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PREFACE

It is well — known that the pairing mechanism for the high — temperature
superconductivity (HTCS) in cuprates is still not clear. A number of
researchers have advocated the electronic mechanism as the cause of
superconductivity in the cuprates. However, quite a few researchers have
also suggested the phonon mechanism. Since high — T, materials like
cuprates are strongly correlated narrow — band systems, the Holstein —
Hubbard (HH) model should be the suitable model to investigate the HTSC
in cuprates. Unfortunately, however, the explanation of superconductivity
using the HH model runs into a serious difficulty. To understand this, one
has to look into the nature of the ground states provided by the HH model.
The HH system can have different quantum phases. When the electron (el)
— phonon (ph) interaction is small, the ground state of the HH system is a
spin —density —wave (SDW) state and when the el — ph interaction is strong,
the ground state of the system is a charge — density — wave (CDW) state.
This is not an encouraging scenario from the point of view of
superconductivity because to achieve high transition temperature one needs
to have strong el — ph interaction, while the strong el — ph interaction leads
the system into a CDW insulator. Thus, superconductivity looks impossible
in the HH model. Of course, one may be curious to study the transition
region. In fact, Hirsch and Fradkin performed a Monte — Carlo study of the
HH model and showed that the transition from SDW phase to CDW phase

is direct so that there is no metallic phase in the HH model at all.

Takada and Chatterjee (TC) in 2003 took up the 1D half —filled HH

model for a more critical analytical investigation and studied the SDW —
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CDW transition in this system using a variational method coupled with the
Bethe — ansatz technique. Their analysis shows that there exists an

intervening metallic phase at the crossover of the SDW — CDW transition.

This theoretical observation is important because the existence of
such a metallic state would be just ideal for High — Tc superconductivity.
The work of TC has been supported by many researchers [Phys. Rev. Lett.
95, 096401 (2005), Phys. Rev. B. 75, 245103 (2007), Phys. Rev. B 83 033104
(2011)], but there also exist a few investigations [Phys. Rev. Lett. 95 226401
(2005), Phys. Rev. B 76 155114 (2007), Phys. Rev. B 75 161103 (R) (2007)] which
refute the existence of the metallic phase predicted by TC. Chatterjee and
collaborators [Physica C. 457, 55 — 59 (2007), Adv. Con. Matt. Phys. 2010,
350787 (2010), Physica B 489, 17 — 22 (2016)] have therefore studied this
problem analytically with more improved variational wave functions.
Interestingly, they have shown that each improvement in the variational
wave function leads to a broadening of the intermediate metallic phase. This
result is important because if an improved variational calculation predicts a
narrower metallic phase, the very existence of the intermediate metallic
phase will be doubtful. Since the variational calculations performed by
Chatterjee and collaborators are still approximate, they can be further
modified and improved. In the present work, we make attempts in this
direction. We propose more improved variational functions as compared to
[Physica C. 457, 55 — 59 (2007)] by incorporating the phonon coherence and
correlation in a more accurate way and then deal with the effective
electronic problem by the exact Bethe — ansatz method [Phys. Rev. Lett. 20,
1445 — 1448 (1968)] to accomplish a lower ground state energy. These works
are expected to unravel the nature of the phase transition in the HH model
more accurately and we will be in a position to make a make more authentic

prediction on the width of the metallic phase.
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The organization of the thesis is as follows. In Chapter 1, we
introduce the subject of the thesis in general and discuss the motivation for
carrying out this work. We first describe the Tight — Binding model and then
introduce electron correlation and the Hubbard Model. Thereafter we touch
upon the concept of phonons and present the Holstein model. In this context
we discuss polarons and bipolarons. Next, we present a brief introduction
to the Holstein — Hubbard model and discuss the SDW and CDW phases.

In chapter 2, we present our recent work on the HH model in one —
dimension (1D) at half filling by where we have used an improved
variational calculation. We have employed a series of unitary
transformations [Physica C. 457, 55 — 59 (2007)] to take into account the
coherence and correlation of phonons. To treat the phonon subsystem more
accurately a new squeezing transformation is introduced to incorporate the
electron — density — dependent phonon correlations to lower the ground
energy further. The effective electronic Hamiltonian is next obtained by
averaging the transformed Hamiltonian with respect to the zero — phonon
state and the resulting effective electronic Hamiltonian is then solved exactly
using the method of Bethe — ansatz. Finally, the ground state is obtained by
minimizing the energy with respect to all the variational parameters. The
method gives better results as compared to the earlier works [Physica C. 457,
55 — 59 (2007), Adv. Con. Matt. Phys. 2010, 350787 (2010), Physica B 489, 17 —
22 (2016)], for the ground state energy and also suggests the existence of a
wider intermediate metallic phase at the SDW — CDW. The present results
lend credence to the initial observation of TC. It may be noted here that it is
not important by how much amount the metallic phase widens in an
improved approach, rather what is important is that the metallic phase does

widen and does not shrink.
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In Chapter 3, we study the 1D half — filled HH model with a more
improved variational wave function for the phonons than the one used in
Chapter 2. In fact, here we consider a Generalized many — phonon state to
obtain an effective Hubbard model which we then solve exactly by using
Bethe — ansatz technique to obtain the ground state energy. The present
variational state leads to a lower ground state energy as compared to those
obtained from all the previous variational calculations. Furthermore, we
show that the width of the metallic phase also increases with the present

improved method.

In Chapter 4, for the same system as in Chapter 3, we study two new
parameters namely, the Double Occupancy and the Entanglement Entropy
at the boundary of the SDW — CDW phases of the 1D HH system at half
filling. The results reconfirm that an intermediate metallic phase exists at

the cross — over region of the SDW — CDW phases.

Finally, in Chapter 5, we briefly summarize our

results and make a few comments on our findings.
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Chapter 1

Introduction

1.1 Introduction and Motivation

The theory of high — temperature superconductivity in cuprates [1 — 3] has
remained a topic of debate in the field of Condensed matter physics for the
past few decades. These superconductors are found different from the old
superconductors in many ways. For instance, the transition temperature in
these new superconductors is much higher compared to the old
superconductors in which the superconductivity is caused by Cooper pairing
induced by phonon mechanism which can be explained by the BCS
(Bardeen, Cooper, and Schrieffer) theory [4]. Furthermore, in high T,
superconductors (HTSC) the coherence length is much smaller than that in
the usual superconductors in which the coherence length is of the order of
10~*cm. Though different kinds of mechanisms [5] were recommended in
the past, a general agreement has been lacking. In fact, so far no single theory
could explain all the properties of HTSC successfully.

One of the prospective mechanisms proposed for causing
superconductivity in HTSC is electron (el) — phonon (ph) interaction [6 —
11] which is responsible for creating polarons and bound — pair of polarons
called bipolarons. According to some of these models, the normal phase of
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these materials ought to contain polarons or bipolarons as quasiparicles.
Since these systems are correlated structures, the Holstein model can be
considered more suitable than the standard Frohlich model for the
description of the corresponding polarons or bipolarons in these systems.
Several temperature scales exist in this problem. First is Tgcs, the critical
temperature corresponding to BCS superconductivity induced by Cooper —
pairing of polarons [4]. Tgp Is another temperature scale. At this
temperature, two individual polarons will interact to make a bound state in
the real space, which is a static local bipolaron. If Tgp is greater than Ty,
the system’s normal phase will be characterized by bosonic quasiparticles
namely the bipolarons. In this scenario, one can think of another temperature
scale namely, Ty at which bipolarons may undergo the Bose condensation.
So, in this case, the Bose condensate of bipolarons can be claimed to be the
superconducting phase. A number of properties of cuprates can be explained
by the polaronic or bipolaronic mechanism [12 — 17], but some analysts have
been critical of this mechanism. The reason is the following. The formation
of polarons and bipolarons requires a strong el — ph interaction, which
according to these analysts is, however, the biggest stumbling — block of the
polaronic theories. If the el — ph coupling is small in strength, a system will
be inclined to stay in a spin — density — wave (SDW) ground state (GS) that
may be characterized as an antiferromagnetic polaronic state. This is also
referred to as the Mott insulating phase. If the el — ph interaction is made
strong enough to dominate over the el — el Coulomb repulsion, the net onsite
interaction may become attractive and in that case, the GS may be a charge
— density — wave (CDW) state. This would be, of course, a bipolaronic state.
In this phase, the system behaves as an insulator and may be referred to as
the peierls insulator. Thus, on increasing the el — ph interaction from a low

value to a high value, one may transform the system from a Mott insulator
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to the Peierls insulator. Based on this argument, the system should be in an
insulating phase irrespective of the strength of the el — ph interaction. From
this point of view, the el — ph mechanism was discounted in the beginning.
But one would still like to know the detailed transition behaviour at the
CDW — SDW cross — over region. In fact, the SDW — CDW cross — over
behaviour of the Holstein — Hubbard model [19 — 23] was explicitly
investigated by Hirsch and Fradkin (HF) [18] by using a Monte — Carlo
calculation. This study has revealed that as the strength of the el — ph
coupling is enhanced, at some el — ph interaction coefficient, the HH system
undergoes a direct SDW — CDW transition. In 2003, Takada and Chatterjee
(TC) [24] considered the HH Hamiltonian again and looked into SDW —
CDW cross — over region more carefully. This study has been on the
speculation that the competition between the el — ph interaction and the
Coulomb correlation may cause some sort of compromise or frustration
leading to an intermediate phase which may not be insulating. TC employed
an analytical method and performed a variational calculation coupled with
the exact Bethe — ansatz technique [25 — 26] to show the existence of an
intervening phase at the SDW — CDW cross — over region in the one —
dimensional (1D) HH system and interestingly this intermediate phase has a
metallic character. Chatterjee and Takada [27] have subsequently shown that
the anharmonicity increases the extent of the conducting region.

The results of TC threw a challenge among the researchers in the
area and motivated further investigations on this issue [28 — 35] which
supported  the prediction of TC. However, there have also been a few
investigations [36 — 38] which predicted results that are not in agreement
with the results of TC. Since the approach of TC is variational, it would be
interesting to make improvements in the calculation of TC and analyze the

modified results. An improved variational calculation will of course lower
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the GS energy but the important point is to find how the width of the metallic
phase changes. It may so happen that in the improved calculation the
metallic phase disappears or the extent of the metallic region shrinks. In that
case one can have a serious doubt about the presence of the metallic phase.
However, if the metallic phase broadens, then one can have more confidence
in the prediction of TC. With this goal in mind, Chatterjee and collaborators
[39 — 43] have modified the variational calculation of TC and the results of
these investigations have supported the result of TC. Since these calculations
are approximate, it is important to make more and more accurate
calculations and examine the veracity of the results of TC. The main purpose

of this thesis is to make attempt in this direction.

1.2 Model

High T, cuprate superconductors are narrow band materials and electrons
in these materials would mostly be localized at the lattice sites and will move
from one site to other site only by hoping. To deal with such electrons, one
would normally use the Tight — Binding model [44 — 45].

1.2.1 Tight - Binding Model

It is well known that the Tight Binding model [44] is a suitable approach
for the calculations of electronic band structures for localized electrons. The
method uses a superposition of atomic orbitals. The tight — binding

Hamiltonian (H;g) in second quantization notation can be written as:

Hrp = — Z tijCiTnga ) (D

<ij>
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where ci‘;(cja) is the creation (annihilation) operators of an electron with
spin o, where the notation (i, j) implies that the summation is

over nearest neighbours i and j only and ¢;; is the hopping integral given

by

tij = [dre;(r) [—%VZ + U(T)] @),

where U (r) refers to the lattice potential at 7, @;(;(r) = @(r — 1y(;)) are
the atomic orbitals, r;;) being the coordinate of i(j) — th site. The

hopping integral finally assumes the following expression:

1

tij = ﬁ Ekeik(ri_rj) (2)
k

where g, is the energy of an electron in state k.

We calculate the energy of the system using the Bloch function ¢ (r;) =
e*Tiy, (r;), which is a periodic function and where u has the same
periodicity as the lattice. In many systems, t;; would be equal for all nearest
neighbours, therefore we choose t;; = t. The tight — binding energy for a

three — dimensional (3D) system can be written as:

& = —tz cos(k.a) . 3

a

For a one — dimensional system, there are two nearest neighbours and we
have: @ = *a, where a is the lattice constant and the energy of an electron

in state k will be given as:

g, = —2tcos(ka). (4)



6]

The energy dispersion relation is plotted schematically in Fig. 1.1. If the
band contains N (number of unit cells in the system) k states and since each

k state can have two electrons, the band can contain 2N electrons.

Fig. 1.1 Energy dispersion relation of a Tight — binding model for a 1D lattice chain of

lattice spacing a.

Fig. 1.1 shows that the Brillouin zone spreads from —7/, to ™/, and the
width of the band is 4t. The Tight — Binding model is a useful model to
categorize the materials into metals and insulators, based upon the overlap
of the wave functions, band filling factor and the lattice constant. As
mentioned above, in narrow band materials, electrons would mostly stay
localized at lattice sites and would move from one site to another only by
hopping as shown in Fig. 1.2. We consider a one — dimensional (1D) chain
of electrons with the assumption that the chain is half filled i.e. we have just

one electron per site.
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® ; ® i @ i
1 t )
Fig. 1.2 Hopping of an electron from one site to another in a 1D chain of electrons. The

parameter t denotes the strength of hopping.

An electron can hop from a certain site to its nearest site by hopping, only if
that site is unoccupied or occupied by an electron of opposite spin. The
tight — binding model suggests that if we consider one electron per site
(which can contain in general two electrons of opposite spins), the band will
be half filled and the system should behave as a metal. According to this
model, substances like V203, FesOs, VnO: etc. should be metals but
experimentally they turned out to be insulators. So, the simple Band theory
cannot justify the non — metallic properties of the systems mentioned above.
Mott and Hubbard later elucidated the insulating properties of these
materials. They suggested that the insulating behaviour of the
aforementioned materials could be attributed to the el — el Coulomb
correlation, and these materials are known as Mott insulators. Hubbard
proposed a model that provides the necessary framework for dealing with

correlated systems and this model is known as the Hubbard model.

1.2.2 Hubbard Model

As mentioned above, Hubbard demonstrated the insulating properties of
certain materials introducing the phenomenon of el — el coulomb correlation.

The el — el interaction term proposed by Hubbard is given by [20]
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Heorr = U Z nyn;y,
i

where U is the on — site el — el interaction strength (Coulomb correlation
strength) and n;, denotes the number operation for spin — ¢ electrons at the
i —thsite. o =T refers to the up —spin state and o =! refers to the down —
spin state of the electron. When the above el — el interaction term is
combined with the tight binding Hamiltonian, we get the celebrated Hubbard
model which is given by

Huubbara = —tZ(C;raCja +clcio) + UZ NNy ()
ijo i
This model permits electrons to hop between neighbouring sites while also
allowing them to be localized at the lattice sites. As a result, both the
scenarios of localization and delocalization are addressed in this model. The
Hubbard model has proved useful in explaining several phenomena in

condensed matter physics.

1.3 Polarons and Bipolarons

The concept of polaron was introduced in 1933 by Landau [46]. If we have
an impurity electron in an ionic crystal, as shown in the Fig. 1.3, the electron
will repel the negative ions and attract the positive ions in its vicinity because
of the Coulomb interaction. This will lead to the distortion of the lattice
around the electron and consequently a polarization potential for the
electron. The electron can then get trapped in this potential, if the potential
becomes sufficiently deep. This bound electron will have its own energy

levels and was later referred to as a strong — coupling polaron. The name
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“polaron” was coined by Pekar. Later, Landau and Peker [47] determined

the energy of the polaron and its effective mass.

Fig. 1.3 A conduction electron in an ionic crystal.

To characterize a polaron, Frohlich [48] devised a quantum mechanical
Hamiltonian. In this picture, an electron distorts the lattice in its
neighbourhood and carries the lattice distortion together with it as it moves
through the lattice (Fig. 1.4). This complex i.e. the electron together with the
lattice distortion constitutes a quasi — particle which is called a polaron [49
- 50].

= = m = = o= F

Fig. 1.4 An impurity electron distorting the lattice in its neighborhood as it
moves.
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_
If the deformation of the lattice is restricted over a single lattice distance, the
corresponding polaron is called a small polaron (Fig. 1.5). This happens
when the el — ph interaction is strong. Because in this case, the lattice
distortion will be more and the corresponding polarization potential will be
deep and as a result, the electron will be trapped in the potential and the
polaron will be small. On the other hand, if the lattice distortion is not
restricted to one lattice spacing, but extends over a few lattice points in the
crystal, then we call it a large polaron, as shown in Fig. 1.5. In this case, the
interaction of the electron with the phonons is weak and so the potential
created by the electron will be shallow and the corresponding polaron will
be large in size. The Fraohlich model is based on the continuum model and

therefore it is more suitable for a large polaron.

) :
00 ©0 ©0 00
Large Polaron Small Polaron

Fig. 1.5 Small and Large polarons
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1.4 Holstein Polaron/Polaron in Tight binding model

Based on the Tight — Binding model, Holstein [19] proposed a new
formulation for the polaron problem which is more suitable for a small

polaron. The Holstein Hamiltonian is given by

H = —tZ(c;Cj(,) + hag Z bib + g Z e (b1 +b).  (6)

ijo i ic
In Eq. (6), the first term is the hopping term where the operator lera(%)
creates (annihilates) an electron of spin ¢ at site i and the parameter t gives
the strength of hopping. The second term denotes the phonon Hamiltonian,
where the operator b;f (b;) creates (annihilates) a phonon of dispersionless
frequency w at site i. The third term gives the el — ph interaction, where g

is the el — ph interaction strength.

In a certain situation, the phonon — induced attraction between two
electrons may dominate over the repulsive el — el interaction. In such a
scenario, two electrons can form a bound pair, which is referred to as a

bipolaron [49].

1.5 Holstein — Hubbard Model

When we include lattice dynamics (phonons) in the Hubbard model, then

one can also have el — ph interaction in the system (Fig. 1.6).
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Fig. 1.6 The parameter t gives the strength of hopping, g denotes the strength of the
onsite el — ph interaction and U refers to the onsite el — el interaction strength in a 1D

chain.

The Holstein — Hubbard (HH) Hamiltonian [21, 22] is given by

H= —tz(ci‘:,cja + cjt,cia) + UE Nty
i

ijo

+ hw, Z bib + g z N (b1 + by) %
i io

The el — ph interaction coefficient g is often written as: g = Vaw,, where
a is called the el — ph coupling constant.

Now we have three parameters in the problem, the hopping
parameter t, the onsite el — el Coulomb correlation strength U and the onsite
el —ph interaction coefficient g. In order to see the competition between the
el — el interaction and el — ph interaction, one has to keep the value of t at
a certain finite value. The parameter that dominates over the others will

decide the ground state of the system.
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1.5.1 Spin Density Wave
The antiferromagnetic GS of metals is the spin — density — wave (SDW)
state, in which the density of conducting electrons’ spins at Fermi level is
spatially modulated (Fig. 1.7). Mostly SDW state can be observed in metals
and alloys having high density of states at Fermi level. The most leading
element where SDW can be observed is Chromium and its alloys. Albert
Overhauser [51] was the first to show the existence of SDW for the first

time.

If U > g, all the electrons will stay localized on their respective
sites and hence there will not be any movement of electrons from one site to
the other. Thus, this is an insulating state and is called a Mott insulating state.
In this state, GS of the system will be an SDW state (Fig. 1.7). This is
obviously an antiferromagnetic state and this can also be referred to as a
polaronic state because in this state the quasi — particles are polarons which
form because of the interaction of electrons with the local phonons.

K7y K u

v 7 7 .

g /\

L /o\_/a\ /e
VIRV ERY,

Fig. 1.7 Spin density wave, when on — site el — el interaction strength (U) is

greater than the el — ph interaction strength (g) at some finite value of hopping parameter

®.
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1.5.2 Charge Density Wave

An orderly placement of electrons in a layered crystal or linear chain
compound is the charge density wave (CDW) state (Fig. 1.8). Like SDW,
this state also occurs in low dimensional materials at low temperature or in
metals and alloys having high density of states at Fermi level. Scanning
tunneling microscopy or electron diffraction techniques can be used to
observe the periodicity associated with CDWs. Peierls [52] was one of the
first to put forward the theory of CDWs, while trying to explain the concept
of superconductivity.

-~

g U
A v A i “7.

Aavalvidv

Fig. 1.8. Charge density wave when el — ph interaction strength (g) is greater than the

on — site el — el interaction strength (U) at some finite value of hopping parameter (t).

If g > U, the phonon induced el — el interaction can overcome the
repulsive Coulomb correlation giving rise to an effective attractive el — el
attraction. An electron can then hop from one site to another and form a

bound pair of two electrons. Thus, we will have two bound electrons or a
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bipolaron localized on every site and there will not be any movement of
electrons after the formation of these bound pairs. This state is called a CDW
state in which a gap appears due to Peierls distortion. Such an insulator can
therefore be called a Peierls insulator.

1.5.3 Phase Transition in Holstein — Hubbard model

As mentioned above, GS of the HH model can be a SDW state or a CDW
state depending on the relative strengths of the el — ph and el — el
interactions. However, both are insulating phases and therefore as the el —
ph interaction is increased, one would expect the system to undergo an SDW
— CDW transition, which is an insulator — to — insulator transition. Thus, the
possibility of superconductivity in the HH model looked rather bleak.
However, one can still like to find out what happens at the transition region.
Hirsch and Fradkin [18] have indeed investigated the behaviour of the SDW
— CDW transition in a 1D Holstein — Hubbard system numerically by using
a Monte — Carlo simulation technique. It has been shown that the SDW —
CDW transition is direct. This suggested that superconductivity in the HH

model was impossible.

TC [24] gave a critical re — look at the nature of the SDW — CDW
phase transition in a 1D HH model and obtained an analytical solution for
the GS energy of the system using a variational calculation coupled with the
exact Bethe — Ansatz formalism. TC have claimed the possible existence of
an intervening metallic phase at the crossover region of CDW — SDW
phases. This finding is naturally important because if such a phase really
exists, then it may become superconductive at low temperature. In a

subsequent paper, Chatterjee and Takada [24] have demonstrated that the
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existence of phonon anharmonicity may increase the extent of the
intervening metallic region even further. This work is important because the
apex oxygen in the cuprate superconductors does have a substantial
anharmonic motion and this anharmonicity has a sizable effect on the

properties of these materials [53 — 57].

The work of TC has drawn a lot of attention and motivated a good
number of investigations because it brought the role of el — ph interaction
in high T, materials again in the forefront of research. Clay and Hardikar [28
— 29] have examined the assertion of TC by studying the same HH model
using a numerical approach based on density — matrix renormalization group
(DMRG). Their results support the prediction of TC. They have also
suggested by calculating the Luttinger liquid correlation exponent that the
existing metallic phase can become superconductive. Another study has
been carried out by Fehske et al [30] by using density — matrix —
renormalization — group technique. They have shown that there exists an
intermediate metallic phase particularly for large — phonon frequencies.
Payeur and Senechal [31] have employed an exact diagonalization technique
and a cluster perturbation theory and have revealed that the possibility of
existence of an intermediate — metallic state at the CDW phase boundary
cannot be rejected. A determinant quantum Monte — Carlo analysis has been
carried out by Nowadnick et al. [32] in two — dimensions (2D). This
investigation also reveals the presence of an intervening metallic region.
Assaad and Hohenadler [33] have also verified the presence of such an
intermediate metallic phase. Bourbonnais and Bakrim [34] have shown that
the renormalization group technique and the quantum Monte — Carlo
technique yield similar results and both the techniques support the existence
of the intermediate metallic phase. Wang. et al. [35] have studied the GS
features of the 2D HH Hamiltonian using an exact diagonalization
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technique and provided an evidence for the presence of an intermediate
phase flanked by the SDW and CDW states.

However, a few investigations have also disagreed with the assertion
of TC [36 — 38]. Tezuku et al. [36] have used DMRG to investigate the HH
Hamiltonian for large values of el — el and el — ph coupling strengths. The
study of the region flanked by the adiabatic and anti — adiabatic regimes has
shown that pairing and CDW correlations are degenerate when the el — el
and el — ph interactions are of equivalent strength. It has also been
discovered that when the phonons have much larger energy compared to the
el — ph interaction energy and also the electron — hole symmetry is absent,
the CDW and the on — site superconducting phases overlap, requiring no
intermediate phase in the SDW — CDW transition. Tezuka et al. [37] have
generated correlation functions using real — space dynamics in a modified
study and discovered a metallic gap between the SDW and CDW phases in
the pure (un — doped) HH model, but the pairing correlation has been found
more significant in the doped HH model in the absence of electron — hole
symmetry. Tam et al. [38] have used the renormalization group (RG) method
to investigate the 1D HH model at half — filling treating the el — ph and el —
el interactions on an equal footing. They have also considered the probable
retardation effects of the phonon dynamics. Their results show a direct
transition from the CDW state to the SDW state.

According to the findings of the above studies it is therefore
important to examine the authenticity of the result of TC through more
accurate analytical calculations. The aim is to find out the extent of the
intervening metallic phase by using more accurate phonon wave functions.
As has been mentioned earlier, if a more accurate wave function leads to the

shrinking of the width of the intermediate metallic phase or its disappearance
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altogether, then the prediction of TC is certainly questionable. On the other
hand, if the width of metallic phase increases, then the results of TC will
have more credibility. With this motivation, Chatterjee and collaborators [39
—43] have modified the variational calculation of TC and the results of these
investigations have supported the result of TC. However, these calculations
are variational in nature and thus approximate and therefore systematic
attempts to improve the variational phonon state are called for to bring out
the accurate picture of the nature of the SDW — CDW transition. Recently
we have made attempts in this direction [58 — 61] The purpose of this thesis

is to present these works.

1.6 Organization of the thesis

In the chapter following the present one i. e. in Chapter 2, we analyze the
1D HH model at half — filling using a sequence of unitary transformations
that incorporate coherence and correlations of the phonons followed by a
zero — phonon averaging. The phonon wave function chosen here is more
accurate than the one used in [24]. We have introduced a new squeezing
transformation that depends on the electron concentration to treat the phonon
sub — system. This new transformation treats the phonon correlation in a
more realistic way. The effective Hamiltonian obtained after phonon
averaging is exactly solved by the technique of Bethe — ansatz and finally
the GS energy and the intermediate metallic phase are obtained.

In the Chapter 2, we performed a series of canonical transformed and
used a zero — phonon state to obtain the effective electron Hamiltonian
which has been solved by the Bethe — ansatz technique. In Chapter 3, we
extend the work of Chapter 2 by introducing a generalized many — phonon
state to eliminate the phonon degrees of freedom. We show that this
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modified variational method broadens the width of the intermediate metallic

phase.

In Chapter 4, we take up the same 1D HH model and present our
calculation of two parameters namely, the Quantum Entanglement Entropy
and Double Occupancy. We show that in a plane of Coulomb correlation
strength and el — ph coupling constant, a phase exists which is flanked by
the CDW and SDW phases and this phase is proven to be a metallic phase.

In the final chapter i. e., Chapter 5, we briefly present a summary of

our results and prove some concluding remarks.
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Chapter 2

Ground - state phase diagram of the one

dimensional Holstein — Hubbard model

2.1 Introduction

We have already explained in Chapter 1 that it is important to examine
the nature of the spin — density — wave (SDW) [1] charge — density — wave
(CDW) [2] transition in a Holstein — Hubbard (HH) system analytically in
the context of high T, superconductivity. In this context, Takada and
Chatterjee (TC) [3] made an interesting study in 2003 on the one —
dimensional (1D) half — filled HH model [4 — 8] to show that there exists an
intermediate metallic phase at the SDW — CDW transition region. Several
investigations [9 — 16] supported this result, though a few [17 — 19] also
discounted it. Later, Chatterjee and collaborators [20 — 24] modified the
analytical calculation of TC using more improved phonon states and
supported the claim of TC. Since these calculations are variational and hence
approximate, calculations with more accurate phonon states are called for to
confirm the veracity of the assertion of TC. In this chapter, we improve the
variational phonon state used by (KC) [20] and show that this modification
leads to a wider metallic phase at the crossover region of SDW — CDW

phases.
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2.2 The Hubbard — Holstein (HH) Hamiltonian

The HH Hamiltonian to be studied has been introduced in Chapter 1. It is

given by:

H=H,+H,+ Hgp, (D

where H, is the electronic Hamiltonian given by

H,= —t Z Cl-TonU + U znirnu, (2)
i

<i,j>0
H, is the free phonon Hamiltonian given by:

H, = w, Z bib;, ©)
i
and H,,, is the el — ph interaction given by

Hop=g ) mig (b] + b)), )
io

Though all the symbols in the above equations have already been defined

in Chapter 1, we define them again here for the sake of completeness. In Eq.
(2), t denotes the bare hopping integral, C;r(,-(Cja) refers to the creation

(annihilation) operator for an electron of spin o at the i site and < --- >

denotes that the summation is to be carried out over nearest neighbours
only. In Eq. (2), U denotes the onsite correlation energy and nw(z C;rgCia)
stands for the “number operator” for electrons of spin ¢ at the it" site. In
Eq. (3), b;r (b;) represents the creation (annihilation) operator for an optical

phonon with dispersion — less frequency o at the it site and g is called
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the el — ph interaction coefficient. We write: g = Vaw,, where « is called

the el — ph coupling constant and is dimensionless.

2.3 Formulation

The Hamiltonian (1) is not exactly soluble. So we carry out a set of
unitary transformations to solve it approximately. We first perform a

variable — displacement Lang — Firsov transformation (VDLFT) [25]:

S, = eft, (5)

with the generator R, given by
gl
Ry =2 ngg (b —b7) | ©)
(Ve
Lo

where g’ has to be obtained variationally. We make the following choice of

g"
gl =\/ET] Wo (7)

where 7 is to be treated as a new variational parameter. The Hamiltonian H
now transforms to

H, = efitHe R | (8)
Using the following variant of the Baker — Cambell — Haudroff formula
A=eSHe™S

1
=A+[S Al + 7 [S,[S,A]] +

N % [s.[5.05,4]] +. . ©)
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we have
1
H, =H+[R,H]+ T [Ry, [Ry, HI|+ ... (10)

where H = H, + H,, + H,,, as given in Eq. (1). Now we need to calculate
the commutators appearing in Eq. (9). Let us first consider [R,, H] which

can be written as

[thH] = [RliHe] + [Rl'Hp] + [Rl'Hep] . (11)

We obtain the following results.

Ry Hel = =tV Y el (b = b)) = (b = ), (12)

<i,j>0
2
[Ru[Ry Hol) = —tar? ) e (6] =b) = (6] = b)), (13)
<i,j>o

[Ry, Hy| = —van w, Z nio( b} +b;) (14)
io

[Rll [R]J Hp]] = ('\/an)z(l)o Z le nia.l ) (15)

ioco’

[Rl:Hep] = —2gvan z Nig Nig ' » (16)

ioa’

[Rl, [Rl,Hep]] =0. (17)
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In order to calculate the above commutators, we use the following result
[AB,CD]|=A{B,C}D—-AC{B,D}

+{A,C}DB—-C{A,D}B (18)

and the relation

Zniza = z NigN s = Z[(nm +n; )M +n;l
io

ioo’ i

=Znio+22nimil . (19)
i

io
Thus, the transformed Hamiltonian after the first transformation becomes

Hl =—t z ClTO.CjO- exi_xi + UefoniTnu
i

<i,j>0

+ o, ijbﬁ p an bf+b) +0 ana, (20)
i io io

where the operator x; is given by:
x; = Van (bf — b;) 1)

and the parameters P, Q and the effective onsite Coulomb correlation energy

Uer are given by
Uery = U = 2awon(2 = 1), (22)
P = (1)0\/3(1 - 77) ’ (23)

Q = awon(n —2) . (24)
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In the usual LF method [25], n is chosen to be equal to 1, which implies:
g' = g. One then calculates the effective electronic Hamiltonian of the
system by zero — phonon averaging. This would be a fairly good assumption
for strong el — ph coupling in the anti — adiabatic regime. By varying n,
however, a more accurate GS may be obtained in the weak and intermediate
— coupling region. In VDLFT, the phonon coherence is assumed to be
proportional to the electron density, n; and the parameter n provides an
information about the extent of lattice distortion. In the large — a regime,
n — 1, but in the intermediate — coupling region, it decreases, resulting in a
better total energy by balancing the tendency for an electron to localize due

to el — ph coupling and the tendency to delocalize due to the hopping term.

We next perform the transformation by the operator
S, = eRz, (25)

where
R, = hZ(b; —by), (26)
ko

where h is considered as a variational parameter. The transformed

Hamiltonian H, obtained after the transformation by S, can be written as
1
H2:H1+[RZ,H1]+T[Rz'[Rz,Hﬂ]"‘”‘- (27)

To obtain H,, we use calculate the following commutators.
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[ Ry, e¥i-i] = e¥i-j (28)
[ Ry, bib;] = —h(b] +b;) , (29)
Rz, [Ra bl bi]| = h2, (30)
[ Ry, (b] +b,)] = —2h . (31)

where we use the relation

[AB,CD] = AC[B, D] + A[B,C]D +

C[A,D]B + [A,CIDB . (32)

The transformed Hamiltonian after second transformation is given by

<i,j>o i

H2 = —t Z C;I-G.Cja e*i-i + Ueff Zn”nu + wy Zb;l-bl + hz(l)o
i

—hay Z(b{f +b;)+P Z nie (b} + by — 20) + Q Z 2 (33)
io io

i

where the parameters x;_;, U.sr, P and Q have already been defined. A

solution with non — zero h yields a significantly lesser energy, particularly
when U is positive and large. The two transformations S; and S, together

can be generated by the generator

Rz = Z [h +ma (nkcr - \/_ha)] (bi = bie).- (34)
ko
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The first transformation with generator R, takes cares of the anti — adiabatic
regime (n = 1), whereas the second transformation takes care of the
adiabatic regime (n = 0). So, by optimizing n between 0 and 1, we make
our calculation valid over the entire adiabatic and antiadiabatic regions.
Next, we perform a two — phonon coherence state transformation, also

known as a squeezing transformation [26] by S5 :
53 == eR3 (35)

where
R, = a, Z(bkbk —bip}) (36)
i

where a; is a variational parameter. This transformation, also called a
Bogolubov transformation, addresses the phonon correlation at the same

site. It also incorporates the phonon anharmonicity partly.

The transformed Hamiltonian H5 after carrying out the transformation by

S5, can be written as:

[Rs,[Rs,Hy]1]+..... . (37)

To obtain the expression for H 5, we calculate the following commutators.

[Rs, b]] = 2ab; , (38)
|Ra, [Ra, b]]] = a)?b] (39)
[R3fbi] = zasbg- ’ (40)
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[R3' [R3' bl]] = (Zas)zbi . (41)
[ Ry, e*i-i] = e¥i-je " (42)
[ Rs, (b] +b,)] = (b] + b))e?s (43)

[Rs,bfb;] = (b;rcosh(Zas) + bisinh(Zas))

X (bicosh(Zas) + b;rsinh(Zas)) (44)

The transformed Hamiltonian H; obtained after third canonical

transformation reads

H; =—t Z c;cja exp(xi_je‘Z“S) + Uesy Z niyn; + Q Z nizo.
io

<ij>0 i

+wg <h2 - hZ(blT + bl-)eZ“S) +P z nl-(,((bl?L + b,)e2%s — 2h)
i

ioc

2 e4%s 2e 4% 1
+wOZ{(bJ +b) = (6] = b) = —5}. (45)

l

Here we have used the relation

(b;rcosh (2a5) + bisinh(Zas))
x(bicosh(2a5)+ b;rsinh (Zas))

pta e —4as

_ t 2 S nt _ 1)\ 1
_{(bi +b;) 1 (b — b;) 1 2}- (46)
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The parameter a, has always been treated as a constant in the context of HH
model. This implies that the phonon correlation is unaffected by electron
density. However, in reality, this is not true, particularly if the electron
density is high. We therefore propose a new squeezing transformation that
takes into account the electron density — dependent phonon correlation. We
assume that the phonon correlation is proportional to the electron density at

a given particular site. Thus our new canonical transformation is given by

S, =eRs (47)

where

Ry = ag ) mio(bibi = BB | (48)
ko

a4 being a variational parameter. As before, H, can be written as

1
H4=H3+[R4,H3]+?[R4,[R4,H3]]+ ..... . (49)

The commutators now become very messy. So we do not give all the

commutators here expect for two general results.

efa(b] £ b)e R = (b] + b;)et?@aZomis (50)

eRs(b] + b;) e Rs
= (b:F + bi)zeﬂadlania ) (51)

The transformed Hamiltonian after this new canonical transformation reads
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Ho= =t Y eyt Py mi [{(b] +b)et?eeda o Jeres — 20]
io

<i,j>o0

+Q Zniza + Ueff Z n;n;, + Wy hz - hZ(blf + bi)e(2a5+2adzgni”)]
io i i

1 1 2
+(1)0 Z [_ E + Z (bil' + bl) e(4a5+4ad20_0_1 nianw:)
i’

2

1
=5 (bf = ;) e eadon "w"w')l : (52)

where we have used the relations

dnts = Dnigt Y 6niny (53)
i i i

Lo Lo
and

ni=mngmi = ngy. (54)
The modified parameters in Eg. (52) are given by
t' = texp(x]_;) exp(x;_je 2% 2% La! Mg! ), (55)
xi_j = aq[(bib; — b} b}) — (b;b; — b b])]. (56)
We have ignored all inter—site phonon correlations so far. A unitary

transformation can be used to implement correlation between phonons at

different sites. Following [27] we perform the transformation

SS = eRS , (57)
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where

1
Rs =5 Z B (bibyr — bib1) | (58)
kzk’'

Bir''s being variational parameters. For the sake of convenience, we
stipulate that S, = S, when k and k' refer to nearest neighbors and

Bri’ = 0, otherwise. The Hamiltonian Hs = e®sH,e~Rs is now given by

1
H5:H4+[RS;H4]+?[Rs’[Rs,HzL]]‘i‘-----, (59)

The relevant commutators are calculated as

[Rs, b]] = Zﬁki bi (60)
k+i
[Rs. [Rs,b1] = > Buc Bush] (61)
kj
|Rs.[Rs. [611]] = D Buc Beshnbi (62)
kjl
[Rs, bl = > fua b} (63)
k#i
[Rs. [Rs,bil] = ) B Bishy (64)
kj
[Rs. [Rs, 1B11]] = > B BrsBnb] - (65)
kjl

We also obtain
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eRs(bf + b;)e Rs = Z(““ +95) (b} + by), (66)
i

where y;; and 9;; are given by

1 1
pij = 645 + ZZﬁikﬁkj"‘ ﬂzﬁikﬁklﬂl"lﬁmi + .... (67)
X

klm

1
19ij=ﬁij+§Zﬁikﬁklﬁlj
K1

1
¥ 57 D BikBriBimBunbinj + oo (69)

klmn

so that we can write

I+
=

pij £9;; = e (69)

where B (having periodic boundary conditions) is an N x N matrix. Using

the above equations (69) and the formula

1
edtB = ¢4 4 B 4 g 24 (70)
we obtain
Hg =—1t' Z ¢ Cio Uess annu +0Q Zniza
<i,j>o0 i io

P Z Nig [Z(Mij + ;) (b] + by)e?®ae Mo’ 2% — 2 ]
io j
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0| B2 = h Y (g + 0) (b] + b)e@es+2ealani)
ij

1 2 .
T3 @o Z{ (ki +94) (g + 95y ) (B + by) "4t oo Miaia?)
ijj'

2
—(#ij - 19ij)(#ij’ - ﬂij’)(b; - bj)

x e(—4as—4ad§jaarnidnwr) _ l}' (71)
2
where
1 _ as—4ag Ygnjs
v =Tee 2 TN g (72)
%
, 2
A = (\/ETY(Hik — Vi) — (.Ujk - jk)) , (73)
T — eadiji’{Bjk(bjbk_b}.bll.)-'_cjk(bjb;_b}-bk)} , (74)
with
Bj, = ((Hijﬂik L (e '9i’j19i’k)) : (75)
Cix, = ((Mijﬁik — 9iimire) — (pr jOyry — '9i’jﬂi’k)) : (76)

Ultimately, we restore the coherence in the phonon subsystem by

performing the final transformation with the operator

56 = €R6 B (77)
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where

Ry =4 (bf ~hy), (78)
k

A being a variational parameter. We obtain the following results.

eRs(bl + b)e R = (b} +b;) — 24 (79)
eRs(bf +b;) e Re = (b] +b;)” + 44?2 (80)
efs(bf —b;)e™Rs = (b} — b;) (81)
efs(bf —b;) e Re = (b — b;)" (82)

The final transformed Hamiltonian H, = eReH e Re can again be written

as:

H6 = eR6H56_R6

1
=Hsz+ [R6»H5]+?[Re,[Re;Hs]]‘*‘----- (83)
We obtain
H6: —t' Z Cljl-o-cj0'+Ueff Zn”nu+Q Zniza
<i,j>o i io

+P Z Nig {Z(.uij +9;;) ((b] + b)) — 28)e?*a 2o Mo’ 205 — 21}
io j
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w 2 B |
* TOZ{_(“U = 93) (i — 94y ) (b] — by) e A0aZ0r Mioig1)
37k

1
+(uij +95) (uij + 95y7) ((ijr + bj)z + 4A2) eltes+4ea oo nion;yr) >

+w, (hz — hZ((uU +9,)((b] + b;) — 24))exp(2a,

ij

+ Zadan>> , (84)

g

where

1
t' = Ttexp (— 56_4%_4“‘12"”1"’) z A, (85)
%

T = exp(aq ) {By(bybi — b}b]) + Gu(byb] — bfb)}) . (86)
i,

I0
2 2
Ay = (‘/En(#ik — ) — (jk — 19jk)) : (87)
with
Bj = ((Hijﬂik — 9;9) — (et iy — '9i’j19i’k)) ) (88)
Cix, = ((Mijﬁik — 9iiuire) — (pr jOyry — '9i’jﬂi’k))- (89)
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2.2.2 Averaging Phonon state

Now we calculate the expectation value of Hg in the zero — phonon state
o>=][10:>, (90)
i
where i = 1,2,3, ..., N. The final effective electronic Hamiltonian is given
by

= —]Znio + Ueffz nipng, — teffZ CLTO.CJ'G + wohz
io

i ijo

+ AeB eZa5+2adZania(2h + AeZa5+2adZanw) +K

+% (e%8),, cosh (46(5 + 4ay z nw> — 1] ) (91)
where

P = woVa(l—1) (92)

J = woan(2 —n) + 2Vawy(1 — n)(h + MAe?*s) (93)

Uerr = U = 2awon(2 —n) (94)

M = (33)00 +2 [(63)01 + (63)02 + (e3)03+....] (95)

toss = te~ anze““"s(1—4ad+12ad2){(e‘23)00—(e‘zﬁ)m} (96)
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K = MAe?%(4hay + 6ha’ + 4agAe?®s + 12a3Ae?%)
+(e2[’))00(ade4“‘S + 12a2e*® + 12a’e™*% — q e %)

— 2AMPe?%s(3a2 + 2ay). (97)

2.2.3 The GS Energy
It is worth noting that the Hamiltonian H,sf given by Eq. (91), which

describes an effective Hubbard model in one dimension, can be used to
obtain the exact GS energy at half — filling with the help of the Bethe —
ansatz approach following Lieb and Wu [28 — 29].

However, only positive U, values were considered in [28]. The

exact Bethe — ansatz solution for the Hubbard model has been extended to
the negative — U.rr — problem by TC [3]. In this case, the GS energy per

site for (91) is obtained as

g = —J]+ % [2h? + (%F) g cosh(4ay) — 2]

1
+ 7 [Uesr — |Uess|] + woMAe?%s (2R + Ae?%s)

* Jo(x) J1(x) dx
0 xll + exp {—xerffl}l |

Zteff

+K — 4t,; (98)

where J,(x) and J, (x) are the Bessel functions of zero — th and first — order

respectively.
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2.3 Numerical Results and Discussions

To find the minimum energy, the expression (98) is varied with respect
to six variational parameters n, h, ag, @g4, 5 and A. The results are shown in
Fig. 2.1. The results obtained by TC [3] and KC [20] are also shown together

with the present results for comparison.

-1.2
1.4}
=)
3
% 1.6}
2
5 1.8}
L=
W
-2} ermernenne TC results
_____ KC results
Present results
-2.2 - .
0 1

U (units of wu)

Fig. 2.1 Ground state energy (&,) per site as a function of onsite Coulomb energy (U) for

el — ph interaction strength @ = 1 and for t = 0.5 w,.

The present results for the GS energy are slightly improved compared to
those of [20], especially for small values of U. We can demonstrate,
however, that even a small increase in energy can have a large impact on
the phase diagram. This is common with variational calculations, as a small
order § error in the wave function causes an error of order 62 in the energy.

The effective hopping parameter is a critical quantity in this problem.
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tefflt

__ KCresults
___ Presentresults

0.5
0.1
t=02w
o IR
S __ KCresults a=1s
o 0.05 | — Present results’.
‘_ﬁ ' a=05 “
= =~ ¥ .
0

U(units of “’n)

Fig. 2.2 t.sr and dt,;r/dU as a function of onsite el —el inetraction U for two values of

el — ph interaction strength a and for t = 0.2 w,.

In Fig. 2.2, we show ¢, and its derivative as a function of U with respect
to U. We have also plotted the results of KC for comparison. The figure
shows that when U is small, U, ¢ becomes negative and t, s becomes very
small due to the el — ph interaction effect. This leads to the formation of
bipolarons and consequently narrowing of the band. In this case, the ground
state is an insulating state known as the CDW state of Peierls form. In the
opposite extreme, i.e., when U becomes substantially larger than the el — ph
interaction, U,sr becomes positive and t.r¢ — t, and then one obtains the
standard Hubbard — Hamiltonian and thus the ground state, in this situation,
is represented by an insulating antiferromagnetic state. This is the so called
SDW state of Mott type. One can observe that in — between the two phases,

the t. sy — curves are accompanied by some fascinating attributes. To solve




[49]

this problem, we look at how dt,fr/dU behaves with respect to U. In the
lower part of Fig. 2.2, these results are shown. Interesting dt.r/dU has a
double — peak structure. dt,rr/dU has two peaks for two different values
of U for a given a. Let us say that the first peak happens at U = U; and the
second peak happens at U = U,. A closer look shows that U,¢r = 0 in the
middle of U; and U,. It is also worth noting that the peak structure is
asymmetric in nature. It is well understood that the band — width 2zt, where
z is the coordination number and t is the hopping parameter, must be
larger/equal than/to the Hubbard gap U (which is the onsite Coulomb
correlation energy) for a metallic state. As a result, the criterion for a
metallic condition for a one — dimensional system is: 4t/U = 1. We
discover that between U; and U, t.rr and U, ¢ are related by the inequality:
4terr/Uerr = 1 Which, as previously said, is the characteristic of a metallic
state. We also note that, in comparison to KC’s results [20], the current

approach predicts a wider gap between the two peaks.

The primary goal of our analysis is to find a two — dimensional
(U — a) phase portrait. As previously mentioned, we obtain a set of U, and
U, values for each value of a from the peak positions of dt,sf/dU. Thus
U, and U, as a function of «, define the phase boundaries. Fig. 2.3 shows
the corresponding phase diagram. The metallic phase is identified between
the U, and U, lines, while the SDW phase is located above the U, line and
the CDW phase is located below the U; line. We already know that the
metallic region obtained by KC is wider than that obtained by TC and Fig.
3.3 shows that the current analysis predicts an even wider metallic region
than obtained by KC. We have not plotted the phase diagram below a certain
value of a because the results were unreliable due to computational error

for values of a closeto a« = 0.
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Fig. 2.3 Phase diagram in the (a — U) plane obtained from the peaks in dt,;./dU for
t =0.2 w,g.

The local moment may also provide details about the existence of
different phases. We study this by calculating the average local spin moment
per site (S,,) and plotting it on a contour plot in (U — a) — space. S,,, can
be expressed as

1 2
Sav =30 Z (s?) (99)

where S; can be written as:

2 _ 2 2 2
S2 =St + SE + Sk,
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U (units of “’o)

Fig. 4. Contour plots of the local spin moment S,,, in (« — U) —plane.

we obtain,

1 3 3
Sav = N Z (S7) = i ﬁZ(niTnii) . (100)

=Mnitngy (101)

Therefore, we can write



(102)

For a given S,,, EQ. (101) returns a set of (U, a) — values. The results of
Sav are shown in Fig. 2.4 as a contour plot in the (a, U) — plane. Eg. 98 can
be used to calculate [de,/dU] for a system of totally uncorrelated electrons
in a metallic state. Then, using Eq. (102), we get S,,, = 0.375, which is the
value we see in the middle of the intermediate phase. This supports TC’s
prediction of the occurrence of a metallic zone.

2.4 Conclusion

In this chapter, the one — dimensional HH model has been utilized to
examine the interplay of el — ph interaction and Coulomb correlation at the
cross — over area of the SDW and CDW phases. We have considered a
correlated squeezed coherent state for the phonon sub — system. Introducing
a new canonical/unitary transformation that introduces the electron —
density — dependent phonon correlation, the phonon state [20] has been
improved. Finally, the Bethe ansatz method is used to solve the resulting
electronic Hamiltonian exactly. We show that, when compared to TC's and
KC's calculations, the improved variational calculation provides a wider
metallic phase at the CDW and SDW phase boundary cross — over area. The
broadening of the intermediate metallic phase by an improved variational
calculation strengthens the conjecture made by TC regarding the existence

of such a phase.
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Chapter 3

An Intervening metallic phase at the CDW — SDW
transition region in the one — dimensional Holstein —
Hubbard model at half filling: A Semi — Exact

solution

3.1 Introduction

In this chapter, we extend the work presented in the previous chapter by
modifying the phonon state. We have mentioned in the previous chapter that
the spin — density — wave (SDW) charge — density — wave (CDW) —
transition problem is important for high temperature supercoonductivity
(HTSC) in cuprates [1 — 3] and has been studied through several methods
[4]. We have also briefly discussed in Chapter 2 that Chatterjee and
collaborators [5 — 11] have studied the one — dimensional (1D) half — filled
Holstein — Hubbard (HH) model [13 — 17] variationally to obtain an
analytical solution. Recently, Malik, Mukhopadhyay, and Chatterjee
(MMC) [11] have modified the variational method of Krishna and Chatterjee
(KC) [7] by proposing a new squeezing transformation in addition to the
ones considered by KC. This work has been the subject matter of Chapter 2.
In this work, we have shown that a better variation calculation widens the

metallic phase further.
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It should be noted that the variational method of MMC [11] is still
approximate as far as the averaging phonon state is concerned and therefore
there are opportunities to modify this calculation. One would like to see what
happens to the width of the metallic region, if the phonon wave function in
the MMC — calculation is replaced by a more accurate state. More recently,
Malik and Chatterjee (MC) [12] have used a modified calculation using a
very accurate many — phonon state and in this sense, their calculation can be
considered as semi — exact. The basic aim is again the same. If a more refined
variational approach produces a broader metallic phase, then the possibility
of existence of the intervening metallic phase is reinforced while, on the
other hand, if a better variational approach results in the shrinkage of the

metallic phase, then the presence of the metallic phase is questionable.

In the present chapter, we present the work of MC [12].

3.2 Formulation of the Model
The 1D HH Hamiltonian is given by

H=-—t Z c;rocj(, +U Zn”nu
<i,j>c i

+w, z bib; +g Z N (b1 +by) | )
i io

where all the symbols have the same meaning as discussed in chapter 2.
To deal with the above Hamiltonian, we use a variational method with the

following modified phonon state:
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| D) = eR1 Rz gRs gRa gRs gRe | y), (2)

where Ry, R,, R3, R,,Rs and R, are the same as introduced in Chapter 2

and are given by

Ry =an ) nig (b =b1) , 3)

R, = Zhi (bf - b)) , )

R, = aSZ(bibi —bfp}) , (5)
i
R, = ay Znio(bibi —b!p}), 6)
io
1 tpt
Rs = EZ Bij(bib; — b1bT) 7)
i#j
Ry =0 (b = by), ®
i

and |y) is the phonon state which we choose as:
bH"
o =] Jieo =]_[< > An+|oi>>. ©)
i i n=0,1,2,.m \/ﬁ

The transformed Hamiltonian H, has been obtained in the previous chapter

and is given by
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Hy, = e Re g Rs g7Ra g7Rs g~R2 g~RifJoR1 gR2 gR3 gR4 gRs gRe

<i,j>0 i

= —t z C;raCjo + Uesy Z ningy +Q 2 iy
io

+P Z Nig {Z(Mij +93;) ((b] + b)) — 28)e?%a o' Mo’ 205 — 21}
io j

w 2 B |
+TOZ{_(’“U - ﬁij)(“ij' - "9ij')(bJ:r - bj) e( 405=42q T g g1 NigMiy!)
ijj'

1
+(uij +93) (uij + 9557) ((ijr + bj)z + 4A2) e(tastiaa oo mionyr) — >

two| h2 - hZ((yij +9,)((b] + b)) — 28))exp(2as
ij

+2a, Z ng) | (10)

g

where all the parameters are defined in Chapter 2.

3.2.1 Averaging State and Effective Hamiltonian

The effective electronic Hamiltonian H, ¢ is now given by:

Hepp = (@|H|P) = (x| He |X) . (11)
The final averaging phonon state is a many — phonon state (Eg. (9)) with
A,’s as the variational parameters. We assume A,’s to be site —

independent, which is a plausible assumption for a uniform system.
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It may be noted that m = 0 produces the standard zero — phonon

state i.e.,

|X)=1_[|Oi>: (12)

Form = 1, we have
o =[] caoto0 + a1y, (13)
i

which is a many — phonon that can be written as a linear combination of
different phonon states with the constraint that no single site can have more
than one phonon. It is a restricted many — phonon state and is reminiscent of

the intermediate — coupling polaron wave function of Gurari [18].

For m = 2, the averaging many — phonon state is

A
o =[] (40100 + 4110+ Zi20), a9

i

which is a linear superposition of phonon states in which a given
particular site can only be filled by at most two phonons. Thus, in general,
Eq. (9) represents a generalized many — phonon state, in which m number
of phonons can be present at any given site depending. In the numerical
calculation, we choose the value of m in order to get self — consistent result.

Now the effective electronic Hamiltonian, H,¢ can be written as:
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Hepr = (®[Hg|P)

= — ]Znio + Ueffz ngn;, — teffE C;I-O.ng + (l)ohz
io

i ijo

+ A eﬁ ezas"’zadzanid(Zh + Aezas"’zadz.ania) + K

(e%£)4o cosh (4-0!5 + 4ay Z ni(,) -1

g

(Oh)
+ > , (15)

where

Uerr = U — 2awon(2 —1n) (16)
J = Q+ P(e?*M(24,A; + 24,AN2 + 24,A3V3 —20) —2h (17)
P = woVa(l—1n)

Q = awyn® — 2nwea = awn(n —2)

M = (eﬁ)oo +2 [(65)01 + (eﬁ)o2 + (e3)03+....]

K = 25Me*?s 2404,V + (2404,V2 + 24,4,V6 + 4A2))
+ PMe*®s (24,4, + 24,AV2 + 24,4,:V3 — 24) (24 + 3a?)
— 2Mhag (24,4, + 24,A,V2 + 24,4:V3 — 28) (2ay + 3a3)
—2Mha ¢ + (24,4, + 24,42 — 2A + 24,A,3/3)

+0.25e4%s (1 + 4f2) (1 + 242 + 443 + 24,4,\2
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+24,4:V6 + 6A% + 40%) (day + 12a3)
—0.25e %% (1 + 482%) (—1 — 243 — 443 + 24,42 +
24,A;\6 — 6A3) (—4ay + 12a3)

—.25Me %% (24,4,V2 + 24,4,V6) (18)

terr = texp((1+4B%) + (28 + 483))
X {1+ 2an?4,4,V2 e7*%(1 — 6a, + 36a3)
X ((1+48%) + (2B +4B3))
— 2aA A, A % e (1 — 6ay + 36a2)
X ((1+48%) + (28 +4B%))
— 4ah3n?e (1 — 6ay + 36a3)((1+ 482) + (28 + 4B%))

+0.5a%43n*e 8% (1 — 36a,)((1 + 48%)% + (28 + 4B3)?)
+2a4,4,0*V6e 4% (1 — 6a, + 36a3)

x ((1+4p7) = (D2 +45%))
—6aA2n2e~s(1 — 6ay + 36a2)((1 + 4B2) + (28 + 45%))

—1.634,4;a’n*e™8%(1 — 36a,)

X ((1+48%)?% + (2B +45°)%)

+343a’n*e 8% (1 — 36a,)
X ((1+482)% + (28 +4B°) (2P + 45%)?)
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e —
— 0.334%a*n%e"12%(1 — 198ay,)

X ((1+4BD7 + @B +4pHD}- (19)
We have already noted that (ef )io can be written in a compact way as

_ 20+
(eiﬁ)joz Z (i)l#_l_])' (20)
i=012,..

3.2.2 The GS Energy

To calculate the exact GS energy of H, s/ per site (g,) for both positive
and negative U,y We use the Bathe — Ansatz method [19 — 20]. We obtain

go=—J+ % [2h? + (%F) g cosh(4ay) — 2]

1
+ 7 [Uesr — |Uess|] + woMAe?%s (2R + Ae?%s)

* Jo(x) J1(x) dx 1)
1+ exp {_Xerffl}l

Zteff

+K — 4t,;

0
X

where J,(x) denotes zero — th order Bessel function and J, (x) denotes the
first — order Bessel function.

3.3 Results and Explanations

The GS energy is obtained by minimizing ¢, with respect to the

variational parameters n, h, ag, @4, 8,4, and Ay, A4, A,, As, .... etc.. Fig. 3.1
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shows the GS energy results. The dotted line represents the TC results [5],
the dashed line represents the results of KC [7], the dotted — dashed line the
MMC results [11] and the solid line represents the present results. As can be
seen from the figure, the present GS energy results are only somewhat better
than the previous variational calculation. We will show again that this small

increase in energy can have a significant effect on the phase diagram.
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1.5
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Fig. 3.1 Ground state energy (&) per site as a function of onsite Coulomb energy (U) for

el —ph interaction strength « = 1 and for t = 0.5 w,.

As before, the effective hopping parameter (t. s /t) is studied with respect
to the on — site Coulomb correlation energy U. The results are shown in Fig.
3.2. Again we observe that for small U and a reasonable value of the el — ph
coupling constant a, t.r is small. As a result, the band is narrow in this
limit, and massive bi — polarons can form. This is the insulating CDW state,

in which Peierl's instability occurs and the possibility of double occupancy
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increases. For large U and reasonable values of el — ph interaction, the
system behaves essentially as the Hubbard model and an anti —
ferromagnetic Mott insulating state becomes the GS of the system. This is
the SDW state. As in [5, 7, 11], some interesting features can be seen here
as well, between the SDW and CDW states.

0.7 &

- — = MMC Result
Present Result

tlt

0.4

2
U({units of ““'u:’

Fig. 3.2 t.f¢/t as a function of onsite el — el inetraction U for two values of el — ph

interaction strength a and for t = 0.2 w,.

To gain a better understanding of these interesting features, we again
investigate the behaviour of the derivative of the renormalized hopping
integral (dt,fr/dU) with respect to U, as we did previously. Fig. 3.3 depicts
this behaviour. The double — peak structure is clearly visible again. As
previously stated, the system is in a charge — density — wave phase at small

U, and the system's GS is in a SDW phase at large U.
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Fig. 3.3 dt.sr/du as a function of onsite el — el inetraction U for two values of e — p

interaction strength a and for t = 0.2 w,.

The broad valley at the crossover between CDW and SDW phases
suggests that the CDW — SDW transition is not direct rather it occurs through
an intermediate phase. For t = 0.2 w, and a certain value of «, let us say
U; and U, are the two values of U at which (dt.r/U) shows the peaks.
Thus, for a range of @ — values, we can obtain the phase diagram: (U, U,)
versus a as we have shown in Chapter 2. Fig. 3.4 illustrates the phase
diagram. We obtain results for two cases, one with a Restricted many —
phonon state (RMPS) and the other with a generalized many — phonon state
(GMPS). We also compare our results with those of TC [5], KC [7], and
MMC [11]. In the case of GMPS, we find that beyond m = 3, the results
do not change any more. As has been observed earlier by TC, KC and MMC,
the presents results also show that for a given value of «, the region between
the U; — line and the U, — line, satisfies the metallicity criterion:
4terr/Uesr = 1 (both with RMPS and GMPS). One can see that above the
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U, — line, strong correlation would win and the system would be in an SDW
phase, whereas the el — ph interaction would win below the U, — line, and
the system would then be in a CDW phase. The phase boundaries are thus
described by the U; — and U, — lines. Therefore, we can say that, the SDW
and the metallic phase are separated by the U; — line, while the metallic

phase and the CDW phase are separated by the U, — line.

uU (unithsa of wc_}

n '..'l ’ /
CDW Generalized |-
Region|Many- Phonon .
04 1. 2
o

Fig. 3.4 Phase diagram in the (a — U) plane obtained from the peaks in dt.zr/dU for

t=20.2 Wo.

It can be noticed that, compared to the variational results of TC, KC, and
MMC, the present work provides a wider metallic phase, GMPS giving even
broader metallic phase than RMPS. The fact that successive improvements
and modifications in variational calculations widen the metallic phase lends
credence to the conjecture of TC regarding the presence of an metallic region
between the CDW and SDW regions. Since the most general state has been

chosen for the phonons and the effective electronic problem has been dealt
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with exactly by the Bethe ansatz approach, the calculation with GMPS can

be considered as semi — exact. However, the method is still not exact because

the total wave function is chosen as a product state.

U{unit'a of wu}

Fig. 3.5 Contour plots of the local spin moment L, in (a« — U) — plane.

We also calculate the average local spin moment L, per site, which
provides an additional proof for the existence of a metallic state at the

transition region of the CDW and the SDW phases. Following Chapter 2, we
have

3 3de
Z“ TR (22)

where S; denotes to the electronic spin at the i — th site.
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The contour plots for L, are shown in the (a, U) — plane in Fig. 3.5. If the
electrons’ motion is completely uncorrelated, as it is in a gas of non —
interacting electrons, Eq. 19 gives L, = 0.375, which is similar to the value
seen in the intermediate state. Hence, this supports the evidence that an

intermediate metallic phase exists at the CDW and SDW transition region.

3.4 Conclusion

The GS energy of the 1D Holstein Hubbard model has been examined
variationally by employing a series of unitary canonical transformations and
a generalized many — phonon state to obtain an effective electronic
Hamiltonian, which is then solved exactly by using Bethe — ansatz technique
to obtain the system's GS energy. Comparison of our results with the
previous variational ones reveal that the present semi — exact calculation
provides a broader metallic phase at the CDW — SDW crossover region
lending credence to TC's original conjecture [5]. It should be noted that the
amount by which the metallic phase broadens in an improved modified
variational calculation is not so important; what is important is that the
metallic phase widens and does not shrink when we improve our variational
calculations. The existence of a metallic phase in the HH model is important
not only in the context of high — temperature superconductivity, but also for
fundamental physics related to the existence of different phases in strongly
correlated Fermi systems.
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Chapter 4

Quantum — Entanglement Entropy and Double
Occupancy in a one dimensional Holstein — Hubbard

model at half — filling

4.1 Introduction

The subject of quantum phase transition has emerged in recent times as
one of the most exciting and fascinating areas of research, both in
experimental and theoretical fields of modern quantum condensed matter
physics. A phase transformation can be called a quantum phase transition
(QPT) if the change of phase occurs due to a change in the material properties
such as interaction strengths, doping concentration, and so on [1 — 3]. The
physics of quantum phase transition is intimately linked to the notion of
quantum entanglement (QE) [4 — 7] and therefore the study of quantum
entanglement for a condensed matter system is important to understand some
of the interesting aspects of the quantum phase transition the system may
undergo. Quantum entanglement is, of course, a fundamental property of a
quantum system, and therefore studying and analyzing it, can provide
fundamental information and knowledge about non — local quantum
correlations, which could be important in the fields of quantum information,

quantum computing, and quantum teleportation. Furthermore, the measure of
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quantum entanglement can be utilized to determine the nature of a many —
body ground state (GS) of a quantum system and this information can be used
to investigate and identify the nature of QPTs [8 — 18]. In this work, we
consider the theory of quantum entanglement to investigate [19] the
possibility and nature of quantum phase transition in the Holstein — Hubbard
(HH) model [20 — 24].

4.2 Model

As already introduced in the earlier chapters, the Holstein — Hubbard

Hamiltonian is given by

— T
H=-— Z tijcio'cjd +U Znimu
i

<i,j>o
+w, Z bib; +g Z nio (b} + b)) )
i io

where all the symbols have already been explained earlier. We use the
method [25 — 26] discussed in Chapter 3 to obtain the GS energy per site for
(1). This is given by

g=—J+ % [2h? + (%F) g cosh(4ay) — 2]

1
+ 7 [Uesr — |Uess|] + woMAe?%s (2R + Ae?%s)

© 0 Jo(x) Ji(x) dx
0 xl1+exp{—x|Ueff|}l |

Zteff

(2)

where all symbols have been defined in Chapter 3.
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4.3 Entanglement Entropy and Double Occupancy

Quantum entanglement can be used to identify interesting phases of the
Hubbard model emerging from quantum correlations. Shankar and
Chatterjee (SC) [27] has considered the Hamiltonian [28] and calculated the
Quantum Etanglement Entropy (QEE) and Double Occupancy (DO) of the
system. We have recently modified the work of SC using the method [29]
discussed in Chapter 3 and calculated QEE and DO for the Hamiltonian (1).
We examine a subsystem with four possible states as: :|0), |T), ({]

and |Tl) and calculate the single — site Entanglement entropy (EE) (E,) and

Double occupancy (w) as follows:

E, = =Tr(Dgrlog,Dg) ; (4)

w = (n;n;) (5)

where Dy stands for the reduced density matrix, which can be written as

Dp=w®[0){(0]+w@™[T)(T]
+o  |[L) |+ |TL)(TL], (6)
where the occupation numbers w°, w*, w™ are given by:
wtr=w"=n/2-w @)

f—w—w (8)
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In order to obtained the value of Dy, we substitute the values of w™, w™ and

w® in Eq. (6) which then reads

DR=2<__le)+2le €))

Thus, E, can be expressed as

E,= —{(ZlelogZZwH)

+ (2 (%— a)m> log , 2 (%— w”)>}. (10)

Using the Hellman — Feynman theorem, we can derive:

FETE (niTnil> (11)

and consequently w is determined.

4.4 Numerical Results and Discussions
In Fig. 4.1, we investigate the dynamics of the effective hopping integral
(tesr), the modified on — site Coulomb correlation strength (U.f), the
double occupancy parameter (w), and the single — site EE (E,) as a function
of U for various « values. For the sake of comparison, the results of SC [27]

are also included. The plot of t.s vs U (Fig. 4.1(a)) shows that for small
a, when U is increased, t.ry grows continuously to the bare hopping
parameter ¢, which is the Hubbard value, but when « is large, t,rr goes to t

through a finite discontinuous jump at some crucial value of U.
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_
Fig. 4.1(b) shows that U, s may become negative if a becomes sufficiently
large compared to U. The reason behind this is not difficult to understand. If
« is significantly large, the phonon — induced el — el attractive interaction
may take precedence over the usual Coulomb repulsion between the

electrons, resulting in an overall effective attractive el — el interaction.

0.2
0.15
=
+% 0.1
0.05
:‘x=3*lj (a)
n . .
0 2 4 6
U
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Fig. 4.1 (a) tesr vs U for different values of a; (b) U.sr vs U for different values of a; (c)
Double occupancy parameter (w) vs. U for different values of «; (d) Entanglement
entropy (E,) vs. U for different values of a, for t = 0.2 at half filling. The solid lines

represent the present results and the dashed lines refer to those of SC [27].

In other words, if « is large enough, U, can become negative, resulting

in the formation of bi — polaronic bound states consisting of polaronic pairs.
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The parameter w can be used to quantify the presence of bipolaronic pairs
at a lattice site, giving a measure of double — occupancy. The w vs U plotin
Fig. 4.1(c) shows that as U increases, w decreases, and eventually becomes
zero as U reaches a critical value (U,), which of course is dependent on «.
If Uers has a positive value, one would conclude that w will be zero. As a
result, we can assume that for certain «, there exists a critical value of U
(U.) above which the system's GS is represented by a single polaronic state
in which phonon — dressed electrons with opposite spins are localized at
nearby neighboring sites. This is similar to a SDW state or the Mott
insulating phase. As aresult, when U, s > 0, the SDW condition is expected
to arise. As can be seen, w increases as « increases, and U, increases in
general as « increases. U, is negative below U, implying that the system
is unstable against Peirels transition. The system enters a CDW state or a bi
— polaronic state. As a result, we can safely conclude that very small values
of w belong to a SDW state, while large values of w correspond to a CDW
state. The fascinating aspect is that at and near U, = 0, GS could be an
unstable weakly correlated anti — ferromagnetic state that may not be a Mott
insulating state. A real Mott insulating GS emerges at Up sy = W, = 2zt,y,
where W, is the band — width and z is the coordination number [51, 52].
The results for double occupancy clearly illustrate that for a small positive
Uers, w can have a small finite value. This could be a SDW state for weak
correlation. A ground state corresponding to a pure Mott insulator will arise
for Urr = W,. This state will have a value of w equal to zero. Similarly,
Uerr < 0, on the other hand, might not belong to a pure CDW state. The
system will be in a pure CDW state if U, s is substantially smaller than zero.
The variation of E,, vs U is shown in Fig. 4.1(d). It can be seen that E,, has

a peak at a given critical value of U (U,) for every value of a. As the value




[81]

of a is increased, the peak becomes shorter, sharper, and shifts towards the
higher values of U. Uy is the quantum critical point, and the peaks in E,
indicate a quantum phase transition. The peak found in E, refers to a

metallic phase. Before and after the peak in E,,, U is relatively much smaller.
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Fig. 4.2 t.g vs o for different values of U; (b) U vs. a for different values of U; (¢) w

vs. « for different values of U; (d) E,, vs. a for different values of U, for t = 0.2 at half

filling. The solid lines represent the present results and the dashed lines refer to those of
SC [27].
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As a result, one can conclude that, the region before U, corresponds to
a CDW phase, whereas the region following U, corresponds to a SDW
phase. As U is increased, the system undergoes a quantum phase transition
from a CDW phase to an SDW phase via an intermediate metallic phase for
a given value of a.

Next, we show the behaviour of teg, Uegr, and w with respect to «
for different U values in Figs. 4.2 (a, b, ¢, d). Again, the SC results are shown
for comparison. For small o, tes =t, Uggr > 0 and w is zero or small
depending on the value of U and GS of the system appears to be the SDW
state. For a large value of a, we find that U.sr < 0, terr =0 and w
saturates to its maximum value and the system settles in a CDW GS. Fig.
4.2(d) shows that for a given value of U, E,, exhibits a maximum at some
critical value of (a,¢) and the maxima shifts towards higher values of « as
U increases. Therefore, as the value of « increases from the small and
intermediate coupling zone to the strong coupling regime, w increases until
it exceeds the average value of 0.25, at which time U, switches sign and
E, goes through a maximum value. The maxima in E, again suggest a
metallic phase, and the figures show a quantum phase transition through an
intermediate metallic phase from an insulating polaronic SDW phase of
antiferromagnetic Mott type to an insulating CDW bipolaronic phase of
Peierls type.

In Fig. 4.3, we draw a three — dimensional (3D) plot of w versus a
and U to show the combined effect of @ and U on the GS phase diagram. It
is evident that at small a and large U, w is very small, which indicates that
the system is in the SDW phase. On the other hand, at large a and small U,
GS isa CDW state. From Figs. 4.1 and 4.2, we expect that in Fig. 4.3, there
will be some region bordered by the SDW and CDW phases that will be
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metallic. The Mott — Hubbard criterion: t.rs = |Ucsf|/4, Which is a criteria

for a metallic state, is used to examine this. We find that the requirement

terr = |Uesrl/4 s indeed satisfied in the region between the SDW and
CDW phases.

Fig. 4.4 3D plot of E, vs. ¢ and U for t = 0.2 at half filling. MP refers to the metallic

phase.
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The 3D plot of E,, with respect to « and U is shown in Fig. 4.4. One can see
that there is a zone flanked by the SDW and CDW regions, where E,, is

maximum, which is the signature of a metallic phase.

o 0

Fig. 6 3D plots of E,, 2Zt. ¢ and |U, | surfaces for t = 0.5 with respect to a and U.
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InFig. 4.5, we plot the |U,sr| and 2Zt, s, surfaces as a function of & and
U. One can see that the metallic phase satisfying the Mott — Hubbard
condition corresponds to the same metallic phase seen in Fig. 4.4 through
the concept of quantum entanglement. In Fig. 4.6, we illustrate the variation
of |Ugssl, 2zt.rr and E,, with respect to U and a for t = 0.5 through a
multidimensional plot. The metallic phase is manifestly clear from the EE
peaks and the criterion: 4t,s = |U,sf|. In Fig. 4.7, we show the contour
plots for QEEs for the SDW and CDW phases in the (U, «) plane with t =

0.4. The Mott—Hubbard condition is again used to obtain the metallic phase.

Fig. 4.7. Phase diagram for t = 0.4. inthe (a — U) — plane.

In Fig. 4.8 we show the contour plots for t = 0.8. We can immediately
see that as t increases, the metallic phase is widened. We also show the

contour plots obtained from the calculation of SC [27]. It is clearly evident



(87]

that the present work that uses an improved variational calculation predicts
a broader metallic phase.

Fig. 4.8 Phase diagram for t = 0.8. inthe (@ — U) — plane. ‘SC’ refers to the phase
diagram obtained by SC [27].
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4.1 Conclusion

In this chapter, we have investigated and analyzed the detailed nature of
the SDW — CDW transition in a 1D correlated electron — system in the
presence of el — ph interaction using the half — filled 1D HH model. After
performing a series of unitary transformations to the HH Hamiltonian, we
averaged the modified transformed Hamiltonian with respect to a
generalized many — phonon state. This has resulted in an effective Hubbard
Hamiltonian. The GS energy of this Hamiltonian is finally determined by
using the Bethe — ansatz approach. The quantum entanglement entropy and
the double occupancy parameters are then calculated at and around the SDW
— CDW transition regions to examine the existence of an intermediate phase.
An intermediate phase is observed and it turns out to be metallic. When the
present results are compared with those SC, it becomes clear that the present
modified variational calculation predicts a larger metallic phase. This lends

credence to the original prediction of TC [28].
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Chapter 5

Conclusion

The summary of the present thesis entitled, ‘Phase transition in 1 — D
Holstein — Hubbard model’ is presented in this final chapter. The
mechanism of high T, superconductivity has remained inconclusive. A
number of reports have proposed the electron (el) — phonon (ph) mechanism.
However, the problem with the el — ph mechanism is that it suggests an
insulating spin — density — wave (SDW) state as the ground state if the el —
ph interaction is small compared to the Coulomb correlation and an
insulating charge — density — wave (CDW) as a ground state if the el — ph
interaction is large compared to the Coulomb correlation. Thus, one has an
insulator to insular transition in this scenario. In 2003, Takada and
Chatterjee (TC) [1] took up this problem for a more rigorous analytical
examination and suggested the presence of an intermediate metallic phase
between the SDW — CDW regions. The calculation of TC is variational and
therefore Chatterjee and collaborators [2 — 6] have made a few
improvements on the calculation of TC. It is interesting to point out that
every improved variational calculation has led to a wider metallic phase. As
we have pointed out, the calculations performed in [1] are variational and
therefore there can still be room for improvement. The aim of the present
thesis has been to make an attempt in this direction.
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In Chapter 1, we introduced the subject matter of the thesis and the
motivation. We have also discussed the basic concepts and relevant models
on which our works are based. Because we have been interested in this thesis
on narrow — band systems, we have started with a brief discussion on the
Tight — Binding model [7] and then presented a brief overview of the
Hubbard model [8]. Since the main aim of this thesis has been to study the
interplay between the el — ph and el — el interactions, we have next
introduced the concept of polarons and bipolarons, the Holstein polaron [9
— 13] and finally the Holstein — Hubbard (HH) model [14 — 17], that can
explain the physics of an el — ph system with Coulomb correlation [18 — 20].
Finally, we have examined the issue of possible ground states that the HH
model can provide. In this context, we described the SDW and CDW phases
and discussed the phase transitions that can occur in HH model as the
interaction parameters are changed. At the end of the chapter, we have given

an overview of the thesis.

In Chapter 2, the 1D HH model is studied at half — filling to analyze
the influence of el — ph interaction and coulomb repulsion at the cross over
region of the CDW and SDW phases. A series of canonical transformations
have been applied to the Hamiltonian followed by an averaging with respect
to a zero — phonon state to obtain an effective electronic Hamiltonian that
has been finally solved by the Bethe — ansatz technique. The canonical
transforations have been carried out to take care of phonon coherence and
correlations. In the present work, we have introduced a new canonical
transformation that takes into account electron density — dependent phonon
correlations that can lead to an important effect particularly if the el — ph
interaction is not small. We have used the Mott criterion and the local spin
— moment to obtain the phase diagram and the contour plot. We have

confirmed the existence of the intermediate metallic phase at the SDW —
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CDW transition region and have also shown that the present calculation
provides a broader metallic phase at the phase boundaries of CDW and SDW
cross — over region than the one’s predicted by the previous calculations [2].
This wider metallic phase obtained from an improved variational calculation

reinforces our confidence in the prediction of TC.

In Chapter 3, we have extended our work of Chapter 2 by using a
generalized many — phonon state as the averaging phonon state in place of
the zero — phonon state. The effective electronic Hamiltonian is then solved
exactly by the Bethe — ansatz method. So, we have referred to this method
as semi —exact. We have shown that this calculation widens the intermediate

metallic state even further lending credence to the conjecture of TC.

In Chapter 4, we have extended the investigation of Chapter 3 to
calculate Entanglement Entropy (EE) and Double Occupancy (DO) of the
same system. EE and DO have been calculated at and around the transition
region of SDW and CDW phases. These calculations reconfirm the presence
of intervening metallic phase and also show broader metallic phase when
compared with the earlier calculation of Shankar and Chatterjee [5].

It would be quite interesting to examine the nature of the SDW — CDW

transition in two dimensions.
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