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ABSTRACT

S tandard model although has addressed and being successful regarding the fundamental particles

and their interactions, but, is deficient in explaining certain experimental evidences. In support

of the above statement, the list of things that standard model is sloppy about are dark matter,

dark energy, baryon asymmetry of the Universe, massive neutrinos, strong CP problem. This becomes the

drive for everybody contributing in this field to find some answers either theoretically or experimentally.

Hence, in this thesis, we have made an attempt to address certain issues, left open, by the help of various

prominent models.

So, to start with, we present a model, where we have included A4 discrete symmetry in order to leap

beyond the standard model (BSM). BSM physics helps us to accommodate right handed (RH) neutrinos

which is successful in explaining the tiny neutrino mass via seesaw mechanism. Therefore, we take the

advantage of linear seesaw which demands the inclusion of left handed (LH) neutrinos too. In the model

we have also introduced modular symmetry due to which Yukawa couplings implicitly depends on modulus

τ and explicitly on the dedekind eta function. Modular symmetry helps us in two aspects, one, reduces the

usage of flavon fields, which otherwise would make the model complicated and less predictive. Second,

modular weights helps us to avoid unwanted Lagrangian terms to an extend. However, a global symmetry

i.e. U(1)X is included to avoid certain other Lagrangian terms which modular symmetry couldn’t. All these

gimmick leads to the specific structure of linear seesaw mass matrix, which after diagonalisation gives

results in accordance with current neutrino oscillation data i.e. at 3σ level. This includes the reactor mixing

angle i.e. sin2θ13, mass sum of the active neutrinos
∑

mi which is well below the cosmological bound of

0.12 eV. Other parameters like sin2θ12 and sin2θ23 are also well within the 3σ limits. Introduction of right

handed neutrinos, gave an idea that explanation of baryon asymmetry is also possible by the model. Hence,

we explain leptogenesis using these RH neutrinos which gives us six doubly degenerate mass eigenstates.

Therefore, to have a mass splitting we introduce a higher dimension mass term. By doing so, we obtain

nonzero CP asymmetry from the decay of lightest heavy fermion. Also, this small mass difference between

the two lighter heavy fermions enhances the self energy contribution. The coupled Boltzmann equations

are solved to obtain the evolution of lepton asymmetry, which comes out to be order of ≈ 10−10, which is

sufficient to explain the present baryon asymmetry of the Universe.

This successful attempt to explain neutrino mass and leptogenesis by implementing the new idea of

modular symmetry motivated us to explore things for scotogenic scenario. So, the approach was to explain

the neutrino mass at one loop level by suppressing the tree level contribution. This was done meticulously

by defining the particle charges. Further in this model, we made an attempt to accommodate lepton

flavor violations (LFVs) like µ→ eγ, µ→ 3e and µ− e conversion. Hence, it was evident that our model

is successful in doing the work and explaining LFVs well below the prescribed 3σ limits obtained from
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Abstract

the experiments. In addition, we also explain dark matter phenomenology of the lightest stable fermion

spectrum. As there is no hold on the Yukawa couplings because of their dependence on the dedekind eta

function. Even this stringent bound on the couplings allow us to get the correct relic density compatible

to Planck data for particular benchmark values of the model parameters. We also realized that their

is a contribution to relic density from the lepton - antilepton pair in the final state via η and Z′ (UB−L

associated). However, as there is no direct coupling of η and Z′ with the quarks, hence, the tree level

direct detection is not possible. Till now modular symmetry has worked as charm for explaining different

phenomenologies along with accurate predictions from the neutrino sector.

Hence, we make an attempt to take it further, by, working in a different discrete symmetry i.e. A′
5

which is a double cover of A5 symmetry. Previously, we have checked modular A4 symmetry as being a

promising candidate but freedom in regards to the number of irreducible representation is less. However,

A′
5 has more number of irreducible representations as compared to A4 as well as A5 modular symmetry.

Therefore, we try to explain inverse seesaw using A′
5 modular symmetry. In here, the permutation group

N = 5 has 120 elements and under A′
5 these 120 elements are categorized into nine conjugacy classes. Here,

their are higher order Yukawa couplings which comes handy while writing the superpotential. Alongside

of explaining the neutrino parameters at 3σ level we also discuss non-unitarity and lepton flavor violation

of `i → ` jγ.
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INTRODUCTION

S ince the beginning of time, homosapeins have been curious. We are the only species that asks

"why" and "how" inquiries, which helped to spawn primitive science as we know it from history.

Many others have also given their lives to bring the facts to light in the way we know them now.

The preceding remark is true to its core since particle physics went through a lot of ups and downs in its

early stages. Until now, the Standard Model (SM) has been our best hope for describing elementary matter

particles, including quarks and leptons, in terms of three of the four fundamental forces: strong, weak,

and electromagnetic. The fourth essential interaction, however, is missing: gravity. The initial work of

constructing SM was taken by Glashow, who discovered, in 1961, a way to combine the electromagnetic and

weak interactions into a single electroweak model ruled by an SU(2)×U(1) symmetry. Further, the SU(3)

symmetry called the Eightfold way, formulated in 1964, helped describe quarks and their interactions

with strong force. However, later it was clubbed as a component of the SM, hence the formulation became

SU(3)×SU(2)×U(1) symmetry. In 1967, the concept of Higgs mechanism and its field came into picture,

which was able to give masses to all the elementary particles via spontaneous symmetry breaking (SSB), as

we all know it, the present standard model (SM). Many experiments were conducted and their observations

were overwhelmingly in-accordance to the SM predictions. For instance, 1973, the discovery of neutral

weak currents, caused by Z Bosons exchange. In 1983 the discovery of the W bosons themselves and not to

forget the recent discovery of Higgs boson, in 2012. Myriad experiments added to the affirmation of SM

as a successful theory that is staggeringly effective in depicting the interactions of elementary particle

physics.
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Chapter 1. Introduction

1.1 Standard model in a nutshell

As aforesaid, standard model (SM) of particle physics has been successful till now in describing the

fundamental particles and forces of nature. The classification of the particles in SM is done based on the

masses, spin and other quantum numbers. For instance, fermions are spin- 1
2 , gauge bosons are spin-1,

but, Higgs boson is the only scalar particle being spin-0. Further, standard model is based on local gauge

theory, which means the Lagrangian remains invariant under local transformations.

The gauge group describing SM is a 12-dimensional non-Abelian symmetry group,

GSM = SU(3)C ⊗SU(2)L ⊗U(1)Y , (1.1)

here, C stands for the color charge, L is for the left handed chirality, and Y represents weak hypercharge.

SU(3)C is associated to the strong interactions expressed in QCD, which corresponds to eight generators

given by Ta = iλa
2 , i.e. λa are the Gell-Mann matrices with a= {1,2,3, · · · ,8}. These eight generators correlate

to eight massless gluon fields as mediators of strong interaction. Further, the gauge group SU(2)L ×U(1)Y

represents the electroweak sector. This unification is described by Glashow, Weinberg, Salam (GWS)

[1–3] theory, where, it is associated to four generators, three from SU(2)L i.e. Ta = iτa
2 (τa are three Pauli

matrices with a= 1,2,3) and fourth one from U(1)Y i.e Ta =Y . These three generators from SU(2)L are

related to the massive gauge bosons (W± and Z0), whereas, massless photon field is associated with the

generator of the weak hypercharge U(1)Y .

``````````````̀Symmetry
Particles

uR dR eR QL = (νeL , eL)T LL = (uL,dL)T

SU(3)C 3 3 1 3 1

SU(2)L 1 1 1 2 2

U(1)Y 4/3 −2/3 −2 1/3 −1

I, I3 0,0 0,0 0,0 1/2, (1/2,−1/2)T 1/2, (1/2,−1/2)T

U(1)Q = (2I3 +Y )/2 2/3 −1/3 −1 (2/3,−1/3)T −1

Table 1.1: Standard model particles and their gauge group charges.

As physicists, we are well aware that symmetry plays an important role in defining any physical

phenomenology. In this regard, Emily Noether, stated, every symmetry is associated with a conservation

law and vice-versa. Hence, SM of particle physics is no exception to the above statement as its formation

is based on symmetries. As it is assumed that space and time are homogeneous, hence, the Lagrangian

defined, of a closed system has to be invariant under space-time translations i.e. uniform also.
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1.1. Standard model in a nutshell

In support to above statement, the Lagrangian of a system mostly comprises of kinetic, mass and

interaction terms. However, SM Lagrangian is a combination of four different parts

LSM =LG+LF+LH+LY. (1.2)

Here, LG comprises of, kinetic and self interaction terms of the gauge bosons. Similarly, LF tells about

the kinetic and gauge interaction terms of the fermions. Whereas, LH is associated with the kinetic, self

interaction and gauge terms of the Higgs boson and LY depicts all the interactions of the Higgs boson

with leptons and quarks.

1. Gauge term: As it is evident from above discussion that twelve gauge bosons are associated to

twelve generators of eqn. (1.1). The four bosons that corresponds to {SU(2)L ×U(1)Y } are B boson

from U(1)Y and (Wi, i = 1,2,3) i.e. triplet under SU(2)L. When electroweak symmetry breaking takes

place, a mixing between B and Wi occurs, which upon rediagonalization, gives rise to the physical

bosons. These are W± and Z massive bosons and γ a massless boson, where, the massive bosons

help in mediating the charged and neutral weak current interactions. The other eight gauge bosons

correspond to eight gluons Ga which mediates the strong force and are related to SU(3)C gauge

group.

A brief dialogue, above, further helps to understand the terms in the Lagrangian as shown in eqn.

(1.2). The first term is related to the gauge fields given by

−LG =
1
4
BµνB

µν+ 1
4
Wi

µνW
i,µν+ 1

4
Ga
µνG

a,µν, (1.3)

where, i = {1,2,3} and a ∈ {1,2,3, · · · ,8}. The field strength tensors are given by

Bµν = ∂µBν−∂νBµ, (1.4)

Wi
µν = ∂µW

i
ν−∂νWi

µ+g κi jkW j
µW

k
ν , (1.5)

Ga
µν = ∂µW

a
ν−∂νWa

µ+g3 ε
abcWb

µW
c
ν, (1.6)

where, g and κi jk corresponds to the gauge coupling and structure constant under SU(2)L respec-

tively, while, g3 and εabc are that of SU(3)C . As the gauge group are non-Abelian in nature, therefore,

self interactions terms of Wi and Ga are required. In order to obtain massive gauge bosons EWSB

(discussed later) is essential, as it is not possible directly to construct a gauge invariant mass terms

for the gauge bosons.

2. Fermion term: Undoubtedly, electroweak transformation plays a major role in coupling of fermions

to gauge fields in a gauge invariant way. Therefore, the second term of eqn.1.2 is related to fermions,

describing the kinetic term of the fermions and their interactions with the gauge bosons as below

LF = iψγµDµψ. (1.7)

3



Chapter 1. Introduction

In above, a covariant derivative Dµ is introduced by replacing ordinary derivative ∂µ in order to

maintain the gauge invariance which is defined as

Dµ = ∂µ+ igAa
µT

a
µ, (1.8)

Here, Taµ are the generators associated associated with the gauge group and Aa
µ represent the gauge

fields. Therefore, when Dµ is replaced by its RHS from eqn.(1.8) in eqn.(1.7) it brings in a gauge

interaction term shown below

Lint =−gψγµAa
µT

a
µ (1.9)

Hence, the complete determination of the gauge interaction of the fermions takes place, once, the

choice of gauge structure and the fermion representation is made appropriately.

3. Higgs term: One of the most important discovery in particle physics is the Higgs Field, which

helped to solve the mystery how particles got their masses. Quite often, Higgs field is denoted by Φ

which acquires the quantum number
{
2⊗ 1

2
}

under SU(2)L ⊗U(1)Y .

The third term in eqn. (1.2) defines Higgs term as follows

LH = |DµΦ|2 −V (Φ), (1.10)

where, covariant derivative is from eqn. (1.8). In addition, the Higgs potential is given by,

V (Φ)=µ2φ†φ−λ(φ†φ)2 (1.11)

4. Yukawa term: The Yukawa interaction occurs when a scalar field interacts with the Dirac bilinear

fields. The SM Lagrangian’s Yukawa portion is further separated into leptonic and quark parts. The

Yukawa interaction between leptons is,

−L
lepton
Y

=Y i j
e LiLΦe jR +h.c.. (1.12)

The three physical parameters involved in this term are chosen to be the three charged lepton

masses. The quark masses arise in the quark Yukawa interaction given by,

−L
quark
Y

=Y i j
u Q iLΦ̃u jR +Y i j

d Q iLΦd jR +h.c., (1.13)

where, Y i j are the Yukawa matrices, Φ̃= iτ2Φ
∗, τ2 is the second pauli matrix, and i, j ∈ {1,2,3} are

the generation indices.

1.1.1 Higgs mechanism

Birth of our Universe was possible because of certain asymmetry, but, while writing out the Lagrangian

for describing a physical phenomenon we make sure that it involves some symmetry. Breaking of the

4



1.1. Standard model in a nutshell

symmetries can always be facilitated by involving certain terms that violate the symmetry. However, from

theoretical perspective it will be bizzare, if symmetry breaking terms are present from the beginning,

then the Lagrangian so constructed will be asymmetric. In contrast to above, interesting thing will be

accessing a system which by itself breaks the symmetry called spontaneous symmetry breaking (SSB). The

mechanism by which electroweak symmetry is broken

SU(3)C ⊗SU(2)L ⊗U(1)Y → SU(3)C ⊗U(1)Q , (1.14)

and the gauge bosons Z and W± gain their masses is called Brout-Englert-Higgs (BEH) mechanism, where

the minimum of the Higgs potential is deduced as

|Φ|0 =
√
µ2

λ
≡ ν≈ 246GeV. (1.15)

Hence, this minimum is called the vacuum expectation value (VEV), around which the excitation of the

physical states take place. The expression for the Higgs field is given below

Φ=




φ+

1p
2

(h+ iφ+v)


 , (1.16)

here, h and φ represents real fields. In addition, h+v is considered as the real part, where h behaves as

the excitations around v. Further, SSB is acheived due to disobedience shown by the ground state of the

field towards the SU(2)L symmetry, because of VEV gain. Therefore, gauge bosons gain masses as soon as

Higgs field acquire VEV. The gauge interacting part of the eqn. (1.10) is given as follows

L mass
gauge =

v2

8

{
g2(W1

µ)2 + g2(W2
µ)2 − (gW3

µ− g′Bµ)2
}

, (1.17)

where, g represents the gauge coupling of SU(2)L, while, g′ is that of U(1)Y . The first two terms in

eqn.(1.17) involving W1 and W2 have degenerate mass given by mW = gv
2 . The third component which is

linear combination of W3 and Bµ represents Zµ given as below

Zµ =
1

[
g′2 + g2

] 1
2

{
−gW3

µ+ g′Bµ
}

, (1.18)

this gives the mass for Zµ = v
2
[
g′2 + g2] 1

2 . The orthogonal field combination

Aµ =
1

[
g′2 + g2

] 1
2

{
g′W3

µ+ gBµ
}

, (1.19)

represents the massless photon and is a gauge boson of U(1)Q gauge group. We know that SU(2)L ⊗U(1)Y

are associated with four generators out of which three are broken. Hence, intuitively those three must

become Goldstone bosons [4], but in 1964 it was shown that due to SSB of the gauge symmetry, the extra

degrees of freedom instead can become longitudinal polarizations of the gauge bosons. Therefore, it is said

5



Chapter 1. Introduction

that these components are eaten by the gauge boson fields. Hence, the left over component of the Higgs

field becomes the physical boson called the Higgs boson which is a scalar particle. It is intereseting to

observe that BEH mechanism doesn’t affect the total number of degrees of freedom, as, massive gauge

boson has an extra degree of freedom than a massless one.

The matrix involved in mixing of the B field and third component of Wi field i.e. W3 into the Z and A

fields is



cosθW −sinθW

sinθW cosθW


 , (1.20)

here, θW is called the weak mixing angle or Weinberg angle. It is expressed in terms of the gauge couplings

g and g′ i.e. tanθW = g′/g. This Weinberg angle also establishes the relation between the masses of W and

Z boson i.e. cosθW = mZ
mW

. Further, W i(i = 1,2) is rotated into the charged massive fields, expressed as

W±
µ = 1p

2

{
W1

µ∓ iW2
µ

}
. (1.21)

The Higgs mechanism is also successful in giving masses to the fermions. Due to ESWB the Yukawa sector

will involve the following terms

L mass
f ermion = mi jΨLiΨR j, (1.22)

where, the fermion mass matrix is given by mi j = vp
2

Yi j, although, the mass matrix isn’t diagonal in

general.

1.1.2 Downside of Standard Model

Inspite of all the success and being considered as a fundamental theory of particle physics, standard

model, miserably fails in explaining certain sectors, which till date are a mystery for science. The baryon

asymmetry of the universe, origin of the neutrino mass, neutrino oscillations, dark energy, dark matter,

naturalness or hierarchy problem, quantization of gravity etc. are beyond the reach of SM.

1. All these years of meticulous and diligent work done by the high energy physics group across the

globe has developed an understanding that SM has a hierarchy or naturalness problem. The problem

is Higgs mass i.e. 125 GeV and gravitational scale i.e. around 1019 GeV is expected to be of same

order. However there ratio boils down to about 10−17 order. Therefore, the question arises why this

huge difference in the mass scale.

2. It is an interesting fact that during its voyage from source to detectors neutrinos oscillate from one

neutrino family to another neutrino family which SM hasn’t been able to describe till date.

6
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3. Considering the ratio of the energy density of free space time (Λ) to Planck scale, as an output, a

very small number is seen i.e.
(

Λ
MPlanck

)4
∼ 10−120 ¿ 1. This leaves us with a query that why this

ratio yields such a small number, it is also known as the cosmological constant problem.

4. We know that the ingredients that makes our universe is 4% of visible matter, 22% of dark matter

and rest 74% is dark energy. However, to prove this, their is a deficiency of suitable candidate(s)

which can act like dark matter within the SM.

There are so many unanswered problems in the standard model, hence, we make an attempt to deduce

different parameters (i.e. mixing angles, sum of active neutrino masses, Jarlskog Invariant etc.) related

neutrinos theoretically, suggestive from neutrino oscillations experimentally. As neutrinos don’t have right

handed partners in SM, so all model building is done beyond the standard model. Alongside, we also shed

some light on the existence of dark matter through our models and discuss the issue of matter - antimatter

asymmetry of the universe.

1.2 The phenomenon of neutrino oscillations

1.2.1 Insights and evidences from neutrino experiments

Indication about neutrino oscillations dates back to 1967, when efforts were made to measure the νe flux

being produced by the Sun using a chlorine detector (νe + 37Cl → e−+ 37Ar). This pioneering work was

lead by Raymond Davis, John N. Bahcall and their collaborators in Homestake mine [5], whose results

clearly indicated that there is a difference between observed values from experiments and predicted values

of standard solar model [6]. People were sceptical about oscillation hypothesis because compared to the

quark mixing, neutrino oscillations required the involvement of large mixing angles. Although, within

the standard model neutrinos were considered massless, but, neutrino oscillations implied that neutrinos

are not massless. Experimental verifications done over the years by several experiments like GALLEX,

Superkamiokande, T2K, SAGE etc. [7–13] cleared the clouds. This has motivated physicists across the

globe to work and define frameworks beyond the standard model.

1.2.2 A theoretical background

It is very clear that neutrinos carry some mass as implied from oscillation experiments, and they oscillate

between flavors i.e. observed from solar and atmospheric experiments. So let us first discuss the two flavor

states of the neutrinos. Neutrinos of one generation is correspondingly produced along with the same

generation charged leptons, as seen in the charge current weak interactions. Suppose a source produces

neutrinos of flavor να and undergoes oscillation to another flavor νβ. Therefore, the mass eigenstate will

be superposition of all the flavor states. Assuming the charged lepton diagonal basis, and the neutrino

7



Chapter 1. Introduction

charged current interaction is given as

LW =
[

1
2

][
gp
2

]
e−iLγ

µUi jν jLW−
µ + h.c., (1.23)

where, the transformation from flavor eigenstate to mass eigenstate is given by |ναL〉 =Ui jν jL. For instance,

if |να〉 flavor state is produced at time t = 0 and during propagation transforms into another state νβ such

that it becomes necessary to calculate the probability of oscillation. So, a plane wave approximation helps

resolve the thing where τ is proper time

i
∂|νi(τi)〉

∂t
= mi|νi(τi)〉. (1.24)

Hence, the evolution of the state is given by

|νi(t)〉 = eimiτi |νi(0)〉. (1.25)

The oscillation amplitude at the time t for the neutrinos at flavor state |νβ〉 is given by

A (να→ νβ; t)=Uβ j e−imiτiU∗
αi〈ν j|νi〉 =Uβ j e−im jτ jU∗

α j. (1.26)

Therefore, one can interpret that Uα j being the transformation amplitude and the exponential factor is

due to the time evolution of neutrino mass eigenstate, and the probability of oscillation can be obtained as

P(να→ νβ; t)= |A (να→ νβ; t)|2 = |Uβ j e−imiτiU∗
α j|2 . (1.27)

Assuming the Lorentz invariance, one can have

miτi = pµxµ = E i t− piL i . (1.28)

Here,

pi =
√

E2 −m2
i ≈ E−

m2
i

2E
. (1.29)

Therefore. substituting eqn. 1.29 in eqn. 1.28, one can get

miτi = Et−
(
E−

m2
i

2E

)
L = (E− t)L−

m2
i

2E
L . (1.30)

Looking carefully at the above equation, it is evident that the first term is a phase factor which can be

redefined. Hence, the probability of oscillation in Eqn. 1.27 is written as

P(να ∈ νβ; t)=
∣∣∣∣∣δαβ+Σ

n
j=2Uβ jU∗

α j

(
ei

∆m2
ji

2E L −1

)∣∣∣∣∣

2

. (1.31)
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1.2.2.1 Two flavor oscillation

To understand the things we depict a simplistic scenario of two flavor oscillation case i.e. νe → νµ. The

2×2 mixing matirx utilized is given below

U =




cosθ sinθ

−sinθ cosθ


 . (1.32)

Therefore, writing the mass eigenstates in terms of the flavor eigenstates are as follows

|ν1〉 = cosθ|νe〉−sinθ|νµ〉,
|ν2〉 = sinθ|νe〉+cosθ|νµ〉 . (1.33)

The oscillation probability is then given by

P(νe→νµ) = sin2 2θsin2(πφ), φ=
∆m2

12L
4Eπ

. (1.34)

The oscillation is maximal at θ = π
4 and minimal at θ = 0,π.

1.2.2.2 Three flavor oscillation

Similarly, for three flavor neutrino oscillation the probability [14, 15] is given by

P(να→νβ) = δαβ−4
∑

i< j
Re

(
UαiUβ jU∗

α jU
∗
βi

)
sin2

(
∆i j

L
4E

)
+2

∑

i< j
Im

(
UαiUβ jU∗

α jU
∗
βi

)
sin2

(
∆i j

L
4E

)
(1.35)

where, ∆i j = (m2
j −m2

i ) and δαβ =
∑

i UαiU
∗
βi being the unitarity relation. The standard parametrization of

the three neutrino mixing matrix is given by

UPMNS =




c12c13 s12c13 s13e−iδCP

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδCP s23c13

−s12s23 + c12c23s13eiδCP c12s23 + s12c23s13eiδCP −c23c13







1 0 0

0 eiζ1/2 0

0 0 eiζ2/2




, (1.36)

where, s jk = sinθ jk, c jk = cosθ jk, δCP is the Dirac CP violating phase, ζ1,2 are the Majorana phases.

Experiments based on neutrino oscillation predict two types of mass orderings, i.e. (m1 < m2 < m3) called

the normal hierarchy and (m3 < m1 < m2) called the inverted hierarchy.

1.3 Dirac and Majorana neutrino mass terms

It is noticeable that Standard model (SM) is void of neutrino masses. However, neutrino oscillation

experiments strongly suggest of neutrinos being massive. Therefore, it becomes important to theoretically

justify the above fact.

9
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Left handed chiral fermions voluntarily participate in the weak interactions, therefore, SM fields can

be expressed in terms of their chiral fields. To do this Weyl fermions are defined as

ψL,R ≡ PL,Rψ= 1±γ5

2
ψ , (1.37)

ψ being the four-component Dirac spinor. Mass term in SM has the form mψL,RψL,R and it is evident only

if opposite chirality spinors couple to each other. This gives rise to a possibility of having two kinds of mass

terms [16, 17]

Dirac :

mDψLψR +H.c., (1.38)

Majorana :

MLψL(ψL)c +MR(ψR)cψR +H.c., (1.39)

where, ψc ≡ CψT and C being the charge conjugation matrix. The nomenclature of the mass term is

because they come into existence from the Dirac and Majorana type fields, where, ψ = ψL +ψR and

ψa,b =ψL,R +ψc
L,R respectively.

Construction of Dirac mass term demands involvement of two distinct Weyl fermions. Therefore, we

have to introduce chirally right handed neutrinos NR into SM alongside of νL. As NR are weak isospin

singlets, hence can couple to νL and H (i.e. SM Higgs doublet) allowing us to write the Yukawa term i.e.

Yν
¯̀LHνR +H.c.. (1.40)

1.4 Seesaw Mechanism

The seesaw mechanism gets its name from the interaction between the masses of sterile and active

neutrinos. As the mass of the sterile neutrinos increases, the mass of the active neutrinos falls, like a

seesaw. Hence, extending the SM with different symmetries helps us to constrict a theory with less random

input parameters which for certain cases gives definite predictions. Hence, implementation of canonical

seesaw, let us wonder if this unimpeded right handed neutrino sector can be estimated through these

symmetries. This is interesting due to the fact that their is some link between seesaw parameters and

lepton asymmetry of the universe i.e. leptogenesis. While constructing a model choice of symmetries are

also governed by cosmological data. To realize the importance of symmetries, seesaw mechanism comes

handy in establishing the connection between heavy RH neutrino mass matrix and the low-energy neutrino

data, however, linking them is difficult as there are ample number of parameters to be fixed. Therefore,

symmetry plays a crucial role in interrelating low-energy observables and the undetermined seesaw sector.

So shifting our focus towards seesaw mechanism and its beauty in explaining things which till now

have been out of reach of standard model. In this regard, there are many variants aside from canonical i.e.

type-II seesaw involving scalar triplets, type-III incorporating fermion triplets, linear and inverse seesaw
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which are modified type-I seesaw. So, below we discuss only those relevant to my doctoral work i.e. linear

and inverse seesaw.

1.4.0.1 Type-I seesaw

Figure 1.1: Feynman diagram showcasing neutrino mass through type-I seesaw.

Introduction of singlet RH neutrinos in the seesaw helps us write the Dirac mass term for neutrinos

which was previously not possible. In MSSM only two right handed neutrinos are enough to generate a

mass square splitting, but, adding one more RH neutrino to MSSM gives rise to two mass square splittings

∆m2
i j. Therefore, the Yukawa interaction term can be written as

LYukawa =−Yi jL iLN jR H̃+H.c., (1.41)

where, Yi j being the 3×3 coupling matrix and L iL being the SM lepton doublet with (i, j = 1,2,3), where,

H̃ = iσ2H∗ and 〈H〉 = vp
2

being its VEV . The singlets RH neutrinos also allows us to write the Majorana

mass term for neutrinos as well

LMaj =−1
2

MNi j N iLN jR +H.c., (1.42)

where, N iL ≡ NiR and νiL being the SM neutrino eigenstates, the neutrino mass matrix is written as

mν =−1
2

(νLNL)




0 mD

mT
D MN






νR

NR


 , (1.43)

giving a neutrino mass in the form as shown below in eqn.(1.44) and is also pictorially depicted by the

Feynman diagram as shown in Fig. 1.1.

mν = mD M−1
N mT

D ≈
(

vp
2

)2 Y 2

MN
. (1.44)

with mixing between active (νiL) and heavy neutrinos (NiR)

tanθ ' mD

MN
'

√
|mν/MN | . (1.45)
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As there are no gauge interactions in NiR , therefore, the 3×3 mixing matrix connecting the three neutrinos

to the three charged leptons cannot be unitary. For mν ∼ 1 eV and MN ∼ 1 TeV, however, the violation of

unitarity is of the order of 10−6, which is far too tiny to be seen, but within the limit MN →∞, lepton-

number conservation is restored. To our surprise there exist modified canonical seesaw called the inverse

and linear seesaw discussed in the sections below.

1.4.0.2 Inverse Seesaw

Figure 1.2: Neutrino mass generation through inverse seesaw.

This is a type of canonical seesaw where we include three singlet RH neutrinos (NiR), three extra SM

singlet neutral fermions (SiL) along with three active neutrinos (νiL) with (i = 1,2,3). So this mechanism

demands us to use these nine neutrinos to develop a Lagrangian by the implementation of some BSM

symmetries and acquire the form given below

Linv =−YνLmD NR H−Sc
LMLR NR − 1

2
µSLSc

L +H.c., (1.46)

which indeed gives rise to 9×9 neutrino mass matrix in the basis of (ν, NR ,SL) as follows,

mν =




0 mT
D 0

mD 0 MT
LR

0 MLR µ




. (1.47)

The mass hierarchy utilized in the inverse seesaw is µ¿ mD < M and the effective neutrino mass (mν) is

given by

mν = mT
D(M−1

LR)T µ M−1
LR mD . (1.48)

Due to the obvious twofold suppression by the mass scale associated with MLR , such a scale can be

substantially smaller than the one involved in the conventional seesaw mechanism. Standard neutrinos

with masses in the sub-eV range have been confirmed for mD at the electroweak scale, MLR at the TeV
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scale, and µ at the keV scale. In this instance, all six RH neutrinos may generate masses around the TeV

scale, and the ratio mD M−1
LR modulates their mixing with standard neutrinos. The crux of the inverse

seesaw is that the tininess of neutrino masses is assured by assuming that the scale is small, and that

it must be at the keV scale in order to get the RH neutrino masses down to the TeV scale [18, 19]. The

mixing angle between the active and heavy fermion for the case of inverse seesaw is given as

θ = arctan
(

mD

MLR

)
≈

√∣∣∣ mν

µ

∣∣∣ (1.49)

For instance, if mν ∼ 1 eV and µ∼ 10 keV consistent with the values of mD ∼ 10 GeV and MLR ∼ 1 TeV,

hence, the mixing angle comes out to be O (10−2) which is quite appreciable thus can be probed in near

future experiments.

1.4.0.3 Linear Seesaw

Figure 1.3: Neutrino mass generation in linear seesaw.

Similar to above, there exist another modified canonical seesaw called the linear seesaw which some

striking differences in comparison to inverse seesaw. Here also we introduce six heavy neutrinos i.e. (NiR

and SiL) as discussed above, but, the peculiarity arises by avoiding the 33 element and allowing the 13

and 31 element. This means we allow the mixing of (νiL and SiL) while forbidding Majorana mass term

for SiL. The Lagrangian for linear seesaw is mentioned below as

Ll inear =Y HNRL+MR NRSL +YLHLSL +H.c. . (1.50)

Therefore, the 9×9 mass matrix in the basis of (νL, N c
R ,SL) retains the structure as provided below

mν =




0 mT
D mT

LS

mD 0 MT
LR

mLS MLR 0




, (1.51)

where, the mass hierarchy is considered to be MLR À mD ,mLS leading to effective neutrino mass

mν =
mD mLS

MLR
. (1.52)
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The term “linear" tells that the effective neutrino mass formula as shown above in eqn. (1.52) is linear in

mD unlike canonical seesaw, where, it is quadratic in mD .

1.5 An ingenious approach : Modular Symmetry

Inclusion of discrete symmetries in model building is escalated previously by many models of quark masses

and mixing, and, currently due to the discovery of oscillations in neutrino sector. Back then discrete

symmetries, were able to predict results that was in accordance to experimental results obtained, for

instance, tri-bimaximal mixing of A4 symmetry which yielded null value for reactor mixing angle. However,

challenges increased for theoretical background as soon as the experiments improved and the results were

more precise and stringent i.e. reactor mixing angle was obtained, departure of the atmospheric mixing

angle from maximal value etc. Other drawbacks of conventional discrete symmetries, are, it requires

quite a bunch of flavon fields in order to facilitate the symmetry breaking and deliberately involves non-

renormalizable operators. Introduction of these higher dimensional operators reduces the predictability of

the model. Therefore, modular symmetry was brought in for the rescue, where, finite modular groups ΓN

are introduced. One interesting thing about finite modular groups are: they are isomorphic to discrete

symmetry groups like Γ2 ' S3, Γ3 ' A4, Γ4 ' S4, Γ5 ' A5, Γ′3 ' A′
4, Γ′5 ' A′

5 etc.

1.5.1 Defintions and examples

The modular group is defined as a group of 2×2 matrices having integer entries and determinant 1.

SL2(Z)=
{


a b

c d


 : a,b, c,d ∈Z, ad−bc = 1

}
. (1.53)

The generators of modular group being

T =




1 1

0 1


 and S =




0 −1

1 0


 . (1.54)

Therefore, the linear fractional transformation that acts on the modulus τ is given by



a b

c d


 (τ)= aτ+b

cτ+d
, H = {τ ∈C, Im(τ)> 0}, γ=




a b

c d


 ∈SL2(Z), (1.55)

where, H is defined as the upper half plane and is also recognized as one of the three connected surfaces

of the Riemann surface. It is inferred from above that if c 6= 0, implies, −d/c maps to ∞ and ∞ goes to a/c.

However, if c = 0 then ∞ goes to ∞. Also, both ±I gives identity transformation, where, I is identity matrix

and in a more general perspective a pair of ±γ of matrices within SL2(Z) yield a single transformation. In

contrast to above, the generators of modular group as defined in eqn. (1.54) yield

S : τ→−1
τ

T : τ→ τ+1 . (1.56)
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1.5.1.1 Dedekind eta Function

The infinite product defines the Dedekind eta function η(τ) on the upper half plane given below

η(τ)= e
τiπ
12

∞∏

n=1
(1− e2πinτ) , (1.57)

where, Im(τ)> 0 is required for the convergence of the series. Jacobi’s pioneering work "Fundamenta Nova"

was the first to investigate this function. Jacobi assumed that Im(τ) > 0 in his research. In some of his

unpublished writings, Riemann examined the behaviour of (τ) in the limiting condition Im(τ)= 0, which

were edited by Dedekind and Weber in 1874 following Riemann’s tragic death.

So following the transformation as expressed in eqn. (1.56) the Dedekind eta function tranforms as

S : τ→ −1
τ

, η(τ)=
p
−iτη(τ) , (1.58)

T : τ→ τ+1, η(τ)= e
−iπ
12 η(τ) . (1.59)

Extending the above transformations to η(3τ), η(τ/3), η((τ+1)/3), η((τ+2)/3) as they form a closed group

under modular symmetry.

Under T generator the transformation are given as

η(3τ) → ei π4 η(3τ) ,

η
(τ
3

)
→ η

(
τ+1

3

)
,

η

(
τ+1

3

)
→ η

(
η+2

3

)
,

η

(
τ+3

3

)
→ e

iπ
12 η

(τ
3

)
. (1.60)

Under S generator they transform as

η(3τ) →
√

1
3

p
−iτ η

(τ
3

)
,

η
(τ
3

)
→

p
3
p
−iτη(3τ) ,

η

(
τ+1

3

)
→ e

−iπ
12

p
−iτη

(
τ+2

3

)
,

η

(
τ+2

3

)
→ e

−iπ
12

p
−iτη

(
τ+1

3

)
. (1.61)

The importance of these eta functions expressed in eqn.(1.60) and eqn.(1.61) more precise in further section

where we discuss the A4 modular symmetry because my doctoral work mostly involves it.

1.5.1.2 A4 modular symmetry

In this section we mainly focus on the modular form of level 3, abiding the relation

f (γτ)= (cτ+d)2k f (τ) , (1.62)
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where,

Γ(3)=
{
γ=




a b

c d


 ∈ SL2(Z),




a b

c d


=




1 0

0 1


 (mod(3))

}
(1.63)

Therefore, their exists a quotient space for Γ(3) i.e. H /Γ(3) purported by a fundamental domain F , which

implies to be a connected region of H , suggesting that each point of H can be projected into F via Γ(3)

transformation. However, an interesting point to note is that no two points in the domain of F are related

under Γ(3). Therefore, H /Γ(3) is nothing but F with definite boundary points identified. Compatification

of H /Γ(3) is made via adding certain points i∞,−1,0,1 which forms the cusps and serve as the vertices

of a tetrahedron, hence, Γ(3) being isomorphic to A4 discrete symmetry because cusps are related to the

transformation Γ3 ≈ Γ̄/Γ̄(3). The generators S and T help to generate A4 symmetry while satisfying the

relation:

S2 = T3 = (ST)3 = 1 . (1.64)

The dimension of Γ(3) being 2k+1, for lower modular weight i.e. k = 1, their exist three linearly independent

Yukawa coupling expressed in terms of Dedekind eta function expressed in appendix A in eqn. (B.1).

However, for numerical calculation we use the q expansion form of the Yukawa couplings expressed as

Y1(τ) = 1+12q+36q2 +12q3 +·· · ,

Y2(τ) = −6q1/3 (
1+7q+8q2 +·· ·) ,

Y3(τ) = −18q2/3 (
1+2q+5q2 +·· ·) . (1.65)

Also, Yi(τ) satisfies the constraint relation given by

Y 2
2 +2Y1Y3 = 0 , (1.66)

because it is necessary to recover the correct dimension of the linear space M2k(Γ(3)).

1.5.1.3 A′
5 modular symmetry

Here, we discuss the scenario for double cover of A5 symmetry i.e. Γ′5 ≈ A′
5. Unlike A4 or A5 double cover

is advantageous because here we are able to have both even and odd weight modular forms. Moreover,

exploring the geometrical aspect it seems clear that Γ′(5)≈ A′
5 resembles icosahedral which is a double

cover of dodecahedron. However, a clear picture is established by discussing things in the domain of group

theory. The basic properties and definitions are similar as discussed in section 1.5.1, but the peculiarity

here being, three generators are involved i.e. along with S and T there is one more generator R given by

R =



−1 0

0 −1


 , (1.67)
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such that S, T and R satisfy the identities S2 = R, (ST)3 = R2 = I and RT = TR. This extra generator R

helps in transforming matter fields in modular invariant theories as mentioned in refs. [20, 21]. Therefore,

instead of Γ we have to use Γ as the symmetry group in such theories. Hence, for the finite double cover

modular group, the definition goes as Γ′N ≡Γ/Γ(N) utilizing the above identities.

Above preliminary discussion lays the foundation for A′
5 modular symmetry, where, A′

5 group consists

of 120 elements for N = 5. These 120 elements are divided into nine conjugacy classes out of which

1, 3, 3′, 4, 5 with R = I are the irreducible representations corresponding to dodecahedron symmetry.

Similarly, 2̂, 2̂′, 4̂, 6̂ with R =−I are the irreducible representations related to icosahedral. Therefore, the

Kronecker product rules associated to these irreducible representations and relevant to my doctoral work

are expressed in appendix C.

1.6 Leptogenesis – showcasing Universe’s baryon asymmetry

The current cosmos is asymmetric in terms of matter-anti matter content, whereas it was previously

acclimatised [22] with an equal amount of particle and antiparticle states. The value of the asymmetry

has been demonstrated by results from BBN and CMBR as

ηB = nB −nB̄
nγ

≈ (2.6−6.2)×10−10. (1.68)

Here, nB (nB̄) is the (anti)baryon number density and nγ being the photon number density. As a result,

this has been a difficult problem with limited knowledge that will be resolved through further research.

Sakharov [23], who insists on three requirements, has presented the most notable conditions explaining

the production of asymmetry from a symmetric Universe given as : i) baryon number violation in the early

Universe ii) C and CP violation iii) Out of equilibrium decay of heavy particles and discussed below.

1.6.1 Baryon number violation in early Universe

Baryon number violation in an earlier period is expected for the emergence of asymmetry in the baryon

sector from a symmetric universe. This thing becomes obvious at the GUT scale where representations

acquired by quark and leptons are same. Moreover, baryon and lepton number constitute accidental

symmetries, hence, can be violated at tree level. Whereas, non-perturbative sphalerons may include (B+L)

violating processes expressed as

B =
∫

JB
0 (x) d3x ,

L =
∫

JL
0 (x) d3x , (1.69)
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where,

JB
µ = 1

3

∑

i

(
qL iγµqL i −uc

L i
γµuc

L i
−dc

L i
γµdc

L i

)
,

JL
µ =

∑

i

(
`L iγµ`L i − eL iγµeL i

)
. (1.70)

In here, JB
µ is the baryonic current and JL

µ represents leptonic current, also, qL and `L represent the

quark and lepton fields respectively in eqn. (1.70). Interesting thing to notice is that even if B and L are

classically conserved but the triangle anomalies associated, generate a quantum mechanical divergent

current given as

∂µJB
µ = ∂L

µ = 1
(
4
p

2π
)2 nF

(
g2Wa

µνW̃aµν− g′2BµνB̃µν

)
, (1.71)

where, SU(2)L field strength is given by Wa
µν = ∂µWa

ν −∂νWa
µ and U(1)Y field strength is presented by

Bµν = ∂µBν − ∂νBµ and nF being the no. of fermion generations. It is quite clear from the equations

presented above that B+L is violated i.e.
(
∂µJB

µ +∂µJL
µ 6= 0

)
being the divergent current which depends

upon the topological charges identified as Chern-Simon numbers (NCS) [24] and alters for different

degenerate states of the vacuum in non-abelian theories. Additionally, B and L number are violated due to

the transitions between different vacuum states i.e, ∆B =∆L = nF∆NCS = 3n, with, n being an +ve integer.

Therefore, yielding a lowest order operator

OB+L =
∏(

qL i qL i qL i`L i

)
. (1.72)

There seems to be quantum tunneling effect between various vacua, called, instanton effects, which are

exponentially suppressed at zero temperature with a probability of e−
4π
α ≈ O (10−165). However, when

temperature is high enough it still will allow classical process and transition can lead through thermal

fluctuations over barrier. As a result, the B + L violating process has a considerable rate of maintaining

thermal balance at this scale. This transition rate is dictated by the sphalerons, an unstable solution of the

gauge-Higgs system in finite temperature electroweak theory. Additionally, sphaleron transition rate per

unit volume due to temperature below EWSB is given by ΓB+L
V ≈ 1

eMW/αKT and is repressed exponentially,

where, MW being the mass of the W mass, k is the Boltzmann constant, and α being the fine structure

constant. However, if the temperature is high enough then the transition rate is given by ΓB+L
V ≈ (αT)4 α

lnα

which is a compelling result.

1.6.2 C and CP violation

To generate the B asymmetry CP violation plays a key role and is necessary. Let us demonstrate a toy

model incorporating heavy exotic particles say χk which can interact with other particles say fermions ` j

and scalars η’s through Yukawa terms

L = h jk ¯̀ jηχk +h.c., (1.73)
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where, h jk is the complex coupling with j,k = 1,2, · · · , where fig. 1.4 represents the tree level Feynman

diagram related to the decay of χk. In general, let us consider that the decay χk → ` jη as shown in fig. 1.4,

gives a change of ∆Bχ =+1, while the decay of antiparticle χ̄k → ¯̀ jη̄ has ∆Bχ̄ =−1, then the CP asymmetry

can be quantified w.r.t. the above decays as

εCP =
∆BχΓ

(
χk → ` jη

)

Γtotal
+
∆Bχ̄Γ

(
χ̄k → ¯̀ jη̄

)

Γtotal

= (+1)Γ
(
χk → ` jη

)+ (−1)Γ
(
χ̄k → ¯̀ jη̄

)

Γtotal

= Γ− Γ̄
Γ+ Γ̄ , (1.74)

where the denominator expresses the total decay rate with Γ ≡ Γ(
χk → ` jη

)
and Γ̄ ≡ Γ(

χ̄k → ¯̀ jη̄
)
. It is

Figure 1.4: Tree level Feynman diagram for the heavy particle decay χk → ` jη

Figure 1.5: Left diagram represents the one loop vertex correction for the particle χk → ` jη and right
diagram showcases the corresponding one-loop self energy diagram.

clear from above expression that a difference in the decay of particle and antiparticle is a must which will

allow to generate certain CP asymmetry in the baryon number. In order to achieve that one has to go

beyond the lowest order and therefore the first non zero contribution to CP asymmetry comes from the

mixing between the tree level and one-loop diagrams as shown in fig. 1.5

1.6.3 Departure from thermal equilibrium

The requirement of departing from thermal equilibrium in accordance with Sakharov’s third condition

is well justified by equilibrium thermodynamics. The number density of particles and anti-particles in
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the thermal bath equilibrates through potential interactions such as decay, inverse decay, or annihilation

in forward and backward directions. The particle decouples and the number density is diluted when the

universe’s expansion rate surpasses the interaction rate. Let us consider a heavy boson X existing in

thermal equilibrium from the early epoch with nX = n X̄ = nγ for T ≥ mX and nX = n X̄ ' (mX T)3/2 ¿ nγ for

T ' mX . In order to achieve an equilibrium number density of both X and X̄ , it demands the interactions

taking part in the formation and decay of these bosons to be in counterpoise. As self quenching property is

showcased by annihilation processes, therefore, decay processes are of great significance in equilibrium

dynamics.

So to illustrate the third condition, we consider ΓD , ΓID , Γs being decay, inverse decay and scattering

process of X and X̄ bosons respectively expressed as

ΓD = αmX





mxT−1, when T ≥ mX ,

1 when T ≤ mX ,

(1.75)

ΓID = ΓD





1 when T ≥ mX ,

(mx/T)3/2/emx /T when T ≤ mX ,

(1.76)

Γs = α2
(

T5/2

T2 +m2
x

)2

, H =
√

g∗T4

MPl
, (1.77)

where, α= g2/4π represents the strength of coupling associated with boson X. Also, σ being the annihilation

cross section at high temperature and is given as α2

T2 and in low temperature it takes the value σ≈G2
∆BT2.

Now for higher values of mX , the effectiveness of the interaction rate is lowered as compared to Hubble

expansion (H), depicted by expressing through a new parameter

K = Γ

2H

∣∣∣∣
T=mX

=
[

α

3.3
p

g∗

][
MPl

mX

]
. (1.78)

Above eqn. (1.78) defines the efficacy of decay or inverse decay depending upon T ' mX and T ≤ mX

respectively. Hence, when K < 1, the reaction rate is governed by the expansion and particle deviates

from equilibrium, forbidding the backward reactions kinematically leading to over-abundance of X and X̄ .

When the decay of X and X̄ is completely done, t ∼Γ−1
D with nX = n X̄ ' nγ and s ≈ g∗nγ called the entropy

density. A simple relation for baryon asymmetry arises

YB = nB

s
≈ εnγ

g∗nγ
≈ ε

g∗
. (1.79)

As, K < 1 making inverse decay and scattering processes immaterial and allowing only decay process,

hence, to have baryon symmetry of the order O (10−10), it is required to have εCP ' 10−8 with g∗ ' 102.

Taking the above considerations into account one can establish a Boltzmann equation to solve the number
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density of X by incorporating decay and inverse decay as

dnX

dt
+3HX =−ΓD

(
nX −neq

X
)
, (1.80)

where, nX indicates the equilibrium number density and ΓD being thermally averaged decay rate X ,

where,

|M(X → bb)|2 = |M(b̄b̄→ X )|2 = 1+ε
2

|M0|2 ,

|M(X → b̄b̄)|2 = |M(bb→ X )|2 = 1−ε
2

|M0|2 . (1.81)

Hence, the Boltzmann equation is modified by subtracting nb̄ from nb

dnB

dt
+3HnB = εΓD(nX −neq

X )−nB

(
neq

X
nγ

)
−2nBnb〈σ|v|〉 . (1.82)

As a result, the nonzero baryon asymmetry can only be obtained by departing from the thermal equilibrium

and violating the baryon number, C and CP.

1.7 Dark Matter

In recent times, the presence of dark matter has become a hot topic, and the hunt for direct and indirect

evidences remained unresolved. According to data from the WMAP and Planck satellites, dark matter and

dark energy occupy around 23% and 73% of the universe, respectively, revealing a preponderance of the

dark sector over the visible one [25, 26]. Unless Zwicky [27, 28] pointed out the existence of a dark sector,

matter domination was still asserted until 1933. This was believed to be enormous, neutral, and stable, as

indicated by its gravitational interaction [29, 30].

1.7.1 Galaxy rotation curves, CMBR and Gravitational lensing

Astronomy has provided proof of dark matter in an indirect way [31–33], as during 1978 Vera Rubin and

colleagues meticulously studied flat rotation curves of spiral galaxies. The structure of spiral galaxies

reveals that maximum mass is at the center forming a bulge. Therefore, stars rotational velocities are

functions of radial distances. A simple equation demonstrates the validity of the above sentence given

below:
mv2(r)

r
= GmM(r)

r2 . (1.83)

Here, v(r), r, m and M(r), denote radial velocity, radial distance, mass of the star and mass enclosed in

radius r respectively. To preserve the laws of physics the intuitive way being the decrease of velocity when

r increase for a constant M(r). But observation showed that the velocity being constant after a certain

distance giving an indirect implication of the presence of dark matter. As an example we show the rotation

curve plot for NCG 3198 in Fig. 1.6.
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Figure 1.6: Velocity rotation curves for spiral galaxy NGC 3198.

The other perspective to admit the existence of dark matter is through Cosmological microwave

background radiation (CMBR) where the observations from primodial nucleosynthesis predicted that

the total density of luminous baryonic matter (ΩB ≈ 0.01). This result is in disparity with the observed

matter density 0.014≤ΩB ≤ 0.16 ruminating towards existence of a small amount of non-baryonic matter.

Figure 1.7: CMBR’s power spectrum

Deeper insight regarding CMBR reveals the important

role played by thermodynamics because during the early

epoch, the temperature was high enough and matter was

in plasma state making it difficult for photons streaming.

But as temperature decreases (i.e. ≈ 0.1eV) and Universe

cooled, matter-radiation decoupling took place bringing

CMBR into existence. Wilkinson Microwave Anisotropy

Probe (WMAP) made the discovery of CMBR and helped

physicists to think deep and probe into the early Uni-

verse by setting new experiments. Before recombination

epoch, weak interaction was inferior to Thomson scat-

tering of photon interacting with electrons and baryons.

However, the possibility of non-baryonic matter, which interacts solely through weak or gravitational

interactions, is hinted at by the baryon acoustic oscillation. This creates a potential barrier for the baryon-

photon fluid, forcing it to compress and expand in order to overcome it by creating a pressure difference.

Photons in the most packed zone are high in temperature than those in the most dispersed area. As a

consequence, minuscule anisotropies in the temperature of CMB photons from the surface of last scattering

were formed, which revealed a lot more information about the universe than what was originally discovered

by WMAP. Fig. 1.7 shows different peaks where the first peak corresponds to geometric structure of the

universe, whereas, second one reveals the total baryon number density and the third one gives information
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1.7. Dark Matter

about the existence of DM. Unlike CMBR, gravitational lensing i.e. bending of light makes a clear indirect

inference towards the existence of dark matter. The support for above statement comes from calculating

masses through scattered radial velocity, X-ray emission and gravitational lensing which signify that

dark matter to visible matter is approximately 5 : 1. So, when a distant observer pinpoints a source such

that the light reaching him/her has undergone bending having an massive obstruction proves general

relativity right and helps in measuring the mass present because more the mass more the bending of light.

Therefore, bullet cluster is best example which supports the presence of dark matter.

1.7.2 Dynamics of early Universe

Universe began being a charged soup which was extremely dense and hot, with particle interactions

occurring far more often than they do today. Production and annihilation ensued at the same rate,

sustaining the balance. This is known as ‘thermal equilibrium’ in statistical terms, and it occurs at a

specific temperature. For most of the early Universe epochs, the thermal equilibrium description turns out

to be a decent approximation. The expansion of the Universe, on the other hand, never results in a state of

complete thermal equilibrium. Also, a nearly equilibrium state of the Universe is said to be maintained

when Γ≥ H, where Γ is annihilation rate and H is Hubble expansion rate (≈ ȧ
a ).

1.7.2.1 Thermodynamics at equilibrium

In thermodynamics a huge number of particles are involved to define a system and it is not feasible for

anyone to calculate individual particle’s physical observables. Therefore , statistical mechanics comes into

picture where mainly all the properties of a system is revealed by incorporating one of the three mechanism

i.e. for classical system we have Maxwell-Boltzmann statistics and for quantum system Fermi-Dirac or

Bose-Einstein statistics is used. Two parameters play crucial role, one is temperature (T) and second is

chemical potential (µ) in writing the distribution function

n̄(ε)= 1

exp
(
ε−µ
KBT

)
±1

, (1.84)

where, ε represents the energy of the particle with +1 taken for fermions and −1 for bosons. Also, defining

the number and energy densities as below

n = g
(2π)3

∫
d3ε n̄(ε) ,

ρ = g
(2π)3

∫
d3ε εn̄(ε) . (1.85)

where, g implies the internal d.o.f. of the particle. If we omit the chemical potential of the particles, we get

n = g
2π2

∫ ∞

m
εdε

(ε2 −m2)1/2

e
ε

KBT ±1
,

ρ = g
2π2

∫ ∞

m
ε2dε

(ε2 −m2)1/2

e
ε

KBT ±1
. (1.86)
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Using the relations of ζ and Γ functions
∫ ∞

0

vn

ev −1
dv = ζ(n+1)Γ(n+1) ,

∫ ∞

0
vne−v2

dv = 1
2
Γ

(
n+1

2

)
. (1.87)

we can have the relativistic limit (m ¿ T)

n = (
ζ(3)/π2)

gT2





1, boson

3
4 , fermion,

ρ =
(
π2

30

)
gT4





1, boson

7
8 , fermion.

(1.88)

However, the non-relativistic limit (m À T) results for n and ρ

n = g
(

2π
mT

)−3/2
e−m/T , ρ = mg

(
2π
mT

)−3/2
e−m/T . (1.89)

At low temperature, the number density of heavy particles is exponentially suppressed, as shown above in

eqn. (1.89). As a result, the number density of any heavy particle today will be minimal, as the Universe

has progressed from a hot dense phase to the current cooling state. We now address non-equilibrium

thermodynamics to explain dark matter abundance since its density endures throughout the Universe.

1.7.2.2 Delving into thermodynamics at non-equilibrium - Relic density

Let us consider a stable dark matter particle nφ with lifetime more than the age of the Universe. When

interaction rate (Γ) > Hubble expansion rate (H) particles remain in equilibrium and for vice-versa they

decouple

dnφ
dt

+3Hnφ =−
∫

d
∏

φ d
∏

φ̄ d
∏

χ d
∏

χ̄× (2π)4δ4(pφ+ pφ̄) ×
[
|M|2

φφ̄→χχ̄
fφ fφ̄(1± fχ)(1± fχ̄)−|M|2

χχ̄→φφ̄
fχ fχ̄(1± fφ)(1± fφ̄)

]
. (1.90)

Here, d
∏= g

(2π)3
d3 p
2ε , 1+ f is applicable for boson and 1− f for fermion expressing the Bose enhancement

and Pauli blocking respectively. When T < εi, Maxwell-Boltzmann statistics becomes applicable to all

species with f i = eεi /T , also, 1± f ≈ 1. Now, if we consider CP invariance i.e. |M|2
φφ̄→χχ̄

= |M|2
χχ̄→φφ̄

, it

simplifies the Boltzmann equation as

dnφ
dt

+3Hnφ =−
∫

d
∏

φ d
∏

φ̄ d
∏

χ d
∏

χ̄× (2π)4δ4(pφ+ pφ̄)×|M|2
[

fφ fφ̄− (1± fφ̄)
]

. (1.91)

So, now if the outgoing particles (χ, χ̄) are in equilibrium, i.e.,

fχ = e−εχ/T , fχ̄ = e−εχ̄/T . (1.92)

The energy conservation is imposed by the δ-function, therefore

fχ fχ̄ = e−(εχ+εχ̄)/T = e−(εφ+εφ̄)/T = f eq
φ

f eq
φ̄

. (1.93)
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So, the Boltzmann equation modifies as

dnφ
dt

+3Hnφ =−〈σ|v|〉
[(

nφ+neq
φ

)(
nφ−neq

φ

)]
, (1.94)

where,

〈σ|v|〉 = 1
(
neq
φ

)2

∫
d

∏
φ d

∏
φ̄ d

∏
χ d

∏
χ̄× (2π)4δ4

(
pφ+ pφ̄− pχ− pχ̄

)
|M|2e−(εφ+εφ̄)/T . (1.95)

Let us suppose a dimensionless parameter Yφ = nφ/s, where, s = 2π2T3

45 g∗s denoting the entropy density.

Therefore, above equation takes the form given below, where, entropy density is treated constant i.e. (sa3 =
const.) in a co-moving volume

dYφ

dt
=−s〈σ|v|〉

[(
Yφ+Y eq

φ

)(
Yφ−Y eq

φ

)]
. (1.96)

Introducing another massless parameter x = mφ/T, where, there is temperature dependence interaction.

Moreover, in a radiation dominated era t and x satisfy

t = log2∗ MPl√
T4 g∗

= log2∗MPl
x2

m2
φ

p
g∗

, (1.97)

where, mφ represents the dark matter mass, MPl = 1.22∗1019 GeV and g∗ accounts for total massless

dependent relativistic degree of freedom mentioned below

g∗(T)=
∑

i=bosons
g i

(
Ti

T

)4
+ 7

8

∑

i= f ermions
g i

(
Ti

T

)4
. (1.98)

As their is a clear temperature dependence in the above equation, hence, g∗ value comes to be 106.75 for

T ≥ 300GeV. This is due to the fact that above this temperature, all SM particles acquire relativistic nature.

If we consider present scenario of the universe only photons and neutrinos come under the relativistic

particles with g∗ = 3.36 and T < 1 MeV. Hence, again the Boltzmann equation modifies as

dYφ

dt
= − xs

H(m)
〈σ|v|〉

[(
Yφ−Y eq

φ

)(
Yφ+Y eq

φ

)]

= −
(

2π2

45

)(
g∗s

H(m)

)
m3
φ〈σ|v|〉

[(
Yφ−Y eq

φ

)(
Yφ+Y eq

φ

)]
, (1.99)

with H(m)= 1.67
p

g∗s
m2
φ

MPl
.

At equilibrium,

Y eq
φ

=
neq
φ

s
= 0.145∗ g

g∗s
x3/2e−x, neq

φ
= g

( mφT
2π

)
e−

mφ
T . (1.100)

Their is no analytical solution that can be obtained from eqn. (1.99), as it impersonates a specific form

of Riccati equation, to its rescue, the solutions can be obtained via approximations. Moreover, velocity

dependence acts as a catalyst for annihilations cross-section, therefore, for non-relativistic speices σ|v| ≈
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σ0x−n. If the value of n = 0, it accounts for s-wave, whereas, n = 1 is for p wave annihilation. Hence, the

modified eqn. 1.99 becomes
dYφ

dt
=−λx−(n+2)

[(
Yφ−Y eq

φ

)(
Yφ+Y eq

φ

)]
. (1.101)

Here,

λ=
2π2 g∗sσ0m3

φ

45x2H(m)
= 0.264σ0

(
g∗sp
g ∗

)
MPl mφ . (1.102)

Proceeding further and bringing in another new quantity ∆φ = Yφ−Y eq
φ

, therefore eqn. (1.101) can be

written as

∆′
φ =−

dY eq
φ

dx
−λx−(n+2)∆φ(2Y eq

φ
+∆φ) . (1.103)

So, eqn. (1.103) further transforms when, x <
(
x f = mφ

T f

)
, if this is the case then Yφ superimposes Y eq

φ
and

hence the above differential equation of ∆φ becomes negligible and reduces to

∆φ ≈ xn+2

2λ
. (1.104)

But when the case becomes x À x f , it gives ∆φ 'YφÀY eq
φ

, hence

∆′
φ =−λx−(n+2)∆2

φ . (1.105)

When we take out the integration from limits {x f ,∞}, it yields

Y∞ =∆∞ = 1
λ

xn+1
f

(n+1)−1 . (1.106)

All this painstacking to calculate the relic density computed as

Ωφ = ρ

ρ0
= mφ

Y∞s0

ρ0
= 1.07∗109 ∗ (n+1)∗ xn+1

f

(p
g∗

g∗s

)(
h2MPlσ0

)−1
GeV−1. (1.107)

Here, ρ0 = 3H2
0

8πG called the critical density, H0 = 100h Km
sec∗Mpc and G being the gravitational constant. The

void of annihilation process due to freeze-out reduces the number density and present abundance is

estimated as

Ωh2 = 1.07∗109
p

g∗ MPl Jf
GeV−1 , (1.108)

where, Jf =
∫ ∞

x f
〈σv〉x

x2 and 〈σv〉x is given by

〈σv〉(x)=
( x
8

) 1
m5
φ

K2
2(x)

∫ ∞

4m2
ψ

σ
(
s−4m2

φ

)
s1/2K1

(
xs1/2

mφ

)
ds. (1.109)

Here, K i and s being the modified Bessel function and center of mass energy respectively.
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1.8 Thesis overview

In this chapter, a concise recap of the standard model of elementary particles is made, shedding light on

scientific proof that cannot be explained within this framework. We carried out a comprehensive review

of the origins of these crucial challenges and give a brief sense of the current experimental restrictions

because this thesis work focuses largely on the phenomenological implications of neutrino masses and

mixing, dark matter, and leptogenesis. With the observed low mass from neutrino oscillation and multiple

seesaw scenarios, the masslessness of neutrinos in the standard model is addressed along-with its observed

tiny mass arising from various seesaw.

In chapter 2, we introduce a model where we incorporate three heavy right handed neutrinos (NRi )

and three heavy left handed sterile neutrinos (SL i ) along with a weighton field (ρ) in presence of discrete

A4 modular symmetry and global U(1)χ was introduced to eliminate some of the unwanted terms in

the superpotential. The charges are so defined for the particles under SU(2)L ×U(1)Y ×U(1)χ× A4 with

kI as the modular weight, hence, they acquire the linear seesaw mass structure. Further as the heavy

neutrinos are within few TeV range, therefore, we are able to explore Baryon asymmetry of the Universe

i.e Leptogenesis. Also, we are able to make a brief discussion on flavored leptogenesis as the mass range of

heavy right handed fermions suggested so.

In chapter 3, we make an exploration of radiative seesaw framework. In here, the neutrino mass is

generated at one-loop level by introducing an inert doublet in the particle gamut. Moreover, local U(1)B−L

is introduced to block the unwanted terms. Further, we also discuss lepton flavor violating processes i.e.

µ→ eγ, µ→ 3e and µ− e conversion in the nucleus. We have also discussed the dark matter (DM) scenario

by considering the lightest Dirac fermion as DM candidate where it has scalar as well as gauge boson Z′

mediated annihilations channels. Hence, we are able to obtain the relic density obeying Planck data and

included a brief note on collider bounds.

In chapter 4, we includes a model based on A′
5 modular symmetry which is a double cover of A5

symmetry in a inverse seesaw framework. The interesting thing about inverse seesaw is that the correct

order for the active neutrinos mass comes from the Majorana term (µ) in the mass structure. It means

that in regular seesaw the heaviness of the right handed neutrino decides the correct order of the active

neutrinos, but in inverse seesaw the smallness of the µ term governs the correct order. Additionally, we

discuss the lepton flavor violation i.e. `i → ` jγ and as U(1)B−L is involved in the model, therefore, a

comment on the collider bounds is included on the Z′ mass.

Chapter 5 is interesting because it makes use of linear seesaw framework in A′
5 modular symmetry.

Unlike A4 symmetry which has only three Yukawa couplings for utilization, A′
5 modular symmetry has

plethora of higher weight Yukawa couplings which provide us a free-hand on there usage to get correct

neutrino phenomenology. In this model, we include six heavy fermions and also include a local U(1)B−L

which helps to forbid certain terms in the superpotential to showcase a definite mass structure. We also
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allow an higher dimension term to have a small mass splitting such that we are able to incorporate

resonant case for the leptogenesis where this splitting enhances the CP asymmetry such that it gives

correct baryon asymmetry.

Chapter 6 summaries the complete work alongside gives an insight regarding my future prospects.
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2
IMPLICATIONS OF A4 MODULAR SYMMETRY ON NEUTRINO MASS, MIXING AND

LEPTOGENESIS WITH LINEAR SEESAW

2.1 Introduction

Neutrino oscillation data obtained from various experiments support the fact that neutrinos are not

completely massless but have some minuscule mass [34–40]. Hence, standard model (SM) falls short

in acknowledging the above claims from different experiments. Further, evidences were gathered from

these experiments regarding the mixing of neutrinos and it was inferred that two of them have non-zero

masses [41]. Simultaneously, it is very well known from theory and experiments that neutrinos are

void of their right-handed (RH) counterparts in the SM, hence, Dirac mass term cannot be written for

neutrinos, like other charged fermions, nonetheless, dimension-five operator [42–44] is useful in providing

them masses. Astonishingly, the origin and flavour structure of this operator are debatable. As a result,

obtaining non-zero masses for neutrinos requires examining possibilities beyond the standard model

(BSM) [45]. There are various models throughout the literature that explain the observed data from

various neutrino oscillation experiments, as well as the lightness of the neutrino masses, such as the most

popular seesaw mechanism [46–48], radiative mass generation [49, 50], extra-dimensions [51], etc. The

existence of sterile neutrinos, which are SM gauge singlets, commonly regarded right-handed neutrinos,

couple to the standard active neutrinos by Yukawa interactions, is a common characteristic of many BSM

theories that illuminate the origin of non-zero neutrino masses. In support to above, their masses and

interaction strengths can vary over wide orders of magnitude, which helps towards explaining many

observable phenomena. For instance, in the type-I seesaw framework, to accomodate the eV-scale light
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neutrinos, the right handed neutrino mass is expected to be O (1015) GeV, which is clearly beyond the reach

of existing and future investigations. However, its low scale variants like inverse seesaw [52–54] linear

seesaw [55], extended seesaw [56], etc., where the heavy neutrino mass can be in the TeV range, which

makes them experimentally verifiable.

The non-abelian discrete flavour symmetry group A4 brings a great relief in serving as an under-

lying symmetry for getting the neutrino mass matrix [57], however this results in a vanishing reactor

mixing angle θ13. Despite this, it is nevertheless extensively employed to characterise neutrino mixing

phenomenology with the addition of a simple alteration by introducing extra flavon fields that are SM

singlets but transform non-trivially under the flavour symmetry group, resulting in a non-zero reactor

mixing angle. As a consequence of the unique vacuum alignment they acquire, the flavons become a

significant feature in manifesting the observed pattern in neutrino mixing, which plays a crucial role

in spontaneous breaking of the discrete flavour symmetry [58]. Flavons are usually required in large

numbers to actualize certain phenomenological characteristics within the scope of such flavour symmetry.

However, there are several disadvantages to this technique, such as the fact that higher-dimensional

operators can undermine the discrete flavour symmetry prediction. Furthermore, flavour symmetry is

typically used to confine mixing angles, although neutrino masses are unknown except in a few cases. In

contrast to above, using a modular invariance technique [59], these flaws are remedied.

Presently, pioneering work on modular flavor symmetries is proposed [36, 59, 60] to bring predictable

flavor structures into the spotlight. Utilizing the approach many effective models were designed and

published [61–64], by avoiding the usage of flavon fields apart from modulus τ, which breaks the flavor

symmetry after it gains VEV. Therefore, we solely require a mechanism to set the modulus τ and avoid

the usage of vacuum alignment which is rather very confusing. To put it another way, these couplings

occur as a result of a non-trivial representation of a non-Abelian discrete flavour symmetry approach,

which can substitute for the employment of flavon fields, which are not necessary or minimised in the

realisation of the flavour structure. In the above context, it was realised after reading various texts that

there are many groups available, such as the basis defined under the modular group of A4 [60, 65–69],

S4 [70–73], A5 [74, 75], larger groups [76], various other modular symmetries and double covering of A4

[77–79], prediction of masses, mixing, and CP phases peculiar to quarks and/or leptons are done.

As aforesaid, modular invariance plays a crucial role in neutrino mass models involving only few

coupling strengths, hence, establishing a correlation between neutrino masses and mixing parameters.

However, there is an extension of above formalism to combine it with the generalized CP symmetry

[67, 80–84]. As we know that, S and T representation are symmetric, so the modular form multiplets, if

normalized aptly, acquire complex conjugation under CP transformation. As an outcome, all couplings in

a modular invariant model are required to be real [81] due to generalised CP symmetry, and the model

prediction power is reduced. To put the above into practice, the use of modular symmetry in constructing a
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model for neutrino mass generation, as well as the indications of new physics via the observables in the

neutrino sector, is quite exciting [85].

In this article, we diligently work to illuminate the benefits of A4 modular symmetry by applying it to

linear seesaw framework. The linear seesaw mechanism entails three LH neutral fermions SLi in addition

to three right handed ones NRi (i = 1,2,3) and produces a neutrino mass matrix which is intricate enough,

and has been studied in the context of A4 symmetry in [86–88]. Additionally, SLi & NRi are allocated as

triplets under A4 symmetry and Yukawa couplings are defined in terms of modular form by which the

neutrino mass matrix attains a confined structure. Consequently, numerical analysis is performed to scan

for free parameters in the model and find an area that fits neutrino data. Neutrino sector observables are

expected after adjusting for the allowable parameters.

The following is the outline for this chapter, in Sec. 2.2 we describe the well known linear seesaw

mechanism with discrete A4 modular flavor symmetry and its appealing feature resulting in simple mass

structure for the charged leptons and neutral leptons including light active neutrinos and other two

types of sterile neutrinos. We then provide a discussion for the light neutrino masses and mixing in this

framework. In Sec. 2.3 numerical correlational study between observables of neutrino sector and model

input parameters is established. We also present a brief discussion of the non-unitarity effect. Leptogenesis

in the context of the present model is discussed in Sec. 2.4 and in Sec. 2.6, we conclude our results.

2.2 Model Framework

This model represents the simplistic scenario of linear seesaw, where the particle content and group

charges are provided in Table 2.1. We prefer to extend with discrete A4 modular symmetry to explore the

neutrino phenomenology and a global U(1)X symmetry is imposed to forbid certain unwanted terms in

the superpotential. The particle spectrum is enriched with six extra singlet heavy fermion superfields

(NRi and SLi) and one weighton field (ρ). The extra supermultiplets of the model transform as triplet

under the A4 modular group. The A4 and U(1)X symmetries are considered to be broken at a scale much

higher than the electroweak symmetry breaking [89]. The extra superfields acquire masses by assigning

non-zero vacuum expectation value to the singlet weighton. The modular weight is assigned to all the

particles and denoted as kI . Further, it is evident that the breaking of U(1)X symmetry takes places by

singlet ρ acquiring VEV. Therefore, a massless Goldstone boson comes into picture which does not have

dangerous interaction among the SM particles but interact only with Higgs and contributes to the dark

radiation [90, 91]. The importance of A4 modular symmetry is the requirement of less number of flavon

or weighton fields unlike the usual A4 group, since the Yukawa couplings have the non-trivial group

transformation. Assignment of group charge and modular weight to the Yukawa coupling is provided in

Table 2.2.
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Fields ec
R µc

R τc
R LL NR Sc

L Hu,d ρ

SU(2)L 1 1 1 2 1 1 2 1

U(1)Y 1 1 1 − 1
2 0 0 1

2 ,− 1
2 0

U(1)X 1 1 1 −1 1 −2 0 1

A4 1 1′ 1′′ 1,1′′,1′ 3 3 1 1

kI 1 1 1 −1 −1 −1 0 0

Table 2.1: Particle content of the model and their charges under SU(2)L ×U(1)Y × A4 where kI is the
number of modular weight.

Yukawa coupling A4 kI

Y 3 2

Table 2.2: Modular weight of the Yukawa coupling Y and its transformation under A4 symmetry.

2.2.1 Dirac mass term for charged leptons (M`)

In order to have a simplified structure for charged leptons mass matrix, we consider the three generations

of left-handed doublets (LeL ,LµL ,LτL ) transform as 1,1′′,1′ respectively under the A4 symmetry. They

are assigned the U(1)X charge of −1 for each generation. The right-handed charged leptons follow a

transformation of 1,1′,1′′ under A4 and singlets in U(1)X symmetries respectively. All of them are assigned

with a modular weight of 1. The VEVs of Higgs superfields i.e. 〈Hu〉 = vu/
p

2 ,〈Hd〉 = vd /
p

2 are related to

SM Higgs VEV as vH =
√

v2
u +v2

d and the ratio of their VEVs is expressed as tanβ= (vu/vd)= 5 [92, 93].

The relevant superpotential term for charged leptons is given by

WM`
= yee

` LeL Hd ec
R + yµµ

`
LµL Hd µ

c
R + yττ` LτL Hd τ

c
R . (2.1)

The charged lepton mass matrix is found to be diagonal and the couplings can be adjusted to achieve the

observed charged lepton masses. The mass matrix takes the form

M` =




yee
`

vd /
p

2 0 0

0 yµµ
`

vd /
p

2 0

0 0 yττ
`

vd /
p

2



=




me 0 0

0 mµ 0

0 0 mτ




. (2.2)

Here, me, mµ and mτ are the observed charged lepton masses.
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2.2.2 Dirac and pseudo-Dirac mass terms for the small neutrinos

Along with the transformation of lepton doublets mentioned previously, the right-handed fermion super-

fields transform as triplets under A4 modular group with U(1)X charge of +1 and modular weight −1. Since,

with these charge assignments we cannot write the standard interaction term, we introduce the Yukawa

couplings to transform non-trivially under the A4 modular group (triplets) and assign with modular weight

of 2, as represented in Table 2.2. We use the modular forms of the coupling as Y (τ)= (y1(τ), y2(τ), y3(τ)),

which can be written in terms of Dedekind eta-function η(τ) and its derivative [59], expressed in Eq. A.8

(Appendix A). Therefore, the invariant Dirac superpotential involving the active and right-handed fermion

superfields can be written as

WD =αDLeL Hu (Y NR)1 +βDLµL Hu (Y NR)1′ +γDLτL Hu (Y NR)1′′ . (2.3)

Here, the subscript for the operator Y NR indicates A4 representation constructed by the product and

{αD ,βD ,γD} are free parameters. The resulting Dirac neutrino mass matrix is found to be

MD = vup
2




αD 0 0

0 βD 0

0 0 γD







y1 y3 y2

y2 y1 y3

y3 y2 y1




LR

. (2.4)

As we also have the extra sterile fermion superfields SLi, which transform analogous to NRi under A4

modular symmetry, the pseudo-Dirac term for the light neutrinos is allowed, and the corresponding

super-potential is given as

WLS =
[
α′

DLeL Hu (Y Sc
L)1 +β′

DLµL Hu (Y Sc
L)1′ +γ′DLτL Hu (Y Sc

L)1′′
] ρ3

Λ3 , (2.5)

where, the subscript for the operator (Y Sc
L) indicates A4 representation constructed by the product and

{α′
D ,β′

D ,γ′D} are free parameters. The flavor structure for the pseudo-Dirac neutrino mass matrix takes

the form,

MLS = vup
2

( vρp
2Λ

)3




α′
D 0 0

0 β′
D 0

0 0 γ′D







y1 y3 y2

y2 y1 y3

y3 y2 y1




LR

. (2.6)

2.2.3 Mixing between the heavy fermions NR and SL

Following the transformation of the heavy fermion superfields under the imposed symmetries, it can be

noted that the usual Majorana mass terms are not allowed. But one can have the interactions leading to
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the mixing between these additional superfields as follows

WMRS = [αNSY(Sc
LNR)sym +βNSY(Sc

LNR)Anti−sym]ρ

= αNS[y1(2Sc
L1

NR1 −Sc
L2

NR3 −Sc
L3

NR2 )+ y2(2Sc
L2

NR2 −Sc
L1

NR3 −Sc
L3

NR1 )

+ y3(2Sc
L3

NR3 −Sc
L1

NR2 −Sc
L2

NR1 )]ρ

+ βNS[y1(Sc
L2

NR3 −Sc
L3

NR2 )+ y2(Sc
L3

NR1 −Sc
L1

NR3 )+ y3(Sc
L1

NR2 −Sc
L2

NR1 )]ρ , (2.7)

where the first and second terms in the first line correspond to symmetric and anti-symmetric product for

Sc
LNR making triplet representation of A4 with αNS , βNS being the free parameters. Using 〈ρ〉 = vρ /

p
2 ,

the resulting mass matrix is found to be,

MRS = vρp
2




αNS

3




2y1 −y3 −y2

−y3 2y2 −y1

−y2 −y1 2y3



+βNS




0 y3 −y2

−y3 0 y1

y2 −y1 0







. (2.8)

It should be noted that αNS
3 6=βNS , otherwise the matrix MRS becomes singular, which eventually spoils

the intent of linear seesaw. The masses for the heavy fermions can be found in the basis (NR ,Sc
L)T , which

can be written as

MH f =




0 MRS

MT
RS 0


 . (2.9)

Therefore, one can have six doubly degenerate mass eigenstates for the heavy super-fields upon diagonal-

ization.

2.2.4 Linear Seesaw mechanism for light neutrino Masses

Within the present model invoked with A4 modular symmetry, the complete 9 × 9 mass matrix in the

flavor basis of
(
νL, NR ,Sc

L
)T is given by

M=




νL NR Sc
L

νL 0 MD MLS

NR MT
D 0 MRS

Sc
L MT

LS MT
RS 0




. (2.10)

The linear seesaw mass formula for light neutrinos is given with the assumption MRS À MD , MLS as,

mν = MD M−1
RS MT

LS + transpose . (2.11)

Apart from the small neutrino masses, other relevant parameters in the neutrino sector are Jarlskog

invariant and the effective neutrino mass which play a key role in neutrinoless double beta decay and can
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be computed from the mixing angles and phases of PMNS matrix elements as following :

JCP = Im[Ue1Uµ2U∗
e2U∗

µ1]= s23c23s12c12s13c2
13 sinδCP , (2.12)

|mee| = |mν1 cos2θ12 cos2θ13 +mν2 sin2θ12 cos2θ13eiα21 +mν3 sin2θ13ei(α31−2δCP )| . (2.13)

Many dedicated experiments are looking for neutrinoless double beta signals, for details please refer

to [94]. The sensitivity limits on |mee| by the current experiments such as GERDA is (102–213) meV [95]

and CUORE is (90–420) meV [96]. The future generation experiments, like LEGEND-200 can probe

35–73 meV [94] and KamLAND-Zen (61–165) meV [97].

2.3 Numerical analysis

For numerical analysis we consider the global fit neutrino oscillation data at 3σ interval from [98] as

follows:

NO :∆m2
atm = [2.431,2.622]×10−3 eV 2, ∆m2

sol = [6.79,8.01]×10−5 eV 2,

sin2θ13 = [0.02044,0.02437], sin2θ23 = [0.428,0.624], sin2θ12 = [0.275,0.350]. (2.14)

Here, we numerically diagonalize the neutrino mass matrix eqn. 2.11 through the relation U†MU =
diag(m2

1,m2
2,m2

3), where M = mνm†
ν and U is an unitary matrix, from which the neutrino mixing angles

can be extracted using the standard relations:

sin2θ13 = |U13|2, sin2θ12 =
|U12|2

1−|U13|2
, sin2θ23 =

|U23|2
1−|U13|2

. (2.15)

To fit to the current neutrino oscillation data, we chose the following ranges for the model parameters:

Re[τ] ∈ [−0.5,0.5], Im[τ] ∈ [1,2], {αD ,βD ,γD} ∈ 10−5 [0.1,1], {α′
D ,β′

D ,γ′D} ∈ 10−2 [0.1,1],

αNS ∈ [0,0.5], βNS ∈ [0,0.0001], vρ ∈ [10,100] TeV, Λ ∈ [100,1000] TeV.

The input parameters are randomly scanned over the above mentioned ranges and the allowed regions

for those are initially filtered by the observed 3σ limit of solar and atmospheric mass squared differences

and mixing angles which are further constrained by the observed sum of active neutrino masses
∑

mi ≤
0.12 eV [40]. The typical range of modulus τ is found to be −0.5 . Re[τ] . 0.5 and 1 . Im[τ] . 2 for

normally ordered neutrino masses. Thus, the modular Yukawa couplings as function of τ (Eq. A.8 in

Appendix) are found to vary in the region 0.99 . y1(τ). 1, 0.1 . y2(τ). 0.8 and 0.01 . y3(τ). 0.3. The

variation of those Yukawa couplings with the real and imaginary parts of τ are represented in the top left

and top right panels of Fig. 2.1 respectively, whereas, bottom panel shows the allowed region of Re(τ) and

Im(τ) which abides all the constraints used to deduce the neutrino oscillation parameters. Variation of the

mixing angles with the sum of active neutrino masses, consistent with the allowed 3σ range are obtained,
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Figure 2.1: Top left and top right panel signify the correlation of the modular Yukawa couplings (y1, y2, y3)
with the real and imaginary parts of modulus τ respectively. The bottom panel represents the allowed
region of the Re(τ) and Im(τ) abiding all the constraints and within the range of its fundamental domain.

as shown in Fig. 2.2. In the left panel of Fig. 2.3, we show the correlation of Jarlskog CP invariant with the

reactor mixing angle allowed by the neutrino oscillation data, which is found to be of the order of O (10−3).

The right panel of Fig. 2.3, signifies the full parameter space for Yukawa couplings as per the observed

sum of active neutrino masses. In Fig. 2.4, we have displayed a correlation of the Yukawa couplings y1

with y2 and y2 with y3 in the left and right panels respectively. The effective neutrinoless double beta

decay mass parameter |mee| for both normal and inverted orderings is found to have a maximum value

of 55 meV from the variation of observed sum of active neutrino masses, which is presented in the left

panel of Fig. 2.5. The results for normal and inverted hierarchies are shown by the blue and red points.

The horizontal pink and cyan bands represent the 3σ sensitivity limits of current GERDA and the future

LEGEND-200 experiments respectively. It should be noted from the figure that the model predictions for

|mee| are within the reach of the future generation experiments and the inverted hierarchical region is

more favored. The right panel represents the correlation between heavy fermion masses M2 and M3.
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Figure 2.2: Left (Right) panel represents the correlation between sin2θ13 (sin2θ12 and sin2θ23) with the
sum of active neutrino masses.
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Figure 2.3: Left panel displays the correlation of Jarlskog invariant with the reactor mixing angle and
right panel reflects the variation of modular Yukawa couplings with the sum of active neutrino masses.

0.994 0.996 0.998 1.000 1.002 1.004
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

y1

y
2

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.00

0.05

0.10

0.15

0.20

0.25

y2

y
3

Figure 2.4: Left (Right) panel displays the correlation between y1 and y2 (y2 and y3).
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Figure 2.5: Left panel shows the correlation of effective neutrino mass of neutrinoless double beta decay
with the sum of active neutrino masses, where the blue and red points correspond to normal and inverted
hierarchies. The horizontal pink band corresponds to the 3σ sensitivity limit of currently running GERDA
experiment and the cyan band represents the 3σ limit of the future LEGEND-200 experiment. Right panel
depicts correlation between the heavy fermion masses M2 and M3.

Comment on non-unitarity

Here, we briefly comment on non-unitarity of neutrino mixing matrix U ′
PMNS in the presence of heavy

fermions. The standard parametrization for the deviation from unitarity in a small scale can be expressed

as following [99]

U ′
PMNS ≡

(
1− 1

2
FF†

)
UPMNS . (2.16)

Here, UPMNS is the PMNS mixing matrix which diagonalises the mass matrix of the three light neutrinos

and F is the mixing of active neutrinos with the heavy fermions and approximated as F ≡ (MT
NS)−1MD ≈

αD v
αNS vρ

, which is a hermitian matrix. The global constraints on the non-unitarity parameters [100–102],

are found via several experimental results such as the W boson mass MW , the Weinberg angle θW , several

ratios of fermionic Z boson as well as its invisible decay, electroweak universality, CKM unitarity bounds,

and lepton flavor violations. In our model framework, we consider the following approximated normalized

order for the Dirac, pseudo-Dirac and heavy masses to correctly generate the observed mass-squared

differences as well as the sum of active neutrino masses of desired order:

( mν

0.1 eV

)
≈

(
MD

10−3 GeV

)(
MRS

103 GeV

)−1 (
MLS

10−4 GeV

)
. (2.17)

Therefore, with the chosen order masses, we obtain an approximated non-unitary mixing for the present

model as

|FF†| ≤




4.5×10−13 2.3×10−13 6.2×10−13

2.3×10−13 2.08×10−12 4.5×10−12

6.2×10−13 4.5×10−12 5.6×10−12




. (2.18)
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Since, the mixing between the active and heavy fermions in our model is found to be very small, it leads to

a negligible contribution to the non-unitarity.

Comment on lepton flavor violation

Here, we will briefly discuss about the prospect of lepton flavor violation (LFV) effect, in particular `i → ` jγ

decays, in the context of present model. Lepton flavor violating decays are strictly forbidden in the SM and

are known to be induced in models with extended lepton sectors. The current limit on these branching

ratios are: Br(µ→ eγ) < 4.2×10−13 from MEG Collaboration [103], Br(τ→ eγ) < 3.3×10−8 [104] and

Br(τ→µγ)< 4.4×10−8 from Belle collaboration [105].

In this model, the lepton flavor violating decays (`i → ` jγ) can occur via exchange of heavy fermions at

one loop level [106, 107], as there is mixing between the light and heavy fermions and the corresponding

dominant one-loop contribution to the branching ratios for these decays is given as [99, 108]

Br(`i → ` jγ)=
α3

W s2
W

256π2

m5
`i

M4
W

1
Γ`i

|GW
i j |2, (2.19)

where GW
i j is loop functions whose analytic form is

GW
i j =

3∑

k=1
FikF†

jkGW
γ

(
M2

Nk

M2
W

)
, with

GW
γ (x) = 1

12(1− x)4
(10−43x+78x2 −49x3 +4x4) . (2.20)

Here, MNk represents heavy neutrino superfields and F characterises the mixing of active neutrinos

with the heavy fermions leading to non-unitarity effect. Since in the present model, the non-unitarity

parameters are found to be extremely small (2.18), the branching ratios of the LFV decays are highly

suppressed. Thus, for TeV scale heavy fermions MNk , the branching ratios for different LFV decays are

found to be

Br(µ→ eγ)≤ 8.9×10−33

(
|(FF†)µe|

4.25×10−14

)2

,

Br(τ→ eγ)≤ 4.2×10−33
( |(FF†)τe|

6.9×10−14

)2

,

Br(τ→µγ)≤ 1.2×10−30

(
|(FF†)τµ|

1.14×10−12

)2

, (2.21)

which are beyond the reach of any of the future experiments.

2.4 Leptogenesis

Leptogenesis has proven to be one of the most preferred way to generate the observed baryon asymmetry

of the Universe. The standard scenario of resonant enhancement in CP asymmetry has brought down
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the scale as low as TeV [109–112]. The present model includes six heavy states with doubly degenerate

masses for each pair Eq. 2.9. But one can introduce a higher dimensional mass term for the heavy neutrino

superfield (Sc
L) as

LM =−αRY Sc
LSc

L
ρ4

Λ3 . (2.22)

This leads to a small mass splitting between the heavy superfields, there by enhancing the CP asymmetry

to generate required lepton asymmetry [113, 114]. Thus, one can construct the right-handed Majorana

mass matrix as follows

MR =
αRv4

ρ

6Λ3




2y1 −y3 −y2

−y3 2y2 −y1

−y2 −y1 2y3




. (2.23)

The coupling αR is chosen to be extremely small to retain the linear seesaw structure of the mass matrix

Eq. 2.10, i.e., MD , MLS À MR and such inclusion does not affect the previous results. However, this term

introduces a small mass splitting and the 2 × 2 submatrix of Eq. 2.10 in the (NR ,Sc
L) basis, now can be

written as

M =




0 MRS

MT
RS MR


 . (2.24)

This matrix can have a block diagonal structure in the limit βNS ¿αNS by the unitary matrix 1p
2




I −I

I I




as

M′ =




MRS + MR
2 −MR

2

−MR
2 −MRS + MR

2


≈




MRS + MR
2 0

0 −MRS + MR
2


 . (2.25)

Therefore, the mass eigenstates (N±) are related to NR and Sc
L through




Sc
Li

NRi


=




cosθ −sinθ

sinθ cosθ







N+
i

N−
i


 . (2.26)

Assuming a maximal mixing, we can have

NRi =
(N+

i +N−
i )

p
2

, Sc
Li =

(N+
i −N−

i )
p

2
, (2.27)

Thus, the interaction superpotential in Eq. 2.3 can be written in the new basis N±
i as

WD = αDLeL Hu

[
Y

(
(N+

i +N−
i )

p
2

)]

1

+βDLµL Hu

[
Y

(
(N+

i +N−
i )

p
2

)]

1′

+γDLτL Hu

[
Y

(
(N+

i +N−
i )

p
2

)]

1′′
. (2.28)
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Analogously, the pseudo-Dirac interaction term Eq. 2.5 becomes

WLS = α′
DLeL Hu

[
Y

(
(N+

i −N−
i )

p
2

)]

1

ρ3

Λ3 +β′
DLµL Hu

[
Y

(
(N+

i −N−
i )

p
2

)]

1′

ρ3

Λ3

+γ′DLτL Hu

[
Y

(
(N+

i −N−
i )

p
2

)]

1′′

ρ3

Λ3 . (2.29)

The mass eigenvalues for the new states N+ and N− can be obtained by diagonalizing the block diagonal

form of heavy superfield masses, expressed as

MRS ± MR

2
=

(
αNSvρp

2
±
αRv4

ρ

4Λ3

)




2y1 −y3 −y2

−y3 2y2 −y1

−y2 −y1 2y3




. (2.30)

In the above, the anti-symmetric part in MRS is neglected because βNS is small compared with αNS .

The above matrix can be diagonalized through (M±)diag = UTBMUR

(
MRS ± MR

2

)
UT

RUT
TBM , with mass

eigenvalues

M±
1 ≈ 1

6

(
αNSvρp

2
±
αRv4

ρ

4Λ3

)(
y1 +2y2 −

√
9y2

1 +12y1 y2 +12y2
2

)
,

M±
2 ≈ 1

6

(
αNSvρp

2
±
αRv4

ρ

4Λ3

)(
y1 +2y2 +

√
9y2

1 +12y1 y2 +12y2
2

)
,

M±
3 ≈ 1

3

(
αNSvρp

2
±
αRv4

ρ

4Λ3

)
(y1 +2y2) . (2.31)

Here, UTBM is the tribimaximal mixing matrix [115, 116] and

UR ≈




B− 1p
X−

0

0 0 1

B+ 1p
X+

0




, (2.32)

with

B± =−
y1 +2y2 ±

√
9y2

1 −12y1 y2 +12y2
2

2
p

2 (y1 − y2)
, and

X± =
√

1+B2
± .

(2.33)

As noticed from Eq. 2.31, we get three sets of nearly degenerate mass states after diagonalization. We

further assume that the lightest pair with TeV scale masses dominantly contribute to the CP asymmetry.1

1We also have heavier fermions i.e., N±
2 and N±

3 , whose decays can also generate lepton asymmetry. But these heavy fermions
decouple early and moreover the asymmetry can be washed out from the inverse decays of lighter fermion mass eigenstates
i.e., `H → N±

1 . Even though we consider the asymmetry generated from other fermions (i.e., N±
2 , N±

3 ), the final asymmetry hardly
changes up to a maximum of 3 times the asymmetry generated from N±

1 in one flavor approximation, which does not really make
any appreciable difference in the final result.
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εe
N− ε

µ

N− ετN− εN− ∆M (GeV)

−9×10−5 −2.13×10−4 −2.42×10−4 −5.45×10−4 2.94×10−5

Table 2.3: CP asymmetries and mass splitting obtained from the allowed range of model parameters which
satisfy neutrino oscillation data.

The small mass splitting between the lightest states implies the contribution from one loop self energy

of heavy particle decay dominates over the vertex diagram. The expression for CP asymmetry is given

by [109, 117]

εN−
i
≈ 1

32π2 AN−
i

Im

[(
M̃D

vu
− M̃LS

vu

)† (
M̃D

vu
+ M̃LS

vu

)2 (
M̃D

vu
− M̃LS

vu

)†]

ii

rN

r2
N +4A2

N−
i

.

(2.34)

Here, M̃D = MDUTBMUR , M̃LS = MLSUTBMUR and ∆M = M+
i −M−

i ≈ MR . The parameters rN and AN−

are expressed as

rN =
(M+

i )2 − (M−
i )2

M+
i M−

i
=
∆M(M+

i +M−
i )

M+
i M−

i
,

AN− ≈ 1
16π

[(
M̃D

vu
− M̃LS

vu

)(
M̃D

vu
+ M̃LS

vu

)]

ii
. (2.35)

It should be noted that because of the imposition of modular symmetry, which plays the role of eliminating

the usage of extra flavon fields, the CP asymmetry parameter crucially depends on the Yukawa couplings

Y= (y1, y2, y3), apart from other free parameters of the model and the flavon VEV vρ . However, essentially

there is no freedom in the choice of how much can be the numerical values of the Yukawa couplings as

they depend on the real and imaginary part of the modulus τ, which are constrained by the neutrino

oscillation data. In the top left (right) panel of Fig. 2.6, we show the variation of CP asymmetry with the

magnitude (argument) of the Yukawa coupling y1 and bottom left panel projects its behavior with rN .

It should be noted that, the CP symmetry in the context of the present model is broken by the vacuum

expectation value of the modulus τ. As this vacuum expectation value is related to the CP phases in the

PMNS matrix and the CP asymmetry of leptogenesis, it is generally anticipated that there should be

a non-trivial correlation between these observables. In the bottom right panel of Fig. 2.6, we show the

correlation plot between the Dirac CP violating phase δCP and the CP asymmetry of leptogenesis, which

depicts no appreciable correlation between these observables. In Table 2.3, we provide benchmark values

that satisfy both neutrino mass and required CP asymmetry for leptogenesis [118, 119] (to be discussed in

the next subsection).
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Figure 2.6: Top left and right panels represent the variation of CP asymmetry with the magnitude and
argument of Yukawa coupling respectively. Bottom left panel shows its dependence with parameter rN .
Whereas, the bottom right plot represents the correlation between CP asymmetry and the CP violating
phase δCP .

2.4.1 One flavor approximation

The evolution of lepton asymmetry can be deduced from the dynamics of relevant Boltzmann equations.

Sakharov criteria [23] demand the decay of parent fermion to be out of equilibrium to generate the lepton

asymmetry. To impose this condition, one has to compare the Hubble rate with the decay rate as follows.

K =
ΓN−

1

H(T = M−
1 )

. (2.36)

Here, H = 1.67
p

g? T2

MPl
, with g? = 106.75, MPl = 1.22× 1019 GeV. We consider the coupling strength(

≈
(p

2 MD
v UTBMUR

)
i j

)
roughly around 10−6, where the minimum order of coupling parameters are taken

from the numerical analysis section, consistent with neutrino oscillation data. The Boltzmann equations

for the evolution of the number densities of right-handed superfield and lepton, written in terms of yield

parameter (ratio of number density to entropy density) are given by [119–123]

dYN−

dz
=− z

sH(M−
1 )

[(
YN−

Y eq
N−

−1

)
γD +

((
YN−

Y eq
N−

)2

−1

)
γS

]
,

dYB−L

dz
=− z

sH(M−
1 )

[
εN−

(
YN−

Y eq
N−

−1

)
γD − YB−L

Y eq
`

γD

2

]
, (2.37)
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Figure 2.7: Left panel projects the comparison of interaction rates with Hubble expansion, where purple
lines correspond to decay (solid), inverse decay (dotted) and scattering rates plotted for various values of
Majorana coupling (green, orange, blue). Right panel projects the evolution of YB−L (dashed) as a function
of z = M−

1 /T.

where s denotes the entropy density, z = M−
1 /T and the equilibrium number densities are given by [118]

Y eq
N− = 45gN−

4π4 g?
z2K2(z), Y eq

`
= 3

4
45ζ(3)g`
2π4 g?

. (2.38)

Here, K1,2 denote modified Bessel functions, g` = 2 and gN− = 2 denote the degrees of freedom of lepton

and right-handed superfields respectively. The decay rate γD is given by

γD = sY eq
N−ΓD , (2.39)

where, ΓD =ΓN− K1(z)
K2(z) . γS denotes the scattering rate of the decaying particle i.e., N−

1 N−
1 → ρρ [123].2 The

Boltzmann equation for YB−L is free from the subtlety of asymmetry getting produced even when N−
1 is

in thermal equilibrium i.e., by subtracting the on-shell N−
1 exchange contribution (γD

4 ) from the ∆L = 2

process [121].

The interaction rates are compared with Hubble expansion in the left panel of Fig. 2.7. The decay (ΓD)

and inverse decay
(
ΓD

Y eq
N−

Y eq
`

)
rates are plotted in purple with the coupling strength ∼ 10−6. The scattering

rate
(

γS
sY eq

N−

)
for N−

1 N−
1 → ρρ is projected for various set of values for coupling (of Eq. 2.7), consistent

with neutrino oscillation study. For larger Majorana coupling, the scattering process makes N−
1 to stay

longer in thermal soup and hence, number density of N−
1 depletes in annihilation rather than decay,

generating lesser lepton asymmetry. In one-flavor approximation, the solution of Boltzmann eqn. 2.37

using the benchmark given in Table 2.3 is projected in the right panel of Fig. 2.7 with the inclusion

of decay and scattering rates. Once the out-of-equilibrium criteria is satisfied, the decay proceeds slow

(over abundance), YN− does not trace Y eq
N− (magenta curve) and the lepton asymmetry (dashed curve) is

2

γ(ab ↔ cd)= T
64π4

∫ ∞

smin
ds σ̂(s′)

√
s′ K1

(p
s′

T

)
,

where, smin =Max[(ma +mb)2, (mc +md )2] and σ̂(s′) is the reduced cross section with s′ denoting the center of mass energy.
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generated. The obtained lepton asymmetry gets converted to the observed baryon asymmetry through

sphaleron transition, given by [124]

YB =
( 8N f +4NH

22N f +13NH

)
YB−L. (2.40)

Here, N f denotes the number of superfields generations and NH is the number of Higgs doublets. The

observed baryon asymmetry is quantified in terms of baryon to photon ratio [40]

η= ηb −ηb̄
ηγ

= 6.08×10−10. (2.41)

Based on the relation YB = (7.04)−1η, the current bound on baryon asymmetry is YB ∼ 0.86×10−10.

We observe the same Yukawas i.e. Y = (y1, y2, y3) are involved in both Dirac as well as Majorana masses

and hence, appear not only in the neutrino phenomenology but also in computation related to leptogenesis.

But the values of these couplings are strongly constrained from the real and imaginary part of the complex

modulus τ. Thus, the free parameters play an important role in adjusting the parameter space to generate

a successful leptogenesis.

2.4.2 Flavor consideration

One flavor approximation is probable at high scale (T > 1012 GeV), where all the Yukawa interactions are

out of equilibrium. But for temperatures below 1012 GeV, various charged lepton Yukawa couplings come

into equilibrium and hence flavor effects play a crucial role in generating the final lepton asymmetry. For

temperatures below 105 GeV, all the Yukawa interactions are in equilibrium and the asymmetry is stored

in the individual lepton sector. The detailed investigation of flavor effects in type-I leptogenesis can be

found in the literature [125–130].

The Boltzmann equation for generating the lepton asymmetry in each flavor is [126]

dYα
B−Lα

dz
=− z

sH(M−
1 )

[
εαN−

(
YN−

Y eq
N−

−1

)
γD −

(
γαD
2

) AααYα
B−Lα

Y eq
`

]
, (2.42)

where, εαN− represents the CP asymmetry in each lepton flavor and

γαD = sY eq
N−Γ

α
N−

K1(z)
K2(z)

, γD =
∑
α

γαD ,

The matrix A is given by [127],

A =




− 221
711

16
711

16
711

16
711 − 221

711
16
711

16
711

16
711 − 221

711




.

From the benchmark shown in Table 2.3, we project the B−L yield with flavor consideration in the left

panel of Fig. 2.8. It is clear that a notable enhancement in B−L asymmetry is obtained in case of flavor
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Figure 2.8: The left panel displays yield with inclusion of flavor effects. The right panel shows the
enhancement in the yield due to three-flavor calculation (red curve) over one-flavor approximation (black
curve).

consideration (red curve) over one flavor approximation (black curve), as displayed in the right panel. This

is because, in one flavor approximation the decay of heavy fermion to a specific lepton flavor final state can

get washed out by the inverse decays of any flavor unlike the flavored case [128].

2.5 Comment on collider studies

Here, we briefly comment on the most promising collider signature of heavy pseudo-Dirac neutrinos

without going into any detailed estimation, in the context of the present model. In the linear seesaw

scenario the MLS is the lepton number violating term [131] therefore its mass scale is naturally small. Also

the effective Majorana neutrino mass matrix as shown in eqn. 2.11 for active neutrino where the smallness

of mν is attributed due to MLS being the pseudo-Dirac neutrino mass term and further suppressed by

the ratio of MD and MRS . Hence, the seesaw scale can be lowered to TeV range which is experimentally

accessible at LHC. The trilepton plus missing energy process as mentioned in eqn. 2.43, which can be

studied at colliders, is an interesting mechanism involving heavy pseudo-Dirac neutrinos [132]:

σ(pp → N`± → `±`±+ /E)=σ(pp →W → N`±)×Br(N → `±`±+ /E). (2.43)

where it is assumed that the heavy neutrinos are heavier than the W boson, so that the two-body decay

process N → `W is kinematically allowed, followed by the on-shell W decaying into SM leptons. Its viability

is essentially determined by firstly, large mixing between active–sterile neutrinos i.e. θνRS '
√

mν/MRS ≤
10−6 [133], secondly, masses of heavy pseudo-Dirac neutrinos ranging from few [GeV–TeV], and finally its

production mechanism.
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2.6 Conclusion

We have emphasized on showcasing the importance of A4 modular symmetry that avoids the complications

associated while using the multiple flavons. The model we have dealt with intakes three right-handed and

three left-handed heavy superfields to explore neutrino phenomenology within a choosen framework of

linear seesaw in super-symmetric context. The role played by conventional flavon fields are now taken over

by the modular Yukawa couplings. Hence, giving up a specific flavor structure to the neutrino mass matrix

and provides a scope to study neutrino mixing. Further, we take the path of numerical diagonalization of

the neutrino mass matrix by finding a suitable parameter-space which accommodates all the observables

found in 3σ range of the oscillation data. Proceeding further, makes us realize that flavor structure of

heavy superfields leads to three doubly degenerate mass eigenvalues. Therefore, in order to have hands on

leptogenesis we bring in a higher dimensional term to develop a small mass splitting. All this gimmick

pave the way to get a non-zero CP asymmetry from the decay of lightest heavy fermion eigenstate and

also a self energy contribution is slightly enhanced as an advantage of utilizing the small mass splitting

in between the two lighter heavy fermion superfields. The coupled Boltzmann equations are handled by

utilizing a specific benchmark values of the model parameters which is also validated in oscillation data

and as an outcome, lepton symmetry is of the order of 10−10 self explaining the baryon asymmetry seen in

the Universe. As we are dealing with TeV scale heavy fermion superfields, hence, flavor considerations are

also discussed. The promising collider signature of the heavy pseudo-Dirac neutrinos is the trilepton plus

missing energy, which depend crucially on the mixing between the light active and pseudo-Dirac neutrinos,

mass of these heavy neutrinos and their production mechanism.

47





C
H

A
P

T
E

R

3
A MODULAR A4 SYMMETRIC SCOTOGENIC MODEL FOR NEUTRINO MASS AND

DARK MATTER

3.1 Introduction

Various experimental observations over the last few decades have conclusively established the robustness of

the Standard Model (SM). Nonetheless, there are a few issues demonstrating the presence of physics beyond

the SM, for example, the nature and existence of dark matter (DM) [134–139], small but non-vanishing

neutrino masses [40, 140, 141], observed baryon asymmetry of the Universe [23, 118, 119, 122, 142], origin

of flavor structure, etc. Therefore, apprehending the nature of physics beyond the standard model (BSM)

gets inescapable, and in this context, symmetry is assumed to play a significant role, e.g., ensuring the

appropriate mechanism for achieving the tiny neutrino masses, stability of DM, confining flavour structure,

and so on. It is thus, intriguing to build models beyond the SM adopting new symmetries.

The Scotogenic model, proposed by Ma [143] is probably the simplest model that generates the small

neutrino masses at one-loop level and also simultaneously accounts for the dark matter (both inert scalar

and fermionic), see for example a legion of works in the literature [144–149] and references therein.

Various other works have realized neutrino mass at one-loop [150–154]. Further, the pioneering work

of introducing modular flavor symmetries to quark and neutrino sectors is seen in the literature of

[36, 59, 60] to highlight predictable flavor structures. The basic idea behind the use of modular symmetry

is to minimize the necessity of the inclusion of extra flavon fields having specific vacuum expectation value

(VEV) alignments. The breaking of flavor symmetry takes place when the complex modulus τ acquires VEV.
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The main issue of the perplexing vacuum alignment is avoided, the only requirement is a certain kind of

mechanism which can fix the modulus τ. Resultantly, this has prompted a restoration of the possibility that

modular symmetries are symmetries of the extra dimensional space-time with Yukawa couplings dictated

by their modular weights [155]. Hence, they transform systematically under this framework, where there

is a functional dependence of these couplings on modular forms, which verily are holomorphic function of τ.

To put it in a different way, these couplings come from a non-trivial representation of a non-Abelian discrete

flavor symmetry approach [62], to such an extent that it can remunerate the utilization of flavon fields,

which undoubtedly are not required in understanding the flavor structure. In reference to above, it was

fathomed that there are numerous groups accessible i.e., basis characterized under modular group of A4

[60, 65–69, 156], S4 [70–73, 157], A5 [75, 158, 159], larger groups [76], various other modular symmetries

and double covering of S4 [21], predictions regarding masses, mixing [160, 161], and CP phases distinctive

to quarks and/or leptons are made.

This chapter pertains to scotogenic model [162–166], constructed, based on modular A4 symmetry

in which mass generation for neutrinos is done at one-loop level alongside it also provides a stable DM

candidate. The model can be appreciated by using the modular forms for the Yukawa couplings with

weight-2, while the other couplings of the model with higher weights, can be constructed from the triplet

Yukawa couplings. The radiative neutrino mass generation in the context of A4 modular symmetry has

been investigated in [167, 168]. However, our proposed model is different from these studies in terms of

the field contents as well as model predictions. Our model encompasses two different sets of SM singlet

heavy neutrinos i.e., NRi & SLi, (i = 1,2,3), which transform as triplets under A4, with modular weight

kI =−1 and +1 respectively. Likewise, the inert scalar doublet is allocated a non-zero modular weight

as kI =−2. Interestingly, modular weights help in impersonating the additional Z2 symmetry, ensuring

the stability of DM. The present work remains unique from the earlier models in the context of avoiding

multiple flavon fields and their vacuum alignment. Furthermore, without the requirement of any ad-hoc

discrete symmetry, we discuss dark matter phenomenology. The gauge parameter space that gives correct

relic density (Planck), will be shown to be consistent with the collider (LEP-II and ATLAS) constraints as

well, which can be hardly seen in literature incorporated with modular symmetry. In view of the above,

the present work gives a new picture of phenomenological study, made simple yet rich.

The layout of this chapter is as follows. We introduce modular A4 in section-3.2, followed by model

description and its appealing feature resulting in simple mass structure for the charged and neutral

leptons with two types of sterile neutrinos. We then provide a brief discussion on the generation of light

neutrino masses and their mixing in section 3.4. In section 3.5 numerical correlational study between

observables of neutrino sector and input model parameters is established. Comment on lepton flavour

violating decays µ→ eγ, µ→ 3e and µ− e conversion in nuclei is presented in section 3.6. Further, Sec.

3.7 comprises the discussion on fermionic dark matter followed by collider constraints in section 3.8. We
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summarize the results in section 3.9.

3.2 Model with A4 modular symmetry

Here, we present a brief discussion on modular symmetry which manifests the invariance under linear

fractional transformations (LFTs) γ acting on the complex variable τ as follows:

γ : τ→ γ(τ)= aτ+b
cτ+d

, (3.1)

with, ad−bc = 1, where a,b, c,d are integers (Z). Modular group (Γ) forms a group of these LFTs acting

on upper half complex plane (Im(τ) > 0). Moreover, it shows isomorphism to PSL(2, Z) (projective special

linear group) of 2×2 matrices with unit determinant and integers (Z) being the elements. S and T are the

generators of the modular group given by,

S =




0 1

−1 0


 ; T =




1 1

0 1


 . (3.2)

These generators satisfy the relation S2 = I and (ST)3 = I, under which τ transforms as:

S : τ→−1
τ

, T : τ→ τ+1 . (3.3)

Group definition for Γ(N), where N = 1,2,3,4, · · · is given as

Γ(N)=








a b

c d


 ∈ SL(2, Z),




a b

c d


=




1 0

0 1


 mod(N)





, (3.4)

such that Γ(1)=SL(2,Z). Considering the case for N = 3, i.e. Γ3 ' A4 which is the non linear realization

of A4 discrete symmetry. The dimension for the A4 modular symmetry is 2k+1. For k = 1, it yields

three Yukawa couplings, i.e., Y= (y1, y2, y3) expressed in modular form (see Eqn.(B.1)) which are linearly

independent forming a triplet of A4 having a modular weight 2. Also modular forms of higher weights

are expressed in terms of the modular forms of weight 2 given in Eqn.(B.3) and Eqn.(B.4). The Yukawa

couplings can be expressed in terms of Dedekind eta function η(τ) (see appendix B.1), which has the form,

η(τ)= q1/24
∞∑

n=1
(1− qn) , (3.5)

where, q = e2iτπ plays a crucial role in building the modular forms. However, for numerical simplicity the

q-expansion forms are utilized presented in Eqn. (B.2). Due to its simplistic nature modular A4 symmetry

plays a key role in the one loop framework.
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3.3 Model Framework

Here, we take the privilege of introducing the model framework, investigating the impact of A4 modular

symmetry on neutrino and dark matter phenomenology. The SM particle spectrum is enriched with three

right-handed (NR) and three left-handed (SL) heavy fermions to meet the purpose. We impose a local

U(1)B−L symmetry to avoid certain unwanted interactions and a scalar singlet ρ to break it spontaneously.

The U(1)B−L charges are assigned in such a way that the model is free from triangle gauge anomalies.

The scalar sector is extended with an inert scalar doublet η, to realize neutrino mass at one-loop. The

assigned modular weight mimics Z2 symmetry by playing a vital role in forbidding the neutrino mass

at tree-level and also in stabilizing the fermionic dark matter. The representation of different fields of

the model under SU(2)L ×U(1)Y ×U(1)B−L × A4 symmetries and their modular weights are given in the

Table 3.1. In addition, the non-trivial transformation of Yukawa and scalar couplings and their modular

weights are furnished in Table 3.2.

Fermions Scalars

eR µR τR LL NR SL H η ρ

SU(2)L 1 1 1 2 1 1 2 2 1

U(1)Y −1 −1 −1 1
2 0 0 1

2
1
2 0

U(1)B−L −1 −1 −1 +1 −1 0 0 0 −1

A4 1 1′ 1′′ 1,1′′,1′ 3 3 1 1 1

kI −1 −1 −1 1 −1 1 0 −2 −2

Table 3.1: Particle content of the model and their charges under SU(2)L ×U(1)Y ×U(1)B−L × A4, where kI
is the modular weight.

Couplings A4 kI

Y= (y1, y2, y3) 3 2

λη 1 8

λ′
η 1 4

Table 3.2: Transformation of the Yukawa and quartic couplings under A4 symmetry and their corresponding
modular weights shown in Appendix A.

The scalar potential of the model is given by

V = µ2
H(H†H)+λH(H†H)2 +λ′

η

[
µ2
η(η†η)+µ2

ρ(ρ†ρ)+ζ3(H†H)(η†η)

+ ζ4(H†η)(η†H)+ ζ5

2
(
(H†η)2 + (η†H)2

)+ζ′(H†H)(ρ†ρ)
]

+ λη

[
ζη(η†η)2 +ζρ(ρ†ρ)2 +ζ′′(ρ†ρ)(η†η)

]
+H.c. (3.6)
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Here, H = (
0 (v+h)/

p
2

)T
is the SM Higgs doublet, η= (

η+ (ηR + iηI )/
p

2
)T

denotes the inert doublet and

the complex scalar ρ = 1p
2

(vρ +hρ + iAρ) breaks the U(1)B−L local gauge symmetry spontaneously. The

mass mode of Aρ is eaten up by the U(1)B−L associated gauge boson Z′, attains the mass MZ′ = gBLvρ .

In the above potential, ζi ’s (i = 3,4,5), ζ′, ζρ , ζη, ζ′′ are the free parameters and the scalar couplings λ′
η,

λη are singlets under A4 with modular weight 4, 8 respectively, which can be expressed in terms of the

components of weight-2 triplet Yukawa couplings [59],

λ′
η = y2

1 +2y2 y3,

λη = (y2
1 +2y2 y3)2. (3.7)

For simplicity, we assume there is no H−ρ mixing i.e., ζ′ = 0. The mass spectrum of scalar sector [169] can

be written as follows:

M2
h = 2λHv2,

M2
ρ = 2ληζρv2

ρ ,

M2
η± =λ′

η

[
µ2
η+ζ3

v2

2

]
+ληζ′′

v2
ρ

2
,

M2
ηR ,ηI

=λ′
η

[
µ2
η+ (ζ3 +ζ4 ±ζ5)

v2

2

]
+ληζ′′

v2
ρ

2
. (3.8)

In order to construct a simplified version of charged leptons mass matrix, left-handed doublets (i.e.,

three generations (LeL ,LµL ,LτL )) are considered to transform as 1,1′′,1′ respectively under the A4 symme-

try with assignment of modular weight, kI = 1 for each generation. Analogously, the right-handed charged

leptons (eR ,µR ,τR) transform under A4 as 1,1′,1′′, and carry a modular weight, kI =−1. The SM Higgs is

uncharged under the new symmetries, to make the scenario a bit simplistic.

The charged leptons interaction Lagrangian is given by

LM`
= yee

` LeL HeR + yµµ
`

LµL HµR + yττ` LτL HτR +H.c.. (3.9)

The mass matrix for charged leptons achieves a diagonal structure, following, the spontaneous breaking of

electroweak gauge symmetry. Moreover, one can obtain the observed masses for the charged leptons by

adjusting the Yukawa couplings. Hence, the obtained mass matrix is represented as follows

M` =




yee
`

v/
p

2 0 0

0 yµµ
`

v/
p

2 0

0 0 yττ
`

v/
p

2



=




me 0 0

0 mµ 0

0 0 mτ




, (3.10)

where me, mµ and mτ are the observed charged lepton masses.
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3.3.1 Dirac and pseudo-Dirac interaction terms for the neutrinos

The right (left) handed heavy fermions contrary to SM leptons are considered as triplet under A4 modular

group with a U(1)B−L charge of −1(0) and modular weight kI =−1(+1). The usual Dirac interactions of

neutrinos with SM Higgs cannot be realized with the aforesaid charges. The introduction of modular

Yukawa couplings with transformation represented in Table 3.2 along with inert scalar doublet η are nec-

essary to write such interactions. Moreover, the Yukawa couplings Y(τ)= (y1(τ), y2(τ), y3(τ)), are expressed

in terms of Dedekind eta-function η(τ) and its derivative, as discussed in (Appendix of [59]). Hence, the

invariant interaction Lagrangian, involving the active neutrinos along with the right and left-handed

heavy fermions, can be represented in the following forms:

LD =αDLeL η̃(YNR)1 +βDLµL η̃(YNR)1′ +γDLτL η̃(YNR)1′′ +H.c., (3.11)

LLS =
[
α′

DLeL η̃(YSc
L)1 +β′

DLµL η̃(YSc
L)1′ +γ′DLτL η̃(YSc

L)1′′
] ρ
Λ

+H.c.. (3.12)

Hence, the nature of the light neutrino mass could be of Majorana type, due to presence of small lepton

number violating terms as shown in eqn. (3.12). Adjacently, the A4 and U(1)B−L charges for heavy fermions

are imposed in such a way that their usual Majorana mass terms are forbidden. However, the mixing

between the additional leptons are allowed, which can be written as follows [156]

LMRS =
[
αNSY(SLNR)sym +βNSY(SLNR)Anti−sym

]
ρ† +H.c.

= αNS
[
y1(2S̄L1 NR1 − S̄L2 NR3 − S̄L3 NR2 )+ y2(2S̄L2 NR2 − S̄L1 NR3 − S̄L3 NR1 )

+y3(2S̄L3 NR3 − S̄L1 NR2 − S̄L2 NR1 )
]
ρ† +βNS

[
y1(S̄L2 NR3 − S̄L3 NR2 )

+y2(S̄L3 NR1 − S̄L1 NR3 )+ y3(S̄L1 NR2 − S̄L2 NR1 )
]
ρ† +H.c., (3.13)

where, αNS and βNS are the free parameters and (SLNR)sym and (SLNR)Anti−sym represent the triplet

symmetric (3s) and anti-symmetric (3a) product of S̄LNR under A4. Using 〈ρ〉 = vρ /
p

2 , the resulting mass

matrix is found to be

MRS = vρp
2




αNS

3




2y1 −y3 −y2

−y3 2y2 −y1

−y2 −y1 2y3



+βNS




0 y3 −y2

−y3 0 y1

y2 −y1 0







. (3.14)

As the mass matrix (3.14) is not symmetric, for simplicity we consider in our numerical analysis αNS ÀβNS ,

i.e., the symmetric term gives the dominant contribution compared to the anti-symmetric term. The mass

matrix for the six heavy leptons, in the basis (NR ,SL)T , can be given as

MH f =




0 MRS

MT
RS 0


 . (3.15)

54



3.4. Radiative Neutrino mass

Here, the diagonal entries i..e., Majorana mass terms of SL and NR are forbidden. Diagonalization of the

mass matrix (3.15) yields three doubly degenerate heavy fermions, with mass eigenvalues M±
i , (i = 1,2,3)

M±
1 ≈±

(αNSvρ
6

)(
y1 + y2 + y3 −

√
9(y2

1 + y2
2 + y2

3)−6y2 y3 −6y1(y2 + y3 )
)
,

M±
2 ≈±

(αNSvρ
6

)(
y1 + y2 + y3 +

√
9(y2

1 + y2
2 + y2

3)−6y2 y3 −6y1(y2 + y3 )
)
,

M±
3 ≈±

(αNSvρ
3

)
(y1 + y2 + y3) . (3.16)

The eigenvalues are obtained upon the rotation M±
i =URUTBMMRS(URUTBM)T , where

UTBM =




−
√

2
3

√
1
3 0

√
1
6

√
1
3 −

√
1
2

√
1
6

√
1
3

√
1
2




, UR =




A
N−

A
N+ − 1p

1+A2

B
N−

B
N+ 0

1
N−

1
N+

1p
1+A2




, (3.17)

with,

B− = 1p
6 (y2 − y3)

[
y1 + y2 + y3 +

√
9y2

1 +9y2
2 +9y2

3 −6y2 y3 −6y1(y2 + y3)
]

,

B+ = 1p
6 (y2 − y3)

[
y1 + y2 + y3 −

√
9y2

1 +9y2
2 +9y2

3 −6y2 y3 −6y1(y2 + y3)
]

,

A = 2y1 − y2 − y3p
3 (y2 − y3)

,

N− =
√

1+B2−+ A2 ,

N+ =
√

1+B2
++ A2 . (3.18)

3.4 Radiative Neutrino mass

Since, the usual Dirac mass terms of neutrinos with SM Higgs are forbidden by the assigned symmetries,

one can generate light neutrino masses at one-loop level and the corresponding Feynman diagram is

displayed in Fig. 3.1.

The expression of the neutrino mass1 from one loop radiative corrections is written as [143, 170]

(Mν)i j =
∑

k

(ỸD)ik(ỸLS) jk

32π2

[
M2

ηR

M2
ηR −M2

k
ln

M2
ηR

M2
k

−
M2

ηI

M2
ηI −M2

k
ln

M2
ηI

M2
k

]
. (3.19)

Here, Mk is the mass of the heavy fermions (M±
i , with i = 1,2,3) inside the loop, the couplings ỸD and

ỸLS are related to the Yukawa coupling matrices (YD and YLS), characterizing the interactions of light

1We write the correct expression by including the appropriate factor, which is missing in many references of scotogenic model
along with the original paper [143].
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ν ν

ηR(ηI) ηR(ηI)

〈H〉 〈H〉

S N

〈ρ〉

Figure 3.1: Feynman diagram for radiatively neutrino mass generation.

neutrinos with NR and SL respectively and are given by

ỸD =YDUTBMUR , with YD =




αD 0 0

0 βD 0

0 0 γD







y1 y3 y2

y2 y1 y3

y3 y2 y1




LR

, (3.20)

ỸLS =YLSUTBMUR , with YLS = vρ
Λ
p

2




α′
D 0 0

0 β′
D 0

0 0 γ′D







y1 y3 y2

y2 y1 y3

y3 y2 y1




LS

. (3.21)

The mass matrix in eqn.(3.19), can be reduced to the simplified form (see Appendix B.2) as follows with

the assumption M2
k ' m2

0, where m2
0 = (M2

ηR
+M2

ηI
)
/

2:

(Mν)i j =
ζ5λ

′
η

2(4π)2

(
vp
2

)2 ∑

k

(ỸD)ik(ỸLS) jk

Mk
, (3.22)

where, we have used M2
ηR

−M2
ηI

= ζ5λ
′
ηv2, with, ζ5 ≈O (10−7). When specific mass ranges are considered for

MηR , MηI and Mk, one can generate both linear seesaw and inverse seesaw [107, 171, 172]. The neutrino

mass matrix (3.22) is numerically diagonalized through the relation UMU† = diag(m2
1,m2

2,m2
3), where

M=M
†
νMν and U is an unitary matrix. Thus, the neutrino mixing angles can be extracted from the matrix

elements of the diagonalizing matrix U , through the generic expressions:

sin2θ13 = |U13|2, sin2θ12 =
|U12|2

1−|U13|2
, sin2θ23 =

|U23|2
1−|U13|2

. (3.23)

Next, we attempt to determine the Jarlskog invariant (JCP ) as well as the effective Majorana mass
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parameter (〈mee〉) through the following relations [94]:

JCP = Im[Ue1Uµ2U∗
e2U∗

µ1]= s23c23s12c12s13c2
13 sinδCP ,

∣∣∣〈mNO
ee 〉

∣∣∣'
∣∣∣∣
√
∆m2

21 sin2θ12 cos2θ13 +
√
∆m2

31 sin2θ13 sin2θ13ei(α32−2δ)
∣∣∣∣ ,

∣∣∣〈mIO
ee 〉

∣∣∣'
√

|∆m2
32| cos2θ13

√
1−sin2 2θ12 sin2

(α21

2

)
. (3.24)

where, si j = sinθi j and ci j = cosθi j, while αi j denote the Majorana phases.

3.5 Numerical Analysis

For constraining the model parameters, we use the current 3σ limit on neutrino mixing parameters for

normal ordering (NO) from global-fit [173–175], which are given as

∆m2
atm = [2.431,2.622]×10−3 eV 2, ∆m2

sol = [6.79,8.01]×10−5 eV 2,

sin2θ13 = [0.02044,0.02437], sin2θ23 = [0.428,0.624], sin2θ12 = [0.275,0.350] . (3.25)

For inverted ordering (IO),

∆m2
atm = [2.37,2.53]×10−3 eV 2, ∆m2

sol = [6.79,8.01]×10−5 eV 2,

sin2θ13 = [0.02018,0.02424], sin2θ23 = [0.433,0.608], sin2θ12 = [0.275,0.350] . (3.26)

The model parameters are so chosen, as to fit the current neutrino oscillation data given in Eqn. (3.25), as

follows:

Re[τ] ∈ [−0.5,0.5], Im[τ] ∈ [1,2], {αD ,βD ,γD} ∈ [0.1,1.0], {α′
D ,β′

D ,γ′D} ∈ [0.1,1.0],

αNS ∈ [0.01,0.1], βNS ∈ [10−5,10−4], vρ ∈ [7,300] TeV,
vρ
Λ

∈ [0.001,0.01].

The parameters used are randomly looked over the above mentioned ranges and the allowed regions

for those are first constrained by the observed 3σ range of mass squared differences, mixing angles and

sum of active neutrino masses 0.058 (0.098) eV
∑

mi < 0.12 eV [40, 176] for NO (IO) case. Furthermore,

the range of modulus τ helps in validating the model with experimental results of neutrino masses is

found to be −0.5 . Re[τ]. 0.5 and 1 . Im[τ]. 2. Hence, a very narrow range is satisfied by the modular

Yukawa couplings, which are functions of τ (please refer Appendix of [59]) and their regions of validation

are found as: 0.99 . y1(τ). 1, 0.1 . y2(τ). 0.75 and 0.1 . y3(τ). 0.25, as visible from Fig. 3.2. We know

that in conventional models, we have a control on the value of the Yukawa couplings, that satisfies the

neutrino phenomenology. However, in modular frameworks, the Yukawa couplings exhibit q expansion

form (see Eqn (B.2)) and are dependent on modulus τ. After obtaining the range of Yukawa couplings

and by suitably fixing the free parameters, one can explain the desired neutrino oscillation parameters.

Proceeding further, Fig. 3.3 and Fig. 3.4 depict the parameter space consistent with neutrino mass squared
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y1 y2 y3

-0.4 -0.2 0.0 0.2 0.4

0.0

0.2

0.4

0.6

0.8

1.0

Re τ

y
1
,y
2
,y
3

y1

y2

y3

1.0 1.2 1.4 1.6 1.8 2.0

0.0

0.2

0.4

0.6

0.8

1.0

Im τ

y
1
,y
2
,y
3

Figure 3.2: Left panel indicates the interdependence of the modular Yukawa couplings (y1, y2, y3) with the
real part while right panel presents the imaginary part of modulus τ.
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Figure 3.3: Left (right) panel represents the plot of Σmi with sin2θ13 for both NO (IO). Here, the vertical
dashed line represents the 3σ range of the respective mixing angles for NO (IO) case.

differences of 3σ region in the plane of sum of total neutrino masses and mixing angles in NO and IO

case. Here, it is evident that we obtain the sum of the total neutrino masses within cosmological bound

(0.050 eV ≤Σmi ≤ 0.07 eV ) and the mixing angles meet their corresponding 3σ region of oscillation data

i.e., 0.02051 (0.02024)≤ sin2θ13 ≤ 0.02412 (0.0237), 0.275 (0.276)≤ sin2θ12 ≤ 0.340 (0.345), 0.429 (0.434)≤
sin2θ23 ≤ 0.588 (0.587) for NO (IO) case. In other words, the model is able to satisfy all the current neutrino

oscillation parameters in their respective 3σ regions simultaneously. In Fig. 3.5 we show the plot in the

plane of sin2θ12−sin2θ13 (left panel) and sin2θ12−sin2θ23 (right panel) in NO case. We do not include the

same for IO, as they are pretty similar to NO case. Fig. 3.6 projects the range of Yukawa couplings abiding

3σ of all neutrino mixing parameters, plotted with the sum of active neutrino masses. As mentioned in

Sec. 3.4, Fig. 3.7, helps us to have a glimpse of how Jarlskog CP invariant fits in the whole scenario, and

found to be ranging from [−0.007,0.007], its connection with the reactor mixing angle is depicted in the

left panel for NO case. Right panel depicts the same for inverted ordering case where JCP ranges from

[−0.006,0.005]. Fig. 3.8 shows the plot of Jarlskog invariant with sum of active neutrino mass for normal
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Figure 3.4: Left (right) panel represents the plot of Σmi with sin2θ12 and sin2θ23 for NO (IO) cases
respectively. Here, the vertical dashed line represents the 3σ range of the respective mixing angles for NO
(IO) case.
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Figure 3.5: Left panel represents a plot in a mutual space between sin2θ12 with sin2θ13 and right panel
stands for sin2θ12 with sin2θ23 with dashed lines implying the respective 3σ ranges.

(left panel) and inverted (right panel) ordering.

Advancing further, in Fig. 3.9, the correlation between the effective neutrino-less double beta decay

(NDBD) mass parameter mee and the sum of neutrino masses is shown in the left (right) panel for NO

(IO) case. Also, in Fig. 3.10 the left (right) panel shows its dependence with the lightest neutrino mass m1

(m3) for normal (inverted) ordering. From the model perspective, one should note that the upper limit of

mee could be as large as 0.05 eV and the lightest neutrino mass should be m1(m3)≤ 0.015 eV. It is also

evident that the effective neutrino mass parameter of our model reaches the sensitivity of LEGEND-200

[94]. In addition, we have also shown in the left (right) panel of Fig. 3.11 the plot between the CP violating

phase δCP with the reactor mixing angle θ13 for normal (inverted) ordering, which provides the constraint

on δCP as 0 ≤ δCP ≤ 284◦ for NO and and 0 ≤ δCP ≤ 250◦ for IO. In the left (right) panel of Fig. 3.12, we

display the correlation of the two Majorana phases i.e. α21 and α31 for normal (inverted) ordering, which

are involved in the determination of the effective mass of NDBD process.
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Figure 3.6: Left (right) panel reflects the alteration of sum of active neutrino masses with the modular
Yukawa couplings for normal (inverted) ordering.
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Figure 3.7: Left (right) panel shows a plot between the Jarlskog invariant with the reactor mixing angle in
normal (inverted) hierarchy. Here, the vertical dashed line represents the 3σ range of sin2θ13.

3.6 Comment on LFV Decays and µ− e conversion

3.6.1 Comment on µ→ eγ

The quest in looking for lepton flavour violating decay mode µ→ eγ plays an exceptionally pivotal role

in the hunt for new physics beyond the SM. Many experiments are looking for this decay mode with

great effort for an improved sensitivity, and the current limit on its branching Br(µ→ eγ)< 4.2×10−13 is

from MEG collaboration [103]. In the present framework, the LFV process µ→ eγ occur at one loop level

through standard Yukawa interactions. The Feynman diagrams for this process are displayed in Fig. 3.13.

The branching ratio for the rare decay `α→ `βγ is given as [177]

Br(`α→ `βγ)= 3(4π)3αem

4 G2
F

|AD |2 ×Br(`α→ `βναν̄β), (3.27)

where, GF ≈ 10−5 GeV−2 (i.e. Fermi constant) and α being the electromagnetic fine structure constant and
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Figure 3.8: Left (right) panel above depicts the plot of Jarlskog invariant with the sum of active neutrino
masses in normal (inverted) ordering.
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Figure 3.9: Left (right) panel above project the interdependence of effective neutrino mass of NDBD with
the sum of active neutrino masses for normal (inverted) ordering.

AD is the dipole contribution, hence, expressed as

AD =
∑

k

(YD)kα (YLS
∗)kβ G1(ξk)

2(4π)2M2
η+

. (3.28)

Here, YD & YLS being the Yukawa coupling matrices as shown in eqn.(3.20) and (3.21), ξk = M2
k

M2
η+

and G1(x)

is the loop function provided in Appendix B.3.

In the left of Fig. 3.14, we have represented the dependence of the branching fraction of µ→ eγ on the

inert charged scalar mass, which are found to lie within the experimental limits. In the right panel of Fig.

3.14 the variation of µ→ eγ branching fraction with the modular Yukawa couplings is consistent with

neutrino mass constraints as displayed.
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Figure 3.10: Left (right) panel above project the interdependence of effective neutrino mass of NDBD with
the lightest neutrino mass m1(m3) for normal (inverted) ordering.
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Figure 3.11: Above plots depicts the variation of δCP with respect to the mixing angles i.e. sin2θ13 for
normal ordering (left panel) and for inverted ordering (right panel).

3.6.2 Comment on µ→ 3e

The three body LFV decay processes `α→ `β`β`β can proceed through penguin and box diagrams, which

are shown in Fig. 3.15. The corresponding branching ratio can be expressed as [177, 178]

BR
(
`α→ `β`β`β

)
= 3(4π)2α2

em

8G2
F

[
|AN D |2 +|AD |2

(
16
3

log
(

mα

mβ

)
− 22

3

)

+1
6
|B|2 +

(
−2AN DAD

∗+ 1
3

AN DB∗− 2
3

ADB∗+h.c.
)]

×Br
(
`α→ `βνανβ

)
. (3.29)

The form factor AD is dipole contribution and is given in Eqn. (3.28). Regarding the other form factors,

AN D , given by

AN D =
∑

i

(Y ∗
LS)iβ(YD)iα

6(4π)2
1

m2
η+

G2 (ξi) , (3.30)
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Figure 3.12: Left (right) panel depicts the correlation between the Majorana phases α21 with α31 for
normal (inverted) ordering respectively.

Figure 3.13: Feynman diagrams depicting the LFV rare decay processes `α→ `βγ. Here, the blob corre-
sponds to mixing of the right handed neutrinos NR & SL.

is generated by non-dipole contribution, whereas B, induced by box diagrams, is

B = 1
(4πe)2m2

η+

∑

i, j

[
1
2

D1(ξi,ξ j)(Y ∗
LS) jβ(YD) jβ(YLS)iβ(Y ∗

D)iα

+
√
ξiξ j D2(ξi,ξ j)(YLS) jβ(YD) jβ(Y ∗

LS)iβ(Y ∗
D)iα

]
. (3.31)

The loops functions G2(x), D1(x, y) and D2(x, y) are presented in Appendix B.3. Upper left panel of Fig.

3.16 represents the variation of the branching fraction of µ→ 3e with the mass of inert doublet. Here,

we find the branching fraction is obtained below the present upper limit Br(µ→ e−e+e−) < 1.0×10−12

[179]. Similarly, in the upper right panel, we display the variation of Br(µ→ 3e) with dark matter mass,

while the lower panel represents the correlation of modular Yukawa couplings with the µ→ 3e branching

fraction.

3.6.3 µ− e conversion in Nuclei

The most stringent constraint on LFV decays are favored by the µ→ eγ, however, the improved sensitivity

is expected from the µ− e conversion in the nucleus in coming decades. Several experiments like Mu2e,
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Figure 3.14: The left panel represents the variation of the branching ratio of LFV process µ→ eγ with
the charged inert scalar mass, whereas the right panel represents the variation with modular Yukawa
couplings, which are consistent with neutrino mass.

Figure 3.15: Feynman diagrams to represent the µ→ 3e conversion in the nucleus mediated by the gauge
bosons and photon.

DeeMe, COMET and PRISM/PRIME [180–182] are on its peak to reach an upper limit of 4.3×10−14 (for

Ti Nucleus) to future sensitivity upto 10−18. We briefly discuss the contribution from µ− e conversion in
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Figure 3.16: In the upper panel, left plot represents the variation of the branching ratio of LFV process
µ→ 3e with the charged inert scalar mass, whereas the right plot represents the variation with dark
matter mass. Plot in lower panel depicts the variation with Yukawa couplings.

nucleus [183, 184] shown in Fig. 3.17. The conversion rate for µ− e in the nucleus is provided as

CR(µ-e,Nucleus)=
pe Ee m3

µG2
F α

3
em Z4

e f f F2
p

8π2 ZΓcapt

×
{∣∣∣(Z+N)

(
g(0)

LV + g(0)
LS

)
+Z−N

(
g(1)

LV + g(1)
LS

)∣∣∣
2
+

∣∣∣(Z+N)
(
g(0)

RV + g(0)
RS

)
+ (Z−N)

(
g(1)

RV + g(1)
RS

)∣∣∣
2
}

. (3.32)

Here, the proton and neutron numbers inside the nucleus are expressed by Z and N, Ze f f represents the

effective atomic charge [185], Fp & Γcapt denote the nuclear matrix element and the total muon capture

rate respectively. These parameters can be determined based on the choice of nucleus. Other parameters

used in the above equation are provided below [184], where X = L,R and K =V ,S,

g(0)
X K = 1

2

∑

q=u,d,s

(
gX K(q)G

(q,p)
K + gX K(q)G

(q,n)
K

)
,

g(1)
X K = 1

2

∑

q=u,d,s

(
gX K(q)G

(q,p)
K − gX K(q)G

(q,n)
K

)
. (3.33)
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Figure 3.17: Feynman diagrams to represent the µ-e conversion in the nucleus mediated by the gauge
bosons and photon.

The numerical values of GK coefficients are taken from [183, 184, 186]. Here, gX K(q) being the effective

couplings, given as follows

gLS(q) ≈ 0 ,

gRS(q) ≈ 0 ,

gRV (q) = gLV (q)
∣∣
L↔R ,

gLV (q) ≈ gγLV (q) , (3.34)

where, gγLV (q) =
p

2
GF

e2Qq (AN D −AD ) is generated from photon penguins, Qq represents electric charge of

the corresponding quark.

We compute the conversion rate of µ− e in Titanium (48
22Ti) nucleus (relevant details can be found

in [184]). Left panel of Fig. 3.18, projects the conversion rate versus Mη+ and right panel signifies its

correlation with Br(µ→ eγ). Horizontal dashed line corresponds to the upper bound [187].
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Figure 3.18: The left panel represents the variation of the conversion ratio of µ− e for Ti nuclei with
the charged inert scalar mass, whereas the right panel represents the variation with branching ratio
Br(µ→ eγ). Here the horizontal (red) and vertical (blue) dashed line represents the upper bound [187].
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3.7 A brief discussion on Fermionic dark matter

In this section, we give a brief discussion on fermionic dark matter. The model includes three heavy Dirac

neutrinos, out of which the lightest one (ND1 ) can serve as a dark matter candidate, provided the inert

scalar particles are heavier. The DM can have scalar mediated annihilations and can also annihilate via

Z′, which arises due the kinetic term,

Lkin ⊃ ND1γ
µ
(
∂µ+ i gBL Z′

µ

)
ND1 . (3.35)

The DM abundance can be estimated by the formula [188]

Ωh2 = 1.07×109 GeV−1

g∗1/2MPl

1
J(x f )

, (3.36)

where, MPl = 1.22×1019 GeV, g? is effective relativistic degrees of freedom, x f is the freeze-out parameter

and J(x f ) reads as

J(x f )=
∫ ∞

x f

〈σv〉(x)
x2 dx. (3.37)

The thermally averaged annihilation cross section 〈σv〉 can be computed by [189]

〈σv〉(x)= x
8M5

DMK2
2(x)

∫ ∞

4M2
DM

σ× (s−4M2
DM)

p
s K1

(
x
p

s
MDM

)
ds. (3.38)

In the above, σ stands for annihilation cross section, s stands for center of mass energy, K1 and K2

denote the modified Bessel functions. We have implemented the model in LanHEP package [190] and then

extracted the results from micrOMEGAs [191–193].

The parameters that alter DM abundance include the mediator mass i.e., of η and Z′, and their

couplings with DM particle. Choosing equal values (αDM) for the couplings αD ,βD ,γD and α′
D ,β′

D ,γ′D , we

project the DM relic density as a function of its mass in left panel of Fig. 3.19. The benchmark is suitably

chosen, which also meets the DM scattering experiments and stringent ATLAS constraints (to be discussed

in the next section). Once kinematically allowed, the annihilation channels (shown in Fig. 3.20) with lepton

and anti-lepton pair i.e., ¯̀`, ν̄ν in the final state in η-portal (t-channel), SM fermion anti-fermion pair i.e.,

q̄q, ¯̀`, ν̄ν in Z′-portal (s-channel), contribute to relic density. One can see that the s-channel contribution

gives resonance on the either side of MDM = MZ′ /2 [194]. Furthermore, for the chosen benchmarks with

large αDM and small gauge coupling gBL, the t-channel processes in η-portal completely dominate and

dictate the shape of the relic density curve. To support this argument, we have plotted the thermally

averaged annihilation cross section in dual portals for one of the benchmark values in the right panel of

Fig. 3.19.

Moving to detection prospects, the Dirac fermion can scatter off the nucleus via Z′ with the effective

interaction of the form

LSI ⊃
g2

BL

M2
Z′

(ND1γ
µND1)(qγµq) . (3.39)
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Figure 3.19: Left panel projects the variation of abundance of fermionic DM as a function of its mass for
two sets of values assigned to model parameters. Black horizontal dashed lines stand for the 3σ bound of
Planck satellite data [40]. Right panel shows the thermally averaged annihilation cross section in dual
portals.
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1Figure 3.20: Feynman diagrams for t and s-channel annihilation of DM ND1, whose contribution is towards
the relic density.

The above interaction provides spin-independent (SI) WIMP-nucleon cross section [195], which is tightly

constrained from current stringent upper bound set by PandaX-4T experiment [196].

3.8 Collider studies

For collider studies, we have used CalcHEP [197, 198] to compute the cross section of pp → Z′ → ee(µµ)

as a function Z′ mass, projected in the upper panel of Fig. 3.21 for a representative set of values for gBL,

provided with the bound from ATLAS collaboration [199]. It is clear from the figure that, for gBL = 0.01,

the region MZ′ < 1.2 TeV is excluded and for gBL = 0.03, the favorable region is MZ′ & 3.15 TeV. For

gBL = 0.1, the MZ′ should be over 4.2 TeV.

We have run a scan over the model parameters displayed in Table. 3.3 that alter the annihilation cross

section and in turn the relic density of fermionic dark matter. In the process, no new constraint is obtained
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on the Yukawas yi. The constraint on the gauge parameters obtained from Planck relic density limit

upto 3σ is projected in the lower left panel of Fig. 3.21, with the exclusion limits of ATLAS and LEP-II
(

MZ′
gBL

> 6.9 TeV
)
. The favourable region turns out to be below both the exclusion limits. Furthermore, green

data points violate the PandaX-4T limit [196], which is made clear from the lower right panel of Fig.

3.21. We notice that there is a parameter region (orange data points) consistent with both Planck [40],

PandaX-4T as well as ATLAS dilepton constraints [199].

Parameter gµτ αDM MZ′ [GeV] Mη+ , MηR , MηI [GeV]

Range 0.001−0.1 0.1−1 500−4000 2500

Table 3.3: Parameter scan for DM study.
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Figure 3.21: Colored lines in the upper panel correspond to the dilepton signal cross section as a function of
MZ′ for a set of values assigned to gBL and the black dashed line points to ATLAS bound [199]. Lower left
panel projects the Planck data consistent gauge parameter space with ATLAS and LEP-II [200] bounds.
Lower right panel projects the SI cross section for the parameters corresponding to the lower left panel.
Black dashed line stands for the bound from PandaX-4T [196]. Orange data points are consistent with
Planck, PandaX-4T and collider constraints.

Moving onto the Z′ width, in the regime MZ′ > 2MDM, the dark matter can contribute to invisible

width apart from νν mode. The B−L charge of dark matter comes into act in rescaling this width and the

69



Chapter 3. A modular A4 symmetric Scotogenic model for Neutrino mass and Dark Matter

decay to pair of all other heavy fermions is kinematically forbidden. The precise measurement of invisible

width can distinguish the present model from other frameworks.

3.9 Conclusion

The major goal of this research is utilization of scotogenic framework to establish A4 modular symmetry

and explore how it affects neutrino phenomenology. Establishment of neutrino mass at one loop level is

made possible by introducing six heavy fermions (NR and SL) assigned as triplets under A4 symmetry

and having modular weights of −1 and +1 respectively. Alongside an inert scalar is accommodated as a A4

doublet and modular weight of −2. The charm of A4 modular symmetry is prominently seen when the

Yukawa couplings acquire triplet charge (Y) with modular weight 2, and the scalar couplings for terms

involving η as A4 singlets (λη, λ′
η) with weights 4,8 respectively. A B−L gauge symmetry i.e. U(1)B−L is

also introduced to avoid unwanted Majorana mass terms and a complex scalar singlet ρ is accommodated

for breaking of the gauge symmetry so introduced.

Modular symmetry not only prevents the addition of new flavon fields for neutrino phenomenology but

also safeguard dark matter stability. A specific flavor structure for the neutrino mass matrix is established

along with neutrino mixing. We make use of numerical diagonalization for the neutrino mass matrix and

fixed the model parameters in such a way that they remain compatible with present 3σ range of oscillation

data both in normal and inverted orderings. Proceeding in this way, we were also able to establish the

present model’s contribution towards lepton flavor violating decay µ→ eγ, conversion compatible with

upper bound set by MEG collaboration. We have thoughtfully checked for µ→ 3e and µ− e conversion in

the nuclei for the present model. Lastly, we looked at the phenomenology of the lightest stable fermion

in dark matter. We determined the relic density compatible with Planck data for a certain benchmark

of model parameter values using stringent restrictions on Yukawa couplings constraining dark matter

mass. According to our findings the annihilations with lepton-anti lepton pair in the final state via η

and Z′ (U(1)B−L associated) portal contribute to relic density. Tree-level direct detection mediated by

η is not possible as η does not couple to quarks directly. While, the Dirac dark matter scatter off the

nucleus via Z′, providing spin-independent cross section. We have shown the favorable parameter space,

consistent with Planck, PandaX-4T, ATLAS dilepton searches and LEP-II. Finally, A4 modular symmetry

stands out, enabling rich neutrino phenomenology while eliminating the flavon fields utilised in traditional

frameworks and stabilising dark matter candidates. The current work serves as an example, addressing

the aforementioned issues in the context of modular symmetry.
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5 MODULAR SYMMETRY

4.1 Introduction

The results from various neutrino oscillation experiments have unambiguously established the fact that

neutrinos posses very small but non-zero masses contradicting their vanishing mass concept presumed in

the Standard Model (SM). Therefore, understanding the origin of the neutrino mass necessitates to employ

physics beyond the SM. One of the conventional ways to generate the light neutrino masses is through

the canonical seesaw mechanism [47, 201–203], where three heavy right handed (RH) neutrinos NRi are

introduced on top of the SM particle spectrum. The inclusion of right-handed neutrinos not only generates

the Dirac mass term but also leads to Majorana mass for NRi ’s, of the form NRiN
c

Ri which violates

the lepton number by two units. The master formula for generating the masses of the active neutrinos

is governed by mν ≈ −MDM−1
R M T

D , where MD is the Dirac neutrino mass matrix and MR being the

Majorana neutrino mass matrix of the heavy RH neutrinos, satisfying the relation MD ¿MR . However,

myriad literature on seesaw models show work on other extensions like type-II, with the inclusion of a

scalar triplet [204–209], type-III [210–215], where a fermion triplet is added to the SM particle content. In

these approaches, the masses of the new heavy particles are quite heavy and are beyond the access of the

present and future generation experiments.

Many other alternative approaches were proposed, e.g., linear seesaw [19, 86, 87, 117], inverse seesaw

[171, 216–221], where the new physics scale responsible for neutrino mass generation can be brought

down to TeV scale, at the expense of the inclusion of new additional fermion fields (SL i ), which are SM

singlets. The inverse seesaw formalism is implemented by including three additional left-handed (LH)
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singlet fermions SL i and hence, the basis that involves for the neutrino mass generation is (νc
L,NRi ,SL i )

T .

This leads to the neutrino mass matrix structure as mν ≈ (MD
/
MRS) Mµ (MD

/
MRS)T , where Mµ is the

Majorana mass term for the heavy singlet fermion SLi. For inverse seesaw, the various mass terms satisfy

the relation Mµ ¿MD <MRS , and hence, the neutrino mass is given by mν ≈ M 2
DMµ

/
M 2

RS . So to get

the correct order of the light neutrino masses, the typical values of different mass scales are: MD ∼ 10

GeV, MRS ∼ 10 TeV, and Mµ ∼ 1 keV.

Genearally, to implement inverse seesaw certain symmtries are assumed, like discrete flavour symme-

tries S3 [222, 223], A4 [62, 88, 172, 224, 225], S4 [226–228] etc., to avoid certain unwanted terms in the

extended neutrino mass matrix of (νc
L,NRi ,SL i )

T basis. However, a number of flavon fields are required

for the breaking of these flavor symmetries as well as to accommodate the observed neutrino oscillation

data and the vacuum alignment of these flavon fields pose a challenging task. But in recent times, modular

symmetry [59, 229–232] has gained pace and is in the limelight. Modular symmetry removes the usage of

excess flavon fields, where, the role of flavons is performed by Yukawa couplings, which are holomorphic

function of modulus τ. When this modulus acquires the vacuum expectation value (VEV), it breaks the

flavor symmetry. Exploration of myriad text shows work on modular groups S3 [233–235], S4 [70, 236, 237],

A4 [69, 74, 156, 238–244], A5 [75, 159], double covering of A4 [245], double covering of A5 [158]. These

modular groups help to accurately calculate the neutrino oscillation parameters at 3σ level along with

other observables.

In this work, we intend to focus on the double covering modular group Γ′5 ' A′
5 and its implications

on neutrino phenomenology in the inverse seesaw framework. The inverse seesaw mechanism in the

context of A4 modular symmetry has been explored in Ref. [69]. In the past, quite a few works in the

literature have been discussed the significace of finite groups, which comprehend the basic properties of

A′
5 group [246–248]. The phenomenology of neutrino masses and mixing has been investigated using

the double covering modular group Γ′3
∼= T ′ in the canonical seesaw model in Ref. [245], where they have

shown that for suitable choice of model parameters, the lepton masses and mixing parameters can be

successfully accommodated. The implications of the double covering group Γ′5
∼= A′

5 on leptonic masses

and mixing pattern have been investigated in Ref. [158] in the minimal seesaw scenario. Hence, for the

sake of completeness, here we mention only the essential points regarding A′
5 modular symmetry group.

The A′
5 group has 120 elements, which can be constructed by three generators S, T and R, which satisy

the identities S2 = R, (ST)3 = I, R2 = I and RT = TR [158]. These 120 elements are categorized into nine

conjugacy classes, which classifies them as the nine distinct irreducible representations, symbolized as 1,

2̂, 2̂′, 3, 3′, 4, 4̂, 5 and 6̂ by their dimensions. Moreover, conjugacy classes and character table of A′
5, as

well as the representation matrices of all three generators S, T and R in the irreducible representations,

are presented in Appendix [158]. It should be noted that the 1, 3, 3′, 4 and 5 representations with R = I
coincide with those for A5, whereas 2̂, 2̂′, 4̂ and 6̂ are unique for A′

5 with R =−I. As we are working in the
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modular space of Γ(5), hence, its dimension is 5k+1, where, k is the modular weight. A brief discussion

concerning the modular space of Γ(5) is presented in Appendix C.1. For k = 1, the modular space M1[Γ(5)]

will have six basis vectors i.e (ê i, where i = 1,2,3,4,5,6) whose q-expansion are given below and they are

used in expressing the Yukawa coupling Y (1)
6̂

as shown in Appendix C.3:

ê1 = 1+3q+4q2 +2q3 + q4 +3q5 +6q6 +4q7 − q9 +·· · ,

ê2 = q1/5 (
1+2q+2q2 + q3 +2q4 +2q5 +2q6 + q7 +2q8 +2q9 +·· ·) ,

ê3 = q2/5 (
1+ q+ q2 + q3 +2q4 + q6 + q7 +2q8 + q9 +·· ·) ,

ê4 = q3/5 (
1+ q2 + q3 + q4 − q5 +2q6 +2q8 + q9 +·· ·) ,

ê5 = q4/5 (
1− q+2q2 +2q6 −2q7 +2q8 + q9 +·· ·) ,

ê6 = q
(
1−2q+4q2 −3q3 + q4 +2q5 −2q6 +3q8 −2q9 +·· ·) . (4.1)

Structure of this chapter is as follows. In Sec. 4.2, we discuss the model framework for generating the

light neutrino masses using inverse seesaw mechanism with discrete A′
5 modular flavor symmetry. This

A′
5 modular symmetry is double covered, hence, there are more number of irreducible representation as

compared to A5 modular symmetry. This helps us to construct charged leptons and neutral lepton mass

matrices. In Sec. 4.3, numerical correlational study between the observables of neutrino sector and the

model input parameters is established. A brief discussion on the non-unitarity effect is presented in Sec.

4.4. In addition, lepton flavor violation (LFV) in the context of the present model is presented in Sec. 4.5

and collider bound on the mass of new gauge boson Z′ is provided in section 4.6. Finally, in Sec. 4.7, we

conclude our results.

4.2 Model Framework

We consider a scenario in which inverse seesaw is implemented in the context of supersymmetry (SUSY)

to study the neutrino phenomenology, where the SM is extended with a discrete A′
5 modular symmetry. An

additional local U(1)B−L symmetry is added to prohibit certain undesirable terms in the superpotential.

The SM particle spectrum is supplemented with three extra RH singlet fermion superfields (NRi ), three

LH singlet fermion superfields (SL i ) and one weighton (ζ). The added fermion superfields of the model

transform as 3′ under the A′
5 modular group, whereas, the U(1)B−L charges assigned to them are −1 (NRi )

and 0 (SL i ). Also RH neutrinos are assigned modular weight 6 and LH neutrinos with 0. The particle

content and their charges under various groups are provided in Table 4.1. The A′
5 and U(1)B−L symmetries

are considered to be broken at a scale much higher than the electroweak symmetry breaking [89]. The

U(1)B−L symmetry is spontaneously broken by assigning non-zero vacuum expectation value (VEV) to the

singlet weighton ζ, and consequently the additional singlet fermion superfields acquire their masses. The

Z′ boson associated with U(1)B−L acquires its mass by the singlet VEV vζ, and we will show that its mass
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and gauge coupling satisfy the present experimental bounds in section 4.6. In addition to above, several

higher order Yukawa couplings are introduced which obey the rule: kY = kI1
+ kI2

+·· ·+ kIn , where kY

is the weight on the Yukawa couplings and kI i
(i = 1,2,3,4 · · · ) are the weights on the superfields. These

higher order Yukawa couplings implicitly depend on Y (1)
6̂

whose complete forms are shown in Appendix

C.3.

Fields eR µR τR LL NR SL Hu,d ζ

SU(2)L 1 1 1 2 1 1 2 1

U(1)Y −1 −1 −1 1
2 0 0 − 1

2 , 1
2 0

A′
5 1 1 1 3 3′ 3′ 1 1

U(1)B−L −1 −1 −1 1 −1 0 0 1

kI 2 4 6 0 6 0 0 0

Table 4.1: Particle content of the model and their charges under SU(2)L ×U(1)Y × A′
5 ×UB−L group and

their modular weights kI .

The superpotential of the model is given by

W = AMl

[
(LL lR))3Y kI

3

]
Hd +µHuHd +GD

[
(LLNR))4

2∑

i=1
Y (6)

4,i

]
Hu

+ BMRS

[
(S LNR)5

2∑

i=1
Y (6)

5,i

]
ζ+µ0S C

L SL , (4.2)

where, AMl , GD and BMRS are 3×3 diagonal matrices given as AMl = diag
(
αMl ,βMl ,γMl

)
, GD = diag

(
gD1 , gD2 , gD3

)
,

and BMRS = diag
(
αRS1 ,αRS2 ,αRS3

)
, characterizing the coupling strengths of various interaction terms.

The modular weight kI in the first term takes the values kI = (2,4,6) for l = (e,µ,τ).

4.2.1 Dirac mass term for charged leptons

To establish charged leptons mass matrix, the left-handed doublet superfields i.e., LL, transform as triplets

under the A′
5 symmetry with B−L charge −1. The Higgsinos Hu,d are given charges 0, 1 under the UB−L

and A′
5 symmetries respectively with zero modular weight. The VEVs of these Higgsinos Hu and Hd

are given as vu/
p

2 and vd /
p

2 respectively. Moreover, Higgsino VEVs are associated to SM Higgs VEV

as vH = 1
2

√
v2

u +v2
d and the ratio of their VEVs is expressed as tanβ = (vu/vd) = 5. Hence, the relevant

superpotential term for charged leptons is given as

WMl =αMl

[
(LL eR)3Y (2)

3

]
Hd +βMl

[
(LLµR)3Y (4)

3

]
Hd +γMl

[
(LLτR)3

{ 2∑

i=1
Y (6)

3,i

}]
Hd . (4.3)

74



4.2. Model Framework

After the spontaneous symmetry breaking, it is evident that the charged lepton mass matrix isn’t diagonal

and is expressed as

Ml =
vdp

6




(
Y (2)

3

)
1

(
Y (4)

3

)
1

(
2∑

i=1
Y (6)

3,i

)

1(
Y (2)

3

)
3

(
Y (4)

3

)
3

(
2∑

i=1
Y (6)

3,i

)

3
(
Y (2)

3

)
2

(
Y (4)

3

)
2

(
2∑

i=1
Y (6)

3,i

)

2




LR

·




αMl 0 0

0 βMl 0

0 0 γMl




. (4.4)

The charged lepton mass matrix Ml can be diagonalised by the unitary matrix Ul , giving rise to the

physical masses of e, µ and τ as

U†
l MlM

†
l Ul = diag(m2

e,m2
µ,m2

τ) . (4.5)

In addition, it also satisfies the following identities, which will be used for numerical analysis in section

4.3:

Tr
(
MlM

†
l

)
= m2

e +m2
µ+m2

τ ,

Det
(
MlM

†
l

)
= m2

em2
µm2

τ ,

1
2

[
Tr

(
MlM

†
l

)]2
− 1

2
Tr

[
(MlM

†
l )2

]
= m2

em2
µ+m2

µm2
τ+m2

τm2
e . (4.6)

4.2.2 Dirac mass term for neutrinos

The right-handed neutrino superfields NRi are 3′ under A′
5 modular group with a B−L charge of −1

and modular weight 6. Therefore, the invariant superpotential, describing the Dirac mass term for the

neutrinos can be written as,

WD =GD

[
(LL NR)4

2∑

i=1
Y (6)

4,i

]
Hu . (4.7)

Here, the subscript for the operator LLNR indicates A′
5 representation constructed by the Kronecker

product rule (see Appendix C.2) which further leads in obtaining a invariant superpotential. The resulting

Dirac neutrino mass matrix is found to be

MD = vu

2
p

6




0 −
p

2
(

2∑
i=1

Y (6)
4,i

)

3
−
p

2
(

2∑
i=1

Y (6)
4,i

)

2

p
2

(
2∑

i=1
Y (6)

4,i

)

4

(
2∑

i=1
Y (6)

4,i

)

2
−
p

2
(

2∑
i=1

Y (6)
4,i

)

1

p
2

(
2∑

i=1
Y (6)

4,i

)

1

(
2∑

i=1
Y (6)

4,i

)

4
−

(
2∑

i=1
Y (6)

4,i

)

3




LR

.




gD1 0 0

0 gD2 0

0 0 gD3




, (4.8)

where (gD1 , gD2 , gD3 ) are the free parameters of the diagonal matrix GD .
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4.2.3 Mixing between the heavy fermions NR and SL

The mixing between heavy fermion superfields NR and SL can be expressed as follows,

WMRS = BMRS

[
(S LNR)5

2∑

i=1
Y (6)

5,i

]
ζ (4.9)

where, the choice of Yukawa coupling depends on the sum of the modular weight of the superfields and the

Kronecker product rule as given in Appendix C.2. Using 〈ζ〉 = vζ/
p

2 , the resulting mass matrix is found to

be

MRS = vζ
2
p

1 5




2
(

2∑
i=1

Y (6)
5,i

)

1
−
p

3
(

2∑
i=1

Y (6)
5,i

)

4
−
p

3
(

2∑
i=1

Y (6)
5,i

)

3

−
p

3
(

2∑
i=1

Y (6)
5,i

)

4
−
p

6
(

2∑
i=1

Y (6)
5,i

)

2
−

(
2∑

i=1
Y (6)

5,i

)

1

−
p

3
(

2∑
i=1

Y (6)
5,i

)

3
−

(
2∑

i=1
Y (6)

5,i

)

1
−
p

6
(

2∑
i=1

Y (6)
5,i

)

5




LR

.




αRS1 0 0

0 αRS2 0

0 0 αRS3




, (4.10)

where (αRS1 ,αRS2 ,αRS3 ) are the free paramaters of the diagonal matrix BMRS .

4.2.4 Majorana mass term for SL

Under A′
5 singlet heavy fermions SL transform as triplet 3′ having zero modular weight. Hence, its

Majorana mass term can be written as,

Wµ =µ0SLSL, (4.11)

leading to the mass matrix (Mµ) of the form

Mµ =µ0




1 0 0

0 0 1

0 1 0




. (4.12)

4.2.5 Inverse Seesaw mechanism for light neutrino Masses

In the present model constructed using A′
5 modular symmetry, the complete 9×9 neutral fermion mass

matrix in the flavor basis of
(
νL,NR ,S c

L
)T is given as

M=




νL NR S c
L

νL 0 MD 0

NR M T
D 0 MRS

S c
L 0 M T

RS Mµ




. (4.13)
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In the limit Mµ¿MD <MRS , the above mass matrix (4.13) provides the inverse seesaw mass formula for

the light neutrinos as

mν = MD M−1
RS Mµ (M−1

RS)T (MD)T . (4.14)

Thus, diagonalization of the light neutrino mass matrix (4.14) yields the masses of the active neutrinos.

Apart from determining the small neutrino masses, other observables, which are of great use, are the

Jarlskog invariant (JCP ) and the effective neutrino mass 〈mee〉 describing the neutrinoless double beta

decay. These observables related to the mixing angles and phases of PMNS matrix through

JCP = Im[Ue1Uµ2U∗
e2U∗

µ1]= s23c23s12c12s13c2
13 sinδCP , (4.15)

〈mee〉 = |mν1 cos2θ12 cos2θ13 +mν2 sin2θ12 cos2θ13eiα21 +mν3 sin2θ13ei(α31−2δCP )|. (4.16)

The effective Majorana mass parameter 〈mee〉 is expected to have improved sensitivity measured by

KamLAND-Zen experiment in coming future [97].

4.3 Numerical Analysis

Numerical analysis is performed by considering experimental data at 3σ interval [173] as follows:

NO :∆m2
atm = [2.47,2.63]×10−3 eV2, ∆m2

sol = [6.94,8.14]×10−5 eV2,

sin2θ13 = [0.0200,0.02405], sin2θ23 = [0.434,0.610], sin2θ12 = [0.271,0.369] . (4.17)

Here, numerical diagonalization of the light neutrino mass matrix as given in eqn.(4.14) is done through

U†
νMUν = diag(m2

1,m2
2,m2

3), where M = mνm†
ν and Uν is an unitary matrix. Thus, the lepton mixing

matrix is given as U =U†
l Uν, from which the neutrino mixing angles can be extracted using the standard

relations:

sin2θ13 = |U13|2 , sin2θ12 =
|U12|2

1−|U13|2
, sin2θ23 =

|U23|2
1−|U13|2

. (4.18)

In order to demonstrate the current neutrino oscillation data, the values of model parameters are chosen

to be in the following ranges:

Re[τ] ∈ [0,0.5], Im[τ] ∈ [0.5,2], {gD1 , gD2 , gD3 } ∈ [10−4,10−1] ,

{αRS1 ,αRS2 ,αRS3 } ∈ [0.1,1], vζ ∈ [10,100] TeV . (4.19)

For diagonalizing the charged lepton mass matrix Ml eqn.(4.4), we use the values of the free parameters

as: αMl ≈ O (10−6), βMl ≈ O (10−2) and γMl ≈ O (10−4), and scanning over the allowed ranges of real and

imaginary parts of the modulus τ, i.e., 0 . Re[τ]. 0.5 and 0.5 . Im[τ]. 2, we numerically obtain the

diagonalizing matrix Ul , that gives the charged-lepton masses as me = 0.511 MeV, mµ = 105.66 MeV,

mτ = 1776.86 MeV.
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Figure 4.1: Left (right) panel signify the correlation of the mixing angles i.e. sin2θ13 (sin2θ12, sin2θ23)
respectively with the sum of neutrino masses

∑
mi (eV).
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Figure 4.2: Left (right) panel signify the correlation of the mixing angles i.e. sin2θ13 (sin2θ12, sin2θ23)
respectively with the sum of neutrino masses

∑
mi (eV).

In order to make appropriate predictions of the neutrino mixing angles and other parameters within

their 3σ ranges, the input parameters are generated in a random fashion. The allowed ranges of solar

and atmospheric mass squared differences at 3σ level used as constraints to calculate other neutrino

oscillation parameters in their 3σ ranges [173]. Here, we have kept the range of modulus τ as: 0 . Re[τ].
0.5 and 0.5 . Im[τ]. 2 and also the estimated range for µ0 ∈ [10−5,10] keV for obtaining the neutrino

masses in normal ordering (NO). With these values, the neutrino mixing angles are then extracted using

eqn. (4.18). The variation of the mixing angles sin2θ13 (left panel) and sin2θ12, sin2θ23 (right panel) w.r.t

sum of the active neutrino mass
∑

mi < 0.12 eV [40] are shown in Fig. 4.2. From these plots, it can be

inferred that the allowed range of the sum of active neutrino masses to be in the range (0.058−0.1) eV.

Further, the variation of δCP with respect to mixing angles sin2θ13 (left panel) and sin2θ12, sin2θ23 (right

panel) is shown in Fig. 4.3, where the vertical dashed lines represent the in 3σ ranges of the mixing angles.

These plots suggest δCP should be in the range (100−250)◦. Fig. 4.4 focuses on the correlation between

the Majorana phases i.e., α21 and α31, and they are seen to be unconstrained and lie within the range of

(0−360)◦. The left panel of Fig. 4.5, signifies the correlation between the effective neutrinoless double beta
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decay mass parameter (mee) and the lightest neutrino mass m1 as well as with the sum of active neutrino

masses (
∑

mi). It can be inferred from the plot that the model predicts the lightest neutrino mass m1 to be

less that 0.015 eV and mee to be in the range (0.001−0.025) eV, satisfying the current upper limits from

KamLAND-ZEN experiment [97]. In the right panel of Fig. 4.5, we show the correlation of Jarsklog CP

invariant allowed by the neutrino data, with the reactor mixing angle, which is found to be of the order of

O (10−3). In Fig. 4.6, we represent the correlations between the heavy fermion masses, where, left panel is

the plot expressing M1 with M2 while the right panel is for M2 versus M3 in TeV scale.
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Figure 4.3: Left (right) panel displays the correlation between δCP w.r.t sin2θ13 (sin2θ12 and sin2θ23).
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Figure 4.4: The above panel shows the plot between the Majorana phases i.e., α21 and α31.

4.4 Comments on non-unitarity

In the section, we briefly comment on non-unitarity of neutrino mixing matrix U ′
PMNS which basically

arises due to the mixing between the active neutrinos and the heavy neutral fermions. The form for the

deviation from unitarity is expressed as follows [99]

U ′
PMNS ≡

(
1− 1

2
FF †

)
UPMNS . (4.20)
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Figure 4.5: Left panel shows the correlation of effective neutrino mass of neutrinoless double beta decay
with the lightest neutrino mass m1 (red points) and sum of active neutrino masses (dark green points).
The right panel represents a correlation between JCP with respect to the reactor mixing angle.
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Figure 4.6: Left panel shows the correlation of heavy fermion masses M1 versus M2 and right panel
represents a correlation of heavy fermion masses M2 versus M3 in TeV scale.

Here, UPMNS is the PMNS mixing matrix, used in diagonalising the mass matrix of the three light

neutrinos and F represents the mixing of active neutrinos with the heavy fermions and its form is given

by

F ≡ (M T
RS)−1MD ≈ (gDvu/αRSvζ) , (4.21)

which is hermitian in nature. The global constraints on the non-unitarity parameters [100–102], come

from several experimental results such as the W boson mass MW , the Weinberg angle θW , several ratios of

fermionic Z boson decays as well as its invisible decay, electroweak universality, CKM unitarity bounds,

and lepton flavor violations. As mentioned earlier, in the inverse seesaw framework, the light neutrino

mass matrix eqn.(4.14) can be expressed as

mν =
(

MD

MRS

)
Mµ

(
MD

MRS

)T
. (4.22)
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Thus, in the context of the present model, we consider the following approximated mass values for the

Dirac, Majorana mass for SL and the pseudo-Dirac mass for the heavy fermions to correctly generate the

observed mass square differences of the desired order as:

( mν

0.1 eV

)
≈

(
MD

102 GeV

)2 (
Mµ

keV

)(
104 GeV

MRS

)2

. (4.23)

With these benchmark values and using eqn.(4.21), we obtain the approximated non-unitary mixing for

the present model as given below:

|FF †| ≤




1.1×10−5 8.3×10−7 3.8×10−6

8.3×10−7 9.5×10−8 5.02×10−7

3.8×10−6 5.02×10−7 3.05×10−7




. (4.24)

4.5 Comments on LFV

Lepton flavour violation is one of the most fascinating probes for new physics beyond the SM, therefore,

here we investigate decay mode µ→ eγ. Several experiments are looking for this decay mode with great

effort for an improved sensitivity, and the current limit on its branching ratio is from MEG collaboration as

Br(µ→ eγ)< 4.2×10−13 [103]. There is a sizeable contribution in the present model using the A′
5 inverse

seesaw mechanism, due to the allowed light-heavy neutrino mixing. The branching ratio for the µ→ eγ in

our model framework is given by

Br(µ→ eγ)= 3
16

( α
2π

) 3∑

i=1
f
(
M 2

i /M 2
W

)∣∣∣F∗
µi Fei

∣∣∣
2

. (4.25)

Here, Mi represents the heavy fermion masses and f (M 2
i /M 2

W ) is the loop-function [249] and Fαi are the

non-unitary parameters defined in eqn (4.21).
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Figure 4.7: Plot above represents the correlation between Br(µ→ eγ) with respect to (lightest heavy
fermion) M1.
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Figure 4.8: The colored lines represent the dilepton signal cross sections for pp → Z′ → ee(µµ) as a function
of MZ′ for a representative set of gBL values and the black dashed line symbolizes the ATLAS bound [199].

The branching ratio plot for the lepton flavor violating decay µ→ eγ is presented against lightest heavy

fermion mixing mass M1 in Fig. 4.7. From the figure, it is evident that the predicted branching ratio is

well below the current upper limit mentioned above.

4.6 Collider Bound on Z′ mass

As discussed earlier in Sec 4.2, the U(1)B−L gauge symmetry is spontaneously broken by assigning the

vacuum expectation value vζ to the singlet scalar ζ. Consequently, the neutral gauge boson Z′ associated

with this symmetry becomes massive by absorbing the massless pseudoscalar component of ζ and its mass

is given as

MZ′ = gBLvζ , (4.26)

where gBL is the gauge coupling constant of U(1)B−L. The LEP-II provides the constraint on the ratio of

mass of Z′ boson to its coupling as MZ′ /gBL > 6.9 TeV [250]. Hence, in this work we have considered the

range of the vζ as [10-100] TeV eqn.(4.19), consistent with the LEP-II bound.

The ATLAS and CMS collaborations have performed extensive searches for the new resonances in both

dilepton and dijet channels. In the absence of any excess events over the SM background, they put lower

bounds on the mass of Z′ boson. These bounds are usually limited to a specific model, and typically the

experiments report their results assuming simplified models, like the Sequential Standard Model (SSM)

or GUT-inspired E6 models.

Recent results from ATLAS [199], provide the lower limits on the Z′ mass from the dilepton search

using Run 2 data, collected with the center of mass energy
p

s = 13 TeV. In this work, we use CalcHEP

[197] to compute the production cross section of Z′, i.e., pp → Z′ → ee(µµ). In Fig. 4.8, we show the Z′

production cross section times the branching fraction of Z′ decaying to dilepton (ee,µµ) signal as a function
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of MZ′ , for some representative values of the gauge coupling gBL = 0.05,0.1,0.3. The black dashed line

denotes the dilepton bound from ATLAS [199]. It can be noticed from the figure that the region below

MZ′ ' 3.6 TeV is excluded for gBL = 0.3. For gBL = 0.1, MZ′ < 2.6 TeV is ruled out and the mass region of

MZ′ > 2.1 TeV is allowed for gBL = 0.05. Thus, one can generalize these observations as the lower limits on

MZ′ increases with the increase of the gauge couplings.

4.7 Conclusion

In the context of the inverse seesaw framework, we studied the consequences of modular A′
5 flavour

symmetry on neutrino phenomenology. To account for the inverse seesaw process, the present model

comprises three right-handed and three left-handed heavy neutral fermions. The singlet scalar ζ is crucial

in breaking the U(1)B−L symmetry spontaneously and providing masses to the heavy fermions. We have

considered higher order Yukawa couplings that follow the rule kY = kI1
+ kI2

+ ·· · + kIn
, where kY is

the weight on the Yukawa coupling and kI i
(i = 1,2,3,4 · · · ) are the weights on the superfields under A′

5

symmetry. Due to this we were able to attain a specific flavor structure for neutrino mass matrix as needed

by the inverse seesaw formalism. Moving on, we numerically diagonalize the mass matrix and obtain a

valid model parameter-space that allows us to produce results that are compatible with the 3σ limit of

oscillation data for normal ordering. Furthermore, our model predictions suggests that the CP violating

phase δCP to be in the range of (100◦−250◦), whereas the Majorana phases remain unconstrained. The

sum of active neutrino masses is found to be in the range 0.058 eV ≤Σmi ≤ 0.1 eV and the mass of the

light neutrino mass as m1 ≤ 0.015 eV. We also determined the effective neutrinoless double beta decay

mass parameter mee as (0.001−0.025) eV, which is significantly lower than the existing maximum limits

from KamLAND-Zen experiment i.e., < (61−165) meV. We also looked at the lepton flavour violating decay

mode µ→ eγ discovered that its predicted branching ratio is substantially below the current experimental

upper limit 4.2×10−13. Furthermore, we demonstrated that the mass of the new neutral Z′ gauge boson

associated with U(1)B−L symmetry is within the present experimental collider bounds.

83





C
H

A
P

T
E

R

5
LINEAR SEESAW IN A′

5 MODULAR SYMMETRY WITH LEPTOGENESIS

5.1 Introduction

There are several unsolved knots in the realm of particle physics, e.g., the baryon asymmetry of the

Universe, the dark matter content, the origin of neutrino masses and mixing, etc., and the understanding

of these issues is one of the prime objectives of the present day research. In the last couple of decades,

several diligent attempts have been made towards comprehending and resolving the issue of dynamical

origin of the fermion masses and their mixing. Present scenario has taken us few steps ahead in terms of

getting a convincing explanation of the origin of mass through Higgs mechanism while being within the

domain of Standard Model (SM). However, it does not provide proper grounds to explain the origin of the

observed neutrino masses and their mixing. Rather, very diverse approaches are made in order to gain an

insightful resolution towards the above existing problems, and obviously the answer lies in going beyond

standard model (BSM) physics. It should be emphasized that, certain well-defined patterns are observed

in quark masses and mixing, the appreciation of which is still an enigma. Nonetheless, there are ample

amount of research work present, which make an attempt to grasp their fundamental origin. In addition,

perplexity to the problem has increased due to the observation of the neutrino masses and their sizeable

mixing. The reason being, the order of magnitude of the observed neutrino masses are approximately

twelve order smaller than that of electroweak (EW) scale. Also, there is immense difference in the pattern

of leptonic and quark mixings, the former is having large mixing angles, while the later involves smaller

mixing angles. Numerous experiments [251–254] have corroborated the tininess of the neutrino masses

and other parameters with high accuracy. The global fit values of the neutrino oscillation parameters are
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furnished in Refs. [173, 175].

It is well-known that in the SM framework, the neutrino mass generation cannot be explained through

the standard Higgs mechanism due to the absence of the right-handed (RH) components. Still, if we could

manage to add the RH neutrinos into SM by hand, and allow Dirac mass terms, the values of the required

Yukawa couplings to be around O (10−12), i.e., which appear as aberrant. In contrast, there exist many BSM

scenarios that help to generate tiny neutrino mass through the conventional seesaw mechanism. Some of

the prominent seesaw mechanisms are categorized as type-I [47, 201, 203, 255], type-II [204–209], type-III

[210–215] and all of them require additional heavy fermions or scalars beyond the SM particle content.

Literature survey shows there are many flavor symmetries either discrete A4 [225, 256, 257], S3 [258–261],

S4 [262–264] etc. or continuous U(1)B−L [194, 223, 265–267], U(1)H [268–270], U(1)Le−Lτ [271, 272] etc.,

which can generate the tiny neutrino masses and also accommodate the observed neutrino oscillation data

with the help of some additional scalars and perturbation (wherever required). As aforesaid, inclusion

of flavons affects the neatness of the model and the predictability of the model is hampered because of

the higher dimensional operators. These drawbacks can be eliminated through the recent approach of

including modular symmetry [59, 70, 74, 75, 93, 156, 159, 229–244, 273], where the Yukawa couplings

transform non-trivially under the discrete flavor symmetry group and have certain modular weight.

The modular group Γ′5 ' A′
5 is a new and promising candidate, which corresponds to the special case of

N = 5. People have done extensive studies on the essential properties of this A′
5 finite group [246–248], so

here we bring up only the important points regarding A′
5 modular symmetry. The A′

5 group consists of 120

elements, which are likely to be originated by the generators: S, T and R gratifying the identities for N = 5

[158]. So, categorization of these 120 elements are done into nine conjugacy classes which are represented

by nine well defined irreducible representations, symbolized as 1, 2̂, 2̂′, 3, 3′, 4, 4̂, 5 and 6̂. Additionally, the

conjugacy classes along with the character table of A′
5, and the representation matrices of the generators

are presented in Appendix of Ref. [158]. It ought to be noticed that the 1, 3, 3′, 4 and 5 representations

with R = I are identical to those for A5, while 2̂, 2̂′, 4̂ and 6̂ are different for A′
5, with R =−I. As we are

working in the modular space of Γ(5), hence, its dimension is 5k+1, where, k is the modular weight. A

brief discussion concerning the modular space of Γ(5) is presented in Appendix C.1. For k = 1, the modular

space M1[Γ(5)] will have six basis vectors i.e., (ê i, where i = 1,2,3,4,5,6) whose q-expansion are given
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below and they are used in expressing the Yukawa coupling Y (1)
6̂

as shown in Appendix C.3:

ê1 = 1+3q+4q2 +2q3 + q4 +3q5 +6q6 +4q7 − q9 +·· · ,

ê2 = q1/5 (
1+2q+2q2 + q3 +2q4 +2q5 +2q6 + q7 +2q8 +2q9 +·· ·) ,

ê3 = q2/5 (
1+ q+ q2 + q3 +2q4 + q6 + q7 +2q8 + q9 +·· ·) ,

ê4 = q3/5 (
1+ q2 + q3 + q4 − q5 +2q6 +2q8 + q9 +·· ·) ,

ê5 = q4/5 (
1− q+2q2 +2q6 −2q7 +2q8 + q9 +·· ·) ,

ê6 = q
(
1−2q+4q2 −3q3 + q4 +2q5 −2q6 +3q8 −2q9 +·· ·) . (5.1)

Our aim here is to utilize the expediency of the modular A′
5 symmetry by incorporating the linear

seesaw mechanism in the context of supersymmetry, as we are quite familiar with the dynamics of TeV

scale seesaw frameworks from numerous [274, 275] literature. The deciding factor whether it will be linear

seesaw or inverse seesaw is the position of the zero elements in the mass matrix under the basis of (ν,

NRi , SL i ). It is quite evident when 11 and 33 elements of the mass matrix are zero, it gives the structure

of linear seesaw. As mentioned above, introduction of three left-handed (SL i ) alongside three right-handed

(NRi ) neutral fermion superfields validates and generates the neutrino mass matrix structure of linear

seesaw which has been widely studied in the context of discrete A4 flavor symmetry [86–88]. In this

work, we are interested to implement it with A′
5 modular symmetry. For this purpose, we consider the

heavy fermions SLi and NRi to transform as 3′ under A′
5 symmetry and the modular form of the Yukawa

couplings leads to a constrained structure. After that we perform the numerical analysis to look for the

region which is acceptable in order to fit the neutrino data. Hence, prediction for the neutrino sector is

done after fixing the allowed parameter space.

The outline of the chapter is as follows. In Sec. 5.2, we present the layout of the linear seesaw framework

in the context of discrete A′
5 modular symmetry. Using the A′

5 product rules, we obtain the simple mass

matrix structure for the charged leptons as well as the neutral fermions. After that we briefly discuss the

light neutrino masses and mixing phenomena in this framework. The numerical analysis is performed

in Sec. 5.3 followed by a brief comment on the non-unitarity effect. Sec. 5.4 contains the discussion on

leptogenesis in the context of the present model and finally our results are summarized in Sec. 5.5.

5.2 The Model

Here we work on a model under linear seesaw scenario in the context of supersymmetry (SUSY), where

Table 5.1 provided below expresses the list of particles and their respective group charges. For exploring

neutrino sector beyond standard model, we extend it with the discrete A′
5 modular symmetry and a local

U(1)B−L gauge symmetry. However, the local U(1)B−L becomes the auxillary symmetry which has been

added to avoid certain undesirable terms in the superpotential. The advantage of working in BSM is that
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we can add right-handed neutrinos and extra fields, and hence, here we have included three SM singlet

right-handed superfields (NR), three left-handed superfields (SL) and a pair of weightons (ζ, ζ′) in the

particle gamut. The transformation of extra added superfields is taken as 3′ under the modular group A′
5.

The A′
5 and U(1)B−L symmetries are assumed to be broken at a very high scale, much greater than the

scale of electroweak symmetry breaking [89]. Mass acquisition by the extra singlet superfield happens by

assigning the vacuum expectation value (VEV) to the weightons ζ and ζ′. All the particles are assigned

definite values of modular weights denoted as kI . One of the key point of introducing modular symmetry

is the curtailment of flavon (weighton) fields, which otherwise are traditionally required while working in

BSM with discrete symmetries, since the Yukawa couplings transform non-trivially under A′
5 modular

symmetry group, and their transformation properties are present in [158].

Fields ec
R µc

R τc
R LL N c

R SL Hu,d ζ ζ′

SU(2)L 1 1 1 2 1 1 2 1 1

U(1)Y 1 1 1 − 1
2 0 0 1

2 ,− 1
2 0 0

U(1)B−L 1 1 1 −1 1 0 0 1 -1

A′
5 1 1 1 3 3′ 3′ 1 1 1

kI 1 3 5 1 1 4 0 1 1

Table 5.1: The particle spectrum and their charges under the symmetry groups SU(2)L×U(1)Y ×U(1)B−L×
A′

5 while kI represents the modular weight.

The complete superpotential is given by

W = AMl

[
(LL lc

R)3Y kY
3

]
Hd +µHuHd +GD

[
(LLN c

R)5Y (2)
5

]
Hu + (5.2)

GLS

[
(LLSL)4Hu

2∑

i=1
Y (6)

4,i

]
ζ

Λ
+BMRS

[
(SLN c

R)5
2∑

i=1
Y (6)

5,i

]
ζ′,

where, AMl = (αMl ,βMl ,γMl ), lc
R = (ec

R ,µc
R ,τc

R), kY = (2,4,6), and GD = diag{gD1 , gD2 , gD3 },

GLS = diag{gLS1 ,gLS2 ,gLS3 }, BMRS = diag{αRS1 ,αRS2 ,αRS3 } represent the coupling strengths of various

interaction terms.

5.2.1 Mass terms for the charged leptons (M`)

For obtaining simplified and elegant structure for the mass matrix of charged leptons, we envisage that

the three families of left-handed lepton doublets (LLi) transform as triplets (3) under the A′
5 modular

symmetry with U(1)B−L charge −1. The right-handed charged leptons (lc
R) transform as singlets under

both A′
5 symmetry and have U(1)B−L charge +1. However, (ec

R , µc
R , τc

R) are given the modular weight as
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1, 3, and 5 respectively. The Higgsinos Hu,d are given charges 0 under UB−L and 1 for A′
5 symmetries

with zero modular weights. The VEVs of these Higgsinos Hu and Hd are represented as vu/
p

2 and vd /
p

2

respectively. Moreover, Higgsinos VEVs are associated to SM Higgs VEV as vH = 1
2

√
v2

u +v2
d and the ratio

of their VEVs is expressed as tanβ= (vu/vd) and we use its value to be 5 in our analysis. The relevant

superpotential terms for charged leptons are given by

WMl =αMl

[
(LL ec

R)3Y (2)
3

]
Hd +βMl

[
(LLµ

c
R)3Y (4)

3

]
Hd +γMl

[
(LLτ

c
R)3

{
2∑

i=1
Y (6)

3,i

}]
Hd . (5.3)

Working under A′
5 modular group, its Kronecker product leaves us with a non diagonal charged lepton

mass matrix after the spontaneous symmetry breaking. The mass matrix takes the form

Ml =
vdp

2




(
Y (2)

3

)
1

(
Y (4)

3

)
1

(
2∑

i=1
Y (6)

3,i

)

1(
Y (2)

3

)
3

(
Y (4)

3

)
3

(
2∑

i=1
Y (6)

3,i

)

3
(
Y (2)

3

)
2

(
Y (4)

3

)
2

(
2∑

i=1
Y (6)

3,i

)

2




LR

·




αMl 0 0

0 βMl 0

0 0 γMl




. (5.4)

The charged lepton mass matrix Ml can be diagonalised by the unitary matrix Ul , giving rise to the

physical masses me, mµ and mτ as

U†
l Ml M

†
l Ul = diag(m2

e,m2
µ,m2

τ) . (5.5)

Additionally, it also satisfies the following identities, which will be used for numerical analysis in section

5.3:

Tr
(
Ml M

†
l

)
= m2

e +m2
µ+m2

τ ,

Det
(
Ml M

†
l

)
= m2

em2
µm2

τ ,

1
2

[
Tr

(
Ml M

†
l

)]2
− 1

2
Tr

[
(Ml M

†
l )2

]
= m2

em2
µ+m2

µm2
τ+m2

τm2
e . (5.6)

5.2.2 Dirac as well as pseudo-Dirac mass terms for light neutrinos

In addition to lepton doublet transformation, hitherto, the heavy fermion superfields, i.e., N c
R (SL) trans-

form as triplet 3′ under A′
5 modular group with U(1)B−L charge of −1 (0) along with modular weight

1 (4) respectively. As discussed in Ref. [158], the choice of Yukawa couplings depends on the equation

kY = kI1
+kI2

+·· ·+kIn
where kY is the modular weight of Yukawa couplings and ΣIn

i=1kIn is sum of the

modular weights of all other particles present in the definition of superpotential terms. These Yukawa

couplings can be written in terms of Dedekind eta-function η(τ), and thus have q-expansion forms, in

order to avoid the complexity in calculations. The relevant superpotential term involving the active and
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right-handed heavy neutrino fields can be expressed as

WD =GD

[
(LLN c

R)5Y (2)
5

]
Hu , (5.7)

where, GD is the diagonal matrix containing the free parameters and the modular weight of the Yukawa

coupling is equal to the sum of the the modular weights of all other particles present in eqn.(5.7). The

choice of the Yukawa coupling is made based on the Kroncker product rules for A′
5 modular symmetry

such that superpotential remains singlet. Consequently, the Dirac neutrino mass matrix can be given as

MD = vup
3 0

GD




p
3 (Y (2)

5 )1 (Y (2)
5 )4 (Y (2)

5 )3

(Y (2)
5 )5 −

p
2 (Y (2)

5 )3 −
p

2 (Y (2)
5 )2

(Y (2)
5 )2 −

p
2 (Y (2)

5 )5 −
p

2 (Y (2)
5 )4




LR

. (5.8)

As the transformation of the sterile fermion superfield SL is same as NR under A′
5, it allows us to write

the pseudo-Dirac mass term for the light neutrinos and the corresponding super potential can be written

as

WLS =GLS

[
(LLSL)4

i=1∑

2
Y (6)

4,i

]
Hu

(
ζ

Λ

)
, (5.9)

where, GLS is a diagonal matrix containing three free parameters and the choice of Yukawa coupling

depends upon the idea of keeping the superpotential singlet. Thus, we obtain the pseudo-Dirac mass

matrix for the neutrinos as,

MLS = vu

2
p

6

(
vζp
2Λ

)
GLS




0 −
p

2
(

2∑
i=1

Y (6)
4,i

)

3
−
p

2
(

2∑
i=1

Y (6)
4,i

)

2

p
2

(
2∑

i=1
Y (6)

4,i

)

4
−

(
2∑

i=1
Y (6)

4,i

)

2

(
2∑

i=1
Y (6)

4,i

)

1
(

2∑
i=1

Y (6)
4,i

)

1

(
2∑

i=1
Y (6)

4,i

)

4
−

(
2∑

i=1
Y (6)

4,i

)

3




LR

. (5.10)

5.2.3 Mixing between the heavy fermions NR and SL

Introduction of extra symmetries, helps in allowing the mixing of heavy superfields but forbids the usual

Majorana mass terms. Hence, below we show the mixing of these extra superfields i.e., (N c
R ,SL) as follows

WMRS = BMRS

[
(SLN c

R)5
2∑

i=1
Y (6)

5,i

]
ζ′, (5.11)

where, BMRS is the free parameter and 〈ζ′〉 = v′
ζ
/
p

2 is the VEV of ζ′ and the superpotential is singlet under

the A′
5 modular symmetry product rule. Thus, considering vζ′ ≈ vζ, one can obtain the mass matrix as
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follows:

MRS = vζp
6 0

BMRS




2
(

2∑
i=1

Y (6)
5,i

)

1
−
p

3
(

2∑
i=1

Y (6)
5,i

)

4
−
p

3
(

2∑
i=1

Y (6)
5,i

)

3

−
p

3
(

2∑
i=1

Y (6)
5,i

)

4

p
6

(
2∑

i=1
Y (6)

5,i

)

2
−

(
2∑

i=1
Y (6)

5,i

)

1

−
p

3
(

2∑
i=1

Y (6)
5,i

)

3
−

(
2∑

i=1
Y (6)

5,i

)

1

p
6

(
2∑

i=1
Y (6)

5,i

)

5




LR

. (5.12)

The masses for the heavy superfields can be found in the basis (NR ,SL)T as

Mhf =




0 MRS

MT
RS 0


 , (5.13)

Hence, one can have three doubly degenerate mass eigenstates for the heavy superfields upon diagonaliza-

tion.

5.2.4 Linear Seesaw framework for light neutrino mass

In the present scenario of A′
5 modular symmetry, the light neutrino masses can be generated in the

framework of linear seesaw. Thus, the mass matrix in the flavor basis of
(
νL, N c

R ,SL
)T , can be manifested

as

M=




0 MD MLS

MT
D 0 MRS

MT
LS MT

RS 0




. (5.14)

Assuming that MRS À MD , MLS , one can write the linear seesaw mass formula for light neutrinos as

mν = MD M−1
RS MT

LS + transpose . (5.15)

Besides the neutrino masses, other relevant parameters which can play important role in the under-

standing of neutrino physics are the Jarlskog invariant, that signifies the measure of CP violation and

the effective electron neutrino mass 〈mee〉 in neutrinoless double beta decay. These parameters can be

computed from the PMNS matrix elements as following:

JCP = Im[Ue1Uµ2U∗
e2U∗

µ1]= s23c23s12c12s13c2
13 sinδCP , (5.16)

∣∣〈mee〉
∣∣ =

∣∣∣m1|Ue1|2 +m2|Ue2|2eiα21 +m3|Ue3|2ei(α31−2δCP )
∣∣∣ ,

=
∣∣∣m1 cos2θ12 cos2θ13 +m2 sin2θ12 cos2θ13eiα21 +m3 sin2θ13ei(α31−2δCP )

∣∣∣ . (5.17)

Many dedicated experiments are planned to measure the CP violation in neutrino sector as well as

the neutrinoless double beta decay processes. Hopefully, CP violation will be precisely measured in
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the upcoming DUNE and T2HK experiments and the effective Majorana mass parameter 〈mee〉 can be

measured by the KamLAND-Zen experiment in the near future [97].

5.3 Numerical Results

For numerical analysis, we use the neutrino oscillation parameters from the global-fit results [98, 174, 276]

obtained from various experiments, as given in Table 5.2. The numerical diagonalization of the light

neutrino mass matrix given in eqn.(5.15), is done through U†
νMUν = diag

(
m2

1,m2
2,m2

3
)
, with M = mνm†

ν

and Uν is the unitary matrix. Thus, one can write the lepton mixing matrix as U =U†
l Uν and consequently

obtain the mixing angles by using the standard relations:

sin2θ12 =
|U12|2

1−|U13|2
, sin2θ23 =

|U23|2
1−|U13|2

, and sin2θ13 = |U13|2 . (5.18)

For explaining the observed neutrino oscillation data, we vary the model parameters in the following

ranges:

Re[τ] ∈ [0,0.5], Im[τ] ∈ [1,3], GD ∈ [10−7,10−6], GLS ∈ [10−4,10−3] vζ ∈ [10,100] TeV,

BMRS ∈ [10−3,10−2], Λ ∈ [104,105] TeV. (5.19)

Oscillation Parameters Best fit value ± 1σ 2σ range 3σ range

∆m2
21[10−5 eV2] 7.56±0.19 7.20–7.95 7.05–8.14

|∆m2
31|[10−3 eV2] (NO) 2.55±0.04 2.47–2.63 2.43–2.67

sin2θ12/10−1 3.21+0.18
−0.16 2.89–3.59 2.73–3.79

sin2θ23/10−1 (NO) 4.30+0.20
−0.18 3.98–4.78 & 5.60–6.17 3.84–6.35

5.98+0.17
−0.15 4.09–4.42 & 5.61–6.27 3.89–4.88 & 5.22–6.41

sin2θ13/10−2 (NO) 2.155+0.090
−0.075 1.98−2.31 2.04−2.43

δCP /π (NO) 1.08+0.13
−0.12 0.84−1.42 0.71−1.99

Table 5.2: The global-fit values of the oscillation parameters alongwith their 1σ/2σ/3σ ranges [98, 174, 276].

The input parameters are varied randomly in the ranges as provided in Eqn. (5.19) and constrained

by imposing the 3σ bounds on neutrino oscillation data, i.e., the solar and atmospheric mass squared

differences and the mixing angles as presented in Table 5.2, as well as the sum of the active neutrino

masses: Σmi < 0.12 eV [277]. The allowed range of the modulus τ is found to be: 0 . Re[τ]. 0.5 and 1

. Im[τ] . 3, for normal ordering of neutrino masses. In Fig. 5.1, we show the variation of the sum of

active neutrino masses (Σmi) with the reactor mixing angle sin2θ13 (left panel), while the right panel

demonstrates Σmi versus sin2θ12 and sin2θ23. From these figures, it can be observed that the model

predictions for the sum of neutrino masses as Σ0.058 eV ≤ mi ≤ 0.062 eV for the allowed 3σ ranges of the

mixing angles.
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∑mi>0.12 eV (Excluded region)

0.016 0.018 0.020 0.022 0.024 0.026 0.028 0.030
0.00

0.05

0.10

0.15

sin2θ13

∑
m
i
[e
V
] sin2θ12 sin2θ23

∑mi>0.12 eV (Excluded region)

0.0 0.2 0.4 0.6 0.8
0.00

0.05

0.10

0.15

sin2θ12 , sin
2θ23

∑
m
i
[e
V
]

Figure 5.1: the plot in the left (right) panel demonstrates the correlation between sin2θ13 (sin2θ12 &
sin2θ23) with the sum of active neutrino masses

∑
mi. The vertical lines represent the 3σ allowed ranges

of the mixing angles.

The variation of the effective mass parameter mee of neutrinoless double beta decay with Σmi is

displayed in Fig. 5.2, from which the upper limit on mee is found to be 0.025 eV satisfying KamLAND-Zen

bound. Further, we display the variation of δCP and JCP w.r.t sin2θ13 in the left and right panel of Fig. 5.3

respectively, where we obtain their limits as 100◦ ≤ δCP ≤ 250◦ and |JCP | ≤ 0.004.

KamLAND-Zen
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m
e
e
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Figure 5.2: Correlation plot between the effective neutrino mass mee of neutrinoless double beta decay
and the sum of active neutrino masses.

Comment on non-unitarity of leptonic mixing matrix

Here, we present a brief discussion on the non-unitarity of neutrino mixing matrix U ′
PMNS in the context of

the present model. Due to the mixing between the light and heavy fermions, there will be small deviation

from unitarity of the leptonic mixing matrix, which can be expressed as follows [99]

U ′
PMNS ≡

(
1− 1

2
FF†

)
UPMNS . (5.20)
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Figure 5.3: Left (right) panel shows the plot of δCP (JCP ) with sin2θ13 within its 3σ bound.

Here, UPMNS denotes the PMNS mixing matrix that diagonalises the light neutrino mass matrix and

F represents the mixing of active light neutrinos with the heavy one, which is approximated as F ≡
(MT

NS)−1MD ≈ gD v
αRS vζ

, and is a hermitian matrix. The non-unitarity parameters are constrained through

various electroweak precision measurements [100–102], such as the mass of W boson (MW ), Weinberg

mixing angle (θW ), ratios of various fermionic decays of Z boson and its invisible decay, lepton flavour

violations and the CKM unitarity bounds. In the context of the present model, we take into account the

following approximated normalized order of masses for the Dirac, pseudo-Dirac and heavy fermions for

generating the observed mass-squared differences as well as the sum of active neutrino masses of desired

order as
( mν

0.1 eV

)
≈

(
MD

10−3 GeV

)(
MRS

103 GeV

)−1 (
MLS

10−4 GeV

)
. (5.21)

With these chosen order masses, we obtain the following approximated non-unitary mixing for the present

model:

|FF†| ≤




4.5×10−13 2.3×10−13 6.2×10−13

2.3×10−13 2.08×10−12 4.5×10−12

6.2×10−13 4.5×10−12 5.6×10−12




. (5.22)

As the mixing between the active light and heavy fermions is quite small in our model, it generates a

negligible contribution for the non-unitarity.

5.4 Leptogenesis

The present universe is clearly seen to be baryon dominated, with the ratio of the measured over-abundance

of baryons over anti-baryons to the entropy density is found to be

YB = (8.56±0.22)×10−11 . (5.23)
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Considering the fact that the universe had started from an initially symmetric state of baryons and

antibaryons, following three conditions have to be fulfilled for generating a non-zero baryon asymmetry.

According to Sakharov [23], these three criteria are: Baryon number violation, C and CP violation and

departure from thermal equilibrium during the evolution of the universe. Though the SM assures all

these criteria for an expanding Universe akin ours, the extent of CP violation found in the SM is quite

small to accommodate the observed baryon asymmetry of the universe. Therefore, additional sources

of CP violation are absolutely essential for explaining this asymmetry. The most common new sources

of CP violation possibly could arise in the lepton sector, which is however, not yet firmly established

experimentally. Leptogenesis is the phenomenon that furnishes a minimal set up to correlate the CP

violation in the lepton sector to the observed baryon asymmetry, as well as imposes indirect constraints

on the CP phases from the requirement that it would yield the correct baryon asymmetry. It is seen that

the scale of CP-asymmetry generated from the heavy neutral fermion decays can come down to as low as

TeV [109–112] due to resonant enhancement. However, the present scenario is realized by involving six

heavy states, which comprises three pairs of heavy neutrinos with doubly degenerate masses eqn.(5.13).

Nevertheless, introduction of a higher dimensional mass terms for the Majorana fermions (N c
R) can be

made through the following superpotential

WMR =−GR

[
2∑

i=1
Y (4)

5,i N c
R N c

R

]
ζ′2

Λ
, (5.24)

which gives rise to a petty mass splitting amid the heavy neutral fermions, and hence provides an

enhancement in the CP asymmetry for generating the required lepton asymmetry [113, 114]. Thus, from

(5.24) one can construct the Majorana mass matrix for the right-handed neutrinos NR as

MR =
GRv2

ζ

2Λ
p

30




2
(

2∑
i=1

Y (4)
5,i

)

1
−
p

3
(

2∑
i=1

Y (4)
5,i

)

4
−
p

3
(

2∑
i=1

Y (4)
5,i

)

3

−
p

3
(

2∑
i=1

Y (4)
5,i

)

4

p
6

(
2∑

i=1
Y (4)

5,i

)

2
−

(
2∑

i=1
Y (4)

5,i

)

1

−
p

3
(

2∑
i=1

Y (4)
5,i

)

3
−

(
2∑

i=1
Y (4)

5,i

)

1

p
6

(
2∑

i=1
Y (4)

5,i

)

5




LR

. (5.25)

The coupling GR is considered as exceptionally small to preserve the linear seesaw texture of the neutrino

mass matrix eqn.(5.14), i.e., MD , MLS À MR and hence, inclusion of such additional term does not alter

the results obtained earlier. However, this added term generates a small mass difference. Hence, the 2×2

submatrix of eqn.(5.14) in the basis of (N c
R ,SL), becomes

M =




MR MRS

MT
RS 0


 , (5.26)
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which can be block diagonalized by using the unitary matrix: 1p
2




I −I

I I


 as

M′ =




MRS + MR
2 −MR

2

−MR
2 −MRS + MR

2


≈




MRS + MR
2 0

0 −MRS + MR
2


 . (5.27)

Thus, one can express the mass eigenstates (N±) in terms of the flavor states (NR ,SL) as



SLi

N c
Ri


=




cosθ −sinθ

sinθ cosθ







N+
i

N−
i


 . (5.28)

Assuming the mixing to be maximal, one can have

N c
Ri =

(N+
i +N−

i )
p

2
, SLi =

(N+
i −N−

i )
p

2
. (5.29)

Hence, the interaction superpotential (5.8) can be manifested in terms of the new basis. One can obtain

the mass eigenvalues of the new states N+ and N− by diagonalizing the block-diagonal form of the

heavy-fermion masses which are given as MR
2 +MRS and MR

2 −MRS from eqn.(5.27).

The Dirac (5.7) and pseudo-Dirac (5.9) terms are now modified as

WD =GDLLHu

[
Y (2)

5

(
(N+

i +N−
i )

p
2

)]
, (5.30)

and

WLS =GLSLLHu

[
i=1∑

2
Y (6)

4,i

(
(N+

i −N−
i )

p
2

)]
ζ

Λ
. (5.31)

Thus, one can symbolically express the block-diagonal matrix for the heavy fermions (5.27) as

MRS ± MR

2
= vζp

6 0
BMRS




2a d e

d b f

e f c




LR

±
GRv2

ζ

2Λ
p

30




2a′ d′ e′

d′ b′ f ′

e′ f ′ c′




LR

, (5.32)

where, the different matrix elements are defined as

a(a′)=
(

2∑

i=1
Y 6(4)

5,i

)

1
, b(b′)=

p
6

(
2∑

i=1
Y 6(4)

5,i

)

2
, c(c′)=

p
6

(
2∑

i=1
Y 6(4)

5,i

)

5
,

d(d′)=−
p

3

(
2∑

i=1
Y 6(4)

5,i

)

4
, e(e′)=−

p
3

(
2∑

i=1
Y 6(4)

5,i

)

3
, f ( f ′)=−a(a′) . (5.33)

One can obtain the diagonalized mass matrix from (5.32) through rotation to the mass eigen-basis as: (M±)diag =
UTBMUR

(
MRS ± MR

2

)
UT

RUT
TBM. Consequently, three sets of approximately degenerate mass states can be obtained
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upon diagonalization. Further, we presume that the lightest pair among them with mass in the TeV range, contribute

predominantly to the CP asymmetry. The small mass difference amid the lightest pair demonstrates that the CP

asymmetry generated through the one-loop self energy contribution dominates over the vertex part in the decay of

heavy particle. Thus, the CP asymmetry can be expressed as [109, 117]

εN−
i

≈ 1
32π2 AN−

i

Im

[(
M̃D

v
− M̃LS

v

)† (
M̃D

v
+ M̃LS

v

)2 (
M̃D

v
− M̃LS

v

)†]

ii

rN

r2
N +4A2

N−
i

, (5.34)

where M̃D(LS) = MD(LS)UTBMUR , ∆M = M+
i −M−

i ≈ MR , v = vu and rN and AN− are given as

rN =
(M+

i )2 − (M−
i )2

M+
i M−

i
=
∆M(M+

i +M−
i )

M+
i M−

i
,

AN− ≈ 1
16π

[(
M̃D

v
− M̃LS

v

)(
M̃D

v
+ M̃LS

v

)]

ii
. (5.35)

In Fig. 5.4, we depict the behavior of CP asymmetry with rN , which satisfies both neutrino oscillation data and the

CP asymmetry required for leptogenesis [118, 119], which will be discussed in the next subsection.
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Figure 5.4: Correlation plot demonstrating the dependence of CP asymmetry with the parameter rN .

εe
N− ε

µ

N− ετN− εN− ∆M (GeV)

−1.78×10−5 −2.6×10−5 −4.15×10−5 −8.53×10−5 4×10−6

Table 5.3: CP asymmetries and mass splitting obtained from the allowed range of model parameters which
satisfy neutrino oscillation data.

5.4.1 Boltzmann Equations

Boltzmann equations are invoked to solve for the lepton asymmetry. It should be reiterated that, the Sakharov criteria

[23] require the decay of the parent heavy fermion which ought to be out of equilibrium for generating the lepton

asymmetry. In order to implement this, one needs to confront the Hubble expansion rate with the decay rate as

KN−
i
=

ΓN−
i

H(T = M−
i )

. (5.36)
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Figure 5.5: Evolution of the yield parameters YN and YB−L as a function of z ≡ MN− /T.

Here, H = 1.67
p

g? T2

MPl
is the Hubble rate, with g? = 106.75 is the number of relativistic degrees of freedom in the

thermal bath and MPl = 1.22×1019 GeV is the Planck mass. Coupling strength becomes the deciding factor which

assures that inverse decay would not come into thermal equilibrium. For instance, if the strength is below 10−7, it

gives KN− ∼ 1. The Boltzmann equations associated with evolution of the number densities of right-handed fermion

field and lepton can be articulated in terms of the yield parameters, i.e., the ratio of number densities to entropy

density, and are expressed as [119–123]

dYN−

dz
=− z

sH(MN− )

[(
YN−

Y eq
N−

−1

)
γD +

((
YN−

Y eq
N−

)2

−1

)
γS

]
,

dYB−L
dz

=− z
sH(MN− )

[
2

YB−L

Y eq
`

γNs −εN−

(
YN−

Y eq
N−

−1

)
γD

]
, (5.37)

where z = M−
i /T, s is the entropy density, and the equilibrium number densities have the form [118]

Y eq
N− = 135gN−

16π4 g?
z2K2(z), Y eq

`
= 3

4
45ζ(3)g`
2π4 g?

. (5.38)

K1,2 in Eq. (5.38) represent the modified Bessel functions, the lepton and RH fermion degrees of freedom take the

values g` = 2 and gN− = 2 and the decay rate γD is given as

γD = sY eq
N−ΓN−

K1(z)
K2(z)

. (5.39)

While γS represents the scattering rate of N−N− → ζζ [123] and γNs denotes the scattering rate of ∆L = 2 process.

One can keep away the delicacy of the asymmetry being produced, even when the RH fermion field N− is in thermal

equilibrium, by subtracting the contribution arising from the exchange of on-shell N−, i.e., γD
4 from the total rate γNs

and is given as γsub
Ns = γNs − γD

4 [121].

The solution of Boltzmann eq. (5.37) is displayed in Fig. 5.5. For large coupling strength YN− (green-thick curve)

almost traces Y eq
N− (black-solid curve) and the generated lepton asymmetry (red-dashed curve). The lepton asymmetry

thus obtained can be converted into baryon asymmetry through the sphaleron transition process, and is given as [120]

YB =−
(

8N f +4NH

22N f +13NH

)
YL, (5.40)
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Figure 5.6: After including the flavor effects the yield is shown in left panel, whereas, right panel displays
the yield enhancement due to flavor effects.

where N f represents the number of fermion generations, NH denotes the no. of Higgs doublets and YL =Y`−Y ¯̀. The

observed baryon asymmetry of the universe generally expressed in terms of baryon to photon ratio as [26]

η=
nb −nb̄

nγ
= 6.08×10−10. (5.41)

The current bound on baryon asymmetry can be procured from the relation YB = η/7.04 as YB = 8.6×10−11. Using the

asymptotic value of the lepton asymmetry YL as (8.77×10−10) from Fig. 5.5, we obtain the value of baryon asymmetry

as YB =− 28
79 YL ∼ 10−10.

5.4.2 A note on flavor consideration

In leptogenesis, one flavor approximation is sufficient when (T > 1012 GeV), meaning all the Yukawa interactions are

out of equilibrium. But for temperatures ¿ 108 GeV, several charged lepton Yukawa couplings come into equilibrium

making flavor effects an important consideration for generating the final lepton asymmetry. For temperatures below

106 GeV, all the Yukawa interactions are in equilibrium and the asymmetry is stored in the individual lepton flavor.

The detailed investigation of flavor effects in type-I leptogenesis can be seen in myriad literature [125–130].

The Boltzmann equation describing the generation of lepton asymmetry in each flavor is [126]

dYα
B−Lα

dz
=− z

sH(M−
1 )

[
εαN−

(
YN−

Y eq
N−

−1

)
γD −

(
γαD
2

) AααYα
B−Lα

Y eq
`

]
, (5.42)

where, εαN− i.e. (α= e,µ,τ) represents the CP asymmetry in each lepton flavor

γαD = sY eq
N−Γ

α
N−

K1(z)
K2(z)

, γD =
∑
α
γαD .
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The matrix A is given by [127],

A =




− 221
711

16
711

16
711

16
711 − 221

711
16

711

16
711

16
711 − 221

711




.

From the benchmark considered in Table. 5.3, we estimate the B−L yield with flavor consideration in the left

panel of Fig. 5.6. It is quite obvious to notice that the enhancement in B−L asymmetry is obtained in case of flavor

consideration (blue line) over the one flavor approximation (red line), as displayed in the right panel. This is because,

in one flavor approximation the decay of the heavy fermion to a particular lepton flavor final state can get washed

away by the inverse decays of any flavor unlike the flavoured case [128].

5.5 Conclusion

In this paper, we looked at the effects of A′
5 modular symmetry on neutrino phenomenology. The modular flavour

symmetry is notable for minimising the complexities involved with using several flavon fields, which are typically

associated with the usage of discrete flavour symmetries. In the current model, the SM is expanded by the A′
5 modular

symmetry as well as a U(1)B−L local gauge symmetry. To achieve the neutrino phenomenology in the linear seesaw

framework, it includes three right-handed and three left-handed heavy fermion fields. It also comprises a pair of

singlet scalars, which plays an important role in spontaneously breaking the U(1)B−L symmetry and providing masses

to the heavy fermions. Another noteworthy aspect is that the Yukawa couplings are thought to transform non-trivially

under the modular A′
5 group, thereby replacing the role of ordinary flavon fields. As a result, the neutrino mass

matrix has a distinct flavour structure, which simplifies the analysis of neutrino phenomenology. We subsequently

numerically diagonalized the neutrino mass matrix and determined the allowable regions for the model parameters

by comparing it to the present 3σ limit of the oscillation data. Additionally, our model predicts the CP violating phase

δCP to be in the range of (100◦−250◦) and the Jarlskog invariant to be O (10−3). The sum of active neutrino masses is

found to be in the range 0.058 eV≤Σmi ≤ 0.062 eV and the value of effective neutrinoless double beta decay mass

parameter mee as (0.001−0.025) eV, which is below the current upper limits from KamLAND-Zen experiment i.e.,

< (61−165) meV. Furthermore, the flavour structure of heavy fermion masses leads to three sets of doubly-degenerate

mass states, therefore in order to incorporate leptogenesis, we inserted a higher dimensional mass term for RH

neutrinos in order to garner a slight mass difference between them. The non-zero CP asymmetry was then found from

the lightest heavy fermion decay, where the contribution from the self-energy diagram is partially augmented due to

the modest mass splitting between the two lightest heavy fermions. We solved the coupled Boltzmann equations to

induce lepton asymmetry at the TeV scale using a specific benchmark of model parameters consistent with oscillation

data. The obtained lepton asymmetry is found to be of the of the order ' 10−10, which is adequate to accommodate the

present baryon asymmetry of the universe. Besides, we have additionally shed light on the increase in asymmetry due

to flavor consideration.

100



C
H

A
P

T
E

R

6
SUMMARY AND CONCLUSIONS

The concluding remarks to my doctoral work is about delving into the implementation of an unique concept of modular

symmetry, alongside, avoiding the excess use of flavon fields and increasing the predictability of the model by not

letting non-renormalizable terms to get involved in predictions. This was made possible by introducing the modular

form of the Yukawa couplings which has an explicit dependence on Dedekind eta function and an implicit dependence

on modulus τ. This makes things more interesting when Yukawa couplings enact the role of flavon fields. Further,

different seesaw mechanisms utilized act as catalyst to bring about the neutrino phenomenology results precisely

matching the oscillation data.

Therefore, in second chapter, we showcase the linear seesaw framework utilized in making attempts to explain

neutrino phenomenology by the help of A4 modular symmetry which makes things easier and avoids unwanted

auperpotential terms by having suitable charge assignments. Further, we discussed leptogenesis which is accounted

in the present model by introducing a higher order term bringing a small mass splitting to have a CP asymmetry

appropriate to obtain the observed baryon asymmetry of the universe. Further, it also shows the flavor effects arising

because the leptogenesis discussed is of TeV scale.

Moving on, in the third chapter, we increase the complexity of the model by ensuring neutrino mass at one loop

model which tests the predictability and diversity of modular symmetry by establishing an ideal match with the 3σ

data extracted from oscillation experiments. We were also able to accomodate lepton flavor violation which completely

explainable in our model predicting an impeccable match with the experimental data. Further, we were able to harbour

fermionic dark matter in our model and showed that obtained the relic density is consistent with the observed Planck

data.

In chapter four, we explored the double cover of A5 modular symmetry i.e. Γ′5 ≈ A′
5 modular symmetry. Its

advantage is there are many higher order Yukawa couplings present making it easy to choose accordingly to elaborate
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and explain neutrino phenomenology in inverse seesaw framework by avoiding the unwanted term that can ruin the

specific flavor structure. We were also successful in explaining the lepton flavor violation i.e. `i → ` jγ. As we have

introduced local gauge symmetry hence the associated neutral Z′ gauge boson mass is discussed in light of collider

bounds.

FInally, we have extended our knowledge of double cover gained in previous work by implementing it to the linear

seesaw framework in chapter five. In this work, we have shown how the phenomenology is quite different because of

the involvement of many higher order Yukawa couplings and results drastically changes from that of A4 symmetry.

Here we have discussed the scenario of resonant leptogenesis to get desirable order of CP asymmetry term which then

is utilized in the Boltzmann equation of both one flavor and flavored effects of the leptogenesis and yield the correct

order of the baryon asymmetry.

Therefore it is evident from the work presented above that experiments and theories go hand in hand. Exploring

different mechanisms and technique helps us to explain the unexplainable and at the same time verifies the existing

phenomenon which in-return implies that we are on the right track. Theoretical knowledge motivate us to look beyond

what is unseen and compel us to upgrade our experiments for new results and findings. At the same time experimental

results pushes new ideas and concepts towards validation, provided, they can explain the existing results from the

experiments.
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A.1 A4 modular symmetry

Γ̄ is the modular group which attains a linear fractional transformation γ which acts on modulus τ linked to the

upper-half complex plane whose transformation is given by

τ−→ γτ= aτ+b
cτ+d

, where a,b, c,d ∈Z and ad−bc = 1, Im[τ]> 0 , (A.1)

where it is isomorphic to the transformation PSL(2,Z) = SL(2,Z)/{I,−I}. The S and T transformation helps in

generating the modular transformation defined by

S : τ−→−1
τ

, T : τ−→ τ+1 , (A.2)

and hence the algebric relations so satisfied are as follows,

S2 = I , (ST)3 = I . (A.3)

Here, series of groups are introduced, Γ(N) (N = 1,2,3, . . . ) and defined as

Γ(N)=








a b

c d


 ∈ SL(2,Z) ,




a b

c d


=




1 0

0 1


 (modN)





. (A.4)

Definition of Γ̄(2)≡Γ(2)/{I,−I} for N = 2. Since −I is not associated with Γ(N) for N > 2 case, one can have Γ̄(N)=Γ(N),

which are infinite normal subgroup of Γ̄ known as principal congruence subgroups. Quotient groups come from the

finite modular group defined as ΓN ≡ Γ̄/Γ̄(N). Imposition of TN = I, is done for these finite groups ΓN . Thus, the groups

ΓN (N = 2,3,4,5) are isomorphic to S3, A4, S4 and A5, respectively [230]. N level modular forms are holomorphic

functions f (τ) which are transformed under the influence of Γ(N) as follows:

f (γτ)= (cτ+d)k f (τ) , γ ∈Γ(N) , (A.5)
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where k is the modular weight.

Here the discussion is all about the modular symmetric theory without applying supersymmetry explicitly. This

paper comprises of A4 (N = 3) modular group. A field φ(I) transforms under the modular transformation of Eq.(A.1), as

φ(I) → (cτ+d)−kIρ(I)(γ)φ(I), (A.6)

where −kI represents the modular weight and ρ(I)(γ) signifies an unitary representation matrix of γ ∈Γ(2).

The scalar fields′ kinetic term is as follows

∑

I

|∂µφ(I)|2
(−iτ+ iτ̄)kI

, (A.7)

which doesn’t change under the modular transformation and eventually the overall factor is absorbed by the field

redefinition. Thus, the Lagrangian should be invariant under the modular symmetry.

The modular forms of the Yukawa coupling Y = (y1, y2, y3) with weight 2, which transforms as a triplet of A4 can

be expressed in terms of Dedekind eta-function η(τ) and its derivative [59]:

y1(τ) = i
2π

(
η′(τ/3)
η(τ/3)

+ η′((τ+1)/3)
η((τ+1)/3)

+ η′((τ+2)/3)
η((τ+2)/3)

− 27η′(3τ)
η(3τ)

)
,

y2(τ) = −i
π

(
η′(τ/3)
η(τ/3)

+ω2 η
′((τ+1)/3)
η((τ+1)/3)

+ωη
′((τ+2)/3)
η((τ+2)/3)

)
, (A.8)

y3(τ) = −i
π

(
η′(τ/3)
η(τ/3)

+ωη
′((τ+1)/3)
η((τ+1)/3)

+ω2 η
′((τ+2)/3)
η((τ+2)/3)

)
.

It is interesting to note that the couplings those are defined as singlet under A4 start from −k = 4 while they are zero

if −k = 2.
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B
B.1 Modular form of Yukawa Couplings

The modular forms of the Yukawa coupling Y = (y1, y2, y3) with weight 2, which transforms as a triplet of A4 can be

expressed in terms of Dedekind eta-function η(τ) and its derivative [59]:

y1(τ) = i
2π

(
η′(τ/3)
η(τ/3)

+ η′((τ+1)/3)
η((τ+1)/3)

+ η′((τ+2)/3)
η((τ+2)/3)

− 27η′(3τ)
η(3τ)

)
,

y2(τ) = −i
π

(
η′(τ/3)
η(τ/3)

+ω2 η
′((τ+1)/3)
η((τ+1)/3)

+ωη
′((τ+2)/3)
η((τ+2)/3)

)
, (B.1)

y3(τ) = −i
π

(
η′(τ/3)
η(τ/3)

+ωη
′((τ+1)/3)
η((τ+1)/3)

+ω2 η
′((τ+2)/3)
η((τ+2)/3)

)
.

The q-expansion of yi(τ) i.e. (i = 1,2,3) is given as

y1(τ) = 1+12q+36q2 +12q3 +·· · ,

y2(τ) = −6q1/3(1+7q+8q2 +·· · ),

y3(τ) = −18q2/3(1+2q+5q2 +·· · ). (B.2)

It is interesting to note that the couplings those are defined as singlet under A4 start from −k = 4 while they are zero

if −k = 2.

For, k = 4 [278]

Y (4)
1 = y2

1 +2y2 y3, Y (4)
1′ = y2

3 +2y1 y2, Y (4)
1′′ = y2

2 +2y1 y3,

Y (4)
3 =




y2
1 − y2 y3

y2
3 −2y1 y2

y2
2 − y1 y3




.

(B.3)
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For, k = 8 [278]

Y (8)
1 = (y2

1 +2y2 y3)2,

Y (8)
1′ = (y2

1 +2y2 y3)(y2
3 +2y1 y2),

Y (8)
1′′ = (y2

3 +2y1 y2)2,

Y (8)
3,1 = (y2

1 +2y2 y3)




y2
1 − y2 y3

y2
3 −2y1 y2

y2
2 − y1 y3




,

Y (8)
3,2 = (y2

3 +2y1 y2)




y2
2 − y1 y3

y2
1 −2y2 y3

y2
3 − y1 y2




. (B.4)

B.2 One Loop derivation
(
M2

k ' m2
0
)

(Mν)i j =
∑

k

(YD )ik(YLS) jkMk

32π2

[
M2
ηR

M2
ηR −M2

k
ln

M2
ηR

M2
k

−
M2
ηI

M2
ηI −M2

k
ln

M2
ηI

M2
k

]
. (B.5)

where, m2
0 = M2

ηR
+M2

ηI
2 and

M2
ηR

−M2
ηI

2 = ζ5λ
′
ηv2

2 = δm2(say). So, one can write M2
ηR = m2

0 +δm2 and M2
ηI = m2

0 −δm2.

Let x = M2
ηR , M2

ηI and A = M2
k and so f (x)= x

x−A ln( x
A ). Hence, eqn.(B.5) gets modified as

(Mν)i j =
∑

k

(YD )ik(YLS) jkMk

32π2

[
f (M2

ηR )− f (M2
ηI )

]
. (B.6)

To express (Mν)i j interms of m2
0 we expand the function f (x) around x0 = m2

0

f (x)= f (x0)+ d f
dx

∣∣∣
x0

(x− x0)+·· · (B.7)

And it is important to notice that upto first order expansion will be sufficient, we show the first derivative

d f
dx

= d
dx

( x
x− A

ln
x
A

)
(B.8)

= 1
(x− A)

(
1− A

x− A
ln

( x
A

))
(B.9)

Therefore,
d f
dx

= x− A− x
(x− A)2

ln
( x

A

)
+ 1

x− A
= 1

x− A

(
1−

A ln( x
A )

x− A

)
(B.10)

Inserting eqn.(B.7) into eqn.(B.6) we get

(Mν)i j =
2δm2

32π2

∑

k
(YD )ik(YLS) jkMk

d f
dM2

ηR

∣∣∣
m2

0
. (B.11)

Now, inserting eqn.(B.10) in eqn.(B.11) we get

(Mν)i j =
ζ5λ

′
η

32π2

[
vp
2

]2 ∑

k
(YD )ik(YLS) jk

Mk

m2
0 −M2

k


1−

M2
k ln(

m2
0

M2
k

)

m2
0 −M2

k


 . (B.12)
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We have considered the case of M2
k ≈ m2

0, so here we take logarithimic expansion into consideration where ln(1+ x)=
x− x2

2 + x3

3 − x4

4 + x5

5 −·· · . So, till second order expansion will be sufficient. Let us consider w = m2
0 and z = M2

k and

∆= w− z so that the summand of eqn.(B.12) becomes

1
w− z

[
1− z

w− z
ln

( w
z

)]
= 1
∆

[
1− z

∆
ln

(
z+∆

z

)]
. (B.13)

In the limit ∆→ 0

lim
∆→0

1
∆

[
1− z

∆
ln

z+∆
z

]
= lim

∆→0

1
∆

[
1− z

∆
ln

(
z+∆

z

)]
(B.14)

= lim
∆→0

1
∆

[
1− z

∆

(
∆

z
− 1

2
∆2

z2 +·· ·
)]

(B.15)

= lim
∆→0

1
∆

[
1−1+ ∆

2z
+·· ·

]
= 1

2z
. (B.16)

Thus after substituting the above deduction in eqn.(B.12), we get

(Mν)i j =
ζ5λ

′
η

32π2

[
vp
2

]2 ∑

k
(YD )ik(YLS) jk

1
Mk

. (B.17)

B.3 Loop Functions for LFV

The loop functions for the LFV decay processes µ→ eγ and µ→ 3e are given as

G1(x) = 1
6

[
1−2x(3−1.5x− x2 +3xlogx)

(1− x)4

]
, (B.18)

G2(x) = 2−9x+18x2 −11x3 +6x3 log x
6(1− x)4

, (B.19)

D1(x, y) = − 1
(1− x)(1− y)

− x2 log x
(1− x)2(x− y)

− y2 log y
(1− y)2(y− x)

, (B.20)

D2(x, y) = − 1
(1− x)(1− y)

− x log x
(1− x)2(x− y)

− y log y
(1− y)2(y− x)

. (B.21)
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C
C.1 The modular space of Γ(5)

In order to establish the modular forms which transform non-trivially under Γ′5, and is isomorphic to A′
5, it is first

required to find out the modular space of Γ(5). Hence, if k is an integer i.e. non-negative, the modular space Mk [Γ(5)]

bearing weight k for Γ(5) contains 5k+1 linearly independent modular forms, which acts like the basis vectors of the

modular space. According to Ref. [279], we have

Mk [Γ(5)]=
⊕

a+b=5k
a,b≥0

C
η(5τ)15k

η(τ)3k ka
1
5 , 0

5
(5τ)kb

2
5 , 0

5
(5τ) , (C.1)

below given is the Dedekind eta function η(τ)

η(τ)= q1/24
∞∏

n=1

(
1− qn)

, (C.2)

where, q ≡ e2iπτ, and kr1,r2
(τ) is the Klein form

kr1,r2
(τ)= q

(r1−1)/2
z

(
1− qz

)×
∞∏

n=1

(
1− qnqz

)(
1− qnq−1

z

)(
1− qn)−2 , (C.3)

where (r1, r2) depicts a pair of rational numbers in the domain of Q2 −Z2, z ≡ τr1 + r2 and qz ≡ e2iπz. Under the

transformations of S and T, the eta function and the Klein form change as follows

S : η(τ)→
p
−iτη(τ) , kr1,r2

(τ)→−1
τ
k−r2,r1

(τ) ,

T : η(τ)→ eiπ/12η(τ) , kr1,r2
(τ)→ kr1,r1+r2

(τ) .

(C.4)

More information about the properties of the Kein form kr1,r2
(τ) can be found in Refs. [279, 280].
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Appendix C.

C.2 The Kronecker product rules of A′
5

Here we present only those product rules [158] which are relevant to present model .

3⊗3= 1s ⊕3a ⊕5s 3′⊗3′ =1s ⊕3′
a ⊕5s 3⊗3′ =4⊕5




1s :
p

3
3

(α1β1 +α2β3 +α3β2)

3a :
p

2
2




α2β3 −α3β2

α1β2 −α2β1

α3β1 −α1β3




5s :
p

6
6




2α1β1 −α2β3 −α3β2

−
p

3α1β2 −
p

3α2β1
p

6α2β2
p

6α3β3

−
p

3
(
α1β3 +α3β1

)








1s :
p

3
3

(
α1β1 +α2β3 +α3β2

)

3′a :
p

2
2




α2β3 −α3β2

α1β2 −α2β1

α3β1 −α1β3




5s :
p

6
6




2α1β1 −α2β3 −α3β2
p

6α3β3

−
p

3
(
α1β2 +α2β1

)

−
p

3
(
α1β3 +α3β1

)

p
6α2β2








4 :
p

3
3




p
2α2β1 +α3β2

−
p

2α1β2 −α3β3

−
p

2α1β3 −α2β2
p

2α3β1 +α2β3




5 :
p

3
3




p
3α1β1

α2β1 −
p

2α3β2

α1β2 −
p

2α3β3

α1β3 −
p

2α2β2

α3β1 −
p

2α2β3




3⊗3′ =4⊕5 4⊗4=1s ⊕3a ⊕3′
a ⊕4s ⊕5s





4 :
1p
3




p
2α2β1 +α3β2

−
p

2α1β2 −α3β3

−
p

2α1β3 −α2β2
p

2α3β1 +α2β3““




5 :
1p
3




p
3α1β1

α2β1 −
p

2α3β2

α1β2 −
p

2α3β3

α1β3 −
p

2α2β2

α3β1 −
p

2α2β3








.





1s :
1
2

[
α1β4 +α2β3 +α3β2 +α4β1

]

3a :
1
2




−α1β4 +α2β3 −α3β2 +α4β1
p

2
(
α2β4 −α4β2

)

p
2

(
α1β3 −α3β1

)




3′a :
1
2




α1β4 +α2β3 −α3β2 −α4β1
p

2
(
α3β4 −α4β3

)

p
2

(
α1β2 −α2β1

)




4s :
1p
3




α2β4 +α3β3 +α4β2

α1β1 +α3β4 +α4β3

α1β2 +α2β1 +α4β4

α1β3 +α2β2 +α3β1




5s :
1

2
p

3




p
3

(
α1β4 −α2β3 −α3β2 +α4β1

)

−
p

2
(
α2β4 −2α3β3 +α4β2

)

−
p

2
(
2α1β1 −α3β4 −α4β3

)

p
2

(
α1β2 +α2β1 −2α4β4

)

−
p

2
(
α1β3 −2α2β2 +α3β1

)








.
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C.2. The Kronecker product rules of A′
5

5⊗5=1s ⊕3a ⊕3′
a ⊕4s ⊕4a ⊕5s,1 ⊕5s,2





1s :
1p
5

[
α1β1 +α2β5 +α3β4 +α4β3 +α5β2

]

3a :
1p
1 0




α2β5 +2α3β4 −2α4β3 −α5β2

−
p

3α1β2 +
p

3α2β1 +
p

2α3β5 −
p

2α5β3

p
3α1β5 +

p
2α2β4 −

p
2α4β2 −

p
3α5β1




3′a :
1p
1 0




2α2β5 −α3β4 +α4β3 −2α5β2

p
3α1β3 −

p
3α3β1 +

p
2α4β5 −

p
2α5β4

−
p

3α1β4 +
p

2α2β3 −
p

2α3β2 +
p

3α4β1




4s :
1p
3 0




p
6α1β2 +

p
6α2β1 −α3β5 +4α4β4 −α5β3

p
6α1β3 +4α2β2 +

p
6α3β1 −α4β5 −α5β4

p
6α1β4 −α2β3 −α3β2 +

p
6α4β1 +4α5β5

p
6α1β5 −α2β4 +4α3β3 −α4β2 +

p
6α5β1




4a :
1p
1 0




p
2α1β2 −

p
2α2β1 +

p
3α3β5 −

p
3α5β3

−
p

2α1β3 +
p

2α3β1 +
p

3α4β5 −
p

3α5β4

−
p

2α1β4 −
p

3α2β3 +
p

3α3β2 +
p

2α4β1

p
2α1β5 −

p
3α2β4 +

p
3α4β2 −

p
2α5β1




5s,1 :
1p
1 4




2α1β1 +α2β5 −2α3β4 −2α4β3 +α5β2

α1β2 +α2β1 +
p

6α3β5 +
p

6α5β3

−2α1β3 +
p

6α2β2 −2α3β1

−2α1β4 −2α4β1 +
p

6α5β5

α1β5 +
p

6α2β4 +
p

6α4β2 +α5β1




5s,2 :
1p
1 4




2α1β1 −2α2β5 +α3β4 +α4β3 −2α5β2

−2α1β2 −2α2β1 +
p

6α4β4

α1β3 +α3β1 +
p

6α4β5 +
p

6α5β4

α1β4 +
p

6α2β3 +
p

6α3β2 +α4β1

−2α1β5 +
p

6α3β3 −2α5β1






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Appendix C.

C.3 Higher Order Yukawa couplings

All higher order Yukawa couplings are expressed interms of the elements of Y (1)
6̂

Yukawa coupling expressed as

Y (1)
6̂

=


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5
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5
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, (C.5)

The Yukawa couplings used in our model are expressed below and the other couplings seen in the tensor product are

expressed in [158]

Y (2)
3 =

[
Y (1)

6̂
⊗Y (1)

6̂

]
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=−3
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C.3. Higher Order Yukawa couplings

Y (6)
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řsandSrivastava,RahulandV alle, Jos
p

©W .F., Simplest Scoto-Seesaw Mechanism, Phys.

Lett. B 789 (2019) 132 [arXiv:1807.11447].

[164] Hagedorn,ClaudiaandHerrero−Garc
p 6= a, JuanandMolinaro,EmilianoandSchmidt, MichaelA.,

Phenomenology of the Generalised Scotogenic Model with Fermionic Dark Matter, JHEP 11 (2018) 103

[arXiv:1804.04117].

[165] S. Pramanick, Radiative generation of realistic neutrino mixing with A4, arXiv:1903.04208.

[166] Y.L. Tang, Some Phenomenologies of a Simple Scotogenic Inverse Seesaw Model, Phys. Rev. D 97 (2018) 035020

[arXiv:1709.07735].

[167] T. Nomura and H. Okada, A modular A4 symmetric model of dark matter and neutrino, Phys. Lett. B 797 (2019)

134799 [arXiv:1904.03937].

[168] H. Okada and Y. Orikasa, A radiative seesaw model in modular A4 symmetry, arXiv:1907.13520.

[169] M. Lindner, M. Platscher, C.E. Yaguna and A. Merle, Fermionic WIMPs and vacuum stability in the scotogenic

model, Phys. Rev. D 94 (2016) 115027 [arXiv:1608.00577].

[170] P. Escribano, M. Reig and A. Vicente, Generalizing the Scotogenic model, JHEP 07 (2020) 097

[arXiv:2004.05172].

[171] P. Dev and A. Pilaftsis, Minimal Radiative Neutrino Mass Mechanism for Inverse Seesaw Models, Phys. Rev. D

86 (2012) 113001 [arXiv:1209.4051].

[172] M. Hirsch, S. Morisi and J. Valle, A4-based tri-bimaximal mixing within inverse and linear seesaw schemes,

Phys. Lett. B 679 (2009) 454 [arXiv:0905.3056].

[173] P.F. de Salas, D.V. Forero, S. Gariazzo, P. Martinez-Mirave, O. Mena, C.A. Ternes et al., 2020 global

reassessment of the neutrino oscillation picture, JHEP 02 (2021) 071 [arXiv:2006.11237].

[174] S. Gariazzo, M. Archidiacono, P. de Salas, O. Mena, C. Ternes and M. Tortola, Neutrino masses and their

ordering: Global Data, Priors and Models, JCAP 03 (2018) 011 [arXiv:1801.04946].

[175] I. Esteban, M. Gonzalez-Garcia, M. Maltoni, T. Schwetz and A. Zhou, The fate of hints: updated global analysis

of three-flavor neutrino oscillations, arXiv:2007.14792.

[176] PLANCK collaboration, N. Aghanim et al., Planck 2018 results. V. CMB power spectra and likelihoods,

arXiv:1907.12875.

[177] T. Toma and A. Vicente, Lepton Flavor Violation in the Scotogenic Model, JHEP 01 (2014) 160

[arXiv:1312.2840].

[178] A. Vicente and C.E. Yaguna, Probing the scotogenic model with lepton flavor violating processes, JHEP 02

(2015) 144 [arXiv:1412.2545].

125



Bibliography

[179] PARTICLE DATA GROUP collaboration, P.A. Zyla et al., Review of Particle Physics, PTEP 2020 (2020) 083C01.

[180] MU2E collaboration, S. Miscetti, Status of the Mu2e experiment at Fermilab, EPJ Web Conf. 234 (2020) 01010.

[181] P. Dornan, Mu to electron conversion with the COMET experiment, EPJ Web Conf. 118 (2016) 01010.

[182] DEEME collaboration, H. Natori, An experiment to search for mu-e conversion at J-PARC MLF in Japan, DeeMe

experiment, PoS ICHEP2018 (2019) 642.

[183] Y. Kuno and Y. Okada, Muon decay and physics beyond the standard model, Rev. Mod. Phys. 73 (2001) 151

[hep-ph/9909265].

[184] E. Arganda, M.J. Herrero and A.M. Teixeira, mu-e conversion in nuclei within the CMSSM seesaw: Universality

versus non-universality, JHEP 10 (2007) 104 [arXiv:0707.2955].

[185] H.C. Chiang, E. Oset, T.S. Kosmas, A. Faessler and J.D. Vergados, Coherent and incoherent (mu-, e-) conversion

in nuclei, Nucl. Phys. A 559 (1993) 526.

[186] T.S. Kosmas, S. Kovalenko and I. Schmidt, Nuclear muon- e- conversion in strange quark sea, Phys. Lett. B 511

(2001) 203 [hep-ph/0102101].

[187] SINDRUM II collaboration, C. Dohmen et al., Test of lepton flavor conservation in mu —> e conversion on

titanium, Phys. Lett. B 317 (1993) 631.

[188] K. Griest and D. Seckel, Three exceptions in the calculation of relic abundances, Phys. Rev. D 43 (1991) 3191.

[189] P. Gondolo and G. Gelmini, Cosmic abundances of stable particles: Improved analysis, Nucl. Phys. B 360 (1991)

145.

[190] A. Semenov, LanHEP: A Package for automatic generation of Feynman rules in gauge models, hep-ph/9608488.

[191] A. Pukhov, E. Boos, M. Dubinin, V. Edneral, V. Ilyin, D. Kovalenko et al., CompHEP: A Package for evaluation of

Feynman diagrams and integration over multiparticle phase space, hep-ph/9908288.

[192] G. Belanger, F. Boudjema, A. Pukhov and A. Semenov, MicrOMEGAs 2.0: A Program to calculate the relic

density of dark matter in a generic model, Comput. Phys. Commun. 176 (2007) 367 [hep-ph/0607059].

[193] G. Belanger, F. Boudjema, A. Pukhov and A. Semenov, Dark matter direct detection rate in a generic model with

micrOMEGAs 2.2, Comput. Phys. Commun. 180 (2009) 747 [arXiv:0803.2360].

[194] S. Singirala, R. Mohanta, S. Patra and S. Rao, Majorana Dark Matter in a new B−L model, JCAP 11 (2018)

026 [arXiv:1710.05775].

[195] P. Agrawal, Z. Chacko, C. Kilic and R.K. Mishra, A Classification of Dark Matter Candidates with Primarily

Spin-Dependent Interactions with Matter, arXiv:1003.1912.

[196] PANDAX-4T collaboration, Y. Meng et al., Dark Matter Search Results from the PandaX-4T Commissioning

Run, Phys. Rev. Lett. 127 (2021) 261802 [arXiv:2107.13438].

126



Bibliography

[197] A. Belyaev, N.D. Christensen and A. Pukhov, CalcHEP 3.4 for collider physics within and beyond the Standard

Model, Comput. Phys. Commun. 184 (2013) 1729 [arXiv:1207.6082].

[198] K. Kong, TASI 2011: CalcHEP and PYTHIA Tutorials, in The Dark Secrets of the Terascale: Proceedings, TASI

2011, Boulder, Colorado, USA, Jun 6 - Jul 11, 2011, p. 161, 2013, arXiv:1208.0035, DOI.

[199] ATLAS collaboration, G. Aad et al., Search for high-mass dilepton resonances using 139 fb−1 of pp collision

data collected at
p

s =13 TeV with the ATLAS detector, Phys. Lett. B 796 (2019) 68 [arXiv:1903.06248].

[200] DELPHI, OPAL, LEP ELECTROWEAK, ALEPH, L3 collaboration, S. Schael et al., Electroweak Measurements

in Electron-Positron Collisions at W-Boson-Pair Energies at LEP, Phys. Rept. 532 (2013) 119

[arXiv:1302.3415].

[201] V. Brdar, A.J. Helmboldt, S. Iwamoto and K. Schmitz, Type-I Seesaw as the Common Origin of Neutrino Mass,

Baryon Asymmetry, and the Electroweak Scale, Phys. Rev. D 100 (2019) 075029 [arXiv:1905.12634].

[202] G.C. Branco, J.T. Penedo, P.M.F. Pereira, M.N. Rebelo and J.I. Silva-Marcos, Type-I Seesaw with eV-Scale

Neutrinos, JHEP 07 (2020) 164 [arXiv:1912.05875].

[203] S. Bilenky, Introduction to the physics of massive and mixed neutrinos, vol. 817 (2010),

10.1007/978-3-642-14043-3.

[204] P.H. Gu, H. Zhang and S. Zhou, A Minimal Type II Seesaw Model, Phys. Rev. D 74 (2006) 076002

[hep-ph/0606302].

[205] S. Luo and Z.z. Xing, The Minimal Type-II Seesaw Model and Flavor-dependent Leptogenesis, Int. J. Mod. Phys.

A 23 (2008) 3412 [arXiv:0712.2610].

[206] S. Antusch and S.F. King, Type II Leptogenesis and the neutrino mass scale, Phys. Lett. B 597 (2004) 199

[hep-ph/0405093].

[207] W. Rodejohann, Type II seesaw mechanism, deviations from bimaximal neutrino mixing and leptogenesis, Phys.

Rev. D 70 (2004) 073010 [hep-ph/0403236].

[208] P.H. Gu, Double type II seesaw mechanism accompanied by Dirac fermionic dark matter, Phys. Rev. D 101

(2020) 015006 [arXiv:1907.10019].

[209] J. McDonald, N. Sahu and U. Sarkar, Type-II Seesaw at Collider, Lepton Asymmetry and Singlet Scalar Dark

Matter, JCAP 04 (2008) 037 [arXiv:0711.4820].

[210] Y. Liao, J.Y. Liu and G.Z. Ning, Radiative Neutrino Mass in Type III Seesaw Model, Phys. Rev. D 79 (2009)

073003 [arXiv:0902.1434].

[211] E. Ma, Pathways to naturally small neutrino masses, Phys. Rev. Lett. 81 (1998) 1171 [hep-ph/9805219].

[212] R. Foot, H. Lew, X.G. He and G.C. Joshi, Seesaw Neutrino Masses Induced by a Triplet of Leptons, Z. Phys. C 44

(1989) 441.

127



Bibliography

[213] I. Dorsner and P. Fileviez Perez, Upper Bound on the Mass of the Type III Seesaw Triplet in an SU(5) Model,

JHEP 06 (2007) 029 [hep-ph/0612216].

[214] R. Franceschini, T. Hambye and A. Strumia, Type-III see-saw at LHC, Phys. Rev. D 78 (2008) 033002

[arXiv:0805.1613].

[215] X.G. He and S. Oh, Lepton FCNC in Type III Seesaw Model, JHEP 09 (2009) 027 [arXiv:0902.4082].

[216] A. Das and N. Okada, Inverse seesaw neutrino signatures at the LHC and ILC, Phys. Rev. D 88 (2013) 113001

[arXiv:1207.3734].

[217] E. Arganda, M.J. Herrero, X. Marcano and C. Weiland, Imprints of massive inverse seesaw model neutrinos in

lepton flavor violating Higgs boson decays, Phys. Rev. D 91 (2015) 015001 [arXiv:1405.4300].

[218] E. Ma and R. Srivastava, Dirac or inverse seesaw neutrino masses from gauged B‚ÄìL symmetry, Mod. Phys.

Lett. A 30 (2015) 1530020 [arXiv:1504.00111].

[219] A.G. Dias, C.A. de S. Pires, P.S. Rodrigues da Silva and A. Sampieri, A Simple Realization of the Inverse Seesaw

Mechanism, Phys. Rev. D 86 (2012) 035007 [arXiv:1206.2590].

[220] A.G. Dias, C.A. de S. Pires and P.S.R. da Silva, How the Inverse See-Saw Mechanism Can Reveal Itself Natural,

Canonical and Independent of the Right-Handed Neutrino Mass, Phys. Rev. D 84 (2011) 053011

[arXiv:1107.0739].

[221] F. Bazzocchi, Minimal Dynamical Inverse See Saw, Phys. Rev. D 83 (2011) 093009 [arXiv:1011.6299].

[222] A.E. Cárcamo Hernández, R. Martinez and F. Ochoa, Fermion masses and mixings in the 3-3-1 model with

right-handed neutrinos based on the S3 flavor symmetry, Eur. Phys. J. C 76 (2016) 634 [arXiv:1309.6567].

[223] E. Ma and R. Srivastava, Dirac or inverse seesaw neutrino masses with B−L gauge symmetry and S3 flavor

symmetry, Phys. Lett. B 741 (2015) 217 [arXiv:1411.5042].

[224] A.E. Cárcamo Hernández and H.N. Long, A highly predictive A4 flavour 3-3-1 model with radiative inverse

seesaw mechanism, J. Phys. G 45 (2018) 045001 [arXiv:1705.05246].

[225] R. Kalita and D. Borah, Constraining a type I seesaw model with A4 flavor symmetry from neutrino data and

leptogenesis, Phys. Rev. D 92 (2015) 055012 [arXiv:1508.05466].

[226] E. Ma, Neutrino mass matrix from S(4) symmetry, Phys. Lett. B 632 (2006) 352 [hep-ph/0508231].

[227] L. Dorame, S. Morisi, E. Peinado, J.W.F. Valle and A.D. Rojas, A new neutrino mass sum rule from inverse

seesaw, Phys. Rev. D 86 (2012) 056001 [arXiv:1203.0155].

[228] A.E. Cárcamo Hernández and S.F. King, Littlest Inverse Seesaw Model, Nucl. Phys. B 953 (2020) 114950

[arXiv:1903.02565].

128



Bibliography

[229] T. Kobayashi, K. Tanaka and T.H. Tatsuishi, Neutrino mixing from finite modular groups, Phys. Rev. D 98

(2018) 016004 [arXiv:1803.10391].

[230] R. de Adelhart Toorop, F. Feruglio and C. Hagedorn, Finite Modular Groups and Lepton Mixing, Nucl. Phys. B

858 (2012) 437 [arXiv:1112.1340].

[231] E. Dudas, S. Pokorski and C.A. Savoy, Soft scalar masses in supergravity with horizontal U(1)-x gauge

symmetry, Phys. Lett. B 369 (1996) 255 [hep-ph/9509410].

[232] G.K. Leontaris and N.D. Tracas, Modular weights, U(1)’s and mass matrices, Phys. Lett. B 419 (1998) 206

[hep-ph/9709510].

[233] X. Du and F. Wang, SUSY breaking constraints on modular flavor S3 invariant SU(5) GUT model, JHEP 02

(2021) 221 [arXiv:2012.01397].

[234] S. Mishra, Neutrino mixing and Leptogenesis with modular S3 symmetry in the framework of type III seesaw,

arXiv:2008.02095.

[235] H. Okada and Y. Orikasa, Modular S3 symmetric radiative seesaw model, Phys. Rev. D 100 (2019) 115037

[arXiv:1907.04716].

[236] P. Novichkov, J. Penedo, S. Petcov and A. Titov, Modular S4 models of lepton masses and mixing, JHEP 04

(2019) 005 [arXiv:1811.04933].

[237] H. Okada and Y. Orikasa, Neutrino mass model with a modular S4 symmetry, arXiv:1908.08409.

[238] M. Abbas, Modular A4 Invariance Model for Lepton Masses and Mixing, Phys. Atom. Nucl. 83 (2020) 764.

[239] K.I. Nagao and H. Okada, Lepton sector in modular A4 and gauged U(1)R symmetry, arXiv:2010.03348.

[240] T. Asaka, Y. Heo and T. Yoshida, Lepton flavor model with modular A4 symmetry in large volume limit, Phys.

Lett. B 811 (2020) 135956 [arXiv:2009.12120].

[241] T. Nomura and H. Okada, A linear seesaw model with A4-modular flavor and local U(1)B−L symmetries,

arXiv:2007.04801.

[242] H. Okada and Y. Shoji, A radiative seesaw model with three Higgs doublets in modular A4 symmetry, Nucl.

Phys. B 961 (2020) 115216 [arXiv:2003.13219].

[243] M.K. Behera, S. Singirala, S. Mishra and R. Mohanta, A modular A4 symmetric Scotogenic model for Neutrino

mass and Dark Matter, arXiv:2009.01806.

[244] G. Altarelli and F. Feruglio, Tri-bimaximal neutrino mixing, A(4) and the modular symmetry, Nucl. Phys. B 741

(2006) 215 [hep-ph/0512103].

[245] X.G. Liu and G.J. Ding, Neutrino Masses and Mixing from Double Covering of Finite Modular Groups, JHEP 08

(2019) 134 [arXiv:1907.01488].

129



Bibliography

[246] L.L. Everett and A.J. Stuart, The Double Cover of the Icosahedral Symmetry Group and Quark Mass Textures,

Phys. Lett. B 698 (2011) 131 [arXiv:1011.4928].

[247] K. Hashimoto and H. Okada, Lepton Flavor Model and Decaying Dark Matter in The Binary Icosahedral Group

Symmetry, arXiv:1110.3640.

[248] C.S. Chen, T.W. Kephart and T.C. Yuan, Binary Icosahedral Flavor Symmetry for Four Generations of Quarks

and Leptons, PTEP 2013 (2013) 103B01 [arXiv:1110.6233].

[249] A. Ibarra, E. Molinaro and S. Petcov, Low Energy Signatures of the TeV Scale See-Saw Mechanism, Phys. Rev. D

84 (2011) 013005 [arXiv:1103.6217].

[250] ALEPH, DELPHI, L3, OPAL, LEP ELECTROWEAK collaboration, S. Schael et al., Electroweak Measurements

in Electron-Positron Collisions at W-Boson-Pair Energies at LEP, Phys. Rept. 532 (2013) 119

[arXiv:1302.3415].

[251] T2K collaboration, C. Bronner, Details of T2K Oscillation Analysis, PoS NuFact2019 (2020) 037.

[252] RENO collaboration, M.Y. Pac, Recent Results from RENO, PoS NuFact2017 (2018) 038 [arXiv:1801.04049].

[253] DAYA BAY collaboration, Z. Yu, Recent Results from the Daya Bay Experiment, J. Phys. Conf. Ser. 888 (2017)

012011.

[254] DOUBLE CHOOZ collaboration, H. de Kerret et al., Double Chooz θ13 measurement via total neutron capture

detection, Nature Phys. 16 (2020) 558 [arXiv:1901.09445].

[255] G.C. Branco, J.T. Penedo, P.M.F. Pereira, M.N. Rebelo and J.I. Silva-Marcos, Type-I Seesaw with eV-Scale

Neutrinos, JHEP 07 (2020) 164 [arXiv:1912.05875].

[256] S.F. King and M. Malinsky, A(4) family symmetry and quark-lepton unification, Phys. Lett. B 645 (2007) 351

[hep-ph/0610250].

[257] G. Altarelli, Lectures on models of neutrino masses and mixings, Soryushiron Kenkyu Electron. 116 (2008) A29

[arXiv:0711.0161].

[258] T. Kimura, The minimal S(3) symmetric model, Prog. Theor. Phys. 114 (2005) 329.

[259] S. Mishra, Majorana dark matter and neutrino mass with S3 symmetry, Eur. Phys. J. Plus 135 (2020) 485

[arXiv:1911.02255].

[260] D. Meloni, S. Morisi and E. Peinado, Fritzsch neutrino mass matrix from S3 symmetry, J. Phys. G 38 (2011)

015003 [arXiv:1005.3482].

[261] S. Pramanick, Scotogenic S3 symmetric generation of realistic neutrino mixing, Phys. Rev. D 100 (2019) 035009

[arXiv:1904.07558].

130



Bibliography

[262] R. Krishnan, P.F. Harrison and W.G. Scott, Simplest Neutrino Mixing from S4 Symmetry, JHEP 04 (2013) 087

[arXiv:1211.2000].

[263] M. Chakraborty, R. Krishnan and A. Ghosal, Predictive S4 flavon model with TM1 mixing and baryogenesis

through leptogenesis, JHEP 09 (2020) 025 [arXiv:2003.00506].

[264] V.V. Vien, Lepton mass and mixing in a neutrino mass model based on S4 flavor symmetry, Int. J. Mod. Phys. A

31 (2016) 1650039 [arXiv:1603.03933].

[265] S. Kanemura, T. Matsui and H. Sugiyama, Neutrino mass and dark matter from gauged U(1)B−L breaking,

Phys. Rev. D 90 (2014) 013001 [arXiv:1405.1935].

[266] S. Kanemura, T. Nabeshima and H. Sugiyama, Radiative type-I seesaw model with dark matter via U(1)B−L

gauge symmetry breaking at future linear colliders, Phys. Rev. D 87 (2013) 015009 [arXiv:1207.7061].

[267] S. Mishra, S. Singirala and S. Sahoo, Scalar dark matter, Neutrino mass, Leptogenesis and rare B decays in a

U(1)B−L model, arXiv:1908.09187.

[268] H. Cai, T. Nomura and H. Okada, A neutrino mass model with hidden U(1) gauge symmetry, Nucl. Phys. B 949

(2019) 114802 [arXiv:1812.01240].

[269] T. Nomura, H. Okada and P. Sanyal, A radiatively induced inverse seesaw model with hidden U(1) gauge

symmetry, arXiv:2103.09494.

[270] U.K. Dey, T. Nomura and H. Okada, Inverse seesaw model with global U(1)H symmetry, Phys. Rev. D 100 (2019)

075013 [arXiv:1902.06205].

[271] A. Esmaili and Y. Farzan, Explaining the ANITA events by a Le −Lτ gauge model, JCAP 12 (2019) 017

[arXiv:1909.07995].

[272] M.K. Behera, P. Panda, P. Mishra, S. Singirala and R. Mohanta, Exploring Neutrino Masses and Mixing in the

Seesaw Model with Le −Lτ Gauged Symmetry, arXiv:2108.04066.

[273] M.K. Behera and R. Mohanta, Inverse seesaw in A′
5 modular symmetry, J. Phys. G 49 (2022) 045001

[arXiv:2108.01059].

[274] W. Grimus, Theory of Neutrino Masses and Mixing, Phys. Part. Nucl. 42 (2011) 566 [arXiv:1101.0137].

[275] E. Ma, Neutrino Mass: Mechanisms and Models, arXiv:0905.0221.

[276] P. de Salas, D. Forero, C. Ternes, M. Tortola and J. Valle, Status of neutrino oscillations 2018: 3σ hint for normal

mass ordering and improved CP sensitivity, Phys. Lett. B 782 (2018) 633 [arXiv:1708.01186].

[277] PLANCK collaboration, N. Aghanim et al., Planck 2018 results. V. CMB power spectra and likelihoods, Astron.

Astrophys. 641 (2020) A5 [arXiv:1907.12875].

131



Bibliography

[278] D. Zhang, A modular A4 symmetry realization of two-zero textures of the Majorana neutrino mass matrix, Nucl.

Phys. B 952 (2020) 114935 [arXiv:1910.07869].

[279] D. Schultz, Notes on modular forms, https://faculty.math.illinois.edu/

s̃chult25/ModFormNotes.pdf.

[280] G.J. Ding, S.F. King and X.G. Liu, Neutrino mass and mixing with A5 modular symmetry, Phys. Rev. D 100

(2019) 115005 [arXiv:1903.12588].

132



LIST OF PUBLICATIONS

Thesis Publications

1. M. K. Behera, S. Mishra, S. Singirala and R. Mohanta, “Implications of A4 modular symmetry on

neutrino mass, mixing and leptogenesis with linear seesaw”, Phys. Dark Univ. 36, 101027 (2022)

doi:10.1016/j.dark.2022.101027 [arXiv:2007.00545 [hep-ph]].

2. M. K. Behera, S. Singirala, S. Mishra and R. Mohanta, “A modular A4 symmetric scotogenic model

for neutrino mass and dark matter”, J. Phys. G 49, no.3, 035002 (2022) doi:10.1088/1361-6471/ac3cc2

[arXiv:2009.01806 [hep-ph]].

3. M. K. Behera and R. Mohanta, “Inverse seesaw in A′
5 modular symmetry”,

J. Phys. G 49, no.4, 045001 (2022) doi:10.1088/1361-6471/ac4d7a [arXiv:2108.01059 [hep-ph]].

4. M. K. Behera and R. Mohanta, “Linear Seesaw in A′
5 Modular Symmetry With Leptogenesis”, Front.

in Phys. 10, 854595 (2022) doi:10.3389/fphy.2022.854595 [arXiv:2201.10429 [hep-ph]].

Other Publications

1. S. Mishra, M. K. Behera, R. Mohanta, S. Patra and S. Singirala, “Neutrino phenomenology and dark

matter in an A4 flavour extended B−L model”, Eur. Phys. J. C 80, no.5, 420 (2020) doi:10.1140/epjc/s10052-

020-7968-9 [arXiv:1907.06429 [hep-ph]].

2. M. K. Behera, P. Panda, P. Mishra, S. Singirala and R. Mohanta, “Exploring Neutrino Masses and Mixing

in the Seesaw Model with Le −L j Gauged Symmetry”, [arXiv:2108.04066 [hep-ph]].

3. P. Panda, P. Mishra, M. K. Behera and R. Mohanta, “Neutrino phenomenology, muon and electron (g-2) under

U(1) gauged symmetries in an extended inverse seesaw model”, [arXiv:2203.14536 [hep-ph]].

4. P. Mishra, M. K. Behera, P. Panda and R. Mohanta, “Type III seesaw under A4 modular symmetry with

leptogenesis and muon g−2”, [arXiv:2204.08338 [hep-ph]].

Conference Proceedings

1. M. K. Behera and R. Mohanta, “eV Scale Sterile Neutrinos in A4 Symmetric Model”, Springer Proc.

Phys. 261, 963-967 (2021) doi:10.1007/978-981-33-4408-2_139

133









14 <1%

15 <1%

16 <1%

17 <1%

18 <1%

19 <1%

20 <1%

www.iir.berkeley.edu
Internet Source

mafiadoc.com
Internet Source

epdf.pub
Internet Source

theor.jinr.ru
Internet Source

Purushottam Sahu, Sudhanwa Patra, Prativa
Pritimita. "Neutrino mass and lepton flavor
violation in A4-based left–right symmetric
model with linear seesaw", International
Journal of Modern Physics A, 2022
Publication

Dong Woo Kang, Jongkuk Kim, Takaaki
Nomura, Hiroshi Okada. "Natural mass
hierarchy among three heavy Majorana
neutrinos for resonant leptogenesis under
modular A4 symmetry", Journal of High
Energy Physics, 2022
Publication

Monal Kashav, Surender Verma. "Broken
scaling neutrino mass matrix and
leptogenesis based on A4 modular
invariance", Journal of High Energy Physics,
2021
Publication



21 <1%

22 <1%

23 <1%

24 <1%

25 <1%

26 <1%

27 <1%

28 <1%

29 <1%

30 <1%

31 <1%

Submitted to International Institute of Social
Studies - Erasmus University Rotterdam
Student Paper

coek.info
Internet Source

repositorio.ufrn.br
Internet Source

repositorio.uam.es
Internet Source

G. C. Branco, R. González Felipe, F. R.
Joaquim. " Leptonic violation ", Reviews of
Modern Physics, 2012
Publication

dro.dur.ac.uk
Internet Source

www.guspepper.net
Internet Source

vetiver.com
Internet Source

Submitted to University of Bucharest
Student Paper

amsdottorato.unibo.it
Internet Source

nozdr.ru
Internet Source



32 <1%

33 <1%

34 <1%

35 <1%

36 <1%

37 <1%

38 <1%

39 <1%

40 <1%

41 <1%

M. Sruthilaya, Rukmani Mohanta, Sudhanwa
Patra. "$$A_4$$ A 4 realization of linear
seesaw and neutrino phenomenology", The
European Physical Journal C, 2018
Publication

Submitted to University of Melbourne
Student Paper

dare.ubvu.vu.nl
Internet Source

discovery.researcher.life
Internet Source

link.springer.com
Internet Source

portal.tpu.ru
Internet Source

www.tara.tcd.ie
Internet Source

"XXIII DAE High Energy Physics Symposium",
Springer Science and Business Media LLC,
2021
Publication

d-nb.info
Internet Source

Helda.helsinki.fi
Internet Source



42 <1%

43 <1%

44 <1%

45 <1%

46 <1%

Exclude quotes On

Exclude bibliography On

Exclude matches < 14 words

authors.library.caltech.edu
Internet Source

onlinepubs.trb.org
Internet Source

Mitesh Kumar Behera, Rukmani Mohanta.
"Linear Seesaw in A5′ Modular Symmetry
With Leptogenesis", Frontiers in Physics, 2022
Publication

Submitted to University College London
Student Paper

refubium.fu-berlin.de
Internet Source








