
Evolutionary Techniques for
Permutation Based Problems

A thesis submitted during 2022 to the University of Hyderabad in
partial fulfillment of the award of a Ph.D. degree in School of

Computer and Information Sciences

by

Gaurav Srivastava

School of Computer and Information Sciences
University of Hyderabad

P.O. Central University, Gachibowli
Hyderabad – 500 046

Telangana, India

January 2022

CERTIFICATE

This is to certify that the thesis entitled “Evolutionary Techniques for Permutation Based
Problems” submitted by Gaurav Srivastava bearing Reg. No. 15MCPC05 in partial fulfill-

ment of the requirements for the award of Doctor of Philosophy in Computer Science is a

bonafide work carried out by him under my supervision and guidance.

This thesis is free from plagiarism and has not been submitted previously in part or in full to

this or any other University or Institution for the award of any degree or diploma.

The student has the following publications before submission of the thesis for adjudication

and has produced evidence for the same in the form of acceptance letter or the reprint in the

relevant area of his research:

1. Gaurav Srivastava, Alok Singh. “Boosting an evolution strategy with a preprocessing

step: application to group scheduling problem in directional sensor network”. Applied

Intelligence, 48: 4760-4774, 2018, Springer (ISSN: 0924-669X). Work reported in this

paper appears in Chapter 3.

2. Gaurav Srivastava, Venkatesh Pandiri and Alok Singh. “An evolution strategy based

approach for cover scheduling problem in wireless sensor networks”. International

Journal of Machine Learning and Cybernetics, 11: 1981-2006, 2020, Springer (ISSN:

1868-8071). Work reported in this paper appears in Chapter 2.

3. Gaurav Srivastava, Alok Singh and Rammohan Mallipeddi. “A hybrid discrete differ-

ential evolution approach for the single machine total stepwise tardiness problem with

release dates”. Proceedings of the 2021 IEEE Congress on Evolutionary Computation

(CEC-2021), 2021, IEEE. Work reported in this paper appears in Chapter 4.

4. Gaurav Srivastava, Alok Singh and Rammohan Mallipeddi. “NSGA-II with objective-

specific variation operators for multiobjective vehicle routing problem with time win-

dows”. Expert Systems with Applications, 176: 114779, 2021, Elsevier (ISSN: 0957-4174).

Work reported in this paper appears in Chapter 7.

and has made the presentations in the following conferences:

1. 2021 IEEE Congress on Evolutionary Computation (CEC-2021), June 28 - July 1, 2021,

Kraków, Poland.

Further, the student has passed the following courses towards fulfillment of coursework

requirement for Ph.D.:

Course Code Name Credits Pass/Fail

CS 801 Data Structures and Algorithms 4 Pass
CS 802 Operating Systems and Programming 4 Pass
AI 810 Metaheuristic Techniques 4 Pass
AI 852 Learning & Reasoning 4 Pass

(Prof. Alok Singh)
Supervisor

School of Computer and Information Sciences
University of Hyderabad

Hyderabad – 500 046, India

(Prof. Chakravarthy Bhagvati)
Dean

School of Computer and Information Sciences
University of Hyderabad

Hyderabad – 500 046, India

iii

DECLARATION

I, Gaurav Srivastava, hereby declare that this thesis entitled “Evolutionary Techniques

for Permutation Based Problems” submitted by me under the guidance and supervision of

Prof. Alok Singh is a bonafide research work which is also free from plagiarism. I also declare

that it has not been submitted previously in part or in full to this University or any other Univer-

sity or Institution for the award of any degree or diploma. I hereby agree that my thesis can be

deposited in Shodganga/INFLIBNET.

A report on plagiarism statistics from the University Library is enclosed.

Date : Name: Gaurav Srivastava

Signature of the Student:

Reg. No.: 15MCPC05

Signature of the Supervisor:

Abstract

During the last several decades, the research field of combinatorial optimization has

attracted many researchers across various scientific fields owing to their practical

importance in day to day life. The advancement of technology and accelerated

computer evolution makes large-scale computation practical. Consequently, many

industries have started employing the state-of-the-art techniques available in the lit-

erature of combinatorial optimization for efficiently solving their problems. These

problems include allocation of resources and more effective planning, scheduling,

manufacturing, transportation and distribution. Permutation based combinatorial

optimization problems are a specific category of combinatorial optimization prob-

lems, where the problem possess permutation characteristic. Many real world

problems like routing, scheduling, networking, timetabling have permutation as-

pect. Since many practical applications can be modeled as a permutation based

problem, these problems have huge practical importance. Apart from practical

applications, these problems pose a serious challenge from theoretical perspective

also. Any improvement that can be made while addressing a permutation based

problem will provide a scope for improvement for several other related permutation

based problems. Motivated by these facts, in this thesis, we have focused on solv-

ing some recent NP-hard permutation based combinatorial optimization problems

using three evolutionary techniques, viz. genetic algorithm (GA), evolution strategy

(ES) and discrete differential evolution (DDE).

Six NP-hard permutation based problems have been addressed in this thesis.

These six problems are as follows: cover scheduling problem in wireless sen-

sor networks, total rotation minimization problem in directional sensor networks,

single machine total stepwise tardiness problem with release dates, rescue unit

allocation and scheduling problem, quality of service vehicle routing problem

with time windows and multiobjective vehicle routing problem with time windows.

v

These six problems not only have several practical applications in different fields

such as wireless sensor networks, transportation, logistics, planning & scheduling,

disaster management, but are also challenging from theoretical perspective. To

address these problems, we have developed evolution strategies based approaches

for first two problems and a hybrid discrete differential evolution approach for

third problem. Fourth and fifth problems are solved by grouping genetic algorithm

based approaches, whereas the last problem being multiobjective in nature uses

nondominated sorting genetic algorithm II (NSGA-II) based approach. Appropriate

problem-specific knowledge has been incorporated in all our approaches. Com-

putational results demonstrate the effectiveness of our approaches. The proposed

approaches can be easily adapted for other related permutation based problems.

The insight gained from this thesis can be useful to solve many other combinatorial

optimization problems.

vi

To my parents,
Shri Deep Chandra Srivastava and Smt. Suman Lata Srivastava

my dear wife and lovely daughter,
Anvita and Vaanya

without their endless love, support and encouragement, this would not have been

possible.

Acknowledgements

Pursuing the PhD has been a truly life-changing journey for me. This journey

would not have been possible without the support of many people and I would like

to express my deep appreciation to all of them.

First and foremost, I express my sincere gratitude towards my supervisor Prof.

Alok Singh for his endless support and guidance throughout this PhD. His immense

knowledge and insightful feedback pushed me to sharpen my thinking and brought

my work to a higher level. I am thankful to him for introducing me to the field of

combinatorial optimization using evolutionary techniques which is a perfect mix of

my research interests: optimization and natural computing. I am obliged to him for

his availability, patience and continuous encouragement due to which I successfully

crossed many hurdles throughout this course. I feel fortunate to have him as my

PhD supervisor and words alone are not enough to express my gratitude towards

him.

Next, I would like to thank my doctoral review committee (DRC) members, Dr.

Anupama Potluri and Prof. C. Raghavendra Rao for their invaluable insights

and feedback about my research work. Their hard questions during the review

process drove me to analyse my research work more deeply, resulting in new ideas

to further enhance the quality of my work.

During my PhD, I was very fortunate to get the opportunity to visit and learn

from Dr. Rammohan Mallipeddi at Kyungpook National University, South Korea.

I will always remain indebted to him.

I take this opportunity to thank the Dean of the School Prof. Chakravarthy

Bhagvati for providing all the necessary facilities to pursue my research work. I

would also like to thank other faculty members and staff of the school for their

support. I am thankful for the unstinting support that I received from the research

infrastructure and the effervescent ambiance of the University. Due credit to the

University for building a research oriented School of Computer & Information

Sciences (SCIS), a library rich in a wide range of research books & articles, and

most importantly a healthy campus atmosphere.

I am indebted to my senior lab mates Dr. Sachchida Nand Chaurasia and

Dr. Venkatesh Pandiri, who had helped me in almost every phase of my PhD. I

found them always available, whenever I needed them. In addition, I would like to

acknowledge my other senior lab mates Dr. Shyam Sundar, Dr. B. Jayalakshmi

and Dr. Abobakr Khalil Alshamiri for their valuable suggestions and support.

A special thanks to Rajesh for helping me with MATLAB codes. I am thankful

to my fellow lab mates (Edukondalu, Mallikarjuna, Preeti, Kasi, Sebanti and

Danish) for stimulating discussions, providing me company for tea/snacks and

for all the fun we had together. I am thankful to all my PhD colleagues in SCIS

for their support and encouragement. I would like to thank my fellow researchers

(Trinadh, Vikas, Sameera and Fitri) at Kyungpook National University, South

Korea for bearing with me and having the patience to answer all my silly questions

either related to the research or the new unknown place.

I would like to make a special mention about my dear friend and labmate

Mallikarjuna whom we lost due to COVID. I shared a close bond with him and

miss his pleasant smile and presence in the lab.

I am grateful to a number of researchers in my field who furnished me with

indispensable research data and clarified my doubts regarding the definitions and

their proposed approaches, especially to Mr. Airam Expósito and Mr. Victor

Cunha.

A major part of my research work was supported by Council of Scientific

& Industrial Research (CSIR), Government of India through Senior Research

Fellowship. I am grateful to this organization for the financial support.

Finally, I could not have achieved anything in life without the unconditional

and constant support of my family. I would like to dedicate this thesis to my parents

Shri Deep Chandra Srivastava and Smt. Suman Lata Srivastava who always

encouraged me to achieve new heights. I would like to thank a very special person,

my wife, Anvita for her continued and unfailing love, support and understanding

during my pursuit of PhD. I am also thankful to my brother Vaibhav and sister-in-

law Anveshika for their affection, patience and encouragement.

Gaurav Srivastava

Contents

List of Figures xv

List of Tables xvii

1 Introduction 1

1.1 Approximate methods . 4

1.2 Evolutionary algorithms . 6

1.3 Overview of genetic algorithm . 7

1.3.1 Representation of individuals . 9

1.3.2 Selection methods . 10

1.3.3 Crossover . 12

1.3.4 Mutation . 14

1.3.5 Population evolution models . 15

1.4 Genetic algorithm for permutation problems 16

1.4.1 Crossover operators for permutation problems 16

1.4.2 Mutation . 18

1.5 Grouping genetic algorithm (GGA) . 19

1.5.1 Representations in grouping genetic algorithm 20

1.5.2 Crossover . 21

1.5.3 Mutation . 22

1.6 Overview of evolution strategies . 22

1.7 Overview of differential evolution . 25

1.8 Overview of NEH heuristic . 27

1.9 Overview of opposition based solution generation 27

1.10 Scope of the thesis . 28

xi

CONTENTS

2 Cover Scheduling Problem in Wireless Sensor Networks 35

2.1 Introduction . 35

2.2 Problem definition . 39

2.3 Related work . 41

2.4 Two-membered evolution strategy approach for WSN-CSP 43

2.4.1 Solution encoding and fitness . 44

2.4.2 Initial solution generation . 44

2.4.3 Mutation operators . 45

2.4.4 Reshuffle procedure . 47

2.5 Computational results . 48

2.6 Conclusions . 53

3 Total Rotation Minimization Problem in Directional Sensor Networks 54

3.1 Introduction . 54

3.2 Problem definition . 57

3.3 Two-membered evolution strategy based approach for TRMP 60

3.3.1 Solution encoding and fitness . 61

3.3.2 Pre-processing step . 62

3.3.3 Mutation operator . 62

3.3.4 Reshuffle procedure . 64

3.4 Computational results . 64

3.5 Conclusions . 70

4 Single Machine Total Stepwise Tardiness Problem with Release Dates 71

4.1 Introduction . 71

4.2 Problem definition . 74

4.3 Hybrid discrete differential evolution approach for SMTSTP-R 74

4.3.1 Encoding of solutions and their fitness 76

4.3.2 Initial solution generation . 76

4.3.3 Crossover operator . 77

4.3.4 Local search . 79

4.4 Computational results . 82

4.4.1 Comparison of our approach with previously proposed approaches . . 84

4.4.2 Statistical significance of HDDE approach 87

xii

CONTENTS

4.5 Conclusions . 88

5 Rescue Unit Allocation and Scheduling Problem 89

5.1 Introduction . 89

5.2 Problem definition . 91

5.3 Related work and existing approaches for RUASP 94

5.3.1 Related work . 95

5.3.2 Analysis of existing methods for RUASP 96

5.3.3 Overview of related fuzzy theory . 98

5.4 Steady-state grouping genetic algorithm for RUASP 100

5.4.1 Solution encoding . 101

5.4.2 Initial population generation . 102

5.4.3 Crossover operator . 105

5.4.4 Mutation operator . 107

5.5 Computational results . 108

5.5.1 Description of RUASP instances . 108

5.5.2 Experimental results . 109

5.6 Conclusions . 116

6 Quality of Service Vehicle Routing Problem with Time Windows 117

6.1 Introduction . 117

6.2 Problem definition . 120

6.3 Related work . 123

6.4 Theoretical study . 125

6.4.1 Lower bounds for objective fc(x) . 125

6.4.2 Upper bounds for objective fs(x) . 128

6.4.3 Lower bounds for objective fr(x) . 129

6.5 Steady-state grouping genetic algorithm for QSVRPTW 131

6.5.1 Solution representation . 134

6.5.2 Initial population generation . 134

6.5.3 Crossover operator . 142

6.5.4 Mutation operator . 143

6.6 Computational results . 145

6.7 Conclusions . 152

xiii

CONTENTS

7 Multiobjective Vehicle Routing Problem with Time Windows 153

7.1 Introduction . 153

7.2 Problem definition . 156

7.3 Related work . 160

7.3.1 Existing approaches for MOVRPTW 160

7.3.2 Overview of multiobjective optimization 163

7.4 Proposed NSGA-II approach for MOVRPTW 163

7.4.1 Solution representation for MOVRPTW 166

7.4.2 Initial population generation . 167

7.4.3 Objective-specific crossover operators 167

7.4.4 Objective-specific mutation operators 170

7.5 Computational results . 173

7.5.1 Description of MOVRPTW instances 174

7.5.2 Performance metrics . 175

7.5.3 Experimental results . 177

7.6 Conclusions . 184

8 Conclusions and Directions for Future Research 185

References 194

List of Publications 219

xiv

List of Figures

1.1 1-point crossover . 13

1.2 Uniform crossover . 14

1.3 Bitwise mutation . 14

1.4 Random reset mutation . 15

1.5 PMX Crossover . 17

1.6 Order crossover . 17

1.7 Uniform order based crossover . 18

1.8 Swap mutation . 18

1.9 Insert mutation . 19

1.10 Scramble mutation . 19

1.11 Inversion mutation . 19

1.12 Flowcharts of two-membered and multi-membered evolution strategies 23

1.13 Illustrating the concept of opposite solution in case of permutation based COP . 28

2.1 Illustrating activation of covers in a WSN . 37

2.2 Illustrating WSN-CSP assuming covers are scheduled as per their natural order,

i.e., G1, G2, G3, G4, G5, G6 . 40

2.3 Illustrating WSN-CSP assuming covers are scheduled in the orderG1, G2, G4, G6, G5, G3

41

3.1 Omnidirectionl sensor vs directional sensor 55

4.1 Traditional and stepwise tardiness . 72

4.2 Illustrating first and second local searches . 80

5.1 Two solutions of the illustrative example . 95

xv

LIST OF FIGURES

5.2 Graphical representation of a TFN Ã = (a, b, c) 99

5.3 Solution representation illustration . 101

5.4 Boxplots of the solutions obtained by Schedule7 and SSGGACP over the set

of ten instances: (a) m=10 & n=10, (b) m=10 & n=20, (c) m=10 & n=30, (d)

m=10 & n=40. 114

5.5 Boxplots of the solutions obtained by Schedule7 and SSGGACP over the set

of ten instances: (a) m=20 & n=20, (b) m=20 & n=30, (c) m=20 & n=40, (d)

m=40 & n=40 (e) m=30 & n=30, (f) m=30 & n=40s. 115

6.1 Two solutions of the illustrative example . 128

6.2 Solutions to illustrate both objectives . 131

6.3 Solution representation . 134

6.4 Comparison of convergence of approach with greedy based and random based

heuristics on instance C109. 142

7.1 Solution representation . 167

7.2 Approximation of IGD for the solution set X 176

7.3 Approximation of HV for the solution set X 176

7.4 Heatmaps of nondominated solutions obtained by INSGA-II and LSMOVRPTW

on selected instances (The rows of each heatmap have been rearranged according

to f3 in ascending order): (a) INSGA-II on 250-2-0, (b) LSMOVRPTW on

250-2-0, (c) INSGA-II on 250-2-1, (d) LSMOVRPTW on 250-2-1, (e) INSGA-

II on 250-2-2, (f) LSMOVRPTW on 250-2-2, (g) INSGA-II on 250-2-3, (h)

LSMOVRPTW on 250-2-3, (i) INSGA-II on 250-2-4, (j) LSMOVRPTW on

250-2-4. 183

xvi

List of Tables

1.1 Regularly used terms in genetic algorithm parlance 8

1.2 Categorization of the problems, their type of the objective and combinatorial

optimization characteristics . 29

2.1 Comparison of ES-CSP with CSGA, CSABC and CSIWO on two parameters,

viz. average percentage deviation from the lower bound and the count of

optimally solved instances . 51

2.2 Comparison of ES-CSP with CSGA, CSABC and CSIWO in terms of count

of the instances on which ES-CSP achieved better (<), equal (=) and worse (>)

solutions . 52

3.1 Illustrating the TRMP assuming the covers are scheduled in their natural order,

i.e., g1, g2, g3 . 60

3.2 Illustrating the TRMP assuming the covers are scheduled in the order g1, g3, g2 61

3.3 Results on instances with φ = 2π
3 . All angles are in radians and times in seconds 67

3.4 Results on instances with φ = π
2 . All angles are in radians and times in seconds 68

3.5 Results on instances with φ = π
3 . All angles are in radians and times in seconds 69

4.1 Results of HGA, HABC and HDDE on Set I instances 84

4.2 Results of HGA, HABC and HDDE on Set II instances 85

4.3 Comparison of HDDE with HGA and HABC on Set I instances in terms of number of the

instances on which HDDE yielded better (<), equal (=) and worse (>) solutions 85

4.4 Comparison of HDDE with HGA and HABC on Set II instances in terms of number of the

instances on which HDDE yielded better (<), equal (=) and worse (>) solutions 86

4.5 Results of Wilcoxon signed rank test on Set I instances for best solution quality 87

4.6 Results of Wilcoxon signed rank test on Set I instances for average solution quality 87

xvii

LIST OF TABLES

4.7 Results of Wilcoxon signed rank test on Set II instances for best solution quality 88

4.8 Results of Wilcoxon signed rank test on Set II instances for average solution

quality . 88

5.1 Processing time matrix for the illustrative example. 94

5.2 Comparison of average results obtained by BRKGA and SSGGAFP over each

set of instances . 110

5.3 Comparison of BRKGA and SSGGAFP on the first instance from each set . . . 111

5.4 Comparison of average results obtained by BestWex and SSGGACP over each

set of instances . 113

6.1 Particulars of the illustrative example. 127

6.2 Data of the illustrative example. 130

6.3 Time matrix of the illustrative example. 131

6.4 Results on instances with number of customers=25. 147

6.5 Results on instances with number of customers=50. 147

6.6 C201 instance with 25 customers. 148

6.7 Results of GGA-QOS for objectives fc(x) and fs(x) respectively. 150

6.8 Results of GGA-QOS for objectives fr(x). 151

7.1 Average values of IGD, HV, And C-Metric of INSGA-II and LSMOVRPTW . 179

7.2 Comparison of INSGA-II with LSMOVRPTW in terms of count of the runs as

well as in overall 30 runs, on which INSGA-II achieved better (<), equal (=)

and worse (>) values in five objectives. 181

xviii

Chapter 1

Introduction

A combinatorial optimization problem (COP) is discrete and finite in nature, and seeks an

optimal solution from its large but finite set of feasible solutions. It includes both minimization

and maximization problems. Optimality is decided with respect to an objective function that is

specific to the problem and that assigns a numerical value to each feasible solution according to

its composition. The combinatorial optimization problems are divided into three categories on

the basis of their characteristics. The three categories are namely, permutation problems, subset

selection problems and grouping problems. The permutation problems seek an arrangement

of a given set of items into an optimal order subject to some constraints. In permutation

problems, any solution is represented as a permutation. The traveling salesman problem and

single machine scheduling problem are well-known examples of permutation problems. The

subset selection problems intend to find an optimal subset of objects from a pool of objects under

some constraints. The knapsack problem and minimum spanning tree problem are two common

problems which fall under the category of subset selection problems. On the other hand, the

objective of a grouping problem is to optimally divide a given set of items into various groups

under certain constraints. The graph coloring problem and clustering are two famous examples

of grouping problems. However, some combinatorial optimization problems have characteristics

of more than one category of problems, i.e., these three categories are not disjoint. For example,

vehicle routing problem has characteristics of permutation and grouping both. Likewise, shortest

path problem on graphs has the characteristics of subset selection and permutation both. By

a permutation based problem, we mean any combinatorial optimization problem possessing

the permutation characteristic. In addition, it can have other characteristics too. Presence of

multiple characteristics in a problem usually makes it harder.

1

1. INTRODUCTION

Many real-world problems like routing, scheduling, networking, timetabling have permuta-

tion aspect. Over the last five decades, researchers across different fields have studied numerous

permutation based optimization problems, e.g. traveling salesman problem (TSP), flowshop

scheduling problem (FSSP), quadratic assignment problem (QAP), linear ordering problem

(LOP) and many more. Despite the fact that all of these problems have permutation charac-

teristic, the interpretation of the permutation with respect to the objective of the problem is

different in different problems. To show the difference in semantic of permutation from the

perspective of the objective of the problem, we present the brief description of these problems

in the subsequent paragraphs.

The traveling salesman problem (TSP) is one of the earliest known permutation based

combinatorial optimization problems. Given a set of cities along with distances between each

pair of cities, the TSP seeks an optimal permutation of cities that results in shortest possible route.

Karl Menger in 1932 proposed “das boten problem” [1] which translates as the “messenger

problem” in English. Literature considers this one as the first published work on TSP [2, 3, 4].

FSSP was introduced by Johnson in 1954 in [5]. It consists of n jobs to be processed on m

machines. Each job requires m operations, thus need to be processed by each of the m machines.

A job i can be processed on jth machine if and only if its (j − 1)th operation has finished on

(j− 1)th machine and the jth machine is available. The processing time of job i on jth machine

is pij . The objective of FSSP is to find an optimal permutation of jobs for each machine that

minimizes the makespan, i.e., the completion time of the last job. This problem has a total

(n!)m possible schedules (solutions). A simplified version of FSSP known as permutation FSSP

considers the same order (sequence) in which these jobs are processed on each machine [6]. In

the permutation FSSP, the number of possible schedules (solutions) reduces to n!.

QAP was introduced by Koopmans et al. [7] in 1957 as a mathematical model that deals

with the assignment of a set of facilities to a set of locations. It is based on the theory that the

cost incurred due to some economic activity at one location may depends on the facilities at

other locations [8]. The problem is to assign n facilities to n sites such that each pair of locations

have a specific distance and each pair of facilities have a particular amount of flow or weight.

Each facility must be assigned to exactly one location. The cost function is associated with the

distance between locations and flow between the facilities. Two n× n matrices provide the flow

(W = wpq) between facilities p and q, and distance (D = drs) between locations r and s. For

n facilities, the solution of QAP is represented as a permutation ρ={ρ1, ρ2, . . . , ρn} where the

2

facility ρi is assigned to the ith location. The objective function that need to be minimized, is

defined as [8, 9]:

f(ρ) =
n∑
i=1

n∑
j=1

wijdρiρj

The TSP can be formulated as a special case of QAP where the distance matrix of TSP can be

considered as the distance matrix of QAP and the flow matrix (W) being equal to the adjacency

matrix of a cycle on n vertices/cities of TSP [8].

The linear ordering problem (LOP) has received the attention of researchers since its

introduction by Chenery et al. in 1958 [10]. Given a n× n matrix of numerical values M =

{xij}, the LOP seeks a (simultaneous) permutation ρ of rows (and columns) that maximizes

the sum of numerical values above the principal diagonal of matrix M . Formally, the objective

function is defined as :

f(ρ) =
n−1∑
i=1

n∑
j=i+1

xρiρj

where ρi represents the index of row (and column) placed at ith place in permutation ρ.

Even though all of the above problems possess permutation characteristics, they can not be

effectively solved by a single approach. It is necessary to exploit the semantic of permutation

while solving such problems. Thus, the approaches whose design is based on the characteristics

of the problem along with the objective can be more effective than the corresponding generic

approaches employed for the problem. It is pertinent to mention that, we have neither provided

any further discussion on these aforementioned problems nor solved any of them in this thesis.

The sole purpose of discussing these problems is to highlight the differences in aspects of

permutation for different permutation based COPs.

With the emergence of new technology and the advancement of human civilization, new

permutation based problems continue to emerge. Despite the common aspect of permutation,

these problems may have significant differences due to the objective function, additional

constraints or the occurrence of other characteristics (grouping and/or subset selection) along

with permutation in them. To address such problems in a more suitable way, it is necessary to

find specific requirements by performing a deep analysis of the problem characteristics and then

develop problem-specific approaches for them.

3

1. INTRODUCTION

Though some permutation based problems such as shortest path problem can be optimally

solved in polynomial time, most permutation based problems are NP-hard. In fact, this is true

not only for permutation based problems, but for all COPs, i.e., though some COPs such as

shortest path problem, minimum spanning tree problem can be optimally solved in polynomial

time, most COPs are NP-hard. For NP-hard optimization problems, no polynomial time exact

algorithm is known so far and even the optimality of a given solution can not be verified in

polynomial time. Therefore, the applicability of exact methods is limited to small size instances

only. To solve large instances of such problems in a reasonable amount of time, one has to

consider other approaches which can find high quality solutions which need not be optimal.

Approximate methods [11] is a hypernym used for all such approaches. The development of

approximate methods to address various COPs is a well-known area of research which is highly

active for the last five decades.

1.1 Approximate methods

Approximate methods are the collection of approaches that provide good quality solutions in a

reasonable amount of time. The obtained solutions need not be optimal, but usually they are

quite near to optimal solutions in terms of quality. Usually, these methods have polynomial

runtime complexity and yields solutions in a reasonable amount of time. Due to the discrete

nature of COPs, the search (solution) space of NP-hard problems is rugged, in general. The

chances of many locally optimal solutions are also possible and some of these locally optimal

solutions can be very near to optimal solution. Even though the locally optimal solution can

be near to optimal solution in terms of objective value, but these solutions can be quite far in

solution space. Approximate methods can be further divided into following four categories

• Heuristics are intuitive approach designed by considering the structure of the problem.

In general, heuristic generates a good quality solution in a very small amount of time.

However, it does not provide any guarantee about the quality of the generated solution. If

the heuristic is designed by considering the characteristics of the problem appropriately,

then the quality of the generated solution is usually good.

• Metaheuristics are the high-level framework consisting of a general-purpose heuristic

that can be used for any optimization problem. They follow an iterative search process to

explore promising regions of the search space [11]. Metaheuristics are problem-agnostic

4

1.1 Approximate methods

and can be applied to a wide variety of problems with suitable modifications. They are

stochastic algorithms and generally non-deterministic in nature. Usually, the problem

needs to be represented in a specific form as per the suitability of the metaheuristic

framework. The genetic algorithms [12, 13], ant colony optimization [11, 14], artificial

bee colony algorithm [15], variable neighborhood search [16, 17], differential evolution

[18, 19], evolution strategy [20, 21] are some of the well-known metaheuristics.

• Approximation algorithms include those methods which provide solutions with proven

solution quality. The obtained solutions are guaranteed to satisfy the approximation ratio

upper bound value. Thus, these methods provide a solution whose quality is always within

a certain factor of the quality of the optimal solution.

• The fourth category consists of those approaches that are based on premature termination

of exact approaches. For example, a mixed-integer linear programming (MILP) solver for

a problem can be prematurely stopped by allowing it to execute for a certain amount of

time, and then output the best solution found at the end if at least one feasible solution is

found in this fixed time interval.

The literature contains theoretical results of many combinatorial optimization problems

which reveal the fact that designing good polynomial-time approximation algorithms for all kinds

of problems is not possible. It is also observed that premature termination of exact approaches

turns out to be unsuccessful in finding even one feasible solution in many cases. On the other

hand, metaheuristic approaches are found to be highly successful for addressing such problems.

Hybrid approaches where some problem-specific heuristics are used in metaheuristic framework

is a common practice to address such NP-hard problems. In this thesis, we have considered three

metaheuristic approaches, viz. genetic algorithm (GA), evolution strategy (ES) and discrete

differential evolution (DDE) to address six NP-hard permutation based problems. All the three

metaheuristics belong to the broad class of evolutionary algorithms. Each approach that we have

developed as a part of this thesis is hybridized with appropriate problem-specific heuristics. For

first three problems considered in this thesis, which have only permutation characteristic, we

have used NEH heuristic and concept of opposition based solution generation to generate initial

solutions. The results demonstrate that our approach of initial solution generation is highly

effective. It can be used for any problem having only permutation characteristic. The subsequent

sections provide an overview of the evolutionary algorithms, NEH heuristic and the concept of

opposition based solution used in this thesis.

5

1. INTRODUCTION

1.2 Evolutionary algorithms

Evolutionary algorithms (EAs) is a hypernym for population based metaheuristic approaches

derived from the models of biological evolution. These are stochastic optimization algorithms

and use stochastic mechanism for selection, variation operators such as crossover and mutation.

They imitate biological evolution in several ways such as, environmental changes cause natural

selection, consequencing in an increase in the fitness of existing population. Each EA maintains

a population of solutions which is also known as candidate solutions, chromosomes, individuals

etc. The population is evolved towards better region of search space, using an iterative process.

During each iteration (also known as generation) new solutions are created from existing

solutions by employing the variation operators and solutions for next generation is selected

from among newly created solutions and existing solutions by following a “survival of fittest

strategy”. This iterative process continues until the defined termination criteria is met.

Evolutionary algorithms incepted during 1960s with the idea that the approaches inspired

from natural evolution can be used for addressing engineering applications. EAs can be

broadly divided into three main research streams, viz. evolutionary programming, genetic

algorithm and evolution strategies. These three approaches were developed independently

and were contemporary. In USA, Fogel [22] presented evolutionary programming, whereas

genetic algorithm was presented by Holland [13]. In Germany, Rechenberg presented evolution

strategies whose development is continued parallel to development of GA. Later in 90’s, other

EAs such as differential evolution (DE), estimation of distribution algorithms (EDAs) etc. were

also introduced and applied successfully on various problems. All of these follow the same

core process in which a population of solutions evolve using genetic operators. Despite the

framework similarity, all of these algorithms differ in numerous aspects from each other. Each of

them uses their own set of genetic operators based on the principle of biological evolution. Over

the year, EAs have gained huge popularity and literature contains various applications which

address numerous optimization problems. Due to their ability to solve complex optimization

problems, many variants of EAs have been developed consequencing in sheer volume of research

articles on them. For a comprehensive survey on these algorithms, reader can refer to articles

[23, 24, 25, 26].

6

1.3 Overview of genetic algorithm

1.3 Overview of genetic algorithm

Genetic algorithm (GA) is one of the most widely used global optimization method, which

simulates the idea of natural selection and natural genetics. It is also one of the earliest proposed

EA which still very popular for addressing optimization problems. It was introduced in 1960s

by John H. Holland [13] and was originally proposed for for simulating the biological evolution

of adaptive natural systems. Later, due to their ability to exhibit biological evolution and their

adaptive characteristic, it was used for addressing complex optimization problems. In [13],

Holland presented Schema Theorem which provide a strong theoretical explanation of genetic

algorithm and discusses the mechanism related to working of GA. Schema Theorem states

that the schemata having fitness more than average fitness will be increased in number with

successive generations. It works like an analysis tool for GA and accounts which schema has

more chances to survive in further process of GA. Using Schema Theorem, Holland also shows

the behavior of implicit parallelism in GA. GAs have been successfully used for solving various

kinds of complex optimization problems. It is an evergreen area of research in the field of

optimization, and thus many new variants of GA get published in literature, each year. The

success of GA is mainly because of its simple structure, applicability on diverse set of problems

and robustness in finding high quality solutions due to its characteristic of better exploration of

search space [26, 27, 28].

GA uses terminology borrowed from natural genetics and evolution theory. Thus, it would

be convenient to briefly explain these terms in the context of GA before providing the detailed

discussion. The Table 1.1 presents the explanation of the regularly used terms in GA parlance.

GA begins with a population of individuals known as chromosomes. These individuals

are usually generated in a random manner, but we can also use problem-specific heuristics

to generate these individual solutions. Fitness function is used to evaluate the fitness of each

individual, which provides a ranking among the individuals about how much better one is

with respect to others. Usually, the fitness function is same as the objective function for the

problem but it can be different. After assigning fitness to each solution, GA follows an iterative

process. In each generation, some individuals (solutions) are selected based on a selection

mechanism and considered as parents. The selection mechanism usually prefers the more fit

individuals to make a pool of parents. Such mechanism is supported by the fact that better

parents have higher chance of producing further improved offspring. The solutions in parent

set undergoes reproduction process with the help of genetic operators such as crossover and

7

1. INTRODUCTION

Table 1.1: Regularly used terms in genetic algorithm parlance

Term Explanation

Phenotype A candidate solution for the problem under consideration
Genotype or Chromo-
some

A representation of candidate solution in an encoded form which
is convenient for applying genetic algorithm

Gene
A smallest entity in chromosome and a chromosome is composed
of several genes

Alleles A set of possible values that can be assigned to a gene
Population A collection of chromosomes that undergoes evolution
Generation A single pass from the present population to the next one

Fitness
A measure of suitability of a chromosome as per the criteria GA
is optimizing

Evaluation
The decoding process of a genotype into its corresponding pheno-
type and the determination of its fitness

Phenotype Space
The space containing all possible candidate solutions to the prob-
lem under consideration

Genotype Space
The space containing all possible genotypes of the problem under
consideration

mutation. The crossover or recombination operator combines two or more parents to produce

one or more offspring. Consequently, the offspring generated through crossover inherits traits

from all the parents. Usually, only two individuals are recombined in the crossover to produce

one or two offspring. The crossover occurs only with certain probability known as crossover

rate. A crossover rate of 0.8 means around 80% of offspring will be generated through crossover.

When no crossover is used, an offspring is produced by making an exact copy of the parent.

Mutation is applied on the newly produced offspring (irrespective of whether crossover is used

or not) in which offspring solution undergoes some random changes. Like crossover, mutation

also occurs with certain probability known as mutation rate. Mutation rate decides how many

random changes a solution undergoes. Crossover and mutation operators are usually applied

in a sequential manner in which crossover is followed by mutation. Based on the problem,

we can apply these operators in a mutually exclusive manner also. As crossover and mutation

occur with certain probabilities, there is a possibility that generated offspring is an exact copy

of the parent. This process continues till desired number of offspring are generated. These

offspring and existing population members compete for inclusion into the population for the next

generation as per population evolution (population replacement) policy. Once the population for

the next generation is determined, the next generation begins. In aforementioned manner, the

8

1.3 Overview of genetic algorithm

Algorithm 1: Pseudo-code of basic GA
Input: GA parameters such as p (size of population), pc (crossover rate), pm (mutation rate), q
(offspring produced in each generation)
Output: Best solution obtained through GA

P ← φ;
for (i=1 to p) do

Si ← Generate_Solution();
Si.fitness← Evaluate fitness of Solution(Si);
P ← P ∪ Si;

while (the termination criteria remains unsatisfied) do
P ′ ← φ;
for (i=1 to q) do

parents← Selection(P);
// Select parents as per selection mechanism
offspring← crossover(parents);
// Apply crossover as per pc
offspring← mutation(offspring);
// Apply mutation as per pm
offspring.fitness← Evaluate fitness of offspring;
P ′← P ′ ∪ offspring;

P ← evolution_policy(P ,P ′);

return best;

population is evolved with the help of these genetic operators.

Algorithm 1 presents the pseudo-code of GA and different components of GA are explained

in the upcoming subsections. The version of GA described in this section is generic and

independent from the characteristics of the problem under consideration. Whereas, in next two

sections we have provided an overview of GA for permutation and grouping problems.

1.3.1 Representation of individuals

GA processes population of chromosomes, where each chromosome represents a candidate

solution. In GA, in what form we represent a solution is very crucial, as it influences the

manipulation of the chromosomes to generate new chromosomes. In most commonly used

terminology of GA, the phenotype form represents the actual solution of the problem which

is encoded into genotype form. The GA manipulates the genotype with the help of genetic

operators. The genotype representation of individuals should be done in most natural way so

that the distribution of solution in genotype space is analogous to distribution in phenotype

space. For success of GA, such representation scheme should be selected which can represent all

9

1. INTRODUCTION

candidate solutions with either no redundancy or with minimum redundancy. A representation

scheme is redundant if more than one genotype represent the same phenotype, i.e., two or more

chromosomes represent the same solution. Redundancy in representation is undesirable, as it

will result in larger genotype space for corresponding phenotype space. Since, GA works in

genotype space, so redundancy will make GA to explore a larger search space. Thus, it can

result in poor performance of GA [29]. The success of GA for a problem highly depends on

the representation scheme. The selection of suitable representation scheme for an optimization

problem can be done on the basis of experience and expertise.

The traditional GA uses binary representation (also known as bit string representation) to

encode the solutions. In binary representation, the genotype is represented as an array of n

binary variables. Binary representation is highly suitable for subset selection problems such as

Knapsack problem. Here, n binary variables represent the number of objects in the problem and

a value of 1 at ith position represents the presence of ith item in solution representing a subset.

For example, a solution represented as [1 0 1 1 0] for Knapsack problem with five objects,

indicates the presence of first, third and fourth object in subset. This [1 0 1 1 0] represents the

genotype whereas [1 3 4] is phenotype which reflects the actual solution of Knapsack problem.

Binary representation may not be appropriate for other categories of problems. Like TSP, which

is a permutation based problem and a solution represents the permutation of cities, binary

representation is not suitable. For such problems, integer representation is more suitable. For

example, consider a solution for TSP with five cities given in integer representation as [3 1

5 2 4]. Although, this solution can also be encoded in binary representation as [011 001 101

010 100], but such representation will result in more computation for GA and thus, it is not as

suitable as integer representation, for problems like TSP. Various other representations are also

available in literature such as real-valued representation, random-key encoding etc., which can

be used as per the characteristics of the problem in hand.

1.3.2 Selection methods

GA uses selection method to select a set of solutions that take part in breeding and generate new

superior quality solutions by exploring more promising regions of search space. A selection

method intends to improve the quality of solutions in the population by providing more fit

solutions with higher probability for breeding. Different selection methods vary in terms of

selection pressure and degree of randomness used in selection of parent set. Thus, it acts as a

controlling entity that provide the balance between exploration and exploitation. The choice of

10

1.3 Overview of genetic algorithm

selection method influences the success of GA. Literature contains various selection methods

[30]. Fitness proportionate selection [13], ranking selection [31], binary tournament selection

[32] are some of the well-known selection methods.

1.3.2.1 Fitness proportionate selection

Fitness proportionate selection scheme was used in traditional GA [13]. In this scheme, selection

of a potential individual is governed by the probability which is proportional to the fitness of

that individual with respect to other candidate solutions in population. Formally, the probability

ρi of selection of an individual i is determined as

ρi = fi∑n
k=1 fk

where fi is the fitness of the individual i and population has total n individuals. Following this

scheme, a more fit individual has a higher chance of selection of multiple times as a parent.

The selection of individual is done by roulette wheel method or any other sampling method.

In roulette wheel method, the probability value determined by the fitness of each individual

is assigned as roulette portion. Thereafter, the roulette is drawn same number of times as the

number of individuals required. For example, consider a population containing four individuals

and their selection probabilities are 0.4, 0.2, 0.1 and 0.3, respectively. These four intervals are

determined as [0, 0.4], (0.4, 0.6], (0.6, 0.7] and (0.7, 1.0]. Now, a random number from [0, 1]

is generated and the individual under whose sub-interval the obtained random number lies is

selected to be parent and added into the mating pool. This process is reiterated as many times as

the number of individuals required.

The fitness proportionate selection method suffers from two major drawbacks. First, in

the initial phase of GA, the fitness gap between solutions is high in population, so more fit

members take over entire population after some generation leading to premature convergence of

GA. Premature convergence occurs when the individuals in population stucks to a state where

genetic algorithm is unable to generate offspring better than individuals in population. Second,

the entire population have similar fitness after some generations. Thus, in such scenario all

individuals have similar probability of selection making this selection scheme ineffective.

1.3.2.2 Ranking selection

Ranking selection method [31] was successful to overcome the aforementioned drawbacks of

fitness proportionate selection. This selection scheme, assigns ranks to individuals based on

11

1. INTRODUCTION

their relative fitnesses instead of considering absolute fitnesses. It first sorts the individuals as

per their fitnesses and then assigns rank to them. In this scheme, sum of ranks is calculated and

then probability ρi of selection of an individual i is determined as

ρi = ranki∑n
k=1 rankk

1.3.2.3 Tournament selection

Tournament selection scheme uses small sample for selection instead of considering entire

population. A set of k individuals are randomly selected as the sample from the population and

the solution with best fitness is selected for reproduction, either deterministically or by following

a probabilistic approach. Many rounds of tournament are conducted to get the desired number

of individuals as parent. When k=2, this scheme is called as binary tournament selection. Binary

tournament selection shows similar similar selection pressure as ranking selection with being

computationally more efficient [32].

In probabilistic binary tournament selection, two individuals are selected uniformly at

random from the population and their fitness is compared. The individual with better fitness is

selected with some probability, otherwise the inferior one is selected, as parent.

1.3.3 Crossover

Crossover is the mechanism which combines the genetic informations of two (or more) parents

to produce offspring. It is based on the idea that combination of good quality parents may

produce even better quality child solution. However, it is possible that after crossover the

resulting offspring may sometimes be worse than parent, but multiple application of crossover

will produce some better quality offspring. The design of the crossover operator should be done

in such a manner that it should be able to recombine the information relevant to the problem

under consideration while recombining the two parents. Further, if the two parents undergoing

crossover are nearly same then the offspring must also be similar to the parents. This is called

similarity requirement. The success of GA is highly depends on the design of crossover which,

in turn, depends on the structure and characteristics of the problem under consideration along

with the representation scheme used by GA. Some well-known crossover operators used in GA

are described below.

12

1.3 Overview of genetic algorithm

1.3.3.1 1-point crossover

1-point crossover was used in traditional GA proposed by Holland [13]. It is commonly used

with binary and integer representation schemes. This crossover first select one crossing point by

choosing a random position from [0, n-1], where n is length of string. Thereafter, the portions of

strings after that cross point are swapped between the two parents resulting in two offspring.

Figure 1.1 provides an illustration of this crossover.

p1 1 1 0 1 0 1 1 0 0 1 c1 1 1 0 1 0 0 0 1 1 0

−→

p2 0 1 1 0 1 0 0 1 1 0 c2 0 1 1 0 1 1 1 0 0 1

Figure 1.1: 1-point crossover

The N-point crossover is a generalized version of 1-point crossover which considers N

crossover points. These N crossover points divide the offspring into N + 1 segments. Every

alternate segment is swapped with other parent and two offspring are produced.

1.3.3.2 Uniform crossover

In uniform crossover [33], for each position in the offspring, individual decision is made

regarding the value at that position. A random value from the interval [0, 1] is generated for

each position and if this value is greater than the user defined value p, then the value at the

position under consideration in offspring is copied from the corresponding position of first

parent, otherwise second parent value is copied. The second child is generated by swapping the

role of two parents. Figure 1.2 provides an illustration of uniform crossover for p value taken to

be equal to 0.5.

13

1. INTRODUCTION

p1 1 1 0 1 0 1 1 0 0 1 c1 0 1 0 0 1 1 0 0 0 1

−→

p2 0 1 1 0 1 0 0 1 1 0 c2 1 1 1 1 0 0 1 1 1 0

.9 .4 .2 .8 .6 .1 .9 .4 .3 .3 ←− random value determined for each position

Figure 1.2: Uniform crossover

1.3.4 Mutation

Mutation operator intends to introduce diversity in the population. It mitigates the chances of pre-

mature convergence by preventing the solutions in population from getting too similar. Usually,

this variation operator possesses explorative characteristics and responsible for exploration of

new regions in search space. Like crossover operator, it also depends on the representation

scheme used by GA. Literature contains numerous mutation operators designed for various

representation schemes.

1.3.4.1 Bitwise mutation

Bitwise mutation is suitable for binary representation scheme. Each bit is considered individually

and inverted with small probability. Figure 1.3 demonstrates bitwise mutation.

1 0 0 0 1 0 0 1 0 1 → 1 0 1 0 1 0 0 1 1 1

Figure 1.3: Bitwise mutation

1.3.4.2 Random reset mutation

It is an extended version of bitwise mutation suitable for integer representation scheme. Here

also, each bit is considered individually and a new value taken from the permissible values of

gene is assigned with small probability. Figure 1.4 provides a demo of random reset mutation

where a gene can have permissible value from the set {1, 2, 3, 4, 5}.

14

1.3 Overview of genetic algorithm

2 4 3 5 2 3 5 2 1 3 → 2 1 3 5 2 3 5 5 1 3

Figure 1.4: Random reset mutation

1.3.5 Population evolution models

Population evolution model governs the selection of individuals for next generation. Traditional

GA follows generational model, whereas another popular model is steady-state model [34].

1.3.5.1 Generational model

In generational model, one generation produces number of individuals equal to size of the

population. These individuals are used as the new population for next generation. This model

may result in worse new population in comparison to current one. Thus, some GAs use an elitist

strategy in which best solution or few best solutions from current population are passed to new

population unaltered.

1.3.5.2 Steady-state model

Steady-state model generates only few solutions (usually just one individual) in each generation.

These newly generated solutions replace same number of solutions in current population by

following some replacement strategy. The replacement strategy takes the decision regarding

the selection of those individuals which are going to be removed in order to create room for

newly generated solutions. One such strategy is to remove the worst quality solutions from the

population. Another replacement strategy considers the diversity factor and removes the solution

that is most similar to the new one. Another feature of steady-state model is that duplicate

solutions are forbidden in this model. The uniqueness of new solution with respect to current

population members is always verified before including the new solution into population. The

new solution is discarded in case it is same as an existing population member. Hence, multiple

copies of same solution can never co-exist in the population. This helps in avoiding premature

convergence that can occur due to same solution taking over entire population.

15

1. INTRODUCTION

1.4 Genetic algorithm for permutation problems

Permutation problems intend to find the arrangement of a given set of objects into an optimal

order. These problems can be classified into two types. In the first type of problems known as as

order-based problems, the relative order among objects in important, whereas another category

known as adjacency-based permutation problems, focus on the adjacency between objects.

Several job scheduling problems fall into the class of first type of problems, on the other hand

traveling salesman problem comes under second type [35]. Representation of individuals as a

linear order of objects (permutation) is highly suitable for both types of permutation problems.

In this representation, each position holds an unique object and each object must be present in the

solution. As we discussed earlier that the genetic operators highly depend on the representation

of individuals, thus, the crossover and mutation operators should be designed in such a manner

so that the permutation property of individuals is always preserved.

1.4.1 Crossover operators for permutation problems

Literature contains various crossover operators which have been designed by considering the

characteristics of permutation problems. The overview of some well-known crossover operators

are provided below.

1.4.1.1 Partially matched crossover (PMX)

PMX was proposed by Goldberg and Lingle [36] for the traveling salesmen problem. However,

it is suitable for any permutation problem and used in many applications. First, it selects two

positions uniformly at random, and divide both parents into three parts. Then, the alleles between

the selected positions (inner part) of one parent is swapped with the other and the repeated

alleles in outer part are updated as per the mapping rules defined by the alleles in inner part.

Figure 1.5 illustrates PMX crossover, where two positions, viz. 2 & 4 are selected randomly.

The inner part of one parent is swapped with other parent. Afterwards, the repeated alleles are

updated by using mapping rules defined by alleles in inner part, i.e., {3→ 3, 1→ 7, 6→ 4}.

16

1.4 Genetic algorithm for permutation problems

p1 8 3 1 6 5 9 10 2 4 7 c1 8 3 7 4 5 9 10 2 6 1

−→

p2 9 3 7 4 5 1 10 6 8 2 c2 9 3 1 6 5 7 10 4 8 2

Figure 1.5: PMX Crossover

1.4.1.2 Order crossover

The order crossover operator was introduced by Davis [34] and well suited for circular permuta-

tion problems. Two positions (lets say r1 and r2) are selected uniformly at random. The portion

of string between the selected positions from parent one is drop down at same positions in first

offspring. The alleles copied from first parent in the offspring are removed from second parent.

Starting from the next position after r2 the remaining alleles of second parent are copied by

assuming chromosome as circular. Another offspring is generated by altering the role of two

parents and following the same approach. Figure 1.6 illustrates the order crossover by selecting

two positions r1 = 3 and r2 = 7.

p1 1 2 4 7 5 6 3 9 10 8 c1 1 10 4 7 5 6 3 8 9 2

−→

p2 2 3 7 1 4 6 10 8 5 9 c2 5 3 7 1 4 6 10 9 8 2

Figure 1.6: Order crossover

1.4.1.3 Uniform order based crossover

Uniform order based (UOB) crossover [34] is suitable for order-based permutation problems.

Unlike order crossover, UOB considers each gene individually. It copies alleles at each position

in first parent to the corresponding position in offspring with certain probability p. Thereafter,

the remaining vacant positions in offspring are filled with the unselected alleles in second

parent in the same sequence. The second offspring is generated by reversing the role of parents.

Figure 1.7 demonstrates UOB crossover with p value equal to 0.5.

17

1. INTRODUCTION

p1 7 9 1 4 2 5 6 10 3 8 c1 5 9 1 4 2 6 3 10 7 8

−→

p2 10 1 5 8 2 6 3 9 4 7 c2 4 1 5 8 2 6 10 9 3 7

.7 .5 .2 .4 .1 .6 .8 .4 .6 .2 ←− Generated random number at each position

Figure 1.7: Uniform order based crossover

Cycle crossover [37] and Edge recombination crossover [38] are other important crossover

operators for permutation based problems.

1.4.2 Mutation

Unlike simple genetic algorithm, where each gene is considered independently for mutation, in

permutation representation, genes can not be considered independently. Mutation operator for

traditional genetic algorithm assigns random values at some positions of chromosome without

bothering about the values at other positions. Such a strategy is not suitable for permutation

based problems, as each gene has a unique value in a chromosome. Thus, the mutation operator

for permutation problems needs to be designed in such a manner that preserves the permutation

property. In the literature, various mutation operators, suitable for permutation problems have

been proposed. Swap mutation, insert mutation and scramble mutation are some commonly

used mutation operators for order-based problems, whereas inversion mutation works well on

adjacency-based permutation problems.

1.4.2.1 Swap mutation

Swap mutation first selects two random positions in chromosome and then the alleles at the

selected positions are inter-changed. Figure 1.8 illustrates swap mutation, where allele at

position 2 is interchanged with allele at position 6.

5 3 7 1 4 6 10 9 8 2 → 5 6 7 1 4 3 10 9 8 2

Figure 1.8: Swap mutation

18

1.5 Grouping genetic algorithm (GGA)

1.4.2.2 Insert mutation

Insert mutation selects two random positions (p1 & p2) in chromosome. The allele at position

p2 is placed adjacent to the allele at position p1 by moving all the alleles after p1 one position

towards the end. Figure 1.9 reveals the working of insert mutation, where p1 = 3 and p2 = 8.

5 3 7 1 4 6 10 9 8 2 → 5 3 7 9 1 4 6 10 8 2

Figure 1.9: Insert mutation

1.4.2.3 Scramble mutation

In scramble mutation a substring of chromosome is selected by picking two positions randomly

and the alleles present in selected portion are scrambled. For illustration, in Figure 1.10 the

alleles present at position 4 to 7 are scrambled.

5 3 7 1 4 6 10 9 8 2 → 5 3 7 4 10 6 1 9 8 2

Figure 1.10: Scramble mutation

1.4.2.4 Inversion mutation

Inversion mutation performs well on adjacency-based permutation problems. In this mutation, a

portion of chromosome is selected by randomly selecting two positions and the order of alleles

in selected portion is reversed. Figure 1.11 depicts the inversion mutation.

4 1 5 8 2 6 10 9 3 7 → 4 1 5 10 6 2 8 9 3 7

Figure 1.11: Inversion mutation

1.5 Grouping genetic algorithm (GGA)

Grouping problems also require suitable solution representation and variation operators due

to their special grouping structure. Consider a solution representation that uses one gene per

19

1. INTRODUCTION

object as used in traditional GA. For example: chromosome “ACBCDA” represents first object

in group A, second in group C, third in group B, fourth in group C, fifth in group D and sixth in

group A. One can infer that a given solution with g groups can be represented by g! different

chromosomes, each corresponding to one assignment of the names {A,B, . . . } to groups [39].

Thus, using traditional GA solution representation schemes to address grouping problems can

result in high degree of redundancy, which will result in poor performance of GA. In order

to make GA suitable for grouping problems, Falkenauer [40, 41] presented grouping genetic

algorithm. Grouping genetic algorithm (GGA) is an extended version of traditional GA where

the solution representation and variation operators are suitably modified by considering the

structure of grouping problems.

1.5.1 Representations in grouping genetic algorithm

For grouping problems, Falkenauer [40] proposed a solution representation scheme which

consists of two parts. The former part provides the grouping of objects, whereas the latter one

contains the list of groups. The idea behind including the groups into chromosomes is to make

genetic operators use this information and perform a better exploration of search space. The

given below example represents a chromosome for a grouping problem having six objects:

ACBCDACBDABD:ABCD

The first part provides the grouping of objects, i.e., the first object is in group A, second

object is in group C, third in group B and so on. The second part provides a list of all groups

{A,B,C,D}. In this representation, the chromosomes may have varying length as many problems

such as bin packing problem, the number of groups are not static since the objective is to

minimize number of bins. Literature also contains plenty of grouping problems where number

of groups are fixed and the requirement is to divide the objects into different groups as per some

objective. The advantage of this scheme is genetic operators can use the information presented

in second part (group labels). But, such representation may induce redundancy, because

group labels can be interchanged in group part without affecting the solution represented, e.g.

ACBCDACBDABD:ABCD also represent the same solution as ACBCDACBDABD:DBCA,

where the former part remains the same whereas the group part is altered. This ordering of

groups in group part affects the performance of genetic algorithm and to reduce the effect of

this ordering, an inversion operator was suggested. This scheme also suffers from another type

20

1.5 Grouping genetic algorithm (GGA)

of redundancy when we change the labelling of groups, e.g., ACBCDACBDABD:ABCD and

CADABCADBCDB:CDBA represent the same solution where objects 1, 6 and 10 belong to

one group, objects 2, 4 and 7 to another group, objects 3, 8 and 11 to yet another group and

objects 5, 9 and 12 to yet another group.

Other representation which can be used for grouping problems is to represent each chromo-

some as a set of groups [42] and each group contains a set of objects. For example, solution

“ACBCDACBDABD:ABCD” can be represented as { {1, 6, 10}, {3, 8, 11}, {2, 4, 7}, {5, 9,

12} } in this scheme. This scheme does not label groups, and hence, does not suffer from the

problems of redundancy like the scheme described in the previous paragraph. Another advantage

of this scheme is that the genetic operators can be so designed that their results depend only on

composition of groups, and not on relative ordering among groups. Hence, there is no need of

inversion operator with this scheme.

1.5.2 Crossover

Different grouping problems may differ in constraints and the objective function to optimize.

Thus, Falkenauer [40] presented a general pattern of crossover operator which can be used for

grouping problems. Two crossover sites in each parent are chosen randomly. The two crossover

sites delimit subset of the groups from each parent. The subset of group from first parent is

inserted at the first crossover site of second parent. The redundant objects due to insertion of

new groups are removed from the groups originally belonging to second parent. As the next step,

suitable modifications, based on the objective function and constraints, are made in resulting

offspring. By reversing the role of parents, another offspring can be generated in the same

manner.

Crossover operator suitable for the second representation begins with an empty offspring and

follows an iterative process to produce complete offspring [42]. In each iteration, one parent is

chosen (deterministically or randomly) and then a group in this parent is selected. The selection

of group can be done in a random manner or by following some problem/objective-specific

knowledge. The selected group is added in offspring. The objects of selected group are removed

from both parents. The same process is continued until some termination criteria satisfies or

one of the parent becomes empty. In case some objects are left unassigned in offspring, some

heuristic method can be used to add these objects in offspring.

21

1. INTRODUCTION

1.5.3 Mutation

Similar to crossover operator, the design of mutation operator for a grouping problems highly

depends on the particular problem. Following general strategies can be used for designing a

mutation operator for grouping problems [40]:

• Delete some randomly selected group(s) from solution and then reassign the objects of

the deleted group(s) by following some heuristic approach.

• Make a new group by selecting few objects (randomly or by following some specific

approach) from different groups and deleting these selected objects from their respective

original groups. If some groups become empty due to this process then delete these

groups also from the solution.

• Delete some objects (randomly or by following some specific approach) from their

respective groups and then reinserts these objects into solution by following some problem-

specific heuristic.

1.6 Overview of evolution strategies

Evolution strategies fall into class of stochastic optimization algorithms based on Darwinian

biological evolution. It mimics organic evolution motivated by nature such as, a change

in environmental surroundings causes natural selection, resulting in an emergence of new

population with higher fitness. Evolution strategies were introduced by Rechenberg [20] during

the early 1960s and further developments were carried out by Schwefel [21]. Evolution strategies

consider whole population as parents and process simultaneously the whole population, and the

mutation operator is utilized as primary operator [43] to produce offspring. These properties

make them unique and different from other evolutionary approaches, as most of the evolution

based approaches select some solutions randomly from the population as parents, and in general,

use recombination as primary operator. Furthermore, they possess a special feature known as

self-adaptivity, where some parameters of the operators are varied as per fitness of the existing

population during the run. This feature imparts them the ability to control the operators, so

that a compromise can be reached between exploration and exploitation depending on the need.

Now, many variants of evolution strategies exist in the literature.

22

1.6 Overview of evolution strategies

The original version of evolution strategy proposed by Rechenberg [20] was (1+1)-ES,

also known as Two-membered ES and later, the concept of population was introduced in Multi-

membered ES. The (1+1)-ES has resemblance with hill climbing technique. It utilizes a simple

mutation selection scheme, and maintains a single parent solution instead of a population of

solutions. The parent is mutated to produce one offspring and the parent is replaced by the

offspring whenever offspring has better fitness than the parent. The original version of ES

has constant mutation parameter and also known as basic two-membered ES in the literature.

Figure 1.12 (a) presents the flowchart of the basic two-membered ES approach where Mutation()

is a function that performs the mutation. The self adaptability characteristic is added in basic

two-membered ES by Schwefel [44] and this variant of two-membered ES got massive popularity

due to the unique feature of self adaptability. In the self adaptable variant of two-membered ES,

the mutation parameter has been governed by the fitness of the descendants produced in the past

few generations [45, 46].

Sol← generate one random solution

Mutant←Mutation(Sol)

Is Mutant
better than Sol?

Sol←Mutant

YES

Is termination
condition met?

NO

Output Sol

Stop

YES

NO

(a) Two-membered ES

Generate initial Population

Recombination

Mutation

Fitness Evaluation

Survivor Selection

Is termination
condition met?

Output the best solution found

Stop

YES

NO

(b) Multi-membered ES

Figure 1.12: Flowcharts of two-membered and multi-membered evolution strategies

23

1. INTRODUCTION

Multi-membered ES utilizes a population of µ individuals to generate λ offspring and

employs recombination operator in addition to mutation operator. The concept of multi-parents

population bestows the flexibility of imitating sexual reproduction by making use of recombina-

tion operator. First, for every descendant, a temporary parent is built by means of recombination

of all parents, i.e., a temporary parent vector Y = [y1, y2, . . . ym] is created where the ith

component of Y is chosen randomly from the ith components of all µ parent vectors. Then λ

descendants are produced by utilizing mutation operator on each temporary parent[47].The next

step is the determination of survivors for next iteration. Figure 1.12 (b) presents the flowchart

of the multi-membered evolution strategies approach. There are two variants of the survivor

selection strategy, namely (µ+ λ)−ES and (µ, λ)−ES. In the (µ+ λ) scheme, the fittest µ

members are chosen from combined pool of parents and offspring, in a deterministic manner.

Evidently, it is an elitist selection. The second approach viz. (µ, λ) scheme of ES, the fittest

µ members are selected only from the λ offspring. This scheme rejects the complete pool

of existing parents and provides opportunity to the offspring only to participate in survivor

selection scheme. Apparently, in this approach λ must be greater than or equal to µ. It is to be

noted that (1+1)-ES is a particular case of (µ+ λ)− ES with µ = 1 and λ = 1.

Evolution strategies were originally proposed to solve optimization problems in continuous

domain and the initial variants of ES were also proposed for continuous domain only. However,

[48] proposed some suitable changes in the mutation and recombination operators of the ES

used in continuous domain, so that it can also be applied to the optimization problems in discrete

domain. In continuous optimization problem, all constituents of the parent can be altered to

small extent and these alteration in constituents of parent induces a small but significant mutation.

It is analogous to natural biological evolution, since natural evolution also exhibits more frequent

small mutations and rarely large ones. However, for discrete optimization problems, altering

all constituents of the parents would not exhibit small mutation. This is supported by the fact

that, in optimization problems of discrete domain, the constituents can be assigned with the

values belonging to their corresponding discrete set and two adjacent discrete values may not

have a small difference between them. Due to this, it is recommended in [48] to alter only some

of the constituents of the parent to achieve small mutation in discrete optimization problem.

Some modifications in recombination operator of ES, to make it applicable for problems in

discrete domain, is also presented in [48]. Some recent works involving evolution strategies can

be found in [49, 50, 51, 52, 53].

24

1.7 Overview of differential evolution

1.7 Overview of differential evolution

Differential evolution (DE) is a population based stochastic search method proposed by Storn and

Price [18]. The traditional DE follows the floating-point encoding scheme and it was originally

proposed to address continuous optimization problems. Initial population can be generated

in a random manner if it is an unknown problem. In case of availability of some preliminary

solutions of the problem, initial solution can be created by adding normally distributed random

deviations to the available preliminary solutions. DE uses similar computational steps as used by

any other standard evolutionary algorithm. However, it differs from other EAs in the generation

of new solutions. It follows an entire different approach in which a new perturbed solution

is generated by adding the weighted difference of two randomly selected distinct population

members with the third one. It can be mathematically presented as:

SP = SA + w(SB − SC)

Here, SA, SB, SC are three randomly chosen distinct population member and w is a user

defined weighting factor. DE has gained vast popularity due to its ease of implementation,

generic structure and robustness. Consequently, literature contains many variants of basic DE

which differ in the strategies such as number of solutions involved in perturbation, type of

crossover, mutation adopted as per the type of problem. Reader can refer to [54] for a detailed

survey on differential evolution.

Evidently traditional DE can not be applied on discrete optimization problem. Tasgetiren

et al. proposed a novel discrete differential evolution (DDE) in [19, 55], where solutions are

based on discrete values and this version of differential evolution is having compatibility with

all types of discrete combinatorial optimization problems. In DDE approach, each solution

of the population is considered one-by-one. The solution under consideration is called the

target solution. The mutant solution is generated by perturbing the best solution or any other

solution (random or target solution) in the population [56]. The crossover operator is applied

on the mutant and the target solution with some probability and a trial solution is generated.

Subsequently, a selection mechanism is used to evaluate the fitness value of both the competing

solutions, i.e., the target and the trial solutions in order to find out which solution will be going to

survive for the next generation. Usually, if the trial solution is better than the target solution then

the target solution is replaced by the trial solution. The pseudo-code of the discrete differential

25

1. INTRODUCTION

evolution is provided in Algorithm 2, where p is the population size and Initial_Solution() is a

function that generates an initial solution.

In general, most of the other evolutionary techniques select both parents from the population,

whereas in DDE one parent is selected from the population and the other parent is obtained by

perturbing another solution from the population. Usually, the best solution of the population or

a random solution of the population is perturbed to obtain the second parent. As a result, one

parent used in recombination operator is a diverse solution most of the times. This provides two

advantages. First, it provides a better exploration of search space, and thus, helps in avoiding

premature convergence. Second, it is observed that most of the crossover operators yield

offspring similar to parents, if both parents share high similarity. Thus perturbing a solution

from the population and then recombining with other solution can be considered a better strategy.

Due to its salient features, literature contains numerous application of DDE on permutation

based problems. The articles in [55, 57, 58, 59, 60, 61, 62] report some of the applications of

DDE for permutation based problems.

Algorithm 2: Pseudo-code of DDE
Input: DDE parameters and an instance of problem under investigation
Output: Best solution obtained through DDE

for (i=1 to p) do
Si ← Initial_Solution();

best← best solution among S1, S2, . . . Si, . . . , Sp;
while (the termination criteria remains unsatisfied) do

for (i=1 to p) do
M ←Mutant(S);
// S can be the best solution or a random solution in

population
Ti ← Crossover(M ,Si);
// Si is the target solution & Ti is the trial solution
if (Ti is better than Si) then

Si ← Ti;
if (Si is better than best) then

best← Si;

return best;

26

1.8 Overview of NEH heuristic

1.8 Overview of NEH heuristic

The NEH heuristic was proposed by Nawaz et al. in [63], and the literature reveals its effective-

ness in terms of addressing various permutation flowshop problems. In general, the objective of

flow shop sequencing problem is to find a permutation of jobs that minimizes the makespan, i.e.,

the completion time of the last job. Following steps summarize the NEH heuristic assuming that

i jobs are being processed on j machines by keeping the same relative order.

1. Sort i jobs as per the decreasing sums of their processing times on j (all) machines.

Consider that the sorted permutation of jobs is π. The job with more total processing time

is given preference over a job with less total processing time, and that is the idea behind

sorting the jobs [63]. This step is skipped when there is no clear criteria to determine

preference among jobs or when there is a need to find more than one solution. Instead,

the next two steps use a randomly generated sequence of jobs.

2. Choose the jobs at position one and two from π and determine the best sequence of these

two jobs by evaluating the fitness of two possible permutations of these. Keep the best

sequence as partial solution for the next step.

3. This phase iteratively build the complete solution by picking kth job, k = (3, . . . , i) and

placing in k possible locations in the partial solution, resulting in k partial solutions. All

of the k partial solutions fitness are evaluated and the best one among them is kept as

partial solution for next iteration. This phase is continued until a complete solution is

obtained.

1.9 Overview of opposition based solution generation

Opposition based optimization was proposed in [64] for the faster convergence of evolutionary

algorithms. Literature reveals that, the idea of considering opposite solutions facilitates an ex-

tensive search space as compared with purely random solutions and hence, a more diverse initial

population can be obtained. The concept of opposition based solution generation in [64] was

proposed for the continuous optimization problems. Let us assume that S = (y1, y2, . . . , yN)

is a solution in an N -dimensional space where y1, y2, . . . , yN ∈ <, where each dimension j is

bounded by a lower limit lj and an upper limit uj , i.e., yj ∈ [lj , uj] ∀j ∈ {1, 2, . . . , N}, then

27

1. INTRODUCTION

the computation of opposite solution S′ = (y′1, y
′
2, . . . , y

′
N) corresponding to solution S can be

done in the following manner:

yj = lj + uj − yj ∀j ∈ {1, 2, . . . , N} (1.1)

Since its introduction, the idea of opposite solutions has been used in a number of studies, e.g.

[65, 66, 67, 68, 69].

For a permutation based combinatorial optimization problem, the opposite solution can

not be computed in the manner described above for optimization problems in continuous

domain. For the permutation problems discussed in the thesis, to find the corresponding opposite

solution a permutation needs to be carefully reordered. To compute the opposite solution for a

permutation, the element at the jth position in the permutation, where j ∈ {1, 3, 5, . . . , bm2 c}, is

exchanged with the element at (m− j + 1)th position in the permutation. Figure 1.13 illustrates

the computation of an opposite solution in the context of problems discussed in this thesis.

Corresponding opposite solution 10 2 8 4 6 5 7 3 9 1

A given solution 1 2 3 4 5 6 7 8 9 10

Figure 1.13: Illustrating the concept of opposite solution in case of permutation based COP

1.10 Scope of the thesis

This thesis is focused on solving some NP-hard permutation based combinatorial optimization

problems using three evolutionary techniques, viz. genetic algorithm (GA), evolution strategy

(ES) and discrete differential evolution (DDE). We have addressed six NP-hard permutation

based problems which are recent problems introduced during the last decade. Out of these six

problems, first three problems are pure permutation problems, and the last three problems have

aspects of permutation as well as grouping. First four problems have single objective to optimize,

second last problem has two independent objectives and the last problem is a multiobjective

optimization problem. Table 1.2 presents the categorization of these problems based on the type

of objective of the problem and its COP characteristic.

This thesis is divided into eight chapters. The thesis begins with this introductory chapter

which is followed by six chapters devoted to six problems considered, and, then a concluding

chapter at the end. In the following, we summarize the content of each of these chapters.

28

1.10 Scope of the thesis

Table 1.2: Categorization of the problems, their type of the objective and combinatorial optimization
characteristics

Problem name Objective type Combinatorial optimization characteristics

Cover scheduling problem in wireless sensor
networks (WSN-CSP)

Single objective

Permutation
Total rotation minimization problem in direc-
tional sensor networks (TRMP)

Single objective

Single machine total stepwise tardiness problem
with release dates (SMTSTP-R)

Single objective

Rescue unit allocation and scheduling problem
(RUASP)

Single objective

Permutation & grouping
Quality of service vehicle routing problem with
time windows (QSVRPTW)

Two independent objectives

Multiobjective vehicle routing problem with
time windows (MOVRPTW)

Multiobjective

Chapter 2 addresses the cover scheduling problem in wireless sensor networks (WSN-

CSP). Wireless sensor networks (WSNs) have a wide range of applications such as warzone

surveillance, air pollution monitoring, fire monitoring in forests, ecological and geological

monitoring in deep sea. The use of WSNs for data gathering in remote or hostile environments

is quite common nowadays. The accurate placement of sensors in hostile environments is not

possible due to the risks/costs involved, and hence, they are usually placed in an ad hoc or

random manner. Random deployment may not be able to cover all the targets, and hence, to

cope up with this, usually more number of sensors are deployed as compared to the actual

requirement. This excess deployment also facilitates more resilience to faults as some targets

are redundantly monitored by more than one sensor. Actually, each sensor is driven by a battery,

with a fixed amount of stored energy in it. Replacing the drained out batteries with a new one are

not possible in remote or hostile environments and, hence it results in an upper limit on the total

lifetime of a sensor specified by the energy storage capacity of its associated battery. Therefore,

in the aforementioned situation, the primary goal in the design of WSNs is to maximize the

network lifetime by using the existing resources in an efficient manner. To deal with the problem

of lifetime maximization in WSNs, most of the existing approaches make use of the excessively

deployed sensors, by dividing the set of sensors into various non-disjoint subsets, also known as

covers or groups in the literature, in such a manner that sensors belonging to each cover are able

to monitor all the targets on their own. The work duration of each cover is also determined in

such a manner that the sum total of work durations of all the covers is as large as possible and

no sensor monitors the targets beyond the operating life dictated by its battery. These covers

29

1. INTRODUCTION

are then used for their predetermined work durations in a sequential and mutually exclusive

manner. At any instance of time, the sensors of currently active cover is only used to monitor

the targets and remaining sensors which are not in currently active cover are considered to be

in an inoperative state where they consume negligible energy. This cover based approach for

WSNs yields a better network lifetime.

The WSN-CSP problem arises in those sensing environments which permit the coverage

breach, i.e., at any instant of time, all the targets need not be monitored. The coverage breach

may occur owing to either technical restrictions such as bandwidth limitations or intentionally.

This problem seeks a schedule of covers which minimizes the longest continuous duration of

time for which no sensor in the network is able to monitor a target. In this chapter, we have

proposed a two-membered evolution strategy, also referred to as (1+1)-ES in the literature,

for WSN-CSP. We have used NEH heuristic and the concept of opposition based solution

generation, to generate a superior quality initial solution. Unlike other evolutionary algorithms

which employs both recombination as well as mutation, the (1+1)-ES utilizes mutation alone. In

each iteration, the mutant solution is obtained by applying the mutation operator on the present

solution, and the more fit solution between the present and the mutant becomes the present

solution for the next iteration. In our proposed approach, we have presented three mutation

operators for maintaining an adequate balance between exploration and exploitation. The first

and third mutation operators have fixed as well as low mutation step size and can be seen as the

operators performing exploitation, where as second mutation operator has variable mutation

step size and due to this it has been used for exploration as well as exploitation by appropriately

selecting the step size. For our approach, we have extended the basic (1+1)-ES by adding a

reshuffle procedure to escape from a locally optimal solution. If there is no improvement in

the fitness of the solution, for a certain number of consecutive iterations, then the reshuffle

procedure is invoked to get a new solution which replaces the present solution. To evaluate

the performance of our proposed approach, we have used the same set of standard benchmark

instances as used by the state-of-the-art approaches for WSN-CSP in literature. Computational

results show the effectiveness of our approach.

Chapter 3 is concerned with the total rotation minimization problem (TRMP) pertaining to

directional sensor networks. Unlike omnidirectional sensors, a directional sensor at any specific

instant of time can observe targets in an angular sector only (also known as its working direction

at that instant). The directional sensors primarily include infra-red sensors, ultrasonic sensors

and video sensors. Inability of directional sensors to monitor all surrounding targets at any

30

1.10 Scope of the thesis

instant of time does not preclude the possibility of monitoring all surrounding targets at different

instants of time. To facilitate this, each directional sensor is equipped with a device that can

rotate it, thereby changing its working direction. With such an arrangement, working direction

of a directional sensor can be adjusted as per the application’s requirements. As discussed

previously, the groups or covers are obtained by dividing the set of sensors into non-disjoint

subsets. Each group contains a set of sensors which are capable to monitor all the targets in

their vicinity. In case of the directional sensor networks, each group not only contains list of

its constituent sensors, but also the working direction for each one of them. As the groups are

activated one-by-one, sensors may need to rotate so as to face their working directions dictated

by the currently active group. It is to be noted that only those sensors need to be rotated which

are present in the currently active group and which do not face the working direction dictated by

this group. However, rotation of a directional sensor from one direction to another consumes

energy, and hence, the order in which groups are scheduled does matter in directional sensor

networks. This chapter is concerned with how to schedule a given set of groups so that the

energy consumption due to rotations of sensors is minimized.

To address TRMP, we have again proposed a (1+1)-ES which share some features with

the approach proposed in previous chapter. Our (1+1)-ES approach has incorporated a pre-

processing step, which is used to boost the performance of the evolution strategy (ES). In

addition, a reshuffle procedure is also used to diversify the search process and escape from

local optima. In the pre-processing step, we have applied NEH heuristic on some randomly

generated solutions and their corresponding opposite solutions, and the best solution obtained is

passed as input to (1+1)-ES. The proposed (1+1)-ES employs a mutation operator that is based

on a destruction and reconstruction strategy where a solution is partially destroyed and then

reconstructed following a problem-specific greedy strategy. The performance of the proposed

(1+1)-ES with and without the pre-processing step has been compared with the state-of-the-art

approach available in the literature on the same set of instances as used by the state-of-the-art

approach. Computational results demonstrated that our (1+1)-ES based approach both with and

without pre-processing step is better than the state-of-the-art approach available in the literature.

Chapter 4 presents a novel hybrid discrete differential evolution based approach for a single

machine scheduling problem where each job has a release date and the tardiness cost of the job

increases stepwise with respect to its various due dates. In the literature, this problem is termed

as the single machine total stepwise tardiness problem with release dates (SMTSTP-R). A job

incurs tardiness if the job is completed after its due date. The classical scheduling problem

31

1. INTRODUCTION

based on tardiness criterion considers only a single due date for each job. The tardiness cost

of the job is usually a linear function of its completion time. In contrast, in stepwise tardiness

scheduling problem, each job has various due dates and the tardiness cost increases in stepwise

manner with respect to various due dates. Stepwise tardiness cost is natural in many real-world

applications mostly pertaining to transportation. Usually, the transportation services follow a

time schedule, and hence, the transportation service is not always available. If a job is finished

after the current transport service departs, then the finished job has to compulsorily wait till

the availability of the next transport service. As a result, such a job gets delivered to the end

customer at the same time no matter where it exactly finishes after the current service departs

and before the availability of the next service. Hence, such a job has the same tardiness cost no

matter what is its exact completion time.

To address SMTSTP-R, we have presented a hybrid approach combining discrete differential

evolution with a series of local searches. We have used several heuristics and the concept of

opposition based solution generation to generate initial population. The perturbation procedure

is used to evade from local optima. A specific uniqueness procedure is designed to check the

uniqueness of the solution. The local search is used only if the generated solution is with in

certain range of the current best solution. The computational results demonstrate the superiority

of the proposed DDE approach over the state-of-the-art approaches for SMTSTP-R.

Chapter 5 is devoted to rescue unit allocation and scheduling problem (RUASP) with fuzzy

processing times. It is a generalization of unrelated parallel machine scheduling problem with

sequence and machine dependent setup times. The problem consists of m rescue units and n

incidents, such that m ≤ n. Each incident must be processed by exactly one rescue unit. Each

rescue unit has different capability and can cater to some specific incident(s) only. Different

rescue units take different travel times to travel from one incident to another. It considers fuzzy

processing times which are both incident-specific and unit-specific. Each incident i has a severity

factor represented by wi. The objective is to find the schedule of incidents for each rescue unit

so that the sum of all weighted completion time (
∑n

i=1wici) is minimized. RUASP focuses on

the efficient allocation and scheduling of rescue units in case of emergency response such as

natural disasters. It is related to both routing as well as scheduling problems.

To address RUASP, we have proposed a steady-state grouping genetic algorithm based

approach, which uses several constructive heuristics to generate initial population. The purpose

of using these heuristics is to find better quality initial solutions to start with. We have designed

crossover and mutation operators keeping in mind the characteristics of RUASP. Computational

32

1.10 Scope of the thesis

results on the benchmark instances demonstrate the superiority of our approaches over the

state-of-the-art approach in terms of solution quality as well as in terms of running time.

Chapter 6 addresses the vehicle routing problem with time windows (VRPTW) designed

for objectives seeking the quality of service to the customers. VRPTW is a generalization of

vehicle routing problem (VRP) where a customer can only be served with in its time window. It

is one of the most extensively researched variant of VRP due to its resemblance with various

real-world applications. The VRPTW variant addressed in this chapter considered the objectives

which aimed at measuring the quality of service to the customers. This problem in the literature

is known as Quality of Service Vehicle Routing Problem with Time Windows (QSVRPTW).

The problem addresses two objectives: the first objective minimizes the total amount of time

customers have to wait in their time windows and the other objective minimizes the average of

relative time that customers have to wait with in their time window to get the service.

To address QSVRPTW, we have presented a steady-state grouping genetic algorithm based

approach, which uses greedy genetic operators and, several constructive heuristics for initial

population generation. The proposed heuristics can be classified into three categories. This

classification is based on the quality of solutions generated by the particular heuristic. Three

heuristics are designed by aiming at better quality initial solutions which aids in faster con-

vergence of the proposed approach. Fourth heuristic generates a random feasible solution and

the last heuristic is used to find a feasible solution in case all other heuristics fail to find a

feasible solution. We have also proposed two lower bounds for each objective. The proposed

approach provides better results in very less computation time as compared to the state-of-the-art

approach.

The penultimate chapter of the thesis, viz. Chapter 7 is concerned with a multiobjective

optimization problem. It is a general multiobjective VRPTW (MOVRPTW) with five objectives

along with MOVRPTW benchmark instances that are derived from real-world data. The five

objectives are number of vehicles, total traveled distance by all vehicles, longest travel time

among all routes, total waiting time due to early arrivals and total delay time due to late arrivals

respectively. These objectives are conflicting in nature, i.e., the optimization of one objective

may lead to deterioration in the values of other objectives. Also, the relative importance of

different objectives may vary from one domain to another or from one scenario to another.

Therefore, instead of finding a single solution for this VRPTW, it is desirable to present a set of

solutions having trade-offs among different objectives.

33

1. INTRODUCTION

In this work, we have used the nondominated sorting genetic algorithm II (NSGA-II)

framework with objective-wise crossover and mutation operators. We have developed greedy

variation operators which are not only problem-specific, but also objective-specific, i.e., our

crossover and mutation operators are designed as per the characteristics of MOVRPTW and the

characteristics of each objective. Hence, we have a dedicated crossover operator and a dedicated

mutation operator for each objective, thereby leading to five different crossover operators and

five different mutation operators. To assess the superiority of our approach, we have used three

performance metrics, viz. inverted generational distance (IGD), hypervolume (HV), coverage

metric (C-metric). The computational results demonstrate that the proposed approach is better

than the state-of-the-art approach for MOVRPTW in terms of IGD and HV. Performance of the

proposed approach, particularly in terms of C-metric, can be improved further at the expense of

increased execution times if the objective-specific local searches like those used in literature are

incorporated in our approach.

Chapter 8 concludes the thesis by summarizing the contributions of the thesis. In addition,

some guidelines and directions for future research are also provided.

34

Chapter 2

Cover Scheduling Problem in Wireless
Sensor Networks

2.1 Introduction

In this chapter, we have addressed the cover scheduling problem in wireless sensor networks

(WSN-CSP). Wireless sensor networks (WSNs) have a wide range of applications such as war-

zone surveillance, air pollution monitoring, fire monitoring in forests, ecological and geological

monitoring in deep sea. The use of WSNs for data gathering in remote or hostile environments

is quite common nowadays. The accurate placement of sensors in hostile environments is not

possible due to the risks/costs involved, and hence, they are usually placed in an ad hoc or

random manner. Random deployment may not be able to cover all the targets, and hence, to

cope up with this, usually more number of sensors are deployed as compared to the actual

requirement. This excess deployment also facilitates more resilience to faults as some targets

are redundantly monitored by more than one sensor. Actually, each sensor is driven by a battery,

with a fixed amount of stored energy in it. Replacing the drained out batteries with new ones are

not possible in remote or hostile environments and, hence, there is an upper limit on the lifetime

of each sensor specified by the energy storage capacity of its associated battery. Therefore,

in the aforementioned situation, the primary goal in the design of WSNs is to maximize the

network lifetime by using the existing resources in an efficient manner. To deal with the problem

of lifetime maximization in WSNs, most of the existing approaches make use of the excessively

deployed sensors, by dividing the set of sensors into various non-disjoint subsets, also known as

covers or groups in the literature, in such a manner that sensors belonging to each cover are able

35

2. COVER SCHEDULING PROBLEM IN WIRELESS SENSOR NETWORKS

to monitor all the targets on their own. The work duration of each cover is also determined in

such a manner that the sum total of work durations of all the covers is as large as possible and

no sensor monitors the targets beyond the operating life dictated by its battery. These covers are

then used for their predetermined work durations in a sequential and mutually exclusive manner.

At any instance of time, the sensors of the currently active cover are only used to monitor the

targets and remaining sensors which are not in currently active cover are considered to be in an

inoperative state where they consume negligible energy. This cover based approach for WSNs

yields a better network lifetime because of the following factors:

• The consumption of energy by an active sensor is much more as compared to the energy

consumed by an inactive sensor [70, 71].

• It has been shown that if a sensor is used in a frequently oscillating manner between on

and off states, then the sensor’s battery lasts for longer duration. Actually, a battery which

is used in many short bursts with significant intermediate inactive times may have twice

the lifetime in contrast to the situation where the same battery is used in a continuous

manner [72].

The problem of maximizing the lifetime of WSNs has gained a lot of attention during the

last decade, consequencing in plentiful literature on determining the set of covers and their

corresponding work durations. In most applications of WSNs, the sequence of activation of

covers is of no importance. This is substantiated by the fact that all targets are fully covered by

each cover, and hence, these covers can occupy any position in the schedule. Hence, the term

‘scheduling’ by default means the generation of covers and determining their corresponding

activation times [73], and the actual sequence of covers remains unspecified in most of the

literature pertaining to WSNs. For the sake of illustration, consider an example of WSN with

three sensors S1, S2 and S3 monitoring three targets τ1, τ2 and τ3 such that S1 can monitor

τ1 and τ3, S2 can monitor τ1 and τ2 and S3 can monitor τ2 and τ3. Hence, each target is

redundantly monitored by more than one sensor. Also assume each sensor has a operating life

of 1 time unit. If all the sensors are used simultaneously to monitor the three targets then we

will get a network lifetime of 1 time unit only. However, dividing the set of these three sensors

into three covers, viz. {S1, S2}, {S1, S3} and {S2, S3} and activating each cover for 0.5 time

units will provide a network lifetime of 1.5 time units. Figure 2.1 illustrates the activation

of these covers where Figure 2.1(a), Figure 2.1(b) and Figure 2.1(c) show the activation of

covers {S1, S2}, {S1, S3} and {S2, S3} respectively. In this figure, targets are shown by green

36

2.1 Introduction

squares, active sensors by blue circles and inactive sensors by red circles. Sensing range of

each sensor is shown by a dotted circle centred at that sensor. The dotted circle corresponding

to a sensor is grey if it is in active state. It is to be noted that covers can be activated in any

order, and sequencing of Figure 2.1(a), Figure 2.1(b) and Figure 2.1(c) is only for definiteness

in illustration.

S1 S2

S3

τ1

τ2τ3

(a) Sensors S1 and S2 are in active
state for 0.5 time units

S1 S2

S3

τ1

τ2τ3

(b) Sensors S1 and S3 are in active
state for 0.5 time units

S1 S2

S3

τ1

τ2τ3

(c) Sensors S2 and S3 are in active
state for 0.5 time units

Figure 2.1: Illustrating activation of covers in a WSN

However, this scenario changes drastically when considering bandwidth constraints in

WSNs, i.e., when the maximum number of sensors which can send the data to central server

simultaneously, is restricted to ω. In such a situation, the full coverage of targets cannot be

guaranteed due to the restriction on the size of cover by the value of ω. If a target is not covered

by any of the sensor present in the currently active cover, then the target is said to be breached.

The bandwidth constraints in the WSNs lead to two engaging problems based on the level of

compromise between two competing factors, viz. network lifetime and coverage breach. The

objective of the first problem (termed as MNLB in literature) is to maximize the network lifetime

with the bandwidth constraints bounded by an upper limit on the breach rate, whereas the latter

problem (termed as MCBB in literature) has the objective to minimize the total breach time

during the entire life under the bandwidth constraints subjected to a lower limit on network

lifetime [74, 75]. The breach rate is defined as the average breach time per target as a fraction

of total lifetime. The value 0 of breach rate specifies that all targets are fully monitored during

the complete lifetime of network, and the value 1 of breach rate specifies that none of the target

is monitored during the complete lifetime. In general, a breach rate of ν ∈ (0, 1) can indicate

any scenario between the following two extreme scenarios [76]:

37

2. COVER SCHEDULING PROBLEM IN WIRELESS SENSOR NETWORKS

1. All targets except ν fraction of the total targets are always monitored by some sensor in

the network.

2. Each target remain uncovered exactly for ν fraction of the network lifetime.

A column generation based approach [76] can provide an efficient solution to MCBB and MNLB

problems. However, such an approach only produces the covers along with their respective

work durations, and the actual schedule of these covers again remain undetermined. MCBB and

MNLB problems are examples of those class of problems where technical constraints lead to

coverage breach. There are few cases where coverage breach is permitted purposely to enhance

the network lifetime. For instance, [77] presented a lifetime maximization problem in WSNs,

where some fractions of targets remain unmonitored in every cover, so that an increase in the

network lifetime can be achieved.

However, the actual sequence in which covers are scheduled becomes important when

coverage breach is permitted. It is due to fact that, different schedules of covers may have

different targets breached for different continuous duration of time, and hence, it is preferable to

have a schedule in which none of the target has continuous breach for a long timespan. This

chapter deals with the problem of scheduling a given set of covers in such a manner that the

longest continuous target breach is minimized. In the literature, this problem is known by the

name cover scheduling problem in wireless sensor networks (WSN-CSP).

Rossi et al. [78] introduced the WSN-CSP and proved its NP-hardness. In [78], WSN-CSP

is addressed using a greedy heuristic (GH) and a genetic algorithm (GA) augmented with a

local search. A lower bound is also presented which is used to assess the number of optimal

solutions achieved by each proposed approach. GA performed much better in comparison to GH.

Gopinadh et al. [79] developed two hybrid swarm intelligence approaches utilizing artificial

bee colony algorithm (ABC) and invasive weed optimization algorithm (IWO) for WSN-CSP.

These ABC and IWO based approaches obtained better quality solutions in comparison to the

approaches of [78], and, ABC based approach performed better than IWO based approach.

In this chapter, we present a two-membered evolution strategy ((1+1)-ES) to address WSN-

CSP problem. In our proposed approach, we have used NEH heuristic [63] and concept of

opposition based solution generation, to generate a good quality initial solution. Initially a

random solution is generated and its corresponding opposite solution is determined. On both

solutions, we have employed NEH heuristic and the fitness of two new resulting solutions

is evaluated. The better one between them is considered as initial solution for the proposed

38

2.2 Problem definition

approach. The proposed approach has used three mutation operators in a mutually exclusive

manner. Our mutation operator uses ruin and recreate strategy, where the original solution

is partially ruined and then again recreated by using a problem-specific greedy approach.

Furthermore, a reshuffle procedure is used to circumvent the solution from stucking in a local

optima. We have compared the performance of our approach with the approaches available in

the literature, viz. those presented in [78, 79]. The computational results clearly demonstrate

the superiority of our approach.

The remaining part of this chapter is structured as follows. Section 2.2 presents the formal

definition and an illustrative example of the WSN-CSP. Section 2.3 discusses the related works.

The proposed (1+1)-ES approach for the WSN-CSP is described in Section 2.4. The compu-

tational results are presented in Section 2.5. Finally, Section 2.6 presents some concluding

remarks.

2.2 Problem definition

This section introduces the notational conventions and provides a formal definition of WSN-CSP.

The input to WSN-CSP consists of a set of covers, their corresponding work durations and the

set of targets monitored by each cover. The objective of WSN-CSP is to find a schedule of covers

which minimizes the longest continuous duration of time for which a target is breached. Clearly,

a schedule is a linear permutation of covers where the positions of the covers specify the order

in which covers are activated.

Formally, given a set D of n targets, viz. D = {D1, D2, . . . , Dn}, a set G consist-

ing of m covers, viz. G = {G1, G2, . . . , Gm} along with their respective work durations

{t1, t2, . . . , tm} and the sets Pi =
{
Dj : (Dj ∈ D) ∧ (Gi covers Dj)

}
, ∀i ∈ {1, 2, . . . ,m}.

Let Qj =
{
Gi : (Gi ∈ G) ∧ (Gi covers Dj)

}
, ∀j ∈ {1, 2, . . . , n}. Hence, Pi is the set of

targets covered by cover Gi, and, Qj is the set of covers which cover target Dj . The sets Qj ,

∀j ∈ {1, 2, . . . , n} can be computed from sets Pi, ∀i ∈ {1, 2, . . . ,m} given as input. A target

Dj is breached for duration ti whenever the currently active cover Gi does not belong to Qj .

Given a schedule of covers π = Gπ1Gπ2 . . . Gπm , the target Dj can be breached for a continuous

duration longer than the work duration of a single cover, if two or more consecutive covers

in the schedule π do not belong to Qj . Let Tj , ∀j ∈ {1, 2, . . . , n} be the longest continuous

39

2. COVER SCHEDULING PROBLEM IN WIRELESS SENSOR NETWORKS

duration of time for which target Dj is not covered by any cover in the schedule, i.e.,

Tj = max
∑

{πk:Gπk /∈Qj , ∀1≤k1≤k≤k2≤m}

tπk , ∀j ∈ {1, 2, . . . , n} (2.1)

where k1 and k2 provide the starting and ending positions in the schedule such that all covers

between these two positions in the schedule do not coverDj . Let ∆max be the longest continuous

duration of time for which a target is breached in a schedule, i.e.,

∆max = max(T1, T2, . . . , Tn) (2.2)

The WSN-CSP seeks a schedule of covers that minimizes ∆max.

0 2 4 6 8 10 12 14

D1

D2

D3

D4

D5

G1

G2

G3

G3 G4

G5

G5

G6

G6
D4 remains uncovered for 10 time units

2 time units 2 time units

5 time units

3 time units

6 time units

Time

Ta
rg

et
s

Figure 2.2: Illustrating WSN-CSP assuming covers are scheduled as per their natural order, i.e.,
G1, G2, G3, G4, G5, G6

To illustrate WSN-CSP, let us consider an example consisting of five targets and six covers,

i.e., n = 5 and m = 6 such that D = {D1, D2, D3, D4, D5}, G = {G1, G2, G3, G4, G5, G6}
with their respective working durations {2, 3, 2, 1, 4, 2} and P1 = {D2, D3, D4}, P2 =

{D1, D2, D3}, P3 = {D1, D2, D5}, P4 = {D5}, P5 = {D1, D3} and P6 = {D2, D4}. On the

basis of given information,Q1 = {G2, G3, G5},Q2 = {G1, G2, G3, G6},Q3 = {G1, G2, G5},
Q4 = {G1, G6}, Q5 = {G3, G4}. Figure 2.2 illustrates a solution of WSN-CSP, where covers

are scheduled in their natural order, viz. G1, G2, G3, G4, G5, G6. From this figure, it can be

clearly seen that T1 = 2 (k1 = 1, k2 = 1), T2 = 5 (k1 = 4, k2 = 5),T3 = 3 (k1 = 3, k2 = 4),

T4=10 (k1 = 2, k2 = 5), T5 = 6 (k1 = 5, k2 = 6), and, hence ∆max, i.e., the longest continuous

40

2.3 Related work

0 2 4 6 8 10 12 14

D1

D2

D3

D4

D5

G1

G2

G4

G6

G6

G5

G5

G3

G3
D5 remains uncovered for 6 time units

D4 remains uncovered for 6 time units

3 time units

4 time units

3 time units

Time

Ta
rg

et
s

Figure 2.3: Illustrating WSN-CSP assuming covers are scheduled in the order
G1, G2, G4, G6, G5, G3

breach is 10 time units for target D4. Figure 2.3 illustrates the scheduling of covers in the order

G1, G2, G4, G6, G5, G3 that leads to an optimal solution which has the maximum breach of 6

time units for targets D4 and D5. In this example, T1 = 3 (k1 = 3, k2 = 4), T2 = 4 (k1 = 5, k2 =

5),T3 = 3 (k1 = 3, k2 = 4), T4 = 6 (k1 = 5, k2 = 6), T5 = 6 (k1 = 4, k2 = 5).

2.3 Related work

This section provides the details of previously proposed approaches used for addressing WSN-

CSP.

As already mentioned in Section 2.1, WSN-CSP was introduced and proved NP-hard by

Rossi et al. in [78] where mixed integer linear programming (MILP) formulation and a lower

bound for WSN-CSP were also presented. However, this MILP formulation proved too difficult

to use in practice as it could not be solved even for the smallest instance considered. The lower

bound is based on two approaches. First approach is based on the fact that ∆max is lower

bounded by the maximum value from all the durations of covers which does not cover all the

targets. In other words, if a cover does not provide coverage to all the targets then definitely

during the working duration of this cover some targets will be breached. For example, in

Figure 2.2 and Figure 2.3, cover G5 has maximum working duration among all covers which

is 4 time units and it does not cover targets {D2, D4, D5}. Hence 4 is the minimum value of

∆max in the example presented in Section 2.2 as per the first approach. The second approach

41

2. COVER SCHEDULING PROBLEM IN WIRELESS SENSOR NETWORKS

is based on alternative argument. For some specific target Dj , the total time for which the

target is not covered can be calculated by subtracting the total duration of the covers monitoring

this target from the network lifetime. This total time for which the target is not covered can

be split into |Qj | + 1 time intervals, by scattering the |Qj | covers covering target Dj in an

equally distributed separation. For example, the target D4 is monitored by covers G1 and G6

and their total working duration is 4. The total duration of all the covers is 14. Thus, D4 remains

uncovered for total 10 time units and by positioning appropriately the covers G1 and G6, the

minimum value of ∆max for target D4 is 10/3 ≈ 3.33. If we calculate this value for all targets,

then the maximum value from these will provide the lower bound for ∆max. The lower bound

is taken as maximum value from the two lower bounds found by these two approaches.

Rossi et al. [78] proposed a greedy heuristic (GH) and a genetic algorithm (referred to

as CSGA) approach to solve WSN-CSP. GH determines an ordering among the covers by

processing the targets in decreasing order of their potential to cause longest breach. The

covers are scheduled as per their determined order. The genetic algorithm uses probabilistic

binary tournament selection to select two parents for crossover. The cycle crossover operator

(CX) is used to produce offspring, and with small probability swap based mutation is applied

on the offspring generated by the crossover operator. The proposed CSGA relies on steady

state population replacement model instead of the commonly used generational model. The

best solution obtained through genetic algorithm is improved further by an exhaustive local

search. Computation results demonstrated the effectiveness of CSGA in solving WSN-CSP as it

performed much better than GH.

Gopinadh et al. [79] presented two hybrid swarm intelligence based approaches for WSN-

CSP. The first approach was based on artificial bee colony algorithm (referred to as CSABC),

whereas the latter approach was based on invasive weed optimization algorithm (referred to

as CSIWO). In CSABC approach, 3-point swap (3PS) method was adopted to generate a

neighboring solution, and the concept of scout bees was not used at all as it deteriorated the final

solution obtained in almost all cases. The CSIWO approach also uses 3PS method to produce

new solutions. The 3PS method selects three positions (say p, q and r) randomly in a solution.

The cover at position p is swapped with cover at position q and then the new cover at position

p is swapped with cover at position r. The solution generated by 3PS method is at distance 2

from the original solution, i.e., new solution differs from the original solution by 2 in terms

of number of swaps. The CSABC and CSIWO were augmented with a local search to further

improve the obtained solutions. The local search procedure finds the target involved in longest

42

2.4 Two-membered evolution strategy approach for WSN-CSP

breach and identify the middle position by using beginning and ending positions of the covers

involved in longest breach. Then the covers which can provide coverage to the target involved in

longest breach are tried one-by-one for placement at the calculated middle position. The cover

which reduces the longest breach by maximum amount is inserted at the middle position. To

reduce the computational effort, the search process is restricted to finding 5 covers reducing

the longest breach and choosing the best one among these five. CSABC and CSIWO based

approaches obtained better quality solutions in comparison to approaches of [78], and, CSABC

based approach performed better than CSIWO based approach.

2.4 Two-membered evolution strategy approach for WSN-CSP

The proposed two-membered evolution strategy approach for the WSN-CSP is an extended

version of the basic two-membered evolution strategy where a reshuffle procedure is added to

escape from a locally optimal solution. Our proposed approach will be referred as ES-CSP

hereafter. The process begins with the initial solution generation by employing NEH and

opposition based solution generation. The ES-CSP is a mutation based approach. Hence, in

each iteration, the mutant solution is obtained by applying the mutation operator on the present

solution and the mutant solution replaces the present solution for the next iteration in case

the mutant solution is as good as the present solution. We are replacing the present solution

even if the mutant solution has the same fitness as the present solution due to the existence of

large number of different solutions with same fitness for WSN-CSP. However, if there is no

improvement in the fitness of the solution, for a fixed number of consecutive iterations, then the

reshuffle procedure is invoked to get a new solution which replaces the present solution. The

entire process is repeated again and again as long as termination condition remains unsatisfied.

In the proposed approach, we have used three mutation operators for maintaining an adequate

balance between exploration and exploitation. The first and third mutation operators have

fixed as well as low mutation step size, hence they can be seen as the operators performing

exploitation, whereas second mutation operator has variable mutation step size and due to this it

can be used for exploration as well as exploitation by appropriately selecting the step size. It is

to be noted that if mutation parameter value is large, then the exploration of search space will

be more, but at the same time it has a higher chance of missing nearby better quality solutions.

On the other hand, mutation with smaller parameter value facilitates exploitation rather than

43

2. COVER SCHEDULING PROBLEM IN WIRELESS SENSOR NETWORKS

exploration [80]. The main components of our proposed approach are discussed in the following

subsections.

2.4.1 Solution encoding and fitness

We have used the same encoding approach as described in [79]. Here, a linear permutation

of covers represents a solution, i.e., if there are total m covers, then a solution represents the

permutation of m covers such that the positions of the covers in the solution govern the order in

which covers are activated.

We have used the objective function itself as the fitness function. It is pertinent to mention

that WSN-CSP being a minimization problem, a lesser value of the objective function signifies a

more fit solution.

2.4.2 Initial solution generation

Initially, a random solution is generated and its corresponding opposite solution (refer to

Section 1.9) is determined. On both solutions, we have employed NEH heuristic and the fitness

of two new resulting solutions is evaluated. The more fit between the two is used as initial

solution for ES-CSP. Algorithm 3 provides the pseudo-code for initial solution generation.

It is observed in many combinatorial optimization problems, that the superior quality local

minima have more inclination towards global minima, in comparison with lower quality local

minima [81]. In general, evolutionary computation paradigm employs randomly generated initial

population. However, the use of problem-specific greedy heuristic can provide initial population

of superior quality [82]. The use of NEH heuristic is inspired by these observations. The

description of NEH presented in Section 1.8 is in terms of flow shop scheduling problem. With

reference to WSN-CSP, π = Gπ1Gπ2 . . . Gπm is a permutation of m covers, i.e., π represents

a schedule of covers for WSN-CSP. For WSN-CSP, first step is skipped as there is no clear

criteria to determine the relative preference of covers, so π is a random permutation of m covers

initially. Steps 2 and 3 are applied in the same manner as described in Section 1.8. It is pertinent

to mention that, if there are only two covers to schedule then any order (that is, Gπ1Gπ2 or

Gπ2Gπ1) will result in same value of breach. Hence, in step 2 of NEH we always choose the

order Gπ1Gπ2 .

44

2.4 Two-membered evolution strategy approach for WSN-CSP

Algorithm 3: Pseudo-code of initial solution generation
Input: Set of n targets, set of m covers & their respective work durations and set of targets

covered by each cover
Output: ∆SOL

function Initial_Sol_Generation()
begin

∆SOL ← generate a solution randomly;
∆OPPSOL ← opposite solution of ∆SOL;

// Generating a random solution and its corresponding
opposite solution

∆SOL ← NEH (∆SOL);
∆OPPSOL ← NEH(∆OPPSOL);

// Applying NEH on both solutions

if (∆OPPSOL is better than ∆SOL) then
∆SOL ←∆OPPSOL;

return ∆SOL ;

2.4.3 Mutation operators

In the proposed approach, we have used three mutation operators, viz. MUT1, MUT2 and

MUT3 in a mutually exclusive manner. The MUT1, MUT2 are used with probabilities 0.5 and

0.45. With remaining probability 0.05, we have used MUT3 only when the ratio R of number

of covers not covering the target involved in longest breach to the total number of covers is

greater than 0.85, otherwise MUT2 is used in place of MUT3. In other words, if the target

involved in longest breach is covered by a small number of covers then only MUT3 is used.

For the sake of illustration, consider the example in Figure 2.2, the target involved in longest

breach is D4, which is covered by covers G1 & G6 and not covered by G2, G3, G4 & G5. For

the given scenario, the value of R is 4
6 , i.e., 0.67 which is not greater than 0.85, and hence, third

mutation operator will not be used in this scenario. In each iteration, one among these three

mutation operators partially ruins the solution, and then recreates the solution following a greedy

approach. Ruin-and-recreate strategies have been used in the literature in combination with

several different metaheuristic frameworks to provide solutions to a wide range of problems, e.g.

[55, 83, 84, 85, 86, 87, 88].

The working principle of all three mutation operators is same. It selects the υ covers (υ1,

υ2, υ3 respectively for the three mutation operators) and remove them, from the solution. Each

removed cover is reinserted at its best possible position in the solution, following the same

45

2. COVER SCHEDULING PROBLEM IN WIRELESS SENSOR NETWORKS

order of their removal. For each removed cover, the best position is found by using a greedy

based construction strategy. The removed cover is tried for all the remaining (m − υ + k)

positions in the partial solution, consequencing in (m − υ + k) sequences, where m is total

number of covers and k ∈ {1, 2, . . . υ} represents the cover selected for reinsertion. Out of

these tentative sequences, the one with minimum objective function cost is selected as partial

solution for next iteration and the same steps are continued until all the removed covers are

reinserted into the solution. The three mutation operators only differ in the selection of covers

to be removed from the solution. First mutation operator (MUT1), selects υ1 covers randomly

from the entire solution. On the other hand, second and third mutation operators (viz. MUT2

and MUT3 respectively), select randomly υ2 and υ3 covers respectively from a subset of the

solution. The subset for MUT2 is restricted to covers involved in the longest breach, whereas

subset for MUT3 is restricted to covers which are covering the target involved in longest breach.

It is pertinent to mention that MUT3 is used only if number of covers monitoring the target

involved in longest continuous breach is very small as we have observed that on a few instances

without the use of third mutation operator, we get worse results no matter with what probabilities

we use other two mutation operators. It is to be noted that there can be more than one target

involved in longest continuous breach, and, when this happens the second and third mutation

operators process appropriate covers corresponding to lowest numbered target involved in

longest continuous breach. The algorithms 4, 5 and 6 respectively provide the pseudo-code for

MUT1, MUT2 and MUT3.

Algorithm 4: Pseudo-code of first mutation (MUT1)

Input: A solution ∆SOL

Output: Mutated Solution ∆SOL

// ∆add stores the covers removed from ∆SOL during mutation

function MUT1(∆SOL)
begin

for (i := 1 to υ1) do
Remove one cover G∆ from ∆SOL randomly without altering relative order of remaining
covers;
∆add(i)← G∆;

for (i := 1 to υ1) do
∆SOL ← Best permutation retrieved by inserting cover ∆add(i) in all possible positions
of ∆SOL;

return ∆SOL ;

46

2.4 Two-membered evolution strategy approach for WSN-CSP

Algorithm 5: Pseudo-code of second mutation (MUT2)

Input: A solution ∆SOL & the target Dj involved in longest breach in ∆SOL.
Output: Mutated Solution ∆SOL

function MUT2(∆SOL)
begin

// ∆add stores the covers removed from ∆SOL during mutation
∆pos ← sequence of covers responsible for longest target breach in ∆SOL;
υ2← b |∆pos|

2 c;
for (i := 1 to υ2) do

Select one cover G∆ from ∆pos randomly and remove this G∆ from ∆SOL & ∆pos

without altering relative order of remaining covers;
∆add(i)← G∆;

for (i := 1 to υ2) do
∆SOL ← Best permutation retrieved by inserting cover ∆add(i) in all possible positions
of ∆SOL;

return ∆SOL ;

Algorithm 6: Pseudo-code of third mutation (MUT3)

Input: A solution ∆SOL & the target Dj involved in longest breach in ∆SOL.
Output: Mutated Solution ∆SOL

function MUT3(∆SOL)
begin

// ∆add stores the covers removed from ∆SOL during mutation
Ψj ← Qj ;
υ3 ← min(4, |Qj |);
for (i := 1 to υ3) do

Select one cover G∆ from Ψj randomly, and remove this G∆ from ∆SOL without
altering relative order of remaining covers;
∆add(i)← G∆;
Ψj ← Ψj − {G∆};

for (i := 1 to υ3) do
∆SOL ← Best permutation retrieved by inserting cover ∆add(i) in all possible positions
of ∆SOL;

return ∆SOL ;

2.4.4 Reshuffle procedure

Reshuffle procedure is used to diversify the search when there is no improvement in the fitness

of the best solution for κ consecutive iterations. It is used to circumvent the solution from

stucking in a local optima. In this procedure, we have used two different approaches one after

47

2. COVER SCHEDULING PROBLEM IN WIRELESS SENSOR NETWORKS

the other. First, we have applied the Reshuffle1 procedure on the present solution. If the solution

obtained by this procedure is worst than the fitness of the initial solution supplied by Algorithm

3, then only the Reshuffle2 procedure is used. The Reshuffle1 procedure is same as the second

mutation operator (MUT2), but the parameter υ2 here is set to a value different from the one

used in MUT2. In Reshuffle2 procedure, we have applied Algorithm 3 with one difference.

Instead of generating a solution randomly, the present solution is assigned to ∆SOL.

Algorithm 7 provides the pseudo-code of our ES-CSP approach, where the function

Longest_Breach(∆SOL) is used to find target Dj involved in longest breach in solution ∆SOL.

If two or more targets are involved in longest continuous breach in solution ∆SOL, then this

function returns the lowest numbered such target. MUT1(∆SOL), MUT2(∆SOL, Dj) and

MUT3(∆SOL, Dj) are three functions used to perform mutation (Section 2.4.3) and the func-

tion Reshuffle(∆SOL, Dj) implements the reshuffle procedure (Section 2.4.4).

2.5 Computational results

Our ES-CSP approach is implemented in C language and executed on a Linux based 3.10 GHz

Intel Core i5 processor based system with 4GB of RAM. To evaluate the performance of ES-CSP,

we have used the same set of instances as used in [78, 79]. These test instances are the outcome

of addressing MNLB problem (Maximizing network lifetime under bandwidth constraints) in

WSNs via the column generation approach of [76]. Each of these test instances consists of

covers & their respective work durations, and the set of targets monitored by each cover. For

these test instances, the number of sensors s belongs to the set {50, 100, 150, 200} and the

number of targets n is taken to be equal to 0.6s. It is assumed that the sensors and targets are

distributed in a random manner in an area with dimensions 500×500. The sensing range (SR) of

the sensors is taken to be 150, i.e., a target D is monitored by a sensor S, if the distance between

target D and sensor S is less than or equal to SR. The bandwidth constraint ω ∈ {5, 10, s}
and breach rate ν ∈ {0.1, 0.2}. 30 instances were generated for each combination of values of

n, ω and ν, thereby yielding 720 instances in total for MNLB problem. These 720 instances

of MNLB problem when solved through the column generation approach of [76] yielded the

corresponding 720 instances for WSN-CSP. The ES-CSP approach is executed once on each of

these test instances.

The termination criteria for ES-CSP approach is set as 1200 iterations. The parameter υ1 in

first mutation operator is set to 4, parameter υ2 in second mutation operator is set to b |∆pos|
2 c,

48

2.5 Computational results

Algorithm 7: Pseudo-code of ES-CSP
Input: A set D = {D1, D2, . . . , Dn} of n targets, a set G consisting of m covers

{G1, G2, . . . , Gm} along with their respective work durations {t1, t2, . . . , tm} and the
sets Pi =

{
Dj : (Dj ∈ D) ∧ (Gi covers Dj)

}
, ∀i ∈ {1, 2, . . . ,m}.

Output: ∆BEST , the best solution obtained through ES-CSP
// u01 is a uniform variate between [0,1]

function ES-CSP()
begin

Compute Qj =
{
Gi : (Gi ∈ G) ∧ (Gi covers Dj)

}
, ∀j ∈ {1, 2, . . . , n};

∆SOL ← Solution supplied by initial solution generation procedure;
∆BEST ←∆SOL;
No_Improvement← 0;
while (termination condition remains unsatisfied) do

Dj ← Longest_Breach(∆SOL);
R = (m−

∣∣Qj∣∣)/m;
if (u01 is greater than equal to 0.5) then

Mutant←MUT1 (∆SOL);

else
if (u01 is less than 0.9) then

Mutant←MUT2 (∆SOL, Dj);

else
if (R is greater than 0.85) then

Mutant←MUT3 (∆SOL, Dj);

else
Mutant←MUT2 (∆SOL, Dj);

if (Mutant is as good as ∆SOL) then
∆SOL ←Mutant;
if (Mutant is better than ∆SOL) then

No_Improvement← 0;

No_Improvement← No_Improvement+ 1;
if (∆SOL is better than ∆BEST) then

∆BEST ← ∆SOL;

if (No_Improvement = κ) then
∆SOL ← Reshuffle(∆SOL, Dj);
No_Improvement← 0;

return ∆BEST ;

where |∆pos| is number of covers involved in longest breach and the parameter υ3 in third

mutation operator is set to min(4, |Qj |), where |Qj | is the number of covers which provide

coverage to the target Dj involved in longest breach in current solution. The parameter υ2

49

2. COVER SCHEDULING PROBLEM IN WIRELESS SENSOR NETWORKS

in Reshuffle1 is set to min(4, |∆pos|) (Please refer to Section 2.4.4). The value κ in reshuffle

function is fixed to 50 for first 600 iterations and then it is reset to 100, i.e., if present solution

doesn’t improve for κ successive iterations, then reshuffle function is used. The various

parameter values used in the proposed approach are selected empirically after executing our

approach multiple times. Although these parameter values achieve good results on most of the

instances, but they cannot be regarded as optimal parameter values for all the instances.

The performance of ES-CSP has been compared with the state-of-the-art approaches avail-

able in the literature. We have used the same criteria to measure the performance as used in

[78, 79] and report the results in Table 2.1 & Table 2.2. The Table 2.1 provides the comparison

of ES-CSP with CSGA approach of [78] and with CSABC & CSIWO approaches of [79]. The

performance of the greedy heuristic (GH) proposed in [78] was found to be much worse than

CSGA, CSABC & CSIWO approaches [78, 79], and hence, we have not included the greedy

heuristic in this comparison. In this table, first column represents the instance parameters, viz.

number of sensors (s), number of targets (n), the bandwidth constraint (ω) and the average

number of covers (m̄) in 60 instances with same value of s, n and ω. In Table 2.1, each row

reports the results of various approaches on 30 instances with ν = 0.1 and 30 instances with

ν = 0.2. The first eight columns after instance parameters provide the results for the instances

with breach rate ν = 0.1 and last eight columns provide the results for the instances with breach

rate ν = 0.2. The results of each approach for WSN-CSP is represented by two columns. The

first column describes the average percentage deviation value over the lower bound (LB) and

second column represents the number of proven optimal solutions found by that approach. The

percentage deviation of a solution A of an instance over the corresponding lower bound L is

defined as 100 × A−L
L . The reported average percentage deviation is average of percentage

deviations of 30 instances. A solution yielded by an approach is guaranteed to be optimal if the

objective function value of solution is same as its corresponding lower bound value. The value of

lower bound for each instances is presented in [78]. The last two rows provide the summarized

results on 360 instances for each value of breach rate (ν). The lower bound proposed in [78]

may not be tight for large value of ν. The results in Table 2.1 clearly show the superiority of

ES-CSP approach over the state-of-the-art approaches for WSN-CSP. Our approach performed

better than other approaches in terms of both parameters, viz. average percentage deviation and

number of instances solved optimally on most of the instances. The CSGA, CSIWO, CSABC find

the 391 (≈ 54%), 426 (≈ 59%), 442 (≈ 61%) optimal values respectively out of 720 instances,

whereas the ES-CSP is able to find the 473 (≈ 66%) optimal values out of total 720 instances.

50

2.5 Computational results

Ta
bl

e
2.

1:
C

om
pa

ris
on

of
ES

-C
SP

w
ith

C
SG

A
,C

SA
B

C
an

d
C

SI
W

O
on

tw
o

pa
ra

m
et

er
s,

vi
z.

av
er

ag
e

pe
rc

en
ta

ge
de

vi
at

io
n

fr
om

th
e

lo
w

er
bo

un
d

an
d

th
e

co
un

to
fo

pt
im

al
ly

so
lv

ed
in

st
an

ce
s

ν
=

0.
1

ν
=

0.
2

In
st

an
ce

pa
ra

m
et

er
s

%
C

SG
A

#C
SG

A
%

C
SA

B
C

#C
SA

B
C

%
C

SI
W

O
#C

SI
W

O
%

E
S-

C
SP

#E
S-

C
SP

%
C

SG
A

#C
SG

A
%

C
SA

B
C

#C
SA

B
C

%
C

SI
W

O
#C

SI
W

O
%

E
S-

C
SP

#E
S-

C
SP

s
=

50
,n

=
30

,ω
=

5,
m̄

=
41

1.
81

23
1.

48
22

0.
58

22
0.

72
22

3.
53

12
1.

88
17

1.
06

19
1.

31
17

s
=

50
,n

=
30

,ω
=

10
,m̄

=
47

1.
25

22
0.

26
23

0.
21

23
0.

73
23

2.
66

14
0.

97
18

0.
61

18
0.

78
18

s
=

50
,n

=
30

,ω
=

50
,m̄

=
47

0.
19

24
0.

17
24

0.
10

25
0.

29
23

3.
50

14
1.

05
17

0.
90

17
1.

19
17

s
=

10
0,

n
=

60
,ω

=
5,
m̄

=
90

0.
24

28
0.

12
28

0.
09

28
0.

19
28

9.
20

8
3.

25
17

3.
21

17
2.

09
18

s
=

10
0,

n
=

60
,ω

=
10

,m̄
=

96
0.

70
26

0.
34

28
0.

28
28

0.
29

28
7.

79
10

2.
83

12
2.

50
15

1.
36

18
s

=
10

0,
n

=
60

,ω
=

10
0,
m̄

=
96

0.
00

30
0.

0
30

0.
0

30
0.

00
30

6.
78

10
2.

57
16

2.
98

13
1.

55
19

s
=

15
0,

n
=

90
,ω

=
5,
m̄

=
13

7
0.

49
26

0.
32

28
0.

24
27

0.
22

28
12

.2
5

3
5.

62
3

8.
65

3
3.

36
8

s
=

15
0,

n
=

90
,ω

=
10

,m̄
=

14
0

1.
02

26
0.

22
27

0.
34

26
0.

16
28

18
.9

3
2

8.
22

7
10

.0
7

2
3.

88
10

s
=

15
0,

n
=

90
,ω

=
15

0,
m̄

=
14

2
0.

65
27

0.
58

27
0.

43
27

0.
31

27
11

.4
0

4
6.

60
8

8.
35

6
3.

55
12

s
=

20
0,

n
=

12
0,
ω

=
5,
m̄

=
18

2
1.

07
26

0.
78

26
1.

02
24

0.
38

28
22

.2
3

0
14

.6
6

2
18

.3
5

0
8.

94
2

s
=

20
0,

n
=

12
0,
ω

=
10

,m̄
=

18
8

0.
03

27
0.

15
27

0.
10

28
0.

01
29

16
.2

1
3

11
.3

0
4

16
.3

4
1

4.
98

7
s

=
20

0,
n

=
12

0,
ω

=
20

0,
m̄

=
18

9
1.

30
24

0.
56

28
0.

80
26

0.
14

28
17

.5
7

2
9.

63
3

14
.9

2
1

5.
17

5
To

ta
lp

ro
ve

n
op

tim
al

so
lu

tio
ns

30
9

31
8

31
4

32
2

82
12

4
11

2
15

1
A

ve
ra

ge
%

de
vi

at
io

n
to

L
B

0.
73

%
0.

42
%

0.
35

%
0.

28
%

11
.0

0%
5.

71
%

7.
33

%
3.

18
%

51

2. COVER SCHEDULING PROBLEM IN WIRELESS SENSOR NETWORKS

Ta
bl

e
2.

2:
C

om
pa

ri
so

n
of

E
S-

C
SP

w
ith

C
SG

A
,C

SA
B

C
an

d
C

SI
W

O
in

te
rm

s
of

co
un

to
ft

he
in

st
an

ce
s

on
w

hi
ch

E
S-

C
SP

ac
hi

ev
ed

be
tte

r(
<)

,
eq

ua
l(

=)
an

d
w

or
se

(>
)s

ol
ut

io
ns

ν
=

0.
1

ν
=

0.
2

In
st

an
ce

pa
ra

m
et

er
s

C
SG

A
C

SA
B

C
C

SI
W

O
C

SG
A

C
SA

B
C

C
SI

W
O

<
=

>
<

=
>

<
=

>
<

=
>

<
=

>
<

=
>

s
=

50
,n

=
30

,ω
=

5,
m̄

=
41

6
22

2
1

26
3

0
27

3
13

14
3

6
19

5
1

21
8

s
=

50
,n

=
30

,ω
=

10
,m̄

=
47

3
22

5
0

23
7

0
23

7
10

15
5

1
20

9
1

21
8

s
=

50
,n

=
30

,ω
=

50
,m̄

=
47

2
24

4
2

24
4

1
24

5
9

18
3

3
20

7
2

19
9

s
=

10
0,

n
=

60
,ω

=
5,
m̄

=
90

2
28

0
1

28
1

0
28

2
22

8
0

8
17

5
8

17
5

s
=

10
0,

n
=

60
,ω

=
10

,m̄
=

96
4

26
0

1
28

1
1

28
1

19
10

1
14

14
2

10
17

3
s

=
10

0,
n

=
60

,ω
=

10
0,
m̄

=
96

0
30

0
0

30
0

0
30

0
19

11
0

9
17

4
12

15
3

s
=

15
0,

n
=

90
,ω

=
5,
m̄

=
13

7
4

26
0

2
28

0
1

27
2

27
1

2
23

5
2

24
4

2
s

=
15

0,
n

=
90

,ω
=

10
,m̄

=
14

0
4

26
0

2
28

0
4

26
0

27
3

0
22

6
2

26
3

1
s

=
15

0,
n

=
90

,ω
=

15
0,
m̄

=
14

2
3

27
0

3
27

0
3

27
0

25
4

1
21

8
1

23
6

1

s
=

20
0,

n
=

12
0,
ω

=
5,
m̄

=
18

2
4

26
0

4
26

0
6

24
0

29
1

0
25

1
4

29
1

0
s

=
20

0,
n

=
12

0,
ω

=
10

,m̄
=

18
8

3
27

0
2

28
0

2
28

0
27

2
1

24
5

1
29

1
0

s
=

20
0,

n
=

12
0,
ω

=
20

0,
m̄

=
18

9
6

24
0

2
28

0
4

26
0

28
2

0
25

4
1

29
1

0

To
ta

l
41

30
8

11
20

32
4

16
22

31
8

20
25

5
89

16
18

1
13

6
43

19
4

12
6

40

52

2.6 Conclusions

It is evident from Table 2.1 that the performance of CSABC approach is close to that of ES-CSP

for instances with ν = 0.1, however the gap in performance widens for instances with ν = 0.2.

It is pertinent to mention that the hardness of the problem increases with increase in ν due to

increased possibility of the presence of longest breach at multiple places in the schedule with

increase in ν.

Table 2.2 provides the comparison of ES-CSP with CSGA, CSIWO and CSABC in terms

of number of instances on which the solution obtained by ES-CSP is better (<), equal (=) or

worse (>), on each set of 30 instances. The solutions obtained by ES-CSP and the CSABC

approach are very close for instances with ν = 0.1, however the solutions obtained by ES-CSP

for instances with ν = 0.2, are substantially better than those generated by existing approaches.

The ES-CSP is able to find 181 better solutions, 136 equal solutions and 43 worse solutions,

out of 360 solutions with ν = 0.2, in comparison with CSABC approach, which is the previous

best approach for WSN-CSP in the literature. At the end, the summarized results are also

reported. Table 2.2 again shows the superiority of ES-CSP over state-of-the-art approaches.

Except for groups of small instances, our approach always found as good as or better solutions

in comparison to other approaches on each instance group of 30 instances. Further, difference in

performance between our approach and other approaches is more on instances with ν = 0.2

than on instances with ν = 0.1.

2.6 Conclusions

We proposed a two-membered evolution strategy based approach to address the cover scheduling

problem in wireless sensor networks (WSN-CSP). It is an NP-hard problem which arises in

wireless sensor networks when coverage breach is permitted owing to either technical restrictions

or intentionally. Under such circumstances, the actual sequence in which covers are scheduled

becomes important, as different sequences lead to different values for longest continuous

duration of target breach. We have devised three mutation operators by exploiting the problem

characteristics and the requirement of objective. To generate initial solution, we have used

greedy heuristic and concept of opposite solutions. Our initial solution generation approach

provides a better quality initial solution due to which proposed approach is able to find superior

quality final solution. The results obtained by our approach are compared with the results of

existing approaches for WSN-CSP. The computational results demonstrate that our proposed

approach outperforms the state-of-the-art approaches.

53

Chapter 3

Total Rotation Minimization Problem
in Directional Sensor Networks

3.1 Introduction

This chapter is devoted to the cover scheduling problem pertaining to directional sensor networks.

Wireless sensor networks (WSNs) comprising only those sensors which can sense in all direc-

tions around them are called omnidirectional WSNs, and such sensors are called omnidirectional

sensors. The WSN problem addressed in the last chapter has comprised of omnidirectional

sensors. Most wireless sensor networks use omnidirectional sensors. Thus omnidirectional

WSNs are commonly referred to as wireless sensor networks. In most applications pertaining to

omnidirectional WSNs, the order in which covers are scheduled does not matter, except for a

few cases discussed in the last chapter.

Unlike omnidirectional sensors, a directional sensor at any specific instant of time can

observe targets in an angular sector only (also known as its working direction at that instant).

Figure 3.1 illustrates the difference between an omnidirectional sensor and a directional sensor

where a sensor is shown by a black dot and its sensing range by a circle centered at that sensor.

Sensor Si shown in Figure 3.1(a) is an omnidirectional sensor, and hence, it can monitor all

targets around it that are within its sensing range. That is why entire circle is shown in grey

color in Figure 3.1(a). On the other hand, sensor Si shown in Figure 3.1(b) is a directional

sensor with sensing angle φ and working direction ϕ. Hence, it can monitor targets only in

the angular sector that begins at an angle ϕ and have central angle φ. This angular sector is

shown in grey color in Figure 3.1(b). Hence, it can monitor only two targets, viz. τ1 and τ2.

54

3.1 Introduction

The directional sensors primarily include infra-red sensors [89], ultrasonic sensors [90] and

video sensors [91]. Incapability of directional sensors to monitor all surrounding targets at any

instant of time does not preclude the possibility of monitoring all surrounding targets at different

instants of time. To facilitate this, each directional sensor is equipped with a device that can

rotate it, thereby changing its working direction. With such an arrangement, working direction

of a directional sensor can be adjusted as per the application’s requirements [92]. A detailed

survey on directional sensor networks and their applications can be found in [92].

Si

τ1

τ2

τ3

τ4

τ5

(a) Omnidirectional sensor

Si
0

φ

ϕ

τ1

τ2

τ3

τ4

τ5

(b) Directional sensor

Figure 3.1: Omnidirectionl sensor vs directional sensor

The lifetime maximization problem discussed in Section 2.1 of last chapter becomes more

complicated in case of directional sensor networks as each cover not only contains list of its

constituent sensors, but also the working direction for each one of them [93, 94]. As the covers

are activated one-by-one, sensors may need to rotate so as to face their working directions

dictated by the currently active cover. It is to be noted that only those sensors need to be

rotated which are present in the currently active cover and which do not face the working

direction dictated by this cover. However, rotation of a directional sensor from one direction to

another consumes energy, and hence, the sequence in which covers are scheduled does matter in

directional sensor networks [94]. This chapter is concerned with how to schedule a given set

of covers so that the energy consumption due to rotations of sensors is minimized. Such sets

of covers originate as a result of not only solving different variants of lifetime maximization

problem in directional sensor networks, but also by solving some other problems in directional

sensor networks such as those maximizing quality of service subject to certain lower bound on

lifetime [93, 94, 95, 96, 97, 98, 99]. As the energy consumed in a rotation of a sensor is directly

55

3. TOTAL ROTATION MINIMIZATION PROBLEM IN DIRECTIONAL SENSOR
NETWORKS

proportional to the angular magnitude of the rotation, the problem transforms to scheduling

the covers in such a manner so that the sum total of all sensors’ rotations is minimized. This

problem is an NP-hard problem and termed as the Total Rotation Minimization Problem (TRMP)

in the literature [100].

TRMP was introduced by Singh and Rossi in [100], where a lower bound and three heuristic

approaches for this problem were also presented. The three approaches comprise a nearest

neighbor heuristic approach, a genetic algorithm approach and an approach combining the

genetic algorithm with an exhaustive swap-based local search. The exhaustive swap-based

local search in the combined approach is applied only on the best solution returned by the

genetic algorithm. The genetic algorithm utilizes swap based mutation and uniform order based

crossover which do not make use of any problem-specific knowledge. Though an exhaustive

swap based local search is applied on the best solution returned by the genetic algorithm, it can

not compensate for the absence of exploitation of problem-specific knowledge by the genetic

algorithm. These facts motivated us to explore more about this problem.

TRMP is essentially a permutation problem that seeks the optimal schedule of covers which

has the minimum total transitional cost due to rotation of sensors. The WSN-CSP problem

addressed in previous chapter, the covers involved in longest breach and the covers which can

monitor the target involved in longest breach can be found. By exploiting this characteristic

of the problem, we have proposed three mutation operators in evolution strategy approach

for WSN-CSP. On the other hand, in TRMP, the transitional cost in moving from one cover

to another can depend on several preceding covers. Thus, TRMP is essentially a more tough

problem to solve in comparison to WSN-CSP.

To address TRMP, we proposed an evolutionary approach based on a two-membered evolu-

tion strategy ((1+1)-ES). The proposed approach for TRMP is an extension of two-membered

evolution strategy approach for WSN-CSP. It is incorporated with a pre-processing step, which is

used to boost the performance of the evolution strategy (ES). In the pre-processing step, we have

applied NEH heuristic on some randomly generated solutions and their corresponding opposite

solutions and the best solution obtained is passed as input to (1+1)-ES. It is to be noted that in ES

approach for WSN-CSP, we have applied NEH on only one randomly generated solution and its

corresponding opposite solution. On the other hand, NEH is applied on more than one solution

in the pre-processing step used here. Use of more than one solution in pre-processing step

provides a better exploration of search space, and thus, yields a superior quality initial solution

in comparison to the ES approach of WSN-CSP. We have also used a reshuffle procedure to

56

3.2 Problem definition

diversify the search process and escape from local optima. Our (1+1)-ES employs a mutation

operator that is based on a destruction and construction strategy where a solution is partially

destroyed and then reconstructed following a problem-specific greedy strategy. The performance

of the proposed (1+1)-ES with and without the pre-processing step has been compared with the

best approach available in the literature, viz. the combined approach of [100] on the same set

of instances as used in [100]. Computational results demonstrate that the proposed (1+1)-ES

based approach both with and without pre-processing step is better than the previously best

approach available in the literature. The superior performance of our approach can be attributed

to effective exploitation of problem-specific knowledge by the mutation operator.

The remainder of this chapter is organized as follows: A formal definition of the total

rotation minimization problem is presented in Section 3.2. Section 3.3 describes our evolution

strategy based approach for the TRMP. Computational results and their analysis are presented in

Section 3.4. Section 3.5 provides the concluding remarks by listing the contributions made in

this chapter.

3.2 Problem definition

Consider a directional sensor network consisting of m directional sensors , and there are n

covers to schedule. Each of these n covers consists of a subset of these m sensors along with

the working direction for each sensor present in the cover. It is to be noted that the working

direction of a sensor can be different in different covers, if the sensor belongs to more than one

cover. To represent a cover, we have used a representation scheme which can be considered as

an extension of binary representation scheme for sets. For all i ∈ {1, . . . , n}, cover gi can be

represented as a real vector of dimension m in such a way that gi,j is the working direction of

sensor j, if sensor j belongs to the cover. The working direction can be specified in radians

or in degrees and the permissible values are in the range of [0, 360) for degrees and [0, 2π) for

radians. Any value beyond this permissible range for gi,j indicates sensor j is not present in

the cover. For the sake of illustration, we have represented all working directions in degrees

in the range of [0, 360). The direction gi,j is set to 400 degrees for all sensors j which are not

present in gi. As 400 6∈ [0, 360), so it correctly encodes the absence of sensor j in cover gi

without causing any ambiguity. We will use the term direction, orientation and angular position

interchangeably throughout this chapter.

57

3. TOTAL ROTATION MINIMIZATION PROBLEM IN DIRECTIONAL SENSOR
NETWORKS

Further, like [100], initial angular positions of all the sensors are assumed to be given. These

initial positions are represented by the special cover g0, such that g0,j is the initial angular

position of sensor j, which is in the range of [0, 360) ∀ j ∈ {1, . . . ,m}. Obviously, cover g0

will always be scheduled at position 0, as it provides the initial angular positions of all the

sensors.

The angular positions of all the sensors at any specific instant of time constitute the state

of the directional sensor network at that instant. An m-column real vector is used to model

a state Sa, such that Sa,j is the angular position of sensor j for all j ∈ {1, . . . ,m}. Clearly,

initial state S0 of the network is same as the cover g0, i.e., S0=g0 and the state will change as

the covers get scheduled one after the other. As the network has a total of n covers to schedule,

there are n+ 1 different states in total including the initial state S0. These states are denoted

as S0, S1, . . . , Sn. A state Si,∀i ∈ {0, 1, 2, . . . , n} provides the angular positions of all the

sensors after activating the cover occupying the ith position in the schedule. The value of Si,j

will always lie in [0, 360). If the sensor j is present in the cover occupying the ith position in

the schedule, then Si,j will be same as the angular position of sensor j in the cover occupying

the ith position. However, if the sensor j is not present in the cover occupying the ith position,

then Si,j will be the angular position corresponding to the cover which contains sensor j and

which is scheduled at the position nearest to the position i and less than the position i. It should

be noted that the special cover g0 which is scheduled in position 0 contains all the sensors, i.e.,

initially all sensors are facing some specific direction.

As a sensor can rotate in either clockwise or anti-clockwise manner, the angular distance

between two directions ϕ1 and ϕ2 in the range [0,360) is computed as follows :

d(ϕ1, ϕ2) =

{
|ϕ1 − ϕ2| if |ϕ1 − ϕ2| ≤ 180,
360− |ϕ1 − ϕ2| otherwise.

(3.1)

Let D(Sa, gi) denotes the total amount of rotation required by all the sensors belonging to

the cover gi to face their working directions from a state Sa. Actually, it is the transitional cost

required to turn Sa into a new state S
′
a, such that all the sensors in S

′
a which belong to cover gi

have the same orientation as their working direction in gi and remaining sensors which do not

belong to cover gi remain at the same angular positions as in Sa. More formally,

D(Sa, gi) =
∑

j∈{`:`∈{1,...,m}∧gi,`<360}

d(Sa,j , gi,j) (3.2)

58

3.2 Problem definition

For the sake of illustration, let us assume that Sa and gi have following compositions:

Sa =


185
90
345
270
15

 , gi =


205
400
400
255
340


The transitional cost D(Sa, gi) and the new state S

′
a are as follows:

D(Sa, gi) = 20 + 15 + 35, S
′
a =


205
90
345
255
340


Therefore, the total rotation minimization problem (TRMP) is to find a permutation of n

covers g1, g2, . . . , gn, that minimizes the total transitional cost. More formally, let ξ represents

the set of all permutations of these n covers. The TRMP seeks a permutation ρ = gρ1gρ2 . . . gρn

in ξ that minimizes

n∑
i=1

D(Si−1, gρi) (3.3)

Where Si represents the ith state (i.e. Si is the m-column vector whose elements are the angular

positions of all the sensors after activating the covers gρ1 , gρ2 , . . . , gρi from initial state S0=g0).

To illustrate TRMP, let us consider an example where network is composed of five sensors

and there are three covers g1,g2 and g3 to schedule. Initial state S0 represents the initial angular

positions of all the sensors, which is supplied in the form of cover g0 as already discussed

(S0=g0). Let us assume that g0, g1,g2 and g3 have the following contents

S0 = g0 =


110
75
180
0

345

 , g1 =


95
75
305
400
400

 , g2 =


400
108
400
65
400

 , g3 =


75
65
336
400
10


Table 3.1 and Table 3.2 show the scheduling of these three covers g1, g2 and g3 in two

different orders. Table 3.1 shows the scheduling of covers as per their natural order, i.e., g1,

g2, g3, which yields total transitional cost of 357 (140+98+119) for the TRMP. Table 3.2

59

3. TOTAL ROTATION MINIMIZATION PROBLEM IN DIRECTIONAL SENSOR
NETWORKS

shows the scheduling of covers in order g1, g3, g2, which leads to total transitional cost of 334

(140+86+108).

Table 3.1: Illustrating the TRMP assuming the covers are scheduled in their natural order, i.e., g1,
g2, g3

Transition Angular magnitude Direction1 Total rotation New state

From S0=g0=


110
75
180
0

345

 to serve g1=


95
75
305
400
400




15
0

125
0
0




−
∗
+
∗
∗

 140 S1=


95
75
305
0

345



From S1=


95
75
305
0

345

 to serve g2=


400
108
400
65
400




0
33
0
65
0




∗
+
∗
+
∗

 98 S2=


95
108
305
65
345



From S2=


95
108
305
65
345

 to serve g3=


75
65
336
400
10




20
43
31
0
25




−
−
+
∗
+

 119 S3=


75
65
336
65
10


1

‘+’, ‘−’ and ‘∗’ indicate rotation in anti-clockwise direction, clockwise direction and no rotation respectively

3.3 Two-membered evolution strategy based approach for TRMP

Inspired by the success of evolution strategy based approach in addressing WSN-CSP, we have

proposed a two-membered evolution strategy approach which incorporates a pre-processing

step. As already explained in previous chapter, the two-membered evolution strategy approach

follows a mutation-selection scheme. The process begins with an initial solution that is supplied

by a pre-processing step and then mutation is performed on this solution. The better of parent

and offspring, is selected as parent for next iteration. If the solution fails to improve over certain

number of iterations then reshuffle procedure is invoked and the current solution is replaced

with a solution provided by the reshuffle procedure. The entire process is repeated until the

termination criteria is satisfied. In our approach, only mutation operator is used for exploitation

as well as for exploration. Mutation with small step size is used for exploitation, where as for

exploration, we have used mutation with large step size. Our reshuffle procedure makes use

60

3.3 Two-membered evolution strategy based approach for TRMP

Table 3.2: Illustrating the TRMP assuming the covers are scheduled in the order g1, g3, g2

Transition Angular magnitude Direction1 Total rotation New state

From S0=g0=


110
75
180
0

345

 to serve g1=


95
75
305
400
400




15
0

125
0
0




−
∗
+
∗
∗

 140 S1=


95
75
305
0

345



From S1=


95
75
305
0

345

 to serve g3=


75
65
336
400
10




20
10
31
0
25




−
−
+
∗
+

 86 S2=


75
65
336
0
10



From S2=


75
65
336
0
10

 to serve g2=


400
108
400
65
400




0
43
0
65
0




∗
+
∗
+
∗

 108 S3=


75
108
336
65
10


1

‘+’, ‘−’ and ‘∗’ indicate rotation in anti-clockwise direction, clockwise direction and no rotation respectively

of mutation operator with large step size to provide a new solution. The details are given in

section 3.3.4. It is pertinent to mention that mutation operator with large step size leads to a

wider exploration of the search space, but has high probability of missing good solutions. On

the other hand, a low mutation rate relates more to exploitation rather than exploration [80].

Hereafter, this approach will be referred to as ES-TRMP. The salient features of our ES-TRMP

approach are described in the following subsections.

3.3.1 Solution encoding and fitness

We have used the same encoding scheme as used in [100]. In this scheme, each solution is

a linear permutation of order n (i.e., total number of covers). The positioning of covers in a

permutation sequence dictate the order in which covers need to be scheduled. More precisely, a

value of k at the ith position in the permutation specifies that the cover k is scheduled ith after

preceding (i− 1) covers in the permutation.

The objective function (Equation (3.3)) itself is the fitness function, i.e., the fitness of a

solution is the total transitional cost in rotation of sensors due to the activation of covers in the

schedule. Since TRMP is a minimization problem, a solution having a lower value of the fitness

61

3. TOTAL ROTATION MINIMIZATION PROBLEM IN DIRECTIONAL SENSOR
NETWORKS

function is regarded as more fit than a solution having a higher value.

3.3.2 Pre-processing step

The introduction of a pre-processing step is motivated by the observation that for a large number

of problems in combinatorial optimization domain, the higher quality local minima tend to have

more closeness to the global minima, as compared to inferior quality local minima [81]. Mostly,

evolutionary algorithms utilize randomly generated initial solutions. However, a constructive

heuristic combined with a local search may produce better initial solutions [82]. This is the

idea behind pre-processing step. This pre-processing step serves as an initial exploration phase

for finding a better initial solution, as compared to randomly generated initial solution. The

initial solution generated by the pre-processing step is then exploited by our ES based approach.

In the pre-processing step, we have applied NEH heuristic on some random solutions. The

pre-processing step begins with χ randomly generated initial solutions (i.e., these solutions are

some random permutations of covers). For each of these solutions, their corresponding opposite

solution (see Section 1.9) is also generated. The NEH heuristic is applied on each solution and

on its corresponding opposite solution as well (Total 2χ solutions). The best solution among all

these solutions is passed as input to ES-TRMP. The pseudo-code of pre-processing step is given

in Algorithm 8, where NEH(S) is a function that applies the NEH heuristic on a solution S. The

NEH algorithm presented in Section 1.8 is modified to make it suitable for TRMP. Here, π =

gπ1gπ2 . . . gπn is a permutation of n covers, i.e., a schedule of covers for TRMP. Step 1 is not

used in case of TRMP as NEH is applied on multiple solutions, so π is a random permutation

of n covers initially. Further, among the alternative sequences of covers, the sequence that

minimizes the total transitional cost associated with it, is selected. The total transitional cost

associated with a sequence κ = gκ1gκ2 . . . gκk with k covers is
∑k

i=1D(Si−1, gκi). The last

two steps are applied in the same manner as described in Section 1.8.

3.3.3 Mutation operator

The mutation operator is based on a destruction and reconstruction strategy, where a solution is

partially destroyed and then heuristically reconstructed. Our mutation procedure takes a solution

as input and then randomly removes κ covers from this solution. Then, it reinserts the removed

covers one-by-one in the solution in the order in which they are removed from the solution.

A removed cover is tried for insertion in all possible (n− κ+ i) positions in partial solution,

62

3.3 Two-membered evolution strategy based approach for TRMP

Algorithm 8: Pseudo-code of pre-processing step
Input: Number of sensors m, number of covers n and covers g0, g1, g2, . . . , gn, number of

solutions χ
Output: BESTSOL, the best solution obtained in pre-processing step
// Fitness of BESTSOL is initialized to a value larger than

maximum possible fitness value

function Pre-processing(χ)
begin

for (i := 1 to χ) do
Generate a solution SOLi randomly;
OPP_SOLi ← opposite solution of SOLi;
SOLi ← NEH(SOLi);
OPP_SOLi ← NEH(OPP_SOLi);
if (OPP_SOLi is better than SOLi) then

SOLi ← OPP_SOLi;

if (SOLi is better than BESTSOL) then
BESTSOL ← SOLi;

return BESTSOL ;

where n is the total number of covers in the original solution and the cover in consideration for

insertion was ith cover to be removed. Out of (n− κ+ i) resulting sequences, the sequence

which yields minimum total rotation is retained as new partial solution and again next cover is

tried for insertion. This process is repeated till all the removed covers are inserted back in the

solution. The pseudo-code of our mutation operator is given in Algorithm 9.

Algorithm 9: The pseudo-code of mutation
Input: A solution Gsol
Output: Mutated Solution Gsol
// Gadd stores the covers removed from Gsol during mutation

function Mutation(Gsol)
begin

for (i := 1 to κ) do
Remove one cover g from Gsol randomly without disturbing relative ordering of
remaining covers;
Gadd(i)← g;

for (i := 1 to κ) do
Gsol ← Best permutation obtained by inserting cover Gadd(i) in all possible positions of
Gsol;

return Gsol ;

63

3. TOTAL ROTATION MINIMIZATION PROBLEM IN DIRECTIONAL SENSOR
NETWORKS

3.3.4 Reshuffle procedure

The idea behind reshuffle is to diversify the search in case the ES-TRMP fails to find a solution

better than the best solution so far after η consecutive iterations. To implement this step, same

mutation operator as described in previous section is used, but with a large step size δ which is

greater than κ. In another perspective, this process can also be seen as the process which aids in

escaping from the local optima.

Algorithm 10 provides the pseudo-code of our ES-TRMP approach where Mutation(S)

and Reshuffle(S) are two functions which perform mutation (Section 3.3.3) and reshuffling

(Section 3.3.4) on a solution S.

Algorithm 10: Pseudo-code of ES-TRMP
Input: Number of sensors m, number of covers n and covers g0, g1, g2, . . . , gn
Output: BESTSOL, the best solution obtained through ES-TRMP

BESTSOL ← Solution supplied by pre-processing step;
function ES-TRMP(BESTSOL)
begin

No_Improvement← 0;
while (termination condition remains unsatisfied) do

Mutant←Mutation(BESTSOL);
if (Mutant is better than BESTSOL) then

BESTSOL ←Mutant;
No_Improvement← 0;

else
No_Improvement← No_Improvement+ 1;

if (NO_Improvement ≥ η) then
BESTSOL ← Reshuffle(BESTSOL);
No_Improvement← 0;

return BESTSOL ;

3.4 Computational results

The proposed evolution strategy approach is implemented in C and executed on Intel Core i5

system with 4GB RAM running under Ubuntu 16.04 at 3.10 GHz. The termination criteria for

ES-TRMP is set as 4,000 iterations. The mutation step size κ is set to 4, if 4 ≤ n
2 , otherwise κ is

set to max(bn2 c, 1). The parameter δ in Reshuffle procedure is set to 40 for all instances with

n ≥ 200, to 20 for instances with 100 < n < 200, to 10 for instances with 50 < n ≤ 100 and

64

3.4 Computational results

bn7 c for instances with 35 ≤ n ≤ 50, otherwise, it is set to min(4, n). The value of η is set as

100, i.e., if best solution fails to improve over 100 consecutive iterations, then reshuffle procedure

is invoked. The parameter χ in pre-processing step is set to 20 (if n ≥ 4), otherwise, χ = n.

This parameter defines the number of randomly generated initial solutions in pre-processing

step. All these parameter values are determined empirically. Although these parameter values

fetch good results on most of the instances, these values in no way can be regarded as optimal

values for all the instances. To ascertain the benefits of pre-processing step in ES-TRMP, we

have implemented another version of ES-TRMP where the evolution strategy begins with a

randomly generated initial solution instead of the solution supplied by the pre-processing step.

This version of ES-TRMP is referred to as ES-TRMPNO-PP. Except for the origin of initial

solution, ES-TRMPNO-PP is same as ES-TRMP in all other aspects.

The performances of ES-TRMP and ES-TRMPNO-PP have been tested on same 60 instances

as used in [100]. These instances were generated as a result of solving the lifetime maximization

problem in wireless directional sensor networks through the column generation based approach

presented in [94]. These instances have number of sensors m ∈ {50, 100, 200, 400} and the

number of targets T as 0.6m. Sensors and targets are assumed to be randomly placed in a

500×500 area and the sensing rangeRS is assumed to be fixed at 150. Furthermore, the sensing

angle φ ∈ {2π
3 ,

π
2 ,

π
3 } (in radians). The listing of sensing angle is done in descending order due

to the fact that the difficulty of problem increases with the decrease in sensing angle provided all

other parameters remain the same. As already mentioned in Section 3.2, initially, all the sensors

are assumed to have different random orientations as specified by cover g0. Hence, to activate

the very first cover in the schedule, also requires the rotation of sensors, in order to bring them

to their respective working directions as dictated by the first cover in the schedule. Our two

approaches have been executed 20 independent times on each instance like the genetic algorithm

based approaches of [100]. We have compared our approaches against the GA-TRMP+LSB

approach of [100] which is the best approach known so far for the TRMP. As the code for

GA-TRMP+LSB was available, we have re-executed it in same computational environment

as used for executing our approaches to ensure fairness in execution time comparison. As a

consequence of this, the execution times reported for GA-TRMP+LSB here are lower than those

reported in [100].

The results for instances with φ = 2π
3 , φ = π

2 and φ = π
3 are reported in tables 3.3, 3.4

and 3.5, respectively. Each row in these tables specifies the instance name (Instance), the number

of covers in it (n), the best solution (Best), the average solution quality (Average), the standard

65

3. TOTAL ROTATION MINIMIZATION PROBLEM IN DIRECTIONAL SENSOR
NETWORKS

deviation of solution values (SDev) and the average execution time (Time) of GA-TRMP+LSB,

ES-TRMPNO-PP and ES-TRMP respectively. Results of ES-TRMPNO-PP and ES-TRMP appear in

boldface in these tables whenever these two approaches performed better than GA-TRMP+LSB.

These three tables demonstrate that ES-TRMP outperforms GA-TRMP+LSB in terms of best

as well as average solution quality. In no case, the best or average solution obtained by GA-

TRMP+LSB is better than ES-TRMP. Even the best and average solution quality obtained by

ES-TRMPNO-PP is better than GA-TRMP+LSB in most of the cases. This clearly shows the

benefit of an ES based approach.

However, both ES-TRMP and ES-TRMPNO-PP approaches need more time than GA-TRMP+LSB.

This can be attributed to the high computational cost associated with heuristic reconstruction in

our mutation operator.

As far as comparison between ES-TRMPNO-PP and ES-TRMP is concerned, the former is

quite competitive in terms of solution quality in comparison to latter approach on small instances.

However, the benefit of the pre-processing step becomes clearly evident on larger instances as

ES-TRMP consistently obtained much better results. Hence, using the pre-processing step boost

the performance of evolution strategy. It is also evident from tables 3.3, 3.4 and 3.5 that, in most

of the cases, the standard deviation of solution values obtained through ES-TRMP is quite less

compared to GA-TRMP+LSB approach, which shows the robustness of ES-TRMP in comparison

to latter approach.

By comparing the instances of the same size in the result, it can be inferred that total rotation

cost usually, increases with the decrease in sensing angle. It is also supported by the fact that,

decrease in sensing angle requires more rotations, as fewer and fewer targets are monitored per

sector.

66

3.4 Computational results

Ta
bl

e
3.

3:
R

es
ul

ts
on

in
st

an
ce

s
w

ith
φ

=
2
π 3

.A
ll

an
gl

es
ar

e
in

ra
di

an
s

an
d

tim
es

in
se

co
nd

s

G
A

-T
R

M
P

+
LS

B
E

S-
TR

M
P

N
O

-P
P

E
S-

TR
M

P
In

st
an

ce
n

B
es

t
A

ve
ra

ge
SD

ev
Ti

m
e

B
es

t
A

ve
ra

ge
SD

ev
Ti

m
e

B
es

t
A

ve
ra

ge
SD

ev
Ti

m
e

di
rn

05
0m

03
0r

15
0s

03
i0

0.
da

t
18

97
.4

58
97

.6
73

0.
51

5
0.

09
97

.4
58

97
.4

58
0.

00
0

0.
11

97
.4

58
97

.4
58

0.
00

0
0.

11
di

rn
05

0m
03

0r
15

0s
03

i0
1.

da
t

1
17

.5
68

17
.5

68
0.

00
0

0.
00

17
.5

68
17

.5
68

0.
00

0
0.

00
17

.5
68

17
.5

68
0.

00
0

0.
00

di
rn

05
0m

03
0r

15
0s

03
i0

2.
da

t
43

18
6.

17
0

19
6.

28
0

4.
71

9
0.

33
18

0.
65

2
18

8.
04

9
3.

92
2

0.
77

18
0.

65
2

18
4.

35
8

4.
03

5
0.

79
di

rn
05

0m
03

0r
15

0s
03

i0
3.

da
t

36
12

1.
90

9
12

4.
26

4
1.

19
0

0.
21

11
8.

41
1

12
1.

66
0

2.
07

6
0.

47
11

8.
41

1
11

9.
70

3
1.

57
0

0.
50

di
rn

05
0m

03
0r

15
0s

03
i0

4.
da

t
9

55
.8

09
55

.8
09

0.
00

0
0.

06
55

.8
09

55
.8

09
0.

00
0

0.
03

55
.8

09
55

.8
09

0.
00

0
0.

04

di
rn

10
0m

06
0r

15
0s

03
i0

0.
da

t
13

97
.1

96
97

.1
96

0.
00

0
0.

06
97

.1
96

97
.1

96
0.

00
0

0.
07

97
.1

96
97

.1
96

0.
00

0
0.

07
di

rn
10

0m
06

0r
15

0s
03

i0
1.

da
t

25
13

9.
84

7
14

1.
66

5
1.

23
4

0.
18

13
9.

84
7

14
0.

10
3

1.
11

4
0.

26
13

9.
84

7
13

9.
84

7
0.

00
0

0.
26

di
rn

10
0m

06
0r

15
0s

03
i0

2.
da

t
66

26
3.

82
3

27
3.

78
7

3.
67

7
0.

58
25

8.
98

2
26

5.
78

7
3.

22
2

2.
19

25
7.

32
7

26
2.

68
1

2.
56

0
2.

29
di

rn
10

0m
06

0r
15

0s
03

i0
3.

da
t

94
31

0.
66

2
31

8.
89

3
5.

39
2

1.
23

30
4.

95
3

31
2.

50
9

4.
83

7
4.

57
29

9.
09

0
30

5.
43

9
3.

64
1

4.
94

di
rn

10
0m

06
0r

15
0s

03
i0

4.
da

t
52

25
7.

28
4

26
0.

28
6

2.
06

6
0.

44
25

2.
22

6
25

5.
79

1
2.

62
9

1.
28

25
2.

22
6

25
4.

17
2

1.
69

7
1.

37

di
rn

20
0m

12
0r

15
0s

03
i0

0.
da

t
78

68
9.

30
8

70
0.

16
1

5.
80

1
1.

16
68

3.
70

2
69

5.
35

0
6.

25
6

3.
89

67
5.

94
2

68
6.

80
7

6.
90

4
4.

24
di

rn
20

0m
12

0r
15

0s
03

i0
1.

da
t

14
5

10
49

.9
19

10
73

.3
37

9.
39

0
4.

07
10

27
.9

52
10

49
.8

05
13

.2
65

14
.5

2
10

09
.6

37
10

32
.0

28
10

.2
09

16
.1

6
di

rn
20

0m
12

0r
15

0s
03

i0
2.

da
t

19
8

12
57

.1
45

12
79

.5
19

12
.3

37
7.

94
12

31
.3

29
12

60
.5

52
16

.9
38

28
.6

5
11

95
.9

75
12

28
.6

06
12

.9
49

33
.8

9
di

rn
20

0m
12

0r
15

0s
03

i0
3.

da
t

20
0

77
3.

40
6

78
3.

56
6

5.
82

0
5.

86
75

0.
51

8
76

5.
03

5
6.

56
1

23
.4

7
73

6.
13

8
74

9.
74

5
6.

31
2

28
.4

0
di

rn
20

0m
12

0r
15

0s
03

i0
4.

da
t

17
3

14
07

.9
00

14
44

.9
71

22
.0

36
6.

12
13

95
.1

08
14

29
.6

99
16

.3
53

22
.3

7
13

83
.1

40
14

03
.2

15
12

.6
27

26
.0

8

di
rn

40
0m

24
0r

15
0s

03
i0

0.
da

t
40

0
26

27
.4

89
26

89
.6

61
29

.3
73

40
.2

7
25

87
.1

61
26

65
.1

80
27

.9
58

14
9.

92
25

17
.7

97
25

69
.2

35
21

.9
89

20
1.

06
di

rn
40

0m
24

0r
15

0s
03

i0
1.

da
t

40
0

28
19

.6
05

28
63

.6
94

35
.6

36
44

.4
2

27
86

.1
31

28
32

.1
27

23
.8

70
14

9.
27

27
23

.9
47

27
69

.0
08

23
.1

12
20

0.
18

di
rn

40
0m

24
0r

15
0s

03
i0

2.
da

t
40

0
28

14
.5

02
28

53
.3

35
19

.0
86

41
.3

1
27

86
.4

23
28

27
.2

13
20

.7
37

15
0.

82
27

25
.7

82
27

51
.1

89
15

.8
90

20
2.

84
di

rn
40

0m
24

0r
15

0s
03

i0
3.

da
t

40
0

24
16

.1
54

24
59

.2
13

26
.3

45
37

.8
9

24
03

.8
42

24
34

.6
57

19
.2

43
14

1.
38

23
35

.5
26

23
68

.6
82

13
.8

72
18

8.
72

di
rn

40
0m

24
0r

15
0s

03
i0

4.
da

t
40

0
26

28
.5

64
26

62
.0

78
20

.7
09

40
.9

4
26

02
.3

09
26

48
.8

39
22

.4
41

14
6.

48
25

14
.8

07
25

61
.4

07
21

.3
15

19
6.

41

67

3. TOTAL ROTATION MINIMIZATION PROBLEM IN DIRECTIONAL SENSOR
NETWORKS

Ta
bl

e
3.

4:
R

es
ul

ts
on

in
st

an
ce

s
w

ith
φ

=
π 2

.A
ll

an
gl

es
ar

e
in

ra
di

an
s

an
d

tim
es

in
se

co
nd

s

G
A

-T
R

M
P

+
LS

B
E

S-
TR

M
P

N
O

-P
P

E
S-

TR
M

P
In

st
an

ce
n

B
es

t
A

ve
ra

ge
SD

ev
Ti

m
e

B
es

t
A

ve
ra

ge
SD

ev
Ti

m
e

B
es

t
A

ve
ra

ge
SD

ev
Ti

m
e

di
rn

05
0m

03
0r

15
0s

04
i0

0.
da

t
28

13
9.

35
3

14
1.

33
7

1.
47

5
0.

20
13

7.
86

0
13

9.
03

8
1.

13
9

0.
32

13
7.

86
0

13
9.

14
2

1.
03

7
0.

31
di

rn
05

0m
03

0r
15

0s
04

i0
1.

da
t

1
19

.3
85

19
.3

85
0.

00
0

0.
00

19
.3

85
19

.3
85

0.
00

0
0.

00
19

.3
85

19
.3

85
0.

00
0

0.
00

di
rn

05
0m

03
0r

15
0s

04
i0

2.
da

t
50

17
2.

39
5

17
6.

99
4

2.
65

2
0.

38
16

8.
96

5
17

4.
64

2
3.

42
0

1.
09

16
8.

96
5

17
1.

62
9

2.
46

7
1.

17
di

rn
05

0m
03

0r
15

0s
04

i0
3.

da
t

41
11

2.
24

1
11

6.
04

5
1.

80
8

0.
20

11
2.

24
1

11
4.

89
5

2.
29

7
0.

67
11

2.
21

4
11

2.
53

7
0.

45
5

0.
70

di
rn

05
0m

03
0r

15
0s

04
i0

4.
da

t
12

84
.7

57
84

.7
57

0.
00

0
0.

07
84

.7
57

84
.7

57
0.

00
0

0.
05

84
.7

57
84

.7
57

0.
00

0
0.

06

di
rn

10
0m

06
0r

15
0s

04
i0

0.
da

t
16

13
1.

27
3

13
1.

27
3

0.
00

0
0.

12
13

1.
27

3
13

1.
27

3
0.

00
0

0.
13

13
1.

27
3

13
1.

27
3

0.
00

0
0.

13
di

rn
10

0m
06

0r
15

0s
04

i0
1.

da
t

22
16

5.
86

0
16

6.
47

9
0.

55
0

0.
15

16
5.

65
3

16
6.

00
9

0.
66

4
0.

24
16

5.
65

3
16

5.
89

5
0.

27
4

0.
24

di
rn

10
0m

06
0r

15
0s

04
i0

2.
da

t
99

37
6.

48
2

39
2.

61
4

8.
38

6
1.

44
37

5.
28

1
39

0.
05

0
9.

02
6

5.
63

36
2.

81
2

37
3.

82
9

6.
86

1
6.

21
di

rn
10

0m
06

0r
15

0s
04

i0
3.

da
t

98
29

7.
99

8
30

7.
67

3
4.

88
7

1.
29

28
5.

78
8

30
1.

03
8

6.
26

0
5.

50
28

3.
26

0
29

1.
79

2
4.

67
9

5.
90

di
rn

10
0m

06
0r

15
0s

04
i0

4.
da

t
70

37
2.

79
5

38
2.

55
5

5.
15

5
0.

76
36

0.
58

7
37

4.
34

0
6.

59
4

2.
79

36
0.

91
2

36
9.

46
0

4.
77

6
2.

94

di
rn

20
0m

12
0r

15
0s

04
i0

0.
da

t
11

1
10

29
.8

81
10

46
.3

34
11

.0
14

2.
29

10
07

.9
01

10
25

.3
52

13
.7

99
9.

33
10

02
.5

60
10

13
.9

43
10

.6
75

10
.5

9
di

rn
20

0m
12

0r
15

0s
04

i0
1.

da
t

20
0

14
25

.4
22

14
62

.1
10

18
.9

77
8.

29
13

91
.9

79
14

30
.5

95
19

.5
09

34
.6

7
13

55
.3

93
13

97
.1

24
16

.5
91

40
.2

1
di

rn
20

0m
12

0r
15

0s
04

i0
2.

da
t

20
0

11
77

.9
28

12
14

.4
37

18
.6

50
7.

69
11

42
.2

36
11

76
.1

30
19

.9
23

31
.0

8
11

20
.6

45
11

41
.8

90
12

.1
15

36
.8

4
di

rn
20

0m
12

0r
15

0s
04

i0
3.

da
t

20
0

93
0.

87
7

96
9.

82
2

15
.2

60
6.

90
93

3.
87

4
95

6.
08

4
13

.6
38

28
.9

1
90

8.
43

6
92

3.
88

6
10

.7
20

32
.9

7
di

rn
20

0m
12

0r
15

0s
04

i0
4.

da
t

20
0

13
03

.6
41

13
27

.5
08

16
.4

69
8.

00
12

64
.3

03
12

99
.7

43
18

.0
42

33
.9

8
12

28
.1

87
12

62
.1

07
13

.4
35

38
.8

4

di
rn

40
0m

24
0r

15
0s

04
i0

0.
da

t
40

0
33

57
.9

96
34

26
.8

20
30

.2
94

52
.2

0
33

16
.6

30
33

85
.8

40
37

.7
23

17
9.

50
32

27
.2

01
32

67
.0

53
23

.3
52

24
0.

67
di

rn
40

0m
24

0r
15

0s
04

i0
1.

da
t

40
0

29
42

.2
09

29
65

.1
09

16
.2

42
50

.1
2

29
09

.5
70

29
64

.2
35

35
.8

09
17

1.
50

27
59

.4
42

28
19

.9
04

22
.9

64
23

0.
54

di
rn

40
0m

24
0r

15
0s

04
i0

2.
da

t
40

0
29

99
.6

51
30

69
.8

07
33

.4
34

50
.2

3
29

90
.4

30
30

63
.7

82
32

.3
63

17
4.

48
28

71
.7

53
29

12
.8

71
22

.5
76

23
4.

78
di

rn
40

0m
24

0r
15

0s
04

i0
3.

da
t

40
0

28
04

.0
76

28
82

.4
43

39
.7

21
46

.1
5

28
09

.7
75

28
70

.4
82

23
.3

03
16

8.
22

26
97

.1
87

27
30

.5
58

23
.1

75
22

6.
80

di
rn

40
0m

24
0r

15
0s

04
i0

4.
da

t
40

0
30

44
.7

38
31

03
.7

34
32

.0
30

50
.1

5
30

57
.1

88
30

96
.1

11
24

.8
18

17
6.

20
29

46
.7

06
29

79
.1

72
19

.1
65

23
1.

53

68

3.4 Computational results

Ta
bl

e
3.

5:
R

es
ul

ts
on

in
st

an
ce

s
w

ith
φ

=
π 3

.A
ll

an
gl

es
ar

e
in

ra
di

an
s

an
d

tim
es

in
se

co
nd

s

G
A

-T
R

M
P

+
LS

B
E

S-
TR

M
P

N
O

-P
P

E
S-

TR
M

P
In

st
an

ce
n

B
es

t
A

ve
ra

ge
SD

ev
Ti

m
e

B
es

t
A

ve
ra

ge
SD

ev
Ti

m
e

B
es

t
A

ve
ra

ge
SD

ev
Ti

m
e

di
rn

05
0m

03
0r

15
0s

06
i0

0.
da

t
33

22
9.

44
3

23
6.

38
1

4.
26

3
0.

29
22

6.
75

2
23

5.
44

8
4.

27
9

0.
51

22
4.

88
3

23
2.

00
5

4.
03

3
0.

52
di

rn
05

0m
03

0r
15

0s
06

i0
1.

da
t

1
18

.7
79

18
.7

79
0.

00
0

0.
00

18
.7

79
18

.7
79

0.
00

0
0.

00
18

.7
79

18
.7

79
0.

00
0

0.
00

di
rn

05
0m

03
0r

15
0s

06
i0

2.
da

t
50

18
7.

38
8

20
1.

86
2

7.
04

3
0.

45
18

5.
26

6
19

4.
80

6
6.

48
2

1.
28

18
3.

80
5

19
1.

05
5

3.
96

0
1.

36
di

rn
05

0m
03

0r
15

0s
06

i0
3.

da
t

46
18

9.
43

4
19

2.
51

8
3.

37
1

0.
40

18
8.

71
0

19
2.

42
7

2.
13

0
1.

01
18

7.
85

9
19

1.
17

0
2.

45
2

1.
06

di
rn

05
0m

03
0r

15
0s

06
i0

4.
da

t
22

16
4.

63
5

16
8.

10
5

3.
02

5
0.

19
16

4.
63

5
16

7.
45

3
2.

07
8

0.
23

16
4.

63
5

16
6.

83
4

1.
48

3
0.

24

di
rn

10
0m

06
0r

15
0s

06
i0

0.
da

t
27

21
7.

80
0

22
2.

63
0

2.
74

1
0.

26
21

6.
81

3
22

2.
21

7
3.

14
7

0.
44

21
6.

81
3

21
8.

45
9

1.
97

4
0.

44
di

rn
10

0m
06

0r
15

0s
06

i0
1.

da
t

42
31

6.
52

7
32

1.
40

2
3.

35
8

0.
37

31
6.

00
1

32
5.

36
1

6.
71

9
1.

14
31

4.
15

9
31

8.
45

1
2.

77
2

1.
19

di
rn

10
0m

06
0r

15
0s

06
i0

2.
da

t
91

23
0.

10
7

24
1.

02
3

4.
71

5
1.

11
23

2.
87

3
23

9.
00

8
4.

55
2

5.
41

22
4.

47
6

23
3.

73
2

4.
68

3
5.

74
di

rn
10

0m
06

0r
15

0s
06

i0
3.

da
t

10
0

40
0.

53
9

41
0.

08
5

6.
57

8
1.

78
38

8.
22

6
40

2.
91

6
8.

27
3

6.
82

37
8.

01
6

39
2.

53
6

6.
49

8
7.

39
di

rn
10

0m
06

0r
15

0s
06

i0
4.

da
t

96
32

1.
21

5
33

5.
29

2
6.

98
8

1.
47

32
2.

59
8

33
7.

06
3

8.
23

4
6.

14
31

8.
36

4
32

7.
38

0
5.

82
2

6.
79

di
rn

20
0m

12
0r

15
0s

06
i0

0.
da

t
19

8
22

59
.8

06
23

11
.8

46
36

.0
95

10
.1

8
22

25
.8

26
22

89
.8

34
28

.5
23

44
.3

2
21

98
.5

77
22

24
.5

18
13

.9
14

52
.2

1
di

rn
20

0m
12

0r
15

0s
06

i0
1.

da
t

20
0

13
73

.4
59

14
06

.7
16

22
.6

24
9.

62
13

62
.3

96
13

92
.3

19
18

.0
82

40
.9

7
13

20
.0

61
13

40
.5

00
15

.2
25

48
.0

2
di

rn
20

0m
12

0r
15

0s
06

i0
2.

da
t

20
0

14
40

.5
51

14
69

.6
65

15
.5

56
10

.2
0

14
04

.8
21

14
37

.3
14

16
.4

18
42

.5
6

13
65

.9
51

13
93

.4
91

11
.4

76
48

.9
7

di
rn

20
0m

12
0r

15
0s

06
i0

3.
da

t
20

0
12

38
.0

41
12

75
.9

21
24

.7
90

9.
15

12
04

.0
40

12
35

.3
93

17
.5

53
39

.6
6

11
64

.4
05

11
98

.9
37

14
.2

34
45

.3
7

di
rn

20
0m

12
0r

15
0s

06
i0

4.
da

t
20

0
13

37
.5

27
13

69
.3

49
15

.3
76

9.
52

13
07

.3
20

13
41

.6
91

21
.9

95
42

.8
9

12
52

.1
14

12
88

.4
18

17
.3

67
50

.0
6

di
rn

40
0m

24
0r

15
0s

06
i0

0.
da

t
40

0
44

94
.5

63
45

94
.8

53
53

.5
49

66
.6

7
44

91
.4

68
45

74
.7

97
41

.7
05

23
3.

14
43

49
.3

37
43

73
.3

50
17

.2
25

30
9.

74
di

rn
40

0m
24

0r
15

0s
06

i0
1.

da
t

40
0

39
32

.1
07

40
15

.3
41

44
.3

76
63

.0
7

39
19

.4
75

40
19

.9
37

56
.0

61
22

5.
73

37
41

.2
09

38
01

.5
17

33
.5

07
29

8.
41

di
rn

40
0m

24
0r

15
0s

06
i0

2.
da

t
40

0
40

41
.0

51
41

46
.5

41
45

.9
90

65
.1

9
40

08
.6

61
41

34
.4

56
51

.5
47

23
1.

32
38

70
.7

38
39

20
.3

88
23

.8
76

30
7.

67
di

rn
40

0m
24

0r
15

0s
06

i0
3.

da
t

40
0

38
03

.4
90

38
58

.9
36

42
.9

79
62

.9
8

37
74

.8
66

38
65

.5
14

42
.8

54
22

1.
19

35
95

.8
46

36
54

.0
62

24
.3

13
29

2.
42

di
rn

40
0m

24
0r

15
0s

06
i0

4.
da

t
40

0
38

09
.6

27
38

91
.9

73
32

.9
31

61
.5

7
38

09
.6

85
38

84
.2

49
39

.2
58

22
4.

04
36

12
.8

96
36

70
.5

71
26

.6
51

29
7.

57

69

3. TOTAL ROTATION MINIMIZATION PROBLEM IN DIRECTIONAL SENSOR
NETWORKS

3.5 Conclusions

In this chapter, we proposed a simple two-membered evolution strategy based approach ES-

TRMP for total rotation minimization problem (TRMP). Our ES-TRMP uses a pre-processing

step that is used to boost the performance of evolution strategy. The comparison of ES-TRMP

with the state-of-the-art approach available in the literature is done and the computational results

demonstrate the effectiveness of our proposed approach. ES-TRMP provides better solutions

in comparison with GA-TRMP+LSB on all the instances. Despite the fact that ES-TRMPNO-PP

approach begins with a random initial solution, it performs better than state-of-the-art approach

on most of the instances. The proposed ES-TRMP approach consumes more time in comparison

with GA-TRMP+LSB approach, due to the use of heuristic based mutation operator in our

proposed approach.

70

Chapter 4

Single Machine Total Stepwise
Tardiness Problem with Release Dates

4.1 Introduction

The classical scheduling problem has been researched extensively over the past several decades.

Total tardiness cost is the most widely used performance metric for the classical scheduling

problem. A job i incurs tardiness if the job is completed after its due date. More formally,

tardiness (Ti) of a job i is computed as Ti= max(0, Ci - di), where Ci is the completion time

of the job i and di is its due date. The tardiness cost per unit of tardiness ti for each job i is

also specified, and the tardiness cost for each job i is usually taken as tiTi. So the classical

scheduling problem based on tardiness criterion considers a single due date (di) for each job

i, and the tardiness cost is usually a linear function of the completion time. In contrast, in

stepwise tardiness scheduling problem, each job has various due dates {d1i, d2i, d3i, . . . } and

the tardiness cost increases in stepwise manner with respect to various due dates. Evidently, the

tardiness cost here is a piecewise constant function of the completion time. Figure 4.1 illustrates

the difference between traditional tardiness cost and the stepwise tardiness cost [101, 102].

Stepwise tardiness cost is natural in many real-world applications [101, 103, 104] mostly

pertaining to transportation. Usually, the transportation services follow a time schedule, and

hence, the transportation service is not always available to serve. If a job is finished after

the current transport service departs, then the finished job has to compulsorily wait till the

availability of the next transport service. As a result, such a job gets delivered to the end

customer at the same time no matter where it exactly finishes after the current service departs

71

4. SINGLE MACHINE TOTAL STEPWISE TARDINESS PROBLEM WITH
RELEASE DATES

di

Ta
rd

in
es

s
C

os
t

Completion Time

(a) Traditional tardiness cost

d1i d2i d3i d4i

Ta
rd

in
es

s
C

os
t

Completion Time

(b) Stepwise tardiness cost

Figure 4.1: Traditional and stepwise tardiness

and before the availability of the next service. Hence, such a job has the same tardiness cost

no matter what is its exact completion time. Likewise, when modes of shipping of jobs (rail,

road, air etc.) vary according to completion times of jobs with respect to their various due dates,

the tardiness costs of the jobs grow in a stepwise manner. Stepwise tardiness cost also arises in

manufacturing sector when customer orders are processed in batches where each batch consists

of several customer orders each with its own due date. In this case, tardiness cost of a batch is

the sum total of the tardiness costs of its constituent orders which get finished after their due

dates. Obviously, tardiness cost of a batch can increase in a stepwise manner only as it depends

on number of tardy orders in that batch and tardiness costs associated with each one of them.

In this chapter, a single machine scheduling problem is considered where jobs incur stepwise

tardiness costs and each job i has a release date ri of its own, i.e., a job i is available for

processing not before its release date ri. In the literature, this problem is referred to as the single

machine total stepwise tardiness problem with release dates (SMTSTP-R). The SMTSTP-R,

which is formally defined in the next section, was introduced by Tseng et al. in [101]. They

have generated two sets of instances for SMTSTP-R, and proposed two heuristics, viz. M-Moore

(modified Moore) and improved NEH. The M-Moore and improved NEH were derived from

Moore’s algorithm [105] and NEH heuristic [63] respectively. The various priorities based upon

72

4.1 Introduction

slack time are considered as the tie-breaking rule in improved NEH heuristic. Tseng et al. also

proposed a EM (electromagnetism like mechanism) metaheuristic [106] based approach. These

are the initial approaches to address SMTSTP-R. However, all these approaches had assumed

release dates to be zero for all jobs, i.e., all jobs are available for processing at time zero. Thus

the experimental results reported in [101] on two sets of instances are for the SMTSTP-R with

all release dates set to 0, i.e., ri = 0 ∀i ∈ {1, 2, . . . , n}, where n is the total number of jobs.

This version is referred to as the single machine total stepwise tardiness problem (SMTSTP) in

the literature.

To address the problem version with release dates (SMTSTP-R), Chaurasia et al. [102] have

proposed two hybrid metaheuristic approaches. The first approach is a steady-state genetic

algorithm (GA) and the other is an artificial bee colony algorithm (ABC). They have used a

series of local searches to further improve the quality of solutions obtained by metaheuristic

approaches. These approaches are referred to as HGA and HABC in [102]. The initial population

generation in both these approaches is done by creating solutions in a random manner. Since the

results reported by Tseng et al. in [101] is for the SMTSTP, hence the comparison of approaches

proposed in [101] with HGA and HABC approaches of [102] has been done for SMTSTP only

in [102]. For this comparison, same instances as used in Tseng et al. [101] have been used,

and both HGA and HABC performed better than earlier approaches. Chaurasia et al. [102] also

report the computational results of HGA and HABC for SMTSTP-R on two sets of instances

generated by Tseng et al. [101]. Among these two metaheuristic approaches, HABC performed

better than HGA for both SMTSTP and SMTSTP-R. So these two metaheuristic approaches were

the first metaheuristic approaches for SMTSTP-R.

To address SMTSTP-R, we have proposed a hybrid approach combining discrete differential

evolution with a series of local searches. The local search approaches used in our approach are

taken from [102], due to their superior performance. We have compared the performance of our

approach with HGA and HABC approaches of [102], as they are the only existing approaches for

SMTSTP-R. Computational results clearly show our hybrid approach to be better in comparison

to these two approaches.

The remaining part of this chapter is organized as follows. Section 4.2 describes the basic

notations and formulation of the SMTSTP-R. Our hybrid discrete differential evolution approach

for addressing SMTSTP-R is described in Section 4.3. Section 4.4 reports the results of empirical

evaluation of our hybrid approach and compares these results with those of state-of-the-art

approaches in literature. At the end, Section 4.5 outlines some concluding remarks.

73

4. SINGLE MACHINE TOTAL STEPWISE TARDINESS PROBLEM WITH
RELEASE DATES

4.2 Problem definition

This section introduces the notational conventions used in this chapter and present the formal

definition of SMTSTP-R. Our notational conventions are similar to those used in [101, 102]. The

input to SMTSTP-R consists of n independent jobs along with their processing times, release

dates and various due dates. Formally, given a set of n jobs, viz. Ji= {J1, J2, . . . , Jn}. Each

job Ji has to be processed on a single machine without preemption and requires a processing

time pi. The machine is capable of processing only one job at a time, and hence, the jobs have

to be processed sequentially. Each job Ji has a release date ri and the machine can not start

processing the job before its release date. Each job has m due dates d1i, d2i, . . . , dmi such that

d1i < d2i < · · · < dmi. Any job incurs a tardiness cost if its completion time Ci exceeds its

first due date (d1i). The tardiness cost of a tardy job Ji is determined by a function f i(Ci),

which is defined below:

f i(Ci) =



0 if Ci ≤ d1i

w1i if d1i < Ci ≤ d2i

w2i if d2i < Ci ≤ d3i
...

...
wmi if dmi < Ci

(4.1)

where wki is the tardiness cost of job Ji, if completion of job occurs after its kth due date dki
and on or before (k + 1)th due date. The objective of SMTSTP-R is to find a schedule (η) of

jobs that minimizes

f(η) =

n∑
i=1

f i(Ci) (4.2)

Therefore, the goal of SMTSTP-R is to obtain a schedule of n jobs that incurs the minimum

value for the sum of the tardiness costs of all the jobs. SMTSTP-R is NP-hard [107], and using

the three field notation [108], it can be denoted as 1||ri||
∑n

i=1 f̄i(Ci).

4.3 Hybrid discrete differential evolution approach for SMTSTP-
R

To address SMTSTP-R, we have proposed a discrete differential evolution approach hybridized

with local search. Hereafter, our approach will be referred as HDDE. Our approach begins with

initial population generation which uses two heuristics namely, M-Moore (modified Moore)

74

4.3 Hybrid discrete differential evolution approach for SMTSTP-R

& NEH heuristics, and the concept of opposition based solution generation. The motivation

behind utilizing these strategies is to find better quality initial solutions, which helps in faster

convergence of the proposed approach. Similar methods of initial population generation are also

used by the proposed approaches for WSN-CSP and TRMP presented in previous chapters, and

the effectiveness of such methods are already demonstrated there. In each iteration of HDDE,

a mutant solution is generated by employing the mutation operator on a randomly selected

solution from the population. Thereafter, crossover operator is applied with probability pc, on

mutant and target solution which yields a trial solution. If the mutant is better that current best

then crossover is not used and in this case, mutant is considered as trial solution. Afterwards, a

series of local searches is employed on the trial solution. These local searches are employed

only if the difference of objective value of trial solution from the best solution found so far, is

less than (µ× objective value of best solution).

If the trial solution after all local searches have been applied on it is unique and better than

the target solution, then it replaces the target solution in the population. Here a solution is

considered as unique either if it has unique objective function value in current population or if it

has same objective function value as any other existing solution in population then it should not

be identical before the limiting point with any solution having the same objective value. The

limiting point is that position in a schedule where the completion time of the corresponding

job has exceeded the maximum due date value among all the jobs. It should be noted that after

this limiting point any permutation of remaining jobs incurs the same tardiness cost owing to

the fact that the jobs at positions after the limiting point will incur their respective maximum

tardiness costs irrespective of their positions in the schedule. Also if the trial solution has the

objective value which is same as at least 10 other solutions in the population then this trial

solution is is discarded immediately without any further checking. This is done because when

so many solutions have the same objective value then it is highly likely that trial solution is

either identical or almost identical to some other population members and discarding the trial

solution can maintain the diversity.

If any target solution does not improve for consecutive λ iterations then a perturbation

procedure is used which takes this solution as input and produce a perturbed solution from it.

The local search procedure is applied on this perturbed solution and then resulting solution

replaces the target solution. This procedure prevents a solution in the population from perma-

nently getting trapped in a local optima. This entire process repeats until the stopping criteria

is satisfied. Ensuring the uniqueness of the population, discarding a trial solution if it has the

75

4. SINGLE MACHINE TOTAL STEPWISE TARDINESS PROBLEM WITH
RELEASE DATES

same fitness as at least 10 other population members and replacing a solution in the population

which has not improved over fixed number of iterations are the unique features of our approach.

The first two features help in maintaining sufficient diversity in the population, whereas the

last feature helps in escaping from the locally optimal solutions. Algorithm 11 presents the

pseudo-code of proposed HDDE approach where Num_Pop() is a function that returns the

number of solutions in the population having the same objective value as trial solution. The

subsequent subsections describe the other important features of our approach.

4.3.1 Encoding of solutions and their fitness

We have used the same solution encoding scheme as presented in [102]. In this scheme, a

solution is represented as a linear permutation of jobs such that the position of jobs in the

permutation dictates the sequence in which jobs are scheduled for processing on the machine.

Equation (4.2) defines the objective function which is also used to evaluate the fitness of

a solution, i.e., the sum total of tardiness cost of all jobs is used as the fitness of a solution.

As SMTSTP-R is a minimization problem, a solution with lesser objective function value is

considered to be more fit than a solution with higher objective function value.

4.3.2 Initial solution generation

For initial population generation, we have used two sub-processes. First solution is obtained

through M-Moore heuristic [101]. The remaining solutions are generated in an iterative manner

by utilizing the concept of opposition based solution generation in combination with concept of

NEH heuristic, in the same manner as discussed in previous chapters. In each iteration, first a

random permutation of jobs is determined and the opposite solution of this random permutation

is calculated. Subsequently, NEH heuristic is applied on both the solutions. The better solution

in objective space is added to the population. The process iterates for (p-1) times, where p is

the population size. In each iteration, the uniqueness of the generated solution is ensured by

comparing the solution with the existing solutions in the population. If the newly generated

solution is not identical with any solution, then only it is added in population.

M-Moore heuristic: M-Moore heuristic presented in [101] was derived from Moore al-

gorithm [105]. We have used the same approach to generate first solution in the population.

76

4.3 Hybrid discrete differential evolution approach for SMTSTP-R

Following steps describes the M-Moore heuristic by assuming that all jobs are ready for process-

ing at beginning, i.e, ignoring the release date of the jobs.

Step 1: Assume χ = {J1, J2, . . . , Jn} and two initially empty solutions σ and τ .

Step 2: The jobs in χ are sorted in a non-decreasing order as per their kth due date, where

(k ∈ {1, 2, . . . ,m}) and the resulting sequence of the sorted jobs is π.

Step 3: The ith job where i ∈ (1, . . . , n) is selected from π and inserted in partial solution σ.

The completion time of the newly inserted (ith) job is calculated. If the completion time

exceeds the kth due date of this job then the job having longest processing time in the

partial solution σ is removed and inserted into τ and new longest processing time again

recalculated in σ. This step iterates n times and afterwards, the jobs in partial solution

τ is copied to solution χ. The steps 2 and 3 are repeated again.

Step 4: The above two steps are reiterated again and again upto m times, where m is the number

of due dates.

Step 5: At end of this procedure, partial solution σ contain all the jobs which satisfies some

due date dk, where k ∈ {1, . . .m} and τ contains the remaining jobs. The complete

solution S is obtained by appending jobs in τ to σ.

4.3.3 Crossover operator

Our crossover operator is a slightly modified version of uniform order based (UOB) crossover

[34]. It takes two parents P1 & P2 as input, where P1 is the solution obtained through mutation

as explained already and P2 is always the target solution. Our crossover operator begins by

creating an empty child solution. Thereafter, instead of copying jobs at each position in first

parent to the corresponding position in child with certain probability like UOB crossover, our

crossover operator selects θ positions randomly in first parent and copies the jobs at these

selected positions in child in the same positions as they were in first parent. The remaining

positions in child is filled with the unselected jobs in second parent in the same sequence. For

illustration, assume the two parents viz. P1={8, 4, 7, 2, 5, 9, 3, 1, 6} and P2 ={9, 2, 7, 4, 5, 6,

3, 8, 1}. Suppose the θ is equal to 4 and child inherits positions {2, 3, 6, 8} from P1 i.e., the

partially created child after this step will be {_, 4, 7, _, _, 9, _, 1, _}. The remaining positions

in child will be filled with the unselected jobs in P2 in the same sequence i.e, unselected jobs

77

4. SINGLE MACHINE TOTAL STEPWISE TARDINESS PROBLEM WITH
RELEASE DATES

Algorithm 11: Pseudo-code of HDDE approach for SMTSTP-R
Input: HDDE parameters and a SMTSTP-R instance
Output: Best solution obtained by HDDE

for (i=1 to p) do
Si ← Initial_Solution();

Best_Sol← best solution among S1, S2, . . . Si, . . . , Sp;
while (termination criteria remains unsatisfied) do

for (i=1 to p) do
Srand ← Select one solution from population randomly;
Mutant=mutation(Srand);
if (Mutant is better than Best_Sol) then

Best_Sol←Mutant ;
Trial_Sol←Mutant;
Crossover_flag← 0;

else
Crossover_flag← 1;

if (Crossover_flag = 1) then
if (U01 < pc) then

// U01 is a uniform variate between [0,1].
Trial_Sol← crossover(mutant,Si) ; // Si is the ith population
member.

if (f(Trial_Sol) < f(Best_Sol)×(1+µ)) then
// f(Trial_Sol) & f(Best_Sol) are the objective value of

Trial_Sol and Best_Sol respectively.
Trial_Sol← Local_Search(Trial_Sol) ;

if ((Trial_Sol is unique) and (Num_Pop(S1, S2, . . . , Sp, T rial_Sol) < 10)) then
if (Trial_Sol is better than Si) then

Si ← Trial_Sol ;
if (Si is better than Best_Sol) then

Best_Sol← Si ;

return Best_Sol;

present in P2 are {2, 5, 6, 3, 8}. The complete child after the crossover step will be {2, 4, 7, 5,

6, 9, 3, 1, 8}. The parameter θ used here is determined empirically.

4.3.3.1 Mutation operator

The mutation operator employed in this work consists of two swap operations. The three

positions, say x, y and z, in the original solution, are selected randomly. The first swap operation

interchanges the jobs at positions x and y, and the next swap operation interchanges the new job

78

4.3 Hybrid discrete differential evolution approach for SMTSTP-R

at position x with the job at position z. Algorithm 12 represents the pseudo-code of mutation

operator.

Algorithm 12: Pseudo-code for mutation
Input: One solution S
Output: The mutant of S

Mutation_Procedure(S)
begin

k1=choose a random number between 1 to n ;
k2=choose a random number between 1 to n ;
k3=choose a random number between 1 to n ;
// n is the number of jobs
Swap(Sk1 ,Sk2) ;
// Sk1 and Sk2 are the jobs at positions k1 and k2 in solution

S
Swap(Sk1 ,Sk3) ;
return S;

4.3.4 Local search

A series of local searches is used to improve the quality of solutions obtained by crossover/muta-

tion in the proposed approach. We have used four local search procedures which were presented

in [102]. The description of these are provided below:

It is possible that a job may have completed prior to the release date of succeeding job

in the schedule. This incurs an idle time for machine. Also, this can occur at several places

in a schedule. The first local search aims at eliminating these idle times so as to improve the

objective function value. This local search considers each idle slot once in the order in which

they occur in the schedule. Each job in a schedule is checked one-by-one and the job, say Jk,

causing idle time is determined. All the jobs succeeding Jk in the schedule can be checked

one-by-one to find out whether inserting any one of them in the position of Jk after moving Jk

and other affected jobs one position towards the end eliminates the idle time and improves the

objective function value. If Jk is the first job in the schedule, then there may not be any job with

release date zero, so instead of searching for a job which can eliminate this idle time altogether,

we search for a job which can decrease this idle time and improves the objective function value.

The first such job say Jl is inserted by moving the affected jobs one position towards the end,

and the next idle slot in the schedule is determined and considered for elimination. If there is

79

4. SINGLE MACHINE TOTAL STEPWISE TARDINESS PROBLEM WITH
RELEASE DATES

no such job in the schedule, then this idle slot is left unchanged and the next idle slot in the

schedule is determined and considered for elimination.

The second local search tries to minimize the idle time instead of eliminating it altogether.

If insertion of a job Jl in place of job under consideration Jk incurs the same idle time, but

reduces the objective function value then this insertion is also allowed in second local search.

0 2 4 6 8 10 12 14 16 17

p3 = 4 p1 = 2 p4 = 3 p5 = 3 p2 = 2

idle1 idle2

Time

(a) A schedule of five jobs {J3, J1, J4, J5, J2}

0 2 4 6 8 10 12 14 16

p3 = 4 p1 = 2 p4 = 3 p2 = 2 p5 = 3

idle1

Time

(b) After first local search the schedule of jobs {J3, J1, J4, J2, J5}

0 2 4 6 8 10 12 14 15

p3 = 4 p4 = 3 p1 = 2 p2 = 2 p5 = 3

idle1

Time

(c) After second local search the schedule of jobs {J3, J4, J1, J2, J5}

Figure 4.2: Illustrating first and second local searches

To illustrate these two local searches, let us consider an example with five jobs, viz.

{J1, J2, J3, J4, J5}. Assume the release dates and processing times of these jobs are {6, 9, 0, 5, 12}
and {2, 2, 4, 3, 3}, respectively. Figure 4.2 illustrates the effect of first and second local search

procedures on a schedule of these jobs, viz. {J3, J1, J4, J5, J2}. The completion time of J3

is 4 and the next job that is scheduled after J3 is J1. Since, the release date of J1 is 6, thus it

80

4.3 Hybrid discrete differential evolution approach for SMTSTP-R

results in an idle time (idle1) from time unit 4 to 6. Similarly, the given schedule has another

idle time (idle2) from 11 to 12 because of later release of J5 and earlier completion of J4. First

local search tries to eliminate idle1, but unable to eliminate this because of unavailability of

any job (other than J3) with release date less than equal to 4 time unit. The second idle time

(idle2) is eliminated by inserting J2 in place of J5. The second local search minimized the

first idle time (idle1) by inserting J4 in place of J1 and moving J1 and other affected jobs one

position towards the end. After applying first and second local search procedures on the original

schedule, the resulting schedule will be {J3, J4, J1, J2, J5}.
Adjacent pairwise interchange (API) local search is used iteratively in our third local search.

During each iteration, API local search considers each position except the last position one-by-

one starting at the first position in the schedule and swaps the job at the position, say i, under

consideration with the job at next position (i + 1) in the schedule whenever doing so either

decreases the objective function value or leaves the objective function value unchanged but the

completion time of the job at position (i + 1) after the swap is less than the same before the

swap. API local search is iteratively applied till there is no change in objective function value

and completion time of any job during an iteration.

The fourth local search is used only when the solution provided to it as input is better than

the best solution found so far. The reason for this policy is higher computational cost associated

with this local search. Like the previous local search, this local search is also used iteratively

and during each iteration considers each position except the last position one-by-one starting

at the first position in the schedule. This local search considers the jobs at positions after the

position under consideration one-by-one for insertion at position under consideration by shifting

the affected jobs one position towards the end. The first job that improves the objective function

value is inserted and the search continues with the first job which is yet to be considered for

insertion at the position under consideration. When all jobs that are at positions after the position

under consideration in the schedule have been tried, the next position in the schedule becomes

the position under consideration. This local search stops when there is no improvement in

objective function value during an iteration.

4.3.4.1 Perturbation procedure

The perturbation procedure is employed to prevent a solution from permanently getting trapped

in a local optima. A target solution is said to be improved if it is replaced by a new better trial

solution. The perturbation procedure is used on a target solution, if it does not improve for

81

4. SINGLE MACHINE TOTAL STEPWISE TARDINESS PROBLEM WITH
RELEASE DATES

consecutive λ generations. Perturbation procedure takes such a solution as input and produce a

perturbed solution from it by removing ρ jobs randomly from the solution and then reinserting

these ρ jobs one-by-one in the order in which these jobs are removed. To reinsert a job, all

possible insertion positions are tried and job is inserted at the best position. λ and ρ are two

parameters for the perturbation procedure whose values to be determined empirically. Algorithm

13 provides the pseudo-code of the perturbation procedure. Perturbed solution is subjected to

series of local searches and then it replaces the corresponding target solution in the population.

This perturbation procedure is not used for the instances having number of jobs equal to 500.

This procedure works well on instances with number of jobs less than equal to 200, but on

larger instances with number of jobs equal to 500, it does not perform well. The larger instances

require more iterations to converge, hence chances of getting trapped in local optima within

λ consecutive generations is very less. This could be the possible reason behind the poor

performance of perturbation procedure on larger instances.

Algorithm 13: Pseudo-code for Perturbation
Input: A solution S
Output: The perturbed solution S′

Perturb_Procedure(S)
begin

// Sr stores the jobs removed from S
for i=1 to ρ do

Remove one job Jj from S randomly without disturbing relative ordering of remaining
jobs;
Sr(i)← Jj ;

S′ ← S;
for i=1 to ρ do

S′ ← best permutation obtained by inserting job Sr(i) in all possible positions of S′;

return S′;

4.4 Computational results

The proposed HDDE approach has been implemented in C language. All computational

experiments are carried out on an Intel Core i5-7500 processor based system with 8GB of

RAM running at 3.40GHz under Ubuntu 18.04. The performance of our approach is tested

on the same instances as used in [101] and [102]. The test instances generated in [101]

82

4.4 Computational results

consists of two sets, viz. Set I & Set II. Set I consists of instances which contains the jobs n

∈ {10, 30, 50, 100, 200, 500} and number of due datesm ∈ {2, 3, 4, 9}. For each combination

of n and m, 90 instances were generated in [101]. The approaches are not compared for

instances with n = 10, as these instances are too small to assess the relative performance of

different approaches. Hence, total 1800 instances of Set 1 are used to evaluate the performance

of proposed approach with state-of-the-art approaches. Tseng et al. had not considered the

instances with n = 500 to evaluate their approaches in [101], and, hence these are also not

considered in [102]. Since the code of [102] is available with us, so we have again re-executed

the HABC and HGA in the same computational environment as available for our approach for

all instances including n = 500. Hence, the execution times reported for these two approaches

here in this chapter are less than those reported in [102]. Set II consists of instances with

number of jobs n ∈ {50, 100, 150, 200} and number of due dates m ∈ {3, 4, 9}, and, for each

combination of n and m, 80 instances were generated. Therefore, Set II consists of a total 960

instances.

The values for various parameters used in the proposed HDDE approach are determined

empirically after making numerous trial runs. These parameters are divided into two classes on

the basis of size of the instance. The former class (C1) consists of all instances with n ≤ 200

and the latter (C2) is for all instances with n = 500. For C1, the population size p is set to 100,

crossover probability pc = 1. The parameter θ in crossover is set to 0.5× n. The µ value for

applying local search on trial solution is set to 0.6. The parameter ρ in perturbation procedure is

equal to 5 for n < 100 and 15 otherwise. Analogously in C2, p = 200, pc = 0.6, θ = 0.2× n and

µ value is set to 0.4. The perturbation procedure is not used on instances with n =500, hence ρ

is not defined in C2.

If any target solution takes part in crossover for λ consecutive times and it does not get

replaced by a new trial solution then the perturbation procedure is used on this target solution.

The parameter λ here is set to 1000. The HDDE approach terminates if the best solution does not

improve for 2000 successive generations or the best solution does not show the improvement for

1000 successive generations in first 1500 iterations. It is pertinent to mention that one generation

contains p iterations, where p is the size of population. Our approach has been executed for 10

independent trials on each instance like the HGA and HABC approaches of [102].

83

4. SINGLE MACHINE TOTAL STEPWISE TARDINESS PROBLEM WITH
RELEASE DATES

Table 4.1: Results of HGA, HABC and HDDE on Set I instances

n × m HGA HABC HDDE

APD ART APD ART APD ART

BEST AVG (secs) BEST AVG (secs) BEST AVG (secs)
30 × 2 0.10 0.46 0.22 0.04 0.25 0.07 0.01 0.03 0.32
30 × 3 0.07 0.28 0.23 0.02 0.11 0.10 0.00 0.03 0.41
30 × 4 0.07 0.26 0.24 0.03 0.12 0.11 0.00 0.01 0.46
30 × 9 0.01 0.07 0.28 0.01 0.03 0.17 0.00 0.00 0.69
50 × 2 0.53 1.01 0.27 0.19 0.49 0.15 0.03 0.03 0.97
50 × 3 0.38 0.77 0.29 0.10 0.23 0.18 0.05 0.02 1.10
50 × 4 0.17 0.57 0.33 0.11 0.25 0.21 0.01 0.00 1.20
50 × 9 0.14 0.31 0.46 0.04 0.08 0.33 0.01 0.01 1.80
100 × 2 0.96 1.43 1.16 0.60 0.73 0.73 0.07 0.06 11.54
100 × 3 0.67 1.03 1.26 0.33 0.37 0.83 0.03 0.02 6.79
100 × 4 0.53 0.87 1.39 0.17 0.25 0.98 0.04 0.02 6.10
100 × 9 0.34 0.60 2.11 0.08 0.11 1.49 0.03 0.03 8.02
200 × 2 0.99 1.21 7.29 0.60 0.44 5.13 0.21 0.58 52.57
200 × 3 0.85 1.05 7.89 0.39 0.31 6.11 0.06 0.11 29.47
200 × 4 0.69 0.88 7.96 0.26 0.20 6.43 0.04 0.04 26.01
200 × 9 0.47 0.65 10.79 0.12 0.09 10.35 0.04 0.03 36.04
500 × 2 3.70 4.57 94.44 4.19 4.16 53.61 0.00 0.01 184.11
500 × 3 2.46 3.43 97.43 2.52 2.57 61.14 0.02 0.04 269.26
500 × 4 1.95 2.79 104.39 1.80 1.90 69.10 0.05 0.07 315.83
500 × 9 0.91 1.44 132.13 0.38 0.63 125.05 0.17 0.21 625.68
Overall 0.80 1.18 23.53 0.60 0.67 17.11 0.04 0.07 78.92

4.4.1 Comparison of our approach with previously proposed approaches

We have used the same criteria as used in [101, 102] to show the superiority of HDDE over

HGA and HABC. Table 4.1 and Table 4.2 present the comparison of approaches in terms of

average percentage deviation (APD). APD is calculated for best as well as average solution

quality obtained over 10 runs. APD is calculated by considering the solutions generated by three

approaches viz. HDDE, HABC, HGA. Assume the best solution over 10 runs by an approach is

SA and the overall best solution by considering all approaches is SBest. The APD is determined

as

APD = 100× (SA − SBest)
SBest

(4.3)

In case of average solution quality, SA is considered as average solution quality over 10

runs by an approach (A) and SBest is the overall best average value obtained by one of the three

approaches.

84

4.4 Computational results

Table 4.2: Results of HGA, HABC and HDDE on Set II instances

n × m HGA HABC HDDE

APD ART APD ART APD ART

BEST AVG (secs) BEST AVG (secs) BEST AVG (secs)
50 × 3 0.02 0.07 0.26 0.01 0.03 0.12 0.00 0.00 0.64
50 × 4 0.01 0.07 0.27 0.00 0.03 0.13 0.00 0.00 0.71
50 × 9 0.03 0.10 0.33 0.00 0.04 0.22 0.00 0.00 1.19
100 × 3 0.01 0.06 0.69 0.01 0.04 0.48 0.00 0.00 2.46
100 × 4 0.02 0.08 0.82 0.01 0.04 0.52 0.00 0.00 2.66
100 × 9 0.02 0.07 1.16 0.01 0.02 0.78 0.01 0.00 3.86
150 × 3 0.03 0.06 2.37 0.01 0.03 1.98 0.00 0.00 6.77
150 × 4 0.03 0.05 2.65 0.01 0.02 2.25 0.00 0.00 7.89
150 × 9 0.03 0.07 3.54 0.01 0.02 3.01 0.00 0.00 10.92
200 × 3 0.01 0.04 5.98 0.00 0.02 5.68 0.00 0.00 14.26
200 × 4 0.02 0.04 6.51 0.01 0.01 5.91 0.00 0.00 14.46
200 × 9 0.02 0.05 8.84 0.01 0.01 8.16 0.00 0.00 21.83
Overall 0.02 0.06 2.79 0.01 0.03 2.44 0.00 0.00 7.30

Table 4.3: Comparison of HDDE with HGA and HABC on Set I instances in terms of number of the
instances on which HDDE yielded better (<), equal (=) and worse (>) solutions

n × m HDDE </ = / >HGA HDDE </ = / >HABC

Best Avg Best Avg
< = > < = > < = > < = >

30 × 2 12 77 1 46 43 1 6 82 2 35 50 5
30 × 3 9 81 0 33 57 0 5 85 0 24 65 1
30 × 4 10 80 0 53 37 0 4 85 1 29 57 4
30 × 9 3 87 0 27 63 0 1 89 0 19 70 1
50 × 2 41 48 1 80 9 1 23 65 2 64 17 9
50 × 3 35 55 0 78 11 1 12 67 11 63 15 12
50 × 4 32 58 0 84 6 0 22 63 5 66 20 4
50 × 9 24 63 3 77 12 1 11 74 5 61 18 11
100 × 2 81 5 4 89 0 1 67 14 9 83 0 7
100 × 3 77 8 5 90 0 0 57 24 9 79 0 11
100 × 4 75 13 2 90 0 0 49 29 12 82 0 8
100 × 9 72 15 3 89 1 0 37 31 22 65 3 22
200 × 2 77 1 12 81 0 9 66 1 23 73 1 16
200 × 3 86 0 4 88 0 2 66 0 24 75 0 15
200 × 4 86 0 4 90 0 0 69 0 21 64 0 26
200 × 9 87 0 3 90 0 0 59 1 30 61 0 29
500 × 2 90 0 0 90 0 0 89 0 1 89 0 1
500 × 3 90 0 0 90 0 0 78 0 12 73 0 17
500 × 4 88 0 2 88 0 2 67 0 23 59 0 31
500 × 9 80 0 10 80 0 10 27 0 63 30 0 60

Overall 1155 591 54 1533 239 28 815 710 275 1194 316 290

85

4. SINGLE MACHINE TOTAL STEPWISE TARDINESS PROBLEM WITH
RELEASE DATES

Table 4.4: Comparison of HDDE with HGA and HABC on Set II instances in terms of number of the
instances on which HDDE yielded better (<), equal (=) and worse (>) solutions

n × m HDDE </ = / >HGA HDDE </ = / >HABC

Best Avg Best Avg
< = > < = > < = > < = >

50 × 3 4 76 0 38 42 0 2 78 0 26 54 0
50 × 4 5 75 0 39 41 0 0 80 0 30 49 1
50 × 9 13 67 0 57 23 0 3 77 0 40 36 4
100 × 3 7 73 0 42 38 0 10 70 0 36 41 3
100 × 4 13 67 0 52 28 0 8 72 0 44 33 3
100 × 9 22 55 3 71 9 0 10 65 5 57 16 7
150 × 3 17 63 0 50 30 0 13 65 2 47 32 1
150 × 4 15 64 1 50 30 0 13 67 0 43 36 1
150 × 9 30 48 2 62 17 1 15 59 6 50 20 10
200 × 3 14 66 0 48 32 0 8 72 0 47 31 2
200 × 4 19 61 0 44 35 1 12 65 3 43 34 3
200 × 9 34 45 1 68 10 2 16 57 7 56 10 14
Overall 193 760 7 621 335 4 110 827 23 519 392 49

In Table 4.1 and Table 4.2, each row reports the average APD value on a group of instances.

Each group in Table 4.1 and Table 4.2 contains 90 and 80 instances respectively, as discussed in

the first paragraph of this section. The ART is the average running time in seconds taken by

an approach considering all the runs on all the instances in the group. The last row (overall)

provides the summarized results over all instance groups. Table 4.3 and Table 4.4 provide the

comparison of HDDE with HABC and HGA in terms of number of instances on which the

solution obtained by HDDE is better (<), equal (=) and worse (>) on each group of instances.

This comparison is done for best and average solution values both. These four tables clearly

show the superiority of HDDE over HABC and HGA in terms of solution quality and the

performance gap widens in general as the instance size increases.

Table 4.1 and Table 4.3 show that the performance of HDDE approach is much better for

instances with n=500, hence the proposed approach is more suitable in comparison to HABC

and HGA for solving large size instances. However, the execution time of HDDE is higher than

the two previous approaches. This can be attributed to high computational cost associated with

the use of heuristics to generate initial population and the use of perturbation procedure in our

approach.

86

4.4 Computational results

4.4.2 Statistical significance of HDDE approach

To check whether the superior performance of HDDE approach over the state-of-the-art ap-

proaches namely, HABC and HGA is statistically significant, we have applied two tailed

Wilcoxon signed rank test [109]. For this test, the significance level (α) is set to 0.01 and

the critical value (zc) is 2.58. This is a pairwise test conducted by considering each instance’s

normalized best as well as average objective value, obtained by the three approaches. This test

takes two related samples and ranks the absolute differences in ascending order. Table 4.5 and

Table 4.6 present the results of this test for Set I for best solution quality and average solution

quality over 10 runs respectively. Likewise Table 4.7 and Table 4.8 present the results of this test

for Set II. In these tables, the second column NWT represents those instances where differing

objective values are yielded by the two compared approaches, and total represent the total

number of instances. The R+ is the total sum of ranks of the instances where performance of

HDDE approach is superior than the existing approach used in comparison (given in first column

in the table). Similarly, the R− is the total sum of ranks for the instances where performance of

HDDE approach is worse than the existing approach used in comparison. In Wilcoxon signed

rank test, the difference between performances of two approaches is significant if |Z| > |ZCri|.

These tables clearly demonstrate that the superior performance of HDDE in terms of best as well

as average objective values both is statistically significant in comparison with state-of-the-art

approaches for SMTSTP-R.

Table 4.5: Results of Wilcoxon signed rank test on Set I instances for best solution quality

HDDE
NWT/Total R+ R− |Z| ZCri Significant

HABC 1090/1800 478141 116454 17.396 2.580 Yes
HGA 1209/1800 712627 18818 28.569 2.580 Yes

Table 4.6: Results of Wilcoxon signed rank test on Set I instances for average solution quality

HDDE
NWT/Total R+ R− |Z| ZCri Significant

HABC 1484/1800 936062.5 165807.5 23.325 2.580 Yes
HGA 1561/1800 1212866.0 6275.0 33.869 2.580 Yes

87

4. SINGLE MACHINE TOTAL STEPWISE TARDINESS PROBLEM WITH
RELEASE DATES

Table 4.7: Results of Wilcoxon signed rank test on Set II instances for best solution quality

HDDE
NWT/Total R+ R− |Z| ZCri Significant

HABC 133/960 7282.5 1628.5 6.349 2.580 Yes
HGA 200/960 19532.5 567.5 11.570 2.580 Yes

Table 4.8: Results of Wilcoxon signed rank test on Set II instances for average solution quality

HDDE
NWT/Total R+ R− |Z| ZCri Significant

HABC 568/960 153743.5 7852.5 18.642 2.580 Yes
HGA 625/960 195401.0 224.0 21.610 2.580 Yes

4.5 Conclusions

In this chapter, we presented a discrete differential evolution based approach with local search

for single machine total stepwise tardiness problem with release dates (SMTSTP-R). It is an NP-

hard problem and it has resemblance with various real life problems particularly in transportation

domain. Our approach makes use of two constructive heuristics and the concept of opposition

based solution generation to create the initial population of solutions. A perturbation procedure

is used to evade from the local optima. The computational results on the benchmark instances

reveal the superiority of our proposed approach over the state-of-the-art approaches in terms of

solution quality.

88

Chapter 5

Rescue Unit Allocation and Scheduling
Problem

5.1 Introduction

This chapter addresses the rescue unit allocation and scheduling problem (RUASP) with fuzzy

processing times. The goal of RUASP is to efficiently assign and schedule the rescue units

to process the incidents in the event of a natural disaster. This problem can be considered as

a variant of the unrelated parallel-machine scheduling problem with sequence and machine-

dependent setup times. This problem have characteristics of permutation and grouping both.

A disaster is any event that results in tremendous damage, destruction or harm to humans.

Disasters can be geophysical (such as earthquakes, landslides), hydrological (floods, tsunamis)

or biological (such as the outbreak of an epidemic). Natural disaster involves all those natural

processes of the earth which creates an adverse effect on humans. Each year, it causes the

loss of millions of human life and a huge loss of assets. In [110], the authors highlighted

the difference between natural hazards and natural disasters. A natural hazard is defined as

a naturally occurring phenomenon that leads to loss of human life, destruction of properties

or environmental degradation. A natural disaster is the consequence of a natural hazard if the

available resources are unable to control the adverse effects of the hazard. In the event of any

natural disaster, the first task which needs to be performed is to initiate the immediate response

activities. The response activities include the coordination and management of resources to

implement disaster response plans. The well-planned usage of available resources such as rescue

units reduces the adverse impact of the disaster. Thus, efficient assignment and scheduling of

89

5. RESCUE UNIT ALLOCATION AND SCHEDULING PROBLEM

rescue units in the affected region is considered as a key issue in the response phase [111, 112].

This chapter is concerned with how to assign and schedule a given set of rescue units to

process the given set of incidents, such that the total weighted completion time of incidents

is minimized. The weights of incidents represent the severity levels of the incidents. This

problem is termed as rescue unit allocation and scheduling problem (RUASP) in the literature.

Wex et al. [113] introduced the RUASP and proved its NP-hardness. To address RUASP, they

proposed several heuristics and GRASP metaheuristic. The GRASP performed better only for

few instances, whereas the performance of heuristics (particularly Schedule7 heuristic) is better

for most of the instances.

In case of a natural disaster, the exact information such as the processing times of incidents

are not known in advance. Thus, considering fuzzy processing times to represent uncertain

information is more appropriate while modeling such problems. Cunha et al. [114] extended

the work of Wex et al. [113] by adding fuzzy processing times in the original RUASP model.

To address the new version of RUASP with fuzzy processing times, they presented the Biased

Random Key Genetic Algorithm (BRKGA) approach and compared the performance of BRKGA

with the best constructive heuristic (viz. Schedule7) proposed in [113].

Being a recently introduced problem, RUASP is a relatively under-explored problem as

only two metaheuristic approaches exist in literature. Hence, there is a lot of scope to explore

different metaheuristics for this problem. To address RUASP, we have presented a steady-state

grouping genetic algorithm approach. The crossover and mutation have been devised by keeping

the characteristics of the problem and the objective in mind. We have used a mixed strategy

of greedy and random heuristics to generate the initial solution. This combination provides a

balance of greediness and randomness and yields a set of solutions with superior quality along

with diversity. We have implemented two versions of our approach. The first version addresses

the RUASP with fuzzy processing times presented in [114]. While the second version seeks the

solution for the original version of RUASP and is used to compare the approaches presented

in [113]. The comparison of experimental results demonstrates that our proposed approach

provides better solutions, and also consumes very short execution times in comparison with

both the existing approaches for RUASP. We have conducted a robustness test and demonstrated

that our approach is more robust than the existing approach.

The subsequent sections of this chapter is structured as follows: Section 5.2 presents the

problem definition of RUASP, whereas Section 5.3 provides an overview of related work,

identifies the research gap and overview of related fuzzy theory. In Section 5.4, we have

90

5.2 Problem definition

proposed a steady-state grouping genetic algorithm approach for RUASP. The experimental

results and their analysis are presented in Section 5.5. Section 5.6 presents the brief summary of

the main findings of this study and outlines some concluding remarks.

5.2 Problem definition

This section presents the problem formulation of RUASP along with notational conventions used

in this chapter. We have used a similar formulation and notational conventions as presented in

[113]. The RUASP consists of a set R of m rescue units viz. R = {R1, R2, . . . , Rm} and a

set I of n incidents, viz. I = {i1, i2, . . . , in} . The incidents need to be processed and each

incident must be processed by exactly one rescue unit. A rescue unit cannot process more than

one incident at a time. Interruption of the ongoing processing of an incident is not allowed.

The number of rescue units is less than or equal to the number of incidents, i.e., m ≤ n. Such

a restriction depicts a realistic scenario in natural disasters. Each incident i ∈ {1, . . . , n} is

associated with an incident severity factor (ωi), which represents the level of destruction of

the incident i. The processing time of an incident i depends on the assigned rescue unit k and

it is represented as pki . Any rescue unit begins from the depot (starting point) to process the

very first incident and after processing the last incident, eventually returns to the depot. Two

fictitious incidents 0 and n+ 1 have been added here to represent the depot. These fictitious

incidents do not require any processing time i.e., pk0 = pkn+1 = 0. Since different incidents have

different severity factors, thus all rescue units cannot process all the incidents. A rescue unit

that is competent in processing the specific incident can only be assigned to that incident. If

a rescue unit k is sufficient to handle an incident i, then Capki is represented as 1, otherwise

0. Thus, each incident can be processed by only a subset of available rescue units. The travel

time between the depot and an incident or between two incidents varies as per the rescue unit

processing the incidents and also depends on the sequence of incidents. The travel time of a

rescue unit k to travel from incident i to another incident j is presented as tkij . This travel time

is also known as sequence and unit dependent setup times in literature. Two decision variables

viz., αkij and βkij have been used in the problem formulation. The αkij is 1, if the rescue unit k

processes the incident i just before incident j, otherwise it is 0. Similarly, βkij is set as 1, if the

rescue unit k processes the incident i (at any time) before incident j, or else assigned as 0. Here,

i, j ∈ {0,1,. . . ,n} and k ∈ {1,2,. . . ,m}. The completion time (Ci) of an incident i is the ending

time at which some rescue unit finishes the processing of the incident. The objective of RUASP

91

5. RESCUE UNIT ALLOCATION AND SCHEDULING PROBLEM

is to find the schedules and assignment of m rescue units to incidents that minimizes the total

weighted completion time of incidents:

min
n∑
j=1

ωjCj (5.1)

where Cj is the completion time of an incident j. In [113], the authors have presented the

binary quadratic formulation of the model. Based on the formulation, the mathematical model

of RUASP can be written as:

min
αkij .β

k
ij

n∑
j=1

(
ωj

n∑
i=0

m∑
k=1

[
pki β

k
ij +

(
pkj + tkij

)
αkij + βkij

(n∑
l=0

αklit
k
li

)]
(5.2)

subjected to the constraints:

n∑
i=0

m∑
k=1

αkij = 1, j = 1, . . . , n, (C1)

n+1∑
j=1

m∑
k=1

αkij = 1, i = 1, . . . , n, (C2)

n+1∑
j=1

αk0j = 1, k = 1, . . . ,m, (C3)

n∑
i=0

αki(n+1) = 1, k = 1, . . . ,m, (C4)

βkil + βklj − 1 ≤ βkij , i = 0, . . . , n; j = 1, . . . , n+ 1; k = 1, . . . ,m; l = 1, . . . , n,

(C5)

n∑
i=0

αkil =
n+1∑
j=1

αklj , l = 1, . . . , n; k = 1, . . . ,m, (C6)

αkij ≤ βkij , i = 0, . . . , n; j = 1, . . . , n+ 1; k = 1, . . . ,m, (C7)

βkii, i = 0, . . . , n+ 1; k = 1, . . . ,m, (C8)

92

5.2 Problem definition

βkij ≤ capki, i = 1, . . . , n; j = 1, . . . , n+ 1; k = 1, . . . ,m, (C9)

n+1∑
l=1

αkil ≥ βkij , i = 0, . . . , n; j = 1, . . . , n+ 1; k = 1, . . . ,m, (C10)

n∑
l=0

αklj ≥ βkij , i = 0, . . . , n; j = 1, . . . , n+ 1; k = 1, . . . ,m, (C11)

αkij , β
k
ij ∈ {0, 1}, i = 0, . . . , n; j = 1, . . . , n+ 1; k = 1, . . . ,m, (C12)

The first constraint (C1) guarantees that only one incident is processed before any other

incident i. Similarly, constraint C2 assures that exactly one incident is processed after any

incident i. C3 makes sure that each rescue unit begins from the depot. Furthermore, constraint

C4 ensures the return of the rescue unit to the depot after processing the last incident. The

C5 constraint forces the transitivity property in the sequence of incidents, whereas C6 ensures

that each incident i must have some incident, including the depot, as immediate successor and

predecessor. The equivalence relationship between an immediate predecessor and a general

predecessor is established by constraint C7. Condition C8 restricts the reflexive characteristic of

any incident as a predecessor. Constraint C9 prohibits the assignment of an incapable rescue

unit to an incident. The constraints C10 and C11 ensure that the decision variable βkij is assigned

as 0 in case the incident i is not handled before j by rescue unit k. The final condition (C12)

represents the model as the binary program.

RUASP can be considered as a problem related to both routing and scheduling. It can

be modeled as modification of multiple Traveling Salesman Problem (mTSP) as well as the

parallel-machine scheduling problem with unrelated machines, non-batch sequence-dependent

setup times and a weighted sum of completion times as the objective function [113]. To illustrate

RUASP, let us consider an example consisting of four rescue units and ten incidents, i.e., m = 4

and n = 10 such that R = {R1, R2, R3, R4} and I = {i1, i2, i3, i4, i5, i6, i7, i8, i9, i10}
with their respective severity factor {2,5,4,2,5,3,3,5,1,4}. The incident i0 represents the depot.

Table 5.1 represents the processing time matrix, where the rows correspond to rescue units and

93

5. RESCUE UNIT ALLOCATION AND SCHEDULING PROBLEM

the columns are presented as incidents. Each cell provides the processing time of the specific

incident by the corresponding rescue unit. For example first cell contains the value 3, which

shows that rescue unit R1 consumes 3 seconds to process the first incident i1. Processing time

presented as the negative value (-1) depicts the incapability of the corresponding rescue unit to

process that incident.

Table 5.1: Processing time matrix for the illustrative example.

i1 i2 i3 i4 i5 i6 i7 i8 i9 i10

R1 3 3 -1 3 6 3 -1 4 -1 6
R2 5 -1 4 -1 -1 3 2 -1 5 9
R3 -1 4 -1 7 4 -1 3 -1 -1 5
R4 -1 -1 2 -1 4 -1 -1 7 6 8

For each rescue unit, the travel time from the depot to the location of the first incident is set

as 1 unit. The travel time between two incidents ix and iy is considered as 2, if x < y, otherwise

assigned as 3. The consideration of only three kinds of values as travel time is done only for

ease of understanding. More formally, the travel time is assumed as:

tix,iy =


1, if x=0, i.e., ix is depot,
2, if x<y,
3, otherwise.

Figure 5.1 presents two solutions A and B of the illustrative example. The assignment and

scheduling of incidents in the solution A is done as R1 = {i5, i2, i6}, R2 = {i3, i7, i1}, R3 =

{i10, i4} and R4 = {i8, i9}. The total weighted completion time of incidents (ωiCi) in

the solution A is 347. While, the solution B has the assignment and scheduling as R1 =

{i5, i6, i4}, R2 = {i3, i7, i1}, R3 = {i2, i10} and R4 = {i8, i9}, which incurs 311 as the

total weighted completion time of incidents. Thus, solution B presents the better assignment and

scheduling of incidents, as compared to solution A. Both the solutions differ in the assignment

and scheduling of rescue units R1 and R3 only, while R2 and R4 in both solutions contain the

same incidents in the same sequence.

5.3 Related work and existing approaches for RUASP

In this section, we first present the related work and then review the previously proposed

approaches including the state-of-the-art approach for RUASP presented in [114]. We also

94

5.3 Related work and existing approaches for RUASP

0 2 4 6 8 10 12 14 16 18

R4

R3

R2

R1

t40,8 = 1 ω8 = 5, p4
8 = 7 t48,9 = 2 ω9 = 1, p4

9 = 6

Incident i8 Incident i9

t30,10 = 1 ω10 = 4, p3
10 = 5 t310,4 = 3 ω4 = 2, p3

4 = 7

Incident i10 Incident i4

t20,3 = 1 ω3 = 4, p2
3 = 4 t23,7 = 2 ω7 = 3, p2

7 = 2 t27,1 = 3 ω1 = 2, p2
1 = 5

Incident i3 Incident i7 Incident i1

t10,5 = 1 ω5 = 5, p1
5 = 6 t15,2 = 3 ω2 = 5, p1

2 = 3 t12,6 = 2 ω6 = 3, p1
6 = 3

Incident i5 Incident i2 Incident i6

Time

R
es

cu
e

un
its

(a) Solution A

0 2 4 6 8 10 12 14 16 18

R4

R3

R2

R1

t40,8 = 1 ω8 = 5, p4
8 = 7 t48,9 = 2 ω9 = 1, p4

9 = 6

Incident i8 Incident i9

t30,2 = 1 ω2 = 5, p3
2 = 4 t32,10 = 2 ω10 = 4, p3

10 = 5

Incident i2 Incident i10

t20,3 = 1 ω3 = 4, p2
3 = 4 t23,7 = 2 ω7 = 3, p2

7 = 2 t27,1 = 3 ω1 = 2, p2
1 = 5

Incident i3 Incident i7 Incident i1

t10,5 = 1 ω5 = 5, p1
5 = 6 t15,6 = 2 ω6 = 3, p1

6 = 3 t16,4 = 3 ω4 = 2, p1
4 = 3

Incident i5 Incident i6 Incident i4

Time

R
es

cu
e

un
its

(b) Solution B

Figure 5.1: Two solutions of the illustrative example

discuss the research gap and elaborate the motivation for our proposed approach. In addition,

we present a brief overview of related fuzzy theory used in RUASP presented in [114].

5.3.1 Related work

The activities in disaster management are classified into three phases [115, 116]. The first phase

is the preparation phase that accounts for the time before the disaster. This phase involves

95

5. RESCUE UNIT ALLOCATION AND SCHEDULING PROBLEM

the preparation of plans, training the personnel, early forecast and organization of essential

services. The second phase is the response phase. It deals with the activities required to perform

immediately after the occurrence of the disaster. It primarily includes the coordination and

management of resources to implement disaster response plans to mitigate the effects of the

disaster. This phase is very crucial as any delay in response may result in more life/property

loss. The last phase is the recovery phase which includes the restoration of the affected area

back to some degree of normalcy [117, 118, 119, 120, 121, 122]. Some literature considers

the three phases as a life cycle [123]. The decision making process used during response

phase follows various methodology such as, approaches from applied statistics and probability

theory [124, 125, 126, 127, 128], usage of optimization models [129], approaches based on

computational intelligence [130, 131] and so on. Some models use empirical investigation

based on past decision-making conclusions [132], whereas the research presented in [124, 133]

considered the centralized decision-making principles. Literature on disaster management has

established the fact that the proper assignments and schedules result in the minimization of

loss. The authors proposed a mathematical programming model in [134], which considers the

centralized coordination for the assignments and scheduling of distributed rescue units. At this

time it was observed that all of the existing models used in emergency operations centers assume

the fixed-length time to process all incidents by any rescue unit and does not account for the fact

that the incidents may have a different severity level. Wex et al. suggested mathematical models

in [135, 136], which address this weakness in the existing models for decision support process

in disastrous events.

5.3.2 Analysis of existing methods for RUASP

As already mentioned in Section 5.1, the Rescue Unit Allocation and Scheduling Problem

(RUASP) was introduced by Wex et al. [113]. They gathered the information related to the

earthquake and tsunami that occurred in Japan in 2011 from the German Federal Agency for

Technical Relief (THW) and developed the model related to the decision support provided by

the emergency operation centres during the response phase in case of natural disaster. The

proposed model incorporates the fact that the incidents may have different severity levels and

thus addressed the shortcomings in the existing models of that time. They have also generated

the test instances based on the actual data collected from the THW. These instances share high

similarities to the real-world scenario, for example, a disastrous event may affect an entire region

and all incidents in that region need not have the same severity level. Based on the severity of

96

5.3 Related work and existing approaches for RUASP

the incident and the capacity of the rescue unit, the rescue units may take different processing

times to handle the incident. Travel time of rescue units from one location to another need

not be the same, as rescue units may differ in size and traveling speed. These points made the

proposed model resemble with the real-world scenario when a disaster strikes.

The authors of [113] developed a large set of heuristics to validate the proposed test instances

for RUASP in [113]. To be specific, they have proposed eight construction heuristics and five

improvement heuristics. Each construction heuristic is combined with an improvement heuristic.

Consequently, the set contains many compositions of heuristics. They also proposed GRASP

metaheuristic based approach for RUASP. GRASP is a well-known multi-start metaheuristic

[137] in which each generation consists of two phases. The first one is the construction phase,

while the other is the local search. The GRASP metaheuristic proposed here uses the construction

heuristics in the first phase and improvement heuristics as the local search in the second phase.

To address RUASP, two versions were presented in [113], viz., the classical version which

is the composition of heuristics only and the other is GRASP which uses these compositions

of heuristics as its component. Although the classical version uses the same composition of

construction and improvement heuristics as GRASP, the analysis of the results reveals that the

performance of GRASP is better only on few instances in comparison with the classical version,

i.e., the classical version produced better results on most instances. The performance of these

heuristics varies from one instance to another. The Schedule7 heuristic (one of the construction

heuristics) performed better on all sets of instances.

If a disastrous event occurs, the precise information related to the incidents is generally not

known apriori. Thus, considering uncertain information can add more relevance for the models

developed for the decision making by emergency operations centres during the response phase

of the disaster. Cunha et al. [114] extended the work presented in [113] by adding uncertainty

to the incidents’ processing times. They used fuzzy set theory for adding the uncertainty in the

processing time. To address this fuzzy version of RUASP, authors presented the Biased Random

Key Genetic Algorithm (BRKGA) approach and compared the performance of BRKGA with the

best constructive heuristic (Schedule7) proposed in [113]. BRKGA performed better on all the

sets of instances, except one of the sets, where Schedule7 performed better.

We investigated the two metaheuristics viz., GRASP [113] and BRKGA [114] proposed for

RUASP and observed that none of them is considering the characteristics of the problem and its

objective. GRASP is one among the highly effective metaheuristics and has been used to solve

a wide range of combinatorial optimization problems. Typically, the second phase of GRASP

97

5. RESCUE UNIT ALLOCATION AND SCHEDULING PROBLEM

metaheuristic (also known as local search phase) is very crucial for the generation of good

quality solutions [138]. In [113], the second phase of GRASP uses k-opt moves and multi-unit k

opt moves, which are generic operations designed for traveling salesman problem and multiple

traveling salesman problems, and, do not exploit the characteristics of the problem at hand

and its objective. As a consequence, the GRASP approach in [113] does not perform well on

most of the instances. The BRKGA approach presented in [114] also uses generic crossover

and mutation operator and does not take into account the characteristics of the problem and

its objective. The GRASP approach proposed by Wex et al. [113] takes 25.89 minutes for the

largest instance. RUASP deals with the allocation and scheduling of rescue units during the

response phase of a disastrous event. Thus, the running time of an algorithm is an important

factor.

These factors served as the motivation to develop a new metaheuristic approach based on

steady-state grouping genetic algorithm. The crossover and mutation operators used in our

approach consider the problem-specific knowledge. Our proposed approach uses a combination

of greedy and random heuristics to generate initial solutions. Such a combination of heuristics

provides not only solutions of superior quality, but also diverse solutions, thereby facilitating

the faster convergence of our approach to optimal/near optimal solutions. Thus, our proposed

approach is fast and able to find superior quality solutions for all instances.

Although our proposed approach also based on genetic algorithm, still there is no similarity

between the proposed approach and BRKGA presented in [114]. The BRKGA uses an entirely

different encoding scheme for solution representation in comparison with the solution encoding

of our approach. Additionally, our approach uses a steady-state model, where each generation

produces one offspring and the newly generated offspring replaces the solution with the worst

fitness in the population. On the other hand, BRKGA follows generational model, where each

generation produces an entirely new set of solutions as population. The crossover and mutation

used in BRKGA are also generic operators and do not exploit the characteristics of the problem

and its objective.

5.3.3 Overview of related fuzzy theory

The goal of this section is to familiarize the concepts of fuzzy theory that are used in this

problem. The RUASP addressed in this chapter contains fuzzy processing time, defined as a

triangular fuzzy number (TFN). A triangular fuzzy number (TFN) is represented with three

98

5.3 Related work and existing approaches for RUASP

points as: Ã = (a, b, c). This representation is interpreted as the membership function µÃ(x)

which can be described as :

µÃ(x) =


x−a
b−a , if a ≤ x ≤ b,
x−c
b−c , if b ≤ x ≤ c,
0, elsewhere.

Figure 5.2 is the graphical representation of a TFN, Ã = (a, b, c).

x

µÃ(x)

0

1

a b c

Figure 5.2: Graphical representation of a TFN Ã = (a, b, c)

The sum of two TFNs viz. Ã1 = (a1, b1, c1) and Ã2 = (a2, b2, c2) is computed as:

Ã1 + Ã2 = (a1 + a2, b1 + b2, c1 + c2)

The product between a scalar (λ) and a TFN Ã = (a, b, c) can be determined as:

λÃ = (λa, λb, λc)

Ranking two fuzzy numbers: In [114], Cunha et al. have used “signed distance” method

[139], to rank two fuzzy numbers. The signed distance [140, 141] of a TFN Ã = (a, b, c) from

the y-axis is computed as follows:

d(Ã) =
1

4
(a+ 2b+ c)

Based on this signed distance value, the ranking [140] of two TFNs Ã1 and Ã2 is determined

as follows:
Ã1 ≺ Ã2 if d(Ã1) < d(Ã2)

Ã1 = Ã2 if d(Ã1) = d(Ã2)

Ã1 � Ã2 if d(Ã1) > d(Ã2)

99

5. RESCUE UNIT ALLOCATION AND SCHEDULING PROBLEM

Defuzzification approach: Defuzzification is the method of conversion of a fuzzy value into

its corresponding crisp value. The authors in [114] have used centroid method to obtain a

defuzzified value corresponding to a fuzzy number. The defuzzified value of a TFN, Ã = (a, b, c)

is denoted by δ(Ã) and computed by the following formula:

δ(Ã) = (a+ b+ c)/3

5.4 Steady-state grouping genetic algorithm for RUASP

We have developed a grouping genetic algorithm approach for the RUASP, which uses the

steady-state population replacement model [34]. In the steady-state model, each generation

produces one offspring with the help of crossover and mutation. The fitness of offspring and

worst member in the population is compared and if the offspring is better and unique with

respect to all the current population members then it is added into the population in place

of the worst member. The grouping genetic algorithm was presented by Falkenauer [40, 41]

for grouping problems, i.e., problems where the objective is to divide a given set of items

into various disjoint groups under some constraints so that a given cost function is optimized.

The grouping genetic algorithm takes into account the specific structure of grouping problems

and consequently, it performs better for grouping problems. Evidently, RUASP is a grouping

problem. In addition, it has permutation aspect too. We have designed the crossover and

mutation operators by considering the characteristics of the problem as well as the objective.

The crossover operator considers both the grouping as well as permutation aspects. On the

other hand, our mutation operator is mainly focused on the permutation aspect. Thus, the use of

our proposed operators in the grouping genetic algorithm framework can manage the grouping

aspect and the permutation aspect both. As a result, our proposed approach performs better than

the state-of-the-art approaches available in the literature. Our proposed approach is inspired

by the steady-state grouping genetic approach presented in [42]. Henceforth, the proposed

approach will be referred to as SSGGAFP in this chapter. Our SSGGAFP approach uses fuzzy

numbers arithmetic discussed in Section 5.3.3. We have also addressed the original version of

RUASP presented by Wex et al. in [113] and it will be referred to as SSGGACP, hereafter. The

use of fuzzy numbers arithmetic is the only difference between SSGGAFP and SSGGACP.

The process commences with initial population generation, which makes use of several

heuristics to create the initial solutions. The idea behind using these heuristics is to obtain a

100

5.4 Steady-state grouping genetic algorithm for RUASP

population that has a mixture of some better quality initial solutions along with diverse solutions.

In each generation, the SSGGAFP approach selects two parents using binary tournament

selection (BTS). The probability used in BTS for selection of parent is assigned with a value

pbts. The crossover operator takes two parents as input and produces one offspring. The mutation

is performed on this offspring and a mutant solution is obtained. The offspring and mutant

are evaluated in terms of fitness and the better one is selected as child solution. The fitness

of the child solution is compared with the worst solution in the population and it replaces the

worst solution if it is better. Also, the replacement is done only if the child solution is unique in

population. A solution is considered unique if it is not identical to any solution in the population.

The same process is repeated again and again as long as the termination condition remains

unsatisfied. It is worth mentioning that the crossover operator will produce the exact copy of the

parent in case both parents are the identical. Thus, if BTS yields the same population member

as two parents, then only the mutation operator is used and the crossover phase is skipped. The

pseudo-code of the proposed SSGGAFP approach is provided in Algorithm 17. The other salient

features of our SSGGAFP approach are provided in subsequent subsections.

5.4.1 Solution encoding

In RUASP, a solution is presented as a set of m rescue units, where each unit contains the

sequence of incidents processed by that unit. In other words, if kth unit contains |Rk | incidents,

then the unit Rk contains a linear permutation of |Rk | incidents. The positions in a linear

permutation define the order of processing of the incident by the rescue unit. Figure 5.3 shows

the solution representation, by assuming an example with 11 incidents (n=11) and 4 rescue units

(m=4). The first incident processed by rescue unit 1 is 5 and the second incident is 2 and the

last incident is 6. Similarly, other rescue units process the incidents in the same sequence as

demonstrated in Figure 5.3.

Rescue unit 4 8 11 9

Rescue unit 3 10 4

Rescue unit 2 3 7 1

Rescue unit 1 5 2 6

Sequence of incidents

Figure 5.3: Solution representation illustration

101

5. RESCUE UNIT ALLOCATION AND SCHEDULING PROBLEM

5.4.2 Initial population generation

The initial population is generated by using four heuristics. The first heuristic is taken from

[113], whereas the others are devised by us considering the characteristics of the problem. A

detailed description of these heuristics is presented below.

1. Schedule7 heuristic: In [113], the authors presented several constructive heuristics and

one of those performed very well for generating better quality solutions for RUASP. The

authors named this heuristic as SCHED7 in [113]. The heuristic begins with an empty

solution of m rescue units. The process iterates for n times and in each iteration, one

incident is selected and allocated to that rescue unit which incurs the least value of the

ratio of completion time to the severity level. Three variables namely, CTk denotes the

current completion time of unit k, θk to store the last incident processed by unit k and

σk represents the sequence of incidents processed by unit k, are used in this heuristic.

Algorithm 14 presents the pseudo-code of Schedule7 heuristic.

2. Greedy heuristic: Our greedy heuristic is inspired from the greedy heuristic presented in

[113]. First, it sorts the incidents in non-increasing order as per their severity levels. The

incident whose severity level is highest should be processed first, this is the idea behind

sorting. It begins with an empty solution and creates a complete solution iteratively. In

each iteration, it selects one incident from the sorted sequence and assigned it to the rescue

unit which has the least value of completion time. It differs from the greedy heuristic of

[113] only in the allocation of the rescue unit. The greedy heuristic of [113] selects the

unit with lowest start time for the incident i. The start time of the incident i is calculated

by adding the previous completion time of unit (k) with the travel (setup) time taken from

last incident (θk) to the incident i. On the other hand, our greedy heuristic selects the unit

with lowest completion time for the incident i by considering the processing time also

along with travel time (i.e., the current completion time of the rescue unit). The allocation

of rescue unit to an incident i based on lowest start time may result in an assignment of

that rescue unit whose processing time is more and thus results in later completion time,

which will eventually affect the completion time of further incidents processed by this

rescue unit. Thus, it is important to consider the completion time of the rescue unit rather

102

5.4 Steady-state grouping genetic algorithm for RUASP

than start time. Algorithm 15 presents the pseudo-code of the greedy heuristic.

Algorithm 14: Pseudo-code of Schedule7 heuristic [113]
// The completion time (CTk) and the sequence of incidents allocated of kth unit

initially set as zero, i.e.,

CTk ← 0, θk ← 0 and σk ← φ ∀ k ∈ K such that K = {1, 2, . . . ,m};
// I is initialized as the set of incidents

I ← {1, 2, . . . , n};
unassigned_incd← n;
U(Cap,i)← {k ∈K | Capki = 1} ∀ i ∈ I;
// U(Cap,i) represents the set of those rescue units which is capable of

processing the incident i.

while (unassigned_incd > 0) do
1. Select incident i∗ ∈ I and unit k∗ ∈ U(Cap,i) which has minimal ratio (ρ) of completion time to the severity
level.

i∗, k∗← arg min
i∈I,k∈U(Cap,i)

(
CTk+S

k
θk,i

+pki

wi

)
;

2. Update: I ← I \ {i∗}, CTk∗ ← CTk∗ + Sk
∗
θk∗ ,i

∗ + pk
∗
i∗ ,

θk∗ ← i∗, σk∗ ← σk∗ ∪ {i∗}
3. unassigned_incd← (unassigned_incd − 1);

return σ← (σ1, σ2, . . . , σm);

Algorithm 15: Pseudo-code of Greedy heuristic
// Sorts incidents in non-increasing order of severity. Let the sequence be I.

I ← {iι1 , iι2 , . . . , iιn} such that wι1 ≥ wι2 ≥ · · · ≥ wιn ;
// The completion time (CTk) and the sequence of incidents allocated of kth unit

initially set as zero, i.e.,

CTk ← 0, θk ← 0 and σk ← φ ∀ k ∈ K such that K = {1, 2, . . . ,m};

for (l = 1 : n) do
1. Choose incident i← l where i ∈ I;
2. UCap← {k ∈K | Capki = 1};
// UCap represents the set of those rescue units which is capable of

processing the incident i.

3. k∗← arg min
k∈UCap

(CTk + Skθk,i
+ pki);

// k∗ is the unit which incurs least value of completion time for i.

4. Update: I ← I \ {i}, CTk∗ ← CTk∗ + Sk
∗
θk∗ ,i

+ pk
∗
i ,

θk∗ ← i, σk∗ ← σk∗ ∪ {i}

return σ← (σ1, σ2, . . . , σm);

3. Greedy_Rand heuristic: It differs from the greedy heuristic only in one aspect. Here,

the selection of incident for assignment in partial solution is done by selecting a random

position in between [0,wg], from the current position in the sorted sequence of incidents.

For example, assume there are seven incidents sorted in descending order as per the

severity level, viz. {i5, i2, i4, i1, i7, i3, i6} and let the value ofwg is set as 4. In beginning,

the current position will be the first position. A random number∈ [0, 4] is chosen. Assume

103

5. RESCUE UNIT ALLOCATION AND SCHEDULING PROBLEM

the random number is 2. The customer after two positions from the current position which

is i4 is selected and assigned to the rescue unit which has the least value of completion

time. After assignment, the sequence is updated by shifting all remaining incidents from

the current position to the selected position and inserting the selected incident at the current

position. The current position will now be shifted to the next position. For example,

after selection of incident i4, the updated sequence will be {i4, i5, i2, i1, i7, i3, i6} and

the current position will be at incident i5.

4. Random_Sol heuristic: It begins with an empty solution of m rescue units. A complete

solution is built by using n iterations. In each iteration, a random incident is selected.

For the selected incident a pool of rescue units that can process the selected incident is

determined. Then, a random rescue unit is selected from this pool and the incident is

assigned to this unit. This heuristic produces a purely random solution.

A population of size p is generated by using the initial population generation method. The

generated solutions can be classified into two categories. This classification is done based

on the quality of the solutions generated by the particular heuristic. Schedule7 heuristic

and Greedy heuristic generate solutions by following a purely greedy approach. On the

other hand, Greedy_Rand heuristic follows a greedy approach with some randomness.

Hence, they generate superior quality initial solutions. The better quality initial solutions

may result in faster convergence of the approach to optimal/near optimal solutions. This is

the idea behind using better quality initial solutions in the population. The first ph solutions

are generated by these three heuristics. Schedule7 and Greedy heuristic being purely

greedy generates only a single solution. Thus, the first two solutions are generated by

these two heuristics and the remaining (ph − 2) solutions are generated by Greedy_Rand

heuristic. To generate the remaining solutions, we have used Random_Sol heuristic, which

generates purely random solutions. The sole purpose of using Random_Sol heuristic is to

add diversity to the population. Uniqueness is ensured for each generated solution, before

adding it into the population. In small size instances, we have observed that Greedy_Rand

heuristic generates sometimes non-unique solutions also. So whenever Greedy_Rand

heuristic generates a non-unique solution, the Random_Sol heuristic is used to generate

a new solution. Thus, the first ph solutions may contain some purely random solutions

also. The use of Random_Sol heuristic in such a scenario provides two advantages. First,

the solution generated by this heuristic adds diversity to the population. Second, the

104

5.4 Steady-state grouping genetic algorithm for RUASP

Greedy_Rand heuristic may take a large number of attempts to generate ph-2 unique

solutions, thus it is advantageous to generate some random solutions in lesser amount of

time. Algorithm 16 presents the pseudo-code for initial population generation and shows

how these heuristics are utilized for generating initial population.

Algorithm 16: Pseudo-code of Initial population generation
Input: p (population size), ph (solutions generated by greedy heuristic)
Output: BESTsol

// BESTsol is the best solution in population.
// u01 is a uniform variate between [0,1).
pi← 1;
Solpi ← Schedule7 ();

// Solpi is the solution generated by Scedule7 Heuristic.
pi← pi + 1;
Solpi ← Greedy Heuristic();

// Solpi is the solution generated by Greedy Heuristic.
if (Solpi is unique) then

pi← pi + 1;

while (pi < p) do
if (pi < ph) then

Solpi ← Greedy_Rand Heuristic();
if (Solpi is unique) then

pi← pi + 1;

else
Solpi ← Random_Sol Heuristic();
if (Solpi is unique) then

pi← pi + 1;

else
Solpi ← Random_Sol Heuristic();
if (Solpi is unique) then

pi← pi + 1;

return (BESTsol);

5.4.3 Crossover operator

The crossover operator used in our proposed SSGGAFP approach is devised by considering the

characteristics of the problem as well as the objective. Our crossover operator is inspired by the

crossover operators presented in [42, 142]. It takes two parents as input and produces offspring

in two stages.

The first stage begins with an empty solution and the offspring is built by following an

iterative approach. During each iteration, the first parent is selected with probability pu and with

remaining probability the second parent is selected. The most efficient rescue unit in the selected

parent is found. The objective is to minimize the total weighted completion time. If the rescue

105

5. RESCUE UNIT ALLOCATION AND SCHEDULING PROBLEM

unit can process more incidents with less completion time, then selection of such rescue units

may provide a solution having minimum total weighted completion time. Hence, the rescue

unit having the minimum ratio of the total weighted completion time per incident in the unit is

defined as the most efficient rescue unit. The probability pu is calculated as f(p2)
f(p1)+f(p2) , where

f(p1) and f(p2) are the fitnesses of the first and second parents, respectively. Such a scheme

will provide more opportunities to better one among them. The most efficient rescue unit is

copied in offspring. This rescue unit is discounted from both the parents and is not considered

for the next iteration. It is also possible that the incidents present in this unit may belong to

different units in another parent. Hence, the incidents present in the selected rescue unit are

removed from their respective units in the other parent one-by-one. After removing an incident,

all the subsequent incidents on the affected rescue unit in another parent are shifted one place

backwards. The entire process is repeated for m times so that a partial solution having m rescue

units is obtained. It is pertinent to mention that in a solution not all the rescue units need to be

processing some incidents. It is also possible that only some of the rescue units can process all

incidents by incurring a less objective cost.

Clearly, at the end of the first stage, some incidents may be left unassigned and should be

assigned to some rescue units of the partial solution generated by the first stage. The second stage

is same as Greedy_Rand heuristic except for two differences. First, we have used parameter

wc in place of parameter wg. Furthermore, instead of considering the least value of completion

time for the assignment of an incident, we have considered here the least value of weighted

completion time. Except for these two differences, the second stage follows the same steps

as Greedy_Rand heuristic. In Greedy_Rand heuristic, the complete solution was built from

empty solution and already the procedure starts with the sorted sequence of incidents as per

their severity level. Thus, considering weighted completion time in place of completion time

will not produce any major impact. But, in the second stage of crossover the scenario is quite

different. Here, we already have a partial solution generated by the first stage, so the sorted

sequence of remaining unassigned incidents need not have an equal interval of severity level,

since some incidents are already assigned in the first stage. Thus in the second stage, it is better

to consider the weighted completion time of the incident for assignment at some position in

partial solution obtained by the first stage of the crossover.

106

5.4 Steady-state grouping genetic algorithm for RUASP

Algorithm 17: SSGGA framework for RUASP
Input: p (population size), RUASP instance, n (number of incidents), m (number of rescue units)
Output: Best solution found so far
// u01 represents a random value between [0,1).
BESTsol← Initial population generation(p); // BESTsol is the best solution in population.
Itr← 0; // Itr represents generations
while (Itr < ITRmax) do

Par1← BTS(p); // Select parents using binary tournament selection
Par2← BTS(p);

offspring← Crossover(Par1,Par2);

if (u01 > 0.75) then
mutant←MUT1(offspring);

else
mutant←MUT2(offspring);

Sol← Betterobj (offspring,mutant);
// Sol is the solution among offspring and mutant whose objective value is

better

if (Sol is unique) and (better than worst solution) then
// worst solution is the solution with poorest objective value in the

population
Replace worst solution with Sol;

if (Sol is better than BESTsol) then
BESTsol← Sol;

Itr← Itr + 1;

return (BESTsol) ;

5.4.4 Mutation operator

The mutation operator proposed here follows the delete and re-insert strategy and consists of

two stages. The first stage selects some incidents and deletes them from the solution. The

complete solution is again recreated by following a greedy approach during the second stage.

Such a strategy provides a balance between greediness and randomness. In literature, this kind

of strategy is successfully used in various optimization problems, especially related to grouping

and scheduling domains, e.g. [83, 88].

Two versions of the mutation operator are used in a mutually exclusive manner. The first

version is used with probability pm and it randomly selects one rescue unit. Some incidents ∈
[1,nsel − 1] in this unit are selected randomly and kept in a pool of unassigned incidents. The

selected incident is removed from the solution and all the subsequent incidents assigned after the

selected incident are shifted one place backwards. Here, nsel is the number of incidents in the

selected rescue unit. The second version is used with the remaining probability and it removes

nθ incidents in an iterative manner. In each iteration, one rescue unit is randomly selected and a

random incident is selected and added in the list of unassigned incidents. The selected incident

107

5. RESCUE UNIT ALLOCATION AND SCHEDULING PROBLEM

is deleted from the solution in the same manner as mentioned above. The unassigned incidents

are inserted in partial solution by the following the same approach as discussed in the second

stage of the crossover operator.

5.5 Computational results

In this section, we discussed the computational results of our proposed approach and its

comparison with the state-of-the-art approach of [114]. The proposed approach is also compared

with the approaches presented in [113]. The proposed approach is coded in C language and all

experimental executions were conducted on a Linux based PC with Intel Core i5-7500 CPU,

running at 3.40 GHz with 16 GB of RAM. Our SSGGAFP approach is executed for 2500× n
generations, where n is the number of incidents. The overall size of the population (p) is 250,

out of which 150 solutions (ph) are generated by greedy based heuristic and remaining by using

random solution based heuristic. The probability pbts in binary tournament selection is assigned

with a value 0.7. The first mutation operator is used with probability pm, which is set as 0.75

and with remaining probability i.e., 0.25, the second mutation is employed. The parameter nθ
used in mutation is assigned a value that is based on the size of the instance. Thus nθ is set as 4

for all instances with n ≥ 30, to 3 for instances with n = 20 and set as 2 for instances with

n = 10. The parameters wg and wc used in Greedy_rand heuristic and in crossover operator

are defined as 4 and 2, respectively. The SSGGAFP approach is executed for 10 independent

runs with different seed values on each instance like the BRKGA approach of [114]. All these

parameter values are chosen based on empirical observations spanning over a large number of

trials.

5.5.1 Description of RUASP instances

The RUASP instances include four sizes (10, 20, 30, 40) of incidents (n) and rescue units (m).

Due to the constraint m≤n, the instances with m=10 the value of n is {10, 20, 30, 40}, with

m=20 the value of n is {20, 30, 40}, with m=30 the value of n is {30, 40} and instances with

m=40 the only permissible value of n is 40. Thus, we have total 10 combinations of instances

corresponding to each pair (m,n). For each combination, 10 different instances were generated,

thus total 100 instances generated for RUASP. These instances were originally proposed by Wex

et al. in [113] and the processing time in these instances contains crisp value. In [114], Cunha

et al. proposed a version of RUASP with fuzzy processing times. The fuzzy processing times

108

5.5 Computational results

are created by using the crisp processing times in the instances of [113]. This crisp values of

processing times are used as the component b of TFN in fuzzy processing times, while the other

components of TFN are computed as : a ∼ U(0.6, 0.9)× b and c ∼ U(1.1, 1.4)× b [114].

The authors of [113] chosen only 40 rescue units and incidents as the upper limit based on

feedback that they got from the German Federal Agency for Technical Relief (THW) that in

case of natural disasters, number of incidents rarely exceeds 40 and each rescue unit consists of

several sub units.

The effectiveness of the proposed approach is evaluated by using the same set of instances as

used in [113, 114]. To address the version of RUASP with fuzzy processing times the modified

instances presented in [114] are used by our approach. We have got all these instances as well as

the results of the approaches of [113] from first author of [114] through personal communication.

Although, the number of instances mentioned in both papers [113, 114] is 100. But the instances

received from Cunha et al. [114] contains only 98 instances for RUASP with crisp processing

times and a total of 86 instances for the version of RUASP with fuzzy processing times. We

have compared the results of our implemented Schedule7 heuristic with those reported in [114].

The results are matching, which confirms that Cunha et al. have used only 86 instances for their

approach in [114].

5.5.2 Experimental results

In this section, we have compared the performance of the proposed approach with other

existing approaches for RUASP in the literature. We have used the same criteria to measure the

performance as used in [114]. Table 5.2 presents the comparison of SSGGAFP with BRKGA of

[114]. In this table, the first column represents the number of units (m) and the second column

corresponds to the number of incidents (n). The instances are grouped by size. For example,

first row reports the results for m = 10 with n = 10. As stated in Section 5.5.1, we have

a total of 10 combinations of instances corresponding to each pair (m,n). The third column

presents the average value of solutions obtained by the Schedule7 heuristic over ten instances

for each pair. The execution time for Schedule7 heuristic is not reported as being a heuristic it is

executed only once on an instance and provides the solution within no time. The last six columns

provide the results for BRKGA and the SSGGAFP approaches. The results of each approach

for RUASP is shown by three columns in order as, the average value of solutions, execution

time in seconds and the percentage deviation of the solution (%Dev). The Schedule7 heuristic

outperformed all other heuristics presented in [113]. Thus, it is considered as the reference

109

5. RESCUE UNIT ALLOCATION AND SCHEDULING PROBLEM

Table 5.2: Comparison of average results obtained by BRKGA and SSGGAFP over each set of
instances

Schedule7 BRKGA SSGGAFP
Units(m) Incidents(n) Solution Solution Time a %Dev Solution Timea %Dev

10 10 359.68 345.86 44.94 -3.84% 345.86 0.06 -3.84%
10 20 891.75 854.96 64.20 -4.13% 851.86 0.18 -4.47%
10 30 1570.81 1523.03 83.64 -3.04% 1494.46 0.37 -4.86%
10 40 2447.86 2421.46 114.60 -1.08% 2330.41 0.62 -4.80%
20 20 453.67 438.88 107.03 -3.26% 435.98 0.25 -3.90%
20 30 864.34 844.18 146.62 -2.33% 817.85 0.48 -5.38%
20 40 1121.98 1128.79 218.88 0.61% 1073.29 0.75 -4.34%
30 30 579.00 564.91 211.21 -2.43% 555.45 0.65 -4.07%
30 40 869.66 863.42 285.30 -0.72% 831.19 0.97 -4.42%
40 40 687.68 679.63 353.80 -1.17% 656.80 1.19 -4.49%

aTime in Seconds

to calculate the percentage deviation of the solution found by an approach from the solution

obtained by Schedule7 heuristic. It is computed as, %Dev = (SA
Ssch7

− 1)× 100, where SA

and Ssch7 are the solutions obtained by the approachA and the Schedule7 heuristic, respectively.

We have already mentioned in Section 5.5.1 that, we have received only 86 instances out of

100 instances. Thus, the average value of solutions is computed by considering the number of

instances in the set available to us.

In this table, the results of SSGGAFP are reported in bold font wherever it performed

better than the BRKGA approach. The results in Table 5.2 demonstrates the superiority of our

proposed approach over state-of-the-art approaches, viz. BRKGA and the Schedule7 heuristic.

The performance gap between SSGGAFP and BRKGA widens with the increase in the number

of incidents (n) for the same value of the number of rescue units (m), which shows that our

approach performs better with the increase in toughness of the instance. The comparison of

execution times demonstrates that the SSGGAFP approach is very fast in comparison to the

BRKGA approach. To be specific, the maximum execution time taken by BRKGA approach is

353.80 seconds, while SSGGAFP takes only 1.19 seconds for the same set of instances. As far

as the comparison of execution times are concerned, BRKGA were executed on a PC equipped

with 3.10 GHz Intel Core i5-4440 and 16 GB RAM which is different from the system used to

execute SSGGAFP, hence it is not possible to compare the execution times precisely. However,

a rough comparison can always be made based on information available in the public domain

about the relative speeds of two processors, which indicates our system to be around 1.2 times

faster. Even after compensating for this difference in processing speeds, we can safely say that

110

5.5 Computational results

Table 5.3: Comparison of BRKGA and SSGGAFP on the first instance from each set

BRKGA SSGGAFP
Units Incidents Schedule7 MinSol AvgSol MaxSol MaxMinDev Time a MinSol AvgSol MaxSol MaxMinDev Time a

10 10 282.09 267.44 267.44 267.44 0.00% 44.94 267.44 267.44 267.44 0.00% 0.06
10 20 860.10 807.00 807.49 809.44 0.30% 64.20 807.00 807.00 807.00 0.00% 0.17
10 30 2123.89 2009.28 2022.24 2046.49 1.85% 83.64 2000.19 2000.19 2000.19 0.00% 0.34
10 40 2597.37 2502.83 2544.17 2604.37 4.06% 114.60 2454.94 2454.94 2454.94 0.00% 0.70

20 20 494.56 463.58 464.45 469.43 1.26% 107.03 463.58 463.58 463.58 0.00% 0.25
20 30 658.63 642.23 675.20 712.41 10.93% 146.62 635.98 635.98 635.98 0.00% 0.49
20 40 1117.30 1072.56 1106.72 1191.10 11.05% 218.88 1056.16 1056.16 1056.16 0.00% 0.78

30 30 487.58 475.71 482.46 498.24 4.74% 211.21 474.43 474.43 474.43 0.00% 0.61
30 40 819.73 786.20 809.92 842.80 7.20% 285.30 778.11 778.11 778.11 0.00% 1.04

40 40 702.13 664.55 673.55 682.96 2.77% 353.80 664.55 664.55 664.55 0.00% 1.22

aTime in Seconds

the proposed SSGGAFP approach is much faster than BRKGA. Thus, the overall comparison

reveals that the approach presented by us outperforms the existing approaches for RUASP.

Any approach is considered to be robust if the results provided by it are consistent in multiple

independent runs performed using different random seeds [143]. The robustness analysis of

BRKGA is performed in [114]. Thus, we have also performed the same analysis for our proposed

SSGGAFP approach. In this analysis, the first instance from each set of combinations (m,n) is

used. Each of the approaches is executed 10 independent times with different seed values, which

generates 10 solutions for each instance. Table 5.3 provides the outcomes of the robustness

analysis performed on BRKGA as well as on SSGGAFP. In this table, the first two columns

correspond to the number of units (m) and the number of incidents (n), respectively. The third

column shows the solution obtained by Schedule7 heuristic. The last ten columns represent the

results of both approaches. Each approach results are reported using five columns in the order:

MinSol, AvgSol, MaxSol, MaxMinDev and Time. MinSol and MaxSol corresponds to the

minimum and the maximum solution obtained, while AvgSol is the average quality of solutions

in ten runs. MaxMinDev is the deviation between maximum and minimum solutions and it is

computed as, MaxMinDev = (MaxSol
MinSol

− 1)× 100. Time reports the average execution time

of an approach in ten runs. The maximum deviation for BRKGA is found to be 11.05% for the

instances with m = 20 and n = 40, while SSGGAFP consistently provides zero deviation for

all the instances considered in this analysis. In fact, the SSGGAFP approach generates the same

solution in all ten runs for all the instances of RUASP. This proves that our proposed approach

is more robust than the BRKGA approach.

The first author of [114] has also provided the instances and solutions of the version of

RUASP presented in [113]. To compare our proposed approach with the approaches presented

111

5. RESCUE UNIT ALLOCATION AND SCHEDULING PROBLEM

in [113], the SSGGAFP is modified as SSGGACP, to make it suitable for considering crisp

processing times. The SSGGACP addresses the original version of RUASP, where the processing

times contain the crisp value. In [113], the authors have proposed eight construction heuristics

and five improvement heuristics. The Schedule7 heuristic used in this work is one of the

construction heuristics proposed in [113]. Each construction heuristic is combined with an

improvement heuristic and thus, many compositions of heuristics were presented in [113]. They

have also proposed GRASP metaheuristic to address RUASP. GRASP is a well-known multi-start

metaheuristic in which each generation consists of two phases. The first one is the construction

phase, while the other is the local search. The GRASP metaheuristic proposed in [113] has used

the construction heuristics in the first phase and improvement heuristics used in the local search.

Two versions are proposed in [113], namely, the classical version which is the composition of

heuristics only and the other is GRASP which is used along with the composition of heuristics.

All these approaches were executed once on each instance, and, hence, we have also executed

SSGGACP only once on each instance. The analysis of the results in [113] concludes that

the Schedule7 heuristic provided better quality solutions on all the instances. While different

versions produced the best solution for different instances. Table 5.4 presents the comparison

of SSGGACP with the approaches presented in [113]. For each instance, the best solution and

the corresponding execution time are selected by comparing all the solutions generated by the

approaches of [113]. This best solution over all the approaches is referred to as BestWex in

the table. The solutions generated by our proposed SSGGACP approach is compared with the

BestWex. Both the results, viz. BestWex and SSGGACP are reported by using three columns.

The organization of this table is done in the same manner as Table 5.2. The solutions generated

by Schedule7 heuristic are considered as the reference to calculate the percentage deviation

as shown in Table 5.2. In this table, the solutions obtained by SSGGACP are reported in bold

font. These results clearly highlight the superiority of our proposed approach over all of the

composition of heuristics approaches as well as GRASP metaheuristic presented in [113]. Our

approach is better in terms of both solution quality as well as in terms of running time. In [113],

they have mentioned that the average runtime of GRASP is 187.63 seconds across all instances

while the maximum runtime is 25.89 minutes. Our SSGGACP approach being a metaheuristic

is very fast in comparison with GRASP metaheuristic. Even the maximum execution time of

classical version (which is composition of only heuristics) is 20 seconds on the instance of

largest size (m = 40 and n = 40) [113]. While, the maximum execution time by our approach

is 1.14 seconds on the same set of largest size instances i.e., with m = 40 and n = 40. Thus,

112

5.5 Computational results

Table 5.4: Comparison of average results obtained by BestWex and SSGGACP over each set of
instances

Schedule7 BestWex SSGGACP
Units(m) Incidents(n) Solution Solution Time a %Dev Solution Timea %Dev

10 10 359.05 350.60 0.21 -2.35% 347.48 0.06 -3.22%
10 20 901.78 858.39 64.30 -4.81% 852.57 0.16 -5.46%
10 30 1579.92 1530.17 35.29 -3.15% 1508.32 0.31 -4.53%
10 40 2375.07 2279.91 238.03 -4.01% 2241.28 0.50 -5.63%
20 20 469.67 461.97 214.61 -1.64% 452.23 0.23 -3.71%
20 30 858.78 836.70 212.31 -2.57% 821.01 0.43 -4.40%
20 40 1108.01 1085.51 157.67 -2.03% 1065.61 0.66 -3.83%
30 30 578.32 566.47 12.55 -2.05% 556.52 0.60 -3.77%
30 40 891.82 866.80 16.45 -2.80% 852.65 0.87 -4.39%
40 40 689.78 676.71 52.07 -1.89% 659.03 1.10 -4.46%

aTime in Seconds

our proposed approach is faster than all the approaches of [113]. In terms of solution quality,

the same pattern can be observed as explained in Table 5.2, i.e., the performance gap between

SSGGACP and the BestWex (best solution over all the approaches of [113]) widens with the

increase in toughness of the instance.

To visually demonstrate the comparison of solutions, we have used the box plot visualization

method. Box plot is a visualization technique used to summarize and compare different sets of

data. Box plot visualization reveals more quantitative information than the tabular representation

of the data. It uses five points to summarize the data, namely, minimum, first quartile, median,

third quartile and maximum. Even without understanding the complete details of the box plot,

one can easily draw some important conclusions about the data sets [144]. As already mentioned

in Section 5.5.1, there are total 10 sets of combination of m and n and each set contains 10

instances. Each box plot represents the solutions for one entire set corresponding to the particular

combination of m and n, obtained by the specific approach.

Figures 5.4 and 5.5 presents the comparison of solutions obtained by Schedule7 heuristic and

SSGGACP for the specific set of instances. We have chosen Schedule7 heuristic for comparison

as it is performed better on most instances in comparison to all other approaches (including

GRASP metaheuristic) presented in [113]. In all box plots, the three levels (minimum, maximum

and the median) of SSGGACP are always lower than the corresponding levels of Schedule7

heuristic. Also, the boxes of SSGGACP shift more downwards with the increase of toughness of

instances. Thus, the box plot visualization demonstrates that the SSGGACP approach generates

superior quality solutions than the Schedule7 heuristic. Similar box plots can not be given for

113

5. RESCUE UNIT ALLOCATION AND SCHEDULING PROBLEM

comparison of SSGGAFP with BRKGA, because of the unavailability of the instance-by-instance

results of BRKGA. Likewise, we have not provided the comparison of robustness of SSGGACP

with the approaches of [113], because of the fact that approaches of [113] were executed only

once on each instances, and to make the comparison fair, SSGGACP was also executed only

once. However, just to check the robustness of SSGGACP, we have executed it 10 times on

each instance, and found SSGGACP converges to same value in each of the 10 runs on all the

instances. This clearly demonstrates the robustness of SSGGACP.

(a) (b)

(c) (d)

Figure 5.4: Boxplots of the solutions obtained by Schedule7 and SSGGACP over the set of ten
instances: (a) m=10 & n=10, (b) m=10 & n=20, (c) m=10 & n=30, (d) m=10 & n=40.

114

5.5 Computational results

(a) (b)

(c) (d)

(e) (f)

Figure 5.5: Boxplots of the solutions obtained by Schedule7 and SSGGACP over the set of ten
instances: (a) m=20 & n=20, (b) m=20 & n=30, (c) m=20 & n=40, (d) m=40 & n=40 (e) m=30 &
n=30, (f) m=30 & n=40s.

115

5. RESCUE UNIT ALLOCATION AND SCHEDULING PROBLEM

5.6 Conclusions

In this chapter, we presented a steady-state grouping genetic algorithm-based approach for

RUASP. Our approach uses the crossover and mutation operator that are designed by consid-

ering the characteristics of the problem and the objective. We have used a set of greedy and

random based heuristics for initial solution generation which provides a superior quality diverse

initial solutions. We have compared the solutions generated by proposed approach with the

existing state-of-the-art approaches for the addressed problem available in the literature. The

computational results show the superiority of the proposed approach both in terms of solution

quality and execution time.

116

Chapter 6

Quality of Service Vehicle Routing
Problem with Time Windows

6.1 Introduction

Over the last several decades, vehicle routing problem (VRP) and its variants have attained

massive popularity owing to their ability to model a wide range of real-world applications

pertaining to various domains. Their applications include transportation planning, supply chain

management in logistics networks, production management and so on [145, 146]. The objective

of VRP is to design an optimal set of delivery routes for a fleet of vehicles in order to serve a

given set of customers of a company’s supply chain. It represents the essence of assignment

and routing of vehicles with minimum cost in a transportation supply management. Hence, it is

a crucial problem in logistics management and also one of the most widely studied problems

in the domain of combinatorial optimization. VRP is an NP-hard problem as it generalizes

traveling salesman problem which is NP-hard [147, 148]. Since its inception in 1959 [149],

many variants of VRP have been proposed in the literature such as [150] and [151], due to the

incorporation of various constraints arising in real-world applications. A detailed survey of VRP

and its variants can be found in [152]. Some recent works on VRP can be found in [153], [154],

[155], and [156].

Most of the VRPs in literature consider minimization of total operational cost as the objective.

Usually, the operational cost is the total distance traveled or time [157]. In some route planning

problems, the minimization of number of vehicles is also considered as an objective along with

operational cost [158]. The objective function can also be designed with reference to customer

117

6. QUALITY OF SERVICE VEHICLE ROUTING PROBLEM WITH TIME
WINDOWS

satisfaction, and some VRP models contain the cost as service penalties when a customer

receives delayed service or an incomplete or a damaged delivery [146].

In the last two decades, supply chain management has gained massive attention owing

to their impact on cost effectiveness, quality of customer service and overall competitiveness

in global market [159]. Due to the rise in global competition, managements dealing with

supply chains have now increased focus on cost reduction strategies and planning for new

approaches aimed at increasing the level of customer satisfaction. The cost reduction strategies

aid in fetching monetary gains for companies, while approaches for customer satisfaction have

emphasis on customer needs, so that more and more customers can be attracted. In transportation

service, both aforementioned objectives are crucial, and thus, it is desired to address the both

simultaneously. In this regard, it is necessary to focus on the planning of supply and distribution

routes along with the proper operational management activities related to supply chain, so that

it results in reduction in total costs as well as an improvement in the quality of service (QoS)

[160].

With advancement in technology, globalization of markets and increase in demands, any

organization, whether small or large, have put on more efforts on implementing customer-

focused service strategies. Indeed, quality assurance has become one of the top most priority of

management and an important factor for sustainability and growth in business [161]. Customer

service with respect to transport industries are mainly focused at timely delivery of goods [162].

In transport logistics, quality is considered as a key element defined in terms of availability,

reliability and on time delivery [163, 164].

The stakeholders in transportation focus on timely delivery of goods in unharmed conditions.

The importance of these conditions increase manifolds in case of perishable goods which require

urgent delivery [165]. Perishable goods include food items such as milk, meat, fish, fruits

and vegetables, health related products such as drugs, organs or analytic samples or even a

newspaper, value of whose news decreases over time. In most of the applications pertaining

to transportation of perishable goods, the urgent delivery of goods is the top most priority, and

delay in delivery can result in deterioration in quality of the delivered goods. Thus, importance

of urgency in perishable goods related transport is crucial for any business organization dealing

with transportation of such goods.

This chapter discusses one of the most commonly addressed variant of VRP known as

vehicle routing problem with time windows (VRPTW). VRPTW is a generalization of VRP

where a customer can only be served with in its own time window. Thus, it is also NP-hard.

118

6.1 Introduction

VRPTW is one of the most extensively researched variant of VRP due to its resemblance with

various real-world applications. To address VRPTW, numerous approaches have been presented

in literature. These include exact, heuristic, and metaheuristic approaches [166]. Since, it is an

NP-hard problem, the use of exact approaches [167] for addressing VRPTW is only confined to

smaller size problem instances. The metaheuristic approaches are found to be more suitable

for solving the large problem instances in a reasonable amount of time [168, 169, 170]. Thus,

literature is abound with various metaheuristic approaches [171, 172, 173, 174, 175, 176, 177]

for VRPTW.

In [160], Expósito et al. have introduced several definitions aimed at quality of service (QoS)

delivered to the customers in transport related applications. Each customer has a time window,

and they must be served within this time slot, which provides a guarantee to attain a certain

minimum value of quality in service. Moreover, urgency in transportation is also discussed by

emphasizing the immediate response in terms of product deterioration. In this regard, authors

have proposed the quality of service vehicle routing problem with time windows (QSVRPTW).

In QSVRPTW, they have introduced several objectives aimed at measuring the quality of service

and proposed a metaheuristic approach to address the problem. The presented metaheuristic

is a GRASP-VNS approach which is a combination of a greedy randomized adaptive search

procedure (GRASP) and a variable neighbourhood search (VNS). The main purpose of the

proposed approach is to analyze the presented objective functions with reference to the quality

of service. Furthermore, GRASP-VNS have used the standard neighbourhood structures for

traveling salesman problem/multiple traveling salesman problem and does not consider the

specific requirements of various objectives.

To address QSVRPTW, we have presented a steady-state grouping genetic algorithm ap-

proach with crossover and mutation operators designed after considering the characteristics of

various objectives. These operators contain a balanced combination of greediness and random-

ness, and consider the particular requirement of the objective under consideration. We have

also proposed several heuristics which are used in initial population generation phase. We have

proposed two bounds for each objective. The comparison of experimental results reveals that

our proposed approach is able to fetch better solutions, and also faster than the state-of-the-art

approach, in terms of execution time. It is also observed that finding an initial solution itself

is very tough in case of several instances due to the presence of tight constraints. The pro-

posed heuristics are able to generate feasible solution for all the instances which highlights the

additional advantage of the proposed approach to address QSVRPTW.

119

6. QUALITY OF SERVICE VEHICLE ROUTING PROBLEM WITH TIME
WINDOWS

The remaining part of the chapter is organized as follows: Section 6.2 defines QSVRPTW

formally, whereas Section 6.3 provides an overview of related work and identifies the research

gap. In Section 6.4, we proposed two bounds for each objective. The proposed steady-state

grouping genetic algorithm approach for QSVRPTW is presented in Section 6.5. The computa-

tional results and their analysis are presented in Section 6.6. Finally, Section 6.7 summarizes

the main contributions and outlines some concluding remarks.

6.2 Problem definition

The VRPTW consists of a set of vertices v = {0, . . . , n}, such that the depot is represented

by vertex 0 and remaining vertices denote the customers. Each customer i has a demand of

goods represented by the quantity qi > 0 and a time window [ei, li], where ei and li are the

earliest and latest time for serving the customer i respectively. The time window of a customer

is the time slot during which a customer can be served. We have used the terms earliest time

and ready time, and, latest time and closing time interchangeably throughout this chapter. Each

customer must be served exactly once by some vehicle within its time window. Each customer i

has an unloading time ui which represents the amount of time to serve the customer, i.e., the

unloading time of goods once vehicle reaches at customer’s place. The depot also has a time

window represented by [0, l0] and all vehicles must start at opening time of depot (at time 0)

and eventually come back to depot on or before its closing time (l0). The demand of goods for

depot is assumed to be zero, i.e., q0 = 0. The number of vehicles are assumed to be m, and

hence, a solution must have m routes. Each vehicle has a fixed capacity C , and the total load of

each vehicle can not exceed this capacity.

QSVRPTW seeks a set of best possible routes R = {r1, . . . , rm} for a fleet of m vehicles

according to one of the objective defined below in order to serve a given set of customers. In

the context of QSVRPTW, the service can be picking up or delivering freight. In this chapter,

the considered variant of VRPTW is mainly focused on delivery times (vehicle arrival times) to

the customers. Indeed, the arrival time of vehicle at the customer’s location with in their time

window is a measure of the quality of service.

Let xkij is the binary decision variable such that xkij = 1, if vehicle k goes from customer i to

j and xkij = 0 otherwise. Here, i, j ∈ {0,1,. . . ,n} and k ∈ {1,2,. . . ,m}. The quality of service

is measured by a variable ski which represents the time at which vehicle k starts serving the

customer i. If customer j is served immediately after customer i then,

120

6.2 Problem definition

skj = max {ej , ski + ui + tij} (6.1)

where ui is the unloading time for customer i and tij is the travel time from customer i to

customer j. For each vehicle, service start time and unloading time at depot are considered as

zero, i.e., sk0 and uk0 are considered as zero.

In [160], the authors have proposed three objective functions focused at measuring the

quality of service and those are described below. Let αki is the binary decision variable such that

αki = 1, if the customer i is served in kth route and αki =0 otherwise. Here, i ∈ {1,. . . ,n} and k

∈ {1,2,. . . ,m}.

The first objective function is presented as the total amount of the times customers have to

wait in their respective time windows. It is the sum total of the waiting times for all customers

and is defined as,

min fc(x) =
m∑
k=1

n∑
i=1

(ski − ei)αki (6.2)

Since, sum total of ready times of all the customers is a constant, thus minimization of

above function is same as minimization of the aggregate of the times at which service starts for

each customer (eq. (6.3)). Hence, eq. (6.3) is considered as the first objective for the quality of

service in [160], as well as in this chapter.

min fc(x) =
m∑
k=1

n∑
i=1

ski α
k
i (6.3)

The above objective estimates the quality of service by minimizing the sum total of the

times for all the customers at which service for each of these customers starts.

The second objective function (eq. (6.4)) estimates the quality of service by the sum of slack

times for all the customers. Slack time for a customer is the difference between closing time

of that customer’s window and the time at which service for that customer starts. Hence, the

second objective function is aimed at maximizing the aggregate of the slack times for all the

customers.

max fs(x) =
m∑
k=1

n∑
i=1

(li − ski)αki (6.4)

The eq. (6.4) can be rewritten as:

121

6. QUALITY OF SERVICE VEHICLE ROUTING PROBLEM WITH TIME
WINDOWS

max fs(x) =
m∑
k=1

n∑
i=1

liα
k
i −

m∑
k=1

n∑
i=1

ski α
k
i

and,
m∑
k=1

n∑
i=1

liα
k
i =

n∑
i=1

li = constant

Hence, eq. (6.4) can be finally rewritten as:

max fs(x) =
n∑
i=1

li − min fc(x) (6.5)

Thus, any solution x which minimizes eq. (6.3) also maximizes eq. (6.4). Hence, minimiz-

ing function fc(x) can be considered equivalent to maximizing function fs(x). This fact is

overlooked in [160], and this objective is presented as an independent objective there. We have

corrected this mistake.

The third objective which measures the quality of services, takes the length of the customer’s

time window into consideration. In this function, the waiting time of customer is weighted by

the length of customer’s time window and thus, it is the average of relative time that customers

have to wait within their time window to get the service. It is defined as follows:

min fr(x) =
1

n

m∑
k=1

n∑
i=1

(ski − ei)
(li − ei)

αki (6.6)

It should be noted that, if (li − ei) is same for all customers, then this objective function

(min fr(x)) is also equivalent to first objective (min fc(x)). In all of the above formulations,

if customer i is not present in route of vehicle k then it is assumed that ski =li + 1 which is just

a finite infeasible value and this value does not have any effect as αki is always zero in this case.

Let rk represents the kth route such that, rk=〈ck1, . . . , cknk〉 is the order of the customers in

the kth route which contains nk customers, and cki denotes the customer served at ith place in

this route. The variable acki represents the vehicle arrival time at location of customer i in the

kth route. Furthermore, the depot is represented as ck0 = cknk+1 = 0.

The objective functions of QSVRPTW are subjected to the following constraints:

1. Demand: The total demand on any route must not exceed the capacity of the vehicle.

nk∑
i=1

qcki ≤ C ∀k ∈ {1, 2, . . . ,m} (6.7)

122

6.3 Related work

2. Arrival time: Any vehicle must reach to a customer’s location on or before the closing

time window of that customer.

acki ≤ li ∀i ∈ {1, 2, . . . , n} ∀k ∈ {1, 2, . . . ,m} (6.8)

3. Return time to depot: All vehicles after serving the customers must reach to depot on or

before its closing time.

acknk+1
≤ l0 ∀k ∈ {1, 2, . . . ,m} (6.9)

Hence, we have considered following two objectives with QSVRPTW:

• Minimize fc(x) (eq. (6.3))

• Minimize fr(x) (eq. (6.6))

subject to the constraints defined by eq. (6.7)–eq. (6.9). This leads to two problem variants, each

corresponding to one objective. This differs from [160] where three objectives fc(x), fs(x)

and fr(x) are considered, and this difference arises because we have proved two objectives,

viz. fc(x) and fs(x) of [160] to be equivalent. It is to be noted that we have considered each

objective separately exactly like [160], and not in a multiobjective manner. Further, we have

presented the results for all the three objectives though we have shown fc(x) and fs(x) to be

equivalent so that comparison of our proposed approach can be done with approach of [160]

on all three objectives. However, the results of fs(x) for our approach are always computed

from corresponding results of fc(x) by making use of eq. (6.5), and no separate executions have

been performed for fs(x). For the sake of comparison only, we have provided upper bounds for

fs(x) in Section 6.4.

6.3 Related work

This section presents an overview of related work including the state-of-the-art approach for

QSVRPTW presented in [160], identify the research gap and present the motivation for our

approach.

VRPTW is one among the most extensively researched variants of the vehicle routing

problem (VRP). Being an NP-hard problem, it poses a challenge for researchers in scientific

123

6. QUALITY OF SERVICE VEHICLE ROUTING PROBLEM WITH TIME
WINDOWS

community. It considers the constraints which have resemblance with real-world applications

from the transportation domain. VRPTW is more relevant in practical applications involving

manufacturing, logistics, postal service and so on.

Literature contains some works that aims at the objectives of VRPs concerned with quality

of service delivered to the customers. These models contain applications of transportation

in school management, logistics in natural disasters, supply chain of perishable goods and

in maintenance services. For example, applications of maintenance services are addressed

in [178, 179, 180, 181, 182, 183, 184]. The research articles [185, 186] and [187] discuss

the applications of transportation in school management. The applications of supply chain

of perishable goods are discussed in [188, 189]. All of these applications focus on quality of

service delivered to customers and share a common characteristic, that is urgency in supply of

goods.

In [190], the authors have analyzed the customer perceptions about performance of compa-

nies and presented an empirical study on how to measure the quality of service in the urgent

transport services. Several definitions of quality in domain of service sector along with various

metrics have been proposed in [191]. Despite of these works, clear definitions of quality of

service in transport related services were missing in literature. Expósito et al. [160] analyzed

the quality of services in transportation domain and presented various objectives aimed at the

quality of services for transport related applications.

In [160], the authors have proposed various objectives measuring quality of services, and

also presented a metaheuristic approach to solve the QSVRPTW problem. The presented

metaheuristic approach GRASP-VNS is a combination of a greedy randomized adaptive search

procedure (GRASP) with a variable neighbourhood search (VNS). GRASP is a multi-start two

phase metaheuristic and it was originally proposed in [137]. The proposed GRASP approach

contains construction phase followed by an improvement phase. Variable neighbourhood search

(VNS) has been used in improvement phase of GRASP. The VNS was proposed in [16] ,and

its working principle is based on systematically varying the neighbourhood structure during

the search [192]. The neighbourhood structures used in this VNS are k-chain move, k-edge

interchange move and k-swap interchange move. Both GRASP and VNS are highly effective

metaheuristics and have been used to solve a wide range of combinatorial optimization problems.

However, this GRASP-VNS approach have used generic neighbourhood structures designed

for traveling salesman problem and multiple traveling salesman problems and do not exploit

the characteristics of the problem at hand as well as the objectives. This made us assert that

124

6.4 Theoretical study

a metaheuristic approach designed by keeping in mind these characteristics can outperform

GRASP-VNS. As a result, our grouping genetic algorithm approach was born where variation

operators (crossover and mutation) are designed by taking into account these characteristics.

In addition, our approach uses several problem-specific heuristics. Our proposed approach, as

shown in Section 6.6, proved our assertion correct as it is found to be better in terms of solution

quality as well as execution time than the GRASP-VNS approach of [160].

6.4 Theoretical study

In this section, we have performed the theoretical analysis of the objectives of QSVRPTW and

proposed two bounds for each objective. The second bound is tighter than the first.

6.4.1 Lower bounds for objective fc(x)

The two lower bounds for QSVRPTW with objective fc(x) can be computed as follows:

1. Lower bound 1 (LB1): The fc(x) is defined as :

min fc(x) =
m∑
k=1

n∑
i=1

ski α
k
i

It is the sum of all times when customer start to be served. From eq. (6.1), one can infer,

if a vehicle reaches before the ready time (ei) of customer i, then also it has to wait until

the ready time, in order to serve this customer. Thus, the minimum value of ski can be

ei, and hence, sum of all ei’s is the first lower bound for objective fc(x). So, first lower

bound is calculated as,

LB1(fc(x)) =
m∑
k=1

n∑
i=1

eiα
k
i (6.10)

Since, all customers must be served by some vehicle, thus eq. (6.10) is equivalent to :

LB1(fc(x)) =
n∑
i=1

ei (6.11)

2. Lower bound 2 (LB2): The process for computing this bound begins by determining the

minimum unloading time umin among all customers and shortest travel time md between

125

6. QUALITY OF SERVICE VEHICLE ROUTING PROBLEM WITH TIME
WINDOWS

any two customers or between a customer and the depot. Then all customers are sorted

in non-decreasing order as per their ready times, and, an iterative process ensues where

during each iteration except possibly the last one, exactly m customers are assigned to

routes. Assume, the sorted sequence as {cρ1 , cρ2 , . . . , cρn}. We also assume routes to be

numbered from 1 to m. During first iteration, first m customers from the sorted sequence

are inserted at the first position of each of the m routes in such a manner so that customer

cρi is assigned to route i (1 ≤ i ≤ m). The time when these m customers start to be

served (sicρi , i = 1, . . . ,m) are set equal to their ready times ecρi . In the second iteration,

next m customers from the sorted sequence are inserted at the second position of each

of the m routes in such a manner that cρm+i is assigned to route i (1 ≤ i ≤ m). This

iterative process continues till all n customers are assigned. Please note that in the last

iteration there can be less than m customers in case m is not a divisor of n.

Now, customer cρ1 occupies the first position in the first route, the second position of

this route is allocated to the (m+ 1)th customer (cρm+1) in sorted sequence. The vehicle

arrival time at location of this customer (cρm+1) is computed as (s1
cρ1

+ umin + md).

Here, s1
cρ1

is the time when service for customer cρ1 starts (which is set to its ready

time (ecρ1)). This customer (cρ1) is served for at least the minimum time umin and then

vehicle must have taken at least the minimum time md, in order to reach at the location

of cρm+1 . Thus, the time (s1
cρm+1

) when customer cρm+1 start to be served will be equal

to max {ecρm+1
, s1

cρ1
+ umin + md}. The time at which each customer start to be

served (presented as skj in eq. (6.1)) for remaining customers can be calculated in the

same manner, and, the sum total of all these times provides the lower bound 2 (LB2) due

to the following facts:

• We have taken minimum possible values for unloading time and travel time.

• Service for first customer on each route starts at its ready time. These first customers

are those with least value of ready times.

• Assignment of customers to routes in any other sequence will yield a higher or same

value of the sum total of skj . This is because any deviation from sort order mentioned

above will yield a higher or same sum of skj values of affected customers.

An illustrative example is developed in order to exemplify this lower bound. Figure 6.1

represents the data associated in this example. For sake of illustration, the ready time of

126

6.4 Theoretical study

Table 6.1: Particulars of the illustrative example.

Customer Ready Time (eCi) Closing Time (lCi) Unloading Time (uCi)
D (Depot) 0 100 0
C1 5 70 22
C2 10 80 25
C3 15 65 20
C4 25 85 26
C5 50 80 24

customers are considered in ascending order in the illustrative example. In this example, m

and md are assumed to be two and one respectively. Clearly, umin is 20. In the beginning,

C1 and C2 are assigned in first positions of first and second route respectively. The s1
C1

and

s2
C2

are initialized with eC1 and eC2 . The next customer in sorted sequence as per ready time

is C3 which is assigned on second position of first route. Now, in order to reach location of

C3, the vehicle must have taken time 26 (5+20+1). Since ready time of C3 is less than 26,

hence the C3 must start to be served at time 26. The same calculation is done for C4 and C5

as per their allotted route. The calculation of Ski is done when customer i is assigned to route

k. Figure 6.1(a) demonstrate the complete procedure of finding LB2. In order to justify this

lower bound, another solution is shown in Figure 6.1(b). In LB1, we have demonstrated that the

minimum value of ski can be ei. In Figure 6.1(a), the customer C3 is assigned second position in

first route, hence s1
C3

is greater than eC3 . Consider a scenario, where skC3
achieves its minimum

value i.e., eC3 . Since ready time ofC3 is less than the minimum unloading time, hence skC3
equal

to eC3 is possible only if we assign C3 at first position in any route. Figure 6.1(b) shows this

assignment and we can see that sum of all times when customers start to be served is increased

now. So, minimizing ski of one customer will deteriorate this value for another customer and

since customers are sequenced as per ready time, thus exchanging a customer x having smaller

value of ready time with a customer y with larger value of ready time to make sky equal to ey

will yield a larger gap between skx and ex. Thus, such an exchange will lead to increase in sum

of all ski . Hence, the way customers are assigned in Figure 6.1(a) generates the minimum value

of sum of all time when customer start to be served and this is a lower bound for fc(x). It is

pertinent to mention that our argument is not relying on the sequence of customers served, but it

is based on the fact that if we have more number of customers than routes with ready time less

than the unloading time, then definitely some customers will not have ski equal to ei no matter

127

6. QUALITY OF SERVICE VEHICLE ROUTING PROBLEM WITH TIME
WINDOWS

in what order they are served, and the values of ski for such customers will also have impact on

the customers coming later in the corresponding route. Thus, we will get a lower bound tighter

than LB1. With respect to example under consideration, any customer served at second position

of first route will have s1
i equal to its ready time if ready time is greater than equal to vehicle

arrival time at this position or s1
i is equal to vehicle arrival time if ready time is less than vehicle

arrival time. In LB1, we already assumed that ski equal to the ready time (ei), hence in LB2

either a customer will have ski equal to the ei or ski equal to the vehicle arrival time. To make it

lowest possible value, sorting is done as per ready time so that the sum of all ski is minimum. In

any case if the customer with less ready time value is assigned later, then ultimately the sum of

all ski will be increased.

D

C1 C3 C5

C2 C4

D

s1C1
= 5 s1C3

= 26 s1C5
= 50

s2C2
= 10 s2C4

= 31

(5 + 20 + 1)

(15 < 26)

(26 + 20 + 1)

(50 > 47)

(10 + 20 + 1)

(25 < 31)

fc(A) = (5 + 26 + 50 + 10 + 31)

(a) Solution A

D

C1 C2 C5

C3 C4

D

s1C1
= 5 s1C2

= 26 s1C5
= 50

s2C3
= 15 s2C4

= 36

(5 + 20 + 1)

(10 < 26)

(26 + 20 + 1)

(50 > 47)

(15 + 20 + 1)

(25 < 36)

fc(B) = (5 + 26 + 50 + 15 + 36)

(b) Solution B

Figure 6.1: Two solutions of the illustrative example

6.4.2 Upper bounds for objective fs(x)

The two upper bounds for QSVRPTW with objective fs(x) can be computed in the following

manner:

1. Upper bound 1 (UB1): The objective fs(x) is defined as,

max fs(x) =
m∑
k=1

n∑
i=1

(li − ski)αki

128

6.4 Theoretical study

In eq. (6.5), we have shown that,

max fs(x) =
n∑
i=1

li − min fc(x)

Thus, UB1 can be computed as,

UB1 =
n∑
i=1

li − LB1 =
n∑
i=1

(li − ei) (6.12)

2. Upper bound 2 (UB2): Similarly, UB2 can be computed as,

UB2 =
n∑
i=1

li − LB2 (6.13)

6.4.3 Lower bounds for objective fr(x)

The two lower bounds for QSVRPTW with objective fr(x) are as follows:

1. Lower bound 1(LBT): In LB1 of objective fc(x), it is shown that the minimum value

of ski can be ei. Substituting this value in eq. (6.6), we will get fr(x) as zero. Thus the

first lower bound is zero for objective fr(x), which is a trivial lower bound.

2. Lower bound 2(LB): The second lower bound is a non-trivial lower bound and it is

referred to as LB for this objective. It is calculated by using the values of LB1 and

LB2, i.e., the lower bounds defined for objective fc(x). To compute LB, we need to find

maximum length of customer’s time window among all customers, i.e.,mw=max{li−ei}
∀ i ∈ {1, 2, . . . , n}. In eq. (6.6), fr(x) is defined as:

min fr(x) =
1

n

m∑
k=1

n∑
i=1

(ski − ei)
(li − ei)

αki

The value of denominator (li− ei) in above equation can be at most mw for any customer.

Hence, replacing (li − ei) by mw in above equation provides a lower bound for fr(x),

that is,

min fr(x) ≥ 1

n

m∑
k=1

n∑
i=1

(ski − ei)
mw

αki =
1

n × mw

m∑
k=1

n∑
i=1

(ski − ei)αki

129

6. QUALITY OF SERVICE VEHICLE ROUTING PROBLEM WITH TIME
WINDOWS

and,
1

n × mw

m∑
k=1

n∑
i=1

(ski − ei)αki =
1

n × mw

m∑
k=1

n∑
i=1

ski α
k
i −

m∑
k=1

n∑
i=1

eiα
k
i

Which is equal to,
1

n × mw
(fc(x)− LB1)

As already demonstrated that the lower bound for fc(x) is LB2. Thus, the lower bound

LB for fr(x) can be computed utilizing LB1 and LB2 for fc(x) as follows

LB =
1

n × mw
(LB2 − LB1) (6.14)

The objectives fr(x) and fc(x) have different targets to optimize. The objective fc(x) seeks

a minimization on sum of times when service for each customer starts, while fr(x) intends to

minimize the average of relative time that customers have to wait within their time window to get

the service. For illustration, consider the example presented in Table 6.2. Only one route (m=1)

is assumed in the example, for ease of understanding. Two solutions (X and Y) are demonstrated

in Figure 6.2. The solution X represented as Figure 6.2(a) incurs fc(X)=85 and fr(X)=0.533,

whereas solution Y represented as Figure 6.2(b) incurs fc(Y)=100 and fr(Y)=0.311. In this

example, the ready time of all customers are less than equal to vehicle arrival time, hence the

time when customer start to be served is equal to vehicle arrival time. This demonstration

provides a scenario, where a solution is better in one objective and worse in another objective.

We can observe that, solution X is superior in fc(X) but inferior in fr(X), in comparison to

solution Y.

Table 6.2: Data of the illustrative example.

Customer Ready Time (eCi) Closing Time (lCi) Unloading Time (uCi)
D (Depot) 0 100 0
C1 5 80 10
C2 10 30 10
C3 20 70 5

130

6.5 Steady-state grouping genetic algorithm for QSVRPTW

Table 6.3: Time matrix of the illustrative example.

D C1 C2 C3

D 0 5 10 15
C1 5 0 15 25
C2 10 15 0 10
C3 15 25 10 0

D C1 C2 C3 D
5

s1C1
= 5

(5 + 15 + 10)

15
s1C2

= 30
(30 + 10 + 10)

10
s1C3

= 50

fc(X) = (5 + 30 + 50) = 85

fr(X) = 1
3((

5−5
80−5) + (30−1030−10) + (50−2070−20)) = 0.533

(a) Solution X

D C2 C3 C1 D
10

s1C2
= 10

(10 + 10 + 10)

10
s1C3

= 30
(30 + 25 + 5)

25
s1C1

= 60

fc(Y) = (10 + 30 + 60) = 100

fr(Y) = 1
3((

10−10
30−10) + (30−2070−20) + (60−580−5)) = 0.311

(b) Solution Y

Figure 6.2: Solutions to illustrate both objectives

6.5 Steady-state grouping genetic algorithm for QSVRPTW

We have developed a steady-state grouping genetic algorithm approach with dedicated crossover

and mutation operators for each objective to solve the QSVRPTW. The proposed approach is

inspired from the steady-state grouping genetic algorithm presented in [42]. Henceforth, the

proposed approach will be referred to as as GGA-QOS in this chapter.

As already mentioned in Section 6.2, the three objectives have been proposed in [160], which

measure the quality of service. The first two objectives namely, fc(x) and fs(x) represented by

eq. (6.3) and eq. (6.4) respectively are found to be equivalent as explained earlier. On the other

hand, the third objective (fr(x)) represented by eq. (6.6) is different, if the length of customer’s

time window, i.e., (li− ei) is not same for all customers. Hence, our approach addresses the first

131

6. QUALITY OF SERVICE VEHICLE ROUTING PROBLEM WITH TIME
WINDOWS

(fc(x))and third objective (fr(x)) only. For comparison purpose, the results of fs(x) for our

approach are always computed from corresponding results of fc(x) by making use of eq. (6.5)

and no separate executions are performed for fs(x). We have devised dedicated crossover and

mutation operators for each objective by taking into account the specific characteristics of each

objective. Thus, there are two versions of GGA-QOS. The first version caters to objectives fc(x)

and fs(x), whereas the second version is developed to address the third objective (fr(x)). These

two versions differ only in variation operators, and apart from variation operators, these versions

are identical. In fact, both versions evaluate both the objectives as the other objective (objective

not catered by the version) is utilized for checking the uniqueness of a solution as explained in

the next paragraph. It is to be noted that the number of routes (m) is fixed and predetermined for

QSVRPTW [160]. Expósito et al. [160] set number of routes in their instances for QSVRPTW to

be equal to number of routes in optimal solution when these instances are solved as VRPTW

instances plus 15% rounded to closest integer.

The approach begins with initial population generation which make use of several heuristics

to generate these initial solutions. The two parents for crossover have been selected by using

the binary tournament selection (BTS). The probability used in BTS for selection of parent

is assigned with a value pbts. The crossover is employed on the two parents, which yields an

offspring. If the offspring is feasible, it goes through mutation, and a mutant solution is obtained.

If the offspring is not feasible then better of the two parent solution is copied as a offspring and

subjected to mutation to obtain a mutant solution. If both offspring and the mutant are feasible

solutions then the superior one among them is added in population in place of the worst solution

of the population, otherwise the feasible solution among them is added in place of worst solution.

If both are infeasible then both are discarded and no replacement is made. Uniqueness is checked

before adding a solution in population. A solution is considered as unique, if both the addressed

objective values do not coincide with the objective values of any other existing member in

the population. This same process iterates until the termination condition remain unsatisfied.

The probability of producing an infeasible solution through crossover is more in comparison

to mutation and this probability increases for those instances where total number of possible

feasible solutions is less due to the presence of tight constraints. Hence, to avoid wastage of

time due to repeated failures of crossover operator in generating a feasible solution, if crossover

operator fails for a total of Mutx times, then the crossover operator is not applied further and

the approach uses only mutation operator. It is to be noted that ascertaining uniqueness of a

solution on the basis of different values for both the objectives may discard a solution that is

132

6.5 Steady-state grouping genetic algorithm for QSVRPTW

unique in rare cases. However, it saves lot of computation time as determining uniqueness when

objective function values match requires comparison among routes in terms of composition

whose contribution to the objective value is same.

The proposed mutation operator possesses exploitative characteristics, thus for the genera-

tions coming after Genmax value, only mutation operator is employed and crossover operator is

skipped. The mutation operator in these last generations, serves as a local search to some extent

and results in further improvement in quality of the solutions in the population. In all the cases

where crossover is skipped, the better one among both parents is copied as the offspring and the

mutation is applied on this offspring.

On some instances finding the feasible initial solutions can be very tough due to the existence

of a few feasible solutions only. Thus, if the initial population generation yields only one feasible

solution then again the crossover operator is not used and only mutation operator is employed

to generate the solution. For such instances the proposed approach simply works like a hill

climbing algorithm. It is pertinent to mention that if both parents are identical then the crossover

operator will simply produce the copy of parent. Thus, if BTS procedure selects same member

from population as two parents, then also only mutation operator is used and crossover phase

is skipped. The pseudo-code of proposed GGA-QOS approach is provided in Algorithm 19.

If initial population generation yields only one solution then BTS procedure will assign same

solution to both parents, hence we have not explicitly mentioned this condition in Algorithm 19.

The crossover and mutation operators build a complete solution from a partial solution by

following an iterative process. In this process the unselected customers are inserted iteratively

into best position in the partial solution. The definition of best position varies as per the objective

and it is defined in Section 6.5.3. While creating a complete solution, it is possible that no

feasible position is found for some customer, so that all constraints can be satisfied. In such a

scenario, the variation operators used in proposed approach discards the solution. Literature

contains some VRPTW problems such as in [193, 194], where number of routes are not static.

The aforementioned situation is handled by adding a new route and the customer involved

in violation of constraint(s) is inserted at the beginning of newly added route. Thus in such

VRPTW variants, the crossover and mutation always generate a constraints satisfying solution.

Since in QSVRPTW, the number of routes are fixed for each instance, thus the crossover and

mutation operator need not necessarily produce a feasible solution always. Hence, there is no

choice other than discarding the solution. Subsequent subsections contain description about

other salient features of our GGA-QOS approach.

133

6. QUALITY OF SERVICE VEHICLE ROUTING PROBLEM WITH TIME
WINDOWS

Depot

1

8

610

4

7

9

2

12

5
11

3

route 1

route 2route 3

route 4

(a) Solution

4th route 11 3

3rd route 10 4 7

2nd route 1 8 6

1st route 9 2 12 5

Sequence of customers served

(b) Representation

Figure 6.3: Solution representation

6.5.1 Solution representation

In QSVRPTW, a solution is a set of m routes and each route is represented as a linear sequence

of customers, i.e., if kth route contains |rk | customers, then the route rk contains a linear

permutation of |rk | customers. In a linear permutation, the positions of customers dictates the

sequence in which the customers are being served. Since by default any vehicle starts from the

depot and after serving the customers eventually returns to the depot, hence depot is not included

in solution representation. Figure 6.3 demonstrates the solution representation, by assuming

an example with 12 customers (n=12) and 4 routes (m=4), namely, R = {r1, r2, r3, r4}.
Albeit, 0 (depot) is not included in solution representation, but in computation of any value

the start and end position of any route is assumed as zero. For example, the first route r1 is

〈0, c1
1, c

1
2, c

1
3, c

1
4, 0〉, though we represented it as 〈c1

1, c
1
2, c

1
3, c

1
4〉. Here, c1

1 = 9, c1
2 = 2, c1

3 = 12

and c1
4 = 5, i.e., the first customer in this route is customer 9 and the second one is customer 2,

and so on. Similarly, 3 customers are served in each of the routes r2 and r3 and 2 customers are

served in route r4.

6.5.2 Initial population generation

Several heuristics have been devised for use in initial population generation procedure. Algo-

rithm 18 presents the pseudo-code of initial population generation procedure and the detailed

description of these heuristics are presented below.

1. Sort_Cust heuristic: First, a pool of customers are created by sorting them as per their

134

6.5 Steady-state grouping genetic algorithm for QSVRPTW

latest time (li), in a non-decreasing order. The customer whose latest time is less should

be given more priority over others, this is the reason behind this sorting. Thereafter, an

empty solution with m routes are created. The first customer is picked from the sorted

sequence and inserted into empty solution. Now, the partial solution contains the selected

customer in first position of the first route. The second customer is selected from the

pool and inserted before and after the customer present in solution. It is also inserted at

first position of second route. Thus, now we have total three tentative solutions. Out of

these three solutions, one having better objective is considered as updated partial solution.

The remaining customers are inserted iteratively. In each iteration the ith customer is

selected and evaluated at every possible position in the partial solution and then inserted

into best position. In this way, a complete solution is generated. It is also possible that

some customer cannot be assigned in any route due to violation of constraint(s). In this

case, the solution is simply discarded.

2. Sort_Cust_Rnd heuristic: It differs from Sort_Cust heuristic only in one aspect. Here,

the selection of customer for insertion in partial solution is done in a random manner from

a window of size m, rather than sequentially. A window of size m is considered in pool of

sorted customers and a random customer is selected within this window. After selection

of the customer, window is slid by one position to the right. For example, assume there

are five customers sorted as per their latest time viz., {C5, C2, C4, C1, C3} and number

of vehicles (m) is three. Then a window of size three is considered viz., {C5, C2, C4}
and one customer is randomly selected. For definiteness, let us say the selected customer

is C4 which is at position three. After this selection, the customer at position one will be

moved to position three and the window is slid by one position to the right, i.e., the next

window will be {C2, C5, C1}. Using a sliding window in this manner saved us the cost of

shifting all customers one position left after the position of selected customer and which

is O(n). Here, also the solution is discarded, if for some customer no feasible place can

be found. Last m-1 customers are selected sequentially in this heuristic.

3. Rand_Cust heuristic: Here, a random sequence of customers are considered as pool of

customers, instead of a sorted one. Other than this, it is same as Sort_Cust heuristic.

4. Rand_Sol heuristic: An empty solution is created and thereafter, a random customer is

added at the beginning of the first route. Again, another random customer is inserted into

135

6. QUALITY OF SERVICE VEHICLE ROUTING PROBLEM WITH TIME
WINDOWS

next position in the current route. Following the same process, the ith customer is added

at the next position of previously added customer. If the newly inserted customer does

not satisfy the constraint(s), then all the previously existing positions starting from the

first position of first route are tried for insertion. If any feasible place is found then the

customer is inserted there. Otherwise, a new route is added and this customer is inserted

at the beginning of this newly added route. If at any stage the number of routes exceeds

m, then this process is stopped and solution is discarded. The entire process is repeated

until all customers get assigned to some route. After insertion of all customers, if the

solution contains exactly m routes then this solution is inserted into population, otherwise

it is discarded. This heuristic is developed from the diversity perspective only. Here, a

new route is created only after trying the insertion at every possible position in existing

routes. Thus, this heuristic yields a solution which has fewer routes, and hence, able to

generate a feasible solution most of the times.

5. Feasible_Sol heuristic: After certain number of trials (100 × n), if all of the aforemen-

tioned heuristics fail to generate a feasible solution, then this heuristic is used. It consists

of two phases. In first phase, a population Pγ with γ solutions are generated by using

Sol_Gen function. These γ solutions are actually infeasible solutions and they satisfy

certain criteria, which is explained in the detail in description Sol_Gen function. The

second phase uses Make_Sol function which selects one solution randomly from the Pγ

and try to make it a feasible solution. Whenever Make_Sol function is successful in

generation of a feasible solution, this heuristic terminates and returns the feasible solution.

(a) Sol_Gen function: For each customer, all remaining customers are sorted in non-

decreasing order as per their travel time from the customer under consideration.

This can be visualized as an (n × n) matrix, where the each cell of the first column

is the customer under consideration and remaining (n-1) columns of each row are

the sequence of customers which is sorted by the travel time from the customer

under consideration in non-decreasing order. These (n-1) customers are the possible

choices which can come after the customer under consideration, in a route. The

same sequence of customers is also determined for depot, as depot is the beginning

point of any route. This calculation is done as a prerequisite of this function. This

function builds a solution in two phases.

136

6.5 Steady-state grouping genetic algorithm for QSVRPTW

Phase 1: The process begins with an empty solution with m routes and inserts

customers in an iterative manner. Each iteration inserts customers in m routes. Since

any route begins with depot, so the first reference point of all routes initialized with

depot. A random customer from nearest seven customers from depot is selected and

inserted into first route. Same process is repeated for remaining (m-1) routes. For

next iteration, the previously inserted customer in each route acts as new reference

point and a random customer from nearest seven customers from new reference

point is selected and inserted in each route. If the selected customer is already

assigned into some route or insertion of selected customer results in an infeasible

solution, then a sequential search is started from the first position of the sorted

sequence of reference point customer and an unassigned as well as feasible customer

is determined and inserted into the route. Here, the addition of customer is done

route wise, i.e., after inserting a customer in route x, the next customer is inserted

into route x + 1 and after last (mth) route, we again start from the first route. If

in some route, all customers are visited as per sorted sequence and no feasible

customer is found which can be inserted into next position of the reference point

customer, then the insertion in this route is stopped and remaining routes are tried

for filling more customers as per the aforementioned procedure. The first phase ends

when insertion in any route is not possible. At the end of this phase, we will get a

partial solution with constraint satisfying customers and another set which contains

unassigned customers.

This phase is developed with intention to find a partial solution in which customers

are inserted by following nearest neighbor with some randomness. This heuristic

is developed for finding a feasible solution for very compact instances. The word

compact signifies that the instances has very few (optimal) routes, and hence, the

customers need to be inserted in a very compact manner. The violation of arrival

time constraint is the primary cause behind difficulty in finding a feasible solution

in such instances. The sequence of visiting customers which are near may save

traveling time, thus such a strategy may provide a partial solution in which the less

travel time covers more number of customers.

Phase 2: The output of previous phase contains two sets of customers. First set of

customers are present in partial solution and remaining customers are considered as

unassigned. In this phase, the unassigned customers are sorted in non-decreasing

137

6. QUALITY OF SERVICE VEHICLE ROUTING PROBLEM WITH TIME
WINDOWS

order as per their latest time (li). The intention behind sorting is same as discussed

in Sort_Cust heuristic. Then an iterative process is used to insert the unassigned

customers in some route in partial solution of assigned customers. In every iteration,

the ith customer is picked randomly from a sliding window of customers beginning

at ith position and ending at (i + 4)th position in sorted sequence of unassigned

customer, and inserted into the best position. This sliding window is managed in

the same manner as sliding window of Sort_Cust_Rnd heuristic. If no insertion is

possible then this phase halts and the total number of customers in partial solution is

returned.

This phase follows the insertion of remaining customers as per their latest time,

whereas the former one inserts the customers as per nearest neighbor concept. Both

these phases consider some randomness along with the specific idea of selection of

customer for insertion. Thus, combination of these two phases represent a mix of

two strategies with suitable randomness.

The Sol_Gen function is used to create γ solutions. Here, each solution contains m

routes and some unassigned customers. Thus these are actually infeasible solutions.

If the solution contains 96% or more constraint satisfying customers in m routes

and remaining customers are unassigned, then this solution is added in population

Pγ . Otherwise the solution is discarded and again this function is used to create a

new solution. This function can also produce a feasible solution in some cases, i.e.,

100% constraint satisfying customers in m routes. In such a scenario, Make_Sol

function is not used and this feasible solution is considered as initial solution. Using

this function, γ solutions are created and added in population Pγ . If after a certain

number of attempts (1000 × n), no solution is found which satisfy the above

criteria, then the 96% condition is relaxed to 94%, for all remaining solutions in

Pγ . The value of γ is initialized with 50. If Sol_Gen function fails to provide 50

solutions in MAXTRY attempts then γ is reset to the current number of available

solutions if their number is at least 30. If this number is less than 30, then the

process continues till the number of available solutions reaches 30. The MAXTRY is

set as (10000 × n).

(b) Make_Sol function: This function may take several runs to make a feasible solution.

Here, each run begins by selecting a random solution (Srnd) from Pγ . The solution

138

6.5 Steady-state grouping genetic algorithm for QSVRPTW

Srnd is infeasible due to presence of unassigned customers, and it can be converted

into a feasible solution by inserting all the unassigned customers at feasible positions

in any of m routes. The customers in Srnd are divided into two pools viz. assigned

and unassigned customers. The customers belonging to m routes are considered as

assigned customers, whereas the remaining customers are considered as unassigned

customers. Afterwards, a random number ∈ [1,3] of customers are picked randomly

from the list of assigned customers and added into pool of unassigned customers.

The selection of customers is done iteratively. In each iteration, a random route from

m routes, is selected and a random customer is picked from this route and inserted

into pool of unassigned customers. The customer is picked only if the selected route

contains more than one customer, otherwise this iteration is discarded. This step is

similar to ruin strategy used in mutation operator. The unassigned customers need

to be inserted in m routes. These customers are inserted by following an iterative

process. In each iteration, one customer from the pool of unassigned customers is

selected randomly and tried for insertion in every possible positions in m routes. All

feasible positions in a route is evaluated and best position in a route is remembered.

Similarly, other routes’ best positions are also remembered. Thereafter, one route is

randomly selected and the customer is inserted into best position in this route. If

no feasible place is found for the selected customer then this function go for next

run. Before going for next run, the function updates the previously selected solution

Srnd, if there is an increment in number of customers in m routes, as compared to

original Srnd solution. The best position is defined in Section 6.5.3.

This heuristic is particularly useful for those instances, where the number of routes

m is equal to number of routes in optimal solution of this instance when solved

as VRPTW. It is found that the unassigned customers mostly violate arrival time

constraint represented by eq. (6.8), in the solutions generated by Sol_Gen function.

The arrival time constraint forces a customer to be inserted into a position in

some route, where it satisfies the time window of customer. The violation of this

constraint implies that no place is found where the customer’s time window is

satisfied. Since, Make_Sol function also removes some assigned customers, thus

inserting the unassigned customer at best place guarantees that this customer is

inserted at a position where its service time is least away from starting time (ei)

of the customer. Hence such insertion will have minimal impact on the starting

139

6. QUALITY OF SERVICE VEHICLE ROUTING PROBLEM WITH TIME
WINDOWS

time of other customers, and hence, further chances of insertion of other unassigned

customers may increase. While selection of a random route and insertion at best

position of this route is done from the perspective of diversity.

If this function is unable to create a feasible solution after (MAXTRY × 10) runs,

then Sol_Gen function is reused to generate a new set of Pγ solutions and then again

Make_Sol function is employed to create a feasible solution. In our experiment, this

situation had occurred for a few times only.

The proposed heuristics can be classified into three categories. This classification is

based on the quality of solutions generated by the particular heuristic. The Sort_Cust,

Sort_Cust_Rnd and Rand_Cust heuristics follow a greedy approach with some

randomness, hence they generate better quality initial solutions. So, these heuristics

are used for superior quality initial solutions in the population. Rand_Sol Heuristic

generates purely random solutions. It is used to add diversity in initial solutions.

The manner in which these heuristics are utilized for initial population generation is

shown in Algorithm 18. Sort_Cust heuristic being purely greedy generates only a

single solution, viz. the first solution in the initial population. For generating other

solutions, the first preference is given to Sort_Cust_Rnd and Rand_Cust heuristics,

which are used with equal probability in a mutually exclusive manner, and only

when they fail, Rand_Sol heuristic is used. In tougher instances, we have observed

that the greedy based heuristics sometime provide a feasible solution and sometimes

they fail to get either a feasible or a unique solution. Whenever these heuristics fail,

the Rand_Sol Heuristic is used. The Rand_Sol Heuristic bestows two advantages.

First, the solution generated by this adds diversity in population. Second, the greedy

heuristics may take a large number of attempts to generate p unique solutions,

thus it is advantageous to generate some random solutions in less amount of time.

Feasible_Sol heuristic is used only in case when all other heuristics have failed in

finding any feasible solution. Hence, the sole purpose of this heuristic is to generate

a feasible solution.

In order to demonstrate the behavior of the proposed heuristics, an experiment

is conducted. Two versions of initial solution generation phase are used in this

experiment and objective fc(x) is considered. In this experiment, we have used the

instance C109 with 100 customers. In the first version, we have used the greedy

based heuristics, namely, Sort_Cust, Sort_Cust_Rnd and Rand_Cust heuristics (in

140

6.5 Steady-state grouping genetic algorithm for QSVRPTW

Algorithm 18: Pseudo-code of Initial population generation
Input: p (population size), m (number of vehicles)
Output: BESTsol

// BESTsol is the best solution in population.
// u01 is a uniform variate between [0,1).
pi← 1;
Itr← 1;
Sol← Sort_Cust Heuristic(); // Sol is the solution generated by Sort_Cust Heuristic.
if (Sol is a feasible solution) then

pi← pi + 1 ;

while (pi < p) do
if (u01 < 0.5) then

Sol← Sort_Cust_Rnd Heuristic();

else
Sol← Rand_Cust Heuristic();

if (Sol is a feasible solution and unique) then
pi← pi + 1 ;

else
Sol← Rand_Sol Heuristic();
if (Sol is a feasible solution and unique) then

pi← pi + 1 ;

Itr← Itr + 1;
// n is the number of customers.

if (Itr > 100 × n) then
if (pi > 0) then

p← pi; // p is reset to pi.

else
p← 1;
Sol← Feasible_Sol Heuristic();

return (BESTsol) ;

the same manner as shown in Algorithm 18) to generate the initial population. In

this version, Rand_Sol Heuristic is not used at all. On the other hand, in the second

version, only Rand_Sol Heuristic is used. Both versions generate population of

size p. Figure 6.4 demonstrates the convergence behavior of proposed approach

with greedy based heuristics and random solution based heuristic. The greedy

heuristic version provides superior quality best solution in initial population, with

objective value 40028.25, whereas, the random heuristic yields best solution in

initial population, with objective value 47137.75. Thus, greedy heuristics provide

better quality initial solutions. The greedy version converges faster and generates the

best solution in 2 × 105 iterations, while random heuristic version takes 5 × 105

iterations and still provide a solution inferior than greedy version. The objective

value of final solutions yielded by greedy and random versions are 37448.92 and

37620.08, respectively. Thus, greedy based heuristics provide better quality initial

141

6. QUALITY OF SERVICE VEHICLE ROUTING PROBLEM WITH TIME
WINDOWS

solutions as well as faster convergence with better quality final solution. While,

Rand_Sol Heuristic adds diversity in initial population.

0 100 200 300 400 500 600
·103

37.45
37.50
37.55
37.60
37.65
37.70
37.75
37.80
37.85
37.90
38.00

40.00

47.14

·103

Iterations

f c
(x

)

Rand_Sol Heuristic
Greedy based Heuristics

Figure 6.4: Comparison of convergence of approach with greedy based and random based heuristics
on instance C109.

6.5.3 Crossover operator

In the proposed GGA-QOS approach, the crossover operator is designed by considering the

characteristics of QSVRPTW as well as the characteristics of the two objectives addressed in

this chapter. The crossover operator used here are based on the crossover operators presented in

[42, 142]. This crossover operator generates an offspring in two stages.

In the first stage, an empty solution is created and the offspring is constructed in an iterative

manner. In each iteration, one parent is picked randomly with equal probability and the most

promising route in this parent is found. The most promising route is added in offspring by

incrementing the number of routes in the offspring by one. This route is discarded from the list

of routes of selected parent. The customers present in the most promising route are removed

from their respective routes in the other parent one-by-one. After removing a customer, all the

subsequent customers on the affected route are shifted one place backward. The entire procedure

is continued for m times, so that a partial solution having m routes is obtained.

Evidently, at the end of first stage, some customers left unallocated and should be allocated

in some route of the partial solution created by first stage. The second stage creates a complete

solution in an iterative manner. In each iteration, an unallocated customer is selected randomly

142

6.5 Steady-state grouping genetic algorithm for QSVRPTW

and get assigned at the best position in the partial solution. The best position is defined as

per the objective under consideration. The selected customer is checked at every position in

each route and a set of constraints satisfying positions are determined. Out of all these feasible

positions, the position incurring the least objective value is considered as best position. If no

position satisfying all the constraints is found then the crossover operator discards the solution

and this scenario incurs an unsuccessful crossover operation.

Since two objectives are considered for this problem, hence, the criteria of most promising

route and best position vary as per the objective and their details are given below.

fc(x): The total service time objective minimizes the sum of all times when customers start

to be served. If in a route the sum of all service times of customers is less while more number of

customers are served, then selection of such route may provide a solution having minimum total

service time. Hence, for objective fc(x), the route having minimum ratio of the total service

time per customer in the route, is defined as most promising route. The best position for fc(x)

is the place which leads to the minimum increase in total service time.

fr(x): This objective also shares the similarity with fc(x), as here we minimize the average

of relative time that customers have to wait within their respective time windows to get the

service. Thus, here the most promising route is the route having smallest ratio (sr) of sum of

the relative time that customers have to wait to the number of customers in the route. More

precisely, the ratio sr is represented by eq. (6.15). Let rk represents the kth route such that,

rk=〈ck1, . . . , cknk〉 is the order of the customers in kth route which contains nk customers and cki
denotes the customer served at ith place in this route.

sr =
1

nk

nk∑
i=1

(scki − ecki)
(lcki − ecki)

. (6.15)

Here, the best position in a route is the position which incurs least increment in this objective

function.

6.5.4 Mutation operator

The mutation operator used in this work are based on delete and re-insert strategy and consists

of two phases. The first stage selects some customers and deletes them from the solution. The

complete solution is again recreated by following a greedy approach during the second stage.

In mutation procedure, one or more route is selected randomly and some customers are

removed from these route(s). We have used two variants of mutation operator, viz. MUT1

143

6. QUALITY OF SERVICE VEHICLE ROUTING PROBLEM WITH TIME
WINDOWS

Algorithm 19: Pseudo-code of GGA-QOS for QSVRPTW
Input: p (population size), VRPTW instance, n (number of customers), C (Vehicle capacity), OptVeh (Number of routes in optimal solution of the instance)
Output: Best solution found so far

// u01 is a uniform variate between [0,1)

m←b OptVeh + OptVeh× 15
100
e; // m is number of routes in solution

BESTsol← Initial population generation(p); // BESTsol is the best solution in population
NoImp← 0; // NoImp is the count for which no improvement in best solution in successive generations
Itr← 0; // Itr represents generations
UnsuccCR← 0; // UnsuccCR is the number of times Crossover fails to yield a feasible solution
while (NoImp < Nmax) do

Par1← BTS(p); // Select parents using binary tournament selection
Par2← BTS(p);
flag_CR← 1;
if (Itr >Genmax) OR (UnsuccCR>Mutx) OR (Par1 is same as Par2) then

flag_CR← 0;
if (Par1 is same as Par2) then

offspring← Par1; // Copying parent solution to offspring

else
offspring←Betterobj (Par1,Par2); // The parent whose objective value is better

if (flag_CR is equal to 1) then
Cx←Crossover(Par1,Par2); // Cx is 1 if Crossover yields a feasible solution
if (Cx is equal to 1) then

offspring← Solution after crossover;

else
UnsuccCR← UnsuccCR +1;
offspring←Betterobj (Par1,Par2);

if (u01 < 0.5) then
Mx←MUT1(offspring);

else
Mx←MUT2(offspring);

if (Mx is equal to 1) then
mutant← Solution after mutation;

// Mx is 1 if Mutation yields a feasible solution
if ((Cx is equal to 1) and (Mx is equal to 1)) then

if (offspring is unique) and (better than worst solution as well as mutant) then
// worst solution is the solution with poorest objective value in the population
Replace worst solution with offspring;

else if (mutant is unique) and (better than worst solution) then
Replace worst solution with mutant;

else if (Cx is equal to 1) then
if (offspring is unique) and (better than worst solution) then

Replace worst solution with offspring;

else if (Mx is equal to 1) then
if (mutant is unique) and (better than worst solution) then

Replace worst solution with mutant;

if (Newly added solution is better thanBESTsol) then
BESTsol← Newly added solution;
NoImp← 0;

else
NoImp←NoImp + 1;

Itr← Itr + 1;

return (BESTsol);

and MUT2 with equal probability in a mutually exclusive manner. The first variant uses two

versions of route selection strategy, in a mutually exclusive way. The first version is used with

probability pm which selects a route in a random manner and some customers ∈ [1,nk − 1]

are removed randomly from this route. Here, nk is the number of customers in selected route.

With remaining probability (1− pm), second version is used which removes nc customers in an

iterative manner. In each iteration, a random route is selected and a random customer from this

144

6.6 Computational results

route is removed. If the chosen route contains only one customer then this iteration is discarded,

as the number of routes are fixed and removing the only customer from a route will make the

solution infeasible.

The second variant of mutation operator selects a route randomly. Assume selected route

contains nk customers, then two positions ∈ [1,nk] are selected randomly. The customers

between these two selected positions (including) are removed from the route. In case, if the

selected positions are first and last positions of the route then the start position is reassigned as

second position, so that first customer remains in the route.

The removed customers constitute a list of unassigned customers which need to be inserted

into best position. The complete solution is obtained by following an iterative process. Each

iteration selects a customer from the list of unassigned customers, in the same sequence in which

they have been removed, and assign the selected customer at best position in some existing route.

If no feasible place is found due to disagreement of constraint(s), then the solution is discarded.

Here, the best position is same as defined for fc(x) and fr(x) objectives, in Section 6.5.3.

6.6 Computational results

This section presents the experimental results of the proposed GGA-QOS approach and its

comparison with the state-of-the-art approach of [160]. Our proposed approach has been

implemented in C language and executed on a Linux based PC equipped with 3.10 GHz Intel

Core i5 processor and with 8 GB of RAM.

The values for various parameters of GGA-QOS that we have used in all our experiments

are as follows: p is the population size which is set to 100. The probability pbts used in BTS

procedure and it is assigned with a value 0.7. The parameterMutx andGenmax used to employ

only mutation in proposed approach is set as 2000× n and 15000× n, respectively, where n

is the number of customers. The probability pm and parameter nc in mutation operator is set

as 0.75 and 4, respectively. If there is no improvement in best solution for consecutive Nmax

iterations then the GGA-QOS approach terminates and it returns the best solution found so

far. The parameter Nmax is set to 5000 × n. Our approach is executed for 10 independent

times on each instance like the GRASP-VNS approach of [160]. All these parameter values

are obtained by empirically studying the performance of proposed approach in numerous trials.

These parameter values are able to fetch good results on most of the instances, but these cannot

be assumed to be optimal for all the instances.

145

6. QUALITY OF SERVICE VEHICLE ROUTING PROBLEM WITH TIME
WINDOWS

We have used same test instances, viz. Solomon dataset [195] as used in [160] to evaluate

the performance of the proposed approach. This dataset consists of a total of 56 instances with

100 customers in each. These instances are divided into six classes, namely, C1, R1, RC1,

C2, R2 and RC2. These instances are designed by considering four factors: geographical data,

the percentage of time constrained customers, quantity of customers which can be served by

one vehicle, and tightness and positioning of the time window [160, 195]. On the basis of

geographical data, three varieties of instances are generated, instances of C types contains

clustered customers, R contains random customers and RC instances have a mix of random

and clustered customers. With reference to quantity of customers served by each vehicle, in

set 1 (C1, R1 and RC1) fewer customers are allowed to be served, whereas in set 2 (C2, R2

and RC2) more number of customers are served by each vehicle. The number of customers

are controlled by the parameter capacity of vehicle. In each type of instances (R/C/RC), the

positions of customers are same, but the width of the time window vary from a range of wider

window to a very tight window.

As already stated, in QSVRPTW, the number of routes (m) is fixed. Expósito et al. [160] set

the number of routes in their QSVRPTW instances to number of routes in optimal solution of

classical VRPTW plus 15% rounded to the nearest integer. The GRASP-VNS approach of [160]

was executed on only five instances by considering 25 and 50 customers. The results of these five

instances are made available by the authors of [160] in the Google Drive 1. The performance of

GGA-QOS approach is evaluated by making a detailed comparison with GRASP-VNS approach

presented in [160] on these instances.

Table 6.4 and Table 6.5 present the comparison of GGA-QOS and GRASP-VNS for 25 and

50 customers, respectively. In each Solomon instance the first customer is the depot, hence first

26 customers are considered in case of instance with 25 customers. In these tables, the first

column reports the name of the instances. Each instance results are presented in three rows,

where each row corresponds to a specific objective. The third and fourth column represent the

bound 1 (B1) and bound 2 (B2) respectively. These two bounds for each objective have been

discussed in Section 6.4. To be more specific, theB1 andB2 for objective fc(x) represents LB1

and LB2, for objective fs(x) represents UB1 and UB2. The first lower bound for objective

fr(x) is zero, and hence, B1 everywhere for this objective is zero and B2 represents the lower

bound (LB) value for this objective as discussed in Section 6.4. Last six columns reports the

results of the two approaches. For each approach, the results are reported in terms of Best, Avg

1https://goo.gl/pXStrU

146

https://goo.gl/pXStrU

6.6 Computational results

Table 6.4: Results on instances with number of customers=25.

Instances size = 25 Customers
GRASP-VNS GGA-QOS

Instance m Objective B1 B2 Best Avg Time Best Avg Time

C109 3
fc(x) 7282.00 8863.00 9288.10 9419.63 163.00 9288.10 9289.56 1.27
fs(x) 9000.00 7419.00 8185.63 7661.88 186.00 6993.90 6992.44 1.27
fr(x) 0.000 0.175 0.011 0.152 93.00 0.223 0.223 1.72

C201 2
fc(x) 39392.00 39467.00 39392.00 39392.00 24.00 39488.25 39488.25 1.69
fs(x) 4000.00 3925.00 3903.75 3903.75 25.00 3903.75 3903.75 1.69
fr(x) 0.000 0.018 0.101 0.113 32.00 0.024 0.024 1.79

R107 5
fc(x) 1219.00 1329.00 1659.06 1817.38 120.00 1793.34 1793.34 0.73
fs(x) 2912.00 2802.00 2443.24 2293.06 170.00 2337.66 2337.66 0.73
fr(x) 0.000 0.021 0.063 0.159 79.00 0.161 0.161 1.32

RC106 3
fc(x) 1981.00 2031.00 2018.39 2018.39 40.56 2425.24 2425.24 0.52
fs(x) 1500.00 1450.00 2688.17 2329.71 89.00 1055.76 1055.76 0.52
fr(x) 0.000 0.033 0.097 0.176 47.40 0.296 0.296 0.60

RC203 3
fc(x) 5374.00 5594.00 6776.53 6979.54 102.00 6155.26 6155.26 1.61
fs(x) 13288.00 13068.00 12885.00 11167.00 126.00 12506.74 12506.74 1.61
fr(x) 0.000 0.009 0.033 0.106 124.00 0.034 0.034 1.74

and Time, where Best is the best solution found, Avg is the average solution quality and Time is

the average execution time in seconds over 10 independent runs. In these tables, our results are

reported in bold whenever our proposed approach performs better.

Table 6.5: Results on instances with number of customers=50.

Instances size = 50 Customers
GRASP-VNS GGA-QOS

Instance m Objective B1 B2 Best Avg Time Best Avg Time

C109 6
fc(x) 14829.00 17712.00 18946.87 21543.34 284 18541.7 18578.26 9.50
fs(x) 18000.00 15117.00 17173.46 16752.5 271 14287.3 14250.74 9.50
fr(x) 0.000 0.160 0.011 0.1528 169 0.206 0.206 18.02

C201 3
fc(x) 76458.00 76458.00 unknown unknown unknown 76458.31 76458.31 13.38
fs(x) 8000.00 8000.00 unknown unknown unknown 7999.69 7999.69 13.38
fr(x) 0.000 0.000 0.072 0.098 41 0.000 0.000 15.09

R107 8
fc(x) 1988.00 2270.00 2947.34 3517.84 231 3608.55 3650.93 4.10
fs(x) 5631.00 5349.00 4652.78 4297.86 249 4010.45 3968.07 4.10
fr(x) 0.000 0.026 0.019 0.024 173 0.250 0.251 7.29

RC106 7
fc(x) 3818.00 3852.00 4561.67 4712.56 238 4657.51 4664.49 2.69
fs(x) 3000.00 2966.00 2897.65 2706.27 177 2160.49 2153.51 2.69
fr(x) 0.000 0.011 0.012 0.14 93 0.280 0.282 2.87

RC203 5
fc(x) 8320.00 8857.00 10973.91 12203.7 239 10282.08 10282.08 9.24
fs(x) 25690.00 25153.00 23789.72 21754.8 258 23727.92 23727.92 9.24
fr(x) 0.000 0.011 0.071 0.132 213 0.050 0.050 10.96

147

6. QUALITY OF SERVICE VEHICLE ROUTING PROBLEM WITH TIME
WINDOWS

Table 6.6: C201 instance with 25 customers.

CUST NO. XCOORD. YCOORD. DEMAND EARLIEST TIME LATEST TIME UNLOADING TIME
0 40 50 0 0 3390 0
1 52 75 10 311 471 90
2 45 70 30 213 373 90
3 62 69 10 1167 1327 90
4 60 66 10 1261 1421 90
5 42 65 10 25 185 90
6 16 42 20 497 657 90
7 58 70 20 1073 1233 90
8 34 60 20 2887 3047 90
9 28 70 10 2601 2761 90

10 35 66 10 2791 2951 90
11 35 69 10 2698 2858 90
12 25 85 20 2119 2279 90
13 22 75 30 2405 2565 90
14 22 85 10 2026 2186 90
15 20 80 40 2216 2376 90
16 20 85 40 1934 2094 90
17 18 75 20 2311 2471 90
18 15 75 20 1742 1902 90
19 15 80 10 1837 1997 90
20 30 50 10 10 170 90
21 30 56 20 2983 3143 90
22 28 52 20 22 182 90
23 14 66 10 1643 1803 90
24 25 50 10 116 276 90
25 22 66 40 2504 2664 90

Table 6.6 represents the screen-shot image of C201 instance with 25 customers. For this

instance, the number of routes (m) are 2. Hence, any solution for this instance will have exactly

two routes. The minimum value of objective fc(x) can be the sum of earliest time of all the

customers, as discussed in Section 6.4. B1 is the sum of earliest time of all customers, which

is 39392.00 for this instance. In [160], authors claimed that GRASP-VNS yields a solution for

this instance with the objective fc(x) is 39392.00, which is not possible. In Table 6.6, there

are three customers, viz. customer 5, 20 and 22 whose earliest time is less than the minimum

unloading time (90.00) and since, the number of routes are only two, so definitely one of these

three customers will be served at second position in one of the route. Thus, vehicle will reach

to this customer after serving first customer, hence after the unloading time (90.00). Thus the

vehicle arrival time for this customer cannot be its earliest time. Hence, we cannot get value

(39392.00) for the objective fc(x) in case of instance C201 with 25 customers. We found

mistakes in the results obtained by GRASP-VNS for some other instances too. These results

violate the bounds computed by us and are reported with underline in both the tables. Thus,

comparison of the results of GRASP-VNS with GGA-QOS is not meaningful at least for such

148

6.6 Computational results

instances (this raises doubt about the correctness of results on other instances too). Also, the

closeness of obtained results of GGA-QOS with bounds reveals the effectiveness of GGA-QOS

approach for QSVRPTW problem. The result of GRASP-VNS for objectives fc(x) and fs(x) are

not reported for C201 instance with 50 customers. The instance C201 contains m value equal to

the number of routes in its optimal solution, hence it is possible that GRASP-VNS might not have

found any feasible solution for any of these objectives. Our approach is able to find solutions for

all Solomon instances, which also adds as an advantage of GGA-QOS approach for QSVRPTW

problem. As far as comparison of execution times are concerned, GRASP-VNS were executed

on a PC equipped with 3.16 GHz Intel Core 2 Duo processor and 4 GB RAM which is different

from the system used to execute GGA-QOS, hence it is not possible to compare the execution

times precisely. However, rough comparison can always be made based on information available

in public domain about the relative speeds of two processors, which indicates our system to be

around 2 times faster. Even after compensating for this difference in processing speeds, we can

safely say that the proposed GGA-QOS approach is faster than GRASP-VNS.

We have executed our approach on additional larger Solomon instances with all the cus-

tomers, i.e., 100 customers. Following Expósito et al. [160] we have considered only those

instances for which optimal solution for VRPTW is known for n=100. Out of 56 instances,

the optimal solution is known for 37 instances and these solutions are available online 1. The

number of routes in these instances are also set equal to number of routes in optimal solution of

classical VRPTW plus 15% rounded to the nearest integer like Expósito et al. [160].

Table 6.7 and Table 6.8 reports the results obtained by GGA-QOS for all 37 Solomon

instances. As already mentioned in Section 6.5, there are two versions of GGA-QOS, the former

is developed to address fc(x) and fs(x) objectives, while the latter one is for fr(x) objective.

The results of GGA-QOS for fc(x) and fs(x) are reported in Table 6.7, whereas results for

fr(x) are reported in Table 6.8. In Table 6.7, the first column represents the name of instance.

The remaining four columns provides the values of two bounds, best solution and average

solution quality for each objective, respectively. The last column presents the average execution

time in seconds. In Table 6.8, the first column represents the instance, second column provides

the number of routes in optimal solution of the corresponding VRPTW instance and the third

column is the number of routes (m) calculated as number of routes in optimal solution plus

15% rounded to the nearest integer. The last four columns provides the lower bound value, best

solution, average quality solution and the average execution time in seconds, respectively, for

1http://web.cba.neu.edu/~msolomon/problems.htm

149

http://web.cba.neu.edu/~msolomon/problems.htm

6. QUALITY OF SERVICE VEHICLE ROUTING PROBLEM WITH TIME
WINDOWS

each instance. The first lower bound for fr(x) is zero for all instances, hence it is not reported

in Table 6.8.

Table 6.7: Results of GGA-QOS for objectives fc(x) and fs(x) respectively.

fc(x) fs(x)
Instance LB1 LB2 Best Avg UB1 UB2 Best Avg Time
C101 42680 42896 43517.93 43640.04 6076 5860 5238.07 5115.96 10.56
C102 30083 35499 38536.86 38976.59 32569 27153 24115.14 23675.41 29.68
C103 21537 34485 37693.38 37899.46 58849 45901 42692.62 42486.54 35.09
C104 10258 33413 36994.25 37125.15 85294 62139 58557.75 58426.85 78.45
C105 39916 40647 41494.29 41621.78 12161 11430 10582.71 10455.22 28.16
C106 38374 39354 40865.69 41094.36 15615 14635 13123.31 12894.64 25.82
C107 37298 38563 39398.06 39490.65 18000 16735 15899.94 15807.35 30.93
C108 34722 36943 38735.59 38869.18 24328 22107 20314.41 20180.82 36.48
C109 29833 35342 37388.12 37537.03 36000 30491 28444.88 28295.97 44.18

C201 147016 148965 154679.88 154690.27 16000 14051 8336.12 8325.73 84.64
C202 112008 145939 154679.88 155728.80 93774 59843 51102.12 50053.20 324.72
C203 73647 145685 154659.93 154927.02 171482 99444 90469.07 90201.98 1770.00
C204 39959 145684 154653.24 155910.50 249258 143533 134563.76 133306.50 511.74
C205 139323 146689 154621.35 154621.35 32000 24634 16701.65 16701.65 82.37
C206 131290 146528 154621.35 154623.73 48664 33426 25332.65 25330.27 371.19
C207 124373 146528 154612.80 154615.17 61232 39077 30992.20 30989.83 195.75
C208 124264 146528 155709.05 155812.92 64000 41736 32554.95 32451.08 104.48

R101 9648 9648 9666.68 9667.59 1000 1000 981.32 980.41 18.29
R102 7503 7543 8120.35 8127.89 5739 5699 5121.65 5114.11 23.28
R103 5063 5615 7494.01 7585.22 10299 9747 7867.99 7776.78 37.50
R104 2615 4447 7390.93 7425.51 14831 12999 10055.07 10020.49 37.96
R105 8673 8673 8922.19 8939.16 3000 3000 2750.81 2733.84 31.02
R106 6769 6869 7943.20 7985.49 7239 7139 6064.80 6022.51 28.78
R107 4559 5339 7893.94 8003.69 11299 10519 7964.06 7854.31 27.39
R109 7301 7301 8094.81 8152.65 5889 5889 5095.19 5037.35 26.64
R110 6018 6027 7603.75 7687.16 8650 8641 7064.25 6980.84 32.58
R111 6135 6147 7635.76 7686.08 9310 9298 7809.24 7758.92 39.83

R201 39121 39121 39164.75 39164.75 11596 11596 11552.25 11552.25 72.77

RC101 9182 9182 9595.73 9637.24 3000 3000 2586.27 2544.76 208.43
RC102 7113 7203 8547.58 8572.31 7146 7056 5711.42 5686.69 31.17
RC103 4788 5556 8641.01 8732.35 11250 10482 7396.99 7305.65 21.25
RC105 8259 8259 8797.74 8837.93 5433 5433 4894.26 4854.07 24.38
RC107 6412 6494 8336.66 8408.92 8821 8739 6896.34 6824.08 20.28
RC108 5509 5858 8329.06 8398.78 11233 10884 8412.94 8343.22 23.16
RC201 37118 37118 37134.33 37134.33 12000 12000 11983.67 11983.67 63.62
RC202 28979 29224 30372.60 30375.62 31896 31651 30502.40 30499.38 64.40
RC205 32796 32797 33080.57 33080.57 22306 22305 22021.43 22021.43 72.14

The GRASP-VNS approach is tested only on five instances and that too for only upto 50

customers. Our proposed approach is tested on all 37 Solomon instances (with known optimal

solution when solved as classical VRPTW) and that too with maximum size, i.e., 100 customers,

thus GGA-QOS approach can be considered as first approach suitable for all instances for

QSVRPTW problem. The execution time is very less as compared to GRASP-VNS approach,

thus our approach can find a better quality solution in shorter running time on most of the

150

6.6 Computational results

instances. On some instances, it is found that finding a feasible solution is very tough due to the

presence of tight constraints and in such cases Feasible_Sol heuristic is used. These situation

occurs particularly for the instances where number of routes in optimal solution is equal to m,

such as in C2 types instances. Thus, sometimes finding a feasible solution in initial population

itself is very hard and Feasible_Sol Heuristic tries to find a feasible solution by making several

attempts, and hence, GGA-QOS approach consumes relatively large time on such instances. For

example, the execution time for C203 is more in comparison to other instances.

Table 6.8: Results of GGA-QOS for objectives fr(x).

OptVeh m fr(x)
Instance LB Best Avg Time
C101 10 12 0.024 0.147 0.161 8.21
C102 10 12 0.047 0.163 0.171 35.88
C103 10 12 0.113 0.195 0.207 46.58
C104 10 12 0.203 0.273 0.278 98.04
C105 10 12 0.041 0.138 0.149 33.29
C106 10 12 0.025 0.151 0.169 33.76
C107 10 12 0.070 0.117 0.125 71.54
C108 10 12 0.062 0.155 0.167 92.37
C109 10 12 0.153 0.212 0.218 131.65

C201 3 3 0.121 0.479 0.480 85.70
C202 3 3 0.103 0.160 0.169 349.52
C203 3 3 0.218 0.253 0.257 1807.04
C204 3 3 0.321 0.355 0.361 593.43
C205 3 3 0.230 0.478 0.478 85.57
C206 3 3 0.215 0.473 0.473 403.44
C207 3 3 0.176 0.391 0.394 208.87
C208 3 3 0.347 0.491 0.492 100.42

R101 20 23 0.000 0.019 0.020 12.55
R102 18 21 0.001 0.045 0.046 25.52
R103 14 16 0.025 0.162 0.167 29.89
R104 11 13 0.085 0.272 0.279 64.81
R105 15 17 0.000 0.081 0.089 25.97
R106 13 15 0.004 0.147 0.156 37.91
R107 11 13 0.036 0.254 0.262 38.40
R109 13 15 0.000 0.127 0.145 37.40
R110 12 14 0.000 0.184 0.192 39.89
R111 12 14 0.000 0.166 0.174 49.64

R201 8 9 0.000 0.003 0.003 79.79

RC101 15 17 0.000 0.138 0.151 154.03
RC102 14 16 0.004 0.152 0.158 21.84
RC103 11 13 0.034 0.274 0.279 23.84
RC105 15 17 0.000 0.089 0.093 26.09
RC107 12 14 0.005 0.217 0.226 25.92
RC108 11 13 0.019 0.254 0.262 30.95
RC201 9 10 0.000 0.001 0.001 70.09
RC202 8 9 0.002 0.019 0.019 77.50
RC205 7 8 0.000 0.010 0.010 95.10

151

6. QUALITY OF SERVICE VEHICLE ROUTING PROBLEM WITH TIME
WINDOWS

6.7 Conclusions

In this chapter, we have proposed a steady-state grouping genetic algorithm based approach

called GGA-QOS for QSVRPTW. The crossover and mutation operators used in our approach

are developed by exploiting the characteristics of QSVRPTW as well as of the objectives. We

presented two bounds for each objective, which provide an assessment of the quality of solutions

obtained by an approach. The computational results signify the superiority of the proposed

GGA-QOS approach over the state-of-the-art approach for QSVRPTW. The computational results

show that our perform well both in terms of quality of solution as well as the execution time. We

have devised several heuristics which is able to provide feasible solution for tougher instances

also. This is another advantage of our proposed approach.

152

Chapter 7

Multiobjective Vehicle Routing
Problem with Time Windows

7.1 Introduction

The vehicle routing problem with time windows (VRPTW) intends to find the assignments and

routing of vehicles under the given constraints so that the cost is optimized. In VRPTW, the

cost can be number of vehicles/routes, total distance traveled by all vehicles, total travel time,

etc. Several previous studies considered VRPTW as a single objective problem. For example,

[177] and [176] presented approaches based on simulated annealing and genetic algorithm

respectively to minimize the total travel distance as the sole objective. Literature also contains

several research studies in which VRPTW is addressed as a multiobjective problem. Often,

two objectives, viz. minimization of total travel distance and minimization of number of routes

are considered. In most of such problem variants, multiple objectives are transformed into a

single-objective by using scalar techniques like the one presented in [173].

The multiobjective VRPTW, referred to as MOVRPTW in the literature, may have objectives

so that the optimization of one objective may lead to deterioration in the values of other

objectives. Further, relative importance of different objectives may vary from one domain to

another or from one scenario to another. Therefore, instead of finding a single solution for

VRPTW, it is desirable to present a set of solutions having trade-offs among different objectives,

as the preference of decision maker may not be known a priori [196]. Thus, VRPTW is primarily

a multiobjective optimization problem (MOP). However, there exist only a few works in the

literature which address multiobjective VRPTW. The main characteristics of multiobjective

153

7. MULTIOBJECTIVE VEHICLE ROUTING PROBLEM WITH TIME WINDOWS

approaches is to handle all the objectives with the same preference, and hence, these approaches

should generate a set of Pareto optimal solutions. [196], [197], [198], [199] and [200] report

approaches which considered VRPTW as a bi-objective problem. However, these approaches

were tested on the widely used Solomon’s problem instances [195]. The Solomon’s problem

instances [195] were originally proposed for single-objective VRPTW, i.e., minimizing the total

travel distance as the sole objective. [201] and [202] analyzed the conflicting nature of various

objectives in Solomon’s instances [195], and concluded that the Solomon’s instances do not

represent the ideal benchmark scenarios for multiobjective VRPTW due to the following reasons

[201]:

1. Dependence relationships between objectives are weak in Solomon’s instances.

2. The data in Solomon’s instances are based on Euclidean distance for both travel distance

and travel time, which does not represent a realistic scenario with respect to real-world

applications.

This chapter deals with a general MOVRPTW with five objectives that are used commonly

in various multiobjective VRPTW variants in the literature. This problem was presented by

Castro-Gutierrez et al. in [201] and the five objectives are as follows:

1. Minimizing the number of vehicles,

2. Minimizing the total travel distance by all the vehicles,

3. Minimizing the makespan, i.e., longest travel time among all routes (from/to depot),

4. Minimizing the total waiting time due to early arrivals

5. Minimizing the total delay time due to late arrivals

The significance of these objectives can vary from domain to domain. For example, with

reference to food delivery and healthcare industries, delay time is of utmost importance. Goods

transportation industry may consider total distance traveled as a crucial objective to minimize

than other objectives as consumption of fuel is directly proportional to distance traveled, and

minimizing the total distance traveled by all the vehicles is important from the perspective of

monetary considerations. For small scale industries, minimization of number of vehicle may be

of highest priority in comparison to other objectives. Castro-Gutierrez et al. [201] also presented

154

7.1 Introduction

a set of MOVRPTW instances utilizing the data from a distribution company in Tenerife, Spain.

These MOVRPTW instances are more realistic as well as truly multiobjective in nature as far

as MOVRPTW is concerned. In [201], a nondominated sorting genetic algorithm II (NSGA-II)

[203] based approach is presented which is also the first approach using the new MOVRPTW

instances. These instances are publicly available for download [204].

The NSGA-II approach presented in [201] uses generic crossover and mutation operators

to generate offspring. Generic operators do not exploit the structure of the problem and the

characteristics of the objectives, and therefore may fail to yield high quality solutions. A new

local search-based multiobjective algorithm (LSMOVRPTW) is presented in [193], which

is the second approach for MOVRPTW in the literature. In LSMOVRPTW approach, for

each objective, one local search procedure is devised by considering the problem structure of

MOVRPTW with corresponding objective. First, a solution is randomly selected from the archive

and then all local search procedures are applied iteratively. The newly generated solutions are

updated in the archive by using ε-dominance concept [205, 206]. Computational results and

their analysis presented in [193] show that LSMOVRPTW performed better than NSGA-II

approach presented in [201].

MOVRPTW is a relatively understudied problem as the only approaches mentioned in the

previous paragraph are available in the literature. The LSMOVRPTW uses local search approach

to generate new solutions. Usually, local search approaches are considered as exploitative

in nature and lacks the exploration characteristics. NSGA-II algorithm is a Pareto-based

multiobjective optimization technique that is among most successful techniques in the literature

for addressing multiobjective problems. Despite these facts, LSMOVRPTW is able to beat

NSGA-II approach of [201] quite comfortably due to the generic nature of variation operators

(crossover and mutation) used in the latter approach. These generic variation operators do

not make use of characteristics specific to MOVRPTW and its various objectives, and, hence

lack appropriate exploitation characteristics. As a result, this genetic algorithm yields inferior

solutions in comparison to LSMOVRPTW. This stressed the need for the variation operators

appropriately utilizing the characteristics of MOVRPTW and its various objectives. This has

motivated us to develop such variation operators and a new approach based on NSGA-II

utilizing such variation operators. As our crossover and mutation operators are designed as per

the characteristics of MOVRPTW and the characteristics of each objective, we have a dedicated

crossover operator and a dedicated mutation operator for each objective. Hence, our approach

uses five different crossover operators and five different mutation operators. Another key feature

155

7. MULTIOBJECTIVE VEHICLE ROUTING PROBLEM WITH TIME WINDOWS

of our approach is that for the last 25% generations, crossover is not used and only mutation

is used. This is due to the fact that our mutation operators have better exploitation ability

than our crossover operators. Each mutation operator at these final iterations acts as a local

search to some extent for its respective objective and improves the solution quality further in the

population with respect to its objective. In addition to these two key features, our new NSGA-II

approach differs from the NSGA-II approach of [201] in the manner in which initial population is

generated and parents are selected for crossover and mutation. NSGA-II approach of [201] uses

a constructive method for initial population generation that aims at satisfying first the customers

farthest from the depot. On the other hand, we have used a method similar to the method used

by [193] to generate an initial solution. NSGA-II approach of [201] uses deterministic binary

tournament selection, whereas our method has used probabilistic binary tournament selection.

Computational results on benchmark instances from the literature demonstrate that our approach

is capable of producing superior solutions in comparison to LSMOVRPTW.

The rest of this chapter is organized as follows: Section 7.2 presents the problem formulation

of the MOVRPTW. In Section 7.3, we present an overview of existing approaches for MOVRPTW

and the multiobjective optimization. The proposed NSGA-II approach for MOVRPTW is

presented in Section 7.4. Section 7.5 presents the computational results and their analysis.

Finally, Section 7.6 concludes the chapter.

7.2 Problem definition

This section introduces the notational conventions used and provides a formal definition of

MOVRPTW. We have used the same formulation and notational conventions as presented in

[193]. VRPTW contains a set of vertices v = {0, . . . , N}, where vertex 0 corresponds to depot

and remaining vertices represent customers. The fleet of vehicles depart from the depot in order

to serve the customers, and each vehicle has a capacity C . Each customer i is associated with a

demand of goods gi > 0 and a time window [bi, ei]. The time window constraint represents that

the customer i must be served in-between and including the time bi and ei. In other words, ei

is the latest service time such that the vehicle should arrive at customer i’s location. If vehicle

arrives at customer i’s location before the earliest service time bi, then vehicle must wait until

bi in order to serve the customer. This situation leads to waiting of the vehicle, and, waiting

time will be the difference in time between the earliest service time bi and the arrival time. Each

customer i has a service time si, which is the time taken in delivery of goods after arrival of

156

7.2 Problem definition

vehicle at customer’s location. The time window constraint for depot is [0, e0], i.e., vehicles

start from depot at time 0 and must return to depot on or before time e0. It is considered that

the demand of goods for depot is g0 = 0. Here, dij and tij represent the travel distance and

travel time between vertices i and j respectively. The aim of the MOVRPTW is to find the set

of M routes R = {r1, . . . , rM} with the minimum cost, such that each customer is served

exactly once by some vehicle and each vehicle should start at time 0 & return to the depot on

or before time e0. Let rj represents the jth route such that, rj=〈c(1, j), . . . , c(Nj , j)〉 is the

sequence of customers served in jth route which is having Nj customers and c(i, j) specifies

some customer visited at ith position in this route. Furthermore, the depot is represented as

c(0, j) = c(Nj + 1, j) = 0.

The total travel distance of the jth route is defined as

Distj =

Nj∑
i=0

dc(i,j)c(i+1,j). (7.1)

Here, i = 0 = Nj + 1 represents the depot and dc(i,j)c(i+1,j) provides the distance between

customer i and customer i+ 1.

To find the total travel time, we need to define arrival time and leaving time of a vehicle at a

customer location. Let ac(i,j) be the arrival time and lc(i,j) be the leaving time of vehicle j at

the ith customer c(i, j) in this route. It is pertinent to mention that vehicle j represents the jth

route.

The arrival time is defined as

ac(i,j) = lc(i−1,j) + tc(i−1,j)c(i,j). (7.2)

The leaving time of vehicle j from depot is considered as 0, i.e., lc(0,j) = 0 and tc(i−1,j)c(i,j)

represents the travel time between customer i− 1 and i.

If a vehicle arrives early at a customer location then the vehicle needs to wait until the

earliest service time of this customer. This scenario incurs a waiting time for the vehicle. The

waiting time of vehicle j at ith customer c(i, j) can be computed as

wc(i,j) =

{
0 if ac(i,j) ≥ bc(i,j)
bc(i,j) − ac(i,j), otherwise.

(7.3)

157

7. MULTIOBJECTIVE VEHICLE ROUTING PROBLEM WITH TIME WINDOWS

and the leaving time of vehicle j from ith customer c(i, j) is

lc(i,j) = ac(i,j) + wc(i,j) + sc(i,j). (7.4)

Hence, the total travel time of the route rj can be computed as follows

Tj =

Nj∑
i=0

(tc(i,j)c(i+1,j) + wc(i+1,j) + sc(i+1,j)). (7.5)

The sc(i+1,j) presents the service time of (i+ 1)th customer in the jth route. Here, waiting time

and service time of depot is zero, i.e., wc(Nj+1,j) = 0 and sc(Nj+1,j) = 0. This is due to the

fact there is no service requirement at the depot.

Using above notations, the total waiting time of this route is

Wj =

Nj∑
i=1

wc(i,j). (7.6)

There are two versions of VRP in the context of latest service time. The first version with

hard time windows [196, 197] does not allow the vehicle to arrive at a customer location after

latest service time of that customer. This version of VRP is not very realistic as the travel time

can vary a lot depending on external factors like road and traffic conditions which can be chaotic

and unpredictable [207, 208]. The second version with soft time windows provides a relaxation

to latest service time and allows a small time window violation, since it can not be considered

as a critical breach of service requirements in most practical applications. Literature contains so

many practical applications of VRP with soft time windows, such as in [209, 210, 211, 212]. It

is observed that relaxing the requirements of hard time windows can yield lower cost solutions

requiring fewer vehicles, shorter travel distance and less travel time. Furthermore, VRP with

soft time windows can be considered as a generalization of VRP with hard time windows

[209, 210]. The MOVRPTW considered in this chapter addresses VRP with soft time windows,

i.e., a vehicle is allowed to arrive late within a certain time after the latest service time, also

known as maximum allowed time in the literature. The late arrival causes a delay time for the

vehicle. Let md denotes the maximum allowed time that a vehicle is permitted to arrive after

the end of time window.

158

7.2 Problem definition

The delay time of vehicle j at ith customer of the route is

delayc(i,j) =

{
0 if ac(i,j) ≤ ec(i,j)
ac(i,j) − ec(i,j), otherwise.

(7.7)

Hence, the total delay time of this route is

Delayj =

Nj∑
i=1

delayc(i,j). (7.8)

It is pertinent to mention that, the early arrival of vehicle at a customer’s location results

in waiting time and late arrival of vehicle incurs the delay time, in the route covered by this

vehicle.

The five objectives for MOVRPTW, each of which needs to be minimized, can be stated as

follows:

f1 (number of vehicles):

Minimize f1 = |R| = M ; (7.9)

f2 (total travel distance):

Minimize f2 =
M∑
j=1

Distj ; (7.10)

f3 (makespan, i.e., longest travel time among all routes (from/to depot)):

Minimize f3 = max{Tj |j = 1, . . . ,M}; (7.11)

f4 (total waiting time due to early arrivals):

Minimize f4 =
M∑
j=1

Wj ; (7.12)

f5 (total delay time due to late arrivals):

Minimize f5 =
M∑
j=1

Delayj ; (7.13)

159

7. MULTIOBJECTIVE VEHICLE ROUTING PROBLEM WITH TIME WINDOWS

The objectives f1,f2 and f3 can be visualized as transportation costs. Objective f3 is

also concerned about balancing the drivers’ workloads. On the other hand, f4 and f5 can be

considered as service costs representing the customer satisfaction [207].

The constraints associated with MOVRPTW are stated below:

1. Demand constraint: The total demand of each route rj must be less than or equal to the

capacity of the vehicle, i.e.,

Nj∑
i=1

gc(i,j) ≤ C ∀j ∈ {1, 2, . . . ,M} (7.14)

2. Travel time constraint: The delay time for all vehicles at any customer location must be

less than or equal to the maximum allowed delay time, i.e.,

delayc(i,j) ≤ md ∀i ∈ {1, 2, . . . , N} ∀j ∈ {1, 2, . . . ,M} (7.15)

3. Return time constraint: All vehicles must return to depot before the closing time, i.e.,

ac(Nj+1,j) ≤ ec(Nj+1,j) ∀j ∈ {1, 2, . . . ,M} (7.16)

Thus, we can summarize the MOVRPTW with five objectives addressed in this paper as:

min f = {f1, f2, f3, f4, f5} (7.17)

subject to constraint conditions defined by 7.14–7.16.

7.3 Related work

In this section, we delve into the the previously proposed approaches for addressing MOVRPTW.

Furthermore, we provide a brief description about the basic concepts of multiobjective op-

timization problems (MOPs) for better understanding the terminology used in the proposed

approach.

7.3.1 Existing approaches for MOVRPTW

As already mentioned in Section 7.1, MOVRPTW with five objectives was introduced by

Castro-Gutierrez et al. [201]. At the same time, it was observed that no problem instance

160

7.3 Related work

exists that model real-world characteristics. Most of the existing datasets for MOVRPTW

either do not consider real-world characteristics or are derived from the classic single objective

datasets. In [201], authors proposed a real-world problem instances derived from the data of

a distribution company located in Tenerife, Spain. The MOVRPTW instances presented in

[201] are considered as ideal benchmark instances for MOVRPTW. These datasets are having

real-world characteristics, for example in real-world the travel distance and travel time are often

distinct and asymmetric. One can easily notice the fact that the travel time in urban areas and

in rural areas has a significant difference for the same distance. Similarly, travel time from

location A to B need not be same as travel time taken in traveling from B to A. Furthermore,

[201] considers the triangle inequality violations for both travel distance and travel time, i.e.,

Distik ≥ Distij + Distjk, which are highly prevalent in real-world scenarios. [213] and

[214] have studied the effects of asymmetry and triangle inequality violations on realistic VRP.

The above mentioned points show that the real-world MOVRPTW instances presented in [201]

truly reflect multiobjective nature, and hence, are more desirable to evaluate the performance of

multiobjective optimization approaches.

Castro-Gutierrez et al. [201] used NSGA-II approach on newly proposed MOVRPTW

instances and on well-known Solomon’s problem instances [195]. In NSGA-II approach, the

population initialization uses a constructive method in which the customers farthest from depot

are serviced first. It used three crossover operators, viz. one-point crossover, edge crossover

and generic crossover. It used four kinds of mutation operators, viz. swap, insertion, inversion

and displacement. The goal of using NSGA-II approach was to show that the newly proposed

instances have truly multiobjective characteristics than commonly used Solomon’s problem

instances. The authors conducted a pair-wise comparison between all combinations of objectives.

[201] concluded that the proposed MOVRPTW instances have better dependency relationships in

pair-wise comparisons of the objectives, whereas dependence relationships between objectives

are weak in Solomon’s instances. Hence, the proposed MOVRPTW instances represent ideal

benchmark scenarios for multiobjective VRPTW.

To address MOVRPTW, Zhou and Wang [193] presented a new local search-based multiob-

jective algorithm (LSMOVRPTW). In LSMOVRPTW approach, one local search procedure

is devised for each objective. Initially an archive of solutions is created in an iterative manner.

Five local searches each corresponding to one objective are applied iteratively on a randomly

generated solution. The local search for f1 picks the route with fewest customers and try to

insert these customers in some other routes where the constraints remain satisfied. The local

161

7. MULTIOBJECTIVE VEHICLE ROUTING PROBLEM WITH TIME WINDOWS

search procedures for f2, f3, f4 and f5 use three neighborhood operators. A solution is selected

randomly from the archive and all objective-wise local searches are applied on this solution in

an iterative manner. Each objective-wise local search is used ten times in a continuous manner,

by randomly selecting a neighborhood operator each time. The newly generated solutions are

updated in the archive by using concept of ε-dominance [205, 206].

The performance of LSMOVRPTW is compared with the NSGA-II approach presented in

[201]. Zhou and Wang [193] re-executed this NSGA-II approach in their computing environment,

as the source code of NSGA-II was available for download [204]. Since LSMOVRPTW uses a

series of local searches and there is no explicit concept of generation in this approach, hence

the running time of NSGA-II is used as stopping criteria for LSMOVRPTW approach. The

comparison of results in [193] reveals that the LSMOVRPTW approach outperformed the

NSGA-II approach in almost all the instances.

The NSGA-II approach of [201] uses generic crossover and mutation operators to pro-

duce offspring. These generic operators do not consider the structure of the problem and

the characteristics of the objectives while generating offspring, and thus lack proper exploita-

tion characteristics. This adversely affected the quality of final solutions obtained through

this approach. The LSMOVRPTW presented in [193] uses objective-wise local search. In

LSMOVRPTW approach, for each objective, one local search procedure is devised by consid-

ering the problem structure of MOVRPTW with corresponding objective. Furthermore, local

search approaches are considered as exploitative in nature and lacks the exploration charac-

teristics. In spite of this drawback of LSMOVRPTW and the fact that NSGA-II is among the

most successful multiobjective optimization techniques, NSGA-II approach of [201] performed

much worse than LSMOVRPTW. This created the need for variation operators that can utilize

the structure of MOVRPTW and characteristics of its various objectives in a suitable manner.

Such variation operators facilitates better exploitation thereby aiding the genetic algorithm in

maintaining an adequate balance between exploration and exploitation which is necessary for

finding high quality solutions. To bridge this research gap, we have developed a new approach

based on NSGA-II for MOVRPTW with desired variation operators. As our variation opera-

tors are designed considering the structure of MOVRPTW and characteristics of its various

objectives, an exclusive crossover operator and an exclusive mutation operator are designed for

each objective leading to a total of five different crossover operators and five different mutation

operators. Our proposed NSGA-II approach is able to maintain an adequate balance between

exploration and exploitation owing to these variation operators.

162

7.4 Proposed NSGA-II approach for MOVRPTW

7.3.2 Overview of multiobjective optimization

A multiobjective optimization problem (MOP) can be modeled as:

minF (x) = {f1(x), f2(x), . . . , fm(x)} x ∈ Ω (7.18)

Where Ω denotes the solution space, x is the solution and fi(x) is the ith objective function.

The number of objectives is m, and in most of the cases these objectives conflict one another,

i.e., improvement in value of one objective results in deterioration in values of some others

objectives. A solution x dominates another solution y (represented as x ≺ y), iff fi(x) ≤
fi(y) ∀ i ∈ {1, 2, . . . ,m}, and fi(x) < fi(y) ∃ i ∈ {1, 2, . . . ,m}. In other words, x

dominates y, iff no component of x is larger than the corresponding component of y and at

least one component is smaller [215]. A solution x∗ is said to be Pareto optimal if it is not

dominated by any other solution x ∈ Ω. The set of all Pareto optimal solutions constitute

the Pareto set and the set of their corresponding objective vectors is known as Pareto front

[216]. Any multiobjective algorithm for an MOP intends to find a set of nondominated solutions

which perform well in terms of convergence and diversity. That is, a multiobjective algorithm

considered as a better approach, if it provides a set of nondominated solutions close to and widely

distributed along the Pareto front. Literature contains numerous multiobjective evolutionary

algorithms (MOEAs) to address various MOPs, such as Strength Pareto Evolutionary algorithm

2 (SPEA2) [217], Multiobjective Evolutionary Algorithm based on Decomposition(MOEA/D)

[218], Multiobjective Particle Swarm Optimization (MOPSO) [219] , Generalized Differential

Evolution 3 (GDE3) [220], Pareto Archived Evolution Strategy (PAES) [221], NSGA-II [203].

So far the most popular MOEA in literature is NSGA-II [222]. The reader is referred to [222]

and [223] for a comprehensive survey on various multiobjective evolutionary algorithms.

7.4 Proposed NSGA-II approach for MOVRPTW

This chapter presents a nondominated sorting genetic algorithm II (NSGA-II) [203] approach

with objective-specific variation operators to address the MOVRPTW. Hereafter, our proposed

approach will be referred to as INSGA-II. Literature reveals that NSGA-II is most commonly

used algorithm to address the multiobjective optimization problems due to its salient features

which include fast nondomination sorting procedure, fast crowded distance estimation procedure

and simple crowded comparison operator. NSGA-II was proposed by Deb et al. [203] and the

163

7. MULTIOBJECTIVE VEHICLE ROUTING PROBLEM WITH TIME WINDOWS

simulation results of NSGA-II on various benchmark instances show its superiority over other

multiobjective optimization techniques [224].

Nondomination sorting procedure iteratively sorts the population into different nondomina-

tion levels. First each solution is compared with other solutions. The solutions not dominated by

any other solutions in population are considered as nondominated solutions and they constitute

the first nondominated front. There must be some solutions which are dominated by only the

solutions in first nondominated front. Hence, if we temporarily remove the solutions in the

first front, then we will find the solutions in second nondominated front. Thus the solutions in

first front are discounted temporarily, and the above procedure is repeated to find the second

nondominated front. The same process continues until all solutions in population are divided

into different nondomination fronts. The above mentioned procedure has the overall complex-

ity of O(MN3), where M is the number of objectives and N is the size of the population. In

NSGA-II [203], a fast nondomination sorting procedure is proposed which has the complexity of

O(MN2). The idea is to compute two entities for each solution ρ: (1) domination count nρ, i.e.,

the number of solutions which dominate the solution ρ and (2) Sρ, a set of solutions dominated

by the solution ρ. The computing of these two entities require O(MN2) comparisons. The

solutions with domination count as zero will constitute the first nondominated front. In order to

find the second nondominated front, the solutions in first front are discounted temporarily. Now,

for each solution ρ in first nondominated front, the corresponding domination count of each

member of set Sρ is reduced by one. The solutions which were only dominated by the solutions

in first nondominated front, now must have their domination count as zero and these solutions

will be selected as second nondominated front. The same process is repeated until all fronts are

identified [203].

In the original NSGA [225], the sharing function approach was used to maintain diversity

in the population. There are two difficulties in using sharing function. It requires a sharing

parameter value set by user, and secondly, the complexity of sharing function is O(N2) due

to involvement of comparison of each solution with all others solutions in the population.

To maintain diversity in the population, [203] proposed the fast crowded distance estimation

procedure in NSGA-II. The crowding distance provides the density of solutions surrounding

a particular solution in a nondominated set. The solutions in a nondominated front are first

sorted according to each objective function value in an ascending order of magnitude. Then,

for each objective, the boundary solutions (solutions with smallest and largest values for that

objective) are given an infinite distance value. All other intermediate solutions are assigned

164

7.4 Proposed NSGA-II approach for MOVRPTW

a distance value equal to the absolute normalized difference in the corresponding objective

function values of two adjacent solutions. This computation is done for each objective. The

overall crowding-distance value is the sum of individual distance values corresponding to each

objective. The value of each objective is normalized before computing the crowding distance.

The overall complexity of crowded distance estimation is O(MN logN) [203].

In this work, we have used the NSGA-II framework with objective-wise crossover and

mutation operators, which consider the specific requirements of each objective. The process

begins with initial population generation. The probabilistic binary tournament selection (BTS)

procedure has been used to select two parents for crossover. In this procedure, two solutions are

selected randomly from the parent population. The better solution is selected to be a parent with

probability pbt, otherwise worse one is selected. Here a solution is considered better than the

other if it dominates the other one, and in case if no one dominates each other, then the solution

having more crowding distance is considered as the better solution.

For each generation, we have used an iterative process which is repeated for 50 iterations.

In each iteration, the BTS is used to select two parents from the parent population. The selected

parents are passed as input to crossover operator, which produces a child solution. The mutation

operator is applied on this child solution and a mutant solution is generated. The child solution

and mutant are compared and the better one is added in offspring population. There are two

possibilities of being a better solution. First, the solution which dominates other is considered

better. The other possibility, if no one dominates each other, then solution which has less

objective value for the specific crossover/mutation operator is considered better. It is pertinent

to mention that the newly generated solution is added only if it is unique. To check uniqueness,

we have compared the objective values of a solution from the existing solutions in both the

populations, i.e,. parent population as well as offspring population. If all of the five objective

values of a newly generated solution do not match with any existing solution’s objectives in

the population, then it is considered as unique solution. We have used objective-wise crossover

followed by mutation, hence, five different crossovers and mutations are used in this framework

and consequently each iteration may add upto five solutions in offspring population. At the

end of every generation, the parent and offspring population are combined and a new parent

population is created for next generation by following the concepts of nondominated sorting

and crowding distance presented in [203]. In calculation of crowding distance, the boundary

solutions are assigned a very large value, for each objective. In case, if two or more solutions

have equal minimum objective value, the solution with minimum value of normalized sum

165

7. MULTIOBJECTIVE VEHICLE ROUTING PROBLEM WITH TIME WINDOWS

for all objectives is consider as lowest boundary solution. For example, while calculating

crowding distance for first objective, viz. number of vehicles, if more than one solution have

same minimum first objective value, then the solution having minimum normalized sum value

of all other objectives is selected as lowest boundary solution in this objective. By this method,

it is guaranteed that the solution which has minimum value in all objectives will always be

included in population, which is also desired.

The proposed approach is executed for Ng generations. Since mutation operator is having

better exploitation characteristics in comparison to crossover, hence for the last 25% generations,

we have used only mutation operator. The mutation operator at this fag end phase acts as a

local search to some extent and improves the solution quality further in the population. In this

phase, the parent which has better objective value for the particular mutation operator is selected

and copied as child solution and the mutation is applied on this child solution. The following

subsection provides the detailed description of different components used in proposed INSGA-II

approach. In case, if both parents are same then also we have applied only mutation operator,

since the use of crossover is futile under this scenario. Algorithm 20 presents the pseudo-code

of proposed INSGA-II approach.

7.4.1 Solution representation for MOVRPTW

We have used the similar solution representation as presented in [193]. Here, a solution contains

several routes and each route is a linear permutation of customers, i.e., if jth route contains |rj |

customers, then route rj is presented as permutation of |rj | customers such that the positions of

the customers in this route specify the order in which customers are served. It is assumed that

by default every route must begin and end with vertex 0, which represents the depot, and hence,

depot is not explicitly included in our solution representation. Figure 7.1 illustrates solution

representation, by assuming an example consisting of N=10, i.e., 10 customers and M=3 routes,

viz. R = {r1, r2, r3}. Note that 0 is not explicitly included in any route in our representation

as shown in Figure 7.1(b), but every route starts and ends at 0. Hence, 0 is made part of a

route whenever we process that route to compute various values associated with that route. For

example, the first route r1 is 〈0, c(1, 1), c(2, 1), c(3, 1), c(4, 1), 0〉, though we represented it

as 〈c(1, 1), c(2, 1), c(3, 1), c(4, 1)〉. Here, c(1, 1) = 5, c(2, 1) = 9, c(3, 1) = 1 and c(4, 1) = 3,

i.e., customer 5 is the first customer served in this route, customer 9 is the second customer

served, and so on. Likewise, r2 and r3 have 3 customers each, and, their composition can be

explained analogously.

166

7.4 Proposed NSGA-II approach for MOVRPTW

Depot 6

2

4

7

10

8

5

9 1

3route 1

route 2

route 3

(a) Solution

3rd route 7 10 8

2nd route 6 2 4

1st route 5 9 1 3

Sequence of customers served

(b) Representation

Figure 7.1: Solution representation

7.4.2 Initial population generation

To generate initial population, we have used an iterative approach similar to initialization

procedure presented in [193]. The process begins with creation of a route by selecting a

customer randomly. Again the next customer is randomly selected and inserted into next

position in the current route. If insertion fails due to constraints violation, then this customer is

iteratively tried in previous existing routes, starting from the first route. If a feasible place is

found in any route then this customer is inserted there, otherwise a new route is created. This

process continues until all customers is inserted into some routes. The generated solution is

checked for uniqueness and added in population if it is unique. Using this approach, we have

created a population of size p as initial population.

7.4.3 Objective-specific crossover operators

We have developed greedy variation operators which are not only problem-specific, but also

objective-specific, i.e., our crossover and mutation operators are designed as per the charac-

teristics of MOVRPTW and the characteristics of each objective. Hence, we have a dedicated

crossover operator and a dedicated mutation operator for each objective, thereby leading to five

different crossover operators and five different mutation operators. The crossover operators used

in our approach are inspired from the crossover operators used in [42, 142]. These crossover

operators create a child solution in two phases.

167

7. MULTIOBJECTIVE VEHICLE ROUTING PROBLEM WITH TIME WINDOWS

The first phase starts with an empty solution and iteratively constructs the child solution.

In each iteration, it chooses one of the parent randomly and finds the most promising feasible

route in this parent. The most promising route is copied to child solution and number of routes

in child is incremented by one. This route is deleted from the parent from which it was taken.

In case of other parent, the customers belonging to the most promising route is deleted from

their respective routes, by connecting the predecessor of each such customer to its successor

and updating the various quantities associated the affected routes accordingly. The process is

repeated k times. It is pertinent to mention that, first phase need not always produce a partial

solution with k routes, since it is also possible that after few iterations, some or all of the updated

routes may become infeasible, and hence, in this case none of the route from the selected parent

satisfy the most promising feasible route criteria. In this case, a child solution with less than k

routes is produced.

Clearly, after first phase, some customers remain unassigned and need to be inserted in

the child solution. The second phase inserts the unassigned customers into best position in an

iterative manner, and, a complete child solution is created. During each iteration, it selects an

unassigned customer randomly and inserts it at the best position which is defined as per the

objective under consideration. To find the best position, the crossover operator begins from the

first route and try to insert at every position between the customers in the route. Similarly other

routes are also considered one-by-one. If a position is found which satisfy all the constraints,

then this position is considered as a feasible position and then all feasible positions are evaluated

to find the best position. If the selected unassigned customer cannot be inserted into any existing

route due to the violation of any constraint, then a new route is created by inserting the selected

unassigned customer at first position.

Since we have used objective-wise crossover operator, and hence, the definition of most

promising route, the definition of best position and the value of k vary as per the objective and

are specified below for each objective.

Let MINR and MAXR are the minimum and maximum value of the number of routes

between both parents. For example, let 8 and 10 are the number of routes in parent 1 and parent

2 respectively. Then, MINR = 8 and MAXR = 10, for the assumed example. The value of k

depends on the MINR and MAXR.

f1: The most promising route is the route which has maximum number of customers. Since

f1 seeks a solution which has minimum number of vehicles (minimum number of routes), hence

selecting a route with more number of customers may create a child solution with fewer routes

168

7.4 Proposed NSGA-II approach for MOVRPTW

in comparison to both the parents. Here k = MINR -1, due to reason that we may find a child

solution which has less number of routes in comparison to both the parents. Here the best

position is the first feasible position which satisfy all the constraints.

f2: Here, the route which has smallest ratio of the distance traveled to the number of

customers in the route, is considered as most promising route. If in a route more number of

customers are covered by traveling less distance, then selecting such routes may provide a better

solution as per objective f2. This is the idea behind selecting the smallest ratio of the distance

traveled to the number of customers in the route. Since we already have a feasible solution

(parent 1 or parent 2) with number of routes equal to MINR, hence k is assigned here MINR.

The best position for f2 is the position which yields least increment in the total traveled distance.

f3: The objective f3 is to minimize the longest travel time of a route, and hence, the

most promising route is considered as the route which has the minimum travel time. Here,

k = MAXR + (bu01 × 10c), where u01 is a uniform random number between [0,1). The

initial solution generation procedure provides a solution in which all customers are tried to be

accommodated in some existing route instead of creating a new route, and hence, in general,

most of the routes have large travel times. Here the value of k is set to a larger value than the

number of routes in both parents because the crossover operator used here intends to provide

more opportunity to both parents so that a route with less travel time is selected in child solution.

Also a large value of k may create more number of routes in child solution, and, it is evident

that if a solution has more number of routes then the travel time of each route will be reduced.

The best position in a route is considered as a position which leads to least increment in travel

time of the route. In case, if there are more than one best position then the route which has less

travel time is selected for insertion. It is also possible the least increment travel time position in

a route may result in highest makespan, i.e., inserting the customer at this position may makes

the concerned route to have longest travel time in comparison to inserting it at respective best

positions in all other routes. Hence, in such scenario the second least increment position is

considered. If this also result in same highest makespan then third least increment position is

considered and so on. If inserting in any route lead to same makespan then instead of creating a

new route, we inserted the unassigned customer to the first route considered, so that f1 should

not get deteriorated at the same time.

Objectives f4 and f5 are sharing similarity with objective f2, since all f2, f4 and f5 seek to

minimize a overall quantity in a solution. The quantity is total traveled distance, total waiting

169

7. MULTIOBJECTIVE VEHICLE ROUTING PROBLEM WITH TIME WINDOWS

time and total delay time for f2,f4 and f5 respectively. Hence the crossover operators for f4

and f5 are similar to crossover operator of f2.

f4: The most promising route here is the route which has smallest ratio of the waiting time

to the number of customers in the route and k = MINR. The best position is the position which

yields least increment in the total waiting time.

f5: The most promising route here is the route which has smallest ratio of the delay time to

the number of customers in the route and k = MINR. The best position is the position which

yields least increment in the total delay time.

7.4.4 Objective-specific mutation operators

Our mutation operators are based on destruction and reconstruction strategy, where the solution

is partially destroyed and then again reconstructed by using an objective-specific approach which

is an appropriate mix of greediness and randomness. These mutation operators use Select_route

procedure to select one or more routes and create a pool of unassigned customers by removing

some customers randomly, from the selected route(s). There are two versions of Select_route

procedure. The mutation operators for f1 and f3 use only first version of Select_route procedure,

whereas mutation operators for f2, f4 and f5 use both versions of Select_route procedure, in

a mutually exclusive manner. In first version of Select_route procedure, a route is selected as

per the requirement of objective and some or all customers from this route are removed and

considered as unassigned customers. If after removal of customers, the selected route become

infeasible, then the route is made feasible by breaking the route into two or more feasible routes.

The second version of Select_route procedure works in an iterative manner and used only in

mutation operators for f2, f4 and f5. In each iteration, one route is picked randomly and a

random customer is selected in this route. If the removal of the selected customer does not

result in an infeasible route then this customer is removed from this route and added in pool of

unassigned customer.

The complete solution is created in iterative manner. In each iteration, a customer is selected

randomly, from the pool of unassigned customers and inserted at best position in some existing

route. If no best position is found due to violation of constraints, then a new route is created by

inserting the selected unassigned customer at first position in this newly created route.

Like in case of our crossover operators, here also the definition of Select_route and best

position are different for various objectives and their descriptions are as follows:

170

7.4 Proposed NSGA-II approach for MOVRPTW

Algorithm 20: Pseudo-code of INSGA-II for MOVRPTW
Input: p is the population size
Output: Set of nondominated solutions (Pareto set)
Population← Initial population generation(p);
Nondominated Sort(population);
Crowding distance(population);
// Crowding distance is calculated as per the solutions in the particular front
N← 0; // N is the generation count & Ng is the total number of generations
while (N < Ng) do

if (N is less than 75% of Ng) then
flag ← 1;

else
flag ← 0;

// flag variable is used to perform only mutation for last 25% generations
// P is the current population of size p
px ← p+ 1;
// px is the place where newly generated offspring solution is added in
population
for (i := 1 to 50) do

Par1 ← BTS(); // Binary tournament selection
Par2 ← BTS();
// Select parents Par1 & Par2 using binary tournament selection
for (obj := 1 to 5) do

if (flag is equal to 1) then
if (Par1 and Par2 are not same) then

C ← Crossoverobj (Par1, Par2);

else
C ← Par1;

M ←Mutationobj (C);

else
C ← Betterobj (Par1, Par2);
// The parent which is better in particular objective
M ←Mutationobj (C);

if (M ≺ C) // M dominates C then
X ←M ;

else if (C ≺ M) then
X ← C;

else
// Solutions C and M do not dominate each other
if (fobj(M) < fobj(C) then

// If Solution M is better than C in the objective obj
X ←M ;

else
X ← C;

if (X is unique in population) then
Add X in population at px;
px← px + 1;

P ← Select p solutions from the union of parent (p) and offspring (px) population using nondomination sorting
and crowding distance;
N ← N + 1;

return (set of nondominated solutions);

171

7. MULTIOBJECTIVE VEHICLE ROUTING PROBLEM WITH TIME WINDOWS

f1: The Select_route finds a route with least number of customers. If more than one route is

having least number of customers then a route is randomly selected from among them. All of

the customers in the selected route is considered as unassigned customers. In each iteration, a

customer is randomly selected from this pool of unassigned customers and inserted at the best

position. Here, the best position is the first feasible position which do not delay the starting

time of other customers. The starting time of a customer means the vehicle arrival time to the

customer before insertion. If an unassigned customer is inserted at a position which do not delay

the starting time of other customers, then such insertion will create possibilities to insert more

customers in the route, as the chances of the violation of second and third constraints (7.15 and

7.16) will be less. If no such position is found then the unassigned customer will be inserted at

last feasible position. If no feasible position found then the mutation operator simply discard

the solution and the mutant will be same as child solution generated by the crossover, since

mutation operator fails to decrease the number of routes. Please note that travel times do not

follow triangle inequality, and hence, insertion of a new customer may decrease the starting time

of subsequent customers. If mutation operator successfully reduces the number of routes by one

then next route with least number of customers is again tried for merging with other routes. The

mutation operator is stopped when a customer cannot be inserted into any other route.

f2: The mutation operator for f2 has used two types of Select_route procedures. The first one

which is used with probability 0.7, selects a route randomly and then removes random number

of customers from this selected route. For example, if the selected route has 10 customers then a

random number of customers between [1, 10] can be selected and a pool of unassigned customers

is created using these removed customers. The second type of Select_route procedure is used

with remaining probability 0.3 and iteratively removes a random customer from a randomly

selected route. It iterates for ν times. Here, the best position is same as used in crossover

operator used for objective f2 i.e, the position which has least increment in the total distance

traveled.

f3: The Select_route finds a route with maximum travel time. If there exist more than one

route corresponding to maximum travel time, then a route is randomly selected from among

them. A random number ∈ [1, ν] of customers is removed randomly from this selected route

and a pool of unassigned customers is created. If ν is greater than the number of customers

in this route then ν is reset to the number of customers in this route. Since travel times do not

satisfy the triangle inequality, so removal of customers from the selected route may result a

route with more travel time than the previous maximum travel time. In this case the maximum

172

7.5 Computational results

travel time is considered as the new travel time value. Here, the best position is the place where

the increment in travel time is least after insertion. Like crossover operator here also, if there

are more than one best position then the route which has less travel time is selected for insertion.

We consider only those positions for insertion which can yield a travel time of route strictly less

than the previous maximum travel time.

Here also the mutation operators for f4 and f5 work in a similar manner as mutation operator

for f2, due to the reasons mentioned in Section 7.4.3.

f4: Two types of Select_route procedure is used with different probabilities. First one

which is used with probability 0.6, selects a route randomly and then remove random number of

customers from this selected route. The second Select_route procedure is used with remaining

probability 0.4 and iteratively removes a random customer from a randomly selected route. The

number of iterations is ν. The best position is same as used in the crossover operator used for

objective f4, i.e., the position which has least increment in the total waiting time.

f5: Two types of Select_route procedure is used with different probabilities. First one

which is used with probability 0.5, selects a route randomly and then remove random number of

customers from this selected route. The second Select_route procedure is used with remaining

probability 0.5 and iteratively removes a random customer from a randomly selected route. The

number of iterations is ν. The best position is same as used in crossover operator used for

objective f5, i.e., the position which has least increment in the total delay time.

7.5 Computational results

We have implemented the INSGA-II approach in C language. A Linux based 2.50 GHz Intel Core

i7 processor based system with 8GB of RAM is used to perform all computational experiments.

To evaluate the performance of our approach, we have used the same test datasets as used

in [193, 201]. Since Solomon’s instances do not represent the ideal benchmark scenarios for

multiobjective VRPTW. Hence, we have not tested our approach on Solomon’s dataset. In order

to assess the relative performance of our proposed approach with the state-of-the-art approach

viz. LSMOVRPTW [193], we have implemented the LSMOVRPTW approach in C language

and executed this approach under the same computing environment as our approach.

The proposed INSGA-II approach is executed for 2000 generations i.e., Ng=2000. The

population size p is set to 100. The parameter pbt in binary tournament selection is set as 0.7,

and the value of ν in mutation operators is set to 4. The proposed approach has been executed

173

7. MULTIOBJECTIVE VEHICLE ROUTING PROBLEM WITH TIME WINDOWS

30 independent times on each instance like the LSMOVRPTW approach of [193]. All the

parameter values are determined empirically after executing the proposed approach a number of

times. These values fetch better results on most of the instances, but they cannot regarded as

optimal parameter values for all the instances.

7.5.1 Description of MOVRPTW instances

The real-world MOVRPTW dataset [201] consists of a total of 45 instances, generated by

considering combinations of three different sizes of customers, viz. 50, 150 & 250, five

different time windows profiles, viz. 1, 2, 3, 4 & 5, and three kinds of vehicles capacities, each

corresponds to a particular value of the parameter δ. The three values of δ are 60, 20 and 5. The

depot has 8 hours working time. The five time window profiles represent the availability of

customers, and, are based on the experience of the delivery company. These five profiles are

described as follows:

1. All the customers are available for all day, i.e., for entire 8 hours (480 min).

2. Three kinds of customers are considered, viz. early customers, mid-day customers and

late customers. The total time 480 min is divided into three equal part, viz. 160 min time

slots for each kind of customer. The early customers will be served in [0, 160) minutes

time slot, mid-day customers will be served in [160, 320) minutes time slot, and late

customers are served in [320, 480] minutes time slot.

3. The length of each time window is decreased by 30 minutes. Thus the time slot for early

customers is [0, 130], for mid-day customers is [175, 305], and for late customers is [350,

480].

4. The length of each time window is further decreased by 30 minutes. Thus the time slot

for early customers is [0,100], for mid-day customers is [190,290] and for late customers

is [380,480].

5. Here, a customer can belong to any of the aforementioned time windows profiles.

In order to serve each customer, the minimum capacity of vehicle (D) must be equal to

the maximum demands among the customers. Evidently, the maximum capacity of vehicle

(D) should not be greater than the sum of demands of all the customers. Hence, the capacity

of each vehicle C must lie in between [D, D]. The capacity of each vehicle is set as C =

174

7.5 Computational results

D + δ × (D−D)
100 , where δ ∈ {60, 20, 5} as mentioned already. Hence, the capacity of vehicle

is directly proportional to δ. Each customer i has a demand gi and requires service time si. The

demand and service time both are assigned from the set {10, 20, 30} with a probability of 1
3 . A

maximum delay of 30 min is allowed for each customer after the end of their time window, i.e.,

md = 30 min [193, 201].

7.5.2 Performance metrics

In multiobjective optimization, the performance of an algorithm is evaluated in terms of both

convergence and diversity. In [215] various performance metrics (quality indicators) are ana-

lyzed. It is concluded that no single performance metric is able to provide a comprehensive

measure on the performance of a multiobjective optimization algorithm, and thus, it is better to

use a combination of quality indicators. To evaluate the performance of our proposed approach,

we have used three metrics, viz. inverted generational distance (IGD), hypervolume (HV),

coverage metric (C-metric). The first two performance metrics are among most commonly used

performance metrics for multiobjective optimization problems [226], whereas the last one was

chosen because it is used in [193] to evaluate the relative performance of LSMOVRPTW. These

three metrics are described below:

1. Inverted generational distance (IGD): IGD [218] provides a measure to both convergence

and diversity of the nondominated solutions obtained by an algorithm in MOP. Let P ∗

be a set of uniformly distributed solutions in the Pareto front (PF), and X is the set of

obtained nondominated solutions. The minimum Euclidean distance between a solution v

and the solutions in X is denoted by d(v,X). The IGD approximation of X with respect

to P ∗ is defined as,

IGD(P ∗, X) =

∑
v∈P ∗

d(v,X)

|P ∗|
(7.19)

Smaller IGD value represents the closeness of set X towards the Pareto front, and hence,

considered as a better set of solutions in terms of convergence and diversity. Figure 7.2

represents the approximation of IGD for a set of nondominated solutions (X) with respect

to Pareto front (P ∗).

2. Hypervolume (HV): HV metric is proposed by [217]. It represents the n-dimensional

volume in the objective space that is contained by nondominated solutions with respect to

175

7. MULTIOBJECTIVE VEHICLE ROUTING PROBLEM WITH TIME WINDOWS

minimize f1

m
in

im
iz

e
f 2

Pareto Front

Nondominated Solutions
Solutions in Pareto Front

Figure 7.2: Approximation of IGD for the solution set X

a reference point. Figure 7.3 illustrates the approximation of HV for a set of nondominated

solutions. A set with higher HV value represents a better set of nondominated solutions

approximating the Pareto front, from the point of view of the convergence and diversity.

To calculate hypervolume, we have used the HV approach presented in [227], and its

associated software tool available in [228]. The point (1.01, 1.01, 1.01, 1.01, 1.01) is used

as reference point to calculate the hypervolume.

minimize f1

m
in

im
iz

e
f 2

Reference Point

Nondominated Solutions

Figure 7.3: Approximation of HV for the solution set X

3. Coverage metric (C-metric): C-metric [229] is used to compare two sets of nondominated

solutions obtained by two different approaches. LetA andB are two sets of nondominated

solutions, then C(A,B) represent C-metric of A with respect to B, and defined as the

percentage of the solutions in B that are Pareto dominated by at least one solution in

A. C(A,B) = 1 means that all nondominated solutions in B are Pareto dominated by

solutions in set A. It is important to mention that the sum of C(A,B) and C(B,A) need

not be equal to 1, as some solutions in A and B may not Pareto dominate one another.

176

7.5 Computational results

As the true Pareto front can not be determined, the P ∗ is approximated by considering all unique

nondominated solutions obtained by LSMOVRPTW and INSGA-II in all 30 runs. Since the

range of objectives are different, we have normalized all objective values to calculate HV and

IGD.

7.5.3 Experimental results

The performance of INSGA-II approach is compared with LSMOVRPTW approach [193].

Table 7.1 presents the comparison of results in terms of IGD, HV, and C-metric. In this table, the

first column represents the name of the instances in the form ”num1− num2− num3”, where

num1 shows the number of customers, num2 shows the index of δ type with respect to capacity

of vehicle, and num3 indicates the index of time window profile. The second, third, and fourth

columns represent the average values over 30 runs of the IGD, HV and C-metric respectively.

The values for each metric are reported for LSMOVRPTW and INSGA-II approaches both. The

last column represents the average execution time (in seconds) over 30 runs taken by INSGA-II

approach. Since LSMOVRPTW uses a series of local searches and there is no explicit concept of

generation in this approach, we have used the running time of INSGA-II as stopping criteria for

LSMOVRPTW approach for a fair comparison. Similar termination criteria was used in [193]

to compare LSMOVRPTW with NSGA-II [201]. The performance of NSGA-II presented in

[201] was found to be much worse than LSMOVRPTW [193], and hence, we have not included

NSGA-II [201] in this comparison.

Due to the limitation of space, standard deviation of the metrics are not presented in the

table. Furthermore, we have used Wilcoxon signed-rank test [230, 231] at 5% significance level,

to show the statistically significant difference between the results obtained by our approach

INSGA-II and LSMOVRPTW. An online calculator 1 is used to perform Wilcoxon signed-rank

test. The significantly better values obtained by both the approaches are represented in bold font

for ease of identification. The last row of table provides the overall comparison in the format

W/S/B, which indicates that the performance of INSGA-II is worse than, similar to and better

than the LSMOVRPTW in W, S and B instances.

The INSGA-II approach significantly outperforms LSMOVRPTW approach for all 45 in-

stances in terms of IGD. In terms of HV, INSGA-II significantly outperformed the LSMOVRPTW

in 33 instances and significantly outperformed by LSMOVRPTW in 11 instances. This shows

1https://mathcracker.com/wilcoxon-signed-ranks.php

177

7. MULTIOBJECTIVE VEHICLE ROUTING PROBLEM WITH TIME WINDOWS

that INSGA-II performs better than LSMOVRPTW in terms of both convergence and diversity.

C-metric is calculated as the ratio of number of solutions in latter approach that are Pareto

dominated by at least one solution in former approach. The LSMOVRPTW approach is a local

search based approach in which a series of local searches is performed on solutions present

in archive, and hence, the chance of getting some highly converged solutions is high. While

the INSGA-II is a population based approach without any local search procedure, and, use of

objective-specific crossover & mutation operators can provide a better set of nondominated

solutions in terms of both convergence and diversity. In terms of C-metric, the INSGA-II

significantly outperformed the LSMOVRPTW in 10 instances and significantly outperformed

by LSMOVRPTW in 29 instances. This can be attributed to the local search based approach

in LSMOVRPTW which provides some highly converged solutions, thereby enabling better

performance of LSMOVRPTW in terms of C-metric.

In the instances with first time window profile presented as num3=0 (such as “250-2-0”),

the customers are always available, and hence, the objectives f4 and f5 are always zero and the

problem in this particular time window profile has only three significant objectives, viz. f1, f2

and f3. Evidently, the hardness of the problem increases with increase in number of customers

and decrease in capacity of vehicles. This is due to the fact that the problem with more number

of customers and with vehicle of smaller capacity will have solution with more number of routes,

and hence, to converge on all objectives will be tougher. The instances with fourth time window

profile presented as num3=3 (such as “250-2-3”), the length of time window which presents

the availability of customers is smallest. In this case, no customer is available for a total of 178

minutes (two durations of 89 minutes each) out of total 480 minutes (all day duration). Thus the

objective f4, viz. total waiting time of vehicles due to early arrivals at customer place is highest

in comparison to all other time window profiles, and hence, the objective f4 is more significant

in these instances. Clearly, all five objectives are equally significant in the instances with fourth

time window profile (num3=3).

The values of HV in Table 7.1 reveals that the performance of INSGA-II is always better

than the performance of LSMOVRPTW, in first time window profile (num3=0) and with

250 customers (num1=250), in all instances . Also the difference in HV values of INSGA-

II and LSMOVRPTW are marginally more in all instances (particularly with more number

of customers) with fourth time window profile presented as num3=3. This shows that the

performance of INSGA-II is better than LSMOVRPTW especially on harder instances.

178

7.5 Computational results

Table 7.1: Average values of IGD, HV, And C-Metric of INSGA-II and LSMOVRPTW

Instance IGD HV C-metric Time a

LSMOVRPTW INSGA-II LSMOVRPTW INSGA-II C(LS,IN) b C(IN,LS) c

50-0-0 0.002849 0.001374 0.778693 0.798471 0.117421 0.481708 17.10
50-0-1 0.005578 0.004443 0.460442 0.434376 0.290333 0.029811 12.73
50-0-2 0.013812 0.005579 0.293905 0.372857 0.231333 0.041352 11.26
50-0-3 0.006679 0.002525 0.514643 0.617789 0.029333 0.425595 8.42
50-0-4 0.008824 0.005600 0.943907 0.939618 0.306000 0.215279 14.33
50-1-0 0.003507 0.001724 0.799644 0.819721 0.125619 0.539394 13.00
50-1-1 0.005708 0.004427 0.460791 0.433047 0.288333 0.030735 13.29
50-1-2 0.013848 0.005465 0.298750 0.365217 0.223667 0.034913 11.96
50-1-3 0.006677 0.002525 0.514647 0.617789 0.029333 0.444048 8.48
50-1-4 0.008454 0.005473 0.922378 0.923307 0.247000 0.225724 8.91
50-2-0 0.011147 0.007107 0.867581 0.898339 0.108445 0.751587 5.84
50-2-1 0.011408 0.004776 0.734837 0.701035 0.306667 0.055424 6.20
50-2-2 0.019621 0.004737 0.368060 0.615539 0.148000 0.186794 6.31
50-2-3 0.007721 0.003965 0.655798 0.729146 0.037667 0.384127 6.03
50-2-4 0.019475 0.009309 0.783465 0.872617 0.003667 0.914849 5.53
150-0-0 0.002900 0.001820 0.735135 0.755004 0.187478 0.391211 134.39
150-0-1 0.017247 0.006331 0.267536 0.292883 0.419333 0.003367 93.95
150-0-2 0.012206 0.007195 0.277424 0.255240 0.467333 0.004369 80.57
150-0-3 0.027004 0.002912 0.023876 0.355080 0.169333 0.114975 53.30
150-0-4 0.011028 0.008906 0.469320 0.397354 0.653000 0.012018 96.48
150-1-0 0.002921 0.001830 0.735225 0.755004 0.188144 0.390476 129.30
150-1-1 0.017019 0.006302 0.267405 0.292916 0.419000 0.003345 86.72
150-1-2 0.012152 0.007187 0.277578 0.255240 0.467000 0.004371 80.13
150-1-3 0.026895 0.002906 0.023876 0.355080 0.169000 0.112892 52.98
150-1-4 0.011262 0.009006 0.467632 0.397354 0.651333 0.011976 87.64
150-2-0 0.004479 0.002366 0.787328 0.821469 0.141612 0.508714 45.99
150-2-1 0.015057 0.006741 0.440961 0.374096 0.527333 0.000741 53.81
150-2-2 0.012309 0.007315 0.271850 0.246393 0.484333 0.001149 54.96
150-2-3 0.025342 0.002870 0.029056 0.361563 0.156333 0.098382 48.86
150-2-4 0.009941 0.008416 0.597763 0.493563 0.683000 0.009872 56.62
250-0-0 0.003846 0.002675 0.713256 0.734973 0.353986 0.142155 338.06
250-0-1 0.022698 0.007819 0.183124 0.244897 0.489000 0.001389 211.74
250-0-2 0.023812 0.007688 0.137427 0.218211 0.385667 0.001190 178.88
250-0-3 0.031870 0.005041 0.145107 0.563146 0.120333 0.096493 111.10
250-0-4 0.017896 0.010545 0.232987 0.471353 0.486000 0.009488 226.10
250-1-0 0.003866 0.002687 0.713344 0.734973 0.354666 0.140602 339.96
250-1-1 0.022437 0.007742 0.183535 0.244658 0.490333 0.001333 234.87
250-1-2 0.023050 0.007706 0.145502 0.218211 0.405000 0.001190 183.26
250-1-3 0.031775 0.005035 0.145077 0.563146 0.120000 0.096920 105.61
250-1-4 0.017722 0.010528 0.233035 0.471431 0.485333 0.009429 215.09
250-2-0 0.004514 0.002327 0.742472 0.783369 0.218530 0.284062 179.09
250-2-1 0.022466 0.007084 0.176404 0.231610 0.471000 0.000000 194.70
250-2-2 0.021257 0.007408 0.126384 0.208450 0.342667 0.000000 178.11
250-2-3 0.031753 0.005106 0.145161 0.563510 0.121667 0.095974 110.86
250-2-4 0.020832 0.012327 0.199133 0.429170 0.470667 0.008397 193.74
W/S/B 0/0/45 11/1/33 29/6/10

aSeconds
bC(LSMOVRPTW,INSGA-II)
cC(INSGA-II,LSMOVRPTW)

179

7. MULTIOBJECTIVE VEHICLE ROUTING PROBLEM WITH TIME WINDOWS

It is pertinent to mention that any solution which has minimum value in any one objective is

a nondominated solution irrespective of the values of other objectives. In a real-world scenario,

the preference for one objective might be more in comparison to other objectives in MOPs. For

example, in MOVRPTW with five objectives, the objective f2, viz. total travel distance might

be more important in some perspective than other objectives as distance traveled is directly

proportional to consumption of fuel, and hence, it has direct impact on environmental pollution

as well as important from monetary considerations. Also for some industrial organizations

the objective f5, i.e., total delay time may be more important than other objectives as delay in

service adversely impacts the customers’ goodwill, thereby reducing the volume of business.

Hence, finding minimum values in all the objectives by an approach is crucial in MOVRPTW,

since in most of the cases the decision maker’s preference is not known a priori. An analysis in

this regard is performed in Table 7.2.

There are 45 instances in total and both the approaches have been executed for 30 inde-

pendent times on each instance. Hence, we have 30 sets of nondominated solutions for each

instance and a total 1350 sets of nondominated solutions, generated by each approach. For a

particular instance, in each run the five minimum values of each objective obtained by INSGA-II

and LSMOVRPTW are compared. The comparison results are presented in Table 7.2. In this

table, each row except the last two represents the summarized comparison over 30 runs for

an instance, in terms of number of runs where the minimum value of each objective found

by INSGA-II is better (<), equal (=) or worse (>) than the minimum value of corresponding

objective found by LSMOVRPTW. Here, the first column represents the name of the instances in

the form “num1−num2−num3”. The second, third, fourth, fifth and sixth columns provides

the comparison of five objective values respectively, in all 30 runs. For example, second row

(instance “50-0-1”) and second column (objective f1) shows that INSGA-II is able to find 22

times better, 7 times equal and 1 time worse values for objective f1 in 30 runs in comparison to

LSMOVRPTW. The second last row provides the distribution of 1350 comparisons in better,

equal and worse categories. It shows that the minimum objective values obtained by INSGA-II

is superior than LSMOVRPTW, for objectives f2, f3 and f4, and, equal in objective f5, but

slightly inferior in objective f1. The last row provides the summary of comparison in terms of

number of instances between two approaches for each objective by taking the minimum value

of each objective over 30 runs of an approach. The INSGA-II is able to find better values on

36 instances, equal value on 1 instance, and worse values on 8 instances for objectives f2, as

compared to LSMOVRPTW. Similarly, INSGA-II performs better for objectives f3 and f4, and,

180

7.5 Computational results

equal performance in objectives f1 & f5 (except for one instance for f1 where it performed

better). Hence, last two rows of Table 7.2 clearly show that the performance of INSGA-II is

better than LSMOVRPTW in individual runs as well as in best of all 30 runs.

Table 7.2: Comparison of INSGA-II with LSMOVRPTW in terms of count of the runs as well as
in overall 30 runs, on which INSGA-II achieved better (<), equal (=) and worse (>) values in five
objectives.

Instance f1 f2 f3 f4 f5

< = > < = > < = > < = > < = >
50-0-0 0 30 0 11 10 9 0 30 0 0 30 0 0 30 0
50-0-1 22 7 1 20 0 10 0 30 0 26 0 4 0 30 0
50-0-2 0 30 0 16 0 14 0 30 0 24 1 5 0 30 0
50-0-3 0 30 0 12 0 18 0 30 0 30 0 0 0 30 0
50-0-4 0 30 0 19 2 9 0 30 0 0 30 0 0 30 0
50-1-0 0 30 0 22 0 8 0 30 0 0 30 0 0 30 0
50-1-1 18 10 2 19 1 10 0 30 0 26 0 4 0 30 0
50-1-2 0 30 0 12 0 18 0 30 0 20 4 6 0 30 0
50-1-3 0 30 0 12 0 18 0 30 0 30 0 0 0 30 0
50-1-4 0 30 0 22 1 7 0 30 0 0 30 0 0 30 0
50-2-0 0 30 0 26 0 4 0 30 0 0 30 0 0 30 0
50-2-1 0 30 0 26 0 4 0 30 0 27 0 3 0 30 0
50-2-2 0 30 0 28 0 2 0 30 0 25 0 5 0 30 0
50-2-3 0 30 0 25 0 5 0 30 0 30 0 0 0 30 0
50-2-4 0 30 0 30 0 0 0 30 0 28 0 2 0 30 0
150-0-0 10 18 2 25 0 5 17 12 1 0 30 0 0 30 0
150-0-1 0 30 0 22 0 8 30 0 0 16 0 14 0 30 0
150-0-2 0 30 0 27 0 3 30 0 0 1 1 28 0 30 0
150-0-3 0 30 0 29 0 1 0 30 0 30 0 0 0 30 0
150-0-4 0 6 24 23 0 7 5 25 0 4 2 24 0 30 0
150-1-0 9 19 2 25 0 5 17 12 1 0 30 0 0 30 0
150-1-1 0 30 0 22 0 8 30 0 0 16 0 14 0 30 0
150-1-2 0 30 0 27 0 3 30 0 0 1 1 28 0 30 0
150-1-3 0 30 0 29 0 1 0 30 0 30 0 0 0 30 0
150-1-4 0 6 24 23 0 7 5 25 0 4 2 24 0 30 0
150-2-0 0 30 0 17 0 13 20 10 0 0 30 0 0 30 0
150-2-1 0 30 0 25 0 5 30 0 0 6 0 24 0 30 0
150-2-2 0 30 0 28 0 2 30 0 0 0 0 30 0 30 0
150-2-3 0 30 0 28 0 2 0 30 0 30 0 0 0 30 0
150-2-4 0 30 0 25 0 5 1 29 0 4 1 25 0 30 0
250-0-0 0 30 0 8 0 22 24 5 1 0 30 0 0 30 0
250-0-1 3 22 5 23 0 7 30 0 0 18 1 11 0 30 0
250-0-2 0 30 0 28 0 2 30 0 0 0 0 30 0 30 0
250-0-3 0 30 0 30 0 0 0 30 0 30 0 0 0 30 0
250-0-4 0 3 27 26 0 4 27 3 0 3 0 27 0 30 0
250-1-0 0 30 0 8 0 22 24 5 1 0 30 0 0 30 0
250-1-1 3 22 5 23 0 7 30 0 0 18 1 11 0 30 0
250-1-2 0 30 0 28 0 2 30 0 0 0 0 30 0 30 0
250-1-3 0 30 0 30 0 0 0 30 0 30 0 0 0 30 0
250-1-4 0 3 27 26 0 4 27 3 0 3 0 27 0 30 0
250-2-0 0 30 0 19 0 11 26 3 1 0 30 0 0 30 0
250-2-1 1 24 5 25 0 5 30 0 0 13 1 16 0 30 0
250-2-2 1 29 0 30 0 0 30 0 0 0 0 30 0 30 0
250-2-3 0 30 0 30 0 0 0 30 0 30 0 0 0 30 0
250-2-4 0 3 27 18 0 12 30 0 0 2 1 27 0 30 0
Total 67 1132 151 1027 14 309 583 762 5 555 346 449 0 1350 0

Best value in all 30 runs 1 44 0 36 1 8 13 32 0 21 14 10 0 45 0

181

7. MULTIOBJECTIVE VEHICLE ROUTING PROBLEM WITH TIME WINDOWS

As already mentioned in Section 7.3.2, one multiobjective algorithm is considered to be

better than another, if the set of nondominated solutions found by the former algorithm is

better than latter in terms of convergence and diversity both. Visual representation is often

used to compare the solution sets obtained by different approaches in terms of convergence

and diversity as it provides ease of understanding. To visually represent the convergence and

diversity of the nondominated solutions obtained by LSMOVRPTW and INSGA-II, we have

used heatmap visualization technique [232, 233]. Heatmap provides the visual representation of

solution sets to many-objective problems and facilitates observing of trade-off among various

objectives in a clear manner. A heatmap shows the data as a grid of pixels whose colors represent

values on a scale from maximal (hot) to minimal (cold) [232]. In heatmap representation, each

row is a solution and each column represents an objective. The color of the cells represents

the value of an objective for a particular solution. The cooler colors shows the convergence

of solution and the distribution of full range of colors shows the diversity of solution. The

nondominated solutions obtained by an approach can be considered as good solutions, if the

heatmap visualization of the solutions shows the cooler colors as well as distribution of full

range of colors.

In order to use heatmaps for visual representation, all objectives must be on the same scale

[232], hence, we have normalized all objective values to the range of [0, 1]. Each heatmap

is a visual representation of nondominated solutions obtained by an approach on a particular

instance in all 30 runs. Each objective value is shown in particular color which is in the range of

cold (blue) to hot (red).

As explained in Section 7.5.3, the instances with more number of customers and smallest

capacity vehicles are harder than others. Therefore, we have selected instance with num1=

250 (i.e, 250 customers) and num2=2 (i.e, third category of vehicle which has least capacity in

comparison to other categories) to present the visual comparison of the nondominated solutions

obtained by both the approaches. Furthermore, it is observed that the performance of an approach

on an instance depends on its time window profile, and hence, all five time window profiles

instances with num1= 250 and num2=2 are selected for comparison of these two approaches.

Figure 7.4 presents the convergence and diversity of the nondominated solutions obtained

by both the approaches using heatmaps on the five instances, viz. 250-2-0, 250-2-1, 250-2-2,

250-2-3 and 250-2-4. The first row and and second row of heatmaps represent the nondominated

solutions obtained by INSGA-II and LSMOVRPTW respectively on the selected instances.

The rows of each heatmap have been rearranged according to f3 in ascending order. The

182

7.5 Computational results

(a) (c) (e) (g) (i)

(b) (d) (f) (h) (j)

Figure 7.4: Heatmaps of nondominated solutions obtained by INSGA-II and LSMOVRPTW on
selected instances (The rows of each heatmap have been rearranged according to f3 in ascending
order): (a) INSGA-II on 250-2-0, (b) LSMOVRPTW on 250-2-0, (c) INSGA-II on 250-2-1, (d)
LSMOVRPTW on 250-2-1, (e) INSGA-II on 250-2-2, (f) LSMOVRPTW on 250-2-2, (g) INSGA-II
on 250-2-3, (h) LSMOVRPTW on 250-2-3, (i) INSGA-II on 250-2-4, (j) LSMOVRPTW on 250-2-4.

heatmaps of INSGA-II show cooler colors than the heatmaps of LSMOVRPTW particularly for

objective f3, on all five instances. Hence INSGA-II has better convergence in objective f3 than

LSMOVRPTW in all five instances.

The instance “250-2-0” has only three significant objectives, viz. f1, f2 and f3, as explained

in Section 7.5.3. The Figure 7.4 (a) and (b) represents the heatmaps of both the approaches on

instance “250-2-0”, which clearly show that the INSGA-II has cooler colors than LSMOVRPTW

in objectives f1 and f2, and similar color in objective f3. Hence, it generates better solutions in

terms of convergence and diversity. This is also supported by the values of HV and IGD metrics

on instance “250-2-0” in Table 4.1.

In instance “250-2-3”, the objective f4, viz. total waiting time of vehicles due to early

arrivals at customer place is highest in comparison to all other time window profiles, and hence,

the objective f4 is more significant in these instances, as explained in Section 7.5.3. The

Figure 7.4 (g) and (h) represents the heatmaps of both the approaches on instance “250-2-3”,

which clearly show that the INSGA-II has cooler colors than LSMOVRPTW in objective f4,

and hence, able to find more converged solutions with respect to objective f4.

The instances with fifth time window profile (presented as num3=4 in Section 7.5.3, such

as “250-2-4”) have all variety of customers from different time window profiles, and hence,

183

7. MULTIOBJECTIVE VEHICLE ROUTING PROBLEM WITH TIME WINDOWS

they represent more realistic scenarios. The Figure 7.4 (i) and (j) are the heatmaps of both the

approaches on instance “250-2-4”, which reveals that the nondominated solutions generated

by INSGA-II distribute more dispersedly with in full range of color than those generated by

LSMOVRPTW. Hence, the solutions generated by INSGA-II have better diversity.

From all pair of comparisons, it can be inferred that the LSMOVRPTW always lacks diverse

solutions and it is more apparent in objectives f1 and f5. Also heatmaps of INSGA-II show

the better convergence in terms of objective f3 than LSMOVRPTW. Evidently, the objectives

conflict each other, and hence, an approach is better if the nondominated solutions yielded by

an approach has better diversity, i.e., if the nondominated solutions have a wider spread in full

range of color for all the objectives. Thus, the heatmaps visualization reveal that INSGA-II

performs better than LSMOVRPTW from the perspective of convergence and diversity.

7.6 Conclusions

In this chapter, we presented a nondominated sorting genetic algorithm II (INSGA-II) based

approach with objective-specific variation operators for the MOVRPTW. This problem is a variant

of multiobjective vehicle routing problem (MOVRP) and contains five objectives to minimize.

In the proposed INSGA-II approach, the crossover and mutation operators are designed by

exploiting the problem-specific knowledge as well as the characteristics of each objective. Thus

proposed INSGA-II approach uses a dedicated crossover operator and a dedicated mutation

operator for each objective. To evaluate the performance of our proposed approach, we have used

three metrics, viz. inverted generational distance (IGD), hypervolume (HV), coverage metric

(C-metric), which are standard metrics used in multiobjective optimization. The computational

results reveals that the set of nondominated solutions obtained by the proposed approach is

superior than state-of-the-art approach in terms of both convergence and diversity.

184

Chapter 8

Conclusions and Directions for Future
Research

In this thesis, we have addressed six NP-hard permutation based combinatorial optimization

problems using evolutionary techniques. These six problems not only have several practical

applications in different fields such as wireless sensor networks, transportation, logistics, plan-

ning & scheduling, disaster management, but are also challenging from theoretical perspective.

Since these problems share a common characteristic, viz. permutation, hence any improve-

ment that can be made while addressing a permutation based problem will provide a scope for

improvement for several other related permutation based problems.

To address the problems considered in this thesis, we have used three evolutionary ap-

proaches, viz. genetic algorithm (GA), evolution strategy (ES) and discrete differential evolution

(DDE). Among them genetic algorithm is the most popular for solving any combinatorial

optimization problem. Discrete differential evolution has many successful recent applications

for addressing permutation based optimization problems. On the other hand, application of

evolution strategy in solving discrete optimization problems is not as common as GA or DDE.

In fact, to the best of our knowledge, no recent application of ES for permutation based problem

is available in literature. The first three problems have only permutation characteristics. Out of

these three, first two problems are addressed via evolution strategy based approach, whereas

discrete differential evolution based hybrid approach is used to address the third problem. The

last three problems have aspects of permutation as well as grouping. Among these three, the

first two problems are solved by grouping genetic algorithm approach, whereas the last problem

being multiobjective in nature uses nondominated sorting genetic algorithm II (NSGA-II) based

185

8. CONCLUSIONS AND DIRECTIONS FOR FUTURE RESEARCH

approach.

Although evolutionary techniques are highly popular for addressing combinatorial optimiza-

tion problems, it is well-known that a generic evolutionary technique which does not use any

problem-specific knowledge usually performs poorly, especially in case of hard problems. This

fact is also supported by “no free lunch theorem”[234]. The research area of combinatorial

optimization using evolutionary techniques has advanced to a level where any new evolutionary

approach for a particular problem can not compete with the state-of-the-art approaches available

in the literature for that problem unless and until it incorporates appropriate problem-specific

information. This problem-specific information can be can be incorporated anywhere from

solution representation, design of variation operators (crossover and mutation), fitness function,

initial solution generation and/or in the form of local searches.

The development of new technology and the advancement of human civilization continue to

introduce novel and complex real-world problems. Thus in the present age, it is desirable to

develop approaches incorporating problem-specific knowledge. Most of the new development

in the field of evolutionary techniques for solving combinatorial optimization problem are

happening in the context of particular problem only. Our proposed approaches make use

of problem-specific knowledge in solution encoding, variation operators, local search and

generation of initial solution. The development of these evolutionary approaches, whose

performances are superior than the state-of-the-art approaches for their respective problems, is

the main contribution of this thesis.

In the following, we summarize the contributions made by various chapters along with the

possible research directions which can be explored in future based on the work reported in these

chapters.

In Chapter 2, we have proposed an evolution strategy based approach for the cover scheduling

problem in wireless sensor networks (WSN-CSP). Our approach uses problem-specific heuristic

which provide a better quality initial solution. We have used a reshuffle procedure to avoid

getting trapped in local optima. WSN-CSP is a relatively understudied problem as only the

approaches presented in [78] and [79] (namely, GA, ABC and IWO) are available in the literature.

GA and ABC are commonly used for solving discrete optimization problems, and hence, their

use for solving WSN-CSP was quite obvious. However, we have addressed WSN-CSP problem

via a two-membered evolution strategy, whose use in solving discrete optimization problems

is not as common as GA or ABC. Our proposed approach is simple and yet able to beat other

state-of-art approaches for WSN-CSP. The hardness of the problem increases with increase in

186

breach rate, and the gap in performance of our approach and other approaches widens with

increase in breach rate. This indicates the robustness of our approach.

The performance of the proposed approach provides the inspiration for developing similar

approaches for other scheduling problems in various domains. We have used three mutation

operators in our approach all based on a ruin-and-recreate strategy. Similar mutation operators

can be tried in other metaheuristic frameworks to solve WSN-CSP and related problems. Its a

well-known fact that utilizing the concept of opposite solutions leads to a wider exploration

of search space than using only randomly generated solution [64]. However, the concept of

opposite solution was defined in the context of optimization problems in continuous domain.

We have extended this concept for permutation problems. Future approaches for permutation

based problems can utilize the concept of opposite solutions presented here.

Chapter 3 presented a two-membered evolution strategy ((1+1)-ES) for total rotation mini-

mization problem (TRMP) pertaining to directional sensor networks. The proposed approach

for TRMP is an extension of two-membered evolution strategy approach for WSN-CSP. It is

incorporated with a pre-processing step, which is used to boost the performance of the evolution

strategy (ES). TRMP is an important problem as there is always an emphasis on conserving

sensors’ battery power and more so in remote or hostile environments where batteries cannot be

replaced owing to cost/risks involved. ES-TRMP employs a pre-processing step that supplies

an improved solution to the evolution strategy by utilizing the NEH heuristic and the concept

of opposite solutions. We have compared ES-TRMP with the best approach available in the

literature, viz. GA-TRMP+LSB [100]. The computational results show the superiority of the

proposed approach in terms of solution quality. Not even a single test instance exists where the

best or average solution obtained by GA-TRMP+LSB is better than that of ES-TRMP. However,

GA-TRMP+LSB is faster than our proposed ES-TRMP approach.

The fact that even ES-TRMPNO-PP which does not use pre-processing step, obtained solution

of better quality than GA-TRMP+LSB in most cases, clearly indicates the suitability of ES based

approaches for TRMP and other similar scheduling problems. Hence, similar approaches can be

developed for other related problems. We have clearly demonstrated the role of pre-processing

step in boosting the performance of evolution strategy. Similar pre-processing steps can be

developed for new applications of evolution strategy.

Despite the practical importance of TRMP, it is still an under-studied problem. In addition to

present work, only approaches existing in the literature are those presented in [100]. Hence, there

is a lot of scope to develop new lower bounds, heuristic, metaheuristic and exact approaches

187

8. CONCLUSIONS AND DIRECTIONS FOR FUTURE RESEARCH

for TRMP. Further, TRMP is unique from scheduling point of view also as several preceding

covers in the schedule, not necessarily including the immediately preceding cover, determine the

rotation cost of a cover. To our knowledge, no other scheduling problem exists in the literature

in which the computation of scheduling cost of a job is dependent on several preceding jobs.

Closest to TRMP are job scheduling problems with sequence dependent setup costs which are

widely studied in literature. However, the computation of scheduling cost of a job in these

problems is dependent on immediately preceding job only, and, not on several preceding jobs.

Hence, TRMP constitutes a class of its own. Investigating the properties of this class of problems

will provide a number of opportunities for future work.

Both TRMP and WSN-CSP share some similarity, viz. finding the optimal permutation of

covers. Despite this fact, TRMP is more hard to solve due to its aforementioned characteristics.

In TRMP, the pre-processing step employs NEH heuristic and concept of opposite solutions

on several random solutions and the best solution among them is fed as input to ES-TRMP. To

find initial solution for WSN-CSP, we used NEH heuristic and concept of opposite solutions

only on one random solution instead of several ones as considered in TRMP. We tried the same

pre-processing step as in TRMP to find initial solution for WSN-CSP also. But the performance

of both approaches i.e., single random solution and multiple random solutions, was found to be

same. This can be attributed to the difference in the hardness of both problems. TRMP is more

hard than WSN-CSP, so pre-processing steps provide a broader exploration of search space,

whereas in WSN-CSP such broader exploration is not required.

We also tried multi-membered evolution strategy (population) approach for both the prob-

lems. But the performance of two-membered ES is found to be superior than multi-membered

ES. This can be due to the fitness landscape of the problem. From the detailed analysis of solu-

tions obtained at different intervals throughout run of multi-membered ES and two-membered

ES, we infer that the fitness landscape may have ruggedness and some multi-peaks (local optima)

along with the peak of global optima. Thus, application of variation operators on members of

population (multi-membered ES) make them oscillate between local optimas. Even, if we apply

reshuffle procedure then they jump from one local optima to other neighboring local optima.

On the other hand, in case of single initial solution, the two-membered ES performs like a hill

climbing algorithm and repeated application of variation operator on a single solution along

with reshuffle procedure results in better quality final solution. Finding the characteristics of

fitness landscape for a NP-hard problem is very difficult and even not possible in most of the

188

cases. Thus, it requires experimentation to get some idea about fitness landscape and then select

suitable strategy based on the information about fitness landscape.

In Chapter 4, we have addressed single machine total stepwise tardiness problem with release

dates (SMTSTP-R) via a discrete differential evolution (DDE) based approach hybridized with

local search. We have used an additional problem-specific heuristic (M-Moore) along with those

used in TRMP for pre-processing. The idea behind using heuristics is the same, to find better

quality initial solutions. As mentioned in Section 1.7, in DDE due to application of perturbation

before recombination, one parent used in recombination operator is a diverse solution most of the

times. This feature of DDE is unique and helps in avoiding premature convergence. To address

SMTSTP-R, we first started with the same (1+1)-ES approach as presented earlier. The solution

generated by this approach was not able to outperform the solutions generated by state-of-the-art

approaches (particularly the HABC approach). We observed that, in SMTSTP-R problem, the

mapping of solution space to the objective space has many-to-one kind of relation, i.e., many

distinct solutions yield same objective value. Thus, the two-membered evolution strategy which

start with single initial solution always stuck in local optima despite using reshuffle strategy.

This analysis motivated us to use DDE approach for addressing SMTSTP-R. The computational

results on the standard benchmark instances demonstrate the superiority of DDE approach over

the state-of-the-art approaches in terms of solution quality.

The superior performance of DDE over existing approaches will serve as a motivation for

developing analogous approaches for other permutation based problems. The SMTSTP-R with

multiple identical machines can be investigated, as the future work. Several industries have to

bear different amount of costs, if the job is produced before its requirement. One such example

is perishable goods. Perishable goods such as as milk, meat, fish, fruits and vegetables, health

related products require different types of storage based on how early they are produced before

consumption. For example, vegetables such as carrot or peas may require deep freezing, normal

freezing, cold storage or room temperature depending on how early they are produced with

respect to their date of consumption. Thus, a problem analogous to the SMTSTP-R can be

modeled in the earliness form, where each job has various earliness dates and the earliness

cost increases in stepwise manner as per the earliness dates of jobs. Several examples can also

be found where stepwise earliness and stepwise tardiness, both are involved. For example, in

production of vaccines earliness can occur at the manufacturing sites and the tardiness can

occur at distribution sites. In both side, different costs are involved which increases in stepwise

manner over discrete time interval. Thus, this problem can also be extended to “Single machine

189

8. CONCLUSIONS AND DIRECTIONS FOR FUTURE RESEARCH

total stepwise earliness/tardiness problem with release dates”. Future researchers can explore

different aspects of these two new problems.

As already mentioned, the first three problems have only permutation characteristics. Out of

these three problems, the first two problems have resemblance with TSP and can be considered as

adjacency based permutation problems. On the other hand, the third one being a job scheduling

problem, has resemblance with order-based permutation problems.

In Chapter 5, we have presented a steady-state grouping genetic algorithm based approach

to address the rescue unit allocation and scheduling problem (RUASP) with fuzzy processing

times. The RUASP problem intends to find the efficient assignment and scheduling of rescue

units for processing the incidents in the event of natural disasters. Thus, it addresses a very

critical issue in emergency response management. It can also be generalized as a variant of the

unrelated parallel-machine scheduling problem with sequence and machine-dependent setup

times. The crossover and mutation operator used in our approach are designed keeping in

mind the characteristics of the problem and the objective. Thus, these operators deliver better

solutions for RUASP. The combination of greedy and random based heuristics in initial solution

generation provides a better quality diverse initial solutions. Such a combination of heuristics

results in faster convergence of approach and also generates superior quality final solutions. We

have compared the solutions obtained by our approach with the existing approaches (heuristics

and GRASP presented in [113], BRKGA of [114]) for RUASP available in the literature. This

comparison clearly demonstrates the superiority of the proposed approach both in terms of

solution quality and execution time.

The superior performance of our approach serves as a motivation to design similar ap-

proaches to address other variants of parallel machine scheduling problems with sequence and

machine dependent setup times. Analogous evolutionary techniques utilizing a combination

of greedy and random heuristics to find better quality diverse initial solutions and the prob-

lem characteristics based crossover and mutation operators can be proposed to address other

combinatorial optimization problems also.

RUASP can be generalized as the vehicle routing problem with no restriction on the capacity

of vehicles. Inclusion of time window restriction to process the incidents is more suitable for

a problem involving immediate actions in the event of an emergency. Hence, RUASP can be

augmented with time window constraints to make the model more realistic. This new version of

RUASP can be generalized as a particular case of vehicle routing problems with time windows

(VRPTW). The literature of VRPTW contains an objective intended for balancing the driver’s

190

workload. This objective seeks minimization of makespan, i.e., the longest travel time among

all routes. In the case of RUASP, this objective appears to be more relevant. The productivity of

rescue units may drop if the workload is not distributed uniformly among the rescue units. As a

future work, RUASP can be presented as a multiobjective (bi-objective) problem by including

two objectives, viz. weighted completion time and minimization of makespan.

Chapter 6 presents a steady-state grouping genetic algorithm based approach named as

GGA-QOS to solve the vehicle routing problem with time windows designed for objectives

seeking the quality of service to the customers QSVRPTW which was introduced in [160]. The

GGA-QOS approach presented here is an extended version of GGA approach proposed in the

previous chapter. The addressed problem is a variant of vehicle routing problem with time

windows (VRPTW) from the perspective of quality of service delivered to customers in transport

related problems. QSVRPTW has more relevance in real-world transport related applications,

especially those involving urgency in supply of goods. In the proposed approach, the crossover

and mutation operators are designed by considering the characteristics of QSVRPTW as well

as the characteristics of the objectives. We have also proposed two bounds for each objective,

which can be used to assess the quality of solutions obtained by an approach. The computational

results demonstrate the superiority of the proposed GGA-QOS approach over the state-of-the-art

approach, viz. GRASP-VNS approach of [160]. The comparison reveals that our proposed

approach is not only faster than the state-of-the-art approach, but also fetches better results.

In addition, we have reported the results of our approach on large instances. The GGA-QOS

approach is able to find feasible solution for tougher instances also, which is an additional

advantage of the proposed approach.

We have simplified the QSVRPTW by showing two of the three objectives equivalent.

Further, the bounds proposed by us prove some of the results obtained through GRASP-VNS

wrong.

The superior performance of the GGA-QOS approach serves as a motivation to design

similar approaches to address the other variants of vehicle routing problem with time windows.

Analogous evolutionary techniques utilizing problem-specific heuristics to find better quality

initial solutions and objective defined variation operators can be proposed to address various

combinatorial optimization problems. Instead of considering each objective separately, we

can also study QSVRPTW by considering all the objectives simultaneously as a multiobjective

problem.

191

8. CONCLUSIONS AND DIRECTIONS FOR FUTURE RESEARCH

Chapter 7 presents a nondominated sorting genetic algorithm II (NSGA-II) based approach

with objective-specific variation operators to address the multiobjective vehicle routing problem

with time windows (MOVRPTW). This problem is a variant of multiobjective vehicle routing

problem (MOVRP). MOVRPTW has more relevance in real-world applications and consists of

five conflicting objectives. In the proposed NSGA-II approach, the crossover and mutation oper-

ators are designed by exploiting the problem-specific knowledge as well as the characteristics of

each objective. The experimental results show that the set of nondominated solutions obtained

by the proposed approach is better than LSMOVRPTW approach in terms of both convergence

and diversity, thereby clearly demonstrating the effectiveness of the proposed NSGA-II approach

in comparison to the state-of-the-art approach. Performance of our approach, particularly in

terms of C-metric, can be improved further at the expense of increased execution times if the

objective-specific local searches like those in [193] are incorporated in our approach.

The performance of the proposed approach provides inspiration for developing similar

approaches for other variants of multiobjective vehicle routing problem. In particular, the

proposed approach can be applied to similar problems presented in [235] and [194]. Similar

multiobjective evolutionary algorithm approaches utilizing objective-specific variation operators

can be designed for a wide range of MOPs.

Both Chapter 6 and Chapter 7 addressed the problems which are variants of vehicle routing

problem with time windows. Still, they have many significant differences in terms of objectives

and the constraints. The QSVRPTW problem discussed in Chapter 6 considers a specific

number of vehicles for each instance, whereas the MOVRPTW presented in Chapter 7 has

no such restriction. In fact, minimization of number of vehicles is one of the objective in

MOVRPTW. Due to the restriction of fix number of vehicles in QSVRPTW, the application

of crossover and mutation operator may result in solutions not satisfying the time window

constraints. The possibility of occurrence of this situation is more in tougher instances, where

due to less number of vehicles the customers need to be inserted in a very compact manner.

Our GGA-QOS approach is able to handle such situations also. On the other hand, NSGA-

II approach handles the aforementioned situation by adding a new route and the customer

involved in violation of constraint(s) is inserted at the beginning of newly added route. Thus, in

MOVRPTW, the application of crossover and mutation always generate a constraints satisfying

solution. MOVRPTW being multiobjective, our proposed NSGA-II approach maintains an

adequate balance between exploration and exploitation due to its objective-specific variation

192

operators. Thus, the developed approaches for both problems can be extended to other variants

of the vehicle routing problems.

The six problems considered in this thesis cover a set of recently introduced real-world per-

mutation based problems. Although, all of these problems possess permutation characteristics,

the semantic of permutation with respect to objective of the problem is different. The insight

gained from this thesis can be useful for other similar real-world permutation based problems.

Since, most of the real-world problems differ in objective and the constraints associated with

them.

Genetic algorithm is the one of the most popular evolutionary approach for solving com-

binatorial optimization problems. In fact, it is one among the most successful metaheuristic

approaches. Based on the work reported in this thesis, we can say that evolution strategy and

discrete differential evolution provide an attractive alternative to genetic algorithm for solving

pure permutation based problems. For permutation based problems, already discrete differential

evolution has many successful recent applications in literature.

Among the proposed approaches, evolution strategy can be more useful for adjacency-based

permutation problems. On the other hand, discrete differential evolution approach can be more

suitable for order-based permutation problems. The grouping genetic algorithm incorporated

with problem-specific knowledge is found to be highly successful in comparison with other well-

known approaches such as GRASP-VNS, BRKGA etc. The NSGA-II approach is already shown

as most successful approach for multiobjective problems in the literature, we have made it even

more powerful by incorporating objective-specific variation operators. Similar objective-specific

variation operators can be incorporated into other multiobjective metaheuristic techniques.

Although, the approaches proposed in this thesis make use of problem-specific knowledge

in their various components. However, this fact does not rule out the possibility that for each

problem there might be some yet to be explored characteristics that need to be discovered and

analyzed further. This, in turn, will provide fresh opportunities to develop new heuristic and

metaheuristic approaches and improve existing ones for each problem.

193

References

[1] K. MENGER. Das botenproblem. Ergebnisse eines mathematischen kolloquiums, 2:11–

12, 1932. (2)

[2] D.L. APPLEGATE, R.E. BIXBY, V. CHVATAL, AND W.J. COOK. The traveling salesman

problem: a computational study. Princeton university press, 2006. (2)

[3] G. GUTIN AND A.P. PUNNEN. The traveling salesman problem and its variations, 12.

Springer Science & Business Media, 2006. (2)

[4] A.P. PUNNEN. The traveling salesman problem: Applications, formulations and

variations. In The traveling salesman problem and its variations, pages 1–28. Springer,

2007. (2)

[5] S.M. JOHNSON. Optimal two-and three-stage production schedules with setup

times included. Naval research logistics quarterly, 1(1):61–68, 1954. (2)

[6] M. PINEDO. Scheduling, 29. Springer, 2012. (2)

[7] T.C. KOOPMANS AND M. BECKMANN. Assignment problems and the location of

economic activities. Econometrica: journal of the Econometric Society, pages 53–76,

1957. (2)

[8] G. FINKE, R.E. BURKARD, AND F. RENDL. Quadratic assignment problems. In

North-Holland Mathematics Studies, 132, pages 61–82. Elsevier, 1987. (2, 3)

[9] J. CEBERIO, E. IRUROZKI, A. MENDIBURU, AND J.A. LOZANO. A review on estima-

tion of distribution algorithms in permutation-based combinatorial optimization

problems. Progress in Artificial Intelligence, 1(1):103–117, 2012. (3)

194

REFERENCES

[10] H.B. CHENERY AND T. WATANABE. International comparisons of the structure of

production. Econometrica: Journal of the Econometric Society, pages 487–521, 1958.

(3)

[11] M. DORIGO, V.O. MANIEZZO, AND A. COLORNI. Ant system: Optimization by a

colony of cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics,

Part B (Cybernetics), 26:29–41, 1996. (4, 5)

[12] D. GOLDBERG. Genetic algorithm in search, optimization and machine learning. Read-

ing, MA :Addison-Wesley, 1989. (5)

[13] J.H. HOLLAND. Adaptation in natural and artificial systems: An introductory analysis

with applications in biology, control and artificial intelligence. University of Michigan

Press, Ann Arbor, MI, 1975. (5, 6, 7, 11, 13)

[14] M. DORIGO, V. MANIEZZO, AND A. COLORNI. Positive feedback as a search strat-

egy, 1991. Technical Report 91-016, Dipartimento di Elettronica, Politecnico di Milano,

Milan, Italy. (5)

[15] D. KARABOGA. An idea based on honey bee swarm for numerical optimization,

2005. Computer Engineering Department, Erciyes University, Turkey. (5)

[16] N. MLADENOVIĆ AND P. HANSEN. Variable neighborhood search. Computers &

operations research, 24(11):1097–1100, 1997. (5, 124)

[17] P. HANSEN AND N. MLADENOVIĆ. Variable neighborhood search: Principles and

applications. European journal of operational research, 130(3):449–467, 2001. (5)

[18] R. STORN AND K. PRICE. Differential evolution -a simple and efficient heuristic for

global optimization over continuous spaces. Journal of global optimization, 11(4):341–

359, 1997. (5, 25)

[19] M.F. TASGETIREN, Q.-K. PAN, Y.-C. LIANG, AND P.N. SUGANTHAN. A discrete

differential evolution algorithm for the total earliness and tardiness penalties with

a common due date on a single-machine. In 2007 IEEE Symposium on Computational

Intelligence in Scheduling, pages 271–278. IEEE, 2007. (5, 25)

195

REFERENCES

[20] I. RECHENBERG. Evolutionsstrategie: Optimierung technischer Systeme nach Prinzipien

der biologischen Evolution. Frommann Holzboog Verlag, Stuttgart, 1973. (5, 22, 23)

[21] H.-P. SCHWEFEL. Evolutionsstrategie und numerische Optimierung. PhD thesis, Tech-

nische Universität Berlin, 1975. (5, 22)

[22] L.J. FOGEL. Autonomous automata. Industrial research, 4:14–19, 1962. (6)

[23] M. DIANATI, I. SONG, AND M. TREIBER. An introduction to genetic algorithms and

evolution strategies. Technical report, Citeseer, 2002. (6)

[24] D.B. FOGEL. A comparison of evolutionary programming and genetic algorithms

on selected constrained optimization problems. Simulation, 64(6):397–404, 1995. (6)

[25] M.A. LONES. Metaheuristics in nature-inspired algorithms. In Proceedings of the

Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary

Computation, pages 1419–1422, 2014. (6)

[26] R.C. MARTÍ, P.M. PARDALOS, AND M.G.C. RESENDE. Handbook of heuristics.

Springer, 2018. (6, 7)

[27] R.R. SHARAPOV. Genetic algorithms: basic ideas, variants and analysis. IntechOpen,

2007. (7)

[28] T. BLICKLE AND L. THIELE. A mathematical analysis of tournament selection. In

ICGA, 95, pages 9–15. Citeseer, 1995. (7)

[29] J.D. SCHAFFER, D. WHITLEY, AND L.J. ESHELMAN. Combinations of genetic

algorithms and neural networks: A survey of the state of the art. In [Proceedings]

COGANN-92: International Workshop on Combinations of Genetic Algorithms and

Neural Networks, pages 1–37. IEEE, 1992. (10)

[30] M. MITCHELL. An introduction to genetic algorithms. Bradford Books, 1998. (11)

[31] J.E. BAKER. Reducing bias and inefficiency in the selection algorithm. In Proceed-

ings of the Second International Conference on Genetic Algorithms, pages 14–21, 1987.

(11)

196

REFERENCES

[32] D.E. GOLDBERG AND K. DEB. A comparative analysis of selection schemes used

in genetic algorithms. In Foundations of Gentic Algorithms, pages 69–93. Morgan

Kaufmann, 1990. (11, 12)

[33] G. SYSWERDA. Uniform crossover in genetic algorithms. In Proceedings of the Third

International Conference on Genetic Algorithms, 3, pages 2–9. Morgan Kaufmann, 1989.

(13)

[34] L. DAVIS. Handbook of Genetic Algorithms. Van Nostrand Reinhold, New York, 1991.

(15, 17, 77, 100)

[35] A.E. EIBEN AND J.E. SMITH. Introduction to evolutionary computing. Springer, New

york, 2003. (16)

[36] D.E. GOLDBERG AND R. LINGLE. Alleles, loci and the traveling salesman problem.

In Proceedings of the 1st International Conference on Genetic Algorithms, pages 154–159,

Hillsdale, NJ, USA, 1985. L. Erlbaum Associates Inc. (16)

[37] I.M. OLIVER, D.J. SMITH, AND J.R.C. HOLLAND. A study of permutation crossover

operators on the travelling salesman problem. In Genetic algorithms and their appli-

cations: Proceedings of the Second International Conference on Genetic Algorithms,

pages 224–230, 1987. (18)

[38] D. WHITLEY, T. STARKWEATHER, AND D. SHANER. The traveling salesman and

sequence scheduling: Quality solutions using genetic edge recombination. Citeseer, 1991.

(18)

[39] H. MÜHLENBEIN. Parallel genetic algorithms in combinatorial optimization. In

Computer science and operations research, pages 441–453. Elsevier, 1992. (20)

[40] E. FALKENAUER. The grouping genetic algorithm. In State of the art in global

optimization, pages 249–265. Springer, 1996. (20, 21, 22, 100)

[41] E. FALKENAUER. A hybrid grouping genetic algorithm for bin packing. Journal of

heuristics, 2(1):5–30, 1996. (20, 100)

[42] A. SINGH AND A.K. GUPTA. Two heuristics for the one-dimensional bin-packing

problem. OR Spectrum, 29(4):765–781, 2007. (21, 100, 105, 131, 142, 167)

197

REFERENCES

[43] E. MEZURA-MONTES, A.H. AGUIRRE, AND C.A.C. COELLO. Using evolution

strategies to solve constrained optimization problems. In Evolutionary Algorithms

and Intelligent Tools in Engineering Optimization, pages 1–25. WIT Press, CIMNE

Barcelona, 2005. (22)

[44] H.-P. SCHWEFEL. Numerische optimierung von computer-modellen mittels der evolution-

sstrategie: mit einer vergleichenden einführung in die hill-climbing-und zufallsstrategie,

1. Springer, 1977. (23)

[45] T. BARTZ-BEIELSTEIN. Evolution strategies and threshold selection. In International

Workshop on Hybrid Metaheuristics, 3636, pages 104–115. Springer, 2005. (23)

[46] T. BÄCK, F. HOFFMEISTER, AND H.-P. SCHWEFEL. A survey of evolution strategies.

In Proceedings of the fourth international conference on genetic algorithms, 2, pages

2–9. Morgan Kaufmann, 1991. (23)

[47] J. CAI AND G. THIERAUF. A parallel evolution strategy for solving discrete struc-

tural optimization. Advances in Engineering Software, 27(1-2):91–96, 1996. (24)

[48] J. CAI AND G. THIERAUF. Evolution strategies for solving discrete optimization

problems. Advances in Engineering Software, 25(2):177–183, 1996. (24)

[49] A. AHRARI AND O. KRAMER. Finite life span for improving the selection scheme in

evolution strategies. Soft Computing, 21(2):501–513, 2017. (24)

[50] H.-G. BEYER AND B. SENDHOFF. Toward a steady-state analysis of an evolution

strategy on a robust optimization problem with noise-induced multimodality. IEEE

Transactions on Evolutionary Computation, 21(4):629–643, 2017. (24)

[51] V.N. COELHO, I.M. COELHO, M.J.F. SOUZA, T.A. OLIVEIRA, L.P. COTA, M.N.

HADDAD, N. MLADENOVIC, R.C.P. SILVA, AND F.G. GUIMARÃES. Hybrid self-

adaptive evolution strategies guided by neighborhood structures for combinatorial

optimization problems. Evolutionary computation, 24(4):637–666, 2016. (24)

[52] A.H. KASHAN, A.A. AKBARI, AND B. OSTADI. Grouping evolution strategies:

An effective approach for grouping problems. Applied Mathematical Modelling,

39(9):2703–2720, 2015. (24)

198

REFERENCES

[53] D. WIERSTRA, T. SCHAUL, T. GLASMACHERS, Y. SUN, J. PETERS, AND J. SCHMID-

HUBER. Natural evolution strategies. Journal of Machine Learning Research,

15(1):949–980, 2014. (24)

[54] R. MALLIPEDDI, P.N. SUGANTHAN, Q.-K. PAN, AND M.F. TASGETIREN. Differential

evolution algorithm with ensemble of parameters and mutation strategies. Applied

soft computing, 11(2):1679–1696, 2011. (25)

[55] Q.-K. PAN, M.F. TASGETIREN, AND Y.-C. LIANG. A discrete differential evolution

algorithm for the permutation flowshop scheduling problem. Computers & Industrial

Engineering, 55(4):795–816, 2008. (25, 26, 45)

[56] S. YUAN, T. LI, AND B. WANG. A discrete differential evolution algorithm for flow

shop group scheduling problem with sequence-dependent setup and transportation

times. Journal of Intelligent Manufacturing, pages 1–13, 2020. (25)

[57] L. WANG, Q.-K. PAN, P.N. SUGANTHAN, W.-H. WANG, AND Y.-M. WANG. A novel

hybrid discrete differential evolution algorithm for blocking flow shop scheduling

problems. Computers & Operations Research, 37(3):509–520, 2010. (26)

[58] M.F. TASGETIREN, Q.-K. PAN, AND Y.-C. LIANG. A discrete differential evolution

algorithm for the single machine total weighted tardiness problem with sequence

dependent setup times. Computers & Operations Research, 36(6):1900–1915, 2009.

(26)

[59] Y. YUAN AND H. XU. Flexible job shop scheduling using hybrid differential evolu-

tion algorithms. Computers & Industrial Engineering, 65(2):246–260, 2013. (26)

[60] M.F. TASGETIREN, Q.-K. PAN, P.N. SUGANTHAN, AND Y.-C. LIANG. A discrete

differential evolution algorithm for the no-wait flowshop scheduling problem with

total flowtime criterion. In 2007 IEEE Symposium on Computational Intelligence in

Scheduling, pages 251–258. IEEE, 2007. (26)

[61] L. TANG, Y. ZHAO, AND J. LIU. An improved differential evolution algorithm for

practical dynamic scheduling in steelmaking-continuous casting production. IEEE

Transactions on Evolutionary Computation, 18(2):209–225, 2013. (26)

199

REFERENCES

[62] A.C. NEARCHOU AND S.L. OMIROU. Differential evolution for sequencing and

scheduling optimization. Journal of Heuristics, 12(6):395–411, 2006. (26)

[63] M. NAWAZ, E.E. ENSCORE, AND I. HAM. A heuristic algorithm for the m-machine,

n-job flow-shop sequencing problem. Omega, 11(1):91–95, 1983. (27, 38, 72)

[64] S. RAHNAMAYAN, H.R. TIZHOOSH, AND M.M.A. SALAMA. Opposition-based

differential evolution. IEEE Transactions on Evolutionary computation, 12(1):64–79,

2008. (27, 187)

[65] Q. XU, L. GUO, N. WANG, J. PAN, AND L. WANG. A novel oppositional

biogeography-based optimization for combinatorial problems. In Natural Compu-

tation (ICNC), 2014 10th International Conference on, pages 412–418. IEEE, 2014.

(28)

[66] Q. XU, L. WANG, N. WANG, X. HEI, AND L. ZHAO. A review of opposition-based

learning from 2005 to 2012. Engineering Applications of Artificial Intelligence, 29:1–12,

2014. (28)

[67] S. RODZIN AND O. RODZINA. New computational models for big data and opti-

mization. In Application of Information and Communication Technologies (AICT), 2015

9th International Conference on, pages 3–7. IEEE, 2015. (28)

[68] M. ERGEZER AND D. SIMON. Oppositional biogeography-based optimization for

combinatorial problems. In 2011 IEEE Congress on Evolutionary Computation (CEC),

pages 1496–1503. IEEE, 2011. (28)

[69] J. ZHAO, L. LV, AND H. SUN. Artificial bee colony using opposition-based learning.

In Genetic and evolutionary computing, pages 3–10. Springer, 2015. (28)

[70] I.F. AKYILDIZ, W. SU, Y. SANKARASUBRAMANIAM, AND E. CAYIRCI. A survey on

sensor networks. IEEE communications magazine, 40(8):102–114, 2002. (36)

[71] V. RAGHUNATHAN, C. SCHURGERS, S. PARK, AND M.B. SRIVASTAVA. Energy-

aware wireless microsensor networks. IEEE Signal processing magazine, 19(2):40–50,

2002. (36)

200

REFERENCES

[72] L. BENINI, D. BRUNI, A. MACH, E. MACII, AND M. PONCINO. Discharge cur-

rent steering for battery lifetime optimization. IEEE Transactions on Computers,

52(8):985–995, 2003. (36)

[73] K.-Y. CHOW, K.-S. LUI, AND E.Y. LAM. Wireless sensor networks scheduling for

full angle coverage. Multidimensional Systems and Signal Processing, 20(2):101–119,

2009. (36)

[74] M.X. CHENG, L. RUAN, AND W. WU. Achieving minimum coverage breach under

bandwidth constraints in wireless sensor networks. In 24th Annual Joint Conference

of the IEEE Computer and Communications Societies (INFOCOM), 4, pages 2638–2645.

IEEE, 2005. (37)

[75] C. WANG, M.T. THAI, Y. LI, F. WANG, AND W. WU. Optimization scheme for sensor

coverage scheduling with bandwidth constraints. Optimization letters, 3(1):63–75,

2009. (37)

[76] A. ROSSI, A. SINGH, AND M. SEVAUX. Column generation algorithm for sensor

coverage scheduling under bandwidth constraints. Networks, 60(3):141–154, 2012.

(37, 38, 48)

[77] M. GENTILI AND A. RAICONI. α-coverage to extend network lifetime on wireless

sensor networks. Optimization Letters, 7(1):157–172, 2013. (38)

[78] A. ROSSI, M. SEVAUX, A. SINGH, AND M.J. GEIGER. On the cover scheduling

problem in wireless sensor networks. In Proceedings of the 5th International Networks

Optimization Conference, Lecture Notes in Computer Science, 6701, pages 657–668,

Hamburg, Germany, 2011. Springer-Verlag. (38, 39, 41, 42, 43, 48, 50, 186)

[79] V. GOPINADH AND A. SINGH. Swarm intelligence approaches for cover scheduling

problem in wireless sensor networks. International Journal of Bio-Inspired Computa-

tion, 7(1):50–61, 2015. (38, 39, 42, 44, 48, 50, 186)

[80] M. ČREPINŠEK, S.-H. LIU, AND M. MERNIK. Exploration and exploitation in

evolutionary algorithms: A survey. ACM Computing Surveys (CSUR), 45(35):1–33,

2013. (44, 61)

201

REFERENCES

[81] C. SOLNON. Boosting ACO with a preprocessing step. In Workshops on Applications

of Evolutionary Computation, 2279, pages 163–172. Springer, 2002. (44, 62)

[82] P. MERZ AND B. FREISLEBEN. Fitness landscapes and memetic algorithm design.

New ideas in optimization, pages 245–260, 1999. (44, 62)

[83] S.N. CHAURASIA AND A. SINGH. A hybrid swarm intelligence approach to the

registration area planning problem. Information Sciences, 302:50–69, 2015. (45, 107)

[84] Q.-K. PAN, M.F. TASGETIREN, P.N. SUGANTHAN, AND T.J. CHUA. A discrete

artificial bee colony algorithm for the lot-streaming flow shop scheduling problem.

Information sciences, 181(12):2455–2468, 2011. (45)

[85] F.J. RODRÍGUEZ, M. LOZANO, C. GARCÍA-MARTÍNEZ, AND J.D. GONZÁLEZ-

BARRERA. An artificial bee colony algorithm for the maximally diverse grouping

problem. Information Sciences, 230:183–196, 2013. (45)

[86] J.A. DELGADO-OSUNA, M. LOZANO, AND C. GARCÍA-MARTÍNEZ. An alternative

artificial bee colony algorithm with destructive–constructive neighbourhood opera-

tor for the problem of composing medical crews. Information Sciences, 326:215–226,

2016. (45)

[87] R. RUIZ AND T. STÜTZLE. A simple and effective iterated greedy algorithm for

the permutation flowshop scheduling problem. European Journal of Operational

Research, 177(3):2033–2049, 2007. (45)

[88] M.F. TASGETIREN, Q.-K. PAN, P.N. SUGANTHAN, AND A.H. CHEN. A discrete

artificial bee colony algorithm for the total flowtime minimization in permutation

flow shops. Information sciences, 181(16):3459–3475, 2011. (45, 107)

[89] R. SZEWCZYK, A. MAINWARING, J. POLASTRE, J. ANDERSON, AND D. CULLER.

An analysis of a large scale habitat monitoring application. In Proceedings of the

2nd international conference on Embedded networked sensor systems, pages 214–226.

ACM, 2004. (55)

[90] J. DJUGASH, S. SINGH, G. KANTOR, AND W. ZHANG. Range-only slam for robots

operating cooperatively with sensor networks. In Robotics and Automation (ICRA

202

REFERENCES

2006), Proceedings of IEEE International Conference on, 5, pages 2078–2084. IEEE,

2006. (55)

[91] M. RAHIMI, R. BAER, O.I. IROEZI, J.C. GARCIA, J. WARRIOR, D. ESTRIN, AND

M. SRIVASTAVA. Cyclops: In situ image sensing and interpretation in wireless

sensor networks. In Proceedings of the 3rd international conference on Embedded

networked sensor systems, pages 192–204. ACM, 2005. (55)

[92] M.A. GUVENSAN AND A.G. YAVUZ. On coverage issues in directional sensor net-

works: A survey. Ad Hoc Networks, 9(7):1238–1255, 2011. (55)

[93] A. SINGH AND A. ROSSI. A genetic algorithm based exact approach for lifetime

maximization of directional sensor networks. Ad Hoc Networks, 11(3):1006–1021,

2013. (55)

[94] A. ROSSI, A. SINGH, AND M. SEVAUX. Lifetime maximization in wireless direc-

tional sensor network. European Journal of Operational Research, 231(1):229–241,

2013. (55, 65)

[95] Y. CAI, W. LOU, M. LI, AND X.-Y. LI. Target-oriented scheduling in directional

sensor networks. In INFOCOM 2007. 26th IEEE International Conference on Computer

Communications., pages 1550–1558. IEEE, 2007. (55)

[96] Y. CAI, W. LOU, M. LI, AND X.-Y. LI. Energy efficient target-oriented scheduling

in directional sensor networks. IEEE Transactions on Computers, 58(9):1259–1274,

2009. (55)

[97] A. MAKHOUL, R. SAADI, AND C. PHAM. Adaptive scheduling of wireless video

sensor nodes for surveillance applications. In Proceedings of the 4th ACM workshop

on Performance monitoring and measurement of heterogeneous wireless and wired

networks, pages 54–60. ACM, 2009. (55)

[98] H. YANG, D. LI, AND H. CHEN. Coverage quality based target-oriented scheduling

in directional sensor networks. In Communications (ICC), 2010 IEEE International

Conference on, pages 1–5. IEEE, 2010. (55)

[99] J.-M. GIL AND Y.-H. HAN. A target coverage scheduling scheme based on genetic

algorithms in directional sensor networks. Sensors, 11(2):1888–1906, 2011. (55)

203

REFERENCES

[100] A. SINGH AND A. ROSSI. Group scheduling problems in directional sensor net-

works. Engineering Optimization, 47(12):1651–1669, 2015. (56, 57, 58, 61, 65, 187)

[101] C.-T. TSENG AND K.-H. CHEN. An electromagnetism-like mechanism for the single

machine total stepwise tardiness problem with release dates. Engineering Optimiza-

tion, 45(12):1431–1448, 2013. (71, 72, 73, 74, 76, 82, 83, 84)

[102] S.N. CHAURASIA, S. SUNDAR, AND A. SINGH. Hybrid metaheuristic approaches for

the single machine total stepwise tardiness problem with release dates. Operational

Research, 17(1):275–295, 2017. (71, 73, 74, 76, 79, 82, 83, 84)

[103] J. CURRY AND B. PETERS. Rescheduling parallel machines with stepwise increas-

ing tardiness and machine assignment stability objectives. International Journal of

Production Research, 43(15):3231–3246, 2005. (71)

[104] G. SAHIN. New combinatorial approaches for solving railroad planning and scheduling

problems. Phd dissertation, University of Florida, 2006. (71)

[105] J.M. MOORE. An n job, one machine sequencing algorithm for minimizing the

number of late jobs. Management science, 15(1):102–109, 1968. (72, 76)

[106] S.I. BIRBIL AND S.C. FANG. Electromagnetism-like mechanism for global opti-

mization. Journal of Global Optimization, 25:263–282, 2003. (73)

[107] J.K. LENSTRA, A.H.G. RINNOOY KAN, AND P. BRUCKER. Complexity of machine

scheduling problems. In Annals of discrete mathematics, 1, pages 343–362. Elsevier,

1977. (74)

[108] R.L. GRAHAM, E.L. LAWLER, J.K. LENSTRA, AND A.H.G. RINNOOY KAN. Opti-

mization and approximation in deterministic sequencing and scheduling: a survey.

In Annals of discrete mathematics, 5, pages 287–326. Elsevier, 1979. (74)

[109] F. WILCOXON, S.K. KATTI, AND R.A. WILCOX. Critical values and probability

levels for the Wilcoxon rank sum test and the Wilcoxon signed rank test. Selected

Tables in Mathematical Statistics, 1:171–259, 1970. (87)

[110] A.S. PRASAD AND L.H. FRANCESCUTTI. Natural disasters. International encyclope-

dia of public health, 5(2):215–222, 2017. (89)

204

REFERENCES

[111] R. ABOUNACER, M. REKIK, AND J. RENAUD. An exact solution approach for

multi-objective location-transportation problem for disaster response. Computers

& Operations Research, 41:83–93, 2014. (90)

[112] L.K. COMFORT, K. KO, AND A. ZAGORECKI. Coordination in rapidly evolving

disaster response systems: The role of information. American behavioral scientist,

48(3):295–313, 2004. (90)

[113] F. WEX, G. SCHRYEN, S. FEUERRIEGEL, AND D. NEUMANN. Emergency response in

natural disaster management: Allocation and scheduling of rescue units. European

Journal of Operational Research, 235(3):697–708, 2014. (90, 91, 92, 93, 96, 97, 98, 100,

102, 103, 108, 109, 111, 112, 113, 114, 190)

[114] V. CUNHA, L. PESSOA, M. VELLASCO, R. TANSCHEIT, AND M.A. PACHECO. A

biased random-key genetic algorithm for the rescue unit allocation and scheduling

problem. In 2018 IEEE Congress on Evolutionary Computation (CEC), pages 1–6.

IEEE, 2018. (90, 94, 95, 97, 98, 99, 100, 108, 109, 111, 190)

[115] S. AJAMI AND M. FATTAHI. The role of earthquake information management sys-

tems (EIMSs) in reducing destruction: A comparative study of Japan, Turkey and

Iran. Disaster Prevention and Management, 18(2):150–161, 2009. (95)

[116] N. ALTAY AND W.G. GREEN III. OR/MS research in disaster operations manage-

ment. European journal of operational research, 175(1):475–493, 2006. (95)

[117] P. GASPARINI, G. MANFREDI, AND J. ZSCHAU. Earthquake early warning systems.

Springer, 2007. (96)

[118] F.N. DE SILVA. Providing spatial decision support for evacuation planning: A

challenge in integrating technologies. Disaster Prevention and Management, 10:11–

20, 2001. (96)

[119] E. POLLAK, M. FALASH, L. INGRAHAM, AND V. GOTTESMAN. Operational analysis

framework for emergency operations center preparedness training. In Proceedings

of the 2004 Winter Simulation Conference, 2004., 1, page 848, 2004. (96)

205

REFERENCES

[120] A. SVENSSON, J. HOLST, R. LINDQUIST, AND G. LINDGREN. Optimal prediction

of catastrophes in autoregressive moving-average processes. Journal of Time Series

Analysis, 17(5):511–531, 1996. (96)

[121] K. SALEEM, S. LUIS, Y. DENG, S.-C. CHEN, V. HRISTIDIS, AND T. LI. Towards a

business continuity information network for rapid disaster recovery. In Proceedings

of the 2008 international conference on digital government research, pages 107–116.

ACM international conference proceeding series, 2008. (96)

[122] H.D. SHERALI, T.B. CARTER, AND A.G. HOBEIKA. A location-allocation model and

algorithm for evacuation planning under hurricane/flood conditions. Transportation

Research Part B: Methodological, 25(6):439–452, 1991. (96)

[123] R. CHEN, R. SHARMAN, H.R. RAO, AND S.J. UPADHYAYA. Coordination in emer-

gency response management. Communications of the ACM, 51(5):66–73, 2008. (96)

[124] G. AIRY, T. MULLEN, AND J. YEN. Market based adaptive resource allocation for

distributed rescue teams. In Proceedings of the 6th conference on information systems

for crisis response and management (ISRAM 2009). Gothenburg, Sweden, 2009. (96)

[125] T. COMES, C. CONRADO, M. HIETE, M. KAMERMANS, G. PAVLIN, AND N.J.E.

WIJNGAARDS. An intelligent decision support system for decision making under

uncertainty in distributed reasoning frameworks. In Proceedings of the 7th interna-

tional conference on information systems for crisis response and management (ISCRAM

2010), Seattle, USA, 2010. (96)

[126] J.H. LAMBERT AND C.E. PATTERSON. Prioritization of schedule dependencies

in hurricane recovery of transportation agency. Journal of Infrastructure Systems,

8(3):103–111, 2002. (96)

[127] H.A. REIJERS, M.H. JANSEN-VULLERS, M. ZUR MUEHLEN, AND W. APPL. Work-

flow management systems+ swarm intelligence= dynamic task assignment for emer-

gency management applications. In International Conference on Business Process

Management (BPM2007), pages 125–140. Springer, 2007. (96)

[128] H. TAMURA, K. YAMAMOTO, S. TOMIYAMA, AND I. HATONO. Modeling and

analysis of decision making problem for mitigating natural disaster risks. European

Journal of Operational Research, 122(2):461–468, 2000. (96)

206

REFERENCES

[129] F. FIEDRICH, F. GEHBAUER, AND U. RICKERS. Optimized resource allocation for

emergency response after earthquake disasters. Safety science, 35(1-3):41–57, 2000.

(96)

[130] O. LEIFLER. Combining technical and human-centered strategies for decision sup-

port in command and control: The ComPlan approach. In Proceedings of the 5th

international conference on information systems for crisis response and management

(ISCRAM 2008), pages 504–515, Seattle, USA, 2008. (96)

[131] B. VAN DE WALLE AND M. TUROFF. Decision support for emergency situations.

In Handbook on decision support systems 2. International handbooks on information

systems, pages 39–63, Berlin, Heidelberg, 2008. Springer. (96)

[132] S. FARAJ AND Y. XIAO. Coordination in fast-response organizations. Management

science, 52(8):1155–1169, 2006. (96)

[133] M. FALASCA, C.W. ZOBEL, AND G.M. FETTER. An optimization model for humani-

tarian relief volunteer management. In J. Landgren & S. Jul (Eds.), Proceedings of the

6th international conference on information systems for crisis response and management

(ISCRAM 2008), Gothenburg, Sweden, 2009. (96)

[134] E. ROLLAND, R.A. PATTERSON, K. WARD, AND B. DODIN. Decision support for

disaster management. Operations Management Research, 3(1-2):68–79, 2010. (96)

[135] F. WEX, G. SCHRYEN, AND D. NEUMANN. Operational emergency response under

informational uncertainty: A fuzzy optimization model for scheduling and allocat-

ing rescue units. In L. Rothkrantz, J. Ristvej & Z. Franco (Eds.), Proceedings of the 9th

international conference on information systems for crisis response and management

(ISCRAM 2012), 2012. (96)

[136] F. WEX, G. SCHRYEN, AND D. NEUMANN. Decision modeling for assignments of

collaborative rescue units during emergency response. In Proceedings of the 46th

Hawaii International Conference on System Sciences, pages 166–175. IEEE, 2013. (96)

[137] T.A. FEO AND M.G.C. RESENDE. A probabilistic heuristic for a computationally

difficult set covering problem. Operations research letters, 8(2):67–71, 1989. (97, 124)

207

REFERENCES

[138] P. FESTA AND M.G.C. RESENDE. GRASP. In Handbook of Heuristics, pages 1–24.

Springer, 2016. (98)

[139] J.-S. YAO AND K. WU. Ranking fuzzy numbers based on decomposition principle

and signed distance. Fuzzy sets and Systems, 116(2):275–288, 2000. (99)

[140] S. BALIN. Parallel machine scheduling with fuzzy processing times using a robust

genetic algorithm and simulation. Information Sciences, 181(17):3551–3569, 2011.

(99)

[141] N. VAN HOP. A heuristic solution for fuzzy mixed-model line balancing problem.

European Journal of Operational Research, 168(3):798–810, 2006. (99)

[142] A. SINGH AND A.S. BAGHEL. A new grouping genetic algorithm approach to the

multiple traveling salesperson problem. Soft Computing, 13(1):95–101, 2009. (105,

142, 167)

[143] B. ROY. Robustness in operational research and decision aiding: A multi-faceted

issue. European Journal of Operational Research, 200(3):629–638, 2010. (111)

[144] D.F. WILLIAMSON, R.A. PARKER, AND J.S. KENDRICK. The box plot: a simple

visual method to interpret data. Annals of internal medicine, 110(11):916–921, 1989.

(113)

[145] A. HOFF, H. ANDERSSON, M. CHRISTIANSEN, G. HASLE, AND A. LØKKETANGEN.

Industrial aspects and literature survey: Fleet composition and routing. Computers

& Operations Research, 37(12):2041–2061, 2010. (117)

[146] N. JOZEFOWIEZ, F. SEMET, AND E.-G. TALBI. Multi-objective vehicle routing

problems. European journal of operational research, 189(2):293–309, 2008. (117, 118)

[147] M.R. GAREY AND D.S. JOHNSON. Computers and Intractability: A Guide to the Theory

of NP-Completeness. W. H. Freeman & Co., USA, 1979. (117)

[148] J.K. LENSTRA AND A.H.G. RINNOOY KAN. Complexity of vehicle routing and

scheduling problems. Networks, 11(2):221–227, 1981. (117)

[149] G.B. DANTZIG AND J.H. RAMSER. The truck dispatching problem. Management

science, 6(1):80–91, 1959. (117)

208

REFERENCES

[150] W.H. IP, D. WANG, AND V. CHO. Aircraft ground service scheduling problems

and their genetic algorithm with hybrid assignment and sequence encoding scheme.

IEEE Systems Journal, 7(4):649–657, 2013. (117)

[151] H.-K. CHEN, H.-W. CHOU, C.-F. HSUEH, AND T.-Y. HO. The linehaul-feeder vehicle

routing problem with virtual depots. IEEE Transactions on Automation Science and

Engineering, 8(4):694–704, 2011. (117)

[152] B. EKSIOGLU, A.V. VURAL, AND A. REISMAN. The vehicle routing problem: A

taxonomic review. Computers & Industrial Engineering, 57(4):1472–1483, 2009. (117)

[153] M. GMIRA, M. GENDREAU, A. LODI, AND J.-Y. POTVIN. Tabu search for the time-

dependent vehicle routing problem with time windows on a road network. European

Journal of Operational Research, 288(1):129–140, 2021. (117)

[154] J.C. MOLINA, J.L. SALMERON, AND I. EGUIA. An ACS-based memetic algorithm

for the heterogeneous vehicle routing problem with time windows. Expert Systems

with Applications, 157:113379, 2020. (117)

[155] E. OSABA, X.-S. YANG, AND J. DEL SER. Is the vehicle routing problem dead?

An overview through bioinspired perspective and a prospect of opportunities. In

Nature-Inspired Computation in Navigation and Routing Problems, pages 57–84.

Springer, 2020. (117)

[156] R.F. FACHINI AND V.A. ARMENTANO. Logic-based Benders decomposition for the

heterogeneous fixed fleet vehicle routing problem with time windows. Computers &

Industrial Engineering, 148:106641, 2020. (117)

[157] M.M. SOLOMON AND J. DESROSIERS. Survey paper-time window constrained

routing and scheduling problems. Transportation science, 22(1):1–13, 1988. (117)

[158] V. KORABLEV, I. MAKEEV, E. KHARITONOV, B. TSHUKIN, AND I. ROMANOV.

Approaches to solve the vehicle routing problem in the valuables delivery domain.

Procedia Computer Science, 88:487–492, 2016. (117)

[159] G.M. GIAGLIS, I. MINIS, A. TATARAKIS, AND V. ZEIMPEKIS. Minimizing logis-

tics risk through real-time vehicle routing and mobile technologies: Research to

209

REFERENCES

date and future trends. International Journal of Physical Distribution & Logistics

Management, 34(9):749–764, 2004. (118)

[160] A. EXPÓSITO, J. BRITO, J.A. MORENO, AND C. EXPÓSITO-IZQUIERDO. Quality

of service objectives for vehicle routing problem with time windows. Applied Soft

Computing, 84:105707, 2019. (118, 119, 121, 122, 123, 124, 125, 131, 132, 145, 146,

148, 149, 191)

[161] G.S. SURESHCHANDAR, C. RAJENDRAN, AND R.N. ANANTHARAMAN. The rela-

tionship between management’s perception of total quality service and customer

perceptions of service quality. Total Quality Management, 13(1):69–88, 2002. (118)

[162] J.T. MENTZER, W. DEWITT, J.S. KEEBLER, S. MIN, N.W. NIX, C.D. SMITH, AND

Z.G. ZACHARIA. Defining supply chain management. Journal of Business logistics,

22(2):1–25, 2001. (118)

[163] S. LIMBOURG, H.T.Q. GIANG, AND M. COOLS. Logistics service quality: the case

of Da Nang city. Procedia engineering, 142:124–130, 2016. (118)

[164] J.T. MENTZER, D.J. FLINT, AND G.T.M. HULT. Logistics service quality as a

segment-customized process. Journal of marketing, 65(4):82–104, 2001. (118)

[165] S.J. JAMES, C. JAMES, AND J.A. EVANS. Modelling of food transportation systems-

a review. International Journal of Refrigeration, 29(6):947–957, 2006. Issue with special

emphasis on data and models on food refrigeration. (118)

[166] O. BRÄYSY AND M. GENDREAU. Vehicle routing problem with time windows, Part

I: Route construction and local search algorithms. Transportation science, 39(1):104–

118, 2005. (119)

[167] R. BALDACCI, A. MINGOZZI, AND R. ROBERTI. Recent exact algorithms for solving

the vehicle routing problem under capacity and time window constraints. European

Journal of Operational Research, 218(1):1–6, 2012. (119)

[168] P. TOTH AND D. VIGO. Vehicle routing: problems, methods, and applications. SIAM,

2014. (119)

210

REFERENCES

[169] J. BRITO, D. CASTELLANOS-NIEVES, A. EXPÓSITO, AND J.A. MORENO. Soft

computing methods in transport and logistics. In Soft Computing Based Optimization

and Decision Models, pages 45–61. Springer, 2018. (119)

[170] J.L. VERDEGAY, R.R. YAGER, AND P.P. BONISSONE. On heuristics as a fundamental

constituent of soft computing. Fuzzy sets and systems, 159(7):846–855, 2008. (119)

[171] R. BENT AND P. VAN HENTENRYCK. A two-stage hybrid local search for the vehicle

routing problem with time windows. Transportation Science, 38(4):515–530, 2004.

(119)

[172] O. BRÄYSY, G. HASLE, AND W. DULLAERT. A multi-start local search algorithm

for the vehicle routing problem with time windows. European Journal of Operational

Research, 159(3):586 – 605, 2004. (119)

[173] Y. GONG, J. ZHANG, O. LIU, R. HUANG, H.S. CHUNG, AND Y. SHI. Optimizing

the vehicle routing problem with time windows: A discrete particle swarm opti-

mization approach. IEEE Transactions on Systems, Man, and Cybernetics, Part C

(Applications and Reviews), 42(2):254–267, 2012. (119, 153)

[174] A. LIM AND X. ZHANG. A two-stage heuristic with ejection pools and general-

ized ejection chains for the vehicle routing problem with time windows. INFORMS

Journal on Computing, 19(3):443–457, 2007. (119)

[175] P.P. REPOUSSIS, C.D. TARANTILIS, AND G. IOANNOU. Arc-guided evolutionary

algorithm for the vehicle routing problem with time windows. IEEE Transactions on

Evolutionary Computation, 13(3):624–647, 2009. (119)

[176] Z. URSANI, D. ESSAM, D. CORNFORTH, AND R. STOCKER. Localized genetic

algorithm for vehicle routing problem with time windows. Applied Soft Computing,

11(8):5375–5390, 2011. (119, 153)

[177] H.C.B. OLIVEIRA AND G.C. VASCONCELOS. A hybrid search method for the vehicle

routing problem with time windows. Annals of Operations Research, 180(1):125–144,

2010. (119, 153)

211

REFERENCES

[178] N. BJELIĆ, M. VIDOVIĆ, AND D. POPOVIĆ. Variable neighborhood search algo-

rithm for heterogeneous traveling repairmen problem with time windows. Expert

systems with applications, 40(15):5997–6006, 2013. (124)

[179] R. JOTHI AND B. RAGHAVACHARI. Approximating the k-traveling repairman prob-

lem with repairtimes. Journal of Discrete Algorithms, 5(2):293–303, 2007. (124)

[180] Z. LUO, H. QIN, AND A. LIM. Branch-and-price-and-cut for the multiple traveling

repairman problem with distance constraints. European Journal of Operational

Research, 234(1):49–60, 2014. (124)

[181] S. NUCAMENDI-GUILLÉN, I. MARTÍNEZ-SALAZAR, F. ANGEL-BELLO, AND J.M.

MORENO-VEGA. A mixed integer formulation and an efficient metaheuristic pro-

cedure for the k-travelling repairmen problem. Journal of the Operational Research

Society, 67(8):1121–1134, 2016. (124)

[182] I. OME EZZINE AND S. ELLOUMI. Polynomial formulation and heuristic based ap-

proach for the k-travelling repairman problem. International Journal of Mathematics

in Operational Research, 4(5):503–514, 2012. (124)

[183] I. POST AND C. SWAMY. Linear programming-based approximation algorithms for

multi-vehicle minimum latency problems. In Proceedings of the Twenty-Sixth Annual

ACM-SIAM Symposium on Discrete Algorithms, pages 512–531. SIAM, 2014. (124)

[184] H. TANG, E. MILLER-HOOKS, AND R. TOMASTIK. Scheduling technicians for

planned maintenance of geographically distributed equipment. Transportation Re-

search Part E: Logistics and Transportation Review, 43(5):591–609, 2007. (124)

[185] L.Y.O. LI AND Z. FU. The school bus routing problem: a case study. Journal of the

Operational Research Society, 53(5):552–558, 2002. (124)

[186] J. PARK AND B.-I. KIM. The school bus routing problem: A review. European

Journal of operational research, 202(2):311–319, 2010. (124)

[187] M. SPADA, M. BIERLAIRE, AND T.M. LIEBLING. Decision-aiding methodology for

the school bus routing and scheduling problem. Transportation Science, 39(4):477–

490, 2005. (124)

212

REFERENCES

[188] P. AMORIM AND B. ALMADA-LOBO. The impact of food perishability issues in

the vehicle routing problem. Computers & Industrial Engineering, 67:223–233, 2014.

(124)

[189] Z.-J. MA, Y. WU, AND Y. DAI. A combined order selection and time-dependent ve-

hicle routing problem with time widows for perishable product delivery. Computers

& Industrial Engineering, 114:101–113, 2017. (124)

[190] L.M. CARO AND J.A.M. GARCÍA. Measuring perceived service quality in urgent

transport service. Journal of Retailing and Consumer Services, 14(1):60–72, 2007.

(124)

[191] J. PAQUETTE, J.-F. CORDEAU, AND G. LAPORTE. Quality of service in dial-a-ride

operations. Computers & Industrial Engineering, 56(4):1721–1734, 2009. (124)

[192] P. HANSEN, N. MLADENOVIĆ, AND J.A.M. PÉREZ. Variable neighbourhood search:

methods and applications. Annals of Operations Research, 175(1):367–407, 2010.

(124)

[193] Y. ZHOU AND J. WANG. A local search-based multiobjective optimization algorithm

for multiobjective vehicle routing problem with time windows. IEEE Systems Jour-

nal, 9(3):1100–1113, 2015. (133, 155, 156, 161, 162, 166, 167, 173, 174, 175, 177,

192)

[194] J. WANG, Y. ZHOU, Y. WANG, J. ZHANG, C.L.P. CHEN, AND Z. ZHENG. Multiob-

jective vehicle routing problems with simultaneous delivery and pickup and time

windows: formulation, instances, and algorithms. IEEE transactions on cybernetics,

46(3):582–594, 2016. (133, 192)

[195] M.M. SOLOMON. Algorithms for the vehicle routing and scheduling problems with

time window constraints. Operations research, 35(2):254–265, 1987. (146, 154, 161)

[196] A. GARCIA-NAJERA AND J.A. BULLINARIA. An improved multi-objective evolu-

tionary algorithm for the vehicle routing problem with time windows. Computers &

Operations Research, 38(1):287–300, 2011. (153, 154, 158)

213

REFERENCES

[197] K.C. TAN, Y.H. CHEW, AND L.H. LEE. A hybrid multiobjective evolutionary al-

gorithm for solving vehicle routing problem with time windows. Computational

Optimization and Applications, 34(1):115–151, 2006. (154, 158)

[198] B. OMBUKI, B.J. ROSS, AND F. HANSHAR. Multi-objective genetic algorithms for

vehicle routing problem with time windows. Applied Intelligence, 24(1):17–30, 2006.

(154)

[199] K. GHOSEIRI AND S.F. GHANNADPOUR. Multi-objective vehicle routing problem

with time windows using goal programming and genetic algorithm. Applied Soft

Computing, 10(4):1096–1107, 2010. (154)

[200] W.-H. HSU AND T.-C. CHIANG. A multiobjective evolutionary algorithm with en-

hanced reproduction operators for the vehicle routing problem with time windows.

In 2012 IEEE Congress on Evolutionary Computation, pages 1–8. IEEE, 2012. (154)

[201] J. CASTRO-GUTIERREZ, D. LANDA-SILVA, AND J.M. PÉREZ. Nature of real-world

multi-objective vehicle routing with evolutionary algorithms. In 2011 IEEE Interna-

tional Conference on Systems, Man, and Cybernetics, pages 257–264. IEEE, 2011. (154,

155, 156, 160, 161, 162, 173, 174, 175, 177)

[202] J. CASTRO-GUTIERREZ. Multi-objective tools for the vehicle routing problem with time

windows. PhD thesis, University of Nottingham, 2012. (154)

[203] K. DEB, A. PRATAP, S. AGARWAL, AND T. MEYARIVAN. A fast and elitist multiob-

jective genetic algorithm: NSGA-II. IEEE transactions on evolutionary computation,

6(2):182–197, 2002. (155, 163, 164, 165)

[204] J. CASTRO-GUTIERREZ, D. LANDA-SILVA, AND J.M. PÉREZ. MOVRPTW dataset.

Available online:https://github.com/psxjpc/, 2012. (155, 162)

[205] M. LAUMANNS, L. THIELE, K. DEB, AND E. ZITZLER. Combining convergence

and diversity in evolutionary multiobjective optimization. Evolutionary computation,

10(3):263–282, 2002. (155, 162)

[206] K. DEB, M. MOHAN, AND S. MISHRA. Evaluating the ε-domination based multi-

objective evolutionary algorithm for a quick computation of Pareto-optimal solu-

tions. Evolutionary computation, 13(4):501–525, 2005. (155, 162)

214

https://github.com/psxjpc/

REFERENCES

[207] D. TAŞ, N. DELLAERT, T. VAN WOENSEL, AND T. DE KOK. Vehicle routing problem

with stochastic travel times including soft time windows and service costs. Comput-

ers & Operations Research, 40(1):214–224, 2013. (158, 160)

[208] H. HASHIMOTO, T. IBARAKI, S. IMAHORI, AND M. YAGIURA. The vehicle routing

problem with flexible time windows and traveling times. Discrete Applied Mathemat-

ics, 154(16):2271–2290, 2006. (158)

[209] Z. FU, R. EGLESE, AND L.Y. LI. A unified tabu search algorithm for vehicle rout-

ing problems with soft time windows. Journal of the Operational Research Society,

59(5):663–673, 2008. (158)

[210] W.-C. CHIANG AND R.A. RUSSELL. A metaheuristic for the vehicle-routeing prob-

lem with soft time windows. Journal of the Operational Research Society, 55(12):1298–

1310, 2004. (158)

[211] É. TAILLARD, P. BADEAU, M. GENDREAU, F. GUERTIN, AND J.-Y. POTVIN. A tabu

search heuristic for the vehicle routing problem with soft time windows. Transporta-

tion science, 31(2):170–186, 1997. (158)

[212] J. MÜLLER. Approximative solutions to the bicriterion vehicle routing problem

with time windows. European Journal of Operational Research, 202(1):223–231, 2010.

(158)

[213] A. RODRÍGUEZ AND R. RUIZ. A study on the effect of the asymmetry on real

capacitated vehicle routing problems. Computers & Operations Research, 39(9):2142–

2151, 2012. (161)

[214] C.L. FLEMING, S.E. GRIFFIS, AND J.E. BELL. The effects of triangle inequality on

the vehicle routing problem. European Journal of Operational Research, 224(1):1–7,

2013. (161)

[215] E. ZITZLER, L. THIELE, M. LAUMANNS, C.M. FONSECA, AND V.G. DA FON-

SECA. Performance assessment of multiobjective optimizers: An analysis and re-

view. IEEE Transactions on evolutionary computation, 7(2):117–132, 2003. (163,

175)

215

REFERENCES

[216] S.-W. CHEN AND T.-C. CHIANG. Evolutionary many-objective optimization by MO-

NSGA-II with enhanced mating selection. In 2014 IEEE Congress on Evolutionary

Computation (CEC), pages 1397–1404. IEEE, 2014. (163)

[217] E. ZITZLER, M. LAUMANNS, AND L. THIELE. SPEA2: Improving the strength

Pareto evolutionary algorithm. In Evolutionary Methods for Design, Optimization and

Control, pages 95–100, Barcelona, Spain, 2002. CIMNE. (163, 175)

[218] Q. ZHANG AND H. LI. MOEA/D: A multiobjective evolutionary algorithm based

on decomposition. IEEE Transactions on evolutionary computation, 11(6):712–731,

2007. (163, 175)

[219] C.A.C. COELLO AND M.S. LECHUGA. MOPSO: A proposal for multiple objective

particle swarm optimization. In Proceedings of the 2002 Congress on Evolutionary

Computation. CEC’02, 2, pages 1051–1056. IEEE, 2002. (163)

[220] S. KUKKONEN AND J. LAMPINEN. GDE3: the third evolution step of generalized

differential evolution. In 2005 IEEE Congress on Evolutionary Computation, 1, pages

443–450, 2005. (163)

[221] J.D. KNOWLES AND D.W. CORNE. Approximating the nondominated front using

the Pareto archived evolution strategy. Evolutionary computation, 8(2):149–172, 2000.

(163)

[222] C.A.C COELLO, S.G. BRAMBILA, J.F. GAMBOA, M.G.C. TAPIA, AND R.H. GÓMEZ.

Evolutionary multiobjective optimization: open research areas and some chal-

lenges lying ahead. Complex & Intelligent Systems, 6:221–236, 2020. (163)

[223] A. ZHOU, B.-Y. QU, H. LI, S.-Z. ZHAO, P.N. SUGANTHAN, AND Q. ZHANG. Mul-

tiobjective evolutionary algorithms: A survey of the state of the art. Swarm and

Evolutionary Computation, 1:32–49, 2011. (163)

[224] Y. YUSOFF, M.S. NGADIMAN, AND A.M. ZAIN. Overview of NSGA-II for opti-

mizing machining process parameters. Procedia Engineering, 15:3978–3983, 2011.

(164)

[225] N. SRINIVAS AND K. DEB. Multiobjective optimization using nondominated sorting

in genetic algorithms. Evolutionary computation, 2(3):221–248, 1995. (164)

216

REFERENCES

[226] N. RIQUELME, C.V. LÜCKEN, AND B. BARÁN. Performance metrics in multi-

objective optimization. In 2015 Latin American Computing Conference (CLEI), pages

1–11. IEEE, 2015. (175)

[227] C.M. FONSECA, L. PAQUETE, AND M. LÓPEZ-IBÁNEZ. An improved dimension-

sweep algorithm for the hypervolume indicator. In 2006 IEEE international confer-

ence on evolutionary computation, pages 1157–1163. IEEE, 2006. (176)

[228] C.M. FONSECA, M. LÓPEZ-IBÁNEZ, L. PAQUETE, AND A.P. GUERREIRO. Compu-

tation of the Hypervolume Indicator. Available online: http://lopez-ibanez.

eu/hypervolume, 2006. (176)

[229] E. ZITZLER AND L. THIELE. Multiobjective evolutionary algorithms: a comparative

case study and the strength Pareto approach. IEEE transactions on Evolutionary

Computation, 3(4):257–271, 1999. (176)

[230] F. WILCOXON. Individual comparisons by ranking methods. Biometrics, 1(6):80–83,

1945. (177)

[231] J. DERRAC, S. GARCÍA, D. MOLINA, AND F. HERRERA. A practical tutorial on the

use of nonparametric statistical tests as a methodology for comparing evolutionary

and swarm intelligence algorithms. Swarm and Evolutionary Computation, 1(1):3–18,

2011. (177)

[232] D.J. WALKER, R.M. EVERSON, AND J.E. FIELDSEND. Visualizing mutually non-

dominating solution sets in many-objective optimization. IEEE transactions on evo-

lutionary computation, 17(2):165–184, 2013. (182)

[233] A. PRYKE, S. MOSTAGHIM, AND A. NAZEMI. Heatmap visualization of population

based multi-objective algorithms. In Evolutionary Multi-Criterian Optimization, S.

Obayashi, K. Deb, C. Poloni, T. Hiroyasu, and T. Murata, Eds., 4403, pages 361–375.

Springer-Verlag, 2007. (182)

[234] D.H. WOLPERT AND W.G. MACREADY. No free lunch theorems for optimization.

IEEE transactions on evolutionary computation, 1(1):67–82, 1997. (186)

217

http://lopez-ibanez.eu/hypervolume
http://lopez-ibanez.eu/hypervolume

REFERENCES

[235] J. WANG, T. WENG, AND Q. ZHANG. A two-stage multiobjective evolutionary al-

gorithm for multiobjective multidepot vehicle routing problem with time windows.

IEEE Transactions on Cybernetics, 49(7):2467–2478, 2019. (192)

218

List of Publications

[1] GAURAV SRIVASTAVA AND ALOK SINGH. Boosting an evolution strategy with a

preprocessing step: application to group scheduling problem in directional sensor

networks. Applied Intelligence, 48: 4760-4774, 2018, Springer.

[2] GAURAV SRIVASTAVA, VENKATESH PANDIRI AND ALOK SINGH. An evolution strat-

egy based approach for cover scheduling problem in wireless sensor networks. Inter-

national Journal of Machine Learning and Cybernetics, 11: 1981-2006, 2020, Springer.

[3] GAURAV SRIVASTAVA ALOK SINGH AND RAMMOHAN MALLIPEDDI. NSGA-II

with objective-specific variation operators for multiobjective vehicle routing prob-

lem with time windows. Expert Systems with Applications, 176: 114779, 2021, Elsevier.

[4] GAURAV SRIVASTAVA ALOK SINGH AND RAMMOHAN MALLIPEDDI. A hybrid dis-

crete differential evolution approach for the single machine total stepwise tardiness

problem with release dates. Proceedings of the 2021 IEEE Congress on Evolutionary

Computation (CEC-2021), 652-659, 2021, IEEE.

[5] GAURAV SRIVASTAVA AND ALOK SINGH. A steady-state grouping genetic algorithm

approach for vehicle routing problem with time windows and quality of service ob-

jectives. Communicated to Applied Soft Computing, Elsevier.

[6] GAURAV SRIVASTAVA AND ALOK SINGH. Rescue unit allocation and scheduling

with fuzzy processing times using a robust evolutionary approach. Communicated to

Knowledge-Based Systems, Elsevier.

219

5 1%

6 1%

7 <1%

8 <1%

9 <1%

10 <1%

application to group scheduling problem in
directional sensor networks", Applied
Intelligence, 2018
Publication

Submitted to University of Hyderabad,
Hyderabad
Student Paper

Airam Expósito, Julio Brito, José A. Moreno,
Christopher Expósito-Izquierdo. "Quality of
service objectives for vehicle routing problem
with time windows", Applied Soft Computing,
2019
Publication

"Handbook of Heuristics", Springer Science
and Business Media LLC, 2018
Publication

cec2021.mini.pw.edu.pl
Internet Source

Victor Cunha, Luciana Pessoa, Marley
Vellasco, Ricardo Tanscheit, Marco Aurelio
Pacheco. "A Biased Random-Key Genetic
Algorithm for the Rescue Unit Allocation and
Scheduling Problem", 2018 IEEE Congress on
Evolutionary Computation (CEC), 2018
Publication

freidok.uni-freiburg.de
Internet Source

11 <1%

12 <1%

13 <1%

14 <1%

15 <1%

16 <1%

17 <1%

Felix Wex, Guido Schryen, Stefan Feuerriegel,
Dirk Neumann. "Emergency response in
natural disaster management: Allocation and
scheduling of rescue units", European Journal
of Operational Research, 2014
Publication

Alok Singh. "A new grouping genetic algorithm
approach to the multiple traveling
salesperson problem", Soft Computing,
01/2009
Publication

www.springerprofessional.de
Internet Source

"Swarm, Evolutionary, and Memetic
Computing", Springer Science and Business
Media LLC, 2011
Publication

aisel.aisnet.org
Internet Source

Ying Zhou, Jiahai Wang. "A Local Search-Based
Multiobjective Optimization Algorithm for
Multiobjective Vehicle Routing Problem With
Time Windows", IEEE Systems Journal, 2015
Publication

Submitted to South University of Science and
Technology of China
Student Paper

18 <1%

19 <1%

20 <1%

21 <1%

22 <1%

23 <1%

24 <1%

Alok Singh, André Rossi. "Group scheduling
problems in directional sensor networks",
Engineering Optimization, 2014
Publication

Advances in Intelligent Systems and
Computing, 2014.
Publication

Pandiri Venkatesh, Alok Singh. "A Hyper-
Heuristic Based Artificial Bee Colony
Algorithm for k -Interconnected Multi-Depot
Multi-Traveling Salesman Problem",
Information Sciences, 2018
Publication

"Soft Computing for Problem Solving",
Springer Science and Business Media LLC,
2021
Publication

www.inderscience.com
Internet Source

mts.intechopen.com
Internet Source

Sachchida Nand Chaurasia, Alok Singh. "A
hybrid evolutionary approach to the
registration area planning problem", Applied
Intelligence, 2014
Publication

link.springer.com

25 <1%

26 <1%

27 <1%

28 <1%

29 <1%

30 <1%

31 <1%

32 <1%

33 <1%

34 <1%

Internet Source

"Network Optimization", Springer Science and
Business Media LLC, 2011
Publication

Lecture Notes in Computer Science, 2007.
Publication

Submitted to Universidad de La Laguna
Student Paper

epub.uni-regensburg.de
Internet Source

eprints.nottingham.ac.uk
Internet Source

Shyam Sundar, Alok Singh. "Metaheuristic
Approaches for the Blockmodel Problem",
IEEE Systems Journal, 2015
Publication

worldwidescience.org
Internet Source

Michael Mutingi, Charles Mbohwa. "Grouping
Genetic Algorithms", Springer Science and
Business Media LLC, 2017
Publication

dokumen.pub
Internet Source

35 <1%

36 <1%

37 <1%

38 <1%

39 <1%

Sachchida Nand Chaurasia, Shyam Sundar,
Alok Singh. "Hybrid metaheuristic approaches
for the single machine total stepwise
tardiness problem with release dates",
Operational Research, 2016
Publication

Sina Nayeri, Ebrahim Asadi-Gangraj, Saeed
Emami. "Metaheuristic algorithms to allocate
and schedule of the rescue units in the
natural disaster with fatigue effect", Neural
Computing and Applications, 2018
Publication

mafiadoc.com
Internet Source

Anis Koubaa, Hachemi Bennaceur, Imen
Chaari, Sahar Trigui et al. "Robot Path
Planning and Cooperation", Springer Science
and Business Media LLC, 2018
Publication

Sahar Trigui, Omar Cheikhrouhou, Anis
Koubaa, Anis Zarrad, Habib Youssef. "An
analytical hierarchy process-based approach
to solve the multi-objective multiple traveling
salesman problem", Intelligent Service
Robotics, 2018
Publication

40 <1%

41 <1%

42 <1%

43 <1%

44 <1%

45 <1%

46 <1%

47 <1%

Wex, Felix. "Coordination strategies and
predictive analytics in crisis management",
Universität Freiburg, 2013.
Publication

André Rossi, Alok Singh, Marc Sevaux.
"Column generation algorithm for sensor
coverage scheduling under bandwidth
constraints", Networks, 2012
Publication

Submitted to Prince Sultan University
Student Paper

Singh, Alok, and André Rossi. "A genetic
algorithm based exact approach for lifetime
maximization of directional sensor networks",
Ad Hoc Networks, 2012.
Publication

www-usr.inf.ufsm.br
Internet Source

www.ir.nctu.edu.tw
Internet Source

www.oak.go.kr
Internet Source

Kavita Singh, Shyam Sundar. "A new hybrid
genetic algorithm for the maximally diverse
grouping problem", International Journal of
Machine Learning and Cybernetics, 2019
Publication

48 <1%

49 <1%

50 <1%

51 <1%

52 <1%

53 <1%

W. C. Ng, K. L. Mak, Y. X. Zhang. "Scheduling
trucks in container terminals using a genetic
algorithm", Engineering Optimization, 2007
Publication

"Contemporary Computing", Springer Science
and Business Media LLC, 2009
Publication

Ying Zhou, Lingjing Kong, Yiqiao Cai, Ziyan Wu,
Shaopeng Liu, Jiaming Hong, Keke Wu. "A
Decomposition-Based Local Search for Large-
Scale Many-Objective Vehicle Routing
Problems With Simultaneous Delivery and
Pickup and Time Windows", IEEE Systems
Journal, 2020
Publication

Jiahai Wang, Ying Zhou, Yong Wang, Jun
Zhang, C. L. Philip Chen, Zibin Zheng.
"Multiobjective Vehicle Routing Problems With
Simultaneous Delivery and Pickup and Time
Windows: Formulation, Instances, and
Algorithms", IEEE Transactions on
Cybernetics, 2016
Publication

www.sintef.no
Internet Source

Submitted to Yonsei University
Student Paper

54 <1%

55 <1%

56 <1%

57 <1%

58 <1%

59 <1%

60 <1%

61 <1%

62 <1%

63 <1%

www.cil.ntu.edu.sg
Internet Source

Submitted to University of Durham
Student Paper

eprints.utm.my
Internet Source

epdf.pub
Internet Source

hal.inria.fr
Internet Source

elea.unisa.it:8080
Internet Source

Andreas Beham. "Parallel Tabu Search and
the Multiobjective Vehicle Routing Problem
with Time Windows", 2007 IEEE International
Parallel and Distributed Processing
Symposium, 2007
Publication

Submitted to Dayalbag Educational Institute
Student Paper

infoscience.epfl.ch
Internet Source

prism.ucalgary.ca
Internet Source

64 <1%

65 <1%

66 <1%

67 <1%

68 <1%

69 <1%

70 <1%

71 <1%

72 <1%

73 <1%

74 <1%

refubium.fu-berlin.de
Internet Source

www.yumpu.com
Internet Source

Submitted to Erasmus University of
Rotterdam
Student Paper

Submitted to University of Strathclyde
Student Paper

ieeexplore.ieee.org
Internet Source

"Neural Information Processing. Theory and
Algorithms", Springer Science and Business
Media LLC, 2010
Publication

Submitted to Koc University
Student Paper

shura.shu.ac.uk
Internet Source

thesis.library.caltech.edu
Internet Source

Submitted to University of Sydney
Student Paper

id.scribd.com
Internet Source

75 <1%

Exclude quotes On

Exclude bibliography On

Exclude matches < 14 words

www.scribd.com
Internet Source

