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CHAPTER 1

Introduction

Presently, science and technology is on a new path of accelerated growth for
faster and better performance of electronics devices. This has been possible
because of the advanced fabrication technology which can produce electronic
components in ultra-small sizes. The density with which transistors and resistors
are fabricated on the memory devices or computer chips has reached a remarkably
high value. This has led to a tremendous increase in the performance of electronic
devices. But the performance of the devices due to the small sizes of its
components has its limits. These limits are mainly caused by quantum mechanical
factors, due to which electron motion can no longer be controlled. One serious
difficulty that arises at very small length scale in the compact devices is the Joule
heating which leads to a decrease in the lifetime and efficiency of the devices.
This problem arises when the charge of the electron is the main focus of study.
Thus one has to go for other alternative properties of the electron, such as spin. It
was first shown by Dirac [2] that the electron has not only charge and mass but
also an intrinsic angular momentum, namely 'spin,' which arises from relativistic
effect. This new concept has generated a new field where both the charge and
spin play a crucial role. This new field is referred to as 'Spin-electronics' or more

commonly as "Spintronics."




1.1 Spintronics

Spintronics [3, 4] is a relatively new emerging field of condense field physics that
promises increasing speed, faster computation, and less power consumption while
minimizing electronic circuits. Spintronics uses electron degree of freedom in
addition to or in place of the electron charge. The first encounter with spintronics
comes when researchers observe a change in electrical resistance when current
passes through a non-magnetic and magnetic layers in the presence of a magnetic
field. This led to the discovery of the giant magnetoresistance effect (GMR) [5]
in 1988 by Fert and Grunberg, for which they got the Nobel Prize in 2007. Further
work showed that with the change in magnetic and non-magnetic layer thickness,
one could control GMR [6], and it could be used for commercial purposes and for
storing data in electrical devices. In 1990, Datta and Das proposed the spin filter
concept [7], which suited well as an example for a spintronic device. These spin
transistors are quite similar to a conventional transistor. Of course, there are also
some differences. In conventional transistors, the gate voltage influences electron
motion. However, in a spin transistor, the gate voltage modifies the electron's spin
by controlling its precession. This manipulation of spin makes the device far more

energetically efficient and provides a faster switching time.

Besides having profound applications, the field of Spintronics also has intrinsic
interest because the working of a spintronic device depends profoundly on the
fundamental understanding of spin properties and its transport mechanism. It also
provides a new challenge and chance to understand the basic quantum nature of

matter.

1.2 Spin-Orbit Interaction

Spin-orbit interaction results from relativistic Quantum theory, where along with

the electronic charge, spin is a fundamental and integral part of the electron, as




illustrated in the Dirac theory. In the non-relativistic regime, Dirac equation can
be written as Schrodinger equation along with some relativistic corrections. These
relativistic corrections couple the momentum of the electron and its spin to the
external potential gradient. This forms the fundamental origin of spin-orbit
coupling, which includes both L.S couplings. Firstly, it links the spin-
orbital momentum S to orbital angular momentum L in atomic and
molecular physics. Secondly, it connects all the phenomena of spin-orbit

interactions in the condense matter system.

In atomic and molecular physics, the spin-orbit coupling is a very familiar term.

It gives the coupling between the spin of an electron and its angular momentum
around the nucleus and leads to the fine structure splitting. Spin-orbit coupling
can be explained in terms of —u. B Zeeman interaction, which acts between the
magnetic moment of a particle and a magnetic field B present in the particle's
moving frame. In a material, a momentum-dependent Zeeman term arises
when a static electric field E = E,e, gives rise to spin-orbit magnetic field
Bgo = (Egh/mc?) X (kxey — kxey) in the moving frame of the electron
having momentum %k, where o, and g,, are x and y component of spin
matrices, m 1s the mass of the electron, and c is the speed of light. The
momentum-dependent Zeeman term is known as Rashba spin-orbit
coupling [8], which can be written as follows:: —uB = oyk, — o, k,, and
often comes from the asymmetry of confinement potential in a two-
dimensional heterostructure. So, whenever the electron moves in a crystal
having a potential gradient, spin-orbit coupling (SOC) plays a prominent
role. SOC mainly originates either from lack of mirror symmetry causing

Rashba type SOC in two-dimensional system as discussed above or from




the lack of bulk inversion symmetry, known as Dresselhaus SOC [9] which

is given by Zeeman interaction term: —uB = o,k, — oy k,,.

Since the early days of quantum mechanics, the phenomenon of SOC was well
known. However, recent development in spintronics has made it a subject of
intense interest. Apart from many applications, The SOC performs a vital role in
the Anomalous Hall effect, Spin Hall effect [10, 11], and Topological insulators
[12].

1.3 Spin Hall Effect

The Spin Hall effect (SHE) acquires its concept from the Anomalous Hall effect
and is possibly the best illustration of spin-orbit interaction. In the Anomalous
Hall Effect (AHE), SOC causes an asymmetric scattering of charge carriers
depending on their orientations and in ferromagnetic material it can be
determined electrically because of a population difference in the majority and the
minority carrier causing a transverse potential drop [13]. Spin Hall Effect is a
pure SOC phenomenon and can be observed in non-magnetic materials. Due to
SOC, the up spin and down spin charge carriers becomes different in number
leading to non-zero transverse voltage drop. The spin Hall Effect was first
proposed by Dyakonov and Perel [14, 15] based on the skew scattering
mechanism (Mott scattering) some five decades ago. They observed that a non-
polarized electric current produced a transversely polarized current due to
external spin-orbit interaction. Similarly, the Inverse spin Hall Effect leads to a
transverse electric current when polarized spin current is passed. Three decades
later, the intrinsic Spin Hall Effect was predicted by Mukami [16] and Sinova
[17] which initiated an intense debate in this field [See [18-20] and references

therein].




In recent years, there has been a flurry of investigations on Spin Hall devices that
have the potential for application in spintronics, like optical and spin injection
and detection in non-magnetic systems. In metallic spin Hall devices [21, 22], it
was seen that a non-magnetic electrode could be utilized to generate and detect
spin current [23]. In semiconductors spin Hall devices, attention has been
concentrated on optical detection [24, 25, 26], and it was seen that polarized light
can be electrically detected by inverse spin Hall Effect, which produces electric
current from the optically induced spin current [27, 28]. Some devices can
connect the externally-controlled SOC with inverse Hall Effect to detect electric

spin [29, 30]. This provides the basis for devices like spin field-effect transistors.

1.4 Single Molecular Transistors

Transistors are the vital parts of electronic devices and have constituted the main
role in the digital revolution. Since the development of the first model, many new
designs have been proposed, but the basic idea has remained the same. A
transistor is a three-terminal device. By applying voltage or injecting charge at
one terminal, one can manipulate current through the remaining terminals. The
transistor acts as an amplifier when the output power is higher than the input
power. Another transistor application would be its manifestation as a switch, in

which one terminal regulates voltage between the other two.

In 1974 [31], the first proposal of using single molecular transistors in an
electronic device came and since then, considerable effort has been made to
downsize the device to a single molecular level. The first single molecular device
was fabricated by H. Park .et. al in 2000 [ 32] and understandably the interest in
the subject grew enormously after that. A typical single molecular device contains
a central molecule linking a source and a drain, and the whole structure is placed

on a gate electrode. In this device, the gate electrode regulates the current between




the source and the drain. Besides being used for switching and amplification
functions, a single molecular transistor can also be used for spectroscopy
information i.e. by changing the gate voltage, the shift in the energy level of the
central molecule can be observed. From this observation one can achieve further
information about the molecule or the quantum dot such the presence of excites
states and vibrational modes [32, 33] and also the effects like frank-condon
blockage [34], Kondo effect [35, 36] and superconductivity [37]. Furthermore,
the gate electrode terminal can be used to reduce, oxidize, and explore the
properties of Molecular transport for various charge states by attracting and
repelling electrons. Also, the fine structure of single-molecule magnets and
magnetic anisotropy can also be revealed using three terminal devices [39-41].
Additionally, they facilitate the driving [42] and read out [43] of single nuclear

spins, which can act as molecular quantum bits.

1.5 Outline

This thesis is arranged in the following order. In the present chapter i. e., Chapter
1, we have introduced some basic terminologies and a brief overview of

spintronics and single molecular transistor.

In the following chapter i. e., in Chapter 2, we have shown our calculation of the
torque-dependent spin and charge conductivity in the presence of Rashba spin-
orbit interaction and impurity for a two-dimensional system. We have used spin
and charge polarization operators to calculate spin and charge current and the
Matsubara Green function technique to relaxation time due to random impurity.
We further calculate the charge and spin conductivity using Kubo’s current-

current correlation function.




In Chapter 3, we discusses the effect of both Rashba and Dresselhaus spin-orbit
interactions and study how the interplay between Rashba and Dresselhaus

interactions affects our system when the impurity is present.

In Chapter 4, we extend the formalism used in Chapters 2 and 3 to investigate the
effect of Rashba and Dresselhaus spin orbit interactions on torque dependent spin

Hall conductivity in the presence of impurities.

From the point of view of experiments, it is important to have results at finite
temperatures. Therefore to make our work more realistic and practical, we study
in Chapter 5, the longitudinal and transverse spin and charge conductivity at finite

temperature.

In Chapter 6 we investigates non-equilibrium quantum transport in a quantum dot
dimer, situated on a non-conducting substrate and attached to a source and a drain
by two metallic rods. Here, we computed the tunneling current and differential
conductivity of a quantum dot dimer using the Keldysh non-equilibrium Green

function formalism.

Finally in Chapter 7, we summarize our findings and make concluding remarks.
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CHAPTER 2

Torque-dependent Spin and charge
conductivity in presence of Rashba spin-
orbit interactions and static random
disorder for a two-dimensional tight-
binding system.

2.1 Introduction

The main concern in spintronics is to generate and manipulate spin current [1, 2]
and employ its effects in different systems, ranging from semiconductor
paramagnets to ferromagnetic metals. Ideally, the spin current is defined as the
difference between the up-spin current and the down-spin current. But in the
presence of spin-orbit interactions, spin is no longer a conserved quantity, though
this difficulty is usually circumvented by focusing on spin relaxation time. Over
the last few years, it has been discovered that spin-orbit coupling can be used to
achieve electric control of spin generation and its transport [3, 9]. So, defining a
spin current in a general situation i.e., in the presence and absence of spin-orbit

interactions, becomes important.

In most of the earlier works on spin transport, the spin current has been
determined by calculating the expectation value of the product of spin and the
velocity observable. But this conventional definition [(vs* + s*v)/2] suffers from
serious flaws. First, the spin current, according to this definition, is not a
conserved quantity. This problem motivated numerous alternative definitions
[10—11]. Secondly, the spin current obtained using the above definition turns out
to be finite in insulators with localized eigenstates only [12]. Finally, as there is
no mechanical or thermodynamic force associated with this current, the usual

near-equilibrium transport theory cannot account for it. To overcome the
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problems mentioned above, Shi et al. [13] has provided a new definition spin
current. They have defined the spin current as the time derivate of the spin
displacement, and it differs by a torque dipole term [ 14, 15] from the conventional
definition of spin current. This torque dipole term arises when the spin magnetic
moment of the system is not conserved and is given by the expectation value of

the rate of change of spin.

In the present chapter, we investigate the role of Rashba spin-orbit (RSO)
interaction (RSOI) on the torque-dependent longitudinal charge and spin
conductivity for a two-dimensional tight-binding model in the presence of

random impurities.

2.2 The Model

We consider a two-dimensional electronic system in the presence of Rashba spin-
orbit coupling and random impurities. The Hamiltonian consists of the onsite
energy term, the hopping term, the Rashba spin-orbit interaction term and the

electron-impurity interaction term. Thus the Hamiltonian of the system is given

by

H= Hy+ Hipmp. (2.1)

_ t t f
Ho = Z €oCi Ci T+t Z Cix,iy Cigsiiy T Ci)oiycix'iy+1 the

i iX,iy

—j F o - i .
iog Z Ciyiy Oy Cixeady + h.c|+iag [+ z Ciyiy OxCigiyss + h.c|.

ixly ix,y

(2.2)

Himp = Z vo(r; — rl)c;rci. (2.3)
il
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where € is the onsite energy, t gives the hopping coefficient and ag is the Rashba
spin-orbit interaction strength. In the Impurity Hamiltonian Hj,,,, 1; and 1y give
he position vectors of the electron and the impurity respectively and v the
electron-impurity interaction strength. We will refer to v as the impurity potential
strength or loosely impurity strength. Writing the Hamiltonian (2.2) in Fourier

basis, we obtain

Hy, = z cltx'ky [ek + 2ap (sinkxay — sink, 0y )] Ckyky - (2.4)
Ky ky
where
€x = € + 21,“(coskX + cosky). (2.5)

To diagonalize the Hamiltonian (2.2), we perform a unitary transformation using

operator U, which satisfies the condition: U,j = Ui ! and is given by

U = 1 l 1 ka,kyl 2.6)
“ |, 1| '
where we define
sink, + isink, sink, — isink, @7

— * —
pk.Xlky - ’pkx,ky -
in2 in2 in2 in2
\/sm ky + sin‘k, \/sm ky + sin‘k,

The diagonalized operator is given by
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a1k C
(“;,k) = Uk (Cg) ’ (“I.k “;,k) = (ch CL)U;' (2.8)

and the Hamiltonian (2.2) transforms to

Ho = Z [el,k“;r,k%,k + fz,kair,k%,k], (2.9)
Ky Ky

where €, and €, are given by

€1k = (ek — ZaR\/sinzky + sinzkx) JExk = (Ek + ZaR\/sinZky + sinzkx).

Thus in the presence of Rashba Spin-orbit coupling, single energy state splits

into two spin states, each one defining one particular spin state.

2.2.1 SPIN CURRENT
To get the spin current operator, we start from the spin polarization operator:

Pz = Z Rix.iycit( iy T2Cigiy - (2.10)

i ly
where ﬁix,iy is the lattice point and g, is the spin matrix along z-direction. The

spin current density f %z is given by time derivative of Spin polarization operator.

Thus we can write
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—>S aﬁsz . 1 R N 1-
] zZ — at =1 HO + HO ) ij’ijijjy O-ZC]Xl]y , (2.11a)

jx:jy

—ilyt p. . cf . | HR p. . ot .
=i HO,Z R]X,]ych‘]-y 027G iy +i|Hg ,Z R]X,]ycjx'jy 2G5 iy (2.11b)

Jxly Jxly

where H, has been written as : Hy = H} + HR, H3 and HE being given by

Ho = Z cocici +t Z(Cit(,iy Ciyany + €l Cigiygs +1:0) (2.12)

iy iy

R _ _; t o —cf .
Hy = —iag Z(Cininy Cigrpiy ~ Ciyi chlx,ly+1)+ h.c)

ix dy
ixly
(2.13)
The first term of (2.11b) is calculated as:
1 ps;] — D D T T
[Ho ,psz] = tZ(RiX+1,iy _Rix,iy) [Cix,iyffzcix+1,iy T Cigniy 92Cixiy ]
ixly
B B t t
+tz (Rix,iy+1 —Rix,iy) [Cix,iyUyCix,iy+1 = Cigiges 9y Cixiy ] (2.14)
i ly

To calculate the second term of equation (2.11b), we first write it as follows.
[HE , P=] =, [HE + HE, , P*] (2.15)

Using Eq.(2.13) and using the relations

Ciypp iyt
T t = (. L
Clx+1’ly - (Cix+1:iyl) and Cix+1piy - (Clx+1,lyT Clx+1,lyi) (2'16)
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we can write HY, andHE, as

HR, = —iaRZ[—i(ch 1y = O Gy Fhecl (217)

ity

R _ ; T T
HE, = i ) [(h 1 Cigiyans = ChiyiCigiyuat) +hec] (218)

iy

Calculating the commutation of H¥ and HE, with Psz | we get

R pPs;| — _; t N | L
[HE , P*] = —iog Z(Cix.in Cixppiyl T CiyigtCixeriyt) T HC,

iy

B. . (cf . —cf .
Z R]x:]y (ij,ij C]x:]yT ij,]'ylclx:]yl )

Jxly

_ D D T _ .t
= O(RZ(RiX+1,iy + Ri i) [Cix,iyffxcixﬂ,iy Cigp 1y T iy ] (2.19)

iy

R ps,] —; T T
[HE , P*z] = iag Z(Cix,in Cigiysrd T CiyiydCigiysat) T hHeC,

ixly

B. . (cF S, | .
Z R]x:]y (ij,ij C]x:]yT ij,]'le]x.]yl )

Jxly

= R. . R. . F . — cf .
= ag Z(Rlx,ly ot Rlx,ly) [cix,iyayclx,,y " Cirgiys1 7Y Ciry ] (2.20)

ixly

Using Eqns. (2.19), (2.20), (2.15)and (2.14)in (2.11), we have
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> aﬁsz - - -
— — i[y2 TR R
Jr= = i[HE , PS2] + i[HE, , P5| + i[HE, , P*]
= it (ﬁ- i —ﬁ--)cT-ac- o= o,
Ix+1.1ly Ix)ly Ixly " Z x4 10ly Ix1,ly ~Z71xly
ixly
+ it (ﬁ-- —ﬁ--)c-;r-ac-- — . o |
Ixdy+1 ix iy iy iy Y M ixly+e Ixdyts Y lxly |
ixly
i R. . R. . T .. — ¢ o]
+1ag Z (R1X+1,1y + Rlx,ly) [Cix,iyaxclxﬂ,ly Cix+l,iy0xclx,1y |
ixly
i R R ) |cf . — cf o
+ 1R Z (Rlx'1y+1 + Rliy) [Cix,iyo-yclx'ly+1 Cix,iy+10-yC1Xv1y ]
ixly
(2.21)
So the spin current density.
Along x- direction
Sz _ : T 1
Jx' = ltz [Cix'inZCiXH'iY Cix+1’iy0-ZCiX'iY ]
ixly
+ia (2i+1)c-T-ac- L oy
R x Ly X Vx4 aly ix+1iy "X ixly
ixly
- [t _ ot
+ iag Z (2iy) [Cix,iyaycix.iy 417 Cigigr Oy Cidy ] (2.22)
ixly
Along y-direction
Sz — t o — cf o
]y = ltz [cix'iyazclx,ly+1 cix'ierlazclx'ly ]
ixly
+ i (Zi)c-T-ac- L oy
R y ix iy X Mixealy ix41,dy O X iy
i iy
+ ix (2i, +1) oo — b o (2.23)
R y lxlly y lx:1y+1 1x;1y+1 y 1X'ly )
i iy

Using Eqn. [2.8] the x-direction spin current density can be written as
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S
I
sinkysinky
= -2t Ol ke O Ay Ky
kyKy \/sinz(ky) + sin?(k, )
sin?k, +
+ Zt O(kx'kyO'yO(kX'ky

Ky Ky \/sinz (ky) + sin?(k, )

2icos(ky)sin®(ky) Pk, —Pii,ky
+ ag Z — — O,k
sin?(ky) + sin?(ky) "%

] (ka'ky (224)

—p2 —
Key Pk,.k, Pky.ky

2.2.2 Charge current

To get the charge current operator, we start from the definition of charge

polarization operator:

P¢ = Z Rix.iyci-l;(,iy Icix:iy . (225)
ixly
The time derivative of charge polarization will give the charge current density
Je

. 9P L
J=ar =t HO’ZRix'inix,iy I¢jjy (2.26)

Jxly

: R’ ﬁ T T
=it ) ( inndy ~ iX,iy) [Cix,iycix+1,iy = Gy iy Ciwdy ]

ix,dy
' B . —R. . LI —f .
+ ltZ(Rlx,lyH Rlx,]y) [Cix,iyclx,ly+1 Cix.iy +1 Cixdy ]
ixiy
+i R R ¥ ¥
LR ( Ix+1.dy ix:iy) Cix.iyo-ycix+1:iy Cix+1.iyo-ycix'iy

ity

. 3 5 t t
—iag i i, (Rix,iy+1 _Rix,iy) Ci, i, OxCigigy, — C OxCiy iy ] (2.27)

iy )




So, in the @ — operator, the charge current density in x-direction is:

]x — Z flx(k)al-,kalvk + Zfzx(k)a’-zr'ka’z,k + Z f3x(k)a-1r,ka2,k
K k k

+ I,
K
where
2agcosk,sink
FE(k) = 2tsink, — LS Sl ,
\/sinz (ky) + sin?(k, )
2agcosk,sink
FE(k) = 2tsink, + R x x ,
Jsinz (ky) + sin?(k, )

2agcoskysink, (sink, — isink,)

f3'(k) = sin? (ky) + sin?(k, ) ’

2agcoskysink, (sink, + isink,,)
sin?(k,) + sin?(k, )

3 (k) =
Similarly charge current in y- direction is:

]35 — Z fly(k)af,k%,k + Zfzy(k)a;,kaz,k + ngy(k)“ir,kaz,k
n K k

WA
k

where

19

(2.28)

(2.28a)

(2.28b)

(2.28¢)

(2.28d)

(2.29)
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2agcosk,ysink,,

f (k) = 2tsink, — ) (2.29q)
\/sinz(ky) + sin?(k, )
2agcosk,sink
£ (k) = 2tsink,, + Ry Y , (2.29b)
\/sinz (ky) + sin?(ky )

—2agcoskysink, (sink, — isink,)

(k) = , 2.29
f (k) sin?(ky) + sin?(ky ) (2.29)
. 2agcosk,sink,(sink, + isink
V) = ————= S X ) (2.29d)
sin?(k,) + sin®(ky )
2.2.3 Relaxation Time
In the k- space the impurity Hamiltonian (2.3) can be written as
. . ol 1 . 12
Himp — Z velq(‘)’l—‘rl’)elk.'rielk -T'iCIICk, = §Z velq(k—k ).Rlcl'l'ck ) (230)
)
kl,kr Kk

And from the unitary transformation Eqn. (2.6) can be written as:

1
— 11 T 12 1 21 T 22 1
Himp = N § [kara'Lkal,kr + Viier @4 1 Q2,00 + Vicer Qg 1 Q1 1 + Vicier az,kaz,kr];
kk'

(2.31)

where

1 . ,
ity =5 ) we O3 + )], (231a)
l
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1 .
Vider = 5 Z vell=K )R [(py — py)], (2.31b)
l
1 .
Vi = 3 Z vell(=K )R [(pr, — pi)], (2.31c)
l
Vi = ;Z vel(=K )R (1 + pp, )], (2.31d)

l

When impurities are present, electrons will acquire relaxation time. We calculate
relaxation time from the imaginary part of the self-energy. The relevant Green

function is given by

G(p, 1) = i(—l)l Joﬁ dtq ... ....fOBd‘tn
=1

#(Trla] ,@VEIV(T2) o oo V(T)a,0)]) (2.32)

Here we calculate the Green function to second order, as in the first order i.e. for
/=1, we get a constant shift in the energy. The second-order Green function for

our Hamiltonian is given by
BB

60 =) || drades (T [arp (VB @ sr)an i, (72

k,k' 00
ka10~'1 k(T)az g, (t1) + kk10~'1,k(71)0~’1,k1 (t1)
+ Viz, af  (t)az, (71)
kky A2 k(T1)%2, 1, (T1
(Vkl k’“1k (T2)ay e (T2) + szklalk (T2)ag, (T2)
+ Vi kr“2k2(72)“1k’(72)

szk, ;’kz (t2)ag g (Tz)) Q’I,p (0)]> . (2.33)
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Using Wicks theorem, equation (2.34) reduces to

o=y jj dryde, Va0 (0T = 1)g™ (ko Ty = 12)9 (0. 72)

ki 00

£ VEVE 6,7 = 1) g% (e 1y — 1) (P T2)

(2.34)
where
9%, T — 15) = < Traf ,(Day (1) > (2.34a)
g% (kT — 1) =< TTaIkl (tDayk, (T2) > (2.34b)
9% (ky, 71 = T3) = < Ty (1) g, (72) > (2:34¢)
9°1(p,13) = < Tyaf ,(T)ay,(12) > (2.35d)

Where g°! and g°? are the Green’s function for single particle of particular
spin.

Now, writing G (p, ip;) and G(p, 7T — t') in momentum basis;

1 .
Cpt—1) = Ez e~ TG (p, igy).

iig

(2.35)
After some simplifications, G(p,ip;) can be written as
G(p, lgl) = Z pkl klp g01(pr lel)g (kll lgl)g (p; lgl)
k1
+ Vo Vi, 0% (p, i) %% (k. i) g% (p, 1) (2.36)

Changing the indices p by k in equation (2.36)
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Glhkiz) = ) VELVEL g0 (k, ie) g% (hy i) g (ks )
kq

+ VeV g (k, ig) g% (ky, ig) g (k, ig) (2.37)

Impurities in our system are randomly distributed, therefore the average
properties of impurities can be calculated by taking the average over all possible
impurity configurations for a given quantity. Any macroscopic system of interest
can be described by this impurity averaging, which is called self-averaging at
temperatures that are experimentally feasible. In this way, the probability
distribution of the impurity configuration can be viewed as the result of
aggregating the probability distributions of individual impurities. The only
factors which depend on the impurity position are  Vj, . Thus G(k,ip)

calculated by solving following expression Vg Vi i, - v Vi, i - For

example, for / = 2, we need to calculate Vi Vi .

2

S 1 % : .
Vik Vieok = | | (mj d2r )4N2 E pilk=k)T), Z iki=k)T),

=1 ji1=1 J2=1

x [(1 + piwic,))[(1 + pi,pic)]

4N2 Z Z 1_[ szdzn i(k—ky)7j, el(kl k).rj,,

J1=1j,=1i=

X [(1 + pepie )I[(L + pre, i) (2.38)

which gives

Viek, Vieure = 4N2 [[(N — )8k, Oy + NI [(1 + prepie ) ][ (1 + P Pk)]]

(2.39)

and consequently, we obtain
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G(k,ig) = g°'(k,ig) ZRI%[(NZ)fSkkI(Sklk +R] % [(1 + prepie,)][(1 +

2
Pi,Pi)] X 9% ke, ie) g% (k, ig)) + g% (k, ig)) ¥ Zklfv [(R?*) Sk, Ok, +
Rl x [(p = pi,)|[(Pk — PR, )] 9°% (k1 i€ g% (K, i) (2.40)

Equation (2.40) can be represented by two set of diagrams one from X2 and
another from X. The contribution from &2 (Fig 1(a)) will cancel as it represents a

reducible diagram.

X a X 2\( ‘ b ‘

1 1 P

. = ’, \\ =3

1

i 1 ~5~ NN

] : Va ,I N,

H 1 e s N

1 ! g .

1 : " Y
=~ 1 =~ =~ o g o . i«
- - - — - -

k k k k kq k

Fig 2.1: Feynman diagrams for G (k, i&)) for orders n =2

Thus we have

2
. . v * * .
G(k, lgl) = 901(k1 lel) E mn(l + pkpkl)(l + pk1pk) 901(k1, lel)
fey

2
. . v * *
x g%t (k,ig) + gt (k, ig;) Z an P = pr) < (P — pi,)
ki

x g%%(ky, i) g% (k, igy), (2.41)
where

1 1
Plien =Y = Y ea
lpn - El,kl

Pn — €2k,
1 1
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Equation (2.41) can be written as
G(k,ig) = g° (ki) 2 (ie) g (k,ig;) (2.43)
where X(ig;) is the self-energy and is given by
. vz .
2(ig) = ﬁz [n[(1 + pepie )[(1 + P, pic)]| 9 (ks i20)
k1

vZ
2 [nl (o= o) = P ] 9 Gers 2. (244)
keq

Now we perform analytical continuation for the upper half of the plane. We

substitute ig; —» € + in,wheng > 0 and for the lower half of the plane we

substitute ¢ < 0ig; = € —in, so that we get

T(ig) = %Z [n[(1 + pipie, )] [(1 + Pklpi)]]

€ — €1k, T isgn(edn

v2 o | (P = P ) [ (% — Pi,)]
23l |

. 2.45
€ — €%, T isgn(e)n ( )

Relaxation time is given by the imaginary part of self-energy. Hence the

relaxation time for type (1) is given by

1 2mv?n

t R 4N kz([m Ipicl? 1116 (€ = €14e,) + [Ipil® + i1 (e = €2,0,))-

(2.46)




Similarly, the relaxation time for type (2) electrons reads

1

2
Ty

2w vn
h 4N

26

- D (A + Pl 18(e = €a,) + [Ipel? + Ipel?18(e = €14)).
ky

Using the following dirac delta relation

6(x —x;)

)= 2 g Gor

Eq. (2.47) can be written as

1 vznjﬂdk {Z 1 [ 1 s 1 ”
—1 = — y — ] )
T T S A=y 2l +wl L - w()l
where

1 agry;/t*
w(y;) = > =

\/1 + sinzky —%2

with

— €y — 2tcosk 2a
J’1=# ° > = — sz/1+sin2kx,

1+35 1+

— €y — 2tcosk 2a
3’2=M - —+ RZW/1+sin2kx.

1+ 75 1+%8-

(2.47)

(2.48)

(2.49)

(2.50)

(2.51(a))

(2.51(a))
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In a low scattering regime, the relaxation times for type 1 and type 2 particles

have been considered the same i.e.,

1_1_1 252
T,%_T,%_T' (2:52)

2.2.4 Longitudinal Charge Conductivity

Using the Kubo formalism [16], we calculate the charge conductivity in the x-

direction. We start by calculating the current-current correlation function.

hoPo
M) = 3 [ drelm (@), (253)
0

where w,, is the Matsubara frequency, T, defines time ordering operator, T
denotes system-temperature, and the angular brackets refer to the thermal

average. Conductivity is calculated using the imaginary part of I1(iw):

Ml . (2.54)

o,, = lim Im
XX w—0 [ W

From Eq. (2.28) we can write

Je(-0) = ) f 0 (D@ (-0 + ) fF(0a], (=D (=7)
k k

+ D 0] (D=0 + D FF (0] (~Datz (=)
k k

(2.55)
so that (T.J* (1)]*(—71)) becomes
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(TeJE (@)JF (=)

- <[Z f (%] ) (Dt k(D) (=)t 1 (—)
k
02 (DD (~Daz(-D)
k
+ IO (0] (D (D)l (~Dats (=)
k

+ ) IO (], ()t (D] (D) .
k

(2.56)
Thus M(iw,) reads

P
N(iwn) = 5 fo dre™r <[Z £ (%] (D k(a1 (-0 (~0)
k
D 0] (DD (D)
k
O (0] (D]l (~Dar (=)
k

) O (0@, D k@ el (D=1
k

(2.57)

Parts of Eq. (2.57) are solved separately. We begin by calculating the correlation
function for the first term of equation (2.57). The correlation function for the first

term in the Fourier basis is calculated using Wick’s theorem and is given by:

/ fl 1 B
Hc(iwn) = V5 Z FE(O? jo dt G(k, ip,)G(k, ipy, + i) | (2.58)

k:’-pn

and can be represented by the following Feynman diagram.
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ip, +iw,

Fig 2.2 Bubble diagram for the current-current correlation function.

Here G(k, ip, + iw,) and G(k,ip,) represents single-particle Green functions
and corresponds to the upper and lower lines of the bubble diagram and have a
frequency difference of iw,,. Also at each vertex momentum remains conserved.
To calculate the longitudinal charge conductivity (LCC), we start by calculating
the imaginary part of the current-current correlation function. Then we rewrite
the expression in terms of spectral functions by performing analytic
continuation(iw, = w + i8). Finally, we divide the current-current correlation
function by w and in the limit w = 0, LCC for the first part of current-current

correlation function is given by

h *© ong(€)
oS = —— Y fX(k)? deA(k,e)z{ 4 } (2.59)

de

Similarly, we can calculate the correlation functions for the other terms of Eq.

(2.57), and therefore, the expression for the total LCC is given by:

h 0
Oty = —NZJde{ n;e(e)
k

+ 2fF2AL(k, €)A%(k, €)), (2.60)

} [ ) At (k, €)% + f5° (k) A% (k, €)?

where A1 (k, €) and A?(k, €) represent the spectral functions for the electrons.
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At low temperature and low impurity concentration, we can make the

onp(e) _

approximation: 9e

—&(e — ) and so the spectral function can be written

as:

AY2(k,€) = 2m8(p — €10%) and (AY2(k,€))? = l4711'5(/,1 —€121)- (2.61)

Therefore, the expression for conductivity becomes

4
ot =5 ) [(FF00) w8(u - eb) + (f7G0) 18(k — €2) | (2:62)
k

Using Eq. (2.58), we obtain the final expression for charge conductivity as:

2 2
e f Z kx (flx(kx:yi)) + (fzx(kx'yi)) (2 63)
XX .
n i Jar—y 2| HHwhl - [T -wl
where f{*(k,,y) and f;*(k,,y) are given by
2 k,sink
FX(ky ) = 2tsink, — ARCOTEXS T _, (2.64(a))
1+ sin?(k, ) — (Zt)
2 k,sink
fFkyy) = 2tsink, + AREOT T (2.64(b))

N
1+ sin?(k, ) — (%’—;)
Similarly the charge conductivity gy, is given by

. j Z f1 (erxz) 4 (fzy(kj”xi))z
Oy = . 12\/@ [1T+w(k)]  [1-wx)]
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(2.65)
where
1
> agx;[t?
g(x) = 2 -, (2.66)
) X;
\/1 +sin?(k, ) — (2—2)
2apcosk,sink
£ (ky x) = 2tsink, — R i =, (2.67())
. 2 _ i
1+ sin ky (Zt)
2apcosk.,sink
£ (ky, x) = 2tsink,, + Ry Y (2.67(b)

1+ sin?k, — (2%)2

2.2.5 Longitudinal Spin Conductivity

Calculating the longitudinal spin conductivity involves using two expressions:
the charge current density (2.24), and the spin current density (2.28), and applying
the same formalism as calculated the charge conductivity. The expression for spin

conductivity is thus given by

o5 = [P Wi (OA e + 2 Whx A2 O], (2.68)
k

which can be finally written as

(k) N (£ ()
T+won]  [—wop)

, (2.69)

557 = Erfn Z dheyxhy(ky, y;)
T - S VA =y
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where h, (k,,y) is given by

2o (1- 3

hy(ky,y) = >
\/1 + sin?(k, ) — (%)

cosk,sink,. (2.70)

Similarly the spin conductivity 0';; is given by

2 2

o 2 ]n Z dieyhy (Jey, ) | (£ ko x)) .\ (£ (ky,x7))

G - L Jar—x2 | [T+ w(x)] [1—w(x;)]
2.71)

. where h,, (ky, y) is given by
2
2ap (1 - (3) )

hy(ky,x) = coskysink,,. (2.72)

\/1 +sin?(k, ) — (2%)2

2.3 Numerical Results.

We present in this section our numerical results on the nature of longitudinal spin
and charge conductivity along with relaxation time (t) for various system
parameters. These results have been obtained by computing Egs. (2.49), (2.63)
and (2.69). We measure all the energies in terms of t, and the relaxation time is
determined in terms of 7y = A/t. Fig 2.1 shows the energy dissipation in
k, direction with and without spin-orbit interaction (SOI). When SOI is present,
spin degeneracy is lifted, and we have two different bands for up-and down-spin

electrons.
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Split band
due to RSOI

10

k
Energy band without SOI

Fig 2.1 Energy dissipation along the x-direction in k space.

Fig 2.2, studied relaxation time (t) for different system parameters. Fig 2.2(a)
shows the plot of relaxation time (7) vs chemical potential (1) for various Rashba
spin-orbit coefficient @y value. For a small range of the chemical potential (i), T
increases with increase in u, and exhibits a peak at a specific value of u(u,).
When the chemical potential is increased beyond that particular value, T starts
decreasing rapidly, but if u is further increased, the decrease in t slows down.
This behavior can be observed for a particular value of agz. As ap is increased,
T also increases. In Fig 2.2(b), t is plotted for various impurity strength values
(v). The relaxation time behavior remains qualitatively the same, but the peak
value decreases with increase in the impurity strength v. In Fig 2.2(c), t is plotted
with ap for various u value. The figure shows that as we increase ap, tincreases
and saturates to a constant value for a particular value of u. As u increases, the
qualitative behaviour of T remains the same, but it saturates to a lower value.
Similar nature can be seen when 7 is plotted with ay for various v values, i.e., the

relaxation time saturation value is lower for a higher value of imputiry strength.
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Fig. 2.2 Releaxation time (t): (a) Chemical potential u for various RSOI
coefficient ag values; (b) u for various impurity Strength v values; (¢) RSO
coupling strength ap for various u values; (d) ag various v values; (e) v for

various u values; (f) ) v for various apvalues.
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Fig 2.2 (d) shows plots of T vs. ay for different values of v. As we increase v, T
decreases. The behaviour of 7 versus v for various values of 4 and ag is given in
Figs. 2.2(e,f) . As expected, T decreases with increasing v, and the effect is more
prominent at lower values of v. Also, the rate of decrease increases at lower
values of u and decreases at higher values of ap.

The expressions for the longitudinal spin and charge conductivity are given by
Equation. (2.69) and (2.63) and the relaxation time value appering in these
equations is taken from equation (2.49). The behaviour of longitudinal charge
conductivity (LCC) is presented in Fig 2.3. In Fig 2.3(a), LCC is plotted with u
for a few ay values and a fixed value of v. Like 7, LCC also displays a sharp peak
at u = u.. Interestingly, however, the height of the LCC peak is much higher than
that of 7. As u exceeds ., initially LCC decreases rapidly and then slowly and
finally saturates to a constant value. Also, as ay is increased, the peak height of
LCC increases. When LCC is plotted with u for various v values and for a
specific value of ag, one can see from Fig. 2.3(b) that the behaviour of LCC
remains the same, though the peak value of CC decreases with increasing v. In
Fig 2.3(c), LCC is plotted against ag,for different u values. One can observe that
LCC increases smoothly and monotonically with u. Similar behaviour is
observed when LCC vs. ap, is plotted for different values of v. Fig 2.3 (d) shows
plots of LCC vs. ag for different values of v. Again LCC shows a monotonically
increasing behaviour. Also, as we increase v, LCC decreases. The behaviour of
LCC versus v for various values of u and ay, is given in Figs. 2.3(e,f) . Fig. 2.3
(e) shows, as anticipated, that LCC decreases with increasing v. Furthermore,
LCC dereases more rapidly around p. than at values of u far away from u.. LCC
vs v behaviour for various ag value is given in Fig. 2.3(f) We can see that LCC

responds more to v when v is small as well as when ajp, is large.
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Fig. 2.3 Longitudinal charge conductivity (LCC): (a) Chemical potential u for
various RSOI coefficient ay values; (b) u for various impurity Strength v values;
(c) RSO coupling strength ap for various u values; (d) ag various v values;

(e) v for various u values; (f) ) v for various agvalues.
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Fig 2.4 Longitudinal spin conductivity (LSC): (a) Chemical potential u for

various RSOI coefficient ay values; (b) u for various impurity Strength v values;

(c) RSO coupling strength ap for various u values; (d) ag various v values;

(e) v for various u values; (f) ) v for various agvalues.
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Fig 2.4 gives the variation of spin conductivity (LSC) for various system
parameters. Fig 2.4(a) shows the LSC vs. u plot for various ag values. LSC shows
a similar dependence on p as LCC and displays a peak for the same chemical
potential value (n = p.). When compared with LCC, LSC shows similar
behaviour as of LCC, though the peak value in LSC is much higher than that in
LCC for the same ap.

Also, compared to LCC, LSC remains significant for higher value of u. Fig.
2.4(b) shows LSC vs. u plot for various v values. The nature of the curves is
similar to that in Fig. 2.4(a). LSC is found to decreases with increasing v. Fig
2.4(c) illustrates the nature of LSC as a function of ap for a few values of u.
Again we see that LSC is more prominent for higher values of ay. In Fig 2.4(d),
LSC versus ay is shown for different values of v. The behaviour is similar to Fig
2.4(d).
However, the value of LSC is much higher than the corresponding LCC. In Fig
2.4(e), we plot LSC with respect to v directly for several vaues u. Like LCC, LSC
also decreases with increasing v. Finally, LSC versus v is plotted in Fig 2.4(f) for
various ap values. Again we find that LSC decreases rapidly with v and ap —
dependence is more vital for smaller values of v. As ag rises, LSC goes to zero
for higher values of v.

The variation of the ratio of LSC to LCC (0) (= 03, /05,) with respect to ag
is presented in Fig 2.5 for different values of u. The figure shows that 6 increases

with 0 almost linearly but decreases with increasing u.

Finally, we calculate LCC and LSC for a realistic system namely for platinum.
For Pt, agr = 0.41meV and the value of bulk u is approximately 8 meV [18]. For
a two-dimensional Platinium, the u —value may be a little different from the bulk
value. LCC and LSC also depend on hopping strength and impurity strength, for

which we can only choose some plausible values. We obtain og, = 2.1 X
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10 Q" Im™! and o, = 2.5x10° Q"'m~'and the ratio of LSC to LCC
becomes: 8 = (05,/05%,) = 0.11. The experimental value of 8 = 63, /0, lies
in the range: 0.08 — 0.16 [19, 20]. Thus our calculation provides a reasonably

accurate value 0.

Fig. 2.5 Ratio of LCC to LSC i. e., (05,/05,) (= 6) versus RSOI strength
(ag/t) for different values of pu.

2.4 Conclusion

We have studied the Rashba spin-orbit interaction effect on the charge and spin
transport in a two-dimensional tight-binding electronic system that contains
random impurities. This system is diagonalizable in the absence of the impurities
and the system has two different bands for up and down-spin electrons. We have
used the Matsubara Green function technique and computed the Feynman
diagrammatic technique to calculate the relaxation time caused by impurity-
electron scattering. To calculate the spin and charge conductivities, we have used
the Kubo formalism. For the sake of simplicity and to understand our system

better, we have worked in the dilute-impurity and the low-temperature regime.
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Our findings predict that as a function of the chemical potential u, both the
longitudinal charge and spin conductivities and also the relaxation time display
peak structures at some critical value of the chemical potential u (u.). Beyond
that critical value, the charge and spin conductivities fall off quite rapidly with
increasing p, though the corresponding drop in the relaxation time is relatively
slow, Also, the longitudinal spin conductivity peaks are found to be much higher
than the longitudinal charge conductivity peaks. These peaks increase with
increasing RSOI strength and decrease as the impurity strength increases.
However, in the case of relaxation time, the peak value is independent of RSOI.
Furthermore, it is shown that both the charge and spin conductivities and also the
relaxation time increase with RSOI and decrease with the electron-impurity

interaction strength.
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CHAPTER 3

Torque-dependent Spin and charge
conductivity in presence of Rashba and
Dresselhaus spin-orbit interactions and
static random disorder for a two-
dimensional tight-binding system.

3.1 Introduction

In Chapter 2, we have discussed torque-dependent transport in a disordered
system which lacks the inversion symmetry. In this chapter we will examine the
effect of Dresselhaus [1] spin-orbit interaction (DSOI) as well as Rashba spin-
orbit interaction (RSOI) [2] on our two-dimensional tight-binding system. As the
Dresselhaus spin-orbit interaction (DSOI) effect is caused by bulk inversion
asymmetry and can be found in almost every system, the present study is more
realistic. We shall also study how the system behaves when one of the SOI effects

dominates the other in the presence of impurity

3.2 The Model

We consider a two-dimensional tightly bound electronic system in the presence

of RSOI, DSOI and random impurities. The Hamiltonian of the system is given
by

H = Hy+ Hip (3.1)
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where

_ t t t
Ho = Z €0Ci ¢ Tt Cigiy Cixardy T Ciyiy Ciigss T h.c

i ix iy
s + . +
iog Z Ciyiy Oy Cixr iy + h.c| +iag Z Ciyiy OxCigiyss + h.c
[ ixly ] [ ixly
. + . +
+ifp Z Cigiy Ox Cixy iy +h.c|—ifp Z Cigiy OyCixiy+s + h.c|, (3.2)
[ ixly ] [ ixly
and
— t
Himp = z v6(r; — 1)¢ . (3.3)

il

The first four terms appearing in Eq. (3.2) have already been introduced in the
previous chapter. The last two terms represent DSOI. Eq. (3.3) has also been

introduced in Chapter 2 and it is the electron-impurity interaction term.

In the k-space Hy, is given by

Hy, = Z cliX,ky [ex + 2ag(sink, 0, — sink,o, ) + 2Pp (sink,a,
KKy

— sinky oy )] ek - (3.4)

To diagonalize the Hamiltonian (3.4), we consider the following unitary

transformations:

a1k )
(a;,k) = Uk (C:D ' (aI.k “g,k)= (chy CL)UII (3.5)
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where Uy, is given by

U = 1 [ 1 ka,kyl 3.6)
SN P S '
The non-diagonal elements py x, and p,’;x,ky are given by

(aRsinky + ﬁDsinkx) + i(aRsinky + BDsinkx)

Pk, = - - (3.7)
\/(aRsinky + Bpsink,)” + (agsink, + Bpsink,)
i} (aRsink + Bpsink ) - i(aRsink + Bpsink )

Dicyie, = 2 = Y X (3.8)

\/(aRsinky + ,BDSinkx)2 + (agsink, + BDsinky)2

Therefore, the Hamiltonian (3.2) in term of transformed operator can be written

as

Hy

= z I(ek - 2\/(0{Rsinky + [)’Dsinkx)2 + (agsink, + ﬁDsinky)2> a;r’kafl,k
Ky Ky

2 _ _ 2
+ <6k + ZJ(aRsinky + Bpsink,)” + (agsink, + Bpsink,,) )“I,k“l,kl-
With further simplifications, we can write H, as:

Hy = Z [61,ka.1r,ka1,k + ez,ka;kal,k]' (3.9
ky Ky
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where €, 5, is

€12k = <ek F ZJ(aRsinky + ,[&,sinkx)2 + (agsink, + ,BDsinky)2>.

3.2.1 Spin Current

As before, to get the spin current operator, we start from the spin polarization

operator [3, 4] which is defined as:

PSz = Z Rinini.I;(,iy SzCiy iy (3.10)

ily

As pointed out already, the time derivative of Spin polarization should give the

spin current density /52 and is given by

. 0P L
Jr = = HO'ZRixdyCix.jy”ZCix.jy - (3.11)

Jxly

We write Hy = Hy + H§ + HY, where

Ho = z Coci € +t Z(Cii,iy Cinypiy F i Cigiyas T 0O [, (3.12)

iy
iy iy
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HE =iag Z cf; OxCiyigq T h.c| —iag Z c;;'iycy Ciyypiy T h.c|, (3.13)

ly
ixly ix,iy

D _ ; T ; T
Hy = ifp Z Ciyiy Ox Cipa iy + h.c|—ifp Z Ciyiy Oy Cixiy+a + h.c|. (3.14)
ixly ixly

Substituting Eqns.(3.12), (3.13),and (3.14) in (3.11), we get the expression

for Spin Current Density as:

N
jSz = apsz = ltZ(ﬁ . _R) . )[CT 0.,C: . —_ C.T . 0,C; ]
at 1X+1'1y lx,ly lxr]y zZ 1X+1'1y 1X+1'1y Z lX,ly |

ixiy
, 3 3 + t '
+ ltZ(Rix'iy+1 - Rix’iy) [Cix.iyo-ycix'iy+1 - Cix,iyﬂgycix,iy |

ix iy

i B . +R et . —cf
+1ag Z (R1X+1,1y + Rlx,ly) Cix,iyaxclxﬂ,ly CiX+1,iyO-xC1X,]y |

ix iy

i R B et . —cf
+ laR Z (RIX:1y+1 + Rlely) Cix;iyayCIX'ly+1 Cix;iy+10-yC1X'ly |

ix iy

; B. . B y[of . — of
+ifp Z (RlX sy + Rlx,ly) cix’iyayclX sy Cix+1,iyayclx,ly |

iy

. - — [ _l_ _ 1_ -
+iBp Z(Rix,iy+1 F Riyiy) [ Ciyiy OxCixigsr ~ Cigigas TxCicy |

ixly

(3.15)

In x direction spin current density is given by
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Sz _— ; T _ T
IZ = ltZ[Cix,iyaZCix+1:iy Cix+1,iyo-zcix:iy]

ixly

, - t _
+ iag Z(le +1) [Cix,iyUxCix sy = Cigypiy OxCigy

ity

.I.
+ laRZ(le)[ 1 Ay 0,C Ixiyss Cix,iy+10-ycix,iy]

iy iy

: ; t . — of o
+ifp Z(le +1) [ciX‘iyayclx sy Cix+1,iy0-yclxrly ]

ix iy
+ IBD Z(le) [ 1 Ay 0xC Ixdy+s (:i-l;(,i},1_1O-Jccix,iy ] (3'16)
ix iy

Similarly the Spin current density along y- direction

z - —cf o
= 1tZ[ Ciy iy 2Cixiyss ~ Cigigys P2Cixiy ]

iy,iy

: _ AT
+1aRZ(21y)[ Ciiy OxCixp 1y Cix+1,iy0xcix,iy]

iX,ly

. —cf .
+ 1aRZ(21y + 1)[ Ciyiy 0¥ Cis iy 41 Cix,iy+1‘7yclx.1y]

iy, iy

.I.
+ IBD Z(z ly) [ i,y ClX+1r1y Cix+1viy0-ycix'iy ]

ix,iy
+iBp Z(Zix +1) [c;;'iyaxcix,iyﬂ - c;;'iyﬂaxclx,iy] (3.17)
ixly

In the eigen space, the expression of Spin current reads

Sz _ : +
Z = 2t E sinky Chy kg 07y
Ky Ky
2 2 i 2 *
2[B5 — ag]cosk,sin kypkxky

+ 2
Kk (aRsinky + BDsinkx)Z + (aRsinkx + [3Dsinky)2

(Bp — iar)py (Bp + iar)pf
x ak[ Fady w9 . (3.18)

(Bo —iar)Pizk, (Bo +iaR)Pi, ik,
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3. 2.2 Charge current

The charge current operator is obtained through charge polarizing operator which

is defined as:
= Tigiy Rigiy €1, ICiiy - (3.19)

The time derivative of the above polarization operator gives the charge current.

So we can write

L 0P S
] ot =1 HO,Z ij'ijjX!jy ICijjy . (320)

jx:jy

We write Hy = H} + H§ + HY and calculate the following commutators.

[HE P =t ) (B =Rt e = e
0 ix+1dy ix,ly ix,iy ix+1ly ix+1,iy Ix.ly

ity

5] D t T
+ tZ(Rix,in — Rii,) [Cix,iycix,iy+1 T Ciyiyys Cixdy ] (3.21)

iy

R pcl — B. . —_R. . t o t .
[HE,P¢] = O‘RZ(RIX iy — Rigiy) [cix’iyayclxﬂ,ly + Ci i, Oy Cigdy ]

iy

—O(RZ (Rix,iy+1 - Rix,iy) [cg;'iyaxcix,iy+1 +c T iz iy 1 0% Cixdy ] (3.22)

inly

[HD ,P°] =8 (Ri i —Rii)|ch opei. o+ ¢ ope
0 — PD ix+1dy ix,ly ix,iy X Mgy1dy ix+1,iy Xty ly

iy

B D T T
_'BDZ (Rix'iY"'l _RiX'iY) Clx ly Ty lx fy41 +c lX,1y+1 ycixliy ] (323)

ixly
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Substituting Eqns. (3.21) —(3.23) in Eq. (3.20), we obtain

pc
— il R D D t
at =1 HO + HO + HO 'z ijvjycjx:jy ICjX'jy

Jxly

jo =

which on further simplification leads to

— § t
=it (Rlxﬂ,ly 1X,1y) [ iy 1X+1,1y Cix+1,iyclx,1y

iy,iy
] B. . —R. . P — cf .
+ ltz(Rlx:1y+1 Rlx:ly) [Cix,iyclx:1y+1 Cix,iy+1C1ny ]
ity
o > B — R el '
LAR ( ixyoly ixriy) [Cix.iyo-ycix+1'iy + Cix+1.iy0-ycixriy ]
ity
—ia R . —R. :)|cl. o, +cf 04xCi_j
R ixdy+1 ix.iy iy ly xC ixdy+1 1X,1y+1 x iy iy
ity
R R ¥ +cf
Po ixs1dy iy Cix,iyUxCiX+1,iy Ci, +1,1y0xCiX,iy
ity
+p R; 3 ooy +c . oy
D ixdy+1 ixdy Ixly =Y ixdy+1 Ilypr YV oly |
ity

In x-direction the contribution of charge current is given by

— E —cf o
=it [ lx iy 1X+1'1Y Cix+1rin1X’ly

iy iy

T o i o
+ aRZ [Cix:iyo-yclx+1'1y + Cix+1:iy0-yC1X'ly ]

ixly

- B DZ [Ci-l;('iyo-xcix+1riy + Cit(ﬂ,iyo-xcix,iy ] . (3.24)

ix iy
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Similarity In y-direction, we have charge current

- T PSP — cf L
Jy = Z L) Ci, i, Ciyiysa Ciyiys Cinly ]

iy

. t t
lO(RZ [Cix;iyo-xcix'iy+1 + Cix,iy+10-xcix'iy ]

iy

+ ,BD Z [Ci-l;(.iyo-ycix'iy+1 + Ci-l;(.iy+1o-ycix,iy ] . (325)

iy

In terms of the @ —operators, the charge currents in x and y directions are

calculated using Egs. (3.5-3.8).We obtain

. . Pi. — Px 1+pk
Ji = ZtZ(smk )(xTock—la Z(cosk )aT . . a
* = K ¥ n -+ mD -0l "

ik +p)  1-Df

Hla-p2) -@p+p0] " (3.26)

—ifp Z(coskx) a
K

On further simplification, we can write

Ji = Z(Ztsinkx — iag(cosk,) (p,*( - pk) — i, (COSkx)(p; + pk)) oq'kallk
K
+ ) (2tsink, — iag(cosk,) (e = Bi) = B (Cosk) (i + Pi0))
K
+ ) (—iap(cosk) (1 +pR) = iy (cosk) (1 = pB) o otz
K

+ ) (miag(cosk) (1 + pid) = ifp (cosk )L~ PPN eyt (327)
k
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Now using
£ (k) = 2tsink, — cosky (iar (Vi k, = Provic,) + Bo@ieyiey + Picui,))-
f2' (k) = 2tsink, + cosky (i“R(pix,ky — Piyky) T BoPryi, + ka,ky))-

F ) = = cosky (ian (1+ P, ) + o (1= DRy, ) ) (328)
The charge current along x direction reads

J$ = e/n ) (FFUOal s+ fF 00l + fF00u] e
+ fF (el ). (3.29)

Calculating in a similar fashion, we obtain the charge current in y direction as

Jy = e/h zk(ﬁy(k)“;r,k%,k + fzy(k)“g,ka’z.k + f3y(k)“I,k“2,k

+ f37 (R)af az ). (3.30)

where fly (k), fzy (k), f3y (k) and f;y (k) are given by

f7 (k) = 2tsink,, — cosk, (iaR(pfcx,ky = Pipiey) T BoPiy i, + ka,ky))-
(3.30a)
f3 (k) = 2tsink,, + cosky (1@ (P, ke, = Pipie,) + Bo@ink, + Proi,) )

(3.30b)

f3 (k) = —cosk, <iaR (1 + p;zcx,ky) + Bp (1 - p%x,ky)) (3.30c)
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£7 () = (—cosky) (iag(1+ pi?) + iBp(1 - pi2))- (3.30d)

3.2.3 Relaxation Time

Relaxation time is given by the imaginary part of the self -energy. We have
already discussed its calculation in Chapter 2. The expression for relaxation time

of an electron of type (1) in the presence of RSOI and DSOI and impurities is

given by:
1  2nvin
o _ v e 5 X ~
i h 4N (1 + I PIel )16 (€ = €14)
k4
+ [lpk|2 + |pk|2]5(6 —Exp )) (3.31)

Similarly the relaxation time for an electron of type (2) reads

= S 2 [+ o )] 86 — ez

ky

+ lpol” + picl?| (e - El,k))- (3.32)
Using the relation

6(x —x;)

5(g) = RN (3.33)

in Eq. (3.30), the relaxation time 74 can be written as
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T

1 v®n 1
—=—1| dk, E S
T T S Wat? —xy?

[1/11 +w(xp)l]

1
+ ——=[1/]1- W(x-)l]}, (3.34)
4t2 - xlz '
where
x.
W(Xl') = : X
4t2
X2

2agPpsink, + (ag + B5)

(3.35)

42
2 2’
. xi® . xi?
agsink, + fp. |1 — 4—22 + | Bpsink,, + ag_ |1 — 4—1‘:2

and

u — 2tcosk,, + 2\/(0(}% + B3)sin%k, + af + B5 + 4arfp

= , 3.36
1 1+ af + Bj + 2agPpsink,, (3.36)

pu — 2tcosk, — 2\/(0@22 + BB)sinky, + af + B5 + 4agfp

X, = , 3.37
2 1+ af + Bj + 2agPpsink,, (3:37)

In the case when the impurity concentration is low, the relaxation time for type

(1) and type (2) electrons will be same and we have

(3.38)

CN=
2 -
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3.2.4 Longitudinal Charge Conductivity (LCC)

To calculate longitudinal charge conductivity, we used Kubo formalism [5], as
we have obtained in chapter 2, using equations (2.53-2.60), the expression for

longitudinal charge conductivity is given by

0t = Z[(ff‘) (A3 (k) + (0 A3 (R, 1)

+2f5 () 3™ (l) Ay (K, 1) Az (K, )] (3-39)

In the low-impurity and low-temperature regime, the spectral functions can be

written as

(U0 ) = T ames(u—ers),  (Aalk ) = T 4med(u— ez

(3.40)

so that Eq. (3.39) becomes

2
0 =37 ) | E2 008 (u - 1) + 2 (0e8(n - 1) |,
k

(3.41)
which on using Eq. (3.32) reads
. diy  [(fEUany))”  (fF U y))’
ote=rr) lzlz,rz | G+ wol T TT=whnl (42

where f%, f;* and g(y,,) is given by
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fi'(kx,y)
Y2
2cosky || 2arfp |1 — 2zt (ag + B)sink,
= 2tsink, —
2 2
. y? . y2
aRSlnkx-l_ﬁD 1_P + ﬁDSlnkx+a’R 1—m
(3.43)
fo(ka y)
2
2cosk, KZaRﬁD /1 - Z_tz + (a3 + Bg)sinkxﬂ
= 2tsink, +
2 2
. y? ) 2
\/(C(RSlnkx + Bp,fl - 4—t2> + <,BDsmky + ag /1 - 4_t2>
(3.44)
9()’1,2)
2agfpsink, + (a2 2 1_3’1,22
_ Y1 RPDSINKy (aR +BD) 4t2
2 _ 3’1,22 5 2 > 2
2t \/1 4t || agsink, + ,BD,I 1- }’1,22 + | Bpsink, + ag fl — y1'22
4t 4t
(3.45)
Similarly, LCC is given by
y 2 y 2
o2 f Z dk, | (ke . (£ (tky %)) »
A —m St VA2 = x? [1+w(x)] [1—w(x)] (3.46)

where fly , fzy and g(xl,z) are given by
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ﬂy(ky'x)
2
2cosk, I(ZaR[)’D /1 — % + (ag + Bﬁ)sinkyﬂ
= Ztsinky — ’
x2 : x? i
agsink, + Bp |1 — 2 + | Bpsinky, + ag |1 — a2
(3.47)
zy(ky'x)
2
2cosk, KZQR,BD /1 - éf_tz + (af + ,B[%)Sinky>l
= 2tsink,, +
x2 ’ x? i
agsink, + Bp [1— 2 + | Bpsink,, + ag |1 — 12
(3.48)
g(x1,2)
2
_ X 2agPpsink, + (ag + B5) 1_4t2
ZtZ\/ _&2 g 2 ?
4t% || agsinky, + fp [1— 4t2 + | Bpsinky, + ag. |1 — 4t2
(3.49)

3.2.5 Longitudinal Spin Conductivity (LSC)

Calculating the longitudinal spin conductivity involves using two expressions:
the charge (3.28), and the spin current density (3.18), and employ the similar
formalism as we have used for the calculation for LCC. The expression for spin

conductivity is thus given by

%= Z[fl (Ohe (04 () + fF(OR1 (R)A* (K, )2 (350)
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which on using Eqns. (3.39) and (3.49) becomes

4
03 = = Y [ (TS = ) + (s (TG0 = €R)].
k

(3.51)
On further simplification and by using the relation (3.32), the expression for

LSC reduces to

(fE ke ) N (FE k)

s E T dkyhy (ky, ;)
ai=re] Y Lrwool T - wool

i=1,2 V 42 —y;?

] (3.52)

where h;, (k) is given by

2(B5 — ag)?sinkycosk,sink,

NGEDY

5 A
k _ y? . y2
[(aRsmkx + Bp fl - F) + <,Busmkx + “R«/ 1- F) ]

(3.53)
Similarly, LSC (0';;) is given by
y 2 y 2
s, 2 f” Z dkyhy(ky, x;) (fl (kx:xi)) N (f2 (ky,xl-)) 354
0,5, =—1T )
on ), S, VAt —x? [1+w(x;)] [1—w(x;)]

where hy, (k) is given by
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2(B5 — ag)?sin*k,cosk,sink,,

by = )

2 2 3/2.
k . / x? ) . [ x?
((aRsmky + ,BD 1- 4_152 + <,BDsmkx + ag 1- 4_t2> >

(3.55)

3.3 Numerical Results and discussion
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T/t
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Fig. 3.1 Relaxation time 7 versus: (a) Chemical potential u for various DSOI

coefficient fp values ; (b) u for various RSOI Strength ay values.

In Fig 3.1, the relaxation time T is plotted with respect to the chemical potential
u (or more precisely with respect to i’ which is given by: ' = u/t). Fig. 3.1(a),
show 7 versus u plot for various fp values with a fixed value of ap. In the
absence of DSOI, T remains independent of u up to a certain value of u (u,) after
which it increases with p and attains a peak. As u increases further, initially t
falls off very rapidly giving rise to a sharp peak, but above a certain y, 7 reduces
rather slowly with increasing u and eventually becomes zero at some critical p

(u3). A decrease in t implies more and more scattering events. When the effect
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of Dresselhaus coupling is included, we observe a broad maximum in 7 instead
of a sharp peak. Also the maximum and the critical chemical potentials ¢; and u,
shift towards right as fp increases. The increase in DSOI strength leads to a
decrease in bulk inversion symmetry, causing more scattering events which leads
to decrease in relaxation time. When fp is kept constant, Fig 3.1(b) 7 remains
independent of ag up to a specific u value after which g — dependence of 7 is

evident. It should be noted that the results remain same if the strength of either of

RSOI or DSOI is interchanged.
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Fig. 3.2 Relaxation time t versus: (a) RSOI strength for various DSOI

coefficient fp ; (b) ap for various chemical potential u values.

In Fig 3.2, 7 is plotted with ag for various S value. In the absence of the DSOI
effect, 7, with ag, initially increases, and develops a peak and then sharply falls
off to zero. Then again it increases with the further increase in ay, though slowly,
and eventually saturates to a fixed value. In the presence of DSOI, the initial peak
that appears in 7 for S = 0, disappears, but the rest of the behaviour remains the
same. For intermediate values of S, T decreases monotonically with increasing
agr and eventually becomes zero. When [ is large, and ap is small, T is small

compared to the fp = 0 - case. As ap increases further, T decreases and slowly




60

become zero. This behavior is due to bulk symmetry breaking which increases
with increasing B and reduces 7. In Fig 3.2(b), T versus ay for a certain value of
PBp is plotted for different values of u. The qualitative behaviour of T does not

change even as u increases.
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Fig. 3.3 Relaxation time 7 versus: (a) Impurity strength v for various u values;
(b) Impurity srength v for various ap values.

In Fig 3.3(a), we plot T versus v. As v increases, T decreases monotonically,
which is understandable. We also observe that the 7 decreases more rapidly with
at small v values. Furthermore, T increases with p up to a critical value after which
it decreases with increasing u.Also one can see that, effect of u is more prominent
for lower impurity strength. In Fig. 3.3(b), T is plotted with v for different Sy
values. Again the figure shows a rapid decrease in T with increasing v. Again
effect of DSOI strength is more prominent for lower impurity strength.

We compute the charge and spin conductivities using Eqns. (3.42) and (3.52).
Fig. 3.4 shows the nature of LCC with various system parameters. In Fig 3.4 (a),
LCC is plotted with u for a certain value of ap and for a few small values of .
In the absence of Dresselhaus effect, LCC displays a sharp peak at a critical value
of u. For weak DSOI also, LCC shows a peak structure but the peak has a shorter
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height. Furthermore, for weak DSOI, as u increases, LCC eventually saturates to
a constant value. For strong DSOI. Fig 3.4(b), LCC remains small at low values
of u and shows a hump-like structure as p is increased. These humps increase in
height with the increase in 8, and shift towards right. In Fig 3.4 (c), we show the
variation of LCC with u for various ay value but with a low value of §p namely,

Bp = 0.5. Again we see a peak structure is observed with respect to . Also, as

ag 1s increased, the peak increases.
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Fig. 3.4 LCC versus: (a, b) u for various pp values; (c) u for various ag

values.
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Fig 3.5 presents LCC versus ap plot for various u values. We see a non-
monotonic nature of LCC. The inset shows the plot for small values of ap
explicitly. As ag increases, initially LCC increases and reaches a peak at a critical
value of ap. As ag is further increased, LCC goes through a dip and then it
increases continuously and monotonically with ag. This behaviour is consistent
with that observed in Fig 3.3 and Fig 3.4. The variation of LCC with ag for
various ffp is presented in Fig. 3.5(b). In the absence of DSOI, LCC increases

monotonically with ay, though the increase is much higher when DSOI is present.
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Fig. 3.5 LCC versus: (a) ag for various u values; (b) ay for various §p values.
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Fig. 3.6 LCC versus: (a) v for various u values, (b) v for various fpvalues.
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In Fig 3.6, the dependence of LCC on v is presented. Fig 3.6(a) presents results
for various values of u while Fig. 3.6(b) gives results for various values of fp.
With increase in v, we see a decrease in LCC which is of course an expected
behaviour. Again one can see that the dependence of both chemical potential and
DSOI strength is more prominent for lower impurity strength.

In Fig 3.7, LSC is plotted with respect to u. Fig. 3.7(a, b) gives results for
various fp and ag values. One can see from Fig. 3.7(a) that LSC exhibits a peak
at specific u value in the absence of DSOI. For weak Dresselhaus interaction, the
peak becomes shorter. For large fp, SC remains zero up to a certain value of u
after which LSC develops a peak. Furthermore, the peak shifts towards a higher
u values with increase in fp. Fig 3.7(b) shows a simple peak structure in LSC
with chemical potential for various ap values. Peaks become higher with
increasing ag. Furthermore, as p become large LSC apparently goes to zero. Also
one can observe, that LSC is zero whenever ag = fp. In this case, the effects

from RSOI and DSOI cancel each other (Eq.(3.52)).
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Fig. 3.7 LSC versus: (a) u for various fpvalues ; (b) pu for various ay values.
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aRIt

Fig. 3.8 LSC versus: (a) ap for varioius u values; (b) ag for S values.

In Fig 3.8, the nature of LSC with ap is given. The plot of spin conductivity
versus RSOI strength for a set of values of u is given in Fig 8(a). Initially, when
RSOI strength is small, we observe an increase in LSC. For the fixed p value, as
RSOI strength increases and reaches close to DSOI strength, LSC decreases and
becomes zero when RSOI and DSOI become equal. Beyond that, LSC increases
smoothly with increase in ai. Now if we increase the value of chemical potential
1, we observe decrease in LSC. Fig 3.8(b) shows the LSC versus ap - plots for
different values of 8. As S increases Rashba and Dresselhaus effects counter
each other due to which LSC increases at a lower rate, as explained earlier. It was
also observed that, the effects of DSOI on LSC will remain the same, if we
interchange RSOI with DSOI on LSC. So the DSOI effect caused by the bulk
inversion asymmetry can easily be countered by the RSOI effect which we can
be tuned by manipulating the external electric field. Also, Fig (3.8) also shows
that martial with higher Dresselhaus strength require high chemical potential.
Therefore to generate high LSC in materials with high DSOI strength, we have to

consider those materials which also have high chemical potential.
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Fig. 3.9 LSC versus:(a) v for various chemical potential u values; (b) v for

various RSOI strength ag values.

In Fig 3.9, the dependence of LSC on v is given. Fig 3.9(a) presents results for
various u value while Fig 3.9 (b) gives results for different values of 5. Both the
figures show that SC decreases as v increases. The effect is highly prominent at
small v. Fig 3.9 (a) suggests that LSC is reduced more as u is increased. Fig 3.9

(b) shows that the rate of increase of LSC is larger at larger values of fp.

Fig 3.10(a) shows Longitudinal spin-to-charge conductivity ratio o5, /o5, plot
with ap for various u values. We see that with the increase in ap, the ratio
o2 /ol,. increases . And as we increase chemical potential the ratio oy, /d5,
increases. Fig 3.10 (b) shows the spin-to-charge ratio with «ag for various 3y
values. The spin-to-charge conductivity ratio has finite value when fp # 0 and
agr =0 . As ag increases, spin-to-charge ratio decreases and become zero at
ag = fp as is clear from Eq. (3.42) and (3.52). With further increase in ag the
LSC/LCC ratio increases monotonically.

Form experimental data we know that Rashba strength for a material can be
modified to 50% by gate voltage [6,7] and the ratio of the Rashba and

Dresselhaus constants is of the order 1.5 to 2.5 [8]. For Indium Arsenide u =
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—0.22meV, ap = 1.6 meV, fp =1meV [9, 10]. Thus the value of the
LSC/LCC ratio comes out to be around 0.05.
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Fig. 3.10 [LSC/LCC] versus: (a) ap for various values of u; (b) ay for

various values of fp.

3.4 Conclusion

We have studied the Rashba and Dresselhaus spin-orbit interaction effect on the
charge and spin transport for a two-dimensional tight-binding electronic system
when randomized impurities are present. We used the Matsubara Green function
technique and computed the lowest-order non-vanishing Feynman diagrams to
calculate the relaxation time caused by the impurity-electron scattering. To
calculate the spin and charge conductivities, we have used the Kubo formalism.
We observe that for all values of the Rashba and Dresselhaus strength, the
longitudinal charge and spin conductivities along with relaxation time exhibit
peaks when studied as a function of chemical potential. Also, the longitudinal
spin and charge conductivities increases with an increase in RSOI, but when

along with RSOI, DSOI is also present, we observe a decrease in longitudinal
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spin conductivity and an increase in longitudinal charge conductivity.
Furthermore, the spin conductivity is zero whenever Rashba and Dresselhaus
strengths become equal. Finally, we have shown that longitudinal spin to charge
conductivity ratio with Rashba strength decreases till RSOI strength becomes
equal to the DSOI strength. After this, it increases with the increase in Rashba

strength
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CHAPTER 4

Torque-dependent Spin-Hall conductivity and
Hall angle in presence of Rashba and
Dresselhaus spin-orbit interactions and static
random disorder for a two-dimensional tight-
binding system

4.1 Introduction

Chapters 2 and 3 are concerned with spin and charge transport in the presence of
Dresselhaus and Rashba spin-orbit couplings and static random disorder. Were
we observed that for all Rashba and Dresselhaus strength values, the longitudinal
charge and spin conductivity and relaxation time display peaks with chemical
potential. Also, longitudinal spin and charge conductivity increases with an
increase in RSOI, but when along with RSOI, DSOI is present longitudinal spin
conductivity decreases while longitudinal charge conductivity increases.
Furthermore, whenever Rashba and Dresselhaus strengths become equal
longitudinal spin conductivity becomes zero. We have also studied the
longitudinal spin to charge conductivity ratio has higher value whenever Rashba

is much larger than Dresselhaus.

In the present chapter, we shall explore the effect of spin-orbit coupling (SOI)
and impurity on the torque-dependent spin-Hall conductivity (SHC) at zero
temperature. And studied the effect of SOI on the spin-Hall angle. We shall

employ the Feynman diagrammatic technique and the Kubo formalism.
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4.2 Formalism

The term responsible for longitudinal charge conductivity (LCC) is given by
(3.39) and (3.40) and

h d
O = —N; f de{ = 6(6)} [0 A* (e, ) + f5% (k) A2 (k, €
+ 2fF2 A (k, €) A% (k, ©)), (4.1)

In the low-impurity and low-temperature regime, the spectral functions can be

written as

(A2 (k, 6))2 = (4/R)T6 (1 — €x12)- (4.2)

Using Eq. (4.2) in Eq. (4.1), the expression for longitudinal CC reduces to

_ Ame? Tﬂ dieydk, Z (ks y0))?
Xx hrokT’ lx x Vi

! ! ! ! ! ! ! 2
x exp((€'y — 1)/KT") JKT' (1 + exp((€'uc — 1) /KT"))")
(4.3)
Similarly, using the Kubo formalism, we obtain the spin Hall conductivity (SHC)

as

o= 2y mls e |>2< B ) = folea) 48
(El,k _fz,k) + (;)
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where ];Z and Jy, are the x and y-components of the longitudinal spin and charge
currents. Using the expressions for J;7, Jy and T from Eqns. (3.18), (3.30) and

(3.34), in Eqns. (4.4), we get the final expression for SHC as

2 2
Sz _ (@r"—B'p
Opy = ——————

T
Vs 3 "
y ff dle.dk (fe(evr) — fe(€ezx) ) cosky sin’k, (4.5)
0

V(TN + (/DD
where fg (El’z’k) is the Fermi level, which at zero temperature is given by;

fe(€rx) — fe(€2x) = heaviside(ey — u) — heaviside(ey —p)  (4.6)

4.3 Results

Split band Split band due to
due to RSOI \ RSOl and DSOI
10
= 9
LUl
0 L
-4 4

k
Energy band without SOI

Fig. 4.1 Energy dispersion along the x-direction in k space.
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Spin-Hall conductivity at zero temperature is given by Eqn. (4.5), which we have
computed numerically to investigate the nature of SHC with different parameters.
As earlier, here also we measure all energies in the unit of the hopping parameter.
Fig 4.1 shows the energy dispersion in the k, direction with and without spin-
orbit interaction (SOI). When SOI is present, spin degeneracy is lifted, and we
have two different bands for up and down-spin electrons. Fig 4.2, illustrates the
effect of renormalization and splitting where SHC is plotted with chemical
potential u. SHC remains zero up to a certain (small) value of the chemical
potential and as the chemical potential increases beyond this value, SHC increases
rapidly and attains a peak. This peak shows the availability of conducting states,
which decreases with a further increase in u leading to a decrease in SHC. In the
presence of the DSOI effect, the conducting bands become deeper and narrower
(Fig 4.1) and have fewer conducting states available, causing a decrease in SHC
(Fig4.2(a)). Also, as the Electron -impurity interaction strength v increases, SHC
decreases (Fig 4.2(b)) which is an expected behaviour. When plotted with respect
to ag (Fig 4.3), the nature of SHC remains more or less qualitatively the same as

it is with respect to p.
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Fig. 4.2 Spin-Hall Conductivity versus Chemical potential u for various values

of: (a) Bp; (b) v.
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SHC remains small up to a particular value of ay, after which, SHC increases
and develops a peak. This peak predicts the maximum value for spin-Hall
conductivity. With further increase in RSOI strength, peaks start decreasing and
attain a constant minimum value. This is because, with an increase in RSOI
strength, bands get broader and shifts lower Fig (4.1) creating a lower charge
concentration near the Fermi level. This reduction in charge concentration
becomes more when we include DSOI, as it causes additional broadening in

bands. Also, whenever ay and i become equal, SHC becomes zero.
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Fig. 4.3 SHC versus ay for various: (a) Bp ; (b) i (c) v values.
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Fig. 4.3 (b) shows that with ag, SHC decreases with an increase in y, if u lies in
a certain range. This nature can be easily understood from Fig 4.2(a). Again we

can observe from Fig. 4.3(c) that SHC decreases with an increase in v.
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Fig. 4.5 SHC/LCC versus ag for various values of: (a) u; (c) v.

In Fig 4.4, a plot of SHC with impurity strength v is given for different
parameters. SHC remains unaffected when v is small. With the increase in

impurity strength, scattering events increase, and we observe a decrease in SHC.
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SHC also decreases when we increase the DSOI strength and the chemical

potential.

Finally, we calculate the spin-Hall angle (SHA), which is described by the ratio
of the spin-Hall conductivity to longitudinal charge conductivity. In Fig 4.5 (a),
SHA is plotted with ap for several u values. SHA has a peak at some value of u.
Also, SHC remains essentially zero at low values of ay. The peak height however

depends on y and v.

In Fig 4.6, we present the three-dimensional and contour plots for the spin to
charge conductivity ratio with respect to ag and ffp. As expected, when ag and

fp are small, the ratio SHC/LCC is almost zero. As we increase ag keeping [p

constant, a

0.012
0.01

0.01
0.008
0.006
0.004

0.002

O:th

Fig. 4.6 (a) Three-dimensional plot of [LSC/LCC] in (ar — Bp) —plane. (b).
Contour plot of ratio of [LSC/LCC] in (ag — fp) —plane.

peak can be observed at some critical value. Afterwords the ratio decreases. A
similar situation appears if [p is increased, keeping ap constant. When both ap
and fp are increased simultaneously at an equal rate, the ratio remains zero, and

as one is made more significant than the other, we observe a finite value for
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SC/CC. Using the values of ag, fp and u from previous chapters we find that
the value of the SHC/LCC ratio can be in the range : 0.001- 0.01 which, of course,

has to be experimentally verified. .

4.3 Conclusion

In this chapter, we have calculated spin-Hall conductivity and spin-Hall angle
using the Kubo formalism and have examined their dependence on some of the
system parameters. We observe that the spin-Hall conductance shows peak
structure when studied with chemical potential, and the values of these peaks
decrease with increasing DSOI strength, as DSOI broadens the energy bands. A
similar observation has been seen when SHC is investigated as a function of
RSOL

We have also shown that in the presence of both SOI effects, SHC almost
remains unaffected at low impurity strength and decreases when the impurity
strength is high. Also, SHC increases with the increase in the difference between

the RSOI and DSOI strength.

Finally, we have calculated longitudinal spin to charge conductivity ratio. We
have shown that if any one of the SOIs (RSOI or DSOI) dominates, this ratio
increases, and as the two SOI couplings become equal in strength, the ratio goes

to zero.
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CHAPTER B

Torque-dependent Spin-Hall conductivity
and Hall angle in presence of Rashba and
Dresselhaus spin-orbit interactions and
static random disorder for a two-
dimensional tight-binding system at finite
temperature

5.1 Introduction

So far, we have focused our attention on zero temperature calculation. However,
experiments are performed mainly at finite temperatures. So to make contact with
reality, we shall study in the present chapter longitudinal and transverse spin and
charge conductivities at finite temperatures. We shall also be interested in
studying the effect of SOI interactions on spin hall angle at finite temperature,
which is defined as the ratio of spin hall conductivity to longitudinal charge

conductivity (at finite temperature).

5.2 Formalism

To calculate the longitudinal and transverse charge and spin conductivity at finite
temperature, we start from the definition of charge current in the x and y

directions given by J£ (Eq. (3.29)) and Jj, (Eq. (3.30)) and the spin current in the
x-direction given by ];Z (Eq. (3.18)).
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J£= e/ ) (fUOal i+ f00al k. + fU0a o

+ f3*x(k)aika2,k), (5.1)

J$ = e/h Zk(ﬁy(km{kal,k + [ (K)alazi + £ (R)al az

+ 7 (o] pazy), (5.2)

Sz

— ; t
= 2t z sinky Chy ky 02 Cl Ky
Ky Ky

2[5 — aglcosk,sin®k,py_x
+2 z

(aRsinky + ﬁDSinkx)2 + (aRsinkx + ,[?Dsinky)2

(ﬁ — iar)pi (Bp + iar)pi
xak[ D ~ 1AR)Pk, K, D R)Pkyky @ (5.3)

(Bp — iaR)Pzt,i,ky (Bp +iar)P, k,

where the values of f*(k) and f;” (k) are given in Eqns. (3.28, 3.30). Using
the Kubo formalism as described in the earlier chapters, the expressions for LCC,
LSC and SHC at finite temperature are given by

Opex

4me?t

= NhrokT’ ﬂ dkydey Zl_ (flx(eryl))zeXp((Elk u)/kT")

/KT (1 + exp((€'y — ) /KT"))7), (54)

Sz
O-x X

dmet

A
= NtokT’ jf_ndkxdky Zi=1‘2(f’i,x(kx: ¥1)9' 5k, vi) exp((€' i1 — ) /KT")

KT (1 + exp((€' 1 — 1) /kT"))’. (5.5)
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55 = e(a's” — )_Udk dk, (fE €1) = fe(€2k) ) cosky, sin®ky X (5.6)
v (e )™ + (@o/D2) (1 ' GOD)
where
20(B' 2 —a'R? 2sinkxsinzk cos(k,)
g’x(kx,ky)=[ 'y —a'e) Y ] (5.7)

| <" '

(k) = (aRsinky + Bpsink,) + i(agsink, + ,BDsinky) (5.8)

¢'(k) = ¢(k)/t. (5.9)

5.3 Result and Discussion

5.3.1 Longitudinal Charge Conductivity (LCC)

We study the variation of the longitudinal charge conductivity (LCC) with
respect to chemical potential p in Fig 5.1. The zero-temperature behaviour is
given in Fig. 5. 1(a). This has already been shown in Chapter 3. The temperature
effect is shown in Fig. 5.1(b) where LCC is plotted with u for various S, values.
One important difference at finite temperature is that now LCC has higher value
as compared to zero temperature case when u = 0. One can see that at small ,
LCC decreases with an increase in i, and its value is essentially independent of
DSOI and impurity strength. As u increases further, LCC, in general, develops an
inverted cusp-like structure or V- like and then with a further rise in p, it develops
a broad maximum, which is somewhat similar to T = 0 case. For Bp =0,
however, a sharp peak occurs in contrast to a broad maximum). Also, as fp
increases, the V-structure shifts to the right and also increases in depth. The broad

maximum also shifts to the right with increasing fp. Fig. 5.1(c) shows the LCC
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versus u plot for distinct temperature values. Initially as u increases, LCC
decreases up to a specific 4 value which appears to be the same for all values of
T. As u is increased beyond that point, LCC increases and develops a broad
maximum. The maximum of LCC shifts towards a lower value of u as
temperature rises. Generally, LCC varies with u differently in different windows

of u at different values of temperature giving rise to numerous crossing behavior.
3.5 6
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Fig. 5.1 Longitudinal Charge Conductivity (LCC) (o%,) versus Chemical
potential u for various values of : (a, b) DSOI coefficient Bp; (¢) kgT; (d)
Impurity strength v.

In Fig 5.1(d), we show the plot of LCC with u for three distinct values of the
impurity-electron coupling strength v. Interestingly, up to a specific u value, the

V- structure of LCC remains independent of v. Beyond this y, LCC decreases
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with an increase in v. As the impurity coupling increases, the LCC peak decreases

substantially and becomes broader.
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Fig. 5.2 LCC versus ay for various : (a,b) fp; (c) w; (d) kgT values.

Fig 5.2 describes the nature of LCC with RSOI strength a. In Fig 5.2(a), LCC
is plotted with ap for various fp values at zero temperature for the sake of
completeness. (We have already discussed this case in Chapters 2 and 3). Finite
temperature plots are given in Fig 5.2(b). When ay, is small, LCC turns out to be
zero and also remains independent of DSOI. As ay, is increased beyond a certain

value, LCC starts increasing with the increase in ag. In the case of fp = 0, it
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eventually shows a saturation effect, while in the presence of DSOI, it shows a
down-turn behaviour. This down-turn effect increases with the increase in fp.
This can be understood as follows. With an increase in DSOI, the bulk inversion
asymmetry increases which causes an increase in the scattering events leading to
depletion in relaxation time and a consequent decrease in LCC. Fig. 5.2(c) shows
LCC versus ay plot for distinct u value at kgT = 5. Again we see that for any
value of u, LCC remains zero up to a specific ap value, after which as ap
increases, LCC increases rather rapidly. Beyond a certain value of ag, LCC shows

a slow decrease. As u increases, we see a rise in LCC.
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Fig. 5.3 LCC versus v for various values of: (a) u; (b) fp; (d) kgT.
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The behavior is quite complicated when LCC is plotted with ap for various
temperature values (Fig. 5.2(d)). In different windows of ag, the the behaviour of
LCC with ay is different at different temperature. This gives rise to multiple
crossing behavior. As ap becomes large, LCC increases with an increase in
temperature. In Fig 5.3, we plot LCC with respect to the electron-impurity
interaction strength v. In general, LCC decreases quite rapidly as v increases.
Fig 5.3(a) gives the nature for different u values. Again we observe that the effect
of chemical potential is more prominent for low impurity strength. A similar
behaviour is observed when LCC is studied for different DSOI values (Fig
5.3(b)). The effect of DSOI is maximum when impurity strength is minimum. In
Fig 5.3(c), LCC is plotted with v for various T values. We see that as T increases,

LCC decreases at lower rate.

5.3.2 Longitudinal Spin Conductivity (LSC)

In Fig 5.4, the longitudinal spin conductivity (LSC) is plotted with respect to
chemical potential u. Figs. 5.4 (a) and (b) give the behavior for various
of Spvalue. In Fig 5.4(a), the results for T = 0 are plotted. A sharp peak structure
is visible at S = 0. After the peak, LSC falls off to zero at some specific u value.
At a finite value of Bp, the qualitative behaviour is essentially the same but the
peak height decreases, as explained in Chapter 2. Fig 5.4(b) describes the nature
of LSC with respect to u at finite temperature. One can see that in the absence of
DSOI, LSC's behavior at nonzero T is significantly different from that at T = 0.
LSC remains zero up to some specific value of y and then develops a sharp peak.
In addition to the sharp peak, LSC also exhibits a broad secondary maximum at
a higher value of . In the presence of DSOI, both the first peak and the secondary
maximum decrease in height and the secondary maximum shifts towards right.
Above a certain value of f5p, the first peak changes into a shoulder and the

secondary maximum becomes still shorter in height and shifts further towards
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right. With further increase in [p, the first peak completely disappears and LSC

remains zero up to a larger value of y and exhibits a broad maximum which is
again right-shifted and shorter in height.
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Fig. 5.4 LSC versus Chemical potential u for various values of : (a, b) Sp ; (c)
kgT; (d) v.

In Fig 5.4(c), LSC versus u is plotted at different values of T for a fixed set of ag
and fp such that only the secondary maximum occurs. One can see that as T
increases, the peaks get broadened, and their heights decrease. Finally in Fig.

5.4(d), we plot LCC versus u for various v value. The maximum structure is again

visible and LSC is again found to decrease with increasing v.
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Fig. 5.5 LSC versus ay, for various : (a, b) Sp; (c) Ww; (d) kgT values.

In Fig 5.5, LSC is plotted with respect to ag. In Fig 5.5(a) we show, for the sake
of completeness, LSC's dependence on ag for various value of S at T =0 (which
has already been studied in Chapters 2 and 3). Fig. 5.5(b) shows the data at finite
temperature. At T # 0,and fp = 0, LSC remains constant up to a critical value
of ap beyond which LSC increases monotonically up to a certain value of ag
after which LSC appears to saturate asymptotically for S, = 0, while for fp #
0, LSC shows a down-turn. This downturn behavior is more prominent for the
higher values of fp. Fig 5.5(c) show LSC with ag plot for various u values. The

behaviour looks qualitatively more or less similar to LCC. Of course, the values
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are much smaller than LCC. Fig 5.5(d) gives a plot of LSC versus ap for various
temperature values. Here we observe that only for an intermediate range of RSOI,

LSC has significant temperature dependence.
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Fig. 5.6 LSC versus v different values of: (a) u; (b) fp ; (d) kgT.

LSC is plotted with electron-impurity interaction strength v for various u, fp and
kgT values in Fig. 5.6. Fig. 5.6(a) shows that, in general, LSC decreases with
increasing v and eventually appears to approach zero. LSC also decreases with
increasing chemical potential (Fig. 5.6a) and temperature (Fig. 5.6¢). LSC
decreases when the difference between the RSOI and DSOI strengths decreases
(Fig 5.6(b)).




86

5.3.3 Spin Hall Conductivity (SHC)
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Fig. 5.7 SHC versus u for various values of: (a, b) Bp; (c) kgT; (d) v.

SHC is studied with chemical potential (¢) in Fig 5.7. Figs. 5.7(a, b) present the
nature of SHC for various values of DSOI strength . For T = 0 and S, = 0,
SHC exhibits peak structure similar to LCC and LSC. However, compared to
LCC and LSC, the peak are much smaller and fall sharply when chemical
potential is increased Fig 5.7(a). For finite DSOI strength, SHC is finite for a
small chemical potential window. Fig 5.7(b) show the results for T # 0. When

Bp = 0, the plots are qualitatively similar to LSC for the lower value of chemical
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potential. In general, the peak values of SHC are much smaller than those of LSC

for the same parameter values.

In Fig 5.7(c) SHC vs chemical potential is plotted for various value of T. SHC
has a similar behavior as of LSC. But the peak values are much smaller, and their
height decreases much faster with increasing T. As plotted for different values of
v, SHC exhibits similar behavior to LSC, except peak values that are smaller in

magnitude than LSC Fig 5.7(d).

(fot

Fig. 5.8 SHC versus ag for various(a, b) fBp ; (c) w; (d) kgT values.
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In Fig 5.8, we study spin-Hall conductivity (SHC) with RSOI strength aj.
Fig 5.8(a, b), shows SHC vs ap plot for various fp values. Fig 5.8(a) gives the
nature of SHC at zero temperature. For weak RSOI, SHC almost remains zero
irrespective of the value of fp. As ap increases, SHC also increases but, for ag
less than a certain value, SHC hardly depends on fp. Beyond this value of ag,
the increase on SHC depends on fp. In fact, for the same value of a, SHC

decreases with the increase in fp. As a function of ap, SHC appears to saturate

eventually.
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Fig. 5.9 SHC versus v for various: (a) W; (b) fp; (c) kgT values.
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Fig. 5.8(b) describes the behavior at non-zero temperature. The nature of SHC
remains essentially the same at finite temperature. We observe that SHC saturates
faster for higher values of fp. Fig. 5.8(c) gives the results for various chemical
potential p value. The nature is a little similar to LSC and we see a crossing
behaviour. Fig 5.8(d) shows the nature of SHC with ap at different values of
T. The temperature dependence of SHC vs. ay curves looks stronger than that of
the LSC vs. ap curves increases, SHC also increases but, for ag less than a
certain value, SHC hardly depends on [p. Beyond this value of @y, the increase
on SHC depends on f3,. In fact, for the same value of ap, SHC decreases with
the increase in 8. As a function of ap, SHC appears to saturate eventually.

In Fig 5.9, we plot SHC with Impurity strength v for different system parameters.
SHC exhibits a flat maximum around v= 0 and then falls off to zero much faster
than LCC or LSC. SHC also decreases with increasing p. When plotted for

different values of DSOI, it shows a similar bahaviour as LSC

In Figs. 5.10 and 5.11, we present the three-dimensional and contour plots for
the spin to charge conductivity ratio with respect to ag and fp. When ai and S
are both small, LCC becomes larger than both LSC and SHC and consequently
the ratio SHC/LCC remains small. As we increase ag, keeping [p constant, the
spin current increases much faster than the charge current; hence the ratio
increases and shows a peak. The same happens when S}, is increased, keeping ag
constant. The ratio decreases as ap approaches ffp and become zero, when
ag and Sp become equal. From experimental point of view, we can control RSOI
strength up to 50% by tuning the gate field [5, 6] and therefore the ratio can be
varied typically from 1.5 to 2.5 [7]. For Indium Arsenide, using the values of
ogr, Bp and p from previous chapters. we find that the value of the SHC/LCC
ratio at finite temperature can be in the range : 0.001- 0.08, which has to be

experimentally verified.
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Fig. 5.10 (a) Three-dimensional plot of [LSC/LCC] in (ag — Bp) — plane; (b)

Contour plot of [LSC/LCC]in (ar — Bp) — plane .
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Figure. 5.11 (a) Three-dimensional plot of [SHC/LCC] versus RSOI and DSOI

strengths; (b). Contour plot of [SHC/LCC] versus RSOI and DSOI strengths.




92

5.4 Conclusion

We have shown in this chapter that LCC, LSC, and SHC all display peak structure
as a function of chemical potential. These peaks shift towards the larger value of
chemical potential as DSOI strength increases and the peak height increases for
LCC as DSOI strength increases and decreases for LSC and SHC. LSC and LCC
increase monotonically with the RSOI strength at T = 0 K. However, at finite
temperature, they seem to saturate to some constant value when the DSOI effect
is absent. In the presence of DSOI, we see a downturn nature, i.e., conductivities
start decreasing after a certain point. This downturn effect increases with rise in
the DSOI strength. In SHC case, the downturn effect can be seen either in the
presence or absence of T and DSOI. The conductivities in general decrease with
increase in the electron-impurity interaction strength, though the rate of decrease
is different for different conductivities. LCC and LSC decrease rapidly, while
SHC remains essentially same at low impurity strength and decrease rapidly when
impurity strength increases. Finally, we have calculated the spin to charge
conductivity ratio and have shown that the ratio increases when the difference
between the Rashba and Dresselhaus strength increases. We have also shown that
the ratio is zero whenever Rashba strength becomes equal to Dresselhaus

strength.
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CHAPTER 6

Magneto-transport through a Quantum
Dot Dimer in presence of quantum
dissipation, electron-electron and

electron-phonon interaction.

6.1 Introduction

The subject of transport through a single molecular transistor has attracted
tremendous interest in the past few decades for various applications [1-7]
in nanotechnology. A single molecular transistor (SMT) consists of a
central part (which could be a quantum dot (QD) or molecules), a source,
and a drain. The main characteristic feature required for the central part is
that it should have discrete energy levels, and the gate voltage must be
adjustable to control the current flowing through it [8-9]. Several studies
have been made on an SMT device. The correlation effect like Coulomb
blockade and Kondo effect at low temperature [ 10-16], the Fano effect [17-
19], Josephson tunneling [20-22], the Dicke effect [23,24] etc. are a few
examples. The tunneling of electrons from the source to the central
molecule or from the central molecule to the drain or vice versa distorts
the central molecule. This distortion (phonon) interacts with electrons to
give rise to a polaronic effect, particularly in organic or polar materials [25,

27].
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Many theoretical and experimental research groups have examined the
existence of vibrational side bands because of the electron-phonon (el-ph)
interaction [28, 31]. A similar kind of observation was made by Chen et
al. [32]. They have studied the effect of electron-phonon interaction on the
differential conductance, tunneling current and spectral function.
Transport properties through SMT have also been studied using many
different theoretical and numerical methods like Slave—Boson mean-field
method [33], non-crossing approach method [34] , numerical
renormalization method [35-39], kinetic equation method [40, 41], rate
equation approach [42], and non-equilibrium Green’s function approach
[43-47]. Recently, Raju and Chatterjee [48] have studied the dissipation
effect on SMT mounted on a non-interacting substrate. The substrate
phonons have been assumed to interact with the local phonon of QD and
this gives rise to a damping effect. This effect has been incorporated by
introducing the Caldeira- Leggett (CL) term that brings in a linear
dissipative coupling between the QD phonon and the substrate phonons.
The total system is modeled by the Anderson-Holstein (AH) Hamiltonian
plus the Caldeira- Leggett (CL) term. This Hamiltonian will be referred to
as the AHCL Hamiltonian. Their study shows that when el-ph interaction
is present, SMT parameters get renormalized. Costi [49] has used the
Wilson renormalization technique and has shown that a strongly coupled
QD placed in an external magnetic field could act as a spin filter. Dong et
al. [50] have suggested that at zero temperature linear conductance gets
suppressed when external magnetic field is present. Also when magnetic
field is sufficiently high, side peaks can be observed in conductance. In a
later work, Manasa et al. [51] have studied magneto-transport phenomena

in an SMT device and determined the effect of electron-electron (el-el)
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interaction, electron-phonon interaction, and damping on the SMT device
properties in an external magnetic field.

In the following chapter, we wish to study the phenomenon of non-
equilibrium transport through a QD dimer. This device may be referred to
a QD dimer transistor. We will examine the effects of magnetic field,
dissipation, electron-electron interaction and electron-phonon interaction
on Current, Spectral density, and differential conductance in such a system

using AHCL Hamiltonian and the Keldysh Green function technique.

6.2 The Model

o~

—_
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Figure. 6.1 Quantum Dot Dimer Configuration for QDD device

In Fig 6.1, a schematic diagram of a QD dimer (QDD) transistor (QDDT) device
to be studied is given. It contains a source (S), a drain (D), and two QDs mounted
on a dissipative substrate and placed in an external magnetic field. One QD is
connected to both the source and the drain with metallic wires while the second
QD is connected to the first QD only. Each QD has an individual lattice mode
that interacts with local electrons through the el-ph coupling of Holstein type.

Also the insulating substrate on which device is mounted acts as a heat-bath.
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As already mentioned, phonons from the QDs and the substrate interact linearly
through CL (Caldeira-Leggett) interaction and give rise to a dissipative effect to
the tunneling current through the device. The effect of the magnetic field on the
transport property is obvious [52, 53]; it lifts the spin degeneracy and makes the
device suitable for a spin filter. The Hamiltonian for the system under

consideration is given by
H = Hl + HQDD + HB + HtQDD + Hee (61)

where H; represents the source and the drain Hamiltonian, Hypp denotes the

Hamiltonian of QDD, Hp gives the Hamiltonian of the substrate, including the
interaction between the phonons of the substrate and the QDs and Hgpp

describes the hybridization between the leads and the QDD.

H, can be written as

H, = Z EkoNkas (6.2)

k,0€S,D

The Hamiltonian H; has been written in continuum state with n,; corresponding
to the number operator for source (S) and the drain (D).

Hopp can be written as
Hopp = Hypp + Hyp + Hyip e (6.3)

where HQO pp is the pure electronic part of the QDD Hamiltonian, H);, is the pure
phononic part of the QDD Hamiltonian and Hgl-b_e is the local el-ph Hamiltonian.

HQO pp can be written as
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1
Hgpp = Z &€} Cig — Z tijciicio + Uz_niTnil +59usBS§,
i,0eD i 2

<i,j>,0eD
(6.4)
where ¢; is the onsite energy, n;, = cl?:;cicr is the number operator for electrons
at the i — th site with spin o, cia(c;rd) corresponds to annihilation (creation)
operator, of electrons, t;; is the intra-dot hopping parameter, U is the intra-dot
el-el interaction strength, B is the magnetic field applied in the z direction, up is
the Bohr mageton ,S5 is the z-component of the total spin operator and g is the

gyro-magnetic ratio. HY, is given by

2
H{}ib=z [p" +1m0w5x§l , (6.5)
i,0€D 2my 2

where m, is the mass of the QD oscillator, wy is its frequency, Sj stands for

the z-component of the total electron spin and B refers to the external magnetic

field. H,?ib_e is given by
Hyipe = Zginia(xi) : (6.6)
i

where g; is the electron-phonon (el-ph) coupling constant. Here we have taken
el-ph coupling constant for both the quantum dots (QDs) to be equal to g. The

Hamiltonian Hg of the substrate can be written as
HB - HBQ + Hl(i)ib—B ) (67)

where HJ is the Hamiltonian of a set of oscillators and is given by
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i1 mow-zszl , (68)

j=1 IZmO
w; being the frequency of the bath oscillator. HY;,_g is chosen as

N,2
0 —
Hvib—B - z j=1€B IBjxixj , (69)
i=1€QDD

where ; represent the coupling between the oscillators of QDD and the bath.

Htgpp can be written as

Hegon = Y ) (chytro + clpcsa) + % ) (chotio +clpng) . (610)

where V. denotes the lead-QDD hybridization strength. To decouple the
interaction between the phonons of the QDD and the substrate, we first collect all

the terms containing phonons. Thus we consider:

HB + Hvlb + Ht(z)ib—B + Hgib_e = Z + _mow%xizl

i,0eQDD lzmo 2
]

)
j=1

+ z] 1eBﬁ]x1x . +ania(xl-) (611)

i=1€eD

Zmo

By giving the transformation:

¥p= 2+ L, (6.12)
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we get

HR + Hpy + Hyyy_p + HYyp, = Z l + lm(,a;gxizl
€ i,0€Cq0 27no 2

)
j=1

—_— = ma)zw
2m0 0T

+9; Z ol i (), (6.13)
i
where
~2 2 'BJ' 2 2
Wy = wj — —— =wi—Aw* , (6.14)
jMow; m;

where Aw? is the shift in the square of the quantum dot oscillator frequency
caused by the linear oscillator-bath coupling .We assume that a spectral function

J(w) fully characterizes the oscillator bath:

N
J@) =) ﬁ’ 700 - w). (6.15)

j=12m,

Replacing summation by the integration for large N. Therefore Aw? can be

written as
J(w) (w)
mo j dw . (6.16)

We choose Lorentz- Drude form for the spectral function:

2myyw

J(w) = ———
? L+ (2

(6.17)
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where w, is the cut-off frequency and y is the damping rate. We assume w, is
much larger than the frequency of the system. Substituting Eq. (6.16) in Eq.
(6.15), we get

2
ml @
c
5 1@\ s
= wj — 4yw.tan o) = wy — 4ywc§
c’o
Or,
D5 = wi — 2myw, (6.18)

Thus our Hamiltonian reduces to

7o + + ~2 +
H = Z EkoNiko T+ Z ;i €iCigCio —Z <ij> LijCicCjo T h®g Z-bi b;
k,GES,D g€eQDD o€QDD '

1
+ g; Z'cifacw(bi + b:r) + Eg,uBBSj
l
+ V. Z(c;racw + cfacs(,)

+ V. Z(cgacla + chDU), (6.19)

where b; and bl-T are the phonon annihilation and creation operators.

Next we proceed to decouple the el-ph interaction. To accomplish this we

perform the lang-Firsov transformation [54]. The Hamiltonian then transforms to




where

s—hwoz ni (b} b)_az nio (bF —

The operators b; transform to

b; = ... = b; +[S, b;] [S[Sb]

= b —/12 Nig
g

101

91
) A hwo

(6.20a)

Similarly operators bi1L , Cig and cl-Ta are transformed to

) 1
B = .= b} + [5,b]]+ S:[s.[5,]]] +

=bl =2 mp
g

1
lig = = Cig T[S, Cig] + 5[5; [S, cig]] + -
= X¢Cig
ot s t1, L s
Cig == Cp +[Sicip] + Z[S' S, Cia]] +
= X/cl,

So the Hamiltonian H becomes

(6.20b)

= exp (—A(bif - bi)) Cig

(6.20¢)

. = exp (A(b;r - bl-)) ct

(6.20d)
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H = Z EkoNko T Z ENig +U Z_nﬁnu
i,06QDD i

k,0€S,D
+ Z(VCSTGCM + VTCLCSG) + Z(chacw + VTCLCDJ)

L 1
+ 1@y ) Bhi—t) XX cho +5 gusBSE,
i <ij> 2

(6.21)

where we have defined

U= (U—-h&,A2), &= (6 —hagA?), V= VX;, Vt =yx], (6.22)
X =exp(=A(bf —b;)). XF =exp(a(b] - by)). (6.23)

To treat the el-el interaction we perform the mean field approximation and the

transformed Hamiltonian reads

H, = Z koMo + Z (e0 + U < n; >)ng,
W i,0€QDD

+ Z(chacw + VTCIGCSJ) + Z(chacw + CLV‘LCDJ)
g (e

) 1
+ ha, Z bib; — Z Echcip +=gupBSE. (6.24)
i <ij> 2

To calculate current, we first write the total number of electrons in the left lead
which is given by

Ny = Yk, CaroCskyo- (6.25).

Now the current from the left lead is given by: J, = eN;, where N is given by
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. ie ~ i
Ng = _E<[Ns: Hy)) = _£<[Ns Hy + Hypp + Hp + He)

Lo t
= EVZ [(cskmcw) — h.c]. (6.26)
Ky,0

Thus the current from the source is given by

ie .

Ju=7V [<C:kmc1a> —h.c|, (6.27)
kx.0

and can be written as:
- — Z V(Gx Gisyo) 6.28
L= R L Lo 10,k kylc) (6.28)

where

Gr1 (5, = (0], (t) o (D]0), (6.29)
Gt t)) = {0]c15(t)cl, (D)]0), (6.30)
where Gf ,E?(t, t") represents greater (lesser) Keldysh Green function and the

average is taken over electronic and phononic degrees of freedom.

Now,
< 1. T : t
Rel Giyk o = E(l < Csk,,C10 > — 1< Ci5Csku0 >) . (6.31)

Eq. (6.29) gives
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2e -
I = 72}( VRl Gst,) (6.32)

To obtain the time-ordered Green function we use equation of motion technique.

Groje,o(tt) =i <l (D14t (6.33)

Differentiating Eq. 6.31 with respect to t’, we obtain

. a ! a 14
_lﬁGfa,kxa(t! t ) =< Tﬁcltxa(t )C16(8) >

=< T[] ;) Hyleis(® >, (6.34)

where H,,is given by equation (6.24). Substituting only those parts of

Hamiltonian whose commutator is non-zero clix o(t") in Eq. (6.34) we get

. 0 ,
~l55 Gl (6 E)

=< T[c,‘:xg(t’), Z SkoMko + Z(Vc;:,cw + 7t ese)]ers () >
k,ces,D

= V195516t t)g1s(t,t") (6.35)

Multiplying both side with exp(iwt) and integrating with respect to t we get

Gfa,kxa(w) = VTgfa,lo'(w)gLa(kx; w) (6.36)
where
1

@= ) (6.37)

gL (kx' (1)) =
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Since the equilibrium and non-equilibrium theory are topologically equivalent,
Eq. (6.32) has precisely the same form in the non-equilibrium theory except for
the fact that the intermediate time integral runs on the complex contour.

According to Langreth rule for analytic continuation, the relation:

C(t) = A(t)B(1), can be written as

C<(t,t") = f[A<(t, t)B@(ty,t") + AT(t, t1)B~(t;,t")] dt; . (6.38)

Thus we can write

G<1a,kxa(t: t") =

pt j At (G 10 (E = 975 eyt — )+ G510 (E — )98 (ks € — £))

(6.39)

In the energy space, we have

_. [ de
610k =) = T [ S [(hrao @05 + GEas (ol )

(6.40)

Using Eq. (6.40) in Eq. (6.32), we obtain

_ de
]L = ZeVVTRel Z jz[(gfa,la(e)gfa(e) + gfa,la(e)gga(kx' 6)] (6'41)
a,ky

where gi;15(€) and gi;(ky, €) are the retartded Green functions for the QDD
molecule and lead respectively and gf; ;,(€) and g, (k,, €) are the advanced

Green functions for the QDD molecule and lead respectively. Now we have
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gL<a(er €) = 2nihé (€ — €, )fL(€), Img giys(ky, €) = 2mihd(e — €) (6.42)
and so J; becomes

2eV VT
J= > | de [ ke [1m{(gT o0 @)]6Ce ~ €071

ZeVVT
= Z [ de [ dkeste =0 [ gmot@)]. (643)
Let us define
I'(e) = VVTjdkx(S(e —e) = VV'p, (6.44)

so that Eq. (6.43) can be written as

=gz [ e @imgT @ + [ defiOTHOg%,4, ()]
(6.45)

The expression for J is obtained in same way and we obtain

k=57 hU def (TR (e)Img", () + f defy (T (g% 51, ()]
(6.46)

The current will be uniform in the steady state case. Therefore, J; = —Jg. So

the net current flowing through the device is given by
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J = Ju —JR _ (6.47)
2
From Eqns. (6.43), (6.46) and (6.47), we have
1 =[] delr@rtey - fert@iae)
+ j de[l*(e) = TR(€)]g=,,1,(€) , (6.48)

where the Fermi distribution functions for the source and the drain have been
denoted by f}, g (€) r and the bias voltage(( (V) and mid-voltage (V;,,) are related
to chemical potential by the relations u; — ugr = eVb, (u;, + ug)/2 =eVm.
Since QDs are symmetrically coupled to source and drain leads, we write
I'(e) = ( TE(e) + TR(e))/2, where TRW(e) is given by anR(L)|I7|2
(Eqns.(6.44)), and it represents the density of energy states of the source and

drain. The spectral function gives the excitations in the system and is written in

the form of Green functions as

A(e) = i[g71(e) — gf1(e)] = i[9 (e) — g71 ()], (6.49)

Now the total Green function contains both electronic and phononic

contributions.

9516100 = i <ct15(0)c14 (D) >p< X ()X, (D) > (6.50)
To solve the phononic contribution < X f (0)X, (7) >, we consider

F(t) =< X (0)X, (1) > = %TT[ e PrxT (X, ()]  (6.51)
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where

~ 1
— -Bhy —
7= 2=

XJ(0) = eA®I©@-bi(0)

and

T)-
X, (1) = £ PTO-00)

Using the value of Z, X;r (0),and X;(7)in Eq. (6.51), we have

F(1) = (1 — e Bhdom) Z < n|eBron [el(bI—bl)—l(bIeitDor_blei(Dor)] n>
n

(6.52)
Now,
(1 — e‘b’hmon) Z e~ Phdon =2 ~ |[e’u’;re"lble‘AbIeimofelble‘w’Of] ns
n
n
<n |[elbj(1_eia)or)e_M,I(l_e—imor)] . (6.53)

Let us consider u = A(1 — e™i@7) y* = A(1 — e'®07) and substituting

Equation (6.53) in (6.52).

n >

F(x) = (1 _ e—ﬁhaon)e—ﬂz(l—eia’of) Z e~ Bh@on ~ 4 |[eu*bIe—ub1]
n

(6.54)
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Using the relations

*p T
< n|[e” by e‘ubl] n>= L,(lul?) ,

where L,, (Ju|?) is the Laguerre polynomial. So equation (6.54) gives,

F(0) = (1— e ha0)e 2 (=27 " o=paony, (uf?) (6.55)

Using Laguerre polynomial properties we have

[0e]

L et/
n = —
Zz L) = = (6:56)

where z = exp(—fh&,). Therefore, we can write

z  exp(=Phdy) 1 B
1—z 1—exp(—Bhd,) exp(Baw,)—1

N, (6.57)

and
lul? = /12(1 _ e—iaor)(l _ eia')o‘r) _ /12(1 — ei®oT 4 1 — e—ia')or).
So F(t) can be written as

F(t) = exp(—22[(1 4 Npp)(1 — €'@07) + N, (1 — e~@07)]) = exp(—¢(7))
(6.58)
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Defining ¢(7) = 22[(1 + Ny )(1 — €'@07) + Ny, (1 — e7'@07)] and after

some simplifications we have

d(1) = 22 [(1 +2N,p) — 2\/ Npn(Npp + 1) cos (a)OT—l'BhZ ) l (6.59)

which gives

F(7) = exp [2/12\/ Npn(Npn + 1) cos (wot — lﬁhwo) le-ﬂz(l+21vpn)

2
= e“AZ(HZNPh)ezlCos(mor_iﬁhfo) ) (6.60)
or,
F(z) = e A*(1+2Npn) 2 (2")eBote T Z L@ (6.61)
[=—00 l=—o0

where z' = 2/12\/Nph(Nph + 1) and [;(z’) is the Bessel function. Using Eq.

(6.61) in Eq. (6.50), we get

955101 = i < ¢15(0)cfy () >< X1 (X () > = §=<(©) < X, (OX] () >

=g<(T)e—/'lz(1+2Nph) Z Il(Zl)eil&“)O‘Eelﬁflfbo/Z. (662)

[=—

In Fourier space we have




g5 = f dre“T g, ()

— deeing<(T)e—Az(1+2Nph) z Il(Zr)eil(BOTe

l=—00

i 1Bhe
= Z L(z)e 2 §G<(e + @ol)e 2 (1+2Npn) |

l=—00

or,

T© = ) LG+ )

l=—c0

1Bhi,
2
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(6.63)

(6.64)

where / stand for number of phonon involved and the coefficient L; depend on

el-ph strength and temperature. At zero temperature, we have

/121
L. = Te_/lz l = 0
n .

0 <0,

Similarly we can write for g~ (¢).

@ = ) L) F (e~ hdy)

[=—00

which gives

0]

Ae) = Z i L, (D37 (e — 1hidy) — §<(& + Lh@y)].

l=—00

(6.65)

(6.66)

(6.67)
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To calculate §~ (&) and §=<(g) we use Keldysh equation [57, 58, 59]

520 = g7, ()5 g4 (o). (6.68)
where

5= (O +fo(®) and £ = (2 £ + o),  (6:69)

and g’ﬁ“) is calculated using equation of motion technique which gives

a ~
i [EP@] =8 F O F o FOaO [ Bl (670

= §(xt+t)

Fio(*tFt) <{Cla’(t)’ [lea'(t')' Z Fko'tko

k,0€S,D

+ z (60 + U <n; >)ng, + Z(VC;"CM + VTCIGCSG)
i,0eQDD >

+ E (chgcw + CLVTCD(,) — E f(CLCZG + cgacw ]})
o
g
(6.71)

To simplify the above expression we calculate the following commutators.

.I. ~
[Cw"z. (€0 +U <ny >)ny,
i,0€QDD

= Z[C;O_r f §dndo_]
o

= Z(EO +0<n>) ] el ei0]
g
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= —(ep+U<n >)z 61-0615661 , (6.72)
g

t ; = N gt _
[Cw’ Z t (CLCZJ + cgacla] = Z t([cw" cgacw] +hc)= —Z thG(Sw
o
g

a

(6.73)
[ Z(VCSJCM +VTe] cs) + Z(VcDacw +cf Vtepy) ]
= -V Z(c&, +chy) (6.74)
Substituting Eqns. (6.72),(6.73) and (6.74) in Eqn. (6.71), we have
i 2 77| =6@eFe)
ot’ 1711 el o
Fio(Et F¥t") <{ci,(t),—(eo + U <my >) Z cfm,cSwr
—Z(E)cgafsw, —7 Z(c;(, +ct)>. (6.75)
g g
Multiplying both sides by e!(EFnh@0)T and integrating over 7, we get
(e F nhdo)gli® ()
=1+ (o + U <1y >)§1\% (e F nhd,) + 5,57 (¢ F nhad,)
+7(5,%) (e F nhdo) + §, 50 (e Fnhdg)) (6.76)

which gives
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~r(a), .+ ~
g1, (e + nhy)

1488757 (e F nhdg) + V(G155 (e F nhso) + grisn(e F nhdsy))
[(e F nh@y) — & — U(ng,)]

)

(6.77)

where g;(ﬁc)a (¢ ¥ nhw,) is the Fourier transform of g{%‘g (t,t"). Similarly we

have the equation of motion for g[g;jg (t, t").

.0 - —, ~
i =7 Grsia (6 ) = FiO (e T £)(cr (0, [l A (6.78)
=Fif(£t+t") ({cd (1), [C,I ,Z ExNka +Z(Vc;rkdc1 + h. c) })
ko ko
= Fi (£t F tDe{ca(®), cf O F i0 @ T ({cy (1), T (¢}
= g ) e (6 t) + 7T (et (6.79)
Again multiplying by e!(EF@0)(®) and integrating over 7, we obtain after
rearrangement
~r(a) - ~ vt ~r(a), -+ ~
91 sk0 (€ F nh@,) = ) G11 (e F nhdy) . (6.80)
Similarly, we get
~r(a) T ~ vt (@)~ g~
91,0k (€ T nhivo) = e —e0) g11 (€ F nhdy) . (6.81)

and,

9 _ _ N
= G150 (6t = FiO (e F ) (e, [c] AT
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}>

(6.82)

= +i0(+t+1t") ({cl(t), [C,I ,Z eoc;rcz + Z(fcfcz + h. c)
o ko

= €l (L, t) + TP (L t1) . (6.83)

Again multiplying by e!(EF"@0)(®) and integrating over T, we obtain after

rearrangement

. t . o
Gr30 (e F nhdso) = [(S — )] TN e Frndy)  (684)
0

Now, substituting Eqns. (6.80), (6.81) and (6.84) in Eqn. (6.77) we have
O
e—€& +tugB—U<n>—el

= (ginB—e”O—U<n>—eVg)((s—éoiuBB—U<n>—el{qiir))_tz'

(6.86)

From Eq. (6.86) we can determine greater and lesser Green function using
Keldysh equation Eqn. (6.68). From there, the Spectral function can be calculated
using relation (6.67), which on substituting in Eq. (6.48) gives us the expression

for tunneling current J for symmetric coupling i.e.T'*(€) = T'R(e),

) =S| eelr@ - enacal, (648)

where fs(¢) and fp (¢) at zero temperautre is give by

fs(e) = heaviside ((eVm + %) — e). (6.87)
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fp(€) = heaviside ((eVm - —) - s). (6.88)

Using Egs. (6.48), (6.87) and (6.88) we finally obtain the desired expression for
the spectral function and the tunneling current. We also calculate the spin
polarization parameter: P;_, = (J, —J_5)/(s +J-s) and the Differential
Conductance (DC) which is defined as: G = dJ/dV.

6.3 Results and Discussion

20— , , , , , 250
1 i —————;ﬁBB =00
5| & B =0 20 f
I i
15 G '\ “ .......... ;J;EB=ﬂ..2
20 2 4 150 |
< : : <
£ =002 | £
210 : 3
St B [a] 100 |
50 |
0
5 0 5
W w

Fig. 6. 2. (a) Spectral Function A vs o for (a) QDD ; (b) Comparison of A between QDD
and SQD.

In the present problem, we assume a uniform connection between the source,
quantum dots, and the drain and also consider that each QD has a single energy
level with energy € = 0. We take the unit of energy as Aw (phonon energy). For

most part of our calculation we will consider I' = 2, eV, = —-1.5,1,U =5,el}, =
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0.5 and eV,,, = 0.1. In Fig. 6.2, the behavior of spectral function (SF) of QDD, is
studied when dissipation, magnetic field, el-ph and el-el interaction is present. In
the absence of damping effect (y), B and el-ph interaction we see two lorentzian
peaks (inset). When damping effect and electron-phonon interaction are
considered, we observe side peaks along with lorentzian peaks due to polaronic
effect. As magnetic field is introduced, we see split in theses peaks and as
magnetic field increases, we see increase in spectral function. In Fig 6.2(b),
comparison between QDD and single quantum dot SQD has been studied for two
different gate voltages. The spectral function for QDD is maximum when gate

voltage eV; = 1 and minimum when gate voltage eV, = —1.5.

In Fig 6.3, plot for spin resolved spectral function is given. For up-spin, spectral
function Ay increases as magnetic field increases Fig 6.3(a) and a left shift in w-
scale is observed. Fig 6.3 (b) shows the spectral function for down-spin A;. The
down-spin SF A, also increases with increase in magnetic field but comparatively
less than Ay. Furthermore, A, shifts towards right in w-scale. Also form Fig 6.2

and Fig 6.3, we observe that the spectral function A is the sum of A} and 4.

i 7 - - - ‘
15+
s e o v 1B = 0.0
[a] ; e Lel
——m—n 1B = 0.0, ; 1B =0.1
2 .uBB=D.1 5L i ........... .;JBB:D_Z
07 F | s .u,BB=Dz é <° ol
< ? ~=0.02
‘&; +=0.02 3 A=0.6
A=0.6
5 L
) a4 ‘.J'..
0 Y P S ) -
-1 0 1 2 3 4
w W

Fig. 6.3. A; and A,versus w for various pgB values.
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0.5
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Fig. 6.4 (a) Spin resolved tunneling current (J; and J,) versus bias Voltage V}, for various
magnetic field B values when el-ph interaction is absent; (b) J; and ];versus V,, for

various magnetic field B value when el-ph interaction is present.

In Fig 6.4 (a), up-spin and down-spin tunneling currents are plotted with bias
voltage V, in the absence of el-ph interaction. When B = 0, the tunneling current
J has ohmic nature for a finite interval of V), and saturate afterward. This
saturation in J comes with the increase in V,. As V}, increases, the Fermi level of
the source goes up. As a result, more number of electrons flow on to QDs. As
QDs can accumulate a fixed number of electrons, the current eventually reaches
a saturation value. As B is introduced, the spin degeneracy is lifted and each QD
develops energy levels, one for up spin with a lower energy and other for down
spin with a higher energy. For ugB = 0.6, the down-spin energy level shifts
upward, and there exist an easy path for the electrons to tunnel from source to
drain and hence J; has higher value than J. When magnetic field increased to
ugB = 1.0 the energy level of quantum dot shifts further up, which make QDs

energy level approx. equal or greater than the fermi level of source. So a higher
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bias voltage is needed for the tunneling of electrons from source to QDs. It’s
because as bias voltage increases, the source Fermi level moves up and that of the
drain moves down. In the case of up-spin current, the energy level for the up spin
goes down with increase in magnetic field. So for the tunneling of the up-spin
current, the value of bias voltage must be high. As we increase el-ph interaction
(Fig 6.4 (b)), the total energy of the system gets renormalized and electrons
require higher bias voltage to tunnel. Also, the tunneling current for spin-up
electrons turns out to be higher than that of spin-down electrons, indicating a

finite probability of hopping of the spin-down electrons to the second quantum

dot.
1.5 . 2 ; : ;
e V =1.0,5QD R
........ /\=D.D,’}I=D.DD ; 75 99 , 8Q 7
1r|——X=06,7=0.00 Y A 7 (-!Vg =-1.5,8QD
----------- A=0.6,7=0.04 / 1 [ @V =10, QDD
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o o
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05¢
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/ 15t E
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Fig. 6.5. (a) J vs V}, for various A and 7y values; (b) Comparison of ] vs V,, —behaviour

between SQD and QDD for different values of V.

In Fig 6.5(a), the tunneling current J is plotted with the bias voltage eV}, for
various values of el-ph and substrate—QDs interaction parameters. As explained
above, when el-ph and substrate-QDs interaction are present, the tunneling

current is maximum. In Fig. 6.5(b), the comparison of currents J in QDD and




120

SQD is shown when the magnetic field is present. We observe that the tunneling
current in SQD is higher, which shows that the second QD in QDD provides a

leakage path for electrons, which reduces the net current.
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Fig. 6.6 (a) ], versus B for various y values; (b) J; versus B for various y values.

In Fig 6.6, Spin-dependent tunneling currents (Jyand J;) with the magnetic
field are plotted for various damping constant values. In the absence of QDs-
substrate interaction, the down-spin tunneling current ], reaches a maximum
value and starts decreasing afterward. This behavior is understandable. As
explained above, when the B is small, the energy level of the down-spin state and
the source Fermi level are nearly equal, giving rise to the current. As the magnetic
field increases, the energy levels of the QDs move up, causing a decrease in the
current (Fig 6.6 (a)). In the case of up-spin current (Fig 6.6(b)), the energy level
of the up-spin state moves down when the magnetic field is tuned, and it becomes
difficult for the electrons to tunnel from QDs to drain. As the substrate-QDs
interactions are introduced, the energy levels of QDs are renormalized. To be
more specific, the up and down-spin state's energy levels move higher, causing
an increase in the up-spin tunneling current and a decrease in the down-spin

tunneling current.
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In the present problem, we have neglected the inter-dot el-el interaction, and
considered only the intra-dot el-el interactions. The tunneling current with respect
to el-el interaction shows initial peaks for weak el-el interaction strength and zero

magnetic field. For stronger el-el interaction strength, the tunneling current is

almost constant.
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Fig. 6.7 ] versus U for various B values; (b) Comparison of ] vs U — behaviour between

SQD and QDD for different values of ;.

As magnetic field exceeds a certain value, a minimum is observed in J after the
maximum. This minimum becomes lower as B is increased. After the minimum,
the current of course increases with U and attains a constant value (Fig 6.7(a)).
This constant value is lower for a higher magnetic field. Fig 6.7(b), shows the J
vs U —behaviour in QDD is compared with that in SQD for different gate voltage
values. For el =1, we observe peaks in SQD at weak el-el interaction. As U
increases, J acquires a constant value. A similar behavior is shown by QDD but
now the peaks are smaller but ] saturates to a higher value. Forel, = —1.5, in
SQD, J decreases monotonically with increasing U and saturates to a constant

while QDD first shows a peak and then decreases to a constant value.
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Fig 6.8, shows plot of /] with V; for various A and y values. We see peaks for
both negative and positive values of gate voltage. When we increase el-ph
interaction, the peaks reduce and when the substrate-QDs interactions are
considered along with el-ph interaction, the peaks shift towards right. In Fig 6.8
(b) we compare the behaviour in SQD with that in QDD for different values of B.
When B = 0, J has only one peak for SQD and two peaks for QDD. For a finite
magnetic field, / has more peaks with reduced height because of splitting caused

by magnetic field. Also the peaks in SQD are higher than QDD
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Fig. 6.8 ] vs V; for various A and y values; (b) Comparison of ] vsV;, —behaviour

between SQD and QDD for various B values.

. In Fig 6.9, J; and ], are plotted versus A for a few values of B. There are two
ways in which el-ph interaction affects the system. Firstly, it lowers the energy of
the system, which favors the current flow and secondly it reduces the mobility of

the electron because of polaron formation. Mathematically, because of the

2 . . . .
factor 12e™*", we can see Gaussian like behavior of tunneling current when
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magnetic field is absent. When magnetic field is present, the degeneracy in spin

is removed and the current flows with a specific spin direction through two sub-

bands. When the el-ph interaction is weak, down-spin current is high and

electrons can easily go from the source to the drain. As the el-ph interaction

increases, the polaronic effect also increases, which reduces the mobility of

electrons, causing a decrease in the current. Tunneling current for up spin is low

initially, but with the increase electron-phonon effect current increases. This is

understandable because with increase in electron-phonon interaction the energy

level of up spin increases and overcome polaronic effect. So for an interval, we

see rise in tunneling current, afterwards polaronic effect dominates again and up

spin tunneling current decreases which reduces the current flow
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Fig. 6.9 (a) ], vs A for various B values; (b) J; vs A for various B values.

In Fig 6.10, three-dimensional plots of | with A and y are given for B = 0 and

B # 0.For B = 0, ] shows a maxima at a certain A value (Fig 6.10(a)). For B #

0, the curve is a little flattened and J shows lower values (Fig 6.10(b)).
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Fig. 6.10. Three-dimentional plot of J in (A—y)— plane for: (a) B = 0; (b) B # 0.

In Fig. 6.11, contour plots of J in the (V,, — V,,) — plane are given for various sets
of U and B values. Whenboth B =0 and U = 0, J shows a smooth behaviour
(Fig 6.11(a)). As el -el interaction is introduced, deformation in the contour plot
can be seen for postive values of ¥, and higher values of V, (Fig 6.11(b)). For
B # 0 and U = 0, we can observe the split which shows the splitting because of
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magnetic field(Fig 6.11(c)) When both are non zero B and U are non-zero, both

splitting and deformation occur in the contour plot at higher values of V,, and V,,

(Fig 6.11(d)).

Fig. 6.11. Contour plot of tunneling current (J) in el},, and eV, —plane (a) when magnetic
field and electron-electron interaction is absent ( ugB = 0,U = 0), (b) when magnetic
field is absent and electron-electron interaction is present (ugB = 0,U # 0) (c) when
magnetic field is present and electron-electron interaction is absent (ugB # 0,U = 0);(d)

when magnetic field and electron-electron interaction is present ( ugB # 0,U # 0).
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behaviour between SQD and QDD for various V; values

In Fig 6.12, the behavior of Differential Conductance (DC) (G) with respect to V,,

is given. For A =0, y = 0 and B = 0, DC shows two peaks, which indicate the

possible excitation in the system in this case (inset). These peaks are modified
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along with some side peaks for the finite value of A,y and ugB = 0. As a
magnetic field is introduced, each peak splits. As we further increase the magnetic

field, DC peaks go higher, causing an increase in DC.

In Fig. 6.13, we plot DC with bias voltage Vi,. When substrate —QDs and el-ph
interactions is absent, we encounter two peaks. As el-ph interaction is introduced,
the peak height reduces and the space between them increases. The space between
peaks further increases Fig 6.13(a)). When substrate- QDs is introduced .Fig.
6.13(b) shows that SQD peaks are much higher than QDD peaks. Also as the gate
voltage increases, peaks in the case of SQD move further apart, while in the case

of QDD, they come close.

1 1.2 . .
oA A = r=0.00 ¥ ' g | r=00)
0.8 i :‘f' i ’T=D|}2 ; '|; .
1 P e v=0.03 N 1
i j
0.6 :
o A=0.6
T
0.4
' a
0.2
0
0 0.5 1 15
‘U"BB

Fig. 6.14 G versus B for various: (a) Avalues ; (b) B for various y values.

Fig 6.14 gives the variation of DC with respect to magnetic field. For y = 0,
DC has two uneven peaks. These peaks signify the contribution of up-spin and
down-spin charges (see Fig 6.15). As v increases, the peak heights arising from
the two contributions become almost equal. We can see similar behaviour for

different values of A, when vy is absent (Fig. 6.14(b)).
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Fig. 6.16 (a,b) ], and J; versus A for different magnetic field value (uzB).

In Fig 6.16, spin polarized Differential Conductance is plotted with el-ph
interaction for various values of the magnetic field. DC for spin- down electrons
shows higher peaks for the lower value of electron-phonon interaction, for higher

value of A peaks are smaller. In case of up-spin there are no initial peaks, peaks

can be observed only higher values of A.
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Fig. 6.17 give the plot of three-dimentional DC with respect to A and y. The

nature of the plot is quite similar to the tunneling current case (Fig 6.10). for B #

0, DC shows two maxima, which arises due to the contribution of up and down

spin electrons.
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Fig. 6.17 Three-dimentional plot of DC (G) in A and y— plane for: (a) B = 0; (b) B #
0.
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Fig. 6.18. Contour plot of Differential Conductance (G) in eV}, and eV}, —plane (a) when
magnetic field and electron-electron interaction is absent ( uzB = 0,U = 0), (b) when
magnetic field is absent and electron-electron interaction is present (ugB = 0,U # 0) (¢)
when magnetic field is present and electron-electron interaction is absent (ugB # 0,U =
0);(d) when magnetic field and electron-electron interaction is present (ugB # 0,U #
0).

Fig. 6.18 gives the contour plot of DC in the in (V,, — V},) —plane. When B = 0 and
U = 0, DC is smooth everywhere (Fig 6.18(a)). In presence of electron-electron
interaction, when magnetic field is zero, we see deformation in higher value of
bias voltage and mid voltage Fig 6.18(b). If magnetic field is present, we see a

split in lines, which manifest contibution of both up and down spin Fig 6.18(c).
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Again when electron-electron interaction and magnetic field is present we have

both splitting and distortion in contour Fig 6.18 (d)
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Fig. 6.20. P;; versus B for few: (a) A.; (b) y values.

In Fig 6.19 we have studied spin polarization (SP) with V, for several B and 1
values. The nature of spin polarization can be predicted from Fig (6.4, 6.5) where
we have studied the variation of up-spin and down-spin tunneling current. The
variation of SP with V,, depends on B and . When B is small, SP decreases for a

smaller value of bias voltage and remains almost zero for a finite interval of bias
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voltage. Though for higher bias voltage values, it again starts increasing. As we
increase B, SP decreases for higher bias voltage. And the interval in which SP is
zero also reduces Fig 6.19(a). When studying for various el-ph strength values Fig
6.19(b), we observe that with the increase A, SP reaches minima for lower bias
voltage value. And afterward, as bias voltage increases, SP starts increasing.

SP vs B is plot is shown in Fig 6.20 for various (a) A. ; and (b) y values. SP
initially increases, attains maxima for two different magnetic field values, and
finally falls off to zero. As A increases, peaks seem to come closer and zero for
lower B values (Fig 6.20(a). For various y values, Fig 6.20(b), the initial peak

decreases with increases in vy, though the secondary peak remain unaffected.

6.4 Conclusion

In this chapter, we have presented our work on the non-equilibrium transport
through a QD dimar which is mounted on a dissipative and is connected to a
source and a drain and the transport is studied in the presence of magnetic field,
substate-QDs interaction, el-el and el-ph interaction. The model is studied using
Anderson-Holstein-Caldeira-Leggett Hamiltonian (AHCL) and the tunneling
Current density (J), spin polarization parameter, differential conductance and
spectral function are calculated using the Keldysh Green function formalism.
When magnetic field is present, the spin degeneracy is lifted, leading to a split in
energy levels and the spectral function of QDs. When both damping and el-ph
interaction are present, the ground state energy gets renormalized and we observe
a higher value of the spectral function and tunneling current for the spin-up
electrons, indicating a finite probability of the spin-down electrons hopping to the
second QD. In the plots of differential conductance (G), we again observe a split
when magnetic field is present. We also observe that the peak height increases as
the magnetic field increases. When compared with SQD, we find that that the
current and DC is higher in case of SQD which shows that the second QD in QDD
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provides a leakage path for electrons. Finally, the spin polarization coefficient is
calculated for QDD as a function of V, and B. We find that spin polarization
increases with increase in magnetic field and have higher value for low bias
voltage. We have aslo shown the variation of / and G with el-ph interaction and
mid voltage. The above model may be imporatant for making more complicated

devices and there functioning.
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CHAPTER 7

Conclusion

In chapter 1, we define some basic terminology of spintronics and single
molecular transistor, along with their principal of working and applications.

In chapter 2, we have studied the Rashba spin-orbit interaction effect on the spin
and charge transport for a two-dimensional tight-binding electronic system when
randomized impurities are present. There we used Matsubara green's function
technique and computed a lower-order Feynman diagram to calculate the
relaxation time from impurity-electron scattering events and calculated spin and
charge conductivity, using Kubo formalism. We worked in a low temperature and
impurity regime to better understand the system. Our findings predict that
concerning the chemical potential ., longitudinal charge, and spin conductivities
along with relaxation time display a peak, at some critical value of chemical
potential p. Beyond that critical value, the decrease in relaxation time with
chemical potential is relatively slow, though the corresponding depletion in
charge conductivity and spin conductivity will be much faster. We have also
shown that the spin conductivity peaks are much higher than the charge
conductivity peaks. These peaks increase with the RSOI effect for spin
conductivity and charge conductivity and decrease with an increase in impurity
strength. Though, the peak value remains unchanged in the case of relaxation
time, when RSOI is changed. Further, we have shown in chapter 2 that spin
conductivity, charge conductivity, and relaxation time increase with RSOI

interaction and decrease in the presence of impurities.

In continuation with chapter 2, in chapter 3, along with Rashba, we have taken

Dresselhaus spin-orbit interaction term and examined how the interplay between
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both spin-orbit interactions affects the system when randomized impurities are
present. We used Matsubara green's function technique and computed a lower-
order Feynman diagram to calculate the relaxation time caused by impurity-
electron scattering. To calculate spin and charge conductivity, we have used Kubo
formalism similar to chapter 2. Our finding in chapter 3 shows that for all Rashba
and Dresselhaus strength values, charge and spin conductivity along with
relaxation time as a function of chemical potential exhibits peaks. The charge
conductivity with Rashba strength increases with an increase in Dresselhaus
strength. In contrast, the spin conductivity with Rashba strength decreases with
an increase in Dresselhaus strength. It has also been shown that spin conductivity
is zero whenever Rashba and Dresselhaus strength become equal. Furthermore,
we have also seen that spin to charge ratio with Rashba strength decreases until
the Dresselhaus strength equates to Rashba strength; afterward, spin to charge

ratio increases with Rashba strength.

In chapter 4, we have calculated spin Hall conductivity and spin Hall angle at
zero temperature. Our results propose that SHC displays peak when studied with
chemical potential, and the value of these peaks decreases with increasing DSOI
strength, as DSOI strength broaden the energy bands. A similar observation was

seen when SHC is investigated as a function of RSOL

We have also shown that in the presence of both SOI effects, SHC almost remains
unaffected with low impurity and decreases when impurity strength is high. Also,
SHC is maximum when the difference between the strength of RSOI and DSOI

increases.

Conclusively, we have calculated the spin to charge ratio. We have shown that if
any one of the following SOI dominates (RSOI or DSOI), the ratio increases, and

as both SOI coupling become equal in strength, the ratio goes to zero.

In chapter 5, we further study SOI effect on the torque dependent longitudinal

and transverse spin conductivity and spin hall angle at finite temperature in the
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presence of impurity using formalism similar to chapter 2, 3 and 4. Our finding
in the following chapter shows that LCC, LSC, and SHC all display peak structure
as a chemical potential function for finite temperature. The peak value of
conductivities decreases with an increase in DSOI strength, as DSOI strength

triggers more scattering events.

From the finding of chapters 2 and 3, we knew that LSC and LCC increase
monotonically with RSOI strength at T = 0 K. However, they seem to saturate to
some constant value when, the DSOI effect is absent at finite temperature. In the
presence of DSOI strength, we see a downturn nature, i.e., conductivities start
decreasing after a certain point. This downturn effect increases with an increase
in DSOI strength. For SHC, we found that the downturn nature is present in the
presence or absence of temperature and DSOI. We have also observed that the
rate at which LSC and SHC decrease with impurity strength depends on RSOI
and DSOI strength differences.

Finally, in chapter 5, we have shown that the spin to charge ratio increases when
the difference between RSOI and DSOl increases. And the ratio is zero when both
RSOI and DSOI strength become equal.

In chapter 6, we investigate magneto-transport through a quantum dot dimer
placed on a substrate, when electron-phonon interaction, electron-electron
interaction magnetic field, and substrate- quantum dot interaction is present. The
model is analyzed using Anderson-Holstein-Caldeira-Leggett Hamiltonian
(AHCL), and to determine tunneling Current, spectral function, spin polarization
parameter and Differential Conductance Keldysh Green's function method is
used. When both damping due to the substrate and el-ph interaction are present,
the ground state energy gets renormalized and tunneling current and differential
conductance increase. Also Difference Conductance shows peaks which splits

and increases in height as the magnetic field increases.
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In this chapter, we have also compared Quantum Dot Dimer with Single Quantum
Dot and found that Current and Difference Conductance is maximum for SQD

while the minimum for QDD.

Lastly, in chapter 6, we have studied the Spin polarization coefficient with bias
voltage and magnetic field. We find that spin polarization increases with increase
in magnetic field and have higher value for low bias voltage. We have also shown
the variation of / and G with el-ph interaction and mid voltage. The above model

may be imporatant for making more complicated devices and there functioning.
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