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Abstract

Reversible data hiding is a special kind of data hiding technique, where
original cover media can be restored along with extraction of hidden
data. In this thesis, reversible data hiding is discussed in the context
of grayscale image as cover media. Several types of reversible data
hiding techniques exist in literature. Prediction error expansion based
reversible data hiding techniques exhibit superiority in performance
over other types of reversible data hiding techniques. In a prediction
error expansion based technique, a pixel value is predicted using a
pixel prediction strategy. Then, data bit is added in the expanded
prediction error of a pixel. A good pixel prediction strategy is key
to this technique. A small prediction error leads to less embedding
distortion.

In this thesis, several novel reversible data hiding techniques are pro-
posed by exploiting several strategies for pixel value prediction. In
the first of the proposed techniques, B-tree triangular decomposition
technique is used to obtain a set of reference pixels. Non-reference
pixel values are interpolated (predicted) using these reference pixel
values. In the second of the proposed techniques, reference pixels are
randomly distributed throughout an image. Non-reference pixel val-
ues are predicted using weighted median of the values at the nearby
reference pixels. In the third of the proposed technique, a pixel value is
predicted as an average of few linearly predicted values in the selected
directional contexts. A few directions are selected by analyzing the
pixel values in an 8-neighborhood of the pixel. Similarly, in the fourth
of the proposed techniques, gradient estimations at several directions
are used to select directional contexts. Then, a weighted average of
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two linearly predicted values in the selected directions provides the
final predicted value of the pixel. Finally, the performances of sev-
eral neighborhood-based and gradient-based predictors are compared
to highlight the need of a multi-predictor strategy. A novel multi-
predictor strategy is proposed to combine the outcomes of multiple
predictors by considering the median of these values. Adaptive em-
bedding strategies are used in each of the proposed reversible data
hiding techniques. Either one bit or two bits of data are embedded in
the prediction error of a pixel depending on local complexity of the
pixel.

Finally, the proposed reversible data hiding techniques are applied
to ensure integrity of bank cheque image in an image-based cheque
clearing environment. Performances of the proposed reversible data
hiding techniques are observed in this context.
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Chapter 1

Introduction

Advances in communication, storage and processing capabilities have enabled
an increased use of digital media (image, video, audio and text) for personal
consumption and business requirements. Some of these use cases require secret
communication and storage of data using digital media and/or ensuring integrity
of digital media. To ensure the above, data are imperceptibly inserted into the
digital media. In general, it can be referred as data hiding [1]. Data hiding is
defined as secret embedding of data into a digital media such that the inserted
data can be recovered later on a need-to-know basis. Insertion of the data into the
cover media is known as embedding process. This process may consider a secret
key (optional) to decide the sequence of locations in which the data is embedded.
The modified media (due to embedding of data) is termed as marked media. This
media is also referred as stego media depending on the purpose of data hiding.
During the extraction process, the secret data is extracted from the marked media
with the help of the secret key. Use of the secret key during embedding and
extraction processes is optional. The embedding and the extraction processes of
a data hiding technique are schematically shown in figure 1.1 and 1.2.

There can be two broad categories of usage of data hiding [1, 2]: watermark-
ing and steganography. Watermarking is a process of inserting a watermark (i.e.,
data) into a cover media [3]. The watermark can be an image, a text, or a bi-
nary data. Major applications of watermarking include ownership identification,
copyright protection, and ensuring integrity of a media. Embedding of the water-
mark in a cover media generates a watermarked media. The extraction process
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Figure 1.1: Embedding process of conventional data hiding
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Figure 1.2: Extraction process of conventional data hiding

retrieves the watermark from the watermarked media. A watermarking scheme
can be robust against any type of modification of the watermarked media. Hence,
in this type of watermarking scheme, the watermark can be extracted in spite of
deliberate or accidental modifications in the watermarked media. This is useful
for ownership identification and copyright protection. On the contrary, a wa-
termarking scheme can be fragile too. In this type of watermarking scheme, a
slight modification of the watermarked media makes the retrieval of watermark
impossible. This type of scheme is useful to ensure integrity of the digital media.

Steganography is a process of hiding a secret information into a cover media
for the purpose of covert communication or storage [4]. The hidden data can not
be detected by unwanted persons. In the parlance of steganography, embedding
of the secret data into a cover media generates a stego media. Fundamental
requirement of steganography is perceptual indistinguishablity between the stego
media and the cover media up to an extent that it does not raise suspicion to a
mere onlooker.
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Figure 1.3: Conventional data hiding versus reversible data hiding

1.1 Reversible Data Hiding

The conventional data hiding is known as lossy data hiding because it cannot
recover an original cover media from a marked media. On the contrary, in re-
versible data hiding (RDH) [2], both the inserted data and the cover media can
be restored from the marked media. Hence, reversible data hiding is also known
as lossless data hiding due to its capability of restoring the cover media from
the marked media. This basic difference between conventional data hiding and
reversible data hiding is shown in figure 1.3. The works being reported in this
thesis consider image as the medium. Hence, subsequent discussions in this thesis
deal with reversible data hiding in images.

1.2 Properties of Reversible Data Hiding

Reversible data hiding is a special kind of data hiding. Several properties of this
reversible data hiding are stated in this section.
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1.2.1 Imperceptibility of Change

Change in an image due to embedding is proportional to the amount of data
(number of bits) being embedded in the image, i.e., payload size. Higher payload
size introduces larger change in the image. But this change in the image due to
embedding should remain imperceptible to our normal eyes. This is a general
property of any invisible data hiding technique, like steganography and invisible
watermarking.

1.2.2 Similarity Between Cover Image and Marked Image

Change in an image due to embedding of secret data should be as minimum as
possible. Similarity between a cover image and a marked image can be estimated
using peak signal-to-noise ration (PSNR) between these two images. PSNR be-
tween a cover image and a marked image is calculated as:

PSNR = 10log10
MAX2

MSE

where MSE =
∑i=M

i=1
∑j=N

j=1 (x(i, j)−x′(i, j))2

M ×N
where MAX = 255;MSE =Mean Square Error;

and M ×N = Size of the cover image.

(1.1)

Here, x is the original cover image. x′ is the marked image after embedding
of secret message. Similarity between these two images is inversely proportional
to payload size. A good reversible data hiding technique results in high similarity
between these two images. This is also a general property of any invisible data
hiding technique like steganography and invisible watermarking.

1.2.3 Reversibility

Main distinguishing characteristic of reversible data hiding is reversibility of a
marked image to get back the cover image. Data is inserted into the cover image
through a reversible transformation of the cover image pixel values. The reversible
transformation ensures restoration of the original cover image from the marked
image along with extraction of the hidden data. Then, each pixel value in the

4



1.3 Applications of Reversible Data Hiding

restored image is same as the value of the corresponding pixel in the cover image.
Because of the reversibility, this technique has become useful in several sensitive
applications, where recovery of the cover image is also important.

1.2.4 Fragility or Robustness

Due to involvement of reversible integer transforms (as pixel values are integers),
several reversible data hiding schemes are fragile in nature. Extraction of hidden
data is not possible in case of any modification in the pixel values of a marked
image by an adversary. Hence, a fragile reversible data hiding scheme is mainly
used for ensuring integrity of an image. If the marked image is not tampered,
then hidden data is extracted correctly. Bit error rate, which is a ratio between
number of erroneous bits and total number of extracted bits, is zero in this case.
Otherwise, if the marked image is tampered, then bit error rate is positive. Bit
error rate is mathematically defined as follows:

Bit Error Rate= Number of Errorneous Bits

Total Number of Extracted Bits
(1.2)

In the case of a robust reversible data hiding, the hidden data withstands
modifications (or adversarial attacks) on the marked image. Extraction of hidden
data is possible in a such a robust scheme in spite of changes in the pixel values
in the marked image.

1.3 Applications of Reversible Data Hiding

Traditionally, reversible data hiding is used for ensuring integrity of an image. In
this section, it is explained why reversible data hiding is adopted as the primary
technique of ensuring integrity of certain types of images. Moreover, several other
applications of reversible data hiding have emerged in recent times. Those appli-
cations have also been discussed in this section. A good discussion on emerging
applications of reversible data hiding can be found in [5].
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1.3.1 Ensuring Integrity

A fragile reversible data hiding scheme makes it suitable for ensuring integrity
of an image. A secret data is embedded in an image. Extraction of the same
data from the marked image (i.e., bit error rate as zero) ensures integrity of the
marked image. Moreover, several applications demand restoration of the original
image from the marked image. These applications cannot afford even minimum
distortion (though imperceptible in our eyes) in the image. Even a small change
in the marked image (with respect to the original cover image) may lead to
wrong analysis (often automated) in the context of these sensitive applications.
Application areas of this type include the following:

1. Medical images carry very sensitive contents about a patient’s health. Hos-
pitals and diagnostic centers need to ensure integrity of these images. More-
over, original cover image is needed for automated diagnosis of the health
condition. Hence, in contrast to traditional watermarking, reversible data
hiding is a suitable choice for ensuring integrity of medical images [6, 7, 8, 9].

2. Remote sensing images also contain important contents for military and
other civilian applications. Automated analysis of these images is impor-
tant for target location and tracking, environment analysis and other geo-
graphical studies. Reversible data hiding ensures integrity of remote sensing
images while cover images are also restored for automated analysis [10].

3. Image authentication is an important requirement for a court of law to
establish the authenticity of an image of a crime scene. Watermarking (one
kind of data hiding) of the image helps in achieving this. In contrast to
traditional watermarking, reversible data hiding restores the original image
(without any distortion), which can be accepted by a court of law. Hence,
reversible data hiding can be an useful method for authenticating images
for law enforcement [2].

4. Image of a bank cheque is transmitted from one bank to another bank for
clearing process. An adversary can easily manipulate the contents of the
cheque image to defraud the payer. Reversible data hiding can be used to
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ensure integrity of the cheque image [11, 12] in such a remote cheque clearing
environment. Reversible data hiding also restores the original cheque image,
which can be automatically analyzed for presence of certain security features
in the cheque (such as micro-lettering line, pantograph etc).

5. Geographical information system uses two-dimensional vector data to indi-
cate point coordinates. Reversible data hiding is used to ensure integrity
of this two-dimensional vector data [13]. Reversibility property ensures
restoration of the original vector data.

6. Two-dimensional vector data is also useful in computer-aided design (CAD)
engineering graphics. Hence, reversible data hiding is applied to ensure
integrity of this data for CAD engineering graphics [14].

1.3.2 Reversible Steganography

Steganography is a technique for covert communication and storage. Unde-
tectability of the secret data is key contribution of a steganography technique.
But a cover image is changed irreversibly in a traditional steganography scheme.
Hence, reversible steganography [15, 16] provides a mechanism for getting back
the cover image, while maintaining the undetectability of the secret data. Mainly,
it is useful for covert storage, where the cover image can be obtained back after
erasing the storage data.

1.3.3 Reducing Storage and Bandwidth Utilization of
Stereo Images

In [17], a method of efficient storage and transmission of a pair of stereo images
is proposed using reversible data hiding. At first, the information to generate the
right image from the left image is computed. Then, this information is reversibly
embedded in the left image. This reduces storage and bandwidth requirements
as only the marked left image is stored and/or transmitted instead of the pair of
images. During extraction process, the embedded information can be extracted
along with the exact restoration of the left image. Subsequently, the right image
can be derived from the left image using this extracted information.
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1.3.4 Intra-Frame Error Concealment for Improved Video
Transmission Quality

Video transmission is error prone as quality of service is not guaranteed. An intra-
frame error concealment algorithm can recover corrupted macro-blocks. Thus,
this algorithm helps in improving the quality of video transmission. In [18], a
reversible data hiding based approach has been proposed for intra-frame error
concealment.

1.3.5 Reversible Adversarial Example

Storing of personal photographs in social media is a common phenomenon now-a-
days. Various deep learning models are developed to automatically analyze these
images in order to derive useful business information. An adversarial example
(i.e., image) can be generated as privacy preserving technique against these deep
learning based analysis. Normally, such an adversarial example is generated by
adding certain perturbation to the original image. But addition of perturbation
may irreversibly change the original image. Hence, a concept of reversible adver-
sarial example has been introduced recently [19]. It hides the perturbation in the
generated adversarial image using reversible data hiding. Hence, it is possible to
extract the perturbation information and to restore the adversarial image. Sub-
sequently, the original image can be generated by subtracting the perturbation
from the adversarial image.

1.3.6 Reversible Image Editing

A traditional image editing method changes an image irreversibly. It is not pos-
sible to get back the original image from the edited image, unless a copy of the
original image is separately stored. In [20], a reversible image editing method is
proposed using reversible data hiding. Similarly, a reversible contrast enhance-
ment method is used in [21] to enhance the contrast of region-of-interests in
medical images.
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1.4 Research Objective

Since the initial work in reversible data hiding [22] in (2001), this field has
been enriched by several important research contributions. Over the years, re-
searchers have attempted (i) to improve embedding capacity of reversible data
hiding schemes and simultaneously, (ii) to reduce embedding distortion. A spe-
cific genre of these techniques, namely prediction error expansion (PEE) based
reversible data hiding technique [23], has been found as better than other genres
of techniques. In a prediction error expansion based technique, a pixel value is
predicted using the values of a set of context pixels. Data bits are hidden in the
expanded prediction error of the concerned pixel. The superiority of PEE-based
reversible data hiding techniques has attracted more attention of researchers.
Hence, scope of the research work, as reported in this thesis, is also centered
around PEE-based reversible data hiding. It is to be noted that the work in this
thesis, like several other techniques in the literature, considers 8-bit gray-scale
images only.

A good predictor causes less prediction error for a pixel value. As data bits
are embedded in the expanded prediction error, a good pixel predictor causes less
embedding distortion in the pixel. Hence, objective of the research, as reported
in this thesis, is to come up with novel reversible data hiding techniques by ex-
ploring suitable pixel prediction schemes. Novel pixel prediction strategies have
been proposed in the context of reversible data hiding. Performances of several
state-of-the art pixel prediction strategies have also been investigated. The need
to combine multiple predictors is also examined in this context. Usage of appro-
priate pixel prediction strategies has led to a better trade-off between embedding
capacity and embedding distortion.

In the context of pixel prediction strategy, the research explores the suitability
of the following pixel prediction schemes for reversible data hiding:

• pixel value prediction using a set of reference pixels in the vicinity of the
concerned pixel

• prediction of a pixel value by using 8-neighborhood of the pixel
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• gradient (as estimated using the pixels in the local neighborhood) based
prediction of a pixel value

• multi-predictor scheme to combine the outcomes of multiple predictors

It is to be noted here that the research, as reported in this thesis, focuses only
on fragile reversible data hiding techniques.

Finally, proposed PEE-based reversible data hiding techniques have been ap-
plied to ensure integrity of a bank cheque image.

1.5 Contribution of the Thesis

Major contributions of the thesis are highlighted in this section. Contributions of
the thesis are stated as proposing novel prediction error expansion based reversible
data hiding schemes by exploiting novel pixel prediction strategies as following:

1. Prediction of pixel values in an image using a B-tree triangular decompo-
sition based prediction strategy is proposed. The original image is decom-
posed into a set of right angled triangles. The right angled triangles are
generated from the original image by following a B-tree structure. Initially,
the root of the tree refers to the original image. The image is divided,
at first, into two right-angled triangles with respect to the main diagonal
of the image. Later, each right angled triangle is further decomposed re-
cursively into smaller triangles. The triangle division is stored in a B-tree
structure. Finally, the pixels, which fall inside or on the three sides of a
triangle, are predicted using the pixel values at the vertices of the triangle
as the reference pixels using an interpolation technique. A B-tree triangu-
lar decomposition based prediction technique was originally proposed for
image compression in [24]. A similar strategy with necessary adaptation to
the context of reversible data hiding is adopted in this thesis. Finally, an
adaptive embedding strategy is used for embedding data into the expanded
prediction error.
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2. Next, it is further investigated whether a structured method (like the above
mentioned B-tree triangular decomposition) can be avoided to decide a set of
reference pixels. In this context, a novel mechanism for random distribution
of reference pixels is proposed. A set of reference pixels is randomly dis-
tributed depending on a local complexity estimation of the non-overlapping
blocks of an image. Variance of the pixel values in a block is used to estimate
the local complexity of the block. Then, the values of the reference pixels
within a certain distance from a non-reference pixel are used for predicting
the non-reference pixel value using a weighted median based approach. Fi-
nally, an adaptive embedding strategy is used for reversibly hiding the data
into an expanded prediction error of a non-reference pixel.

3. A novel prediction scheme based on 8-neighborhood of a pixel is also pro-
posed in this thesis. At first, the differences between pixel values of a pair of
neighboring pixels in horizontal, vertical, diagonal and anti-diagonal direc-
tions are computed. Similarly, the averages of two neighboring pixel values
in each of above four directions are estimated. The computed differences
and the computed averages are used to select a set of directions. Then, a
novel pixel prediction strategy is proposed by combining linear predictors
in the selected directions. Finally, a novel prediction error expansion based
reversible data hiding technique is proposed using this selected directional
context based prediction. An adaptive prediction error histogram bin shift-
ing strategy is used here to adaptively embed either one bit or two bits of
data based on local complexity of the pixel.

4. Next, a gradient based pixel prediction strategy is proposed. This work is
inspired by a gradient based reversible data hiding in [25]. But contrary to
[25], this work considers a 5×5 neighborhood to estimate gradient. On this
front, the prediction is an extension of the gradient based prediction using
4× 4 neighborhood in [25] to 5× 5 neighborhood. In the proposed work,
gradients in horizontal, vertical, diagonal and anti-diagonal directions are
computed using a 5× 5 neighborhood. Moreover, linear predictors consid-
ering a set of neighborhood pixels are considered for each of the above four
directions. Then, finally, a weighted average of two predicted values in the
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direction of the least two gradients estimates the final predicted value. Fi-
nally, a novel prediction error histogram bin shifting based reversible data
hiding technique is proposed using this gradient based prediction. The pre-
diction error histogram bin shifting based strategy is extended to adaptively
embed either one bit or two bits of data based on local complexity of the
pixel.

5. Apart from the proposed predictors as above, there already exist plethora
of predictors in the literature. An experimental study is conducted to assess
the performance of several of these local context based and gradient based
predictors. The experiment reveals that none of the predictors are perfect
in predicting the pixel values. But some of these predictors perform better
than rest of the others. Then, a multi-predictor based strategy is proposed
by considering few of the good predictors. Several schemes for combining
predicted values are experimentally evaluated to find out the best way of
combining multiple predicted values. Finally, similar to previous two ap-
proaches, an adaptive prediction error histogram bin shifting based strategy
is adopted to consider variable number of bits for embedding in a pixel.

6. Finally, the proposed reversible data hiding techniques are applied on a
set of bank cheque images in order to ensure integrity of the cheque im-
ages. Performances of several of the above proposed reversible data hiding
techniques are evaluated in the context of bank cheque images.

1.6 Test Images

A set of standard test images (Lena, Lake, Boat, Mandrill, Elaine, Airplane,
Peppers, and Tiffany) of size 512× 512 is used to evaluate the performances of
the proposed reversible data hiding techniques against several existing techniques
in the literature. 8-bit gray scale versions of these images are considered in this
thesis for reporting the experimental results. These images are presented in figure
1.4.
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Figure 1.4: Standard test images. Top row (left to right): Lena, Lake, Boat, and
Mandrill. Bottom row (left to right): Elaine, Airplane, Peppers, and Tiffany

1.7 Organization of the Thesis

Rest of the thesis is organized as following:

• A literature survey of existing reversible data hiding techniques is presented
in Chapter 2 .

• In Chapter 3, a novel reversible data hiding technique using B-tree trian-
gular decomposition based prediction is proposed.

• In Chapter 4, a novel random pixel distribution based prediction and sub-
sequent reversible data hiding technique are proposed.

• In Chapter 5, a selected local context based prediction and a gradient
based prediction are independently used to develop novel reversible data
hiding techniques.

• The need for multi-predictor based techniques is analyzed in Chapter 6.
Subsequently, several strategies for multi-predictor schemes are experimen-
tally evaluated in Chapter 6.
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• Application of prediction error expansion based reversible data hiding on
bank cheque images is reported in Chapter 7.

• Conclusive remarks of this thesis are drawn in Chapter 8. Additionally,
future research directions are highlighted in this chapter.
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Chapter 2

Literature Survey on Reversible
Data Hiding

A survey of existing reversible data hiding (RDH) techniques is presented in this
chapter. These techniques can be divided mainly into three major categories: (1)
difference expansion (DE), (2) histogram bin shifting (HBS) and (3) prediction
error expansion (PEE). A pictorial representation of this categorization is given
in figure 2.1. Subsequent sections discuss existing techniques in each of these
categories. Survey on reversible data hiding techniques can also be found in
[2, 26].

2.1 Difference Expansion Based Reversible
Data Hiding Techniques

Difference expansion (DE) method for reversible data hiding was first introduced
in [27]. Subsequently, a detailed description of this method is published in [28].
In this technique, one bit data is embedded into a pair of neighboring pixels in
the cover image by expanding the difference between the neighboring pixel values.
The key idea of this technique is demonstrated in figures 2.2 and 2.3 through an
example of embedding and extraction phases, respectively. Let a pair of adjacent
neighboring pixel values be (x,y) = (206,201). Difference between this pair of
pixel values is computed as d = x− y = 206− 201 = 5. Additionally, an integer
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Figure 2.1: Types of reversible data hiding techniques

average a of the pair of pixel values is computed as bx+y
2 c= b206+201

2 c= 203. bc
indicates the largest integer which is smaller than its argument. The binary form
of the difference d is 101. Let the data bit be 1. The data bit is appended at the
least significant bit (LSB) of the expanded difference (i.e., left-shifted difference
bit string) as d′=1011. Then, marked pixel values are obtained as x′ = a+bd

′
+1
2 c

and y′ = a−bd′

2 c. Hence, the pair of marked pixel values are (x′
,y

′)= (209,198).
From the marked pixel values, the embedded data bit is extracted and original
pixel values are computed as following: The difference between the pair of marked
pixel values is computed as (d′ = 209−198 = 11). The LSB of this difference value
(in binary representation) is 1. Therefore, the embedded data bit is correctly
extracted. The original difference between the cover image pixel values is obtained
as d= bd

′

2 c= 5. The integer average of the marked pixel values a is computed as

a= bx
′
+y

′

2 c= b209+198
2 c = 203. It is to be noted that the integer averages of the

original pixel values and the marked pixel values are same. From the difference
(d = 5) and the integer average of original pixel values (a = 203), the original
cover image pixel values are recovered as (x,y) = (a+bd+1

2 c,a−b
d
2c) = (206,201).

It is to be noted that marked pixel values (x′
,y

′) may not be within the range
[0, 255] due to above difference expansion technique. If the marked pixel value
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Average (a)

(206+201)/2

=203
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Append b=1
1011=11

x’  = 203 + (11 +1)/2
     = 209
y’   = 203 - ( 11 / 2) 
     =198

x’ = a +  (d’+1 ) / 2

y’ = a -  ( d ’/ 2 )

d’=2*d+b

d’

a

Figure 2.2: Embedding of data bit in difference expansion technique

exceeds 255, the condition is known as overflow. On the other hand, if the marked
pixel value is less than 0, the condition is termed as underflow. Both of these
conditions are prohibitive, as a pixel value must be in the range [0, 255]. The
technique in [28] identifies a set of difference values, where overflow/underflow
does not arise. Data bits are embedded only in those difference values to avoid
overflow/underflow.

Different approaches have been evolved from the basic DE based technique.
An improved version of the DE based technique is presented in [29], where few
more difference values are also considered for embedding. This is achieved by
shifting these difference values such that overflow/underflow will not arise in the
shifted difference values. Then, embedding of data bits is also carried out in the
shifted difference values. Thus, this technique in [29] achieves higher embedding
capacity than the technique in [28]. Difference expansion based reversible data
hiding using triplet of values has been explored in [30]. Similar integer transforms
like those in [28] are used in this work with necessary amendments due to the
usage of a triplet of values. Differences of two of these three values from the
third value are expanded in this technique. Differences within a triplet of values
are expanded for data embedding in [31] too. The technique in [32] generalizes
these transformations for a vector of any length as compared to those for triplet
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Figure 2.3: Extraction of data bit and recovery of original pixel values in difference
expansion technique

of values in [30]. Further generalization of these transformations can be found in
[33]. Similarly, in [34, 35], data bits are embedded by expanding the differences
in pixel values in a quad of adjacent pixels. In [36], reversible data hiding is
applied in medical images, where the image is divided into smooth and non-
smooth regions. In this technique, either the original DE-based approach using
pair of pixels [28] or the approach using quad of pixels [34] is used to embed
data in non-smooth regions. Similarly, another adaptive embedding is proposed
in [37], where amount of embedding is a block is decided using the smoothness of
pixel values in the block.

A common problem with these DE-based techniques is the occurrence of over-
flow/underflow. Overflow/underflow condition arises if the changed pixel value
after embedding exceeds the range [0,255]. A location map is used to specify these
locations where embedding should not be carried out to avoid the above condi-
tion. This location map needs to be embedded in the image. The method in [38]
suggests a technique to reduce the overflow/underflow location map. Moreover,
an intelligent pairing of pixels in the DE-based approach completely eliminates
the need for an overflow/underflow location map [12]. In this technique, pixel
pairs are chosen in such a way that overflow/underflow condition does not arise.
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In another enhancement of DE-based techniques, a two-dimensional difference
expansion technique is proposed for embedding data bits in [39]. The possibility
of utilizing image characteristics such as standard deviation, smoothness, and
uniformity as a guide to choose a threshold with a block-based 2-dimensional
difference expansion scheme is proposed in [40].

2.2 Histogram Bin Shifting Based Reversible
Data Hiding Techniques

Reversible data hiding based on histogram bin shifting method was first intro-
duced in [41]. A histogram of the grayscale values of the original cover image
is generated. A pair of peak and zero points in the histogram are identified. A
peak point indicates a histogram bin whose height is the highest among all bins
in the histogram. A zero point indicates a histogram bin whose height is zero
(i.e., any pixel does not have the concerned gray value). Let the peak point and
zero point in the histogram are denoted by the bins having gray values hp and
hz, respectively. Here, two cases may arise. (1) If the zero point is at the right
side of the peak point (i.e., hp < hz), then the histogram bins for hp +1 to hz are
shifted at their right side by one position. This means that the gray values in the
range [hp + 1,hz] shift to the range [hp + 2,hz + 1]. Each gray value in this range
is increased by 1. It creates an empty bin for the gray value hp +1. Then, one bit
data is embedded into a pixel which is associated with peak point, i.e., histogram
bin for gray value hp. If the data bit is 0, the pixel value is not changed. If the
data bit is 1, the pixel value is increased by 1. It moves the pixel from the bin
having gray value hp to the empty bin having gray value hp + 1. (2) If the zero
point is at the left side of the peak point (i.e., hz < hp), then the histogram bins
for hp−1 to hz are shifted at their left side by one position. This means that the
gray values in the range [hz,hp−1] shift to the range [hz−1,hp−2]. Each gray
value in this range is decreased by 1. It creates an empty bin for the gray value
hp−1. Then, one bit data is embedded into a pixel which is associated with peak
point, i.e., histogram bin for gray value hp. If the data bit is 0, the pixel value
is not changed. If the data bit is 1, the pixel value is decreased by 1. It moves
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the pixel from the bin having gray value hp to the empty bin having gray value
hp− 1. Basically, histogram bin shifting method creates an empty bin adjacent
to the peak point by shifting all other bins till a zero point is encountered. Then,
one bit data is embedded into the pixels corresponding to the peak bin. If the
data bit is 0, a pixel remains in the same bin. If the data bit is 1, a pixel moves
to the adjacent empty bin.

In [41], a data bit as 1 causes modification in the pixel. On the contrary,
a data bit as 0 does not modify the pixel value. Hence, more number of 1 in
the data bit string as compared to number of 0 causes more distortion than
a case where number of 0 is more than number of 1 in the bit string. The
histogram bin shifting based reversible data hiding technique in [41] is enhanced
in the work in [42] by complementing the data bit string if number of 1 is more
than number of 0 in the bit string. Thus, the technique in [42] reduces the
embedding distortion as compared to the basic histogram bin shifting technique
in [41]. Moreover, a block-based complement strategy is introduced to reduce the
distortion further. For each block in the data bit string, count of 1 and 0 bits
decide whether complement of the block is to be considered [42].

One major artifact of traditional histogram bin shifting based reversible data
hiding technique is that the peak bin in the histogram is completely split into two
bins due to embedding of data bits into the pixels in the peak bin. Hence, identity
of the original peak bin is lost in the histogram of the gray values for the marked
image. Then, the information about the original peak bin is separately passed
to the extraction process. Therefore, data bits are not embedded in the pixels
corresponding to the peak bin in the histogram bin shifting based technique in
[43]. Rather, two neighboring bins of the peak bin are used to embed the data bits.
The peak bin is treated as the reference point for data embedding. Therefore,
identification of the same peak bin is possible from the marked image during
extraction process. It guides to the neighboring bins where embedding has taken
place. Additionally, this technique in [43] applies the above mentioned histogram
bin shifting based embedding for each non-overlapping square block in the image
separately. Moreover, a multi-layer embedding is suggested to embed more data.
According to this multi-layer strategy, the marked image is again considered as
the cover image for next layer of embedding in order to embed more data bits.
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Another version of histogram bin shifting based reversible data hiding tech-
nique is proposed in [44]. Here, a histogram bin is selected for embedding data
bits such that the number of pixels being shifted (i.e., number of pixels in the
bins in between the selected bin and a zero bin) are minimum.

In the above histogram bin shifting based techniques, the histogram of pixel
values in the image/block is constructed. In a completely different approach of
histogram bin shifting [45, 46], the histogram is constructed for the differences
in neighboring pixel values. In [46], two differences are computed by considering
how different a pixel value is from its top and left neighboring pixels. Then, the
peak bin of the histogram is used to insert the secret data and all other bins
are shifted until a zero bin is encountered. Similarly, in [47], a histogram of
differences in pixel values in a block is constructed. The histogram bin shifting
method uses this difference histogram of a block for embedding data bits. This
technique considers one pixel in the block as a reference pixel. The differences
in pixel values are computed with respect to the value of the reference pixel.
In another histogram bin shifting based reversible data hiding technique [48],
modification to the histogram of absolute differences between neighboring pixel
values is proposed. Moreover, the peak bin is not used for embedding. Like the
technique in [43], adjacent bins of the peak bin are used for embedding data bits.
Multiple peak bins can be used for embedding more data. Binary tree structure
is used for properly communicating the peak bins to the extraction process.

In another histogram bin shifting based reversible data hiding technique [49],
few higher significant bit (HSB) planes are considered instead of the complete
pixel value. The binary representation of the pixel value in an original cover
image is divided into two parts based on bit significance: the HSB and the least
significant bit (LSB) parts. The higher significant bit difference is calculated
from the HSB values of adjacent pixels in the cover image. Data is embedded
in the pixels causing the peak points in the histogram of higher significant bit
differences. Another histogram bin shifting based reversible data hiding technique
using a bit-place slicing method is proposed in [50].

A reversible data hiding technique based on a block-based histogram bin shift-
ing is proposed in [51]. An image is partitioned into non-overlapping square
blocks. An average of pair-wise differences of adjacent pixel values is estimated
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for each block. This estimated value controls the amount of shifting for the his-
togram bins of the block. Another block based histogram bin shifting method is
proposed in [52], where the histogram bin corresponding to a either minimum or
maximum pixel value of a block is considered as a reference bin. It is a two-pass
embedding approach. The minimum and the maximum pixel values in a block
are used as reference in the first and the second passes, respectively.

A generalized framework for histogram shifting based reversible data hiding
is proposed in [53].

2.3 Prediction Error Expansion Based Re-
versible Data Hiding Techniques

In difference expansion based techniques (Section 2.1), one data bit is embedded in
the expanded difference of two pixel values. These pixels may be neighbors of each
other or they may be part of same square block. The idea of selecting two such
pixels is that neighboring pixel values (or the values of pixels in a close vicinity
of each other in a block) may have high correlation. As a result, the difference
between these pixel values may be small. Obtaining a small difference value is
good for these reversible data hiding techniques, as the difference is expanded due
to embedding. A small difference value causes less embedding distortion in the
marked image. One natural extension of this difference expansion based technique
is prediction error expansion (PEE) based technique. Prediction error expansion
based technique was first introduced in [54]. Later, a detailed presentation of this
technique is found in [23]. In a PEE-based technique, a pixel value is predicted
by exploiting its correlation with neighboring pixel values. The prediction error
is estimated by subtracting the predicted value from the original pixel value.
Then, one data bit is embedded in expanded prediction error of the pixel. Thus,
prediction error plays a significant role to reduce the distortion of the marked
image. Therefore, a PEE-based technique requires a good predictor which can
exploit the correlation among a set of neighboring pixels.

Let an original cover image pixel be x. Let the predicted value of the pixel
be x

′ . Then, the prediction error (PE) is the difference between original and
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predicted values, i.e., PE = x−x′ . Then, one bit data w is embedded into the
expanded prediction error to generate a marked pixel value xw using equation
2.1.

xw = x
′
+ 2× (x−x

′
) +w

= x
′
+ 2×x−2×x

′
+w

= 2×x−x
′
+w

= x+x−x
′
+w

= x+PE+w

(2.1)

The PEE-based reversible data hiding techniques, in general, exhibit better
performance as compared to traditional difference expansion based techniques.
Since the introduction of the first technique [54] in this category, a lot of researches
are being carried out in this direction. As the focus of this thesis is on PEE-
based reversible data hiding, more emphasis is given in the following subsections
on presenting the literature of this genre of techniques. It can be seen from the
initial discussion on this technique that two major steps of this technique are: (1)
prediction of pixel value and (2) embedding of data bits in the prediction error.

2.3.1 Prediction of a Pixel Value

Key to success of a prediction error expansion based technique is usage of a good
predictor to predict a pixel value. Researchers have come up with various pixel
prediction schemes. A compilation of these pixel prediction schemes is presented
in this subsection.

2.3.1.1 Edge and Gradient Based Predictors

Initially, prediction strategies are heavily influenced by the researches in image
coding. For example, a Median Edge Detector (MED) [55], as is adopted by
the PEE-based reversible data hiding in [23, 54, 56], was initially proposed for
a lossless image coding algorithm. According to MED predictor, a pixel value
is predicted using the top, the left, and the top-left neighboring pixel values
depending on a presence of edge at immediate left or at immediate top of it.
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Figure 2.4: Context of MED predictor

Mathematically, MED predictor is defined based on the presented neighborhood
in figure 2.4 using equation 2.2.

x
′
=


max(a,b) if c≤min(a,b)
min(a,b) if c≥min(a,b)
a+ b− c Otherwise

(2.2)

On the contrary, the right, the bottom and the bottom-right neighbors of the
current pixel are involved in Median Edge Detector (MED) predictor in [57, 58,
59]. In both variations of MED predictor, three neighboring pixels are explored
for predicting the pixel value.

Gradient Adjusted Predictor (GAP) uses vertical and horizontal gradients for
predicting the current pixel [58, 60]. Initially, GAP was also proposed for lossless
image coding in [61]. The predicted value of a pixel depends on the difference
between strengths of the vertical and the horizontal gradients. Moreover, the
computation of gradient is simplified in a Simplified Gradient Adjusted Predictor
(SGAP) [58].

Unlike the gradient estimations in two directions, several predictors estimate
gradients in four directions. For example, in Gradient Based Selective Weighting
(GBSW) predictor [62], gradients are computed in horizontal, vertical, diagonal,
and anti-diagonal directions. Two directions having the least two gradient mag-
nitudes are considered for predicting a pixel value. The predicted pixel value is
estimated as a weighted average of the causal pixel values in the selected direc-
tions. In Extended Gradient Based Selective Weighting (EGBSW) [25] predictor,
the above concept of gradient estimations are extended using a larger set of neigh-
borhood pixels than the neighborhood pixels in GBSW predictor. Another key
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difference with GBSW predictor is that EGBSW predictor uses linear predictor in
each direction instead of just a causal pixel value. Linear predictor in each direc-
tion considers the average of two neighboring pixel values in the same direction.
The final predicted pixel value is obtained as a weighted average of two linearly
predicted values in the directions having the least two gradient magnitudes.

Threshold-controlled Gradient Adaptive Planar Prediction (TGAPP) [63]
combines the simple gradient estimation (in horizontal and vertical direction)
and MED predictor. Unlike the use of an ordering of neighboring pixel values in
original MED predictor [55], TGAPP uses the difference between two gradient
magnitudes to decide the final predicted value.

Another approach of gradient based prediction of a pixel value can be found
in [64]. At first, values of 4-diagonal neighboring pixels are predicted using a
simple average of the values of 4-neighbors of each of the diagonal neighboring
pixel. Then, these predicted values are used to estimate gradients in horizontal
and vertical directions. Use of predicted values of neighboring pixels to estimate
the gradient differentiates this scheme from previous other schemes of gradient
estimation. Finally, a comparison between the gradient magnitudes in horizontal
and vertical directions decides the final predicted value as the average of values
of either two vertical neighbors, two horizontal neighbors, or 4-neighbors of the
pixel.

Several varied approaches for gradient estimations can be found in above gra-
dient based predictors. The variation in considered neighborhood pixels for gra-
dient estimation is presented in figure 2.5. Here, x indicates the pixel whose value
is predicted.

2.3.1.2 Prediction Using Simple Computation with Neighborhood

Several other predictors rely on a simple computation using neighboring pixel
values. For example, a pixel value is predicted as an average of the values of
its left and right neighbors [65]. Average of the values at the top and the left
neighbors of a pixel is computed to predict a pixel value in [66, 67]. Similarly,
a pixel value is predicted using an average of top, left and top-right neighboring
pixel values in [68]. An average of four neighboring pixel values (two horizontal
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Figure 2.5: Contexts of gradient based predictors

and two vertical neighbors) can also be used to predict the center pixel value
in the rhombus predictor [69, 70, 71, 72, 73]. In multi-layer scheme [71], the
rhombus predictor is applied in every alternate pixel in the first round and in
remaining pixels in the second round. An improved rhombus predictor in [74]
uses an average of pixel values in either two horizontal neighbors, two vertical
neighbors, or 4-neighbors depending on the homogeneity of neighboring pixel
values. In [75, 76], an average of pixel values in either two horizontal neighbors
or two vertical neighbors is considered as the predicted value. In [77], a pixel
value is predicted by considering the averages of pair of neighboring pixel values
in a few selected directions. In [78], a pair of predicted values are used for the
reversible data hiding scheme. Pixel values at 4-neighbors of the current pixel are
sorted in ascending order. Then, three different predictors are proposed in [78].
In the first predictor, the first and the last pixel values in the sorted order are
used as two predicted values. In the second predictor, average of the first two and
average of the last two pixel values are used as two predicted values. Finally, in
the third predictor, average of the first three and the last three pixel values are
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considered as two predicted values.
A weighted average of four neighboring pixel values predict the center pixel

value in [79]. The weight associated with a neighboring pixel is inversely propor-
tional to the absolute difference between the simple average and the neighboring
pixel value. In [80], at first, average of two horizontal neighbors and average of
two vertical neighbors are computed. Then, a weighted average of above two
averages predicts the center pixel value.

In [81], the pixels are traversed in checkerboard pattern, which is given in figure
2.6. The prediction of pixel values are carried out in two passes. In the first pass,
the pixels as denoted by ’x’ are predicted using average of pixel values in either
two diagonal neighbors, two anti-diagonal neighbors, or four diagonal neighbors.
Similarly, in the second pass, the pixels as denoted by ’o’ are predicted using
average of pixel values in either two horizontal neighbors, two vertical neighbors,
or 4-neighbors.

In [82], a weighted average of values in six neighboring pixels (top-left, top,
top-right, bottom-left, bottom, and bottom-right neighbors) predicts the center
pixel value. More weights are assigned to the top and the bottom neighbors. In
this scheme, the pixels at the same row as the current pixel (i.e., left and right
neighbors) are not considered for predicting the current pixel. Another weighted
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average scheme using similar context of neighborhood pixels is also considered in
[83].

In a completely different approach in [84], a pixel value is, at first, predicted
using an average of the values in its 4-neighbors. Subsequently, the predicted
value is iteratively modified using differences of the pixel values from neighboring
pixel values.

In all above prediction schemes, the prediction context is taken from a fixed
block size surrounding every pixel in the image. Interestingly, the prediction
scheme in [85] proposes to select the block size for each pixel based on its context
characteristics.

A reversible data hiding technique based on a least square (LS) predictor is
proposed in [86]. It determines the weights for the neighboring pixels such that it
minimizes the sum of squares of prediction errors. According to the technique in
[86], a distinct LS predictor is obtained for each pixel. Alternatively, a distinct LS
predictor is obtained for each block in [87]. These least square predictors are eval-
uated with several block sizes to reduce the prediction error. Similarly, LS based
predictors are also used in [88, 89]. In another interesting LS based approach [90],
enhanced pixel values in the neighborhood are considered for predicting a pixel
value.

Instead of the average based computation of the prediction value, a weighted
median of a set of pixel values is considered as the predicted value in [91]. Weight
being associated to a pixel value is inversely proportional to the distance of the
pixel from the current pixel.

Moreover, bit-wise logic operation (using AND and OR logic) involving binary
representations of neighboring pixel values is proposed for predicting a pixel value
in [92].

Few other approaches consider various interpolation techniques for predicting
a pixel value using a set of neighboring pixels. For example, neighbor mean inter-
polation (NMI) [93], interpolation by neighboring pixels (INP) [94] and several
other interpolation schemes [95, 96, 97, 98, 99] are used for pixel value prediction
in the context of reversible data hiding. Interestingly, genetic algorithm is used in
[100] to find out optimum parameters for interpolation. Moreover, performance
of particle swarm optimization is also tested in this context [100].
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2.3.1.3 Pixel Value Ordering Based Prediction

Pixel Value Ordering (PVO) based technique [101] adds another direction to the
research in reversible data hiding techniques. The image is divided into non-
overlapping blocks of similar size. The pixel values in a block are arranged in
ascending order. If the values are same for two pixels, then their relative locations
decide the ordering between these pixels. This ordering of values plays a vital
role in the PVO based reversible data hiding technique. The second-left and the
second-right pixel values in the ordered sequence are used for predicting the pixel
values for the left-most and the right-most pixels, respectively, in a block. This
PVO-based technique in [101] cannot handle the case when the largest value (or
the smallest value) appears in more than one pixel.

Hence, a generalization of the above scheme is suggested in [102]. This tech-
nique can operate even if multiple pixels contain the largest (or the smallest) pixel
value in the block. Number of pixels having the largest (or the smallest) value in
the block varies from one block to another. In this technique, the second largest
(or the second smallest) pixel value is used to predict the values of the pixels at
even multiple locations, where the largest (or the smallest) value appears.

As an extension of the original PVO-based technique [101], a multi-pass PVO
based approach is proposed in [103]. Here, the k-largest and the k-smallest pixels
are considered for k-pass embedding.

Unlike the fixed-sized blocks in the previous techniques, a dynamic block
partitioning is proposed in [104]. Here, sizes of each block are not same. Moreover,
a quad tree decomposition is adopted in [105] for dynamic block partitioning.
An image is recursively divided into several blocks of dissimilar sizes based on
redundancy of pixel values in a block.

In another variation of the above techniques, the constraint of fixed block
partitions of PVO-based approaches is removed in Pixel-based PVO (PPVO)
prediction [106]. In PPVO, a context surrounding each pixel is considered as the
block. The prediction uses a sorted ordering of these context pixels. In [107],
the context pixels are selected in such a way that the two boundary lines of the
current pixel and context pixels form an obtuse angle. PPVO-based prediction is
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applied using such a context. Variations of the PPVO scheme are also found in
[108, 109].

In another extension of PVO-based techniques, namely Pixel Value Grouping
(PVG) [110], the sorted pixel values are categorized into two groups based on
similarity of their values with the largest and the smallest values in a block. The
predictions are carried out within these groups.

In another variation of PVO-based techniques, a pairwise pixel value ordering
technique is proposed in [111].

Recently, a pixel-based pixel value grouping method in [112] exploits the ad-
vantages of both pixel-based approach of PPVO technique and Pixel Value Group-
ing (PVG) technique.

Several other variations of PVO-based techniques can be found in [113, 114,
115, 116, 117].

2.3.1.4 Reference Pixel Based Prediction

This section discusses existing reference pixels based prediction strategies for
reversible data hiding. Initially, a set of reference pixels is distributed throughout
an image. Then, the values of these reference pixels are used for predicting the
values of non-reference pixels.

In the reversible data hiding technique in [118], the reference pixels are dis-
tributed based on a local complexity estimation of the pixels in the image. Differ-
ence between the maximum value and the minimum value in the neighborhood of
a pixel is considered as local complexity estimation. A pixel is either considered
as a reference pixel or a non-reference pixel depending on its local complexity.
Then, interpolation using the values of reference pixels is used for predicting the
non-reference pixel values.

In Delaunay triangulation based reversible data hiding technique [119], a con-
cept of Delaunay triangulation is used to obtain a set of reference pixels. In a
Delaunay triangulation mesh, the minimum angle of each triangle in the mesh is
maximized. Basically, the triangles are formed in such a way that the circumcir-
cle of any triangle in the mesh does not include any other triangle vertex. The
vertices of the triangles in such a Delaunay mesh are considered as the reference
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pixels. The non-reference pixel values are predicted using an interpolation of the
reference pixel values.

In [120], a low resolution image of size M
2 ×

N
2 is obtained by direct down-

sampling of an image of size M×N . Then, pixels in this low resolution image (or
rather, their corresponding pixels in the input image) are used as reference pixels
to predict other pixels. The predictions of non-reference pixel values are carried
out at two stages. At first stage, prediction of some of the non-reference pixel
values is carried out using values of four surrounding reference pixels. These
four reference pixels are put into two groups, where the groups of pixels form
orthogonal directions with respect to each other. The lines joining these pairs
of diagonal pixels are orthogonal to each other. Initially, the estimated value in
each direction is computed by taking the mean of the pair of pixel values. A
weighted sum of these two estimated values is the final predicted value of the
non-reference pixel. At the second stage, values of rest of the non-reference pixels
are predicted using four pixel values using a similar technique as above. But, in
the second stage, the four surrounding pixels also include some of the already
predicted pixels of the first stage along with the reference pixels.

Similarly, a reversible data hiding technique in [121], a set of reference pixels is
considered as pixels at every alternate rows and columns. In a two-stage procedure
as similar to [120], values of few of the non-reference pixels are interpolated, at
first, using four reference pixel values. Then, values of the remaining non-reference
pixels are interpolated using two already interpolated values and two reference
pixel values.

2.3.1.5 Other Prediction Strategies

Few other prediction strategies can also be found in the context of prediction
error expansion based reversible data hiding.

Several neural network based pixel value predictors can be found in the lit-
erature of prediction error expansion based reversible data hiding [122, 123]. In
[122], an input image is down-sampled. The pixel values at the down-sampled
image (or rather, their corresponding pixel values at the input image) are used
to predict other pixel values. An extreme learning machine is utilized in [122]
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for predicting the pixel values using a regression framework. Similarly, extreme
learning machine based pixel value prediction is also found in [124]. Moreover,
a convolutional neural network is used to predict pixel values in a pair of stereo
images [123].

A different pixel prediction mechanism based on graph signal processing (GSP)
is recently proposed in [125]. The prediction of a pixel is designed as a graph signal
restoration problem. A minimum rate prediction strategy can be found in [126].

Moreover, several reversible data hiding techniques combine multiple predic-
tors to obtain a single predicted value [127, 128]. These techniques vary in how
multiple predictors are combined. In [127], multiple predicted values are sorted.
If all predicted values are same, then this value is considered as the final predicted
value. If a pixel value is less than or equal to the smallest of these predicted val-
ues, then the final predicted value for the pixel is the smallest of those multiple
predicted values. On the other hand, if a pixel value is greater than or equal to
the highest of those predicted values, then the final predicted value for the pixel
is the highest of those predicted values. Final predicted value is not decided if a
pixel value lies in between the smallest and the highest of the predicted values.
Embedding of data bit is not carried out in such a pixel. Similarly, multiple pre-
dictor based strategy in [128] suggests a two-phase embedding. In the first phase,
the maximum of multiple predicted values is selected as the predicted value. In
the second phase of embedding, the minimum of all predicted values is considered
as the predicted value.

In another interesting work, unlike the prediction of a pixel value in all above
techniques, prediction error is predicted in [129] using a set of prediction errors
in neighboring pixels.

2.3.2 Embedding Strategies

Several embedding strategies are used for producing a marked image in prediction
error expansion (PEE) based reversible data hiding techniques. This section
discusses these embedding strategies. Taking the cue from difference expansion
(DE) based reversible data hiding technique [28], a PEE based technique expands
the prediction error (i.e., difference between original pixel value and its predicted
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value) of a pixel by multiplying it with 2. Then, one bit of data is embedded in
the expanded prediction error [23] (equation 2.1). A small prediction error leads
to low embedding distortion. Hence, a threshold on the prediction error is used
to select the pixels, where embedding of data bit may be carried out. Expansion
of the prediction error due to embedding modifies the histogram of the prediction
error. The above mentioned threshold partitions the prediction error histogram
into two regions, namely inner region and outer region. These two regions in a
prediction error histogram are depicted in figure 2.7. The prediction errors in
the inner region are used for embedding data bits. As a result, inner region is
expanded. Then, the bins in the outer region of the prediction error histogram
are shifted away from the zero-th bin. Shifting of these bins is carried out to avoid
overlapping between histogram bins of expanded inner region and outer region.
Histogram bins of inner region and outer region have to be maintained separately
for perfect recovery of the hidden data bits and for restoration of original pixel
values. The threshold value is dynamically selected to ensure that entire bit
string is embedded. This simple PEE-based embedding strategy is also used in
several reversible data hiding techniques in [25, 57, 59, 67, 68, 70, 74, 84, 86, 91].
Additionally, in reversible data hiding technique in [69], pixels are traversed for
embedding by following an ascending order of a local complexity values of the
pixels. Local complexity of a pixel captures difference among the values of 4-
neighboring pixels. Hence, embedding is carried out in the pixels in a smooth
region of an image. The simple prediction error histogram modification technique
as above is used for this technique too.

In the above PEE based embedding strategies, the amount of modification
in a pixel value due to embedding is PE+w (equation 2.1). Here, PE is the
prediction error in a pixel and w is one bit data. Alternatively, a fractional part
of the amount of modification (i.e., PE+w) is added in a pixel where embedding
is carried out [58, 130, 131]. Remaining part of the modification is added in its
neighboring pixel values. As a result, the embedding distortion in a single pixel
is shared with its neighboring pixels.

Instead of single bit embedding in a pixel, an adaptive embedding strategy is
proposed in [132] to increase the embedding capacity of a reversible data hiding
technique. Either one bit or two bits of data are embedded in a pixel based on
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Figure 2.7: Inner region and outer region in a sample prediction error histogram

an estimated local complexity value of the pixel. Idea, here, is to embed more
data bits in a pixel in a smooth region of an image as compared to a pixel in a
relatively rough region of the image. Embedding of a single bit data is carried out
by expanding the prediction error by multiplication of 2. Embedding of two bits
is carried out by expanding the prediction error by multiplication of 4. In [132],
local complexity of a pixel is estimated as standard deviation of pixel values at
right, lower, lower-left and lower-right diagonal neighbors. The above adaptive
embedding strategy is also adopted in [80]. But, the local complexity of a pixel
is computed using the standard deviation of pixel values in the 8-neighborhood
of the pixel in [80]. Another adaptive embedding strategy in [133] classifies each
non-overlapping block of pixel either as a smooth or a rough block. Like the
previous adaptive embedding strategies, more data bits are embedded in smooth
blocks.

Instead of a multiplicative prediction error expansion in the above techniques,
an additive prediction error expansion is introduced in [134]. Here, the prediction
error is expanded by adding (or subtracting) either 0 or 1 (depending on the data
bit) with the prediction error. Addition of the binary bit is carried out if the
prediction error is either zero or positive. Subtraction of the binary bit is carried
out if the prediction error is negative. Alternatively, in [135], a pair of histogram
bins (left bin and right bin) are selected for embedding. In this technique, addition
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of a binary data bit is carried out if the prediction error falls in the right bin.
Subtraction of the binary bit is carried out if the prediction error falls in the left
bin.

The above conventional PEE based techniques mainly focused on correlations
among the image pixels. In the conventional PEE based techniques, 1-D pre-
diction error expansion is used to embed the data into the prediction error of
a pixel. But correlation among the adjacent prediction errors is considered in
2-D prediction error expansion in [136]. Consecutive prediction errors are paired
to construct a 2-D prediction error histogram. Expansion and shifting of these
histogram bins are used to effectively embed data bits in the original pixels. An
adaptive pairing of pixels for pairwise embedding is proposed in [73]. Embedding
is carried out in the pixels in specific histogram bins. These pixels are sorted
in ascending order of their local complexity values. Prediction error of a pixel is
paired with the prediction error of another pixel in the neighborhood based on the
local complexity of the pixel pairs. The pairing of prediction errors to form a 2-D
prediction error histogram is carried out such that the local complexity values of
these two pixels are very close to each other. Several other extensions of pairwise
embedding strategy also exist, such as adaptive pairing of pixels using geodesic
path to form 2-D prediction error histogram [137], dynamic programming based
selection of suitable histogram bins for embedding [138], etc. Another 2-D predic-
tion error histogram is constructed in [139] by considering two prediction errors
of a single pixel from a pair of prediction strategies.

In another variation of prediction error histogram modification based embed-
ding for reversible data hiding [140], multiple prediction error histograms are
generated. Pixels having the same local complexity value form a group to gen-
erate a single prediction error histogram. Thus, multiple histograms are formed
based on the distinct local complexity values. Then, a pair of histogram bins are
selected for embedding in each histogram using an optimum histogram bin se-
lection strategy. Similar strategy of forming multiple prediction error histograms
using local complexity based grouping can also be found in [64]. As an extension
of the above works, a greedy search algorithm is proposed in [141] for selecting
the optimal pair of histogram bins in each histogram. Instead of local complexity
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based formation of multiple histograms, fuzzy c-means (FCM) clustering tech-
nique is used for grouping similar prediction errors into a single histogram in
[142]. Thus, multiple histograms are formed for different groups of prediction
errors.

Taking inspiration from the histogram bin shifting based reversible data hiding
technique [41], histogram bin shifting of prediction error histograms is developed
in [143]. This method finds pairs of peak and zero points in the prediction error
histogram. Data bits are embedded in the pixels corresponding to the peak bin
in the prediction error histogram. Histogram bins in between the peak and the
zero points are shifted. An improved version of the technique in [143] is presented
in [144], where embedding is carried out only in the smooth regions in the image.
Otherwise, the embedding procedure in [144] remains the same as [143]. An
adaptive prediction error histogram bin shifting based embedding is proposed in
[145]. An improved version of communicating peak and zero points through a
binary tree structure is proposed in [145]. An error energy of the prediction error
is computed. Based on this prediction error energy, few of the prediction errors
are chosen for embedding the data bits.

In another dimension in prediction error histogram bin shifting methods for
embedding data bits, namely asymmetric histogram shifting [146], more than
one prediction errors are derived for a single pixel using multiple predictors.
Then, an asymmetric selection function selects a suitable prediction error to form
an asymmetric histogram of prediction error. Embedding is carried out using
this asymmetric histogram of prediction error. Similarly, asymmetric histogram
shifting based embedding using multiple prediction errors can also be found in
[78, 128, 147, 148].

Few other prediction error histogram modification based reversible data hiding
techniques can be found in [149, 150, 151].

2.4 Other Reversible Data Hiding Techniques

Apart from above categories of reversible data hiding techniques, few other inter-
esting techniques can also be found in literature. For example, a Sudoku based
technique is proposed in [152]. The technique uses Sudoku properties for pairing
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of pixels. The secret data is represented using 9-base number system. Then, the
pixel pairs are modified to insert the converted secret data.

A reversible data hiding technique using code division multiplexing is pro-
posed in [153]. The secret data is represented using several orthogonal spreading
sequences. Walsh Hadamard matrix is used to generate these orthogonal spread-
ing sequences. These sequences are then embedded in the cover image.

An odd-even property based reversible data hiding technique is proposed in
[154]. The image is divided into several blocks. Pixel values in each block are
converted to either odd value or even value by computing a certain optimal value
of the block. Then, an odd-even property is used to embed the data bits into
these blocks.

Reversible data hiding techniques using dual images are also proposed in [155,
156, 157, 158].

Unlike all above techniques, reversible data hiding in frequency domain is
proposed in [159]. In this technique, a two-level data hiding is suggested. At
first level, data is hidden using histogram modification in spatial domain. At the
second level, data is also embedded in frequency domain representation of the
image.

Few other reversible data hiding techniques include a multi-sub-blocking based
technique [160] and a Slantlet transformation based technique [161, 162].

2.5 Summary

A survey of existing reversible data hiding techniques in a grayscale image is
presented in this chapter. Earlier techniques of reversible data hiding expanded
the difference between pair of pixel values to embed data bits. Prediction error
expansion based techniques were introduced subsequently as natural extension
of difference expansion based techniques. Prediction error is measured as the
difference between a pixel value and its predicted value. Several pixel value pre-
diction techniques have also been discussed in this context. In prediction error
expansion based techniques, a prediction error is expanded to embed the data
bits. Histogram bin shifting methods also hold an important place in the related
literature. In this chapter, majority of the important contributions in the field
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of reversible data hiding are highlighted to provide an overall perspective of the
developments in this field.
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Chapter 3

Reversible Data Hiding Using
B-tree Triangular Decomposition
Based Prediction

There exists a category of prediction error expansion based reversible data hiding
schemes, where a set of reference pixels are fixed. Then, values of the remaining
(non-reference) pixels are predicted using values of these reference pixels. In
[118], the set of reference pixels is obtained using a reference pixel distribution
mechanism. Based on the gray values of this initial set of reference pixels, the
number of reference pixels is locally adjusted. Interpolation using these reference
pixels predicts the non-reference pixel values. Delaunay triangulation (DT) based
scheme [119] generates a 3-D Delaunay mesh considering the coordinates and the
intensity values of the image pixels. The vertices of these triangles act as reference
pixels. Then, the DT based method [119] uses a linear interpolation of the set of
reference pixels for predicting the non-reference pixels.

Inspired by this category of works (and more specifically, due to the Delaunay
triangulation (DT) based scheme [119]) of using a set of reference pixels for pre-
dicting other pixels, a novel reversible data hiding technique based on a B-tree
triangular decomposition based method is proposed in this chapter. The pro-
posed work also draws inspiration from the fact that an image coding technique
can be used to predict pixel values for PEE-based reversible data hiding (like
[23]). B-tree triangular coding (BTTC) has been proposed for image coding in
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[24]. The image is recursively decomposed into right-angled triangles. But unlike
[24], where decomposition into two triangles is carried out based on the prediction
errors, the proposed method considers homogeneity of cover image pixel values
for decomposition. Vertices of these triangles serve as reference pixels. Values
of the non-reference pixels in a triangle are predicted using a planar linear in-
terpolation of the pixel values at the vertices of the triangle. Payload bits are
embedded in the expanded prediction errors of the pixels. Moreover, an adaptive
embedding strategy (like [132]) is adopted for embedding either one bit or two
bits of data in a pixel based on the estimated local complexity of a triangle. The
novelty of the proposed reversible data hiding scheme is due to: (i) usage of B-tree
triangular decomposition for determining the reference pixels and subsequent pre-
diction, (ii) use of cover image pixel values for B-tree triangular decomposition,
and (iii) an estimate of local complexity of a triangle based on the pixel values
at the vertices of the triangle. Moreover, triangles are sorted in ascending order
of their local complexities to embed the payload in corresponding non-reference
pixels. Experimental results show the superiority of (i) the proposed B-tree tri-
angular decomposition based prediction with respect to several other predictors,
and (ii) the proposed reversible data hiding technique in comparison with few
other existing reversible data hiding techniques.

The remainder of this chapter is organized as following: B-tree triangular de-
composition and subsequent prediction strategy are explained in Section 3.1. The
adaptive embedding scheme is explained in Section 3.2. Extraction of the data
and recovery of the original pixel values are stated in Section 3.3. Experimental
results are discussed in Section 3.4. Finally, summary of the contributions in this
chapter is stated in Section 3.5.

3.1 Prediction Based on B-Tree Triangular De-
composition

In this chapter, a B-tree triangular decomposition based method is suggested
for pixel value prediction. This section presents the concept of B-tree triangular
decomposition and subsequent prediction scheme.
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3.1 Prediction Based on B-Tree Triangular Decomposition

Figure 3.1: Recursive decomposition of an image into right-angled triangles

3.1.1 B-Tree Triangular Decomposition

According to B-tree triangular decomposition method, an image is recursively
decomposed into a set of right-angled triangles until all pixels in the newly formed
triangles satisfy a certain condition. A representational diagram of the concept
is provided in figure 3.1. At first, an image is divided into two right-angled
triangles through its main diagonal as shown in figure 3.1. Then, B-tree triangular
decomposition suggests a recursive decomposition of each right-angled triangle
into two right-angled triangles. Further decomposition of a triangle ∆ is stopped
if (i) the difference between the maximum and the minimum pixel values in a
triangle (also considering the sides of the triangle) is less than or equal to a
threshold Td (equation 3.1) or (ii) the triangle is very small in size (i.e., the
number of pixels in a triangle including the pixels on the sides of the triangle is
less than or equal to 5).

|max(∆)−min(∆)| ≤ Td (3.1)

max(∆) and min(∆) denote the maximum and the minimum pixel values in a
triangle ∆ (including the sides of the triangle). This ensures that the image plane
is decomposed into relatively smooth smaller regions. Hence, the differences of
pixel values between the vertices of a triangle and other pixels in the triangle are
small (as being controlled by the threshold Td). As these vertex pixel values are
used to predict all other pixel values in the triangle, the said small differences
lead to better prediction. On the contrary, the Delaunay triangulation (DT)
based scheme [119] considers a set of randomly distributed pixels to form the
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3.1 Prediction Based on B-Tree Triangular Decomposition

(a) (b) (c) (d)

Figure 3.2: B-tree triangular decomposition of Tiffany image for various values
of Td as (a) 7, (b) 10, (c) 13, and (d) 15, respectively

triangles as per Delaunay triangulation property. This property ensures that
no other vertex is positioned within the circumcircle of a Delaunay triangle. It
does not consider the closeness of values among the vertex pixels and non-vertex
pixels. Therefore, DT based decomposition and subsequent prediction of the non-
vertex pixels using the Delaunay vertices cannot guarantee a good prediction as
compared to the proposed B-tree triangular decomposition based predictor. This
is evident in the experimental results (as will be presented later).

In the proposed method, the decomposition depends on the threshold Td.
Figure 3.2 shows the results of the proposed decomposition for Tiffany image for
various values of Td. Bigger triangles can be observed in the smoother regions
in the image, whereas the rough regions of the image are decomposed into tiny
triangles. Moreover, higher values of Td also generate bigger triangles on an aver-
age. For example, the image is decomposed into very tiny triangles for threshold
Td as 7.

Originally, the concept of B-tree triangular decomposition for image coding
was proposed in [24]. It considered the prediction errors within a triangle to decide
the need for further decomposition. On the contrary, the proposed method, in this
chapter, examines the range of pixel values in a triangle for this purpose. So, the
proposed method does not require a set of predicted values before decomposition.
Rather, the decomposition is carried out to obtain the predicted values.
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3.1 Prediction Based on B-Tree Triangular Decomposition

3.1.2 Prediction Scheme

Vertices of the triangles (obtained as above) act as reference pixels for the pro-
posed prediction scheme. All other pixels (non-reference) within a triangle (in-
cluding the pixels which are on the three sides of the triangle) are predicted using
the vertices of the triangle. Let the three vertices of a right-angled triangle be
V1 = (m1,n1), V2 = (m2,n2), and V3 = (m3,n3). Here, V1 is assumed to be the
vertex associated with the right angle. Moreover, let x1, x2, and x3 be the in-
tensity values at those vertex pixels V1, V2, and V3, respectively. Then, any pixel
(m,n) within the triangle or on the sides of the triangle can be predicted as the
planar linear interpolation of the values at the vertex pixels as following [24]:

x
′
= x1 +α× (x2−x1) +β× (x3−x1); (3.2)

α = (m−m1)× (n3−n1)− (n−n1)× (m3−m1)
(m2−m1)× (n3−n1)− (n2−n1)× (m3−m1) (3.3)

β = (m2−m1)× (n−n1)− (n2−n1)× (m−m1)
(m2−m1)× (n3−n1)− (n2−n1)× (m3−m1) (3.4)

It is to be noted that pixels residing on the sides of a triangle are shared by
two triangles. Then, two predicted values are obtained for such pixels. To tackle
this problem, triangles are always visited in a particular order. The prediction
value as obtained using a triangle, which is visited later, overwrites the previous
predicted value. The order of visiting triangles is maintained to generate the
same predicted values for these pixels during extraction too. Figure 3.3 shows
the original and the predicted Tiffany images as obtained by the proposed strategy
using the threshold Td= 7.

Prediction error is computed by taking the difference between the original
pixel value x and the predicted value x′ as following:

PE = x−x
′

(3.5)

Prediction error histogram of Tiffany image for four different threshold values
are presented in figure 3.4. Height of the zero bin is more for threshold Td= 7
as compared to other three cases. It reflects that smaller value of the threshold
reduces the prediction error. This is because smaller threshold produces smoother
triangles.
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3.2 Embedding Using Adaptive Prediction Error Expansion

(a) (b)

Figure 3.3: (a) Original Tiffany image and (b) the predicted Tiffany image using
threshold Td = 7

3.2 Embedding Using Adaptive Prediction Er-
ror Expansion

The adopted embedding strategy has the following key characteristics: (i) As per
prediction error expansion strategy, the data bits are embedded in the expanded
prediction error [23]. Hence, in order to reduce the embedding distortion, data
bits are only expanded where prediction error is less than a threshold (TP E). (ii)
Moreover, similar to [132], this chapter adopts the adaptive embedding strategy
where either 1 bit or 2 bits of data are being embedded depending on an estimated
local complexity of the triangle in which a pixel belongs to. (iii) Triangles are
visited in a sorted (ascending) order of their local complexities and embedding is
carried out accordingly.

Following subsections discuss the above points of the adaptive prediction error
expansion strategy.

3.2.1 Estimation of Local Complexity

According to adaptive embedding strategy [132], in general, 1 bit data is em-
bedded in a pixel whose local complexity is high. Otherwise, 2 bits of data are
embedded in a pixel having less local complexity. Embedding 2 bits in a pixel
significantly increases the embedding capacity of the method, though the local
complexity based decision controls the embedding distortion. Local complexity is
measured either by summation of absolute differences among the context pixels
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Figure 3.4: Prediction error histograms of Tiffany image for the proposed pre-
diction scheme with various decomposition thresholds (a) Td = 7, (b) Td = 10, (c)
Td = 13, and (d) Td = 15

[78], summation of squared differences among the context pixels [82], or standard
deviation of the context pixels [132]. Basically, local complexity captures how
the context pixel values are varying. The definition of context pixels varies across
these methods. But the context pixels are chosen in such a way that the same
values are available for each of these pixels during embedding and extraction to
obtain the same local complexity estimation.

A simplified version of the local complexity (lc) estimation is proposed in this
section using the vertex (reference) pixel values of a triangle as in equation 3.6.
It reflects how different the intensity of a right-angled vertex (x1) is from the
intensities of other two vertices. The same local complexity values need to be
generated for both embedding and extraction processes. Hence, only the vertex
(reference) pixel values of a triangle can be used to estimate the local complexity.
As all other non-reference (non-vertex) pixels may be modified during the em-
bedding process, those non-vertex pixels in a triangle cannot be used to compute
the local complexity. Therefore, a simplified estimation of local complexity as in
equation 3.6 is proposed in this work.

lc= |x2−x1|+ |x3−x1| (3.6)
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3.2 Embedding Using Adaptive Prediction Error Expansion

where |.| indicates the absolute value of its argument.

3.2.2 Adaptive Embedding Based on Prediction Error and
Local Complexity

The adopted adaptive embedding strategy is based on the work in [132].

3.2.2.1 Embedding Two Bits in a Pixel

If the estimated local complexity lc is less than a threshold Tlc, two bits of data
w1w2 are embedded as following:

xw = x
′
+ 2× (2× (PE) +w1) +w2

= x
′
+ 4×PE+ 2×w1 +w2

= x
′
+ 4× (x−x

′
) +w as w = 2×w1 +w2

= 4×x−3×x
′
+w = x+ 3×PE+w

(3.7)

where w ∈ {0,1,2,3} indicates two bits of data. x and xw are the pixel values
before and after embedding the data, respectively.

It can be observed from the above equation that expanding the prediction error
to embed two bits of data causes significant change in the pixel value (3×PE+w).
It is more if the prediction error PE is high. Hence, like the method in [132],
an additional condition is added in terms of the prediction error. If the absolute
value of the prediction error is less than or equal to a threshold TP E , then the
embedding is carried out as mentioned in above equation. Otherwise, shifting
of the prediction error (and hence, shifting of the pixel value) is carried out as
following:

xw = x−3×TP E if PE <−TP E

xw = x+ 3×TP E + 3 if PE > TP E

(3.8)

This shifting is required to identify during extraction whether the embedding
has been carried out or not. During extraction, this can be understood by observ-
ing the prediction error PEw at the marked image. Because, embedding of two
bits shifts the prediction error from [−TP E ,TP E ] to [−4TP E ,4TP E + 3]. Then,
the prediction errors at the remaining pixels need to be shifted.
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3.2.2.2 Embedding Single Bit in a Pixel

If the estimated local complexity lc is greater than or equal to the threshold Tlc

and the absolute value of the prediction error is less than or equal to TP E , one
bit data w is embedded as following:

xw = x
′
+ 2×PE+w

= x
′
+ 2× (x−x

′
) +w

= 2×x−x
′
+w = x+PE+w

(3.9)

x and xw are the pixel values before and after embedding the data, respectively.
Similar to the case of 2-bit embedding, the shifting of the prediction error (and
hence, shifting of the pixel value) is carried out as following:

xw = x−TP E if PE <−TP E

xw = x+TP E + 1 if PE > TP E

(3.10)

This shifting is required to identify during extraction whether the embedding
has been carried out or not. During extraction, this can be understood by ob-
serving the prediction error PEw at the marked image. Because, embedding of
one bit shifts the prediction error from [−TP E ,TP E ] to [−2TP E ,2TP E +1]. Then,
the prediction errors at the remaining pixels need to be shifted.

3.2.3 Order of Embedding

It has been previously reported in [69] that embedding in the pixels in the order of
their local variance enabled more embedding of bits with less degradation. Hence,
the proposed work too visits the triangles (local regions) in the increasing order
of their local complexities (as estimated using equation 3.6). If multiple triangles
have same local complexity value (equation 3.6), then such triangles are sorted
using the coordinates of their centroids. Upon visiting a triangle, embedding is
carried out in the pixels within the triangle or on the sides of the triangle. Pixels
within a triangle are visited in a raster scan order for embedding. It is to be
noted that pixels on the sides of a triangle are part of two different triangles. To
avoid embedding in such a pixel for the second time, a flag is used to mark the
pixels where embedding is already carried out.
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Experiments are also performed without visiting the triangles in such an as-
cending order of their local complexities as above. Rather, the embedding is
carried out in the raster scan order of the pixels in the image. It is experimen-
tally observed that the embedding based on the sorted order of triangles performs
better than the simple raster scan order of embedding.

3.2.4 Auxiliary Information

Certain information about the embedding process is crucial to accurately extract
the embedded data as well as to restore the cover image. These include: (a) posi-
tion of the last pixel where embedding has been carried out, (b) the value of the
threshold Tlc, (c) the value of the threshold TP E , (d) whether overflow/underflow
has occurred during embedding and shifting, (e) length of the compressed over-
flow/underflow location map, and (f) the compressed overflow/underflow location
map. The items (e) and (f) are only required at the occurrence of overflow or
underflow.

An overflow occurs when a pixel value exceeds 255 due to either embedding
or shifting. Similarly, an underflow occurs when a pixel value becomes less than
0 due to either embedding or shifting. Hence, every non-reference (i.e., non-
vertex) pixel in the image is inspected for the occurrence of the overflow/underflow
condition before the actual embedding and shifting are carried out. As discussed
in the previous section, the thresholds Tlc and TP E are used for this inspection.
Because the occurrence of overflow/underflow depends on whether (i) 1 bit or
2 bits of data are being embedded, and (ii) whether the pixel is being used for
embedding or shifting. A binary map indicating the location of the pixels having
overflow/underflow condition is termed as overflow/underflow location map. This
location map is losslessly compressed using the arithmetic coding method.

At first, the auxiliary information is embedded into the first few non-reference
pixels (in raster scan sequence) of the cover image using the least significant bit
(LSB) replacement technique. Then, the LSBs of those non-reference pixel values
are appended at the end of data stream to be embedded. But as this step is
carried out before the actual embedding of payload, the position of the last pixel
(part (a) of auxiliary information), where embedding has been carried out, is
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not known apriori. For an image of size 512× 512, 18 bits (i.e., 2× log2(512))
are required to specify the position of any pixel. Hence, the LSBs for first 18
non-reference pixels values (in raster scan sequence) are reserved for storing the
position of the last embedded pixel. The position of the last embedded pixel will
be stored at these reserved bits after the embedding of the payload. But the
LSBs of these 18 pixels values are extracted and added to the payload. Next,
the payload (data and LSBs) are embedded into the non-reference pixels of the
cover image using the proposed adaptive prediction error expansion technique.
But neither embedding nor shifting has taken place in the pixels as indicated by
overflow/underflow location map. It is to be noted that the auxiliary information
may occupy the first few rows in the image. Hence, those few rows are not used
to embed the payload.

Once the embedding of the entire payload is completed, the position of the
last embedded pixel is stored as part (a) of auxiliary information at the bits which
were reserved to store this information (i.e., LSBs at the first 18 non-reference
pixel values in the raster scan sequence of the image pixels as indicated above).

3.3 Extraction

The extraction process is possible with the help of auxiliary information. Ini-
tially, the auxiliary information is retrieved from the LSBs of the non-reference
pixel values of the first few rows. The compressed overflow/underflow location
map is obtained from it. Then, this location map is decompressed to obtain the
original overflow/underflow location map. It helps to identify the pixels where
change (due to embedding or shifting) has not been taken place. The position
of the last embedded pixel is also obtained to recognize the completion of the
extraction process. Because to extract the payload, pixels are visited in the same
sequence as they were visited during embedding. Hence, knowledge about the last
embedded pixel is useful to stop the extraction process. The two threshold values
Tlc and TP E are also obtained from the auxiliary information. Moreover, the set
of reference (i.e., vertex) pixels (which are not modified during the embedding
stage) is obtained through secret channel information. All the non-reference pixel
values are predicted using these reference pixel values by following the strategy
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in Section 3.1.2. The reference pixels are not changed during embedding. There-
fore, same predicted values are obtained for the non-reference pixels. Similarly,
the local complexities of triangles also remain the same as with embedding. The
prediction error is obtained as:

PEw = xw−x
′

(3.11)

The payload (data and LSBs) is extracted from the non-reference pixels which
have not been specified in the overflow/underflow location map. These pixels (ex-
cluding vertex pixels and overflow/underflow locations) are traversed in the same
order as mentioned in Section 3.2.3 based on the local complexities and the coor-
dinates of the centroids of the triangles. Based on the prediction error PEw at the
marked image for such a pixel, it can be found out whether embedding or shifting
has been carried out in it. Similarly, using the local complexity of the triangle,
number of embedded bits (either 1 or 2) can be estimated. Simultaneously, the
cover image pixel value is also restored. This is repeated until the entire payload
is extracted. The knowledge about the position of the last embedded pixel (as
obtained from auxiliary information) helps to mark the complete extraction of
the payload. The payload comprises of data bits and LSBs of non-reference pixel
values in first few rows (where auxiliary information was stored). These LSBs
are used to restore the pixel values (using LSB replacement technique) of those
non-reference pixels in first few rows.

3.3.1 Extraction of Two Bits

If the local complexity of a triangle is less than the threshold Tlc and the prediction
error (PEw) of a pixel within or on the sides of a triangle lies in the range [−4TP E ,
4TP E + 3], then the payload bits are extracted and the original pixel value is
restored as following:

w = bPEwc−4×bPE
w

4 c

x= xw−3×bPE
w

4 c−w

wherew ∈ {0,1,2,3}

(3.12)
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where b.c refers to the largest integer which is smaller than its argument.
If the local complexity of a triangle is less than Tlc and the prediction error

is not within the range [−4TP E , 4TP E +3], then the pixel values are shifted back
as following:

x= xw + 3×TP E if PEw <−4TP E

x= xw−3×TP E−3 if PEw > 4TP E + 3
(3.13)

3.3.2 Extraction of Single Bit

If the local complexity of a triangle is greater than or equal to Tlc and the pre-
diction error of a pixel in the triangle lies within the range [−2TP E , 2TP E + 1],
the extraction of one bit data and the restoration of original pixel value are as
following:

w = bPEwc−2×bPE
w

2 c

x= xw−bPE
w

2 c−w

where w ∈ {0,1}

(3.14)

If the local complexity of a triangle is greater than or equal to Tlc and the
prediction error of a pixel is not within the range [−2TP E , 2TP E + 1], then the
pixel value is shifted back as following:

x= xw +TP E if PEw <−2TP E

x= xw−TP E−1 if PEw > 2TP E + 1
(3.15)

3.4 Experimental Results and Discussion

Eight standard test images (figure 1.4) of size 512 × 512 are considered for testing
the performance of the proposed reversible data hiding technique. The proposed
method uses B-tree triangular decomposition based prediction. The image is
recursively decomposed into right-angled triangles based on a suitable decompo-
sition threshold (equation 3.1). The performance of the pixel prediction scheme
(and hence, the proposed reversible data hiding scheme) depends on this decom-
position threshold Td. A good prediction scheme ensures lesser distortion between
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the cover and the marked images. Therefore, a suitable threshold value is selected
for each of the test images by observing the peak signal-to-noise ratio (PSNR)
between the cover and the marked images for various threshold values in the range
of 1 to 15. A payload of size 10000 bits were initially used to observe the PSNR
values as listed in table 3.1. For this initial experiment, the value of Tlc was set
to 0. It corresponded to single bit embedding. Moreover, the value of TP E was
chosen for each image to be the minimum value which is sufficient to embed 10000
bits. For each of the test images, a decomposition threshold Td has been selected
which maximizes the PSNR. As an example, this decomposition thresholds which
generate the highest PSNR for Lena and Tiffany images are 4 and 7, respectively.
Hence, a single decomposition threshold may not be used for all images under
experiment. The test images are finally decomposed using the selected thresholds
in table 3.1. It can be observed for Lake image in table 3.1 that two threshold
values (7 and 8) result in same PSNR value, which is the highest among the PSNR
values for this image. Finally, the decomposition threshold Td is selected as 8 for
Lake image, as a higher threshold value may generate larger triangles. Numbers
of reference pixels, non-reference pixels, and triangles for these test images using
the selected decomposition threshold Td are given in table 3.2.
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3.4 Experimental Results and Discussion

Table 3.2: Number of reference pixels, non-reference pixels and triangles for the
selected values of decomposition threshold Td

Image Td Ref. Pixels Non-Ref. Pixels Triangles
Lena 4 124943 137201 238861
Lake 8 114442 147702 216914
Boat 10 110246 151898 203812

Mandrill 10 127344 134800 247410
Elaine 8 122095 140049 233800

Airplane 1 128562 133582 252533
Peppers 8 109888 152256 199864
Tiffany 7 93727 168417 169585

Subsequently, the proposed B-tree triangular decomposition based prediction
scheme is compared with several other existing prediction schemes such as (i)
Median Edge Detector (MED) [58], (ii) Simplified Gradient Adjusted Predictor
(SGAP) [58], (iii) a multi-predictor scheme combining MED and GAP ([128]),
(iv) rhombus average predictor [74], and (v) Delaunay triangulation (DT) based
prediction [119]. Prediction error histogram (PEH) plots of all these comparing
methods for the Tiffany image are shown in figure 3.5. As the decomposition
threshold Td has been selected to be 7 for Tiffany image (according to table 3.1),
the PEH plot for this image is reported for this specific value for Td. Hence, the
PEH plot for the proposed B-tree triangular decomposition (BTTC) (top-left plot
of figure 3.5) is same as the PEH plot at the top-left of figure 3.4. These plots
in figure 3.5 show that the prediction error histogram of the proposed predictor
(with Td = 7) is more concentrated around the zero-bin. For example, the height
of the zero-bin (corresponding to the pixels where prediction error is zero) for the
proposed B-tree triangular decomposition based prediction (top-row left plot in
figure 3.5) is much higher than that of the Delaunay triangulation based prediction
(top-row right plot in figure 3.5). It implies that the proposed B-tree triangular
decomposition based prediction causes lesser prediction error as compared to all
other predictors as above. It establishes the superiority of the proposed B-tree
triangular decomposition based prediction over these comparing methods.

Apart from the decomposition threshold Td and the prediction scheme, two
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3.4 Experimental Results and Discussion
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Figure 3.5: Prediction error histograms of various predictors. (Row-wise left
to right) Top row: Proposed B-tree triangular decomposition based predictor and
Delaunay-triangulation based predictor; Middle row: multi-predictor (GMA) and
Rhombus-average; Bottom row: SGAP and MED

more thresholds - the threshold on prediction error TP E and the local complex-
ity threshold Tlc - influence the outcome of the proposed reversible data hiding
technique. The threshold TP E also decides the pixels where data bits will be em-
bedded (equations 3.7, 3.8, 3.9 and 3.10). Hence, an increase in the value of TP E

also increases the embedding capacity. But to reduce the embedding distortion,
the value of TP E is minimally chosen which suffices to embed the payload of a
certain length. Table 3.3 reports the achievable embedding capacity of the pro-
posed scheme when only single embedding is used to reduce the distortion. This
reported achievable embedding capacity corresponds to a maximum TP E value
of 20. Embedding capacity is measured as the ratio of the number of bits which
can be embedded in an image and the number of pixels in the image. Hence,
it is represented as bits per pixel (bpp). For example, a maximum of 0.52 bits
per pixel can be embedded in Lena image for single embedding with the given
parameter setting. Experiments were not carried out with even higher values of
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3.4 Experimental Results and Discussion

Table 3.3: Achievable embedding capacity (in bpp – rounded upto two
digits after decimal point) with single embedding (Tlc = 0)

Image Td TP E Tlc achievable bpp
Lena 4 20 0 0.52
Lake 8 20 0 0.54
Boat 10 20 0 0.55

Mandrill 10 20 0 0.41
Elaine 8 20 0 0.52

Airplane 1 20 0 0.50
Peppers 8 20 0 0.55
Tiffany 7 20 0 0.43

TP E as it would introduce more embedding distortion.
But to achieve a higher embedding capacity, an adaptive embedding strat-

egy can be adopted. Either 1 bit or 2 bits are embedded in a pixel based on a
pre-decided local complexity threshold Tlc. The local complexity threshold Tlc

controls the embedding capacity of the proposed scheme by controlling the num-
ber of pixels with 1-bit and 2-bit embedding. A value of 0 for Tlc implies that 2
bits will never be embedded in any pixel and thus, refers to single embedding. An
increase in the value of Tlc implies that 2 bits will be embedded in more number
of pixels. Hence, it increases the embedding capacity. But on the contrary, it will
increase the distortion. Based on the need to embed a larger payload, a higher
value of Tlc can be used. The achievable embedding capacity for adaptive embed-
ding with Tlc = 16 is reported in table 3.4 for all the test images. It increases the
embedding capacity for all the images (except Tiffany image) in comparison to
single embedding. For example, now a maximum of 0.81 bits per pixel can be em-
bedded in Lena image with reported parameter setting as compared to 0.52 bits
per pixel for single embedding. Plots of PSNR values between the cover and the
marked images against various payload sizes (bpp) have been presented in figure
3.6 for various values of Tlc (0, 2, 4, 8, and 16). A common observation across
all test images is that the single embedding (Tlc = 0) achieves the highest PSNR.
But it is limited in embedding capacity. By increasing the value of Tlc, higher
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3.4 Experimental Results and Discussion

Table 3.4: Achievable embedding capacity (in bpp – rounded upto two
digits after decimal point) with adaptive embedding (Tlc = 16)

Image Td TP E Tlc achievable bpp
Lena 4 20 16 0.81
Lake 8 20 16 0.76
Boat 10 20 16 0.76

Mandrill 10 20 16 0.49
Elaine 8 20 16 0.73

Airplane 1 20 16 0.82
Peppers 8 20 16 0.84
Tiffany 7 20 16 0.27

embedding capacity is achieved by compromising the PSNR. The exception has
been observed for the Tiffany image. Here, the increase in the local complexity
threshold Tlc reduces the embedding capacity (from 0.43 for single embedding
with Tlc = 0 to 0.27 for Tlc = 16). This exception has been attributed to increase
in size of compressed overflow/underflow location map, which is also being stored
in the image as auxiliary information. More lighter pixel in the Tiffany image
causes the increase in the size of overflow/underflow location map, as more over-
flow occurs in this case. More presence of lighter pixels in the Tiffany image as
compared to other test images are visibly evident in figure 1.4.

The proposed embedding technique uses a sorted order of triangles (Section
3.2.3). As indicated in Section 3.2.3, the experiments are also carried out without
considering this sorted order triangles for embedding. Plots in figure 3.6 report the
performances of both kinds of embedding. These plots use ’BTTCS’ as legend to
indicate the embedding based on the sorted order of triangles, whereas the legend
’BTTC’ denotes the embedding without the sorted order. It can be observed
across all test images that the embedding using the sorted order of triangles
produces marginally better PSNR values in comparison to embedding without
sorting for each value of Tlc.

The marked images as per the proposed reversible data hiding technique for
various payload size are presented in figure 3.7. Finally, the performance of the
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3.4 Experimental Results and Discussion

proposed reversible data hiding using B-tree triangular based decomposition is
compared with several existing reversible data hiding techniques like (i) an im-
proved Median Edge Detector (MED) [58], (ii) an improved Simplified Gradient
Adjusted Predictor (SGAP) [58], (iii) a multi-predictor scheme combining GAP,
MED and Asymmetric histogram shifting (GMA) ([128]), (iv) context embedding
with rhombus average predictor [74], (v) Delaunay triangulation (DT) scheme
[119], (vi) Improved pairwise embedding [82] and (vii) the significant bit expan-
sion [49]. Peak signal-to-noise ratio (PSNR) between the original image and the
marked image is estimated for various payload sizes as given in figure 3.8. The
proposed technique with single embedding (Tlc=0) has outperformed most of the
other comparing techniques in majority of the images. Only the improved pair-
wise embedding technique [82] achieves better PSNR than the proposed technique
across all images. But the embedding capacity of this improved pairwise technique
is less. For example, a payload having 78642 bits (i.e, 78642

512×512 = 0.3 bpp) cannot
be embedded in Lena image using the improved pairwise embedding technique
[82]. Similarly, Mandrill image can not accommodate even a payload of 26214
bits ( 26214

512×512 = 0.1 bpp). The improved pairwise technique is the best among
the comparing methods, but it is only effective for small payload. Hence, it can
be concluded that the proposed B-tree triangular decomposition based technique
performs reasonably well among the comparing techniques. It is to be noted for
Tiffany image that the GMA technique [128] outperforms the proposed technique
for several payload sizes. Again, it can be attributed to the larger overflow lo-
cation map in the proposed technique due to the lighter pixel values in Tiffany
image. On the contrary, the GMA technique does not use the overflow/underflow
location map.

Additionally, superiority of the proposed B-tree triangular decomposition over
another existing triangular decomposition (Delaunay triangulation) is experimen-
tally established as following: The performance of the proposed reversible data
hiding technique using B-tree triangular decomposition is compared against the
combination of Delaunay triangulation based decomposition/prediction and the
same adaptive embedding strategy (DelaunayTri-AE as per the legend in the plots
in figure 3.8) as with the proposed technique. It can be seen in figure 3.8 that the
Delaunay triangulation based decomposition and prediction does not perform as
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3.5 Summary

good as the proposed B-tree triangular decomposition based reversible data hid-
ing technique, even after using the same embedding strategy. This justifies the use
of the proposed B-tree triangular decomposition over the Delaunay triangulation
based decomposition.

3.5 Summary

A novel reversible data hiding technique is proposed in this chapter based on
B-tree triangular decomposition based prediction and an adaptive embedding
strategy. B-tree triangular decomposition recursively partitions the image into
right-angled triangles. The recursive decomposition continues until either the
pixels in a triangle become homogeneous or a triangle becomes too small to de-
compose. Homogeneity of the pixels in a triangle is decided by comparing the
range of the pixel values in the triangle with a decomposition threshold Td. As
it can be seen from table 3.1 that there cannot be a common threshold for all
images. Hence, the threshold for each image is experimentally selected.

The vertices of the triangles in the decomposed image act as reference pixels
for the prediction scheme. Other non-reference pixel values (in a triangle) are
predicted using the values at the vertices of the triangle using a planar linear
interpolation. The proposed prediction strategy using this B-tree triangular de-
composition and planar linear interpolation outperforms several other existing
predictors. It is evident from the concentration of the prediction errors near the
zero-th bin of the prediction error histogram. The performance of any prediction
error expansion based reversible data hiding technique depends on the perfor-
mance of the predictor. Hence, numerous articles in the literature concentrate
on proposing a good prediction scheme. Contribution of the proposed technique
mainly lies in the stated superiority of its predictor.

Subsequently, an adaptive embedding strategy, as inspired by [132], is adopted
for the proposed reversible data hiding technique. Either 1 bit or 2 bits of the
payload are embedded in a pixel based on the local complexity of the local region
(triangle). Unlike all other previous methods, a simplified estimate of the local
complexity of the triangle is carried out using the pixel values at the vertices of
the triangle. Single bit embedding in the pixels reduces the embedding distortion.

59



3.5 Summary

It is suggested if the payload size is relatively less. But the embedding capacity
can be increased using the adaptive embedding with a compromise in the quality
of the marked image. Embedding is carried out in the non-reference pixels in
the ascending order of the local complexities of these triangles. Performance
improvement due to this is evident from the experimental results.

With all the above components of the proposed work, the proposed B-tree tri-
angular decomposition based reversible data hiding technique outperforms most of
the existing reversible data hiding techniques. At the end, an extensive set of ex-
perimental results has been reported by varying various parameters/components
of the proposed scheme.

Finally, it is to be noted that the proposed technique as well as all other exist-
ing reversible data hiding techniques in literature are fragile in nature (not robust
against tampering/attack). This is due to the nature of the adopted embedding
strategy using integer transforms which leads to restoration of original cover im-
age pixels back. Hence, these reversible data hiding techniques are applicable
to ensure integrity of the image, as required by several applications in medical
and satellite image analysis. In these techniques, unlike robust watermarking
techniques, a minor change in the marked pixel value destroys the hidden data
and hence, enables identification of tampering (or rather ensures integrity of the
image).
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Figure 3.6: Embedding capacity versus PSNR plots using various values of local
complexity threshold Tlc for various images.
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Figure 3.7: Results of the proposed B-tree triangular decomposition based re-
versible data hiding scheme for various test images (row-wise). Columns from left
to right: Original image, marked images with 0.1 bpp, 0.2 bpp, 0.3 bpp, and 0.4
bpp.
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Figure 3.8: Performance comparison among several reversible data hiding tech-
niques for various images
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Chapter 4

Reversible Data Hiding Based on
Random Distribution of
Reference Pixels

In the reversible data hiding technique based on B-tree triangular decomposition
based prediction (in Chapter 3), an image is partitioned into homogeneous regions
having the shape of right-angled triangles using B-tree triangular decomposition
method. Vertices of these triangles are used as reference pixels to predict other
non-reference pixel values using a planar linear interpolation. On the contrary,
an idea of randomly distributing the reference pixels throughout the image is
proposed in this chapter. The image is divided into non-overlapping blocks of
uniform sizes. Number of reference pixels in a block is proportional to the rough-
ness of the non-overlapping blocks of the image. The value of a non-reference
pixel is predicted as a weighted median of values at the reference pixels, which
are located within a certain distance from the non-reference pixel. Similar to B-
tree triangular decomposition based reversible data hiding technique, the adaptive
embedding strategy is used in the proposed random distribution of reference pixel
based reversible data hiding technique to embed either one bit or two bits of data
based on the local complexity. Detailed experiments are carried out by varying
the block size and the percentage of reference pixels among all pixels in the image.

The remainder of this chapter is organized as following: A prediction mech-
anism based on random distribution of reference pixels is proposed in Section
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4.1 Prediction Based on Random Distribution of Reference Pixels

4.1. Embedding and extraction strategies of the proposed technique are similar
to those strategies in the B-Tree Triangular decomposition based reversible data
hiding technique (Chapter 3). Hence, only the differences with respect to the pre-
vious technique are highlighted in Section 4.2 and 4.3. Experimental results are
discussed in Section 4.4. Finally, a summary of the contributions in this chapter
is stated in Section 4.5.

4.1 Prediction Based on Random Distribution
of Reference Pixels

Prediction of a pixel value is a key issue in a prediction error expansion based
reversible data hiding technique. A good predictor significantly improves the per-
formance of a reversible data hiding technique. It can be seen from the literature
that several predictors have been proposed to predict a pixel value in the context
of reversible data hiding. A few of those approaches consider a set of pixels in
the image as reference pixels ([118] and [119]). Similarly, the B-tree triangular
decomposition based prediction in Chapter 3 also establishes a set of reference
pixels. Other pixel values (non-reference) are predicted using the values of these
reference pixels. But these approaches vary in how (i) the set of reference pixels
is decided and (ii) how a non-reference pixel value is predicted using these refer-
ence pixel values. Contrary to previous approaches, the proposed work provides
a guidance to distribute the reference pixels throughout the image based on the
variances of the pixel values in the non-overlapping square blocks. This strategy
of random distribution of reference pixels is proposed in Section 4.1.1. Then, the
value at a non-reference pixel is predicted using a set of reference pixels which
are located within a certain distance from the non-reference pixel. A weighted
median based predictor is considered here. The weight to a reference pixel is in-
versely proportional to the distance of the reference pixel from the non-reference
pixel. The proposed prediction strategy is explained in Section 4.1.2.
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4.1 Prediction Based on Random Distribution of Reference Pixels

4.1.1 Random Distribution of Reference Pixels

The proposed strategy of randomly distributing a fixed number of reference pixels
throughout the image is presented in this subsection as following:

• The original cover image is divided into non-overlapping square blocks of
equal size.

• Variance of pixel values in a block decides the number of reference pixels in
the block. Hence, the variance of pixel values in a bth block is computed as:

vb = 1
p−1

p∑
i=1

(xi,b− x̄b)2

where x̄b = 1
p

p∑
i=1

xi,b

(4.1)

where xi,b refers to the value of the ith pixel in the bth block. x̄b is the mean
pixel value of the bth block. p is the number of pixels in the block. (As each
block is of same size, the suffix b is not used for the number of pixels p).

• Reference pixels are distributed among these equally sized blocks such that
the number of reference pixels in a block is loosely proportional to the
variance of pixel values in the block. The variance vb of pixel values in a
block b is used as the measure of roughness of the block. Hence, a rough
block will have more reference pixels as compared to a relatively smooth
block. Let N be the total number of reference pixels. These reference
pixels are distributed in each block by following a procedure as mentioned
here. At first, a real number rb is obtained as following:

rb =N × vb∑B
j=1 vj

= ib +fb (4.2)

where B is the total number of blocks in the image. ib and fb are the
integer and the fractional parts of the real number rb which is obtained
from equation 4.2. Initially, the number of allocated reference pixels (nb)
for the bth block is computed as the median of 1, ib, and (p−1):

nb =median(1, ib,p−1) (4.3)
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4.1 Prediction Based on Random Distribution of Reference Pixels

where ib is the integer part as in equation 4.2. Equation 4.3 ensures that
at least one reference pixel is present in each block. It also ensures that a
maximum of (p−1) number of reference pixels are there in a block having
p pixels. Therefore, in a block, at least one non-reference pixel is present
whose value will be predicted. The integer part of rb is considered in equa-
tion 4.3 because the number of reference pixels in a block is always an
integer.

• But as a result of equations 4.2 and 4.3, the summation of number of refer-
ence pixels in each block may not match with the total number of reference
pixels N .

B∑
b=1

nb 6=N (4.4)

The above inequality is converted into equality so that N number of refer-
ence pixels can be perfectly distributed among B number of blocks. The
difference between the right and the left hand sides of the inequality in
equation 4.4 (N −∑B

b=1nb) is adjusted by adopting the following strategy:

– A positive difference value indicates that more reference pixels are
needed in some of the blocks to bring down the difference to zero.
The blocks are analyzed in decreasing order of the fractional part fb

in equation 4.2. If the number of reference pixels nb in a block b is
less than (p−1), then nb is increased by 1, i.e., an additional reference
pixel is allotted to this block. This maintains the constraint that there
is at least one non-reference pixel in a block. This process is repeated
for all the blocks in decreasing order of fractional part fb until the
difference becomes zero.

– A negative difference value indicates that more than the desired num-
ber of pixels have been allotted as reference pixels. Hence, the blocks
are analyzed in increasing order of the fractional part fb in equation
4.2. If the number of reference pixels nb in a block b is greater than
1, then nb is decreased by 1, i.e., one reference pixel is withdrawn for
this block. This maintains the constraint that there is at least one
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4.1 Prediction Based on Random Distribution of Reference Pixels

reference pixel in a block. This process is repeated for all the blocks
in increasing order of fb until the difference becomes zero.

• Finally, nb number of pixels are randomly selected as reference pixels among
the p number of pixels in each block b.

4.1.2 Prediction Based on Nearby Reference Pixels

Following strategy is adopted for predicting a non-reference pixel value from the
surrounding reference pixel values:

• Every reference pixel within a distance d from the non-reference pixel is
considered for predicting the pixel value. A chess board distance measure
is used for this purpose. The chess board distance between two pixels (m1,
n1) and (m2, n2) is computed as following:

d12 =max{|m1−m2|, |n1−n2|} (4.5)

where |.| indicates absolute value of its argument.

• A weighted median of the reference pixel values within the chess board
distance d is considered as the predicted value for the non-reference pixel.
To compute the weighted median of k numbers, each number xi is repeated
wi times. Here,wi is the weight associated with the number xi. The sequence
of numbers (with repetition) is sorted. Finally, the median is computed as
the middle value of the sorted sequence as following:

WM(x1,x2, ...,xk) =

median({x1,x2, ...,xk}�{w1,w2, ...,wk})

=median(x1 �w1,x2 �w2, ...,xk �wk)
(4.6)

median(y1,y2, ...,yK)

=
{

y(K+1)/2 if K is odd
yK/2+yK/2+1

2 if K is even

} (4.7)

where wi is a positive integer weight. xi�wi implies wi number of repetitions
of reference pixel value xi. The weight wi has been assigned as

wi = d+ 1−di (4.8)
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where di is the chess board distance between the ith reference pixel and
the current non-reference pixel. The weights are inversely proportional to
the distance of the reference pixel from the non-reference pixel di. d is the
maximum chess board distance being considered to find a reference pixel in
the neighbourhood. Normally, the value of d is used as one less than the
length at one side of the block. For example, the value of d is considered
as 3 for a 4×4 block. Following justification can be given for such a value
of d. A reference pixel is considered for prediction of a pixel even if the
reference pixel and the pixel being predicted are at diagonally opposite
corners of a block. This strategy will incorporate the reference pixels from
the other blocks too. But inclusion of more reference pixels may provide
better prediction.

The example in figure 4.1 explains how the weighted median based predictor
works. Let the center pixel value in the 5 × 5 window is predicted using four
reference pixel values in the neighbourhood within chess board distance 2, as it
is shown in the left side of figure 4.1. The weight matrix can be derived using
equation 4.8 as in the right side of figure 4.1. The weights being associated with
the reference pixel values are highlighted in red. The weights being associated
with the reference pixel values 136 and 148 are 1. Similarly, the weights being
associated with the reference pixel values 146 and 150 are 2. The weighted median
is obtained as 147, as it is shown in figure 4.1.

Based on the proposed prediction strategy, the original Peppers image and its
predicted image are shown in figure 4.2. Number of reference pixels N , the block
size and the chess board distance are assumed to be 25% of total number of pixels
in the image, 4 × 4 and 3, respectively.

4.2 Adaptive Prediction Error Expansion

In a prediction error expansion (PEE) based reversible data hiding technique, the
prediction error (PE) is expanded to embed the data into a cover image pixel.
Prediction error (PE) is obtained by estimating the difference between the original
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1 1 1 1 1

1 2 2 2 1

1 2 2 1

1 2 2 2 1

1 1 1 1 1

146

136

150

148

Calculation of Weighted Median= Median (136,146,146,148,150,150)
                                                         =(148+146)/2=147

Figure 4.1: An example of predicting a pixel value by weighted median of reference
pixel values in the neighbourhood (d = 2)

Figure 4.2: Original image (Peppers) and its predicted image (number of reference
pixels = 25% of total number of pixels in the image, block size=4× 4, and maximum
chess board distance of a pixel in the considered neighbourhood = 3)

pixel value x and the predicted value x′ .

PE = x−x
′ (4.9)

Similar to the embedding strategy in the B-tree triangular decomposition
based reversible data hiding technique in Chapter 3, the current chapter adopts
an adaptive PEE strategy [132]. Either 1 bit or 2 bits of data are embedded
depending on the local complexity of the pixel. This section describes the adopted
adaptive prediction error expansion strategy, which is similar to the embedding
strategy of the technique in Chapter 3. But the discussion mainly highlights
the necessary differences between the embedding strategies between the current
random distribution of reference pixel based technique and the B-tree triangular
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4.2 Adaptive Prediction Error Expansion

decomposition based technique.

4.2.1 Estimation of Local Complexity

Similar to the technique in Chapter 3, non-reference pixels are visited in an as-
cending order of their local complexities to carry out the embedding. Local com-
plexity of a pixel is determined as the variance of reference pixel values within
a certain distance d from the non-reference pixel. Let pr be the number of ref-
erence pixels within distance d of a non-reference pixel. The local complexity of
this non-reference pixel is estimated as following:

lc= 1
pr−1

pr∑
i=1

(xi− x̄)2

where x̄= 1
pr

pr∑
i=1

xi

(4.10)

where xi refers to ith reference pixel value. x̄ is the mean pixel value of the pr

number of reference pixels. This variance in equation 4.10 is used to determine
whether a pixel is located in a smooth or a rough region.

For a non-reference pixel, same set of reference pixels is used for pixel value
prediction as well as estimation of local complexity. The estimated local com-
plexity value should be same during embedding and extraction processes. Hence,
only the reference pixel values are used for computing the local complexity.

4.2.2 Order of Embedding

It has been previously reported in [69] that embedding in the pixels in ascending
order of their local complexities introduces a better trade-off between the payload
size and the embedding distortion. Even, the experimental results being reported
in the context of B-tree triangular decomposition based reversible data hiding
technique (figure 3.6) also establish the same fact. Hence, the proposed work
visits the pixels in ascending order of their local complexities. Moreover, pixels
having the same local complexity value are visited in their raster scan order.
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4.3 Extraction

4.2.3 Adaptive Embedding Based on Prediction Error and
Local Complexity

An adaptive embedding strategy was first proposed in [132]. Based on the local
complexity of a pixel, the method determines to embed either 1 bit or 2 bits of
data. The adopted strategy, here, is exactly same as the embedding strategy
for the B-tree triangular decomposition based reversible data hiding technique
in previous chapter (Section 3.2.2). Hence, this adaptive embedding strategy is
not repeated here. It can be found in Section 3.2.2. Moreover, the compressed
overflow/underflow location map and other necessary parameters for extracting
the data bits as well as for restoring the cover image are stored as auxiliary in-
formation. Even, the components of the auxiliary information and the method of
embedding the auxiliary information are exactly same as with those in the B-tree
triangular decomposition based reversible data hiding technique. A description
of those can be found in Section 3.2.4.

4.3 Extraction

Extraction of hidden data bits and restoration of cover image pixel values are
possible with the help of auxiliary information. At first, the set of reference
pixels (which are not modified during the embedding stage) is obtained as a side
channel information. Then, the auxiliary information is retrieved from the least
significant bits (LSBs) of the non-reference pixel values of the top few rows in
the image. The compressed overflow/underflow location map is obtained from
it. Then, the compressed overflow/underflow location map is decompressed to
obtain the original overflow/underflow location map. It specifies the pixels where
changes (due to embedding or shifting) have not been taken place. Two threshold
values Tlc and TP E are also obtained from the auxiliary information.

Every non-reference pixel value is predicted using a set of reference pixel
values following the strategy as discussed in Section 4.1.2. The reference pixels
are not changed during embedding. Therefore, predicted value for a pixel during
extraction is as same as that during embedding (x′). Then, the prediction error
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is computed as following:
PEw = xw−x

′
(4.11)

where xw is the marked non-reference pixel value.
Based on the prediction error and the local complexity value of a pixel, ex-

traction of the data bits and restoration of the cover image pixel value are carried
out. The strategy is exactly similar as the strategy of the B-tree triangular de-
composition based reversible data hiding technique (Section 3.3).

4.4 Experimental Results

A set of eight standard test images (figure 1.4) of size 512 × 512 is considered
to evaluate the performance of the proposed random distribution of reference
pixel based reversible data hiding technique. The proposed reversible data hiding
technique randomly distributes a set of reference pixels in each block depending
on the variances of pixel values in all the blocks in an image. Hence, experiments
are performed by varying the number of reference pixels (or rather percentage
of these reference pixels over total number of pixels) in the image. Number of
reference pixels are varied as 25%,50% and 75% of the total number of pixels
in the image. Various block sizes are also considered as 2× 2,4× 4 and 8× 8.
Similarly local complexity threshold Tlc is also varied as 0,1,2,4,8 and 16. Various
combinations of these parameters - percentage of reference pixels, block size and
local complexity threshold - are mentioned in table 4.1. A total of 54 experimental
cases exist for each payload size and for each image.

Plots in figure 4.3 exhibit the performance of the proposed technique with var-
ious combinations of percentages of reference pixels and block sizes. Peak signal-
to-noise ratio (PSNR) values between the cover images and the corresponding
marked images are observed by varying the payload size while keeping the local
complexity threshold Tlc as 0 (i.e., single embedding). The proposed method
is based on random distribution of reference pixels. The set of reference pixels
changes for every execution of the proposed technique. As a result, the observed
PSNR values change too. Hence, each PSNR value for the proposed technique in
the plots in figure 4.3 and in all other subsequent plots is an average of the PSNR
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Table 4.1: Various parameter combinations for reported experiments

Percentage of
Reference

Pixels

Block
Size

Tlc

Number of
Experimental

Cases

25
2 × 2 0, 1, 2, 4, 8, 16 6
4 × 4 0, 1, 2, 4, 8, 16 6
8 × 8 0, 1, 2, 4, 8, 16 6

50
2 × 2 0, 1, 2, 4, 8, 16 6
4 × 4 0, 1, 2, 4, 8, 16 6
8 × 8 0, 1, 2, 4, 8, 16 6

75
2 × 2 0, 1, 2, 4, 8, 16 6
4 × 4 0, 1, 2, 4, 8, 16 6
8 × 8 0, 1, 2, 4, 8, 16 6

values of ten executions of the proposed technique with the concerned parameter
setting. In this context, the value of prediction error threshold TP E is chosen as
the required minimum value to embed a payload. It is observed from these plots
that more payload can be embedded if the percentage (and hence, the number)
of reference pixels is less. Hence, more number of pixels are left as non-reference
pixels to embed the payload bits. Therefore, percentage of reference pixel has
very prominent influence in the performance of the proposed technique. Among
the three considered percentages of reference pixels, the highest amount of em-
bedding is possible in the case of 25% of pixels as reference pixels. The lowest
amount of embedding is possible in the cases of 75% of pixels as reference pixels.
A comparison of performances among the cases of various block sizes with fixed
percentage of reference pixels (25%) reveals the closeness of PSNR values with
block sizes of 2×2 and 4×4. For some of the images (e.g., the Lena and the Lake
images), the block size of 4×4 exhibits marginally better performance than the
block size of 2×2. On the other hand, for the Mandrill image, the block size of
2× 2 exhibits marginally better performance than the block size of 4× 4. How-
ever, the performance of the proposed technique with block size 8× 8 is clearly
inferior to the performances of the technique with other comparing block sizes.
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For the rest of the reported experiments in this chapter, the best combination of
percentage of reference pixels and block size is considered for each test image. The
best combination of these two parameters can be found from the plots in figure
4.3. For example, in the case of Peppers image, the proposed technique with 25%
of pixels in the image as reference pixel and a block size of 4× 4 demonstrates
better performance than the same technique with other combinations of these
two parameters. Superiority of the proposed prediction scheme with the selected
parameter values is demonstrated in figure 4.4 using normalized histogram plots
of prediction error for the Peppers image. Here, normalized histogram of the
prediction error using the proposed technique is compared with the normalized
histograms of the prediction errors using (i) a multi-predictor scheme (GMA)
combining GAP and MED predictors ([128]) and (ii) B-tree Triangular decom-
position based prediction (Section 3.1) with the value of decomposition threshold
as 8 (table 3.1). Number of pixels, whose values are predicted, vary across these
schemes. Hence, normalized histograms are presented in figure 4.4, where height
of each bin is divided using the total number of pixels being predicted. Other-
wise, more number of reference pixel may lead to more height of the zero-th bin
in a prediction error histogram. It might mislead the analysis. Hence, normalized
histograms are used here for comparison. More height of the zero-th bin in a
normalized histogram indicates that prediction error is zero for more number of
pixels. Hence, it indicates a better prediction.

Two thresholds - namely, the prediction error threshold TP E and the local
complexity threshold Tlc - control the performance of the proposed random dis-
tribution of reference pixel based reversible data hiding technique. The threshold
TP E decides the pixels where payload bits are embedded (equations 3.7, 3.8, 3.9
and 3.10). Hence, an increase in the value of TP E also increases the embedding
capacity. But to reduce the embedding distortion, the value of TP E is minimally
chosen which suffices to embed the payload of a certain length. The local com-
plexity threshold Tlc decides whether 1 bit or 2 bits of payload are embedded
in a pixel. Thus, it controls the achievable embedding capacity of the proposed
technique. Table 4.2 reports the achievable embedding capacity of the proposed
technique when only single bit embedding is used (i.e., Tlc=0). This reported
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Figure 4.3: Payload size versus PSNR plots for various parameter combinations
(percentage of reference pixels and block size) with local complexity threshold
Tlc = 0
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Figure 4.4: Normalized prediction error histograms of various predictors for Pep-
pers image: (a) Proposed predictor using random distribution of reference pixels
having 25% of pixels as reference pixels and 4× 4 block size, (b) GMA , and (c)
B-tree triangular decomposition based prediction with decomposition threshold Td

as 8
.

Table 4.2: Achievable embedding capacity (in bpp – rounded upto two
digits after decimal point) with single embedding (Tlc = 0)

Image Reference P ixels(%) Block Size TP E Tlc achievable bpp
Lena 25% 4 × 4 20 0 0.71
Lake 25% 4 × 4 20 0 0.67
Boat 25% 4 × 4 20 0 0.67

Mandrill 25% 2 × 2 20 0 0.54
Elaine 25% 4 × 4 20 0 0.71

Airplane 25% 4 × 4 20 0 0.71
Peppers 25% 4 × 4 20 0 0.66
Tiffany 25% 4 × 4 20 0 0.51

achievable embedding capacity corresponds to a maximum TP E value of 20. Em-
bedding capacity is measured as the ratio of the number of bits which can be
embedded in an image and the number of pixels in the image. Hence, it is rep-
resented as bits per pixel (bpp). For example, a maximum of 0.66 bits per pixel
can be embedded in the Peppers image for single embedding with the given pa-
rameter setting. Experiments are not carried out with even higher values of TP E

as it would introduce more embedding distortion.
To achieve more embedding capacity, the proposed work uses the adaptive

embedding strategy. Either 1 bit or 2 bits of payload are embedded in the pre-
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diction error of a pixel based on the local complexity threshold Tlc. Two bits of
payload are embedded in the pixels having local complexity less than a threshold
Tlc. One bit of payload is embedded in the pixels having local complexity either
greater than or equal to the threshold Tlc. Hence, usage of adaptive embedding
increases the achievable embedding capacity of the proposed technique. Achiev-
able embedding capacities of the proposed technique with the value of Tlc as 16
are reported in table 4.3 for the test images. Comparison of achievable embed-
ding capacities between table 4.2 and table 4.3 reveals the increase of embedding
capacities due to adaptive embedding for most of the images. For example, the
embedding capacity has increased from 0.66 (single bit embedding) to 0.80 (adap-
tive embedding) for the Peppers image. Similar to the case of B-tree triangular
decomposition based reversible data hiding technique (Chapter 3), only exception
in this context is noticed for the Tiffany image. For the Tiffany image, embedding
capacity of the proposed random distribution of reference pixel based reversible
data hiding technique slightly decreases from 0.51 (single bit embedding) to 0.50
(adaptive embedding). This exception has been attributed to increase in size of
compressed overflow/underflow location map, which is also being stored in the
image as auxiliary information. More lighter pixel in the Tiffany image causes the
increase in the size of overflow/underflow location map, as more overflow occurs
in this case. More presence of lighter pixels in the Tiffany image as compared to
other test images are visibly evident in figure 1.4.

In the reported experiments, value of the local complexity threshold Tlc is
varied as 0, 1, 2, 4, 8, and 16 to control the adaptive embedding process. The
value of Tlc as 0 indicates embedding of 1 bit payload in the prediction error of a
pixel. A higher value of Tlc indicates 2 bits of payload can be embedded in more
number of pixels. Hence, embedding capacity increases with an increase in the
value of Tlc. Simultaneously, PSNR value decreases with an increase in the value
of Tlc. These findings are obvious from the plots in figure 4.5.

Finally, the performance of the proposed random distribution of reference pixel
based reversible data hiding technique is compared with other existing techniques
in the literature: (i) a multi-predictor scheme combining GAP, MED and Asym-
metric histogram shifting (GMA) [128], (ii) Improved pairwise embedding [82]
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Table 4.3: Achievable embedding capacity (in bpp – rounded upto two
digits after decimal point) with adaptive embedding (Tlc = 16)

Image Reference P ixels(%) Block Size TP E Tlc achievable bpp
Lena 25% 4 × 4 20 16 1.01
Lake 25% 4 × 4 20 16 0.84
Boat 25% 4 × 4 20 16 0.80

Mandrill 25% 2 × 2 20 16 0.65
Elaine 25% 4 × 4 20 16 0.81

Airplane 25% 4 × 4 20 16 1.05
Peppers 25% 4 × 4 20 16 0.80
Tiffany 25% 4 × 4 20 16 0.50

and (iii) the significant bit expansion [49] and (iv) B-Tree triangular decomposi-
tion based technique (Chapter 3). The proposed technique with single embedding
(Tlc=0) has outperformed most of the other comparing methods in majority of
the images. Only the improved pairwise embedding technique [82] achieves better
PSNR values than the proposed technique across all images (figure 4.6). But the
embedding capacity of this improved pairwise technique is low. For example, a
payload having 65536 bits (i.e, 65536

512×512 = 0.25 bpp) cannot be embedded in Tiffany
image using the improved pairwise embedding technique [82]. Similarly, Mandrill
image can not accommodate even a payload of 26214 bits ( 26214

512×512 = 0.1 bpp).
The improved pairwise technique is the best among the comparing methods in
terms of PSNR values, but it is only effective for small payload. Hence, the pro-
posed technique outperforms most of the existing techniques for various payload
sizes. For most of the images, the proposed technique marginally outperforms the
B-Tree triangular decomposition based reversible data hiding too (Chapter 3).

It has been mentioned earlier that the proposed technique is executed ten times
with each parameter setting due to the inherent randomness in the technique. The
above plots exhibit the average PSNR values of ten executions. Alongside the av-
erage PSNR values, standard deviations of these PSNR values over ten executions
are also estimated to understand the variation in the results from one execution
to another. These standard deviations are observed for each combination of pa-
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Figure 4.5: Payload size versus PSNR plots for various local complexity threshold
values with pre-selected values of percentage of reference pixel and block size
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Figure 4.6: Payload size versus PSNR plots for several reversible data hiding
techniques
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Table 4.4: Minimum, average and maximum of standard deviations of PSNR
values over ten executions for each combination of parameter values for various
payload sizes

Image Min Avg Max
Lena 0.02 0.03 0.06
Lake 0.03 0.05 0.11
Boat 0.02 0.03 0.06

Mandrill 0.02 0.03 0.05
Elaine 0.01 0.03 0.06

Airplane 0.02 0.04 0.07
Peppers 0.01 0.03 0.09
Tiffany 0.02 0.04 0.12

rameter values (as discussed above) for various payload sizes. Minimum, average
and maximum of these standard deviations for each image are tabulated in table
4.4. It can be seen from these simple statistics about the observed standard devi-
ations in PSNR values that there is not much change in the PSNR values across
different executions of the proposed technique.

The marked images as per the proposed reversible data hiding technique for
various payload size are presented in figure 4.7.

4.5 Summary

In this chapter, a novel prediction error expansion (PEE) based reversible data
hiding technique is proposed using the concept of random distribution of reference
pixels. In a PEE based reversible data hiding technique, the prediction of a
pixel value is an important step. In the proposed technique, a set of reference
pixels is used to predict the values in other non-reference pixels. But unlike
Delaunay triangulation based method ([119]) and B-tree triangular decomposition
based method (Chapter 3), the proposed prediction method distributes the set
of reference pixels throughout the image randomly. But the variances of pixel
values in the blocks guide this method of distributing the reference pixels. Then,
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the value of a non-reference pixel is predicted as weighted median of the values
in the nearby reference pixels. The weight being associated with a reference
pixel value is inversely proportional to the chess board distance of the reference
pixel from the non-reference pixel. This random distribution of reference pixel
based prediction is the major contribution of the work in this chapter. Finally,
an adaptive prediction error expansion based embedding strategy [132] is utilized
for embedding the data into the prediction error of a non-reference pixel. Local
complexity of a non-reference pixel is computed as the variance of the values in
nearby reference pixels. Either one bit or two bits of data are inserted into the
prediction error of a non-reference pixel based on its local complexity.

Block size and percentage of reference pixels among all pixels in an image
are two parameters to influence the performance of the proposed reversible data
hiding technique. Various values of these parameters are investigated to find a
suitable combination of these values. Use of lesser number of reference pixels en-
sures higher embedding capacity. It can be found that 25% of pixels as reference
pixel achieves the best PSNR values (between the cover images and the corre-
sponding marked images) too. Moreover, the better PSNR values are obtained
for the block size as either 2×2 or 4×4. The best suitable block size varies from
one image to another. Based on the observed PSNR values, the best combina-
tion of values for these two parameters is selected for each image for subsequent
experiments.

Local complexity threshold is also varied for the experiments. Higher value of
this threshold ensures higher embedding capacity. But the PSNR value decreases
with increment of this threshold as 2 bits are embedded in more number of pixels.
Hence, single bit embedding (Tlc = 0) is suitable for small payload size. Adaptive
embedding may be adopted for higher payload size. In this chapter, an exten-
sive set of experimental results is reported by varying above parameters of the
proposed technique. Finally, the proposed random distribution of reference pix-
els based reversible data hiding technique outperforms several existing reversible
data hiding techniques. The proposed reversible data hiding technique in this
chapter marginally outperforms B-tree triangular decomposition based technique
(Chapter 3) too for most of the test images.
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Like the existing reversible data hiding techniques, the proposed reversible
data hiding technique is also fragile. Therefore, robustness of the proposed tech-
nique against several attacks on the marked image is not generally studied for
these techniques. Unlike robust watermarking schemes, a minor change in the
marked pixel value destroys the hidden data in these reversible data hiding tech-
niques. Hence, this enables identification of any tampering of original cover image.
Therefore, the proposed reversible data hiding technique can be mainly used for
ensuring integrity of the original cover image.
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Figure 4.7: Results of the random distribution of reference pixels based reversible
data hiding scheme for various test images (row-wise). Columns from left to right:
Original image, marked images with 0.1 bpp, 0.2 bpp, 0.3 bpp, and 0.4 bpp.

85



Chapter 5

Reversible Data Hiding Using
Selected Directional Context
Based Prediction

Unlike the reference pixel based reversible data hiding techniques in previous two
chapters, two novel reversible data hiding techniques using selected directional
context based predictors are proposed in this chapter. In these techniques, a
pixel value is predicted using pixel values in the neighborhood of the pixel. Both
techniques use a combination of linear predictors in a set of selected directions. In
the first of these techniques, the directions are selected using the diversities and
the averages of pairs of neighboring pixel values in a 3×3 neighborhood in hor-
izontal, vertical, diagonal and anti-diagonal directions. In the second technique,
the directions are selected by comparing the gradients across all four directions. A
5×5 neighborhood is used to estimate the gradients in various directions. More-
over, an adaptive prediction error histogram bin shifting method is proposed for
embedding either 1 bit or 2 bits of data in the prediction error of a pixel.

The organization of this chapter is mentioned here. The reversible data hid-
ing technique using selected context based prediction with 3×3 neighborhood is
proposed in Section 5.1. In another reversible data hiding scheme using selected
context based prediction in Section 5.2, an improved gradient based prediction
using 5× 5 neighborhood is used. This reversible data hiding technique is de-
picted in Section 5.2. Finally, a summary of the contributions in this chapter is
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drawn in Section 5.3.

5.1 Reversible Data Hiding with Selected Di-
rectional Context Based Prediction Using
Eight Neighborhood

In this section, an eight neighborhood based pixel prediction strategy is proposed.
A 3× 3 neighborhood is considered for this work. Averages of pair of neighbor-
hood values in horizontal, vertical, diagonal, and anti-diagonal directions provide
the predicted values in respective directional context. A novel selection strategy
is introduced to select few of these directional contexts based on the diversity
between the pair of pixel values in each direction. Average of the predicted values
in the selected directional contexts produces the final predicted value. Like the
prediction error histogram bin shifting method in [56], data bits are embedded in
prediction errors belonging to two adjacent bins of prediction error histogram. As
it is evident from previous studies, the peak in a prediction error histogram can
be observed in the zero-th bin or any other adjacent bin. Hence, like the work in
[56], prediction errors in two histogram bins for prediction error as either 0 or -1
are used for embedding. Questions may be raised as why only these two bins are
selected for embedding. Hence, histogram bins for prediction error as either 0 or
1 are also used for embedding as a slight variation in the experiment. Moreover,
an adaptive histogram bin shifting is proposed here to increase the embedding
capacity of the scheme. Here, either one bit or two bits of data are embedded in
the prediction error of a pixel. In summary, the proposed method introduces the
following novel concepts : (i) a selected directional context based pixel prediction
using pairs of pixels in eight neighborhood of a pixel and (ii) an adaptive pre-
diction error histogram bin shifting as embedding strategy. Experimental results
show the superiority of the proposed reversible data hiding technique in com-
parison with few other existing reversible data hiding techniques. This work is
presented in this section in detail.
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5.1.1 Proposed Selected Context Based Prediction Using
Eight Neighborhood

The proposed prediction scheme considers 8-neighborhood of a pixel as it is shown
in figure 5.1. Based on directional context, the eight pixels in the neighborhood
are divided into four groups containing the pairs of horizontal, vertical, diagonal,
and anti-diagonal neighbors. Diversity between the pair of pixels in a group is
measured by considering the absolute difference of the pixel values in the pair. Let
dh, dv, dd, and da denote the diversities of the pixel pairs in horizontal, vertical,
diagonal, and anti-diagonal directions, respectively. The diversity computation is
given in equation 5.1.

(m−1, n−1) (m−1, n) (m−1, n + 1)
(m, n−1) (m, n) (m, n + 1)

(m + 1, n−1) (m + 1, n) (m + 1, n + 1)

Figure 5.1: 8-neighborhood of a pixel at coordinate (m,n)

dh =|xm,n−1−xm,n+1|

dv =|xm−1,n−xm+1,n|

dd =|xm−1,n−1−xm+1,n+1|

da =|xm−1,n+1−xm+1,n−1|

(5.1)

where, in a generalized notation, xi,j denotes the pixel value at coordinate (i, j).
The notation |.| refers to the absolute value of its argument.

Moreover, integer average of the pair of neighboring pixel values in each direc-
tion (horizontal, vertical, diagonal, and anti diagonal) is computed as it is stated
in equation 5.2.

ah =bxm,n−1 +xm,n+1
2 c

av =bxm−1,n +xm+1,n

2 c

ad =bxm−1,n−1 +xm+1,n+1
2 c

aa =bxm−1,n+1 +xm+1,n−1
2 c

(5.2)
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where ah, av, ad, and aa denote the computed integer average values in horizontal,
vertical, diagonal, and anti-diagonal directions, respectively. The notation b.c
refers to the highest integer which is smaller than its argument.

Basically, the average of the pair of neighboring pixel values in a particular
direction predicts the center pixel value in the same directional context. Similar
idea on average of pair of directional neighbors for prediction can also be found
in [76]. But only the horizontal and vertical directions are considered in [76]. In
the proposed approach, two other directions (diagonal and anti-diagonal) are also
considered.

The proposed approach selects a few of these directional contexts based on the
homogeneity (or less diversity) of neighborhood pixels in these directions. Hence,
the directional contexts having the least diversity is considered for predicting the
current pixel. Let four diversity values in equation 5.1 be sorted in ascending order
and let these be denoted as d1,d2,d3 and d4 (while d1 is the smallest of these four
values). Moreover, the integer averages in these four directions (equation 5.2)
are sorted in ascending order of the diversities in respective directions and let the
sorted values be a1,a2,a3 and a4. Here, the integer average value ai corresponds to
the direction having diversity di. Basically, these average values act as a predicted
value in their respective directions. At first, the predicted value a1 according to
the least diverse group (with diversity value d1) is considered to predict the central
pixel value. Additionally, the predictions in other directions are considered, only
if the predicted (integer average) values in those directions are also close enough
to the value a1. A threshold T decides the closeness of these average values to
the value a1. The value of T is assumed to be 1 for the reported experiments. To
focus on the directions of less diverse pixel pairs, closeness among these average
values is tested iteratively starting with the second least diverse group. This
complete algorithm is mentioned in Algorithm 5.1, where the iteration has been
broken down using if-else constructs for three other groups (apart from the least
diverse group). Ultimately, if predicted (i.e., integer average) values of all four
groups are similar enough, then integer average of all four predicted values (i.e.,
integer averages for individual groups) predicts the center pixel value.

In any prediction error based reversible data hiding technique, the predicted
pixel value must be same during embedding and extractions phases. As per
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Algorithm 5.1 Predicting the center pixel value using neighbors in selected
directional context
1: Compute the diversities in various directions [dh, dv, dd, and da] using equation 5.1.
2: Compute the integer averages of a pair of neighbors in various directions [ah, av, ad, and aa] using equation 5.2.
3: Sort the diversity values in ascending order and represent them as [d1, d2, d3, and d4].
4: Sort the integer average values in ascending order of the diversities in respective directions and store them as [a1, a2, a3, and

a4].
5: // Difference (d) between the integer averages in two directions having the two least diversity values is computed.
6: d = |a1−a2|
7: if d≥ T then
8: // The direction with the second least diversity value is not considered.
9: // Estimated predicted value is the integer average in the direction having the least diversity value.
10: x

′
= a1

11: else
12: // Difference between the integer averages in two directions having the least and the third least diversity values is

computed.
13: d = |a1−a3|
14: if d≥ T then
15: // The direction having the third least diversity value is not considered, only the directions having the least two

diversity values are considered.
16: // Estimated value is the integer average of respective integer averages in the directions with the least two diversity

values.
17: x

′
= b a1+a2

2 c
18: else
19: // Difference between the integer averages in two directions having the least and the fourth least diversity values is

computed.
20: d = |a1−a4|
21: if d≥ T then
22: // The direction having the fourth least diversity value is not considered, only the directions having the least

three diversity values are considered.
23: // Estimated value is the integer average of respective integer averages in the directions with the least three

diversity values.
24: x

′
= b a1+a2+a3

3 c
25: else
26: // Estimated value is the integer average of respective integer averages in all directions.
27: x

′
= b a1+a2+a3+a4

4 c
28: end if
29: end if
30: end if
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above discussion, the predicted value depends on the 8 values of neighboring
pixels. Hence, the same 8 values must be available during extraction too. But
as embedding data bits in a pixel changes the pixel values, original cover pixel
values for all 8 neighbors cannot be availed during extraction. Therefore, following
strategy is adopted to maintain same set of 8 values for these neighboring pixels
during embedding and extraction. Embedding is carried out in raster scan order
of the pixels in an image. Hence, for a current pixel at coordinate (m,n), the
four neighboring pixels (m− 1,n− 1), (m− 1,n), (m− 1,n+ 1), and (m,n− 1)
already contain the marked values. Remaining four neighboring pixels at locations
(m,n+ 1), (m+ 1,n− 1), (m+ 1,n) and (m+ 1,n+ 1) are not visited till then.
Hence, these four pixels contain the original values. These context values which
are available during prediction of the pixel value at coordinate (m,n) are shown in
figure 5.2. Similarly, the extraction of data bits and the restoration of the original
pixel values are carried out in the opposite of raster scan order. Hence, during
extraction phase, the pixels at coordinates (m,n+ 1), (m+ 1,n− 1), (m+ 1,n)
and (m+1,n+1) have been already traversed and their original values have been
restored back. The pixels at coordinates (m−1,n−1), (m−1,n), (m−1,n+1),
and (m,n−1) still contain the marked values. Thus, same set of context values
(figure 5.2) is available to the prediction algorithm during both embedding and
extraction.

x
′
m−1,n−1 x

′
m−1,n x

′
m−1,n+1

x
′
m,n−1 xm,n+1

xm+1,n−1 xm+1,n xm+1,n+1

Figure 5.2: Context pixel values of 8-neighbors of pixel (m,n) during prediction

5.1.2 Embedding Using Adaptive Histogram Bin Shifting

Unlike the reversible data hiding techniques in Chapter 3 and Chapter 4, the
prediction error expansion based embedding strategy (Section 3.2) cannot be
adopted for this work. An overflow/underflow map is needed in the prediction
error expansion strategy in order to avoid overflow/underflow conditions during
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embedding. Construction of an overflow/underflow map in this strategy requires
the predicted values for every pixel in the image. In the previous two techniques
in Chapter 3 and Chapter 4, the predicted values for every non-reference pixel
are computed apriori using the reference pixel values. Embedding is not car-
ried out in these reference pixels. Hence, the prediction error expansion based
strategy can be used for the reversible data hiding techniques in the previous
chapters. But in the present selected directional context based reversible data
hiding technique, the prediction of a pixel value and embedding in the pixel are
carried out simultaneously. This is because the proposed prediction scheme in
Section 5.1.1 uses 8-neighborhood of a pixel for predicting its value. Few of these
neighborhood pixels contain marked values (figure 5.2). Hence, the predicted val-
ues of all the pixels in the image cannot be known before the actual embedding
starts. Therefore, the overflow/underflow map cannot be obtained in the manner
in which it was done in the previous two reference pixel based techniques. Hence,
the prediction error expansion strategy (Section 3.2) cannot be adopted here for
embedding. The required overflow/underflow map for the present technique is
derived in a different way, which is mentioned in the due course of the discussion.

The proposed embedding scheme, in this section, is based on a concept of
adaptive prediction error histogram bin shifting. Hence, at first, a pixel value is
predicted using the proposed approach in Section 5.1.1. Subsequently, prediction
error for a pixel is computed as the difference between the cover image pixel value
and its predicted value using equation 5.3.

PE = x−x
′

(5.3)

According to the prediction error histogram bin shifting method in [56], a
single data bit is embedded in the prediction error of a pixel belonging to two
adjacent histogram bins having prediction error as either 0 or -1. For the pixels
in the remaining histogram bins, the prediction errors are shifted in appropriate
direction. The proposed adaptive scheme extends this idea to embed either 1 bit
or 2 bits of data in the prediction error of a pixel based on an estimated local
complexity of the pixel. Each component of the proposed adaptive prediction
error histogram bin shifting method is presented in this section.
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5.1.2.1 Estimation of Local Complexity

Local complexity (lc) of the current pixel approximates the roughness of the
pixel. The estimation of the local complexity of the current pixel is computed
as the variance of four pixel values at bottom and right neighbors (xm+1,n−1,
xm+1,n , xm+1,n+1 and xm,n+1). As these pixels maintain the original values
during embedding and extraction processes, only these pixel values are used to
estimate the roughness around the center pixel at coordinate (m,n). The top
and left neighboring pixels have marked (i.e., modified) values. Therefore, the
four neighboring pixels at the top and at the left are not used to estimate local
complexity.

5.1.2.2 Adaptive Embedding

As a generalization of the prediction error histogram bin modification in [56], in
this section, two consecutive histogram bins are considered for embedding where
prediction errors are either PEl or PEr (PEr = PEl + 1). The peak bin in a
prediction error histogram normally corresponds to the zero-th bin or a nearby
bin. Hence, unlike [56], separate experiments are carried out by embedding in two
pairs of histogram bins: (i) histogram bins corresponding to prediction error as
either -1 and 0 (PEl =−1 and PEr = 0), and (ii) histogram bins corresponding
to prediction error as either 0 and 1 (PEl = 0 and PEr = 1). The rest of the
discussion refers the general representation of PEl and PEr, where PEr = PEl +
1. The prediction errors in the bins having prediction error other than PEl and
PEr are shifted to identify the histogram bins where embedding data is located.

Adaptive embedding strategy provides a flexibility of either embedding one
bit or two bits of data in the prediction error of a pixel. It is discussed below.

Embedding Two Bits in a Pixel
Local complexity (lc) of a pixel is compared against a threshold value (Tlc) to
determine whether the pixel is in smooth region or rough region. If the local
complexity value (lc) is less than the threshold Tlc, then the pixel is assumed to
be in a smooth region. Two bits of data are embedded in the prediction error of
such a pixel, if the prediction error PE of the pixel is equal to either PEl or PEr
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(equation 5.4).

xw =
{
x

′ +PE−w , if PE = PEl

x
′ +PE+w , if PE = PEr

(5.4)

where w ∈ {0,1,2,3} indicates two bits of data. x and xw represent the pixel
values before and after embedding the data, respectively. To separate the bins
where data bits are embedded from all other bins, the prediction errors in the
remaining bins are shifted. Otherwise, extraction of the data bits and restoration
of the pixel values are not possible. Shifting of the predictions errors follows
equation 5.5.

. xw =
{
x

′ +PE−3 , if PE < PEl

x
′ +PE+ 3 , if PE > PEr

(5.5)

Embedding Single Bit in a Pixel
If local complexity value (lc) of a pixel is greater than or equal to the threshold
Tlc, then the pixel is assumed to be in a rough region. One bit of data is embedded
in the prediction error of such a pixel, if the prediction error PE of the pixel is
equal to either PEl or PEr (equation 5.6).

xw =
{
x

′ +PE−w , if PE = PEl

x
′ +PE+w , if PE = PEr

(5.6)

where w =∈ {0,1} indicates one bit of data. x and xw denote the pixel values
before and after embedding the data, respectively.

To separate the bins where data bits are embedded from all other bins, the
prediction errors in the remaining bins are shifted. Otherwise, extraction of the
data bits and restoration of the pixel values are not possible. Shifting of the
prediction errors follows equation 5.7.

. xw =
{
x

′ +PE−1 , if PE < PEl

x
′ +PE+ 1 , if PE > PEr

(5.7)

5.1.2.3 Auxiliary Information

According to the proposed adaptive prediction error histogram bin shifting
method, the maximum modification to a pixel value is ±3. Hence, before ap-
plying the proposed reversible data hiding technique, the image pixel values 255,
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254, and 253 are converted to 252, 251 and 250, respectively, to avoid overflow
condition (i.e., pixel value after modification should not be higher than 255).
Similarly, pixel values 0, 1, and 2 are converted to 3, 4, and 5, respectively, to
avoid underflow condition (i.e., pixel value after modification should not be less
than 0). A binary location map is constructed to specify these overflow and un-
derflow pixel locations in the image. The modified locations are marked with
1 in the binary location map, which is also known as overflow/underflow map.
This overflow/underflow map is compressed using a lossless image compression
technique. The proposed work uses the arithmetic coding algorithm for lossless
compression. This compressed location map is stored as part of the auxiliary
information, which is useful for complete extraction of the data as well as ac-
curate restoration of the image pixels. Auxiliary information also contains few
additional information. Here, the complete set of information of auxiliary in-
formation is stated: (i) coordinates of the last embedded pixel, (ii) whether 1
bit or 2 bits are embedded in the last embedded pixel, (iii) the value of local
complexity threshold Tlc, (iv) whether there is at least one pixel causing over-
flow/underflow conditions, (v) length of the compressed overflow/underflow map,
and (vi) the compressed overflow/underflow location map. The items in (v) and
(vi) are required only at the occurrence of overflow/underflow condition.

The length of the auxiliary information can be estimated by considering sum-
mation of number of bits being used to represent each component of the auxiliary
information. (i) The number of bits representing the coordinate of last embedded
pixel is 18 for an image of size 512×512 (as 2× log2(512) = 18). (ii) 1 bit is used
to represent whether 1 or 2 bits are embedded in the last embedded pixel. (iii) 5
bits are used to represent the local complexity threshold Tlc. (iv) 1 bit is used to
indicate whether overflow/underflow may arise for any of the pixels in the image.
(v) Length L ( in bits) of the compressed overflow/underflow map is represented
using 18 bits for an image of size 512× 512 (as 2× log2(512) = 18). (vi) The
compressed location map length is L bits. Thus, the total number of bits being
used to encode the auxiliary information is: (18 + 1 + 5 + 1 + 18 +L) = 43 +L.

At first, the auxiliary information is embedded into the pixels of first few
rows (in raster scan sequence) in the cover image using LSB (least significant bit)
replacement technique. Then, the LSBs of those first few pixels are appended
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at the end of the data stream to be embedded. But as this step is carried out
before the actual embedding of payload, the position of the last pixel (part (i)
of auxiliary information), where embedding is carried out, is not known apriori.
Hence, the LSBs for the first 18 pixels (in raster scan sequence) are reserved for
storing the coordinate of the last embedded pixel. The number of bits representing
the coordinate of last embedded pixel is 18 for an image of size 512× 512 (as
2× log2(512) = 18). The coordinate of the last embedded pixel will be stored at
these reserved bits after the embedding of the payload.

It is to be noted that the auxiliary information may occupy the first few
rows in the image. Hence, those few rows are not used to embed the payload.
Embedding of the payload starts from the immediate next row using a raster scan
order traversal of the pixels. Embedding process is described in Section 5.1.2.2.
Once the embedding of the entire payload is completed, the position of the last
embedded pixel is stored as part (i) of auxiliary information at the bits which
were reserved for storing this information.

5.1.3 Extraction

The secret data is extracted and the original cover image pixel values are restored
from the pixel values of the marked image. Knowledge about the auxiliary infor-
mation is necessity in this phase. The auxiliary information is derived from the
LSBs of the pixels in the first few rows of the marked image. As part of auxil-
iary information, the coordinates of the last embedded pixel is known. Moreover,
it is also known from auxiliary information whether 1 bit or 2 bits of payload
are embedded in the last embedded pixel. From this pixel onward, the pixels
are traversed in the reverse of raster scan order for simultaneous extraction of
payload bits and restoration of the original pixel values. Visiting these pixels in
the reverse order (of embedding) is necessity to achieve the same context pixel
values around a pixel (m,n). Because at the time of visiting this pixel, four other
pixels in the neighborhood ((m,n+1),(m+1,n−1),(m+1,n) and (m+1,n+1))
have been already traversed and the original pixel values in those locations have
been restored. On the contrary, four other pixels in the neighborhood (at coordi-
nates (m−1,n−1),(m−1,n),(m−1,n+1) and (m,n−1)) have not been visited.

96



5.1 Reversible Data Hiding with Selected Directional Context Based
Prediction Using Eight Neighborhood

Those pixels contain the marked values. Hence, the same context as embedding
(figure 5.2) is achieved. Obtaining the same context pixel values ensures that
the predicted value during extraction remains same as the predicted value during
embedding.

During extraction phase too, a pixel value is predicted using the proposed
method of selected context based prediction using 8-neighborhood (Section 5.1.1).
Subsequently, the prediction error (PEw) is calculated by considering the differ-
ence between the marked pixel value xw and its predicted value x′ using equation
5.8.

PEw = xw−x′ (5.8)

.
Similarly, the local complexity value of a pixel is calculated using the restored

pixel values in the neighborhood as mentioned in Section 5.1.2.1. Hence, the
obtained local complexity value is also same as the local complexity value during
embedding. Then, it can be known whether 1 bit or 2 bits of payload need
to be extracted from the current pixel (m,n) by comparing the obtained local
complexity value with the local complexity threshold Tlc. It is to be noted that the
value of the local complexity threshold Tlc is known from auxiliary information.

5.1.3.1 Extraction of Two Bits

If local complexity of the current pixel is less than Tlc and prediction error falls
within the range [PEl-3, PEr+3], then two bits of data (w) are extracted using
equation 5.9.

. w =


0 = 00 if PPEw = PEl or PEr

1 = 01 if PEw = PEl−1 or PEr + 1
2 = 10 if PEw = PEl−2 or PEr + 2
3 = 11 if PEw = PEl−3 or PEr + 3

(5.9)

Subsequently, the original pixel value is restored using equation 5.10.

x=
{
x

′ +PEw +w, if PEw ∈ [PEl−3,PEl]
x

′ +PEw−w, if PEw ∈ [PEr,PEr + 3]
(5.10)
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If local complexity of a pixel is less than Tlc and prediction error PEw is either
less than PEl−3 or greater than PEr +3, then shifting back of the marked pixel
value to original value is carried out using equation 5.11.

x=
{
x

′ +PEw + 3 , if PEw < PEl−3
x

′ +PEw−3 , if PEw > PEr + 3
(5.11)

5.1.3.2 Extraction of a Single Bit

If local complexity of the current pixel is either greater than or equal to Tlc and
prediction error falls within the range [PEl-1, PEr+1], then one bit of data (w)
is extracted using equation 5.12.

w =
{

0, if PEw = PEl or PEr

1, if PEw = PEl−1 or PEr + 1 (5.12)

Subsequently, the original pixel value is restored using equation 5.13.

x=
{
x

′ +PEw +w, if PEw ∈ [PEl−1,PEl]
x

′ +PEw−w, if PEw ∈ [PEr,PEr + 1]
(5.13)

If local complexity of a pixel is either greater than or equal to Tlc and predic-
tion error PEw is either less than PEl−1 or greater than PEr +1, then shifting
back of the marked pixel value to original value is carried out using equation 5.14.

x=
{
x

′ +PEw + 1 , if PEw < PEl−1
x

′ +PEw−1 , if PEw > PEr + 1
(5.14)

5.1.4 Experimental Results

Experimental results involving the proposed selected context based prediction
scheme and adaptive prediction error histogram bin shifting are reported in this
section. Performance of the proposed scheme has been tested using the standard
test images as shown in figure 1.4. Embedding payload bits in the peak bins of the
histogram is desired to achieve higher embedding capacity. Normally, in a predic-
tion error histogram of an image, peak bins are observed in the zero-th bin and
its nearby bins. Therefore, separate experiments are carried out by embedding
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Table 5.1: Achievable embedding capacities with histogram bin pairs (-1, 0) and
(0, 1) using single bit embedding (Tlc = 0) for various test images.

Pair of
bins

(-1, 0) (0, 1)

Image Tlc

Embedding
Capacity

(Bits)
PSNR

Embedding
Capacity

(Bits)
PSNR

Lena 0 58389 48.68 58394 48.68
Lake 0 36798 48.48 37182 48.49
Boat 0 36817 48.49 37197 48.49

Mandrill 0 19236 48.34 19464 48.34
Elaine 0 33826 48.46 34165 48.46

Airplane 0 83189 48.92 81714 48.91
Peppers 0 41801 48.53 42191 48.54
Tiffany 0 48468 48.85 48629 48.80

Table 5.2: Achievable embedding capacities with histogram bin pairs (-1, 0) and
(0, 1) using adaptive embedding (Tlc = 16) for various test images.

Pair
of bins

(-1, 0) (0, 1)

Image Tlc

Embedding
Capacity

(Bits)
PSNR

Embedding
Capacity

(Bits)
PSNR

Lena 16 81057 41.31 81383 41.31
Lake 16 49663 42.81 50344 42.82
Boat 16 47939 42.67 48785 42.68

Mandrill 16 22339 45.47 22391 45.47
Elaine 16 43671 43.26 43913 43.27

Airplane 16 118340 40.98 116266 40.96
Peppers 16 59232 41.56 59188 41.60
Tiffany 16 64515 41.30 64756 41.23
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in two pairs of histogram bins: (i) histogram bins corresponding to prediction
error as -1 and 0 (PEl =−1 and PEr = 0), and (ii) histogram bins corresponding
to prediction error as 0 and 1 (PEl = 0 and PEr = 1). Embedding capacity (in
terms of number bits) are mentioned in table 5.1 for the above two cases for each
image. These results correspond to single bit embedding in a pixel (Tlc = 0). It
can be seen in table 5.1 that the embedding capacities are almost similar in these
two experimental cases. The PSNR values (at the highest embedding capacity for
each image) between the cover images and their corresponding marked images are
also similar in these two cases. Similarly, embedding capacities in above two ex-
perimental cases are reported in table 5.2 for adaptive embedding (with Tlc = 16)
for each image. The embedding capacities as well as corresponding PSNR values
between the cover images and their corresponding marked images are observed to
be similar for adaptive embedding too irrespective of the selection of histogram
bin pairs as either (-1, 0) or (0, 1). Though embedding capacities for adaptive
embedding (Tlc = 16) are higher than those with single embedding (Tlc = 0). It
justifies the use of adaptive embedding (either 1 bit or 2 bits in a pixel) over the
use of single bit embedding in a pixel. But significant difference in performance
is not observed between the histogram bin pairs being (-1, 0) or (0, 1). Hence,
any one pair among these two pairs of histogram bins can be used for embedding.

Experiments are also carried out by varying the value of local complexity
threshold Tlc as 0,1,2,4,8 and 16. The value of Tlc as 0 indicates that a single
bit is embedded in a pixel. Increase of the value of Tlc implies that increasingly
more pixels are considered for 2-bit embedding. These are the cases for adaptive
embedding (either 1 bit or 2 bits in a pixel) depending on the local complexity of
the pixel. PSNR values between the cover images and the corresponding marked
images are plotted in figure 5.3 with various payload sizes for the test images.
It can be seen from these plots that the PSNR values are the highest in the
case of Tlc = 0, i.e., single embedding. With increment in the value of Tlc, the
PSNR values decrease. But higher embedding capacity is achieved with higher
value of Tlc. These plots in figure 5.3 correspond to the experiments using (-1,
0) histogram bin pairs. Similar trend in decrease of PSNR values and increase of
embedding capacities with increased local complexity threshold value Tlc can be
observed using (0, 1) histogram bin pairs too.
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Figure 5.3: Payload size versus PSNR plots using various values of local com-
plexity threshold Tlc for various images.
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The performance of the proposed technique is compared against several ex-
isting techniques like improved MED and improved SGAP [58], rhombus average
[131], EGBSW [25], Delaunay triangulation [119], higher-significant bit-plane ex-
pansion [49], B-tree triangular decomposition (Chapter 3) and random distribu-
tion of reference pixels (Chapter 4) based reversible data hiding. PSNR values
between the cover images and the corresponding marked images for various pay-
load sizes are shown in figure 5.4 for all the comparing methods. It can be observed
that the proposed method outperforms the existing comparing methods. It can
also be observed that the performance of the proposed method in both experi-
mental cases - (i) histogram bins corresponding to prediction error as -1 and 0
(PEl = −1 and PEr = 0), and (ii) histogram bins corresponding to prediction
error as 0 and 1 (PEl = 0 and PEr = 1) - are similar. In these plots (figure 5.4),
the legend ’Selected Context (0)’ refers to the proposed selected context based
prediction with adaptive histogram bin shifting using left bin PEl as 0 and right
bin PEr as 1. Similarly, the legend ’Selected Context (-1)’ refers to the proposed
selected context based prediction with adaptive histogram bin shifting using left
bin PEl as -1 and right bin PEr as 0.

The marked images as per the proposed reversible data hiding technique for
various payload sizes are presented in figure 5.5.

5.2 Reversible Data Hiding with Selected Direc-
tional Context Based Prediction Using an
Improved Gradient Estimation

Unlike the prediction strategy in the previous section, this section adopts a gra-
dient based pixel prediction scheme. Several gradient based prediction schemes
are available in literature. One of the existing gradient based prediction schemes,
namely Extended Gradient Based Selective Weighting (EGBSW) [25]), uses a
4×4 neighborhood for estimating gradients in horizontal, vertical, diagonal, and
anti-diagonal directions. The considered neighborhood is asymmetric with re-
spect to the location of the pixel being predicted. In the proposed work, a larger
neighborhood of 5×5 is considered for estimating these gradients. The objective
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Figure 5.4: Comparison of PSNR values between the cover images and the marked
images with various payload sizes among several reversible data hiding techniques
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Figure 5.5: Results of the selected directional context using 8-neighborhood based
reversible data hiding technique for various test images (row-wise). Columns from
left to right: Original image, marked images with 5000 bits, 10000 bits,and 15000
bits.
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of the proposed work is to explore whether a larger neighborhood captures better
contextual information for gradient estimation and hence, a better pixel predic-
tion is achieved. Moreover, an adaptive prediction error histogram bin shifting
method is considered here for embedding data bits. Traditional prediction error
histogram bin shifting method [56] embeds one bit of data in the prediction error
of a pixel. The proposed adaptive method embeds either 1 bit or 2 bits of data in
the prediction error of a pixel based on local complexity (i.e., roughness) around
a pixel. At first, the existing EGBSW predictor is described here, as it provides
the basis of the proposed improved gradient based predictor. Then, the proposed
technique along with the experimental results are presented in this section.

5.2.1 Extended Gradient Based Selective Weighting (EG-
BSW) Predictor

The extended gradient based selective weighting (EGBSW) predictor was in-
troduced in [25]. This section narrates this existing EGBSW predictor. This
predictor estimates the pixel value based on the context of 15 pixels in a 4 × 4
neighborhood (figure 5.6).

NW N NE NEE

W x(m,n) E EE

SW S SE SEE

SSW SS SSE SSEE

Figure 5.6: 4×4 neighborhood of pixel (m,n) in EGBSW

At first, four different predicted values x′
h, x′

v, x′
d and x

′
a are obtained using

linear prediction in each of horizontal, vertical, diagonal and anti-diagonal direc-
tions, respectively. These linear predictors with respect to their directions are
computed as following:

x
′
h = bW +E

2 + 0.5c (5.15)

x
′
v = bN +S

2 + 0.5c (5.16)

x
′
d = b2(NW +SE) +N +S +W +E

8 + 0.5c (5.17)
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x
′
a = b2(NE +SW ) +N +S +W +E

8 + 0.5c. (5.18)

where b.c operator returns the highest integer which is less than its argument.
Next, a gradient based strategy selects two of these four directions. Weighted

average of the two predicted values in selected directions is considered as the final
predicted value for the pixel.

In EGBSW, the 4×4 pixel neighborhood is used to compute the gradients in
each of horizontal, vertical, diagonal, and anti-diagonal directions. The gradient
in each direction is estimated as an average of weighted summation of differences
of neighboring pixel values in corresponding direction. Let the weighted summa-
tions of differences of neighboring pixel values in horizontal, vertical, diagonal,
and anti-diagonal directions be represented as Dh, Dv, Dd, and Da, respectively.
These values are estimated as follows:

Dh = 2|W −E|+ 2|E−EE|+ |NW −N |+ |N −NE|

+ |NE−NEE|+ |SW −S|+ |S−SE|+ |SE−SEE|
(5.19)

Dv = 2|N −S|+ 2|S−SS|+ |NW −W |+ |W −SW |

+ |SW −SSW |+ |NE−E|+ |E−SE|+ |SE−SSE|
(5.20)

Dd = 2|NW −SE|+ 2|SE−SSEE|+ |W −S|+ |S−SSE|

+ |N −E|+ |E−SEE|+ |SW −SS|+ |NE−EE|
(5.21)

Da = 2|NE−SW |+ |W −N |+ |S−E|+ |SS−SE|

+ |SE−EE|+ |SSE−SEE|.
(5.22)

where |.| operator returns the absolute value of its argument.
The gradients gh, gv, gd and ga in these four directions are computed from

the above summations of differences in respective directions using equation 5.23.

gh = bDh

10 + 0.5c,gv = bDv

10 + 0.5c

gd = bDd

10 + 0.5c,ga = bDa

7 + 0.5c
(5.23)

The directions with the two smallest gradient magnitudes are considered for
final prediction of the pixel. Let g0 and g1 be the two smallest gradient magni-
tudes. Let corresponding predicted values in respective directions be x′

0 and x
′
1.

Then the predicted value is finally computed as:

x
′
= bg0x

′
1 +g1x

′
0

g0 +g1
+ 0.5c (5.24)
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5.2.2 Proposed Gradient Based Predictor Using 5×5
Neighborhood

The existing EGBSW predictor [25] uses a 4× 4 neighborhood. The reported
work, in this section, investigates the effectiveness of a 5×5 neighborhood based
gradient estimation for a better prediction, and hence, a better reversible data
hiding scheme, through capturing more information about the neighborhood. The
proposed predictor extends the concept of EGBSW predictor for a context of 5×5
neighborhood as shown in figure 5.7.

NW N NE NEE NEEE

W x(m,n) E EE EEE

SW S SE SEE SEEE

SSW SS SSE SSEE SSEEE

SSSW SSS SSSE SSSEE SSSEEE

Figure 5.7: 5×5 neighborhood of pixel (m,n) as being considered in the proposed
predictor

Like the EGBSW predictor [25], the proposed approach also computes four
predicted values x′

h, x′
v, x′

d and x
′
a using linear prediction in each of horizontal,

vertical, diagonal and anti-diagonal directions, respectively. These linear predic-
tors with respect to their directions are computed using equations 5.15, 5.16, 5.17
and 5.18. It can be seen from these equations that average of only either hori-
zontal neighbors or vertical neighbors is considered in the linear prediction in the
concerned direction, as they predict a pixel value better than a rhombus average
(average of 4-neighbors of a pixel) [25]. Moreover, the average of pair of diagonal
or anti-diagonal neighbors does not provide good prediction. Hence, additional
consideration of rhombus neighborhood along with the diagonal or anti-diagonal
neighbors strengthens the prediction [25].

The proposed method differs from the EGBSW predictor [25] in gradient esti-
mation. To estimate the gradients, the weighted summations of pixel differences
in horizontal, vertical, diagonal and anti-diagonal directions are computed as fol-
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lowing:
Dh = 2|W −E|+ 2|E−EE|+ 2|EE−EEE|+ |NW −N |

+ |N −NE|+ |NE−NEE|+ |NEE−NEEE|

+ |SW −S|+ |S−SE|+ |SE−SEE|+ |SEE−SEEE|

+ |SSW −SS|+ |SS−SSE|+ |SSE−SSEE|

+ |SSEE−SSEEE|

(5.25)

Dv = 2|N −S|+ 2|S−SS|+ 2|SS−SSS|+ |NW −W |

+ |W −SW |+ |SW −SSW |+ |SSW −SSSW |

+ |NE−E|+ |E−SE|+ |SE−SSE|+ |SSE−SSSE|

+ |NEE−EE|+ |EE−SEE|+ |SEE−SSEE|

+ |SSEE−SSSEE|

(5.26)

Dd = 2|NW −SE|+ 2|SE−SSEE|+ 2|SSEE−SSSEEE|

+ |W −S|+ |S−SSE|+ |SSE−SSSEE|+ |SW −SS|

+ |SS−SSSE|+ |SSW −SSS|+ |N −E|

+ |E−SEE|+ |SEE−SSEEE|+ |NE−EE|

+ |EE−SEEE|+ |NEE−EEE|

(5.27)

Da = 2|NE−SW |+ |W −N |+ |SSW −S|+ |S−E|

+ |E−NEE|+ |SSSW −SS|+ |SS−SE|+ |SE−EE|

+ |EE−NEEE|+ |SSS−SSE|+ |SSE−SEE|

+ |SEE−EEE|+ |SSSE−SSEE|+ |SSEE−SEEE|

+ |SSSEE−SSEEE|

(5.28)

The gradients gh, gv, gd and ga in these four directions are computed from the
summations of neighborhood pixel differences in respective directions as following:

gh = bDh

18 + 0.5c,gv = bDv

18 + 0.5c.

gd = bDd

18 + 0.5c,ga = bDa

16 + 0.5c.
(5.29)

Finally, similar to EGBSW predictor [25], the directions corresponding to the
two smallest gradient magnitudes are considered to estimate the final predicted
value. Small gradient value indicates less change in pixel values in the corre-
sponding direction. Therefore, the linear predictor in that direction generates
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more accurate predicted value. Hence, the directions with the two smallest gra-
dient magnitudes are selected. The final predicted value x′ is computed as the
weighted average of the predicted values in those two directions as in equation
5.24. Each of the smallest two gradients g0 and g1 is normalized by the summation
of these two gradients (i.e., g0 + g1). These two normalized gradient magnitudes
act as the weights for the weighted summation in equation 5.24.

The major difference between the EGBSW predictor [25] and the proposed
predictor is that the estimations of gradients are carried out using an extended
neighborhood pixel values in a 5×5 window to capture more contextual informa-
tion.

It is to be noted that the predicted values must be same during embedding
and extraction processes. As per the above discussion, the predicted values are
computed using the 24 neighborhood pixel values in the 5× 5 window. Hence,
same set of 24 values must be available during embedding and extraction. But
as embedding data bits in a pixel changes the pixel value, original cover pixel
values for all 24 neighbors cannot be availed during extraction. Therefore, follow-
ing strategy is adopted to maintain the same set of 24 values for the neighboring
pixels while embedding and extraction. Embedding is performed in a raster scan
order traversal of image pixels. Hence, for a current pixel at coordinate (m,n), the
six neighborhood pixels at locations NW,N,NE,NEE,NEEE and W already
contain the marked values. Remaining eighteen neighborhood pixels are not vis-
ited till then. Hence, these eighteen pixels contain the original values. Similarly,
the extraction of data bits and the restoration of the original pixel values are
performed in the opposite order of raster scan traversal. Hence, during extrac-
tion process, the pixels at these eighteen coordinates have been already traversed
and their original values have been restored back. The pixels at neighboring lo-
cations NW,N,NE,NEE,NEEE and W still contain the marked values. Thus,
same set of context values are available to the prediction algorithm during both
embedding and extraction.
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5.2.3 Embedding and Extraction

The proposed reversible data hiding scheme uses the same adaptive prediction
error histogram bin shifting method as with the previously described reversible
data hiding technique (section 5.1) for embedding of either 1 bit or 2 bits of data
in the prediction error of a pixel. Section 5.1.2 can be referred here for the detailed
description of this embedding method. Even the estimation of local complexity
and handling of auxiliary information are carried out exactly the same way as
those of the previous technique in Section 5.1.

Similarly, extraction of data bits and restoration of cover image pixel values
are carried out using the method as described in Section 5.1.3.

5.2.4 Experimental Results

This section presents the experimental results of the proposed improved gradient
based prediction and adaptive prediction error histogram bin shifting. Perfor-
mance of the proposed scheme has been tested using a set of standard test images
as shown in figure 1.4. Normally, in a prediction error histogram of an image, tall
bins are observed in zero-th bin and in its nearby bins. So, experiments are carried
out by varying the two pairs of histogram bins: (i) histogram bins corresponding
to prediction error as either -1 or 0 (PEl =−1 and PEr = 0), and (ii) histogram
bins corresponding to prediction error as either 0 or 1 (PEl = 0 and PEr = 1).
The embedding capacities (in number of bits) for these two cases have been re-
ported in table 5.3. These embedding capacities mentioned in the table 5.3 are for
single embedding (Tlc = 0). Significant difference in the embedding capacities is
not observed for the above two cases. Peak Signal-to-Noise Ratio (PSNR) values
(at the highest embedding capacity for each image) between the cover images and
the corresponding marked images are also similar in these two cases. Similarly,
embedding capacities in above two experimental cases are reported in table 5.4
for adaptive embedding (with Tlc = 16) for each image. Here, the adaptive em-
bedding is carried out by considering the local complexity threshold Tlc as 16.
Again, there is not present any significant difference either in embedding capaci-
ties or in PSNR values for adaptive embedding too irrespective of the selection of
histogram bin pairs as either (-1, 0) or (0, 1). Though embedding capacities for
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Table 5.3: Achievable embedding capacities with histogram bin pairs (-1, 0) and
(0, 1) using single bit embedding (Tlc = 0) for various test images.

Pair of bins (-1, 0) (0, 1)

Image Tlc

Embedding
Capacity

(Bits)
PSNR

Embedding
Capacity

(Bits)
PSNR

Lena 0 67460 48.81 64819 48.78
Lake 0 41119 48.56 40563 48.56
Boat 0 43423 48.58 42968 48.58

Mandrill 0 22432 48.40 22369 48.40
Elaine 0 37801 48.54 37677 48.54

Airplane 0 96040 49.12 90253 49.06
Peppers 0 47290 48.62 46662 48.61
Tiffany 0 56107 48.97 54231 48.94

adaptive embedding (Tlc = 16) are higher than those with single bit embedding
(Tlc = 0). It justifies the use of adaptive embedding (either 1 bit or 2 bits in a
pixel) over the use of single bit embedding in a pixel. But significant difference
in performance is not observed between the histogram bin pairs being either (-1,
0) or (0, 1). Hence, any one pair among these two pairs of histogram bins can be
considered for embedding.

The experiments are carried out by varying the value of local complexity
threshold Tlc as 0,1,2,4,8 and 16. The value of Tlc being 0 indicates a single bit
embedding. Higher the value of Tlc is, more data can be embedded. PSNR values
between the cover images and the corresponding marked images are plotted in
5.8 with various payload sizes for each test image. It can be seen from the
plots that the PSNR values are the highest in the case of Tlc = 0, i.e., single
bit embedding. With increment in the value of Tlc, the PSNR values decrease.
But higher embedding capacity is achieved with higher value of Tlc. These plots
in figure 5.8 correspond to the experiments using (-1, 0) histogram bin pairs.
Similar trend in decrease of PSNR values and increase of embedding capacities
with increased local complexity threshold value Tlc can be observed using (0, 1)
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Table 5.4: Achievable embedding capacities with histogram bin pairs (-1, 0) and
(0, 1) using adaptive embedding (Tlc = 16) for various test images.

Pair of bins (-1, 0) (0, 1)

Image Tlc

Embedding
Capacity

(Bits)
PSNR

Embedding
Capacity

(Bits)
PSNR

Lena 16 104196 41.55 101774 41.54
Lake 16 59663 42.95 59719 42.95
Boat 16 60663 42.83 59872 42.82

Mandrill 16 26699 45.56 26699 45.56
Elaine 16 51358 43.40 51566 43.40

Airplane 16 156178 41.36 153141 41.33
Peppers 16 70263 41.69 70122 41.69
Tiffany 16 87988 41.56 86660 41.51

histogram bin pairs too.
Performance of the proposed method is compared against the performances of

several existing methods like EGBSW [25], improved MED and improved SGAP
[58], rhombus average [131], higher-significant bit-plane [49], Delaunay triangula-
tion [119], B-tree triangular decomposition (chapter 3) and random distribution
of reference pixels (chapter 4) based reversible data hiding techniques. PSNR val-
ues between the cover images and the corresponding marked images for various
payload sizes are shown in figure 5.9 for all the comparing techniques. It can be
observed that the proposed technique outperforms the existing comparing tech-
niques. It can also be observed that the performance of the proposed technique in
both experimental cases - (i) histogram bins corresponding to prediction error as
either -1 and 0 (PEl =−1 and PEr = 0), and (ii) histogram bins corresponding
to prediction error as either 0 and 1 (PEl = 0 and PEr = 1) - are similar. In
these plots (figure 5.9), the legend ’Improved Gradient (0)’ refers to the proposed
improved gradient based prediction with adaptive histogram bin shifting using
left bin PEl as 0 and right bin PEr as 1. Similarly, the legend ’Improved Gradi-
ent (-1)’ refers to the proposed improved gradient based prediction with adaptive

112



5.2 Reversible Data Hiding with Selected Directional Context Based
Prediction Using an Improved Gradient Estimation

Payload Size [Bits] ×10
4

1 2 3 4 5 6 7 8 9 10 11

P
S

N
R

 [
d

B
]

40

45

50

55

60

65
Lena with (-1, 0) bins

Improved Gradient (T
lc

=0)

Improved Gradient (T
lc

=1)

Improved Gradient (T
lc

=2)

Improved Gradient (T
lc

=4)

Improved Gradient (T
lc

=8)

Improved Gradient (T
lc

=16)

Payload Size [Bits] ×10
4

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

P
S

N
R

 [
d

B
]

42

44

46

48

50

52

54

56

58

60
Lake with (-1, 0) bins

Improved Gradient (T
lc

=0)

Improved Gradient (T
lc

=1)

Improved Gradient (T
lc

=2)

Improved Gradient (T
lc

=4)

Improved Gradient (T
lc

=8)

Improved Gradient (T
lc

=16)

Payload Size [Bits] ×10
4

1 2 3 4 5 6

P
S

N
R

 [
d

B
]

42

44

46

48

50

52

54

56

58

60
Boat with (-1, 0) bins

Improved Gradient (T
lc

=0)

Improved Gradient (T
lc

=1)

Improved Gradient (T
lc

=2)

Improved Gradient (T
lc

=4)

Improved Gradient (T
lc

=8)

Improved Gradient (T
lc

=16)

Payload Size [Bits] ×10
4

0.5 1 1.5 2 2.5

P
S

N
R

 [
d

B
]

46

48

50

52

54

56

58
Mandrill with (-1, 0) bins

Improved Gradient (T
lc

=0)

Improved Gradient (T
lc

=1)

Improved Gradient (T
lc

=2)

Improved Gradient (T
lc

=4)

Improved Gradient (T
lc

=8)

Improved Gradient (T
lc

=16)

Payload Size [Bits] ×10
4

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

P
S

N
R

 [
d

B
]

42

44

46

48

50

52

54

56

58

60
Elaine with (-1, 0) bins

Improved Gradient (T
lc

=0)

Improved Gradient (T
lc

=1)

Improved Gradient (T
lc

=2)

Improved Gradient (T
lc

=4)

Improved Gradient (T
lc

=8)

Improved Gradient (T
lc

=16)

Payload Size [Bits] ×10
4

2 4 6 8 10 12 14 16

P
S

N
R

 [
d

B
]

40

45

50

55

60

65
Airplane with (-1, 0) bins

Improved Gradient (T
lc

=0)

Improved Gradient (T
lc

=1)

Improved Gradient (T
lc

=2)

Improved Gradient (T
lc

=4)

Improved Gradient (T
lc

=8)

Improved Gradient (T
lc

=16)

Payload Size [Bits] ×10
4

1 2 3 4 5 6 7

P
S

N
R

 [
d

B
]

40

42

44

46

48

50

52

54

56

58

60
Peppers with (-1, 0) bins

Improved Gradient (T
lc

=0)

Improved Gradient (T
lc

=1)

Improved Gradient (T
lc

=2)

Improved Gradient (T
lc

=4)

Improved Gradient (T
lc

=8)

Improved Gradient (T
lc

=16)

Payload Size [Bits] ×10
4

1 2 3 4 5 6 7 8

P
S

N
R

 [
d

B
]

40

42

44

46

48

50

52

54

56

58

60
Tiffany with (-1, 0) bins

Improved Gradient (T
lc

=0)

Improved Gradient (T
lc

=1)

Improved Gradient (T
lc

=2)

Improved Gradient (T
lc

=4)

Improved Gradient (T
lc

=8)

Improved Gradient (T
lc

=16)

Figure 5.8: Payload size versus PSNR plots using various values of local com-
plexity threshold Tlc for various images.
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histogram bin shifting using left bin PEl as -1 and right bin PEr as 0.
Finally, the performances of the two techniques in this chapter are compared.

PSNR values between the cover images and the corresponding marked images
for these two techniques are plotted in figure 5.10 for various payload sizes. The
legend as ’Selected Context’ refers to the reversible data hiding technique with
selected directional context based prediction using 3× 3 neighborhood (Section
5.1). The legend as ’Improved Gradient’ refers to the reversible data hiding
technique with an improved gradient based prediction using 5×5 neighborhood.
In both the cases, ’-1’ as part of the legend refers to the technique with adaptive
histogram bin shifting using left bin PEl as -1 and right bin PEr as 0. Similarly,
’0’ as part of the legend refers to the technique with adaptive histogram bin
shifting using left bin PEl as 0 and right bin PEr as 1. It can be observed
from the plots in figure 5.10 that the reversible data hiding technique with an
improved gradient based prediction performs better than the technique with 3×3
neighborhood.

The marked images as per the proposed reversible data hiding scheme for
various payload size are presented in figure 5.11.

5.3 Summary

In this chapter, two novel reversible data hiding techniques are proposed. These
two techniques differ in how a pixel value is predicted. The first of these two
techniques is based on selected directional context based prediction, where diver-
sities and averages of pixel value pairs select the directions. A context based on
3× 3 neighborhood of a pixel is considered for predicting a pixel value. Integer
average of pair of neighborhood values in a direction is used to predict the pixel
value in the concerned directional context. The diversities between the neighbor-
hood pixel values and the predicted values in four directions (horizontal, vertical,
diagonal, and anti-diagonal) are used to select a set of directional contexts. The
directions with low diversities are selected. The integer average of the predicted
values in the selected directional contexts determines the final predicted value for
a pixel. The second technique is based on an improved gradient estimation. A
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Figure 5.9: Comparison of PSNR values between the cover images and the marked
images with various payload sizes among several reversible data hiding techniques
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Figure 5.10: Performance comparison between the proposed reversible data hid-
ing techniques in Section 5.1 and Section 5.2
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Figure 5.11: Results of the Improved Gradient based reversible data hiding
scheme for various test images (row-wise). Columns from left to right: Original
image, marked images with 5000 bits, 10000 bits, 15000 bits and 20000 bits
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novel gradient estimation is proposed using 5×5 neighborhood. The pixel predic-
tion strategy uses the new gradient estimation. Basically, the estimated gradient
values are used to select the directions of linear predictors.

An adaptive prediction error histogram bin shifting strategy is introduced in
this chapter for embedding of data bits in the prediction error of a pixel. Both
of the proposed reversible data hiding techniques use this embedding strategy.
According to this strategy, either 1 bit or 2 bits of data are embedded in the
prediction error of a pixel based on local complexity of the pixel. Increment in
local complexity threshold value helps in achieving higher embedding capacity.
Experiments are conducted by embedding data bits in pixels belonging to a pair
of prediction error histogram bins. Experiments reveal that significant difference
is not observed for the selection of histogram bin pair as either (-1, 0) or (0, 1).

It is to be noted that the proposed reversible data hiding technique, as well
as other reversible data hiding techniques in the literature, are fragile in nature.
These techniques are not robust at all against any kind of tampering of the
marked image. Hence, experiments demonstrating the robustness analysis of the
proposed techniques have not been carried out. Normally, these fragile reversible
data hiding techniques are designed for ensuring the integrity of an image.
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Chapter 6

Reversible Data Hiding Using
Multiple Predictors

Literature of prediction error expansion based reversible data hiding techniques
is full of various pixel prediction strategies. Researchers have put considerable
efforts to come up with good pixel prediction schemes. A good pixel prediction
scheme leads to a good reversible data hiding technique. Several of these pre-
diction schemes predict a pixel value using the values of its neighboring pixels.
Either simple computation (such as average [69] and weighted median [91]) or gra-
dient estimation [55] [62] involving the neighboring pixel values predict the center
pixel value. Two such schemes have also been proposed in Chapter 5. There also
exist reference pixel based prediction schemes [118] [119]. Two such schemes have
also been proposed in Chapter 3 and Chapter 4. But the question arises whether
a single pixel prediction strategy provides good prediction accuracy in different
neighborhood contexts. Assumption here is that such pixel predictor does not
exist to provide accurate prediction in varied neighborhood contexts. Therefore,
multi-predictor strategies combining the outcomes of multiple predictors also ex-
ist in literature [128] and [127]. In this chapter, performances of several existing
predictors (including few of the proposed predictors) are examined in the light of
varied neighborhood contexts in an image. Experimental observations lead to a
conclusion that there does not exist any single good predictor for varied neighbor-
hood contexts. This conclusion strengthens the need of a multi-predictor strategy.
Several simple strategies for combining the outcomes of multiple predictors are
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experimentally investigated. Like the techniques in Chapter 5, an adaptive pre-
diction error histogram bin shifting method is adopted for this task.

The organization of this chapter is mentioned here. Performances of multiple
predictors in the context of varied neighborhood contexts in images are investi-
gated in Section 6.1. Multiple simple strategies for combining the outcomes of
multiple predictors are discussed in Section 6.2. Embedding and Extraction pro-
cesses are mentioned in Section 6.3. Experimental results are discussed in Section
6.4. The summary of contributions in this chapter is presented in Section 6.5.

6.1 Performance Comparison of Pixel Predic-
tors

Several pixel prediction strategies exist in literature in the context of prediction-
error expansion or histogram bin shifting based reversible data hiding. Perfor-
mances of sixteen such predictors are investigated for predicting a pixel value.
These sixteen predictors are listed here. The first nine of these predictors use
simple computation involving few of the neighborhood pixels. These are:

1. Median Edge Detector (MED) predictor [23], which considers the presence
of an edge either at the top or at the left of a pixel.

2. Rhombus Average (RA) predictor [69], which is a simple average of 4-
neighbors of a pixel.

3. Improved Rhombus (IR) [74], which considers the average of either two
vertical neighbors, two horizontal neighbors or 4-neighbors in a pixel.

4. Selected directional context (SDC) based predictor using 8-neighborhood of
a pixel (Section 5.1.1).

5. Average of the pixel values in 4-neighborhood (AV) as it is computed in
[70].
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6.1 Performance Comparison of Pixel Predictors

6. Predictor based on horizontal grouping (HG) using a weighted average of
six neighboring pixels (top-left, top, top-right, bottom-left, bottom, and
bottom-right neighbors) [163].

7. Median of the pixel values (ME) in the 8-neighborhood of a pixel.

8. Maximum (MAX) pixel value among top, left and top-left neighbors [146].

9. Minimum (MIN) pixel value among top, left and top-left neighbors [146].

Similarly, several gradient based predictors are also used for the experiment
here. These gradient based predictors vary in the estimation of gradients and in
the neighborhood being considered. These gradient based predictors are listed as
following:

10. Gradient Adjusted Predictor (GAP) [61]

11. Simplified Gradient Adjusted Predictor (SGAP) [58]

12. Gradient Based Selective Weighting (GBSW) [62]

13. Extended Gradient Based Selective Weighting (EGBSW) [25]

14. Improved Gradient Based Selective Weighting (IGBSW) (Section 5.2.2)

15. Accurate Gradient Selective Prediction (AGSP) [127]

16. Threshold Controlled Gradient Adaptive Planar Prediction (TGAPP)[63]

The above predictors are applied to predict pixel values in the set of eight
test images in figure 1.4. For each of the above predictors, pixels in the few rows
and columns at the image boundary are not predicted due to unavailability of the
complete set of neighborhood pixels. For example, in the case of MED predictor
[23], pixels at the top most row and left most column are left out. In the case
of IGBSW predictor in Section 5.2.2, numbers of rows being left out from upper
and lower sides at the boundary are 1 and 3, respectively. Similarly, number of
columns being left out from left and right sides at the boundary are 1 and 3,
respectively, in IGBSW. Finally, a set of pixels can be identified, where all of
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6.1 Performance Comparison of Pixel Predictors

the above predictors are applied. This common set of pixels for all predictors
excludes 2 rows and 3 rows from the upper and the lower sides at the boundary,
respectively. Similarly, this common set of pixels for all predictors excludes 2
columns and 3 columns from the left and right sides at the image boundary,
respectively. Three rows at the lower side and three columns at the right side
are excluded because of IGBSW predictor. Similarly, the exclusions of top two
rows and left most two columns are required due to the neighborhood of AGSP
predictor [127].

For each pixel in the common set of considered pixels, sixteen prediction errors
are obtained by using the above predictors. A prediction scheme is said to produce
the best performance for a pixel if the prediction scheme causes the lowest value
among the absolute values of sixteen prediction errors. More than one prediction
scheme may produce the lowest absolute value of the prediction error for a pixel.
In such cases, multiple such prediction schemes are noted down. Thus for each
predictor, percentage of pixels (among total number of considered pixels), where
the predictor performs the best, is estimated. These image-wise percentage values
are tabulated in tables 6.1 and 6.2 for each predictor. These values are presented
in two tables due to space constraint. As an example, in case of Airplane image,
MED predictor produces the best performance among all predictors in 25.36%
of the considered pixels. Similarly, in case of Boat image, IGBSW predictor
produces the best performance among all predictors in 16.26% of the considered
pixels. For each test image, the best performing predictor is highlighted in bold
font. Here, performance of a predictor is judged based on the percentage of pixels
in which it causes the best performance. For example, the selected directional
context (SDC) with 8-neighborhood of a pixel performs the best among all sixteen
comparing predictors in the case of Boat image. But the performance of the
improved rhombus (IR) predictor is also not far behind to the performance of
the SDC predictor. Moreover, IR predictor performs the best for the Airplane
image. Hence, there does not exist a single predictor which performs the best for
all images.

Average of the percentages of pixels in which a predictor performs the best, is
computed over all images. These average percentage values are reported at the
last row of tables 6.1 and 6.2. It can be seen that SDC predictor performs the
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6.1 Performance Comparison of Pixel Predictors

Table 6.1: Percentage of pixels for which each predictor produces the lowest
absolute value of the prediction error

Image MED RA IR SDC AV HG ME MAX
Lena 18.74 20.45 23.84 24.18 10.12 21.27 21.29 18.31
Lake 13.66 13.33 16.59 18.83 7.53 17.67 16.36 17.4
Boat 15.15 13.64 19.65 19.97 7.31 18.59 15.4 16.98

Mandrill 13.11 9.84 17.2 16.42 6.23 10.6 9.71 14.55
Elaine 13.07 12.71 15.28 18.55 7.18 15.96 15.35 18.71

Airplane 25.36 27.01 29.76 28.84 13.39 26.52 28.08 22.65
Peppers 13.05 13.49 16.28 20.37 6.99 21.02 18.81 18.35
Tiffany 20.62 21.16 25.07 26.36 10.29 22.28 22.84 21.22
Average 16.6 16.45 20.46 21.69 8.63 19.24 18.48 18.52

best in 21.69% of the considered pixels. This is the best performance among the
performances of all sixteen predictors. But this performance cannot be considered
as impressive because it provides the best performance in only 21.69% of the
considered pixels. There exist another 78.31% of pixels where other predictors
perform better than SDC predictor. This observation highlights the need of using
multiple predictors.

But a question arises on how many predictors can be considered in such a
multi-predictor scheme. More importantly, there is a need to identify a set of
those good predictors which can be used in the multi-predictor scheme. To find
an answer for this question, an average of these average percentage values over
all sixteen predictors is estimated as 17.32%. The predictors which perform bet-
ter than this average performance (i.e., whose average percentage is higher than
17.32%), are finally considered for a multi-predictor scheme. Therefore, the se-
lected predictors are IR, SDC, HG, ME, MAX, MIN, EGBSW, IGBSW, AGSP,
and TGAPP. The average percentage values for each of these selected predictors
are highlighted using bold font in last row (for the average percentages) of the
tables 6.1 and 6.2. Other six predictors are not considered in the context of a
multi-predictor scheme as their performances are worse than the average perfor-
mance of all sixteen predictors. Using the set of selected predictors, a multi-
predictor scheme is developed. Subsequent sections in this chapter consider only

123



6.2 Strategies for Combining Multiple Predicted Values

Table 6.2: Percentage of pixels for which each predictor produces the lowest
absolute value of the prediction error (continuation of table 6.1)

Image MIN GAP
SG
AP

GB
SW

EGB
SW

IGB
SW

AG
SP

TGA
PP

Lena 17.87 15.39 18.45 18.52 21.71 22.08 18.82 19.4
Lake 17.6 11.53 13.69 16.06 14.75 15.35 17.28 15.12
Boat 17.34 10.60 13.00 14.71 15.78 16.26 16.02 18.1

Mandrill 14.79 9.42 11.15 10.75 11.37 12.65 11.03 15.4
Elaine 18.25 11.41 13.46 14.61 13.55 14.16 16.14 15.63

Airplane 20.5 23.41 24.4 21.47 27.94 28.59 23.13 24.17
Peppers 18.42 12.08 13.90 17.79 16.09 16.33 19.19 14.89
Tiffany 19.62 17.72 19.57 19.52 23.28 24.1 20.4 21.28
Average 18.05 13.94 15.95 16.68 18.06 18.69 17.75 17.99

the selected set of predictors.

6.2 Strategies for Combining Multiple Pre-
dicted Values

This section presents several ways of combining multiple predicted values in a
multi-predictor scheme. Few such strategies can be found in the literature of
reversible data hiding. The maximum and the minimum of a set of predicted
values are considered in 1st round and in 2nd round, respectively, of the multi-
predictor scheme in [128]. In [127], a pixel value is compared with the maximum
and the minimum of several predicted values. Any of the following four cases may
arise for a pixel: (1) If the maximum and the minimum of the predicted values are
same (i.e., all predicted values are same), the maximum (or the minimum) value
is considered as the final predicted value for the pixel. As all predicted values
are same, a single predicted value can easily be obtained for this pixel in both
embedding and extraction phases. (2) If the pixel value is greater than or equal to
the maximum of the predicted values, the maximum predicted value is considered
as the final predicted value for the pixel. Embedding of data bits in this pixel
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causes the marked pixel value to remain as greater than or equal to the maximum
predicted value. (3) On the contrary, if the pixel value is lesser than or equal to
the minimum of the predicted values, the minimum predicted value is considered
as the final predicted value for the pixel. Embedding of data bits in this pixel
causes the marked pixel value to remain as lesser than or equal to the minimum
predicted value. In both cases (2) and (3), obtaining the final predicted value is
easy as the original pixel value and the marked pixel value remain at the same
side of the maximum and the minimum of the predicted values. (4) If the pixel
value falls in between the maximum and the minimum of the predicted values,
final predicted value is not decided for the pixel. Hence, embedding of data bits
is not carried out in this pixel. This is because the directions of the original
pixel value and the marked pixel value with respect to both of the maximum and
the minimum predicted values may not remain the same. Hence, obtaining the
same predicted value for both embedding and extraction may not be possible for
every pixel. Due to the occurrence of case (4), embedding capacity of the multi-
predictor scheme [127] is less. Embedding may not be possible in many of the
pixels. This condition arises for more number of pixels if the difference between
the maximum and the minimum of the predicted values is high. Moreover, a high
value for the said difference may be observed if number of predictors is also high.

Rather, several simple strategies for combing multiple predicted values are dis-
cussed in this section. Let p predictors produce predicted values as x′

1,x
′
2, . . . ,x

′
p.

Then, these predicted values can be combined in one of the following ways:

• Minimum of the predicted values:

x
′
min = x

′
i, where x

′
i ≤ x

′
j , for all values of j from 1 to p (6.1)

• Maximum of the predicted values

x
′
max = x

′
i, where x

′
i ≥ x

′
j , for all values of j from 1 to p (6.2)

• Average of the predicted values

x
′
mean1 = 1

p

p∑
i=1

x
′
i (6.3)
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• Average of the maximum and the minimum values

x
′
mean2 = x

′
max +x

′
min

2 (6.4)

• Median of the predicted values: To compute the median of a set of pre-
dicted values x′

1,x
′
2, . . . ,x

′
p, these values are sorted in ascending order as

x
′
sort1 ,x

′
sort2 , . . . ,x

′
sortp

, where x′
sort1 ≤ x

′
sort2 ≤ . . . ≤ x

′
sortp

. Then, the me-
dian is computed as:

x
′
median =median(x

′
sort1 ,x

′
sort2 , . . . ,x

′
sortp

)

= xsort p+1
2

if p is odd

=
xsort p

2
+xsort p

2 +1

2 if p is even

(6.5)

It is to be noted that the predicted values must be same during embedding
and extraction processes. As per the above discussion, the final predicted values
in a multi-predictor scheme depends on the set of p predicted values. Hence, each
of these p predictors must generate the same predicted value for embedding and
extraction processes. It is possible if the same set of neighborhood pixel values
are available during embedding and extraction. But as embedding data bits in a
pixel changes the pixel value, original cover pixel values for all neighboring pixels
cannot be availed during extraction. Therefore, following strategy is adopted to
maintain the same set of neighboring pixel values for embedding and extraction.
Embedding is performed in a raster scan order traversal of image pixels. Hence,
the pixels, which have been visited prior to the visit of current pixel (m,n), already
contain the marked values. Remaining neighborhood pixels are not visited till
then. Hence, these pixels contain the original values. Similarly, the extraction
of data bits and the restoration of the original pixel values are performed in the
opposite order of raster scan traversal. Hence, during extraction process, the
later set of pixels have been already traversed and their original values have been
restored back. The first set of neighboring pixels still contain the marked values.
Thus, for any of the p prediction algorithms, the same context values are available
during both embedding and extraction.
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6.3 Embedding and Extraction

The proposed reversible data hiding technique uses the same adaptive prediction
error histogram bin shifting method as with the previously described reversible
data hiding technique (Section 5.1) for embedding of either 1 bit or 2 bits of data
in the prediction error of a pixel. Section 5.1.2 can be referred here for the detailed
description of this embedding method. Even the estimation of local complexity
and handling of auxiliary information are carried out exactly the same way as
those of the previous technique in Section 5.1.

Similarly, extraction of data bits and restoration of cover image pixel values
are carried out using the method as described in Section 5.1.3.

6.4 Experimental Results

This section presents experimental results based on the multi-predictor scheme us-
ing adaptive prediction error histogram bin shifting strategy. Selection of ten pre-
dictors (IR, SDC, HG, ME, MAX, MIN, EGBSW, IGBSW, AGSP, and TGAPP)
for the proposed multi-predictor scheme has already been explained in Section
6.1. Five simple strategies for combining the outcomes of these ten predictors
are experimentally studied. Performances of these multi-predictor strategies are
tested using the standard test images in figure 1.4. The performances are evalu-
ated using the peak signal-to-noise ratio (PSNR) between the cover images and
the corresponding marked images by varying the payload size. These PSNR val-
ues for various multi-predictor strategies are plotted in figure 6.1 against various
payload sizes for each test image. Normally, in a prediction error histogram of
an image, tall bins are observed in zero-th bin and in its nearby bins. So, exper-
iments are carried out by varying the two pairs of histogram bins: (i) histogram
bins corresponding to prediction error as either -1 or 0 (PEl =−1 and PEr = 0),
and (ii) histogram bins corresponding to prediction error as either 0 or 1 (PEl = 0
and PEr = 1). In these plots, the legends for combination strategies with a ’(0)’
refer to the concerned multi-predictor combination schemes with adaptive his-
togram bin shifting using left bin PEl as 0 and right bin PEr as 1. Similarly,
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the legends for combination strategies with a ’(-1)’ refer to the concerned multi-
predictor combination strategies with adaptive histogram bin shifting using left
bin PEl as -1 and right bin PEr as 0. Moreover, the reported results in these
plots correspond to single bit embedding in a pixel (Tlc = 0). It can be observed
from the plots in figure 6.1 that the multi-predictor scheme using median of the
predicted values produces better performance as compared against other combi-
nation strategies of multiple predicted values. Therefore, subsequent discussions
in this section refer to the median based combination strategy (equation 6.5) for
the multi-predictor scheme.

Additionally, for any multi-predictor combination strategy, significant differ-
ence in results cannot be noticed from the plots in figure 6.1 between the two
experimental cases with pairs of histogram bins corresponding to (i) prediction
error as either -1 or 0 (PEl =−1 and PEr = 0), and (ii) prediction error as either
0 or 1 (PEl = 0 and PEr = 1). This observation is further strengthened by the
reported embedding capacities (in number of bits) for these two cases in table
6.3 and table 6.4. These embedding capacities in table 6.3 are for single embed-
ding (Tlc = 0). Significant difference in the embedding capacities is not observed
for the above two selections of histogram bin pairs. Peak signal-to-noise ratio
(PSNR) values (at the highest embedding capacity for each image) between the
cover images and the corresponding marked images are also similar in these two
cases for each image. Similarly, embedding capacities in above two experimental
cases are reported in table 6.4 for adaptive embedding (with Tlc = 16) for each
image. The adaptive embedding is carried out by considering the local complexity
threshold Tlc = 16. Again, there is not present any significant difference either in
embedding capacities or in PSNR values for adaptive embedding too irrespective
of the selection of histogram bin pairs as (-1, 0) or (0, 1). Though embedding
capacities for adaptive embedding (Tlc = 16) are higher than those with single
embedding (Tlc = 0). It justifies the use of adaptive embedding (either 1 bit or
2 bits in a pixel) over the use of single bit embedding in a pixel. But significant
difference in performance is not observed between the histogram bin pairs being
(-1, 0) or (0, 1). Hence, anyone pair among these two pairs of histogram bins can
be considered for embedding.
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Figure 6.1: Performances of various combination strategies for the multi-predictor
scheme
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Table 6.3: Achievable embedding capacities and corresponding PSNR values with
histogram bin pairs (-1, 0) and (0, 1) using single bit embedding (Tlc = 0) for various
test images.

Pair of bins (-1, 0) (0, 1)

Image Tlc
Embedding
Capacity

PSNR
Embedding
Capacity

PSNR

Lena 0 66066 48.81 64142 48.80
Lake 0 41064 48.58 40633 48.58
Boat 0 42785 48.60 42165 48.59

Mandrill 0 21329 48.40 21115 48.40
Elaine 0 36722 48.55 36863 48.55

Airplane 0 93623 49.14 91034 49.11
Peppers 0 47459 48.64 47171 48.64
Tiffany 0 54468 48.97 53628 48.96

Table 6.4: Achievable embedding capacities and corresponding PSNR values with
histogram bin pairs (-1, 0) and (0, 1) using adaptive embedding (Tlc = 16) for
various test images.

Pair of bins (-1, 0) (0, 1)

Image Tlc
Embedding
Capacity

PSNR
Embedding
Capacity

PSNR

Lena 16 103995 41.59 100786 41.56
Lake 16 60185 42.98 59605 42.97
Boat 16 60372 42.86 59390 42.84

Mandrill 16 25517 45.56 25359 45.56
Elaine 16 50371 43.43 50510 43.44

Airplane 16 162733 41.44 157949 41.39
Peppers 16 71684 41.72 70986 41.71
Tiffany 16 89327 41.58 87125 41.52
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The experiments are carried out by varying the value of local complexity
threshold Tlc as 0,1,2,4,8, and 16. The value of Tlc being 0 indicates a single bit
embedding. Higher the value of Tlc is, more data can be embedded. PSNR values
between the cover images and the corresponding marked images are plotted in
figure 6.2 with various payload sizes for each test image. It can be seen from
these plots that PSNR values are the highest in case of Tlc = 0, i.e., single embed-
ding. With increase in the value of Tlc, the PSNR values decrease. But higher
embedding capacity is achieved with higher value of Tlc. These plots in figure 6.2
correspond to the experiments using (-1, 0) histogram bin pairs. Similar trend
in decrease of PSNR values and increase of embedding capacities with increased
local complexity threshold value Tlc can be observed using (0, 1) histogram bin
pairs too.

The marked images as per the proposed reversible data hiding technique for
various payload sizes are presented in figure 6.3. These marked images corre-
spond to single embedding (i.e., Tlc = 0 ). Finally, performance of the proposed
multi-predictor based reversible data hiding technique using median based predic-
tor combination strategy is compared against the performances of several existing
methods like EGBSW [25], improved MED and improved SGAP [58], rhombus av-
erage [131], higher-significant bit-plane [49], Delaunay triangulation [119], B-tree
triangular decomposition (Chapter 3) and random distribution of reference pixels
(Chapter 4) based reversible data hiding techniques. PSNR values between the
cover and the marked images for various payload sizes have been shown in figure
6.4 for all the comparing methods. Reported PSNR values of the proposed multi-
predictor scheme in these plots correspond to single embedding (i.e., Tlc = 0). It
can be observed that the proposed method outperforms the existing comparing
methods. It can also be observed that the performance of the proposed method in
both experimental cases - (i) histogram bins correspond to prediction error as -1
and 0 (PEl =−1 and PEr = 0), and (ii) histogram bins correspond to prediction
error as 0 and 1 (PEl = 0 and PEr = 1) - are similar. In these plots (figure 6.4,
the legend ’Median-all-(0)’ refers to the proposed median based multi-predictor
scheme with adaptive histogram bin shifting using left bin PEl as 0 and right bin
PEr as 1. Similarly, the legend ’Median-all-(-1)’ refers to the proposed median
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Figure 6.2: Embedding capacity versus PSNR plots using various values of local
complexity threshold Tlc for various images.

132



6.5 Summary

based multi-predictor scheme with adaptive histogram bin shifting using left bin
PEl as -1 and right bin PEr as 0.

Finally, the performance of the proposed multi-predictor reversible data hiding
technique with median based combination strategy is compared with the perfor-
mances of the two reversible data hiding techniques in previous chapter (Chapter
5). PSNR values between the cover images and the corresponding marked images
for these three techniques (with single embedding) are plotted in figure 6.5 for
various payload sizes. The legend as ’Selected Context’ refers to the reversible
data hiding technique with selected directional context based prediction using
3× 3 neighborhood (Section 5.1). The legend as ’Improved Gradient’ refers to
the reversible data hiding technique with an improved gradient based prediction
using 5× 5 neighborhood (Section 5.2). The legend as ’Median-all’ refers to the
proposed reversible data hiding technique with multi-predictor scheme using me-
dian based combination strategy as mentioned in this chapter. For each of these
techniques, ’-1’ as part of the legend refers to the technique with adaptive his-
togram bin shifting using left bin PEl as -1 and right bin PEr as 0. Similarly, ’0’
as part of the legend refers to the technique with adaptive histogram bin shifting
using left bin PEl as 0 and right bin PEr as 1. It can be observed from the
plots in figure 6.5 that the reversible data hiding technique with multi-predictor
scheme using median as combination strategy performs better than the reversible
data hiding technique using selected directional context with 3×3 neighborhood
(Section 5.1). Although performance of the reversible data hiding technique using
improved gradient based prediction (Section 5.2) is comparable with that of the
proposed multi-predictor based reversible data hiding technique with median as
combination strategy.

6.5 Summary

Major contributions of this chapter are manifold. At first, existences of several
prediction strategies in the context of prediction error expansion/histogram bin
shifting based reversible data hiding technique are recognized. Performance anal-
ysis of sixteen such predictors concludes that a single predictor does not always
generate the lowest absolute value for prediction error. Hence, it justifies the need
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6.5 Summary

Figure 6.3: Results of the proposed multi-predictor scheme based reversible data
hiding scheme for various test images (row-wise). Columns from left to right:
Original image, marked images with 5000 bits, 10000 bits, 15000 bits and 20000
bits
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Figure 6.4: Comparison of PSNR values between the cover images and the marked
images with various payload sizes among several reversible data hiding techniques
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Figure 6.5: Performance comparison of the proposed multi-predictor based re-
versible data hiding technique with the techniques using selected directional con-
text with 3×3 neighborhood (Section 5.1) and improved gradient based prediction
(Section 5.2)
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of using multiple predictors in the context of reversible data hiding. Moreover,
the performance analysis points to ten of these sixteen predictors as their perfor-
mances are better than the average performance of all sixteen predictors. Then
these ten predictors (being denoted as IR, SDC, HG, ME, MAX, MIN, EGBSW,
IGBSW, AGSP, and TGAPP) are combined in a multi-predictor based reversible
data hiding technique.

Secondly, several simple strategies for combining multiple predictors are ex-
perimentally studied. The median of ten predicted values for selected predictors
exhibits better performance as compared against other combination strategies for
multiple predictors. Hence, the proposed reversible data hiding technique us-
ing median based multi-predictor strategy performs better than several existing
reversible data hiding techniques.

Similar to the reversible data hiding techniques in Chapter 5, an adaptive
prediction error histogram bin shifting strategy is used in the proposed multi-
predictor based reversible data hiding technique for embedding of data bits in
the prediction error of a pixel. According to this strategy, either 1 bit or 2 bits of
data are embedded in the prediction error of a pixel based on local complexity of
the pixel. Increase in local complexity threshold value helps in achieving higher
embedding capacity. Experiments are conducted by embedding data bits in pixels
belonging to two pairs of prediction error histogram bins. Experiments reveal that
significant difference in performance is not observed for the selection of histogram
bin pair as either (-1, 0) or (0, 1).

It is to be noted that the proposed reversible data hiding technique, as well as
other reversible data hiding techniques in literature, are fragile in nature. These
techniques are not robust at all against any kind of tampering of the marked
image. Hence, experiments demonstrating the robustness analysis of the proposed
technique have not been carried out. This technique can be used in satellite,
medical, military and banking applications where recovery of the original images
are very important. Normally, these fragile reversible data hiding techniques are
designed for ensuring the integrity of an image.
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Chapter 7

Application: Prediction Error
Expansion Based Reversible Data
Hiding for Detecting Tampered
Cheque Image

Reversible data hiding is useful in an application where recovery of the original
cover image is required along with extraction of the hidden data. Being fragile
in nature, such a technique is mainly used for ensuring integrity of the image.
Moreover, recovery of the cover image helps in accurate automated analysis of
the original cover image. Hence, reversible data hiding technique is used to detect
whether a bank check image has been tampered or not. Few such attempts can
be found in [11, 12] in the context of an image based cheque clearing system,
namely cheque truncation system (CTS). In [11], a basic difference expansion
based reversible data hiding technique [28] is applied to ensure integrity of a
bank cheque image. Overflow/underflow problem of the difference expansion
based technique is addressed in [12] by suggesting a particular way of pairing of
pixel values.

Traditionally, prediction error expansion (PEE) based reversible data hiding
techniques perform better than difference expansion based techniques. Few such
PEE based techniques are proposed in previous chapters of this thesis. Hence,
in this chapter, the proposed reversible data hiding techniques (in Chapters 4, 5
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and 6) are applied on a bank cheque image for ensuring integrity of the cheque
image. Remainder of this chapter is organized as following: A brief introduction
about cheque truncation system (CTS) is presented in Section 7.1. A method for
detecting tampered cheque images using PEE based reversible data hiding tech-
niques is explored in Section 7.2. Experimental results are presented in Section
7.3. Finally, this work is summarized in Section 7.4.

7.1 Brief Introduction of Cheque Truncation
System

Cheque truncation system (CTS) [164] is an image based cheque clearing envi-
ronment involving multiple banks. This system of image based cheque clearing
is prevalent in India. A broad overview of CTS environment for cheque clearing
is presented in this section. Before proceeding further, let few related terminolo-
gies be clarified. A presenting bank refers to a bank where a customer presents
the physical cheque leaf with a request for clearing the cheque. A drawee bank
refers to a bank where the issuer of the cheque maintains her account. A clearing
house refers to the intermediary which facilitates the cheque clearing among the
presenting bank and the drawee bank. Now, the steps of cheque clearing in CTS
environment are presented as following:

1. A customer presents a physical cheque leaf at a counter of the presenting
bank.

2. At the presenting bank, the physical cheque leaf is scanned to capture its
image in gray scale. Movement of the physical cheque is truncated at the
presenting bank. Hence, this system is termed as cheque truncation system.

3. The scanned cheque image is sent to the clearing house interface at the
presenting bank.

4. Through the clearing house interface, the cheque image is forwarded to the
clearing house. Subsequently, the image is forwarded to the appropriate
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drawee bank, where the signature of the issuer and sufficiency of the amount
in the issuer’s bank account are verified.

5. Upon successful verification of the above information, the account of the
issuer is debited and the positive response is returned to the presenting
bank through the clearing house.

6. Once the presenting bank receives the positive response from the drawee
bank, the customer is paid the amount (or her account is credited).

In CTS environment, communication of a cheque image from the clearing
house interface of the presenting bank to the drawee bank (through the clearing
house) is secured using a public key-enabled infrastructure. But it lacks end-to-
end security from the scanner at the presenting bank to the verification module
at the payee bank. Hence, an unencrypted original cheque image is available at
various processing nodes at the presenting bank before it is put to the clearing
house interface. This leaves the cheque image susceptible to image tampering
attacks. One malicious insider can edit the image to alter the payee name and/or
to inflate the amount. Such alteration in the cheque image can be detected at
the drawee bank through a fragile and reversible data hiding technique. A secret
data is inserted into the cheque image at the presenting bank at the time of
scanning the physical cheque. The drawee bank extracts the secret data. If the
extracted data matches perfectly with the inserted data, then the cheque image
at the drawee bank can be considered as genuine. Otherwise, the cheque image
can be considered as tampered. Moreover, reversible nature of the data hiding
technique ensures restoration of the original cheque image at the drawee bank.
Automated analysis of the cheque image for detecting the security features of a
cheque leaf is possible in such a scenario.

Ensuring of integrity of a cheque image based on reversible data hiding is also
essential for another use case. In this use case, a customer takes a photo of the
physical cheque leaf using her mobile and sends it to her bank with a request
for clearing. Moreover, the issuance of a physical cheque can be abolished and
a customer can download an image of a cheque from her online banking service
[165]. In this case too, ensuring integrity of the cheque image is paramount.
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7.2 Prediction Error Expansion Based Re-
versible Data Hiding Techniques for Detect-
ing Cheque Image Tampering

Reversible data hiding techniques, which are traditionally fragile in nature, are
mainly used for ensuring integrity of the original images. Hence, reversible data
hiding techniques can be used for ensuring integrity of the bank cheque images
[11, 12]. Several novel prediction error expansion/shifting based reversible data
hiding techniques have been proposed in the previous chapters of this thesis.
In this section, following of these proposed techniques are applied for detecting
tampered cheque images:

1. Random distribution of reference pixel based reversible data hiding (Chap-
ter 4) with block size 4× 4 and 25% of pixels in an important portion as
reference pixels. This technique is executed using a threshold on prediction
error TP E as 1.

2. Reversible data hiding with selected directional context based prediction
using eight neighborhood (Section 5.1) with prediction error histogram bins
having prediction errors as either -1 or 0 for embedding.

3. Reversible data hiding with selected directional context based prediction
using improved gradient (Section 5.2) with prediction error histogram bins
having prediction errors as either -1 or 0 for embedding.

4. Reversible data hiding using multiple predictors (Chapter 6) with prediction
error histogram bins having prediction errors as either -1 or 0 for embedding.

Moreover, these above techniques are used with single bit embedding (i.e.,
local complexity threshold Tlc = 0). Increasing embedding capacity is not an ob-
jective for this task. Hence, single bit embedding is carried out for the above
listed reversible data hiding techniques. In this work, similar to the techniques in
[11, 12], an attempt is made to detect tampering of seven important portions of a
cheque image. These seven important portions contain: (i) date, (ii) payee name,
(iii) legal amount, (iv) courtesy amount, (v) account number, (vi) signature and
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(vii) MICR code. At first, a template based approach is adopted for identifying
these rectangle-shaped important portions. Then, the above proposed reversible
data hiding techniques are applied to embed a secret binary data string to each
of these important portions. An auxiliary data string is generated as part of
embedding, which is also inserted in the pixels of the unimportant portions of
the cheque image. These auxiliary data string carries necessary information for
accurate extraction of inserted secret data and recovery of original pixel values
in the important portions. This embedding of the secret data as well as auxiliary
information is carried out during acquisition of the cheque image from a physical
cheque leaf. At the drawee bank, the embedded secret data is extracted from the
marked cheque image. Accurate extraction of the secret data ensures that the im-
portant portions of the cheque image have not been tampered. Otherwise, it can
be understood by the drawee bank that the important portions of the image have
been tampered. Then, the cheque image is discarded and the drawee bank notifies
the presenting bank about tampering of the presented cheque image. Moreover,
reversible nature of the proposed data hiding techniques ensures restoration of
the original cheque image pixel values at the important portions. This may help
in automated analysis of the cheque image at the drawee bank.

It is to be noted that the important portions in the bank cheque image are
not square in shape. Hence, the proposed B-tree triangular decomposition based
reversible data hiding technique (Chapter 3) has not been applied for ensuring
the integrity of the cheque images.

7.2.1 Template Based Identification of Important Por-
tions

As it has been already discussed above, template based identification of the im-
portant portions is carried out for both of embedding and extraction processes.
A template is conceived as a binary mask of same size of the cheque image. The
locations in the binary mask corresponding to important portions have pixels
with value 1. Other locations in the binary mask denoting unimportant portions
have pixels with value 0. A sample template for the cheque image in figure 7.1 is
presented in figure 7.2.
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Figure 7.1: An original cheque image

Every bank may not follow the exact same placement of above mentioned
important portions in its cheque. Therefore, different templates are used for
different banks for identifying these important regions. For example, another
template for the cheque image in figure 7.3 is presented in figure 7.4.

7.2.2 Embedding

Embedding process of the secret data into the cheque image is described in this
section. This process comprises of following steps:

1. Each rectangular important portion is treated as an image. The data bits
are inserted into the prediction errors in the pixels of important portions
based on the corresponding embedding procedures for each of the above
listed reversible data hiding techniques. Prediction and embedding proce-
dures are carried out based on the procedures mentioned in the correspond-
ing chapters of this thesis. Let maximum Ni bits can be embedded in the
i-th important portion of a cheque image using a reversible data hiding
technique. Then, total number of bits being embedded in all seven impor-
tant portions is N = ∑7

i=1Ni. It is to be noted that embedding is carried
out in pixels, where overflow/underflow has not occurred.
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Figure 7.2: Template for the cheque image in figure 7.1

Figure 7.3: An original cheque image
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Figure 7.4: Template for the cheque image in figure 7.3

2. Auxiliary information is required for accurate extraction of the secret data
and restoration of the original pixel values at the important portions of the
image. Details of auxiliary information can be found in Section 3.2.4 and
Section 5.1.2.3. It mainly consists of parameters associated with the pro-
posed reversible data hiding technique and a compressed overflow/underflow
location map. Location of the last embedded pixel is not stored as embed-
ding process covers every pixel in an important portion. Auxiliary informa-
tion is generated from each of the seven important portions. Then, auxiliary
information strings from all of these important portions are concatenated
one after another to derive an overall auxiliary information string. This
auxiliary information is inserted into the pixels of the unimportant regions
of cheque image by following a raster scan ordering of these pixels. Least
significant bit (LSB) substitution method is used to embed the bits of the
auxiliary information in the LSBs of these pixel values. But unlike the
descriptions in Section 3.2.4 and Section 5.1.2.3, the actual LSBs of these
pixels are not appended at the end of the secret data. This is because the
length of the derived auxiliary information is relatively high as compared to
the achieved embedding capacity in these important portions. As a result,
the actual LSBs of these pixels in the unimportant portions are lost forever.
Hence, recovery of the original pixel values in the unimportant portions is
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not possible.

7.2.3 Extraction

Initially, the auxiliary information is extracted from the LSBs of the pixel val-
ues in unimportant portions by visiting them in raster scan sequence until the
entire auxiliary information is extracted. Auxiliary information for each of seven
important portions are segregated. Using the auxiliary information for an impor-
tant portion, the secret data bits are extracted from the pixels in the important
portion. Simultaneously, the original pixel values at those important portions
are restored back. The extraction process of each of the listed reversible data
hiding schemes are described in the corresponding chapters of this thesis. Only
exception, in this context, is that the pixel values at the unimportant regions can
not be obtained back.

The extracted secret data is compared with the embedded secret data. If it
is extracted accurately, i.e., without an error in a single bit, it is concluded that
the important portions of the cheque image have not been tampered. Otherwise,
it is concluded that at least one important portion in the cheque image has been
tampered. This conclusion is possible because modification of a marked image
destroys the hidden data as per a fragile data hiding technique.

7.3 Experimental Results

Ten bank cheque images are used in the reported experiments in this section.
These cheque images are shown in figure 7.5. Each image is of size 668×1537.

To compare the performances of the used reversible data hiding techniques (as
listed in Section 7.2), each of these techniques is applied to embed a secret data
into each of the test cheque images. Length of the embedded secret bit string is
equal to the achievable embedding capacity of the concerned reversible data hiding
technique on each cheque image. In each case, a randomly generated secret bit
string having the necessary length is used as secret data. In each case, maximum
possible amount of secret data is embedded in order to cover the entirety of seven

146



7.3 Experimental Results

important portions in the cheque image. Four marked cheque images for the
original image in figure 7.1 are presented in figure 7.6 for the applied reversible
data hiding techniques.

For each test cheque image and each applied reversible data hiding technique, a
secret data of length equaling to the achievable embedding capacity is embedded
in the pixels at the important portions. It is to be noted that pixels, where
underflow/overflow might occur, have been excluded from this embedding process.
Peak signal-to-noise ration (PSNR) between a cover image and its corresponding
marked image is noted for each test cheque image using each of the comparing
prediction error expansion based reversible data hiding techniques. These PSNR
values are presented in table 7.1. Based on the reported PSNR values, it can be
observed that random distribution of reference pixel based reversible data hiding
technique (Chapter 4) performs better than other three comparing techniques
in majority of the cheque images. But it can also be observed based on the
average PSNR values (over 10 test images) that selected directional context using
8-neighborhood based reversible data hiding technique (Section 5.1) also performs
almost as good as random distribution of reference pixel based technique (Chapter
4) on cheque images. Moreover, the lengths of the secret data string for these
cases are also presented in table 7.2. PSNR values signify the similarity between
the original cheque images and their corresponding marked cheque images. Hence,
a reversible data hiding technique, which provides the highest PSNR value (table
7.1), draws the attention here. Length of secret data string is considered to cover
the entirety of seven important portions in each case. Increase the embedding
capacity is not an objective here. Hence, the lengths in table 7.2 are mentioned
just for reporting purpose.

It is also experimentally observed that accurate extraction of the embedded
data string is not possible from a tampered marked image. In order to report these
experiments, several tampered marked images are created from the actual marked
images. For illustration, four such tampered marked images are presented in figure
7.7. These four tampered marked images correspond to the four marked images in
figure 7.6 (one-to-one correspondence). In the top-left image in figure 7.7, payee
name is altered. In the top-right image in figure 7.7, amount is modified. In the
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Table 7.1: PSNR values between a cover image and corresponding marked image
at maximum achievable embedding capacity for the comparing techniques

Image
Random

Distribution
Based

Eight
Neighborhood

Based

Improved
Gradient

Based

Multi
Predictor

Based
Cheque 1 53.54 51.88 50.96 51.11
Cheque 2 53.33 51.85 50.96 51.09
Cheque 3 53.52 52.02 51.02 51.11
Cheque 4 53.50 51.99 51.05 51.15
Cheque 5 51.10 53.12 53.00 53.16
Cheque 6 50.00 52.32 52.11 52.17
Cheque 7 49.95 52.34 52.14 52.21
Cheque 8 53.59 52.10 51.56 51.65
Cheque 9 54.08 52.23 51.46 51.53
Cheque 10 50.49 53.06 53.40 53.41

Average 52.31 52.29 51.77 51.86

bottom-left image in figure 7.7, name and amount are modified. In the bottom-
right image in figure 7.7, name and date are modified. As accurate extraction of
the embedded data is not possible from such images, it can be concluded that
these marked images have been tampered.

7.4 Summary

In this chapter, ensuring integrity of bank cheque image in the context of cheque
truncation system (CTS) is considered as an application of reversible data hiding.
Four prediction error expansion based reversible data hiding techniques (which
are proposed in Chapters 4, 5 and 6) are applied in this context. Similar usage of
these proposed reversible data hiding techniques can be perceived in the context
of mobile cheque deposit and issuance of digital cheque.

Being fragile in nature, these proposed techniques are instrumental in detec-
tion of tampering in the marked cheque images. Moreover, reversibility of these
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Table 7.2: Length of secret data string (achievable embedding capacity) for vari-
ous test images using each comparing techniques

Image
Random

Distribution
Based

Eight
Neighborhood

Based

Improved
Gradient

Based

Multi
Predictor

Based
Cheque 1 30316 283085 81047 72512
Cheque 2 30913 285298 77549 68566
Cheque 3 28114 291425 65086 58438
Cheque 4 31730 286494 74635 65562
Cheque 5 31620 112533 77268 88052
Cheque 6 17958 87995 31194 30170
Cheque 7 13504 79889 23618 23718
Cheque 8 63010 283244 67579 61108
Cheque 9 47509 302003 51867 46470
Cheque 10 74358 102646 131631 121578

Average 36903 211461 68147 63617

techniques restore the original pixel values at the important portions of the cheque
images.

Based on the reported PSNR values, it can be observed that random distribu-
tion of reference pixel based reversible data hiding technique (Chapter 4) performs
better than other three comparing techniques in majority of the cheque images.
But it can also be observed based on the average PSNR values (over 10 test
images) that selected directional context using 8-neighborhood based reversible
data hiding technique (Section 5.1) also performs almost as good as random dis-
tribution of reference pixel based technique (Chapter 4) on cheque images.
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Figure 7.5: Original bank cheque images (Cheques numbered 1 to 10 in row-major
order)
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Figure 7.6: Marked images for cheque image in figure 7.1 using various reversible
data hiding techniques: random distribution of reference pixel based ( top-left),
eight neighborhood based (top-right), improved gradient based (bottom-left), and
multi-predictor based (bottom-right)

Figure 7.7: Tampered images from the marked images in figure 7.6
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Chapter 8

Conclusion and Future Work

In this chapter, concluding remarks are presented on the research works being
presented in the thesis. This chapter is organized in following two sections: A
summary of the contributions of the works in this thesis is presented in Section
8.1. Finally, a few glimpses on future research directions are placed in Section
8.2.

8.1 Summary of Contributions

Reversible data hiding is a special kind of data hiding, where the cover image
can be restored from the marked image along with extraction of the hidden data.
Over past two decades, several reversible data hiding techniques have been in-
troduced by the researchers. Among these techniques, prediction error expansion
based techniques stand out prominently due to their superior performances in
comparison to other genres of reversible data hiding techniques. In a prediction
error expansion based technique, a pixel value is predicted. The prediction error
of a pixel is expanded to embed secret data bits. Scope of the research work,
in this thesis, is prediction error expansion based techniques. Several novel pre-
diction error expansion/prediction error histogram bin shifting based reversible
data hiding techniques are presented in this thesis. A summary of these works is
presented in this section.

Inspired by the works using a set of reference pixels for predicting values of
other pixels (and more specifically, due to the Delaunay triangulation (DT) based
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technique [119]), a novel reversible data hiding technique based on a B-tree trian-
gular decomposition based method is proposed in this work. The original image
is recursively decomposed into a set of right-angled triangles using B-tree trian-
gular decomposition method. Further decomposition of a triangle is stopped if
(i) the difference between the maximum and the minimum pixel values in a tri-
angle (also considering the sides of the triangle) is within a threshold or (ii) the
triangle is very small in size. The triangle division is stored in a B-tree structure.
Finally, values of the pixels, which fall inside or on the three sides of a triangle,
are predicted using the pixel values at the vertices of the triangle as the reference
pixels using an interpolation technique. An adaptive embedding strategy is used
for embedding either 1-bit or 2-bit data into the expanded prediction error of a
pixel based on an estimated local complexity of a triangle. Local complexity of
the pixels in a triangle is approximated by considering the differences among the
vertex pixel values in the triangle. As these vertex pixel values are not modified
during embedding, the same vertex pixel values are available during extraction
phase too. Hence, local complexity of the pixels in a triangle is approximated
using these vertex pixel values. Moreover, the proposed work visits the triangles
(local regions) in the increasing order of their local complexities. Experimental
results demonstrate superiority of the proposed technique (as measured using the
peak signal-to-noise ratio between a cover image and the corresponding marked
image) as compared to several existing techniques, including another reference
pixel based method in [119]. In the reversible data hiding technique in [119], the
reference pixels are obtained by partitioning the image into a set of Delaunay
triangles. These triangles are constructed by following the Delaunay triangula-
tion property, where the circumcircle of a triangle does not include any other
vertex. On the contrary, the proposed B-tree triangular decomposition method
in Chapter 3 partitions the image into a set of triangles based on the homogeneity
of pixel values in the triangle. Hence, the pixel values in such a triangle are more
homogeneous as compared to a Delaunay triangle. This justifies the superior per-
formance of the proposed B-tree triangular decomposition based reversible data
hiding technique as compared to Delaunay triangulation based technique [119].
Moreover, the performance of the proposed technique is also noted by varying the
local complexity threshold in the context of adaptive embedding. The adaptive
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embedding (based on local complexity of a pixel) is useful for embedding large
payload. Single bit embedding can be used for small payload, but it achieves less
distortion as compared to adaptive embedding.

It is further investigated in Chapter 4 whether a structured method (like the
above mentioned B-tree triangular decomposition) can be avoided to decide a set
of reference pixels. In this context, a novel distribution mechanism of reference
pixels is proposed. According to the proposed reference pixel distribution strat-
egy, an image is partitioned into non-overlapping square blocks of same size. A
fixed number of reference pixels are distributed among these blocks. Number of
reference pixels being distributed in a block is kept proportional to an estimation
of roughness of the pixels in the block. In this context, variance of the pixel values
in a block is used to estimate the roughness of the block. Once the number of
reference pixels in a block is obtained, those many reference pixels are randomly
distributed in the block. Then, the values of these reference pixels within a certain
distance from a non-reference pixel are used for predicting the non-reference pixel
value using a weighted median based approach. An adaptive embedding strat-
egy is used for embedding either 1-bit or 2-bit data into the expanded prediction
error of a pixel based on an estimated local complexity of a non-reference pixel.
Performance of the proposed technique is experimentally observed for different
percentages of reference pixels (25%,50% and 75% of total number of pixels in
an image) and for different block sizes (2× 2,4× 4 and 8× 8). Based on these
experiments, it can be observed that the best results are obtained using 25% of
pixels in the image as reference pixels and a block size of either 2×2 or 4×4.

A novel reversible data hiding technique is also proposed in Section 5.1
based on a selected directional context based pixel prediction scheme using 8-
neighborhood of a pixel. Averages of a pair of neighboring pixel values (in a 3×3
neighborhood) in each of horizontal, vertical, diagonal and anti-diagonal direc-
tions are estimated. These average values attempt to predict the center pixel
value from the context of respective directions. The proposed work selects few
of these four directions which provide the context for pixel prediction. For this
purpose, the absolute differences between values of a pair of neighboring pixels in
horizontal, vertical, diagonal and anti-diagonal directions are computed. Then, a
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novel context selection strategy is proposed by considering the computed differ-
ences. This strategy considers the direction (i.e., context) with the least difference
value and incrementally checks the possibility of adding few more directions in the
ascending order of these difference values. Finally, the pixel value is predicted us-
ing the previously computed average values in the selected contexts. An adaptive
prediction error histogram bin shifting based embedding strategy is used here.
The histogram bin shifting based strategy is extended to adaptively embed either
one bit or two bits of data depending on local complexity of the pixel. The lo-
cal complexity is estimated by considering the variance of few surrounding pixels.
The adaptive histogram bin shifting strategy is applied on pairs of histogram bins
corresponding to prediction error pairs as either (-1, 0) or (0, 1). Experiments
reveal that significant difference is not observed for the selection of histogram bin
pair as either (-1, 0) or (0, 1).

A novel reversible data hiding technique is also proposed in Section 5.2 us-
ing a gradient based pixel prediction strategy. Here, the gradient around a pixel
is estimated using a 5× 5 neighborhood. This gradient-based prediction is an
extension of the gradient based prediction technique in [25], which used a 4× 4
neighborhood. In this proposed work, gradients in horizontal, vertical, diagonal
and anti-diagonal directions are computed using a 5×5 neighborhood. Moreover,
linear predictors using a set of neighborhood pixels are considered for each of the
above four directions. Then, a weighted average of two predicted values in the
directions of the least two gradients estimates the final predicted value. Finally,
a novel prediction error histogram bin shifting based reversible data hiding tech-
nique is proposed using this gradient based prediction. The histogram bin shifting
based strategy is extended to adaptively embed either one bit or two bits of data
depending on local complexity of the pixel. Pair of histogram bins corresponding
to prediction errors as either (-1, 0) or (0, 1) are used in this work. Experiments
reveal that significant difference is not observed for the selection of histogram bin
pairs corresponding to prediction errors as either (-1, 0) or (0, 1).

Next, an experimental study is conducted to assess the performance of several
existing as well as newly proposed (as above) neighborhood based and gradient
based predictors (Chapter 6). The experiment reveals that none of the predic-
tors are perfect in predicting the pixel values in varied neighborhood contexts.
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But some of these predictors perform better than rest of the others. Then, a
multi-predictor based strategy is proposed by considering a set of good predic-
tors, which have been identified by the experiment. Finally, similar to previous
two approaches, adaptive prediction error histogram bin shifting based strategy
is adopted to consider variable number of bits for embedding in a pixel. In the
context of combining outputs of multiple predictors, following strategies are ex-
perimentally evaluated to find out the best way of combining multiple predicted
values: (i) the minimum of the predicted values, (ii) the maximum of the pre-
dicted values, (iii) mean of the minimum and the maximum predicted values,
(iv) mean of all considered predicted values, and (v) median of all considered
predicted values. Finally, experimental results indicate that adaptive prediction
error histogram bin shifting with median of all considered predicted values as
the final predicted value demonstrates better results than other multi-predictor
combination strategies.

At the end, it is demonstrated in Chapter 7 how the proposed reversible data
hiding techniques can be used to ensure integrity of bank cheque images in an
image based cheque presentation and clearing environment. A predetermined
secret data is embedded into a select set of portions in the cheque image. At
the drawee bank, the successful extraction of the secret data ensures the integrity
of these important portions of the cheque image. The original pixel values are
also restored due to the reversible nature of the scheme. Recovery of the original
pixel values may be important for automated analysis of the cheque image. The
above proposed reversible data hiding techniques (except the B-tree triangular
decomposition based reversible data hiding in Chapter 3) are applied to achieve
the stated objective in this work. B-tree triangular decomposition can only be
applied on a square image. Hence, this B-tree triangular decomposition based
reversible data hiding technique cannot be used for this task. But performances
of other four proposed techniques are experimentally observed for this task.

It is to be noted that the proposed reversible data hiding techniques, as well
as majority of other reversible data hiding techniques in the literature, are fragile
in nature. These techniques are not robust at all against any kind of tampering
of the marked image. Hence, experiments demonstrating the robustness analysis
of the proposed techniques have not been carried out. Normally, these fragile
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reversible data hiding techniques are designed for ensuring the integrity of an
image.

8.2 Future Research Directions

In this section, a few points are stated as a continuation of this research work in
future. These research directions are listed here:

• Similar to B-tree triangular decomposition of an image (Chapter 3) for ob-
taining a set of reference pixels, other partitioning schemes of the image into
non-overlapping regular-shaped regions can be used for pixel prediction and
subsequent reversible data hiding. For example, quad-tree decomposition
[166] is widely used to recursively partitioning an image into square re-
gions by following a quad-tree structure. Another triangular decomposition
scheme is also recently proposed in [167]. Performance of these decomposi-
tion schemes for pixel prediction and subsequent reversible data hiding can
be studied.

• Machine learning is widely used for prediction across varied disciplines.
Similarly, machine learning models may be trained to predict a pixel value.
Few papers on using machine learning models in the context of reversible
data hiding exist in literature [122, 123]. But this direction of research is not
explored much yet. Hence, machine learning based pixel value prediction
in the context of reversible data hiding can be studied at depth.

• Traditionally, reversible data hiding techniques (as have been discussed so
far in this thesis) are fragile in nature. Slight modification to a pixel value
destroys the hidden data. Hence, extraction of hidden data as well as re-
covery of original pixel values are not possible in such a case. This leads to
application of these reversible data hiding techniques for ensuring integrity
of a cover media. But similar to traditional watermarking methods, an at-
tempt can be made to develop a robust reversible data hiding technique.
Very few attempts can be found in this direction [168].
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• Reversible data hiding techniques can be extended to color images too. In
this context, the questions are being asked on selection of one or more color
channels for data hiding, consideration of all color channels for better pre-
diction, maintaining the intensity in a marked pixel as same as the intensity
on the original pixel, etc. Few works are already reported for color images
[169, 170, 171]. In future, the domain of reversible data hiding for color
images can be investigated further.

• Reversible data hiding for encrypted images is another emerging direction
of research [172, 173, 174, 175, 176]. Further exploration of this direction is
also required.

• Extension of reversible data hiding research from images to videos appears
to be natural. Few works on reversible data hiding in videos have been
carried out recently [177]. This area may be explored further, because
video is being increasingly used in society for varied purposes.
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