
ANNULATION/CYCLOADDITION REACTIONS OF INDOLE/CHROMENE/COUMARIN CARBOXYLIC ACIDS OR TETRAZINE WITH C-C II-COMPONENTS

A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

By

MALLEPALLI SHANKAR Reg. No. 15CHPH13

SCHOOL OF CHEMISTRY UNIVERSITY OF HYDERABAD HYDERABAD-500 046 INDIA

MAY 2022

DEDICATED TO

AMMA
NANNA
AND FAMILY

CONTENTS

STA	TEMEN	√I	V		
DEC	LARAT	TION	vi		
CER	TIFICA	ATE	vii		
ACK	NOWL	EDGEMENTS	ix		
LIST	OF PU	UBLICATIONS	xi		
SYN	OPSIS		xiv		
		ANNULATION/CYCLOADDITION REACTIONS OF			
I	NDOLE	/CHROMENE/COUMARIN CARBOXYLIC ACIDS OR TETRA	ZINE		
		WITH			
		C-C π -COMPONENTS			
Chap	oter 1:	INTRODUCTION	1		
1.1	Gener	ral Introduction	1		
1.2	Intern	nolecular annulation reactions of indole substrates with propargylic alc	cohols 4		
1.3	Intran	nolecular annulations of indole tethered-propargylic alcohols	13		
1.4	Decar	boxylative annulations of the aromatic carboxylic acids	16		
1.5	Transition metal catalyzed annulations of carboxylic acids with C-C π -components 2				
1.6	Cycloaddition reactions of tetrazines with alkynes and related substrates				
OBJ	ECTIVI	ES OF THE PRESENT WORK	47		
Chap	oter 2:	RESULTS AND DISCUSSION	48		
2.1	Precu	rsors used in the present study	48		
	2.1.1	Synthesis of 1 <i>H</i> -indole-2-carboxylates 1a-e and			
		propargylic alcohols 3a-c and 4a-r	48		
	2.1.2	Synthesis of coumarin-3-carboxylic acids 5a-e and			
		chromene-3-carboxylic acids 6a-c	49		

	2.1.3	Synthesis of disubstituted alkynes 7a-j	50		
	2.1.4	Synthesis of arylated sec-propargylic alcohols 9a-d	51		
	2.1.5	Synthesis of allenylphosphonates 10a-d and allenylphosphine oxide 11	51		
	2.1.6	Synthesis of alkyl allenes 12a-b, ester allenes 13a-c and allenylsulfone 14	52		
2.2	Annul	ation reactions of indole-2-carboxylates/carboxylic acids with			
	propar	rgylic alcohols	52		
	2.2.1	PTSA mediated dearomative ring expansion followed by			
		spirocyclization (via oxygen insertion) of indole-2-carboxylates			
		with propargylic alcohols	53		
	2.2.1.1	PTSA mediated synthesis of substituted indene fused pyrano-indolones	59		
	2.2.1.2	2 PTSA mediated synthesis of 3-allenyl indole-2-carboxylates	61		
	2.2.2	Cu(II)-catalyzed annulations of indole-2-carboxylic acids and propargylic			
		alcohols leading to indene fused pyrano-indolones (pentacyclics)	63		
	2.2.3	Plausible pathway for the formation of spirocyclic compounds 15	70		
	2.2.4	Synthesis of intermediate X	71		
	2.2.5	Plausible pathway for the formation of 16	72		
	2.2.6	Plausible pathway for the formation of compounds of type 17	73		
	2.2.7	Plausible catalytic pathway for the formation of compound 19ab	74		
2.3	Decarboxylative annulations of coumarin-3-carboxylic acids with				
	tert-propargylic alcohols under Cu (II)-catalysis:				
	Forma	tion of naphthochromenones	74		
	2.3.1	Cu(II)-catalyzed synthesis of 6 <i>H</i> -naphtho[2,1- <i>c</i>]chromen-6-ones 20	77		
	2.3.2	Plausible catalytic pathway for the formation of compound 20aa	85		
2.4.1	Ruthenium(II)-catalyzed oxidative [4+2] annulation of chromene and				
	couma	rin-3-carboxylic acids with alkynes via sp ² C-H bond activation	85		
2.4.1.1	Synthe	esis of substituted 4H,5H-pyrano[3,4-c]chromen-4-ones under			
	Ru(II)	-catalysis	88		
2.4.2	Synthesis of Ruthenium(0)-metal complexes 22 from				
	chrom	ene-3-carboxylic acids, propargylic alcohols			
	and [R	$\operatorname{duCl}_2(p\text{-cymene})]_2$	94		
2.4.3	Synthe	esis of substituted 4H.5H-pyrano[3.4-c]chromene-4.5-diones 23	97		

2.4.4	Plausible catalytic pathway for the formation of the pyrano-chromones 21 and 23 10			
2.4.5	Plausible pathway for the formation of Ru(0)-metal complexes 22			
2.5.1	Thermally induced [4+2] cycloaddition reaction of phosphorus/sulfur			
	based allenes or allenoates with 3,6-diphenyl-1,2,4,5-tetrazine	102		
2.5.2	Synthesis of substituted 3, 6-diphenylpyridazine 24-28	104		
2.5.3	Plausible pathway for the formation of substituted 3,6-diphenylpyridazine 25	108		
SUMN	MARY	109		
Chapt	ter 3: EXPERIMENTAL SECTION	110		
3.1	Synthesis of spiro[benzo-oxazinefurans] or cyclopenta[e]indole-2-carboxylates:			
	General procedure for the synthesis of compounds 15-16	111		
3.2	Synthesis of indene fused pyrano indolones:			
	General procedure for the synthesis of compounds 17ba and 17ea-eb	120		
3.3	Synthesis of 3-allenyl-indole-2-carboxylates:			
	General procedure for the synthesis of compounds 18aa-18db	123		
3.4	Synthesis of indene fused pyrano indolones (fused pentacyclics):			
	General procedure for the synthesis of compounds 19aa-19bb	127		
3.5	Synthesis of methyl (<i>E</i>)-3-(3-(2-chloro-5-nitrophenyl)-1-(4-fluorophenyl)-			
	1-hydroxy-3-phenylallyl)-1 H -indole-2-carboxylate intermediate \mathbf{X}	136		
3.6	Synthesis of 6 <i>H</i> -naphtho[2,1- <i>c</i>]chromen-6-ones:			
	General procedure for the synthesis of compounds 20aa-20le	137		
3.7	Synthesis of 4 <i>H</i> ,5 <i>H</i> -pyrano[3,4- <i>c</i>]chromen-4-ones:			
	General procedure for the synthesis of compounds 21	155		
3.8	Synthesis of Ru(0)-metal complexes:			
	General procedure for the synthesis of compounds 22ra-rc	168		
3.9	Synthesis of substituted 4 <i>H</i> ,5 <i>H</i> -pyrano[3,4- <i>c</i>]chromene-4,5-diones:			
	General procedure for the synthesis of the compounds 23ab-aj	171		
3.10	Thermally induced [4+2] cycloaddition reactions of 3,6-diphenyl 1,2,4,5-tetrazine	;		
	with allenes:			

	General procedure for the synthesis 3,6-diphenylpyridazines (24a-d and 25)	175
3.11	Synthesis of 3,6-diphenylpyridazines 26a-b, 27a-c and 28	178
3.12	X-ray crystallography	182
REF	ERENCES	187
APPI	ENDIX	i
A) Copies of ¹ H/ ¹³ C-NMR spectra for representative compounds	i
В	Publication numbers/atomic coordinates for X-ray structures reported in this the	nesis xii

STATEMENT

I hereby declare that the matter embodied in this thesis is the result of investigations carried out by me in the School of Chemistry, University of Hyderabad, Hyderabad, under the supervision of Prof. K. C. Kumara Swamy.

In keeping with the general practice of reporting scientific observations, due acknowledgements have been made wherever the work described is based on the findings of other investigators.

Hyderabad

May 2022

Mallepalli Shankar

DECLARATION

I, Mallepalli Shankar hereby declare that this thesis entitled "Annulation/Cycloaddition Reactions of Indole/Chromene/Coumarin Carboxylic Acids or Tetrazine with C-C π -Components" submitted by me under the guidance and supervision of Professor K. C. Kumara Swamy is a bonafide research work which is also free from plagiarism. I also declare that it has not been submitted previously in part or in full to this University or any other University or Institution for the award of any degree or diploma. I hereby agree that my thesis can deposited in Shodganga/INFLIBNET.

A report on plagiarism statistics from the University Librarian is enclosed.

Date: 31/05/2022

Name: MALLEPALLI SHANKAR

31/05/22 Signature of the Student:

Reg. No.: 15CHPH13

Signature of the Supervisor:

Kumala Swamylle

PROF. K.C. KUMARA SWAMY School of Chemistry University of Hyderabad Hyderabad- 500 046, INDIA

CERTIFICATE

This is to certify that the thesis entitled "Annulation/Cycloaddition Reactions of Indole/Chromene/Coumarin Carboxylic Acids or Tetrazine with C-C π -Components" submitted by Mr. MALLEPALLI SHANKAR bearing registration number 15CHPH13 in partial fulfillment of the requirements for award of Doctor of Philosophy in the School of Chemistry is a bonafide work carried out by him under my supervision and guidance.

This thesis is free from plagiarism and has not been submitted previously in part or in full to this or any other University or Institution for award of any degree or diploma. Further the student has four publications before the submission of his thesis.

Part of this thesis has been published in the following publication:

1. Shankar, M.; Anasuyamma, U.; Kumara Swamy, K. C. Adv. Synth. Catal. 2022, 364, 643.

The following papers are to be communicated.

- 2. Shankar, M.; Kalyani, A.; Anitha, M.; Siva Reddy, A.; Kumara Swamy, K. C. (to be communicated)
- 3. Shankar, M.; Kumara Swamy, K. C. (to be communicated).
- 4. Shankar, M.; Kumara Swamy, K. C. (to be communicated).

He has also made presentations in the following conferences:

- 1. Poster presentation in the *Chemfest-2017* (annual in-house symposium), School of Chemistry, University of Hyderabad, INDIA, Feb-**2017**.
- 2. Poster presentation in the XIVth J-NOST Conference for Research Scholars, IICT, Hyderabad, INDIA, Nov-Dec, **2018**.
- 3. Oral and Poster presentation in the *Chemfest-2020* (annual in-house symposium), School of Chemistry, University of Hyderabad, INDIA, Feb-**2020**.

Further the student has passed the following courses towards fulfillment of coursework requirement for Ph. D.:

Sl. No.	Course	Title	Credits	Pass/Fail
1,	CY452	Organic Reactions and Mechanisms	3	Pass
2.	CY573	Stereoselective Organic Synthesis	2	Pass
3.	CY580	Natural Products and Medicinal Chemistry	2	Pass
4.	CY801	Research Proposal	3	Pass
5.	CY805	Instrumental Methods A	3	Pass

Kumara Swamyue

Prof. K. C. Kumara Swamy

(Thesis supervisor)

PROF. K.C. KUMARA SWAMY
School of Chemistry
University of Hyderabad
I lyderabad- 500 046, INDIA

Hyderabad

May 2022

Dean

School of Chemistry

University of Hyderabad

Hyderabad 500 046an

School of Chemistry
INDIAUniversity of Hyderabad
P.O. Central University

Gachibowli, Hyderabad-500 046.

viii

ACKNOWLEDGEMENTS

With high regards and profound respect, I wish to express my deep sense of gratitude to **Prof. K. C. Kumara Swamy** for his guidance, freedom and valuable suggestions throughout my research work. It has been a great privilege for me to work with him throughout the course of my stay. He has been quite helpful in improving my confidence, patience and communication skills.

I thank the present and former Deans, School of Chemistry, for providing me the facilities needed for my research. I extend my sincere thanks to all the faculty members for their cooperation on various aspects.

I am deeply indebted to all my teachers right from my school to university for the support and training I received in my academic career and I would like to thank Prof. M. Vijjulatha for her suggestions and guidance during my postgraduation.

I am especially thankful to my senior lab-mates Dr. Mandala Anitha, Dr. U. Anasuyamma and Dr. T. R. N. Prasad for their enormous help. I am also thankful to my former lab-mates Dr. Srinivasarao, Dr. A. Leela Siva Kumari, Dr. A. Siva Reddy, Dr. R. Kishore, Dr. K. Nagaraju, Dr. J. Kashanna, Dr. M. Subhendu, Dr. A. Nagaraju, Dr. K. Selvaraj, Dr. Rajnikanth, Dr. L. Mahender, Dr. A. Sanjeeva Kumar, and Mr. Ravi for their co-operation in the lab. I acknowledge help from my present lab-mates: Mr. Sandeep, Ms. Kalyani, Mr. Sachin, Mr. Shubham, Mr. Suraj, Mr. Asif, and Mr. Shabbir.

I would like to express my sincere gratitude to all my childhood friends, BSc and MSc friends and my friends in School of Chemistry for their support in many ways. All of them have been very kind, generous, affectionate and helpful.

I also thank all the non-teaching staff of the School of Chemistry for their help. It is my privilege to acknowledge persons-in-charge of NMR, IR, HRMS and single crystal XRD. I also thank ACRHEM-University of Hyderabad for allowing me to get some HRMS spectra.

I thank University Grants Commission (UGC, New Delhi) for financial support. Partial financial support from SERB under J C Bose fellowship of my supervisor is also acknowledged. I also thank Department of Science and Technology (New Delhi; under FIST and PURSE) and UGC (New Delhi; under UPE and CAS) for setting up many equipment facilities at the University of Hyderabad.

I would like to express my heartfelt thanks to my beloved parents Mallepalli Chennaiah and Mallepalli Venkatamma for their enormous love, kindness and faith on me. I am extremely thankful to my beloved wife Mallepalli Tulasi and my daughter Mallepalli Krishika for their enormous love, support and affection. I express my heartfelt thanks to my brother Mallepalli Ravinder, sister-in-law Mallepalli Jyothi and sons Abhinav and Ashwith for their love, affection, encouragement and support throughout this journey. I also thankful to my beloved sister Pushpalatha, brother-in-law Srinivas Reddy, nephews Gnaneshwar, Vigneshwar and niece Bhargavi Reddy. for their love and affection.

I also thank my relatives Thum Venkatramulu, E. Ramanjaneyulu, V Srinivas, K. Rambabu, K. Krishna Kumari, N. Ranjith Kumar and Sathwika.

I would like to express my sincere gratitude to my friends B. Nagaraju, D. Laxman, M. Shekarbabu, Anantha Raju, Uma, S. Sudhakar Reddy, P. Pavan Kumar, Swetha, Mallesh, Madhavi

Mallepalli Shankar.....

LIST OF PUBLICATIONS

(A) Published papers:

1. Reaction of Indole-2-Carboxylates/Carboxylic Acids with Propargylic Alcohols: Dearomative Ring Expansion/Spirocyclization vs Fused Pentacyclics.

Mallepalli Shankar, Uruvakili Anasuyamma, K. C. Kumara Swamy* *Adv. Synth. Catal.* **2022**, *364*, 643.

2. Reactivity of Epoxy-Ynamides with Metal Halides: Nucleophile (Br/Cl/OH)-Assisted Tandem Intramolecular 5-exo-dig or 6-endo-dig Cyclization and AgF₂-Promoted Oxidation.

Mandala Anitha, **Mallepalli Shankar**, K. C. Kumara Swamy* *Org. Chem. Front.* **2019**, *6*, 1133.

 Reactivity of Allenylphosphonates/Allenylphosphine Oxides Some New Addition/Cycloaddition and Cyclization Pathways.

K. C. Kumara Swamy*, Mandala Anitha, Shubham Debnath, **Mallepalli Shankar** *Pure Appl. Chem.* **2019**, *91*, 773.

4. Ruthenium-Catalyzed Oxidative Annulation and Hydroarylation of Chromene-3-carboxamides with Alkynes *via* Double C-H Functionalization.

R. N. Prasad Tulichala, **Mallepalli Shankar**, K. C. Kumara Swamy *J. Org. Chem.* **2017**, *82*, 5068.

(B) The following papers are to be communicated.

5. Reactions of Phosphorus/Sulfur Based Allenes: Pd(II)-Catalyzed Cyclization/Cycloadditions and Thermally Induced Cycloadditions with 3,6-Diphenyl 1,2,4,5-Tetrazine.

Mallepalli Shankar,^a Adula Kalyani,^a Mandala Anitha, K. C. Kumara Swamy (*to be communicated*)

- **6.** Decarboxylative Annulations of Coumarin-3-carboxylic Acids with *tert*-Propargylic Alcohols Under Cu (II)-Catalysis: Formation of Naphthochromenones **Mallepalli Shankar** and K C Kumara Swamy* (*to be communicated*).
- **7.** Ruthenium(II)-Catalyzed Oxidative [4+2] Annulations of Chromene and Coumarin-3-carboxylic Acids with Alkynes *via* sp² C-H bond activation.

Mallepalli Shankar and K C Kumara Swamy* (to be communicated).

Participation in Conferences/ Symposia

- 1. Catalytic Transformations Involving Allenes/Alkynes and Ynamides- Identification of Some Intermediates.
 - K. C. Kumara Swamy,* K. Sandeep, **Mallepalli Shankar**, Adula Kalyani and Mandala Anitha
 - (OMCOS-2019) 20th IUPAC International Symposium on Organometallic Chemistry Directed Towards Organic Synthesis, Heidelberg, Germany, July-2019.
- 2. Reactivity of Phosphonate and Sulfonate Based Systems: Some New Findings.
 K. C. Kumara Swamy,* A. Kalyani, Suraj, Mallepalli Shankar and A. Srinivasarao
 International Conference on Main-group Molecules to Materials-II, NISER-Bhubaneswar, Dec-2021.
- **3.** New Aspects of Iodination/DeIodination and Related Reactions Involving Allenylphosphonates/Allenylphosphine oxides.
 - K. C. Kumara Swamy,* A. Kalyani, M. Anitha and Mallepalli Shankar (ICPC-22) 22nd International Conference on Phosphorus Chemistry, Budapest, Hungary, July-2018.
- **4.** Ruthenium(II)-Catalyzed Oxidative [4+2] Annulations of Chromene-/Coumarin-3-carboxylic Acids with Alkynes *via* sp2 C-H Bond Activation.

Mallepalli Shankar and K. C. Kumara Swamy*

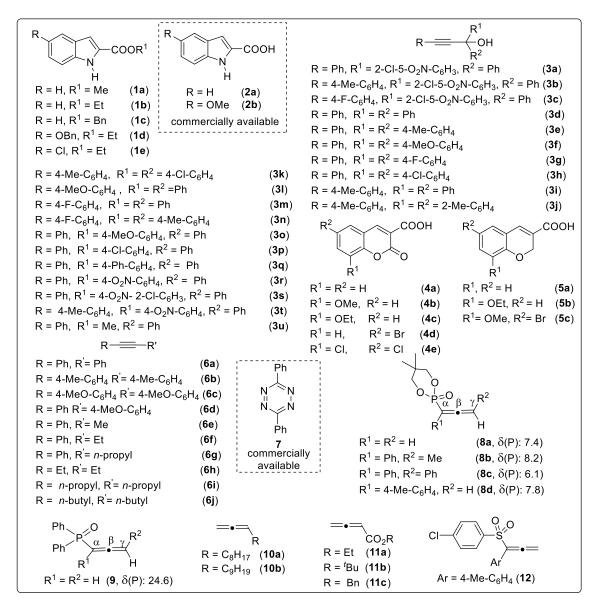
XIV J-NOST Conference for Research Scholars, CSIR-Indian Institute of Chemical Technology, Hyderabad (28th November-1st December, 2018) (**Poster presentation**).

5. Ruthenium-Catalyzed Oxidative Annulation of Coumarin-3-Carboxylic Acid and 2*H*-Chromene-3-Carboxylic Acids with Alkynes and Catalytic Transformations of 2-Substituted Indoles (Acids/Esters) with Propargylic Alcohols.

Mallepalli Shankar and K. C. Kumara Swamy*

ChemFest-2020 (annual in-house symposium) School of Chemistry, University of Hyderabad, INDIA, Feb-2020 (Oral and Poster Presentation).

6. Synthesis and Structural Aspects of Novel Acyclic Nucleoside Phosphonates
Srinivasarao Allu, Mallepalli Shankar and K. C. Kumara Swamy*


ChemFest-2017 (annual in-house symposium), School of Chemistry, University of Hyderabad, INDIA, Feb-2017 (Poster Presentation).

Synopsis

This thesis deals with the following topics: (i) Reaction of indole-2-carboxylates/carboxylic acids with propargylic alcohols that involves dearomative ring expansion/spirocyclization and formation of fused pentacyclics, (ii) Decarboxylative annulation of coumarin-3-carboxylic acids with *tert*-propargylic alcohols under Cu(II)-catalysis leading to naphthochromenones, (iii) Ruthenium(II)-catalyzed oxidative [4+2] annulation of chromene and coumarin-3-carboxylic acids with alkynes via C(sp^2)-H bond activation, and (iv) Thermally induced regioselective [4+2] cycloaddition reactions of phosphorus/sulfur based allenes and allenoates with 3,6-diphenyl-1,2,4,5-tetrazine.

This thesis is subdivided into three chapters: (a) Introduction (literature survey), (b) Results and Discussion, and (c) Experimental Section. In Chapter 1, a review of literature on aspects relevant to the present work is presented. In Chapter 2, the results obtained on these aspects are discussed while in Chapter 3, the experimental details are described. The compounds prepared in the present study are characterized by MP (as applicable), IR and NMR (¹H, ¹³C, ¹⁹F and ³¹P as appropriate) techniques followed by HRMS. X-ray structure determination has been performed wherever appropriate. Summary as well as references are given at the end of Chapter 3.

Precursors used in the present study are shown in Chart 1. Among these, **2a-b**, **6a**, **6e-j** and **7** are commercially available, and others are prepared by methodologies available in the literature. Compound numbers given here are different from that in the main part of the thesis.

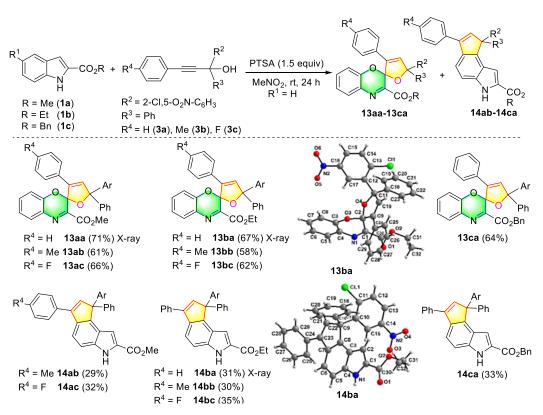


Chart 1: Precursors used in the present study.

(i)(a) PTSA mediated dearomative ring expansion followed by spirocyclization of indole-2-carboxylates with propargylic alcohols leading to spiro or fused heterocyclics

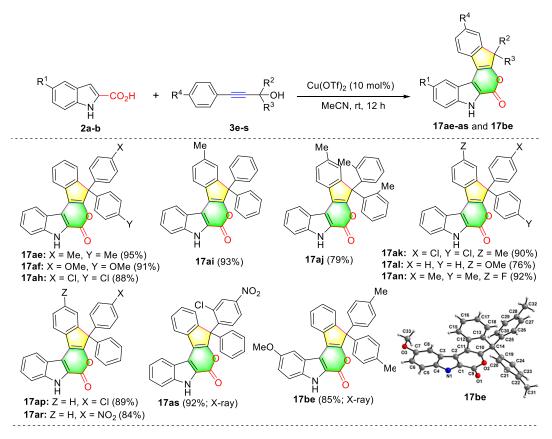
Spirocyclics and fused N/O-containing heterocyclics have always been important structural motifs in pharmaceutical chemistry. In the present study, we have demonstrated a viable synthetic route for spiro[benzo-oxazinefurans] **13** and cyclopenta[*e*]indole-2-carboxylates **14** by the reaction of indole-2-carboxylates (**1a-c**) with *tert*-propargylic alcohols (**3a-c**) in the presence of PTSA (*p*-TsOH) in MeNO₂ and open air at room temperature (25 °C) for 24 h (Scheme 1). Here, formation of spirocyclic compounds of type **13** involves

dearomative ring expansion through oxygen insertion followed by spirocyclization under aerobic conditions. The structures of products **13aa**, **13ba** and **14ba** were confirmed by X-ray crystallographic analysis.

Scheme 1. Synthesis of spiro[benzo-oxazinefurans] **13** and cyclopenta-indole-2-carboxylates **14**

(i)(b) PTSA Mediated synthesis of indene fused pyrano-indolones from indole-2-carboxylates and propargylic alcohols

In an attempt to enhance the yield of products **13** or **14** (cf. Scheme 1), we treated indole-2-carboxylate **1b** with propargylic alcohol **2a** in the presence of PTSA in MeNO₂ for 12 h by increasing the temperature to 60 °C. To our surprise, we obtained the double cyclized indene fused pyrano-indolone (a fused pentacyclic) **15ba** (X-ray) in 92% yield probably by cyclization of the *in-situ* generated carboxylic acid. It is noteworthy to mention that compound **15ba** can be synthesized from the isolatable allene intermediate **16ba** in the presence of PTSA in MeNO₂ at 60 °C/ 6 h (Scheme 2), which in turn proves that the reaction takes place *via* allene

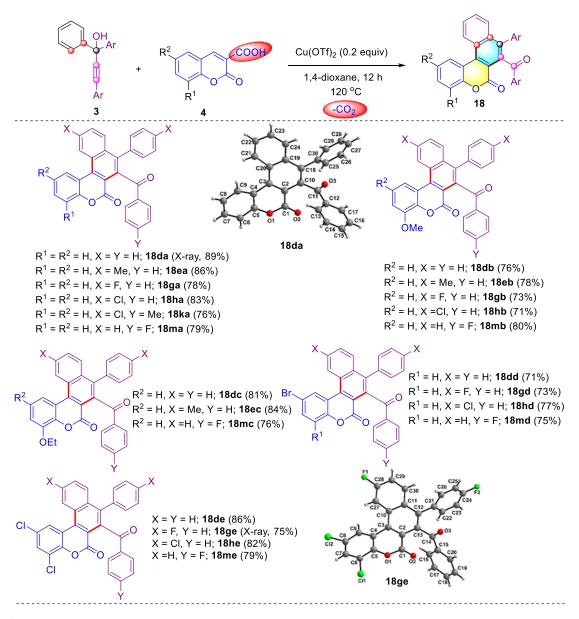

intermediate under the conditions employed herein. Formation of allene intermediate is exemplified by the isolation of **16aa** as well as **16ba-bc** and **16da-db** (Scheme 3).

Scheme 2. Synthesis of substituted indene fused pyrano-indolones

Scheme 3. Formation of substituted 3-allenyl indole intermediates **16aa**, **16ba-bc** and **16da-db**

(i)(c) Cu(II)-Catalyzed annulation of indole-2-carboxylic acids with propargylic alcohols leading to pentacyclic indene fused pyrano-indolones

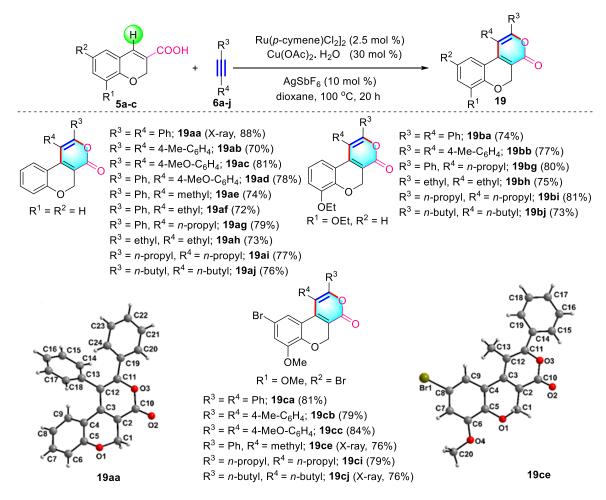
In the above reactions, we have utilized indole-2-carboxylates. However, we surmised that the course of the reaction could be altered if the carboxylic acid itself is used because of the availability of the acidic –OH group. Thus, by treating equimolar amounts of the readily available indole-2-carboxylic acid **2a** and propargylic alcohol **3e** with Cu(OTf)₂ in MeCN at 25 °C for 12 h, we obtained the indene fused pentacyclic product **17ae** in 95% yield. A wide variety of other examples **17af-as** and **17be** could also be readily prepared by this methodology (Scheme 4). Structures of compounds **17as** and **17be** were confirmed by the X-ray crystallographic analysis. Possible mechanistic pathways have been discussed in the thesis.



Scheme 4. Synthesis of substituted indene fused pyrano-indolones

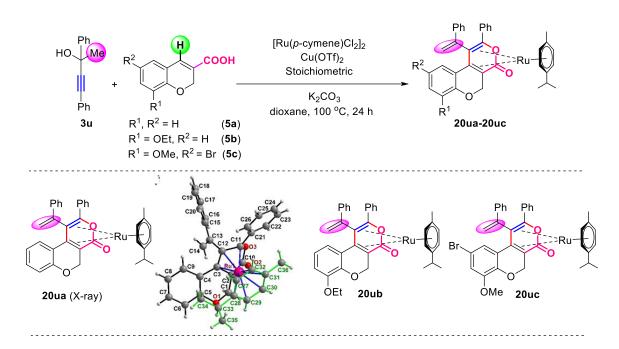
(ii) Decarboxylative annulation of coumarin-3-carboxylic acids with *tert*-propargylic alcohols under Cu (II)-catalysis: Formation of naphthochromenones

In continuation of the previous section, we envisioned that instead of indole carboxylic acids, use of other carboxylic acids may lead to a different line of reactivity. For this purpose, we chose chromene carboxylic acid and coumarin carboxylic acid both of which have a double bond in conjugation with the phenyl ring. Thus, we treated propargylic alcohol **3d** with coumarin-3-carboxylic acid **4a** in the presence of Cu(OTf)₂ (20 mol%) in 1,4-dioxane at 120 °C (oil bath) for 12 h. Pleasingly, this reaction afforded the naphthochromenone **18da** in 89%


yield. The optimized conditions were employed to obtain other naphthochromenones (Scheme 5). Structures of compounds **18da** and **18ge** were confirmed by X-ray crystallographic analysis. The reaction involves decarboxylation of coumarin-3-carboxylic acid in the presence of $Cu(OTf)_2$; this decarboxylated intermediate with -Cu(OTf) moiety undergoes *anti*-Michael addition with α,β -unsaturated carbonyl compound (generated through Meyer-Schuster rearrangement of propargylic alcohol) followed by intramolecular electro-cyclization and oxidation/aromatization process delivering the annulated product.

Scheme 5. Synthesis of naphtha-chromen-6-ones from coumarin-3-carboxylic acids and propargylic alcohols under Cu(II)-catalysis

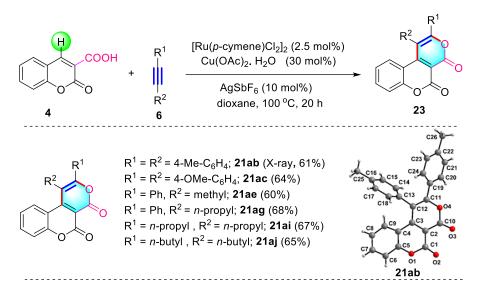
(iii)(a) Ruthenium(II)-catalyzed oxidative [4+2] annulation of chromene-3-carboxylic acids with alkynes via $C(sp^2)$ -H bond activation


In continuation of the above studies, we wanted to check the reactivity of alkynes instead of propargylic alcohols with chromene/coumarin-3-carboxylic acids. Hence, we treated chromene-3-carboxylic acid **5a** with diphenylacetylene **6a** in the presence of [RuCl₂(*p*-cymene)]₂ (2.5 mol%) as catalyst, Cu(OAc)₂·H₂O (30 mol%) as the oxidant and AgSbF₆ (10 mol%) as the additive in 1,4-dioxane solvent at 100 °C for 20 h. Satisfyingly, we obtained the desired annulated product **19aa** in 88% yield; under the same conditions similar reactions delivered the other pyrano chromenes (Scheme 6). This reaction proceeds through cascade cyclo-metalation with Ru(II)/C-H activation, alkyne coordination/insertion followed by the elimination affording the annulated products. The structures of compounds **19aa**, **19ce** and **19cj** were confirmed by X-ray crystallographic analysis.

Scheme 6. Synthesis of substituted pyrano-chromen-4-ones under Ru(II)-catalysis

(iii)(b) Formation of Ruthenium(0)-metal complexes from chromene-3-carboxylic acids and propargylic alcohols

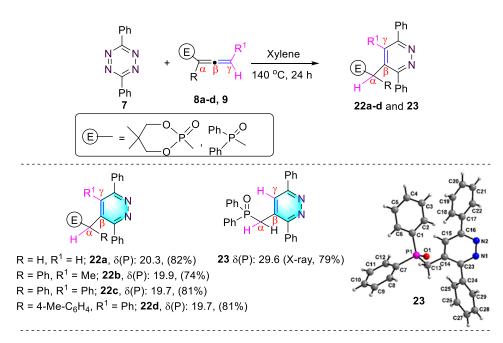
As an extension of the above reaction, we wanted to check the reactivity of propargylic alcohols **3** with chromene-3-carboxylic acid **5**, since a reaction similar to that discussed above can also take place. Thus, we employed equimolar ratio of propargylic alcohol **3u** and chromene-3-carboxylic acid **5a** using stoichiometric [Ru(*p*-cymene)Cl₂]₂, Cu(OTf)₂ and K₂CO₃ in 1,4-dioxane at 100 °C for 24 h we obtained the [Ru]-complex **20ua** [*Note*: Initially, we had used only 5 mol% of [Ru(*p*-cymene)Cl₂]₂]. Two more complexes were also synthesized under the same reaction conditions (Scheme 7). The structure of **20ua** was confirmed by the X-ray crystallographic analysis. Removal of ruthenium to get the [Ru]-free annulated product have not been successful so far.

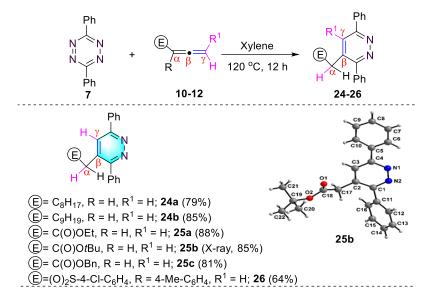


Scheme 7. Synthesis of Ru(0)-metal complexes

(iii)(c) Ruthenium(II)-catalyzed oxidative [4+2] annulation of coumarin-3-carboxylic acids with alkynes via $C(sp^2)$ -H bond activation

In an effort to extend the above [Ru]-catalyzed cyclization, we wanted to check the reactivity of coumarin-3-carboxylic acid under the same reaction conditions in order to know the effect of the additional carbonyl group on product formation. Hence we employed


coumarin-3-carboxylic acid **4a** with alkyne **6b** and as expected, [4+2] annulation occurred to give the annulated product **21ab** in 61% yield; similarly other internal alkynes were employed along with **4a** to afford the annulated products as shown in Scheme 8. The structure of compound **21ab** was confirmed by single crystal X-ray crystallography.


Scheme 8. Synthesis of substituted pyrano[3,4-c]chromene-4,5-diones from coumarin-3-carboxylic acid and alkynes

(iv) Thermally induced [4+2] cycloaddition of phosphorus/sulfur based allenes and allenoates with 3,6-diphenyl-1,2,4,5-tetrazine

Tetrazine can act as a diene in Inverse Electron Demand Diels-Alder (IED D-A) reaction with dienophiles. Tetrazines have been utilized for the cycloaddition reactions, but so far, the reacting partners have been limited mainly to alkynes and to our knowledge, cycloaddition reactions of tetrazines with allenes is rather known scantily. The resulting compounds, pyridazines, show very interesting biological activities. In our study, the reaction of 3,6-diphenyl-1,2,4,5-tetrazine 7 with allenyl phosphonate 8a in xylene at 140 for 24 h afforded the cycloaddition adduct 22a in 82% yield. The same reaction conditions were employed with other allenes also to afford a variety of pyridazines (Scheme 9). This reaction proceeds through the IED D-A reaction followed by [1,3]-H shift to deliver the substituted pyridazines. Allenes 10-12 underwent the reaction at a comparatively lower temperature of 120 °C within 12 h to deliver the cycloadducts 24a-b, 25a-d and 26 (Scheme 10). Structures of compounds 23 and 25b have been established by X-ray crystallographic analysis.

Scheme 9. Synthesis of phosphorus based substituted pyridazines

Scheme 10. Synthesis of substituted pyridazines via allenes

INTRODUCTION

This chapter deals with the literature relevant to the topics that will be discussed in Chapter 2. General introduction for the annulation reactions of indole carboxylates/carboxylic acids and chromene/coumarin carboxylic acids with C-C π components is presented in section 1.1; the importance and the reactivity pattern in cycloadditions involving tetrazine and alkynes/allenes is also briefly alluded to. Recent literature on intra- and inter-molecular annulation reactions of indoles with C≡C/C=C bonded systems are discussed in sections 1.2-1.3. In section 1.4, decarboxylative annulation reactions of aromatic/heteroaromatic carboxylic acids with unsaturated compounds under transition metal catalysis are presented. Section 1.5 delves on annulation reactions of aromatic/hetero-aromatic carboxylic acids with C≡C/C=C scaffolds under transition metal catalysis. The available literature on Inverse Electron Demand Diels-Alder (IED-D-A) reactions of tetrazines with dienophiles is presented in the section 1.6.

1.1 General Introduction

Transition metal catalyzed annulation involving the carboxylic acids for the synthesis of poly/heterocyclic architectures is one of the broadly studied fields in organic chemistry. The carboxylate moiety of aromatic carboxylic acids can act as a traceless directing group for the metal assisted C-H functionalization to afford the diverse functionalized motifs. It can also be involved in [4+2], 1a-b, 1f-n [4+1]² and [3+2]³ annulations with C-C π components under transition metal catalysis *via* carboxylate directed *ortho*-C-H/O-H functionalization. In addition, it can also undergo decarboxylative annulation reactions with C=C or C=C systems. Because of the versatility and synthetic utility, the annulation reactions involving indole carboxylic acid and chromene/coumarin carboxylic acids with unsaturated compounds is an emerging field in organic chemistry. Indole is more reactive towards the electrophilic substitution reactions and undergoes a variety of annulation reactions. Indole containing drugs have been approved as anti-cancer, anti-hypertension, antimicrobial, anti-depressant and erectile-dysfunction agents. Molecules possessing chromene/coumarin scaffolds also

show significant anti-HIV RT,^{12a-b} antimicrobial, anti-tuberculosis,^{12c} diuretic, analgesic,^{12d} and anti-cancer^{12e-g} properties. Selected indole and coumarin containing drug molecules are shown in Figure 1.

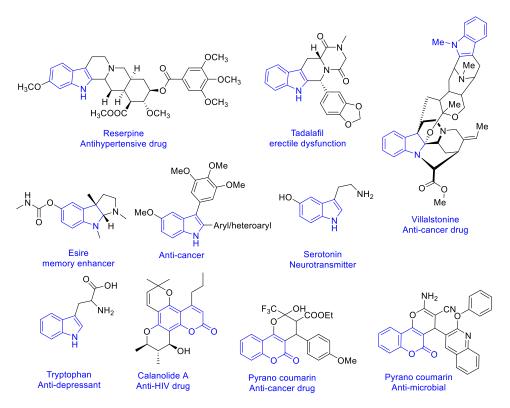


Figure 1. Selected indole and coumarin containing drug molecules

The past six decades have seen an incredible growth in the applications of Inverse Electron Demand Diels-Alder (IED-D-A) or bioorthogonal reactions of electron poor dienes with electron rich counterparts (dienophiles) for the development of novel heterocyclic architectures. The basic difference between the general Diels-Alder and IED-D-A reactions is the addition process of diene and dienophile. In Diel-Alder reaction, HOMO of the electron rich diene and LUMO of the electron poor dienophile will participate in the cycloaddition. In contrast to this, in the IED-D-A reactions, LUMO of the electron poor diene and HOMO of the electron rich dienophile will take part in the reaction. Tab-c, 14 IED-D-A reactions are well-utilized in the fields of peptide research, total synthesis and medicinal/ biological chemistry for the detection of the living cells or for imaging the small molecules in the living organisms. There are

several electron deficient dienes such as tetrazines, triazines, diazines and oxadiazoles. Among these, cycloadditions involving tetrazine are more versatile compared to other conventional biorthogonal cycloaddition reactions. The main advantages of the tetrazine cycloaddition reactions are: (i) they do not require a metal catalyst, (ii) reaction rates are high compared to other cycloadditions and (iii) reactions can be performed with micromolar quantities. The fluorogenic properties of the formed pyridazines/1,2-diazine and 'turn on' fluorescence nature upon cycloaddition is also important in connection with the labeling of the live cells in microorganisms and intracellular bioimaging of the small molecules. In most cases, active fluorophore pyridazines/1,2-diazines as the final products are generated. The resulting compounds, pyridazines, are popular pharmacophores and present in herbicides cauch as credazine, for pyridafol and pyridate. Alongside, pyridazines are structurally important motifs with high potential anti-cancer, anti-depressant, anti-hypertension, anti-inflammatory and anti-alzheimers activity. However, the natural abundance of the pyridazines is limited. Representative pyridazine based drug molecules are depicted in Figure 2.

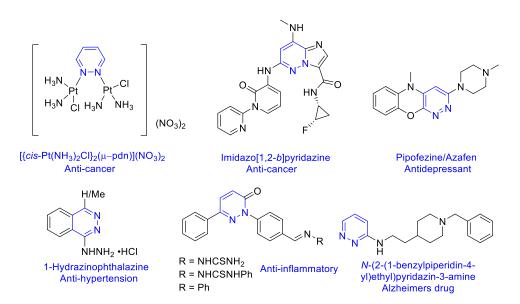


Figure 2. Representative pyridazine based drug molecules

In the current work, we plan to utilize indole and chromene/coumarin carboxylic acids for annulations with C-C π components (alkynes and propargylic alcohols) under transition metal catalysis and 3,6-diphenyl-1,2,4,5-tetrazine for the thermally induced cycloaddition reaction with allenes. The relevant literature is outlined in the following sections.

1.2 Intermolecular annulation reactions of indole substrates with propargylic alcohols

Very recently, Li's group developed a regio- and enantio-selective phosphoric acid catalyzed asymmetric [3+2] cycloaddition of 3-substituted indoles **1.1** with directing group (*p*-NHAc or *p*-OH) tethered *tert*-propargylic alcohols **1.2** for the synthesis of chiral pyrroloindoles **1.3** using mild reaction conditions (Scheme 1.1).²² Here, *p*-NHAc acts as activating as well as directing group and is crucial for the cycloaddition. It participates in hydrogen bonding to chiral phosphoric acid catalyst facilitating chiral induction.

$$R^{2}$$

$$Ar$$

$$Ar = 4-AcNH-C_{6}H_{4}$$

$$Ar = 2.4,6-(/Pr)_{3}C_{6}H_{2}$$

$$Ar = 4-AcNH-V$$

$$Ar = 4-AcNH-C_{6}H_{4}$$

$$Ar = 9-anthryl$$

$$Ar = 9-anthryl$$

$$Ar = 9-anthryl$$

$$Ar = 9-anthryl$$

Scheme 1.1. Chiral phosphoric acid catalyzed [3+2] cycloaddition reactions of indoles with propargylic alcohols

Zhan *et al.* developed an effective protocol for the chemoselective synthesis of two different types of pyrroloindoles (**1.6** and **1.8**) from the readily available indoles **1.4** and *sec-/tert*-propargylic alcohols **1.5/1.7** under the same conditions using AgOTf as the catalyst without using any base or ligand (Scheme 1.2).²³

Scheme 1.2. Ag(I)-catalyzed chemoselective cascade synthesis of pyrroloindoles

Sanz *et al.* discovered a method for the synthesis of 3-indenyl indoles **1.10** through 1,2-indole migration of the C3-propargylated indoles **1.9** under gold-catalysis. This process involves 1,2-indole migration followed by C-H insertion or Nazarov cyclization of C3 propargylated indoles. When indole **1.9** was treated with gold(I)-catalyst in dichloromethane solvent at room temperature, 3-indenyl indole **1.10** is obtained (Scheme 1.3a).²⁴ On the other hand, **1.10** can also be synthesized directly from indole **1.11** and propargylic alcohols **1.12** in a sequential one pot manner by using PTSA and gold(I)-catalyst (Scheme 1.3b).

(a)
$$R^{3}$$
 R^{4} R^{5} R^{5} R^{5} R^{6} R^{6} R^{5} R^{6} R^{6} R^{7} R^{7}

Scheme 1.3. Gold(I)-catalyzed annulations of the indoles with propargylic alcohols

Later, the same Sanz's group reported a methodology for the synthesis of 3-(1,3-butadienyl)indoles **1.14** by the reaction of **1.11** with propargylic alcohols **1.13** under PTSA catalysis at room temperature as shown in Scheme 1.4.²⁵ But they did not utilize the formed active indole-substituted butadienes **1.14** for post-functionalization/annulation to generate new heterocyclic motifs, although several possibilities exist.

$$R^{3} \xrightarrow{N_{R^{1}}} R^{2} + Me \xrightarrow{OHPh} Ph$$

$$R^{3} \xrightarrow{N_{R^{1}}} R^{2} + MeCN$$

$$R^{1} \xrightarrow{N_{R^{1}}} R^{2} \xrightarrow{N_{R^{1}}} R^{2}$$

$$R^{2} \xrightarrow{N_{R^{1}}} R^{2} \xrightarrow{N_{R^{1}}} R^{2}$$

$$R^{2} \xrightarrow{N_{R^{1}}} R^{2} \xrightarrow{N_{R^{1}}} R^{2}$$

$$R^{2} \xrightarrow{N_{R^{1}}} R^{2} \xrightarrow{N_{R^{1}}} R^{2}$$

Scheme 1.4. PTSA-catalyzed butadienylation of indoles with propargylic alcohols

Later, our group successfully demonstrated a novel sequential one-pot methodology for the construction of highly conjugated cyclopenta[c]quinolines **1.15** via 3-allenylindoles/3-(1,3-butadienyl indoles) **1.14** using Cu(OTf)₂ and PTSA through the dearomatized oxidative ring expansion of the formed intermediate **1.14** with air as the sole oxidant (Scheme 1.5). The reaction proceeds through Brønsted acid mediated allenylation and isomerization to afford intermediate **1.14**, which upon copper-catalyzed dearomatization/oxidative ring expansion gives the final product **1.15**.²⁶

Scheme 1.5. Sequential or one pot synthesis of fused cyclopenta[c]quinolines using PTSA and Cu(OTf)₂

Recently, our group reported a pathway for the generation of the terphenylamines **1.16** from indoles **1.11** and propargylic alcohols **1.13** by the intramolecular cyclization of 3-butadienyl indoles **1.14** under gold(III)-catalysis.²⁷ This reaction can also be achieved by starting with the indole and propargylic alcohol. In the case of sequential reaction, first the indole partner **1.11** reacts with the propargylic alcohol **1.13** in the presence of PTSA to give

butadienyl intermediate **1.14** which upon reaction with 3 mol% of the gold(III)bromide gives functionalized terphenylamines **1.16** as the final products (Scheme 1.6).

(a)
$$R^4$$
Ph AuBr₃
(3 mol%)

1,4-dioxane
50 °C, 30 min

1.14

1.16

HO Me
Ph
1. PTSA (1.0 equiv)
2. AuBr₃ (3 mol%)

MeNO₂, rt to reflux

1.11

1.16

Scheme 1.6. Gold(III)-catalyzed sequential/one pot synthesis of terphenylamines

Wang and Lu described the distinction in the reactivity of indoles **1.17** with propargylic alcohols **1.18** under Lewis and Brønsted acid catalysis for the selective synthesis of dihydrocyclopentaindoles **1.20** and dihydrocyclopentaindoles **1.22** (Scheme 1.7).²⁸ In the presence of TfOH, 3-alkenylation/allenylation followed by intramolecular cyclization of indole with propargylic alcohols **1.18** was observed to give product **1.20**. In contrast, in the presence of Lewis acid Cu(OTf)₂, 3-alkylation/propargylation of indole **1.17** followed by cyclization in the presence of the NIS and BF₃·OEt₂ afforded **1.22**.

Scheme 1.7. Catalyst driven divergent annulations of indoles and propargylic alcohols

Kundu and coworkers developed an effective and simple methodology for the synthesis of the iodo-indoloazepinone **1.25** framework from the reaction of indole-2-carboxamides **1.23** and *sec*-propargyl alcohols **1.24** (Scheme 1.8).²⁹ The synthesis involves iodine-mediated C-H functionalization, alkyne activation and intramolecular cyclization utilizing the amide functionality followed by deprotonation to afford 4-iodoindoloazepinones **1.25**.

$$R^{2}$$
 R^{3} R^{3} R^{3} R^{3} R^{3} R^{3} R^{3} R^{3} R^{2} R^{3} R^{3}

Scheme 1.8. Iodo-cyclization of indole-2-carboxamides and propargylic alcohols

Recently, our group discovered [4+3]-annulation reactions of the indole-2-carboxylic acids/amides **1.26** with propargyl alcohols **1.27** under Cu(II)-catalysis for the synthesis of ε -lactones/ ε -lactams **1.28**. Surprisingly, similar [4+3] annulated product **1.28** was observed when indole-3-carboxylic acid/amide **1.29** along with propargylic alcohol **1.27** was used under PTSA-catalysis *via* migration of the acid/amide functionality from the indole-C3 position to indole-C2 position (Scheme 1.9). The important advantage of the reaction is that the ε -lactones obtained from the annulation undergo decarboxylative cyclization to afford 3,4-dihydrocyclopenta[b]indoles **1.30**.

Scheme 1.9. Annulation reactions of the indole-carboxylates/carboxamides with propargylic alcohols under Lewis or Brønsted acid catalysis

Recently, Raji Reddy *et al.* developed a methodology for the construction of fully substituted 3-hydroxycarbazoles **1.33** from 2-acyl indoles **1.31** and propargylic alcohols **1.32** in a sequential one-pot method using TfOH /Pd(0)-catalytic system (Scheme 1.10).³⁰ This methodology involves the reaction of 2-acyl indole with propargylic alcohol in the presence of TfOH to give the 3-propargylated indole, which, in the presence of Pd(0)-catalyst leads to the formation of the fully substituted 3-hydroxy carbazoles.

Scheme 1.10. Synthesis of 3-hydroxy carbazoles from indoles and propargylic alcohols

Liang's group reported a Cu(II)-catalyzed intermolecular annulation leading to fused pentacyclics **1.36** containing carbazole motifs from the reaction of (*Z*)-2-styryl-1*H*-indoles **1.34** with propargylic alcohols **1.35** (Scheme 1.11).³¹ Here, the product formation involves sequential Meyer-Schuster rearrangement/isomerization followed by cyclization.

Scheme 1.11. Cu(II)-catalyzed annulations of propargylic alcohols with (*Z*)-2-styryl-1*H*-indoles

Wang *et al.* demonstrated an atom and step-economy Yb(III)-catalyzed dehydrative [3+3]-annulation of indole alcohols **1.37** with propargylic alcohols **1.38** for the construction of substituted carbazoles **1.39** with water as the only byproduct. This reaction proceeds through Friedel–Crafts-type of alkenyl/allenylation followed by 1,5-[H] shift and intramolecular cyclization involving the indole alcohol to get the carbazole motif (Scheme 1.12a).³² Wang and Lu demonstrated the divergent reactivity of *tert*-propargylic alcohols **1.41** and tryptophols

1.43 with substituted indolyl alcohol **1.40** in the presence of BF₃·OEt₂. They were successful in generating substituted carbazoles **1.42** and cyclopenta[b]furo[2,3-b]indoles **1.44** with excellent selectivity (Scheme 1.12b).³³

Scheme 1.12. Yb(III)-catalyzed dehydrative [3+3] cycloaddition reactions of indole alcohols with propargylic alcohols

Liang's group reported a methodology for the construction of fused seven-membered indoloazepine motifs **1.47** by using indolyl methyl azides **1.45** and propargylic alcohols **1.46** under Lewis acid catalysis via formal [4+3] cycloaddition of propargylic alcohols with azides (Scheme 1.13).³⁴ This reaction proceeds through alkenylation/allenylation of indole azide with propargylic alcohol in the presence of Yb(OTf)₃ (via intermediate **I**) followed by intramolecular cyclization with azide and subsequent elimination of N₂ delivering the indoloazepines **1.47**.

Scheme 1.13. Yb(III)-catalyzed [4+3] cycloaddition of indole azides with propargylic alcohols

More recently, Wang's group described catalyst driven divergent reactivity of 2-indolylmethyl azides **1.48** with propargylic alcohols **1.49** for the formation of fused tetrahydro- β -carbolines **1.50** and indole azepines **1.51** under Lewis or Brønsted acid catalysis. When **1.48** was treated with the propargylic alcohol **1.49** in the presence of Yb(OTf)₃, it delivered tetrahydro- β -carboline **1.50** along with substituted indole azepine **1.51**. By contrast, the same two starting materials when treated with the Brønsted acidic catalyst TfOH delivered substituted indole azepine **1.51** as the sole product (Scheme 1.14).³⁵

Scheme 1.14. Divergent annulations of the 2-indolylmethyl azides with propargylic alcohols

A regioselective approach for the effective synthesis of *N*-imino-*γ*-carbolinium ylides **1.54** from the readily available indole-3-hydrazones **1.52** on reaction with the propargylic alcohol **1.53** in the presence of AgOTf-catalyst has been developed by Zhan's group (Scheme 1.15).³⁶ In this reaction, sequential Friedel–Crafts alkylation followed by intramolecular N–C bond formation in the presence of silver(I) triflate takes place.

Scheme 1.15. Ag(I)-catalyzed annulation of indole-3-hydrazones with propargylic alcohols

Recently, our group developed a protocol for the construction of fully-substituted δ - and α -carbolines **1.57** and **1.59** under transition metal-free conditions by reacting 2- or 3-substituted sulfonamido-indoles/indolines **1.55** and **1.58** with *tert*-propargylic alcohols **1.56** in the presence of PTSA at room temperature. When **1.58** was treated with the propargylic alcohol **1.56**, along with the major α -carbolines **1.59**, unexpected tosyl migrated α -carbolines **1.60** were

also observed as minor products (Scheme 1.16).³⁷ In contrast, the single product **1.59** was observed when the same reaction was performed using PTSA in toluene at reflux conditions. The reaction proceeded through sequential Friedel-Crafts alkylation, [1,5]-H shift, 6π -electrocyclization, elimination/[1,2]-aryl migration and aromatization to give carbolines.

(a)
$$R^4$$
 R^4 R^4 R^3 R^3 R^4 R^4 R^4 R^4 R^4 R^4 R^5 R^6 R^6

Scheme 1.16. PTSA-mediated annulation reactions of the sulfonamido-indoles/indolines with propargylic alcohols leading to fully-substituted carbolines

Recently, Min Shi's group developed a novel transition metal-free methodology for the construction of indole or pyrrole containing tetrahydro-cyclopenta[b]naphthalenes **1.63** (*via* intermediate **II**) from the reaction of indole/pyrrole **1.61** and propargylic alcohol-tethered alkylidene-cyclopropanes **1.62** under Brønsted acid-catalysis (Scheme 1.17).³⁸ This reaction proceeds through cascade nucleophilic addition of propargylic carbocation with pyrrole or indole/intramolecular electrocyclization followed by ring opening and rearrangement to give the final product. However, indole or pyrrole does not take part in the cyclization process.

Scheme 1.17. Brønsted acid-catalyzed reaction of propargylic alcohol-*tethered* alkylidenecyclopropanes with indoles/ pyrroles

1.3 Intramolecular annulations of indole tethered-propargylic alcohols

Baire and Tharra reported regioselective cyclization of (indol-3-yl)pentyn-3-ols **1.64** under Lewis as well as Brønsted acid catalysis for the selective synthesis of tetrahydro-carbazoles **1.65** and carbazoles **1.66**. The divergence in the reactivity of **1.64** was explained in detail with respect to both Lewis and Brønsted acid catalysis. Thus **1.64** upon treatment with AgOTf gives tetrahydro-carbazoles **1.65** *via* intermediate **III**; this can be converted into the corresponding carbazoles **1.66** in the presence of PTSA or MsOH (Scheme 1.18). In the presence of protic acids at elevated temperatures, **1.64** was directly converted into carbazoles **1.66**. There are some other reports from the same group where they studied extensively about the reactivity/annulations of *tert*-propargylic alcohols. ^{39b-d}

G OH AgOTf
$$R^2$$
 AgOTf R^2 R^2

Scheme 1.18. Regioselective cyclization of (indol-3-yl)pentyn-3-ols for the synthesis of (tetrahydro)carbazoles

The research group of Taylor and Unsworth described a divergent intramolecular cyclization of the indole tethered propargylic alcohol **1.67** under silver(I)-catalysis at room temperature to get diverse carbazoles **1.68** and spirocyclic indolenines **1.69** from the single starting material **1.67**. In the presence of AgNO₃+Ag₂O, dearomatized spirocyclic viny silver

intermediate was generated to give the indolenines **1.69** whereas in the presence of AgOTf, six membered vinyl silver intermediate was invoked for the formation of carbazole motifs **1.68** (Scheme 1.19).⁴⁰ The products in these reactions were mutually exclusive.

Scheme 1.19. Silver(I)-catalyzed divergent reactivity of the alkyne tethered indoles for the synthesis of spirocyclic indolines and carbazoles

Sanz *et al.* reported a simple gold(III)-catalyzed synthesis of substituted 1-(indol-3-yl)carbazoles **1.71** exclusively from bis(indolyl)methyl alkynols **1.70** by intramolecular cyclization. The key step in the formation of carbazoles consists of selective 1,2-rearrangement involving the migration of an indolylmethyl (intermediate **IV**; path a) group over the alkenyl group after the early spirocyclization reaction that is initiated by the attack of the indole on the activated alkyne (Scheme 1.20).⁴¹ Bisindolyl moiety plays a crucial role in the formation of carbazole motifs as revealed by DFT studies.

Scheme 1.20. Synthesis of 1-(indol-3-yl)carbazoles under gold(III)-catalysis

Yaragorla *et al.* described an operationally simple methodology for the construction of densely substituted 3-iodocarbazoles **1.73** from aryl(indol-3yl)methane-tethered propargyl alcohols **1.72** *via* intramolecular iodocyclization at room temperature through cycloisomerization/1,2-alkyl migration (Scheme 1.21).⁴². This methodology allows access to

a wide variety of iodo-carbazoles which can be utilized further for post-functionalization to get diverse carbazoles.

$$R^{1}$$
-N
 R^{3} OH
 R^{2}
 R^{2}
 R^{2}
 R^{1}
 R^{2}
 R^{2}
 R^{3}
 R^{1}
 R^{2}
 R^{1}
 R^{2}
 R^{3}
 R^{1}
 R^{1}
 R^{1}
 R^{1}
 R^{1}
 R^{2}

Scheme 1.21. Intramolecular iodo-cyclization of the aryl(indol-3yl)methane tethered propargylic alcohols to access 3-iodo-carbazoles

Later, the same Yaragorla's group presented a rapid intramolecular cycloisomerization of (indole-arylyl)methane tethered propargyl alcohols **1.74** to access substituted 2-iodocarbazoles **1.75** by using molecular iodine (Scheme 1.22).⁴³ This reaction proceeds through a sequential regioselective 5-*endo*-spirocyclization followed by selective 1,2-vinyl migration over the 1,2-alkyl migration controlled by the substituent Ar¹ and finally with aromatization allows access to 2-iodocarbazoles.

Scheme 1.22. Intramolecular iodo-cyclization of (indole-arylyl)methane tethered propargylic alcohols to access 2-iodo-carbazoles

1.4 Decarboxylative annulations of the aromatic carboxylic acids

Maiti's group developed a methodology for decarboxylative annulation of α , β -unsaturated aromatic heterocyclic carboxylic acids **1.77** with aliphatic cyclic ketones **1.76** leading to the regioselective synthesis of fused furan architectures **1.78** under Cu(II)-catalysis (Scheme 1.23).^{4a}. This methodology is versatile in terms of both the starting materials involved, and allows access to large ring fused di-heterocyclic motifs. The reaction proceeds through tautomerization of the aliphatic ketone in the presence of Cu(II)-catalyst, then addition of the unsaturated carboxylic acid and intramolecular cyclization followed by decarboxylation.

Scheme 1.23. Cu(II)-catalyzed decarboxylative annulation of α , β -unsaturated carboxylic acids with aliphatic ketones

Miura and Hirano developed a protocol for the quinoline-directed decarboxylative coupling of benzamides **1.79** with *ortho*-nitrobenzoic acids **1.80** under Cu(II)-catalysis. The cross-coupled products were successfully converted into *N*-aryl phenanthridinones **1.81** using Cu(OTf)₂/K₂CO₃ couple (Scheme 1.24).^{4b}

Scheme 1.24. Decarboxylative cross-coupling followed by annulation using *ortho*-nitro benzoates and benzamides

A reaction similar to the one shown above was recently reported by Honeycutt and Hoover using Ni(II)-catalyzed oxidative decarboxylative annulation of *ortho*-fluorobenzoates **1.83** with benzamides **1.82** for the synthesis of substituted *N*-heterocyclic phenanthridinones **1.84**. ^{4c} This decarboxylative methodology worked well for aromatic and *hetero*-aromatic benzoates

with a variety of substituted benzamides and allowed access to diverse phenanthridinones (Scheme 1.25). However, a large quantity of the silver salt is utilized for the reaction.

Scheme 1.25. Decarboxylative cross-coupling followed by annulations of the *ortho*-nitro benzoates with benzamides under Cu(II)-catalysis

The research group of Peng and Wang has developed a novel oxidative/decarboxylative [2+2+1] cyclization of α,β -unsaturated carboxylic acids **1.85** with internal alkynes **1.86** under palladium(II)-catalysis for the synthesis of functionalized pentafulvenes **1.87** (Scheme 1.26).^{4d}. This methodology involves decarboxylative annulation; the fulvene products were further utilized for the post-functionalization under oxidation/reduction or for Scholl reaction.

Scheme 1.26. Pd(II)-catalyzed intermolecular decarboxylative annulations of α , β -unsaturated carboxylic acids with internal alkynes

Zhang's group reported a Cu(II)-catalyzed decarboxylative annulation methodology for the synthesis of indolizines **1.89** from the readily available 2-alkylazaarenes **1.88** and α,β -unsaturated carboxylic acids **1.85**. This reaction proceeds through decarboxylative amination and C-H olefination to afford C2-substituted *N*-fused heterocyclics in moderate yields (42-68%) as shown in Scheme 1.27. Later, Gu and Cai reported a similar copper mediated radical decarboxylative methodology for the annulation reaction of α,β -unsaturated carboxylic acids **1.85** with 2-(pyridin-2-yl)acetate **1.90** for the synthesis of indolizines **1.91** (Scheme 1.28).

For the mechanistic investigations, a radical-trapping experiment was conducted which revealed that the reaction proceeded through a free-radical pathway.

Scheme 1.27. Cu(II)-catalyzed intermolecular decarboxylative annulation of acrylic acids with 2-alkylazaarines

Scheme 1.28. Cu(II)-catalyzed decarboxylative annulation of α , β -unsaturated carboxylic acids with 2-(pyridin-2-yl)acetate

Rovis and Neely developed Rh(III)-catalyzed decarboxylative annulation of acrylic acid 1.85 with α,β -unsaturated oximes 1.92 for the regioselective synthesis of substituted pyridines 1.93. This methodology utilizes the advantage of a carboxylic acid as a traceless directing/leaving group to generate substituted pyridines (Scheme 1.29).⁴⁵ Mechanistic investigations suggested that decarboxylation was not going through general picolinic acid intermediate, but rather unexpectedly, going *via* 5-membered cyclic rhodium intermediate.

Scheme 1.29. Rh(III)-catalyzed decarboxylative annulation of acrylic acids with unsaturated oxime esters

Satoh and Miura have developed Ir(III)-catalyzed decarboxylative double annulation of substituted benzoic acids **1.94** with internal alkynes **1.95** for the synthesis of fully-substituted naphthalenes **1.96** by using 1:2 ratio of the acid and alkyne (Scheme 1.30). This double annulation reaction proceeds through acid directed alkenylation and C-H activation followed by decarboxylation and annulation with alkyne partner delivering the naphthalene scaffolds.

R² COOH Ar
$$A_{2}^{CO_{3}}(0.25 \text{ mmol})$$
 $A_{2}^{CO_{3}}(0.25 \text{ mmol})$ $A_{3}^{CO_{3}}(0.5 \text{ mmol})$ $A_{4}^{CO_{3}}(0.5 \text{ mmol})$ $A_{5}^{CO_{3}}(0.25 \text{ mmol})$ $A_{7}^{CO_{3}}(0.25 \text{ mmol})$ $A_{8}^{CO_{3}}(0.25 \text{ mmol})$ $A_{8}^{CO_{3}}(0.$

Scheme 1.30. Ir(III)-catalyzed decarboxylative double annulation of benzoic acids with internal alkynes

Shibata and Tanaka's group described Rh(III)-catalyzed decarboxylative oxidative [2+2+2] annulation of the aromatic carboxylic acids **1.97** with internal alkynes **1.86** for the synthesis of fully substituted naphthalene scaffolds **1.98** at room temperature using molecular oxygen as the co-oxidant. Here the choice of solvent and the catalyst played the key role for the decarboxylative annulation. This methodology worked well for a broad range of aromatic as well as aliphatic carboxylic acids (Scheme 1.31a). ⁴⁶ More recently, Satoh's group reported a similar decarboxylative [2+2+2] annulation of aromatic carboxylic acids **1.99** with internal alkynes **1.95** in the presence of the Rh(III)/C₅H₂Ph₄-catalyst combination using Cu(OAc)₂ as the oxidant for the synthesis of fully-substituted naphthalenes **1.100** (Scheme 1.31b) and benzothiophene scaffolds. ⁴⁷

(a)
$$R^{1}$$
 COOH R^{2} $COOH$ R^{3} $Cu(OAc)_{2} \cdot H_{2}O$ (10 mol%) R^{3} R^{2} R^{3} R^{3} R^{2} R^{3} R^{2} R^{3} R^{3} R^{2} R^{3} R^{3} R^{3} R^{3} R^{2} R^{3} $R^{$

Scheme 1.31. Rh(III)-catalyzed intermolecular decarboxylative annulation of benzoic acids with internal alkynes

Recently, the same Satoh's group demonstrated a chemoselective/oxidative decarboxylative [2+2+2] annulation of the salicylic acids **1.101** with internal alkynes **1.86** for the synthesis of α -naphthols **1.102** under Ir(III)-catalysis without any external oxidant.⁴⁸ This reaction was selective towards the carboxylic acid and *ortho* C-H functionalization rather than alcohol annulations. This methodology tolerated essentially all the functional groups and delivered multisubstituted α -naphthol motifs (Scheme 1.32).

OH
$$R^2$$
 (0.01 mmol) (0.04 mmol) $($

Scheme 1.32. Ir(III)-catalyzed decarboxylative annulation of salicylic acids with internal alkynes

Zheng's group reported an efficient methodology for the selective decarboxylative [2+2+2] annulations of phthalic acids/anhydrides **1.103** with internal alkynes **1.104** for the synthesis of fully substituted 1-naphthoic acids **1.105** under Ru(II)-catalysis *via* carboxylate assisted *ortho*-C-H activation followed by annulation (Scheme 1.33).⁴⁹ This reaction proceeds by utilizing the aerobic oxygen and allows access to polysubstituted α -naphthoic acid scaffolds.

Scheme 1.33. Ru(II)-catalyzed decarboxylative annulation of phthalic acids with internal alkynes

Glorius's group reported intramolecular decarboxylative annulation of 2-phenoxy benzoic acids **1.106** in the presence of Pd(II)-catalyst that led to substituted dibenzofurans **1.107**. The reaction proceeds through decarboxylation in the presence of Ag₂CO₃ followed by *trans*-metalation with Pd(II)-catalyst, C-H functionalization and subsequent intramolecular cyclization/reductive elimination (Scheme 1.34).⁵⁰

Scheme 1.34. Pd(II)-catalyzed decarboxylative annulation of 2-phenoxy benzoic acids

Later, the same Glorius's group reported intermolecular decarboxylative [4+2] annulation protocol involving 2-phenylbenzoic acids **1.108** and internal alkynes **1.104** for the synthesis of substituted phenanthrenes **1.109** under palladium-catalysis *via* C-H and C-C bond activation. Acridine played a key role and was essential for the conversion (Scheme 1.35).⁵¹ This protocol involves the cascade decarboxylation/*trans*-metalation/alkyne insertion followed by reductive elimination delivering phenanthrene scaffolds without any side reaction.

Scheme 1.35. Pd(II)-catalyzed intermolecular decarboxylative annulation of 2-phenyl benzoic acids with alkynes

A decarboxylative regioselective [4+2] annulation route by C–H functionalization under electrochemical anodic ruthenium catalysis involving α -keto carboxylic acids **1.110** and internal alkynes **1.86** was reported by Li's group. This protocol allows access to 1*H*-isochromen-1-ones **1.111** *via* sequential decarboxylation, oxygen-insertion (from water), followed by C–H functionalization and annulation (Scheme 1.36).⁵²

Scheme 1.36. Decarboxylative annulation of the arylglyoxylic acids with internal alkynes under electrochemical ruthenium-catalysis

Later, Li and Wang's group established a [Ru]-catalyzed decarboxylative annulation of α -keto acids **1.110** with internal alkynes **1.86** for the synthesis of substituted isocoumarins **1.111** (Scheme 1.37).⁵³ This protocol proceeds through cascade oxidative addition, C-H-functionalization, alkyne insertion and decarboxylation followed by reductive elimination to afford the isocoumarins.

Scheme 1.37. [Ru]-catalyzed decarboxylative annulation of α -keto acids with internal alkynes

Very recently, Zhang and coworkers reported an operationally simple photo-catalytic methodology by using visible light source for the decarboxylative annulation of 2-alkenylarylisocyanides **1.112** with arylglyoxylic acids **1.110** to synthesize substituted 2-acylindoles **1.113** under iridium-catalysis without any external oxidant. This reaction involves cascade photolytic acyl radical addition/annulation with an Ir(III) catalyst (Scheme 1.38).⁵⁴

Scheme 1.38. Decarboxylative annulation of the α -oxo carboxylic acids with 2-alkenyl aryl isocyanides under iridium photo-catalysis

Wang and coworkers reported visible-light-induced decarboxylative annulation/hydrogenation of α -oxocarboxylic acids **1.110** with 2-isocyanobiaryls **1.114** for the synthesis of phenanthridin-6-yl(aryl)methanols **1.115** in the absence of external photosensitizer or oxidant/reductant(Scheme 1.39).⁵⁵ Mechanistic investigations revealed cascade decarboxylation and radical addition/cyclization of the two reaction partners.

Scheme 1.39. Decarboxylative annulation of the α -oxo-carboxylic acids with 2-cyanobiaryls under base and visible light mediation

Lei's group developed a methodology for the construction of substituted 6-acyl phenanthridines **1.117** from 2-oxocarboxylates **1.116** and 2-isocyanobiaryls **1.114** under Ag(I)-catalysis at elevated temperatures by radical decarboxylative annulation.⁵⁶ This reaction proceeds through the addition of benzoyl radical (generated by the [Ag]/sodium peroxydisulfate couple) to the *isocyano* moiety of biaryls followed by intramolecular electrocyclization and subsequent aromatization affording phenanthridines **1.117** (Scheme 1.40).

Scheme 1.40. Oxidative radical decarboxylative annulations of α -oxo carboxylates with 2-cyanobiaryls under Ag(I)-catalysis

Recently, Zhang's group reported a methodology for the cascade decarboxylative annulation of the readily available indole-2-carboxylic acids **1.118** with diaryliodonium salts **1.119** for the divergent synthesis of phenanthridine (**1.120**) and carbazole (**1.121**) scaffolds under Pd(II)-catalysis. This protocol may occur *via* two different pathways depending upon the conditions employed.⁵⁷ Thus indole-2-carboxylic acid **1.118** reacted with **1.119** in the presence of Pd(II)/P(III) catalyst couple affording phenanthridines by *N1-C2* arylation. By contrast, the same two starting materials under Pd(II)/K₂CO₃ couple afforded carbazoles **1.121** *via C2-C3* arylation. Here, carboxylic acid acts as directing as well as leaving group (Scheme 1.41).

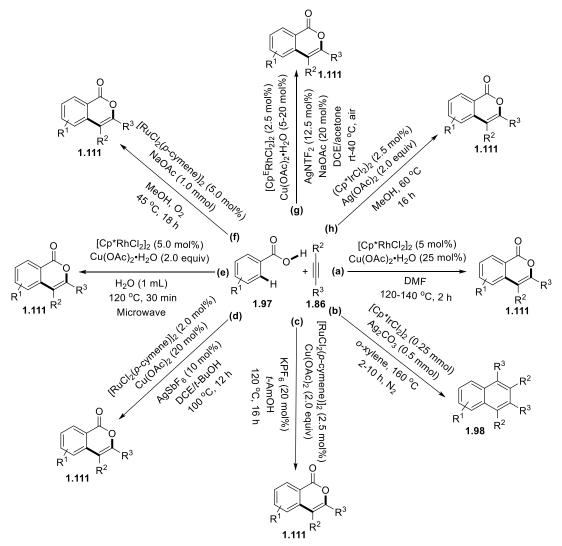
Scheme 1.41. Pd(II)-catalyzed decarboxylative annulation of indole-2-carboxylic acids with diaryliodonium salts

Kang and Seidel developed a novel methodology for the construction of indolizidine and quinolizidine scaffolds of type **1.124** from α -amino acids **1.122** and γ -nitroaldehydes **1.123** under AcOH mediation (Scheme 1.42). This reaction proceeds through an active azomethine ylide and decarboxylative annulation.

Scheme 1.42. Decarboxylative annulation of α -amino acids with γ -nitroaldehydes

Li's group reported a novel transition metal-free oxidative decarboxylative [3+2]/[5+2] annulation of *N*-arylacrylamide **1.125** with vinyl acids **1.126** to synthesize fused seven-membered *N*-heterocyclics **1.127** by using $(NH_4)_2S_2O_8$ as the oxidant (Scheme 1.43).⁵⁹ Three new C-C bonds are formed in the reaction which allows access to functionalized benzo[*b*]azepin-2-ones in a single step under mild reaction conditions.

Scheme 1.43. Metal-free decarboxylative annulation of *N*-arylacrylamides with vinyl acids


Zhang and Lu established a protocol for the nickel/copper couple catalyzed sequential Nazarov cyclization/decarboxylative aldol reaction of substituted α -tert-butyl ester of divinyl ketones (1.128) with aldehydes (1.129) in the presence of ligand L1 for the stereoselective synthesis of highly substituted β -hydroxycyclopentenones 1.130 having three consecutive chiral centers. This reaction proceeds through nucleophilic addition of the aldehyde to the divinyl ketone which initiates the Nazarov-cyclization. This is followed by decarboxylative aldol reaction to afford substituted cyclopentenones (Scheme 1.44a). 60 Later, the same group described intramolecular Ni(II)-catalyzed enantioselective cascade for the Nazarov cyclization/decarboxylation of divinyl ketone α -esters 1.128 for the enantioselective synthesis of cyclopentenones 1.131 by using the chiral oxazoline iminopyridine (OIP) ligand L1'. This methodology involves L1' directed sequential intramolecular Nazarov cyclization followed by decarboxylation to access cyclopentenones enantioselectively (Scheme 1.44b). 61

Scheme 1.44. Cu/Ni-couple and Ni(II)-catalyzed intramolecular decarboxylative annulation/Nazarov cyclization involving α -tert-butyl ester of divinyl ketones

1.5 Transition metal catalyzed annulations of carboxylic acids with C-C π -components

In the year 2007, Satoh and Miura discovered an efficient methodology for the annulation of aromatic carboxylic acids with alkynes via ortho-C-H/O-H bond activation/functionalization under Rh/Cu-catalysis. In this reaction, when benzoic acids 1.97 were treated with internal alkynes 1.86 in the presence of the Rh/Cu-catalysts in open air, a regioselective [4+2] annulation took place and afforded the substituted isocoumarins 1.111 (Scheme 1.45a). If Later, when they employed the same two starting materials with the Ircatalyst in the presence of Ag₂CO₃, instead of carboxy-annulation, a decarboxylative double annulation took place to give the fully substituted naphthalenes 1.98 via regioselective C-H bond cleavage followed by decarboxylative annulation (Scheme 1.45b). 1g When the reaction was conducted under Ru/Cu-catalysis using KPF₆ in t-AmOH at 120 °C for 16 h, isocoumarins were obtained via addition/insertion and elimination as demonstrated by Ackermann's group (Scheme 1.45c). 1h In the same year, Jeganmohan and Chinnagolla reported analogous annulation of benzoic acids with alkynes under Ru/Cu-catalysis by using lower loadings of catalyst (2 mol%), oxidant (20 mol%) and additive AgSbF₆ (10 mol%) to get the isocoumarins with excellent regioselectivity (Scheme 1.45d). 11 Later, Xu and Yi's group demonstrated a green, rapid and efficient methodology for the synthesis of isocoumarins with Rh/Cu-catalyst via microwave-assisted C-H/O-H bond functionalization by using water as the only solvent.

In addition to benzoic acids, they have also utilized heterocyclic and acyclic carboxylic acids (Scheme 1.45e). Annulation of the benzoic acid with alkynes under Ru-catalysis for the efficient synthesis of isocoumarins with excellent *regio*- and *chemo*-selectivity with water as the only byproduct and O₂/air as the sole oxidant was also developed by Ackermann's group (Scheme 1.45f). They also isolated the annulated Ru(0)-metal complexes for the first time. Another protocol for the synthesis of isocoumarins was established by Tanaka's group under Rh(III)-catalysis *via* the oxidative annulation of arene carboxylic acids with alkynes in air; mechanistic investigations revealed the formation of Rh(0)-metal complex (Scheme 1.45g). Ison's group has demonstrated the annulation of benzoic acids 1.97 with alkynes 1.86 for the synthesis of the isocoumarins 1.111 under Ir(III)-catalysis. They have also performed computational studies for the confirmation of the mechanism involved and concluded that the acetate group plays a crucial role in the annulation process (Scheme 1.45h). Im

Scheme 1.45. Transition metal-catalyzed annulation of benzoic acids with alkynes *via ortho-*C-H bond activation

Recently, Wu and Shang's group reported a green protocol for the synthesis of isocoumarins/ α -pyrones **1.111** from oxidative annulation of benzoic acids **1.97** with alkynes **1.86** or alkenes under Ru(II)-catalysis using aerobic oxidation (open air; Scheme 1.46). ⁶² This reaction was performed in the presence of green solvent water; this methodology also allowed access to isobenzo-furan-1-one scaffolds on reaction with activated alkenes.

Scheme 1.46. Ru(II)-catalyzed oxidative annulation of the benzoic acids with alkynes in air

Ackermann's group developed a novel electro-oxidative annulation strategy for the first time to prepare substituted isocoumarins **1.111** with excellent regioselectivity from weakly coordinating aromatic carboxylic acids **1.97** (rather than using strong *N*-coordination) and alkynes **1.86** under Ru(II)-catalysis in the absence of the external metal oxidant. Here, they were successful in utilizing electricity as sole oxidant for the reoxidation of Ru(0)-metal complex to get active Ru(II)-metal catalyst which is actually catalyzing the annulation reaction *via ortho*-C-H/O-H functionalization to afford annulated product (Scheme 1.47).⁶³

RVC Pt

RVC PT

Pt

[RuCl₂(p-cymene)]₂ (5 mol%)

NaOPiv (20 mol%)

$$tAmOH/H_2O$$
 (3/1)

 $tAmOH/H_2O$ (3/1)

Scheme 1.47. Ru(II)-catalyzed electro-oxidative annulation of the benzoic acids with alkynes

More recently, the same Ackermann's group disclosed electro-catalytic oxidative [4+2] and [4+1] annulation of aromatic carboxylic acids **1.97** with alkynes **1.86** or activated alkenes **1.132** *via ortho* C-H/O-H functionalization under Os(II)-catalysis in the absence of external oxidant for the synthesis of isocoumarins **1.111** and isobenzo-furan-1-ones **1.133** in excellent *regio*- and *chemo*-selectivities (Scheme 1.48). Mechanistic investigations were also conducted; they have also isolated and characterized the unprecedented key Os(0) and Os(II) intermediates involved in the product formation. This methodology has clearly opened the gate for the annulation of carboxylic acids with unsaturated compounds under transition metal catalysts using electro-oxidative processes.

Scheme 1.48. Os(II)-catalyzed electro-oxidative annulation of benzoic acids with alkynes/ alkenes

Daugulis's group reported oxidative annulation of aromatic/hetero-aromatic carboxylic acids **1.134** with a variety of C-C π components (internal alkynes **1.135**, terminal alkynes **1.137** and styrenes **1.139**) for the synthesis of isocoumarins **1.136**, **1.138** and **1.140** under Co(II)/Ce(IV)-catalysis by using an external oxidant and base (Scheme 1.49).⁶⁵ This reaction also proceeded through the *ortho* C-H/O-H functionalization and worked well for internal as well as terminal alkynes/alkenes with excellent regioselectivity.

Scheme 1.49. Co(II)-catalyzed annulation of carboxylic acids with the C-C π components

Co(III)-catalysis has been utilized by Mandal and Sundararaju for the oxidative [4+2] annulation of benzoic acids **1.141** with alkynes **1.142** to synthesize substituted isocoumarins **1.143** with excellent regioselectivity by overcoming the strong chelation of 7-aza-indole directing group over the weak chelating/traceless directing carboxylic acid (Scheme 1.50). ⁶⁶

Scheme 1.50. Co(III)-catalyzed annulation of the substituted benzoic acids with alkynes

As reported by Loginov's group, depending upon the Rh(III)/Cu(II)-catalyst combination, isocoumarins **1.145** or polycyclic aromatic hydrocarbons **1.146** are formed from aromatic carboxylic acids **1.144** and alkynes **1.86** *via* oxidative annulations. The reactivity of carboxylic acids was driven by the methylation on ligand(Scheme 1.51).⁶⁷ When [Cp*RhCl₂]₂ was used, reaction proceeded through carboxyl assisted oxidative annulation *via ortho*-C-H/O-H functionalization to give isocoumarins **1.145**. On the other hand, when [CpRhI₂]_n was used as the catalyst, naphthalene scaffolds **1.146** are predominantly formed by decarboxylative double annulation. Thus, the chemo-selectivity was driven by the ligand present on [Rh]-catalyst.

Scheme 1.51. Rh(III)-catalyzed oxidative annulation of the benzoic acids with alkynes

Lee's group utilized Pd(II)/Ag(I) catalysis to synthesize substituted isocoumarins **1.149** and 3-benzylidenephthalides **1.150** from benzoic acids and vinyl arenes through oxidative [4+2] annulation (Scheme 1.52).⁶⁸ Here, the substitution at *ortho*-position of benzoic acid played a key role in the formation of distinct products from the same starting materials.

Scheme 1.52. Pd(II)-catalyzed annulation of the substituted benzoic acids with vinyl arenes

Very recently, Li and Wang reported the synthesis of substituted indenones **1.151** from aromatic carboxylic acids **1.97** and alkynes **1.86** using Tf₂O/base mediated annulation in air under solvent-free and transition metal-free conditions without any external metal oxidant. Unlike the general transition metal catalyzed [4+2] annulation, this reaction took place by unprecedented [3+2] annulation *via ortho* C-H/C-C functionalization (Scheme 1.53).^{3a} This protocol allowed access to diverse indenones including the biologically active PPARγ kind of agonists.

$$R^{1} + R^{2} + R^{2} + R^{3} = R^{2} + R^{3} = R^{3} + R^{3} = R^{3} + R^{3} + R^{3} + R^{3} = R^{3} + R^{3$$

Scheme 1.53. Tf₂O-mediated annulation of the benzoic acids with alkynes

Yang and You's group have disclosed a novel oxidative [4+1] annulation of benzoic acids **1.97** with terminal alkynes **1.152** for the first time under Rh(III)/Ag(I)-catalysis to obtain 3-ylidenephthalides **1.153** in a *Z*-selective fashion (Scheme 1.54). When internal alkynes were used for the annulation with carboxylic acids, the reaction proceeds through metal catalyzed *ortho*-C-H alkenylation followed by annulation to afford substituted isocoumarin scaffolds, whereas in the case of terminal alkynes, first acid directed *ortho*-C-H alkynylation in the presence of Rh(III)/Ag(I)-catalysis took place to give the *ortho*-alkynylated carboxylic acids which undergoes metal catalyzed annulation reaction to afford unusual 3-ylidenephthalides **1.153** *via* [4+1] annulation.

Scheme 1.54. Rh(III)-catalyzed [4+1] annulations of the benzoic acids with terminal alkynes

Substituted phthalides **1.155** can be obtained *via* [4+1] annulation under green conditions by dehydrogenative/oxidative coupling of aromatic carboxylic acids **1.97** with alkenes **1.154** using Ru(II)-catalysis and air as the sole oxidant as shown by Baidya's group (Scheme 1.55).^{2b} This protocol allowed access to substituted phthalides along with Heck-type of products.

$$R^{1} + R^{1} + R^{1$$

Scheme 1.55. Ru(II)-catalyzed oxidative annulation of the benzoic acids with activated alkenes

Regioselective synthesis of novel isocoumarin selenazoles **1.157** and **1.159** could be achieved from oxidative annulation of benzoselenazoles **1.156** and **1.158** with alkynes **1.86** under Ru(II)-catalysis using molecular oxygen as shown by Sun and coworkers.⁶⁹ When simple benzoselenazole **1.156** was used, a mixture of annulated products (**1.157** + **1.157**) was obtained (Scheme 1.56a). On the other hand, only the annulated product **1.159** was observed when *N*-substituted dihydro-benzoselenazole was used (Scheme 1.56b). This may be due to the substitution on azole nitrogen which controls the regioselectivity for the annulation.

Scheme 1.56. Ru(II)-catalyzed oxidative annulation of benzoselenazole carboxylic acids with alkynes

Recently, Lee's group demonstrated the divergent reactivity of azulene carboxylic acids with internal alkynes under Rh(III)/Ir(III)-catalysis under aerobic conditions. Thus, azulene carboxylic acids **1.160** in the presence of Rh(III)/Ag(I)-catalytic system underwent oxidative [4+2] annulation *via* C-H/O-H functionalization with alkynes **1.86** to afford the azulenolactone scaffolds **1.161**. In contrast to this, the same azulene carboxylic acids in the presence of Ir(III)/Ag(I)-catalytic system underwent sequential [2+2+2] annulation *via* oxidative decarboxylation and afforded the polysubstituted benzoazulene motifs **1.162** (Scheme 1.57).

Scheme 1.57. Rh(III)/Ir(III)-catalyzed annulation of azulene carboxylic acids with alkynes

Direct and selective bifunctionalization of pyrrole and indole is still a challenge. Dixneuf's group developed a protocol for the regioselective construction of active pyrrole or indole fused isocoumarins **1.164** and **1.166** under Ru(II)/Cu(II)-catalysis by the reaction of the heteroaromatic carboxylic acids 1-methylpyrrole-2-carboxylic acid **1.163** and 1-methylindole-3-carboxylic acid **1.165** with alkynes **1.86** in DMF or water solvent *via* sequential *ortho* C-H bond activation and [4+2] annulation (Scheme 1.58).⁷¹

Scheme 1.58. [Ru]-catalyzed annulation of *N*-methylindole-3-carboxylic acids with alkynes

Miura's group demonstrated an oxidative annulation methodology for the reaction of 2-amino- and 2-hydroxybenzoic acids **1.167** with alkynes **1.168** under [Rh]/[Cu]-catalysis in air to obtain substituted coumarins **1.169** *via* [4+2] annulation. In contrast to this, the same starting materials, using [RhCl(cod)₂]/C₅H₂Ph₄/Cu(OAc)₂, underwent carboxylate directed *ortho*-alkenylation followed by decarboxylative annulation to give substituted carbazoles **1.170** (Scheme 1.59a). This methodology can also be applied in reactions of indole/benzothiophene 2-/3-carboxylic acids **1.171/1.172** with diphenylacetylenes **1.142** to get fused heterocyclic isocoumarins **1.173/1.174** (Scheme 1.59b).⁷² Photophysical studies of some of the products revealed that they exhibit solid-state fluorescence.

For 1.169
$$[(Cp^*RhCl_2)_2] (5 \text{ mol}\%)$$

$$Cu(OAc)_2 \cdot H_2O (20-25 \text{ mol}\%)$$
For 1.170
$$For 1.170$$

$$[(RhCl(COD)]_2 (5 \text{ mol}\%)$$
For 2.170
$$For 1.170$$

Scheme 1.59. [Rh]-catalyzed annulation of the heterocyclic carboxylic acids with alkynes

Unlike simple alkenes and alkynes, where there is no selectivity with respect to alkene/alkyne, annulation reaction of allenes with carboxylic acids can show regioselectivity. Our research group presented a novel oxidative [4+2] annulation strategy using substituted/indole-2-carboxylic acids and allenes for the regioselective synthesis of pyrano-indolenes having active stereocenters under Pd(II)/Cu(II) or Ag(I)-catalysis *via* C-H/O-H functionalization. Here, 3-iodo-indole-2-carboxylic acids **1.175** on reaction with allenes **1.176** in the presence of the Pd(II)-catalyst underwent regioselective [4+2] annulation involving the β , γ -double bond to afford the indolo[2,3-c]pyrane-1-ones (pyrano-indoles) **1.177** (Scheme

1.60a). In contrast to this, the reaction of simple indole-2-carboxylic acids **1.178** with aromatic allenes **1.179** in the presence of Pd(II)-catalyst afforded 3,4-disubstituted indolo[2,3-c]pyrane-1-ones **1.180** by selective oxidative annulation of the α , β -double bond via C3-H functionalization. The γ -disubstituted allenes also gave the pyrano-indolones **1.182** by selective addition at the β , γ -double bond under the same reaction conditions (Scheme 1.60b). ¹ⁿ

(a)
$$Pd(OAc)_2 (5 \text{ mol}\%)$$
 $P(o\text{-tolyl})_3 (15 \text{ mol}\%)$ $P(o\text{-tolyl})_3 (15 \text{ mol}\%)$

Scheme 1.60. Pd(II)-catalyzed annulation of substituted/indole-2-carboxylic acids with allenes

Substituted pyrones **1.184** and butenolides **1.186** can be synthesized from acrylic acids **1.183** and alkynes **1.104** or activated olefins **1.185** under Rh(III)-catalysis *via* vinylic C-H activation/functionalization as shown by Miura's group (Scheme 1.61).⁷³ Here, while the reaction of acrylic acids with alkynes by [4+2] oxidative annulation gave fully substituted pyrones **1.184**, analogous reaction with alkyl acrylates proceeded through [3+2] annulation to give substituted butenolides **1.186**. Zhang and Zhao's group also reported a similar methodology for the construction of α -pyrones **1.187** from acrylic acids **1.183** and alkynes **1.104** under Rh(III)/Ag(I)-catalysis. This methodology worked well for a variety of alkynes as well as substituted acrylic acids and delivered α -pyrone scaffolds **1.187** (Scheme 1.62).⁷⁴

Scheme 1.61. Rh(III)-catalyzed annulation of the vinyl carboxylic acids with alkynes and activated alkenes

Scheme 1.62. Rh(III)-catalyzed oxidative annulation of acrylic acids with alkynes to afford pyrones

Gogoi's group also reported a regioselective [4+2] oxidative annulation of substituted cinnamic acids **1.85** with internal alkynes **1.86** under Ru(II)/Cu(II)-catalysis for the synthesis of substituted α -pyrones **1.188** (Scheme 1.63).⁷⁵ This reaction also proceeded through cascade oxidative addition and alkyne coordination followed by insertion and finally, reductive elimination.

R³ [RuCl₂(
$$p$$
-cymene)]₂ (2.5 mol%)
Cu(OAc)₂•H₂O (1.0 equiv)

R²

1.85

1.86

R³ [RuCl₂(p -cymene)]₂ (2.5 mol%)

Cu(OAc)₂•H₂O (1.0 equiv)

tert-amyl alcohol

90 °C, 12 h

1.188

Scheme 1.63. Ru(II)-catalyzed oxidative annulation of the cinnamic acids with alkynes

 α -Pyrones/ pyridones **1.190** can be synthesized in excellent regioselectivity by oxidative [4+2] annulations of acrylic acids/ acrylamides **1.189** with internal alkynes **1.86** under Pd(II)/Cu-catalysis by using O₂.as the oxidant in basic medium as reported by Jiang's group (Scheme 1.64).⁷⁶

Scheme 1.64. Pd(II)-catalyzed oxidative annulations of the acrylic derivatives with alkynes

Nicewicz's group developed a polar radical cross-over cycloaddition (PRCC) methodology for the stereoselective synthesis of γ -butyrolactones **1.192** from substituted alkenes **1.191** and unsaturated carboxylic acids **1.85** by using Fukuzumi's acridinium photo-oxidant catalyst **C1** along with the redox active co-catalyst (Scheme 1.65). This methodology proceeded through stereo-controlled oxidative [3+2] annulation by *ortho*-C-H/O-H functionalization.

Scheme 1.65. Photo-catalyzed annulation of α , β -unsaturated carboxylic acids with alkenes

Yonehara's group developed a methodology for the construction of α -methylene- γ -butyrolactones **1.195** from intermolecular aerobic [3+2] annulation of acrylic acids **1.194** with alkenes **1.193** by *ortho* C-H functionalization under P(II)/Cu(II) or under simple Pd(II)-catalysis (Scheme 1.66).^{3c} In this reaction, carboxylate ligand plays a key role and allows greater reactivity for the annulations/couplings.

Scheme 1.66. Pd(II)-catalyzed [3+2] annulation of acrylic acids with alkenes

Miura's group revealed the coupling/annulation methodology for the divergent reactivity of maleic acids **1.196** with unsaturated compounds *via* decarboxylative and dehydrogenation process under the Rh(III)/Ag(I)-catalysis. In this reaction, when maleic acid was treated with the internal alkyne **1.197**, decarboxylative oxidative [4+2] annulation took place to afford α -pyrones **1.198**. When maleic acid was treated with 1,3-dialkynes **1.199**, double decarboxylative annulation took place using both the triple bonds to give dienoic acids **1.200**. In contrast to this, when maleic acid was treated with substituted alkene **1.193**, instead of annulation, decarboxylative and dehydrogenative coupling took place to give 1,3-butadienes **1.201** (Scheme 1.67).

Scheme 1.67. Rh(III)-catalyzed annulation of maleic acids with the alkynes/alkenes

Lisowski's group developed an alternative simple transition metal-free protocol for the construction of 4-halo-isocoumarin scaffolds **1.203** using electrophilic reagents and solid-phase polymer bound benzoates **1.202** *via* intramolecular halo cyclization process (Scheme 1.68).⁷⁸ In this reaction, first *ortho*-halo benzoates undergo Sonogashira cross-coupling reaction to give *ortho*-alkynylated benzoates which upon intramolecular cyclization in the presence of electrophilic reagents, afford 4-halo-isocoumarins.

$$E^{+} = ICL (1.0 \text{ M}, 1.2 \text{ equiv})$$
or $I_{2} (3.0 \text{ equiv})$

$$CH_{2}CI_{2}, \text{ rt, 4 h}$$

$$R^{2}$$

$$E^{+} = ICL (1.0 \text{ M}, 1.2 \text{ equiv})$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{3}$$

$$R^{4}$$

$$R^{2}$$

$$R^{4}$$

$$R^{2}$$

$$R^{4}$$

$$R^{2}$$

$$R^{4}$$

$$R^{2}$$

$$R^{4}$$

$$R^{2}$$

$$R^{4}$$

$$R^{2}$$

$$R^{4}$$

$$R^{4}$$

$$R^{2}$$

$$R^{4}$$

$$R^{$$

Scheme 1.68. Solid-phase synthesis of isocoumarins *via* halocyclization

In contrast to simple benzoic acid annulations with unsaturated components for the generation of isocoumarins, Lees's group utilized arylphosphonic acid monoesters **1.204** for the oxidative annulation with alkynes **1.86** to synthesize phospho-isocoumarins **1.205** regioselectively under Rh(III)/Ag(I) catalysis (Scheme 1.69).⁷⁹ This reaction also proceeded through cascade oxidative annulation/alkyne insertion and reductive elimination.

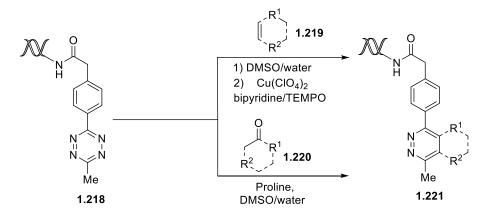
Scheme 1.69. Rh(III)-catalyzed annulations of arylphosphonic acid monoesters with alkynes

1.6 Cycloaddition reactions of tetrazines with alkynes and related substrates

Very recently, Boger's group reported a solvent driven selective cycloaddition reaction of 3,6-disubstituted-1,2,4,5-tetrazine **1.206** with cyclic enamine **1.207** under mild reaction conditions with excellent selectivity (Scheme 1.70). 80 Interesting part of the reaction is that a switch in the solvent altered the reactivity pattern to give two different kinds of cycloaddition adducts involving N1-N4. In the presence of HFIP (hexafluoroisopropanol) solvent, due to hydrogen bonding involving one of the tetrazine nitrogen atoms, 1,2,4-triazines **1.208** are formed. By contrast, in the presence of MeOH solvent at elevated temperatures, a general [4+2] cycloaddition involving C3-C4 was observed to afford substituted pyridazines **1.209** as the final products. Hydrogen bonding again played a key role in the addition process.

Scheme 1.70. HFIP driven selective N1-N4 cycloaddition of 1,2,4,5-tetrazine with enamines

The same Boger's group also reported a route for the synthesis of 1,2-diazines **1.213** and pyrroles **1.214** by the inverse electron demand Diels-Alder reaction (IED-D-A) of dimethyl 1,2,4,5-tetrazine-3,6-di-carboxylates **1.210** with electron-donating group containing olefins


1.211 (Scheme 1.71).⁸¹ The importance of the reaction lies in post-functionalization of the formed cycloadduct **1.212**. When products **1.212** were subjected to reduction in the presence of the Zn/AcOH, highly substituted pyrroles **1.213** are formed, but under simple basic-hydrolysis gave 1,2-diazines **1.214** as the final products.

Scheme 1.71. Thermal [4+2] cycloaddition of dimethyl tetrazine-3,6-dicarboxylate with electron-rich olefins

Later, the same Boger's group disclosed regioselective inverse electron demand Diels-Alder reactions of 6-[(alkyl/aryl/-oxycarbonyl)-amino]-3-(methylthio)-1,2,4,5-tetrazine **1.215** with electron-rich dienophiles **1.216** for the construction of functionalized 1,2-diazines **1.217** in excellent yields. They also studied the reactivity order of the electron-rich dienophiles with respect to the diene **1.215** (Scheme 1.72). The regioselectivity is consistent with respect to the diene in which the partial negative charge at C-3 position was stabilized by the methylthio group, whereas the partial positive charge at C-6 position was stabilized by the *N*-acylamino group. There are several other reports from the same group on tetrazine cycloaddition reactions. ^{13k,13m,13o,83,84}

Scheme 1.72. Regioselective IED-D-A reaction of *N*-acyl-6-amino-3-(methylthio)tetrazines

Dai's group successfully demonstrated a methodology for the synthesis of substituted pyridazines on DNA **1.221** (effectively) in aqueous medium using IED-D-A reactions of 1,2,4,5- tetrazines **1.218** with alkenes **1.219** and carbonyl compounds **1.220** (Scheme 1.73). The formed DNA cycloadducts were utilized further for Suzuki–Miyaura coupling, acylation, and S_NAr substitution reactions.

Scheme 1.73. Synthesis of pyridazines on DNA from the IED-D-A reaction of tetrazine

Sauer's group described IED-D-A reactions of the electron deficient tetrazine **1.222** with a wide variety of substituted terminal or internal alkynes **1.223** for the synthesis of substituted pyridazines **1.224** (Scheme 1.74a). Not only alkynes, but also substituted acyclic alkenes or cyclic alkenes **1.225** could be utilized for the reaction with tetrazine **1.222** to successfully obtain fused pyridazines **1.226** (Scheme 1.74b) *via* intermediates **V** and **VI**. They have also conducted kinetic studies and determined the rate constants for each reaction. The results could be useful in the future for studies related to tetrazine and its IED-D-A reaction with a variety of dienophiles.

Scheme 1.74. [4+2] cycloaddition reactions of 1,2,4,5-tetrazine with alkynes and alkenes

Sugni and coworkers reported synthesis of luminescent dinuclear rhenium metal complexes **1.229** and **1.232** by IED-D-A reaction of the electron deficient tetrazine **1.222** with estradiol **1.227** or alkynic carboxylic acids **1.230** (Scheme 1.75).⁸⁷ Here, estradiol possessing terminal alkyne and alkynic carboxylic acids first undergo [4+2] cycloaddition with tetrazine to give the intermediate IED-D-A cycloadducts **1.228** or **1.231**; these intermediates react with Re(CO)₅Cl to give the final rhenium complexes **1.229** or **1.232**. They have successfully utilized the photoluminescence turn on property of these complexes for photoimaging of living cells

Scheme 1.75. Luminescent dinuclear rhenium metal complexes from the IED-D-A reaction

Carboni and Lindsey reported [4+2] cycloaddition reactions of symmetrical 1,2,4,5-tetrazines with a wide variety of alkenes (1.234), alkynes (1.236), allene (1.238) and 1,3-butadienes (1.240) for the synthesis of the substituted pyridazines. Alkene 1.234 and butadiene 1.240 underwent reaction with tetrazine 1.233 to give substituted dihydropyridazines 1.235 and 1.241 as the final products, respectively. The reaction with alkyne 1.236 and allene 1.238 afforded fully aromatized pyridazines 1.237 and 1.239, respectively, as the final products *via* IED-D-A reaction (Scheme 1.76).⁸⁸

Scheme 1.76. [4+2] Cycloaddition of substituted 1,2,4,5-tetrazines with unsaturated compounds

Pierre's group described IED-D-A reactions of mono- and di-substituted 1,2,4,5-tetrazines with cyclooctyne in dichloromethane at two different temperatures (Scheme 1.77). When monosubstituted tetrazine 1.242 was treated with cyclooctyne 1.243 at room temperature, the reaction progressed smoothly *via* IED-D-A pathway and delivered the cyclooctyne fused pyridazines 1.244 (Scheme 1.77a). But for the reaction of disubstituted tetrazine 1.245 with 1.243, a slightly higher temperature of 50 °C was needed to get product 1.246 (Scheme 1.77b). The cycloaddition products 1.244 and 1.246 were found to be good photoluminescent materials.

Scheme 1.77. [4+2] IED-D-A cycloaddition of *mono/di*-substituted 1,2,4,5-tetrazines with cyclooctyne

Recently, Weissleder's group successfully reported a method for the covalent labeling of live cancer cells by the IED-D-A reaction of substituted tetrazines **1.247** with strained *trans*-cyclooctenol **1.248** to get the amine containing cycloadduct **1.249** (Scheme 1.78), 90 which is actually the key intermediate in the pre-targeting method of detecting live cancer cells. They treated the amine adduct **1.249** with amino acid fluorophore, a cell-permeable labeling mediator, and obtained product **1.250**. This was used to detect live cancer cells in *in vivo* process for the detection of cells by utilizing its turn on fluorescence properties.

Scheme 1.78. IED-D-A reactions of substituted 1,2,4,5-tetrazine with *trans*-cyclooctenol

Recently, Raines and Houk proved that not only tetrazine and its derivatives can act as electron deficient dienes in the IED-D-A reactions, but also 4,4-difluoro-3,5-diphenyl-4*H*-pyrazole **1.251** can act as electron deficient diene in IED-D-A reaction with bicyclo[6.1.0]non-

4-yn-9-ylmethanol (BCN) **1.252** to give fused cycloadducts **1.253** (Scheme 1.79)⁹¹ with greater reaction rates compared to tetrazine. The reactivity of **1.251** with BCN was examined experimentally as well as computationally. These studies revealed that the rate of the reaction for **1.251** was higher compared to that for tetrazine, and that the reaction can proceed with mM quantities also. The enhancement in the rate of the reaction was because of the hyperconjugative antiaromaticity developed by difluorination at 4-position, which was not observed in the case of demethylated pyrazole and hence the reaction failed in the latter case.

Scheme 1.79. IED-D-A Reaction of electron deficient 4,4-difluoro-3,5-diphenylpyrazole with BCN

Along with the above-mentioned reports for the cycloaddition reactions of electron deficient tetrazines with electron rich unsaturated dienophiles, there are a few reports involving the tetrazines with other electron rich dienophiles in the IED-D-A reactions, but are not elaborated here. ⁹² However, reaction of tetrazines with allenes has been very rarely explored till now.

OBJECTIVES OF THE PRESENT WORK

The objective of the present work was to study the reactivity/annulation reactions of aromatic heterocyclic carboxylic acids, 2-sustituted indoles (indole-2-carboxylates/carboxylic acids) and chromene/coumarin-3-carboxylic acids with C-C π components (*tert*-propargylic alcohols or alkynes) under Brønsted acid or transition metal catalysis. In addition, it was also intended to study cycloaddition reactions of 3,6-diphenyl 1,2,4,5-tetrazine with allenes. Specifically, the aim was

- (i) To explore the reactivity of indole-2-carboxylates/carboxylic acids with multisubstituted propargylic alcohols in an effort to develop new synthetic methodologies to indole fused polycyclic heterocycles under Brønsted or Lewis acid catalysis,
- (ii) To investigate transition metal catalyzed decarboxylative annulation reactions of coumarin-3-carboxylic acids with propargylic alcohols to obtain coumarin containing fused naphthalene heterocyclics,
- (iii) To study oxidative [4+2] annulation reactions of chromene/coumarin-3-carboxylic acids with alkynes or propargylic alcohols that may lead to pyrano-chromene/coumarins under [Ru]-catalysis, and
- (iv) To probe thermally induced regioselective [4+2] cycloaddition reactions of 3,6-diphenyl-1,2,4,5-tetrazine with allenes in an effort to synthesize novel pyridazines.

RESULTS AND DISCUSSION

This chapter deals with the results on annulation reactions of aromatic heterocyclic carboxylic acids and related substrates leading to extended heterocyclic architectures. The regioselective [4+2] cycloaddition reaction of 3,6-diphenyl-1,2,4,5-tetrazine with allenes to afford substituted pyridazine motifs is also covered briefly. Details on the precursors utilized for the present study are presented in section 2.1. After this, in section 2.2, annulation reactions of 2-substituted indoles with propargylic alcohols under PTSA mediation or Cu(II)-catalysis are discussed. In section 2.3, Cu(II)-catalyzed decarboxylative annulation reaction of coumarin-3-carboxylic acids with propargylic alcohols is presented. Section 2.4 deals with Ru(II)-catalyzed oxidative annulation reaction of chromene/coumarin-3-carboxylic acids with alkynes/propargylic alcohols. The last section 2.5 corresponds to the cycloaddition reactions of 3,6-diphenyl-1,2,4,5-tetrazine with allenes. The products obtained in this work are characterized by using IR, NMR, LCMS/CHN or HRMS and mp (for solids); the assigned regio- or stereo-chemistry of the products is generally based on X-ray crystallographic studies on representative compounds.

2.1 Precursors used in the present study

2.1.1 1H-Indole-2-carboxylates 1a-e and propargylic alcohols 3a-c and 4a-r

The 1*H*-indole-2-carboxylates **1a-e** were synthesized by esterification of indole-2-carboxylic acids using catalytic H₂SO₄,⁹³ while the indole-2-carboxylic acids **2a-b** are commercially available (Chart 1). Propargylic alcohols **3a-c** and **4a-r** were prepared from the corresponding carbonyl compounds and terminal alkynes following literature procedures (Scheme 1).⁹⁴

Chart 1. Indole-2-carboxylates and indole-2-carboxylic acids used in the present study

Scheme 1. Synthesis of propargylic alcohols 3a-c and 4a-r

2.1.2 Coumarin-3-carboxylic acids 5a-e and chromene-3-carboxylic acids 6a-c

The coumarin-3-carboxylic acids **5a-e** were synthesized by using salicylaldehyde and Meldrum's acid in water at reflux conditions for 10 h as shown in Scheme 2a. ⁹⁵ The 2*H*-chromene-3-carboxylic acids **6a-c** were synthesized by treating salicylaldehyde with acrylonitrile in the presence of DABCO under reflux for 10 h followed by basic hydrolysis of the obtained chromene-3-nitrile using 10% aqueous NaOH at reflux conditions for 6 h (Scheme 2b). ⁹⁶

Scheme 2. Synthesis of coumarin-3-carboxylic acids **5a-e** and chromene carboxylic acids **6a-c**

2.1.3 Disubstituted alkynes 7a-j

The alkyne precursors **7a** and **7e-j** are commercially available. Other alkynes **7b-d** were prepared by using aryl halides and terminal alkynes under Sonogashira cross-coupling conditions (Scheme 3).⁹⁷

Scheme 3. Availability/ synthesis of disubstituted alkynes **7a-j**

2.1.4 3,6-Diphenyl-1,2,4,5-tetrazine 8 and arylated sec-propargylic alcohols 9a-d

3,6-diphenyl-1,2,4,5-tetrazine **8** is commercially available. Substituted *sec*-propargylic alcohols **9a-d**, required for the synthesis of allenes, were synthesized by using standard Sonogashira-cross coupling reaction conditions using a Pd(II)-catalyst (Scheme 4). ⁹⁸

Scheme 4. Synthesis of substituted propargylic alcohols 9a-d

2.1.5 Allenylphosphonates 10a-d and allenylphosphine oxide 11

Allenylphosphonates **10a-d** and allenylphosphine oxide **11** were prepared by using a methodology developed from our group. ⁹⁹ This involves the reaction of R_2PCl [$R_2 = Ph_2$ or $(OCH_2CMe_2CH_2O)$] with propargylic alcohols **9a-d** in the presence of triethylamine. The intermediates **I-IV** upon *pseudo-*Claisen rearrangement give the phosphorus based allene (Scheme 5). The ³¹P NMR spectra of allenylphosphonates **10a-d** and allenylphosphine oxide **11** show peaks in the δ range 6-8 and 27-30 ppm, respectively.

Scheme 5. Synthesis of allenylphosphonates 10a-d and allenylphosphine oxide 11

2.1.6 Synthesis of alkyl allenes 12a-b, ester allenes 13a-c and allenylsulfone 14

Synthesis of terminal alkylated allenes was achieved by the reaction of terminal alkynes with paraformaldehyde in the presence of the Cu-salts and amines as depicted in the Scheme $6a.^{100}$ In another case, synthesis of ester allenes involves the reaction of the phosphorus ylide with acetyl chloride in the presence of triethylamine in dichloromethane solvent as shown in Scheme $6b.^{101}$ Allenyl sulfone synthesis involves two steps: first step comprises the reaction of propargylic alcohol with 4-chlorophenyl hypochlorothioite and gives the intermediate \mathbf{V} which upon oxidation with mCPBA gives the final allenyl sulfone $\mathbf{14}$ as shown in Scheme $6c.^{102}$

CuBr or CuI (0.5 equiv)
$$\frac{i \cdot Pr_2NH (0.8 \text{ equiv})}{i \cdot Pr_2NH (0.8 \text{ equiv})}$$
(CH₂O)_n (2.5 equiv)
dioxane, reflux
$$R = C_8H_{17} \text{ (12a)}$$

$$R = C_9H_{19} \text{ (12b)}$$

$$R = C_9H_{19} \text{ (12b)}$$

$$R = Et \text{ (13a)}$$

$$R = fBu \text{ (13b)}$$

$$R = Bn \text{ (13c)}$$
(CI
$$R = H_3C$$

$$CO_2R$$

$$R = Et \text{ (13a)}$$

$$R = H_3C$$

$$R$$

Scheme 6. Synthesis of allenes 12a-b, ester allenes 13a-c and allenylsulfone 14

2.2 Annulation reactions of indole-2-carboxylates/carboxylic acids with propargylic alcohols

As described in Chapter 1,5,6 indole is one of the broadly studied molecules of heterocyclic family because of its high reactivity towards annulation/cyclization for the generation of a plethora of heterocyclic architectures, many of which are pharmaceutically important. In the present work, we wanted to explore the reactivity of 2-substituted indoles with propargylic alcohols under Brønsted or Lewis acid catalysis. For this purpose, we have selected indole-2-carboxylates along with *tert*-propargylic alcohols as our model substrates. The products include spirocyclic indoles from dearomative ring expansion and fused indole pentacyclics by annulation. To the best of our knowledge, there had been no precedence for these types of reactions.

2.2.1 PTSA mediated dearomative ring expansion followed by spirocyclization (*via* oxygen insertion) of indole-2-carboxylates with propargylic alcohols

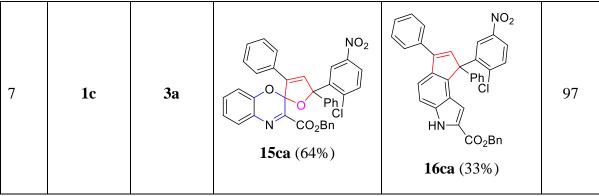
Our initial investigation began by performing the reaction of ethyl 1H-indole-2-carboxylate **1b** with propargylic alcohol **3a** in the presence of p-toluene sulfonic acid (PTSA) in acetonitrile at rt (25 °C) for 12 h (Table 1, entry 1). Rather unexpectedly, we isolated the spirocyclic compound **15ba** in 40% yield along with 10% of dihydrocyclopenta[e]indole-2-carboxylate 16ba. Among the solvents MeCN, toluene, DCM, DMSO, THF, dioxane, PEG-400, EtOH, and MeNO₂ (entries 1-9), MeNO₂ offered the best yield of **15ba** (50%) along with **16ba** (20%) (entry 9). Increasing the reaction time to 24 h increased the yield of **15ba** to 60% and of **16ba** to 30% (entry 10). Use of 1.5 equiv of PTSA after 24 h of reaction time at room temperature afforded the final products 15ba and 16ba in the ratio 67:31 (entry 11). Use of the Brønsted acid TfOH gave < 20% of **15ba** along with other unidentified products. Acetic acid did not work for our reaction but trifluoroacetic acid (TFA) gave a trace amount of 15ba along with allene intermediate **18ba** as the major product (entries 12-14). Although starting materials were consumed when H₂O₂ or TBHP was added, the reaction mixture showed many products with the exclusion of **15ba** (entries 15-16). By increasing the quantity of PTSA to 2 equiv, only marginal increase in the yield of 15ba (69%) and decrease in the yield of 16ba (28%) were observed (entry 17). No desired product formation was observed at 100 °C in toluene or MeNO₂ (entries 18-19). We have performed the reaction using oxygen balloon and isolated **15ba** in 78% yield along with **16ba** (14%). In contrast to this, use of nitrogen balloon delivered **15ba** in <10% yield and **16ba** in 30% yield (entries 20-21). Hence these experiments suggest that the presence of molecular oxygen is essential for the formation of spirocyclic compound. When we performed the reaction by adding 2 equiv of water, we obtained 80% of the spirocyclic product **15ba** along with <10% of **16ba** (entry 22). None of the Lewis acid catalysts Cu(OTf)₂, Zn(OTf)₂, Yb(OTf)₃ or AgOTf afforded the final products. Thus, the conditions used in entry 11 were chosen for the conversion because both the products were novel and we wanted to utilize the conditions which gave good yields of both the products. We have also utilized the conditions mentioned in entries 20 and 22 to get the spirocyclic products 15aa and **15ab** in better yields compared to conditions utilized in entry 11.

Table 1. Optimization study of PTSA mediated annulation reaction between $\bf 1b$ and $\bf 3a$ for the formation of spiro[benzo-oxazinefuran] $\bf 15ba$ and cyclopenta[e]indole-2-carboxylate $\bf 16ba$ a

Entry	Acid	Solvent	Time (h)	Yield ^b (15ba:16ba, %)
1	PTSA	MeCN	12	40:10
2	PTSA	Toluene	12	<10:0
3	PTSA	DCM	12	20:30
4	PTSA	DMSO	12	n.d.
5	PTSA	THF	12	n.d.
6	PTSA	Dioxane	12	20:0
7	PTSA	PEG-400	12	n.d.
8	PTSA	EtOH	12	n.d.
9	PTSA	MeNO ₂	12	50:20
10	PTSA	MeNO ₂	24	60:30
11	PTSA	MeNO ₂	24	67:31
12	TfOH	MeNO ₂	24	<20:0
13	АсОН	MeNO ₂	24	n. r
14	TFA	MeNO ₂	24	trace:0
15	H_2O_2	MeNO ₂	24	n.d.
16	ТВНР	MeNO ₂	24	n.d.
17	PTSA	MeNO ₂	24	69:28
18	PTSA	MeNO ₂	24	n.d.

19	PTSA	Toluene	24	n.d.
20^c	PTSA	MeNO ₂	24	78:14
21 ^d	PTSA	MeNO ₂	24	<10:30
22 ^e	PTSA	MeNO ₂	24	80:<10

^{a)}Reaction conditions: **1b** (100 mg, 0.57 mmol), **3a** (0.57 mmol), and acid (1.0 equiv for entries 1-10; 1.5 equiv for entries 11-16 and 18-22; 2.0 equiv for entry 17) in solvent (2.0 mL); temperature (25 °C for entries 1-17 and 20-22; 100 °C for entries 18 and 19). ^{b)} Isolated yield. ^{c)} under O₂ balloon. ^{d)} under N₂ balloon. ^{e)} with 2.0 equiv of H₂O.


After having the optimized reaction conditions in hand, we examine the substrate scope. Although initially we could not get these spirocyclic products exclusively, the reaction of methyl indole-2-carboxylate 1a (1 equiv) with 3a (1 equiv) in the presence of PTSA (1.5 equiv) in MeNO₂ at room temperature (25 °C) in open air for 24 h afforded only the spirocyclic product 15aa in 71% yield. We have also utilized methyl, ethyl and benzyl indole-2carboxylates 1a-c and obtained good yields of the spirocycles 15aa-15bc and 15ca along with substituted dihydrocyclopenta[e]indole-2-carboxylates **16ab-16bc** and **16ca** in moderate yields. As far as propargylic alcohols are concerned, we have utilized **3a-c** that have aryl groups at the alkynic end to obtain the desired products (Table 2). We have also attempted the reaction with electron donating group containing propargylic alcohols such as PhC≡CC(Me)Ph(OH) and PhC≡CCH₂OH but did not observe the desired product formation (see later for mechanism). 103 The N-methylated precursor, methyl 1-methyl-1H-indole-2carboxvlate, 103 as expected, did not afford the ring expanded spirocyclic product. This is because of the absence of free N-H which is required for the ring enlargement (see later for the mechanistic pathway). The structures of the products 15aa, 15ba and 16ba were further confirmed by X-ray crystallographic analysis (Figure 1).

Scheme 7. Synthesis of spiro[benzo-oxazinefurans] **15** or cyclopenta[e]indole-2-carboxylates **16**

Table 2. Substrate scope for the spiro[benzo-oxazinefurans] and cyclopenta[e]indole-2-carboxylates a

Entry	Indole-2-	Propargylic	Spiro[benzo-	Cyclopenta[e]indole-2-	Overall
Linity	carboxylate	alcohol	oxazinefuran]	carboxylate	yield ^b
1	1a	3a	NO ₂ O Ph CI CO ₂ Me 15aa (71%) X-ray	Not isolated	71%
2	1a	3b	Me NO ₂ Ph Cl Cl CO ₂ Me 15ab (61%)	Me NO ₂ Ph Cl HN CO ₂ Me 16ab (29%)	90

3	1a	3c	NO ₂ NO ₂ Ph Cl N CO ₂ Me 15ac (66%)	Ph Cl HN CO ₂ Me 16ac (32%)	98
4	1b	3a	NO ₂ O Ph Cl CO ₂ Et 15ba (67%) X-ray	NO ₂ Ph Cl CO ₂ Et 16ba (31%) X-ray	98
5	1b	3b	Me NO ₂ O Ph Cl Cl Cl Cl 15bb (58%)	Me NO ₂ Ph Cl HN CO ₂ Et 16bb (30%)	88
6	1b	3c	NO ₂ NO ₂ NO ₂ NO ₂ NO ₂ NO ₂ Solution of the second	Ph Cl HN CO ₂ Et 16bc (35%)	97

^aIndole-2-carboxylate (**1a-c**, 0.57 mmol), propargylic alcohol (one of **3a-c**, 0.57 mmol), and PTSA (0.85 mmol) in MeNO₂ (2 mL) in open air at rt for 24 h. ^bIsolated yields.

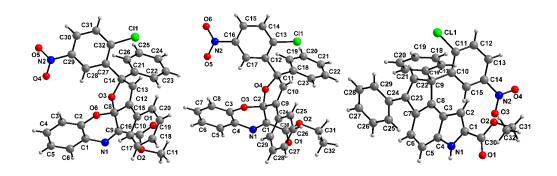
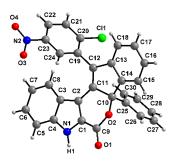


Figure 1: Molecular structures of compounds 15aa (left), 15ba (center) and 16ba (right). Selected bond lengths in [Å] with esds in parenthesis: Compound 15aa: C(1)-C(2) 1.387(5), C(2)-O(6) 1.379(4), O(6)-C(8) 1.442(4), C(8)-C(9) 1.528(5), C(9)-N(1) 1.270(5), N(1)-C(1) 1.397(4), C(8)-O(3)- 1.418(5), O(3)-C(14) 1.454(4), C(14)-C(13) 1.495(6), C(13)-C(12) 1.323(5), C(12)-C(8) 1.512(5), C(1)-C(6) 1.388(5), C(2)-C(3) 1.376(5), C(14)-C(21) 1.522(5), C(14)-C(27) 1.538(5), C(12)-C(15) 1.472(6), C(9)-C(10) 1.496(5). Compound 15ba: C(1)-C(2) 1.532(6), C(2)-O(3) 1.438(5), O(3)-C(3) 1.380(6), C(3)-C(4) 1.395(6), C(4)-N(1), 1.385(5), N(1)-C(1) 1.278(6), C(2)-O(4) 1.416(5), O(4)-C(11) 1.470(5), C(11)-C(10) 1.500(6), C(10)-C(9) 1.325(6), C(9)-C(2) 1.493(7), C(4)-C(5) 1.378(8), C(3)-C(8) 1.369(6), C(11)-C(12) 1.526(7), C(11)-C(18) 1.512(6), C(9)-C(24) 1.471(6), C(1)-C(30) 1.491(7). Compound 16ba: C(7)-C(8) 1.391, C(8)-C(9) 1.528(8), C(9)-C(22) 1.526(8), C(22)-C(23) 1.342(8), C(23)-C(7) 1.473(8), C(7)-C(6) 1.402(8), C(8)-C(3) 1.396(8), C(9)-C(10) 1.533(8), C(9)-C(16) 1.539(8), C(21)-H(21) 0.9300.


In an attempt to enhance the yield of products **15ba** and **16ba**, we treated indole-2-carboxylate **1b** with propargylic alcohol **3a** in the presence of PTSA in MeNO₂ by increasing the temperature to 60 °C for 12 h. To our surprise, we obtained the double cyclized indene fused pyrano-indolone (a fused pentacyclic) **17ba** (X-ray; Figure 2) in 92% yield probably by cyclization *via in-situ* generated carboxylic acid. Similarly, **17ea** (90%) and **17eb** (88%) were obtained from the reaction of **1e** with **3a** or **3b**. It is noteworthy to mention that compound **17ba** can be synthesized from the isolatable allene intermediate **18ba** (see Table 4 for data on allenes **18aa-18db**) in the presence of 50 mol% of the PTSA in MeNO₂ at 60 °C/ 6 h (*cf*. Scheme 8), which in turn proves that the reaction takes place *via* allene intermediate. Under the conditions employed herein, formation of indene fused pyrano-indolone is limited to propargylic alcohols **3a-c**.

Scheme 8. Synthesis of substituted indene fused pyrano-indolones

Table 3. Substrate scope for the indene fused pyrano-indolones^a

Enter	Indole-2-	Propargylic	Indone frond armone indolone	Yield ^b
Entry	carboxylate	alcohol	Indene fused pyrano-indolone	(%)
1	1b	3a	NO ₂ NO ₂ NO ₂ NO ₂ NO ₃ NO ₄ NO ₂ NO ₄ NO ₄ NO ₅ NO ₅ NO ₆ NO ₇	92
2	1e	3a	NO ₂ CI CI NH O 17ea	90
3	1e	3b	CI CI Me NO2	88

^aIndole 2-carboxylate (**1b** or **1e**, 0.53 mmol), propargylic alcohol (one of **3a-b**, 0.53 mmol), and PTSA (0.53 mmol) MeNO₂ (2 mL) at 60 °C (oil bath temperature) for 12 h. ^bIsolated yields.

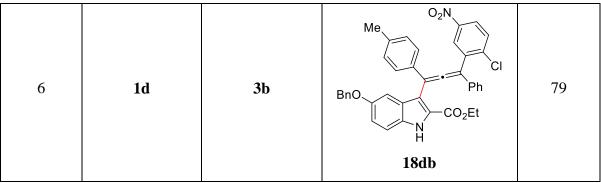


Figure 2: Molecular structure of the compound **17ba**. Selected bond lengths in [Å] with esds in parenthesis: C(1)-C(2) 1.392(6), C(2)-C(11) 1.449(6), C(11)-C(10) 1.513(4), C(10)-O(2) 1.466(5), O(2)-C(9) 1.358(5), C(9)-C(1) 1.448(5), C(9)-O(1) 1.211(6), C(11)-C(12) 1.344(5), C(12)-C(13) 1.476(6), C(13)-C(14) 1.391(6), C(14)-C(10) 1.512(5), C(1)-N(1) 1.355(6), C(2)-C(3) 1.422(6), C(12)-C(19) 1.480(5), C(13)-C(18) 1.395(5), C(14)-C(15) 1.374(6), C(10)-C(25)1.530(8),

Table 4. 3-Allenyl indole-2-carboxylates isolated in the present study^a

Enter	Indole-2-	Propargylic	3-allenyl-indole-2-	Yield ^b
Entry	carboxylate	alcohol	carboxylates	(%)
1	1a	3a	O ₂ N CI Ph CO ₂ Me	84

2	1b	3a	O ₂ N Cl Ph CO ₂ Et	80
3	1b	3b	Me CI Ph CO ₂ Et H	78
4	1b	3c	Ph CO ₂ Et N H	74
5	1d	3a	O ₂ N Cl Ph CO ₂ Et H	76

^aIndole-2-carboxylate (**1a-b**, **1d**; 0.53 mmol), propargylic alcohol (one of **3a-c**, 0.26 mmol), and PTSA (20 mol%), toluene (2 mL), at rt for 6 h. ^bIsolated yields.

2.2.2 Cu(II)-catalyzed annulations of indole-2-carboxylic acids and propargylic alcohols leading to indene fused pyrano-indolones (pentacyclics)

In the above reactions, we have utilized indole-2-carboxylates. However, we surmised that the course of the reaction could be altered if the carboxylic acid itself is used because of the availability of the acidic -OH group. Indeed, this assumption proved to be valid since by treating equimolar amounts of the readily available indole-2-carboxylic acid 2a with propargylic alcohol 4b in the presence of PTSA in toluene at rt (25 °C), we obtained the indene fused pentacyclic product **19ab** in 31% yield (Table 5, entry 1). Encouraged by the outcome, we went further for the optimization of the reaction conditions. For that we have used solvents like DCM, MeNO₂, dioxane, THF, DMSO and DMF but none of them worked for the reaction; use of either DCM or MeNO₂ afforded the product in yields of 14% or 35% respectively (Table 5, entries 2-7). Better solvents were MeOH and MeCN (entries 8-9); however, increasing the temperature to 80 °C lowered the yield to 39% (entry 10). Higher loading of PTSA (2 equiv) did not improve the yield (entry 11). To our delight, 84% yield of **19ab** was obtained by using catalytic Cu(OTf)₂ (0.1 equiv; entry 12); increase in the reaction time to 12 h increased the yield to 95% (entry 13). A higher catalyst loading 0.2 equiv only marginally increased the yield (96%, entry 14), but decreasing catalyst loading to 0.05 equiv decreased the yield drastically 64% (entry 15). Other Lewis acids like Zn(OTf)₂, Yb(OTf)₃, BF₃·OEt₂, Bi(OTf)₃, FeCl₃, and AlCl₃ were ineffective or gave very poor yields (entries 16-21). Although use of triflic acid itself does give the product, the yield is only moderate (entry 22). There was no reaction in the absence of the catalyst (entry 23). Thus, conditions used in entry 13 were the best for the reaction.

Table 5. Optimization study of Cu(II)-catalyzed annulation reaction between $\bf 2a$ and $\bf 4b$ for the formation of fused pentacyclic $\bf 19ab$ a

Entry	A a i d	Calmont	Time	Yield ^b
Linery	Acid	Solvent	(h)	(%)
1	PTSA	Toluene	8	31
2	PTSA	DCM	8	14
3	PTSA	MeNO ₂	8	35
4	PTSA	Dioxane	8	n.d.
5	PTSA	THF	8	n.d.
6	PTSA	DMSO	8	n.d.
7	PTSA	DMF	8	n.d.
8	PTSA	МеОН	8	49
9	PTSA	MeCN	8	65
10	PTSA	MeCN	8	39
11	PTSA	MeCN	8	53
12	Cu(OTf) ₂	MeCN	8	84
13	Cu(OTf) ₂	MeCN	12	95
14	Cu(OTf) ₂	MeCN	12	96
15	Cu(OTf) ₂	MeCN	12	64
16	Zn(OTf) ₂	MeCN	12	n.d.
17	BF ₃ ·OEt ₂	MeCN	12	10
18	Yb(OTf) ₃	MeCN	12	n.d.
19	Bi(OTf) ₃	MeCN	12	28

20	FeCl ₃	MeCN	12	traces
21	AlCl ₃	MeCN	12	n.d.
22	TfOH	MeCN	12	42
23	-	MeCN	12	n.d.

^{a)} Reaction conditions: **2a** (0.62 mmol), **4b** (0.62 mmol), and acid (1.0 equiv for entries 1-10, 17 and 20-22; 2.0 equiv for entry 11; 10 mol% for entries 12, 13, 16, 18 and 19; 20 mol% for entry 14; 5 mol% for entry 15 in solvent (2.0 mL) at temperature (25 °C for entries 1-9 and 11-23; 80 °C for entry 10). ^{b)} Isolated yield.

Using the established optimized reaction conditions, we checked the generality of the developed methodology by using indole-2-carboxylic acids **2a-b** and various substituted propargylic alcohols. In almost all the cases, the reaction progressed well and afforded the final fused pentacyclic products **19ab-19bb** in good to excellent yields (Table 6). It is noteworthy to mention that the *ortho*-di-substituted propargylic alcohol **4g** also reacted nicely without any steric problem and afforded the final product **19ag** in 79% yield. Other symmetrical propargylic alcohols like **4h**, **4i** and **4k** also worked well to give the final products **19ah-19ak** in excellent yields (76-92%). Use of unsymmetrical or electron withdrawing group containing propargylic alcohols **4m** and **4o-q** also gave very good yields 84-92% of the fused pentacyclics **19am** and **19ao-19aq**. 5-Methoxy-indole-2-carboxylic acid **2b** upon reaction with propargylic alcohol **4b** afforded the product **19bb** in 85% yield. The structures of **19ap** and **19bb** were further confirmed by the X-ray crystallography (Figure 3).

Scheme 9. Synthesis of indene fused pyrano-indolones (fused pentacyclics)

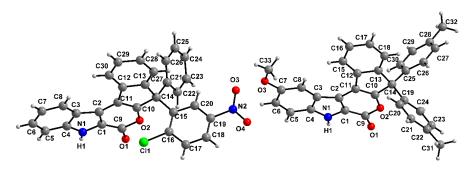
Table 6. Substrate scope for the fused pentacyclics 19^a

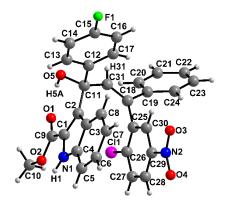
Entry	Indole-2-carboxylic	Propargylic	Fusad pantagyalia	Yield ^b
Entry	acid	alcohol	Fused pentacyclic	(%)
1	CO ₂ H N H 2a	4 b	Me NH Me	95
2	CO ₂ H N H	4 c	OMe N N OMe	91
3	CO₂H N H	4 e	CI NH CI 19ae	88
4	CO ₂ H N H 2a	4f	Me N H O 19af	93

5	CO ₂ H N H 2a	4 g	Me Me Me Me 19ag	79
6	CO ₂ H N H 2a	4h	Me CI CI 19ah	90
8	CO ₂ H N H 2a	4i	OMe N H O 19ai	76
7	CO ₂ H N H 2a	4k	Me NH Me	92
9	CO ₂ H N H 2a	4m	19am	89

10	CO ₂ H N H 2a	40	NO ₂ NO ₂ 19ao	84
12	CO ₂ H N H 2a	4р	19ap (X-ray)	92
11	CO ₂ H N H 2a	4 q	Me NO ₂ NO ₂ 19aq	86
13	MeO CO ₂ H 2b	4b	MeO NeO NH 31 19bb (X-ray)	85

^aIndole-2-carboxylic acid (**2a-b**, 0.62 mmol), propargylic alcohol (**4**, 0.62 mmol) and Cu(OTf)₂ (10 mol%) in MeCN (2 mL) at room temperature (25 °C) for 12 h. ^bIsolated yields.




Figure 3: Molecular structures of compounds 19ap (left) and 19bb (right). Selected bond lengths in [Å] with esds in parenthesis: Compound 19ap: C(1)-C(2) 1.397(5), C(2)-C(11) 1.412(5), C(11)-C(10) 1.342(5), C(10)-O(2) 1.366(5), O(2)-C(9) 1.379(6), C(9)-C(1) 1.418(6), C(9)-O(1) 1.225(5), C(11)-C(12) 1.484(7), C(12)-C(13) 1.409(8), C(13)-C(14) 1.529(6), C(14)-C(10) 1.503(6), C(10)-C(11) 1.342(5), C(1)-N(1) 1.356(5), C(2)-C(3) 1.460(6), C(12)-C(30) 1.369(6), C(13)-C(27) 1.353(8), C(14)-C(21) 1.560(7), C(14)-C(15) 1.552(7). Compound 19bb: C(1)-C(2) 1.394(4), C(2)-C(11) 1.437(4), C(11)-C(10) 1.358(5), C(10)-(O2) 1.368(3), O(2)-C(9) 1.374(4), C(9)-C(1) 1.412(5), C(9)-O(1) 1.220(4), C(11)-C(12) 1.472(4), C(12)-C(13) 1.411(4), C(13)-C(14)-1.528(4), C(14)-C(10)-1.509(4), C(1)-N(1) 1.372(4), C(2)-C(3) 1.440(4), C(12)-C(15) 1.381(4), C(13)-C(18) 1.378(4), C(14)-C(19) 1.548(4), C(14)-C(25) 1.531(4),

Based on literature reports^{104,105} and our own observations, we propose a plausible pathway for the formation of spirocyclic compounds **15ba** in Scheme 10. Initially, the indole ester undergoes allenation to give 3-allenyl indole ester **VI** [isolated (cf. compounds **18aa-18db**) and identified in the reaction mixture]; this intermediate upon isomerization followed by oxa-Michael addition (adventitious water addition) delivers **IX** (*via* **VII-VIII**), which rearranges to give the intermediate **X** [cf. Scheme 11; HRMS and X-ray evidence (Figure 4)]. It is noteworthy to mention that the intermediates **III-IV** are not possible in the case of electron donating as well as unsubstituted propargylic alcohols. Hence, we observed dearomative ring expanded spirocyclization only with chloro- and nitro- substituted precursors. Another possibility to get the intermediate **X** is the reaction of indole ester with Meyer-Schuster rearranged unsaturated ketone but this did not work. Intermediate **X** {[M+Na]⁺ 575.1359} upon intramolecular cyclization gives epoxy-intermediate **XII** that undergoes epoxide ring opening followed by cyclopropanation giving the intermediate **XII**. Ring expansion with oxygen insertion *via* cyclopropane ring opening gives intermediate **XIII**.

with adventitious molecular oxygen (aerobic) to give peroxide intermediate XIV that undergoes water elimination via peroxide bond (known to be weak) breakage and gives the final product 15ba.

Scheme 10. Plausible pathway for the formation of spirocyclic compounds of type 15ba

Scheme 11. Synthesis of intermediate **X**

Figure 4: Molecular structure of intermediate **X**. Selected bond lengths in [Å] with esds in parenthesis: C(2)-C(11) 1.525(6), C(11)-O(5) 1.455(5), O(5)-H(5A) 0.821(3), C(11)-C(31) 1.497(7), C(31)-C(18) 1.319(6), C(31)-H(31) 0.929(4), C(1)-C(2) 1.389(6), C(11)-C(12) 1.532(6), C(18)-C(19) 1.507(7), C(18)-C(25) 1.497(6).

A plausible pathway for the formation of dihydrocyclopenta[e]indole-2-carboxylate **16ba** is shown in Scheme 12. As we already discussed, initially, indole ester undergoes allenation to give 3-allenyl indole ester VI. This intermediate undergoes sequential intramolecular rearrangement to give **XVI** (via **XV'**). Intermediate **XVI** rearranges to give **XVII** (HRMS evidence) which upon intramolecular cyclization gives the final product **16ba** via **XVIII**.

Scheme 12. Plausible pathway for the formation of 16ba

Formation of compounds of type **17ba** (Scheme 13) involves allenation to give 3-allenyl indole ester **VI**. This intermediate undergoes cyclopropanation to afford **XIX** which upon ester hydrolysis gives **XX**. This intermediate undergoes intramolecular cyclization involving carboxylic acid *via* cyclopropane ring opening to furnish **XXI** which rearranges to give intermediate **XXII**. Species **XXII** upon intramolecular cyclization followed by aromatization affords the final product **17ba**.

Scheme 13. A plausible pathway for the formation of compounds of type **17**

In the formation of compound **19ab** (Scheme 14),¹⁰⁶ propargylic alcohol co-ordinates to Cu(OTf)₂ to give **XXIV** and makes the carbon center more electrophilic, which facilitates the indole carboxylic acid addition to propargylic alcohol. Thus, intermediate **XXIV** undergoes addition with indole carboxylic acid to give **XXV**, which upon dehydration gives intermediate **XXVI**. Intermediate **XXVI** undergoes intramolecular cyclization to give **XXVII**, which upon protonation followed by aromatization gives the cyclized product **19ab** and regenerates Cu(OTf)₂ for the next catalytic cycle.

R¹ = R² = 4-Me-C₆H₄

19ab

H
R²

R
OH

Ab
R²

(TfO)₂Cu - OH

R
R³

--Cu(OTf)₂

XXIV R³

Cu(OTf)₂

$$R^2$$
 R^2
 R^3
 R^3

Scheme 14. Plausible catalytic pathway for the formation of compound 19ab

2.3 Decarboxylative annulations of coumarin-3-carboxylic acids with *tert*-propargylic alcohols under Cu (II)-catalysis: Formation of naphthochromenones

In continuation of the previous section, we envisioned that instead of indole carboxylic acids, use of other carboxylic acids may lead to a different line of reactivity. For this purpose, we chose chromene/coumarin carboxylic acids both of which have a double bond in conjugation with the phenyl ring. Coumarin and its derivatives are naturally abundant and pharmaceutically important;¹² they can be synthesized readily by using simple starting materials. To our knowledge, there is no significant report on the annulation reactions of chromene/coumarin-3-carboxylic acids with propargylic alcohols. Keeping this in mind, we treated propargylic alcohol 4a (1 equiv) with coumarin-3-carboxylic acid 5a (1 equiv) in the presence of Cu(OAc)₂·H₂O (1 equiv) and AgSbF₆ (additive; 0.3 equiv, 30 mol%) in 1,4-dioxane at 100 °C for 24 h (Table 7, entry 1). To our delight, we isolated the decarboxylative annulation product 20aa in 41% yield. Encouraged by this positive outcome, we extended our investigations to enhance the yield of 20aa. When we increased the temperature to 120 °C, there was an increase in the yield (55%; entry 2); a slightly better yield of 58% was obtained when the reaction time was reduced to 12 h (entry 3). When the Cu(OAc)₂ loading was reduced

to 0.3 equiv, we observed 60% yield of **20aa** (entry 4). Additives/catalysts like AgOAc and AgNO₃ were ineffective (entries 5-6). The additive/catalyst Ag(O₂CCF₃) gave 56% yield (entry 7); AgBF₄ (0.3 equiv) also worked well and afforded the final product in 61% yield (entry 8). In place of 1,4-dioxane, use of other solvents like toluene, xylene, MeNO₂ and DMF did not improve the yield (entries 9-12). Better results were observed when the catalyst was changed to Cu(OTf)₂ along with AgBF₄ affording **20aa** (75%; entry 13). Use of 20 mol% of the AgBF₄ along with Cu(OTf)₂ also gave 79% of the product (entry 14). AgSbF₆ and Ag(O₂CCF₃) along with Cu(OTf)₂ afforded **20aa** in 82% and 77% of yields respectively (entries 15-16). To our surprise, use of 20 mol% of the Cu(OTf)₂ alone in 1,4-dioxane solvent at 120 °C for 12 h worked very well and gave an excellent yield of the annulated product 20aa (89%; entry 17). A marginally lower yield of 83% was observed using Cu(OTf)₂ when the reaction time was reduced to 8 h (entry 18). AgBF₄ also proved to be viable for the conversion but comparatively lower yield 72% of **20aa** was observed (entry 19). When we employed other Lewis acid catalysts like Zn(OTf)₂, Yb(OTf)₃, In(OTf)₃, NaOTf and AgOTf, the yield was much lower or the product was not formed (entries 20-24). Thus, the conditions used in entry 17 were the best for the formation of the decarboxylative annulated product **20aa**.

Table 7. Optimization study of Cu(II)-catalyzed decarboxylative annulation reaction between **4a** and **5a** for the formation of naphthochromenone **20aa**^a

Entry	Catalyst (equiv)	Additive (equiv)	Solvent	Temp (°C)	Time (h)	Yield ^b (%)
1	$Cu(OAc)_2 \cdot H_2O (1.0)$	AgSbF ₆ (0.3)	1,4-dioxane	100	24	41
2	$Cu(OAc)_2 \cdot H_2O (1.0)$	AgSbF ₆ (0.3)	1,4-dioxane	120	24	55
3	$Cu(OAc)_2 \cdot H_2O (1.0)$	AgSbF ₆ (0.3)	1,4-dioxane	120	12	58
4	Cu(OAc) ₂ ·H ₂ O (0.3)	AgSbF ₆ (0.3)	1,4-dioxane	120	12	60
5	Cu(OAc) ₂ ·H ₂ O (0.3)	AgOAc (0.3)	1,4-dioxane	120	12	n.r.
6	$Cu(OAc)_2 \cdot H_2O (0.3)$	AgNO ₃ (0.3)	1,4-dioxane	120	12	n.r.
7	Cu(OAc) ₂ ·H ₂ O (0.3)	CF ₃ COOAg (0.3)	1,4-dioxane	120	12	56

8	$Cu(OAc)_2 \cdot H_2O (0.3)$	AgBF ₄ (0.3)	1,4-dioxane	120	12	61
9	$Cu(OAc)_2 \cdot H_2O (0.3)$	AgSbF ₆ (0.3)	toluene	120	12	31
10	Cu(OAc) ₂ ·H ₂ O (0.3)	AgSbF ₆ (0.3)	xylene	120	12	47
11	Cu(OAc) ₂ ·H ₂ O (0.3)	AgSbF ₆ (0.3)	MeNO ₂	120	12	n.d.
12	$Cu(OAc)_2 \cdot H_2O (0.3)$	AgSbF ₆ (0.3)	DMF	120	12	n.d.
13	Cu(OTf) ₂ (0.3)	AgBF ₄ (0.3)	1,4-dioxane	120	12	75
14	Cu(OTf) ₂ (0.3)	AgBF ₄ (0.2)	1,4-dioxane	120	12	79
15	Cu(OTf) ₂ (0.2)	AgSbF ₆ (0.2)	1,4-dioxane	120	12	82
16	Cu(OTf) ₂ (0.2)	CF ₃ COOAg (0.2)	1,4-dioxane	120	12	77
17	Cu(OTf) ₂ (0.2)	-	1,4-dioxane	120	12	89
18	Cu(OTf) ₂ (0.2)	-	1,4-dioxane	120	8	83
19	-	AgBF ₄ (0.3)	1,4-dioxane	120	12	72
20	Zn(OTf) ₂ (0.2)	-	1,4-dioxane	120	12	n.d.
21	Yb(OTf) ₃ (0.2)	-	1,4-dioxane	120	12	n.d.
22	In(OTf) ₃ (0.2)	-	1,4-dioxane	120	12	trace
23	NaOTf (0.2)	-	1,4-dioxane	120	12	20
24	AgOTf	-	1,4-dioxane	120	12	48

^{a)}Coumarin-3-carboxylic acid **5a** (0.53 mmol), propargylic alcohol **4a** (0.53 mmol), solvent (2 mL), temp (°C), time (h), ^{b)} Isolated yield.

For the substrate scope, we have utilized a variety of acids and alcohols under the optimized conditions. In all the cases we obtained good to excellent yields of the annulated products **20aa-20le/20le'**. Symmetrical propargylic alcohols having substitution on phenyl rings (with -Me, -OMe, -F and -Cl) both at propargylic as well as alkynic ends of the propargylic alcohols

worked well and delivered the annulated products in good to excellent yields. The unsymmetrical propargylic alcohols like **4l**, **4m** and **4n** afforded isomeric products (cf. **20ld/20ld'**, **20ma/20ma'**, **20ma/20na'**) as expected with no specific preference to either of the isomers. We then checked the substituted (-OMe, -OEt) coumarin-3-carboxylic acids **5b** and **5c**; in these cases also, we obtained the final products in excellent yields. It is noteworthy to mention that the *bromo* (or) *dichloro* substituted coumarin-3-carboxylic acids **5d** and **5e** also worked very well with symmetrical as well as unsymmetrical propargylic alcohols and afforded the products **20ad-20le'** in excellent yields. The structures of **20aa** and **20de** were confirmed by the X-ray crystallography (Figure 5).

Scheme 15. Synthesis of 6H-naphtho[2,1-c]chromen-6-ones from coumarin-3-carboxylic acids and propargylic alcohols under Cu(II)-catalysis

Table 8. Substrate scope for the 6H-naphtho[2,1-c]chromen-6-ones^a

Entry	Propargylic alcohol	Carboxylic acid	6 <i>H</i> -naphtho[2,1- <i>c</i>]chromen-6-one	Overall yield ^b (%)
1	OH OH	СООН 5а	20aa (X-ray)	89

2	Me OH Me Ph 4b	COOH 5a	Me Me 20ba	86
3	Ph 4d	COOH 5a	F F 20da	78
4	CI OH CI Ph 4e	СООН 5а	CI CI CI 20ea	83
7	CI OH CI Me 4h	COOH 5a	CI CI Me 20ha	76
8	OH OH	COOH 5a	20ja F	79

5	CI OH Ph 4m	COOH 5a	20ma CI CI CI CI 20ma CI CI CI CI CI CI CI CI CI C	85
6	OH Ph 4n	COOH 5a	20na 20na'	87
9	OH OH	COOH OMe 5b	20ab	76

10	Me OH Me Ph 4b	COOH OMe 5b	Me Me OMe 20bb	78
11	FOH Ph 4d	COOH OMe 5b	F F O O O O O O O O O O O O O O O O O O	73
12	CI OH Ph 4e	COOH OMe 5b	CI CI OMe 20eb	71
13	OH OH F	COOH OMe 5b	OMe F	80
14	OH OH	COOH OEt 5c	20ac	81

15	Me OH Me Ph 4b	COOH OEt 5c	Me Me OEt 20bc	84
16	ОН Б 4j	COOH OEt 5c	20jc	76
17	OH OH	Br COOH	Br	71
18	FOH Ph	Br COOH	Br Co	73
19	CI OH CI Ph 4e	Br COOH	Br Cl Cl 20ed	77

20	OH F 4j	Br COOH	Br O F 20jd	75
21	MeO OH Ph	Br COOH	20ld Br OMe 20ld'	87
22	OH OH	CI CI CI COOH	CI	86
23	F OH Ph 4d	CI COOH	CI C	75

24	CI OH CI Ph 4e	CI COOH	CI CI CI CI 20ee	82
25	OH F 4j	СI СI СООН 5е	CI CI F	79
26	MeO OH Ph	CI CI CI COOH 5e	20le CI CI CI CI 20le CI 20le	86

a) Coumarin-3-carboxylic acid **5** (1.0 equiv), propargylic alcohol **4a** (1.0 equiv), Cu(OTf)₂ (20 mol%) 1,4-dioxane (2 ml), 120 °C (oil bath temperature), 12 h, b) Isolated yield.

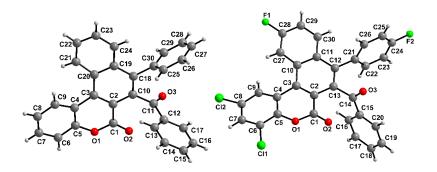


Figure 5: Molecular structures of compounds 20aa (left) and 20de (right). Selected bond lengths in [Å] with esds are given in parentheses. Compound 20aa: C(2)-C(3) 1.392(2), C(3)-C(20) 1.440(3), C(20)-C(19) 1.412(3), C(19)-C(18) 1.435(3), C(18)-C(10) 1.363(3), C(2)-C(10) 1.421(3), C(2)-C(1) 1.468(3), C(1)-O(2) 1.198(2), C(3)-C(4) 1.464(3), C(20)-C(21) 1.419(2), C(19)-C(24) 1.411(3), C(10)-C(11) 1.511(3), C(11)-O(3) 1.213(2), C(12)-C(11) 1.476(3): Compound 20de: C(2)-C(3) 1.379(7), C(3)-C(10) 1.456(6), C(10)-C(11) 1.433(7), C(11)-C(12) 1.428(7), C(12)-C(13) 1.370(6), C(13)-C(2) 1.433(7), C(2)-C(1).481(6), C(1)-O(2) 1.194(6), C(3)-C(4) 1.485(6), C(10)-C(27) 1.400(7), C(11)-C(30) 1.438(6), C(12)-C(21) 1.486(7), C(13)-C(14) 1.524(7), C(14)-O(3) 1.218(5), C(14)-C(15) 1.483(7).

A plausible catalytic pathway based on literature reports and our own experimental studies for the formation of product **20aa** is depicted in Scheme 16.¹⁰⁷ Initially, the coumarin-3-carboxylic acid co-ordinates to $Cu(OTf)_2$ and gives the intermediate **XXVIII**, which upon triflic acid elimination gives species **XXIX**; this species **XXIX** undergoes decarboxylation to give intermediate **XXX**. Species **XXX** undergoes *anti*-Michael addition with α,β unsaturated carbonyl compound **4a'** (which is formed by the Meyer-Shuster rearrangement of the propargylic alcohol **4a**) gives intermediate **XXXI**. Intermediate **XXXI** upon intramolecular cyclization followed by aromatization gives the final product **20aa** (*via* **XXXII**).

Scheme 16. Plausible catalytic pathway for the formation of compound **20aa**

2.4.1 Ruthenium(II)-catalyzed oxidative [4+2] annulation of chromene and coumarin-3-carboxylic acids with alkynes via $C(sp^2)$ -H bond activation

In continuation of the above studies, we wanted to check the reactivity of chromene/coumarin-3-carboxylic acids with alkynes instead of propargylic alcohols. To begin with, we treated 2*H*-chromene-3-carboxylic acid **6a** (0.57 mmol) with diphenylacetylene **7a** (0.57 mmol) in the presence of [RuCl₂(*p*-cymene)]₂ (2.5 mol%) as catalyst, Cu(OAc)₂·H₂O (30 mol%) as the oxidant and AgSbF₆ (10 mol%) as the additive in DCE solvent at 80 °C for 14 h. As expected, we obtained the desired annulated product **21aa** in moderate yield of 48% (Table 9 entry 1). Increasing the temperature to 100 °C increased the yield of **21aa** to 56% (entry 2); use of anhydrous Cu(OAc)₂ decreased the yield to 35% (entry 3). We have also used other solvents like MeOH, *t*-AmOH, CH₃CN, THF, xylene, PEG-400 and 1,4-dioxane (entries 4-10 at mentioned temperatures) for the reaction. A better yield of 76% was obtained when the solvent was 1,4-dioxane (entry 10); decreasing the temperature to 80 °C decreased the yield to 65% (entry 11). Increasing the reaction time to 20 h led to a very good yield of the final product **21aa** (88%; entry 12). There was a marginal increase in the yield (92%) by increasing the

catalyst loading to 5 mol% (entry 13). We have tested the additives AgOAc, KPF₆, AgOTf, AgNTf₂ and Ag₂CO₃; out of which AgNTf₂ and Ag₂CO₃ gave good yields of 74% and 53% of the final product respectively (entries 14-18). In the absence of the catalyst or oxidant, reaction failed to give the product, but without the additive reaction occurred and gave the final product in 43% yield (entries 19-21). Finally, we concluded that the conditions used in entry 12 were the best for the reaction, since we wanted to keep the catalyst loading lower than that in entry 13.

Table 9. Optimization study of Ru(II)-catalyzed annulation reaction between **6a** and **7a** for the formation of pryano chromenes **21aa**^a

Entry	Catalyst	Oxidant	Additive	Solvent	Temp (°C)	Yield ^b (%)
1	[RuCl ₂ (<i>p</i> -cymene)] ₂	Cu(OAc) ₂ ·H ₂ O	AgSbF ₆	DCE	80	48
2	[RuCl ₂ (p-cymene)] ₂	Cu(OAc) ₂ ·H ₂ O	AgSbF ₆	DCE	100	56
3	[RuCl ₂ (p-cymene)] ₂	Cu(OAc) ₂	AgSbF ₆	DCE	100	35
4	[RuCl ₂ (p-cymene)] ₂	Cu(OAc) ₂ ·H ₂ O	AgSbF ₆	МеОН	80	trace
5	[RuCl ₂ (p-cymene)] ₂	Cu(OAc) ₂ ·H ₂ O	AgSbF ₆	t-AmOH	100	25
6	[RuCl ₂ (<i>p</i> -cymene)] ₂	Cu(OAc) ₂ ·H ₂ O	AgSbF ₆	CH ₃ CN	80	51
7	[RuCl ₂ (<i>p</i> -cymene)] ₂	Cu(OAc) ₂ ·H ₂ O	AgSbF ₆	THF	80	trace
8	[RuCl ₂ (<i>p</i> -cymene)] ₂	Cu(OAc) ₂ ·H ₂ O	AgSbF ₆	xylene	100	12
9	[RuCl ₂ (<i>p</i> -cymene)] ₂	Cu(OAc) ₂ ·H ₂ O	AgSbF ₆	PEG-400	100	n.r.
10	[RuCl ₂ (<i>p</i> -cymene)] ₂	Cu(OAc) ₂ ·H ₂ O	AgSbF ₆	dioxane	100	76
11	[RuCl ₂ (p-cymene)] ₂	Cu(OAc) ₂ ·H ₂ O	AgSbF ₆	dioxane	80	65
12	[RuCl ₂ (p-cymene)] ₂	Cu(OAc) ₂ ·H ₂ O	AgSbF ₆	dioxane	100	88
13	[RuCl ₂ (<i>p</i> -cymene)] ₂	Cu(OAc) ₂ ·H ₂ O	AgSbF ₆	dioxane	100	92 ^c
14	[RuCl ₂ (<i>p</i> -cymene)] ₂	Cu(OAc) ₂ ·H ₂ O	AgOAc	dioxane	100	21

15	[RuCl ₂ (<i>p</i> -cymene)] ₂	Cu(OAc) ₂ ·H ₂ O	KPF ₆	dioxane	100	31
16	[RuCl ₂ (<i>p</i> -cymene)] ₂	Cu(OAc) ₂ ·H ₂ O	AgOTf	dioxane	100	26
17	[RuCl ₂ (<i>p</i> -cymene)] ₂	Cu(OAc) ₂ ·H ₂ O	AgNTf ₂	dioxane	100	74
18	[RuCl ₂ (<i>p</i> -cymene)] ₂	Cu(OAc) ₂ ·H ₂ O	Ag ₂ CO ₃	dioxane	100	53
19	-	Cu(OAc) ₂ ·H ₂ O	AgSbF ₆	dioxane	100	n.d.
20	[RuCl ₂ (p-cymene)] ₂	-	AgSbF ₆	dioxane	100	n.d.
21	[RuCl ₂ (<i>p</i> -cymene)] ₂	Cu(OAc) ₂ ·H ₂ O	-	dioxane	100	43

^{a)} Chromene-3-carboxylic acid **6a** (0.57 mmol), diphenylacetylene **7a** (0.57 mmol), [RuCl₂(*p*-cymene)]₂ (2.5 mol %), oxidant (30 mol %), additive (10 mol %), solvent (2 mL), temp °C (oil bath temperature). Reaction time: 14 h for entries 1-11 and 20 h for entries 12-21. ^{b)} Isolated yield, ^{c)} 5 mol% of the catalyst was used.

As shown in the Scheme 17 and Table 10, reaction of **6a** with **7a** under optimized conditions gave **21aa** in 88% yield. The structure of **21aa** was confirmed by X-ray crystallography (Figure 6). Various internal symmetrical (alkyl/alkyl or aryl/aryl; **7a-c**, **7h-7j**) and unsymmetrical alkynes (alkyl/aryl or aryl/aryl; **7d-7g**) worked very well and delivered the final products **21aa-21cj** in good to excellent yields. It is noteworthy that in the case of unsymmetrical alkyne **7d**, we observed excellent regioselectivity (cf. compound **21ad**); the other isomer was present (<10%) but could not be isolated. Reaction of **6a** with electron rich aryl alkynes **7a-c** worked nicely under the optimized conditions and afforded the products **21aa-21ac** in 70-88% yields. Unsymmetrical (alkyl/aryl) alkynes **7d-g** also reacted well with excellent regioselectivity and delivered the final products **21ad-21ag** in good yields. Dialkyl alkynes **7h-j** were also amenable for this reaction and reacted with **6a-b** delivering the products in good yields. The scope of this oxidative annulation reaction was extended to substituted chromene-3-carboxylic acids also. Thus 8-ethoxy-2*H*-chromene-3-carboxylic acid (**6b**) and 6-bromo-8-methoxy-2*H*-chromene-3-carboxylic acid (**6c**) upon treatment with alkyne partners afforded the final products **21ba-21cj** in good yields.

Scheme 17. Synthesis of substituted 4*H*,5*H*-pyrano[3,4-*c*]chromen-4-ones under Ru(II)-catalysis

Table 10. Substrate scope for the oxidative annulation of chromene-3-carboxylic acids $\bf 6$ with alkynes $\bf 7$ ^a

Entry	Chromene-3-	Alkyne	4 <i>H</i> ,5 <i>H</i> -pyrano[3,4-	Yield
Lintry	carboxylic acid	Aikylle	c]chromen-4-one	(%)
1	H COOH 6a			88
		7a	21aa (X-ray)	
2	H COOH 6a	Me Me 7b	Me Me 21ab	70

3	H COOH 6a	OMe OMe 7c	OMe MeO 21ac	81
4	COOH 6a	OMe Td	MeO 21ad	78
5	COOH 6a	Me	Me 21ae	74
6	H COOH 6a	7f	21af	72

7	H COOH 6a	7g	21ag	79
8	H COOH 6a	7h	21ah	73
9	COOH 6a	7i	21ai	77
10	о соон ба	7j	21aj	76

11	H COOH OEt	7a	OEt 21ba	74
12	H COOH OEt 6b	Me Me 7b	Me Me OEt 21bb	77
13	OEt COOH	7g	OEt 21bg	80
14	OEt COOH	7h	OEt 21bh	75

15	OEt COOH	7i	OEt 21bi	81
16	OEt COOH	7 j	OEt 21bj	73
17	Br COOH OMe 6c	7a	Br OMe 21ca	81
18	Br COOH OMe 6c	Me Me 7b	Me Me Br OMe 21cb	79

19	Br COOH OMe 6c	OMe OMe OMe 7c	MeO OMe OMe 21cc	84
20	Br COOH OMe 6c	Me	Br OMe 21ce (X-ray)	76
21	Br COOH OMe 6c	7i	Br OMe 21ci	79
22	Br COOH OMe 6c	7j	Br OMe 21cj (X-ray)	76

^{a)} Chromene-3-carboxylic acid **6** (0.57 mmol), alkyne **7** (0.57 mmol), $[Ru(p\text{-cymene})Cl_2]_2$ (2.5 mol%), $Cu(OAc)_2 \cdot H_2O$ (30 mol%), $AgSbF_6$ (10 mol%), 1,4-dioxane (2 ml), 100 °C (oil bath temperature), for 20 h, ^{b)} Isolated yield.

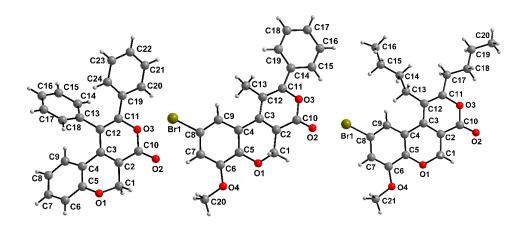
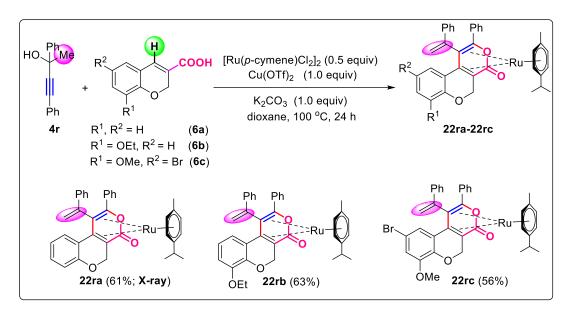
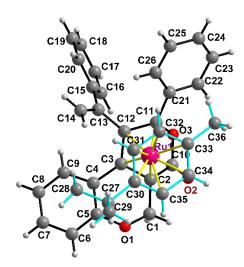


Figure 6: Molecular structures of compounds 21aa (left), 21ce (center) and 21cj (right). Selected bond lengths in [Å] with esds in parenthesis. Compound 21aa: C(2)-C(3) 1.363(3), C(3)-C(12) 1.453(3), C(12)-C(11) 1.364(3), C(11)-O(3) 1.380(2), O(3)-C(10) 1.379(3), C(10)-C(2) 1.435(3), C(10)-O(2) 1.208(3), C(2)-C(1) 1.497(4), C(3)-C(4) 1.481(3), C(12)-C(13) 1.494(3), C(11)-C(19) 1.484(3); Compound 21ce: C(2)-C(3) 1.363(4), C(3)-C(12) 1.455(5), C(12)-C(11) 1.355(4), C(11)-O(3) 1.381(4), O(3)-C(10) 1.367(4), C(10)-C(2) 1.428(5), C(10)-O(2) 1.211(4), C(2)-C(1) 1.493(5), C(3)-C(4) 1.473(4), C(12)-C(13) 1.508(4), C(11)-C(14) 1.469(5); Compound 21cj: C(2)-C(3) 1.367(8), C(3)-C(12) 1.438(8), C(12)-C(11) 1.345(9), C(11)-O(3) 1.372(7), O(3)-C(10) 1.379(8), C(10)-C(2) 1.425(9), C(10)-O(2) 1.207(9), C(2)-C(1) 1.495(9), C(3)-C(4) 1.500(8), C(12)-C(13) 1.529(8), C(11)-C(17) 1.509(11).

2.4.2 Synthesis of Ruthenium(0)-metal complexes from chromene-3-carboxylic acids, propargylic alcohols and [RuCl₂(*p*-cymene)]₂


As an extension of the above reaction, we wanted to check the reactivity of propargylic alcohols 4 with chromene-3-carboxylic acid 6 in the presence of $[RuCl_2(p\text{-cymene})]_2$, since a reaction similar to that discussed above can also take place. Thus, we employed equimolar ratio of propargylic alcohol 4r with chromene-3-carboxylic acid 6a under the above optimized reaction conditions but did not observe any product formation (Table 11, entry 1). Based on our earlier observations on the reactivity of the propargylic alcohols, we thought that change

of the oxidant to Cu(OTf)₂ (0.5 equiv) would help, but no reaction was observed (entry 2). Unexpectedly, by using Cu(OTf)₂ (0.5 equiv) along with K₂CO₃ (1.0 equiv) in dioxane at 100 °C for 24 h, the reaction afforded the Ru(p-cymene) containing [4+2] annulated metal complex **22ra** in moderate yield (41% based on [Ru] precursor; entry 3). In the absence of AgSbF₆ also, the complex was obtained in 49% yield (entry 4). When 0.3 equiv of Cu(OTf)₂ was used, we obtained 67% yield of the ruthenium complex (entry 5). Better yield of 72% was observed when 0.5 equiv of the K₂CO₃ was used (entry 6); decrease in reaction time to 14 h decreased the yield to 58% (entry 7). However, as can be noticed from the formula, stoichiometrically, 0.5 mole of [RuCl₂(p-cymene)]₂ is required per each mole of **4r** and **6a**. Under this stoichiometry, we obtained an yield of 61% of 22ra. Similarly, by using propargylic alcohol **4r**, chromene-3-carboxylic acids **6b-c** and $[RuCl_2(p\text{-cymene})]_2$ we obtained the ruthenium metal complexes 22ra-22rc in decent yields (cf. Scheme 18). One of the metal complexes 22ra was further confirmed by the single crystal X-ray analysis (Figure 7). Although a complex similar to **22ra** has been reported by Ackermann, ^{108c} the fact that it may be general reaction has not been explored. Although we tried to remove Ru(p-cymene) component from 22ra by treating it with SOCl₂, we did not succeed. Still, we are working to get the [4+2] annulated product by the removal of the metal.


Table 11. Conditions utilized to check the formation of Ru(0)-complex **22ra** using **4r**, **6a** and $[RuCl_2(p\text{-cymene})]_2^a$

Entry	Catalyst	Oxidant	Additive	Base	Solvent	Yield ^b (%)
1	[RuCl ₂ (<i>p</i> -cymene)] ₂	Cu(OAc) ₂ ·H ₂ O	AgSbF ₆	-	dioxane	n.d.
2	[RuCl ₂ (<i>p</i> -cymene)] ₂	Cu(OTf) ₂	AgSbF ₆	-	dioxane	n.d.
3	[RuCl ₂ (<i>p</i> -cymene)] ₂	Cu(OTf) ₂	AgSbF ₆	K ₂ CO ₃	dioxane	41
4	[RuCl ₂ (<i>p</i> -cymene)] ₂	Cu(OTf) ₂	-	K ₂ CO ₃	dioxane	49
5	[RuCl ₂ (<i>p</i> -cymene)] ₂	Cu(OTf) ₂	-	K ₂ CO ₃	dioxane	67
6	[RuCl ₂ (<i>p</i> -cymene)] ₂	Cu(OTf) ₂	-	K ₂ CO ₃	dioxane	72
7	[RuCl ₂ (<i>p</i> -cymene)] ₂	Cu(OTf) ₂	-	K ₂ CO ₃	dioxane	58
8	[RuCl ₂ (<i>p</i> -cymene)] ₂	Cu(OTf) ₂	-	K ₂ CO ₃	dioxane	61

a) Chromene-3-carboxylic acid **6a** (0.57 mmol), propargylic alcohol **4r** (0.57 mmol), [RuCl₂(*p*-cymene)]₂ (2.5 mol %), oxidant (0.30 equiv for entries 1 and 5-7 and 0.5 equiv for entries 2-4), additive (10 mol %), base (1.0 equiv for entries 3-5, 0.5 equiv for entries 6-7), solvent (2 mL), 100 °C (oil bath temperature), reaction time: 24 h for entries 1-6 and 14 h for entry 7. b) Isolated yield.

Scheme 18. Synthesis of Ru(0)-metal complexes **22ra-22rc**

Figure 7: Molecular structure of compound **22ra**. Selected bond lengths in [Å] with esds in parenthesis. C(2)-C(3) 1.462(2), C(3)-C(12) 1.438(2), C(12)-C(11) 1.454(2), C(11)-O(3) 1.459(2), O(3)-C(10) 1.343(2), C(10)-C(2) 1.464(3), C(10)-O(2) 1.211(2), Ru(1)-C(2)

2.123(17), Ru(1)-C(3) 2.141(17), Ru(1)-C(12) 2.143(16), Ru(1)-C(11) 2.130(18), Ru(1)-C(30) 2.297(18), Ru(1)-C(31) 2.251(18), Ru(1)-C(32) 2.224(19), Ru(1)-C(33) 2.251(19), Ru(1)-C(34) 2.210(19), Ru(1)-C(35) 2.213(19).

2.4.3 Ruthenium(II)-catalyzed oxidative [4+2] annulations of coumarin-3-carboxylic acids with alkynes via $C(sp^2)$ -H bond activation

In an effort to extend the above [Ru]-catalyzed cyclization, we wanted to check the reactivity of coumarin-3-carboxylic acid under the same reaction conditions in order to know the effect of the additional carbonyl group on product formation. Hence we employed coumarin-3-carboxylic acid **5a** along with alkyne **7b** and as expected, [4+2] annulation occurred to give the annulated product **23ab** in 61% of the yield. Similarly, **7c** gave the pyrano[3,4-c]chromene-4,5-dione **23ac** in 64% yield. Unsymmetrical alkynes **7e** (methyl, phenyl) and **7g** (*n*-propyl, phenyl) also reacted well and afforded products **23ae** and **23ag** in 60% and 68% yields, respectively, with excellent regioselectivity. The dialkyl substituted alkynes **7i** and **7j** also provided the annulation products **23ai** and **23aj** in good yields. These results are shown in Table 12. The yields are a bit lower as compared to the reaction using chromene-3-carboxylic acid. This may be because of the co-ordination of the metal catalyst with the carbonyl functionality making it less accessible for the annulation process *via* C-H activation. The structure of the annulated product **23ab** was confirmed by single crystal X-ray diffraction studies (Figure 8).

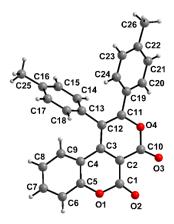
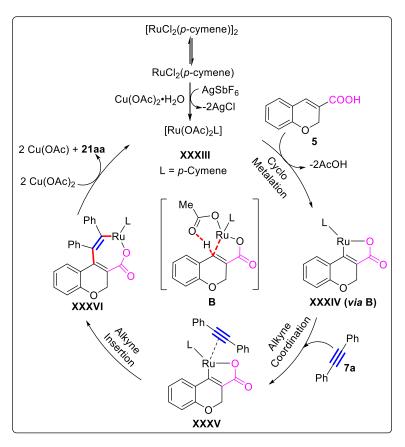

Scheme 19. Synthesis of substituted 4*H*,5*H*-pyrano[3,4-*c*]chromene-4,5-diones from coumarin-3-carboxylic acid and alkynes

Table 12. Substrate scope for the formation of pyrano[3,4-c]chromene-4,5-diones 23 a

	Coumarin-3-	A 11	Pyrano[3,4-c]chromene-	Yield ^b
Entry	carboxylic acid	Alkyne	4,5-dione	(%)
1	H COOH 5a	Me Me 7b	Me Me 23ab (X-ray)	61
2	н Соон 5а	OMe OMe 7c	MeO OMe 23ac	64
3	H COOH 5a	Me 	Me O O O O O O O O O O O O O O O O O O O	60


4	H COOH 5a	7g	23ag	68
5	H COOH 5a	7i	23ai	67
6	H COOH 5a	7j	23aj	65

^{a)}Coumarin-3-carboxylic acid **5a** (0.53 mmol), alkyne **7** (0.53 mmol), [Ru(*p*-cymene)Cl₂]₂ (2.5 mol%), Cu(OAc)₂·H₂O (30 mol%), AgSbF₆ (10 mol%), 1,4-dioxane (2 mL), 100 °C (oil bath temperature), for 20 h. ^{b)} Isolated yield.

Figure 8: Molecular structure of compound **23ab**. Selected bond lengths in [Å] with esds in parenthesis: C(2)-C(3) 1.389(3), C(3)-C(12) 1.448(3), C(12)-C(11) 1.347(3), C(11)-O(4) 1.367(3), O(4)-C(10) 1.384(3), C(10)-C(2) 1.446(3), C(10)-O(3) 1.203(3), C(2)-C(1) 1.467(3), C(1)-O(2) 1.199(3), C(3)-C(4) 1.465(3), C(12)-C(13) 1.502(3), C(19)-C(11) 1.483(3).

Based on our experimental studies and previous literature reports for the annulation of carboxylic acids with alkynes, ¹⁰⁸ we suggest the catalytic cycle shown in Scheme 20 for the annulation of the chromene/ coumarin carboxylic acids (5 or 6) with alkynes 7. Here, ruthenium complex first undergoes ligand exchange with Cu(OAc)₂·H₂O and AgSbF₆ and generates the active intermediate **XXXIII**. Then the acid partner 5 undergoes cyclometalation with intermediate **XXXIII** to give the five membered cyclic ruthenium intermediate **XXXIV** (*via* B). Then alkyne coordinates with intermediate **XXXIV** to produce species **XXXV**. This species undergoes alkyne insertion to give seven membered cyclic intermediate **XXXVI**, which upon reductive elimination gives the annulated product **21aa**. The catalyst may be regenerated by oxidation with Cu(OAc)₂·H₂O for the next cycle.

Scheme 20. Plausible catalytic pathway for the formation of the pyrano-chromones

Based on our experimental studies and previous literature reports for the annulations of carboxylic acids with alkynes and Ru(0)-metal complex formation, ¹⁰⁸ we suggest the possible pathway shown in Scheme 21 for the Ru(0)-metal complex formation from the chromene-3-carboxylic acid 5 and propargylic alcohols 4r. Here, ruthenium complex first undergoes ligand exchange with Cu(OTf)₂ to generates the active intermediate XXXVII. Then the acid partner 5 undergoes cyclometalation with intermediate XXXVII to give the ruthenium intermediate XXXVIII. Then propargylic alcohol 4r coordinates with intermediate XXXVIII to produce species XXXIX. This species undergoes propargylic alcohol insertion to give intermediate XL, which subsequently converts to intermediate XLI by elimination of TfOH. This species upon dehydration in the presence of K₂CO₃ delivers the Ru(0)-metal complex. At the moment, we are not sure about the reduction of Ru from XL to XLI.

$$[RuCl_{2}(p\text{-cymene})]_{2}$$

$$RuCl_{2}(p\text{-cymene})$$

$$[Ru(OTf)_{2}L] + \\ XXXVII \\ L = p\text{-Cymene}$$

$$[Ru(OTf)_{2}L] + \\ 5$$

$$[Ru(OTf)_{2}L] + \\ VXXVIII \\ L = p\text{-Cymene}$$

$$[Ru(OTf)_{2}L] + \\ VXXVIII \\ L = p\text{-Cymene}$$

$$[Ru(OTf)_{2}L] + \\ VXXVIII \\ L = p\text{-Cymene}$$

$$[Ru(OTf)_{2}L] + \\ VXXVIII \\ VXXXVIII \\ VXXXXVIII \\ VXXXVIII \\ VXXXXVIII \\ VXXXVVIII \\ VXXXVVIII \\ VXXXXVIII$$

Scheme 21. Plausible pathway for the formation of Ru(0)-metal complexes

2.5.1 Thermally induced [4+2] cycloaddition reaction of phosphorus/sulfur based allenes or allenoates with 3,6-diphenyl-1,2,4,5-tetrazine

Allenes, like alkynes, possess an sp-hybridized carbon, but because of the two cumulative double bonds they may offer more variety as cycloaddition partners. Our interest in this context was to use them as dienophiles with tetrazines. Tetrazine can act as a diene undergoing Inverse Electron Demand Diels-Alder (IED D-A) reaction with dienophiles. Tetrazines have been utilized for cycloaddition reactions, but so far the reacting partners have been essentially alkenes/alkynes⁸⁰⁻⁹¹ and to our knowledge, cycloaddition reactions of tetrazines with allenes have not been investigated in detail. The resulting compounds, pyridazines, are popular pharmacophores and present in herbicides such as credazine, pyridafol and pyridate. ¹⁶ In the reaction of symmetrical tetrazines with alkynes there is no question of selectivity whereas in the case of substituted allenes, we may encounter selectivity issues because of the presence of two cumulative $[(\alpha,\beta)$ and (β,γ)] double bonds. In the current work, we planned to utilize a substituted symmetrical tetrazine for cycloaddition reactions with allenes.

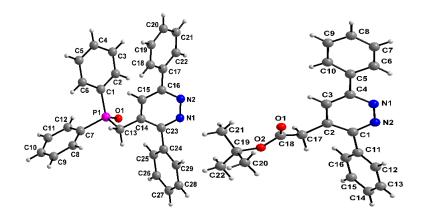
Our initial investigation started with the reaction of 3,6-diphenyl-1,2,4,5-tetrazine **8** with allenyl phosphonate **10a** in toluene at 100 °C (oil bath temperature) for 12 h (Scheme 22). To our delight, the cycloaddition adduct **24a** could be isolated in 45% yield. We then went for

optimization of the reaction conditions. Among the solvents xylene, MeCN, DMSO, DMF, THF, dioxane, PEG-400 and EtOH tested, xylene offered the better yield 52% of **24a**. Increasing the reaction time to 24 h increased the yield of **24a** to 63%. When the reaction was conducted at 140 °C for 24 h, we obtained a very good yield of 82% after isolation. These were taken as the best (optimized) conditions for our reaction. Notably, completion of the reaction can be recognized by the color change during the reaction. The initial violet-red color of the tetrazine disappears upon completion of the reaction. When we applied the optimized conditions to the reaction of allenes **12-14** with tetrazine **8**, the yields of final the product was lower perhaps due to the instability of the allene. Hence in these cases, we used 2 equiv of allenes **12-14** for 1 equiv of 3,6-diphenyl-1,2,4,5-tetrazine **8** in addition decreasing the temperature (to 120 °C) and time (12 h).

Scheme 22. Reaction of 3,6-diphenyl-1,2,4,5-tetrazine 8 with allenylphosphonate 10a

As far as allene part is concerned, we have utilized the precursors **10a-d**, **11**, **12a-b**, **13a-c** and **14**. The cycloaddition products **24a-24d**, **25**, **26a-b**, **27a-c** and **28** (Table 13) were obtained in very good yields (69-88%) with excellent regioselectivity by the selective addition at terminal (β, γ) double bond of the allene followed by [1,3]-H shift. This may be because of the direct conjugation of the (α, β) double bond with phosphorus (P=O) double bond making it unavailable for the cycloaddition. We have also checked the reaction using γ -disubstituted allene (OCH₂CMe₂CH₂O)P(O)CH=C=CMe₂ but did not observe the product formation. This may be because of the steric effect at γ -position for the formation of pyridazines (*cf.* Scheme 23). The solid-state structure of pyridazine **25** was confirmed by single crystal X-ray diffraction (Figure 9). The alkylated allenes **12a** and **12b** reacted with tetrazine **8** to afford the pyridazines **26a** and **26b** in 79-85% yield. Ethyl, *tert*-butyl or benzyl substituted ester allenes **13a-c** also worked well and delivered the final products **27a-c** in good to excellent yields. Even

allenyl sulfone underwent the reaction with tetrazine and gave the product **28** in a moderate yield of 64%. Pyridazine **27b** (Figure 9) has been characterized by single crystal X-ray crystallography.


Table 13. Substrate scope for the substituted 3,6-diphenylpyridazine $24-28^a$

Entry	Tetrazine	Allene	3, 6-diphenylpyridazine	Yield ^b (%)
1	Ph N N N N N Ph 8	10a	Ph Ph N N N N N N N N N N N N N N N N N	82
2	8	0 Ph Me Ph γ H 10b	Ph N N N N N N N N N N N N N N N N N N N	74
3	8	Ο Ph Ph Ph Ph 10c	Ph γ N N N N N N N N N N N N N N N N N N	81

4	8	O P H H Me 10d	Ph N N N Me 24d, $\delta(P)$: 18.6	69
5	8	$ \begin{array}{c} Ph \\ Ph \\ \hline Ph \\ \hline A & \beta \\ \hline & \gamma \\ \hline & 11 \end{array} $	Ph Ph N N N N N N N N N N N N N N N N N	79
6	8	C ₈ H ₁₇ H	Ph H Ph N Ph 26a	79
7	8	C ₉ H ₁₉ H H 12b	Ph H H Ph 26b	85

8	8	Ο α β γ H H 13a	Ph OH Y N N H Ph 27a	88
9	8	ο β γ H H 13b	Ph OH NN NN H Ph 27b (X-ray)	85
10	8	Ph Ο α β γ Η Η Η 13c	Ph Ph N N N N N N N N N N N N N N N N N	81
11	8	CI ο S O α β γ	CI————————————————————————————————————	64
		14	28	

^aReaction conditions: **8** (50.0 mg, 0.21 mmol) with one of **10a-d**, **11**, (0.32 mmol) and **12a-b**, **13a-c**, **14** (0.42 mmol) in xylene (2 mL) at 140 °C (oil bath temperature) for 24 h for entries 1-5; at 120 °C (oil bath temperature) for 12 h for entries 6-11. ^bIsolated yields.

Figure 9: Molecular structures of compounds **25**.and **27b** selected bond lengths in [Å] with esds in parenthesis: Compound **25**: N(1)-N(2) 1.344(6), N(2)-C(16) 1.354(8), C(16)-C(15) 1.385(8), C(15)-C(14) 1.380(9), C(14)-C(23) 1.413(8), C(23)-N(1) 1.339(6), C(14)-C(13) 1.497(7), C(13)-P(1) 1.808(13), P(1)-O(1) 1.493(6), P(1)-C(1) 1.789(5), P(1)-C(1) 1.789(5), C(23)-C(24) 1.484(7), C(16)-C(17) 1.479(9). Compound **27b**: N(1)-N(2) 1.333(3), N(2)-C(1) 1.337(3), C(1)-C(2) 1.405(3), C(2)-C(3) 1.368(3), C(3)-C(4) 1.392(3), C(4)-N(1) 1.332(3), C(2)-C(17) 1.507(3), C(17)-C(18) 1.501(4), C(18)-O(1) 1.179(4), C(18)-O(2) 1.304(3), C(1)-C(11) 1.486(3), C(4)-C(5) 1.484(3)

A plausible pathway for the formation of substituted 3, 6-diphenylpyridazines **25** is shown in Scheme 23. 109 Initially, 3,6-diphenyl-1,2,4,5-tetrazine **8** undergoes regioselective [4+2] cycloaddition with allene **11** involving β , γ -(terminal) double bond *via* Inverse Electron Demand Diels-Alder (IED-DA) reaction to give intermediate **XLII**. This upon N₂ elimination *via* retro-DA reaction gives intermediate **XLII**. This intermediate undergoes [1,3]-H shift to give the final product **25**. Similarly, other pyridazines are formed. As can be seen readily, substitution at the γ -carbon [e.g., (OCH₂CMe₂CH₂O)P(O)CH=C=CMe₂] of the allene has deleterious effect on the formation of intermediate **XLII** and hence in these cases we were not able to obtain the cycloaddition products. However, this allene route offers a simple route to a new class of pyridazines that may be explored further.

Scheme 23. Plausible pathway for the formation of substituted 3,6-diphenylpyridazine 25

SUMMARY

- (v) We have developed a simple and viable synthetic route to benzo-oxazine based spirocycles (via dearomative ring expansion/ aerobic oxidation) and dihydrocyclopenta[e]indole-2-carboxylates by using indole-2-carboxylates and propargylic alcohols under PTSA mediation. Novel indene fused pyrano-indolones (fused pentacyclics) are also obtained using indole-2-carboxylic acids and propargylic alcohols under Cu(II)-catalysis.
- (vi) A novel decarboxylative [4+2] annulation methodology has been developed by using coumarin-3-carboxylic acids and propargylic alcohols under Cu(II)-catalysis for the synthesis of coumarin fused naphthalene scaffolds.
- (vii) Ruthenium catalyzed regioselective oxidative [4+2] annulation of chromene/coumarin-3-carboxylic acids with alkynes/ propargylic alcohols for the construction of pyrano chromenes has been developed. Novel Ru(0) complexes have been isolated from the reaction of chromene carboxylic acids with propargylic alcohols in the presence of [Ru(*p*-cymene)Cl₂]₂.
- (viii) Thermally induced regioselective [4+2] cycloaddition reactions of 3,6-diphenyl-1,2,4,5-tetrazine with allenes leads to disubstituted pyridazines. In these reactions, cycloaddition is accompanied by 1,3-H shift.

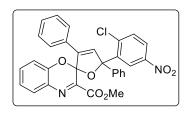
EXPERIMENTAL SECTION

General information: Chemicals and solvents were purchased from Aldrich or other local manufacturing agencies and used without any further purification. Purification of solvents was done using standard literature procedures wherever required. All operations, unless otherwise specified, were carried out under dry nitrogen atmosphere using standard vacuum line techniques. 111

Melting point: Melting points were determined using a SUPERFIT hot stage apparatus and are uncorrected.

Elemental analyses: Elemental analyses were carried out on a Perkin-Elmer 240C CHN or Thermo Finnigan EA1112 CHNS analyzer.

Infrared spectroscopy: IR spectra were recorded on a JASCO FT/IR 5300 spectrophotometer. **NMR spectroscopy**: For sections 3.1-3.9, 1 H, 13 C{ 1 H} and 19 F NMR spectra were recorded using 5 mm tubes on a Bruker 400 MHz NMR spectrometer (unless specified otherwise) [field strengths: 400 and 100 MHz respectively] in CDCl₃ solution (unless specified otherwise) with shifts referenced to SiMe₄ (1 H, 13 C: $\delta = 0$) or CFCl₃ [19 F: $\delta = 0$]. For sections 3.10-3.11, 1 H, 13 C{ 1 H} and 31 P NMR spectra were recorded using 5 mm tubes on a Bruker 500 MHz NMR spectrometer (unless specified otherwise) [field strengths: 500, 125 and 202 MHz respectively] in CDCl₃ solution (unless specified otherwise) with shifts referenced to SiMe₄ (1 H, 13 C: $\delta = 0$). All *J* values are in Hz.


LC-MS and HRMS: LC-MS equipment was used to record mass spectra for isolated compounds where appropriate. LC-MS data were obtained using electrospray ionization (positive mode) on a C-18 column. Mass spectra were recorded using HRMS (ESI-TOF analyzer) equipment.

The precursors 1*H*-indole-2-carboxylates **1a-e**⁹³ and 1-*H* indole-2-carboxylic acids **2a-b** are commercially available. Substituted *tert*-propargylic alcohols **3a-c** and **4a-r**,⁹⁴ coumarin-3-carboxylic acids **5a-e**,⁹⁵ 2*H*-chromene-3-carboxylic acids **6a-c**,⁹⁶ and alkynes **7b-d**⁹⁷ were prepared by following the standard literature procedures. 3,6-Diphenyl 1,2,4,5-tetrazine (**8**) is

commercially available. sec-Propargylic alcohols 9a-d, allenylphosphonates 10a-d, allenylphoshine oxide 11, 99 terminal alkyl allenes 12a-b, 100 ester allenes 13a-c and allenylsulfone 14 were prepared by using standard literature reports.

3.1 Synthesis of spiro[benzo-oxazinefurans] or cyclopenta[e]indole-2-carboxylates: General procedure for the synthesis of compounds 15-16: In an oven dried 10 mL round-bottomed flask, indole 2-carboxylate (1a, 0.57 mmol), propargylic alcohol (3b, 0.57 mmol) and PTSA (0.85 mmol) were taken. To this mixture, MeNO₂ (2 mL) was added and the contents were stirred in open air at rt for 24 h. Progress of the reaction was monitored by TLC. After completion of the reaction, the mixture was quenched by adding water (20 mL). The aqueous layer was extracted with ethyl acetate (3 × 10 mL). Then the combined organic layer was washed with brine (20 mL), dried over anhydrous Na₂SO₄, concentrated under reduced pressure, and the crude product purified by silica gel column chromatography by using hexane/ethyl acetate (9:1) mixture as the eluent to afford the corresponding final products 15 and 16.

Compound 15aa

Yield: 224.1 mg (71%, white solid, $R_f = 0.45$ (9:1 hexane/ethyl acetate)).

Mp: 234-236 °C.

IR (neat): v_{max} 2924, 2856, 2193, 1733, 1673, 1525, 1464, 1347, 1251, 1055, 911, 759, 743, 698 cm⁻¹.

¹H NMR (500 MHz, CDCl₃): δ 8.62 (d, J = 2.5 Hz, 1H), 8.09 (dd, J = 8.5, 2.5 Hz, 1H), 7.70 (dd, J = 8.0, 1.5 Hz, 1H), 7.53 (s, 1H), 7.48-7.43 (m, 4H), 7.27-7.23 (m, 5H), 7.22-7.18 (m, 4H), 6.96 (dd, J = 8.5, 1.5 Hz, 1H), 3.59 (s, 3H) ppm.

¹³C{¹H} NMR (100 MHz, CDCl₃): δ 161.9, 146.9, 146.7, 144.4, 143.5, 140.9, 140.0, 138.3, 132.6, 131.8, 131.0, 130.9, 129.8, 129.0, 128.8, 128.7, 128.4, 128.0, 127.4, 126.8, 123.9, 123.6, 123.4, 117.7, 103.8, 95.0, 52.8 ppm.

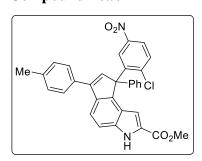
HRMS (ESI-TOF): Calcd. for $C_{31}H_{22}ClN_2O_6$ [M⁺ + H] and [M⁺ + H + 2]: m/z 553.1166, 555.1136. Found: 553.1169, 555.1158.

This compound was crystallized from ethyl acetate—hexane (2:1) mixture at room temperature. X-ray structure has been determined for this compound.

Compound 15ab

Yield: 197.4 mg (61%, white solid, $R_f = 0.49$ (9:1 hexane/ethyl acetate)).

Mp: 198-200 °C.


IR (neat): v_{max} 2921, 2852, 1727, 1572, 1522, 1450, 1342, 1302,1251, 1134, 1028, 906, 811, 760, 741, 697 cm⁻¹.

¹H NMR (500 MHz, CDCl₃): δ 8.39 (d, J = 2.5 Hz, 1H), 8.07 (dd, J = 8.5, 3.0 Hz, 1H), 7.69 (d, J = 7.0, 1H), 7.46 (s, 1H), 7.44-7.41 (m, 2H), 7.32 (d, J = 8.0, 2H), 7.24-7.22 (m, 3H), 7.20-7.17 (m, 3H), 7.04 (d, J = 8.0, 2H), 6.95 (d, J = 8.0, 1H), 3.58 (s, 3H), 2.25 (s, 3H) ppm.

¹³C{¹H} NMR (125 MHz, CDCl₃): δ 161.9, 147.2, 146.7, 144.5, 143.7, 140.9, 140.1, 139.1, 138.3, 132.5, 131.8, 131.0, 129.8, 129.5, 128.7, 128.3, 128.1, 127.4, 127.0, 126.8, 123.8, 123.5, 123.3, 117.7, 103.9, 95.0, 52.7, 21.3 ppm.

HRMS (ESI-TOF): Calcd. for $C_{32}H_{24}ClN_2O_6$ [M⁺ + H]: m/z 567.1323 Found: 567.1322.

Compound 16ab

Yield: 88.6 mg (29%, yellow solid, $R_f = 0.43$ (9:1 hexane/ethyl acetate)).

Mp: $>300 \, {}^{\circ}\text{C}$.

IR (neat): v_{max} 3320, 2922, 2853, 1713, 1605, 1526, 1460, 1345, 1264, 1121, 1050, 739, 702 cm^{-1} .

¹H NMR (500 MHz, CDCl₃): δ 9.06 (s, 1H), 8.13 (dd, J = 9.0, 2.5 Hz, 1H), 7.98 (d, J = 3.0 Hz, 1H), 7.66-7.61 (m, 4H), 7.50-7.48 (m, 1H), 7.32 (d, J = 7.5 Hz, 2H), 7.29-7.28 (br, 2H), 7.25-7.24 (m, 3H), 7.22-7.18 (m, 1H), 6.92 (s, 1H), 3.90 (s, 3H), 2.45 (s, 3H) ppm.

¹³C{¹H} NMR (125 MHz, CDCl₃): δ 162.0, 146.7, 146.1, 143.5, 143.3, 140.4, 140.2, 138.1, 136.5, 134.8, 134.6, 132.3, 132.2, 129.4, 128.8, 128.6, 127.8, 126.9, 125.0, 124.5, 123.2, 119.8, 112.0, 106.0, 66.0, 52.1, 31.0, 21.4 ppm.

HRMS (ESI-TOF): Calcd. for $C_{32}H_{24}ClN_2O_4$ [M⁺ + H]: m/z 535.1424 Found: 535.1426.

Compound 15ac

CI O Ph NO₂ N CO₂Me

Yield: 215.1 mg (66%, white solid, $R_f = 0.47$ (9:1 hexane/ethyl acetate)).

Mp: 222-224 °C.

IR (neat): v_{max} 3054, 2985, 1731, 1605, 1527, 1511, 1347, 1265, 1162, 1033, 896, 830, 739, 704 cm⁻¹.

¹H NMR (500 MHz, CDCl₃): δ 8.69 (d, J = 2.5 Hz, 1H), 8.18 (dd, J = 8.5, 2.5 Hz, 1H), 7.78 (d, J = 7.5 Hz, 1H), 7.57-7.52 (m, 5H), 7.33-7.32 (m, 3H), 7.29-7.28 (m, 3H), 7.07-7.02 (m, 3H), 3.70 (s, 3H) ppm.

¹³C{¹H} NMR (100 MHz, CDCl₃): δ 163.0 (d, J = 249.0 Hz), 161.9, 146.7, 144.3, 143.4, 140.0, 139.9, 138.3, 132.7, 131.9, 131.0, 130.1, 129.9, 129.0, 128.8, 128.6 (d, J = 41.0 Hz), 127.9, 127.4, 127.3, 124.0, 123.8, 123.3, 117.8, 116.0 (d, J = 21.0 Hz), 103.8, 95.1, 53.0 ppm.

 ^{19}F NMR (376 MHz, CDCl₃): δ -111.4 ppm.

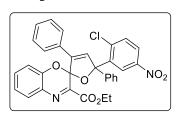
HRMS (ESI-TOF): Calcd. for $C_{31}H_{21}ClFN_2O_6$ [M⁺ + H] and [M⁺ + H + 2]: m/z 571.1072, 573.1041 Found: 571.1074, 573.1041.

Compound 16ac

Yield: 98.4 mg (32%, yellow solid, $R_f = 0.41$ (9:1 hexane/ethyl acetate)).

Mp: >300 °C.

IR (neat): v_{max} 3329, 2923, 2853, 1716, 1600, 1526, 1507, 1460, 1345, 1232, 1049, 806, 742, 699 cm⁻¹.


¹H NMR (400 MHz, CDCl₃): δ 9.05 (s, 1H), 8.14 (dd, J = 8.6 Hz, 3.0 Hz, 1H), 7.98 (d, J = 2.4 Hz, 1H), 7.71-7.68 (m, 2H), 7.65 (d, J = 8.4 Hz, 1H), 7.59 (d, J = 8.4 Hz, 1H), 7.50 (dd, J = 8.4, 1.0 Hz, 1H), 7.29 (s, 1H), 7.26-7.18 (m, 7H), 6.92 (s, 1H), 3.91 (s, 3H) ppm.

¹³C{¹H} NMR (100 MHz, CDCl₃): δ 162.7 (d, J = 246.0 Hz), 161.9, 146.7, 145.3, 143.5, 143.2, 140.2, 139.9, 136.6, 135.0, 134.5, 132.2, 129.6 (d, J = 8.0 Hz), 128.8₃, 128.7₆, 127.0, 126.1, 125.0, 124.5, 123.3, 119.4, 115.7 (d, J = 21.1 Hz), 112.1, 106.0, 66.0, 52.1 ppm.

¹⁹F NMR (470 MHz, CDCl₃): -116.7 ppm.

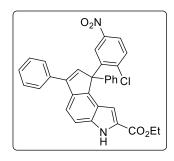
HRMS (ESI-TOF): Calcd. for $C_{31}H_{21}CIFN_2O_4$ [M⁺ + H]: m/z 539.1174 found 539.1178.

Compound 15ba

Yield: 200.8 mg (67%, white solid, $R_f = 0.50$ (9:1 hexane/ethyl acetate)).

Mp: 240-242 °C.

IR (neat): v_{max} 3054, 2986, 1731, 1526, 1422, 1348, 1265, 1044, 896, 739, 705 cm⁻¹.


¹H NMR (500 MHz, CDCl₃): δ 8.69 (d, J = 3.0 Hz, 1H), 8.18 (dd, J = 8.5, 2.5 Hz, 1H), 7.79 (dd, J = 8.0, 1.5 Hz, 1H), 7.63 (s, 1H), 7.56-7.51 (m, 4H), 7.36-7.28 (m, 9H), 7.02 (dd, J = 8.5, 1.0 Hz, 1H), 4.16 (q, J = 7.0, 2H), 1.06 (t, J = 7.0, 3H) ppm.

¹³C{¹H} NMR (100 MHz, CDCl₃): δ 161.5, 147.3, 146.7, 144.4, 143.6, 141.0, 140.0, 138.3, 132.4, 131.8, 131.1, 130.9, 129.8, 129.0, 128.8, 128.7, 128.3, 127.9, 127.4, 126.9, 123.9, 123.5, 123.4, 117.6, 103.8, 94.9, 62.0, 13.8 ppm.

HRMS (ESI-TOF): Calcd. for $C_{32}H_{24}ClN_2O_6$ [M⁺ + H] and [M⁺ + H + 2]: m/z 567.1323, 569.1293 Found: 567.1327, 569.1293.

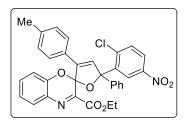
This compound was crystallized from ethyl acetate—hexane (2:1) mixture at room temperature. X-ray structure has been determined for this compound.

Compound 16ba

Yield: 87.7 mg (31%, yellow solid, $R_f = 0.46$ (9:1 hexane/ethyl acetate)).

Mp: >300 °C.

IR (neat): v_{max} 3324, 2923, 2853, 2360, 2340, 1706, 1603, 1571, 1524, 1491, 1445, 1379, 1275, 1244, 1199, 1116, 1050, 1021, 810, 758, 700 cm⁻¹.


¹H NMR (400 MHz, CDCl₃): δ 9.05 (s, 1H), 8.14 (dd, J = 8.8, 2.8 Hz, 1H), 7.99 (d, J = 2.4 Hz, 1H), 7.74-7.72 (m, 2H), 7.64 (d, J = 8.8 Hz, 2H), 7.53-7.48 (m, 3H), 7.47-7.42 (m, 1H), 7.32 (s, 1H), 7.26-7.25 (m, 4H), 7.23-7.18 (m, 1H), 6.92 (s, 1H), 4.38 (q, J = 7.2 Hz, 2H), 1.39 (t, J = 7.2 Hz, 3H) ppm.

¹³C{¹H} NMR (125 MHz, CDCl₃): δ 161.4, 146.8, 146.2, 143.5, 143.2, 140.4, 140.1, 136.5, 135.3, 135.1, 134.6, 132.2, 129.0, 128.8, 128.7, 128.2, 127.9, 126.9, 126.2, 125.0, 124.5, 123.2, 119.6, 112.0, 105.8, 66.1, 61.2, 14.4 ppm.

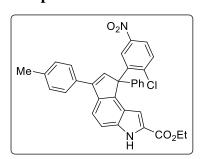
HRMS (ESI-TOF): Calcd. for $C_{32}H_{24}ClN_2O_4$ [M⁺ + H] and [M⁺ + H + 2]: m/z 535.1424, 537.1394 Found: 535.1426, 537.1398.

This compound was crystallized from ethyl acetate—hexane (2:1) mixture at room temperature. X-ray structure has been determined for this compound.

Compound 15bb

Yield: 178.1 mg (58%, white solid, $R_f = 0.54$ (9:1 hexane/ethyl acetate)).

Mp: 205-207 °C.


IR (neat): v_{max} 2923, 2853, 1725, 1607, 1572, 1524, 1450, 1345, 1298, 1265, 1179, 1137, 1033, 1007, 955, 920, 814, 762, 740, 698 cm⁻¹.

¹H NMR (500 MHz, CDCl₃): δ 8.59 (d, J = 2.5 Hz, 1H), 8.07 (dd, J = 8.5, 2.5 Hz, 1H), 7.69 (dd, J = 8.0, 1.5 Hz, 1H), 7.47 (s, 1H), 7.44-7.40 (m, 2H), 7.33 (d, J = 8.0 Hz, 2H), 7.23-7.20 (m, 3H), 7.19-7.16 (m, 3H), 7.04 (d, J = 8.0 Hz, 2H), 6.92 (dd, J = 8.0, 1.0 Hz, 1H), 4.06 (q, J = 7.0, 2H), 0.98 (t, J = 7.0 Hz, 3H) ppm.

¹³C{¹H} NMR (125 MHz, CDCl₃): δ 161.5, 147.5, 146.7, 144.5, 143.7, 140.9, 140.1, 139.1, 138.3, 132.3, 131.8, 131.1, 129.7, 129.5, 128.6, 128.3, 128.1, 127.4, 126.9, 126.8, 123.8, 123.5, 123.4, 117.6, 103.8, 94.9, 62.0, 21.3, 13.8 ppm.

HRMS (ESI-TOF): Calcd. for $C_{33}H_{26}ClN_2O_6$ [M⁺ + H]: m/z 581.1479 Found: 581.1472.

Compound 16bb

Yield: 87.0 mg (30%, yellow solid, $R_f = 0.49$ (9:1 hexane/ethyl acetate)).

Mp: $>300 \, {}^{\circ}\text{C}$.

IR (neat): v_{max} 3328, 2923, 2854, 1712, 1605, 1572, 1525, 1460, 1376, 1344, 1247, 1120, 1072, 1049, 1022, 804, 741, 699 cm⁻¹.

¹H NMR (500 MHz, CDCl₃): δ 9.04 (s, 1H), 8.13 (dd, J = 8.5, 2.5 Hz, 1H), 7.98 (d, J = 2.5 Hz, 1H), 7.65-7.61 (m, 4H), 7.49 (dd, J = 8.5, 1.0 Hz, 1H), 7.32 (d, J = 8.0 Hz, 2H), 7.28₂-7.28₀ (br, 2H), 7.25-7.24 (m, 3H), 7.22-7.18 (m, 1H), 6.91 (s, 1H), 4.37 (q, J = 7.0 Hz, 2H), 2.45 (s, 3H), 1.39 (t, J = 7.0 Hz, 3H) ppm.

¹³C{¹H} NMR (100 MHz, CDCl₃): δ 161.5, 146.7, 146.1, 143.5, 143.2, 140.4, 140.2, 138.1, 136.5, 134.8, 134.6, 132.4, 132.2, 129.4, 129.0, 128.8, 127.8, 126.9, 126.2, 125.0, 124.5, 123.2, 119.7, 112.0, 105.9, 66.0, 61.2, 21.3, 14.4 ppm.

HRMS (ESI-TOF): Calcd. for $C_{33}H_{26}CIN_2O_4$ [M⁺ + H]: m/z 549.1581 Found: 549.1586.

Compound 15bc

CI O Ph NO₂ N CO₂Et

Yield: 200.1 mg (62%, white solid, $R_f = 0.53$ (9:1 hexane/ethyl acetate)).

Mp: 220-222 °C.

IR (neat): v_{max} 3053, 2989, 1724, 1605, 1527, 1422, 1347, 1265, 1033, 896, 744, 705 cm⁻¹

¹H NMR (500 MHz, CDCl₃): δ 8.68 (d, J = 2.5 Hz, 1H), 8.18 (dd, J = 8.5, 2.5 Hz, 1H), 7.79 (dd, J = 8.0, 1.5 Hz, 1H), 7.56-7.52 (m, 5H), 7.33-7.30 (m, 3H), 7.29-7.28 (m, 3H), 7.06-7.02 (m, 3H), 4.17 (q, J = 7.0 Hz, 2H), 1.10 (t, J = 7.0 Hz, 3H) ppm.

¹³C{¹H} NMR (100 MHz, CDCl₃): δ 162.8 (d, J = 267.0 Hz), 161.7, 147.1, 146.7, 144.3, 143.4, 140.0, 139.9, 138.3, 132.5, 131.9, 131.1, 129.9, 128.9, 128.6 (d, J = 37.0 Hz), 127.8, 127.4, 127.2, 124.0, 123.7, 123.4, 117.7, 115.9 (d, J = 22 Hz), 103.8, 95.0, 62.2, 13.9 ppm.

¹⁹F NMR (376 MHz, CDCl₃): δ -111.5 ppm.

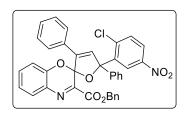
HRMS (ESI-TOF): Calcd. for $C_{32}H_{23}CIFN_2O_6$ [M⁺ + H] and [M⁺ + H + 2]: m/z 585.1228, 587.1198 Found: 585.1228, 587.1197.

Compound 16bc

Yield: 102.3 mg (35%, yellow solid, $R_f = 0.44$ (9:1 hexane/ethyl acetate)).

Mp: >300 °C.

IR (neat): v_{max} 3318, 2922, 2851, 1707, 1597, 1505, 1444, 1344, 1229, 1202, 1157, 1050, 1020, 807, 742, 700 cm⁻¹.


¹H NMR (500 MHz, CDCl₃): δ 9.05 (s, 1H), 8.14 (dd, J = 8.5, 2.5 Hz, 1H), 7.98 (d, J = 2.5 Hz, 1H), 7.71-7.68 (m, 2H), 7.65 (d, J = 9.0 Hz, 1H), 7.58 (d, J = 8.5 Hz, 1H), 7.50 (dd, J = 8.5, 1.0 Hz, 1H), 7.28 (s, 1H), 7.26-7.24 (m, 4H), 7.22-7.18 (m, 3H), 6.91 (s, 1H), 4.38 (q, J = 7.0 Hz, 2H), 1.39 (t, J = 7.0 Hz, 3H) ppm.

¹³C{¹H} NMR (125 MHz, CDCl₃): δ 162.7 (d, J = 246.4 Hz), 161.4, 146.7, 145.2, 143.5, 143.2, 140.2, 139.9, 136.5, 135.0, 134.4, 132.2, 131.3, 129.6 (d, J = 7.7 Hz), 129.1, 128.8, 127.0, 126.1, 125.0, 124.5, 123.2, 119.3, 115.7 (d, J = 21.6 Hz), 112.1, 105.8, 66.0, 61.2, 14.4 ppm.

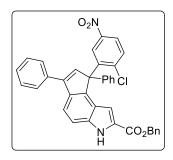
¹⁹F NMR (470 MHz, CDCl₃): δ -113.5 ppm.

HRMS (ESI-TOF): Calcd. for $C_{32}H_{23}FClN_2O_4$ [M⁺ + H] and [M⁺ + H +2]: m/z 553.1330, 555.1300 Found: 553.1343, 555.1304.

Compound 15ca

Yield: 160.2 mg (64%, white solid, $R_f = 0.52$ (9:1 hexane/ethyl acetate)).

Mp: 218-220 °C.


IR (neat): v_{max} 3054, 2985, 1731, 1605, 1527, 1347, 1265, 1033, 982, 896, 830, 739, 704 cm⁻¹.

¹H NMR (500 MHz, CDCl₃): δ 8.68 (d, J = 2.5 Hz, 1H), 8.17 (dd, J = 8.5, 2.5 Hz, 1H), 7.79 (d, J = 8.5 Hz, 1H), 7.60 (s, 1H), 7.54-7.49 (m, 4H), 7.32-7.28 (m, 6H), 7.26-7.21 (m, 6H), 7.04-7.00 (m, 3H), 5.14 (q, J = 12.5 Hz, 2H) ppm.

¹³C{¹H} NMR (100 MHz, CDCl₃): δ 161.4, 147.0, 146.7, 144.4, 143.6, 140.8, 139.9, 138.3, 135.0, 132.5, 131.8, 131.2, 130.8, 129.9, 129.0, 128.8, 128.7, 128.4₂, 128.4₀, 128.2, 128.0, 127.4, 126.9, 123.9, 123.6, 123.4, 117.6, 103.8, 94.9, 67.4 ppm.

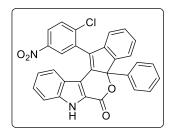
HRMS (ESI-TOF): Calcd. for $C_{37}H_{25}ClN_2O_6Na$ [M⁺ + Na] and [M⁺ + Na + 2]: m/z 651.1299, 653.1269 Found: 651.1298, 653.1299.

Compound 16ca

Yield: 78.1 mg (33%, yellow solid, $R_f = 0.44$ (9:1 hexane/ethyl acetate)).

Mp: >300 °C.

IR (neat): v_{max} 3323, 2924, 1707, 1570, 1523, 1493, 1447, 1344, 1226, 1186, 1130, 1077, 1048, 965, 907, 830, 735, 697 cm⁻¹.


¹H NMR (500 MHz, CDCl₃): δ 9.02 (s, 1H), 8.33 (d, J = 2.5 Hz, 1H), 8.20 (dd, J = 8.8, 2.8 Hz, 1H), 7.69 (d, J = 8.5 Hz, 1H), 7.50 (d, J = 9.0 Hz, 2H), 7.44-7.37 (m, 2H), 7.36-7.28 (m, 4H), 7.25-7.23₁ (m, 3H), 7.23-7.20 (m, 2H), 7.18-7.17 (m, 2H), 7.09-7.07 (m, 2H), 6.83-6.80 (m, 1H), 6.36 (d, J = 8.5 Hz, 1H), 5.12 (d, J = 12.0 Hz, 1H), 4.68 (d, J = 12.0 Hz, 1H) ppm.

¹³C{¹H} NMR (125 MHz, CDCl₃): δ 161.2, 150.7, 146.5, 145.2, 144.5, 141.7, 140.6, 138.4, 137.7, 136.2, 135.7, 135.4, 130.8, 128.7, 128.5, 128.4, 127.4, 126.8, 126.4, 126.1, 126.0, 125.9, 125.1, 123.7, 123.4, 121.7, 121.1, 120.2, 111.7, 66.7, 62.6 ppm.

HRMS (ESI-TOF): Calcd. for $C_{37}H_{26}ClN_2O_4$ [M⁺ + H] and [M⁺ + H +2]: m/z 597.1581, 599.1551 Found: 597.1581, 599.1570.

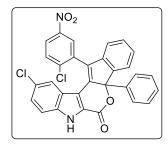
3.2 Synthesis of indene fused pyrano-indolones: General procedure for the synthesis of compounds 17ba and 17ea-eb: To an oven dried 10 mL round-bottomed flask indole 2-carboxylate (1b or 1e, 0.53 mmol), propargylic alcohol (one of 3a-b, 0.53 mmol) and PTSA (0.53 mmol) were added. To this mixture, MeNO₂ (2 mL) was added, and the contents were stirred at 60 °C (oil bath temperature) for 12 h. Progress of the reaction was monitored by TLC. After completion of the reaction, the mixture was quenched by adding water (20 mL). The aqueous layer was extracted with ethyl acetate (3×10 mL). Then the combined organic layer was washed with brine (20 mL), dried over anhydrous Na₂SO₄, concentrated under reduced pressure, and the crude product was purified by silica gel column chromatography by using hexane/ethyl acetate (9:1) mixture as the eluent to afford the corresponding annulated products 17ba and 17ea-eb.

Compound 17ba

Yield: 246.2 mg (92%, white solid, $R_f = 0.48$ (9:1 hexane/ethyl acetate)).

Mp: 242-244 °C.

IR (neat): v_{max} 3282, 2924, 2853, 1700, 1570, 1526,1462, 1346, 1288, 1260, 1133, 1050, 1012, 799, 741, 697 cm⁻¹.


¹H NMR (400 MHz, CDCl₃): major isomer δ 9.33 (s, 1H), 8.40 (dd, J = 8.8, 2.8 Hz, 1H), 8.17 (d, J = 2.8 Hz, 1H), 7.98 (d, J = 8.8 Hz, 1H), 7.74-7.71 (m, 2H), 7.64-7.62 (m, 1H), 7.50-7.48 (m, 1H), 7.43-7.41 (m, 1H), 7.28-7.27 (m, 2H), 7.26-7.21 (m, 3H), 7.02-7.00 (m, 1H), 6.88-6.84 (m, 1H), 6.24 (d, J = 1.0 Hz, 1H) ppm; minor isomer δ 9.31 (s, 1H), 8.72 (d, J = 2.4 Hz, 1H), 7.69-7.62 (m, 1H), 7.34-7.31 (m, 1H), 7.21-7.20 (m, 1H), 6.92-6.89 (m, 1H), 6.36-6.33 (m, 1H) ppm.

¹³C{¹H} NMR (100 MHz, CDCl₃): major isomer δ 161.8, 146.8, 145.7, 142.0, 141.7, 141.5, 140.7, 139.0, 138.3, 135.9, 134.7, 131.0, 129.5, 129.1, 128.3, 127.5, 127.2, 126.8, 125.0, 124.5, 124.0, 123.1, 122.2, 121.7, 121.5, 117.0, 113.1, 94.5 ppm; minor isomer δ 161.9, 146.6, 145.5, 142.5, 141.9, 140.8, 139.2, 138.2, 135.1, 133.8, 131.5, 129.6, 129.1, 128.4, 127.7, 127.1, 126.3, 124.8, 124.3, 123.0, 122.7, 122.2, 121.6, 120.6, 118.4, 113.0 ppm.

HRMS (ESI-TOF): Calcd. for $C_{30}H_{17}ClN_2O_4Na$ [M⁺ + Na] and [M⁺ + Na +2]: m/z 527.0775, 529.0745 Found: 527.0778, 529.0747.

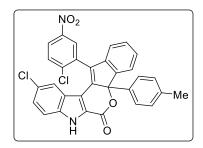
This compound was crystallized from dichloromethane—hexane (2:1) mixture at room temperature. X-ray structure has been determined for this compound.

Compound 17ea

Yield: 217.7 mg (90%, white solid, $R_f = 0.49$ (9:1 hexane/ethyl acetate)).

Mp: 241-243 °C.

IR (neat): v_{max} 2922, 2853, 1705, 1526, 1462, 1243, 1056, 855, 742, 698 cm⁻¹.


¹H NMR (400 MHz, CDCl₃): major isomer δ 9.51 (s, 1H), 8.45 (dd, J = 8.8, 2.8 Hz, 1H), 8.16 (d, J = 2.4 Hz, 1H), 8.01 (d, J = 8.8 Hz, 1H), 7.71 (d, J = 7.2 Hz, 2H), 7.49 (d, J = 6.8 Hz, 1H), 7.39-7.34 (m, 2H), 7.33-7.29 (m, 2H), 7.27₄-7.27₀ (m, 1H), 7.25-7.20 (m, 2H), 7.05 (d, J = 7.6 Hz, 1H), 6.07 (s, 1H) ppm; minor isomer δ 9.49 (s, 1H), 8.72 (d, J = 2.8 Hz, 1H), 7.62 (d, J = 1.6 Hz, 1H), 6.17 (s, 1H) ppm.

¹³C{¹H} NMR (125 MHz, CDCl₃): major isomer δ 161.5₅, 146.9, 145.6, 141.8, 140.6, 141.5, 140.5, 138.4, 136.6, 135.5, 135.3, 131.1, 129.6, 129.1, 128.4, 127.9, 127.7₄, 127.6, 126.8, 125.2, 124.4, 124.3, 124.1₃, 122.9, 121.7, 121.3, 116.5, 114.3, 94.4 ppm; minor isomer δ 161.6₄, 146.6, 145.4, 142.2, 141.6, 140.6, 138.6,

136.5, 134.8, 134.3, 130.5, 129.7, 129.2, 128.5, 127.6₅, 127.5, 126.2, 125.0, 124.3₆, 124.0₉, 123.7, 121.2, 120.8, 117.8, 114.2 ppm.

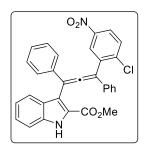
HRMS (ESI-TOF): Calcd. for $C_{30}H_{17}Cl_2N_2O_4$ [M⁺ + H] and [M⁺ + H +2]: m/z 539.0565, 541.0535 Found: 539.0565, 541.0544.

Compound 17eb

Yield: 217.5 mg (88%, white solid, $R_f = 0.49$ (9:1 hexane/ethyl acetate)).

Mp: 246-248 °C.

IR (neat): v_{max} 3299, 2922, 2853, 1698, 1525, 1459, 1374, 1341, 1244, 1135, 1056, 996, 972, 862, 806, 767 cm⁻¹.


¹H NMR (500 MHz, CDCl₃): major isomer δ 9.38 (s, 1H), 8.44 (dd, J = 9.0, 2.5 Hz, 1H), 8.14 (d, J = 2.5 Hz, 1H), 8.00 (d, J = 8.5 Hz, 1H), 7.58 (d, J = 8.5 Hz, 2H), 7.48 (d, J = 7.5 Hz, 2H), 7.34-7.33 (m, 1H), 7.31-7.29 (m, 1H), 7.24-7.23 (m, 1H), 7.09-7.08 (m, 2H), 7.04-7.02 (m, 1H), 6.06 (s, 1H), 2.25 (s, 3H) ppm; minor isomer δ 9.36 (s, 1H), 8.70 (d, J = 2.5 Hz, 1H), 7.71 (d, J = 9.0 Hz, 1H), 7.27-7.25 (m, 1H), 7.22-7.21 (m, 1H), 7.11 (br s, 1H), 6.15 (s, 1H), 2.26 (s, 1H) ppm.

¹³C{¹H} NMR (100 MHz, CDCl₃): major isomer δ 161.4, 146.9, 145.7, 141.7, 141.5, 138.4, 138.3, 137.7, 137.5, 136.5, 135.5, 135.1, 131.1, 129.8, 129.5, 127.7₀, 127.6₅, 127.5₈, 126.8, 125.1, 124.4, 124.0, 123.0, 121.6, 121.3, 116.4, 114.2, 94.4 ppm; minor isomer δ 161.5, 146.6, 145.6, 144.9, 142.2, 141.7, 138.6, 136.4, 134.8, 131.6, 129.9, 129.6, 127.9, 127.5, 126.2, 125.0, 124.2₃, 124.1₈, 123.8, 121.3, 120.8, 117.8, 114.1 ppm.

HRMS (ESI-TOF): Calcd. for $C_{31}H_{19}Cl_2N_2O_4$ [M⁺ + H] and [M⁺ + H +2]: m/z 553.0722, 555.0692 Found: 553.0725, 555.0702.

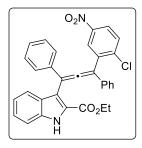
3.3 Synthesis of 3-allenyl-indole-2-carboxylates: General procedure for the synthesis of compounds 18aa-18db: To an oven dried 10 mL round-bottomed flask, indole 2-carboxylate (**1a-b**, **1d**; 0.53 mmol), propargylic alcohol (one of **3a-c**, 0.26 mmol) and PTSA (20 mol%) were added. To this mixture, toluene (2 mL) was added, and the contents were stirred at rt for 6 h. Progress of the reaction was monitored by TLC. After completion of the reaction, the mixture was quenched by adding water (20 mL). The aqueous layer was extracted with ethyl acetate (3 × 10 mL). Then the combined organic layer was washed with brine (20 mL), dried over anhydrous Na₂SO₄, and concentrated under reduced pressure, and the crude product was purified by silica gel column chromatography by using hexane/ethyl acetate (9:1) mixture as the eluent to afford the corresponding product.

Compound 18aa

Yield: 249.8 mg (84%, yellow solid, $R_f = 0.52$ (9:1 hexane/ethyl acetate)).

Mp: 172-174 °C.

IR (neat): v_{max} 3442, 3054, 2986, 1702, 1528, 1446, 1347, 1265, 1050, 896, 739, 705 cm⁻²


1

¹H NMR (500 MHz, CDCl₃): δ 9.07 (s, 1H), 8.14-8.10 (m, 2H), 7.56 (d, J = 8.5 Hz, 1H), 7.39 (d, J = 8.0 Hz, 1H), 7.32-7.28 (m, 3H), 7.26-7.22 (m, 4H), 7.20-7.15 (m, 5H), 7.01-6.98 (m, 1H), 3.47 (s, 3H) ppm.

¹³C{¹H} NMR (125 MHz, CDCl₃): δ 207.2, 162.2, 146.6, 141.6, 136.9, 135.9, 135.5, 134.6, 130.8, 128.9, 128.6, 128.1, 127.9, 127.7, 127.0, 126.9, 126.8, 126.1, 124.3, 123.8, 121.6, 121.2, 115.9, 112.0, 108.1, 106.0, 51.8 ppm.

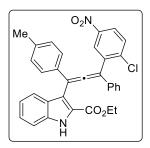
HRMS (ESI-TOF): Calcd. for $C_{31}H_{22}ClN_2O_4$ [M⁺ + H] and [M⁺ + H + 2]: m/z 521.1268, 523.1238. Found: 521.1266, 523.1231.

Compound 18ba

Yield: 226.2 mg (80%, yellow solid, $R_f = 0.54$ (9:1 hexane/ethyl acetate)).

Mp: 242-244 °C.

IR (neat): v_{max} 3315, 2924, 1678, 1523, 1491, 1446, 1343, 1327, 1238, 1181, 1143, 1084,


1048, 1018, 853, 762, 741, 691 cm⁻¹.

¹H NMR (500 MHz, CDCl₃): δ 9.11 (s, 1H), 8.24-8.21 (m, 2H), 7.68 (d, J = 8.5 Hz, 1H), 7.49 (d, J = 8.5 Hz, 1H), 7.42-7.37 (m, 4H), 7.36-7.28 (m, 7H), 7.27-7.24 (m, 1H), 7.11-7.08 (m, 1H), 4.18-4.06 (m, 2H), 0.98 (t, J = 7.3 Hz, 3H) ppm.

¹³C{¹H} NMR (125 MHz, CDCl₃): δ 207.0, 161.6, 146.6, 141.6, 136.9, 135.8, 135.7, 134.5, 130.8, 128.8, 128.5, 128.3, 127.8, 127.6, 127.0, 126.8, 126.7, 126.0, 124.6, 123.8, 121.3, 121.2, 115.6, 111.9, 108.2, 106.3, 61.0, 13.8 ppm.

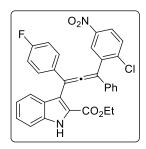
HRMS (ESI-TOF): Calcd. for $C_{32}H_{24}ClN_2O_4$ [M⁺ + H] and [M⁺ + H + 2]: m/z 535.1424, 537.1394. Found: 535.1426, 537.1395.

Compound 18bb

Yield: 226.3 mg (78%, yellow solid, $R_f = 0.54$ (9:1 hexane/ethyl acetate)).

Mp: 224-226 °C.

IR (neat): v_{max} 3315, 2922, 1678, 1523, 1446, 1341, 1238, 1179, 1143, 1084, 1048, 1018, 853, 821, 764, 740, 692 cm⁻¹.


¹H NMR (500 MHz, CDCl₃): δ 9.19 (s, 1H), 8.23-8.20 (m, 2H), 7.66 (d, J = 8.5 Hz, 1H), 7.48 (d, J = 8.0 Hz, 1H), 7.41-7.37 (m, 2H), 7.36-7.35 (m, 1H), 7.33-7.26 (m, 6H),

7.12-7.07 (m, 3H), 4.21-4.03 (m, 2H), 2.35 (s, 3H), 0.99 (t, J = 7.3 Hz, 3H) ppm.

¹³C{¹H} NMR (125 MHz, CDCl₃): δ 206.8, 161.7, 146.6, 141.6, 137.5, 137.0, 135.8, 134.6, 132.7, 130.8, 129.3, 128.8, 128.3, 127.7, 127.0, 126.6₉, 126.6₇, 126.0, 124.6, 123.7, 121.4, 121.2, 115.8, 111.9, 108.0, 106.2, 61.0, 21.2, 13.8 ppm.

HRMS (ESI-TOF): Calcd. for $C_{33}H_{25}ClN_2O_4Na$ [M⁺ + Na] and [M⁺ + Na + 2]: m/z 571.1401, 573.1371. Found: 571.1404, 573.1377.

Compound 18bc

Yield: 216.3 mg (74%, yellow solid, $R_f = 0.57$ (9:1 hexane/ethyl acetate)).

Mp: 230-232 °C.

IR (neat): v_{max} 3324, 2923, 2853, 1702, 1600, 1527, 1505, 1450, 1343, 1233, 1184, 1155, 1049, 1018, 907, 837, 732, 693 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ 9.19 (s, 1H), 8.25-8.21 (m, 2H), 7.69 (d, J = 8.8 Hz, 1H), 7.50 (d, J = 8.4 Hz, 1H), 7.41-7.27 (m, 9H), 7.11-7.07 (m, 1H), 7.03-6.98 (m, 2H), 4.22-4.07 (m, 2H), 1.02 (t, J = 7.2 Hz, 3H) ppm.

¹³C{¹H} NMR (100 MHz, CDCl₃): δ 206.7, 163.3 (d, J = 196.4 Hz), 161.5, 146.6, 141.5, 136.7, 135.8, 134.3, 131.7, 130.9, 128.9, 128.4 (d, J = 6.4 Hz), 128.1, 127.9, 127.0, 126.7, 126.1, 124.5, 123.9, 121.3 (d, J = 12.3 Hz), 115.5 (d, J = 17.3 Hz), 115.5, 112.0, 108.3, 105.4, 61.1, 13.9 ppm.

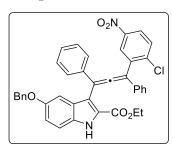
¹⁹F NMR (375 MHz, CDCl₃): δ -114.5 ppm.

HRMS (ESI-TOF): Calcd. for $C_{32}H_{22}ClFN_2O_4Na$ [M⁺ + Na] and [M⁺ + Na + 2]: m/z 575.1150, 577.1120. Found: 575.1149, 577.1122.

Compound 18da

Yield: 165.3 mg (76%, yellow solid, $R_f = 0.48$ (9:1 hexane/ethyl acetate)).

Mp: 246-248 °C.


IR (neat): v_{max} 3314, 2919, 1679, 1525, 1462, 1343, 1224, 1184, 1016, 799, 693 cm⁻¹.

¹H NMR (500 MHz, CDCl₃): δ 9.06 (s, 1H), 8.25 (d, J = 2.5 Hz, 1H), 8.16 (dd, J = 8.8 Hz, 3.0 Hz, 1H), 7.64 (d, J = 9.0 Hz, 1H), 7.43-7.40 (m, 2H), 7.39-7.36 (m, 3H), 7.35-7.31 (m, 9H), 7.28-7.24 (m, 2H), 7.09 (dd, J = 9.0, 2.5 Hz, 1H), 6.84 (d, J = 2.5 Hz, 1H), 4.57 (d, J = 11.0 Hz, 1H), 4.49 (d, J = 11.0 Hz, 1H), 4.14-4.03 (m, 2H), 0.93 (t, J = 7.0 Hz, 3H) ppm.

¹³C{¹H} NMR (125 MHz, CDCl₃): δ 207.5, 161.4, 154.3, 146.6, 141.6, 136.9, 135.9, 135.1, 131.2, 130.9, 128.9, 128.7, 128.5₁, 128.5₀, 127.9, 127.8, 127.6, 127.0, 126.9, 126.8, 125.1, 123.7, 118.3, 115.1, 112.9, 108.0, 106.5, 102.3, 70.2, 60.9, 13.7 ppm.

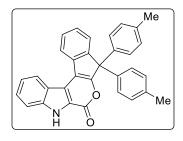
HRMS (ESI-TOF): Calcd. for $C_{39}H_{30}ClN_2O_5$ [M⁺ + H] and [M⁺ + H + 2]: m/z 641.1843, 643.1813. Found: 641.1841, 643.1827.

Compound 18db

Yield: 175.2 mg (79%, yellow solid, $R_f = 0.50$ (9:1 hexane/ethyl acetate)).

Mp: 218-220 °C.

IR (neat): v_{max} 3322, 2923, 2852, 1710, 1527, 1455, 1344, 1264, 1223, 1186, 1021, 898, 735, 702 cm⁻¹.


¹H NMR (400 MHz, CDCl₃): δ 9.06 (s, 1H), 8.24 (d, J = 2.8 Hz, 1H), 8.15 (dd, J = 8.8, 2.8 Hz, 1H), 7.63 (d, J = 8.8 Hz, 1H), 7.39-7.34 (m, 4H), 7.33-7.24 (m, 9H), 7.14-7.07 (m, 3H), 6.84 (d, J = 2.4 Hz, 1H), 4.57 (d, J = 11.0 Hz, 1H), 4.49 (d, J = 11.0 Hz, 1H), 4.17-4.01 (m, 2H), 2.36 (s, 3H), 0.95 (t, J = 7.2 Hz, 3H) ppm.

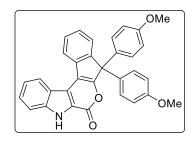
¹³C{¹H} NMR (125 MHz, CDCl₃): δ 207.3, 161.5, 154.2, 146.6, 141.6, 137.5, 137.0, 136.9, 135.2, 132.8, 131.1, 130.9, 129.3, 128.8, 128.7, 128.5,127.9, 127.8₃, 127.8₀, 126.9₉, 126.9₅, 126.7, 125.0, 123.6, 118.3, 115.3, 112.8, 107.9, 106.4, 102.2, 70.1, 60.9, 21.2, 13.8 ppm.

HRMS (ESI-TOF): Calcd. for $C_{40}H_{31}ClN_2O_5Na$ [M⁺ + Na] and [M⁺ + Na + 2]: m/z 677.1819, 679.1789. Found: 677.1819, 679.1804.

3.4 Synthesis of indene fused pyrano-indolones (fused pentacyclics): General procedure for the synthesis of compounds 19aa-19bb: To an oven dried 10 mL round-bottomed flask, indole-2-carboxylic acid (2a-b, 0.62 mmol), propargylic alcohol (one of 4b-c, 4e-i, 4k, 4m, 4o and 4p-q 0.62 mmol), and Cu(OTf)₂ (10 mol%) were added. To this mixture, MeCN (2 mL) was added and the contents were stirred at room temperature (25 °C) for 12 h. Progress of the reaction was monitored by TLC. After the completion of the reaction, solvent was removed under the vacuum, and the crude product was purified by silica gel column chromatography by using hexane/ethyl acetate (9:1) mixture as the eluent to afford the corresponding product.

Compound 19ab

Yield: 267.4 mg (95%, white solid, $R_f = 0.47$ (9:1 hexane/ethyl acetate)).


Mp: >300 °C.

IR (neat): v_{max} 3254, 2920, 2851, 1693, 1508, 1451, 1334, 1185, 1118, 1082, 1018, 810, 741, 697 cm⁻¹.

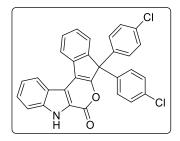
- ¹H NMR (400 MHz, CDCl₃): δ 10.34 (s, 1H), 8.50 (d, J = 8.4 Hz, 1H), 8.26 (d, J = 7.6 Hz, 1H), 7.69 (d, J = 8.4 Hz, 1H), 7.57-7.49 (m, 2H), 7.44-7.37 (m, 2H), 7.35-7.32 (m, 1H), 7.23-7.21 (m, 4H), 7.13-7.11 (m, 4H), 2.34 (s, 6H) ppm.
- ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 161.2, 160.0, 146.7, 140.4, 139.0, 137.3, 137.1, 129.2, 128.3, 128.0, 127.7, 126.2, 126.0, 124.2, 122.4, 121.5, 121.5, 121.4, 115.8, 113.6, 63.4, 21.1 ppm.

HRMS (ESI-TOF): Calcd. for $C_{32}H_{24}NO_2$ [M⁺ + H]: m/z 454.1807. Found: 454.1801.

Compound 19ac

Yield: 273.0 mg (91%, white solid, $R_f = 0.44$ (9:1 hexane/ethyl acetate)).

Mp: >300 °C.


IR (neat): v_{max} 3248, 2922, 2852, 1690, 1604, 1506, 1460, 1375, 1335, 1296, 1247, 1177, 1118, 1082, 1030, 910, 826, 741 cm⁻¹.

¹H NMR (500 MHz, CDCl₃): δ 9.93 (s, 1H), 8.50 (d, J = 8.5 Hz, 1H), 8.26 (d, J = 7.5 Hz, 1H), 7.67 (d, J = 8.0 Hz, 1H), 7.60-7.55 (m, 1H), 7.52-7.49 (m, 1H), 7.42-7.39 (m, 2H), 7.35-7.32 (m, 1H), 7.24-7.22 (m, 4H), 6.84-6.82 (m, 4H), 3.79 (s, 6H) ppm.

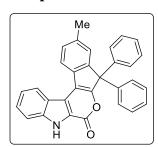
¹³C{¹H} NMR (125 MHz, CDCl₃): δ 161.7, 158.8, 157.5, 146.9, 139.9, 137.1, 133.9, 129.4, 128.1, 127.7, 126.2, 125.9, 124.4, 122.3₃, 122.3₀, 121.7, 121.3, 115.2, 113.9, 113.2, 62.7, 55.3 (s, 2C) ppm.

HRMS (ESI-TOF): Calcd. for $C_{32}H_{24}NO_4$ [M⁺ + H]: m/z 486.1705. Found: 486.1707.

Compound 19ae

Yield: 269.2 mg (88%, white solid, $R_f = 0.49$ (9:1 hexane/ethyl acetate)).

Mp: >300 °C.


IR (neat): v_{max} 3277, 2922, 2850, 1691, 1622, 1590, 1558, 1521, 1488, 1461, 1398, 1339, 1221, 1121, 1083, 1013, 911, 815, 773, 733, 606 cm⁻¹.

¹H NMR (500 MHz, CDCl₃): δ 9.86 (s, 1H), 8.50 (d, J = 8.5 Hz, 1H), 8.28 (d, J = 7.5 Hz, 1H), 7.68 (d, J = 8.0 Hz, 1H), 7.61-7.58 (m, 1H), 7.57-7.53 (m, 1H), 7.45-7.42 (m, 1H), 7.38-7.35 (m, 2H), 7.29-7.27 (m, 4H), 7.23-7.21 (m, 4H) ppm.

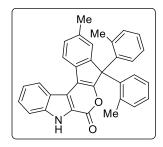
¹³C{¹H} NMR (125 MHz, CDCl₃): δ 160.3, 157.2, 145.7, 140.2, 140.1, 137.4, 133.9, 129.9, 129.1, 128.5₃, 128.5₂, 126.7, 126.1, 124.6, 122.8, 122.2₁, 122.2₀, 121.9, 121.7, 116.1, 113.4, 63.2 ppm.

HRMS (ESI-TOF): Calcd. for $C_{30}H_{17}Cl_2NO_2Na$ [M⁺ + Na] and [M⁺ + Na +2]: m/z 516.0534, 518.0504. Found: 516.0531, 518.0501.

Compound 19af

Yield: 253.6 mg (93%, white solid, $R_f = 0.48$ (9:1 hexane/ethyl acetate)).

Mp: >300 °C.


IR (neat): v_{max} 3302, 2920, 2852, 1694, 1621, 1559, 1526, 1492, 1467, 1337, 1204, 1086, 1021, 912, 804, 732, 698 cm⁻¹.

¹H NMR (500 MHz, CDCl₃): δ 9.92 (s, 1H), 8.49 (d, J = 8.0 Hz, 1H), 8.14 (d, J = 7.5 Hz, 1H), 7.65 (d, J = 8.5 Hz, 1H), 7.57-7.54 (m, 1H), 7.42-7.39 (m, 1H), 7.32-7.28 (m, 11H), 7.23 (s, 1H), 2.40 (s, 3H) ppm.

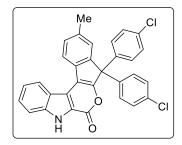
¹³C{¹H} NMR (125 MHz, CDCl₃): δ 160.5, 157.4, 146.4, 142.0, 139.9, 136.1, 134.4, 128.5, 128.4₄, 128.4₁, 128.0, 127.3, 126.8, 124.4, 122.3, 122.1, 121.7, 121.6, 121.4, 115.7, 113.1, 63.9, 21.7 ppm.

HRMS (ESI-TOF): Calcd. for $C_{31}H_{21}NO_2Na$ [M⁺ + Na]: m/z 462.1470. Found: 462.1471.

Compound 19ag

Yield: 229.0 mg (79%, white solid, $R_f = 0.53$ (9:1 hexane/ethyl acetate)).

Mp: >300 °C.


IR (neat): v_{max} 3265, 2915, 2848, 1691, 1619, 1508, 1466, 1334, 1237, 1162, 1082, 1027, 912, 803, 758, 736, 622 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ 10.57 (s, 1H), 8.47 (d, J = 8.4 Hz, 1H), 8.14 (d, J = 7.6 Hz, 1H), 7.70 (d, J = 8.4 Hz, 1H), 7.54-7.50 (m, 1H), 7.38-7.35 (m, 1H), 7.32-7.29 (m, 1H), 7.26-7.24 (m, 4H), 7.16-7.14 (m, 5H), 2.44 (s, 3H), 2.37 (s, 6H) ppm.

¹³C{¹H} NMR (125 MHz, CDCl₃): δ 160.8, 157.7, 146.9, 140.1, 139.1, 136.9, 136.0, 134.4, 129.2, 128.3, 127.9, 126.7, 124.3, 122.4, 122.0, 121.7, 121.5, 121.4, 115.5, 113.3, 63.3, 21.7, 21.0 ppm.

HRMS (ESI-TOF): Calcd. for $C_{33}H_{25}NO_2Na$ [M⁺ + Na]: m/z 490.1783. Found: 490.1785.

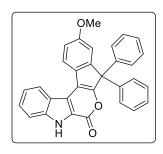
Compound 19ah

Yield: 283.2 mg (90%, white solid, $R_f = 0.46$ (9:1 hexane/ethyl acetate)).

Mp: >300 °C.

IR (neat): v_{max} 3286, 1693, 1620, 1557, 1524, 1487, 1399, 1337, 1166, 1092, 1079, 1013,

913, 874, 826, 801, 773, 735, 657 cm⁻¹.


¹H NMR (500 MHz, CDCl₃): δ 10.01 (s, 1H), 8.48 (d, J = 8.5 Hz, 1H), 8.15 (d, J = 8.0 Hz, 1H), 7.68 (d, J = 8.5 Hz, 1H), 7.60-7.56 (m, 1H), 7.44-7.41 (m, 1H), 7.34 (d, J = 7.5 Hz, 1H), 7.29-7.27 (m, 4H), 7.23-7.21 (m, 4H), 7.15 (s, 1H), 2.43 (s, 3H)

ppm.

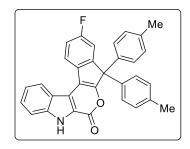
¹³C{¹H} NMR (125 MHz, CDCl₃): δ 159.4, 157.2, 145.7, 140.1, 140.0, 136.5, 134.3, 133.6, 129.7, 128.9, 128.8, 128.2, 126.5, 124.3, 122.4, 122.1, 121.8, 121.7, 121.4, 115.9, 113.2, 62.8, 21.6 ppm.

HRMS (ESI-TOF): Calcd. for $C_{31}H_{20}Cl_2NO_2$ [M⁺ + H], [M⁺ + H + 2] and [M⁺ + H + 4]: m/z 508.0871, 510.0841 and 512.0811. Found: 508.0860, 510.0835 and 512.0820.

Compound 19ai

Yield: 214.8 mg (76%, white solid, $R_f = 0.48$ (9:1 hexane/ethyl acetate)).

Mp: >300 °C.


IR (neat): v_{max} 3294, 3057, 2929, 2834, 1695, 1621, 1581, 1560, 1528, 1469, 1425, 1345, 1279, 1236, 1104, 1087, 1017, 912, 863, 796, 729, 700 cm⁻¹.

¹H NMR (500 MHz, CDCl₃): δ 9.67 (s, 1H), 8.47 (d, J = 8.0 Hz, 1H), 8.16 (d, J = 8.5 Hz, 1H), 7.65 (d, J = 8.0 Hz, 1H), 7.59-7.56 (m, 1H), 7.43-7.39 (m, 1H), 7.31-7.28 (m, 10H), 7.04 (dd, J = 8.5, 2.5 Hz, 1H), 6.99 (d, J = 2.5 Hz, 1H), 3.85 (s, 3H) ppm.

¹³C{¹H} NMR (125 MHz, CDCl₃): δ 159.7, 158.4, 157.2, 148.2, 141.9, 139.8, 129.8, 128.5, 128.4, 128.0, 127.4, 124.3, 123.0, 122.2, 121.8, 121.6, 121.4, 115.4, 113.2, 113.1, 112.4, 64.1, 55.5 ppm.

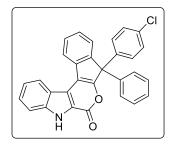
HRMS (ESI-TOF): Calcd. for $C_{31}H_{22}NO_3$ [M⁺ + H]: m/z 456.1599. Found: 456.1592.

Compound 19ak

Yield: 269.2 mg (92%, white solid, $R_f = 0.49$ (9:1 hexane/ethyl acetate)).

Mp: >300 °C.

IR (neat): v_{max} 3251, 3026, 2961, 2913, 1694, 1620, 1586, 1560, 1508, 1472, 1338, 1263, 1118, 1082, 1022, 913, 859, 803, 767, 733, 679 cm⁻¹.


¹H NMR (400 MHz, CDCl₃): δ 9.86 (s, 1H), 8.43 (d, J = 8.4 Hz, 1H), 8.18 (dd, J = 8.4, 4.8 Hz, 1H), 7.68 (d, J = 8.0 Hz, 1H), 7.59-7.55 (m, 1H), 7.43-7.39 (m, 1H), 7.22-7.20 (m, 1H), 7.19-7.17 (m, 4H), 7.17-7.13 (m, 5H), 2.34 (s, 6H) ppm.

¹³C{¹H} NMR (125 MHz, CDCl₃): δ 161.5 (d, J = 243.8 Hz), 160.9, 157.2, 149.1 (d, J = 7.6 Hz), 139.9, 138.4, 137.3, 133.1, 129.3, 128.1₃, 128.0₉, 124.1, 123.2, 123.1, 121.9, 121.7, 121.6, 121.4, 114.7, 114.4 (d, J = 22.5 Hz), 113.9, 113.8, 113.3, 63.6, 21.0 ppm.

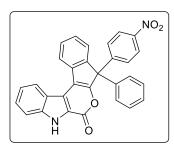
¹⁹F NMR (376 MHz, CDCl₃): δ -114.7 ppm

HRMS (ESI-TOF): Calcd. for $C_{32}H_{23}FNO_2$ [M⁺ + H]: m/z 472.1713. Found: 472.1693.

Compound 19am

Yield: 254.0 mg (89%, white solid, $R_f = 0.47$ (9:1 hexane/ethyl acetate)).

Mp: >300 °C.


IR (neat): v_{max} 3277, 3059, 1680, 1620, 1589, 1558, 1523, 1488, 1460, 1340, 1255, 1221, 1122, 1087, 1014, 915, 841, 826, 780, 739, 702, 681 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ 9.87 (s, 1H), 8.51 (d, J = 8.0 Hz, 1H), 8.28 (d, J = 7.6 Hz, 1H), 7.68 (d, J = 8.4 Hz, 1H), 7.60-7.56 (m, 1H), 7.56-7.52 (m, 1H), 7.45-7.40 (m, 1H), 7.39-7.33 (m, 2H), 7.31-7.28 (m, 5H), 7.27-7.24 (m, 4H) ppm.

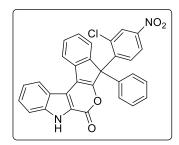
¹³C{¹H} NMR (100 MHz, CDCl₃): δ 160.5, 157.1, 145.8, 141.4, 140.3, 139.8, 137.2, 133.4, 129.8, 128.7, 128.2, 128.1, 127.6, 126.4, 126.0, 124.4, 122.5, 122.1, 121.9, 121.7, 121.4, 115.8, 113.1, 63.4 ppm.

HRMS (ESI-TOF): Calcd. for $C_{30}H_{19}CINO_2$ [M⁺ + H], [M⁺ + H +2]: m/z 460.1104, 462.1074. Found: 460.1100, 462.1084.

Compound 19ao

Yield: 245.0 mg (84%, white solid, $R_f = 0.46$ (9:1 hexane/ethyl acetate)).

Mp: >300 °C.


IR (neat): v_{max} 3271, 2930, 1693, 1590, 1559, 1516, 1343, 1222, 1085, 1014, 911, 851, 736, 693, 605 cm⁻¹.

¹H NMR (500 MHz, CDCl₃): δ 9.51 (s, 1H), 8.51 (d, J = 7.5 Hz, 1H), 8.30 (d, J = 7.5 Hz, 1H), 8.15 (d, J = 8.0 Hz, 2H), 7.67-7.57 (m, 3H), 7.47 (d, J = 8.0 Hz, 3H), 7.38-7.28 (m, 7H) ppm.

¹³C NMR (100 MHz, CDCl₃): δ 159.5, 156.9, 149.6, 147.3, 145.0, 140.5, 139.8, 137.3, 129.3, 128.9, 128.5, 128.4, 128.2, 128.0, 126.6, 126.0, 124.3, 123.8, 122.7, 122.0, 121.8, 121.7, 121.4, 116.3, 113.2, 63.8 ppm.

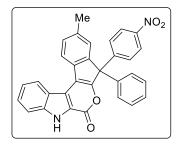
HRMS (ESI-TOF): Calcd. for $C_{30}H_{19}N_2O_4$ [M⁺ + H]: m/z 471.1345. Found: 471.1344.

Compound 19ap

Yield: 287.8 mg (92%, white solid, $R_f = 0.46$ (9:1 hexane/ethyl acetate)).

Mp: >300 °C.

IR (neat): v_{max} 3256, 1683, 1590, 1560, 1520, 1461, 1341, 1224, 1122, 1086, 1051, 1020, 916, 737, 695 cm⁻¹.


¹H NMR (400 MHz, CDCl₃): δ 9.93 (s, 1H), 8.48 (d, J = 8.0 Hz, 1H), 8.31 (d, J = 7.6 Hz, 1H), 8.12-8.10 (m, 2H), 7.68-7.56 (m, 4H), 7.49 (d, J = 8.4 Hz, 2H), 7.44-7.35 (m, 6H) ppm.

¹³C{¹H} NMR (125 MHz, CDCl₃): δ 160.0, 156.9, 146.5, 142.7, 141.5, 140.9, 139.9, 139.1, 138.3, 132.7, 129.0, 128.8, 128.3₂, 128.3₀, 127.0, 126.4, 125.8, 124.3, 123.5, 122.6, 122.4, 121.8, 121.6, 121.3, 116.2, 113.2, 63.3 ppm.

HRMS (ESI-TOF): Calcd. for $C_{30}H_{18}ClN_2O_4$ [M⁺ + H], [M⁺ + H +2]: m/z 505.0955, 507.0925. Found: 505.0957, 507.0936.

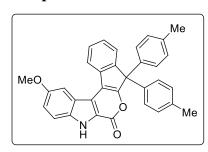
This compound was crystallized from ethyl acetate—hexane (2:1) mixture at room temperature. X-ray structure has been determined for this compound.

Compound 19aq

Yield: 258.4 mg (86%, white solid, $R_f = 0.46$ (9:1 hexane/ethyl acetate)).

Mp: >300 °C.

IR (neat): v_{max} 3263, 2932, 1695, 1592, 1558, 1519, 1345, 1104, 1083, 1020, 912, 852,


802, 737, 706 cm⁻¹.

¹H NMR (500 MHz, CDCl₃): δ 9.66 (s, 1H), 8.49 (d, J = 8.0 Hz, 1H), 8.18-8.14 (m, 3H), 7.67-7.58 (m, 2H), 7.47-7.43 (m, 3H), 7.37-7.23 (m, 6H), 7.18 (s, 1H), 2.43 (s, 3H) ppm.

¹³C{¹H} NMR (125 MHz, CDCl₃): δ 158.9, 157.1, 149.8, 147.2, 145.2, 140.7, 139.8, 136.6, 134.4, 129.3, 129.1, 128.9, 128.3, 128.2, 127.9, 126.7, 124.3, 123.8, 122.5, 122.0, 121.7, 121.4, 116.3, 113.2, 63.7, 21.7 ppm.

HRMS (ESI-TOF): Calcd. for $C_{31}H_{21}N_2O_4$ [M⁺ + H]: m/z 485.1501. Found: 485.1502.

Compound 19bb

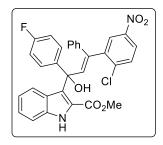
Yield: 214.8 mg (85%, white solid, $R_f = 0.51$ (9:1 hexane/ethyl acetate)).

Mp: >300 °C.

IR (neat): v_{max} 3259, 2922, 2852, 1697, 1509, 1485, 1461, 1259, 1212, 1080, 1017, 799, 739, 700 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ 9.70 (s, 1H), 8.20 (d, J = 7.6 Hz, 1H), 7.88 (d, J = 2.0 Hz, 1H), 7.56 (d, J = 9.2 Hz, 1H), 7.49 (td, J = 7.6, 1.2 Hz 1H), 7.41 (d, J = 7.2 Hz, 1H),

7.34-7.30 (m, 1H), 7.28-7.25 (m, 1H), 7.19-7.18 (m, 4H), 7.11-7.09 (m, 4H), 4.03 (s, 3H), 2.33 (s, 6H) ppm.


¹³C{¹H} NMR (125 MHz, CDCl₃): δ 161.0, 157.2, 155.1, 146.8, 138.9, 137.4, 137.0, 135.2, 129.1, 128.2, 127.6, 126.1, 126.0, 122.1, 121.9₃, 121.9₀, 121.7, 118.9, 115.2, 113.8, 105.6, 63.4, 56.1, 21.0 ppm.

HRMS (ESI-TOF): Calcd. for $C_{33}H_{26}NO_3$ [M⁺ + H]: m/z, 484.1912. Found: 484.1916.

This compound was crystallized from chloroform—hexane (2:1) mixture at room temperature. X-ray structure has been determined for this compound.

3.5 Synthesis of methyl (*E*)-3-(3-(2-chloro-5-nitrophenyl)-1-(4-fluorophenyl)-1-hydroxy-3-phenylallyl)-1*H*-indole-2-carboxylate intermediate \mathbf{X} : To an oven dried 10 mL round-bottomed flask indole 2-carboxylate ($\mathbf{1a}$, 0.53 mmol), propargylic alcohol (one of $\mathbf{3c}$, 0.26 mmol) and PTSA (0.43 mmol) were added. To this mixture, toluene (2 mL) was added, and the contents were stirred at rt for 6 h. Progress of the reaction was monitored by TLC. After completion of the reaction, the mixture was quenched by adding water (20 mL). The aqueous layer was extracted with ethyl acetate (3×10 mL). Then the combined organic layer was washed with brine (20 mL), dried over anhydrous Na₂SO₄, and concentrated under reduced pressure, and the crude product was purified by silica gel column chromatography by using hexane/ethyl acetate (9:1) mixture as the eluent to afford \mathbf{X} .

Intermediate X

Yield: 89.0 mg (56%, yellow solid, $R_f = 0.35$ (4:1 hexane/ethyl acetate))).

Mp: $>250 \, {}^{\circ}\text{C}$.

IR (neat): v_{max} 3336, 2923, 2853, 1715, 1602, 1523, 1506, 1444, 1344, 1252, 1157, 1048, 911, 837, 765, 743, 697 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ 8.80 (s, 1H), 7.82 (d, J = 2.4 Hz, 1H), 7.66-7.59 (m, 2H), 7.42 (s, 1H), 7.33-7.28 (m, 3H), 7.25-7.21 (m, 2H), 7.16 (d, J = 5.5 Hz, 3H), 7.11-7.06 (m, 3H), 7.028 (br, 1H), 6.76-6.73 (m, 1H), 6.29 (d, J = 8.4 Hz, 1H), 3.98 (s, 3H) ppm.

¹³C{¹H} NMR (125 MHz, CDCl₃): δ 163.3, 162.4 (d, J = 246.6 Hz), 145.0, 140.2, 139.9, 139.1, 138.4, 137.4, 135.1, 131.3, 130.5, 130.1, 129.4, 129.2, 128.3 (d, J = 63.6 Hz), 127.5, 126.8, 126.1, 124.3, 123.8, 123.3, 122.4, 122.2, 121.9, 120.9, 115.2 (d, J = 21.4 Hz), 111.4, 76.2, 52.9 ppm.

¹⁹F NMR (376 MHz, CDCl₃): -114.2 ppm.

HRMS (ESI-TOF): Calcd. for $C_{31}H_{22}ClFN_2O_5Na$ [M⁺ + Na], [M⁺ + Na + 2]: m/z 579.1099, 581.1069. Found: 579.1099, 581.1095.

This compound was crystallized from ethyl acetate—hexane (2:1) mixture at room temperature. X-ray structure has been determined for this compound.

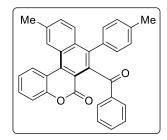
3.6 Synthesis of 6*H*-naphtho[2,1-*c*]chromen-6-ones: General procedure for the synthesis of compounds 20aa-20le: To an oven dried Schlenk tube, coumarin-3-carboxylic acid (5a, 0.53 mmol), propargylic alcohol (one of 4, 0.53 mmol) and Cu(OTf)₂ (20 mol%) were added. To this mixture, 1,4-dioxane (2 mL) was added and the contents were stirred at 120 °C for 12 h. Progress of the reaction was monitored by TLC. After completion of the reaction, the mixture was cooled to room temperature and ethyl acetate (20 mL) was added. The solution was concentrated under reduced pressure, and the crude product was purified by silica gel column chromatography by using hexane/ethyl acetate (9:1) mixture as the eluent to afford the corresponding annulated products 20.

Compound 20aa

Yield: 199.6 mg (89%, white solid, $R_f = 0.43$ (9:1 hexane/ethyl acetate)).

Mp: 222-224 °C.

IR (neat): v_{max} 3059, 2821, 1714, 1673, 1452, 1376, 1232, 760, 738, 601 cm⁻¹.


¹H NMR (500 MHz, CDCl₃): δ 8.88 (d, J = 8.5 Hz, 1H), 8.47 (d, J = 8.0 Hz, 1H), 7.70-7.67 (m, 1H), 7.61-7.57 (m, 2H), 7.55-7.49 (m, 3H), 7.43-7.37 (m, 2H), 7.35-7.29 (m, 3H), 7.21-7.17 (m, 3H), 7.03-7.00 (m, 1H), 6.86 (d, J = 8.0 Hz, 1H) ppm.

¹³C{¹H} NMR (125 MHz, CDCl₃): δ 196.2, 160.1, 151.7, 139.2, 138.2, 136.6, 136.3, 135.5₁, 135.4₆, 132.5, 131.8, 130.6, 130.1, 129.6, 128.8, 128.5, 128.3, 128.1, 127.9₂, 127.8₆, 127.8, 127.4₄, 127.3₉, 124.3, 118.4, 117.9 ppm.

HRMS (ESI-TOF): Calcd. for $C_{30}H_{19}O_3$ [M⁺ + H]: m/z, 427.1334. Found: 427.1339.

This compound was crystallized from ethyl acetate—hexane (2:1) mixture at room temperature. X-ray structure has been determined for this compound.

Compound 20ba

Yield: 205.6 mg (86%, white solid, $R_f = 0.50$ (9:1 hexane/ethyl acetate)).

Mp: 218-220 °C.

IR (neat): v_{max} 2920, 2851, 1720, 1683, 1599, 1450, 1366, 1257, 1230, 1171, 1132, 1110, 1022, 958, 904, 832, 805, 769, 720 cm⁻¹.

¹H NMR (500 MHz, CDCl₃): δ 8.65 (s, 1H), 8.47 (d, J = 7.5 Hz, 1H), 7.56-7.47 (m, 4H), 7.41-7.36 (m, 3H), 7.34-7.31 (m, 1H), 7.20-7.16 (m, 3H), 7.14-7.12 (m, 1H), 6.82 (d, J = 8.0 Hz, 1H), 6.74 (dd, J = 8.0, 1.5 Hz, 1H), 2.57 (s, 3H), 2.24 (s, 3H) ppm.

¹³C{¹H} NMR (100 MHz, CDCl₃): δ 196.4, 160.2, 151.7, 139.3, 138.4, 138.0, 137.6, 135.7, 134.7, 132.6, 132.4, 131.6, 130.3, 129.8, 129.0, 128.8, 128.5, 128.4, 128.1, 128.0, 127.8, 126.6, 124.2, 118.6, 118.0, 117.9, 22.1, 21.3 ppm.

HRMS (ESI-TOF): Calcd. for $C_{32}H_{23}O_3$ [M⁺ + H]: m/z 455.1647. Found: 455.1642.

Compound 20da

Yield: 189.7 mg (78%, white solid, $R_f = 0.53$ (9:1 hexane/ethyl acetate)).

Mp: 210-212 °C.

IR (neat): v_{max} 2959, 2922, 2852, 1722, 1677, 1601, 1512, 1487, 1453, 1431, 1369, 1292,

1259, 1207, 1174, 1155, 1127, 1092, 957, 938, 801, 773, 761 cm⁻¹.

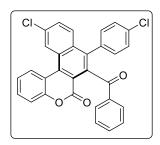
¹H NMR (500 MHz, CDCl₃): δ 8.54 (dd, J = 11.0, 2.5 Hz, 1H), 8.42 (d, J = 8.0 Hz, 1H), 7.60-7.57 (m, 1H), 7.55-7.51 (m, 3H), 7.43-7.33 (m, 4H), 7.28-7.25 (m, 1H), 7.22-

7.18 (m, 2H), 7.05-7.01 (m, 1H), 6.83-6.80 (m, 1H), 6.74-6.70 (m, 1H) ppm.

 13 C{ 1 H} NMR (100 MHz, CDCl₃): δ 195.9, 162.4 (d, J = 247.2 Hz), 162.1 (d, J = 247.9 Hz),

159.8, 151.6, 138.0 (d, J = 21.3 Hz), 136.6, 134.9, 133.6, (d, J = 7.7 Hz), 133.3,

132.8, 131.7 (d, J = 8.1 Hz), 130.9, 130.4 (d, J = 8.8 Hz), 129.4 (d, J = 9.0 Hz),


128.8, 128.3, 127.7, 124.7, 119.8, 119.5, 118.9, 118.1, 115.6 (d, J = 21.6 Hz),

114.7 (d, J = 21.6 Hz), 111.9 (d, J = 21.0 Hz) ppm.

¹⁹F NMR (471 MHz, CDCl₃): δ -110.7, -113.1 ppm.

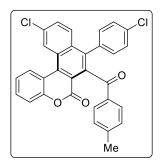
HRMS (ESI-TOF): Calcd. for $C_{30}H_{17}F_2O_3$ [M⁺ + H]: m/z 463.1146. Found: 463.1148.

Compound 20ea

Yield: 216.2 mg (83%, white solid, $R_f = 0.51$ (9:1 hexane/ethyl acetate)).

Mp: 168-170 °C.

IR (neat): ν_{max} 2969, 2929, 1737, 1674, 1597, 1453, 1366, 1264, 1229, 1090, 1016, 955,


899, 732, 703 cm⁻¹.

¹H NMR (500 MHz, CDCl₃): δ 9.0 (s, 1H), 8.48 (d, J = 7.5 Hz, 1H), 7.66-7.59 (m, 5H), 7.55-7.51 (m, 2H), 7.47-7.44 (m, 1H), 7.42 (dd, J = 8.5, 2.0 Hz, 1H), 7.33-7.30 (m, 3H), 7.11 (dd, J = 8.5, 2.5 Hz, 1H), 6.87 (dd, J = 8.0, 2.5 Hz, 1H) ppm.

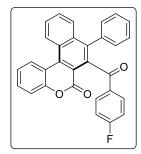
¹³C{¹H} NMR (125 MHz, CDCl₃): δ 195.6, 159.6, 151.7, 137.8₄, 137.7₆, 137.2, 134.8, 134.7, 134.5, 134.4, 133.4, 133.1, 132.8, 131.2, 131.0, 130.5, 129.0, 128.7, 128.3, 128.0, 127.9, 126.6, 124.7, 118.8, 118.1, 117.8 ppm.

HRMS (ESI-TOF): Calcd. for $C_{30}H_{17}Cl_2O_3$ [M⁺ + H]: m/z 495.0554. Found: 495.0558.

Compound 20ha

Yield: 203.6 mg (76%, white solid, $R_f = 0.55$ (9:1 hexane/ethyl acetate)).

Mp: 152-154 °C.


IR (neat): v_{max} 2960, 2922, 2856, 1722, 1660, 1604, 1489, 1453, 1418, 1369, 1258, 1235, 1174, 1086, 1015, 953, 897, 798, 758 cm⁻¹.

¹H NMR (500 MHz, CDCl₃): δ 8.85 (s, 1H), 8.38 (d, J = 8.0 Hz, 1H), 7.55-7.48 (m, 3H), 7.44-7.41 (m, 4H), 7.32 (dd, J = 8.0, 2.0 Hz, 1H), 7.23 (dd, J = 8.0, 2.0 Hz, 1H), 7.05-7.00 (m, 3H), 6.80 (dd, J = 8.0, 2.0 Hz, 1H), 2.26 (s, 3H) ppm.

¹³C{¹H} NMR (125 MHz, CDCl₃): δ 195.2, 159.5, 151.7, 143.7, 137.7, 137.3, 135.5, 134.8, 134.6, 134.4, 133.5, 133.1, 131.2, 131.0, 130.5, 129.1, 129.0, 128.8, 128.7, 128.0, 127.9, 126.5, 124.7, 118.8, 118.1, 117.9, 21.7 ppm.

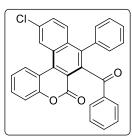
HRMS (ESI-TOF): Calcd. for $C_{31}H_{19}Cl_2O_3$ [M⁺ + H]: m/z 509.0711. Found: 509.0710.

Compound 20ja

Yield: 184.6 mg (79%, white solid, $R_f = 0.50$ (9:1 hexane/ethyl acetate)).

Mp: 174-176 °C.

IR (neat): v_{max} 2923, 2852, 1720, 1676, 1596, 1545, 1505, 1454, 1377, 1263, 1232, 1152, 1048, 961, 849, 806, 752, 702 cm⁻¹.


¹H NMR (500 MHz, CDCl₃): δ 8.96 (d, J = 8.5 Hz, 1H), 8.54 (d, J = 8.0 Hz, 1H), 7.78-7.75 (m, 1H), 7.68-7.66 (m, 2H), 7.64-7.57 (m, 3H), 7.51-7.44 (m, 2H), 7.41-7.39 (m, 1H), 7.36-7.34 (m, 1H), 7.23-7.26 (m, 1H), 7.14-7.11 (m, 1H), 6.94-6.91 (m, 3H) ppm.

¹³C{¹H} NMR (100 MHz, CDCl₃): δ 194.8, 165.3 (d, J = 252.8 Hz), 160.1, 151.7, 139.2, 136.2, 135.7, 135.4, 134.7, 131.8, 131.3 (d, J = 9.1 Hz), 130.7, 130.0, 129.8, 129.0, 128.5, 128.4, 128.2, 128.1, 127.9 (d, J = 6.6 Hz), 127.5, 124.4, 118.3, 118.0, 117.8, 115.3 (d, J = 21.8 Hz) ppm.

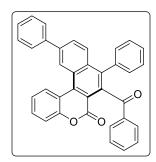
 19 F NMR (471 MHz, CDCl₃): δ -106.1 ppm.

HRMS (ESI-TOF): Calcd. for $C_{30}H_{18}FO_3$ [M⁺ + H]: m/z 445.1240. Found: 445.1242.

Compound 20ma

Yield: 140.6 mg (58%, white solid, $R_f = 0.50$ (9:1 hexane/ethyl acetate)).

Mp: 164-166 °C.


IR (neat): v_{max} 3051, 2960, 2922, 2852, 1729, 1667, 1601, 1583, 1486, 1454, 1367, 1257, 1233, 1184, 1091, 1016, 951, 799, 752, 728, 701 cm⁻¹.

¹H NMR (500 MHz, CDCl₃): δ 8.86 (s, 1H), 8.40 (d, J = 8.0 Hz, 1H), 7.56-7.51 (m, 4H), 7.45-7.42 (m, 2H), 7.35-7.32 (m, 2H), 7.28-7.27 (m, 1H), 7.22-7.18 (m, 4H), 7.04-7.01 (m, 1H), 6.84 (d, J = 8.0 Hz, 1H) ppm.

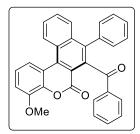
¹³C{¹H} NMR (125 MHz, CDCl₃): δ 195.8, 159.7, 151.7, 139.1, 138.0, 137.0, 135.0, 134.6, 134.5, 132.6, 131.7, 130.9, 130.3, 130.0, 129.5, 129.0, 128.8, 128.4, 128.1, 128.0, 127.5, 126.4, 124.6, 118.9, 118.1, 118.0 ppm.

HRMS (ESI-TOF): Calcd. for $C_{30}H_{18}ClO_3$ [M⁺ + H]: m/z 461.0944. Found: 461.0944.

Compound 20na

Yield: 148.0 mg (56%, white solid, $R_f = 0.46$ (9:1 hexane/ethyl acetate)).

Mp: 192-194 °C.


IR (neat): v_{max} 3059, 2921, 2851, 1712, 1671, 1600, 1484, 1450, 1368, 1310, 1254, 1231, 1175, 1135, 949, 802, 758, 733, 699 cm⁻¹.

¹H NMR (500 MHz, CDCl₃): δ 9.06 (s, 1H), 8.51 (d, J = 8.0 Hz, 1H), 7.83 (dd, J = 9.0, 1.5 Hz, 1H), 7.67 (d, J = 8.0 Hz, 3H), 7.56 (d, J = 7.5 Hz, 2H), 7.53-7.43 (m, 4H), 7.41-7.37 (m, 2H), 7.35-7.32 (m, 3H), 7.22-7.18 (m, 3H), 7.05-7.02 (m, 1H), 6.89 (d, J = 8.0 Hz, 1H) ppm.

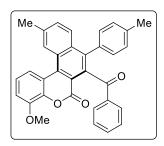
¹³C{¹H} NMR (125 MHz, CDCl₃): δ 196.2, 160.0, 151.8, 140.6, 140.0, 139.1, 138.2, 136.6, 135.6, 135.4, 135.3, 132.5, 131.8, 130.6, 130.1, 129.3, 129.2, 128.8, 128.4₀, 128.3₆, 128.3, 128.2, 128.1, 128.0, 127.5, 125.4, 124.4, 118.5, 118.3, 118.0 ppm.

HRMS (ESI-TOF): Calcd. for $C_{36}H_{23}O_3$ [M⁺ + H]: m/z 503.1647. Found: 503.1648.

Compound 20ab

Yield: 157.6 mg (76%, red solid, $R_f = 0.44$ (9:1 hexane/ethyl acetate)).

Mp: 204-206 °C.


IR (neat): v_{max} 3056, 2922, 2849, 1715, 1671, 1588, 1554, 1470, 1441, 1377, 1299, 1274, 1242, 1211, 1173, 1123, 1082, 947, 812, 768, 728, 692 cm⁻¹.

¹H NMR (500 MHz, CDCl₃): δ 8.98 (d, J = 8.5 Hz, 1H), 8.11 (d, J = 8.0 Hz, 1H), 7.78-7.75 (m, 1H), 7.69-7.62 (m, 4H), 7.45-7.38 (m, 4H), 7.31-7.25 (m, 3H), 7.18-7.16 (m, 1H), 7.13-7.10 (m, 1H), 6.95 (d, J = 7.5 Hz, 1H), 4.02 (s, 3H) ppm.

¹³C{¹H} NMR (100 MHz, CDCl₃): δ 196.1, 159.6, 148.3, 141.7, 139.4, 138.2, 136.5, 136.3, 135.7, 135.5, 132.5, 131.8, 130.0, 129.6, 128.8, 128.3, 128.1, 127.9, 127.8, 127.7, 127.5, 123.9, 120.1, 119.2, 118.0, 112.7, 56.5 ppm.

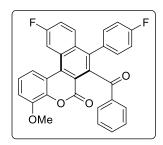
HRMS (ESI-TOF): Calcd. for $C_{31}H_{21}O_4$ [M⁺ + H]: m/z 457.1440. Found: 457.1439.

Compound 20bb

Yield: 171.7 mg (78%, white solid, $R_f = 0.48$ (9:1 hexane/ethyl acetate)).

Mp: 178-180 °C.

IR (neat): v_{max} 2920, 2851, 1719, 1670, 1599, 1462, 1392, 1370, 1302, 1259, 1178, 1079, 1022, 955, 803, 760, 732, 691 cm⁻¹.


¹H NMR (500 MHz, CDCl₃): δ 8.72 (s, 1H), 8.09 (d, J = 8.0 Hz, 1H), 7.62-7.57 (m, 3H), 7.46 (d, J = 8.5 Hz, 1H), 7.40-7.35 (m, 2H), 7.26-7.20 (m, 4H), 7.13 (d, J = 8.0 Hz,

1H), 6.89 (d, J = 7.5 Hz 1H), 6.80 (d, J = 7.5 Hz, 1H), 3.99 (s, 3H), 2.63 (s, 3H), 2.31 (s, 3H) ppm.

¹³C{¹H} NMR (100 MHz, CDCl₃): δ 196.3, 159.6, 148.3, 141.6, 139.5, 138.4, 137.8, 137.5, 135.6, 134.8, 134.7, 132.7, 132.3, 131.6, 129.7, 128.9, 128.8, 128.2, 128.0, 127.8, 126.8, 123.8, 120.0, 119.3, 118.0, 112.5, 56.5, 22.1, 21.3 ppm.

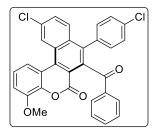
HRMS (ESI-TOF): Calcd. for $C_{33}H_{24}O_4Na$ [M⁺ + Na]: m/z 507.1573. Found: 507.1584.

Compound 20db

Yield: 163.3 mg (73%, white solid, $R_f = 0.51$ (9:1 hexane/ethyl acetate)).

Mp: 238-240 °C.

IR (neat): v_{max} 2925, 2852, 1724, 1676, 1602, 1513, 1469, 1369, 1275, 1207, 1158, 1120, 1077, 1000, 962, 769, 734 cm⁻¹.


¹H NMR (500 MHz, CDCl₃): δ 8.64 (d, J = 10.5 Hz, 1H), 8.05 (d, J = 8.0 Hz, 1H), 7.68-7.65 (m, 1H), 7.60 (d, J = 7.5, Hz, 2H), 7.47-7.41 (m, 3H), 7.38-7.36 (m, 1H), 7.30-7.28 (m, 2H), 7.18 (d, J = 8.5, Hz, 1H), 7.15-7.12 (m, 1H), 6.91-6.89 (m, 1H), 6.83-6.80 (m, 1H), 4.02 (s, 3H) ppm.

¹³C{¹H} NMR (100 MHz, CDCl₃): δ 195.8, 162.5 (d, J = 246.0 Hz), 162.0 (d, J = 249.2 Hz), 159.3, 148.4, 141.6, 138.3, 138.0, 133.6 (d, J = 8.3 Hz), 133.3, 132.7, 131.6 (d, J = 8.1 Hz), 131.1, 130.3 (d, J = 8.9 Hz), 129.6 (d, J = 9.4 Hz), 128.8, 128.2, 124.3, 119.5 (d, J = 24.0 Hz), 119.2, 119.0, 118.8, 115.5 (d, J = 21.4 Hz), 114.8 (d, J = 21.6 Hz), 112.9, 112.2 (d, J = 23.7 Hz), 56.5 ppm.

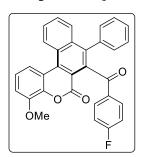
 ^{19}F NMR (471 MHz, CDCl₃): δ -110.8, -113.2 ppm

HRMS (ESI-TOF): Calcd. for $C_{31}H_{19}F_2O_4$ [M⁺ + H]: m/z 493.1251. Found: 493.1251.

Compound 20eb

Yield: 169.4 mg (71%, white solid, $R_f = 0.47$ (9:1 hexane/ethyl acetate)).

Mp: >300 °C.


IR (neat): v_{max} 2925, 2853, 1713, 1675, 1592, 1553, 1484, 1467, 1365, 1264, 1172, 1127, 1090, 1015, 955, 830, 732, 700 cm⁻¹.

¹H NMR (500 MHz, CDCl₃): δ 9.0 (s, 1H), 8.48 (d, J = 7.5 Hz, 1H), 7.66-7.59 (m, 5H), 7.55-7.51 (m, 2H), 7.47-7.44 (m, 1H), 7.42 (dd, J = 8.5, 2.0 Hz, 1H), 7.33-7.30 (m, 3H), 7.11 (dd, J = 8.5, 2.5 Hz, 1H), 6.87 (dd, J = 8.0, 2.5 Hz, 1H) ppm.

¹³C{¹H} NMR (125 MHz, CDCl₃): δ 195.6, 159.6, 151.7, 137.8₄, 137.7₆, 137.2, 134.8, 134.7, 134.5, 134.4, 133.4, 133.1, 132.8, 131.2, 131.0, 130.5, 129.1, 129.0, 128.7, 128.3, 128.0, 127.9, 126.6, 124.9, 124.7, 118.8, 118.1, 117.8 ppm.

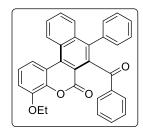
HRMS (ESI-TOF): Calcd. for $C_{31}H_{19}Cl_2O_4$ [M⁺ + H]: m/z 525.0660. Found: 525.0663.

Compound 20jb

Yield: 172.4 mg (80%, white solid, $R_f = 0.46$ (9:1 hexane/ethyl acetate)).

Mp: 204-206 °C.

IR (neat): v_{max} 2923, 2852, 1719, 1676, 1596, 1554, 1504, 1471, 1440, 1377, 1264, 1232, 1151, 1123, 1083, 949, 849, 785, 733, 701 cm⁻¹.


¹H NMR (500 MHz, CDCl₃): δ 8.97 (d, J = 8.5 Hz, 1H), 8.10 (d, J = 8.0 Hz, 1H), 7.77-7.76 (m, 1H), 7.68-7.63 (m, 2H), 7.44-7.41 (m, 2H), 7.39-7.38 (m, 3H), 7.33-7.28 (m, 1H), 7.18-7.13 (m, 2H), 6.95-6.92 (m, 3H), 4.02 (s, 3H) ppm.

¹³C{¹H} NMR (125 MHz, CDCl₃): δ 194.6, 165.2 (d, J = 252.4 Hz), 159.6, 148.3, 141.7, 139.3, 136.2, 135.8, 135.4, 134.8, 131.8, 131.3 (d, J = 9.5 Hz), 129.9, 129.7, 128.4, 128.3, 128.0, 127.8, 127.7 (d, J = 6.4 Hz), 127.5, 123.9, 120.0, 119.1, 117.8, 115.2, (d, J = 21.9 Hz), 112.8, 56.5 ppm.

¹⁹F NMR (471 MHz, CDCl₃): δ -106.3 ppm

HRMS (ESI-TOF): Calcd. for $C_{31}H_{20}FO_4$ [M⁺ + H]: m/z 475.1345. Found: 475.1350.

Compound 20ac

Yield: 162.7 mg (81%, white solid, $R_f = 0.45$ (9:1 hexane/ethyl acetate)).

Mp: 228-230 °C.

IR (neat): v_{max} 3059, 2918, 2849, 1720, 1658, 1598, 1583, 1462, 1377, 1312, 1274, 1238, 1078, 951, 857, 767, 728, 694 cm⁻¹.

¹H NMR (500 MHz, CDCl₃): δ 8.98 (d, J = 8.5 Hz, 1H), 8.10 (d, J = 8.0 Hz, 1H), 7.77-7.74 (m, 1H), 7.69-7.66 (m, 2H), 7.64-7.62 (m, 2H), 7.45-7.41 (m, 3H), 7.40-7.36 (m, 1H), 7.31-7.26 (m, 3H), 7.17-7.15 (m, 1H), 7.13-7.10 (m, 1H), 6.96 (d, J = 7.5 Hz, 1H), 4.25-4.21 (m, 2H), 1.52 (t, J = 7.0 Hz, 3H) ppm.

¹³C{¹H} NMR (125 MHz, CDCl₃): δ 196.0, 159.7, 147.6, 142.0, 139.3, 138.3, 136.5, 136.3, 135.8, 135.6, 132.4, 131.8, 130.0, 129.5, 128.8, 128.2, 128.0, 127.8, 127.7, 127.6, 127.4, 123.9, 120.1, 119.2, 118.0, 114.2, 65.3, 14.8 ppm.

HRMS (ESI-TOF): Calcd. for $C_{32}H_{23}O_4$ [M⁺ + H]: m/z 471.1596 Found: 471.1599.

Compound 20bc

Yield: 178.8 mg (84%, white solid, $R_f = 0.49$ (9:1 hexane/ethyl acetate)).

Mp: 196-198 °C.

IR (neat): v_{max} 2922, 2852, 1719, 1675, 1597, 1554, 1469, 1368, 1273, 1247, 1204, 1169,

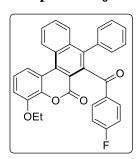
1129, 1083, 1021, 956, 807, 761, 733 cm⁻¹.

¹H NMR (500 MHz, CDCl₃): δ 8.72 (s, 1H), 8.08 (d, J = 8.0 Hz, 1H), 7.62-7.57 (m, 3H), 7.46

(d, J = 8.5 Hz, 1H), 7.40-7.33 (m, 2H), 7.27-7.25 (m, 2H), 7.23-7.20 (m, 2H),

7.12 (d, J = 8.0 Hz, 1H), 6.90 (d, J = 7.5 Hz 1H), 6.82 (d, J = 7.5 Hz, 1H), 4.23-

4.19 (m, 2H), 2.63 (s, 3H), 2.31 (s, 3H), 1.50 (t, J = 7.0 Hz, 3H) ppm.


¹³C{¹H} NMR (100 MHz, CDCl₃): δ 196.3, 159.8, 147.6, 141.8, 139.4, 138.4, 137.8, 137.5,

135.6, 134.9, 134.7, 132.7, 132.3, 131.6, 129.7, 128.9, 128.8, 128.2, 128.0,

127.8, 126.9, 123.8, 120.0, 119.4, 118.0, 113.9, 65.3, 22.1, 21.3, 14.8 ppm.

HRMS (ESI-TOF): Calcd. for $C_{34}H_{26}O_4Na$ [M⁺ + Na]: m/z 521.1729 Found: 521.1721.

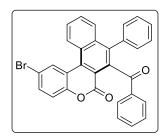
Compound 20jc

Yield: 158.5 mg (76%, white solid, $R_f = 0.47$ (9:1 hexane/ethyl acetate)).

Mp: 184-186 °C.

IR (neat): v_{max} 2921, 2850, 1738, 1680, 1596, 1466, 1368, 1263, 1229, 1080, 896, 732,

702 cm⁻¹.


¹H NMR (500 MHz, CDCl₃): δ 8.97 (d, J = 8.0 Hz, 1H), 8.09 (d, J = 7.0 Hz, 1H), 7.76 (br s, 1H), 7.67-7.64 (m, 3H), 7.42-7.37 (m, 3H), 7.35-7.27 (m, 2H), 7.16-7.13 (m, 2H), 6.95-6.91 (m, 3H), 4.23 (q, J = 13.0, 7.5 Hz, 2H), 1.52 (t, J = 7.0 Hz, 3H) ppm.

¹³C{¹H} NMR (125 MHz, CDCl₃): δ 194.6, 165.2 (d, J = 252.0 Hz), 159.8, 147.7, 141.9, 139.2, 136.2 (d, J = 9.8 Hz), 135.9, 135.4, 134.8, 131.8, 131.3 (d, J = 9.1 Hz), 129.9, 129.6, 128.4, 128.3, 128.0, 127.8, 127.7, 127.5, 123.9, 120.1, 119.1, 117.8, 115.2, (d, J = 22.0 Hz), 114.2, 65.3, 14.8 ppm.

¹⁹F NMR (471 MHz, CDCl₃): δ -106.3 ppm

HRMS (ESI-TOF): Calcd. for $C_{32}H_{22}FO_4$ [M⁺ + H]: m/z 489.1502 Found: 489.1503.

Compound 20ad

Yield: 133.4 mg (71%, white solid, $R_f = 0.49$ (9:1 hexane/ethyl acetate)).

Mp: 208-210 °C.

IR (neat): v_{max} 3056, 2923, 2852, 1729, 1676, 1597, 1476, 1448, 1415, 1377, 1262, 1233, 1115, 1037, 962, 908, 821, 733, 700 cm⁻¹.

¹H NMR (500 MHz, CDCl₃): δ 8.90 (d, J = 8.5 Hz, 1H), 8.68 (s, 1H), 7.85-7.83 (m, 1H), 7.71-7.61 (m, 5H), 7.44-7.37 (m, 4H), 7.30-7.27 (m, 3H), 7.13-7.10 (m, 1H), 6.94 (d, J = 7.0 Hz, 1H) ppm.

¹³C{¹H} NMR (100 MHz, CDCl₃): δ 196.0, 159.6, 150.6, 140.0, 138.0, 136.6, 136.3, 135.2, 134.1, 133.3, 132.6, 131.7, 130.9, 130.0, 129.9, 128.8, 128.4, 128.3, 128.1₄, 128.0₈, 127.5, 126.9, 120.1, 119.6, 118.1, 117.2 ppm.

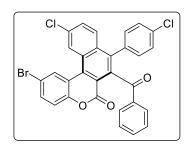
HRMS (ESI-TOF): Calcd. for $C_{30}H_{18}^{79}BrO_3$ [M⁺ + H]: m/z 505.0439 Found: 505.0453.

Compound 20dd

Yield: 146.9 mg (73%, white solid, $R_f = 0.51$ (9:1 hexane/ethyl acetate)).

Mp: 228-230 °C.

IR (neat): v_{max} 3061, 2923, 1725, 1675, 1598, 1512, 1475, 1448, 1416, 1371, 1287, 1230, 1204, 1173, 1158, 1126, 1041, 992, 958, 921, 867, 818, 735 cm⁻¹.


¹H NMR (500 MHz, CDCl₃): δ 8.62 (d, J = 2.0 Hz, 1H), 8.55 (dd, J = 10.5, 2.0 Hz, 1H), 7.72-7.69 (m, 2H), 7.60 (d, J = 7.5 Hz, 2H), 7.52-7.48 (m, 1H), 7.47-7.44 (m, 1H), 7.40 (d, J = 8.5 Hz, 1H), 7.36-7.33 (m, 1H), 7.32-7.28 (m, 2H), 7.15-7.11 (m, 1H), 6.92-6.89 (m, 1H), 6.84-6.80 (m, 1H) ppm.

¹³C{¹H} NMR (125 MHz, CDCl₃): δ 195.5, 162.5 (d, J = 247.1 Hz), 162.3 (d, J = 249.5 Hz), 159.2, 150.4, 138.9, 137.8, 136.6, 133.6, 133.5 (d, J = 8.1 Hz), 133.4 (d, J = 5.1 Hz), 132.8, 131.7 (d, J = 8.3 Hz), 130.6 (d, J = 9.0 Hz), 130.1, 129.2 (d, J = 9.1 Hz), 128.7, 128.3, 120.0, 119.8₁, 119.7₆, 119.7₂, 119.2, 117.4, 115.6 (d, J = 21.5 Hz), 114.8 (d, J = 21.6 Hz), 111.4 (d, J = 23.4 Hz) ppm.

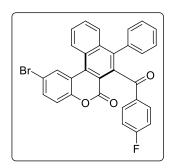
 ^{19}F NMR (471 MHz, CDCl₃): δ -109.4, -112.8 ppm

HRMS (ESI-TOF): Calcd. for $C_{30}H_{16}BrF_2O_3$ [M⁺ + H]: m/z 541.0251 Found: 541.0250.

Compound 20ed

Yield: 164.3 mg (77%, white solid, $R_f = 0.48$ (9:1 hexane/ethyl acetate)).

Mp: 210-212 °C.


IR (neat): v_{max} 3056, 2923, 2853, 1737, 1676, 1596, 1473, 1416, 1368, 1264, 1231, 1090, 954, 822, 732, 702 cm⁻¹.

¹H NMR (500 MHz, CDCl₃): δ 8.86 (s, 1H), 8.59 (s, 1H), 7.72-7.65 (m, 2H), 7.62-7.59 (m, 3H), 7.48-7.45 (m, 1H), 7.42-7.39 (m, 2H), 7.33-7.28 (m, 2H), 7.12-7.09 (m, 2H), 6.87 (d, J = 7.0 Hz, 1H) ppm.

¹³C{¹H} NMR (100 MHz, CDCl₃): δ 195.4, 159.1, 150.5, 138.6, 137.7, 137.2, 135.3, 134.6, 134.4, 133.8, 133.4, 133.2, 133.0, 131.2, 130.8, 130.4, 129.3, 129.0, 128.8, 128.4, 128.0, 126.0, 119.8, 119.6, 119.0, 117.5 ppm.

HRMS (ESI-TOF): Calcd. for $C_{30}H_{16}BrCl_2O_3$ [M⁺ + H]: m/z, 572.9660 Found: 572.9664.

Compound 20jd

Yield: 145.9 mg (75%, white solid, $R_f = 0.47$ (9:1 hexane/ethyl acetate)).

Mp: 134-136 °C.

IR (neat): v_{max} 3056, 2923, 2852, 1724, 1677, 1596, 1504, 1476, 1415, 1378, 1261, 1232, 1151, 1037, 963, 848, 814, 732, 700 cm⁻¹.

¹H NMR (500 MHz, CDCl₃): δ 8.89 (d, J = 8.5 Hz, 1H), 8.66 (s, 1H), 7.84-7.82 (m, 1H), 7.69-7.68 (m, 3H), 7.63-7.60 (m, 2H), 7.43-7.38 (m, 2H), 7.34-7.26 (m, 2H), 7.15-7.12 (m, 1H), 6.95-6.92 (m, 3H) ppm.

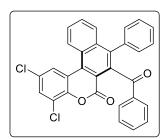
¹³C{¹H} NMR (100 MHz, CDCl₃): δ 194.5, 165.3 (d, J = 252.6 Hz), 159.6, 150.6, 140.0, 136.2, 135.1, 134.6, 134.2, 133.4, 131.7, 131.3 (d, J = 9.2 Hz), 130.9, 130.0 (d, J = 6.5 Hz), 128.5, 128.4, 128.2, 128.1, 127.5, 126.9, 120.0, 119.6, 118.0, 117.2, 115.3 (d, J = 21.8 Hz) ppm.

HRMS (ESI-TOF): Calcd. for $C_{30}H_{17}^{79}BrFO_3$ [M⁺ + H]: m/z, 523.0345 Found: 523.0345.

Compound 20ld

Yield: 117.4 mg (59%, white solid, $R_f = 0.46$ (9:1 hexane/ethyl acetate)).

Mp: 210-212 °C.


IR (neat): v_{max} 3058, 2927, 1726, 1675, 1618, 1598, 1478, 1448, 1415, 1368, 1298, 1222, 1031, 957, 926, 835, 815, 789, 701 cm⁻¹.

¹H NMR (500 MHz, CDCl₃): δ 8.82 (s, 1H), 8.25 (s, 1H), 7.67 (d, J = 9.0 Hz, 1H), 7.62-7.60 (m, 3H), 7.43-7.34 (m, 5H), 7.29-7.26 (m, 3H), 7.12-7.09 (m, 1H), 6.93 (d, J = 7.5 Hz, 1H), 4.08 (s, 3H) ppm.

¹³C{¹H} NMR (100 MHz, CDCl₃): δ 196.2, 159.7, 150.4, 140.0, 138.2, 135.4, 134.7, 132.9, 132.6, 132.3, 131.6, 131.4, 130.1, 129.9, 129.7, 128.8, 128.3, 128.1, 128.0, 127.4, 121.7, 120.4, 119.7, 118.7, 117.0, 106.3, 55.7 ppm.

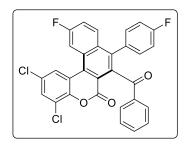
HRMS (ESI-TOF): Calcd. for $C_{31}H_{20}BrO_4$ [M⁺ + H]: m/z 535.0545 Found: 535.0548.

Compound 20ae

Yield: 164.5 mg (86%, white solid, $R_f = 0.51$ (9:1 hexane/ethyl acetate)).

Mp: 124-126 °C.

IR (neat): v_{max} 3059, 2923, 2851, 1734, 1677, 1596, 1546, 1454, 1419, 1371, 1259, 1177, 1116, 1035, 984, 946, 874, 803, 735, 697 cm⁻¹.


¹H NMR (500 MHz, CDCl₃): δ 8.83 (d, J = 8.5 Hz, 1H), 8.41 (s, 1H), 7.84-7.81 (m, 1H), 7.70₄-7.69₆ (m, 2H), 7.64₂-7.64₀ (m, 1H), 7.59 (d, J = 7.5 Hz, 2H), 7.43-7.40 (m, 2H),

7.36-7.35 (m, 1H), 7.29-7.24 (m, 3H), 7.12-7.09 (m, 1H), 6.94 (d, J=7.5 Hz, 1H) ppm.

¹³C{¹H} NMR (100 MHz, CDCl₃): δ 195.7, 158.6, 146.2, 140.7, 137.9, 136.5, 136.4, 135.1, 133.7, 132.7, 131.6, 130.6, 130.1, 129.9, 129.4, 128.8, 128.6, 128.4, 128.2, 128.0, 127.5, 126.8, 126.5, 123.9, 120.7, 118.2 ppm.

HRMS (ESI-TOF): Calcd. for $C_{30}H_{17}Cl_2O_3$ [M⁺ + H]: m/z, 495.0554 Found: 495.0559.

Compound 20de

Yield: 153.8 mg (75%, white solid, $R_f = 0.55$ (9:1 hexane/ethyl acetate)).

Mp: $>250 \, {}^{\circ}\text{C}$.

IR (neat): v_{max} 2961, 2920, 2856, 1734, 1671, 1598, 1506, 1456, 1365, 1258, 1157, 1090, 1015, 966, 793, 750 cm⁻¹.

¹H NMR (500 MHz, CDCl₃): δ 8.50 (dd, J = 10.5, 2.0 Hz, 1H), 8.37 (d, J = 2.0 Hz, 1H), 7.74-7.71 (m, 1H), 7.68 (d, J = 2.0, Hz, 1H), 7.60-7.59 (m, 2H), 7.54-7.50 (m, 1H), 7.47-7.44 (m, 1H), 7.37-7.33 (m, 1H), 7.32-7.28 (m, 2H), 7.16-7.12 (m, 1H), 6.94-6.91 (m, 1H), 6.86-6.82 (m, 1H) ppm.

¹³C{¹H} NMR (125 MHz, CDCl₃): δ 195.3, 162.5 (d, J = 247.4 Hz), 162.4 (d, J = 250.5 Hz), 158.3, 146.1, 139.6, 137.7, 136.5, 133.5 (d, J = 8.3 Hz), 133.4, 132.9, 131.6 (d, J = 8.3 Hz), 130.9, 130.8 (d, J = 9.0 Hz), 129.8, 129.2 (d, J = 9.0 Hz), 128.7, 128.3, 125.7, 124.1, 120.3 (d, J = 16.5 Hz), 120.0, 119.3, 115.6 (d, J = 21.3 Hz), 114.8 (d, J = 21.6 Hz), 111.3 (d, J = 23.5 Hz) ppm.

¹⁹F NMR (471 MHz, CDCl₃): δ -108.9, -112.6 ppm

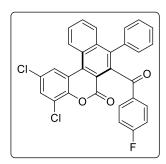
HRMS (ESI-TOF): Calcd. for $C_{30}H_{15}Cl_2F_2O_3$ [M⁺ + H]: m/z 531.0366 Found: 531.0362.

This compound was crystallized from ethyl acetate—hexane (2:1) mixture at room temperature. X-ray structure has been determined for this compound.

Compound 20ee

Yield: 178.6 mg (82%, white solid, $R_f = 0.56$ (9:1 hexane/ethyl acetate)).

Mp: >250 °C.


IR (neat): v_{max} 3066, 2922, 2852, 1736, 1671, 1597, 1546, 1491, 1453, 1391, 1314, 1254, 1169, 1127, 1089, 1044, 954, 867, 835, 732, 714 cm⁻¹.

¹H NMR (500 MHz, CDCl₃): δ 8.82 (d, J = 2.0 Hz, 1H), 8.34 (dd, J = 2.0, 0.5 Hz, 1H), 7.70-7.67 (m, 2H), 7.64-7.59 (m, 3H), 7.49-7.45 (m, 1H), 7.43 (dd, J = 8.0, 2.0 Hz, 1H), 7.33-7.28 (m, 3H), 7.13 (dd, J = 8.5, 2.5 Hz, 1H), 6.88 (dd, J = 8.5, 2.5 Hz, 1H) ppm.

¹³C{¹H} NMR (100 MHz, CDCl₃): δ 195.1, 158.2, 146.1, 139.2, 137.6, 137.1, 135.5, 134.7, 134.5, 133.1, 133.0₃, 132.9₈, 131.1, 129.9, 129.7, 129.4, 128.9, 128.8, 128.7, 128.4, 128.0, 126.0, 125.9, 124.2, 120.1, 119.1 ppm.

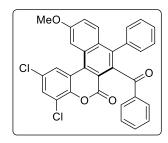
HRMS (ESI-TOF): Calcd. for $C_{30}H_{15}Cl_4O_3$ [M⁺ + H]: m/z 562.9775 Found: 562.9775.

Compound 20je

Yield: 156.6 mg (79%, white solid, $R_f = 0.49$ (9:1 hexane/ethyl acetate)).

Mp: 208-210 °C.

IR (neat): v_{max} 2923, 2852, 1735, 1674, 1596, 1505, 1420, 1372, 1261, 1233, 1153, 1096, 1036, 811, 735, 701 cm⁻¹.


¹H NMR (500 MHz, CDCl₃): δ 8.83 (d, J = 8.5 Hz, 1H), 8.41 (s, 1H), 7.85-7.82 (m, 1H), 7.71 (d, J = 3.5 Hz 2H), 7.66-7.60 (m, 3H), 7.43-7.40 (m, 1H), 7.35-7.33 (m, 1H), 7.31-7.28 (m, 1H), 7.16-7.13 (m, 1H), 6.95-6.92 (m, 3H) ppm.

¹³C{¹H} NMR (125 MHz, CDCl₃): δ 194.2, 165.4 (d, J = 252.8 Hz), 158.7, 146.1, 140.6, 136.3, 136.1, 135.0, 134.4, 133.9, 131.6, 131.3 (d, J = 9.1 Hz), 130.6, 130.2, 129.9, 129.5, 128.7, 128.4, 128.2, (d, J = 13.8 Hz), 127.6, 126.8, 126.5, 123.9, 120.6, 118.0, 115.3 (d, J = 21.9 Hz) ppm.

¹⁹F NMR (370 MHz, CDCl₃): δ -105.6 ppm

HRMS (ESI-TOF): Calcd. for $C_{30}H_{16}Cl_2FO_3$ [M⁺ + H]: m/z 513.0460 Found: 513.0464.

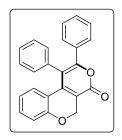
Compound 20le

Yield: 125.7 mg (62%, white solid, $R_f = 0.48$ (9:1 hexane/ethyl acetate)).

Mp: 238-240 °C.

IR (neat): v_{max} 3058, 2924, 2852, 1739, 1674, 1601, 1508, 1461, 1365, 1249, 1224, 1176, 1116, 1031, 963, 828. 736, 701 cm⁻¹.

¹H NMR (500 MHz, CDCl₃): δ 8.55 (s, 1H), 8.18 (s, 1H), 7.64-7.60 (m, 4H), 7.42-7.40 (m, 2H), 7.36-7.34 (m, 2H), 7.28-7.27 (m, 3H), 7.13-7.10 (m, 1H), 6.95-6.94 (m, 1H), 4.06 (s, 3H) ppm.


¹³C{¹H} NMR (100 MHz, CDCl₃): δ 195.9, 159.8, 158.7, 146.0, 140.7, 138.1, 135.3, 134.6, 132.6, 132.0, 131.6, 130.2, 129.8, 129.7, 129.3, 128.8, 128.3, 128.1, 127.5, 125.6, 124.0, 121.7, 121.0, 118.8, 106.4, 55.7 ppm.

HRMS (ESI-TOF): Calcd. for $C_{31}H_{19}Cl_2O_4$ [M⁺ + H]: m/z, 525.0660 Found: 525.0655.

3.7 Synthesis of 4*H*,5*H*-pyrano[3,4-*c*]chromen-4-ones: General procedure for the synthesis of compounds 21

To an oven dried Schlenk tube, 2*H*-chromene-3-carboxylic acid (**6a-c**, 0.57 mmol), alkyne (one of **7a-j**, 0.57 mmol), [RuCl₂(*p*-cymene)]₂ (2.5 mol %), Cu(OAc)₂·H₂O (30 mol %) and AgSbF₆ (10 mol %) were added. To this mixture, 1,4-dioxane (2 mL) was added and the contents were stirred at 100 °C (oil bath temperature) for 20 h. The progress of the reaction was monitored by TLC. After completion of the reaction, the mixture was cooled to room temperature, solvent was removed under the vacuum, and the crude product was purified by column chromatography by using silica gel with hexane/ethyl acetate (9:1) mixture as the eluent to afford the corresponding annulated products **21aa-cj**.

Compound 21aa

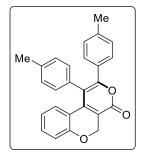
Yield: 176.0 mg (88%, white solid, $R_f = 0.52$ (9:1 hexane/ethyl acetate)).

Mp: 138-140 °C.

IR (neat): v_{max} 2848, 2648, 1702, 1567, 1527, 1485, 1393, 1109, 998, 758, 696 cm⁻¹.

¹H NMR (500 MHz, CDCl₃) δ 7.37-7.34 (m, 2H), 7.32-7.30 (m, 2H), 7.29-7.26 (m, 3H), 7.21-

7.20 (m, 2H), 7.12-7.10 (m, 2H), 7.04 (dd, $J_1 = 8.3$ Hz, $J_2 = 1.5$ Hz, 1H), 6.58-


6.54 (m, 1H), 6.37 (dd, $J_1 = 8.0$ Hz, $J_2 = 1.5$ Hz, 1H), 5.07 (s, 2H) ppm.

¹³C NMR (125 MHz, CDCl₃) δ 159.9, 158.0, 157.7, 143.9, 135.0, 132.8, 132.0, 131.3, 129.4, 129.3, 129.0, 128.8, 128.3, 127.8, 121.1, 120.1, 117.8, 116.3, 63.4 ppm.

HRMS (ESI-TOF): Calcd. for $C_{24}H_{17}O_3$ [M⁺ + H]: m/z 353.1177. Found: 353.1177.

This compound was crystallized from ethyl acetate—hexane (2:1) mixture at room temperature. X-ray structure has been determined for this compound.

Compound 21ab

Yield: 151.2 mg (70%, pale yellow solid, $R_f = 0.54$ (9:1 hexane/ethyl acetate)).

Mp: 218-220 °C.

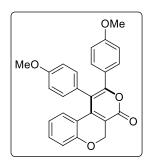
IR (neat): v_{max} 2920, 2851, 1717, 1603, 1569, 1500, 1455, 1391, 1353, 1014, 820, 761

 cm^{-1} .

¹H NMR (400 MHz, CDCl₃) δ 7.24-7.19 (m, 1H), 7.13-7.11 (m, 4H), 7.04-6.98 (m, 5H), 6.60-

6.56 (m, 1H), 6.42 (dd, $J_1 = 8.0$ Hz, $J_2 = 1.6$ Hz, 1H), 5.06 (s, 2H), 2.40 (s, 3H),

2.31 (s, 3H) ppm.


¹³C{¹H} NMR (125 MHz, CDCl₃) δ 160.1, 158.1, 157.7, 144.1, 139.4, 138.0, 132.0, 131.9,

 $131.1, 130.0, 129.7, 129.2, 128.9, 128.5, 121.0, 120.3, 117.7, 115.8_8, 115.8_5,$

63.4, 21.4, 21.3 ppm.

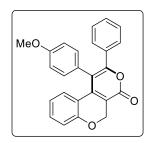
HRMS (ESI-TOF): Calcd. for $C_{26}H_{21}O_3$ [M⁺ + H]: m/z 381.1490. Found: 381.1492.

Compound 21ac

Yield: 189.6 mg (81%, white solid, $R_f = 0.46$ (9:1 hexane/ethyl acetate)).

Mp: 199-201 °C.

IR (neat): v_{max} 2922, 2852, 1734, 1604, 1512, 1463, 1262, 1177, 1080, 1031, 970, 749


 cm^{-1} .

¹H NMR (500 MHz, CDCl₃) δ 7.24-7.20 (m, 1H), 7.19-7.16 (m, 2H), 7.04-7.0 (m, 3H), 6.88-6.85 (m, 2H), 6.74-6.71 (m, 2H), 6.62-6.59 (m, 1H), 6.46 (dd, J_1 = 8.2 Hz, J_2 = 1.0 Hz, 1H), 5.05 (s, 2H), 3.86 (s, 3H), 3.79 (s, 3H) ppm.

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 160.1₈, 160.1₅, 159.4, 158.0, 157.7, 144.3, 132.4, 131.9, 130.9, 128.9, 127.3, 125.3, 121.1, 120.4, 117.7, 115.5, 115.1, 114.6, 113.3, 63.4, 55.3, 55.2 ppm.

HRMS (ESI-TOF): Calcd. for $C_{26}H_{20}O_5$ [M⁺ + Na]: m/z 435.1209. Found: 435.1209.

Compound 21ad

Yield: 169.3 mg (78%, pale yellow solid, $R_f = 0.48$ (9:1 hexane/ethyl acetate)).

Mp: 221-223 °C.


IR (neat): v_{max} 3058, 2926, 2839, 1708, 1678, 1506, 1489, 1295, 1255, 1179, 1029, 836, 760, 699 cm⁻¹.

¹H NMR (500 MHz, CDCl₃) δ 7.24-7.21 (m, 6H), 7.03 (dd, J_1 = 8.3 Hz, J_2 = 1.0 Hz, 1H), 7.01-6.98 (m, 2H), 6.85-6.82 (m, 2H), 6.63-6.60 (m, 1H), 6.47 (dd, J_1 = 8.0 Hz, J_2 = 1.5 Hz, 1H), 5.06 (s, 2H), 3.84 (s, 3H) ppm.

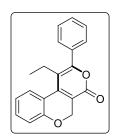
¹³C{¹H} NMR (100 MHz, CDCl₃) δ 160.1, 159.5, 158.0, 157.7, 144.2, 132.9, 132.4, 132.0, 129.3, 129.2, 128.8, 127.9, 126.9, 121.2, 120.3, 117.8, 116.2, 115.9, 114.5, 63.4, 55.3 ppm.

HRMS (ESI-TOF): Calcd. for $C_{25}H_{19}O_4$ [M⁺ + H]: m/z, 383.1283. Found: 383.1283.

Compound 21ae

Yield: 121.9 mg (74%, pale yellow solid, $R_f = 0.60$ (9:1 hexane/ethyl acetate)).

Mp: 160-162 °C.


IR (neat): v_{max} 2922, 2852, 1762, 1702, 1604, 1571, 1534, 1492, 1450, 751, 699 cm⁻¹.

¹H NMR (500 MHz, CDCl₃) δ 7.76 (dd, J_1 = 8.3 Hz, J_2 = 1.5 Hz, 1H), 7.66-7.64 (m, 2H), 7.51-7.49 (m, 3H), 7.43-7.38 (m, 1H), 7.14-7.10 (m, 2H), 5.02 (s, 2H), 2.38 (s, 3H) ppm.

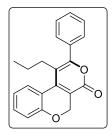
¹³C{¹H} NMR (100 MHz, CDCl₃) δ 160.3, 158.3, 157.9, 145.7, 132.9, 132.3, 130.0, 129.4, 128.4, 121.7, 121.1, 118.1, 116.1, 109.2, 63.2, 18.2 ppm.

HRMS (ESI-TOF): Calcd. for $C_{19}H_{15}O_3Na$ [M⁺ + Na]: m/z 313.0841. Found: 313.0842.

Compound 21af

Yield: 124.4 mg (72%, white solid, $R_f = 0.62$ (9:1 hexane/ethyl acetate)).

Mp: 122-124 °C.


IR (neat): v_{max} 2924, 2852, 1705, 1604, 1571, 1533, 1491, 751, 701 cm⁻¹.

¹H NMR (500 MHz, CDCl₃) δ 7.83 (dd, J_1 = 8.0 Hz, J_2 = 1.5 Hz, 1H), 7.56-7.54 (m, 2H), 7.50-7.49 (m, 3H), 7.41-7.39 (m, 1H), 7.14-7.09 (m, 2H), 5.00 (s, 2H), 2.85 (q, J = 9.0 Hz, 2H), 0.94 (t, J = 9.0 Hz, 3H) ppm.

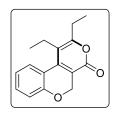
¹³C{¹H} NMR (100 MHz, CDCl₃) δ 160.1, 158.6, 157.7, 144.4, 133.3, 132.2, 129.8, 129.2, 128.5, 127.1, 122.1, 121.2, 118.2, 117.6, 115.7, 63.2, 21.6, 14.5 ppm.

HRMS (ESI-TOF): Calcd. for $C_{20}H_{17}O_3$ [M⁺ + H]: m/z 305.1177. Found: 305.1117.

Compound 21ag

Yield: 142.8 mg (79%, yellow solid, $R_f = 0.63$ (9:1 hexane/ethyl acetate)).

Mp: 118-120 °C.


IR (neat): v_{max} 2961, 2927, 2877, 1706, 1534, 1491, 1448, 1090, 750, 701 cm⁻¹.

¹H NMR (400 MHz, CDCl₃) δ 7.80 (dd, J_1 = 8.0 Hz, J_2 = 1.6 Hz, 1H), 7.56-7.54 (m, 2H), 7.50-4.49 (m, 3H), 7.41-7.38 (m, 1H), 7.14-7.09 (m, 2H), 4.99 (s, 2H), 2.81-2.77 (m, 2H), 1.32-1.23 (m, 2H), 0.71 (t, J = 7.2 Hz, 3H) ppm.

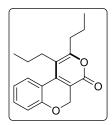
¹³C{¹H} NMR (125 MHz, CDCl₃) δ 160.2, 158.8, 157.6, 144.6, 133.4, 132.3, 129.8, 129.4, 128.5, 126.9, 122.0, 121.4, 118.3, 117.6, 114.2, 63.2, 30.4, 22.8, 13.5 ppm.

HRMS (ESI-TOF): Calcd. for $C_{21}H_{19}O_3$ [M⁺ + H]: m/z 319.1334. Found: 319.1335.

Compound 21ah

Yield: 106.2 mg (73%, pale yellow solid, $R_f = 0.64$ (9:1 hexane/ethyl acetate)).

Mp: 221-223 °C.


IR (neat): v_{max} 2972, 2936, 1719, 1684, 1605, 1571, 1532, 1454, 1202, 1038, 981, 759, 736 cm⁻¹.

¹H NMR (400 MHz, CDCl₃) δ 7.65 (dd, $J_1 = 8.2$ Hz, $J_2 = 1.6$ Hz, 1H), 7.38-7.34 (m, 1H), 7.10-7.06 (m, 2H), 4.90 (s, 2H), 2.69-2.62 (m, 4H), 1.31-1.26 (m, 6H) ppm.

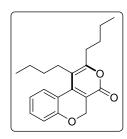
¹³C{¹H} NMR (100 MHz, CDCl₃) δ 163.1, 160.7, 157.8, 144.9, 132.1, 127.3, 121.9, 120.9, 118.2, 115.5, 113.8, 63.2, 24.5, 20.4, 15.2, 12.3 ppm.

HRMS (ESI-TOF): Calcd. for $C_{16}H_{16}O_3Na$ [M⁺ + Na]: m/z 279.0997. Found: 279.0995.

Compound 21ai

Yield: 124.3 mg (77%, pale yellow solid, $R_f = 0.65$ (9:1 hexane/ethyl acetate)).

Mp: 102-104 °C.


IR (neat): v_{max} 2961, 2931, 2872, 1704, 1605, 1572, 1532, 1457, 1397, 1233, 758 cm⁻¹.

¹H NMR (400 MHz, CDCl₃) δ 7.60 (dd, $J_1 = 8.4$ Hz, $J_2 = 1.6$ Hz, 1H), 7.40-7.35 (m, 1H), 7.11-7.07 (m, 2H), 4.90 (s, 2H), 2.62-2.56 (m, 4H), 1.82-1.72 (m, 2H), 1.65-1.56 (m, 2H), 1.03 (t, J = 7.4 Hz, 6H) ppm.

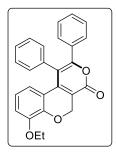
¹³C{¹H} NMR (125 MHz, CDCl₃) δ 162.0, 160.6, 157.9, 144.7, 132.1, 127.1, 121.8, 121.1, 118.2, 115.7, 113.1, 63.2, 33.2, 29.4, 23.8, 21.3, 13.9₀, 13.8₆ ppm.

HRMS (ESI-TOF): Calcd. for $C_{18}H_{21}O_3$ [M⁺ + H]: m/z 285.1490. Found: 285.1490.

Compound 21aj

Yield: 134.8 mg (76%, gummy liquid, $R_f = 0.67$ (9:1 hexane/ethyl acetate)).

Mp: Gummy liquid


IR (neat): v_{max} 2958, 2930, 2871, 1723, 1606, 1456, 1207, 1108, 1042, 979, 756 cm⁻¹.

¹H NMR (400 MHz, CDCl₃) δ 7.63-7.61 (m, 1H), 7.39-7.35 (m, 1H), 7.10-7.06 (m, 2H), 4.89 (s, 2H), 2.63-2.58 (m, 4H), 1.75-1.67 (m, 2H), 1.59-1.53 (m, 2H), 1.48-1.40 (m, 4H), 1.00-0.95 (m, 6H) ppm.

¹³C{¹H} NMR (125 MHz, CDCl₃) δ 162.2, 160.6, 157.9, 144.7, 132.1, 127.2, 121.8, 121.1, 118.2, 115.6, 113.0, 63.2, 32.6, 31.1, 30.0, 27.1, 22.6, 22.5, 13.8, 13.7 ppm.

HRMS (ESI-TOF): Calcd. for $C_{20}H_{24}O_3Na$ [M⁺ + Na]: m/z 335.1623. Found: 335.1623.

Compound 21ba

Yield: 133.2 mg (74%, pale yellow solid, $R_f = 0.48$ (9:1 hexane/ethyl acetate)).

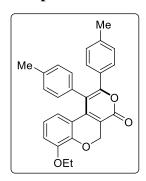
Mp: 202-204 °C

IR (neat): v_{max} 3057, 2928, 2850, 1696, 1533, 1489, 1463, 1443, 1388, 1284, 1204, 1085,

779, 740, 696 cm⁻¹.

 1 H NMR (500 MHz, CDCl₃) δ 7.35-7.32 (m, 1H), 7.30 (br, 1H), 7.29-7.25 (m, 2H), 7.22-7.19

(m, 4H), 7.10-7.08 (m, 2H), 6.86-6.84 (m, 1H), 6.48 (t, <math>J = 8.3 Hz, 1H), 6.01-


5.99 (m, 1H), 5.12 (s, 2H), 4.13 (q, J = 7.0 Hz, 2H), 1.49 (t, J = 7.0 Hz, 3H)

ppm.

¹³C{¹H} NMR (125 MHz, CDCl₃) δ 159.9, 158.0, 148.3, 147.3, 144.1, 135.0, 132.8, 131.3, 129.4, 129.3, 128.9, 128.2, 127.8, 121.1, 120.7, 120.4, 116.4, 155.7, 64.8, 63.6, 14.8 ppm.

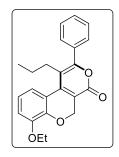
HRMS (ESI-TOF): Calcd. for $C_{26}H_{21}O_4$ [M⁺ + H]: m/z 397.1440. Found: 397.1442.

Compound 21bb

Yield: 148.4 mg (77%, pale yellow solid, $R_f = 0.50$ (9:1 hexane/ethyl acetate)).

Mp: 220-222 °C

IR (neat): v_{max} 2980, 2923, 2858, 1696, 1615, 1535, 1502, 1461, 1387, 1355, 1278, 1200,


1085, 1048, 1017, 823, 762, 741 cm⁻¹.

¹H NMR (400 MHz, CDCl₃) δ 7.12-7.09 (m, 4H), 7.01-6.99 (m, 2H), 6.97-6.95 (m, 2H), 6.84 (dd, $J_1 = 8.4$ Hz, $J_2 = 1.2$ Hz, 1H), 6.50 (t, J = 8.2 Hz, 1H), 6.04 (dd, $J_1 = 8.2$ Hz, $J_2 = 1.6$ Hz, 1H), 5.10 (s, 2H), 4.12 (q, J = 7.2 Hz, 2H), 2.39 (s, 3H), 2.30 (s, 3H), 1.49 (t, J = 7.2 Hz, 3H) ppm.

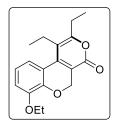
¹³C{¹H} NMR (100 MHz, CDCl₃) δ 160.1, 158.0, 148.2, 147.3, 144.3, 139.4, 137.9, 132.0, 131.1, 130.0, 129.6, 129.3, 128.5, 121.3, 120.8, 120.3, 116.0₃, 115.9₉, 115.5, 64.8, 63.7, 21.4, 21.3, 14.8 ppm.

HRMS (ESI-TOF): Calcd. for $C_{28}H_{25}O_4$ [M⁺ + H]: m/z 425.1753. Found: 425.1753.

Compound 21bg

Yield: 131.7 mg (80%, pale yellow solid, $R_f = 0.60$ (9:1 hexane/ethyl acetate)).

Mp: 128-130 °C


IR (neat): v_{max} 3059, 2973, 2927, 1708, 1538, 1465, 1360, 1266, 1221, 1088, 1021, 732, 701 cm⁻¹.

¹H NMR (500 MHz, CDCl₃) δ 7.56-7.53 (m, 2H), 7.50-7.48 (m, 3H), 7.41-7.38 (m, 1H), 7.03-7.02 (m, 2H), 5.03 (s, 2H), 4.18 (q, J = 9.5 Hz, 2H), 2.78 (t, J = 9.5 Hz, 2H), 1.52 (t, J = 9.0 Hz, 3H), 1.27-1.19 (m, 2H), 0.68 (t, J = 9.5 Hz, 3H) ppm.

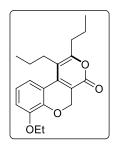
¹³C{¹H} NMR (125 MHz, CDCl₃) δ 160.1, 158.7, 148.8, 147.3, 144.9, 133.4, 129.8, 129.4, 128.4, 122.4, 121.4, 118.6, 117.8, 115.8, 114.3, 64.8, 63.5, 30.4, 22.7, 14.8, 13.5 ppm.

HRMS (ESI-TOF): Calcd. for $C_{23}H_{23}O_4$ [M⁺ + H]: m/z, 363.1596. Found: 363.1597.

Compound 21bh

Yield: 102.3 mg (75%, yellow solid, $R_f = 0.62$ (9:1 hexane/ethyl acetate)).

Mp: 104-106 °C


IR (neat): v_{max} 2976, 2930, 2877, 1702, 1577, 1534, 1464, 1391, 1270, 1092, 1045, 874, 787, 738 cm⁻¹.

¹H NMR (400 MHz, CDCl₃) δ 7.29-7.25 (m, 1H), 7.02-7.00 (m, 2H), 4.95 (s, 2H), 4.15 (q, J = 7.0 Hz, 2H), 2.69-2.63 (m, 4H), 1.49 (t, J = 7.0 Hz, 3H), 1.30 (t, J = 7.5 Hz, 3H), 1.26 (t, J = 7.5 Hz, 3H) ppm.

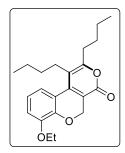
¹³C{¹H} NMR (100 MHz, CDCl₃) δ 163.0, 160.7, 148.8, 147.6, 145.1, 122.0, 121.3, 119.0, 115.8, 115.7, 113.9, 64.8, 63.6, 24.6, 20.4, 15.2, 14.8, 12.3 ppm.

HRMS (ESI-TOF): Calcd. for $C_{18}H_{21}O_4$ [M⁺ + H]: m/z 301.1440. Found: 301.1441.

Compound 21bi

Yield: 120.8 mg (81%, pale yellow solid, $R_f = 0.63$ (9:1 hexane/ethyl acetate)).

Mp: 116-118 °C


IR (neat): v_{max} 2959, 2871, 1697, 1538, 1466, 1388, 1269, 1146, 1050, 1020, 759 cm⁻¹.

¹H NMR (500 MHz, CDCl₃) δ 7.21-7.18 (m, 1H), 7.02-6.98 (m, 2H), 4.93 (s, 2H), 4.14 (q, J = 7.0 Hz, 2H), 2.60-2.55 (m, 4H), 1.79-1.72 (m, 2H), 1.60-1.53 (m, 2H), 1.48 (t, J = 7.0 Hz, 3H), 1.01 (t, J = 7.5 Hz, 3H), 0.99 (t, J = 7.0 Hz, 3H) ppm.

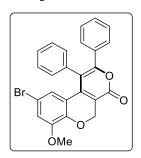
¹³C{¹H} NMR (125 MHz, CDCl₃) δ 162.0, 160.6, 148.8, 147.7, 145.0, 122.1, 121.2, 118.9, 115.8, 113.2, 64.8, 63.5, 33.2, 29.4, 23.8, 21.3, 14.8, 13.8₈, 13.8₅ ppm.

HRMS (ESI-TOF): Calcd. for $C_{20}H_{25}O_4$ [M⁺ + H]: m/z 329.1753. Found: 329.1753.

Compound 21bj

Yield: 118.2 mg (73%, white solid, $R_f = 0.65$ (9:1 hexane/ethyl acetate)).

Mp: 102-104 °C


IR (neat): v_{max} 2957, 2927, 2870, 1706, 1616, 1535, 1465, 1392, 1271, 1182, 1145, 1114, 789, 740 cm⁻¹.

¹H NMR (400 MHz, CDCl₃) δ 7.25-7.20 (m, 1H), 7.03-6.98 (m, 2H), 4.95 (s, 2H), 4.15 (q, J = 7.2 Hz, 2H), 2.63-2.58 (m, 4H), 1.75-1.67 (m, 4H), 1.58-1.47 (m, 3H), 1.46-1.37 (m, 4H), 0.99-0.95 (m, 6H) ppm.

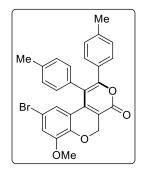
¹³C{¹H} NMR (100 MHz, CDCl₃) δ 162.2, 160.6, 148.8, 147.6, 145.1, 122.1, 121.1, 119.0, 115.7₄, 115.7₀, 113.1, 64.8, 63.6, 32.6, 31.1, 30.0, 27.1, 22.6, 14.8, 13.8, 13.7 ppm.

HRMS (ESI-TOF): Calcd. for $C_{22}H_{29}O_4$ [M⁺ + H]: m/z 357.2066. Found: 357.2065.

Compound 21ca

Yield: 131.0 mg (81%, pale yellow solid, $R_f = 0.44$ (9:1 hexane/ethyl acetate)).

Mp: 246-248 °C


IR (neat): v_{max} 3017, 2934, 2840, 2360, 1980, 1709, 1614, 1525, 1385, 1355, 1278, 1202, 1105, 875, 843, 712, 583 cm⁻¹.

¹H NMR (400 MHz, CDCl₃) δ 7.42-7.33 (m, 3H), 7.30-7.18 (m, 5H), 7.10-7.08 (m, 2H), 6.95 (d, J = 2.0 Hz, 1H), 6.02 (d, J = 2.4 Hz, 1H), 5.12 (s, 2H), 3.90 (s, 3H) ppm.

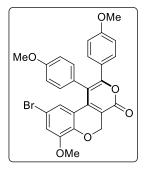
¹³C{¹H} NMR (125 MHz, CDCl₃) δ 159.7, 158.1, 149.6, 146.1, 142.9, 134.3, 132.5, 131.2, 129.5, 129.4, 129.1, 128.6, 127.9, 123.4, 122.0, 117.2, 116.5, 116.0, 112.8, 63.8, 56.4 ppm.

HRMS (ESI-TOF): Calcd. for $C_{21}H_{18}BrO_4$ [M⁺ + H], [M⁺ + H + 2]: m/z 461.0388, 463.0368. Found: 461.0386, 463.0369.

Compound 21cb

Yield: 135.6 mg (79%, yellow solid, $R_f = 0.48$ (9:1 hexane/ethyl acetate)).

Mp: 226-228 °C


IR (neat): v_{max} 3108, 2921, 1712, 1616, 1562, 1531, 1500, 1277, 1100, 1012, 973, 904, 819, 771, 731 cm⁻¹.

¹H NMR (500 MHz, CDCl₃) δ 7.18-7.16 (m, 4H), 7.02 (d, J = 8.0 Hz, 2H), 6.97-6.93 (m, 3H), 5.98 (d, J = 2.0 Hz, 1H), 5.09 (s, 2H), 3.88 (s, 3H), 2.41 (s, 3H), 2.30 (s, 3H) ppm.

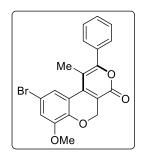
¹³C{¹H} NMR (125 MHz, CDCl₃) δ 159.8, 158.1, 149.6, 146.2, 143.2, 139.7, 138.5, 131.5, 131.0, 129.8₂, 129.7₈, 129.3, 128.6, 123.6, 122.2, 117.1, 116.0, 115.6, 112.8, 63.8, 56.4, 21.3₀, 21.2₅ ppm.

HRMS (ESI-TOF): Calcd. for $C_{21}H_{22}BrO_4$ [M⁺ + H], [M⁺ + H + 2]: m/z 489.0701, 491.0681. Found: 489.0703, 491.0690.

Compound 21cc

Yield: 153.6 mg (84%, yellow solid, $R_f = 0.40$ (9:1 hexane/ethyl acetate)).

Mp: 228-230 °C


IR (neat): v_{max} 2935, 2836, 1711, 1601, 1499, 1459, 1414, 1246, 1174, 1101, 1024, 973, 832, 771, 732 cm⁻¹.

¹H NMR (400 MHz, CDCl₃) δ 7.23 (d, J = 8.8 Hz, 2H), 7.01-6.98 (m, 2H), 6.95-6.91 (m, 3H), 6.74 (d, J = 8.8 Hz, 2H), 6.06 (d, J = 2.0 Hz, 1H), 5.09 (s, 2H), 3.89 (s, 3H), 3.88 (s, 3H), 3.80 (s, 3H) ppm.

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 160.3, 159.9, 158.0, 149.6, 146.2, 143.4, 132.3, 131.0, 126.7, 125.0, 123.6, 122.3, 116.9, 115.6, 114.8₄, 114.8₀, 113.4, 112.8, 63.8, 56.4, 55.5, 55.3 ppm.

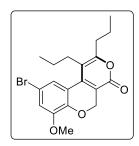
HRMS (ESI-TOF): Calcd. for $C_{27}H_{22}BrO_6$ [M⁺ + H], [M⁺ + H + 2]: m/z 521.0600, 523.058. Found: 521.0600, 523.0615.

Compound 21ce

Yield: 106.4 mg (76%, pale yellow solid, $R_f = 0.46$ (9:1 hexane/ethyl acetate)).

Mp: 182-184 °C

IR (neat): ν_{max} 2923, 2850, 2359, 2117, 1707, 1621, 1537, 1386, 1277, 1227, 1153, 1106, 1010, 883, 764, 700 cm⁻¹.


¹H NMR (400 MHz, CDCl₃) δ 7.65-7.62 (m, 2H), 7.51-7.48 (m, 4H), 7.13 (d, J = 2.0 Hz, 1H), 5.06 (s, 2H), 3.94 (s, 3H), 2.35 (s, 3H) ppm.

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 159.9, 158.6, 150.1, 146.3, 144.7, 132.7, 130.2, 129.4, 128.4, 123.1, 122.5, 117.5, 116.6, 113.5, 108.8, 63.6, 56.5, 18.1 ppm.

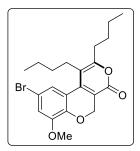
HRMS (ESI-TOF): Calcd. For $C_{20}H_{16}BrO_4$ [M⁺ + H], [M⁺ + H + 2]: m/z 399.0232, 401.0212. Found: 399.0231, 401.0217.

This compound was crystallized from dichloromethane—hexane (2:1) mixture at room temperature. X-ray structure has been determined for this compound.

Compound 21ci

Yield: $109.0 \text{ mg} (79\%, \text{ pale yellow solid}, R_f = 0.48 (9:1 \text{ hexane/ethyl acetate})).$

Mp: 150-152 °C


IR (neat): v_{max} 2953, 2867, 1709, 1622, 1537, 1467, 1385, 1268, 1154, 1071, 933, 855, 831, 767 cm⁻¹.

¹H NMR (500 MHz, CDCl₃) δ 7.34 (d, J = 2.0 Hz, 1H), 7.10 (d, J = 2.0 Hz, 1H), 4.95 (s, 2H), 3.92 (s, 3H), 2.59 (t, J = 7.8 Hz, 2H), 2.55-2.52 (m, 2H), 1.80-1.73 (m, 2H), 1.64-1.56 (m, 2H), 1.04 (t, J = 7.3 Hz, 3H), 1.02 (t, J = 7.3 Hz, 3H) ppm.

¹³C{¹H} NMR (125 MHz, CDCl₃) δ 162.4, 160.2, 150.2, 146.5, 143.7, 123.1, 121.6, 117.3, 116.0, 113.6, 112.8, 63.7, 56.5, 33.2, 29.3, 23.8, 21.2, 13.8, 13.7 ppm.

HRMS (ESI-TOF): Calcd. for $C_{19}H_{22}BrO_4$ [M⁺ + H], [M⁺ + H + 2]: m/z 393.0701, 395.0681. Found: 393.0702, 395.0686.

Compound 21cj

Yield: 112.3 mg (76%, yellow solid, $R_f = 0.50$ (9:1 hexane/ethyl acetate)).

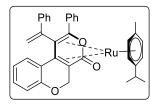
Mp: 100-102 °C

IR (neat): v_{max} 2957, 2931, 2869, 1699, 1614, 1529, 1459, 1414, 1383, 1267, 1212, 1154,

1011, 853, 838, 768, 686, 578 cm⁻¹.

¹H NMR (400 MHz, CDCl₃) δ 7.36 (d, J = 2.0 Hz, 1H), 7.09 (d, J = 2.0 Hz, 1H), 4.93 (s, 2H), 3.90 (s, 3H), 2.61-2.53 (m, 4H), 1.73-1.65 (m, 2H), 1.58-1.37 (m, 6H), 0.99 (t, J = 7.2 Hz, 3H), 0.96 (t, J = 7.2 Hz, 3H) ppm.

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 162.6, 160.3, 150.1, 146.4, 143.8, 123.0, 121.5, 117.2, 115.9, 113.6, 112.7, 63.7, 56.4, 32.6, 31.1, 30.0, 27.1, 22.5₄, 22.5₁, 13.8, 13.7 ppm.


HRMS (ESI-TOF): Calcd. for $C_{21}H_{26}BrO_4$ [M⁺ + H], [M⁺ + H + 2]: m/z 421.1014, 423.0994. Found: 421.1014, 423.0996.

This compound was crystallized from ethyl acetate—hexane (2:1) mixture at room temperature. X-ray structure has been determined for this compound.

3.8 Synthesis of Ru(0)-metal complexes: General procedure for the synthesis of compounds 22ra-rc. To an oven dried Schlenk tube, 2*H*-chromene-3-carboxylic acid (6a, 0.57 mmol), propargylic alcohol (4r, 0.57 mmol), [RuCl₂(*p*-cymene)]₂ (0.173 g, 0.28 mmol, 50 mol%), Cu(OTf)₂ (0.57 mmol) and K₂CO₃ (0.57 mmol) were added. To this mixture, 1,4-dioxane (2 mL) was added, and the contents were stirred at 100 °C (oil bath temperature) for 24 h. The progress of the reaction was monitored by TLC. After completion of the reaction, the mixture was cooled to room temperature, solvent removed under vacuum, and the crude product was purified by column chromatography by using silica gel with hexane/ethyl acetate

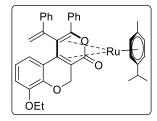
(4:1) mixture as the eluent to afford the corresponding final product **22ra**, same experimental procedure was followed to synthesize the compounds **2rb-2rc**.

Compound 22ra

Yield: 106.5 mg (61%, yellow solid, $R_f = 0.40$ (4:1 hexane/ethyl acetate)).

Mp: 142-144 °C

IR (neat): v_{max} 3057, 2959, 2924, 2852, 1706, 1600, 1492, 1462, 1380, 1256, 1217, 1126, 1096, 1034, 1006, 978, 907, 757, 699 cm⁻¹.


¹H NMR (500 MHz, CDCl₃): δ 7.71 (dd, J = 7.5, 1.0 Hz, 1H), 7.52-7.47 (m, 4H), 7.23-7.20 (m, 2H), 7.17-7.13 (m, 2H), 7.08-7.05 (m, 2H), 6.97-6.95 (m, 1H), 6.91-6.89 (m, 1H), 6.81-6.78 (m, 1H), 6.20 (d, J = 1.5 Hz 1H), 5.85 (d, J = 1.0 Hz, 1H), 5.81 (d, J = 6.0 Hz, 1H), 5.65 (d, J = 5.5 Hz, 1H), 4.90 (d, J = 6.0 Hz, 1H), 4.79 (d, J = 6.0 Hz, 1H), 4.59 (d, J = 12.5 Hz, 1H), 4.49 (d, J = 13.0 Hz, 1H), 2.08-2.00 (m, 1H), 1.63 (s, 3H), 1.04 (d, J = 7.0 Hz, 3H), 0.90 (d, J = 6.5 Hz, 3H) ppm.

¹³C{¹H} NMR (125 MHz, CDCl₃): δ 174.9, 155.8, 143.4, 142.5, 138.8, 128.7, 128.4, 128.0, 127.1, 126.9, 126.6, 125.0, 124.8, 124.1, 121.6, 121.1, 117.5, 112.0, 101.9, 89.6, 89.1, 88.4, 87.9, 87.6, 84.3, 84.1, 69.9, 58.0, 30.7, 25.1, 21.0, 17.6 ppm. All the *p*-cymene carbons are distinctly shown.

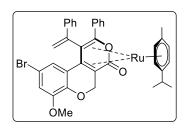
HRMS (ESI-TOF): Calcd. for $C_{36}H_{33}O_3Ru$ [M⁺ + H]: m/z 615.1473. Found: 615.1477.

This compound was crystallized from ethyl acetate—hexane (2:1) mixture at room temperature. X-ray structure has been determined for this compound.

Compound 22rb

Yield: 94.3 mg (63%, yellow solid, $R_f = 0.39$ (4:1 hexane/ethyl acetate)).

Mp: 128-130 °C


IR (neat): v_{max} 2961, 2923, 2852, 1710, 1597, 1446, 1395, 1258, 1095, 1014, 863, 793, 695 cm⁻¹

¹H NMR (500 MHz, CDCl₃): δ 7.50-7.46 (m, 3H), 7.31 (dd, J = 8.0, 1.5 Hz, 2H), 7.23-7.20 (m, 2H), 7.17-7.14 (m, 1H), 7.07-7.04 (m, 2H), 6.97-6.94 (m, 1H), 6.81 (dd, J = 8.5, 1.5 Hz, 1H), 6.74-6.71 (m, 1H), 6.19 (d, J = 1.5 Hz, 1H), 5.84 (d, J = 1.5 Hz, 1H), 5.80 (d, J = 6.0 Hz, 1H), 5.64 (d, J = 5.5 Hz, 1H), 4.95 (d, J = 5.5 Hz, 1H), 4.83 (d, J = 6.0 Hz, 1H), 4.71 (d, J = 12.5 Hz, 1H), 4.46 (d, J = 12.5 Hz, 1H), 4.16 (q, J = 14.0, 7.0 Hz, 2H), 2.07-2.02 (m, 1H), 1.65 (s, 3H), 1.44 (t, J = 7.0 Hz, 3H), 1.03 (d, J = 7.0 Hz, 3H), 0.91 (d, J = 6.5 Hz, 3H) ppm.

¹³C{¹H} NMR (100 MHz, CDCl₃): δ 177.1, 148.3, 145.6, 143.5, 142.5, 138.9, 128.4, 127.9, 126.9, 126.6, 125.3, 125.0, 124.8, 121.1, 121.0, 119.4, 113.2, 112.1, 101.8, 89.6, 89.0, 88.4, 88.0, 87.7, 84.3, 84.2, 70.3, 64.7, 58.2, 30.6, 25.0, 21.1, 17.5, 14.8 ppm.

HRMS (ESI-TOF): Calcd. for $C_{38}H_{37}O_4Ru$ [M⁺ + H]: m/z 659.1735. Found: 659.1732.

Compound 22rc

Yield: 71.0 mg (56%, yellow solid, $R_f = 0.38$ (4:1 hexane/ethyl acetate)).

Mp: 204-206 °C

IR (neat): v_{max} 3075, 2961, 2853, 1692, 1594, 1570, 1481, 1445, 1380, 1239, 1210, 1176, 1132, 1064, 989, 968, 893, 779, 762, 694 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ 7.50-7.46 (m, 5H), 7.25-7.22 (m, 2H), 7.21-7.15 (m, 1H), 7.10-7.06 (m, 2H), 7.00-6.96 (m, 1H), 6.91 (d, J = 2.4 Hz, 1H), 6.24 (d, J = 1.6 Hz, 1H), 5.82 (d, J = 1.2 Hz, 2H), 5.65 (d, J = 5.2 Hz, 1H), 4.96 (d, J = 5.6 Hz, 1H), 4.82-4.80 (m, 1H), 4.69 (d, J = 12.8 Hz, 1H), 4.46 (d, J = 12.8 Hz, 1H), 3.88 (s, 3H), 2.04-1.94 (m, 1H), 1.66 (s, 3H), 1.03 (d, J = 7.2 Hz, 3H), 0.94 (d, J = 6.8 Hz, 3H) ppm.

¹³C{¹H} NMR (100 MHz, CDCl₃): δ 174.4, 149.5, 144.0, 143.2, 142.3, 138.6, 128.5, 128.1, 127.0, 126.9, 126.6, 125.0, 121.8, 121.5, 114.5, 113.3, 112.6, 102.0, 89.8, 89.3, 88.7, 88.3, 85.6, 84.5, 84.4, 70.6, 57.5, 56.4, 30.6, 24.9, 21.2, 17.6 ppm.

HRMS (ESI-TOF): Calcd. for $C_{37}H_{34}BrO_4Ru$ [M⁺ + H]: m/z 723.0684. Found: 723.0661.

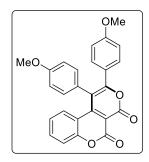
3.9 Synthesis of substituted 4H,5H-pyrano[3,4-c]chromene-4,5-diones: General procedure for the synthesis of the compounds 23ab-aj. To an oven dried Schlenk tube coumarin-3-carboxylic acid (**5a**, 0.53 mmol), alkyne (**7**, 0.53 mmol), [RuCl₂(*p*-cymene)]₂ (2.5 mol %), Cu(OAc)₂·H₂O (30 mol %) and AgSbF₆ (10 mol%) were added. To this mixture, 1,4-dioxane (2 mL) was added and the contents were stirred at 100 °C (oil bath temperature) for 20 h. The progress of the reaction was monitored by TLC. After the completion of the reaction, mixture was cooled to room temperature, and solvent was removed under the vacuum, and the crude product was purified by column chromatography by using silica gel with hexane/ethyl acetate (9:1) mixture as the eluent to afford the corresponding annulated product.

Compound 23ab

Yield: 126.5 mg (61%, yellow solid, $R_f = 0.50$ (9:1 hexane/ethyl acetate)).

Mp: 238-240 °C

IR (neat): v_{max} 3059, 3031, 2920, 1754, 1701, 1598, 1488, 1437, 1248, 1184, 1130, 826, 768, 753 cm⁻¹.


¹H NMR (400 MHz, CDCl₃) δ 7.53-7.48 (m, 1H), 7.34-7.32 (m, 1H), 7.23-7.21 (m, 2H), 7.15-7.09 (m, 4H), 7.04-7.02 (m, 2H), 6.83-6.82 (m, 2H), 2.45 (s, 3H), 2.32 (s, 3H) ppm.

¹³C{¹H} NMR (125 MHz, CDCl₃) δ 164.2, 156.8, 156.5, 154.9, 154.5, 141.1, 139.2, 134.3, 131.9, 131.2, 130.5, 129.5, 129.2, 129.1, 128.7, 123.4, 117.9, 115.9, 115.4, 103.8, 21.5, 21.4 ppm.

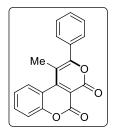
HRMS (ESI-TOF): Calcd. for $C_{26}H_{18}O_4Na$ [M⁺ + Na]: m/z, 417.1103. Found: 417.1103.

This compound was crystallized from ethyl acetate—hexane (2:1) mixture at room temperature. X-ray structure has been determined for this compound.

Compound 23ac

Yield: 143.5 mg (64%, pale yellow solid, $R_f = 0.46$ (9:1 hexane/ethyl acetate)).

Mp: 148-150 °C


IR (neat): v_{max} 2932, 2842, 2360, 1791, 1745, 1674, 1597, 1511, 1397, 1253, 1168, 1024, 983, 838, 733, 701, 614 cm⁻¹.

¹H NMR (500 MHz, CDCl₃) δ 8.03 (d, J = 8.5 Hz, 2H), 7.69-7.65 (m, 1H), 7.60 (d, J = 8.0 Hz, 1H), 7.42 (d, J = 8.5 Hz, 1H), 7.30-7.25 (m, 3H), 6.93-6.90 (m, 4H), 3.88 (s, 3H), 3.81 (s, 3H) ppm.

¹³C{¹H} NMR (125 MHz, CDCl₃) δ 170.6, 164.8, 164.6, 160.9, 156.5, 154.5, 135.3, 134.0, 129.4, 127.9, 126.6, 126.0, 124.7, 117.5, 115.5, 114.9, 113.9, 109.9, 92.6, 55.6, 55.4 ppm.

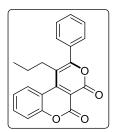
HRMS (ESI-TOF): Calcd. for $C_{26}H_{19}O_6$ [M⁺ + H]: m/z 427.1181. Found: 427.1181.

Compound 23ae

Yield: 96.0 mg (60%, pale yellow solid, $R_f = 0.48$ (9:1 hexane/ethyl acetate)).

Mp: 137-139 °C

IR (neat): ν_{max} 3068, 2968, 1730, 1672, 1594, 1460, 1445, 1376, 1321, 1286, 1229, 1205,


1028, 976, 956, 928, 902, 791, 749, cm⁻¹.

¹H NMR (500 MHz, CDCl₃) δ 8.41 (dd, $J_1 = 7.5$ Hz, $J_2 = 1.0$ Hz, 1H), 7.85-7.82 (m, 1H), 7.67 (d, J = 8.0 Hz, 1H), 7.63-7.61 (m, 2H), 7.60-7.56 (m, 1H), 7.51-7.49 (m, 1H), 7.48-7.44 (m, 2H), 2.35 (s, 3H) ppm.

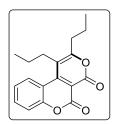
¹³C{¹H} NMR (125 MHz, CDCl₃) δ 162.6, 151.2, 138.8, 134.8, 133.3, 129.8, 129.5, 129.4, 128.5, 128.3, 128.0, 123.4, 120.8, 109.1, 100.0, 13.6 ppm.

HRMS (ESI-TOF): Calcd. for $C_{19}H_{13}O_4$ [M⁺ + H]: m/z 305.0814. Found: 305.0814.

Compound 23ag

Yield: 118.9 mg (68%, pale yellow solid, $R_f = 0.51$ (9:1 hexane/ethyl acetate)).

Mp: 180-182 °C


IR (neat): ν_{max} 2962, 1763, 1604, 1567, 1480, 1380, 1257, 1071, 998, 860, 764, 698 cm

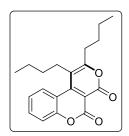
1.

¹H NMR (500 MHz, CDCl₃) δ 8.25 (dd, J_1 = 8.5 Hz, J_2 = 1.0 Hz, 1H), 7.73-7.69 (m, 1H), 7.64-7.63 (m, 2H), 7.59-7.52 (m, 3H), 7.45 (dd, J = 8.3 Hz, J_2 = 1.5 Hz, 1H), 7.41-7.38 (m, 1H), 3.04 (t, J = 7.8 Hz, 2H), 1.47-1.40 (m, 2H), 0.78 (t, J = 7.3 Hz, 3H) ppm.

¹³C{¹H} NMR (125 MHz, CDCl₃) δ 164.7, 156.7, 156.2, 155.7, 154.6, 134.7, 132.5, 131.1, 129.5, 128.7, 127.7, 124.4, 118.5, 116.5, 113.5, 105.9, 32.4, 22.6, 13.6 ppm. HRMS (ESI-TOF): Calcd. for $C_{21}H_{17}O_4$ [M⁺ + H]: m/z 333.1127. Found: 333.1124.

Compound 23ai

Yield: $105.1 \text{ mg } (67\%, \text{ gummy liquid}, R_f = 0.54 (9:1 \text{ hexane/ethyl acetate})).$


Mp: -gummy liquid

IR (neat): v_{max} 2923, 2853, 1723, 1606, 1452, 1176, 1119, 998, 829,753 cm⁻¹.

¹H NMR (400 MHz, CDCl₃) δ 8.05 (dd, J_1 = 8.4 Hz, J_2 = 1.2 Hz, 1H), 7.70-7.66 (m, 1H), 7.42-7.35 (m, 2H), 2.83-2.79 (m, 2H), 2.72-2.69 (m, 2H), 1.88-1.79 (m, 2H), 1.77-1.66 (m, 2H), 1.12 (t, J = 7.4 Hz, 3H), 1.07 (t, J = 7.4 Hz, 3H) ppm.

¹³C{¹H} NMR (125 MHz, CDCl₃) δ 160.8, 154.1, 143.4, 131.9, 131.8, 130.0, 127.9, 126.2, 124.7, 124.4, 118.9, 116.9, 116.8, 116.6, 31.9, 29.7, 29.4, 22.7, 14.4, 14.1 ppm. HRMS (ESI-TOF): Calcd. for $C_{18}H_{18}O_4Na$ [M⁺ + Na]: m/z 321.1103. Found: 321.1103.

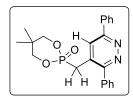
Compound 23aj

Yield: 111.6 mg (65%, gummy liquid, $R_f = 0.58$ (9:1 hexane/ethyl acetate)).

Mp: gummy liquid

IR (neat): v_{max} 2924, 2853, 1729, 1606, 1563, 1453, 1178, 1102, 929, 828, 752 cm⁻¹.

¹H NMR (400 MHz, CDCl₃) δ 8.08 (dd, J_1 = 8.4 Hz, J_2 = 1.2 Hz, 1H), 7.70-7.66 (m, 1H), 7.41 (dd, J = 8.4 Hz, J_2 = 1.2 Hz, 1H), 7.38-7.34 (m, 1H), 2.86-2.82 (m, 2H), 2.74-


2.70 (m, 2H), 1.81-1.75 (m, 2H), 1.73-1.68 (m, 2H), 1.58-1.51 (m, 2H), 1.50-1.43 (m, 2H), 1.05 (t, J = 7.4 Hz, 3H), 1.00 (t, J = 7.4 Hz, 3H) ppm.

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 169.5, 157.0, 156.3, 155.3, 154.6, 134.4, 127.7, 124.1, 118.5, 116.1, 112.7, 104.6, 32.2, 32.0, 29.7, 28.5, 22.6₃, 22.5₇, 13.7, 13.6 ppm. HRMS (ESI-TOF): Calcd. for $C_{20}H_{22}O_4Na$ [M⁺ + Na]: m/z 349.1416. Found: 349.1412.

3.10 Thermally induced [4+2] cycloaddition reactions of 3,6-diphenyl 1,2,4,5-tetrazine (8) with allenes: Representative procedure for the synthesis 3,6-diphenylpyridazines (24a-d and 25).

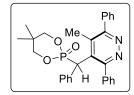
To an oven dried Schlenk tube, 3,6-diphenyl-1,2,4,5-tetrazine **8** (50 mg, 0.21 mmol) and allene (one of **10a-d** or **11**, 0.32 mmol) were added. To this mixture, xylene (2 mL) was added and the contents were stirred at 140 °C for 24 h. Progress of the reaction was monitored by TLC and can be identified by the disappearance of the violet-red color of the tetrazine in the reaction mixture. After completion of the reaction, the mixture was concentrated under reduced pressure, and the crude product was purified by silica gel column chromatography by using hexane/ethyl acetate (3:2) mixture as the eluent to afford the products **24-25**.

Compound 24a

Yield: 69.0 mg (82%, white solid, $R_f = 0.36$ (3:2 hexane/ethyl acetate)).

Mp: 218-220 °C

IR (neat): v_{max} 3056, 2961, 2901, 1585, 1477, 1445, 1401, 1369, 1262, 1241, 1056, 1006, 978, 916, 865, 813, 774, 756, 695, 645 cm⁻¹.


¹H NMR (400 MHz, CDCl₃): δ 8.17 (d, J = 6.8 Hz, 2H), 8.11 (d, J = 2.8 Hz, 1H), 7.69 (d, J = 6.4 Hz, 2H), 7.58-7.52 (m, 6H), 4.18 (dd, J = 10.8, 3.2 Hz, 2H), 3.63 (dd, J = 15.4, 4.0 Hz, 2H), 3.44 (d, J = 22.8 Hz, 2H), 0.95 and 0.85 (2s, 6H) ppm.

¹³C{¹H} NMR (100 MHz, CDCl₃): δ 160.5 (d, J = 7.0 Hz), 157.7, 136.4, 135.9, 130.3 (d, J = 9.0 Hz), 130.1, 129.6, 129.2, 129.0, 128.7, 127.2, 125.8 (d, J = 6.0 Hz), 75.3 (d, J = 7.0 Hz), 32.5 (d, J = 6.0 Hz), 28.4 (d, J = 134.0 Hz), 21.4 and 21.2 ppm.

³¹P NMR (162 MHz, CDCl₃): δ 20.3 ppm

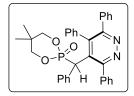
HRMS (ESI-TOF): Calcd. for $C_{22}H_{24}N_2O_3P$ [M⁺ + H]: m/z 395.1524. Found: 395.1524.

Compound 24b

Yield: 76.53 (74%, white solid, $R_f = 0.38$ (3:2 hexane/ethyl acetate)).

Mp: 204-206 °C

IR (neat): v_{max} 3053, 2966, 2926, 1598, 1497, 1468, 1446, 1376, 1255, 1178, 1053, 1004, 966, 917, 828, 777, 760, 648 cm⁻¹.


¹H NMR (400 MHz, CDCl₃): δ 7.64-7.62 (m, 2H), 7.57-7.54 (m, 2H), 7.50-7.44 (m, 8H), 7.41-7.37 (m, 2H), 7.34-7.30 (m, 1H), 5.41 (d, J = 30.4 Hz, 1H), 4.22-4.06 (m, 2H), 3.59-3.44 (m, 2H), 2.23 (s, 3H), 0.90 and 0.69 (2s, 6H) ppm.

¹³C{¹H} NMR (100 MHz, CDCl₃): δ 163.0, 161.7 (d, J = 7.0 Hz), 137.9 (d, J = 5.0 Hz), 137.4, 137.2, 134.2 (d, J = 3.0 Hz), 133.4 (d, J = 6.0 Hz), 129.4, 129.3, 129.1, 129.0, 128.8, 128.5, 128.4, 128.3, 127.5, 75.3 (d, J = 7.0 Hz), 75.0 (d, J = 7.0 Hz), 44.8 (d, J = 135.0 Hz), 32.6 (d, J = 6.0 Hz), 21.5, 21.2 and 18.8 ppm.

³¹P NMR (162 MHz, CDCl₃): δ 19.9 ppm

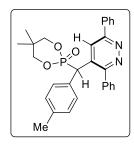
HRMS (ESI-TOF): Calcd. for $C_{29}H_{30}N_2O_3P$ [M⁺ + H]: m/z 485.1994. Found: 485.1994.

Compound 24c

Yield: 94.50 (81%, white solid, $R_f = 0.37$ (3:2 hexane/ethyl acetate)).

Mp: 202-204 °C

IR (neat): v_{max} 2925, 2854, 1722, 1600, 1445, 1376, 1228, 1054, 1002, 910, 829, 762, 732, 699, 650, 631 cm⁻¹.


¹H NMR (500 MHz, CDCl₃): δ 7.54-7.43 (m, 5H), 7.28-7.26 (m, 4H), 7.20-7.10 (m, 5H), 7.06-6.83 (m, 6H), 5.41 (d, J = 30.0 Hz, 1H), 4.13-4.08 (m, 2H), 3.48-3.35 (m, 2H), 0.84 and 0.62 (2s, 6H) ppm.

¹³C{¹H} NMR (125 MHz, CDCl₃): δ 162.0 (d, J = 5.0 Hz), 160.8, 141.2, 138.1, 137.4, 134.5 (d, J = 2.8 Hz), 134.4, 132.9 (d, J = 5.4 Hz), 131.1, 130.5, 130.1, 129.9, 129.6 (d, J = 10.6 Hz), 128.5, 128.2, 128.0, 127.7, 127.5, 127.4, 126.9, 74.6 (d, J = 6.1 Hz), 44.9 (d, J = 137.5 Hz), 32.5 (d, J = 5.5 Hz), 21.7, 21.2 ppm.

³¹P NMR (162 MHz, CDCl₃): δ 19.7 ppm

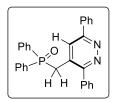
HRMS (ESI-TOF): Calcd. for $C_{34}H_{32}N_2O_3P$ [M⁺ + H]: m/z, 547.2150. Found: 547.2150.

Compound 24d

Yield: 71.35 (69%, white solid, $R_f = 0.39$ (3:2 hexane/ethyl acetate)).

Mp: 210-212 °C

IR (neat): v_{max} 3050, 2970, 2923, 1585, 1512, 1448, 1398, 1372, 1270, 1055, 1004, 983, 944, 915, 869, 835, 800, 760, 701, 690 cm⁻¹.


¹H NMR (400 MHz, CDCl₃): δ 8.52 (d, J = 2.0 Hz, 1H), 8.20-8.17 (m, 2H), 7.58-7.52 (m, 8H), 7.27-7.24 (m, 2H), 7.15 (d, J = 8.0 Hz, 2H), 4.82 (d, J = 23.6 Hz, 1H), 4.17-4.07 (m, 2H), 3.70-3.63 (m, 1H), 3.56-3.49 (m, 1H), 2.33 (s, 3H), 0.98 and 0.82 (2s, 6H) ppm.

¹³C{¹H} NMR (100 MHz, CDCl₃): δ 160.5 (d, J = 10.0 Hz), 158.1, 138.1 (d, J = 2.0 Hz), 136.6, 136.1, 135.3 (d, J = 4.0 Hz), 130.9 (d, J = 7.0 Hz), 130.1, 129.9 (d, J = 2.0 Hz), 129.5, 129.2, 129.1, 129.0, 128.6, 127.4, 124.9 (d, J = 5.0 Hz), 75.9 (d, J = 7.0 Hz), 75.8 (d, J = 7.0 Hz), 43.9 (d, J = 134.0 Hz), 32.5 (d, J = 6.0 Hz), 21.3₄, 21.3₀, and 21.1 ppm.

³¹P NMR (162 MHz, CDCl₃): δ 18.6 ppm

HRMS (ESI-TOF): Calcd. for $C_{29}H_{30}N_2O_3P$ [M⁺ + H]: m/z 485.1994. Found: 485.1993.

Compound 25

Yield: 75.29 (79%, white solid, $R_f = 0.41$ (3:2 hexane/ethyl acetate)).

Mp: 208-210 °C

IR (neat): v_{max} 3057, 2924, 2854, 1717, 1584, 1438, 1399, 1192, 1120, 1072, 1027, 909,

832, 730, 694, 645 cm⁻¹.

¹H NMR (500 MHz, CDCl₃): δ 8.17 (d, J = 2.0 Hz, 1H), 8.10 (dd, J = 7.5, 1.5 Hz, 2H), 7.56-7.50 (m, 9H), 7.48-7.41 (m, 7H), 7.37-7.35 (m, 2H), 3.83 (d, J = 14.0 Hz, 2H) ppm.

¹³C{¹H} NMR (100 MHz, CDCl₃): δ 160.5 (d, J = 4.0 Hz), 157.2, 136.1 (d, J = 39.3 Hz), 132.4 (d, J = 2.0 Hz), 131.6, 131.0, 130.9, 130.8, 130.7₁, 130.6₆, 130.0, 129.6, 128.9 (d, J = 2.0 Hz), 128.8₃, 128.5, 127.3, 125.7 (d, J = 4.0 Hz), 33.2 (d, J = 50.0 Hz) ppm.

³¹P NMR (202 MHz, CDCl₃): δ 29.6 ppm

HRMS (ESI-TOF): Calcd. for $C_{29}H_{24}N_2OP [M^+ + H]$: m/z 447.1626. Found: 447.1626.

This compound was crystallized from ethyl acetate—hexane (2:1) mixture at room temperature. X-ray structure has been determined for this compound.

3.11 Synthesis of 3,6-diphenylpyridazines 26a-b, 27a-c and 28: To an oven dried Schlenk tube, 3,6-diphenyl-1,2,4,5-tetrazine **8** (50 mg, 0.21 mmol) and allene (one of **12a-b, 13a-c** or **14**, 0.42 mmol), were added. To this mixture, xylene (2 mL) was added and the contents were stirred at 120 °C for 12 h. After completion of the reaction, the mixture was concentrated under reduced pressure, and the crude product was purified by silica gel column chromatography by using hexane/ethyl acetate (9:1) mixture as the eluent to afford the product.

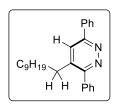
Compound 26a

Yield: 60.45 (79%, gummy liquid, $R_f = 0.52$ (9:1 hexane/ethyl acetate)).

Mp: gummy liquid

IR (neat): v_{max} 2922, 2852, 1719, 1584, 1449, 1398, 1180, 1073, 1026, 908, 765, 695, 659

 cm^{-1} .


¹H NMR (500 MHz, CDCl₃) δ 8.14 (d, J = 7.0 Hz, 2H), 7.75 (s, 1H), 7.60 (dd, J = 8.0, 1.5 Hz, 2H), 7.55-7.48 (m, 6H), 2.72 (t, J = 7.5 Hz, 2H), 2.32 (t, J = 7.5 Hz, 1H), 1.65-

1.55 (m, 3H), 1.21 (br, 8H), 0.90 (br, 2H), 0.89 (t, J = 5.8 Hz, 3H) ppm.

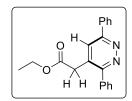
¹³C{¹H} NMR (125 MHz, CDCl₃): δ 160.8, 157.8, 140.9, 137.1, 136.5, 129.9, 129.2, 129.0, 128.8, 128.4, 127.2, 124.3, 34.1, 32.1, 31.8, 29.7, 29.3, 29.2, 24.8, 22.7, 14.1 ppm.

HRMS (ESI-TOF): Calcd. for $C_{25}H_{31}N_2$ [M⁺ + H]: m/z, 359.2487. Found: 359.2488.

Compound 26b

Yield: $67.59 (85\%, \text{gummy liquid}, R_f = 0.54 (9:1 \text{ hexane/ethyl acetate})).$

Mp: gummy liquid


IR (neat): v_{max} 3059, 2922, 2852, 1719, 1584, 1492, 1449, 1397, 1180, 1072, 1025, 913, 765, 694, 658 cm⁻¹.

¹H NMR (500 MHz, CDCl₃): δ 8.16 (dd, J = 5.5 Hz, 2.0 Hz, 2H), 7.77 (s, 1H), 7.63-7.61 (m, 2H), 7.57-7.48 (m, 6H), 2.74 (t, J = 8.0 Hz, 2H), 1.63-1.55 (m, 2H), 1.31-1.22 (m, 14H), 0.90 (t, J = 7.0 Hz, 3H) ppm.

¹³C{¹H} NMR (125 MHz, CDCl₃): δ 160.8, 157.7, 140.8, 137.2, 136.5, 129.8, 129.2, 129.0, 128.7, 128.4, 127.1, 124.2, 32.1, 31.9, 29.7, 29.5, 29.4, 29.3, 29.2₂, 29.1₅, 22.7, 14.1 ppm.

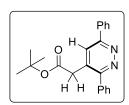
HRMS (ESI-TOF): Calcd. for $C_{26}H_{33}N_2$ [M⁺ + H]: m/z 373.2643. Found: 373.2635.

Compound 27a

Yield: 59.80 (88%, white solid, $R_f = 0.48$ (9:1 hexane/ethyl acetate)).

Mp: 128-130 °C

IR (neat): ν_{max} 2980, 2904, 1731, 1585, 1445, 1399, 1373, 1331, 1278, 1190, 1157, 1071,


1022, 935, 899, 866, 802,772, 751, 699 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ 8.18 (dd, J = 8.0, 1.6 Hz, 2H), 7.92 (s, 1H), 7.65-7.62 (m, 2H), 7.60-7.52 (m, 6H), 4.17 (q, J = 14.4, 7.2 Hz, 2H), 3.77 (s, 2H), 1.25 (t, J = 7.2 Hz, 3H) ppm.

¹³C{¹H} NMR (100 MHz, CDCl₃): δ 169.7, 160.5, 157.8, 136.5, 136.1, 132.6, 130.1, 129.3, 129.1, 129.0, 128.6, 127.2, 125.6, 61.6, 38.1, 14.1 ppm.

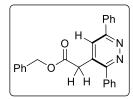
HRMS (ESI-TOF): Calcd. for $C_{20}H_{19}N_2O_2$ [M⁺ + H]: m/z 319.1446. Found: 319.1449.

Compound 27b

Yield: $62.85 (85\%, \text{ white solid}, R_f = 0.51 (9:1 \text{ hexane/ethyl acetate})).$

Mp: 124-126 °C

 $IR \; (neat): \qquad \nu_{max} \; 2976, \, 2932, \, 1727, \, 1587, \, 1450, \, 1397, \, 1368, \, 1331, \, 1258, \, 1221, \, 1146, \, 1026, \, 1231, \, 123$


847, 764, 696 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ 8.18 (dd, J = 8.0, 1.6 Hz, 2H), 7.90 (s, 1H), 7.66-7.64 (m, 2H), 7.59-7.51 (m, 6H), 3.69 (s, 2H), 1.42 (s, 9H) ppm.

¹³C{¹H} NMR (125 MHz, CDCl₃): δ 168.9, 160.5, 157.7, 136.6, 136.1, 133.1, 130.0, 129.3, 129.1, 129.0, 128.5, 127.2, 125.7, 82.2, 39.5, 27.9 ppm.

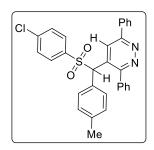
HRMS (ESI-TOF): Calcd. for $C_{22}H_{23}N_2O_2$ [M⁺ + H]: m/z 347.1759. Found: 347.1757.

Compound 27c

Yield: $65.77 (81\%, \text{ white solid}, R_f = 0.46 (9:1 \text{ hexane/ethyl acetate})).$

Mp: 196-198 °C

IR (neat): v_{max} 3059, 3027, 2923, 2852, 1734, 1587, 1494, 1451, 1399, 1328, 1213, 1157,


1111, 1074, 1026, 974, 905, 764, 696 cm⁻¹.

¹H NMR (500 MHz, CDCl₃): δ 8.12 (dd, J = 8.0, 1.5 Hz, 2H), 7.87 (s, 1H), 7.59-7.52 (m, 5H), 7.50-7.47 (m, 3H), 7.39-7.36 (m, 3H), 7.33-7.31 (m, 2H), 5.15 (s, 2H), 3.81 (s, 2H) ppm.

¹³C{¹H} NMR (125 MHz, CDCl₃): δ 169.5, 160.4, 157.8, 136.4, 136.0, 135.2, 132.3, 130.0, 129.3, 129.1, 129.0, 128.7, 128.6₂, 128.5₆, 128.5, 127.2, 125.5, 67.3, 38.0 ppm.

HRMS (ESI-TOF): Calcd. for $C_{25}H_{21}N_2O_2$ [M⁺ + H]: m/z 381.1603. Found: 381.1605.

Compound 28

Yield: 69.80 (64%, red solid, $R_f = 0.47$ (9:1 hexane/ethyl acetate)).

Mp: 182-184 °C

IR (neat): v_{max} 2921, 2851, 1736, 1460, 1376, 1087 cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ 7.48-7.47 (m, 4H), 7.39-7.36 (m, 2H), 7.30-7.24 (m, 8H), 7.16-7.12 (m, 3H), 7.06-7.04 (m, 2H), 4.85 (s, 1H), 2.39 (s, 3H) ppm.

¹³C{¹H} NMR (125 MHz, CDCl₃): δ 160.6, 159.5, 141.7, 140.7, 138.6, 137.9, 136.8, 131.2, 129.9, 129.5, 129.4, 129.3, 129.2, 128.9, 128.7, 128.5, 127.9, 125.0, 124.6, 55.6, 21.3 ppm.

HRMS (ESI-TOF): Calcd. for $C_{30}H_{24}CIN_2O_2S$ [M⁺ + H]: m/z, 511.1247. Found: 511.1251.

This compound was crystallized from ethyl acetate—hexane (2:1) mixture at room temperature. X-ray structure has been determined for this compound.

3.12 X-ray crystallography:

A suitable crystal was mounted on a glass fiber (for **15aa**, **15ba**, **16ba**, **17ba**, **19ap**, **19bb**, **intermediate X**, **20aa**, **20de**, **21aa**, **21ce**, **21cj**, **22ra**, **23ab**, **25** and **27b**) and X-ray data were collected at 298 K on a Bruker AXS-SMART or on an OXFORD diffractometer using Mo- K_{α} radiation ($\lambda = 0.71073$ Å) or Cu- K_{α} ($\lambda = 1.54184$ Å). Structures were solved and refined using standard methods. Absorption corrections were done using SADABS program, where applicable. All non-hydrogen atoms were refined anisotropically; hydrogen atoms were fixed by geometry or located by a Difference Fourier and refined isotropically. Crystal data are summarized in Tables 14-17.

Table 14: Crystal data for compounds 15aa, 15ba, 16ba, and 17ba^a

Compound	15 aa	15ba	16ba	17ba
Emp. formula	$C_{31}H_{21}ClN_2O_6$	$C_{32}H_{23}ClN_2O_6$	$C_{32}H_{23}ClN_2O_4$	$C_{30.25}H_{17.50}Cl_{1.50}N_2O_4$
Formula weight	552.95	566.97	534.97	526.14
Crystal system	Triclinic	Monoclinic	Triclinic	Triclinic
Space group	P-1	P2(1)/c	P-1	P-1
a /Å	9.8594(4)	13.8158(8)	8.7530(6)	9.7775(16)
b /Å	11.5298(5)	11.0100(6)	12.2409(12)	11.469(2)
c /Å	13.2242(6)	18.4437(10)	12.7350(9)	14.435(3)
α∕deg	72.805(2)	90	104.721(7)	74.357(6)
β⁄deg	69.221(2)	103.283(5)	99.154(6)	80.618(6)

y/deg	84.368(2)	90	101.014(7)	73.403(6)
$V/{ m \AA}^3$	1342.65(10)	2730.5(3)	1264.03(18)	1487.2(5)
Z	2	4	2	2
Deale /g cm ⁻³]	1.368	1.379	1.406	1.182
μ /mm ⁻¹	0.191	0.190	0.195	0.208
F(000)	572.0	1176.0	556.0	544.0
Data/ restraints/ parameters	4729/0/363	4781/0/372	4471/0/358	5231/2/350
S	1.018	0.938	1.048	1.207
R1 [$I > 2\sigma(I)$]	0.0623	0.0700	0.0820	0.0842
wR2 [all data]	0.1444	0.2029	0.2348	0.3030
Max./min. residual electron dens. [eÅ-3]	0.42/-0.43	0.34/-0.22	0.35/-0.36	0.71/-0.29

 $aR1 = \Sigma ||Fo| - |Fc||/\Sigma |Fo|$ and $wR2 = [\Sigma w(Fo^2 - Fc^2)^2 / \Sigma wFo^4]^{0.5}$

Table 15: Crystal data for compounds 19ap, 19bb, intermediate X, and $20aa^a$

Compound	19ap	19bb	X	20aa
Emp. formula	$C_{30}H_{17}ClN_2O_4$	$C_{34}H_{26}Cl_3NO_3$	C ₃₁ H ₂₂ ClFN ₂ O ₅	$C_{30}H_{18}O_3$
Formula weight	504.90	602.91	556.96	426.48
Crystal system	Monoclinic	Monoclinic	Orthorhombic	Monoclinic
Space group	P2(1)/c	P2(1)/c	Pca2(1)	P2(1)/c
a /Å	8.7144(2)	9.6019(3)	14.0858(11)	13.9566(5)
b /Å	16.0477(6)	14.9318(5)	12.2527(9)	12.3310(5)
c /Å	18.8759(7)	20.5601(7)	15.7897(10)	24.8503(9)
lpha/deg	90	90	90	90
β/deg	95.277(3)	95.004(3)	90	96.334(4)
y∕deg	90	90	90	90

$V/{\rm \AA}^3$	2628.53(15)	2936.54(17)	2725.1(3)	4250.6(3)
Z	4	4	4	8
Dcalc /g cm ⁻³]	1.276	1.364	1.358	1.333
μ /mm $^{ ext{-}1}$	0.183	0.348	0.191	0.085
F(000)	1040.0	1248.0	1152.0	1776.9
Data/ restraints parameters	[/] 5492/0/334	5166/0/378	4505/1/367	8912/0/595
S	1.004	1.099	0.999	1.011
R1 [$I > 2\sigma(I)$]	0.0893	0.0654	0.0575	0.0559
wR2 [all data]	0.3171	0.2010	0.1194	0.1716
Max./min. residual electron dens. [eÅ-3]	1.23/-0.43	0.48/-0.36	0.29/-0.21	0.23/-0.30

 $^{{}^{}a}R1 = \Sigma ||Fo| - |Fc||/\Sigma |Fo| \text{ and } wR2 = [\Sigma w(Fo^{2}-Fc^{2})^{2}/\Sigma wFo^{4}]^{0.5}$

Table 16: Crystal data for compounds 20de, 21aa, 21ce, and $21cj^a$

Compound	20de	21aa	21ce	21cj
Emp. formula	$C_{30}H_{14}Cl_{2}F_{2}O_{3}$	$C_{24}H_{16}O_3$	C ₂₁ H ₁₅ BrClO ₄	C ₂₁ H ₂₅ BrO ₄
Formula weight	531.31	352.37	446.69	421.32
Crystal system	Monoclinic	Orthorhombic	Monoclinic	Monoclinic
Space group	P2(1)/c	Pna2(1)	P2(1)/c	P2(1)
a /Å	11.552(4)	7.9771(3)	16.4674(10)	5.1663(2)
b /Å	19.301(6)	14.2651(6)	7.5481(5)	14.7442(5)
c /Å	11.711(3)	15.4453(7)	16.6864(10)	12.9318(5)
lpha/deg	90	90	90	90
β⁄deg	115.976(11)	90	117.646(2)	98.432(4)
y/deg	90	90	90	90
$V/\text{Å}^3$	2347.4(13)	1757.58(13)	1837.3(2)	974.41(6)
Z	4	4	4	2
Dcalc /g cm ⁻³]	1.503	1.332	1.615	1.436
μ /mm ⁻¹	0.326	0.087	2.408	2.132

F(000)	1080.0	736.0	900.0	436.0
Data/ restraints/ parameters	4107/0/334	2973/1/245	3187/0/246	2954/1/238
S	1.003	1.103	1.061	1.041
R1 [$I > 2\sigma(I)$]	0.0945	0.0288	0.0462	0.0544
wR2 [all data]	0.2687	0.0747	0.1320	0.1402
Max./min. residual electron dens. [eÅ-3]	0.76/-0.60	0.09/-0.08	0.53/-1.05	0.39/-0.36

 $^{^{}a}$ R1 = Σ ||Fo| - |Fc||/ Σ |Fo| and wR2 = [Σ w(Fo²-Fc²)²/ Σ wFo⁴]^{0.5}

Table 17: Crystal data for compounds 22ra, 23ab, 25 and $27b^a$

Compound	22ra	23ab	25	27b
Emp. formula	C ₃₆ H ₃₂ O ₃ Ru	C ₂₆ H ₁₈ O ₄	C ₂₉ H ₂₃ N ₂ OP	$C_{22}H_{22}N_2O_2$
Formula weight	613.72	394.40	446.46	346.42
Crystal system	Monoclinic	Orthorhombic	Monoclinic	Triclinic
Space group	P2(1)/c	Fdd2	P2(1)/c	P-1
a /Å	18.2137(11)	52.655(4)	10.5707(10)	6.6349(3)
b /Å	9.1058(6)	7.5681(4)	19.9949(16)	9.9311(5)
c /Å	17.3141(10)	19.8301(12)	11.3147(11)	15.1391(7)
lpha/deg	90	90	90	73.777(2)
β/deg	104.407(2)	90	108.576(10)	85.701(1)
y/deg	90	90	90	84.283(1)
$V/{\rm \AA}^3$	2781.2(3)	7902.3(9)	2266.9(4)	951.90(8)
Z	4	16	4	2
Dcalc /g cm ⁻³]	1.466	1.326	1.308	1.209
μ /mm $^{ ext{-}1}$	0.600	0.089	0.146	0.078
F(000)	1259.5	3296.0	936.0	368.0
Data/ restraints parameters	4886/0/364	3261/1/274	3994/0/298	3334/0/239

S	1.083	1.076	1.002	1.042
R1 [$I > 2\sigma(I)$]	0.0201	0.0339	0.0802	0.0623
wR2 [all data]	0.0543	0.0873	0.1991	0.1819
Max./min. residual electron dens. [eÅ-3]	0.33/-0.35	0.13/-0.14	0.32/-0.42	0.37/-0.28

 $^{{}^{}a}R1 = \Sigma ||Fo| - |Fc||/\Sigma |Fo|$ and $wR2 = [\Sigma w(Fo^{2}-Fc^{2})^{2}/\Sigma wFo^{4}]^{0.5}$

References

- (a) Selvaraj, K.; Debnath, S.; Kumara Swamy, K. C. Org. Lett. 2019, 21, 5447. (b) Satoh, T.; Miura, M. Chem. Eur. J. 2010, 16, 11212. (c) Ackermann, L. Acc. Chem. Res. 2014, 47, 281. (d) Arockiam, P. B.; Bruneau, C.; Dixneuf, P. H. Chem. Rev. 2012, 112, 5879. (e) Ritleng, V.; Sirlin, C.; pfeffer, M. Chem. Rev. 2002, 102, 1731. (f) Ueura, K.; Satoh, T.; Miura, M. Org. Lett. 2007, 9, 1407. (g) Ueura, K.; Satoh, T.; Miura, M. J. Org. Chem. 2007, 72, 5362. (h) Ackermann, L.; Pospech, J.; Graczyk, K.; Rauch, K. Org. Lett. 2012, 14, 930. (i) Chinnagolla, R. K.; Jeganmohan, M. Chem. Commun. 2012, 48, 2030. (j) Li, Q.; Yan, Y.; Wang, X.; Gong, B.; Tang, X.; Shi, J.J.; Xu, H. E.; Yi, W. RSC Adv. 2013, 3, 23402. (k) Warratz, S.; Kornhaaß, C.; Cajaraville, Ana.; Niepçtter, B.; Stalke, D.; Ackermann, L Angew. Chem. Int. Ed. 2015, 54, 5513. (l) Kudo, E.; Shibata, Y.; Yamazaki, M.; Masutomi, K.; Miyauchi, Y.; Fukui, M.; Sugiyama, H.; Uekusa, H.; Satoh, T.; Miura, M.; Tanaka, K. Chem. Eur. J. 2016, 22, 14190. (m) Frasco, D. A.; Lilly, C. P.; Boyle, P. D.; Ison, E. A. ACS Catal. 2013, 3, 2421. (n) Rama Suresh, R.; Kumara Swamy, K. C. J. Org. Chem. 2012, 77, 6959.
- (a) Liu, Y.; Yang, Y.; Shi, Y.; Wang, X.; Zhang, L.; Cheng, Y.; You, J. Organometallics 2016, 35, 1350. (b) Mandal, A.; Garai, B.; Dana, S.; Bera, R.; Baidya, M. Chem Asian J. 2020, 15, 4009.
- (a) Li, L.; Wang, G.-W. J. Org. Chem. 2021, 86, 14102. (b) Zeller, M. A.; Riener, M.;
 Nicewicz, D. A. Org. Lett. 2014, 16, 4810. (c) Yonehara, K.; Miyoshi, Y.; Tsukajima,
 A.; Akatsuka, T.; Saito, M. Adv. Synth. Catal. 2011, 353, 1071.
- (a) Agasti, S.; Pal, T.; Achar, T. K.; Maiti, S.; Pal, D.; Mandal, S.; Daud, K.; Lahiri, G. K.; Maiti, D. Angew. Chem. Int. Ed. 2019, 58, 11039. (b) Takamatsu, K.; Hirano, K.; Miura, M. Angew. Chem. Int. Ed. 2017, 56, 5353. (c) Honeycutt, A. P.; Hoover, J. M. Org. Lett. 2018, 20, 7216. (d) Peng, S.; Chen, N.; Zhang, H.; He, M.; Li, H.; Lang, M.; Wang, J. Org. Lett. 2020, 22, 5589. (e) Yang, Y.; Xie, C.; Xie, Y.; Zhang, Y. Org. Lett. 2012, 14, 957.
- 5. Sravanthi, T.V.; Manju, S.L. Eur. J. Pharm. Sci. 2016, 91, 1.
- 6. Dalpozzo, R. Chem. Soc. Rev. 2015, 44, 742.
- 7. (a) Petri, G. L.; Cascioferro, S.; Hassouni, B. E.; Carbone, D.; Parrino, B.; Cirrincione, G.; Peters, G. J.; Diana, P.; Giovannetti, E. *Anticancer Research.* **2019**, *39*, 3615. (b)

- Cascioferro, S.; Attanzio, A.; Sarno, V. D.; Musella, S.; Tesoriere, L.; Cirrincione, G.; Diana, P.; Parrino, B. *Mar. Drugs* **2019**, *17*, 35.
- 8. Lobay, D. Integr. Med. 2015, 14, 40.
- 9. Carbone, A.; Parrino, B.; Cusimano, M. G.; Spanò, V.; Montalbano, A.; Barraja, P.; Schillaci, D.; Cirrincione, G.; Diana, P.; Cascioferro, S. *Mar. Drugs* **2018**, *16*, 274.
- Liu, Y.; Zhou, X.; Zhu, D.; Chen, J.; Qin, B.; Zhang, Y.; Wang, X.; Yang, D.; Meng,
 H.; Luo, Q.; Xie, P. *Hum. Psychopharmacol Clin Exp.* 2015, 30, 132.
- 11. Frajese, G. V.; Pozzi, F.; Frajese, G. Clin. Interv. Aging. 2006:1 439.
- (a) Patil, A. D.; Freyer, A. J.; Eggleston, D. S.; Haltiwanger, R. C.; Bean, M. F.; Taylor, P. B.; Caranfa, M. J.; Breen, A. L.; Bartus, H. R.; Johnson, R. K.; Hertzberg, R. P.; Westley, J. W. J. Med. Chem. 1993, 36, 4131. (b) Kashman, Y.; Gustafson, K. R.; Fuller, R. W.; Cardellina-II, J. H.; McMahon, J. B.; Currens, M. J.; Buckheit-Jr, R. W.; Hughes, S. H.; Cragg, G. M.; Boyd, M. R. J. Med. Chem. 1992, 35, 2735. (c) Mungra, D. C.; Patel, M. P.; Rajani, D. P.; Patel, R. G. Eur. J. Med. Chem. 2011, 46, 4192. (d) Bonsigore, L.; Loy, G.; Secci, D.; Calignano. Eur. J. Med. Chem. 1993, 28, 517. (e) Budzisz, E.; Brzezinska, E.; Krajewska, U.; Rozalski, M. Eur. J. Med. Chem. 2003, 38, 597. (f) Emmadi, N. R.; Atmakur, K.; Chityal, G. K.; Pombala, S.; Nanubolu, J. B. Bioorganic Med. Chem. Lett. 2012, 22, 7261. (g) Gudipudi, G.; Sagurthi, S. R.; Perugu, S.; Achaiah, G.; Krupadanam, G. L. D. RSC. Adv. 2014, 4, 56489.
- (a) Wu, H.; Devaraj, N. K. Acc. Chem. Res. 2018, 51, 1249. (b) Oliveira, B. L.; Guo, Z.; Bernardes, G. J. L. Chem. Soc. Rev. 2017, 46, 4895. (c) Knall, A.-C.; Slugovc, C. Chem. Soc. Rev. 2013, 42, 5131. (d) Pagel, M. J. Pep. Sci. 2019, 25, 3141. (e) Wu, H.; Devaraj, N. K. Top Curr. Chem. (Z) 2016, 3, 374. (f) Kozma, E.; Demeter, O.; Kele, P. ChemBioChem. 2017, 18, 486. (g) Hörner, S.; Uth, C.; Avrutina, O.; Frauendorf, H.; Wiessler, M.; Kolmar, H. Chem. Commun. 2015, 51, 11130. (h) Liu, D.; Tangpeerachaikul, A.; Selvaraj, R.; Taylor, M. T.; Fox, J. M.; Ting, A. Y. J. Am. Chem. Soc. 2012, 134, 792. (i) Braun, K.; Wiessler, M.; Ehemann, V.; Pipkorn, R.; Spring, H.; Debus, J.; Didinger, B.; Koch, M.; Muller, G.; Waldeck, W. Drug Des. Dev. Ther. 2008, 2, 289. (j) Wiessler, M.; Waldeck, W.; Kliem, C.; Pipkorn, R.; Braun, K. Int. J. Med. Sci. 2010, 7, 19. (k) Boger, D. L. Wolkenberg, S. E. J. Org. Chem. 2000, 65, 9120. (l) Pipkorn, R.; Waldeck, W.; Didinger, B.; Koch, M.; Mueller, G.; Wiesslerd,

- M.; Braun, K. J. Pept. Sci. 2009; 15: 235. (m) Sakya, S. M.; Groskopt, K. K. Boger, D. L. Tetrahedron Lett. 1997, 38, 3805. (n) Panek, J. S. Zhu, Bin. Tetrahedron Lett. 1996, 37, 8151. (o) Boger, D. L. Panek, J. S. Tetrahedron Lett. 1983, 24, 4511. (p) Balcar, J.; Chrisam, G.; Huber, F. X.; Sauer, J. Tetrahedron Lett. 1983, 24, 1481. (q) Martin, H.-D.; Hekman, M. Tetrahedron Lett. 1978, 19, 1183. (r) Hubera, F.-X.; Sauer, J.; McDonald, W. S.; Nöth, H. Chem. Ber. 1982, 115, 444. (s) Boger, D. L.; Panek, J. S. J. Am. Chem. Soc. 1985, 107, 5745. (t) Sauer, J.; Pabst, G. R.; Holland, U.; Kim, H.-S.; Loebbecke, S. Eur. J. Org. Chem. 2001, 697.
- (a) Lenz, G. R. J. Org. Chem. 1988, 53, 5793. (b) Rooshenas, P.; Hof, K.; Schreiner,
 P. R.; Williams, C. M. Eur. J. Org. Chem. 2011, 983. (c) Dang, A.-T.; Miller, D. O.;
 Dawe, L. N.; Bodwell, G. J. Org. Lett. 2008, 10, 233.
- (a) Anderson, E. D.; Boger, D. L. J. Am. Chem. Soc. 2011, 133, 12285. (b) Türkmen, Y. E.; Montavon, T. J.; Kozmin, S. A.; Rawal, V. H. J. Am. Chem. Soc. 2012, 134, 9062. (c) Kessler, S. N. Wegner, H. A. Org. Lett. 2010, 12, 4062. (d) Boger, D. L. Coleman, R. S. J. Am. Chem. Soc. 1987, 109, 2717. (e) Boger, D. L. Coleman, R. S. J. Org. Chem. 1984, 49, 2240. (f) Elliott, G. I.; Fuchs, J. R.; Blagg, B. S. J.; Ishikawa, H.; Tao, H.; Yuan, Z.-Q., Boger, D. L. J. Am. Chem. Soc. 2006, 128, 10589. (g) Wilkie, G. D.; Elliott, G. I.; Blagg, B. S. J.; Wolkenberg, S. E.; Soenen, D. R.; Miller, M. M.; Pollack, S.; Boger, D. L. J. Am. Chem. Soc. 2002, 124, 11292.
- (a) Lamberth, C. J. Heterocycl. Chem. 2017, 54, 2974. (b) Tamura, S.; Jojima, T. Agr. Biol. Chem. 1963, 27, 653. (c) Nakagawa, M.; Ando, M. Agric. Biol. Chem. 1977, 41, 1975. (d) Burghardt, M.; Friedmann, A.; Schreiber, L.; Riederer, M. J. Agric. Food Chem. 2005, 53, 7150. (e) Gressel, J.; Evron, Y. Pestic. Biochem. Physiol. 1992, 44, 140.
- 17. (a) He, Z.-X.; Gong, Y.-P.; Zhang, X.; Ma, L.-Y.; Zhao, W. Eur. J. Med. Chem. 2021, 209, 112946. (b) Jaballah, M. Y.; Serya, R. A. T.; Abouzid, K. A. M. Drug Res. 2017, 67, 138. (c) Liu, C.; Lin, J.; Moslin, R.; Tokarski, J. S.; Muckelbauer, J.; Chang, C. Y.; Tredup, J.; Xie, D.; Park, H.; Li, P.; Wu, D.-R.; Strnad, J.; Fernandez, A. Z.; Cheng, L.; Chaudhry, C.; Chen, J.; Chen, C.; Sun, H.; Elzinga. P.; D'arienzo, C.; Gillooly, K.; Taylor, T. L.; McIntyre, K. W.; Salter-Cid, L.; Lombardo, L. J.; Carter, P. H.; Aranibar, N.; Burke, J. R.; Weinstein, D. S. Med. Chem. Lett. 2019, 10, 383. (d) Komeda, S.;

- Kalayda, G. V.; Lutz, M.; Spek, A. L.; Yamanaka, Y.; Sato, T.; Chikuma, M.; Reedijk, J. *J. Med. Chem.* **2003**, *46*, 1210.
- 18. Aleeva, G. N.; Molodavkin, G. M.; Voronina, T. A. Bull. Exp. Bio. Med. 2009, 48, 54.
- 19. (a) McTavish, D.; Young, R. A.; Clissold, S. P. *Drugs* **1990**, *40*, 543. (b) Henry A. Schroeder, M.D. *Circulation*. **1952**, *5*, 28.
- 20. Khan, A.; Diwan, A.; Thabet, H. K.; Imra, Mohd. Drug Dev. Res. 2020, 81, 573.
- Zerroug, A.; Belaidi, S.; BenBrahim, I.; Sinha, L.; Chtita, S. *J. King Saud Univ. Sci.* 2019, 31, 595.
- 22. Bai, J.-F.; Zhao, L.; Wang, F.; Yan, F.; Kano, T.; Maruoka, K.; Li, Y. *Org. Lett.* **2020**, 22, 5439.
- 23. Hao, L.; Pan, Y.; Wang, T.; Lin, M.; Chen, Li.; Zhan, Z.-p. *Adv. Synth. Catal.* **2010**, *352*, 3215.
- 24. Sanz, R.; Miguel, D.; Rodríguez, F. Angew. Chem. Int. Ed. 2008, 47, 7354.
- 25. Sanz, R.; Gohain, M.; Miguel, D.; Martínez, A.; Rodríguez, F. Synlett. 2009, 12, 1985.
- 26. Gangadhararao, G.; Uruvakilli, A.; Kumara Swamy, K. C. Org. Lett. 2014, 16, 6060.
- 27. Uruvakili, A.; Kumara Swamy, K. C. *Org. Biomol. Chem.* **2019**, *17*, 3275.
- 28. Zhang, Li.; Zhu, Y.; Yin, G.; Lu, P.; Wang, Y. J. Org. Chem. 2012, 77, 9510.
- 29. Sharma, S. K.; Mandadapu, A. K.; Kumar, B. Kundu, B. J. Org. Chem. 2011, 76, 6798.
- 30. Raji Reddy, C.; Subbarao, M.; Sathish, P.; Kolgave, D. H.; Donthiri, R. R. *Org. Lett.* **2020**, *22*, 689.
- 31. Li, X.-S.; Han, Y.-P.; Zhu, X.-Y.; Xia, Y.; Wei, W.-X.; Li, M.; Liang, Y.-M. *Adv. Synth. Catal.* **2018**, *360*, 4441.
- 32. Wang, S.; Chai, Z.; Wei, Y.; Zhu, X.; Zhou, S.; Wang, S. Org. Lett. 2014, 16, 3592.
- 33. Huang, K.; Sheng, G.; Lu, P.; Wang, Y. Org. Lett. 2017, 19, 4114.
- 34. Han, Y.-P.; Song, X.-R.; Qiu, Y.-F.; Zhang, H.-R.; Li, L.-H.; Jin, D.-P.; Sun, X.-Q.; Liu, X.-Y.; Liang, Y.-M. *Org. Lett.* **2016**, *18*, 940.
- 35. Yin, H.; Ma, Q.; Wang, Y.; Gu, X.; Feng, Z.; Wu, Y.; Wang, M.; Wang, S. *RSC Adv*. **2021**, *11*, 19639.
- 36. Zhu, Y.; Shen, X.-R.; Tang, H.-T.; Lin, M.; Zhan, Z.-P. Org. Biomol. Chem. **2014**, *12*, 9514.
- 37. Selvaraj, K.; Kumara Swamy, K. C. J. Org. Chem. 2018, 83, 15043.

- 38. Wei, H.-Z.; Yua, L.-Z.; Shi, M. Org. Biomol. Chem. 2020, 18, 135.
- (a) Tharra, P.; Baire, B. Org. Lett. 2018, 20, 1118. (b) Tharra, P.; Baire, B. J. Org. Chem. 2015, 80, 8314. (c) Tharra, P.; Baire, B. Chem. Commun. 2016, 52, 14290. (d) Roy, D.; Tharra, P.; Baire, B. Org. Lett. 2021, 23, 5605.
- 40. James, M. J.; Clubley, R. E.; Palate, K. Y.; Procter, T. J.; Wyton, A. C.; O'Brien, P.; Taylor, R. J. K.; Unsworth, W. P. *Org. Lett.* **2015**, *17*, 4372.
- 41. Suarez, A.; Suarez-Pantiga, S. Nieto-Faza, O.; Sanz, R. Org. Lett. 2017, 19, 5074.
- 42. Yaragorla, S.; Bag, D.; Dada, R.; Jovan Jose, K.V. *ACS Omega* **2018**, *3*, 15024.
- 43. Yaragorla, S.; Dada, R.; Bag, D. Eur. J. Org. Chem. 2019, 6983.
- 44. Gu, J.; Cai, C. Org. Biomol. Chem. 2016, 14, 9966.
- 45. Neely, J. M.; Rovis, T. J. Am. Chem. Soc. **2014**, 136, 2735.
- 46. Honjo, Y.; Shibata, Y.; Kudo, E.; Namba, T.; Masutomi, K.; Tanaka, K. *Chem. Eur. J.* **2018**, *24*, 317.
- 47. Inai, Y.; Usuki, Y.; Satoh, T. Synthesis **2021**, *53*, 3029.
- 48. Hirosawa, K.; Usuki, Y.; Satoh, T. Adv. Synth. Catal. 2019, 361, 5253.
- 49. Chen, H.; Ouyang, L.; Liu, J.; Shi, W.-J.; Chen, G.; Zheng, L. *J. Org. Chem.* **2019**, *84*, 12755.
- 50. Wang, C.; Piel, I.; Glorius, F. J. Am. Chem. Soc. **2009**, 131, 4194.
- 51. Wang, C.; Rakshit, S.; Glorius, F. J. Am. Chem. Soc. **2010**, 132, 14006.
- 52. Luo, M.-J.; Zhang, T.-T.; Cai, F.-J.; Li, J.-H.; He, D.-L. *Chem. Commun.* **2019**, *55*, 7251.
- 53. Tan, H.; Li, H.; Wang, J.; Wang, L. Chem. Eur. J. **2015**, 21, 1904.
- 54. Zhang, X.; Zhu, P.; Zhang, R.; Li, X.; Yao, T. J. Org. Chem. 2020, 85, 9503.
- 55. Shi, W.; Ma, F.; Li, P.; Wang, L.; Miao, T. J. Org. Chem. 2020, 85, 13808.
- 56. Liu, J.; Fan, C.; Yin, H.; Qin, C.; Zhang, G.; Zhang, X.; Yi, H.; Lei, A. *Chem. Commun.* **2014**, *50*, 2145.
- 57. Ye, Z.; Li, Y.; Xu, K.; Chen, N.; Zhang, F. Org. Lett. **2019**, 21, 9869.
- 58. Kang, Y.K.; Seidel, D. Org. Lett. 2016, 18, 4277.
- 59. Pan, G.-A.; Li, Y.; Li, J.-H. *Org. Chem. Front.* **2020**, *7*, 2486.
- 60. Zhang, H.; Lu, Z. Org. Lett. 2018, 20, 5709.
- 61. Zhang, H.; Lu, Z. Org. Chem. Front. 2018, 5, 1763.

- 62. Wu, J.; Qian, B.; Liu, Y.; Shang, Y. ChemistrySelect 2020, 5, 10269.
- 63. Qiu, Y.; Tian, C.; Massignan, L.; Rogge, T.; Ackermann, L. *Angew. Chem. Int. Ed.* **2018**, *57*, 5818.
- 64. Choi, I.; Messinis, A. M.; Hou, X.; Ackermann, L. *Angew. Chem. Int. Ed.* **2021**, *60*, 27005.
- 65. Nguyen, T. T.; Grigorjeva, L.; Daugulis, O. Angew. Chem. Int. Ed. 2018, 57, 1688.
- 66. Mandal, R.; Sundararaju, B. Org. Lett. 2017, 19, 2544.
- 67. Molotkov, A. P.; Arsenov, M. A.; Kapustin, D. A.; Muratov, D. V.; Shepel', N. E.; Fedorov, Y. V.; Smol'yakov, A. F.; Knyazeva, E. I.; Lypenko, D. A.; Dmitriev, A. V.; Aleksandrov, A. E.; Maltsev, E. I.; Loginov, D. A. *ChemPlusChem* **2020**, *85*, 334.
- 68. Nandi, D.; Ghosh, D.; Chen, S.-J.; Kuo, B.-C.; Wang, N. M.; Lee, H. M. *J. Org. Chem.* **2013**, 78, 3445.
- 69. Dhole, S.; Liao, J.-Y.; Kumar, S.; Salunke, D. B.; Su, C.-M. *Adv. Synth. Catal.* **2018**, *360*, 942.
- 70. Maeng, C.; Son, J.-Y.; Lee, S. C.; Baek, Y.; Um, K.; Han, S. H.; Ko, G. H.; Han, G. U.; Lee, K.; Lee, R.; Lee, P. H. *J. Org. Chem.* **2020**, *85*, 3824.
- 71. Singh, K. S.; Sawant, S. G.; Dixneuf, P. H. ChemCatChem **2016**, *8*, 1046.
- 72. Shimizu, M.; Hirano, K.; Satoh, T.; Miura M. J. Org. Chem. **2009**, 74, 3478.
- 73. Mochida, S.; Hirano, K.; Satoh, T.; Miura, M. J. Org. Chem. **2009**, 74, 6295.
- 74. Li, Y.-T.; Zhu, Y.; Tu, G.-L.; Zhang, J.-Y.; Zhao, Y.-S. Chem. Asian J. **2018**, 13, 3281.
- 75. Prakash, R.; Shekarrao, K.; Gogoi, S. Org. Lett. 2015, 17, 5264.
- 76. Yu, Y.; Huang, L.; Wu, W.; Jiang, H. Org. Lett. 2014, 16, 2146.
- 77. Itoh, M.; Shimizu, M.; Hirano, K.; Satoh, T.; Miura, M. J. Org. Chem. **2013**, 78, 11427.
- 78. Peuchmaur, M.; Lisowski, V.; Gandreuil, C.; Maillard, L. T.; Martinez, J.; Hernandez, J.-F. *J. Org. Chem.* **2009**, *74*, 4158.
- 79. Seo, J.; Park, Y.; Jeon, I.; Ryu, T.; Park, S.; Lee, P. H. Org. Lett. 2013, 15, 3358.
- 80. Zhu, Z.; Glinkerman, C. M.; Boger, D. L. J. Am. Chem. Soc. 2020, 142, 20778.
- 81. Boger, D. L.; Coleman, R. S.; Panek, J. S.; Yohannes, D. J. Org. Chem. 1984, 49, 4405.
- 82. Boger D. L.; Schaum, R. P.; Garbaccio, R. M. J. Org. Chem. 1998, 63, 6329.
- 83. Boger, D. L.; Sakya, S. M. J. Org. Chem. 1988, 53, 1415.

- 84. (a) Soenen D. R.; Zimpleman, J. M.; Boger, D. L. *J. Org. Chem.* **2003**, *68*, 3593. (b) Hamasaki, A.; Ducray, R.; Boger, D. L. *J. Org. Chem.* **2006**, *71*, 185
- 85. Li, H.; Sun, Z.; Wu, W.; Wang, X.; Zhang, M.; Lu, X.; Zhong, W.; Dai, D. *Org. Lett.* **2018**, 22, 7186.
- 86. Sauer, J.; Heldmann, D. K.; Hetzenegger, J.; Krauthan, J.; Sichert, H.; Schuster, J. *Eur. J. Org. Chem.* **1998**, 2885.
- 87. Proverbio, M.; Procopio, E. Q.; Panigati, M.; Mercurio, S.; Pennati, R.; Ascagni, M.; Leone, R.; Porta, C. L.; Sugni, M. *Org. Biomol. Chem.* **2019**, *17*, 509.
- 88. Carboni, R. A.; Lindsey, R. V. J. Am. Chem. Soc. **1959**, 81, 4343.
- 89. Qu, Y.; Pander, P.; Vybornyi, O.; Vasylieva, M.; Guillot, R.; Miomandre, F.; Dias, F. B.; Skabara, P.; Data, P.; Clavier, G.; Audebert, P. *J. Org. Chem.* **2020**, *85*, 3407.
- 90. Devaraj, N. K.; Upadhyay, R.; Haun, J. B.; Hilderbrand, S. A.; Weissleder, R. *Angew. Chem. Int. Ed.* **2009**, *48*, 7013.
- 91. Levandowski, B. J.; Abularrage, N. S.; Houk, K. N.; Raines, R. T. *Org. Lett.* **2019**, *21*, 8492.
- (a) Turlik, A.; Houk, K. N.; Svatunek, D. J. Org. Chem. 2021, 86, 13129. (b) Schnierle, M.; Leimkühler, M.; Ringenberg, M. R. Inorg. Chem. 2021, 60, 6367. (c) Zhu, Z.; Boger, D. L. J. Org. Chem. 2022, http://doi.org/10.1021/acs.joc.2c00543. (d) Sauer, J.; Bäuerlein, P.; Ebenbeck, W.; Gousetis, C.; Sichert, H.; Troll, T.; Utz, F.; Wallfahrer, U. Eur. J. Org. Chem. 2001, 2629. (e) Xu, M.; Tu, J.; Franzini, R. M. Chem. Commun. 2017, 53, 6271. (f) Siegl, S. J.; Galeta, J.; Dzijak, R.; Dračínský, M.; Vrabel, M. ChemPlusChem. 2019, 84, 493. (g) Wang, D.; Chen, W.; Zheng, Y.; Dai, C.; Wang, K.; Ke§, B.; Wang, B. Org. Biomol. Chem., 2014, 12, 3950. (h) Devaraj, N. K.; Hilderbrand, S.; Upadhyay, R.; Mazitschek, R.; Weissleder, R. Angew. Chem. Int. Ed. 2010, 49, 2869. (i) Blackman, M. L.; Royzen, M. Fox, J. M. J. Am. Chem. Soc. 2008, 130, 13518. (j) Taylor, M. T.; Blackman, M. L.; Dmitrenko, O. Fox, J. M. J. Am. Chem. Soc. 2011, 133, 9646.
- (a) Fugard, A. J.; Thompson, B. K.; Slawin, A. M. Z.; Taylor, J. E.; Smith, A. D. Org. Lett. 2015, 17, 5824.
 (b) Ngi, S. I.; Guilloteau, V.; Abarbri, M.; Thibonnet, J. J. Org. Chem. 2011, 76, 8347
 (c) Neises, B.; Steglich, W. Angew. Chem. Int. Ed. 1978, 17, 522.

- 94. (a) Chen, S.; Yuan, F.; Zhao, H.; Li, B. *Res. Chem. Intermed.* **2013**, *39*, 2391. (b) Zhang, H.; Tanimoto, H.; Morimoto, T.; Nishiyama, Y.; Kakiuchi, K. *Org. Lett.* **2013**, *15*, 5222.
- 95. (a) Maggi, R.; Bigi, F.; Carloni, S.; Mazzacani, A.; Sartori, G. *Green Chem.* **2001**, *3*, 173. (b) Yang, Y.; Liu, Q.-W.; Shi, Y.; Song, Z.-G.; Jin, Y.-H.; Liu, Z.-Q. *Eur. J. Med. Chem.* **2014**, *84*, 1 (c) Li, M.; Petersen, J. L.; Hoover, J. M. *Org. Lett.* **2017**, *19*, 638.
- 96. (a) Gudipudi, G.; Sagurthi, S. R.; Perugu, S.; Achaiah, G.; Krupadanam, G. L. D. RSC. Adv. 2014, 4, 56489. (b) Corey, E. J.; Wu, L. I. J. Am. Chem. Soc. 1993, 115, 9327. (c) Ravichandran, A. Synth. Commun. 2001, 31, 1233.
- 97. (a) Moon, J.; Jeong, M.; Nam, H.; Ju, J.; Moon, J. H.; Jung, H. M.; Lee, S. *Org. Lett.* **2008**, *10*, 945. (b) Elangovan, A.; Wang, Y.-H.; Ho, T.-I. *Org. Lett.* **2003**, *5*, 1841. (c) Liang, Y.; Xie, Y.-X.; Li, J.-H. *J. Org. Chem.* **2006**, *71*, 379.
- 98. (a) Roesch, K. R.; Larock, R. C. *J. Org. Chem.* **2002**, *67*, 86. (b) Shi, Y.; Huang, J.; Yang, Y.-F.; Wu, L.-Y.; Niu, Y.-N.; Huo, P.-F.; Liu, X.-Y.; Liang, Y.-M. *Adv. Synth. Catal.* **2009**, *351*, 141.
- (a) Chakravarty, M.; Bhuvan Kumar, N. N.; Sajna, K. V.; Kumara Swamy, K. C. *Eur. J. Org. Chem.* 2008, 4500. (b) Bhuvan Kumar, N. N.; Chakravarty, M.; Satish Kumar, N.; Sajna, K V.; Kumara Swamy, K. C. *J. Chem. Sci.* 2009, 121, 23. (c) Bhuvan Kumar, N. N.; Kumara Swamy, K. C. *Polyhedron* 2007, 26, 883. (d) Guo, H.; Qian, R.; Guo, Y.; Ma, S. *J. Org. Chem.* 2008, 73, 7934.
- 100. Kuang, J.; Ma, S. J. Org. Chem. 2009, 74, 1763.
- 101. Rout, L.; Harned, A.-M. Chem. Eur. J. 2009, 15, 12926.
- 102. (a) Phani Pavan, M.; Kumara Swamy, K. C. Synlett 2011, 1288. (b) Scheufler, F.; Maier, M. E. Eur. J. Org. Chem. 2000, 3945. (c) Braverman, S.; Lior, Z. Tetrahedron Lett. 1994, 35, 6725.
- 103. Uruvakili, A.; Kumara Swamy, K. C. Org. Biomol. Chem. 2019, 17, 3275.
- 104. Peng, L.; Xu, D.; Yang, X.; Tang, J.; Feng, X.; Zhang, S.-L.; Yan, H. Angew. Chem. Int. Ed. 2019, 58, 216.
- 105. Wu, G.; Lv, T.; Mo, W.; Yang, X.; Gao Y.; Chen, H. Tetrahedron. Lett. **2017**, 58, 1395.

- (a) Selvaraj, K.; Debnath, S.; Kumara Swamy, K. C. *Org. Lett.* 2019, 21, 5447. (b) Han,
 Y.-P.; Song, X.-R.; Qiu, Y.-F.; Zhang, H.-R.; Li, L.-H.; Jin, D.-P.; Sun, X.-Q.; Liu, X.-Y.; Liang Y.-M. *Org. Lett.* 2016, 18, 940.
- 107. (a) Tunge, J. A.; Burger, E. C. Eur. J. Org. Chem. 2005, 1715. (b) Zhang, X.; Jordan, F.; Szostak, M. Org. Chem. Front., 2018, 5, 2515. (c) Gooßen, L. J.; Gooßen, K.; Rodríguez, N.; Blanchot, M.; Linder, C.; Zimmermann, B. Pure Appl. Chem., 2008, 80, 1725. (d) Takamatsu, K.; Hirano, K.; Miura M. Angew. Chem. Int. Ed. 2017, 56, 5353. (e) Agasti, S.; Pal, T.; Achar, T. K.; Maiti, S.; Pal, D.; Mandal, S.; Daud, K.; Lahiri, G. K.; Maiti, D. Angew. Chem. Int. Ed. 2019, 58, 11039. (f) Luo, M.-J.; Zhang, T.-T.; Cai, F.-J.; Li, J.-H.; He D.-L. Chem. Commun., 2019, 55, 7251. (g) Honeycutt, A. P.; Hoover, J. M. Org. Lett. 2018, 20, 22, 7216. (h) Bumgardner, C. L.; Whangbo, J. E. B. M.-H. J. Org. Chem. 1986, 51, 4083. (i) Li, Y.; Liang, F.; Bi, X.; Liu, Q. J. Org. Chem. 2006, 71, 8006. (j) Esteban, F.; Boughani, L.; Ruano, J. L. G.; Fraile, A.; Alemán, J. Org. Biomol. Chem., 2017, 15, 3901. (k) Lovett, G. H.; Sparling, B. A. Org. Lett. 2016, 18, 3494.
- (a) Ackermann, L. Acc. Chem. Res. 2014, 47, 281. (b) Manikandan, R.; Jeganmohan, M. Org. Biomol. Chem. 2015, 13, 10420. (c) Warratz, S.; Kornhaaβ, C.; Cajaraville, A.; Niepötter, B.; Stalke, D.; Ackermann, L. Angew. Chem. Int. Ed. 2015, 54, 5513. (d) Chinnagolla, R. K.; Jeganmohan, M. Chem. Comm. 2012, 48, 2030.
- (a) Blackman, M. L.; Royzen, M.; Fox, J. M. J. Am. Chem. Soc. 2008, 130, 13518.
 (b) Chen, W.; Wang, D.; Dai, C.; Hamelberg, D.; Wang, B. Chem. Commun., 2012, 48, 1736.
- 110. Perrin, D. D.; Armarego, W. L. F.; Perrin, D. R. *Purification of Laboratory Chemicals*, Pergamon, Oxford, **1986**.
- 111. Shriver, D. F.; Dresdzon, M. A. *The Manipulation of Air Sensitive Compounds*, 2nd Ed, Wiley Interscience, New York, **1986**.
- 112. (a) Sheldrick, G. M. SADABS, Siemens Area Detector Absorption Correction, University of Göttingen, Germany, 1996. (b) Sheldrick, G. M. SHELX-97- A program for crystal structure solution and refinement, University of Göttingen, 1997. (c) Sheldrick, G. M. SHELXTL NT Crystal Structure Analysis Package, Bruker AXS, Analytical X-ray System, WI, USA, 1999, version 5.10.

Copies of ¹H/¹³C NMR spectra for representative compounds

Compounds: 15aa, 16bb, 17ba, 18aa, 20ba, 21ac, 22ra, 23ac, 24d and 27b.

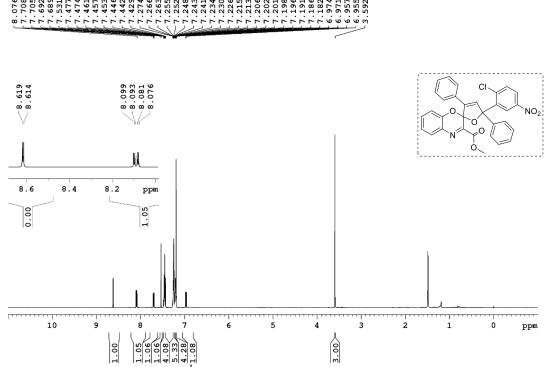
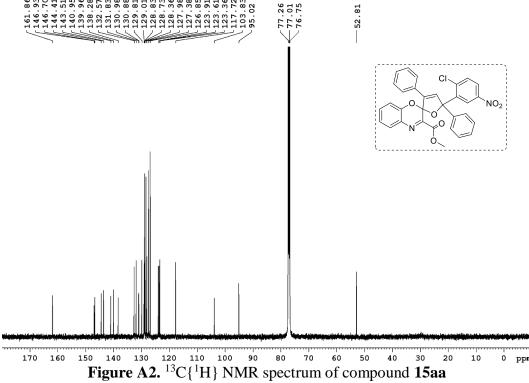
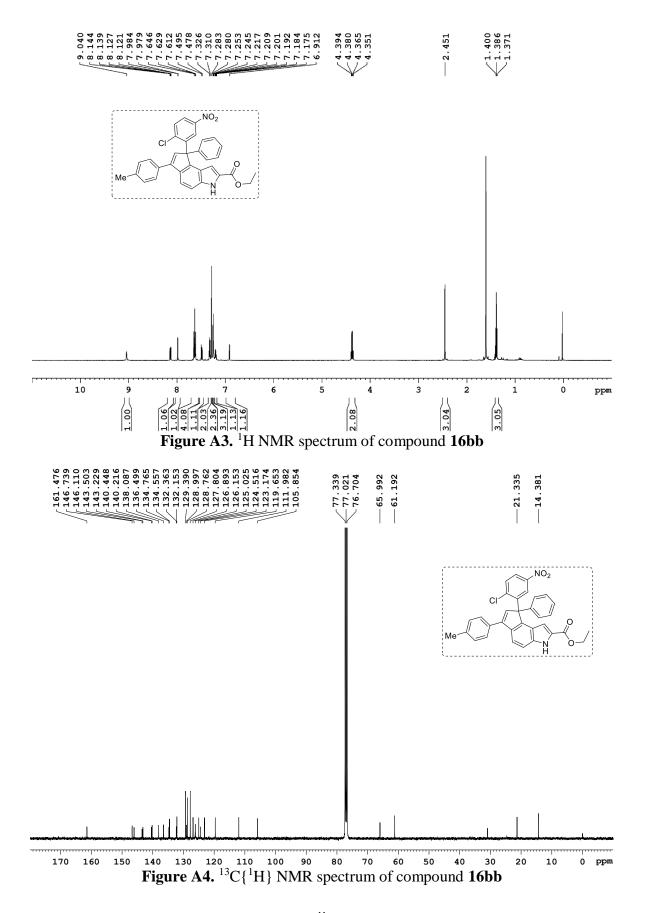




Figure A1. ¹H NMR spectrum of compound 15aa

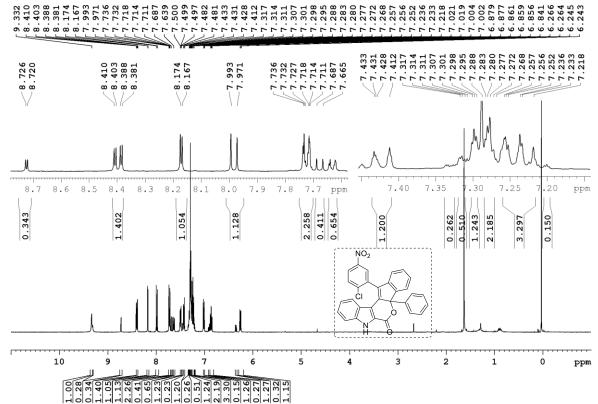
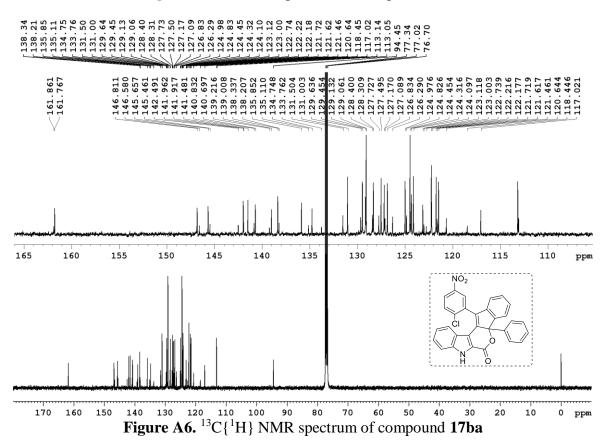
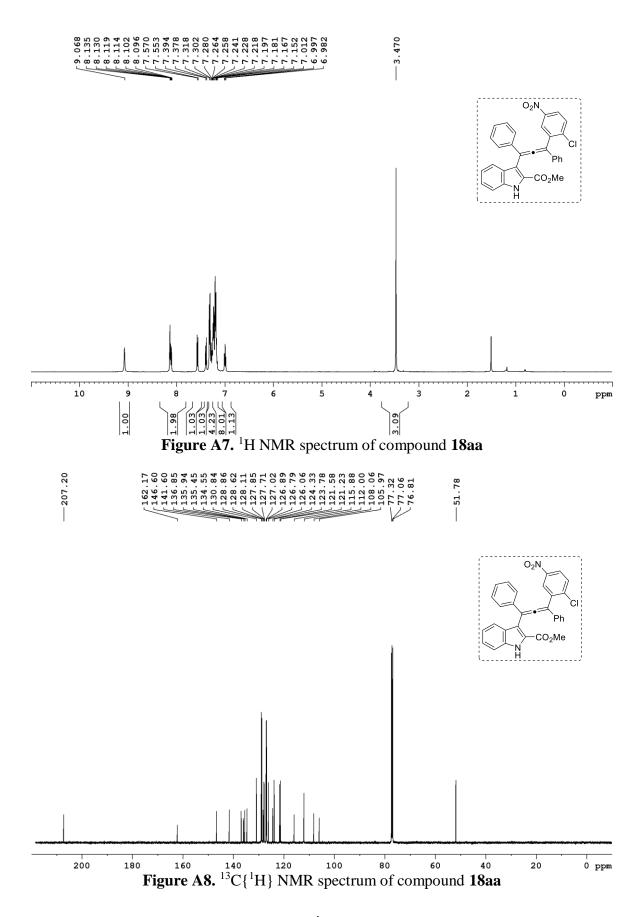
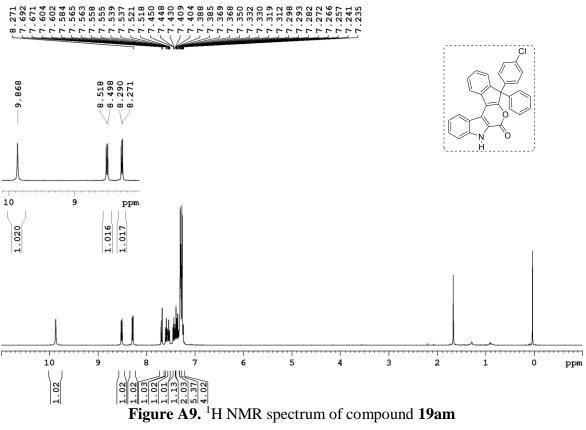
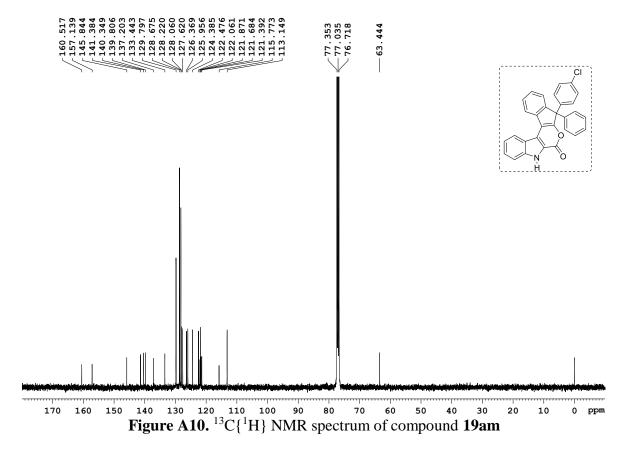






Figure A5. ¹H NMR spectrum of compound 17ba

V

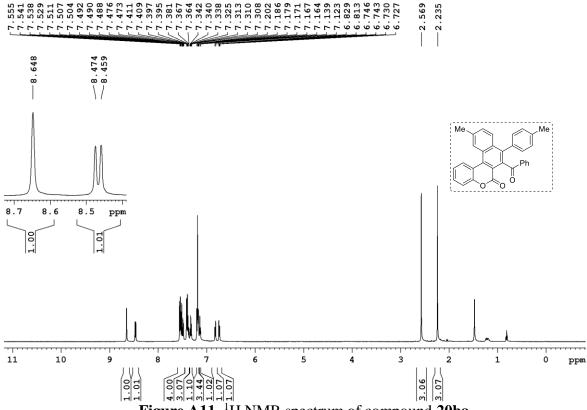
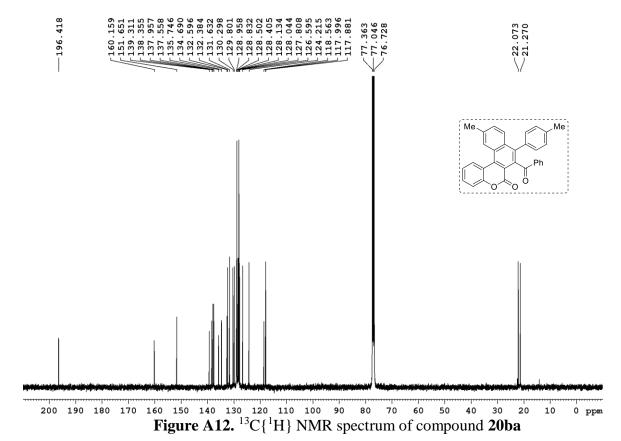
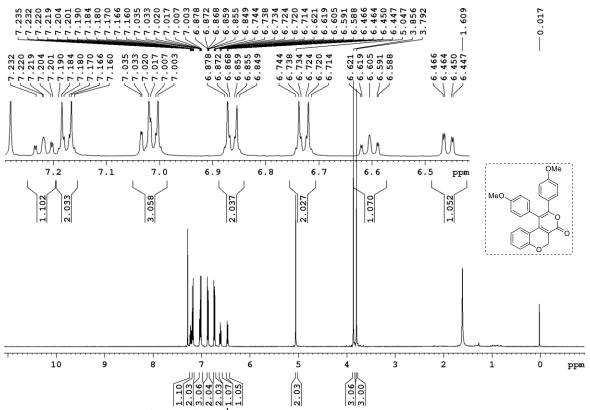
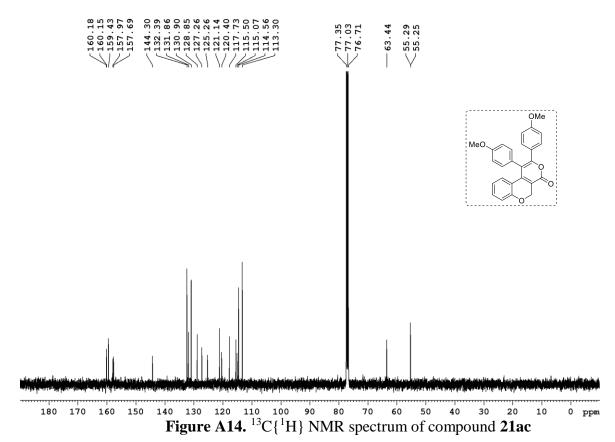
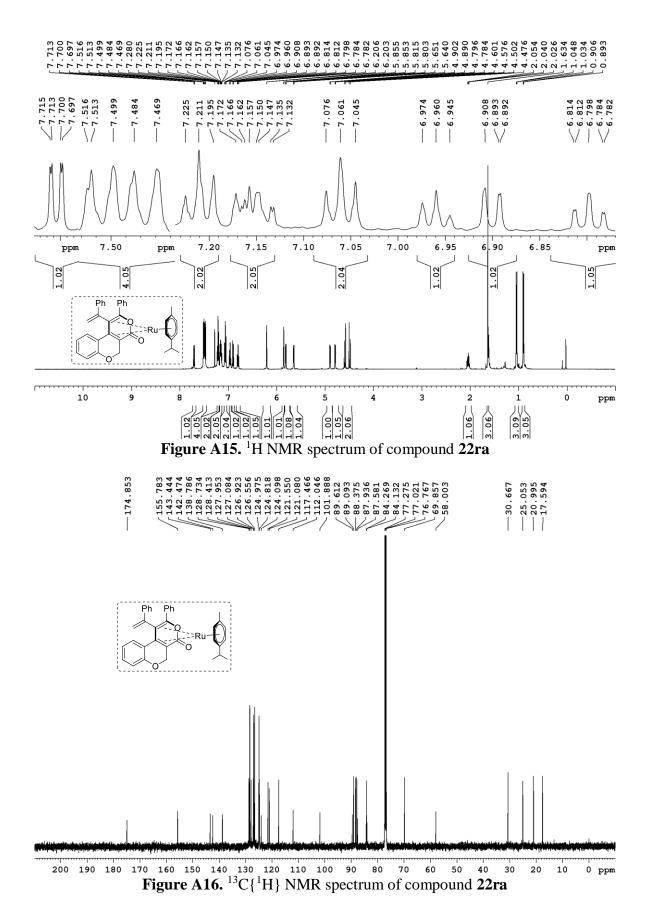
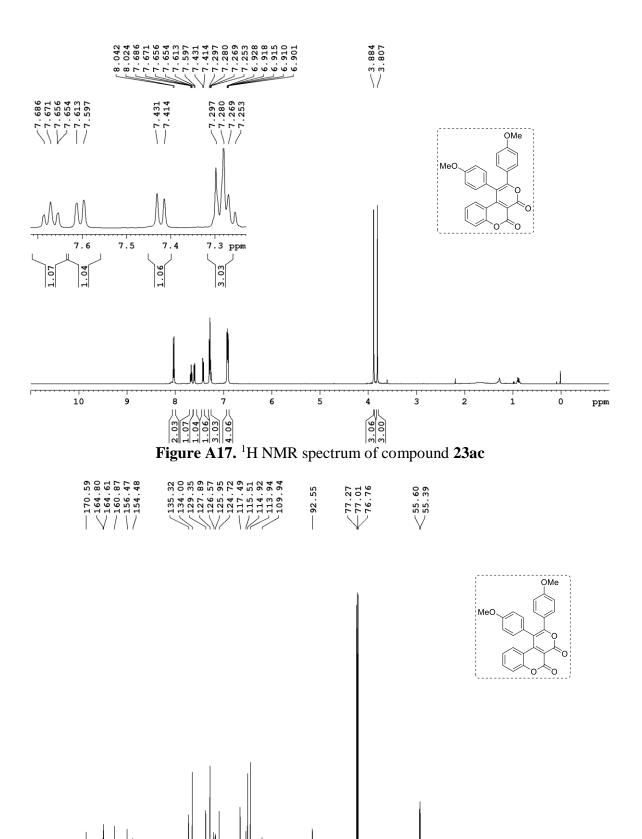



Figure A11. ¹H NMR spectrum of compound 20ba

vi


Figure A13. ¹H NMR spectrum of compound 21ac

vii

viii

ix

10

180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 **Figure A18.** ¹³C{¹H} NMR spectrum of compound **23ac**

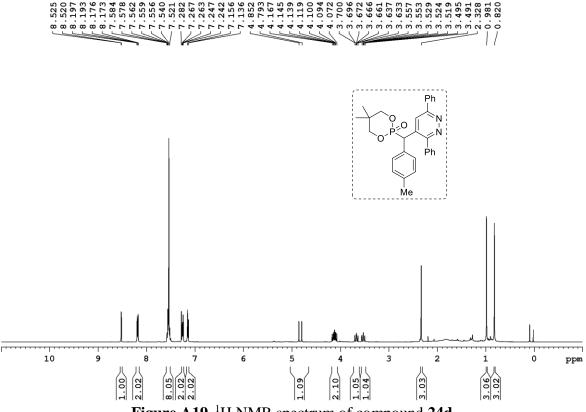
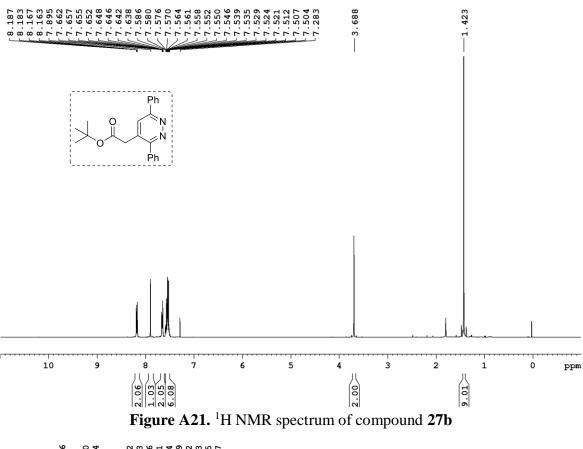



Figure A19. ¹H NMR spectrum of compound 24d

Figure A20. ¹³C { ¹H} NMR spectrum of compound 24d

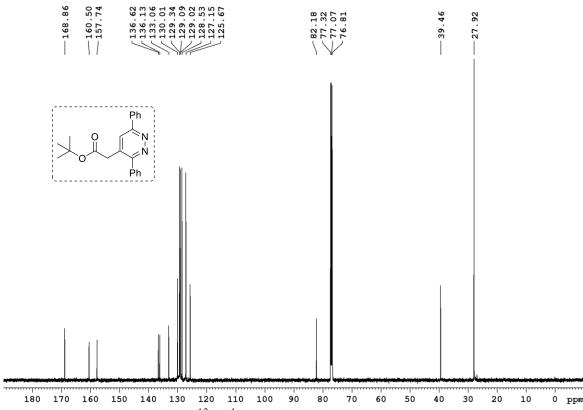


Figure A22. ¹³C {¹H} NMR spectrum of compound 27b

- B) Publication numbers and atomic coordinates for X-ray structures reported in this thesis18
- I. Publication numbers for the published compounds

Compounds: 15aa, 15ba, 16ba, 17ba, 19ap, 19bb and Intermediate X

(CCDC No.: 2100599, 2100600, 2100601, 2100602, 2100603, 2100604 and 2100605

Compounds: 20aa, 20de, 21aa, 21ce, 21cj, 22ra, 23ab, 25 and 27b (Unpublished)

Compound: 20aa

checkCIF/PLATON report

Structure factors have been supplied for datablock(s) kck142cell

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

Datablock: kck142cell

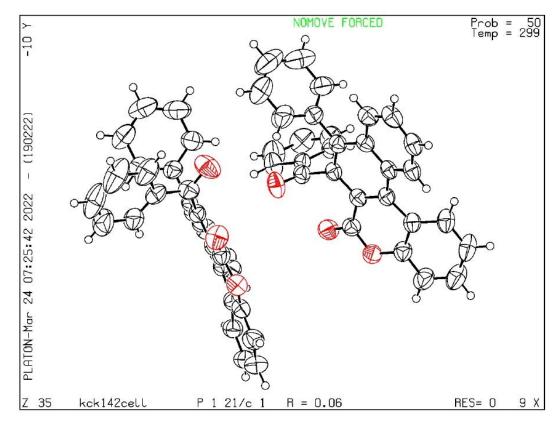
Bond precision:	C-C = 0.0035 A	Wavelength	n=0.71073	
Cell:	a=13.9566(5)	b=12.3310(5)	c=24.8503(9)	
	alpha=90	beta=96.334(4)	gamma=90	
Temperature:	299 K			
	Calculated	Reported		
Volume	4250.6(3)	4250.6(3)		
Space group		P 1 21/c	1	
Hall group		-P 2ybc		
Moiety formula	C30 H18 O3	C30 H18 C	03	
Sum formula	C30 H18 O3	C30 H18 C	03	
Mr	426.44	426.48		
Dx,g cm-3	1.333	1.333		
Z	8	8		
Mu (mm-1)	0.085	0.085		
F000	1776.0	1776.9		
F000'	1776.83			
h,k,lmax	17,15,31	17,15,31		
Nref	9330	8912		
Tmin, Tmax	0.998,0.998	0.595,1.0	000	
Tmin'	0.998			
Correction method= # Reported T Limits: Tmin=0.595 Tmax=1.000 AbsCorr = MULTI-SCAN				
Data completene:	ss= 0.955	Theta(max) = 27.06	50	
R(reflections)=	0.0559(4947)		wR2(reflections) = 0.1716(8912)	
S = 1.011	Npar= 5	95		

The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level.

Click on the hyperlinks for more details of the test.

```
Alert level B
PLAT029_ALERT_3_B _diffrn_measured_fraction_theta_full value Low .
                                                                      0.955 Why?
PLAT230_ALERT_2_B Hirshfeld Test Diff for
                                            C50
                                                    --C51
                                                                          7.5 s.u.
Alert level C
PLAT241_ALERT_2_C High
                       'MainMol' Ueq as Compared to Neighbors of
                                                                         C16 Check
PLAT241_ALERT_2_C High 'MainMol' Ueq as Compared to Neighbors of
                                                                          C57 Check
PLAT242_ALERT_2_C Low 'MainMol' Ueq as Compared to Neighbors of 'MainMol' Ueq as Compared to Neighbors of 'C C Diet C53 --C58
                                                                         C12 Check
                                                                          C53 Check
                                                                         1.36 Ang.
PLAT410_ALERT_2_C Short Intra H...H Contact H9
                                                      ..H21
                                                                         1.94 Ang.
                                                                    1_555 Check
                                                      x, y, z =
PLAT410_ALERT_2_C Short Intra H...H Contact H38
                                                      ..H49
                                                                         1.98 Ang.
                                                      x, y, z =
                                                                    1_555 Check
PLAT790_ALERT_4_C Centre of Gravity not Within Unit Cell: Resd. #
                                                                            1 Note
              C30 H18 O3
PLAT905_ALERT_3_C Negative K value in the Analysis of Variance ...
                                                                      -3.077 Report
Alert level G
PLAT073_ALERT_1_G H-atoms ref, but _hydrogen_treatment Reported as
                                                                       constr Check
PLAT720_ALERT_4_G Number of Unusual/Non-Standard Labels .....
                                                                           2 Note
PLAT910_ALERT_3_G Missing # of FCF Reflection(s) Below Theta(Min).
                                                                            3 Note
PLAT912_ALERT_4_G Missing # of FCF Reflections Above STh/L= 0.600
                                                                          420 Note
PLAT960_ALERT_3_G Number of Intensities with I < - 2*sig(I) ...
                                                                            2 Check
PLAT978 ALERT 2 G Number C-C Bonds with Positive Residual Density.
                                                                            0 Info
PLAT980_ALERT_1_G No Anomalous Scattering Factors Found in CIF ...
                                                                      Please Check
   0 ALERT level A = Most likely a serious problem - resolve or explain
   2 ALERT level B = A potentially serious problem, consider carefully
   9 ALERT level C = Check. Ensure it is not caused by an omission or oversight
   7 ALERT level G = General information/check it is not something unexpected
   2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data
   9 ALERT type 2 Indicator that the structure model may be wrong or deficient
   4 ALERT type 3 Indicator that the structure quality may be low
   3 ALERT type 4 Improvement, methodology, query or suggestion
   0 ALERT type 5 Informative message, check
```

Publication of your CIF in IUCr journals


A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (*Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation*); however, if you intend to submit to *Acta Crystallographica Section C* or *E* or *IUCrData*, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the *Notes for Authors* of the relevant journal for any special instructions relating to CIF submission.

PLATON version of 19/02/2022; check.def file version of 19/02/2022

Datablock kck142cell - ellipsoid plot

Compound: 20de

checkCIF/PLATON report

Structure factors have been supplied for datablock(s) kck033_0ma_a

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

Datablock: kck033_0ma_a

Bond precision:	C-C = 0.0076 A	Wavelength=	-0.71073
Cell:		b=19.301(6) beta=115.976(11)	
Temperature:	301 K	,	9
	Calculated	Reported	
Volume	2347.4(13)	2347.4(13)	
Space group	P 21/c	P 1 21/c 1	L
Hall group	-P 2ybc	-P 2ybc	
Moiety formula	C30 H14 C12 F2 O	3 C30 H14 C	L2 F2 O3
Sum formula	C30 H14 C12 F2 O	C30 H14 C	L2 F2 O3
Mr	531.31	531.31	
Dx,g cm-3	1.503	1.503	
Z	4	4	
Mu (mm-1)	0.326	0.326	
F000	1080.0	1080.0	
F000'	1081.74		
h,k,lmax	14,24,14	14,24,14	
Nref	4895	4107	
Tmin,Tmax			
Tmin'	0.931		
Correction metho	od= Not given		
Data completenes	ss= 0.839	Theta(max) = 26.532	i.
R(reflections)=	0.0945(2407)		wR2(reflections) = 0.2687(4107)
S = 1.003	Npar=	334	•

The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level.

Click on the hyperlinks for more details of the test.

Alert level B

PLAT911_ALERT_3_B Missing FCF Refl Between Thmin & STh/L= 0.600 706 Report

Alert level C

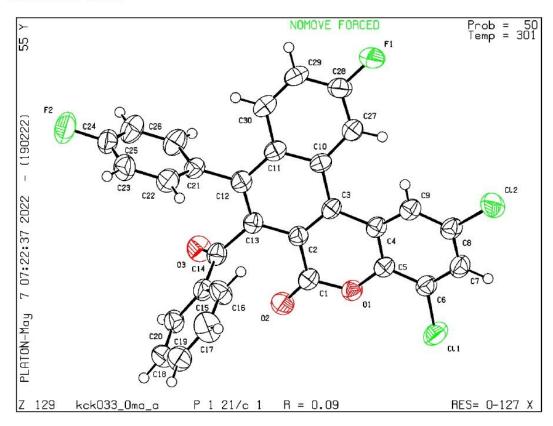
PLAT084_ALERT_3_C High wR2 Value (i.e. > 0.25)	0.27 Report
PLAT334_ALERT_2_C Small Aver. Benzene C-C Dist C21 -C26	1.37 Ang.
PLAT340_ALERT_3_C Low Bond Precision on C-C Bonds	0.00759 Ang.
PLAT410_ALERT_2_C Short Intra HH Contact H9H27 .	1.94 Ang.
x,y,z =	1_555 Check
PLAT906_ALERT_3_C Large K Value in the Analysis of Variance	4.806 Check

Alert level G

PLAT019_ALERT_1_G _diffrn_measured_fraction_theta_full/*_max < 1.0	0.994 Report
PLAT072_ALERT_2_G SHELXL First Parameter in WGHT Unusually Large	0.18 Report
PLAT883_ALERT_1_G No Info/Value for _atom_sites_solution_primary .	Please Do !
PLAT912_ALERT_4_G Missing # of FCF Reflections Above STh/L= 0.600	83 Note
PLAT978_ALERT_2_G Number C-C Bonds with Positive Residual Density.	0 Info

- 0 ALERT level A = Most likely a serious problem resolve or explain
- 1 ALERT level B = A potentially serious problem, consider carefully
- 5 ALERT level C = Check. Ensure it is not caused by an omission or oversight
- 5 ALERT level G = General information/check it is not something unexpected
- 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data
- 4 ALERT type 2 Indicator that the structure model may be wrong or deficient
- 4 ALERT type 3 Indicator that the structure quality may be low
- 1 ALERT type 4 Improvement, methodology, query or suggestion
- 0 ALERT type 5 Informative message, check

Publication of your CIF in IUCr journals


A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (*Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation*); however, if you intend to submit to *Acta Crystallographica Section C* or *E* or *IUCrData*, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the *Notes for Authors* of the relevant journal for any special instructions relating to CIF submission.

PLATON version of 19/02/2022; check.def file version of 19/02/2022

atablock kck033_0ma_a - ellipsoid plot

Compound: 21aa

checkCIF/PLATON report

Structure factors have been supplied for datablock(s) kck75_0m_a_a

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

Datablock: kck75_0m_a_a

Bond precision:	C-C = 0.0036 A	Wavelength	=0.71073
Cell:	a=7.9771(3) alpha=90	b=14.2651(6) beta=90	c=15.4453(7) gamma=90
Temperature:	293 K		gamma 50
	Calculated	Reported	
Volume	1757.58(13)	1757.58(1	3)
Space group	P n a 21	P n a 21	
Hall group	P 2c -2n	P 2c -2n	
Moiety formula	C24 H16 O3	C24 H16 O	3
Sum formula	C24 H16 O3	C24 H16 O	3
Mr	352.37	352.37	
Dx,g cm-3	1.332	1.332	
Z	4	4	
Mu (mm-1)	0.087	0.087	
F000	736.0	736.0	
F000'	736.36		
h,k,lmax	9,16,18	9,16,18	
Nref	3099[1613]	2973	
Tmin, Tmax	0.984,0.991		
Tmin'	0.983		
Correction metho	od= Not given		
Data completenes	ss= 1.84/0.96	Theta(max) = 24.98	8
R(reflections)=	0.0288(2815)		wR2(reflections) = 0.0747(2973)
s = 1.103	Npar= 24	15	0.0/4/(29/3)

The following ALERTS were generated. Each ALERT has the format test-name ALERT alert-type alert-level.

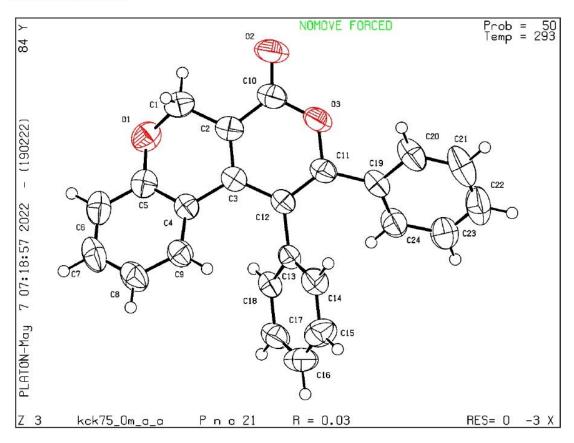
Click on the hyperlinks for more details of the test.

Alert level C PLAT029_ALERT_3_C _diffrn_measured_fraction_theta_full value Low . 0.962 Why? PLAT089_ALERT_3_C Poor Data / Parameter Ratio (Zmax < 18) 6.33 Note PLAT911_ALERT_3_C Missing FCF Refl Between Thmin & STh/L= 0.594 61 Report PLAT913_ALERT_3_C Missing # of Very Strong Reflections in FCF 20 Note PLAT934_ALERT_3_C Number of (Iobs-Icalc)/Sigma(W) > 10 Outliers .. 1 Check Alert level G PLAT199_ALERT_1_G Reported _cell_measurement_temperature (K) 293 Check PLAT200_ALERT_1_G Reported __diffrn_ambient_temperature (K) 293 Check PLAT883_ALERT_1_G No Info/Value for _atom_sites_solution_primary . Please Do ! PLAT909_ALERT_3_G Percentage of I>2sig(I) Data at Theta(Max) Still 82% Note PLAT910_ALERT_3_G Missing # of FCF Reflection(s) Below Theta(Min). 1 Note 1 Note PLAT933_ALERT_2_G Number of HKL-OMIT Records in Embedded .res File PLAT967_ALERT_5_G Note: Two-Theta Cutoff Value in Embedded .res .. 50.0 Degree PLAT978_ALERT_2_G Number C-C Bonds with Positive Residual Density. 0 Info PLAT992_ALERT_5_G Repd & Actual _reflns_number_gt Values Differ by 2 Check 0 ALERT level A = Most likely a serious problem - resolve or explain 0 ALERT level B = A potentially serious problem, consider carefully 5 ALERT level C = Check. Ensure it is not caused by an omission or oversight 9 ALERT level G = General information/check it is not something unexpected 3 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient

7 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion

2 ALERT type 5 Informative message, check

Publication of your CIF in IUCr journals


A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (*Acta Crystallographica*, *Journal of Applied Crystallography*, *Journal of Synchrotron Radiation*); however, if you intend to submit to *Acta Crystallographica Section C* or *E* or *IUCrData*, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the *Notes for Authors* of the relevant journal for any special instructions relating to CIF submission.

PLATON version of 19/02/2022; check.def file version of 19/02/2022

ıtablock kck75_0m_a_a - ellipsoid plot

Compound: 21ce

checkCIF/PLATON report

Structure factors have been supplied for datablock(s) kck148_0m_a_a

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

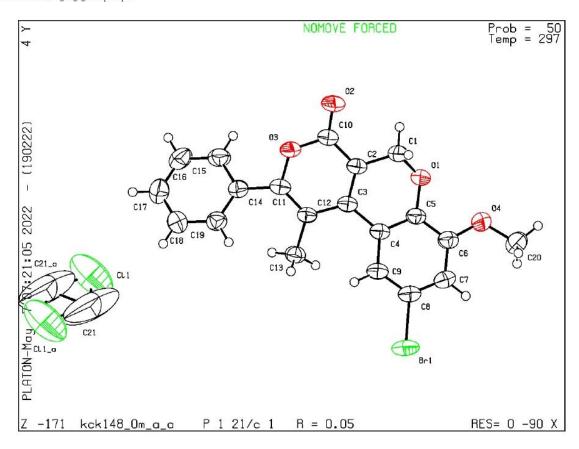
Datablock: kck148_0m_a_a

C-C = 0.0063 A	V	Wavelength=	=0.71073
	beta=117.	646(2)	gamma=90
23, 10			
Calculated		Reported	
1837.3(2)		1837.3(2)	
P 21/c		P 1 21/c 1	L
-P 2ybc		-P 2ybc	
C20 H15 Br O4, 0.	5(C2 C12)	C20 H15 B1	c 04, C Cl
C21 H15 Br Cl O4		C21 H15 B1	r Cl O4
446.68		446.69	
1.615		1.615	
4		4	
2.408		2.408	
900.0		900.0	
899.84			
19,8,19		19,8,19	
3231		3187	
0.612			
d- Not given			
da- Not given			
s= 0.986	Theta(ma	(x) = 25.000	
0.0462(2695)			wR2(reflections) = 0.1320(3187)
Npar= 2	46		PRODUCTION OF STATES OF
	a=16.4674(10) alpha=90 297 K Calculated 1837.3(2) P 21/c -P 2ybc C20 H15 Br O4, 0. C21 H15 Br Cl O4 446.68 1.615 4 2.408 900.0 899.84 19,8,19 3231 0.655,0.786 0.612 od= Not given s= 0.986 0.0462(2695)	a=16.4674(10) b=7.5481(3) alpha=90 beta=117.6 297 K Calculated 1837.3(2) P 21/c -P 2ybc C20 H15 Br O4, 0.5(C2 C12) C21 H15 Br C1 O4 446.68 1.615 4 2.408 900.0 899.84 19,8,19 3231 0.655,0.786 0.612 od= Not given Ss= 0.986 Theta(max)	a=16.4674(10) b=7.5481(5) alpha=90 beta=117.646(2) 297 K Calculated Reported 1837.3(2) P 21/c P 1 21/c 2 -P 2ybc C20 H15 Br O4, 0.5(C2 C12) C20 H15 Br C21 H15 Br C1 O4 C21 H15 Br 446.68 446.69 1.615 4 2.408 900.0 900.0 899.84 19,8,19 3231 3187 0.655,0.786 0.612 od= Not given Theta(max) = 25.000 0.0462(2695)

The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level.

Click on the hyperlinks for more details of the test.

```
Alert level C
PLAT057_ALERT_3_C Correction for Absorption Required RT(exp) ...
                                                                       1.20 Do !
PLAT260_ALERT_2_C Large Average Ueq of Residue Including Cl1
                                                                      0.254 Check
PLAT341_ALERT_3_C Low Bond Precision on C-C Bonds ......
                                                                    0.00629 Ang.
PLAT911_ALERT_3_C Missing FCF Refl Between Thmin & STh/L= 0.595
                                                                         42 Report
PLAT913_ALERT_3_C Missing # of Very Strong Reflections in FCF ....
                                                                         24 Note
Alert level G
PLAT042_ALERT_1_G Calc. and Reported Moiety Formula Strings Differ
                                                                    Please Check
PLAT344_ALERT_2_G Unusual
                           Angle Range in Solvent/Ion for
                                                                       C21 Check
PLAT367_ALERT_2_G Long? C(sp?)-C(sp?) Bond C21
                                                 - C21_a .
                                                                       1.64 Ang.
PLAT883_ALERT_1_G No Info/Value for _atom_sites_solution_primary .
                                                                     Please Do !
PLAT909_ALERT_3_G Percentage of I>2sig(I) Data at Theta(Max) Still
                                                                       63% Note
PLAT910_ALERT_3_G Missing # of FCF Reflection(s) Below Theta(Min).
                                                                          2 Note
PLAT941_ALERT_3_G Average HKL Measurement Multiplicity ......
                                                                        4.7 Low
PLAT967_ALERT_5_G Note: Two-Theta Cutoff Value in Embedded .res ..
                                                                       50.0 Degree
PLAT978_ALERT_2_G Number C-C Bonds with Positive Residual Density.
                                                                          6 Info
   0 ALERT level A = Most likely a serious problem - resolve or explain
   0 ALERT level B = A potentially serious problem, consider carefully
   5 ALERT level C = Check. Ensure it is not caused by an omission or oversight
   9 ALERT level G = General information/check it is not something unexpected
   2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data
   4 ALERT type 2 Indicator that the structure model may be wrong or deficient
   7 ALERT type 3 Indicator that the structure quality may be low
   0 ALERT type 4 Improvement, methodology, query or suggestion
   1 ALERT type 5 Informative message, check
```


Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (*Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation*); however, if you intend to submit to *Acta Crystallographica Section C* or *E* or *IUCrData*, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the *Notes for Authors* of the relevant journal for any special instructions relating to CIF submission.

PLATON version of 19/02/2022; check.def file version of 19/02/2022 Datablock kck148_0m_a_a-ellipsoid plot

Compound: 21cj

checkCIF/PLATON report

Structure factors have been supplied for datablock(s) compd3cj

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

CIF dictionary Interpreting this report No syntax errors found.

Datablock: compd3cj

Bond precision:	C-C = 0.0094 A		Wavelength	=0.71073
Cell:	a=5.1663(2)			
Temperature:	alpha=90 293 K	beta=98.4	32 (4)	gamma=90
	Calculated		Reported	
Volume	974.41(6)		974.41(6)	
Space group	P 21		P 1 21 1	
Hall group	P 2yb		?	
Moiety formula	C21 H25 Br O4		?	
Sum formula	C21 H25 Br O4		C21 H25 E	3r 04
Mr	421.31		421.32	
Dx,g cm-3	1.436		1.436	
Z	2		2	
Mu (mm-1)	2.132		2.132	
F000	436.0		436.0	
F000'	435.62			
h,k,lmax	6,17,15		6,17,15	
Nref	3436[1793]		2954	
Tmin, Tmax	0.605,0.681			
Tmin'	0.594			
Correction method= Not given				
Data completenes	ss= 1.65/0.86	Theta(m	ax)= 25.00	00
R(reflections)=	0.0544(2397)	wR2(ref	lections)=	= 0.1402(2954)
S = 1.041	Npar=	238		

The following ALERTS were generated. Each ALERT has the format test-name ALERT alert-type alert-level.

Click on the hyperlinks for more details of the test.

Alert level C

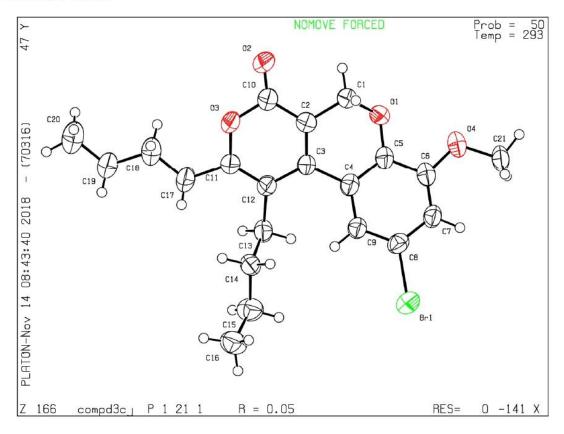
PLAT052 ALERT 1 C Info on Absorption Correction Method Not Giv	en Please	e Do !
PLAT057 ALERT 3 C Correction for Absorption Required RT(exp) .	1.1	B Do !
PLAT090 ALERT 3 C Poor Data / Parameter Ratio (Zmax > 18)	7.5	Note
PLAT241 ALERT 2 C High 'MainMol' Ueq as Compared to Neighbors	of C1	7 Check
PLAT242 ALERT 2 C Low 'MainMol' Ueq as Compared to Neighbors		3 Check
PLAT341 ALERT 3 C Low Bond Precision on C-C Bonds	0.009	Ang.
PLAT360 ALERT 2 C Short C(sp3)-C(sp3) Bond C17 - C18	. 1.4	B Ang.
PLAT360 ALERT 2 C Short C(sp3)-C(sp3) Bond C19 - C20		B Ang.
PLAT915 ALERT 3 C No Flack x Check Done: Low Friedel Pair Covera		L %
PLAT978 ALERT 2 C Number C-C Bonds with Positive Residual Densit	у.	Info

Alert level G

PLAT005 ALERT 5 G No Embedded Refinement Details Found in the CIF	Please	Do !
PLAT093 ALERT 1 G No s.u.'s on H-positions, Refinement Reported as	mixed	Check
PLAT199 ALERT 1 G Reported _cell_measurement_temperature (K)	293	Check
PLAT200 ALERT 1 G Reporteddiffrn_ambient_temperature (K)	293	Check
PLAT899 ALERT 4 G SHELXL97 is Deprecated and Succeeded by SHELXL	2018	Note
PLAT909 ALERT 3 G Percentage of I>2sig(I) Data at Theta(Max) Still	44%	Note
PLAT910 ALERT 3 G Missing # of FCF Reflection(s) Below Theta(Min).	1	Note

- 0 ALERT level A = Most likely a serious problem resolve or explain
- O ALERT level B = A potentially serious problem, consider carefully
- 10 ALERT level C = Check. Ensure it is not caused by an omission or oversight
- 7 ALERT level G = General information/check it is not something unexpected
- 4 ALERT type 1 CIF construction/syntax error, inconsistent or missing data
- 5 ALERT type 2 Indicator that the structure model may be wrong or deficient
- 6 ALERT type 3 Indicator that the structure quality may be low
- 1 ALERT type 4 Improvement, methodology, query or suggestion
- 1 ALERT type 5 Informative message, check

Publication of your CIF in IUCr journals


A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (*Acta Crystallographica*, *Journal of Applied Crystallography*, *Journal of Synchrotron Radiation*); however, if you intend to submit to *Acta Crystallographica Section C* or *E* or *IUCrData*, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the *Notes for Authors* of the relevant journal for any special instructions relating to CIF submission.

PLATON version of 19/10/2018; check.def file version of 15/10/2018

Datablock compd3cj - ellipsoid plot

Compound: 22ra

checkCIF/PLATON report

Structure factors have been supplied for datablock(s) KCK192_a

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

Datablock: KCK192_a

T			
Bond precision:	C-C = 0.0031 A	Wavelength=	=0.71073
Cell:	a=18.2137(11) alpha=90	b=9.1058(6) beta=104.407(2)	
Temperature:	273 K	ALIGNOSTIC CONTRACTOR SECRETO SE SEC.	a Department of the term
SARCE L	Calculated	Reported	
Volume	2781.3(3)	2781.2(3)	
Space group		P 1 21/c 1	L
Hall group		-P 2ybc	
Moiety formula		С36 Н32 О	
Sum formula	C36 H32 O3 Ru	С36 Н32 О	3 Ru
Mr	613.69	613.72	
Dx,g cm-3	1.466	1.466	
Z	4	4	
Mu (mm-1)	0.600	0.600	
F000	1264.0	1259.5	
F000'	1259.42		
h,k,lmax	21,10,20	21,10,20	
Nref	4899	4886	
Tmin, Tmax	0.876,0.898		
Tmin'	0.876		
Correction metho	od= Not given		
Data completenes	ss= 0.997	Theta(max) = 25.000)
R(reflections)=	0.0201(4499)		wR2(reflections) = 0.0543(4886)
s = 1.083	Npar= 3	364	0.0040(4000)

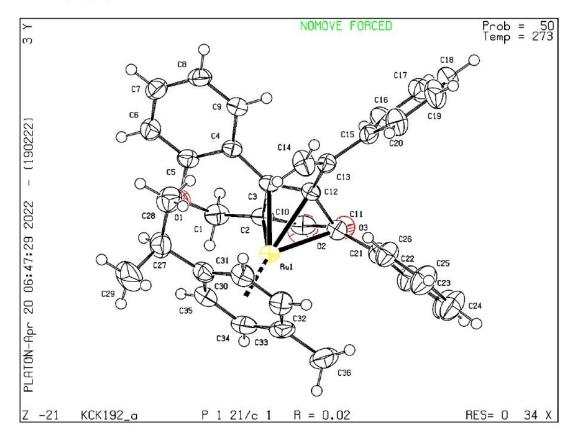
The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level.

Click on the hyperlinks for more details of the test.

```
Alert level C
PLAT220_ALERT_2_C NonSolvent
                              Resd 1 C Ueq(max)/Ueq(min) Range
                                                                           4.0 Ratio
PLAT242_ALERT_2_C Low 'MainMol' Ueq as Compared to Neighbors of
                                                                          C27 Check
PLAT413_ALERT_2_C Short Inter XH3 .. XHn
                                                                          2.14 Ang.
                                            H1B
                                                      ..H36A
                                                    x, 1+y, z =
                                                                     1_565 Check
PLAT910_ALERT_3_C Missing # of FCF Reflection(s) Below Theta(Min).
                                                                             5 Note
PLAT911_ALERT_3_C Missing FCF Refl Between Thmin & STh/L= 0.595
                                                                             8 Report
PLAT913_ALERT_3_C Missing # of Very Strong Reflections in FCF ....
                                                                             7 Note
PLAT926_ALERT_1_C Reported and Calculated R1 Differ by ......
                                                                       -0.0018 Check
PLAT927_ALERT_1_C Reported and Calculated wR2 Differ by ......
                                                                      -0.0020 Check
Alert level G
PLAT068_ALERT_1_G Reported F000 Differs from Calcd (or Missing)...
                                                                        Please Check
PLAT073_ALERT_1_G H-atoms ref, but _hydrogen_treatment Reported as
                                                                        constr Check
PLAT199_ALERT_1_G Reported _cell_measurement_temperature .... (K)
                                                                          273 Check
PLAT200_ALERT_1_G Reported __diffrn_ambient_temperature .... (K)
PLAT343_ALERT_2_G Unusual sp? Angle Range in Main Residue for
                                                                           273 Check
                                                                           C2 Check
PLAT367_ALERT_2_G Long? C(sp?)-C(sp?) Bond C1
                                                     - C2
                                                                         1.51 Ang.
                                                                        Please Do !
PLAT883_ALERT_1_G No Info/Value for _atom_sites_solution_primary .
PLAT909_ALERT_3_G Percentage of I>2sig(I) Data at Theta(Max) Still
                                                                          86% Note
PLAT933_ALERT_2_G Number of HKL-OMIT Records in Embedded .res File
                                                                            11 Note
PLAT960_ALERT_3_G Number of Intensities with I < - 2*sig(I) ...
                                                                            6 Check
PLAT967_ALERT_5_G Note: Two-Theta Cutoff Value in Embedded .res ..
                                                                          50.0 Degree
PLAT978_ALERT_2_G Number C-C Bonds with Positive Residual Density.
                                                                            10 Info
PLAT980_ALERT_1_G No Anomalous Scattering Factors Found in CIF ...
                                                                        Please Check
```

- 0 ALERT level A = Most likely a serious problem resolve or explain
- 0 ALERT level B = A potentially serious problem, consider carefully
- 8 ALERT level C = Check. Ensure it is not caused by an omission or oversight
- 13 ALERT level G = General information/check it is not something unexpected
- 8 ALERT type 1 CIF construction/syntax error, inconsistent or missing data
- 7 ALERT type 2 Indicator that the structure model may be wrong or deficient
- ${\bf 5}$ ALERT type ${\bf 3}$ Indicator that the structure quality may be low
- 0 ALERT type 4 Improvement, methodology, query or suggestion
- 1 ALERT type 5 Informative message, check

Publication of your CIF in IUCr journals


A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (*Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation*); however, if you intend to submit to *Acta Crystallographica Section C* or *E* or *IUCrData*, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the *Notes for Authors* of the relevant journal for any special instructions relating to CIF submission.

PLATON version of 19/02/2022; check.def file version of 19/02/2022

Datablock KCK192_a - ellipsoid plot

Compound: 23ab

checkCIF/PLATON report

Structure factors have been supplied for datablock(s) compound5b

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

Datablock: compound5b

	200/2012		
Bond precision:	C-C = 0.0031 A	Wavele	ngth=0.71073
Cell:		b=7.5681(4) beta=90	c=19.8301(12) gamma=90
Temperature:	295 K		
	Calculated	Repor	ted
Volume	7902.3(9)	7902.	3(9)
Space group	Fdd2	Fdd2	
Hall group		?	
Moiety formula	C26 H18 O4	?	
Sum formula	C26 H18 O4	С26 Н	18 04
Mr	394.40	394.4	0
Dx,g cm-3	1.326	1.326	
Z	16	16	
Mu (mm-1)	0.089	0.089	
F000	3296.0	3296.	0
F000'	3297.67		
h,k,lmax	62,8,23	61,8,	23
Nref	3478[1795]	3261	
Tmin, Tmax	0.979,0.984		
Tmin'	0.979		
Correction meth	od= Not given		
Data completeness= 1.82/0.94		Theta(max) = 25.000	
R(reflections)=	0.0339(3004)	wR2(reflection	ons) = 0.0873 (3261)
S = 1.076	Npar=	274	
300.			

The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level.

Click on the hyperlinks for more details of the test.

Alert level C

STRVA01 ALERT 4 C Flack test results are meaningless.

From the CIF: _refine_ls_abs_structure_Flack 0.200
From the CIF: _refine_ls_abs_structure_Flack_su 1.000

From the CIF: _refine_ls_abs_structure_Flack_su 1.000

PLAT052 ALERT 1 C Info on Absorption Correction Method Not Given

PLAT089 ALERT 3 C Poor Data / Parameter Ratio (Zmax < 18)

PLATUS ALERT 3 C Poor Data / Parameter Ratio (2max < 18)

PLAT911 ALERT 3 C Missing FCF Refl Between Thmin & STh/L= 0.595

PLAT915 ALERT 3 C No Flack x Check Done: Low Friedel Pair Coverage

6.49 Note 13 Report 88 %

Please Do !

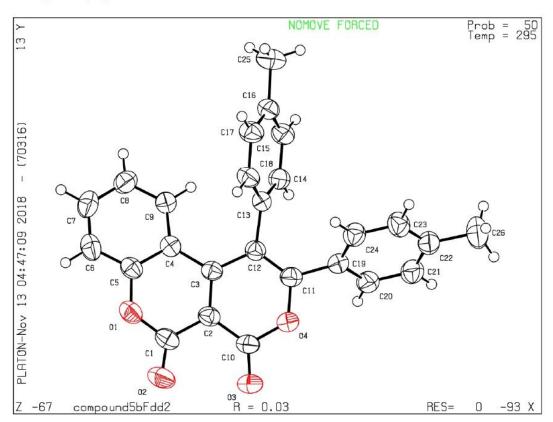
Alert level G

<u>PLAT005 ALERT 5 G</u> No Embedded Refinement Details Found in the CIF	Please Do !
PLAT032 ALERT 4 G Std. Uncertainty on Flack Parameter Value High .	1.000 Report
PLAT093 ALERT 1 G No s.u.'s on H-positions, Refinement Reported as	mixed Check
PLAT899 ALERT 4 G SHELXL97 is Deprecated and Succeeded by SHELXL	2018 Note
PLAT909 ALERT 3 G Percentage of I>2sig(I) Data at Theta(Max) Still	73% Note
PLAT910 ALERT 3 G Missing # of FCF Reflection(s) Below Theta(Min).	2 Note
PLAT978 ALERT 2 G Number C-C Bonds with Positive Residual Density.	7 Info

- 0 ALERT level A = Most likely a serious problem resolve or explain
- O ALERT level B = A potentially serious problem, consider carefully
- 5 ALERT level C = Check. Ensure it is not caused by an omission or oversight
- 7 ALERT level G = General information/check it is not something unexpected
- 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data
- 1 ALERT type 2 Indicator that the structure model may be wrong or deficient
- 5 ALERT type 3 Indicator that the structure quality may be low
- 3 ALERT type 4 Improvement, methodology, query or suggestion
- 1 ALERT type 5 Informative message, check

It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

Publication of your CIF in IUCr journals


A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (*Acta Crystallographica*, *Journal of Applied Crystallography*, *Journal of Synchrotron Radiation*); however, if you intend to submit to *Acta Crystallographica Section C* or *E* or *IUCrData*, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the *Notes for Authors* of the relevant journal for any special instructions relating to CIF submission.

PLATON version of 19/10/2018; check.def file version of 15/10/2018

Datablock compound5b - ellipsoid plot

Compound: 25

checkCIF/PLATON report

Structure factors have been supplied for datablock(s) kck11

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

Datablock: kck11

Bond precision:	C-C = 0.0082 A	Waveleng	gth=0.71073
Cell:	a=10.5707(10)	b=19.9949(16)	c=11.3147(11)
	alpha=90	beta=108.576(10)	gamma=90
Temperature:	293 K		
	Calculated	Reporte	ed
Volume	2266.9(4)	2266.9	(4)
Space group	P 21/c	P 21/c	
Hall group	-P 2ybc	?	
Moiety formula	C29 H23 N2 O P	?	
Sum formula	C29 H23 N2 O P	C29 H23	3 N2 O P
Mr	446.46	446.46	
Dx,g cm-3	1.308	1.308	
Z	4	4	
Mu (mm-1)	0.146	0.146	
F000	936.0	936.0	
F000'	936.74		
h,k,lmax	12,23,13	12,23,3	13
Nref	3994	3994	
Tmin,Tmax	0.966,0.974		
Tmin'	0.966		
Correction meth	nod= Not given		
Data completene	ess= 1.000	Theta(max)= 25	.000
R(reflections)=	= 0.0802(1871)	wR2(reflection	s)= 0.1991(3994)
S = 1.002	Npar=	= 298	

The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level.

Click on the hyperlinks for more details of the test.

Alert level B

PLAT919 ALERT 3 B Reflection # Likely Affected by the Beamstop ... 1 Check PLAT934 ALERT 3 B Number of (Iobs-Icalc)/SigmaW > 10 Outliers 3 Check

Alert level C

RINTA01 ALERT 3 C The value of Rint is greater than 0.12 Rint given 0.130

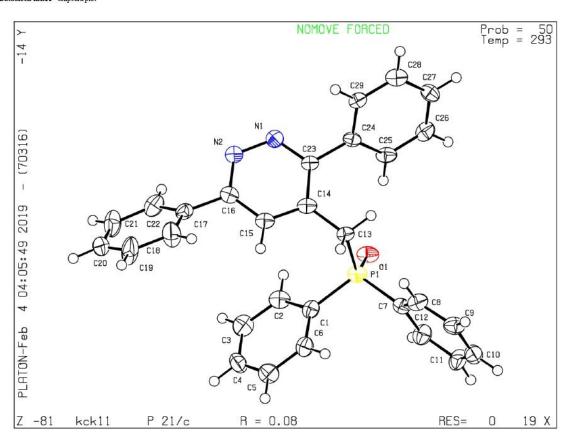
PLATO20 ALERT 3 C The Value of Rint is Greater Than 0.12	0.130 Report
PLAT026 ALERT 3 C Ratio Observed / Unique Reflections (too) Low	47% Check
PLAT052 ALERT 1 C Info on Absorption Correction Method Not Given	Please Do !
PLAT220 ALERT 2 C Non-Solvent Resd 1 C Ueq(max)/Ueq(min) Range	3.1 Ratio
PLAT241 ALERT 2 C High 'MainMol' Ueq as Compared to Neighbors of	C19 Check
PLAT340 ALERT 3 C Low Bond Precision on C-C Bonds	0.00817 Ang.
PLAT906 ALERT 3 C Large K Value in the Analysis of Variance	12.823 Check
PLAT978 ALERT 2 C Number C-C Bonds with Positive Residual Density.	0 Info

Alert level G

PLAT005 ALERT 5 G No Embedded Refinement Details H	Found in the CIF Please	Do !
PLAT093 ALERT 1 G No s.u.'s on H-positions, Refine	ement Reported as mixed	Check
PLAT199 ALERT 1 G Reported cell measurement temper	erature (K) 293	Check
PLAT200 ALERT 1 G Reported diffrn ambient tempe	erature (K) 293	Check
PLAT899 ALERT 4 G SHELXL97 is Deprecated and Suc	cceeded by SHELXL 2018	Note

- 0 ALERT level A = Most likely a serious problem resolve or explain
- 2 ALERT level B = A potentially serious problem, consider carefully
- 9 ALERT level C = Check. Ensure it is not caused by an omission or oversight
- 5 ALERT level G = General information/check it is not something unexpected
- 4 ALERT type 1 CIF construction/syntax error, inconsistent or missing data
- 3 ALERT type 2 Indicator that the structure model may be wrong or deficient
- 7 ALERT type 3 Indicator that the structure quality may be low
- 1 ALERT type 4 Improvement, methodology, query or suggestion
- 1 ALERT type 5 Informative message, check

It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.


Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (*Acta Crystallographica*, *Journal of Applied Crystallography*, *Journal of Synchrotron Radiation*); however, if you intend to submit to *Acta Crystallographica Section C* or *E* or *IUCrData*, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the *Notes for Authors* of the relevant journal for any special instructions relating to CIF submission.

PLATON version of 06/01/2019; check.def file version of 19/12/2018 Datablock kckl1 - ellipscidplot

Compound: 27b

checkCIF/PLATON report

Structure factors have been supplied for datablock(s) kck245_0m_a

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

Datablock: kck245_0m_a

Bond precision:	C-C = 0.0039 A	Wavelength	=0.71073
Cell:	a=6.6349(3)	b=9.9311(5)	c=15.1391(7)
	alpha=73.777(2)	beta=85.701(1)	gamma=84.283(1)
Temperature:	301 K		
	Calculated	Reported	
Volume	951.90(8)	951.90(8)	
Space group	P -1	P-1	
Hall group	-P 1	?	
Moiety formula	C22 H22 N2 O2	?	
Sum formula	C22 H22 N2 O2	C22 H22 N	2 02
Mr	346.42	346.42	
Dx,g cm-3	1.209	1.209	
Z	2	2	
Mu (mm-1)	0.078	0.078	
F000	368.0	368.0	
F000'	368.15		
h,k,lmax	7,11,17	7,11,17	
Nref	3349	3334	
Tmin, Tmax	0.981,0.986		
Tmin'	0.981		
Correction metho	od= Not given		
COTTECCTOR MECH	ou- Not given		
Data completene	ss= 0.996	Theta(max) = 25.00	0
D (51)	0.00004.0004		wR2(reflections)=
R(reflections)=	0.0623(2604)		0.1819(3334)
S = 1.042	Npar= 2	39	

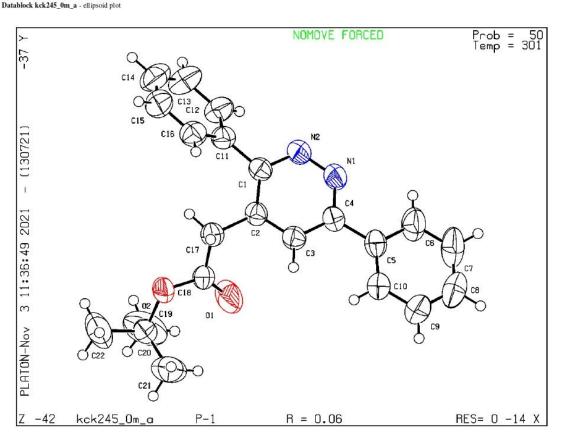
The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level.

Click on the hyperlinks for more details of the test.

♠ Alert level B PLAT242_ALERT_2_B Low 'MainMol' Ueq as Compared to Neighbors of	C19	Check
Alert level C		
PLAT242 ALERT 2 C Low 'MainMol' Ueg as Compared to Neighbors of	C5	Check
PLAT242_ALERT_2_C Low 'MainMol' Ueq as Compared to Neighbors of	C18	Check
PLAT906_ALERT_3_C Large K Value in the Analysis of Variance	4.711	Check
PLAT911_ALERT_3_C Missing FCF Refl Between Thmin & STh/L= 0.595	11	Report
PLAT913_ALERT_3_C Missing # of Very Strong Reflections in FCF	6	Note
PLAT918_ALERT_3_C Reflection(s) with I(obs) much Smaller I(calc) .	1	Check
PLAT934_ALERT_3_C Number of (Iobs-Icalc)/Sigma(W) > 10 Outliers	1	Check
Alert level G		
PLAT005_ALERT_5_G No Embedded Refinement Details Found in the CIF	Please	Do !
PLAT093_ALERT_1_G No s.u.'s on H-positions, Refinement Reported as	mixed	Check
PLAT899_ALERT_4_G SHELXL97 is Deprecated and Succeeded by SHELXL/	2018	Note
PLAT909_ALERT_3_G Percentage of I>2sig(I) Data at Theta(Max) Still	47%	Note
PLAT910_ALERT_3_G Missing # of FCF Reflection(s) Below Theta(Min).	4	Note
PLAT978_ALERT_2_G Number C-C Bonds with Positive Residual Density.	0	Info

- 0 ALERT level A = Most likely a serious problem resolve or explain
- 1 ALERT level B = A potentially serious problem, consider carefully
- 7 ALERT level C = Check. Ensure it is not caused by an omission or oversight
- 6 ALERT level G = General information/check it is not something unexpected
- 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data
- 4 ALERT type 2 Indicator that the structure model may be wrong or deficient
- 7 ALERT type 3 Indicator that the structure quality may be low
- 1 ALERT type 4 Improvement, methodology, query or suggestion
- 1 ALERT type 5 Informative message, check

It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.


Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (*Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation*); however, if you intend to submit to *Acta Crystallographica Section C* or *E* or *IUCrData*, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the *Notes for Authors* of the relevant journal for any special instructions relating to CIF submission.

PLATON version of 13/07/2021; check.def file version of 13/07/2021

ANNULATION/CYCLOADDITION REACTIONS OF INDOLE/CHROMENE/COUMARI N CARBOXYLIC ACIDS OR TETRAZINE WITH C-C ПCOMPONENTS

by Mallepalli Shankar

Submission date: 26-May-2022 05:01PM (UTC+0530)

Submission ID: 1844560088

File name: Mallepalli_Shankar.pdf (6.19M)

Word count: 15386 Character count: 85149

ANNULATION/CYCLOADDITION REACTIONS OF INDOLE/CHROMENE/COUMARIN CARBOXYLIC ACIDS OR TETRAZINE WITH C-C Π-COMPONENTS

ORIGINALITY REPORT SIMILARITY INDEX INTERNET SOURCES **PUBLICATIONS** STUDENT PAPERS **PRIMARY SOURCES** K. C. Kumara Swamy, Mallepalli Shankar, Uruvakili Anasuyamma. "Reaction of Indole -2 - Carboxylates/ Carboxylic Acids with Propargylic Alcohols: Dearomative Ring School of Chemistry University of Hyderabad Expansion/Spirocyclization vs Fused Pentacyclics", Advanced Synthesis & Catalysishinersis of Hyderabad 500 046, INDIA 2021 2021 Publication Mallepalli Shankar, Uruvakili Anasuyamma, K. C. Kumara Swamy. "Reaction of Indole - 2 -Kumala Swample Carboxylates/Carboxylic Acids with Propargylic Alcohols: Dearomative Ring Pentacyclics", Advanced Synthesis & Catalys School of Chemistry
University of Hyderabad
University of Hyderabad
University of Hyderabad
2021 Publication Vadim P. Boyarskiy, Dmitry S. Ryabukhin, Nadezhda A. Bokach, Aleksander V. Vasilyev. "Alkenylation of Arenes and Heteroarenes with Alkynes", Chemical Reviews, 2016

Mediated Cascade Sequence in the Reaction of Propargyl Alcohols with Sulfonamido-indoles/-indolines: Highly Substituted δ - and α -Carbolines", The Journal of Organic Chemistry, 2018

Publication

"Organic Reaction Mechanisms · 2016", Wiley, 2020

<1%

Publication

Gao-Ang Pan, Yang Li, Jin-Heng Li. " Metal-free decarboxylative annulation of - arylacrylamides with vinyl acids to synthesize benzo[]azepin-2-ones ", Organic Chemistry Frontiers, 2020

<1%

Publication

Siva Kumari, A. Leela, and K. C. Kumara Swamy. "Divergence in the Reactivity Between Amine and Phosphine Catalyzed Cycloaddition Reactions of Allenoates with Enynals: One-pot Gold Catalyzed Synthesis of Trisubstituted Benzofurans from the [3+2] Cycloadduct via 1,2-Alkyl Migration and Dehydrogenation", The Journal of Organic Chemistry

<1%

Publication

archive.org

<1%

23	Submitted to Higher Education Commission Pakistan Student Paper	<1%
24	Heyi Zhang, Zhan Lu. "Nickel/Copper Dual Catalysis for Sequential Nazarov Cyclization/Decarboxylative Aldol Reaction", Organic Letters, 2018	<1%
25	Yu Lan. "Computational Methods in Organometallic Catalysis", Wiley, 2021 Publication	<1%
26	iucrdata.iucr.org Internet Source	<1%
27	Gallego, Mar Gómez, and Miguel A. Sierra. "Level 2 — Case 30 Diels-Alder Reactions of N-Acyl-1,2,4,5-tetrazines", Organic Reaction Mechanisms, 2004. Publication	<1%
28	Hummel, Joshua R, and Jonathan A. Ellman. "Cobalt(III)-Catalyzed Synthesis of Indazoles and Furans by C–H Bond Functionalization/Addition/Cyclization Cascades", Journal of the American Chemical Society Publication	<1%
29	Jamie M. Neely, Tomislav Rovis. "Rh(III)- Catalyzed Decarboxylative Coupling of Acrylic	<1%

Acids with Unsaturated Oxime Esters: Carboxylic Acids Serve as Traceless Activators", Journal of the American Chemical Society, 2014

Wei Shi, Fang Ma, Pinhua Li, Lei Wang, Tao 30 Miao. "Visible-Light-Induced Decarboxylative Cyclization/Hydrogenation Cascade Reaction to Access Phenanthridin-6-yl(aryl)methanol by an Electron Donor-Acceptor Complex", The Journal of Organic Chemistry, 2020 Publication

<1%

res.mdpi.com 31 Internet Source

Publication

Publication

Honghao Chen, Lufeng Ouyang, Jidan Liu, 32 Wen-Jing Shi, Guoshu Chen, Liyao Zheng. "Synthesis of Multisubstituted 1-Naphthoic Acids via Ru-Catalyzed C-H Activation and Double-Alkyne Annulation under Air", The Journal of Organic Chemistry, 2019

<1_%

Sang Weon Roh, Kyoungmin Choi, Chulbom 33 Lee. "Transition Metal Vinylidene- and Allenylidene-Mediated Catalysis in Organic Synthesis", Chemical Reviews, 2019 Publication

<1%

Suraj, K. C. Kumara Swamy. "Ring-Expansion 34 Reactions of Epoxy Amides and Enamides:

<1%

Functionalized Azetidines, Dihydrofurans, Diazocanes, or Dioxa-3-azabicyclonon-4-enes?", The Journal of Organic Chemistry, 2022

Publication

Publication

35	ebin.pub Internet Source	<1%
36	hdl.handle.net Internet Source	<1%
37	scholars.unh.edu Internet Source	<1%
38	Jürgen Sauer. "1,2,4,5-Tetrazines", Elsevier BV, 1996 Publication	<1%
39	Yong-Fei Chen, Hai-Fei Wang, Ya Wang, Yong-Chun Luo, Hai-Liang Zhu, Peng-Fei Xu. "Base-and Copper-Catalyzed Intramolecular Cyclization for the Direct Synthesis of Dihydrofurans", Advanced Synthesis & Catalysis, 2010 Publication	<1%
40	Jun-Long Li, Qian Zhao, Chuan Gou, Qing-Zhu Li, Hai-Jun Leng, Qian-Wei Huang, Yue Liu. "Construction of Indole - fused Heterocycles Starting from 2 - Thioxoindolines, Iminoindolines, and their Derivatives",	<1%

Advanced Synthesis & Catalysis, 2021

Sharma, Sudhir K., Anil K. Mandadapu, Brijesh <1% Kumar, and Bijoy Kundu. "Synthesis of Iodo-Indoloazepinones in an Iodine-Mediated Three-Component Domino Reaction via a Regioselective 7-endo-dig Iodo-Cyclization Pathway[±]CDRI Communication No. 8094", The Journal of Organic Chemistry, 2011. Publication <1% Charles S. Yeung, Vy M. Dong. "Catalytic Dehydrogenative Cross-Coupling: Forming Carbon-Carbon Bonds by Oxidizing Two Carbon-Hydrogen Bonds", Chemical Reviews, 2011 Publication Popat M. Jadhav, Ambadas B. Rode, László <1% Kótai, Rajendra P. Pawar, Sunil U. Tekale. "Revisiting applications of molecular iodine in organic synthesis", New Journal of Chemistry, 2021 Publication <1% Rajaka Lingayya, Mari Vellakkaran, Kommu Nagaiah, Jagadeesh Babu Nanubolu.

"Ruthenium as a Single Catalyst for Two

Steps: One-Pot Ruthenium(II)-Catalyzed

Aerobic Oxidative Dehydrogenation of

Dihydroquinazolinones and Cross-

Coupling/Annulation to give N-Fused

Polycyclic Heteroarenes", Asian Journal of Organic Chemistry, 2015

Publication

Sarthak Jain, Kevin Neumann, Yichuan Zhang, Jin Geng, Mark Bradley. "Tetrazine-Mediated Postpolymerization Modification", Macromolecules, 2016

<1%

Slawomir Berski, Juan Andrés, Bernard Silvi, Luis R. Domingo. "New Findings on the Diels-Alder Reactions. An Analysis Based on the Bonding Evolution Theory", The Journal of Physical Chemistry A, 2006

<1%

www.hxchem.net

Publication

<1%

Exclude quotes On Exclude bibliography On

Exclude matches

< 14 words