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Chapter 1 

 
 

Introduction 
 
 

 

Presently, science and technology is on a new path of accelerated growth for 

faster and better performance of electronics devices. This has been possible 

because of the advanced fabrication technology which can produce electronic 

components in ultra-small sizes. The density with which transistors and resistors 

are fabricated on the memory devices or computer chips has reached a remarkably 

high value. This has led to a tremendous increase in the performance of electronic 

devices. But the performance of the devices due to the small sizes of its 

components has its limits. These limits are mainly caused by quantum mechanical 

factors, due to which electron motion can no longer be controlled. One serious 

difficulty that arises at very small length scale in the compact devices is the Joule 

heating which leads to a decrease in the lifetime and efficiency of the devices. 

This problem arises when the charge of the electron is the main focus of study. 

Thus one has to go for other alternative properties of the electron, such as spin. It 

was first shown by Dirac [2] that the electron has not only charge and mass but 

also an intrinsic angular momentum, namely 'spin,' which arises from relativistic 

effect. This new concept has generated a new field where both the charge and 

spin play a crucial role. This new field is referred to as 'Spin-electronics' or more 

commonly as "Spintronics."  
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1.1 Spintronics 

Spintronics [3, 4] is a relatively new emerging field of condense field physics that 

promises increasing speed, faster computation, and less power consumption while 

minimizing electronic circuits. Spintronics uses electron degree of freedom in 

addition to or in place of the electron charge. The first encounter with spintronics 

comes when researchers observe a change in electrical resistance when current 

passes through a non-magnetic and magnetic layers in the presence of a magnetic 

field. This led to the discovery of the giant magnetoresistance effect (GMR) [5] 

in 1988 by Fert and Grunberg, for which they got the Nobel Prize in 2007. Further 

work showed that with the change in magnetic and non-magnetic layer thickness, 

one could control GMR [6], and it could be used for commercial purposes and for 

storing data in electrical devices. In 1990, Datta and Das proposed the spin filter 

concept [7], which suited well as an example for a spintronic device. These spin 

transistors are quite similar to a conventional transistor. Of course, there are also 

some differences. In conventional transistors, the gate voltage influences electron 

motion. However, in a spin transistor, the gate voltage modifies the electron's spin 

by controlling its precession. This manipulation of spin makes the device far more 

energetically efficient and provides a faster switching time. 

Besides having profound applications, the field of Spintronics also has intrinsic 

interest because the working of a spintronic device depends profoundly on the 

fundamental understanding of spin properties and its transport mechanism. It also 

provides a new challenge and chance to understand the basic quantum nature of 

matter. 

 

1.2 Spin-Orbit Interaction 

 

Spin-orbit interaction results from relativistic Quantum theory, where along with 

the electronic charge, spin is a fundamental and integral part of the electron, as 
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illustrated in the Dirac theory. In the non-relativistic regime, Dirac equation can 

be written as Schrodinger equation along with some relativistic corrections. These 

relativistic corrections couple the momentum of the electron and its spin to the 

external potential gradient. This forms the fundamental origin of spin-orbit 

coupling, which includes both L.S couplings. Firstly, it links the spin-

orbital momentum S to orbital angular momentum L in atomic and 

molecular physics. Secondly, it connects all the phenomena of spin-orbit 

interactions in the condense matter system.  

 

In atomic and molecular physics, the spin-orbit coupling is a very familiar term.  

It gives the coupling between the spin of an electron and its angular momentum 

around the nucleus and leads to the fine structure splitting. Spin-orbit coupling 

can be explained in terms of  Zeeman interaction, which acts between the  

magnetic moment of a particle and a magnetic field B present in the particle's 

moving frame. In a material, a momentum-dependent Zeeman term arises 

when a static electric field  gives rise to spin-orbit magnetic field 

in the moving frame of the electron 

having momentum  where   are x and y component of spin 

matrices, m is the mass of the electron, and c is the speed of light. The 

momentum-dependent Zeeman term is known as Rashba spin-orbit 

coupling [8], which can be written as follows: , and 

often comes from the asymmetry of confinement potential in a two-

dimensional heterostructure. So, whenever the electron moves in a crystal 

having a potential gradient, spin-orbit coupling (SOC) plays a prominent 

role. SOC mainly originates either from lack of mirror symmetry causing 

Rashba type SOC in two-dimensional system as discussed above or from 
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the lack of bulk inversion symmetry, known as Dresselhaus SOC [9] which 

is given by Zeeman interaction term .   

 

Since the early days of quantum mechanics, the phenomenon of SOC was well 

known. However, recent development in spintronics has made it a subject of 

intense interest. Apart from many applications, The SOC performs a vital role in 

the Anomalous Hall effect, Spin Hall effect [10, 11], and Topological insulators 

[12].  

 

1.3 Spin Hall Effect                  

                      

The Spin Hall effect (SHE) acquires its concept from the Anomalous Hall effect 

and is possibly the best illustration of spin-orbit interaction. In the Anomalous 

Hall Effect (AHE), SOC causes an asymmetric scattering of charge carriers 

depending on their orientations and in ferromagnetic material it can be 

determined electrically because of a population difference in the majority and the 

minority carrier causing a transverse potential drop [13]. Spin Hall Effect is a 

pure SOC phenomenon and can be observed in non-magnetic materials. Due to 

SOC, the up spin and down spin charge carriers becomes different in number 

leading to non-zero transverse voltage drop. The spin Hall Effect was first 

proposed by Dyakonov and Perel [14, 15] based on the skew scattering 

mechanism (Mott scattering) some five decades ago. They observed that a non-

polarized electric current produced a transversely polarized current due to 

external spin-orbit interaction. Similarly, the Inverse spin Hall Effect leads to a 

transverse electric current when polarized spin current is passed. Three decades 

later, the intrinsic Spin Hall Effect was predicted by Mukami [16] and Sinova 

[17] which initiated an intense debate in this field [See [18-20] and references 

therein].  

 



5 
 

In recent years, there has been a flurry of investigations on Spin Hall devices that 

have the potential for application in spintronics, like optical and spin injection 

and detection in non-magnetic systems. In metallic spin Hall devices [21, 22], it 

was seen that a non-magnetic electrode could be utilized to generate and detect 

spin current [23]. In semiconductors spin Hall devices, attention has been 

concentrated on optical detection [24, 25, 26], and it was seen that polarized light 

can be electrically detected by inverse spin Hall Effect, which produces electric 

current from the optically induced spin current [27, 28]. Some devices can 

connect the externally-controlled SOC with inverse Hall Effect to detect electric 

spin [29, 30]. This provides the basis for devices like spin field-effect transistors. 

 

1.4 Single Molecular Transistors 

 

Transistors are the vital parts of electronic devices and have constituted the main 

role in the digital revolution. Since the development of the first model, many new 

designs have been proposed, but the basic idea has remained the same. A 

transistor is a three-terminal device. By applying voltage or injecting charge at 

one terminal, one can manipulate current through the remaining terminals. The 

transistor acts as an amplifier when the output power is higher than the input 

power. Another transistor application would be its manifestation as a switch, in 

which one terminal regulates voltage between the other two. 

 

In 1974 [31], the first proposal of using single molecular transistors in an 

electronic device came and since then, considerable effort has been made to 

downsize the device to a single molecular level. The first single molecular device 

was fabricated by H. Park .et. al in 2000 [ 32] and understandably the interest in 

the subject grew enormously after that. A typical single molecular device contains 

a central molecule linking a source and a drain, and the whole structure is placed 

on a gate electrode. In this device, the gate electrode regulates the current between 
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the source and the drain. Besides being used for switching and amplification 

functions, a single molecular transistor can also be used for spectroscopy 

information i.e. by changing the gate voltage, the shift in the energy level of the 

central molecule can be observed. From this observation one can achieve further 

information about the molecule or the quantum dot such the presence of excites 

states and vibrational modes [32, 33] and also the effects like frank-condon 

blockage [34], Kondo effect [35, 36] and superconductivity [37]. Furthermore, 

the gate electrode terminal can be used to reduce, oxidize, and explore the 

properties of Molecular transport for various charge states by attracting and 

repelling electrons. Also, the fine structure of single-molecule magnets and 

magnetic anisotropy can also be revealed using three terminal devices [39-41]. 

Additionally, they facilitate the driving [42] and read out [43] of single nuclear 

spins, which can act as molecular quantum bits.  

 

1.5 Outline 

 

This thesis is arranged in the following order. In the present chapter i. e., Chapter 

1, we have introduced some basic terminologies and a brief overview of 

spintronics and single molecular transistor.  

 

In the following chapter i. e., in Chapter 2, we have shown our calculation of the 

torque-dependent spin and charge conductivity in the presence of Rashba spin-

orbit interaction and impurity for a two-dimensional system. We have used spin 

and charge polarization operators to calculate spin and charge current and the 

Matsubara Green function technique to relaxation time due to random impurity. 

-

current correlation function.   
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In Chapter 3, we discusses the effect of both Rashba and Dresselhaus spin-orbit 

interactions and study how the interplay between Rashba and Dresselhaus 

interactions affects our system when the impurity is present. 

 

In Chapter 4, we extend the formalism used in Chapters 2 and 3 to investigate the 

effect of Rashba and Dresselhaus spin orbit interactions on torque dependent spin 

Hall conductivity in the presence of impurities.   

 

From the point of view of experiments, it is important to have results at finite 

temperatures. Therefore to make our work more realistic and practical, we study 

in Chapter 5, the longitudinal and transverse spin and charge conductivity at finite 

temperature.  

 

In Chapter 6 we investigates non-equilibrium quantum transport in a quantum dot 

dimer, situated on a non-conducting substrate and attached to a source and a drain 

by two metallic rods. Here, we computed the tunneling current and differential 

conductivity of a quantum dot dimer using the Keldysh non-equilibrium Green 

function formalism.    

 

Finally in Chapter 7, we summarize our findings and make concluding remarks. 
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Torque-dependent Spin and charge 
conductivity in presence of Rashba spin-
orbit interactions and static random 
disorder for a two-dimensional tight-
binding system. 
 
2.1 Introduction 

 
The main concern in spintronics is to generate and manipulate spin current [1, 2] 

and employ its effects in different systems, ranging from semiconductor 

paramagnets to ferromagnetic metals. Ideally, the spin current is defined as the 

difference between the up-spin current and the down-spin current. But in the 

presence of spin-orbit interactions, spin is no longer a conserved quantity, though 

this difficulty is usually circumvented by focusing on spin relaxation time. Over 

the last few years, it has been discovered that spin-orbit coupling can be used to 

achieve electric control of spin generation and its transport [3, 9]. So, defining a 

spin current in a general situation i.e., in the presence and absence of spin-orbit 

interactions, becomes important. 

In most of the earlier works on spin transport, the spin current has been 

determined by calculating the expectation value of the product of spin and the 

velocity observable. But this conventional definition  suffers from 

serious flaws. First, the spin current, according to this definition, is not a 

conserved quantity. This problem motivated numerous alternative definitions 

[10 11]. Secondly, the spin current obtained using the above definition turns out 

to be finite in insulators with localized eigenstates only [12]. Finally, as there is 

no mechanical or thermodynamic force associated with this current, the usual 

near-equilibrium transport theory cannot account for it. To overcome the 
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problems mentioned above, Shi et al. [13] has provided a new definition spin 

current. They have defined the spin current as the time derivate of the spin 

displacement, and it differs by a torque dipole term [14, 15] from the conventional 

definition of spin current. This torque dipole term arises when the spin magnetic 

moment of the system is not conserved and is given by the expectation value of 

the rate of change of spin.  

In the present chapter, we investigate the role of Rashba spin-orbit (RSO) 

interaction (RSOI) on the torque-dependent longitudinal charge and spin 

conductivity for a two-dimensional tight-binding model in the presence of 

random impurities.  

2.2 The Model 

We consider a two-dimensional electronic system in the presence of Rashba spin-

orbit coupling and random impurities. The Hamiltonian consists of the onsite 

energy term, the hopping term, the Rashba spin-orbit interaction term and the 

electron-impurity interaction term.  Thus the Hamiltonian of the system is given 

by   

 

 

 

 

 

(2.2) 
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where  is the onsite energy,  gives the hopping coefficient and  is the Rashba 

spin-orbit interaction strength. In the Impurity Hamiltonian   

he position vectors of the electron and the impurity respectively and v the 

electron-impurity interaction strength. We will refer to v as the impurity potential 

strength or loosely impurity strength. Writing the Hamiltonian (2.2) in Fourier 

basis, we obtain 

 

 

 

 

 

                 

 

To diagonalize the Hamiltonian (2.2), we perform a unitary transformation using 

operator  which satisfies the condition:  and is given by 

 

 

 

 

 

 

 

The diagonalized operator is given by 
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and the Hamiltonian (2.2) transforms to 

 

 

 

where  are given by  

 

 

 

Thus in the presence of Rashba Spin-orbit coupling, single energy state splits   

into two spin states, each one defining one particular spin state.  

 

 

2.2.1 SPIN CURRENT 

  

To get the spin current operator, we start from the spin polarization operator: 

 

 

where  is the lattice point and  is the spin matrix along z-direction. The 

spin current density is given by time derivative of Spin polarization operator.   

Thus we can write 

 

 



15 
 

 

 

 

where  has been written as :     and  being given by 

 

 

 

 

 

The first term of (2.11b) is calculated as:   

 

 

 

To calculate the second term of equation (2.11b), we first write it as follows. 

 

 

 

Using Eq.(2.13) and using the relations 
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we can write  as 

 

 

 

 

Calculating the commutation of   , we get  

 

 

 

 

 

 

  

 

Using Eqns. we have  
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So the spin current density.  

Along x- direction 

 

Along y-direction 

 

 

Using Eqn. [2.8] the x-direction spin current density can be written as 
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2.2.2 Charge current 

 
To get the charge current operator, we start from the definition of charge 

polarization operator: 

 

 

The time derivative of charge polarization will give the charge current density 

 

 

 

 

 

.   
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So, in the  operator, the charge current density in x-direction is: 

 

 

where  

 

 

 

 

 

 

 

 

Similarly charge current in y- direction is: 

 

 

where  
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2.2.3 Relaxation Time  

In the k- space the impurity Hamiltonian (2.3) can be written as 

 

 

 

And from the unitary transformation Eqn. (2.6) can be written as:  

 

 

 

where  
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When impurities are present, electrons will acquire relaxation time. We calculate 

relaxation time from the imaginary part of the self-energy. The relevant Green 

function is given by 

 

 

 

Here we calculate the Green function to second order, as in the first order i.e. for 

l = 1, we get a constant shift in the energy. The second-order Green function for 

our Hamiltonian is given by 
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 Using Wicks theorem, equation (2.34) reduces to 

 

) 

where 

 
 

 

 
 

 

Where and  are single particle of particular 

spin. 

Now, writing in momentum basis; 

 

 

After some simplifications,   can be written as 

 

 

 

Changing the indices p by k in equation (2.36) 
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Impurities in our system are randomly distributed, therefore the average 

properties of impurities can be calculated by taking the average over all possible 

impurity configurations for a given quantity. Any macroscopic system of interest 

can be described by this impurity averaging, which is called self-averaging at 

temperatures that are experimentally feasible. In this way, the probability 

distribution of the impurity configuration can be viewed as the result of 

aggregating the probability distributions of individual impurities.  The only 

factors which depend on the impurity position are    . Thus   is 

calculated by solving following expression    . For 

example, for l = 2, we need to calculate .  

 

 

 

 

 
which gives 

 

, 

 

and consequently, we obtain 
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Equation  can be represented by two set of diagrams one from  and 

another from . The contribution from  (Fig 1(a)) will cancel as it represents a 

reducible diagram. 

 

 

 

 

 

Fig 2.1: Feynman diagrams for  for orders n = 2 

Thus we have 

 

 

 

where 

 

 

 

 



25 
 

Equation (2.41) can be written as 

 

 

 

where  is the self-energy and is given by 

 

 

 

Now we perform analytical continuation for the upper half of the plane. We 

substitute   and for the lower half of the plane we 

substitute     so that we get 

 

 

 

 

 
 
Relaxation time is given by the imaginary part of self-energy. Hence the 

relaxation time for type (1) is given by 
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 Similarly, the relaxation time for type  electrons reads 
 

 

 

 

 

 

 

Eq. (2.47) can be written as  

 

 

 

where  

 

 

 

with  
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In a low scattering regime, the relaxation times for type 1 and type 2 particles 

have been considered the same i.e., 

 

 

2.2.4 Longitudinal Charge Conductivity 

 

Using the Kubo formalism [16], we calculate the charge conductivity in the x-

direction. We start by calculating the current-current correlation function. 

 

 

 

where  is the Matsubara frequency,    defines time ordering operator,  

denotes system-temperature, and the angular brackets refer to the thermal 

average. Conductivity is calculated using the imaginary part of : 

 

 

 

From Eq. (2.28) we can write 

 

 

 

so that  becomes 
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Thus  reads 

 

 

 

Parts of Eq. (2.57) are solved separately. We begin by calculating the correlation 

function for the first term of equation (2.57). The correlation function for the first 

: 

 

 

 

and can be represented by the following Feynman diagram.  
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Fig 2.2 Bubble diagram for the current-current correlation function. 

 

Here  and   represents single-particle Green functions 

and corresponds to the upper and lower lines of the bubble diagram and have a 

frequency difference of . Also at each vertex momentum remains conserved.      

To calculate the longitudinal charge conductivity (LCC), we start by calculating 

the imaginary part of the current-current correlation function. Then we rewrite 

the expression in terms of spectral functions by performing analytic 

continuation . Finally, we divide the current-current correlation 

function by   and in the limit   LCC for the first part of current-current 

correlation function is given by 

 

Similarly, we can calculate the correlation functions for the other terms of Eq. 

(2.57), and therefore, the expression for the total LCC is given by: 

 

 

where  represent the spectral functions for the electrons.  
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At low temperature and low impurity concentration, we can make the 

approximation:  and so the spectral function can be written 

as: 

 

 

Therefore, the expression for conductivity becomes 

 

 

Using Eq. (2.58), we obtain the final expression for charge conductivity as: 

 

 

 

where  

 

 

 

 

 

Similarly the charge conductivity  is given by 
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where  

 

 

 

 

 

 

 

2.2.5 Longitudinal Spin Conductivity  

Calculating the longitudinal spin conductivity involves using two expressions: 

the charge current density (2.24), and the spin current density (2.28), and applying 

the same formalism as calculated the charge conductivity. The expression for spin 

conductivity is thus given by 

 

 

 

which can be finally written as  
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where  is given by 

 

 

 

Similarly the spin conductivity  is given by 

 

 

. where  is given by 

 

 

 

 

2.3 Numerical Results.  

We present in this section our numerical results on the nature of  longitudinal spin 

and charge conductivity along with relaxation time  for various system 

parameters. These results have been obtained by computing Eqs. (2.49), (2.63) 

and (2.69). We measure all the energies in terms of t, and the relaxation time is 

determined in terms of . Fig 2.1 shows the energy dissipation in 

direction with and without spin-orbit interaction (SOI).  When SOI is present, 

spin degeneracy is lifted, and we have two different bands for up-and down-spin 

electrons. 
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Fig 2.1 Energy dissipation along the x-direction in k space. 

 

Fig 2.2, studied relaxation time ( ) for different system parameters. Fig 2.2(a) 

shows the plot of relaxation time ( ) vs chemical potential ( )  for various  Rashba 

spin-orbit coefficient  value. For a small range of the chemical potential   

increases with increase in , and exhibits a peak at a specific value of . 

When the chemical potential is increased beyond that particular value,  starts 

decreasing rapidly, but if   

This behavior can be observed for a particular value of .  As  is increased, 

 also increases. In Fig 2.2(b),  is plotted for various impurity strength values 

(v). The relaxation time behavior remains qualitatively the same, but the peak 

value decreases with increase in the impurity strength v. In Fig 2.2(c),   is plotted  

with  for various  value. The figure shows that as we increase 

and saturates to a constant value for a particular value of . As  increases, the 

qualitative behaviour of  remains the same, but it saturates to a lower value. 

Similar nature can be seen when  is plotted with  for various v values, i.e., the 

relaxation time saturation value  is lower for a higher value of imputiry strength. 
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 Fig. 2.2  Releaxation time ( ):  (a) Chemical potential  for various RSOI 
coefficient  values; (b)   for various impurity Strength  values; (c)  RSO 
coupling strength   for various   values;  (d)  various   values; (e)  for 
various  values; (f) )  for various values. 
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Fig 2.2 (d) shows plots of  vs.  for different values of v. As we increase v,  

decreases. The behaviour of   versus v for various values of  and  is given in 

Figs. 2.2(e,f) . As expected,  decreases with  increasing v, and the effect is more 

prominent at lower values of  v. Also, the rate of decrease increases at lower 

values of   and decreases at higher values of . 

The expressions for the longitudinal spin and charge conductivity are given by 

Equation. (2.69) and (2.63) and the relaxation time value appering  in these 

equations is taken from equation (2.49). The behaviour of  longitudinal charge 

conductivity (LCC) is presented in Fig 2.3. In Fig 2.3(a), LCC is plotted with  

for a few  values and a fixed value of v. Like , LCC also displays a sharp peak 

at . Interestingly, however, the height of the LCC peak is much higher than 

that of . As  exceeds  initially LCC decreases rapidly and then slowly and 

finally saturates to a constant value. Also, as  is increased, the peak height of 

LCC increases. When LCC is plotted with  for various v values and  for a 

specific value of  one can see from Fig. 2.3(b) that the behaviour of LCC 

remains the same, though the peak value of CC decreases with increasing v. In 

Fig 2.3(c), LCC is plotted against for different  values. One can observe that 

LCC increases smoothly and monotonically with .  Similar behaviour is 

observed when LCC vs.  is plotted for different values of v.    Fig 2.3 (d) shows 

plots of LCC vs.  for different values of v. Again LCC shows a monotonically 

increasing behaviour. Also, as we increase v, LCC decreases. The behaviour of  

LCC versus v for various values of  and  is given in Figs. 2.3(e,f) .  Fig. 2.3 

(e) shows, as anticipated, that LCC decreases with increasing v. Furthermore, 

LCC dereases more rapidly around  than  at values of  far away from   LCC 

vs v behaviour for various  value is given in Fig. 2.3(f) We can see that LCC 

responds more to v when v is small as well as when  is large. 
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Fig. 2.3 Longitudinal charge conductivity (LCC):  (a) Chemical potential  for 

various RSOI coefficient  values; (b)   for various impurity Strength  values; 

(c)  RSO coupling strength   for various   values;  (d)  various   values; 

(e)  for various  values; (f) )  for various values. 
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Fig 2.4  Longitudinal spin conductivity (LSC):  (a) Chemical potential  for 

various RSOI coefficient  values; (b)   for various impurity Strength  values; 

(c)  RSO coupling strength   for various   values;  (d)  various   values; 

(e)  for various  values; (f) )  for various values. 

 



38 
 

Fig 2.4 gives the variation of spin conductivity (LSC) for various system 

parameters. Fig 2.4(a) shows the LSC vs.  plot for various  values. LSC shows 

a similar dependence on  as LCC and displays a peak for the same chemical 

potential value ( ).  When compared with LCC, LSC shows similar 

behaviour as of LCC, though the peak value in LSC is much higher than that in 

LCC for the same .  

 

Also, compared to LCC, LSC remains significant for higher value of .  Fig. 

2.4(b) shows LSC vs.   plot for various  v values. The nature of the curves is 

similar to that in Fig. 2.4(a). LSC is found to decreases with increasing v.  Fig 

2.4(c) illustrates the nature of LSC as a function of  for a few values of . 

Again we see that LSC is more prominent for higher values of  In Fig 2.4(d), 

LSC versus  is shown for different values of v. The behaviour is similar to Fig 

2.4(d). 

However, the value of LSC is much higher than the corresponding LCC. In Fig 

2.4(e), we plot LSC with respect to v directly for several vaues . Like LCC, LSC 

also decreases with increasing v. Finally, LSC versus v is plotted in Fig 2.4(f) for 

various  values.  Again we find that LSC decreases rapidly with v and   

dependence is more vital for smaller values of v. As  rises, LSC goes to zero 

for higher values of v. 

    The variation of the ratio of LSC to LCC  ( )   with respect to  

is presented in Fig 2.5 for different values of 

with almost linearly but decreases with increasing . 

 

     Finally, we calculate LCC and LSC for a realistic system namely for platinum.  

For Pt,   and the value of bulk  is approximately 8  [18]. For 

a two-dimensional Platinium, the value may be a little different from the bulk 

value. LCC and LSC also depend on hopping strength and impurity strength, for 

which we can only choose some plausible values. We obtain 
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 and and the ratio of LSC to LCC 

becomes: . The experimental value of  lies 

in the range: 0.08  0.16 [19, 20]. Thus our calculation provides a reasonably 

accurate value . 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.5 Ratio of LCC to LSC i. e.,   versus  RSOI strength  

 for different values of  . 

 

2.4 Conclusion  
 
   We have studied the Rashba spin-orbit interaction effect on the charge and spin 

transport in a two-dimensional tight-binding electronic system that contains 

random impurities. This system is diagonalizable in the absence of the impurities 

and the system has two different bands for up and down-spin electrons. We have 

used the Matsubara Green function technique and computed the Feynman 

diagrammatic technique to calculate the relaxation time caused by impurity- 

electron scattering. To calculate the spin and charge conductivities, we have used 

the Kubo formalism. For the sake of simplicity and to understand our system 

better, we have worked in the dilute-impurity and the low-temperature regime. 
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Our findings predict that as a function of the chemical potential , both the 

longitudinal charge and spin conductivities and also the relaxation time display 

peak structures at some critical value of the chemical potential  . Beyond 

that critical value, the charge and spin conductivities fall off quite rapidly with 

increasing , though the corresponding drop in the relaxation time is relatively 

slow, Also, the longitudinal spin conductivity peaks are found to be much higher 

than the longitudinal charge conductivity peaks. These peaks increase with 

increasing RSOI strength and decrease as the impurity strength increases. 

However, in the case of relaxation time, the peak value is independent of RSOI. 

Furthermore, it is shown that both the charge and spin conductivities and also the 

relaxation time increase with RSOI and decrease with the electron-impurity 

interaction strength.  
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Chapter 3 

 

Torque-dependent Spin and charge 
conductivity in presence of Rashba and 
Dresselhaus spin-orbit interactions and 
static random disorder for a two-
dimensional tight-binding system. 
 
 
3.1 Introduction  

 

In Chapter 2, we have discussed torque-dependent transport in a disordered 

system which lacks the inversion symmetry. In this chapter we will examine the 

effect of Dresselhaus [1] spin-orbit interaction (DSOI) as well as Rashba spin-

orbit interaction (RSOI) [2] on our two-dimensional tight-binding system. As the 

Dresselhaus spin-orbit interaction (DSOI) effect is caused by bulk inversion 

asymmetry and can be found in almost every system, the present study is more 

realistic. We shall also study how the system behaves when one of the SOI effects 

dominates the other in the presence of impurity    

 

3.2 The Model  
 
We consider a two-dimensional tightly bound electronic system in the presence 

of RSOI, DSOI and random impurities. The Hamiltonian of the system is given 

by   
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where  

 

 

 

and 

 

 The first four terms appearing in Eq. (3.2) have already been introduced in the 

previous chapter. The last two terms represent DSOI. Eq. (3.3) has also been 

introduced in Chapter 2 and it is the electron-impurity interaction term.  

 

In the k-space  is given by  

 

 

 

To diagonalize the Hamiltonian (3.4), we consider the following unitary 

transformations: 
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where  

 

 

 

The non-diagonal elements  

 

 

 

 

 

Therefore, the Hamiltonian (3.2) in term of transformed operator can be written 

as   

 

 

 

With further simplifications, we can write  as: 
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3.2.1 Spin Current 

 

As before, to get the spin current operator, we start from the spin polarization 

operator [3, 4] which is defined as: 

 

 

 

As pointed out already, the time derivative of Spin polarization should give the 

spin current density  and is given by 

 

 

 

We write , where  
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Substituting Eqns. , we get the expression 

for Spin Current Density as: 

 

 

 

 

In x direction spin current density is given by  
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Similarly the Spin current density along y- direction  

  

 

In the eigen space, the expression of Spin current reads 
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3. 2.2 Charge current 
 
The charge current operator is obtained through charge polarizing operator which 

is defined as:   

 

.  

 

The time derivative of the above polarization operator gives the charge current. 

So we can write 

 

 
We write  and calculate the following commutators.  
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Substituting Eqns. (3.21)  (3.23) in Eq. (3.20), we obtain  

 

 

 
which on further simplification leads to  

 

 

 

In x-direction the contribution of charge current is given by  
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Similarity In y-direction, we have charge current 

 

 

 
In terms of the operators, the charge currents in x and y directions are 

calculated using Eqs. (3.5-3.8).We obtain  

 
 

 

 

 
 
 
On further simplification, we can write 
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Now using  

 

 

 

 

 

 

The charge current along x direction reads  

 
 

Calculating in a similar fashion, we obtain the charge current in y direction as   

 

 

 

where are given by  

 

 

(3.30a) 

 

(3.30b)

                                      (3.30c) 
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                             (3.30d) 

 

3.2.3   Relaxation Time 
 
Relaxation time is given by the imaginary part of the self -energy. We have 

already discussed its calculation in Chapter 2. The expression for relaxation time 

of an electron of type (1) in the presence of RSOI and DSOI and impurities is 

given by: 

 

 

 

Similarly the relaxation time for an electron of type  reads  

 

 

 

 Using the relation 

 

 

 

in Eq. (3.30), the relaxation time  can be written as  
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where 

 

 

 

and  

 

 

 

 

 

In the case when the impurity concentration is low, the relaxation time for type  

 

(1) and type (2) electrons will be same and we have   
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3.2.4 Longitudinal Charge Conductivity (LCC) 

To calculate longitudinal charge conductivity, we used Kubo formalism [5], as 

we have obtained in chapter 2, using equations (2.53-2.60), the expression for 

longitudinal charge conductivity is given by 

 

 
In the low-impurity and low-temperature regime, the spectral functions can be 

written as  

 

 

                                                                                                                                                     
 
 

so that Eq. (3.39) becomes 

 

 

 

which on using Eq. (3.32) reads   

 

 

 
where is given by  
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Similarly, LCC is given by  

 

 

 
where are given by  
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3.2.5 Longitudinal Spin Conductivity (LSC)  

Calculating the longitudinal spin conductivity involves using two expressions: 

the charge (3.28), and the spin current density (3.18), and employ the similar 

formalism as we have used for the calculation for LCC.  The expression for spin 

conductivity is thus given by 
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which on using Eqns. (3.39) and (3.49) becomes  

 

 

 

On further simplification and by using the relation (3.32), the expression for 

LSC reduces to  

 

 

 
where  is given by  
 
 

 

(3.53) 

 

Similarly, LSC   is given by  

 

 

 
where is given by  
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3.3 Numerical Results and discussion  

 
 

  

 

 

 

 

 

 

 

 

Fig.  3.1  Relaxation time  versus:  (a) Chemical potential  for various DSOI 

coefficient  values ; (b)   for various RSOI Strength  values.  

 

   In Fig 3.1, the relaxation time   is plotted with respect to the chemical potential 

  (or more precisely with respect to . Fig. 3.1(a), 

show  versus  plot for various  values with a fixed value of .  In the 

absence of DSOI,  remains independent of  up to a certain value of   after 

which it increases with  and attains a peak. As  increases further, initially  

falls off very rapidly giving rise to a sharp peak, but above a certain ,   reduces 

rather slowly with increasing  and eventually becomes zero at some critical  

.  When the effect 
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of Dresselhaus coupling is included, we observe a broad maximum in instead 

of a sharp peak. Also the maximum and the critical chemical potentials   

shift towards right as  increases. The increase in DSOI strength leads to a 

decrease in bulk inversion symmetry, causing more scattering events which leads 

to decrease in relaxation time. When  is kept constant, Fig 3.1(b)  remains 

independent of  up to a specific  value after which  dependence of   is 

evident. It should be noted that the results remain same if the strength of either of 

RSOI or DSOI is interchanged. 
 

 

 

 

   

 

 

 

 

 

 

Fig.  3.2  Relaxation time  versus:  (a) RSOI strength  for various DSOI 

coefficient  ; (b)   for various chemical potential . 

 

In Fig 3.2,  is plotted with   for various  value. In the absence of the DSOI 

effect, , with  initially increases, and  develops a peak and then sharply falls 

off to zero. Then again it increases with the further increase in  though slowly, 

and eventually saturates to a fixed value. In the presence of DSOI, the initial peak 

that appears in  for  disappears, but the rest of the behaviour remains the 

same. For intermediate values of ,  decreases monotonically with increasing 

 and eventually becomes zero.  When  is large, and  is small,  is small 

compared to the  - case. As  increases further,  decreases and slowly 
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become zero. This behavior is due to bulk symmetry breaking which increases 

with increasing  and reduces . In Fig 3.2(b),  versus  for a certain value of 

 is plotted for different values of . The qualitative behaviour of  does not 

change even as   increases.  

 

 

 

 

 

    

 

 

 

 

     

Fig. 3.3  Relaxation time  versus: (a) Impurity strength  for various  values; 

(b)  Impurity srength  for various    values. 

In Fig 3.3(a), we plot  versus . As  increases,   decreases monotonically, 

which is understandable. We also observe that the  decreases more rapidly with 

at small v values. Furthermore,  increases with  up to a critical value after which 

it decreases with increasing .Also one can see that, effect of  is more prominent 

for lower impurity strength. In Fig. 3.3(b),  is plotted with  for different  

values. Again the figure shows a rapid decrease in  with increasing  Again 

effect of DSOI strength is more prominent for lower impurity strength.       

We compute the charge and spin conductivities using Eqns. (3.42) and (3.52).  

Fig. 3.4 shows the nature of LCC with various system parameters. In Fig 3.4 (a), 

LCC is plotted with  for a certain value of  and for a few small values of .   

In the absence of Dresselhaus effect, LCC displays a sharp peak at a critical value 

of . For weak DSOI also, LCC shows a peak structure but the peak has a shorter 
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height. Furthermore, for weak DSOI, as  increases, LCC eventually saturates to 

a constant value. For strong DSOI. Fig 3.4(b), LCC remains small at low values 

of  and shows a hump-like structure as  is increased.  These humps increase in 

height with the increase in  and shift towards right. In Fig 3.4 (c),  we show the 

variation of LCC with  for various  value but with a low value of  namely, 

. Again we see a peak structure is observed with respect to . Also, as 

 is increased, the peak increases.  

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.  3.4  LCC versus:  (a, b)  for various   values; (c)   for various  

values. 

 



62 
 

   Fig 3.5 presents LCC versus  plot for various values. We see a non-

monotonic nature of LCC. The inset shows the plot for small values of  

explicitly. As  increases, initially LCC increases and reaches a peak at a critical 

value of  As  is further increased, LCC goes through a dip and then it 

increases continuously and monotonically with . This behaviour is consistent 

with that observed in Fig 3.3 and Fig 3.4. The variation of LCC with  for 

various  is presented in Fig. 3.5(b). In the absence of DSOI, LCC increases 

monotonically with , though the increase is much higher when DSOI is present.   

 

 

 

 

 

 

 

 

 

 

Fig.  3.5  LCC versus:  (a)    for various  values;  (b)  for various  values. 

 

   

  

 

 

 

 

 

    

 

Fig.  3.6  LCC  versus: (a)  for various values, (b)   for various values.  
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   In Fig 3.6, the dependence of LCC on v is presented. Fig 3.6(a) presents results 

for various values of  while Fig. 3.6(b) gives results for various values of . 

With increase in v, we see a decrease in LCC which is of course an expected 

behaviour. Again one can see that the dependence of both chemical potential and 

DSOI strength is more prominent for lower impurity strength.   

   In Fig 3.7, LSC is plotted with respect to . Fig. 3.7(a, b) gives results for 

various   and  values. One can see from Fig. 3.7(a) that LSC exhibits a peak 

at specific  value  in the absence of DSOI. For weak Dresselhaus interaction, the 

peak becomes shorter. For large   SC remains zero up to a certain value of  

after which LSC develops a peak.   Furthermore, the peak shifts towards a higher 

 values with increase in . Fig 3.7(b) shows a simple peak structure in LSC 

with chemical potential for various  values.  Peaks become higher with 

increasing  Furthermore, as  become large LSC apparently goes to zero. Also 

one can observe, that LSC is zero whenever . In this case, the effects 

from RSOI and DSOI cancel each other (Eq.(3.52)). 

 
 

 

 

 

 

 

 

 

 

 

Fig. 3.7  LSC versus:  (a)   for various values ; (b)   for  various  values. 
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Fig.  3.8  LSC versus:  (a)    for varioius  values;  (b)  for   values. 

 

   In Fig 3.8, the nature of LSC with  is given. The plot of spin conductivity 

versus RSOI strength for a set of values of  is given in Fig 8(a). Initially, when 

RSOI strength is small, we observe an increase in LSC. For the fixed  value, as 

RSOI strength increases and reaches close to DSOI strength, LSC decreases and 

becomes zero when RSOI and DSOI become equal. Beyond that, LSC increases 

smoothly with increase in . Now if we increase the value of chemical potential 

, we observe decrease in LSC. Fig 3.8(b) shows the LSC versus - plots for 

different values of . As  increases Rashba and Dresselhaus effects counter 

each other due to which LSC increases at a lower rate, as explained earlier. It was 

also observed that, the effects of DSOI on LSC will remain the same, if we 

interchange RSOI with DSOI on LSC. So the DSOI effect caused by the bulk 

inversion asymmetry can easily be countered by the RSOI effect which we can 

be tuned by manipulating the external electric field. Also, Fig (3.8) also shows 

that martial with higher Dresselhaus strength require high chemical potential. 

Therefore to generate high LSC in materials with high DSOI strength, we have to 

consider those materials which also have high chemical potential. 
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Fig.  3.9  LSC  versus:(a)  for various chemical potential values; (b)   for  

various RSOI strength   values. 

 

In Fig 3.9, the dependence of LSC on v is given. Fig 3.9(a) presents results for 

various value while Fig 3.9 (b) gives results for different values of . Both the 

figures show that SC decreases as v increases. The effect is highly prominent at 

small .  Fig 3.9 (a) suggests that LSC is reduced more as  is increased. Fig 3.9 

(b) shows that the rate of increase of LSC is larger at larger values of   

 

Fig 3.10(a) shows Longitudinal spin-to-charge conductivity ratio   plot 

with   for various  values. We see that with the increase in   the ratio 

  increases . And as we increase chemical potential the ratio   

increases. Fig 3.10 (b) shows the spin-to-charge ratio  with   for various  

values. The spin-to-charge conductivity ratio has finite value when  and 

 . As  increases, spin-to-charge ratio decreases and become zero at 

 as is clear from Eq. (3.42) and (3.52). With further increase in  the 

LSC/LCC ratio increases monotonically.  

Form experimental data we know that Rashba strength for a material can be 

modified to 50% by gate voltage [6,7] and  the ratio of the Rashba and 

Dresselhaus constants is of the order 1.5 to 2.5 [8]. For Indium Arsenide 
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 [9, 10].  Thus the value of the  

LSC/LCC ratio comes out to be around  0.05. 

 

 

 

 

 

 

 

 

 

 

 

Fig.  3.10  [LSC/LCC] versus:  (a)     for various values of  ;  (b)  for 

various values of  . 

 

3.4 Conclusion 

  
We have studied the Rashba and Dresselhaus spin-orbit interaction effect on the 

charge and spin transport for a two-dimensional tight-binding electronic system 

when randomized impurities are present. We used the Matsubara Green function 

technique and computed the lowest-order non-vanishing Feynman diagrams to 

calculate the relaxation time caused by the impurity-electron scattering. To 

calculate the spin and charge conductivities, we have used the Kubo formalism. 

We observe that for all values of the Rashba and Dresselhaus strength, the 

longitudinal charge and spin conductivities along with relaxation time exhibit 

peaks when studied as a function of chemical potential. Also, the longitudinal 

spin and charge conductivities increases with an increase in RSOI, but when 

along with RSOI, DSOI is also present, we observe a decrease in longitudinal 
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spin conductivity and an increase in longitudinal charge conductivity. 

Furthermore, the spin conductivity is zero whenever Rashba and Dresselhaus 

strengths become equal. Finally, we have shown that longitudinal spin to charge 

conductivity ratio with Rashba strength decreases till RSOI strength becomes 

equal to the DSOI strength. After this, it increases with the increase in Rashba 

strength  
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Chapter 4 

 

Torque-dependent Spin-Hall conductivity and 
Hall angle in presence of Rashba and 
Dresselhaus spin-orbit interactions and static 
random disorder for a two-dimensional tight-
binding system   
 
 
4.1 Introduction 

 

Chapters 2 and 3 are concerned with spin and charge transport in the presence of 

Dresselhaus and Rashba spin-orbit couplings and static random disorder. Were 

we observed that for all Rashba and Dresselhaus strength values, the longitudinal 

charge and spin conductivity and relaxation time display peaks with chemical 

potential. Also, longitudinal spin and charge conductivity increases with an 

increase in RSOI, but when along with RSOI, DSOI is present longitudinal spin 

conductivity decreases while longitudinal charge conductivity increases. 

Furthermore, whenever Rashba and Dresselhaus strengths become equal 

longitudinal spin conductivity becomes zero. We have also studied the 

longitudinal spin to charge conductivity ratio has higher value whenever Rashba 

is much larger than Dresselhaus.  

 In the present chapter, we shall explore the effect of spin-orbit coupling (SOI) 

and impurity on the torque-dependent spin-Hall conductivity (SHC) at zero 

temperature. And studied the effect of SOI on the spin-Hall angle. We shall 

employ the Feynman diagrammatic technique and the Kubo formalism. 
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4.2 Formalism 

The term responsible for longitudinal charge conductivity (LCC) is given by 

(3.39) and (3.40) and  

 

 

In the low-impurity and low-temperature regime, the spectral functions can be 

written as  

 

 

Using Eq. (4.2) in Eq. (4.1), the expression for longitudinal CC reduces to  

 

 

                                                                                               (4.3) 

Similarly, using the Kubo formalism, we obtain the spin Hall conductivity (SHC) 

as 
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where  and  are the x and y-components of the longitudinal spin and charge 

currents. Using the expressions for  ,  and  from Eqns. (3.18), (3.30) and 

(3.34), in Eqns. (4.4), we get the final expression for SHC as  

 

  

where is the Fermi level, which at zero temperature is given by; 

 

 

 

4.3   Results 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.1 Energy dispersion along the x-direction in k space. 
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Spin-Hall conductivity at zero temperature is given by Eqn. (4.5), which we have 

computed numerically to investigate the nature of SHC with different parameters. 

As earlier, here also we measure all energies in the unit of the hopping parameter.  

Fig 4.1 shows the energy dispersion in the direction with and without spin-

orbit interaction (SOI). When SOI is present, spin degeneracy is lifted, and we 

have two different bands for up and down-spin electrons. Fig 4.2, illustrates the 

effect of renormalization and splitting where SHC is plotted with chemical 

potential . SHC remains zero up to a certain (small) value of the chemical 

potential and as the chemical potential increases beyond this value, SHC increases 

rapidly and attains a peak. This peak shows the availability of conducting states, 

which decreases with a further increase in  leading to a decrease in SHC. In the 

presence of the DSOI effect, the conducting bands become deeper and narrower 

(Fig 4.1) and have fewer conducting states available, causing a decrease in SHC 

(Fig 4.2(a)). Also, as the Electron -impurity interaction strength v increases, SHC 

decreases (Fig 4.2(b)) which is an expected behaviour. When plotted with respect 

to  (Fig 4.3), the nature of SHC remains more or less qualitatively the same as 

it is with respect to .  

 

 

 

 

 

 

 

 

 

Fig. 4.2 Spin-Hall Conductivity versus Chemical potential  for various values 

of:  (a) ; (b)  v. 
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SHC remains small up to a particular value of , after which, SHC increases 

and develops a peak. This peak predicts the maximum value for spin-Hall 

conductivity. With further increase in RSOI strength, peaks start decreasing and 

attain a constant minimum value. This is because, with an increase in RSOI 

strength, bands get broader and shifts lower Fig (4.1) creating a lower charge 

concentration near the Fermi level. This reduction in charge concentration 

becomes more when we include DSOI, as it causes additional broadening in 

bands. Also, whenever  and  become equal, SHC becomes zero.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.  4.3 SHC versus  for various:  (a)   ; (b) ; (c)  v values. 
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Fig. 4.3 (b) shows that with , SHC decreases with an increase in   if  lies in 

a certain range. This nature can be easily understood from Fig 4.2(a). Again we 

can observe from Fig. 4.3(c) that SHC decreases with an increase in v.    

 

 

 

 

 

 

 

 

 

 

Fig.   4.4 SHC versus v for various values of:  (a) ; (b)  . 

 

 

 

 

 

 

 

 

 

 

Fig. 4.5 SHC/LCC versus  for various values of: (a) ; (c) v.  

 

    In Fig 4.4, a plot of SHC with impurity strength v is given for different 

parameters. SHC remains unaffected when v is small. With the increase in 

impurity strength, scattering events increase, and we observe a decrease in SHC. 
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SHC also decreases when we increase the DSOI strength and the chemical 

potential. 

 

   Finally, we calculate the spin-Hall angle (SHA), which is described by the ratio 

of the spin-Hall conductivity to longitudinal charge conductivity. In Fig 4.5 (a), 

SHA is plotted with  for several  values. SHA has a peak at some value of . 

Also, SHC remains essentially zero at low values of  The peak height however 

depends on  and   

 

  In Fig 4.6, we present the three-dimensional and contour plots for the spin to 

charge conductivity ratio with respect to . As expected, when  and 

 are small, the ratio SHC/LCC  is almost zero. As we increase  keeping  

constant, a  

 

 

 

 

 

 

 

 

 

   

 Fig. 4.6 (a) Three-dimensional plot of  [LSC/LCC] in plane. (b). 
Contour plot of ratio of [LSC/LCC] in  plane.   

 

peak can be observed at some critical value. Afterwords the ratio decreases. A 

similar situation appears if  is increased, keeping  constant. When both  

and  are increased simultaneously at an equal rate, the ratio remains zero, and 

as one is made more significant than the other, we observe a finite value for 
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SC/CC. Using the values of  and from previous chapters we find that 

the value of the SHC/LCC ratio can be in the range : 0.001-  which, of course, 

has to be experimentally verified.  .  

 

4.3 Conclusion 

 

  In this chapter, we have calculated spin-Hall conductivity and spin-Hall angle 

using the Kubo formalism and have examined their dependence on some of the 

system parameters. We observe that the spin-Hall conductance shows peak 

structure when studied with chemical potential, and the values of these peaks 

decrease with increasing DSOI strength, as DSOI broadens the energy bands. A 

similar observation has been seen when SHC is investigated as a function of 

RSOI.   

   We have also shown that in the presence of both SOI effects, SHC almost 

remains unaffected at low impurity strength and decreases when the impurity 

strength is high. Also, SHC increases with the increase in the difference between 

the RSOI and DSOI strength. 

   Finally, we have calculated longitudinal spin to charge conductivity ratio. We 

have shown that if any one of the SOIs (RSOI or DSOI) dominates, this ratio 

increases, and as the two SOI couplings become equal in strength, the ratio goes 

to zero. 
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Chapter 5 

 

Torque-dependent Spin-Hall conductivity 
and Hall angle in presence of Rashba and 
Dresselhaus spin-orbit interactions and 
static random disorder for a two-
dimensional tight-binding system at finite 
temperature 
 
 

5.1 Introduction  

 

So far, we have focused our attention on zero temperature calculation. However, 

experiments are performed mainly at finite temperatures. So to make contact with 

reality, we shall study in the present chapter longitudinal and transverse spin and 

charge conductivities at finite temperatures.  We shall also be interested in 

studying the effect of SOI interactions on spin hall angle at finite temperature, 

which is defined as the ratio of spin hall conductivity to longitudinal charge 

conductivity (at finite temperature).  

 

 

5.2 Formalism 

 
To calculate the longitudinal and transverse charge and spin conductivity at finite 

temperature, we start from the definition of charge current in the x and y 

directions given by  (Eq. (3.29)) and  (Eq. (3.30)) and the spin current in the 

x-direction given by  (Eq. (3.18)). 
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where the values of  are given in Eqns. (3.28, 3.30). Using 

the Kubo formalism as described in the earlier chapters, the expressions for LCC, 

LSC and SHC at finite temperature are given by  
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where 
  

 

 
 

 

 

 

 

5.3 Result and Discussion 

 

5.3.1 Longitudinal Charge Conductivity (LCC) 

 

    We study the variation of the longitudinal charge conductivity (LCC) with 

respect to chemical potential  in Fig 5.1. The zero-temperature behaviour is 

given in Fig. 5. 1(a). This has already been shown in Chapter 3. The temperature 

effect is shown in Fig. 5.1(b) where LCC is plotted with  for various  values.  

One important difference at finite temperature is that now LCC has higher value 

as compared to zero temperature case when . One can see that at small , 

LCC decreases with an increase in , and its value is essentially independent of 

DSOI and impurity strength. As  increases further, LCC, in general, develops an 

inverted cusp-like structure or V- like and then with a further rise in , it develops 

a broad maximum, which is somewhat similar to T = 0 case. For   

however, a sharp peak occurs in contrast to a broad maximum). Also, as  

increases, the V-structure shifts to the right and also increases in depth. The broad 

maximum also shifts to the right with increasing  Fig. 5.1(c) shows the LCC 
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versus  plot for distinct temperature values. Initially as  increases, LCC 

decreases up to a specific  value which appears to be the same for all values of 

 As  is increased beyond that point, LCC increases and develops a broad 

maximum. The maximum of LCC shifts towards a lower value of  as 

temperature rises. Generally, LCC varies with  differently in different windows 

of  at different values of temperature giving rise to numerous crossing behavior.  

  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.1 Longitudinal Charge Conductivity (LCC)   versus Chemical 

potential  for various values of :  (a, b) DSOI coefficient ; (c) ; (d) 

Impurity strength v. 

 

In Fig 5.1(d), we show the plot of LCC with  for three distinct values of the 

impurity-electron coupling strength v. Interestingly, up to a specific  value, the 

V- structure of LCC remains independent of v. Beyond this , LCC decreases 
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with an increase in v.  As the impurity coupling increases, the LCC peak decreases 

substantially and becomes broader. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.2   LCC versus  for various :  (a, b)  ; (c)  (d)   values. 

 

  Fig 5.2 describes the nature of LCC with RSOI strength . In Fig 5.2(a), LCC 

is plotted with  for various  values at zero temperature for the sake of 

completeness. (We have already discussed this case in Chapters 2 and 3). Finite 

temperature plots are given in Fig 5.2(b). When  is small, LCC turns out to be 

zero and also remains independent of DSOI. As  is increased beyond a certain 

value, LCC starts increasing with the increase in  In the case of  it 
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eventually shows a saturation effect, while in the presence of DSOI, it shows a 

down-turn behaviour. This down-turn effect increases with the increase in . 

This can be understood as follows. With an increase in DSOI, the bulk inversion 

asymmetry increases which causes an increase in the scattering events leading to 

depletion in relaxation time and a consequent decrease in LCC. Fig. 5.2(c) shows 

LCC versus  plot for distinct   value at . Again we see that for any 

value of , LCC remains zero up to a specific  value, after which as  

increases, LCC increases rather rapidly. Beyond a certain value of  LCC shows 

a slow decrease. As  increases, we see a rise in LCC.  

 

 

 

 

 

 

 

 

 

 

 

 

 

   

Fig.   5.3 LCC versus v for various values of:  (a)  ; (b) ; (d)  . 
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The behavior is quite complicated when LCC is plotted with  for various 

temperature values (Fig. 5.2(d)). In different windows of  the the behaviour of 

LCC with  is different at different temperature. This gives rise to multiple 

crossing behavior. As  becomes large, LCC increases with an increase in 

temperature. In Fig 5.3, we plot LCC with respect to the electron-impurity 

interaction strength .  In general, LCC decreases quite rapidly as  increases. 

Fig 5.3(a) gives the nature for different  values. Again we observe that the effect 

of chemical potential is more prominent for low impurity strength. A similar 

behaviour is observed when LCC is studied for different DSOI values (Fig 

5.3(b)). The effect of DSOI is maximum when impurity strength is minimum.  In 

Fig 5.3(c), LCC is plotted with  for various   values. We see that as T increases, 

LCC decreases at lower rate. 

 

5.3.2   Longitudinal Spin Conductivity (LSC) 

In Fig 5.4, the longitudinal spin conductivity (LSC) is plotted with respect to 

chemical potential . Figs. 5.4 (a) and (b) give the behavior for various 

of value. In Fig 5.4(a), the results for T = 0 are plotted. A sharp peak structure 

is visible at  After the peak, LSC falls off to zero at some specific  value. 

At a finite value of , the qualitative behaviour is essentially the same but the 

peak height decreases, as explained in Chapter 2. Fig 5.4(b) describes the nature 

of LSC with respect to  at finite temperature. One can see that in the absence of 

DSOI, LSC's behavior at nonzero T is significantly different from that at T = 0. 

LSC remains zero up to some specific value of  and then develops a sharp peak. 

In addition to the sharp peak, LSC also exhibits a broad secondary maximum at 

a higher value of . In the presence of DSOI, both the first peak and the secondary 

maximum decrease in height and the secondary maximum shifts towards right. 

Above a certain value of , the first peak changes into a shoulder and the 

secondary maximum becomes still shorter in height and shifts further towards 
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right. With further increase in  the first peak completely disappears and LSC 

remains zero up to a larger value of  and exhibits a broad maximum which is 

again right-shifted and shorter in height. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.   5. 4 LSC versus Chemical potential  for various values of :  (a, b)  ; (c) 

; (d)   v. 

 

In Fig 5.4(c), LSC versus  is plotted at different values of T for a fixed set of  

and  such that only the secondary maximum occurs. One can see that as T 

increases, the peaks get broadened, and their heights decrease. Finally in Fig. 

5.4(d), we plot LCC versus  for various v value. The maximum structure is again 

visible and LSC is again found to decrease with increasing v.  

 



84 
 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

Fig.  5. 5 LSC versus  for various : (a, b)  ; (c)  ; (d)  values. 

 

   In Fig 5.5, LSC is plotted with respect to  In Fig 5.5(a) we show, for the sake 

of completeness,  LSC's dependence on  for various value of  at T = 0 (which 

has already been studied in Chapters 2 and 3). Fig. 5.5(b) shows the data at finite 

temperature. At , and   LSC remains constant up to a critical value 

of   beyond which LSC increases monotonically up to a certain  value of  

after which LSC appears to saturate asymptotically for  while for 

 LSC shows a down-turn. This downturn behavior is more prominent for the 

higher values of . Fig 5.5(c) show LSC with  plot for various  values. The 

behaviour looks qualitatively more or less similar to LCC. Of course, the values 
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are much smaller than LCC. Fig 5.5(d) gives a plot of LSC versus  for various 

temperature values. Here we observe that only for an intermediate range of RSOI, 

LSC has significant temperature dependence. 

 

    

 

 

 

 

 

 

 

 

 

 

 

Fig.  5. 6 LSC versus v different values of:  (a) ; (b)  ; (d)   . 

LSC is plotted with electron-impurity interaction strength v for various ,  and 

 values in Fig. 5.6. Fig. 5.6(a) shows that, in general, LSC decreases with 

increasing v and eventually appears to approach zero. LSC also decreases with 

increasing chemical potential (Fig. 5.6a) and temperature (Fig. 5.6c). LSC 

decreases when the difference between the RSOI and DSOI strengths decreases 

(Fig 5.6(b)). 
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5.3.3 Spin Hall Conductivity (SHC) 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

Fig.   5. 7  SHC  versus  for various values of:  (a, b) ; (c) ; (d) v. 

  SHC is studied with chemical potential ( ) in Fig 5.7. Figs.  5.7(a, b) present the 

nature of SHC for various values of DSOI strength . For  and  

SHC exhibits peak structure similar to LCC and LSC. However, compared to 

LCC and LSC, the peak are much smaller and fall sharply when chemical 

potential is increased Fig 5.7(a). For finite DSOI strength, SHC is finite for a 

small chemical potential window. Fig 5.7(b) show the results for . When 

 the plots are qualitatively similar to LSC for the lower value of chemical 
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potential. In general, the peak values of SHC are much smaller than those of LSC 

for the same parameter values. 

 

In Fig 5.7(c) SHC vs chemical potential is plotted for various value of . SHC 

has a similar behavior as of LSC. But the peak values are much smaller, and their 

height decreases much faster with increasing T. As plotted for different values of 

v, SHC exhibits similar behavior to LSC, except peak values that are smaller in 

magnitude than LSC Fig 5.7(d). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.  5. 8  SHC  versus  for various(a, b)  ; (c) ; (d)   values. 
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      In Fig 5.8, we study spin-Hall conductivity (SHC) with RSOI strength . 

Fig 5.8(a, b), shows SHC vs  plot for various  values. Fig 5.8(a) gives the 

nature of SHC at zero temperature. For weak RSOI, SHC almost remains zero 

irrespective of the value of  As  increases, SHC also increases but, for  

less than a certain value, SHC hardly depends on  Beyond this value of  

the increase on SHC depends on  In fact, for the same value of  SHC 

decreases with the increase in  As a function of   SHC appears to saturate 

eventually.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.   5.9 SHC versus v for various:  (a) ; (b) ; (c)   values. 
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Fig. 5.8(b) describes the behavior at non-zero temperature. The nature of SHC 

remains essentially the same at finite temperature. We observe that SHC saturates 

faster for higher values of  Fig. 5.8(c) gives the results for various chemical 

potential  value. The nature is a little similar to LSC and we see a crossing 

behaviour.    Fig 5.8(d) shows the nature of SHC with   at different values of 

T. The temperature dependence of SHC vs.  curves looks stronger than that of 

the LSC vs.  curves increases, SHC also increases but, for  less than a 

certain value, SHC hardly depends on  Beyond this value of  the increase 

on SHC depends on  In fact, for the same value of  SHC decreases with 

the increase in  As a function of   SHC appears to saturate eventually.  

In Fig 5.9, we plot SHC with Impurity strength v for different system parameters. 

SHC exhibits a flat maximum around v= 0 and then falls off to zero much faster 

than LCC or LSC. SHC also decreases with increasing  When plotted for 

different values of DSOI, it shows a similar bahaviour as LSC 

   In Figs. 5.10 and 5.11, we present the three-dimensional and contour plots for 

the spin to charge conductivity ratio with respect to   When  

are both small, LCC becomes larger than both LSC and SHC and consequently 

the ratio SHC/LCC remains small. As we increase , keeping   constant, the 

spin current increases much faster than the charge current; hence the ratio 

increases and shows a peak. The same happens when  is increased, keeping  

constant. The ratio decreases as  approaches  and become zero, when  

 become equal. From experimental point of view, we can control RSOI 

strength up to 50% by tuning the gate field [5, 6] and therefore the ratio can be 

varied typically from 1.5 to 2.5 [7]. For Indium Arsenide, using the values of 

 and from previous chapters. we find that the value of the SHC/LCC  

ratio  at finite temperature can be in the range : 0.001- , which has to be 

experimentally verified.  
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   Fig.  5. 10 (a) Three-dimensional plot of [LSC/LCC] in  plane;  (b) 
Contour plot of  [LSC/LCC] in   plane .  
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 Figure. 5.11 (a) Three-dimensional plot of [SHC/LCC] versus RSOI and DSOI 
strengths; (b). Contour plot of [SHC/LCC] versus RSOI and DSOI strengths. 
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We have shown in this chapter that LCC, LSC, and SHC all display peak structure 

as a function of chemical potential. These peaks shift towards the larger value of 

chemical potential as DSOI strength increases and the peak height increases for 

LCC as DSOI strength increases and decreases for LSC and SHC. LSC and LCC 

increase monotonically with the RSOI strength at T = 0 K. However, at finite 

temperature, they seem to saturate to some constant value when the DSOI effect 

is absent. In the presence of DSOI, we see a downturn nature, i.e., conductivities 

start decreasing after a certain point. This downturn effect increases with rise in 

the DSOI strength. In SHC case, the downturn effect can be seen either in the 

presence or absence of T and DSOI. The conductivities in general decrease with 

increase in the electron-impurity interaction strength, though the rate of decrease 

is different for different conductivities. LCC and LSC decrease rapidly, while 

SHC remains essentially same at low impurity strength and decrease rapidly when 

impurity strength increases. Finally, we have calculated the spin to charge 

conductivity ratio and have shown that the ratio increases when the difference 

between the Rashba and Dresselhaus strength increases. We have also shown that 

the ratio is zero whenever Rashba strength becomes equal to Dresselhaus 

strength. 
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Chapter 6 

Magneto-transport through a Quantum 

Dot Dimer in presence of quantum 

dissipation, electron-electron and 

electron-phonon interaction. 

 
 

6.1 Introduction 

 

The subject of transport through a single molecular transistor has attracted 

tremendous interest in the past few decades for various applications [1-7] 

in nanotechnology. A single molecular transistor (SMT) consists of a 

central part (which could be a quantum dot (QD) or molecules), a source, 

and a drain. The main characteristic feature required for the central part is 

that it should have discrete energy levels, and the gate voltage must be 

adjustable to control the current flowing through it [8-9]. Several studies 

have been made on an SMT device. The correlation effect like Coulomb 

blockade and Kondo effect at low temperature [10-16], the Fano effect [17-

19], Josephson tunneling [20-22], the Dicke effect [23,24] etc. are a few 

examples. The tunneling of electrons from the source to the central 

molecule or from the central molecule to the drain or vice versa distorts 

the central molecule. This distortion (phonon) interacts with electrons to 

give rise to a polaronic effect, particularly in organic or polar materials [25, 

27].  
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   Many theoretical and experimental research groups have examined the 

existence of vibrational side bands because of the electron-phonon (el-ph) 

interaction [28, 31]. A similar kind of observation was made by Chen et 

al. [32]. They have studied the effect of electron-phonon interaction on the 

differential conductance, tunneling current and spectral function. 

Transport properties through SMT have also been studied using many 

different theoretical and numerical methods like Slave Boson mean-field 

method [33], non-crossing approach method [34] , numerical 

renormalization method [35-39], kinetic equation method [40, 41], rate 

equation approach [42], and non-  

[43-47]. Recently, Raju and Chatterjee [48] have studied the dissipation 

effect on SMT mounted on a non-interacting substrate. The substrate 

phonons have been assumed to interact with the local phonon of QD and 

this gives rise to a damping effect. This effect has been incorporated by 

introducing the Caldeira- Leggett (CL) term that brings in a linear 

dissipative coupling between the QD phonon and the substrate phonons. 

The total system is modeled by the Anderson-Holstein (AH) Hamiltonian 

plus the Caldeira- Leggett (CL) term. This Hamiltonian will be referred to 

as the AHCL Hamiltonian. Their study shows that when el-ph interaction 

is present, SMT parameters get renormalized. Costi [49] has used the 

Wilson renormalization technique and has shown that a strongly coupled 

QD placed in an external magnetic field could act as a spin filter. Dong et 

al. [50] have suggested that at zero temperature linear conductance gets 

suppressed when external magnetic field is present. Also when magnetic 

field is sufficiently high, side peaks can be observed in conductance. In a 

later work, Manasa et al. [51] have studied magneto-transport phenomena 

in an SMT device and determined the effect of electron-electron (el-el) 
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interaction, electron-phonon interaction, and damping on the SMT device 

properties in an external magnetic field.  

   In the following chapter, we wish to study the phenomenon of non-

equilibrium transport through a QD dimer. This device may be referred to 

a QD dimer transistor. We will examine the effects of magnetic field, 

dissipation, electron-electron interaction and electron-phonon interaction 

on Current, Spectral density, and differential conductance in such a system 

using AHCL Hamiltonian and the Keldysh Green function technique. 

 

6.2 The Model  

 

 

 

 

 

 

 

 

Figure.  6.1 Quantum Dot Dimer Configuration for QDD device 

 

In Fig 6.1, a schematic diagram of a QD dimer (QDD) transistor (QDDT) device 

to be studied is given.  It contains a source (S), a drain (D), and two QDs mounted 

on a dissipative substrate and placed in an external magnetic field. One QD is 

connected to both the source and the drain with metallic wires while the second 

QD is connected to the first QD only. Each QD has an individual lattice mode 

that interacts with local electrons through the el-ph coupling of Holstein type. 

Also the insulating substrate on which device is mounted acts as a heat-bath. 
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As already mentioned, phonons from the QDs and the substrate interact linearly 

through CL (Caldeira-Leggett) interaction and give rise to a dissipative effect to 

the tunneling current through the device. The effect of the magnetic field on the 

transport property is obvious [52, 53]; it lifts the spin degeneracy and makes the 

device suitable for a spin filter. The Hamiltonian for the system under 

consideration is given by  

 

 

 

where  represents the source and the drain Hamiltonian,  denotes the 

Hamiltonian of  QDD,  gives the Hamiltonian of the substrate, including the 

interaction between the phonons of the substrate and the QDs  and   

describes the hybridization between the leads and the QDD.  

 

 can be written as  

 

 

  

The Hamiltonian  has been written in continuum state with  corresponding 

to the number operator for source (S) and the drain (D). 

 can be written as   

 

 

 

where  is the pure electronic part of the QDD Hamiltonian,  is the pure 

phononic part of the QDD Hamiltonian and  is the local el-ph Hamiltonian. 

 can be written as 
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where  is the onsite energy,  is the number operator for electrons 

at the th site with spin ,  corresponds to  annihilation (creation) 

operator, of electrons,     is the intra-dot  hopping parameter,  is the intra-dot 

el-el interaction strength,  is the magnetic field applied in the z direction,  is 

the Bohr mageton ,  is the z-component of the total spin operator and  is the 

gyro-magnetic ratio.  is given by  

 

 

 

where   is the mass of the QD oscillator,   is its frequency,   stands for 

the z-component of the total electron spin and  refers to the external magnetic 

field.  is given by 

 

 

 

where   is the electron-phonon (el-ph) coupling constant. Here we have taken 

el-ph coupling constant for both the quantum dots (QDs) to be equal to . The 

Hamiltonian  of the substrate can be written as  

 

 

 

where  is the Hamiltonian of a set of oscillators and is given by 
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 being the   is chosen as 

 

 

 

where  coupling between the oscillators of  QDD and the bath.  

 can be written as  

 

 

where  denotes the lead-QDD hybridization strength. To decouple the 

interaction between the phonons of the QDD and the substrate, we first collect all 

the terms containing phonons. Thus we consider:  

 

 

 

 

 

By giving the transformation: 
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we get 

 

 

 

where 

 

 

where  is the shift in the square of the quantum dot oscillator frequency 

caused by the linear oscillator-bath coupling .We assume that a spectral function 

fully characterizes the oscillator bath: 

 

 

 

Replacing summation by the integration for large N. Therefore  can be 

written as 

 

 

 

We choose Lorentz- Drude form for the spectral function: 
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where  is the cut-off frequency and  is the damping rate. We assume   is 

much larger than the frequency of the system. Substituting Eq. (6.16) in Eq. 

(6.15), we get 

 

 

 

 

Or, 

 

 

Thus our Hamiltonian reduces to  

 

 

 

 

where  are the phonon annihilation and creation operators.   

   

     Next we proceed to decouple the el-ph interaction. To accomplish this we 

perform the lang-Firsov transformation [54]. The Hamiltonian then transforms to  
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where 

 

 

 

The operators   transform to  

 

 

 

Similarly operators  ,  and  are transformed to 

  

 

 

 

 

 

 

 

So the Hamiltonian  becomes  

 



102 
 

 

(6.21) 

 

where we have defined  

 

  

 

 ,     

 

To treat the el-el interaction we perform the mean field approximation and the 

transformed Hamiltonian reads  

 

 

 

To calculate current, we first write the total number of electrons in the left lead 
which is given by  
 

. 

 

Now the current from the left lead is given by: , where  is given by  
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Thus the current from the source is given by   

 

 

and can be written as: 

 

 

 

where  

 

 

 

where  represents greater (lesser) Keldysh Green function and the 

average is taken over electronic and phononic degrees of freedom. 

Now, 

 

 

 

Eq. (6.29) gives  

 



104 
 

 

 

To obtain the time-ordered Green function we use equation of motion technique. 

 

 

 

Differentiating Eq. 6.31 with respect to , we obtain 

 

 

 

 

where is given by equation (6.24).  Substituting only those parts of 

Hamiltonian whose commutator is non-zero   in Eq. (6.34) we get   

 

 

 

 

 

 

Multiplying both side with  

 

 

where 
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Since the equilibrium and non-equilibrium theory are topologically equivalent, 

Eq. (6.32) has precisely the same form in the non-equilibrium theory except for 

the fact that the intermediate time integral runs on the complex contour.  

According to Langreth rule for analytic continuation, the relation:  

, can be written as 

 

 

Thus we can write  

 

 

 

 

 

In the energy space, we have 

 

 

 

 

Using Eq.  (6.40) in Eq.  (6.32), we obtain 

 

 

 

where are the retartded Green functions for the QDD 

molecule and lead respectively and are the advanced 

Green functions for the QDD molecule and lead respectively. Now we have  
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and so   becomes 

  

 

 

 

Let us define 

 

 

 

so that Eq. (6.43) can be written as 

 

 

 

 

The expression for  is obtained in same way and we obtain 

 

 

 

 

The current will be uniform in the steady state case. Therefore, . So 

the net current flowing through the device is given by 
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From Eqns. (6.43), (6.46) and (6.47), we have  

 

 

 

where the Fermi distribution functions for the source and the drain have been 

denoted by  r and the bias voltage(( ( ) and mid-voltage ( )  are related 

to chemical potential by the relations . 

Since QDs are symmetrically coupled to source and drain leads, we write 

, where  is given by  

(Eqns.(6.44)), and it represents the density of energy states of the source and 

drain. The spectral function gives the excitations in the system and is written in 

the form of Green functions as 

 

 

 

Now the total Green function contains both electronic and phononic 

contributions. 

 

  

To solve the phononic contribution , we consider 
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and  

 

 

Using the value of   , and  in Eq. (6.51), we have  

 

 

(6.52) 

Now,  

 

 

 

 

 

 and substituting 

Equation (6.53) in (6.52). 

  

 

(6.54) 
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Using the relations  

 

 

 

where  is the Laguerre polynomial. So equation (6.54) gives, 

 

 

 

Using Laguerre polynomial properties we have  

 

 

 

 we can write 

 

 

  

 

 

 

 

So  

 

 

(6.58) 
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Defining and after 

some simplifications we have 

 

 

 

which gives 

 

 

 

 

or,  

 

 

 

Using Eq.  

(6.61) in Eq.  (6.50), we get 

 

 

 

 

 

In Fourier space we have  
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or, 

 

 

 

where l stand for number of phonon involved and the coefficient   depend on 

el-ph strength and temperature.  At zero temperature, we have  

 

 

 

Similarly we can write for . 

 

 

 

which gives  
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 is calculated using equation of motion technique which gives 

 

 

 

 

 

 

To simplify the above expression we calculate the following commutators.  
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(6.73) 

 

 

Substituting Eqns. (6.72),(6.73) and (6.74) in Eqn. (6.71), we have 

 

 

 

 

Multiplying both sides by  and integrating over , we get 

 

 

 

 

 

 

which gives 
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(6.77) 

where  is the Fourier transform of  Similarly we 

have the equation of motion for  

 

 

 

 

 

Again multiplying by  and integrating over , we obtain after 

rearrangement 

 

 

Similarly, we get 

 

and, 
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Again multiplying by  and integrating over , we obtain after 

rearrangement 

 

 

Now, substituting Eqns. (6.80), (6.81) and (6.84) in Eqn. (6.77) we have  

 

(6.86) 

From Eq. (6.86) we can determine greater and lesser Green function using 

Keldysh equation Eqn. (6.68). From there, the Spectral function can be calculated 

using relation (6.67), which on substituting in Eq. (6.48) gives us the expression 

for tunneling current J for symmetric coupling i.e. ,    
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Using Eqs. (6.48), (6.87) and (6.88) we finally obtain the desired expression for 

the spectral function and the tunneling current. We also calculate the spin 

polarization parameter:  and the Differential 

Conductance (DC) which is defined as: G = dJ/dV. 

 

 

6.3 Results and Discussion 

 

 

 

 

 

 

 

 

 

Fig.  6. 2. (a) Sp

and SQD.  

 

In the present problem, we assume a uniform connection between the source, 

quantum dots, and the drain and also consider that each QD has a single energy 

We take the unit of energy as (phonon energy). For 

most part of our calculation we will consider
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. In Fig. 6.2, the behavior of spectral function (SF) of QDD, is 

studied when dissipation, magnetic field, el-ph and el-el interaction is present.  In 

the absence of damping effect ( ), B and el-ph interaction we see two lorentzian 

peaks (inset). When damping effect and electron-phonon interaction are 

considered, we observe side peaks along with lorentzian peaks due to polaronic 

effect. As magnetic field is introduced, we see split in theses peaks and as 

magnetic field increases, we see increase in spectral function. In Fig 6.2(b), 

comparison between QDD and single quantum dot SQD has been studied for two 

different gate voltages. The spectral function for QDD is maximum when gate 

voltage and minimum when gate voltage .  

   In Fig 6.3, plot for spin resolved spectral function is given. For up-spin, spectral 

function  increases as magnetic field increases Fig 6.3(a) and a left shift in -

scale is observed. Fig 6.3 (b) shows the spectral function for down-spin . The 

down-spin SF  also increases with increase in magnetic field but comparatively 

less than  Furthermore,   shifts towards right in scale. Also form Fig 6.2 

and Fig 6.3, we observe that the spectral function A is the sum of  and .  

 

 

 

 

 

  

 

 

Fig.  6.3. .  
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Fig.  6.4 (a) Spin resolved tunneling current ( ) versus bias Voltage   for various 

magnetic field  values when el-ph interaction is absent;  (b) for 

various magnetic field  value  when el-ph interaction is present.   

 

  In Fig 6.4 (a), up-spin and down-spin tunneling currents are plotted with bias 

voltage  in the absence of el-ph interaction. When , the tunneling current 

J has ohmic nature for a finite interval of and saturate afterward. This 

saturation in J comes with the increase in . As  increases, the Fermi level of 

the source goes up. As a result, more number of electrons flow on to QDs. As 

QDs can accumulate a fixed number of electrons, the current eventually reaches 

a saturation value. As  is introduced, the spin degeneracy is lifted and each QD 

develops energy levels, one for up spin with a lower energy and other for down 

spin with a higher energy. For , the down-spin energy level shifts 

upward, and there exist an easy path for the electrons to tunnel from source to 

drain and hence has higher value than J.   When magnetic field increased to 

 the energy level of quantum dot shifts further up, which make QDs 

energy level approx. equal or greater than the fermi level of source. So a higher 
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bias voltage is needed for the tunneling of electrons from 

because as bias voltage increases, the source Fermi level moves up and that of the 

drain moves down. In the case of up-spin current, the energy level for the up spin 

goes down with increase in magnetic field. So for the tunneling of the up-spin 

current, the value of bias voltage must be high. As we increase el-ph interaction 

(Fig 6.4 (b)), the total energy of the system gets renormalized and electrons 

require higher bias voltage to tunnel. Also, the tunneling current for spin-up 

electrons turns out to be higher than that of spin-down electrons, indicating a 

finite probability of hopping of the spin-down electrons to the second quantum 

dot.  

 

 

 

 

 

 

 

 

 

Fig.  6.5. (a) J vs   for various   and  ; (b) Comparison of  behaviour   

between SQD and QDD for different values of  .  

 

    In Fig 6.5(a), the tunneling current J is plotted with the bias voltage  for 

various values of el-ph and substrate QDs interaction parameters. As explained 

above, when el-ph and substrate-QDs interaction are present, the tunneling 

current is maximum. In Fig. 6.5(b), the comparison of currents J in QDD and 
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SQD is shown when the magnetic field is present. We observe that the tunneling 

current in SQD is higher, which shows that the second QD in QDD provides a 

leakage path for electrons, which reduces the net current. 

 

 

 

 

 

 

 

 

 

 

 

Fig.  6.6 (a)  versus   for various ; (b)  versus   for various   

        In Fig 6.6, Spin-dependent tunneling currents ( and ) with the magnetic 

field are plotted for various damping constant values. In the absence of QDs- 

substrate interaction, the down-spin tunneling current reaches a maximum 

value and starts decreasing afterward. This behavior is understandable. As 

explained above, when the B is small, the energy level of the down-spin state and 

the source Fermi level are nearly equal, giving rise to the current. As the magnetic 

field increases, the energy levels of the QDs move up, causing a decrease in the 

current (Fig 6.6 (a)). In the case of up-spin current (Fig 6.6(b)), the energy level 

of the up-spin state moves down when the magnetic field is tuned, and it becomes 

difficult for the electrons to tunnel from QDs to drain. As the substrate-QDs 

interactions are introduced, the energy levels of QDs are renormalized. To be 

more specific,  the up and down-spin state's energy levels move higher, causing 

an increase in the up-spin tunneling current and a decrease in the down-spin 

tunneling current.   
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In the present problem, we have neglected the inter-dot el-el interaction, and 

considered only the intra-dot el-el interactions. The tunneling current with respect 

to el-el interaction shows initial peaks for weak el-el interaction strength and zero 

magnetic field. For stronger el-el interaction strength, the tunneling current is 

almost constant. 

 

 

 

 

 

 

 

 

 

Fig. 6.7  versus   for various  values;  (b) Comparison of   behaviour  between 

SQD and QDD for different values of .  

    As magnetic field exceeds a certain value, a minimum is observed in  after the 

maximum. This minimum becomes lower as B is increased. After the minimum, 

the current of course increases with U and attains a constant value (Fig 6.7(a)). 

This constant value is lower for a higher magnetic field. Fig 6.7(b), shows the  

vs behaviour in QDD is compared with that in SQD for different gate voltage 

values. For   we observe peaks in SQD at weak el-el interaction. As  

increases,   acquires a constant value. A similar behavior is shown by QDD but 

now the peaks are smaller but   saturates to a higher value. For , in 

SQD,  decreases monotonically with increasing  and saturates to a constant 

while QDD first shows a peak and then decreases to a constant value.  
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  Fig 6.8, shows plot of  with   and  values. We see peaks for 

both negative and positive values of gate voltage. When we increase el-ph 

interaction, the peaks reduce and when the substrate-QDs interactions are 

considered along with el-ph interaction, the peaks shift towards right. In Fig 6.8 

(b) we compare the behaviour in SQD with that in QDD for different values of . 

When , has only one peak for SQD and two peaks for QDD. For a finite 

magnetic field, has more peaks with reduced height because of splitting caused 

by magnetic field. Also the peaks in SQD are higher than QDD 

 

 

 

 

 

 

 

 

 

Fig. 6.8   vs   for various   and ; (b) Comparison of  behaviour 

between SQD and QDD for various  values. 

 

.  In Fig 6.9,  are plotted versus for a few values of . There are two 

ways in which el-ph interaction affects the system. Firstly, it lowers the energy of 

the system, which favors the current flow and secondly it reduces the mobility of 

the electron because of polaron formation. Mathematically, because of the 

factor  we can see Gaussian like behavior of tunneling current when 
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magnetic field is absent. When magnetic field is present, the degeneracy in spin 

is removed and the current flows with a specific spin direction through two sub-

bands. When the el-ph interaction is weak, down-spin current is high and 

electrons can easily go from the source to the drain. As the el-ph interaction 

increases, the polaronic effect also increases, which reduces the mobility of 

electrons, causing a decrease in the current. Tunneling current for up spin is low 

initially, but with the increase electron-phonon effect current increases. This is 

understandable because with increase in electron-phonon interaction the energy 

level of up spin increases and overcome polaronic effect. So for an interval, we 

see rise in tunneling current, afterwards polaronic effect dominates again and up 

spin tunneling current decreases which reduces the current flow 

 

 

  

 

 

 

 

 

 

Fig. 6.9 (a)  vs  for various  values; (b)  vs  for various values. 

.  

   In Fig 6.10,  three-dimensional plots of   with  and  are given for  and 

 For ,  shows a  maxima at a certain   (Fig 6.10(a)). For 

, the curve is a little flattened and J shows lower values (Fig 6.10(b)). 
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Fig.  6.10. Three-dimentional plot of  in (

 

In Fig. 6.11,  contour plots of  in the  plane are given for various sets 

of   and   values. When both    shows a smooth behaviour 

(Fig 6.11(a)).  As el -el interaction is introduced, deformation in the contour plot 

can be seen for postive values of   and higher values of  (Fig 6.11(b)). For 

 and  we can observe the split which shows the splitting because of 
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magnetic field(Fig 6.11(c)) When both are non zero  and  are non-zero,   both 

splitting  and deformation occur in the contour plot at higher values of  and  

(Fig 6.11(d)). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.11. Contour  plot of tunneling current (J) in plane (a) when magnetic 

field and electron-electron interaction is absent ( ), (b) when magnetic 

field is absent and electron-electron interaction is present ( ) (c) when 

magnetic field is present and electron-electron interaction is absent ( );(d) 

when magnetic field and electron-electron interaction is present  
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Fig.  6.12  Differential Conductance (G) versus   for different value of .  

 

 

 

 

 

 

 

 

 

Fig.  6.13 G versus   for various    and   values (b) Comparison of   

behaviour between SQD and QDD for various values 

In Fig 6.12, the behavior of Differential Conductance (DC) (G) with respect to  

is given. For   DC shows two peaks, which indicate the 

possible excitation in the system in this case (inset). These peaks are modified 
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along with some side peaks for the finite value of  and . As a 

magnetic field is introduced, each peak splits. As we further increase the magnetic 

field, DC peaks go higher, causing an increase in DC.  

In Fig. 6.13, we plot DC with bias voltage . When substrate QDs and el-ph 

interactions is absent, we encounter two peaks. As el-ph interaction is introduced, 

the peak height reduces and the space between them increases. The space between 

peaks further increases Fig 6.13(a)). When substrate- QDs is introduced .Fig. 

6.13(b) shows that SQD peaks are much higher than QDD peaks. Also as the gate 

voltage increases, peaks in the case of SQD move further apart, while in the case 

of QDD, they come close. 

 

 

 

 

 

 

 

 

 

 

Fig. 6.14 G versus   for various: (a)  (b)   for various  

   Fig 6.14 gives the variation of DC with respect to magnetic field. For   

DC has two uneven peaks. These peaks signify the contribution of up-spin and 

down-spin charges (see Fig 6.15). As   increases, the peak heights arising from 

the two contributions become almost equal. We can see  similar behaviour for 

different values of , when  is absent (Fig. 6.14(b)). 
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Fig.  6.15 (a,b) Spin resolved ( )Differential Conductance versus  B for various 

. 

 

 

 

 

 

 

 

 

 

Fig. 6.16  (a,b)   versus   for different magnetic field value ( ). 

   In Fig 6.16, spin polarized Differential Conductance is plotted with el-ph 

interaction for various values of the magnetic field. DC for spin- down electrons 

shows higher peaks for the lower value of electron-phonon interaction, for higher 

value of  peaks are smaller. In case of up-spin there are no initial peaks, peaks 

can be observed only higher values of .  
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  Fig. 6.17 give the plot of three-dimentional  DC with respect to  and . The 

nature of the plot is quite similar to the tunneling current case (Fig 6.10). for 

, DC  shows two maxima, which arises due to the contribution of up and down 

spin electrons. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.  6.17 Three-dimentional plot of  DC (G) in  and 
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Fig.  6.18. Contour  plot of Differential Conductance (G) in plane (a) when 
magnetic field and electron-electron interaction is absent ( ), (b) when 
magnetic field is absent and electron-electron interaction is present ( ) (c) 
when magnetic field is present and electron-electron interaction is absent (

);(d) when magnetic field and electron-electron interaction is present 
 

 

Fig. 6.18 gives the contour plot of DC in the in plane. When  and 

 DC is smooth everywhere (Fig 6.18(a)). In presence of electron-electron 

interaction, when magnetic field is zero, we see deformation in higher value of 

bias voltage and mid voltage Fig 6.18(b). If magnetic field is present, we see a 

split in lines, which manifest contibution of both up and down spin Fig 6.18(c). 
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Again when electron-electron interaction and magnetic  field is present we have 

both splitting and distortion in contour Fig 6.18 (d) 

 

 

 

 

 

 

 

Fig.  6.19.  Spin polarization  ( ) versus  for few: (a)   (b)  values.  

 

  

 

 

 

 

 

Fig.  6.20.  versus  for few: (a ) . ; (b)    

In Fig 6.19 we have studied spin polarization (SP) with  for several  and  

values. The nature of spin polarization can be predicted from Fig (6.4, 6.5) where 

we have studied the variation of up-spin and down-spin tunneling current. The 

variation of SP with  depends on B and . When B is small, SP decreases for a 

smaller value of bias voltage and remains almost zero for a finite interval of bias 
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voltage. Though for higher bias voltage values, it again starts increasing. As we 

increase B, SP decreases for higher bias voltage. And the interval in which SP is 

zero also reduces Fig 6.19(a).When studying for various el-ph strength values Fig 

6.19(b)

voltage value. And afterward, as bias voltage increases, SP starts increasing.    

SP  vs  is plot is shown in Fig 6.20  for various (a) . ; and (b)   SP 

initially increases, attains maxima for two different magnetic field values, and 

 

 

6.4 Conclusion 

   In this chapter, we have presented our work on the non-equilibrium transport 

through a QD dimar which  is mounted on a dissipative and is connected to a 

source and a drain and the transport is studied in the presence of magnetic field, 

substate-QDs  interaction, el-el and el-ph interaction.  The model is studied using 

Anderson-Holstein-Caldeira-Leggett Hamiltonian (AHCL) and the tunneling 

Current density ( ), spin polarization parameter, differential conductance and 

spectral function are calculated using the Keldysh Green function formalism. 

When magnetic field is present, the spin degeneracy is lifted, leading to a split in 

energy levels and the spectral function of QDs. When both damping and el-ph 

interaction are present, the ground state energy gets renormalized and we observe 

a higher value of the spectral function and tunneling current for the spin-up 

electrons, indicating a finite probability of the spin-down electrons hopping to the 

second QD. In the plots of differential conductance (G), we again observe a split 

when magnetic field is present. We also observe that the peak height increases as 

the magnetic field increases. When compared with SQD, we find that that the 

current and DC is higher in case of SQD which shows that the second QD in QDD 
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provides a leakage path for electrons.  Finally, the spin polarization coefficient is 

calculated for QDD as a function of . We find that spin polarization 

increases with increase in magnetic field and have higher value for low bias 

voltage. We have aslo shown the variation of  and with el-ph interaction and 

mid voltage.  The above model may be imporatant for making more complicated 

devices and there functioning.   
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Chapter 7 

 

Conclusion 

 
In chapter 1, we define some basic terminology of spintronics and single 

molecular transistor, along with their principal of working and applications. 
In chapter 2, we have studied the Rashba spin-orbit interaction effect on the spin 

and charge transport for a two-dimensional tight-binding electronic system when 

randomized impurities are present. There we used Matsubara green's function 

technique and computed a lower-order Feynman diagram to calculate the 

relaxation time from impurity-electron scattering events and calculated spin and 

charge conductivity, using Kubo formalism. We worked in a low temperature and 

impurity regime to better understand the system. Our findings predict that 

along with relaxation time display a peak, at some critical value of chemical 

Beyond that critical value, the decrease in relaxation time with 

chemical potential is relatively slow, though the corresponding depletion in 

charge conductivity and spin conductivity will be much faster. We have also 

shown that the spin conductivity peaks are much higher than the charge 

conductivity peaks. These peaks increase with the RSOI effect for spin 

conductivity and charge conductivity and decrease with an increase in impurity 

strength. Though, the peak value remains unchanged in the case of relaxation 

time, when RSOI is changed. Further, we have shown in chapter 2 that spin 

conductivity, charge conductivity, and relaxation time increase with RSOI 

interaction and decrease in the presence of impurities.  

In continuation with chapter 2, in chapter 3, along with Rashba, we have taken 

Dresselhaus spin-orbit interaction term and examined how the interplay between 
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both spin-orbit interactions affects the system when randomized impurities are 

present. We used Matsubara green's function technique and computed a lower-

order Feynman diagram to calculate the relaxation time caused by impurity-

electron scattering. To calculate spin and charge conductivity, we have used Kubo 

formalism similar to chapter 2. Our finding in chapter 3 shows that for all Rashba 

and Dresselhaus strength values, charge and spin conductivity along with 

relaxation time as a function of chemical potential exhibits peaks. The charge 

conductivity with Rashba strength increases with an increase in Dresselhaus 

strength. In contrast, the spin conductivity with Rashba strength decreases with 

an increase in Dresselhaus strength. It has also been shown that spin conductivity 

is zero whenever Rashba and Dresselhaus strength become equal. Furthermore, 

we have also seen that spin to charge ratio with Rashba strength decreases until 

the Dresselhaus strength equates to Rashba strength; afterward, spin to charge 

ratio increases with Rashba strength.  

In chapter 4, we have calculated spin Hall conductivity and spin Hall angle at 

zero temperature.  Our results propose that SHC displays peak when studied with 

chemical potential, and the value of these peaks decreases with increasing DSOI 

strength, as DSOI strength broaden the energy bands. A similar observation was 

seen when SHC is investigated as a function of RSOI.   

We have also shown that in the presence of both SOI effects, SHC almost remains 

unaffected with low impurity and decreases when impurity strength is high. Also, 

SHC is maximum when the difference between the strength of RSOI and DSOI 

increases. 

Conclusively, we have calculated the spin to charge ratio. We have shown that if 

any one of the following SOI dominates (RSOI or DSOI), the ratio increases, and 

as both SOI coupling become equal in strength, the ratio goes to zero. 

In chapter 5, we further study SOI effect on the torque dependent longitudinal 

and transverse spin conductivity and spin hall angle at finite temperature in the 
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presence of impurity using formalism similar to chapter 2, 3 and 4. Our finding 

in the following chapter shows that LCC, LSC, and SHC all display peak structure 

as a chemical potential function for finite temperature. The peak value of 

conductivities decreases with an increase in DSOI strength, as DSOI strength 

triggers more scattering events.   

From the finding of chapters 2 and 3, we knew that LSC and LCC increase 

monotonically with RSOI strength at T = 0 K. However, they seem to saturate to 

some constant value when, the DSOI effect is absent at finite temperature. In the 

presence of DSOI strength, we see a downturn nature, i.e., conductivities start 

decreasing after a certain point. This downturn effect increases with an increase 

in DSOI strength. For SHC, we found that the downturn nature is present in the 

presence or absence of temperature and DSOI. We have also observed that the 

rate at which LSC and SHC decrease with impurity strength depends on RSOI 

and DSOI strength differences. 

Finally, in chapter 5, we have shown that the spin to charge ratio increases when 

the difference between RSOI and DSOI increases. And the ratio is zero when both 

RSOI and DSOI strength become equal. 

In chapter 6, we investigate magneto-transport through a quantum dot dimer 

placed on a substrate, when electron-phonon interaction, electron-electron 

interaction magnetic field, and substrate- quantum dot interaction is present. The 

model is analyzed using Anderson-Holstein-Caldeira-Leggett Hamiltonian 

(AHCL), and to determine tunneling Current, spectral function, spin polarization 

parameter and Differential Conductance Keldysh Green's function method is 

used. When both damping due to the substrate and el-ph interaction are present, 

the ground state energy gets renormalized and tunneling current and differential 

conductance increase. Also Difference Conductance shows peaks which splits 

and increases in height as the magnetic field increases.   
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In this chapter, we have also compared Quantum Dot Dimer with Single Quantum 

Dot and found that Current and Difference Conductance is maximum for SQD 

while the minimum for QDD.  

Lastly, in chapter 6, we have studied the Spin polarization coefficient with bias 

voltage and magnetic field.  We find that spin polarization increases with increase 

in magnetic field and have higher value for low bias voltage. We have also shown 

the variation of  and with el-ph interaction and mid voltage.  The above model 

may be imporatant for making more complicated devices and there functioning. 
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