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P R E F A C E 

    It is well – known that the pairing mechanism for the high – temperature 

superconductivity (HTCS) in cuprates is still not clear.  A number of 

researchers have advocated the electronic mechanism as the cause of 

superconductivity in the cuprates. However, quite a few researchers have 

also suggested the phonon mechanism. Since high – 𝑇𝑐 materials like 

cuprates are strongly correlated narrow – band systems, the Holstein – 

Hubbard (HH) model should be the suitable model to investigate the HTSC 

in cuprates. Unfortunately, however, the explanation of superconductivity 

using the HH model runs into a serious difficulty. To understand this, one 

has to look into the nature of the ground states provided by the HH model. 

The HH system can have different quantum phases. When the electron (el) 

– phonon (ph) interaction is small, the ground state of the HH system is a 

spin – density – wave (SDW) state and when the el – ph interaction is strong, 

the ground state of the system is a charge – density – wave (CDW) state.  

This is not an encouraging scenario from the point of view of 

superconductivity because to achieve high transition temperature one needs 

to have strong el – ph interaction, while the strong el – ph interaction leads 

the system into a CDW insulator. Thus, superconductivity looks impossible 

in the HH model.  Of course, one may be curious to study the transition 

region. In fact, Hirsch and Fradkin performed a Monte – Carlo study of the 

HH model and showed that the transition from SDW phase to CDW phase 

is direct so that there is no metallic phase in the HH model at all. 

  Takada and Chatterjee (TC) in 2003 took up the 1D half – filled HH 

model for a more critical analytical investigation and studied the SDW – 
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CDW transition in this system using a variational method coupled with the 

Bethe – ansatz technique. Their analysis shows that there exists an 

intervening metallic phase at the crossover of the SDW – CDW transition.  

  This theoretical observation is important because the existence of 

such a metallic state would be just ideal for High – Tc superconductivity. 

The work of TC has been supported by many researchers [Phys. Rev. Lett. 

95, 096401 (2005), Phys. Rev. B. 75, 245103 (2007), Phys. Rev. B 83 033104 

(2011)], but there also exist a few investigations [Phys. Rev. Lett. 95 226401 

(2005), Phys. Rev. B 76 155114 (2007), Phys. Rev. B 75 161103 (R) (2007)] which 

refute the existence of the metallic phase predicted by TC. Chatterjee and 

collaborators [Physica C. 457, 55 – 59 (2007), Adv. Con. Matt. Phys. 2010, 

350787 (2010), Physica B 489, 17 – 22 (2016)] have therefore studied this 

problem analytically with more improved variational wave functions. 

Interestingly, they have shown that each improvement in the variational 

wave function leads to a broadening of the intermediate metallic phase. This 

result is important because if an improved variational calculation predicts a 

narrower metallic phase, the very existence of the intermediate metallic 

phase will be doubtful. Since the variational calculations performed by 

Chatterjee and collaborators are still approximate, they can be further 

modified and improved. In the present work, we make attempts in this 

direction. We propose more improved variational functions as compared to 

[Physica C. 457, 55 – 59 (2007)] by incorporating the phonon coherence and 

correlation in a more accurate way and then deal with the effective 

electronic problem by the exact Bethe – ansatz method [Phys. Rev. Lett. 20, 

1445 – 1448 (1968)] to accomplish a lower ground state energy. These works 

are expected to unravel the nature of the phase transition in the HH model 

more accurately and we will be in a position to make a make more authentic 

prediction on the width of the metallic phase. 
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  The organization of the thesis is as follows. In Chapter 1, we 

introduce the subject of the thesis in general and discuss the motivation for 

carrying out this work. We first describe the Tight – Binding model and then 

introduce electron correlation and the Hubbard Model. Thereafter we touch 

upon the concept of phonons and present the Holstein model. In this context 

we discuss polarons and bipolarons. Next, we present a brief introduction 

to the Holstein – Hubbard model and discuss the SDW and CDW phases.  

  In chapter 2, we present our recent work on the HH model in one – 

dimension (1D) at half filling by where we have used an improved 

variational calculation. We have employed a series of unitary 

transformations [Physica C. 457, 55 – 59 (2007)] to take into account the 

coherence and correlation of phonons. To treat the phonon subsystem more 

accurately a new squeezing transformation is introduced to incorporate the 

electron – density – dependent phonon correlations to lower the ground 

energy further. The effective electronic Hamiltonian is next obtained by 

averaging the transformed Hamiltonian with respect to the zero – phonon 

state and the resulting effective electronic Hamiltonian is then solved exactly 

using the method of Bethe – ansatz. Finally, the ground state is obtained by 

minimizing the energy with respect to all the variational parameters. The 

method gives better results as compared to the earlier works [Physica C. 457, 

55 – 59 (2007), Adv. Con. Matt. Phys. 2010, 350787 (2010), Physica B 489, 17 – 

22 (2016)], for the ground state energy and also suggests the existence of a 

wider intermediate metallic phase at the SDW – CDW. The present results 

lend credence to the initial observation of TC. It may be noted here that it is 

not important by how much amount the metallic phase widens in an 

improved approach, rather what is important is that the metallic phase does 

widen and does not shrink. 
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  In Chapter 3, we study the 1D half – filled HH model with a more 

improved variational wave function for the phonons than the one used in 

Chapter 2. In fact, here we consider a Generalized many – phonon state to 

obtain an effective Hubbard model which we then solve exactly by using 

Bethe – ansatz technique to obtain the ground state energy. The present 

variational state leads to a lower ground state energy as compared to those 

obtained from all the previous variational calculations. Furthermore, we 

show that the width of the metallic phase also increases with the present 

improved method. 

  In Chapter 4, for the same system as in Chapter 3, we study two new 

parameters namely, the Double Occupancy and the Entanglement Entropy 

at the boundary of the SDW – CDW phases of the 1D HH system at half 

filling. The results reconfirm that an intermediate metallic phase exists at 

the cross – over region of the SDW – CDW phases.  

    Finally, in Chapter 5, we briefly summarize our 

results and make a few comments on our findings. 
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Chapter 1 

 

Introduction 

 

1.1   Introduction and Motivation 

The theory of high – temperature superconductivity in cuprates [1 – 3] has 

remained a topic of debate in the field of Condensed matter physics for the 

past few decades. These superconductors are found different from the old 

superconductors in many ways. For instance, the transition temperature in 

these new superconductors is much higher compared to the old 

superconductors in which the superconductivity is caused by Cooper pairing 

induced by phonon mechanism which can be explained by the BCS 

(Bardeen, Cooper, and Schrieffer) theory [4].  Furthermore, in high 𝑇𝑐 

superconductors (HTSC) the coherence length is much smaller than that in 

the usual superconductors in which the coherence length is of the order of 

10−4cm. Though different kinds of mechanisms [5] were recommended in 

the past, a general agreement has been lacking. In fact, so far no single theory 

could explain all the properties of HTSC successfully.  

  One of the prospective mechanisms proposed for causing 

superconductivity in HTSC is electron (el) – phonon (ph) interaction [6 – 

11] which is responsible for creating polarons and bound – pair of polarons 

called bipolarons. According to some of these models, the normal phase of 
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these materials ought to contain polarons or bipolarons as quasiparicles. 

Since these systems are correlated structures, the Holstein model can be 

considered more suitable than the standard Frohlich model for the 

description of the corresponding polarons or bipolarons in these systems. 

Several temperature scales exist in this problem. First is 𝑇𝐵𝐶𝑆, the critical 

temperature corresponding to BCS superconductivity induced by Cooper – 

pairing of polarons [4]. 𝑇𝐵𝑃 is another temperature scale. At this 

temperature, two individual polarons will interact to make a bound state in 

the real space, which is a static local bipolaron. If 𝑇𝐵𝑃 is greater than 𝑇𝐵𝐶𝑆, 

the system’s normal phase will be characterized by bosonic quasiparticles 

namely the bipolarons. In this scenario, one can think of another temperature 

scale namely, 𝑇𝐵𝐸𝐶 at which bipolarons may undergo the Bose condensation. 

So, in this case, the Bose condensate of bipolarons can be claimed to be the 

superconducting phase. A number of properties of cuprates can be explained 

by the polaronic or bipolaronic mechanism [12 – 17], but some analysts have 

been critical of this mechanism. The reason is the following. The formation 

of polarons and bipolarons requires a strong el – ph interaction, which 

according to these analysts is, however, the biggest stumbling – block of the 

polaronic theories. If the el – ph coupling is small in strength, a system will 

be inclined to stay in a spin – density – wave (SDW) ground state (GS) that 

may be characterized as an antiferromagnetic polaronic state. This is also 

referred to as the Mott insulating phase. If the el – ph interaction is made 

strong enough to dominate over the el – el Coulomb repulsion, the net onsite 

interaction may become attractive and in that case, the GS may be a charge 

– density – wave (CDW) state. This would be, of course, a bipolaronic state. 

In this phase, the system behaves as an insulator and may be referred to as 

the peierls insulator.   Thus, on increasing the el – ph interaction from a low 

value to a high value, one may transform the system from a Mott insulator 
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to the Peierls insulator. Based on this argument, the system should be in an 

insulating phase irrespective of the strength of the el – ph interaction. From 

this point of view, the el – ph mechanism was discounted in the beginning. 

But one would still like to know the detailed transition behaviour at the 

CDW – SDW cross – over region. In fact, the SDW – CDW cross – over 

behaviour of the Holstein – Hubbard model [19 – 23] was explicitly 

investigated by Hirsch and Fradkin (HF) [18] by using a Monte – Carlo 

calculation.  This study has revealed that as the strength of the el – ph 

coupling is enhanced, at some el – ph interaction coefficient, the HH system 

undergoes a direct SDW – CDW transition. In 2003, Takada and Chatterjee 

(TC) [24] considered the HH Hamiltonian again and looked into SDW – 

CDW cross – over region more carefully. This study has been on the 

speculation that the competition between the el – ph interaction and the 

Coulomb correlation may cause some sort of compromise or frustration 

leading to an intermediate phase which may not be insulating. TC employed 

an analytical method and performed a variational calculation coupled with 

the exact Bethe – ansatz technique [25 – 26] to show the existence of an 

intervening phase at the SDW – CDW cross – over region in the one – 

dimensional (1D) HH system and interestingly this intermediate phase has a 

metallic character. Chatterjee and Takada [27] have subsequently shown that 

the anharmonicity increases the extent of the conducting region.                                  

  The results of TC threw a challenge among the researchers in the 

area and motivated further investigations on this issue [28 – 35] which 

supported   the prediction of TC. However, there have also been a few 

investigations [36 – 38] which predicted results that are not in agreement 

with the results of TC. Since the approach of TC is variational, it would be 

interesting to make improvements in the calculation of TC and analyze the 

modified results.  An improved variational calculation will of course lower 
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the GS energy but the important point is to find how the width of the metallic 

phase changes. It may so happen that in the improved calculation the 

metallic phase disappears or the extent of the metallic region shrinks. In that 

case one can have a serious doubt about the presence of the metallic phase. 

However, if the metallic phase broadens, then one can have more confidence 

in the prediction of TC. With this goal in mind, Chatterjee and collaborators 

[39 – 43] have modified the variational calculation of TC and the results of 

these investigations have supported the result of TC. Since these calculations 

are approximate, it is important to make more and more accurate 

calculations and examine the veracity of the results of TC. The main purpose 

of this thesis is to make attempt in this direction. 

 

1.2   Model 

High 𝑇𝐶 cuprate superconductors are narrow band materials and electrons 

in these materials would mostly be localized at the lattice sites and will move 

from one site to other site only by hoping. To deal with such electrons, one 

would normally use the Tight – Binding model [44 – 45]. 

 

1.2.1 Tight – Binding Model 

    It is well known that the Tight Binding model [44] is a suitable approach 

for the calculations of electronic band structures for localized electrons. The 

method uses a superposition of atomic orbitals. The tight – binding 

Hamiltonian (𝐻𝑇𝐵) in second quantization notation can be written as: 

 

𝐻𝑇𝐵 = − ∑ 𝑡𝑖𝑗𝑐𝑖𝜎
† 𝑐𝑗𝜎

<𝑖𝑗>

 ,                                             (1) 
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where  𝑐𝑖𝜎
† (𝑐𝑗𝜎) is the creation  (annihilation) operators of an electron with 

spin 𝜎, where the notation 〈𝑖, 𝑗〉 implies that the summation is 

over nearest neighbours 𝑖 and 𝑗 only  and  𝑡𝑖𝑗 is the hopping integral given 

by 

𝑡𝑖𝑗 = ∫ 𝑑𝒓 𝜑𝑖
∗(𝒓) [−

ħ2

2𝑚
𝛁2 + 𝑈(𝒓)] 𝜑𝑗(𝒓),  

 

where 𝑈(𝒓) refers to the lattice potential at 𝒓,  𝜑𝑖(𝑗)(𝑟) = 𝜑(𝑟 − 𝑟𝑖(𝑗)) are 

the atomic orbitals,  𝒓𝑖(𝑗) being the coordinate of 𝑖(𝑗) – th site. The 

hopping integral finally assumes the following expression: 

𝑡𝑖𝑗 ≅
1

𝑁 
∑ 𝜀𝑘𝑒𝑖𝑘(𝑟𝑖−𝑟𝑗)

𝑘

                                             (2) 

where 𝜀𝑘 is the energy of an electron in state k. 

 

We calculate the energy of the system using the Bloch function 𝜓𝑘(𝒓𝑖) =

𝑒𝑖𝒌.𝒓𝑖𝑢𝒌(𝒓𝑖), which is a periodic function and where 𝑢 has the same 

periodicity as the lattice. In many systems, 𝑡𝑖𝑗 would be equal for all nearest 

neighbours, therefore we choose 𝑡𝑖𝑗 = 𝑡. The tight – binding energy for a 

three – dimensional (3D) system can be written as: 

𝜀𝑘 = −𝑡 ∑ 𝑐𝑜𝑠(𝒌. 𝜶)

𝛼

 .                                              (3) 

For a one – dimensional system, there are two nearest neighbours and we 

have: 𝛼 = ±𝑎, where 𝑎 is the lattice constant and the energy of an electron 

in state 𝑘 will be given as: 

𝜀𝑘 = −2𝑡𝑐𝑜𝑠(𝑘𝑎).                                                       (4) 



[6] 
 

 

The energy dispersion relation is plotted schematically in Fig. 1.1. If the 

band contains 𝑁 (number of unit cells in the system) 𝑘 states and since each 

𝑘 state can have two electrons, the band can contain 2𝑁 electrons.  

 

 

 

 

 

 

 

Fig.  1.1 Energy dispersion relation of a Tight – binding model for a 1𝐷 lattice chain of 

lattice spacing 𝑎. 

 

    Fig. 1.1 shows that the Brillouin zone spreads from −𝜋
𝑎⁄  to 𝜋 𝑎⁄  and the 

width of the band is 4t. The Tight – Binding model is a useful model to 

categorize the materials into metals and insulators, based upon the overlap 

of the wave functions, band filling factor and the lattice constant. As 

mentioned above, in narrow band materials, electrons would mostly stay 

localized at lattice sites and would move from one site to another only by 

hopping as shown in Fig. 1.2. We consider a one – dimensional (1D) chain 

of electrons with the assumption that the chain is half filled i.e. we have just 

one electron per site.    
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Fig.  1.2 Hopping of an electron from one site to another in a 1D chain of electrons. The 

parameter 𝑡 denotes the strength of hopping. 

 

An electron can hop from a certain site to its nearest site by hopping, only if 

that site is unoccupied or occupied by an electron of opposite spin.   The 

tight – binding model suggests that if we consider one electron per site 

(which can contain in general two electrons of opposite spins), the band will 

be half filled and the system should behave as a metal. According to this 

model, substances like V2O3, Fe3O4, VnO2 etc. should be metals but 

experimentally they turned out to be insulators. So, the simple Band theory 

cannot justify the non – metallic properties of the systems mentioned above. 

Mott and Hubbard later elucidated the insulating properties of these 

materials. They suggested that the insulating behaviour of the 

aforementioned materials could be attributed to the el – el Coulomb 

correlation, and these materials are known as Mott insulators. Hubbard 

proposed a model that provides the necessary framework for dealing with 

correlated systems and this model is known as the Hubbard model. 

 

1.2.2 Hubbard Model 

    As mentioned above, Hubbard demonstrated the insulating properties of 

certain materials introducing the phenomenon of el – el coulomb correlation. 

The el – el interaction term proposed by Hubbard is given by [20]  
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𝐻𝑐𝑜𝑟𝑟 = 𝑈 ∑ 𝑛𝑖↑𝑛𝑖↓

𝑖

 ,                     

where 𝑈 is the on – site el – el interaction strength (Coulomb correlation 

strength) and 𝑛𝑖𝜎 denotes the number operation for spin – 𝜎 electrons at the 

𝑖 – th site.    𝜎 =↑ refers to the up – spin state and 𝜎 =↓ refers to the down – 

spin state of the electron. When the above el – el interaction term is 

combined with the tight binding Hamiltonian, we get the celebrated Hubbard 

model which is given by  

𝐻𝐻𝑢𝑏𝑏𝑎𝑟𝑑 = −𝑡 ∑(𝑐𝑖𝜎
† 𝑐𝑗𝜎 + 𝑐𝑗𝜎

† 𝑐𝑖𝜎)

𝑖𝑗𝜎

+ 𝑈 ∑ 𝑛𝑖↑𝑛𝑖↓

𝑖

                      (5) 

This model permits electrons to hop between neighbouring sites while also 

allowing them to be localized at the lattice sites. As a result, both the 

scenarios of localization and delocalization are addressed in this model. The 

Hubbard model has proved useful in explaining several phenomena in 

condensed matter physics. 

 

1.3   Polarons and Bipolarons  

The concept of polaron was introduced in 1933 by Landau [46]. If we have 

an impurity electron in an ionic crystal, as shown in the Fig. 1.3, the electron 

will repel the negative ions and attract the positive ions in its vicinity because 

of the Coulomb interaction. This will lead to the distortion of the lattice 

around the electron and consequently a polarization potential for the 

electron. The electron can then get trapped in this potential, if the potential 

becomes sufficiently deep. This bound electron will have its own energy 

levels and was later referred to as a strong – coupling polaron. The name 
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“polaron” was coined by Pekar.  Later, Landau and Peker [47] determined 

the energy of the polaron and its effective mass. 

 

 

 

 

 

 

                        

                       Fig.  1.3 A conduction electron in an ionic crystal.  

 

     To characterize a polaron, Frohlich [48] devised a quantum mechanical 

Hamiltonian. In this picture, an electron distorts the lattice in its 

neighbourhood and carries the lattice distortion together with it as it moves 

through the lattice (Fig. 1.4). This complex i.e. the electron together with the 

lattice distortion constitutes a quasi – particle which is called a polaron [49 

– 50].  

 

     

 

  

 

Fig. 1.4 An impurity electron distorting the lattice in its neighborhood as it 

moves. 
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If the deformation of the lattice is restricted over a single lattice distance, the 

corresponding polaron is called a small polaron (Fig. 1.5). This happens 

when the el – ph interaction is strong. Because in this case, the lattice 

distortion will be more and the corresponding polarization potential will be 

deep and as a result, the electron will be trapped in the potential and the 

polaron will be small. On the other hand, if the lattice distortion is not 

restricted to one lattice spacing, but extends over a few lattice points in the 

crystal, then we call it a large polaron, as shown in Fig. 1.5. In this case, the 

interaction of the electron with the phonons is weak and so the potential 

created by the electron will be shallow and the corresponding polaron will 

be large in size.  The Fr𝑜̈hlich model is based on the continuum model and 

therefore it is more suitable for a large polaron. 

 

 

 

 

 

 

 

 

Fig.  1.5 Small and Large polarons 
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1.4   Holstein Polaron/Polaron in Tight binding model 

Based on the Tight – Binding model, Holstein [19] proposed a new 

formulation for the polaron problem which is more suitable for a small 

polaron. The Holstein Hamiltonian is given by  

𝐻 = −𝑡 ∑(𝑐𝑖𝜎
† 𝑐𝑗𝜎)

𝑖𝑗𝜎

+ ħ𝜔0 ∑ 𝑏𝑖
†𝑏𝑖

𝑖

+  𝑔 ∑ 𝑛𝑖𝜎

𝑖𝜎

(𝑏𝑖
† + 𝑏𝑖) .        (6) 

In Eq. (6), the first term is the hopping term where the operator  𝑐𝑖𝜎
† (𝑐𝑗𝜎) 

creates (annihilates) an electron of spin 𝜎 at site 𝑖 and the parameter 𝑡 gives 

the strength of hopping. The second term denotes the phonon Hamiltonian, 

where the operator 𝑏𝑖
†(𝑏𝑖) creates (annihilates) a phonon of dispersionless 

frequency 𝜔0 at site 𝑖. The third term gives the el – ph  interaction, where 𝑔 

is the el – ph  interaction strength. 

  In a certain situation, the phonon – induced attraction between two 

electrons may dominate over the repulsive el – el interaction. In such a 

scenario, two electrons can form a bound pair, which is referred to as a 

bipolaron [49].  

 

1.5   Holstein – Hubbard Model 

When we include lattice dynamics (phonons) in the Hubbard model, then 

one can also have el – ph interaction in the system (Fig. 1.6). 
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Fig.  1.6 The parameter  𝑡 gives the strength of hopping,  𝑔 denotes the strength of the 

onsite el – ph  interaction and 𝑈 refers to the onsite el – el interaction strength in a 1D 

chain. 

 

The Holstein – Hubbard (HH) Hamiltonian [21, 22] is given by  

𝐻 = −𝑡 ∑(𝑐𝑖𝜎
† 𝑐𝑗𝜎 + 𝑐𝑗𝜎

† 𝑐𝑖𝜎)

𝑖𝑗𝜎

+ 𝑈 ∑ 𝑛𝑖↑𝑛𝑖↓

𝑖

 

+ ħ𝜔0 ∑ 𝑏𝑖
†𝑏𝑖

𝑖

+  𝑔 ∑ 𝑛𝑖𝜎

𝑖𝜎

(𝑏𝑖
† + 𝑏𝑖)                    (𝟕) 

 

The el – ph  interaction coefficient 𝑔 is often written as: 𝑔 = √𝛼𝜔0, where 

α is called the el – ph  coupling constant.  

  Now we have three parameters in the problem, the hopping 

parameter 𝑡, the onsite el – el Coulomb correlation strength 𝑈 and the onsite 

el – ph  interaction coefficient 𝑔. In order to see the competition between the 

el – el interaction and el – ph  interaction, one has to keep the value of  𝑡 at 

a certain finite value. The parameter that dominates over the others will 

decide the ground state of the system.  
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1.5.1  Spin Density Wave 

    The antiferromagnetic GS of metals is the spin – density – wave (SDW) 

state, in which the density of conducting electrons’ spins at Fermi level is 

spatially modulated (Fig. 1.7). Mostly SDW state can be observed in metals 

and alloys having high density of states at Fermi level. The most leading 

element where SDW can be observed is Chromium and its alloys. Albert 

Overhauser [51] was the first to show the existence of SDW for the first 

time.  

  If  𝑈 ≫ 𝑔, all the electrons will stay localized on their respective 

sites and hence there will not be any movement of electrons from one site to 

the other. Thus, this is an insulating state and is called a Mott insulating state. 

In this state, GS of the system will be an SDW state (Fig. 1.7). This is 

obviously an antiferromagnetic state and this can also be referred to as a 

polaronic state because in this state the quasi – particles are polarons which 

form because of the interaction of electrons with the local phonons. 

  

   

       ↳ 

 

Fig.  1.7 Spin density wave, when on – site el – el interaction strength (𝑈) is 

greater than the el – ph interaction strength (𝑔) at some finite value of hopping parameter 

(𝑡). 
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1.5.2 Charge Density Wave 

    An orderly placement of electrons in a layered crystal or linear chain 

compound is the charge density wave (CDW) state (Fig. 1.8). Like SDW, 

this state also occurs in low dimensional materials at low temperature or in 

metals and alloys having high density of states at Fermi level. Scanning 

tunneling microscopy or electron diffraction techniques can be used to 

observe the periodicity associated with CDWs.  Peierls [52] was one of the 

first to put forward the theory of CDWs, while trying to explain the concept 

of superconductivity. 

 

       ↳ 

 
 

Fig.  1.8.  Charge density wave  when el – ph interaction strength (𝑔) is greater than the 

on – site el – el interaction strength (𝑈) at some finite value of hopping parameter (𝑡). 

 

    If 𝑔 ≫ 𝑈, the phonon induced el – el interaction can  overcome the 

repulsive Coulomb correlation giving rise to an effective attractive el – el 

attraction. An electron can then hop from one site to another and form a 

bound pair of two electrons. Thus, we will have two bound electrons or a 
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bipolaron localized on every site and there will not be any movement of 

electrons after the formation of these bound pairs. This state is called a CDW 

state in which a gap appears due to Peierls distortion. Such an insulator can 

therefore be called a Peierls insulator.    

 

1.5.3 Phase Transition in Holstein – Hubbard model 

    As mentioned above, GS of the HH model can be a SDW state or a CDW 

state depending on the relative strengths of the el – ph and el – el 

interactions. However, both are insulating phases and therefore as the el – 

ph interaction is increased, one would expect the system to undergo an SDW 

– CDW transition, which is an insulator – to – insulator transition. Thus, the 

possibility of superconductivity in the HH model looked rather bleak. 

However, one can still like to find out what happens at the transition region. 

Hirsch and Fradkin [18] have indeed investigated the behaviour of the SDW 

– CDW transition in a 1D Holstein – Hubbard system numerically by using 

a Monte – Carlo simulation technique. It has been shown that the SDW – 

CDW transition is direct. This suggested that superconductivity in the HH 

model was impossible.   

  TC [24] gave a critical re – look at the nature of the SDW – CDW 

phase transition in a 1D HH model and obtained an analytical solution for 

the GS energy of the system using a variational calculation coupled with the 

exact Bethe – Ansatz formalism. TC have claimed the possible existence of 

an intervening metallic phase at the crossover region of CDW – SDW 

phases. This finding is naturally important because if such a phase really 

exists, then it may become superconductive at low temperature. In a 

subsequent paper, Chatterjee and Takada [24] have demonstrated that the 
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existence of phonon anharmonicity may increase the extent of the 

intervening metallic region even further. This work is important because the 

apex oxygen in the cuprate superconductors does have a substantial 

anharmonic motion and this anharmonicity has a sizable effect on the 

properties of these materials [53 – 57].   

  The work of TC has drawn a lot of attention and motivated a good 

number of investigations because it brought the role of el – ph  interaction 

in high 𝑇𝑐 materials again in the forefront of research. Clay and Hardikar [28 

– 29] have examined the assertion of TC by studying the same HH model 

using a numerical approach based on density – matrix renormalization group 

(DMRG). Their results support the prediction of TC. They have also 

suggested by calculating the Luttinger liquid correlation exponent that the 

existing metallic phase can become superconductive. Another study has 

been carried out by Fehske et al [30] by using density – matrix – 

renormalization – group technique. They have shown that there exists an 

intermediate metallic phase particularly for large – phonon frequencies. 

Payeur and Senechal [31] have employed an exact diagonalization technique 

and a cluster perturbation theory and have revealed that the possibility of 

existence of an intermediate – metallic state at the CDW phase boundary 

cannot be rejected. A determinant quantum Monte – Carlo analysis has been 

carried out by Nowadnick et al. [32] in two – dimensions (2D). This 

investigation also reveals the presence of an intervening metallic region. 

Assaad and Hohenadler [33] have also verified the presence of such an 

intermediate metallic phase. Bourbonnais and Bakrim [34] have shown that 

the renormalization group technique and the quantum Monte – Carlo 

technique yield similar results and both the techniques support the existence 

of the intermediate metallic phase. Wang. et al. [35] have studied the GS 

features of the 2D HH Hamiltonian using an exact diagonalization 
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technique and provided an evidence for the presence of an intermediate 

phase flanked by the SDW and CDW states. 

  However, a few investigations have also disagreed with the assertion 

of TC [36 – 38]. Tezuku et al. [36] have used DMRG to investigate the HH 

Hamiltonian for large values of el – el and el – ph coupling strengths. The 

study of the region flanked by the adiabatic and anti – adiabatic regimes has 

shown that pairing and CDW correlations are degenerate when the el – el 

and el – ph interactions are of equivalent strength. It has also been 

discovered that when the phonons have much larger energy compared to the 

el – ph interaction energy and also the electron – hole symmetry is absent, 

the CDW and the on – site superconducting phases overlap, requiring no 

intermediate phase in the SDW – CDW transition. Tezuka et al. [37] have 

generated correlation functions using real – space dynamics in a modified 

study and discovered a metallic gap between the SDW and CDW phases in 

the pure (un – doped) HH model, but the pairing correlation has been found 

more significant in the doped HH model in the absence of electron – hole 

symmetry. Tam et al. [38] have used the renormalization group (RG) method 

to investigate the 1D HH model at half – filling treating the el – ph and el – 

el interactions on an equal footing. They have also considered the probable 

retardation effects of the phonon dynamics. Their results show a direct 

transition from the CDW state to the SDW state. 

  According to the findings of the above studies it is therefore 

important to examine the authenticity of the result of TC through more 

accurate analytical calculations. The aim is to find out the extent of the 

intervening metallic phase by using more accurate phonon wave functions.  

As has been mentioned earlier, if a more accurate wave function leads to the 

shrinking of the width of the intermediate metallic phase or its disappearance 
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altogether, then the prediction of TC is certainly questionable. On the other 

hand, if the width of metallic phase increases, then the results of TC will 

have more credibility. With this motivation, Chatterjee and collaborators [39 

– 43] have modified the variational calculation of TC and the results of these 

investigations have supported the result of TC. However, these calculations 

are variational in nature and thus approximate and therefore systematic 

attempts to improve the variational phonon state are called for to bring out 

the accurate picture of the nature of the SDW – CDW transition. Recently 

we have made attempts in this direction [58 – 61] The purpose of this thesis 

is to present these works. 

   

1.6   Organization of the thesis 

In the chapter following the present one i. e. in Chapter 2, we analyze the 

1D HH model at half – filling using a sequence of unitary transformations 

that incorporate coherence and correlations of the phonons followed by a 

zero – phonon averaging.  The phonon wave function chosen here is more 

accurate than the one used in [24]. We have introduced a new squeezing 

transformation that depends on the electron concentration to treat the phonon 

sub – system.  This new transformation treats the phonon correlation in a 

more realistic way. The effective Hamiltonian obtained after phonon 

averaging is exactly solved by the technique of Bethe – ansatz and finally 

the GS energy and the intermediate metallic phase are obtained.  

 

  In the Chapter 2, we performed a series of canonical transformed and 

used a zero – phonon state to obtain the effective electron Hamiltonian 

which has been solved by the Bethe – ansatz technique. In Chapter 3, we 

extend the work of Chapter 2 by introducing a generalized many – phonon 

state to eliminate the phonon degrees of freedom. We show that this 
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modified variational method broadens the width of the intermediate metallic 

phase.   

 

  In Chapter 4, we take up the same 1D HH model and present our 

calculation of two parameters namely, the Quantum Entanglement Entropy 

and Double Occupancy. We show that in a plane of Coulomb correlation 

strength and el – ph coupling constant, a phase exists which is flanked by 

the CDW and SDW phases and this phase is proven to be a metallic phase. 

  In the final chapter i. e., Chapter 5, we briefly present a summary of 

our results and prove some concluding remarks.  
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Chapter 2 

 

Ground – state phase diagram of the one 

dimensional Holstein – Hubbard model 

 

2.1   Introduction 

    We have already explained in Chapter 1 that it is important to examine 

the nature of the spin – density – wave (SDW) [1] charge – density – wave 

(CDW) [2] transition in a Holstein – Hubbard (HH) system analytically in 

the context of high 𝑇𝑐 superconductivity. In this context, Takada and 

Chatterjee (TC) [3] made an interesting study in 2003 on the one – 

dimensional (1D) half – filled HH model [4 – 8] to show that there exists an 

intermediate metallic phase at the SDW – CDW transition region. Several 

investigations [9 – 16] supported this result, though a few [17 – 19] also 

discounted it. Later, Chatterjee and collaborators [20 – 24] modified the 

analytical calculation of TC using more improved phonon states and 

supported the claim of TC. Since these calculations are variational and hence 

approximate, calculations with more accurate phonon states are called for to 

confirm the veracity of the assertion of TC. In this chapter, we improve the 

variational phonon state used by (KC) [20] and show that this modification 

leads to a wider metallic phase at the crossover region of SDW – CDW 

phases.   
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2.2   The Hubbard – Holstein (HH) Hamiltonian 

    The HH Hamiltonian to be studied has been introduced in Chapter 1. It is 

given by: 

𝐻 = 𝐻𝑒 + 𝐻𝑝 + 𝐻𝑒𝑝 ,                                                  (1) 

 

where 𝐻𝑒 is the electronic Hamiltonian given by  

 

𝐻𝑒 =  − 𝑡 ∑ 𝑐𝑖𝜎
† 𝑐𝑗𝜎

<𝑖,𝑗>𝜎

 +  𝑈 ∑ 𝑛𝑖↑𝑛𝑖↓

𝑖

,                              (2) 

  

𝐻𝑝 is the free phonon Hamiltonian given by: 

 

𝐻𝑝 = 𝜔0  ∑ 𝑏𝑖
†𝑏𝑖

𝑖

,                                                      (3) 

 

and 𝐻𝑒𝑝 is the el – ph  interaction given by  

 

𝐻𝑒𝑝 = 𝑔 ∑  𝑛𝑖𝜎  (𝑏𝑖
† + 𝑏𝑖)

𝑖𝜎

,                                      (4) 

    

    Though all the symbols in the above equations have already been defined 

in Chapter 1, we define them again here for the sake of completeness. In Eq. 

(2), 𝑡 denotes the bare hopping integral, 𝑐𝑖𝜎
† (𝑐𝑗𝜎)  refers to the creation 

(annihilation) operator for an electron of spin 𝜎 at the 𝑖𝑡ℎ site and < ⋯ > 

denotes that the summation is to be carried out over  nearest neighbours 

only. In Eq. (2),  U denotes the onsite correlation energy and 𝑛𝑖𝜎(≡ 𝑐𝑖𝜎
† 𝑐𝑖𝜎)  

stands for the “number operator” for electrons of spin 𝜎 at the 𝑖𝑡ℎ site. In 

Eq. (3),  𝑏𝑖
†(𝑏𝑖) represents the creation (annihilation) operator for an optical 

phonon with dispersion – less frequency ω0 at the 𝑖𝑡ℎ  site and 𝑔 is called 
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the el – ph  interaction coefficient. We write: 𝑔 = √𝛼𝜔0, where 𝛼 is called 

the el – ph  coupling constant and is dimensionless.  

 

2.3    Formulation 

    The Hamiltonian (1) is not exactly soluble. So we carry out a set of 

unitary transformations to solve it approximately. We first perform a 

variable – displacement Lang – Firsov transformation (VDLFT) [25]:  

 

𝑆1 = 𝑒𝑅1  ,                                                                      (5) 

                                                 

with the generator 𝑅1 given by  

 

𝑅1 =
𝑔′

𝜔0
∑ 𝑛𝑖𝜎

𝑖𝜎

(𝑏𝑖
† − 𝑏𝑖)  ,                                      (6) 

 

where 𝑔′ has to be obtained variationally. We make the following choice of  

𝑔′:  
 

𝑔′ = √𝛼𝜂 𝜔0  ,                                                             (7) 
 

where 𝜂 is to be treated as a new variational parameter. The Hamiltonian 𝐻 

now transforms to 
 
 

𝐻1 = 𝑒𝑅1𝐻𝑒−𝑅1   .                                                        (8) 
 

Using the following variant of the Baker – Cambell – Haudroff formula 

 
𝐴̃ = 𝑒𝑆𝐻𝑒−𝑆 

= 𝐴 + [𝑆, 𝐴] + 
1

2 !
 [𝑆, [ 𝑆, 𝐴 ]] + 

+ 
1

3!
 [𝑆, [ 𝑆, [ 𝑆, 𝐴 ]]] +..  ,                           (9) 
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we have 

 
 

𝐻1 = 𝐻 + [𝑅1, 𝐻] +
1

2!
[𝑅1, [𝑅1, 𝐻]]+ . . . . . .       (10) 

 
 
 
where  𝐻 = 𝐻𝑒 + 𝐻𝑝 + 𝐻𝑒𝑝,  as given in Eq. (1). Now we need to calculate 

the commutators appearing in Eq. (9). Let us first consider [𝑅1, 𝐻] which 

can be written as  

 

[𝑅1, 𝐻] = [𝑅1, 𝐻𝑒] + [𝑅1, 𝐻𝑝] + [𝑅1, 𝐻𝑒𝑝] .         (11) 

 

We obtain the following results. 

 

[𝑅1, 𝐻𝑒] = − 𝑡𝜂√𝛼 ∑ 𝑐𝑖𝜎
† 𝑐𝑗𝜎

<𝑖,𝑗>𝜎

(( 𝑏𝑖
† − 𝑏𝑖) − (𝑏𝑗

† − 𝑏𝑗)) ,                    (12) 

 

[𝑅1, [𝑅1, 𝐻𝑒]] = −𝑡𝛼𝜂2 ∑ 𝑐𝑖𝜎
† 𝑐𝑗𝜎

<𝑖,𝑗>𝜎

(( 𝑏𝑖
† − 𝑏𝑖) − (𝑏𝑗

† − 𝑏𝑗))
2

,            (13) 

 

[𝑅1, 𝐻𝑝] = −√𝛼𝜂 𝜔0  ∑ 𝑛𝑖𝜎( 𝑏𝑖
† + 𝑏𝑖)

𝑖𝜎

 ,                                                     (14) 

 

[𝑅1, [𝑅1, 𝐻𝑝]] = (√𝛼𝜂)
2

𝜔0 ∑ 𝑛𝑖𝜎

𝑖𝜎𝜎′

𝑛𝑖𝜎 ′  ,                                                    (15) 

 

[𝑅1, 𝐻𝑒𝑝] = −2𝑔√𝛼𝜂 ∑ 𝑛𝑖𝜎

𝑖𝜎𝜎′

𝑛𝑖𝜎 ′  ,                                                               (16) 

 

[𝑅1, [𝑅1, 𝐻𝑒𝑝]] = 0 .                                                                                           (17) 
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In order to calculate the above commutators, we use the following result  

 

[ 𝐴 𝐵 , 𝐶 𝐷 ] = 𝐴 { 𝐵 , 𝐶 } 𝐷 − 𝐴 𝐶 { 𝐵 , 𝐷 } 

                                            

+ { 𝐴 , 𝐶 } 𝐷 𝐵 − 𝐶 { 𝐴 , 𝐷 } 𝐵                          (18) 

and the relation  

 

∑ 𝑛 𝑖 𝜎
 2

𝑖 𝜎

= ∑ 𝑛 𝑖𝜎

𝑖 𝜎 𝜎′

𝑛 𝑖𝜎 ′ = ∑[(𝑛 𝑖 ↑ + 𝑛 𝑖 ↓)(𝑛 𝑖 ↑ + 𝑛 𝑖 ↓)]

𝑖

 

 

= ∑ 𝑛 𝑖𝜎

𝑖 𝜎

+ ∑ 2𝑛 𝑖↑𝑛 𝑖↓

𝑖

    .                                   (19) 

 
Thus, the transformed Hamiltonian after the first transformation becomes 

𝐻1 = − 𝑡 ∑ 𝑐𝑖𝜎
† 𝑐𝑗𝜎

<𝑖,𝑗>𝜎

𝑒𝑥𝑖−𝑥𝑗 + 𝑈𝑒𝑓𝑓 ∑ 𝑛𝑖↑𝑛𝑖↓

𝑖

  

                         

+ 𝜔0  ∑ 𝑏𝑖
†𝑏𝑖 + 

𝑖

𝑃 ∑ 𝑛𝑖𝜎  (𝑏𝑖
† + 𝑏𝑖) 

𝑖𝜎

+ 𝑄 ∑ 𝑛 𝑖 𝜎
 2

𝑖 𝜎

,   (20) 

 

where the operator 𝑥𝑖 is given by:  

 

𝑥𝑖 = √𝛼𝜂 (𝑏𝑖
† − 𝑏𝑖)                                                 (21) 

 

and the parameters 𝑃, 𝑄 and the effective onsite Coulomb correlation energy 

𝑈𝑒𝑓𝑓 are given by  

𝑈𝑒𝑓𝑓 = 𝑈 − 2𝛼𝜔0𝜂(2 − 𝜂) ,                                  (22) 

𝑃 = 𝜔0√𝛼(1 − 𝜂)  ,                                                 (23) 

𝑄 = 𝛼𝜔0𝜂(𝜂 − 2)   .                                                (24) 
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    In the usual LF method [25], 𝜂 is chosen to be equal to 1, which implies: 

𝑔′ = 𝑔. One then calculates the effective electronic Hamiltonian of the 

system by zero – phonon averaging.  This would be a fairly good assumption 

for strong el – ph coupling in the anti – adiabatic regime. By varying 𝜂, 

however, a more accurate GS may be obtained in the weak and intermediate 

– coupling region. In VDLFT, the phonon coherence is assumed to be 

proportional to the electron density, 𝑛𝑖 and the parameter 𝜂 provides an 

information about the extent of lattice distortion. In the large –  𝛼 regime, 

𝜂 → 1, but in the intermediate – coupling region, it decreases, resulting in a 

better total energy by balancing the tendency for an electron to localize due 

to el – ph coupling and the tendency to delocalize due to the hopping term.  

 

We next perform the transformation by the operator  

𝑆2 = 𝑒𝑅2  ,                                                                    (25) 

where 

𝑅2 = ℎ ∑(𝑏𝑘
† − 𝑏𝑘)

𝑘𝜎

 ,                                             (26) 

where ℎ is considered as a variational parameter. The transformed  

Hamiltonian 𝐻2 obtained after the transformation by 𝑆2 can be written as  

 

𝐻 2 = 𝐻 1 +  [ 𝑅 2 , 𝐻 1 ] +  
1

2 !
 [ 𝑅 2 , [ 𝑅 2 , 𝐻 1 ] ] + ⋯  .            (27) 

 

To obtain 𝐻2, we use calculate the following commutators.  
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[ 𝑅2, 𝑒𝑥𝑖−𝑗] = 𝑒𝑥𝑖−𝑗                                                    (28) 

[ 𝑅2, 𝑏𝑖
†𝑏𝑖] = −ℎ(𝑏𝑖

† + 𝑏𝑖)  ,                                  (29) 

[𝑅2, [𝑅2, 𝑏𝑖
†𝑏𝑖]] = ℎ2 ,                                              (30) 

[ 𝑅2, (𝑏𝑖
† + 𝑏𝑖)] = −2ℎ  .                                        (31) 

 
where we use the relation 

 
[𝐴𝐵, 𝐶𝐷] = 𝐴𝐶[𝐵, 𝐷] + 𝐴[𝐵, 𝐶]𝐷 + 

𝐶[𝐴, 𝐷]𝐵 + [𝐴, 𝐶]𝐷𝐵  .                              (32) 

 
The transformed Hamiltonian after second transformation is given by  

 

𝐻2 =  − 𝑡 ∑ 𝑐𝑖𝜎
† 𝑐𝑗𝜎

<𝑖,𝑗>𝜎

𝑒𝑥𝑖−𝑗 + 𝑈𝑒𝑓𝑓  ∑ 𝑛𝑖↑𝑛𝑖↓

𝑖

+  𝜔0  ∑ 𝑏𝑖
†𝑏𝑖 

𝑖

+ ℎ2𝜔0  

 

−ℎ𝜔0 ∑(𝑏𝑖
† + 𝑏𝑖)

𝑖

+ 𝑃 ∑ 𝑛𝑖𝜎  (𝑏𝑖
† + 𝑏𝑖 − 2ℎ) + 𝑄 ∑ 𝑛𝑖𝜎

2

𝑖𝜎

 ,

𝑖𝜎

            (33) 

 
where the parameters 𝑥𝑖−𝑗 , 𝑈𝑒𝑓𝑓, 𝑃 and 𝑄 have already been defined. A 

solution with non – zero ℎ yields a significantly lesser energy, particularly 

when 𝑈 is positive and large.  The two transformations 𝑆1 and 𝑆2 together 

can be generated by the generator  

 

𝑅12 = ∑ [ℎ + 𝜂√𝛼 (𝑛𝑘𝜎 −
ℎ

√𝛼
)] (𝑏𝑘

† − 𝑏𝑘)

𝑘𝜎

.                 (34) 
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The first transformation with generator 𝑅1 takes cares of the anti – adiabatic 

regime (𝜂 = 1), whereas the second transformation takes care of the 

adiabatic regime (𝜂 = 0). So, by optimizing 𝜂 between  0 and 1, we make 

our calculation valid over the entire adiabatic and antiadiabatic regions. 

    Next, we perform a two – phonon coherence state transformation, also 

known as a squeezing transformation [26] by 𝑆3 : 

𝑆3 = 𝑒𝑅3                                                                       (35) 

where 

𝑅3 = 𝛼𝑠 ∑(𝑏𝑘𝑏𝑘 − 𝑏𝑘
†𝑏𝑘

†)

𝑖

                                    (36) 

    where 𝛼𝑠 is a variational parameter. This transformation, also called a 

Bogolubov transformation, addresses the phonon correlation at the same 

site. It also incorporates the phonon anharmonicity partly.  

The transformed Hamiltonian 𝐻3 after carrying out the transformation by 

𝑆3,  can be written as: 

𝐻 3 = 𝐻 2 +  [ 𝑅 3 , 𝐻 2 ]

+  
1

2 !
 [ 𝑅 3 , [ 𝑅 3 , 𝐻 2 ] ]+ . . . . .   .                          (37) 

 
To obtain the expression for 𝐻 3, we calculate the following commutators.  

[𝑅3, 𝑏𝑖
†] = 2𝛼𝑠𝑏𝑖  ,                                                                  (38) 

[𝑅3, [𝑅3, 𝑏𝑖
†]] = (2𝛼𝑠)2𝑏𝑖

†   ,                                                (39) 

[𝑅3, 𝑏𝑖] = 2𝛼𝑠𝑏𝑖
†      ,                                                              (40) 



[37] 
 

 

[𝑅3, [𝑅3, 𝑏𝑖]] = (2𝛼𝑠)2𝑏𝑖   .                                                  (41) 

[ 𝑅3, 𝑒𝑥𝑖−𝑗] = 𝑒𝑥𝑖−𝑗𝑒−2𝛼𝑠
                                                        (42) 

[ 𝑅3, (𝑏𝑖
† + 𝑏𝑖)] = (𝑏𝑖

† + 𝑏𝑖)𝑒2𝛼𝑠                                        (43) 

[𝑅3, 𝑏𝑖
†𝑏𝑖] = (𝑏𝑖

†𝑐𝑜𝑠ℎ(2𝛼𝑠) + 𝑏𝑖𝑠𝑖𝑛ℎ(2𝛼𝑠)) 

× (𝑏𝑖𝑐𝑜𝑠ℎ(2𝛼𝑠) + 𝑏𝑖
†𝑠𝑖𝑛ℎ(2𝛼𝑠))                       (44) 

The transformed Hamiltonian 𝐻3 obtained after third canonical 

transformation reads  

 

𝐻3 = − 𝑡 ∑ 𝑐𝑖𝜎
† 𝑐𝑗𝜎

<𝑖,𝑗>𝜎

exp (𝑥𝑖−𝑗𝑒−2𝛼𝑠) + 𝑈𝑒𝑓𝑓  ∑ 𝑛𝑖↑𝑛𝑖↓

𝑖

+ 𝑄 ∑ 𝑛𝑖𝜎
2

𝑖𝜎

  

           +𝜔0 (ℎ2 − ℎ ∑(𝑏𝑖
† + 𝑏𝑖)𝑒2𝛼𝑠

𝑖

) + 𝑃 ∑ 𝑛𝑖𝜎((𝑏𝑖
† + 𝑏𝑖)𝑒2𝛼𝑠 − 2ℎ) 

𝑖𝜎

 

             

           +𝜔0 ∑ {(𝑏𝑖
† + 𝑏𝑖)

2 𝑒4𝛼𝑠

4
− (𝑏𝑖

† − 𝑏𝑖)
2 𝑒−4𝛼𝑠

4
−

1

2
}

𝑖

 .                   (45) 

                

Here we have used the relation 

 

( 𝑏 𝑖
 † 𝑐𝑜𝑠ℎ  ( 2 𝛼 𝑠 )  +  𝑏 𝑖 𝑠𝑖𝑛ℎ ( 2 𝛼 𝑠 ) ) 

× ( 𝑏 𝑖 𝑐𝑜𝑠ℎ ( 2 𝛼 𝑠 ) +  𝑏 𝑖
 † 𝑠𝑖𝑛ℎ  ( 2 𝛼 𝑠 ) ) 

 

= { ( 𝑏 𝑖
 †  + 𝑏 𝑖 )

 2
 
𝑒 4 𝛼 𝑠

4
 −  ( 𝑏 𝑖

 †  −  𝑏 𝑖 )
 2

 
𝑒 − 4 𝛼 𝑠

4
 −  

1

2
 }.    (46) 
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The parameter 𝛼𝑠 has always been treated as a constant in the context of HH 

model. This implies that the phonon correlation is unaffected by electron 

density. However, in reality, this is not true, particularly if the electron 

density is high. We therefore propose a new squeezing transformation that 

takes into account the electron density – dependent phonon correlation. We 

assume that the phonon correlation is proportional to the electron density at 

a given particular site. Thus our new canonical transformation is given by 

 

𝑆4 = 𝑒𝑅4       ,                                                               (47) 

where 

𝑅4 = 𝛼𝑑 ∑ 𝑛𝑘𝜎(𝑏𝑘𝑏𝑘 − 𝑏𝑘
†𝑏𝑘

†)

𝑘𝜎

  ,                                      (48) 

 𝛼𝑑 being a variational parameter. As before, 𝐻4  can be written as 

 

𝐻 4 = 𝐻 3 +  [ 𝑅 4 , 𝐻 3 ] +  
1

2 !
 [ 𝑅 4 , [ 𝑅 4 , 𝐻 3 ] ]+ . . . . .   .         (49) 

The commutators now become very messy. So we do not give all the 

commutators here expect for two general results.  

 

𝑒𝑅4(𝑏𝑖
† ± 𝑏𝑖)𝑒−𝑅4  =  (𝑏𝑖

† ± 𝑏𝑖)𝑒±2𝛼𝑑 ∑ 𝑛𝑖𝜎𝜎   ,                 (50) 

𝒆𝑹𝟒(𝒃𝒊
† ± 𝒃𝒊)

𝟐
𝒆−𝑹𝟒  

=  (𝒃𝒊
† ± 𝒃𝒊)

𝟐
𝒆±𝟒𝜶𝒅 ∑ 𝒏𝒊𝝈𝝈  .              (𝟓𝟏) 

 

 
The transformed Hamiltonian after this new canonical transformation reads  
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𝐻4 =  − 𝑡′  ∑ 𝑐𝑖𝜎
† 𝑐𝑗𝜎

<𝑖,𝑗>𝜎

+ 𝑃 ∑ 𝑛𝑖𝜎

𝑖𝜎

[{(𝑏𝑖
† + 𝑏𝑖)𝑒±2𝛼𝑑 ∑ 𝑛

𝑖𝜎′𝜎′ }𝑒2𝛼𝑠 − 2ℎ] 

+𝑄 ∑ 𝑛𝑖𝜎
2

𝑖𝜎

+ 𝑈𝑒𝑓𝑓  ∑ 𝑛𝑖↑𝑛𝑖↓

𝑖

+ 𝜔0 [ℎ2 − ℎ ∑(𝑏𝑖
† + 𝑏𝑖)𝑒(2𝛼𝑠+2𝛼𝑑 ∑ 𝑛𝑖𝜎𝜎 )

𝑖

] 

+𝜔0 ∑ [−
1

2
+  

1

4
(𝑏𝑖

† + 𝑏𝑖)
2

𝑒(4𝛼𝑠+4𝛼𝑑 ∑ 𝑛𝑖𝜎𝑛
𝑖𝜎′ 𝜎𝜎′ )   

𝑖𝑖′

−
1

4
(𝑏𝑖

† − 𝑏𝑖)
2

𝑒(−4𝛼𝑠−4𝛼𝑑 ∑ 𝑛𝑖𝜎𝑛
𝑖𝜎′𝜎𝜎′ )] ,                          (52) 

 

 where we have used the relations 

∑ 𝑛 𝑖 𝜎
 3

𝑖 𝜎

  =  ∑ 𝑛 𝑖 𝜎

𝑖 𝜎

+ ∑ 6 𝑛 𝑖 ↑ 𝑛 𝑖 ↓

𝑖

                              (53) 

 
and   

                           

𝑛 𝑖 ↑
 2 =  𝑛 𝑖 ↑𝑛 𝑖 ↓

 2 =  𝑛 𝑖 ↓ .                                                        (54)        

    
 
The modified parameters in Eq. (52) are given by   

 

𝑡′ = 𝑡 exp(𝑥𝑖−𝑗
′ ) exp(𝑥𝑖−𝑗𝑒−2𝛼𝑠−2𝛼𝑑 ∑ 𝑛

𝑖𝜎′ 𝜎′ ),                             (55) 

 

𝑥𝑖−𝑗
′ = 𝛼𝑑[(𝑏𝑖𝑏𝑖 − 𝑏𝑖

†𝑏𝑖
†) − (𝑏𝑗𝑏𝑗 − 𝑏𝑗

†𝑏𝑗
†)].                                 (56) 

 
We have ignored all inter–site phonon correlations so far. A unitary 

transformation can be used to implement correlation between phonons at 

different sites. Following [27] we perform the transformation  

 

𝑆5 = 𝑒𝑅5   ,                                                                   (57) 
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where 

𝑅5 =
1

2
∑ 𝛽𝑘𝑘′(𝑏𝑘𝑏𝑘′ − 𝑏𝑘

†𝑏
𝑘′
† )

𝑘≠𝑘′

  ,                                   (58) 

𝛽𝑘𝑘′′𝑠 being variational parameters. For the sake of convenience, we 

stipulate that 𝛽𝑘𝑘′  =  𝛽, when 𝑘 and 𝑘′ refer to nearest neighbors and 

𝛽𝑘𝑘′ = 0, otherwise.  The Hamiltonian  𝐻5 = 𝑒𝑅5𝐻4𝑒−𝑅5  is now given by  

𝐻 5 = 𝐻 4 + [ 𝑅 5 , 𝐻 4 ] + 
1

2 !
 [ 𝑅 5 , [ 𝑅 5 , 𝐻 4 ] ]+ . . . . .  ,          (59) 

The relevant commutators are calculated as  

[𝑅5, 𝑏𝑖
†] = ∑ 𝛽𝑘𝑖

𝑘≠𝑖

𝑏𝑘   ,                                                          (60) 

[𝑅5, [𝑅5, 𝑏𝑖
†]] = ∑ 𝛽𝑖𝑘

𝑘𝑗

𝛽𝑘𝑗𝑏𝑗
†  ,                                           (61) 

[𝑅5, [𝑅5, [𝑏𝑖
†]]] = ∑ 𝛽𝑖𝑘

𝑘𝑗𝑙

𝛽𝑘𝑗𝛽𝑗𝑙𝑏𝑙    ,                                 (62) 

[𝑅5, 𝑏𝑖] = ∑ 𝛽𝑘𝑖

𝑘≠𝑖

𝑏𝑘
†   ,                                                           (63) 

[𝑅5, [𝑅5, 𝑏𝑖]] = ∑ 𝛽𝑖𝑘

𝑘𝑗

𝛽𝑘𝑗𝑏𝑗    ,                                            (64) 

[𝑅5, [𝑅5, [𝑏𝑖]]] = ∑ 𝛽𝑖𝑘

𝑘𝑗𝑙

𝛽𝑘𝑗𝛽𝑗𝑙𝑏𝑙
†   .                                  (65) 

We also obtain  
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eR5(bi
† ± bi)e−R5  =  ∑(μij ± ϑij)(bj

† ± bj)

j

,             (66) 

where 𝜇𝑖𝑗 and 𝜗𝑖𝑗 are given by 

 

𝜇 𝑖𝑗  =   𝛿 𝑖𝑗  +  
1

2 !
∑ 𝛽 𝑖 𝑘 𝛽 𝑘 𝑗

𝑘

+  
1

4 !
∑ 𝛽 𝑖 𝑘 𝛽 𝑘 𝑙 𝛽 𝑙 𝑚 𝛽 𝑚 𝑗

𝑘 𝑙 𝑚

 +  . . . .  (67) 

 

𝜗 𝑖 𝑗 = 𝛽 𝑖 𝑗 +
1

3 !
∑ 𝛽 𝑖 𝑘 𝛽 𝑘 𝑙 𝛽 𝑙 𝑗

𝑘 𝑙

 

+ 
1

5 !
∑ 𝛽 𝑖 𝑘 𝛽 𝑘 𝑙 𝛽 𝑙 𝑚 𝛽 𝑚 𝑛 𝛽 𝑛 𝑗 

𝑘 𝑙 𝑚 𝑛

+  . . . . .     (68) 

 

so that we can write 

 
𝜇 𝑖 𝑗  ±  𝜗 𝑖 𝑗  =   𝑒  ± 𝜷  .                                            (69) 

 
where 𝜷 (having periodic boundary conditions) is an N × N matrix. Using 

the above equations (69) and the formula 

𝑒  𝐴 + 𝐵  =   𝑒  𝐴  +  𝑒  𝐵  + 𝑒  − 
1
2

 [ 𝐴 ,𝐵 ]    ,                              (70) 

we obtain  

𝐻5 = − 𝑡′  ∑ 𝑐𝑖𝜎
† 𝑐𝑗𝜎

<𝑖,𝑗>𝜎

𝑈𝑒𝑓𝑓  ∑ 𝑛𝑖↑𝑛𝑖↓

𝑖

+ 𝑄 ∑ 𝑛𝑖𝜎
2

𝑖𝜎

  

             

 

 

 

         + 𝑃 ∑ 𝑛𝑖𝜎  [∑(𝜇𝑖𝑗 + 𝜗𝑖𝑗)

𝑗

(𝑏𝑗
† + 𝑏𝑗)𝑒2𝛼𝑑 ∑ 𝑛

𝑖𝜎′𝜎′ 𝑒2𝛼𝑠 − 2ℎ 

𝑖𝜎

] 
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         + 𝜔0 (ℎ2 − ℎ ∑(𝜇𝑖𝑗 + 𝜗𝑖𝑗)(𝑏𝑖
† + 𝑏𝑖)𝑒(2𝛼𝑠+2𝛼𝑑 ∑ 𝑛𝑖𝜎𝜎 )

𝑖𝑗

) 

 

         +
1

4
 𝜔0 ∑{

𝑖𝑗𝑗′

(𝜇𝑖𝑗 + 𝜗𝑖𝑗)(𝜇𝑖𝑗′ + 𝜗𝑖𝑗′)(𝑏𝑗
† + 𝑏𝑗)

2
𝑒  (4𝛼𝑠+4𝛼𝑑 ∑ 𝑛𝑖𝜎𝑛

𝑖𝜎′𝜎𝜎′ ) 

 

 −(𝜇𝑖𝑗 − 𝜗𝑖𝑗)(𝜇𝑖𝑗′ − 𝜗𝑖𝑗′)(𝑏𝑗
† − 𝑏𝑗)

2
 

 

    × 𝑒(−4𝛼𝑠−4𝛼𝑑 ∑ 𝑛𝑖𝜎𝑛
𝑖𝜎′𝜎𝜎′ ) −

1

2
},                (71) 

 

where  
 
 

𝑡′ = 𝑇𝑡 𝑒(−
1
2

𝑒−4𝛼𝑠−4𝛼𝑑 ∑ 𝑛𝑖𝜎𝜎 ) ∑ 𝐴𝑘
2

𝑘

  ,                                               (72) 

𝐴𝑘
2 = (√𝛼𝜂(𝜇𝑖𝑘 − 𝜗𝑖𝑘) − (𝜇𝑗𝑘 − 𝜗𝑗𝑘))

2

  ,                                    (73) 

 

𝑇 = 𝑒
𝛼𝑑 ∑ {𝐵𝑗𝑘(𝑏𝑗𝑏𝑘−𝑏𝑗

†
𝑏𝑘

†
)+𝐶𝑗𝑘(𝑏𝑗𝑏𝑘

†
−𝑏𝑗

†
𝑏𝑘)}𝑗𝑘𝑖′   ,                               (74) 

 

with 

𝐵𝑗𝑘 = ((𝜇𝑖𝑗𝜇𝑖𝑘 − 𝜗𝑖𝑗𝜗𝑖𝑘) − (𝜇𝑖′𝑗𝜇𝑖′𝑘 − 𝜗𝑖′𝑗𝜗𝑖′𝑘))  ,                  (75) 

𝐶𝑗𝑘 = ((𝜇𝑖𝑗𝜗𝑖𝑘 − 𝜗𝑖𝑗𝜇𝑖𝑘) − (𝜇𝑖′𝑗𝜗𝑖′𝑘 − 𝜗𝑖′𝑗𝜇𝑖′𝑘))   .                 (76) 

 

Ultimately, we restore the coherence in the phonon subsystem by 

performing the final transformation with the operator 

 

𝑆6 = 𝑒𝑅6  ,                                                                    (77) 
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where 

𝑅6 = ∆ ∑(𝑏𝑘
† − 𝑏𝑘)

𝑘

 ,                                             (78) 

 

∆ being a variational parameter.  We obtain the following results. 

𝑒𝑅6(𝑏𝑖
† + 𝑏𝑖)𝑒−𝑅6  =  (𝑏𝑖

† + 𝑏𝑖) − 2∆                                            (79) 

𝑒𝑅6(𝑏𝑖
† + 𝑏𝑖)

2
𝑒−𝑅6  =  (𝑏𝑖

† + 𝑏𝑖)
2

+ 4∆2                                      (80) 

𝑒𝑅6(𝑏𝑖
† − 𝑏𝑖)𝑒−𝑅6  =  (𝑏𝑖

† − 𝑏𝑖)                                                       (81) 

𝑒𝑅6(𝑏𝑖
† − 𝑏𝑖)

2
𝑒−𝑅6  =  (𝑏𝑖

† − 𝑏𝑖)
2

                                                  (82) 

 

The final transformed Hamiltonian  𝐻6 = 𝑒𝑅6𝐻5𝑒−𝑅6  can again be written 

as: 

𝐻 6 = 𝑒𝑅6𝐻5𝑒−𝑅6 

= 𝐻 5 + [ 𝑅 6 , 𝐻 5 ] +  
1

2 !
 [ 𝑅 6 , [ 𝑅 6 , 𝐻 5 ] ]+ . . . . .      (83) 

We obtain 

𝐻6 =  − 𝑡′  ∑ 𝑐𝑖𝜎
† 𝑐𝑗𝜎

<𝑖,𝑗>𝜎

+ 𝑈𝑒𝑓𝑓  ∑ 𝑛𝑖↑𝑛𝑖↓

𝑖

+ 𝑄 ∑ 𝑛𝑖𝜎
2

𝑖𝜎

  

+ 𝑃 ∑ 𝑛𝑖𝜎  {∑(𝜇𝑖𝑗 + 𝜗𝑖𝑗)

𝑗

((𝑏𝑗
† + 𝑏𝑗) − 2∆)𝑒2𝛼𝑑 ∑ 𝑛

𝑖𝜎′𝜎′ 𝑒2𝛼𝑠 − 2ℎ}

𝑖𝜎

 

 



[44] 
 

 

+
𝜔0

4
∑{−(𝜇𝑖𝑗 − 𝜗𝑖𝑗)(𝜇𝑖𝑗′ − 𝜗𝑖𝑗′)(𝑏𝑗

† − 𝑏𝑗)
2

𝑒(−4𝛼𝑠−4𝛼𝑑 ∑ 𝑛𝑖𝜎𝑛
𝑖𝜎′𝜎𝜎′ )

𝑖𝑗𝑗′

 

+(𝜇𝑖𝑗 + 𝜗𝑖𝑗)(𝜇𝑖𝑗′ + 𝜗𝑖𝑗′) ((𝑏𝑗
† + 𝑏𝑗)

2
+ 4∆2) 𝑒(4𝛼𝑠+4𝛼𝑑 ∑ 𝑛𝑖𝜎𝑛

𝑖𝜎′𝜎𝜎′ ) −
1

2
}   

+𝜔0 (ℎ2 − ℎ ∑((𝜇𝑖𝑗 + 𝜗𝑖𝑗)((𝑏𝑖
† + 𝑏𝑖) − 2∆))exp (2𝛼𝑠   

𝑖𝑗

+ 2𝛼𝑑 ∑ 𝑛𝑖𝜎

𝜎

))  ,                                                                  (84) 

where  

𝑡′ = 𝑇𝑡 exp (−
1

2
𝑒−4𝛼𝑠−4𝛼𝑑 ∑ 𝑛𝑖𝜎𝜎 ) ∑ 𝐴𝑘

2

𝑘

   ,                                 (85) 

𝑇 = exp (𝛼𝑑 ∑{𝐵𝑗𝑘(𝑏𝑗𝑏𝑘 − 𝑏𝑗
†𝑏𝑘

†) + 𝐶𝑗𝑘(𝑏𝑗𝑏𝑘
† − 𝑏𝑗

†𝑏𝑘)})

𝑗𝑘𝑖′

 ,    (86) 

𝐴𝑘
2 = (√𝛼𝜂(𝜇𝑖𝑘 − 𝜗𝑖𝑘) − (𝜇𝑗𝑘 − 𝜗𝑗𝑘))

2

     ,                                 (87) 

with 

𝐵𝑗𝑘 = ((𝜇𝑖𝑗𝜇𝑖𝑘 − 𝜗𝑖𝑗𝜗𝑖𝑘) − (𝜇𝑖′𝑗𝜇𝑖′𝑘 − 𝜗𝑖′𝑗𝜗𝑖′𝑘))  ,                  (88) 

𝐶𝑗𝑘 = ((𝜇𝑖𝑗𝜗𝑖𝑘 − 𝜗𝑖𝑗𝜇𝑖𝑘) − (𝜇𝑖′𝑗𝜗𝑖′𝑘 − 𝜗𝑖′𝑗𝜇𝑖′𝑘)).                    (89) 
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2.2.2 Averaging Phonon state 

Now we calculate the expectation value of 𝐻6 in the zero – phonon state  

|0 > = ∏ |0𝑖 >
𝑖

 ,                                                   (90) 

  

where 𝑖 = 1,2,3, … . , 𝑁. The final effective electronic Hamiltonian is given 

by  

𝐻𝑒𝑓𝑓 = < 0|𝐻6|0 >   

 

= −𝐽 ∑ 𝑛𝑖𝜎

𝑖𝜎

+ 𝑈𝑒𝑓𝑓 ∑ 𝑛𝑖↑𝑛𝑖↓

𝑖

− 𝑡𝑒𝑓𝑓 ∑  𝑐𝑖𝜎
† 𝑐𝑗𝜎

𝑖𝑗𝜎

+ 𝜔0ℎ2 

 

+ ∆ 𝑒𝜷 𝑒2𝛼𝑠+2𝛼𝑑 ∑ 𝑛𝑖𝜎𝜎 (2ℎ + ∆𝑒2𝛼𝑠+2𝛼𝑑 ∑ 𝑛𝑖𝜎𝜎 ) + 𝐾 

 

+
𝜔0

2
[(𝑒2𝜷)00 cosh (4𝛼𝑠 + 4𝛼𝑑 ∑ 𝑛𝑖𝜎

𝜎

) − 1] ,                          (91) 

 

where  

 

𝑃 = 𝜔0√𝛼(1 − 𝜂)                                                                                (92) 

𝐽 = 𝜔0𝛼𝜂(2 − 𝜂) + 2√𝛼𝜔0(1 − 𝜂)(ℎ + 𝑀∆𝑒2𝛼𝑠)                      (93) 

𝑈𝑒𝑓𝑓 = 𝑈 − 2𝛼𝜔0𝜂(2 − 𝜂)                                                                (94) 

𝑀 =  (𝑒𝛽)
00

+ 2 [(𝑒𝛽)
01

+ (𝑒𝛽)
02

+ (𝑒𝛽)
03

+. . . . ]                 (95) 

𝑡𝑒𝑓𝑓 = 𝑡𝑒− 𝛼𝜂2𝑒−4𝛼𝑠(1−4𝛼𝑑+12𝛼𝑑
2){(𝑒−2𝛽)

00
−(𝑒−2𝛽)

01
}
                    (96) 
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𝐾 = 𝑀∆𝑒2𝛼𝑠(4ℎ𝛼𝑑 + 6ℎ𝛼𝑑
2 + 4𝛼𝑑∆𝑒2𝛼𝑠 + 12𝛼𝑑

2∆𝑒2𝛼𝑠) 

                    +(𝑒2𝛽)
00

(𝛼𝑑𝑒4𝛼𝑠 + 12𝛼𝑑
2𝑒4𝛼𝑠 + 12𝛼𝑑

2𝑒−4𝛼𝑠 − 𝛼𝑑𝑒−4𝛼𝑠)  

                   − 2∆𝑀𝑃𝑒2𝛼𝑠(3𝛼𝑑
2 + 2𝛼𝑑).                                                          (97) 

 

2.2.3 The GS Energy 

    It is worth noting that the Hamiltonian 𝐻𝑒𝑓𝑓   given by Eq. (91), which 

describes an effective Hubbard model in one dimension, can be used to 

obtain the exact GS energy at half – filling with the help of the Bethe – 

ansatz approach following Lieb and Wu [28 – 29]. 

  However, only positive 𝑈𝑒𝑓𝑓 values were considered in [28]. The 

exact Bethe – ansatz solution for the Hubbard model has been extended to 

the negative – 𝑈𝑒𝑓𝑓  –  problem by TC [3]. In this case, the GS energy per 

site for (91) is obtained as  

𝜀0 =  − 𝐽 +  
𝜔0

2
[2ℎ2 + (𝑒2𝛽)00 cosh(4𝛼𝑠) − 2]  

 

+ 
1

4
[𝑈𝑒𝑓𝑓 − |𝑈𝑒𝑓𝑓|] + 𝜔0𝑀∆𝑒2𝛼𝑠(2ℎ + ∆𝑒2𝛼𝑠) 

 

+ 𝐾 −  4𝑡𝑒𝑓𝑓 ∫
𝐽0(𝑥) 𝐽1(𝑥) 𝑑𝑥

𝑥 [1 + exp {
𝑥|𝑈𝑒𝑓𝑓|
2𝑡𝑒𝑓𝑓

}]

∞

0

  ,                                     (98) 

 

where 𝐽0(𝑥) and 𝐽1(𝑥) are the Bessel functions of zero – th and first – order 

respectively. 
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2.3   Numerical Results and Discussions 

    To find the minimum energy, the expression (98) is varied with respect 

to six variational parameters 𝜂, ℎ, 𝛼𝑠, 𝛼𝑑, 𝛽 and ∆. The results are shown in 

Fig. 2.1. The results obtained by TC [3] and KC [20] are also shown together 

with the present results for comparison.  

 

 

 

 

 

 

 

 

Fig. 2.1 Ground state energy (𝜀0) per site as a function of onsite Coulomb energy (U) for 

el – ph  interaction strength 𝛼 = 1 and for 𝑡 = 0.5 𝜔0. 

 

    The present results for the GS energy are slightly improved compared to 

those of [20], especially for small values of U. We can demonstrate, 

however, that even a small increase in energy can have a large impact on 

the phase diagram. This is common with variational calculations, as a small 

order 𝛿 error in the wave function causes an error of order 𝛿2 in the energy. 

The effective hopping parameter is a critical quantity in this problem.  
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Fig. 2.2 𝑡𝑒𝑓𝑓 and 𝑑𝑡𝑒𝑓𝑓 𝑑𝑈⁄  as a function of onsite el – el  inetraction 𝑈 for two values of 

el – ph  interaction strength 𝛼 and for 𝑡 = 0.2 𝜔0. 

 

    In Fig. 2.2, we show 𝑡𝑒𝑓𝑓 and its derivative as a function of U with respect 

to U. We have also plotted the results of KC for comparison. The figure 

shows that when U is small, 𝑈𝑒𝑓𝑓 becomes negative and 𝑡𝑒𝑓𝑓 becomes very 

small due to the el – ph interaction effect. This leads to the formation of 

bipolarons and consequently narrowing of the band. In this case, the ground 

state is an insulating state known as the CDW state of Peierls form. In the 

opposite extreme, i.e., when U becomes substantially larger than the el – ph 

interaction, 𝑈𝑒𝑓𝑓 becomes positive and 𝑡𝑒𝑓𝑓 → 𝑡, and then one obtains the 

standard Hubbard – Hamiltonian and thus the ground state, in this situation, 

is represented by an insulating antiferromagnetic state. This is the so called 

SDW state of Mott type. One can observe that in – between the two phases, 

the 𝑡𝑒𝑓𝑓 – curves are accompanied by some fascinating attributes. To solve 
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this problem, we look at how 𝑑𝑡𝑒𝑓𝑓 𝑑𝑈⁄  behaves with respect to U. In the 

lower part of Fig. 2.2, these results are shown. Interesting 𝑑𝑡𝑒𝑓𝑓 𝑑𝑈⁄  has a 

double – peak structure.  𝑑𝑡𝑒𝑓𝑓 𝑑𝑈⁄  has two peaks for two different values 

of U for a given 𝛼. Let us say that the first peak happens at 𝑈 = 𝑈1 and the 

second peak happens at 𝑈 = 𝑈2. A closer look shows that 𝑈𝑒𝑓𝑓 = 0  in the 

middle of 𝑈1 and 𝑈2. It is also worth noting that the peak structure is 

asymmetric in nature. It is well understood that the band – width 2𝑧𝑡, where  

𝑧   is the coordination number and 𝑡 is the hopping parameter, must be 

larger/equal than/to the Hubbard gap 𝑈 (which is the onsite Coulomb 

correlation energy) for a metallic state. As a result, the criterion for a 

metallic condition for a one – dimensional system is: 4𝑡 𝑈⁄ ≥ 1. We 

discover that between 𝑈1 and 𝑈2, 𝑡𝑒𝑓𝑓 and 𝑈𝑒𝑓𝑓 are related by the inequality: 

4𝑡𝑒𝑓𝑓 𝑈𝑒𝑓𝑓⁄ ≥ 1 which, as previously said, is the characteristic of a metallic 

state. We also note that, in comparison to KC’s results [20], the current 

approach predicts a wider gap between the two peaks.  

  The primary goal of our analysis is to find a two – dimensional 

(𝑈 − 𝛼)  phase portrait. As previously mentioned, we obtain a set of 𝑈1 and 

𝑈2 values for each value of 𝛼 from the peak positions of 𝑑𝑡𝑒𝑓𝑓 𝑑𝑈⁄ . Thus 

𝑈1 and 𝑈2 as a function of 𝛼, define the phase boundaries. Fig. 2.3 shows 

the corresponding phase diagram. The metallic phase is identified between 

the  𝑈1 and 𝑈2 lines, while the SDW phase is located above the 𝑈2 line and 

the CDW phase is located below the 𝑈1 line. We already know that the 

metallic region obtained by KC is wider than that obtained by TC and Fig. 

3.3 shows that the current analysis predicts an even wider metallic region 

than obtained by KC. We have not plotted the phase diagram below a certain 

value of 𝛼 because the results were unreliable due to computational error 

for values of 𝛼 close to 𝛼 = 0.  
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Fig. 2.3 Phase diagram in the (𝛼 − 𝑈) plane obtained from the peaks in  𝑑𝑡𝑒𝑓𝑓 𝑑𝑈⁄  for 

𝑡 = 0.2 𝜔0. 

    The local moment may also provide details about the existence of 

different phases. We study this by calculating the average local spin moment 

per site (𝑆𝑎𝑣)  and plotting it on a contour plot in (𝑈 − 𝛼) – space. 𝑆𝑎𝑣 can 

be expressed as 

𝑆𝑎𝑣 =
1

𝑁
 ∑  〈𝑆𝑖

2〉

 𝑖

                                                     (99) 

 

where 𝑆𝑖 can be written as:   

 

𝑆 𝑖
 2  =  𝑆 𝑖 𝑥

 2  +  𝑆 𝑖 𝑦
 2  +  𝑆 𝑖 𝑧

 2 . 

 

Using 

                          

𝑆 𝑖
± = 𝑆𝑖𝑥 ± 𝑖𝑆𝑖𝑦 ;       𝑆𝑖

+ = 𝑐𝑖↑
† 𝑐𝑖↓ ;       𝑆𝑖

− = 𝑐𝑖↓
† 𝑐𝑖↑ 

   

                        

 

  𝑆𝑖
+ ∙ 𝑆𝑖

− = − 𝑛𝑖↑𝑛𝑖↓ ;       𝑛𝑖↑
2 = 𝑛𝑖↑ ,      𝑛𝑖↓

2 = 𝑛𝑖↓   
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Fig. 4. Contour plots of the local spin moment 𝑆𝑎𝑣  in (𝛼 − 𝑈) −plane. 

 

we obtain,                         

 

 

𝑆𝑎𝑣 =
1

𝑁
 ∑  〈𝑆𝑖

2〉

 𝑖

=
3

4
−

3

2𝑁
∑〈𝑛𝑖↑𝑛𝑖↓〉

 𝑖

  .                                  (100) 

 

                                              

From Eq. (98) we obtain 

 
𝑑 𝜀 0
𝑑 𝑈

=  𝑛 𝑖 ↑ 𝑛 𝑖 ↓                                                     (101) 

 
Therefore, we can write 
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𝑆 𝑎 𝑣  =  
3

4
 − 

3

2
 
𝑑 𝜀 0
𝑑 𝑈

    .                                       (102) 

 

 

    For a given 𝑆𝑎𝑣, Eq. (101) returns a set of (𝑈, 𝛼) – values. The results of 

𝑆𝑎𝑣 are shown in Fig. 2.4 as a contour plot in the (𝛼, 𝑈) – plane. Eq. 98 can 

be used to calculate [𝑑𝜀0 𝑑𝑈⁄ ]  for a system of totally uncorrelated electrons 

in a metallic state. Then, using Eq. (102), we get 𝑆𝑎𝑣 = 0.375, which is the 

value we see in the middle of the intermediate phase. This supports TC’s 

prediction of the occurrence of a metallic zone. 

 

2.4   Conclusion 

 
    In this chapter, the one – dimensional HH model has been utilized to 

examine the interplay of el – ph interaction and Coulomb correlation at the 

cross – over area of the SDW and CDW phases. We have considered a 

correlated squeezed coherent state for the phonon sub – system. Introducing 

a new canonical/unitary transformation that introduces the electron – 

density –  dependent phonon correlation, the phonon state [20] has been 

improved. Finally, the Bethe ansatz method is used to solve the resulting 

electronic Hamiltonian exactly. We show that, when compared to TC's and 

KC's calculations, the improved variational calculation provides a wider 

metallic phase at the CDW and SDW phase boundary cross – over area. The 

broadening of the intermediate metallic phase by an improved variational 

calculation strengthens the conjecture made by TC regarding the existence 

of such a phase.  
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Chapter 3 

 

An Intervening metallic phase at the CDW – SDW 

transition region in the one – dimensional Holstein – 

Hubbard model at half filling: A Semi – Exact 

solution 

 

3.1   Introduction 

    In this chapter, we extend the work presented in the previous chapter by 

modifying the phonon state. We have mentioned in the previous chapter that 

the spin – density – wave (SDW) charge – density – wave (CDW) – 

transition problem is important for high temperature supercoonductivity 

(HTSC) in cuprates [1 – 3] and has been studied through several methods 

[4]. We have also briefly discussed in Chapter 2 that Chatterjee and 

collaborators [5 – 11] have studied the one – dimensional (1D) half – filled 

Holstein – Hubbard (HH) model [13 – 17] variationally to obtain an 

analytical solution. Recently, Malik, Mukhopadhyay, and Chatterjee 

(MMC) [11] have modified the variational method of Krishna and Chatterjee 

(KC) [7] by proposing a new squeezing transformation in addition to the 

ones considered by KC. This work has been the subject matter of Chapter 2. 

In this work, we have shown that a better variation calculation widens the 

metallic phase further. 
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 It should be noted that the variational method of MMC [11] is still 

approximate as far as the averaging phonon state is concerned and therefore 

there are opportunities to modify this calculation. One would like to see what 

happens to the width of the metallic region, if the phonon wave function in 

the MMC – calculation is replaced by a more accurate state. More recently, 

Malik and Chatterjee (MC) [12] have used a modified calculation using a 

very accurate many – phonon state and in this sense, their calculation can be 

considered as semi – exact. The basic aim is again the same. If a more refined 

variational approach produces a broader metallic phase, then the possibility 

of existence of the intervening metallic phase is reinforced while, on the 

other hand, if a better variational approach results in the shrinkage of the 

metallic phase, then the presence of the metallic phase is questionable.  

 

In the present chapter, we present the work of MC [12].       

 

3.2   Formulation of the Model 

The 1D HH Hamiltonian is given by 

 

𝐻 = − 𝑡 ∑ 𝑐𝑖𝜎
† 𝑐𝑗𝜎

<𝑖,𝑗>𝜎

+ 𝑈 ∑ 𝑛𝑖↑𝑛𝑖↓

𝑖

 

 

+𝜔0  ∑ 𝑏𝑖
†𝑏𝑖 +

𝑖

𝑔 ∑ 𝑛𝑖𝜎 (𝑏𝑖
† + 𝑏𝑖)

𝑖𝜎

  ,                   (1) 

 

                                             

where all the symbols have the same meaning as discussed in chapter 2. 

    To deal with the above Hamiltonian, we use a variational method with the 

following modified phonon state:   
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|Φ⟩ = 𝑒𝑅1  𝑒𝑅2  𝑒𝑅3  𝑒𝑅4  𝑒𝑅5  𝑒𝑅6  |𝜒⟩,                                       (2) 

 

where  𝑅1, 𝑅2, 𝑅3, 𝑅4 , 𝑅5 and 𝑅6 are the same as introduced in Chapter 2 

and are given by 

 

𝑅1 = √𝛼 𝜂 ∑ 𝑛𝑖𝜎

𝑖𝜎

(𝑏𝑖
† − 𝑏𝑖)  ,                                               (3) 

 

𝑅2  =  ∑ ℎ𝑖

𝑖

(𝑏𝑖
† − 𝑏𝑖)  ,                                                          (4) 

 

𝑅3  =  𝛼𝑠 ∑(𝑏𝑖𝑏𝑖 − 𝑏𝑖
†𝑏𝑖

†)

𝑖

  ,                                                 (5) 

 

𝑅4 =  𝛼𝑑  ∑ 𝑛𝑖𝜎(𝑏𝑖𝑏𝑖 − 𝑏𝑖
†𝑏𝑖

†)  ,

𝑖𝜎

                                          (6) 

 

𝑅5 =
1

2
∑ 𝛽𝑖𝑗(𝑏𝑖𝑏𝑗 − 𝑏𝑖

†𝑏𝑗
†)  ,     

𝑖≠𝑗

                                          (7) 

 

𝑅6 = ∆ ∑(𝑏𝑖
† − 𝑏𝑖)

𝑖

 ,                                                               (8) 

 
and |𝜒⟩ is the phonon state which we choose as: 

 

|𝜒⟩  = ∏ |𝜙𝑖⟩

𝑖

 = ∏ ( ∑ 𝐴𝑛

 𝑏𝑖
†𝑛

√𝑛!
|0𝑖⟩

𝑛=0,1,2,..𝑚

)

𝑖

.                            (9) 

 

The transformed Hamiltonian 𝐻6 has been obtained in the previous chapter 

and is given by  
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 𝐻6 = 𝑒−𝑅6  𝑒−𝑅5 𝑒−𝑅4  𝑒−𝑅3  𝑒−𝑅2  𝑒−𝑅1𝐻𝑒𝑅1  𝑒𝑅2  𝑒𝑅3  𝑒𝑅4  𝑒𝑅5  𝑒𝑅6   

 

  =  − 𝑡′  ∑ 𝑐𝑖𝜎
† 𝑐𝑗𝜎

<𝑖,𝑗>𝜎

+ 𝑈𝑒𝑓𝑓  ∑ 𝑛𝑖↑𝑛𝑖↓

𝑖

+ 𝑄 ∑ 𝑛𝑖𝜎
2

𝑖𝜎

  

+ 𝑃 ∑ 𝑛𝑖𝜎  {∑(𝜇𝑖𝑗 + 𝜗𝑖𝑗)

𝑗

((𝑏𝑗
† + 𝑏𝑗) − 2∆)𝑒2𝛼𝑑 ∑ 𝑛

𝑖𝜎′𝜎′ 𝑒2𝛼𝑠 − 2ℎ}

𝑖𝜎

 

 

+
𝜔0

4
∑{−(𝜇𝑖𝑗 − 𝜗𝑖𝑗)(𝜇𝑖𝑗′ − 𝜗𝑖𝑗′)(𝑏𝑗

† − 𝑏𝑗)
2

𝑒(−4𝛼𝑠−4𝛼𝑑 ∑ 𝑛𝑖𝜎𝑛
𝑖𝜎′𝜎𝜎′ )

𝑖𝑗𝑗′

 

+(𝜇𝑖𝑗 + 𝜗𝑖𝑗)(𝜇𝑖𝑗′ + 𝜗𝑖𝑗′) ((𝑏𝑗
† + 𝑏𝑗)

2
+ 4∆2) 𝑒(4𝛼𝑠+4𝛼𝑑 ∑ 𝑛𝑖𝜎𝑛

𝑖𝜎′𝜎𝜎′ ) −
1

2
}   

+𝜔0 (ℎ2 − ℎ ∑((𝜇𝑖𝑗 + 𝜗𝑖𝑗)((𝑏𝑖
† + 𝑏𝑖) − 2∆))exp (2𝛼𝑠   

𝑖𝑗

+ 2𝛼𝑑 ∑ 𝑛𝑖𝜎

𝜎

))  ,                                                                  (10) 

where all the parameters are defined in Chapter 2.  

 

3.2.1 Averaging State and Effective Hamiltonian 

The effective electronic Hamiltonian 𝐻𝑒𝑓𝑓 is now given by:  

 

𝐻𝑒𝑓𝑓 = ⟨Φ|𝐻|Φ⟩ = ⟨𝜒| 𝐻6 |𝜒⟩  ,                                          (11) 

    The final averaging phonon state is a many – phonon state (Eq. (9)) with 

𝐴𝑛’ 𝑠   as the variational parameters. We assume 𝐴𝑛’ 𝑠 to be site – 

independent, which is a plausible assumption for a uniform system.   
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It may be noted that  𝑚 = 0 produces the standard zero – phonon 

state i.e.,  

  

|𝜒⟩ = ∏  | 0 𝑖 ⟩

 𝑖

 ,                                                      (12) 

 

For 𝑚 = 1, we have  

 

|𝜒⟩  =  ∏  ( 𝐴 0 | 0 𝑖 ⟩  +  𝐴 1 | 1 𝑖 ⟩ )

𝑖

  ,                             (13) 

 

    which is a many – phonon that can be written as a linear combination of 

different phonon states with the constraint that no single site can have more 

than one phonon. It is a restricted many – phonon state and is reminiscent of 

the intermediate – coupling polaron wave function of Gurari [18].  

 

For 𝑚 = 2, the averaging many – phonon state is 

 

|𝜒⟩  =   ∏  ( 𝐴 0 | 0 𝑖 ⟩  +  𝐴 1 | 1 𝑖 ⟩  + 
𝐴 2

√2 !
 | 2 𝑖 ⟩ ) 

𝑖

,               (14) 

 

    which is a linear superposition of phonon states in which a given 

particular site can only be filled by at most two phonons. Thus, in general, 

Eq. (9) represents a generalized many – phonon state, in which 𝑚 number 

of phonons can be present at any given site depending. In the numerical 

calculation, we choose the value of 𝑚 in order to get self – consistent result.  

Now the effective electronic Hamiltonian, 𝐻𝑒𝑓𝑓 can be written as: 
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𝐻𝑒𝑓𝑓 = ⟨Φ|𝐻6|Φ⟩ 

 

          = −  𝐽 ∑ 𝑛𝑖𝜎

𝑖𝜎

+ 𝑈𝑒𝑓𝑓 ∑ 𝑛𝑖↑𝑛𝑖↓

𝑖

− 𝑡𝑒𝑓𝑓 ∑  𝑐𝑖𝜎
† 𝑐𝑗𝜎

𝑖𝑗𝜎

+ 𝜔0ℎ2 

 

               + ∆ 𝑒𝜷 𝑒2𝛼𝑠+2𝛼𝑑 ∑ 𝑛𝑖𝜎𝜎 (2ℎ + ∆𝑒2𝛼𝑠+2𝛼𝑑 ∑ 𝑛𝑖𝜎𝜎 ) + 𝐾 

 

               + 
𝜔0

2
[(𝑒2𝜷)00 cosh (4𝛼𝑠 + 4𝛼𝑑 ∑ 𝑛𝑖𝜎

𝜎

) − 1]  ,                      (15) 

 

where  

 

𝑈𝑒𝑓𝑓 = 𝑈 − 2𝛼𝜔0𝜂(2 − 𝜂)                                                                             (16) 

𝐽 = 𝑄 + 𝑃(𝑒2𝛼𝑠𝑀(2𝐴0𝐴1 + 2𝐴1𝐴2√2 + 2𝐴2𝐴3√3 − 2∆) − 2ℎ          (17) 

 

𝑃 = 𝜔0√𝛼(1 − 𝜂) 

 

𝑄 = 𝛼𝜔0𝜂2 − 2𝜂𝜔0𝛼 =  𝛼𝜔0𝜂(𝜂 − 2)  

 

𝑀 =  (𝑒𝛽)
00

+ 2 [(𝑒𝛽)
01

+ (𝑒𝛽)
02

+ (𝑒𝛽)
03

+. . . . ] 

 

𝐾 = .25𝑀𝑒4𝛼𝑠 (2𝐴0𝐴2√2 + (2𝐴0𝐴2√2 + 2𝐴1𝐴3√6 + 4∆2)) 

        + 𝑃𝑀𝑒4𝛼𝑠(2𝐴0𝐴1 + 2𝐴1𝐴2√2 + 2𝐴2𝐴3√3 − 2∆) ( 2𝛼𝑑 + 3𝛼𝑑
2) 

        − 2𝑀ℎ𝛼𝑠(2𝐴0𝐴1 + 2𝐴1𝐴2√2 + 2𝐴2𝐴3√3 − 2∆)(2𝛼𝑑 + 3𝛼𝑑
2) 

        −2𝑀ℎ𝛼 𝑠 + (2𝐴0𝐴1 + 2𝐴1𝐴2√2 − 2∆ + 2𝐴2𝐴3√3) 

        +0.25𝑒4𝛼𝑠(1 + 4𝛽2) (1 + 2𝐴1
2 + 4𝐴2

2 + 2𝐴0𝐴2√2 
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+2𝐴1𝐴3√6 + 6𝐴3
2 + 4∆2)(4𝛼𝑑 + 12𝛼𝑑

2) 

         − 0.25𝑒−4𝛼𝑠(1 + 4𝛽2) (−1 − 2𝐴1
2 − 4𝐴2

2 + 2𝐴0𝐴2√2 + 

                                                  2𝐴1𝐴3√6 − 6𝐴3
2) (−4𝛼𝑑 + 12𝛼𝑑

2) 

          −.25𝑀𝑒−4𝛼𝑠(2𝐴0𝐴2√2 + 2𝐴1𝐴3√6)                                                     (18) 

 

𝑡𝑒𝑓𝑓 = 𝑡 exp((1 + 4𝛽2) + (2𝛽 + 4𝛽3)) 

             ×  {1 + 2𝛼𝜂2𝐴0𝐴2√2 𝑒−4𝛼𝑠(1 − 6𝛼𝑑 + 36𝛼𝑑
2)  

                                                                             × ((1 + 4𝛽2) + (2𝛽 + 4𝛽3 )) 

                  − 2𝛼𝐴0𝐴2𝐴1
2𝜂2𝑒−4𝛼𝑠(1 − 6𝛼𝑑 + 36𝛼𝑑

2) 

                                                                   × ((1 + 4𝛽2) + (2𝛽 + 4𝛽3)) 

                   − 4𝛼𝐴2
2𝜂2𝑒−4𝛼𝑠(1 − 6𝛼𝑑 + 36𝛼𝑑

2)((1 + 4𝛽2) + (2𝛽 + 4𝛽3)) 

 
                     +0.5𝛼2𝐴2

2𝜂4𝑒−8𝛼𝑠(1 − 36𝛼𝑑)((1 + 4𝛽2)2 + (2𝛽 + 4𝛽3 )2) 

 

                      +2𝛼𝐴1𝐴3𝜂2√6𝑒−4𝛼𝑠(1 − 6𝛼𝑑 + 36𝛼𝑑
2) 

                                                    × ((1 + 4𝛽2) − ((−1)(2𝛽 + 4𝛽3))) 

                   −6𝛼𝐴3
2𝜂2𝑒−4𝛼𝑠(1 − 6𝛼𝑑 + 36𝛼𝑑

2)((1 + 4𝛽2) + (2𝛽 +  4𝛽3)) 

    

                       −1.63𝐴1𝐴3𝛼2𝜂4𝑒−8𝛼𝑠(1 − 36𝛼𝑑) 
 

                                       × ((1 + 4𝛽2)2 + (2𝛽 + 4𝛽3)2)   

 

                        +3𝐴3
2𝛼2𝜂4𝑒−8𝛼𝑠(1 − 36𝛼𝑑) 

                                   × ((1 + 4𝛽2)2 + (2𝛽 + 4𝛽3)(2𝛽 + 4𝛽3)2) 
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                         − 0.33𝐴3
2𝛼4𝜂6𝑒−12𝛼𝑠(1 − 198𝛼𝑑) 

                                                      ×
  

 ((1 + 4𝛽2)3 + (2𝛽 + 4𝛽3)3)} .          (19) 

 

We have already noted that  (𝑒𝜷)
𝑖0

 can be written in a compact way as 

( 𝑒  ± 𝜷 )
𝑗 0

 = ∑ ( ± ) 𝑖 

𝑖 = 0,1,2,…

𝛽 2 𝑖 + 𝑗

𝑖 !  ( 𝑖 +  𝑗 ) !
 .                                 (20) 

 

3.2.2 The GS Energy 

    To calculate the exact GS energy of 𝐻𝑒𝑓𝑓 per site (𝜀0) for both positive 

and negative 𝑈𝑒𝑓𝑓 we use the Bathe – Ansatz method [19 – 20]. We obtain 

 

𝜀0 =  − 𝐽 +  
𝜔0

2
[2ℎ2 + (𝑒2𝛽)00 cosh(4𝛼𝑠) − 2]  

 

+ 
1

4
[𝑈𝑒𝑓𝑓 − |𝑈𝑒𝑓𝑓|] + 𝜔0𝑀∆𝑒2𝛼𝑠(2ℎ + ∆𝑒2𝛼𝑠) 

 

+ 𝐾 −  4𝑡𝑒𝑓𝑓 ∫
𝐽0(𝑥) 𝐽1(𝑥) 𝑑𝑥

𝑥 [1 + exp {
𝑥|𝑈𝑒𝑓𝑓|
2𝑡𝑒𝑓𝑓

}]

∞

0

  ,                                     (21) 

 

where 𝐽0(𝑥)  denotes zero – th order Bessel function and 𝐽1(𝑥)  denotes the 

first – order Bessel function. 

 

3.3   Results and Explanations 

    The GS energy is obtained by minimizing 𝜀0 with respect to the 

variational parameters 𝜂, ℎ, 𝛼𝑠, 𝛼𝑑 , 𝛽, ∆,  and 𝐴0, 𝐴1, 𝐴2, 𝐴3, …. etc.. Fig. 3.1 
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shows the GS energy results. The dotted line represents the TC results [5], 

the dashed line represents the results of KC [7], the dotted – dashed line the 

MMC results [11] and the solid line represents the present results. As can be 

seen from the figure, the present GS energy results are only somewhat better 

than the previous variational calculation. We will show again that this small 

increase in energy can have a significant effect on the phase diagram.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.1 Ground state energy (𝜀0) per site as a function of onsite Coulomb energy (U) for 

el – ph  interaction strength 𝛼 = 1 and for 𝑡 = 0.5 𝜔0. 

 

    As before, the effective hopping parameter (𝑡𝑒𝑓𝑓/𝑡) is studied with respect 

to the on – site Coulomb correlation energy 𝑈. The results are shown in Fig. 

3.2. Again we observe that for small 𝑈 and a reasonable value of the el – ph  

coupling constant 𝛼,  𝑡𝑒𝑓𝑓  is small. As a result, the band is narrow in this 

limit, and massive bi – polarons can form. This is the insulating CDW state, 

in which Peierl's instability occurs and the possibility of double occupancy 
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increases. For large 𝑈 and reasonable values of el – ph interaction, the 

system behaves essentially as the Hubbard model and an anti – 

ferromagnetic Mott insulating state becomes the GS of the system. This is 

the SDW state. As in [5, 7, 11], some interesting features can be seen here 

as well, between the SDW and CDW states. 

 

 

         

 

 

 

 

 

 

 

 

 

Fig. 3.2   𝑡𝑒𝑓𝑓/𝑡 as a function of onsite el – el  inetraction 𝑈 for two values of el  – ph 

interaction strength 𝛼 and for 𝑡 = 0.2 𝜔0. 

 

    To gain a better understanding of these interesting features, we again 

investigate the behaviour of the derivative of the renormalized hopping 

integral (𝑑𝑡𝑒𝑓𝑓/𝑑𝑈)  with respect to 𝑈, as we did previously. Fig. 3.3 depicts 

this behaviour. The double – peak structure is clearly visible again. As 

previously stated, the system is in a charge – density – wave phase at small 

𝑈, and the system's GS is in a SDW phase at large 𝑈.  
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Fig. 3.3  𝑑𝑡𝑒𝑓𝑓 𝑑𝑢⁄  as a function of onsite el – el  inetraction 𝑈 for two values of e – p 

interaction strength 𝛼 and for 𝑡 = 0.2 𝜔0. 

 

    The broad valley at the crossover between CDW and SDW phases 

suggests that the CDW – SDW transition is not direct rather it occurs through 

an intermediate phase. For 𝑡 = 0.2 𝜔0 and a certain value of 𝛼, let us say  

𝑈1 and 𝑈2 are the two values of 𝑈 at which (𝑑𝑡𝑒𝑓𝑓/𝑈) shows the peaks. 

Thus, for a range of 𝛼 − values, we can obtain the phase diagram: (𝑈1, 𝑈2) 

versus 𝛼 as we have shown in Chapter 2. Fig. 3.4 illustrates the phase 

diagram. We obtain results for two cases, one with a Restricted many – 

phonon state (RMPS) and the other with a generalized many – phonon state 

(GMPS). We also compare our results with those of TC [5], KC [7], and 

MMC [11]. In the case of GMPS, we find that beyond  𝑚 = 3, the results 

do not change any more. As has been observed earlier by TC, KC and MMC, 

the presents results also show that for a given value of 𝛼, the region between 

the 𝑈1 − line and the 𝑈2 − line, satisfies the metallicity criterion: 

4𝑡𝑒𝑓𝑓/𝑈𝑒𝑓𝑓 ≥ 1  (both with RMPS and GMPS). One can see that above the 
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𝑈1 − line, strong correlation would win and the system would be in an SDW 

phase, whereas the el – ph interaction would win below the 𝑈2 − line, and 

the system would then be in a CDW phase. The phase boundaries are thus 

described by the 𝑈1 − and 𝑈2 − lines. Therefore, we can say that, the SDW 

and the metallic phase are separated by the 𝑈1 − line, while the metallic 

phase and the CDW phase are separated by the 𝑈2 − line. 

 

    

 

 

 

 

 

 

 

 

 

 

Fig. 3.4  Phase diagram in the (𝛼 − 𝑈) plane obtained from the peaks in  𝑑𝑡𝑒𝑓𝑓 𝑑𝑈⁄  for 

𝑡 = 0.2 𝜔0. 

 

    It can be noticed that, compared to the variational results of TC, KC, and 

MMC, the present work provides a wider metallic phase, GMPS giving even 

broader metallic phase than RMPS. The fact that successive improvements 

and modifications in variational calculations widen the metallic phase lends 

credence to the conjecture of TC regarding the presence of an metallic region 

between the CDW and SDW regions.  Since the most general state has been 

chosen for the phonons and the effective electronic problem has been dealt 
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with exactly by the Bethe ansatz approach, the calculation with GMPS can 

be considered as semi – exact. However, the method is still not exact because 

the total wave function is chosen as a product state.   

 
     

 

 

   

 

 

 

 

 

 

 

 

 

Fig. 3.5 Contour plots of the local spin moment 𝐿0 in (𝛼 − 𝑈) − plane. 

 

    We also calculate the average local spin moment 𝐿0 per site, which 

provides an additional proof for the existence of a metallic state at the 

transition region of the CDW and the SDW phases. Following Chapter 2, we 

have  

 

𝐿 0  =  
1

𝑁
 ∑  〈 𝑆 𝑖

 2 〉

𝑖

=  
3

4
 −  

3

2
 
𝑑 𝜀 0

𝑑 𝑈
 ,                                (22) 

 

where 𝑆𝑖 denotes to the electronic spin at the 𝑖 − 𝑡ℎ  site.  
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The contour plots for 𝐿0 are shown in the (𝛼, 𝑈) – plane in Fig. 3.5. If the 

electrons' motion is completely uncorrelated, as it is in a gas of non – 

interacting electrons, Eq. 19 gives 𝐿0 = 0.375, which is similar to the value 

seen in the intermediate state. Hence, this supports the evidence that an 

intermediate metallic phase exists at the CDW and SDW transition region. 

 

3.4   Conclusion 

 

     The GS energy of the 1D Holstein Hubbard model has been examined 

variationally by employing a series of unitary canonical transformations and 

a generalized many – phonon state to obtain an effective electronic 

Hamiltonian, which is then solved exactly by using Bethe – ansatz technique 

to obtain the system's GS energy. Comparison of our results with the 

previous variational ones reveal that the present semi – exact calculation 

provides a broader metallic phase at the CDW – SDW crossover region 

lending credence to TC's original conjecture [5]. It should be noted that the 

amount by which the metallic phase broadens in an improved modified 

variational calculation is not so important; what is important is that the 

metallic phase widens and does not shrink when we improve our variational 

calculations. The existence of a metallic phase in the HH model is important 

not only in the context of high – temperature superconductivity, but also for 

fundamental physics related to the existence of different phases in strongly 

correlated Fermi systems.  
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Chapter 4 

 

Quantum – Entanglement Entropy and Double 

Occupancy in a one dimensional Holstein – Hubbard 

model at half – filling 

 

4.1   Introduction 

    The subject of quantum phase transition has emerged in recent times as 

one of the most exciting and fascinating areas of research, both in 

experimental and theoretical fields of modern quantum condensed matter 

physics. A phase transformation can be called a quantum phase transition 

(QPT) if the change of phase occurs due to a change in the material properties 

such as interaction strengths, doping concentration, and so on [1 – 3]. The 

physics of quantum phase transition is intimately linked to the notion of 

quantum entanglement (QE) [4 – 7] and therefore the study of quantum 

entanglement for a condensed matter system is important to understand some 

of the interesting aspects of the quantum phase transition the system may 

undergo.  Quantum entanglement is, of course, a fundamental property of a 

quantum system, and therefore studying and analyzing it, can provide 

fundamental information and knowledge about non – local quantum 

correlations, which could be important in the fields of quantum information, 

quantum computing, and quantum teleportation. Furthermore, the measure of 
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quantum entanglement can be utilized to determine the nature of a many – 

body ground state (GS) of a quantum system and this information can be used 

to investigate and identify the nature of QPTs [8 – 18]. In this work, we 

consider the theory of quantum entanglement to investigate [19] the 

possibility and nature of quantum phase transition in the Holstein – Hubbard 

(HH) model [20 – 24].  

 

4.2    Model 

    As already introduced in the earlier chapters, the Holstein – Hubbard 

Hamiltonian is given by  

 

𝐻 = − ∑ 𝑡𝑖𝑗𝑐𝑖𝜎
† 𝑐𝑗𝜎 + 𝑈 ∑ 𝑛𝑖↑𝑛𝑖↓

𝑖<𝑖,𝑗>𝜎

 

 

+𝜔0 ∑ 𝑏𝑖
†𝑏𝑖

𝑖

+ 𝑔 ∑ 𝑛𝑖𝜎(𝑏𝑖
† + 𝑏𝑖)

𝑖𝜎

  ,                      (1) 

 

    where all the symbols have already been explained earlier. We use the 

method [25 – 26] discussed in Chapter 3 to obtain the GS energy per site for 

(1). This is given by  

𝜀0 =  − 𝐽 +  
𝜔0

2
[2ℎ2 + (𝑒2𝛽)00 cosh(4𝛼𝑠) − 2]  

 

+ 
1

4
[𝑈𝑒𝑓𝑓 − |𝑈𝑒𝑓𝑓|] + 𝜔0𝑀∆𝑒2𝛼𝑠(2ℎ + ∆𝑒2𝛼𝑠) 

 

+ 𝐾 −  4𝑡𝑒𝑓𝑓 ∫
𝐽0(𝑥) 𝐽1(𝑥) 𝑑𝑥

𝑥 [1 + exp {
𝑥|𝑈𝑒𝑓𝑓|
2𝑡𝑒𝑓𝑓

}]

∞

0

  ,                                       (2) 

 

where all symbols have been defined in Chapter 3.   
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4.3    Entanglement Entropy and Double Occupancy 

    Quantum entanglement can be used to identify interesting phases of the 

Hubbard model emerging from quantum correlations. Shankar and 

Chatterjee (SC) [27] has considered the Hamiltonian [28] and calculated the 

Quantum Etanglement Entropy (QEE) and Double Occupancy (DO) of the 

system. We have recently modified the work of SC using the method [29] 

discussed in Chapter 3 and calculated QEE and DO for the Hamiltonian (1). 

   We examine a subsystem with four possible states as: :|0⟩, |↑⟩, ⟨↓| 

and |↑↓⟩ and calculate the single – site Entanglement entropy (EE) (𝐸𝑣) and 

Double occupancy (𝜔) as follows:  

 

𝐸 𝑣  =  − 𝑇𝑟 ( 𝐷 𝑅 𝑙𝑜𝑔 2 𝐷 𝑅 )  ;                                                (4) 

                                    

𝜔 =  〈 𝑛 𝑖 ↑ 𝑛 𝑖 ↓ 〉                                                                        (5) 

 

where 𝐷𝑅  stands for the reduced density matrix, which can be written as 

 

𝐷 𝑅 =  𝜔 0 | 0 ⟩ ⟨ 0 | + 𝜔 + | ↑ ⟩ ⟨ ↑ | 

          +𝜔 − | ↓ ⟩ ⟨ ↓ | + 𝜔 | ↑ ↓ ⟩ ⟨ ↑ ↓ |  ,                   (6) 

 
where the occupation numbers 𝜔0, 𝜔+, 𝜔− are given by: 

 

𝜔 +  =  𝜔 −  =  𝑛 / 2 −  𝜔                                        (7) 

 

𝜔 0  =  1 −  𝜔 +  −  𝜔 −  𝜔                                      (8) 
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In order to obtained the value of 𝐷𝑅, we substitute the values of  𝜔+, 𝜔− and 

𝜔0  in Eq. (6) which then reads  

  

𝐷 𝑅  =  2 ( 
1

2
 −  𝜔 ↑ ↓ ) + 2 𝜔 ↑ ↓                              (9) 

 

Thus,  𝐸𝑣 can be expressed as 

 

𝐸 𝑣 =  − { ( 2 𝜔 ↑ ↓  log 2 2 𝜔 ↑ ↓ )    

+  ( 2 ( 
1

2
−  𝜔 ↑ ↓ ) log 2 2 ( 

1

2
−  𝜔 ↑ ↓ ) ) } .   (10) 

 
Using the Hellman – Feynman theorem, we can derive: 

 
𝑑 𝐸

𝑑 𝑈
 =  〈 𝑛 𝑖 ↑ 𝑛 𝑖 ↓ 〉                                                    (11) 

 

and consequently 𝜔  is determined. 

 

4.4    Numerical Results and Discussions             

    In Fig. 4.1, we investigate the dynamics of the effective hopping integral 

(𝑡𝑒𝑓𝑓), the modified on – site Coulomb correlation strength (𝑈𝑒𝑓𝑓), the 

double occupancy parameter (𝜔), and the single – site EE (𝐸𝑣) as a function 

of 𝑈 for various 𝛼 values. For the sake of comparison, the results of SC [27] 

are also included. The plot of 𝑡𝑒𝑓𝑓  𝑣𝑠  𝑈 (Fig. 4.1(a)) shows that for small 

𝛼, when 𝑈 is increased, 𝑡𝑒𝑓𝑓 grows continuously to the bare hopping 

parameter 𝑡, which is the Hubbard value, but when 𝛼 is large, 𝑡𝑒𝑓𝑓 goes to 𝑡  

through a finite discontinuous jump at some crucial value of 𝑈. 
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Fig. 4.1(b) shows that 𝑈𝑒𝑓𝑓 may become negative if 𝛼 becomes sufficiently 

large compared to 𝑈. The reason behind this is not difficult to understand. If 

𝛼 is significantly large, the phonon – induced el – el attractive interaction 

may take precedence over the usual Coulomb repulsion between the 

electrons, resulting in an overall effective attractive el – el interaction. 
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Fig. 4.1 (a) 𝑡𝑒𝑓𝑓 vs 𝑈 for different values of 𝛼; (b) 𝑈𝑒𝑓𝑓  vs 𝑈 for different values of 𝛼; (c) 

Double occupancy parameter (𝜔)  vs. 𝑈 for different values of 𝛼; (d) Entanglement 

entropy (𝐸𝜈) vs. 𝑈 for different values of 𝛼, for 𝑡 = 0.2 at  half filling. The solid lines 

represent the present results and the dashed lines refer to those of SC [27]. 

    In other words, if 𝛼 is large enough, 𝑈𝑒𝑓𝑓 can become negative, resulting 

in the formation of bi – polaronic bound states consisting of polaronic pairs. 
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The parameter 𝜔 can be used to quantify the presence of bipolaronic pairs 

at a lattice site, giving a measure of double – occupancy. The 𝜔 𝑣𝑠 𝑈 plot in 

Fig. 4.1(c) shows that as 𝑈 increases, 𝜔 decreases, and eventually becomes 

zero as U reaches a critical value (𝑈𝑐), which of course is dependent on 𝛼. 

If 𝑈𝑒𝑓𝑓 has a positive value, one would conclude that 𝜔 will be zero. As a 

result, we can assume that for certain 𝛼, there exists a critical value of 𝑈 

(𝑈𝑐) above which the system's GS is represented by a single polaronic state 

in which phonon – dressed electrons with opposite spins are localized at 

nearby neighboring sites. This is similar to a SDW state or the Mott 

insulating phase. As a result, when 𝑈𝑒𝑓𝑓 > 0, the SDW condition is expected 

to arise. As can be seen, 𝜔 increases as 𝛼 increases, and 𝑈𝑐 increases in 

general as 𝛼 increases. 𝑈𝑒𝑓𝑓 is negative below  𝑈𝑐, implying that the system 

is unstable against Peirels transition. The system enters a CDW state or a bi 

– polaronic state. As a result, we can safely conclude that very small values 

of 𝜔 belong to a SDW state, while large values of 𝜔 correspond to a CDW 

state. The fascinating aspect is that at and near 𝑈𝑒𝑓𝑓 = 0, GS could be an 

unstable weakly correlated anti – ferromagnetic state that may not be a Mott 

insulating state. A real Mott insulating GS emerges at 𝑈𝑒𝑓𝑓 ≥ 𝑊𝑒 = 2𝑧𝑡𝑒𝑓𝑓 ,  

where 𝑊𝑒  is the band – width and 𝑧 is the coordination number [51, 52]. 

The results for double occupancy clearly illustrate that for a small positive 

𝑈𝑒𝑓𝑓, 𝜔 can have a small finite value. This could be a SDW state for weak 

correlation. A ground state corresponding to a pure Mott insulator will arise 

for 𝑈𝑒𝑓𝑓 ≥  𝑊𝑒. This state will have a value of 𝜔 equal to zero. Similarly, 

𝑈𝑒𝑓𝑓 ≲ 0, on the other hand, might not belong to a pure CDW state. The 

system will be in a pure CDW state if 𝑈𝑒𝑓𝑓 is substantially smaller than zero. 

The variation of 𝐸𝑣 𝑣𝑠 𝑈 is shown in Fig. 4.1(d). It can be seen that 𝐸𝑣  has 

a peak at a given critical value of 𝑈 (𝑈𝑄𝐶) for every value of 𝛼. As the value 
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of 𝛼 is increased, the peak becomes shorter, sharper, and shifts towards the 

higher values of 𝑈. 𝑈𝑄𝐶 is the quantum critical point, and the peaks in 𝐸𝑣 

indicate a quantum phase transition. The peak found in  𝐸𝑣 refers to a 

metallic phase. Before and after the peak in 𝐸𝑣, 𝑈 is relatively much smaller.  
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Fig. 4.2 teff vs α for different values of  U; (b) Ueff vs. α for different values of U; (c) ω  

vs. α for different values of U; (d) Eν vs. α for different values of U, for t = 0.2 at  half 

filling. The solid lines represent the present results and the dashed lines refer to those of 

SC [27]. 
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    As a result, one can conclude that, the region before 𝑈𝑄𝐶 corresponds to 

a CDW phase, whereas the region following 𝑈𝑄𝐶 corresponds to a SDW 

phase. As 𝑈 is increased, the system undergoes a quantum phase transition 

from a CDW phase to an SDW phase via an intermediate metallic phase for 

a given value of 𝛼. 

  Next, we show the behaviour of teff, Ueff, and 𝜔  with respect to 𝛼 

for different 𝑈 values in Figs. 4.2 (a, b, c, d). Again, the SC results are shown 

for comparison. For small α, teff = t, Ueff > 0 and ω is zero or small 

depending on the value of U and GS of the system appears to be the SDW 

state. For a large value of 𝛼, we find that  𝑈𝑒𝑓𝑓 ≪ 0, 𝑡𝑒𝑓𝑓 ≅ 0 and 𝜔 

saturates to its maximum value and the system settles in a CDW GS. Fig. 

4.2(d) shows that for a given value of 𝑈, 𝐸𝑣 exhibits a maximum at some 

critical value of (𝛼𝑄𝐶) and the maxima shifts towards higher values of 𝛼 as 

𝑈 increases. Therefore, as the value of 𝛼 increases from the small and 

intermediate coupling zone to the strong coupling regime, 𝜔 increases until 

it exceeds the average value of 0.25, at which time 𝑈𝑒𝑓𝑓 switches sign and 

𝐸𝑣 goes through a maximum value. The maxima in 𝐸𝑣  again suggest a 

metallic phase, and the figures show a quantum phase transition through an 

intermediate metallic phase from an insulating polaronic SDW phase of 

antiferromagnetic Mott type to an insulating CDW bipolaronic phase of 

Peierls type. 

  In Fig. 4.3, we draw a three – dimensional (3D) plot of 𝜔 versus 𝛼 

and 𝑈 to show the combined effect of 𝛼 and 𝑈 on the GS phase diagram.   It 

is evident that at small 𝛼 and large 𝑈, 𝜔 is very small, which indicates that 

the system is in the SDW phase. On the other hand, at large  𝛼 and small 𝑈, 

GS is a CDW state. From Figs. 4.1 and 4.2, we expect that in Fig. 4.3, there 

will be some region bordered by the SDW and CDW phases that will be 
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metallic. The Mott – Hubbard criterion: 𝑡𝑒𝑓𝑓 ≥ |𝑈𝑒𝑓𝑓|/4, which is a criteria 

for a metallic state, is used to examine this. We find that the requirement 

𝑡𝑒𝑓𝑓 ≥ |𝑈𝑒𝑓𝑓|/4   is indeed satisfied in the region between the SDW and 

CDW phases.  

 

 

 

 

 

 

 

 

 

                         Fig. 4.3   3D plot of  𝜔 vs. 𝛼 and 𝑈 for 𝑡 = 0.2  at half filling. 

  

 

 

 

 

 

 

 

 

 

 

Fig. 4.4  3D plot of 𝐸𝜐 vs. 𝛼 and 𝑈 for 𝑡 = 0.2  at half filling. MP refers to the metallic 

phase. 
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The 3𝐷 plot of 𝐸𝜈 with respect to 𝛼 and 𝑈 is shown in Fig. 4.4. One can see 

that there is a zone flanked by the SDW and CDW regions, where 𝐸𝜈 is 

maximum, which is the signature of a metallic phase.  

 

 

    

  

 

 

 

 

 

 
Fig. 4.5   3D plots  of 2𝑧𝑡𝑒𝑓𝑓 and |𝑈𝑒𝑓𝑓| surfaces for 𝑡 = 0.2 with respect to 𝛼 and 𝑈. 

 

   

 

 

 

 

 

 

 

Fig. 6  3D plots  of 𝐸𝑣, 2𝑍𝑡𝑒𝑓𝑓  and |𝑈𝑒𝑓𝑓| surfaces for 𝑡 = 0.5 with respect to 𝛼 and 𝑈. 
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    In Fig. 4.5, we plot the  |𝑈𝑒𝑓𝑓| and 2𝑍𝑡𝑒𝑓𝑓  surfaces as a function of 𝛼 and 

𝑈. One can see that the metallic phase satisfying the Mott – Hubbard 

condition corresponds to the same metallic phase seen in Fig. 4.4 through 

the concept of quantum entanglement. In Fig. 4.6, we illustrate the variation 

of  |𝑈𝑒𝑓𝑓|, 2𝑧𝑡𝑒𝑓𝑓 and 𝐸𝑣 with respect to 𝑈 and 𝛼 for 𝑡 = 0.5 through a 

multidimensional plot. The metallic phase is manifestly clear from the EE 

peaks and the criterion: 4𝑡𝑒𝑓𝑓 ≥ |𝑈𝑒𝑓𝑓|. In Fig. 4.7, we show the contour 

plots for QEEs for the SDW and CDW phases in the (𝑈, 𝛼) plane with 𝑡 =

0.4. The Mott – Hubbard condition is again used to obtain the metallic phase. 

  

      

 

 

 

    

 

 

 

 

 

 

Fig. 4.7. Phase diagram for  𝑡 = 0.4. in the  (𝛼 − 𝑈) − plane.  

 

    In Fig. 4.8 we show the contour plots for 𝑡 = 0.8. We can immediately 

see that as 𝑡 increases,  the metallic phase is widened. We also show the 

contour plots obtained from the calculation of SC [27]. It is clearly evident 
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that the present work that uses an improved variational calculation predicts 

a broader metallic phase. 

 

 

 

 

 

 

 

                                         

 

 

 

 

 

   

 

 

 

 

 

 

Fig. 4.8 Phase diagram for  𝑡 = 0.8. in the  (𝛼 − 𝑈) − plane. ‘SC’ refers to the phase 

diagram obtained by SC [27]. 
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4.1   Conclusion 

    In this chapter, we have investigated and analyzed the detailed nature of 

the SDW – CDW transition in a 1D correlated electron – system in the 

presence of el – ph interaction using the half – filled 1D HH model. After 

performing a series of unitary transformations to the HH Hamiltonian, we 

averaged the modified transformed Hamiltonian with respect to a 

generalized many – phonon state. This has resulted in an effective Hubbard 

Hamiltonian. The GS energy of this Hamiltonian is finally determined by 

using the Bethe – ansatz approach. The quantum entanglement entropy and 

the double occupancy parameters are then calculated at and around the SDW 

– CDW transition regions to examine the existence of an intermediate phase. 

An intermediate phase is observed and it turns out to be metallic. When the 

present results are compared with those SC, it becomes clear that the present 

modified variational calculation predicts a larger metallic phase. This lends 

credence to the original prediction of TC [28]. 
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Chapter 5 

 

Conclusion 

    The summary of the present thesis entitled, ‘Phase transition in 1 – D 

Holstein – Hubbard model’ is presented in this final chapter. The 

mechanism of high 𝑇𝑐 superconductivity has remained inconclusive. A 

number of reports have proposed the electron (el) – phonon (ph) mechanism. 

However, the problem with the el – ph mechanism is that it suggests an 

insulating spin – density – wave (SDW) state as the ground state if the el – 

ph interaction is small compared to the Coulomb correlation and an 

insulating charge – density – wave (CDW) as a ground state if the el – ph 

interaction is large compared to the Coulomb correlation.  Thus, one has an 

insulator to insular transition in this scenario. In 2003, Takada and 

Chatterjee (TC) [1] took up this problem for a more rigorous analytical 

examination and suggested the presence of an intermediate metallic phase 

between the SDW – CDW regions. The calculation of TC is variational and 

therefore Chatterjee and collaborators [2 – 6] have made a few 

improvements on the calculation of TC. It is interesting to point out that 

every improved variational calculation has led to a wider metallic phase. As 

we have pointed out, the calculations performed in [1] are variational and 

therefore there can still be room for improvement. The aim of the present 

thesis has been to make an attempt in this direction.      
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  In Chapter 1, we introduced the subject matter of the thesis and the 

motivation. We have also discussed the basic concepts and relevant models 

on which our works are based. Because we have been interested in this thesis 

on narrow – band systems, we have started with a brief discussion on the 

Tight – Binding model [7] and then presented a brief overview of the 

Hubbard model [8]. Since the main aim of this thesis has been to study the 

interplay between the el – ph and el – el interactions, we have next 

introduced the concept of polarons and bipolarons, the Holstein polaron [9 

– 13] and finally the Holstein – Hubbard (HH) model [14 – 17], that can 

explain the physics of an el – ph system with Coulomb correlation [18 – 20]. 

Finally, we have examined the issue of possible ground states that the HH 

model can provide. In this context, we described the SDW and CDW phases 

and discussed the phase transitions that can occur in HH model as the 

interaction parameters are changed. At the end of the chapter, we have given 

an overview of the thesis.  

  In Chapter 2, the 1D HH model is studied at half – filling to analyze 

the influence of el – ph interaction and coulomb repulsion at the cross over 

region of the CDW and SDW phases. A series of canonical transformations 

have been applied to the Hamiltonian followed by an averaging with respect 

to a zero – phonon state to obtain an effective electronic Hamiltonian that 

has been finally solved by the Bethe – ansatz technique. The canonical 

transforations have been carried out to take care of phonon coherence and 

correlations. In the present work, we have introduced a new canonical 

transformation that takes into account electron density – dependent phonon 

correlations that can lead to an important effect particularly if the el – ph 

interaction is not small.  We have used the Mott criterion and the local spin 

– moment to obtain the phase diagram and the contour plot. We have 

confirmed the existence of the intermediate metallic phase at the SDW – 



[95] 
 

 

CDW transition region and have also shown that the present calculation 

provides a broader metallic phase at the phase boundaries of CDW and SDW 

cross – over region than the one’s predicted by the previous calculations [2]. 

This wider metallic phase obtained from an improved variational calculation 

reinforces our confidence in the prediction of TC. 

  In Chapter 3, we have extended our work of Chapter 2 by using a 

generalized many – phonon state as the averaging phonon state in place of 

the zero – phonon state. The effective electronic Hamiltonian is then solved 

exactly by the Bethe – ansatz method. So, we have referred to this method 

as semi – exact. We have shown that this calculation widens the intermediate 

metallic state even further lending credence to the conjecture of TC.  

  In Chapter 4, we have extended the investigation of Chapter 3 to 

calculate Entanglement Entropy (EE) and Double Occupancy (DO) of the 

same system. EE and DO have been calculated at and around the transition 

region of SDW and CDW phases. These calculations reconfirm the presence 

of intervening metallic phase and also show broader metallic phase when 

compared with the earlier calculation of Shankar and Chatterjee [5].    

It would be quite interesting to examine the nature of the SDW – CDW 

transition in two dimensions. 
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