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ABSTRACT

Nearest neighbor search is an extensively used technique in pattern recognition,

object recognition, Content Based Image Retrival (CBIR), text classification, Recom-

mender Systems. The Nearest Neighbor (NN) search problem is defined as : Given

a set of N points in space Rd , and a query q , then we need to find closest points of

q in the set. The reason for its extensive use is in its simplicity. NN techniques can

be categorized into : structure less and structure-based. Cover and Hart (1967) pro-

posed k-nearest neighbor (kNN) rule in which the value of k plays important role in

finding the nearest neighbor. The k value tells us how many nearest neighbors are

to be considered and eventually to determine the class of a sample data point con-

sidered (Classification). The same problem is referred to as post office problem in

Knuth (1998). In this thesis work, we mainly studied nearest neighbor search prob-

lem and dimensionality reduction problems for analyzing large scale data in view of

high dimensionality.

The nearest neighbor search problem can be defined more formally in the follow-

ing way: Assume that X is a data set with N points X = X i , i = 1, ..., N . Then given a

query point q , and a distance metric d i s t (·), find the q’s nearest neighbor XN N in X ,

i.e., d i s t (XN N ,q ) ≤ d i s t (X i ,q ), i = 1, ..., N . Like in most statistics or machine learn-

ing research, here X = X i , i = 1, ..., N and q are assumed to i.i.d. samples. Note that

in the following chapters, sometimes X also represents the data matrix consisting of

all data points, X i represents the i t h data point, which is X ’s i t h column.

We proposed two methods for partitioning large scale data, to reduce the cost

of searching and retrieving k-nearest neighbors of a given query. This partitioning

has been studied by many researchers in the past. However, we come up with a new

and effective partitioning strategies: one, which is based on the farthest reference

point (minmax as pivot), and the second one is based on the set of weighted refer-

ence points (pivots). The ultimate goal of these partitioning methods is to reduce the

search space as much as possible, which is done by computing the distance between

the data points (in the database) and reference point (pivot). This distance will guide
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us to eliminate the inapppropriate search space. The effectiveness of the proposed

methods is demonstrated by conducting sufficient experimental study.

Another contribution of this work is to study different dimensionality reduction

techniques for processing high-dimensional data to find the hidden patterns in it.

For improving this pattern recognition task, one might need to reduce the dimen-

sionality of data down to a sufficient and comfortably small. In this study, this task

is achieved by proposing a variant of IRP-K-means algorithm, and also proposed

two hybrid methods, which combines Principal Component Analysis (PCA), Ran-

dom Projection (RP) with K-means Clustering. By integrating these dimensional-

ity reduction methods, the quality of clustering is improved in the reduced feature

space. Various data sets both low-dimensional and high-dimensional, are used for

experimental study.

Finally, we proposed a new method of dimensionality reduction, which projects

the data to a lower-dimensional space with the help of the projection matrix that is

constructed by taking a random sample from the data and subsequently the most

significant eigen vectors of the resulting correlation matrix. A novel feature of the

proposed method is that the projection matrix, unlike random projection matrix, is

dependent on the data and hence it is expected to preserve the pair-wise distances

more accurately in the reduced space. It is observed in our experiments that only

10% of the data is enough to give good results. We have tested our proposed method

on high-dimensional as well as on low-dimensional real world data sets, and the ex-

perimental results better advocate the use of our proposed method. We also tested

our method on the given data sets by varying the reduced dimension (D), and from

the results we conclude that the RP-based dimension reduction method is producing

worse results when the D is approaching the original dimension, whereas the pro-

posed method is performing well and also improving when reduced dimension (D)

reaches original dimensionality of the data.

vii



TABLE OF CONTENTS

DECLARATION ii

ACKNOWLEDGEMENTS iii

ABSTRACT vi

LIST OF TABLES xii

LIST OF FIGURES xiii

ABBREVIATIONS xiv

NOTATION xv

1 Introduction 1

1.1 Nearest Neighbor Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 High-dimensional Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4.1 Proximity-based Nearest Neighbor Search . . . . . . . . . . . . . . . 4

1.4.2 Random Projection for Dimensionality Reduction and Cluster-
ing in High-dimensional Data . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4.3 A Computationally Efficient Data-Dependent Projection for Di-
mensionality Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.5 Contents of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Preliminary Study and Related Work 8

2.1 Similarity/Distance Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Curse of Dimensionality (CoD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Dimensionality Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 Principal Component Analysis (PCA) . . . . . . . . . . . . . . . . . . . . . . . . 12

2.5 Random Projection (RP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

viii



2.6 K-Means Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.7 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3 Proximity-based Nearest Neighbor Search Algorithms 29

3.1 Reference (Pivot) Points Selection for Space Partitioning . . . . . . . . . 29

3.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.1.2 Related Works in the Area . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1.3 Reducing the Search Space for Efficient retrieval of Nearest neigh-
bors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.1.4 How to calculate nearest neighbors . . . . . . . . . . . . . . . . . . . . 35

3.1.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2 Weighted Set of Reference Points (WSRP) Method . . . . . . . . . . . . . . 41

3.2.1 Proposed Weighted Set of Reference Points (WSRP) Method . 41

3.2.2 Experimental Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4 Random Projections for Dimensionality Reduction and Clustering in High-
dimensional data 51

4.1 Ascending and Descending Order of Random Projections: Compara-
tive Analysis of High-Dimensional Data Clustering . . . . . . . . . . . . . . 51

4.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.1.2 Basic Concepts and Related Work . . . . . . . . . . . . . . . . . . . . . 52

4.1.3 RP K-means . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.1.4 Iterative version of RP K-means . . . . . . . . . . . . . . . . . . . . . . 54

4.1.5 Proposed variant of IRP-Kmeans . . . . . . . . . . . . . . . . . . . . . 56

4.1.6 Experimental Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.1.7 Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.1.8 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.1.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2 Clustering High-Dimensional Data: A Reduction -level Fusion of PCA
and Random Projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2.2 K-Means Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

ix



4.2.3 Fusion of dimensionality reduction methods for Clustering High-
Dimensional Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2.4 Empirical Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5 A Computationally Efficient Data-Dependent Projection for Dimension-
ality Reduction 75

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.3 Random Projections for Dimensionality Reduction . . . . . . . . . . . . . 80

5.4 Proposed Deterministic Construction of Projection Matrix . . . . . . . 80

5.4.1 Proposed Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.5 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.5.1 Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.5.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6 Concluding Remarks With Directions to Future Research 89

6.1 Details of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.2 Directions for Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

REFERENCES 91

LIST OF PAPERS BASED ON THESIS 101



LIST OF TABLES

3.1 The names of 28 features of ZINC data set, which are classified into
three major types, from these, 9 are Physical features, 10 are Atom
count features and 9 are Structural features . . . . . . . . . . . . . . . . . . . 37

3.2 Average precision (percentage) of 10 queries on various datasets, BO_
Heuristic (Bozkaya and Ozsoyoglu (1999)) versus MinMax method (pro-
posed) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3 Specifications of Data sets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.4 Average Precision values of different Reference Point selection meth-
ods for partitioning the data, and these methods are tested on various
data sets of low and high-dimensionality. Except for Luekemia, on all
the remaining data sets, the proposed method (WSRP) is showing bet-
ter average precision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.5 Average Precision of WSRP (proposed method, in bold face) method is
compared with the two other existing methods namely, BO-Heuristic
(Bozkaya and Ozsoyoglu (1999)) and MinMax ( Pasunuri (2015 )). Ex-
cept for Lung, on all the remaining data sets, the proposed method
(WSRP) is showing better average precision. The results are average of
10 runs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.1 Specifications of data sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2 MSE for several datasets. When the dimensionality of the data is re-
duced from original dimension to JL Limit (D), The results reported
are sample average over 20 runs. . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.3 MSE of the proposed method (IRP-K-means variant) is compared with
two other methods namely: RP-K-means, IRP-K-means for several datasets.
The values reported are sample average 20 runs. . . . . . . . . . . . . . . . 58

4.4 Specifications of data sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.5 MSE for several datasets. Sample average over 10 runs. . . . . . . . . . . . 65

4.6 Average MSE for ORL dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.7 Average MSE for Yale dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.8 Average MSE for COIL20 dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.9 Average MSE for Colon dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.10 Average MSE for Leukemia dataset. . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.11 Average MSE for Lung dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

xi



4.12 Average MSE for Prostate dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.13 Average MSE for GCM dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.14 Average MSE for Iris dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.15 Average MSE for Wine dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.16 Average MSE for ZINC7 dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.17 Average MSE for ZINC28 dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.18 Average MSE for the high-dimensional datasets. . . . . . . . . . . . . . . . . 71

4.19 Average MSE for the low-dimensional datasets. . . . . . . . . . . . . . . . . 72

5.1 Specifications of data sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.2 L 2-norm (error) values of the Proposed DR method v/s RP method on
various data sets, The reduced dimension (D) is given in brackets with
each data set, D = 2 for both Iris, Wine datasets and D = 50 for other
five datasets. Sample average of 10 runs. . . . . . . . . . . . . . . . . . . . . . 85

5.3 L 2 -norm (error) values when varying the sample size for several data
sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.4 The effect of varying reduced dimension (D) on L 2-norm (error) for
proposed DR method v/s RP method for various data sets. . . . . . . . . 88

xii



LIST OF FIGURES

2.1 Taxonomy of dimensionality reduction techniques ( Maaten et. al.
(2009)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1 Distance distribution plots for various datasets: The First column is of
proposed MinMax method and the second column is for BO_ Heuristic
method. 1st row: ORL1024, 2nd row: Yale, 3rd row: Leukemia, 4th row:
ORL10304, 5th row: Lung, 6th row: GCM. . . . . . . . . . . . . . . . . . . . . 39

3.2 Weighting the Reference Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3 Construction Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.4 Search Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.5 Performance Analysis for different Data sets . . . . . . . . . . . . . . . . . . 49

4.1 Average Mean Squared Error for Low-dimensional Data . . . . . . . . . . 73

4.2 Average Mean Squared Error for High-dimensional Data . . . . . . . . . 74

xiii



ABBREVIATIONS

NNS Nearest Neighbor Search

MSE Mean Squared Error

DR Dimensionality Reduction

RP Random Projection

PCA Principal Component Analysis

k-NN k-Nearest Neighbor

k-Means k-means clustering

LD Low-dimensional

HD High-dimensional

SVD Singualr Value Decomposition

CoD Curse of Dimensionality

ZINC ZINC Is Not Commercial

CS Compressive Sensing

LDA Linear Discriminant Analysis

MDS Multi Dimensional Scaling

LLE Locally Linear Embedding

xiv



NOTATION

X Input Data set
N Number of points in the data set
d Dimensionality of the input data
D reduced Dimension/target dimension
Rd Original Space
RD Reduced/Projected Feature Space
P Projection Matrix
R Set of Reference Points
l No of Reference Points
ri A Reference point in R
W Set of Weights
i , j , k Indices
d i s t (·) distance fundtion
d i i t h distance value
d i s t set of distances for all points in X
DA,B Distance between the points A,B
q Query object/point
X i i t h point in data set X

xv



CHAPTER 1

Introduction

Data Mining process acquires, processes and models the data with an aim to un-

cover or discover hidden knowledge that is present in the data itself. In todays vo-

luminous data era, we mainly encounter large volumes of data to be analysed. This

increase can be found mainly in two aspects:

One is database size i.e. number of observations acquired in the intial step of

applications such as weather forecasting, customer market analysis, social networks,

gene expression analysis, information retrieval. These applications generally comes

under large-scale.

Second aspect is dimensionality (no. of features/attributes size) which defines

the characteristics of samples. High dimensionality is very common in many of the

applications today. Examples include text and image retrieval, recommender sys-

tems, gene expression analysis which are high-dimensional in nature.

This high-dimensional data to processed and analyzed to find patterns present

in the data, which are useful in knowledge discovery and decision making process.

1.1 Nearest Neighbor Search

Nearest neighbor search (NNS) is an extensively used technique in pattern recog-

nition, object recognition, Content Based Image Retrival (CBIR), text classification,

Recommender Systems etc. NNS problem can be stated as : Given a N points set in

Rd space and a query q , then we need to find closest points of q in the point set.

The reason for its extensive use is its simplicity. NN techniques can be categorized

into : structure less and structure-based. Cover and Hart in (Cover and Hart (1967))

proposed a kNN rule where k value is crucial in finding the nearest neighbors, which

tells how many nearest neighbors are to be considered to classifiy the sample data

point. The same problem is referred to as post office problem by Knuth in (Knuth



(1998)). In this thesis, we will study NNS problem and dimension reduction prob-

lems in view of large and high dimensionality of data.

The NNS problem can be defined more formally in the following way:

Assume that X is a given input data set with N points X = X i , i = 1, 2, 3, ..., N . Then

given a query point q , and a distance metric d i s t (·), then we need to retrieve neigh-

bor of q, XN N in X , such that d i s t (XN N ,q )≤ d i s t (X i ,q ), i = 1, 2, 3, ..., N . Like in most

statistics or machine learning research, here X and q are assumed to be i.i.d. sam-

ples. Note that in the following chapters, sometimes X also represents the data ma-

trix which contains all data points, X i represents the i-th data point, which is i t h

column of X .

1.2 High-dimensional Applications

The normal behaviour of the distances shown in the low-dimensional setup is

different from that in high-dimensional scenarios. The high-dimensionality of data

exhibits some strange behaviour. As the dimensionality increases, the cost of find-

ing distances between the points, storage cost and the cost of handling the data

also increases. The high dimensionality introduces two things: distance concentra-

tion: where we cannot differentiate between the nearest and farthest point. The sec-

ond one is concentration of cosine similarity in the information retrieval field. In

Radovanovic et al., 2010 (Radovanovic et al. (2010)), they have shown that as the

dimensionality increases then cosine similarity and standard deviation converges to

constant and zero, respectively. Thus the realtive contrast converges to 0 and the

cosine similarity is said to concentrate. We can trace these issues to the commonly

used term Curse of Dimensionality (CoD). In literature, many methods proposed to

deal with it, Dimensionality Reduction (DR) is the first and foremost method of them.

The goal of any DR method is to represent or embed an HD data in a LD space, then

doing any processing in that low dimensional subspace instead of original high di-

mensional data. This will save time, space, computations, and resources etc.
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1.3 Motivations

Transfomation of high-dimension (HD) data into a low-dimensional (LD) one

(subspace) is regarded as Dimensionality reduction (DR). Usually the reduced data

dimension resembles its intrinsic dimension. According to (Fukunaga , 1990), intrin-

sic dimension is defined as the lowest set of parameters that are required to show the

data properties. Dimensionality Reduction is inevitable in various domains, which

is used as a pre-processing step in classification task, visualization of HD data and

compression of HD data, by diminishing the curse of dimensionality and other un-

wanted properties of HD spaces (Jimenez et al. (1997)).

In literature, we can find various techniques that are intend to reduce the dimen-

sionality. See Agrafiotis (2003), Baudat and Anouar (2000), Belkin and Niyogi (2002),

Brand (2004), Donoho and Grimes (2005), He and Niyogi (2004), Hinton and Roweis

(2002), Hinton and Salakhutdinov (2006), Lafon and Lee (2006), Roweis and Saul

(2000), Sha and Saul (2005), Scholkopf et al. (1998), Tenenbaum et al. (2000), Teh

and Roweis (2002), Verbeek (2006), Weinberger et al. (2005), Zhang and Zha (2004),

Zhang et al. (2007) for some of these techniques. PCA, LDA, MDS and many other

techniques present in the above list. Many of these techniques are suitable for non-

linear data, which we often find in the real world, (Duda et al. (2001)).

Our main motivation for the work done in this thesis is two-fold: (a) search space

reduction for nearest neighbor search in large and high-dimensional data by im-

plemeting space partitioning methods, (b) reducing cost of computation for pro-

cessing high-dimensional data. Because of the challenges that are posed by the high-

dimensionality of the data, we have been searching for the better methods which can

reduce the additional cost that is incurred in dealing with high-dimensional data.

Especially we have studied a data-independent Random Projection (RP) dimension

reduction method, along with its counterpart data-dependent dimension reduction

methods (like PCA) and we conclude with some experimental observations about

the suitability of these methods on different data sets. For the performance eval-

uation purpose, we first apply a dimensionality reduction method on the original

(HD)data and apply clustering (like K-means) on the resultant feature (LD) space.

This methodology has been followed in the chapters which deals with DR problem.
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1.4 Contributions

1.4.1 Proximity-based Nearest Neighbor Search

In this chapter, we studied the nearest neighbor search problem i.e. extracting

the identical objects to a query. In this we proposed two proximity-based data par-

titioning methods which improves the similarity search. The first proposed method

works by dividing the data by using a reference (pivot) point, into different bins (par-

titions). This facilitates to return nearest neighbors of a given query by searching

in one of these bins and avoiding the remaining bins from searching. The second

method works by taking multiple reference points which are weighted according to

the distance from the points in the dataset, and points are segregated into multiple

bins/groups. These segregated groups are useful while finding the neighbors of a

query. The major difference between these two methods is, the first method does

data partitioning based on only one reference point, whereas the second method

performs partitioning of data based on multiple weighted reference points. Both the

methods aims at search space reduction and eventually saving computational time.

In fisrt part of this chapter, we have presented a metric-based data partitioning

method by using a pivot point from the database which improves nearest neighbor

search quality. The method works by taking a reference point (MinMax) from the

given input data, and then finds the distances of all the points from this reference

point. Then by taking the minimum and maximum distance values, the distance

range is identified, this distance range is divided into equal bins. Now the distance

of the points from the reference point are compared with that of the range and place

those points in the corresponding bin that satisfies the range criterion. This way,

the construction phase of the proposed method partitions the data into subgroups.

Finding neighbors of q is the main goal of search phase. For this, first we calculate

distance from query to reference point, and then we check this value in distance

range (IndexSpace) to find the partition in whcih its neighbors are present. We have

experimented on various data sets. Infact our method (MinMax) is performing well

when compared to BO-Heuristic (Bozkaya and Ozsoyoglu (1999)), and a large por-

tion of the search space is reduced. So, it is effective and efficient in retrieving the
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nearest neighbors for a given query with less computational requirement. The effec-

tiveness of the proposed pivot point is validated by plotting the distance distribution

along with the distance distribution of BO-Heuristic. The proposed pivot distance

distribution is flatter than the BO-Heuristic. This indicates that while querying a lot

of points are going to be eliminated from the search space, whereas for BO-Heuristic,

it is not possible.

In the second part of this chapter, we proposed a variant of the proximity-based

data space partitioning method, which is called WSRP method. This speeds up the

nearest neighbor search by reducing the search space. This method works by taking

multiple weighted reference points for partitioning the data into groups and returns

the nearest neighbors of a query. Reference points weighting is done as per the dis-

tance of a point from pivot (reference point) set. WSRP is effective and efficient in

retrieving the nearest neighbors for a given query with less search space. The aver-

age precision of WSRP (proposed method) is compared with two other pivot-based

methods (BO-Heuristic and MinMax), and our method is outperforming those meth-

ods.

1.4.2 Random Projection for Dimensionality Reduction and Clus-

tering in High-dimensional Data

In this chapter, we have studied iterative random projections and combined the

dimensionality reduction methods with clustering methods for improving the qual-

ity of the clustering solutions in reduced space. In this chapter, we propose a vari-

ant of IRP K-means algorithm, in which the dimension is gradually decreased regu-

larly in iterations; thereby preserving the inter-point distances efficiently. This has

been proved empirically by large number of experiments. The proposed method

is compared with the Single Random Projection (RP), IRP K-means (IRP) methods.

Compared to these two methods, our proposed method is giving best results for the

given HD datasets. In the second part of this chapter, we proposed two hybrid al-

gorithms by combining different dimensionality reduction methods (PCA, RP) with

K-means clustering for better clustering in HD and LD data. We have observed that

the K-means is giving good performance when combined with PCA than the normal

K-means. The details of the proposed hybrid algorithms are as follows: one com-
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bines PCA with K-means and the second one combines PCA and RP with K-means,

third one combines RP with PCA then K-means is applied. PCA when combined with

Random Projection and RP combined with PCA produces good quality clusters in the

reduced dimensional space. Our proposed algorithm works by combining PCA with

RP and also RP first then PCA (for DR), then performs clustering on reduced data.

A comparative analysis is done with simple K-means, PCA reduced K-means al-

gorithms on 12 bench mark datasets, by taking k-means objective function as perfor-

mance measure. The results of experiments reveal that the proposed PCA-Kmeans

and PCA+RP-Kmeans and RP+PCA-K-means are outperforming the classic K-means

on both low and HD datasets.

1.4.3 A Computationally Efficient Data-Dependent Projection for

Dimensionality Reduction

A new projection was proposed, which maps HD data onto a LD space by using

a projection matrix. This projection is constructed by taking a random sample from

the data, construct the covariance of sample, then take the most significant eigen

vectors of this covariance matrix. A novel feature of the proposed method is that the

projection matrix, unlike random projection matrix, is dependent on the data and

hence it is expected to preserve the pair-wise distances more accurately in the re-

duced space. It is observed in our experiments that only 10% of the data is enough

to give good results. We have tested our method on high-dimensional as well as on

low-dimensional datasets, and the superiority of proposed projection is clear from

the empirical results. Proposed projection is achieving better pair-distance preser-

vation than random projection. We also tested our projection on the given data sets

by varying the reduced dimension (D), and from the results we conclude that the

RP-based dimension reduction method is producing inferior results when the D is

approaching the original dimension, where as the proposed method is performing

well and also improving when D is reached original dimension.
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1.5 Contents of the Thesis

The contents of thesis are: Chapter 1 gives an introduction to Nearest Neigh-

bor Search and High-Dimensionality and the Motivations for this research. Basics

of the subject matter related to the problems studied here and the Related Work is

presented in Chapter 2. In Chapter 3, we discuss about the Proximity-based Near-

est Neighbor Search Algorithms. Chapter 4 deals with the Randomized Algorithms

for Dimensionality Reduction Problem in the context of High-dimensionality. In

Chapter 5, we present a data-driven, deterministic construction of Projection ma-

trix.This is an alternative approach we proposed to its counterpart Random Projec-

tion method. Chapter 6 concludes the thesis with future research guidelines.
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CHAPTER 2

Preliminary Study and Related Work

2.1 Similarity/Distance Measures

Distance or similarity measures play a vital role in solving many pattern recogni-

tion problems such as clustering, classification and information retrieval. The basic

Euclidean distance is not suitable for all types of data. Various distance/similarity

measures have been proposed for a variety of applications in the scientific literature.

These measures are designed for different subject areas such as biology, anthropol-

ogy, chemistry, ecology, computer science, information theory, mathematics, geol-

ogy, psychology, physics, statistics etc.

We find many studies in the literature. These are aimed at finding the appropriate

measures among the vast list, due to the importance of similarity/distance measure

in many tasks such as classification, clustering and information retrieval ( Duda et

al. (2001 )).

Distance is a quantitative degree, which tells us about any two objects , how far

apart to each other. Distance is also called dissimilarity. The distance measure sat-

isfy the metric properties then it is called as a metric, and the other non-metric dis-

tance measures are called divergences. Similarity measures are also called similarity

coefficients, and the similarity and dissimilarity both comes under one term that is

proximity.

The data representation is important in selecting a suitable proximity measure.

Distance function between two vectors a and b is a function d i s t (a ,b ) which

defines the distacne between both vectors as a non-negative real number. This func-

tion can be called as a metric if it satisfies the following propoerties ( Deza and Deza

(2009 )):

• Non-negativity: Distance between any two vectors is always positive.

d i s t (a ,b )≥ 0 (2.1)



• Identity: Distance becomes zero only when a = b.

d i s t (a ,b ) = 0 ⇐⇒ a =b (2.2)

• Symmetry: Distance from a to b is same as the distance from b to a .

d i s t (a ,b ) == d i s t (b , a ) (2.3)

• Triangular inequality: In addition to a , b , if a third point c exists, then dis-
tance from a to b is always less than or equal to the sum of the distance from
a to c , from b to c .

d i s t (a ,b )≤ d i s t (a , c )+d i s t (c ,b ) (2.4)

If a distance coefficient which satisfies the first three properties, then it is called a

pseudometric. A distance coefficient which doesnot satisfy the triangular inequality

property, then it is called a non-metric (Kamichety et al. (2002 )).

When the distance value is in the range [0,1], then the corresponding similarity

measure s i m (a ,b ) is given by:

s i m (a ,b ) = 1−d i s t (a ,b ) (2.5)

Cha S-H ( Cha S-H (2007 )) and Prasath et. al, ( Prasath et al. (2017 )) presented a

vast list of distance measures which belongs to eight major families, these constitute

a total of 54 distance measures.

2.2 Curse of Dimensionality (CoD)

For the first time, the term CoD was used by Bellman R (1961), in area of spaces

by connecting it to the difficulty of optimization by exhaustive enumeration on prod-

uct. According to Bellman R (1961) "considering a Cartesian grid of spacing 1/10 on

the unit cube in 10 dimensions, the number of points equals 1010 ; for a 20-dimensional

cube, the number of points further increases to 1020. Here is the Bellman’s interpreta-

tion: If we want to optimize a function over a continuous domain of a few dozen vari-

ables by exhaustively searching a discrete search space defined by a crude discretiza-
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tion, one could easily be faced with the problem of making tens of trillions of evalua-

tions of the function. In other words, CoD refers to the fact that without any assump-

tions of simplification, the number of data samples required to estimate a function

of multiple variables to a given accuracy (low-variance) on a given domain, grows

exponentially with the number of dimensions. Because, data contains very less obser-

vations, HD spaces are naturally sparse". This reality or the fact, is responsible for the

curse of dimensionality. It is often called the “empty space phenomenon ”. CoD and

empty space phenomenon causes surprising behaviour/properties to HD spaces,

Scott and Thompson (1983), Lee and Verleysen (2007 ). Following are the list of

problems that are result of the dimensionality curse:

• Hypervolume of cubes, spheres and a thin spherical shell

• Tail probability of isotropic Gaussian distributions

• Concentration of norms and distances

• Diagonal of a hypercube

Refer to Lee and Verleysen (2007 ) for an in detail description of the above prob-

lems.

2.3 Dimensionality Reduction

In real world, many objects such as images, speech signals, hypersprectal images,

gene expression information, text documents, fingerprints and handwritten charac-

ters and numbers, etc. be represented with only high-dimensional data. We have

to analyze these data and process them to get the required useful information from

them. For example, identifying a person’s fingerprint, finding relevant documents

on the Internet with keywords, to search for obscured patterns in imagery, to outline

the objects from videos and the relevant information. In order to achieve the rela-

vant tasks, one has to develop a system that can process the entire data. But, owing

to the HD of the data, these systems may not perform the job as desired and these

systems may be complicated, unstable and infeasible. Generally, many systems work

well with low-dimensional data. When the dimensionality of the data exceeds, one

cannot process or handle the data correctly. Therefore, reducing the dimensionality
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is a must to process HD data.

In most of the modern machine learning tasks, the number of available data fea-

tures are generally very large - often larger than the number of available data pat-

terns.These vast features may contain noise and redundancy, which is the reason for

the difficulty of extracting meaningful information from the data (Carreira-Perpinan

(2001)). These extra features slow the learning algorithms and curse of dimension-

ality can lead to overfitting or may increase the chance that certain optimization al-

gorithms get stuck at local minima (Ding et al. (2002)). To address these problems,

dimensionality reduction has become an important tool in machine learning. The

main aim and goal of the tool is to lessen the number of dimensions or features of

a dataset before running a learning algorithm. In principle, eliminating or reducing

features only lead to a minor reduction in the algorithm’s effectiveness( or, by avoid-

ing overfitting and local minima), actually improves learning performance (Carreira-

Perpinan (2001)).

Dimensionality reduction techniques are classified into two main categories (Liu

and Motoda (1998)):

Feature Selection: Selecting a small set of features from the original database is

called feature selection. The selection follows some measure to cull out the redun-

dant features. These measures include, Laplacian score (Fisher score), Feature vari-

ance. Features may be randomly sampled or highest ranked features are selected,

based on probability proportional to importance.

Feature Extraction: Instead of picking up a subset of features from original feature

set (done in Feature selection), feature extraction generates a completely novel fea-

tures set by transforming the original ones. Principal Component Analysis (PCA) is

one such example, and nonlinear methods are also common as well.

These two methods of DR methods are popular and a more techniques have been

studied theoritically and empirically. Theoritical analysis is often inspired by the ob-

served effectiveness in practice and, in turn, often inspires new algorithms that work

well experimentally.

Now, we give details on some of the dimensionality reduction techniques which

are used in this thesis work.
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2.4 Principal Component Analysis (PCA)

It is a multivariate data analysis tools, which was developed by Pearson in 1901

(Pearson (1901)) and H. Hotelling in 1933 (Hotelling (1933)), and Jolliffe (2002) is the

latest reference. It is used to reduce the data from HD to LD one. The applications of

PCA include, Data Compression, Data Visualization, Feature Extraction and so on.

PCA reduces the original high dimensionality to a much smaller, uncorrelated

feature set with minimum information loss. The reduced or the transformed features

are called principal components.

According to Shlens (2005), this transformation can be defined by:

Y =X P (2.6)

Where Pd×D represents projection matrix containing D eigen vectors of corre-

sponding highest eigen values, XN×d is data matrix which was mean centered and Y

is resulting projected data.

As per Hotelling (Hotelling (1933)), PCA is such that the D principal axes, for

given set of vectors X i , i = 1, 2, ...N , are those orthogonal axes onto which the vari-

ance retained under projection is maximum. The derivation of PCA following this

definition is as follows (Ali Ghodsi (2006)): Let the centered observations X i , i =

1, 2, ..., N be stacked into columns of an d ×N matrix X , where d is the dimension-

ality of the observations. Choose the first principal component U1 as a linear com-

bination of the vectors in X so that it captures the maximum variance. That is, choose

U1 =W T X (2.7)

so that v a r (U1) = v a r (W T X ) is maximum, where W T = [w1, w2, ...., wd ]. So choosing

U1 is equivalent to determining the weight vector W T so that the variance is maxi-

mum. Since v a r (U1) = v a r (W T X ) can be made arbitrarily large by choosing larger

values for the components of W , it follows that the determination of the optimum

weight vector requires normalization of its magnitude. Summarizing, we have that
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the choice of the first principal component with maximum variance is equivalent to

determining the weight vector W as a solution to the following optimization prob-

lem:

M a x i m i z e W T SW (2.8)

Su b j e c t t o W T W = 1 (2.9)

where S is the d ×d sample covariance matrix of X . Introducing Lagrange multiplier,

the problem becomes

M a x i m i z e L(W,α) =W T SW −α(W T W −1) (2.10)

Differentiating with respect to W and equating it to zero, we have

SW =αW. (2.11)

That is, the eigen vectors of the covariance matrix are the extreme points of the

L(W,α). Premultiplying Eq.2.11 both sides by W T , we have

W T SW =W TαW =αW T W =α (2.12)

A characteristic of PCA is that the projection x̂ i of the observations x i , i = 1, 2, ..., N

onto the subspace spanned by the principal components minimizes the squared re-

construction error,
∑N

i=1 ‖x i − x̂ i‖2.

Principal components can be obtained by finding the SVD of X . In fact the D

principal components can be determined from the first D columns of the left singu-

lar matrix of X , i.e. from the first D columns of U of X =U
∑

V T .

Variations to PCA that cater to the special requirements of various application

scenarios are proposed in the literature. These include Dual PCA, Kernel PCA, Met-

ric Multidimensional Scaling (MDS), Semi definite Embedding (SDE), etc. Dual PCA

is a variation to PCA that exploits the SVD structure and makes the technique feasible
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or, the least, amortizes the amount of computation required, for the case where the

dimensionality (d ) is very large compared to N , the number of observations. Ker-

nel PCA handles nonlinear DR problems. MDS maps the original HD space to a LD

space while attempting to preserve pairwise distances. That is, MDS constructs a

configuration of N points in Euclidean space by using information about the dis-

tances between the N observations. MDS is identical to dual PCA if the distances are

measured using Euclidean metric. Semi Definite Embedding (SDE) is a variation of

Kernel PCA in that the kernel is learned from the data as against choosing apriori a

kernel function as in kernel PCA. Algorithmic descriptions of PCA are present in Ali

Ghodsi (2006).

One can refer to Jolliffe (2002),Shlens (2005),Ali Ghodsi (2006) for more detailed

information on PCA.

2.5 Random Projection (RP)

It is a linear dimensionality reduction method which is based on matrix multipli-

cation. In this, the original HD data is represented in LD embedding, by using a ma-

trix for projection, which satisfies certain properties from JL Lemma (Johnson and

Lindenstrauss Lemma). RP can preserve the inter-point distances approximately

(Fradkin and Madigan (2003), Bingham and Mannila (2001)).

RP maps the original d -dimensioanl data onto a subspace of dimensionality D,

where D�d. For this, it uses a random orthogonal matrix P of size d × D. The or-

thogonal matrix Pd X D contains columns of length one (unit length). RP is defined as:

X RP
N×D =XN×d Pd×D (2.13)

Johnson-Lindenstrauss (JL) lemma is the basis for RP. Johnson-Lindenstrauss lemma

(Johnson and Lindenstrauss (1984)) states that if vector space with N points and d

dimensionality, is randomly projected to a D-dimensional subspace, then distance

(Euclidean) retained approximately. JL-Lemma details can be found in Dasgupta and

Anupam Gupta (2003). The statement of the JL lemma is as follows:

Theorem 1 (JL Lemma). For any 0 < ε < 1 and N is size of database, let D be the
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reduced dimension (JL bound), such that

D ≥ 4

�

ε2

2
−
ε3

3

�−1

ln N .

Then, for any N sized set V , in Rd , we can define a map f : Rd → RD such that ∀

a ,b ∈V ,

(1−ε)‖a −b‖2 ≤




 f (a )− f (b )






2
≤ (1+ε)‖a −b‖2 .

Additionally, this mapping process from d -space to D-space requires only a ran-

domized polynomial time.

This lemma got proved by Dasgupta and Anupam Gupta (2003) and Achlioptas

(2001). Many researchers proposed different methods for constructing the random

matrix, See Achlioptas (2001),Li et al. (2006). Usually, these random matrices are

not orthogonal, and also making them orthogonal is an expensive task, which takes

more computational time. But, according to Nielsen (1994), the vast orthogonal

directions present in an high-dimensional space is abundantly orthogonal. Many

researchers presented different methods for constructing random projection matrix

entries which obeys JL Lemma. Achlioptas (Achlioptas (2001)) is one of these meth-

ods that has been used extensively. This method uses integers and sparseness while

constructing P , which eventually minimizes the cost of computation.

Achlioptas method of random matrix P elements are defined as:

p i j =







+1 with Pr = 1
2

;

−1 with Pr = 1
2

.
(2.14)

or

p i j =



















+
p

3 with Pr = 1
6

;

0 with Pr = 2
3

;

−
p

3 with Pr = 1
6

.

(2.15)

O(d DN ) is the computational cost of RP, where d represents the original features

(dimension), D represents the embedded (reduced) features of reduced data and N

represents the size of the data. If the given data matrix has sparseness of c non-zero
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entries per column, then the cost will become O(c DN ) (Papadimitriou et al. (1998)).

2.6 K-Means Clustering

K-means algorithm is implemented or executed to perform cluster analysis on

given data. It is a prototype based clustering method, in which a given input database

is divided/grouped into K number of non-intersecting clusters. This method starts

by initializing K centroids randomly, and checked every point in database to find its

nearest centroid and the point is assigned to that nearest centroid. This will be re-

peated for all the points in the database. Now the clusters centroids are recalculated

as the mean of each cluster. This is repeated until no change in assignment (i.e. the

algorithm converged).

Let X = {X i , i = 1, ..., N } be the database of N points. We want to cluster these N

points into K distinct clusters, C = {ck , k = 1, 2, ..., K }, where K � N . K-means tries

to decrease squared Euclidean distance between the points and cluster centroid, µk

is the mean of cluster ck , which is given by (A. K. Jain (2010); Alshamiri et al. (2014)):

µk =
1

Nk

∑

X i∈ck

X i (2.16)

Nk is size of a cluster ck .

Mean squared error between centroid/mean µk and points in a cluster ck is de-

fined as in A. K. Jain (2010):

J (ck ) =
∑

X i∈ck





X i −µk







2
(2.17)

K-means objective is minimizing sum of squared error (SSE) of K clusters:

J (C ) =
K
∑

k=1

∑

X i∈ck





X i −µk







2
(2.18)

Gradient descent approach can be used to reduce the error, which is scalable

for large datasets and it is a good heuristic for optimising the distance. K-means

algorithm contains the following steps:
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1. K cluster centroids are randomly initialized.

2. Compute Euclidean distance of a point from K centroids.

3. Assign a point to its closest centroid.

4. Compute new centroid of each cluster using Eq. (2.16)

5. Steps 2 and 3 are repeated until converged (no change in mean).

2.7 Related Work

The main aim of many indexing techniques or search algorithms is reducing

search space, to speed up nearest neighbors retrieval for given query object.

Efficient retreival of nearest neighbors requires the database to be partitioned,

which can be done by two methods: One is clustering based and the second one is

Pivot based.

Now, here onwards we will focus on the techniques or methods those are Pivot-

based.

In the Pivot-based partitioning, a set of pivot (anchor or reference points) points

are selected according to a pre-defined criteria, and the database is divided into mul-

tiple partitions based on these pivots.

There are many similarity search algorithms present in literature, which are based

on the use of pivots for partitioning the space. These include: Burkhard-Keller Tree

(BKT) Burkhard and Keller (1973), Approximating Eliminating Search Algorithm (AESA)

Vidal (1986), Vantage Point Tree (VPT) Yianilos (1993), Fixed-Queries Tree (FQT)

Baeza-Yates et. al, (1994 ), Fixed-Height FQT (FHQT) Baeza-Yates et. al, (1994 ), Lin-

ear AESA Mico (1994), Multi VPT (MVPT) Bozkaya and Ozsoyoglu (1997), Excluded

Middle Vantage Point Forest (VPF) Yianilos (1999), Spagettis Chavez et. al, (1999)

and Fixed Queries Array (FQA) Chavez et. al, (2001 ).

AESA (Vidal (1986)) is one such index technique, which uses a random pivot in

querying, to cull out the unwanted objects from the search space using triangular

inequality property of a metric. Pivot-based metric indexing technique takes at least

O(l o g (n )) random reference (pivots) points. This was proved by Chavez et al. in
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(Chavez et al. (2005)).

Survey on Dimensionality Reduction:

Dimensionality reduction is a process in which high-dimensionality is reduced

to low dimensionality by using various techniques viz. PCA and MDS, Kernel PCA,

LDA, Isomap, LLE and Laplacian Eigenmaps etc. The study is first initiated by Bell-

man in 1961 while studying the high-dimensional data ( Bellman R (1961)). While

studying that, he coined a term called curse of dimensionality. According to him

the term refers to the fact that "without simplifying the assumption, the sample size

requires to estimate a function with several variables to a given degree of accuracy

grows exponentially with the increasing number of variables". He also proved with

an example that the estimate of local average grows exponentially. He has drawn the

conclusion to estimate local average, based on the density smoothers, local average

of the neighbouring points. Finally, he also states that to find enough neighbours,

one has to make use of multi variant smoothers in HD spaces to reach out farther, by

loosing the locality.

Later Scott and Thompson in 1983 ( Scott and Thompson (1983)) found another

reason called as "empty space phenomenon" for the curse of dimensionality . Ac-

cording to this phenomenon, the high-dimensional spaces are inherently scant and

thin. In other words it is sparse. To explain this phenomenon, he gives an example

of sparseness which explains the probability densities in a unit of sphere in R10. Ac-

cording to him the study of distribution of points in a unit sphere is most important

thing in which the densed points situated. Earlier scholars in the field considered

only the mean centered portion of Bell curve or normal distribution which is known

as N (0, 1). But Scott and Thomson reveal that the mass in the unit sphere consists

only 0.02% of N (0, 1) and the major points spread across the tails of the distribution

instead of mean centered area.

Perpinan produced his first report titled a review of dimension reduction tech-

niques ( Perpinan (1997)). The report is divided into six parts. The first part, which

is an Introduction, introduces the dimension reduction problem. Second part deals

with the principle component analysis by explaining the disadvantages of Principal

Component Analysis. Third part describes the Projection Pursuit, which is a visual
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representation of the data by unsupervised technique. Projection Pursuit is used for

low dimentional linear orthogonal projection of a high dimentional space or data.

This part also higilights, how human beings discovers the patterns in low dimen-

tional projections i.e. (1 - 3-D); discusses about visual presentations of projected

data density viz. histograms, smoothed density estimates, scatter plots and con-

tour plots. The fourth part explains about the principal curves and principle sur-

faces. The fifth part discusses topological continuous maps which includes Koho-

nen’s Self-Organizing Maps (SOM) and density networks. The sixth part of the study

describes the neural networks implementation of the stasticlal models described in

the above chapters. Over all, the study is a survey on different dimension reduction

techniques which includes PCA, projection pursuit, projection pursuit regulations,

principal curves and methods based on topologically continuous maps such as Ko-

honen maps or generalized topographic mapping. Along with the survey he also had

experimented the above techniques using neural network implementations. While

experimenting he had detected two major issues: to obtain the reasonable results

for dimensionality reduction problem requires huge sample size and determining

the intrinsic dimension of the given distribution of the data are open problems in

the area.

Maaten et.al prepared a technical report titled Dimensionality Reduction: a Com-

parative Review ( Maaten et. al. (2009)). The report addresses the limitations of

traditional linear techniques such as PCA and Classical Scaling. The report system-

atically describes and compares a variety of non-linear dimension reduction tech-

niques which are also implemented and experimented on natural and synthetic data

sets. The main contribution of the report is how the problems encountered in linear

techniques are being solved by the implementation of non-linear techniques. The

weaknesses of the current nonlinear techniques is also explained in a vivid way after

the experiential studies. The later part of the report explains how the performance

of the non-linear techniques will be improved with the major observations and sug-

gestions from the study. Another contribution of the study which was submitted in

the form of a report on dimensionality reduction a comparative review is systematic

comparison of dimensionality reduction techniques which is new to the field at that

time. This report helped the researcher as preliminary foundation for the present

study; which also follows similar comparisons as given in Figure 2.1.
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Cardoso and Wichert (2012) paper on Random Projection for high dimensions,

proposes an iterative version for the random projection K-means algorithm ( Car-

doso and Wichert (2012)). They have compared the proposed algorithm (IRP K-

means) with related approaches viz. RP K-Means, K-Means on original HD spaces.

For the study they had done experimentation on the image and text data. IRP-K-

means is showing low Mean Squared Error (MSE) in the original space, than single

RP.

Martins and Gurjao (2013) ( Martins and Gurjao (2013)) paper on Random Pro-

jection, applies random projections on house hold electric meters to describe be-

havioural usage of the house hold energy consumptions of 443 homes. For this, they

selected 443 households consumption usage of electric consumption from UMas-

Trace repository. They applied dimensionality reduction via random projection to

obtain reduced sketch of the smart meters original data. The method they employed

in the study is that 443 house hold electric consumption is measured at a sample

rate of one sample for minute. The 443 households consumption has come to 1440

samples. So the size of the data set is then 443 by 1440. When analysing on the di-

mensionality they found ample number of redundant dimensions. By using RP they

have reduced the dimensionality by 50% of the original data with an achievement of

2% reduction in average relative error. So, this helped in reducing time, space and

energy.

Aleshinloye et al. (2017) ( Aleshinloye et al. (2017)) discusses the efficiency of

DR tools for demand side management. This was a preliminary study from the per-

spective of management. It is also a critical analysis of DR on smart meters data for

smart grid applications. In the study they compared the performances of two DR

techniques viz. PCA and RP. As part of the method they used RP on high dimensional

data. The technique reduced the dimension to low dimensional feature space. Later

a cluster technique is applied on this low dimensional space which resulted in some

of the square errors (SSE), distance between data points. Similar clustering also ap-

plied on the original HDD. Later the results of HDD and LDD were compared, which

indicated that the PCA had better performed than RP in LDD. They also concluded

that RP is better for smaller dimensions than PCA.
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Tariq et.al (2018) ( Tariq et al. (2018)) discusses an efficient approach, which

helps in feature construction of high-dimensional micro array data by using Ran-

dom Projections (RPs). The paper highlights the integration of Genetic Program-

ming (GP) techniques with random projections. The study considered two ways of

employing techniques viz. apply the Decision Tree (DT), Random Forest (RF), Naive

Baiyes (NB), Support Vector Machines (SVM) and K-nearest neighbor method (KNM)

on input data directly or apply RP to convert the data into low dimensions and then

apply the former five techniques. Eight data sets were taken for the implementation

of the techniques. The over all results project that when 50 features are constructed

using GP the results were found to be best all the times whereas the accuracy was

gradually decreasing as the number of constructed features increases. Finally, the

results indicate significant increase in the over all accuracy with the use of RP based

constructed features. It was also observed that there is a decrease in the standard

deviation.

( Rana et al. (2013)) is a study on Deterministic Construction of projection ma-

trix for adaptive trajectory compression. It is a thought-provoking paper in the area.

The study proposes an adaptive compression algorithm. This algorithm defines a

deterministic and data driven construction of the projection matrix. This projec-

tion matrix is obtained by applying a singular value decomposition to a sparsifying

dictionary, learned from the data set. This study contributes to the field of compres-

sive sensing and signal recovery as follows: 1. proposed an adaptive compression

frame work which under pins compressive sensing theory and support vector regres-

sion. 2. proposed a data driven and deterministic construction of projection matrix

which was combined with the trained data dictionary to offer better compression

ratio compared to the predefined matrix and dictionary pairs. 3. validated the pro-

posed compression frame work performance by using large data sets which includes

pedestrian data of 91 different students and volunteers from five different sites, and

an animal trajectory data from 36 cows of CSIRO′s Belmont deployment. Finally,

they conclude from the case studies including GPS trajectory data sets, pedestrian

and animal data sets which contain more than 120 subjects. The adaptive compres-

sion is more useful to increase the performance of the trajectory compression. This is

because the adaptive compression with proposed compressive matrix can be saved

maximum 40% of transmission for pedestrian data sets and about 85% transmission
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for animal data sets. The study also highlights the more suitability of the determinis-

tic construction of projection matrix compared to the free defined random matrices

to achieve improved trajectory performance.

Rana et. al. (2014) ( Rana et al. (2014)) paper on Trajectory Compression, where

they apply deterministic projection method of Matrix for Mobile Sensor Networks,

is an informative and thought-provoking paper in the field of compressive sensing.

The paper also proposes a method for predicting the size of projections needed for

mobile nodes adoptively based on their speed. The result of the research is that it

(i) proposed a different method from earlier ones which computes projections from

a learned dictionary, (ii) a new and simple adaptive method is proposed, that uses

support vector regression which enables the MSN nodes to choose the number of

projections instantly, based on their speed and (iii) shows, based on the enormous

experimental results of the 6 data sets that the average distance between the origi-

nal and the reconstructed trajectories, (ADE) reduces by 10− 60 centimeters by the

proposed one when equated with SQUISH.

Juvonen, A and T, Hamalainen (2014) ( Juvonen and Hamalailen (2014)) is a land

mark paper in the area. The paper highlights the Efficient Network Log Anomaly

Detection System, which uses Random Projection Dimensionality Reduction. This

study develop a system which facilitates a quick anomaly detection by visualizing

the network traffic structure. For the study DR method is employed. The developed

system works by taking webserver log data as an input and pre-processes it in order

to extract the numerical features from it which directly or indirectly forms the future

metrics. The study also highlights that while extracting the numerical features the

dimensionality of this feature metrics is reduced using random projection method-

ology. The outliers are visualized and highlighted from the reduced dimension.

( Sachin and Kaban (2014)) is also another study in the field of dimensionality

reduction. It is a comparative study in which two methods viz. Random Projection

(RP) and Random Feature Selection (RF) are compared. The study mainly focuses on

classifying HD data points. It is basically an empirical investigation using a compar-

ative method on RP and RF by means of dimensionality reduction for classification.

The results of the study indicate that RP better classifies data than RF when the di-

mensionality is larger than the number of points. RF is a bit competitive to RP in
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some occasions.

Chris Ding and Xiaofeng He (2004) paper on K-means clustering via principal

component analysis is a statistical method of analysis, which was used for the unsu-

pervised dimension reduction ( Ding and He (2004)). In this work, they proved that

principal components are progressive solutions for the cluster membership. For the

study two data sets are used viz. DNA gene expression and internet news groups. The

results of the experiment revealed that newly derived L (low) bounds for k- means are

0.5-1.5% of the ideal (optimal) values.

Qi and Hughes (2012) studied PCA and RP for data analysis, experimental results

reveals that the output of the data, which is the result of applying on low-dimensional

random projections is equal to that applying PCA on original data set.

Extreme Learning Machine (ELM) is combined with K-means clustering in Al-

shamiri et al. (2014). The proposed method first projects the low-dimensinoal data

to HD feature space by using ELM, then applies K-means clustering in that ELM

space, it improves clustering quality.

Alshamiri et al. (2015) paper on "Combining ELM with RP for Low and High-

dimensional data classification and clustering" is an experimental study in the field

of RP wherein the proposed algorithms are tested on low and HD data for classifica-

tion and clustering (Alshamiri et al. (2015)). There are two scenarios in the study.

In the first scenario RP is used for reducing the dimensionality by cutting down the

ELM hidden layer neurons. Later, they performed the classification and clustering

in ELM (reduced ) space. Second scenario: LD data is first projected to ELM space

(as this increases data dimensionality, now data attains linear separability). Now, RP

is applied to reduce the dimension along with preserving linear separability. For the

experimentation, they used different types of data sets viz. 12 low-dimensional and 8

high-dimensional data sets. Finally, the study suggests that the integration of RP and

ELM gives satisfying results, also provides a clear agrrement between performance

and computational cost.

(Khandelwal et al. (2016)) is a review of applications of PCA in multi model bio-

metrics system. In this review they proposed a system which is a rank level fusion of

multiple domain experts information. For the review they compared two works: an
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unimodal biometric system and a multimodal biometric system. They also checked

the other methods like highest rank method, borda count method and logistic re-

gression method. All the above three are methods to combine the ranks of different

biometric systems. Finally, they conclude that multimodal biometric is more accu-

rate compared to the unimodal biometric system.

Sanjay Dasgupta (2000) paper on Experiments with random projection is an in-

formative paper in the field of RPs, See (Dasgupta (2000)). In this paper he has done

an experiment which is already present in literature in the form of theory. He has

conducted the experiment on synthetic as well as real data sets of Gaussian and OCR.

These experiments were done in order to illustrate the benefits of the RP technique.

PCA and RP, RP and EM methods were used for the experiments and compared them

for the better performance as well as benefits. The paper concludes, based on the ex-

perimental results that, RP performance is better when compared to other methods

like PCA, EM etc. The paper also highlights that RP has reduced the dimensionality

from 256 to 40 and had better benefits.

Samuel Kaski (1998) paper Random Projection by Random Mapping (RM) for fast

similarity computation for clustering is an experimental one in the area of dimen-

sionality reduction (Kaski (1998)). He is the first person to introduce the RM method

for the text documented data and classification. He explained the process of reduc-

tion where he mentions that the usage of RM method reduces the original document

and preserves the original dimension even after the reduction. Through this paper

he promotes the RM method by saying that it is a promising, computational and

feasible alternative in the area of dimensionality reduction. Along with the above

promotions, he also mentions that in the above situations like dimensionality re-

duction, the reduced dimensional data vectors will be used for the clustering as well

as for other similar approaches. Later the method is extensively applied in the ar-

eas of WEBSOM document organization system. He also promoted that this method

is as good as PCA or the original high dimensional data vectors. Finally the paper

suggests that RM produces better separability of different topic areas for the news

groups with 68% better than its counterpart methods.

Hegde et al (2007) in their paper titled Random Projections for Manifold Learn-

ing is an experimental as well as a theoretical paper in the area. In this work the
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researchers proposed a novel method for linear dimensionality reduction of mani-

fold modeled data. The main contributions of this work is: Let HD ambient space

RN can be learned in a manifold of dimension K , it can also be embedded in a lower

RP space RM , and M =C K l o g (N ).

This can be described in three main points as follows: (i) a minmum bound is

defined for intrinsic dimension (ID) estimation. This is achievd upto an accepted

accuracy level of the Grassberger-Procaccia algorithm Grassberger and Procaccia

(1983 ) and Camastra (2003 ), which is a widely accepted geometric approach for

intrinsic dimensionality estimation.

(ii) To discover the non-linear structure of the manifold, they presented a bound

(minimum number of measurements per sample point required ) for manifold learn-

ing algorithm - Isomap Tenenbaum et al. (2000). In both (i) and (ii), M logarithmic in

N , linear in K . (iii) proposed a linear algorithm (ML-RP, which is weakly adaptive) for

DR and manifold learning, without any information about data, it finds lower bound

of M , in practical settings.

(Ailon and Chazelle (2006)) is a theoretical paper on Approximate Nearest Neigh-

bors and Fast Johnson-Lindenstrauss Transform . The paper is highly theoretical in

its nature. The researchers have introduced a technique called Fast JL Transform

(FJLT). It preconditions the sparse projection matrices with a randomized Fourier

transform. This technique speeds up the search algorithms based on the Linear Di-

mension Embedding (LDE) in L 1 and L 2 spaces.

Dasgupta and Anupam Gupta (2003) paper on JL Lemma proof, lucidly explains

the JL-Lemma and its proof. This is also a bench mark paper in the area of, specifi-

cally RP which provides a proof for JL Lemma by using some elementary probabilis-

tic techniques. The theorems that are presented in this paper are analogous to Indyk

and Motwani (1998) and Achlioptas (2001), which gives a lower bound for the JL-

lemma.

Juvonen, A. et. al. (2015) paper on online anomaly detection by using dimen-

sionality reduction techniques for HTTP log analysis is an experimental frame work

in the area (Juvonen et al. (2015)). This frame work is used to find out the abnormal

behaviour of the network logs. The proposed network has special character in the
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sense that it has online capabilities of detecting an intruder. This is demonstrated

by using the real world network log data. Three methodologies were used in the re-

search viz. RP, PCA and DM. From the experimental results, the study suggests that

the RP and DM should be combined for the efficient analysis of the network traffic

and for better detection.

((Han et al., 2017)) discusses about Online multi linear principal component anal-

ysis (OMPCA). The paper is an extension of Multi-linear Principal Component Anal-

ysis (MPCA) learning method. The OMPCA proposed by them is tested for higher

order tensor machine for classification. The results of the study show that OMPCA

significantly reduces the time of DR with a little loss of recognition accuracy.

(Tasoulis et al., 2013) paper on Random direction divisive clustering is an experi-

mental study in the area of RP and DR. The study is basically about the performance

analysis of RP with various clustering algorithms i.e. RP with clustering algorithms

for high-dimensional cases. The study proposes a new RP clustering algorithms viz.

rp-de PDDP, RDDP and RL RDDP. Later the study explains about the achievement of

high quality data partitions with orders of magnitude faster. Finally the study con-

cludes with the experimental analysis on seven HD data sets (gene, face recognition).

The results of the study suggest that the proposed clustering frame work has compu-

tational savings of RP with a minimal performance loss.

(Bettoumi et al., 2016) compares k-means variants for mono-view clustering is a

comparative work in the area, which is broadly related to the area of our research.

This reviews various clustering methods. These methods implement RP and DR on

K-means, IRP K-means and Fuzzy K-means (FKM). The three methods were thor-

oughly experimented and tested on a set of images using five separate descriptors

with different sizes. The performance measures were used for the comparison of dif-

ferent clustering characteristics viz. purity, accuracy and running time. The review

suggests that IRP K-means has better accuracy than the other.

(Yu and Zhang, 2016) paper on a 3-way decision clustering approach for HD Data

is an experimental one with a proposed quantitative technique. The study proposes

a new 3-way decision clustering approach using RP. It works by applying 3-way K-

medoids multiple times on given input, and increases the dimensionality of the data

after each iteration of three-way K-medoids. The proposed method also experimen-
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tally compared with IRP K-means, Fuzzy Subspace Clustering (FSC) and K-medoids.

For the study three parameters were used. These are accuracy, Normalized Mutual

Information (NMI), and CPU time. The study finally concludes that the novel 3-way

decision approach is best suitable for Hd data with higher accuracy and no compro-

mise on computation time.

2.8 Summary

In this chapter, we discussed the Curse of Dimensionality, which is the basis for

the Dimension Reduction. Then explained the term Dimension Reduction or Di-

mensionality Reduction. After that, a preliminary discussion on some of the basic

DR methods like PCA, RP is presented, and also K-means clustering is explained.

These methods have been used in the works for comparing the performance of the

proposed dimension reduction methods. Later on we have reviewed the literature on

Nearest Neighbor Search and also on Dimensionality Reduction. These works have

motivated us to work in the area of DR of HD data and Nearest Neighbor Search.
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CHAPTER 3

Proximity-based Nearest Neighbor Search Algorithms

Proximity Searching refers to finding similar objects of a given query object by

using a similarity/distance measure. There are many measures or metrics present to

find out the similarity or dissimilarity between two objects.

Nearest Neighbor Search (NNS) is a very common form of similarity search. Simi-

larity search requires pre-processing of the given database so that the similar objects

of a given query can be found efficiently. Similarity search can be done on a database

using two methods: (i) Cluster-based similarity search- in which a clustering algo-

rithm is applied on the database, and while querying we can omit the clusters which

are not in the range of the given query. (ii) Pivot-based similarity search- in which

the given database is pre-processed (partitioned based on the distance from pivot

point) so that while searching for similar points (kNN’s) of a given query, we can find

them in any one of the partitions, and the remaining partitions are simply omitted.

We considered the later one in this chapter.

In this chapter, we propose two methods for partitioning space to speed up the

nearest neighbor search. These two methods (proposed) are pivot-based partition-

ing methods. The first one uses a single pivot point (reference point/anchor point)

for partitioning the database, and the second method uses group of pivots (reference

points) to partition the database. Both the methods are compared with the existing

methods and experimentally evaluated on various datasets.

3.1 Reference (Pivot) Points Selection for Space Parti-

tioning

Many real world application require searching a large amount of data to find the

objects similar to the search queries. Nearest Neighbour Search is the common op-

eration in similarity search. The similarity search is useful in many domains viz.



Content-Based Image Retrieval (CBIR), Web search engines, micro array data anal-

ysis etc. Dimensionality forces us to look at data from a different perspective when

dealing with such large data.

In the present work, we propose a distance-based partitioning method, which

uses a pivot (reference) point to divide the data into disjoint groups for finding the

nearest neighbors of a given query from large and HD data.

The proposed method divides the given database into separate groups based on

the distance from a reference point. In the next level for each sub-partition a refer-

ence point is selected and again it is partitioned into further sub-sub-partitions if re-

quired. Main objective of partitioning is to reduce search space. To find the nearest

neighbours we use Soergel Distance metric which is a dissimilarity-based distance

metric which finds the association between any two database points.

By experimenting we proved that, the proposed method is capable of retrieving

the top nearest neighbours (k-NN) by searching in only a single bin, and the remain-

ing bins need not be searched (search space reduction).

We have validated our method by conducting experiments with the following

data sets: ZINC data set, AT & T (ORL) Faces Database, Yale, Leukemia, Lung and

GCM. Proposed method reduces or prunes the search space and saves lot of compu-

tation time.

3.1.1 Introduction

Nearest Neighbor Search (NNS) has been a research problem in World Wide Web

era beacause voluminous data produced by the on-line sites, Content Based Image

Retrieval (CBIR), and micro array data analysis in Bioinformatics and so on. There

are large number of studies in literature which were focused on this problem.

Curse of dimensionality is the biggest challenge in high-dimensional data. The

processing complexity becomes high as the data dimensionality grows. Exponential

time is needed for nearest neighbor retrieval with increasing dimensionality, Indyk

(2004).

Large dimensionality/feature is inevitable in domains like, Chemical similarity
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search, CBIR, Gene Expression (Micro Array) Data Analysis, etc. These all applica-

tions require NNS operation to do some processing, and NNS is the most common

operation in these data domains.

In this work, we try to improve the nearest neighbor search on large and high-

dimensional data sets by pre-processing the input database into a number of parti-

tions based on the distance to the points computed from a selected reference point.

After an enormous experimentation, MinMax reference point was found to be suit-

able for data partitioning.

3.1.2 Related Works in the Area

Several researchers all over the world are working on finding nearest neighbors

in HD space. Most of them are interested in constructing search/index structures for

similarity search in HD such as genome databases, time-series, text documents and

image databases. But unfortunately scalability of these structures with the dimen-

sionality is poor; for example the k-d tree performance degrades to such an extent it

is worse than even brute-force linear search if the dimensionality of the data exceeds

10.

Gionis et al. (1999) presented a novel hashing-based method called Locality-

Sensitive Hashing (LSH) for approximate similarity search. LSH works by hashing

the database points so that the most similar points will have more collisions so that

they will fall in the same bucket, where as the dissimilar points will fall into different

buckets. The LHS method works up to a dimensionality of 50 or more.

In (Indyk and Motwani (1998)), Indyk and Motwani proposed a variant for ex-

act nearest neighbor search which is called approximate nearest neighbor search. To

overcome the dimensionality curse, one can trade the search performance by opting

for approximate NNS. Instead of finding exact similar point of a given query, in ap-

proximate NNS, we find closer points to the query. Indyk (2004) presents theoritical

syudy on approximate NNS algorithms.

A tree based index structure called Multi-Vantage Point (MVP) tree was proposed

by Bozkaya and Ozsoyoglu (1997). MVP-tree is a distance-based index structure.
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Another metric-based data structure is proposed by Yu et al. (2001 ), which is

called iDistance. In this the data is projected onto 1-dimension (1-D line) from high-

dimension. They used pyramid technique for data partitioning. This index is more

scalable and adaptive to high-dimensionality than the previous methods present in

literature.

In Chandrasekhar and Rani (2012), a rank based feature selection type DR method

is proposed along with a storage layout for storing the retrieved nearest neighbors.

Correlation Fractal Dimension (CFD) as a descrmination measure was used to select

fature subset from original data. By using CFD, dimension is reduced from 58 to 7.

The nearest neighbor revrieval capacity of the proposed method is invariant of the

dimension, i.e. the nearest neighbors for a given query, both from original data (with

58 features) and from reduced data (with 7 features) are same. This has been proved

by the experimental results.

Samet (1989) presented a survey on various data structures used for NNS geo-

metrical spaces.

PIVOT SELECTION STRATEGIES:

Pivot selection is very important for any pivot-based indexing technique, selecting

the good pivots is the question of interest. A golden rule is to randomly select pivots,

but the selection impacts the search performance.

Many pivot selection strategies were introduced by Bustos et, al. in (Bustos et al.

(2003)). The main contribution of Bustos et al. is : comparison method for a collec-

tion of pivot sets, and find which set is best (performance-wise ) when compared to

the other one. The authors found that a best pivots are those that are having largest

mean in the mapped space. They proposed an efficiency criteria for comparing two

pivot sets. In this they proposed three methods to select best among pivot sets: i)

selecting random groups ii) incremental selection iii) local optimum selection.

A dynamic selection of pivot selection algorithm is proposed in ( Bustos et. al,

(2008 )). This method computes each pivot’s contribution to decide whether to keep

that point in pivot set or to replace it with a new pivot, the higher the contribution of

a pivot the higher the chance for it, to become part of pivot set.

Another pivot selection technique is Sparse Spatial Selection (SSS) by Pedreira
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and Brisaboa (2007). Here the selection of pivots is automatic, and the intrinsic di-

mensionality of the database has effect on the SSS pivots, irrespective of the database

size. The main aim of this method is to select a set of pivots that are well distributed

over the space. This method works by fixing the maximum distance d m a x between

any two points in the database. It starts with an empty set and incrementally selects

the pivots by checking for well coverage of present set of pivots in each step. A new

point will become a new pivot if its distance to all the points is greater than or equal

to εd m a x , and 0<ε≤ 1, ε= 0.4 is the experimental suggestion by the authors.

Extreme Pivoting (EP) method (EP Table) is presented in ( Ruiz et. al, (2013 )),

which is a new index for proximity searching. This method selects a set of non-

redundant pivots which covers the full database.

The Pivot placement problem was studied and addressed by Angiulli and Fas-

setti in ( Angiulli and Fassetti (2013)), in which they proposed a strategy for pivot

placement by using the data orientation that is present in the given database. This

orientation will guide us to select the best set of pivots. The proposed method is

called Principal directions-based Pivot Placement (PPP) algorithm. It uses cluster-

ing to determine the small clusters then inter-cluster directions are found. Now, the

angles between these directions are computed, then prioritized fixed width cluster-

ing is peformed, eventually the best pivots are determined. The experimental results

prove that the indexing performance can be improved by the best alignment of the

pivots by using the proposed method.

Chavez et. al, (Chavez et. al, (2015)) presented a novel framework for approxi-

mate nearest neighbor (ANN) search algorithms, called K Nearest References (K-nr).

This works by selecting a subset Rs of R reference points from database. Now the

original proximity (similarity search) problem is mapped to a signature space, that

is constructed from the K nearest references to that object. While querying, a candi-

date set is prepared by finding the similarity between signatures of the objects and

query q , then the q is directly compared with the obtained candidates.

Sergey Brin in his paper on GNAT Tree ( Brin (1995)), proposed a method for se-

lecting split points (reference points). His idea of selecting m - number of split points

starts with selecting randomly one point from candidate list (3m points are there in

candidate list, and this 3 is found empirically). Then select a farthest candidate point
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from the earlier point. Now, select a candidate point which is farthest from the previ-

ous two points. Then pick a point which is fathest from these three points, and so on,

and stop when the desired number of split points are selected. A dynamic program-

ming solution requires O(nm ) time to do this, n represents size of candidate points

and m is size of desired split points.

3.1.3 Reducing the Search Space for Efficient retrieval of Nearest

neighbors

Partitioning Algorithm

To lessen the search space and hence the computational complexity we use Par-

titioning. It is a data space partitioning method, where in the data space is divided

into bins based on the distance from a chosen reference point to the data objects in

the sample. We use 3/2(m i n+m a x ) point from X as the reference point to partition

the data, and calling it as MinMax method. There are two phases in this method.

One is construction phase and the other is search phase. In the construction phase,

we project the distances onto a straight line and that the line is divided into equal

parts in some interval range and this will define the bin boundaries. Once the bin

boundary is defined, in the construction phase, we calculate the distance of a data

object from its reference point and check the bin range in which the calculated dis-

tance falls, then that data object will be stored in that corresponding bin. The same

procedure is followed for all the data objects and that completes the construction

phase. This is rephrased in the following algorithm, Algorithm 1.

Algorithm 1 Construction

1: Read and pre-process the input data set X.

2: Select a reference point based on selection criteria.

3: Compute distance between reference point to all the points in X.
4: Equally partition the range of the Distance into intervals (bin boundaries).
5: Distribute all the data objects among the bins and sort them.
6: Repeat from step 2, for each sub-partition until stopping condition is met.

In the search phase, we are given a query object in HD space and expected to

return its nearest neighbors. For this, we first compute the distance from reference
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Algorithm 2 Search

1: Read query q, k (no. of neighbors to be retrieved).

2: Calculate the distance between reference point and q.

3: Go to the appropriate bin, and if it is further partitioned into bins then repeat
from step2, else continue.

4: Return the top k-objects from the bin as nearest neighbors.

point to query point and check in which bin it is falling, so that we will directly elim-

inate the other bins from searching; concluding that no nearest neighbors will be

found in those excluded bins. By searching in only one bin, we can retrieve the near-

est neighbors according to the distance in the order. The same procedure will be

followed in the next level also, up to a specified recursion depth. This greatly reduces

the computational effort. The above described search process is presented in Algo-

rithm 2.

3.1.4 How to calculate nearest neighbors

Nearest Neighbor Search problem is defined as retrieving the closest points for a

given query from the database. The nearness is determined in terms of distance from

a reference point. So the selection of reference point is crucial in nearest neighbor

search. To calculate the similarity (dissimilarity) between any two data objects, we

have measure called Tanimoto Coefficient (TC), which is basically a similarity coeffi-

cient whose value is in the range 0 to 1, See Rao et al. (2011 ) for more details on TC.

The similarity value 1 indicates that the points are similar and the similarity value 0

indicates dissimilarity. A, B are any two points, then TC is computed as:

T C (A, B ) =

∑n
i=1 a i b i

∑n
i=1 a 2

i +
∑n

i=1 b 2
i −
∑n

i=1 a i b i

(3.1)

where a i and b i represent i t h feature value of A and B respectively.

We use a dissimilarity-based metric called Soergel Distance (SoD) in our experi-

ments, See ( Cha S-H (2007 )) for more details. Soergel distance value ranges from 0

to 1, value 0 indicates that the two data points are similar and value 1 indicates that

the two data points are dissimilar. SoD is complement to Tanimoto coefficient. For
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any points A, B, SoD is computed as:

SoD(A, B ) =

∑n
i=1 |a i −b i |

∑n
i=1 m a x (a i ,b i )

(3.2)

where a i the i t h feature value of A and b i is i t h feature value of B.

For more on metric properties like, non-negativity, identity, symmetry and triangular

inequality, See Section 2.1.

3.1.5 Experimental Results

Data sets used for empirical study

We used ZINC database, which is a drug like chemical structures data, available

online ( John Irwin and Brian Shoichet (2005 )). ZINC is a free virtual screening

database that comprises of chemical compounds. Each structure contains ZINCID

and SMILES notation of it.

Linear representation of a chemical compound is called SMILES. SMILES stands

for Simplified Molecular Input Line Entry System, that represents a 2-D or 3-D molecule

in string format.

The drug-like data set is having 8, 783, 230 chemical structures in it. It has 9 phys-

ical features, 10 Atom count features and 9 structural features, total of 28 features,

See 3.1. See Rao et al. (2011 ) for more information on the features of this dataset.

For this study we have taken nearest neighbors of 100 selected molecues and

from this we took the neighbors of first 5, and the resulting data set is called as ZINC5,

its size is 596 by 7 by 5.

Besides ZINC5, we have used another data set i.e. AT&T Database of Faces (ORL

Faces) composes of 400 image samples, belongs to 40 persons, 10 per each one. Each

image size 92 by 112 pixels (so 10304 dimensions), and has 256 gray levels, and also

another version of ORL used in experiments, i.e. with 1024 dimensionality, in which

each image size is 32 by 32 pixels, see ORL Faces (2002) for more details on this data

set.

GCM (Global Cancer Map) has 190 tumor, normal tissue samples are 90 in num-
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ber.

Leukemia has 72 samples of two types: 25 acute lymphoblastic leukemia (ALL),

47 acute myeloid leukemia (AML).

Lung cancer contains 181 samples. This gene expression data samples are classi-

fied into malignant pleural mesothe-lioma (MPM) and adenocarcinoma (ADCA).

Yale comprises of 165 faces of 15 persons and 11 images per person, with a di-

mensionality of 1024.

Physical(9) Atom Count(10) Structural(9)

Molecular Weight Br. Count Cyclic
logP C Count Acyclic

De_ apolar Cl Count Mono Cyclic
De_ polar F Count Bi Cyclic

HBD I Count Tri Cyclic
HBA N Count Tet Cyclic
tPSA Na Count Hi Cyclic

Change O Count Hetero Cyclic
NRB P Count Chiral Centers

S Count

Table 3.1: The names of 28 features of ZINC data set, which are classified into three
major types, from these, 9 are Physical features, 10 are Atom count features
and 9 are Structural features

Experimental Results on various data sets

We have experimented by implementing both BO_ Heuristic (Bozkaya and Oz-

soyoglu (1999)) and MinMax methods and tested these methods on various data

sets. The average precision of these experimental results are reported.

On the ORL_ 1024 dataset, the average precision for BO_ Heuristic is 43% whereas

it is 56% for MinMax method.

On the Yale dataset, the average precision is 23% for both BO_ Heuristic and Min-

Max method.

On the Leukemia dataset, the average precision for BO_ Heuristic is 55% whereas

it is 54% for MinMax method.

On the ORL_ 10304 dataset, the average precision for BO_ Heuristic is 37% whereas
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Data set
Average Precision (%)

BO_Heuristic MinMax (proposed)
ORL_1024 43 52

Yale 23 23
Leukemia 55 54

ORL_10304 37 44
Lung 73 80
GCM 61 75

ZINC5 27 56

Table 3.2: Average precision (percentage) of 10 queries on various datasets, BO_
Heuristic (Bozkaya and Ozsoyoglu (1999)) versus MinMax method (pro-
posed)

it is 44% for MinMax method.

On the Lung dataset, the average precision for BO_ Heuristic is 73% whereas it is

80% for MinMax method.

On the GCM dataset, the average precision for BO_ Heuristic is 61% whereas it is

75% for MinMax method.

On the ZINC5 dataset, the average precision for BO_ Heuristic is 27% whereas it

is 56% for MinMax method.

In summary, both the methods are equally performing on Yale and Leukemia

datasets, and for the remaining datasets the proposed MinMax method is outper-

forming the BO_ Heuristic method.

Distance Distribution Plots for BO_ Heuristic and MinMax methods

As a validation experiment, we have plotted the distance distribution in histogram

plots for both the methods. As per the good pivot properties the intuition is that a

good pivot will give a flatter distribution, which is useful for eliminating most of the

points while finding the neighbors of a given query. This elimination is possible by

using triangular inequality property of distance metric, here we used Soergel dis-

tance metric, which obeys all the three properties of a metric. From the Figure 3.1,

we can see that the distance distribution of MinMax method (first column plots) is

flatter than that of the BO_ Heuristic method (second column plots), this helps in

eliminating large candidates while finding nearest neighbors of a given point.
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Figure 3.1: Distance distribution plots for various datasets: The First column is of
proposed MinMax method and the second column is for BO_ Heuristic
method. 1st row: ORL1024, 2nd row: Yale, 3rd row: Leukemia, 4th row:
ORL10304, 5th row: Lung, 6th row: GCM.
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Conclusion

Pivot-based partitioning is studied and proposed a pivot-based data partition-

ing method called MinMax method, which divides the data into different bins by

taking MinMax reference point. MinMax is tested on various datasets and its perfor-

mance is equated with existing method called BO_ Heuristic (Bozkaya and Ozsoyo-

glu (1999)). The empirical results project that the proposed and suggested MinMax

technique is best on the given data sets when compared to BO_ Heuristic method.

The efficiency of MinMax (proposed) method is validated through plotting the

distance distribution graphs for the considered data sets. These distance distribution

graphs shows that the proposed MinMax method has flatter distance distribution

than the BO_ Heuristic method, which defines a golden rule in eliminating more

candidates in similarity search or finding nearest neighbours of a given query.
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3.2 Weighted Set of Reference Points (WSRP) Method

In this, we have generalized the previous partitioning (MinMax Reference Point-

based) method by taking a set of reference points and weighting them according to

the distance from first reference point (R1).

3.2.1 Proposed Weighted Set of Reference Points (WSRP) Method

The proposed method consists of two parts: Construction or Partitioning phase

(off-line), in which the given input data is partitioned into smaller groups based on

the proposed partitioning method and Search phase (on-line), in which, a query is

given and we have to find the nearest neighbors the given query.

Partitioning Algorithm

To fasten the search operation and to reduce the search space and the computa-

tional complexity we use Space Partitioning Approach. It is a data space partitioning

method, wherein the data is divided into bins based on the distance from a chosen

set of reference points to the data points in the given data set.

There are two phases in this method. One is Construction phase and the other is

Search phase. The proposed method is a variant of the proximity-based data parti-

tioning method that speeds up the nearest neighbor search by reducing the search

space.

This method works by taking multiple weighted reference points for partitioning

the data into groups, finds the nearest neighbors of given query and returns them.

The core concept is defined by the following main points:

• Instead of taking single reference point, a reference points set is chosen for
data partitioning.

• Reference point set is defined according to a pre-defined criteria

• Computes weighted distances of all points in X to Reference Points Set.

• Find the range of these distances, divide the range into equal interval bins.
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• Distribute all the points of X, into these bins.

This is explained in detail, in the following text. Let XN×d be the given input

database of N points and d dimensions. The proposed method takes MinMax as

the first reference point (R1) for selecting l number of reference points (including

R1). First we compute d i s t (R1, X i ), i = 1, 2, 3, ...N which gives N number of dis-

tance values. We find the range of these distances and divide the range into l − 1

equal bins. Now, randomly pick a point from each bin. Let the random point picked

from the i t h bin be Ri+1, 1 ≤ i ≤ (l − 1). These points will form the Reference Set

ℜ (including R1). The weights of these reference points are computed as: d R1 = 1,

d R2 = d i s t (R1, R2), d R3 = d i s t (R1, R3),...d Rl = d i s t (R1, Rl ), and W1 = 1/d R1 = 1,

W2 = 1/d R2 ,...,Wl = 1/d Rl . Now, the weighted distance of each point in X is com-

puted as: d Wi =
∑i=N ,j=|ℜ|

i=1,j=1 Wj ∗d x i j , where d x i j = d i s t (x i , R j ). This gives N distance

values. Divide the range of d Wi into m equal bins. Assign each point to its corre-

sponding bin according to the weighted distance, and sort the bins. The psuedocode

of the this method is present in Algorithm 3, See the Figure 3.2.

Algorithm 3 Weighting the reference points
Input: Input data set X

Output: Reference Points Set Rl , Weights set Wl

1: Compute R1=MinMax Reference Point (3/2*(min+max))

2: Compute distances of all the points from R1

3: Determine the range of these distances.

4: Randomly select one point from X that is at a distance of d R1

5: Similarly, do the same for points those are at a distance of d R2 , d R3 , d R4 , d R5 , d R6 .

6: Now, form the reference set from these randomly selected points: R1 to R6

7: Assign weight 1 to R1, (1 ∗1/d r1) weight to reference point that is at d r1 distance

and so on.

8: return Rl , Wl

In the search phase, for a given query q , first we compute distance between query

and set of reference points ℜ: d qj = d i s t (q , R j ), j = 1, 2, ....l . Now, weight these l

distances by assigning weights specified above to get a scalar value: d Wi =
∑|ℜ|

i=1 Wi ∗

d qi . Find the bin range in which d Wi value is falling, retrieve the nearest neighbors of

q from that bin.
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Figure 3.2: Weighting the Reference Points

The functioning of proposed technique (WSRPM) is equated with other parti-

tioning methods like: Mean, MinMax, Set of Reference Points (SRPM). Precision

(what percent of positive predictions were correct) is the performance measure we

have taken for comparing these methods. From empirical study, one can say that the

suggested (WSRP) method is showing good precision over the other methods.

This proposed partitioning method implemented by taking the mean as refer-

ence point, minmax as reference point ( Pasunuri (2015 )) and set of reference points

without weighing for the purpose of performance comparison. When compared with

the above said three methods, the proposed (WSRP) method is giving a good im-

provement in average precision. Algorithm for Construction (offline) phase is given

in Algorithm 4.

43



Figure 3.3: Construction Phase

Algorithm 4 depicts the proposed partitioning method with an initial assumption

of five subgroups.

Search Algorithm

The process of searching the nearest neighbors for a given query is presented in

Algorithm 5. In the search phase, which is also called online phase, we are given

a query point q from the data space and we have to retrieve its nearest neighbor

points from the data base. For this the Search algorithm calculates the distances to

the query from the predefined set of reference points, and these distance values are

weighted with W and summed to arrive at a scalar value d q . This distance value is
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Algorithm 4 Construction Phase
Assumptions: Let X be the data set of size N .
Input: Data Set X , Set of Reference points R ,
l is the no.of ref.points,m is the no.of partitions,
W be the array of Weights.
Output: Partitions P , d i s t : array of distances.

1: for i = 1 to N do
2: Compute d (xi, R) =

∑l
k=1 Wk d k

3: end for
4: Find minimum(min) and maximum(max) of distance array d (min)
5: I nt e r v a l Le n g t h = (m a x −m i n )/m
6: for j = 1 to m do
7: r a n g e =m i n + I nt e r v a l Le n g t h
8: end for
9: for i = 1 to N do

10: for j = r a n g e (1) to r a n g e (m ) do
11: if d i s t (i )≥ r a n g e (j ) and d i s t (i )≤ r a n g e (j +1) then
12: Assign x i to the j t h bin
13: end if
14: end for
15: end for
16: return P

compared with the range of bin boundaries so that we get location in the data space

where its nearest neighbors are present.That location only we will search and report

the nearest neighbors.

Algorithm 5 Search Phase
Input: query q , k (k-NNs), dataset X , weights W , Set of Reference Points R .
Output: k -NNs of a given query q

1: for j = 1 to l do
2: Compute d j = d (q , R j )
3: end for
4: Compute d q =

∑l
i=1 d i Wi

5: for i = 1 to s i z e (r a n g e ) do
6: if d q ≥ r a n g e (i ) and d q ≤ r a n g e (i +1) then
7: Return k -nns of q from the partition Pi

8: end if
9: end for

10: return k -NN’s

3.2.2 Experimental Analysis

In this study, we used 5 high-dimensionsional data sets and one low-dimensional

data set to assess the functioning of projected WSRPM technique for efficiently re-
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Figure 3.4: Search Phase

trieving nearest neighbors from the data. Table 3.3 gives the description of the datasets.

A chemical (drug like structures) database from an online source ZINC John Irwin

and Brian Shoichet (2005 ), is the only one low-dimensional data set and remaining

all are high-dimensional data sets.

ZINC is a virtual screening database of chemical compounds. This provides a

ZINCID and SMILES notation for each chemical structure in the data base.

ZINC provides 9 features by default which are physical properties, Rao et al.

(2011 ) extracted 49 more feaures, summing to a toatl of 58 features, which are from

different classes: physical, atom count, structural and functional. From these 58

features a subset of 28 features after excluding the functional groups are used by
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(Chandrasekhar and Rani (2012)) for the experiments.

Yale, Leukemia, Lung and GCM are the other high-dimensional data sets used in

experimentation, See Section 3.1.5 for details.

Dataset Name # Samples # Dimensions # Classes
ORL 400 10304 40
Yale 165 1024 15

GCM 280 16063 2
Leukemia 72 7129 2

Lung 181 12533 2
ZINC5 596 7 5

Table 3.3: Specifications of Data sets.

We have applied the weighted set of reference points method to partition the data

space into bins. Then performed online search with query samples of different size

on various data sets.

The Precision is defined by the following formula:

Pr e c i s ion =
Tr u e Pos i t i v e s

Tr u e Pos i t i v e s + Fa l s e Pos i t i v e s
(3.3)

Table 3.4 gives the average precision percentage for a group query of size 50. That

is, these values are the average of 50 queries. From the results it is evident that the

methods mean, minmax ( Pasunuri (2015 )), and Set of Reference Points Method are

giving almost similar precision for the ZINC5 data set.

The Average Precision for the set of reference points and MinMax ( Pasunuri

(2015 )) are also similar. The mean reference point method is 10% less than these

two, and 30% less from that of Weighted Reference Points Method. The Weighted

Reference Points method is having 30% more gain in performance.

For the ORL (AT & T Face images) database, the minmax and set of reference

points methods are having same performance index, mean method is some what

poor in performance and the proposed method is giving 70% precision.

For the Yale data set the three methods (mean, minmax, set of reference points)

are giving same precision, and proposed method is giving almost 2-times better pre-

cision than the remaining three methods that are compared.
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For the GCM data set the first three methods are giving an average precision of

71%, and proposed is 77%.

For the Luekemia data set mean method is giving 83.8% which is nearly 2% greater

than the proposed.

For Lung data set, we got an average performance growth of 30% compared to

the first three methods. From all these experimental results, WSRPM is giving good

precision for almost all the given data sets.

Ref.Pt.Method ZINC5 ORL Yale GCM Luekemia Lung
Mean 40 30 40 70 84 45

MinMax 42 40 39 71 80 48
Set of Ref.Pts. 41 38 42 72 81 46

Proposed (Weighted Set of Ref.Pts) 68 70 80 77 82 76

Table 3.4: Average Precision values of different Reference Point selection methods for
partitioning the data, and these methods are tested on various data sets of
low and high-dimensionality. Except for Luekemia, on all the remaining
data sets, the proposed method (WSRP) is showing better average preci-
sion

From empirical results it is clear that the projected technique is functioning good

on low-dimensional (ZINC5- which has only seven features) data set and also for all

the five high-dimensional data sets. See Figure 3.5.

Pivot Method ZINC5 ORL Yale Luekemia Lung GCM
BO- Heuristic 27 43 23 55 73 61

MinMax 56 52 23 54 80 75
WSRP(proposed) 68 70 80 82 76 77

Table 3.5: Average Precision of WSRP (proposed method, in bold face) method is
compared with the two other existing methods namely, BO-Heuristic
(Bozkaya and Ozsoyoglu (1999)) and MinMax ( Pasunuri (2015 )). Except
for Lung, on all the remaining data sets, the proposed method (WSRP) is
showing better average precision. The results are average of 10 runs

In another experiment, we equated the average precision of WSRP technique

with two existing pivot-based methods namely, BO-Heuristic (Bozkaya and Ozsoyo-

glu (1999)) and MinMax ( Pasunuri (2015 )), and the results are presented in Table

3.5. The average precision percentage of WSRP method is higher than the compared

two methods, for all data sets considered, except Lung data set.
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Figure 3.5: Performance Analysis for different Data sets

3.2.3 Summary

In this chapter we have presented two algorithms (which are pivot-based) which

uses proximity for data space partitionin, and speeds up the nearest neighbor search.

The first method proposed is a pivot-based data partitioning method for Near-

est Neighbor processing. It works by taking a farthest (3/2 ∗ (m i n +m a x )) point as

reference point (pivot) for partitioning the data into subgroups. This helps in search

phase, when we want to search for the nearest neighbors of a given query. Based

on the distance between reference point to the query, we will move to a particular

group in which we can find all the neighbors to the query, and the remaining groups

or partitions need not to search. Thus, culling out the majority of the partititons and

finding nearest neighbors of given query in a single group; thereby saving the com-

putational cost and search time.

During the process of experiment, our study with empirical data showed that the

projected technique was effective. When compared with the existing (BO-Heuristic),

our method is able to reduce majority of the search space, and giving correct predic-
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tions of a query.

In the second part of this chapter, we proposed a variant of the proximity-based

data space partitioning method, that speeds up the nearest neighbor search by re-

ducing the search space. This method works by taking multiple weighted reference

points for partitioning the data into groups and returns the nearest neighbors of

given query. The weighting of the reference points is done according to the distance

from the data points to reference point set. The empirical results show that the WSRP

technique is effective and expeditious in retrieving the nearest neighbors for a given

query with less search space. The average precision percentage from the proposed

method (WSRP) is compared with two other methods (BO-Heuristc and MinMax)

and our method is outperforming the other methods.
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CHAPTER 4

Random Projections for Dimensionality Reduction and

Clustering in High-dimensional data

4.1 Ascending and Descending Order of Random Pro-

jections: Comparative Analysis of High-Dimensional

Data Clustering

4.1.1 Introduction

A variation to the iterative random projections K-means (IRP-Kmeans) was pro-

posed. IRP K-means efficiently performs clustering on HD data, which is based on

RP, K-means algorithm. In this, clustering runs for many epochs, projection dimen-

sion increased in each epoch. In our method, we propose a variation in the projec-

tion of data, that is, instead of increasing the dimension, we gradually decrease the

dimension in the successive iterations, which reduces the computational complex-

ity. IRP K-means is a simulated annealing type of projection wherein we reduce the

dimension in one step from HD to LD. Whereas, in our proposed variation we reduce

the dimension to a target dimension from HD to LD in successive iterations. These

iterations stop when a stopping criterion is met.

The proposed variant of IRP-K-means has been validated experimentally on var-

ious data sets. IRP K-means ( Cardoso and Wichert (2012)) is a fusion of reduction

(RP) and clustering (K-means) algorithm. It starts with a chosen low-dimension and

gradually increases the dimensionality in each K-means iteration. K-means is used

in each iteration on RP-reduced data. The proposed variant, in contrast to the IRP

K-means, starts with the high dimension and gradually reduces the dimensionality

while honouring the Johnson-Lindenstrauss lemma in each iteration.

VIRP-K-means (proposed variant) tested on five HD data sets. Of these, two are

image and three are gene expression data sets. Comparative Analysis is carried out



for the cases of K-means clustering using RP-Kmeans and IRP-Kmeans. The analy-

sis is based on K-means objective function, that is the mean squared error (MSE). It

indicates that our variant of IRP K-means method is giving good clustering perfor-

mance compared to the previous two (RP and IRP) methods. Specifically, for the AT &

T Faces data set, our method achieved the best average result (9.2759×109), where as

IRP-Kmeans average MSE is 1.9134×1010. For the Yale Image data set, our method is

giving MSE 1.6363×108, where as the MSE of IRP-Kmeans is 3.45×108. For the GCM

and Lung data sets we have got a performance improvement, which is a multiple of

10 on the average MSE. For the Luekemia data set, the average MSE is 3.6702× 1012

and 7.467× 1012 for the proposed and IRP-Kmeans methods respectively. In sum-

mary, our proposed algorithm is performing better than the other two methods on

the given five data sets.

4.1.2 Basic Concepts and Related Work

The K-means (Lloyd (1982)) is a clustering algorithm in which the data with N

points given in Rd and an integer K is specified. The algorithm finds K cluster cen-

ters such that the average distance from a point to its cluster center is minimum.

It starts by initializing the centers by randomly. That is, it selects K cluster centers

randomly. Then, each point is compared with all these centers and the point is as-

signed to its closest cluster center. Now the new mean of each cluster is calculated

and these mean points are now become the new cluster centers. Likewise the cluster

centers are updated regularly after each iteration by taking the mean of each cluster.

That is every iteration the means are recalculated and all the points are reassigned

to its closest new center. The total mean squared error is reduced in each of the it-

eration. The algorithm converges when it reaches the minimum squared error. The

disadvatage of K-means is that it can be caught in local minimum.

Random Projection (RP) (Johnson and Lindenstrauss (1984)) is a very famous

and powerful technique for dimensionlaity reduction. It uses matrix multiplication

to map data onto a smaller embedding space, by utilizing a random matrix for pro-

jection, by this mapping, distance between the data points is approximately pre-

served.

52



(Fradkin and Madigan (2003)) conducted a comparative analysis on the combi-

nation of PCA and RP with SVM, decision trees (DT) and proximity (k-NN) methods.

Bingham and Mannila ( Bingham and Mannila (2001)) is another work in the lit-

erature, in which different dimensionality reduction methods have been compared

for image and text data. The distortion rate and computational complexity are con-

sidered as performance parameters. In this work, they use RP to reduce dimension-

ality of image and text data. RP is compared with PCA, SVD, LSI and Descrete cosine

transform (DCT), on datasets from different domains. Noisy and noiseless images,

newsgroup text documents are used for testing and comparison. The distortion pro-

portion and computational complexity are the measures for performance compar-

ison. Their emperical results show that the random projection preserves the data

similary very well even at a moderate projecting (embedding) dimensions, and pro-

jections computation is also fast.

Fern and Brodley (2001) used RP and ensemble methods for HD data clustering

quality improvement. They use RP for unsupervised learning, by using RP for clus-

tering HD data using multiple random projections with ensemble methods. They

equated the proposed method with single random projection and PCA for EM clus-

tering. Their method outperforms PCA with better clusters on all data sets.

Deegalla and Bostrom Deegalla and Bostrom (2006) applied PCA and RP for

Nearest Neighbor Classifier to report the advantage of performance increse when

dimensions grow fastly. In this study, feature reduction is achieved through PCA, RP,

then on this feature reduced space kNN classifier is applied. They have taken image,

micro array data sets for this study. The study reports that PCA performance is more

dependent on the number of reduced dimensions. PCA accuracy decreases after

reaching a maximum as dimension increasing, whereas accuracy increases with the

growing dimension, in case of RP.

Cardoso and Wichert (2012) proposed IRP+K-means, which is an iterative ver-

sion of RP+K-means algorithm for HD data clustering. K-means objective function

(i.e. Mean squared error (MSE)) and running time (number of iterations clustering

takes to converge) are the two parmaeters used in performance analysis.

We proposed a variant to IRP K-means (called VIRP K-means) method that per-
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forms clustering of HD data using random projections in the iterative dimensions of

IRP K-means algorithm Cardoso and Wichert (2012), in this work. The performance

of VIRP Kmeans is compared with the related methods namely, IRP K-means, RP K-

means. From the empirical results, we can say that the performance (mean squared

error) of VIRP Kmeans is improved when compared to RP Kmeans and IRP Kmeans

methods. Results of the conducted experiments reveal that gradual decrease in the

reduced dimensionality and then clustering on that LD space achieves high cluster-

ing quality.

See Sections 2.5, 2.6 for more details on random projection technique, K-means

clustering respectively.

4.1.3 RP K-means

Several researchers combined the K-means clustering algorithm with random

projection (Boustsidis et al. (2010), Dasgupta (2000), Li et al. (2006)). The funda-

mental idea to project the original HD data into a LD space and then perform clus-

tering on this low-dimensional subspace. This reduces the K-means iteration cost

effectively. The solution we get in low-dimensional space is same as the one in the

high-dimension.

The RP K-means, first initializes cluster membership G randomly. Then generate a

random matrix P to map input data. Map input data XN×d to D dimensions where

D < d , using the projection matrix Pd×D . The initial cluster centers C RP defined by

the mean of each cluster in X RP with the help of projected data X RP
N×D and G . We ap-

ply K-means clustering upto convergence or we will stop based on some stopping

condition. The details of this method is described in Algorithm 6, See Cardoso and

Wichert (2012).

4.1.4 Iterative version of RP K-means

It is an iterative algorithm proposed by Cardoso and Wichert (2012). This algo-

rithm increases the dimension of the space in each iteration so that the local mini-

mums are avoided in the original space. Each solution, constructed in one iteration,

is used in the following iteration; thereby saving the computations. This is same
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Algorithm 6 Random Projection K-means
Input: Reduced dimension D, XN×d , K
Output: G (cluster membership).
begin

Partition X randomly into K groups.
Set a random matrix Pd×D

Set X RP
N×D =XN×d Pd×D

Set C RP
k×D by finding the mean of each cluster in X RP

N×D according to G .
Find G with K-means on X RP

N×D with C RP
k×D as initialization.

return G

end

as simulated annealing clustering, Selim and Alsultan (1991). The wrong cluster

assignments are reduced as dimensionality is increased i.e. the chance of falling a

point into a wrong cluster is reduced as the dimensionality is increased. A wrong

cluster is identified by the euclidean distance from center to the point in the original

space. The algorithm is same as RP K-means, but here the projection and clustering

is applied in many iterations. The projection dimension is increased in each itera-

tion. The clusters in the previous iterative dimension are the base for initializing the

clusters in the present dimension.

The algorithm randomly partitions the input data set X and initializes as clus-

ter membership G . The algorithm starts in dimension D1, Initial centroids are the

means of the initial clusters. The input data X is projected onto a D1(D1 < d ) di-

mension space by random projection P1, obtaining X RP1 . K-means clustering is per-

formed in X RP1 to get the new cluster membership G , and this G will become the ba-

sis for next dimension (D2) for initilizaing K-means. Again compute centroids now

in dimension D2(D1 ≤ D2 < d ) by using the cluster membership G obtained from

K-means in dimension D1 and X RP2 to obtain the new initial centroids C RP2 , in a new

D2 dimensional space. Now in D2, we perform K-means clustering again using C RP2

as initialization. This process is repeated until the last Dl (D1 ≤ D2 ≤ ... ≤ Dl < d )

is reached, returning the cluster membership from Dl . This algorithm is based on a

heuristic relation D1 ≤ D2 ≤ ... ≤ Dl < d which is analogous to simulated annealing

cooling. The procedure is presented in Algorithm 7.
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Algorithm 7 Iterative RP K-means
Input: Dimensions list Da = 1, 2, 3, ..., l , Dataset XN×d , K (clusters)
Output: G (cluster membership).
begin

Partition X into K random clusters and assign as G .
for Da = 1 to l do

Specify Pa (d ×Da ) (random matrix)
Set X RPa (N ×Da ) =X Pa

Set C RPa (K ×Da ) by finding the mean of each cluster in X RPa according to G .
Apply K-means on X RPa with C RPa as initialization to get G .

end for
return G

end

4.1.5 Proposed variant of IRP-Kmeans

The proposed variation is based on Iterative dimension reduction using random

projections and K-means Algorithm. But instead of gradually increasing the dimen-

sion, we decrease the dimension from the high-dimension to low-dimension in the

random projection part of the algorithm. Similar to IRP-Kmeans, we try to capture

the solution constructed in one iteration and use it in subsequent iteration. In this

way, it transfers the characteristics of previous generation to following generation.

In our experiment, we ran our method for the reduced dimensions from the list

(d , d /2, d /4, d /8). See Algorithm 8.

Algorithm 8 Proposed Variant of IRP-K-means
Input: list of dimensions D = (d /2, d /4, d /8),
Data Set XN×d ,
No. of clusters K
Output: G which is cluster membership.
begin

1: Partition X randomly and assign cluster centroids as G .
2: Set Da = d /2
3: Specify random matrix Pa (d ×Da )
4: Set X RPa (N ×Da ) =X Pa

5: Set C RPa (K ×Da ) by finding the mean of each cluster in X RPa according to G .
6: If Da < d /8
7: Da =Da/2
8: and Goto STEP 3
9: Apply K-means on X RPa with C RPa as initialization to get G .

10: return G

end
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4.1.6 Experimental Study

Performance of the proposed variant of IRP-K-means is analyzed is done on five

high-dimensional data sets, two image (AT & T, Yale), three micro array (also called

gene expression data) datasets, which are: GCM, Leukemia and Lung.

The mean squared error (MSE) which is the objective function of K-means clus-

tering is taken as a measure to report the performance of the proposed method.

4.1.7 Data Sets

In this study, we considered five high-dimensional data sets to evaluate the per-

formance of the proposed variation of IRP-K-means algorithm. See Section 3.1.5 for

details. A detailed specifications of the data sets are presented in Table 4.1.

Dataset Name No. of Samples No. of Features No. of Classes
AT&T Faces (ORL) 400 10304 40

Yale 165 1024 15
GCM 280 16063 2

Leukemia 72 7129 2
Lung 181 12533 2

Table 4.1: Specifications of data sets

4.1.8 Results and Discussion

Using Theorem 1, we have calculated the bound for the data sets that are consid-

ered for experimentation. The ε value is fixed at 0.99 in all the experiments. The MSE

for several data sets with the implementation of Cardoso and Wichert (2012) and by

using Achlioptas Random matrix (our own implementation), we got almost similar

results, except for the Lung data set with a difference of 101 times in the MSE for AT

& T Faces, Lung and GCM data sets. These results are presented in Table 4.2.

The average MSE over 20 runs for the proposed variant along with two other

methods is shown in Table 4.3. From this, it is evident that the proposed variant

outperforms the IRP-K-means method on the given five high-dimensional data sets.

When compared with RP-K-means, the performance of the proposed one is almost
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same for all the data sets considered except GCM, wherein the The performance of

VIRP is doubled for GCM data set when compared with RP-Kmeans Algorithm. VIRP

is showing 6 times improvement than IRP, when GCM data set is considered. It is

double of IRP on first four data sets, and it is 10 times improved for Lung data set.

Data set D
IRP-Kmeans

(Classical Normal matrix)
IRP-Kmeans

(Achlioptas random matrix)
AT&T Faces (ORL) 221 7.8850×108 8.1216×108

Yale 166 1.2311×108 1.459×108

GCM 234 4.5467×1011 4.9832×1011

Leukemia 212 4.1263×1011 4.1620×1011

Lung 226 10.88×1010 4.43×1010

Table 4.2: MSE for several datasets. When the dimensionality of the data is reduced
from original dimension to JL Limit (D), The results reported are sample
average over 20 runs.

S.No. Data sets RP IRP Proposed (VIRP)
1 AT&T Faces(ORL) 8.53×109 19.134×109 9.2759×109

2 Yale 1.61×108 3.45×108 1.6363×108

3 GCM 1.20×1013 1.551×1013 0.7444×1013

4 Leukemia 4.17×1012 7.467×1012 3.6702×1012

5 Lung 1.19×1012 13.3×1012 1.309×1012

Table 4.3: MSE of the proposed method (IRP-K-means variant) is compared with two
other methods namely: RP-K-means, IRP-K-means for several datasets.
The values reported are sample average 20 runs.

4.1.9 Summary

We proposed a variant for IRP K-means algorithm by gradually decreasing the

dimension in each iteration thereby preserving the inter-point distances efficiently.

This can be confirmed by the empirical results presented above. Our method is com-

pared with the Single Random Projection (RP), IRP K-means (IRP) methods. Com-

pared to these two methods, our proposed method is giving best results for the given

HD datasets. Using other methods to generate random matrix and verify if the method

preserves the inter-point distances will be the future research work. And also to carry

out comparative analysis of the proposed method with some standard clustering al-

gorithms.
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4.2 Clustering High-Dimensional Data: A Reduction -

level Fusion of PCA and Random Projection

Principal Component Analysis (PCA) is a very famous and commonly used statis-

tical technique, which is also an unsupervised DR method. K-means centroid based

clustering technique used in learning tasks which are unsupervised. Random Pro-

jection (RP) is a widely used dimension reduction technique. The basic idea of RP is

to change the high-dimensional data representation into a much lower-dimensional

subspace, and also to ensure preservation of proximity among the points. Here we

prove the effectiveness of these methods by combining them for efficiently clustering

the low as well as high-dimensional data. Our proposed algorithm works by combin-

ing PCA with RP to lessen the dimensionality of the data set, then performs K-means

clustering in the reduced space. We compare the proposed algorithm performance

with simple K-means, PCA reduced K-means algorithms on 12 bench mark datasets.

Of these, 4 are LD and 8 are HD datasets. Our proposed algorithms outperforms the

other methods.

PCA is a data analysis technique, and also a dimension reduction method which

was introduced by Pearson in 1901 (Pearson (1901)).

It is used to reduce the data from HD to LD with maximum variance preservation.

The applications of PCA include, Data Compression, Data Visualization, Feature Ex-

traction and so on. K-means (Lloyd (1982)) is a clustering algorithm in which the

data with N points given in Rd and an integer K is specified. The algorithm finds K

cluster centers such that the mean squared error is minimized. It starts by initializing

the centers by randomly selected K points. In each iteration, every point is checked

with all the centers to find its relevant cluster, this creates new clusters, new centers

are computed after completion of an iteration. Mean of points defines cluster cen-

ter. Objective of an iteration is to reduce the total squared error. This error becomes

minimum when the algorithm reaches convergence state, but it need not be a global

minimum every time.
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4.2.1 Related Work

Many researchers worked on to combine two or more dimensionality reduction

methods before applying a clustering or classification task on the data. Here the

dimensionality reduction process acts as a pre-processing step to ease the eventual

clustering or classification task, See Section 4.1.2.

Ding and He (2004), has proved that the principal components are the contin-

uous solutions to the for K-means clustering. They related unsupervised dimension

reduction with unsupervised learning, and they claim that these both are comple-

ment to each other.

Qi and Hughes (2012) has shown that, PCA on random projections (of low-

dimensions) gives the same results as PCA on the original data set with certain condi-

tions. The empirical results from both synthetic and real-world data sets show that,

PCA when applied on RP reduced data, then it successfully recovers center of data,

and also princiapl components.

In this work, we have combined PCA and RP with K-means clustering to enhance

clustering performance. Here we have done a two-step preprocessing of the input

data that is applying PCA first to get reduced directions then apply Random Projec-

tion on these reduced principal components, and also vice-versa. Then performing

clustering on the reduced data.

We have implemented PCA and RP in the preprocessing step of fusion method.

See Section 2.4, 2.5 for more details on PCA and RP respectively.

4.2.2 K-Means Clustering

K-means is prototype-based clustering algorithm. It finds k groups/clusters in

the given database. This iterates through N observations and divides them into K

independent clusters. It first initializes K random points as cluster centroids. Then

each point is tested for its closest centroid, and the point is assighned to that cluster.

This is repeated for all the points. Now K clusters are formed. Now the new cluster

centers are defined as the mean of each cluster. This process repeated until there is

no change in the cluster centers. For more details on K-means clustering, refer to
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Section 2.6.

4.2.3 Fusion of dimensionality reduction methods for Clustering

High-Dimensional Data

This section describes the proposed fusion (of DR methods) algorithms for per-

forming clustering on the high-dimensional data efficiently. Most clustering algo-

rithms (like K-means) present in the literature are basically distance based. These

algorithms which are meant for low-dimensioanl data clustering, cannot produce

significant clusters in HD data because many features are redundant, useful patterns

can be found in the subspaces with small dimensionality, Bouveyron et al. (2007),

Assent (2012). To make the conventional clustering algorithms suitable for HD data

clustering, first convert data into a LD space then apply clustering task on this pro-

jected (dimension reduced) points. We have proposed fusion of algorithms in this

work to perfrom clustering in HD data efficiently and effectively. In Algorithm 9,

PCA is first applied on the original HD data, then K-means is applied on the reduced

data. We set D < d in Algorithm 9.

In Algorithm 10, PCA is applied then RP is applied on the PCA resulted reduced

space, then K-means is applied to this reduced space (PCArp K-means).

PCA mapping is analogous to kernel-based clustering.

Given two data points a and b and the PCA defines a mapφ from Rd input space

to RD reduced/feature space

φ : Rd →RD . (4.1)

Euclidean distance between x , y is defined in input space as:

d (a ,b ) =
p

‖a −b‖2 (4.2)

After the mapping (to reduced space), the euclidean distance is:( Zhang and Cao

(2011), Alshamiri et al. (2015))

d RD (a ,b ) =
q





φ(a )−φ(b )






2
(4.3)
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Equation 4.2 can be replaced by Equation 4.3 as of projected space. Similarly, pro-

posed PCA K-means can be potrayed as a mapping from HD to LD features and then

applying clustering in that LD space.

PCA K-means consists of 3 steps and is described in Algorithm 9. Let X be the

input data, G be the cluster membership vector. Here, we first perform PCA on pri-

mary input X , to get reduction space. Then we execute K-means on reduced space to

get the clustering results (G). The basic idea is, instead of applying K-means cluster-

ing on the original high-dimensional data, first we reduce the dimensionality of the

data into low-dimensional one, and then we perform K-means clustering in reduced

space.

Algorithm 9 PCA K-means
Input: Data set XN×d , K (clusters ), Reduced Dimension D
Output: G (cluster membership)
begin

1: Apply PCA on the original input X
2: Perform K-means in PCA reduced space
3: return G

end

The pseudo code for PCA+RP-Kmeans Algorithm is given in Algorithm 10:

Algorithm 10 PCA+RP-K-means
Input: Data Set XN×d , K (clusters), Reduced Dimension D

Output: G (cluster membership).

begin

1: Apply PCA on XN×d to get X p c
N×d 1

2: Set random projection matrix Pd 1×D

3: Set X RP
N×D =X p c

N×d 1
Pd 1×D

4: Perform K-means clustering on the resultant X RP
N×D

5: return G

end

The RP+PCA-Kmeans Algorithm described in Algorithm 11:
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Algorithm 11 RP+PCA-K-means
Input: Data Set XN×d , K (clusters), Reduced Dimension D

Output: G (cluster membership).

begin

1: Set a random projection matrix Pd×d 1

2: Set X RP
N×d 1

=XN×d Pd×d 1

3: Apply PCA on X RP
N×d 1

to get X p c
N×D

4: Apply K-means on resultant X p c
N×D

5: return G

end

In the Algorithm 11, N is size of database, d gives original size of features present

in the input data set. d 1 is the size of the reduced dimension to which the input data

set is projected by random projection and d 1 < d . D is the final reduced dimension

after applying PCA on the RP reduced space.

This algorithm starts by reducing the dimensionality of input data from d to d 1

by applying random projection. By this the XN×d becomes X RP
N×d 1 . Then we apply

PCA on this RP reduced space to get X p c
N×D . Now, we perform K-means clustering

on this reduced matrix to get the clusters. Then we report clustering pefromance in

the form of Mean Squared Error (MSE) as performance measure for comparing the

methods.

4.2.4 Empirical Study

We equate the functioning of projected technique on eight high-dimensional and

four low-dimensional data sets. Performance measure used is MSE, which is objec-

tive function of K-means clustering. The low the MSE, the higher the clustering ac-

curacy.

Data Sets

In this study, we have considered eight HD data sets and four LD data sets to

assess the functioning of presented hybrid (fusion) algorithms. A detailed specifica-
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tions are in Table 4.4. Their description is as follows:

HD data sets: COIL20 (Columbia Object Image Library) comprises of 72 gray-scale

images belongs to 20 classes. Colon has 62 samples, each with 200 genes. This data

samples can be classified into 22 normal and 40 tumor tissue samples. Prostate can-

cer data set contains 136 tissue samples: 72 tumor, 59 normal.

Along with the above, we have used ORL, Yale, GCM, Leukemia and Lung data

sets, for details of these, see Section 4.1.7

LD data sets: The dataset Iris compose of 150 iris flower samples. For each flower,

we have four measurements: sepal length, sepal width, petal length and petal width,

giving 150 points x1,x2, ...x150 ∈R4. The data points are in 4 dimensions. Wine dataset

contains 178 samples and 13 dimensions. ZINC is a data repository of chemical

structures. This database has 8, 783, 230 chemical compounds. From this we have

taken 50000 samples randomly with 7 features (ZINC7) as one data set and with 28

features (ZINC28) as another data set for our experiments.

S.No. Data set Patterns Features Classes
1 AT&T Faces (ORL) 400 10304 40
2 Yale 165 1024 15
3 GCM 280 16063 2
4 Leukemia 72 7129 2
5 Lung 181 12533 2
6 COIL20 1440 1024 20
7 Colon 62 2000 2
8 Prostate 136 12600 2
9 Iris 150 4 3

10 Wine 178 13 3
11 ZINC7 50000 7 -
12 ZINC28 50000 28 -

Table 4.4: Specifications of data sets

Results and Discussion

All the results we have reported here are the average of 20 independent runs.

These results are shown in Table 4.5. The Performance of the K-means is compared

with the PCA-Kmeans and PCA-RP-Kmeans on low-dimensional data is shown in

Figure 4.1. From the Figure 4.1, it is evident that, PCA-Kmeans is better than K-
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means for the low-dimensional data sets considered. The clustering performance of

PCA-RP-Kmeans is far better than that of K-means on all LD data sets studied except

ZINC28, for which both the methods are same in the performance.

From the Figure 4.2, we can say that, the PCA-RP-Kmeans is giving better clusters

compared to K-means. PCA-K-means is showing good results for GCM, Luekemia,

Yale and Lung datasets when compared with K-means. For Prostate, COIL20 and

ORL data sets, both the methods are giving almost similar performance. For the

Colon data set, K-means( 3.16×107) is performing better compared to PCA-Kmeans

(4.6× 107). When comapred with PCA-K-means, the PCA-RP-K-means is giving bet-

ter performance with a 5 times improvement for Leukemia dataset, 4 times improve-

ment for ORL and COIL20 datasets, 3 times improvement for GCM and Yale data

sets, 2 times improvement for Colon, Lung and Prostate data sets. The overall per-

formance of PCA-RP-K-means is much better than PCA-K-means method.

Data set Classic K-means PCA-K-means PCA-RP-Kmeans
Iris 0.69 0.077 0.441

Wine 1231 310 1185
ZINC7 309 58 136

ZINC28 99 75 99
AT and T Faces (ORL) 6.51×106 6.668×106 1.61×106

Yale 2.39×106 9.162×105 2.66×105

GCM 6.92×109 2.6575×109 0.823×109

Leukemia 5.02×109 1.4101×109 2.96×108

Lung 9.55×108 3.183×108 1.21×108

COIL20 16.424 17.381 4.51947
Colon 3.16×107 4.6×107 1.82×107

Prostate 15×107 14.8×107 7.24×107

Table 4.5: MSE for several datasets. Sample average over 10 runs.

On ORL dataset, the average mean squared error (MSE) of RP-K-means is in-

creased when the reduced dimension (D) is gradually increasing, and the proposed

fusion method (RP+PCA-K-means) MSE is gradually decreasing with increase in D,

Reduced dimension (D) Avg. MSE of RP-K-means Avg. MSE of RP+PCA-K-means
10 1.43×103 5.08×10−1

20 3.43×103 3.17×10−1

50 9.40×103 2.29×10−1

100 19.4×103 1.71×10−1

Table 4.6: Average MSE for ORL dataset.
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Reduced dimension (D) Avg. MSE of RP-K-means Avg. MSE of RP+PCA-K-means
10 214 1.68×10−1

20 447 1.29×10−1

50 1263 5.83×10−2

100 2565 4.34×10−2

Table 4.7: Average MSE for Yale dataset.

Reduced dimension (D) Avg. MSE of RP-K-means Avg. MSE of RP+PCA-K-means
10 187 1.18×10−1

20 436 7.91×10−2

50 1195 5.43×10−2

100 2487 4.07×10−2

Table 4.8: Average MSE for COIL20 dataset.

Reduced dimension (D) Avg. MSE of RP-K-means Avg. MSE of RP+PCA-K-means
10 563 4.29
20 1164 2.87
50 2908 2.47

100 6091 3.83

Table 4.9: Average MSE for Colon dataset.

Reduced dimension (D) Avg. MSE of RP-K-means Avg. MSE of RP+PCA-K-means
10 2144 27
20 4326 19
50 11316 10

100 22878 13

Table 4.10: Average MSE for Leukemia dataset.

Reduced dimension (D) Avg. MSE of RP-K-means Avg. MSE of RP+PCA-K-means
10 2129 37
20 4165 28
50 10852 15

100 21619 9

Table 4.11: Average MSE for Lung dataset.

Reduced dimension (D) Avg. MSE of RP-K-means Avg. MSE of RP+PCA-K-means
10 1696 30
20 3462 22
50 9007 16

100 17972 21

Table 4.12: Average MSE for Prostate dataset.
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Reduced dimension (D) Avg. MSE of RP-K-means Avg. MSE of RP+PCA-K-means
10 2011 34
20 4021 24
50 10298 14

100 21499 9

Table 4.13: Average MSE for GCM dataset.

Reduced dimension (D) Avg. MSE of RP-K-means Avg. MSE of RP+PCA-K-means
1 2.64×10−2 3.28×10−2

2 1.01×10−1 3.11×10−2

3 1.39×10−1 1.83×10−2

Table 4.14: Average MSE for Iris dataset.

Reduced dimension (D) Avg. MSE of RP-K-means Avg. MSE of RP+PCA-K-means
2 0.33 5.24×10−2

4 0.94 2.26×10−2

6 1.34 2.00×10−2

8 1.89 1.18×10−2

10 2.51 1.12×10−2

12 3.03 1.14×10−2

Table 4.15: Average MSE for Wine dataset.

Reduced dimension (D) Avg. MSE of RP-K-means Avg. MSE of RP+PCA-K-means
1 2.24×10−3 2.99×10−3

3 5.30×10−2 7.14×10−4

5 1.28×10−1 6.11×10−4

7 2.17×10−1 5.29×10−4

Table 4.16: Average MSE for ZINC7 dataset.

Reduced dimension (D) Avg. MSE of RP-K-means Avg. MSE of RP+PCA-K-means
1 0.03 2.22×10−2

7 2.21 5.43×10−3

14 5.41 3.79×10−3

21 7.72 3.80×10−3

28 11.27 4.72×10−3

Table 4.17: Average MSE for ZINC28 dataset.
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See Table 4.6.

From Table 4.7, it is clear that on Yale dataset, the MSE of the RP-K-means is

increasing from 214 to 2565 when increasing the reduced dimensionality (D = 10,

20, 50, 100), whereas the MSE of the proposed method is gradually decreasing from

0.17 to 0.04 for the increasing D value.

From Table 4.8, it is clear that on COIL20 dataset, the MSE of the RP-K-means is

increasing from 187 to 2487 when increasing the reduced dimensionality (D = 10, 20,

50, 100), whereas the MSE of the proposed method is gradually decreasing from 0.12

to 0.04 for the increasing D value.

From Table 4.9, it is clear that on Colon dataset, the MSE of the RP-K-means is

increasing from 563 to 6091 when increasing the reduced dimensionality (D = 10,

20, 50, 100), whereas the MSE of the proposed method is gradually decreasing from

4.29 to 2.47 for the increasing D value.

From Table 4.10, it is clear that on Leukemia dataset, the MSE of the RP-K-means

is increasing from 2144 to 22878 when increasing the reduced dimensionality (D =

10, 20, 50, 100), whereas the MSE of the proposed method is gradually decreasing

from 27 to 13 for the increasing D value.

From Table 4.11, it is clear that on Lung dataset, the MSE of the RP-K-means is

increasing from 2129 to 21619 when increasing the reduced dimensionality (D = 10,

20, 50, 100), whereas the MSE of the proposed method is gradually decreasing from

37 to 9 for the increasing D value.

From Table 4.13, it is clear that on GCM dataset, the MSE of the RP-K-means is

increasing from 2011 to 21499 when increasing the reduced dimensionality (D = 10,

20, 50, 100), whereas the MSE of the proposed method is gradually decreasing from

34 to 9 for the increasing D value.

From Table 4.14, it is clear that on Iris dataset, the MSE of the RP-K-means is

increasing from 0.03 to 0.14 when increasing the reduced dimensionality (D = 10,

20, 50, 100), whereas the MSE of the proposed method is gradually decreasing from

0.03 to 0.02 for the increasing D value.

From Table 4.15, it is clear that on Wine dataset, the MSE of the RP-K-means is
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increasing from 0.33 to 3.03 when increasing the reduced dimensionality (D = 10, 20,

50, 100), whereas the MSE of the proposed method is gradually decreasing from 0.05

to 0.01 for the increasing D value.

From Table 4.16, it is clear that on ZINC7 dataset, the MSE of the RP-K-means is

increasing from 0.002 to 0.22 when increasing the reduced dimensionality (D = 10,

20, 50, 100), whereas the MSE of the proposed method is gradually decreasing from

0.003 to 0.0005 for the increasing D value.

From Table 4.17, it is clear that on ZINC28 dataset, the MSE of the RP-K-means is

increasing from 0.03 to 11.27 when increasing the reduced dimensionality (D = 10,

20, 50, 100), whereas the MSE of the proposed method is gradually decreasing from

0.02 to 0.04 for the increasing D value.

4.2.5 Summary

In the first part of this chapter, we have proposed a variant for IRP K-means al-

gorithm by gradually decreasing the dimension in each iteration thereby preserv-

ing the inter-point distances efficiently. This has proved by the empirical results.

Our propopsed method is compared with the Single Random Projection (RP), IRP

K-means (IRP) methods. Compared to these two methods, our proposed method is

giving best results for the given high-dimensional data sets.

In the second part, we have incorporated different dimensionality reduction meth-

ods (like PCA and RP) with K-means clustering method for better clustering in high

and low-dimensional data. The K-means is giving good performance when com-

bined with PCA than the normal K-means. We have proposed two hybrid algorithms:

one combines PCA with K-means and the second one combines PCA and RP with K-

means. PCA when combined with Random Projection gives us a good quality clusters

in the reduced dimensional space. This method works by combining PCA with RP as

preprocessing, then performs clustering (K-means) in PCA/RP reduced space.

Proposed fusion techniques are compared with K-means, PCA-K-means on 12

datasets. The proposed PCA-K-means and PCA-RP-Kmeans algorithms are outper-

forming the classic K-means, RP+PCA-K-means is outperforming RP-K-means on

the given low and HD data sets. Our experimental results strongly advocates the us-
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age of the proposed fusion algorithms.

70



D
at

a
se

t
A

vg
.M

SE
o

fR
P

-K
-m

ea
n

s
A

vg
.M

SE
o

fR
P
+

P
C

A
-K

-m
ea

n
s

R
ed

u
ce

d
d

im
en

si
o

n
(D

)
R

ed
u

ce
d

d
im

en
si

o
n

(D
)

10
20

50
10

0
10

20
50

10
0

O
R

L
1.

43
×

10
3

3.
43
×

10
3

9.
40
×

10
3

1.
94
×

10
4

5.
08
×

10
−

1
3.

17
×

10
−

1
2.

29
×

10
−

1
1.

71
×

10
−

1

Ya
le

21
4

44
7

12
63

25
65

1.
68
×

10
−

1
1.

29
×

10
−

1
5.

83
×

10
−

2
4.

34
×

10
−

2

C
O

IL
20

18
7

43
6

11
95

24
87

1.
18
×

10
−

1
7.

91
×

10
−

2
5.

43
×

10
−

2
4.

07
×

10
−

2

C
o

lo
n

56
3

11
64

29
08

60
91

4.
29

2.
87

2.
47

3.
83

Lu
ek

em
ia

21
44

43
26

11
31

6
22

87
8

27
19

10
13

Lu
n

g
21

29
41

65
10

85
2

21
61

9
37

28
15

9
P

ro
st

at
e

16
96

34
62

90
07

17
97

2
30

22
16

21
G

C
M

20
11

40
21

10
29

8
21

49
9

34
24

14
9

Ta
b

le
4.

18
:A

ve
ra

ge
M

SE
fo

r
th

e
h

ig
h

-d
im

en
si

o
n

al
d

at
as

et
s.

71



Dataset
Reduced

dimension (D)
Avg. MSE of

RP+K-means
Avg. MSE of

RP+PCA-K-means

Iris
1 2.64×10−2 3.28×10−2

2 1.01×10−1 3.11×10−2

3 1.39×10−1 1.83×10−2

Wine

2 0.33 5.24×10−2

4 0.94 2.26×10−2

6 1.34 2.00×10−2

8 1.89 1.18×10−2

10 2.51 1.12×10−2

12 3.03 1.14×10−2

ZINC7

1 2.24×10−3 2.99×10−3

3 5.30×10−2 7.14×10−4

5 1.28×10−1 6.11×10−4

7 2.17×10−1 5.29×10−4

ZINC28

1 0.03 2.22×10−2

7 2.21 5.43×10−3

14 5.41 3.79×10−3

21 7.72 3.80×10−3

28 11.27 4.72×10−3

Table 4.19: Average MSE for the low-dimensional datasets.
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Figure 4.1: Average Mean Squared Error for Low-dimensional Data
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Figure 4.2: Average Mean Squared Error for High-dimensional Data
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CHAPTER 5

A Computationally Efficient Data-Dependent Projection

for Dimensionality Reduction

5.1 Introduction

Many objects in the world such as images, videos, hand-written letters and num-

bers, speech signals, text documents, fingerprints, gene-expression micro arrays and

hyperspectral images, etc have large number of attributes and hence their represen-

tation requires large number of dimensions. Analysis and processing of large scale

data is a common requirement in various applications. For example, identifying the

fingerprint of a person, searching the documents on Internet by giving keywords,

hidden information finding in images, object tracing in videos etc. The system that

is processing with this high-dimensional data may be unstable and infeasible. This

motivates the need for dimensionality reduction method to bring down the dimen-

sionality of the data and process it.

PCA is a basic linear type of technique which has been used by many researchers

in the literature for dimension reduction purpose. PCA is basically a linear projec-

tion, that represents a High-dimensional data in lower dimensions. In PCA, the pro-

jection matrix is derived from the data it projects. So, the performance of PCA is good

among all other DR methods. The wealth of PCA is its simplicity and gives good per-

formance when compared to all other methods. But, computation-wise PCA is very

costly, than others. The performance guarantee is more and stable for PCA method,

while other methods are unstable in some of the applications like clustering. Even-

though PCA’s performance is well and good, the high-computational cost require-

ment initiates the need to look for other D R methods.

Random Projection is another technique for dimension reduction, which is inde-

pendent of data, as it uses random matrices which are generated from various dis-

tributions which do not correspond to the data that is going to be reduced. Random



projection has been showing good peformance for high-dimensional data clustering,

For more details see (Diaconis and Freedman 1984) and (Dasgupta 2000). In these,

the authors showed how the shape of the clusters can be changed with the use of RPs

(from eccentric to spherical).

Random matrices have been widely used for dimensionality reduction and in

Compressive Sensing (CS) due to their provable good performance and they can

be easily constructed. The inconsistent performance of random projections can be

solved by constructing the projections matrices deterministically Shen et al. (2013

). This need of determinisstic way of developing or constructing projection matrices,

leads to defining optimally various projection matrices, and these can be found in

the literature like: Elad (2007 ), Julio and Sapiro (2009 ), Zhou et al. (2012 ).

To learn from high-dimensional data, we need some some simple and efficient

methods like, Random Projection, Random Subspace method, which reduces the di-

mensionality. Random Projection (RP) is a computationally inexpensive (to its coun-

terpart PCA) technique of dimensionality reduction. PCA has been giving better re-

sults for the low-dimensions, where as RP is giving better results at the large reduced

dimension. Many researchers in the literature have been documented this. The main

feature of RP is its data independent nature, i.e. the RP works by projecting the HD

input to LD embedding, such that the pair-wise distance among the points in origi-

nal data is approximately preserved. Because of its data-independent projection, we

cannot expect the local structural properties of the input data are to be preserved.

Here comes the elegant data-dependency feature of PCA, eventhogh it is computa-

tionally expensive compared to RP, the quality of the solution is very good.

This motivated us to think of a projection which is not based on the point set

in the data, instead we will take a representative random sample (10% for exam-

ple) from the data and do the projection based on eigenvectors with most significant

eigenvectors(those are with largest variance) that preserve the structural properties

of the given input efficiently. This sample-based projection matrix reduces the com-

putational cost.
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5.2 Related Work

In (Papadimitriou et al. (1998)), Papadimitriou et al., shown that embedding the

points of a given data X in a low-dimensional space can greatly speed up low-rank

approximation to X , without any distortion in its quality.

In (Indyk and Motwani (1998)), Indyk and Motwani proved the usefulness of JL-

embeddings in solving the ε-approximate neighbor problem. The input data set X is

preprocessed to answer the queries like, given an arbitrary point x , find a point y ∈X

: for every point z ∈X , ‖x − z‖ ≥ (1−ε)




x − y




 .

In (Schulman (2000)), Schulaman used the JL-embeddings for clustering and the

JL-emddings are part of the approximation algorithm in this clustering, where the

sum of the squares of intra-cluster distances are minimized.

In (Indyk (2000)), Indyk used the JL-embeddings for the data stream computa-

tion, where the memory is limited and we can perform only a single pass over the

data stream.

In (Achlioptas (2001)), Achlioptas used random ±1-matrices for JL, in place of

Gaussian matrices. His main motivation in this work is to make the random pro-

jections easier to use in practical applications. He obtained a constant speed up by

using null values in random projection matrix entries roughly 2/3rd, which means it

is a sparse matrix.

In (Frankl and Maehara (1987)), Frankl and Maehara presented a simple and

short proof of JL-Lemma by projections onto random orthogonal vectors. Some

more simplified proofs are presented in (Indyk and Motwani (1998)), (Dasgupta and

Anupam Gupta (2003)).

Kleinberg (Kleinberg (1997)) proposed two algorithms which give approximate

nearest neighbors (ANN) in l d
2 . Projecting data onto random lines is the basis for

these two algorithms. This idea has been used by many researchers in ANN problem.

The first algorithm time complexity is O((d log2 d )(d + log N )), and space complexity

is in exponential of d . Second algorithm time complexity is O(N +d log3 N ), which

improves on an algorithm that has time complexity O(N d ) , require a storage space

of only O(d N pol y l o g N ), where N represents database size.
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In ( Bingham and Mannila (2001)), the authors studied DR methods based on

sparse projection heuristics, for noisy and noise-less image data, text data. They

showed that the representing HD data on a random subspace (of less dimension)

gives same result as the dimension reduction done by a PCA. They also justify with

their experiments that, using random projections for dimension reduction is siginf-

icalty improving the computational expense than PCA, and less computations are

required for random projection, if we use sparse random matrices.

In ( Deegalla and Bostrom (2006)), Deegalla and Bostrom compared two dimen-

sion reduction methods namely, PCA and RP. They conducted experiments on high-

dimensional image and micro array data sets by integrating dimension reduction

method with nearest neighbor classifier. PCA is giving better performance than RP

on all the datasets used in the experiments. They have drawn another inference from

their experimental study that, PCA accuracy gradually reaches a peak and then de-

creases with the increasing dimension, RP accuracy increases as the dimensionality

grows.

Fern and Brodley in ( Fern and Brodley (2001)) studied HD data clustering. They

examined RP, identified its instability problem, proposed a solution based on clus-

ter ensemble framework, that works well for clustering high-dimensional data . The

main motivation for this work is unstable clustering performance of random pro-

jection, but they want robust clustering performance. Lack of stability of clustering

results, as each projections is giving a different clustering result, is the main motiva-

tion for this RP-based cluster ensemble framework.

In ( Xie et al. (2016)), Xie et al. showed the classification performance of RP can

be increased when it is combined with other DR methods like PCA, Linear Discrim-

inant Analysis (LDA) and Feature Selection (FS), and this has been proved experi-

mentally by using three micro array data sets and a synthetic data set. The reason

for integrating the above methods with RP is stated in their paper as: direct applying

PCA, LDA and FS methods require practically infeasible computaional power and not

upto the mark. So, they combined these methods with RP and the data dimension-

ality is reduced so as to maintain a proportionate computational complexity to that

of classification accuracy. Eventhough the computational cost of RP is much lesser

than PCA, LDA and FS. RP has it’s own limitations, that it cannot model the intrinsic
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properties of input data, because the projected space is from a random matrix and

not from the input matrix. This leads to low accuracy for the classifiers which are

based on RP. So, Xie et al. decided to go for combining PCA, LDA and FS with RP.

Combination of PCA, LDA, and FS with RP allows one to find the features with best

decriminative power than the features obtained by applying RP alone. Finally, this

paper concludes that the classification accuracy is improved by fusing the RP with

FS or LDA, and this has been proved experimentally. RP combined with FS scores

top performance (high classification accuracy and low computation time) on ma-

jority of the data sets considered, while RP combined with PCA is not giving better

classification accuracy for the given data sets.

Now we will move on to the discussion on some of the related works that have

been studied in the field of Compressive Sensing (CS) about the problem of deter-

ministic construction of projection matrix. This is some what divergent from the

discussion we are following in the present work, and we will not go into the full de-

tails, as this is not in the scope of this work. We just give some of the works on CS,

we are not going deep into CS, and we will stick to our main goal of representing the

HD data in a LD embedding which preserves the pair-wise distance (local structural

properties of the data) approximately.

Elad in ( Elad (2007 )) and Julio et al. in ( Julio and Sapiro (2009 )) have op-

timized projection matrix to achieve better compression ratio. Elad has defined a

new concept called mutual coherence, which describes the correlation between the

dictionary and projection matrix. The smaller the mutual coherence, the better the

compression performance. Elad has minimized the mutual coherence with respect

to the projection matrix - keeping the dictionary fixed. In addition to just optimiz-

ing the projection matrix, Julio et al. has also optimized the dictionary simultane-

ously. In particular, Julio uses recently proposed K-SVD algorithm given in (Elad et

al. (2005)) to learn dictionary and then jointly optimize the dictionary and projection

matrix by maximizing the number of orthogonal columns in their product. Rana et

al. in ( Rana et al. (2013)) uses SPAMS to learn the dictionary, which is different

from that of K-SVD. For the optimization of projection matrix, in ( Rana et al. (2013))

they used a special SVD of the dictionary, which produces low coherence projection

matrix and dictionary pair.
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After thoroughly investigating all the above works, we found that the main draw-

backs of random projection are: RP is lagging in capturing the intrinsic structure of

original data due to its randomness, whcih may cause a low classification accuracy.

It gives unstable clustering performance because of its randomness. To address this

problem, we have come up with a moderate and via-medium solution which uses

PCA kind of projection but with less computation cost (compared to PCA) and also

captures the intrinsic structure of the original data very well. This is because we

are generating the projection matrix from the original data, which implies that the

underlying structural properties of data are preserved and eventually, quality of the

solution is improved.

5.3 Random Projections for Dimensionality Reduction

Input data is mapped onto an independant random feature space so that the

pair-wise similarity between the points is preserved. Here we describe the basic in-

dependant projection technique, Random Projection. See Section 2.5 for more de-

tails on random projection technique.

5.4 Proposed Deterministic Construction of Projection

Matrix

We present a deterministic construction of projection matrix from the given in-

put data. Projection matrix, so constructed, offers better performance compared to

predefined matrix constructed independently from the given input data. And also

validate the proposed one using large datasets, including MNIST sample of 2500

points of handwritten digits; ORL images of 40 people, 10 images per each; Yale

contains a total of 165 samples, belongs to 15 subjects, 11 per each; COIL20 of 1440

sample size, 1024 dimensionality and Colon data set which 62 samples of 2000 di-

mensionality, with 2 classes.
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5.4.1 Proposed Approach

Take a random sample S (say 10% of the input data set) from the input data X ,

perform mean centering for this sample. Compute the covariance of S, and deter-

mine eigen values, eigen vectors for this covariance matrix of the sample. Now, the

projection matrix P is constructed by taking the eigen vectors corresponds to most

significant eigenvalues as columns of P . Now, projection is done by multiplying X

with P which gives the projected data matrix Y . After this, we compare the pair-wise

distances in original High-Dimensional data with the pair-wise distances of reduced

data. Algorithm 12 gives a pseudo code for this.

Algorithm 12 Deterministic Construction of Projection Matrix (DCPM) Algorithm
Input:Data set XN×d , Reduced Dimension D
Output: pdist (pair-wise distance between the points), L 2 -norm
begin

1: Read the input data X .
2: Extract a sample (say 10%) randomly from X and normalize it (mean centering)

and call it as S
3: Find the covariance of S and call it as CovS.
4: Compute the eigen values and eigen vectors for CovS
5: Take the eigen vectors corresponding to the most significant eigenvalues. The

most significant eigenvalues are according to a user defined threshold variance
and copy these eigenvectors as the columns of Projection Matrix P .

6: YN×D =XN×d ·Pd×D //projection step.
7: Compare the pair-wise distances in X and Y .

end

5.5 Experimental Evaluation

5.5.1 Data Sets

In this empirical study, we have taken five data sets of high-dimensionality and

two data sets of low-dimensionality, for experimentation. A detailed specifications

of the data sets are given in Table 5.1.

In HD (high-dimension) category, we took MNIST data base, that contains hand-

written digits, which comprises of 60000 training samples, 10000 testing samples.

It is a subset of a larger set available from NIST. The digits are size-normalized and
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centered. We have taken a subset of size 2500 samples with a dimensionality of 784

for our experiments. The original MNIST database can be found in ( LeCun et al.

(1998)).

The ORL Database, comprises of 400 images belongs to 40 people (classes), 10

per each class. Each image is expressed by 1024 sized vector with 256 gray levels.

Details about Yale, COIL20, Colon, Iris and Wine datasets are available in Section

4.2.4. Empirical results reported are averages of 10 trials.

S.No. Data set # Patterns # Features # Classes
1 MNIST 2500 784 10
2 ORL Faces 400 1024 40
3 Yale 165 1024 15
4 COIL20 1440 1024 20
5 Colon 62 2000 2
6 Iris 150 4 3
7 Wine 178 13 3

Table 5.1: Specifications of data sets

5.5.2 Results and Discussion

The methodology we followed in this work for comparing the two methods is as

follows: Let X is our input data, Y is the reduced data we got after applying the pro-

posed DR method on X . The pair-wise distance in the original HD data X is denoted

as D1. The pair-wise distance in the reduced data Y is D2. D3 is the difference of

D1 and D2. Yr p is the reduced data after we apply RP-based DR on original HD data

X , and the pair-wise distance in Yr p is denoted by D4. Now D6 is the difference be-

tween D1 and D4. Then we calculate the L 2-norm of D3 (Original v/s Proposed) and

L 2-norm of D6 (Original v/s RP-based DR method). From the intuition, it is clear

that the smallest the L 2-norm is the best, that is the pair-wise distance is preserved

efficiently.

From the experimental results, we report the error as the L 2-norm of pair-wise

distance D3 (Original v/s Proposed) and L 2-norm of pair-wise distance D6 (Original

v/s RP-based DR method).

In the first experiment, we have compared the RP reduction method and the pro-

posed method by taking the reduced dimension (D) is equal to 50 for MNIST, ORL,
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Yale, COIL20 and Colon; D = 2 for Iris and Wine datasets, the sample size is fixed at

10% and the values reported are average of 10 runs, See Table 5.2.

On the Iris dataset the error is 240 and it is 224 for RP method. For Wine dataset

the error values are 4.93× 104 and 4.94× 104 respectively, which means both are al-

most same.

On MNIST dataset, proposed method got a 5× improvement with 2.65×104 over

RP method (13.4×104).

On ORL dataset, the proposed method (5.24×105) is showing a 5× improvement

when compared to RP method (26×105).

On Yale dataset, the RP method is giving an error value 16.1× 105 and the pro-

posed method is 5× better than RP, with an error 3.12×105.

On COIL20 dataset, proposed method (1.40× 104) is showing 5× improvement

over the RP method (6.96×104).

On Colon dataset, proposed method (1.38×106) is showing 5× improvement over

RP method (7.30×106).

In summaary, the proposed method is giving a better pair-wise distance pre-

serving performance with a 5× improvement over the RP method for all the high-

dimensional datasets, and performance of both the methods is almost similar on

low-dimensional datasets (Iris, Wine). From Table 5.2, it is evident that, our pro-

posed reduction method is best in pair-wise distance preserving performance (by

means of L 2-norm, denoted as error) with that of RP-reduction on all the data bases

considered in this study.

By varying sample size in another experiment, we compared the performance of

the two methods. We have varied the sample size starting from 10% to 100%. On low-

dimensional datasets (Iris, Wine), the sample size has no effect on the performance,

and both the methods are showing almost same results.

On MNIST dataset, when varying the sample size, the proposed method is having

error values between 2.66× 104 and 3.11× 104 with an average of 4× improvement

over the RP method (min=13.2×104 and max=13.5×104).

On ORL dataset, the error is almost constant (on average 26.3× 105) for RP, for
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the proposed :it is in between 5.26×105 and 5.91×105 when varying sample size (5×

improvement over RP).

On Yale dataset, the error ranges from 15.9× 105 to 16.6× 105 for RP, for the pro-

posed the range is from 3.10× 105 to 3.60× 105 when varying sample size (5× im-

provement over RP).

On COIL20 dataset, the error ranges from 6.82× 104 to 7.16× 104 for RP, for the

proposed the range is from 1.49× 104 to 1.58× 104 when varying sample size (4×

improvement over RP).

On Colon dataset, the error ranges from 6.96× 106 to 7.37× 106 for RP, for the

proposed the range is from 1.39× 106 to 1.45× 106 when varying sample size (5×

improvement over RP). These results are present in Table 5.3.

In the third experiment, we have tested our proposed method by varying reduced

dimension (D)and reported the average error of 10 runs.

On Iris dataset, the error is not changing much with the increase in D for RP

method, but the error is gradually decreasing with the increase in D for the proposed

method.

On Wine dataset, when we increase the reduced dimension gradually from 1 to

11 the error is also inreasing for RP method, whereas it is decreasing for the proposed

method.

On MNIST sample, the proposed method is showing a good improvement (1.6 to

8×) over the RP method with the increasing reduced dimension (D).

On ORL dataset, the proposed method is showing a good improvement (2.6 to

8×) over the RP method when we increase the reduced dimension.

On Yale dataset, the proposed method is showing a good improvement (2 to 8×)

over the RP method when we increase the reduced dimension (D).

On COIL20 dataset, the proposed method is showing a good improvement (1.6 to

7×) over the RP method when we increase the reduced dimension (D).

On Colon dataset, the proposed method is showing a good improvement (1.6 to

8×) over the RP method when we increase the reduced dimension (D).
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In summary, average error is decreasing with increase in reduced dimension (D),

whereas for RP-reduction average error has been decreasing with the increasing re-

duced dimension. This experiment results are presented in Table 5.4.

S.No. Dataset
Average Error

RP Reduction Proposed Reduction
1 Iris (2) 240 224
2 Wine (2) 4.93×104 4.94×104

3 MNIST (50) 13.4×104 2.65×104

4 ORL (50) 26×105 5.24×105

5 Yale (50) 16.1×105 3.12×105

6 COIL20 (50) 6.96×104 1.40×104

7 Colon (50) 7.30×106 1.38×106

Table 5.2: L 2-norm (error) values of the Proposed DR method v/s RP method on var-
ious data sets, The reduced dimension (D) is given in brackets with each
data set, D = 2 for both Iris, Wine datasets and D = 50 for other five
datasets. Sample average of 10 runs.

5.6 Summary

We proposed a new method of dimension reduction, which maps HD data to a

space with small dimension, with the help of a projection matrix that is constructed

by taking a random sample from the data and the most significant eigen vectors of

this sample forms the projection matrix. The supremacy of the proposed method is,

it works effieciently to preserve the pair-wise distance in the reduced space, while

making use of only a 10% sample from the original data.

We have tested our proposed method on five high-dimensional and two low-

dimensional real world data sets, by fixing the reduced dimension (D) at 50 for high-

dimensional datasets and D = 2 for low-dimensional datasets. This experiment re-

sults shows the improvement in performance of our proposed method is much higher

than RP-reduction, showing a 5× improvement on all HD datasets and for LD datasets,

both the methods are showing almost same performance.

We also tested the two methods by varying sample size. Our method is showing

5× improvement over RP-reduction on all HD datasets, and both the methods are

showing nearly similar performance on low-dimensional datasets.

When we vary the reduced dimension (D), the RP-based dimension reduction
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method is producing inferior results when the D is increasing, where as the proposed

method is performing well and also improving when D is gradually increased.

The proposed method is giving a good performance improvement over the RP-

based method, when we vary sample size and reduced dimension, on all the high-

dimensional datasets, the performance of both methods is same on low-dimensional

datasets.

In this study, we have used Achlioptas method for generating the entries in ran-

dom matrix for the projection in RP-based DR method, and as a future work one can

use the other random matrices available in the literature, to check the performance

varying with the change of random matrix for the projection.
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Dataset Reduced dimension (D)
Average Error (L 2-norm)

RP reduction Proposed reduction

Iris
1 238 248
2 263 223
3 252 185

Wine

1 5.11×104 4.84×104

3 4.51×104 3.75×104

5 7.01×104 2.58×104

7 9.47×104 1.56×104

9 11.2×104 1.08×104

11 13.1×104 0.61×104

MNIST

10 4.93×104 2.92×104

20 7.77×104 2.84×104

50 13.3×104 2.66×104

100 20.1×104 2.46×104

ORL

10 9.56×105 5.67×105

20 14.6×105 5.51×105

50 26.5×105 5.25×105

100 38.6×105 4.97×105

Yale

10 6.26×105 3.38×105

20 9.37×105 3.28×105

50 16.2×105 3.11×105

100 23.9×105 2.91×105

COIL20

10 2.49×104 1.55×104

20 3.93×104 1.53×104

50 7.04×104 1.50×104

100 10.5×104 1.44×104

Colon

10 2.57×106 1.55×106

20 4.21×106 1.46×106

50 7.12×106 1.39×106

100 10.6×106 1.31×106

Table 5.4: The effect of varying reduced dimension (D) on L 2-norm (error) for pro-
posed DR method v/s RP method for various data sets.
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CHAPTER 6

Concluding Remarks With Directions to Future Research

This work aims at exploring nearest neighbor search (NNS) techniques that can

reduce the search space of the database. And also to explore efficient dimensionality

reduction techniques (maps HD data to LD data) which preserves structural propo-

erties of original data, reduces the computational complexity while processing the

data and finds the hidden patterns in the data. The outcomes of our research are

discussed from Chapters 3 to 5 of this thesis. In this Chapter, first we summarize

the salient features of the research contributions discussed made in this thesis. This

chapter ends with a list of future research paths in our research area, that can be

explored.

6.1 Details of Contributions

Chapter 1 presents an introduction. A brief literature survey on the studied prob-

lem is presented in Chapter 2. In Chapter 3, we studied the nearest neighbor search

problem and proposed two data partitioning methods (MinMax, WSRP) which are

based on the proximity from a chosen reference point from the database. The pro-

posed methods finds the nearest neighbors of a given query point by searching in

the reduced search space. The proposed pivot-based partitioning method works by

dividing the data into different bins based on the distance of the database points

from the MinMax reference point, and then querying returns the nearest neighbors

for a given query by searching in a small search space. A comparative analysis was

conducted between MinMax (proposed) and BO-Heuristic on various datasets. We

have validated our proposed method by plotting the distance distribution of both

the methods.

In addition, we have proposed another method for partitioning the space: Weighted

Set of Reference Points Method (WSRPM). In which we choose a set of reference



points and we weight them according to the distance of a point in database to ref-

erence point set, so that these set of reference point are useful in partitioning the

space. Now, in the search phase, we find the distance between the given query point

q to all the reference points. And we will move forward by choosing nearest reference

point to the q , and then weighting, then searching in that reduced search space, we

retrieve the neighbors of query q . WSRPM is compared with other methods like BO-

Heuristic, MinMax and it outperforms them.

In Chapter 4, we proposed a variant for Iterative Random Projections K-means

algorithm which is primarily based on Random Projections (which is a Dimension

Reduction Technique) and works by gradually decreasing dimension in the iteration

subsequently preserves the inter-point distances efficiently. By conducting an enor-

mous experiments, we compared our method with the Single Random Projection

(RP), IRP K-means (IRP K-means) methods. Compared to these two methods, our

variant is giving best results on HD data.

In the second part of this chapter, we have incorporated different dimension-

ality reduction methods (like PCA and RP) with K-means clustering for improving

the efficiency of clustering high and low-dimensional data. The K-means is giving

good performance when combined with PCA than the normal K-means. We have

proposed two hybrid algorithms: one combines PCA with K-means and the second

one combines PCA and RP with K-means. PCA when combined with Random Pro-

jection gives us a good quality clusters in the reduced dimensional space. Our pro-

posed algorithm works by combining PCA with RP for feature (dimensions) reduc-

tion, then performs clustering (K-means) in reduced space. Clustering results on

reduced data are compared with simple K-means and PCA reduced K-means algo-

rithms on 12 bench mark datasets. Clustering results of fusion algorithms (PCA-K-

means and PCA-RP-Kmeans and RP+PCA-K-means) are outperforming the classic

K-means on given low and HD data sets.

In Chapter 5, we proposed a new mapping, which projects the data to a low-

feature space by using a projection matrix that is constructed by taking a random

sample from the data and the most significant eigen vectors of this sample forms

the projection matrix. The main advantage of our proposed method is, it works

effieciently to preserve the pair-wise distance in the reduced space, while making
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use of only a 10% sample from the original data. We have tested our method on five

high-dimensional and two low-dimensional bench mark real world data sets. Pro-

posed projection is achieving better pair-distance preservation than random projec-

tion. We also tested our projection on the given data sets by varying the reduced

dimension (D), and from the results we conclude that the RP-based dimension re-

duction method is producing worse results when the D is approaching the original

dimension, where as the proposed method is performing well and also improving

when D is reached original dimension.

6.2 Directions for Future Work

In this section, we discuss some future directions to explore in our problem area.

Intrinsic Dimension (ID) Estimation is a future research problem, more specifically

building robust esimators w.r.t. curse of dimensionality can be studied. Applying

DR techniques for processing of Hyperspectral Images is another future research di-

rection. Studying the feasibility of applying DR techniques in Compressive Sens-

ing and Trajectory Compression. Study the effect of sparseness (present in data) on

the Dimensionality Reduction Method is another open research problem. Study-

ing the possibility of fusing different DR techniques for improved similarity search

in large scale data. Studying the best way to combine these techniques (both data-

dependant and data-independant) with nearest neighbour search techniques for im-

proving the quality of search outcome.

91



REFERENCES

1. T. M. Cover and P. E. Hart , Nearest Neighbor Pattern Classification.. In IEEE Trans.
Inform. Theory, Vol, IT-13, pp. 21-27, 1967.

2. Radovanovic, Milos, Alexandros Nanopoulos, and Mirjana Ivanovic. Hubs in Space:
Popular Nearest Neighbors in High-Dimensional Data Journal of Machine Learning
Research 11.Sep (2010): 2487-2531.

3. Knuth, Donald E. The Art of Computer Programming, Volume 3: (2Nd Ed.) Sorting
and Searching. Addison Wesley Longman Publishing Co., Inc. Redwood City, CA,
USA, 1998.

4. Fukunaga K. , Introduction to Statistical Pattern Recognition. Academic Press Pro-
fessional, Inc., San Diego, CA, USA, 1990.

5. L.O. Jimenez and D.A. Landgrebe. Supervised classification in high-dimensional
space: geometrical,statistical, and asymptotical properties of multivariate data.. IEEE
Transactions on Systems, Man and Cybernetics, 28(1): 39-54, 1997.

6. Agrafiotis D.K. Stochastic proximity embedding. Journal of Computational Chem-
istry, 24(10): 1215-221, 2003.

7. G. Baudat and F. Anouar. Generalized discriminant analysis using a kernel approach.
Neural Computation, 12(10): 2385-2404, 2000.

8. M. Belkin and P. Niyogi. Laplacian Eigenmaps and spectral techniques for embedding
and clustering. In Advances in Neural Information Processing Systems, volume 14,
pages 585-591, Cambridge, MA, USA, 2002. The MIT Press.

9. Brand M. From subspaces to submanifolds. In Proceedings of the 15th British
Machine Vision Conference, London, UK, 2004. British Machine Vision Associa-
tion.2004.

10. D.L. Donoho, C. Grimes. Hessian eigenmaps: New locally linear embedding tech-
niques for high-dimensional data. Proceedings of the National Academy of Sciences,
102(21): 7426-7431, 2005.

11. X. He, P. Niyogi. Locality preserving projections. In Advances in Neural Information
Processing Systems, volume 16, page 37, Cambridge, MA, USA, 2004. The MIT Press.

12. G.E. Hinton, S.T. Roweis. Stochastic Neighbor Embedding. In Advances in Neural
Information Processing Systems, volume 15, pages 833-840, Cambridge, MA, USA,
2002. The MIT Press.

13. G.E. Hinton, R.R. Salakhutdinov. Reducing the dimensionality of data with neural
networks. Science, 313(5786):504-507, 2006.

14. S. Lafon, A.B. Lee. Diffusion maps and coarse-graining: A unified framework for
dimensionality reduction, graph partitioning, and data set parameterization. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 28(9):1393-1403, 2006.

92



15. S.T. Roweis, L.K. Saul. Nonlinear dimensionality reduction by Locally Linear Embed-
ding. Science. 290(5500):2323-2326, 2000.

16. F. Sha, L.K. Saul. Analysis and extension of spectral methods for nonlinear dimension-
ality reduction. In Proceedings of the 22nd International Conference on Machine
Learning, pages 785-792, 2005.

17. B. Scholkopf, A.J. Smola, and K.R. Muller. Nonlinear component analysis as a kernel
eigenvalue problem. Neural Computation, 10(5):1299-1319, 1998.

18. J.B. Tenenbaum, V. de Silva, and J.C. Langford. A global geometric framework for
nonlinear dimensionality reduction. Science, 290(5500):2319-2323, 2000.

19. Y.W. Teh and S.T. Roweis. Automatic alignment of hidden representations. In Ad-
vances in Neural Information Processing Systems, volume 15, pages 841-848, Cam-
bridge, MA, USA, 2002. The MIT Press.

20. J. Verbeek. Learning nonlinear image manifolds by global alignment of local linear
models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(8):1236-
1250, 2006.

21. K.Q. Weinberger, B.D. Packer, and L.K. Saul. Nonlinear dimensionality reduction by
semidefinite programming and kernel matrix factorization. In Proceedings of the
10th International Workshop on AI and Statistics, Barbados, WI, 2005. Society for
Artificial Intelligence and Statistics.

22. Z. Zhang and H. Zha. Principal manifolds and nonlinear dimensionality reduction
via local tangent space alignment. SIAM Journal of Scientific Computing, 26(1):313-
338, 2004.

23. T. Zhang, J. Yang, D. Zhao, and X. Ge. Linear local tangent space alignment and ap-
plication to face recognition. Neurocomputing, 70:1547-1533, 2007.

24. R.O. Duda, P.E. Hart, and D.G. Stork. Pattern Classification. Wiley Interscience Inc.,
2001.

25. R. Bellman Adaptative Control Processes: A Guided Tour. Princeton University Press,
Princeton, NJ, 1961.

26. D.W. Scott and J.R. Thompson. Probability density estimation in higher dimensions.
In J.R. Gentle, editor, Proceedings of the Fifteenth Symposium on the Interface, pages
173-179. Elsevier Science Publishers, B.V., North-Holland, 1983.

27. Lee J.A., Verleysen M. High-Dimensional Data. In: Lee J.A., Verleysen M. (eds) Non-
linear Dimensionality Reduction. Information Science and Statistics. Springer, New
York, NY

28. M.A. Carreira-Perpinan. A review of dimension reduction techniques. Technical re-
port, University of Sheffield, Sheffield, January 1997.

29. L.J.P. van der Maaten, E.O. Postma, and J.J. van den Herik Dimensionality Reduc-
tion: A comparative review. Technical Report TiCC TR 2009-005.

93



30. Deegalla S, Bostrom H Reducing high-dimensional data by principal com-
ponent analysis vs. random projection for nearest neighbor classification. In:
ICMLA 2006: Proceedings of the 5th international conference on machine learn-
ing and applications. IEEE Computer Society, Washington, DC, pp. 245-250.
doi:10.1109/ICMLA.2006.43

31. A. Cardoso, A. Wichert Iterative random projections for high-dimensional data clus-
tering Pattern Recognit. Lett., 33 (13) (2012), pp. 1749-1755

32. H. Xie, J Li, Q. Zhang and Y. Wang Comparison among dimensionality reduction
techniques based on Random Projection for cancer classification. Comput. Biol.
Chem., 65 (2016), pp. 165-172, 10.1016/j.compbiolchem.2016.09.010

33. Bingham, E., Mannila, H. Random projection in dimensionality reduction: applica-
tion to image and text data. In: Proceedings of the seventh ACM SIGKDD interna-
tional conference on Knowledge discovery and data mining. ACM, pp. 245-250.

34. Fern, X.Z., Brodley, C.E., Random projection for high dimensional data clustering: A
cluster ensemble approach. In: ICML. Vol. 3. pp. 186-193.

35. Martins, A. D., Gurjao, E. C. Processing of smart meters data based on random pro-
jections. Proc. IEEE PES Conference on Innovative Smart Grid Technologies Latin
America, ISGT lA, 2013 (2013), pp. 1-4.

36. Aleshinloye, A., Bais, A., Irfan Al Anbagi. Performance analysis of Dimension Reduc-
tion techniques for demand side management. In Electrical Power & Energy Confer-
ence (EPEC) 2017 IEEE, 2017.

37. Tariq, H., Eldridge, E. and Welch Iyan. An efficient approach for feature construction
of high-dimensional microarray data by random projections. PLoS One. 2018 Apr
27;13(4):e0196385. doi:10.1371/journal.pone.0196385.

38. Rana R., Yang M., Wark T., Chou C. T., Hu W. A Deterministic Construction of Projec-
tion Matrix for Adaptive Trajectory Compression. IEEE Transactions on Parallel and
Distributed Systems 2013.

39. Rana R., Yang M., Wark T., Chou C. T., Hu W. SimpleTrack: Adaptive Trajectory Com-
pression with Deterministic Projection Matrix for Mobile Sensor Networks. IEEE Sen-
sors Journal 2014.

40. Juvonen, A and T Hamalainen An Efficient Network Log Anomaly Detection System
using Random Projection Dimensionality Reduction. Proceedings of the 6th Interna-
tional Conference on New Technologies, Mobility and Security (NTMS), IEEE, Dubai,
United Arab Emirates (2014), pp. 1-5.

41. Sachin, Mylavarapu and Ata Kaban Random projections versus random selection of
features for classification of high dimensional data. Proc. 13th UK Workshop Com-
put. Intell. (UKCI), pp. 305-312, 2013.

42. Ding C., He, X. K-means clustering and principal component analysis. ICML, 2004.

43. H. Qi and S. M. Hughes. Invariance of principal components under low-dimensional
random projection of the data. IEEE International Conference on Image Processing,
October 2012.

94



44. Alshamiri,A.K.,Singh, A., Surampudi, B.R. A novel ELM K-means algorithm for clus-
tering. In: Proceedings of 5th International Conference on Swarm, Evolutionary and
Memetic Computing (SEMCO), Bhubaneswar, India, pp. 212-222 (2014)

45. Alshamiri,A.K.,Singh, A., Surampudi, B.R. Combining ELM with Random Projec-
tions for Low and High Dimensional Data Classification and Clustering. In Pro-
ceedings of the Fifth International Conference on Fuzzy and Neuro Computing
(FANCCO) IDRBT Hyderabad, India, pp. 89-106 (2015)

46. Khandelwal, C.S., Maheshewari, R., Shinde, U.B. Review paper on applications of
principal component analysis in multimodal biometrics system Procedia Comput.
Sci. 92, 481-486 (2016)

47. Dasgupta S. Experiments with random projection. Uncertainity in Artificial Intelli-
gence: Proceedings of the Sixteenth Conference (UAI-2000), pp. 143-151 (2000).

48. Samuel Kaski. Dimensionality Reduction by Random Mapping Proc. IEEE Int’l Joint
Conf. Neural Networks, vol. 1, pp. 413-418, 1998.

49. Hegde, Chinmay and B. Wakin, Michael and G. Baraniuk, Richard Random Pro-
jections for Manifold Learning. Proceedings of the Advances in Neural Information
Processing Systems, 2007

50. Ailon, N., Chazelle, B. Approximate nearest neighbors and the fast Johnson-
Lindenstrauss transform. Proc. 38th Annual ACM Symposium on Theory of Com-
puting ,pp. 557-563. (2006).

51. Dasgupta S., Gupta A.: An elementary proof of a theorem of Johnson and Linden-
strauss. Random Structures & Algorithms 22, 60-65 (2003).

52. A. Juvonen, T. Sipola, and T. Hamalainen Online Anomaly Detection Using Dimen-
sionality Reduction Techniques for HTTP Log Analysis Comput. Networks, vol. 91,
pp. 46-56, 2015.

53. Han L, Wu Z, Zeng K Online Multilinear Principal Component Analysis J . Neuro-
computing. (2017).

54. S.K. Tasoulis, D.K. Tasoulis, V.P. Plagianakos Random direction divisive clustering
Pattern Recognition Letters, Volume 34, Issue 2, 2013,Pages 131-139, ISSN 0167-8655,
https://doi.org/10.1016/j.patrec.2012.09.008.

55. S. Bettoumi, C. Jlassi and N. Arous Comparative study of k-means variants for
mono-view clustering 2016 2nd International Conference on Advanced Tech-
nologies for Signal and Image Processing (ATSIP), Monastir, 2016, pp. 183-188.
doi:10.1109/ATSIP.2016.7523092

56. Hong Yu and Haibo Zhang A Three-Way Decision Clustering Approach for High Di-
mensional Data In Proceedings of International Joint Conference, IJCRS 2016.

57. E. Vidal Ruiz An algorithm for finding nearest neighbours in (approximately) con-
stant average time Pattern Recognition Letters, 4 (July) (1986), 145-157.

58. E. Chavez, G. Navarro A compact space decomposition for effective metric indexing.
Pattern Recognition Letters, 26 (July) (2005), 1363-1376.

95



59. B. Bustos, G. Navarro, E Chavez. Pivot selection techniques for proximity searching
in metric spaces. Pattern Recognition Letters, 24 (14) (2003), 2357-2366.

60. O. Pedreira, N.R. Brisaboa Spatial selection of sparse pivots for similarity search in
metric spaces. in: J. van Leeuwen, G. Italiano, W. van der Hoek, C. Meinel, H. Sack, F.
Plasil (Eds.), SOFSEM 2007: Theory and Practice of Computer Science, Lecture Notes
in Computer Science, vol. 4362, Springer, Berlin, Heidelberg, 2007, pp. 434-445.

61. W. Burkhard, R. Keller Some approaches to best-match file searching Comm. ACM,
16 (4) (1973), pp. 230-236.

62. Baeza-Yates, R., Cunto, W., Manber, U., Wu, S., Proximity matching using fixed-
queries trees. In: Proc. 5th Combinatorial Pattern Matching (CPMâĂŹ94). In: LNCS,
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DAâĂŹ93). pp. 311-321

65. Yianilos, P., Excluded middle vantage point forests for nearest neighbor search. In:
DIMACS Implementation Challenge, ALENEXâĂŹ99, Baltimore, MD
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