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ABSTRACT

tandard model although has addressed and being successful regarding the fundamental particles
and their interactions, but, is deficient in explaining certain experimental evidences. In support
of the above statement, the list of things that standard model is sloppy about are dark matter,
dark energy, baryon asymmetry of the Universe, massive neutrinos, strong CP problem. This becomes the
drive for everybody contributing in this field to find some answers either theoretically or experimentally.
Hence, in this thesis, we have made an attempt to address certain issues, left open, by the help of various

prominent models.

So, to start with, we present a model, where we have included A4 discrete symmetry in order to leap
beyond the standard model (BSM). BSM physics helps us to accommodate right handed (RH) neutrinos
which is successful in explaining the tiny neutrino mass via seesaw mechanism. Therefore, we take the
advantage of linear seesaw which demands the inclusion of left handed (LLH) neutrinos too. In the model
we have also introduced modular symmetry due to which Yukawa couplings implicitly depends on modulus
7 and explicitly on the dedekind eta function. Modular symmetry helps us in two aspects, one, reduces the
usage of flavon fields, which otherwise would make the model complicated and less predictive. Second,
modular weights helps us to avoid unwanted Lagrangian terms to an extend. However, a global symmetry
i.e. U(1)x is included to avoid certain other Lagrangian terms which modular symmetry couldn’t. All these
gimmick leads to the specific structure of linear seesaw mass matrix, which after diagonalisation gives
results in accordance with current neutrino oscillation data i.e. at 3¢ level. This includes the reactor mixing
angle i.e. sin?6013, mass sum of the active neutrinos ¥ m; which is well below the cosmological bound of
0.12 eV. Other parameters like sin 61 and sin 093 are also well within the 8¢ limits. Introduction of right
handed neutrinos, gave an idea that explanation of baryon asymmetry is also possible by the model. Hence,
we explain leptogenesis using these RH neutrinos which gives us six doubly degenerate mass eigenstates.
Therefore, to have a mass splitting we introduce a higher dimension mass term. By doing so, we obtain
nonzero CP asymmetry from the decay of lightest heavy fermion. Also, this small mass difference between
the two lighter heavy fermions enhances the self energy contribution. The coupled Boltzmann equations
are solved to obtain the evolution of lepton asymmetry, which comes out to be order of =~ 1071, which is

sufficient to explain the present baryon asymmetry of the Universe.

This successful attempt to explain neutrino mass and leptogenesis by implementing the new idea of
modular symmetry motivated us to explore things for scotogenic scenario. So, the approach was to explain
the neutrino mass at one loop level by suppressing the tree level contribution. This was done meticulously
by defining the particle charges. Further in this model, we made an attempt to accommodate lepton
flavor violations (LFVs) like pt — ey, p — 3e and u — e conversion. Hence, it was evident that our model

is successful in doing the work and explaining LFVs well below the prescribed 3¢ limits obtained from

vii



Abstract

the experiments. In addition, we also explain dark matter phenomenology of the lightest stable fermion
spectrum. As there is no hold on the Yukawa couplings because of their dependence on the dedekind eta
function. Even this stringent bound on the couplings allow us to get the correct relic density compatible
to Planck data for particular benchmark values of the model parameters. We also realized that their
is a contribution to relic density from the lepton - antilepton pair in the final state via n and Z’' (Up_p,
associated). However, as there is no direct coupling of  and Z’ with the quarks, hence, the tree level
direct detection is not possible. Till now modular symmetry has worked as charm for explaining different
phenomenologies along with accurate predictions from the neutrino sector.

Hence, we make an attempt to take it further, by, working in a different discrete symmetry i.e. A}
which is a double cover of A5 symmetry. Previously, we have checked modular A4 symmetry as being a
promising candidate but freedom in regards to the number of irreducible representation is less. However,
A[ has more number of irreducible representations as compared to A4 as well as A5 modular symmetry.
Therefore, we try to explain inverse seesaw using Ay modular symmetry. In here, the permutation group
N =5 has 120 elements and under A[ these 120 elements are categorized into nine conjugacy classes. Here,
their are higher order Yukawa couplings which comes handy while writing the superpotential. Alongside
of explaining the neutrino parameters at 3o level we also discuss non-unitarity and lepton flavor violation

Offiﬁfj}’.
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CHAPTER

INTRODUCTION

ince the beginning of time, homosapeins have been curious. We are the only species that asks

"why" and "how" inquiries, which helped to spawn primitive science as we know it from history.

Many others have also given their lives to bring the facts to light in the way we know them now.
The preceding remark is true to its core since particle physics went through a lot of ups and downs in its
early stages. Until now, the Standard Model (SM) has been our best hope for describing elementary matter
particles, including quarks and leptons, in terms of three of the four fundamental forces: strong, weak,
and electromagnetic. The fourth essential interaction, however, is missing: gravity. The initial work of
constructing SM was taken by Glashow, who discovered, in 1961, a way to combine the electromagnetic and
weak interactions into a single electroweak model ruled by an SU(2) x U(1) symmetry. Further, the SU(3)
symmetry called the Eightfold way, formulated in 1964, helped describe quarks and their interactions
with strong force. However, later it was clubbed as a component of the SM, hence the formulation became
SU(@B)x SU(2) x U(1) symmetry. In 1967, the concept of Higgs mechanism and its field came into picture,
which was able to give masses to all the elementary particles via spontaneous symmetry breaking (SSB), as
we all know it, the present standard model (SM). Many experiments were conducted and their observations
were overwhelmingly in-accordance to the SM predictions. For instance, 1973, the discovery of neutral
weak currents, caused by Z Bosons exchange. In 1983 the discovery of the W bosons themselves and not to
forget the recent discovery of Higgs boson, in 2012. Myriad experiments added to the affirmation of SM
as a successful theory that is staggeringly effective in depicting the interactions of elementary particle

physics.



Chapter 1. Introduction

1.1 Standard model in a nutshell

As aforesaid, standard model (SM) of particle physics has been successful till now in describing the
fundamental particles and forces of nature. The classification of the particles in SM is done based on the
masses, spin and other quantum numbers. For instance, fermions are spin-%, gauge bosons are spin-1,
but, Higgs boson is the only scalar particle being spin-0. Further, standard model is based on local gauge
theory, which means the Lagrangian remains invariant under local transformations.

The gauge group describing SM is a 12-dimensional non-Abelian symmetry group,

Gsu =SUB)ceSUR)LeU)y, (1.1)

here, C stands for the color charge, L is for the left handed chirality, and Y represents weak hypercharge.
SU(3)¢ is associated to the strong interactions expressed in QCD, which corresponds to eight generators
given by T2 = %, i.e. A? are the Gell-Mann matrices with a ={1,2,3,---,8}. These eight generators correlate
to eight massless gluon fields as mediators of strong interaction. Further, the gauge group SU(2)r x U(1)y
represents the electroweak sector. This unification is described by Glashow, Weinberg, Salam (GWS)
[1-3] theory, where, it is associated to four generators, three from SU(2)7, i.e. T? = % (7@ are three Pauli
matrices with a = 1,2,3) and fourth one from U(1)y i.e T? =Y. These three generators from SU(2);, are

related to the massive gauge bosons (W* and Z°), whereas, massless photon field is associated with the

generator of the weak hypercharge U(1)y.

Symmetry Particles ur | dr er || QL=0e,,e)T | Lp=(ur,d)’
SU@3)c 3 3 1 3 1
SU©2)y, 1 1 1 2 2
Uy 4/3 || -2/3 || -2 1/3 -1
1,13 0,0 || 0,0 || 0,0 | 1/2,(1/2,-1/2)T | 1/2,(1/2,-1/2)T
U(l)g =(2I3+Y)/2 2/3 || -1/3 || -1 (2/3,-1/3)T -1

Table 1.1: Standard model particles and their gauge group charges.

As physicists, we are well aware that symmetry plays an important role in defining any physical
phenomenology. In this regard, Emily Noether, stated, every symmetry is associated with a conservation
law and vice-versa. Hence, SM of particle physics is no exception to the above statement as its formation
is based on symmetries. As it is assumed that space and time are homogeneous, hence, the Lagrangian

defined, of a closed system has to be invariant under space-time translations i.e. uniform also.

2



1.1. Standard model in a nutshell

In support to above statement, the Lagrangian of a system mostly comprises of kinetic, mass and

interaction terms. However, SM Lagrangian is a combination of four different parts

Ly = Lo+ L+ Ly + %y 1.2)

Here, % comprises of, kinetic and self interaction terms of the gauge bosons. Similarly, % tells about
the kinetic and gauge interaction terms of the fermions. Whereas, 4 is associated with the kinetic, self
interaction and gauge terms of the Higgs boson and %y depicts all the interactions of the Higgs boson

with leptons and quarks.

1. Gauge term: As it is evident from above discussion that twelve gauge bosons are associated to
twelve generators of eqn. (1.1). The four bosons that corresponds to {SU(2);, x U(1)y} are B boson
from U(1)y and (W?,i =1,2,3) i.e. triplet under SU(2);,. When electroweak symmetry breaking takes
place, a mixing between B and W* occurs, which upon rediagonalization, gives rise to the physical
bosons. These are W* and Z massive bosons and y a massless boson, where, the massive bosons
help in mediating the charged and neutral weak current interactions. The other eight gauge bosons
correspond to eight gluons G® which mediates the strong force and are related to SU(3)¢c gauge
group.

A Drief dialogue, above, further helps to understand the terms in the Lagrangian as shown in eqn.

(1.2). The first term is related to the gauge fields given by
1 uv 1 i i,uv 1 a ca,uv
-% = ZBM’\/B +ZW“VW +ZGIWG 5 (1.3)

where, i ={1,2,3} and a€{1,2,3,---,8)}. The field strength tensors are given by

B,uv = ava _avBy, (1.4)
Wi, = 0,Wi—a,W. +g k' FWI Wk, (1.5)
Ga, = 0,W3-0,W3+g5 e WEWE, (1.6)

where, g and /% corresponds to the gauge coupling and structure constant under SU(2);, respec-

tively, while, g3 and e2¢

are that of SU(3)¢. As the gauge group are non-Abelian in nature, therefore,
self interactions terms of W? and G2 are required. In order to obtain massive gauge bosons EWSB
(discussed later) is essential, as it is not possible directly to construct a gauge invariant mass terms

for the gauge bosons.

2. Fermion term: Undoubtedly, electroweak transformation plays a major role in coupling of fermions
to gauge fields in a gauge invariant way. Therefore, the second term of eqn.1.2 is related to fermions,

describing the kinetic term of the fermions and their interactions with the gauge bosons as below

L =iy Dy (1.7
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In above, a covariant derivative D, is introduced by replacing ordinary derivative d, in order to

maintain the gauge invariance which is defined as
D,L:6,1+igAZTZ, (1.8)

Here, Tz are the generators associated associated with the gauge group and Az represent the gauge
fields. Therefore, when D, is replaced by its RHS from eqn.(1.8) in eqn.(1.7) it brings in a gauge

interaction term shown below
Liny =-gUy"ALTS (1.9)

Hence, the complete determination of the gauge interaction of the fermions takes place, once, the

choice of gauge structure and the fermion representation is made appropriately.

3. Higgs term: One of the most important discovery in particle physics is the Higgs Field, which
helped to solve the mystery how particles got their masses. Quite often, Higgs field is denoted by ©

which acquires the quantum number {2® 1} under SU(2), @ U(1)y.

The third term in eqn. (1.2) defines Higgs term as follows
%y =D, @ -V(®), (1.10)
where, covariant derivative is from eqn. (1.8). In addition, the Higgs potential is given by,

V(@) = 12¢pTp— AP )2 (1.11)

4. Yukawa term: The Yukawa interaction occurs when a scalar field interacts with the Dirac bilinear
fields. The SM Lagrangian’s Yukawa portion is further separated into leptonic and quark parts. The

Yukawa interaction between leptons is,
—plertor —y UL ®ejg +hc.. (1.12)

The three physical parameters involved in this term are chosen to be the three charged lepton

masses. The quark masses arise in the quark Yukawa interaction given by,

~ LI =Y Qi Busr + Y Qi Od R +hc, (1.13)
where, Y/ are the Yukawa matrices, ® = it9®*, 79 is the second pauli matrix, and i, j € {1,2,3} are
the generation indices.

1.1.1 Higgs mechanism

Birth of our Universe was possible because of certain asymmetry, but, while writing out the Lagrangian

for describing a physical phenomenon we make sure that it involves some symmetry. Breaking of the
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1.1. Standard model in a nutshell

symmetries can always be facilitated by involving certain terms that violate the symmetry. However, from
theoretical perspective it will be bizzare, if symmetry breaking terms are present from the beginning,
then the Lagrangian so constructed will be asymmetric. In contrast to above, interesting thing will be
accessing a system which by itself breaks the symmetry called spontaneous symmetry breaking (SSB). The

mechanism by which electroweak symmetry is broken
SUB)ceSUR)L,eU(l)y — SUB)ceU(1)g, (1.14)

and the gauge bosons Z and W* gain their masses is called Brout-Englert-Higgs (BEH) mechanism, where

the minimum of the Higgs potential is deduced as

|®lg =1/ — =v~=~246GeV. (1.15)

ﬁ

Hence, this minimum is called the vacuum expectation value (VEV), around which the excitation of the
physical states take place. The expression for the Higgs field is given below
D= ¢ , (1.16)
%(h +ip+v)
here, 2 and ¢ represents real fields. In addition, 2 + v is considered as the real part, where 2 behaves as
the excitations around v. Further, SSB is acheived due to disobedience shown by the ground state of the
field towards the SU(2);, symmetry, because of VEV gain. Therefore, gauge bosons gain masses as soon as
Higgs field acquire VEV. The gauge interacting part of the eqn. (1.10) is given as follows
2
Laise =5 (WL + W2 - W} -g'B, ), (117)
where, g represents the gauge coupling of SU(2);, while, g’ is that of U(1)y. The first two terms in
eqn.(1.17) involving W! and W2 have degenerate mass given by myy = %". The third component which is

linear combination of W3 and B u represents Z, given as below

1
Zy=———1{-eW+g'By}, (1.18)

[g/Q +g2]§
1
this gives the mass for Z, = § [g’2 + g2] 2. The orthogonal field combination

1

A - {g'W3 + By}, (1.19)

b= T 1

(272 + 2]
represents the massless photon and is a gauge boson of U(1)g gauge group. We know that SU(2), @ U(1)y
are associated with four generators out of which three are broken. Hence, intuitively those three must
become Goldstone bosons [4], but in 1964 it was shown that due to SSB of the gauge symmetry, the extra

degrees of freedom instead can become longitudinal polarizations of the gauge bosons. Therefore, it is said
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Chapter 1. Introduction

that these components are eaten by the gauge boson fields. Hence, the left over component of the Higgs
field becomes the physical boson called the Higgs boson which is a scalar particle. It is intereseting to
observe that BEH mechanism doesn’t affect the total number of degrees of freedom, as, massive gauge
boson has an extra degree of freedom than a massless one.

The matrix involved in mixing of the B field and third component of W’ field i.e. W? into the Z and A
fields is

cosOy —sinfOy (1.20)

sinfy  cosOw
here, Oy is called the weak mixing angle or Weinberg angle. It is expressed in terms of the gauge couplings
g and g’ i.e. tanOy = g'/g. This Weinberg angle also establishes the relation between the masses of W and
Z boson i.e. cos by = ,'n"—‘f] Further, Wi(i = 1,2) is rotated into the charged massive fields, expressed as
1
W= —
13 \/g

The Higgs mechanism is also successful in giving masses to the fermions. Due to ESWB the Yukawa sector

{W}liiWﬁ}. (1.21)

will involve the following terms

gmass - iU Ve, (1.22)

fermion

where, the fermion mass matrix is given by m"/ = \%Yij , although, the mass matrix isn’t diagonal in

general.

1.1.2 Downside of Standard Model

Inspite of all the success and being considered as a fundamental theory of particle physics, standard
model, miserably fails in explaining certain sectors, which till date are a mystery for science. The baryon
asymmetry of the universe, origin of the neutrino mass, neutrino oscillations, dark energy, dark matter,

naturalness or hierarchy problem, quantization of gravity etc. are beyond the reach of SM.

1. All these years of meticulous and diligent work done by the high energy physics group across the
globe has developed an understanding that SM has a hierarchy or naturalness problem. The problem
is Higgs mass i.e. 125 GeV and gravitational scale i.e. around 101 GeV is expected to be of same
order. However there ratio boils down to about 10717 order. Therefore, the question arises why this

huge difference in the mass scale.

2. It is an interesting fact that during its voyage from source to detectors neutrinos oscillate from one

neutrino family to another neutrino family which SM hasn’t been able to describe till date.

6



1.2. The phenomenon of neutrino oscillations

3. Considering the ratio of the energy density of free space time (A) to Planck scale, as an output, a

4
very small number is seen i.e. ( ) ~ 107120 « 1. This leaves us with a query that why this

MPlanck
ratio yields such a small number, it is also known as the cosmological constant problem.

4. We know that the ingredients that makes our universe is 4% of visible matter, 22% of dark matter
and rest 74% is dark energy. However, to prove this, their is a deficiency of suitable candidate(s)

which can act like dark matter within the SM.

There are so many unanswered problems in the standard model, hence, we make an attempt to deduce
different parameters (i.e. mixing angles, sum of active neutrino masses, Jarlskog Invariant etc.) related
neutrinos theoretically, suggestive from neutrino oscillations experimentally. As neutrinos don’t have right
handed partners in SM, so all model building is done beyond the standard model. Alongside, we also shed
some light on the existence of dark matter through our models and discuss the issue of matter - antimatter

asymmetry of the universe.

1.2 The phenomenon of neutrino oscillations

1.2.1 Insights and evidences from neutrino experiments

Indication about neutrino oscillations dates back to 1967, when efforts were made to measure the v, flux
being produced by the Sun using a chlorine detector (v, +37Cl — e~ +37Ar). This pioneering work was
lead by Raymond Davis, John N. Bahcall and their collaborators in Homestake mine [5], whose results
clearly indicated that there is a difference between observed values from experiments and predicted values
of standard solar model [6]. People were sceptical about oscillation hypothesis because compared to the
quark mixing, neutrino oscillations required the involvement of large mixing angles. Although, within
the standard model neutrinos were considered massless, but, neutrino oscillations implied that neutrinos
are not massless. Experimental verifications done over the years by several experiments like GALLEX,
Superkamiokande, T2K, SAGE etc. [7-13] cleared the clouds. This has motivated physicists across the

globe to work and define frameworks beyond the standard model.

1.2.2 A theoretical background

It is very clear that neutrinos carry some mass as implied from oscillation experiments, and they oscillate
between flavors i.e. observed from solar and atmospheric experiments. So let us first discuss the two flavor
states of the neutrinos. Neutrinos of one generation is correspondingly produced along with the same
generation charged leptons, as seen in the charge current weak interactions. Suppose a source produces
neutrinos of flavor v, and undergoes oscillation to another flavor vg. Therefore, the mass eigenstate will

be superposition of all the flavor states. Assuming the charged lepton diagonal basis, and the neutrino

7
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charged current interaction is given as

11181 - -
Lw = [5] [ﬁ el-LY'uUijVjLW# + h.c., (1.23)
where, the transformation from flavor eigenstate to mass eigenstate is given by |v4) = U;;v;1. For instance,
if |vq) flavor state is produced at time ¢ = 0 and during propagation transforms into another state vg such

that it becomes necessary to calculate the probability of oscillation. So, a plane wave approximation helps

resolve the thing where 1 is proper time

a . .
AT i, (1.24)
ot
Hence, the evolution of the state is given by
vi®)) = ™% [v;(0)). (1.25)

The oscillation amplitude at the time t for the neutrinos at flavor state |vg) is given by
vy —vp;t) = Upje ™ U (vjlvi) =Upje” ™% U . (1.26)

Therefore, one can interpret that U, ; being the transformation amplitude and the exponential factor is

due to the time evolution of neutrino mass eigenstate, and the probability of oscillation can be obtained as

P(vq —vg;t) = |t (va — v t)I” = [Upje ™% U (1.27)
Assuming the Lorentz invariance, one can have
miTinluxHZEit—piLi. (1.28)

Here,

m=
pi:\/Ea_—mng_ﬁ. (1.29)

Therefore. substituting eqn. 1.29 in eqn. 1.28, one can get

m2 m?2
17;,=Et—|E-——+|L=(E-t)L-—L. 1.
m;T; t ( 2E) (E-1) 5E (1.30)

Looking carefully at the above equation, it is evident that the first term is a phase factor which can be
redefined. Hence, the probability of oscillation in Eqn. 1.27 is written as

2
Ji

Am2
5aﬁ+Z?:2UﬁjU;j (el 2E L—l)

P(vqevp;t)= (1.31)
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1.3. Dirac and Majorana neutrino mass terms

1.2.2.1 Two flavor oscillation

To understand the things we depict a simplistic scenario of two flavor oscillation case i.e. v — v,. The

2 x 2 mixing matirx utilized is given below

cosf sinf
U= . (1.32)

—sinf cosf

Therefore, writing the mass eigenstates in terms of the flavor eigenstates are as follows

[vi) = cosO|ve)—sinb|vy),
[ve) = sind|ve)+cosOlvy). (1.33)
The oscillation probability is then given by
P in? 20 sin® (1) AmiyL (1.34)
(ve—v,) = SIN sin“(mwe), = TiEn .

The oscillation is maximal at 6 = 7 and minimal at 6 =0, 7.

1.2.2.2 Three flavor oscillation

Similarly, for three flavor neutrino oscillation the probability [14, 15] is given by
* * -2 L * * .2 L
Plya—vp) = Sap —4i§jRe (Ua,-UﬁjUajUﬁi) sin®|Ayj +2§j1m (UaiUﬁjUajUﬁi) sin’(Agj | (1.35)
where, A;j = (m? - m?) and 6o =3, Up, U Ei being the unitarity relation. The standard parametrization of

the three neutrino mixing matrix is given by

c12€13 §12€13 sige”cr 110 0

Upuns = idep Q12 o |, (1.36)

19
—S12C23 — C12823513€" €12€23 — 812823513€ §23C13 0

—512523 +C12C23513€0CP 19893 +512C23513€'%CP  —cagc1s | [0 0 ei2?2

where, sj;, = sin0j;, cj, = cosOj;, 6cp is the Dirac CP violating phase, {12 are the Majorana phases.
Experiments based on neutrino oscillation predict two types of mass orderings, i.e. (m; < mg < m3) called

the normal hierarchy and (ms <mj <mg) called the inverted hierarchy.

1.3 Dirac and Majorana neutrino mass terms

It is noticeable that Standard model (SM) is void of neutrino masses. However, neutrino oscillation
experiments strongly suggest of neutrinos being massive. Therefore, it becomes important to theoretically

justify the above fact.
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Left handed chiral fermions voluntarily participate in the weak interactions, therefore, SM fields can

be expressed in terms of their chiral fields. To do this Weyl fermions are defined as

1+9°
2

YR =PLry = v, (1.37)

¥ being the four-component Dirac spinor. Mass term in SM has the form mWL’R wr,r and it is evident only
if opposite chirality spinors couple to each other. This gives rise to a possibility of having two kinds of mass
terms [16, 17]

Dirac :

mpyryg +H.c., (1.38)

Majorana :

Mpyr(yL) + Mr(yr)yr +H.c., (1.39)

where, y¢ = CET and C being the charge conjugation matrix. The nomenclature of the mass term is
because they come into existence from the Dirac and Majorana type fields, where, v = ¢ + yg and
Web =WLR+ u/i’R respectively.

Construction of Dirac mass term demands involvement of two distinct Weyl fermions. Therefore, we
have to introduce chirally right handed neutrinos N into SM alongside of vi,. As Nr are weak isospin

singlets, hence can couple to v, and H (i.e. SM Higgs doublet) allowing us to write the Yukawa term i.e.

Y, /LHvg +H.c.. (1.40)

1.4 Seesaw Mechanism

The seesaw mechanism gets its name from the interaction between the masses of sterile and active
neutrinos. As the mass of the sterile neutrinos increases, the mass of the active neutrinos falls, like a
seesaw. Hence, extending the SM with different symmetries helps us to constrict a theory with less random
input parameters which for certain cases gives definite predictions. Hence, implementation of canonical
seesaw, let us wonder if this unimpeded right handed neutrino sector can be estimated through these
symmetries. This is interesting due to the fact that their is some link between seesaw parameters and
lepton asymmetry of the universe i.e. leptogenesis. While constructing a model choice of symmetries are
also governed by cosmological data. To realize the importance of symmetries, seesaw mechanism comes
handy in establishing the connection between heavy RH neutrino mass matrix and the low-energy neutrino
data, however, linking them is difficult as there are ample number of parameters to be fixed. Therefore,
symmetry plays a crucial role in interrelating low-energy observables and the undetermined seesaw sector.

So shifting our focus towards seesaw mechanism and its beauty in explaining things which till now
have been out of reach of standard model. In this regard, there are many variants aside from canonical i.e.

type-II seesaw involving scalar triplets, type-III incorporating fermion triplets, linear and inverse seesaw

10



1.4. Seesaw Mechanism

which are modified type-I seesaw. So, below we discuss only those relevant to my doctoral work i.e. linear

and inverse seesaw.

1.4.0.1 Type-I seesaw

(H) (H)
] ]
I I
1 1
I I
I I
I I
1 1
I I
I N N I
—p———Pp o d4———4—
v v
Ly My Y L

Figure 1.1: Feynman diagram showcasing neutrino mass through type-I seesaw.

Introduction of singlet RH neutrinos in the seesaw helps us write the Dirac mass term for neutrinos
which was previously not possible. In MSSM only two right handed neutrinos are enough to generate a
mass square splitting, but, adding one more RH neutrino to MSSM gives rise to two mass square splittings

Am? ’g Therefore, the Yukawa interaction term can be written as

Pyukawa = —Yi;LitN;jrH +H.c., (1.41)

where, Y;; being the 3 x 3 coupling matrix and L7, being the SM lepton doublet with (i,j = 1,2, 3), where,
H=iooH* and (H) = % being its VEV . The singlets RH neutrinos also allows us to write the Majorana
mass term for neutrinos as well

1 —
LMaj = _§MNijNiLNjR +H.e, (1.42)

where, N;z = Nig and v;1, being the SM neutrino eigenstates, the neutrino mass matrix is written as

1_ — 0 mpl||vr
my = —§(VLNL) , (1.43)
m¥ My |\Ng

giving a neutrino mass in the form as shown below in eqn.(1.44) and is also pictorially depicted by the

Feynman diagram as shown in Fig. 1.1.

LT v 2 Y2
mvszMK, mD z(\/—g) M_N (144)

with mixing between active (v;1) and heavy neutrinos (N;r)

tanf = % =/ Im./Mxl. (1.45)
N
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As there are no gauge interactions in N;g, therefore, the 3 x 3 mixing matrix connecting the three neutrinos
to the three charged leptons cannot be unitary. For m, ~1 eV and My ~ 1 TeV, however, the violation of
unitarity is of the order of 107, which is far too tiny to be seen, but within the limit My — oo, lepton-
number conservation is restored. To our surprise there exist modified canonical seesaw called the inverse

and linear seesaw discussed in the sections below.

1.4.0.2 Inverse Seesaw

VL Y Mirp u Mg Y VL

Figure 1.2: Neutrino mass generation through inverse seesaw.

This is a type of canonical seesaw where we include three singlet RH neutrinos (IV;g), three extra SM
singlet neutral fermions (S;7,) along with three active neutrinos (v;z) with (i = 1,2,3). So this mechanism
demands us to use these nine neutrinos to develop a Lagrangian by the implementation of some BSM

symmetries and acquire the form given below
1 _
Linv = —YVLmDNRH—SzMLRNR - §[JSLSE +H.c., (1.46)

which indeed gives rise to 9 x 9 neutrino mass matrix in the basis of (v, Nr,Sy) as follows,

o mf o
mv=lmp 0 M| (1.47)
0 Mg wu

The mass hierarchy utilized in the inverse seesaw is u < mp < M and the effective neutrino mass (m,) is
given by

my=mb M7 uMpg mp. (1.48)

Due to the obvious twofold suppression by the mass scale associated with My g, such a scale can be
substantially smaller than the one involved in the conventional seesaw mechanism. Standard neutrinos

with masses in the sub-eV range have been confirmed for mp at the electroweak scale, My r at the TeV
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scale, and p at the keV scale. In this instance, all six RH neutrinos may generate masses around the TeV
scale, and the ratio mp MI_JI% modulates their mixing with standard neutrinos. The crux of the inverse
seesaw is that the tininess of neutrino masses is assured by assuming that the scale is small, and that
it must be at the keV scale in order to get the RH neutrino masses down to the TeV scale [18, 19]. The
mixing angle between the active and heavy fermion for the case of inverse seesaw is given as

my

U

0= arctan(—M ) = ‘ (1.49)

LR

For instance, if m, ~1 eV and u ~ 10 keV consistent with the values of mp ~ 10 GeV and My r ~ 1 TeV,
hence, the mixing angle comes out to be G(1072) which is quite appreciable thus can be probed in near

future experiments.

1.4.0.3 Linear Seesaw

(1"1 ) (If )

\ :

1 ]

1 ]

1 ]

1 ]

] ]

| Ngr Sro
S S P W SR
VL Y Mg Y VL

Figure 1.3: Neutrino mass generation in linear seesaw.

Similar to above, there exist another modified canonical seesaw called the linear seesaw which some
striking differences in comparison to inverse seesaw. Here also we introduce six heavy neutrinos i.e. (N;g
and S;1) as discussed above, but, the peculiarity arises by avoiding the 33 element and allowing the 13
and 31 element. This means we allow the mixing of (v;r, and S;z,) while forbidding Majorana mass term

for S;r. The Lagrangian for linear seesaw is mentioned below as
Lrincar =YHNRL+MpNgSy + Y, HLSy, +H.c.. (1.50)

Therefore, the 9 x 9 mass matrix in the basis of (VL,NE,,S 1) retains the structure as provided below

0 mLT) mfs
=l mp 0 MLl (1.51)

mrs Mrgp O
where, the mass hierarchy is considered to be Mrr > mp,mrg leading to effective neutrino mass

_mpmrgs

= 1.52
my Mg ( )
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The term “linear” tells that the effective neutrino mass formula as shown above in eqn. (1.52) is linear in

mp unlike canonical seesaw, where, it is quadratic in mp.

1.5 An ingenious approach : Modular Symmetry

Inclusion of discrete symmetries in model building is escalated previously by many models of quark masses
and mixing, and, currently due to the discovery of oscillations in neutrino sector. Back then discrete
symmetries, were able to predict results that was in accordance to experimental results obtained, for
instance, tri-bimaximal mixing of A4 symmetry which yielded null value for reactor mixing angle. However,
challenges increased for theoretical background as soon as the experiments improved and the results were
more precise and stringent i.e. reactor mixing angle was obtained, departure of the atmospheric mixing
angle from maximal value etc. Other drawbacks of conventional discrete symmetries, are, it requires
quite a bunch of flavon fields in order to facilitate the symmetry breaking and deliberately involves non-
renormalizable operators. Introduction of these higher dimensional operators reduces the predictability of
the model. Therefore, modular symmetry was brought in for the rescue, where, finite modular groups I'y
are introduced. One interesting thing about finite modular groups are: they are isomorphic to discrete

symmetry groups like I'p = S3, '3 = Ay, Ty =8y, 5= A5, Iy = A}, T, = A[ etc.

1.5.1 Defintions and examples

The modular group is defined as a group of 2 x 2 matrices having integer entries and determinant 1.

b
SLQ(Z):{ “ Plabedez, adfbczl}. (1.53)
c d

The generators of modular group being
1 1 0 -1
T= and S = . (1.54)
01 1 0

Therefore, the linear fractional transformation that acts on the modulus 7 is given by

b
0=T0 e, mm>0, y=|" |esL@, (1.55)
cTt+d

c d c d

where, # is defined as the upper half plane and is also recognized as one of the three connected surfaces
of the Riemann surface. It is inferred from above that if ¢ # 0, implies, —d/c maps to oo and oo goes to a/c.
However, if ¢ = 0 then oo goes to co. Also, both +I gives identity transformation, where, I is identity matrix
and in a more general perspective a pair of +y of matrices within SLo(Z) yield a single transformation. In

contrast to above, the generators of modular group as defined in eqn. (1.54) yield

1
S:t—>—— T:t—-71+1. (1.56)
T

14



1.5. An ingenious approach : Modular Symmetry

1.5.1.1 Dedekind eta Function

The infinite product defines the Dedekind eta function 7(r) on the upper half plane given below
rin 2 .
nr)=ez [[(1-e*"7), (1.57)
n=1

where, Im(7) > 0 is required for the convergence of the series. Jacobi’s pioneering work "Fundamenta Nova"
was the first to investigate this function. Jacobi assumed that Im(z) > 0 in his research. In some of his
unpublished writings, Riemann examined the behaviour of (7) in the limiting condition Im(7) = 0, which
were edited by Dedekind and Weber in 1874 following Riemann’s tragic death.

So following the transformation as expressed in eqn. (1.56) the Dedekind eta function tranforms as

S:t— =, n() =vV-itn(), (1.58)
T:r—1+1, n)=ei ). (1.59)

Extending the above transformations to n(37), n(7/3), n((t + 1)/3), n((t + 2)/3) as they form a closed group
under modular symmetry.

Under T generator the transformation are given as

n(3t) ei%n(3r) s
n(z) = n Tgl),
(22 - o[22,
7 T;3 - e%n(g). (1.60)

Under S generator they transform as

n3r) — \/gmn(g),

n(f) — V3VZiTn3r),

+1 —in +2
n(T — eﬁ\/—i‘[n(r )’
3 3
+2 —ir +1
,,(73 . eﬁ\/—irn(TS ) (1.61)

The importance of these eta functions expressed in eqn.(1.60) and eqn.(1.61) more precise in further section
where we discuss the A4 modular symmetry because my doctoral work mostly involves it.
1.5.1.2 A4 modular symmetry
In this section we mainly focus on the modular form of level 3, abiding the relation
) =(ct+d)* (@), (1.62)
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where,

I3 = {y ¢ Plesto, | O]t ° (mod(3))} (1.63)
c d c d 01

Therefore, their exists a quotient space for I'(3) i.e. #/T'(3) purported by a fundamental domain %, which
implies to be a connected region of A, suggesting that each point of # can be projected into & via I'(3)
transformation. However, an interesting point to note is that no two points in the domain of & are related
under I'(3). Therefore, A#/T'(3) is nothing but & with definite boundary points identified. Compatification
of #/T'(3) is made via adding certain points ioco,—1,0,1 which forms the cusps and serve as the vertices
of a tetrahedron, hence, I'(3) being isomorphic to A4 discrete symmetry because cusps are related to the
transformation I's = I/T'(3). The generators S and T help to generate A4 symmetry while satisfying the
relation:

S2=T3=(8T)®=1. (1.64)

The dimension of I'(3) being 2% + 1, for lower modular weight i.e. £ = 1, their exist three linearly independent
Yukawa coupling expressed in terms of Dedekind eta function expressed in appendix A in eqn. (B.1).

However, for numerical calculation we use the g expansion form of the Yukawa couplings expressed as

Yi(r) = 1+12¢+36¢%+12¢°+---,
Yo(r) = —6q1/3(1+7q+8q2+...) ’
Ys(r) = -18¢¥*(1+2g+5¢%+-). (1.65)

Also, Y;(7) satisfies the constraint relation given by
YZ+2Y1Y3=0, (1.66)

because it is necessary to recover the correct dimension of the linear space Moy (I'(3)).

1.5.1.3 A modular symmetry

Here, we discuss the scenario for double cover of A5 symmetry i.e. I', = AL. Unlike A4 or A5 double cover
is advantageous because here we are able to have both even and odd weight modular forms. Moreover,
exploring the geometrical aspect it seems clear that I'(5) ~ A] resembles icosahedral which is a double
cover of dodecahedron. However, a clear picture is established by discussing things in the domain of group
theory. The basic properties and definitions are similar as discussed in section 1.5.1, but the peculiarity

here being, three generators are involved i.e. along with S and T there is one more generator R given by

R- , (1.67)
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such that S, T and R satisfy the identities S2 =R, (ST)3 =R? =] and RT = TR. This extra generator R
helps in transforming matter fields in modular invariant theories as mentioned in refs. [20, 21]. Therefore,
instead of T we have to use I as the symmetry group in such theories. Hence, for the finite double cover

modular group, the definition goes as Iy, = I/T(N) utilizing the above identities.

Above preliminary discussion lays the foundation for Ay modular symmetry, where, A} group consists
of 120 elements for N = 5. These 120 elements are divided into nine conjugacy classes out of which
1, 3,3/, 4,5 with R =I are the irreducible representations corresponding to dodecahedron symmetry.
Similarly, 2, 2, 4, 6 with R = —I are the irreducible representations related to icosahedral. Therefore, the
Kronecker product rules associated to these irreducible representations and relevant to my doctoral work

are expressed in appendix C.

1.6 Leptogenesis - showcasing Universe’s baryon asymmetry

The current cosmos is asymmetric in terms of matter-anti matter content, whereas it was previously
acclimatised [22] with an equal amount of particle and antiparticle states. The value of the asymmetry
has been demonstrated by results from BBN and CMBR as
np—ng
np=-2—"B £ (2.6-6.2)x 10710, (1.68)
iy

Here, np (ng) is the (anti)baryon number density and n, being the photon number density. As a result,
this has been a difficult problem with limited knowledge that will be resolved through further research.
Sakharov [23], who insists on three requirements, has presented the most notable conditions explaining
the production of asymmetry from a symmetric Universe given as : i) baryon number violation in the early

Universe ii) C and CP violation iii) Out of equilibrium decay of heavy particles and discussed below.

1.6.1 Baryon number violation in early Universe

Baryon number violation in an earlier period is expected for the emergence of asymmetry in the baryon
sector from a symmetric universe. This thing becomes obvious at the GUT scale where representations
acquired by quark and leptons are same. Moreover, baryon and lepton number constitute accidental
symmetries, hence, can be violated at tree level. Whereas, non-perturbative sphalerons may include (B + L)

violating processes expressed as

&
Il

f JB(x) d3x,

f JE(x) d3x, (1.69)

~
Il
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where,
B I (— < T
T = 3L @z vuar, —uf yuus, ~d5 vuds )
JE = Y (vl -emver). (1.70)
i
In here, Jf is the baryonic current and J{; represents leptonic current, also, g7, and ¢, represent the
quark and lepton fields respectively in eqn. (1.70). Interesting thing to notice is that even if B and L are
classically conserved but the triangle anomalies associated, generate a quantum mechanical divergent
current given as
0, JE = ok = —(4\/;1)2 np (g2WﬁVWa”V ~g”B WE,W) , (1.71)

where, SU(2)y, field strength is given by Wy, =0,Wy —9,W; and U(1)y field strength is presented by
B,y = 90,B, - 0,B, and nF being the no. of fermion generations. It is quite clear from the equations
presented above that B + L is violated i.e. (ONJE + 6“Jll; # 0) being the divergent current which depends
upon the topological charges identified as Chern-Simon numbers (N¢g) [24] and alters for different
degenerate states of the vacuum in non-abelian theories. Additionally, B and L number are violated due to
the transitions between different vacuum states i.e, AB = AL = npAN¢gs = 3n, with, n being an +ve integer.

Therefore, yielding a lowest order operator

0B+ =[] (qr,qr,91,%L,) - (1.72)

There seems to be quantum tunneling effect between various vacua, called, instanton effects, which are
exponentially suppressed at zero temperature with a probability of e T G(107165). However, when
temperature is high enough it still will allow classical process and transition can lead through thermal
fluctuations over barrier. As a result, the B + L violating process has a considerable rate of maintaining
thermal balance at this scale. This transition rate is dictated by the sphalerons, an unstable solution of the

gauge-Higgs system in finite temperature electroweak theory. Additionally, sphaleron transition rate per

I'p+r 1

unit volume due to temperature below EWSB is given by -5 ~ “MiakT and is repressed exponentially,

where, My being the mass of the W mass, % is the Boltzmann constant, and « being the fine structure

Ipsr

constant. However, if the temperature is high enough then the transition rate is given by 5 ~ (aT)* &

Ina

which is a compelling result.

1.6.2 C and CP violation

To generate the B asymmetry CP violation plays a key role and is necessary. Let us demonstrate a toy
model incorporating heavy exotic particles say y; which can interact with other particles say fermions ¢;

and scalars 7’s through Yukawa terms
fzhjkfjnxk +h.c., (1.73)
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1.6. Leptogenesis — showcasing Universe’s baryon asymmetry

where, £ j, is the complex coupling with j,k =1,2,---, where fig. 1.4 represents the tree level Feynman
diagram related to the decay of y;. In general, let us consider that the decay y; — ¢;1 as shown in fig. 1.4,
gives a change of AB, = +1, while the decay of antiparticle y, — 3 7 has ABy = —1, then the CP asymmetry

can be quantified w.r.t. the above decays as

A, T (xr — €;m) . AT (Tr — €;7)

€Ecp =
1—‘total 1—‘total
_ +nr (Xk — (jT]) +(=1Dr ()_Ck - [jT_])
I‘total
r-r
_ L (1.74)
r+r

where the denominator expresses the total decay rate with ' =T'(y, — ¢;n) and I =T (y — £;7). It is

Xk

Figure 1.5: Left diagram represents the one loop vertex correction for the particle y; — ¢;n and right
diagram showcases the corresponding one-loop self energy diagram.

clear from above expression that a difference in the decay of particle and antiparticle is a must which will
allow to generate certain CP asymmetry in the baryon number. In order to achieve that one has to go
beyond the lowest order and therefore the first non zero contribution to CP asymmetry comes from the

mixing between the tree level and one-loop diagrams as shown in fig. 1.5

1.6.3 Departure from thermal equilibrium

The requirement of departing from thermal equilibrium in accordance with Sakharov’s third condition

is well justified by equilibrium thermodynamics. The number density of particles and anti-particles in
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the thermal bath equilibrates through potential interactions such as decay, inverse decay, or annihilation
in forward and backward directions. The particle decouples and the number density is diluted when the
universe’s expansion rate surpasses the interaction rate. Let us consider a heavy boson X existing in
thermal equilibrium from the early epoch with nx =ng =n, for T>mx and nx =ng = (mxT)*? < n, for
T =~ mx. In order to achieve an equilibrium number density of both X and X, it demands the interactions
taking part in the formation and decay of these bosons to be in counterpoise. As self quenching property is
showcased by annihilation processes, therefore, decay processes are of great significance in equilibrium
dynamics.

So to illustrate the third condition, we consider I'p, I'rp, I's being decay, inverse decay and scattering

process of X and X bosons respectively expressed as

m,T!, when T=mgx,
I'p = amy (1.75)

1 when T <my,

1 when T =zmy,
I';p = Ip (1.76)

(m/TY¥ems/T when T <my,

T5/2 2 /g, T%
az(ﬁ) , H:g—, (1.77)
T4+ m3

I
: Mp,

where, @ = 8%4r represents the strength of coupling associated with boson X. Also, o being the annihilation
cross section at high temperature and is given as :‘;—i and in low temperature it takes the value o = GiB T2,
Now for higher values of mx, the effectiveness of the interaction rate is lowered as compared to Hubble
expansion (H), depicted by expressing through a new parameter

T
T 9H

Mp,;

K -t
mx

(1.78)

v

T=mx
Above eqn. (1.78) defines the efficacy of decay or inverse decay depending upon T'=myx and T < mx
respectively. Hence, when K < 1, the reaction rate is governed by the expansion and particle deviates
from equilibrium, forbidding the backward reactions kinematically leading to over-abundance of X and X.
When the decay of X and X is completely done, ¢ ~ 1"51 with nx =ng =ny and s = g.n, called the entropy

density. A simple relation for baryon asymmetry arises
Ypg=—~ — =~ —. (1.79)

As, K < 1 making inverse decay and scattering processes immaterial and allowing only decay process,
hence, to have baryon symmetry of the order G(10719), it is required to have ecp = 1078 with g, = 102.

Taking the above considerations into account one can establish a Boltzmann equation to solve the number
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1.7. Dark Matter

density of X by incorporating decay and inverse decay as

dnx
W+3HX :—FD (nx—ngg), (1.80)

where, nx indicates the equilibrium number density and I'p being thermally averaged decay rate X,

where,

__ 1+¢
M =0 = |M(Bb— X0 = —|Mol?,

. 1-
IM(X — Bb)[2 IM(bb — X)|2 = T€|M0|2. (1.81)

Hence, the Boltzmann equation is modified by subtracting ng from n

d ny
%"'31{713:eI‘D(nX—n;I)—nB(—X)—2n3nb(0|v|). (1.82)
Ty

As a result, the nonzero baryon asymmetry can only be obtained by departing from the thermal equilibrium

and violating the baryon number, C and CP.

1.7 Dark Matter

In recent times, the presence of dark matter has become a hot topic, and the hunt for direct and indirect
evidences remained unresolved. According to data from the WMAP and Planck satellites, dark matter and
dark energy occupy around 23% and 73% of the universe, respectively, revealing a preponderance of the
dark sector over the visible one [25, 26]. Unless Zwicky [27, 28] pointed out the existence of a dark sector,
matter domination was still asserted until 1933. This was believed to be enormous, neutral, and stable, as

indicated by its gravitational interaction [29, 30].

1.7.1 Galaxy rotation curves, CMBR and Gravitational lensing

Astronomy has provided proof of dark matter in an indirect way [31-33], as during 1978 Vera Rubin and
colleagues meticulously studied flat rotation curves of spiral galaxies. The structure of spiral galaxies
reveals that maximum mass is at the center forming a bulge. Therefore, stars rotational velocities are
functions of radial distances. A simple equation demonstrates the validity of the above sentence given

below:
mv?(r) _ GmM(r)

5 (1.83)

r r
Here, v(r), r, m and M(r), denote radial velocity, radial distance, mass of the star and mass enclosed in
radius r respectively. To preserve the laws of physics the intuitive way being the decrease of velocity when
r increase for a constant M(r). But observation showed that the velocity being constant after a certain
distance giving an indirect implication of the presence of dark matter. As an example we show the rotation

curve plot for NCG 3198 in Fig. 1.6.
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DISTRIBUTION OF DARK MATTER IN NGC 3198
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Figure 1.6: Velocity rotation curves for spiral galaxy NGC 3198.

The other perspective to admit the existence of dark matter is through Cosmological microwave

background radiation (CMBR) where the observations from primodial nucleosynthesis predicted that

the total density of luminous baryonic matter (2 = 0.01). This result is in disparity with the observed

matter density 0.014 < Qp < 0.16 ruminating towards existence of a small amount of non-baryonic matter.

Deeper insight regarding CMBR reveals the important
role played by thermodynamics because during the early
epoch, the temperature was high enough and matter was
in plasma state making it difficult for photons streaming.
But as temperature decreases (i.e. = 0.1eV) and Universe
cooled, matter-radiation decoupling took place bringing
CMBR into existence. Wilkinson Microwave Anisotropy
Probe (WMAP) made the discovery of CMBR and helped
physicists to think deep and probe into the early Uni-
verse by setting new experiments. Before recombination
epoch, weak interaction was inferior to Thomson scat-

tering of photon interacting with electrons and baryons.
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Figure 1.7: CMBR’s power spectrum

However, the possibility of non-baryonic matter, which interacts solely through weak or gravitational

interactions, is hinted at by the baryon acoustic oscillation. This creates a potential barrier for the baryon-

photon fluid, forcing it to compress and expand in order to overcome it by creating a pressure difference.

Photons in the most packed zone are high in temperature than those in the most dispersed area. As a

consequence, minuscule anisotropies in the temperature of CMB photons from the surface of last scattering

were formed, which revealed a lot more information about the universe than what was originally discovered

by WMAP. Fig. 1.7 shows different peaks where the first peak corresponds to geometric structure of the

universe, whereas, second one reveals the total baryon number density and the third one gives information
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1.7. Dark Matter

about the existence of DM. Unlike CMBR, gravitational lensing i.e. bending of light makes a clear indirect
inference towards the existence of dark matter. The support for above statement comes from calculating
masses through scattered radial velocity, X-ray emission and gravitational lensing which signify that
dark matter to visible matter is approximately 5 : 1. So, when a distant observer pinpoints a source such
that the light reaching him/her has undergone bending having an massive obstruction proves general
relativity right and helps in measuring the mass present because more the mass more the bending of light.

Therefore, bullet cluster is best example which supports the presence of dark matter.

1.7.2 Dynamics of early Universe

Universe began being a charged soup which was extremely dense and hot, with particle interactions
occurring far more often than they do today. Production and annihilation ensued at the same rate,
sustaining the balance. This is known as ‘thermal equilibrium’ in statistical terms, and it occurs at a
specific temperature. For most of the early Universe epochs, the thermal equilibrium description turns out
to be a decent approximation. The expansion of the Universe, on the other hand, never results in a state of
complete thermal equilibrium. Also, a nearly equilibrium state of the Universe is said to be maintained

when I' = H, where I' is annihilation rate and H is Hubble expansion rate (= %).

1.7.2.1 Thermodynamics at equilibrium

In thermodynamics a huge number of particles are involved to define a system and it is not feasible for
anyone to calculate individual particle’s physical observables. Therefore , statistical mechanics comes into
picture where mainly all the properties of a system is revealed by incorporating one of the three mechanism
i.e. for classical system we have Maxwell-Boltzmann statistics and for quantum system Fermi-Dirac or
Bose-Einstein statistics is used. Two parameters play crucial role, one is temperature (T) and second is

chemical potential () in writing the distribution function
1

exp(;{;’})il,

where, € represents the energy of the particle with +1 taken for fermions and —1 for bosons. Also, defining

fi(e) = (1.84)

the number and energy densities as below

_ g 3
n = _(271)3[(1 e ne),
_ 8 3 _
p = (2n)3fd € enle). (1.85)

where, g implies the internal d.o.f. of the particle. If we omit the chemical potential of the particles, we get

g [eS) (6‘2—m2)1/2
n = —2f ede ——
214 Jm eEsT +1
o) 2 _ ,2\1/2
p = % c*de w . (1.86)
27[ m eKBT +1
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Using the relations of { and I' functions

e -1

o0 1 +1
[) eV dy = Er(”z ) (1.87)

foo Y dv (n+DI(n+1),
0

we can have the relativistic limit (m < T')

9 9 1, boson 72 4 1, boson
n=((@3)n*)gT p= (%)g (1.88)
%, fermion, %, fermion.
However, the non-relativistic limit (m > T') results for n and p
2 -3/2 2 -3/2
n:g(—”) e T p:mg(—n) e T (1.89)
mT mT

At low temperature, the number density of heavy particles is exponentially suppressed, as shown above in
eqn. (1.89). As a result, the number density of any heavy particle today will be minimal, as the Universe
has progressed from a hot dense phase to the current cooling state. We now address non-equilibrium

thermodynamics to explain dark matter abundance since its density endures throughout the Universe.

1.7.2.2 Delving into thermodynamics at non-equilibrium - Relic density

Let us consider a stable dark matter particle ny with lifetime more than the age of the Universe. When

interaction rate (I') > Hubble expansion rate (H) particles remain in equilibrium and for vice-versa they

decouple
9. 3, = - d[1ed[1s a1y a1z x @0 *6* Py +pg) x
dt ¢ = ¢ ¢ X b4 T PptDPg
M2, Fofsef) e f)—IMP _ fofsf)12 )] (1.90)

3
Here, d[] = # dz—ep, 1+ f is applicable for boson and 1 — f for fermion expressing the Bose enhancement

and Pauli blocking respectively. When T < ¢;, Maxwell-Boltzmann statistics becomes applicable to all
€;/T

. . - + ~ . . . . . 2 ~ — 2 ~ .
species with f; = e’* | also, 1+ f = 1. Now, if we consider CP invariance i.e. IMIM_,” |M|”_’¢¢, it
simplifies the Boltzmann equation as

dng 404 2
W+3Hn¢:_fdn¢dnq3dnldnix(ZH)6(p¢+pq3)x|M| f(pf(rf)—(lif(ﬁ) . (1.91)
So, now if the outgoing particles (y, y) are in equilibrium, i.e.,
fX — e_EX/T , f)f — e—ei/T . (1.92)
The energy conservation is imposed by the §-function, therefore
foX = ExTe)T — e—(e¢+e¢,)/T _ fde)qf;q ) (1.93)
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So, the Boltzmann equation modifies as

dn(l’ _ eq eq
W+3Hn¢——(0|v|)[(n¢+n¢)(n¢—n¢ Ik (1.94)
where,
1 g
(olul) = —2de¢ d[1 aT1x d[1z x@0*6* (py+ps—py—pz)IMPe™ 0. (1.95)
nes
27273

Let us suppose a dimensionless parameter Yy = ny/s, where, s = #z—g.; denoting the entropy density.
Therefore, above equation takes the form given below, where, entropy density is treated constant i.e. (sa® =

const.) in a co-moving volume

% = —stolb | (¥, +¥,7) (Ys-7,7) ] (1.96)

Introducing another massless parameter x = m4/T, where, there is temperature dependence interaction.

Moreover, in a radiation dominated era ¢ and x satisfy

M 2
t=log2 % —=LL —log2+ Mp;—r——, (1.97)
VT4 m2./

where, m represents the dark matter mass, Mp; = 1.22 * 101° GeV and g, accounts for total massless
dependent relativistic degree of freedom mentioned below
g:(M= Y gi(%)4+g > gi(%r- (1.98)
i=bosons i=fermions
As their is a clear temperature dependence in the above equation, hence, g. value comes to be 106.75 for
T = 300GeV. This is due to the fact that above this temperature, all SM particles acquire relativistic nature.
If we consider present scenario of the universe only photons and neutrinos come under the relativistic

particles with g, =3.36 and 7' <1 MeV. Hence, again the Boltzmann equation modifies as

dY(/’ XS eq eq
dt —H(m)(a|v|)[(Y¢—Y¢ )(Y¢+Y¢ )]
_ 27[2 8xs 3 eq eq
- _(E)(%) Solob [(ve-v,7) (Ve + 7,7 (1.99)
m2
with H(m) = 1.67y/Fws 37>
At equilibrium,
neq m T m,
YOl = 0 — 0145« B 132, 0 :g( ¢ )e*T‘D. (1.100)
¢ S 8 xs 4 21

Their is no analytical solution that can be obtained from eqn. (1.99), as it impersonates a specific form
of Riccati equation, to its rescue, the solutions can be obtained via approximations. Moreover, velocity

dependence acts as a catalyst for annihilations cross-section, therefore, for non-relativistic speices o|v| =
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oox . If the value of n = 0, it accounts for s-wave, whereas, n = 1 is for p wave annihilation. Hence, the

modified eqn. 1.99 becomes

dYy
— _ 1, (n+2) _veq eq
= Ax (Vo -v,7) (Yo + ;7). (1.101)
Here,
2n2g* aom3
Q=TT 0,26400( Exs )Mplm¢. (1.102)
45x2H(m) g

Proceeding further and bringing in another new quantity Ay =Yy - Y(Zq, therefore eqn. (1.101) can be
written as

eq
dy P

A =—
¢ dx

— A" BAG(2Y T+ Ag). (1.103)

So, eqn. (1.103) further transforms when, x < (xf = ’;—;b), if this is the case then Y, superimposes Y(Zq and

hence the above differential equation of Ay becomes negligible and reduces to

xn+2
Ay = . 1.104
0~ 57 ( )
But when the case becomes x > xr, it gives Ay =Y > Y(Zq, hence
r_ —(n+2) A 2
Ay =—Ax A (1.105)
When we take out the integration from limits {xs,o00}, it yields
1
1
Yo=Ao=77""—. 1.106
fo's) 00 1 (n n 1)71 ( )
All this painstacking to calculate the relic density computed as
Y. VE+« -
Qp=L =m0 = 1.07%10% « (n + 1) #a*! (i) (R2Mpy00) " GeV L. (1.107)
Po Po 8xs

H2
Here, po = SH—G" called the critical density, Hy = IOOhWKII{}Ipc and G being the gravitational constant. The

void of annihilation process due to freeze-out reduces the number density and present abundance is

estimated as
1.07 % 10°

Qr?=——— _GeV! 1.108
T Mpid; eV -, ( )
where, J; = ;fo % and (ov)x is given by
1 0o 1/2
(o) (x) = (f) T[ a(s—4m§,)s”21{1 (&)ds. (1.109)
8 m¢K2(x) 4m12/, m‘l’

Here, K; and s being the modified Bessel function and center of mass energy respectively.
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1.8 Thesis overview

In this chapter, a concise recap of the standard model of elementary particles is made, shedding light on
scientific proof that cannot be explained within this framework. We carried out a comprehensive review
of the origins of these crucial challenges and give a brief sense of the current experimental restrictions
because this thesis work focuses largely on the phenomenological implications of neutrino masses and
mixing, dark matter, and leptogenesis. With the observed low mass from neutrino oscillation and multiple
seesaw scenarios, the masslessness of neutrinos in the standard model is addressed along-with its observed
tiny mass arising from various seesaw.

In chapter 2, we introduce a model where we incorporate three heavy right handed neutrinos (Ng,)
and three heavy left handed sterile neutrinos (Sz;) along with a weighton field (p) in presence of discrete
A4 modular symmetry and global U(1), was introduced to eliminate some of the unwanted terms in
the superpotential. The charges are so defined for the particles under SU(2);, x U(1)y x U(1), x A4 with
k1 as the modular weight, hence, they acquire the linear seesaw mass structure. Further as the heavy
neutrinos are within few TeV range, therefore, we are able to explore Baryon asymmetry of the Universe
i.e Leptogenesis. Also, we are able to make a brief discussion on flavored leptogenesis as the mass range of
heavy right handed fermions suggested so.

In chapter 3, we make an exploration of radiative seesaw framework. In here, the neutrino mass is
generated at one-loop level by introducing an inert doublet in the particle gamut. Moreover, local U(1)g_1,
is introduced to block the unwanted terms. Further, we also discuss lepton flavor violating processes i.e.
[ — ey, L — 3e and p — e conversion in the nucleus. We have also discussed the dark matter (DM) scenario
by considering the lightest Dirac fermion as DM candidate where it has scalar as well as gauge boson Z’
mediated annihilations channels. Hence, we are able to obtain the relic density obeying Planck data and
included a brief note on collider bounds.

In chapter 4, we includes a model based on Af,, modular symmetry which is a double cover of As
symmetry in a inverse seesaw framework. The interesting thing about inverse seesaw is that the correct
order for the active neutrinos mass comes from the Majorana term (i) in the mass structure. It means
that in regular seesaw the heaviness of the right handed neutrino decides the correct order of the active
neutrinos, but in inverse seesaw the smallness of the u term governs the correct order. Additionally, we
discuss the lepton flavor violation i.e. /; — ¢;y and as U(1)p_y, is involved in the model, therefore, a
comment on the collider bounds is included on the Z’ mass.

Chapter 5 is interesting because it makes use of linear seesaw framework in A; modular symmetry.
Unlike A4 symmetry which has only three Yukawa couplings for utilization, AL modular symmetry has
plethora of higher weight Yukawa couplings which provide us a free-hand on there usage to get correct
neutrino phenomenology. In this model, we include six heavy fermions and also include a local U(1)p_1,

which helps to forbid certain terms in the superpotential to showcase a definite mass structure. We also
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allow an higher dimension term to have a small mass splitting such that we are able to incorporate
resonant case for the leptogenesis where this splitting enhances the CP asymmetry such that it gives
correct baryon asymmetry.

Chapter 6 summaries the complete work alongside gives an insight regarding my future prospects.
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CHAPTER

IMPLICATIONS OF A4 MODULAR SYMMETRY ON NEUTRINO MASS, MIXING AND

LEPTOGENESIS WITH LINEAR SEESAW

2.1 Introduction

Neutrino oscillation data obtained from various experiments support the fact that neutrinos are not
completely massless but have some minuscule mass [34-40]. Hence, standard model (SM) falls short
in acknowledging the above claims from different experiments. Further, evidences were gathered from
these experiments regarding the mixing of neutrinos and it was inferred that two of them have non-zero
masses [41]. Simultaneously, it is very well known from theory and experiments that neutrinos are
void of their right-handed (RH) counterparts in the SM, hence, Dirac mass term cannot be written for
neutrinos, like other charged fermions, nonetheless, dimension-five operator [42—44] is useful in providing
them masses. Astonishingly, the origin and flavour structure of this operator are debatable. As a result,
obtaining non-zero masses for neutrinos requires examining possibilities beyond the standard model
(BSM) [45]. There are various models throughout the literature that explain the observed data from
various neutrino oscillation experiments, as well as the lightness of the neutrino masses, such as the most
popular seesaw mechanism [46—48], radiative mass generation [49, 50], extra-dimensions [51], etc. The
existence of sterile neutrinos, which are SM gauge singlets, commonly regarded right-handed neutrinos,
couple to the standard active neutrinos by Yukawa interactions, is a common characteristic of many BSM
theories that illuminate the origin of non-zero neutrino masses. In support to above, their masses and
interaction strengths can vary over wide orders of magnitude, which helps towards explaining many

observable phenomena. For instance, in the type-I seesaw framework, to accomodate the eV-scale light
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neutrinos, the right handed neutrino mass is expected to be G(10'%) GeV, which is clearly beyond the reach
of existing and future investigations. However, its low scale variants like inverse seesaw [52—54] linear
seesaw [55], extended seesaw [56], etc., where the heavy neutrino mass can be in the TeV range, which

makes them experimentally verifiable.

The non-abelian discrete flavour symmetry group A4 brings a great relief in serving as an under-
lying symmetry for getting the neutrino mass matrix [57], however this results in a vanishing reactor
mixing angle 613. Despite this, it is nevertheless extensively employed to characterise neutrino mixing
phenomenology with the addition of a simple alteration by introducing extra flavon fields that are SM
singlets but transform non-trivially under the flavour symmetry group, resulting in a non-zero reactor
mixing angle. As a consequence of the unique vacuum alignment they acquire, the flavons become a
significant feature in manifesting the observed pattern in neutrino mixing, which plays a crucial role
in spontaneous breaking of the discrete flavour symmetry [58]. Flavons are usually required in large
numbers to actualize certain phenomenological characteristics within the scope of such flavour symmetry.
However, there are several disadvantages to this technique, such as the fact that higher-dimensional
operators can undermine the discrete flavour symmetry prediction. Furthermore, flavour symmetry is
typically used to confine mixing angles, although neutrino masses are unknown except in a few cases. In

contrast to above, using a modular invariance technique [59], these flaws are remedied.

Presently, pioneering work on modular flavor symmetries is proposed [36, 59, 60] to bring predictable
flavor structures into the spotlight. Utilizing the approach many effective models were designed and
published [61-64], by avoiding the usage of flavon fields apart from modulus 7, which breaks the flavor
symmetry after it gains VEV. Therefore, we solely require a mechanism to set the modulus 7 and avoid
the usage of vacuum alignment which is rather very confusing. To put it another way, these couplings
occur as a result of a non-trivial representation of a non-Abelian discrete flavour symmetry approach,
which can substitute for the employment of flavon fields, which are not necessary or minimised in the
realisation of the flavour structure. In the above context, it was realised after reading various texts that
there are many groups available, such as the basis defined under the modular group of A4 [60, 65—69],
S4 [70-73], A5 [74, 75], larger groups [76], various other modular symmetries and double covering of A4

[77-79], prediction of masses, mixing, and CP phases peculiar to quarks and/or leptons are done.

As aforesaid, modular invariance plays a crucial role in neutrino mass models involving only few
coupling strengths, hence, establishing a correlation between neutrino masses and mixing parameters.
However, there is an extension of above formalism to combine it with the generalized CP symmetry
[67, 80-84]. As we know that, S and T representation are symmetric, so the modular form multiplets, if
normalized aptly, acquire complex conjugation under CP transformation. As an outcome, all couplings in
a modular invariant model are required to be real [81] due to generalised CP symmetry, and the model

prediction power is reduced. To put the above into practice, the use of modular symmetry in constructing a
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model for neutrino mass generation, as well as the indications of new physics via the observables in the

neutrino sector, is quite exciting [85].

In this article, we diligently work to illuminate the benefits of A4 modular symmetry by applying it to
linear seesaw framework. The linear seesaw mechanism entails three LH neutral fermions Sy,; in addition
to three right handed ones Ng; (i = 1,2,3) and produces a neutrino mass matrix which is intricate enough,
and has been studied in the context of A4 symmetry in [86—-88]. Additionally, S;; & Ng; are allocated as
triplets under A4 symmetry and Yukawa couplings are defined in terms of modular form by which the
neutrino mass matrix attains a confined structure. Consequently, numerical analysis is performed to scan
for free parameters in the model and find an area that fits neutrino data. Neutrino sector observables are

expected after adjusting for the allowable parameters.

The following is the outline for this chapter, in Sec. 2.2 we describe the well known linear seesaw
mechanism with discrete A4 modular flavor symmetry and its appealing feature resulting in simple mass
structure for the charged leptons and neutral leptons including light active neutrinos and other two
types of sterile neutrinos. We then provide a discussion for the light neutrino masses and mixing in this
framework. In Sec. 2.3 numerical correlational study between observables of neutrino sector and model
input parameters is established. We also present a brief discussion of the non-unitarity effect. Leptogenesis

in the context of the present model is discussed in Sec. 2.4 and in Sec. 2.6, we conclude our results.

2.2 Model Framework

This model represents the simplistic scenario of linear seesaw, where the particle content and group
charges are provided in Table 2.1. We prefer to extend with discrete A4 modular symmetry to explore the
neutrino phenomenology and a global U(1)x symmetry is imposed to forbid certain unwanted terms in
the superpotential. The particle spectrum is enriched with six extra singlet heavy fermion superfields
(Ng; and Sy,;) and one weighton field (p). The extra supermultiplets of the model transform as triplet
under the A4 modular group. The A4 and U(1)x symmetries are considered to be broken at a scale much
higher than the electroweak symmetry breaking [89]. The extra superfields acquire masses by assigning
non-zero vacuum expectation value to the singlet weighton. The modular weight is assigned to all the
particles and denoted as k. Further, it is evident that the breaking of U(1)x symmetry takes places by
singlet p acquiring VEV. Therefore, a massless Goldstone boson comes into picture which does not have
dangerous interaction among the SM particles but interact only with Higgs and contributes to the dark
radiation [90, 91]. The importance of A4 modular symmetry is the requirement of less number of flavon
or weighton fields unlike the usual A4 group, since the Yukawa couplings have the non-trivial group
transformation. Assignment of group charge and modular weight to the Yukawa coupling is provided in

Table 2.2.
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Fields e | u5 Th Ly, Nr | S; || Hua | P
Ssu@p || 1| 1 |1 2 1|1 2 |1
Uly || 1 | 1 | 1 -1 0| o0 |i-t]o0
Ubx | 1| 1 |1 -1 1 | -2 0 |1
Ay 1|1 | 1”111 | 3 | 3 1 |1
ki 1|1 |1 -1 -1 | -1 0 |o

Table 2.1: Particle content of the model and their charges under SU(2);, x U(1)y x A4 where kg is the
number of modular weight.

Yukawa coupling Ay | Ry
Y 3 2

Table 2.2: Modular weight of the Yukawa coupling Y and its transformation under A4 symmetry.

2.2.1 Dirac mass term for charged leptons (/)

In order to have a simplified structure for charged leptons mass matrix, we consider the three generations
of left-handed doublets (L., ,L,; ,L:;) transform as 1,1”,1’ respectively under the A4 symmetry. They
are assigned the U(1)x charge of —1 for each generation. The right-handed charged leptons follow a
transformation of 1,1’,1” under A4 and singlets in U(1)x symmetries respectively. All of them are assigned
with a modular weight of 1. The VEVs of Higgs superfields i.e. (H,) = v,/ V2 SHg) = vd/\/g are related to
SM Higgs VEV as vy = /v2 + 0(21 and the ratio of their VEVs is expressed as tan 8 = (v,/vg) =5 [92, 93].

The relevant superpotential term for charged leptons is given by
Wy, =y;°Le  Hg e +y2‘”L#LHd Mg +yy Lo Hg Tg . 2.1)

The charged lepton mass matrix is found to be diagonal and the couplings can be adjusted to achieve the

observed charged lepton masses. The mass matrix takes the form

yevalv2 0 0 me 0 0
M= 0 y?”vd/\/g 0 10 my O [ 2.2)
0 0 yivalV2 0 0 m,

Here, m., m, and m; are the observed charged lepton masses.
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2.2.2 Dirac and pseudo-Dirac mass terms for the small neutrinos

Along with the transformation of lepton doublets mentioned previously, the right-handed fermion super-
fields transform as triplets under A4 modular group with U(1)x charge of +1 and modular weight —1. Since,
with these charge assignments we cannot write the standard interaction term, we introduce the Yukawa
couplings to transform non-trivially under the A4 modular group (triplets) and assign with modular weight
of 2, as represented in Table 2.2. We use the modular forms of the coupling as Y (1) = (y1(7), y2(7), y3(7)),
which can be written in terms of Dedekind eta-function 7(7) and its derivative [59], expressed in Eq. A.8
(Appendix A). Therefore, the invariant Dirac superpotential involving the active and right-handed fermion

superfields can be written as

#p=apL., H, YNg)1+ppLy, H, YNR)1 +ypL: Hy (YNR)i». (2.3)

Here, the subscript for the operator Y Nr indicates A4 representation constructed by the product and

{ap,Bp,YDp} are free parameters. The resulting Dirac neutrino mass matrix is found to be

ap 0 0 Y1 Y3 Y2

MD:\/Q 0 pfp O Y2 Y1 y3 : 2.4)

0 0 1yp ¥3 o2 01|,

As we also have the extra sterile fermion superfields Sy ;, which transform analogous to Ng; under A4
modular symmetry, the pseudo-Dirac term for the light neutrinos is allowed, and the corresponding
super-potential is given as

3
Wis = |apLe Hy (YS$)1+ By Ly Hy (YSE)y +7y Lo, Hy (Y S0 % , (2.5)

where, the subscript for the operator (Y'S}) indicates A4 representation constructed by the product and
{a},, By, Yy} are free parameters. The flavor structure for the pseudo-Dirac neutrino mass matrix takes

the form,

ap 0 0 Y1 ¥3 Y2

3
\/§A) 0 pp O Y2 y1 Y3 (2.6)

0 0 vy ¥3oy2 |

2.2.3 Mixing between the heavy fermions N and Sy,

Following the transformation of the heavy fermion superfields under the imposed symmetries, it can be

noted that the usual Majorana mass terms are not allowed. But one can have the interactions leading to
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the mixing between these additional superfields as follows

Witgs = LansY(SLNR)sym +PnsY(SLNR)anti-sym1p
= ansly1(2S] Ng, - S7,Nr, —S7, Nr,) +y2(2S],Nr, - S; Ng, —S; Nr,)
+ y3(2S7 Np,—S; Nr,—Si,Nr,)lp
+  Pnslyi(Sy,Nr; —S7 Nr,)+y2(Sy Nr, —S; Nry)+ys3(S;, Nr, —S7 Nr)lp, (2.7)
where the first and second terms in the first line correspond to symmetric and anti-symmetric product for

S EN r making triplet representation of A4 with ang, Bys being the free parameters. Using (p) = v,/ V2,

the resulting mass matrix is found to be,

2y1 —y3 —y2 0 y3 Y2
_Ye [2Ns
Mrs= 7|75 | - 202 -» |*PNS| -y 0 m 28)
-y2 —yy1 2y3 yo -y1 0

It should be noted that “% # Bns, otherwise the matrix Mgrg becomes singular, which eventually spoils
the intent of linear seesaw. The masses for the heavy fermions can be found in the basis (N, R,SZ)T, which
can be written as

0 Mgs
My = . (2.9)

T
Mg 0
Therefore, one can have six doubly degenerate mass eigenstates for the heavy super-fields upon diagonal-

ization.

2.2.4 Linear Seesaw mechanism for light neutrino Masses

Within the present model invoked with A4 modular symmetry, the complete 9 x 9 mass matrix in the

flavor basis of (VL,NR,SZ)T is given by

VI, NR Sz

v 0 M M
m=| VE b Ls | (2.10)

Ng Mg 0 Mpgs

T T
MLS MRS 0

The linear seesaw mass formula for light neutrinos is given with the assumption Mgs > Mp,My s as,
my = MDMI_%MES +transpose. (2.11)

Apart from the small neutrino masses, other relevant parameters in the neutrino sector are Jarlskog

invariant and the effective neutrino mass which play a key role in neutrinoless double beta decay and can
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be computed from the mixing angles and phases of PMNS matrix elements as following :

Jep =ImUe1U,eU5U s 1= sascassiaciasiscls sindep, (2.12)

[Meel =my, cos? 012 cos? 013 + My, sin? 619 cos®H15e %21 + My, sin? 015e!(@31720cP)| (2.13)

Many dedicated experiments are looking for neutrinoless double beta signals, for details please refer
to [94]. The sensitivity limits on |m,.| by the current experiments such as GERDA is (102—-213) meV [95]
and CUORE is (90-420) meV [96]. The future generation experiments, like LEGEND-200 can probe
35-73 meV [94] and KamLAND-Zen (61-165) meV [97].

2.3 Numerical analysis

For numerical analysis we consider the global fit neutrino oscillation data at 3¢ interval from [98] as

follows:

NO : Am?

atm

=[2.431,2.622] x 1072 V2, Am? , =[6.79,8.01]1x 10™° eV2,

sinZ 615 = [0.02044,0.02437], sin® 093 = [0.428,0.624], sin’ 61 = [0.275,0.350]. (2.14)

Here, we numerically diagonalize the neutrino mass matrix eqn. 2.11 through the relation UT.4U =
diag(m%, m%, mg), where ./ = mvm:r, and U is an unitary matrix, from which the neutrino mixing angles
can be extracted using the standard relations:

|Ugs?
1-|Ul2"

U122

— 3 (2.15)
1-Ussl?

SiIl2 913 = |U13|2, sin2912 = Sin2 923 =

To fit to the current neutrino oscillation data, we chose the following ranges for the model parameters:

Re[r]€[-0.5,0.5], Imlrl€[1,2], {ap,Bp,yp}€107°[0.1,1], {ap,Bp,yp}€107%[0.1,1],

ans €10,0.5], Pus €[0,0.0001], v, €[10,100]1TeV, A €[100,1000] TeV.

The input parameters are randomly scanned over the above mentioned ranges and the allowed regions
for those are initially filtered by the observed 3¢ limit of solar and atmospheric mass squared differences
and mixing angles which are further constrained by the observed sum of active neutrino masses ) m; <
0.12 eV [40]. The typical range of modulus 7 is found to be —0.5 < Relr] < 0.5 and 1 < Im[7] < 2 for
normally ordered neutrino masses. Thus, the modular Yukawa couplings as function of 7 (Eq. A.8 in
Appendix) are found to vary in the region 0.99 < y1(7) < 1, 0.1 < y2(r) £ 0.8 and 0.01 < y3(7) < 0.3. The
variation of those Yukawa couplings with the real and imaginary parts of 7 are represented in the top left
and top right panels of Fig. 2.1 respectively, whereas, bottom panel shows the allowed region of Re(r) and
Im(7) which abides all the constraints used to deduce the neutrino oscillation parameters. Variation of the

mixing angles with the sum of active neutrino masses, consistent with the allowed 30 range are obtained,
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Figure 2.1: Top left and top right panel signify the correlation of the modular Yukawa couplings (v1, y2,y3)
with the real and imaginary parts of modulus 7 respectively. The bottom panel represents the allowed
region of the Re(r) and Im(7r) abiding all the constraints and within the range of its fundamental domain.

as shown in Fig. 2.2. In the left panel of Fig. 2.3, we show the correlation of Jarlskog CP invariant with the
reactor mixing angle allowed by the neutrino oscillation data, which is found to be of the order of G(1072).
The right panel of Fig. 2.3, signifies the full parameter space for Yukawa couplings as per the observed
sum of active neutrino masses. In Fig. 2.4, we have displayed a correlation of the Yukawa couplings y;
with y9 and yg with y3 in the left and right panels respectively. The effective neutrinoless double beta
decay mass parameter |m..| for both normal and inverted orderings is found to have a maximum value
of 55 meV from the variation of observed sum of active neutrino masses, which is presented in the left
panel of Fig. 2.5. The results for normal and inverted hierarchies are shown by the blue and red points.
The horizontal pink and cyan bands represent the 30 sensitivity limits of current GERDA and the future
LEGEND-200 experiments respectively. It should be noted from the figure that the model predictions for
|m..| are within the reach of the future generation experiments and the inverted hierarchical region is

more favored. The right panel represents the correlation between heavy fermion masses My and M3.
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Figure 2.2: Left (Right) panel represents the correlation between sin 613 (sin?6;2 and sin® fg3) with the
sum of active neutrino masses.
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Figure 2.3: Left panel displays the correlation of Jarlskog invariant with the reactor mixing angle and
right panel reflects the variation of modular Yukawa couplings with the sum of active neutrino masses.
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Figure 2.4: Left (Right) panel displays the correlation between y; and y2 (y2 and ys3).
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Figure 2.5: Left panel shows the correlation of effective neutrino mass of neutrinoless double beta decay
with the sum of active neutrino masses, where the blue and red points correspond to normal and inverted
hierarchies. The horizontal pink band corresponds to the 3¢ sensitivity limit of currently running GERDA
experiment and the cyan band represents the 3o limit of the future LEGEND-200 experiment. Right panel
depicts correlation between the heavy fermion masses Mo and M3.

Comment on non-unitarity

Here, we briefly comment on non-unitarity of neutrino mixing matrix Uf,MNS in the presence of heavy
fermions. The standard parametrization for the deviation from unitarity in a small scale can be expressed

as following [99]
! 1 T
UPMNS = 1—§FF UPMNS- (2.16)

Here, Upyns is the PMNS mixing matrix which diagonalises the mass matrix of the three light neutrinos

and F' is the mixing of active neutrinos with the heavy fermions and approximated as F' = (Mgs)_lM D=

apv
aNsUp’

which is a hermitian matrix. The global constraints on the non-unitarity parameters [100-102],
are found via several experimental results such as the W boson mass My, the Weinberg angle 6y, several
ratios of fermionic Z boson as well as its invisible decay, electroweak universality, CKM unitarity bounds,
and lepton flavor violations. In our model framework, we consider the following approximated normalized
order for the Dirac, pseudo-Dirac and heavy masses to correctly generate the observed mass-squared

differences as well as the sum of active neutrino masses of desired order:

(527 () () (s
0.1eV 103 GeV J\103 GeV 1074 GeV /)’ '

Therefore, with the chosen order masses, we obtain an approximated non-unitary mixing for the present

model as

45%x10718 23x10713 62x10713
IFFII<| 935101 208x10-12 45x10-12 |- (2.18)

6.2x10713 45x10712 5.6x10712
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Since, the mixing between the active and heavy fermions in our model is found to be very small, it leads to

a negligible contribution to the non-unitarity.

Comment on lepton flavor violation

Here, we will briefly discuss about the prospect of lepton flavor violation (LFV) effect, in particular ¢; — ¢,y
decays, in the context of present model. Lepton flavor violating decays are strictly forbidden in the SM and
are known to be induced in models with extended lepton sectors. The current limit on these branching
ratios are: Br(u — ey) < 4.2 x 1073 from MEG Collaboration [103], Br(z — ey) < 3.3 x 1078 [104] and
Br(t — wy) <4.4 x 108 from Belle collaboration [105].

In this model, the lepton flavor violating decays (¢; — £;¥) can occur via exchange of heavy fermions at
one loop level [106, 107], as there is mixing between the light and heavy fermions and the corresponding

dominant one-loop contribution to the branching ratios for these decays is given as [99, 108]

3 .2 5
Ay Sy Mo 1

— W2
Br(¢; — ¢;y) = 25672 ML T, IGijI , (2.19)
w i
where Gf; is loop functions whose analytic form is
w 3 T AW MZZVk
i ]g’llk]ky(M‘%f)
1
GJ(x) = ————(10-43x+78x" - 492" + 4x"). (2.20)

12(1 - x)*
Here, My, represents heavy neutrino superfields and F' characterises the mixing of active neutrinos
with the heavy fermions leading to non-unitarity effect. Since in the present model, the non-unitarity
parameters are found to be extremely small (2.18), the branching ratios of the LFV decays are highly
suppressed. Thus, for TeV scale heavy fermions My, , the branching ratios for different LFV decays are

found to be

(FF ) )2

Br(u—ey)<8.9x107%3
rip = ey)=8.9x (4.25x1014

((FF| )2

6.9x10"14) "’
(FF

1.14x 1012~

Br(t — ey) <4.2x 10733 (

Br(z — puy)<1.2x107%° ( (2.21)

which are beyond the reach of any of the future experiments.

2.4 Leptogenesis

Leptogenesis has proven to be one of the most preferred way to generate the observed baryon asymmetry

of the Universe. The standard scenario of resonant enhancement in CP asymmetry has brought down
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the scale as low as TeV [109-112]. The present model includes six heavy states with doubly degenerate
masses for each pair Eq. 2.9. But one can introduce a higher dimensional mass term for the heavy neutrino

superfield (S7) as

. ot

LMZ—O.’RYSESLF . (2.22)

This leads to a small mass splitting between the heavy superfields, there by enhancing the CP asymmetry
to generate required lepton asymmetry [113, 114]. Thus, one can construct the right-handed Majorana

mass matrix as follows

2y1 —y3s -2
aRr v;l,

Mp = 6A3 | —¥3 2y2 -yi| (2.23)

-Y2 —y1 23
The coupling ag is chosen to be extremely small to retain the linear seesaw structure of the mass matrix
Eq. 2.10, i.e., Mp,M}s > Mp and such inclusion does not affect the previous results. However, this term

introduces a small mass splitting and the 2 x 2 submatrix of Eq. 2.10 in the (Ng,S7 ) basis, now can be

written as
0 M
M= B (2.24)
T
Mg, Mg
. . . . .. . 1 I -1
This matrix can have a block diagonal structure in the limit Sy s < apg by the unitary matrix 75
I 1
as
Mgg+ M2 ~Yz Mps+ Y2 0
M=| RS2 2 ~| RS2 (2.25)
—% _MRS+% 0 _MRS+%
Therefore, the mass eigenstates (N*) are related to Nr and S7 through
ST, cosf —sinf || N/
= . (2.26)
Ng; sin@ cosf |\N .
Assuming a maximal mixing, we can have
N (NS +N;) ¢ (NS=N) 2.27)
R' = —, Pa— —’ .
l \/E Li \/g
Thus, the interaction superpotential in Eq. 2.3 can be written in the new basis N f as
i Lo i, v | NND PoLy Hu |Y /AL
D = ap —F—|| +Pp —
L ¢ \/g 1 HL ¢ \/g 1/
L, H,|Y —(N; ;) (2.28)
+YD . .
Y TL u \/E 1”
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Analogously, the pseudo-Dirac interaction term Eq. 2.5 becomes

: W -NOV| P2 Wi -NDY | P
%S = aDLeLHu Y T F"’ﬁDLﬂLH” Y T F
1 iy
VR b Raiinl | (2.29)
Yptrpitu \/i i A3’ )

The mass eigenvalues for the new states N* and N~ can be obtained by diagonalizing the block diagonal

form of heavy superfield masses, expressed as

2y1 —ys —y2
Mp B

4
anNsv adRv
Mps+— (—p+ F

Vo 4A3) -¥3 2y2 -y1 (2.30)

2
—y2 —y1 2y3

In the above, the anti-symmetric part in Mgg is neglected because fys is small compared with ayg.

The above matrix can be diagonalized through (M i)diag = UrgmUr (M RS * %) Ug U%BM, with mass

eigenvalues
Mi o= o “N—\/S;Pi i’;”f (y1+2y2—\/9y%+12y1y2+12y3),
M; = é a]:’/S; Ly ilj\lf (y1+2y2+\/ 9y%+12y1y2+12y§‘),
ME =~ % “N—\/;vpi ilj\lf (y1 +2y2). 2.31)

Here, Urpgjy is the tribimaximal mixing matrix [115, 116] and

1

B_ X 0
Ur=| o0 0 1{; (2.32)

B, =& o

VX4
with
y1i+2y2+ \/93’% —12y1ys +12y2
By=- , and

2v2(y1 - y2) (2.33)

X.=\/1+B%.

As noticed from Eq. 2.31, we get three sets of nearly degenerate mass states after diagonalization. We

further assume that the lightest pair with TeV scale masses dominantly contribute to the CP asymmetry.!

1We also have heavier fermions i.e., N é—r and N. ;, whose decays can also generate lepton asymmetry. But these heavy fermions
decouple early and moreover the asymmetry can be washed out from the inverse decays of lighter fermion mass eigenstates
ie,/H—N I—r Even though we consider the asymmetry generated from other fermions (i.e., N. ;—r,N g.—r ), the final asymmetry hardly
changes up to a maximum of 3 times the asymmetry generated from N li in one flavor approximation, which does not really make
any appreciable difference in the final result.
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€N 6‘1’;, eva- eN- AM (GeV)

—9x107° | —2.13x107% | —2.42x107% | —=5.45x107% | 2.94x107°

Table 2.3: CP asymmetries and mass splitting obtained from the allowed range of model parameters which
satisfy neutrino oscillation data.

The small mass splitting between the lightest states implies the contribution from one loop self energy
of heavy particle decay dominates over the vertex diagram. The expression for CP asymmetry is given

by [109, 117]

N
5
+4AN._

i

(MD B MLS)*(@+ MLS)2(@_ MLS)*

Uy Uy Uy Uy Uy Uy

1
EN- R ————
NO T 3antAn

2
TN
(2.34)

Here, Mp = MpUrgyUr, Mrs = MrsUtgyUr and AM :M;r —M; = Mg. The parameters ry and An-

are expressed as

(MM AM(M + M)

MM
1 [(Mp M Mp M

An-~ — (_D— LS)(—D+—LS) (2.35)
167 |\ vy vy Uy Uy i

It should be noted that because of the imposition of modular symmetry, which plays the role of eliminating
the usage of extra flavon fields, the CP asymmetry parameter crucially depends on the Yukawa couplings
Y =(y1,52,¥3), apart from other free parameters of the model and the flavon VEV v,. However, essentially
there is no freedom in the choice of how much can be the numerical values of the Yukawa couplings as
they depend on the real and imaginary part of the modulus 7, which are constrained by the neutrino
oscillation data. In the top left (right) panel of Fig. 2.6, we show the variation of CP asymmetry with the
magnitude (argument) of the Yukawa coupling y; and bottom left panel projects its behavior with rpy.
It should be noted that, the CP symmetry in the context of the present model is broken by the vacuum
expectation value of the modulus 7. As this vacuum expectation value is related to the CP phases in the
PMNS matrix and the CP asymmetry of leptogenesis, it is generally anticipated that there should be
a non-trivial correlation between these observables. In the bottom right panel of Fig. 2.6, we show the
correlation plot between the Dirac CP violating phase 6¢p and the CP asymmetry of leptogenesis, which
depicts no appreciable correlation between these observables. In Table 2.3, we provide benchmark values
that satisfy both neutrino mass and required CP asymmetry for leptogenesis [118, 119] (to be discussed in

the next subsection).
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Figure 2.6: Top left and right panels represent the variation of CP asymmetry with the magnitude and
argument of Yukawa coupling respectively. Bottom left panel shows its dependence with parameter ry.
Whereas, the bottom right plot represents the correlation between CP asymmetry and the CP violating

phase d¢p.

2.4.1 One flavor approximation

The evolution of lepton asymmetry can be deduced from the dynamics of relevant Boltzmann equations.
Sakharov criteria [23] demand the decay of parent fermion to be out of equilibrium to generate the lepton
asymmetry. To impose this condition, one has to compare the Hubble rate with the decay rate as follows.

I'ny

2
Here, H = %, with g, = 106.75, Mp; = 1.22 x 10!° GeV. We consider the coupling strength

(z (‘/EMD Urg MUR) ) ) roughly around 1078, where the minimum order of coupling parameters are taken
ij

v

from the numerical analysis section, consistent with neutrino oscillation data. The Boltzmann equations
for the evolution of the number densities of right-handed superfield and lepton, written in terms of yield

parameter (ratio of number density to entropy density) are given by [119-123]

d¥y- _ 2 Yn- _ 1 + Y- ’ -1
d=  sHOM |\vZ )"y Ik
dYp_L, z Yn- Yp L vD
- B b\ | - = 2.37
dZ SH(MI) EN (Y]%q_ )YD Y;q 2 > ( )
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Figure 2.7: Left panel projects the comparison of interaction rates with Hubble expansion, where purple
lines correspond to decay (solid), inverse decay (dotted) and scattering rates plotted for various values of
Majorana coupling (green, orange, blue). Right panel projects the evolution of Ygz_;, (dashed) as a function
of z=M7/T.

1

where s denotes the entropy density, z = M{/T and the equilibrium number densities are given by [118]

eq _ 45gN-

1 — 2.38
N7 Inig, (2.38)

3 45((3)g¢
2 eq

K Y =2 2"
z 2(2)’ ¢ 4 2ﬂ4g*

Here, K12 denote modified Bessel functions, g, =2 and gny- =2 denote the degrees of freedom of lepton

and right-handed superfields respectively. The decay rate yp is given by

yp=sYy'Tp, (2.39)

where, I'p =T'y- %Z ; Ys denotes the scattering rate of the decaying particle i.e., Ny N; — pp [123].2 The

Boltzmann equation for Yp_1, is free from the subtlety of asymmetry getting produced even when N7 is
in thermal equilibrium i.e., by subtracting the on-shell N exchange contribution (YTD) from the AL =2
process [121].

The interaction rates are compared with Hubble expansion in the left panel of Fig. 2.7. The decay (I'p)

eq

YL
and inverse decay (FD %) rates are plotted in purple with the coupling strength ~ 1078, The scattering
l

rate (S;%) for Ny N7 — pp is projected for various set of values for coupling (of Eq. 2.7), consistent
with neutrino oscillation study. For larger Majorana coupling, the scattering process makes N; to stay
longer in thermal soup and hence, number density of N; depletes in annihilation rather than decay,
generating lesser lepton asymmetry. In one-flavor approximation, the solution of Boltzmann eqn. 2.37
using the benchmark given in Table 2.3 is projected in the right panel of Fig. 2.7 with the inclusion

of decay and scattering rates. Once the out-of-equilibrium criteria is satisfied, the decay proceeds slow

(over abundance), Yy- does not trace Y;,q_ (magenta curve) and the lepton asymmetry (dashed curve) is

2

g

o0 !
Y(ab < cd) = % ds a(s’)\/FKl(‘/T:),

Smin

where, syin, = Max[(mq + mb)2,(mc + md)z] and 6(s’) is the reduced cross section with s’ denoting the center of mass energy.
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generated. The obtained lepton asymmetry gets converted to the observed baryon asymmetry through

sphaleron transition, given by [124]

8N+ +4N
A ) B L. (2.40)

Yp = |
B (22Nf+13NH

Here, Ny denotes the number of superfields generations and Ny is the number of Higgs doublets. The
observed baryon asymmetry is quantified in terms of baryon to photon ratio [40]

_ M6 Mg
My

=6.08x 10710, (2.41)

Based on the relation Yz = (7.04)"1n, the current bound on baryon asymmetry is Yz ~ 0.86 x 10710,

We observe the same Yukawas i.e. Y = (y1, 2, y3) are involved in both Dirac as well as Majorana masses
and hence, appear not only in the neutrino phenomenology but also in computation related to leptogenesis.
But the values of these couplings are strongly constrained from the real and imaginary part of the complex
modulus 7. Thus, the free parameters play an important role in adjusting the parameter space to generate

a successful leptogenesis.

2.4.2 Flavor consideration

012 GeV), where all the Yukawa interactions are

One flavor approximation is probable at high scale (7' > 1
out of equilibrium. But for temperatures below 1012 GeV, various charged lepton Yukawa couplings come
into equilibrium and hence flavor effects play a crucial role in generating the final lepton asymmetry. For
temperatures below 10° GeV, all the Yukawa interactions are in equilibrium and the asymmetry is stored
in the individual lepton sector. The detailed investigation of flavor effects in type-I leptogenesis can be

found in the literature [125-130].

The Boltzmann equation for generating the lepton asymmetry in each flavor is [126]

dYg_p, _ .z o (Y- - (ﬁ) A“Lg‘]% (2.42)
dz sHM) |V \vy? 2) v | '

where, €}, represents the CP asymmetry in each lepton flavor and

Kq(2)
@ =Y IIre_ ———, = a.
YD N-1N Ks(2) YD ;YD

The matrix A is given by [127],

_221 16 16
711 711 711
A=| 16 _221 16
711 711 711
16 16 _221
711 11 711

7
From the benchmark shown in Table 2.3, we project the B — L yield with flavor consideration in the left

panel of Fig. 2.8. It is clear that a notable enhancement in B — L asymmetry is obtained in case of flavor
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Figure 2.8: The left panel displays yield with inclusion of flavor effects. The right panel shows the
enhancement in the yield due to three-flavor calculation (red curve) over one-flavor approximation (black
curve).

consideration (red curve) over one flavor approximation (black curve), as displayed in the right panel. This
is because, in one flavor approximation the decay of heavy fermion to a specific lepton flavor final state can

get washed out by the inverse decays of any flavor unlike the flavored case [128].

2.5 Comment on collider studies

Here, we briefly comment on the most promising collider signature of heavy pseudo-Dirac neutrinos
without going into any detailed estimation, in the context of the present model. In the linear seesaw
scenario the Mg is the lepton number violating term [131] therefore its mass scale is naturally small. Also
the effective Majorana neutrino mass matrix as shown in eqn. 2.11 for active neutrino where the smallness
of m, is attributed due to Mg being the pseudo-Dirac neutrino mass term and further suppressed by
the ratio of Mp and Mgg. Hence, the seesaw scale can be lowered to TeV range which is experimentally
accessible at LHC. The trilepton plus missing energy process as mentioned in eqn. 2.43, which can be

studied at colliders, is an interesting mechanism involving heavy pseudo-Dirac neutrinos [132]:

o(pp — N0t — 0X0* + E)=a(pp — W — N¢E) x Br(N — 0*¢* + ). (2.43)

where it is assumed that the heavy neutrinos are heavier than the W boson, so that the two-body decay
process N — ¢W is kinematically allowed, followed by the on-shell W decaying into SM leptons. Its viability
is essentially determined by firstly, large mixing between active—sterile neutrinos i.e. 0,gg = \/m <
1076 [133], secondly, masses of heavy pseudo-Dirac neutrinos ranging from few [GeV-TeV], and finally its

production mechanism.
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2.6 Conclusion

We have emphasized on showcasing the importance of A4 modular symmetry that avoids the complications
associated while using the multiple flavons. The model we have dealt with intakes three right-handed and
three left-handed heavy superfields to explore neutrino phenomenology within a choosen framework of
linear seesaw in super-symmetric context. The role played by conventional flavon fields are now taken over
by the modular Yukawa couplings. Hence, giving up a specific flavor structure to the neutrino mass matrix
and provides a scope to study neutrino mixing. Further, we take the path of numerical diagonalization of
the neutrino mass matrix by finding a suitable parameter-space which accommodates all the observables
found in 30 range of the oscillation data. Proceeding further, makes us realize that flavor structure of
heavy superfields leads to three doubly degenerate mass eigenvalues. Therefore, in order to have hands on
leptogenesis we bring in a higher dimensional term to develop a small mass splitting. All this gimmick
pave the way to get a non-zero CP asymmetry from the decay of lightest heavy fermion eigenstate and
also a self energy contribution is slightly enhanced as an advantage of utilizing the small mass splitting
in between the two lighter heavy fermion superfields. The coupled Boltzmann equations are handled by
utilizing a specific benchmark values of the model parameters which is also validated in oscillation data
and as an outcome, lepton symmetry is of the order of 10710 self explaining the baryon asymmetry seen in
the Universe. As we are dealing with TeV scale heavy fermion superfields, hence, flavor considerations are
also discussed. The promising collider signature of the heavy pseudo-Dirac neutrinos is the trilepton plus
missing energy, which depend crucially on the mixing between the light active and pseudo-Dirac neutrinos,

mass of these heavy neutrinos and their production mechanism.
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CHAPTER

A MODULAR A4 SYMMETRIC SCOTOGENIC MODEL FOR NEUTRINO MASS AND

DARK MATTER

3.1 Introduction

Various experimental observations over the last few decades have conclusively established the robustness of
the Standard Model (SM). Nonetheless, there are a few issues demonstrating the presence of physics beyond
the SM, for example, the nature and existence of dark matter (DM) [134—139], small but non-vanishing
neutrino masses [40, 140, 141], observed baryon asymmetry of the Universe [23, 118, 119, 122, 142], origin
of flavor structure, etc. Therefore, apprehending the nature of physics beyond the standard model (BSM)
gets inescapable, and in this context, symmetry is assumed to play a significant role, e.g., ensuring the
appropriate mechanism for achieving the tiny neutrino masses, stability of DM, confining flavour structure,

and so on. It is thus, intriguing to build models beyond the SM adopting new symmetries.

The Scotogenic model, proposed by Ma [143] is probably the simplest model that generates the small
neutrino masses at one-loop level and also simultaneously accounts for the dark matter (both inert scalar
and fermionic), see for example a legion of works in the literature [144-149] and references therein.
Various other works have realized neutrino mass at one-loop [150-154]. Further, the pioneering work
of introducing modular flavor symmetries to quark and neutrino sectors is seen in the literature of
[36, 59, 60] to highlight predictable flavor structures. The basic idea behind the use of modular symmetry
is to minimize the necessity of the inclusion of extra flavon fields having specific vacuum expectation value

(VEV) alignments. The breaking of flavor symmetry takes place when the complex modulus 7 acquires VEV.

49



Chapter 3. A modular A4 symmetric Scotogenic model for Neutrino mass and Dark Matter

The main issue of the perplexing vacuum alignment is avoided, the only requirement is a certain kind of
mechanism which can fix the modulus 7. Resultantly, this has prompted a restoration of the possibility that
modular symmetries are symmetries of the extra dimensional space-time with Yukawa couplings dictated
by their modular weights [155]. Hence, they transform systematically under this framework, where there
is a functional dependence of these couplings on modular forms, which verily are holomorphic function of 7.
To put it in a different way, these couplings come from a non-trivial representation of a non-Abelian discrete
flavor symmetry approach [62], to such an extent that it can remunerate the utilization of flavon fields,
which undoubtedly are not required in understanding the flavor structure. In reference to above, it was
fathomed that there are numerous groups accessible i.e., basis characterized under modular group of A4
[60, 65-69, 156], S4 [70-73, 157], A5 [75, 158, 159], larger groups [76], various other modular symmetries
and double covering of S4 [21], predictions regarding masses, mixing [160, 161], and CP phases distinctive

to quarks and/or leptons are made.

This chapter pertains to scotogenic model [162-166], constructed, based on modular A4 symmetry
in which mass generation for neutrinos is done at one-loop level alongside it also provides a stable DM
candidate. The model can be appreciated by using the modular forms for the Yukawa couplings with
weight-2, while the other couplings of the model with higher weights, can be constructed from the triplet
Yukawa couplings. The radiative neutrino mass generation in the context of A4 modular symmetry has
been investigated in [167, 168]. However, our proposed model is different from these studies in terms of
the field contents as well as model predictions. Our model encompasses two different sets of SM singlet
heavy neutrinos i.e., Ng; & St;, (i = 1,2,3), which transform as triplets under A4, with modular weight
k7 =-1 and +1 respectively. Likewise, the inert scalar doublet is allocated a non-zero modular weight
as kj = —2. Interestingly, modular weights help in impersonating the additional Zg symmetry, ensuring
the stability of DM. The present work remains unique from the earlier models in the context of avoiding
multiple flavon fields and their vacuum alignment. Furthermore, without the requirement of any ad-hoc
discrete symmetry, we discuss dark matter phenomenology. The gauge parameter space that gives correct
relic density (Planck), will be shown to be consistent with the collider (LEP-II and ATLAS) constraints as
well, which can be hardly seen in literature incorporated with modular symmetry. In view of the above,

the present work gives a new picture of phenomenological study, made simple yet rich.

The layout of this chapter is as follows. We introduce modular A4 in section-3.2, followed by model
description and its appealing feature resulting in simple mass structure for the charged and neutral
leptons with two types of sterile neutrinos. We then provide a brief discussion on the generation of light
neutrino masses and their mixing in section 3.4. In section 3.5 numerical correlational study between
observables of neutrino sector and input model parameters is established. Comment on lepton flavour
violating decays u — ey, u — 3e and p — e conversion in nuclei is presented in section 3.6. Further, Sec.

3.7 comprises the discussion on fermionic dark matter followed by collider constraints in section 3.8. We
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summarize the results in section 3.9.

3.2 Model with A4 modular symmetry

Here, we present a brief discussion on modular symmetry which manifests the invariance under linear

fractional transformations (LFTs) y acting on the complex variable 7 as follows:

ar+b

_— 3.1
ct+d’ @

Y:T— (1) =

with, ad —bc =1, where a,b,c,d are integers (Z). Modular group (I') forms a group of these LFTs acting
on upper half complex plane (Im(7) > 0). Moreover, it shows isomorphism to PSL(2,Z) (projective special
linear group) of 2 x 2 matrices with unit determinant and integers (Z) being the elements. S and T are the

generators of the modular group given by,

0 1 11
S = ; T= . (3.2)

-1 0 01

These generators satisfy the relation S? = I and (ST)? = I, under which 7 transforms as:
1
S:1———, T:t—1+1. (3.3)
T

Group definition for I'(V), where N =1,2,3,4,--- is given as

a b a b 1 0
T'(N) = e SL(2,2), = mod(N) §, (3.4)
c d c d 0o 1

such that I'(1) = SL(2,Z). Considering the case for N =3, i.e. '3 = A4 which is the non linear realization
of A4 discrete symmetry. The dimension for the A4 modular symmetry is 2k + 1. For k£ = 1, it yields
three Yukawa couplings, i.e., Y = (v1, ¥2, y3) expressed in modular form (see Eqn.(B.1)) which are linearly
independent forming a triplet of A4 having a modular weight 2. Also modular forms of higher weights
are expressed in terms of the modular forms of weight 2 given in Eqn.(B.3) and Eqn.(B.4). The Yukawa

couplings can be expressed in terms of Dedekind eta function 7(7) (see appendix B.1), which has the form,

=gy 1-q", (3.5)

n=1

2077 plays a crucial role in building the modular forms. However, for numerical simplicity the

where, g =e
g-expansion forms are utilized presented in Eqn. (B.2). Due to its simplistic nature modular A4 symmetry

plays a key role in the one loop framework.
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3.3 Model Framework

Here, we take the privilege of introducing the model framework, investigating the impact of A4 modular
symmetry on neutrino and dark matter phenomenology. The SM particle spectrum is enriched with three
right-handed (Nr) and three left-handed (S7,) heavy fermions to meet the purpose. We impose a local
U(1)p_1, symmetry to avoid certain unwanted interactions and a scalar singlet p to break it spontaneously.
The U(1)p-1. charges are assigned in such a way that the model is free from triangle gauge anomalies.
The scalar sector is extended with an inert scalar doublet 7, to realize neutrino mass at one-loop. The
assigned modular weight mimics Zy symmetry by playing a vital role in forbidding the neutrino mass
at tree-level and also in stabilizing the fermionic dark matter. The representation of different fields of
the model under SU2), x U(1)y x U(1)g—_1, x A4 symmetries and their modular weights are given in the
Table 3.1. In addition, the non-trivial transformation of Yukawa and scalar couplings and their modular

weights are furnished in Table 3.2.

’ ‘ ‘ Fermions ‘ ‘ Scalars

eR | MR TR ZL Nr | S; H n 0

Su@y. || 1] 1 |1 2 1 | 1] 2] 2
Uly || -1] -1 | -1 i 0o lo |32 o0
Ul || -1 | -1 | -1 | +1 -1 o ]o]o|-1
Ay 1 |1 [1”]11"Y | 3 | 38 || 1|11
k1 -1| -1 | -1 1 -1 | 1] 0]-2]-2

Table 3.1: Particle content of the model and their charges under SU(2);, x U(1)y x U(1)g-r, x A4, where kj
is the modular weight.

Couplings Ay | Rr

Y =1, ¥2, ¥3) 3 2
Ay 1
M, 1

Table 3.2: Transformation of the Yukawa and quartic couplings under A 4 symmetry and their corresponding
modular weights shown in Appendix A.

The scalar potential of the model is given by
Vo= )+ A D + A i3 + 120" p) + Co(HTED )
+ CalH i H) + 2 (0 + 0 HP) + G EDG )
+ g | Gyn' ) + 80102 + (o p)n )| + L. (3.6)
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Here, H=(0 (v+h)/V?2 )T is the SM Higgs doublet, n = (n* (g +iny)/v2 )T denotes the inert doublet and
the complex scalar p = %(v pthp+iA,) breaks the U(1)g-r, local gauge symmetry spontaneously. The
mass mode of A, is eaten up by the U(1)p_r, associated gauge boson Z', attains the mass Mz = gprv,.
In the above potential, {;’s (i = 3,4,5), {’, {,, {;, {"" are the free parameters and the scalar couplings A,
Ay are singlets under A4 with modular weight 4, 8 respectively, which can be expressed in terms of the

components of weight-2 triplet Yukawa couplings [59],

Ay = y3 +2y9y3,

Ap = (3 +2y203)%. (3.7)

For simplicity, we assume there is no H — p mixing i.e., {’ = 0. The mass spectrum of scalar sector [169] can

be written as follows:

M} =270,

2 2
M2 =20,0,02,

2 02

2 |2 v "n_p

M. =2, By +Cag |+ Al 50,
) 2 2

M%RJII = M? Hy + (3 +¢4 i(s); + /WVNE' (3.8)

In order to construct a simplified version of charged leptons mass matrix, left-handed doublets (i.e.,
three generations L, . ’ZlJL ,ZTL )) are considered to transform as 1,1”,1' respectively under the A4 symme-
try with assignment of modular weight, k7 = 1 for each generation. Analogously, the right-handed charged
leptons (eg, ug,Tr) transform under A4 as 1,1’,1”, and carry a modular weight, 2; = —1. The SM Higgs is
uncharged under the new symmetries, to make the scenario a bit simplistic.

The charged leptons interaction Lagrangian is given by
Ly, =y Le,Heg +y," Ly, Hug + y; Ly Htg + Hee.. (3.9)

The mass matrix for charged leptons achieves a diagonal structure, following, the spontaneous breaking of
electroweak gauge symmetry. Moreover, one can obtain the observed masses for the charged leptons by

adjusting the Yukawa couplings. Hence, the obtained mass matrix is represented as follows

yervve 0 0 me 0 0
Me=1 o vy oIV o (o m, of (3.10)
0 0 yyolV2 0 0 m,

where m., m, and m; are the observed charged lepton masses.
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3.3.1 Dirac and pseudo-Dirac interaction terms for the neutrinos

The right (left) handed heavy fermions contrary to SM leptons are considered as triplet under A4 modular
group with a U(1)p_r, charge of —1(0) and modular weight 2; = —1(+1). The usual Dirac interactions of
neutrinos with SM Higgs cannot be realized with the aforesaid charges. The introduction of modular
Yukawa couplings with transformation represented in Table 3.2 along with inert scalar doublet 7 are nec-
essary to write such interactions. Moreover, the Yukawa couplings Y(7) = (y1(7), y2(7), y3(7)), are expressed
in terms of Dedekind eta-function 7(7) and its derivative, as discussed in (Appendix of [59]). Hence, the
invariant interaction Lagrangian, involving the active neutrinos along with the right and left-handed

heavy fermions, can be represented in the following forms:

Lp =apLe, i(YNR)1 + BpLy, YNR)1 +yp Ly, i(YNR)1r + Hee., (3.11)

Lis = |apLe, fi(YSS)1 + B Ly, i(YSS )1 +yp L, HYSE )1 % +H.c.. (8.12)

Hence, the nature of the light neutrino mass could be of Majorana type, due to presence of small lepton
number violating terms as shown in eqn. (3.12). Adjacently, the A4 and U(1)g_1, charges for heavy fermions
are imposed in such a way that their usual Majorana mass terms are forbidden. However, the mixing

between the additional leptons are allowed, which can be written as follows [156]
Lyps = [aNSY(ENR )sym + Bns Y(SLNR )Anti—sym] p'+H.e.
= ans[y1(2SL,Np, —=Sr,Nr; —Sr3Nr,) +¥2(2S1,NR, —SL, NRy —SL,NR,)
+y3(2SLyNry —SL,Nr, — SL,Nr) 0" + Bns[y1(SL,Nry — S1,Nr,)
+y2(S1,Ng, —Sr,Ngr,) +y3(S1, Nr, - S1,Ng,)]p' +Hec., (3.13)
where, aygs and Bygs are the free parameters and (EN R)sym and (§N R)Anti—sym represent the triplet

symmetric (3;) and anti-symmetric (3,) product of Sy, Ng under A4. Using {p) = v of V2, the resulting mass

matrix is found to be

2y1 —y3s -2 0 y3 -y
_ Up [ ans
Mrs=T51"3 | - 202 -y [*PNS| -5 0 oy || 3.14)
-y2 —y1 2y3 yo -y1 0

As the mass matrix (3.14) is not symmetric, for simplicity we consider in our numerical analysis ays > fBns,
i.e., the symmetric term gives the dominant contribution compared to the anti-symmetric term. The mass

matrix for the six heavy leptons, in the basis (Ng,S )T, can be given as

0o M
My = B (3.15)
T
ML, 0
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Here, the diagonal entries i..e., Majorana mass terms of S;, and Ny are forbidden. Diagonalization of the

mass matrix (3.15) yields three doubly degenerate heavy fermions, with mass eigenvalues M ;—“, (1=1,2,3)

ansv ‘
Mfr:i( 6 P)(y1+y2+y3—\/Q(y%+y§+y§)—6y2y3—6y1(y2+y3)),
aNSU ‘
é‘r:i( 6 p)(y1+y2+y3+\/9(3’%+y§+y92,)—6y2y3—6y1(y2+y3)),
anNsv
M;Tr:i( 3 p)(y1+y2+y3)~ (3.16)

The eigenvalues are obtained upon the rotation M li =UrUrgMMprs(Ugr Urpm)T, where

2 1 0 A A __1
Vs 3 N- Ny VirAZ
Urem = \/g /i) Ur = £ £ 0 ) (3.17)

with,
B = — 1 y1+yz+y3+\/9yf+9y§+9y§—6yzy3—6y1(yz+y3)‘],
V6(y2—y3)
1 |
B, = ———|(y1ty2+ys— 9y2+9y2+9y2—6y2y3—6y1(y2+y3)],
= Form Vort+oxg 403
2y — Vo —
A = Woyys
V3(y2 - y3)
N_ = 1+B2 + A2,

N, = \/1+B%2+A2. (3.18)

3.4 Radiative Neutrino mass

Since, the usual Dirac mass terms of neutrinos with SM Higgs are forbidden by the assigned symmetries,
one can generate light neutrino masses at one-loop level and the corresponding Feynman diagram is
displayed in Fig. 3.1.

The expression of the neutrino mass' from one loop radiative corrections is written as [143, 170]

ID)ir(YL8)jk Mz, M3, My, M3,

3 3 5 In—5-—-— 5 In—5-1. (3.19)
327w MUR_Mk Mk MTH_Mk Mk

(M))ij=)
)

Here, M}, is the mass of the heavy fermions (M l?', with i = 1,2,3) inside the loop, the couplings Yp and

Y15 are related to the Yukawa coupling matrices (Yp and Yrg), characterizing the interactions of light

1We write the correct expression by including the appropriate factor, which is missing in many references of scotogenic model
along with the original paper [143].
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Figure 3.1: Feynman diagram for radiatively neutrino mass generation.

neutrinos with N and Sy, respectively and are given by

ap 0 O Yy oys 2
Yp =YpUrgmUgr, with Yp = 0 Bp O Yo y1 3 . (3.20)
0 0 1 y3o¥2 Y|
a, 0 0 Y1 ¥ys ¥2
Yis =YrsUrgmUr, with Yzg = A”\;E 0 B, 0 yo v ys : (3.21)

0 0 v ¥3 oy 0|,

The mass matrix in eqn.(3.19), can be reduced to the simplified form (see Appendix B.2) as follows with
the assumption M,% =~ m(z), where m% = (MrZ,R +M%I )/2:

(Ay)ij =

{5y ( v )2 (?D)ik(YLS)jk’ (3.2)

P ANG) M,

where, we have used M?,R —M,zn = (5/1;02, with, (5 = G(10~7). When specific mass ranges are considered for
M, M, and My, one can generate both linear seesaw and inverse seesaw [107, 171, 172]. The neutrino
mass matrix (3.22) is numerically diagonalized through the relation UMU T = diag(m%,m%,m%), where
M = J%J A, and U is an unitary matrix. Thus, the neutrino mixing angles can be extracted from the matrix
elements of the diagonalizing matrix U, through the generic expressions:

[U121?
1-1U31%’

[Ugs|?

s 2 2 2
sin“ 613 = |U13|°, sin“O10 = _—
1-|Uy3?

sin® 093 = (3.23)

Next, we attempt to determine the Jarlskog invariant (Jcp) as well as the effective Majorana mass
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parameter ({m..)) through the following relations [94]:

% * 2
Jep =Im[Ue1U,2U,5U ;11 = sa3ca3s12c12513¢7138indcp,

|(m1220)‘ =14/ Am%l sin® 012 cos? 013 +4/ Am%l sin® 013 sin? 913ei(“32_26) ,
a 1
\<m§g ~\/IAm2,| cos® 613 ¢ 1-sin220;5 sin? (%) . (3.24)

where, s;; =sin0;; and c¢;; = cos8;;, while «;; denote the Majorana phases.

3.5 Numerical Analysis

For constraining the model parameters, we use the current 3¢ limit on neutrino mixing parameters for

normal ordering (NO) from global-fit [173-175], which are given as

2
Am’atm

sin? 613 =[0.02044,0.024371, sin®f93 =[0.428,0.624], sin®6;y =[0.275,0.350]. (3.25)

=[2.431,2.622]1 x 103 eV2, Am?2,=[6.79,8.01]1x 107 eV2,

sol —

For inverted ordering (10),

Am?Z, =[2.37,2.531x 1072 eV2,  Am? =[6.79,8.011x 107° eV,
sin? 615 =[0.02018,0.02424], sin®0s3 =[0.433,0.608], sin’6; =[0.275,0.350]. (3.26)

The model parameters are so chosen, as to fit the current neutrino oscillation data given in Eqn. (3.25), as

follows:

Re[r]€[~0.5,0.5], Im[r]€[1,2], {ap,pp,yp}€(0.1,1.0], {ap,pp,yp}e [0.1,1.0],

v
ayns €[0.01,0.1], Byse[1075,107%], v, €[7,300] TeV, XPE[O'OOI’O'OI]'

The parameters used are randomly looked over the above mentioned ranges and the allowed regions
for those are first constrained by the observed 30 range of mass squared differences, mixing angles and
sum of active neutrino masses 0.058 (0.098) eVY m; < 0.12 eV [40, 176] for NO (I0) case. Furthermore,
the range of modulus 7 helps in validating the model with experimental results of neutrino masses is
found to be —0.5 < Re[r]1< 0.5 and 1 < Im[7] < 2. Hence, a very narrow range is satisfied by the modular
Yukawa couplings, which are functions of 7 (please refer Appendix of [569]) and their regions of validation
are found as: 0.99 < y1(1) <1, 0.1 < y2(1) £ 0.75 and 0.1 < y3(1) < 0.25, as visible from Fig. 3.2. We know
that in conventional models, we have a control on the value of the Yukawa couplings, that satisfies the
neutrino phenomenology. However, in modular frameworks, the Yukawa couplings exhibit ¢ expansion
form (see Eqn (B.2)) and are dependent on modulus 7. After obtaining the range of Yukawa couplings
and by suitably fixing the free parameters, one can explain the desired neutrino oscillation parameters.

Proceeding further, Fig. 3.3 and Fig. 3.4 depict the parameter space consistent with neutrino mass squared
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Figure 3.2: Left panel indicates the interdependence of the modular Yukawa couplings (y1, y2, y3) with the
real part while right panel presents the imaginary part of modulus 7.
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Figure 3.3: Left (right) panel represents the plot of Zm; with sin? 613 for both NO (I0). Here, the vertical
dashed line represents the 30 range of the respective mixing angles for NO (I10) case.

differences of 30 region in the plane of sum of total neutrino masses and mixing angles in NO and 10
case. Here, it is evident that we obtain the sum of the total neutrino masses within cosmological bound
(0.050 eV = Xm; <0.07 eV) and the mixing angles meet their corresponding 3o region of oscillation data
i.e., 0.02051 (0.02024) < sin?013 < 0.02412 (0.0237), 0.275 (0.276) < sin? f15 < 0.340 (0.345), 0.429 (0.434) <
sinZ 093 < 0.588 (0.587) for NO (I0) case. In other words, the model is able to satisfy all the current neutrino
oscillation parameters in their respective 30 regions simultaneously. In Fig. 3.5 we show the plot in the
plane of sin? 619 — sin? 613 (left panel) and sin? 619 —sin? 023 (right panel) in NO case. We do not include the
same for 10, as they are pretty similar to NO case. Fig. 3.6 projects the range of Yukawa couplings abiding
30 of all neutrino mixing parameters, plotted with the sum of active neutrino masses. As mentioned in
Sec. 3.4, Fig. 3.7, helps us to have a glimpse of how Jarlskog CP invariant fits in the whole scenario, and
found to be ranging from [-0.007,0.007], its connection with the reactor mixing angle is depicted in the
left panel for NO case. Right panel depicts the same for inverted ordering case where J¢p ranges from

[-0.006,0.005]. Fig. 3.8 shows the plot of Jarlskog invariant with sum of active neutrino mass for normal
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Figure 3.4: Left (right) panel represents the plot of Zm; with sin?6;5 and sin?6fs3 for NO (I0) cases
respectively. Here, the vertical dashed line represents the 30 range of the respective mixing angles for NO
(I0) case.
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Figure 3.5: Left panel represents a plot in a mutual space between sin® 615 with sin6;3 and right panel
stands for sin? 613 with sin? @23 with dashed lines implying the respective 30 ranges.

(left panel) and inverted (right panel) ordering.

Advancing further, in Fig. 3.9, the correlation between the effective neutrino-less double beta decay
(NDBD) mass parameter m,, and the sum of neutrino masses is shown in the left (right) panel for NO
(I0) case. Also, in Fig. 3.10 the left (right) panel shows its dependence with the lightest neutrino mass m 1
(m3) for normal (inverted) ordering. From the model perspective, one should note that the upper limit of
me. could be as large as 0.05 eV and the lightest neutrino mass should be m1(m3) <0.015 eV. It is also
evident that the effective neutrino mass parameter of our model reaches the sensitivity of LEGEND-200
[94]. In addition, we have also shown in the left (right) panel of Fig. 3.11 the plot between the CP violating
phase 6 cp with the reactor mixing angle 613 for normal (inverted) ordering, which provides the constraint
on dcp as 0<6cp <284° for NO and and 0 < §¢p < 250° for I0. In the left (right) panel of Fig. 3.12, we
display the correlation of the two Majorana phases i.e. @21 and a3; for normal (inverted) ordering, which

are involved in the determination of the effective mass of NDBD process.
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Figure 3.6: Left (right) panel reflects the alteration of sum of active neutrino masses with the modular
Yukawa couplings for normal (inverted) ordering.
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Figure 3.7: Left (right) panel shows a plot between the Jarlskog invariant with the reactor mixing angle in
normal (inverted) hierarchy. Here, the vertical dashed line represents the 30 range of sin”#613.

3.6 Comment on LFV Decays and i — e conversion

3.6.1 Comment on y — ey

The quest in looking for lepton flavour violating decay mode u — ey plays an exceptionally pivotal role
in the hunt for new physics beyond the SM. Many experiments are looking for this decay mode with
great effort for an improved sensitivity, and the current limit on its branching Br(y — ey) < 4.2 x 10718 is
from MEG collaboration [103]. In the present framework, the LFV process 1 — ey occur at one loop level
through standard Yukawa interactions. The Feynman diagrams for this process are displayed in Fig. 3.13.

The branching ratio for the rare decay ¢, — ¢py is given as [177]

3(4n) 3 o

Br(¢, — lgy) =
r(fq ﬁY) 4G%.

|y |2 x Br(Lq — Cpva¥p), (3.27)

where, Gr = 107® GeV 2 (i.e. Fermi constant) and a being the electromagnetic fine structure constant and
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Figure 3.8: Left (right) panel above depicts the plot of Jarlskog invariant with the sum of active neutrino
masses in normal (inverted) ordering.
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Figure 3.9: Left (right) panel above project the interdependence of effective neutrino mass of NDBD with
the sum of active neutrino masses for normal (inverted) ordering.

g is the dipole contribution, hence, expressed as

YD)ka Y5 rp 4
&@:Z( Dk (YLSrp 1(5k)' (3.28)

7 2(4n)2M§+

MZ
Here, Yp & Y15 being the Yukawa coupling matrices as shown in eqn.(3.20) and (3.21), &, = M—2k and %1 (x)

is the loop function provided in Appendix B.3.

In the left of Fig. 3.14, we have represented the dependence of the branching fraction of 1t — ey on the
inert charged scalar mass, which are found to lie within the experimental limits. In the right panel of Fig.
3.14 the variation of u — ey branching fraction with the modular Yukawa couplings is consistent with

neutrino mass constraints as displayed.
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Figure 3.10: Left (right) panel above project the interdependence of effective neutrino mass of NDBD with
the lightest neutrino mass m1(m3) for normal (inverted) ordering.
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Figure 3.11: Above plots depicts the variation of §¢p with respect to the mixing angles i.e. sin?6;3 for
normal ordering (left panel) and for inverted ordering (right panel).

3.6.2 Comment on y— 3e

The three body LFV decay processes ¢, — ¢ ﬁ%l g can proceed through penguin and box diagrams, which

are shown in Fig. 3.15. The corresponding branching ratio can be expressed as [177, 178]

— 3(4m)’a? 16 m 22
BR(Cy — 050505] = ——||elyq|®+|ot 2(—1 (—“)——)
( a = Eptp ﬁ) 8GZ | o™ +|dg|”| 5 log my) 3
1 2 * 1 * 2 *
+g|33| + -2 4y Ay +§.Q¢JV@33 —gd@% +h.c.
xBr(£q — C§vaVp) - (3.29)

The form factor «/5 is dipole contribution and is given in Eqn. (3.28). Regarding the other form factors,
A 9, given by

Y7 9)ip(YD)ia 1

6@n)? m—?ﬁ‘gz &), (3.30)

Ayp=)

i
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Figure 3.12: Left (right) panel depicts the correlation between the Majorana phases ag; with ag; for
normal (inverted) ordering respectively.

Figure 3.13: Feynman diagrams depicting the LFV rare decay processes ¢, — £gy. Here, the blob corre-
sponds to mixing of the right handed neutrinos N & Sr..

is generated by non-dipole contribution, whereas 98, induced by box diagrams, is

= (4ne)2m2+ ; gl(fhfj)(YLS)Jﬁ(YD)Jﬁ(YLS)zﬁ(YD)wc
+1/&i& D&, ¢)(Y1s) (YD) jp(Y, ¢)ip(YD)ia | - (3.31)

The loops functions % (x), Z1(x,y) and Da(x,y) are presented in Appendix B.3. Upper left panel of Fig.
3.16 represents the variation of the branching fraction of u — 3e with the mass of inert doublet. Here,
we find the branching fraction is obtained below the present upper limit Br(y — e"e*e™) < 1.0 x 10712
[179]. Similarly, in the upper right panel, we display the variation of Br(u — 3e) with dark matter mass,
while the lower panel represents the correlation of modular Yukawa couplings with the y — 3e branching

fraction.

3.6.3 u—e conversion in Nuclei

The most stringent constraint on LFV decays are favored by the u — ey, however, the improved sensitivity

is expected from the u—e conversion in the nucleus in coming decades. Several experiments like MuZ2e,
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Figure 3.14: The left panel represents the variation of the branching ratio of LFV process u — ey with
the charged inert scalar mass, whereas the right panel represents the variation with modular Yukawa
couplings, which are consistent with neutrino mass.

Figure 3.15: Feynman diagrams to represent the i — 3e conversion in the nucleus mediated by the gauge
bosons and photon.

DeeMe, COMET and PRISM/PRIME [180-182] are on its peak to reach an upper limit of 4.3 x 10~ (for

Ti Nucleus) to future sensitivity upto 1078, We briefly discuss the contribution from - e conversion in
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Figure 3.16: In the upper panel, left plot represents the variation of the branching ratio of LFV process
1 — 3e with the charged inert scalar mass, whereas the right plot represents the variation with dark
matter mass. Plot in lower panel depicts the variation with Yukawa couplings.

nucleus [183, 184] shown in Fig. 3.17. The conversion rate for u — e in the nucleus is provided as

peE.m3G2ad 7% F2
CR(u-e,Nucleus) = FC R R emTeff ®

872 Z Teapt
|+ (ef) + )+ 2-N (g + 23+
|2+ (g2, + &%) + 2~ M) (g0, + &%) )z} : (3.32)

Here, the proton and neutron numbers inside the nucleus are expressed by Z and N, Z.ss represents the
effective atomic charge [185], F', & I'capt denote the nuclear matrix element and the total muon capture
rate respectively. These parameters can be determined based on the choice of nucleus. Other parameters

used in the above equation are provided below [184], where X =L,R and K=V ,S,

1
0 (a.p) (q.n)
8 = 3 (gXK(q)GIgp +exk@Gg" ) :
q=u,d,s
1
1 (@.p) (q.n)
8xk =3 (exx@GE” - gxr@Ge"). (3.33)
q=u,d,s
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Figure 3.17: Feynman diagrams to represent the p-e conversion in the nucleus mediated by the gauge

bosons and photon.

The numerical values of Gk coefficients are taken from [183, 184, 186]. Here, gxx(q) being the effective

couplings, given as follows

u

8LS(q)

u

8RS(q)
8RV(g) =

8LV(q)

0,

0,

gLV(q)|L<—>R ’

Y
8Lv(g)’

(3.34)

where, ng(q) = g—gezgq (A 9 — Ag) is generated from photon penguins, 2, represents electric charge of

the corresponding quark.

We compute the conversion rate of y—e in Titanium (ggTi) nucleus (relevant details can be found

in [184]). Left panel of Fig. 3.18, projects the conversion rate versus M;+ and right panel signifies its

correlation with Br(u — ey). Horizontal dashed line corresponds to the upper bound [187].
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Figure 3.18: The left panel represents the variation of the conversion ratio of u—e for Ti nuclei with
the charged inert scalar mass, whereas the right panel represents the variation with branching ratio
Br(u — ey). Here the horizontal (red) and vertical (blue) dashed line represents the upper bound [187].
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3.7 A brief discussion on Fermionic dark matter

In this section, we give a brief discussion on fermionic dark matter. The model includes three heavy Dirac
neutrinos, out of which the lightest one (Np,) can serve as a dark matter candidate, provided the inert
scalar particles are heavier. The DM can have scalar mediated annihilations and can also annihilate via

Z', which arises due the kinetic term,
Bin >N,y (04 + 8812}, N, (3.35)

The DM abundance can be estimated by the formula [188]

op? = 107x10° GeV'!l 1
T g 2Mp Jxp)

(3.36)

where, Mp; = 1.22 x 1019 GeV, g4 is effective relativistic degrees of freedom, xf is the freeze-out parameter

and J(xy) reads as

(o)
Tep= | OO e, (3.37)
xf X
The thermally averaged annihilation cross section (cv) can be computed by [189]
x o0 x\/s
ov (x)z—f ox(s—4M?,) Vs K ( )ds. (3.38)
OO = Ko Juz, o) V5 K3

In the above, o stands for annihilation cross section, s stands for center of mass energy, K; and Ky
denote the modified Bessel functions. We have implemented the model in LanHEP package [190] and then
extracted the results from micrOMEGAs [191-193].

The parameters that alter DM abundance include the mediator mass i.e., of n and Z’, and their
couplings with DM particle. Choosing equal values (apy) for the couplings ap,fp,yp and a},, B}, 7}, we
project the DM relic density as a function of its mass in left panel of Fig. 3.19. The benchmark is suitably
chosen, which also meets the DM scattering experiments and stringent ATLAS constraints (to be discussed
in the next section). Once kinematically allowed, the annihilation channels (shown in Fig. 3.20) with lepton
and anti-lepton pair i.e., £¢, Vv in the final state in n-portal (¢-channel), SM fermion anti-fermion pair i.e.,
qq,?¢,vv in Z'-portal (s-channel), contribute to relic density. One can see that the s-channel contribution
gives resonance on the either side of Mpy; = M z/2 [194]. Furthermore, for the chosen benchmarks with
large apys and small gauge coupling gpr,, the t-channel processes in n-portal completely dominate and
dictate the shape of the relic density curve. To support this argument, we have plotted the thermally
averaged annihilation cross section in dual portals for one of the benchmark values in the right panel of
Fig. 3.19.

Moving to detection prospects, the Dirac fermion can scatter off the nucleus via Z’ with the effective
interaction of the form )

g —_— _
) LZL(NDW”NM)((IYM(I)- (3.39)
MZ’
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Figure 3.19: Left panel projects the variation of abundance of fermionic DM as a function of its mass for
two sets of values assigned to model parameters. Black horizontal dashed lines stand for the 3¢ bound of
Planck satellite data [40]. Right panel shows the thermally averaged annihilation cross section in dual

portals.
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Figure 3.20: Feynman diagrams for ¢ and s-channel annihilation of DM Np1, whose contribution is towards
the relic density.

The above interaction provides spin-independent (SI) WIMP-nucleon cross section [195], which is tightly

constrained from current stringent upper bound set by PandaX-4T experiment [196].

3.8 Collider studies

For collider studies, we have used CalcHEP [197, 198] to compute the cross section of pp — Z' — ee(uu)
as a function Z' mass, projected in the upper panel of Fig. 3.21 for a representative set of values for g,
provided with the bound from ATLAS collaboration [199]. It is clear from the figure that, for ggr, = 0.01,
the region My < 1.2 TeV is excluded and for gy, = 0.03, the favorable region is Mz = 3.15 TeV. For
gBL = 0.1, the Mz should be over 4.2 TeV.

We have run a scan over the model parameters displayed in Table. 3.3 that alter the annihilation cross

section and in turn the relic density of fermionic dark matter. In the process, no new constraint is obtained
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on the Yukawas y;. The constraint on the gauge parameters obtained from Planck relic density limit
upto 30 is projected in the lower left panel of Fig. 3.21, with the exclusion limits of ATLAS and LEP-II
(% >6.9 TeV). The favourable region turns out to be below both the exclusion limits. Furthermore, green
data points violate the PandaX-4T limit [196], which is made clear from the lower right panel of Fig.
3.21. We notice that there is a parameter region (orange data points) consistent with both Planck [40],

PandaX-4T as well as ATLAS dilepton constraints [199].

’ Parameter ‘ gur ‘ apMm ‘ Mz [GeV] ‘ My, My, My, [GeV] ‘

’ Range \ 0.001-0.1 \ 0.1-1 \ 500 — 4000 \ 2500 ‘

Table 3.3: Parameter scan for DM study.
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Figure 3.21: Colored lines in the upper panel correspond to the dilepton signal cross section as a function of
M for a set of values assigned to ggr, and the black dashed line points to ATLAS bound [199]. Lower left
panel projects the Planck data consistent gauge parameter space with ATLAS and LEP-II [200] bounds.
Lower right panel projects the SI cross section for the parameters corresponding to the lower left panel.
Black dashed line stands for the bound from PandaX-4T [196]. Orange data points are consistent with
Planck, PandaX-4T and collider constraints.

Moving onto the Z’ width, in the regime Mz > 2Mpy, the dark matter can contribute to invisible

width apart from vv mode. The B — L charge of dark matter comes into act in rescaling this width and the
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decay to pair of all other heavy fermions is kinematically forbidden. The precise measurement of invisible

width can distinguish the present model from other frameworks.

3.9 Conclusion

The major goal of this research is utilization of scotogenic framework to establish A4 modular symmetry
and explore how it affects neutrino phenomenology. Establishment of neutrino mass at one loop level is
made possible by introducing six heavy fermions (N and Sy ) assigned as triplets under A4 symmetry
and having modular weights of —1 and +1 respectively. Alongside an inert scalar is accommodated as a A4
doublet and modular weight of —2. The charm of A4 modular symmetry is prominently seen when the
Yukawa couplings acquire triplet charge (Y) with modular weight 2, and the scalar couplings for terms
involving 1 as A4 singlets (A, /1%) with weights 4,8 respectively. A B — L gauge symmetry i.e. U(1)g_r, is
also introduced to avoid unwanted Majorana mass terms and a complex scalar singlet p is accommodated
for breaking of the gauge symmetry so introduced.

Modular symmetry not only prevents the addition of new flavon fields for neutrino phenomenology but
also safeguard dark matter stability. A specific flavor structure for the neutrino mass matrix is established
along with neutrino mixing. We make use of numerical diagonalization for the neutrino mass matrix and
fixed the model parameters in such a way that they remain compatible with present 3¢ range of oscillation
data both in normal and inverted orderings. Proceeding in this way, we were also able to establish the
present model’s contribution towards lepton flavor violating decay u — ey, conversion compatible with
upper bound set by MEG collaboration. We have thoughtfully checked for it — 3e and p— e conversion in
the nuclei for the present model. Lastly, we looked at the phenomenology of the lightest stable fermion
in dark matter. We determined the relic density compatible with Planck data for a certain benchmark
of model parameter values using stringent restrictions on Yukawa couplings constraining dark matter
mass. According to our findings the annihilations with lepton-anti lepton pair in the final state via n
and Z' (U(1)g_r, associated) portal contribute to relic density. Tree-level direct detection mediated by
71 is not possible as 7 does not couple to quarks directly. While, the Dirac dark matter scatter off the
nucleus via Z’, providing spin-independent cross section. We have shown the favorable parameter space,
consistent with Planck, PandaX-4T, ATLAS dilepton searches and LEP-II. Finally, A4 modular symmetry
stands out, enabling rich neutrino phenomenology while eliminating the flavon fields utilised in traditional
frameworks and stabilising dark matter candidates. The current work serves as an example, addressing

the aforementioned issues in the context of modular symmetry.
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CHAPTER

INVERSE SEESAW UNDER A’5 MODULAR SYMMETRY

4.1 Introduction

The results from various neutrino oscillation experiments have unambiguously established the fact that
neutrinos posses very small but non-zero masses contradicting their vanishing mass concept presumed in
the Standard Model (SM). Therefore, understanding the origin of the neutrino mass necessitates to employ
physics beyond the SM. One of the conventional ways to generate the light neutrino masses is through
the canonical seesaw mechanism [47, 201-203], where three heavy right handed (RH) neutrinos A%, are
introduced on top of the SM particle spectrum. The inclusion of right-handed neutrinos not only generates
the Dirac mass term but also leads to Majorana mass for Ag;’s, of the form W_mﬂéfi which violates
the lepton number by two units. The master formula for generating the masses of the active neutrinos
is governed by my ~ —Mp. 4y lﬂg , where .#p is the Dirac neutrino mass matrix and .#r being the
Majorana neutrino mass matrix of the heavy RH neutrinos, satisfying the relation .#p < ./4r. However,
myriad literature on seesaw models show work on other extensions like type-II, with the inclusion of a
scalar triplet [204—209], type-III [210-215], where a fermion triplet is added to the SM particle content. In
these approaches, the masses of the new heavy particles are quite heavy and are beyond the access of the
present and future generation experiments.

Many other alternative approaches were proposed, e.g., linear seesaw [19, 86, 87, 117], inverse seesaw
[171, 216—-221], where the new physics scale responsible for neutrino mass generation can be brought
down to TeV scale, at the expense of the inclusion of new additional fermion fields (Sr,), which are SM

singlets. The inverse seesaw formalism is implemented by including three additional left-handed (LH)
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singlet fermions #7,; and hence, the basis that involves for the neutrino mass generation is (v} , Ag;, %L, )T
This leads to the neutrino mass matrix structure as m, ~ (p [ Mgs) My, (Mp / Mrs)T, where M), is the
Majorana mass term for the heavy singlet fermion .#;,;. For inverse seesaw, the various mass terms satisfy
the relation ./, < ./p < #Rs, and hence, the neutrino mass is given by m, = %12)/%# / Jl}% S So to get
the correct order of the light neutrino masses, the typical values of different mass scales are: .4p ~ 10

GeV, #Rrs ~10 TeV, and .4, ~ 1 keV.

Genearally, to implement inverse seesaw certain symmtries are assumed, like discrete flavour symme-
tries Sg [222, 223], A4 [62, 88, 172, 224, 225], S4 [226—-228] etc., to avoid certain unwanted terms in the
extended neutrino mass matrix of (VZ,WR HIL i)T basis. However, a number of flavon fields are required
for the breaking of these flavor symmetries as well as to accommodate the observed neutrino oscillation
data and the vacuum alignment of these flavon fields pose a challenging task. But in recent times, modular
symmetry [59, 229-232] has gained pace and is in the limelight. Modular symmetry removes the usage of
excess flavon fields, where, the role of flavons is performed by Yukawa couplings, which are holomorphic
function of modulus 7. When this modulus acquires the vacuum expectation value (VEV), it breaks the
flavor symmetry. Exploration of myriad text shows work on modular groups S3 [233—-235], S4 [70, 236, 237],
A4 [69, 74, 156, 238-244], A5 [75, 159], double covering of A4 [245], double covering of A5 [158]. These
modular groups help to accurately calculate the neutrino oscillation parameters at 30 level along with

other observables.

In this work, we intend to focus on the double covering modular group I'; =~ A} and its implications
on neutrino phenomenology in the inverse seesaw framework. The inverse seesaw mechanism in the
context of A4 modular symmetry has been explored in Ref. [69]. In the past, quite a few works in the
literature have been discussed the significace of finite groups, which comprehend the basic properties of
Ag group [246-248]. The phenomenology of neutrino masses and mixing has been investigated using
the double covering modular group I'; = T" in the canonical seesaw model in Ref. [245], where they have
shown that for suitable choice of model parameters, the lepton masses and mixing parameters can be
successfully accommodated. The implications of the double covering group I'; = AL on leptonic masses
and mixing pattern have been investigated in Ref. [158] in the minimal seesaw scenario. Hence, for the
sake of completeness, here we mention only the essential points regarding Ag modular symmetry group.
The A group has 120 elements, which can be constructed by three generators S, T and R, which satisy
the identities S2=R, (ST)® =1, R2=1and RT = TR [158]. These 120 elements are categorized into nine
conjugacy classes, which classifies them as the nine distinct irreducible representations, symbolized as 1,
2, ﬁ’, 3,3,4,4,5and 6 by their dimensions. Moreover, conjugacy classes and character table of A’5, as
well as the representation matrices of all three generators S, T' and R in the irreducible representations,
are presented in Appendix [158]. It should be noted that the 1, 3, 8’, 4 and 5 representations with R =1

coincide with those for A, whereas §, ﬁ’, 4 and 6 are unique for Ag with R = —[. As we are working in the
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modular space of I'(5), hence, its dimension is 5% + 1, where, % is the modular weight. A brief discussion
concerning the modular space of I'(5) is presented in Appendix C.1. For 2 = 1, the modular space M1[I'(5)]
will have six basis vectors i.e (&;, where i =1,2,3,4,5,6) whose g-expansion are given below and they are

used in expressing the Yukawa coupling Yé(l) as shown in Appendix C.3:

e, = 1+3g+4¢%+2¢° +q*+3¢° +6¢° +4¢" - ¢° +---,

e, = q1/5(1+2q+2q2+q3+2q4+2q5+2q6+q7+2q8+2q9+--~),

e; = q2/5(1+q+q2+q3+2q4+q6+q7+2q8+q9+---),

e, = q3/5(1+q2+q3+q4—q5+2q6+2q8+q9+---),

ey = q4/5(1—q+2q2+2q6—2q7+2q8+q9+---),

e = q(1-29+4¢°>-3¢%+q*+29°-2¢%+3¢®-2¢"+--). 4.1)

Structure of this chapter is as follows. In Sec. 4.2, we discuss the model framework for generating the
light neutrino masses using inverse seesaw mechanism with discrete A; modular flavor symmetry. This
Aj modular symmetry is double covered, hence, there are more number of irreducible representation as
compared to A5 modular symmetry. This helps us to construct charged leptons and neutral lepton mass
matrices. In Sec. 4.3, numerical correlational study between the observables of neutrino sector and the
model input parameters is established. A brief discussion on the non-unitarity effect is presented in Sec.
4.4. In addition, lepton flavor violation (LFV) in the context of the present model is presented in Sec. 4.5
and collider bound on the mass of new gauge boson Z' is provided in section 4.6. Finally, in Sec. 4.7, we

conclude our results.

4.2 Model Framework

We consider a scenario in which inverse seesaw is implemented in the context of supersymmetry (SUSY)
to study the neutrino phenomenology, where the SM is extended with a discrete A modular symmetry. An
additional local U(1)p-7, symmetry is added to prohibit certain undesirable terms in the superpotential.
The SM particle spectrum is supplemented with three extra RH singlet fermion superfields (.Ag,), three
LH singlet fermion superfields (.#7,,) and one weighton ({). The added fermion superfields of the model
transform as 3’ under the Ay modular group, whereas, the U(1)g-r, charges assigned to them are —1 (A%;)
and 0 (#47,). Also RH neutrinos are assigned modular weight 6 and LH neutrinos with 0. The particle
content and their charges under various groups are provided in Table 4.1. The A’5 and U(1)g_1, symmetries
are considered to be broken at a scale much higher than the electroweak symmetry breaking [89]. The
U(1)p-1, symmetry is spontaneously broken by assigning non-zero vacuum expectation value (VEV) to the
singlet weighton {, and consequently the additional singlet fermion superfields acquire their masses. The

Z' boson associated with U(1)p_1, acquires its mass by the singlet VEV v, and we will show that its mass
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and gauge coupling satisfy the present experimental bounds in section 4.6. In addition to above, several
higher order Yukawa couplings are introduced which obey the rule: ky =% L+ k L+t kr,, where ky
is the weight on the Yukawa couplings and % Ii(i =1,2,3,4---) are the weights on the superfields. These
higher order Yukawa couplings implicitly depend on Y" whose complete forms are shown in Appendix

6
C.3.

Fields || er | up | 1 | LL | M | A || Hua | ¢
su@y || 1] 1 [ 1|2 | 1|1 2 |1
UQy || -1 -1 |-1| 2 ] o | o | -31]o
Al 1|1 |1]38]38|¥ 1 |1
Ulpr || -1 | -1 | -1| 1 | -1]0 0 |1
ki 2 | 4 /6 |]0] 6 |0 0 |o

Table 4.1: Particle content of the model and their charges under SU(2);, x U(1)y x A’5 x Up—1, group and
their modular weights £;.

The superpotential of the model is given by
. . 2
W= A |CLlRNsYy! | Ho+ pttu#g+ G| Lrtw)e Y Y,0| 7,
i=1

_ 2 —
+ Buis | (LM ;Yéi’] C+poS L A, (4.2)
1=

where, A 4,, Gp and B 4, are 3x3 diagonal matrices given as A 4, = diag(a.«,, B.4,,Y.«,)» Gp =diag (8p,,8D4,8D3)
and B 4, =diag (ars,>@Rs,,aRrs;), characterizing the coupling strengths of various interaction terms.

The modular weight £ in the first term takes the values k7 =(2,4,6) for [ = (e, i1, 7).

4.2.1 Dirac mass term for charged leptons

To establish charged leptons mass matrix, the left-handed doublet superfields i.e., Lz, transform as triplets
under the A’5 symmetry with B — L charge —1. The Higgsinos .75, 4 are given charges 0, 1 under the Up_,
and A} symmetries respectively with zero modular weight. The VEVs of these Higgsinos ., and %
are given as v,/v2 and vgy/v/2 respectively. Moreover, Higgsino VEVs are associated to SM Higgs VEV
as vy = %\ /v% + vi and the ratio of their VEVs is expressed as tan 8 = (v,/vg) = 5. Hence, the relevant

superpotential term for charged leptons is given as
T (2) T 4) T 2 (6)
Wi, = au, [(LLeR)3Y3 ] A4+ Boa [(LLuR)3Y3 ] T4+ .1 [(LLTR);;{ Y Y }]de . (4.3)
i=1
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After the spontaneous symmetry breaking, it is evident that the charged lepton mass matrix isn’t diagonal

and is expressed as

(Y(2))1 (Y3(4))1 (ié YéGi))l .y, 0 0
] (L M R 4 I R P E
(Y(2))2 (Y;4))2 (élyéi))zlw ’ o

The charged lepton mass matrix .#; can be diagonalised by the unitary matrix U;, giving rise to the

physical masses of e, u and 7 as
US it 4] U, = diag(m?2,m?%,m?). (4.5)

In addition, it also satisfies the following identities, which will be used for numerical analysis in section

4.3:

Tr(MlMlT) = mg+mi+m§ ,
Det (./%l./%;) = mgmim% ,
% [T (MZMZT)]Z - %Tr (]| = m2m2+m2m? +m2m?. (4.6)

4.2.2 Dirac mass term for neutrinos

The right-handed neutrino superfields .4z, are 3’ under A; modular group with a B—L charge of ~1
and modular weight 6. Therefore, the invariant superpotential, describing the Dirac mass term for the

neutrinos can be written as,

_ 2
Wp=Gp |(LL NR)a ), Yfi) Hy . (4.7
i=1

Here, the subscript for the operator Lz 4% indicates Aj representation constructed by the Kronecker
product rule (see Appendix C.2) which further leads in obtaining a invariant superpotential. The resulting

Dirac neutrino mass matrix is found to be

2 2

o —vE(rve) -ve(Lvy)

=1 73 =1 72 gn, O 0
Mp = 22 ﬁ(%Y(G-)) (%Y(G.)) —ﬁ(%Y“‘.’) 1o ol (4.8)
26 PN . PN y FaE Y L 8D,
2 2 2 0 0 sgp
alg) (mn), (5w ‘”’
L i=1 7)1 i=1 7" )g i=1 73 LR

where (gp,,8D,,8D;) are the free parameters of the diagonal matrix Gp.
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4.2.3 Mixing between the heavy fermions A% and %7,

The mixing between heavy fermion superfields A% and /7, can be expressed as follows,
g2 2 (6)
Wins = By [(yLJVR)s > Yy ]( (4.9)
i=1

where, the choice of Yukawa coupling depends on the sum of the modular weight of the superfields and the
Kronecker product rule as given in Appendix C.2. Using ({) = v;/ V2, the resulting mass matrix is found to
be

2 2
9 (6)) _ \/g( Y(6)) _ \/g( Y(G))
(El 5i ), igl 5i), ig 51 aRrs; 0 0
Mps=—— | - 3( iy@) _\/6‘( iy@) _( iy@) 1o aps, o | @10
2\/T5 = 5,i 4 Pt 5,i 9 Pt 5,i 1 RSy
2 2 2
- 3(2 Y;?) —(z Yﬁ“?) —\/E(z Yg?) 0 0 ags,
i=1 /3 i=1 71 i=1 7 )5 1R

where (ags,,ars,,@rs,) are the free paramaters of the diagonal matrix B_;.

4.24 Majorana mass term for /7,

Under A'5 singlet heavy fermions ./}, transform as triplet 3’ having zero modular weight. Hence, its

Majorana mass term can be written as,
Wy = oSLIL, (4.11)

leading to the mass matrix (.#,) of the form

1 0 O
01 0

4.2.5 Inverse Seesaw mechanism for light neutrino Masses

In the present model constructed using A modular symmetry, the complete 9 x 9 neutral fermion mass

matrix in the flavor basis of (vz, Ar,%f )T is given as

VL JVR yf

vi | 0 0
M=| ~ b . (4.13)

MNe | ME O ps

T
g0 ks
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In the limit ./, < /p < #Rg, the above mass matrix (4.13) provides the inverse seesaw mass formula for

the light neutrinos as
my = Mp Mpy My (M) (D). (4.14)

Thus, diagonalization of the light neutrino mass matrix (4.14) yields the masses of the active neutrinos.
Apart from determining the small neutrino masses, other observables, which are of great use, are the
Jarlskog invariant (J¢p) and the effective neutrino mass (m..) describing the neutrinoless double beta

decay. These observables related to the mixing angles and phases of PMNS matrix through

Jeop = Im[UelU,uZUe*QU;]_] = 8230238120128130%3 sindcp, (4.15)

(Mee) =My, cos? 012 cos? 013 + My, sin? 619 cos® O15e'%%1 + Moy, sin® Blgel(“31_2§CP)|. (4.16)

The effective Majorana mass parameter (m..) is expected to have improved sensitivity measured by

KamLAND-Zen experiment in coming future [97].

4.3 Numerical Analysis

Numerical analysis is performed by considering experimental data at 3o interval [173] as follows:

=[2.47,2.63]1 x 1072 eVZ, Am?, =[6.94,8.14] x 107° V2,

sol —

NO: Am?

atm

sin® 615 = [0.0200,0.02405], sin’0y3 = [0.434,0.610], sin® 6012 =[0.271,0.369] . 4.17)

Here, numerical diagonalization of the light neutrino mass matrix as given in eqn.(4.14) is done through
Uzjl U, = diag(m%,m%,m%), where /4 = mva, and U, is an unitary matrix. Thus, the lepton mixing
matrix is given as U =U ; U,, from which the neutrino mixing angles can be extracted using the standard

relations:

Usal? Uss|?
Usal sin%@-l (4.18)

. 2 2 .9
sin“613 =|U13|®, sin“f19=—F—, = .
1-|U;31? 1-|Us312

In order to demonstrate the current neutrino oscillation data, the values of model parameters are chosen

to be in the following ranges:

Re[71€[0,0.5], Im[r]1€[0.5,2], {gp,,&D,,8D5} € [107%,1071],

{aRSl, (XRSZ,(XRS3} € [0.1, 1], %¢ € [10, 100] TeV. (4.19)

For diagonalizing the charged lepton mass matrix .#; eqn.(4.4), we use the values of the free parameters
as: a4, = 6(107%), B, = 0(1072) and Y = 6(107%), and scanning over the allowed ranges of real and
imaginary parts of the modulus 7, i.e., 0 < Re[r] < 0.5 and 0.5 < Im[7] < 2, we numerically obtain the
diagonalizing matrix Uj, that gives the charged-lepton masses as m, = 0.511 MeV, m, = 105.66 MeV,
m, =1776.86 MeV.
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>m;>0.12 eV (Excluded region) >mi>0.12 eV (Excluded region)
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sin6y3 sin26y,, sin®6z3

Figure 4.1: Left (right) panel signify the correlation of the mixing angles i.e. sin®63 (sin? 619, sin®63)
respectively with the sum of neutrino masses Y m; (eV).
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Figure 4.2: Left (right) panel signify the correlation of the mixing angles i.e. sin®6013 (sin? 619, sin®63)
respectively with the sum of neutrino masses Y m; (eV).

In order to make appropriate predictions of the neutrino mixing angles and other parameters within
their 30 ranges, the input parameters are generated in a random fashion. The allowed ranges of solar
and atmospheric mass squared differences at 30 level used as constraints to calculate other neutrino
oscillation parameters in their 3o ranges [173]. Here, we have kept the range of modulus 7 as: 0 < Re[7] <
0.5 and 0.5 < Im[7] < 2 and also the estimated range for o € [1075,10] keV for obtaining the neutrino
masses in normal ordering (NO). With these values, the neutrino mixing angles are then extracted using
eqn. (4.18). The variation of the mixing angles sin? 613 (left panel) and sin? 619, sin? O3 (right panel) w.r.t
sum of the active neutrino mass Y m; < 0.12 eV [40] are shown in Fig. 4.2. From these plots, it can be
inferred that the allowed range of the sum of active neutrino masses to be in the range (0.058-0.1) eV.
Further, the variation of dcp with respect to mixing angles sin? 613 (left panel) and sinZ 619, sin? O3 (right
panel) is shown in Fig. 4.3, where the vertical dashed lines represent the in 30 ranges of the mixing angles.
These plots suggest dcp should be in the range (100 — 250)°. Fig. 4.4 focuses on the correlation between
the Majorana phases i.e., @21 and a31, and they are seen to be unconstrained and lie within the range of

(0—360)°. The left panel of Fig. 4.5, signifies the correlation between the effective neutrinoless double beta
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decay mass parameter (m..) and the lightest neutrino mass m; as well as with the sum of active neutrino
masses (}_m;). It can be inferred from the plot that the model predicts the lightest neutrino mass m1 to be
less that 0.015 eV and m,. to be in the range (0.001 — 0.025) eV, satisfying the current upper limits from
KamLAND-ZEN experiment [97]. In the right panel of Fig. 4.5, we show the correlation of Jarsklog CP
invariant allowed by the neutrino data, with the reactor mixing angle, which is found to be of the order of
©(1073). In Fig. 4.6, we represent the correlations between the heavy fermion masses, where, left panel is

the plot expressing M, with My while the right panel is for My versus M3 in TeV scale.
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Figure 4.3: Left (right) panel displays the correlation between §cp w.r.t sin20:3 (sin012 and sin20s3).

Figure 4.4: The above panel shows the plot between the Majorana phases i.e., ag; and ag;.

4.4 Comments on non-unitarity

In the section, we briefly comment on non-unitarity of neutrino mixing matrix Uf’MNS which basically
arises due to the mixing between the active neutrinos and the heavy neutral fermions. The form for the

deviation from unitarity is expressed as follows [99]
l 1 T
UPMNS =|1- égg Upuns - (4.20)
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Figure 4.5: Left panel shows the correlation of effective neutrino mass of neutrinoless double beta decay
with the lightest neutrino mass m i (red points) and sum of active neutrino masses (dark green points).
The right panel represents a correlation between Jcp with respect to the reactor mixing angle.

1000

1000

100} 1000
3 3
E E
3 <

10F 10}

10 100 10 100 1000
M; [TeV] M, [TeV]

Figure 4.6: Left panel shows the correlation of heavy fermion masses M; versus My and right panel
represents a correlation of heavy fermion masses Mg versus M3 in TeV scale.

Here, Upyns is the PMNS mixing matrix, used in diagonalising the mass matrix of the three light
neutrinos and % represents the mixing of active neutrinos with the heavy fermions and its form is given

by
F = (ML)t = (gpuu/agsve), (4.21)

which is hermitian in nature. The global constraints on the non-unitarity parameters [100-102], come
from several experimental results such as the W boson mass My, the Weinberg angle Oy, several ratios of
fermionic Z boson decays as well as its invisible decay, electroweak universality, CKM unitarity bounds,
and lepton flavor violations. As mentioned earlier, in the inverse seesaw framework, the light neutrino
mass matrix eqn.(4.14) can be expressed as
My = (ﬂ)ﬂﬂ (ﬂ)T . (4.22)
Mrs MRs

80



4.5. Comments on LFV

Thus, in the context of the present model, we consider the following approximated mass values for the
Dirac, Majorana mass for .#7, and the pseudo-Dirac mass for the heavy fermions to correctly generate the
observed mass square differences of the desired order as:

2

( my ):( AMp )2(Mp)(1o4GeV (4.23)

0.1ev/) (102 GeV) \keV)\ #rs

With these benchmark values and using eqn.(4.21), we obtain the approximated non-unitary mixing for

the present model as given below:

1.1x107° 83x107 3.8x10°6
+
IFF'1<| 83x10°7 95x108 5.02x10~7 | - (4.24)

38x107% 5.02x1077 3.05x1077

4.5 Comments on LFV

Lepton flavour violation is one of the most fascinating probes for new physics beyond the SM, therefore,
here we investigate decay mode p — ey. Several experiments are looking for this decay mode with great
effort for an improved sensitivity, and the current limit on its branching ratio is from MEG collaboration as
Br(u — ey) < 4.2 x 10713 [103]. There is a sizeable contribution in the present model using the Af inverse
seesaw mechanism, due to the allowed light-heavy neutrino mixing. The branching ratio for the y — ey in

our model framework is given by

2
(4.25)

3 a 3 *
Br(u—> e’)/) = E (%) Zlf(./%?/./ﬂvzv) |9pig€i
i=

Here, .#; represents the heavy fermion masses and f (J%?/M‘?V) is the loop-function [249] and &%,; are the

non-unitary parameters defined in eqn (4.21).
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Figure 4.7: Plot above represents the correlation between Br(u — ey) with respect to (lightest heavy
fermion) M.
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Figure 4.8: The colored lines represent the dilepton signal cross sections for pp — Z' — ee(up) as a function
of M7 for a representative set of gy, values and the black dashed line symbolizes the ATLAS bound [199].

The branching ratio plot for the lepton flavor violating decay p — ey is presented against lightest heavy
fermion mixing mass M; in Fig. 4.7. From the figure, it is evident that the predicted branching ratio is

well below the current upper limit mentioned above.

4.6 Collider Bound on Z' mass

As discussed earlier in Sec 4.2, the U(1)p_1, gauge symmetry is spontaneously broken by assigning the
vacuum expectation value v; to the singlet scalar {. Consequently, the neutral gauge boson Z' associated
with this symmetry becomes massive by absorbing the massless pseudoscalar component of { and its mass

is given as
Mz =gprvg, (4.26)

where gpy, is the gauge coupling constant of U(1)g_z,. The LEP-II provides the constraint on the ratio of
mass of Z' boson to its coupling as Mz/ggr, > 6.9 TeV [250]. Hence, in this work we have considered the
range of the vy as [10-100] TeV eqn.(4.19), consistent with the LEP-II bound.

The ATLAS and CMS collaborations have performed extensive searches for the new resonances in both
dilepton and dijet channels. In the absence of any excess events over the SM background, they put lower
bounds on the mass of Z’ boson. These bounds are usually limited to a specific model, and typically the
experiments report their results assuming simplified models, like the Sequential Standard Model (SSM)
or GUT-inspired Eg models.

Recent results from ATLAS [199], provide the lower limits on the Z’ mass from the dilepton search
using Run 2 data, collected with the center of mass energy /s = 13 TeV. In this work, we use CalcHEP
[197] to compute the production cross section of Z', i.e., pp — Z' — ee(up). In Fig. 4.8, we show the Z’

production cross section times the branching fraction of Z' decaying to dilepton (ee, uu) signal as a function
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of My, for some representative values of the gauge coupling gpr = 0.05,0.1,0.3. The black dashed line
denotes the dilepton bound from ATLAS [199]. It can be noticed from the figure that the region below
Mz = 3.6 TeV is excluded for ggr, =0.3. For ggz, =0.1, Mz < 2.6 TeV is ruled out and the mass region of
My > 2.1 TeV is allowed for ggr, = 0.05. Thus, one can generalize these observations as the lower limits on

M7 increases with the increase of the gauge couplings.

4.7 Conclusion

In the context of the inverse seesaw framework, we studied the consequences of modular Ag flavour
symmetry on neutrino phenomenology. To account for the inverse seesaw process, the present model
comprises three right-handed and three left-handed heavy neutral fermions. The singlet scalar ( is crucial
in breaking the U(1)p_1, symmetry spontaneously and providing masses to the heavy fermions. We have
considered higher order Yukawa couplings that follow the rule &, =k 1, +k 1, +-o+k I, where &y is
the weight on the Yukawa coupling and £; (i = 1,2,3,4---) are the weights on the superfields under Aj
symmetry. Due to this we were able to attainl a specific flavor structure for neutrino mass matrix as needed
by the inverse seesaw formalism. Moving on, we numerically diagonalize the mass matrix and obtain a
valid model parameter-space that allows us to produce results that are compatible with the 3o limit of
oscillation data for normal ordering. Furthermore, our model predictions suggests that the CP violating
phase 6¢p to be in the range of (100° — 250°), whereas the Majorana phases remain unconstrained. The
sum of active neutrino masses is found to be in the range 0.058 eV < Xm; < 0.1 eV and the mass of the
light neutrino mass as m1 <0.015 eV. We also determined the effective neutrinoless double beta decay
mass parameter m,, as (0.001 — 0.025) eV, which is significantly lower than the existing maximum limits
from KamLAND-Zen experiment i.e., < (61 —165) meV. We also looked at the lepton flavour violating decay
mode p — ey discovered that its predicted branching ratio is substantially below the current experimental
upper limit 4.2 x 10713, Furthermore, we demonstrated that the mass of the new neutral Z’ gauge boson

associated with U(1)p_;, symmetry is within the present experimental collider bounds.
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CHAPTER

LINEAR SEESAW IN Ag MODULAR SYMMETRY WITH LEPTOGENESIS

5.1 Introduction

There are several unsolved knots in the realm of particle physics, e.g., the baryon asymmetry of the
Universe, the dark matter content, the origin of neutrino masses and mixing, etc., and the understanding
of these issues is one of the prime objectives of the present day research. In the last couple of decades,
several diligent attempts have been made towards comprehending and resolving the issue of dynamical
origin of the fermion masses and their mixing. Present scenario has taken us few steps ahead in terms of
getting a convincing explanation of the origin of mass through Higgs mechanism while being within the
domain of Standard Model (SM). However, it does not provide proper grounds to explain the origin of the
observed neutrino masses and their mixing. Rather, very diverse approaches are made in order to gain an
insightful resolution towards the above existing problems, and obviously the answer lies in going beyond
standard model (BSM) physics. It should be emphasized that, certain well-defined patterns are observed
in quark masses and mixing, the appreciation of which is still an enigma. Nonetheless, there are ample
amount of research work present, which make an attempt to grasp their fundamental origin. In addition,
perplexity to the problem has increased due to the observation of the neutrino masses and their sizeable
mixing. The reason being, the order of magnitude of the observed neutrino masses are approximately
twelve order smaller than that of electroweak (EW) scale. Also, there is immense difference in the pattern
of leptonic and quark mixings, the former is having large mixing angles, while the later involves smaller
mixing angles. Numerous experiments [251-254] have corroborated the tininess of the neutrino masses

and other parameters with high accuracy. The global fit values of the neutrino oscillation parameters are
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furnished in Refs. [173, 175].

It is well-known that in the SM framework, the neutrino mass generation cannot be explained through
the standard Higgs mechanism due to the absence of the right-handed (RH) components. Still, if we could
manage to add the RH neutrinos into SM by hand, and allow Dirac mass terms, the values of the required
Yukawa couplings to be around G(10~!2), i.e., which appear as aberrant. In contrast, there exist many BSM
scenarios that help to generate tiny neutrino mass through the conventional seesaw mechanism. Some of
the prominent seesaw mechanisms are categorized as type-1[47, 201, 203, 255], type-1I [204—-209], type-III
[210-215] and all of them require additional heavy fermions or scalars beyond the SM particle content.
Literature survey shows there are many flavor symmetries either discrete A4 [225, 256, 257], S3 [258—-261],
S4 [262-264] etc. or continuous U(1)p—_y1, [194, 223, 265-267], U(1)g [268-270], U(1)1,,-1., [271, 272] etc.,
which can generate the tiny neutrino masses and also accommodate the observed neutrino oscillation data
with the help of some additional scalars and perturbation (wherever required). As aforesaid, inclusion
of flavons affects the neatness of the model and the predictability of the model is hampered because of
the higher dimensional operators. These drawbacks can be eliminated through the recent approach of
including modular symmetry [59, 70, 74, 75, 93, 156, 159, 229-244, 273], where the Yukawa couplings

transform non-trivially under the discrete flavor symmetry group and have certain modular weight.

The modular group F'5 = A’5 is a new and promising candidate, which corresponds to the special case of
N =5. People have done extensive studies on the essential properties of this Ay finite group [246-248], so
here we bring up only the important points regarding Af modular symmetry. The A group consists of 120
elements, which are likely to be originated by the generators: S, T and R gratifying the identities for N =5
[158]. So, categorization of these 120 elements are done into nine conjugacy classes which are represented
by nine well defined irreducible representations, symbolized as 1, 2, Q,, 3,3, 4, 4,5 and 6. Additionally, the
conjugacy classes along with the character table of AL, and the representation matrices of the generators
are presented in Appendix of Ref. [158]. It ought to be noticed that the 1, 3, 3, 4 and 5 representations
with R =1 are identical to those for A, while 2, Q,, 4 and 6 are different for Aj, with R = —I. As we are
working in the modular space of I'(5), hence, its dimension is 5% + 1, where, % is the modular weight. A
brief discussion concerning the modular space of I'(5) is presented in Appendix C.1. For £ = 1, the modular

space M1[I'(5)] will have six basis vectors i.e., (¢;, where i = 1,2,3,4,5,6) whose g-expansion are given

86



5.2. The Model

below and they are used in expressing the Yukawa coupling Yé(l) as shown in Appendix C.3:

61 = 1+3¢g+4¢2+2¢°+q*+3¢°+6¢%+4¢"-¢+---,

e = q1/5(1+2q+2q2+q3+2q4+2q5+2q6+q7+2q8+2q9+---),
eg = q2/5(1+q+q2+q3+2q4+q6+q7+2q8+q9+-~-),

ey = q3/5(1+q2+q3+q4—q5+2q6+2q8+q9+~-),

es = q4/5(1—q+2q2+2q6—2q7+2q8+q9+~--),

é6 = q(1-29+4¢>-3¢>+q*+2¢°-2¢°+3¢%-2¢°+---). 5.1)

Our aim here is to utilize the expediency of the modular Ay symmetry by incorporating the linear
seesaw mechanism in the context of supersymmetry, as we are quite familiar with the dynamics of TeV
scale seesaw frameworks from numerous [274, 275] literature. The deciding factor whether it will be linear
seesaw or inverse seesaw is the position of the zero elements in the mass matrix under the basis of (v,
Ng,, SL,). It is quite evident when 11 and 33 elements of the mass matrix are zero, it gives the structure
of linear seesaw. As mentioned above, introduction of three left-handed (Sy,,) alongside three right-handed
(Ng;) neutral fermion superfields validates and generates the neutrino mass matrix structure of linear
seesaw which has been widely studied in the context of discrete A4 flavor symmetry [86-88]. In this
work, we are interested to implement it with AL modular symmetry. For this purpose, we consider the
heavy fermions Sy; and Ng; to transform as 3’ under Ag symmetry and the modular form of the Yukawa
couplings leads to a constrained structure. After that we perform the numerical analysis to look for the
region which is acceptable in order to fit the neutrino data. Hence, prediction for the neutrino sector is

done after fixing the allowed parameter space.

The outline of the chapter is as follows. In Sec. 5.2, we present the layout of the linear seesaw framework
in the context of discrete Ay modular symmetry. Using the A} product rules, we obtain the simple mass
matrix structure for the charged leptons as well as the neutral fermions. After that we briefly discuss the
light neutrino masses and mixing phenomena in this framework. The numerical analysis is performed
in Sec. 5.3 followed by a brief comment on the non-unitarity effect. Sec. 5.4 contains the discussion on

leptogenesis in the context of the present model and finally our results are summarized in Sec. 5.5.

5.2 The Model

Here we work on a model under linear seesaw scenario in the context of supersymmetry (SUSY), where
Table 5.1 provided below expresses the list of particles and their respective group charges. For exploring
neutrino sector beyond standard model, we extend it with the discrete A{ modular symmetry and a local
U(1)p-1, gauge symmetry. However, the local U(1)p_1, becomes the auxillary symmetry which has been

added to avoid certain undesirable terms in the superpotential. The advantage of working in BSM is that
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we can add right-handed neutrinos and extra fields, and hence, here we have included three SM singlet
right-handed superfields (Ng), three left-handed superfields (Sz,) and a pair of weightons ({, {’) in the
particle gamut. The transformation of extra added superfields is taken as 3’ under the modular group A’5.
The A} and U(1)p-1 symmetries are assumed to be broken at a very high scale, much greater than the
scale of electroweak symmetry breaking [89]. Mass acquisition by the extra singlet superfield happens by
assigning the vacuum expectation value (VEV) to the weightons { and {’. All the particles are assigned
definite values of modular weights denoted as k7. One of the key point of introducing modular symmetry
is the curtailment of flavon (weighton) fields, which otherwise are traditionally required while working in
BSM with discrete symmetries, since the Yukawa couplings transform non-trivially under Ay modular

symmetry group, and their transformation properties are present in [158].

Fields ep | uh | 15 | Lo | N | Sy || Hua | ¢ | ¢
su@g || 1] 1 [ 1|2 | 1|1 2 |1]1
Uy 1 |1 |1 ]-2] 0 o0 |i-2|0]oO
Ul || 1 | 1 | 1 |-1] 1|0 0 [1]41
Al 1|1 | 1] 3|38 |¥ 1 |11
kr 1| 3 |5 ] 1| 1] 4 0 |[1]1

Table 5.1: The particle spectrum and their charges under the symmetry groups SU(2);, x U(1)y xU(1)p_p, x
Ag while & represents the modular weight.

The complete superpotential is given by

W = Ay, [(LLz;)gny] Hy+uH,Hg +Gp [(LLN§)5Y;2)] H,+ (5.2)
2 ol ¢ ) Ty ®|
Grs |(LrSL)4H, ZIYM X+ Bs (SLNR)5X:1Y5’L~ Z,
i= 1=

where, A i, = (.0, B,V .00 1y = (€5, 1%, TR), Ry =(2,4,6), and Gp = diag{gp,,8D,,8D;}
GLs = diaglgLs,,8Ls,,8Ls,}, Buys = diaglars,, ars,,ars,} represent the coupling strengths of various

interaction terms.

5.2.1 Mass terms for the charged leptons (M)

For obtaining simplified and elegant structure for the mass matrix of charged leptons, we envisage that
the three families of left-handed lepton doublets (Lz;) transform as triplets (3) under the AL modular
symmetry with U(1)g-r, charge —1. The right-handed charged leptons (/) transform as singlets under

both Ag symmetry and have U(1)g-L, charge +1. However, (e}, u%, 75) are given the modular weight as
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1, 3, and 5 respectively. The Higgsinos H, 4 are given charges 0 under Up_z, and 1 for A, symmetries
with zero modular weights. The VEVs of these Higgsinos H,, and H are represented as v,/v2 and vg/v2
respectively. Moreover, Higgsinos VEVs are associated to SM Higgs VEV as vy = %\ [v2 + v?i and the ratio
of their VEVs is expressed as tan 8 = (v,/vg) and we use its value to be 5 in our analysis. The relevant
superpotential terms for charged leptons are given by

H,. (5.3)

i=1

W, = au, (LLe%)sY;,@] Hg + By, [(LLN}})3Y§4)] Hg+vym,

2
(LrtR)s { > Y;f’;?}

Working under A’5 modular group, its Kronecker product leaves us with a non diagonal charged lepton

mass matrix after the spontaneous symmetry breaking. The mass matrix takes the form

[ 2
(Yém) 1 (Yé@) 1 (El Yéi)) ay, O 0
M; = ;—‘;_ (Ya@)3 (Y354))3 (iéygf?)s 10 B o |- (5.4)
_(YQZ))Z (Y3E4))2 (iéyé?)z. ~ 0 0 1y

The charged lepton mass matrix M; can be diagonalised by the unitary matrix U;, giving rise to the

physical masses m,, m, and m; as
UM MU, = diag(m?,m?%,m?). (5.5)

Additionally, it also satisfies the following identities, which will be used for numerical analysis in section

5.3:

Tr(MlMlT) = m%+mi+m%,
Det (MZM;) = mgmim% ,
% [Tr (MZMZT)]2 - %Tr [(MZM})Q] = mZm?+m2m?+m2m?. (5.6)

5.2.2 Dirac as well as pseudo-Dirac mass terms for light neutrinos

In addition to lepton doublet transformation, hitherto, the heavy fermion superfields, i.e., Np (Sr) trans-
form as triplet 3’ under Ay modular group with U(1)p-1 charge of —1 (0) along with modular weight
1 (4) respectively. As discussed in Ref. [158], the choice of Yukawa couplings depends on the equation
ky=k 1, +k I, +--+k I, where ky is the modular weight of Yukawa couplings and nglk I, is sum of the
modular weights of all other particles present in the definition of superpotential terms. These Yukawa
couplings can be written in terms of Dedekind eta-function 7(7), and thus have g-expansion forms, in

order to avoid the complexity in calculations. The relevant superpotential term involving the active and
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right-handed heavy neutrino fields can be expressed as
Wp=Gp |(LLNg)sY? |Hy (5.7)

where, Gp is the diagonal matrix containing the free parameters and the modular weight of the Yukawa
coupling is equal to the sum of the the modular weights of all other particles present in eqn.(5.7). The
choice of the Yukawa coupling is made based on the Kroncker product rules for A; modular symmetry

such that superpotential remains singlet. Consequently, the Dirac neutrino mass matrix can be given as

FEE w e
Uy
MD = \/g‘o GD (Y5(2))5 _\/E(Y5(2))3 _\/E‘(Y5(2))2 . (58)
YP)yn V2P V2P

LR
As the transformation of the sterile fermion superfield Sy, is same as Nr under A’5, it allows us to write
the pseudo-Dirac mass term for the light neutrinos and the corresponding super potential can be written

as

Wis =GLs A

(LLSL)4 Z Y(G’] (5) , (5.9)

where, G5 is a diagonal matrix containing three free parameters and the choice of Yukawa coupling
depends upon the idea of keeping the superpotential singlet. Thus, we obtain the pseudo-Dirac mass

matrix for the neutrinos as,

0 ~ve(rve| -ve(rve)
i=1 )y i=1
vy [ ¢ 2 2 2
Mys = ( )G z( Y“”) ( Y(G.)) ( Y<6.>) . 510
LS 2\/6 \/EA ks f Lgl 4 4 igl 4 ) igl 4 1
2 2 2
(6) (6) (6)
(zve)  (zve) [z v
i=1 i=1 i=1 3 1R

5.2.3 Mixing between the heavy fermions Ny and Sy,

Introduction of extra symmetries, helps in allowing the mixing of heavy superfields but forbids the usual

Majorana mass terms. Hence, below we show the mixing of these extra superfields i.e., (NS,S1,) as follows

(SLNE)s Z v

i=1

Wrgs = Bumps Z, (5.11)

where, By, is the free parameter and (') = v’(/ V2 is the VEV of {’ and the superpotential is singlet under

the A modular symmetry product rule. Thus, considering vy = vy, one can obtain the mass matrix as
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follows:

2 2 2
(6) (6) (6)
2 (‘; Y5’i) ~V3 (_g Y5,i) V3 (.z Y5’i)
i=1 1 i=1 4 = 3

i=1
Mps = —~_By —ﬁ(% Y(e)) ﬁ(% Y(s.)) _ (§ Y(G)) . (5.12)
\/EO RS = 5,i 4 P 5,i 9 = 5,i 1
Z ) Z ©) Z ©)
-V3 LYy —| X Y54 G LYy
| i=1 2')3 i=1 > )1 i=1 7 )5 IR
The masses for the heavy superfields can be found in the basis (Nz,S1)T as
0 M
My = 'S (5.13)
T
Mg 0

Hence, one can have three doubly degenerate mass eigenstates for the heavy superfields upon diagonaliza-
tion.
5.2.4 Linear Seesaw framework for light neutrino mass

In the present scenario of Ay modular symmetry, the light neutrino masses can be generated in the
framework of linear seesaw. Thus, the mass matrix in the flavor basis of (vL,Nfe,S L)T, can be manifested

as
0 Mp Mis
M = U7 0 Mgs |- (5.14)
Mps Mgs 0
Assuming that Mgrs > Mp, My, one can write the linear seesaw mass formula for light neutrinos as
m, = MDMI_e.lsMgs +transpose . (5.15)

Besides the neutrino masses, other relevant parameters which can play important role in the under-
standing of neutrino physics are the Jarlskog invariant, that signifies the measure of CP violation and
the effective electron neutrino mass (m,.) in neutrinoless double beta decay. These parameters can be

computed from the PMNS matrix elements as following:

Jep = Im[UelU,uQUZQU;:l]:5230233120125130%3Sin6C'P7 (5.16)

2 2 1 2 1 -2
[(mee)] ‘mlerﬂ +ma|Ueol?e' 2! + m3|U,g 2! ®s1720cP)| |

‘ml cos? 015 cos? 013 + mg sin® 019 cos> 013622 + mg sin® O15e (@1 720cP)| (5.17)

Many dedicated experiments are planned to measure the CP violation in neutrino sector as well as

the neutrinoless double beta decay processes. Hopefully, CP violation will be precisely measured in
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the upcoming DUNE and T2HK experiments and the effective Majorana mass parameter (m..) can be

measured by the KamLAND-Zen experiment in the near future [97].

5.3 Numerical Results

For numerical analysis, we use the neutrino oscillation parameters from the global-fit results [98, 174, 276]
obtained from various experiments, as given in Table 5.2. The numerical diagonalization of the light
neutrino mass matrix given in eqn.(5.15), is done through UL%UV =diag (m%, m%,m%), with /4 = mvmz
and U, is the unitary matrix. Thus, one can write the lepton mixing matrix as U = U; U, and consequently
obtain the mixing angles by using the standard relations:

U212 U312

— —_—= d sin®6013=|Us/%. 5.18
Ul - 1UP and sin®6;3 = |Ui3| ( )

sin? 012 = sin? O3 =

For explaining the observed neutrino oscillation data, we vary the model parameters in the following

ranges:

Re[71€[0,0.5], Im[7]€[1,3], Gp e [1077,107%], Grge [107%,107%] v, €[10,100] TeV,

By € [1072,1072], A €[10%,10°] TeV. (5.19)
Oscillation Parameters | Best fit value + 1o 20 range 30 range
Am2,[107° eV?] 7.56+0.19 7.20-7.95 7.05-8.14
|Am2,1[1073 eV?] (NO) 2.55+0.04 2.47-2.63 2.43-2.67
sin®019/107! 3.21+018 2.89-3.59 2.73-3.79
sin?033/10~! (NO) 4.30+029 3.98-4.78 & 5.60-6.17 3.84-6.35

5.98"0-17 4.09-4.42 & 5.61-6.27 | 3.89-4.88 & 5.22-6.41

sin?6013/10~2 (NO) 2.15570-9% 1.98-2.31 2.04-2.43
Scp/n (NO) 1.08%913 0.84-1.42 0.71-1.99

Table 5.2: The global-fit values of the oscillation parameters alongwith their 16/20/30 ranges [98, 174, 276].

The input parameters are varied randomly in the ranges as provided in Eqn. (5.19) and constrained
by imposing the 30 bounds on neutrino oscillation data, i.e., the solar and atmospheric mass squared
differences and the mixing angles as presented in Table 5.2, as well as the sum of the active neutrino
masses: Xm; < 0.12 eV [277]. The allowed range of the modulus 7 is found to be: 0 < Re[r] < 0.5 and 1
< Im[r] < 3, for normal ordering of neutrino masses. In Fig. 5.1, we show the variation of the sum of
active neutrino masses (m;) with the reactor mixing angle sin?6;3 (left panel), while the right panel
demonstrates Zm; versus sin?6;s and sin?6y3. From these figures, it can be observed that the model
predictions for the sum of neutrino masses as 20.058 eV <m; <0.062 eV for the allowed 30 ranges of the

mixing angles.
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Figure 5.1: the plot in the left (right) panel demonstrates the correlation between sin?613 (sin®6012 &
sin?@y3) with the sum of active neutrino masses Y. m;. The vertical lines represent the 30 allowed ranges
of the mixing angles.

The variation of the effective mass parameter m., of neutrinoless double beta decay with Zm; is
displayed in Fig. 5.2, from which the upper limit on m,, is found to be 0.025 eV satisfying KamLAND-Zen
bound. Further, we display the variation of §¢p and Jcp w.r.t sin?6;3 in the left and right panel of Fig. 5.3

respectively, where we obtain their limits as 100° < §¢p < 250° and |Jop| < 0.004.

T T T

0.100} KamLAND-Zen |

0.050

e [eV]

g 0.010¢
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0.001 . — .
0.050 0.055 0.060 0.065 0.070

m; [eV]

Figure 5.2: Correlation plot between the effective neutrino mass m,, of neutrinoless double beta decay
and the sum of active neutrino masses.

Comment on non-unitarity of leptonic mixing matrix

Here, we present a brief discussion on the non-unitarity of neutrino mixing matrix U},>MNS in the context of
the present model. Due to the mixing between the light and heavy fermions, there will be small deviation

from unitarity of the leptonic mixing matrix, which can be expressed as follows [99]
/ 1 i
Upnns = (1= 5FF"|Upuns- (5.20)
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Figure 5.3: Left (right) panel shows the plot of §¢p (Jop) with sin? 15 within its 30 bound.

Here, Upyns denotes the PMNS mixing matrix that diagonalises the light neutrino mass matrix and

F represents the mixing of active light neutrinos with the heavy one, which is approximated as F =

(MZES ) IMp = ail; Z( , and is a hermitian matrix. The non-unitarity parameters are constrained through
various electroweak precision measurements [100—102], such as the mass of W boson (M), Weinberg
mixing angle (fw), ratios of various fermionic decays of Z boson and its invisible decay, lepton flavour
violations and the CKM unitarity bounds. In the context of the present model, we take into account the
following approximated normalized order of masses for the Dirac, pseudo-Dirac and heavy fermions for

generating the observed mass-squared differences as well as the sum of active neutrino masses of desired

order as

e s | e M e
0.1eV/ (1073 GeV)|103 GeV 104 GeV)’ '

With these chosen order masses, we obtain the following approximated non-unitary mixing for the present

model:
45x10713 2.3x 10713 6.2x10°13
IFF|< | 93,1013 2.08 x 10712 45x10712 |- (5.22)
6.2x10713 4.5x 10712 5.6 x 10712

As the mixing between the active light and heavy fermions is quite small in our model, it generates a

negligible contribution for the non-unitarity.

5.4 Leptogenesis

The present universe is clearly seen to be baryon dominated, with the ratio of the measured over-abundance

of baryons over anti-baryons to the entropy density is found to be
Yp =(8.56+0.22) x 10711, (5.23)
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Considering the fact that the universe had started from an initially symmetric state of baryons and
antibaryons, following three conditions have to be fulfilled for generating a non-zero baryon asymmetry.
According to Sakharov [23], these three criteria are: Baryon number violation, C and CP violation and
departure from thermal equilibrium during the evolution of the universe. Though the SM assures all
these criteria for an expanding Universe akin ours, the extent of CP violation found in the SM is quite
small to accommodate the observed baryon asymmetry of the universe. Therefore, additional sources
of CP violation are absolutely essential for explaining this asymmetry. The most common new sources
of CP violation possibly could arise in the lepton sector, which is however, not yet firmly established
experimentally. Leptogenesis is the phenomenon that furnishes a minimal set up to correlate the CP
violation in the lepton sector to the observed baryon asymmetry, as well as imposes indirect constraints
on the CP phases from the requirement that it would yield the correct baryon asymmetry. It is seen that
the scale of CP-asymmetry generated from the heavy neutral fermion decays can come down to as low as
TeV [109-112] due to resonant enhancement. However, the present scenario is realized by involving six
heavy states, which comprises three pairs of heavy neutrinos with doubly degenerate masses eqn.(5.13).
Nevertheless, introduction of a higher dimensional mass terms for the Majorana fermions (Ny) can be
made through the following superpotential

&

- (5.24)

WMR :_GR A ’

2
(4)
RGEAY
1=

which gives rise to a petty mass splitting amid the heavy neutral fermions, and hence provides an
enhancement in the CP asymmetry for generating the required lepton asymmetry [113, 114]. Thus, from

(5.24) one can construct the Majorana mass matrix for the right-handed neutrinos Ny as

2 2 2
2(2 Y5(4.)) —\/5( Y Y5(4.)) —\/§(z Y(“))
i=1 ')y i=1 >y i=1 %)
Gr 02 2 2 2
4
Mg = ~ \/g( Y(g)) \/6—( Y(4_)) _ ( y<4,>) . (5.25)
2A /30 igl 5,1 4 igl 5,1 9 ig'l 5,1 1
2 2 2
(4) (4) 4)
_\/5(2 Y5,i) —(; Y5’i) \/67(; Y5’i)
i=1 3 i=1 1 i=1 5

‘LR

The coupling G is considered as exceptionally small to preserve the linear seesaw texture of the neutrino
mass matrix eqn.(5.14), i.e., Mp,Mrs > Mg and hence, inclusion of such additional term does not alter
the results obtained earlier. However, this added term generates a small mass difference. Hence, the 2 x 2

submatrix of eqn.(5.14) in the basis of (N$,St), becomes

Mrp M
m=|"F TES| (5.26)

T
Mg 0
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I -1
which can be block diagonalized by using the unitary matrix: % as
I 1
M M, M
M’: MR3+TR —TR < MR3+TR 0 (527)
M, M, M,
—TR —MR3+TR 0 _MRS"‘TR

Thus, one can express the mass eigenstates (N*) in terms of the flavor states (Ng,Sz) as

SrLi cosf  —sinf [| N}

= ) (5.28)
N, sinf cosf | \N;
Assuming the mixing to be maximal, one can have
N (Nf+N;) s (Nf-N;) (5.29)
=, Li=————. .
Ri \/g L \/g

Hence, the interaction superpotential (5.8) can be manifested in terms of the new basis. One can obtain
the mass eigenvalues of the new states N* and N~ by diagonalizing the block-diagonal form of the

heavy-fermion masses which are given as @ +Mpgs and % — Mpggs from eqn.(5.27).

The Dirac (5.7) and pseudo-Dirac (5.9) terms are now modified as

@ [ W +ND)
Wp=GpLrHy, Y5 T s (5.30)
and
i=1 (NF-N)\] ¢
- (O e N
Wis =GrsLpHy [; Y ( 75 H X (5.31)
Thus, one can symbolically express the block-diagonal matrix for the heavy fermions (5.27) as
2a d e ) 2a’ d' €
Mps+ MR _ Y g LT (5.32)
BS= Ty " VG0 Mes|d b f| Tonp|d o | '
! ! !
e [ ¢ IR e ¢ IR
where, the different matrix elements are defined as
2 2 2
ala) = (Z Y56(i4)) , b(d)= \/E(Z Y56(i4)) , clc)= \/E(Z Y56(i4)) ,
i=1 )1 i=1 7 g i=1  J5
2 2
d(d)=-v3 (Z Y§§4)) , ele)=-V3 (Z Y;’(;”) . f(fH=-al. (5.33)
i=1 7 J4 i=1 )3

One can obtain the diagonalized mass matrix from (5.32) through rotation to the mass eigen-basis as: (M J—’)diag =

UrsmUr (M RS * @) Ug U%BM' Consequently, three sets of approximately degenerate mass states can be obtained
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upon diagonalization. Further, we presume that the lightest pair among them with mass in the TeV range, contribute
predominantly to the CP asymmetry. The small mass difference amid the lightest pair demonstrates that the CP
asymmetry generated through the one-loop self energy contribution dominates over the vertex part in the decay of

heavy particle. Thus, the CP asymmetry can be expressed as [109, 117]

P N (B B\ (B T o'
1 M M M M M M
- A — Im (_D_ﬂ) (_D+A) (_D_ LS) N (5.34)
i 3272AN- v v v v v v i A HAAZ
where MD(LS) =MD(LS)UTBMUR’ AM=M;— _Mi_ :MR, UV=0y and rnN and AN— are given as
MP - M7 AMOM; +M;)
"NETwrM T MM
14 13 13 12
1 [(Mp M Mp M
Ay~ (_D_ﬂ)(_l%rﬂ) . (5.35)
167 v v v v i

In Fig. 5.4, we depict the behavior of CP asymmetry with rp7, which satisfies both neutrino oscillation data and the

CP asymmetry required for leptogenesis [118, 119], which will be discussed in the next subsection.

1.0f
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Figure 5.4: Correlation plot demonstrating the dependence of CP asymmetry with the parameter ry.

€x- efv, €y~ EN- AM (GeV)
~1.78x107% | —2.6x107° | -4.15x107% | -8.53x1075 | 4x107°

Table 5.3: CP asymmetries and mass splitting obtained from the allowed range of model parameters which
satisfy neutrino oscillation data.

5.4.1 Boltzmann Equations

Boltzmann equations are invoked to solve for the lepton asymmetry. It should be reiterated that, the Sakharov criteria
[23] require the decay of the parent heavy fermion which ought to be out of equilibrium for generating the lepton
asymmetry. In order to implement this, one needs to confront the Hubble expansion rate with the decay rate as

r N;

Ky; = HT =35 7% (5.36)
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Figure 5.5: Evolution of the yield parameters Yy and Yp_1, as a function of z = My-/T.

Here, H = %‘/‘fﬂ is the Hubble rate, with g« = 106.75 is the number of relativistic degrees of freedom in the
thermal bath and Mp; = 1.22 x 1012 GeV is the Planck mass. Coupling strength becomes the deciding factor which
assures that inverse decay would not come into thermal equilibrium. For instance, if the strength is below 1077, it
gives K- ~ 1. The Boltzmann equations associated with evolution of the number densities of right-handed fermion
field and lepton can be articulated in terms of the yield parameters, i.e., the ratio of number densities to entropy

density, and are expressed as [119-123]

2
dYn- z Yn- Yy- ) )
=- A -tm+ ~1]rs|,
dz sH(Mpy-) (Y;q ) ((Y;q
dYp_L, z Yp-L Yn-
=— —eN-| =71 5.37
dz sH(My-) | v,? TNsTEN Yt D 63D
where z =M /T, s is the entropy density, and the equilibrium number densities have the form [118]
135g - 345((3
;]q_ - izng(z), Y[eq - _M_ (5.38)
167'[4g* 4 27'[4g*

K12 in Eq. (5.38) represent the modified Bessel functions, the lepton and RH fermion degrees of freedom take the

values gy =2 and gn- =2 and the decay rate yp is given as

) Kq(2)
N Ko(2)

While yg represents the scattering rate of N" N~ — ({ [123] and yjys denotes the scattering rate of AL =2 process.

— eq
YD =sYpLT (5.39)

One can keep away the delicacy of the asymmetry being produced, even when the RH fermion field N~ is in thermal
equilibrium, by subtracting the contribution arising from the exchange of on-shell N7, i.e., %’ from the total rate yg
and is given as y%‘sb =YNs— YTD [121].

The solution of Boltzmann eq. (5.37) is displayed in Fig. 5.5. For large coupling strength Y- (green-thick curve)
almost traces Y]%q, (black-solid curve) and the generated lepton asymmetry (red-dashed curve). The lepton asymmetry

thus obtained can be converted into baryon asymmetry through the sphaleron transition process, and is given as [120]

8Nr+4Ngy
B:_( ! )YL,

O 5.40
22Nf + 13Ny (6.40)
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Figure 5.6: After including the flavor effects the yield is shown in left panel, whereas, right panel displays
the yield enhancement due to flavor effects.

where N represents the number of fermion generations, N denotes the no. of Higgs doublets and Y7, =Y, - Y. The
observed baryon asymmetry of the universe generally expressed in terms of baryon to photon ratio as [26]
ny—

e
n=— b —6.08x10710. (5.41)
Y

The current bound on baryon asymmetry can be procured from the relation Yg =7/7.04 as Yp = 8.6 x 10711, Using the

asymptotic value of the lepton asymmetry Y7, as (8.77 x 10~ 10) from Fig. 5.5, we obtain the value of baryon asymmetry
asYp=-28 v ~10710.

5.4.2 A note on flavor consideration

In leptogenesis, one flavor approximation is sufficient when (7' > 1012 GeV), meaning all the Yukawa interactions are

out of equilibrium. But for temperatures <« 108 GeV, several charged lepton Yukawa couplings come into equilibrium
making flavor effects an important consideration for generating the final lepton asymmetry. For temperatures below
108 GeV, all the Yukawa interactions are in equilibrium and the asymmetry is stored in the individual lepton flavor.
The detailed investigation of flavor effects in type-I leptogenesis can be seen in myriad literature [125-130].

The Boltzmann equation describing the generation of lepton asymmetry in each flavor is [126]

a
avg ;. 5

dz  sHMY)

Y-

e ( - 1) YD -
N eq
YN‘

where, €%,_ i.e. (a = e, 1, T) represents the CP asymmetry in each lepton flavor

) (5.42)

vh)Aaa¥hr,
2 Y;q

K;(2)
a =Y Ty 22 = a.
YD N-IN K3(2) YD ;YD

99



Chapter 5. Linear seesaw in A’5 modular symmetry with Leptogenesis

The matrix A is given by [127],

_221 16 16
711 711 711
A=| 16 _221 16
11 711 711
16 16 _221
711 711 711

From the benchmark considered in Table. 5.3, we estimate the B — L yield with flavor consideration in the left
panel of Fig. 5.6. It is quite obvious to notice that the enhancement in B — L asymmetry is obtained in case of flavor
consideration (blue line) over the one flavor approximation (red line), as displayed in the right panel. This is because,
in one flavor approximation the decay of the heavy fermion to a particular lepton flavor final state can get washed

away by the inverse decays of any flavor unlike the flavoured case [128].

5.5 Conclusion

In this paper, we looked at the effects of A’5 modular symmetry on neutrino phenomenology. The modular flavour
symmetry is notable for minimising the complexities involved with using several flavon fields, which are typically
associated with the usage of discrete flavour symmetries. In the current model, the SM is expanded by the Ag modular
symmetry as well as a U(1)g_y, local gauge symmetry. To achieve the neutrino phenomenology in the linear seesaw
framework, it includes three right-handed and three left-handed heavy fermion fields. It also comprises a pair of
singlet scalars, which plays an important role in spontaneously breaking the U(1)g_j, symmetry and providing masses
to the heavy fermions. Another noteworthy aspect is that the Yukawa couplings are thought to transform non-trivially
under the modular Ag group, thereby replacing the role of ordinary flavon fields. As a result, the neutrino mass
matrix has a distinct flavour structure, which simplifies the analysis of neutrino phenomenology. We subsequently
numerically diagonalized the neutrino mass matrix and determined the allowable regions for the model parameters
by comparing it to the present 3¢ limit of the oscillation data. Additionally, our model predicts the CP violating phase
8cp to be in the range of (100° — 250°) and the Jarlskog invariant to be @(1073). The sum of active neutrino masses is
found to be in the range 0.058 eV < Zm; <0.062 eV and the value of effective neutrinoless double beta decay mass
parameter mee as (0.001 —0.025) eV, which is below the current upper limits from KamLAND-Zen experiment i.e.,
<(61-165) meV. Furthermore, the flavour structure of heavy fermion masses leads to three sets of doubly-degenerate
mass states, therefore in order to incorporate leptogenesis, we inserted a higher dimensional mass term for RH
neutrinos in order to garner a slight mass difference between them. The non-zero CP asymmetry was then found from
the lightest heavy fermion decay, where the contribution from the self-energy diagram is partially augmented due to
the modest mass splitting between the two lightest heavy fermions. We solved the coupled Boltzmann equations to
induce lepton asymmetry at the TeV scale using a specific benchmark of model parameters consistent with oscillation
data. The obtained lepton asymmetry is found to be of the of the order = 10719 which is adequate to accommodate the
present baryon asymmetry of the universe. Besides, we have additionally shed light on the increase in asymmetry due

to flavor consideration.
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CHAPTER

SUMMARY AND CONCLUSIONS

The concluding remarks to my doctoral work is about delving into the implementation of an unique concept of modular
symmetry, alongside, avoiding the excess use of flavon fields and increasing the predictability of the model by not
letting non-renormalizable terms to get involved in predictions. This was made possible by introducing the modular
form of the Yukawa couplings which has an explicit dependence on Dedekind eta function and an implicit dependence
on modulus 7. This makes things more interesting when Yukawa couplings enact the role of flavon fields. Further,
different seesaw mechanisms utilized act as catalyst to bring about the neutrino phenomenology results precisely

matching the oscillation data.

Therefore, in second chapter, we showcase the linear seesaw framework utilized in making attempts to explain
neutrino phenomenology by the help of A4 modular symmetry which makes things easier and avoids unwanted
auperpotential terms by having suitable charge assignments. Further, we discussed leptogenesis which is accounted
in the present model by introducing a higher order term bringing a small mass splitting to have a CP asymmetry
appropriate to obtain the observed baryon asymmetry of the universe. Further, it also shows the flavor effects arising

because the leptogenesis discussed is of TeV scale.

Moving on, in the third chapter, we increase the complexity of the model by ensuring neutrino mass at one loop
model which tests the predictability and diversity of modular symmetry by establishing an ideal match with the 3o
data extracted from oscillation experiments. We were also able to accomodate lepton flavor violation which completely
explainable in our model predicting an impeccable match with the experimental data. Further, we were able to harbour
fermionic dark matter in our model and showed that obtained the relic density is consistent with the observed Planck

data.

In chapter four, we explored the double cover of A5 modular symmetry i.e. F’5 = A’5 modular symmetry. Its

advantage is there are many higher order Yukawa couplings present making it easy to choose accordingly to elaborate
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and explain neutrino phenomenology in inverse seesaw framework by avoiding the unwanted term that can ruin the
specific flavor structure. We were also successful in explaining the lepton flavor violation i.e. £; — ¢;y. As we have
introduced local gauge symmetry hence the associated neutral Z’' gauge boson mass is discussed in light of collider
bounds.

FInally, we have extended our knowledge of double cover gained in previous work by implementing it to the linear
seesaw framework in chapter five. In this work, we have shown how the phenomenology is quite different because of
the involvement of many higher order Yukawa couplings and results drastically changes from that of A4 symmetry.
Here we have discussed the scenario of resonant leptogenesis to get desirable order of CP asymmetry term which then
is utilized in the Boltzmann equation of both one flavor and flavored effects of the leptogenesis and yield the correct
order of the baryon asymmetry.

Therefore it is evident from the work presented above that experiments and theories go hand in hand. Exploring
different mechanisms and technique helps us to explain the unexplainable and at the same time verifies the existing
phenomenon which in-return implies that we are on the right track. Theoretical knowledge motivate us to look beyond
what is unseen and compel us to upgrade our experiments for new results and findings. At the same time experimental
results pushes new ideas and concepts towards validation, provided, they can explain the existing results from the

experiments.
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APPENDIX

A.1 A ; modular symmetry

T is the modular group which attains a linear fractional transformation y which acts on modulus 7 linked to the
upper-half complex plane whose transformation is given by

at+b

T—YT= , where a,b,c,d€Z and ad—-bc=1, Im[t]>0, (A1)

where it is isomorphic to the transformation PSL(2,7) = SL(2,Z2)/{I,-I}. The S and T transformation helps in

generating the modular transformation defined by
1
SZ‘[—>—;, T:-t—71+1, (A.2)
and hence the algebric relations so satisfied are as follows,
S?=1, (ST®=1. (A.3)

Here, series of groups are introduced, I'(N) (N =1,2,3,...) and defined as

T'(N) = @ b eSL(?2,2), @ b = o (modN) ;. (A4)

c d c d 0 1
Definition of T'(2) = T(2)/{I,—I} for N = 2. Since —I is not associated with T'(V) for N > 2 case, one can have T'(IV) = T(V),
which are infinite normal subgroup of I known as principal congruence subgroups. Quotient groups come from the
finite modular group defined as I'y = I/T(IV). Imposition of TN = I, is done for these finite groups I'yy. Thus, the groups
I'y (N =2,3,4,5) are isomorphic to S3, A4, S4 and Aj, respectively [230]. N level modular forms are holomorphic

functions f(7) which are transformed under the influence of I'(V) as follows:
o =(r+d* (), yeIW), (A5)
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where % is the modular weight.
Here the discussion is all about the modular symmetric theory without applying supersymmetry explicitly. This

paper comprises of A4 (N = 3) modular group. A field <p(I ) transforms under the modular transformation of Eq.(A.1), as
oD — (et +d)*1p DD, (A.6)

where —k represents the modular weight and p(I )(y) signifies an unitary representation matrix of y € I'(2).
The scalar fields' kinetic term is as follows
3,002
1 % , A
which doesn’t change under the modular transformation and eventually the overall factor is absorbed by the field
redefinition. Thus, the Lagrangian should be invariant under the modular symmetry.

The modular forms of the Yukawa coupling Y = (y1, 9, y3) with weight 2, which transforms as a triplet of A4 can

be expressed in terms of Dedekind eta-function 7(7) and its derivative [59]:

1) - i (17’(1/3) . n'((t +1)/3) . n'((t +2)/3) _ 2717’(31))
Y= on @) TGl T 23 6o )
_ i (@) on' @+ DB T+ 2)/3))
M = = ( n@3) " G 0s)  CE23) ) A8
=i (@B ' (@+1B) (T + 2)/3))
y3(®) = ( 03y a3 Y @23 )

It is interesting to note that the couplings those are defined as singlet under A4 start from —%& =4 while they are zero

if -k =2.
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B.1 Modular form of Yukawa Couplings

The modular forms of the Yukawa coupling Y = (v1,y9,y3) with weight 2, which transforms as a triplet of A4 can be

expressed in terms of Dedekind eta-function 7(7) and its derivative [59]:

@) = i (n’(r/S) . n'((z +1)/3) . n'((7 +2)/3) _ 271)’(31))
= o n(t/3)  n(z+1/3) n(z+2)/3) n@Bt) )’
_ i (@) | on'(+ ) T+ 2)/3))

@ = - ( n@3) @+ 0B G2 ) (B.1
—i (@) @+ an(r+ 2)/3))

y3(®) e ( n@3) o) Y a3 )

The g-expansion of y;(r) i.e. (i =1,2,3) is given as

y1(1) = 1+12¢+36¢2+12¢%+---,
yor) = -6¢3(1+7q+8¢%+-),
y3(r) = -18¢¥3(1+2q+5q%+--). (B.2)

It is interesting to note that the couplings those are defined as singlet under A4 start from —% =4 while they are zero
if -k =2.
For, k =4 [278]

%@ = ﬁ+%w® ﬁ?=ﬁ+%wm Kw=ﬁ+%wa
¥2 - y2y3

) = y2-2y1y2 |
¥2-y13

(B.3)
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For, £ =8 [278]

Y{S) = (y% +2y5y3)%,
Y{fg) = (y% + 2y2y3)(y§ +2y152),
YW = GE+2yy?
¥2 - y23
@ _ 2
Yar = O1+20208)| 32 9y4, |
¥2-y1y3
¥2-y1y3
® _ .2
Y3o = (5+2y1y2) ¥2 29933 |° (B.4)
¥2-y1y2
B.2 One Loop derivation (M} = m})
2 2 2 2
« YD)ip(YL.8) jp Mp, M, M, My, My,
()ij =2 3272 MZ-MZ M2 OME-ME ME | 9
” nr ~ My k nr ~ My k
MZ +M2 M2 _M2 A’ 2
where, m(z) = B and —E; L = & Z"U =6m2(say). So, one can write M,%R = m(z) +6m? and M1271 = m(z) —6m2.
Let x = M%R ,M%I and A = MI% and so f(x) = ﬁ ln(%). Hence, eqn.(B.5) gets modified as
(YD)ir(YL8)jr My 9 9
(M) = % — |[Fa2) - roaz ). (B.6)

To express (My);; interms of m% we expand the function f(x) around xg = m%

d
f(x)=f(xo)+d—f‘ (x—2x0)+--- (B.7)
X X0

And it is important to notice that upto first order expansion will be sufficient, we show the first derivative

df d x x
L = = 1= B.
dx dx(x—A nA) B8)
1 A x
- m(l—mln(z)) (B.9)
Therefore,
df x-A-x_. (x 1 1 Aln()
Lz = hal = 1- B.10
dx ~ (x—A)2 n(A)+x—A x—A( A (B.10)
Inserting eqn.(B.7) into eqn.(B.6) we get
26m? d
(My);5 = W%:(YD)ik(YLS)jkMkm )m% . (B.11)
Now, inserting eqn.(B.10) in eqn.(B.11) we get
2
M21n(20)
(5/1;7 v 12 M, R M2
u ).‘:_[_] Y (Y7.0): 1- L. (B.12)
Vi = 550 | 5| 2 DInLs Fm2-MZ | mi-M2
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B.3. Loop Functions for LFV

We have considered the case of M: I% = mg, so here we take logarithimic expansion into consideration where In(1 +x) =
x— % + é - % + % —---. So, till second order expansion will be sufficient. Let us consider w = m% and z=M ]% and
A =w — z so that the summand of eqn.(B.12) becomes
1 1 +A
[1- 1n(5)]=—[1—31n z ) (B.13)
w-—z w—-z z A A z
In the limit A — 0
A 1 A
lim —[1-31112+ ] = lim - [1-Z1m[ZE ) (B.14)
A—0 z A—0A A z
1 A 1A2
= lim~|1-2[2-22 4. (B.15)
A=0A Alz 222
1
= lim = [1-1+—+-|==—. B.16
AZOA 22 (B.16)
Thus after substituting the above deduction in eqn.(B.12), we get
¢ 5/11’7 K 1
My);i = —= | — Yp)in(Y1.9) i —. B.17
( V)l] 327_[2 [\/E] %( D)Lk( LS)JkMk ( )
B.3 Loop Functions for LFV
The loop functions for the LFV decay processes i — ey and p — 3e are given as
1[1-2x83-15x—22+ 3xlogx)
G1x) = = , (B.18
1( 5 Ry )
2—9x + 18x2 — 113 + 623 log x
Go(x) = , (B.19)
2 6(1—x)*
1 x2logx y2logy
D1(x,y) - - - , (B.20)
rey I-01-y) (-22x-y A-y2y-2)
1 xlogx lo
Da(x,y) g 08y (B.21)

10—y A-x2x-y 1-y2y-x)
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APPENDIX

C.1 The modular space of I'(5)

In order to establish the modular forms which transform non-trivially under I'., and is isomorphic to A%, it is first
required to find out the modular space of I'(5). Hence, if % is an integer i.e. non-negative, the modular space M s [T'(5)]
bearing weight & for I'(5) contains 5% + 1 linearly independent modular forms, which acts like the basis vectors of the

modular space. According to Ref. [279], we have

n(5.[)15k wa
M,T®)l= D C——5—kK] Q(ST)k 0(51), (C.n
a+b=5k  N(7) 5°5
a,b=0
below given is the Dedekind eta function 7(z)
_ 124 TT (1_m
nm=¢" 1] (1-4"), (C.2)
n=1
where, ¢ = %77 and k"1”2 (7) is the Klein form
(ry= 1)/2 T n -1 ny—2
kr r, (=42 H (1-9"q;) (l—q q; )(l—q )7, (C.3)

where (r;,r5) depicts a pair of rational numbers in the domain of Q2-72, 2= Try+ryand g, = 272 _Under the

transformations of S and 7', the eta function and the Klein form change as follows

S : n@)-—vV-irn), krl,rz(r)—> - _rz,r (), C4)
T @ nt)—e™2), krl,r2(7)_’kr1,r1+r2(7)-

More information about the properties of the Kein form k,l’rz(r) can be found in Refs. [279, 280].
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Appendix C.

C.2 The Kronecker product rules of A}

Here we present only those product rules [158] which are relevant to present model .

3®3=1,03, 05,

V3

3

v
2

>[5

Sl

S

(ay By +ayfy+azpy)
agh3—azby
ayPy—aghy
aghy—ayhy
201 Py —agh3—azhy
~VBay By~ V3ayh,
VBayp,
VB agpy
—\/§(a1ﬁ3 + a3ﬁ1)

323 =445

V2ayp, +agby
~V2a, By - azby
_ﬁalﬁs —ayf,

V2agfy +ayfy
V3a, By
ayBy—VZaypy
@,y —V2ayp,
ayfy—V2a,p,

agfy —V2a,p,

3e3'=1,03, 5,

V3
3

vz
3

o[%

S:E

N =

3,

DO | =

T— (alﬁl +agfg+ a3,62)

¥oPg —ashy 4: V3
ayPy—aghy °
aghy—a, Py
20, Py —agh3 —azhy

VEayp,
—V3 (ay By +aypy) 5 \/?g
—\/§[alﬁ3 + asﬁlj

VBayp,

494-1,03,08, 94,05,

ayBy+agfgtagfy+ayufy

—a Byt agfg—agfy+a,py
V2 (g —ayBy)
ﬁ(alﬁs ‘“351)

@Byt agfy—azhy—aypy
\/5(“3/34_“4/33)
V2 (@B, - aypy)

agfy+aghytaypy
a; By +agBy+ayfs

ayfg+aghfytayfy

ayfg+agfy +aghy

—ﬁ(a2ﬁ4—2a3ﬁ3+a4ﬁ2]

Ps 2v3 _ﬁ(2“1ﬁ1_“3ﬁ4_“4ﬁ3]

V2 (a, By +ayBy —2a,B,)

—\/E(al/s3 —2a,p, + asﬁl]
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~V2a,py - aypy
~V2a;py-aypy

\/§a3,61 +agPg

V3a, B,
ayfy ~V2azf,
@By~ VZaypy
a1B3—V2ayp,
aghy —V2ayfy




C.2. The Kronecker product rules ofA'5

5¢5=1,03,03,04,04,05,,05,,

1
:ﬁ [alﬁl+a2ﬁ5+a3ﬁ4+a4ﬁ3+a5ﬁ2]

agfs+2a3P, —2a, 5 —agp,

2095 —agBy +a g —2a5p,

a' o | VBa By—VBagh +VZa,Bs—vV2asp,

V8a,fy+V2ayp, - V2a,py—vV3ash;

: VTo | —V3a s+ V3ayh, +V2asfs—vV2asfy

~VBa B+ VZayfy—vV2agh, +V3ayh,

\/Ealﬁ2+\/€a2ﬁ1 —agfs+4a, B, —agfy

1 | VBayBy+dayy+VEagh —aufys—asp,

ﬁalﬁz - ﬁazﬁl + \/§a3ﬁ5 - \/§(X5ﬁ3

VBa, B, —ayPy— Py +VBa,p +4asfs

VB, By —ayfy+4azfy—ayfy+VEagp,

1| —V2a,By+V2ayp, +V3a, By —V3asp,

ay Py + ayfy + VB agfs +VEagp,

5 i —
s1' T4 ~2a, By + VB ayBy —2a5p,

—2a,f, 20,6, + ﬁa5ﬁ5

a1ﬁ5 + \/€a2ﬁ4 + ﬁa4ﬁ2 + a5ﬁ1

—2a1f2 — 2201 + V6 ayfy

5 o —
5,2 V14 a1fg+agfi+ ﬁa4ﬁ5 + \/6—0;5[34

a1Ps+V6agfs+v6agpPs +asfi

—2a1 65+ V6azf3 —2a5p1

V2 Bs - VBagfy +V3aypy - vV2asp,

2a,fy +agfs - 2a3f, — 203+ asfy

2a1P1 —2a2f5+azfq+agf3 —2a5P2

_\/Ealﬁ4_\/§a2ﬁ3+\/§a3ﬁ2+\/§a4ﬁl
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Appendix C.

C.3 Higher Order Yukawa couplings

All higher order Yukawa couplings are expressed interms of the elements of Yél) Yukawa coupling expressed as

Y, e, —3¢&;

Y, 5V2¢,

Y, 10@.
(1) _ | 73] _ 31, (C.5)
6

Y, 10¢,

Y, 5v2'¢,

Y| [-38,-¢

The Yukawa couplings used in our model are expressed below and the other couplings seen in the tensor product are

expressed in [158]

Yf‘) - [

6,2

112

% 368104 o5 YZ-3Y,Ys-YZ
=-3 S _asy |=-3 :
]3511 5V22,(e, -38;) Y,Y,
| 5v2e,(3e; +¢g) -Y Y,
(C.6)
2 2 2 2
(v2+v2)(7v2-18Y,75-7v2)
Y(S)] = \/—g 3 2 2 3
s, 4| Y (18v7 - 372y - 207, ¥2 - 97¢)
3 2 2 3
-, (973 - 20v2Y, + 3Y, Y2 +13Y¢)
(k)
(Y1 -3Yg)(3Y7] +Yg) (31/12 —2Y,Yg— 3Y62)
Y74y Vs -YE 3 2_ay3 ,
5 (vF -av,vg-v¢) 2, (2v] - 9v1vZ - 3v§)
3 2 3
2v, (373 - 9¥ 26 +27¢)
(C.8)



C.3. Higher Order Yukawa couplings

2 2
Y2 -3Y,Y, - Y
6 _ 1) (5) _ 4 3 2v2 3 4
s = [ { @Yal]3 1_3\/5(1’1 - 8Y Y- YV +3Y, Y3 + V) v.Y,
-Y,Y,
—V2Y,(3Y1 +Y)
Y(Y1+Ye)
©® _ [yWey®] -_3(y2 2)2 3
v = YRyl =-7(vP-4v,Ys-¥3)
Y, (¥Y1-Ye)
V2Y, (Y] -3Ye)

® D) gy VB (o 2
v [Yé oY ]4 — 5 (¥7 -4y, ¥ - ¥5)
6 _ W v6)] - V10 (o w2
Y9 = [Yé e Y, ]572_ o (v7-av,v,-7¢)
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V2Y, (V3 + 117 2Yg +19Y, Y2 +5Y3)
3 2 2 3
Y, (18Y3 - 817 2vg - 17v, Y2 - ¥§)
3 2 2 3
Y, (V] - 17v2yg + 817, Y2 +13Y3)

3 2 2 3
| V2Y (57 - 1972y + 117, Y2 - V)

VB(Y, -3Yp)BY, +Y) (Y12 +Yg )
~2Y,(2Y, +Y,)(2Y2 - 3Y, Vg - V¥
V2Y, (Yf +2Y2Y, - 11, Y2 - 4Y63)
V2Y, (473 - 1172Y, - 2v, V2 + Y¢)

2 2
2Y, (Y, -2Yg) (Y2 -8Y, Y, - 272

(C.9)

(C.10)

(C.11)

(C.12)



Appendix C.

2 2
V2 (v2+vE)
2V6Y,(2Y; +Y)
® _ W ov®| -1 (4 av3y  voy2 3, v4
v = [a ®Y§’l]5s— ﬁ(Yl SYPYg - YV +3Y, Y3 + V) _VBY, (Y, -Y,)

V3Y, (Y, +3Yy)

-2V6Y (Y, -2Y,)
(C.13)
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