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1. Introduction:



The life of every multicellular organism starts with a single-cell zygote. The zygote divides
and forms 2 cell, 4 cell and 8 cell stages, then forms morula, blastocyst, Gastrula and into an
adult organism. Hence, essentially all the cells of an organism originate from a single cell and
thus have identical genomes (Gilbert., 2000). Despite this fact, there exists a vast diversity in
the cellular phenotypes and functions they perform in a single organism. This is possible by
selective and tight control of expression of genes which are turned on and off during
development to form various cell types (Hoopes., 2008). This strict and controlled gene
regulation happens at multiple levels. At the level of genes, regulation happens primarily during
transcription and most of the transcriptional control happens at transcription initiation
(Cooper., 2000). There are multiple modes of regulation both at genetic and epigenetic levels.
Genetically, the promoter sequences and binding of transcription factors play a role.
Epigenetically, post-translational modifications of histone proteins such as methylation and
acetylation, and DNA modifications such as DNA methylation play a significant role in
controlling gene expression (El-Osta et al., 2000). At post-transcriptional level, RNA splicing,
microRNAs, Long Non-Coding RNAs, RNA binding proteins play a major role in gene
regulation. At translational level, there are many factors such as translational initiation,
elongation and post-translational modification. All of the above factors are synergistically
orchestrated and regulated differentially in each type of cells, or during disease or in aging to
generate different phenotypes. All of these factors are more or less well studied and the
knowledge has been accumulating since many decades. Another layer of gene regulation
uncovered and has been gaining attention, which is regulation of gene expression at pre-
transcriptional, which include factors such as chromatin accessibility, chromatin condensation,
3D genome organization, replication timing (Tsompana et al., 2014). ‘3D organization of the
genome’ refers to the systematic packaging and topology of the DNA inside nucleus in three
dimensions and its dynamics in space and time. It has been well established in the recent years
that the 3D organization of genome plays a major role in regulating cell type specific gene
expression, DNA repair, differentiation, embryonic development, several diseases and aging
(Gorkin et al., 2014; Zheng et al., 2019; Babu et al., 2015). Studying the principles behind
formation, functioning and dynamics of 3D genome architecture helps us understand various
life processes and disease. The relation between chromatin condensation and 3D genome
organization has been poorly studied and remains elusive.

1.1 The Cell Nucleus and Nuclear structure:

Eukaryotic nucleus is typically characterized by presence of double membrane, membrane-less
organelles, tightly packed genome, chromocenters, nucleolus and actin meshwork (Nature
Education., 2010). The nucleus is considered as the brain of the cell and many important
functions take place inside the cell nucleus. It is the seat of the genetic material of the cell,
which dictates the whole life processes and passes from generation to generation. In a typical
electron micrograph of mammalian cell nucleus one can observe the presence of electron dense
regions, which are condensed heterochromatic regions, and electron poor regions, which are
decondensed euchromatic regions. Generally, heterochromatin is predominantly seen at the
nuclear periphery often associated with nuclear lamina. Some heterochromatin is also present



in the inside of the nucleus which is mostly facultative in nature. Euchromatin is predominantly
present in the interior of the nucleus (Peric-hupkes et al., 2010). Also, can be seen the presence
of electron dense, highly condensed nucleolus, which is transcriptionally highly active and is
the site of rRNA synthesis and ribosome subunit assembly (Pederson et al., 1998; Boisvert et
al., 2007). Hence, although condensed heterochromatin is predominantly present at the
periphery and decondensed euchromatin is in the interior of the nucleus, facultative
heterochromatin and condensed nucleolus are present in the interior of the nucleus (Peric-
hupkes et al.,, 2010). Chromocenters are formed by the association of pericentric
heterochromatin which was shown to maintain the integrity of chromosome territories
(Jagannathan et al., 2018; Jagannathan et al., 2019).

1.1.1 Chromosome Territories:

It is well known that mitotic chromosomes are highly condensed and can be seen as distinctive
chromatids under a microscope (Ohta et al., 2011). It was long thought that the chromosomes
in the interphase nuclei are randomly distributed throughout the volume of the nucleus. But
with the advent of the techniques such as chromosome painting and other molecular studies, it
became evident that the chromosomes occupy discrete locations inside the interphase nucleus
termed chromosome territories (CT) (Cremer and Cremer., 2010). The chromosome territory
and its neighborhood positioning is cell type specific and aids in the cell-type specific gene
expression patterns (Cremer et al., 2001).

1.1.2 Nucleus is structurally and functionally compartmentalized:

Chromatin inside the nucleus is broadly compartmentalized into heterochromatin which is
present at the nuclear periphery and euchromatin which is in the interior of the nucleus. Not
only the chromatin is compartmentalized inside the nucleus, also various functions inside the
nucleus are compartmentalized (Gavrilov et al., 2015). These specific functions such as
splicing, assembly of small nuclear ribonucleoproteins (snRNPs), regulation of Long non-
coding RNAs are carried at nuclear domains such as PML nuclear bodies, histone locus bodies,
nuclear speckles, peri nucleolar compartment, polycomb bodies, cajal bodies, which are the
sites for various nuclear functions (Spector et al., 2001). The formation of these nuclear
domains was shown to be facilitated by liquid-liquid phase separation phenomenon (Lesne et
al., 2019). For instance, RNA Pol Il is not distributed all along the nucleus but are found
clustered at specific locations termed transcriptional factories. Genes from linked and unlinked
chromosomes coalesce along with DNA binding proteins to form transcription condensates for
coordinated control of multiple genes (Osborne et al., 2004; Cho et al., 2018)



1.2 Epigenetic Characteristic Features of Active and Silent Genes in the Genome

If a gene is repressed or in OFF state, the DNA is often associated with methylation at cytosine
residues. This is called DNA methylation (Robertson et al., 2005). Studies involving DNA
methylation at genome level have given substantial understanding regarding regulation of ESC,
differentiation of hematopoietic cells and pathways of cellular reprogramming (Law et al.,
2010; Ji, H. et al., 2010). The part of the genome is tightly wrapped around the nucleosomes
and is often associated with repressive histone modifications such as H3K9me3, marker for
constitutive heterochromatin, and H3K27me3, a mark of polycomb repressors.
Heterochromatin is often characterized by hypoacetylation of histones, H3K9me3 and DNA
cytosine methylation (5mC) (Tamaru et al., 2010). H3K9me3 interacts with heterochromatin
protein 1 (HP1) and forms heterochromatin (Nakayama et al., 2001). Some regions such as
telomeres are always heterochromatinised whereas there are some regions which are in
heterochromatin form in a cell type specific manner and these regions are referred to as
facultative heterochromatin. H3K27me plays a major role in the polycomb-mediated silencing
pathway and formation of facultative heterochromatin (Cao et al., 2002; Cao et al., 2005).
Polycomb group of proteins (PcG) repress transcription and play a crucial role in gene
regulation. They are in the form of multi-protein complexes, known as polycomb repressive
complexes (PRCs) (Croce et al., 2013). PcG proteins are comprised of PRC1, PRC2, and
PhoRC. Importantly, PRC2 has subunits such as EED, EZH2 and SUZ12 and participates in
the recruitment of H3K27me3 (Wang et al., 2015). It is often highly condensed and is present
at the nuclear periphery associating with nuclear lamina. H3K9me establishment and binding
of HP1/Swib6 proteins to H3K9me is crucial for the assembly of heterochromatic structures
(Nakayama et al., 2001). This binding also establishes a platform for further recruitment of
other chromatin remodelers such as HDACs (Yamada et al., 2005). RNAI also plays a
significant role in the formation of heterochromatin (Martienssen et al., 2015).

On the other hand, if a gene is active or in ON state, it is often not methylated. The
part of the genome is loosely wrapped around the nucleosomes and is often associated with
active histone marks such as H3K4me3, H3K4mel and H3K36me3. It is usually decondensed
and present in the interior of the nucleus. Enrichment of H3K4mel is primarily considered as
the mark of enhancers in the human cells (Heintzman et al., 2007). High levels of trimethylation
(H3K4me3) predominantly mark active or poised promoters (Calo et al., 2013). H3K36me3
levels are generally well correlated with gene expression levels. Recent studies have noted that
expressed exons were significantly enriched for H3K36me3 (Ong et al., 2011) compared with
introns. Recently, Tom Misteli’s group showed that the splicing of FGFR2 gene was altered
by varying the H3K4me3 and H3K36me3 levels (Luco et al., 2010).

1.3 Lamina Associated Domains:

Another important feature of the mammalian nucleus is the presence of lamina associated
domains (LADSs). These are the chromatin regions associated with nuclear lamina, especially
with Lamin proteins (Guelen et al., 2008). There are three types of lamins: lamin A, lamin C
and lamin B, the latter having two subtypes: laminB1 and B2 (Adam et al., 2012). LADs are



often heterochromatic in nature and are associated with repressive epigenetic marks such as
H3K4me2. Most of the LAD regions are relatively conserved across many cell types and they
are called constitutive LADs (cLADs). The inter-LAD regions are also conserved across many
cell types are called constitutive inter LAD regions (ciLADs). Facultative LADs are cell type
specific and are not conserved. LADs are dynamically switched between the cell types during
the course of differentiation (Peric-hupkes et al., 2010). The nuclear lamina (NL) facilitates a
large surface area that functions as an anchoring platform for chromosomes (Chubb et al., 2002;
Van Steensel and Dekker, 2010). Interactions between nuclear lamina and the LADs dictate
significant constraints on the tethering and positioning of chromosomes. Changes in the spatial
positioning of LADs occurs after mitosis i.e., relocation of LADs towards and away from the
lamina requires cell cycle progression. Upon cell division, the position of the LADs is not
inherited but believed to be rearranged stochastically. The genes physically located in the
LADs are believed to be transcriptionally silent and often associated with H3K9me2 (Kind et
al., 2013).

1.4 Genome Packaging and Chromatin Condensation

The DNA in the eukaryotic genome is organized and packed in such a way that nearly 3.4
billion base pairs (nearly 2 meter in length) fit into a volume of the nucleus of approx. 10uM
in diameter (Olins et al., 2003). Though it is densely packed, DNA needs to be accessed by
many DNA binding proteins and other enzymes for nuclear processes like transcription,
replication and recombination etc. Moreover, the DNA should not get tangled or knotted in the
process of dense packaging. DNA is compactly packed inside the nucleus and is hierarchically
organized (Lieberman et al., 2009). Not only the linear sequence of the DNA is important, but
also the 3-Dimensional arrangement and organization of the DNA inside the nucleus dictate
differential gene expression programs (Gorkin et al., 2014). The 3D genome architecture is
also associated with many physiological conditions, aging, cellular response to stress, cancer
(Zheng et al., 2019; Babu et al., 2015).

At the very basic level, the double-stranded DNA is wrapped around histone proteins resulting
in formation of nucleosome. Each nucleosome consists of two each of the four histones H2A,
H2B, H3, and H4, which together form a histone octamer (Thomas & Kornberg, 1975).
Approximately 1.7 turns or nearly 146 base pairs of DNA is wrapped around the histone
octamer. (Van Holde, 1988; Wolffe, 1999). A linker DNA of approx. 20 base pair length runs
between nucleosomes finally giving a beads on a string appearance (Annunziato et al., 2008).
The chromatin is further folded into what is often referred as ‘30 nm fiber’, which is approx.
30nm in width (Woodcock, 2005). Various models have been proposed to explain the
formation of secondary structure of chromatin, all of which can be broadly classified into two
classes. One is Single-start helices model, which are solenoids, and another one is two start
helices model (Luger et al., 2012). The solenoid model proposes that DNA is tightly packed
around nucleosomes and further into a helix and that the linker DNA is bent inside the fiber
(woodcock et al 1984; Dorigo et al 2004). The two-start helices model proposes that straight
linker DNA segments connect between two helices of nucleosomes forming two helices



running parallel to each other. The Nucleosome-nucleosome interactions further strengthen the
compaction and stability of the chromatin. However, recent studies by using genome-wide
interaction studies have highlighted the fractal geometric organization of chromatin at various
levels (Lieberman et al., 2009; Rao et al., 2014).

3-Dimensionally, chromatin is hierarchically organized in a fractal globule manner. Broadly,
each chromosome territory is segregated into active compartment A and inactive compartment
B. The Hi-C intra-chromosomal contact maps first showed the presence of a plaid pattern in
the correlation heatmap. By further performing PCA (Principal Component Analysis) or eigen
vector decomposition, the length of the chromosome could be divided into compartment A and
B based on the conventional positive and negative values, respectively. Hi-C matrix shows that
interactions of the regions within compartments are enriched and between compartments A and
B are depleted (Lieberman et al, 2009). DNA sequences in compartment A generally consists
of active, transcribed genes and euchromatic in nature. Similarly, compartment B consists of
inactive genes and is generally heterochromatic (Lieberman et al., 2009; Kalhor et al., 2012;
Sexton et al., 2012). Later, Rao et al in 2014, based on higher resolution of the Hi-C data, sub-
divided compartments A and B further into A1-A2 and B1-B3 based on histone modifications
and replication timing (Rao et al., 2014). Nonetheless, it is widely accepted that each
chromosome territory is broadly segregated into active compartment A and inactive
compartment B (Lieberman et al., 2009).

Further down the hierarchy, the genome is further organized into self-interacting domains
termed topologically associated domains (TADs). These are generally of size of around 800kb
-1.2Mb in length (Dixon et al., 2012). In Hi-C matrix, the TADs show up as regions which
have higher interactions among itself than with the neighboring or other regions. Though first
observed in mouse cell lines, TADs were also observed in other mammalian cell lines (Nora et
al., 2012) and non-mammalian organisms like Drosophila (Sexton et al., 2012) and Zebrafish
(Gomez-marin et al., 2015) etc. TADs are considered to be conserved across cell types and
even among different species (Dixon et al., 2012; Dixon et al., 2015). TADs are considered as
functional unit of genome organization (Dekker and Heard 2015). TADs facilitate interactions
between promoters and enhancer elements within the same TAD over the interactions between
different TADs (Dixon et al 2015, Zhan et al., 2017). TAD boundaries are enriched with
transcription start sites, housekeeping genes, H3K4me3, H3K36me3, CTCF binding sites
(Dixon et al., 2016). Downregulation of CTCF by RNAI technique resulted in enhanced inter-
TAD interactions suggesting the role of CTCF in the formation and maintenance of TADs
(Nora et al 2017). Recently, loop extrusion model has been put forward and been widely
accepted as the driving principle behind the formation of TADs (Fudenburg et al., 2016;
Sunburn et al., 2015; Ganji et al., 2018). Disruption to the TAD boundaries may lead to gene
dysregulation and disease (Harewood et al., 2017). TADs are further divided into sub-TADs,
the boundaries of which are also enriched with CTCF and cohesion (Rao et al., 2014; Cremins
etal., 2013). Further down the lane, at sub-megabase scale, high-throughput conformation data
signifies the presence of long-range interactions primarily between enhancers and promoters.
These interactions are essential for the establishment of cell type specific gene regulatory
programs.



1.5 Chromatin Accessibility:

Understanding the mechanisms by which the genome folds and compacts inside the nucleus is
one of the most fundamental questions. Chromatin accessibility is the ability of the chromatin
to be available for access to or binding of different proteins and enzymes for transcription,
replication, DNA repair, enzyme digestion (Radman-Livaja et al., 2010; John et al., 2011).
Generally, heterochromatin is tightly packed and is less accessible, whereas euchromatin is
loosely packed and is more accessible (Duggan and Tang, 2010). They are bound to
nucleosomes with lesser frequency. Thus, regulatory DNA could be assessed by studying
open/accessible regions in the chromatin (Tsompana et al., 2014). The nucleosome positioning
across the genome plays important regulatory role by restricting the accessibility of the DNA
to various transcription factors (TFs). This consequently influences many processes such as
replication and DNA repair, apart from transcription (Radman-Livaja et al., 2010). Most of the
TFs that are studied in the ENCODE project tend to bind exclusively to open and accessible
chromatin albeit with the exception of a few TFs that are seen enriched in either facultative or
constitutive heterochromatin (Thurman et al., 2012). Recently, it has also been shown that the
chromatin accessibility differs between nucleosome variants and depends on the factors
required for their deposition (Chen et al., 2014).

Changes in the genome architecture have implications in disease and aging, which could be
owed to mutations in chromatin modifiers that alter the nucleosome positioning on the DNA
(Gaspar-Maia et al., 2009, Hargreaves et al., 2011, Schwartzentruber et al., 2012) and by
disruption of chromosome neighborhood in activation of proto-oncogenes (Hnisz et al., 2016)
and other diseases (Anania et al., 2020; Norton et al., 2017). Therefore, lot of emphasis has
been put on determining genome-wide chromatin accessibility data, and locating
corresponding epigenetic changes during cellular differentiation, disease and aging. One of the
huge projects, ENCODE (Bernstein et al., 2012) has been a major contributing part towards
this end.

Traditionally, Sucrose gradient sedimentation was used to separate the decondensed and
condensed chromatin, and CsCl density gradient centrifugation to analyze the chromatin (Allan
et al., 1981; Caplan et al., 1987; Gilbert et al., 2001), albeit with very low resolution. Further,
procedures which make use of DNase | and MNase to digest the chromatin were one of the
first to provide evidences that transcriptionally active parts of chromatin correlate well with the
chromatin accessibility (Keene et al., 1981; Levy et al., 1981).

Recent advances in next generation sequencing (NGS) have given rise to many high-
throughput assays to assess chromatin accessibility based on NGS. To study chromatin
accessibility many methods have been developed based on the shielding of nucleosome bound
DNA from endonuclease digestion. The endonuclease, DNase | favorably digests nucleosome
depleted open DNA (Wu et al., 1980). Thus, genomic regions which are prone to digestion by
DNase I, also known as DNase | hypersensitive sites (DHSs), could be deciphered by
sequencing (DNase-seq) (Boyle et al., 2007). FAIRE-seq (Formaldehyde-Assisted Isolation of
Regulatory Elements followed by deep sequencing) is another method used to identify
accessible chromatin, in which chromatin is crosslinked with formaldehyde and nucleosome-



depleted DNA fragments are isolated and sequenced (Wai et al., 2011). Majority of TFs bind
to the open DNA and thus DNase-seq and FAIRE-seq results often show enrichment of
regulatory regions viz., the promoters and enhancers. On the contrary, digesting the DNA with
micrococcal nuclease (MNase) followed by high-throughput sequencing of the regions
shielded from getting digested (MNase-seq) provides the data on the occupancy levels and
positions of nucleosomes (Hoeijmakers et al., 2018). When compared with nucleosome
position maps, both FAIRE-seq and DNase-seq could be used to decipher nucleosome-free
regions which generally are in range of 100-300 bp. Consequently, quantitative variations in
accessibility of the DNA that are located around or within nucleosomes are hard to identify
using the above methods (Chen et al., 2014).

ATAC-seq is a recent method developed for identifying accessible chromatin. This method
involves fragmentation and integrating of DNA transposase into regulatory regions by
hyperactive Tn5 (Goryshin et al., 1998; Adey et al., 2010; Buenrostro et al., 2013). In ATAC-
seq, a population of nuclei are tagged with sequencing adapters in vitro using hyperactive
mutant Tn5 transposase. Most of the adapters get integrated into open chromatin and are then
sequenced. But ATAC-seq could only potentially identify nucleosome positioning in the
regions which are close to open chromatin

For more than 30 years, restriction enzymes (RE) are being utilized to assess chromatin
accessibility (Liberator et al., 1984; Almer et al., 1986; Ohkawa et al., 2006). The principal
advantage with RE is that they cut the DNA at specific locations called restriction sites (RS).
Thus, using PCR, one could detect and measure the cell-type specific variations in accessibility.
In theory, the chromatin accessibility at any given loci could be measured since restriction sites
are present almost all over the genome. Recently, Chen et al. (2014) employed a method termed
RED-seq (Restriction Enzyme Digestion followed by sequencing) to identify open chromatin
in different cell types. They found that RED-seq could quantitatively measure the cell type
specific differences in chromatin accessibility. Importantly, RED-seq was also able to measure
differences in the chromatin accessibility even within nucleosomes.

1.6 Epigenetic Memory of Chromatin Compartments and Neighborhood are Passed
through Mitosis

The cell type specific epigenetic information is passed to the daughter cells through mitosis.
Raphaél Margueron and Danny Reinberg. (2010) highlighted the mechanisms which are
required for effective transmission of epigenetic information which are mostly associated with
histones and chromatin organization in the nucleus (Margueron et al., 2010).

The above-mentioned condensation and decondensation states of chromatin, and their
epigenetic memory are passed down to the daughter cells through mitosis. During
prometaphase of the cell cycle, the chromatin condenses to from chromatids. They are aligned
along metaphase plate during metaphase. The two sister chromatids separate during anaphase
and the nuclear envelope reforms during telophase which is followed by the cytokinesis
(Mitchison et al., 2001). In early G1 phase, the chromatin is decondensed but it is in the late



G1 phase the chromatin is fully compartmentalized into heterochromatin which moves to the
periphery of the cell nucleus and euchromatin which resides in the interior of the cell nucleus.

1.7 Spatial reorganization of genome during cellular differentiation

The Embryonic stem cells are differentiated into different types of cells which is accompanied
by lineage restriction, significant gene expression changes, gene repositioning within the
nuclei, major changes in A/B compartments and extensive reorganization of 3D nuclear
architecture. One of the first studies regarding gene repositioning during cellular differentiation
showed that Beta-globin gene is relocated from nuclear periphery to the interior in the later
stages of erythroid differentiation (palstra et al., 2003). This repositioning was seen to be
accompanied by increase in the long-range interactions between B-globin gene and locus
control regions (Krivega and Dean, 2012; Krivega et al., 2014). Another study showed that de
novo long-range chromatin interactions were established during differentiation of B-cells due
to repositioning between enhancer and VDG gene cluster (Guo et al., 2011). Hi-C is a method
to measure the genome wide chromatin interactions which would allow one to assess the
interactions between gene-gene and gene-regulatory elements across the genome (Lieberman
etal., 2009). Hi-C analysis of ESC differentiation revealed dynamic switching of compartments
between different cell types (Dixon et al., 2015). Bonev et al. (2017) showed that during
differentiation of mESCs to cortical neurons, there was an overall increase in the size of
compartment, a significant spike of interactions among B compartments and decline in
interactions among A compartments. Analysis of TADs showed that most of the TAD
boundaries during differentiation were conserved between cell types, although a minor portion
of the TADs are dynamic and reorganize during differentiation. These changes in TADs
correspond to both intra and inter-TAD interactions are also associated with corresponding
epigenetic and transcriptional changes (Dixon et al., 2015). It was also shown that hierarchical
folding of TADs is dynamically reorganized during differentiation of mESC to cortical neurons
(Fraser et al., 2015). HOX genes, which are master regulators of embryonic development,
provide valuable insights into the 3D genome reorganization during differentiation. During
development of limb, HOXD genes are transcriptionally repressed in ESC and are sequentially
activated. It was noted that silenced HOXD clusters are located in a single repressed chromatin
compartment which contains all the genes. Developmental signaling in HOXD clusters is
accompanied by corresponding changes in gene expression and long-range interactions
between and within the chromatin compartments (Andrey et al., 2013).

Differentiation of ESC to neural progenitor cells (NPC) and further to cortical neurons (CN)
represent a very robust in vitro differentiation system (Gaspard et al., 2008; Gaspard et al.,
2009). This differentiation system has two main advantages. First of all, this in vitro
differentiation system is well established and very robust. There are lot of genome-wide
datasets available from public repositories pertaining to this model system (Edgar et al., 2002).
Secondly, this differentiation model captures a ground ESC state, an intermediate NPC and
then finally a terminally differentiated Neuronal state i.e., ground to terminal differentiation in



just three cell types. Thus, many aspects of the differentiation could be studied through this
model system.

In stem-cell based therapies, generation of neurons is the key step towards treating the
neurological disorders or damaged tissue. Because of their proliferative and pluripotent nature,
embryonic stem cells (ESCs) have a huge potential in regenerative medicine and could replace
fetal or adult-derived central nervous system (CNS) tissue (Cai et al., 2007).

1.8 Methods to study chromatin interactions

Having said the importance of studying 3D organization, scientists from decades have been
trying to determine the interactions between genomic elements inside the cell nucleus.
Traditionally microscopic techniques such as FISH (Fluorescence in situ Hybridization) have
been used to decipher the genomic interactions (Edelmann et al., 2001). But studying the
genome wide 3D organization using FISH is limited by its low resolution, low throughput and
specificity of probe sequence. First direct evidence to show long range chromatin interactions
were deciphered for mouse Beta-globin locus vs LCR interaction by using a method called
“RNA Traps” (Carter et. al., 2002). However, with the advent of chromosome conformation
capture (3C) method by Job Dekker et al., in 2002 it has become easier to elucidate the 3D
organization of genome in an unprecedented way. Delaat group has extensively worked on the
3D organization of mouse beta globin locus by using 3C and showed existence of 3-
dimentional active chromatin hubs orchestrated by gene promoters and enhancers.

The principle behind 3C to decipher genomic architecture is based on measuring the contact
frequency between DNA segments in population of cells (Dekker et al., 2002). Various
derivatives of 3C were developed to further study the 3D chromatin architecture in detail. These
include 4C (Simonis et al., 2006), 5C (Dostie et al., 2006), Hi-C (Lieberman et al., 2009) and
ChIA-PET (Li et al., 2010). Recently, single-cell Hi-C was developed to decipher the
chromatin interactions on a single-cell level, instead of cell populations (Nagano et al., 2013).

Hi-C is the widely utilized and prominent variant of 3C which uses high-throughput next
generation sequencing technologies enables one to determine the spatial organization of entire
genome, chromosomes and sub-chromosomal domain within the cell nucleus. Hi-C read pairs
give interaction data on all-vs-all genomic segments basis. One can retrieve intra as well as
inter-chromosomal interactions based on Hi-C data. Hi-C protocol begins by fixing the cells in
formaldehyde to crosslink the DNA and proteins. The cross-linked chromatin is digested with
restriction enzyme of choice and the cut ends are filled with biotin-linked nucleotides. This is
followed by blunt-end ligation where the far away regions in the genome are ligated together
due to close proximity to generate hybrid junctions. The DNA is purified, sheared, size selected
and the biotinylated junctions are pulled down using streptavidin beads which is followed by
high throughput paired-end sequencing and further analysis using computational and statistical
tools (Lieberman et al., 2009). The resulted sequenced reads are aligned to the reference
genome, filtered and contact matrices are generated.



The genomic regions are divided into equal sized bins based on the sequencing depth and
objective of the study, which is referred to as resolution. The combined interaction read pairs
of all the regions between two bins is calculated as interaction frequency between those two
bins. The pairwise interaction frequencies between all the bins are represented as a symmetric
matrix if it’s intra-chromosomal or asymmetric matrix if it’s inter-chromosomal. This matrix
is called a contact matrix or contact map. The contact matrix is represented as a heatmap,
where, generally the intensity of the colour is proportional to the interaction frequency between
two regions or bins. Thus, self-interacting domain like structures could be seen as squares along
the diagonal depending upon the length of the domains.

1.9 Hi-C Data Normalization methods:

The sequencing data from the Hi-C experiment comes in the form of raw fastq files. Generally,
the raw sequences that are obtained by different sequencing technologies suffer from technical
biases (Imakaev et al., 2012). The raw reads undergo a number of quality measures and are
trimmed subsequently (Bolger et al., 2014). Then they are aligned to the reference genome with
required parameters and relaxations. There are several pipelines published in literature which
take care of the pre-processing of the raw reads to the post-processing of the aligned reads like
Juicer, HiC-Pro (Servant et al., 2015), Hi-C pipe (Castellano et al., 2015), and HICUP (Wingett
et al., 2015). Apart from the post alignment processing steps such as removing commonly
encountered Hi-C artifacts and putative PCR duplicates, there exists several other biases in the
Hi-C data itself and these need to be normalized as well. These biases include GC content of
the reads, mappability, length of the restriction fragment, library size as well as other unknown
factors. Downstream analysis like interpreting the 3D genomic structure and comparison
between samples would be erroneous without normalizing these biases. Yaffe and Amos.
(2011) first addressed these biases and proposed a potential way to normalize for these biases.
Subsequently, many others have come up with new methods and algorithms to correct for these
biases (Hu et al., 2012; Schmitt et al.,, 2016; Cournac et al., 2012). These different
normalization methods can be broadly divided into two categories; Explicit and Implicit.

Explicit normalization is a type of normalization, the biases are defined explicitly such as GC
content, mappability, RE site density etc. and are corrected for these biases and are accounted
for in the statistical model. Probabilistic models are used to correct for these biases. There are
several explicit normalization tools developed such as HICNorm (Hu et al., 2012). Implicit
normalization is a type of normalization in which the biases are not defined separately but the
sequencing coverage of particular region is considered as a function of all the biases (known
and unknown) combined. This normalization mostly uses matrix-balancing algorithms and
regression models. Some of the implicit normalization methods include KR Normalization
(Knight et al., 2013), Vanilla coverage Normalization (Rao et al., 2014), Iterative correction
and eigen-value decomposition (ICE) (Imakev et al., 2012).

However, current normalization methods seem to be very biased in deciphering the interaction
data and subsequent depiction of spatial organization of chromatin. Moreover, there exists lot



of inconsistency in terms of Hi-C derived interactions vs true in vivo interactions measured by
in situ hybridization methods (Williamson et al., 2014). Hi-C data could not be able to decipher
the occurrence of nucleolus, chromocenters and others, suggesting that still there requires
normalization of Hi-C data. However, efforts in this direction are lacking. One major drawback
of the above-mentioned normalization methods is that neither of them addresses the
compaction status of heterochromatin and decompacted state of Euchromatin. In this current
work, we have identified hitherto unidentified normalization step based on the restriction
enzyme digestibility of a given chromatin region based on the chromatin compaction. In our
analysis (Chandradoss et al., 2020), we found that heterochromatic regions yield less no. of
sequencing reads than euchromatic regions. This would be due to the fact that heterochromatin
is less accessible to restriction enzymes than euchromatin in the Hi-C protocol. This issue has
not been addressed in any normalization methods so far. We try to address this problem by a
new method named CCDD (Contact Correction through Distance Decay plots) in this work.

1.10 3D modeling of Chromatin using Hi-C data:

Hi-C data could be potentially used to model 3-Dimensional conformation of chromatin using
in silico polymer simulations. There are many types of polymer models that could predict 3D
structure of chromatin from the Hi-C contact matrix. They are Homopolymer model, Co-
polymer model and Loop extrusion model. Each model has its own advantages and limitations.
None of the above models explicitly study organization of heterochromatin and euchromatin.

As discussed earlier, the no. of reads from a given genomic bin depends on its compaction
status and since the homopolymer model assumes each bin to be bead of equal size, we,
together with our collaborators, propose a novel heteropolymer model in which the size of each
bead on the string is a function of no. of 1D reads coming from that bin (genomic length) i.e.,
beads in the heterochromatin region are smaller in size compared to the beads of euchromatin.
This model takes into account the compaction/decompaction status of the chromatin.

In this current study, we took advantage of Hi-C methodology to ask if repurposing of Hi-C
data can be used to determine the chromatin compaction status, simply by read counts per unit
of chromatin regions of one dimensional Hi-C datasets. By using repurposed Hi-C data, we
deciphered the chromosome compaction status and generated chromosome compaction maps
(CC map) of all the mouse chromosomes. Further, by studying the CC Map of ESC and
differentiated cell types, we showed the dynamics of chromosome condensation and its
relationship with gene expression and histone modifications. Further, we assessed the
developmental dynamics of chromatin compaction in in vitro Embryonic stem cell (ESC)
differentiation to Neural progenitors (NPC) and Cortical neuron (CN).



2. Materials and Methods



Unless otherwise stated, two-sided wilcoxon rank sum test (Mann-whitney test) was used to
determine statistical significance. All the statistics are performed in R.

1. Visualization of DNase-seq data: DNase-seq is performed to determine regulatory
regions in the genome. DNase-seq data for mouse Embryonic stem cells was
downloaded from ENCODE (accession number: ENCSR000CMW) (Vierstra et al.,
2014) to compare with 1D read counts of Hi-C and RED-seq data. We obtained BED
files of mapped and processed reads of  DNase-seq  from
(https://www.encodeproject.org/eperiments/ENCSRO00CMWY/). The data consisted of
genomic coordinates of DNase 1 HSS and were visualized in UCSC genome browser
(kent et al., 2002).

2. RED-seq data processing: RED-seq stands for Restriction Enzyme Digestion
followed by sequencing, a technique used by Chen at al. (2014) to determine the
accessible regions in the genome. To prove our hypothesis of biased restriction
digestion, we utilized the data generated from sequencing of in-situ restriction enzyme
digested chromatin of cross-linked cells and compared it with that of in-solution
restriction enzyme digested naked DNA (RED-Seq). First, we collected the bedgraph
files (mm9 version) of mapped and processed reads of in-situ restriction digested
chromatin and in-solution restriction digested naked DNA of mESC from GEO series
number GSE51821. The files were then converted to mm10 version assembly ‘liftover’
tool (http://genome.ucsc.edu/cgi-bin/hgLiftOver) from using UCSC genome browser.
The reads were binned into 10 kb bins i.e., all the number of read counts within a 10kb
bin were summed. The binned reads were then corrected for the of restriction site
density and the GC content one after the other, as described in the next section. To
crosscheck if our observations are not the artefacts of lifting over, we also mapped the
raw reads (SRA files) to mm10 version genome assembly. ‘SRA’ files are first
converted to ‘fastq’ format using ‘fastq-dump’ function of ‘SRA toolkit’. Reads were
mapped to mouse genome assembly (mmZ10) using bowtie2. The mapped reads were
sorted using ‘sort’ function and then PCR duplicates were removed using ‘markdup’
function of SAMtools. The results from mapping with bowtie2 were consistent with the
results obtained through lifting over the downloaded bedgraph data.

3. Hi-C data processing using HICUP:

Hi-C sequenced reads from any experiment are compressed and deposited in the NCBI
in the form of SRA (Sequence Read Archive). We obtained the SRA files of Bonev et
al. (2017) from GSE96107 and converted to fastq files using NCBI SRA toolkit. We
utilized HiCUP pipeline from Babraham Institute, Cambridge to process the Hi-C
reads. The forward and reverse reads were mapped separately to the mouse reference
genome assembly mm10. Invalid and duplicated read pairs are further filtered out in
HiCUP. The generated BAM files contain both forward and reverse read pairs. Then
we summed the read counts into 10kb bins and these were referred to 1-dimensional
(1D) raw Hi-C reads.
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4. Correction of 1D read counts and generation of RZ scores:

We used loess regression to correct the 1D Hi-C reads for the biases. To correct the 1D
read counts for the NGS sequencing machine bias (where it is known that GC regions
of genome are more represented that AT regions of the genome) the parameters of
Loess regression were first optimized in such a way that the reads in naked DNA
corrected with Loess form a straight line against GC content. First, we corrected the 1D
reads for RE density in the 10kb bins, which varies from bin to bin. We derived the
residuals of read counts after performing loess regression against RE density of 10kb
bins. Next, we corrected for the GC content bias by deriving residuals of RE-corrected
read counts through loess regression against GC content of corresponding 10kb
genomic bins. These corrected 1D reads were then normalized to the total number of
sequenced reads genome-wide for that sample. We further converted these values to Z-
scores (measure of no. of standard deviations above or below the population mean a
value is) using median centering and were referred to as RZ-Scores.

5. Derivation of Condensed and decondensed domains:

We derived the decondensed and condensed domains using the strategy given by
Guelen et al. (2008). In summary, the bins were first defined as + 1 and — 1 depending
upon whether the values were +ve or -ve in the RZ-scores. The domain boundaries were
identified by subtracting the average of 20 windows on either side of uniformly
distributed (per 10 kb) reference points. We determined a cut-off on this value by
randomization of the read counts in the genome and keeping the false discovery rate to
<5%. By calculating the relative proportion of positive and negative values in each
inter-boundary region, we demarcated condensed and decondensed domains. We set
the minimal proportion of either positive or negative values to 0.8 in order to define the
domains as decondensed and condensed respectively.

6. Analysis of cLADs and ciLADs :

LADs (lamina associated domains) are genomic regions which are attached to nuclear
lamina. cLADs (constitutive LADs) and ciLADs (constitutive inter-LAD regions) are
the regions which are conserved across the cell types. We downloaded cLAD and
ciLAD boundaries from GSE17051. To scrutinize our claims of biased accessibility in
cLAD domains, we collected the WT and the lamin knockout (KO) Hi-C data of mESCs
(Zheng et al., 2018), corrected for RE density and GC content, summed the reads into
10 kb bins and used log ratio of Lamin KO to WT for comparing the change in the
accessibility.



7.

9.

10.

Analysis of histone modification (ChlP-seq) data:

Sources of ChlP-Seq datasets are provided in Table 1. We analyzed H3K4mel,
H3K27ac, H3K36me3, H3K4me3 to study active histone modifications and H3K9me3
to study silent/repressive histone modifications. We obtained pre-processed ChlP-seq
data from the source, binned the reads at 10 kb resolution, combined into a table and
quantile normalized the values using ‘normalize.quantiles’ function of preprocessCore
from R-package (https://github.com/bmbolstad/preprocessCore). To characterize the
condensed and decondensed domains derived using our method and see how various
histone marks are associated with these regions, we have taken genome wide average
boundary (+/- 1mb) of decondensed and condensed regions and derived the genome
wide average histone marks associated with them. The left side of the border is
decondensed and right side is condensed. We used ggplot2 from R-package
(https://ggplot2.tidyverse.org/) to scatterplot the data.

Analysis of polytene and diploid Hi-C data of Drosophila:

Drosophila polytene chromosome is a classic example of presence of condensed and
decondensed chromatin. Eagen et al. (2015) has performed Hi-C on polytene
chromosome. We obtained Hi-C data from GSE72510 (polytene, dm6) and GSE63518
(normal diploid Kc167, dm6) and further processed using HiICUP pipeline. We summed
the reads at 5 kb bins and corrected for RE density and GC content as before. We also
downloaded polytene TADs and lifted over the coordinates to dm6 assembly. Since the
authors showed that polytene bands correspond to TADs, we mapped 5 kb bins to
polytene TADs and considered those inside TADs as polytene band bins and rest as
inter-band bins.

Allele-specific Hi-C analysis of mouse X-chromosome:

Mouse female cells’ nucleus contain one active and one condensed inactive X-
chromosome. We wanted to see if we can recapitulate the condensed state of inactive
X chromosome. DNase Hi-C is a Hi-C variant in which DNase I is used for chromatin
fragmentation instead of Restriction Enzymes. Since we have two X chromosomes,
allele-specific Hi-C data is used to distinguish between them. We obtained the allele-
specific valid DNase Hi-C read pairs of brain and patski cells (nephron cells) from
GSE68992. We ignored the reads which are mapping to both the references and binned
the allele-specific reads at 20 kb resolution bins to get 1D read counts. We corrected
the 1D read counts for GC content using loess regression as before.

Normalization of Hi-C data:
To normalize for known systematic biases like mappability, RE density and GC content
in Hi-C contact maps, we used HiCNorm
(http://www.people.fas.harvard.edu/~junliu/HiCNorm/). For implicit correction, we
used iterative correction and eigen vector decomposition (ICE) packages
(https://github.com/mirnylab).
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11.

12.

13.

Generation of compressed Chromosome condensation maps: Restriction enzyme
sensitivity map:

1D HI-C reads were obtained as discussed previously using HICUP. The reads were
normalized to the restriction enzyme bias. To generate peak representation, reads falling
on every 100kb were allotted to first four bases of each bin thus generating chromosome
wide view of peaks. For scaling, average of all intensities was considered from that
sample and accordingly plotted and scale has been defined. The reads were visualized
in UCSC genome browser and were referred to as restriction enzyme sensitivity (RES)
map. A vertical flip of the image is appended to the original image to obtain vertically
compressed chromosome condensation (CC) maps. To generate a realistic in vivo
condensation state of chromosomes, horizontal condensation maps were generated. The
width of each bin was taken as a direct function of number of 1D reads from that bin,
indicating the degree of condensation horizontally by giving the colour gradient from
red to yellow, where red represents compacted regions and yellow represents
decompacted regions.

ESC culture and Neural differentiation:

Monolayer differentiation of mouse embryonic stems cells was done based on the
protocol as published Gaspard et al. (2009). Feeder independent mESCs were cultured
in ESC medium (10% FBS) upon 0.1% gelatin-coated plates up to 40-60% confluency.
Differentiation was initiated by the addition of DDM media containing N-2 supplement
(Gibco#17502048) and is counted as day 0. From day 2, 1X Cyclopamine
(Merck#C4116) treatment was initiated and continued till day 10. On day 12, cells were
dissociated with 0.05% trypsin (diluted freshly with PBS and pre-heated at 37 degrees
Celsius) and proceeded for centrifugation with 10% PBS (PBS with 10% FBS). Cell
pellets were dissociated properly and plated onto Poly-L-Ornithine and Poly-Laminin
coated plate with N2B27 medium without vitamin A. FGF2 was also added to media
for an increase in survivability of progenitor cells. Neuronal Progenitor cells were
harvested on day 14, after 2 days of plating. For Cortical Neuron differentiation, cells
were continued to be cultured in N2B27-A culture medium till day 21

Validation of gene expression by Real Time Polymerase chain reaction (RT-PCR):

Total RNA was isolated by TRIZOL reagent (Ambion ref no. 15596026). cDNA
synthesis was done using 1ug of input RNA by using cDNA synthesis kit (Biorad Iscript
cDNA synthesis kit). RT-PCR assay were performed in total of 10ul reaction volume
with 20ng of cDNA used as input. For SYBER green detection, we used KAPA SYBER
GREEN universal mix (KAPA#KK4618) and PCR reaction conditions were followed
according to the manufacturer. Gapdh was used as a housekeeping gene for
neurogenesis All the data were analyzed by using the -2 AACT method (Livak and
Schmittgen, 2001).



14.

15.

16.

17.

RNA-Seq data analysis:

Raw RNA-seq data fastq files were downloaded from GSE96107. Raw sequences were
checked for quality using FASTQC, trimmed using Trimmomatic and then mapped to
mouse reference genome mm10 version using TopHat 2.0 with parameters set to
default. Fragments Per Kilobase of transcript per Million mapped reads (FPKM) values
are derived using “Cufflinks”.

Calculating correlation between gene expression and condensation:

The FPKM values of the genes present in every single 10kb region has been averaged
to generate the expression values at 10kb bins. For the genes which span between two
bins, the gene is considered into the bin in which more than 50% of the gene body lies.
Between ESC and NPC, the bins which have both +ve or —ve values from differential
gene expression and differential RZ scores were considered positively correlated and
the bins which have one +ve and one —ve value in differential gene expression and
differential RZ scores were considered negatively correlated. The negative correlated
genes were further classified based on the upregulation/downregulation status of
H3K27ac and H3K9me3. The GO terms associated with those genes were derived using
DAVID (https://david.ncifcrf.gov/summary.jsp).

Generation and Normalization of Hi-C contact maps:

The BAM files generated using HICUP are split into forward and reverse files using
SAMtools. Then a directory was made in HOMER using the sam files. Contact Hi-C
contact matrices were generated using HOMER at required resolution. The contact
matrices were generated as raw, coverageNorm (previously SimpleNorm) and
iteratively balanced using the commands in the source. The heatmaps are visualized
using Java Treeview.

3D polymer modeling of Hi-C data:

Nearly all polymer models that study Hi-C-based 3D chromatin structure assume that
all beads have same size. But this is contradictory to what we know about chromatin.
Different regions of chromatin have different compaction and hence it can have
different sizes. Hence, we modelled the chromatin assuming chromatin as a
heteropolymer and size of monomers of this polymer are according to their
compactness. Our model explains nature of heterochromatin and euchromatin domains
in different cell types. We performed this analysis and modelling in collaboration with
Prof. Ranjith Padinhateeri and his student Dr. Gaurav Bajpai from 1IT, Bombay. The
following methods and formulas were adapted from Dr. Gaurav Bajpai’s Ph.D thesis.
let the diameter of the i™ bead be 6i. Each bead would have an “equilibrium" distance
of ri®®. Total stretching energy of the chromosome was calculated by
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Where ri is the distance between i" and (i + 1)™ beads. ks and ri® are spring stiffness
constant and equilibrium distance between two neighboring beads, respectively. We
took
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To account for steric hindrance, we used Lennard-Jones potential which is given by
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where rij < 2Y8gij and zero otherwise. Here rij is the distance between i and ji beads.

aij is the effective LJ size parameter that depends on size parameters of i and j™" beads
L gitoj
and have relation 77 — T 2

18. Usage of Hi-C experimental data to generate 3-Dimensional model: we converted
contact frequency matrix data into contact probability matrix (CPM). We used upper
triangular matrix of CPM in our simulation. After excluding diagonal and upper
diagonal numbers, CPM number was represented by PS; . To calculate contact energy,
we generated a random number (rrand) between 0 to 1. If rrand < PSij , we inserted a bond
and computed contact energy using spring energy formula given by

E. =Y ke(riy —r5)°

If there is no bond (rrand > P%j) , this energy will be zero. k; and r%; are spring stiffness constant
and equilibrium distance between i and j™ beads. rS;is calculated same as o . We repeat this
process many times and we do many simulations. Total energy of the system is calculated by

Etot - E&, + Ec + EL-J

This system is simulated using Brownian dynamics by solving the Langevin equation

given by
At |6k T At
I‘i(t + A?L) = I'g(f) - _vr,Etof(t) + B—gr(ﬂ
ym ym

where m is bead mass, At is time-step, Y is damping contact and § is the thermal noise
experienced by each bead.



19.

20.

21.

Parameters used in Heteropolymer model simulation: To model chromatin as a
heteropolymer, we consider the diagonal elements of the Hi-C contact matrix, obtained
from experiments. First, we assumed that each bead will have a size which is related to
the number of contacts measured in experiments; hence we decide the size of a bead
for the heteropolymer using the following formula

14+ e(l_<Di>/D'i)
B 2

where Di is the diagonal value of Hi-C experiment matrix (Mjj) and <Di » is the average
of all diagonal elements. We performed brownian dynamics simulation for 10° -time
steps where t is taken 65s.

op

Generation of genome wide chromosome neighborhood maps:

Intra-chromosomal contacts were removed in raw genome-wide matrices at 1Mb
resolution. Then vanilla coverage normalization was used to normalize inter-
chromosomal contact matrices within sample. All the elements of the matrix
corresponding to an inter-chromosomal pair were summed up and divided by the
product of lengths of the corresponding chromosomes of that pair to account for contact
frequency biases due to different lengths of the chromosomes. This normalized matrix
(20 X 20) was termed chromosome territory neighborhood (CTN) map. Subtraction
matrices were visualized using Gl Tools where mean was taken as middle value during
heat map generation. chromosomes 1-8 were considered to be larger chromosomes and
chromosomes 9-19 were considered as smaller chromosomes. Clustering plots were
plotted as box plots where interactions among larger chromosomes and among smaller
chromosomes were plotted. Similarly, clustering in the subtraction matrices were
plotted where change in the interactions among smaller chromosomes, among larger
chromosomes and between smaller and larger chromosomes are plotted and unpaired
wilcoxon test was used to calculate the statistical significance. P-value less than 0.05
was considered statistically significant.

Generation of distance decay plots:

All the elements in the intra-chromosomal contact matrix generated using SimpleNorm
at 100kb resolution from ESC, NPC and CN were antilog2 transformed and then log10
transformed since HOMER outputs log2 transformed values. The mean interaction
frequency of all the contacts at a given distance (in multiples of 100kb) was calculated
and was plotted as line plots to get the distance decay plots. ‘Geom' smooth function in
‘ggplot2' package in R was used to smoothen the lines, and the smoothening method
was put to default. To avoid extreme outliers in every matrix, the contact frequencies
between bins separated up to 8Mb were drawn separately from the ones which are
above 8Mb apart and were plotted separately. For genome wide, the mean interaction
frequencies of all the chromosomes were plotted at each distance and the scatter plot
was smoothened using above method.



22. Dissection of interactions into various distance ranges

First, the 10kb resolution SimpleNorm contact matrices of the three cell types were
generated using HOMER. The coordinates of the cLADs and ciLADs were rounded off
to the nearest 10kb bin. Then the interactions between cLAD-cLAD and ciLAD-ciLAD
were separated. For cLAD, the range of interactions were divided into 6 ranges
depending on the distance between them. They are <100kb, 100kb-500kb, 500kb- 2Mb,
2Mb-20Mb, 20-40Mb and >40Mb. The sum of all intra-range interactions was
calculated for each range separately for each cell type and were plotted as bar charts.
The mean of all the chromosomes was calculated for each range to represent the
genome wide average bar chart for all the three cell types. Similarly, for ciLAD-ciLAD
interactions, the above analysis of different ranges was performed and plotted as bar
chart.



3. Results



Objective 1

Development of robust method to measure and characterize chromatin
condensation state genome-wide



Accessibility is the ability of the chromatin to get digested. Generally, heterochromatin is

highly condensed and is less accessible to digestion. On the other hand, euchromatin is in
relatively decondensed form and is more accessible to digestion. Chromatin accessibility data
is one of the keys to understand the regulatory mechanisms of gene expression. There are
several methods to assess chromatin accessibility like MNase-seq, DNase-seq, ATAC-seq etc.,
which give information about whether a chromatin region is accessible or not. These methods
are specially designed to determine regulatory elements in the genome. Recently, a technique
called RED-Seq, which is based on restriction enzyme digestion, has been developed. It is
advantageous over other methods that it assesses the amount of accessibility at each region of
the genome. Also, since it involves digestion with restriction enzyme which cuts DNA at
specific sites, lesser no. of sequenced reads is required to analyze the accessibility. RED-seq
experiment was done on in-situ chromatin and naked DNA.

Most of the above methods use high-throughput sequencing to sequence the reads from
chromatin. Since condensed chromatin is less accessible to digestion with restriction enzymes,
we hypothesized that the no. of sequenced reads mapping to the condensed chromatin should
be less than that of decondensed euchromatin. To test if this is true, we divided the Chrl into
equal sized 10kb bins and derived mapped 1D reads from in situ chromatin and naked DNA of
ESC from RED-seq experiment and overlaid them along with DNase-seq data of ESC (Fig.1A).

We could clearly observe that gene rich regions with denser reads in DNase-seq show more
reads in chromatin than in that of gene poor regions. But this is not the case with Naked DNA
where there is no bias in the reads between gene rich and gene poor regions. This gives an
initial representation that 1D read count could be used to derive condensed heterochromatin
regions and decondensed Euchromatin regions.

Then incidentally we hypothesized that, since Hi-C uses restriction enzymes to digest the
chromatin, the Hi-C reads could be potentially repurposed to assess the degree of chromatin
accessibility, similar to RED-seq. To test the hypothesis, we analyzed the in situ Hi-C data of
mouse ESC from Bing Ren’s Lab. From the reference genome mapped BAM/SAM files, we
derived number of reads per 10kb regions from Chrl and plotted them. The reads from in situ
chromatin and raw Hi-C reads were plotted along with DNase-seq data of mouse ESC and GC
content

As we see in Fig.1B, we can clearly observe that the gene rich, higher GC content regions,
which represent decondensed chromatin, correspond to higher reads in Hi-C also, and the gene
poor, lower GC content condensed regions have lower no. of reads.

Then, we wanted to see if this observation is cell type specific or a general cellular
phenomenon. We analyzed in situ Hi-C data of mouse Neural Stem cells (NSC) and Astrocytes
(AST) from Suzanne Hudjur’s lab (Sofueva et al., 2013) and generated 1-Dimensional profiles.
From the Fig.1C, one could clearly observe both in NSC and AST that gene rich, GC rich
genomic regions has higher number of reads than gene poor, GC poor regions. This gives a
pictorial representation that Hi-C reads can be used to derive condensed and decondensed
regions.
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Fig 1: Biased reads in sequenced reads between Euchromatin and Heterochromatin

A. 1-D reads of RED-seq chromatin and naked DNA from Chrl overlaid on GC content and
gene density along with DNase-seq data. Representative Heterochromatin and Euchromatin
regions are highlighted in boxes. Note that reads in euchromatin are more than that of
heterochromatin. B. 1-D reads from Raw Hi-C reads shows higher no. of reads in GC rich gene
dense Euchromatin than in GC poor gene poor Heterochromatin. RED-seq chromatin and
DNase-seq data are overlaid for comparison. C. 1-D raw Hi-C reads from Neural Stem Cells
(NSC) and Astrocytes (AST) from Chrl shows similar bias in the reads between euchromatin
and heterochromatin as seen in ESC.



Since now we have worked with raw data without any normalizations. One need to normalize
for different biases in the Hi-C data and sequenced data in general. The sequenced reads should
be normalized for GC content of the genomic region, because reads from GC rich regions are
more represented than GC poor regions (Yaffe and Tanay., 2011). Conventionally the reads
are normalized to the GC content of the genomic region, which may not be the true bias which
comes from sequencing machine. Since naked-DNA from RED-seq experiment has only
machine bias, we reasoned that correcting in situ chromatin and Hi-C reads with naked DNA
would more appropriately correct for the biases.

Working Principle: The raw Hi-C reads should be corrected first for various biases. Since
different bins have different number of restriction sites, 1D Hi-C reads should be normalized
to restriction enzyme density. We used LOESS (locally weighted smoothing) regression to
correct for the bias. LOESS is a non-parametrical regression model which uses least squares
regression. First, the LOESS parameters were standardized in such a way that the reads in
naked DNA corrected with LOESS form a straight line against GC content. This step corrects
for the machine-specific bias. Then these LOESS parameters are used to correct the Hi-C reads
for both GC content and RE density of the bins and then Z-scoring is applied to derive positive
and negative values and we referred them as RZ scores (Fig.2A).

To assess the nature of the RZ scores, we overlaid them along with gene expression data
derived from RNA-seq experiments and H3K27ac ChlP-seq data, both of which were publicly
available (Fig.2B). We could clearly observe that the positive RZ values are correlated with
higher gene expression and higher H3K27ac occupancy. On the other hand, negative RZ scores
are correlated with lower gene expression and lower H3k27ac occupancy. Also, we observed
that the positive RZ scores correlated with ciLADs boundaries, which are euchromatin, and,
negative RZ scores correspond to heterochromatic cLADs. This has allowed one to use LOESS
correction to obtain decondensed and condensed regions from Hi-C data.

Quantification of bias in reads:

The above results show the qualitative nature of Hi-C reads. Next, we wanted to quantify the
above observations statistically. Supplementary Figure 1 shows the scatterplot of raw and
corrected reads for each bias at a time i.e., RE density, GC percent. The final output is GC and
RE corrected reads Normalized to total number of sequenced reads.

Next, we wanted to show the biased visibility of reads between euchromatin and
heterochromatin statistically. Towards this end, we calculated reads from cLAD and ciLAD
regions from both in situ chromatin and naked DNA, corrected them using LOESS for the
biases as shown in the figure (Fig.3A). Then we plotted also raw read counts from in situ
chromatin and naked DNA as boxplots, and we could observe that cLADs have significantly
lesser reads than ciLADs in both. But when corrected reads were analyzed, cLADs have lesser
number of reads than ciLADs in in situ chromatin but this is not seen in the naked DNA.
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Fig 2: Normalization of the 1-D Hi-C reads

A. The raw 1-D Hi-C reads are Normalized for GC content and RE site density using LOESS
regression whose parameters were optimized for correction of machine bias. This is followed
by Z-scoring to obtain positive and negative values called RZ scores. B. Raw Hi-C reads
overlaid along with RZ scores and RNA-seq data to decipher the nature of RZ scores. Positive
RZ scores are correlated with higher gene expression, gene density and ciLADs. Negative RZ-
scores are correlated with lower gene expression, gene density and cLADs.
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Fig 3: Quantification of the bias in reads.

A. Upper panel shows raw read counts in cLAD and ciLAD of both in in-situ chromatin and
naked DNA. Lower panel shows corrected read counts in cLAD and ciLAD of both in-situ
chromatin and naked DNA. P-values were shown above the boxplots all of which are
significant except in corrected reads of naked DNA. Corrected naked DNA shows no bias in
the read counts between cLADs and ciLADs whereas the raw reads exhibit the bias.
B. Scatterplot of in-situ Hi-C and in-situ chromatin which shows high degree of correlation
(spearman correlation coefficient p=0.9). C. Quantification of 1-D Hi-C reads in cLADs and
ciLADs before and after correction shows bias in the reads which proves that Hi-C reads could
be repurposed to derive condensed and decondensed regions



This shows the presence of accessibility bias between cLADs and ciLADs. In supplementary
figure 2, a region of a chromosome has been taken to illustrate these biases. The picture shows
presence of negative RZ scores which is condensed is still negative after correction in in situ
chromatin but the negative region becomes random in the naked DNA and hence no bias.

To show that similar bias could be observed in Hi-C datasets, we calculated correlation between
the 1D read counts of in situ chromatin and in situ Hi-C. The correlation between corrected
reads has been drawn as a scatterplot (Fig.3B), which shows that they are highly correlated.
Hence, we concluded that statistically similar bias exists in Hi-C reads and 1D Hi-C read counts
could be potentially used to derive condensed and decondensed domains in the genome
(Fig.3C).

Derivation of decondensed and condensed domains

Next, we wanted to derive condensed and decondensed domains using the obtained RZ scores.
Continuous stretches of positive RZ scores were defined as decondensed domains and stretches
of negative RZ scores defined as condensed regions with a false discovery rate <0.05 (Fig.4A).
To verify the method, we matched the condensed regions with known boundaries of cLAD
regions and could observe that nearly 70% of the condensed regions matches with boundaries
of cLADs (Fig.4B). This is for the first time one has derived condensed and decondensed
regions based on 1-Dimensional Hi-C reads.

Characterization and validation of the method:

We next wanted to characterize the condensed and decondensed domains derived using our
method and see how various histone marks are associated with these regions. To this end, we
have taken genome wide average boundary (+/- 1mb) of decondensed and condensed regions
and derived the genome wide average histone marks associated with them (Fig.5A). The left
side of the border is decondensed and right side is condensed. As we can see, the active histone
marks such as H3K4mel, H3K27ac, H3K36me3, H3K4me3 have higher enrichment in
decondensed region and low enrichment in condensed region. Whereas the repressive
chromatin marks such as H3K9me3 are enriched in condensed region and vice versa. This
shows that the regions derived from our method are in concordant with the known histone
marks.

To further validate our method, we wondered if we can recapitulate the condensation
in inactive X-chromosome. As we know, in human female cells, one of the two X-chromosome
is inactive and condensed. Allele specific DNase Hi-C was performed by Deng et al. We
obtained, analyzed and corrected the Hi-C data using our method. Here is a scatterplot (Fig.5B)
showing reads of active X-chromosome in X-axis and of inactive X-chromosome in Y- axis.
We can clearly see that condensed inactive X-chromosome has lesser number of reads than that
of active X-chromosome. On the right side, we can see a small representative region of a
chromosome where active X-chromosome has more number of reads than inactive
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Fig 4: Derivation of condensed and decondensed domains

A. Condensed and decondensed domains were derived using continuous stretches of negative
and positive values, respectively. A region of the chromosome (Chr7: 100-120Mb) showing
derived condensed domains (blue line) and decondensed domains (red line) from the RZ scores.
Black lines at the bottom are cLAD boundaries. Condensed domains are correlated with cLADs
and decondensed domains are correlated with inter-LAD regions. B. Pie chart showing how
much percentage and bins of condensed domain are matching with the boundaries of cLAD in
both in-situ chromatin and in-situ Hi-C. Most of the decondensed domains derived are
matching well with the known boundaries of cLADs.
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Fig 5: Characterization and validation of the method

A. Enrichment of active and repressive histone marks around (+/-1Mb) regions of average
boundary between decondensed and condensed domains. Active marks shows enrichment at
decondensed side and repressive marks at the condensed side of the boundary. P-values were
calculated using two-tailed Mann Whitney U tests by comparing mean enrichment values in
the bins of condensed and decondensed domains. B.(i) Scatterplots of raw and corrected
DNase-HiC read counts of active vs. inactive X-chromosomes in Brain and Patski cells
(i) Hlustrative examples of corrected read counts and contact maps of chrX: 36-44 Mb region
in active and inactive X-chromosome.



X-chromosome. This shows that our method could potentially recapitulate the condensation of
inactive X-chromosome.

To further scrutinize our method, we analyzed Hi-C data available on Drosophila polytene
chromosome. Drosophila polytene chromosome is a classic example of presence of condensed
and decondensed chromatin. The dark condensed regions are called bands and the lighter
decondensed regions are called inter-bands (ibands). We wanted to see whether we can
recapitulate the difference in the read counts between bands and ibands using our method. We
downloaded and normalized both polytene and diploid drosophila chromosome Hi-C data as
previously done, and we could see that band regions show significantly lower reads than ibands
both in polytene and diploid chromosomes (Fig.6A and B).

Then we wondered if we could recapitulate the dynamics of LADs upon lamin knockout. One
such experiment was done where lamin B was knocked out of ESC and Hi-C was performed
(Deng et al., 2015). We analyzed and corrected the data using our method and could see that
no. of reads coming from KO cLADS is higher than that of wild type, whereas the rest of the
regions didn’t get affected (Fig.6C). On the right side, we can see a region of the chromosome
where cLAD regions are represented as dashed lines, the cLAD regions of lamin KO have
enrichment of reads over WT (Fig.6D). This proves unequivocally that Hi-C reads can be
efficiently repurposed to derive condensed and decondensed regions.
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Fig 6: Further scrutinization of the method

Distribution of raw(A) and corrected(B) read counts in band and inter-band regions of polytene
chromosome and the corresponding regions in diploid chromosome. Bias in the 1D read counts
between bands and i-bands could be clearly seen in raw reads and corrected reads in both
polytene and diploid chromosome C. Boxplots representing change in Hi-C read counts in the
LAD domains after Lamin knock out in mESC cells. Read counts from cLADs increased upon
lamin KO but change in the rest of the genome D. Example representing change in Hi-C read
counts and contact matrices in WT and Lamin KO cells. P-values were calculated using two-
tailed Mann-Whitney U tests.



Derivation of Chromosome Condensation Maps from Chromatin Accessibility Datasets

Next, we wanted to derive Chromosome Condensation maps using the chromatin accessibility
data. Towards this end, we derived RES maps (see methods). By vertically mirroring the RES
map, we could derive vertically compressed Chromosome Condensation map, where the
compressed regions correspond to heterochromatin/LADs and decompressed regions
correspond to euchromatin/ciLADs (Fig.7iii). Then we derived horizontally compressed
chromosome condensation maps, where the length of the chromatin segment is directly
proportional to the accessibility (Fig.7i). That is heterochromatin regions are horizontally
compressed than euchromatin and the level of compression is depicted with color code where
red represents highly compressed and yellow represents decompressed chromatin. This is for
the first time ever one has derived both horizontally and vertically compressed Chromosome
condensation maps, which actually represent the true in vivo chromosomes.

Then we wanted to see the difference between the chromosome condensation maps of other
cell types as well. To this end, we analyzed 1-Dimensional Hi-C reads of Chr6 of Neural Stem
Cells (NSC), Astrocytes (AST), fetal Liver (fLiv) and adult Liver (ALiv) and derived both
vertically and horizontally compressed Chromosome condensation maps (Fig.8). As we can
see, the Chr6 condensation maps look differently in different cell types. In vertically
compressed condensation maps (Fig.8A), the difference is clearly seen in terms of compression
and decompression of various regions of the same chromosome. The difference is even more
pronounced in horizontally compressed condensation maps. In ESC, the Chr6 is relatively
shorter, but in NSC they become longer and in AST they become further longer (Fig.8B).
Similar kind of dynamics can be seen between the condensation maps of Chr6 in ESC, fLiver
and ALiv (Fig.8C).

Similarly, the horizontally compressed chromosome condensation maps of all the
chromosomes of the above cell types were compiled on a similar scale and we could see the
dynamics of lengths of various chromosomes in various cell types during differentiation (Fig.9
A and B).
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Fig 7: Chromosome Condensation maps

(i) Horizontally compressed chromosome condensation map of Chr6 in which the horizontal
length of a bin is a function of no. of reads present in the bin. Red represents lower no. of reads
and thus heterochromatin and Yellow represents higher no. of reads and thus Euchromatin. Up
arrow represents ciLADs and Down arrow represents cLADSs. (ii) Corresponding RZ scores of
whole Chr6 derived from Hi-C data using our method. (iii) Vertically compressed chromosome
condensation map where compressed regions represent heterochromatin and decompressed
regions represent euchromatin. (iv) RES map which is the original map from which the
vertically compressed map is derived, overlaid on cLAD and ciLAD positions.
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Fig 8: Dynamics of Chromosome Condensation maps during differentiation

A. Developmental dynamics of vertically compressed chromosome condensation maps during
differentiation (from bottom to top) of ESC to NSC and AST. Similar dynamics could be seen
in ESC to fetal Liver cells and adult liver cells. B. Dynamics of horizontally compressed
chromosome condensation maps during differentiation of ESC to fetal Liver cells and then to
adult liver cells. C. Dynamics of horizontally compressed chromosome condensation maps
during differentiation of ESC to NSC and then to AST. Scale bar represents the no. of reads
(a.u) from each bin(100kb). Up arrow represents ciLADs and Down arrow represents cLADS.
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Fig 9: Ensemble of horizontally compressed maps of all chromosomes in different cell
types

A. Dynamics of horizontally compressed chromosome condensation maps of all chromosomes
during differentiation of ESC to NPC and then to AST. Note that the different lengths of the
chromosomes is due to different level of condensation. B. Dynamics of horizontally
compressed chromosome condensation maps of all chromosomes during differentiation of ESC
to Fetal liver cells and then to adult liver cells. Scale bar represents the no. of reads (a.u) from

each bin(100kb).
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Supplementary Figure 1: Loess correction of raw 1D Hi-C reads

(a) Loess correction for the negative scaling of raw read counts against the restriction site (RE)
density in 10Kb genomic bins. Left panel represents data before loess correction and right panel
after loess correction of read counts against RE density. (b) Loess correction for the positive
scaling of RE-corrected read counts against the GC content of 10Kb genomic bins. First panel
shows scatter plot of GC content vs. Recorrected read counts. Second panel shows scatter plot
of GC content vs. GC- and recorrected read counts. Third panel represents RE-density vs. GC
and RE corrected read counts. Fourth panel shows scaling of GC and RE corrected read counts

against the raw read counts.
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Supplementary Figure 2: Illustrative example of raw and corrected read counts.

An example showing raw and corrected read counts of in situ digested chromatin and in
solution digested naked DNA along chr4: 20-40 Mb region. The picture shows presence of
negative RZ scores which is condensed is still negative after correction in in situ chromatin but
the negative region becomes random in the naked DNA and hence no bias.



Objective 2

Developmental dynamic role of chromatin condensation during neuronal differentiation



Having established the method to derive condensed and decondensed regions from Hi-C data,
we next wanted to see the dynamics of condensed and decondensed regions during
differentiation of Embryonic Stem Cells (ESC) to Cortical Neurons (CN) via Neural Progenitor
Cells (NPC) (Fig.10A).

We chose this model system for two broad reasons. Firstly, this in vitro differentiation system
is well established and very robust. There are lots of datasets available from public repositories
pertaining to this model system. Secondly, this differentiation model captures a ground
Embryonic stem cell state, an intermediate NPC and then finally a terminally differentiated
Neuronal state i.e., ground to terminal differentiation in just three cell types. Thus, many
aspects of the differentiation could be studied through this model system.

46C cell line of mouse ESC was cultured and differentiated into Neural Progenitors and then
to Cortical Neurons (Fig.10B). To confirm the cellular identity during differentiation, cell type
specific GFP tagged proteins were expressed in the three cell types. ESC specific Oct4, NPC
specific Sox1 and CN specific Tau were seen expressed along with GFP tags in the respective
cell types (Fig.10B). To further characterize the cell types, total RNA was extracted from each
cell type, converted to cDNA using RT-PCR and then semi-quantitative PCR and qPCR was
performed to check the presence of cell type specific markers. In semi-quantitative PCR
expression of Oct4, Sox2, Nanog in ESC was seen. Nestin, Mapt, Pax6 and Sox1 expression in
NPC, and, expression of Thrl and Syp was seen in CN (Fig.10C). In quantitative PCR Nanog,
Sox2, Gata4 and Gata5 are specifically expressed in ESC. In NPC Nestin, Neurogenin and
Trkb are specifically expressed. Tujl and Tau are specifically expressed in CN (Fig.10D).

While we were working on this, Cavalli group (Bonev et al., 2017) from France published a
work with ultra-deep sequenced Hi-C data along with gene expression and many ChlP-seq
datasets. Though they studied different aspects of TADs and other important factors, none of
our objectives were overlapping with their work. Hence, we took advantage of the study,
downloaded and reanalyzed the in situ Hi-C and ChlIP-seq datasets to address our objectives.

To see whether the accessibility bias exists in these cell types, first we derived 1D tracks of Hi-
C data at 10kb resolution for all the three cell type viz., ESC, NPC and CN. Then we normalized
the raw reads using our LOESS method and plotted the no. of reads in cLADs and ciLADSs in
all the three cell types (Fig.11A). We could clearly see that cLADs have lesser no. of reads
than in ciLADs in the three cell types in both raw and corrected reads. This shows us that the
accessibility bias exists in these datasets and thus the data could be potentially repurposed to
derive condensed and decondensed domains.

We also wanted to see whether the observed bias in the visibility is specific to in situ Hi-C. To
this end we analyzed data from another study by J Fraser (Nagano et al., 2015), where they
have performed in solution Hi-C in ESC, NPC and CN. We analyzed the data, corrected and
no. of reads form cLADs and ciLADs were plotted (Fig.11B). Interestingly, we could also
observe the bias in in solution Hi-C, which gives us hint that the bias which we have been
observing is due to differential digestibility by restriction enzymes but not because of
difference in the ligation events. Then we derived condensed and decondensed domains as done
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Fig 10. Neuronal Differentiation of ESC and validation through semi-gPCR and gqPCR.

A. Cartoon showing the dynamic system of differentiation of ESC to NPC and further to CN
and the corresponding growth conditions. B. Upper row: Light microscope images of ESC,
NPC and CN at 20X zoom. Clear colonies can be observed in the ESC whereas neurons
forming dendrites could be seen in CN ; Lower row: Flourescent microscope images of ESC,
NPC and CN at 20X zoom. Cells were tagged with stage-specific GFP markers which could
be clearly observed in green colour and confirms cellular identity. C. Agarose gel pictures
showing the expression of stage specific cellular marker genes in ESC, NPC and CN by semi-
quantitative PCR. D. qPCR results show stage specific quantitative expression of marker genes
in ESC, NPC and CN.
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Fig 11. Bias in the visibility in Hi-C data of ESC differentiation system

A. Boxplots showing accessibility bias between cLADs and ciLADs in all the three cell types
i.e., ESC, NPC and CN derived from in-situ Hi-C data (Bonev et al., 2017). The reads coming
from cLADs are lesser than that of ciLADs in both raw and corrected. B. boxplots showing
accessibility bias between cLADs and ciLADs in all the three cell types i.e., ESC, NPC and
CN derived from in-solution Hi-C data (Fraser et al., 2015). Similar type of bias is seen between
reads of cLADs and ciLADs as that of in situ Hi-C data. C. Pie charts showing the percentage
and bins of derived condensed domains from loess corrected in-situ Hi-C data matching with
cLAD boundaries. This shows that the decondensed domains derived using our method are in
well agreement with the known boundaries of cLADs.



previously and wanted to see what percentage of condensed domains matched with known
coordinates of cLADs. In fact, we could see that almost 70% of them are matching (Fig.11C).

Dynamics of Condensed and Decondensed Chromatin Domains during ESC to CN
Differentiation

To study the dynamics of condensed and decondensed domains during neuronal differentiation,
we plotted correlation scatterplots of the RZ scores between ESC and NPC, and between NPC
and CN. ESC and NPC has a correlation of 0.90 and NPC and CN has a correlation of 0.97
(Fig.12A). Since most of the differences were seen significantly during ESC to NPC
differentiation, we further restricted our downstream analysis on ESC to NPC differentiation.

First, we wanted to see how much condensed and decondensed regions are conserved between
the two cell types. To this end, we calculated the no of regions conserved between ESC and
NPC and plotted as relative percentage. We could see that around 65-70% of the regions which
are condensed in ESC are also condensed in NPC, whereas around 80-85% of the regions which
are decondensed in ESC are decondensed in NPC (Fig.12B). This is in well accordance with
the previous studies that most of the regions are conserved between cell types in terms of
condensed/decondensed state. Next, we wanted to see whether switch in the regions between
the cell types is associated with corresponding change in gene expression. We calculated the
gene expression changes in the constitutive and switching regions. We could clearly see that a
switch from decondensed in ESC to condensed in NPC is accompanied by overall decrease in
gene expression, whereas switch from condensed in ESC to decondensed in NPC is
accompanied by drastic increase in the gene expression (Fig.12C).

Next, we wanted to see the status of histone marks associated with the regions during switching.
On the left of Fig.13A, we show an example representation of effect of switching on well-
known active mark H3K4mel. X-axis represents enrichment in ESC and Y-axis represents
enrichment in NPC. When a chromatin region switches from decondensed to condensed from
ESC to NPC, the plot show enrichment towards ESC, suggesting that condensation is
accompanied by decrease in this active methylation mark. Similarly, ESC to NPC
decondensation is accompanied by increase in the active mark. This is shown in the right panel
for four active histone marks, whereas the repressive marks H3K9me3 increases during
condensation and vice-versa (Fig.13A). Also examples of constitutive and switching regions
were shown. Left panel shows constitutive region where all the histone marks remain
unaffected including gene expression (Fig.13B). Right side, there is an example of switching
region where the region with positive RZ score (decondensed) in ESC switches to a region with
negative RZ score in NPC, which is accompanied by corresponding changes in histone marks
and gene expression (Fig.13C).
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Fig 12. Developmental dynamics of condensed and decondensed domains

A. Scatterplots of corrected read counts in ESC vs. NPC and in NPC vs. CN. The correlation
between NPC and CN (p=0.97) is greater than the correlation between mESC and NPC.
(p=0.90). B. Distribution of condensed and decondensed states of chromatin domains during
ESC to NPC differentiation. C. Enrichment of Gene Ontology Process terms among the genes
exhibiting condensation (left) and decondensation (right) during ESC-to-NPC transition.
Shown are the top 30 terms through ToppGene Suite. Nervous system associated terms are
highlighted in brown colour.




A

Constitutive. ES: de-con. ES: cond.
NP: cond. NP: de-con.

H3K4me1
'““ -
d a‘vﬁ

- R
‘i‘.- o {9\."‘ :5‘ .

H3K27ac
., s
g

ot .
§ v he weks . .
ES: de-con. '. oy ‘}‘ (5‘ £ .§ !
NP: cond. L. — §
H - m aae E
i 1 BN (3 =t A | s
§ S ;;« A ¥ P %,‘,‘ S34 9, s
P | aul] B S S g
= £ ¥ anadi £
Enrichment (a.u.) in ESC “ 2 %‘50:! . S
| md oo
S 4 ﬁ.‘ ’t.
:® .’,'O.?' -
Enrichment (a.u.) in mE‘;C -
B C
mESC NPC mESC NPC

5007 Hakame1 ’ ZOOUIHﬁmmM I | I

Dot O Do e 00T,
sod 2 - 200 . -~
- — M _.m P )
3 _‘—‘-A- i
o 500 H3K4me3 200 H3K4me3
= acans ..A
g M
E 500 2007 H3K36me
e |
£ .‘M
100 100 H3i9me3| I '
[
w | - - . .
pg’ dha. P A A
NG |- St "W Lade & |

Fig 13. Epigenetic marks associated with constitutive and switching chromatin regions
during neuronal differentiation

A. Scatterplots of histone modifications in domains that remained unchanged in mESC and
NPC, and the ones that switched from decondensed to condensed or condensed to decondensed
in mESC and NPC. B&C. Examples of decondensed and condensed domains that remained
constutitive in mESC and NPC (left), and a decondensed region in mESC that switched to
condensed state in NPC (right). Note that the gene expression and RZ scores remained similar
in constitutive regions but they change their profiles during switching.



Non-LAD condensed regions associated with PcG

Though that the scatterplots of the active histone marks are tilted reasonably towards the X-
axis which represents decondensation from ESC to NPC, we observed that the scatterplots of
H3K9me3 are just slightly tilted towards the condensation. Previous studies suggest that
H3K9me3 has just slight changes during differentiation of mouse ESC. Interestingly, we could
see that the scatterplots of H3K27me3 and PcG proteins occupancy has a significant tilt
towards the axis representing condensation from ESC to NPC (Fig.14A). We also observed
that the expression levels of the genes targeted by PcG proteins were changed correspondingly.
Together, these indicate that the non-LAD regions which were identified using our method
may be suggestive of PcG repressed chromatin. Since facultative heterochromatin is associated
with H3K27me3, these non-LAD condensed regions are suggestive of facultative
heterochromatin.

Condensation Dynamics of stage specific Gene Loci

Here are the cell type specific genes’ RZ profiles. As we can see, Oct4 is highly expressed in
ESC and is drastically downregulated in NPC and further in CN. Subsequently, the RZ scores
show that the domain encompassing Oct4 is decondensed in ESC, condensed in NPC and
further condensed in CN (Fig.15A). The Wnt5b gene is specifically highly expressed in NPC
and shows very little to no expression in ESC and CN. The region encompassing the gene is
condensed in ES and CN, but eventually decondensed in NPC (Fig.15B). We took another
example of CN cell type specific gene Pcdh9. This gene has very low expression in ESC,
slightly increases in NPC and is highly expressed in CN. Subsequently, the domain
encompassing the Pcdh9 gene is condensed in ESC, decondenses in NPC and further
decondenses in CN (Fig.15C). Thus, we could show cell type specific examples of genes and
condensed/decondensed state of the regions associated with them. The domains containing
these genes are decondensed only in specific cell type where it has high expression and
condensed in other cell types where its expression is very low.
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Fig 14. Polycomb association of non-LAD condensed domains identified through visibility
bias.

A. Scatterplots showing enrichment of Suz12, Ezh2 and H3K27me3 in domains that switched
from decondensed to condensed and condensed to decondensed during differentiation of ESC
to NPC. B. Examples of decondensed and condensed domains that switched their status in ESC
and NPC. Upper panel shows ESC to NPC decondensation and lower panel shows ESC to NPC
condensation. Corresponding change in the gene expression (FPKM) and RZ scores has been
shown.
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Fig 15. Condensation Dynamics of stage specific Gene Loci

A. RZ scores of domain encompassing Oct4 locus, which has higher expression in ESC and
very low expression in NPC and CN, showing decompaction in ESC but compaction in NPC
and CN. B. RZ scores of domain encompassing Wnt5b locus, which has higher expression only
in NPC, showing decompaction in NPC but compaction in ESC and CN. C. RZ scores of
domain encompassing Pcdh9 locus, which has higher expression in CN, showing
decompaction in CN but compaction in ESC and CN



90-8¢ 90-9Z 00+20 90-89-
$21005 7Y
el :
T ........................
poeed | :
= +
T T T T T
90-ap 00+30 90-ap-

521005 7Y

NPC CN

NPC CN

ESC NPC

ESC NPC

DOWN

up

DOWN

up

T

T T T

T T T
90-3¢ 90-3Z 90-3T 00+30 90-3T- 90-32- 90-3¢-

$9402S 7Y

ESC NPC ESC NPC ESC NPC

Top coding

All top

300

150

il =0 {1
bl T i

. o F---- — o| -
b f----f | peeeee- {1+

903y  90-3Z  00+20 90-9¢- 90-9F-

521035 7Y

. el I It
R S N [ - 1k
|

) foeeeeees -1 L

90-89 90-9F 90-97 90-92-
$21025 74

NPC CN

NPC CN

ESC NPC ESC NPC

DOWN

UpP

DOWN

up



Fig 16. Compaction dynamics of differentially regulated genes

A. Boxplots showing the RZ scores of top 150 differentially expressed genes between ESC and
NPC. Both ESC to NPC upregulated and downregulated genes’ RZ scores were shown.
Highlight shows the anomalous trend. B. Boxplots showing the RZ scores of top 150
differentially expressed genes between NPC and CN. Both NPC to CN upregulated and
downregulated genes’ RZ scores were shown. C. Boxplots showing RZ scores of top 150 and
top 300 upregulated genes along with RZ scores of only coding genes in top 300. D. Boxplots
showing RZ scores of all miRNA genes which are differentially regulated between ESC and
NPC. E. Boxplots showing RZ scores of all miRNA genes which are differentially regulated
between NPC and CN.

# represents p-value >0.05; * represents p-value <0.05. Statistical significance was calculated
using Mann-witney U test.



Relationship between top differentially regulated genes and compaction

Although it is clear that higher gene expression is associated with decondensation and lower
gene activity with condensation, we wanted to see if this is true for top differentially regulated
genes between ESC, NPC and CN. Top 150 differentially expressed genes between ESC - NPC
and NPC - CN were taken and the compaction status of their TSS was compared. ESC-NPC
upregulated genes show no statistical correlation with the RZ scores, whereas ESC-NPC
downregulation of the genes is accompanied by corresponding compaction of the TSS of the
genes (Fig.16A). During NPC-CN upregulation, as expected, the genes were decondensed and
during NPC-CN downregulation they condensed (Fig.16B).

Comparison between coding and non-coding genes

To probe the reason behind having no correlation between highly unregulated genes and
decondensation during ESC-NPC, we looked into the nature of the top genes. We could observe
that the top 150 genes mostly consist of predicted genes (whose official symbol is starting with
Gm), which contains many non-coding genes and miRNAs. Then we listed out and checked
the nature of top 300 upregulated genes from ES-NP. The top 300 upregulated genes consist
of many coding genes and they are decondensed from ESC-NPC, which was expected. Also,
when only coding genes are taken and analyzed, the decondensation is much more pronounced
(Fig.16C). Hence, we could infer that non-coding and miRNA genes in the top upregulated
genes were having this anomalous behavior.

Compaction dynamics of miRNA genes

Since many miRNAs were involved in anomalous behavior, we analyzed the condensation
status of only miRNAs. During ESC-NPC, the upregulation of miRNAs is accompanied by
condensation of the TSS of these genes. But the downregulation of miRNAs during ESC-NPC
is also accompanied by condensation (Fig.16D). During NPC-CN, upregulation of the miRNAs
is accompanied by condensation and downregulation by decondensation (Fig.16E). Thus, we
show that condensation and decondensation status of the miRNAs is inversely related except
during ESC-NPC downregulation.

Reverse Correlation between Condensation and gene expression:

It is well established in this study as well as previous ones that condensed chromatin has lower
gene expression than decondensed chromatin. But on the contrary, we observed the presence
of regions in which decondensation and gene expression are inversely correlated in miRNA
genes. Hence, we wanted to see the presence of such regions genome wide. To this end, we
calculated percentage of total genes with positive and negative correlation between gene
expression and condensation status. In ESC to NPC, we found out that nearly 89% of the genes



are having positive correlation and nearly 11% of the total genes have negative correlation
between gene expression and condensation status (Fig.17A). To further probe into inversely
correlated regions, we divided them into two types. (1) ESC-NPC condensed domains showing
Gene Upregulation. (2) ESC-NPC de-condensed domains showing Gene downregulation. To
further characterize them, we probed the active histone mark H3K27ac and repressive histone
mark H3K9me3 associated with these regions and further classified them (Fig.17B).

The first type of regions are further classified as

(1a) The regions which are condensed during ESC-NPC differentiation but show gene
upregulation, and upregulation of active histone mark and downregulation of repressive marks
(Fig.18A). These regions include genes which are involved in pathways such as Alcoholism,
systemic lupus erythematosus, protein processing in ER, pathways in cancer etc. This
observation could be due to formation of transcriptional condensates.

(1b) The regions which are condensed during ESC-NPC differentiation but show gene
upregulation, and downregulation of active marks and upregulation of repressive marks
(Fig.18B). The genes present in these regions are involved in pathways such as transcriptional
regulation, dopaminergic neuron differentiation, dendrite formation, cytoskeleton etc. This
behaviour is probably due to the presence of Imprinted genes

The second type of regions are also further classified as

(2a) The regions which are decondensed during ESC-NPC differentiation but show gene
downregulation, and downregulation of active marks and upregulation of repressive marks
(Fig.18C). These regions consist of genes which are involved in pathways such as metabolic
pathways, arginine biosynthesis, carbon metabolism, biosynthesis of amino acids etc. This
observation could be due to the presence of Facultative heterochromatin.

(2b) The regions which are decondensed during ESC-NPC differentiation but show gene
downregulation, and upregulation of active marks and downregulation of repressive marks
(Fig.18D). These regions harbour genes involved in pathways such as metabolic pathways,
metabolism of xenobiotics, drug metabolism - cytochrome P450, chemical carcinogenesis.
This behaviour might be due to presence of bivalent poised genes.

Thus, reverse correlation between decondensation and gene expression exists in the genome
and they could be further classified based on other epigenetic marks.
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Fig 17. Reverse correlation between chromatin condensation and gene expression

A. Bar chart showing relative percentage of total genes which show direct correlation and
reverse correlation between chromatin condensation and gene expression. Majority of the
genes have positive correlation between condensation and gene expression. B. Flowchart
showing classification of reverse correlated genes based on active and repressive histone marks
associated with them along with no. of genes in brackets within each category.
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Fig 18. Classification of reverse correlated genes based on histone marks during ESC to
NPC

A. Genes with upregulated expression, upregulated H3K27ac, downregulated H3K9me3 and
are condensed from ESC-NPC. B. Genes with upregulated expression, downregulated
H3K27ac, upregulated H3K9me3 and are condensed from ESC-NPC. C. Genes with
downregulated expression, downregulated H3K27ac, upregulated H3K9me3 and are
decondensed from ESC-NPC D. Genes with downregulated expression, upregulated H3K27ac,
downregulated H3K9me3 and are decondensed from ESC-NPC.



Accessibility dynamics during differentiation:

Then we wondered what is the trend of the accessibility at chromosomal level between the cell
types. To determine this, we made differential (subtraction) RZ score plots of NPC-ESC and
CN-NPC for Chrl (Fig.19A&B). We observed that differentiation of ESC to NPC is
accompanied by loss of reads in cLADS and gain in ciLADs i.e., the cLADs condense from
ESC-NP and then decondense from NPC-CN. Whereas ciLADS decondense from ESC-NPC
and condense from NPC-CN (Fig.19A). We checked whether the above trend is true for all
chromosomes and it turned out that the trend was true for all the chromosomes. Here is another
example of Chr6 showing the differential RZ scores (Fig.19B). Then we wondered if this
alternative loss and gain of RZ scores in cLADs and ciLADs is accompanied by corresponding
change in the gene expression. Shown here is an example of ciLAD region from Chr6
(Fig.19C). This ciLAD region decondenses in NPC with a corresponding gain in gene
expression and condenses in CN with concomitant loss of gene expression.
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Fig 19. Accessibility dynamics during differentiation

A. Whole Chrl RZ scores showing condensation of cLADs and decondensation of ciLAD
during ESC to NPC. Double arrows represent intensity of condensation/decondensation, while
cLADs decondense and ciLADs condense during NPC to CN. B. Whole Chr6 RZ scores
showing condensation of cLADs and decondensation of ciLAD. Double arrows represent more
intensity of codensation/decondensation than single arrows, while cLADs decondense and
ciLADs condense during NPC to CN. C. Association between Accessibility dynamics and gene
expression showing RZ scores(i), differential RZ scores(ii) and differential gene expression
from ESC to NPC and NPC to CN.



Objective 3

Dynamics of quantitative spatial genome architecture during neuronal differentiation

a) Accessibility problem in 2D Hi-C maps

b) Remodeling of chromatin architecture during differentiation



a) Accessibility problem in 2D Hi-C maps

The dynamics of 3D nuclear organization during differentiation of ESC to Cortical Neurons
is not well studied and there exist many gaps in the knowledge. To pursue further, we have
analyzed the ultra-deeply sequenced Hi-C data, which was also used in the previous objectives.
The interactions between the genomic loci were determined using HOMER and contact
matrices were generated at different resolutions both genome and chromosome wide. Basically,
each chromosome or a region of the genome is divided into equal sized bins (of base pair
lengths) and the interactions between each pair of regions is obtained as a contact matrix. The
contact matrix is then drawn as a heatmap, where the color of the interactions represents degree
of interactions.

Restriction Enzyme Accessibility Problem:

As seen from previous observations, the condensed chromatin is less accessible to restriction
enzymes than the decondensed chromatin. As Hi-C is a proximity-based assay, the interactions
represent how close two regions are in the nucleus are. But since condensed chromatin gives
less no. of reads, the interactions coming from condensed chromatin are less represented in Hi-
C matrix than the decondensed ones and gives an interpretation that the regions in the
condensed chromatin are farther from each other. We refer this problem as Restriction
Enzyme (RE) accessibility problem. This potential bias should be normalized to obtain the
true proximity-based values.

To address the above problem, we have selected a genomic region which encompasses Nanog
gene (Fig.20). This was referred as Nanog domain whose genomic coordinates are
Chr6:122240000-123200000. The domain is roughly 1Mb long. We derived the RZ scores for
this region using LOESS normalization for all the three cell types i.e., ESC, NPC and CN. We
can clearly observe that the whole domain condenses from ESC to NPC and further in CN.
This is in accordance with the fact that Nanog is highly and specifically expressed in ESC, gets
downregulated in NPC and CN. From the above figure, it is clear that the Nanog domain
condenses from ESC to NPC and then in CN.

On the other hand, we overlaid the contact matrices of the Nanog domain in ESC and NPC
with active histone mark H3K27ac and silent histone mark H3K9me3. We observed that there
is decrease in the active histone mark H3K27ac around the Nanog gene from ESC to NP.
Concomitantly, there is increase of silent histone mark H3K9me3 at the Nanog locus
(Fig.21A). On one hand it is clear that Nanog domain is condensed form ESC to NPC, and on
the other hand it is associated with corresponding change in the histone marks. Hence, in
theory, the genomic regions at the Nanog locus come closer to each other in NPC and
correspondingly the interactions should increase. But, when we generated differential contact
matrix (NPC-ESC), we observed that there is loss in interactions along the diagonal, which is
represented by green colour in the heatmap (Fig.21A third panel). This discrepancy is due to
RE accessibility problem.
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Fig 20. Condensation status of domain encompassing Nanog

Since Nanog has higher expression in ESC but lower expression in NPC and CN, RZ scores of
Nanog domain showing that the whole domain has high RZ scores (decondensed) in ESC but
lower RZ scores (condensed) in NPC and CN. This shows that not only the Nanog locus but
the adjacent region is decondensed in ESC. Genomic coordinates of the domain were given in
the upper right corner and the region just representing Nanog gene is highlighted
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Fig 21. Restriction Accessibility problem in Nanog and Oct4 domains

A. (i) Heatmap of Nanog domain in ESC overlaid on H3K27ac amd H3K9me3. (ii) Heatmap
of Nanog domain in NPC overlaid on H3K27ac amd H3K9me3. (iii) Subtraction matrix of
NPC-ESC. Red shows gained interactions and green shows lost interactions. Region
representing Nanog gene is rounded. B. (i,ii and iii) Subtraction matrices of NPC-ESC showing
Nanog domain over different Normalization methods ie., Raw, SimpleNorm and Iterative
balancing respectively. RZ scores of ESC and NPC are shown for comparision.
C. Accessibility problem shown in Nanog and Oct4 domains where encircled region shows
the gene locus and green colour along the diagonal shows loss of interactions.



To verify that whether this problem is intrinsic to the normalization method we used
(SimpleNorm), we Normalized the raw contact matrix with other Normalization methods such
as Iterative Correction and could see similar results (Fig.21B). Thus, it became apparent that
the RE accessibility problem was not intrinsic to any type of Normalization method, but is the
artifact of the Hi-C experiment itself. We also checked many known regions and the same held
true for all of them (Fig.21C).

Principle for correction:

As we can see in the differential matrix of the Nanog domain, only the regions close to diagonal
are exhibiting this discrepancy but off the diagonal interactions are in accordance with the
change in condensation. This means, up to a size limit, the actual increase in the interactions
and thus proximity values show inversely in the Hi-C data due to RE accessibility problem,
and beyond the limit the accessibility problem doesn’t show much of its effects. Thus, first the
threshold should be determined and then the correction should be done only for the near-
diagonal elements within the threshold zone (Fig.22A).

For this we generated distance decay powerplots of the differential matrix to determine the
average length of the threshold where the curve starts getting positive values (Fig.22B). We
made these powerplots for both Nanog and Oct4 and could see that on an average, the threshold
is around 200kb in length (Fig.22C&D).

Then, all the values within this belt along the diagonal were corrected using the formula

CCDD(Mij) = max(belt) * min (belt) / mij

This method was termed as Contact Correction through Distance Decay plots (CCDD).
This formula ensures that the interaction values within the belt are inversely corrected but the
average, max and min of the values of the belt remain same.

We applied this CCDD method to matrices of ESC and NPC and then derived the differential
matrix. After Correction, we could clearly see that the interactions around the Nanog gene are
increasing from ESC to NPC and these values mimic the true proximity based interactions
(Fig.23A). Similarly, we generated the differential matrix based on CCDD corrected values for
Oct4 domain and could see that the interactions around the Oct4 gene now increase from ESC
to NPC (Fig.23B).

Thus, by accounting for bias due to restriction accessibility problem, we corrected the contact
matrices based on the distance decay plots. These corrected matrices now truly represent the
true proximity-based values.
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Fig 22. Identifying the threshold for the correction

A. Subtraction matrix of NPC-ESC of Nanog domain showing diagonal elements enriched in
green color indicating loss of interactions. The limit of the lost interactions off the diagonal has
been marked with black lines. B. A typical distance decay plot of mean subtraction values
shows that the loss of interactions decreases as we move from the diagonal. C&D. Distance
decay plots of Nanog(C) and Oct4(D) domains along with identified and marked threshold.
This threshold is almost similar in both the loci averaging at about 200kb.
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Fig 23. Contact Correction through Distance Decay plot

A. Correction of RE accessibility problem of Nanog domain using CCDD method. Threshold
and the gene locus have been marked. RZ scores have been provided for reference. The reversal
of the interactions and gain of interactions along the diagonal of the Nanog domain represented
in red color could be clearly seen B. Correction of RE accessibility problem of Oct4 domain
using CCDD method. Threshold and the gene locus have been marked. The reversal of the
interactions and gain of interactions along the diagonal of the Oct4 domain represented in red
color could be clearly seen.



Application in 3D polymer modeling:

The Hi-C contact matrices could be used to simulate 3D polymer modeling and obtain 3D
conformations of the chromatin. These simulations are based on the contact frequency from
the Hi-C data. Higher frequency between two regions is associated with higher springs between
the beads and hence closer they would be. Lower contact frequency represents farther regions
in the 3D conformations.

A well ignored fact in all the simulations done so far is that regions in the condensed chromatin
are closer to each other and generate less no. of Hi-C contacts, as discussed earlier. Hence the
lesser no. of interactions when simulated give the impression that the chromatin is
decondensed. Consequently, decondensed euchromatin regions with higher no. of interactions
would provide packed chromatin, when simulated. To address this problem, we, along with our
collaborators (Prof. Ranjit Padinhateeri, IITB, India), proposed a bead and spring model with
heteropolymer beads, where the size of the bead depends on the no. of 1-Dimensional Hi-C
reads generated from that bin (Fig.24). That means, a 100kb bin with more no. of reads, which
is decondensed (Fig.24ii), will have bigger volume as a bead than a 100kb bin bead with lesser
no. of reads (Fig.24i). Essentially, the size of the bead is directly proportional to the no. of Hi-
C reads obtained from that bin. We referred this as Heteropolymer model (Fig.24iv).

To test the model, we took Chré and Nanog domain as an example. As we have seen earlier,
the Nanog domain gets condensed from ESC to NPC and further in CN. We modelled Chr6
and Nanog domain using both homopolymer and heteropolymer models. The volume of the
Nanog domain was represented as Radius of gyration (Rg) (Fig.25A). As we can see, one can
clearly observe that in Homopolymer model, the Rg of the Nanog domain is decreased from
ESC to NPC and increases during NPC to CN (Fig.25B). But, in heteropolymer model, the Rg
decreases from ESC to NP and further decreases from NP to CN. This serves as the proof of
principle of the heteropolymer model (Fig.25C). We performed similar simulations using
heteropolymer model for Chr17 along with Oct4 domain and could clearly observe that Rg of
Oct4 domain decreases from ESC to NP and further to CN (Fig.26A & B).



DNA

Diagram adapted from Dr. Ranjith Padinhateeri Lab
Fig 24. Comparison of Homopolymer and Heteropolymer model

The Diagram is adapted from Dr. Ranjith Padinhateeri’s Lab (i) Example showing certain
length of a DNA segment packed compactly into monomer of smaller radius. (ii) The same
length of DNA packed relatively loosely into monomer of bigger radius. (iii) General
Homopolymer modeling showing all monomers of equal radius irrespective of their
compaction status. (iv) Novel Heteropolymer showing different monomer sizes depending of
the condensation status of the DNA. Decompacted DNA is represented with bigger monomers
and compacted DNA with smaller monomers, depending upon the compaction status of the
DNA.
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Fig 25. 3D modeling of Chr6 using Hi-C data

A. 3D models of the whole chromosome (chr6) simulated using Hi-C data and heteropolymer
modeling. Red color represents Nanog domain’s conformation and black line represents the
remaining chromosome. B. Radii of gyration (Rg) of Nanog domain using Hi-C contact matrix
without CCDD correction and simulated using homopolymer model which shows decrease in
Rg from ESC-NPC but increase in Rg from NPC-CN. C. Radii of gyration of Nanog domain
using Hi-C contact matrix corrected using CCDD and simulated using heteropolymer model
showing that the Rg decreases from ESC to NPC and further in CN
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Fig 26. 3D modeling of Chr17 using Hi-C data

A. 3D models of the whole chromosome (chrl17) simulated using Hi-C data and heteropolymer
modeling. Red color represents Oct4 domain’s conformation and black line represents the
remaining chromosome. B. Radii of gyration of Oct4 domain using Hi-C contact matrix
corrected using CCDD and simulated using heteropolymer model showing that the Rg

decreases from ESC to NPC and further in CN



b) Remodeling of chromatin architecture during differentiation

Chromosome Territory Neighborhood and Clustering:

As chromosome neighborhood is cell type specific and reorganization happens during
differentiation, we wanted to study the reorganization of chromosome territory Neighborhood
(CTN) in the context of ESC differentiating into NP and then to CN. We obtained whole
genome contact matrices of the three cell types, normalized them and obtained chromosome
neighborhood maps (see methods section). The maps were represented as heatmaps. Red
represents higher contact frequency and blue represents lower contact frequency (Fig.27A).

The CT neighborhood map shows how close two chromosomes are in the 3D nucleus. It is
clear in all the three cell types that smaller chromosomes are clustered, which is in accordance
with previous studies (Liebermann et al., 2008). The clustering of the chromosomes can be
quantitatively seen as boxplots which shows smaller chromosomes (Chr9-19) clustering among
themselves is more than the clustering of larger chromosomes (Chr1-8). We can also observe
that chromosome 9 and 11 are having higher interactions with all the chromosomes, although
it differs between the cell types (Fig.27B).

To see the reorganization of the CT neighborhood between the cell types, we generated
subtraction matrices of NPC-ES (Fig.27C) and CN-NPC (Fig.27D). The red colour here
represents gain in the interactions and blue represents loss in the interactions. From ESC to
NPC, there is gain in the interactions within larger chromosomes which is also clear in the box
plot (Fig.27E). There is an overall increase in the interactions within smaller chromosomes but
specifically interactions within chromosomes 12-19 decrease from ESC to NPC (Fig.27F). This
can be clearly seen in the subtraction CT map of NPC-ESC. The interactions between smaller
and larger chromosomes increase from ESC to NPC. Whereas from NPC to CN, as seen from
the map, very subtle changes are seen both in smaller and larger chromosomes (Fig.27G).
Statistically, there is no significant change in the interactions within smaller chromosomes and
between smaller and larger chromosomes. But there is slight decrease in the interactions
between larger chromosomes from NPC to CN.

These results suggest that CT neighborhood reorganizes during this differentiation. Smaller
chromosomes cluster together. Most of the reorganization happens during ESC to NPC
transition and very subtle changes are seen from NPC to CN.
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Fig 27. Chromosome Territory Neighborhood and it’s dynamics during differentiation

A. Chromosome territory neighborhood maps of ESC, NPC and CN. Color gradient is from
blue to red- Blue indicates lower interactions and red indicates higher interactions. Intra-
chromosomal interactions were deleted and hence diagonals are blue. B. Interactions within
larger chromosomes (Chr9-19) are lesser than the interactions within smaller chromosomes
(Chr1-8) in all the three cell types. C & D. Subtraction CTN map of NPC-ESC(C) and CN-
NPC(D). Red represents gain of interactions and blue represents loss of interactions.
E. Comparison of Interactions among larger chromosomes across three cell types.
F. Comparison of Interactions among smaller chromosomes across three cell types.
G. Comparison of Interactions between larger and smaller chromosomes across the three cell

types.

* represents p-value <0.05; # represents p-value >0.05



Dynamics of Intra-chromosomal Interactions

Then we wanted to see the dynamics of the intra-chromosomal interactions during neuronal
differentiation. To observe that, we generated intra-chromosomal maps of Chré SimpleNorm
matrices. As we can see, most of the interactions of the intra-chromosomal map are
concentrated along diagonal and the interactions decrease as the distance increases between the
bins i.e., off the diagonal (Fig.28A). Superficially, there seems no difference between the
interaction maps of ESC, NPC and CN. To clearly see the differences, we generated subtraction
matrices of NPC-ESC and CN-NPC.

In the subtraction matrices, from ESC to NPC, most of the short-range interactions (very close
to diagonal) are increased and represented by red color along the diagonal. Mid-range
interactions are decreased which is represented by green colour and then long-range
interactions are increased (Fig.28B). These trends are similar in NPC to CN transition. Since,
one cannot clearly see these dynamics with respect to genomic distances in the heatmaps, we
sought to generate distance decay plots. The mean interaction frequency of the matrix as a
function of genomic distance is plotted as a power law. To study the dynamics clearly, we
plotted two decay plots: one within 8Mb distance, and another above 8Mb distances.

In the distance decay plots of below 8Mb distances, all the cell types i.e., ESC, NPC and CN
follow similar trajectory as the distance increases. If we see further, the CN has the highest
interactions and NPC has the lowest initially. After some distance, ESC will have the lowest
interactions but CN continues with the highest interaction frequency up to about 7Mb. Then at
the end, NPC has the highest frequency followed by CN and ESC (Fig.28C).

In the plot of above 8Mb, the trend starts with what has ended in below 8Mb i.e., NPC followed
by CN and then ESC. At about 20 Mb, ESC makes a shift to the top and remains atop up to
nearly 40 Mb. After 40 Mb, CN will have the highest frequency, followed by NPC and then
ESC. So essentially, ESC has lot of interactions at the range of 20-40 Mb than NPC and CN.
CN has the lowest frequency from around 10Mb to 40 Mb range (Fig.28D).

To further dissect the dynamics of the intra-chromosomal interactions, we divided the
interaction distances into 6 ranges. i.e., <100kb, 100kb-500kb, 500kb-2Mb, 2Mb-20Mb, 20-
40Mb, >40Mb. We calculated the mean interaction frequencies at all these ranges for all the
chromosomes and the mean intra-chromosomal ranges have been determined to evaluate the
general trend in all the chromosomes. We also divided these interactions based on whether
these interactions are within cLADs or ciLADs (Fig.29A). As we observed previously, up to
500 kb, NPC has the highest interaction frequency followed by ESC and NPC has the lowest
in ciLADs. But in cLADs, ESC has the highest frequency followed by NPC. From 500 kb to
20 Mb, ESC has the lowest interactions and NPC has the highest in both ciLADs and cLADs.
From 20 Mb to 40 MB, ESC has the highest frequency and NPC has the lowest in both ciLADs
and cLADs. But above 40Mb, the trend shows similar to that of 500kb to 20Mb in both ciLADs
and cLADs , albeit with very low frequency. The initial lower interaction frequency of less
than 500kb in both cLADs and ciLADs than the following ranges is due to the fact that these
regions are so close that the interactions have not been captured in Hi-C in the first place.
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Fig 28. Dynamics of intra-chromosomal interactions during differentiation

A. SimpleNorm contact matrices of Chr6 showing intra-chromosomal interactions across ESC,
NPC and CN. Interactions enriched along the diagonal shows that the proximal regions in the
DNA have more interactions than with the distant regions. B. Subtraction matrices of intra-
chromosomal interactions of NPC-ESC and CN-NPC. Red represents gain of interactions and
green represents loss of interactions. The distance at which there is significant change in
interactions is marked with dotted lines. C. Distance decay plot of interactions below 8Mb of
ESC, NPC and CN. D. Distance decay plot of interactions above 8Mb of ESC, NPC and CN.



Dynamics of short-range interactions after CCDD:

Since the very short-range interactions don’t represent the true proximity-based interaction
values as we discussed previously, we corrected the intra-chromosomal matrices using CCDD
for all the chromosomes and plotted the mean interaction frequencies. In cLADs, after CCDD,
ESC has the highest frequency up to 500kb. But there seems no much difference between NPC
and CN (Fig.29B). Whereas in ciLADs, after CCDD, although ESC has slightly larger
frequency than NPC and CN, it seems that there is no difference in the frequencies between
the cell types (Fig.29C). This suggests that during ESC to NPC transition, cLADs undergo
reorganization at <500 kb distances but not ciLADs. Whereas during NPC to CN transition,
there is no much reorganization either in cLADSs or ciLADs.

Nature of genes and gene regulation in cLADS :

Lamina associated domains are often associated with repressive marks, gene poor and
considered as heterochromatin. But we observed that cLADs in fact harbor many important
genes and they tend to differentially regulate during differentiation of ESC to CN.

First to study the nature of the genes physically present in cLADs, we derived the list of the
genes’ coordinates which are within the boundaries of cLADs. We determined the Gene
Ontology terms and pathways associated with these genes. Interestingly, many genes are
involved in important pathways such as alcoholism, drug addiction etc. This suggests that
although cLADs are gene poor, they harbor very important genes which are repressed in most
of the cells.

Next, we wanted to see if any developmentally regulated genes involved in neuronal
differentiation are present in cLADs. First, we derived the genes which have non-zero FPKM
values and drew a venn diagram showing unique and commonly expressed genes in all the
three cell types (Fig.30Ai). There are 937 LAD genes which are commonly expressed in all the
three cell types. If uniquely expressed genes are concerned, ESC has the highest no. (553) of
genes. This is in accordance with the fact that ESC genome is hyper-dynamic and genes present
in cLADs are more accessible than in other types of cells. When we put a cutoff of FPKM >1,
which is a standard way of looking at the expressing genes, we saw 340 LAD genes are
commonly expressed in all the three cell types (Fig.30Aii). Then we wanted to see the
expression levels of the genes present in cLADS in all the three cell types. When compared
with the expression levels of all the genes from ciLADs and cLADs, the overall expression of
genes in ciLADS is obviously lot higher than that of in clADs (Fig.30Aiii). But when the
expression of only expressed genes is plotted, the values are comparable with that of the ciLAD
genes (Fig.30Aiv). This suggests that cLADs harbor important regulatory genes whose
expression is as high as genes in ciLADs.

Then we derived differentially regulated LAD genes between ESC, NPC and CN (see
methods). During ESC to NPC, genes involved in GO terms such as membrane,
Transmembrane which are crucial for neurogenesis are upregulated (Fig.30Bii) and during
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Fig 29. Dynamics of different distance ranges of interactions

A. Mean X of interaction frequencies at <100kb, 100kb-500kb, 500kb-2Mb, 2Mb-20Mb, 20-
40Mb, >40Mb of the three cell types genome wide among ciLADs and cLADs. Note that
interactions from both cLAD nd ciLADs show similar trends among various distance ranges.
B. Mean X of interaction frequencies at 0-100kb and 100-500kb distances of three cell types
before (SimpleNorm) and after correction among cLADs. C. Mean X of interaction frequencies
at 0-100kb and 100-500kb distances of three cell types before (SimpleNorm) and after
correction among CiLADs.



NPC to CN, genes with GO terms like ligand gated, anion binding, voltage gated channel are
upregulated which are very important in neuronal formation (Fig.30Cii). Pathways
downregulated in NPC from ESC include glycolysis, gluconeogenesis which are important for
ESC maintenance (Fig.30Biii). From NPC to CN, genes involved in ribosomes, translation are
downregulated (Fig.30Ciii) .

These results suggest that cLADs harbor many important developmentally regulated genes
which are essential for differentiation of ESC into Neurons.
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Fig 30. Nature of the genes present in the cLAD regions

A. (i) Venn diagram showing the no. of expressed genes (FPKM>0) from cLADs in ESC, NPC
and CN. (ii) Venn diagram showing expressed genes (FPKM>1) from cLADs in ESC, NPC
and CN. (iii) Boxplots showing expression levels of the genes present in ciLADs(1) and
cLADs(2) in three cell types. (iv) Boxplot showing distribution of expressed genes from
cLAD:s in the three cell types. B. (i) Venn diagram showing the no. of upregulated genes
between ESC-NPC and NPC-CN in cLADs. (ii) Pathways upregulated during ESC-NPC in
cLADs. (iii) Pathways upregulated during NPC-CN in cLADs. C. (i) Venn diagram showing
the no. of downregulated genes between ESC-NPC and NPC-CN in cLADs. (ii) Pathways
downregulated during ESC-NPC in cLADs. (iii) Pathways downregulated during NPC-CN in
cLADs



4. Discussion



Objective 1: Development of robust method to measure and characterize chromatin
condensation state genome-wide

Chromatin accessibility data has been very much useful in deriving and studying regulatory
regions in the genome. The accessible genome accounts for nearly 2-3% of total DNA though
it is able to capture more than 90% of sequences bound by transcription factors (Thurman, R.
E. et al. 2012). DNase-I remained the preferred option to digest the open accessible chromatin
due to its lower sequence specificity, albeit only few studies used restriction endonucleases to
decipher the accessible regions in the chromatin (Chen et al., 2014; Ohkawa et al., 2012;
Gargiulo et al., 2009]. Since there were lacunae in the methods traditionally used for deriving
chromatin accessibility, we proposed the need for a more robust method. We proposed that Hi-
C data, which is originally used for deriving the interactions between genomic elements, could
be potentially repurposed to derive accessibility data and there by condensed and de-condensed
regions in the genome. Since Hi-C uses restriction enzymes to cut the DNA at specific sites,
lesser no. of sequenced reads are enough to analyze the accessibility. First, we observed that
gene poor heterochromatin regions have lesser number of reads than gene-rich euchromatic
regions in chromatin reads but not in naked DNA from the RED-seq experiment. Then we
showed that 1Dimensional Hi-C reads representing heterochromatin and euchromatin visually
as well as statistically. We used LOESS statistical Normalization to normalize the 1D reads to
the GC content and Restriction enzyme site density. The highlight of the Normalization is that
we corrected the 1D reads for machine bias as well, which is first of its kind. And for the first
time, we were able to derive condensed and decondensed domains based on the normalized 1D
Hi-C reads and also their correlation with LADs and ciLADs respectively.

Then we showed that RZ score derived Condensed and decondensed regions of chromatin are
highly correlated with silent and active histone modifications respectively. Also, RZ score
based measurement of chromatin condensation states accurately validates the condensed
inactive X-chromosome vs decondensed active X-chromosome in brain and kidney female
cells. We further authenticated our method in Polytene chromosome of Drosophila where the
Polytene Bands have lesser reads compared to inter-Bands in both polytene and diploid
chromosomes. Finally, we validated our method in dynamics of chromatin decondensation
under Lamin KO Condition in ESC. Thus, our method to repurpose 1-dimensional in-situ Hi-
C reads to derive condensed and decondensed domains is thoroughly validated. Before
digesting the DNA with restriction enzyme, in-situ Hi-C protocol includes treatment of nuclei
with 0.3-0.5% of sodium dodecyl sulphate (SDS) at 62 °C for nearly10 min, which is followed
by guenching of SDS with Triton X-100 (Rao et al., 2014). The treatment with detergents and
heat are expected enough to increase the accessibility of the chromatin. From our studies it is
clear that regardless of these treatments, the accessibility of the condensed chromatin to
restriction digestion is greatly constrained. Consequently, the interactions involving
heterochromatin are under-represented in the available Hi-C datasets. Williamson et al., (2008)
noted that there exists inconsistency between Hi-C data and the DNA FISH results regarding
the decondensation and condensation of HoxD loci during differentiation of ESC. Although
5C or Hi-C mainly suggested that the HoxD locus remained in condensed state, the results of



DNA FISH showed that the locus instead got decondensed during differentiation. On the
contrary, Kundu et al. has recently corroborated the 5C and DNA-FISH results on HoxA and
HoxD locus. We infer that the differential digestion of decondensed and condensed forms of
Hox loci by REs may underlie the inconsistencies.

Since the chromosome exists as a collation of condensed and decondensed regions, the
traditional representation of chromosome as a mere chromatid may not hold true. Hence, we
derived horizontally and vertically condensed chromosome maps using the 1D Hi-C reads
which represent true in-vivo chromosome. Also, comparative CC maps of ESC and other
differentiated cells reveal developmental regulation of chromatin condensation. As per our
knowledge, we are the first to generate such condensation maps which truly represent the in
vivo chromatin. These have profound implications in studying the chromatin organization and
could also be potentially used as diagnostic markers.



Objective 2: Developmental dynamic role of chromatin condensation during neuronal
differentiation

The neuronal differentiation of Embryonic stem cells seemed much more reliable/suitable to
study the dynamics of chromatin condensation developmental. This three-point differentiation
system is quite adequate to capture the dynamics of chromatin accessibility during
differentiation. We cultured mouse ESC cell line to derive Neural Progenitors and then Cortical
Neurons in a 21-day protocol. We validated the cell differentiation system through stage
specific GFP markers and also gene expression through Real Time PCR. Then we took
advantage of a published study from Cavalli’s group from France, which has ultra-deep
sequenced in-situ Hi-C and epigenetic datasets, to address our objectives. Although they
studied Dynamics of CTCF insulation, promoters, TAD boundaries and gene expression along
with other factors regulating genome architecture, they didn’t study chromatin accessibility per
se.

It was very striking that the ESC and NPC has more variation than NPC and CN in terms of
chromatin accessibility, which suggests that most of the chromatin reorganization in terms of
condensation and decondensation happens from ESC to NPC. This is in agreement with the
fact that NPC and CN are lineage committed and ESC is still pluripotent. One could also infer
from these results that the lineage commitment is accompanied by large scale changes in
chromatin condensation. Switching of chromatin condensed states during differentiation is
predominantly accompanied with corresponding changes in both gene expression and
epigenetic marks. Thus, repurposed Hi-C datasets robustly deciphered the developmental
dynamic role of chromatin condensation and decondensation during Neuronal differentiation.
Interestingly, we found that non-LAD condensed regions derived using our method are
associated with binding of polycomb group (PcG) of proteins. PcG proteins are often associated
with H3K27me3 marks and also facultative heterochromatin (Bernstein et al., 2006). Thus, our
method could be potentially used to identify facultative heterochromatin as well.

Though we showed that most of the changes in condensation are accompanied by
corresponding change in the gene expression, a small percentage of genes have reverse
correlation between condensation and gene expression. Interestingly, in top differentially
regulated genes, we found that these include mostly miRNAs except in ESC-NPC
downregulated genes. Thus, the chromatin with miRNA genes tends to condense during active
transcription and Decondense during silencing. This peculiar behavior could be explained by
the formation of transcriptional condensates through liquid-phase separation phenomenon. It
has been shown that the retention of pri- microRNA transcripts at transcription sites resulted
in enhanced production of microRNA (Pawlicki et al.,2008). Thus, the presence of pri-miRNA
transcripts at the transcription site may have minimized the ability of restriction enzymes to
cleave the DNA, which might have resulted in lesser number of Hi-C reads. Since there are
little to no studies reporting this observed phenomenon, further experimental validation and
investigation is required for understanding the mechanisms.

Since we found some top genes with negative correlation between gene expression and
condensation, we extended the work to see globally. Genes showing negative correlation could



be subcategorized into different groups based on histone marks and mechanistic principles
associated with them. Formation of transcriptional condensates, presence of imprinted genes,
establishment of facultative heterochromatin and presence of bivalent genes could rationally
provide explanations for the observations seen in these small percentage of genes. Further
investigations are needed to gain insights into the mechanistic details of the observations.

We also observed for the first time that ESC to NPC differentiation is accompanied by larger
decondensation in cLADS and condensation in ciLADs in a chromosome wide manner. This
pattern just reverses from NPC to CN with lesser intensity. This alternative reciprocal behavior
might have a role in gene regulation.



Objective 3: Dynamics of quantitative spatial genome architecture during neuronal
differentiation

The key aspect of this objective was to address a previously unaddressed problem in the Hi-C
analysis which arises due to the difference in the visibility of the condensed and decondensed
regions. From the accessibility data, we could clearly see from the example that the part of the
genome around Nanog locus is condensed from ESC to NPC and further to CN, and is
supported by epigenetic data as well. But the subtraction matrices show otherwise, indicating
that Hi-C contacts are lost up to certain length. We also showed that this was independent of
normalization method. Calculating this threshold became very important in normalizing these
short-range contacts. Hence, we employed a power law based technique, where the range at
which the curve gets flattened indicates the threshold upto which these short range contacts are
showing otherwise. To retain the mean, minimum and maximum values in the belt, we designed
a formula and named the method as CCDD. This correction was also applied for other loci and
got similar results proving the overall robustness of the technique. The technique could be
further improved by correcting the reads non-linearly using other statistical methods. This is
for the first time one has addressed the accessibility problem in Hi-C reads and has made an
attempt to correct. Many further studies and analyses are needed to completely address the
accessibility problem.

One of the applications of the accessibility problem corrected matrices is in the 3D modeling
of chromosomes in silico. Without considering this problem, the 3D modeling of the
chromosome would give false interpretations due to changes in the short -range interactions.
We also proposed a novel Heteropolymer model in which the size of the bead depends on the
accessibility of that particular genomic bin. Together, we could model the corrected matrices
using heteropolymer model to obtain a closer-to-true picture of the chromosomes, which also
captured the previously mentioned loci. Our study also suggests that one should always use
hetero-polymer models (as opposed to popular homopolymer models in literature) to obtain
accurate predictions of packaging and compaction.

Then we analyzed the remodeling of chromatin architecture during Neuronal differentiation
using our CCDD corrected Hi-C matrices. First, we derived chromosome territory
neighborhood maps and could see that smaller chromosomes are more clustered than the larger
chromosomes, as shown in previous studies (Lieberman et al., 2009). Subtraction CTN maps
clearly showed that a lot of reorganization happens from ESC to NPC and only subtle changes
happen from NPC to CN in terms of chromosome neighborhood. This indicates that most of
the chromosomal rearrangement in terms of neighborhood happens during transition from ESC
to the next cellular state and least happens at the terminal differentiation. This is also in
accordance with our other studies (not yet published) from our Lab. Moreover, we were able
to show that interactions among and between both small and large chromosomes increases from
ESC to NPC, whereas interactions among larger chromosomes decrease in CN. Then using
subtraction intra-chromosomal maps, we showed that NPC and CN show gain of long-range
interactions. This is important because while most ESC are mitotically active, their
chromosomes lack long-range interactions, which are then gained during differentiation. We
further dissected the interactions at various ranges and could find some important trends,



especially interactions at 20-40Mb range between them are lost during the process of neuronal
differentiation. This might be unique to neuronal differentiation, as we observed a different
pattern during other differentiation system (results yet to be published). Lastly, we could show
the difference between trends in cLADs and ciLADSs using our corrected matrices.

We hope that the results and observations from our study contribute significantly towards
understanding the underlying principles of higher genome organization and trigger many
future studies.



5. Summary



Objective 1:

We derived 1D read counts of Hi-C data and overlaid them with DNase-seq data and in situ
chromatin of RED-seq and could clearly see that euchromatin regions showed higher no. of
reads than heterochromatin regions, which gives an initial representation that Hi-C reads could
be re-purposed to derive condensed and de-condensed domains. The raw Hi-C reads should be
corrected to systemic biases. To this end, we used LOESS regression to first standardize the
loess parameters to normalize for the machine bias and then to correct GC content and RE site
density and then z-scored them to obtain RZ scores. The positive RZ scores corresponded to
euchromatin and negative RZ to heterochromatin. Then quantitatively, we showed that the
cLADs have significantly lesser corrected reads than ciLADs in in situ chromatin but not in
naked DNA. Then we calculated the correlation between the 1D reads of in situ chromatin and
in situ HI-C reads which showed a high correlation implicating that similar results could be
observed in in situ Hi-C. In fact, we showed that corrected Hi-C reads are more represented in
CiLADS than in cLADS. Then we derived condensed and decondensed regions based on RZ
scores with FDR <0.05 and could show that the condensed regions derived using our method
matched well with known cLADs. To characterize the derived domains, we assessed the
histone marks associated with the domains and could show that active marks such as
H3K4mel, H3K27ac etc are enriched in decondensed domains and repressive marks such as
H3K9me3 are enriched in condensed domains. To validate our method, we analyzed allele
specific Hi-C data of mouse female X-chromosome and could show that condensed inactive
X-chromosome has lesser number of reads than that of active X-chromosome. To further
scrutinize our method, we analyzed the Hi-C data of Drosophila polytene chromosome and
showed that band regions show significantly lower reads than i-bands both in polytene and
diploid chromosomes. Then we analyzed Hi-C data of lamin B knocked out ESC and could
show that that no. of reads coming from KO cLADS is higher than that of wild type, whereas
the rest of the regions didn’t get affected. These studies unequivocally demonstrated that Hi-C
reads can be efficiently repurposed to derive condensed and decondensed regions genome
wide. Next, we derived chromosome condensation maps based on RZ scores before Z scoring.
We derived both horizontally and vertically compressed chromosome condensation maps.
These maps truly represent the chromosomes in their in vivo condition. To see the dynamics
of these maps during differentiation, we generated the condensation maps from ESC, fetal liver
and adult liver. We also generated these maps using Hi-C data of neural stem cells and
Astrocytes. Finally, we created an ensemble of horizontally compressed maps of all
chromosomes in the above cell types.

Objective 2:

We cultured ESC and differentiated them into Neural Progenitors and Cortical Neurons. Then
we characterized and validated the cell types using RT-PCR and gPCR. While we were
working on this, Cavalli group from France published a work (Bonev et al., 2017) on the same
differentiation system with ultra-deep sequenced Hi-C data along with gene expression and
many ChlP-seq datasets. Though they studied different aspects of TADs and other important



factors, none of our objectives were overlapping with their work. Hence, we reanalyzed their
datasets to address our objectives. First, we showed that the accessibility bias existed in all the
three cell types. As we see higher variation between ESC and NPC than between NPC and CN,
we restricted most of the further studies in this objective to ESC-NPC. We showed that during
ESC-NPC transition, most of the condensed and decondensed regions are conserved. The
switching regions exhibited corresponding change in the gene expression. Next, we showed
that condensation in NPC is associated with downregulation of pluripotent pathways and
decondensation is associated with upregulation of neuronal pathways. Then we analyzed
epigenetic marks associated with the constitutive and switching regions from ESC-NPC and
showed that while constitutive regions retained the corresponding enrichment, the switching
regions were accompanied by corresponding change in the enrichment of the histone marks.
We also showed that the condensed non-LAD regions are enriched in polycomb group of
proteins. When we analyzed relationship between top differentially regulated genes and
condensation, we could observe that some genes showed no relation between gene expression
and condensation. Upon further study, we found that miRNA genes showed reverse correlation
between condensation and gene expression during differentiation except for ESC-NPC
downregulated ones. We also found that a small percentage of genes globally tend to show this
reverse correlation. To study those genes, we further classified them based on histone marks
and could derive pathways associated with such genes. Finally, we wanted to see the dynamics
of condensation at whole chromosome level. To this end, we made differential (subtraction)
RZ score plots of NPC-ESC and CN-NPC. We observed that differentiation of ESC to NPC is
accompanied by loss of reads in cLADS and gain in ciLADs i.e., the cLADs condense from
ESC-NP and then decondense from NPC-CN. Whereas ciLADS decondense from ESC-NPC
and condense from NPC-CN globally.

Objective 3:

3a: We first tested whether this accessibility problem is intrinsic to the normalization method
used to normalize the contact matrix and showed that this problem exists in all major known
normalization methods. We also showed that this problem is not specific to Nanog domain
either. We observed that, this discrepancy is seen to a certain length off the diagonal which
needs to be corrected. We employed a novel CCDD (contact correction through distance decay
plots) method to first define the threshold of the inverse values and then correct the values
using novel formula. Then we showed that the RE accessibility problem is corrected in Nanog
and Oct4 domains. Then we wanted to use these corrected contact matrices in 3D modelling of
the chromosome using HI-C data. We used brownian simulations to generate 3D polymer
models of chromosome. Instead of using usual homopolymer model, we used a novel
heteropolymer model where the bead size is dependent on the no. of reads coming from that
particular bin, which essentially means condensed chromatin have smaller bead sizes whereas
decondensed chromatin have larger bead sizes. We simulated Chré and Chrl7 and showed
dynamics of the Rg of Nanog and Oct4 domains respectively.



3b: We derived chromosome territory neighborhood maps from whole genome contact
matrices of Hi-C data and could see that smaller chromosomes are more clustered than the
larger chromosomes, as shown in previous studies (Lieberman et al., 2009). Subtraction CTN
maps clearly showed that a lot of reorganization happens from ESC to NPC and only subtle
changes happen from NPC to CN in terms of CTN. Then we showed that interactions among
and between both small and large chromosomes increases from ESC to NPC, whereas
interactions among larger chromosomes decrease in CN. Next, we wanted to study the
dynamics of the intra-chromosomal interactions. By generating cis subtraction matrices, we
could show that from ESC to NPC, most of the short-range interactions (very close to diagonal)
are increased along the diagonal, mid-range interactions are decreased and then long-range
interactions are increased. We generated two power law plots for each chromosome and
observed that interactions are dynamic at various distances above 8Mb. To study the nature of
interactions, we further dissected them into various distance ranges and could find some
important trends, especially interactions at 20-40Mb range between them are lost during the
process of neuronal differentiation. Then we plotted interactions below 500kb which were
corrected using CCDD and showed that there exist differences between interactions of cLADs
and ciLADs, and other trends. At the end, we analyzed the nature of genes present in the cLADs
and showed that cLADs harbor many important developmentally regulated genes which are
differentially regulated during the course of differentiation and some genes are expressed as
high as the genes in ciLADs.



Table 1

Accession
GSE51821
GSE96107
GSE59027
GSE72510
GSE89520
GSE68992
ENCSR032JUI
ENCSR000CGQ
ENCSR000CGO
ENCSR253QPK
ENCSR857MYS
ENCSR059MBO

GSE96107

Table 1. Details of the datasets used in the study.

Cell-type
mESC

mESC, NPC, CN
mESC, NPC, CN

Polytene

mMESC (laminKO)

Brain, Patski

mESC

NPC

CN

Experiment
RED-seq
In-situ Hi-C
In-solution Hi-C
Tethered Hi-C
In-situ Hi-C
DNase-Hi-C
H3K4mel
H3K27ac
H3K4me3
H3K36me3
H3K9me3
H3K27me3
H3K4mel
H3K27ac
H3K4me3
H3K36me3
H3K9me3
H3K27me3
H3K4mel
H3K27ac
H3K4me3
H3K36me3
H3K9me3
H3K27me3

RE
Sau96l
Dpnil
Ncol
Dpnll
Balll
DNase
ChiP-seq
ChlP-seq
ChiP-seq
ChiIP-seq
ChiP-seq
ChiIP-seq
ChiP-seq
ChiP-seq
ChlP-seq
ChiP-seq
ChiP-seq
ChiP-seq
ChiP-seq
ChiP-seq
ChiP-seq
ChlP-seq
ChiP-seq
ChiP-seq

Processing

Pre-processed
HiCUP/bowtie
HiCUP/bowtie
HiCUP/bowtie
Pre-processed
Pre-processed
Pre-processed
Pre-processed
Pre-processed
Pre-processed
Pre-processed
Pre-processed
Pre-processed
Pre-processed
Pre-processed
Pre-processed
Pre-processed
Pre-processed
Pre-processed
Pre-processed
Pre-processed
Pre-processed
Pre-processed
Pre-processed
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Abstract

obscure and under-appreciated in the literature.

Background: Proximity ligation based techniques, like Hi-C, involve restriction digestion followed by ligation of
formaldehyde cross-linked chromatin. Distinct chromatin states can impact the restriction digestion, and hence the
visibility in the contact maps, of engaged loci. Yet, the extent and the potential impact of digestion bias remain

Results: Through analysis of 45 Hi-C datasets, lamina-associated domains (LADs), inactive X-chromosome in
mammals, and polytene bands in fly, we first established that the DNA in condensed chromatin had lesser
accessibility to restriction endonucleases used in Hi-C as compared to that in decondensed chromatin. The
observed bias was independent of known systematic biases, was not appropriately corrected by existing
computational methods, and needed an additional optimization step. We then repurposed this bias to identify
novel condensed domains outside LADs, which were bordered by insulators and were dynamically associated with
the polycomb mediated epigenetic and transcriptional states during development.

Conclusions: Our observations suggest that the corrected one-dimensional read counts of existing Hi-C datasets
can be reliably repurposed to study the gene-regulatory dynamics associated with chromatin condensation and
decondensation, and that the existing Hi-C datasets should be interpreted with cautions.

Keywords: Hi-C, 3D genome, Chromatin condensation, Lamina associated domains, CTCF

Background

The three-dimensional genome organization is tightly
linked with the regulation of essential genomic functions
like transcription, replication and genome integrity [1-5].
While the significance of genome organization has been
realized for decades, the comprehensive evidence emerged
somewhat recently through the advent of proximity
ligation based techniques like Chromosome Conformation
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Capture (3C), Circular-3C (4C), 3C-Carbon-Copy (5C)
and High-throughput 3C (Hi-C) [6-10]. It is recognized
that the eukaryotic genome is hierarchically organized into
self-interacting topologically associated domains (TADs),
which can have distinct chromatin states that are insulated
from neighbourhood through boundaries marked with
CCCTC-binding factor (CTCF), Cohesins, ZNF143 and
TOP2b factors [11-14]. The TADs are ancient genomic
features and are depleted in evolutionary breakpoints in-
side [15, 16]. It is proposed that chromatin extrudes
through the ring formed by the Cohesins until the chro-
matin encounters the CTCF insulator, a model known as
‘loop extrusion’ model [17-20]. CTCF binding is transi-
ently lost during pro-metaphase, which coincides with the
loss of TAD structures during M-phase [21-23].
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The development of mammary gland as a lactogenic tissue is a highly coordinated multistep process.
The epithelial cells of lactiferous tubules undergo profound changes during the developmental
window of puberty, pregnancy, and lactation. Several hormones including estrogen, progesterone,
glucocorticoids and prolactin act in concert, and orchestrate the development of mammary gland.
Understanding the gene regulatory networks that coordinate proliferation and differentiation of HC11
Mammary Epithelial stem-like Cells (MEC) under the influence of lactogenic hormones is critical for
elucidating the mechanism of lactogenesis in detail. In this study, we analyzed transcriptome profiles
of undifferentiated MEC (normal) and compared them with Murine Embryonic Stem Cells (ESC) using
next-generation mRNA sequencing. Further, we analyzed the transcriptome output during lactogenic
differentiation of MEC following treatment with glucocorticoids (primed state) and both glucocorticoids
and prolactin together (prolactin state). We established stage-specific gene regulatory networks in
ESC and MEC (normal, priming and prolactin states). We validated the top up-and downregulated
genes in each stage of differentiation of MEC by RT-PCR and found that they are comparable with that
of RNA-seq data. HC11 MEC display decreased expression of Pou5f1 and Sox2, which is crucial for the
differentiation of MEC, which otherwise ensure pluripotency to ESC. Cited4 is induced during priming
and is involved in milk secretion. MEC upon exposure to both glucocorticoids and prolactin undergo
terminal differentiation, which is associated with the expression of several genes, including Xbp1 and
Cbp that are required for cell growth and differentiation. Our study also identified differential expression
of transcription factors and epigenetic regulators in each stage of lactogenic differentiation. We also
analyzed the transcriptome data for the pathways that are selectively activated during lactogenic
differentiation. Further, we found that selective expression of chromatin modulators (Dnmt3!, Chd9) in
response to glucocorticoids suggests a highly coordinated stage-specific lactogenic differentiation of
MEC.

The events of cellular differentiation, which lead the transition of a primary cell into lineage-restricted pheno-
type, are accompanied by activation of specific gene regulatory networks instead of activation of a single or a few
genes"? The cell fate transitions experience a global transcriptional activation and repression and are regulated by
spatiotemporal expression of both transcription factors®= (TFs) and epigenetic regulators® (ERs). The transition
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Abstract

MECs differentiation.

Objectives: Understanding of transcriptional networks specifying HC11 murine mammary epithelial stem cell-like
cells (MEC) in comparison with embryonic stem cells (ESCs) and their rewiring, under the influence of glucocorticoids
(GC) and prolactin (PRL) hormones, is critical for elucidating the mechanism of lactogenesis. In this data note, we
provide RNA sequencing data from murine MECs and ESCs, MECs treated with steroid hormone alone and in com-
bination with PRL. This data could help in understanding temporal dynamics of mRNA transcription that impact the
process of lactogenesis associated with mammary gland development. Further integration of these data sets with
existing datasets of cells derived from various stages of mammary gland development and different types of breast
tumors, should pave the way for effective prognosis and to develop therapies for breast cancer.

Data description: We have generated RNA-sequencing data representing steady-state levels of mMRNAs from murine
ESCs, normal MECs (N), MECs primed (P) with hydrocortisone (HC) alone and in combination with PRL hormone by
using lllumina sequencing platform. We have generated ~ 58 million reads for ESCs with an average length of ~ 100
nt and an average 115 million good quality mapped reads with an average length of ~ 150 nt for different stages of

Keywords: Mammary epithelial cells, HC11 cells, Embryonic stem cells, Transcriptome, RNA sequencing, Cellular
differentiation, Glucocorticoid signaling, Prolactin signaling, Lactogenesis

Objective

HC11 cells are PRL responsive epithelial cell clone,
derived from the COMMAID cells and originated from
the mammary gland tissue of a pregnant BALB/c mouse
and are widely used model system to study the lactogenic
differentiation in vitro [1]. Undifferentiated state of MECs
is maintained in the presence of Insulin and epidermal
growth factor (EGF). They are stimulated to differenti-
ate by withdrawal of EGF and supplemented initially
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with insulin, GC and later in combination with PRL [2].
Glucocorticoids binds to cytosolic glucocorticoid recep-
tor (GR) and functions via genomic and non-genomic
pathways to accompany differential gene expression [3].
Further, PRL, a peptide hormone, upon binding to PRL
receptor (PRLr) on plasma membrane initiates cascade of
events which ultimately leads to the cytosolic dimeriza-
tion and nuclear internalization of Stat5a/b, to promote
differential expression of genes [4]. Dissecting the gene
regulatory networks that act in cohort and orchestrate
mammary epithelial cells differentiation under the influ-
ence of lactogenic hormones is critical for elucidating the
mechanism of lactogenesis in the context of mammary
gland development and differentiation. Previous studies
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