its implications using two different approaches. In the first method we derive the

κ-deformed corrections to the maximal acceleration, valid up to first order in a, us-

ing the 8-dimensional line element of the κ-deformed phase-space. Further we derive

the first order κ-deformed corrections to the maximal acceleration from the κ-deformed

uncertainty principle. By combining the expressions for the Unruh temperature and

the deformed maximal acceleration, we obtain the maximum attainable temperature

in the κ-deformed space-time. We then obtain a bound on the deformation parameter

by comparing the expression of the maximum attainable temperature with the exper-

imental data on the Unruh radiation. In the second method we show the emergence

of maximal acceleration (valid up to first order in a) from the causally connected 4-

dimensional line element in κ-Minkowski space-time. We also obtain the maximum

attainable temperature corresponding to this deformed maximal acceleration. We then

derive the κ-deformed geodesic equation and obtain its Newtonian limit. We show that

κ-deformed Newton’s force equation contains an equivalence principle violating term.

By comparing this term with the experimental result on the violation of equivalence

principle, we obtain a bound on the dimensionless non-commutative parameters present

in the maximal acceleration expression, obtained using the second approach. [114].

In chapter 7, we summarise the results discussed in this thesis. We also present our

concluding remarks and discuss possible future direction of research work in this area.

In this thesis, we work with ηµν = diag(−1, 1, 1, 1).
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Chapter 2

Quantisation of κ-deformed

Klein-Gordon field

2.1 Introduction

Several studies have been reported in recent times, investigating field theory models

defined in the κ space-time. Most of these studies have used the quadratic Casimir

of the κ-deformed algebra [1–5] to derive the equation of motion, invariant under the

symmetry algebra corresponding to the κ-deformed space-time. This deformed equa-

tion of motion contain higher-order derivative terms indicating the non-local nature of

non-commutative field theory models. Therefore the Lagrangian associated with these

deformed equations of motion also contain higher-order derivative terms, making it dif-

ficult to quantise the κ-deformed field theories using canonical scheme.

The complete information regarding the exact form of Lagrangian is indispensable for

the canonical quantisation of field theories. But there exists another quantisation scheme

which does not use the explicit form of the Lagrangian for quantisation. This method

allows to derive the quantisation rules by starting with the equations of motion [6–8].

In this approach, the equations of motion corresponding to the free field theories are

first transformed into Klein-Gordon equation with the help of an operator known as

Klein-Gordon divisor [6–8]. This Klein-Gordon divisor is further utilised to define an

unequal-time commutation relation between the field and its adjoint, which is compat-

ible with Heisenberg’s equations of motion. In this scheme, the usual commutation

relation between creation and annihilation operators, present in the Fourier decompo-

sition of the field operator is assumed. This method has been used to construct the

covariant commutation relations for the fields with arbitrary spin [8, 9]. It has also been

23
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used to quantise massive spin-1 and massive spin-3 fields [10, 11]. Using this quanti-

sation method one can construct the conserved currents associated with the symmetry

transformations, from the equations of motion alone, without referring its Lagrangian

[8, 12, 13]. The conserved currents associated with the discrete symmetries have also

been constructed using this procedure [12].

The guiding principle used for constructing Lagrangians of say real/complex scalar the-

ories, Dirac theories in non-commutative space-times is that they reduce to the exact

commutative one in the limit where the deformation parameter vanishes. But this re-

quirement alone is not sufficient to obtain unique Lagrangians. Since the equations of

motion are constructed from the quadratic Casimir of the symmetry algebra, they are

unique. The existence of unique equation of motion motivate us to use the approach dis-

cussed above for the quantisation of field theories on κ-deformed space-time. Equations

of motion satisfied by different κ-deformed fields such as real and complex scalar fields,

Dirac field, have been constructed in the recent times, without using the explicit form of

Lagrangians. The κ-deformed Maxwell’s equations and κ-deformed geodesic equations

have been obtained in [14, 15] and [16] respectively, by generalising the Feynman’s pro-

cedure to κ space-time. In [5] and [17], the κ-deformed scalar field equations and the

deformed Dirac field equations are constructed from the deformed quadratic Casimir

and the Dirac derivative, respectively. Duffin-Kemmer-Petiau (DKP) equation has been

constructed in the κ-Minkowski space-time using Dirac derivatives [18].

In this chapter, we quantise the field obeying the κ-deformed Klein-Gordon equation, by

generalising the quantisation procedure of [7, 8] to the κ-deformed space-time. Here we

begin with κ-deformed scalar field equation, constructed from the quadratic Casimir of

the undeformed κ-Poincare algebra [19–21]. We then obtain a deformed commutation

relation (valid up to first order in a) between the deformed scalar field and its adjoint,

at unequal times, by assuming that the creation and annihilation operators satisfy the

usual oscillator algebra. We then start with the assumption that the commutator be-

tween the deformed field and its adjoint, at unequal times, to be undeformed and arrive

at a deformed oscillator algebra (valid up to first order in a). These quantisation rules

are different from that obtained in [5], where the twisted flip operator [22] has been used

to derive the deformed commutation relations as well as the deformed oscillator algebra,

with a modified product rule. We also analyse the translation and Lorentz symmetry

in κ space-time and derive the energy-momentum tensor and Lorentz generator, corre-

sponding to deformed scalar field. We show that this energy-momentum tensor for the

κ-scalar field is no longer symmetric due to the κ deformation.

The κ-deformed corrections to the Unruh effect has been discussed extensively in the

recent times. In [23] and [24], these corrections have been obtained by calculating the
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response of massless κ-deformed Klein-Gordon field coupled to a uniformly accelerat-

ing detector. Such an analysis has also been employed for studying fermionic fields, by

determining the response function of a massless κ-Dirac field coupled with a monopole

detector, moving along a uniformly accelerating trajectory [25]. Here we study the mod-

ifications of the Unruh effect due to κ-deformation of space-time. Using the Bogoliubov

coefficients we first connect the frequency modes of the deformed massless scalar field

in Rindler basis with that in the Minkowski basis and then calculate the vacuum ex-

pectation value of the number operator corresponding to the Rindler particles in the

Minkowski vacuum. We show that, up to first order in a, the Unruh temperature asso-

ciated with this thermal bath remains unaffected under the κ-deformations.

This chapter is organised in the following manner. In sec.2.2, we discuss the Takahashi-

Umezawa quantisation procedure reported in [7, 8]. The subsec.2.2.3 illustrates the

details regarding the construction of conserved currents from the equations of motion.

In sec.2.3, we generalise this quantisation procedure, discussed in sec.2.2, to κ-deformed

case and quantise the κ-deformed scalar field. We apply this scheme to the κ-deformed

scalar field equation, valid up to first order in the deformation parameter a. In sub-

sec.2.3.1, we derive the conserved currents corresponding to the symmetries associated

with the κ-deformed Klein-Gordon field. In sec.2.4, we derive the a dependent correc-

tions to Unruh effect. Finally in sec.2.5, we give the concluding remarks.

2.2 Takahashi-Umezawa quantisation procedure

In this section, we summarise the quantisation procedure discussed in [7, 8]. This method

requires only the equations of motion for quantising a field. By using this procedure

one can obtain the commutation relations between the field and its adjoint from its

equations of motion. Further, this method also helps in constructing the conserved

currents corresponding to continuous as well as discrete symmetry transformations from

the respective equations of motion [8, 12].

We begin with the equations of motion satisfied by the field operator φ(x) and its adjoint

φ̄(x) given by

Λ(∂)φ(x) = 0 (2.1)

and

φ̄(x)Λ(−
←−
∂ ) = 0, (2.2)
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respectively. In the above equation, Λ(∂) is a polynomial in ∂µ and in general this is

defined as [7, 8]

Λ(∂) =
N∑
l=0

Λµ1µ2....µl∂
µ1∂µ2 ....∂µl

= Λ(0) + Λµ∂
µ + Λµν∂

µ∂ν + Λµνρ∂
µ∂ν∂ρ + ..........+ Λµ1µ2µ3....µN∂

µ1∂µ2∂µ3 ....∂µN .

(2.3)

� Note that for a Klein-Gordon equation, the Λ(∂) operator is defined as

Λ(∂) = ηµν∂
µ∂ν −m2. (2.4)

Comparing this Eq.(2.3), we get the components of Λ(∂) operator for Klein-Gordon

field as

Λµν = ηµν , Λµ = 0, Λ(0) = −m2, (2.5)

and all other terms vanish, i.e., Λµνλ = 0, ..Λµ1µ2....µN = 0.

� For Dirac equation, the Λ(∂) operator is defined as

Λ(∂) = iγµ∂
µ +m. (2.6)

We obtain the non-vanishing components of Λ(∂) operator for Dirac field, by com-

paring this with Eq.(2.3), as

Λµ = iγµ, Λ(0) = m. (2.7)

According to the Takahashi-Umezawa quantisation procedure, every free field equations

of motion (represented as in Eq.(2.1)) can be reduced to the Klein-Gordon equations of

motion, by acting the Λ(∂) operator with another operator called Klein-Gordan divisor,

d(∂), such that

d(∂)Λ(∂) = �−m2 = Λ(∂)d(∂). (2.8)

Here it is to be noted that this Klein-Gordon divisor should commute with the Lambda

operator, i.e, [Λ(∂), d(∂)] = 0 and Klein-Gordon divisor d(∂) should have non-zero eigen

values [7, 8], so that d(∂) can be inverted. Using this d(∂), one can convert any free field

equations of motion into Klein-Gordon equation. Therefore it is important to obtain

the explicit form of Klein-Gordon divisor. It is easily found that for

� Klein-Gordon field,

d(∂) = I, (2.9)
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� Dirac field,

d(∂) = iγµ∂
µ −m. (2.10)

Klein-Gordon divisor has been constructed for different field theories like Duffin-Kemmer

field, Rarita-Schwinger field, etc. (see [8] for more details).

The field operator satisfying the equations of motion, given in Eq.(2.1), is decomposed

into Fourier modes, using the creation and annihilation operators as

φ(x) =

∫
d3p√

(2π)32Ep

(
up(x)a(p) + u∗p(x)a†(p)

)
, (2.11)

where up(x) satisfies the equations of motion given in Eq.(2.1), i.e., Λ(∂)up(x) = 0.

The creation and annihilation operators present in Eq.(2.11) are assumed to satisfy the

following commutation relations,

[a(p), a(p′)] = [a†(p), a†(p′)] = 0, [a(p), a†(p′)] = δ3(p− p′). (2.12)

According to this quantisation procedure, we write down the (unequal-time) commuta-

tion relation between the field operator and its adjoint, using the Klein-Gordon divisor

d(∂) as

[φ(x), φ̄(x′)] = id(∂)∆(x− x′), (2.13)

where ∆(x− x′) is defined as

∆(x− x′) =

∫
d3p

(2π)32Ep

(
e−ip(x−x

′) − eip(x−x′)
)
. (2.14)

Note that if φ(x) is a fermionic field then the above commutation relations given in

Eq.(2.12) and Eq.(2.13) are replaced with the corresponding anti-commutation relations

as per the spin-statistics theorem.

From the above relation given in Eq.(2.13), one can get an equal-time commutation

relation between the field, φ(x) and its time-derivative, ∂tφ(x). This is obtained by

acting Eq.(2.13) with ∂t′ , and then setting both the times to be equal, i.e, t = t′.

The consistency of this quantisation procedure can be verified using the compatibility

of the field operator φ(x) with the Heisenberg’s equation of motion, i.e.,

i∂tφ(x) = [φ(x), H] (2.15)

where H is the Hamiltonian [7, 8].
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2.2.1 Conserved currents

One of the major feature of this quantisation method is that it provides an alternate way

for constructing the conserved currents (associated with the symmetry transformations)

just from their equations of motion. Note that unlike Noether’s method, here one does

not requires the explicit form of the Lagrangian for constructing the conserved currents

[8, 12, 13]. This method provides a unique way of constructing the conserved currents

for discrete symmetry [12].

The conserved currents are constructed using an operator Γµ(∂,−
←−
∂ ), which is defined

as

Γµ(∂,−
←−
∂ ) =

N−1∑
l=0

l∑
i=0

Λµµ1.....µl∂µ1 .....∂µi(−
←−
∂ µi+1)......(−

←−
∂ µl)

= Λµ + Λµν(∂ν −
←−
∂ ν) + Λµνρ(∂

ν∂ρ − ∂ν
←−
∂ ρ +

←−
∂ ν
←−
∂ ρ) + ......

(2.16)

where Λµ, Λµν ,...etc.. appear as the coefficients of ∂µ, ∂µ∂ν ...etc in the explicit form of

Λ(∂) operator defined in Eq.(2.3). We obtain these Λµ, Λµν ,...etc.. by comparing the

equations of motion with the definition of Λ(∂) operator given in Eq.(2.3). Here it is to

be noted that Λµν , Λµνλ,...etc... should be symmetric in indices in order to calculate

Γµ(∂,−
←−
∂ ) operator.

� Substituting Eq.(2.5) in Eq.(2.16), we obtain the Γµ(∂,−
←−
∂ ) operator for Klein-

Gordon field as

Γµ(∂,−
←−
∂ ) = ∂µ −

←−
∂ µ, (2.17)

� Similarly by using Eq.(2.7) in Eq.(2.16), we get the Γµ(∂,−
←−
∂ ) operator for Dirac

field as

Γµ(∂,−
←−
∂ ) = iγµ. (2.18)

Using Eq.(2.3) and Eq.(2.16), it has been shown that Γµ(∂,−
←−
∂ ) satisfies the identity

[7, 8]

(∂µ +
←−
∂ µ)Γµ(∂,−

←−
∂ ) = Λ(∂)− Λ(−

←−
∂ ). (2.19)

In this formalism, the conserved current associated with a symmetry transformation is

defined using this Γµ(∂,−
←−
∂ ) operator, as [7, 8]

Jµ = φ̄(x)Γµ(∂,−
←−
∂ )δφ(x), (2.20)

where δφ(x) represents the variation of the field under the symmetry transformation.

By using the identity Eq.(2.19) and the equations of motion, i.e., Eq.(2.1) and Eq.(2.2),

it can be shown that the Jµ defined in Eq.(2.20) is a conserved quantity, i.e., ∂µJ
µ = 0.



Chapter 2 Quantisation of κ-deformed Klein-Gordon field 29

Note that this conserved current is used to fix the normalisation of the field (see [7, 8]

for details).

Under the space-time translation, the space-time coordinate varies as δxµ = θµ (where

θµ is the constant parameter) and the scalar field transforms as δφ(x) = θµ∂µφ(x). The

energy-momentum tensor associated with this translational symmetry is written using

Eq.(2.20) as

Tµν = φ̄(x)Γµ(∂,−
←−
∂ )∂νφ(x) (2.21)

and the generator corresponding to this translational symmetry is written as

Pµ =

∫
d3x T0µ =

∫
d3x φ̄(x)Γ0(∂,−

←−
∂ )∂µφ(x) (2.22)

Similarly under the Lorentz transformation, the space-time coordinates transform as

δxµ = ω ν
µ xν and the scalar field transforms as δφ(x) = 1

2

(
xµ∂νφ(x) − xν∂µφ(x)

)
ωµν .

The conserved quantity corresponding to this Lorentz transformation is given as

Mµν =

∫
d3xM0µν (2.23)

where

Mµνλ =
1

2
φ̄(x)Γµ(∂,−

←−
∂ )
(
xν∂λφ(x)− xλ∂νφ(x)

)
. (2.24)

The number operator corresponding to a field can be calculated by obtaining the con-

served current corresponding to the global phase transformation symmetry. Under a

global phase transformation, i.e, φ(x) → φ′(x) = e−iαxφ(x), the infinitesimal change in

the field and its adjoint are δφ(x) = −iαφ(x) and δφ̄(x) = iαφ̄(x) respectively. Thus

using Eq.(2.20), we get the number operator corresponding to φ(x) as

N = −iα
∫
d3x φ̄(x)Γ0(∂,−

←−
∂ )φ(x). (2.25)

The Noether’s prescription allows us to calculate the conserved currents for continuous

symmetries only. However the above method provides a way for obtaining the conserved

currents associated with the discrete symmetries also. Note that, unlike the Noether’s

method here one uses only the equations of motion to get conserved currents [12].

We now discuss the conserved currents corresponding to parity, charge conjugation and

time reversal symmetry associated with the Dirac field ψ(x), satisfying Eq.(2.1) for λ(∂)

given in Eq.(2.6).

Under the parity transformation, the space-time coordinates and the corresponding

derivatives change as xi → −xi, t → t, ∂i → −∂i and ∂0 → ∂0, so that the Dirac

equation also changes as Λ(−∂i, ∂0)ψ(−xi, t) = 0. Now one can find a matrix P
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(P = γ0 for Dirac field) such that Pψ(−xi, t) = ψp(xi, t) satisfies the Dirac equa-

tion, i.e, Λ(∂i, ∂0)ψp(xi, t) = 0. In order to construct the conserved currents, we take

δψ(x) = ψp(xi, t) [12]. By substituting this in Eq.(2.20), we obtain the expression for

the conserved current corresponding to the parity transformation as

Jµ = ψ̄(xi, t)Γµ(∂,−
←−
∂ )ψp(xi, t). (2.26)

Next we consider the time-reversal transformations. The space-time coordinates and

their derivatives transform as xi → xi, t→ −t, ∂i → ∂i and ∂0 → −∂0 under the time-

reversal transformation. Thus the Dirac equation also transform as Λ(∂i,−∂0)ψ(xi,−t) =

0. There exist a matrix T for which T ψ∗(xi,−t) = ψT (xi, t) satisfies the Dirac equa-

tion as Λ(∂i, ∂0)ψT (xi, t) = 0. Here we choose δψ(x) = ψT (xi, t) [12] and using this in

Eq.(2.20), we get the conserved currents for time-reversal symmetry as

Jµ = ψ̄(xi, t)Γµ(∂,−
←−
∂ )ψT (xi, t). (2.27)

We study the charge conjugation symmetry of the Dirac equation by introducing a min-

imal coupling term, describing the interaction of electron with electromagnetic field Aµ,

in the equations of motion. This is done by replacing i∂µ in Eq.(2.6) with i∂µ+eAµ and

we denote this as Λc(∂, e) = iγµ∂µ + eγµAµ +m, satisfying Λc(∂, e)ψ(xi, t) = 0. Under

the charge conjugation symmetry, e→ −e and the complex conjugate of Dirac equation

becomes Λ∗c(∂,−e)ψ∗(xi, t) = 0. Here we can find a matrix C such that Cψ∗(xi, t) =

ψc(xi, t) satisfies the Dirac equation for the anti-particle (i.e, Λc(∂,−e)ψc(xi, t) = 0).

By choosing δψ(xi, t) = ψc(xi, t) [12] in Eq.(2.20), we obtain the conserved current

corresponding to the charge conjugation symmetry as

Jµc = ψ̄(xi, t)Γ
µ
c (∂,−

←−
∂ )ψc(xi, t). (2.28)

Thus one can construct the conserved currents corresponding to the discrete symmetries

also from their equations of motion alone.

2.3 Quantisation of κ-deformed Klein-Gordon field

In this section we generalise the Takahashi-Umezawa quantisation scheme to the κ-

deformed space-time. We will then use this method to quantise the field theory satisfying

κ-deformed Klein-Gordon equation, valid up to first order in a. Further we derive

the conserved currents corresponding to translational and Lorentz symmetry of the κ-

deformed Klein-Gordon field. We also derive the number operator corresponding to

deformed Klein-Gordon field.
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The κ-deformed Klein-Gordon equation, invariant under the undeformed κ-Poincare

algebra is written using the quadratic Casimir (see Eq.(1.20) of chapter 1), as [5]

(
�

(
1 +

a2

4
�

)
−m2

)
φ̂(x) = 0, (2.29)

where φ̂(x) is the κ-deformed Klein-Gordon field and

� = ∂2
k

e−A

2ϕ2
− ∂2

0

2(1− coshA)

A2
, (2.30)

where A = ia∂0.

For a particular choice of realisation ϕ = e−A, given in [19–21] we get the κ-deformed

Klein-Gordon equation, valid up to first non-vanishing term in a, as(
∂2
i − ∂2

0 −m2 − ia∂0∂
2
i

)
φ̂(x) = 0. (2.31)

The above equation reduces to the commutative Klein-Gordon equation in the limit

a→ 0. Note that the additional term is a higher derivative term.

Now we generalise Eq.(2.8) to κ space-time by replacing Lambda operator Λ(∂) as

well as the Klein-Gordon divisor d(∂) with their κ-deformed versions Λ̂(∂) and d̂(∂),

respectively. We also re-write the RHS of Eq.(2.8) using the κ-deformed Klein-Gordon

equation given in Eq.(2.31). Thus we have

Λ̂(∂)d̂(∂) = d̂(∂)Λ̂(∂) = �−m2 − ia∂0∂
2
i . (2.32)

Here Eq.(2.32) is the starting equation for the quantisation of κ-deformed scalar field

theory using the Takahashi-Umezawa formalism. It is to be noted that Eq.(2.32) reduces

to Eq.(2.8) in the commutative limit a→ 0.

From Eq.(2.31), we obtain the Λ̂(∂) operator corresponding to the κ-deformed Klein-

Gordon equation, valid up to first order in a, as

Λ̂(∂) = �−m2 − ia∂0∂
2
i , (2.33)

satisfying the equations of motion

Λ̂(∂)φ̂(x) = 0. (2.34)

As in the commutative case (see Eq.(2.9)) here also we take the κ-deformed Klein-Gordon

divisor corresponding to the κ-deformed Klein-Gordon field as the identity operator, i.e.,

d̂(∂) = I.



Chapter 2 Quantisation of κ-deformed Klein-Gordon field 32

We decompose the κ-deformed Klein-Gordon field into positive and negative frequency

modes using the deformed creation and annihilation operators as

φ̂(x) =

∫
d3p√

(2π)32Ep

(
ûp(x)â(p) + û∗p(x)â†(p)

)
, (2.35)

where Ep, is the commutative energy which is defined using the usual dispersion relation

as Ep =
√
~p2 +m2 1

Note that the û(x) appearing in Eq.(2.35) satisfy the κ-deformed Klein-Gordon equation,

i.e.,

Λ̂(∂)û(x) = 0. (2.36)

We solve the above equation perturbatively by expanding û(x) up to first order in the

deformation parameter as

û(x) = u(0)(x) + aαu(1)(x). (2.37)

Here α is a real parameter having the dimension of [L]−1. We also note that Λ̂(∂)

naturally split as

Λ̂(∂) = Λ(0)(∂) + aΛ(1)(∂). (2.38)

Now we substitute Eq.(2.37) and Eq.(2.38) in Eq.(2.36) and keep the terms valid up

to first order in a. Thus we get two equations corresponding to a independent and a

dependent coefficient terms. They are given by

Λ(0)(∂)u(0)(x) = 0,

Λ(1)(∂)u(0)(x) + αΛ(0)(∂)u(1)(x) = 0.
(2.39)

By solving the first equation of Eq.(2.39), we get u(0)(x) = e−ipx and this represents

the plane wave solution of the commutative Klein-Gordon equation. Substituting the

commutative solution u(0)(x) = e−ipx in the second equation of Eq.(2.39), we get(
�−m2

)
u(1)(x) =

1

α
Epp

2
i e
−ipx, (2.40)

We solve the above inhomogenous differential equation using the Green’s function method

and the solution is defined as

u(1)(x) = u(0)(x) +

∫
G(x− x′)j(x′)d4x′, (2.41)

1In general one need to use the κ-deformed dispersion relation (i.e., E2
p = p2(1 + aEp) +m2, valid up

to first order in a). In order to simplify the calculations, we use the commutative dispersion relation.
But here we have included the κ-deformed corrections through û(p) and through deformed creation and
annihilation operators respectively.
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where j(x) = 1
αEpp

2
i e
−ipx and G(x−x′) is the Green’s function that satisfy the commu-

tative Klein-Gordon equation as(
�−m2

)
G(x− x′) = δ4(x− x′). (2.42)

Using the Fourier transformation in the above equation, we obtain the form of the

Green’s function as

G(x− x′) =−
∫

d4p

(2π)4

1

p2 +m2
e−ip(x−x

′)

=

∫
d4p

(2π)4

1

p2
0 − E2

p

e−ip(x−x
′)

(2.43)

Now we solve the p0 integral in Eq.(2.43) by shifting the poles, i.e, p0 = Ep and p0 = −Ep
by iε. Thus we re-express Eq.(2.43) as

G(x− x′) = lim
ε→0

∫
d3p

(2π)3

e−i~p·(~x−~x
′)

2Ep

∫
dp0

2π
eip0(t−t′)

(
1

(p0 − Ep) + iε
− 1

(p0 + Ep)− iε

)
.

(2.44)

Using the definition of the step function, i.e,

lim
ε→0

∫
dz

eiz(t−t
′)

z + iε
= −2πiθ(t− t′), (2.45)

in the above equation and after re-arranging the terms we get the explicit form of the

Green’s function as

G(x− x′) = −
∫

d3p

(2π)3

i

2Ep

(
θ(t− t′)e−ip(x−x′) + θ(t′ − t)eip(x−x′)

)
. (2.46)

Using this we calculate the second term on the RHS of Eq.(2.41) as∫
d4x′G(x− x′)j(x′)

=

∫
d4x′

∫
d3p′

(2π)3

(−i)
2Ep′

[
θ(t′ − t)eip′(x−x′) + θ(t− t′)e−ip′(x−x′)

]
Ep
α

(~p)2e−ipx
′

= −2πi

∫
d3p′

2Ep′

[
θ(t′ − t)eip′x

∫
d4x′

(2π)4
e−i(p

′+p)x′ + θ(t− t′)e−ip′xe−i(p−p′)x′
]
Ep
α

(~p)2

= −2πi

∫
d3p′

2Ep′

[
θ(t′ − t)eip′xδ4(p+ p′) + θ(t− t′)e−ip′xδ4(p− p′)

]
Ep
α

(~p)2

=
−iπ
α

[
θ(t′ − t)e−ip′0tδ(p0 + p′0) + θ(t− t′)eip′0tδ(p0 − p′0)

]
ei~p·~x~p2

(2.47)

Now using the identity δ(x − a)f(x) = δ(x)f(a) and re-writing the delta and step

functions using their integral representations, we find that the above expression vanishes.

Substituting this and Eq.(2.41) in Eq.(2.37), we get the complete solution û(p), valid up
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to first order term in a, as

û(x) = (1 + aα)e−ipx (2.48)

We see that this û(x) (valid only up to first order in a) is proportional to the commutative

solution e−ipx. After substituting Eq.(2.48) in Eq.(2.35), we get the κ-deformed Klein-

Gordon field operator, valid up to first order in a, as

φ̂(x) =

∫
d3p√

(2π)32Ep

(
(1 + aα)e−ipxâ(p) + (1 + aα)eipxâ†(p)

)
. (2.49)

From the above expression it can easily be seen that in the limit a→ 0, we get back the

usual field operator satisfying the Klein-Gordon equation.

For a scalar theory we assume that the deformed creation and annihilation operators

satisfy the usual commutation relations, i.e.,

[â(p), â(p′)] = 0, [â†(p), â†(p′)] = 0, [â(p), â†(p′)] = δ3(p− p′). (2.50)

Using Eq.(2.13) we write down the (unequal-time) commutation relations between κ-

deformed real scalar field and its adjoint as

[φ̂(x),
¯̂
φ(x′)] = i∆̂(x− x′). (2.51)

We now assume ∆̂(x − x′) to have an a dependent correction term f(x − x′) (whose

explicit form is unknown), so that we express ∆̂(x−x′) = ∆(x−x′) +af(x−x′). Hence

Eq.(2.51) becomes

[φ̂(x),
¯̂
φ(x′)] = i∆(x− x′) + iaf(x− x′). (2.52)

Using the explicit form of the κ-deformed field operator φ̂(x), i.e, Eq.(2.35) in Eq.(2.52),

we get the (unequal-time) commutation relation as

[φ̂(x),
¯̂
φ(x′)] =

∫
d3p d3p′√

(2π)32Ep2Ep′

((
u(0)
p (x)u

∗(0)
p′ (x′)− u∗(0)

p (x)u
(0)
p′ (x′)

)
[â(p), â†(p′)]+

aα
(
u(1)
p (x)u

∗(0)
p′ (x′) + u(0)

p (x)u
∗(1)
p′ (x′)− u∗(0)

p (x)u
(1)
p′ (x′)− u∗(1)

p (x)u
(0)
p′ (x′)

)
[â(p), â†(p′)]

)
(2.53)

By using the explicit form of u
(0)
p (x) and u

(1)
p (x) from Eq.(2.48), we get

[φ̂(x),
¯̂
φ(x′)] = i(1 + 2aα)∆(x− x′). (2.54)

We identify f(x− x′) = 2α∆(x− x′) by comparing Eq.(2.54) with Eq.(2.52).
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Thus we obtain a deformed (unequal-time) commutation relation between the deformed

scalar field and its adjoint by assuming that the deformed creation and annihilation

operators satisfy the usual oscillator algebra, as given in Eq.(2.50).

Now instead of using Eq.(2.50), let us assume that the oscillator algebra to be deformed

(such that the deformation is valid up to first order in a)

[â(k), â(k′)] = [â†(k), â†(k′)] = 0, [â(k), â†(k′)] = g(a)δ3(k − k′). (2.55)

where g(a) is an arbitrary linear function in a, and in the limit a → 0, g(a) = 1. Now

we use this deformed commutation relation in Eq.(2.53) and we repeat the above steps

to get the unequal-time commutation relation between κ-deformed scalar field and its

adjoint as

[φ̂(x),
¯̂
φ(x′)] = ig(a)(1 + 2aα)∆(x− x′). (2.56)

The above commutation relation becomes undeformed (valid up to first order in a) for

a particular choice g(a) = 1− 2aα. Thus we have

[φ̂(x),
¯̂
φ(x′)] = i∆(x− x′). (2.57)

Now we substitute this g(a) = 1−2aα in Eq.(2.55) and we get the κ-deformed oscillator

algebra, valid up to first order in a, as

[â(k), â(k′)] = [â†(k), â†(k′)] = 0, [â(k), â†(k′)] = (1− 2aα)δ3(k − k′). (2.58)

Thus here we find that the commutation relation between κ-deformed scalar field and

its adjoint becomes undeformed for the deformed oscillator algebra, given in Eq.(2.58).

2.3.1 Conserved currents for κ-deformed scalar field

In this subsection, we construct the conserved currents corresponding to translational

and Lorentz symmetries, for the scalar field in the κ-deformed space-time, by reformu-

lating the expression for conserved currents defined in Eq.(2.20) for the κ- space-time.

Comparing Eq.(2.3) and Eq.(2.33), we obtain the components Λ̂µ, Λ̂µν , ..etc, correspond-

ing to the κ-deformed Klein-Gordon equation as

Λ̂µνλ = −iaδµ0δνiδλi, Λ̂µν = ηµν , Λ̂µ = 0, Λ̂(0) = −m2. (2.59)
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Substituting Eq.(2.59) in Eq.(2.16) we get the expression for the Γ̂µ(∂,−
←−
∂ ) operator

for κ-deformed Klein-Gordon field as

Γ̂µ(∂,−
←−
∂ ) =∂µ −

←−
∂ µ −

ia

3

(
δµ0∂

2
i − δµ0∂i

←−
∂ i + δµ0

←−
∂ 2
i + 2δµi∂i∂0+

2δµi
←−
∂ i
←−
∂ 0 − δµi∂i

←−
∂ 0 − δµi∂0

←−
∂ i

)
.

(2.60)

From the above, we see that a dependent terms in RHS of the equation are coming from

the first order κ-deformation correction terms present in the equations of motion for

scalar field. We find that the Γ̂µ(∂,−
←−
∂ ) operator defined above satisfies the identity,

i.e., Eq.(2.19), in κ space-time also as(
∂µ +

←−
∂ µ

)
Γ̂µ(∂,−

←−
∂ ) = Λ̂(∂)− Λ̂(−

←−
∂ ). (2.61)

The general expression for the conserved currents associated with κ-deformed scalar field

is obtained by substituting Eq.(2.60) in Eq.(2.20) as

Ĵµ = φ̂(x)
(
∂µ −

←−
∂ µ

)
δφ̂(x)

− ia
3
φ̂(x)

(
δµ0

(
∂2
i − ∂i

←−
∂ i +

←−
∂ 2
i

)
+ δµi

(
2∂i∂0 + 2

←−
∂ i
←−
∂ 0 − ∂i

←−
∂ 0 − ∂0

←−
∂ i
))
δφ̂(x).

(2.62)

The conserved current for the deformed scalar field pick up a dependent correction terms

from Γ̂µ(∂,−
←−
∂ ) and φ̂(x).

Under the translation, the κ-deformed space-time coordinate transform as x̂µ → x̂′µ =

x̂µ+δx̂µ. We determine the infinitesimal change in the κ-deformed space-time coordinate

δx̂µ, using the relation δx̂µ = θν [Dµ, x̂ν ], where θν is the parameter associated with

translational symmetry. Thus by substituting the explict form of Dµ and x̂µ from

Eq.(1.18) and Eq.(1.12) (of chapter 1), we obtain δx̂µ, valid up to first order in a, as

δx̂µ = θµ + iaθν(ηµν + δµ0∂ν). (2.63)

The infinitesimal change associated with the translation is given as δφ̂(x) = δx̂µ∂µφ̂(x).

By substituting Eq.(2.63) in δφ̂(x) = δx̂µ∂µφ̂(x), we obtain the explicit form of δφ̂(x),

valid up to first order in a, as

δφ̂(x) = θµ
(
∂µφ̂(x) + ia(∂µφ̂(x) + ∂0∂µφ̂(x))

)
. (2.64)
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By substituting Eq.(2.64) in Eq.(2.62), we obtain the conserved current associated with

the translational symmetry of the deformed scalar field as

Ĵµ = φ̂(x)
(
∂µ −

←−
∂ µ
)
∂ν φ̂(x)θν − ia

3
δµ0φ̂(x)

(
∂i − ∂i

←−
∂ i +

←−
∂ 2
i

)
∂ν φ̂(x)θν

− ia

3
δµiφ̂(x)

(
2∂i∂0 − ∂i

←−
∂ 0 −

←−
∂ i∂0 + 2

←−
∂ i
←−
∂ 0

)
∂ν φ̂(x)θν

+ iaφ̂(x)
(
∂µ −

←−
∂ µ
)
(∂ν + ∂0∂ν)φ̂(x)θν

(2.65)

From the above equation, we find that the last terms are contributed by the a dependent

terms of δx̂µ. Similarly the 1
3 dependent terms of the conserved current expression are

contributed by the a dependent terms present in Γ̂µ, see Eq.(2.62). Using the relation

Ĵµ = T̂µνθ
ν , we write down the expression for the energy-momentum for κ-deformed

Klein-Gordon field, valid up to first order in a, as

T̂µν = φ̂(x)
(
∂µ −

←−
∂ µ
)
∂ν φ̂(x)− ia

3
δµ0φ̂(x)

(
∂i − ∂i

←−
∂ i +

←−
∂ 2
i

)
∂ν φ̂(x)

− ia

3
δµiφ̂(x)

(
2∂i∂0 − ∂i

←−
∂ 0 −

←−
∂ i∂0 + 2

←−
∂ i
←−
∂ 0

)
∂ν φ̂(x)

+ iaφ̂(x)
(
∂µ −

←−
∂ µ
)
(∂ν + ∂0∂ν)φ̂(x).

(2.66)

It is clear from the above expression that the energy-momentum tensor corresponding

to the κ-deformed scalar field is not symmetric due to the a dependent terms of the

κ deformation. From Eq.(2.66), we can obtain the momentum corresponding to κ-

deformed scalar field as

P̂µ =

∫
d3x T̂0µ. (2.67)

The infinitesimal change in the κ-deformed space-time coordinate associated with the

Lorentz symmetry is defined as δx̂µ = [Mµν , x̂λ]ωνλ. By using the explicit form of Mµν

and x̂µ, we get δx̂µ corresponding to Lorentz symmetry (valid up to first order in a) as

δx̂µ = xνω
ν
µ + ia

(
δµ0xλ∂ν − δν0xλ∂µ + ηµλxν∂0 + δµ0δλ0x0∂ν − δ0νηµλx0∂0

−δ0νxµ∂λ + δ0µxν∂λ

)
ωνλ.

(2.68)

Similarly the infinitesimal change in the deformed scalar field under the Lorentz transfor-

mation is obtained as δφ̂(x) = δx̂µ∂
µφ̂(x). Substituting Eq.(2.68) in δφ̂(x) = δx̂µ∂

µφ̂(x),

we obtain the infinitesimal change in the deformed scalar field, valid up to first order in

a, as

δφ̂(x) =
1

2

(
xν∂λφ̂(x)− xλ∂ν φ̂(x)

)
ωνλ +

ia

2

(
− δν0xλ∂α∂

αφ̂(x) + δλ0xν∂α∂
αφ̂(x)

−δν0xα∂λ∂
αφ̂(x) + δλ0xα∂ν∂

αφ̂(x)− xλ∂ν∂0φ̂(x) + xν∂λ∂0φ̂(x)
)
ωνλ

(2.69)

After substituting Eq.(2.69) in Eq.(2.62), we get the explicit form of the conserved
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current corresponding to the undeformed κ-Lorentz symmetry of κ-deformed scalar field

as

Ĵµ =
1

2
φ̂(x)

(
∂µ −

←−
∂ µ
)(
xν∂λ − xλ∂ν

)
φ̂(x)ωνλ

− ia
6
δµ0φ̂(x)

(
∂i − ∂i

←−
∂ i +

←−
∂ 2
i

)(
xν∂λ − xλ∂ν

)
φ̂(x)ωνλ

− ia
6
δµiφ̂(x)

(
2∂i∂0 − ∂i

←−
∂ 0 −

←−
∂ i∂0 + 2

←−
∂ i
←−
∂ 0

)(
xν∂λ − xλ∂ν

)
φ̂(x)ωνλ

− ia
2
φ̂(x)

(
∂µ −

←−
∂ µ
)(
δν0xλ∂α∂

α − δλ0xν∂α∂
α

+δν0xα∂λ∂
α − δλ0xα∂ν∂

α + xλ∂ν∂0 − xν∂λ∂0

)
φ̂(x)ωνλ

(2.70)

In Eq.(2.70), we observe that ia
6 dependent correction terms come from the Γ̂µ(∂,−

←−
∂ )

operator and ia
2 dependent correction terms come from the infinitesimal change in the

deformed scalar field associated with the undeformed κ-Lorentz symmetry.

Using the relation Ĵµ = M̂µνλω
νλ in Eq.(2.70), we obtain M̂µνλ as

M̂µνλ =
1

2
φ̂(x)

(
∂µ −

←−
∂ µ
)(
xν∂λ − xλ∂ν

)
φ̂(x)− ia

6
δµ0φ̂(x)

(
∂2
i − ∂i

←−
∂ i +

←−
∂ 2
i

)(
xν∂λ − xλ∂ν

)
φ̂(x)

− ia
6
δµiφ̂(x)

(
2∂i∂0 − ∂i

←−
∂ 0 −

←−
∂ i∂0 + 2

←−
∂ i
←−
∂ 0

)(
xν∂λ − xλ∂ν

)
φ̂(x)

− ia
2
φ̂(x)

(
∂µ −

←−
∂ µ
)(
δν0xλ∂α∂

α − δλ0xν∂α∂
α + δν0xα∂λ∂

α − δλ0xα∂ν∂
α

+xλ∂ν∂0 − xν∂λ∂0

)
φ̂(x).

(2.71)

We obtain the expression for Lorentz generator (valid up to first order in a) corresponding

to the deformed scalar field from Eq.(2.71) as

M̂µν =

∫
d3x M̂0µν . (2.72)

2.4 Deformed Unruh effect

In this section we study the effects of the κ-deformation (valid up to first order in a) in

the Unruh effect. This is studied using the deformed oscillator algebra corresponding to

the κ-deformed scalar field derived in Eq.(2.58).

When a uniformly accelerating observer (with constant proper acceleration A) measures

the vacuum expectation value of the number operator (corresponding to accelerating

frame) in the Minkowski vacuum, particles are found to be in a thermal bath whose

temperature is T = ~A
2πk . This is known as Unruh effect [26–29].
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First order κ-deformed corrections to Unruh effect has been derived in [23], by calculating

the response of uniformly accelerating monopole detector coupled to the massless κ-

deformed complex scalar field (invariant under the κ-Poincare algebra). Similarly in

[24], a2 dependent corrections to the Unruh effect has been obtained from the response

function of uniformly accelerating detector coupled to massless κ-deformed scalar field.

Here we derive the first order κ-deformed corrections to the Unruh effect corresponding

to the deformed scalar field by using the method of Bogoliubov coefficients. For this,

we first consider a massless κ-deformed Klein-Gordon field in the 1 + 1 dimensional

Minkowski space-time, such that the corresponding creation and annihilation operators

satisfy deformed oscillator algebra. Next we consider the massless κ-deformed Klein-

Gordon field in the 1 + 1 dimensional Rindler space-time. We then use the method of

Bogoliubov transformation to connect the frequency modes in the Minkowski basis with

the frequency modes in the Rindler basis. Next we calculate the vacuum expectation

value of the number operator defined in the Rindler basis over the Minkowski vacuum.

In calculating this, we use the deformed oscillator algebra satisfied by the creation and

annihilation operators given in Eq.(2.58).

Let us consider a 1 + 1 dimensional Minkowski space-time2 as

ds2 = −dt2 + dz2. (2.73)

Now we consider a massless κ-deformed Klein-Gordon field in this 1 + 1 dimensional

Minkowski space-time. The corresponding equation of motion (valid up to first order in

a) is

(∂2
z − ∂2

t − ia∂t∂2
z )φ̂(z, t) = 0. (2.74)

The deformed field operator φ̂(z, t) can be separated into left and right moving sectors

and further by decomposing it into deformed positive and negative frequency modes, we

get

φ̂(z, t) = (1 + aα)

∫
dk√
4πk

(
b̂+ke

ik(t+z) + b̂†+ke
−ik(t+z) + b̂−ke

−ik(z−t) + b̂†−ke
ik(z−t)

)
.

(2.75)

We define the Minkowski vacuum state as |0〉M , such that b̂+k and b̂−k annihilate the

Minkowski vacuum (i.e., b̂+k |0〉M = 0 and b̂−k |0〉M = 0 respectively). These operators

satisfy the deformed oscillator algebra as (see Eq.(2.58))

[b̂±k, b̂
†
±k′ ] = (1− 2aα)δ(k − k′). (2.76)

2In general one can use the κ-deformed metric to study the Unruh effect in κ space-time. But here we
focuss on the κ-deformed corrections in Unruh effect due to the deformed oscillator algebra alone. Hence
we consider the usual metric in this calculation. See chapter 5 to see the construction of κ-deformed
metric.
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Now we define the null coordinates as

U = t− z, V = t+ z. (2.77)

In terms of these null coordinates Eq.(2.75) can be written as

φ̂(t, z) = φ̂+(V ) + φ̂−(U), (2.78)

where φ̂+(V ) and φ̂−(U) represent the left and right moving sectors of the deformed

scalar field in the 1 + 1 dimensional Minkowski space-time. Their explicit forms are

given as

φ̂+(V ) = (1 + aα)

∫
dk√
4πk

(
b̂+ke

ikV + b̂†+ke
−ikV

)
, (2.79)

and

φ̂−(U) = (1 + aα)

∫
dk√
4πk

(
b̂−ke

ikU + b̂†−ke
−ikU

)
. (2.80)

Here φ̂−(U) and φ̂+(V ) are independent solutions of Eq.(2.74). So now onwards we

consider only the left moving sector, i.e., φ̂+(V ) for the remaining discussions [29].

Now we consider the Rindler space-time which is defined by the regions |t| < z and

|t| < −z. The region |t| < z is known as the Right Rindler Wedge (RRW) and |t| < −z
is known as the Left Rindler Wedge (LRW). The coordinates in the RRW and LRW

regions are defined as (τ, ζ) and (τ̄ , ζ̄) respectively [29].

The coordinates of RRW are related to Minkowski coordinates by the following coordi-

nate transformation [29]

t =
eAζ

A
sinhAτ, z =

eAζ

A
coshAτ, (2.81)

where A is the constant proper acceleration. Under the above coordinate transformation

the line element defined in Eq.(2.73) becomes

ds2 = −e2Aζ(dt2 − dz2). (2.82)

Similarly the coordinates of LRW are also related to Minkowski coordinates by the

following coordinate transformation

t =
eAζ̄

A
sinhAτ̄, z = −e

Aζ̄

A
coshAτ̄. (2.83)

In terms of LRW coordinates, the line element defined in Eq.(2.73) becomes

ds2 = −e2Aζ̄(dt2 − dz2). (2.84)
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Comparing Eq.(2.82) and Eq.(2.84) with Eq.(2.73), we observe that the Rindler metric

is conformally related to the Minkowski metric in 1 + 1 dimensions. Thus the deformed

Klein-Gordon equation in 1 + 1 dimensional Rindler space-time takes the same form as

that in 1 + 1 dimensional Minkowski space-time. Thus deformed scalar field equations

in RRW and LRW are given as

(∂2
ζ − ∂2

τ − ia∂τ∂2
ζ )φ̂(ζ, τ) = 0, (2.85)

and

(∂2
ζ̄ − ∂

2
τ̄ − ia∂τ̄∂2

ζ̄ )φ̂(ζ̄, τ̄) = 0, (2.86)

respectively.

Again the solutions can be separated into left and right moving sectors. But here we

consider only the left moving sectors. For the calculational simplications we define the

null coordinates in RRW and LRW and they are given by

u = τ − ζ, v = τ + ζ, (2.87)

and

v̄ = τ̄ − ζ̄, ū = τ̄ + ζ̄, (2.88)

respectively.

Substituting Eq.(2.81) in Eq.(2.77) and using Eq.(2.87) we get the relation between the

null coordinates in Minkowski space-time and RRW as

U = −e
−Au

A
, V =

eAv

A
(2.89)

Similarly by Substituting Eq.(2.83) in Eq.(2.77) and using Eq.(2.88) we get the relation

between the null coordinates in Minkowski space-time and LRW as

U =
eAū

A
, V = −e

−Av̄

A
. (2.90)

Here we consider only the left moving sectors of the field. Thus the solutions in RRW

and LRW are given using the left moving sector alone as

φ̂+(v) = (1 + aα)

∫
dw√
4πw

(
âR+we

iwv + â†R+we
−iwv

)
(2.91)

and

φ̂+(v̄) = (1 + aα)

∫
dw√
4πw

(
âL+we

iwv̄ + â†L+we
−iwv̄

)
, (2.92)

respectively.
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The vacuum state in the Rindler space-time is defined as |0〉R. The operators âR+w and

âL+w annihilate the vacuum in RRW and LRW, i.e., âR+w |0〉R = 0 and âL+w |0〉R = 0,

respectively. These operators also satisfy the deformed oscillator algebra (in RRW and

LRW separately) as

[âR+w(k), â†R+w(k′)] = (1− 2aα)δ(k − k′), (2.93)

and

[âL+w(k), â†L+w(k′)] = (1− 2aα)δ(k − k′). (2.94)

We now use the method of Bogoliubov coefficients to connect the frequency modes of

RRW and LRW with that of the Minkowski space-time. These Bogoliubov coefficients,

αRwk, β
R
wk, α

L
wk and βLwk, are introduced through [29]

e−iwv√
4πw

=

∫
dk√
4πk

(αRwke
−ikV + βRwke

ikV ), (2.95)

e−iwv̄√
4πw

=

∫
dk√
4πk

(αLwke
−ikV + βLwke

ikV ), (2.96)

In order to obtain αRwk, we first multiply Eq.(2.95) by eikV

2π for k > 0 and then by

integrating over V , we obtain

αRwk =
1

2π

√
k

w

∫
dV eikV e−iωv (2.97)

We rewrite e−iωv using Eq.(2.89) and thus Eq.(2.97) becomes

αRwk =
1

2π

√
k

w

∫
dV (AV )

−iw
A eikV (2.98)

Now we take V = ix
k and using the integral representation of Gamma function, obtain

αRwk =
1

2π

√
k

w

∫
idx

k

(
A
ix

k

)−iw
A
e−x

=
ie

πw
2A

2π
√
wk

(A
k

)− iw
A

Γ
(

1− iw

A

)
.

(2.99)

For finding βRwk, we first multiply Eq.(2.95) with e−ikV

2π and then integrate the resulting

expression over V . We then do a change of variable by V = − ix
k and using the definition

of Gamma function, we get

βRwk = − ie−
πw
2A

2π
√
wk

(A
k

)− iw
A

Γ
(

1− iw

A

)
(2.100)
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We now multiply Eq.(2.95) with e−ikV

2π and integrate over V . After doing a change of

variable V = ix
k and using the definition of Gamma function we get αLwk as

αLwk = − ie
πw
2A

2π
√
wk

(A
k

) iw
A

Γ
(

1 +
iw

A

)
, (2.101)

Next we multiply Eq.(2.96) with eikV

2π and integrate over V . After doing a change of

variable V = −ix
k and using the definition of Gamma function we get βLwk as

βLwk =
ie−

πw
2A

2π
√
wk

(A
k

) iw
A

Γ
(

1 +
iw

A

)
. (2.102)

From Eq.(2.99), Eq.(2.100), Eq.(2.101) and Eq.(2.102), we find that the Bogoliubov

coefficients obey the following relations

βLwk = − e−
πw
A αR∗wk,

βRwk = − e−
πw
A αL∗wk

(2.103)

We notice here that the Bogoliubov coefficients satisfy the same relations as that in the

commutative case [29].

Now we replace the positive and negative frequency modes of the deformed field (i.e,

eiwv and e−iwv) in RRW using Eq.(2.95) and the relations given in Eq.(2.103), we get

φ̂+(v) = (1 + aα)

∫
dw

[
âR+w

(∫
dk√
4πk

(
αR∗wke

ikV − e−
πw
A αLwke

−ikV
))

+

â†R+w

(∫
dk√
4πk

(
αRwke

−ikV − e−
πw
A αL∗wke

ikV
))]

.

(2.104)

Similarly by replacing the positive and negative frequency modes of the deformed field

(i.e, eiwv̄ and e−iwv̄) in LRW using Eq.(2.96) and using the relations given in Eq.(2.103),

we get

φ̂+(v̄) = (1 + aα)

∫
dw

[
âL+w

(∫
dk√
4πk

(
αL∗wke

ikV − e−
πw
A αRwke

−ikV
))

+

â†L+w

(∫
dk√
4πk

(
αLwke

−ikV − e−
πw
A αR∗wke

ikV
))]

.

(2.105)

The complete solution to deformed field equation in the Rindler space-time is given (in

terms of left moving sector alone) as

φ̂+(v, v̄) = φ̂+(v) + φ̂+(v̄). (2.106)
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By subtituting Eq.(2.104) and Eq.(2.105) in Eq.(2.106) and after some rearrangement,

we obtain

φ̂+(v, v̄) = (1 + aα)

∫
dk√
4πk

[ ∫
dw

(
αR∗wk

(
âR+w − e−

πw
A â†L+w

)
+ αL∗wk

(
âL+w − e−

πw
A â†R+w

))
eikV

+

∫
dw

(
αRwk

(
â†R+w − e−

πw
A âL+w

)
+ αLwk

(
â†L+w − e−

πw
A âR+w

))
e−ikV

]
.

(2.107)

eikV and e−ikV are the positive and negative frequency modes of the deformed scalar field

in 1+1 dimensional Minkowski space-time. By comparing Eq.(2.105) with Eq.(2.79), we

observe that both represent the deformed scalar field, decomposed in terms of Minkowski

modes in 1 + 1 dimension. Thus from the above we find that the operators (âR+w −
e−

πw
A â†L+w) and (âL+w − e−

πw
A â†R+w) annihilate the Minkowski vacuum. Thus we have(

âL+w − e−
πw
A â†R+w

)
|0〉M = 0, (2.108)

(
âR+w − e−

πw
A â†L+w

)
|0〉M = 0. (2.109)

Now we multiply Eq.(2.108) and Eq.(2.109) with their hermitian conjugates and by using

Eq.(2.93) and Eq.(2.94) in the resulting expression, get

M 〈0| â†R+wâR+w |0〉M = e−
2πw
A (1− 2aα) + e−

2πw
A M 〈0| â†L+wâL+w |0〉M , (2.110)

and

M 〈0| â†L+wâL+w |0〉M = e−
2πw
A (1− 2aα) + e−

2πw
A M 〈0| â†R+wâR+w |0〉M . (2.111)

By solving the above equations simultaneously we obtain the vacuum expectation value

of the Rindler number operators in Minkowski vacuum, i.e., M 〈0| N̂R |0〉M , where N̂R =

â†L+wâ
L
+w = â†R+wâ

R
+w. Thus we get

M 〈0| N̂R |0〉M =
1− 2aα

e
2πw
A − 1

. (2.112)

This shows that the Unruh temperature is TU = A
2π . Due to κ-deformation, the vacuum

expectation value of the number operator corresponding to Rindler particle gets mod-

ified by a (1 − 2aα) factor. This modification has been contributed by the deformed

algebra associated with the creation and annihilation operators of the left and right

Rindler wedges, i.e., Eq.(2.93) and Eq.(2.94). Here we find that the Unruh temperature

associated with vacuum expectation value of the number operator is unaffected by the

κ-deformation and this is in contrast with the results obtained in [23, 24]. It is to be

noted that these observations are valid only up to first order in a.
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2.5 Conclusions

In this chapter, we have generalised the quantisation procedure discussed in [7, 8] to

the κ-deformed space-time. This method enable us to quantise the κ-deformed field

theories from their equations of motion alone, without referring to its Lagrangian. This

is desirable as only the equation of motion of the κ-deformed field is uniquely defined, but

not the Lagrangian. The quantisation is achieved by constructing the operators such as

Λ̂(∂) and d̂(∂) (Klein-Gordon divisor) in the κ-space-time. Further, this method is also

used to analyse the symmetries associated with the field theories in the κ-space-time.

These deformed conserved currents are constructed form their equations of motion with

the help of Γ̂µ(∂) operator in the κ-deformed space-time.

We have begun the quantisation of κ-deformed scalar field from its deformed equations of

motion (valid up to first order in a) derived from the quadratic Casimir of the undeformed

κ-Poincare algebra. From the solutions of the equations of motion and Klein-Gordon

divisor, we have derived the deformed unequal-time commutation relation (valid up to

first order in a) between the deformed field operator and its adjoint, by assuming the

standard commutation relation for the oscillator algebra. By assuming the unequal-

time commutation relation between deformed field and its adjoint to be undeformed,

we obtain a deformed oscillator algebra, valid up to first order in a. This deformed

oscillator algebra is different from the one derived in [22].

We have also constructed the conserved currents (valid up to first order in a) correspond-

ing to the translational as well as the Lorentz symmetry for the κ-deformed scalar field.

It has been shown that the energy-momentum tensor of the κ-deformed scalar field is

no longer symmetric in its indices (even at the first order in a). Similar non-symmetric

energy momentum tensor has also been obtained for the scalar fields in Moyal space-time

[30].

Here we have studied the effects of the κ-deformation in the Unruh effect using the

massless κ-deformed Klein-Gordon equation in the 1 + 1 dimension and its associated

deformed oscillator algebra. By using the method of Bogoliubov transformation we have

calculated the expectation value of the (Rindler) number operator in the Minkowski

vacuum and obtained the thermal distribution at TU = A
2π . This distribution gets an

overall modification and this deformation factor appearing in the modification of Unruh

effect is exactly the same as that appearing in the deformed oscillator algebra (valid

up to first order in a). An another observation is that the Unruh temperature of the

thermal bath remains unaffected under the κ deformation (valid up to first order in a).

It will be quite interesting to check whether this Unruh temperature remains the same

even if we consider all the higher order terms in a.
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Chapter 3

Quantisation of κ-deformed Dirac

field

3.1 Introduction

Various forms of deformed Dirac equation have been constructed in the κ-deformed

space-time and different properties of the κ-deformed Dirac field satisfying such mod-

ified equations of motion have been studied extensively in the recent times [1–7]. The

κ-deformed Dirac equation has been obtained in [1] such that its square would give

the deformed Klein-Gordon equation. But this deformed Dirac equation is not invari-

ant under the κ-Poincare algebra. In [2], κ-deformed Dirac equation, invariant under

the κ-Poincare algebra has been constructed in such a way that its square gives the

second Casimir of κ-Poincare algebra (which is the square of deformed Pauli-Lubanski

vector). A modified Dirac equation consistent with the doubly special theory has been

constructed in [3] and it has further been shown that this modified Dirac equation arises

as the deformed Dirac equation in the κ-Minkowski space-time. In [4], Dirac equations

compatible with doubly special relativity, describing particles and anti-particles, were

constructed and these equations are shown to be different from each other. The κ-

deformed Dirac equation has been constructed in [5] by replacing the usual derivative

in Dirac equation with the Dirac derivative corresponding to the κ-Poincare algebra. In

[6], deformed Dirac equation, invariant under the undeformed κ-Poincare algebra has

been constructed using the Dirac derivative of the undeformed κ-Poincare algebra. In

[7], κ-deformed Dirac equation (invariant under undeformed κ-Poincare algebra) has

been constructed from the undeformed κ-Lorentz transformation. In all these works,

the deformed Dirac equations have been derived without reference to the Lagrangian.

49
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Therefore it is crucial to study the quantisation of the κ-Dirac field using its deformed

equations of motion.

Here we quantise the κ-Dirac field from its deformed equation of motion, using the quan-

tisation procedure discussed in the chapter 2 (see [8–11] for more details). We start with

the κ-deformed Dirac equation [6], which is invariant under the undeformed κ-Poincare

algebra and construct the corresponding Klein-Gordon divisor in the κ space-time. By

assuming a usual fermionic oscillator algebra between the creation and annihilation op-

erators, we derive a deformed anti-commutation relation (valid up to first order in the

non-commutative parameter) between the deformed Dirac field and its adjoint, at un-

equal times. We also derive a deformed oscillator algebra (valid up to first order in

a) by assuming the unequal-time anti-commutation relation between the κ-Dirac field

and its adjoint to be undeformed. This deformed oscillator algebra differs from the one

derived in [12], where it has been derived using the twisted flip operator compatible with

the undeformed κ-Poincare algebra [13, 14]. By analysing the translational and Lorentz

symmetries associated with the κ-Dirac field, we derive the energy-momentum tensor

and κ-Lorentz generators corresponding to the deformed Dirac field. We also derive the

number operator corresponding to the κ-deformed Dirac field and show that it contains

a mass-dependent correction term.

Different aspects of discrete symmetry have been studied in the κ-Minkowski space-time.

It has been shown in [6] that κ-Dirac field is not symmetric under the charge conjugation.

The κ-deformed Dirac equation, obtained from the κ-Poincare Hopf algebra has been

shown to break charge conjugation as well as time-reversal symmetry [15]. It has been

shown in [16] that the κ-deformed Duffin-Kemmer-Petiau equation also violates the

charge conjugation symmetry. In [17], the discrete symmetries associated with the κ-

deformed complex scalar field have been discussed in detail and it has been shown

that under the charge conjugation symmetry, a particle, associated with κ-complex

scalar field, transforms into an antiparticle with different momenta. The quantisation

procedure discussed in [11, 18, 19] provides a unique way of constructing the conserved

currents associated with the discrete symmetries, from their equations of motion. We

derive the conserved currents corresponding to the discrete symmetries of the κ-deformed

Dirac field using the equations of motion itself. We show that charge conjugation is not

a symmetry of the κ-deformed Dirac field, even at the first order in the deformation

factor.

This chapter is organised in the following manner. In sec.3.2, we study the quantisation

of κ-Dirac field (valid up to first order in a) using the quantisation procedure discussed

in sec.2.2 (see chapter 2). We then derive the deformed anti-commutation relations

between the κ-Dirac field and its adjoint by assuming the usual form of the fermionic
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oscillator algebra. We then obtain the deformed oscillator algebra for the κ-Dirac field,

by demanding the anti-commutation relations between the κ-Dirac field and its adjoint

to be undeformed. In sec.3.3, we analyse the continuous symmetries and construct the

energy-momentum tensor and Lorentz generator of the κ-Dirac field. In subsec.3.3.1, we

study the discrete symmetries associated with the κ-deformed Dirac field and obtain the

corresponding conserved currents from the deformed equations of motion. By using the

consistency condition, for the conserved current, of Takahashi-Umezawa formalism, we

show that the deformed Dirac equation is not symmetric under the charge conjugation,

even up to the first order in the deformation parameter. Finally, in sec.3.4, we give the

concluding remarks.

3.2 Quantisation of κ-deformed Dirac field

In this section, we present the derivation of the κ-deformed Dirac equation, valid up to

first order in the deformation parameter a, from the Dirac derivative defined in Eq.(1.18)

(of chapter 1). We then quantise the deformed Dirac field satisfying the κ-deformed Dirac

equation, by applying the Takahashi-Umezawa quantisation procedure, summarised in

chapter 2 [10, 11]. We then demand that the anti-commutator between the field and

its adjoint to be undeformed and show that this leads to a deformed oscillator algebra,

valid up to first order in a.

The κ-deformed Dirac equation (invariant under the undeformed κ-Poincare algebra)

is constructed by replacing the commutative derivative with Dirac derivative [6] and is

given by (
iγµDµ +m

)
ψ̂(x) = 0, (3.1)

where ψ̂(x) is the κ-Dirac field. The explicit form of the Dirac derivative Dµ is given as

(see chapter 1 for details)

D0 = ∂0
sinhA

A
+ ia∂2

k

e−A

2ϕ2
, Di = ∂i

e−A

ϕ
, (3.2)

where A = ia∂0.

Similarly, the κ-deformed conjugate Dirac equation can be written as

¯̂
ψ(x)

(
i
←−
Dµγ

µ −m
)

= 0. (3.3)

The product of Eq.(3.1) and Eq.(3.3) gives the κ-deformed Klein-Gordon equation given

in Eq.(2.29) (see chapter 2).
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From now onwards we choose the realisation ϕ = e−A [20–22] as in chapter 2. Thus by

substituting the explicit form of Dirac derivative, given above, in Eq.(3.1) and Eq.(3.3)

and expanding it up to the first order in a, we get the κ-deformed Dirac equation and

its conjugate equation, valid up to first order in a, as(
iγµ∂µ +

a

2
γ0∂2

i +m
)
ψ̂(x) = 0, (3.4)

and
¯̂
ψ(x)

(
i
←−
∂ µγ

µ +
a

2
γ0←−∂ 2

i −m
)

= 0, (3.5)

respectively. The product of Eq.(3.4) and Eq.(3.5) gives the deformed Klein-Gordon

equation, valid up to first order in a, (see Eq.(2.31) (here we have used [γµ, γν ]+ =

−2ηµν), i.e.,(
iγµ∂µ +

a

2
γ0∂2

i +m
)(
iγν∂ν +

a

2
γ0∂2

i −m
)

= ∂µ∂
µ − ia∂0∂

2
i −m2. (3.6)

In chapter 2, we have generalised the quantisation procedure discussed in [10, 11], to the

κ-deformed space-time. Here we will use the same procedure to quantise the deformed

Dirac field. From Eq.(2.32) (of chapter 2), we have

Λ̂(∂)d̂(∂) = ∂µ∂
µ − ia∂0∂

2
i −m2. (3.7)

Comparing Eq.(3.6) with Eq.(3.7), we get Λ̂(∂) and d̂(∂) operators corresponding to

κ-deformed Dirac field as

Λ̂(∂) = iγµ∂µ +
a

2
γ0∂2

i +m, (3.8)

and

d̂(∂) = iγµ∂µ +
a

2
γ0∂2

i −m. (3.9)

Note that in the commutative limit a→ 0, Eq.(3.8) and Eq.(3.9) reduce to Eq.(2.6) and

Eq.(2.10), respectively.

Using Λ̂(∂) in Eq.(3.8), the κ-deformed Dirac equation can be written as

Λ̂(∂)ψ̂(x) = 0. (3.10)

The κ-deformed Dirac field operator and its adjoint are expressed in terms of Fourier

components as

ψ̂(x) =

∫
d3p√

(2π)32Ep

∑
s=1,2

(
âs(p)ûs(p)e

−ipx + b̂†s(p)v̂s(p)e
ipx
)

(3.11)
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and
¯̂
ψ(x) =

∫
d3p√

(2π)32Ep

∑
s=1,2

(
â†s(p)

¯̂us(p)e
ipx + b̂s(p)¯̂vs(p)e

−ipx
)
, (3.12)

where E2
p = p2 + m2 1, âs, b̂s and â†s, â

†
s are annihilation and creation operators,

respectively. Note that in the above relations, ûs(p)e
−ipx and v̂s(p)e

ipx satisfy the κ-

deformed Dirac equation, i.e., Λ̂(∂)
(
ûs(p)e

−ipx) = 0 and Λ̂(∂)
(
v̂s(p)e

ipx
)

= 0. We solve

these equations perturbatively by expanding û(p) and v̂(p) keeping terms up to first

order in a, obtaining

û(p) = u(0)(p) + aαu(1)(p),

v̂(p) = v(0)(p) + aαv(1)(p),
(3.13)

where the parameter α has the dimension of length inverse. Substituting Eq.(3.13) in

the expressions Λ̂(∂)
(
ûs(p)e

−ipx) = 0 and Λ̂(∂)
(
v̂s(p)e

ipx
)

= 0, we get(
iγµ∂µ +

a

2
γ0∂2

i +m
)(
u(0)(p) + aαu(1)(p)

)
e−ipx = 0, (3.14)

and (
iγµ∂µ +

a

2
γ0∂2

i +m
)(
v(0)(p) + aαv(1)(p)

)
eipx = 0. (3.15)

By separating the a independent and a dependent terms of Eq.(3.14), we get two equa-

tions and they are (
iγµ∂µ +m

)
u(0)(p)e−ipx = 0, (3.16)(

iαγµ∂µ + αm
)
u(1)(p)e−ipx = −1

2
γ0∂2

i u
(0)e−ipx. (3.17)

Now we solve Eq.(3.17) using Green’s function method and the solution is given as

u(1)e−ipx = u(0)e−ipx +

∫
d4x′G(x− x′)j(x′), (3.18)

where G(x − x′) satisfies
(
iγµ∂µ + m

)
G(x − x′) = δ4(x − x′) and the source term is

defined as j(x) = 1
2αγ

0p2
iu

(0)e−ipx. The the explict form of the Green’s function is given

as

G(x− x′) = −
∫

d4p

(2π)4

/p−m
p2 +m2

e−ip(x−x
′). (3.19)

We now rewrite the above Green’s function using that for the scalar field, Gscalar(x−x′)
(see Eq.(2.43 of chapter 2), as

G(x− x′) = (i/∂ −m)Gscalar(x− x′). (3.20)

1In general one need to use the κ-deformed dispersion relation (i.e., E2
p = p2(1 + aEp) +m2, valid up

to first order in a). In order to simplify the calculations, we use the commutative dispersion relation.
But here we have included the κ-deformed corrections through deformed spinors û(p), v̂(p) and through
deformed creation and annihilation operators respectively
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Using Eq.(3.20) in Eq.(3.18), we get the second term on RHS of Eq.(3.18) as∫
d4x′G(x− x′)j(x′)

=− i
∫

d4x′

(2π)3

∫
d3p′

2Ep′

(
(i /∂′ −m)

[
θ(t− t′)e−ip′(x−x′) − θ(t′ − t)eip′(x−x′)

]) p2
i

2α
γ0u(0)(p)e−ipx

′

=− i

2α

∫
d4x′

(2π)3

∫
d3p′

2Ep′

[
− iδ(t− t′)e−ip′(x−x′) − iδ(t′ − t)eip′(x−x′)

]
p2
iu

(0)(p)e−ipx
′

+
i

2α

∫
d4x′

(2π)3

∫
d3p′

2Ep′

[
(/p
′ +m)θ(t− t′)e−ip′xe−i(p−p′)x′

+ (/p
′ −m)θ(t′ − t)eip′xe−i(p+p′)x′

]
γ0p2

iu
(0)(p)

=− 1

2α

∫
d3p′

2Ep′

[
e−ip

′·xeiEpt
∫

d3x′

(2π)3
ei(p

′−p)·x′ + eip
′·xeiEpt

∫
d3x′

(2π)3
e−i(p

′+p)·x′
]
p2
iu

(0)(p)

+
iπ

α

∫
d3p′

2Ep′

[
(/p
′ +m)θ(t− t′)e−ip′x

∫
d4x′

(2π)4
e−i(p−p

′)x′

+ (/p
′ −m)θ(t′ − t)eip′x

∫
d4x′

(2π)4
e−i(p+p

′)x′
]
γ0p2

iu
(0)(p).

(3.21)

Using the integral representation for step function, i.e., Θ(t−t′) = limε→0
1

2πi

∫
dk e

ik(t−t′)

k−iε

and the identity, δ(x − a)f(x) = δ(x)f(a), in the last two terms on RHS of Eq.(3.21),

we get ∫
d4x′G(x− x′)j(x′) = − 1

2α

p2
i

Ep
u(0)(p). (3.22)

Substituting Eq.(3.22) in Eq.(3.18), we obtain

u(1)(p) = u(0)(p)− 1

2α

p2
i

Ep
u(0)(p). (3.23)

Now by substituting Eq.(3.23) in Eq.(3.13), we get û(p) as

û(p) =

(
1 + aα− a

2

p2
i

Ep

)
u(0)(p). (3.24)

Next we consider Eq.(3.15) and we separate it into a independent and a dependent

coefficient terms, we get (
iγµ∂µ +m

)
v(0)(p)eipx = 0, (3.25)(

iαγµ∂µ + αm
)
v(1)(p)eipx +

1

2
γ0∂2

i v
(0)eipx = 0. (3.26)

Now we follow the similar steps as we did to find out û(p). Thus following those steps,

we obtain v̂(p) as

v̂(p) =

(
1 + aα− a

2

p2
i

Ep

)
v(0)(p). (3.27)
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We now consider the κ-deformed version of the unequal time anti-commutation relation

between κ-deformed Dirac field and its adjoint. Thus Eq.(2.13) becomes

[ψ̂(x), ˆ̄ψ(x′)]+ = id̂(∂)∆̂(x− x′). (3.28)

We assume that the deformed creation and annihilation operators satisfy the usual anti-

commutation relations,

[âs(p), âs′(p
′)]+ = [b̂s(p), b̂s′(p

′)]+ = [â†s(p), â
†
s′(p
′)]+ = [b̂†s(p), b̂

†
s′(p
′)]+ = 0,

[âs(p), â
†
s′(p
′)]+ = [b̂s(p), b̂

†
s′(p
′)]+ = δss′δ

3(p− p′).
(3.29)

Substituting Eq.(3.24) and Eq.(3.27) in Eq.(3.11) and Eq.(3.13) and using this in Eq.(3.28),

we get

ψ̂(x),
¯̂
ψ(x′)t+ =

∫
d3p d3p′

(2π)3
√

2Ep2Ep′

∑
s,s′=1,2

[
[âs(p), â

†
s′(p
′)]+

(
ũ(0)
s (p, x)¯̃u

(0)
s′ (p′, x′)

+aα
(
ũ(0)
s (p, x)¯̃u

(1)
s′ (p′, x′) + ũ(1)

s (p, x)¯̃u
(0)
s′ (p′, x′)

))
+[b̂s(p), b̂

†
s′(p
′)]+

(
ṽ(0)
s (p, x)¯̃v

(0)
s′ (p′, x′) + aα

(
ṽ(0)
s (p, x)¯̃v

(1)
s′ (p′, x′)

+ṽ(1)
s (p, x)¯̃v

(0)
s′ (p′, x′)

))]
.

(3.30)

(Note that in the above, we have defined ũ(p, x) = u(p)e−ipx and ṽ(p, x) = v(p)eipx).

Substituting the expression for undeformed oscillator algebra, i.e, Eq.(3.29) in Eq.(3.30),

we get

ψ̂(x),
¯̂
ψ(x′)t+ =

∫
d3p

(2π)32Ep

∑
s=1,2

(
u(0)
s (p)ū(0)

s (p)e−ip(x−x
′) + v(0)

s (p)v̄(0)
s (p)eip(x−x

′)

+aα
(
u(0)
s (p)ū(1)

s (p) + u(1)
s (p)ū(0)

s (p)
)
e−ip(x−x

′)

+aα
(
v(0)
s (p)v̄(1)

s (p) + v(1)
s (p)v̄(0)

s (p)
)
eip(x−x

′)

)
.

(3.31)

Using Eq.(3.24) and Eq.(3.27), we evaluate u
(0)
s (p)ū

(1)
s (p), u

(1)
s (p)ū

(0)
s (p), v

(0)
s (p)v̄

(1)
s (p)

and v
(1)
s (p)v̄

(0)
s (p) as

u(0)
s (p)ū(1)

s (p) = u(0)
s (p)ū(0)

s (p)

(
1− 1

2α

p2
i

Ep

)
, (3.32)

u(1)
s (p)ū(0)

s (p) = u(0)
s (p)ū(0)

s (p)

(
1− 1

2α

p2
i

Ep

)
, (3.33)

v(0)
s (p)v̄(1)

s (p) = v(0)
s (p)v̄(0)

s (p)

(
1− 1

2α

p2
i

Ep

)
, (3.34)
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v(1)
s (p)v̄(0)

s (p) = v(0)
s (p)v̄(0)

s (p)

(
1− 1

2α

p2
i

Ep

)
. (3.35)

Substituting Eq.(3.32), Eq.(3.33), Eq.(3.34) and Eq.(3.35) in Eq.(3.31) and using the

completeness relation as that in the commutative space-time, i.e.,
∑

s=1,2 u
(0)
s ū

(0)
s = /p−m

and
∑

s=1,2 v
(0)
s v̄

(0)
s = /p+m, we get

[ψ̂(x),
¯̂
ψ(x′)]+ =i

(
1 + 2aα

)
(i/∂ −m)∆(x− x′)

− 2a
(
i/∂ −m

) ∫ d3p

(2π)3

p2
i

(2Ep)2

(
e−ip(x−x

′) − eip(x−x′)
)
.

(3.36)

We observe that the first terms of Eq.(3.32), Eq.(3.33), Eq.(3.34) and Eq.(3.35) add up

to contribute the i2aα
(
i/∂−m

)
∆(x−x′) term present in the RHS of Eq.(3.36). Similarly

the second terms of the Eq.(3.32), Eq.(3.33), Eq.(3.34) and Eq.(3.35) add up to give the

α independent correction term in Eq.(3.36). The last term in the RHS of Eq.(3.36)

vanishes as the integrand is an odd function in p.

Now we explicitly calculate the RHS of Eq.(3.28) as

id̂(∂)∆̂(x− x′) =i
(
i/∂ +

a

2
γ0∂2

i −m
)(

∆(x− x′) + a∆(1)(x− x′)
)

=i(i/∂ −m)∆(x− x′) + ia(i/∂ −m)∆(1)(x− x′)+

i
a

2
γ0

∫
d3p

(2π)32Ep
p2
i

(
e−ip(x−x

′) − eip(x−x′)
)
.

(3.37)

∆(1)(x−x′) in the above equation represents the first order correction to ∆̂(x−x′) and by

comparing the RHS of Eq.(3.36) with the RHS of Eq.(3.37) we find that ∆(1)(x− x′) =

2α∆(x−x′), for the undeformed oscillator algebra given in Eq.(3.29). Here we find that

the last integral on the RHS of Eq.(3.37) vanishes as the integrand is an odd function in p.

We observe that this ∆̂(x−x′) obtained is same as that of the κ-deformed Klein-Gordon

equation given in Eq.(2.54) (of chapter 2). The anti-commutation relation between κ-

deformed Dirac field operator and its adjoint, valid up to first order in a, becomes

[ψ̂(x),
¯̂
ψ(x′)]+ = i

(
1 + 2aα

)
(i/∂ −m)∆(x− x′). (3.38)

Now let us assume that the anti-commutation relation between creation and annihilation

operators is deformed such that this deformation is valid up to first order in a. Thus we

consider this deformed oscillator algebra as

[âs(p), âs′(p
′)]+ = [b̂s(p), b̂s′(p

′)]+ = [â†s(p), â
†
s′(p
′)]+ = [b̂†s(p), b̂

†
s′(p
′)]+ = 0,

[âs(p), â
†
s′(p
′)]+ = [b̂s(p), b̂

†
s′(p
′)]+ = h(a)δss′δ

3(p− p′).
(3.39)

In the above equation note that h(a) is an arbitrary function of a. Using this expression
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for the deformed oscillator algebra in Eq.(3.30) and repeating the above steps, we get an

unequal time anti-commutation relation between κ-deformed Dirac field and its adjoint,

valid up to first order in a, as

[ψ̂(x),
¯̂
ψ(x′)]+ = ih(a)

(
1 + 2aα

)
(i/∂ −m)∆(x− x′). (3.40)

Now we choose an explicit form for h(a), such that the anti-commutation relation be-

tween κ-deformed Dirac field and its adjoint becomes undeformed (valid up to first order

in a) and this gives h(a) = 1−2aα. Therefore the undeformed anti-commutation relation

between κ-deformed Dirac field and its adjoint becomes

[ψ̂(x),
¯̂
ψ(x′)]+ = i(i/∂ −m)∆(x− x′). (3.41)

Thus the κ-deformed anti-commutation relations between deformed creation and anni-

hilation operators are given by

[âs(p), âs′(p
′)]+ = [b̂s(p), b̂s′(p

′)]+ = [â†s(p), â
†
s′(p
′)]+ = [b̂†s(p), b̂

†
s′(p
′)]+ = 0,

[âs(p), â
†
s′(p
′)]+ = [b̂s(p), b̂

†
s′(p
′)]+ = (1− 2aα)δss′δ

3(p− p′).
(3.42)

We find that the deformation factor (valid up to first order in a) present in the deformed

oscillator algebra of the κ-deformed Dirac field is exactly the same as that of the de-

formation factor present in the deformed oscillator algebra of κ-deformed Klein-Gordon

field [23].

3.3 Conserved currents for κ-deformed Dirac field

In this section, we construct the conserved currents corresponding to translational and

Lorentz symmetry of the κ-deformed Dirac field. We also derive the number operator

corresponding to the deformed Dirac field from the global phase transformation symme-

try. Further, we also obtain the conserved currents corresponding to discrete symmetries.

All these conserved currents (valid up to first order in a) are obtained by constructing

the deformed Gamma operator, Γ̂µ(∂,−
←−
∂ ) (see Eq.(2.16) of chapter 2) corresponding

to the deformed Dirac equation.

We obtain the Γ̂µ(∂,−
←−
∂ ) operator (valid up to first order in a) corresponding to κ-

deformed Dirac equation by substituting Eq.(3.8) in Eq.(2.16), as

Γ̂µ(∂,−
←−
∂ ) = iγµ +

a

2
γ0δµi(∂i −

←−
∂ i). (3.43)
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From the above equation, we find that the second term in the RHS is contributed by a

dependent term of the κ-deformed Dirac equation. The above equation reduces to the

commutative expression (see Eq.(2.18)) in the limit a→ 0.

In order to check whether the Γ̂µ(∂,−
←−
∂ ) operator defined above satisfies the identity

(see Eq.(2.19)) (
∂µ +

←−
∂ µ

)
Γ̂µ(∂,−

←−
∂ ) = Λ̂(∂)− Λ̂(−

←−
∂ ), (3.44)

we calculate(
∂µ +

←−
∂ µ

)
Γ̂µ(∂,−

←−
∂ ) = iγµ

(
∂µ +

←−
∂ µ

)
+
a

2
γ0δµi

(
∂µ +

←−
∂ µ

)(
∂i −

←−
∂ i

)
. (3.45)

and

Λ̂(∂)− Λ̂(−
←−
∂ ) = iγµ

(
∂µ +

←−
∂ µ

)
+
a

2
γ0δµi

(
∂µ +

←−
∂ µ

)(
∂i −

←−
∂ i

)
. (3.46)

respectively. From Eq.(3.45) and Eq.(3.46) we observe that the identity in Eq.(3.44) is

satisfied.

Since Γ̂µ(∂,−
←−
∂ ) corresponding to the deformed Dirac equation satisfies the identity

given in Eq.(3.44), we can now use this for constructing the conserved currents associated

with the deformed Dirac field.

Substituting Eq.(3.43) in Eq.(2.20) (see chapter 2) we obtain the general expression for

the conserved current corresponding to κ-deformed Dirac field (valid up to first order in

a) as

Ĵµ =
¯̂
ψ(x)iγµδψ̂(x) +

a

2
¯̂
ψ(x)γ0δµi(∂i −

←−
∂ i)δψ̂(x). (3.47)

The infinitesimal change in the deformed Dirac field under the translational symmetry

is given as δψ̂(x) = δx̂µ∂
µψ̂(x), where δx̂µ (see Eq.(2.63 of chapter 2) is

δx̂µ = θµ + iaθν(ηµν + δµ0∂ν). (3.48)

Thus substituting Eq.(3.48) in δψ̂(x) = δx̂µ∂
µψ̂(x), we get

δψ̂(x) =
(
∂µψ̂(x) + ia(∂µψ̂(x) + ∂0∂µψ̂(x))

)
θµ. (3.49)

Using Eq.(3.49) in Eq.(3.47), we get the conserved current (valid up to first order in a)

corresponding to the translational symmetry of the κ-deformed Dirac field as

Ĵµ = i
¯̂
ψ(x)γµ∂νψ̂(x)θν − a ¯̂

ψ(x)γµ(∂ν + ∂0∂ν)ψ̂(x)θν +
a

2
δµi

¯̂
ψ(x)γ0(∂i −

←−
∂ i)∂νψ̂(x)θν .

(3.50)
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The second term in the RHS of the above equation is contributed by the a dependent

term of δx̂µ. The third term is contributed by the a dependent term of Γ̂µ(∂,−
←−
∂ ) (see

Eq.(3.43)). Using the relation Ĵµ = T̂µνθ
ν in Eq.(3.50), we obtain the energy-momentum

tensor corresponding to κ-deformed Dirac field, valid up to first order in a, as

T̂µν = i
¯̂
ψ(x)γµ∂νψ̂(x)− a ¯̂

ψ(x)γµ∂νψ̂(x)− a ¯̂
ψ(x)γµ∂ν∂0ψ̂(x)

+
a

2
δµi

¯̂
ψ(x)γ0∂i∂νψ̂(x)− a

2
δµi∂i

¯̂
ψ(x)γ0∂νψ̂(x).

(3.51)

Here we write down the conserved momenta corresponding to the translational symmetry

of the deformed Dirac field from its energy-momentum tensor (in a similar manner as

done for κ-deformed scalar field, i.e., Eq.(2.67) derived in chapter 2).

P̂µ =

∫
d3x T̂0µ. (3.52)

Under the Lorentz transformation, the infinitesimal change in the κ-deformed Dirac field

is given as

δψ̂(x) = δx̂µ∂
µψ̂(x) +

1

4
σµνω

µνψ̂(x), (3.53)

where the infinitesimal change in the κ-deformed space-time coordinate (δx̂µ) under the

Lorentz transformation is given as (see Eq.(2.68))

δx̂µ = xνω
ν
µ + ia

(
δµ0xλ∂ν − δν0xλ∂µ + ηµλxν∂0 + δµ0δλ0x0∂ν − δ0νηµλx0∂0

−δ0νxµ∂λ + δ0µxν∂λ

)
ωνλ

(3.54)

and σµν is defined as σµν = [γµ, γν ].

Thus by substituting Eq.(3.53) and Eq.(3.54) in Eq.(3.47), we obtain the conserved

current (valid up to first order in a) corresponding to the Lorentz transformation of the

κ-deformed Dirac field as

Ĵµ =
i

2
¯̂
ψ(x)γµ(xν∂λ − xλ∂ν)ψ̂(x)ωνλ +

i

4
¯̂
ψ(x)γµσνλψ̂(x)ωνλ+

a

8
δµi

¯̂
ψ(x)γ0(∂i −

←−
∂ i)σνλψ̂(x)ωνλ +

a

4
δµi

¯̂
ψ(x)γ0(∂i −

←−
∂ i)(xν∂λ − xλ∂ν)ψ̂(x)ωνλ+

a

2
¯̂
ψ(x)γµ

(
δν0xλ∂α∂

α − δλ0xν∂α∂
α + δν0xα∂λ∂

α − δλ0xα∂ν∂
α + xλ∂ν∂0 − xν∂λ∂0

)
ψ̂(x)ωνλ

(3.55)

Using the relation Ĵµ =Mµνλω
νλ in Eq.(3.55) we get Mµνλ as

Mµνλ =
i

2
¯̂
ψ(x)γµ(xν∂λ − xλ∂ν)ψ̂(x) +

i

4
¯̂
ψ(x)γµσνλψ̂(x)+

a

8
δµi

¯̂
ψ(x)γ0(∂i −

←−
∂ i)σνλψ̂(x)ωνλ +

a

4
δµi

¯̂
ψ(x)γ0(∂i −

←−
∂ i)(xν∂λ − xλ∂ν)ψ̂(x)+

a

2
¯̂
ψ(x)γµ

(
δν0xλ∂α∂

α − δλ0xν∂α∂
α + δν0xα∂λ∂

α − δλ0xα∂ν∂
α + xλ∂ν∂0 − xν∂λ∂0

)
ψ̂(x).

(3.56)
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The Lorentz generator corresponding to the κ-deformed Dirac field (valid up to first

order in a) is written as

M̂µν =

∫
d3xM0µν . (3.57)

The κ-deformed Dirac field transform as ψ̂(x) → ψ̂′(x) = e−iθψ̂(x) under the global

phase transformation. Thus the infinitesimal change in the deformed Dirac field in this

case is given as δψ̂(x) = −iθψ̂(x). Substituting this in Eq.(3.47) we obtain the conserved

current (valid up to first order in a) corresponding to the global phase transformation

symmetry as

Ĵµ =
¯̂
ψ(x)γµψ̂(x)θ − ia

2
δµi

¯̂
ψ(x)γ0(∂i −

←−
∂ i)ψ̂(x)θ. (3.58)

From the above conserved current, we obtain the number operator corresponding to

the κ-deformed Dirac field as N̂ =
∫
d3x Ĵ0(x). Thus the explicit form of the number

operator, valid up to first order in a, is given as

N̂ =

∫
d3x

¯̂
ψ(x)γ0ψ̂(x)

=

∫
d3x d3p d3p′√
(2π)62Ep2Ep′

(
â†(p)¯̂u(p)eipx + b̂(p)¯̂v(p)e−ipx

)
γ0
(
â(p′)û(p′)e−ip

′x + b̂†(p′)v̂(p′)eip
′x
)

=

∫
d3x d3p d3p′√
(2π)62Ep2Ep′

(
â†(p)â(p′)û†(p)û(p′)ei(p−p

′)x + â†(p)b̂†(p′)û†(p)v̂(p′)ei(p+p
′)x

+ b̂(p)â(p′)v̂†(p)û(p′)e−i(p+p
′)x + b̂(p)b̂†(p′)v̂†(p)v̂(p′)e−i(p−p

′)x
)
.

(3.59)

Now we substitute the explicit form of û(p) and v̂(p) from Eq.(3.24) and Eq.(3.27)

in Eq.(3.59). We then use the relations u
(0)†
s (p)v

(0)
s′ (−p) = v

(0)†
s (p)u

(0)
s′ (−p) = 0 and

u
(0)†
s (p)u

(0)
s′ (p′) = v

(0)†
s (p)v

(0)
s′ (p′) = δss′2Ep to get the number operator, valid up to first

order in a, as

N̂ =

∫
d3p

(2π)3

(
1 + 2aα− a p

2

Ep

)(
â†(p)â(p) + b̂(p)b̂†(p)

)
(3.60)

In the above expression, we define N̂a(p) = â†(p)â(p) and N̂b(p) = b̂†(p)b̂(p). Thus we

obtain the normal ordered number operator (valid up to first order in a) corresponding

to the κ-deformed Dirac field as

: N̂ :=

∫
d3p

(2π)3

(
1 + 2aα− ap√

1 +m2/p2

)(
N̂a(p)− N̂b(p)

)
. (3.61)

From the above expression, we find that the number operator picks up two a dependent

correction terms. We obtain usual Dirac number operator, : N :=
∫ d3p

(2π)3

(
Na(p)−Nb(p)

)
in the limit a→ 0.
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3.3.1 Discrete symmetries

We now analyse the discrete symmetries associated with the κ-deformed Dirac field. We

first check whether parity, time-reversal and charge conjugation are symmetries of the

κ-deformed Dirac field or not. We then construct the conserved currents corresponding

to discrete symmetries of κ-deformed Dirac equation.

We begin this discussion with the κ-deformed Dirac equation, valid up to first order in

a, given by (
iγ0∂0 + iγi∂i +

a

2
γ0∂2

i +m
)
ψ̂(xi, t) = 0. (3.62)

We first analyse the parity symmetry associated with the deformed Dirac field. Under

the parity, space-time coordinates and their derivatives transform as xi → −xi, t →
t, ∂i → −∂i and ∂0 → ∂0. Thus Eq.(3.62) becomes(

iγ0∂0 − iγi∂i +
a

2
γ0∂2

i +m
)
ψ̂(−xi, t) = 0. (3.63)

Now we consider a matrix operator P satisfying

P
(
iγ0∂0 − iγi∂i +

a

2
γ0∂2

i +m
)
P−1Pψ̂(−xi, t) = 0 (3.64)

such that P
(
iγ0∂0 − iγi∂i + a

2γ
0∂2
i + m

)
P−1 represents the Λ̂(∂) operator given in

Eq.(3.8) and thus Pψ̂(−xi, t) satisfies the κ-deformed Dirac equation. We now define

this Pψ̂(−xi, t) = ψ̂p(xi, t). By comparing Eq.(3.63) with Eq.(3.64) we obtain the ma-

trix/operator P as P = γ0. Note that this parity operator is the same as that in the

commutative case.

Now we obtain the expression for the conserved current corresponding to parity sym-

metry of the deformed Dirac equation by taking δψ̂(x) = ψ̂p(xi, t). Substituting this in

Eq.(3.47) we get the conserved current, valid up to first order in a, as

Ĵµ =
¯̂
ψ(xi, t)Γ̂

µ(∂,−
←−
∂ )ψ̂p(xi, t)

=i
¯̂
ψ(xi, t)γ

µγ0ψ̂(−xi, t) +
a

2
δµi

¯̂
ψ(xi, t)(∂i −

←−
∂ i)ψ̂(−xi, t).

(3.65)

By substituting the explicit form of the deformed field operator and its adjoint in the

above equation, we get the expression for the conserved charge (valid up to first order

in a) associated with the parity symmetry of the deformed Dirac field as

Q̂p =

∫
dp3

(2π)3

(
1 + 2aα− ap√

1 +m2/p2

)(
â†(p)â(−p) + b̂†(p)b̂(−p)

)
. (3.66)
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We observe that the deformed conserved charge associated with the parity symmetry

picks up two a dependent correction terms. Note that the second correction term is a

mass-dependent term. These correction terms are contributed by a dependent terms

of the deformed Dirac field and its adjoint. The conserved charge for parity symmetry

in κ space-time gets scaled by
(

1 + 2aα − ap√
1+m2/p2

)
factor. We also note that this

deformation factor is exactly the same as that in the deformed number operator given

in Eq.(3.61). In the limit a→ 0, the equation, Eq.(3.65) reduces to Eq.(2.26), which is

the conserved current for the parity symmetry of the commutative Dirac field [18].

Now we analyse the time-reversal symmetry associated with the κ-deformed Dirac field.

Under the time-reversal transformation, space-time coordinates and their derivatives

transform as xi → xi, t → −t, ∂i → ∂i and ∂0 → −∂0 respectively. Thus under the

time-reversal transformation the κ-deformed Dirac equation given in Eq.(3.62) becomes(
− iγ0∂0 + iγi∂i +

a

2
γ0∂2

i +m
)
ψ̂(xi,−t) = 0. (3.67)

By taking the complex conjugate of Eq.(3.67) we obtain(
iγ0∗∂0 − iγi∗∂i +

a

2
γ0∗∂2

i +m
)
ψ̂∗(xi,−t) = 0. (3.68)

We now consider a matrix/operator T satisfying

T
(
iγ0∗∂0 − iγi∗∂i +

a

2
γ0∗∂2

i +m
)
T −1T ψ̂∗(xi,−t) = 0, (3.69)

such that T
(
iγ0∗∂0− iγi∗∂i + a

2γ
0∗∂2

i +m
)
T −1 corresponds to the Λ̂(∂) operator given

in Eq.(3.8). We find that T ψ̂∗(xi,−t) = ψ̂T (xi, t) obeys the κ-deformed Dirac equation,

valid up to first order in a. From the conditions T γ0∗T −1 = γ0 and T γi∗T −1 = −γi,
obtained by comparing Eq.(3.62) with Eq.(3.69), we find that T = iγ1γ3. Note that

this time-reversal operator is exactly the same as that in the commutative case.

Now we write down the expression for the conserved current associated with the time-

reversal symmetry of the κ-deformed Dirac field using Eq.(3.47). By taking δψ̂(xi, t) =

ψ̂T (xi, t) and substituting this in Eq.(3.47), we obtain the conserved current valid up to

first order in a as

Ĵµ =
¯̂
ψ(xi, t)Γ̂

µ(∂,−
←−
∂ )T ψ̂T (xi, t)

=− ¯̂
ψ(xi, t)γ

µγ1γ3ψ̂∗(xi,−t) +
ia

2
δµi

¯̂
ψ(xi, t)γ

0(∂i −
←−
∂ i)γ

1γ3ψ̂∗(xi,−t).
(3.70)

From the above equation we obtain the expression for the conserved current by substi-

tuting Eq.(3.24) and Eq.(3.27) in Eq.(3.70). Thus we obtain the conserved charge (valid

up to first order in a) corresponding to the time-reversal symmetry of the κ-deformed
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Dirac field as

Q̂t =

∫
d3p

(2π)3

(
1 + 2aα− ap√

1 +m2/p2

)(
â†(p)â∗(−p) + b̂(p)b̂T (−p)

)
. (3.71)

Here also we observe that the deformed conserved charge for the time-reversal symmetry

possesses a mass-dependent correction term. This deformation factor is exactly the

same as that seen in Eq.(3.61) and Eq.(3.66). In the limit a → 0, Eq.(3.70) reduces to

Eq.(2.27), which represents the conserved current for the time-reversal symmetry of the

commutative Dirac field [18].

Next, we analyse whether the charge conjugation is a symmetry of the κ-deformed Dirac

field or not. For this, we first introduce an interaction term in the κ-deformed Dirac

equation. This term is introduced as the minimal coupling of electron with electromag-

netic field Aµ, by replacing i∂µ with i∂µ + eAµ in the κ-deformed Dirac equation given

in Eq.(3.62). Thus the Λ̂(∂) operator in Eq.(3.8) becomes

Λ̂c(∂) = γµ
(
i∂µ + eAµ

)
− a

2
γ0
(
i∂i + eAi

)2
+m (3.72)

and the corresponding Dirac equation becomes

Λ̂c(∂)ψ̂(xi, t) = 0. (3.73)

Under the charge conjugation, the charge of the electron changes as e→ −e and thus we

get the κ-deformed equation of motion (valid up to first order in a) for the anti-particle

as [
γµ
(
i∂µ − eAµ

)
− a

2
γ0
(
i∂i − eAi

)2
+m

]
ψ̂c(xi, t) = 0. (3.74)

By taking the complex conjugate of Eq.(3.73) we obtain[
γ∗µ
(
− i∂µ + eAµ

)
− a

2
γ∗0
(
− i∂i + eAi

)2
+m

]
ψ̂∗(xi, t) = 0. (3.75)

The derivative terms in the above equation pick up negative sign after taking the complex

conjugate of Λ̂c(∂).

Now we consider a matrix C satisfying

C
[
− γ∗µ

(
i∂µ − eAµ

)
− a

2
γ∗0
(
i∂i − eAi

)2
+m

]
C−1Cψ̂∗(xi, t) = 0, (3.76)

such that Eq.(3.76) is equivalent to Eq.(3.74) and thus we have ψ̂c(xi, t) = Cψ̂∗(xi, t).
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Using Eq.(2.16), we construct the Γ̂µc (∂,−
←−
∂ ) corresponding to the Λ̂c(∂) given in Eq.(3.72).

This Γ̂µc (∂,−
←−
∂ ) operator, valid up to first order in a, is given as

Γ̂µc (∂,−
←−
∂ ) = i

(
γµ − aγ0eAiδ

µi
)

+
a

2
γ0δµi

(
∂i −

←−
∂ i

)
. (3.77)

Now we check whether the Γ̂µc (∂,−
←−
∂ ) obtained above satisfy the identity given in

Eq.(3.44) or not. By acting Eq.(3.77) with ∂µ +
←−
∂ µ, we obtain(

∂µ +
←−
∂ µ

)
Γ̂µc (∂,−

←−
∂ ) = iγµ

(
∂µ +

←−
∂ µ

)
− iaγ0eAi

(
∂i +

←−
∂ i

)
+
a

2
γ0
(
∂2
i −
←−
∂ 2
i

)
.

(3.78)

Similarly from Eq.(3.72) we obtain

Λ̂c(∂)− Λ̂c(−
←−
∂ ) = iγµ

(
∂µ +

←−
∂ µ

)
− iaγ0eAi

(
∂i +

←−
∂ i

)
+
a

2
γ0
(
∂2
i −
←−
∂ 2
i

)
+ iγ0e

(←−
∂ iAi

)
− iγ0e (∂iAi) .

(3.79)

By comparing Eq.(3.78) with Eq.(3.79) we find that,
(
∂µ +

←−
∂ µ

)
Γ̂µc (∂,−

←−
∂ ) 6= Λ̂c(∂)−

Λ̂c(−
←−
∂ ). Hence Γ̂µc (∂,−

←−
∂ ) operator does not satisfy the identity given in Eq.(3.44).

Therefore we cannot construct a consistent Γ̂µ(∂) operator and conserved current cor-

responding to the charge conjugation symmetry of the deformed Dirac field. Thus it is

clear that charge conjugation is not a symmetry for the particles obeying κ-deformed

Dirac equation (valid up to first order in a). This result is consistent with that obtained

in [6], where it has been shown that one cannot obtain a unique charge conjugation

matrix C for the κ-deformed Dirac equation (to all orders in a).

3.4 Conclusions

In this chapter, we have started with the κ-deformed Dirac field, obeying the κ-deformed

Dirac equation, valid up to first order in a. This undeformed κ-Poincare invariant Dirac

equation has been constructed by replacing the usual derivative in the Dirac equation

with the Dirac derivative [6]. Using the method discussed in chapter 2, we quantised this

deformed Dirac field from its equation of motion alone without referring to Lagrangian.

We solved the equations of motion perturbatively and obtained the explicit form of the

κ-Dirac field, valid up to first order in a. From the deformed equations of motion, we

have obtained Λ̂(∂) operator and Klein-Gordon divisor, d̂(∂), valid up to first order in

a, corresponding to the κ-deformed Dirac field. We have derived a deformed unequal-

time anti-commutation relation between the deformed Dirac field and its adjoint (where

(1 + 2aα) is the deformation factor, valid up to first order in a), by assuming the usual
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form of the oscillator algebra. This (1 + 2aα) factor has also been seen in the unequal-

time deformed commutation relation between κ-scalar field and its adjoint (see chapter

2). Thus we observe that the undeformed oscillator algebra gave rise to a deformed

unequal-time (anti-) commutator between the deformed field and its adjoint.

We have obtained a deformed oscillator algebra by demanding that the unequal-time

anti-commutation relation between the deformed Dirac field and its adjoint to be unde-

formed (valid up to first order in a). This lead to a deformed oscillator algebra given in

Eq.(3.42). The factor (1 − 2aα) present in the κ-deformed fermionic oscillator algebra

has also been seen to be present in the deformed oscillator algebra of the κ-deformed

scalar field [23]. This deformed oscillator algebra is a novel feature of the κ-deformed

field theories. Such modified oscillator algebras have shown to modify Unruh effect [23]

and Hawking radiation [24].

We have also studied the symmetries associated with the κ-deformed Dirac field and

derived the deformed conserved currents (valid up to first order in a) from the equation

of motion alone by using the Γ̂µ(∂,−
←−
∂ ) operator. We have constructed the energy-

momentum tensor and the Lorentz generator (valid up to first order in a) corresponding

to the κ-deformed Dirac field from the translational as well as Lorentz symmetry in

the κ-space-time. By deriving the conserved current associated with the global phase

transformation symmetry, we have obtained the number operator (valid up to first order

in a) for the κ-Dirac field. We have seen that the number operator of κ-Dirac field picks

up a mass-dependent correction term.

We have analysed the discrete symmetries associated with the κ-deformed Dirac field

and have shown that parity as well as time-reversal are the symmetries of κ-Dirac field.

Further, we have derived the conserved currents (valid up to first order in a) corre-

sponding to parity and time-reversal symmetry from the Γ̂µ(∂,−
←−
∂ ) operator. In the

limit a → 0, the corresponding conserved charges reduce to those obtained in [18]. We

have also observed that κ-deformed Dirac field violates the charge conjugation sym-

metry, by showing that the Γ̂µc (∂,−
←−
∂ ) operator (corresponding to the deformed Dirac

equation minimally coupled with electromagnetic field) is not consistent with the re-

quirement [10, 11] imposed by Takahashi-Umezawa formalism. This result agrees with

that obtained in [6].
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Chapter 4

Quantisation of Doplicher-

Fredenhagen-Roberts-Amorim

scalar field

4.1 Introduction

The non-commutative space-times such as Moyal space-time and κ-deformed space-time

violate the Lorentz symmetry. However, in [1–3], Lorentz invariant non-commutative

space-time, known as Doplicher-Fredenhagen-Roberts (DFR) space-time, has been con-

structed and its coordinates satisfy

[x̂µ, x̂ν ] = iθ̂µν , [x̂µ, θ̂νλ] = 0, [θ̂µν , θ̂ρλ] = 0. (4.1)

This DFR algebra has further been extended by incorporating the canonical conjugate

momenta operators p̂µ (corresponding to x̂µ) and k̂µ (corresponding to θ̂µν) and this

forms the Doplicher-Fredenhagen-Roberts-Amorim (DFRA) algebra [4, 5] (see Eq.(1.29)

of chapter 1).

In recent times various features of field theory models on the DFR space-time have

been investigated. The canonical quantisation of the DFRA complex scalar field was

examined and its symmetries were investigated in [6]. In this study, [6] Green’s function

technique was used to obtain the general solution for the DFRA complex scalar field.

It has been demonstrated that UV/IR mixing was absent at the one-loop level of the

DFRA scalar field with the φ4 interaction [7]. The covariant Dirac equation in DFR

space-time has been constructed in[8], such that its square gives the DFR Klein-Gordon

equation. Introduction of a Lorentz invariant weight function W (θ) (which depends on

68
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θ2) in the action was shown to be necessary for consistent perturbative calculation in

DFR theories [3, 9–12]. Different phenomenological aspects have been examined in DFR

space-time [3, 9–12].

The quadratic Casimir of the DFRA algebra (see Eq.(1.32) of chapter 1) was used to

obtain the equations of motion associated with the scalar field in DFR space-time [4, 5].

It was demonstrated that the requirement of obtaining these equations of motion by

variation principle is satisfied by two different scalar field theory actions in DFR space-

time (even when the weight function is fixed to unity); one is a model whose action is

1

S =

∫
d3x d6θ W (θ)

(
1

2
∂µφ∂

µφ+
1

2
m2φ2 − Λ

(
∂µν∂

µν − µ
)
φ

)
(4.2)

where Λ is a Lagrangian multiplier and the second action is

S =

∫
d3x d6θ W (θ)

(
1

2
∂µφ∂

µφ+
1

2
m2φ2 − λ4

4
∂µνφ∂

µνφ

)
. (4.3)

Note that these two actions are not equal up to total derivative terms. Since the defini-

tion of conjugate momenta of a field depends on the form of the Lagrangian, the canoni-

cal quantisation of the DFRA scalar theory described by the above two Lagrangians are

expected to be different. The actions corresponding to these non-commutative scalar

field theory models are distinct. Therefore these non-commutative generalisations are

not unique. Thus the non-uniqueness of the action/Lagrangian makes it important to

study the quantisation from the equations of motion.

The DFRA scalar field equation constructed in [4] includes contribution from the weight

function. By setting this weight function to be a constant, the equation of motion

becomes exactly the same as the one coming from the quadratic Casimir of the corre-

sponding symmetry algebra. Here we quantise the non-commutative DFRA scalar field

using the quantisation procedure discussed in [13–15]. We obtain the deformed com-

mutation relation between the DFRA scalar field and its conjugate (at equal times) by

considering a conventional form for the DFRA oscillator algebra. By demanding the

commutation relation (at equal times) between the DFRA scalar field and its conjugate

to be undeformed, we then derive the deformed DFRA oscillator algebra. We also show

that the first non-vanishing corrections of the deformed oscillator algebra depend on the

non-commutative length scale as 1
λ4

. We analyse the translation and Lorentz symme-

try of scalar theory in DFR space-time and then construct the corresponding conserved

currents without any reference to the action of the DFRA scalar field [16, 17]. We also

show that the energy-momentum tensor of the DFRA scalar field is asymmetric in its

indices when the weight function is included.

1Here ∂µν = ∂
∂θµν

and µ has the dimension of (mass)4
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The deformed oscillator algebra of the non-commutative field theories play an important

role in constructing Fock space and it is important to study the modifications brought

by the deformed oscillator algebra in different phenomenon such as Hawking radiation,

Unruh effect etc. Non-commutative corrections to the Unruh effect [18–22] have been

studied in different non-commutative space-time models such as Moyal space-time [23]

and κ-space-time [24–26]. Here we derive the non-commutative corrections to Unruh ef-

fect in DFR space-time. We study this by examining the response of a monopole detector

coupled with the massless DFRA scalar field in 1 + 3 + 3 dimensional DFR space-time.

These three extra spatial dimensions associated with the DFR space-time vanish in the

compactification limit and we obtain the usual result of 1 + 3 dimensional commutative

space-time. We obtain the response function by evaluating the positive Wightman func-

tion calculated from the vacuum expectation value of the massless DFRA scalar field.

We show that the thermal distribution is either Bose-Einstein or Fermi-Dirac, depending

on the dimension of the DFR space-time. Though the profile of the thermal distribution

is modified by the non-commutativity, we show that the temperature associated with

this thermal distribution is unaffected by the non-commutativity of space-time.

This chapter is organised in the following manner. In sec.4.2, we set up the non-

commutative action corresponding to the DFRA scalar field and get the equations of

motion by fixing the weight function to be Gaussian. In sec.4.3, we obtain the deformed

equal-time commutation relation between the DFRA scalar field and its conjugate by as-

suming corresponding creation and annihilation operators to follow the usual harmonic

oscillator algebra. We then demand the commutation relation between the DFRA scalar

field and its conjugate to be undeformed and this gives a particular form of deformed

DFRA oscillator algebra. In sec.4.4, we construct energy-momentum tensor and Lorentz

generator of the DFRA scalar field from its equation of motion. In sec.4.5, we examine

the Unruh effect in DFR space-time by evaluating the transition probability rate of a

massless DFRA scalar field coupled with a uniformly accelerating detector. Finally, in

sec.4.5, we give our concluding remarks.

4.2 DFRA scalar field theory

In this section, we discuss the construction of action for field theory defined in DFR

space-time using the star product formalism. We obtain the equations of motion corre-

sponding to the scalar field in DFR space-time by varying the action. We also discuss

the importance of introducing the θ-dependent weight function [3, 9–12].
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The Moyal-star product [28] associated with the DFR space-time is given as

f(x, θ) ? g(x, θ) = e
i
2
θµν∂µ∂ν′f(x, θ)g(x′, θ)

∣∣∣
x=x′

, (4.4)

where f and g are functions of the DFR space-time coordinates. The star product

reduces to the usual pointwise multiplication in the limit θ → 0. Here we note that the

? product introduces non-local terms, which depend on the derivatives with respect to

the coordinate xµ alone. In [27], it has been shown that the unitarity requirement of

field theories on DFR space-time imposes the condition θ0i = 0. We thus set θ0i = 0 in

the remaining part of this chapter.

The action for the scalar field theory in DFR space-time is obtained by replacing the

usual product with the star product (given in Eq.(4.4)) and by introducing a θ dependent

weight function in the measure. Thus the action for the scalar field theory in DFR space-

time is given as [6]

S =

∫
d4x d3θ W (θ)

(
∂µφ ? ∂

µφ+ λ2∂θiφ ? ∂θiφ+m2φ ? φ
)
. (4.5)

Note in the above expression, θi is defined as θi = 1
2εijkθ

jk.

W (θ) in the above equation represents the weight function, which depends on the θ

coordinates and not on xµ. This has been introduced in the action to regulate the diver-

gences that appear in the perturbative calculations corresponding to the field theories in

DFR space-time [3, 9–12]. In order to have a Lorentz invariant field theory, the weight

function has to be an even function in θ, i.e., W (−θ) = W (θ) [3, 9–12]. Hence one

chooses Gaussian form for the weight function, i.e.,

W (θ) =
( 1

4π2λ4

)3/2
e−

θ2

4λ4 , (4.6)

( 1
4π2λ4

)3/2 in the above expression corresponds to the normalisation factor. Other choices

for the weight function satisfying the above conditions are considered in [11], showing

that the weight function is not unique.

The Moyal product, defined in Eq.(4.4), satisfies∫
d4x d3θ W (θ) f(x, θ) ? g(x, θ) =

∫
d4x d3θ W (θ) f(x, θ)g(x, θ). (4.7)

By using the above identity, i.e., Eq.(4.7), in Eq.(4.5), the action for scalar field in DFR

space-time becomes

S =

∫
d4x d3θ W (θ)

(
∂µφ∂

µφ+ λ2∂θiφ∂θiφ+m2φ2
)
. (4.8)
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The λ2 dependent term in the Lagrangian comes from the θ coordinates of the non-

commutative space-time. We obtain the commutative scalar field action in the limit

λ→ 0 (note limλ→0
e
−
θ2i
4λ4

λ2
= δ(θi) [29, 30].

From Eq.(4.8), we obtain equations of motion for the scalar field in DFR space-time as(
� + λ2�θ −m2

)
φ(x, θ) + λ2∂θi

(
lnW (θ)

)
∂θiφ(x, θ) = 0, (4.9)

where � = ∂µ∂
µ and �θ = ∂θi∂

θi .

The last term on the LHS of Eq.(4.9) depends on the derivative of the weight function

and it vanishes when the weight function becomes a constant, i.e., W (θ) = 1 as in [6].

When W (θ) = 1, the equation of motion in Eq.(4.9) reduces to the equation of motion

obtained from the quadratic Casimir of DFRA algebra (see Eq.(1.32) of chapter 1) [6],

i.e., (
� + λ2�θ −m2

)
φ(x, θ) = 0. (4.10)

Note that in the limit λ→ 0, Eq.(4.9) and Eq.(4.10) reduce to the well known commu-

tative scalar field equation of motion.

By substituting Eq.(4.6) in Eq.(4.9), we get

(
� + λ2�θ −m2

)
φ(x, θ)− θi

2λ2
∂θiφ(x, θ) = 0. (4.11)

In the limit λ→ 0 with θ = 0, the above expression reduces to the commutative scalar

field equation of motion. The first three terms on the LHS of Eq.(4.11) are the equation of

motion associated with the quadratic Casimir of the DFRA algebra [4, 29, 30]. Canonical

quantisation of the non-commutative scalar field obeying the equation of motion coming

Casimir of DFRA algebra has been studied thoroughly in [6], from its Lagrangian.

We observe that the equations of motion coming from the DFRA scalar field action

(see Eq.(4.9)) and that coming from the quadratic Casimir of the DFRA algebra (see

Eq.(1.32) of chapter 1) are different due to the presence of the weight function in action.

Therefore the equations of motion coming from the action depend on the choice of the

weight function (which is not unique). This results in the non-uniqueness of the equations

of motion associated with the DFRA scalar field (note that all these equations of motion

reduce to the same commutative limit). Thus it is necessary to quantise the field theories

in DFR space-time from their equations of motion itself instead of following the canonical

procedure.
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4.3 Quantisation of DFRA scalar field

We have observed that the Lagrangian associated with the DFRA scalar field is not

unique. Hence it is important to study the quantisation of DFRA field theories from

their equation of motion, instead of starting from the Lagrangian. In this section, we

apply the quantisation method discussed in [13–15] (see chapter 2) to quantise the DFRA

scalar field by starting from its equations of motion, i.e., Eq.(4.11).

We start by generalising the definition for Λ(∂) operator (see Eq.(2.3), chapter 2) to the

DFR space-time as Λ(∂, ∂θ). Thus Λ(∂, ∂θ) operator in DFR space-time is defined as

Λ(∂, ∂θ) =
N∑
l=0

ΛA1A2....Al∂
A1∂A2 ....∂Al

= Λ0 + ΛA∂
A + ΛAB∂

A∂B + ΛABC∂
A∂B∂C + ..........+ ΛA1A2A3....AN∂

A1∂A2∂A3 ....∂AN ,

(4.12)

where the index A = (µ, θi) and ∂A = (∂µ, λ∂θi).

In the DFR space-time, the Klein-Gordon divisor is defined as d(∂, ∂θ). Thus Eq.(2.8)

(see chapter 2) in the commutative space-time can be extended to the DFR space-time

by replacing Λ(∂) operator, d(∂) and Klein-Gordon equation with the corresponding def-

initions in the DFR space-time as Λ(∂, ∂θ), d(∂, ∂θ) and the DFRA scalar field equation,

i.e., Eq.(4.11). Thus we have

d(∂, ∂θ)Λ(∂, ∂θ) = � + λ2�θ −m2 − θ

2λ2
∂θ. (4.13)

For the DFRA scalar field, we have

Λ(∂, ∂θ) = � + λ2�θ −m2 − θ

2λ2
∂θ and d(∂, ∂θ) = I. (4.14)

By comparing Eq.(4.14) with Eq.(4.12), we obtain the components of Λ(∂, ∂θ) operator

as

Λ0 = −m2, ΛA =
(

0,− θi
2λ3

)
, ΛAB = diag(−1, 1, 1, 1, 1, 1, 1). (4.15)

The DFRA scalar field, φ(x, θ) is decomposed in terms of creation and annihilation

operators as

φ(x, θ) =

∫
d3p√
(2π)3

d3k̃√
(2π)3

1√
2ω(p, k̃)

(
u(x, θ)a(p, k) + u∗(x, θ)a†(p, k̃)

)
. (4.16)
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Now we need to obtain the explicit form of u(x, θ) satisfying Λ(∂, ∂θ)u(x, θ) = 0. We

derive this solution by taking an ansatz for u(x, θ) as

u(x, θ) = e−ipxf(θ). (4.17)

Fixing f(0) = 1, we have u(x, 0) = u(x) and it satisfies the commutative equation of

motion, i.e., Λ(∂)u(x) = 0.

Substituting Eq.(4.17) in the equation Λ(∂, ∂θ)u(x, θ) = 0, we obtain the equation for

f(θ) as (
∂2
θ −

θ

2λ4
∂θ − p2 −m2

)
f(θ) = 0. (4.18)

In the above equation, the second term is contributed by the weight function dependent

term. We solve the above equation using the power series method. Thus f(θ) is expanded

as

f(θ) =

∞∑
n=0

anθ
n, (4.19)

where a0 = 1, using the condition f(0) = 1.

Substituting Eq.(4.19) in Eq.(4.18) and re-writing the p2 term using the DFRA disper-

sion relation (see Eq.(4.11)), i.e., p2 + m2 + λ2k2 + ikθ
2λ2

= 0, we obtain the solution for

f(θ) as

f(θ) = a0

(
cos kθ +

∞∑
n=1

An(kθ)2n
)

+ a1

(
sin kθ +

∞∑
n=1

Bn(kθ)2n+1
)
, (4.20)

where

An(λ, k, θ) =
(−1)n

(2n)!

[
Πn−1
j=0

(
1− j

λ4k2
+
ikθ

2λ2

)
− 1

]
,

Bn(λ, k, θ) =
(−1)n

(2n+ 1)!

[
Πn−1
j=0

(
1− (2j + 1)

2λ4k2
+
ikθ

2λ2

)
− 1

]
.

(4.21)

Here (kθ) and kλ2 are dimensionless quantities. An and Bn in Eq.(4.20) are contributed

by the weight function dependent terms of Eq.(4.18). Thus An and Bn vanish when the

weight function becomes unity. Note that An and Bn vanishes in the limit λ → 0 with

θ = 0.

Using the transformation laws given in [4], it can be shown that the solution given

in Eq.(4.20) is Lorentz invariant. Therefore we can decompose the DFRA scalar field

operator φ(x, θ̃) 2 into positive and negative modes using the creation and annihilation

operators. Substituting Eq.(4.17) and Eq.(4.20) in Eq.(4.16), we obtain the DFRA scalar

2We define θ̃ = θ/λ and k̃ = λk. In general we denote DFRA scalar field as φ(x, θ). However when
we decompose the field into momentum space, we use φ(x, θ̃)
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field as

φ(x, θ̃) =

∫
d3p√
(2π)3

d3k̃√
(2π)3

1√
2ω(p, k̃)

[
e−ipx

(
a0

(
cos
(
k̃θ̃
)

+

∞∑
n=1

An(λ, k̃, θ̃)(k̃θ̃)2n
)

+

a1

(
sin
(
k̃θ̃
)

+

∞∑
n=1

Bn(λ, k̃, θ̃)(k̃θ̃)2n+1
))

a(p, k̃) + h.c

]
,

(4.22)

where ki = 1
2εijkk

jk. We now re-express the cosine and sine functions in the above

expression using Euler’s identity and after some re-arrangement, we obtain

φ(x, θ̃) =

∫
d3p√
(2π)3

d3k̃√
(2π)3

1√
2ω(p, k̃)

[
e−ipx

(
1

2
(a0 + ia1)e−ikθ +

1

2
(a0 − ia1)eikθ+

a0

∞∑
n=1

An(λ, k̃, θ̃)(k̃θ̃)2n + a1

∞∑
n=1

Bn(λ, k̃, θ̃)(k̃θ̃)2n+1

)
a(p, k̃) + h.c

]
(4.23)

By changing k̃ → −k̃ in the second term of the above equation and performing the

integration, we get the solution for the scalar field in DFR space-time as

φ(x, θ̃) =

∫
d3p√
(2π)3

d3k̃√
(2π)3

1√
2ω(p, k̃)

(
e−ipx

(
a0e
−ik̃θ̃ + a0

∞∑
n=1

An(λ, k̃, θ̃)(k̃θ̃)2n

+ a1

∞∑
n=1

Bn(λ, k̃, θ̃)(k̃θ̃)2n+1

)
a(p, k̃) + h.c

)
.

(4.24)

When the weight function becomes unity, the above equation, i.e., Eq.(4.24), reduces to

the 7 dimensional plane wave solution as in [6, 29]. Thus for a0 = 1 (see discussion after

Eq.(4.19)), the above expression for the DFRA scalar field becomes

φ(x, θ̃) =

∫
d3p√
(2π)3

d3k̃√
(2π)3

1√
2ω(p, k̃)

((
e−i(px+k̃θ̃) + e−ipxG(k̃, θ̃)

)
a(p, k̃) + h.c

)
,

(4.25)

where

G(k̃, θ̃) =

∞∑
n=1

(
An(λ, k̃, θ̃)(k̃θ̃)2n + a1Bn(λ, k̃, θ̃)(k̃θ̃)2n+1

)
. (4.26)

When the weight function becomes one and in the limit λ → 0 with θ = 0, the above

equation, i.e, Eq.(4.26), vanishes. Thus we observe that the DFRA scalar field reduces

to the commutative one in the limit λ→ 0.

The unequal-time commutation relation between the non-commutative field and its ad-

joint in DFR space-time can be obtained by generalising Eq.(2.13) (see chapter 2) to

DFR space-time. This is done by replacing ∆(x− x′) with ∆(x, x′; θ, θ′) as well as d(∂)
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with d(∂, ∂θ). Thus we get[
φ(x, θ̃), φ̄(x′, θ̃′)

]
= id(∂, ∂θ)∆(x, x′; θ̃, θ̃′). (4.27)

For the DFRA scalar field we have seen that d(∂, ∂θ) = I and therefore Eq.(4.27) becomes[
φ(x, θ̃), φ̄(x′, θ̃′)

]
= i∆(x, x′; θ̃, θ̃′). (4.28)

The unknown function, ∆(x, x′; θ̃, θ̃′), in the above equation, Eq.(4.28), can be obtained

by evaluating the LHS of Eq.(4.28). Thus by using Eq.(4.25), we obtain the LHS of

Eq.(4.28) as

[
φ(x, θ̃), φ(x′, θ̃′)

]
=

∫
d3p√
(2π)3

d3k̃√
(2π)3

d3p′√
(2π)3

d3k̃′√
(2π)3

1√
2ω(p, k̃)

1√
2ω(p′, k̃′)(

up,k̃(x, θ̃)u
∗
p′,k̃′

(x′, θ̃′)[a(p, k̃), a†(p′, k̃′)]− u∗
p,k̃

(x, θ̃)up′,k̃′(x, θ̃
′)[a(p′, k̃′), a†(p, k̃)]

)
.

(4.29)

Now we assume the creation and annihilation operators of the DFRA scalar field to obey

the following commutation relation

[a(p, k̃), a†(p′, k̃′)] = δ3(p− p′)δ3(k̃ − k̃′). (4.30)

We derive the unequal time commutation relation between the DFRA scalar field and its

adjoint by substituting the above undeformed oscillator algebra, Eq.(4.30), in Eq.(4.29).

Thus we have

[
φ(x, θ̃), φ(x′, θ̃′)

]
=

∫
d3p

(2π)3

d3k̃

(2π)3

1

2ω(p, k̃)

(
e−ip(x−x

′)e−ik̃(θ̃−θ̃′) − eip(x−x′)eik̃(θ̃−θ̃′)+

e−ip(x−x
′)
(
e−ik̃θ̃G∗(k̃, θ̃′) + eik̃θ̃

′G(k̃, θ̃) + G(k̃, θ̃)G∗(k̃, θ̃′)
)
−

eip(x−x
′)
(
eik̃θ̃G(k̃, θ̃′) + e−ik̃θ̃

′G∗(k̃, θ̃) + G∗(k̃, θ̃)G(k̃, θ̃′)
))

.

(4.31)

We obtain the explicit form of i∆(x, x′; θ̃, θ̃′) by comparing Eq.(4.31) with Eq.(4.28). We

find that the last six terms on the RHS of Eq.(4.31) are the weight function dependent

terms.
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By taking the time derivative of Eq.(4.31) and setting t = t′, we obtain the commutation

relation between the DFRA scalar field and its time derivative at equal times as

[
φ(x, θ̃),

dφ(x′, θ̃′)

dt′

]∣∣∣∣
t=t′

=iδ3(x− x′)δ3(θ̃ − θ̃′) + iδ3(x− x′)
∫

d3k̃

(2π)3

(
e−ik̃θ̃G∗(k̃, θ̃′)

2
+

eik̃θ̃
′G(k̃, θ̃)

2
+
eik̃θ̃G(k̃, θ̃′)

2
+
e−ik̃θ̃

′G∗(k̃, θ̃)
2

+
G(k̃, θ̃)G∗(k̃, θ̃′)

2
+

G(k̃, θ̃′)G∗(k̃, θ̃)
2

)
.

(4.32)

The above equation gives the deformed (equal-time) commutation relation between the

DFRA scalar field and its (time) derivative, valid to all orders in θ/λ. Due to the

presence of the weight function dependent term G(k̃, θ̃), the commutation relation given

in Eq.(4.32) is deformed. The last six terms in the RHS of Eq.(4.32) change with the

choice of weight function. It is to be noted that the above expression reduces to the

corresponding commutation relation between the DFRA scalar field and its conjugate

obtained in [6] when the weight function becomes unity.

In order to show the non-commutative corrections more clearly, we write down the

deformed commutation relation given in Eq.(4.32) by keeping the expression valid up to

the first non-vanishing terms in θ̃. Thus we get

[
φ(x, θ̃),

dφ(x′, θ̃′)

dt′

]∣∣∣∣
t=t′

=iδ3(x− x′)δ3(θ̃ − θ̃′) + iδ3(x− x′)
∫

d3k̃

(2π)3

(
(k̃θ̃′)3

12k̃2λ2
+

(k̃θ̃)3

12k̃2λ2

)
.

(4.33)

Recalling θ̃ = θ/λ, k̃ = kλ, we find that the first non-vanishing correction terms asso-

ciated with the deformed commutation relation depends on θ3 terms. Further, we also

observe that the dependency of this correction term on the non-commutative length

scale is of the form 1/λ4.

In the above calculations, we have considered an undeformed DFRA oscillator algebra as

given in Eq.(4.30). Now let us consider the DFRA oscillator algebra to be deformed such

that the commutation relation between the DFRA field and its adjoint is undeformed.

Thus we assume the deformed oscillator algebra to be

[a(p, k̃), a†(p′, k̃′)] = δ3(p− p′)δ3(k̃ − k̃′)g(k̃), (4.34)

where g(k̃) is an unknown function whose exact form has to be evaluated.

By substituting the above deformed oscillator algebra, i.e., Eq.(4.34), in Eq.(4.29) and

repeating the above steps, we obtain the unequal-time commutation relation between
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DFRA scalar field and its adjoint as

[
φ(x, θ̃), φ(x′, θ̃′)

]
=

∫
d3p

(2π)3

d3k̃

(2π)3

1

2ω(p, k̃)
g(k̃)

(
e−ip(x−x

′)e−ik̃(θ̃−θ̃′) − eip(x−x′)eik̃(θ̃−θ̃′)+

e−ip(x−x
′)
(
e−ik̃θ̃G∗(k̃, θ̃′) + eik̃θ̃

′G(k̃, θ̃) + G(k̃, θ̃)G∗(k̃, θ̃′)
)
−

eip(x−x
′)
(
eik̃θ̃G(k̃, θ̃′) + e−ik̃θ̃

′G∗(k̃, θ̃) + G∗(k̃, θ̃)G(k̃, θ̃′)
))

.

(4.35)

From Eq.(4.35), we get the equal-time commutation relation between the DFRA scalar

field and its time derivative as

[
φ(x, θ̃),

dφ(x′, θ̃′)

dt′

]∣∣∣
t=t′

=iδ3(x− x′)
∫

d3k̃

(2π)3
g(k̃)

(
e−ik̃(θ̃−θ̃′)

2
+
eik̃(θ̃−θ̃′)

2
+
e−ik̃θ̃G∗(k̃, θ̃′)

2
+

eik̃θ̃
′G(k̃, θ̃)

2
+
eik̃θ̃G(k̃, θ̃′)

2
+
e−ik̃θ̃

′G∗(k̃, θ̃)
2

+
G(k̃, θ̃)G∗(k̃, θ̃′)

2
+

G(k̃, θ̃′)G∗(k̃, θ̃)
2

)
.

(4.36)

Now we demand the equal-time commutation relation between the DFRA scalar field

and its time derivative to be undeformed, i.e.,

[
φ(x, θ̃),

dφ(x′, θ̃′)

dt′

]∣∣∣
t=t′

= iδ3(x− x′)δ3(θ̃ − θ̃′), (4.37)

Thus by comparing the RHS of Eq.(4.36) with that RHS of Eq.(4.37), we get

δ3(θ̃ − θ̃′) =

∫
d3k̃

(2π)3
g(k̃)

(
e−ik̃(θ̃−θ̃′)

2
+
eik̃(θ̃−θ̃′)

2
+
e−ik̃θ̃G∗(k̃, θ̃′)

2
+
eik̃θ̃

′G(k̃, θ̃)

2
+

eik̃θ̃G(k̃, θ̃′)

2
+
e−ik̃θ̃

′G∗(k̃, θ̃)
2

+
G(k̃, θ̃)G∗(k̃, θ̃′)

2
+
G(k̃, θ̃′)G∗(k̃, θ̃)

2

)
.

(4.38)

By utilising the definition for δ3(θ̃ − θ̃′) on the LHS of Eq.(4.38) and after doing some

re-arrangement, we obtain the explicit form of g(k̃) as

g(k̃) =
1

1 + eik̃θ̃′G(k̃,θ̃)+eik̃θ̃G(k̃,θ̃′)+e−ik̃θ̃′G∗(k̃,θ̃)+e−ik̃θ̃G∗(k̃,θ̃′)+G(k̃,θ̃)G∗(k̃,θ̃′)+G(k̃,θ̃′)G∗(k̃,θ̃)
2 cos k̃(θ̃−θ̃′)

.

(4.39)

Thus by using the above choice of g(k̃), i.e., Eq.(4.39), in Eq.(4.34), we get the equal-

time commutation relation between the DFRA scalar field and its time derivative to be

undeformed. For this specific choice of g(k̃), the deformed oscillator algebra given in
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Eq.(4.34) becomes

[a(p, k̃), a†(p′, k̃′)] =
δ3(p− p′)δ3(k̃ − k̃′)

1 + eik̃θ̃
′G(k̃,θ̃)+eik̃θ̃G(k̃,θ̃′)+e−ik̃θ̃′G∗(k̃,θ̃)+e−ik̃θ̃G∗(k̃,θ̃′)+G(k̃,θ̃)G∗(k̃,θ̃′)+G(k̃,θ̃′)G∗(k̃,θ̃)

2 cos k̃(θ̃−θ̃′)

.

(4.40)

In the above equation, we find that the deformation factor present in the DFRA oscilla-

tor algebra depends on the non-commutative coordinates θ̃ and θ̃′ respectively. This

deformation factor is non-unique due to non-uniqueness associated with the weight

function W (θ) and this deformation factor becomes one when the weight function re-

duces to unity. For the particular choice θ = θ′, the deformation factor becomes,

g(k̃) = 1

1+e−ik̃θ̃G∗(k̃,θ̃)+eik̃θ̃G(k̃,θ̃)+G(k̃,θ̃)G∗(k̃,θ̃)
. From Eq.(4.40), we obtain the deformed

DFRA oscillator algebra, valid up to first non-vanishing term in θ, as

[a(p, k̃), a†(p′, k̃′)] = δ3(p− p′)δ3(k̃ − k̃′)
(

1− (k̃θ̃′)3

12k̃2λ2
− (k̃θ̃)3

12k̃2λ2

)
. (4.41)

In the above Eq.(4.41), we see that the first non-vanishing correction associated with the

deformed DFRA oscillator algebra depends on θ3. This is in contrast with the results

obtained in the κ-deformed space-time, where the correction term depends linearly on

the non-commutative parameter [31, 32]. Here the correction terms of the deformed

DFRA oscillator depend on 1/λ4 also.

We observe the appearance of weight function dependent term in the deformed (equal-

time) commutation relation between the DFRA scalar field and its (time) derivative in

Eq.(4.32). These terms reduce to zero when the weight function becomes one and the

resulting commutation relations are in agreement with that derived in [6].

4.4 Conserved currents

In this section, we use quantisation method discussed in chapter 2 to construct the

conserved currents corresponding to the DFRA scalar field from its equation of motion

alone [16, 17]. Using this procedure, we obtain the conserved currents associated with

the translation and Lorentz symmetry of the DFRA scalar field.

In order to derive the conserved currents, we first generalise the definition of Γµ(∂,−
←−
∂ )

operator to the DFR space-time as ΓA(∂,−
←−
∂ ). By using Eq.(2.16) (see chapter 2), we

obtain the definition for ΓA(∂,−
←−
∂ ) as

ΓA(∂,−
←−
∂ ) =

N−1∑
l=0

l∑
i=0

ΛAA1.....Al∂A1 .....∂Ai(−
←−
∂ Ai+1)......(−

←−
∂ Al)

= ΛA + ΛAB(∂B −
←−
∂ B) + ΛABC(∂B∂C − ∂B

←−
∂ C +

←−
∂ B
←−
∂ C) + ......

(4.42)
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Substituting the components of the Λ(∂, ∂θ) operator, i.e., Eq.(4.15), in Eq.(4.42) we

get the explicit form of ΓA(∂,−
←−
∂ ) as

ΓA(∂,−
←−
∂ ) =

(
∂µ −

←−
∂ µ, λ(∂θi −

←−
∂ θi)−

θi
2λ3

)
. (4.43)

Using Eq.(2.20) (of chapter 2), we write down the general expression for conserved

current associated with the DFRA scalar field as

JA = φ(x, θ)ΓA(∂,−
←−
∂ )δφ(x, θ). (4.44)

Under the translation symmetry, the DFR space-time coordinates transform as

xµ → xµ + aµ, θi → θi + bi, (4.45)

where aµ and bi are the translation parameters in the DFR space-time. The correspond-

ing infinitesimal change in the DFRA scalar field under the above transformation is

given as

δφ(x, θ) = −aµ∂µφ(x, θ)− bi∂θiφ(x, θ) ≡ −CB∂Bφ(x, θ), (4.46)

where CB = (aµ, bi/λ). Substituting Eq.(4.46) in Eq.(4.44), the expression for the con-

served current corresponding to the translation symmetry in DFR space-time becomes

JA = −CBφ(x, θ)ΓA(∂,−
←−
∂ )∂Bφ(x, θ). (4.47)

By using Eq.(4.46) and Eq.(4.43) in Eq.(4.47), we obtain the explicit form of the com-

ponents of the conserved current associated with the translation symmetry in DFR

space-time as

Jµ =aν∂µφ(x, θ)∂νφ(x, θ)− aνφ(x, θ)∂µ∂νφ(x, θ)− biφ(x, θ)∂µ∂θiφ(x, θ) + bi∂µφ(x, θ)∂θiφ(x, θ),

Jθj =aν∂θjφ(x, θ)∂νφ(x, θ)− aνφ(x, θ)∂θj∂νφ(x, θ)− biφ(x, θ)∂θj∂θiφ(x, θ) + bi∂θjφ(x, θ)∂θiφ(x, θ)+

aν
θj

2λ3
φ(x, θ)∂νφ(x, θ) + bi

θj
2λ3

φ(x, θ)∂θiφ(x, θ).

(4.48)

The Minkowskian part of the conserved current in the above expression does not have

weight function dependent terms. Whereas the θi components of the conserved current

possess two weight function dependent terms. Using the relation JA ≡ TABC
B, we get

the expression for the energy-momentum tensor TAB of the DFRA scalar field as

TAB = φ(x, θ)ΓA(∂,−
←−
∂ )∂Bφ(x, θ). (4.49)
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The explicit form of the components of the energy-momentum tensor for the DFRA

scalar field are given as

Tµν =φ(x, θ)∂µ∂νφ(x, θ)− ∂µφ(x, θ)∂νφ(x, θ),

Tµθi =λφ(x, θ)∂µ∂θiφ(x, θ)− λ∂µφ(x, θ)∂θiφ(x, θ),

Tθiµ =λφ(x, θ)∂θi∂µφ(x, θ)− λ∂θiφ(x, θ)∂µφ(x, θ)− θi
2λ3

φ(x, θ)∂µφ(x, θ),

Tθiθj =λ2φ(x, θ)∂θi∂θjφ(x, θ)− λ2∂θiφ(x, θ)∂θjφ(x, θ)− θi
2λ2

φ(x, θ)∂θjφ(x, θ).

(4.50)

The last three components of the energy-momentum tensor in the above expression are

contributed by the θ coordinate of the DFR space-time. The Tµν tensor is symmetric in

its indices, as in the commutative case. Whereas Tµθi 6= Tθiµ and Tθiθj is not symmetric.

It is to be noted that the Tµθi tensor becomes symmetric when the weight function

becomes one. As the weight function reduces to unity, the Tθiθj tensor also becomes

symmetric. Thus we observe that the energy-momentum tensor of the DFRA scalar

field is no longer symmetric in its indices due to θ dependency of the weight function

W (θ).

Using the expression for the energy-momentum tensor TAB, we define the conserved

momenta associated with the DFRA scalar field as

PB =

∫
d3x d3θ W (θ)T0B. (4.51)

Under the Lorentz transformation, the coordinates of the DFR space-time transform as

xµ → xµ + ω ν
µ xν , θi → θi + ω j

i θj . (4.52)

Using the above given Lorentz transformation rule, the infinitesimal change in the DFRA

scalar field is given as

δφ(x, θ) =− 1

2
ωµν(xν∂µ − xµ∂ν)φ(x, θ)− 1

2
ωij(θj∂θi − θi∂θj )φ(x, θ)

δφ(x, θ) ≡− 1

2
CABφ(x, θ)

(
XB∂A −XA∂B

)
φ(x, θ),

(4.53)

where CAB = diag(ωµν , ωij) and XB = (xµ, θi/λ).

Therefore the definition for the conserved current associated with the Lorentz symmetry

of the DFR scalar field is given as

JA = −1

2
CCBφ(x, θ)ΓA(∂,−

←−
∂ )
(
XB∂C −XC∂B

)
φ(x, θ) ≡ CBCMABC , (4.54)
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where,

MABC =
1

2
φ(x, θ)ΓA(∂,−

←−
∂ )
(
XB∂C −XC∂B

)
φ(x, θ). (4.55)

Substituting Eq.(4.53) and Eq.(4.43) in Eq.(4.44), we get the explicit form of the compo-

nents of the conserved currents associated with the Lorentz symmetry of DFRA scalar

field as

Jµ =
1

2
ωνλφ(x, θ)

(
∂µ −

←−
∂ µ
)(
xν∂λ − xλ∂ν

)
φ(x, θ) +

1

2
ωijφ(x, θ)

(
∂µ −

←−
∂ µ
)(
θi∂θj − θj∂θi

)
φ(x, θ)

Jθi =
λ

2
ωµνφ(x, θ)

(
∂θi −

←−
∂ θi
)(
xµ∂ν − xν∂µ

)
φ(x, θ) +

1

2
ωµνφ(x, θ)

θi
2λ3

(
xµ∂ν − xν∂µ

)
φ(x, θ)+

λ

2
ωjkφ(x, θ)

(
∂θi −

←−
∂ θi
)(
θj∂θk − θk∂θj

)
φ(x, θ) +

1

2
ωjkφ(x, θ)

θi
2λ3

(
θj∂θk − θk∂θj

)
φ(x, θ)

(4.56)

Here also, we notice that only the θi components of the conserved current contain the

weight function dependent terms.

We write down the Lorentz symmetry generator in DFR space-time, using the tensor

MABC (given in Eq.(4.55)) as,

MBC =

∫
d3x d3θ W (θ)M0BC

=

∫
d3x d3θ W (θ)

(1

2
φ(x, θ)Γ0(∂,−

←−
∂ )
(
XB∂C −XC∂B

)
φ(x, θ)

)
.

(4.57)

By substituting Eq.(4.43) in Eq.(4.57), we get the explicit form of the components of

the Lorentz generator associated with the DFRA scalar field as

Mµν =
1

2

∫
d3x d3θ W (θ)

(
φ(x, θ)δµ0∂νφ(x, θ) + φ(x, θ)xµ∂0∂νφ(x, θ)− ∂0φ(x, θ)xµ∂νφ(x, θ)−

φ(x, θ)δν0∂µφ(x, θ)− φ(x, θ)xν∂0∂µφ(x, θ) + ∂0φ(x, θ)xν∂µφ(x, θ)

)
,

Mµθi =
1

2

∫
d3x d3θ W (θ)

(
λφ(x, θ)δµ0∂θiφ(x, θ) + λφ(x, θ)xµ∂0∂θiφ(x, θ)−

λ∂0φ(x, θ)xµ∂θiφ(x, θ)− θi
λ
φ(x, θ)∂0∂µφ(x, θ) +

θi
λ
∂0φ(x, θ)∂µφ(x, θ)

)
,

Mθiµ =
1

2

∫
d3x d3θ W (θ)

(
− λφ(x, θ)δµ0∂θiφ(x, θ)− λφ(x, θ)xµ∂0∂θiφ(x, θ)+

λ∂0φ(x, θ)xµ∂θiφ(x, θ) +
θi
λ
φ(x, θ)∂0∂µφ(x, θ)− θi

λ
∂0φ(x, θ)∂µφ(x, θ)

)
,

Mθiθj =
1

2

∫
d3x d3θ W (θ)

(
φ(x, θ)θi∂0∂θjφ(x, θ)− ∂0φ(x, θ)θi∂θjφ(x, θ)−

φ(x, θ)θj∂0∂θiφ(x, θ) + ∂0θj∂θiφ(x, θ)

)
.

(4.58)

We see that all the components of the Lorentz generator of the DFRA scalar field

depend on the weight function as an overall multiplication factor W (θ) coming through
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the measure. In the limit λ→ 0 with θ = 0, the components such as Mµθi , Mθiν , Mθiθj

vanishes and Mµν becomes the Lorentz generator of the commutative scalar field.

4.5 Response of detector coupled to DFRA scalar field and

Unruh effect

In this section, we analyse the response of a massless DFRA scalar field coupled to a

uniformly accelerating Unruh-DeWitt detector [18–20]. Here we study the Unruh effect

in the presence of extra θ dimensions associated with the DFR space-time by evaluating

the response function in both even and odd dimensions of DFR space-time.

We consider a monopole detector m(τ) whose trajectory is parametrised using the proper

time τ and this is coupled to the massless DFRA scalar field. We define this interacting

Lagrangian by replacing the usual field in the commutative interaction term with the

massless DFRA scalar field. Thus we have

Lint = m(τ)φ
(
x(τ), θ̃(τ)

)
. (4.59)

We assume the field to be initially in the vacuum state |0〉 and the detector to be in

its ground state |E0〉. As the detector moves along the uniformly accelerating path, the

detector will make a transition from its ground state |E0〉 to its excited state |E〉, where

E > E0. As a result, the massless DFRA field makes a transition to its excited state

|ψ〉. By using the time-independent, first-order perturbation theory, we write down the

transition amplitude as

Mi→f = i 〈E,ψ|
∫ τ0

−∞
dτ m(τ)φ

(
x(τ), θ̃(τ)

)
|0, E0〉 . (4.60)

The monopole moment associated with the detector evolve as m(τ) = eiH0τm(0)e−iH0τ .

Here H0 represents the Hamiltonian of the monopole detector, satisfying H0 |E〉 = E |E〉
and H0 |E0〉 = E0 |E0〉, respectively. Using Eq.(4.60), we write down the transition

probability as ∣∣Mi→f
∣∣2 =

∑
E

∣∣∣ 〈E|m(0) |E0〉
∣∣∣2F(∆E) (4.61)

where F(∆E) corresponds to the response function, which is defined as

F(∆E) =

∫ τ0

−∞

∫ τ0

−∞
dτdτ ′e−i∆E(τ−τ ′)G+

(
x(τ), θ̃(τ);x(τ ′), θ̃(τ ′)

)
. (4.62)
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Here ∆E = E −E0 and G+
(
x(τ), θ̃(τ);x(τ ′), θ̃(τ ′)

)
is known as the positive Wightman

function which is defined as

G+(x, θ̃;x′, θ̃′) = 〈0|φ(x, θ̃)φ(x′, θ̃′) |0〉 . (4.63)

It is straightforward to calculate the Wightman function from the equation of motion

alone. But here, we use the vacuum expectation value of the quantised massless DFRA

scalar fields to evaluate the Wightman function. We utilise this method as one can easily

see the effects of the quantised massless DFRA fields on the response function in this

approach.

We get the explicit form of the positive Wightman function in (1 + 3 + dθ) dimension

3 DFR space-time by calculating the vacuum expectation value of the massless DFRA

scalar field given in Eq.(4.25). Substituting Eq.(4.25) in Eq.(4.63), we evaluate the

Wightman function valid up to first order in 1/λ2 as

G+(x, θ̃;x′, θ̃′) =
N(dθ)[

(x− x′)2 + (θ̃ − θ̃′)2 − (t− t′)2
](2+dθ)/2

− (θ̃′)4

4λ2

N(dθ)(2 + dθ)[
(x− x′)2 + θ̃2 − (t− t′)2

](4+dθ)/2

−(θ̃)4

4λ2

N(dθ)(2 + dθ)[
(x− x′)2 + θ̃′

2 − (t− t′)2
](4+dθ)/2

+
ia1(θ̃)4

6λ2

N(dθ)(2 + dθ)[
(x− x′)2 + θ̃′

2 − (t− t′)2
](4+dθ)/2

− ia1(θ̃′)4

6λ2

N(dθ)(2 + dθ)[
(x− x′)2 + θ̃2 − (t− t′)2

](4+dθ)/2
− ia1(θ̃)5

12λ2

N(dθ)(2 + dθ)(4 + dθ)[
(x− x′)2 + θ̃′

2 − (t− t′)2
](6+dθ)/2

+
ia1(θ̃)5

12λ2

N(dθ)(2 + dθ)(4 + dθ)[
(x− x′)2 + θ̃′

2 − (t− t′)2
](6+dθ)/2

(4.64)

where, N(dθ) =
Γ
(

2+dθ
2

)
4π(4+dθ)/2

. All the 1/λ2 dependent terms in the above expression are due

to the G(k̃, θ̃), G∗(k̃, θ̃) dependent terms of Eq.(4.25). The last six terms of the above

equation are not unique due to the non-unique nature of the weight function and these

terms are absent when the weight function becomes one. From the above expression, we

get the commutative positive Wightman function in the limit θ → 0 and dθ → 0.

Now we assume the detector to be moving along a uniformly accelerating trajectory,

whose constant proper acceleration is denoted as A. The coordinates in this uniformly

accelerating trajectory are given as

t(τ) =
1

A
sinhAτ, x(τ) =

1

A
coshAτ, y = constant, z = constant, θ̃i = constant (say θ),

(4.65)

3Here dθ is the number of extra spatial dimension associated with the non-commutativity of DFR
space-time.



Chapter 4 Quantisation of DFRA scalar field 85

Here we have considered the detector to be accelerating in the commutative t−x plane.

These non-commutative coordinates are just additional spatial coordinates in the extra

dimensions and they act in the same way as y and z coordinates. Therefore the detector

will continue to move along the uniformly accelerating path even in the commutative

limit θ → 0. The explicit form of the positive Wightman function in this uniformly

accelerating trajectory (Eq.(4.65)) is given as

G+(τ − τ ′) =
(A

2

)2+dθ N(dθ)(
sinh2 A(τ−τ ′)

2

)(2+dθ)/2
− θ4

2λ2

(A
2

)4+dθ N(dθ)(2 + dθ)(
sinh2 A(τ−τ ′)

2 + A2θ2

4

)(4+dθ)/2
.

(4.66)

In the above expression, i.e., Eq.(4.66), we find that the positive Wightman function in

terms of the uniformly accelerating coordinates contain θ dependent correction terms.

These correction terms are not unique, as it changes with the choice of the weight

function. From Eq.(4.66), we get the commutative result in the limit θ = 0 and dθ → 0.

The transition probability rate is defined using Eq.(4.61) as

T (∆E) =
d
∣∣Mi→f

∣∣2
dτ0

=
∑
E

∣∣∣ 〈E|m(0) |E0〉
∣∣∣2dF(∆E)

dτ0
. (4.67)

By calculating dF(∆E)
dτ0

(where τ0 = τ − τ ′) using the response function defined in

Eq.(4.62) and simplifying it, we obtain the rate of transition probability as

T (∆E) =
∑
E

∣∣∣ 〈E|m(0) |E0〉
∣∣∣2 ∫ ∞
−∞

dτ e−i∆EτG+(τ). (4.68)

Substituting the explicit form of the positive Wightman function, i.e., Eq.(4.66), in

Eq.(4.68), we get the rate of transition probability in DFR space-time as

T (∆E) =
∑
E

∣∣∣ 〈E|m(0) |E0〉
∣∣∣2(A

2

)2+dθ
N(dθ)

∫ ∞
−∞

dτ
e−i∆Eτ(

sinh2 Aτ
2

)(2+dθ)/2
−

∑
E

∣∣∣ 〈E|m(0) |E0〉
∣∣∣2 θ4

2λ2

(A
2

)4+dθ
N(dθ)(2 + dθ)

∫ ∞
−∞

dτ
e−i∆Eτ(

sinh2 Aτ
2 + A2θ2

4

)(4+dθ)/2
.

(4.69)

By solving the integrals (using [33]) and after doing some simplifications, we obtain the

explicit form of the transition probability rate in (1 + 3 + dθ) DFR space-time as

T (∆E) =
∑
E

∣∣∣ 〈E|m(0) |E0〉
∣∣∣2(ξ(dθ)

0 − (Aθ)4

32λ2
ξ

(dθ)
1

)
1

e2π∆E/A + (−1)dθ+1
, (4.70)
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where,

ξ
(dθ)
0 (∆E,A) =

Γ
(
dθ+2

2

)
A(1+dθ)

2π(2+dθ)/2



dθ/2∏
k=0

(
k2 +

(∆E)2

A2

)
A

∆E
, if dθ is even

(dθ−1)/2∏
k=0

(
(2k + 1)2

4
+

(∆E)2

A2

)
, if dθ is odd

(4.71)

and

ξ
(dθ)
1 (∆E,A, θ) =

2(4+dθ)πeπ∆E/A

Γ(4 + dθ)A

(
A2θ2

2 − 1 +Aθ
√

A2θ2

4 − 1

)i∆E/A
(
A2θ2

2 − 1−Aθ
√

A2θ2

4 − 1

)(4+dθ)/2
×

2F1

(
4 + dθ

2
;
i∆E

A
+

4 + dθ
2

; 4 + dθ; 1− e(4+dθ)/2(
A2θ2

2 − 1 +Aθ
√

A2θ2

4 − 1
))×



dθ∏
k=1

(
k2 +

(∆E)2

A2

)
, if dθ is even

dθ∏
k=1

(
(2k − 1)2

4
+

(∆E)2

A2

)
, if dθ is odd

(4.72)

In Eq.(4.70), we see that the transition rate has θ dependent term and the distribution

function, (e2π∆E/A + (−1)dθ+1)−1 is same as that in the commutative situation. For

dθ = 1, we obtain the explicit form of the transition probability rate as

T (∆E) =
∑
E

∣∣∣ 〈E|m(0) |E0〉
∣∣∣2A2

4π

(1

4
+

(∆E)2

A2

)
[

1− Aθ4π2eπ∆E/A

6λ2

(
A2θ2

2 − 1 +Aθ
√

A2θ2

4 − 1

)i∆E/A
(
A2θ2

2 − 1−Aθ
√

A2θ2

4 − 1

)5/2
×

2F1

(
5

2
;
i∆E

A
+

5

2
; 5; 1− e5/2(

A2θ2

2 − 1 +Aθ
√

A2θ2

4 − 1
))] 1

e2π∆E/A + 1
.

(4.73)

From Eq.(4.73), we see that T (∆E) gets a Fermi-Dirac (FD) distribution factor, for dθ =

1 (odd-dimensional DFR space-time, i.e., total space-time dimension is (1+3)+1=5).
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Similarly, for dθ = 2, we get the explicit form of the transition probability rate as

T (∆E) =
∑
E

∣∣∣ 〈E|m(0) |E0〉
∣∣∣2 A2

2π2

(
1 +

(∆E)2

A2

)
×

[
∆E − Aθ4π2eπ∆E/A

30λ2

(
A2θ2

2 − 1 +Aθ
√

A2θ2

4 − 1

)i∆E/A
(
A2θ2

2 − 1−Aθ
√

A2θ2

4 − 1

)3 ×

(
4 +

(∆E)2

A2

)
2F1

(
3;
i∆E

A
+ 3; 6; 1− e3(

A2θ2

2 − 1 +Aθ
√

A2θ2

4 − 1
))] 1

e2π∆E/A − 1
.

(4.74)

Here T (∆E) gets a Bose-Einstein (BE) distribution factor for dθ = 2 (even-dimensional

DFR space-time, i.e., total space-time dimension is (1+3)+2=6). Thus we conclude that

the transition probability rate has a BE distribution when the DFR space-time is even

dimensional and has a FD distribution when the DFR space-time is odd dimensional.

Thus these results are in terms with the results in the commutative space-time [21, 22].

The non-commutative correction terms of the transition probability rate depend on the

choice of the weight function. We get the commutative results from Eq.(4.70), by setting

θ = 0 and dθ = 0.

From Eq.(4.70), we see that the temperature, T = 2π
A (Unruh temperature) associated

with the thermal distribution of the transition probability rate is exactly the same as

that in the commutative case. Similar results were also obtained in the κ-Minkowski

space-time [24, 25].

4.6 Conclusion

The Lagrangian for the scalar theory in non-commutative space-time (particularly DFR

space-time) is not unique. But the equation of motion constructed from the quadratic

Casimir is unique. Thus it is imperative to study the quantisation of field theory in non-

commutative space-time from its equation of motion rather than Lagrangian. In this

chapter, we have quantised the DFRA scalar field from its equation of motion alone.

We have generalised the quantisation procedure [14, 15], discussed in chapter 2, to DFR

space-time and derived the deformed commutation relation between the DFRA scalar

field and its time-derivative (at equal-times), valid to all orders in the non-commutative

parameter, by considering the usual form for the DFRA oscillator algebra. We have

shown that the requirement of the commutation relation between the DFRA scalar

field and its time derivative being undeformed gives rise to a deformed DFRA oscillator
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algebra. Furthermore, the first non-vanishing correction terms of this deformed oscillator

algebra depends on the non-commutative parameter as 1/λ4. It is shown that our results

are in agreement with that obtained in [6] when the weight function reduces to unity,

where the commutation relation between the DFRA scalar field and its conjugate is

undeformed. Deformed oscillator algebras have also been shown to occur in the κ-

deformed space-time by quantising the κ-scalar field [31] and κ-Dirac field [32], from

their equations of motion. Therefore we find that the deformed oscillator is a generic

feature associated with the non-commutative field theories.

We have obtained the energy-momentum tensor as well as the Lorentz generator of the

DFRA scalar field, by deriving the conserved currents associated with the translation

and Lorentz symmetry of the scalar field, in DFR space-time. We observe that Tθiµ

components of the energy-momentum tensor are asymmetric, in its indices, due to the θ

dependent weight function. Similar asymmetric energy-momentum tensor for the scalar

field has also been obtained in Moyal [34] and κ-Minkowski (see chapter 2) space-times.

We have derived the non-commutative correction to the Unruh effect by examining

the interaction between the uniformly accelerating monopole detector and the massless

DFRA scalar field. We find that the transition probability rate picks up an extra non-

commutative parameter dependent multiplication factor. The thermal distribution fac-

tor in the transition probability rate is found to be either Bose-Einstein or Fermi-Dirac,

depending on whether the dimension of the (extra spatial non-commutative coordinate

θ of the) DFR space-time is even or odd. We also show that the non-commutativity of

the DFR space-time does not modify the temperature of the thermal distribution.
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Chapter 5

Superdense star in κ-space-time

5.1 Introduction

Superdense stars contain tightly bound matter concentrated over a small region of space.

It has a central density of about ∼ 1016 kg/m3 and radius of about ∼ 104m [1, 2]. The

gravitational force near the superdense star is very high, but it does not create an event

horizon. Thus it provides an ideal laboratory to test models to study the effects of

high gravitational field. The non-commutativity is expected to modify the space-time

structure when the gravitational field is very strong and thus it is natural to study effects

of non-commutativity on superdense star. In this chapter, we analyse superdense star

in κ-deformed space-time.

For a stable star, the attractive gravitational pull towards its massive core is balanced

by the outward pressure produced by nuclear fusion. When this fusion ceases, the

outward pressure drops and the massive star undergo a gravitational collapse, producing

a supernova explosion. The remnants of this supernova explosion contain superdense

matter whose matter density is comparable to the nuclear density. This superdense

matter then gets cooled and finally attain a neutron rich equilibrium state and this

results in the formation of a superdense star [1, 2]. White dwarfs [3] and neutron stars

[4] are some typical examples for the superdense stars.

The physical structure of these compact stars is studied using their equations of state.

These equations of state are obtained by solving Einstein’s equation, which is constructed

from the spherically symmetric metric and the energy-momentum tensor of the matter

content shich is modelled as that of the perfect fluid distribution. When the matter

density of the compact star is greater than or comparable to the nuclear density, it

becomes difficult to describe the dynamics of such compact stars from a single equation
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of state. In such situations, one studies compact stars using an approach known as

the core-envelope model [5, 6]. The core-envelope model assumes a compact star to be

composed of two regions - a central core and a surrounding envelope.

It has been shown in [7, 8] that the superdense stars have an anisotropic fluid distribu-

tion; as a result, the pressure exerted by the fluid in the radial and tangential directions

is not uniform. This anisotropy in the pressure can happen due to various reasons like

the presence of superfluids [9], phase transition [10], pion condensation [11], etc. Differ-

ent implications of the anisotropy associated with compact stars have been studied in

recent times. The anisotropic pressure has been shown to have significant effects on the

mass to radius ratio and surface redshift of the relativistic, spherically symmetric stars

[12–14]. Studies on the influence of anisotropy on the adiabatic contraction of certain

spherically symmetric, non-static compact stars has been shown that the anisotropic

compact stars are more stable than the isotropic ones [15]. Variety of relativistic stars

have been studied using the anisotropic core-envelope model [16–24].

The density (ρ) and pressures (core pressure p, radial pressure pr and tangential pressure

pt), obtained from the solutions of the Einstein’s equation, of the core-envelope models,

are physically acceptable if they satisfy the following requirements [5, 6]

(i) The density and (isotropic or anisotropic) pressures should be positive quantities

throughout the star, i.e., ρ > 0, p > 0, pr > 0, pt > 0.

(ii) The density and pressures should decrease monotonically from a maximum value

at the centre to a minimum value on the outer boundary of the star, i.e., dρ
dr <

0, dp
dr < 0, dpr

dr < 0, dpt
dr < 0.

(iii) The speed of the sound1 inside the superdense star should be less than the speed

of light, i.e., dp
dρ < 1, dpr

dρ < 1, dpt
dρ < 1.

We will generalise the above three conditions to the κ space-time and check whether the

solutions to the superdense star in κ-deformed space-time are physically acceptable or

not.

Recently, several studies to analyse the effects of the κ-deformed non-commutativity in

cosmological objects have been reported. In [25], κ-deformed Schwarzschild metric has

been constructed and this has further been used to derive κ-deformed corrections to

the Hawking radiation, using the method of Bogoliubov coefficients. Compact stars in

κ-deformed space-time have been investigated by deriving the κ-deformed degenerate

1The speed of sound associated with a medium is defined as the variation of pressure with respect to
the variation of density in that medium
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pressure from the partition function and also from the generalised uncertainty principle

[26]. κ-deformed corrections to the entropy of the BTZ black hole have been calculated

using the brick wall method as well as using the quasinormal mode frequency of the

κ-scalar field (in the background of BTZ black hole) [27, 28].

In this chapter, we consider a superdense star in the κ-deformed space-time whose inner

core is assumed to have an isotropic pressure distribution and an anisotropic pressure

distribution in the outer envelope. We construct the κ-deformed Einstein’s equation by

replacing the quantities in the commutative Einstein’s equation with the κ-deformed

ones. We then derive the κ-deformed equations of state for the superdense star by

solving deformed Einstein’s equation, valid up to first order in a. We show that the κ-

deformation enhances the density of the superdense star in κ-background. The core and

envelope pressures also pick κ-deformed correction terms. We also show that deformed

density and pressures satisfy the (above three) requirements of the physically acceptable

solutions. We also obtain a bound on the κ-deformation parameter from the κ-deformed

law of density variation and from the positivity condition on the deformed tangential

pressure. We also calculate the κ-deformed redshift by using the compactness factor,

which is defined as the ratio of the mass to the radius.

The organisation of this chapter is as follows. In section 5.2, we give a brief summary

of superdense star. One starts with the 4-dimensional flat space metric to which a

3-spheroid space is embedded. This metric is parameterised by defining two geometric

parameters, which play a crucial role in developing the core-envelope model for the super-

dense star and obtain the static, spherically symmetric metric. Then one constructs the

energy-momentum tensor for superdense matter distribution by considering it as a per-

fect fluid with an additional anisotropic term. Using this metric and energy-momentum

tensor, the Einstein’s field equation describing superdense stars is derived. In section

5.3, we derive the κ-deformed metric corresponding to the superdense star, from the gen-

eralised commutation relation between the κ-deformed phase-space coordinates. Next,

we construct the κ-deformed energy-momentum tensor. Using this and the deformed

metric, we formulate the κ-deformed Einstein’s field equation. In subsection 5.3.1, we

derive the κ-deformed law of density variation, valid up to first order in a, by solving the

temporal component of the deformed Einstein’s equation. From this κ-deformed law of

density variation, we also obtain a bound on the κ-deformation parameter. In section

5.4, we solve the deformed Einstein’s field equation, explicitly in the isotropic core and

the anisotropic envelope, separately, valid up to first order in a. In subsection 5.4.1, we

derive the κ-deformed isotropic pressure in the core. In subsection 5.4.2, we derive the

expression for the κ-deformed radial as well as tangential pressures in the envelope. We

also derive a bound on the deformation parameter from the positivity condition on the

deformed tangential pressure. In subsection 5.4.3, we discuss the boundary conditions
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associated with the κ-deformed metric and calculate the surface redshift by using the

expression for compactness factor. Finally, in section 5.5, we present our results and

concluding remarks.

5.2 Static spherically symmetric metric

In this subsection, we briefly summarise the derivation of the metric appropriate for

representing superdense stars. We also discuss the construction of energy-momentum

tensor for the same. This will enable one to write down Einstein’s field equations for

the superdense star, which is used for obtaining the equations of state.

We begin the discussion with the expression for the line element in the 4-dimensional

Euclidean flat space.

dσ2 = dx2 + dy2 + dz2 + dw2. (5.1)

Now we consider a 3-spheroid whose equation is given in terms of the coordinates

(x, y, z, w) as [29, 30]
x2 + y2 + z2

R2
+
w2

b2
= 1, (5.2)

where R and b are the semi-major and semi-minor axes associated with the 3-spheroid.

The coordinates of this 3-spheroid are parametrised as [29, 30]

x = R sinψ sin θ cosφ,

y = R sinψ sin θ sinφ,

z = R sinψ cos θ,

w = b cosψ,

(5.3)

where 0 ≤ ψ ≤ π and 0 ≤ φ < 2π. Substituting this parametrisation, i.e., Eq.(5.3), in

Eq.(5.1), the line element becomes

dσ2 =
(
R2 cos2 ψ + b2 sin2 ψ

)
dψ2 +R2 sin2 ψ

(
dθ2 + sin2 θdφ2

)
. (5.4)

It is to be noted that R and b are geometric parameters having the dimension of length.

We re-express Eq.(5.4) using the transformation given by [21]

r = R sinψ and K = 1 +
b2

R2
. (5.5)

Here K represents another geometric parameter, which is dimensionless, such that K ≥
1. Using the transformation in Eq.(5.5), we re-write the line element given in Eq.(5.4),
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as

dσ2 =

(
1 +K r2

R2

)
(

1 + r2

R2

) dr2 + r2
(
dθ2 + sin2 θdφ2

)
. (5.6)

From Eq.(5.6), we find thatK = 1 corresponds to the case of 3-dim spherically symmetric

metric. After obtaining this metric, we next define the 4-dimensional space-time metric

as,

ds2 = ef(r)dt2 − dσ2. (5.7)

The function f(r) in the above is a spherically symmetric function that depends only on

the radial distance r. We use the spherical coordinates to write the spatial components

of the 4-dimensional space-time metric. Substituting Eq.(5.6) in Eq.(5.7), we get the

4-dimension space-time line element as [21]

ds2 = ef(r)dt2 − eλ(r)dr2 − r2(dθ2 + sin2 θdφ2), (5.8)

where eλ(r) is defined as

eλ(r) =
1 +K r2

R2

1 + r2

R2

. (5.9)

From the line element given in Eq.(5.8), we obtain the non-vanishing components of

corresponding metric, gµν , as

g00(x) = ef(r), g11(x) = −
1 +K r2

R2

1 + r2

R2

, g22(x) = −r2, g33(x) = −r2 sin2 θ. (5.10)

We will use Eq.(5.10) to construct the non-commutative metric for studying the super-

dense star in κ-space-time.

The superdense matter distribution can be modelled in different ways [16–24]. Here

we study the superdense matter distribution using the core-envelope model. Many

compact objects, like neutron stars, white dwarfs etc, have been studied extensively

using the core-envelope model [5, 6]. In this study, we assume the inner core to have an

isotropic fluid distribution and the outer envelope to have anisotropic fluid distribution.

Thus we express the energy-momentum tensor for the superdense star, using the energy-

momentum tensor corresponding to the perfect fluid distribution, as [21, 29, 30]

Tµν = (ρ+ p)uµuν − pgµν + Πµν . (5.11)

Here ρ is the density, uµ is the unit 4-velocity of fluid distribution and p is the pressure

of superdense matter and Πµν characterises the anisotropy. We assume that superdense

stars possess spherical symmetry and therefore, the dynamical quantities have an explicit

dependence on the radial distance r alone.
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The anisotropy of the perfect fluid distribution is represented using the tensor Πµν (note

that Πµν = 0 for isotropic fluid distribution and therefore Πµν = 0 inside the core). Πµν

is defined as

Πµν =
√

3S(r)

[
CµCν −

1

3
(uµuν − gµν)

]
(5.12)

In the above definition, S(r) denotes the magnitude of the anisotropic stress parameter

(which vanishes for an isotropic fluid distribution) and Cµ denotes the unit radial vector.

We choose uµ = (ef(r)/2, 0, 0, 0) and Cµ = (0, eλ(r)/2, 0, 0), satisfying the conditions

uµuνg
µν = 1, CµCνg

µν = −1 and uµCνg
µν = 0.

The superdense matter has uniform pressure (due to isotropy) throughout the core.

However the situation inside the envelope is different. Inside the envelope, radial and

tangential pressures are different due to the anisotropy. The anisotropic stress parameter

S is defined using the radial pressure pr and tangential pressure pt as

S(r) =
pr(r)− pt(r)√

3
. (5.13)

Thus now we define the radial as well as tangential pressures in terms of the core pressure

p(r) and anisotropic stress parameter S(r) as

pr(r) = p(r) +
2S(r)√

3
(5.14)

and

pt(r) = p(r)− S(r)√
3
, (5.15)

respectively. From above relation we clearly see that for an isotropic fluid distribution

(note S(r) = 0 inside the core), radial and tangential pressures are equal, i.e., pr = pt.

Einstein’s equation is given (in natural units) as

Gµν = 8πTµν , (5.16)

where Gµν is Einstein’s tensor and it is defined as

Gµν = Rµν −
1

2
Rgµν . (5.17)

In the above expression, Rµν and R represent Ricci tensor and Ricci scalar, respectively.

Thus by evaluating Rµν as well as R from the metric given in Eq.(5.8) and using the

energy-momentum tensor given in Eq.(5.11), one writes down the Einstein’s equations

explicitly. The solution to these equations give the relation between various quantities

of interest relevant for the superdense star.
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5.3 κ-deformed Einstein field equations

In this section, we first construct the metric in the κ-deformed space-time using the

generalised commutation relation between the κ-deformed phase-space coordinates [25].

We then formulate the κ-deformed version of the energy-momentum tensor, defined in

Eq.(5.11), suitable for studying the non-commutative superdense star. Einstein’s field

equation is generalised to the κ-deformed space-time by promoting the commutative

quantities (such as energy-momentum tensor, space-time metric, Ricci tensor and Ricci

scalar) to the corresponding κ-deformed quantities. We then obtain the solution cor-

responding to the κ-deformed Einstein’s equations, valid up to the first order in the

deformation parameter a. Following this, we derive the κ-deformed law of density vari-

ation for the superdense star and obtain a bound on the κ deformation parameter from

this.

The generalised commutation relation for the κ-deformed phase space coordinates is

[25, 31],

[x̂µ, P̂ν ] = iĝµν , (5.18)

where ĝµν is the κ-deformed metric and it is a function of the κ-deformed space-time

coordinate x̂µ.

We choose a specific realisation for the κ-deformed phase-space coordinates as [25],

x̂µ = xαϕ
α
µ, P̂µ = gαβ(ŷ)kβϕαµ, (5.19)

where P̂µ is the κ-deformed generalised momenta and kµ is the conjugate momenta

corresponding to the commutative coordinate xµ. In the commutative limit, i.e., a→ 0,

we obtain x̂µ → xµ and P̂µ → kµ.

Note that we have introduced another set of κ-deformed space-time coordinates ŷµ in

Eq.(5.19). This ŷµ is assumed to commute with x̂µ, i.e., [ŷµ, x̂ν ] = 0. These new coor-

dinates are introduced only for calculational simplification [25]. The gαβ(ŷ) appearing

in Eq.(5.19) has same functional form as the metric in the commutative coordinate, but

xµ replaced with non-commutative coordinate ŷµ.

Substituting Eq.(5.19) in the κ-deformed space-time commutation relation, i.e., [x̂0, x̂i] =

iax̂i, [x̂i, x̂j ] = 0, we find a particular realisation for ϕαµ as

ϕ0
0 = 1, ϕ0

i = 0, ϕi0 = 0, ϕij = δije
−ak0 . (5.20)

The coordinates ŷµ are also assumed to satisfy the κ-deformed space-time commutation

relation as [ŷ0, ŷi] = iaŷi, [ŷi, ŷj ] = 0. We now express ŷµ in terms of the commutative
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coordinate and its conjugate momenta as

ŷµ = xαφ
α
µ. (5.21)

Using [ŷ0, ŷi] = iaŷi, [ŷi, ŷj ] = 0 and [x̂µ, ŷν ] = 0, one obtains φαµ as (see [25, 31] for

details)

φ0
0 = 1, φ0

i = −aki, φi0 = 0, φji = δji . (5.22)

Thus the explicit form of ŷµ are

ŷ0 = x0 − axjkj , ŷi = xi. (5.23)

Using the above in Eq.(5.19) and substituting x̂µ and P̂µ in Eq.(5.18), the κ-deformed

metric is obtained as [25]

[x̂µ, P̂ν ] ≡ iĝµν = igαβ(ŷ)
(
kβ
∂ϕαν
∂kσ

ϕσµ + ϕαµϕ
β
ν

)
. (5.24)

Note that gµν(ŷ) in the above can be obtained by replacing the commutative coordinates

with the κ-deformed coordinates in the commutative metric given in Eq.(5.10).

Substituting Eq.(5.20) in Eq.(5.24), we find the RHS of Eq.(5.24), valid up to first order

in a as

[x̂0, P̂0] = ig00(ŷ),

[x̂0, P̂i] = ig0i(ŷ)
(
1− 2ak0

)
− agik(ŷ)kk,

[x̂i, P̂0] = igi0(ŷ)
(
1− ak0

)
,

[x̂i, P̂j ] = igij(ŷ)
(
1− 2ak0

)
.

(5.25)

Thus we get the explicit form of the components of ĝµν as

ĝ00 = g00(ŷ),

ĝ0i = g0i(ŷ)
(
1− 2ak0

)
− agim(ŷ)km,

ĝi0 = gi0(ŷ)
(
1− ak0

)
,

ĝij = gij(ŷ)
(
1− 2ak0

)
.

(5.26)

The line element in κ-deformed space-time is now defined by replacing the commutative

metric as well as the differential of the space-time coordinates with their κ-deformed

versions [25], i.e.,

dŝ2 = ĝµνdx̂
µdx̂ν . (5.27)
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Thus the explicit form of the κ-deformed line element, valid up to first order in a, is

given by

dŝ2 = g00(ŷ)dx0dx0 +
(
g0i(ŷ)

(
1− 3ak0

)
− agim(ŷ)km

)
dx0dxi

+ gi0(ŷ)
(
1− 2ak0

)
dxidx0 + gij(ŷ)

(
1− 4ak0

)
dxidxj .

(5.28)

From Eq.(5.23), we see that gµν(ŷi) = gµν(xi). Since the cross terms involving time

and space indices of the metric tensor given in Eq.(5.8) are zero (i.e., g0i = 0), the

κ-deformed metric given in Eq.(5.28) becomes 2

dŝ2 = g00(ŷ)dx0dx0 + gij(ŷ)
(
1− 4ak0

)
dxidxj . (5.29)

From Eq.(5.8) and Eq.(5.23), we read off the metric components g00(ŷ) and gij(ŷ),

respectively. Using this in Eq.(5.29), we obtain κ-deformed space-time metric corre-

sponding to the superdense star as

dŝ2 = ef(r)dt2 −
(
eλ(r)dr2 + r2(dθ2 + sin2 θdφ2)

)(
1− 4ak0

)
. (5.30)

From the above equation, we note that the κ-deformed metric continues to be spherically

symmetric. Here we observe that only the spatial components of the space-time metric

get modified under the κ-deformation and this change is through an overall multiplica-

tion factor of (1 − 4ak0). In the limit a → 0, we recover the commutative line element

given in Eq.(5.8).

Now we write the expression for the κ-deformed energy-momentum tensor, by promoting

the commutative quantities, present in Eq.(5.11), to their κ-deformed versions. Thus we

get

T̂µν = (ρ̂+ p̂)ûµûν − p̂ĝµν + Π̂µν , (5.31)

where the κ-deformed unit 4-velocity is defined as ûµ = uαϕ
α
µ and the κ-deformed unit

radial vector is defined as Ĉµ = Cαϕ
α
µ (see Eq.(5.12)). Using the realisation given in

Eq.(5.20), we get ûµ = (ef(r)/2, 0, 0, 0) and Ĉµ = (0, eλ(r)/2(1 − ak0), 0, 0). Substituting

these quantities, Ĉµ and ûµ in Eq.(5.31), we find the components of the κ-deformed

2Since κ-deformed space-time is rotational invariant, the κ-deformed metric is taken to be symmetric
in its indices.
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energy-momentum tensor, valid up to first order in a, as

T̂00 = ρ̂ef(r),

T̂11 =
(
p̂
(
1− 2ak0

)
+

2Ŝ√
3

(
1− ak0

))
eλ(r),

T̂22 =
(
p̂− Ŝ√

3

)
r2
(
1− 2ak0

)
,

T̂33 =
(
p̂− Ŝ√

3

)
r2 sin2 θ

(
1− 2ak0

)
.

(5.32)

Next, we write down the κ-deformed Einstein’s tensor by replacing the commutative

quantities present in Eq.(5.17) with their κ-deformed counterparts. Therefore the ex-

plicit form of the κ-deformed Einstein’s tensor is given as

Ĝµν = R̂µν −
1

2
R̂ĝµν . (5.33)

Note that in the above equation, R̂µν and R̂ represent the κ-deformed Ricci tensor and

Ricci scalar, respectively. The non-vanishing components of the κ-deformed Ricci tensor

and κ-deformed Ricci scalar are calculated explicitly using the κ-deformed metric given

in Eq.(5.30) and they are

R̂00 =

(
5R2f ′2(r) + 2R2rf ′′(r) +Kr3f ′2(r) + r3f ′2(r)

)
R2ef(r)(1 + 2ak0)

4r(R4 + 2R2Kr2 +K2r4)
+(

6R2r2f ′(r) +Kr5f ′2(r) + 2R2Kr3f ′′(r) + 2R2r3f ′′(r)
)
ef(r)(1 + 2ak0)

4r(R4 + 2R2Kr2 +K2r4)
+(

2Kr5f ′′(r) + 2R2Kr2f ′(r) + 4Kr4f ′(r)
)
ef(r)(1 + 2ak0)

4r(R4 + 2R2Kr2 +K2r4)

(5.34)

R̂11 =
2R2r(R2 + r2)(K − 1)f ′(r)− (R2 +Kr2)(R4 + 2R2r2 + r4)f ′2(r)

4(R2 +Kr2)(R4 + 2R2r2 + r4)
+

8R2(R2 + r2)(K − 1)− 2(R2 +Kr2)(R4 + 2R2r2 + r4)f ′′(r)

4(R2 +Kr2)(R4 + 2R2r2 + r4)
,

(5.35)

R̂22 =
−rR2

(
R2f(r) +Kr2f(r)− 4Kr + r2f ′(r)

)
− r2

(
4R2 − 2K2r2 +Kr3f ′(r) + 2Kr2

)
2R4 + 4R2Kr2 + 2K2r4

,

R̂33 = R̂22 sin2 θ,

(5.36)
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R̂ =

(
5R2f ′2(r) + 2R2rf ′′(r) +Kr3f ′2(r) + r3f ′2(r) + 10r2f ′(r) + 2Kr3f ′′(r)

)
R2(1 + 2ak0)

4r(R4 + 2R2Kr2 +K2r4)
+(

Kr5f ′2(r) + 2R2r3f ′′(r) + 2Kr5f ′′(r) + 2R2Kr2f ′(r) + 12Kr4f ′(r)
)

(1 + 2ak0)

4r(R4 + 2R2Kr2 +K2r4)
−(

2R2r(R2 + r2)2(K − 1)f ′(r)− (R2 +Kr2)(R2 + r2)(R4 + 2R2r2 + r4)f ′2(r)
)

(1 + 2ak0)

4(R2 +Kr2)2(R4 + 2R2r2 + r4)
−(

8R2(R2 + r2)2(K − 1)− 2(R2 +Kr2)(R2 + r2)(R4 + 2R2r2 + r4)f ′′(r)
)

(1 + 2ak0)

4(R2 +Kr2)2(R4 + 2R2r2 + r4)
+(

R2f(R2 +Kr2)− 2r2(K − 1)(4R2 +K)
)

(1 + 2ak0)

r
(

2R4 + 4R2Kr2 + 2K2r4
)

(5.37)

In above equations, K is a dimensionless parameter whose values are bounded as K ≥ 1

(see Eq.(5.5)).

Next, we determine the components of κ-deformed Einstein’s tensor using above R̂µν

and R̂ in Eq.(5.33) and obtain

Ĝ00 =

(
3KR2 − 3R2 +K2r2 −Kr2

)
ef(r)(1− 2ak0)

R4 + 2KR2r2 +K2r4
,

Ĝ11 =
f ′(r)R2 −Kr + r2f ′(r) + r

r(R2 + r2)
,

Ĝ22 =

r

(
R4rf ′2(r) + 2r4f ′′(r) + 2R4f ′(r) +R2Kr3f2(r) +R2r3f ′2(r) + 2R2r3f ′′(r)

)
4(R4 + 2R2Kr2 +K2r4)

+

r

(
4R2r2f ′(r) + 4R2r2R2Kr3f ′′(r)− 4R2Kr +Kr5f ′2(r) + 2Kr4f ′(r)

)
4(R4 + 2R2Kr2 +K2r4)

,

Ĝ33 = sin2 θĜ22.

(5.38)

From the above equation, we find that only the temporal component of Einstein’s ten-

sor gets modified under the κ-deformation, whereas the spatial components remain un-

changed. Also, the modification of Ĝ00 is by an overall multiplication factor of (1−2ak0).

In the κ-space-time, the Einstein field equation, given in Eq.(5.16) takes the form

Ĝµν = 8πT̂µν . (5.39)

The explicit form of the κ-deformed Einstein’s field equations are obtained by substi-

tuting the components of the deformed Einstein’s tensor, i.e., Eq.(5.38) and deformed

energy-momentum tensor, i.e., Eq.(5.32) in Eq.(5.39). From this, we obtain the three
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κ-deformed equations, valid up to first order in a, as

8πρ̂
(

1− 2ak0
)

=
(K − 1)

(
3 +K r2

R2

)
R2
(

1 +K r2

R2

) , (5.40)

8π
(
p̂r − 2ak0 − 2Ŝ√

3
ak0
)

=

(
1 + r2

R2

)
f ′(r)
r −

(K−1)
R2

1 +K r2

R2

, (5.41)

8πŜ
√

3
(

1− ak0
)

=
r(K − 1)

R2

(
1

r
+
f ′(r)

2

)(
1 +K

r2

R2

)−2

− (K − 1)

R2

(
1 +K

r2

R2

)−1

−
(
f ′′(r)

2
+
f ′2(r)

4
− f ′(r)

2r

)(
1 +

r2

R2

)(
1 +K

r2

R2

)−1

.

(5.42)

Note that all these equations given above are modified under the κ-deformation. These

correction terms appear due to the contributions from Ĝ00 and T̂µν components, respec-

tively.

5.3.1 κ-deformed law of density variation

In this subsection, we derive the law of density variation for the superdense star in κ-

deformed space-time, valid up to first order in a, from the κ-deformed Einstein’s equation

given in Eq.(5.40).

According to the law of density variation [30], the density of the superdense star should

be a positive quantity and its value should decrease monotonically from a maximum

value at the centre to a minimum value on the outer boundary. We will check the

validity of this condition in the κ-deformed space-time.

We obtain the expression for the density of superdense star in κ-space-time, by bringing

the (1− 2ak0) term of Eq.(5.40) to the right-hand side and keeping the terms valid up

to first order in a. Thus the density of the superdense star in κ space-time becomes

ρ̂ =
(K − 1)

(
3 +K r2

R2

)
8πR2

(
1 +K r2

R2

)2

(
1 + 2ak0

)
. (5.43)

Under the κ-deformation, density (of the super-dense star) gets modified by an over-

all multiplication factor (1 + 2ak0). The K in the above equation is a dimensionless

parameter. Thus we find that the non-commutative correction enhances the density of

the super-dense star (if a > 0, K > 1). The commutative expression for the density is

recovered in the limit a→ 0.
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The density of the superdense star has to be a positive quantity. In the κ-deformed

setting, we need to choose K > 1 and ak0 > −0.50 for the ρ̂ to be a positive quantity.

If we choose k0 as Planck energy (i.e, k0 ≈ 1019 GeV), we obtain a lower bound on the

deformation parameter (in SI units) as |a| ≥ 10−36m.

From the expression for the density of the superdense star in κ-deformed space-time given

in Eq.(5.43), we obtain the explicit form of the central density (denoted by ρ̂0 = ρ̂(r = 0))

of the superdense star in κ-deformed space-time to be

ρ̂0 =
3(K − 1)

8πR2

(
1 + 2ak0

)
. (5.44)

Similarly we obtain the expression for the density (of super-dense star in κ-deformed

space-time) at the boundary, r = r2 (i.e., at outer boundary of the envelope) as,

ρ̂(r2) =
(K − 1)

(
3 +K

r22
R2

)
8πR2

(
1 +K

r22
R2

)2

(
1 + 2ak0

)
. (5.45)

The expression for the κ-deformed density gradient is calculated from Eq.(5.43), by

taking the derivative of ρ̂(r) with respect to r and we get

dρ̂

dr
=
−2K(K − 1)r

8πR4

(
5 +K r2

R2

)(
1 +K r2

R2

)3(1 + 2ak0
)
. (5.46)

By inspecting the above equation, we find that the density gradient in the κ space-time

decreases monotonically throughout the super-dense star if the conditions K > 1 and

ak0 > −0.50 are maintained. Thus we observe that as r increases, ρ̂ decreases from a

maximum value ρ̂0 at the centre to a minimum value ρ̂(r2) on the boundary and this has

been shown graphically in Fig.(5.1). This behaviour is exactly similar to the behaviour

of the density in the commutative case and therefore, we can say that the general form

of the law of density variation is preserved in the κ-deformed space-time.

Note that from now onwards, we will use a particular choice of the geometric parameter

K = 2 for the simplification in the remaining calculations. For K = 2, Eq.(5.43),

Eq.(5.44) and Eq.(5.46) become

ρ̂ =
(3 + 2 r2

R2

)
8πR2

(
1 + 2 r2

R2

)(1 + 2ak0
)
, (5.47)

ρ̂0 =
3

8πR2

(
1 + 2ak0

)
, (5.48)

dρ̂

dr
=
−r

2πR4

(
5 + 2 r2

R2

)(
1 + 2 r2

R2

)3(1 + 2ak0
)
. (5.49)
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Figure 5.1: Variation of ρ̂ against r2

R2 throughout the star (0 ≤ r2

R2 ≤ 3.8)

5.4 Superdense star

In this section, we analyse the superdense star in a space-time with a minimal length

(introduced through non-commutativity). We use the results of previous sections in

setting up the equations of state relevant to handle this scenario. We use the core-

envelope model, generalised to κ-deformed space-time to study the superdense star in the

non-commutative setting. Thus we first set up the κ-deformed Einstein field equations

for the isotropic core. This is followed by the same analysis for the anisotropic envelope.

5.4.1 Isotropic Core

In this subsection, we begin our analysis with κ-deformed Einstein’s field equations for

the isotropic core and then solve these equations, valid up to first order in a. These

solutions will give the expression for the κ-deformed pressure (valid up to first order

in a) inside the isotropic core of the super-dense star. We then derive the κ-deformed

strong energy condition inside the isotropic core using the expression for the density and

isotropic core pressure in κ space-time.

The isotropic core of the super-dense star is in the region 0 ≤ r ≤ r1. This core possess

an isotropic fluid distribution and hence the anisotropic stress parameter in Eq.(5.31)

vanishes, i.e., S(r) = 0. As a result, the radial as well as tangential pressures become

equal inside the core. For the choice K = 2, κ-deformed Einstein’s equation given in

Eq.(5.42) becomes

r

R2

(
1

r
+
f ′(r)

2

)(
1 + 2

r2

R2

)−1

− 1

R2
−
(
f ′′(r)

2
+
f ′2(r)

4
− f ′(r)

2r

)
= 0. (5.50)
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Now we re-express the above equation in a simpler form by choosing z =
√

1 + r2

R2 and

F (r) = ef(r)/2. Using these Eq.(5.50) becomes

(2z2 − 1)
d2F

dz2
+ 2z

dF

dz
− 2F = 0. (5.51)

Solution to the above second-order differential equation is given as [21]

F (r) = A

√
1 +

r2

R2
+B

(√
1 +

r2

R2
L(r)− 1√

2

√
1 + 2

r2

R2

)
. (5.52)

Here A and B in the above expression represent the constants of integration (whose

values will be determined later using the boundary conditions) and L(r) is a function

(that depends on r alone) whose explicit form is

L(r) = ln

(√
2

√
1 +

r2

R2
+

√
1 + 2

r2

R2

)
. (5.53)

Using the definition F (r) = ef(r)/2 in the expression for the κ-deformed metric of the

superdense star, given in Eq.(5.30), we get the explicit form of the κ-deformed metric

inside the isotropic core as

dŝ2 =

[
A

√
1 +

r2

R2
+B

(√
1 +

r2

R2
ln

(√
2

√
1 +

r2

R2
+

√
1 + 2

r2

R2

)
− 1√

2

√
1 + 2

r2

R2

)]2

dt2

−
(

1 + 2 r2

R2

1 + r2

R2

)
dr2
(

1− 4ak0
)
− r2

(
dθ2 + sin2 θdφ2

)(
1− 4ak0

)
.

(5.54)

Using f(r) = 2 lnF in the κ-deformed Einstein’s equation, given in Eq.(5.41), we find

the expression for the isotropic core pressure, in κ-deformed space-time, valid up to first

order in a to be

p̂(r) =

[
A
√

1 + r2

R2 +B

[√
1 + r2

R2L(r) + 1√
2

√
1 + 2 r2

R2

]]

8πR2(1 + 2 r2

R2 )

[
A
√

1 + r2

R2 +B
[√

1 + r2

R2L(r)− 1√
2

√
1 + 2 r2

R2

]](1 + 2ak0
)
.

(5.55)

From the above expression, we observe that the pressure inside the isotropic core gets

scaled by a (1 + 2ak0) factor. This suggests that under the κ-deformation, the isotropic

core pressure of the superdense star scales in the same manner as the density gets scaled

(for a > 0). From Fig.(5.2), we observe that the core pressure decreases monotonically

from a maximum central pressure value (i.e., p̂(0)) to a minimum value. This suggests

that the gradient of the core pressure is negative, i.e., dp̂
dr < 0 in 0 < r ≤ r1.
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Figure 5.2: Variation of p̂ against r2

R2 in the core (0 ≤ r2

R2 ≤ 2) and variation of p̂r

and p̂t against r2

R2 in the envelope (2 ≤ r2

R2 ≤ 3.8).

In the commutative space-time, the speed of sound vs associated with the fluid is defined

in terms of the variation of pressure with respect to that of density, as

v2
s =

dp

dρ
(5.56)

This speed of sound should be less than the speed of light 3, i.e., v2
s < 1 (note that from

above definition, dpdρ will be a positive quantity). We obtain the expression for the speed

of sound in κ-space-time, by replacing the pressure and density in Eq.(5.56) with their

κ-deformed versions.

The speed of the sound inside the isotropic core is estimated by taking the derivative of

core pressure with respect to the density. By exploiting the same definition, we calculate

the speed of sound inside the isotropic core by taking the derivative of κ-deformed core

pressure (given in Eq.(5.55)) with respect to κ-deformed density (given in Eq.(5.43)).

Thus we have

dp̂

dρ̂
=

(
1 + 2 r2

R2

)
(

5 + 2 r2

R2

) +

√
2BR2F ′(r)

(
1 + 2 r2

R2

)5/2

4rF 2(r)
(

5 + 2 r2

R2

) +

√
2B
(
1 + 2 r2

R2

)3/2
F (r)

(
5 + 2 r2

R2

) . (5.57)

In Fig.(5.3), we have plotted dp̂
dρ̂ against r2

R2 , using the above expression. From this graph

we observe that dp̂
dρ̂ < 1 (inside the core). Thus we find that the speed of the sound inside

the isotropic core of the κ-deformed super-dense star is less than the speed of light (which

is in agreement with the commutative result of [30]). Thus the causality condition is

satisfied inside the core of super-dense star in κ-deformed space-time. From Fig(5.2), we

3In natural units, we choose c = 1, whereas in SI units, this inequality becomes v2s < c2
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also found that p̂ > 0 and dp̂
dr < 0. Therefore the superdense matter distribution inside

the core is physically acceptable model under κ-deformation, as in the commutative

space-time [33].

5.4.2 Anisotropic Envelope

In this subsection, we analyse the κ-deformed Einstein’s equation defined in the envelope

region of the superdense star. The solutions to these equations yield the expression for

the quantities such as κ-deformed anisotropic parameter, κ-deformed radial as well as

tangential pressures, valid up to first order in a, in the envelope region.

The anisotropic envelope of the superdense star, in κ-deformed space-time, is defined as

the region r1 < r ≤ r2. Due to the anisotropy (i.e., S 6= 0), the κ-deformed envelope

pressure splits into radial as well as tangential components.

We re-express the κ-deformed Einstein’s field equation given in Eq.(5.41) by using the

transformation (see [21]),

ψ =
ef(r)/2

(2z − 1)1/4
, z =

√
1 +

r2

R2
, (5.58)

as
d2ψ

dz2
+

(
3(2z2 − 1)− 5z2

(2z2 − 1)2
+

8
√

3πR2S(1− ak0)(2z2 − 1)

z2 − 1

)
ψ = 0. (5.59)

Now we solve the above second-order differential equation to get the explicit form of

ψ(r). In order to simplify the calculation, we demand the terms in the bracket to be

zero as in the commutative space-time [21]. This gives expression for the κ-deformed

anisotropic stress parameter, valid up to first order in a, as

Ŝ =

r2

R2

(
2− r2

R2

)(
1 + ak0

)
8π
√

3R2
(

1 + r2

R2

)3 . (5.60)

From the above equation, we observe that the anisotropic parameter gets scaled by

(1 + ak0) factor under the κ-deformation. Thus we find that the anisotropy associated

with super-dense matter increases by non-commutativity (for ak0 > 0). This increase

depends on the fundamental length scale (i.e., a) and the deformation energy (k0) en-

tering through the non-commutative metric. We recover the commutative anisotropic

stress parameter in the limit a→ 0. Note that, unlike the κ-deformed density and core

pressure, the anisotropic stress parameter gets modified by a factor 1 + ak0.
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After substituting Eq.(5.60) in Eq.(5.59) we get

d2ψ

dz2
= 0. (5.61)

The solution to the above ODE is given by

ψ(z) = Cz +D. (5.62)

Here C and D are the constants of integration (whose explicit values will be determined

later using boundary conditions). From Eq.(5.58) and Eq.(5.62), we get the explicit

form of f(r) in the envelope as

f(r) = 2ln

((
1 + 2

r2

R2

)1/4(
C

√
1 +

r2

R2
+D

))
. (5.63)

Using this explicit form of f(r) given above in Eq(5.63), we obtain the expression for

κ-deformed metric in the envelope of the superdense star as

dŝ2 =

√
1 + 2

r2

R2

(
C

√
1 +

r2

R2
+D

)2
dt2 −

(
1 + 2 r2

R2

1 + r2

R2

)
dr2
(

1− 4ak0
)

− r2
(
dθ2 + sin2 θdφ2

)(
1− 4ak0

)
.

(5.64)

Now we obtain the expression for the κ-deformed radial pressure (valid up to first order in

a) by substituting the expression for the deformed anisotropic parameter (i.e., Eq.(5.60)

in the κ-deformed Einstein’s equation Eq.(5.41))

p̂r =

[
C
√

1 + r2

R2

(
3 + 4 r2

R2

)
+D

](
1 + 2ak0

)
8πR2

(
1 + 2 r2

R2

)2(
C
√

1 + r2

R2 +D
) −

r2

R2

(
2− r2

R2

)
ak0

8πR2
(

1 + 2 r2

R2

)3 . (5.65)

Thus from the above equation, we find that the radial pressure picks up two correction

terms under the κ-deformation. Here the first correction term, i.e., the 2ak0 dependent

one is contributed by the κ-deformed core pressure and the second correction term,

i.e., ak0 dependent one is contributed by the κ-deformed anisotropic parameter (see the

definition given in Eq.(5.14) for clarity). Note that the κ-deformed radial pressure has

to be a positive quantity throughout the core, i.e., p̂r > 0, and this happens when the

conditions r ≥
√

2R and ak0 ≥ 0 are satisfied.

The expression for the κ-deformed tangential pressure (valid up to first order in a) is

obtained by substituting the equations for κ-deformed radial pressure, i.e., Eq.(5.65)
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and anisotropic parameter, i.e., Eq.(5.60) in Eq.(5.15). Thus we have

p̂t =

[
C
√

1 + r2

R2

(
3 + 4 r2

R2

)
+D

](
1 + 2ak0

)
8πR2

(
1 + 2 r2

R2

)2(
C
√

1 + r2

R2 +D
) −

r2

R2

(
2− r2

R2

)(
1 + 2ak0

)
8πR2

(
1 + 2 r2

R2

)3 . (5.66)

We find that the tangential pressure also gets modified by the factor 1 + 2ak0 under

the κ-deformation. This modification factor is exactly the same as the modification

factor present in the density expression (see Eq.(5.47)). In order to have a physically

acceptable model, the κ-deformed tangential pressure has to a positive quantity, i.e.,

p̂t > 0 and this happens when the conditions r ≥
√

2R and 1 + 2ak0 ≥ 0 are obeyed.

Now we consider a typical superdense neutron star whose central density, core radius

and outer radius are given as ρ0 = 11.1145 × 1017kg/m3, r1 = 11.330 × 103m and

r2 = 12.527 × 103m, respectively [32]. Using the relation r2
2 > 2R2 (obtained from

the positivity condition of p̂t) and the expression for the κ-deformed central density,

8πρ0(1− 4ak0) = 3
R2 , we get a bound on the deformation parameter a as |a| > 10−16m.

From Eq.(5.65) and Eq.(5.66) and using the condition r >
√

2R, we see that κ-deformed

tangential pressure is greater than the κ-deformed radial pressure (as in the commutative

case) throughout the envelope. From Fig.(5.2), we observe that both the radial and

tangential pressures decrease monotonically from the core-envelope boundary to the

outer boundary of the star. Hence we can infer that the pressure (both radial and

tangential) gradients are negative throughout the envelope of star, i.e, dp̂r
dr < 0, dp̂t

dr < 0

for r1 < r ≤ r2.

The speed (both radial and tangential parts) of the sound inside the anisotropic envelope

of the κ-deformed superdense star is estimated by taking the derivative of κ-deformed

radial pressure (given in Eq.(5.55)) as well as that of the tangential pressure (given in

Eq.(5.66)) with respect to κ-deformed density (given in Eq.(5.47)) as

dp̂r
dρ̂

=
2
(

1 + 2 r2

R2

)
+ 2
(

1− 5 r2

R2 + r4

R4

)
ak0(

1 + 2 r2

R2

)(
5 + 2 r2

R2

) −
C
(

1 + 2 r2

R2

)2

2
√

1 + r2

R2

(
5 + 2 r2

R2

)
ψ(r)

+

CR2
√

1 + r2

R2

(
1 + 2 r2

R2

)[(
1 + 2 r2

R2

)
ψ′(r) + 4 r2

R2ψ(r)

]
2r
(

5 + 2 r2

R2

)
ψ′(r)

,

(5.67)
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dp̂t
dρ̂

=
2 r2

R2

(
1− r2

R2

)
(

5 + 2 r2

R2

)(
1 + 2 r2

R2

) − C
(

1 + 2 r2

R2

)2

2
√

1 + r2

R2

(
5 + 2 r2

R2

)
ψ(r)

+

CR2
√

1 + r2

R2

(
1 + 2 r2

R2

)[(
1 + 2 r2

R2

)
ψ′(r) + 4 r2

R2ψ(r)

]
2r
(

5 + 2 r2

R2

)
ψ′(r)

.

(5.68)

From Eq.(5.67), we find that the speed of the sound associated with the radial pressure

inside the envelope of κ-deformed superdense star picks up an ak0 dependent correction

term under the κ-deformation. Similarly, from Eq.(5.68), we find that the speed of

the sound associated with the tangential pressure inside the envelope of κ-deformed

superdense star remains unchanged under the κ-deformation. In Fig.(5.3), we have

plotted dp̂r
dρ̂ as well as dp̂t

dρ̂ against r2

R2 using the above expressions. From this graph, we

find that dp̂r
dρ̂ < 1 and dp̂t

dρ̂ < 1. Thus we infer that the speed of sound (due to radial and

tangential pressures) inside the anisotropic envelope of the κ-deformed superdense star

is less than the speed of light (which is in agreement with the commutative case [30, 33]).

Therefore we find that the causality condition is followed in the envelope region of the

superdense star in the κ-space-time. From Fig(5.2), we also find that p̂t > 0, p̂r > 0

and dp̂t
dr < 0, dp̂r

dt < 0. Hence we say that the superdense matter distribution inside the

envelope is a physically acceptable model [33] under κ-deformation.

Figure 5.3: Variation of dp̂
dρ̂ against r2

R2 in the core (0 ≤ r2

R2 ≤ 2) and variation of dp̂r
dρ̂

and dp̂t
dρ̂ against r2

R2 in the envelope (2 ≤ r2

R2 ≤ 3.8).

5.4.3 Matching conditions

In the commutative case, the constantsA, B, C andD appearing in Eq.(5.55), Eq.(5.65),

Eq.(5.66) are determined using the four matching conditions. Here we generalise these
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four matching conditions to the κ-deformed space-time. The following are the four

matching conditions.

(i) We match the κ-deformed metric of the superdense star with κ-deformed Schwarzschild

metric at the outer boundary of the envelope. The κ-deformed Schwarzschild met-

ric is given as [25]

dŝ2 =
(

1− 2m

r

)
dt2 − 1(

1− 2m
r

) (1− 4ak0
)
dr2 − r2

(
1− 4ak0

)
dΩ2. (5.69)

Now we equate the coefficients of the metric in Eq.(5.64) with that in Eq.(5.69) at

r = r2 and we get

m =
r3

2

2R2
(

1 + 2
r22
R2

) , (5.70)

C

√
1 +

r2
2

R2
+D =

√
1 +

r22
R2(

1 + 2
r22
R2

)3/4
. (5.71)

(ii) The (κ-deformed) radial pressure vanishes at the outer boundary (at r = r2) of

superdense star, i.e., p̂r(r2) = 0 [30]. Thus we have

8πp̂r(r2) =

[
C

√
1 +

r22
R2

(
3 + 4

r22
R2

)
+D

](
1 + 2ak0

)
R2
(

1 + 2
r22
R2

)2(
C

√
1 +

r22
R2 +D

) −
r22
R2

(
2− r22

R2

)
ak0

R2
(

1 + 2
r22
R2

)3 = 0.

(5.72)

We obtain C and D, by solving the linear equations in Eq.(5.71) and Eq.(5.72), as

C =

−
((

1 + 2
r22
R2

)(
1 + 2ak0

)
− 2

r22
R2

(
2− r22

R2

)
ak0

)
2
(

1 + 2
r22
R2

)2(
1 + 2ak0

)(
1 + 2

r22
R2

)3/4
, (5.73)

D =

√
1 +

r2
2

R2

((
3 + 4

r22
R2

)(
1 + 2

r22
R2

)(
1 + 2ak0

)
− 2

r22
R2

(
2− r22

R2

)
ak0

)
2
(

1 + 2
r22
R2

)2(
1 + 2ak0

)(
1 + 2

r22
R2

)3/4
. (5.74)

Thus we find that the κ-deformation modifies the constants C and D. Note that

even though C and D get modified, the quantity
(
C

√
1 +

r22
R2 + D

)
remains un-

changed and therefore ĝ00 component of the metric on the boundary of superdense

star remains unchanged under the κ-deformation (see Eq.(5.25)).

(iii) The metric is continuous throughout the superdense star in the κ-deformed space-

time. Hence the metric coefficients in the core and that in the envelope are equal
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at the core-envelope boundary (at r = r1). Therefore we get from Eq.(5.54) and

Eq.(5.64)
√

3A+B[
√

3L(r1)−
√

2.5] =

√
3C +D

53/4
. (5.75)

(iv) The (deformed) pressures are continuous throughout the superdense star. At the

core-envelope boundary (i.e., at r = r1), the anisotropy vanishes and all these

pressures become equal. Hence we have

p̂(r1) = p̂r(r1) = p̂t(r1). (5.76)

The above condition gives us another equation involving A, B, C and D as

√
3A+B[

√
3L(r1) +

√
2.5] =

11
√

3C +D

53/4
. (5.77)

Now we obtain A as well as B in terms of C and D by solving the above linear equations

Eq.(5.75) and Eq.(5.77) simultaneously. Thus we get

A =
[5
√

5− 3
√

2(
√

3L(r2)−
√

2.5)]C + 1√
3
[5
√

5 + 2
√

2(
√

3L(r1)−
√

2.5)]D

53/4
,

B =

√
2[3
√

3C − 2D]

53/4
.

(5.78)

By substituting Eq.(5.73) and Eq.(5.74) in Eq.(5.78), we obtain A and B.

An observer at infinity finds the wavelength of light coming out of the gravitational

field (at r2) to be shifted and this is known as gravitational redshift. We calculate the

gravitational redshift using the gravitational redshift parameter, Z, which is defined as

ZR =

√
g00(∞)

g00(r2)
− 1. (5.79)

Z plays an important role in the study of astrophysical objects. Therefore it is important

to understand the influence of minimal length in the gravitational redshift for the analysis

of the effects of non-commutativity on superdense star. In our case, we look for the

effect on the κ-deformation on the redshift. We obtain this expression by replacing

the commutative metric (in redshift expression i.e., Eq.(5.79)) with the corresponding

κ-deformed metric and therefore we get

ZR =

√
ĝ00(∞)

ĝ00(r2)
− 1 =

1√
1− 2m

r2

− 1. (5.80)
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Now we define the compactness factor, u, which gives the mass-to-radius ratio of the

superdense star. It is defined as [34, 35]

u =
m(r2)

r2
. (5.81)

From the matching condition, i.e, Eq.(5.70), the expression for compactness factor is

found to be

u =
m(r2)

r2
=

r2
2

2R2
(

1 + 2
r22
R2

) . (5.82)

Substituting the expression for compactness factor, i.e., Eq.(5.82) in Eq.(5.80), we obtain

the expression for surface redshift [36] in κ-deformed space-time as

ZR =
1√

1− 2u
− 1 =

√√√√1 + 2
r22
R2

1 +
r22
R2

− 1. (5.83)

From the above expression, we notice that the surface redshift (associated with the

super-dense star) does not get modified under the κ-deformation. This is because of

the fact that the ĝ00 component of κ-deformed metric remains unchanged under κ-

deformation, up to first order in a. Therefore, in this choice of realisation, we see that

the gravitational redshift does not pick up a non-commutative correction term. This

result is in contrast to that in [37]. There the authors have obtained a non-commutative

correction to gravitational redshift by using a modified metric whose temporal part

contains minimal length parameters (obtained from the GUP).

5.5 Conclusions

In this chapter, we have studied the effects on the non-commutativity in the superdense

star, by generalising the anisotropic core-envelope model to the κ-deformed space-time.

We have derived the κ-deformed energy-momentum tensor as well as the deformed metric

(valid up to first order in a) for the superdense star. Using this, we have constructed

κ-deformed Einstein’s equation for the superdense star. These deformed field equations

are solved separately inside the core and the envelope of the superdense star (valid up

to first order approximation in a).

We observe that the density for the super-dense star in the κ-deformed space-time,

Eq.(5.43), gets scaled by a (1 + 2ak0) factor. Here it is to be emphasised that the

non-commutativity enhances the density of the star. Eq.(5.43) and Eq.(5.46) give the

expressions for κ-deformed law of density variation, which is similar to the law of density

variation in the commutative space. From the conditions ρ̂ > 0 and dρ̂
dr < 0 (obtained
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from the κ-deformed law of density variation), we have obtained a bound on the deforma-

tion parameter given by |a| > 10−36m. In the Fig.(5.1), we see that the deformed density

decreases from a maximum value at centre (ρ̂0) to a minimum value on the boundary

of star and this is similar to the behaviour of the density in commutative case [21].

This similarity in the behaviour of density is due to the fact that the non-commutative

correction is encoded only through scaling by the (1 + 2ak0) factor.

The isotropic core pressure, Eq.(5.55), of the superdense star also gets scaled by the

factor (1 + 2ak0). Similarly, the anisotropic parameter also gets modified by a (1 + ak0)

factor under the κ-deformation. The κ-deformed radial pressure inside the anisotropic

envelope of the superdense star possesses two correction terms; 2ak0 dependent term

(which is contributed by the deformed isotropic core pressure) and an ak0 dependent

term (which is contributed by the deformed anisotropic parameter). Similarly, we ob-

serve that the tangential pressure, Eq.(5.66), inside the anisotropic envelope, gets scaled

by the (1 + 2ak0) factor. The positivity condition on the tangential pressure yields an-

other limit on the deformation parameter given by |a| > 10−16m. It is to be noted that

this bound is in agreement with that obtained in [26]. It has been seen in Fig.(5.2) that

the deformed pressure (inside the core as well as in the envelope) is positive through-

out the star, i.e., p̂ > 0, p̂r > 0, p̂t > 0 throughout the star. From the Fig.(5.2),

we observe that the deformed tangential pressure is greater than the deformed radial

pressure throughout the envelope, i.e, p̂t > p̂r for r1 < r ≤ r2. Thus we observe that

the tangential pressure is greater than radial pressure even under the κ-deformation

and this is in agreement with the behaviour of radial and tangential pressures in the

commutative case [21]. From the Fig.(5.3), we observe that dp̂
dρ̂ < 1 (speed of sound due

to core pressure), dp̂r
dρ̂ < 1 (speed of sound due to radial pressure) and dp̂t

dρ̂ < 1 (speed of

sound due to tangential pressure) are satisfied throughout the κ-deformed superdense

star. Therefore we conclude that the speed of sound does not exceed the speed of light

inside the κ-deformed superdense star (as that in commutative case [30]). We also find

that ρ̂ > 0, p̂ > 0, p̂r > 0, p̂t > 0 and dρ̂
dt < 1, dp̂t

dt < 1, dp̂r
dt < 1. Thus we find

that the solutions obtained satisfy the physical requirements and hence the κ-deformed

superdense star model is physically acceptable (up to first order in a).

We have further observed that the surface gravitational redshift for superdense star does

not get modified under the κ-deformation. This is due to the fact that the ĝ00 component

of the deformed metric does not pick a κ-deformation factor (valid up to first order in

a).
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Chapter 6

Maximal acceleration in

non-commutative space-time

6.1 Introduction

The presence of minimal length scale in certain quantum gravity models have been

shown to be related to the occurrence of an upper bound on the proper acceleration [1],

known as maximal acceleration. The existence of a critical acceleration associated with

the string length has been shown in [2]. Covariant loop quantum gravity models have

also been shown to have maximal acceleration, which is consistent with the local Lorentz

symmetry [3]. The maximal acceleration relative to the vacuum has been defined using

the fundamental constants c, } and G as [4]

A0 =

√
c7

}G
' 5.6× 1052 ms−2 (6.1)

In [1–3], the maximal acceleration has been studied using the notion of minimal length

scale associated with the quantum gravity models. But the concept of maximal accel-

eration has been introduced and analysed much earlier in [4–11]. The maximal accel-

eration, corresponding to a massive particle, has been derived from the line element

on 8-dimensional phase-space, which is constructed from the 4-dimensional Minkowski

space-time and the energy-momentum dispersion relation by geometrising the quantum

mechanics [5, 6]. Similar expression for the maximal acceleration has also been derived

using Heisenberg’s uncertainty relation [7–11]. Maximal acceleration has been obtained

in [4], by comparing the Sakharov’s absolute maximum temperature [12] with the Unruh

temperature [13] of a thermal radiation. In [14], the invariance of the 8-dimensional line

119
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element under the reciprocity transformation has been discussed and the existence of

maximal acceleration has been shown using the reciprocity principle [15].

In order to analyse the relativistic kinematics of a particle having maximal acceleration,

the usual 4-dimensional Minkowski space-time has been extended to 8-dimensional space,

whose extra four coordinates are the 4-momenta [16]. Further a new transformation law

which leaves this 8-dimensional line element invariant has been constructed in [16]. This

8-dimensional space has been shown to induce a mass-dependent curvature, leading

to the violation of equivalence principle [17]. The appearance of scalar curvature has

also been obtained while extending the usual 4-dimensional Rindler metric to the 8-

dimensional Rindler metric in phase space, which contains the maximal acceleration

term [18]. This modified Rindler metric has further been used to obtain modified Unruh

temperature, having maximal acceleration dependent correction term [19]. Modified

expressions for the Unruh temperature as well as Hawking temperature, containing

maximal acceleration dependent correction term has also been derived heuristically in

[20]. The dynamics of particles (with maximal acceleration) has been analysed in the

curved space-times such as Schwarzschild [21], Reissner-Nordstrom [22] and Kerr [23].

These line elements constructed in the above works were not general covariant. As a

result different line elements were constructed to cure the problem of general covariance.

One way of constructing the covariant line element is by introducing a non-linear connec-

tion in the velocity dependent terms of the line element. In [24], Christoffel symbol has

been choosen as the non-linear connection, whereas in [25–28], the non-linear connection

has been obtained as a combination of Christoffel symbol and Cartan tensor. The co-

variant line element associated with the maximal acceleration has also been constructed

by the pseudo-complexification of Minkowski space [29].

The implications of the maximal acceleration has been studied in various contexts. The

maximal acceleration has been shown to regularise the UV divergences of the quantum

field theories [30]. It has been shown that the initial singularity associated with standard

model of cosmology can be avoided using the maximal acceleration [31]. The maximal

acceleration has also been used to obtain a finite entropy for a black hole [32]. In [33, 34],

the maximal acceleration has been used to estimate the upper bound on the mass of

the Higgs boson. The expression for maximal acceleration has been used to obtain

Sakharov’s absolute maximum temperature [35]. The maximal acceleration also helps

in determining the parameters present in the generalised uncertainty principle [36].

It must be clear from the above summary that the analysis of maximal acceleration

and its implications in models of quantum gravity and quantum geometry of intrinsic

interest. Thus it is of importance to study how the non-commutativity of the space-

time, which is expected at minimum length scales, affects the maximal acceleration and
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its consequences. We derive the first order corrections to the maximal acceleration in

the κ-deformed space-time. This is derived from the κ-deformed 8-dimensional phase-

space metric, which is constructed from the 4-dimensional κ-Minkowski space and the

κ-deformed dispersion relation. We also obtain the first order corrections of maximal

acceleration using the κ-deformed uncertainty principle. Further we show that the first

order correction obtained in these two methods depend on the rest mass of the particle,

but they differ by a numerical factor.

Apart from this, we also show that the non-commutative geometry associated with

the κ-Minkowski space-time induces an upper limit on the proper acceleration of the

massive particle. We then show the emergence of this maximal acceleration from the

4-dimensional κ-Minkowski space-time itself, instead of using the 8-dimensional phase-

space metric. Unlike the former expression of the maximal acceleration, the maximal

acceleration obtained here is found to depend on the metric deformation energy. In

addition to this, it also depends on the dimensionless non-commutative parameters α

and β, coming from the realisation (see Eq.(1.13) of chapter 1) associated with the

κ-deformed space-time coordinate. We further derive the Newtonian force equation

in the κ-deformed space-time, valid up to first order in a. This correction term is

shown to violate the equivalence principle and by comparing this with the experimental

results on the violation of equivalence principle, we set bounds on the dimensionless

non-commutative parameters α and β.

This chapter is organised in the following way. In sec.6.2, we construct the 8-dimensional

κ-deformed phase-space metric, valid up to first order in a, from 4-dimensional κ-

Minkowski metric and κ-dispersion relation (which is obtained from the Casimir of the

undeformed κ-Poincare algebra). We then derive the expression for maximal accelera-

tion, valid up to first order in a, from the 8-dimensional κ-deformed space-time. We then

use the Unruh temperature, which is the temperature of the thermal radiation seen by

a uniformly accelerating observer. By relating this with the maximal acceleration of the

observer, we set an upper cut off on the Unruh temperature. Further, by matching the

first order correction term of the deformed maximal temperature with the experimental

results on the Unruh radiation, we get a bound on the κ-deformation parameter a. In

sec.6.3, we construct the maximal acceleration in κ space-time using the κ-deformed un-

certainty relation. In sec.6.4, we construct 4-dimensional κ-Minkowski space-time using

the α, β realisation (see Eq.(1.13) of chapter 1). We then show the emergence of maximal

acceleration from this 4-dimensional κ-Minkowski space-time. Further, we also obtain

the corresponding maximal temperature. In subsec.6.4.1, we derive the κ-geodesic equa-

tion and obtain the corresponding Newtonian limit, valid up to first order in a. We show

that this κ-deformed Newton’s force equation contains an equivalence principle violating
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term and by comparing this with the experimental data, we get bounds on α and β.

Finally in sec.6.5, we summarise our results and give the concluding remarks.

6.2 κ-deformed maximal acceleration

In this section we first construct the 8-dimensional κ-deformed line element using the

4-dim κ-deformed Minkowski metric and the κ-deformed dispersion relation, valid up to

first order in a. We then obtain the κ-deformed corrections to the maximal acceleration

of a massive particle and analyse its implications.

In [5, 6], the maximal acceleration of a massive particle has been derived from the

causally connected events in the 8-dimensional phase-space. The line element associated

with this 8-dim phase-space has been constructed from the 4-dimensional Minkowski

space-time and the energy-momentum dispersion relation. Here we follow the same

approach for calculating the κ-deformed correction to the maximal acceleration.

The κ-deformed dispersion relation is given as (see Eq.(1.23) of chapter 1) [37]

4

a2
sinh2 ap

0

2
− p2

i

e−ap
0

ϕ
+
a2

4

( 4

a2
sinh2 ap

0

2
− p2

i

e−ap
0

ϕ

)2
= m2. (6.2)

We now choose a realisation ϕ = e−ap
0

[38–40] and using this realisation in Eq.(6.2), we

get the κ-deformed dispersion relation, valid up to first order in a, as (with p0 = E)

E2 − p2(1 + aE)−m2 = 0. (6.3)

By denoting p̂ = p
√

1 + aE, we re-write the above dispersion relation as

E2 − p̂2 −m2 = 0. (6.4)

The line element in the κ-deformed space-time is defined as [41]

dŝ2 = ĝµνdx̂
µdx̂ν . (6.5)

Up to first order in a, the above line element takes the form (see Eq.(5.28) of chapter 5

for details)

dŝ2 = g00(ŷ)dx0dx0 + gi0(ŷ)(1− 3ak0)dxidx0 − agim(ŷ)kmdx0dxi

+ gi0(ŷ)(1− 2ak0)dxidx0 + gij(ŷ)(1− 4ak0)dxidxj .
(6.6)

where

gµν(ŷ0) = gµν(x0)− axjkj
∂gµν(x0)

∂x0
, gµν(ŷi) = gµν(xi), (6.7)
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and ŷµ is the auxiliary κ-deformed space-time coordinate (see Eq.(5.23) of chapter 5).

Note that in the above equation k0 represents the κ-deformation energy scale [41] asso-

ciated with the non-commutative metric.

From Eq.(6.6), we obtain the 4-dimensional κ-deformed Minkowski line element, valid

up to first order in a, as

dŝ2 = −dt2 + (1− 4ak0)dx2. (6.8)

From the κ-deformed dispersion relation given in Eq.(6.4) and the 4-dimensonal κ-

deformed Minkowski line element given in Eq.(6.8), we construct the 8-dimensional

κ-deformed flat phase-space metric, valid up to first order in a, as (see [5] for the con-

struction of 8-dimensional phase-space in commutative case)

dŝ2 = −dt2 + (1− 4ak0)dx2 +
1

µ4

(
− dE2 + dp̂2

)
, (6.9)

where the parameter µ has the dimension of mass.

The κ-deformed dispersion relation, in Eq.(6.2), has been constructed from the quadratic

Casimir of the undeformed κ-Poincare algebra. Therefore the κ-deformed 8-dimensional

line element is invariant under the undeformed κ-Poincare algebra (valid up to first order

in a). Note that line element given in Eq.(6.9) reduces to the commutative line element

given in [5] in the limit a→ 0.

Re-writing p̂ = p
√

1 + aE in Eq.(6.9), we get the 8-dimensional metric valid up to first

order in a, as

dŝ2 = −dt2 + (1− 4ak0)dx2 +
1

µ4

(
− dE2 + dp2(1 + aE) + apjdp

jdE
)
. (6.10)

We know that line element of the time-like event obeys dŝ2 ≤ 0 1. We now implement

this to the κ-deformed case, i.e.,

− dt2 + (1− 4ak0)dx2 − 1

µ4

(
dE2 − (1 + aE)dp2 − apjdpjdE

)
≤ 0. (6.11)

Let us divide the above inequality throughout by dt2 and we denote v = dx
dt , as the

velocity of the particle. Thus we get

1− (1− 4ak0)v2 +
1

µ4

[(dE
dt

)2
− (1 + aE)

(dp
dt

)2
− apj

dpj

dt

dE

dt

]
≥ 0 (6.12)

Using the κ-deformed dispersion relation, Eq.(6.3), we get dE
dt = (1 + aE + ap2

2E ) pE
dp
dt .

Denoting the proper acceleration of the particle as A, where dp
dt = mA

(1−v2)3/2
, Eq.(6.12)

1Note that for a metric with signature ηµν = diag(1,−1,−1,−1), the time-like events follow dŝ2 ≥ 0,
i.e., ds2 = dt2 − dx2 ≥ 0
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becomes

(1−v2)

[
1+

4ak0v2

1− v2
+

1

µ4

m2A2

(1− v2)4

(
p2

E2

(
1+2aE+

ap2

E

)
−(1+aE)− ap

2

E

)]
≥ 0. (6.13)

As in the commutative flat space-time [5] here also the velocity obeys the condition

v ≤ c and thus the acceleration becomes maximum when v << c. In order to obtain

the maximal acceleration, we consider the κ-deformed instantaneous rest frame of the

particle where the velocity of the particle vanishes, i.e., v = 0 and hence its momentum

also reduce to zero, i.e., p = 0. Hence Eq.(6.13) becomes

1− m2A2
max

µ4
(1 + am) ≥ 0 (6.14)

By simplifying Eq.(6.14), we get the explicit form of the maximal acceleration in the

κ-deformed space-time, valid up to first order in a, as

Amax ≤ m
(

1− am

2

)
. (6.15)

Now we have choosen µ = m, where m is the rest mass of the particle. In the SI units

Eq.(6.15) takes the form

Amax ≤
mc3

}

(
1− amc

2}

)
(6.16)

We find that the maximal acceleration given in Eq.(6.16) is independent of the κ-

deformation energy k0 appearing in Eq.(6.12) to Eq.(6.13). Note that the first order

correction term in the κ-deformed maximal acceleration depends on the rest mass of

the particle. Here Amax is the magnitude of the maximal acceleration and thus Amax
should be a positive quantity and this happens when amc

2} < 1 (this is true when a is

positive). When we go to the commutative limit, i.e., a → 0, the maximal acceleration

in Eq.(6.16) becomes Amax = mc3

} , as in [5, 6]. In the classical limit, i.e., } → 0, the

maximal acceleration, in Eq.(6.16), becomes infinity, as in [5, 6]. We also observe that

the κ-deformed correction to the maximal acceleration reduces to zero for a massless

particle.

By substituting the definition of the reduced Compton wavelength, i.e., λ̄c = }
mc in

Eq.(6.16), we obtain the expression for the Amax as

Amax ≤
c2

λ̄c

(
1− a

2λ̄c

)
. (6.17)

The magnitude of the maximal acceleration should be a positive quantity and this gives

bound on the κ-deformation parameter as a < 2λ̄c.
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The temperature of thermal radiation, seen by an observer with uniform acceleration

A, is given using the Unruh temperature [13], i.e., T = }A
2πkBc

. Therefore the maximum

temperature associated with a thermal radiation can also be expressed using the Unruh

temperature as Tmax = }Amax
2πkBc

. Substituting Eq.(6.16) in the expression for Tmax, we

get the maximum temperature as

Tmax =
mc2

2πkB

(
1− amc

2}

)
. (6.18)

In the limit a→ 0, the above expression reduces to that obtained in [4, 35]. In [42] it is

reported that the experimentally measured value of the Unruh temperature associated

with positron radiation as T = 1.80 ± 0.51 PeV . By matching the error bar of T , i.e.,

∆T = 0.51 PeV with the a dependent correction term of Tmax, we find the bound on

the κ-deformation parameter as a ≤ 10−26m.

6.3 Maximal acceleration from κ-deformed uncertainty prin-

ciple

In this section we derive the κ-deformed correction (valid up to first order in a) to the

maximal acceleration using the κ-deformed uncertainty relation.

The uncertainty relation between energy and an arbitrary function of time [7–11] is given

as

∆E∆g(t) ≥ 1

2

dg

dt
. (6.19)

Let us choose g(t) = v, where v is the velocity of the particle. Using this in Eq.(6.19),

we obtain the uncertainty relation between energy and velocity as

∆E∆v(t) ≥ 1

2

dv

dt
(6.20)

Next let us choose g(t) = x, where x is the position coordinate. Using this in Eq.(6.19),

we get the uncertainty relation between energy and position coordinate as

∆E∆x(t) ≥ 1

2

dx

dt
(6.21)

Multiplying Eq.(6.20) and Eq.(6.21), we get

(
∆E∆x

)(
∆E∆v

)
≥ 1

4
vA (6.22)

where we define dx
dt = v and dv

dt = A.

(
∆E

)2
∆x

∆v

v
≥ 1

4
A. (6.23)
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Using the relation ∆E = v∆p, we re-write ∆E in the above equation as

(
∆p
)2

∆x
(
∆v
)
v ≥ 1

4
A. (6.24)

We know that the uncertainty in the velocity of the particle should be less than the

maximum attainable velocity and according to the special theory of relativity this

maximum attainable velocity should be less than the velocity of light, i.e., (∆v) =
√
< v2 > − < v >2 ≤ vmax ≤ 1 (note that here we take c = 1). Thus we have ∆v ≤ 1

and v ≤ 1. So we take (∆v)v ≤ 1 and hence Eq.(6.24) becomes

(
∆p∆x

)2 ≥ 1

4
A∆x (6.25)

Since the κ-deformed uncertainty relation (valid up to first order in a) between ∆x and

∆p has been shown to be [49]

∆x∆p
(

1 +
a

2∆x

)
≥ 1

2
, (6.26)

we find ∆x∆p ≥ 1
2

(
1− a

2∆x

)
. Substituting this in Eq.(6.25), we obtain

A∆x ≤
(

1− a

∆x

)
(6.27)

Now we choose ∆x as the reduced Compton’s wavelength, i.e., ∆x = λc and it is

defined as λc = 1
m . Using this in above equation, we obtain the κ-deformed maximal

acceleration, valid up to first order in a, as

Amax ≤ m
(

1− am
)

(6.28)

In the SI units, the expression for the κ-deformed maximal acceleration becomes

Amax ≤
mc3

}

(
1− amc

}

)
(6.29)

By comparing Eq.(6.16) and Eq.(6.29), we find that the first order κ-deformed correction

terms of the maximal acceleration differs only by a numerical factor 1/2. Thus the

commutative limit and classical limit of both these expressions are same as in [5–7].

6.4 Emergence of maximal acceleration from κ-deformed

space-time

In this section, we first construct the line element in the 4-dimensional κ-Minkowski

space-time (valid up to first order in a) by considering the realisation given in Eq.(1.13)
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(of chapter 1). We then show the emergence of the maximal acceleration from this

deformed line element.

The κ-deformed space-time coordinate is realised in terms of the commutative coordinate

and momenta as

x̂µ = xαϕ
α
µ(p). (6.30)

Here we choose the realisation (see Eq.(1.13) of chapter 1) [43] where

ϕαµ(p) = δαµ

(
1 + α

a · p
}

)
+ β

aαpµ
}

+ γ
pαaµ
}

, (6.31)

α, β, γ ∈ R in the above expression are dimensionless parameters. Using Eq.(6.30) and

Eq.(6.31) in [x̂0, x̂i] = iax̂i and [x̂i, x̂j ] = 0, we get γ = α + 1 [43]. We see that in

the limit a → 0, ϕαµ(p) reduces to δαµ. But ϕαµ(p) diverges in limit } → 0. Thus we

obtain the commutative result in the limit a → 0 (when there is no ~ dependence).

From Eq.(6.31), we see that limit a
} → 0 is well defined and we obtain the commutative

coordinates. Substituting Eq.(6.31) in Eq.(6.30), we get

x̂µ = xµ

(
1 + α

a · p
}

)
+ β

(
x · a

}

)
pµ + (α+ 1)(x · p)aµ

}
. (6.32)

We obtain the commutative coordinate, from the above expression, in the limit a → 0.

Also, x̂µ = 0, when xµ = 0. But the non-commutativity associated with the space-

time restrict us from localising a particle below the minimal length scale set by the

non-commutative parameter. Therefore taking the limit xµ → 0, when a 6= 0 is not

valid.

Using Eq.(5.18) (of chapter 5), we write the κ-deformed generalised commutation rela-

tion as

[x̂µ, P̂ν ] = i}ĝµν . (6.33)

P̂µ is expressed in terms of the commutative coordinate and momenta as

P̂µ = gαβ(ŷ)pαϕβµ(p). (6.34)

Here ŷ, introduced for simplifying the calculations [43] is another κ-deformed space-time

coordinate obeying [ŷν , x̂µ] = 0 and therefore x̂µ commutes with any function of ŷµ, i.e.,

[x̂µ, f(ŷ)] = 0 [43]. Thus using Eq.(6.31), we write ŷµ and f(ŷ) as

ŷµ = xµ + α
x · paµ

}
+ β

x · apµ
}

+ (α+ 1)
xµa · p

}
, (6.35)

f(ŷ) = f(x) + α
(a
}
· ∂f
∂x

)
(x · p) + β

(a
}
· x
)(∂f

∂x
· p
)

+ (α+ 1)
(
x · ∂f

∂x

)(a
}
· p
)
. (6.36)
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Substituting Eq.(6.32) and Eq.(6.34) in Eq.(6.33), we get

ĝµν = gαβ(ŷ)
(
pβ
∂ϕαν
∂pσ

ϕσµ + ϕαµϕ
β
ν

)
. (6.37)

Replacing f in Eq.(6.36) with gµν , we obtain the expression for gµν(ŷ) in terms of the

commutative coordinate and its conjugate momenta as

gµν(ŷ) = gµν(x)+α
(a
}
·∂gµν
∂x

)
(x·p)+β

(a
}
·x
)(∂gµν

∂x
·p
)

+(α+1)
(
x·∂gµν

∂x

)(a
}
·p
)
. (6.38)

Substituting Eq.(6.31) and Eq.(6.38) in Eq.(6.37), we obtain the explict form of the

κ-deformed metric (valid up to first order in a) in terms of the commutative coordinate

and momenta as

ĝµν = gµν + α

(
pβgνβ

aµ
}

+ 2gµν

(a
}
· p
)

+
(a
}
· gµν
∂x

)
x · p

)
+ β

(
pβ
aα

}
gαβηµν +

aβ

}
pνgµβ+

aβ

}
pµgνβ +

(a
}
· x
)(∂gµν

∂x
· p
))

+ (α+ 1)

(
2gµβp

β aν
}

+ pα
aµ
}
gαν +

(
x · ∂gµν

∂x

)(a
}
· p
))

.

(6.39)

From the above, we obtain the commutative metric in the limit a→ 0 (also in the limit
a
} → 0). We also find that the metric ĝµν diverges in the limit ~→ 0 with a 6= 0.

The κ-deformed metric constructed in Eq.(6.39) depends on the commutative coordi-

nate, momenta and the deformation parameter (This should be contrasted with the

κ-deformed metric derived in Eq.(5.26) (of chapter 5) which depends on the commuta-

tive coordinate, deformation parameter as well as the deformation energy scale as the

realisation (ϕ = e−ak
0
) depends on the deformation parameter and deformation energy

scale). In Eq.(6.10), the momentum dependent terms are all due to the κ-deformed

dispersion relation whereas in this case, i.e., Eq.(6.39) the momentum dependent term

comes from the realisation given in Eq.(6.31).

Now we write down the definition for line element in the 4-dimensional κ-Minkowski

space-time as

dŝ2 = η̂µνdx̂
µdx̂ν . (6.40)

After replacing gµν in Eq.(6.39) with ηµν and substituting this and also using Eq.(6.30)

and Eq.(6.31) in Eq.(6.40), we get the explicit form of the 4-dimensional κ-Minkowskian

line element, valid up to first order in a, as
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dŝ2 = ηµνdx
µdxν + α

((
2pν

aµ
}

+ 4ηµν
a

}
p0

c
+ 2pµ

aν
}

)
dxµdxν +

a

}
ηµν

dp0

c
dxµxν+

(x · dx)
a

}
dp0

c
+ 2

a

}
cdt(dx · p) + 2(x · dp)cdta

}

)
+ β

((
ηµν

a

}
p0

c
+
aµ
}
pν +

aν
}
pµ

)
dxµdxν+

2a

}
(dx · p)cdt+

2a

}
(dx · dp)ct

)
+

(
3

2

(
pµ
aν
}

+ pν
aµ
}

)
dxµdxν +

2a

}
cdt(dx · p+ x · dp))

)
.

(6.41)

Using ηµν = (1,−1,−1,−1), above line element becomes,

dŝ2 = c2dt2 − dx2 + 5
a

}
cdt
(
p0dt− p · dx

)
+ 2

a

}
cdt
(
tdp0 − x · dp

)
+ α

(
6
a

}
cdt
(
p0dt− p · dx

)
+ 4

a

}
p0

c

(
c2dt2 − dx2

)
+ 2

a

}
dp0

c

(
c2tdt− x · dx

)
+ 2

a

}
cdt
(
tdp0 − x · dp

))
+ β

(
a

}
p0

c

(
c2dt2 − dx2

)
+ 4

a

}
cdt
(
p0dt− p · dx

)
+ 2

a

}
ct
(
dp0dt− dp · dx

))
.

(6.42)

We now see that for a time-like event the corresponding line element satisfy dŝ2 ≥ 0.

We then divide Eq.(6.42) throughout by dt2 and denote dx
dt = v, where v is the velocity

and dp
dt = mA

(1−v2/c2)3/2
, where A is the proper acceleration of a particle of rest mass m.

Thus the above expression becomes

c2 − v2 + α

(
6
a

}
c
(
p0 − p · v

)
+ 4

a

}
p0

c

(
c2 − v2

)
+ 2

a

}
dp0

dt

1

c

(
c2t− x · v

)
+

2
a

}
c
(
t
dp0

dt
− x · mA

(1− v2/c2)3/2

))
+ β

(
a

}
p0

c

(
c2 − v2

)
+ 4

a

}
c
(
p0 − p · v

)
+

2
a

}
ct
(dp0

dt
− v · mA

(1− v2/c2)3/2

))
+

(
5
a

}
c
(
p0 − p · v

)
+ 2

a

}
c
(
t
dp0

dt
− x · mA

(1− v2/c2)3/2

))
≥ 0

(6.43)

The x · A and v · A dependent terms in the above expression depends on A. These

terms are contributed by the x · dx = |~x|| ~dx|cosθ and dx · dp = | ~dx|| ~dp| cos θ terms of

the κ-Minkowski line element given in Eq.(6.41). In order to evaluate the maximum

acceleration we take cos θ = 1 and we also write |x| in place of x in the below equations.

By dividing Eq.(6.43) throughout by c2 − v2 and using the commutative dispersion

relation (because we are considering only the first order terms in a. So we need to use

only commutative dispersion relation), we re-write dp0

dt as dp0

dt = pc2

p0
dp
dt = pc2

p0
mA

(1−v2/c2)3/2
.

Thus we obtain

1 + α

(
6ac(p0 − pv)

}(c2 − v2)
+

4ap0

c}
+
(2apc

}p0

(c2t− |x|v)

c2 − v2
+

2ac

}(c2 − v2)

(
t
pc2

p0
− |x|

)) mA

(1− v2/c2)3/2

)
+

β

(
ap0

}c
+

4ac(p0 − pv)

}(c2 − v2)
+

2act

}(c2 − v2)

(pc2

p0
− v
) mA

(1− v2/c2)3/2

)
+(

5a(p0 − pv)

}(c2 − v2)
+

2ac

}(c2 − v2)

(
t
pc2

p0
− |x|

) mA

(1− v2/c2)3/2

)
≥ 0,

(6.44)
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As in the commutative flat space-time here also the maximum allowed velocity is c and

thus the acceleration becomes maximum when v << c. In order to obtain the maximal

acceleration, we consider the κ-deformed instantaneous rest frame of the particle where

the velocity of the particle vanishes, i.e., v = 0 and hence its momentum also reduce

to zero, i.e., p = 0. As a result all the t dependent terms of Eq.(6.44) also vanishes.

Therefore we get the expression for the maximal acceleration Amax, valid up to first

order in a, as

Amax ≤
c

2(a} )|x|m
1

(1 + α)

[
1 +

5ap0

}c
(
1 + β + 2α

)]
. (6.45)

The p0 in Eq.(6.45) is interpreted as the deformation energy associated with the metric.

The above expression contains ~ dependent as well as ~ independent terms, unlike the

maximal acceleration obtained in Eq.(6.16). We observe that in the limit ~ → 0 with

a 6= 0, Amax ≤ 5p0(1+β+2α)
2|x|m(1+α) , which in contrast with (the } → 0 limit of the) Eq.(6.16),

where the maximal acceleration becomes infinity in the classical limit, i.e., } → 0.

Further we also see that in the limit a → 0, Amax → ∞ as seen in the commutative

case.

Here Amax represents the magnitude of the maximal acceleration and therefore it is

a positive quantity. This happens either when α > −1, β > −(1 + 2α + c~
5ap0

) or

when α < −1, β < −(1 + 2α + c~
5ap0

). As stated above, with a 6= 0, in the limit

~ → 0, we find A ≤ 5p0(1+β+2α)
2|z|m(1+α) . In limit ~ → 0, the bounds on α and β are either

α > −1, β > −(1 + 2α) or α < −1, β < −(1 + 2α). The parameters α and β come

from the realisation given in Eq.(6.31). Their numerical values can be fixed only from

experimental data.

From Eq.(6.45) we see that the maximal accleration induced by the κ-deformed space-

time depends on the inverse of magnitude of the spatial coordinate. This |x| term in

the Amax expression is contributed by the xµ dependent term of the realisation given

in Eq.(6.31). Due to the non-commutativity we can not localise a particle below the

minimal length scale, i.e., |x| ≤ a is not allowed. Therefore one cannot take the limit

x → 0 with a 6= 0 in the above expression. Note that this |x| becomes the minimum

distance of separation between the particles which moves under the influence of a force

exerted between them.

Using Eq.(6.45) and expression for the Unruh temperature, here also we can calculate

the maximum temperature as in sec.6.2. Thus by choosing 2|x| = λc, we obtain the

expression for the maximum temperature as

Tmax =
}c

2πka

1

(1 + α)

(
1 +

5ap0

~c
(1 + β + 2α)

)
. (6.46)
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Unlike Eq.(6.18), here we find that the maximal temperature diverges in the commu-

tative limit, a → 0. In the classical limit ~ → 0, Tmax → 5p0(1+β+2α)
2πk(1+α) , where the

non-commutative parameters α and β obey either α > −1, β > −(1 + 2α + c~
ap0

) or

α < −1, β < −(1 + 2α+ c~
ap0

).

6.4.1 Bounds on α and β using κ-deformed Newtonian limit

Here we first derive the κ-deformed geodesic equation, valid up to first order in a and

then obtain the corresponding Newtonian limit. We use this Newtonian limit to compute

the bound on α and β.

The κ-deformed Christoffel symbol is defined as

Γ̂µνλ =
1

2
ĝµρ
(
∂ν ĝρλ + ∂λĝνρ − ∂ρĝνλ

)
(6.47)

Substituting Eq.(6.39) in Eq.(6.47), we obtain the Christoffel symbol in κ-deformed

space-time, valid up to first order in a, as

Γ̂µνλ = Γµνλ +
1

2

a

}

(
m2Bµνλσ

dxσ

dτ
+
p0

c
Cµνλ
)
, (6.48)

where,

Bµνλσ = αgµρ
(

2∂νgσ[ρδλ]0 + 2∂λgσ[ρδν]0 − 2∂ρgσ[νδλ]0 + ∂ν

(∂gρλ
∂t

xσ
c

)
+ ∂λ

(∂gνρ
∂t

xσ
c

)
− ∂ρ

(∂gνλ
∂t

xσ
c

))
+

3

2
gµρ
(
∂νgσ[ρδλ]0 + ∂λgσ[ρδν]0 − ∂ρgσ[νδλ]0

)
+

3

2

(
∂νgρλ + ∂λgνρ − ∂ρgνλ

)
g[µ
σ δ

ρ]0

+ α
(
∂νgρλ + ∂λgνρ − ∂ρgνλ

)(
2δ0[ρgν]σ +

1

c

∂gµρ

∂t
xσ
)

+ βgµρ
(
ηρ[λ∂ν]g0σ − ηνλ∂ρg0σ

+ δσ[λ∂ν]gρ0 − ∂ρg0[λδν]σ + δρ0∂[νgλ]0 + ∂σgρ[λδν]0− δρ0∂σgνλ + x0∂ρ∂[νgλ]ρ − x0∂ρ∂σgνλ

)
+ β

(
g0ση

µρ + δ[ρ
σ g

µ]
0 + x0∂σg

µρ
)(
∂νgρλ + ∂λgνρ − ∂ρgνλ

)
,

(6.49)

Cµνλ =

(
4αgµρ +

(
α+ 1

)(
x · ∂g

µρ

∂x

))(
∂νgρλ + ∂λgνρ − ∂ρgνλ

)
+
(
α+ 1

)
gµρ
(
∂ν

(
x ·

∂gρλ
∂x

)
+ ∂λ

(
x · ∂gνρ

∂x

)
− ∂ρ

(
x · ∂gνλ

∂x

))
.

(6.50)

The geodesic equation in the κ-deformed space-time is defined as

d2x̂µ

dτ2
+ Γ̂µνλ

dx̂ν

dτ

dx̂λ

dτ
= 0. (6.51)
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Now we calculate dx̂µ

dτ and d2x̂µ

dτ2
(valid up to first order in a) from Eq.(6.30) and Eq.(6.51)

becomes

d2xµ

dτ2
+ Γµνλ

dxν

dτ

dxλ

dτ
+
a

}
Dµνλ

dxν

dτ

dxλ

dτ
+
a

}
Eµνλσ

dxν

dτ

dxλ

dτ

dxσ

dτ
+
a

}
Fµνλ

d2xν

dτ2

dxλ

dτ
= 0, (6.52)

where,

Dµνλ =2α
q0

c
Γµνλ +

1

2

p0

c
Cµνλ,

Eµνλσ =m(α+ 1)Γµργ

(
δρσδ

γ0 + δγσδ
ρ0
)
ηνλ +

1

2
m2Bµνλσ +mβδσ0Γµνλ,

Fµνλ =3m
(
α+ 1

)
ηνλδ

µ0 +m
(
α+ 1

)
xν

(
δρλδ

γ0 + δγλδ
ρ0
)

Γµργ+

βm
(
δλ0δ

µ
ν + δνoδ

µ
λ

)
+ βmx0Γµνλ

(6.53)

In the above expressions m and q0 are the mass and energy coming from the a dependent

realisation of the κ-deformed coordinate x̂µ. Similarlym2 and p0 are the mass and energy

coming from realisation associated with the metric ĝµν .

Now we obtain the Newtonian limit of the κ-deformed geodesic equation given in Eq.(6.52),

using the following conditions

� particles are moving slowly, i.e.,

dxi
dτ

<<
dx0

dτ
, (6.54)

� gravitational field is static, i.e.,
∂gµν
∂t

= 0, (6.55)

� gravitational field is weak and we linearise the metric as

gµν = ηµν + hµν , |hµν | << 1. (6.56)

Thus using these condition we get from Eq.(6.52)

d2x0

dτ2

(
1 +

a

}
m(3α+ β + 3)

dx0

dτ

)
− 1

2

a

}
βm∂ih00

d2xi

dτ2

dx0

dτ
= 0. (6.57)

Multiplying Eq.(6.57) throughout by
(

1− a
}m(3α+β+3)dx

0

dτ

)
and considering the terms

valid up to first order in a, we get

d2x0

dτ2
− 1

2

a

}
βm∂ih00

d2xi

dτ2

dx0

dτ
= 0. (6.58)
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In the commutative space-time, 1
c
dx0

dτ can be written in terms of the linearised met-

ric h00 as 1
c
dx0

dτ = 1 − 1
2h00. By substituting 1

c
dx0

dτ = 1 − 1
2h00 in Eq.(6.58), we get

1
2
a
~βmx0∂ih00

d2xi

dτ2

(
1 − 1

2h00

)
= 0. This is possible only when, d2xi

dτ2
= 0 or h00 = 2 or

β = 0. But for an accelerating particle d2xi

dτ2
6= 0. Similarly h00 defines the commutative

Newton’s potential and hence h00 6= 2. Thus in order to obtain a consistent result we

have to choose β = 0. Thus now onwards we do the remaining calculations by choosing

β = 0. Thus Eq.(6.58) becomes
d2x0

dτ2
= 0. (6.59)

From the deformed geodesic equation, we also get another equation for the spatial com-

ponents as

d2xj

dτ2

(
δij +

a

}
m(α+ 1)xj∂ih00

dx0

dτ

)
= −1

2
∂ih00

dx0

dτ

dx0

dτ
− 1

2

a

}

(
α
(

2
q0

c
+ 4

p0

c

)
∂ih00+

(α+ 1)
p0

c
∂i

(
x · ∂h00

∂x

))dx0

dτ

dx0

dτ
− 1

2

a

}

(
2m (α+ 1) +m2 (4α+ 3)

)
∂ih00

dx0

dτ

dx0

dτ

dx0

dτ
.

(6.60)

Now we multiply Eq.(6.60) throughout by
(
δij − a

}m(α+ 1)xj∂ih00
dx0

dτ

)
and by keeping

the first order terms in a and h00, we get

d2xi

dτ2
= −1

2
∂ih00

dx0

dτ

dx0

dτ
− 1

2

a

}

(
α
(

2
q0

c
+ 4

p0

c

)
∂ih00 + (α+ 1)

p0

c
∂i

(
x · ∂h00

∂x

))dx0

dτ

dx0

dτ

− 1

2

a

}

(
2m (α+ 1) +m2 (4α+ 3)

)
∂ih00

dx0

dτ

dx0

dτ

dx0

dτ
.

(6.61)

In order to get the Newtonian limit we use 1
c
dx0

dτ = 1− 1
2h00 in the above equation and

keep the terms valid up to h00. We also take q0 = m and p0 = m2 as the particle is

moving very slowly. Using these arguments and the commutative expression for Newton’s

potential, i.e., h00 = −2GM
c2r

, we get expression for the Newton’s force equation, in the

κ-deformed space-time as

F̂ i = F i
(

1 +
a

}

(
p0

c

(
7α+ 2

)
+mc

(
4α+ 2

)))
, (6.62)

where F i = −mMGxi

r3
. From the above we observe that the first order κ-deformed

correction of the Newton’s force equation, contains two a dependent terms. The first

correction term of Eq.(6.62) depends on the deformation energy scale of the metric p0

and the second correction of Eq.(6.62) depends on the rest mass of the particle. Here

the mass dependent term in the κ-deformed Newton’s force equation is contributed by

the momentum dependent term of the realisation given in Eq.(6.31).

We observe that the mass dependent term present in the first order correction term

of the κ-deformed Newton’s force equation violates the principle of equivalence. The
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change in the ratio of gravitational mass to the inertial mass is obtained as δ(
mg
mi

) =
amc(4α+2)

~ . The violation of equivalence principle has been constrained experimentally

as δ(
mg
mi

) < 10−13 [50] and thus we have amc(4α+2)
~ < 10−13. Therefore we get the bound

on α as α < −0.5, for a unit massive test particle and the deformation parameter within

the range a = 10−49m to a = 10−21m. From the positivity condition on the magnitude

of the maximal acceleration we get α > −1. By combining these two bounds on α, we

obtain the range of allowed values for α as −1 < α < −0.5 for β = 0.

6.5 Conclusions

In this chapter we have studied the maximal acceleration in the κ-deformed space-time

and analysed its implications. We have evaluated the corrections to the maximal accel-

eration of a massive particle, valid up to the first order in the deformation parameter.

This is derived using two different approaches.

This is first derived from the time-like events in 8-dimensional κ-deformed phase-space,

which is constructed using the 4-dimensional κ-Minkowski line element and the κ-

deformed dispersion relation. It was found that the first order correction to the maximal

acceleration (see Eq.(6.16)) depends on the rest mass of particle and the maximal ac-

celeration vanishes for a massless particle. But this correction does not depends on the

metric deformation energy k0, even though the realisation ϕ = e−ak
0

depends on the

deformation energy. In the commutative limit a→ 0, we recover the Caianiello’s maxi-

mal acceleration [5, 6]. As in the commutative case here also the maximal acceleration

diverges in the classical limit }→ 0. We have also calculated the maximal temperature

associated with thermal radiation in κ-deformed space-time, by using the expression

for maximal acceleration in Unruh temperature. In the commutative limit a → 0, this

reduces to one obtained in [35]. Further by comparing this deformed maximal temper-

ature with the experimental data on the Unruh temperature, we obtain a bound on the

length scale associated with the κ-deformed space-time as a ≤ 10−26 m. The first order

κ-deformed corrections of the maximal acceleration has also been derived in an alter-

nate way by using the κ-deformed uncertainty principle between the spatial coordinate

and its conjugate momenta. The first order correction terms of these expressions (i.e.,

Eq.(6.17) and Eq.(6.29)) differ only by a numerical factor 1/2.

We then show that κ-deformed space-time geometry induces an upper bound on the

acceleration of a massive particle. This maximal acceleration (see Eq.(6.45)), valid

up to first order in a, has been obtained from the time-like events associated with

4-dimensional κ-Minkowski space-time. This maximal acceleration has emerged soley

due to the non-commutative geometry of the κ-Minkowski space-time. The maximal
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acceleration derived in Eq.(6.17) and Eq.(6.45) different as the first one is derived using

the generalisation of Caianiello’s approach to non-commutative space-time whereas the

second one is derived by considering the line element in the 4-dimensional κ-Minkowski

space-time.

The maximal acceleration (see Eq.(6.45)) in the κ-Minkowski space-time contains two

terms. Both these terms depend on the rest mass of the particle, minimum distance of

approach and the (dimensionless) non-commutative parameter α. In addition to this the

first term also depends on κ-deformed length scale a. Note that the second term depends

on metric deformation energy p0 and the (dimensionless) non-commutative parameter

β. Here these parameters α, β and the deformation energy p0 come from the realisation

given in Eq.(6.31)). By imposing the positivity condition on the magnitude of the

maximal acceleration we get the bounds on α and β as either α > −1, β > −(1+2α+ c~
ap0

)

or α < −1, β < −(1 + 2α+ c~
ap0

) respectively.

The maximal acceleration approaches infinity when we take the commutative limit a→
0. Another novel feature associated with this maximal acceleration (see Eq.(6.45)) is

the existence of an } independent term. Therefore in the classical limit } → 0, the

maximal acceleration (induced by the 4-dimensional κ-Minkowski space-time) attains a

finite value unlike the maximal acceleration in Eq.(6.17) (where it becomes infinity in

the classical limit).

We also show that the consistent Newtonian limit of the κ-geodesic equation (corre-

sponding to realisation given in Eq.(6.31)) can be obtained only when β = 0. Further

we construct the κ-deformed Newton’s force equation, valid up to first order in a. Here

the first order correction term contains deformation energy p0 dependent term as well

as the mass dependent term. This mass dependent term violates the principle of equiva-

lence. The violation of equivalence principle in the κ-deformed space-time has also been

reported in [48], while studying the Kepler problem in κ space-time. By comparing this

equivalence principle violating term with the experimental result, we find a bound on

non-commutative parameter as α < −0.5. Thus by combining this with earlier bounds

we get possible allowed range of values for α as −1 < α < −0.5 with β = 0.
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Chapter 7

Conclusions

In this thesis, we have investigated some implications of two non-commutative space-

times, viz; κ-deformed and DFR space-times. We have analysed issues such as quan-

tisation of certain non-commutative fields (such as κ-scalar, κ-Dirac and DFRA-scalar

fields), core envelope model of κ-deformed superdense star and the maximal acceleration

in κ-deformed space-time.

In chapter 1, we have presented motivations for studying non-commutative space-times.

We have also given a brief summary of the non-commutative space-times such as κ

space-time and DFR space-time in this introductory chapter.

The non-uniqueness associated with the Lagrangians of non-commutative fields makes

the usual quantisation schemes ambiguous. To overcome this difficulty, we have studied

the quantisation of non-commutative field theory using only their equation of motions,

which are uniquely given by the quadratic Casimir of the symmetry algebra. This is

done by generalising the Takahashi-Umezawa approach to non-commutative space-time.

We have applied this approach and quantised the κ-scalar field (in chapter 2), κ-Dirac

field (in chapter 3) and DFRA-scalar field (in chapter 4).

In chapter 2, we have derived the deformed unequal time commutation relation between

the deformed scalar field and its adjoint by assuming the usual form of the oscillator

algebra. Further, we obtained a deformed oscillator algebra (valid up to first order in a)

by demanding the unequal time commutation relation between the deformed scalar field

and its adjoint to be undeformed. We have constructed the energy-momentum tensor

and the Lorentz generator (valid up to first order in a) for the κ-deformed scalar field.

We have also studied the implications of the deformed oscillator algebra to Unruh effect

using the method of Bogoliubov coefficients. We showed that the vacuum expectation

value of the (Rindler) number operator (associated with the κ-deformed scalar field)
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in Minkowski vacuum is modified and this modification is caused due to the deformed

oscillator algebra.

In chapter 3, we have derived the deformed unequal-time anti-commutation relation be-

tween the deformed Dirac field and its adjoint by using the usual form for the fermionic

oscillator algebra. Next, by imposing the unequal time anti-commutation relation be-

tween the Dirac field and its adjoint to be undeformed, we show that the fermionic

creation and annihilation operators obey deformed oscillator algebra (valid up to first

order in a). This deformation factor is exactly the same as the deformation factor

appearing in the deformed oscillator of the κ-scalar field. The number operator, energy-

momentum tensor and Lorentz generator for the κ-Dirac field are also derived without

referring to its Lagrangian. The a dependent term of the deformed number operator has

a mass-dependence. Such mass-dependent term is expected to have phenomenological

implications and this has to be studied separately. We have also studied the discrete

symmetries associated with the κ-Dirac field and have constructed the conserved cur-

rents corresponding to parity and time-reversal symmetries of the κ-deformed Dirac

equation. Further, by generalising the consistency condition (of the conserved quanti-

ties constructed in the Takahashi-Umezawa scheme) to the κ-deformed space-time, we

have shown that charge conjugation is not symmetry for the κ-deformed Dirac equation

(even up to first order in a).

In chapter 4, we have studied the quantisation of the DFRA scalar field. The action

associated with the DFRA scalar field is not unique due to the non-uniqueness in the

choice of weight function, which is introduced in action to control the divergences associ-

ated with the θ integration. We have obtained the deformed (equal-time) commutation

relation between the DFRA scalar field and its conjugate by assuming the creation and

annihilation operators to satisfy the usual oscillator algebra. We then showed that im-

posing the commutation relation between the DFRA scalar field and its conjugate to be

undeformed, leads to a deformed oscillator algebra. We find that this deformation factor

depends on the choice of the weight function and this is coming from the equation of

motion, which has the weight function dependent term. We have also constructed the

energy-momentum tensor and Lorentz generator for the DFRA scalar field. Further, we

have studied the Unruh effect in DFR space-time by analysing a uniformly accelerating

monopole detector coupled to a massless DFRA scalar field. We showed that this ther-

mal distribution is either Bose-Einstein or Fermi-Dirac, depending upon the dimension

of DFR space-time. As in the case of κ-deformed scalar field, here also we showed that

the Unruh temperature is unaffected by the non-commutativity of space-time.

In chapter 5, we have studied the effects of the non-commutativity on superdense



star by generalising the anisotropic core-envelope model of the superdense star to κ-

deformed space-time. We have constructed the κ-deformed Einstein’s equation by re-

placing the commutative quantities with the κ-deformed ones. We then solved this

deformed Einstein’s equation (valid up to first order in a) in the core and envelope

separately. We observe that density is scaled under the κ-deformation. The deformed

density decreases from a maximum value at the centre to a minimum value on the

outer boundary and thus, we showed that the law of density variation is preserved un-

der the κ-deformation. We also obtained the expressions for the deformed isotropic

core pressure, deformed radial pressure and deformed tangential pressure (valid up

to first order in a). Further, we showed that their values are positive and these val-

ues decrease monotonically as we move from the central core to the outer envelope of

the superdense star. We observe that the speed of sound inside the superdense star

is less than the speed of light. The density and pressures of the κ-deformed super-

dense star is found to satisfy the conditions for a physically acceptable model, i.e.,

ρ̂ > 0, p̂ > 0, p̂t > 0, p̂r > 0, dρ̂
dr < 0, dp̂

dr < 0, dp̂t
dr < 0, dp̂r

dr < 0, dp̂
dρ̂ < 1, dp̂t

dρ̂ ,
dp̂r
dρ̂ < 1.

In chapter 6, we have studied the maximal acceleration in the κ-deformed space-time

using two different approaches. In the first method, we have derived the κ-deformed

corrections to the maximal acceleration, valid up to the first order in a, using the 8-

dimensional line element defined on the κ-deformed phase-space. Further, we derived

the first order κ-deformed corrections to the maximal acceleration from the κ-deformed

uncertainty principle. In the second method, we have shown the emergence of maximal

acceleration (valid up to first order in a) using the 4-dimensional line element on κ-

Minkowski space-time. We then derived the κ-deformed geodesic equation and obtained

its Newtonian limit. We showed that κ-deformed Newton’s force equation contains an

equivalence principle violating term. By comparing this violation with the experimental

result on the violation of the equivalence principle, we obtain a bound on the dimen-

sionless non-commutative parameters present in the non-commutative correction to the

maximal acceleration obtained using the second approach.

It will be quite interesting to use the Takahashi-Umezawa quantisation procedure to

study the quantisation of κ-deformed gauge fields and see the implications of the de-

formed oscillator algebra. Further, we plan to study the quantisation of DFRA-Dirac

field and obtain its deformed oscillator algebra. We also plan to apply this method

to study the quantisation of high spin fields. We are also interested in studying the

behaviour of quark star in non-commutative space-time.
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