Rhenium- and Technetium-tricarbonyl Core-based Supramolecular Metallocavitands and Helicates

A Thesis Submitted for the Degree of DOCTOR OF PHILOSOPHY

By MAMINA BHOL

School of Chemistry
University Of Hyderabad
Hyderabad 500046
INDIA

JULY 2022

Dedicated to My FAMILY

CONTENTS

			Page No.
STATEMEN'	Т		I
DECLARAT	ION		II
CERTIFICA	TE		III
ACKNOWLI	EDGEM	ENT	\mathbf{V}
List of Abbre	viations	and Symbols	VII
SYNOPSIS			IX
Chapter 1	Intro	duction	
	1.1.	Supramolecular Chemistry	1
	1.2.	Metallosupramolecular Chemistry	2
	1.3.	Calixarenes and Metallacalixarenes	3
	1.4.	Molecular Helicates and Mesocates	5
	1.5.	Rhenium-based Metallamacrocycles	5
	1.6.	Tc(CO) ₃ core-based Metallamacrocycles	8
	1.7.	Molecular Recognition	9
	1.8.	Re(CO) ₃ core-based Metallacalix[3]arenes	10
	1.9.	Re(CO) ₃ core-based Spheroids	14
	1.10.	Re(CO) ₃ core-based homoleptic Metallacalix[4]arenes	15
	1.11.	Rhenium heteroleptic Dinuclear Metallacalix[4]arenes	17
	1.12.	Rhenium heteroleptic Tetranuclear Metallacalix[4]arenes	21
	1.13.	Re(CO) ₃ core-based Bismetallacalix[4]arenes	22
	1.14.	Re(CO) ₃ core-based Helicates and Mesocate	24
	1.15.	Tc(CO) ₃ core-based Cyclic Complex	26
	1.16.	Scope of The Thesis	27
	1 17	References	28

Chapter 2	Re(I)-based Irregular Pentagonal-shaped Metallocavitands: Self-Assembly and Molecular Recognition Studies				
	Abstr	·	36		
	2.1.	Introduction	37		
	2.2.	Experimental Section	37		
	2.3.	Results and Discussion	41		
	2.4.	Molecular Recognition Studies	56		
	2.5.	Conclusions	65		
	2.6.	References	65		
Chapter 3	Meta Studi		72		
	Abstr		72		
	3.1.	Introduction	73		
	3.2.	Experimental Section	74		
	3.3.	Results and Discussion	80		
	3.4.	Molecular Recognition Studies	137		
	3.5.	Conclusions	216		
	3.6.	References	217		
Chapter 4	Calix[4]arene-Analogous Technetium and Rhenium Core-based Supramolecules				
	Abstr	Abstract			
	4.1.	Introduction	226		
	4.2.	Experimental Section	227		
	4.3.	Results and Discussion	231		
	4.4.	Host-Guest Binding Studies	260		
	4.5.	Conclusions	275		
	4.6.	References	275		

Chapter 5	Self-Assembly and Photophysical Properties of Rheniumtricarbonyl-Based Helicates and Mesocates					
	Abstr	281				
	5.1.	Introduction	282			
	5.2.	Experimental Section	283			
	5.3.	Results and Discussion	287			
	5.4.	Photophysical Studies	316			
	5.5.	Conclusions	324			
	5.6.	References	325			
Chapter 6	Conclusion and Future Perspective					
	6.1. C	331				
	6.2. F	334				
	6.3. R	References	335			
Publications	and Pro	esentations	337			
Plagiarism r	eport		339			

STATEMENT

I hereby declare that the matter embodied in this thesis is the result of investigations carried out by me in the School of Chemistry, University of Hyderabad, Hyderabad, under the supervision of **Prof. M. Sathiyendiran**.

In keeping with the general practice of reporting scientific observations, due acknowledgments have been made wherever the work described is based on the findings of other investigators.

15 | 07 | 2022 Hyderabad JULY 2022

Mamina Bhol
(16CHPH14)

DECLARATION

I, Mamina Bhol, hereby declare that this thesis entitled "Rhenium- and Technetium-tricarbonyl Core-based Supramolecular Metallocavitands and Helicates" submitted by me under the guidance and supervision of Prof. M. Sathiyendiran, is a bonafide research work which is also free from plagiarism. I also declare that it has not been submitted previously in part or in full to this university or any other university or institution for the award of any degree or diploma. I hereby agree that my thesis can be deposited in Shodhganga/INFLIBNET.

A report on plagiarism statistics from the University Librarian is enclosed.

Date: 15-07-2022

Name: Mamina Bhol

Reg. No.: 16CHPH14

Mamina Ishal Signature of the student

M. Sattly liva.

Signature of the Supervisor

Dr. M.Sathiyendiran Professor School of Chemistry University of Hyderabad Hyderabad - 500 046, India.

UNIVERSITY OF HYDERABAD

Prof. M. Sathiyendiran

SCHOOL OF CHEMISTRY HYDERABAD-500046, INDIA

Phone: +91-40-2313-4811 (Office), 2313-4911 (Lab) E-mail: msathi@uohyd.ac.in

CERTIFICATE

Supramolecular Metallocavitands and Helicates" submitted by Mamina Bhol bearing registration number 16CHPH14 in partial fulfillment of the requirements for the award of the Doctor of Philosophy (Ph. D.) is a bonafide work carried out by her under my supervision and guidance in the School of Chemistry, University of Hyderabad. This thesis is free from plagiarism and has not been submitted previously in part or in full to this or any other University or Institution for the award of any degree or diploma. Further, the student has five publications before submission of the thesis for adjudication and has produced shreds of evidence for the same in the form of reprints.

Parts of this thesis have been published as the following articles:

- 1. **M. Bhol**, B. Shankar, M. Sathiyendiran, *Dalton Trans.* **2018**, *47*, 4494-4500 (*Chapter 2*).
- 2. **M. Bhol**, G. Claude, M. Roca Jungfer, U. Abram, M. Sathiyendiran, *Inorg. Chem.* **2022**, *61*, 5173-5177 (*Chapter 4*).
- 3. **M. Bhol**, B. Shankar, M. Sathiyendiran, *Inorg. Chem.* **2022**, DOI: 10.1021/acs.inorgchem.2c02061 (*Chapter 3*).

She has also made presentations in the following conferences:

- 1. **Poster:** *NMSTC-2017: National Meeting of Synthetic and Theoretical Chemists*, University of Hyderabad, Telangana, India; 2017 Oct. 13-14.
- 2. **Poster:** *ICCCS-2017:* 8th International Collaborative & Cooperative Chemistry Symposium, University of Hyderabad, Telangana, India; 2017 Dec 18-19.
- 3. **Poster:** *CHEMFEST-2018: 15th Annual in- House Symposium*, University of Hyderabad, Telangana, India; 2018 Mar. 9-10 (**Best Poster Award**).
- 4. **Poster:** *CHEMFEST-2019: 16th Annual in- House Symposium*, University of Hyderabad, Telangana, India; 2019 Feb. 22-23 (**Best Poster Award**).
- 5. **Oral:** ACST-2019: International Conference on Advances in Chemical Sciences and Technologies, National Institute of Technology, Warangal, India; 2019 Sep. 23-25.

- 6. **Poster**: MTIC 2019: International Conference on Modern Trends In Inorganic Chemistry-XVIII, Indian Institute of Technology Guwahati, Assam, India; 2019 Dec.11-14.
- 7. **Poster:** CHEMFEST-2020: 17th Annual in-House Symposium, University of Hyderabad, Telangana, India; 2020 Feb. 27-28.
- 8. Oral: CHEMFEST-2020: 19th Annual in- House Symposium, University of Hyderabad, Telangana, India; 2022 Apr. 22-23 (Best Oral Presentation Award by RSC).

Further the student has passed the following courses towards the fulfilment of coursework requirement for Ph. D.

Sl. No.	Course No.	Title of the Course	No. of Credits	Result
1.	CY801	Research Proposal	3	Pass
2.	CY805	Instrumental Methods-A	3	Pass
3.	CY806	Instrumental Methods-B	3	Pass
4.	CY451	Main Group & Inner Transition Elements	3	Pass

Hyderabad

JULY 2022

M. Satly doran.

Prof. M. Sathiyendiran

(Thesis Supervisor)

Achini Mangre

Dean

School of Chemistry

Dean SCHOOL OF CHEMISTRY University of Hyderabad Hyderabad-500 046

University of Hyderabad

Hyderabad- 500046, INDIA

Dr. M.Sathiyendiran
Professor
School of Chemistry
University of Hyderabad
Hyderabad - 500 046, India.

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my Ph.D. supervisor Prof. M. Sathiyendiran for his valuable guidance, helpful suggestions, and constructive criticisms during my Ph.D. research work.

I wish to extend my gratitude to my doctoral committee members, Prof. S. Pal and Prof. V. Bhaskar, for their insightful suggestions and encouragement.

I want to thank present and former deans, School of Chemistry, University of Hyderabad, and all the faculty members of the school of chemistry for their help and support on various occasions.

My special thanks to Prof. Ulrich Abram (Institute for Chemistry and Biochemistry, Freie Universität Berlin) for giving me an excellent opportunity to work with him on ⁹⁹Tc-chemistry. I am highly grateful to him for his valuable guidance, immense support, and great care during my research stay in Berlin.

I want to acknowledge University Grant Commission, Delhi (National Fellowship), and Erasmus+ Exchange Program, Berlin (Erasmus+ Grant) for financial support during my Ph.D. research tenure.

I want to extend my thanks to all non-teaching members of the school of chemistry, especially Mr. Abram for his help in official work (School Office), Mr. Durgesh and Mr. Mahender (NMR, School of Chemistry), Mr. A.V. R. Kumar, and Mr. Mahesh Rathod (SC-XRD, School of Chemistry), Mrs. Asia Parwez and Dr. Manasi Dalai (HRMS, School of Chemistry), and Mr. Anand (IR, School of Chemistry), for their keen help, assistance, and cooperation with instruments during my research work.

I am very much glad to thank my teachers of undergraduate and postgraduate programs who have sown the seeds of chemistry in my mind.

I would also like to thank all my lab seniors, Dr. Bhaskaran Shankar, Dr. P. Rajakannu, Dr. C. Kiran Kumar, Dr. Sruthi Bayya, and Dr. Amritanjali Tiwari, for their constructive comments and helpful discussion. I am very grateful to all my colleagues, Soumya, Isha, Moon, Upasana, Reema, and Vengadesh, for their help and for creating a pleasant research environment and making it a memorable and enjoyable journey. I extend my thanks to all the project students who worked with me, Bhuvana, Neha, Diya, Rasagna, Saranya, and Nitha.

I am grateful to everyone from Prof. Abrams's group for a great time during my research stay at FUB, especially to Dr. Max Roca Jungfer, Guilhem Claude, Bruna, Moritz Ernst, and Jonas Genz for the great and friendly working atmosphere. I am also grateful to Dr. Adelheid Hagenbach for her helpfulness, loving gesture, and support, and Ms. Jacqueline Grewe and Mr. Falk Wenzlaff for their help with the technical stuff.

I express my most profound appreciation to Dr. Majhi Shankar, Dr. Anil Kumar Gunnam, Dr. Rajendra Kumar Mallick, Dr. N. Tanmaya Kumar, Dr. Arijit Saha, Ms. Suchismita Subhadarshini, Ms. Sameeta Sahoo, Ms. Sipra Sucharita Sahoo, Ms. Mou Mondal, Hema, Gourachand, Suman, Smrutipragyan, Pradipta, Uma, Sailendra, Satya, Chiru, Baikuntha, Biswa, Saritha, Priya, Soumya, Smrutilipi, Sachi, Abhipsa, Sabnam, Manas, Aradhana, Arijit and Manoj for being a great bunch of people, and providing a friendly and homely atmosphere during my stay in the campus. Especially I would like to thank Dr. Anil Kumar Gunnam and Dr. N Tanmaya Kumar, who always had an open ear for my worries and guided me through my Ph.D. studies.

I thank Dr. K. Sathish Kumar, Dr. Sudhir Mittapalli, Dr. M. Sateesh, Dr. Suryanarayana Allu, Dr. R. Amaleswari, Dr. N. Senthilnathan, Jyotsna, Pritam, Irfan, Nilanjan, Suman, Soutric, Akram, Sarada, Mr. Alim, and Shanti for their help and support on several occasions.

Special warmest thanks to Prachi, Jubu, Thoi, Jay, Bandita, Ilu, Shubham, Debjyoti, Kamala, and Smruti for always being there for me through thick and thin. This endeavor would not have been possible without you people's unconditional love, generosity, and immense support. I am incredibly fortunate to have you people in my life.

Most importantly, I thank my family members, whose continuous care, strong emotional support, and prayer encouraged me throughout my academic research and daily life.

This dissertation is the conclusion of an incredible journey, full of beautiful and difficult moments which made me grow as a strong person besides as a researcher. Finally, I thank God Almighty for his grace and blessings.

Mamina Bhol
JULY 2022

List of abbreviations and symbols

SCCs Supramolecular coordination complexes

fac facial

Re Rhenium

Tc Technetium

2D Two Dimensional

3D Three Dimensional

DMSO Dimethyl Sulfoxide

THF Tetrahydrofuran

DMF N,N-Dimethylformamide

DCM Dichloromethane

CHCl₃ Chloroform

CDCl₃ Deuterated Chloroform

CD₂Cl₂ Deuterated Dichloromethane

DMSO-d₆ Deuterated Dimethyl Sulphoxide

MLCT Metal-to-Ligand Charge Transfer

LLCT Ligand-to-Ligand Charge Transfer

ILCT Intra-Ligand Charge Transfer

UV-Vis Ultraviolet-Visible

ATR-IR Attenuated Total Reflectance Infrared spectroscopy

FT-IR Fourier-transform Infrared Spectroscopy

NMR Nuclear Magnetic Resonance

DOSY Diffusion Ordered Spectroscopy

ESI- HR-MS Electron Spray Ionization High Resolution Mass Spectrometry

SCXRD Single Crystal X-Ray Diffraction

DNA Deoxyribonucleic acid

Ppm Parts per million

Å Angstrom

hr Hour

m/z Mass to charge ratio

mg Milligram

mL Millilitre

nm Nanometer

δ Chemical shift

Hz Hertz

MHz Megahertz

 λ_{abs} Absorption wavelength

 $\lambda_{max} \hspace{1.5cm} Absorption \ maxima$

 λ_{exc} Excitation wavelength

 $\lambda_{em} \hspace{1.5cm} Emission \ wavelength$

J Coupling constant

K Binding constant

KOH Potassium hydroxide

NaH Sodium hydride

AcOH Acetic acid

HBr Hydrobromic acid

NaCl Sodium Chloride

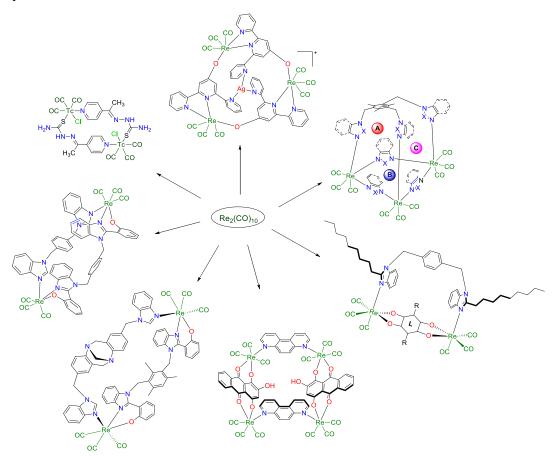
Na₂SO₄ Sodium Sulphate

KBr Potassium bromide

H₂-dhbq 2,5-dihydroxy-1,4-benzoquinone

H₂-dhaq 1,4-dihydroxy-9,10-anthraquinone

H₂-dhnq 6,11-dihydroxy-5,12-naphthacenedione


H₂-CA Chloranilic acid

SYNOPSIS

The thesis entitled "Rhenium- and Technetium-tricarbonyl Core-based Supramolecular Metallocavitands and Helicates" consists of six chapters.

Chapter 1: Introduction

Chapter 1 begins with the general introduction of supramolecular chemistry and its two main branches, i.e., host-guest chemistry and self-assembly. Further, the developments and applications of metallosupramolecular chemistry, including metallacalixarene and metallo- helicate/ mesocates, are discussed with a very short classification of calixarenes, helicates, and mesocates. The chapter highlights the rhenium and technetium-based metallocycles, their basic design principle, and mainly literature survey and discussion on various aspects of the chemistry of $Re(CO)_3$ core-based metallacalix[n]arenes (n = 3, 4), metallo-helicates, meso-helicates, and $Tc(CO)_3$ core based metallocycles.

Scheme 1. Various known examples of M(I) core-based (M = Re/Tc) metallacycles.

Chapter 2: Re(I)-based Irregular Pentagonal-shaped Metallocavitands: Self-Assembly and Molecular Recognition Studies.

This chapter describes the design and synthesis of three new neutral ditopic flexible N-donor ligands ($L^n = (L^1 = bis(4-(naphtho[2,3-d]imidazol-1-ylmethyl)phenyl)methane, <math>L^2 = bis(4-(naphtho[2,3-d]imidazol-1-ylmethyl)phenyl)methane, L^2 = bis(4$ $L^3 =$ (benzimidazol-1-ylmethyl)phenyl)methane and bis(4-(2-nonyl benzimidazol-1ylmethyl)phenyl)methane)) possessing bis(4-methylphenyl)methane spacer with multi-arene fused imidazole donor unit. The Lⁿ were further utilized to develop metallocavitands analogous of calix[5]arene framework with larger cavity. The metallocavitands 1-4 were assembled from Re₂(CO)₁₀, rigid bis-chelating donor (H₂-dhaq = 1,4-dihydroxy-9,10-anthraquinone and H₂-CA = chloranilic acid) and Lⁿ via solvothermal approach. The ligands and metallocavitands were characterized by analytical and spectroscopic methods and further 1 and 4 were confirmed by single crystal X-ray diffraction analysis which reveals that a toluene molecule is residing in the hydrophobic cavity. The Lⁿ and 1-4 are emissive at room temperature. The internal cavity of the metallocavitand acts as host for aromatic guest molecules. The host-guest interaction properties of 1 with various nitroaromatic and polyaromatic hydrocarbons were studied by emission spectroscopic method. The study provides a way to prepare metallocavitands with a tunable cavity and functional group via simple one-pot method.

Scheme 2. Synthesis of irregular pentagonal-shaped metallocavitands.

Chapter 3: Rhenium(I) Based Heteroleptic Pentagonal Toroid-Shaped Metallocavitands: Self-Assembly and Molecular Recognition Studies.

In chapter 3, a family of neutral, heteroleptic, dinuclear M₂LL'-type pentagonal toroid-shaped metallomacrocycles (**1–8**) were synthesized using Re₂(CO)₁₀, rigid bis-chelating ligands and flexible ditopic N donor ligands in a one-pot solvothermal self-assembly approach. The ligands and the metallomacrocycles were characterized using ATR-IR, ESI-MS, NMR, UV-Vis, and emission spectroscopic methods. The molecular structures of **1**, **2**, **4**, **6**, and **7** were confirmed by X-ray diffraction study. The solid-state structures of the supramolecules reveal that they can accommodate acetone, mesitylene, toluene and chlorobenzene like guest molecules inside their internal cavity. The photo-physical properties of the ligands and the metallomacrocycles were studied. The host-guest recognition properties of metallocavitands **1**, **2**, **7**, and **8** as a model host with phenol- and nitrobenzene-derivatives as guest molecules were studied by emission spectroscopic methods.

Scheme 3. Synthesis of pentagonal toroid -shaped metallocavitands.

Chapter 4: Calix[4]arene-Analogous Technetium and Rhenium Core-based Supramolecules

In chapter 4, two new type of neutral flexible bidentate nitrogen donor ligands (L^1 and L^2) consisting of four arene units covalently joined *via* methylene units with bismesitylene spacer were designed and synthesized. The L^n were further utilized to self-assemble calix[4]arene-analogous technetium supramolecules (1-2) using (NBu₄)[Tc₂(μ -Cl)₃(CO)₆]. The neutral homoleptic technetium macrocycles adopt a partial cone/cone-shaped conformation in the solid-state. These supramolecules are the first example of fac-[Tc(CO)₃]⁺ core-based metallacalix[4]arenes and second example of fac-[Tc(CO)₃]⁺ core-based metallomacrocycles. Structurally similar fac-[Re(CO)₃]⁺ core-based macrocycles (3-4) were also prepared using [Re(CO)₅X] (where X = Cl or Br) and L^1 or L^2 . The products were characterized spectroscopically and by X-ray analysis. The solid-state structures of the supramolecules reveal that these molecules adopt bowl-shaped structures. The molecular recognition studies of rhenium macrocycles were studied using emission spectroscopic methods.

Scheme 4. Synthesis of calix[4]arene-analogous fac-M(CO)₃ (M = Tc/ Re) core-based supramolecules.

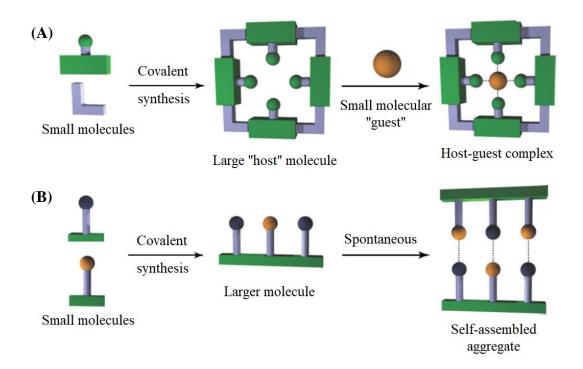
Chapter 5: Self-Assembly and Photophysical Properties of Rheniumtricarbonyl-Based Helicates and Mesocates

In Chapter 5, five rhenium tricarbonyl core-based supramolecular coordination complexes (SCCs) (1–5) were assembled using Re₂(CO)₁₀, rigid/flexible bis-chelating ligands (L¹, L²), and flexible ditopic N donor ligands (L³, L⁴, L⁵, L⁶) via a one-pot approach. The metallosupramolecules were characterized spectroscopically and by X-ray analysis. The supramolecular structures of the complexes closely remain in the solution based on the ¹H NMR and ESI-mass analysis. Single-crystal X-ray analysis reveals that the dinuclear SCCs adopt heteroleptic double-stranded helical and mesocate architectures in the solid-state. The photophysical properties of the complexes were studied both in solution and solid state. All the supramolecules display emissions both in solution and solid state.

Scheme 5. Synthesis of $Re(CO)_3$ core-based Helicates (1-2) and Mesocates (3-5).

Chapter 6: Conclusion and Future Perspective

The thesis is summarized, and the possible future direction of the work is also discussed in this chapter. A series of new neutral, flexible bidentate nitrogen donor ligands with diarylmethane spacers were designed and synthesized. Further the nitrogen donor ligands were utilized to construct various sizes and shapes of $[fac\text{-M(CO)}_3]^+$ (M = Re/Tc) core-based supramolecular architectures, including rhenium— or technetium-based mononuclear homoleptic metallacalix[4]arenes, dinuclear rhenium heteroleptic metallacalix[5]arenes, and dinuclear rhenium heterostranded helicates and mesohelicates. Host-guest studies were carried out for rhenium-based metallacalix[n]arenes (n = 4, 5) by using emission spectroscopy.


Chapter 1

Introduction

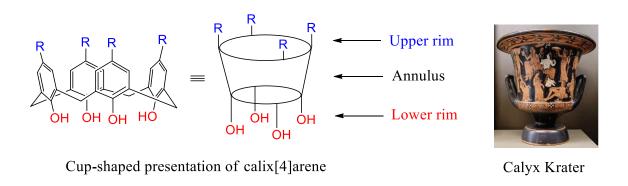
1.1. Supramolecular chemistry

The field of supramolecular chemistry mainly focuses on the chemistry aspects of molecular assemblies and on intermolecular bonds. Jean-Marie Lehn defines supramolecular chemistry as the "Chemistry beyond the molecules" as it deals with intermolecular interactions. Supramolecular chemistry can also be called as "Lego block chemistry", where each molecular building block can be compared to a lego brick. Various intermolecular interactions such as hydrogen bonding, metal coordination, $\pi \cdots \pi$ interaction, Van der Waals forces, electrostatic and hydrophobic or solvatophilic interactions are responsible for holding these discrete molecular units together. Lego block chemistry aspects of molecular molecular support of the chemistry aspects of molecular chemistry aspects of molecular chemistry as the chemistry aspects of molecular chemistry as the chemistry as the chemistry aspects of molecular chemistry as the ch

Supramolecular chemistry is mainly divided into two main categories, i.e., host-guest chemistry and self-assembly.^{1,3} Host-guest chemistry involves the study of large host molecules having a convergent binding site, capable of encapsulating small guest molecules with divergent binding sites through non-covalent interactions and best regarded as lock and key principle given by Emili Fischer in 1894. ³⁻⁵ In host- guest chemistry both should have mutual spatially and electronically complementary binding sites to form a supramolecules like a perfect fitting pieces of jigsaw puzzle.⁴ Lehn and co-workers first introduced the concept of "self-assembly" which describes the spontaneous and reversible association of two or more units to make highly ordered non-covalently bound aggregate. ^{1a, 3, 6} Self-assembly is the main synthetic method for the design of metallo-supramolecular complexes, where the predesigned ligands and metal precursor units organize themselves into a stable, structurally well-defined aggregate. ^{7a}

Figure 1.1. Supramolecular systems developed from molecular building blocks (binding sites are represented by circles); (A) host–guest complex (B) self-assembly between complementary molecules.³

1.2. Metallosupramolecular chemistry


Supramolecular assemblies, which involve the interaction between the metal ions and the predesigned organic ligand strands, are termed as metallo-supramolecular chemistry. The appropriate choice of metal source and predesigned ligand plays an important role in tuning the shape and size of metallamacrocycles.⁸ The metal ion's coordination preference, shape, and bonding mode of the ligands control the self-assembly of metallacycles. 8 The lability and reversibility of the metal-ligand coordination bond are crucial elements for the assembly of supramolecular complexes due to the possibility of formation of both kinetic and thermodynamic products. Some well-known examples of discrete metallo-supramolecular metallacycles, 8-9 helicates, 10-11 metallocavitands, 8c assemblies include polygon/polyhedra, 8f,12,13 tetrahedra, 8e,13 cages, 8e,14 grids, 15 ladder/rack 15b,c catenane, 16 rotaxane, 16 knot, 16b,17 links, 16c,17 and various other architectures. The metallacycles offer the benefits of the properties of metal-ligand bonds along with photophysical, redox generated features and photochemical as a result of the metal-ligand orbital overlap. Supramolecular metallacycles can be assembled by using several synthetic approaches, including orthogonal bonding, directional-bonding, symmetry interactions, weak-link, and rigidity modulated

approaches. ^{8e,14a,d,15c} Out of all the class of discrete metallo-supramolecules calixarene shaped metallocavitands and supramolecular helicates has gained special attention in the supramolecular chemistry field due to their potential application in molecular recognition including DNA recognition, selective reactivity, catalysis, bioimaging, selective sensors for biological analytes, anticancer agents and photo-sensitizers. ^{8b-e, 9,11}

1.3. Calixarenes and metallacalixarenes

David Gutsche and co-workers first introduced the word calixarene in 1975. ¹⁸ Calix[n] arenes are the organic macrocycles or cyclic oligomers obtained spontaneously via phenol-formaldehyde condensation under alkaline conditions. ¹⁸⁻¹⁹ The word calix comes from the resemblance of the shape of calyx krater vases of ancient Greece, and the term arene refers to the repeating aryl groups. ¹⁸ Calixarenes possess a hydrophobic wide upper rim and a hydrophilic narrow lower rim, and a central annulus (cavity) in their molecular architectures.

Figure 1.2. Various types of calixarenes.

Figure 1.3. Structure and pictorial presentation of the shape of calix[4]arene.

Calixarenes have hydrophobic cavities that can accommodate ions or smaller guest molecules and fit in to the class of cavitands recognized in host-guest chemistry. The easy rotation of –CH₂–Ar–CH₂– leads to have four limiting calixarene conformations, including cone, partial cone, 1,2-alternate and 1,3-alternate.¹⁸

Figure 1.4. Various conformations of calix[4]arene.

Bernhard Lippert first coined the name "metallacalixarenes" in 1992, and compared the structures of self-assembled palladium and platinum discrete organic macrocycles derived from the nucleobases, theophylline and, guanine to the classical calixarene structure. Thus, metallacalixarenes can defined as a class of metallacycles whose structures are similar to classic calixarene, where metal core replace the –CH₂– groups and phenol rings are replaced by aromatic units, mimicking the calixarene walls. ²⁰

Figure 1.5. Schematic representation of the structural resemblance between a classical calix[4]arene (left) and a metallacalix[4]arene (right).

1.4. Molecular helicates and mesocates

Jean-Marie Lehn and co-workers first introduced the term "helicate" in 1987 to describe polynuclear copper double-stranded helical complexes containing 2,2'-bipyridine binding groups joined through bridging motifs as ligand strands. ^{10a} The term helicate is coined from the greek word helix (spiral, twist or winding) with suffix "-ate" which refer to the complexes between metal ions and pre-organized ligand strands. 10d The supramolecular helicates are the discrete complexes where ligand strands are wrapped around the metal-metal helical axis in a helical fashion and ligands adopt a more linear "S" type conformation. 10,11a,21 The "C" type conformation of the ligands in complexes leads to meso-helicate structure, where ligand strands are arranged in a side-by-side manner with respect to the helical axis. 11a,21 Spacers are responsible for the size of cavity and the chirality of the helicate. Helicate architectures can be categorized by defining structural nature of helicate.²¹ On the basis of number of metal ions; helicates can be mononuclear, dinuclear or trinucluear. 10d Number of ligand strands defines the double, triple or quadruple stranded helicates. 10b-e In homostranded helicates the ligand strands are identical whereas in heterostranded helicates the strands are different. 10d The binding domains on the ligand strands can be same or different which give on to the formation of homotopic or heterotopic helicates. 10d The parallel or antiparallel alignment of heterotopic strands leads to head-to-head or head-to-tail manner, respectively. 10d When the coordination sphere of the metal ion is satisfied by the binding units of the ligand strands, they are referred as saturated helicates whereas they are described as unsaturated helicates when supplementary ligands are coordinated to the metal centres to enable their steriochemical requirments. 10d

1.5. Rhenium-based metallamacrocycles

Among several synthetic approaches involving various metal precursors, the *fac*-Re(CO)₃ core based metallamacrocycles exhibit a distinctive class of stable, functional and robust metal-based cyclic architectures to form neutral 2D and 3D metallacycles.²²⁻²⁴ We are mainly interested in the *fac*-Re(CO)₃ core based neutral metallamacrocycles because these SCCs display potential applications in molecular recognition, as photoluminescence quenching probes, cavity controlled catalysis, anticancer agents, photo- and electro-chemical sensing.²²⁻²⁴

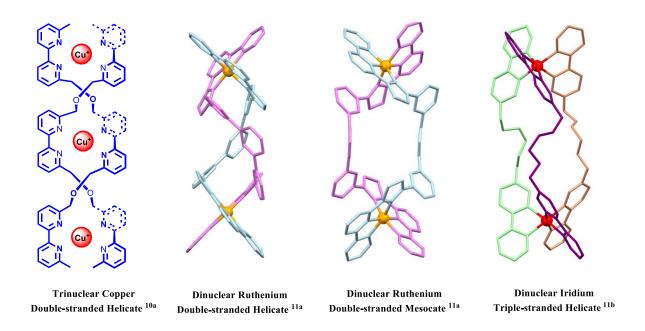
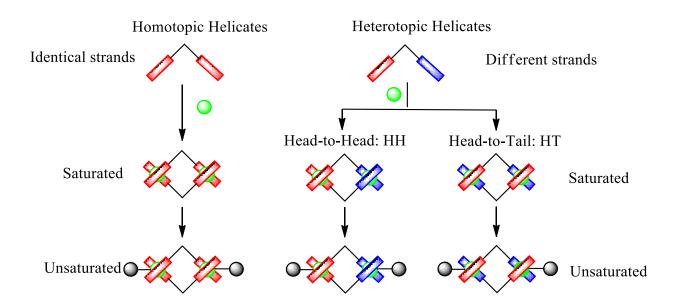
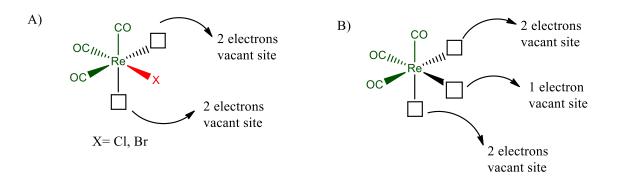


Figure 1.6. Various examples of helicates and mesocate.




Figure 1.7. Classification of self-assembled helicates.

The *fac*-Re(CO)₃ fragment is kinetically inert and biocompatible which makes it as a very significant unit in medicinal field. Due to virtually identical chemical and physical properties of Re and Tc (Atomic radii: Re- 1.37 Å; Tc- 1.36 Å, lipophilicity, ionic mobility, and formal charge), advances in the *fac*-Re(CO)₃ based chemistry might be exploited for the designing and development of new *fac*-^{99m}Tc(CO)₃ core based radiopharmaceuticals as diagnostic and therapeutic agents.²⁵ Known examples of different shapes of *fac*-Re(CO)₃ core based cyclic supramolecular architectures are (M = Re(I); M' = other metal ions) mononuclear-ML, dinuclear-MM'L₂, M₂LL', M₂L₂; trinuclear- M₃L₃, M₃L₃L', M₃M'L₃; tetranuclear squares-M₄L, M₄L₄, M₄LL'₂; rectangles-M₄L₂L'₂, M₄L₂L'₄; bowls-M₄L₂L'₂; gondolas-M₄L₂L'₂; calixarene-M₂LL'; bicycles-M₄L₂L', M₆L₂L'₃; spheroids-M₆LL'₆; wheel-M₆L₂L'₆; hexanuclear prisms- M₆L₂L'₆, M₆L₂L'₃; and octanuclear prisms-M₈L₂L'₈, M₈L₂L'₄.

1.5.1. General synthetic methods for rhenium-based metallamacrocycles

Rhenium carbonyl metal precursors such as Re₂(CO)₁₀, Re(CO)₅OTf, Re(CO)₅Br, Re(CO)₅Cl, and [Re(CO)₃(dmso-O)₃](CF₃SO₃) are mostly used to synthesize various fac-Re(CO)₃ core based metallacycles along with organic ligand strands. ²²⁻²⁴ Two dimensional rhenium metallacycles can be synthesized by using the metal precursors such as Re(CO)₅OTf, Re(CO)₅Br, and Re(CO)₅Cl, which provides the ditopic metal-acceptor fac- $[Re(CO)_3X]$ (X= Br/Cl) core with cis bis-coordinating vacant sites that can assist two neutral organic donors. The dinuclear Re₂(CO)₁₀ metal precursor provides tritopic metal acceptor fac-Re(CO)₃ core having three vacant sites along with an angle of 90°. Neutral 3D metallacycles can be self-assembled by combining fac-Re(CO)₃ core and suitable ditopic or tritopic neutral ligands with two electron donor along with a three electron donor bischelating anionic units. The organic ligand strands used to construct rhenium metallacycles are mainly nitrogen, phosphorous donors and other ligands such as thiols, alcohols, selenols and anionic organic bis-chelating motifs. The heteroleptic or homoleptic metallacycles can be achieved by the appropriate choice of nitrogen donors with/without ancillary ligands and rhenium metal precursors. Further these supramolecules can be obtained by one-step or twostep or by multi-step approaches.

Figure 1.8. Various rheniumcarbonyl core-based starting materials used for the construction of *fac*-[Re(CO)₃] core-based SCCs.

Figure 1.9. Different types of vacant coordination sites available on fac-Re(CO)₃ core.

1.6. Technetium-based metallamacrocycles

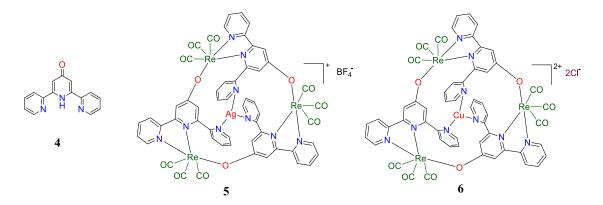
The design and synthesis of stable and kinetically inert fac-[M(CO)₃]⁺ (M = 99m Tc/ $^{186/188}$ Re) core-based complexes have been gaining continuous research interest for the development of new radiopharmaceuticals as diagnostic and therapeutic agents. $^{25-26}$ 99m Tc is still the workhorse of nuclear diagnostics due to its ideal nuclear decay properties ($t_{1/2} = 6.02$ h, pure γ emitter, E γ = 140 keV, 89%), whereas the beta-emitting rhenium nuclides 188 Re ($t_{1/2} = 17$ h, E $_{\beta} = 2.12$ MeV) and 186 Re ($t_{1/2} = 89.3$ h, E $_{\beta} = 1.07$ MeV) possess potential for therapy. 25 Isostructural technetium and rhenium complexes are good candidates for nuclear medical theranostics. The known synthetic approaches for making fac-[Re(CO)₃]⁺ core-based discrete supramolecules can be applied to create structurally analogous fac-[Tc(CO)₃]⁺ core-based supramolecules. Technetium carbonyl metal precursors such as (NBu₄)[Tc₂(μ -Cl)₃ (CO)₆], (NEt₄)₂[TcCl₃(CO)₃], and [Tc(CO)₃(H₂O)₃]⁺ are mostly used to synthesize various

fac-Tc(CO)₃ core-based complexes along with organic ligands.²⁵⁻²⁷ The synthesis of fac-[Tc(CO)₃]⁺ core-based macrocycles may result in a new class of supramolecules that may find potential utility in the medicinal fields due to the combined properties of the technetium(I) tricarbonyl core and discrete 2D/3D supramolecular structures.

Figure 1.10. Various technetium carbonyl core-based starting materials used for the construction of fac- $[Tc(CO)_3]^+$ core-based complexes.

1.7. Molecular Recognition

One of the utmost important achievements of supramolecular chemistry is the design and synthesis of molecular architectures which can encapsulate and recognize guest molecules selectively and detect signals for the presence of specific guest molecules. Various non-covalent interactions like van der Waals interactions, hydrogen-bonding, and electrostatic interactions are involved and govern the ability of supramolecular complexes to act as a host for molecular recognition. Metallo-supramolecules are of great interest due to their ease of synthesis from simple complementary units. In particular, *fac*-Re(CO)₃ metal core-based metallacycles have been proved to be potential hosts for various guest molecules, including, cations, anions, and aromatic molecules, where the right choice of ligand motifs can easily tune the dimension of the internal cavity. Potential applications of supramolecular coordination complexes in molecular recognition have encouraged the design and synthesis of molecules that can be used therapeutically by interacting with biological systems as anticancer drugs.


The following sections cover the literature survey and discussion on various aspects of the chemistry of $Re(CO)_3$ core-based metallacalix[n]arenes (n = 3, 4), helicates, and mesohelicates and $Tc(CO)_3$ core-based cyclic systems.

1.8. Re(CO)₃ core-based metallacalix[3]arenes

Few rheniumtricarbonyl-based supramolecules with calix[3]arene shaped structures are known. These molecules have hydrophobic cavity suitable to accommodate neutral molecules and ions. The mononuclear complex *fac*-[ReBr(C₇H₄N₃O₂)(CO)₃][NEt]₄ (1), which was obtained from [ReBr₃(CO)₃][NEt₄]₂, 3-hydroxy-1,2,3-benzotriazine-4(3H)-one (2), and KOH in methanol.²⁸ This mononuclear complex (1) transformed to cyclic metallacalix[3]arene (3) by abstraction of coordinated bromide and counter cation by using AgBr₄. This ionic trirhenium metallacalix[3]arene acts as host for boron tetrabromide ion.²⁸

Figure 1.11. Synthesis of ionic trirhenium metallacalix[3]arene.

The reaction of bispyridylpyridone (4) with $[Re(CO)_5X]$ (X = Br, Cl) resulted in calix[3]arene analogous trinuclear rhenium metallacycles (5 and 6) which acts as a molecular vessel. ²⁹ The pyridyl pendants are coordinated to a silver ion and form a propeller-shaped stopper to the molecular vessel. Upon irradiation at 405 nm, the Ag ion detaches from the system and the resulting neutral host-system is useful for silver ions transport through cell membrane. On cupper binding this luminescent vessel suggests that it can be a potential as PET imaging agents/biomedical fluorescence.

Figure 1.12. Trinuclear rhenium metallacalix[3]arenes.

Pyrazolonaterhenium(I) complexes were synthesised by treating $[ReX(CO)_5]$ (X = Cl, Br), with thiosemicarbazones ligands (7 and 8) obtained from β-keto esters in refluxing toluene which resulted in the cyclization of the ligand to give an unexcepted homoleptic **10**).³⁰ (9 and Another example metallacalix[3]arenes of trinuclear rhenium metallacalix[3]arene (11) were self-assembled from the one pot reflux reaction of $[Re(CO)_5X]$ (X = Cl, Br), triethylamine and, 2-pyridyltetrazolate (12) in toluene. They adopt partial cone conformations and possess good luminescent properties and showed reversible three electron oxidation.³¹

Figure 1.13. Thiosemicarbazones and 2-pyridyltetrazolate ligand based trinuclear rhenium metallacalix[3]arenes.

It is well known that the combination of imidazole (H-L) and Cu(I) or Pd(II) ions provide cyclic trinuclear M_3L_3 metallacycles. The neutral rheniumtetracarbonyl-based trinuclear metallacalix[3]arene (13) was obtained from $Re_2(CO)_{10}$ and 1,1-carbonyldiimidazole ligand (14).³² The complex adopts calix-shaped structure and has two recognition units. The wide hydrophobic cavity can accommodate spherical shaped guest molecule. The other recognition unit is exocyclic receptor site provided by the lower rim of the metallacalix[3]arene where three imidazolate motifs deliver three set of *exo* C-H bonds that act as hydrogen-bond donors to the anions.

$$Re_{2}(CO)_{10} + N N OC OC OC Re-CO$$

$$OC N N CO$$

$$OC N N CO$$

$$OC N N CO$$

$$OC N N N CO$$

Figure 1.14. Synthesis of Re(CO)₄ core-based trinuclear metallacalix[3]arene.

Capped metallacalix[3]arenes (15-19) with additional recognition unit were obtained by combining Re₂(CO)₁₀ and imidazole (20) or benzimidazole (21) or benzotriazole (22) with flexible tritopic ligands [1,3,5-tris(imidazol-1-ylmethyl)-2,4,6-trimethylbenzene (23), , 1,3,5-tris(benzimidazol-1-ylmethyl)-2,4,6-trimethylbenzene (24), 1,3,5-tris(benzimidazol-1-ylmethyl)- benzene (25)]. These metallamacrocycles contain two types of exocyclic cavity (26 and 27) and one type of endocyclic cavity (28) .The exocyclic receptor site (26) provided by the lower rim of the metallacalix[3]arenes where three imidazolate motifs deliver three set of *exo* C-H bonds that act as hydrogen-bond donors to the anions.

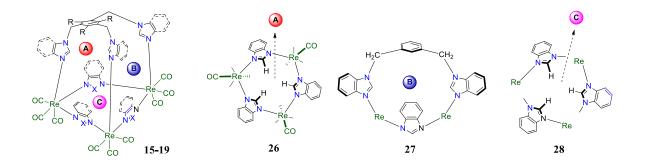
Figure 1.15. Synthesis of rhenium-based M₃L₃L'-type metallacycles.

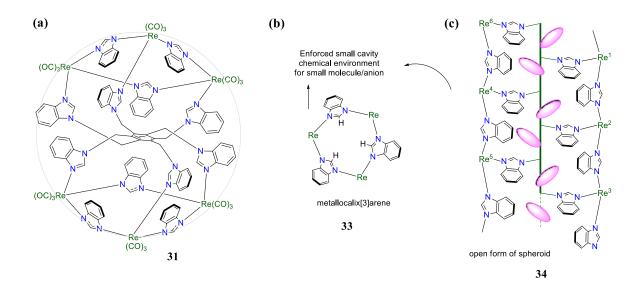
23

Coordination of the flexible neutral tripodal nitrogen donor ligand governs the arrangement of three benzimidazolium units in such a fashion that three set of *exo* C-H bonds may act as hydrogen-bond donors to the anions whereas, three benzimidazolate motifs from the coneshaped metallacalix[3]arene unit in **19** delivers three set of *exo* C-H bonds that may act as the hydrogen-bond donors to the anion and neutral molecules. The metallacalix[3]arene **19** contains three additional exocyclic cavity around the molecule.

24

25




Figure 1.16. Different types of cavity frameworks in metallacycles 15-19.

1.9. $Re(CO)_3$ core-based spheroids with metallacalix[3]arenes and metallacalix[4]arenes units.

In order to increase the number of molecular receptor units in one metallacycle, hexatopic flexible ligand (29) instead of tritopic ligands (23-25) were chosen as one of the basic building units. These ligands were treated with rigid imidazole/benzimidazole/benzotriazole (20-22) and Re₂(CO)₁₀ to obtain multiple molecular receptor containing spheroid-shaped metallacycles (30-32). The molecules have two metallacalix[3]arene units (33) and six- metallacalix[4]arene motifs (34). Further each cavity in the spheroid has ability to accommodate guest molecules, which is evident from X-ray structure.

Figure 1.17. Synthesis of Re(CO)₃ core-based hexanuclear spheroid metallocavitands.

Further, the size of the calix[4] arenes cavity in **31** can be easily tuned by modulating heteroleptic coordinating units from benzimidazoly to naphthoimidazolyl. The functionality of the metallacalix[3] arene motifs (**33**) in the spheroids can be tuned by modulating the heteroarene units. For example, the metallacalix[3] arene unit containing imidazolate/benzimidazolate structural building unit may act as hydrogen bond donors and able to accommodate neutral and anionic guest molecules. When the heteroarene unit is benzotriazole, the metallacalix[3] arene unit contains nitrogen atoms and is suitable to accommodate neutral molecule or cation.

Figure 1.18. (a) Spheroid cage **31**; (b) metallacalix[3]arene motif with enforced small cavity; (c) open form of spheroid showing six metallacalix[4]arene cavities with guest molecules (pink).

1.10. Re(CO)₃ core-based homoleptic tetranuclear metallacalix[4]arene.

Calix[4]arene is a cyclic organic molecule and contains four arene motifs and four methylene groups. The alternate arrangement of these motifs provides bowl-shaped structure with wider upper cyclic cavity and narrow lower cavity. Calix[4]arenes have the ability to accommodate various guest molecules in their hydrophobic internal cavity. Ligands containing calix[4]arene spacer are rarely used for making Re(CO)₃-core based metallacycle, in particular metallocavitand. In principle, large depth cavity containing metallacycles can be achieved from the calix[4]arene spacer-based nitrogen donor ligands (35). Larger size

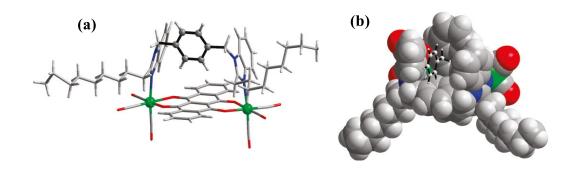
cavity containing tetranuclear metallocavitand (**36**) was designed and synthesized using $[Re(CO)_5Br]$ and orthotopic nitrogen donor with calix[4]arene spacer (octatopic nitrogen donor). The ligand is designed in such a way that calix[4]arene spacer has four symmetrically arranged 3,8-phenathroline cores. Each 3,8-phenathroline core acts as rigid ditopic bridging donor. All together there are four symmetrically arranged ditopic nitrogen donor like 4,4'-bipyridine which binds with four rhenium cores resulting in the funnel shaped cavity containing metallacalix[4]arene. The cyclic framework is stabilized by hydrogen bonding interactions that occur between water molecule and two adjacent nitrogen donors. The hydrophobic cavity is large and accommodates various guest molecules with the binding constant ($K = \sim 1 \times 10^2 \,\mathrm{M}^{-1}$).

Figure 1.19. Synthesis of rhenium metallobridged cavitand.

Another example of tetranuclear homoleptic metallacalix[4]arene (37) is formed by treating [Re(CO)₅Cl] with methyl acetoacetate (38) which resulted in cyclization of the ligand to give pyrazolone as bis-chelating five electron donor and coordinated to *fac*-Re(CO)₃ core through their S and N₃ atoms.³⁰

$$H_3C$$
 OC
 OC

Figure 1.20. Homoleptic tetranuclear rhenium metallacalix[4]arene.


1.11. Re(CO)₃ core-based heteroleptic dirhenium metallacalix[4] arenes

The fac-Re(CO)₃ core based neutral, heteroleptic dinuclear metallacalix[4]arene supramolecules (**39-50**) are synthesized using rigid bis-chelating ligands, flexible ditopic ligand containing "phenylene(–CH₂–heterocycle)₂" framework and Re₂(CO)₁₀ via reflux method or one pot solvothermal approach.³⁹ The flexible ligands (\mathbf{L}^1 - \mathbf{L}^2) used for making these metallacalixarenes can be prepared easily by simple condensation of phenyl-dibromide and heteroarene N-donor motifs. Further, the functional groups of the metallacalixarenes can be tuned by the introducing suitable functional unit on hetero(arene) motifs in the flexible ligands.

Figure 1.21. One-pot synthesis of functional dirhenium metallacalix[4] arenes.

The hydrophobic cavity present in these metallamacrocycles can accommodate small guest molecules. However the solid-state structural evidence for accommodating guest molecules inside cavity of these metallocavitands is rare. Ditopic ligand (51) was used with bischelating motifs (52-55) to self-assemble metallacalix[4]arenes (56-59) *via* one-pot approach. Metallacalix[4]arene 56 accommodates toluene as a guest molecule in its internal cavity, and the methyl groups of toluene are directed towards its hydrophobic cavity.

Figure 1.22. Self-assembly of heteroleptic dirhenium metallacalix[4] arenes.

Figure 1.23. (a) Solid-state structure of metallacycle **56**, (b) space-filling representation of **56** with guest toluene (ball-and-stick model)

The *fac*-Re(CO)₃ core-based complexes having –SMe decorated heteroleptic metallacalix[4]arene are very rare. First example of –SMe decorated dirhenium–based metallacalix[4]arenes (**60-64**) were self-assembled from flexible tritopic donor ligands (1,3-bis(2-methylmercaptobenzimidazol-1-ylmethyl)benzene,1,3-bis(2-methylmercaptobenzimidazol-1-ylmethyl) zol-1-ylmethyl)-2,4,6-trimethylbenzene, 1,4-bis(2-methylmercaptobenzimidazol-1-ylmethyl) benzene,1,4-bis(2-methylmercaptobenzimidazol-1-ylmethyl)-2,5-dimethylbenzene, 1,4-bis(2-methylmercaptobenzimidazol-1-ylmethyl)-2,5-dimethoxybenzene, L³-L⁷), chlorinilic acid and Re₂(CO)₁₀. Each metallacycle has two thiomethyl groups on the cyclic rim.⁴¹

Figure 1.24. Self-assembly of 2-methylmercaptobenzimidazolyl ligand based dinuclear rhenium metallacalix[4]arenes.

Flexible tritopic ligands containing *m*-phenylene(CH₂-heterocycle)₃ framework have the ability to form dinuclear heteroleptic metallacalix[4]arenes adorned with free functionalized hetroarene motifs. Ligand 1,3,5-tri(2-(methylthio)benzimidazol-1-ylmethyl)-2,4,6-trimethylbenzene (**65**) was used to prepare functionalized dinuclear metallocavitands (**66-68**) in the presence of additional framework units 2,2'-biimidazole (**69**) or tetrahydroxy-1,4-quinone (**55**) or 6,11-dihydroxy- 5,12-naphthacenedione (**52**) with Re₂(CO)₁₀. In addition to the internal cavity suitable to accommodate guest molecules, these molecules possess functional units on the rim which have potential to interact with bio-systems. ⁴²

Figure 1.25. One-pot self-assembly of functionalized dinuclear rhenium metallocavitands.

The above synthetic approach was extended to thiophene-functionalized nitrogen donor ligand 1,3,5-tri(2-(thiophene-2-yl)benzimidazol-1-ylmethyl)-2,4,6-trimethylbenzene (**70**), treated with tetrahydroxy 1,4-benzoquinone bis-chelating anionic donor (**71**) and $Re_2(CO)_{10}$ to get thiophene motifs decorated dinuclear metallacalix[4]arene (**72**).

Figure 1.26. Thiophene motifs decorated dinuclear rhenium metallacalix[4]arene.

1.12. Re(CO)₃ core-based heteroleptic tetrarhenium metallacalix[4]arenes.

Tetranuclear rhenium metallacalix[4]arenes (73-76) with larger inner cavity can be self-assembled by using three component (Re₂(CO)₁₀, 4,7-phenanthroline, and bis-chelating donor) *via* self-assembly approach.⁴³ The choice of neutral ditopic N-donor ligand is crucial in dictating the bowl structure in these combinations. The 4,7-phenanthroline is rigid ditopic N-donor and has the binding angle of ~120°. The bis-chelating ligands have to orient in a V-shaped arrangement to adjust the angle to be suitable for octahedral geometry around the metal core. This geometrical arrangement leads to the perfect bowl-shaped structure. These metallacalix[4]arenes are neutral, heteroleptic and have inner cavity suitable to accommodate guest molecules. The solvent molecules used to prepare these metallacalix[4]arenes are accommodated in the cavity. Physical properties such as colors, solubility, functionality of metallacalix[4]arenes can be tuned by modulating the bis-chelating ligands. The molecular recognition studies show that these cavitands can act as host for naphthalene, anthracene, phenathroline and pyrene like guest molecules.

$$Re_{2}(CO)_{10} + \underbrace{\begin{array}{c} OH \\ A,7\text{-phen} \end{array}}_{\text{Ho}} + \underbrace{\begin{array}{c} OH \\ OOH \\ OOH \\ H_{2}\text{-thaq} \end{array}}_{\text{Ho}} + \underbrace{\begin{array}{c} OH \\ OOH \\$$

Figure 1.27. Self-assembly of syceelike tetrarhenium metallocavitands.

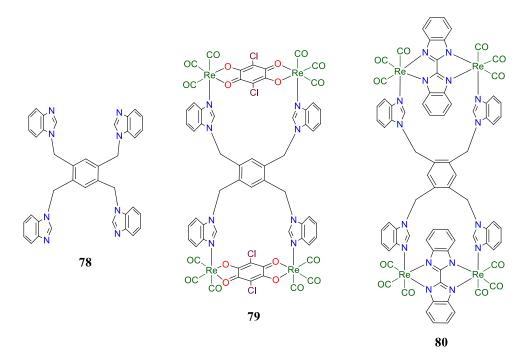
Metallocavitands **74** and **75** are utilized as evanescent wave infrared molecular sensors for the selective recognition of odorous amino compounds in air. ⁴⁴ The selective and sensitive detection of amino compounds by the hydrophobic pocket of the metallocavitands found to follow the order as: aromatic amine > aliphatic primary amine ~ cyclo-amine > aliphatic secondary amine > aliphatic tertiaryamine. The cavity size and the hydrogen bonding donors present on the framework of the metallocavitands determine selective trapping of amine guest molecules.

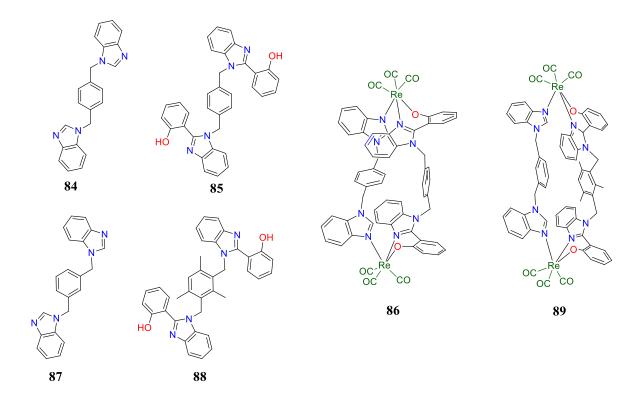
1.13. Re(CO)₃ core-based heteroleptic bismetallacalix[4]arenes.

The *fac*-[Re(CO)₃] core-based supramolecule having two dinuclear heteroleptic metallacalix[4]arene motifs is very rare. First example of rhenium core containing bis metallacalix[4]arene units (77) was self-assembled from flexible tritopic donor1,3,5-tri(2-methylmercaptobenzimidazol-1-ylmethyl)-2,4,6-trimethylbenzene (63), chlorinilic acid and Re₂(CO)₁₀.⁴⁵ Each metallacycle has two thiomethyl groups on the cyclic rim. The hydrophobic cavity on the metallacycle can accommodate small guest molecules.

Figure 1.28. Re(CO)₃ core-based bismetallacalix[4] arenes.

The nitrogen donor ligands play a crucial role in determining the supramolecular architectures. Flexible tetratopic ligand structural framework (78) provides suitable coordination angle for the formation of dinuclear bis-metallacalix[4]arene supramolecules 79-80) when combined with chlorinilc acid and $Re_2(CO)_{10}$. The central phenylene unit of the tetratopic ligand share for both the metalllacalix[4]arene. By tuning the bis-chelating motif, the cavity size of each metallacalix[4]arene can be varied.




Figure 1.29. Rhenium core-based dinuclear bis-metallacalix[4] arene supramolecules.

Other examples for bis-metallacalix[4]arenes (81-82) were synthesized using flexible tetratopic nitrogen donor ligand (83), 1,4-dihydroxy-9,10-anthraquinone (51), or 11-dihydroxy-5,12-naphthacenedione (50) with $Re_2(CO)_{10}$ via solvothermal approach.⁴⁷ The tetratopic ligand was designed in such a way it acts as a two ditopic N-donor ligands. Two dinuclear metallacalix[4]arenes in the complexes were connected via a C-C bond; therefore it can be best considered as bridgeless bis-metallacalix[4]arenes.

Figure 1.30. One-pot self-assembly of rhenium bridgeless bis-metallacalix[4]arenes.

1.14. Re(CO)₃ core-based helicates and mesocates.

The combination of two types of flexible ligands i.e., neutral flexible bis-monodentate nitrogen donor ligand (84) and bis-bidentate NO donor ligand (85), incorporating a flexible *p*-xylene motif (-CH₂-Ph-CH₂-) between two donors and Re₂(CO)₁₀ were used for assembling dinuclear heteroleptic helicate (86).⁴⁸ The spacer *p*-phenylene motif in both the ligands (84-85) plays an important role in adopting helical structure. This was evident when the spacer motif in the ligand strands was changed to *m*-xylene motif (87-88) which results in the mesohelical structure (89). These metallacycles exhibit fluorescence and phosphorescence both in solution and solid state.

Figure 1.31. Dirhenium(I)-double-heterostranded helicates and mesocates.

Changing or modulating the bis(bidentate) NO donor ligands (**85** and **88**) can influence the resulting architectures. By treating the orthogonal tritopic *fac*-Re(CO)₃ metal acceptor with flexible bis-chelating dianionic OO-donor (**90**) and flexible bis-monodentate nitrogen donors (**84** and **87**) in toluene *via* one-pot solvothermal synthesis results in heteroleptic, neutral dinuclear helicates (**91-92**).⁴⁹

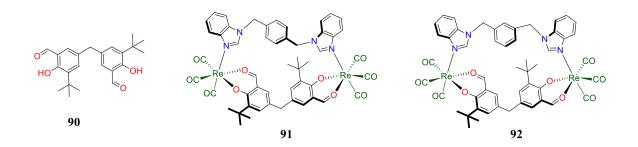


Figure 1.32. Dinuclear rhenium unsaturated double-stranded helicates.

Modulating the central spacer motif from p-phenylene spacer in **84** and **87** to Troger's base spacer motif in the neutral ditopic N-donor ligand (**93**) and treated with **85** or **88** and

 $Re_2(CO)_{10}$ in toluene results in Re(I)-based dinuclear double hetero-stranded helicates (94-95). ⁵⁰

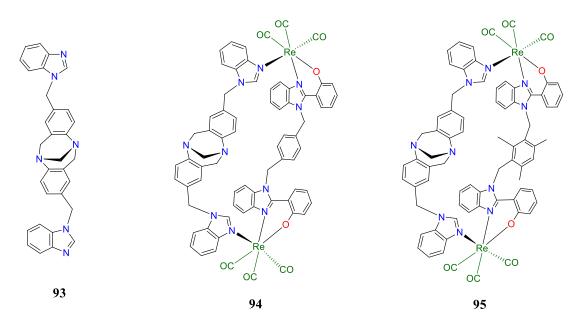


Figure 1.33. Re(I)-based dinuclear heteroleptic double-stranded helicates.

1.15. Tc(CO)₃ core-based cyclic complex

To the best of our knowledge, fac-[{Tc(CO)₃Cl}₂(ptc)₂] (ptc = 4-pyridyl-thiosemicarbazone = C_6H_5N -C(CH₃)=N-NH-C(S)-NH₂) (**96**), is the only known example for a metallamacrocycle based on the fac-[Tc(CO)₃]⁺ core and formed by treating (NEt₄)₂[Tc(CO)₃Cl₃] with ptc ligand (**97**) in acetonitrile.⁵¹ In solid state the neighboring molecules are held by hydrogen bonds, and acetonitrile solvent molecules occupy the channels formed along the b-axis.

$$\begin{array}{c} \text{CH}_{3} \\ \text{N} \\ \text{NH} \\ \text{S} \\ \text{NH}_{2} \end{array} \xrightarrow{\text{[NEt_4]}_{2}[\text{Tc}(\text{CO})_{3}\text{CI}_{3}]} \\ \text{CH}_{3}\text{CN} \\ \text{HN} \\ \text{N} \\ \text{HN} \\ \text{N} \\ \text{HN} \\ \text{N} \\ \text{N} \\ \text{OC} \\ \text{CI} \\ \text{N} \\ \text{NN} \\ \text{N} \\ \text{N} \\ \text{Tc} \\ \text{CO} \\ \text{CO} \\ \text{OC} \\ \text{CO} \\ \text{OC} \\ \text{OO} \\ \text{CO} \\ \text{OO} \\$$

Figure 1.34. Synthesis of Tc(CO)₃ core-based metallamacrocycle.

1.16. Scope of the present thesis

It is clear from the preceding section that fac-[Re(CO)₃] core-based metallacalix[4]arenes have gained attention in the field of supramolecular chemistry owing to their interesting properties in the fields of molecular recognition, catalysis, selective reactivity and biology. The flexible benzimidazolyl and its structural analogous based ditopic N-donors have attracted attention as versatile structural framework for making cavity-containing fac-[Re(CO)₃] core-based metallacalix[4] arenes. The terminal heteroarene N-donor and phenelyne spacer in the ditopic flexible ligands act as aromatic/heteroaromatic walls of the metallacalixarenes. The bis-chelating organic ligands also act as one of the structural frameworks of the rhenium metallacalix[4] arenes. Although a variety of dirhenium heteroleptic, neutral metallacalixarenes can be obtained by using flexible ditopic N- donor ligands containing phenylene spacer, the hydrophobic cavity in the metallacalixarenes is small to accommodate guest moleculescompletely or partially. There is a lot of scope to modulate the ditopic benzimidazolyl/benzimidazolyl derivatives based nitrogen donor ligands by incorporating diphenylmethane as a spacer to prepare larger size cavity containing dinuclear rhenium metallacalixarenes. Functionalization on the lower rim of the bigger cavitands can result in longer hydrophobic cavity containing metallocavitands. The designed metallocavitands with increased width and depth may accommodate aromatic guest molecules and other potential guest molecules entirely inside their hydrophobic cavity. The anionic bis-chelating units used as structural framework to construct metallocavitands are rigid having an angle of 180 between the two chelating units. The use of the semi-rigid or flexible anionic donors possessing a longer binding length and an angular chelating angle may result in either metallocavitands with bigger hydrophobic cavity or helicate/mesohelicate kind of architectures.

The present thesis describes the design and synthesis of a series of new diotopic N-donor ligands with diarylmethanespacer and several fac-[M(CO)₃] (M = Re/ Tc) core-based mononuclear homoleptic metallacalix[4] arenes, and fac-[Re(CO)₃] core-based dinuclear heteroleptic metallacalix[5] arenes, dinuclear heterostranded helicates and meso-helicates.

1.17. References

- Lehn, J.-M. Supramolecular Chemistry–Concepts and Perspectives, VCH, Weinheim, 1995. (b) Lehn, J. M. Angew. Chem. Int. Ed. Engl. 1988, 27, 89-112. (c) Lehn, J. –M. Supramolecular chemistry and self-assembly special feature: Toward complex matter: Supramolecular chemistry and self-organization. Proc. Nat. Acad. Sci. USA, 2002, 99, 4763-4768.
- 2. Steed, J. W.; Atwood, J. L.; Gale, P. A. In *Definition and emergence of supramolecular chemistry*, John Wiley & Sons Ltd, 2012; pp 3-7.
- 3. Steed, J. W.; Turner, D. R.; Wallace, K. J. *Core Concepts in Supramolecular Chemistry and Nanochemistry*, John Wiley & Sons. Chichester, 2007.
- 4. Kyba, E. P.; Helgeson, R. C.; Madan, K.; Gokel, G. W.; Tarnowski, T. L.; Moore, S. S.; Cram, D. J. Host-guest complexation. 1. Concept and illustration. *J. Am. Chem. Soc.* **1977**, *99*, 2564-2571.
- 5. (a) Fischer, E. Berichte de Deutschen Chemischen Gasellschaft. **1894**, 27, 2985-2993. (b) Koshland, D. E.; The Key–Lock Theory and the Induced Fit Theory. Angew. Chem., Int. Ed. **1995**, 33, 2375-2378.
- 6. Lehn, J.-M.; Rigault, A.; Seigel, J.; Harrowfield, J.; Chevrier, B.; Moras, D. *Proc. Natl. Acad. Sci. USA*, **1987**, *84*, 2565-2569.
- 7. (a) Steel, P. J. Metallosupramolecular Chemistry; What is it?. *Chem. N. Z.* **2003**, *67*, 57-60. (b) Steel, P. J. Metallosupramolecular Chemistry; What now. *Chem. N. Z.* **2011**, *75*, 194-197. (c) Dance, I. What is supramolecular?. *New J. Chem.* **2003**, *27*, 1-2.
- 8. (a) Lippert, B.; Sanz Miguel, P. J. Metallatriangles and metallasquares: the diversity behind structurally characterized examples and the crucial role of ligand symmetry. *Chem. Soc. Rev.* **2011**, *40*, 4475-4487 and references therein. (b) Gao, W. -X.; Zhang. H. N.; Jin, G. -X. Supramolecular catalysis based on discrete heterometallic coordinationdriven metallacycles and metallacages. *Coord. Chem. Rev.* **2019**, *386*, 69-84. (c) Frischmann, P. D.; MacLachlan, M. J. Metallocavitands: an emerging class of functional multimetallic host molecules. *Chem. Soc. Rev.* **2013**, *42*, 871-890 and references therein. (d) Cook, T. R.; Stang, P. J. Recent Developments in the Preparation and Chemistry of Metallacycles and Metallacages via Coordination. *Chem. Rev.* **2015**, *115*, 7001-7045. (e) Chakrabarty, R.; Mukherjee, P. S.; Stang, P. J. Supramolecular Coordination: Self-Assembly of Finite Two-and Three-Dimensional Ensembles. *Chem.*

- Rev. 2011, 111, 6810-6818. 69-84. (f) Stang, P. J.; Olenyuk, B. Self-Assembly, Symmetry, and Molecular Architecture: Coordination as the Motif in the Rational Design of Supramolecular Metallacyclic Polygons and Polyhedra. Acc. Chem. Res., 1998, 30, 502-518.
- 9. (a) Barea, E.; Navarro J. A. R.; Salas J. M.; Quiros, M.; Willermann, M.; Lippert, B. Chiral Pyrimidine Metallacalixarenes: Synthesis, Structure and Host-Guest Chemistry. Chem. - Eur. J. 2003, 9, 4414-4421. (b) Galindo, M. A.; Olea, D.; Romero, M. A.; Gomez, J.; del Castillo, P.; Hannon, M. J.; Rodger, A.; Zamora, F.; Navarro, J. A. R. Design and Non-Covalent DNA Binding of Platinum(II) Metallacalix[4]arenes. Chem. – Eur. J. 2007, 13, 5075-5081. (c) Galindo, M. A.; Galli, S., Navarro, J. A. R.; Angustias Romero, M.; Formation of heterotopic metallacalix[n]arenes (n=3, 4, 6) containing ethylenediaminepalladium(ii) metal fragments and 4,7-phenanthroline and pyrimidinolate bridges. Synthesis, structure and host–guest chemistry. Dalton Trans. 2004, 2780-2785. (d) Galindo, M. A.; Houlton, A.; Clegg, W.; Harrington, R. W.; Dobado, J.; Santoyo-Gonzalez, F.; Linares, F.; Romero, M. A.; Navarro, J. A. R. Electrochemically active and photochemically Palladium(ii) heterotopic metallacalix[3]arenes. Chem. Commun. 2008, 3735-3737. (e) Xu, G. F.; Gamez, P.; Teat, S. J.; Tang, J. Praseodymium(iii)-based bis-metallacalix[4]arene with host-guest behavior. Dalton Trans. 2010, 39, 4353-4357. (f) Díaz-Ramírez, M. L.; Huggins, H.; Donnadieu, B.; Lopez, N.; Muñoz-Hernández, M. -Á. The Quest for Large Group 13 Metallacalixarenes Based on Benzymidazolyl Ligands and Al and Ga Alkyls. Eur. J. Inorg. Chem. 2021, 3896-3902.
- 10. (a) Lehn, J. M.; Rigault, A.; Siegel, J.; Harrowfield, J.; Chevrier, B.; Moras, D. Spontaneous assembly of double-stranded helicates from oligobipyridine ligands and copper(I) cations: Structure of an inorganic double helix. *Proc. Natl. Acad. Sci. USA*. 1987, 84, 2565-2569. (b) Hannon, M. J.; Childs, L. J. Helices and Helicates: Beautiful Supramolecular Motifs with Emerging Applications. *J. Supramol. Chem.* 2004, 16, 7-22.
 (c) Albrecht, M. Let's Twist Again–Double-Stranded, Triple-Stranded, and Circular Helicates *Chem. Rev.* 2001, 101, 3457–3498. (d) Piguet, C.; Bernardinelli, G.; Hopfgartner, G.; Helicates as Versatile Supramolecular Complexes. *Chem. Rev.* 1997, 97, 2005-2062 and references there in. (e) Paneerselvan, A. P.; Mishra, S. S.; Chand, D. K. Linear and circular helicates: A brief review. *J. Chem. Sci.* 2018, 130, 1–18.
- 11. (a) Allison, S. J.; Cooke, D.; Davidson, F. S.; Elliott, P. I. P.; Faulkner, R. A.; Griffiths, H. B. S.; Harper, O. J.; Hussain, O.; Owen-Lynch, P. J.; Phillips, R. M.; Rice, C. R.;

- Shepherd, S. L.; Wheelhouse, R. T. Ruthenium-Containing Linear Helicates and Mesocates with Tuneable p53-Selective Cytotoxicity in Colorectal Cancer Cells. *Angew. Chem. Int. Ed.* **2018**, *57*, 9799-9804. (b) Li, X.; Wu, J.; Wang, L.; He, C.; Chen, L.; Jiao, Y.; Duan, C. Mitochondrial DNA-targeted Ir^{III}-Containing Metallohelices with Tunable Photodynamic Therapy Efficacy in Cancer Cells. *Angew. Chem. Int. Ed.* **2020**, *59*, 6420-6427. (c) Li, X.; Shi, Z.; Wu, J.; Wu, J.; C, He.; Haoa, X.; Duan, C. Lighting up metallohelices: from DNA binders to chemotherapy and photodynamic therapy *Chem. Commun.* **2020**, *56*, 7537-7548.
- (a) Young, N. J.; Hay, B. P Structural design principles for self-assembled coordination polygons and polyhedral. *Chem. Commun.* 2013, 49, 1354-1379. (b) Stang, P. J.; Olenyuk, B. Self-Assembly, Symmetry, and Molecular Architecture: Coordination as the Motif in the Rational Design of Supramolecular Metallacyclic Polygons and Polyhedra. *Acc. Chem. Res.* 1997, 30, 502-518.
- (a) Zhang, D.; Ronson, T. K.; Nitschke, J. R. Functional Capsules via Subcomponent Self-Assembly. *Acc. Chem. Res.* 2018, 5, 2423-2436.
 (b) Wu, Z.; Zhou, K.; Ivanow, A. V.; Yusobov M.; Verpoort, F. The simplest and fascinating metal-organic polyhedra: Tetrahedra. *Coord. Chem. Rev.* 2017, 353, 180-200.
- (a) Seidel, S. R.; Stang, P. J. High-Symmetry Coordination Cages via Self-Assembly. Acc. Chem. Res. 2002, 35, 972-983. (b) Zhang, Y. Y.; Gao, W. X.; Lin, L.; Jin, G. X.; Recent advances in the construction and applications of heterometallic macrocycles and cages. Coord. Chem. Rev. 2017, 344, 323-344. (c) Therrien, B. Arene Ruthenium Cages: Boxes Full of Surprises. Eur. J. Inorg. Chem. 2009, 2445-2453.(d) Fujita, M.; Umemoto, K.; Yoshizawa, M.; Fujita, N.; Kusukawa, T.; Biradha, K. Molecular paneling via coordination. Chem. Commun. 2001, 509-518.
- 15. (a) Ruben, M.; Rojo, J.; Romero-Salguero, F.J.; Uppadine, L. H.; Lehn, J.-M. Grid-Type Metal Ion Architectures: Functional Metallosupramolecular Arrays. *Angew. Chem. Int. Ed.* 2004, 43, 3644-3662. (b) Stadler, A.-M.; Kyritsakas, N.; Graff, R.; Lehn, J.-M. Formation of Rack- and Grid-Type Metallosupramolecular Architectures and Generation of Molecular Motion by Reversible Uncoiling of Helical Ligand Strands. *Chem. Eur. J.* 2006, 12, 4503-4522. (c) Swiegers, G. F.; Malefetse, T. J. New Self-Assembled Structural Motifs in Coordination Chemistry. *Chem. Rev.* 2000, 100, 3483–3538.
- 16. (a) Sauvage, J. P. Transition Metal-Containing Rotaxanes and Catenanes in Motion: Toward Molecular Machines and Motors. *Acc. Chem. Res.* **1998**, *31*, 611-619.

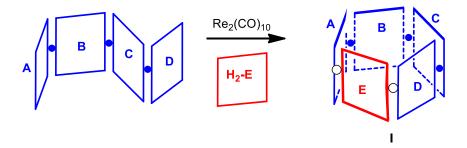
- (b) Sauvage, J. P. *Angew*. From Chemical Topology to Molecular Machines (Nobel Lecture). *Chem. Int. Ed.* **2017**, *56*, 11080-11093. (c) Huang, S. L.; Andy Hor, T. S.; Jin, G. X. Metallacyclic assembly of interlocked superstructures. *Coord. Chem. Rev.* **2017**, *333*, 1-26.
- 17. Forgan, R. S.; Sauvage, J. P.; Stoddart, J. F. Chemical Topology: Complex Molecular Knots, Links, and Entanglements. *Chem. Rev.* **2011**, *111*, 5434-5464.
- 18. (a) Gutsche, C. D. Calixarenes, *Monographs in Supramolecular Chemistry*, Stoddart, J. F. Ed., The Royal Society of Chemistry, Cambridge, United Kingdom, 1989. (b) Gutsche, C. D. Calixarenes: an introduction. Cambridge: Royal Society of chemistry, 2008.
- 19. Gutsche, C. D.; Muthukrishnan, R. Calixarenes.1. Analysis of the Product Mixtures Produced by the Base-Catalyzed Condensation of Formaldehyde with Para-Substituted Phenols. *J. Org. Chem.* **1978**, *43*, 4905.
- 20. Kulesza, J.; Barros, B. S.; Júniora S. A. Organic-inorganic hybrid materials: Metallacalixarenes. Synthesis and applications. *Coord. Chem. Rev.* **2013**, 257, 2192–2212.
- (a) Cooke, D. J.; Cross, J. M.; Fennessy, R. V.; Harding, L. P.; Rice, C. R.; Slater, C. Steric control of the formation of dinuclear double helicate and dinuclear meso-helicate assemblies. *Chem. Commun.* 2013, 49, 7785-7787. (b) Xu, J.; Parac, T. N.; Raymond, K. N. meso myths: what drives assembly of helical versus meso[M₂L₃]clusters?. *Angew. Chem. Int. Ed.* 1999, 38, 2878-2882. (c) Martínez-Calvo, M.; Romero M. J.; Pedrido. R.; González-Noya A. M.; Zaragozac. G. Bermejoa. M. R. Metal self-recognition: a pathway to control the formation of dihelicates and mesocates *Dalton Trans.* 2012, 41, 13395-13404. (d) Zhanga, Z.; Dolphin, D. A triple-stranded helicate and mesocate from the same metal and ligand. *Chem. Commun.* 2009, 6931-6933. (e) Cui, F.; Li, S.; Jia, C.; Mathieson, J. S.; Cronin, L.; Yang, X.-J.; Wu, B. Anion-Dependent Formation of Helicates versus Mesocates of Triple-Stranded M₂L₃ (M = Fe²⁺, Cu²⁺) Complexes. *Inorg. Chem.* 2012, 51, 179–187.
- (a) Bauer, E. B.; Haase, A. A.; Reich, R. M.; Crans, D. C.; Kühn, F. E. Organometallic and coordination rhenium compounds and their potential in cancer therapy. *Coord. Chem. Rev.* 2019, 393, 79-117.
 (b) Haase, A. A.; Bauer, E. B.; Kühn, F. E.; Crans, D. C. Speciation and toxicity of rhenium salts, organometallics and coordination complexes. *Coord. Chem. Rev.* 2019, 394, 135-161.
 (c) Dinolfo, P. H.; Hupp, J. T. Supramolecular coordination chemistry and functional microporous molecular materials. *Chem. Mater.*

- **2001**, *13*, 3113–3125. (d) Hupp, J. T. Rhenium-Linked Multiporphyrin Assemblies: Synthesis and Properties. *Struct. Bonding*, **2006**, *121*, 145-165. (e) Gupta, D.; Sathiyendiran, M. Rhenium-Carbonyl-Based Supramolecular Coordination Complexes: Synthesis, Structure and Properties. *ChemistrySelect* **2018**, *3*, 7439-7458 and references cited therein.
- (a) Ramakrishna, B.; Nagarajaprakash, R.; Veena, V.; Sakthivel, N.; Manimaran. B. Self-assembly of oxamidato bridged ester functionalised dirhenium metallastirrups: synthesis, characterisation and cytotoxicity studies. *Dalton Trans.* 2015, 44, 17629-17638. (b) Orsa, D. K.; Haynes, G. K.; Pramanik, S. K.; Iwunze, M. O.; Greco, G. E.; Krause, J. A.; Ho, D.; Williams, A. L.; Hill, D. A.; Mandal, S. K. Synthesis, characterization, and fluorescence and cytotoxicity studies of a tetrarhenium molecular rectangle. *Inorg. Chem. Commun.* 2007, 10, 821-824. (c) Balasingham, R. G.; Thorp-Greenwood, F. L.; Williams, C. F.; Coogan, M. P.; Pope, S. J. A. Biologically Compatible, Phosphorescent Dimetallic Rhenium Complexes Linked through Functionalized Alkyl Chains: Syntheses, Spectroscopic Properties, and Applications in Imaging Microscopy. *Inorg. Chem.* 2012, 51, 1419–1426.(d) Govindarajan, R.; Nagarajaprakash, R.; Veena, V.; Sakthivel, N.; Manimaran, B. One-pot reaction of amide functionalized Re(I) based dinuclear metallacycles: Synthesis, characterization and evaluation for anticancer potential. *Polyhedron.* 2018, 139, 229–236.
- 24. (a) Rohacova, J.; Ishitani, O. Photofunctional Multinuclear Rhenium(I) diimine Carbonyl Complexes. *Dalton Trans*. 2017, 46, 8899–8919. (b) Thanasekaran, P.; Lee, C. C.; Lu, K. L. One-Step Orthogonal-Bonding Approach to the Self-Assembly of Neutral Rhenium-Based Metallacycles: Synthesis, Structures, Photophysics, and Sensing Applications. *Acc. Chem. Res.* 2012, 45, 1403–1418. (c) Sato, S.; Ishitani, O. Photochemical reactions of fac-rhenium(I) tricarbonyl complexes and their application for synthesis. *Coord. Chem. Rev.* 2015, 282–283, 50–59.
- 25. (a) Alberto, R.; Schibli, R.; Waibel, R.; Abram, U.; Schubiger, A. P. Basic aqueous chemistry of [M(OH₂)₃(CO)₃]⁺ (M = Re, Tc) directed towards radiopharmaceutical application. *Coord. Chem. Rev.* **1999**, *190-192*, 901-919. (b) Waibel, R.; Alberto, R.; Willuda, J.; Finnern, R.; Schibli, R.; Stichelberger, A.; Egli, A.; Abram, U.; Mach, J. –P.; Plückthun, A.; Schubiger, P. A. Stable one-step technetium-99m labeling of His-tagged recombinant proteins with a novel Tc(I)–carbonyl complex. *Nature Biotechnol.* **1999**, *17*, 897-901. (c) Abram, U.; Alberto, R. Technetium and rhenium: coordination chemistry and nuclear medical applications. *J. Braz. Chem. Soc.* **2006**, *17*, 1486-1500. (d)

- Papagiannopoulou, D. Technetium-99m radiochemistry for pharmaceutical applications. *J. Labelled Comp. Radiopharm.* **2017**, *60*, 502-520. (e) Makris, G.; Bandari, R. P.; Kuchuk, M.; Jurisson, S. S.; Smith, C. J.; Hennkens, H. M. Development and Preclinical Evaluation of ^{99m}Tc- and ¹⁸⁶Re-Labeled NOTA and NODAGA Bioconjugates Demonstrating Matched Pair Targeting of GRPR-Expressing Tumors. *Mol. Imaging Biol.* **2021**, *23*, 52-61.
- 26. (a) Alberto, R. The "Carbonyl Story" and Beyond; Experiences, Lessons and Implications. *ChemMedChem.* 2012, 16, 84-91 (b) Morais, M.; Paulo, A.; Gano, L.; Santos, I.; Correia, J. D. G. Target-specific Tc(CO)₃-complexes for *in vivo* imaging *J. Organomet. Chem.* 2013, 744, 125-139. (c) Gasser, G.; Metzler Nolte, N. The potential of organometallic complexes in medicinal chemistry. *Cur. Opinion Chem. Biol.* 2012, 16, 84-91. (d) Bhattachrayya, S.; Dixon, M. Metallic radionuclides in the development of diagnostic and therapeutic radiopharmaceuticals. *Dalton Trans.* 2011, 40, 6112-6128. (e) Kasten, B. B.; Ma, X.; Cheng, K.; Bu, L.; Slocumb, W. S.; Hayes, T. R.; Trabue, S.; Cheng. Z.; Benny, P. D. Isothiocyanate-Functionalized Bifunctional Chelates and *fac*-[M^I(CO)₃]⁺ (M = Re, ^{99m}Tc) Complexes for Targeting uPAR in Prostate Cancer. *Bioconjug. Chem.* 2016, 27, 130-142. (f) Imstepf, S.; Pierroz, V.; Raposinho, P.; Felber, M.; Fox, T.; Fernandes, C.; Gasser, G.; Santos, I.; Alberto, R. Towards ^{99m}Tc-based imaging agents with effective doxorubicin mimetics: a molecular and cellular study. *Dalton Trans.* 2016, 45, 13025-13033.
- 27. Hildebrandt, S. $(NBu_4)[Tc_2(\mu\text{-Cl})_3(CO)_6]$ als Startverbindung für Technetiumtricarbonylkomplexe. PhD Thesis, FU Berlin, **2018**.
- 28. Brasey, T.; Buryak, A.; Scopelliti, R.; Severin K. Synthesis of a Metallamacrocyclic Re(CO)₃ Complex Using a Tridentate Bridging Ligand. *Eur. J. Inorg. Chem.* **2004**, 964-967.
- 29. Thorp-Greenwood, F. L.; Fernández-Moreira, V.; Millet, C. O.; Williams, C. F.; Cable, J.; Court, J. B.; Hayes, A. J.; Lloyd D.; Coogan, M. P. A 'Sleeping Trojan Horse' which transports metal ions into cells, localises in nucleoli, and has potential for bimodal fluorescence/PET imaging. *Chem. Commun.* 2011, 47, 3096-3098.
- 30. Barbazán, P.; Carballo, R.; Casas, J. S.; García-Martínez, E.; Pereiras-Gabián, G.; Sánchez, A.; Vázquez-López, E. M. Synthesis and Characterization of New Trimeric Rhenium(I) Complexes. The Influence of Steric Factors on the Size of Pyrazolonaterhenium(I) Metallomacrocycles. *Inorg. Chem.* **2006**, *45*, 7323-7330.

- 31. Wright, P. J.; Muzzioli, S.; Skelton, B. W.; Raiteri, P.; Lee, J.; Koutsantonis, G.; Silvester, D. S.; Stagni, Stefano.; Massi M. One-step assembly of Re(I) tricarbonyl 2-pyridyltetrazolato metallacalix[3]arene with aqua emission and reversible three-electron oxidation. *Dalton Trans.* **2013**, *42*, 8188-8191.
- 32. Lin, S.-M.; Velayudham, M.; Tsai, C.-H.; Chang, C.-H.; Lee, C.-C.; Luo, T.-T.; Thanasekaran, P.; Lu. K.-L. A Molecular Triangle as a Precursor Toward the Assembly of a Jar-Shaped Metallasupramolecule. *Organometallics* **2014**, *33*, 40-44.
- 33. Shankar, B.; Hussain, F.; Sathiyendiran, M. Synthesis of rhenium-based M3L3L0-type metallacycle from benzimidazole and flexible tri(benzimidazole) ligands. *J. Organomet. Chem.* **2012**, *719*, 26-29.
- 34. Shankar, B.; Elumalai, P.; Shanmugam, R.; Sathiyendiran, M. Neutral heteroleptic rhenium-based M3L3L0 type metallacycles: Synthesis, structural characterization and DFT/TDDFT studies.
- 35. Kedia, M.; Priyatharsini, M.; Sathiyashiva, S. D.; Shankar, B.; Krishnakumar, R.V.; Sathiyendiran, M. Prototype rhenium metallocavitand with four exocyclic cavities for small molecules. *J. Organomet. Chem.* **2022**, *959*, 122123.
- 36. Shankar, B.; Elumalai, P.; Sathiyashivan, S. D.; Sathiyendiran, M. Spheroid Metallocavitands with Eight Calixarene-Shaped Receptors on the Surface. *Inorg. Chem.* **2014**, *53*, 10018-10020.
- 37. Shankar, B.; Marimuthu, R.; Sathiyashivan, S. D.; Sathiyendiran, M. Spheroid Metallacycles and Metallocavitands with Calixarene- and/or Cleft-Shaped Receptors on the Surface. *Inorg. Chem.* **2016**, *55*, 4537-4544.
- 38. Botana, E.; Da Silva, E.; Benet-Buchholz, J., Ballester, P.; de Mendoza, J. Inclusion of Cavitands and Calix[4]arenes into a Metallobridged para-(1*H*-Imidazo[4,5-f][3,8]phenanthrolin-2-yl)-Expanded Calix[4]arene. *Angew. Chem. Int. Ed.* **2007**, 46, 198-201.
- 39. Rajakannu, P.; Mobin, S. M. Sathiyendiran, M. Thiophene/furan units decorated unsymmetrical dinuclear metallocalix[4]arenes. *J. Organomet. Chem.* **2014**, 771, 68-77.
- 40. Rajakannu, P.; Shankar, B.; Yadav, A.; Shanmugam, R.; Gupta, D.; Hussain, F.; Chang, C.-H.; Sathiyendiran, M.; Lu, K.-L. Adaptation toward Restricted Conformational Dynamics: From the Series of Neutral Molecular Rotors. *Organometallics* 2011, 30, 3168-3176.

- 41. Rajakannu, P.; Elumalai, P.; Mobin, S. M.; Lu, K.-L.; Sathiyendiran, M. Hard and soft-donors decorated rhenium based metallocavitands. *J. Organomet. Chem.* **2013**, *743*, 17-23.
- 42. Rajakannu, P.; Elumalai, P.; Shankar, B.; Hussain, F.; Sathiyendiran, M. Rhenium(I) based metallocalix[4]arenes decorated with free functionalized benzimidazolyl units. *Dalton Trans.* **2013**, *42*, 11359-11362.
- 43. Sathiyendiran, M.; Tsai, C. -C.; Thanasekaran, P.; Luo, T. -T.; Yang, C. -I.; Lee, G. -H.; Peng, S. -M.; Lu, K. -L. Organometallic Calixarenes: Syceelike Tetrarhenium(I) Cavitands with Tunable Size, Color, Functionality, and Coin–Slot Complexation. *Chem. Eur. J.* **2011**, *17*, 3343-3346.
- 44. Huang, G. G.; Lee, C. J.; Yang, J.; Lu, Z. Z.; Sathiyendiran, M.; Huang, C. Y.; Kao, Y. C.; Lee, G. H.; Lu, K. L. Cavity-containing rhenium metallacycle treated evanescent wave infrared chemical sensors for the selective determination of odorous amines in the atmosphere. *Sens. Actuators B: Chem.* **2018**, *254*, 424-430.
- 45. Rajakannu, P.; Elumalai, P.; Hussain, F.; Sathiyendiran, M. Rhenium-based bicyclic supramolecule with calixarene-shaped bowls. *J. Organomet. Chem.* **2013**, 725, 1-4.
- 46. Chuang, C.-H.; Sathiyendiran, M.; Tseng, Y.-H.; Wu, J.-Y.; Hsu, K.-C.; Hung, C.-H.; Wen, Y.-S.; Lu, K.-L. Rigidity-Modulated Approach toward the Construction of Metallacycles from a Flexible Tetratopic Ligand. *Organometallics* **2010**, *29*, 283-285.
- 47. Elumalai, P.; Kanagaraj, R.; Marimuthu, R.; Shankar, B.; Kalita, A. C.; Sathiyendiran, M. Rhenium(I)-based bridgeless double metallocalix[4]arenes. *Dalton Trans.* **2015**, *44*, 11274-11277.
- 48. Shankar, B.; Sahu, S.; Deibel, N.; Schweinfurth, D.; Sarkar, B.; Elumalai, P.; Gupta, D.; Hussain, F.; Krishnamoorthy, G.; Sathiyendiran, M. Luminescent Dirhenium(I)-Double-Heterostranded Helicate and Mesocate. *Inorg. Chem.* **2014**, *53*, 922–930.
- 49. Shankar, B.; Elumalai, P.; Jackmil, P. J.; Kumar, P.; Singh, S.; Sathiyendiran, M. Synthesis of rhenium-based M₂LL⁰-type supramolecular coordination complexes from flexible ligands. *J. Organomet. Chem.* **2013**, *743*, 109-113.
- 50. Saxena, P.; Shankar, B.; Sathyanarayana, A.; Prabusankar G.; Sathiyendiran, M. Rhenium(i)-based Double-heterostranded Helicates. *Chimia.* **2015**, *69*, 675–677.
- 51. Pereiras-Gabián, G.; Vázquez-López, E. M.; Braband, H.; Abram, U. Mono- and Dinuclear Tricarbonyltechnetium(I) Complexes with Thiosemicarbazones. *Inorg. Chem.* 2005, 44, 834-836.


Chapter 2

Re(I)-based Irregular Pentagonal-shaped Metallocavitands: Self-Assembly and Molecular Recognition Studies

Abstract

Neutral ditopic flexible N-donor ligands ($L^n = (L^1 = bis(4-(naphtho[2,3-d]imidazol-1$ vlmethyl)phenyl)methane, $L^2 = bis(4-(benzimidazol-1-vlmethyl)phenyl)methane and <math>L^3 =$ benzimidazol-1-ylmethyl)phenyl)methane)) possessing bis(4-(2-nonyl methylphenyl)methane spacer with multi-arene fused imidazole donor unit were designed and synthesized. The Lⁿ were utilized to develop metollacavitands analogous of pillar[5]arene framework with larger cavity. The metallocavitands 1-4 were assembled from Re₂(CO)₁₀, rigid bis-chelating donor (H₂-dhaq = 1.4-dihydroxy-9.10-anthraquinone and H₂-CA = chloranilic acid) and Lⁿ via solvothermal approach. The ligands and metollacavitands were characterized by analytical and spectroscopic methods and further 1 and 4 were confirmed by single crystal X-ray diffraction analysis which reveals that a toluene molecule is residing in the hydrophobic cavity. The Lⁿ and 1-4 are emissive at room temperature. The internal cavity of the metallocavitand acts as host for aromatic guest molecules. The host-guest interaction properties of 1 with various aromatic (anthracene (An), naphthalene (Np)) and nitroaromatic molecules (nitrobenzene (NB), 2-nitrotoluene (2-NT), 4-nitrotoluene (4-NT) and 2,4-dinitrotoluene (DNT)) were studied by emission spectroscopic method.

This work has been published in Dalton Trans. 2018, 47, 4494 -4500.

2.1. Introduction

The design and synthesis of metallocavitands similar to calixarenes have been growing due to their interest in the field of molecular recognition, catalysis, selective reactivity and biology. 1-4 Most of the studies in this area are focused on making neutral/ionic metallacalix[n] arenes (n = 3 and 4) to tune the hydrophobic cavity and functional groups at the rim.⁵⁻⁸ Further, various approaches various metal ions and organic building units have been attempted to modulate the properties. Up to now, attempt to make neutral metallocavitand framework similar to calix[5]arene is scarce. It is expected that the metallocavitand may display properties similar to the calix[5]arene and is conformationally rigid and has larger hydrophobic cavity than the metallocavitand which is similar to calix[4]arene framework. 9-10 Herein, we report a simple synthetic approach for metallocavitand with larger cavity. The neutral heteroleptic metallocavitand was assembled using Re₂(CO)₁₀, rigid bis-chelating donors and a flexible ditopic N-donor possessing bis(4-methylphenyl)methane spacer, via solvothermal approach. Though the approach is similar to dirhenium-based metallacalix[4] arene i.e., combination of ditopic ligands containing a "phenylene(CH₂hydrocycle)₂" flexible framework, rigid bis-chelating donor, and Re₂(CO)₁₀, this approach uses " CH_2 -(phenylene- CH_2 -heterocycle)₂" that results metallocavitand framework with solvent accessible hydrophobic cavity (Scheme 2.2-2.3). 12

2.2. Experimental

2.2.1 Materials and Methods

Starting materials such as Re₂(CO)₁₀, H₂-dhaq, H₂-CA, benzimidazole(H-bimz), 2,3-diaminonaphthalene, diphenylmethane, phosphoric acid, paraformaldehyde, 30-33% HBr in AcOH, glacial acetic acid, formic acid and KOH were obtained from commercial sources and used as received. Naphthanoimidazole (H-nimz) and bis(4-(bromomethyl)phenyl)methane were prepared by using reported procedure.¹³ Toluene and mesitylene were purified and distilled by conventional procedure. Spectroscopic grade solvent were used for analysis. FT-IR spectra were recorded on a Nicolet 380 FT-IR Spectrometer and Bruker ALPHA II FTIR Spectrometer. ¹H NMR spectra were recorded on a Bruker Avance III 500 and 400 MHz spectrometers. HR-MS spectra were recorded on a Bruker maXis mass spectrometer.

Elemental analysis data were performed on a Flash EA 1112 Series CHNS analyzer. UV-Vis and Fluorescence spectra were recorded on Shimadzu UV-VIS-NIR (UV-3600) spectrophotometer and Horiba Jobin Yvon (Fluoromax-4) spectrophotometer, respectively.

2.2.2 Synthesis of ligands and complexes.

Synthesis of bis(4-(naphtho[2,3-d]imidazol-1-ylmethyl)phenyl)methane (L^1) .

A mixture of powdered KOH (0.1001 g, 1.784 mmol) and H-nimz (0.3 g, 1.784 mmol) in DMF (10 mL) was stirred at room temperature for 3 h. Bis(4-(bromomethyl)phenyl)methane (0.3157 g, 0.892 mmol) was added to the solution. The reaction mixture was then stirred continuously for 24 h. The residue was poured into ice cold water (300 mL). The resulting gray precipitate was filtered, washed several times with water, and air dried. The crude was purified by column chromatography (ethyl acetate/hexane, 4/6, v/v). Yield: 69% (324 mg). ¹H NMR (400 MHz, DMSO- d_6): δ 8.61 (s, 2H, H²), 8.22 (s, 2H, H⁹), 8.01-7.99 (m, 2H, H⁸), 7.96 (s, 2H, H⁴), 7.91-7.89 (m, 2H, H⁵), 7.38-7.35 (m, 4H, H^{7.6}), 7.23 (d, J_{HH} = 8.16 Hz, 4H, H^{14,11}), 7.14 (d, J_{HH} = 8.16 Hz, 4H, H^{13,12}), 5.50 (s, 4H, H¹⁰, -C H_2 -), and 3.82 (s, 2H, H¹⁵, -C H_2 -). ESI (HR-MS). Calcd for C₃₇H₂₈N₄ [M+H]⁺: m/z 529.2387. Found: m/z 529.2395. Anal. Calcd for C₃₇H₂₈N₄: C, 84.06; H, 5.34; N, 10.60. Found: C, 84.17; H, 5.39; N, 10.48.

Synthesis of bis(4-(benzimidazol-1-ylmethyl)phenyl)methane (L^2) .

A mixture of powdered KOH (0.239 g, 4.232 mmol) and H-bimz (0.5 g, 4.232 mmol) in DMF (10 mL) was stirred at room temperature for 3 h. Bis(4-(bromomethyl)phenyl)methane (0.750 g, 2.116 mmol) was added to the solution. The reaction mixture was then stirred continuously for 48 h. The residue was poured into ice cold water (300 mL) and filtered. The resulting sticky white precipitate was washed with hexane and air dried. The crude was purified by column chromatography (methanol/chloroform, 2.5/97.5, v/v). Yield: 51% (462 mg). 1 H NMR (500 MHz, DMSO- d_6): δ 8.36 (s, 2H, H²), 7.65-7.62 (m, 2H, H⁷), 7.50-7.47 (m, 2H, H⁴), 7.20-7.16 (m, 8H, H^{12,9,6,5}), 7.15-7.13 (m, 4H, H^{11,10}), 5.41 (s, 4H, H⁸, -CH₂-), and 3.83 (s, 2H, H¹³, -CH₂-). ESI (HR-MS). Calcd for $C_{29}H_{24}N_4$ [M+H]⁺: m/z 429.2079. Found: m/z 429.2119. Anal. Calcd for $C_{29}H_{24}N_4$: C, 81.28; H, 5.65; N, 13.07. Found: C, 81.12; H, 5.58; N, 13.21.

Synthesis of bis(4-(2-nonyl benzimidazol-1-ylmethyl)phenyl)methane)) (L^3) .

A mixture of powdered KOH (0.115 g, 2.046 mmol) and H-nbimz (0.5 g, 2.046 mmol) in DMF (10 mL) was stirred at room temperature for 3 h. Bis(4-(bromomethyl)phenyl)methane (0.362 g, 1.023 mmol) was added to the solution. The reaction mixture was then stirred continuously for 24 h. The residue was poured into water and chloroform mixture, and stirred for overnight. The organic layer was extracted, washed with saturated NaCl solution, dried over Na₂SO₄ and concentrated. The sticky precipitate was purified by column chromatography (hexane) to afford yellow coloured liquid. The resulting product was left open and the powder was obtained after 7-10 days. The powder was washed with hexane and dried. Yield: 48% (334 mg). ¹H NMR (500 MHz, DMSO- d_6): δ 7.56-7.54 (m, 2H, H⁷), 7.41-7.39 (m, 2H, H⁴), 7.13-7.09 (m, 8H, H^{12,9,6,5}), 6.95 (d, J_{HH} = 8.1 Hz, 4H, H^{11,10}), 5.40 (s, 4H, H⁸, -CH₂-), and 3.82 (s, 2H, H¹³, -CH₂-), 2.79-2.75 (t, J_{HH} = 7.6 Hz, 4H, H¹⁴), 1.67-1.61 (m, 4H, H¹⁵), 1.18 (s, 24H, H¹⁶⁻²¹), and 0.84-0.81 (t, J_{HH} = 6.8 Hz, 6H, H²²). ESI (HR-MS). Calcd for C₄₇H₆₀N₄ [M+H]⁺: m/z 681.4896. Found: m/z 681.4952. Anal. Calcd for C₄₇H₆₀N₄: C, 82.89; H, 8.88; N, 8.23. Found: C, 82.76; H, 8.32; N, 8.79.

Synthesis of $[\{(CO)_3Re(\mu-dhaq)Re(CO)_3\}(\mu-L^1)]$ (1).

A mixture of Re₂(CO)₁₀ (100 mg, 0.1532 mmol), H₂-dhaq (36.80 mg, 0.1532 mmol), L¹ (80.99 mg, 0.1532 mmol), and toluene (10 mL) in a Teflon flask was placed in a steel bomb. The bomb was kept in an oven at 160 °C for 48 h and cooled to 30 °C. Compound **1** was obtained as dark coloured crystals and powder. The product was filtered, washed with hexane and air-dried. Yield: 76% (153 mg). ¹H NMR (400 MHz, DMSO- d_6): δ 9.32 (s, 2H, H²), 8.52-8.49 (m, 4H, H^{9,a}), 8.31 (s, 2H, H⁴), 8.13-8.10 (m, 2H, H⁸), 8.03-8.00 (m, 2H, H^b), 7.93-7.91 (m, 2H, H⁵), 7.43-7.40 (m, 4H, H^{6,7}), 7.15 (s, 2H, H^c), 7.08 (d, J_{HH} = 8.21 Hz, 4H, H^{14,11}), 6.80 (d, J_{HH} = 8.21 Hz, 4H, H^{13,12}), 5.55-5.35 (m, H¹⁰, -CH₂-), and 3.64-3.54 (m, H¹⁵, -CH₂-). ESI (HR-MS). Calcd for C₅₇H₃₄N₄O₁₀Re₂ [M+H]⁺: m/z 1309.1465. Found: m/z 1309.1463. Anal. Calcd for C₅₇H₃₄N₄O₁₀Re₂: C, 52.37; H, 2.62; N, 4.29. Found: C, 52.43; H, 2.58; N, 4.35. FT-IR (KBr, cm⁻¹): 2011 (s), 1913 (s), and 1856 (s).

Synthesis of $[\{(CO)_3Re(\mu-dhaq)Re(CO)_3\}(\mu-L^2)]$ (2).

A mixture of $Re_2(CO)_{10}$ (50 mg, 0.0766 mmol), H_2 -dhaq (18.4 mg, 0.0766 mmol), L^2 (32.83 mg, 0.0766 mmol), and mesitylene (30 mL) was refluxed for 6 h. The product was filtered in hot condition, washed with hexane and air-dried. Compound **2** was obtained as dark coloured

powder. Yield: 49% (45 mg). ¹H NMR (500 MHz, DMSO- d_6): δ 9.13 (s, 2H, H²), 8.52-8.50 (m, 2H, H^a), 8.04-8.03 (m, 2H, H^b), 7.98-7.96 (d, J_{HH} = 7.45 Hz, 2H, H⁷), 7.83-7.82 (d, J_{HH} = 7.35 Hz, 2H, H⁴), 7.36-7.30 (m, 4H, H^{6,5}), 7.10-7.09 (d, J_{HH} = 8.1 Hz, 4H, H^{12,9}), 7.06 (s, 2H, H^c), 6.84-6.82 (d, J_{HH} = 8.1 Hz, 4H, H^{11,10}), 5.50-5.32 (m, 4H, H⁸, -C H_2 -), and 3.65-3.58 (m, 2H, H¹³, -C H_2 -). Anal. Calcd for C₄₉H₃₀N₄O₁₀Re₂: C, 48.75; H, 2.50; N, 4.64. Found: C, 48.82; H, 2.56; N, 4.58. FT-IR (KBr, cm⁻¹): 2007 (s), and 1864 (s).

Synthesis of $[\{(CO)_3Re(\mu-dhaq)Re(CO)_3\}(\mu-L^3)]$ (3).

A mixture of Re₂(CO)₁₀ (50 mg, 0.0766 mmol), H₂-dhaq (18.4 mg, 0.0766 mmol), L³ (52 mg, 0.0766 mmol), and mesitylene (30 mL) was refluxed for 6 h. The resulting liquid was concentrated, washed with distilled hexane and air-dried. Compound **3** as dark coloured powder was obtained. Yield: 65% (73 mg). ¹H NMR (500 MHz, DMSO- d_6): δ 8.36-8.34 (m, 2H, H^a), 7.94-7.92 (m, 2H, H^b), 7.56-7.54 (m, 2H, H⁷), 7.41-7.39 (m, 2H, H⁴), 7.29 (s, 2H, H^c), 7.13-7.09 (m, 8H, H^{12,9,6,5}), 6.96-6.95 (d, J_{HH} = 8.1 Hz, 4H, H^{11,10}), 5.39 (s, 4H, H⁸, -C H_2 -), and 3.83 (s, 2H, H¹³, -C H_2 -), 2.79-2.76 (t, J_{HH} = 7.5 Hz, 4H, H¹⁴), 1.68-1.62 (m, 4H, H¹⁵), 1.18 (s, 24H, H¹⁶⁻²¹), and 0.84-0.82 (t, J_{HH} = 6.85 Hz, 6H, H²²). Anal. Calcd for C₆₇H₆₆N₄O₁₀Re₂: C, 55.13; H, 4.56; N, 3.84. Found: C, 55.23; H, 4.48; N, 3.81. FT-IR (KBr, cm⁻¹): 2010 (s), and 1874 (s).

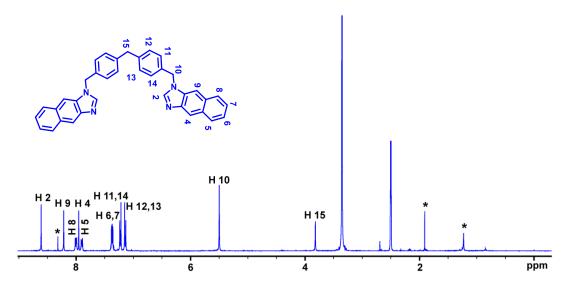
Synthesis of $[\{(CO)_3Re(\mu-CA)Re(CO)_3\}(\mu-L^1)]$ (4).

Dark coloured crystals and powder of **4** were obtained by following the procedure similar to that for **1**, using a mixture of Re₂(CO)₁₀ (100 mg, 0.1532 mmol), H₂-CA (32 mg, 0.1532 mmol), L¹ (80.60 mg, 0.1532 mmol), and toluene (10 mL) in a Teflon flask. Yield: 57% (112.4 mg), (Major isomer). ¹H NMR (500 MHz, DMSO- d_6): δ 8.66 (s, 2H, H²), 8.22 (s, 2H, H⁹), 8.11-7.98 (m, 2H, H⁸), 7.97 (s, 2H, H⁴), 7.92-7.89 (m, 2H, H⁵), 7.47-7.32 (m, 4H, H^{7.6}), 7.27-7.21 (m, 4H, H^{14,11}), 7.19-7.12 (m, 4H, H¹³⁻¹²), 5.51 (m, 4H, H¹⁰, -CH₂-), and 3.82 (m, 2H, H¹⁵, -CH₂-). ESI (HR-MS). Calcd for C₄₉H₂₈N₄Cl₂O₁₀Re₂ [M+H]⁺: m/z 1277.0366. Found: m/z 1277.0356. Anal. Calcd for C₄₉H₂₈N₄Cl₂O₁₀Re₂: C, 46.12; H, 2.21; N, 4.39. Found: C, 46.18; H, 2.25; N, 4.32. FT-IR (KBr, cm⁻¹): 2017 (s), and 1890 (s).

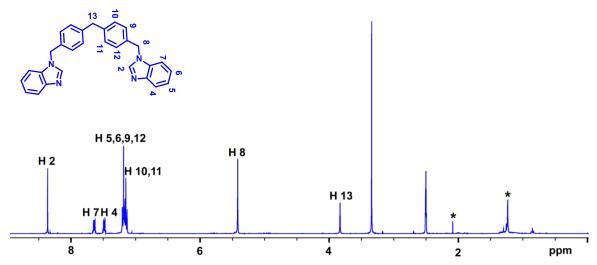
2.2.3 Host-Guest Studies.

Quenching experiments of host **1** in the presence of aromatic nitro compounds (Nitrobenzene, NB; 2-Nitrotoluene, 2-NT; 4-Nitrotoluene, 4-NT; 2,4- dinitrotoluene, 2,4-DNT) and planar

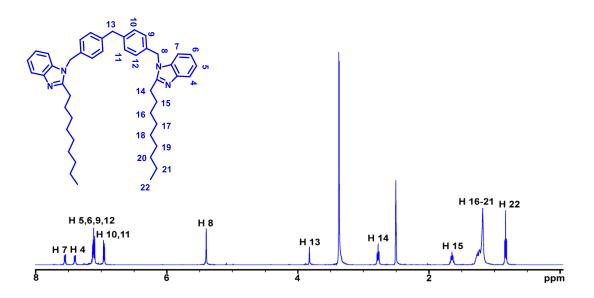
aromatic compounds (Benzene, Bn; Mesitylene, Ms; Naphthalene, Np; Anthracene, An) were carried out by fluorescence spectroscopic method. The solvent (DMSO) used in this study was of spectroscopic grade and used as received. Aromatic guests stock solutions (NB; 1.7×10^{-2} M for 2-NT, 4-NT and 2,4-DNT; 1.7×10^{-1} M for Bn and Ms; 0.14×10^{-2} M for Np; 0.17×10^{-3} M for An) were prepared in DMSO. Complex 1 stock solutions (1.92×10⁻⁴ M for NB, 2-NT, 4-NT and 2,4-DNT; 1.92×10⁻⁴ M for both Bn and Ms; 2.13×10⁻⁴ M for Np; 1.92×10⁻⁴ M for An) were prepared in DMSO. Test solutions were prepared by the addition of an appropriate aliquot (0.02-3mL) of each guest stock into 5ml standard volumetric flask followed by placing 1 mL of stock solution of host 1 and then diluting the solution to 5 mL with DMSO. The excitation wavelengths (λ_{exc}) were 336 nm for NB, 2-NT and 4-NT and 2,4-DNT; 350 nm for Bn; 325 nm for Ms; 290 nm for Np and 336 nm for An. The slit width was 5 nm for both the excitation and emission. The binding characteristics of host 1 with guest molecules were determined by the emission spectroscopic method. The binding constants were calculated on the basis of the Benesi-Hildebrand equation $[1/\Delta I = 1/\Delta I_{max} + (1/K[G])]$ ΔI_{max})]; here $\Delta I = I - I_{\text{min}}$, $\Delta I_{\text{max}} = I_0 - I_{\text{min}}$, I_0 is the emission intensity of free host 1, I is the intensity measured with guest, Imin is the intensity measured with an excess of guest, K is the binding constant, and [G] is the concentrations of guest molecules.


2.3. Results and discussion

2.3.1 Synthesis, characterization, and molecular structure of ligands L^{1} - L^{3} .


Neutral nitrogen donor ligands (L¹-L³) were obtained using bis(4-bromomethylphenyl)methane and heterocyclic motif (naphthanoimidazole, H-nimz; benzimidazole, H-bimz; 2-nonylbenzimidazole, H-nbimz) in the presence of base.¹¹

The 1 H NMR spectra of Lⁿ displayed single set of signals for all the protons. In particular, two singlet signals in the aliphatic region corresponds to two methylene protons (~5-6 ppm for N-C H_2 -C and ~3.5-4.0 ppm for C-C H_2 -C), suggesting formation of the ligands and are flexible in solution i.e., various conformers which interconvert each other in the solution. Ligand L¹ takes M-shaped conformation mode in the solid state ligand L² adopts *cis*-conformation. Two nimz units of L¹ are arranged *anti*-cofacially, whereas two bimz motifs of L² are in *syn*-orientation.


Scheme 2.1 Synthesis of ligands L^1 - L^3 .

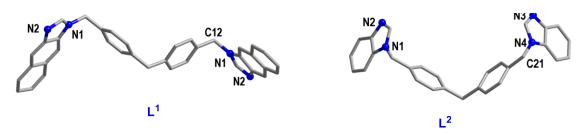
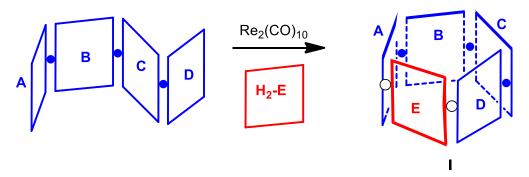
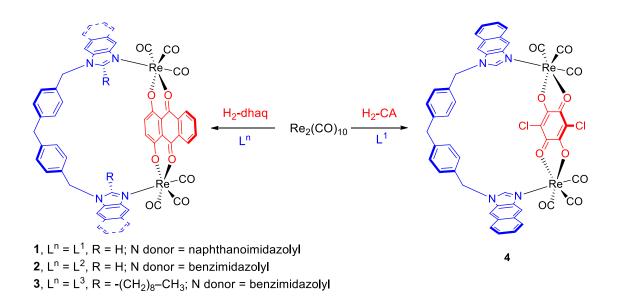

Figure 2.1. ¹H NMR spectrum of L¹ in DMSO- d_6 (* is solvent).

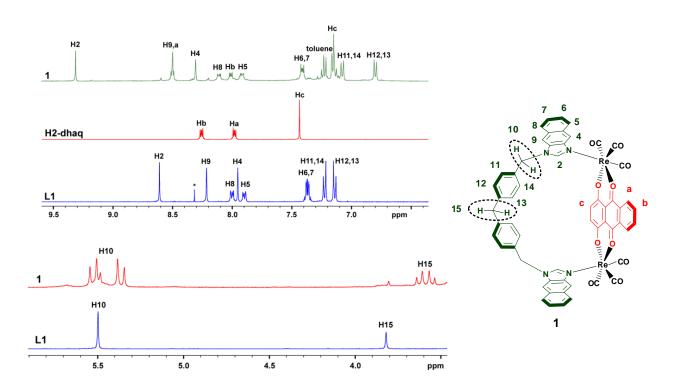
Figure 2.2. ¹H NMR spectrum of L² in DMSO- d_6 (* is solvent).


Figure 2.3. ¹H NMR spectrum of L³ in DMSO- d_6 .

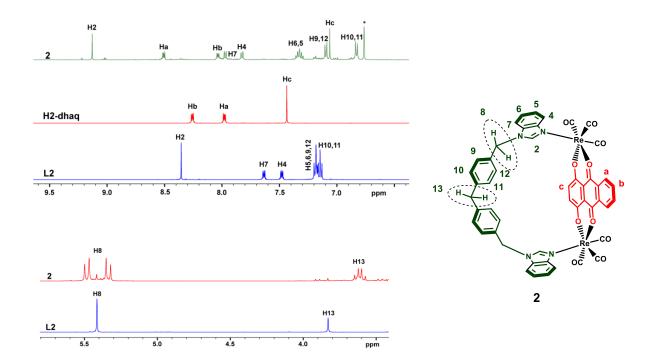

Figure 2.4. Molecular structures of L^1 and L^2 (H-atoms are omitted for clarity).

2.3.2 Synthesis and characterization of metallocavitands (1-4).

The treatment of $Re_2(CO)_{10}$, 1,4-dihydroxy-9,10-anthraquinone (H₂-dhaq)/chloranilicacid (H₂-CA), Lⁿ and toluene or mesitylene yielded metallocavitands (**1-4**) with toluene molecule (Scheme 2.3).¹¹ The complexes are air and moisture stable, and moderately soluble in polar organic solvents. The FT-IR spectra of **1-4** showed strong bands around 2017–1856 cm⁻¹, characteristic of the *fac*-Re(CO)₃ units in the asymmetric environment.¹



Scheme 2.2. Synthesis of an irregular pentagonal-shaped metallocavitand (**I**). A = D = heterocyclic nitrogen donor; B = C = phenylene; H_2E = bis-chelating unit; \bullet = CH_2 ; o = fac-Re(CO)₃.



Scheme 2.3. Synthesis of 1-4.

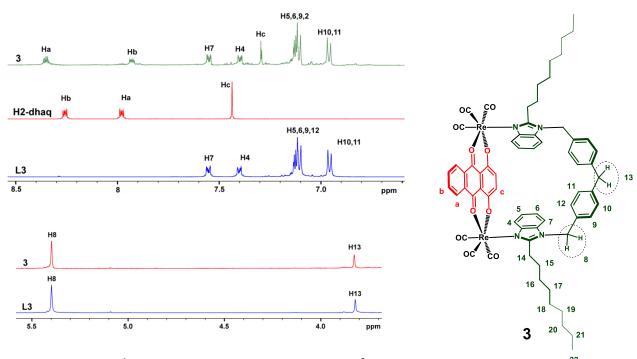

The 1H NMR spectra of **1** and **2** displayed a single set of chemical resonances for protons of both L^n and dhaq in a 1:1 integration ratio, ascribed to M_2LL' -type complexes. The proton of N-CH-N in **1** and **2** was significantly downfield shifted relative to uncoordinated L^1/L^2 , confirms the coordination of N to rhenium. The methylene protons (N-C H_2 -C and C-C H_2 -C) of **1** and **2** were appeared as multiplets, suggesting the rigidity of L^1/L^2 in the complexes. Remaining protons of L^n and dhaq motifs were shifted in relative to those protons in the uncoordinated ligands. In the case of **3**, no shift in the peaks for the protons of L^3 compared to those protons in the uncoordinated L^3 while the peaks for the protons of dhaq unit were shifted compared to those protons in uncoordinated L^3 -dhaq. Complex **4** displays two types of L^3 -NMR pattern for protons of L^3 -The pattern of major peaks resembled to the ligand proton peaks with slight downfield shift. The minor peaks resembled to the peaks of L^3 -NMR in **1**. We suggest that **4** exists as various conformers i.e. two major conformers, and more than two minor conformers, in solution.


Figure 2.5. Partial ¹H NMR spectra of **1**, H_2 -dhaq and L^1 in DMSO- d_6 .

Figure 2.6. Partial 1 H NMR spectra of **2**, H_2 -dhaq and L^2 in DMSO- d_6 .

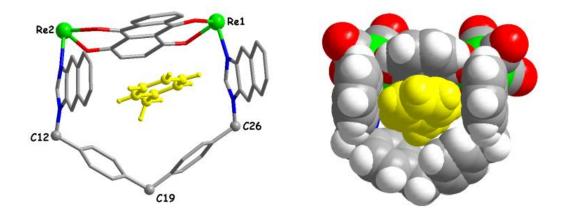
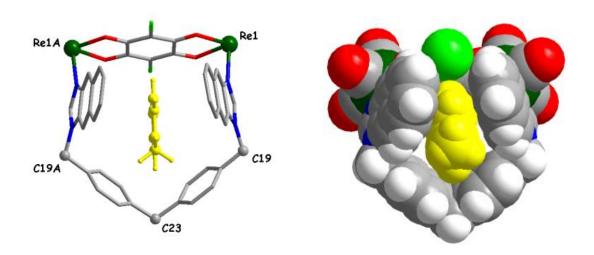

Figure 2.7. Partial ¹H NMR spectra of **3**, H_2 -dhaq and L^3 in DMSO- d_6 .

Figure 2.8. Partial ¹H NMR spectra of **4** and L¹ in DMSO- d_6 .

2.3.3 Molecular structure of metallocavitands (1 and 4).

The result of SCXRD study showed that 1 adopts M₂LL'-type of SCC with irregular pentagon (Fig. 2.9). The cyclic assembly of 1 can be viewed as [2+1+1] assembly of two fac-Re(CO)₃ cores, one dianionic dhaq²⁻ motif, and one neutral nitrogen donor ligand L¹. The arrangement of five organic units i.e., "Re-dhaq²-Re-nimz-CH₂phenylene– CH_2 –phenylene– CH_2 –nimz", provide distorted pentagonal-shaped structure i.e three methylene units ($-C^1H_2-$, $-C^2H_2-$, $-C^3H_2-$) and two Re atoms are related to five vertices and dhaq²-, two nimz units and two phenylene units are the edges. The dimensions of **1** are 8.390 Å (Re···Re), 5.679 Å (Re²···C¹²{CH₂}), 5.875 Å $(C^{19}\{CH_2\}\cdots C^{26}\{CH_2\}),$ $(C^{12}\{CH_2\}\cdots C^{19}\{CH_2\}),$ Å 5.820 and 5.665 (C²⁶{CH₂}···Re¹) including van der Waals radii. The height of structure of **1** is 8.7 Å (length of nimz unit). Among the five pentagonal walls, two phenylene walls are tilted oppositely with dihedral angle 115.7°. The remaining three walls are perpendicular to the plane created by five vertices with the dihedral angle of 88.5°, 88.63° and 88.47°. The five interior angles of pentagonal structure are 100°, 95°, 112°, 115° and 117°, and the sum of the pentagonal angle is 540°. It is noteworthy to mention that pentagonal shaped metal-directed SCCs are very limited.


Figure 2.9. Molecular structure of **1** (left: H atoms and six CO units were removed to show cyclic framework; right: space-filling view of **1**. C = gray, H = white, N = blue, O = red, Re = green, toluene = yellow.

Complex 4 adopts a similar structure like that of 1 (Fig. 2.10). The distances between the vertices of pentagonal structure of 4 are similar to those found in 1 except Re···Re distance (8.13 Å) which is 0.26 Å shorter than Re···Re distance in 1. The major differences found among these two complexes are the orientation of two nimz units in the cyclic framework. The two nimz units of 1 are cofacial with the dihedral angle of 6.598 Å. The distance of centre of nimz to centre of another nimz is 9.52 Å in 1. However, two nimz in 4 are tilted in such a way that the edges of the six-membered core of nimz are close to each other with the dihedral of angle of 32.672° . The shortest non-bonded distance between two nimz in 4 is 4.745 Å which is above the five vertices plane and longest distance (9 Å) is below to the plane. The electronic arrangements found in dianionic ligands, dhaq²⁻ in 1 and CA²⁻ in 4, are usual i.e., delocalization of π electrons both in dhaq²⁻ and CA²⁻. The crescent bending nature of dhaq²⁻ in 1 is similar to other ionic/neutral metallacycles possessing this unit. 11, 12b, 14

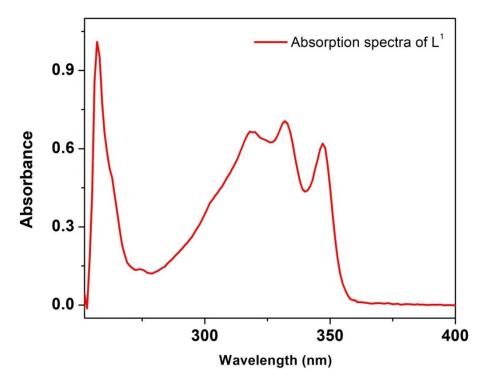
2.3.4 Host-guest interactions in solid-state.

The hydrophobic cavity of **1** (width: 6.12 Å excluding the van der Waals radii i.e., distance between two nmiz units and height: 8.7 Å) contains one toluene solvent molecule, which resides deep in the cavity. The cavitand size is similar to cavity size of pillar[6]arene (ca. 6.7 Å) and is bigger than pillar[5]arene cavity (ca. 4.7 Å). ¹⁵ All five walls of metallocavitand **1** contact with guest toluene via *face-to-face* π - π stacking interactions and the *edge-to-face* aromatic C-H··· π interactions. The benzene

plane of toluene guest is oriented parallel to dhaq²⁻ plane and perpendicular to two nimz planes. The crescent shaped dhaq²⁻ molecule is above the plane of Re···Re with the distance of 0.6 Å. This arrangement may be due to π ··· π interactions with guest toluene ($\tau = 7^{\circ}$; d = 3.25-3.77 Å and d_{av}. = 3.45 Å). The dhaq²⁻ and CA²⁻ units are used to make SCC rectangles and other cyclic structures. However, to the best of our knowledge the π ··· π stacking interactions between the dhaq²⁻/CA²⁻ units and guest aromatic solvent molecule is scarce. The distance of centre of mass (COM) of toluene and COM of nimz ring is 4.8 Å, indicating the strong *edge-to-face* aromatic C-H··· π interactions between them. The methyl group of toluene lie at bottom of cavitand and is stabilized by multiple aliphatic C-H··· π interactions.

Figure 2.10. Molecular structure of **4** (left: H atoms and six CO units were removed; right: space-filling view of **4**. C = gray, H = white, N = blue, Cl = green, $Cl = \text$

The volume of the hydrophobic cavity in **4** is reduced as compared to molecule **1** due to the orientation of two nimz units. In contrary to **1**, the plane of guest toluene is parallel to the two nimz units and perpendicular to the CA^{2-} plane. The distance between two COM of nimz units is 7 Å i.e., diameter is 3.6 Å excluding the van der Waals radii. The distances of benzene unit of toluene and plane of nimz in **4** are 3.35, 3.47, 3.58, 3.84, 3.93 and 4.7 Å, indicates aromatic *edge-to-face* C-H··· π interactions. Further, the distance between the one of hydrogen atoms of toluene and chlorine of CA^{2-} is 2.992 Å which is equal to the sum of the van der Waals distance of chlorine (1.80 Å) and hydrogen (1.20 Å), indicates very weak C-H···Cl interaction. In addition,


the methyl group of toluene guest molecule is upward in the cavity and is away from the walls of cyclic framework of **4**.

2.3.5 Photophysical properties.

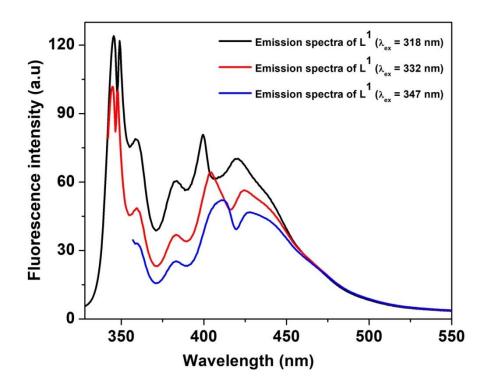
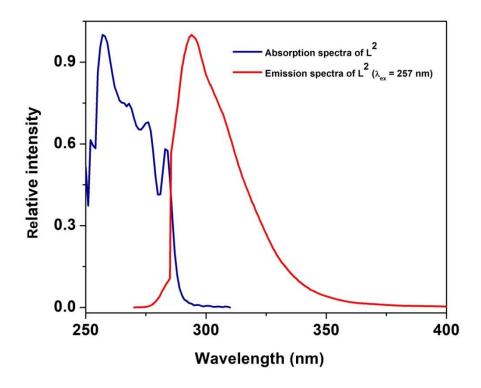
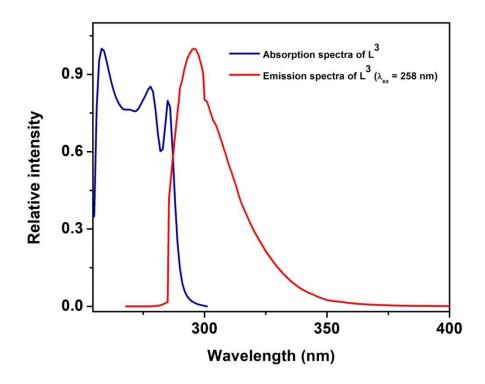
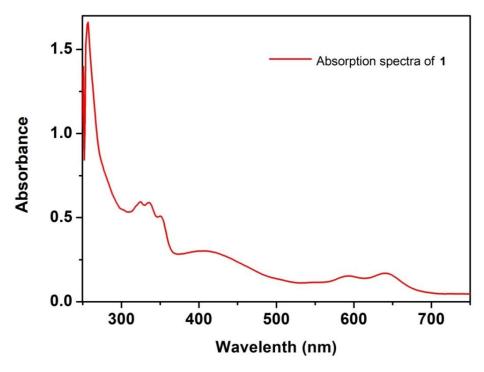

The photophysical properties of ligands (L¹-L³) and complexes (1-4) were studied in DMSO. The absorption properties of known SCCs possessing [benzimidazolyl-Re(CO)₃-dhaq-Re(CO)₃-benzimidazolyl] unit are well-studied both experimentally and theoretically by Lu and others. 16 Hence, the assignment of electronic transitions is based on the literature report. 16 The absorption spectra of L¹, L², and L³ display bands in the range of 257-347, 257-283, and 258-285 nm, respectively (Table 1). High energy bands ($\lambda_{abs} = 257, 325, 336, \text{ and } 350 \text{ nm for } 1, 262 \text{ nm for } 2 \text{ and } 3, \text{ and } 256,$ 326, 336, and 348 nm for 4) are assigned to ligand centred π - π * electronic transitions, whereas low energy bands (at $\lambda_{abs} = 407$ nm for 1, 410 for both 2 and 3) may correspond to metal-to-ligand charge transfer (MLCT) transitions. In addition, the weak bands ($\lambda_{abs} = 593$, 641 nm for **1**, 596, 644 nm for **2**, and 601, 650 nm for **3**) may be attributed to intraligand transition of the dhaq²⁻ moiety. Ligand L¹ shows structured emission in the visible region (345-420nm), whereas L² and L³ show structurelss emission band centred at 294 and 296 nm, respectively. All the complexes show ligand-centred emission in the presence/absence of oxygen at room temperature. No emission was observed in the visible region for all the complexes.

Table 2.1. Absorption and emission spectral data for the ligands and the complexes.


Comp.	λ_{abs} (nm)	$\lambda_{\rm exc}$ (nm)	λ_{em} (nm)
L^1	257, 318, 332, 347	318	345, 349, 359, 382, 399, 420
L^2	257, 268, 276, 283	257	294
L^3	258, 278, 285	258	296
1	257, 325, 336, 350,	325	355, 370, 387
	407, 593, 641		
2	262, 410, 596, 644	262	294
3	262, 410, 601, 650	262	303
4	256, 326, 335, 348	328	353, 370, 390, 415


Figure 2.11. UV–Vis spectrum of L^1 in DMSO $(0.68 \times 10^{-4} \text{ M})$.


Figure 2.12. Fluorescence spectra of L¹ in DMSO $(0.68 \times 10^{-4} \text{ M})$.

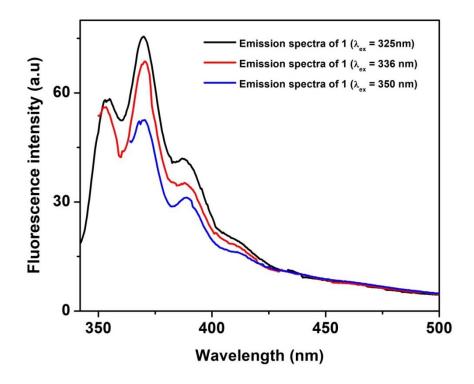

Figure 2.13. UV–Vis and fluorescence spectra of L^2 in DMSO $(1 \times 10^{-4} \text{ M})$.

Figure 2.14. UV–Vis and fluorescence spectra of L^3 in DMSO $(0.2 \times 10^{-4} \text{ M})$.

Figure 2.15. UV–Vis spectrum of **1** in DMSO $(0.60 \times 10^{-3} \text{ M})$.

Figure 2.16. Fluorescence spectra of **1** in DMSO $(1.92 \times 10^{-4} \text{ M})$.

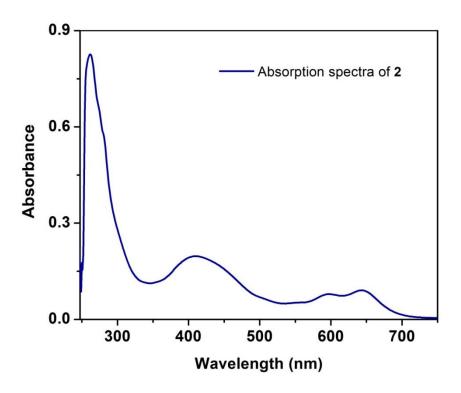
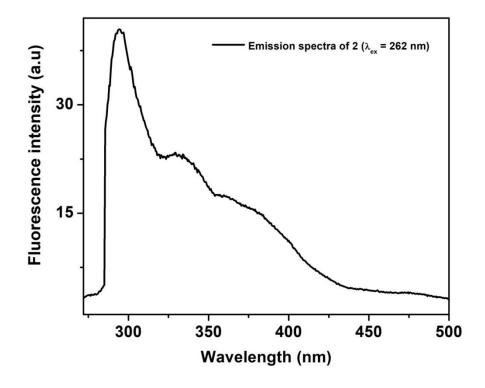



Figure 2.17. UV-Vis spectrum of 2 in DMSO $(0.3 \times 10^{-5} \text{ M})$.

Figure 2.18. Fluorescence spectrum of **2** in DMSO $(1 \times 10^{-4} \text{ M})$.

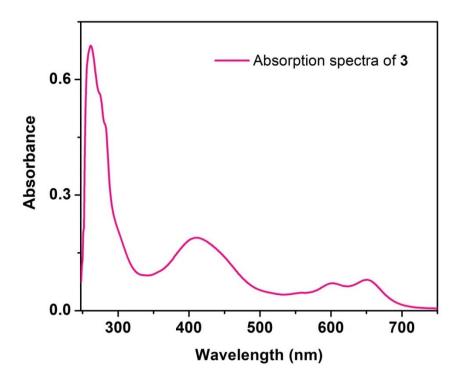
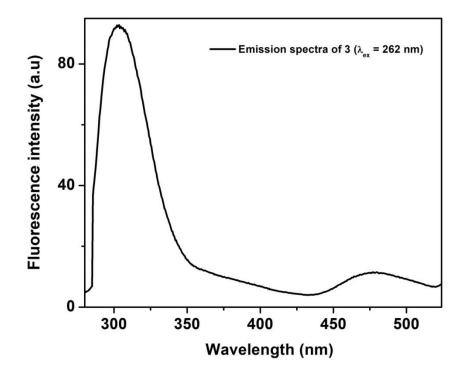



Figure 2.19. UV-Vis spectrum of 3 in DMSO $(0.4 \times 10^{-5} \text{ M})$.

Figure 2.20. Fluorescence spectrum of **3** in DMSO $(1 \times 10^{-4} \text{ M})$.

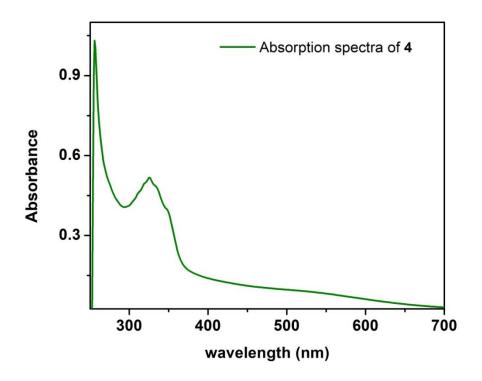
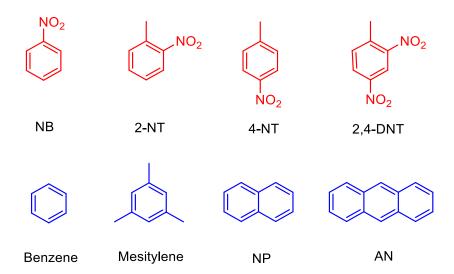
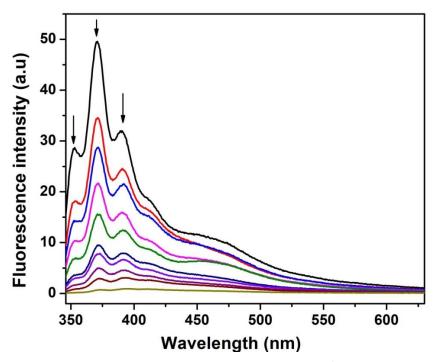
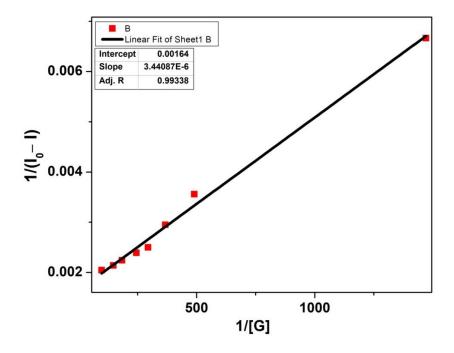
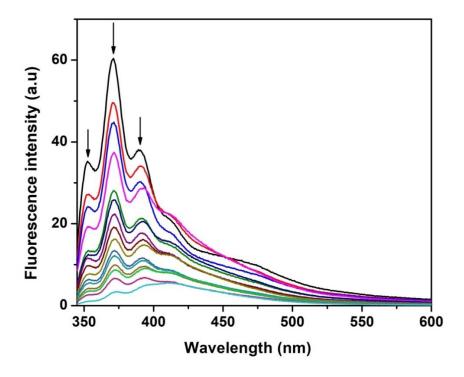



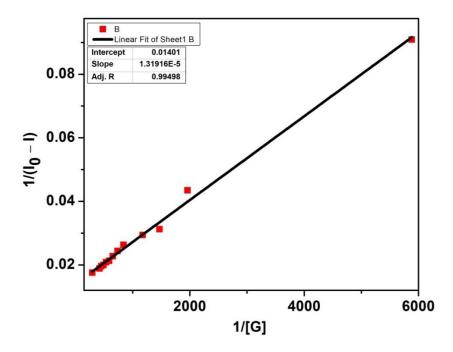
Figure 2.21. UV-Vis spectrum of 4 in DMSO $(0.2 \times 10^{-4} \text{ M})$.

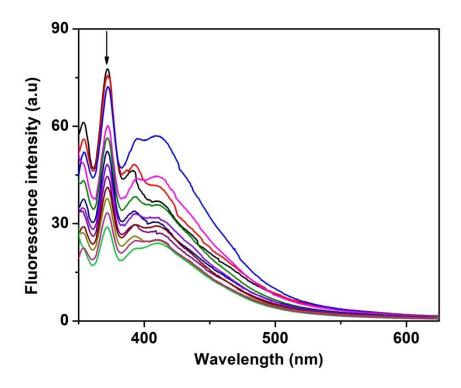

2.4 Binding studies of host 1 with aromatic and nitroaromatic molecule.

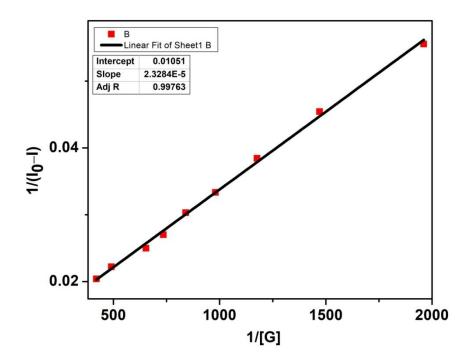
In order to study the host-guest interaction, we selectively chosen nitro substituted aromatic molecules and planar aromatic compounds in DMSO, using emission spectroscopic method (chart 2.1). The study was carried for complex 1 as host. The fluorescence spectrum of 1 exhibits an intense emission at 375 nm upon excitation at 336 nm. Figure 2.22 shows the changes in the fluorescence spectrum upon titrating 1 against nitrobenzene (NB). The fluorescence of 1 is effectively quenched upon addition of NB. Among nitrobenzene, 2-nitrotoluene, 4-nitrotoluene, and 2,4-dinitrotoluene (DNT), DNT display strong fluorescence quenching of 1. The effective quenching was achieved through electron transfer process from the photo-excited fluorophore (1) to the electron deficient nitroaromatic compounds at ground state. The fluorescence quenching data was analysed using linear regression plot which indicates the formation of 1:1 host-guest complex. The solid-state structure of 1 shows strong evidence that complex 1 can accommodate one toluene molecule in the cavity. The binding constants (*K*) were calculated on the basis of Benesi-

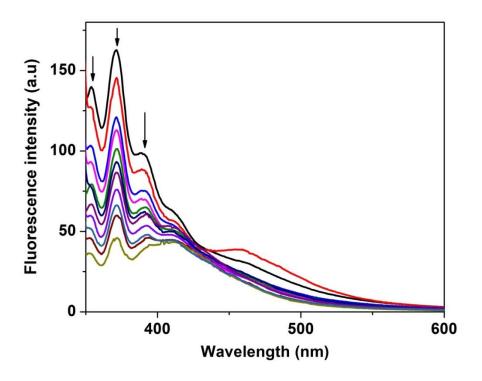

Hildebrand equation for complexation of 1 with 2,4-DNT, NB, 4-NT and 2-NT and are $2.5 \times 10^3 \text{ M}^{-1}$, $4.7 \times 10^2 \text{ M}^{-1}$, $4.5 \times 10^2 \text{ M}^{-1}$, $1.1 \times 10^3 \text{ M}^{-1}$, respectively.²⁰ Similarly, the titrations of 1 with various aromatic compounds were carried out by fluorescence method. The fluorescence spectra of 1 with gradual addition of anthracene/naphthalene show hyperchromic shift at 387/322 nm and hypochromic shift at 352/457 nm upon excitation at 336/290 nm. The emission profile of anthracene (An) and naphthalene (Np) are also merging with emission pattern of 1 in the range of 382-508 nm and 300-400 nm, respectively. Hence, we have chosen the emission intensity at 352/457 nm which is not merging with guest emission range, for binding constant calculation using Benesi– Hildebrand equation.²⁰ Anthracene shows higher binding ability than naphthalene, $(K = 1.3 \times 10^4 \text{ M}^{-1} \text{ for An and } 1.7 \times 10^3 \text{ M}^{-1} \text{ for Np})$. In case of benzene and mesitylene with 1, both fluorescence enhancement and quenching was observed simultaneously. This phenomenon may be due to the process of fast dissociation and association (guest go in/out the cavity) of host-guest complex. The above emission studies indicate that the accessible size of 1 is suitable to accommodate planar aromatic molecules as well as nitroaromatic compounds, which may be stabilized by the effective $\pi \cdots \pi$ and C-H $\cdots \pi$ interactions with host framework wall.

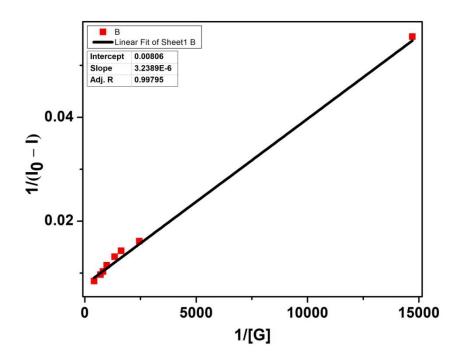

Chart 2.1: Guest molecules used for molecular recognition studies.

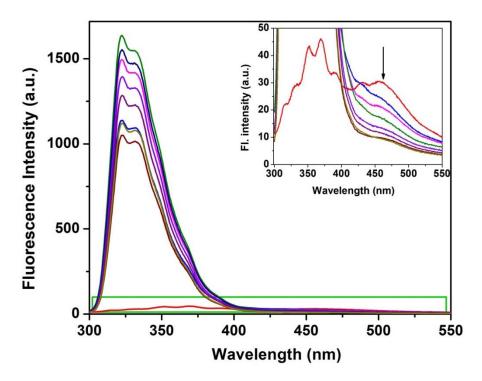

Figure 2.22. Changes in the emission spectra of **1** (3.84×10⁻⁵ M, $\lambda_{\rm exc}$ = 336 nm) with the addition of nitro benzene in DMSO. The arrows indicate the changes in the fluorescence intensity by addition of an appropriate aliquot of nitrobenzene.

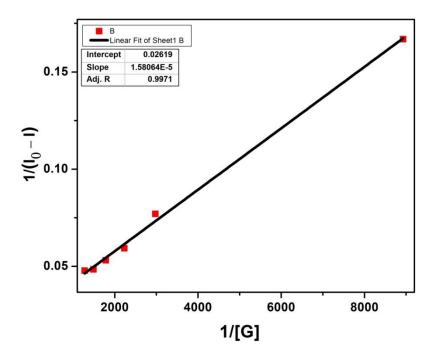

Figure 2.23. Benesi-Hildebrand plot for the emission quenching of host **1** (at 371 nm) with an increase in the concentration of nitrobenzene in DMSO.

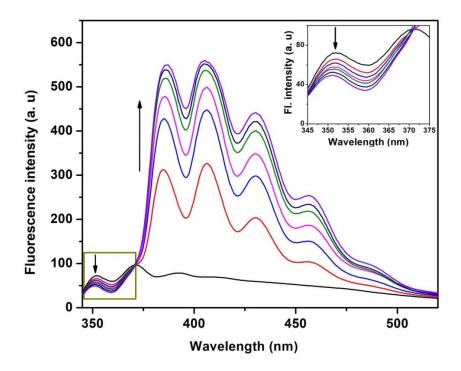

Figure 2.24. Changes in the emission spectra of **1** (3.84×10⁻⁵ M, $\lambda_{\rm exc}$ = 336 nm) with the addition of 2-nitrotoluene in DMSO. The arrows indicate the changes in the fluorescence intensity by addition of an appropriate aliquot of 2-nitrotoluene.

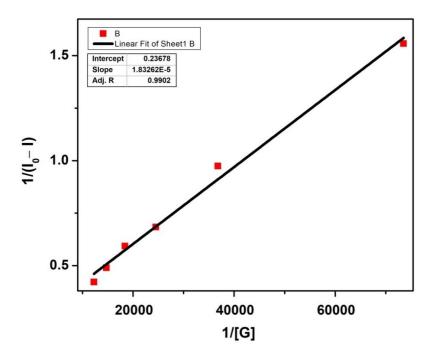

Figure 2.25. Benesi-Hildebrand plot for the emission quenching of host **1** (at 371 nm) with an increase in the concentration of 2-nitrotoluene in DMSO.

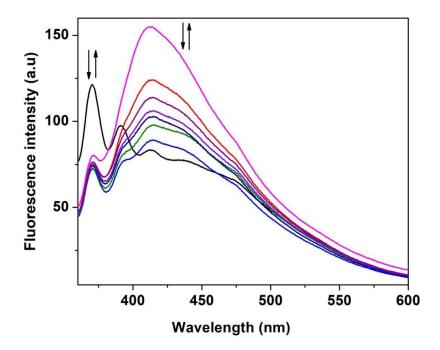

Figure 2.26. Changes in the emission spectra of **1** (3.84×10^{-5} M, $\lambda_{\rm exc}=336$ nm) with the addition of 4-nitrotoluene in DMSO. The arrows indicate the changes in the fluorescence intensity by addition of an appropriate aliquot of 4-nitrotoluene.


Figure 2.27. Benesi-Hildebrand plot for the emission quenching of host **1** (at 372 nm) with an increase in the concentration of 4-nitrotoluene in DMSO.


Figure 2.28. Changes in the emission spectra of **1** (3.84×10⁻⁵ M, $\lambda_{\rm exc}$ = 336 nm) with the addition of 2,4-dinitrotoluene in DMSO. The arrows indicate the changes in the fluorescence intensity by addition of an appropriate aliquot of 2,4-dinitrotoluene.


Figure 2.29. Benesi-Hildebrand plot for the emission quenching of host **1** (at 371 nm) with an increase in the concentration of 2,4-dinitrotoluene in DMSO.


Figure 2.30. Changes in the emission spectra of **1** (4.26×10^{-5} M, $\lambda_{\rm exc}=290$ nm) with the addition of naphthalene in DMSO. The arrow indicates the changes in the fluorescence intensity by addition of an appropriate aliquot of naphthalene.


Figure 2.31. Benesi-Hildebrand plot for the emission quenching of host **1** (at 457 nm) with an increase in the concentration of naphthalene in DMSO.

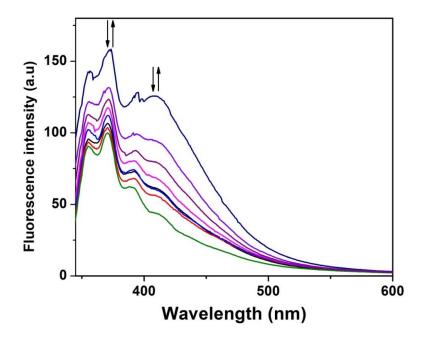

Figure 2.32. Changes in the emission spectra of **1** (3.84×10⁻⁵ M, $\lambda_{\rm exc}$ = 336 nm) with the addition of anthracene in DMSO. The arrows indicate the changes in the fluorescence intensity by addition of an appropriate aliquot of anthracene.

Figure 2.33. Benesi-Hildebrand plot for the emission quenching of host **1** (at 352 nm) with an increase in the concentration of anthracene in DMSO.

Figure 2.34. Changes in the emission spectra of **1** (3.84×10⁻⁵ M, $\lambda_{\rm exc}$ = 350 nm).with the addition of benzene in DMSO. The arrows indicate the arbitrary changes in the fluorescence intensity (not detectable) by addition of an appropriate aliquot of benzene.

Figure 2.35. Changes in the emission spectra of **1** (3.84×10⁻⁵ M, $\lambda_{\rm exc}$ = 325 nm) with the addition of mesitylene in DMSO. The arrows indicate the arbitrary changes in the fluorescence intensity (not detectable) by addition of an appropriate aliquot of mesitylene.

2.5 Conclusion

A new synthetic principle, i.e. treatment of $Re_2(CO)_{10}$, rigid bis-chelating donor, and flexible ditopic nitrogen donor possessing four arene/heteroarene units connected by three methylene bridge via one-pot approach, was developed for making distorted pentagonal shaped metallocavitand. The metallocavitands possess hydrophobic inner cavity is suitable to accommodate molecule like toluene. Molecular recognition studies of 1 indicate that these metallocavitands can act as molecular host for small aromatic guest. The study provides a way to prepare metallocavitands with a tunable cavity and functional group via simple one-pot method.

2.6 References

- (a) Frischmann, P. D.; MacLachlan, M. J. Metallocavitands: an emerging class of functional multimetallic host molecules. *Chem. Soc. Rev.* 2013, 42, 871-890 and references therein. (b) Lippert, B.; Sanz Miguel, P. J. Metallatriangles and metallasquares: the diversity behind structurally characterized examples and the crucial role of ligand symmetry. *Chem. Soc. Rev.* 2011, 40, 4475-4487 and references therein. (c) Kulesza, J.; Barros, B. S.; Junior, S. A. Organic-inorganic hybrid materials: Metallacalixarenes. Synthesis and applications. *Coord. Chem. Rev.* 2013, 257, 2192-2212. (d) Zhang, Y. Y.; Gao, W. X.; Lin, L.; Jin, G. X. Recent advances in the construction and applications of heterometallic macrocycles and cages. *Coord. Chem. Rev.* 2017, 344, 323-344. (e) Han, Y. F.; Jin, G. X. Half-Sandwich Iridium- and Rhodium-based Organometallic Architectures: Rational Design, Synthesis, Characterization, and Applications. *Acc. Chem. Res.*, 2014, 47, 3571-3579.
- (a) Zhang, L.; Lin, L.; Liu, D.; Lin, Y. J.; Li, Z. H.; Jin, G. X. Stacking Interactions Induced Selective Conformation of Discrete Aromatic Arrays and Borromean Rings. *J. Am. Chem. Soc.* 2017, 139, 1653-1660. (b) Chen, L. J.; Yang, H. B.; Shionoya, M. Chiral metallosupramolecular architectures. *Chem. Soc. Rev.* 2017, 46, 2555-2576. (c) Zhang, W. Y.; Lin, Y. J.; Han, Y. F.; Jin, G. X. Facile Separation of Regioisomeric Compounds by a Heteronuclear Organometallic Capsule. *J. Am. Chem. Soc.* 2016, 138, 10700-10707. (d) Amouri, H.; Desmarets, C.; Moussa, J. Confined Nanospaces in Metallocages: Guest Molecules, Weakly Encapsulated Anions, and Catalyst Sequestration. *Chem. Rev.* 2012, 112, 2015-2041. (e) Yoshizawa, M.; Klosterman, J. K.; Fujita, M. Functional Molecular Flasks: New Properties and Reactions within Discrete, Self-Assembled Hosts. *Angew*.

- Chem. Int. Ed. 2009, 48, 3418-3438. (f) Yoshizawa, M.; Tamura, M.; Fujita, M. Diels-Alderin Aqueous Molecular Hosts: Unusual Regioselectivity and Efficient Catalysis. Science 2006, 312, 251-254. (g) Vriezema, D. M.; Aragonès, M. C.; Elemans, J. A. A. W.; Cornelissen, J. J. L. M.; Rowan A. E.; Nolte, R. J. M. Self-Assembled Nanoreactors. Chem. Rev. 2005, 105, 1445-1489.
- 3. (a) Seidel, S. R.; Stang, P. J. High-Symmetry Coordination Cages via Self-Assembly. Acc. Chem. Res. 2002, 35, 972-983; (b) Stang, P. J.; Olenyuk, B. Self-Assembly, Symmetry, and Molecular Architecture: Coordination as the Motif in the Rational Design of Supramolecular Metallacyclic Polygons and Polyhedra. Acc. Chem. Res. 1998, 30, 502-518; (c) Chakrabarty, R.; Mukherjee, P. S.; Stang, P. J. Supramolecular Coordination: Self-Assembly of Finite Two-and Three-Dimensional Ensembles. Chem. Rev. 2011, 111, 6810-6818. (d) Leininger, S.; Olenyuk. B.; Stang, P. J. Self-Assembly of Discrete Cyclic Nanostructures Mediated by Transition Metals. Chem. Rev. 2000, 100, 853-908. (e) Cook, T. R.; Vajpayee, V.; Lee, M. H.; Stang, P. S.; Chi, K. W. Biomedical and Biochemical Applications of Self-Assembled Metallacycles and Metallacages. Acc. Chem. Res. 2013, 46, 2464- 2474. (f) Cook, T. R.; Stang, P. S. Recent Developments in the Preparation and Chemistry of Metallacycles and Metallacages via Coordination. Chem. Rev. 2015, 115, 7001-7045. (g) Han, Y. F.; Jia, W. G.; Yu, W. B.; Jin, G. X.; Stepwise formation of organometallic macrocycles, prisms and boxes from Ir, Rh and Ru-based half-sandwich units. Chem. Soc. Rev., 2009, 38, 3419-3434. (h) Han, Y. F.; Li, H.; Jin, G. X. Host-guest chemistry with bi-and tetra-nuclear macrocyclic metallasupramolecules. Chem. Commun. 2010, 46, 6879-6890. (i) Huang, C. C.; Liu, J. J.; Chen, Y.; Lin, M. J. An electrondeficient metallocavitand with an unusual selectivity towards substituted benzene derivatives during co-crystallizations. Chem. Commun. 2013, 49, 11512-11514. (j) Liu, J. J.; Guan, Y. F.; Chen, Y.; Lin, M. J.; Huang, C. C.; Dai, W. X. Mixed-metal metallocavitands: a new approach to tune their electrostatic potentials for controllable selectivity towards substituted benzene derivatives. Dalton Trans. 2015, 44, 9370-9374.
- (a) MacGillivray, L. R.; Atwood J. L. Structural Classification and General Principles for the Design of Spherical Molecular Hosts. *Angew. Chem. Int. Ed.* 1999, 38, 1018-1033 and references therein. (b) Therrien, B. Arene Ruthenium Cages: Boxes Full of Surprises. *Eur. J. Inorg. Chem.* 2009, 2445-2453. (c) Therrien, B. Transporting and Shielding Photosensitisers by Using Water-Soluble Organometallic Cages: A New Strategy in Drug Delivery and Photodynamic Therapy. *Chem. Eur. J.* 2013, 19, 8378-8386. (d) Han, Y. F.; Jia, W. G.; Lin, Y. J.; Jin, G. X. Extending Rectangular Metal–Organic Frameworks to

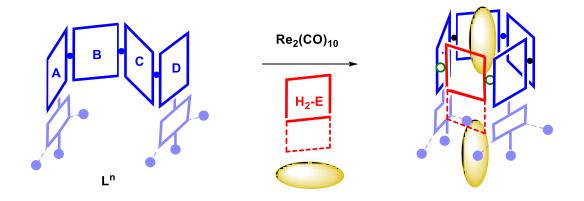
- the Third Dimension: Discrete Organometallic Boxes for Reversible Trapping of Halocarbons Occurring with Conservation of the Lattice. *Angew. Chem. Int. Ed.* **2009**, *48*, 6234-6238. (e) Huang,S. L.; Lin,Y. J.; Li, Z. H.; Jin, G. X. Self-Assembly of Molecular Borromean Rings from Bimetallic Coordination Rectangles. *Angew. Chem. Int. Ed.* **2014**, *53*, 11218-11222. (f) Huang, S. L.; Lin, Y. J.; Andy Hor T. S.; Jin, G. X. Cp*Rh-Based Heterometallic Metallarectangles: Size-Dependent Borromean Link Structures and Catalytic Acyl Transfer. *J. Am. Chem. Soc.* **2013**, *135*, 8125-8128.
- 5. (a) Fondo, M.; Doejo, J.; Garcia-Deibe, A. M.; Matalobos, J. S.; Vicente, R. A. Ni₈ metallacalix[4]arene and a Cu₄ molecular rhomboid: limiting the nuclearity of carboxysalen-like metal complexes. CrystEngComm. 2016, 18, 6673-6682. (b) Rufino-Felipe, E.; Muñoz-Hernández, M.-Á.; Saucedo-Azpeitiaand, H. F., Cortes-Llamas, S. A.; Calix[4] arenes of Aluminum and Gallium with Benzimidazolyl Ligands: Steric Control of the Conformation via Substitution on the Ligand. Inorg. Chem. 2012, 51, 12834-12840. (c) Yu, X. Y.; Zhang, X.; Qu, X. S.; Ma, M. S.; Liu, Z. G.; Jin, L.; Yangand, Y. Y.; Luo, Y. N.; A new 3-D Cd(II) coordination polymer with metallacalix[4]arene building blocks based on 2-(pyridin-2-yl)-1H-imidazole-4,5-dicarboxylic acid. J. Coord. Chem. 2015, 68, 3580-3588. (d) Wang, X.; Hu. H.; Liu, G.; Linand, H.; Tian, A. Self-assembly of nanometre-scale metallacalix[4] arene building blocks and Keggin units to a novel (3,4)connected 3D self-penetrating framework. Chem. Commun. 2010, 46, 6485-6487. (e) Li, X.; Wu, B.; Wang, R.; Zhang, H.; Niu, C.; Niu, Y.; Hou, H. Hierarchical Assembly of Extended Coordination Networks Constructed by Novel Metallacalix[4]arenes Building Blocks. Inorg. Chem. 2010, 49, 2600-2613. (f) Maekawa, M.; Konaka, H.; Minematsu, T.; Kuroda-Sowa, T.; Munakata, M.; Kitagawa, S. Bowl-shaped Cu(I) metallamacrocyclic ethylene and carbonyl adducts as structural analogues of organic calixarenes. Chem. Commun. 2007, 5179-5181. (g) Navarro, J. A. R.; Barea, E.; Salas, J. M.; Masciocchi, N.; Galli, S.; Sironi, A. Structural and Magnetic Properties of Layered Copper(II) Coordination Polymers Intercalating s and f Metal Ions Inorg. Chem. 2007, 46, 2988-2997. (h) (i) Ene, C. D.; Madalan, A. M.; Maxim, C.; Jurca, B.; Avarvari, N.; Andruh, M. Constructing Robust Channel Structures by Packing Metallacalixarenes: Reversible Single-Crystal-to-Single-Crystal Dehydration. J. Am. Chem. Soc. 2009, 131, 4586-4587.
- 6. (a) Sakate, M.; Kashima, A.; Hosoda, H.; Sunatsuki, Y.; Ota, H.; Fuyuhiro, A; Suzuki, T.; Thyminato-bridged cyclic tetranuclear rhodium(III) complexes containing a sodium, calcium or lanthanoid ion as a template metal core. *Inorg. Chim. Acta.* **2016**, *452*, 205-213. (b) Kashima, A.; Sakate, M.; Ota, H.; Fuyuhiro, A.; Sunatsuki, Y.; Suzuki, T.

- Thyminate(2–)-bridged cyclic tetranuclear rhodium(iii) complexes formed by a template of a sodium, calcium or lanthanoid ion. *Chem. Commun.* **2015**, *51*, 1889-1892. (c) Galindo, M. A.; Houlton, A.; Clegg, W.; Harrington, R. W.; Dodado, J.; Santoyo-Gonzalez, F.; Linares, F.; Romero, M. A.; Navarro, J. A. R. Electrochemically and photochemically active Palladium(ii) heterotopic metallacalix[3]arenes. *Chem. Commun.* **2008**, *13*, 3735-3737.
- 7. (a) Velle, A.; Cebollada, A.; Lippert, B.; Sanz Miguel, P. J. Topology of metallacalix[4]arenes with uracil and cytosine ligands: favorable and unfavorable assemblies. New J. Chem. 2016, 40, 5914 -1519. (b) Khutia, A.; Sanz Miguel, P. J.; Lippert, B. "Directed" Assembly of Metallacalix[n]arenes with Pyrimidine Nucleobase Ligands of Low Symmetry: Metallacalix[n]arene Derivatives of cis-[a₂M(cytosine-N₃)₂]²⁺ (M=Pt^{II}, Pd^{II}; n=4 and 6). Chem. – Eur. J. 2011, 17, 4195-4204. (c) Khutia, A.; Sanz Miguel, P. J.; Lippert, B. Isomerism with Metallacalix[4] arenes of the Nonsymmetrical Pyrimidine Nucleobase Cytosine: How Connectivity and Rotamer State Determine the Topology of Multinuclear Derivatives. *Inorg. Chem.* **2010**, 49, 7635-7637. (d) Das, N.; Sanz Miguel, P. J.; Khutia, A.; Lazar, M.; Lippert, B. Hybrids between classical and metallacalix[4] arenes based on uracil and cis-Pt^{II}L₂ entities (L = P(Ph)₃ or L₂ = 2,2'bipyridine). Dalton Trans. 2009, 9120-9122. (e) Galindo, M. A.; Houlton, A.; Clegg, W.; Harrington, R. W.; Dobado, J.; Santoyo-Gonzalez, F.; Linares, F.; Romero, M. A.; Navarro, J. A. R. Electrochemically and photochemically active Palladium(ii) heterotopic metallacalix[3]arenes. Chem. Commun. 2008, 3735-3737. (f) Galindo, M. A.; Olea, D.; Romero, M. A.; Gomez, J.; del Castillo, P.; Hannon, M. J.; Rodger, A.; Zamora, F.; Navarro, J. A. R. Design and Non-Covalent DNA Binding of Platinum(II) Metallacalix [4] arenes. Chem. – Eur. J. 2007, 13, 5075-5081. (g) Bardají, E. G.; Freisinger, E.; Costisella, B.; Schalley, C. A.; Bruning, W.; Sabat, M.; Lippert, B. Mixed-Metal (Platinum, Palladium), Mixed-Pyrimidine (Uracil, Cytosine) Self-Assembling Metallacalix[n]arenes: Dynamic Combinatorial Chemistry with Nucleobases and Metal Species. Chem. – Eur. J. 2007, 13, 6019-6039. (h) Galindo, M. A.; Galli, S., Navarro, J. A. R.; Angustias Romero, M.; Formation of heterotopic metallacalix[n]arenes (n=3, 4, 6)containing ethylenediaminepalladium(ii) metal fragments and 4,7-phenanthroline and 2pyrimidinolate bridges. Synthesis, structure and host-guest chemistry. Dalton Trans. 2004, 2780-2785. (i) Barea, E.; Navarro J. A. R.; Salas J. M.; Quiros, M.; Willermann, M.; Lippert, B. Chiral Pyrimidine Metallacalixarenes: Synthesis, Structure and Host–Guest Chemistry. Chem. – Eur. J. 2003, 9, 4414-4421. (j) Navarro, J. A. R.; Freisinger, E.;

- Lippert, B. Self-Assembly of Palladium(II) and Platinum(II) Complexes of 2-Hydroxypyrimidine to Novel Metallacalix[4]arenes. Receptor Properties through Multiple H-Bonding Interactions. *Inorg. Chem.* **2000**, *39*, 2301-2305. (k) Navarro, J. A. R.; Salas, J. M.; A palladium metallacalix[4]arene capped with a gadolinium atom. *Chem. Commun.* **2000**, 235-236. (l) Das, N.; Sanz Miguel, P. J.; Khutia, A.; Lazar, M.; Lippert. B.; Hybrids between classical and metallacalix[4]arenes based on uracil and cis-Pt^{II}L₂ entities (L = P(Ph)₃ or L₂ = 2,2'-bipyridine). *Dalton Trans.* **2009**, 9120-9122. (m) Bardají, E. G.; Freisinger, E.; Costisella, B.; Schalley, C. A.; Bruning, W.; Sabat, M.; Lippert, B. Mixed-Metal (Platinum, Palladium), Mixed-Pyrimidine (Uracil, Cytosine) Self-Assembling Metallacalix[n]arenes: Dynamic Combinatorial Chemistry with Nucleobases and Metal Species. *Chem. Eur. J.* **2007**, *13*, 6019-6039. (n) Galindo, M. A.; Navarro, J. A. R.; Romero, M. A.; Quiros, M. Mononucleotide recognition by cyclic trinuclear palladium(ii) complexes containing 4,7-phenanthroline N,N bridges. *Dalton Trans.* **2004**, 1563-1566.
- 8. (a) Terrett, R.; Cavigliasso, G.; Stranger, R.; Yates, B. F. On the unprecedented level of dinitrogen activation in the calix[4]arene complex of Nb(iii). *Dalton Trans.* **2011**, *40*, 11267-11275. (b) Xu, G. F.; Gamez, P.; Teat, S. J.; Tang, J. Praseodymium(iii)-based bismetallacalix[4]arene with host–guest behavior. *Dalton Trans.* **2010**, *39*, 4353-4357.
- 9. (a) Atwood, J. L.; Barbour, L. J.; Heaven, M. W.; Raston, C. L. Controlling van der Waals Contacts in Complexes of Fullerene C60. *Angew. Chem., Int. Ed.*, **2003**, 42, 3254-3257 and reference therein.(b) Atwood, J. L.; Barbour, L. J.; Heaven, M. W.; Raston, C. L. Association and orientation of C70 on complexation with calix[5]arene. *Chem. Commun.*, **2003**, 2270-2271.
- 10. (a) Yasunori, K.; Ryo, S.; Yutaro, Y.; Yuichiro, U.; Takeharu, H.; Induced-Fit Molecular Recognition of Alkyl Chains in p-tert-Butylcalix[5]arene in the Solid State. *Bull. Chem. Soc. Jpn.* 2016, 89, 220-225. (b) Brancatelli, G.; Gattuso, G.; Geremia, S.; Notti, A.; Pappalardo, S.; Parisi, M. F.; Pisagatti, I. Probing the Inner Space of Salt-Bridged Calix[5]arene Capsules. *Org. Lett.*, 2014, 16, 2354-2357.(c) Gargiulli, C.; Gattuso, G.; Liotta, C.; Notti, A.; Parisi, M. F.; Pisagatti, I.; Pappalardo, S. Calix[5]arene-Based Heteroditopic Receptor for 2-Phenylethylamine Hydrochloride. *J. Org. Chem.*, 2009, 74, 4350-4353.(d) Gattuso, G. Notti, A. Pappalardo, S.; Parisi, M. F.; Pisagatti, I.; Pappalardo, S.; Garozzo, D.; Messina, A.; Cohen, Y.; Slovak, S. Self-Assembly Dynamics of Modular Homoditopic Bis-calix[5]arenes and Long-Chain r,ω Alkanediyldiammonium Components. *J. Org. Chem.*, 2008, 73, 7280-7289.(e) Garozzo, D.; Gattuso, G.; Kohnke, F. H.; Notti, A.; Pappalardo, S.; Parisi, M. F.; Pisagatti, I.;

- White, A. J. P.; Williams, D. J. Inclusion Networks of a Calix[5]arene-Based Exoditopic Receptor and Long-Chain Alkyldiammonium Ions. *Org. Lett.* **2003**, *5*, 4025-4028.
- 11. (a) Rajakannu, P.; Shankar, B.; Yadav, A.; Shanmugam, R.; Gupta, D.; Hussain, F.; Chang, C. H.; Sathiyendiran, M.; Lu, K. L. Adaptation Toward Restricted Conformational Dynamics: From the Series of Neutral Molecular Rotors. *Organometallics* **2011**, *30*, 3168–3176. (b) Rajakannu, P.; Mobin, S. M.; Sathiyendiran, M. Thiophene/furan units decorated unsymmetrical dinuclear metallocalix[4]arenes. *J. Organomet. Chem.* **2014**, 771, 68-77.
- 12. (a) Elumalai, P.; Kanagaraj, R.; Marimuthu, R.; Shankar, B.; Kalita, A. C.; Sathiyendiran, M. Rhenium(I)-based bridgeless double metallocalix[4]arenes. *Dalton Trans.* **2015**, *44*, 11274–11277. (b) Rajakannu, P.; Elumalai, P.; Shankar, B.; Hussain, F.; Sathiyendiran, M. Rhenium(I) based metallocalix[4]arenes decorated with free functionalized benzimidazolyl units. *Dalton Trans.* **2013**, *42*, 11359-11362. (c) Rajakannu, P.; Elumalai, P.; Mobin, S. M.; Lu, K. L.; Sathiyendiran, M. Hard and soft-donors decorated rhenium based metallocavitands. *J. Organomet. Chem.* **2013**, *743*, 17-23. (d) Rajakannu, P.; Elumalai, P.; Hussain, F.; Sathiyendiran, M. Rhenium-based bicyclic supramolecule with calixarene-shaped bowls. *J. Organomet. Chem.* **2013**, *725*, 1-4.
- 13. (a) Grober, I.; Smith, V. J.; Bhatt, P. M.; Herbert, S. A.; Barbour, L. J. Tunable Anisotropic Thermal Expansion of a Porous Zinc(II) Metal—Organic Framework. *J. Am. Chem. Soc.* **2013**, *135*, 6411-6441; (b) Halterman, R. L., Pan, X. G., Martyn, D. E., Moore, J. L., Long, A. T. Conformational Interconversions in [2]Catenanes Containing a Wide Rigid Bis(p-benzyl)methyl Spacer. *J. Org. Chem.* **2007**, *72*, 6454—6458.
- Bhattacharya, D.; Sathiyendiran, M.; Luo, T. -T.; Chang, C. -H.; Cheng, Y. -H.; Lin,
 C. -Y.; Lee, G. -H.; Peng, S. -M.; Lu, K. -L. Ground and Excited Electronic States of
 Quininone-Containing Re(I)-Based Rectangles: a Comprehensive Study of Their
 Preparation, Electrochemistry, and Photophysics. *Inorg. Chem.* 2009, 48, 3731–3742.
- 15. Yu, G.; Han, C.; Zhang, Z.; Chen, J.; Yan, X.; Zheng, B.; Lu, S.; Huang, F. Pillar[6]arene-Based Photoresponsive Host-Guest Complexation. *J. Am. Chem. Soc.*, **2012**, *134*, 8711-8717.
- 16. (a) Tseng, Y.-H.; Bhattacharya, D.; Lin, S.-M.; Thanasekaran, P.; Wu, J.-Y.; Lee, L.-W.; Sathiyendiran, M.; Ho, M.-L.; Chung, M.-W.; Hsu, K.-C.; Chou, P.-T.; Lu, K.-L. Highly Emissive Cyclometalated Rhenium Metallacycles: Structure—Luminescence Relationship. *Inorg. Chem.* **2010**, *49*, 6805-6807 (b) Bhattacharya, D.; Sathiyendiran, M.; Wu, J.-Y.; Chang, C.-H.; Huang, S.-C.; Zeng, Y.-L.; Lin, C.-Y.; Thanasekaran, P.; Lin,

- B. -C.; Hsu, C. -P.; Lee, G. -H.; Peng, S. -M.; Lu, K.- L. Quinonoid-Bridged Chair-Shaped Dirhenium(I) Metallacycles: Synthesis, Characterization, and Spectroelectrochemical Studies. *Inorg. Chem.* **2010**, *49*, 10264-10272.
- 17. (a) Shanmugaraju, S.; Mukherjee, P. S. π-Electron rich small molecule sensors for the recognition of nitroaromatics *Chem. Commun.* **2015**, *51*, 16014 -16032. (b) Salinas, Y.; Manez, R. M.; Marcos, M. D.; Sancenon, F.; Costero, A. M.; Parra, M.; Gil, S. Optical chemosensors and reagents to detect explosives. *Chem. Soc. Rev.* **2012**, *41*, 1261-1296.
- 18. (a). S. S. Sun and A. J. Lees, Transition metal based supramolecular systems: synthesis, photophysics, photochemistry and their potential applications as luminescent anion chemosensors. *Chem. Soc. Rev.* **2002**, *230*, 171-192.(b) Sathish, V.; Ramdass, A.; Lu, Z. Z.; Velayudham, M.; Thanasekaran, P.; Lu, K. L.; Rajagopal, S. Aggregation-Induced Emission Enhancement in Alkoxy-Bridged Binuclear Rhenium(I) Complexes: Application as Sensor for Explosives and Interaction with Microheterogeneous Media. *J. Phys. Chem. B.* **2013**, *117*, 14358-14366.
- 19. (a) Zwijnenburg, M. A.; Berardo, E.; Peveler, W. J.; Jelfs, K. M. Amine Molecular Cages as Supramolecular Fluorescent Explosive Sensors: A Computational Perspective. *J. Phys. Chem. B,* **2016**, *120*, 5063-5072. (b) Ghosh, S.; Gole, B.; Bar, A. K.; Mukherjee, P. S. Self-Assembly of Molecular Prisms via Pt₃ Organometallic Acceptors and a Pt₂ Organometallic Clip. *Organometallics.* **2009**, *28*, 4288-4296. (c) Bar, A. K.; Gole, B.; Ghosh, S.; Mukherjee, P. S.; Self-assembly of a Pd^{II} neutral molecular rectangle via a new organometallic Pd^{II}₂ molecular clip and oxygen donor linker *Dalton Trans.* **2009**, 6701-6704.(d) Ghosh, S.; Mukherjee, P. S. Self-Assembly of a Nanoscopic Prism via a New Organometallic Pt₃ Acceptor and Its Fluorescent Detection of Nitroaromatics. *Organometallics* **2008**, *27*, 316-319. (e) Naddo, T.; Che, Y.; Zhang, W.; Balakishnan, K.; Yang, X.; Yen, M.; Zhao, J.; Moore, J. S.; Zang, L. Detection of Explosives with a Fluorescent Nanofibril Film. *J. Am. Chem. Soc.*, **2007**, *129*, 6978-6979.
- (a) Benesi, H. A.; Hildebrand, J. H. A Spectrophotometric Investigation of the Interaction of Iodine with Aromatic Hydrocarbons. *J. Am. Chem. Soc.* 1949, 71, 2703 2707.
 (b) Murakami, Y.; Kikuchi, J. I.; Suzuki, M.; Matsuura, T. Syntheses of macrocyclic enzyme models. Part 6. Preparation and guest-binding behaviour of octopus cyclophanes. *J. Chem. Soc. Perkin Trans. I* 11988, 1289 -1299.


Chapter 3

Rhenium(I) Based Heteroleptic Pentagonal Toroid Shaped Metallocavitands: Self-Assembly and Molecular Recognition Studies

Abstract

A family of neutral, heteroleptic, dinuclear M_2LL' -type pentagonal toroid-shaped metallomacrocycles (1–8) were synthesized using flexible ditopic N donors ($L^n = L^1 - L^2$), rigid bis-chelating ligands ($H_2-L' = H_2-E$) and $Re_2(CO)_{10}$ in a one-pot solvothermal self-assembly approach. The ligands and the metallomacrocycles were characterized using ATR-IR, ESI-MS, NMR, UV-Vis, and emission spectroscopic methods. The molecular structures of 1, 2, 4, 6, and 7 were confirmed by X-ray diffraction study and are similar to those of calix[5]arene. The cyclic inner cavities of the metallomacrocycles accommodate toluene/mesitylene/acetone/chlorobenzene as guest molecules that are stabilized by cumulative $C-H\cdots\pi$ and $\pi\cdots\pi$ interactions with the cyclic framework of metallomacrocycle. The photophysical properties of the ligands and the metallomacrocycles were studied. The host-guest recognition properties of metallocavitands 1, 2, 7, and 8 as a model host with phenol- and nitrobenzene-derivatives as guest molecules were studied by emission spectroscopic methods.

This work has been published in *Inorg. Chem.* **2022**, DOI: 10.1021/acs.inorgchem.2c02061.

3.1. Introduction

The design and synthesis of metallomacrocycles similar to calixarene-shaped geometry have been attracting significant research interest because of their potential applications in hostguest encapsulation, catalysis, selective reactivity, sensing, and biomimetic structures.¹⁻⁵ Naked metal ions and complexes containing partially protected metal ions are employed along with pre-designed organic ligands to self-assemble calixarene-shaped complexes. 6-10 These metallamacrocycles are commonly called as metallocavitands, more specifically metallacalix[n]arenes.¹ Among various metal ions and metal complexes, $Re_2(CO)_{10}/[Re(CO)_5X]$, where X = Cl or Br, provide a way to make neutral, heteroleptic metallacalix[n]arenes. 11-15 Up to now, neutral ditopic donors including 4,7-phenanthroline, imidazole, and semi-rigid ditopic N-donor ligands containing phenyl $(-C_6H_4-)$ spacer, and rigid bis-chelating ligands are utilized for assembling tunable rhenium tricarbonyl-based metallacalix[3]arenes, and metallacalix[4]arenes. 11,13-14 Recently, the focus in the area has shifted to make functional and cavity tunable metallacalixarenes. To the best of our knowledge, the design approach for making rhenium-core based metallocavitands similar to calix[5]arene are limited. We have recently designed and employed diphenylmethane $(-C_6H_4-CH_2-C_6H_4-)$ spacer-based semi-rigid ditopic N-donor ligands along with rigid bischelating ligand and Re₂(CO)₁₀ to assemble irregular pentagonal-shaped metallocavitands. ¹⁶ These metallocavitands adopt tubular structure, accommodate toluene molecule in the solid state and are able to recognize the guest molecules including nitroaromatic compounds and polyaromatic hydrocarbons in the solution. The central cyclic framework i.e., annulus of the metallocavitand, consists of two phenyl motifs, two imidazolyl motifs, and bis-chelating ligand. The size of the cavity thereby the chemistry associated with molecular cavity can be tuned by increasing the fused arenemotif(s) either by modifying the imidazolyl motif or/and by changing the bis-chelating motifs. In continuation of our research in this field, we envision introducing the 4-methoxyphenyl/3,4,5-trimethoxyphenyl motif at the 2-position of benzimidazolyl unit in the ditopic N donor would result in metallocavitands with more extended cavity suitable to accommodate various types of guest molecules. In addition, the solubility of the metallocavitands in general organic solvents would be increased due to the presence of methoxy units at the periphery of the metallocavitands.

Herein, we report two new flexible neutral ditopic nitrogen donors (L¹/L²) consisting of two terminal 4-methoxyphenyl benzimidazolyl/3,4,5-trimethoxyphenyl benzimidazolyl nitrogen donor and diphenylmethane spacer and eight new neutral heteroleptic dinuclear metallocavitands (1-8) in a one-pot approach. The molecular structures of the five metallocavitands (1, 2, 4, 6 and 7) are unambiguously determined by a single crystal X-ray diffraction analysis, which reveal that these metallocavitands adopt pentagonal toroid-shaped structure with acetone and mesitylene/toluene/chlorobenzene as guest molecules in their internal cavities. The photophysical properties of the ligands and the complexes were studied in DMSO. The host: guest recognition properties of the metallocavitands 1, 2, 7, and 8 as model hosts were studied with nineteen molecules, phenol, and nitrobenzene-derivatives, as guest molecules using emission spectroscopic methods.

3.2. Experimental

Materials and Methods

3.2.1. Materials

Starting materials such as Re₂(CO)₁₀, H₂-dhbq, H₂-CA, H₂-dhaq, H₂-dhnq, 1,2 diaminobenzene, 4-methoxybenzaldehyde, 3,4,5-trimethoxybenzaldehyde, diphenylmethane, phosphoric acid, paraformaldehyde, 30-33% HBr in AcOH, glacial acetic acid, formic acid, and NaH were obtained from commercial sources and used as received. Commercial grade solvents, mesitylene, acetone, and chlorobenzene were used as received without further purification. Bis(4-(bromomethyl) phenyl)methane,¹⁷ 2-(4-methoxyphenyl)-benzimidazole¹⁸ and 2-(3,4,5-trimethoxyphenyl)-benzimidazole¹⁸ were prepared by using the reported procedure. THF, hexane, and toluene were purified and distilled by conventional procedure.

3.2.2. Physical Measurement

ATR-IR spectra were recorded on a Nicolet iS5 ATR- spectrometer. ¹H NMR spectra were recorded on a Bruker Avance III 500 MHz spectrometer. HR-MS spectra were recorded on a Bruker maXis mass spectrometer. UV-Vis and emission spectra were recorded on Shimadzu UV-VIS-NIR (UV-3600), and JASCO (V-750) spectrophotometer and JASCO (FP-8500) spectrofluorometer, respectively.

3.2.3. Materials and Methods for Emission Titration Experiments

The solvent (DMSO) used in this study was of spectroscopic grade and used as received. All the guest molecules were obtained from commercial sources and used as received. Quenching experiments of host 1, 2, 7, and 8 were carried out by emission spectroscopic method. Metallocavitand 1 stock solutions (2×10⁻⁵ M for Phenol; 1.5×10⁻⁵ M for BA, m-cresol, pcresol, 3, 4- DMP, 2, 4, 6- TMP, catechol, resorcinol, 2-CP, 4-CP, 2, 4-DCP, 2- NP, 4- NP, 2, 4- DNP, 2, 4, 6-TNP, NB, 2-NT, 4-NT, 2, 4-DNT), metallocavitand **7** stock solutions (2×10⁻⁵ M for all the guest molecules), metallocavitand 2 and 8 stock solutions $(1 \times 10^{-5} \text{ M})$ for all the guest molecules) were prepared using DMSO. For host 1, aromatic guests stock solutions; 1×10^{-2} M for phenol, BA; 1×10^{-3} M for m-cresol, p-cresol, 3, 4- DMP, 2, 4, 6- TMP, catechol, resorcinol, 2-CP, 4-CP, 2, 4-DCP, 2-NP, 2, 4-DNP, 2, 4, 6-TNP, NB, 2-NT, 4-NT, 2, 4-DNT, and 1×10^{-4} M for 4-NP were prepared in DMSO. For host 2, aromatic guests stock solutions; 1×10^{-2} and 1×10^{-1} M for BA; 1×10^{-3} and 1×10^{-2} M for phenol, 3, 4- DMP, 2, 4, 6- TMP, resorcinol, 2, 4-DCP; 1×10^{-3} M for m-cresol, p-cresol, catechol, 2-CP, 4-CP, 2-NP, 4-NP, 2, 4- DNP, 2-NT, 4-NT, 2, 4-DNT; 1×10^{-4} M and 1×10^{-3} M for 2, 4, 6-TNP and NB were prepared in DMSO. For host 7, aromatic guests stock solutions; 1×10^{-2} M for phenol, BA; 1×10⁻³ M for m-cresol, p-cresol, 2-CP, 4-CP, 2- NP, 4-NP, 2, 4- DNP, 2, 4, 6-TNP, 2-NT, 4-NT, 2, 4-DNT; 1×10^{-3} M and 1×10^{-2} M for 3, 4-DMP, 2, 4, 6-TMP, catechol, resorcinol, 2, 4-DCP; 1×10^{-4} M and 1×10^{-3} M for NB were prepared in DMSO. For host 8, aromatic guests stock solutions; 1×10^{-2} for BA, 3, 4- DMP, 2, 4, 6- TMP; 1×10^{-3} and 1×10^{-2} M for catechol, resorcinol, 2, 4-DCP; 1×10^{-3} M for phenol, m-cresol, p-cresol, 2-CP, 4-CP, 2-NP, 4-NP, 2, 4- DNP, 2-NT, 4-NT, 2, 4-DNT; 1×10⁻⁴ M and 1×10⁻³ M for 2, 4, 6-TNP and 1×10^{-4} M for NB were prepared in DMSO. Test solutions were prepared by the addition of an appropriate aliquot (0.02- 4mL) of each guest stock into 5mL standard volumetric flask followed by placing 0.5 or 1 mL of stock solution of host 1 or 2 or 7 or 8 and then diluting the solution to 5 mL with DMSO. The excitation wavelengths were 283 nm, 285 nm, 276 nm and 275 nm for host 1, 2, 7 and 8, respectively. In all the cases the excitation wavelength was 260 nm for BA. The slit width was 2.5 nm for both the excitation and emission (2.5-5 nm for BA). The binding characteristics of the host molecules with guest molecules were determined by the emission spectroscopic method. The binding constants were calculated based on the Benesi-Hildebrand equation for a 1:1 stoichiometry molar ratio ($1/\Delta I = 1/\Delta I_{max} + (1/K[G])$ ΔI_{max}). Here, $\Delta I = I - I_{min}$, $\Delta I_{max} = I_0 - I_{min}$, I_0 is the emission intensity of free host molecule, I is the intensity measured with guest, I_{min} is the intensity measured with an excess of guest, K is the binding constant, and [G] is the concentration of guest molecule.¹⁹

3.2.4. Crystallography

Single crystal X-ray diffraction data were collected on Rigaku Oxford XtaLAB Synergy or Bruker APEX-II CCD instruments with Mo-K α radiation (λ = 0.71073 Å). Standard procedures were applied for data reduction, and absorption correction. Structure solutions and refinements were performed with the SHELX program package.²⁰ Non-H atoms were refined anisotropically.

3.2.5. Synthesis of Ligands

Synthesis of L^1 .

A mixture of powdered NaH (0.169 g, 4.24 mmol) and 2-(4-methoxyphenyl)-benzimidazole(0.633 g, 2.82 mmol) in THF (10 mL) was stirred at room temperature for 3 h. Bis(4-(bromomethyl)phenyl)methane (0.5 g, 0.141 mmol) was added to the solution. The reaction mixture was then stirred continuously for 24 h. Half of the solvent was removed by rotavapor. Water (~200 mL) was added to this residue. The resulting pale brown precipitate was filtered, washed several times with water, and air dried. Yield: 88% (1.6 g). ¹H NMR (500 MHz, DMSO- d_6): δ 7.68-7.64 (m, 6H, H^{4, 2', 6'}), 7.38 (d, J_{HH} = 7.5 Hz, 2H, H⁷), 7.23-7.16 (m, 4H, H^{5, 6}), 7.10 (d, J_{HH} = 8.1 Hz, 4H, H^{10, 11}), 7.05 (d, J_{HH} = 8.7 Hz, 4H, H^{3', 5'}), 6.89 (d, J_{HH} = 8 Hz, 4H, H^{9,12}), 5.49 (s, 4H, H⁸, -CH₂-), and 3.80 (s, 8H, H¹³, -CH₂-, -OCH₃). ¹³C NMR (500 MHz, DMSO- d_6): δ 160.4, 153.2, 142.7, 140.3, 135.9, 134.7, 130.5, 129.0, 126.2, 122.4, 122.1, 119.0, 114.2, 55.3, 47.2. HRMS- ESI. Calcd for C₄₃H₃₆N₄O₂ [L¹ + H]⁺: m/z 641.2917. Found: m/z 641.2918.

Synthesis of L^2 .

By following the similar approach of L¹, ligand L² was synthesized by using NaH (0.06 g, 1.6 mmol), 2-(3,4,5-trimethoxyphenyl)-benzimidazole (0.3 g, 1 mmol), THF (5 mL), and bis(4-(bromomethyl)phenyl)methane (0.187 g, 0.528 mmol). The crude was purified by column chromatography (ethyl acetate/hexane, 8/2, v/v). Yield: 75 % (0.6 g). ¹H NMR (500 MHz, DMSO- d_6): δ 7.73 (d, J_{HH} = 7.1 Hz, 2H, H⁴), 7.46 (d, J_{HH} = 7.3 Hz, 2H, H⁷), 7.26-7.20 (m, 4H, H^{5, 6}), 7.11 (d, J_{HH} = 8.1 Hz, 4H, H^{10, 11}), 6.96 (d, J_{HH} = 8.1 Hz, 4H, H^{9,12}), 6.91 (s, 4H, H^{2',6'}), 5.54 (s, 4H, H⁸, -CH₂-), 3.82 (s, 2H, H¹³, -CH₂-), 3.71 (s, 6H, -OCH₃), and 3.58 (s,

12H, -OC H_3). ¹³C NMR (500 MHz, DMSO- d_6): δ 152.9, 142.5, 140.5, 138.7, 136.3, 135.1, 129.0, 126.0, 125.2, 122.7, 122.2, 119.2, 110.8, 106.3, 60.1, 55.6, 47.4. HRMS-ESI. Calcd for C₄₇H₄₄N₄O₆ [L² + H]⁺: m/z 761.3339. Found: m/z 761.3350.

3.2.6. Synthesis of Complexes

General Synthesis of metallocavitands (1-8).

A mixture of Re₂(CO)₁₀, bis-chelating ligand, Lⁿ, and toluene or mesitylene:acetone or chlorobenzene in a Teflon flask was placed in a steel bomb. The bomb was kept in a microprocessor-programmed oven at 160 °C for 48 h and cooled to 30 °C. The product (powder or crystals) obtained in the solvothermal vessel was filtered and washed with distilled hexane.

Synthesis of fac- $[\{(CO)_3Re(\mu-dhbq)Re(CO)_3\}(\mu-L^1)]$ (1).

Brown crystals of **1** were obtained from a mixture of Re₂(CO)₁₀ (50 mg, 0.077 mmol), H₂-dhbq (10.7 mg, 0.0766 mmol), L¹ (49 mg, 0.077 mmol), and mesitylene:acetone (6:1 mL). Yield: 54% (55 mg). H NMR (500 MHz, DMSO- d_6): δ 8.00 (d, J_{HH} = 7.31 Hz, 1H), 7.84 (d, J_{HH} = 7.72 Hz, 1H), 7.68-7.64 (m, 5H), 7.46 (t, J_{HH} = 7.15 Hz, 1H), 7.39-7.34 (m, 3H), 7.23-7.16 (m, 4H), 7.10 (d, J_{HH} = 8.16 Hz, 3H), 7.06 (d, J_{HH} = 8.76 Hz, 4H), 6.89 (d, J_{HH} = 8 Hz, 3H), 6.54 (s, 2H, H^a, dhbq), 5.79-5.15 (m, 4H, H⁸, -C H_2 -), 3.80 (s, 6H, -OC H_3), and 3.77-3.73 (m, 2H, H¹³, -C H_2 -). ATR-IR (cm⁻¹): 2012 (C=O), and 1886 (C=O). HRMS-ESI. Calcd for C₅₅H₃₈N₄O₁₂Re₂ [**1** + H]⁺: m/z 1321.1681. Found: m/z 1321.1739.

Synthesis of fac- $[\{(CO)_3Re(\mu-dhbq)Re(CO)_3\}(\mu-L^2)]$ (2).

The clear solution obtained from a mixture of $Re_2(CO)_{10}$ (100 mg, 0.153 mmol), H_2 -dhbq (21.4 mg, 0.153 mmol), L^2 (117 mg, 0.153 mmol), and mesitylene:acetone (10:1 mL) was concentrated, washed with hexane and air-dried. Suitable single crystals of **2** for X-ray analysis were obtained from the slow evaporation of the mother liquor at room temperature after ~25 days. Yield: 37% (82 mg). ¹H NMR (500 MHz, DMSO- d_6): δ 7.73-7.71 (m, 2H, H^4), 7.50-7.48 (m, 2H, H^7), 7.28-7.22 (m, 4H, $H^{5,6}$), 7.12 (d, J_{HH} = 8.0 Hz, 4H, $H^{10,11}$), 6.96 (d, J_{HH} = 8.0 Hz, 4H, $H^{9,12}$), 6.89 (s, 4H, $H^{2',6'}$), 5.79 (s, 2H, H^a), 5.55 (s, 4H, H^8 , - CH_2 -), 3.83 (s, 2H, H^{13} , - CH_2 -), 3.69 (s, 6H, - OCH_3), and 3.58 (s, 12H, - OCH_3). ATR-IR (cm⁻¹): 2012 (C=O), 1916 (C=O), 1879 (C=O). HRMS-ESI. Calcd for $C_{59}H_{46}N_4O_{16}Re_2$ [**2** + H]⁺: m/z 1441.2099. Found: m/z 1441.1906.

Synthesis of fac- $[\{(CO)_3Re(\mu-CA)Re(CO)_3\}(\mu-L^1)]$ (3).

Dark powder was obtained from a mixture of $Re_2(CO)_{10}$ (50 mg, 0.077 mmol), H_2 -CA (16 mg, 0.077 mmol), L^1 (49 mg, 0.077 mmol), and toluene:acetone (6:1 mL). Yield: 80% (85 mg). H NMR (500 MHz, DMSO- d_6): δ 7.80-7.75 (m, 6H, $H^{4, 2', 6'}$), 7.62 (d, J_{HH} = 7.1 Hz, 2H, H^7), 7.51-7.36 (m, 4H, $H^{5, 6}$), 7.17 (d, J_{HH} = 8.6 Hz, 4H, $H^{10, 11}$), 7.13 (d, J_{HH} = 8.05 Hz, 4H, $H^{3',5'}$), 7.07- 7.00 (m, 4H, $H^{9,12}$), 5.61-5.51 (m, 4H, H^8 , - CH_2 -), and 3.84 (s, 8H, H^{13} , - CH_2 - , -OC H_3). ATR-IR (cm $^{-1}$): 2013 (C \equiv O), 1888(C \equiv O). HRMS-ESI. Calcd for $C_{55}H_{36}N_4O_{12}Cl_2Re_2$ [3 + H] $^+$: m/z 1389.0875. Found: m/z 1389.0689.

Synthesis of fac-[$\{(CO)_3Re(\mu-CA)Re(CO)_3\}(\mu-L^2)$] (4).

Clear solution obtained from a mixture of $Re_2(CO)_{10}$ (100 mg, 0.153 mmol), H_2 -CA (32 mg, 0.15 mmol), L^2 (117 mg, 0.153 mmol), and mesitylene:acetone (12:2 mL) was concentrated, washed with hexane and air-dried. Suitable single crystals of **4** for X-ray analysis were obtained from the slow evaporation of the mother liquor at room temperature after ~30 days. Yield: 35% (80 mg). H NMR (500 MHz, DMSO- d_6): δ 7.72 (d, J_{HH} = 8.16 Hz, 2H, H^4), 7.48 (d, J_{HH} = 8.67 Hz, 2H, H^7), 7.27-7.22 (m, 4H, $H^{5, 6}$), 7.11 (d, J_{HH} = 8.11 Hz, 4H, $H^{10, 11}$), 6.95 (d, J_{HH} = 7.82 Hz, 4H, $H^{9,12}$), 6.88 (s, 4H, $H^{2',6'}$), 5.54 (s, 4H, H^8 , - CH_2 -), 3.83 (s, 2H, H^{13} , - CH_2 -), 3.69 (s, 6H, -OC H_3), and 3.57 (s, 12H, -OC H_3). ATR-IR (cm $^{-1}$): 2012 (C \equiv O), 1913 (C \equiv O), 1879 (C \equiv O). HRMS-ESI. Calcd for $C_{59}H_{44}N_4O_{16}Cl_2Re_2$ [**4** + H] $^+$: m/z 1509.1313. Found: m/z 1509.1170.

Synthesis of fac-[$\{(CO)_3Re(\mu-dhaq)Re(CO)_3\}(\mu-L^1)$] (5).

Dark colored powder was obtained from a mixture of Re₂(CO)₁₀ (50 mg, 0.077 mmol), H₂-dhaq (18.4 mg, 0.0766 mmol), L¹ (49 mg, 0.077 mmol), and mesitylene:acetone (6:1 mL). Yield: 62% (68 mg). H NMR (500 MHz, DMSO- d_6): δ 8.36-8.34 (m, 2H, H^a), 7.94-7.92 (m, 2H, H^b), 7.69-7.64 (m, 6H, H^{4, 2', 6'}), 7.38 (d, J_{HH} = 8 Hz, 2H, H⁷),7.30 (d, 2H, H^c), 7.23-7.16 (m, 4H, H^{5, 6}), 7.10 (d, J_{HH} = 8.2 Hz, 4H, H^{10, 11}), 7.06 (d, J_{HH} = 8.9 Hz, 4H, H^{3',5'}), 6.90 (d, J_{HH} = 8 Hz, 4H, H^{9,12}), 5.49 (s, 4H, H⁸, -CH₂-), and 3.80 (s, 8H, H¹³, -CH₂-, -OCH₃). ATR-IR (cm⁻¹): 2008 (C=O), 1902 (C=O), 1873(C=O). HRMS-ESI. Calcd for C₆₃H₄₂N₄O₁₂Re₂ [5 + H]⁺: m/z 1421.1996. Found: m/z 1421.1831.

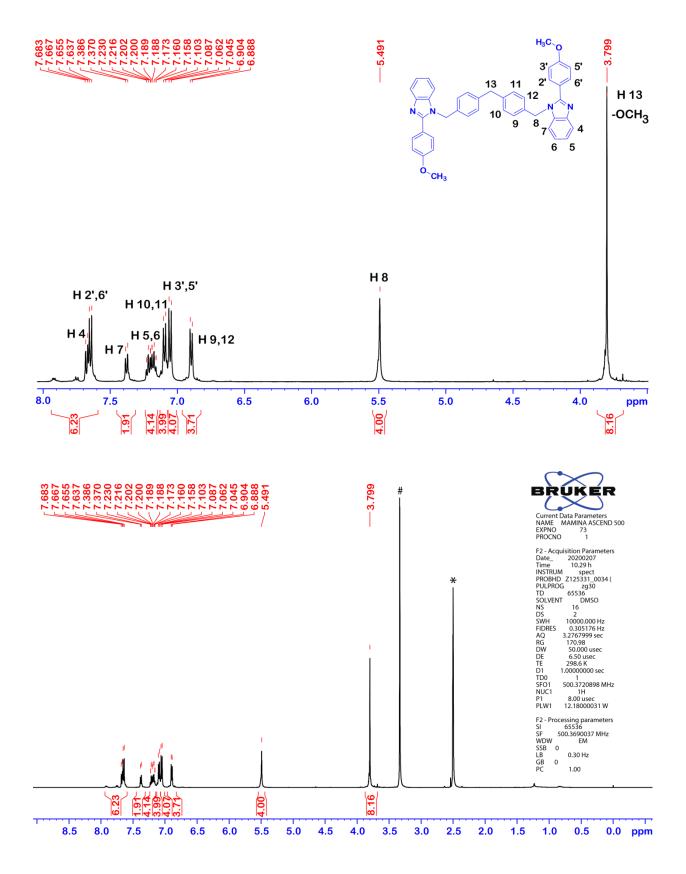
Synthesis of fac-[$\{(CO)_3Re(\mu-dhaq)Re(CO)_3\}(\mu-L^2)$] (6).

Clear solution obtained from a mixture of Re₂(CO)₁₀ (50 mg, 0.077 mmol), H₂-dhaq (18.4 mg, 0.0766 mmol), L² (58.5 mg, 0.0766 mmol), and toluene (6 mL) was allowed to evaporate at room temperature. The crystals of **6** were obtained from the solution after 30 days at room temperature. Yield: 67% (80 mg). H NMR (500 MHz, DMSO- d_6): δ 8.31-8.29 (m, 2H, H^a), 8.01-7.99 (m, 2H, H^b), 7.73-7.71 (m, 2H, H⁴), 7.48-4.44 (m, 4H, H⁷, H^c), 7.27-7.21 (m, 4H, H^{5, 6}), 7.12 (d, J_{HH} = 8.08 Hz, 4H, H^{10, 11}), 6.95 (d, J_{HH} = 8.19 Hz, 4H, H^{9,12}), 6.88 (s, 4H, H^{2',6'}), 5.54 (s, 4H, H⁸, -CH₂-), 3.83 (s, 2H, H¹³, -CH₂-), 3.69 (s, 6H, -OCH₃), and 3.57 (s, 12H, -OCH₃). ATR-IR (cm⁻¹): 2009 (C=O), 1899 (C=O), 1876(C=O). HRMS-ESI. Calcd for C₆₇H₅₀N₄O₁₆Re₂ [**6** + H] + m/z 1541.2419. Found: m/z 1541.2327.

Synthesis of fac-[$\{(CO)_3Re(\mu-dhnq)Re(CO)_3\}(\mu-L^1)$] (7).

Dark colored powder of **7** was obtained from a mixture of Re₂(CO)₁₀ (50 mg, 0.077 mmol), H₂-dhnq (22 mg, 0.077 mmol), L¹(49 mg, 0.077 mmol), and mesitylene:acetone (5:1 mL). Suitable single crystals for the X-ray analysis were obtained from the same reaction with chlorobenzene (12mL). Yield: 57% (65 mg). H NMR (500 MHz, DMSO- d_6): δ 8.42-8.40 (m, 4H, H^a), 7.94-7.92 (m, 4H, H^b), 7.68-7.64 (m, 6H, H^{4, 2', 6'}), 7.38 (d, J_{HH} = 7.4 Hz, 2H, H⁷), 7.23-7.16 (m, 4H, H^{5, 6}), 7.10 (d, J_{HH} = 8 Hz, 4H, H^{10, 11}), 7.06 (d, J_{HH} = 8.8 Hz, 4H, H^{3',5'}), 6.90 (d, J_{HH} = 8.2 Hz, 4H, H^{9,12}), 5.50 (s, 4H, H⁸, -CH₂-), and 3.80 (s, 8H, H¹³, -CH₂-, -OCH₃). ATR-IR (cm⁻¹): 2008 (C=O), 1874(C=O). HRMS-ESI. Calcd for C₆₇H₄₄N₄O₁₂Re₂ [**7** + H]⁺: m/z 1471.2153. Found: m/z 1471.1960.

Synthesis of fac-[$\{(CO)_3Re(\mu-dhnq)Re(CO)_3\}(\mu-L^2)$] (8).

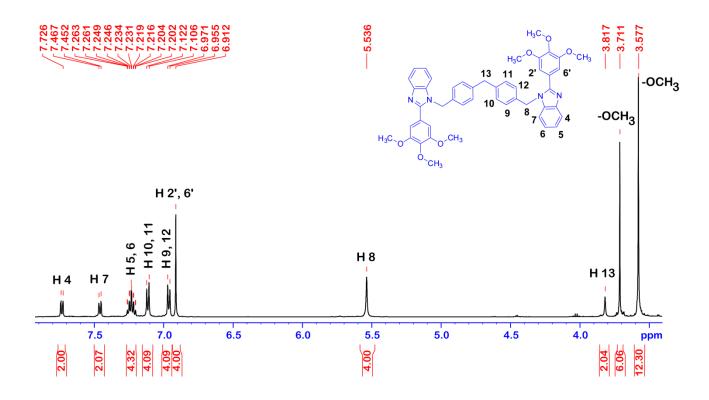

Dark colored powder was obtained from a mixture of $Re_2(CO)_{10}$ (50 mg, 0.077 mmol), H_2 -dhnq (22 mg, 0.077 mmol), L^2 (58.5 mg, 0.0766 mmol), and mesitylene:acetone (5:1 mL). Yield: 51% (62 mg). ¹H NMR (500 MHz, DMSO- d_6): δ 8.42-8.40 (m, 4H, H^a), 7.94-7.92 (m, 4H, H^b), 7.73-7.71 (m, 2H, H⁴), 7.48-7.46 (m, 2H, H⁷), 7.27-7.21 (m, 4H, H^{5, 6}), 7.12 (d, J_{HH} = 8.1 Hz, 4H, $H^{10, 11}$), 6.95 (d, J_{HH} = 8.1 Hz, 4H, $H^{9,12}$), 6.89 (s, 4H, $H^{2',6'}$), 5.54 (s, 4H, H^8 , - CH_2 -), 3.83 (s, 2H, H^{13} , - CH_2 -), 3.69 (s, 6H, -OC H_3), and 3.57 (s, 12H, -OC H_3). ATR-IR (cm⁻¹): 2008 (C=O), 1875(C=O). HRMS- ESI. Calcd for $C_{71}H_{52}N_4O_{16}Re_2$ [8 – 3H + NH₄]⁺: m/z 1605.2607. Found: m/z 1605.2667.

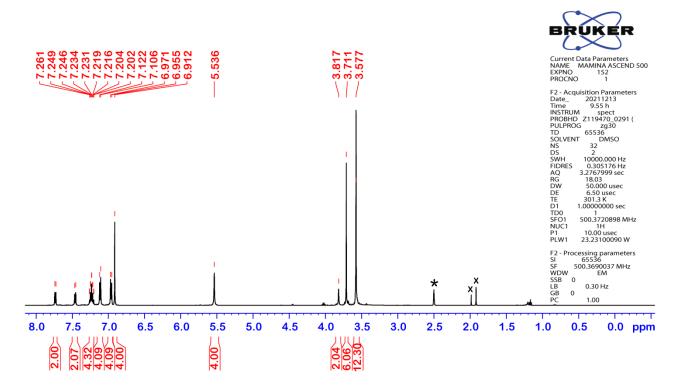
3.3. Results and discussion

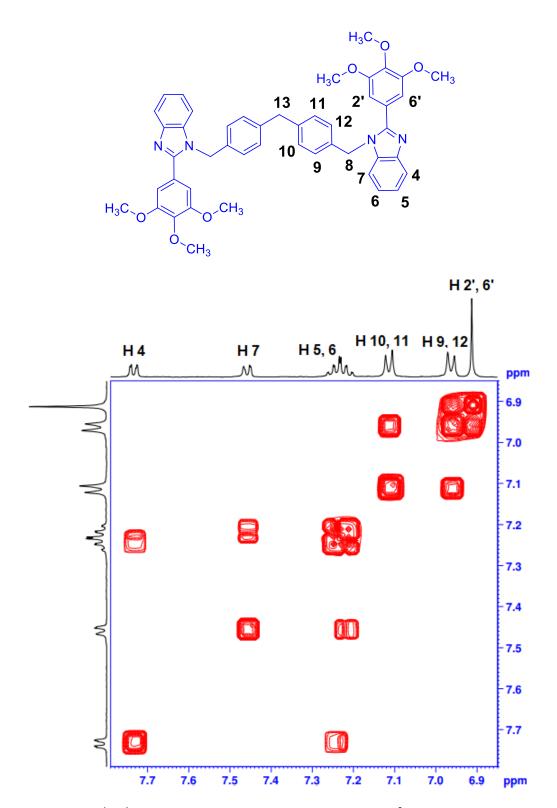
3.3.1. Synthesis and characterization of ligands L^1 - L^2 .

Ligands L^1 and L^2 were synthesized from bis(4-bromomethylphenyl)methane, 2-(4-methoxyphenyl)-1H-benzimidazole or 2-(3,4,5-trimethoxyphenyl)-1H-benzimidazole, and NaH in THF (Scheme 3.1). The ligands are air stable and soluble in DMSO, CH_2Cl_2 , and $CHCl_3$. The 1H NMR spectrum of the ligands displayed a single set of chemical resonances, corresponding to the protons of the three methylene ($-CH_2-$) motifs and two methoxyphenylbenzimidazolyl/trimethoxyphenyl benzimidazolyl motifs. Further, the formation of the ligands was confirmed by high resolution ESI-MS analysis, which displayed molecular ion peaks at m/z, 641.2918 for $[L^1 + H]^+$ and 761.3350 for $[L^2 + H]^+$. Experimental mass peaks of the ligands match well with the theoretical values.

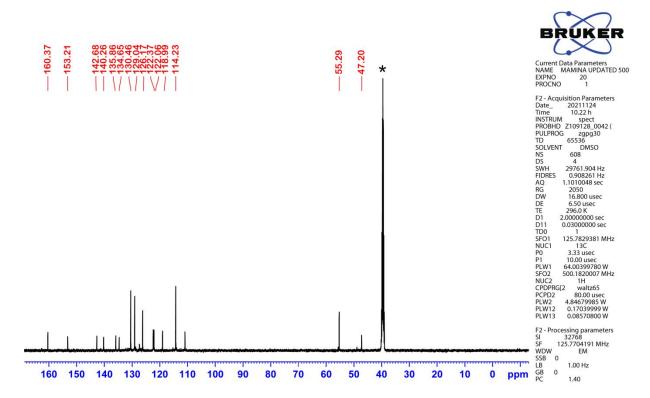
Scheme 3.1. Synthesis of ligands L^1 - L^2 .

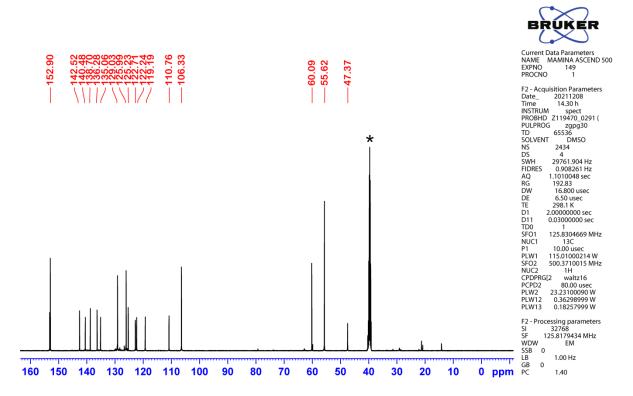


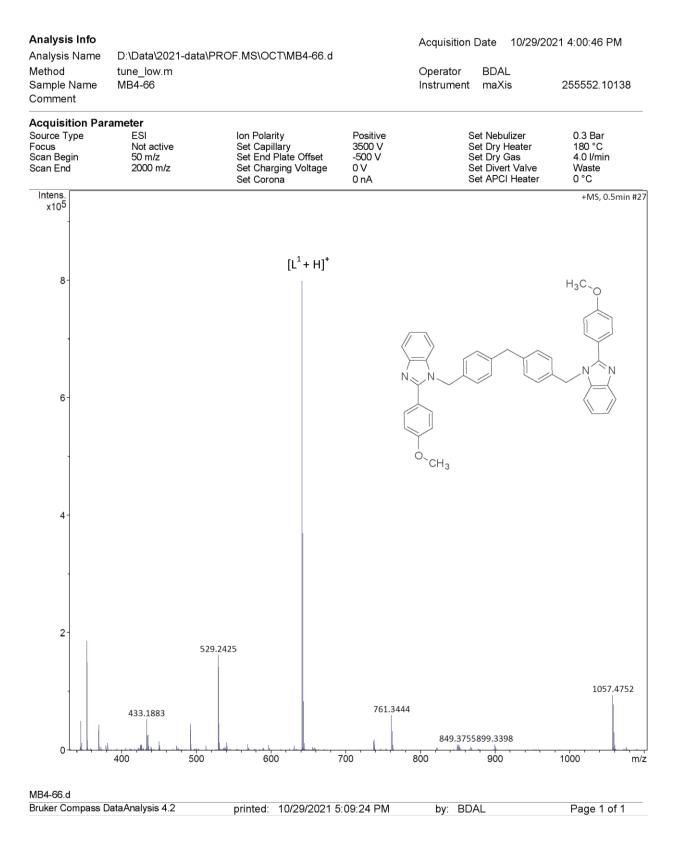

Figure 3.1. ¹H NMR (500 MHz) spectrum of L¹ in d_6 -DMSO.


Figure 3.2. Partial ${}^{1}\text{H}$ - ${}^{1}\text{H}$ COSY NMR (500 MHz) spectrum of L 1 in d_{6} -DMSO.

ppm




Figure 3.3. 1 H NMR (500 MHz) spectrum of L 2 in d_{6} -DMSO.


Figure 3.4. Partial ${}^{1}\text{H}$ - ${}^{1}\text{H}$ COSY NMR (500 MHz) spectrum of L 2 in d_{6} -DMSO.

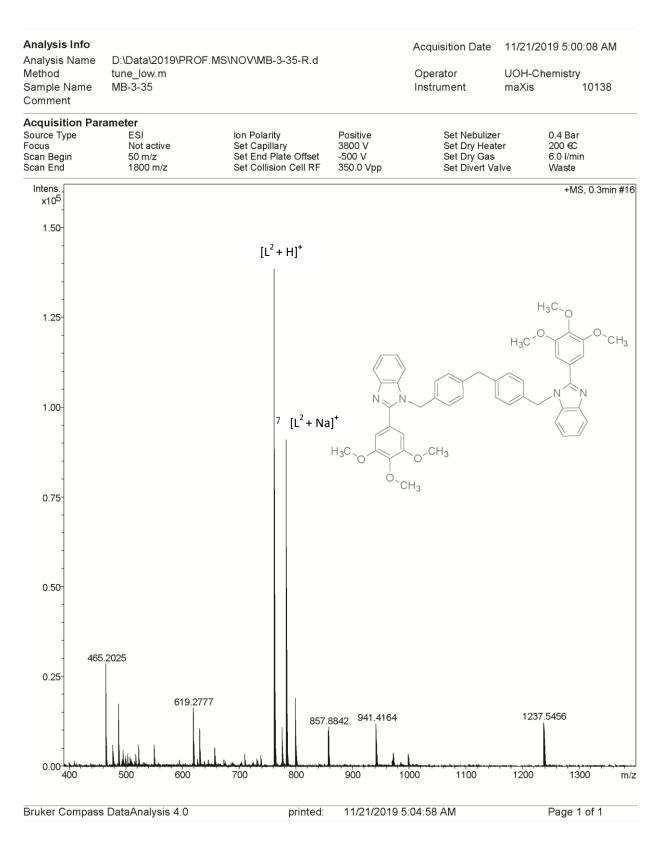

Figure 3.5. 13 C-NMR (500 MHz) spectrum of L¹ in d_6 -DMSO.

Figure 3.6. 13 C-NMR (500 MHz) spectrum of L² in d_6 -DMSO.

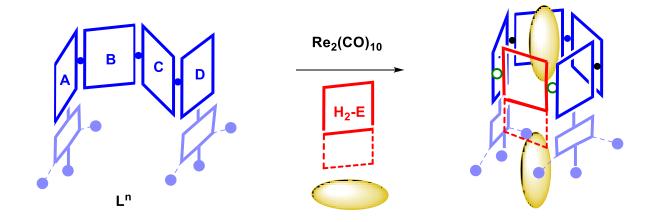

Figure 3.7. ESI mass spectrum of L¹ in positive ion mode.

Figure 3.8. ESI mass spectrum of L² in positive ion mode.

3.3.2. Synthesis and characterization of metallocavitands 1-8.

Complexes 1-8 were prepared from Re₂(CO)₁₀, bis-chelating ligand (H₂-dhbq (2,5dihydroxy-1,4-benzoquinone) or H_2 -CA (chloranilic acid) H₂-dhaq (1,4dihydroxyanthraquinone) or H₂-dhnq (6,11-dihydroxy-5,12-naphthacenedione)), Lⁿ, and high boiling aromatic solvents via a one-pot solvothermal procedure (Scheme 3.2- 3.3). The complexes are air- and moisture-stable, and soluble in DMSO, CHCl₃, CH₂Cl₂, and CH₃CN. Further, the complexes are sparingly soluble in methanol. The ATR-IR spectra of the complexes showed three strong bands in the 2012-1874 cm⁻¹ region, which are characteristic peaks of fac-Re(CO)₃ core in an asymmetric surrounding. The high resolution ESI-MS analysis of the complexes displayed molecular ion peaks $(m/z = 1321.1739 \text{ for } [1 + H]^+,$ 1441.1906 for $[2 + H]^+$, 1389.0689 for $[3 + H]^+$, 1509.1170 for $[4 + H]^+$, 1421.1831 for $[5 + H]^+$ H_{1}^{+} , 1541.2327 for $[6 + H_{1}^{+}]$, 1471.1960 for $[7 + H_{1}^{+}]$, and 1605.2667 for $[8 - 3H + NH4_{1}^{+}]$ with isotope pattern that match well with the theoretical values.

Scheme 3.2. Cartoon representation of synthetic strategy for metallocavitand: A = D =heterocyclic nitrogen donor; B = C =phenylene spacer, $H_2E =$ bis-chelating unit; $\bullet = CH_2$; $\bullet = OCH_3$; $\circ = fac$ -Re(CO)₃, guest molecule = ellipsoid motif.

5, E = dhaq, R' = H; **6**, E = dhaq, R' = OCH₃ **7**, E = dhnq, R' = H; **8**, E = dhnq, R' = OCH₃

O'''''...Re...

Scheme 3.3. Synthesis of metallocavitands **1-8** (H_2 -dhaq = 1,4-dihydroxyanthraquinone; H_2 -dhaq = 6,11-dihydroxy-5,12-naphthacenedione).

0

0=""

 (H_2-E)

¹H NMR analysis of complexes 1-8.

The ¹H NMR spectrum of **1** and **2** displayed the chemical resonances of the protons of L^{1}/L^{2} . The proton of dhbq unit of 1 showed singlet and was downfield shifted as compared to free H₂-dhbq ligand. The proton ratio of dhbq:L¹ was 1:1, suggesting the stoichiometry of complex 1. The H⁴, H^{9,12}, H^{2',6'}, H⁸, H¹³ of L², and protons of dhbq in 2 were upfield shifted, whereas H⁷, H^{5,6}, H^{10,11} of L² was downfield shifted relative to the free ligand. The proton NMR spectra of 3 and 4 displayed a single set of chemical resonances for all the protons of L¹ and L², respectively. All the protons of L¹ in 3 were downfield shifted significantly as compared to the free ligand L¹. In the case of 4, H^{2'}, 6' protons were noticeably upfield shifted, whereas the signals of other protons were shifted slightly upfield/downfield in comparison with free ligand L² The proton NMR spectra of 5-8 displayed simple pattern with chemical resonances for the protons of L^1/L^2 and dhaq/dhnq. The proton signals of L^1/L^2 in 5-8 are similar to those of the free ligands. In addition to these peaks, two symmetrical multiplets and one single signal corresponding to the dhaq unit were observed for 5 and 6. The H^a and H^{b, c} signals of dhaq in 5 were upfield and downfield shifted respectively. All protons (H^{a-c}) of dhaq in **6** were downfield shifted relative to free H₂-dhaq ligand. In addition to the signals for the protons of L¹/L², two symmetrical multiplets (H^a and H^b) for dhng protons were observed in 7 and 8. The Ha signal of dhnq in 7 and 8 was downfield shifted relative to free H₂-dhng. The upfield and downfield shifts of the protons of the ligand framework in the complexes as compared to the free ligands suggest that the cyclic nature of the complexes in solution state.

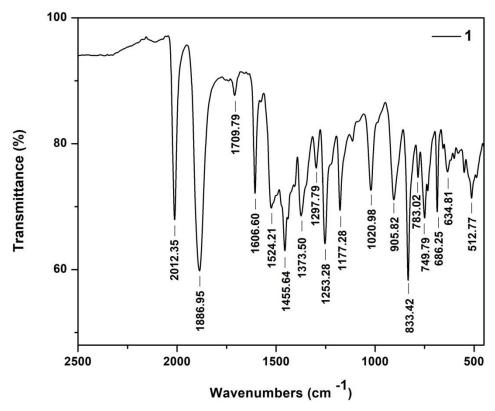


Figure 3.9. ATR-IR spectrum of 1.

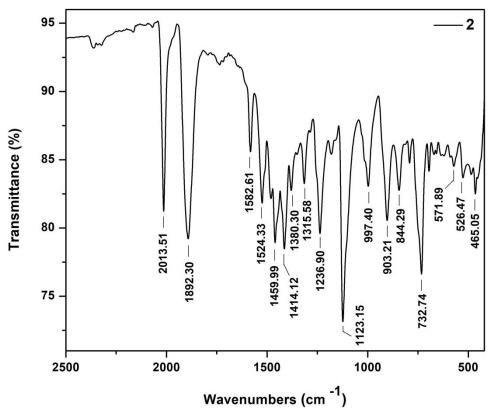


Figure 3.10. ATR-IR spectrum of 2.

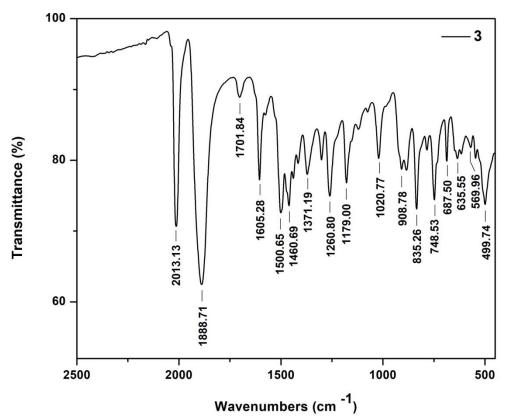


Figure 3.11. ATR-IR spectrum of 3.

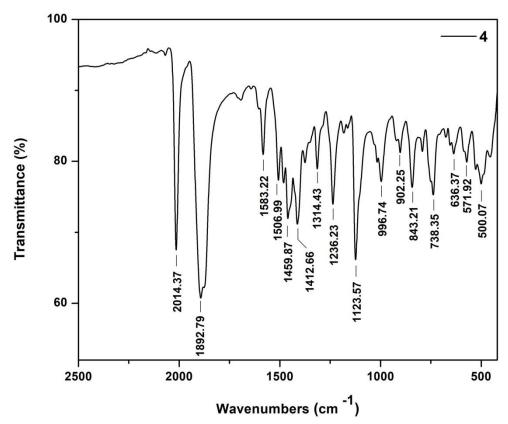


Figure 3.12. ATR-IR spectrum of 4.

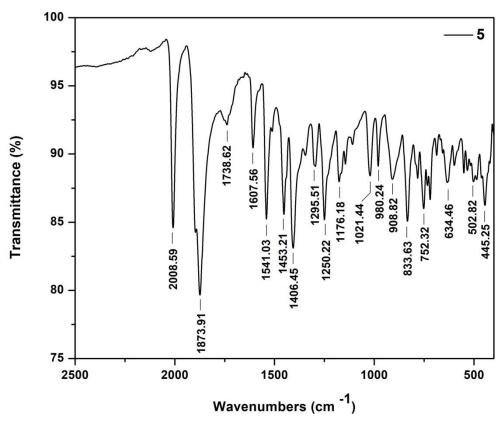


Figure 3.13. ATR-IR spectrum of 5.

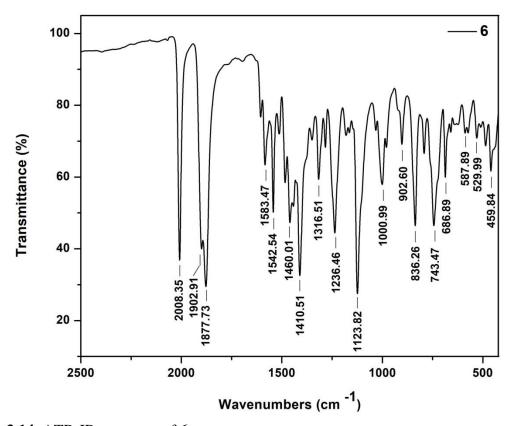


Figure 3.14. ATR-IR spectrum of 6.

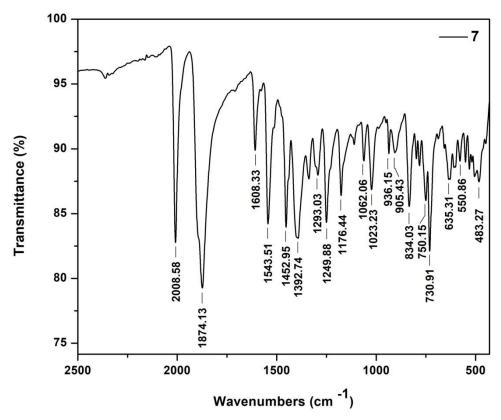


Figure 3.15. ATR-IR spectrum of 7.

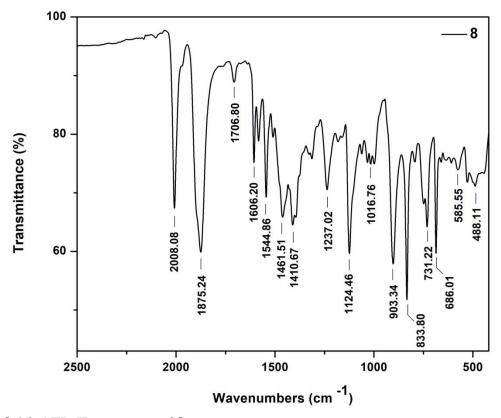
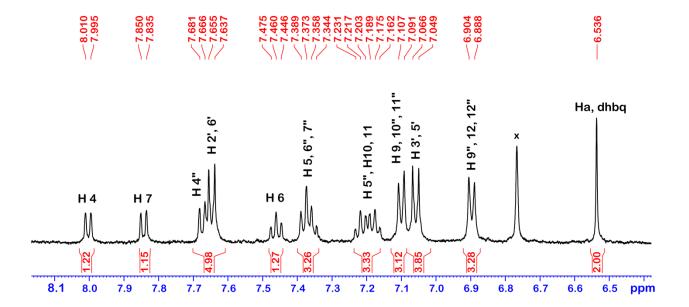
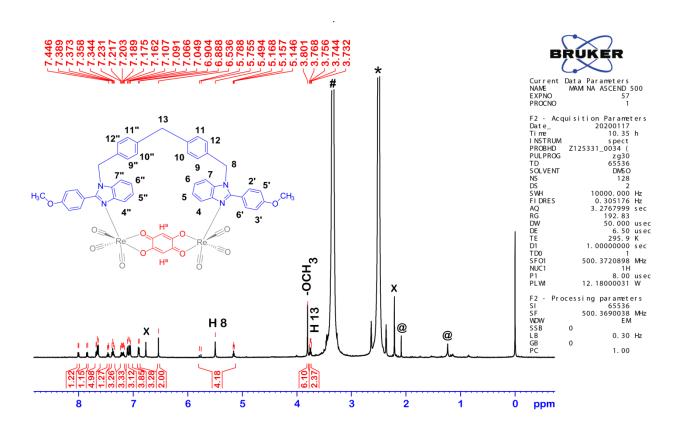
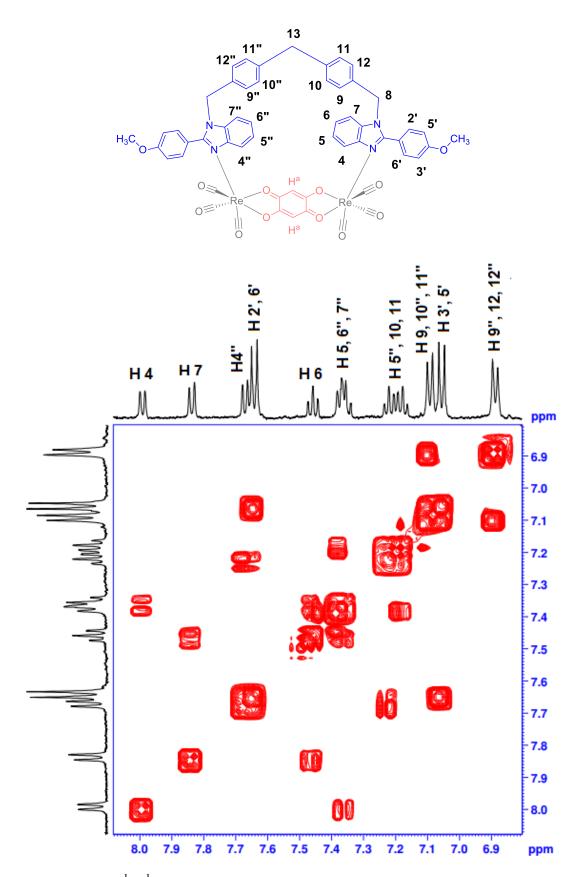
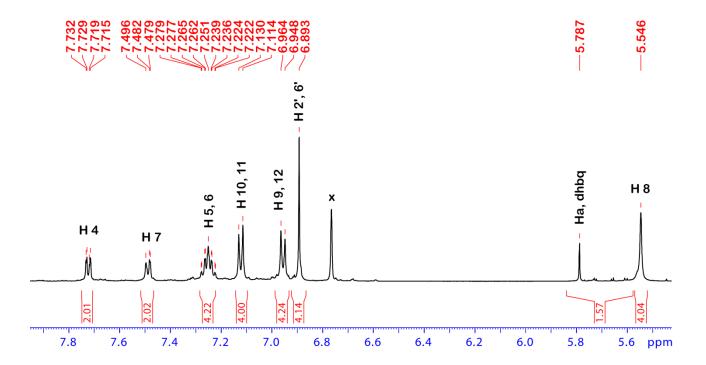





Figure 3.16. ATR-IR spectrum of 8.



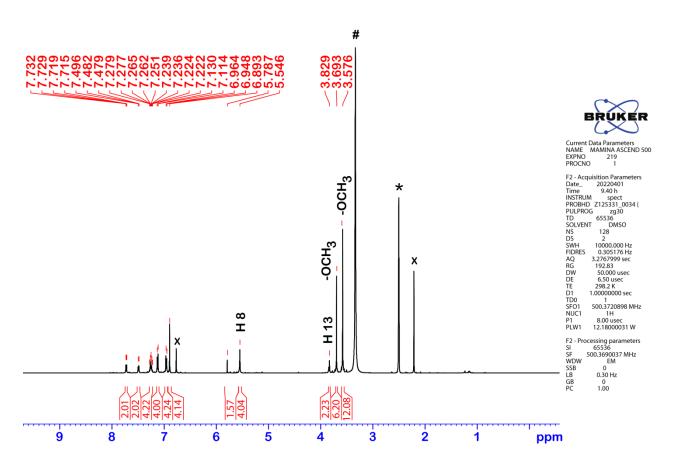
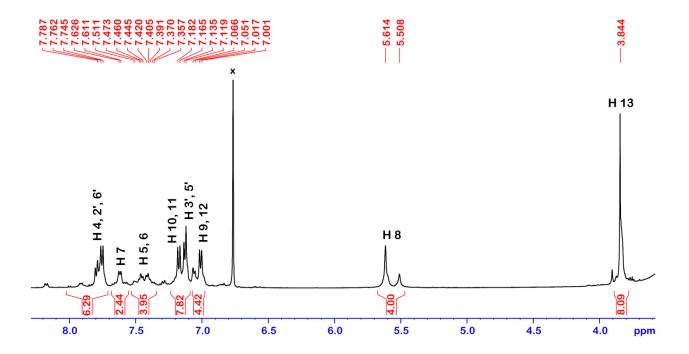
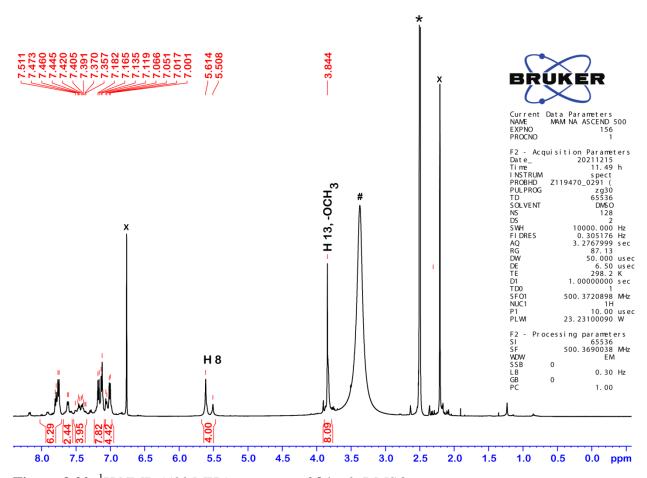


Figure 3.17. 1 H NMR (500 MHz) spectrum of **1** in d_{6} -DMSO.




Figure 3.18. Partial ${}^{1}\text{H}$ - ${}^{1}\text{H}$ COSY NMR (500 MHz) spectrum of **1** in d_{6} -DMSO.

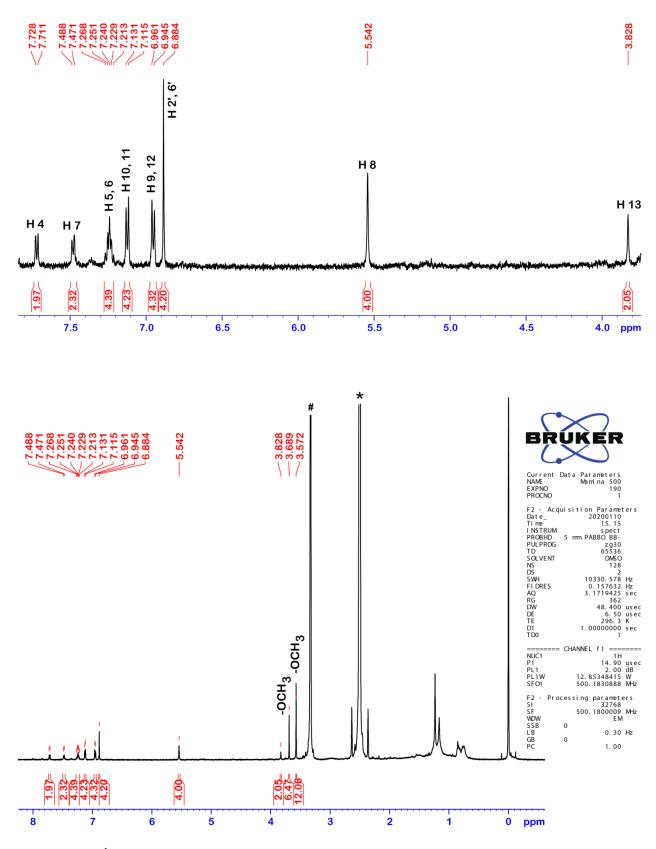
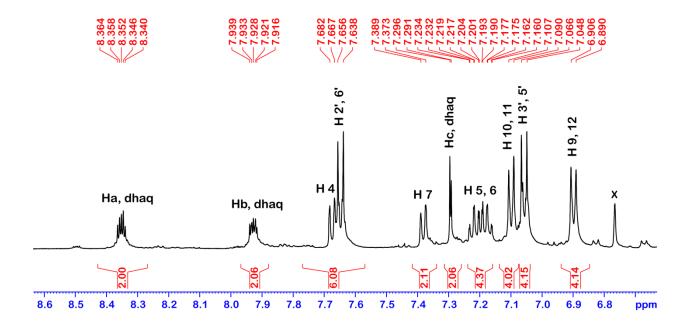


Figure 3.19. 1 H NMR (500 MHz) spectrum of **2** in d_{6} -DMSO.



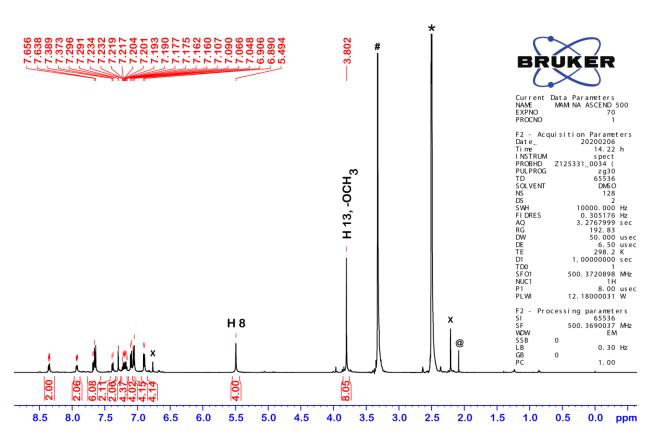
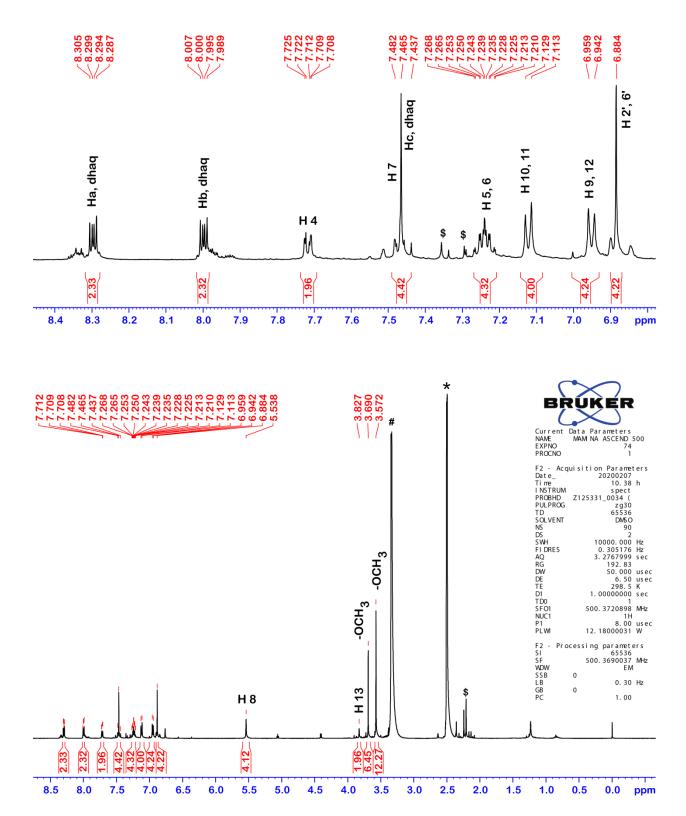
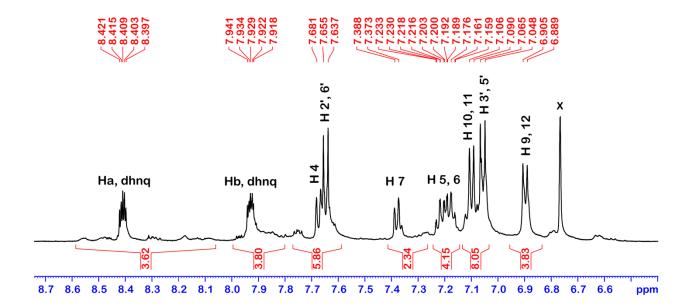
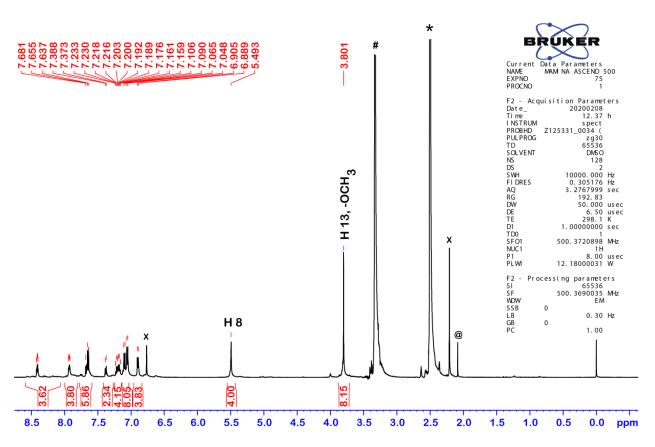
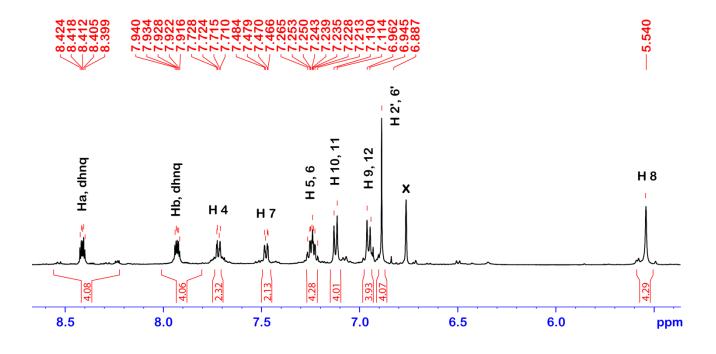


Figure 3.20. ¹H NMR (500 MHz) spectrum of **3** in d_6 -DMSO.

Figure 3.21. 1 H NMR (500 MHz) spectrum of **4** in d_{6} -DMSO.

Figure 3.22. 1 H NMR (500 MHz) spectrum of **5** in d_{6} -DMSO.

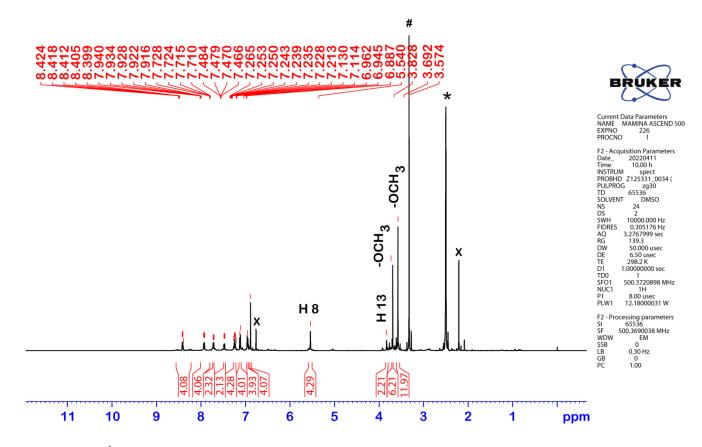

Figure 3.23. 1 H NMR (500 MHz) spectrum of **6** in d_{6} -DMSO.

Figure 3.24. 1 H NMR (500 MHz) spectrum of **7** in d_{6} -DMSO.

Figure 3.25. 1 H NMR (500 MHz) spectrum of **8** in d_{6} -DMSO.

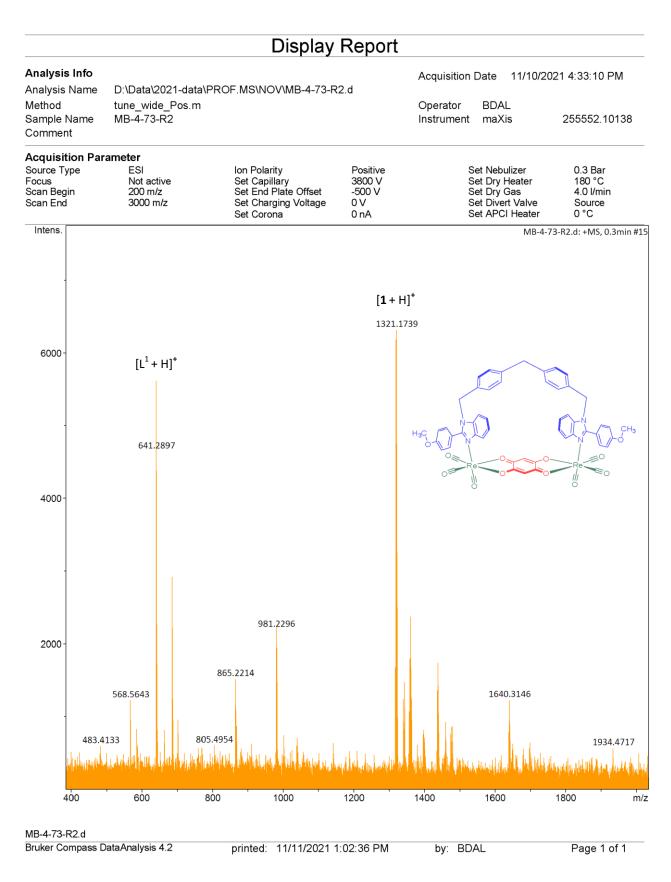
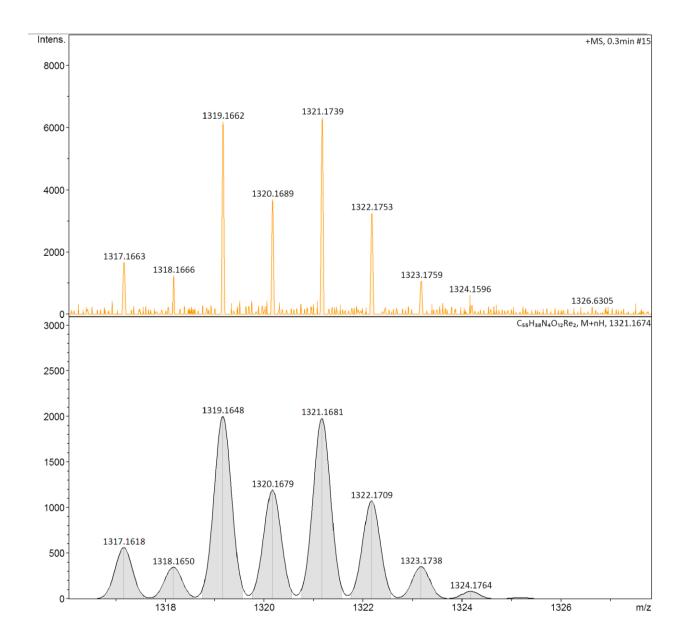



Figure 3.26. ESI mass spectrum of 1 in positive ion mode.

Figure 3.27. Experimental (top) and calculated (below) ESI mass spectrum of **1** in positive ion mode.

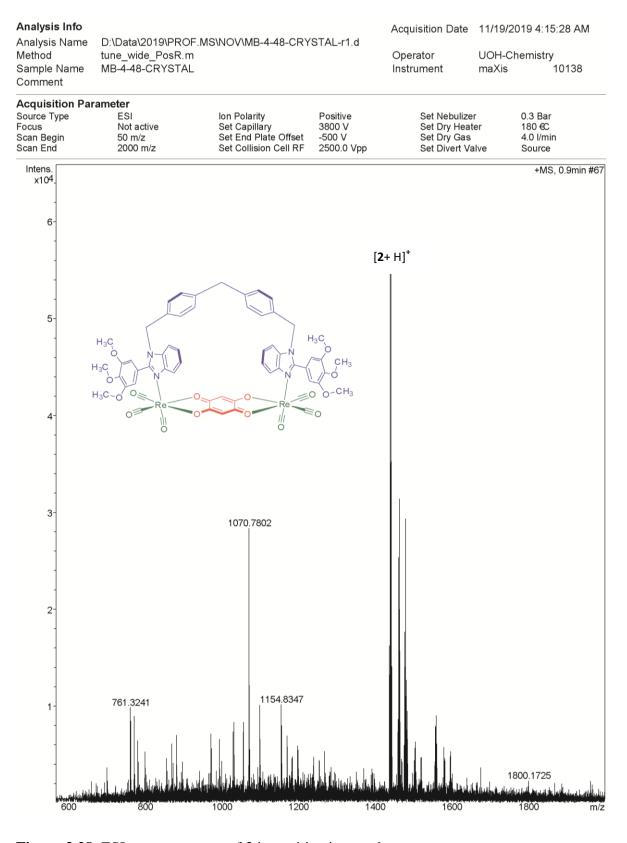
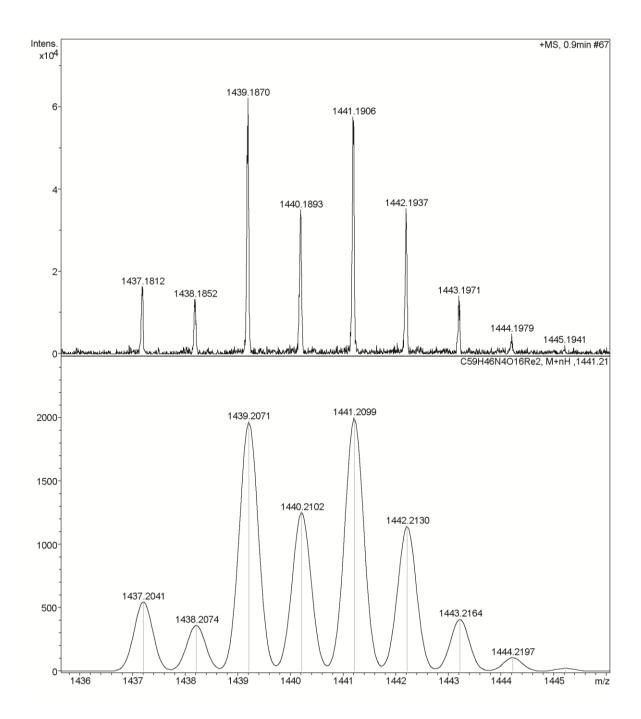



Figure 3.28. ESI mass spectrum of 2 in positive ion mode.

Figure 3.29. Experimental (top) and calculated (below) ESI mass spectrum of **2** in positive ion mode.

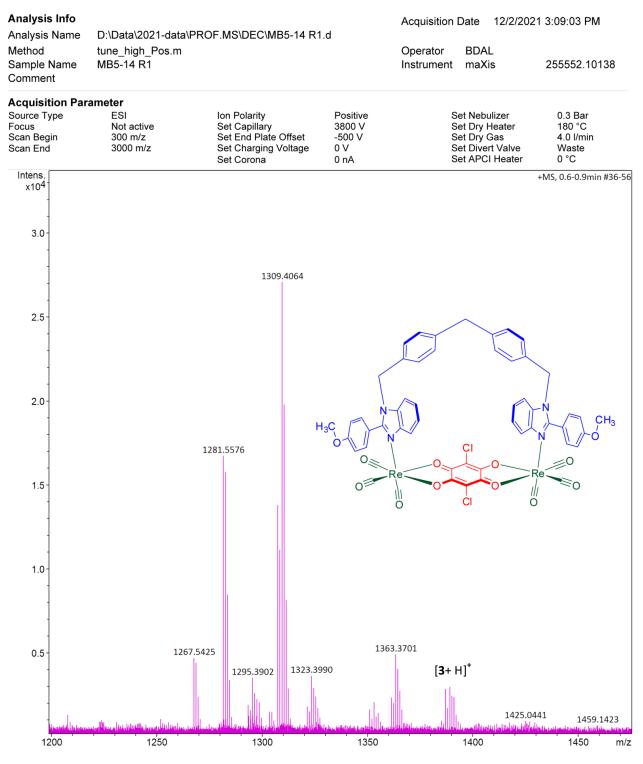
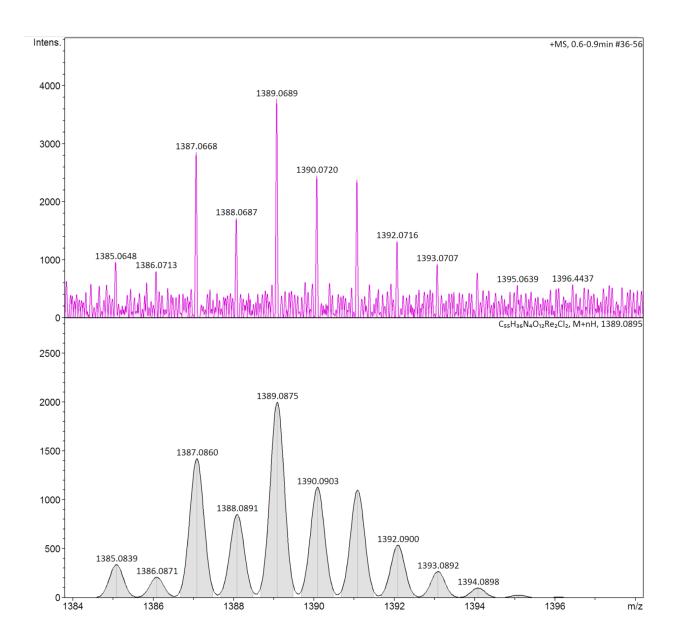
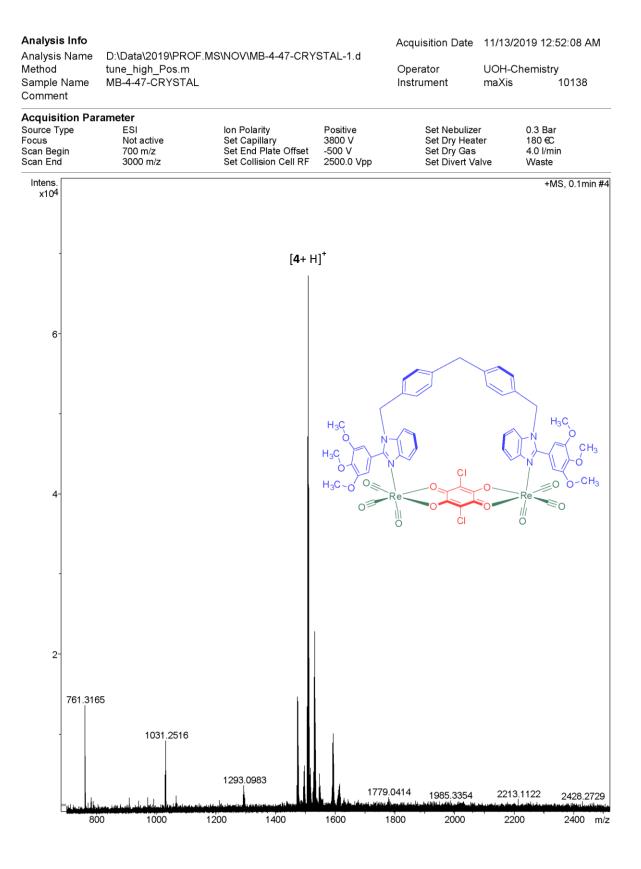
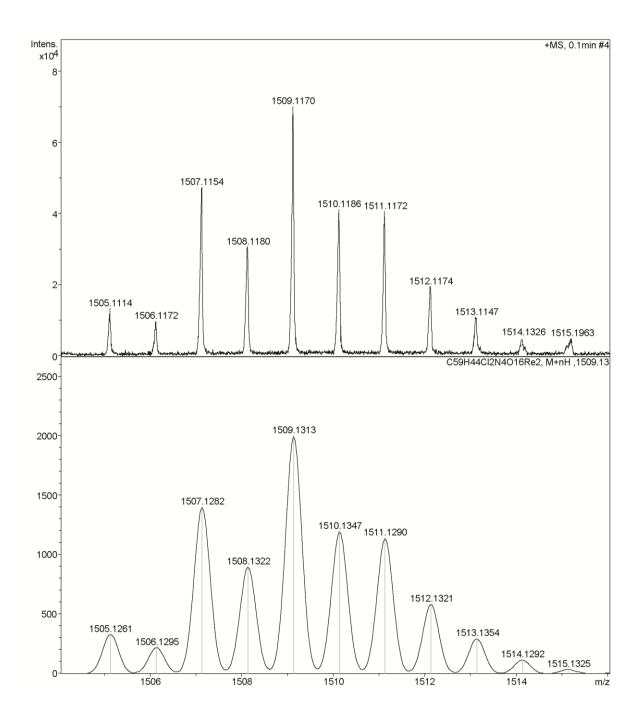
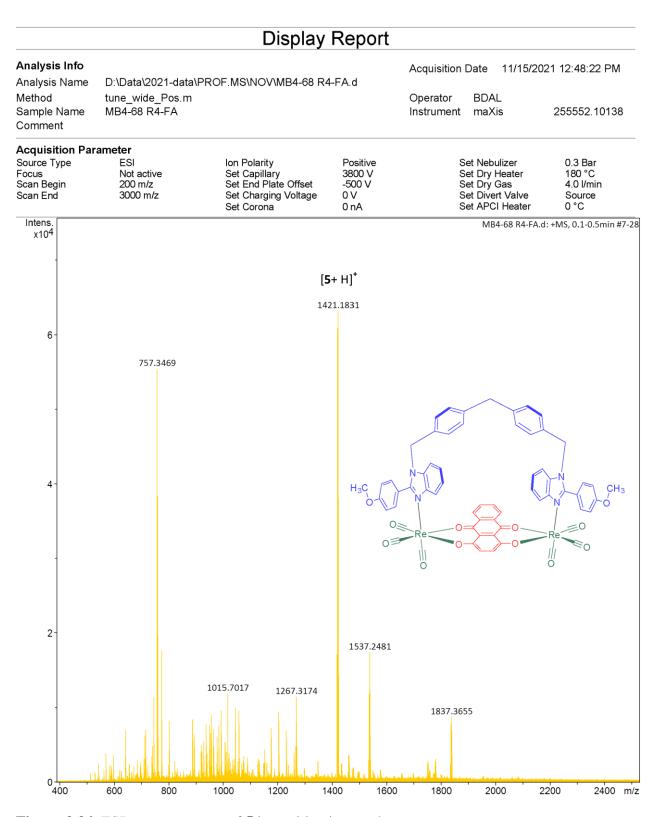
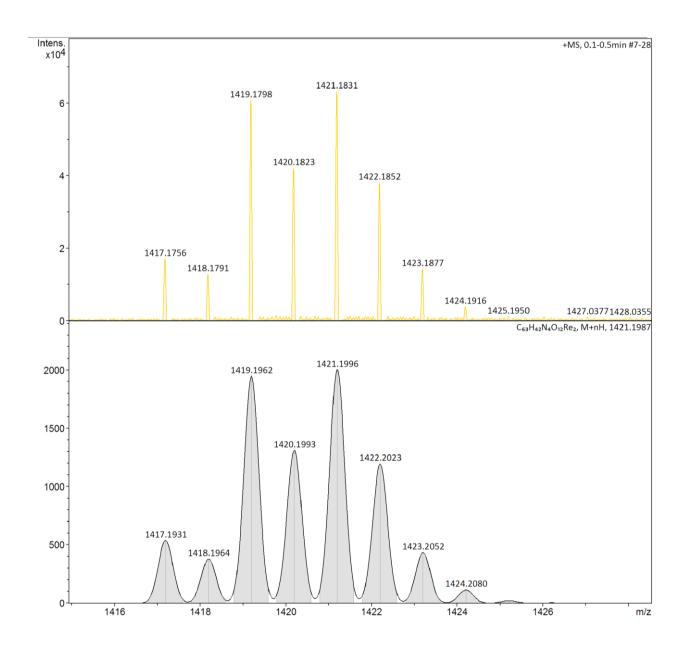
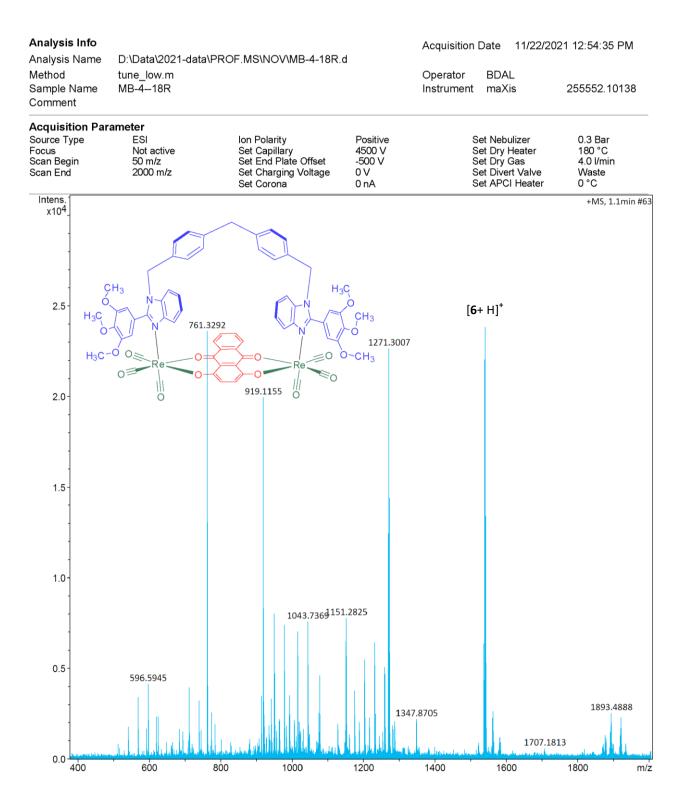



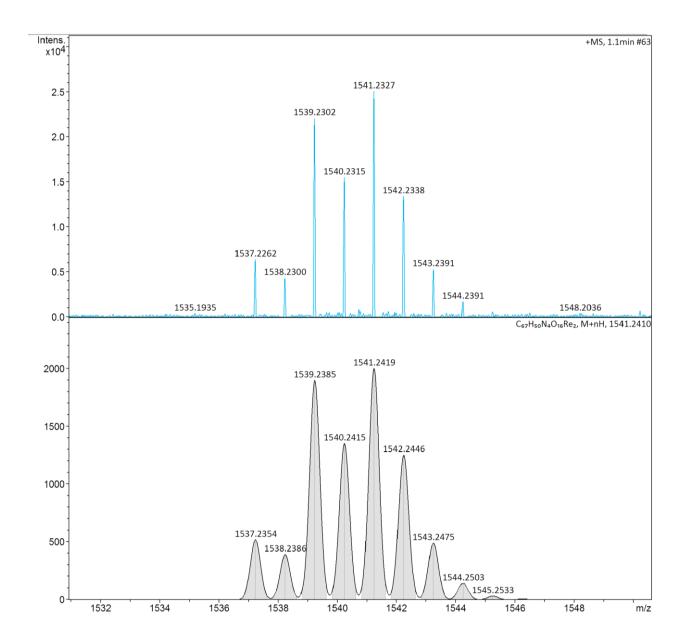
Figure 3.30. ESI mass spectrum of 3 in positive ion mode.

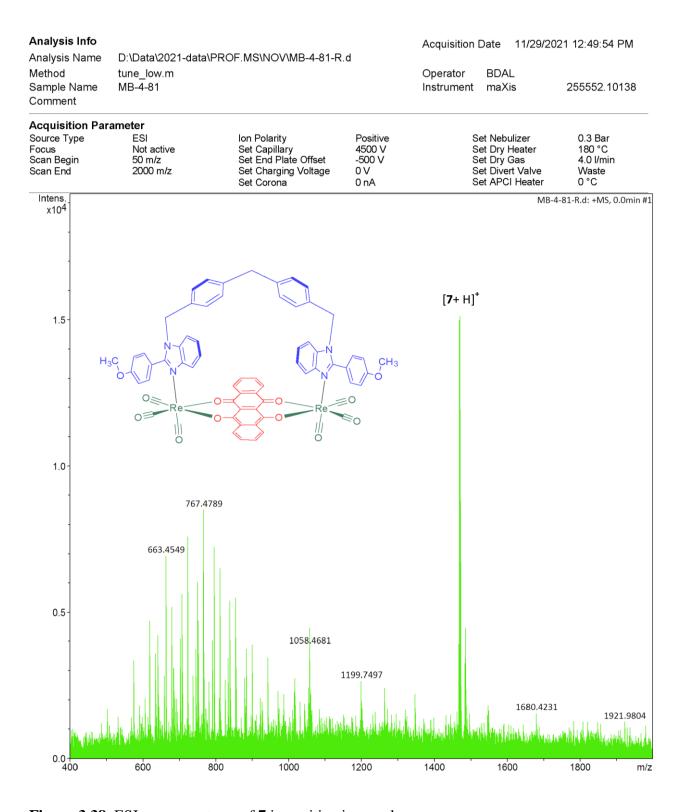
Figure 3.31. Experimental (top) and calculated (below) ESI mass spectrum of **3** in positive ion mode.

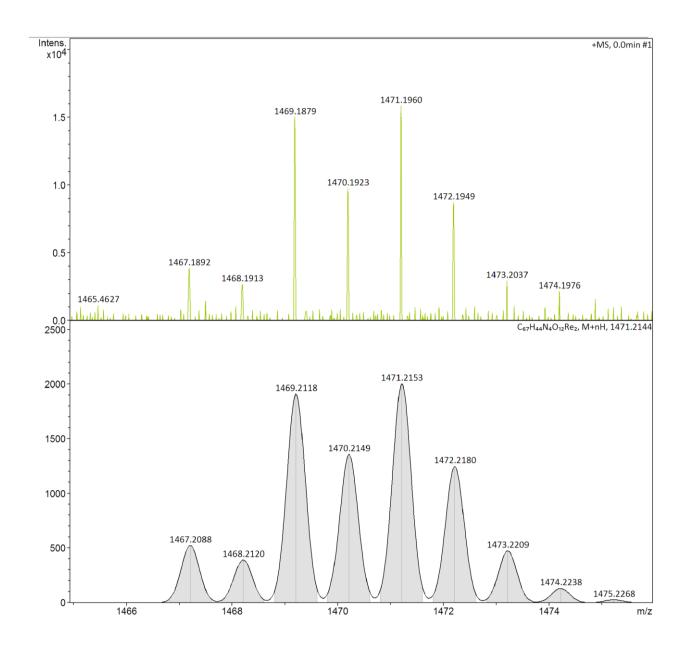




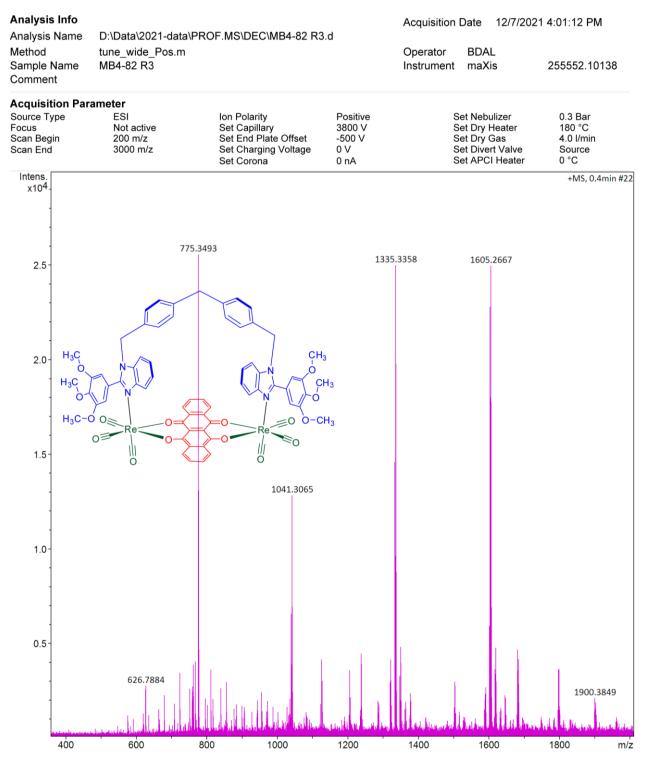

Figure 3.32. ESI mass spectrum of 4 in positive ion mode.


Figure 3.33. Experimental (top) and calculated (below) ESI mass spectrum of **4** in positive ion mode.


Figure 3.34. ESI mass spectrum of **5** in positive ion mode.


Figure 3.35. Experimental (top) and calculated (below) ESI mass spectrum of **5** in positive ion mode.


Figure 3.36. ESI mass spectrum of **6** in positive ion mode.


Figure 3.37. Experimental (top) and calculated (below) ESI mass spectrum of **6** in positive ion mode.

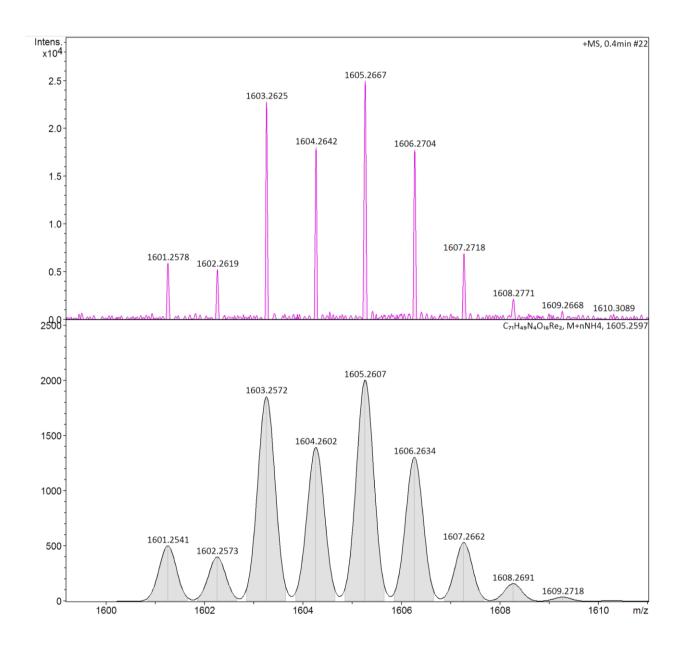

Figure 3.38. ESI mass spectrum of **7** in positive ion mode.

Figure 3.39. Experimental (top) and calculated (below) ESI mass spectrum of **7** in positive ion mode.

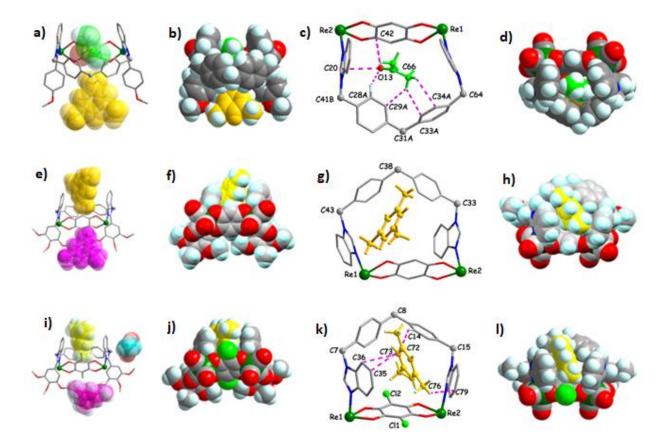
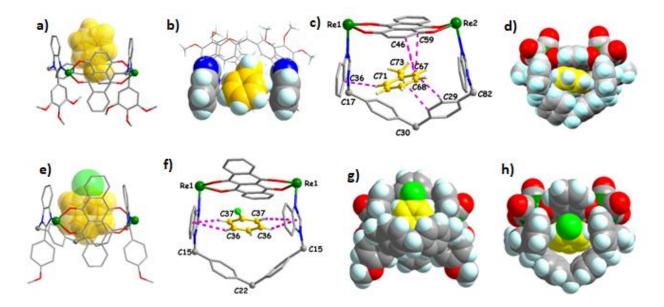

Figure 3.40. ESI mass spectrum of **8** in positive ion mode.

Figure 3.41. Experimental (top) and calculated (below) ESI mass spectrum of **8** in positive ion mode.

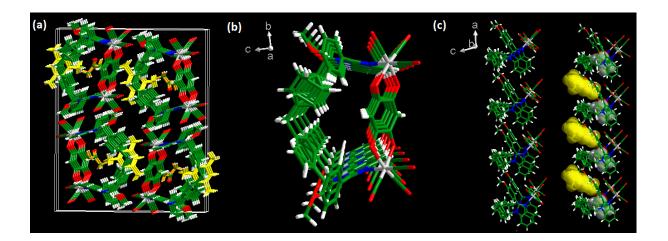

3.3.3. Crystal structures of metallocavitands.

Crystals of 1, 2, 4, 6, and 7 were obtained by either directly from the solvothermal reactions or by slow evaporation of the solution obtained from the solvothermal reactions at room temperature. The structures of the complexes were confirmed by the single-crystal X-ray diffraction method. All the complexes adopt an M₂LL'-type metallomacrocyclic structure and consist of two fac-Re(CO)₃ cores, one dhbq²⁻/CA²⁻/dhaq²⁻/dhnq²⁻ (E²⁻) motif, and one L¹/L² motif (Figure 3.42- 3.43). The rigid E^{2-} motif binds two rhenium ions using its four oxygen atoms in a symmetrical bis-chelating manner resulting in (2+1) assembly of $fac-[(CO)_3Re(\mu-E)Re(CO)_3]$. Ligand L^1/L^2 acts as an arc-type bidentate clip and binds two rhenium ions of the binuclear assembly using the benzimidazolyl nitrogen atom, leading to the distorted pentagonal tubular architecture. Therefore, the complexes can be considered as metallacalix[5]arene in which the hetero(arene) units (two benzimidazolyl-, and two pphenylene-motifs), E^{2-} motif, three methylene ($-CH_{2-}$) groups and two rhenium ions in the metallomacrocycle are related to the five p-phenylene frames, three methylene $(-CH_2-)$ groups, and two methylene $(-CH_2-)$ cores of calix[5]arene, respectively. To the best of our knowledge, these complexes are the second examples of heteroleptic fac-Re(CO)₃-based metallacalix[5]arene. 16 Important parameters describing the metallomacrocyclic structures are given in Table 3.1. The size of the cyclic framework of the compounds is described on the basis of the two adjacent connectors (Re···Re, Re···CH₂, CH₂···CH₂, CH₂···CH₂, and $CH_2 \cdots Re$) of hetero(arene)/ E^{2-} motifs. Among the two p-phenylene units of L^1/L^2 in the metallomacrocycles, one unit is twisted with respect to the other unit presumably either to have effective non-covalent interactions with the guest molecule residing in the cyclic cavity and/or to avoid steric interactions between the two o-hydrogen atoms of the two p-phenylene motifs. The two substituents, 4-methoxyphenyl or 3,4,5-trimethoxyphenyl motifs, decorated at the lower rim of the metallomacrocycles are parallel to each other and perpendicular to the benzimidazolyl motif. The two p-methoxy units in 1 and 7 are directed away from each other, resulting in an extended hydrophobic cavity containing molecular tubes. In the case of 2, 4, and 6, the two m-methoxy units are directed towards each other, resulting in a pentagonal cylindrical bowl.

Figure 3.42. Various views of molecular structures of **1** (a-d), **2** (e-h), and **4** (i-l) with guest molecules (H atoms of metallocavitand are removed for clarity in a, c, e, g, i, and k; CO units and methoxyphenyl units are omitted to show the metallocavitand framework clearly in c, g, and k; C = gray, H = pale blue, Cl = pale green, N = blue, O = red, Re = green, guest acetone = green and red, guest mesitylene = yellow, lattice mesitylene = pink, lattice acetone = sky and orange.

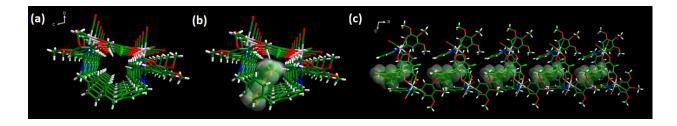
All the metallomacrocycles crystallize with one or more solvent molecules and accommodate one solvent molecule as a guest in their cyclic hydrophobic internal cavity. For example, compound 1 crystallizes with one acetone and one mesitylene. Among the two guest molecules, acetone occupies the center of the internal cavity of the complex. The plane of the acetone is parallel to the dhbq plane and perpendicular to the two benzimidazolyl planes. Cumulative $C-H^{\cdots}\pi$, $C-H^{\cdots}O$ and lone pair- π interactions were found between the acetone and the framework of the host. The mesitylene solvent almost occupies the cavity present at the lower rim and the extended cavity available between the two phenoxy units.

Figure 3.43. Various views of molecular structures of **6** (a-d), and **7** (e-h) with guest molecules (H atoms of metallocavitand are removed for clarity in a, c, e, and f; CO units and methoxyphenyl units are omitted to show the metallocavitand framework clearly in c, and f; C = gray, H= pale blue, Cl = pale green, N = blue, O= red, Re= green, toluene = yellow, chlorobenzene = yellow and green.


Table 3.1. Structural parameters of the metallocavitands.

complex	perimeters of molecular	~τ° (benz) ^a and	τ°	Guest(s)
	pentagons:	~H····H (Å) ^b	(phenyl) ^c	
	$\sim d$, Å: Re···Re, Re··· C H ₂ ,	(benz)		
	$CH_2\cdots CH_2$, $CH_2\cdots CH_2$, $CH_2\cdots Re$			
	(Å)			
1	8.08, 5.72, 5.75, 5.85, 5.71	35 and 6.69, 7.72	67	acetone
				mesitylene
2	8.09, 5.71, 5.82, 5.82, 5.75	27 and 7.14, 8.08	77	mesitylene
4	8.10, 5.70, 5.80, 5.83, 5.71	27 and 7.51, 6.74	81	mesitylene
6	8.49, 5.75, 5.84, 5.83, 5.75	16 and 10.35, 9.82	65	toluene
7	8.62, 5.70, 5.78, 5.78, 5.73	23 and 7.87, 7.83	48, 73	chlorobenzene

^adihedral angle between two benzimidazolyl motifs; ^bnon-bonding distances between the H atoms of the oppositely arranged benzimidazolyl motifs; ^cdihedral angle between two p-phenylene motifs.


The molecular pentagons **2**, **4**, **6**, and **7** accommodate mesitylene, toluene, and chlorobenzene, respectively, in the hydrophobic internal cavity. Multiple non-covalent contacts (C–H··· π or/and π ··· π interactions) were found between the guest and the cyclic framework of the host. A portion of the mesitylene molecule resides in the internal cavity of **2** and **4**, whereas a full molecule of toluene/chlorobenzene occupies the cavity of **6** and **7**. The different arrangement of the guest molecules in the cavity of the complexes correlates with the different sizes and electronic environment of the cyclic framework due to varying the bridging motifs (E²⁻). The results further indicate that the molecular pentagons **6** and **7** are the most suitable host for mono-substituted benzene molecules.

The crystal structures of the metallamacrocycles were stabilized by various types of non-covalent interactions. Metallomacrocycles 1 arrange to form a tubular structure (Figure 3.44). Solvent molecules reside only in the non-covalent tubes in 1. Metallamacrocycles 4 also forms a tubular structure (Figure 3.45). In addition, two one-dimensional voids are present that is perpendicular to the tubular structure of 4. Both lattice acetone and lattice mesitylene molecules occupy the void space in 4. Complex 6 packs in such a way that solvent mesitylene molecule resides in the lattice cavity created by four neighboring molecules which contacts each other through various non-covalent interactions (Figure 3.46). Each macrocycle 7 interacts with two neighboring macrocycles along the tubular axis (Figure 3.47).

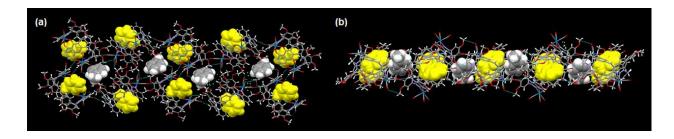


Figure 3.44 (a) Partial packing diagram of **1** showing the tubular arrangement of neighboring metallocavitands with guest acetone molecules (green and red) and lattice mesitylene molecules (yellow, stick representation) (b) One set of tubular framework of "a" without guest molecules. (c) Side view of "b" with and without guest molecules.

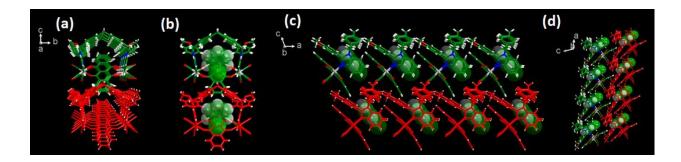
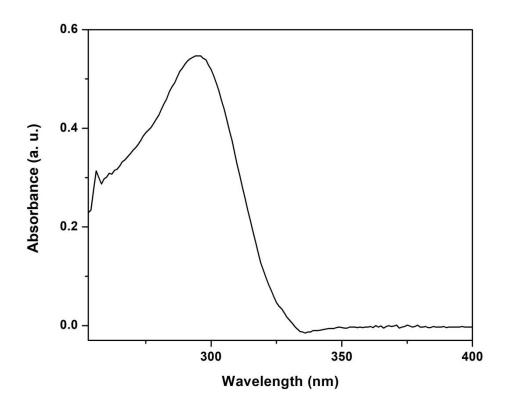
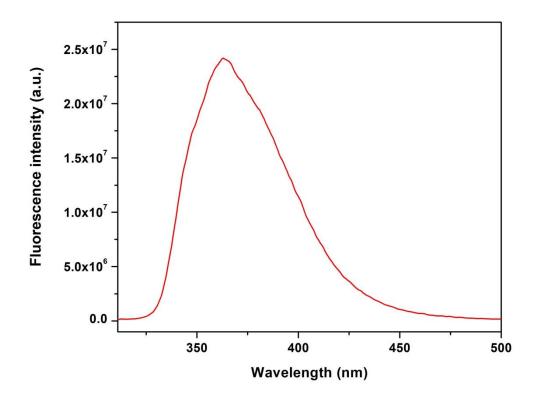

The space (cavity) below the lower rim of one molecule is occupied by the portion of dhnq unit of the neighboring molecule. Mesityelene is not sterically possible to fit completely in the hydrophobic cavity of metallomacrocycles 1, 2, and 4 due to the overall size, whereas toluene and chlorobenzene are fully occupied in the hydrophobic cavity of metallomacrocycles 6 and 7.

Figure 3.45. (a-b) Partial packing diagram of **4** showing the tubular arrangement of neighboring metallocavitands without and with guest mesitylene molecules (green and white) (c) side view of "b".

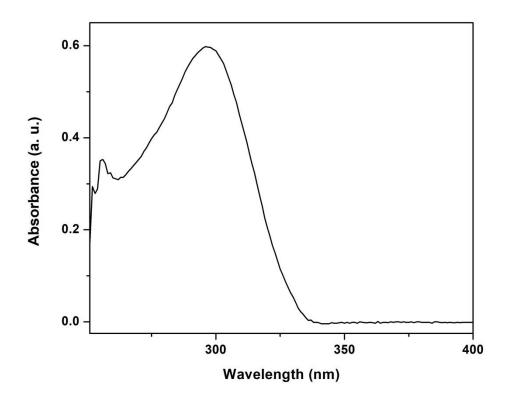
Figure 3.46. Two different views of partial packing diagram of metallocavitand **6** (stick representation) with guest toluene (yellow), and lattice toluene (gray and white).

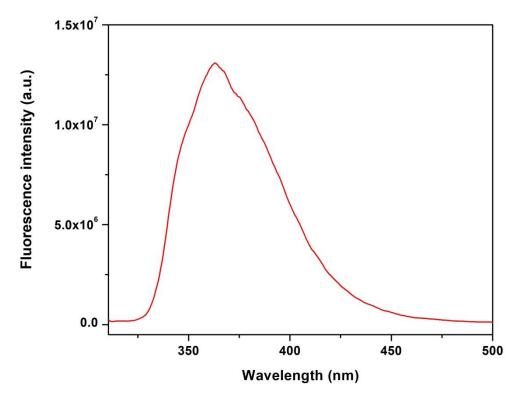
Figure 3.47. (a-b) Partial packing diagram of **7** showing the tubular arrangement of neighboring metallocavitands without and with guest chlorobenzene molecules (green and white) (c-d) two different side views of "b".

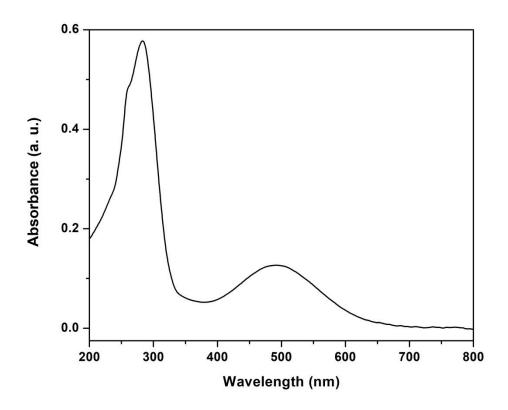

3.3.4. Photophysical properties of the ligands and the complexes.

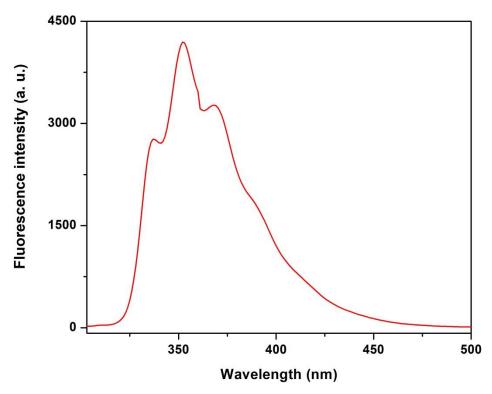

The UV-Vis absorption spectra of L¹ and L² show strong absorption bands with maxima $ca\sim296$ nm in DMSO (Table 3.2). The bands are attributed to spin-allowed π - π * electronic transitions of the aromatic motifs of the ligands. Complexes 1–4 displayed intense absorption bands in the UV-region similar to that of the ligands in DMSO. In addition, complexes 1-4 show moderate broad absorption bands in the range of 400-650 nm (λ_{max} , nm = ~493 for 1, ~489 for 2, ~505 for 3 and 4). These bands may be assigned to metal-to-ligand charge transfer (MLCT) transitions from rhenium core to the bis-chelating framework (Re → dhbq/CA) and intra-ligand charge transfer (ILCT) transitions of quinonoid motif (dhbq/CA→ dhbq/CA) in the complexes. 12e,22 Complexes 5-8 show strong absorption bands at high energy region, medium broad absorption bands in the range of ~350-540 nm, and structured weak absorption bands in the range of 550-700 nm. The absorption spectra of 5-8 are similar to previously reported metallocycles $(fac-[\{(CO)_3Re(\mu-E)Re(CO)_3\}(\mu-L)]I-II$, where E = dhaq for I, E = dhnq for II, and L = 1,4-bis(5,6-dimethylbenzimidazol-1ylmethyl)naphthalene) containing almost similar chromophoric unit fac- $[\{(CO)_3Re(\mu-E)Re(CO)_3\}(benzimidazolyl)]^{.23}$ The absorption bands around 400 nm may be ascribed to both MLCT- (Re -> dhaq/dhnq)and LLCT-charge transfer transitions. The low energy absorptions of the complexes are ascribed to intra-ligand charge transfer (ILCT) transitions (dhaq/dhnq \rightarrow dhaq/dhnq) mainly centered on dhaq²⁻/dhnq²⁻ motifs in the complexes.

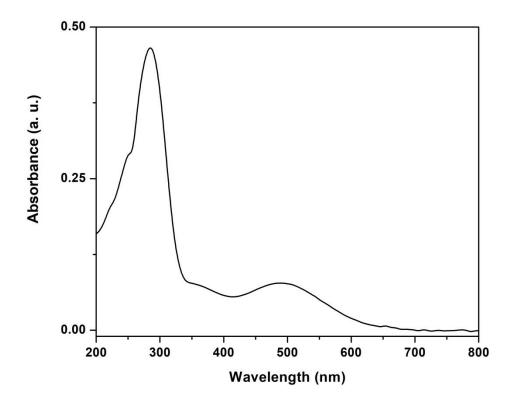
Both the ligands display broad emission at ~363 nm in DMSO at room temperature (Table 3.2). The complexes containing monomethoxyphenyl-bezimidazolyl-based ligand framework (1, 3, 5, and 7) and trimethoxyphenyl-bezimidazolyl-based ligand framework (2, 4, 6, and 8) displayed structured emission around ~337, ~352, ~368 nm, and structureless emission around ~360 or ~363 nm, respectively. The emission of complexes 5 and 7 are blue shifted as compared to the free ligand. No emission was observed while exciting at other absorption bands for 5 and 7. Complex 6 shows two different emission bands while exciting at two different absorption maxima. Similar to the other complexes, complex 6 displayed emission at ~360 nm when excited at ~285 nm. All the results show the origins of emission around ~363 nm are from the excited state of nitrogen donor motifs. In addition, the emission at the visible region ($\lambda_{em (max)} = 567$ nm) was observed while exciting at 458 nm for compound 6.

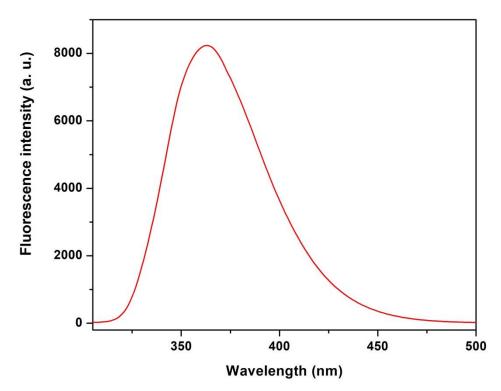

Table 3.2. Absorption and Emission Spectral Data for L^1 , L^2 , and 1–8 in DMSO at 298 K.

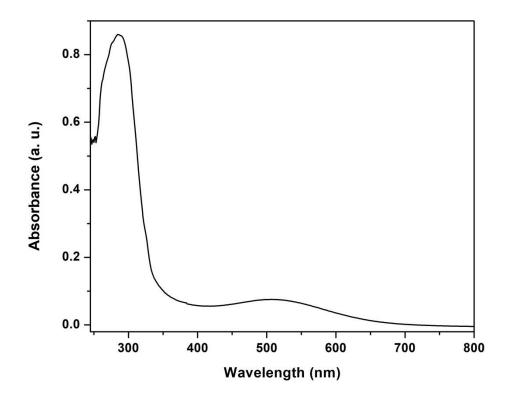

	absorption	emission		
compounds	λ_{\max} (nm)	$\lambda_{\mathrm{exc,max}}\left(\mathrm{nm}\right)$	$\lambda_{em, max} (nm)$	
L^1	296	296	363	
L^2	296	296	363	
1	283, 493	283	337, 352, 368	
2	285, 489	285	363	
3	285, 505	285	338, 352, 367	
4	277, 505	277	364	
5	262, 292, 405, 583, 626	292	337, 352, 369	
6	260, 285, 458, 581, 626	285 458	360 567	
7	276, 381, 551, 593	276	337, 353, 368	
8	275, 383, 559, 591	275	360	

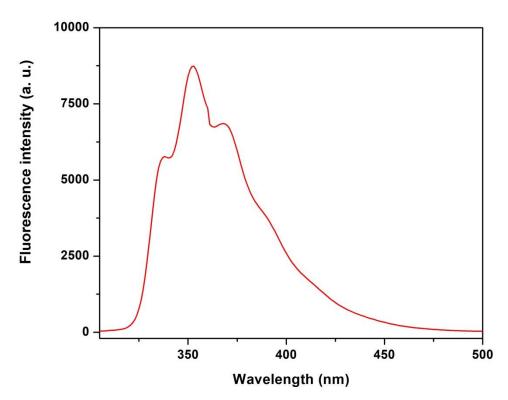



Figure 3.48. Absorption (top) and emission (bottom) spectra of L^1 in DMSO (0.2 × 10^{-4} M, $\lambda_{exc} = 296$ nm).




Figure 3.49. Absorption (top) and emission (bottom) spectra of L² in DMSO (0.2 × 10⁻⁴ M, λ_{exc} = 296 nm).




Figure 3.50. Absorption (top) and emission (bottom) spectra of **1** in DMSO $(0.2 \times 10^{-4} \text{ M}, \lambda_{\text{exc}} = 283 \text{ nm}).$

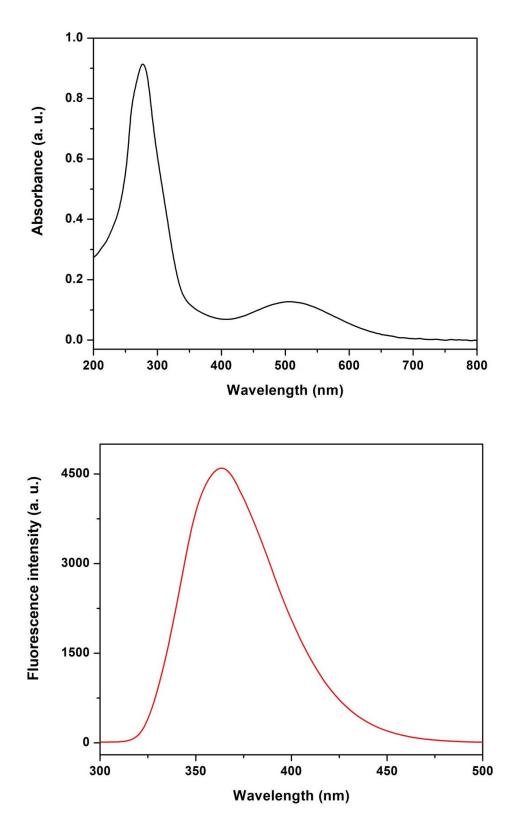
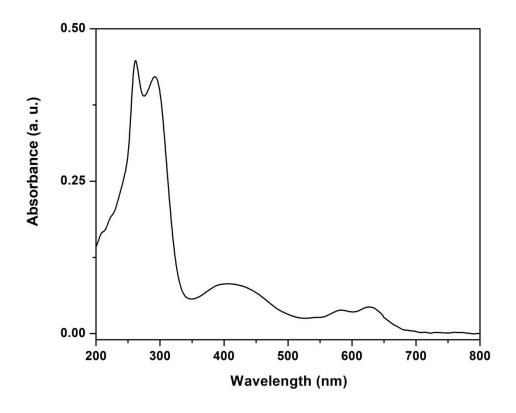


Figure 3.51. Absorption (top) and emission (bottom) spectra of **2** in DMSO (0.3×10^{-4} M, $\lambda_{exc} = 285$ nm).



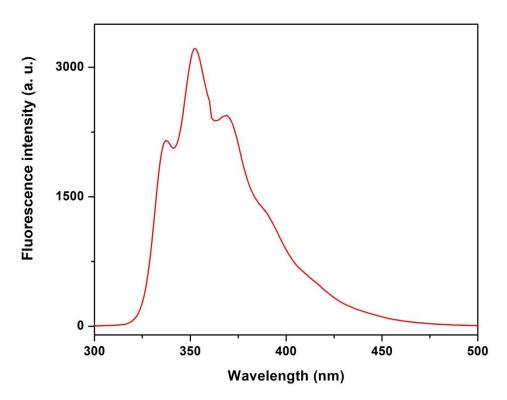
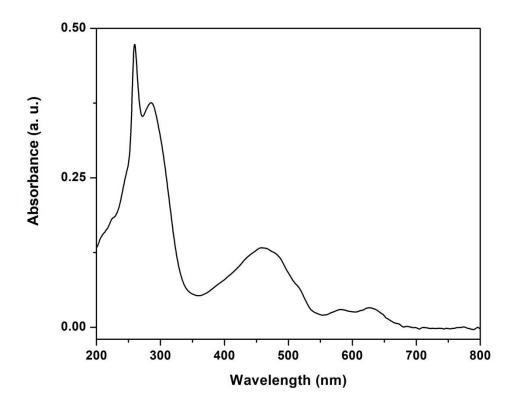
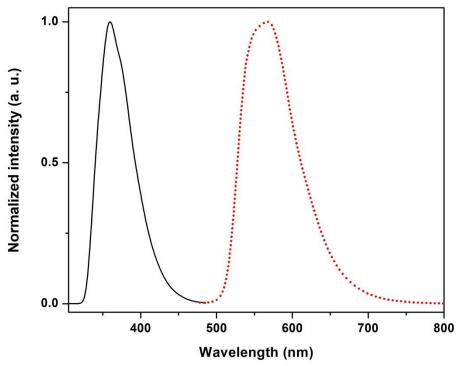


Figure 3.52. Absorption (top) and emission (bottom) spectra of **3** in DMSO (0.3×10^{-3} M, $\lambda_{exc} = 285$ nm).




Figure 3.53. Absorption (top) and emission (bottom) spectra of **4** in DMSO (0.55 \times 10⁻⁶ M, $\lambda_{exc} = 277$ nm).

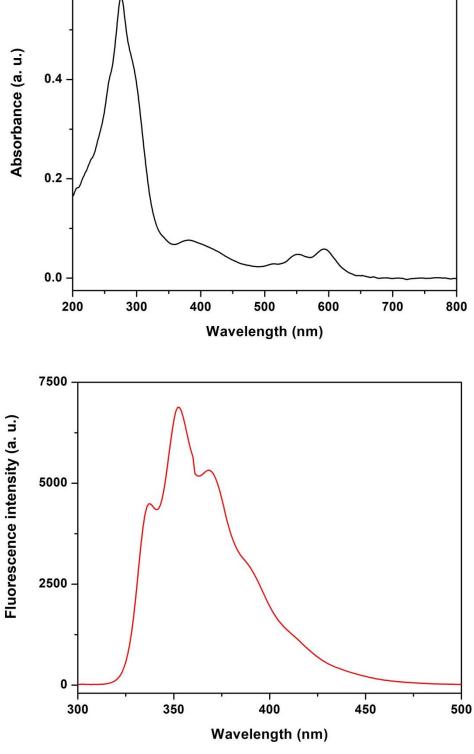
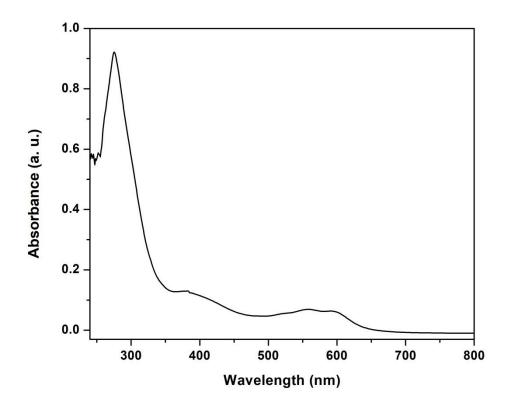
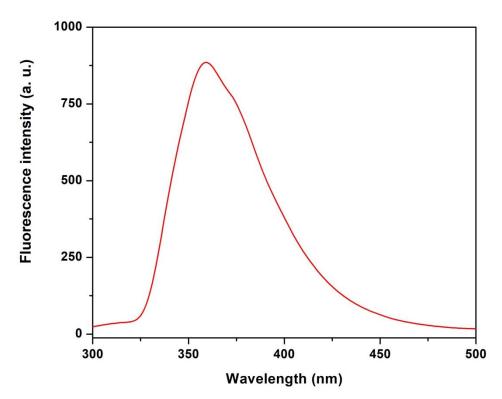


Figure 3.54. Absorption (top) and emission (bottom) spectra of **5** in DMSO $(0.67 \times 10^{-5} \, \text{M}, \lambda_{exc} = 292 \, \text{nm})$.




Figure 3.55. Absorption (top) and emission (bottom) spectra of **6** in DMSO (0.5 \times 10⁻⁴ M, $\lambda_{exc1} = 285$ nm, $\lambda_{exc2} = 458$ nm).

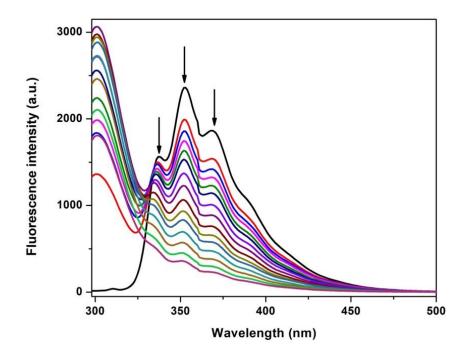
0.6

Figure 3.56. Absorption (top) and emission (bottom) spectra of **7** in DMSO $(0.32 \times 10^{-5} \text{ M}, \lambda_{exc} = 276 \text{ nm})$.

Figure 3.57. Absorption (top) and emission (bottom) spectra of **8** in DMSO $(0.16 \times 10^{-3} \text{ M}, \lambda_{exc} = 275 \text{ nm})$.

3.4. Binding studies of host 1, 2, 7, and 8 with substituted phenol and nitrobenzene based guest molecules.

The crystal structures of the metallocavitands reveal that these molecules can act as molecular hosts for substituted benzene guest molecules. Host-guest binding studies of 1, 2, 7, and 8 with nineteen phenol- and nitrobenzene- substituted guest molecules were performed using the emission feature of these metallocavitands in DMSO (Chart 1, Table 3.3). Upon titrating with the guest molecules, the emission pattern of metallocavitands 1 and 7 is quenched effectively with a slight blueshift of 2- 4 nm at 337/352 nm and a slight redshift of 3-5 nm at 368 nm. On the other hand, the emission pattern of 2 and 8 is quenched smoothly with a considerable blue shift of 2-10 nm, whereas on titrating with 2-NP and 4-NP, the quenching was observed with a significant redshift of 18-20 nm. Further, the analysis of the titration studies of metallocavitands 1, 2, 7, and 8 with guest molecules using the Benesi-Hildebrand relationship reveals the formation of a 1:1 host:guest system. 19 Binding measurements reveal that dhnq²⁻ and 4-methoxyphenyl benzimidazolyl N-donor substituted metallocavitand 7 is a more effective host, and shows better binding constant with guest molecules than metallocavitand 1. This may be due to the presence of dhng²⁻ motif in 7, which increases the hydrophobic cavity size [(~d, Å: Re···Re, 8.62 (for 7) 8.08 (for 1)] and the higher π -surface of dhng²⁻ motif leads to have better non-covalent interactions between the host-guest system. Metallocavitand 8 shows a significantly higher binding constant for phenol, BA, NB, resorcinol, and 2,4-DNT, whereas a slightly higher or a similar association constant was observed for m-Cresol, 2-CP, 2-NT, 4-NT, and 2,4,6-TNP in comparison with metallocavitand 2. The possible reason can be the compact cavity size of host 8 due to the presence of dhng²⁻ motifs and 3,4,5-trimethoxyphenyl benzimidazolyl motif on N-donor ligand, which maximizes the non-covalent interactions between the host framework and guest molecules effectively. For all other guest molecules, host 2 shows a higher binding constant than 8, which can be due to the slight rigid nature of the cyclic framework of 2 in the presence of dhbq²⁻ motif, which accommodates the guest molecules with better interaction than metallocavitand 8. In general, for all the host molecules, substituted nitrobenzene molecules bind more effectively than the other selected guest molecules. The emission quenching of these metallocavitands may be due to the electron transfer process from the metallocavitands to the electron-deficient guest molecules at the ground state. 24-25 Introducing H₂-dhnq motif as bis-chelating ligand and 4-methoxyphenyl/3,4,5-trimethoxyphenyl motif at the 2-position of benzimidazolyl unit in the ditopic N donor resulted in metallocavitands with


a more extended higher dimensional hydrophobic cavity as compared to the irregular pentagonal-shaped metallocavitands synthesized in our previous paper. The 4-methoxyphenyl/3,4,5-trimethoxyphenyl motif provides additional hydrogen bonding and $C-H\cdots\pi$ interactions to stabilize the host-guest system. The binding constant measurements for nitro-substituted guest molecules reveal that hosts 1, 2, 7, and 8 with larger hydrophobic cavities have higher binding constants than the previously reported complex (Table 3.4).

OH OH OH OH OH OH OH
$$H_3C$$
 CH_3 CH_3

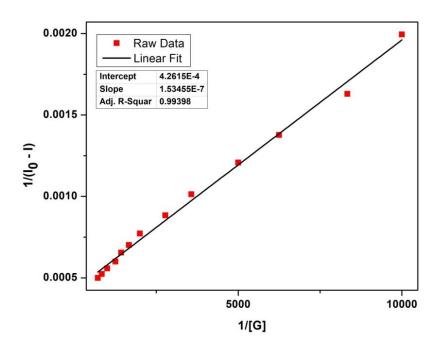
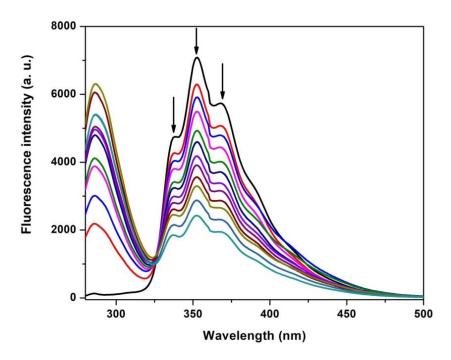
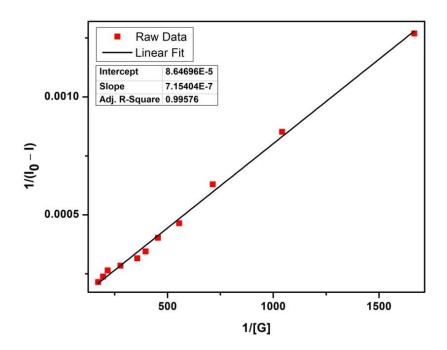
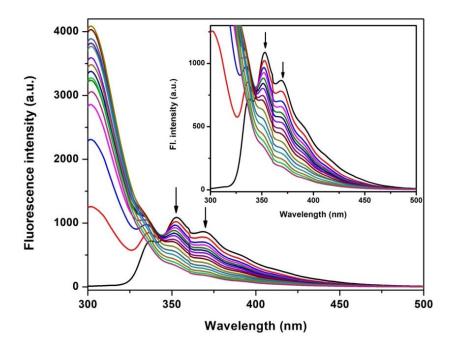
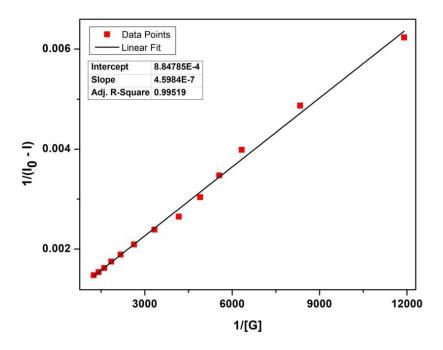

Chart 3.1. Guest molecules used in the current work.

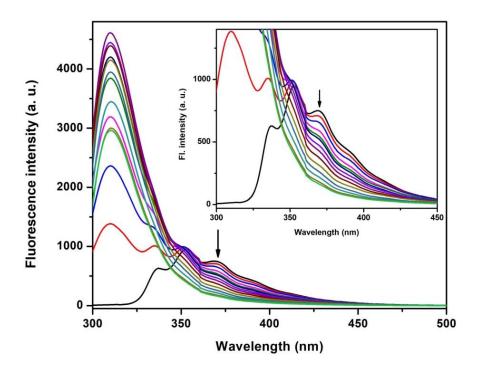
Table 3.3. Binding Constants K_a (M^{-1}) of Metallocavitands 1, 2, 7, and 8 towards Various Guest Molecules Calculated by Emission Titration in DMSO at 298K.

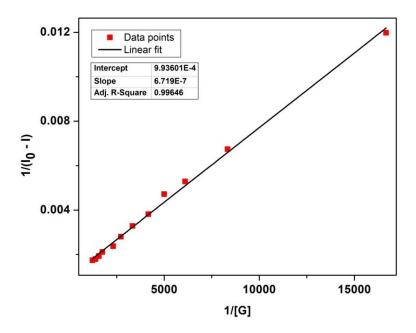

guest molecules	$1(K_a, M^{-1})$	$2 (K_a, \mathbf{M}^{-1})$	$7(K_a, M^{-1})$	$8 (K_a, \mathbf{M}^{-1})$
Phenol	2.8×10^3	3.6×10^{3}	7.0×10^{3}	1.0×10^4
Benzyl alcohol (BA)	1.2×10^2	4.3×10^{2}	7.3×10^2	7.2×10^2
m-Cresol	1.9×10^3	1.2×10^4	5.5×10^3	1.4×10^4
p-Cresol	1.5×10^3	9.8×10^{3}	4.5×10^3	2.6×10^3
3,4-Dimethylphenol	8.1×10^{2}	2.5×10^3	2.1×10^3	1.6×10^3
2,4,6-Trimethylphenol	1.2×10^2	1.8×10^3	2.6×10^3	1.2×10^3
Catechol	3.3×10^3	4.1×10^{3}	3.5×10^3	2.6×10^3
Resorcinol	1.0×10^3	1.1×10^3	2.1×10^3	3.2×10^3
2-Chlorophenol	6.0×10^{3}	1.2×10^4	2.1×10^4	1.0×10^4
4-Chlorophenol	1.4×10^3	8.9×10^{3}	7.0×10^{3}	5.6×10^{3}
2,4-Dichlorophenol	2.4×10^{3}	4.0×10^{3}	1.4×10^3	2.0×10^3
2-Nitrophenol	9.8×10^{3}	8.5×10^3	1.3×10^4	7.8×10^3
4-Nitrophenol	1.4×10^5	2.1×10^{4}	2.2×10^4	9.6×10^{3}
2,4-Dinitrophenol	2.1×10^{4}	2.0×10^{4}	2.0×10^{4}	1.5×10^4
2,4,6-Trinitrophenol	2.2×10^{4}	4.6×10^{4}	4.0×10^{4}	5.0×10^4
Nitrobenzene	1.4×10^4	2.4×10^{4}	8.3×10^{4}	6.2×10^4
2-Nitrotoluene	1.1×10^4	1.8×10^4	2.8×10^4	2.0×10^4
4-Nitrotoluene	1.7×10^{4}	1.6×10^4	2.3×10^4	1.5×10^4
2,4-Dinitrotoluene	1.5×10^4	8.5×10^3	1.7×10^4	1.9×10^4


Figure 3.58. Changes in the emission spectra of **1** (4×10^{-6} M, $\lambda_{exc} = 283$ nm) with the addition of phenol in DMSO. The arrow indicates the quenching of the fluorescence intensity by addition of an appropriate aliquot of phenol.


Figure 3.59. Benesi-Hildebrand plot for the emission quenching of host **1** (at 352 nm) with an increase in the concentration of phenol in DMSO.


Figure 3.60. Changes in the emission spectra of **1** (3 × 10⁻⁶ M, λ_{exc} = 260 nm) with the addition of BA in DMSO. The arrow indicates the quenching of the fluorescence intensity by addition of an appropriate aliquot of BA.


Figure 3.61. Benesi-Hildebrand plot for the emission quenching of host **1** (at 352 nm) with an increase in the concentration of BA in DMSO.


Figure 3.62. Changes in the emission spectra of **1** (1.5×10^{-6} M, $\lambda_{exc} = 283$ nm) with the addition of m-cresol in DMSO. The arrow indicates the quenching of the fluorescence intensity by addition of an appropriate aliquot of m-cresol.

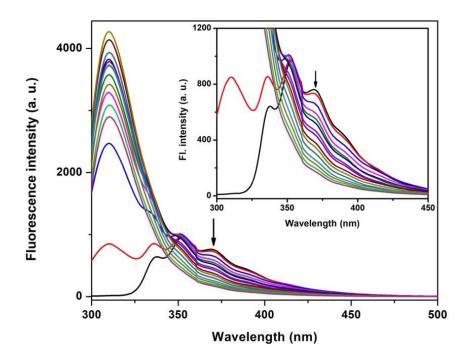
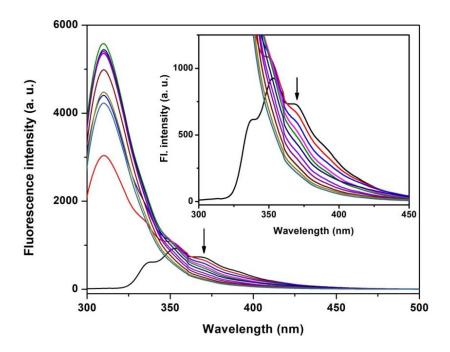
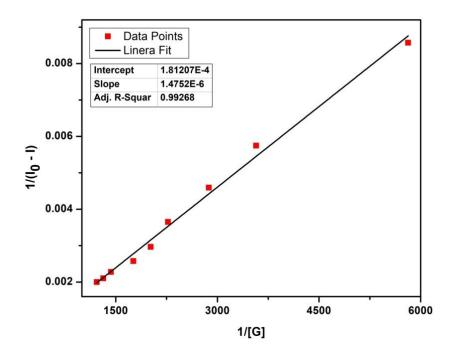
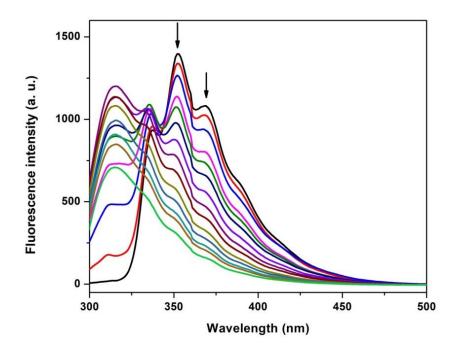
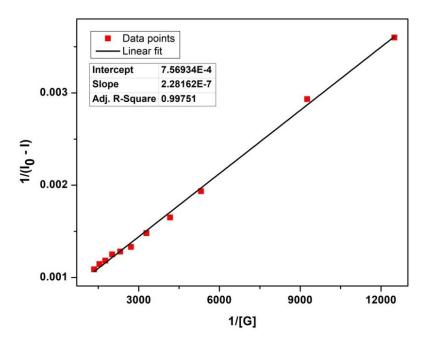

Figure 3.63. Benesi-Hildebrand plot for the emission quenching of host **1** (at 368 nm) with an increase in the concentration of m-cresol in DMSO.

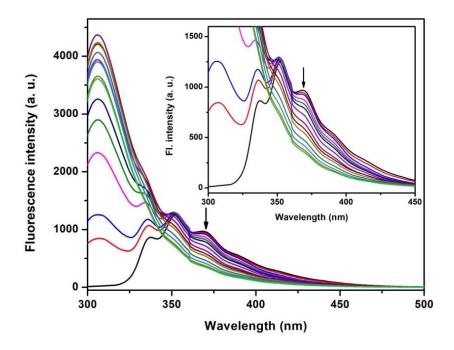

Figure 3.64. Changes in the emission spectra of **1** (1.5×10^{-6} M, $\lambda_{exc} = 283$ nm) with the addition of p-cresol in DMSO. The arrow indicates the quenching of the fluorescence intensity by addition of an appropriate aliquot of p-cresol.

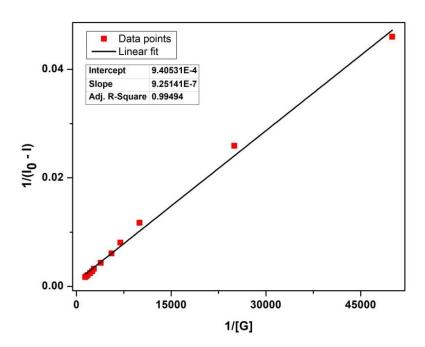

Figure 3.65. Benesi-Hildebrand plot for the emission quenching of host **1** (at 368 nm) with an increase in the concentration of p-cresol in DMSO.

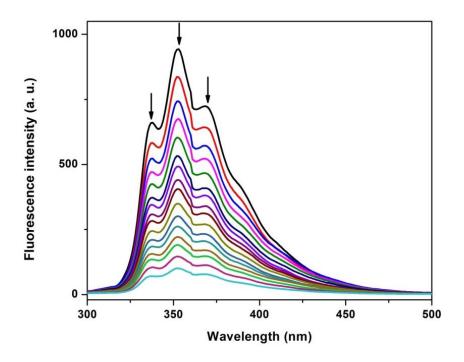

Figure 3.66. Changes in the emission spectra of **1** (1.5×10^{-6} M, $\lambda_{exc} = 283$ nm) with the addition of 3, 4- DMP in DMSO. The arrow indicates the quenching of the fluorescence intensity by addition of an appropriate aliquot of 3, 4- DMP

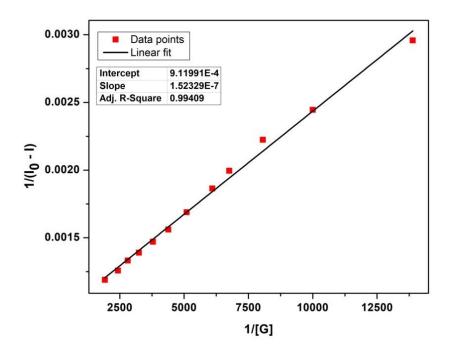

Figure 3.67. Benesi-Hildebrand plot for the emission quenching of host **1** (at 368 nm) with an increase in the concentration of 3, 4- DMP in DMSO.

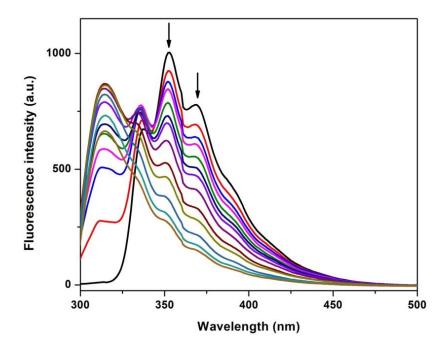

Figure 3.68. Changes in the emission spectra of **1** (1.5×10^{-6} M, $\lambda_{exc} = 283$ nm) with the addition of 2, 4, 6- TMP in DMSO. The arrow indicates the quenching of the fluorescence intensity by addition of an appropriate aliquot of 2, 4, 6- TMP.

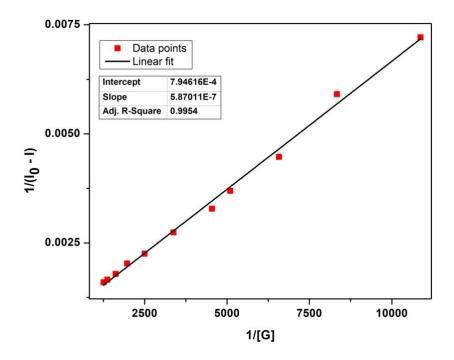

Figure 3.69. Benesi-Hildebrand plot for the emission quenching of host **1** (at 368 nm) with an increase in the concentration of 2, 4, 6- TMP in DMSO.

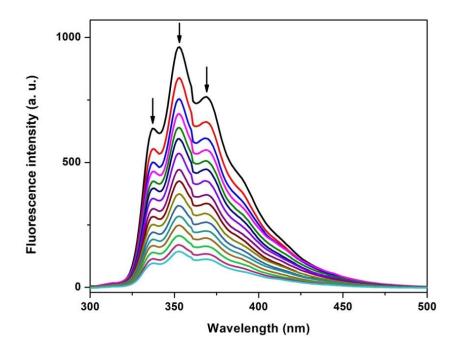

Figure 3.70. Changes in the emission spectra of **1** (3×10^{-6} M, $\lambda_{exc} = 283$ nm) with the addition of catechol in DMSO. The arrow indicates the quenching of the fluorescence intensity by addition of an appropriate aliquot of catechol.

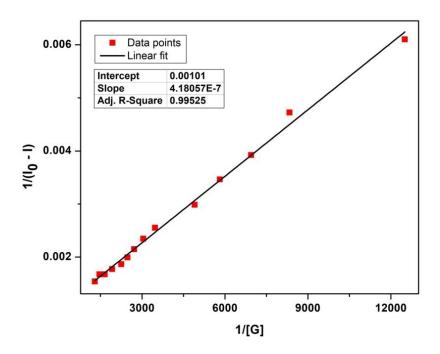

Figure 3.71. Benesi-Hildebrand plot for the emission quenching of host **1** (at 368 nm) with an increase in the concentration of catechol in DMSO.

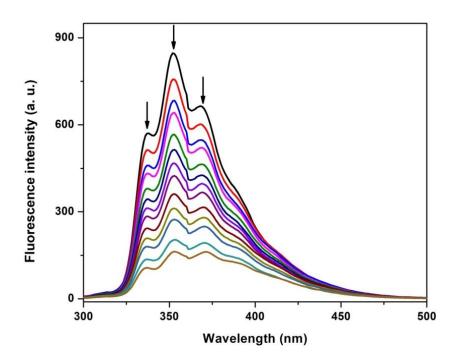

Figure 3.72. Changes in the emission spectra of **1** (3×10^{-6} M, $\lambda_{exc} = 283$ nm) with the addition of resorcinol in DMSO. The arrow indicates the quenching of the fluorescence intensity by addition of an appropriate aliquot of resorcinol.

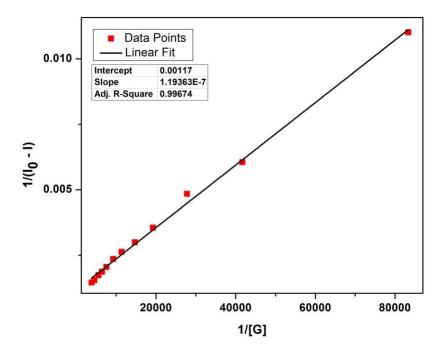

Figure 3.73. Benesi-Hildebrand plot for the emission quenching of host **1** (at 368 nm) with an increase in the concentration of resorcinol in DMSO.

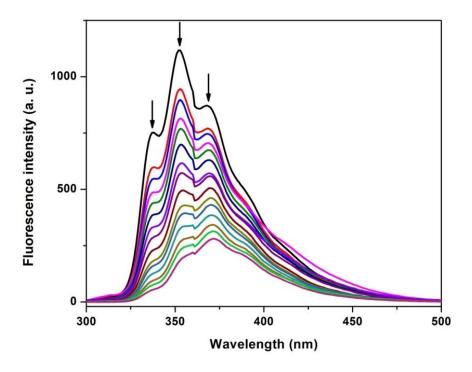

Figure 3.74. Changes in the emission spectra of **1** (1.5×10^{-6} M, $\lambda_{exc} = 283$ nm) with the addition of 2-CP in DMSO. The arrow indicates the quenching of the fluorescence intensity by addition of an appropriate aliquot of 2-CP.

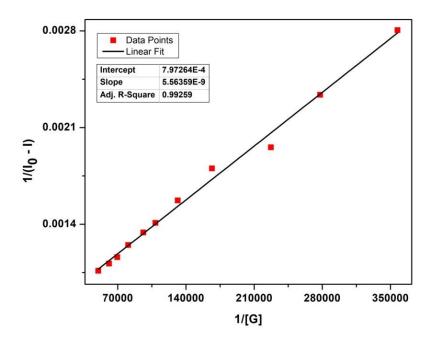

Figure 3.75. Benesi-Hildebrand plot for the emission quenching of host **1** (at 352 nm) with an increase in the concentration of 2-CP in DMSO.

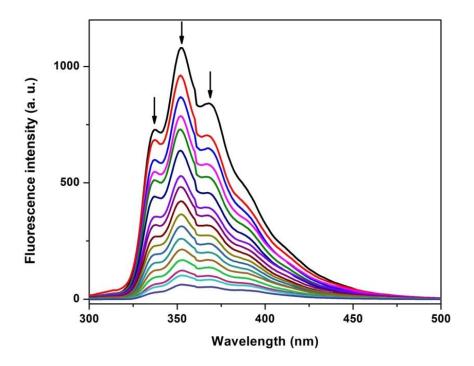

Figure 3.76. Changes in the emission spectra of **1** (1.5×10^{-6} M, $\lambda_{exc} = 283$ nm) with the addition of 4-chlorophenol in DMSO. The arrow indicates the quenching of the fluorescence intensity by addition of an appropriate aliquot of 4-CP.

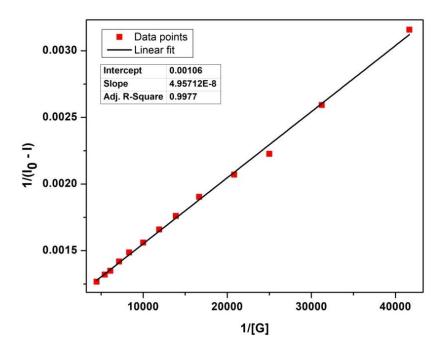

Figure 3.77. Benesi-Hildebrand plot for the emission quenching of host **1** (at 368 nm) with an increase in the concentration of 4-CP in DMSO.

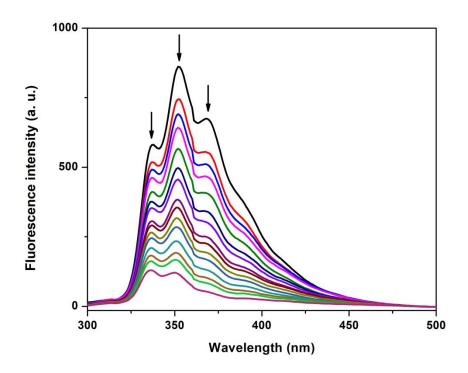

Figure 3.78. Changes in the emission spectra of **1** (1.5×10^{-6} M, $\lambda_{exc} = 283$ nm) with the addition of 2, 4-DCP in DMSO. The arrow indicates the quenching of the fluorescence intensity by addition of an appropriate aliquot of 2, 4-DCP.

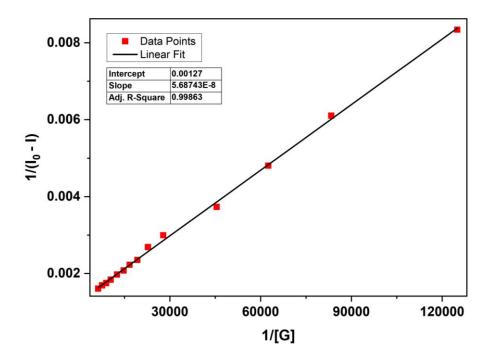

Figure 3.79. Benesi-Hildebrand plot for the emission quenching of host **1** (at 368 nm) with an increase in the concentration of 2, 4-DCP in DMSO.

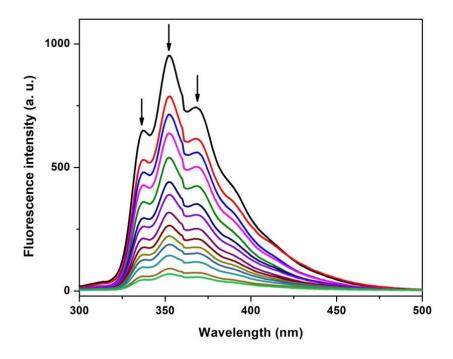

Figure 3.80. Changes in the emission spectra of **1** (3×10^{-6} M, $\lambda_{exc} = 283$ nm) with the addition of 2- NP in DMSO. The arrow indicates the quenching of the fluorescence intensity by addition of an appropriate aliquot of 2-NP.

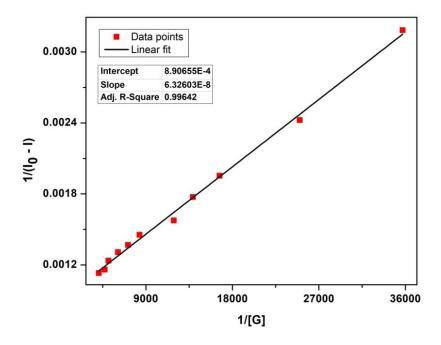

Figure 3.81. Benesi-Hildebrand plot for the emission quenching of host **1** (at 352 nm) with an increase in the concentration of 2-NP in DMSO.


Figure 3.82. Changes in the emission spectra of **1** (3 × 10⁻⁶ M, λ_{exc} = 283 nm) with the addition of 4- NP in DMSO. The arrow indicates the quenching of the fluorescence intensity by addition of an appropriate aliquot of 4-NP.


Figure 3.83. Benesi-Hildebrand plot for the emission quenching of host **1** (at 352 nm) with an increase in the concentration of 4-NP in DMSO.


Figure 3.84. Changes in the emission spectra of **1** (3×10^{-6} M, $\lambda_{exc} = 283$ nm) with the addition of 2, 4- DNP in DMSO. The arrow indicates the quenching of the fluorescence intensity by addition of an appropriate aliquot of 2, 4- DNP.


Figure 3.85. Benesi-Hildebrand plot for the emission quenching of host **1** (at 368 nm) with an increase in the concentration of 2, 4- DNP in DMSO.


Figure 3.86. Changes in the emission spectra of **1** (3×10^{-6} M, $\lambda_{exc} = 283$ nm) with the addition of 2, 4, 6- TNP/ picric acid in DMSO. The arrow indicates the quenching of the fluorescence intensity by addition of an appropriate aliquot of picric acid.

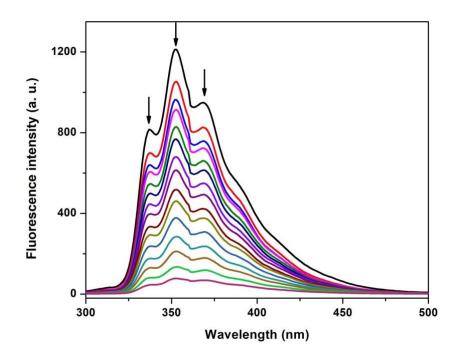
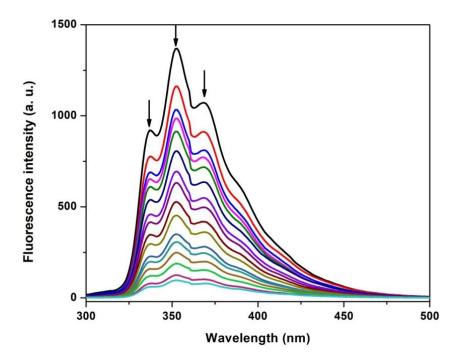
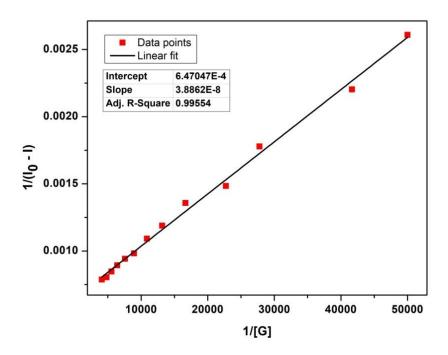
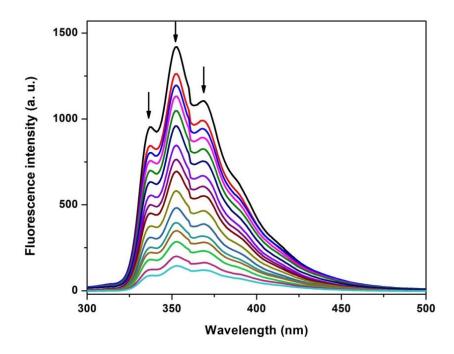
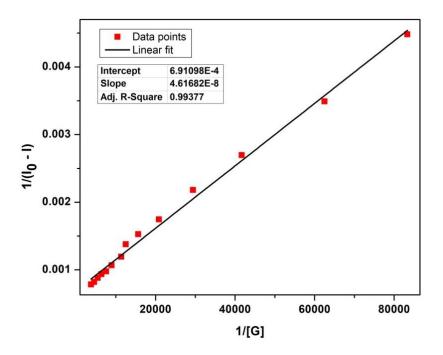

Figure 3.87. Benesi-Hildebrand plot for the emission quenching of host **1** (at 368 nm) with an increase in the concentration of 2, 4, 6- TNP in DMSO.

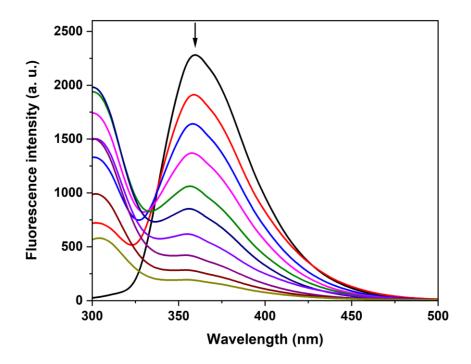

Figure 3.88. Changes in the emission spectra of **1** (3×10^{-6} M, $\lambda_{exc} = 283$ nm) with the addition of NB in DMSO. The arrow indicates the quenching of the fluorescence intensity by addition of an appropriate aliquot of NB.

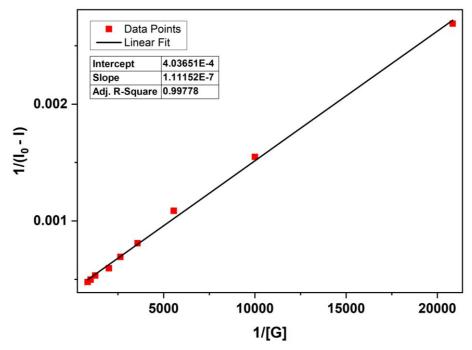

Figure 3.89. Benesi-Hildebrand plot for the emission quenching of host **1** (at 352 nm) with an increase in the concentration of NB in DMSO.

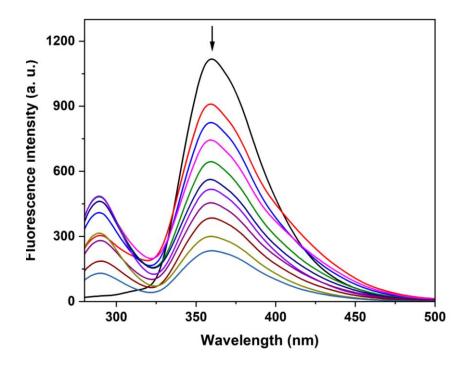

Figure 3.90. Changes in the emission spectra of **1** (3×10^{-6} M, $\lambda_{exc} = 283$ nm) with the addition of 2-NT in DMSO. The arrow indicates the quenching of the fluorescence intensity by addition of an appropriate aliquot of 2-NT.

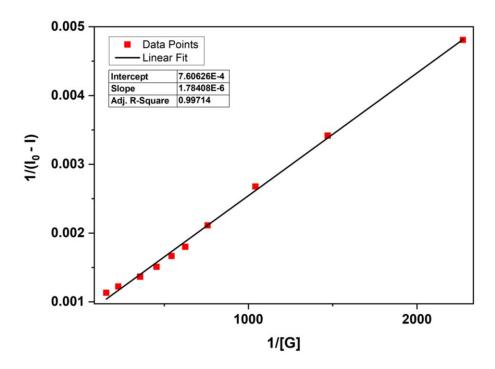

Figure 3.91. Benesi-Hildebrand plot for the emission quenching of host **1** (at 352 nm) with an increase in the concentration of 2-NT in DMSO.

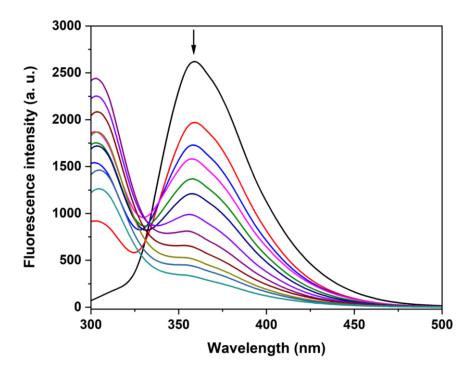

Figure 3.92. Changes in the emission spectra of **1** (3×10^{-6} M, $\lambda_{exc} = 283$ nm) with the addition of 4-NT in DMSO. The arrow indicates the quenching of the fluorescence intensity by addition of an appropriate aliquot of 4-NT.

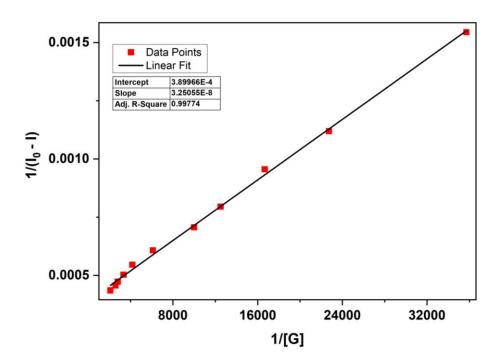

Figure 3.93. Benesi-Hildebrand plot for the emission quenching of host **1** (at 352 nm) with an increase in the concentration of 4-NT in DMSO.

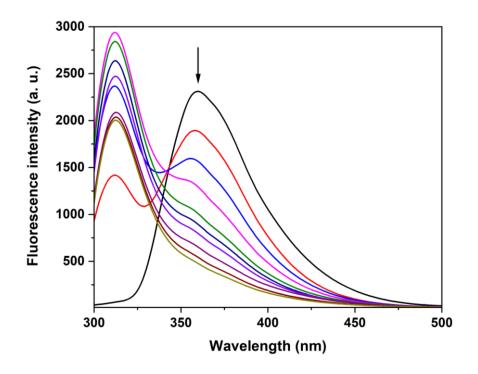

Figure 3.94. Changes in the emission spectra of **1** (3×10^{-6} M, $\lambda_{exc} = 283$ nm) with the addition of 2, 4-DNT in DMSO. The arrow indicates the quenching of the fluorescence intensity by addition of an appropriate aliquot of 2, 4-DNT.

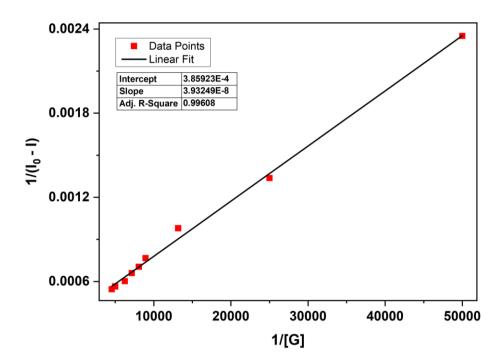

Figure 3.95. Benesi-Hildebrand plot for the emission quenching of host **1** (at 352 nm) with an increase in the concentration of 2, 4-DNT in DMSO.

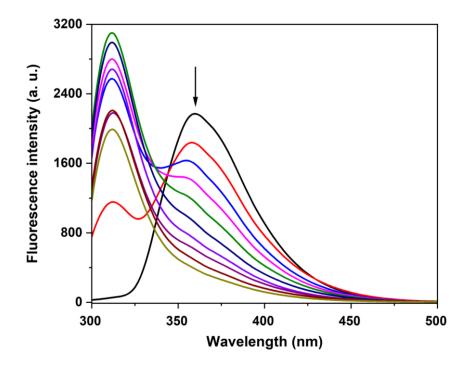

Figure 3.96. Changes in the emission spectra of **2** (1×10^{-6} M, $\lambda_{exc} = 285$ nm) with the addition of phenol in DMSO. The arrow indicates the quenching of the fluorescence intensity by addition of an appropriate aliquot of phenol.

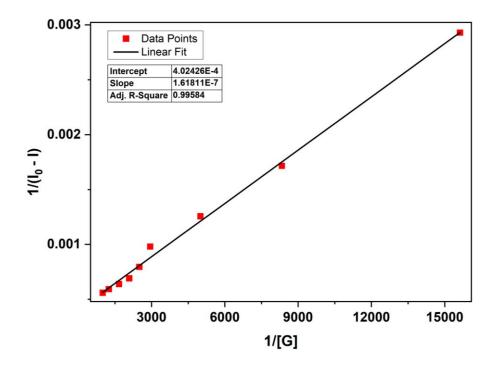

Figure 3.97. Benesi-Hildebrand plot for the emission quenching of host **2** (at 360 nm) with an increase in the concentration of phenol in DMSO.

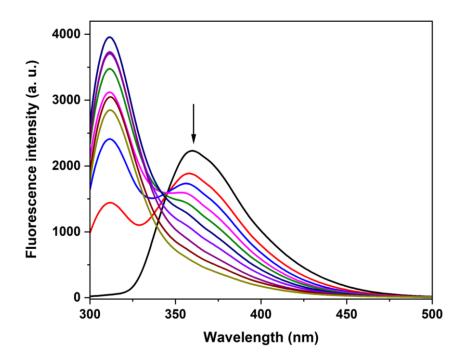

Figure 3.98. Changes in the emission spectra of **2** (1×10^{-6} M, $\lambda_{exc} = 260$ nm) with the addition of BA in DMSO. The arrow indicates the quenching of the fluorescence intensity by addition of an appropriate aliquot of BA.

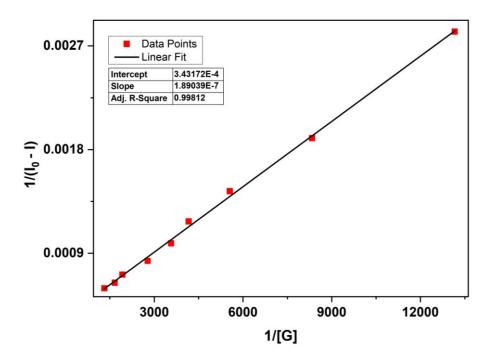

Figure 3.99. Benesi-Hildebrand plot for the emission quenching of host **2** (at 360 nm) with an increase in the concentration of BA in DMSO.

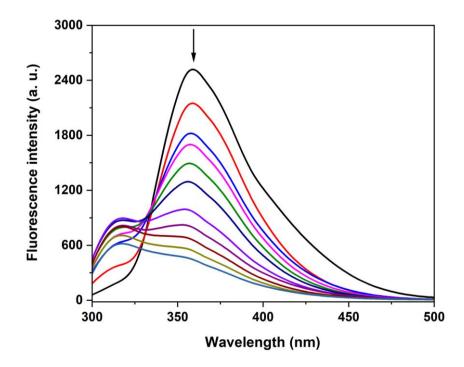

Figure 3.100. Changes in the emission spectra of **2** (1 × 10⁻⁶ M, λ_{exc} = 285 nm) with the addition of m-cresol in DMSO. The arrow indicates the quenching of the fluorescence intensity by addition of an appropriate aliquot of m-cresol.

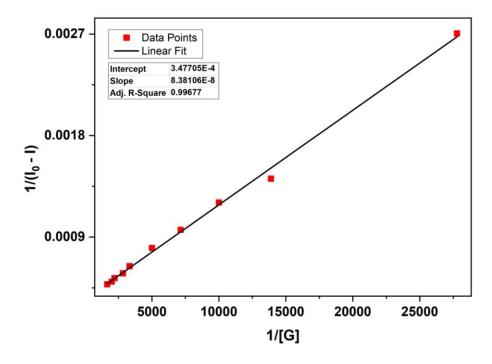

Figure 3.101. Benesi-Hildebrand plot for the emission quenching of host **2** (at 360 nm) with an increase in the concentration of m-cresol in DMSO.

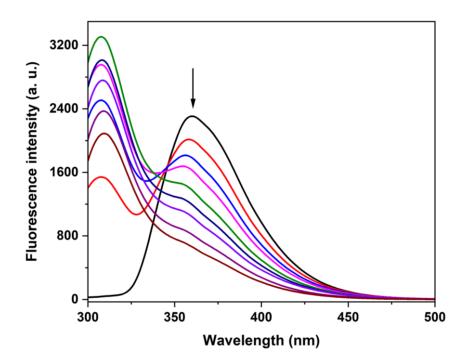

Figure 3.102. Changes in the emission spectra of **2** (1×10^{-6} M, $\lambda_{exc} = 285$ nm) with the addition of p-cresol in DMSO. The arrow indicates the quenching of the fluorescence intensity by addition of an appropriate aliquot of p-cresol.

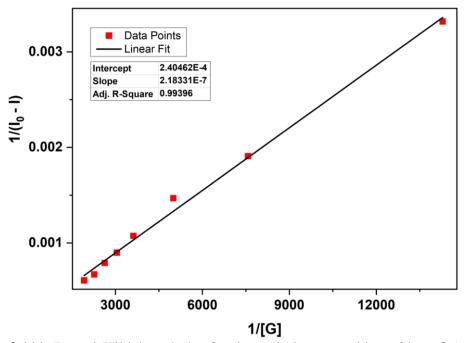

Figure 3.103. Benesi-Hildebrand plot for the emission quenching of host **2** (at 360 nm) with an increase in the concentration of p-cresol in DMSO.

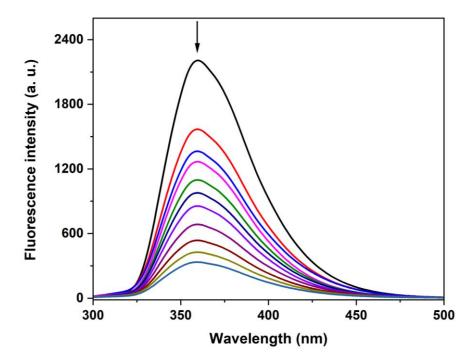

Figure 3.104. Changes in the emission spectra of **2** (1×10^{-6} M, $\lambda_{exc} = 285$ nm) with the addition of 3, 4- DMP in DMSO. The arrow indicates the quenching of the fluorescence intensity by addition of an appropriate aliquot of 3, 4- DMP.

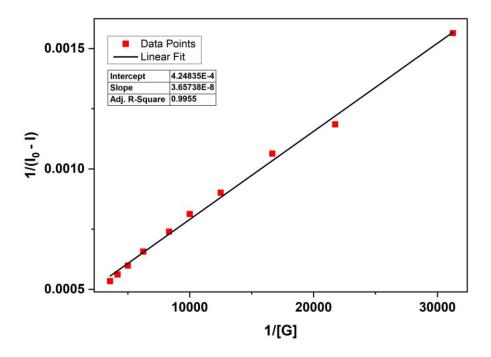

Figure 3.105. Benesi-Hildebrand plot for the emission quenching of host **2** (at 360 nm) with an increase in the concentration of 3, 4- DMP in DMSO.

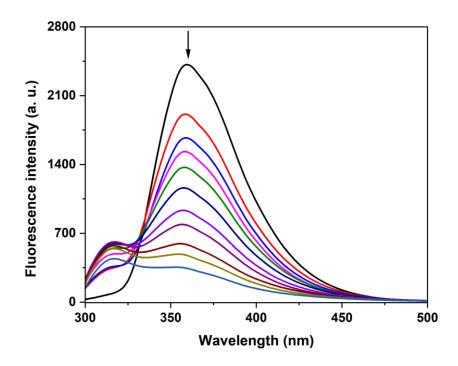

Figure 3.106. Changes in the emission spectra of **2** (1 × 10⁻⁶ M, λ_{exc} = 285 nm) with the addition of 2, 4, 6- TMP in DMSO. The arrow indicates the quenching of the fluorescence intensity by addition of an appropriate aliquot of 2, 4, 6- TMP.

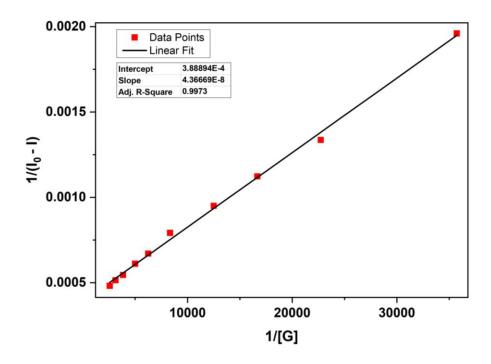

Figure 3.107. Benesi-Hildebrand plot for the emission quenching of host **2** (at 360 nm) with an increase in the concentration of 2, 4, 6- TMP in DMSO.

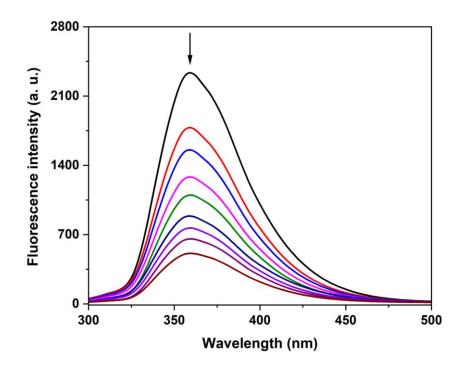

Figure 3.108. Changes in the emission spectra of **2** (1 × 10⁻⁶ M, λ_{exc} = 285 nm) with the addition of catechol in DMSO. The arrow indicates the quenching of the fluorescence intensity by addition of an appropriate aliquot of catechol.

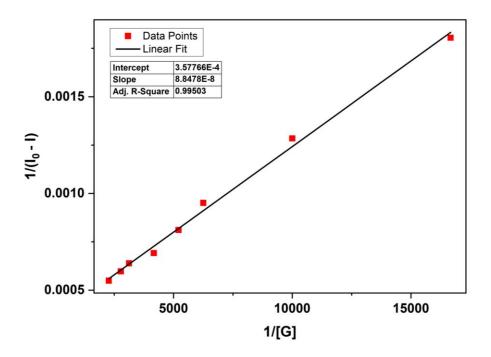

Figure 3.109. Benesi-Hildebrand plot for the emission quenching of host **2** (at 360 nm) with an increase in the concentration of catechol in DMSO.

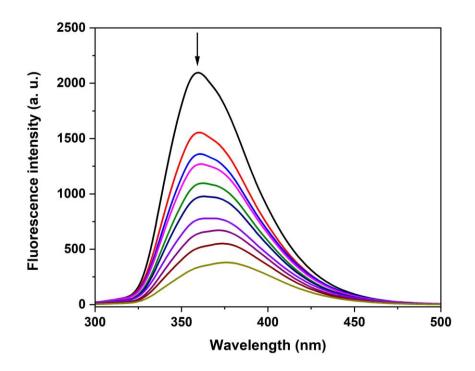

Figure 3.110. Changes in the emission spectra of **2** (1×10^{-6} M, $\lambda_{exc} = 285$ nm) with the addition of resorcinol in DMSO. The arrow indicates the quenching of the fluorescence intensity by addition of an appropriate aliquot of resorcinol.

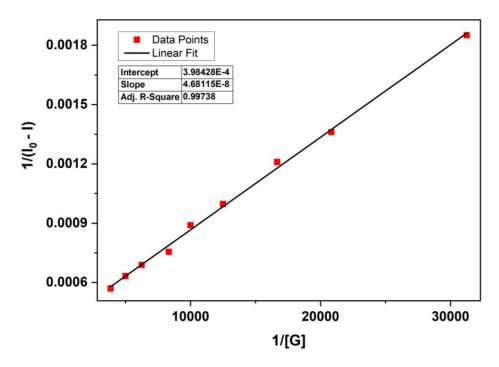

Figure 3.111. Benesi-Hildebrand plot for the emission quenching of host **2** (at 360 nm) with an increase in the concentration of resorcinol in DMSO.

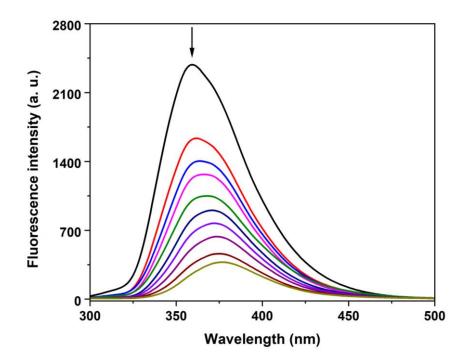

Figure 3.112. Changes in the emission spectra of **2** (1 × 10⁻⁶ M, λ_{exc} = 285 nm) with the addition of 2-CP in DMSO. The arrow indicates the quenching of the fluorescence intensity by addition of an appropriate aliquot of 2-CP.

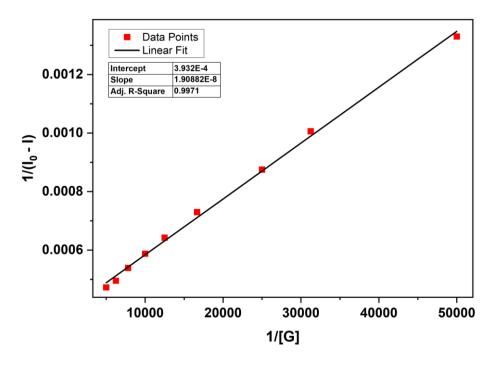

Figure 3.113. Benesi-Hildebrand plot for the emission quenching of host **2** (at 360 nm) with an increase in the concentration of 2-CP in DMSO.

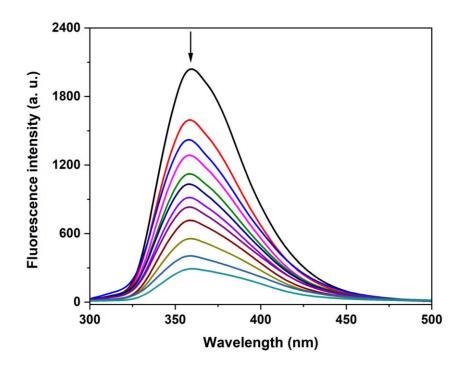

Figure 3.114. Changes in the emission spectra of **2** (1 × 10⁻⁶ M, λ_{exc} = 285 nm) with the addition of 4-chlorophenol in DMSO. The arrow indicates the quenching of the fluorescence intensity by addition of an appropriate aliquot of 4-CP.

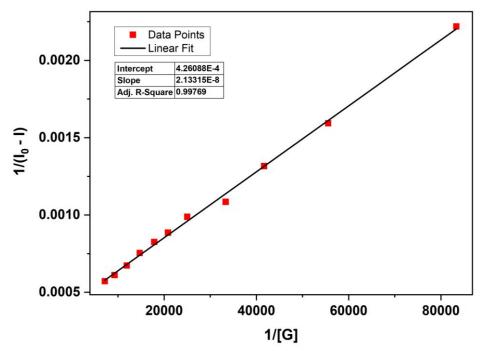

Figure 3.115. Benesi-Hildebrand plot for the emission quenching of host **2** (at 360 nm) with an increase in the concentration of 4-CP in DMSO.

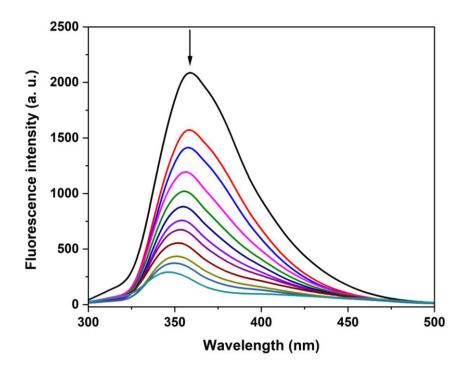

Figure 3.116. Changes in the emission spectra of **2** (1×10^{-6} M, $\lambda_{exc} = 285$ nm) with the addition of 2, 4-DCP in DMSO. The arrow indicates the quenching of the fluorescence intensity by addition of an appropriate aliquot of 2, 4-DCP.

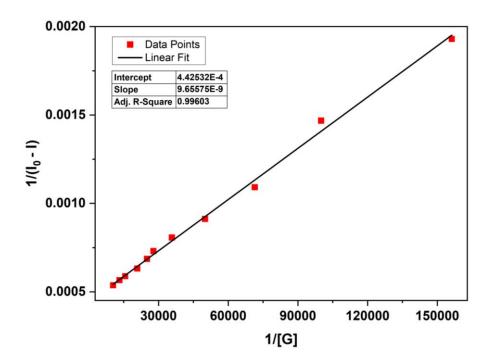

Figure 3.117. Benesi-Hildebrand plot for the emission quenching of host **2** (at 360 nm) with an increase in the concentration of 2, 4-DCP in DMSO.

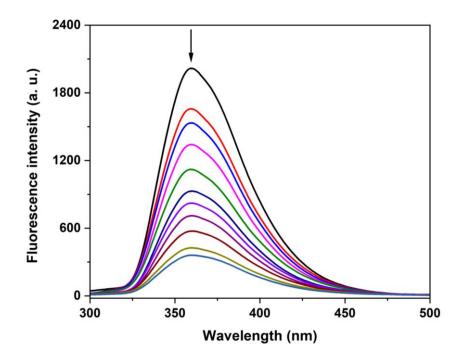

Figure 3.118. Changes in the emission spectra of **2** (1 × 10⁻⁶ M, λ_{exc} = 285 nm) with the addition of 2- NP in DMSO. The arrow indicates the quenching of the fluorescence intensity by addition of an appropriate aliquot of 2-NP.

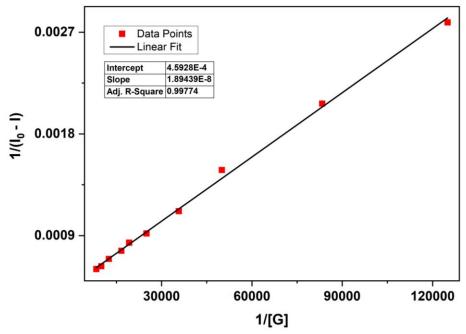

Figure 3.119. Benesi-Hildebrand plot for the emission quenching of host **2** (at 360 nm) with an increase in the concentration of 2-NP in DMSO.

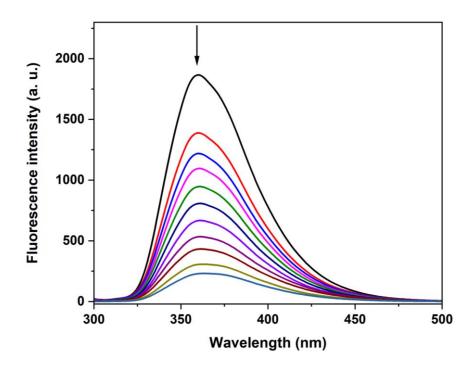

Figure 3.120. Changes in the emission spectra of **2** (1 × 10⁻⁶ M, λ_{exc} = 285 nm) with the addition of 4- NP in DMSO. The arrow indicates the quenching of the fluorescence intensity by addition of an appropriate aliquot of 4-NP.

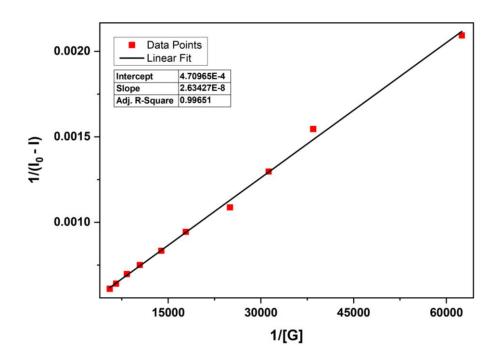

Figure 3.121. Benesi-Hildebrand plot for the emission quenching of host **2** (at 360 nm) with an increase in the concentration of 4-NP in DMSO.

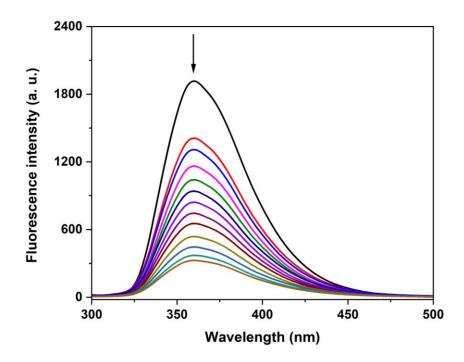

Figure 3.122. Changes in the emission spectra of **2** (1×10^{-6} M, $\lambda_{exc} = 285$ nm) with the addition of 2, 4- DNP in DMSO. The arrow indicates the quenching of the fluorescence intensity by addition of an appropriate aliquot of 2, 4- DNP.

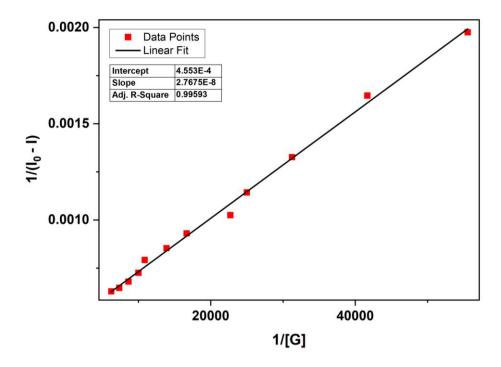

Figure 3.123. Benesi-Hildebrand plot for the emission quenching of host **2** (at 360 nm) with an increase in the concentration of 2, 4- DNP in DMSO.

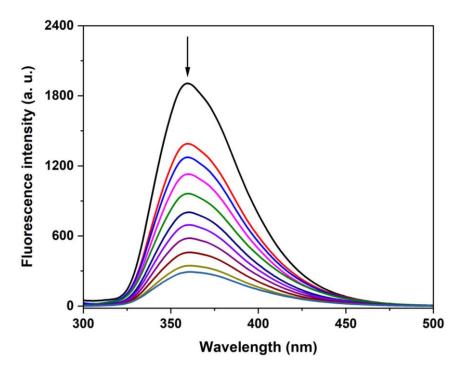

Figure 3.124. Changes in the emission spectra of **2** (1 × 10⁻⁶ M, λ_{exc} = 285 nm) with the addition of 2, 4, 6- TNP/ picric acid in DMSO. The arrow indicates the quenching of the fluorescence intensity by addition of an appropriate aliquot of picric acid.

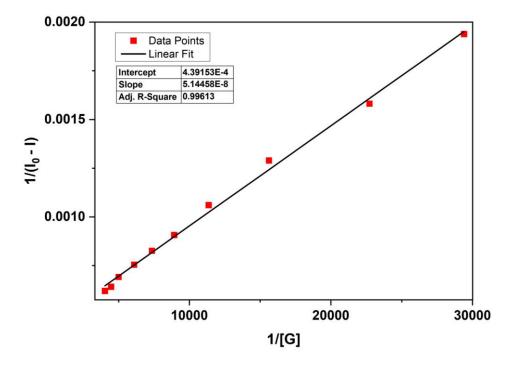

Figure 3.125. Benesi-Hildebrand plot for the emission quenching of host **2** (at 360 nm) with an increase in the concentration of 2, 4, 6- TNP in DMSO.

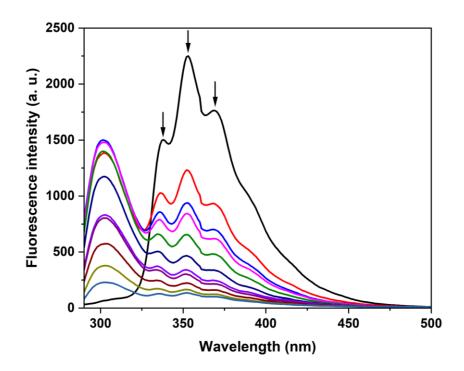

Figure 3.126. Changes in the emission spectra of **2** (1 × 10⁻⁶ M, λ_{exc} = 285 nm) with the addition of NB in DMSO. The arrow indicates the quenching of the fluorescence intensity by addition of an appropriate aliquot of NB.

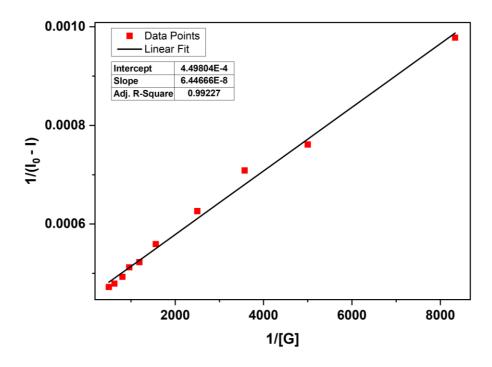

Figure 3.127. Benesi-Hildebrand plot for the emission quenching of host **2** (at 360 nm) with an increase in the concentration of NB in DMSO.

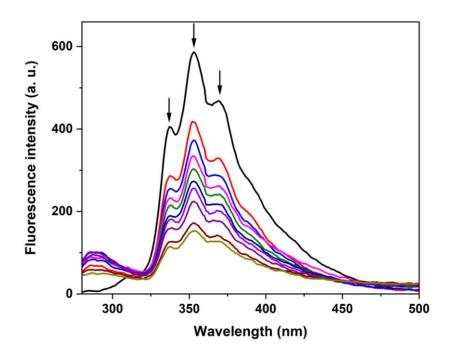

Figure 3.128. Changes in the emission spectra of **2** (1×10^{-6} M, $\lambda_{exc} = 285$ nm) with the addition of 2-NT in DMSO. The arrow indicates the quenching of the fluorescence intensity by addition of an appropriate aliquot of 2-NT.

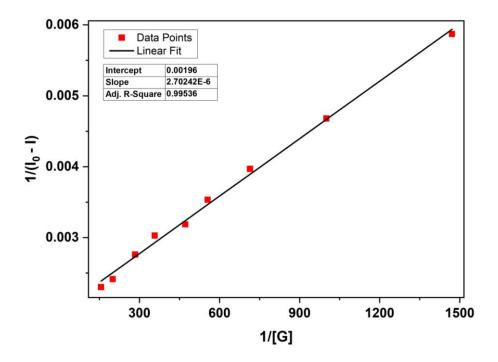

Figure 3.129. Benesi-Hildebrand plot for the emission quenching of host **2** (at 360 nm) with an increase in the concentration of 2-NT in DMSO.

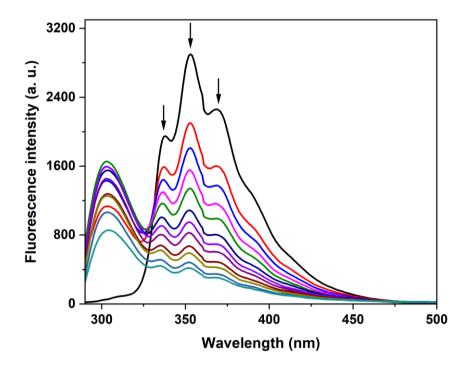

Figure 3.130. Changes in the emission spectra of **2** (1×10^{-6} M, $\lambda_{exc} = 285$ nm) with the addition of 4-NT in DMSO. The arrow indicates the quenching of the fluorescence intensity by addition of an appropriate aliquot of 4-NT.

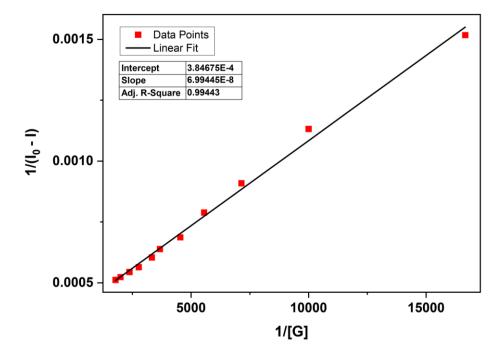

Figure 3.131. Benesi-Hildebrand plot for the emission quenching of host **2** (at 360 nm) with an increase in the concentration of 4-NT in DMSO.

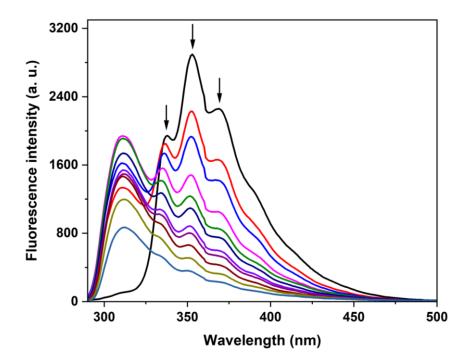

Figure 3.132. Changes in the emission spectra of **2** (1×10^{-6} M, $\lambda_{exc} = 285$ nm) with the addition of 2, 4-DNT in DMSO. The arrow indicates the quenching of the fluorescence intensity by addition of an appropriate aliquot of 2, 4-DNT.

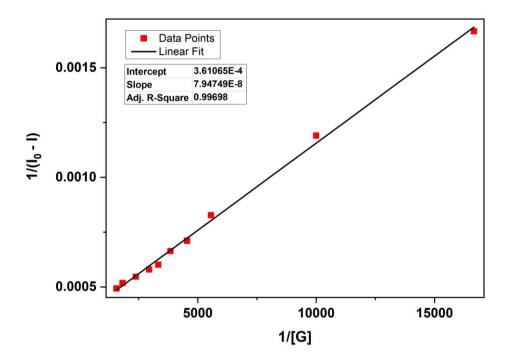

Figure 3.133. Benesi-Hildebrand plot for the emission quenching of host **2** (at 360 nm) with an increase in the concentration of 2, 4-DNT in DMSO.

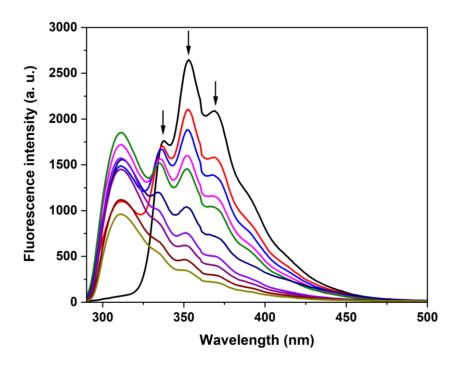

Figure 3.134. Changes in the emission spectra of **7** (4×10^{-6} M, $\lambda_{exc} = 276$ nm) with the addition of phenol in DMSO. The arrow indicates the quenching of the fluorescence intensity by addition of an appropriate aliquot of phenol.

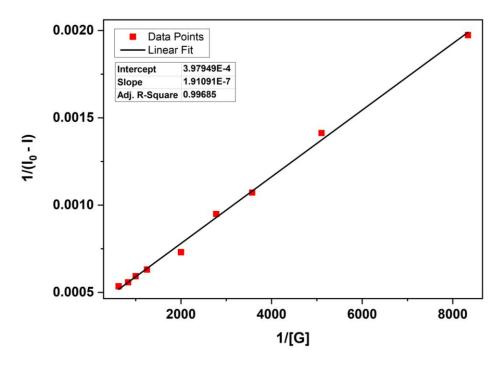

Figure 3.135. Benesi-Hildebrand plot for the emission quenching of host **7** (at 353 nm) with an increase in the concentration of phenol in DMSO.

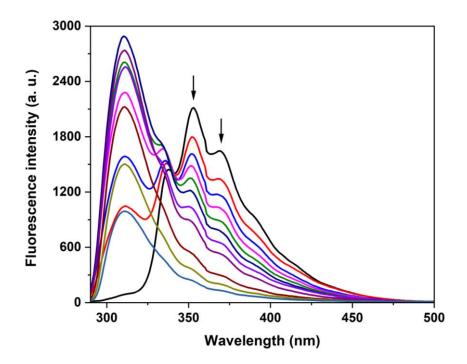

Figure 3.136. Changes in the emission spectra of **7** (4×10^{-6} M, $\lambda_{exc} = 260$ nm) with the addition of BA in DMSO. The arrow indicates the quenching of the fluorescence intensity by addition of an appropriate aliquot of BA.

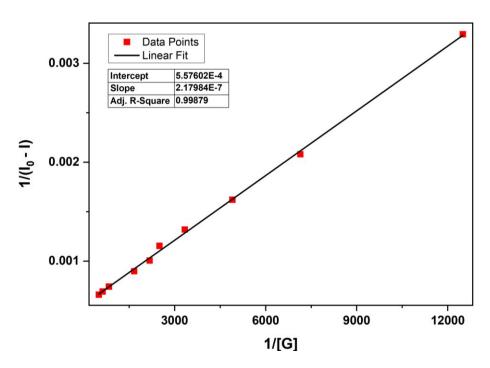

Figure 3.137. Benesi-Hildebrand plot for the emission quenching of host **7** (at 353 nm) with an increase in the concentration of BA in DMSO.

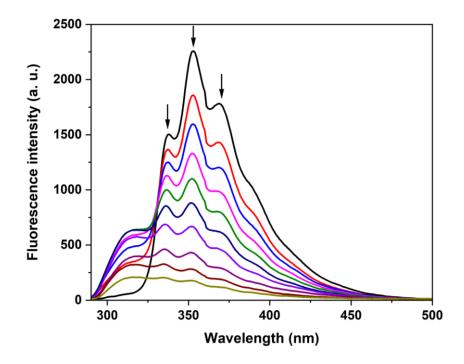

Figure 3.138. Changes in the emission spectra of **7** (4×10^{-6} M, $\lambda_{exc} = 276$ nm) with the addition of m-cresol in DMSO. The arrow indicates the quenching of the fluorescence intensity by addition of an appropriate aliquot of m-cresol.

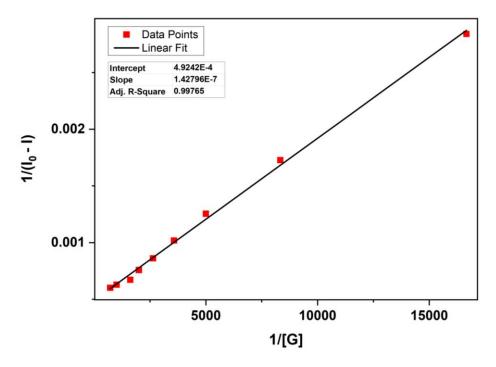

Figure 3.139. Benesi-Hildebrand plot for the emission quenching of host **7** (at 369 nm) with an increase in the concentration of m-cresol in DMSO.

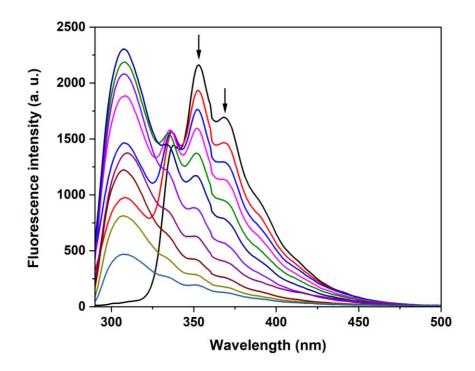

Figure 3.140. Changes in the emission spectra of **7** (4×10^{-6} M, $\lambda_{exc} = 276$ nm) with the addition of p-cresol in DMSO. The arrow indicates the quenching of the fluorescence intensity by addition of an appropriate aliquot of p-cresol

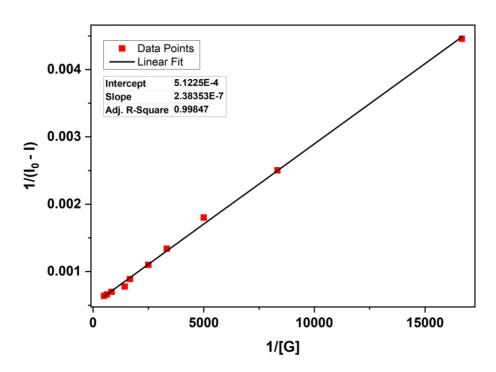

Figure 3.141. Benesi-Hildebrand plot for the emission quenching of host **7** (at 369 nm) with an increase in the concentration of p-cresol in DMSO.

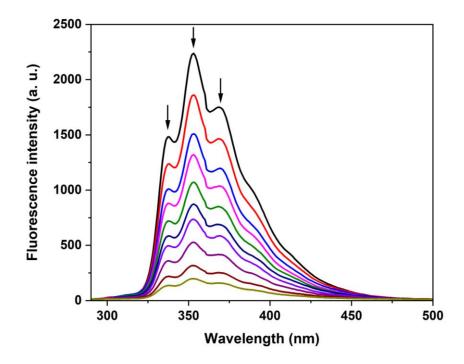

Figure 3.142. Changes in the emission spectra of **7** (4×10^{-6} M, $\lambda_{exc} = 276$ nm) with the addition of 3, 4- DMP in DMSO. The arrow indicates the quenching of the fluorescence intensity by addition of an appropriate aliquot of 3, 4- DMP.

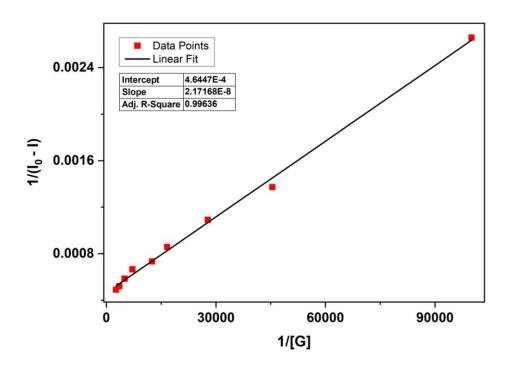

Figure 3.143. Benesi-Hildebrand plot for the emission quenching of host **7** (at 369 nm) with an increase in the concentration of 3, 4- DMP in DMSO.

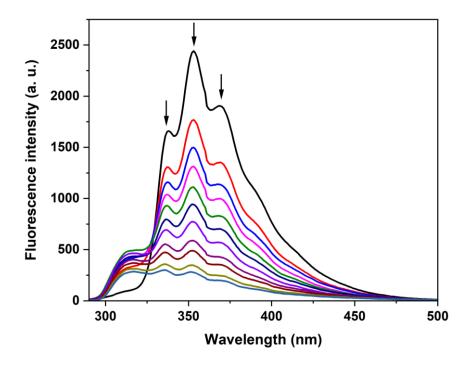

Figure 3.144. Changes in the emission spectra of **7** (2×10^{-6} M, $\lambda_{exc} = 276$ nm) with the addition of 2, 4, 6- TMP in DMSO. The arrow indicates the quenching of the fluorescence intensity by addition of an appropriate aliquot of 2, 4, 6- TMP.

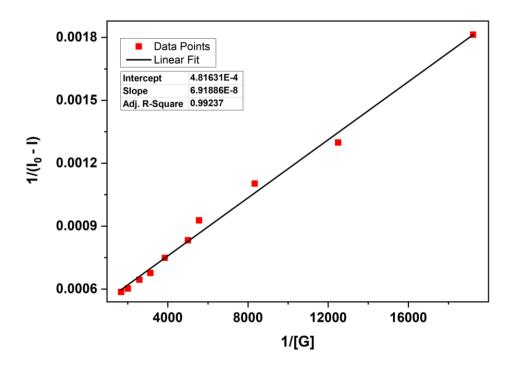

Figure 3.145. Benesi-Hildebrand plot for the emission quenching of host **7** (at 369 nm) with an increase in the concentration of 2, 4, 6- TMP in DMSO.

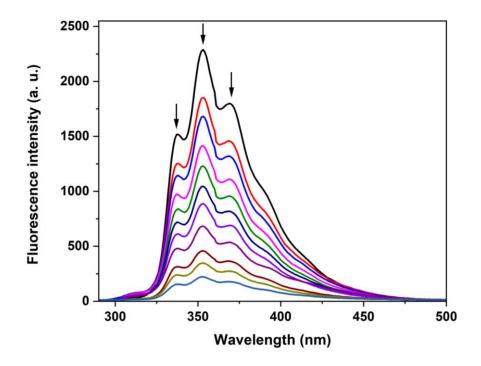

Figure 3.146. Changes in the emission spectra of **7** (2×10^{-6} M, $\lambda_{exc} = 276$ nm) with the addition of catechol in DMSO. The arrow indicates the quenching of the fluorescence intensity by addition of an appropriate aliquot of catechol.

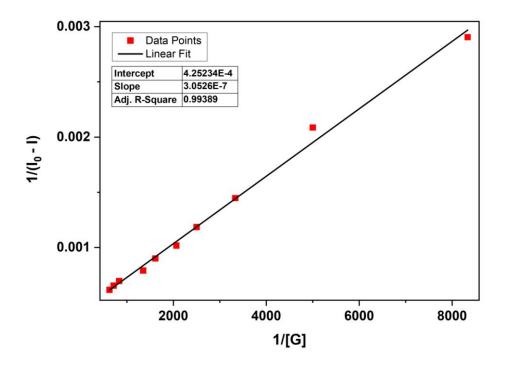

Figure 3.147. Benesi-Hildebrand plot for the emission quenching of host **7** (at 369 nm) with an increase in the concentration of catechol in DMSO.

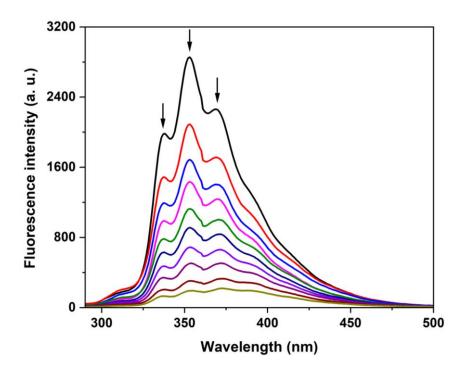

Figure 3.148. Changes in the emission spectra of **7** (2×10^{-6} M, $\lambda_{exc} = 276$ nm) with the addition of resorcinol in DMSO. The arrow indicates the quenching of the fluorescence intensity by addition of an appropriate aliquot of resorcinol.

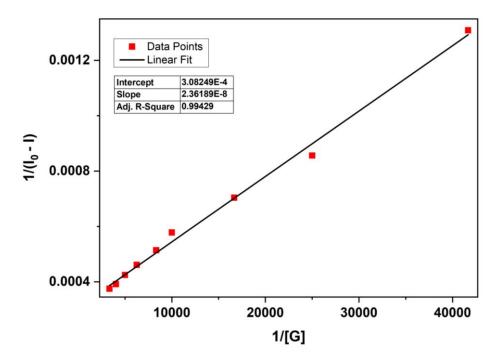

Figure 3.149. Benesi-Hildebrand plot for the emission quenching of host **7** (at 369 nm) with an increase in the concentration of resorcinol in DMSO.

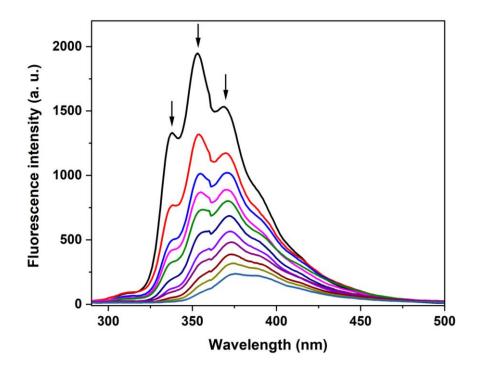

Figure 3.150. Changes in the emission spectra of **7** (2×10^{-6} M, $\lambda_{exc} = 276$ nm) with the addition of 2-CP in DMSO. The arrow indicates the quenching of the fluorescence intensity by addition of an appropriate aliquot of 2-CP.

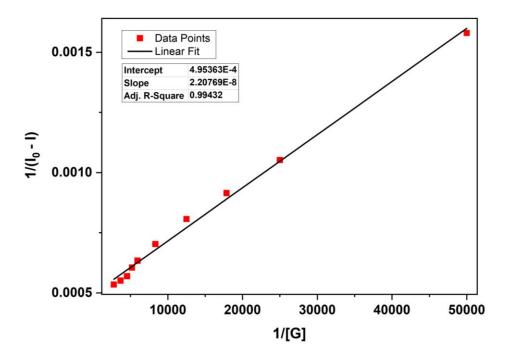

Figure 3.151. Benesi-Hildebrand plot for the emission quenching of host **7** (at 353 nm) with an increase in the concentration of 2-CP in DMSO.

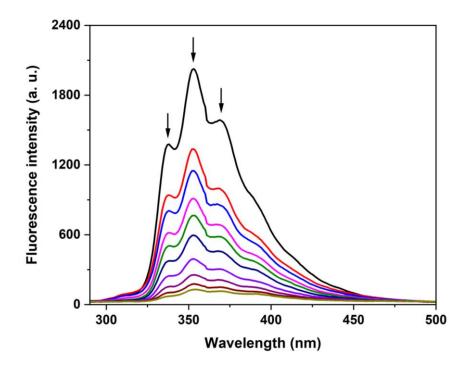

Figure 3.152. Changes in the emission spectra of **7** (2×10^{-6} M, $\lambda_{exc} = 276$ nm) with the addition of 4-chlorophenol in DMSO. The arrow indicates the quenching of the fluorescence intensity by addition of an appropriate aliquot of 4-CP.

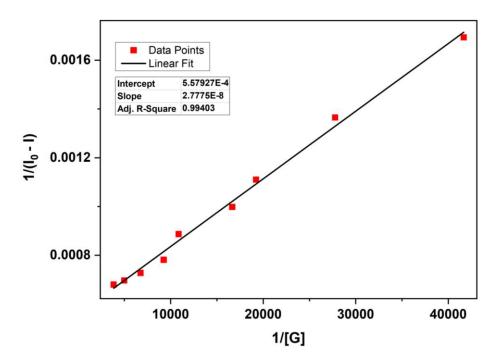

Figure 3.153. Benesi-Hildebrand plot for the emission quenching of host **7** (at 369 nm) with an increase in the concentration of 4-CP in DMSO.

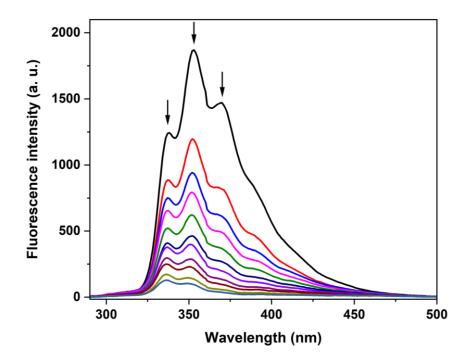

Figure 3.154. Changes in the emission spectra of **7** (2×10^{-6} M, $\lambda_{exc} = 276$ nm) with the addition of 2, 4-DCP in DMSO. The arrow indicates the quenching of the fluorescence intensity by addition of an appropriate aliquot of 2, 4-DCP.

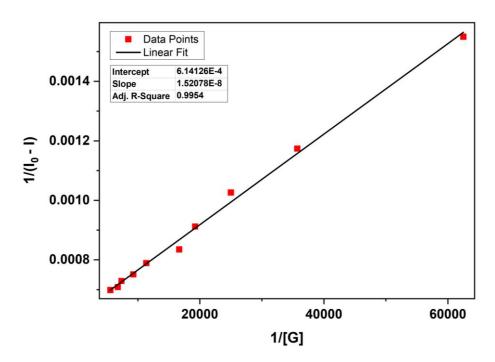

Figure 3.155. Benesi-Hildebrand plot for the emission quenching of host **7** (at 369 nm) with an increase in the concentration of 2, 4-DCP in DMSO.

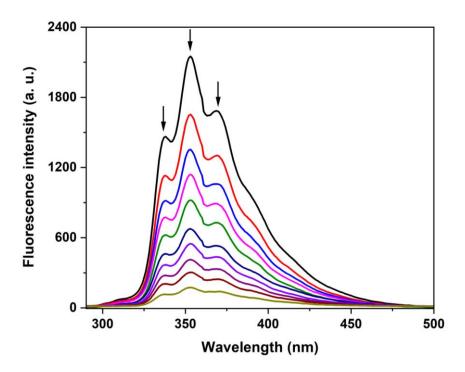

Figure 3.156. Changes in the emission spectra of **7** (4×10^{-6} M, $\lambda_{exc} = 276$ nm) with the addition of 2- NP in DMSO. The arrow indicates the quenching of the fluorescence intensity by addition of an appropriate aliquot of 2-NP.

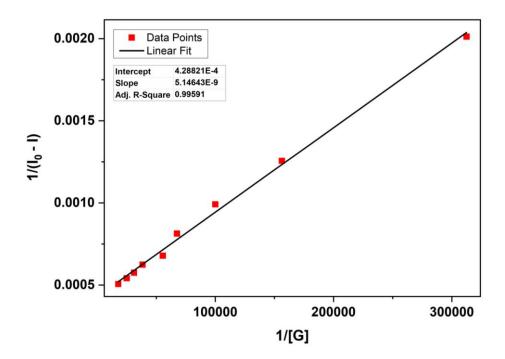

Figure 3.157. Benesi-Hildebrand plot for the emission quenching of host **7** (at 353 nm) with an increase in the concentration of 2-NP in DMSO.

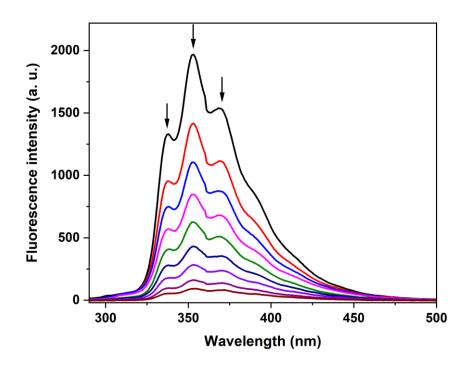

Figure 3.158. Changes in the emission spectra of **7** (2×10^{-6} M, $\lambda_{exc} = 276$ nm) with the addition of 4- NP in DMSO. The arrow indicates the quenching of the fluorescence intensity by addition of an appropriate aliquot of 4-NP.

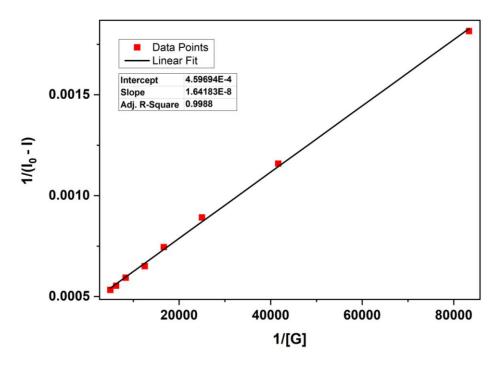

Figure 3.159. Benesi-Hildebrand plot for the emission quenching of host **7** (at 353 nm) with an increase in the concentration of 4-NP in DMSO.

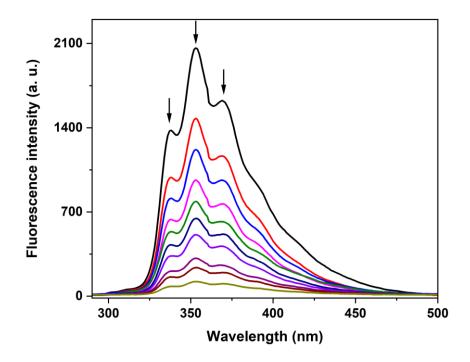

Figure 3.160. Changes in the emission spectra of **7** (2×10^{-6} M, $\lambda_{exc} = 276$ nm) with the addition of 2, 4- DNP in DMSO. The arrow indicates the quenching of the fluorescence intensity by addition of an appropriate aliquot of 2, 4- DNP.

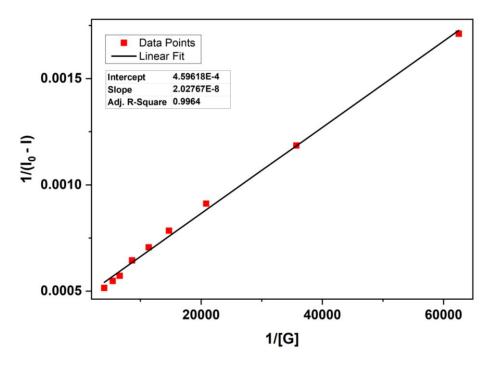

Figure 3.161. Benesi-Hildebrand plot for the emission quenching of host **7** (at 369 nm) with an increase in the concentration of 2, 4- DNP in DMSO.

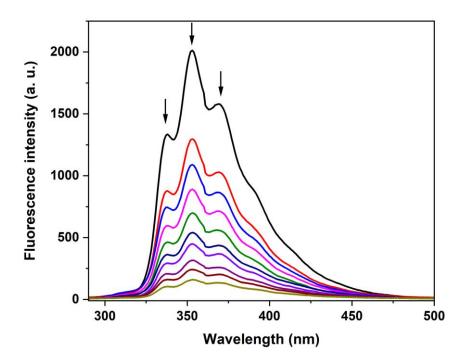

Figure 3.162. Changes in the emission spectra of **7** (2×10^{-6} M, $\lambda_{exc} = 276$ nm) with the addition of 2, 4, 6- TNP/ picric acid in DMSO. The arrow indicates the quenching of the fluorescence intensity by addition of an appropriate aliquot of picric acid.

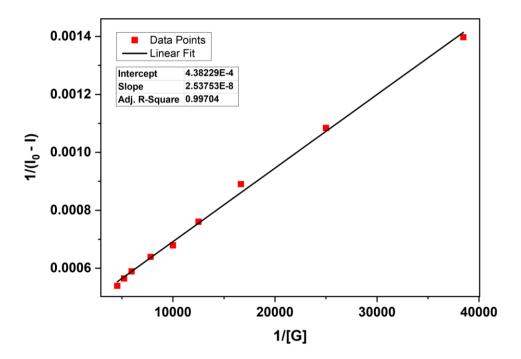

Figure 3.163. Benesi-Hildebrand plot for the emission quenching of host **7** (at 369 nm) with an increase in the concentration of 2, 4, 6- TNP in DMSO.

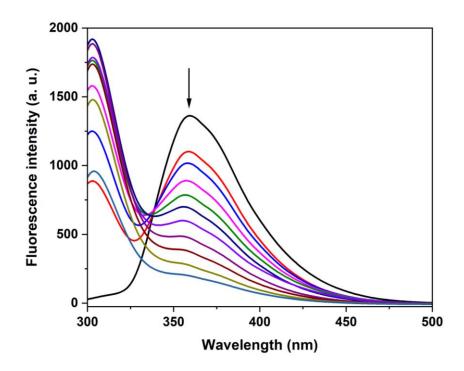

Figure 3.164. Changes in the emission spectra of **7** (2×10^{-6} M, $\lambda_{exc} = 276$ nm) with the addition of NB in DMSO. The arrow indicates the quenching of the fluorescence intensity by addition of an appropriate aliquot of NB.

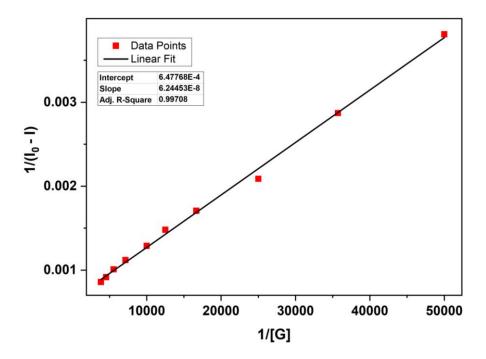

Figure 3.165. Benesi-Hildebrand plot for the emission quenching of host **7** (at 353 nm) with an increase in the concentration of NB in DMSO.


Figure 3.166. Changes in the emission spectra of **7** (2×10^{-6} M, $\lambda_{exc} = 276$ nm) with the addition of 2-NT in DMSO. The arrow indicates the quenching of the fluorescence intensity by addition of an appropriate aliquot of 2-NT.


Figure 3.167. Benesi-Hildebrand plot for the emission quenching of host **7** (at 353 nm) with an increase in the concentration of 2-NT in DMSO.


Figure 3.168. Changes in the emission spectra of **7** (2×10^{-6} M, $\lambda_{exc} = 276$ nm) with the addition of 4-NT in DMSO. The arrow indicates the quenching of the fluorescence intensity by addition of an appropriate aliquot of 4-NT.


Figure 3.169. Benesi-Hildebrand plot for the emission quenching of host **7** (at 353 nm) with an increase in the concentration of 4-NT in DMSO.


Figure 3.170. Changes in the emission spectra of **7** (2×10^{-6} M, $\lambda_{exc} = 276$ nm) with the addition of 2, 4-DNT in DMSO. The arrow indicates the quenching of the fluorescence intensity by addition of an appropriate aliquot of 2, 4-DNT.

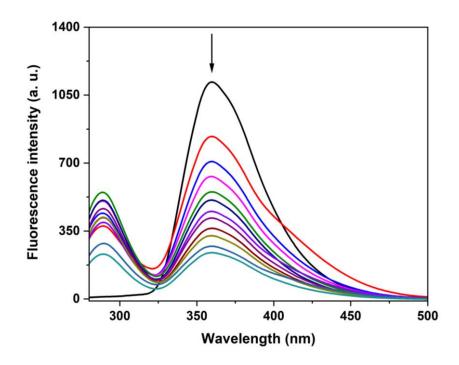
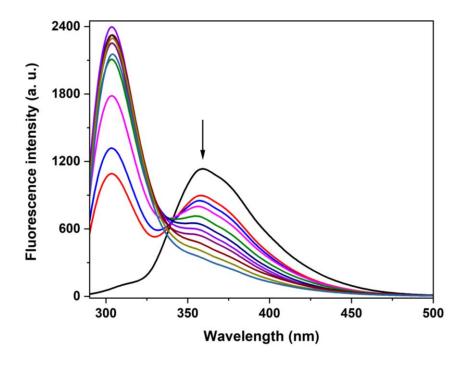
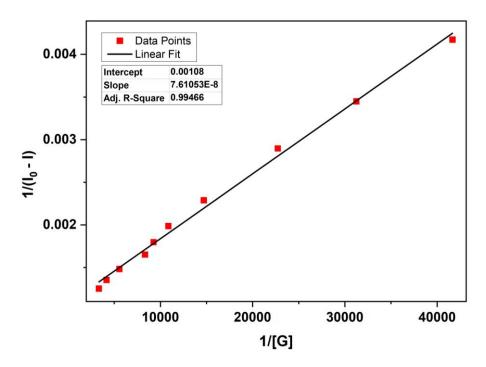
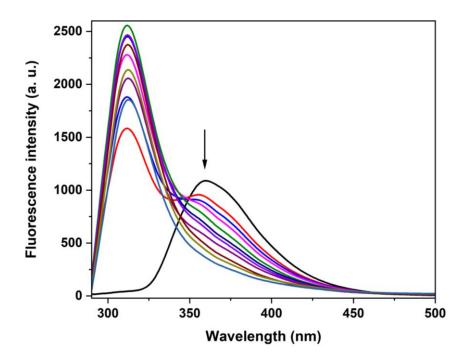
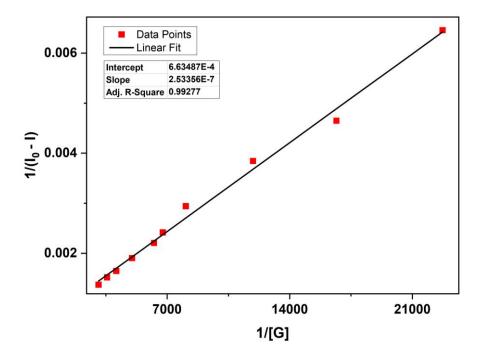

Figure 3.171. Benesi-Hildebrand plot for the emission quenching of host **7** (at 353 nm) with an increase in the concentration of 2, 4-DNT in DMSO.

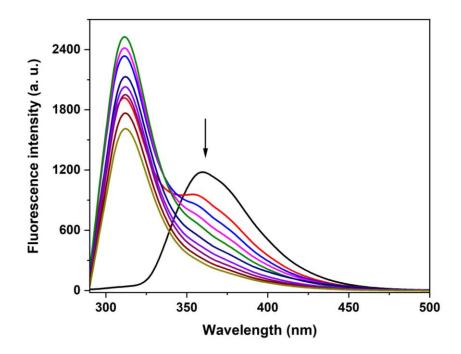
Figure 3.172. Changes in the emission spectra of **8** (1 × 10⁻⁶ M, $\lambda_{\text{exc}} = 275$ nm) with the addition of phenol in DMSO. The arrow indicates the quenching of the fluorescence intensity by addition of an appropriate aliquot of phenol.

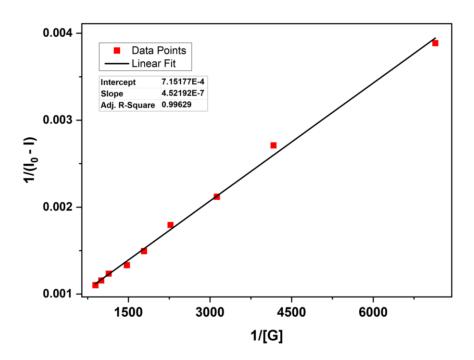

Figure 3.173. Benesi-Hildebrand plot for the emission quenching of host **8** (at 360 nm) with an increase in the concentration of phenol in DMSO.

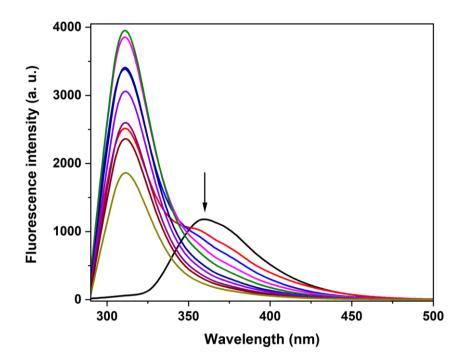

Figure 3.174. Changes in the emission spectra of **8** (1 × 10⁻⁶ M, λ_{exc} = 260 nm) with the addition of BA in DMSO. The arrow indicates the quenching of the fluorescence intensity by addition of an appropriate aliquot of BA.

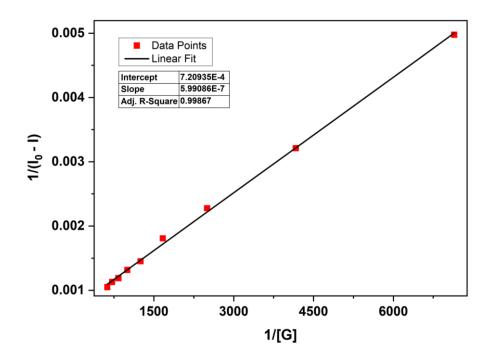

Figure 3.175. Benesi-Hildebrand plot for the emission quenching of host **8** (at 360 nm) with an increase in the concentration of BA in DMSO.

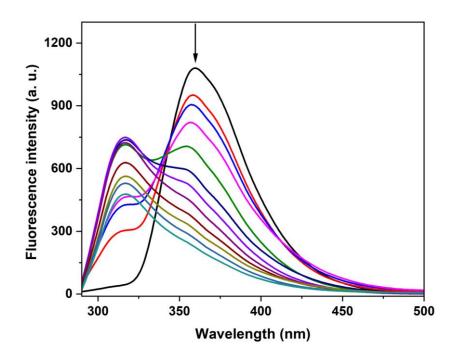

Figure 3.176. Changes in the emission spectra of **8** (1 × 10^{-6} M, $\lambda_{exc} = 275$ nm) with the addition of m-cresol in DMSO. The arrow indicates the quenching of the fluorescence intensity by addition of an appropriate aliquot of m-cresol.

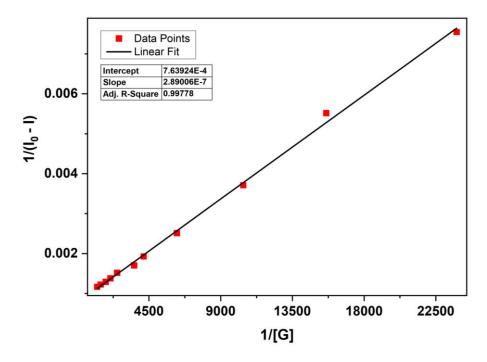

Figure 3.177. Benesi-Hildebrand plot for the emission quenching of host **8** (at 360 nm) with an increase in the concentration of m-cresol in DMSO.

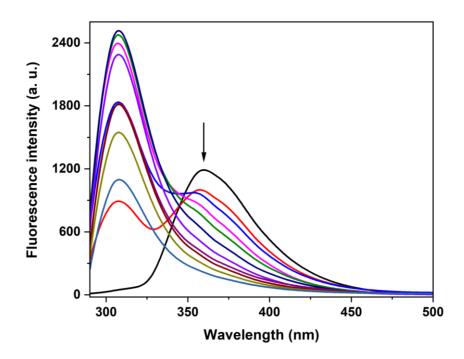

Figure 3.178. Changes in the emission spectra of **8** (1 × 10⁻⁶ M, λ_{exc} = 275 nm) with the addition of p-cresol in DMSO. The arrow indicates the quenching of the fluorescence intensity by addition of an appropriate aliquot of p-cresol.

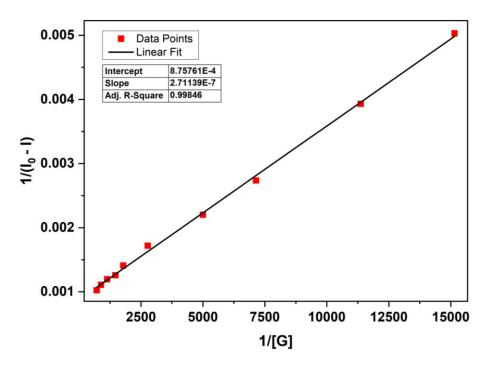

Figure 3.179. Benesi-Hildebrand plot for the emission quenching of host **8** (at 360 nm) with an increase in the concentration of p-cresol in DMSO.

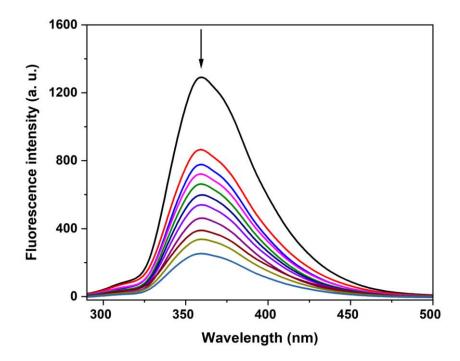

Figure 3.180. Changes in the emission spectra of **8** (1 × 10⁻⁶ M, λ_{exc} = 275 nm) with the addition of 3, 4- DMP in DMSO. The arrow indicates the quenching of the fluorescence intensity by addition of an appropriate aliquot of 3, 4- DMP.

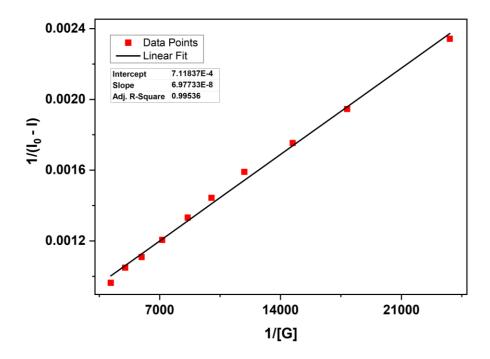

Figure 3.181. Benesi-Hildebrand plot for the emission quenching of host **8** (at 360 nm) with an increase in the concentration of 3, 4- DMP in DMSO.

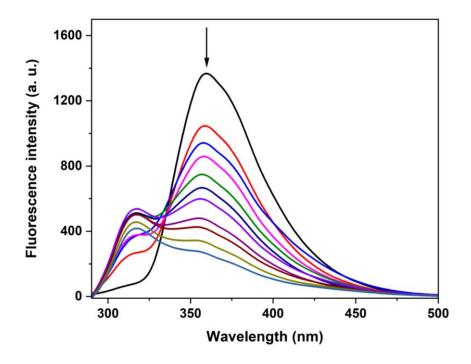

Figure 3.182 Changes in the emission spectra of **8** (1 × 10⁻⁶ M, λ_{exc} = 275 nm) with the addition of 2, 4, 6- TMP in DMSO. The arrow indicates the quenching of the fluorescence intensity by addition of an appropriate aliquot of 2, 4, 6- TMP.

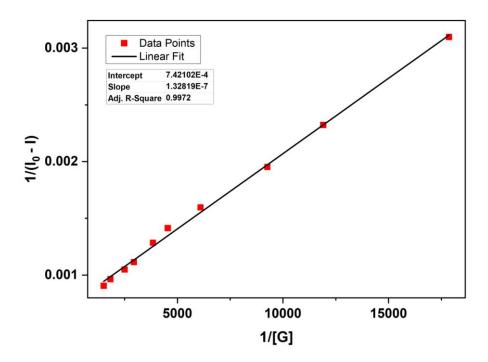

Figure 3.183 Benesi-Hildebrand plot for the emission quenching of host **8** (at 360 nm) with an increase in the concentration of 2, 4, 6- TMP in DMSO.

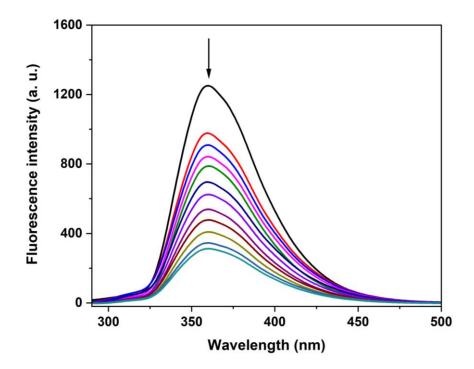

Figure 3.184 Changes in the emission spectra of **8** (1 × 10⁻⁶ M, λ_{exc} = 275 nm) with the addition of catechol in DMSO. The arrow indicates the quenching of the fluorescence intensity by addition of an appropriate aliquot of catechol.

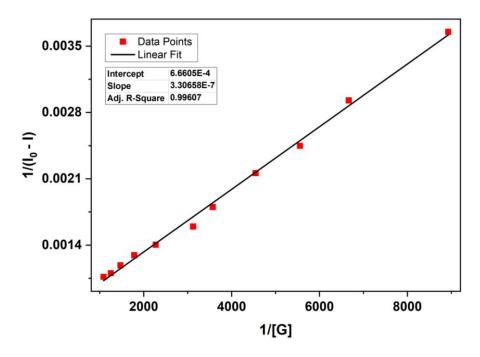

Figure 3.185. Benesi-Hildebrand plot for the emission quenching of host **8** (at 360 nm) with an increase in the concentration of catechol in DMSO.

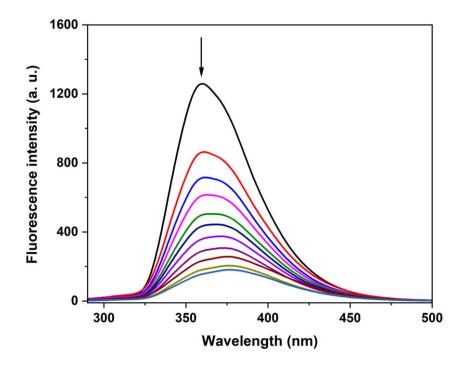

Figure 3.186. Changes in the emission spectra of **8** (1 × 10^{-6} M, $\lambda_{exc} = 275$ nm) with the addition of resorcinol in DMSO. The arrow indicates the quenching of the fluorescence intensity by addition of an appropriate aliquot of resorcinol.

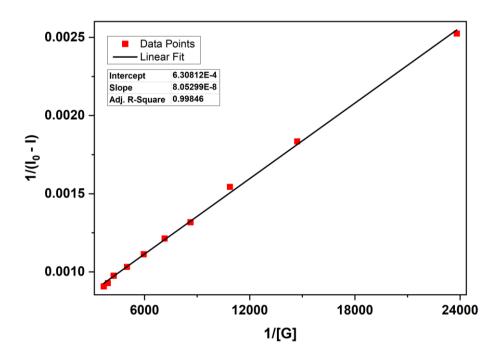

Figure 3.187. Benesi-Hildebrand plot for the emission quenching of host **8** (at 360 nm) with an increase in the concentration of resorcinol in DMSO.

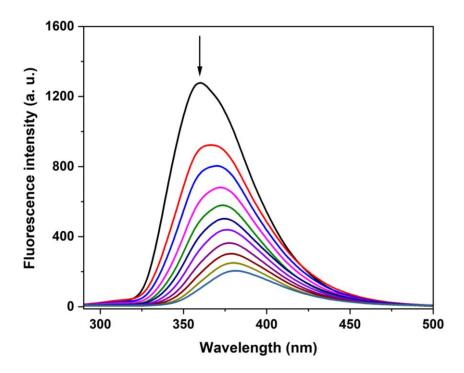

Figure 3.188. Changes in the emission spectra of **8** (1 × 10⁻⁶ M, λ_{exc} = 275 nm) with the addition of 2-CP in DMSO. The arrow indicates the quenching of the fluorescence intensity by addition of an appropriate aliquot of 2-CP.

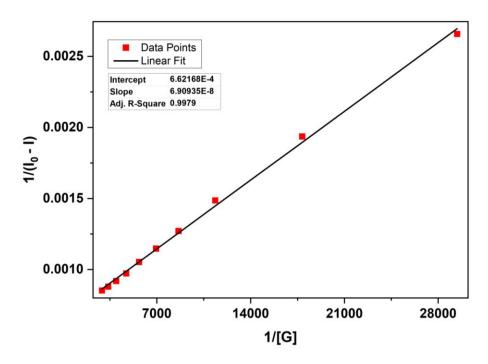

Figure 3.189. Benesi-Hildebrand plot for the emission quenching of host **8** (at 360 nm) with an increase in the concentration of 2-CP in DMSO.

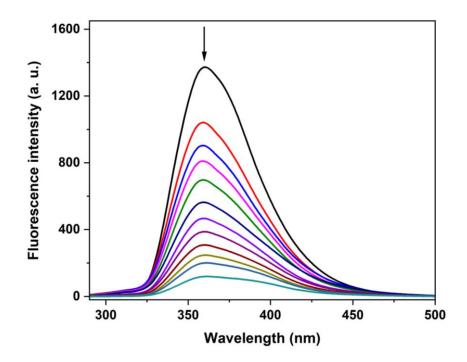

Figure 3.190. Changes in the emission spectra of **8** (1 × 10⁻⁶ M, λ_{exc} = 275 nm) with the addition of 4-chlorophenol in DMSO. The arrow indicates the quenching of the fluorescence intensity by addition of an appropriate aliquot of 4-CP.

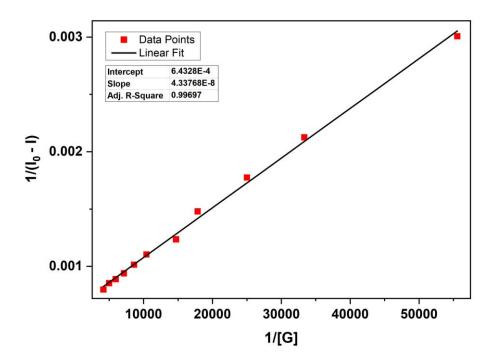

Figure 3.191. Benesi-Hildebrand plot for the emission quenching of host **8** (at 360 nm) with an increase in the concentration of 4-CP in DMSO.

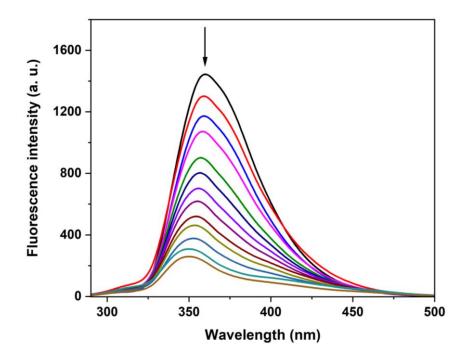

Figure 3.192. Changes in the emission spectra of **8** (1 × 10^{-6} M, $\lambda_{exc} = 275$ nm) with the addition of 2, 4-DCP in DMSO. The arrow indicates the quenching of the fluorescence intensity by addition of an appropriate aliquot of 2, 4-DCP.

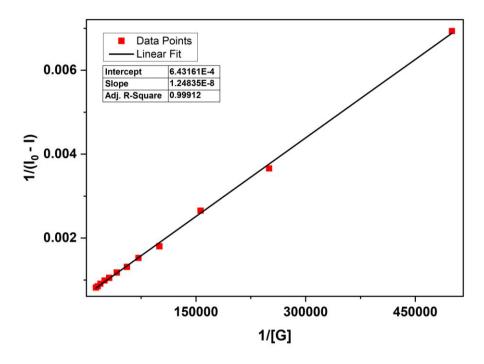

Figure 3.193. Benesi-Hildebrand plot for the emission quenching of host **8** (at 360 nm) with an increase in the concentration of 2, 4-DCP in DMSO.

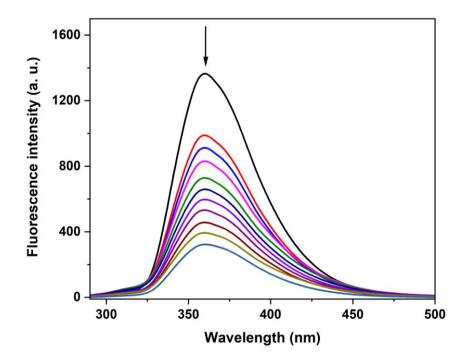

Figure 3.194. Changes in the emission spectra of **8** (1 × 10⁻⁶ M, λ_{exc} = 275 nm) with the addition of 2- NP in DMSO. The arrow indicates the quenching of the fluorescence intensity by addition of an appropriate aliquot of 2-NP.

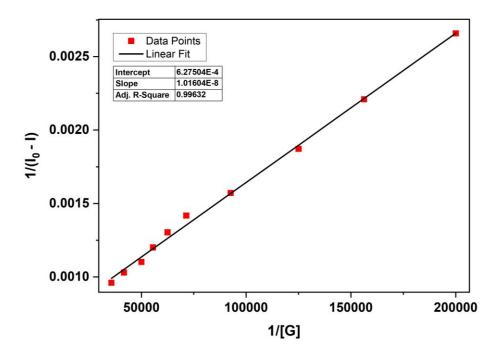

Figure 3.195. Benesi-Hildebrand plot for the emission quenching of host **8** (at 360 nm) with an increase in the concentration of 2-NP in DMSO.

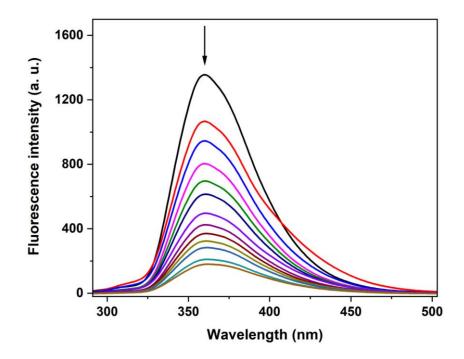

Figure 3.196. Changes in the emission spectra of **8** (1 \times 10⁻⁶ M, λ_{exc} = 275 nm) with the addition of 4- NP in DMSO. The arrow indicates the quenching of the fluorescence intensity by addition of an appropriate aliquot of 4-NP.

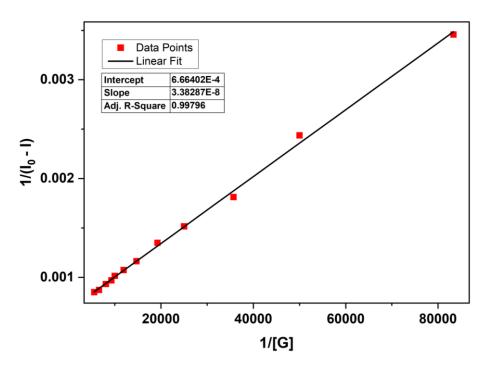

Figure 3.197. Benesi-Hildebrand plot for the emission quenching of host **8** (at 360 nm) with an increase in the concentration of 4-NP in DMSO.

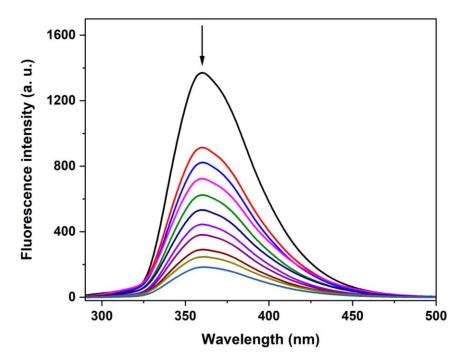

Figure 3.198. Changes in the emission spectra of **8** (1 × 10⁻⁶ M, λ_{exc} = 275 nm) with the addition of 2, 4- DNP in DMSO. The arrow indicates the quenching of the fluorescence intensity by addition of an appropriate aliquot of 2, 4- DNP.

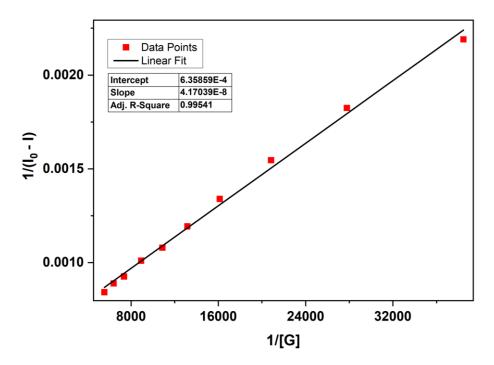

Figure 3.199. Benesi-Hildebrand plot for the emission quenching of host **8** (at 360 nm) with an increase in the concentration of 2, 4- DNP in DMSO.

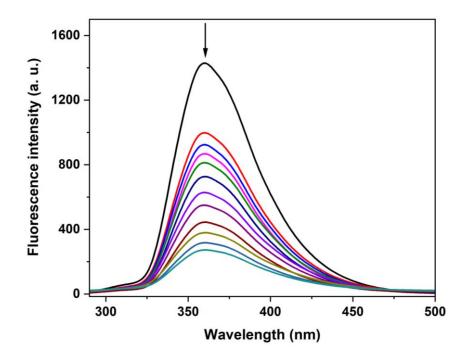

Figure 3.200. Changes in the emission spectra of **8** (1 × 10⁻⁶ M, λ_{exc} = 275 nm) with the addition of 2, 4, 6- TNP/ picric acid in DMSO. The arrow indicates the quenching of the fluorescence intensity by addition of an appropriate aliquot of picric acid.


Figure 3.201. Benesi-Hildebrand plot for the emission quenching of host **8** (at 360 nm) with an increase in the concentration of 2, 4, 6- TNP in DMSO.


Figure 3.202. Changes in the emission spectra of **8** (1 × 10⁻⁶ M, λ_{exc} = 275 nm) with the addition of NB in DMSO. The arrow indicates the quenching of the fluorescence intensity by addition of an appropriate aliquot of NB.


Figure 3.203. Benesi-Hildebrand plot for the emission quenching of host **8** (at 360 nm) with an increase in the concentration of NB in DMSO.


Figure 3.204. Changes in the emission spectra of **8** (1 × 10⁻⁶ M, λ_{exc} = 275 nm) with the addition of 2-NT in DMSO. The arrow indicates the quenching of the fluorescence intensity by addition of an appropriate aliquot of 2-NT.


Figure 3.205. Benesi-Hildebrand plot for the emission quenching of host **8** (at 360 nm) with an increase in the concentration of 2-NT in DMSO.

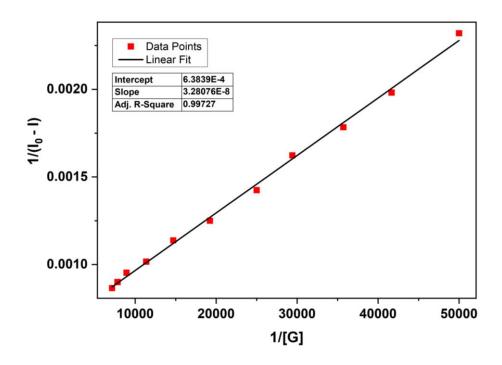

Figure 3.206. Changes in the emission spectra of **8** (1 \times 10⁻⁶ M, λ_{exc} = 275 nm) with the addition of 4-NT in DMSO. The arrow indicates the quenching of the fluorescence intensity by addition of an appropriate aliquot of 4-NT.

Figure 3.207. Benesi-Hildebrand plot for the emission quenching of host **8** (at 360 nm) with an increase in the concentration of 4-NT in DMSO.

Figure 3.208. Changes in the emission spectra of **8** (1 \times 10⁻⁶ M, λ_{exc} = 275 nm) with the addition of 2, 4-DNT in DMSO. The arrow indicates the quenching of the fluorescence intensity by addition of an appropriate aliquot of 2, 4-DNT.

Figure 3.209. Benesi-Hildebrand plot for the emission quenching of host **8** (at 360 nm) with an increase in the concentration of 2, 4-DNT in DMSO.

Table 3.4. Comparison of Binding Constants K_a (M⁻¹) of previously reported complex (C1),¹⁶ and Metallocavitands 1, 2, 7, and 8 towards Nitro-substituted Guest Molecules Calculated by Emission Titration in DMSO at 298K.

guest molecule,	C1	1	2	7	8
Nitrobenzene	4.7×10^{2}	1.4×10^{4}	2.4×10^{4}	8.3×10^{4}	6.2×10^4
2-Nitrotoluene	1.1×10^3	1.1×10^4	1.8×10^4	2.8×10^4	2.0×10^4
4-Nitrotoluene	4.5×10^2	1.7×10^4	1.6×10^4	2.3×10^4	1.5×10^4
2,4-Dinitrotoluene	2.5×10^3	1.5×10^4	8.5×10^3	1.7×10^4	1.9×10^4

3.5 Conclusion

Eight neutral, heteroleptic fac-[Re(CO)₃] core-based metallocavitands (1-8) analogous to calix[5]arene were self-assembled using two new neutral, flexible ditopic nitrogen donors (L¹-L²), bis-chelating ligands and Re₂(CO)₁₀ *via* one-pot approach. The inner cavity of the metallocavitands is tuneable by modulating the bis-chelating framework motifs. The solid-state structures of the metallocavitands confirm that their inner cavity is suitable to accommodate acetone, mesitylene, toluene and chlorobenzene. The host-guest recognition studies of metallocavitands 1, 2, 7 and 8 with a family of substituted phenol and nitrobenzene as guest molecules have suggested that the metallocavitands may act as hosts for substituted benzene core-based molecules. This study provides an easy synthetic approach for assembling neutral, heteroleptic pentagonal toroid-shaped host molecules. Further research to increase the width, tuning functional groups at the periphery as well as to make calix[n]arene (n = 6, 7)-shaped fac-[Re(CO)₃]-core based metallocavitands are currently under process in our laboratory.

3.6 References

- (a) Frischmann, P. D.; MacLachlan, M. J. Metallocavitands: an emerging class of functional multimetallic host molecules. *Chem. Soc. Rev.* 2013, 42, 871-890. (b) Lippert, B.; Sanz Miguel, P. J. Metallatriangles and metallasquares: the diversity behind structurally characterized examples and the crucial role of ligand symmetry. *Chem. Soc. Rev.* 2011, 40, 4475-4487. (c) Kulesza, J.; Barros, B. S.; Junior, S. A. Organic-inorganic hybrid materials: Metallacalixarenes. Synthesis and applications. *Coord. Chem. Rev.* 2013, 257, 2192-2212. (d) Díaz-Ramírez, M. L.; Huggins, H.; Donnadieu, B.; Lopez, N.; Muñoz-Hernández, M. -Á. The Quest for Large Group 13 Metallacalixarenes Based on Benzymidazolyl Ligands and Al and Ga Alkyls. *Eur. J. Inorg. Chem.* 2021, 3896-3902 and references therein.
- (a) Zhang, Y. Y.; Gao, W. X.; Lin, L.; Jin, G. X. Recent advances in the construction and applications of heterometallic macrocycles and cages. *Coord. Chem. Rev.* 2017, 344, 323-344. (b) Zhang, L.; Lin, L.; Liu, D.; Lin, Y. J.; Li, Z. H.; Jin, G. X. Stacking Interactions Induced Selective Conformation of Discrete Aromatic Arrays and Borromean Rings. *J. Am. Chem. Soc.* 2017, 139, 1653-1660.(c) Zhang, W. Y.; Lin, Y. J.; Han, Y. F.; Jin, G. X. Facile Separation of Regioisomeric Compounds by a Heteronuclear Organometallic Capsule. *J. Am. Chem. Soc.* 2016, 138, 10700-10707. (d) Chen, L. J.; Yang, H. B.; Shionoya, M. Chiral metallosupramolecular architectures. *Chem. Soc. Rev.* 2017, 46, 2555-2576. (e) Amouri, H.; Desmarets, C.; Moussa, J. Confined Nanospaces in Metallocages: Guest Molecules, Weakly Encapsulated Anions, and Catalyst Sequestration. *Chem. Rev.* 2012, 112, 2015-2041. (f) Yoshizawa, M.; Klosterman, J. K.; Fujita, M. Functional Molecular Flasks: New Properties and Reactions within Discrete, Self-Assembled Hosts. *Angew. Chem. Int. Ed.* 2009, 48, 3418-3438. (g) Yoshizawa, M.; Tamura, M.; Fujita, M. Diels-Alderin Aqueous Molecular Hosts: Unusual Regioselectivity and Efficient Catalysis. *Science* 2006, 312, 251-254.
- 3. (a) Chakrabarty, R.; Mukherjee, P. S.; Stang, P. J. Supramolecular Coordination:Self-Assembly of Finite Two-and Three-Dimensional Ensembles. *Chem. Rev.* **2011**, *111*, 6810-6818. (b) Cook, T. R.; Stang, P. S. Recent Developments in the Preparation and Chemistry of Metallacycles and Metallacages via Coordination. *Chem. Rev.* **2015**, *115*, 7001–7045. (c) Cook, T. R.; Vajpayee, V.; Lee, M. H.; Stang, P. S.; Chi, K. W.

- Biomedical and Biochemical Applications of Self-Assembled Metallacycles and Metallacages. *Acc. Chem. Res.* **2013**, 46, 2464–2474. (d) Casini, A.; Woods, B.; Wenzel, M. The Promise of Self-Assembled 3D Supramolecular Coordination Complexes for Biomedical Applications. *Inorg. Chem.* **2017**, 56, 14715–14729. (e) Therrien, B. Drug Delivery by Water-soluble Organometallic Cages. *Top. Curr. Chem.* **2012**, *319*, 35–55. (f) Han, Y. F.; Li, H.; Jin, G. X. Host–guest chemistry with bi-and tetra-nuclear macrocyclic metallasupramolecules. *Chem. Commun.* **2010**, *46*, 6879-6890. (g) Huang, C. C.; Liu, J. J.; Chen, Y.; Lin, M. J. An electron-deficient metallocavitand with an unusual selectivity towards substituted benzene derivatives during co-crystallizations. *Chem. Commun.* **2013**, *49*, 11512-11514.
- 4. (a) Bhat, I. A.; Zangrando, E.; Mukherjee, P. S. Coordination-Driven Self-Assembly of Discrete Molecular Nanotubular Architectures. *Inorg. Chem.* **2019**, *58*, 11172–11179. (b) Bhattacharyya, S.; Venkateswarulu, M.; Sahoo, J.; Zangrando, E.; De, M.; Mukherjee, P. S. Self-Assembled Pt^{II}8 Metallosupramolecular Tubular Cage as Dual Warhead Antibacterial Agent in Water. Inorg. Chem 2020, 59, 12690-12699. (c) Purba, P. C.; Maity, M.; Bhattacharyya, S.; Mukherjee, P. S. A Self-Assembled Palladium(II) Barrel for Binding of Fullerenes and Photosensitization Ability of the Fullerene-Encapsulated Barrel. Angew. Chem. Int. Ed. 2021, 60, 14109- 14116. (d) Ramakrishna, B.; Nagarajaprakash, R.; Veena, V.; Sakthivel, N.; Manimaran, B. Self-assembly of Oxamidato Bridged Ester Functionalised Dirhenium Metallastirrups: Synthesis, Characterisation and Cytotoxicity Studies. *Dalton. Trans.* **2015**, 44, 17629–17638. (e) Ashok Kumar, C.; Divya, D.; Nagarajaprakash, R.; Veena, V.; Vidhyapriya, P.; Sakthivel, N.; Manimaran, B. Self-assembly of Manganese(I) and Rhenium(I) Based Semi-rigid Ester Functionalized M₂L₂-type Metallacyclophanes: Synthesis, Characterization and Cytotoxicity Evaluation. J. Organomet. Chem. 2017, 846, 152–160. (f) Botana, E.; Silva, E. D.; Benet-Buchholz, J.; Ballester, P.; de Mendoza, J. Inclusion of Cavitands and Calix[4]arenes into a Metallobridged para-(1H-imidazo[4,5-f][3,8]phenanthrolin-2-yl)expanded Calix[4]arene. Angew. Chem. Int. Ed. 2007, 46, 198-201. (g) Samantray, S., Krishnaswamy, S. & Chand, D. K. Self-assembled conjoined-cages. *Nat. Commun.* 2020, 11, 880 1-11. (h) Bardhan, D.; Chand, D. K. Palladium(II)-Based Self-Assembled Heteroleptic Coordination Architectures: A Growing Family. Chem. Eur. J. 2019, 25, 12241 - 12269.
- 5. (a) MacGillivray, L. R.; Atwood J. L. Structural Classification and General Principles for the Design of Spherical Molecular Hosts. *Angew. Chem. Int. Ed.* **1999**, *38*, 1018-1033. (b)

- Therrien, B. Arene Ruthenium Cages: Boxes Full of Surprises. *Eur. J. Inorg. Chem.* **2009**, 2445-2453. (c) Therrien, B. Transporting and Shielding Photosensitisers by Using Water-Soluble Organometallic Cages: A New Strategy in Drug Delivery and Photodynamic Therapy. *Chem. Eur. J.* **2013**, *19*, 8378-8386. (d) Han, Y. F.; Jia, W. G.; Lin, Y. J.; Jin, G. X. Extending Rectangular Metal–Organic Frameworks to the Third Dimension: Discrete Organometallic Boxes for Reversible Trapping of Halocarbons Occurring with Conservation of the Lattice. *Angew. Chem. Int. Ed.* **2009**, *48*, 6234-6238.(e) Huang,S. L.; Lin,Y. J.; Li, Z. H.; Jin, G. X. Self-Assembly of Molecular Borromean Rings from Bimetallic Coordination Rectangles. *Angew. Chem. Int. Ed.* **2014**, *53*, 11218-11222. (f) Huang, S. L.; Lin, Y. J.; Andy Hor T. S.; Jin, G. X. Cp*Rh-Based Heterometallic Metallarectangles: Size-Dependent Borromean Link Structures and Catalytic Acyl Transfer. *J. Am. Chem. Soc.* **2013**, *135*, 8125-8128 (g) Lu, Y.; Deng. Y. X.; Lin, Y. J.; Han, Y. F.; Weng. L. H.; Li. Z. H.; Jin, G. X.; Molecular Borromean Rings Based on Dihalogenated Ligands. *Chem.* **2017**, *3*, 110-121.
- (a) Fondo, M.; Doejo, J.; Garcia-Deibe, A. M.; Matalobos, J. S.; Vicente, R. A. Ni₈ metallacalix[4]arene and a Cu₄ molecular rhomboid: limiting the nuclearity of carboxysalen-like metal complexes. *CrystEngComm*. 2016, *18*, 6673-6682. (b) Lopez, N.; Rufino-Felipe, E.; Muñoz-Hernández, M. –Á. 1,3-alternate conformation of a gallium calix[4]arene based on a benzimidazolyl ligand. *Inorg. Chem. Commun*. 2016, *64*, 50-52. (c) Rufino-Felipe, E.; Muñoz-Hernández, M. –Á.; Saucedo-Azpeitiaand, H. F., Cortes-Llamas, S. A.; Calix[4]arenes of Aluminum and Gallium with Benzimidazolyl Ligands: Steric Control of the Conformation via Substitution on the Ligand. *Inorg. Chem.* 2012, *51*, 12834-12840. (d) Yu, X. Y.; Zhang, X.; Qu, X. S.; Ma, M. S.; Liu, Z. G.; Jin, L.; Yangand, Y. Y.; Luo, Y. N.; A new 3-D Cd(II) coordination polymer with metallacalix[4]arene building blocks based on 2-(pyridin-2-yl)-1H-imidazole-4,5-dicarboxylic acid. *J. Coord. Chem.* 2015, *68*, 3580-3588.
- 7. (a) Wang, X.; Hu. H.; Liu, G.; Linand, H.; Tian, A. Self-assembly of nanometre-scale metallacalix[4]arene building blocks and Keggin units to a novel (3,4)-connected 3D self-penetrating framework. *Chem. Commun.* **2010**, *46*, 6485-6487. (b) Li, X.; Wu, B.; Wang, R.; Zhang, H.; Niu, C.; Niu, Y.; Hou, H. Hierarchical Assembly of Extended Coordination Networks Constructed by Novel Metallacalix[4]arenes Building Blocks. *Inorg. Chem.* **2010**, *49*, 2600-2613. (c) Maekawa, M.; Konaka, H.; Minematsu, T.; Kuroda-Sowa, T.; Munakata, M.; Kitagawa, S. Bowl-shaped Cu(i) metallamacrocyclic ethylene and carbonyl adducts as structural analogues of organic calixarenes. *Chem.*

- Commun. 2007, 5179-5181. (d) Navarro, J. A. R.; Barea, E.; Salas, J. M.; Masciocchi, N.; Galli, S.; Sironi, A. Structural and Magnetic Properties of Layered Copper(II) Coordination Polymers Intercalating s and f Metal Ions *Inorg. Chem.* 2007, 46, 2988-2997. (e) Ene, C. D.; Madalan, A. M.; Maxim, C.; Jurca, B.; Avarvari, N.; Andruh, M. Constructing Robust Channel Structures by Packing Metallacalixarenes: Reversible Single-Crystal-to-Single-Crystal Dehydration. *J. Am. Chem. Soc.* 2009, 131, 4586-4587.
- 8. (a) Sakate, M.; Kashima, A.; Hosoda, H.; Sunatsuki, Y.; Ota, H.; Fuyuhiro, A; Suzuki, T.; Thyminato-bridged cyclic tetranuclear rhodium(III) complexes containing a sodium, calcium or lanthanoid ion as a template metal core. *Inorg. Chim. Acta.* **2016**, *452*, 205-213. (b) Terrett, R.; Cavigliasso, G.; Stranger, R.; Yates, B. F. On the unprecedented level of dinitrogen activation in the calix[4]arene complex of Nb(iii). *Dalton Trans.* **2011**, *40*, 11267-11275. (c) Kashima, A.; Sakate, M.; Ota, H.; Fuyuhiro, A.; Sunatsuki, Y.; Suzuki, T. Thyminate(2—)-bridged cyclic tetranuclear rhodium(iii) complexes formed by a template of a sodium, calcium or lanthanoid ion. *Chem. Commun.* **2015**, *51*, 1889-1892. (d) Galindo, M. A.; Houlton, A.; Clegg, W.; Harrington, R. W.; Dodado, J.; Santoyo-Gonzalez, F.; Linares, F.; Romero, M. A.; Navarro, J. A. R. Electrochemically and photochemically active Palladium(ii) heterotopic metallacalix[3]arenes. *Chem. Commun.* **2008**, *13*, 3735-3737. (e) Xu, G. F.; Gamez, P.; Teat, S. J.; Tang, J. Praseodymium(iii)-based bis-metallacalix[4]arene with host–guest behavior. *Dalton Trans.* **2010**, *39*, 4353-4357.
- (a) Velle, A.; Cebollada, A.; Lippert, B.; Sanz Miguel, P. J. Topology of metallacalix[4]arenes with uracil and cytosine ligands: favorable and unfavorable assemblies. New J. Chem. 2016, 40, 5914 -1519. (b) Khutia, A.; Sanz Miguel, P. J.; Lippert, B."Directed" Assembly of Metallacalix[n]arenes with Pyrimidine Nucleobase Ligands of Low Symmetry: Metallacalix[n]arene Derivatives of cis-[a₂M(cytosine-N₃)₂]²⁺ (M=Pt^{II}, Pd^{II}; n=4 and 6). Chem. Eur. J. 2011, 17, 4195-4204. (c) Khutia, A.; Sanz Miguel, P. J.; Lippert, B. Isomerism with Metallacalix[4]arenes of the Nonsymmetrical Pyrimidine Nucleobase Cytosine: How Connectivity and Rotamer State Determine the Topology of Multinuclear Derivatives. Inorg. Chem. 2010, 49, 7635-7637 (d) Das, N.; Sanz Miguel, P. J.; Khutia, A.; Lazar, M.; Lippert, B. Hybrids between classical and metallacalix[4]arenes based on uracil and cis-Pt^{II}L₂ entities (L = P(Ph)₃ or L₂ = 2,2′-bipyridine). Dalton Trans. 2009, 9120-9122. (e) Galindo, M. A.; Houlton, A.; Clegg, W.; Harrington, R. W.; Dobado, J.; Santoyo-Gonzalez, F.; Linares, F.; Romero, M. A.; Navarro, J. A. R. Electrochemically and photochemically active Palladium(ii) heterotopic

- metallacalix[3]arenes. *Chem. Commun.* **2008**, 3735-3737 (f) Galindo, M. A.; Olea, D.; Romero, M. A.; Gomez, J.; del Castillo, P.; Hannon, M. J.; Rodger, A.; Zamora, F.; Navarro, J. A. R. Design and Non-Covalent DNA Binding of Platinum(II) Metallacalix[4]arenes. *Chem. Eur. J.* **2007**, *13*, 5075-5081 (g) Bardají, E. G.; Freisinger, E.; Costisella, B.; Schalley, C. A.; Bruning, W.; Sabat, M.; Lippert, B. Mixed-Metal (Platinum, Palladium), Mixed-Pyrimidine (Uracil, Cytosine) Self-Assembling Metallacalix[n]arenes: Dynamic Combinatorial Chemistry with Nucleobases and Metal Species. *Chem. Eur. J.* **2007**, *13*, 6019-6039.
- 10. (a) Galindo, M. A.; Galli, S., Navarro, J. A. R.; Angustias Romero, M.; Formation of heterotopic metallacalix[n] arenes (n=3, 4, 6) containing ethylenediaminepalladium(ii) metal fragments and 4,7-phenanthroline and 2-pyrimidinolate bridges. Synthesis, structure and host-guest chemistry. Dalton Trans. 2004, 2780-2785. (b) Barea, E.; Navarro J. A. R.; Salas J. M.; Quiros, M.; Willermann, M.; Lippert, B. Chiral Pyrimidine Metallacalixarenes: Synthesis, Structure and Host-Guest Chemistry. Chem. - Eur. J. 2003, 9, 4414-4421. (c) Navarro, J. A. R.; Freisinger, E.; Lippert, B. Self-Assembly of Palladium(II) and Platinum(II) Complexes of 2-Hydroxypyrimidine to Novel Metallacalix[4]arenes. Receptor Properties through Multiple H-Bonding Interactions. Inorg. Chem. 2000, 39, 2301-2305. (d) Navarro, J. A. R.; Salas, J. M.; A palladium metallacalix[4] arene capped with a gadolinium atom. Chem. Commun. 2000, 235-236. (e) Das, N.; Sanz Miguel, P. J.; Khutia, A.; Lazar, M.; Lippert. B.; Hybrids between classical and metallacalix [4] arenes based on uracil and cis-Pt^{II}L₂ entities (L = P(Ph)₃ or L₂ = 2,2'bipyridine). Dalton Trans. 2009, 9120-9122 (f) Galindo, M. A.; Navarro, J. A. R.; Romero, M. A.; Quiros, M. Mononucleotide recognition by cyclic trinuclear palladium(ii) complexes containing 4,7-phenanthroline N,N bridges. Dalton Trans. 2004, 1563-1566.
- (a) Rajakannu, P.; Elumalai, P.; Shankar, B.; Hussain, F.; Sathiyendiran, M. Rhenium(I) based metallocalix[4]arenes decorated with free functionalized benzimidazolyl units. *Dalton Trans.* 2013, 42, 11359-11362. (b) Elumalai, P.; Kanagaraj, R.; Marimuthu, R.; Shankar, B.; Kalita, A. C.; Sathiyendiran, M. Rhenium(I)-based bridgeless double metallocalix[4]arenes. *Dalton Trans.* 2015, 44, 11274–11277. (c) Rajakannu, P.; Shankar, B.; Sathiyendiran, M. fac-Re(CO)₃-based organometallic supramolecular coordination complexes using thiophene motif decorated flexible ditopic benzimidazolyl donor. *J. Organomet. Chem.* 2018, 866, 243-250. (d) Rajakannu, P.; Elumalai, P.; Hussain, F.; Sathiyendiran, M. Rhenium-based bicyclic supramolecule with calixarene-shaped bowls. *J. Organomet. Chem.* 2013, 725, 1-4. (e) Rajakannu, P.; Mobin, S. M.; Sathiyendiran, M.

- Thiophene/furan units decorated unsymmetrical dinuclear metallocalix[4]arenes. *J. Organomet. Chem.* **2014**, 771, 68-77. (f) Rajakannu, P.; Elumalai, P.; Mobin, S. M.; Lu, K. L.; Sathiyendiran, M. Hard and soft-donors decorated rhenium based metallocavitands. *J. Organomet. Chem.* **2013**, 743, 17-23.
- (a) Karges, J.; Seo, H.; M. Cohen, S. Synthesis of tetranuclear rhenium(I) tricarbonyl metallacycles. *Dalton Trans.* 2021, 50, 16147- 16155 and references there in. (b) Liao, R. -T.; Yang, W. -C.; Thanasekaran, P.; Tsai, C. -C.; Sathiyendiran, M.; Liu, Y. -H.; Rajendran, T.; Lin, H. -M.; Tseng, T. -W.; Lu, K. -L. Rhenium-based molecular rectangular boxes with large inner cavity and high shape selectivity towards benzene molecule. *Chem. Commun.* 2008, 3175-3177. (c) Sathiyendiran, M.; Liao, R. T.; Thanasekaran, P.; Luo, T. T.; Venkataramanan, N. S.; Lee, G. H.; Peng, S. M.; Lu, K. L. Gondola-Shaped Luminescent Tetrarhenium Metallacycles with Crown-Ether-like Multiple Recognition Sites. *Inorg. Chem.* 2006, 45, 10052–10054. (d) Gupta, D.; Sathiyendiran, M. Rhenium-Carbonyl-Based Supramolecular Coordination Complexes: Synthesis, Structure and Properties. *ChemistrySelect* 2018, 3, 7439 7458 and references there in. (e) Thanasekaran, P.; Lee, C. C.; Lu, K. L. One-Step Orthogonal-Bonding Approach to the Self-Assembly of Neutral Rhenium-Based Metallacycles: Synthesis, Structures, Photophysics, and Sensing Applications. *Acc. Chem. Res.* 2012, 45, 1403–1418.
- (a) Coogan, M. P.; Fernández-Moreira, V.; Kariuki, B. M.; Pope, S. J. A.; Thorp-Greenwood, F. L. A Rhenium Tricarbonyl 4'-Oxo-terpy Trimer as a Luminescent Molecular Vessel with a Removable Silver Stopper. *Angew. Chem. Int. Ed.* 2009, 48, 4965-4968. (b) Wright, P. J.; Muzzioli, S.; Skelton, B. W.; Raiteri, P.; Lee, J.; Koutsantonis, G.; Silvester, D. S.; Stangi, S.; Massi, M. One-step Assembly of Re(I) tricarbonyl 2-pyridyltetrazolato Metallacalix[3]arene with Aqua Emission and Reversible Three-electron Oxidation. *Dalton Trans.* 2013, 42, 8188–8191. (c) Lin, S. M.; Velayudham, M.; Tsai, C. H.; Chang, C. H.; Lee, C. C.; Luo, T. T.; Thanasekaran, P.; Lu, K. L. A Molecular Triangle as a Precursor Toward the Assembly of a Jar-Shaped Metallasupramolecule. *Organometallics* 2014, 33, 40-44.
- 14. (a) Kedia, M.; Priyatharsini, M.; Sathiyashivan, S. D.; Shankar, B.; Krishnakumar, R. V.; Sathiyendiran, M. Prototype rhenium metallocavitand with four exocyclic cavities for small molecules. *J. Organomet. Chem.* 2022, 959, 122123. (b) Shankar, B.; Elumalai, P.; Deval Sathiyashivan, S.; Sathiyendiran, M. Spheroid Metallocavitands with Eight Calixarene-Shaped Receptors on the Surface. *Inorg. Chem.* 2014, 53, 10018–10020. (c)

- Shankar, B.; Hussain, F.; Sathiyendiran, M. Synthesis of rhenium-based M₃L₃L'-type metallacycle from benzimidazole and flexible tri(benzimidazole) ligands. *J. Organomet. Chem.* **2012**, *719*, 26-29.
- 15. (a) Sathiyendiran, M.; Tsai, C. -C.; Thanasekaran, P.; Luo, T. -T.; Yang, C. -I.; Lee, G. -H.; Peng, S. -M.; Lu, K. -L. Organometallic Calixarenes: Syceelike Tetrarhenium(I) Cavitands with Tunable Size, Color, Functionality, and Coin–Slot Complexation. *Chem. Eur. J.* 2011, 17, 3343-3346. (b) Huang, G. G.; Lee, C. J.; Yang, J.; Lu, Z. Z.; Sathiyendiran, M.; Huang, C. Y.; Kao, Y. C.; Lee, G. H.; Lu, K. L. Cavity-containing rhenium metallacycle treated evanescent wave infrared chemical sensors for the selective determination of odorous amines in the atmosphere. *Sens. Actuators B: Chem.* 2018, 254, 424-430.
- 16. Bhol, M.; Shankar, B.; Sathiyendiran, M. Rhenium(I) based irregular pentagonal-shaped metallacavitands. *Dalton Trans.* **2018**, *47*, 4494–4500.
- 17. Halterman, R. L., Pan, X. G., Martyn, D. E., Moore, J. L., Long, A. T. Conformational Interconversions in [2]Catenanes Containing a Wide Rigid Bis(p-benzyl)methyl Spacer. *J. Org. Chem.* **2007**, *72*, 6454–6458.
- 18. Han, X., Ma, H. Wang, Y. A simple and efficient synthesis of 2-aryl-substituted benzimidazoles. *Russ. J. Org. Chem.* **2008**, *44*, 863.
- (a) Benesi, H. A.; Hildebrand, J. H. A Spectrophotometric Investigation of the Interaction of Iodine with Aromatic Hydrocarbons. *J. Am. Chem. Soc.* 1949, 71, 2703 -2707. (b) Murakami, Y.; Kikuchi, J. I.; Suzuki, M.; Matsuura, T. Syntheses of macrocyclic enzyme models. Part 6. Preparation and guest-binding behaviour of octopus cyclophanes. *J. Chem. Soc. Perkin Trans.1* 11988, 1289 -1299.
- 20. (a) Sheldrick, G. M. A short history of SHELX. *Acta Crystallogr.*, *Sect. A: Found. Crystallogr.* **2008**, *64*, 112–122. (b) Sheldrick, G. M. Crystal structure refinement with SHELXL. *Acta Crystallogr.*, *Sect. C: Struct. Chem.* **2015**, *71*, 3–8.
- 21. Jr, A. V. Ultrafast Excited-State Processes in Re(I) Carbonyl-Diimine Complexes: From Excitation to Photochemistry. *Top. Organomet. Chem.* **2010**, *29*, 73–114.
- 22. Tseng, Y.-H.; Bhattacharya, D.; Lin, S.-M.; Thanasekaran, P.; Wu, J.-Y.; Lee, L.-W.; Sathiyendiran, M.; Ho, M.-L.; Chung, M.-W.; Hsu, K.-C.; Chou, P.-T.; Lu, K.-L. Highly Emissive Cyclometalated Rhenium Metallacycles: Structure—Luminescence Relationship. *Inorg. Chem.* **2010**, *49*, 6805-6807.
- 23. (a) Bhattacharya, D.; Sathiyendiran, M.; Wu, J.-Y.; Chang, C.-H.; Huang, S.-C.; Zeng, Y.-L.; Lin, C.-Y.; Thanasekaran, P.; Lin, B.-C.; Hsu, C.-P.; Lee, G.-H.; Peng, S.-M.;

- Lu, K.- L. Quinonoid-Bridged Chair-Shaped Dirhenium(I) Metallacycles: Synthesis, Characterization, and Spectroelectrochemical Studies. *Inorg. Chem.* **2010**, *49*, 10264-10272. (b) Bhattacharya, D.; Sathiyendiran, M.; Luo, T.-T.; Chang, C.-H.; Cheng, Y.-H.; Lin, C.-Y.; Lee, G.-H.; Peng, S.-M.; Lu, K.-L. Ground and Excited Electronic States of Quininone-Containing Re(I)-Based Rectangles: a Comprehensive Study of Their Preparation, Electrochemistry, and Photophysics. *Inorg. Chem.* **2009**, *48*, 3731–3742.
- 24. (a) Sun, S. S.; Lees, A. J.; Transition metal based supramolecular systems: synthesis, photophysics, photochemistry and their potential applications as luminescent anion chemosensors. *Coord. Chem. Rev.* 2002, 230, 171-192. (b) Sathish, V.; Ramdass, A.; Lu, Z. Z.; Velayudham, M.; Thanasekaran, P.; Lu, K. L.; Rajagopal, S. Aggregation-Induced Emission Enhancement in Alkoxy-Bridged Binuclear Rhenium(I) Complexes: Application as Sensor for Explosives and Interaction with Microheterogeneous Media. *J. Phys. Chem. B.* 2013, 117, 14358-14366. (c) Zwijnenburg, M. A.; Berardo, E.; Peveler, W. J.; Jelfs, K. M. Amine Molecular Cages as Supramolecular Fluorescent Explosive Sensors: A Computational Perspective. *J. Phys. Chem. B*, 2016, 120, 5063-5072.
- 25. (a) Shanmugaraju, S.; Mukherjee, P. S. π-Electron rich small molecule sensors for the recognition of nitroaromatics *Chem. Commun.* 2015, 51, 16014 -16032. (b) Salinas, Y.; Manez, R. M.; Marcos, M. D.; Sancenon, F.; Costero, A. M.; Parra, M.; Gil, S. Optical chemosensors and reagents to detect explosives. *Chem. Soc. Rev.* 2012, 41, 1261-1296. (c) Ghosh, S.; Gole, B.; Bar, A. K.; Mukherjee, P. S. Self-Assembly of Molecular Prisms via Pt₃ Organometallic Acceptors and a Pt₂ Organometallic Clip. *Organometallics.* 2009, 28, 4288-4296.

Chapter 4

Calix[4]arene-Analogous Technetium and Rhenium Core-based Supramolecules

Abstract

Calix[4]arene-analogous technetium supramolecules (1-2) were assembled using $(NBu_4)[Tc_2(\mu-Cl)_3(CO)_6]$ and neutral flexible bidentate nitrogen donor ligands $(L^1 \text{ and } L^2)$ consisting of four arene units covalently joined *via* methylene units. The neutral homoleptic technetium macrocycles adopt a partial cone/cone-shaped conformation in the solid-state. supramolecules first example of fac-[Tc(CO)₃]⁺ These are the metallacalix[4] arenes and second example of fac-[Tc(CO)₃]⁺ core-based metallomacrocycles. Structurally similar fac-[Re(CO)₃]⁺ core-based macrocycles (3-4) were also prepared using $[Re(CO)_5X]$ (where X = Cl or Br) and L^1 or L^2 . The products were characterized spectroscopically and by X-ray analysis. The molecular recognition studies of rhenium macrocycles were studied with PAHs and imidazole derivatives using by emission spectroscopic methods

This work has been published in *Inorg. Chem.* **2022**, *61*, 5173–5177.

4.1. Introduction

The design and synthesis of stable and kinetically inert fac-[M(CO)₃]⁺ (M = $^{99\text{m}}$ Tc/ $^{186/188}$ Re) core-based complexes have been gaining continuous research interest for the development of new radiopharmaceuticals as diagnostic and therapeutic agents. $^{1-17}$ $^{99\text{m}}$ Tc is still the workhorse of nuclear diagnostics due to its ideal nuclear decay properties ($t_{1/2} = 6.02$ h, pure γ emitter, $E\gamma = 140$ keV, 89%), whereas the beta-emitting rhenium nuclides 188 Re ($t_{1/2} = 17$ h, $E_{\beta} = 2.12$ MeV) and 186 Re ($t_{1/2} = 89.3$ h, $E_{\beta} = 1.07$ MeV) possess potential for therapy. 2 Isostructural technetium and rhenium complexes are good candidates for nuclear medical theranostics and there exist procedures for the synthesis of the aqua complexes $[^{99\text{m}}$ Tc/ 188 Re(CO)₃(H₂O)₃]⁺ as appropriate precursor molecules. 1c , 2b , 4 , 6 Several attempts have been made towards the synthesis of organometallic technetium complexes using various types of heterocyclic ligands due to their importance in medicinal fields. $^{1-17}$ Recently, efforts have been directed towards the design and synthesis of fac-[Re(CO)₃]⁺ core-based metalorganic macrocycles, i.e., supramolecular coordination complexes or metallomacrocycles, due to their potential applications as bio-imaging and anti-cancer agents. $^{18-20}$

We envision that the synthesis of fac-[Tc(CO)₃]⁺ core-based macrocycles may result in a new class of supramolecules that may find potential utility in the medicinal fields due to the combined properties of the technetium(I) tricarbonyl core and discrete 2D/3D supramolecular structures. In general, the known synthetic approaches for making fac-[Re(CO)₃]⁺ core-based discrete supramolecules can be applied to create structurally analogous fac-[Tc(CO)₃]⁺ core-based supramolecules. To the best of our knowledge, fac-[{Tc(CO)₃Cl}₂(ptc)₂] (ptc = 4-pyridyl-thiosemicarbazone = C₆H₅N-C(CH₃)=N-NH-C(S)-NH₂), is the only known example for a metallomacrocycle based on the fac-[Tc(CO)₃]⁺ core. Here, we report the fac-[Tc(CO)₃Cl] core-based supramolecules analogous to calix[4]arenes and isostructural rhenium macrocycles.

4.2. Experimental

4.2.1. Radiation Precautions

Caution: 99 Tc is a long-lived weak β^- emitter ($E_{max} = 0.292$ MeV). Normal glassware provides sufficient protection against the weak beta radiation when milligram amounts are used. Secondary X-rays (bremsstrahlung) play a significant role only when larger amounts of 99 Tc compounds are handled. All manipulations were performed in a laboratory approved for the handling of radioactive materials.

Materials and Methods

4.2.2. Materials

All chemicals and solvents were reagent grade and used as received without further purification. The starting materials, (NBu₄)[TcOCl₄],²³ (NBu₄)[Tc₂(μ-Cl)₃(CO)₆],²⁴ Re(CO)₅Br,²⁵ Re(CO)₅Cl,²⁶ naphtho[2,3-*d*]imidazole,²⁷ bis-(mesityl)methane,²⁸ and bis(3-(bromomethyl-2,4,6-trimethylphenyl)methane,²⁹ have been synthesized by the following previously published procedures. Solvents including toluene, CHCl₃, CH₂Cl₂ and THF were purified and distilled by conventional procedures.

4.2.3. Physical Measurement

FT-IR spectra of ⁹⁹Tc complexes were recorded on a Shimadzu FTIR spectrometer as KBr pellets. All other IR spectra were measured on a Nicolet iS10 and iS5 ATR- IR spectrometers. NMR spectra were recorded on a JEOL 400 MHz multinuclear spectrometer or a Bruker Avance III 500 MHz spectrometer. ¹H chemical shifts are reported relative to residual solvent protons as a reference (7.26 ppm for CDCl₃, 5.30 for CD₂Cl₂). For the ⁹⁹Tc chemical shifts, KTcO₄ in D₂O was used as the external reference. ESI-HR-MS spectra were collected on a Bruker maXis mass spectrometer.

4.2.4. Materials and Methods for Emission Titration Experiments

Emission spectra were recorded on a JASCO (FP-8500) spectrofluorometer. All the experiments were done in HPLC and spectroscopy grade dichloromethane and used as received from FINAR. Metallacalix[4]arene $\bf 3a$ stock solutions (1 × 10⁻⁴ M for benzene, anthracene and benzimidazole; 1 × 10⁻⁵ M for naphthalene, imidazole) were prepared using CH₂Cl₂. Aromatic guests stock solutions (1 × 10⁻² M for naphthalene; 1 × 10⁻³ M and

 1×10^{-4} M for anthracene, and 1×10^{-1} M for benzene, imidazole and benzimidazole) were prepared in CH_2Cl_2 . Metallacalix[4]arene 4 stock solutions (1 × 10⁻⁵ M for benzene, naphthalene and anthracene; $1 \times 10^{-6} \text{ M}$ for imidazole and $1 \times 10^{-4} \text{ M}$ for benzimidazole) were prepared using CH₂Cl₂. Aromatic guests stock solutions (1 × 10⁻¹ M for benzene and naphthalene; 1×10^{-3} M for anthracene; 3×10^{-1} M for imidazole and 5×10^{-2} M for benzimidazole) were prepared in CH₂Cl₂. Test solutions were prepared by the addition of an appropriate aliquot (0.04- 3.5 mL) of each guest stock into 5mL standard volumetric flask followed by placing 1 mL of stock solution of host 3a /4 and then diluting the solution to 5 mL with CH₂Cl₂. The excitation wavelength was 231 nm and 240 nm for 3a and 4 respectively. The slit bandwidth was 5 nm for both the excitation and emission. The binding characteristics of host 3a and 4 with guest molecules were determined by the emission spectroscopic method. The binding constants were calculated on the basis of the Benesi-Hildebrand equation for a 1:1 stoichiometry molar ratio $(1/\Delta I = 1/\Delta I_{max} + (1/K[G]\Delta I_{max})$. Here, $\Delta I = I - I_{min}$, $\Delta I_{max} = I_0 - I_{min}$, I_0 is the emission intensity of free host 3a or 4, I is the intensity measured with guest, I_{min} is the intensity measured with an excess of guest, K is the binding constant, and [G] is the concentration of guest molecule.

4.2.5. Crystallography

Single crystal X-ray diffraction data were collected on STOE IPDS 2T, Bruker D8 Quest diffractometer or Rigaku Oxford XtaLAB Synergy instruments with Mo-K α radiation (λ = 0.71073 Å). Standard procedures were applied for data reduction, and absorption correction. Structure solutions and refinements were performed with the SHELX program package.³⁰ Non-H atoms were refined anisotropically.

4.2.6. Synthesis of Ligands

$Bis(3-(benzimidazol-1-ylmethyl)-2,4,6-trimethylphenyl) methane (L^1):$

A mixture of powdered KOH (125 mg, 2.11 mmol) and benzimidazole (250 mg, 2.11 mmol) was stirred in DMF (8 mL) at room temperature for 2.5 h. Bis(3-(bromomethyl)-2,4,6-trimethylphenyl)methane (463 mg, 1.05 mmol) was added to the colourless solution and stirred for further 32 h at room temperature under N₂ atmosphere. The reaction was quenched by adding ice water (200 mL). The resulting colourless powder was collected by filtration, washed several times with water, and air-dried. Yield: 61% (331 mg). ¹H NMR (500 MHz,

CDCl₃): δ 7.81 - 7.79 (m, 2H, H⁷), 7.44 - 7.43 (m, 2H, H⁴), 7.35 (s, 2H, H²), 7.32 - 7.29 (m, 4H, H⁵⁻⁶), 6.94 (s, 2H, H⁹), 5.21 (s, 4H, H⁸ –CH₂–), 4.12 (s, 2H, H¹⁰ –CH₂–), 2.26 (s, 6H, –CH₃), 2.19 (s, 6H, –CH₃) and 1.92 (s, 6H, –CH₃). ¹³C NMR (500 MHz, CDCl₃): δ 144.0, 141.7, 137.8, 137.1, 136.8, 135.5, 134.2, 131.4, 128.4, 123.0, 122.4, 120.4, 109.7, 43.9, 32.3, 21.3, 19.8, 16.4. ESI-HRMS (m/z): [L¹ + H]⁺ calcd. for C₃₇H₂₈N₄, 513.3018; found, 513.3031.

$Bis((3-(naphtho[2,3-d]imidazol-1-yl)methyl)-2,4,6-trimethylphenyl)methane(L^2):$

A mixture of powdered KOH (117 mg, 2.081 mmol) and naphtho[2,3-d]imidazole (350 mg, 2.081 mmol) in DMF (10 mL) was stirred at room temperature for 2.5 h. Bis(3-(bromomethyl)-2,4,6-trimethylphenyl)methane (456 mg, 1.041 mmol) was added to the greyish colored solution, and the reaction mixture was stirred for another 32 h. The reaction was quenched by adding water (200 mL), and the resulting grey precipitate was filtered off, washed several times with water, and air-dried. Yield: 78% (500 mg). 1 H NMR (500 MHz, CDCl₃): δ 8.28 (s, 2H, H²), 8.03 - 8.01 (d, J= 7.26 Hz, 2H, H⁸), 7.97 - 7.95 (d, J= 7.54 Hz, 2H, H⁵), 7.82 (s, 2H, H⁹), 7.53 (s, 2H, H⁴), 7.45 - 7.34 (m, 4H, H⁶⁻⁷), 6.96 (s, 2H, H¹¹), 5.25 (s, 4H, H¹⁰ –CH₂–), 4.13 (s, 2H, H¹² –CH₂–), 2.29 (s, 6H, –CH₃), 2.22 (s, 6H, –CH₃) and 1.93 (s, 6H, –CH₃). 13 C NMR (500 MHz, CDCl₃): δ 145.7, 144.2, 137.9, 137.2, 136.9, 135.5, 134.8, 131.5, 130.6, 130.4, 128.7, 128.5, 127.6, 124.7, 123.7, 117.5, 105.5, 44.0, 32.4, 21.4, 19.8, 16.4. ESI-HRMS (m/z): [L² + H]⁺ calcd. for C₄₃H₄₀N₄, 613.3331; found, 613.3331.

4.2.7. Synthesis of Technetium and Rhenium Complexes

Synthesis of fac- $[Tc(CO)_3Cl(L^1)]$ (1):

(NBu₄)[Tc₂(μ -Cl)₃(CO)₆] (9 mg, 0.0126 mmol) was dissolved in THF (0.5 mL) and L¹ (13 mg, 0.0254 mmol) in THF (2 mL) was added. The mixture was heated under reflux for 1 h. The clear solution was filtered. Colorless single crystals were obtained by the slow evaporation of a THF/hexane solution. Yield: 11 mg (0.015 mmol, 60%). ⁹⁹Tc NMR (CDCl₃, ppm): -1172 ($\nu_{I/2} = 788$ Hz). ¹H NMR (400 MHz, CDCl₃): δ 8.52 (s, 1H, H²), 8.21 (s, 1H, H²) 7.54 - 7.46 (d, 3H, H^{4·-5',7'}), 6.94 (s, 4H, H^{4,6',9,9'}), 6.79 (s, 3H, H⁵⁻⁷), 5.49-5.38 (dd, J = 16 Hz, 2H, H^{8'} -CH₂-), 5.08-5.04 (d, J = 16 Hz, 1H, H^{8a}, -CH₂-), 4.74-4.72 (d, J = 8 Hz, 1H, H^{8b}, -CH₂-), 4.10-3.84 (dd, J = 16 -20 Hz, 2H, H¹⁰ -CH₂-), 2.58 (s, 3H, -CH₃), 2.40 (s, 6H, -CH₃), 2.00 (s, 3H, -CH₃), 1.43 (s, 3H, -CH₃).and 0.81 (s, 3H, -CH₃). FT-IR (KBr, cm⁻¹): 2029 (C=O), 1923 (C=O), 1896 (C=O).

Synthesis of fac- $[Tc(CO)_3Cl(L^2)]$ (2):

(NBu₄)[Tc₂(μ-Cl)₃(CO)₆] (9 mg, 0.0126 mmol) was dissolved in CH₂Cl₂ (0.5 mL) and L² (16 mg, 0.0261 mmol) in CH₂Cl₂ (2 mL) was added. The mixture was heated on reflux for 2.5 h. The clear brown solution was filtered. Yellow single crystals deposited by slow evaporation of CH₂Cl₂/methanol solution. The crystals were filtered off and washed with hexane. Yield: 10 mg (0.012 mmol, 46%). ⁹⁹Tc NMR (CD₂Cl₂, ppm): -1165 ($v_{I/2}$ = 1378 Hz). ¹H NMR (400 MHz, CD₂Cl₂): δ 8.74 (s, 2H, H^{2',2}), 8.25-8.01 (m, 4H, H^{4'-5',8'-9'}), 7.70 - 7.56 (m, 4H, H^{4,9,6',7'}), 7.31 - 7.01 (m, 6H, H^{5-8,11,11'}), 5.54-5.09 (m, 4H, H^{10',10} –CH₂–), 4.10-3.82 (dd, J =18 Hz, 2H, H¹² –CH₂–), 2.44 (s, 6H, –CH₃), 2.06 (s, 3H, –CH₃), 1.26 (s, 3H, –CH₃), 0.88 (s, 3H, –CH₃).and 0.60 (s, 3H, –CH₃). FT-IR (KBr, cm⁻¹): 2027(C≡O), 1924 (C≡O), 1894 (C≡O).

Synthesis of fac- $[Re(CO)_3Cl(L^1)]$ (3a):

A mixture of Re(CO)₅Cl (30 mg, 0.083 mmol) and L¹ (43 mg, 0.083 mmol) was dissolved in toluene (10 mL) and heated on reflux for 10 h under an argon atmosphere. Colourless single crystals deposited after slow evaporation of the solvent. Yield: 35 mg (0.043 mmol, 52%). ¹H NMR (500 MHz, CDCl₃): δ 8.83 (s, 1H, H²), 8.30 (s, 1H, H²) 7.60 - 7.50 (d, 3H, H^{4'-5',7'}), 7.06 -6.92 (m, 4H, H^{4,6',9,9'}), 6.72 - 6.61 (d, 3H, H⁵⁻⁷), 5.53 - 5.42 (dd, J = 15 Hz, 2H, H^{8'} -CH₂-), 5.06-5.03 (d, J = 14 Hz, 1H, H^{8a}, -CH₂-), 4.68-4.66 (d, J = 10 Hz, 1H, H^{8b}, -CH₂-), 4.12 - 3.85 (dd, J = 18 Hz, 2H, H¹⁰ -CH₂-), 2.65 (s, 3H, -CH₃), 2.41 (s, 6H, -CH₃), 1.94 (s, 3H, -CH₃), 1.40 (s, 3H, -CH₃) and 0.80 (s, 3H, -CH₃). ¹³C NMR (500 MHz, CDCl₃): δ 196.3, 196.0, 192.8, (1:1:1, CO), 148.7, 143.1, 141.5, 137.3, 137.1, 136.7, 136.1, 134.1, 133.1, 132.3, 131.8, 131.0, 126.3, 124.8, 124.6, 124.0, 123.6, 120.4, 118.2, 111.8, 110.4, 46.0, 43.9, 32.6, 22.1, 21.6, 20.6, 19.2. ATR-IR (v, cm⁻¹): 2015 (C=O), 1901(C=O), 1878(C=O). ESI-HRMS (m/z): [3a + Na]⁺ calcd for C₃₈H₃₆ClN₄O₃Re, 841.1931; found, 841.1932.

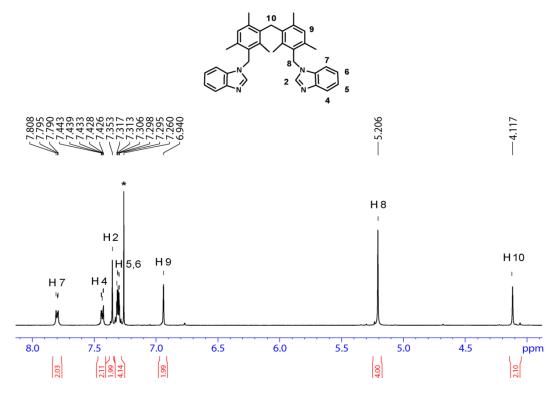
Synthesis of fac- $[Re(CO)_3Br(L^1)]$ (3b):

A mixture of Re(CO)₅Br (50 mg, 0.123 mmol) and L¹ (63 mg, 0.123 mmol) was dissolved in toluene (10 mL) and heated on reflux for 10 h under an inert atmosphere. Colourless single crystals are obtained from the vapour diffusion of acetonitrile and hexane solvents. Yield: 57 mg (0.066 mmol, 54%). ¹H NMR (500 MHz, CDCl₃): δ 8.83 (s, 1H, H²), 8.30 (s, 1H, H²)

7.60 - 7.50 (d, 3H, $H^{4'-5',7'}$), 7.06 -6.92 (m, 4H, $H^{4,6',9,9'}$), 6.72 - 6.61 (d, 3H, H^{5-7}), 5.52 - 5.42 (dd, J = 15 Hz, 2H, $H^{8'}$ – CH_2 –), 5.06-5.03 (d, J = 14 Hz, 1H, H^{8a} , – CH_2 –), 4.68-4.66 (d, J = 10 Hz, 1H, H^{8b} , – CH_2 –), 4.11 - 3.85 (dd, J = 18 Hz, 2H, H^{10} – CH_2 –), 2.65 (s, 3H, – CH_3), 2.41 (s, 6H, – CH_3), 1.93 (s, 3H, – CH_3), 1.39 (s, 3H, – CH_3) and 0.80 (s, 3H, – CH_3). ¹³C NMR (500 MHz, CDCl₃): δ 195.9, 195.7,192.1 (1:1:1, CO), 150.1, 145.9, 141.6, 137.3, 137.2, 136.7, 136.0, 134.1, 133.0, 132.3, 131.8, 131.0, 126.3, 124.9, 124.6, 124.0, 123.6, 120.5, 118.4, 111.9, 110.4, 46.1, 43.9, 32.6, 22.2, 21.6, 20.6, 19.2. ATR-IR (v, cm⁻¹): 2012 (C=O), 1901(C=O), 1874 (C=O). ESI-HRMS (m/z): [3b + Na]⁺ calcd for $C_{38}H_{36}BrN_4O_3Re$, 885.1426; found, 885.1425.

Synthesis of fac- $[Re(CO)_3Br(L^2)]$ (4):

A mixture of Re(CO)₅Br (30 mg, 0.074 mmol) and L² (45 mg, 0.074 mmol) was dissolved in CHCl₃ (20 mL) and heated on reflux for 24 h under an inert atmosphere. The solution was filtered and the solvent was removed under vacuum. The residue was dissolved in CH₂Cl₂ and layered with methanol. Suitable single crystals were obtained for X-ray diffraction. Yield: 52 mg (0.054 mmol, 73%). H NMR (500 MHz, DMSO- d_6): δ 9.39 (s, 1H, H²), 8.72 (s, 1H, H²), 8.36-7.89 (m, 4H, H^{4'-5',8'-9'}), 7.62 (s, merged, 4H, H^{4,9,6',7'}), 7.28 – 6.65 (m, 6H, H^{5-8,11,11'}), 6.00-4.53 (m, 4H, H^{10',10} –CH₂–), 4.01-3.72 (dd, J =17.5 Hz, 2H, H¹² –CH₂–), 2.37-1.84 (s, merged, 12H, –CH₃), 1.33 (s, 3H, –CH₃) and 1.21 (s, 3H, –CH₃). ¹³C NMR (500 MHz, DMSO- d_6): δ 196.1, 192.0 (2:1, CO). ATR IR (v, cm⁻¹): 2014 (C=O), 1904 (C=O), 1875 (C=O). ESI-HRMS (m/z): [4 - H]⁺ calcd for C₄₆H₄₀BrN₄O₃Re, 961.1763; found, 961.2436.


4.3. Results and discussion

4.3.1. Synthesis and characterization of ligands L^1 - L^2 .

Ligands L^1 and L^2 were designed as single building units for assembling mononuclear calix-shaped supramolecules because of two reasons: (i) the ligands contain four hetero(arene) units that are linked *via* three methylene ($-CH_2-$) groups alternatively as (heteroarene) $-CH_2-$ (meta-phenylene) $-CH_2-$ (heteroarene), which is almost the basic structural units in the ring of calix[4]arene, and (ii) the ligands are flexible and have ability to chelate one metal ion using their two terminal heteroarene motifs, thus chelating to metal ion could result in bowl-shaped macrocycles. The ligands were obtained by the reactions of benzimidazole/naphtho[2,3-d]imidazole, bis(3-(bromomethyl)-2,4,6-

trimethylphenyl)methane and KOH in DMF (scheme 4.1).²² The formation of the ligands was confirmed by 1 H NMR spectroscopy. The spectra display single sets of well-resolved resonances. High resolution mass spectra of the ligands show the molecular ion peaks (m/z = 513.3031 for $[L^{1} + H]^{+}$ and 613.3331 for $[L^{2} + H]^{+}$), which match well with the theoretical values.

Scheme 4.1. Synthesis of ligands L^1 - L^2

Figure 4.1. Partial ¹H NMR spectrum of L¹ in CDCl₃.

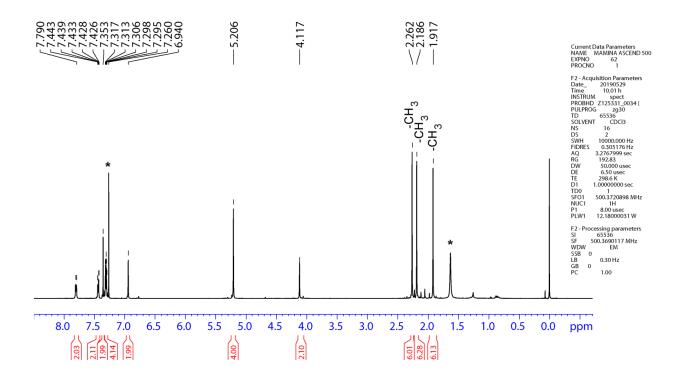
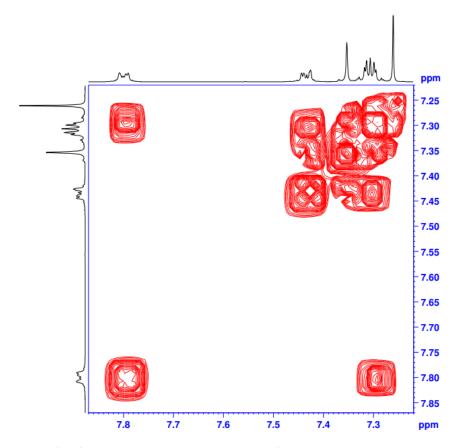
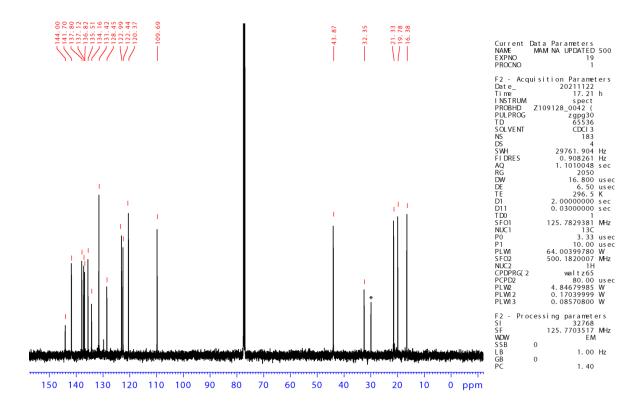




Figure 4.2. ¹H NMR spectrum of L¹ in CDCl₃.

Figure 4.3. Partial ¹H-¹H COSY NMR spectrum of L¹ in CDCl₃.

Figure 4.4. ¹³C NMR spectrum of L¹ in CDCl₃.

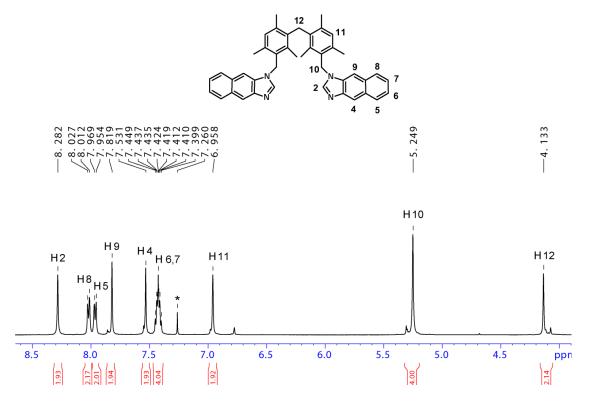
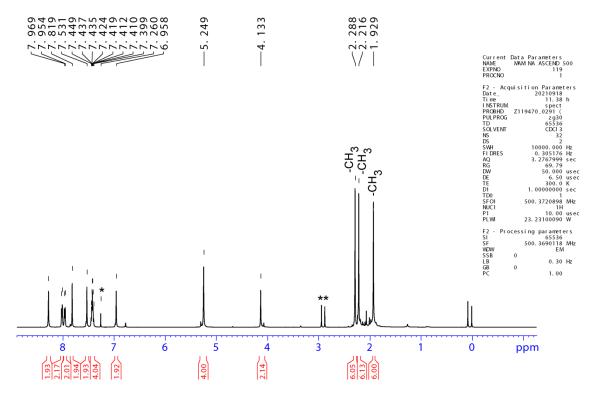
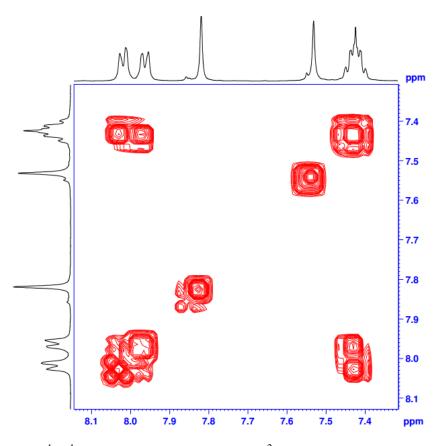
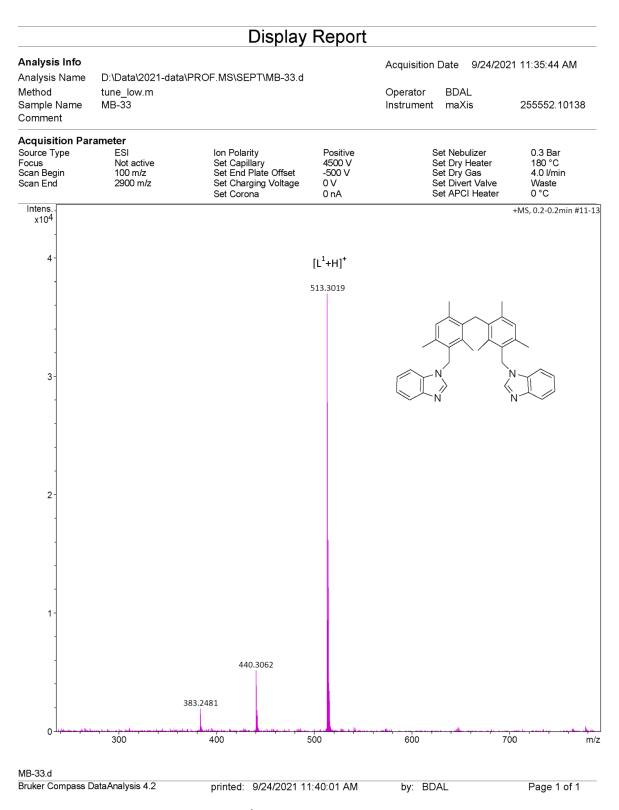


Figure 4.5. Partial ¹H NMR spectrum of L² in CDCl₃.

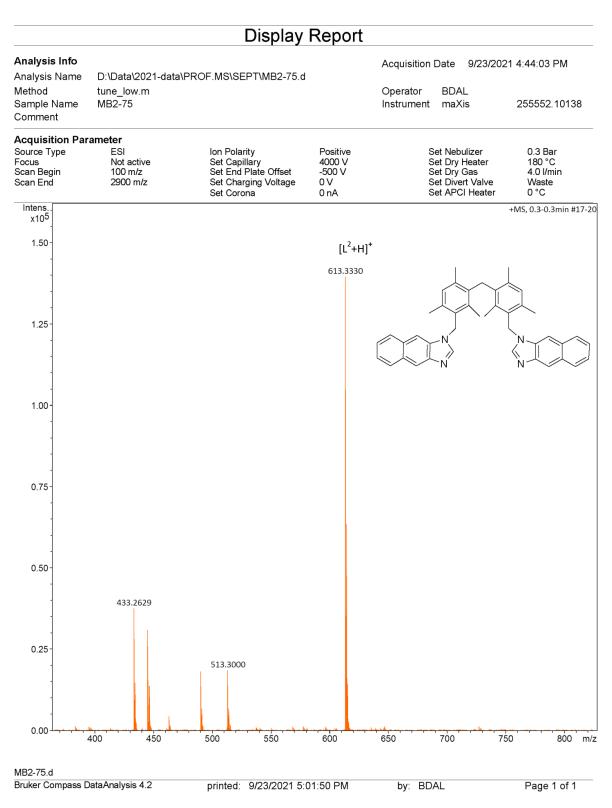

Figure 4.6. ¹H NMR spectrum of L² in CDCl₃.

Figure 4.7. Partial ¹H-¹H COSY NMR spectrum of L² in CDCl₃.

Figure 4.8. ESI mass spectrum of L¹ in positive ion mode.

Figure 4.9. ESI mass spectrum of L^2 in positive ion mode.

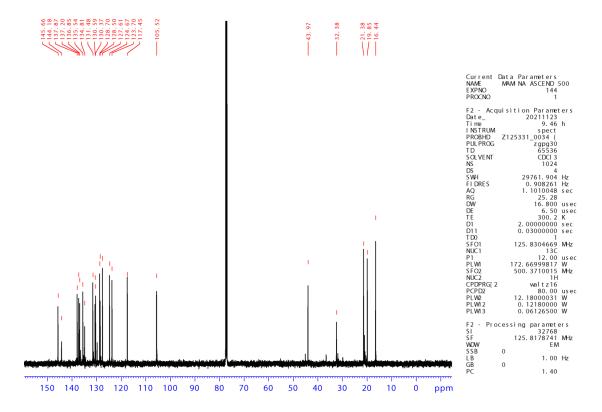


Figure 4.10. ¹³C NMR spectrum of L² in CDCl₃.

4.3.2. Synthesis and characterization of metallocycles 1-4.

The self-assembly of technetium macrocycles $\bf 1$ and $\bf 2$ was achieved by treating $(NBu_4)[Tc_2(\mu-Cl)_3(CO)_6]$ with ligand L^1 or L^2 respectively in THF/CH₂Cl₂ (Scheme 4.2). The metallomacrocycles fac-[Tc(CO)₃Cl(L^n)] ($\bf 1$ and $\bf 2$) were self-assembled via reaction between $(NBu_4)[Tc_2(\mu-Cl)_3(CO)_6]$ and the neutral flexible bidentate nitrogen donors (L^1 for $\bf 1$ and L^2 for $\bf 2$), see Scheme 4.2. Isostructural rhenium macrocycles fac-[Re(CO)₃X(L^n)] ($\bf 3a$, $\bf 3b$ and $\bf 4$) were assembled using [Re(CO)₅X] and the nitrogen donor ligands of Scheme 4.2 (X = Cl, L^n = L^1 for $\bf 3a$, X = Br, L^n = L^1 for $\bf 3b$ and X = Br, L^n = L^2 for $\bf 4$).

The IR spectra of the products display three strong bands in the range ~2029–1894 cm⁻¹, which are characteristic of the fac-[Tc(CO)₃]⁺ unit (2029 or 2027 cm⁻¹ for symmetric inphase CO vibration, 1923 or 1924 cm⁻¹ for asymmetric equatorial CO vibration, and 1896 or 1894 cm⁻¹ for symmetric out of-phase CO vibration). The ⁹⁹Tc-NMR spectra of the macrocycles show intense upfield signals (–1172 ppm, $\Delta v_{1/2} = 788$ Hz for 1, -1165 ppm, $\Delta v_{1/2} = 1378$ Hz for 2), compared to the resonance of the starting material (NBu₄)[Tc₂(μ -Cl)₃(CO)₆] at –947 ppm.

Scheme 4.2. Synthesis of technetium and rhenium core-based supramolecules.

This is typical for the coordination of N donor ligands to the Tc core.¹⁷ The ¹H NMR spectrum of **1** in CDCl₃ displays well-separated slightly broad, but not well-resolved resonances for all arene protons, whereas the ¹H resonances of the arene and heteroarene motifs of complex **2** are broad resulting in a merged pattern. On the other hand, the protons of the methylene motifs (C-C H_2 -C) show two well-resolved doublets with a coupling constant of 16-19 Hz, while the resonance of the N-bound methylene group (N-C H_2 -C) appears as four doublets. The data suggest that the complexes adopt cyclic structures and the aromatic frameworks are flexible (moving back and forth) in solution. Further, it indicates the asymmetrical arrangement of all four arene motifs that causes a duplication of the proton signals as compared to the free ligands. The fac-[Re(CO)₃X] core-based macrocycles **3a**, **3b** and **4** were assembled by the reactions of [Re(CO)₅X] (**3a**, X = Cl; **3b**, X = Br and **4**, X = Br) with L¹ or L² in toluene (C₇H₈) or CHCl₃ (Equation 1). The complexes are air and moisture stable and soluble in polar organic solvents. The ¹H NMR patterns of **3** and **4** are similar to those of **1** and **2**. The arene framework in complex **4** exhibits the highest degree of

fluxionality among all other complexes of this study. The ESI-MS spectra of the Re macrocycles display their respective molecular ion peaks (m/z = 841.1932 for $[3\mathbf{a} + \mathrm{Na}]^+$, m/z = 885.1425 for $[3\mathbf{b} + \mathrm{Na}]^+$, m/z = 961.2436 for $[4 - \mathrm{H}]^+$) with experimental isotopic distribution patterns that match well with the theoretical values.

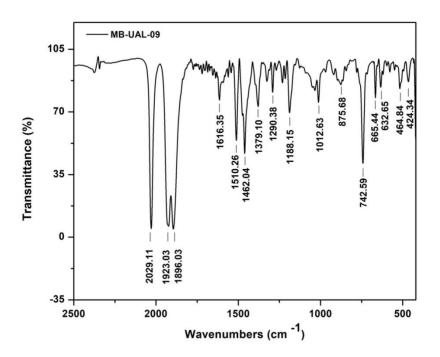


Figure 4.11. FT-IR (KBr) spectrum of 1.

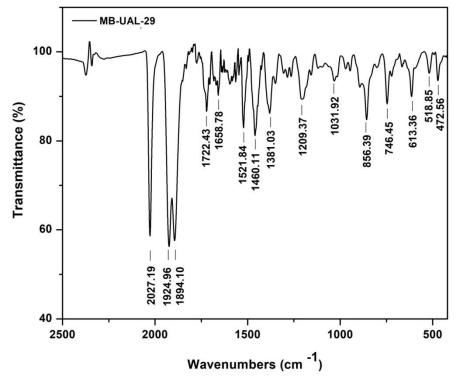


Figure 4.12. FT-IR (KBr) spectrum of 2.

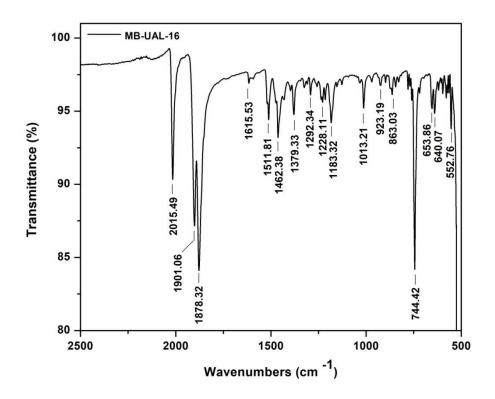


Figure 4.13. ATR-IR spectrum of 3a.

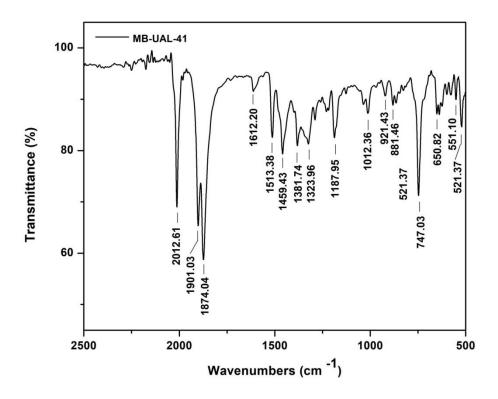


Figure 4.14. ATR-IR spectrum of 3b.

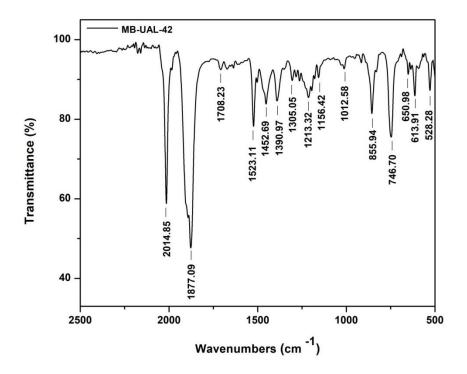


Figure 4.15. ATR-IR spectrum of 4.

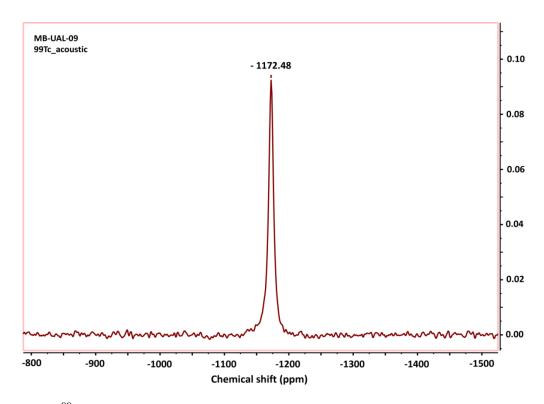


Figure 4.16. 99 Tc NMR spectrum of 1 in CDCl₃.

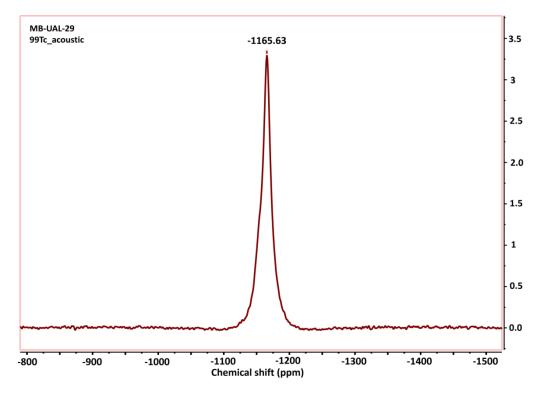


Figure 4.17. ⁹⁹Tc NMR spectrum of 2 in CD₂Cl₂.

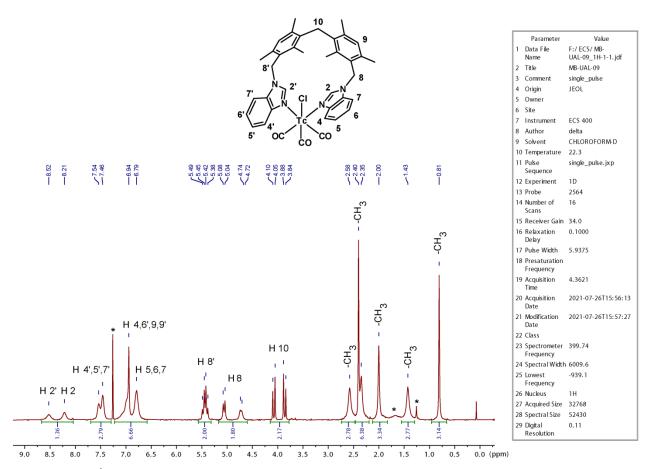


Figure 4.18. ¹H NMR spectrum of 1 in CDCl₃.

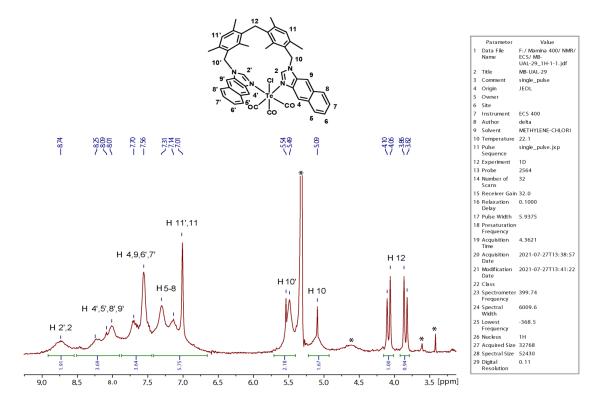


Figure 4.19. Partial ¹H NMR spectrum of 2 in CD₂Cl₂.

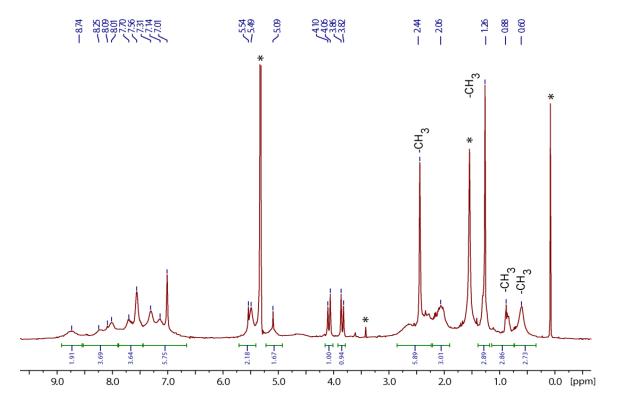


Figure 4.20. ¹H NMR spectrum of 2 in CD₂Cl₂.

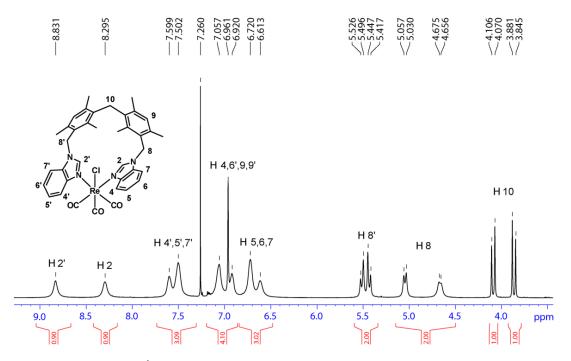


Figure 4.21. Partial ¹H NMR spectrum of 3a in CDCl₃.

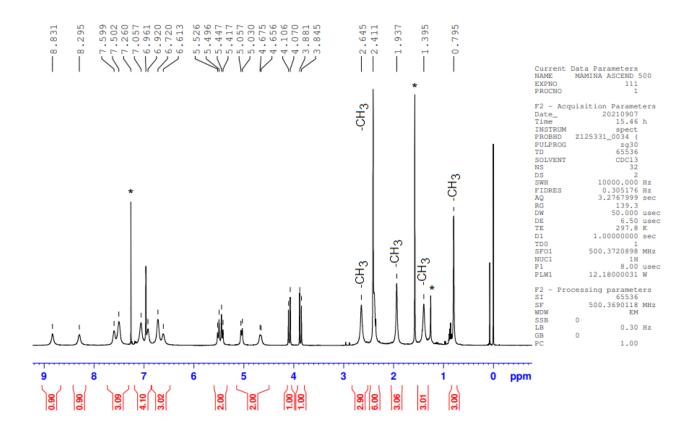


Figure 4.22. ¹H NMR spectrum of 3a in CDCl₃.

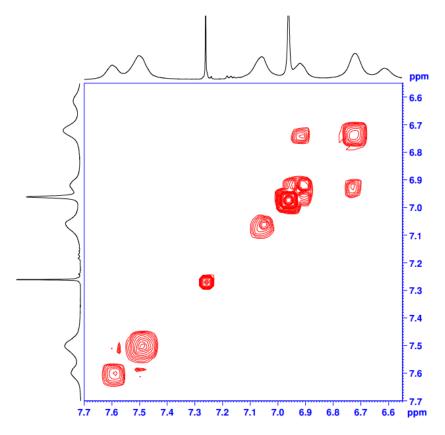


Figure 4.23. Partial ¹H-¹H COSY NMR spectrum of 3a in CDCl₃.

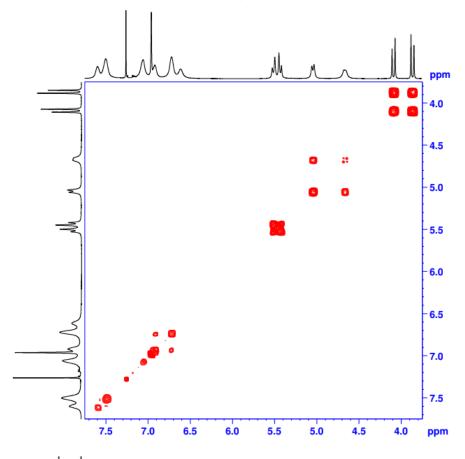


Figure 4.24. Partial ¹H-¹H COSY NMR spectrum of 3a in CDCl₃.

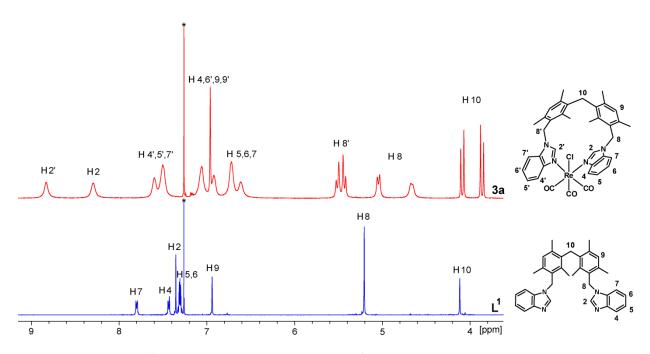


Figure 4.25. Partial ¹H NMR spectra of free ligand L¹, and 3a in CDCl₃.

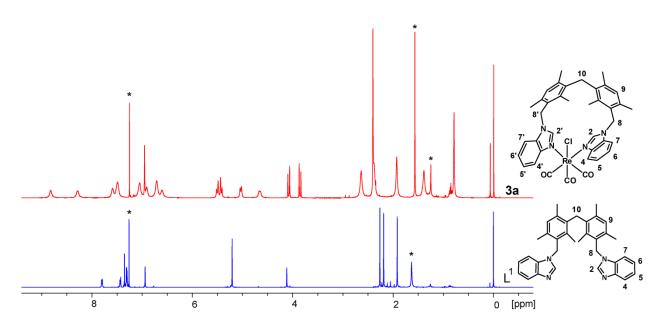


Figure 4.26. ¹H NMR spectra of free ligand L¹, and 3a in CDCl₃.

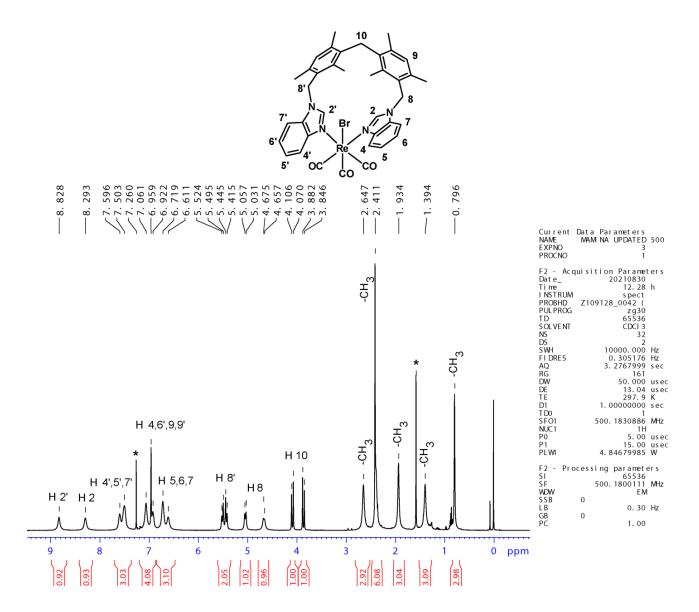


Figure 4.27. ¹H NMR spectrum of 3b in CDCl₃.

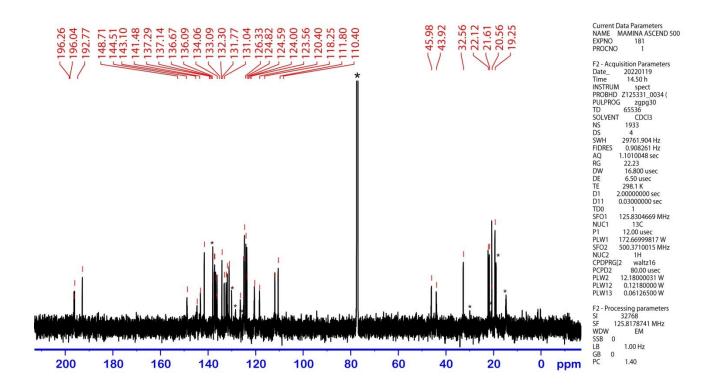


Figure 4.28. ¹³C NMR spectrum of 3a in CDCl₃.

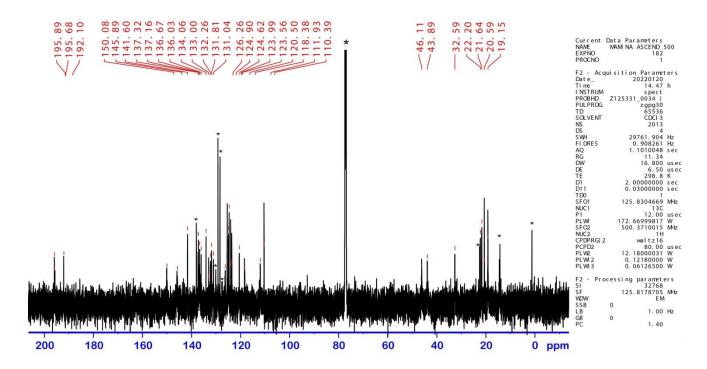


Figure 4.29. ¹³C NMR spectrum of 3b in CDCl₃.

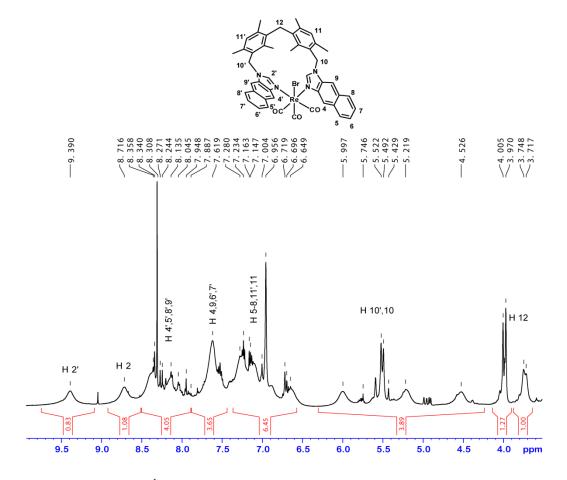


Figure 4.30. Partial ¹H NMR spectrum of 4 in DMSO- d_6 .

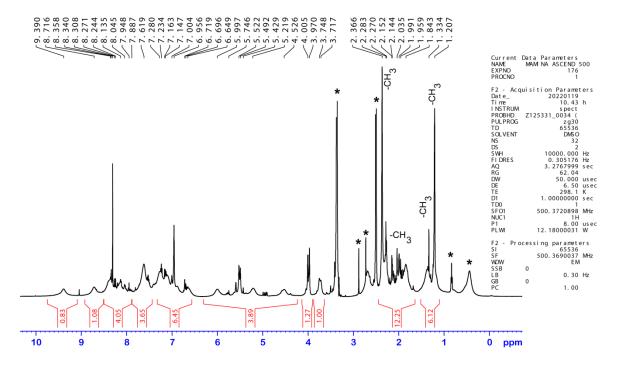


Figure 4.31. ¹H NMR spectrum of 4 in DMSO- d_6 .

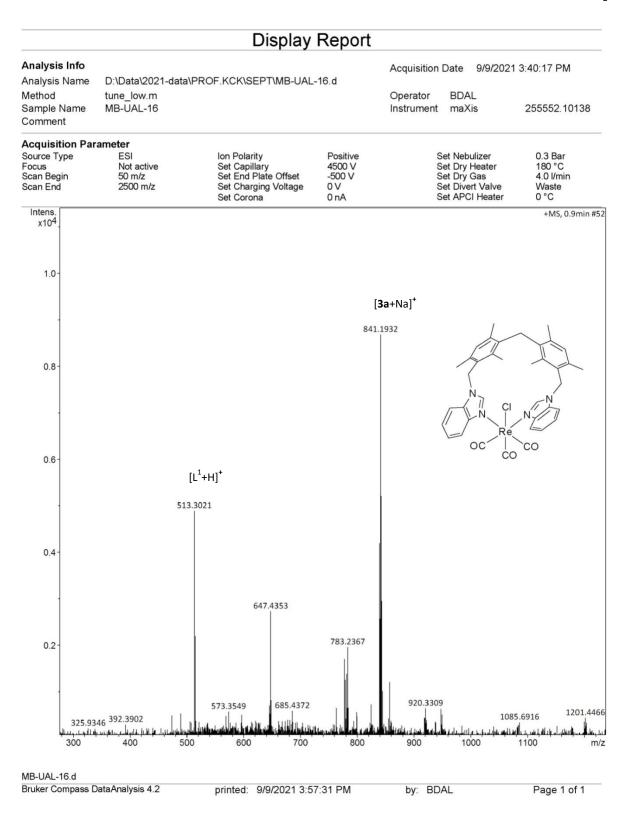
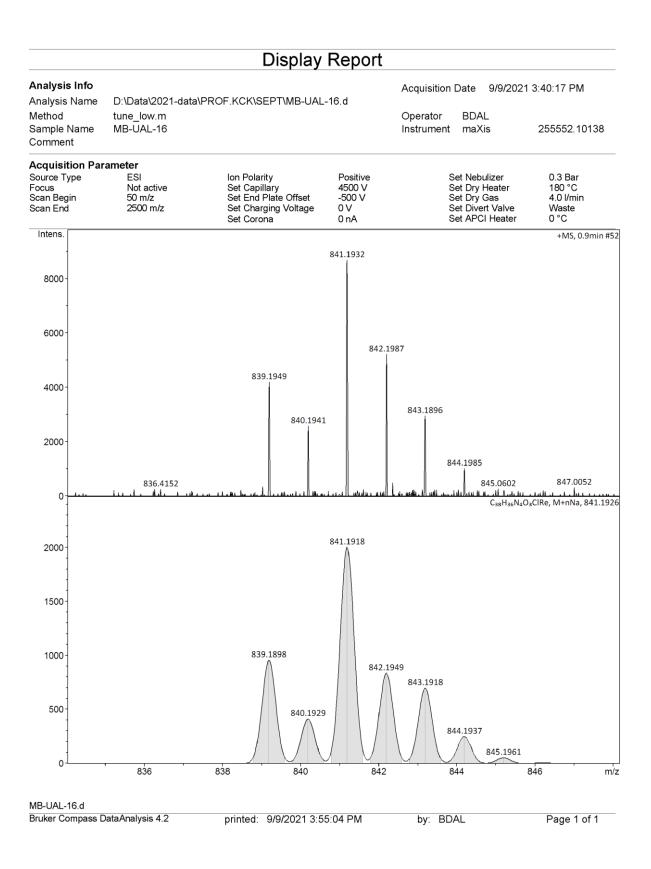
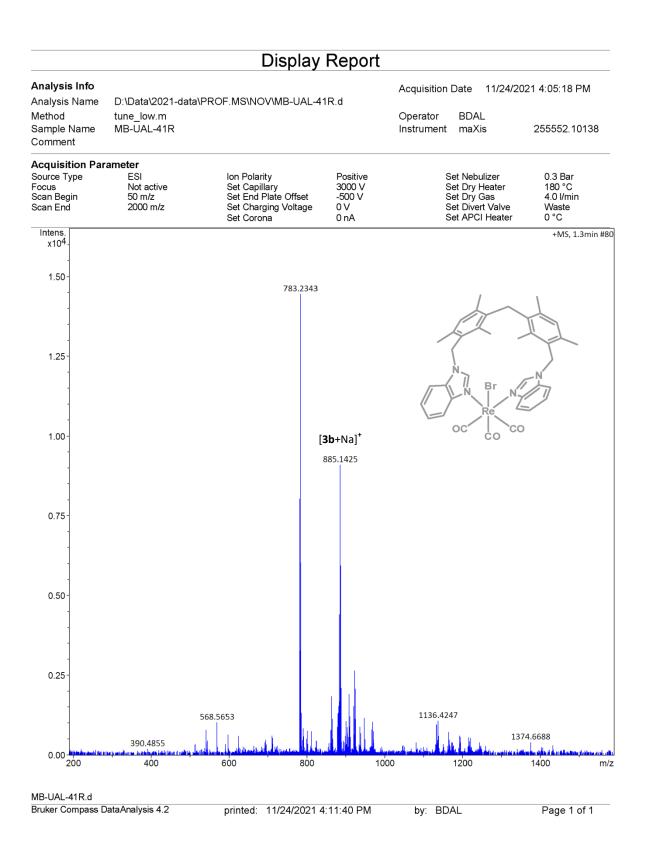
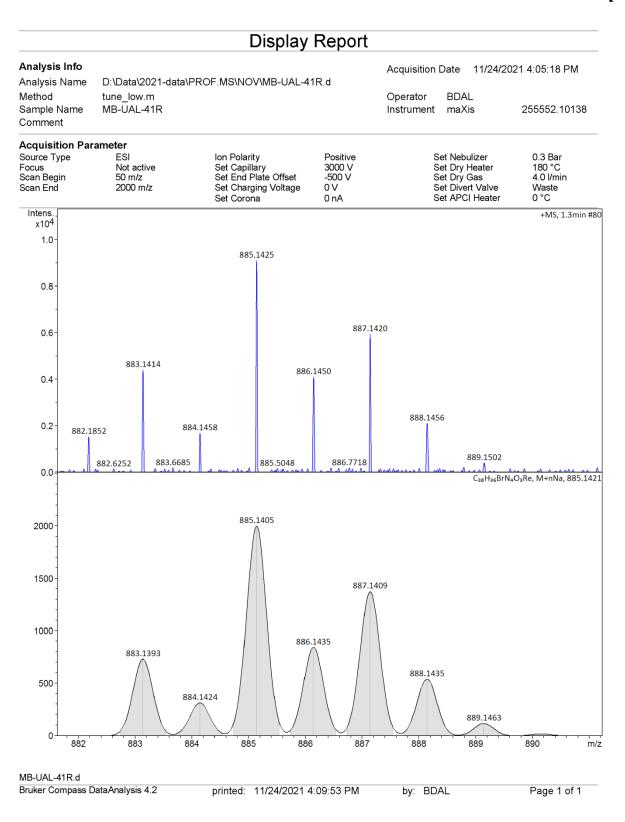
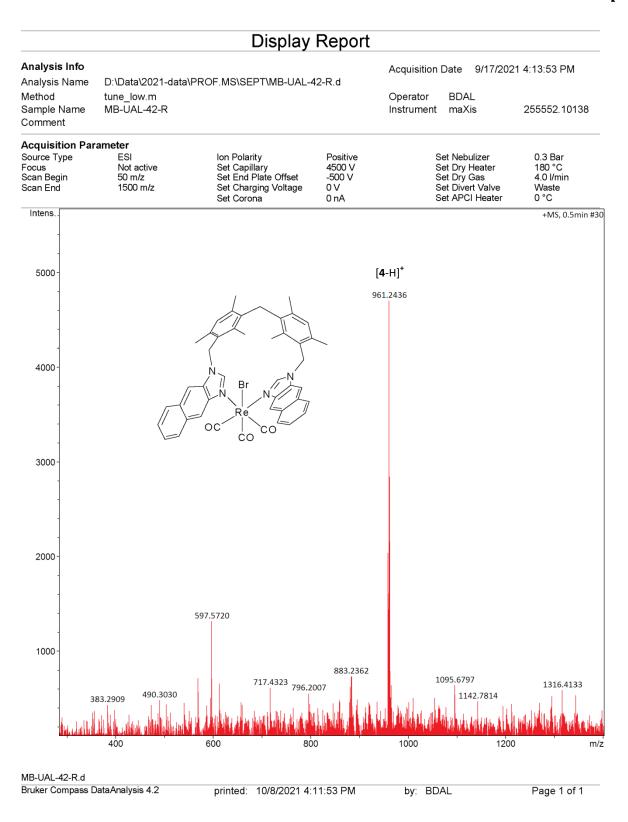



Figure 4.32. ESI mass spectrum of 3a in positive ion mode.

Figure 4.33. Experimental (top) and calculated (bottom) ESI mass spectra of $[3a + Na]^+$ in positive ion mode.

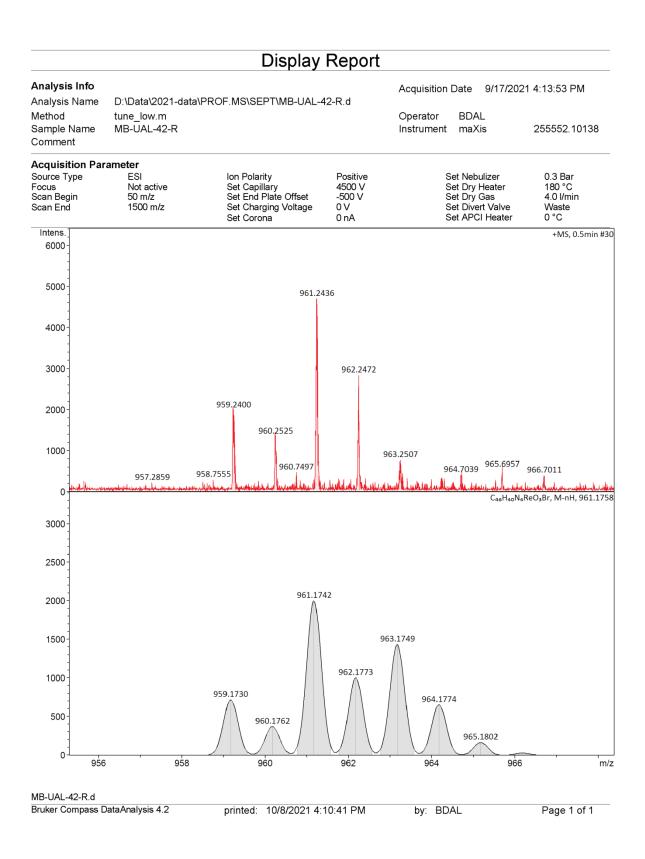

Figure 4.34. ESI mass spectrum of 3b in positive ion mode.

Figure 4.35. Experimental (top) and calculated (bottom) ESI mass spectra of $[3b + Na]^+$ in positive ion mode.

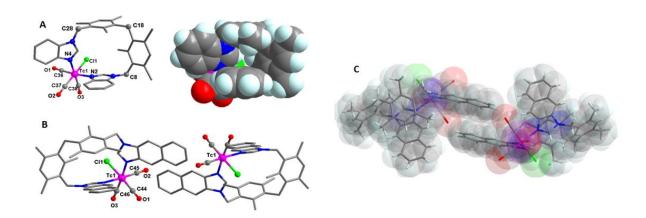

Figure 4.36. ESI mass spectrum of **4** in positive ion mode.

Figure 4.37. Experimental (top) and calculated (bottom) ESI mass spectra of [4 - H]⁺ in positive ion mode.

4.3.3. Molecular structure of metallacycles 1-4.

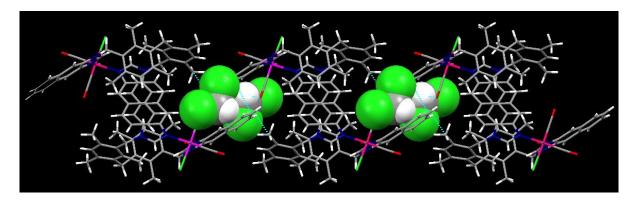
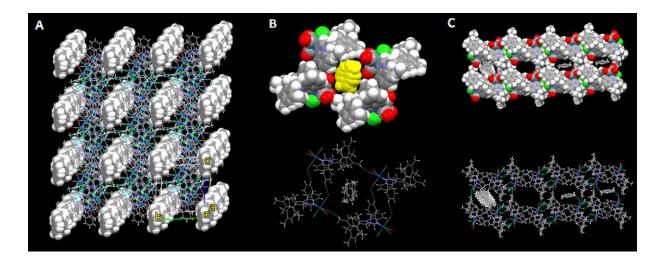

The molecular structures of **1** and **2** are unambiguously confirmed by X-ray diffraction analysis and adopt a bowl-shaped structure similar to calix[4]arene (Figure 4.38).³² In the calix-like cyclic structure, the technetium atom can be considered as one of the methylene units. Due to the syn, syn, anti, syn/syn, syn, syn, syn arrangement of four arene units with respect to each other, **1** adopts a partial-cone conformation, whereas **2** takes a cone conformation. One of the mesitylene motifs in **1** is arranged in such a way that two methyl units are directed below the plane, generated by the four corner atoms of the cycle, i.e., Tc1···C28···C18···C8.

Figure 4.38. Molecular structures of technetium supramolecules. A: Stick and space-filling representations of **1**. B and C: Arrangement of two neighboring molecules in the crystal structure of **2**. Hydrogen atoms and solvent molecules are removed for clarity in stick representation.


The oppositely arranged pair of arene motifs, i.e., benzimidazolyl and mesitylene, is almost parallel (dihedral angle = 12.6°), and another arene and heteroarene pair is arranged away from each other (dihedral angle = 74° or 106°). Similar to **1**, one of the oppositely arranged arene pairs in **2** come close to each other (dihedral angle = 31°), whereas the other pair is flattened with respect to each other (dihedral angle = 45° or 135°). The crystal structures of **1** and **2** are stabilized by various types of intermolecular non-covalent interactions [(C–H··· π , N–C H_2 –C/phenylene(H)···Cl–Tc, (–C H_3)H···N–Tc for **1**, C–H··· π , π ··· π , CHCl₃(H)···O≡C–Re

for 2)]. Particularly in the solid-state crystal structure of 2, two neighbouring molecules partially occupy each other's internal cavity using their naphthoimidazolyl arm to form a non-covalent dimer, which is stabilized by offset parallel displaced $\pi \cdots \pi$ interactions (~3.385 Å) between parallelly arranged naphthoimidazolyl motifs. The CH₂Cl₂ solvent molecules occupy the lattice voids in the crystal structure of 2.

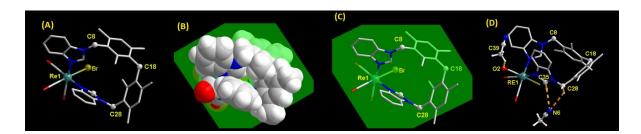


Figure 4.39. Partial packing diagram of **2** (capped stick representation) with CH₂Cl₂ solvent molecules (space-filling model) along b-axis.

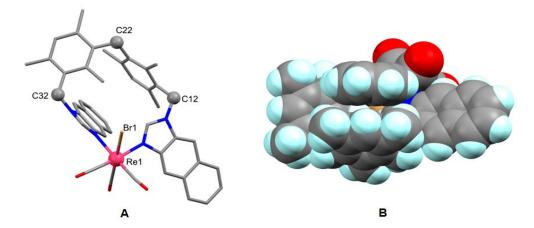
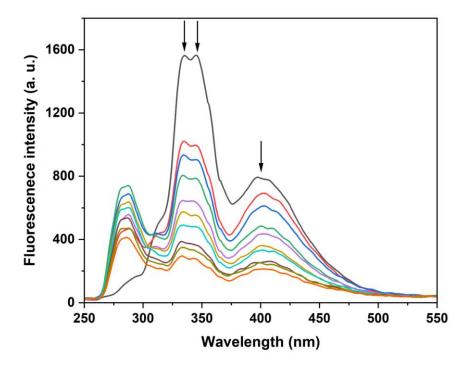
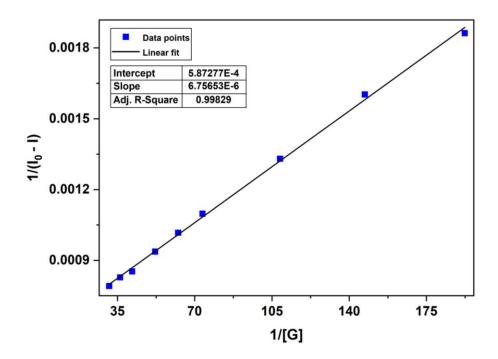
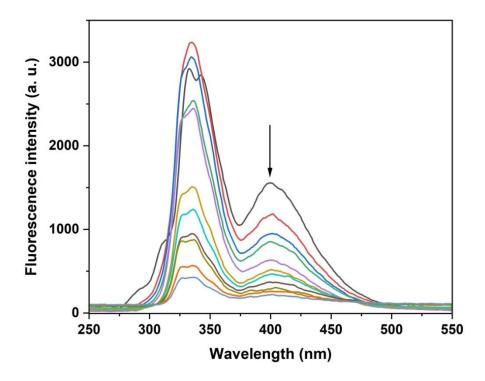

The molecular structures of the rhenium-based macrocycles 3a, 3b and 4 are similar to those of 1 and 2, respectively. Complex 3a crystallized with solvent toluene molecules. In the solid-state structure of 3a, the macrocycles interact with each other via various types of intermolecular non-covalent interactions, which result in a three-dimensional network structure with a one-dimensional channel along the a axis. In particular, four of the macrocycles interact with each other through non-classical H-bonding interactions (C(H)···O=C-Re; 3.432, Å, $\theta = 160^{\circ}$, 3.304 Å, $\theta = 128^{\circ}$) resulting in a lattice cavity, in which the disordered toluene sits perfectly. The disordered toluene molecules are arranged in a helical structure that is stabilized through edge-to-face $C-H\cdots\pi$ interactions. The toluene molecules reside in the 1D column and interact with the metallocycle via non-classical hydrogen bonding interactions C-H···O \equiv C-Re (~2.580 Å, θ = 135°) (Figure 4.40). Single crystals of 3b were obtained from acetonitrile. The molecular structure of 3b is similar to that of 3a. In the crystal structure, each molecule of 3b is surrounded by two CH₃CN molecules that are in contact with the outside wall of the cyclic framework via H-bonding interactions (C35–H···N6, ~2.586 Å, θ ~130°, C28–H···N6, ~2.731 Å, θ ~135°, and C39–H···O2, ~2.704 Å, $\theta \sim 119^{\circ}$).

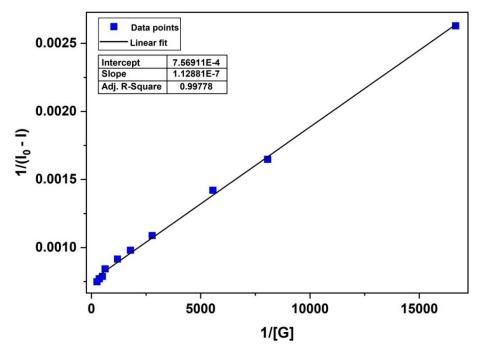
Figure 4.40. (A) Partial packing diagram of **3a** showing a 3D network structure with a one-dimensional cavity, which is occupied by toluene solvent molecules (space-filling view). (B) Space filling and wireframe structures showing how the disordered toluene sits perfectly in the lattice cavity, created by four adjacent molecules in "A" (C) Packing of one layered structure of macrocycles in "A" showing four intermolecular cavities with and without solvent molecules (space filling and wireframe view).

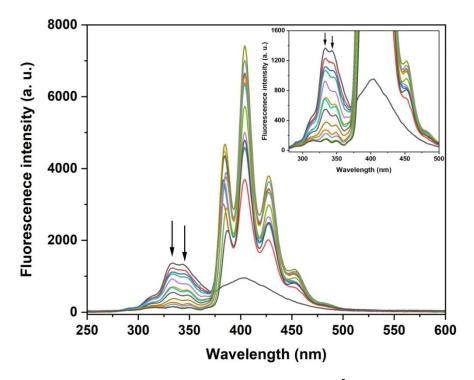

Figure 4.41. (A) Molecular structure of **3b** without hydrogen atoms and solvent molecules. (B-C) Space-filling and stick views of **3b** showing plane (green) generated through four corner atoms Re1···C8···C18···C28. (D) Two CH₃CN solvent molecules contact with framework of **3b** (C35–H···N6, ~2.586 Å, θ ~130°, C28–H···N6, ~2.731 Å, θ ~135°, and C39–H···O2, ~2.704 Å, θ ~119°).

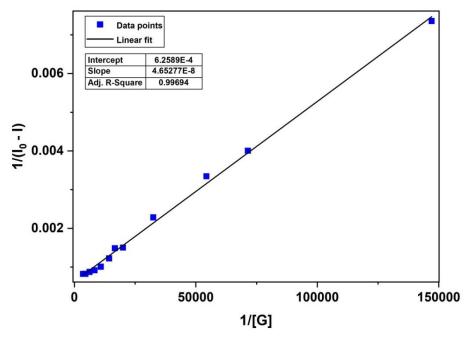

Figure 4.42. Molecular structure of **4**, A: Capped stick representation (Hydrogen atoms and solvent molecules are removed for clarity), B: Space-filling model (C= grey, N = blue, O = red, Br = brown, H = light blue, Re = deep pink).

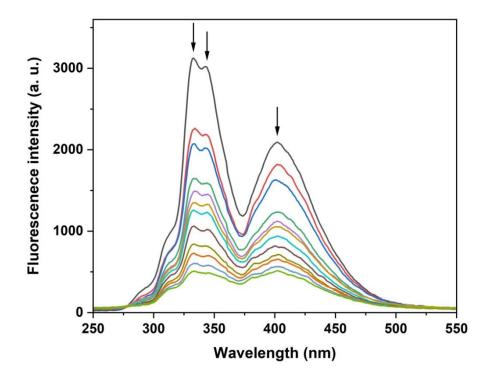
4.4. Binding studies of metallacalix[4] arenes 3a and 4 with polyaromatic hydrocarbons and imidazole derivative guest molecules.

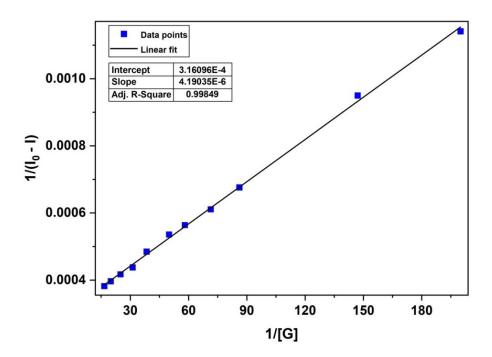

In order to study the host guest interaction, preliminary experiments were performed on host 3a with the potential guest molecules benzene, naphthalene, anthracene, imidazole, and benzimidazole. In the absence of guest molecule, complex 3a displayed a structured emission $(\lambda_{max} = 333, 344, \text{ and } 400 \text{ nm})$ upon excitation at 231 nm in CH₂Cl₂ at room temperature. The emission maxima of 3a quenched upon the addition of an appropriate aliquot of the guest molecules, which suggests host-guest interactions between 3a and the guest molecules. The emission pattern of guest molecules is partially overlapping with the emission profile of 3a in the range of 300-375 nm for naphthalene, and 375-500 nm for both anthracene and imidazole. Therefore, the emission intensities at 400 nm for naphthalene and 333 nm for both anthracene and imidazole were chosen for the determination of the binding constant. In contrast, the emission maxima of 3a are randomly quenched and enhanced during the addition of benzimidazole guest molecule, suggesting a dynamic association and dissociation of the formed host-guest complex. The binding constant (K) were calculated using Benesi-Hildebrand method, and a linear fit plot of $1/(\Delta I)$ vs $[G]^{-1}$ indicates the formation of 1:1 host:guest complex.³³ The corresponding binding constant is 8.7×10^1 M⁻¹ for benzene, $6.7 \times$ $10^3 \,\mathrm{M}^{-1}$ for naphthalene, $1.35 \times 10^4 \,\mathrm{M}^{-1}$ for athracene, and $7.5 \times 10^1 \,\mathrm{M}^{-1}$ for imidazole.


Figure 4.43. Changes in the emission spectra of **3a** $(2\times10^{-5} \text{ M}, \lambda_{exc} = 231 \text{ nm})$ with the addition of benzene in DCM. The arrow indicates the quenching of the emission intensity by addition of an appropriate aliquot of benzene.


Figure 4.44. Benesi-Hildebrand plot for the emission quenching of host **3a** (at 334 nm) with an increase in the concentration of benzene in DCM.


Figure 4.45. Changes in the emission spectra of **3a** (2×10^{-6} M, $\lambda_{exc} = 231$ nm) with the addition of naphthalene in DCM. The arrow indicates the quenching of the emission intensity by addition of an appropriate aliquot of naphthalene.


Figure 4.46. Benesi-Hildebrand plot for the emission quenching of host **3a** (at 400 nm) with an increase in the concentration of naphthalene in DCM.


Figure 4.47. Changes in the emission spectra of **3a** $(2\times10^{-5} \text{ M}, \lambda_{exc} = 231 \text{ nm})$ with the addition of anthracene in DCM. The arrows indicate the quenching of the emission intensity by addition of an appropriate aliquot of anthracene.

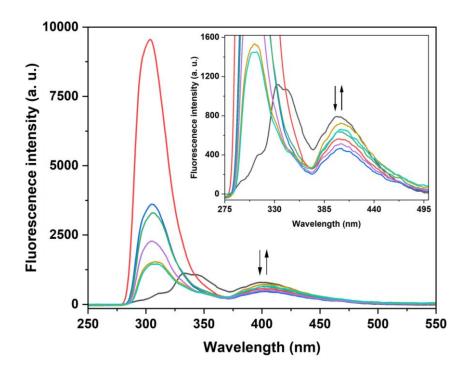

Figure 4.48. Benesi-Hildebrand plot for the emission quenching of host **3a** (at 333 nm) with an increase in the concentration of anthracene in DCM.

Figure 4.49. Changes in the emission spectra of **3a** $(2\times10^{-6} \text{ M}, \lambda_{exc} = 231 \text{ nm})$ with the addition of imidazole in DCM. The arrows indicate the quenching of the emission intensity by addition of an appropriate aliquot of imidazole.

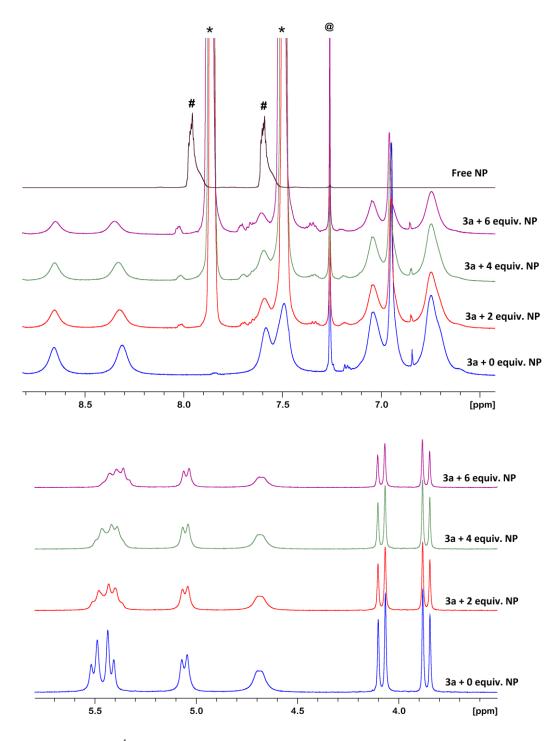


Figure 4.50. Benesi-Hildebrand plot for the emission quenching of host **3a** (at 333 nm) with an increase in the concentration of imidazole in DCM.

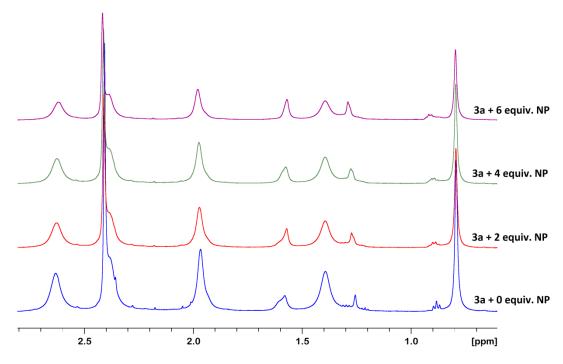
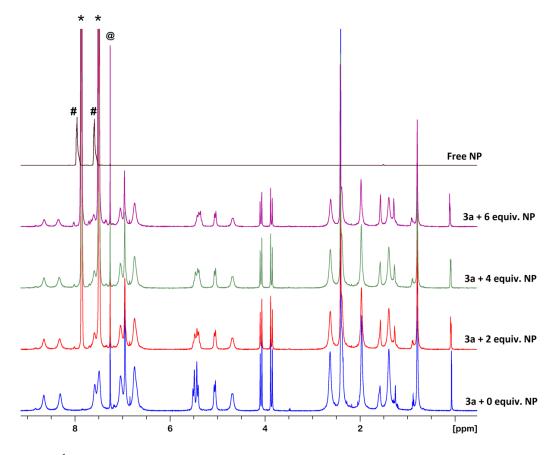
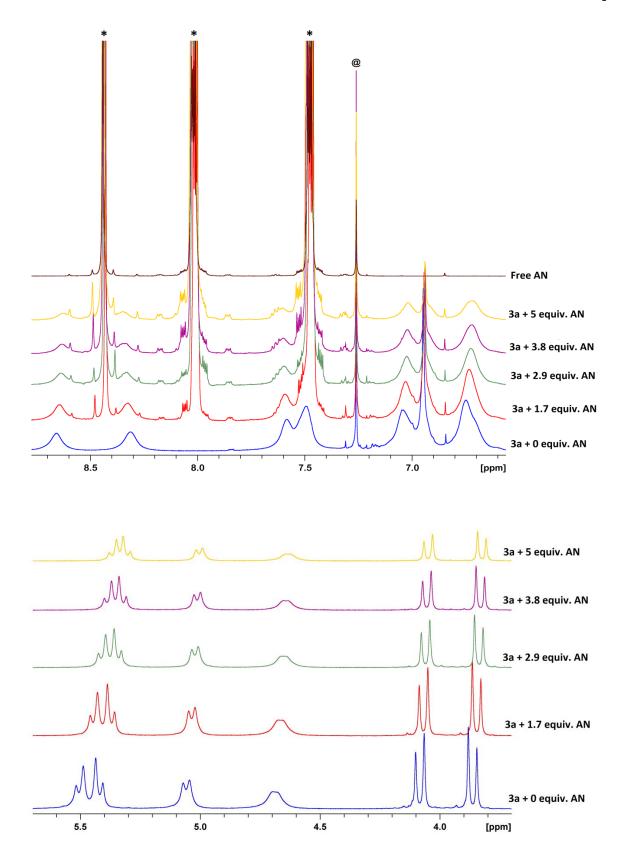
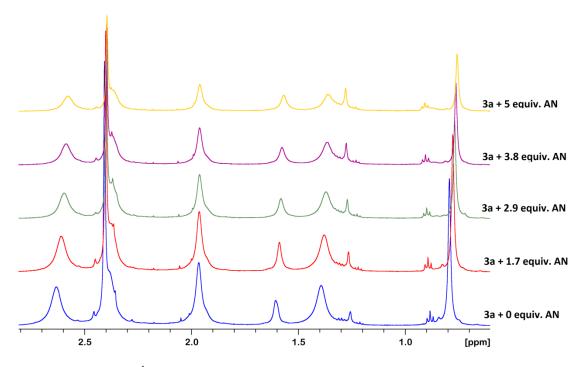
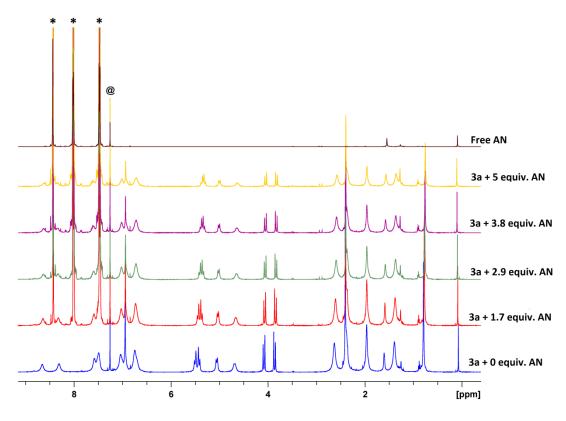


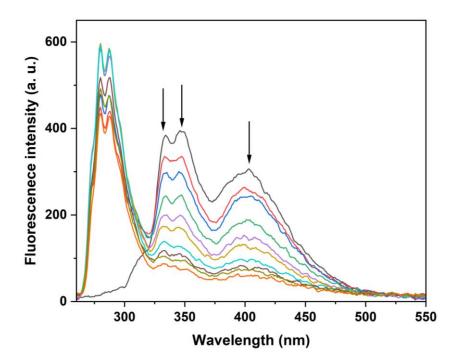
Figure 4.51. Changes in the emission spectra of **3a** $(2\times10^{-5} \text{ M}, \lambda_{\text{exc}} = 231 \text{ nm})$ with the addition of benzimidazole in DCM. The arrows indicate the quenching and enhancement of the emission intensity randomly by addition of an appropriate aliquot of benzimidazole.

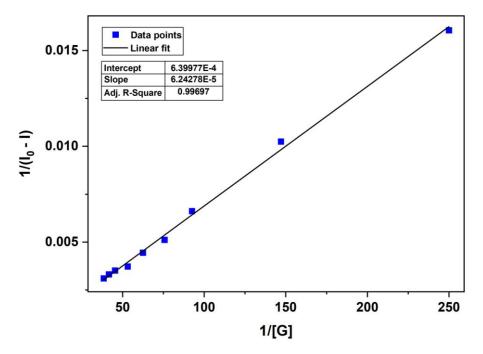

The host-guest behaviour of **3a** with naphthalene and anthracene were studied using ¹H NMR studies in CDCl₃ to understand how the guests interact with the macrocycle. The protons of naphthalene were shifted upfield, whereas the protons of the aromatic unit and part of the aliphatic protons of 3a were shifted downfield relative to those of the free naphthalene and the free macrocycle. No additional peaks for either the naphthalene or the complex were observed. This data suggests that the cavity of macrocycle 3a is suitable for accommodating naphthalene guest. However, there was dynamic equilibrium between 3a and naphthalene i.e., the host-guest complex assembles and disassembles in the solution, on the NMR time scale. 34 In the case of anthracene, the protons of 3a were shifted upfield noticeably, whereas the protons of the anthracene remain unaffected. These data suggest that the anthracene contacts with the macrocycle by sitting on the top of the rim of the macrocycle.³⁵ The higher binding constant of anthracene with macrocycle 3a may be due to the cooperative $C-H\cdots\pi$ contacts between these molecules. The host-guest binding studies of 4 with benzene (K = 1.0 $\times 10^{1} \,\mathrm{M}^{-1}$), naphthalene ($K = 7.4 \times 10^{2} \,\mathrm{M}^{-1}$), anthracene ($K = 1.9 \times 10^{4} \,\mathrm{M}^{-1}$), imidazole ($K = 1.9 \times 10^{4} \,\mathrm{M}^{-1}$) $0.3 \times 10^1 \text{ M}^{-1}$), and benzimidazole ($K = 0.4 \times 10^1 \text{ M}^{-1}$) were studied by using the emission titration method. The higher binding constant of 3a with naphthalene than 4 with naphthalene may be due to the compact cavity of **3a**, which maximizes the non-covalent interactions between the host-guest systems effectively.

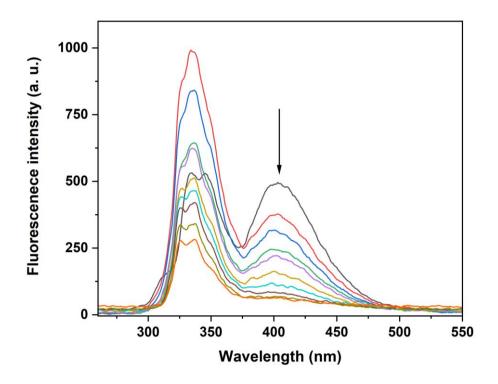

Figure 4.52. Partial ¹H NMR spectra from the titration of **3a** with naphthalene (top = aromatic; bottom = aliphatic region) in CDCl₃ (# = free naphthalene; *= bound naphthalene; @ = CDCl₃).

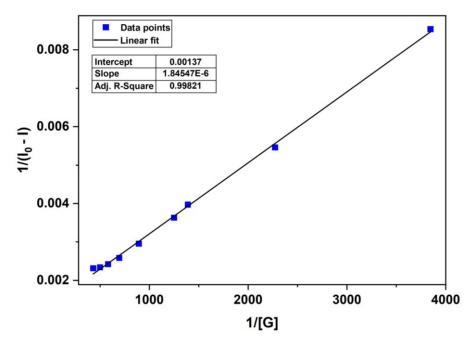

Figure 4.53. Partial ¹H NMR spectra (aliphatic region) from the titration of **3a** with naphthalene in CDCl₃.


Figure 4.54. ¹H NMR spectra from the titration of **3a** with naphthalene in CDCl₃ (# = free naphthalene; *= bound naphthalene; @ = CDCl₃).


Figure 4.55. Partial 1 H NMR spectra from the titration of **3a** with anthracene (top = aromatic; bottom = aliphatic region) in CDCl₃ (*= anthracene; @ = CDCl₃). The minor peak signals are from the free anthracene.


Figure 4.56. Partial ¹H NMR spectra (aliphatic region) from the titration of **3a** with anthracene in CDCl₃.


Figure 4.57. ¹H NMR spectra from the titration of **3a** with anthracene in CDCl₃ (*= anthracene; @ = CDCl₃).


Figure 4.58. Changes in the emission spectra of **4** (2×10^{-6} M, $\lambda_{exc} = 240$ nm) with the addition of benzene in DCM. The arrow indicates the quenching of the emission intensity by addition of an appropriate aliquot of benzene.

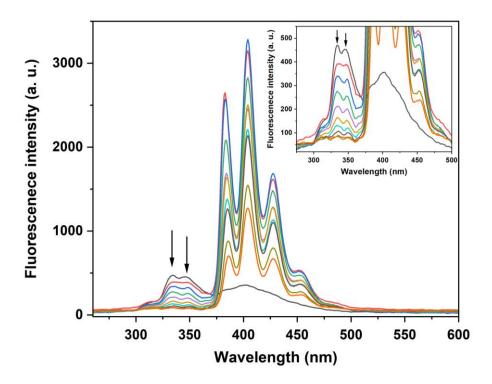
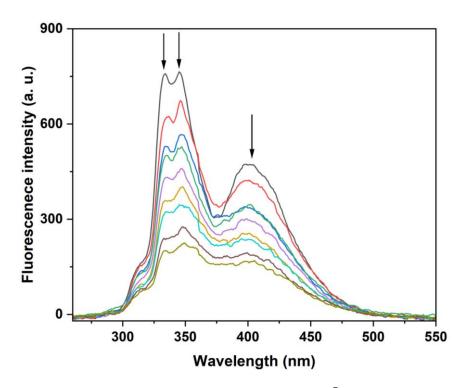
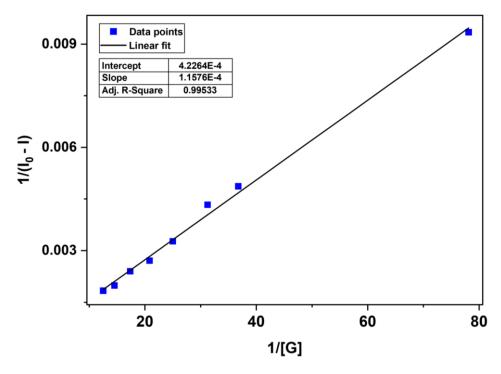
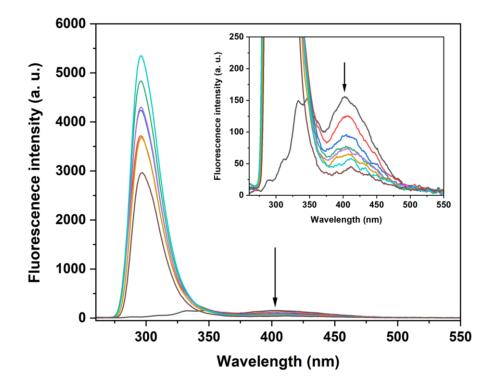

Figure 4.59. Benesi-Hildebrand plot for the emission quenching of host **4** (at 346 nm) with an increase in the concentration of benzene in DCM.


Figure 4.60. Changes in the emission spectra of **4** (2×10^{-6} M, $\lambda_{exc} = 240$ nm) with the addition of naphthalene in DCM. The arrow indicates the quenching of the emission intensity by addition of an appropriate aliquot of naphthalene.


Figure 4.61. Benesi-Hildebrand plot for the emission quenching of host **4** (at 403 nm) with an increase in the concentration of naphthalene in DCM.


Figure 4.62. Changes in the emission spectra of **4** (2×10^{-6} M, $\lambda_{exc} = 240$ nm) with the addition of anthracene in DCM. The arrows indicate the quenching of the emission intensity by addition of an appropriate aliquot of anthracene.


Figure 4.63. Benesi-Hildebrand plot for the emission quenching of host **4** (at 346 nm) with an increase in the concentration of anthracene in DCM.

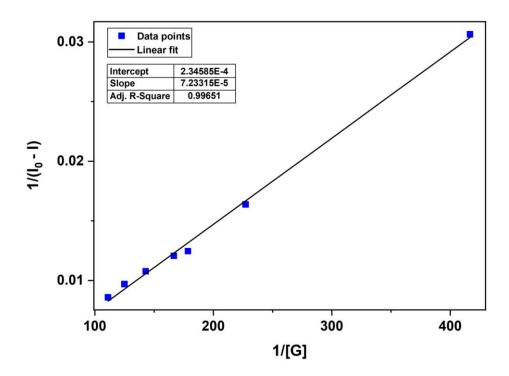

Figure 4.64. Changes in the emission spectra of **4** (2×10^{-7} M, $\lambda_{exc} = 240$ nm) with the addition of imidazole in DCM. The arrows indicate the quenching of the emission intensity by addition of an appropriate aliquot of imidazole.

Figure 4.65. Benesi-Hildebrand plot for the emission quenching of host **4** (at 344 nm) with an increase in the concentration of imidazole in DCM.

Figure 4.66. Changes in the emission spectra of **4** (2×10^{-5} M, $\lambda_{exc} = 240$ nm) with the addition of benzimidazole in DCM. The arrows indicate the quenching and enhancement of the emission intensity randomly by addition of an appropriate aliquot of benzimidazole.

Figure 4.67. Benesi-Hildebrand plot for the emission quenching of host **4** (at 403 nm) with an increase in the concentration of benzimidazole.

4.5 Conclusion

In conclusion, technetium supramolecules analogous to calix[4]arene were self-assembled using $(NBu_4)[Tc_2(\mu-Cl)_3(CO)_6]$ and neutral flexible ditopic nitrogen donors. Structurally similar rhenium metallocavitands were assembled from $[Re(CO)_5X]$ (X=Cl, Br) and L^n . The solid-state structures of the supramolecules reveal that these molecules adopt bowl-shaped structures. To the best of our knowledge, the technetium complexes are the first examples of fac- $[Tc(CO)_3]^+$ core-based SCCs analogous to calix[4]arenes and the second Tc-containing metallomacrocycles. The results enable the design of unique fac- $[Tc(CO)_3]^+$ core-based supramolecules and extend the entry into the field of supramolecules. In the future, the suitable design of fac- $[Tc(CO)_3]^+$ core-based supramolecules may find potential utility in the medicinal fields due to the combined properties of the technetium core and guest encapsulation properties of the macrocyclic cavity.

4.6 References

- 1. Alberto, R.; Schibli, R.; Waibel, R.; Abram, U.; Schubiger, A. P. Basic aqueous chemistry of [M(OH₂)₃(CO)₃]⁺ (M=Re, Tc) directed towards radiopharmaceutical application. *Coord. Chem. Rev.* **1999**, *190-192*, 901-919. (b) Alberto, R.; Schibli, R.; Egli, A.; Schubiger, P. A.; Abram, U.; Kaden, T. A. A Novel Organometallic Aqua Complex of Technetium for the Labeling of Biomolecules: Synthesis of [^{99m}Tc(OH₂)₃(CO)₃]⁺ from [^{99m}TcO₄]⁻ in Aqueous Solution and Its Reaction with a Bifunctional Ligand. *J. Am. Chem. Soc.* **1998**, *120*, 7987-7988. (c) Waibel, R.; Alberto, R.; Willuda, J.; Finnern, R.; Schibli, R.; Stichelberger, A.; Egli, A.; Abram, U.; Mach, J. P.; Plückthun, A.; Schubiger, P. A. Stable one-step technetium-99m labeling of Histagged recombinant proteins with a novel Tc(I)–carbonyl complex. *Nature Biotechnol.* **1999**, *17*, 897-901.
- 2. Abram, U.; Alberto, R. Technetium and rhenium: coordination chemistry and nuclear medical applications. *J. Braz. Chem. Soc.* 2006, 17, 1486-1500. (b) Morais, G. R.; Paulo, A.; Santos, I. Organometallic Complexes for SPECT Imaging and/or Radionuclide Therapy. *Organometallics* 2012, 31, 5693-5714. (c) Dilworth, J. R.; Parrott, S. The biomedical chemistry of technetium and rhenium. *J. Chem. Soc. Rev.* 1998, 27, 43-55. (d) Makris, G.; Bandari, R. P.; Kuchuk, M.; Jurisson, S. S.; Smith, C. J.; Hennkens, H. M. Development and Preclinical Evaluation of ^{99m}Tc- and ¹⁸⁶Re-Labeled NOTA and

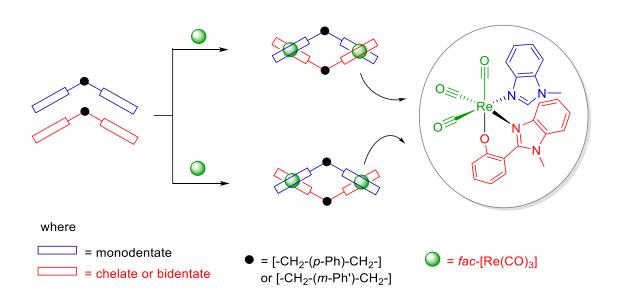
- NODAGA Bioconjugates Demonstrating Matched Pair Targeting of GRPR-Expressing Tumors. *Mol. Imaging Biol.* **2021**, *23*, 52-61. (e) Papagiannopoulou, D. Technetium-99m radiochemistry for pharmaceutical applications. *J. Labelled Comp. Radiopharm.* **2017**, *60*, 502-520.
- 3. Morais, M.; Paulo, A.; Gano, L.; Santos, I.; Correia, J. D. G. Target-specific Tc(CO)₃-complexes for *in vivo* imaging *J. Organomet. Chem.* **2013**, 744, 125-139.
- 4. Alberto, R. The "Carbonyl Story" and Beyond; Experiences, Lessons and Implications. *ChemMedChem.* **2012**, *16*, 84-91
- 5. Gasser, G.; Metzler Nolte, N. The potential of organometallic complexes in medicinal chemistry. *Cur. Opinion Chem. Biol.* **2012**, *16*, 84-91.
- 6. Schibli, R.; Schwarzbach, R.; Alberto, R.; Ortner, K.; Schmalle, H.; Dumas, C.; Egli, A.; Schubiger, P. A. Steps toward High Specific Activity Labeling of Biomolecules for Therapeutic Application: Preparation of Precursor [188Re(H₂O)₃(CO)₃]⁺ and Synthesis of Tailor-Made Bifunctional Ligand Systems. *Bioconjug. Chem.* **2002**, *13*, 750-756.
- 7. Bhattachrayya, S.; Dixon, M. Metallic radionuclides in the development of diagnostic and therapeutic radiopharmaceuticals. *Dalton Trans.* **2011**, *40*, 6112-6128.
- 8. Figueiredo, D.; Fernandes, C.; Silva, F.; Palma, E.; Raposinho, P.; Belchior, A.; Vaz, P.; Paulo, A. Synthesis and Biological Evaluation of ^{99m}Tc(I) Tricarbonyl Complexes Dual-Targeted at Tumoral Mitochondria. *Molecules* **2021**, *26*, 441.
- Argibay-Otero, S.; Gano, L.; Fernandes, C.; Paulo, A.; Carballo, R.; Vázquez-López, E.
 M. Chemical and biological studies of Re(I)/Tc(I) thiosemicarbazonate complexes relevant for the design of radiopharmaceuticals. *J. Inorg. Biochem.* 2020, 203, 110917.
- Paparidis, G.; Akrivou, M.; Tsachouridou, V.; Shegani, A.; Vizirianakis, I. S.; Pirmettis, I.; Papadopoulos, M. S.; Papagiannopoulou, D. Synthesis and evaluation of ^{99m}Tc/Retricarbonyl complexes of the triphenylphosphonium cation for mitochondrial targeting *Nucl. Med. Biol.* 2018, 57, 34-41.
- 11. Day, A. H.; Domarkas, J.; Nigam, S.; Renard, I.; Cawthorne, C.; Burke, B. P.; Bahra, G. S.; Oyston, P. C. F.; Fallis, I. A.; Archibald, S. A.; Pope, S. J. Towards dual SPECT/optical bioimaging with a mitochondrial targeting, ^{99m}Tc(I) radiolabelled 1,8-naphthalimide conjugate. *Dalton Trans.* **2020**, *49*, 511-523.
- 12. Kasten, B. B.; Ma, X.; Cheng, K.; Bu, L.; Slocumb, W. S.; Hayes, T. R.; Trabue, S.; Cheng. Z.; Benny, P. D. Isothiocyanate-Functionalized Bifunctional Chelates and *fac*-[M^I(CO)₃]⁺ (M = Re, ^{99m}Tc) Complexes for Targeting uPAR in Prostate Cancer. *Bioconjug. Chem.* **2016**, 27, 130-142.

- 13. Imstepf, S.; Pierroz, V.; Raposinho, P.; Felber, M.; Fox, T.; Fernandes, C.; Gasser, G.; Santos, I.; Alberto, R. Towards ^{99m}Tc-based imaging agents with effective doxorubicin mimetics: a molecular and cellular study. *Dalton Trans.* **2016**, *45*, 13025-13033.
- 14. Yazdani, A.; Janzen, N.; Czorny, S.; Valliant, J. F. Technetium(I) Complexes of Bathophenanthrolinedisulfonic Acid. *Inorg. Chem.* **2017**, *56*, 2958-2965.
- Pereiras-Gabián, G.; Vázquez-López, E. M.; Braband, H.; Abram, U. Mono- and Dinuclear Tricarbonyltechnetium(I) Complexes with Thiosemicarbazones. *Inorg. Chem.* 2005, 44, 834-836.
- 16. Saucedo Anaya, S. A.; Hagenbach, A.; Abram, U. Tricarbonylrhenium(I) and technetium(I) complexes with bis(2-pyridyl)phenylphosphine and tris(2-pyridyl)phosphine. *Polyhedron* **2008**, *27*, 3587-3592.
- 17. (a) Lorenz, B.; Findeisen, M.; Olk, B.; Schmidt, K. Technetium(I)-Komplexe Tc(CO)₃BrL₂ (L = Phosphine, Pyridinderivate, Isocyanide). *Z. Anorg. Allg. Chem.* **1988**, 566, 160-168. (b) Li, B.; Hildebrandt, S.; Hagenbach, A.; Abram, U. Tricarbonylrhenium(I) and -technetium(I) Complexes with Tris(1,2,3-triazolyl)phosphine Oxides. *Z. Anorg. Allg. Chem.* **2021**, 647, 1070-1076. (c) Mikhalev, V. A. ⁹⁹Tc NMR Spectroscopy, *Radiochemistry* **2005**, 47, 319–333.
- 18. Coogan, M. P.; Doyle, R. P.; Valliant, J. F.; Babich, J. W.; Zubieta. J. Single amino acid chelate complexes of the $M(CO)_3^+$ core for correlating fluorescence and radioimaging studies ($M = {}^{99m}Tc$ or Re). *J. Labelled Comp. Radiopharm.* **2014**, *57*, 255-261.
- 19. (a) Bauer, E. B.; Haase, A. A.; Reich, R. M.; Crans, D. C.; Kühn, F. E. Organometallic and coordination rhenium compounds and their potential in cancer therapy. *Coord. Chem. Rev.* **2019**, *393*, 79-117. (b) Haase, A. A.; Bauer, E. B.; Kühn, F. E.; Crans, D. C. Speciation and toxicity of rhenium salts, organometallics and coordination complexes. *Coord. Chem. Rev.* **2019**, *394*, 135-161.
- 20. (a) Ramakrishna, B.; Nagarajaprakash, R.; Veena, V.; Sakthivel, N.; Manimaran. B. Selfassembly of oxamidato bridged ester functionalised dirhenium metallastirrups: synthesis, characterisation and cytotoxicity studies. *Dalton Trans.* 2015, 44, 17629-17638. (b) Orsa, D. K.; Haynes, G. K.; Pramanik, S. K.; Iwunze, M. O.; Greco, G. E.; Krause, J. A.; Ho, D.; Williams, A. L.; Hill, D. A.; Mandal, S. K. Synthesis, characterization, and fluorescence and cytotoxicity studies of a tetrarhenium molecular rectangle. *Inorg. Chem. Commun.* 2007, 10, 821-824. (c) Gupta, D.; Sathiyendiran, M. Rhenium-Carbonyl-Based Supramolecular Coordination Complexes: Synthesis, Structure and Properties. *ChemistrySelect* 2018, 3, 7439-7458 and references cited therein (d) Balasingham, R. G.;

- Thorp-Greenwood, F. L.; Williams, C. F.; Coogan, M. P.; Pope, S. J. A. Biologically Compatible, Phosphorescent Dimetallic Rhenium Complexes Linked through Functionalized Alkyl Chains: Syntheses, Spectroscopic Properties, and Applications in Imaging Microscopy. *Inorg. Chem.* **2012**, *51*, 1419–1426. (e) Gupta, D.; Singh, V.; Hohloch, S.; Sathiyendiran, M.; Tedin, K.; Sarkar, B. Utilizing a series of *fac*-Re(CO)₃ core based quinonoid containing complexes for photophysical and cell imaging studies. *Polyhedron* **2015**, *100*, 243-250.
- 21. (a) Dinolfo, P. H.; Hupp, J. T. Supramolecular coordination chemistry and functional microporous molecular materials. *Chem. Mater.* 2001, *13*, 3113–3125. (b) Rohacova, J.; Ishitani, O. Photofunctional Multinuclear Rhenium(I) diimine Carbonyl Complexes. *Dalton Trans.* 2017, *46*, 8899–8919. (c) Thanasekaran, P.; Lee, C. C.; Lu, K. L. One-Step Orthogonal-Bonding Approach to the Self-Assembly of Neutral Rhenium-Based Metallacycles: Synthesis, Structures, Photophysics, and Sensing Applications. *Acc. Chem. Res.* 2012, *45*, 1403–1418. (d) Kumar, A.; Sun, S. S.; Lees, A. J. Directed Assembly Metallocyclic Supramolecular Systems for Molecular Recognition and Chemical Sensing. *Coord. Chem. Rev.* 2008, 252, 922–939.
- 22. Bhol, M.; Shankar, B.; Sathiyendiran, M. Rhenium(I) based irregular pentagonal-shaped metallacavitands. Dalton *Trans.* **2018**, *47*, 4794-4500.
- 23. Davison, A.; Trop, H. S.; de Pamphilis, D. V.; Jones, A. G.; Thomas, R. W.; Jurisson, S. S. Tetrabutylammonium Tetrachlorooxotechnetate(V). *Inorg. Synth.* **2007**, *21*, 160-162.
- 24. Hildebrandt, S. $(NBu_4)[Tc_2(\mu\text{-Cl})_3(CO)_6]$ als Startverbindung für Technetiumtricarbonylkomplexe. PhD Thesis, FU Berlin, **2018.**
- 25. Angelici, J. R. REAGENTS FOR TRANSITION METAL COMPLEX AND ORGANOMETALLIC SYNTHESES. *Inorg. Synth.* **1990**, 28, 162–163.
- 26. Marker, S. C.; MacMillan, S. N.; Zipfel, W. R.; Li, Z.; Ford, P. C.; Wilson, J. J. Photoactivated in Vitro Anticancer Activity of Rhenium(I) Tricarbonyl Complexes Bearing Water-Soluble PhosphinesInorg. *Chem.* **2018**, *57*, 1311–1331.
- 27. Grobler, I.; Smith, V. J.; Bhatt, P. M.; Herber, S. A.; Barbour, L. J. Tunable Anisotropic Thermal Expansion of a Porous Zinc(II) Metal–Organic Framework. *J. Am. Chem. Soc.* **2013**, *135*, 6411–6414.
- 28. Zhao, X. -L.; Sun, D.; Hu, T. -P.; Yuan, S.; Gu, L. -C.; Cong, H. -J.; Hea, H. -Y.; Sun, D. -F. Phase transfer catalyst supported, room-temperature biphasic synthesis:a facile approach to the synthesis of coordination polymers. *Dalton Trans.* **2012**, *41*, 4320–4323.

- 29. Chahen, L.; Therrien, B.; Suss-Fink, G. Square-planar dichloro palladium complexes with trans-configurated phosphine ligands avoiding ortho-metallation: Ligand design, complex synthesis, molecular structure and catalytic potential for Suzuki cross-coupling reactions. *J. Organomet. Chem.* **2006**, *691*, 4257–4264.
- 30. (a) Sheldrick, G. M. A short history of SHELX. *Acta Crystallogr., Sect. A: Found. Crystallogr.* **2008**, *64*, 112–122. (b) Sheldrick, G. M. Crystal structure refinement with SHELXL. *Acta Crystallogr., Sect. C: Struct. Chem.* **2015**, *71*, 3–8.
- 31. (a) Jr, A. V. Ultrafast Excited-State Processes in Re(I) Carbonyl-Diimine Complexes: From Excitation to Photochemistry. *Top. Organomet. Chem.* **2010**, *29*, 73–114. (b) Giordano, P. J.; Wrighton, M. S. The Nature of the Lowest Excited State in *fac*-Tricarbonylhalobis(4-phenylpyridine) rhenium (I) and *fac*-Tricarbonylhalobis(4, 4'-bipyridine) rhenium(I): Emissive Organometallic Complexes in Fluid Solution *J. Am. Chem. Soc.* **1979**, *101*, 2888 2897.
- 32. (a) Frischmann, P. D.; MacLachlan, M. J. Metallocavitands: an emerging class of functional multimetallic host molecules. *Chem. Soc. Rev.* 2013, 42, 871-890. (b) Lippert, B.; Sanz Miguel, P. J. Metallatriangles and metallasquares: the diversity behind structurally characterized examples and the crucial role of ligand symmetry. *Chem. Soc. Rev.* 2011, 40, 4475-4487. (c) Kulesza, J.; Barros, B. S.; Junior, S. A. Organic–inorganic hybrid materials: Metallacalixarenes. Synthesis and applications. *Coord. Chem. Rev.* 2013, 257, 2192-2212. (d) Díaz-Ramírez, M. L.; Huggins, H.; Donnadieu, B.; Lopez, N.; Muñoz-Hernández, M. -Á. The Quest for Large Group 13 Metallacalixarenes Based on Benzymidazolyl Ligands and Al and Ga Alkyls. *Eur. J. Inorg. Chem.* 2021, 3896-3902 (e) Karges, J.; Seo, H.; M. Cohen, S. Synthesis of tetranuclear rhenium(I) tricarbonyl metallacycles. *Dalton Trans.* 2021, 50, 16147-16155.
- 33. (a) Benesi, H. A.; Hildebrand, J. H. A Spectrophotometric Investigation of the Interaction of Iodine with Aromatic Hydrocarbons. *J. Am. Chem. Soc.* **1949**, *71*, 2703 -2707. (b) Murakami, Y.; Kikuchi, J. I.; Suzuki, M.; Matsuura, T. Syntheses of macrocyclic enzyme models. Part 6. Preparation and guest-binding behaviour of octopus cyclophanes. *J. Chem. Soc.*, *Perkin Trans.1* **1988**, 1289 -1299.
- 34. (a) Sathiyendiran, M.; Tsai, C. C.; Thanasekaran, P.; Luo, T. T.; Yang, C. I.; Lee, C. H.; Peng, S. M. Lu, K. L. Organometallic Calixarenes: Syceelike Tetrarhenium(I) Cavitands with Tunable Size, Color, Functionality, and Coin–Slot Complexation. *Chem. Eur. J.* **2011**, *17*, 3343 3346. (b) Lakshmi, S.K.; Corinne, L. D.; Gibb, B. C.; Ramamurthy, V.

- A Hydrophobic Nanocapsule Controls the Photophysics of Aromatic Molecules by Suppressing Their Favored Solution Pathways. *J. Am. Chem. Soc.* **2005**, *127*, 3674-3675.
- 35. Manimaran, B.; Lai, L. J.; Thanasekaran, P.; Wu, J. Y.; Liao, R. T.; Tseng, T. W.; Liu, Y. H.; Lee, G. H.; Peng, S. M.; Lu, K. L. CH···π Interaction for Rhenium-Based Rectangles: An Interaction That Is Rarely Designed into a Host–Guest Pair. *Inorg. Chem.* **2006**, *45*, 8070-8077.

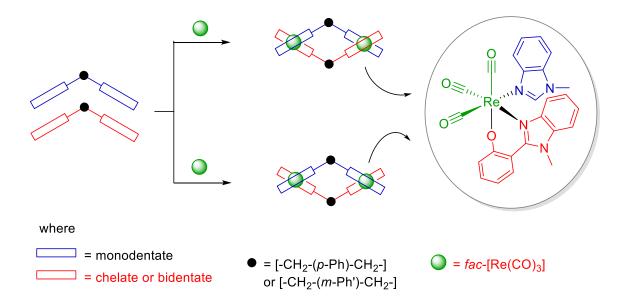

Chapter 5

Self-Assembly and Photophysical Properties of

Rheniumtricarbonyl-Based Helicates and Mesocates

Abstract

The self-assembly of five rheniumtricarbonyl core based supramolecular coordination complexes (SCCs), fac-[Re(CO)₃(μ -L)(μ -L')Re(CO)₃] (1–5) was assembled using Re₂(CO)₁₀, (L^1) rigid/flexible bis-chelating ligand $(HO \cap N-Ph-N \cap OH)$ $(L^2),$ $HO \cap N-CH_2$ -mesitylene- $CH_2-N \cap OH$ where $HO \cap N$ 2hydroxyphenylbenzimidazolyl), and flexible ditopic N donor ($L^3 = bis(3-((1H$ benzoimidazol-1-yl)methyl)-2,4,6-trimethylphenyl)methane, $L^4 = bis(3-((1H-naphtho[2,3$ d]imidazol-1-yl)methyl)-2,4,6-trimethylphenyl)methane, L⁵ = bis(4-(benzimidazol-1ylmethyl)phenyl)methane, $L^6 = bis(4-(naphtho[2,3-d]imidazol-1-ylmethyl)phenyl)methane)$ via a one-pot approach. The dinuclear SCCs adopt heteroleptic double stranded helical/mesohelical architectures in the solid-state. The supramolecular structures of the complexes closely remain in the solution based on the ¹H NMR and ESI-mass analysis. The photophysical properties of the complexes were studied both in solution and solid state. All the supramolecules display emission both in solution and solid state.



5.1. Introduction

The design and synthesis of discrete metallosupramolecules such as helicates, mesocates, 2D and 3D metallocycles with/without cavities and cages have attracted much attention not only due to their potential applications in various fields, but also for providing hitherto unknown aesthetically pleasing simple to complex molecular architectures via simple combinations of pre-designed ligands and suitable metal ions or complex motifs. 1-15 Among the various metal ion sources, $Re_2(CO)_{10}$ and $[Re(CO)_5X]$ where X = C1 or Br are two of the versatile organometallic complexes used as pre-designed metal sources for assembling various types of fac-[Re(CO)₃]- and fac-[Re(CO)₃X]-cores based supramolecules.⁷⁻¹³ Due to their intrinsic properties such as kinetic stability and phosphorescence and their importance in host-guest chemistry, catalysis, photosensitizers in hydrogen evolution, carbon dioxide reduction, bioimaging, and anticancer agents, the research are being directed towards making new functional rheniumcarbonyl-based metallosupramolecules.⁷⁻¹³ Although error-free synthetic principles are currently available to make desired rheniumcarbonyl-core based molecular squares, rectangles, prisms, bowls, spheroids and other cavity containing metallomacrocycles, 8a-b, 9, 10a, 11-15 the synthetic approaches for self-assembling mononuclear-, dinuclear-, trinuclear-, and polynuclear-helicates are scarce.¹³ However, helicates based on other metal ions and organic ligand strands are well-known and prevalent. 1-4 To the best of our knowledge, only a handful of fac-[Re(CO)₃]-core based helicates are known till now. 13

We first demonstrated the combination of two types of flexible ligands i.e., neutral flexible bis(monodentate) ligand N-donor (pbenzbix) and bis(bidentate) NO donor (H₂–pBC), incorporating a flexible *p*-xylene motif (–CH₂–Ph–CH₂–) between two donors with Re₂(CO)₁₀ for assembling dinuclear heteroleptic helicate (Scheme 5.1 and Figure 5.1). The spacer p-phenylene motif in both the ligands (pbenzbix and H₂–pBC) plays an important role in adopting helical structure. This was evident when the spacer motif in the ligand strands was changed to *m*-xylene motif which results in the mesohelical structure. Though the above design principle can be applied to generate *fac*–[Re(CO)₃] core-based dinuclear helicates with similar types of ligands, many examples have to be prepared to validate the synthetic approach. We decided modulating the length of the spacer motif from "phenylene or mesitylene" spacer by longer and more flexible spacer unit such as biphenylmethane (–Ph–CH₂–Ph–) or bimesitylmethane (–mesitylene–CH₂–mesitylene–) motif in the neutral

bi(dentate) ligand and combining with semirigid bis(bidentate) ligand H_2 -mBC ((H_2 -mBC = p-phenylene(benzimidazolylphenol)₂))or rigid bis(bidentate) ligand (H_2 -RBC = p-phenylene(benzimidazolylphenol)₂) and $Re_2(CO)_{10}$ in order explore the helicate architecture. Ligands **1-6** have ability to adopt helical twisting along $Re\cdots Re$ axis due to the rotatable nature of terminal donors with respect to m- (or) p-phenyl spacer.

Scheme 5.1. Cartoon Representation of Self-Assembly of *fac*-Re(CO)₃ Core–Based Neutral Unsaturated Heteroleptic Dinuclear Double-Stranded Helicate and Mesocate.

In this chapter, two new fac–[Re(CO)₃]core- based helicates (1-2) and three mesocates (3-5) are reported. The metallosupramolecules were characterized by ATR-IR, ESI-MS, 1D and 2D NMR spectroscopic methods. The molecular structures of the metallosupramolecules were confirmed by single-crystal X-ray analysis. The photophysical properties of the complexes were studied in both solution and solid state. All the supramolecules display emission both in solution and solid state.

5.2. Experimental Section

5.2.1. Materials

All starting materials and products were found to be stable towards moisture and air, and nonspecific precautions were taken to rigorously exclude air when solvothermal methods were used. Starting materials such as Re₂(CO)₁₀, 1,4-dibromobenzene, CuI, Cs₂CO₃, 1,10-

phenanthroline, H₃PO₄, HBr in acetic acid 33%, paraformaldehyde, acetic acid glacial, formic acid, benzimidazole, KOH and NaH were procured from commercial sources and used as received. Then 2-(2-Hydroxyphenyl)-1H-benzimidazole, ¹⁶ naphtho[2,3-d]imidazole, ¹⁷ 2,4bis(bromomethyl)-1,3,5-trimethylbenzene, ¹⁸ bis-(mesityl)methane, ¹⁹ and bis(3-(bromomethyl)-2,4,6-trimethylphenyl)methane ²⁰ were synthesized as described by literature $(L^3)^{21}$ Bis(3-((1H-benzoimidazol-1-yl)methyl)-2,4,6-trimethylphenyl)methane methods. bis(3-((1H-naphtho[2,3-d]imidazol-1-yl)methyl)-2,4,6-trimethylphenyl)methane (L⁴),²¹ bis(4- $(L^5)^{22}$ (benzimidazol-1-ylmethyl)phenyl)methane bis(4-(naphtho[2,3-d]imidazol-1- $(L^6)^{22}$ vlmethyl)phenyl)methane 1,4-Bis(2-(2-hydroxyphenyl)benzimidazole-1-(H₂-pBC),²³ 1,3-Bis(2-(2-hydroxyphenyl)benzimidazole-1-ylmethyl)ylmethyl)benzene 2,4,6-trimethibenzene (H₂-mBC)^{13a} were synthesized from previously reported methods. Toluene, hexane and THF were purified and distilled by conventional procedure. LR grade solvents like DMF, mesitylene and HPLC acetone were obtained from Sigma Aldrich and used directly. Conventional synthetic methods were routinely carried out in room atmosphere.

5.2.2 Physical Measurement

A Bruker ALPHA II FTIR Spectrometer was used to record the FT -IR spectra. 1 H NMR spectra were obtained by using Bruker AvanceIII 500 and 400 spectrometers. All NMR spectra were recorded using DMSO- d_{6} as solvent. HR-MS spectra were recorded on a Bruker maXis mass spectrometer. The UV-Vis spectra were performed on a Shimadzu UV-VIS-NIR (UV-3600) spectrophotometer. A JASCO (FP-8500) spectrofluorometer was used to record emission spectra.

5.2.3 X-ray Crystallography.

A single crystal X-ray structural study of **1**, **2**, **3** and **5** was performed on a Rigaku Oxford XtaLAB Synergy or a Bruker D8 Quest diffractometer. Data were collected at low temperature or room temperature using Mo K α radiation [λ (Mo K α) = 0.71073 Å]. The structure was solved by direct methods using SHELXS-97²⁴ and refined by full matrix least squares with SHELXL-2018/^{24b,c} All non-hydrogen atoms were refined anisotropically. The remaining hydrogen atoms were placed in geometrically constrained positions and refined with isotropic temperature factors.

5.2.4 Synthesis of Complexes

Synthesis of $\{(CO)_3Re(\mu-pBC)Re(CO)_3\}(\mu-L^3)\}$ (1).

A mixture of Re₂(CO)₁₀ (50 mg, 0.0766 mmol), H₂-pBC (38 mg, 0.0766 mmol), L³ (40 mg, 0.0766 mmol), and toluene (6 mL) in a Teflon flask was placed in a steel bomb. The bomb was kept in an oven, maintained at 160 °C for 48 h and then cooled to 30 °C. Light gray powder with yellow colour crystals was obtained. The product was filtered, washed with distilled hexane and air-dried. Yield: 41% (48 mg). ¹H NMR (500 MHz, DMSO- d_6): δ 8.50 (s, 2H, Ph°), 8.29 (d, J_{HH} = 8.3 Hz, 2H, H⁴), 7.95 (d, J_{HH} = 8.2 Hz, 2H, H⁷), 7.75 (t, J_{HH} = 7.9 Hz, 2H, H⁶), 7.63 (t, J_{HH} = 7.8 Hz, 2H, H⁵), 7.39 (t, J_{HH} = 7.6 Hz 2H, H^b), 7.29 (d, J_{HH} = 8.1 Hz, 2H, H^a), 7.18-7.13 (m, 6H, H^{c-d}, H^C), 7.04 (s, 2H, H⁹), 6.91 (d, J_{HH} = 8.0 Hz, 2H, H^A), 6.78 (d, J_{HH} = 8.2 Hz, 2H, H^D), 6.52 (t, J_{HH} = 7.7, Hz, 2H, H^B), 5.61(s, 2H, H²), 5.50 (s, 2H, Phⁱ), 5.21 (dd, J_{HH} = 14.7 Hz, 4H, H⁸, -CH₂-), 3.87 (s, 2H, H¹³, -CH₂-), 2.32 (s, 6H, -CH₃), 0.88 (s, 6H, -CH₃), and 0.69 (s, 6H, -CH₃). ESI-HR-MS. Calcd for C₇₃H₅₆N₈O₈Re₂ [M+H]⁺: m/z 1547.3414 Found: m/z 1547.3038. FT-IR (cm⁻¹): 2012 (s), 1888 (s) and 1858 (s).

Synthesis of $[\{(CO)_3Re(\mu-pBC)Re(CO)_3\}(\mu-L^4)]$ (2).

A mixture of Re₂ (CO)₁₀ (50 mg, 0.0766 mmol), H₂-pBC (38 mg, 0.0766 mmol), L⁴ (47 mg, 0.0766 mmol), and toluene (6 mL) in a Teflon flask was placed in a steel bomb. The bomb was kept in an oven, maintained at 160 °C for 48 h and then cooled to 30 °C. Dark gray powder with dark brown colour crystals was obtained. The product was filtered, washed with distilled hexane and air-dried. Yield: 56% (70 mg). ¹H NMR (500 MHz, DMSO- d_6): δ 8.80 (s, 2H, H⁴), 8.52 (s, 4H, H⁴, Ph°), 8.37- 8.35 (m, 2H, H⁵), 8.20-8.18 (m, 2H, H⁸), 7.67- 7.65 (m, 4H, H^{6,7}), 7.37 (pseudo t, J_{HH} = 7. 7 Hz, 2H, H^b), 7.31-7.29 (m, 4H, H^{a, d}), 7.16-7.09 (m, 6H, H^{11,C}, H^c), 6.93 (d, J_{HH} = 7.9 Hz, 2H, H^A), 6.81 (d, J_{HH} = 8.3 Hz, 2H, H^D) 6.54 (t, J_{HH} = 7.6 Hz, 2H, H^B), 5.65 (s, 2H, H²), 5.53 (s, 2H, Phⁱ), 5.30 (dd, J_{HH} = 14.5 Hz, 4H, H¹⁰, -C H_2 -), 3.90 (s, 2H, H¹⁵, -C H_2 -), 2.36 (s, 6H, -C H_3), 0.92 (s, 6H, -C H_3), and 0.72 (s, 6H, -C H_3). ESI-HR-MS. Calcd for C₈₁H₆₀N₈O₈Re₂ [M+H]⁺: m/z 1647.8410 Found: m/z 1647.3723. FT-IR (cm⁻¹): 2011 (s), 1890 (s) and c 1862(s).

Synthesis of $[\{(CO)_3Re(\mu-pBC)Re(CO)_3\}(\mu-L^6)]$ (3).

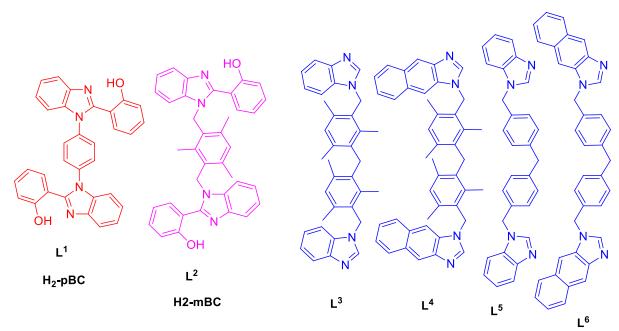
A mixture of Re₂ (CO)₁₀ (100 mg, 0.1532 mmol), H₂-pBC (75.77 mg, 0.1532 mmol), L⁶ (80.99 mg, 0.1532 mmol), and toluene (12 mL) in a Teflon flask was placed in a steel bomb.

The bomb was kept in an oven, maintained at 160 °C for 48 h and then cooled to 30 °C. Light gray powder with brown crystals + yellow crystals was obtained. The product was filtered, washed with distilled hexane and air-dried. Yield: 65% (155 mg). ¹H NMR (400 MHz, DMSO- d_6): δ 8.85 (d, J_{HH} = 20 .7 Hz, 2H), 8.74 (s, 1H), 8.37 (s, 1H), 8.27-8.15 (m, 4H), 8.08-7.99 (m, 3H), 7.92 (d, J_{HH} = 7.4 Hz, 3H), 7.79 (s, 2H), 7.67 (s, 2H), 7.56- 7.45 (m, 8H), 7.06- 7.00 (m, 4H), 6.90- 6.75 (m, 6H), 6.62 (d, J_{HH} = 7.6 Hz, 2H), 6.43 (t, J_{HH} = 7.6 Hz, 1H), 6.30 (d, J_{HH} = 6.1 Hz, 2H), 6.17 (d, J_{HH} = 7.4 Hz, 1H), 5.53-5.31 (m, 4H, H¹⁰, -C H_2 -), and 3.58 (s, 2H, H¹⁵, -C H_2 -).ESI-HR-MS. Calcd for C₇₅H₄₈N₈O₈Re₂ [M+H]⁺: m/z 1563.2788 Found: m/z 1563.2436. FT-IR (cm⁻¹): 2010 (s) and 1867 (s).

Synthesis of $[\{(CO)_3Re(\mu-mBC)Re(CO)_3\}(\mu-L^5)]$ (4).

A mixture of Re₂(CO)₁₀ (50 mg, 0.0766 mmol), H₂-mBC (43 mg, 0.0766 mmol), L⁵ (33 mg, 0.0766 mmol), and mesitylene:acetone (10 mL: 1 mL) in a Teflon flask was placed in a steel bomb. The bomb was kept in an oven, maintained at 160 °C for 48 h and then cooled to 30 °. The product was obtained as gray powder, filtered at hot conditions and washed with distilled hexane. Yield: 44% (55 mg). ¹H NMR (500 MHz, DMSO- d_6): δ 8.36 (s, 2H, H²), 7.64-7.63 (m, 2H, H⁷), 7.59 (d, J_{HH} = 8.0 Hz, 2H, H^D), 7.49-7.47 (m, 2H, H⁴), 7.43-7.35 (m, 4H, H^{b,d}), 7.20- 7.09 (m, 14H, H^{5-6,9-12}, H^c), 7.05 -7.01 (m, 2H, H^a), 6.94 (t, J_{HH} = 7.5 Hz, 2H, H^c), 6.90 (s, 1H, H^E), 6.85 (t, J_{HH} = 8.1 Hz, 2H, H^B), 6.50 (d, J_{HH} = 8.3 Hz, 2H, H^A), 5.41 (s, 4H, H⁸, -CH₂-), 5.27 (s, 4H, H^F, -CH₂-), 3.83 (s, 2H, H¹³, -CH₂-), 2.04 (s, 6H, -CH₃), 1.74 (s, 3H, -CH₃). ESI-HR-MS. Calcd for C₇₂H₅₄N₈O₈Re₂ [M+H]⁺: m/z 1533.3263 Found: m/z 1533.2883. FT-IR (cm⁻¹): 2009 (s), 1892 (s) and 1861 (s).

Synthesis of $[\{(CO)_3Re(\mu-mBC)Re(CO)_3\}(\mu-L^6)]$ (5).


A mixture of Re₂(CO)₁₀ (50 mg, 0.0766 mmol), H₂-mBC (43 mg, 0.0766 mmol), L⁶ (41 mg, 0.0766 mmol), and mesitylene:acetone (10 mL: 0.5 mL) refluxed for 6 h in a round bottom flask. Compound 4 was obtained as gray powder. The product was filtered at hot conditions and washed with distilled hexane. Yield: 44% (55 mg). ¹H NMR (500 MHz, DMSO- d_6): δ 8.62 (s, 2H, H⁴), 8.50 (s, 2H, H⁹), 8.19 (s, 2H, H²), 8.09-8.07 (m, 2H, H¹³), 7.99- 7.97 (m, 2H, H⁸), 7.95 (s, 2H, H^E), 7.89-7.87 (m, 2H, H⁵), 7.60-7.58 (m, 2H, H¹⁴), 7.42 (d, J_{HH} = 8.1 Hz, 4H, H^{a,d}), 7.36-7.34 (m, 4H, H^{6,7}), 7.26-7.19 (m, 10H, H^{11,A,C},H^{b, c}), 7.16- 7.12 (m, 6H, H^{12,B,D}), 5.70 (s, 4H, H^F), 5.50 (s, 4H, H¹⁰, -CH₂-), 4.25-4.22 (m, 2H, H¹⁵, -CH₂-), 2.28 (s, 3H, -CH₃), 2.07 (s, 3H, -CH₃), 1.21 (s, 3H, -CH₃). Crystals obtained from mesitylene and

acetone mixture via a solvothermal approach. ESI-HR-MS. Calcd for $C_{80}H_{58}N_8O_8Re_2$ [M+H]⁺: m/z 1633.3571 Found: m/z 1633.3389. FT-IR (cm⁻¹): 2010 (s), 1894 (s) and 1869 (s).

5.3. Results and Discussion

5.3.1. Synthesis and characterization of Helicates and Mesocates (1-5).

Helicates 1 and 2 were self-assembled from $Re_2(CO)_{10}$, L^1 and L^3 or L^4 via a one-pot solvothermal approach (Scheme 5.2). Similarly, mesocates (3–5) were prepared from $Re_2(CO)_{10}$, L^1 or L^2 , and L^5 or L^6 . All the metallosupramolecules are air- and moisture-stable, and are completely soluble in DMSO. The ATR-IR spectra of 1–5 display three strong bands around 2012-1858 cm⁻¹ of almost similar pattern which are the characteristic of fac-[Re(CO)₃] motif in an asymmetric coordination geometry. ^{13,25} The above IR data further indicate that the electronic environments around the rhenium centres in 1-5 are similar. The ESI-mass analysis of 1-5 showed signals that correspond to molecular ion peaks (m/z 1547.3039 for [1 + H]⁺; 1647.3723 for [2 + H]⁺; 1563.2499 for [3 + H]⁺; 1533.2883 for [4 + H]⁺;1633.3389 for [5 + K]⁺) with an experimental isotope pattern that matches the calculated values.

Figure 5.1. Ligands used in this work.

Scheme 5.2. Self-assembly of Helicates (1-2) and Mesocates (3-5).

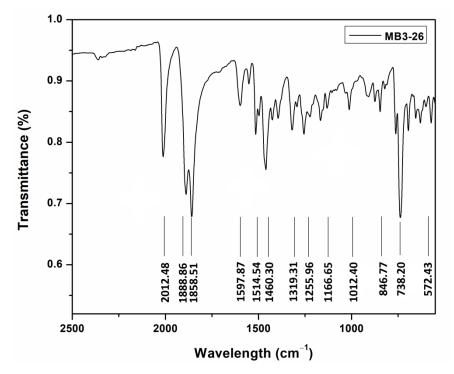


Figure 5.2. ATR- IR spectrum of 1.

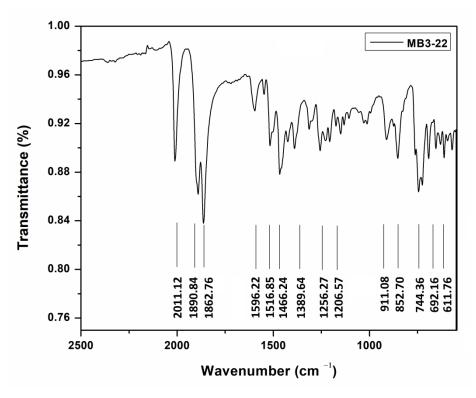


Figure 5.3. ATR- IR spectrum of 2.

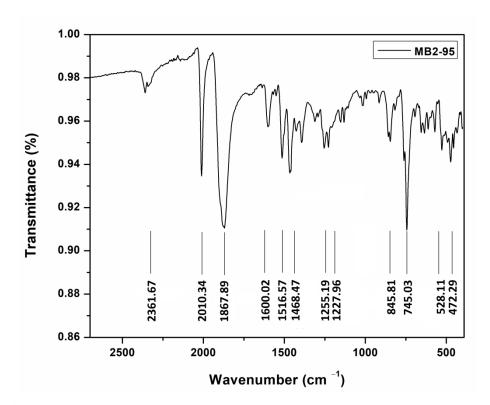


Figure 5.4. ATR- IR spectrum of 3.



Figure 5.5. ATR- IR spectrum of 4.

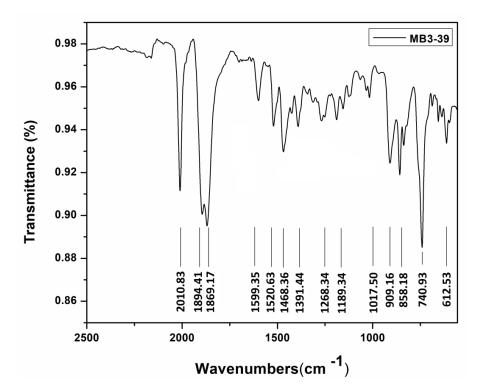


Figure 5.6. ATR- IR spectrum of 5.

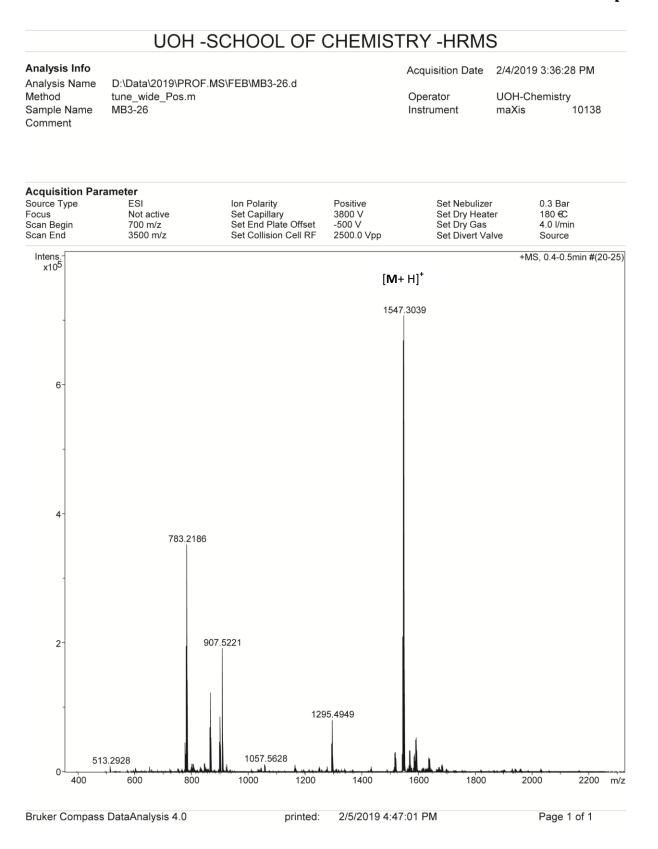
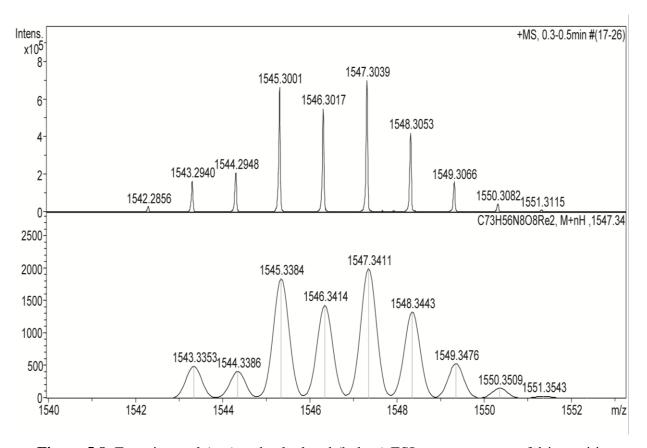



Figure 5.7. ESI mass spectrum of 1 in positive ion mode.

Figure 5.8. Experimental (top) and calculated (below) ESI mass spectrum of **1** in positive ion mode.

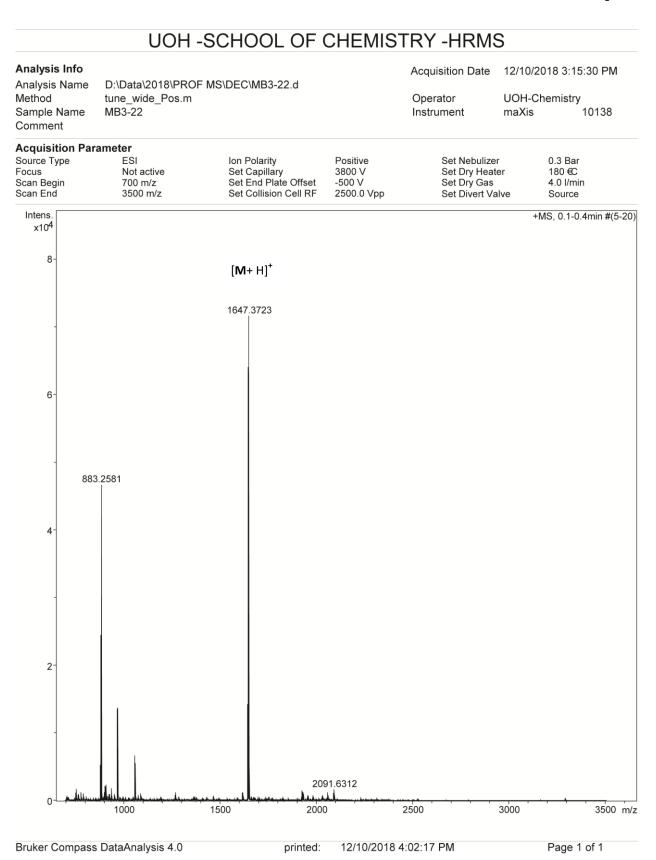
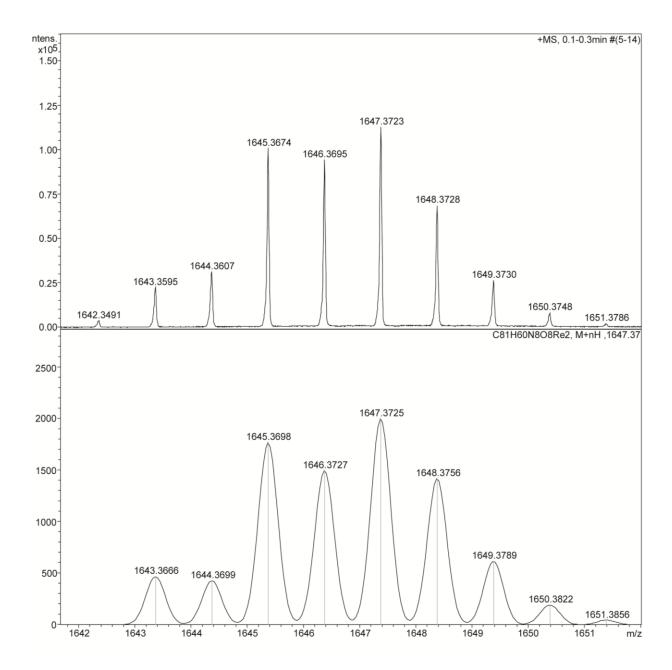



Figure 5.9. ESI mass spectrum of 2 in positive ion mode.

Figure 5.10. Experimental (top) and calculated (below) ESI mass spectrum of **2** in positive ion mode.

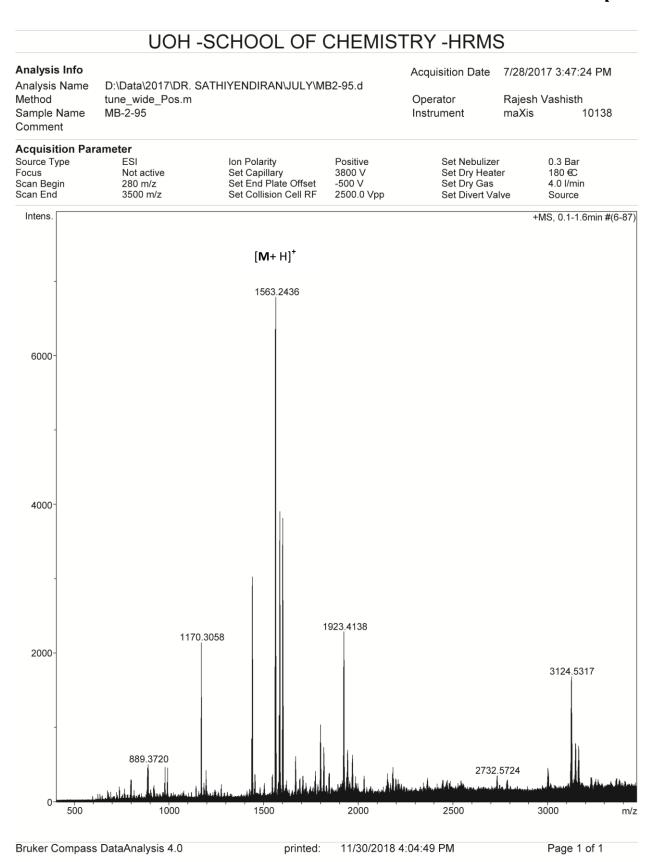
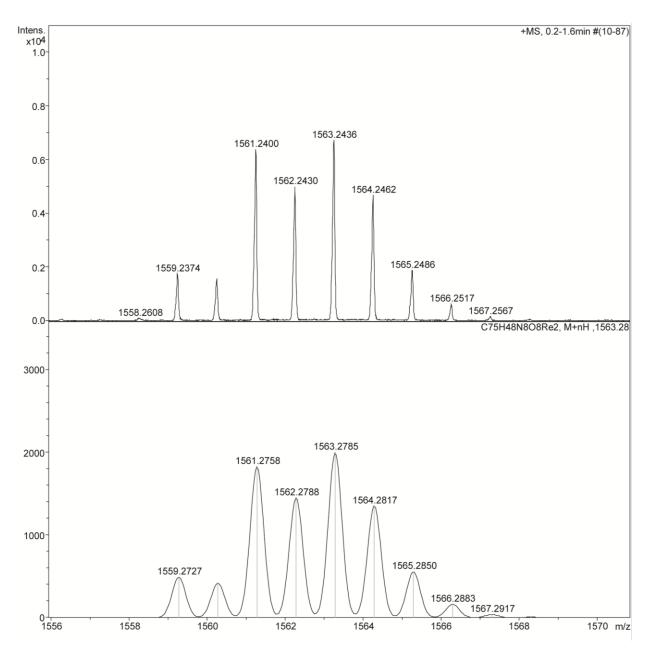



Figure 5.11. ESI mass spectrum of 3 in positive ion mode.

Figure 5.12. Experimental (top) and calculated (below) ESI mass spectrum of **3** in positive ion mode.

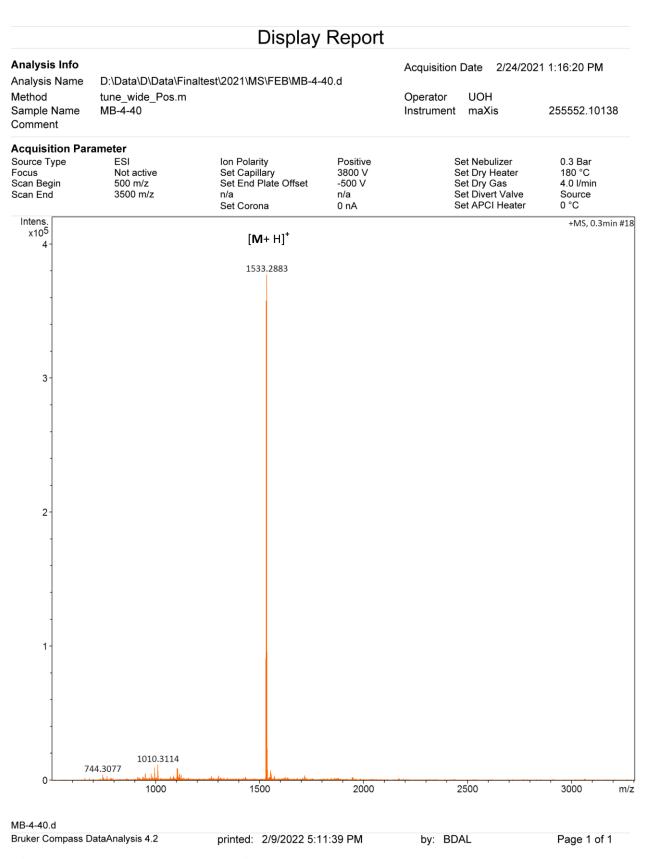
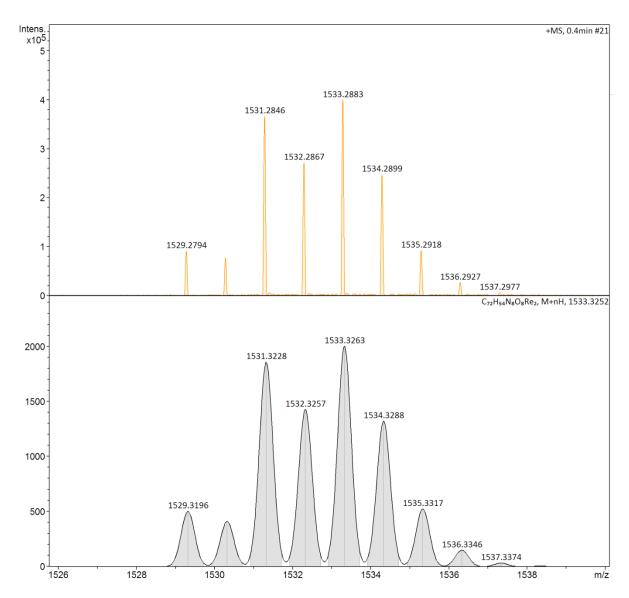
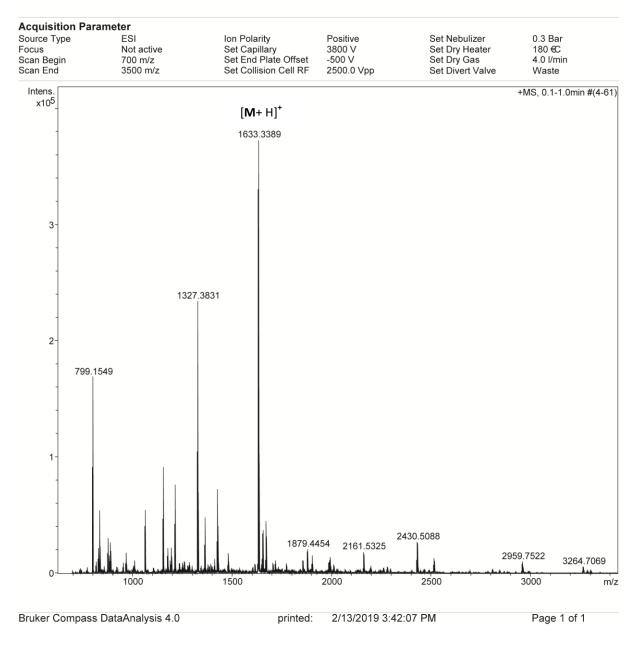




Figure 5.13. ESI mass spectrum of 4 in positive ion mode.

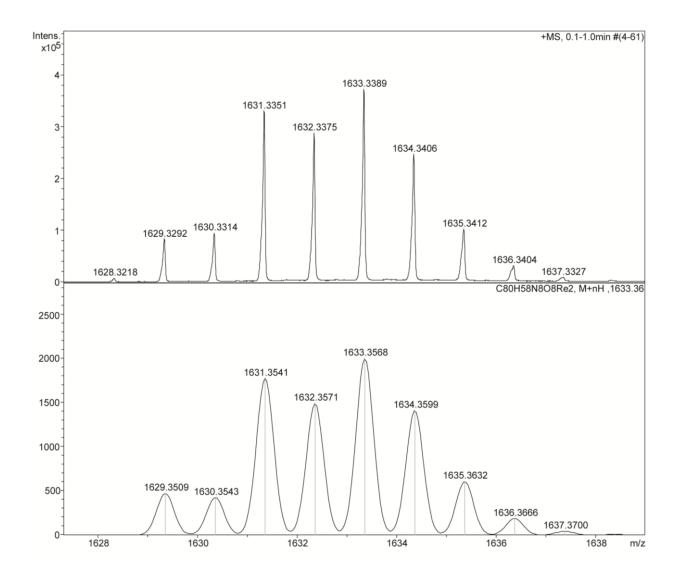
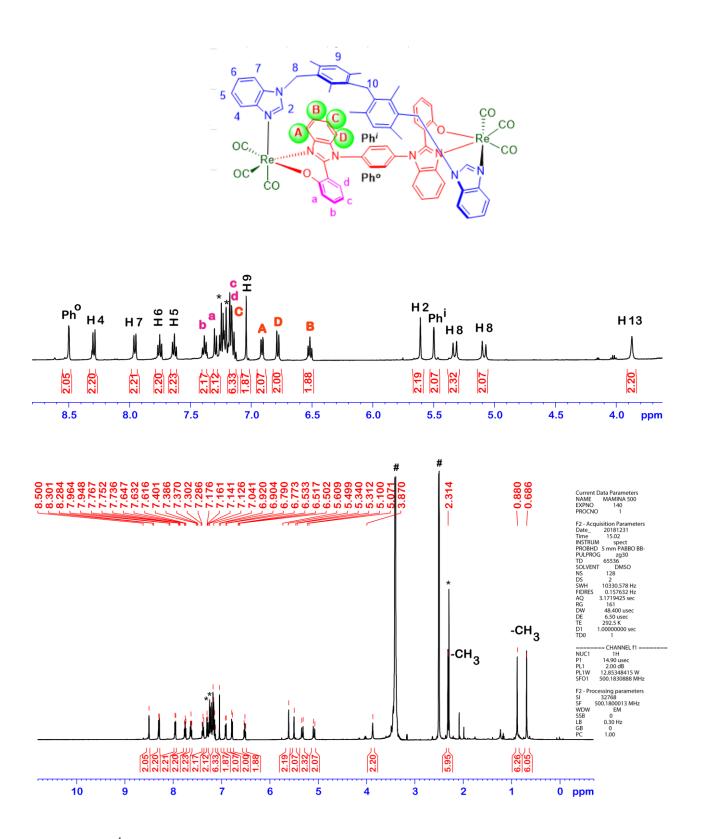


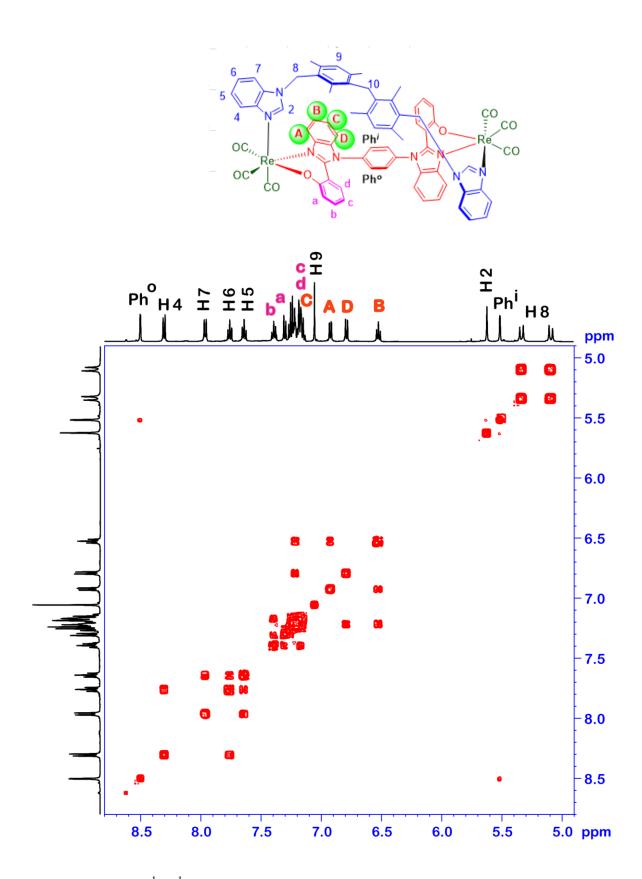
Figure 5.14. Experimental (top) and calculated (below) ESI mass spectrum of **4** in positive ion mode.

UOH -SCHOOL OF CHEMISTRY -HRMS Analysis Info Acquisition Date 2/13/2019 3:29:18 PM D:\Data\2019\PROF.MS\FEB\MB3-39-1.d Analysis Name **UOH-Chemistry** Method Operator tune_high_Pos.m 10138 Sample Name MB3-39 Instrument maXis Comment

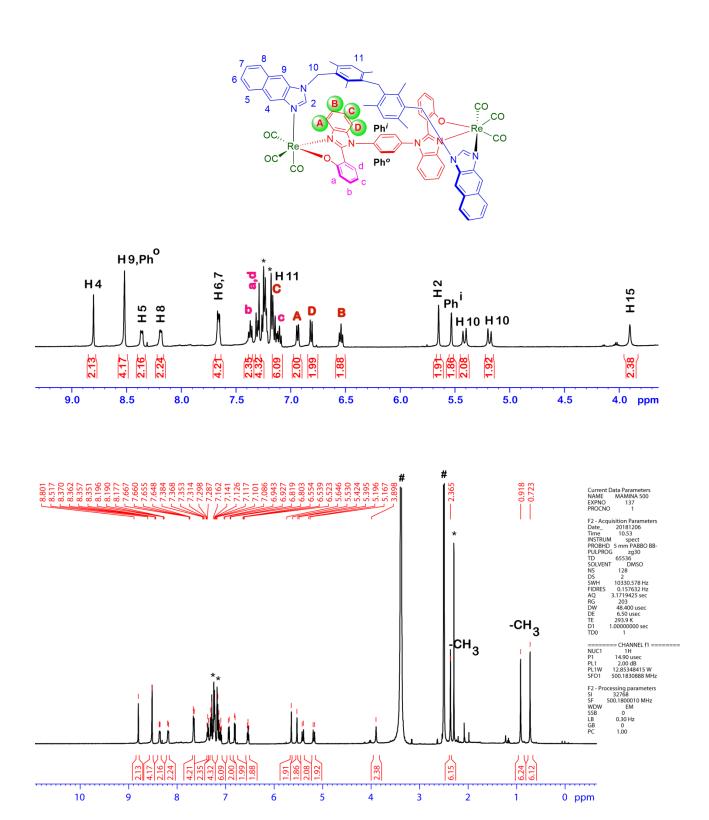
Figure 5.15. ESI mass spectrum of **5** in positive ion mode.

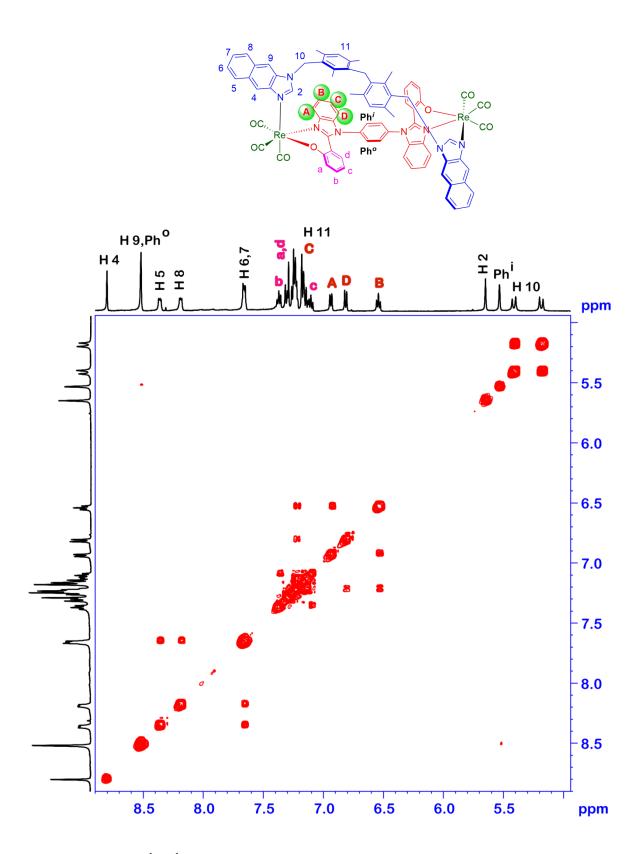

Figure 5.16. Experimental (top) and calculated (below) ESI mass spectrum of **5** in positive ion mode.

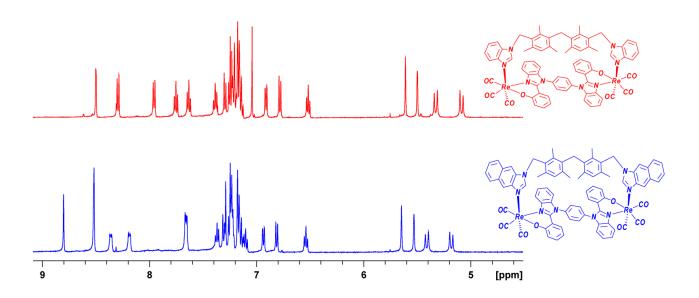
¹H NMR Analysis of Complexes 1-5.

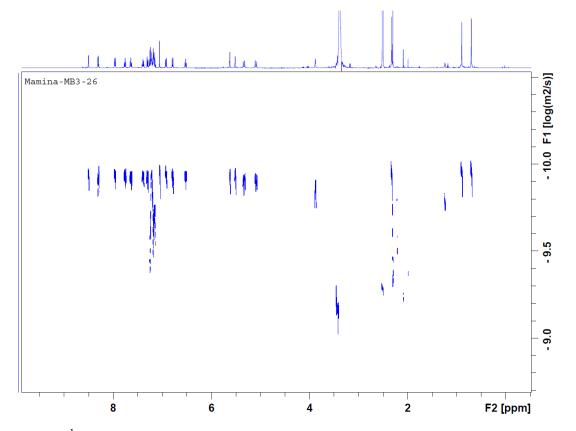

The 1 H NMR spectra of **1** and **2** displayed well-separated chemical resonances for the protons of both the ligands in d_6 -DMSO. All the protons of the complexes are assigned based on 1 H– 1 H COSY spectrum. The presence of a single complex in the solution was further confirmed by DOSY experiment. The signals in region 3.7 to 7.45 ppm are similar for both complexes **1** and **2**. This clearly indicates that both complexes **1** and **2** adopt a highly symmetrical structure in the solution and are structurally similar to each other. The proton signals of **1** and **2** differ only in the region above 7.45 ppm, which are assigned to the terminal benzimidazolyl/naphthanoimidazolyl motifs of L^3/L^4 in the complexes. This is expected obviously because complex **1** differs from complex **2** based on terminal coordination donor motif. The methylene protons for both the complexes appeared as doublet of doublets with coupling constant 14.6 Hz. due to geminal coupling. In both the cases, the H_2 -proton (N– C^2H –N of benzimidazolyl/naphthanoimidazolyl) is shifted upfield remarkably in comparison with the corresponding free ligands, indicating that the H^2 proton is directed to the nearby aromatic face in the complex and experiences the ring current effect. This indicates that the metallocycles remain intact in the solution.

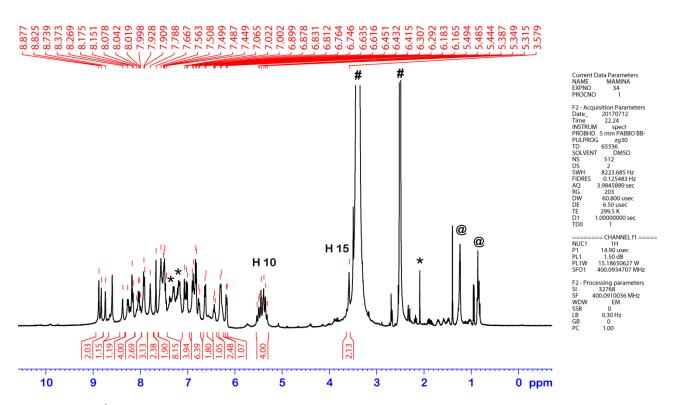
The proton ¹H NMR spectrum of **3** displayed more number of signals than expected for the complex. Interpreting the ¹H-¹H COSY NMR spectrum of **3** also proved to be fruitless. The methylene protons appeared as multiplets in the spectrum which may be due to the flexible and flipping nature of the two *p*-phenylene units resulting in back and forth movement of the units in solution. This may result in various conformers which rapidly interconvert in solution in the NMR timescale.


The proton ¹H NMR spectrum of **5** displayed simple, sharp, and mostly well-separated peaks for the protons of the ligand frameworks. The methylene protons of both ligand strands appeared as two distinguished singlets due to the flexible nature of the ligand frameworks. In case of **4**, both the ligand strands displayed a similar chemical resonance pattern to that of complex **4**. The H² proton of the benzimidazolyl /naphthanoimidazolyl motif of L⁵ /L⁶ displayed a singlet at 8.4 ppm and 8.2 ppm in the complex spectra of **4** and **5**, respectively. These data indicates that metallocycle **4** and **5** adopt mesocate structures in solution.


Figure 5.17. ¹H NMR spectra of **1** in DMSO- d_6 .


Figure 5.18. Partial ${}^{1}\text{H-}{}^{1}\text{H COSY NMR spectrum of }\mathbf{1}$ in DMSO- d_{6} .


Figure 5.19. ¹H NMR spectra of **2** in DMSO- d_6 .


Figure 5.20. Partial ${}^{1}\text{H-}{}^{1}\text{H COSY NMR spectrum of }\mathbf{2}$ in DMSO- d_{6} .

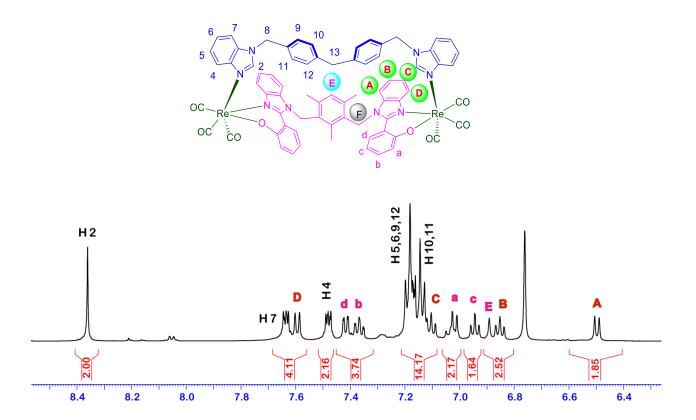

Figure 5.21. ¹H NMR spectra of **1** (bottom) and **2** (top) in DMSO- d_6 .

Figure 5.22. ¹H DOSY NMR spectrum of **1** in DMSO- d_6 .

Figure 5.23. ¹H NMR spectrum of **3** in DMSO- d_6 .

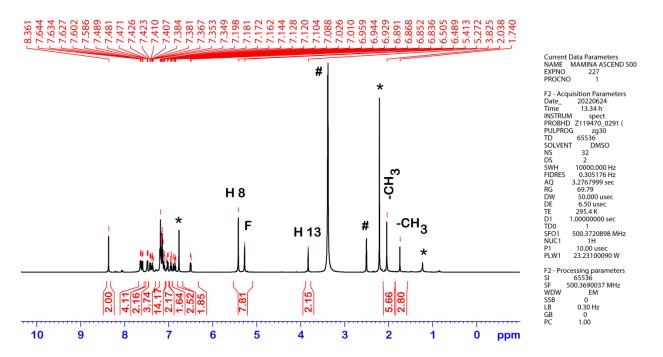
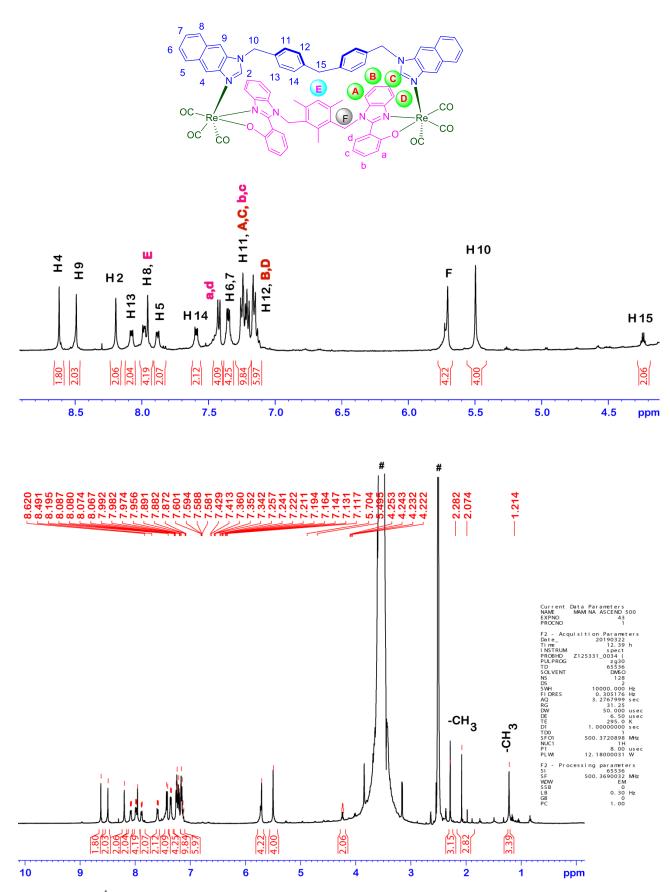
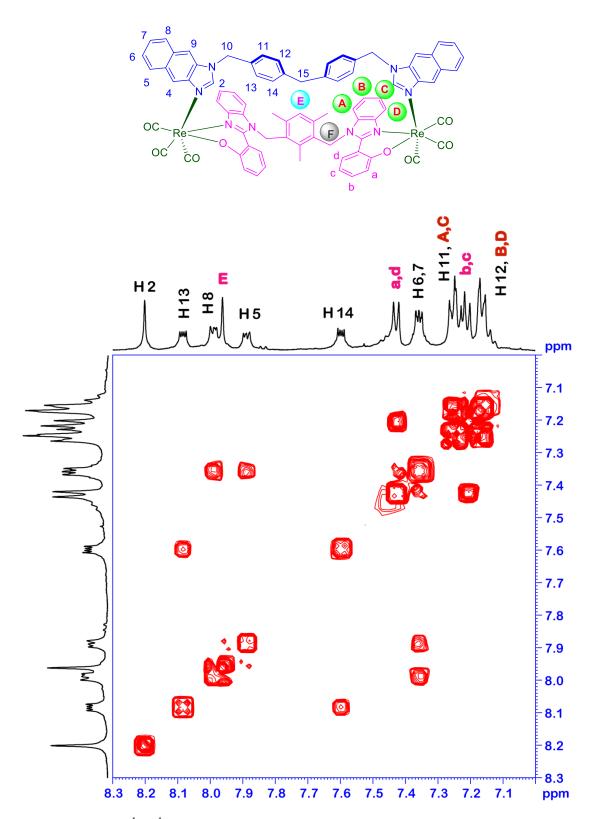
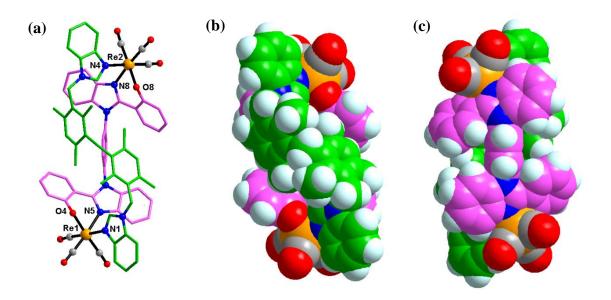
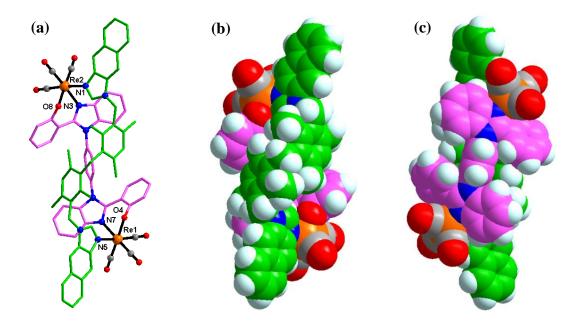




Figure 5.24. ¹H NMR spectra of 4 in DMSO- d_6 .


Figure 5.25. 1 H NMR spectra of **5** in DMSO- d_6 .


Figure 5.26. Partial ${}^{1}\text{H-}{}^{1}\text{H COSY NMR spectrum of 5}$ in DMSO- d_{6} .

5.3.2. Crystal Structure of Complexes 1-3 and 5.

Molecular structures of the complexes were determined by single-crystal X-ray diffraction analysis. Complexes 1–2 adopt a helical architecture, whereas complexes 3 and 5 adopt mesocate structures. In all the complexes Re(I) ion is coordinated by a N∩O chelating unit from the bis-chelating motif, a nitrogen atom from neutral nitrogen donor benzimidazolyl/naphthanoimidazolyl, and three oxygen atoms from three carbonyl groups. The overall size of helicates 1 and 2 are ~21.2 (length) × ~10.5 (width) for 1, and ~25.8 (length) × ~10.5 (width) for 2. The length is calculated from two terminal hydrogen atoms along the helical axis. The width of the helicates is calculated from the two terminal hydrogen atoms of the benzimidazolyl-phenolate motif. Both the ligand strands wrap around the Re···Re axis in a helical manner. In helicate 1, the rigid ligand as well as the neutral N donor wrap around the helical axis in a left-handed way with twist angles of 84° (the dihedral angle between the planes of the two Re–O(Chel)–N(Chel) units) and ~87° (the dihedral angle between the two Re-N(benzimidazolyl) motifs). The opposite trend was observed in the case of helicate 2 with closely similar twisting.

Figure 5.27. (a) Molecular structure of **1** (hydrogen atoms are omitted for clarity). (b & c) Different space fill representation, the carbon atoms of the two strands and CO atoms are differently colored for clarity (green = pink = gray = C, blue = N, red = O, light blue = H, orange = Re).

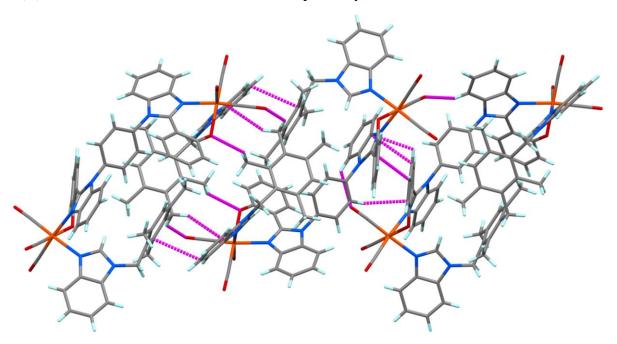
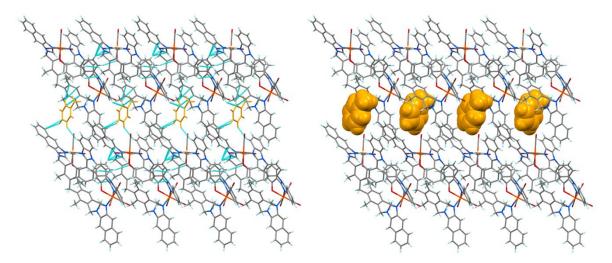
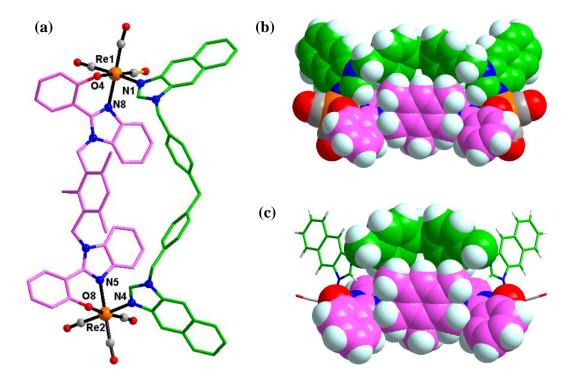


Figure 5.28 (a) Molecular structure of **2** (hydrogen atoms are omitted for clarity). (b & c) Different space fill representation, the carbon atoms of the two strands and CO atoms are differently colored for clarity (green = pink = gray = C, blue = N, red = O, light blue = H, orange = Re).


Single-crystal X-ray diffraction method reveals that metallacycles 3 and 5 adopt M₂LL'-type mesohelical architecture in which both dianionic bis-chelating and neutral bidentate ligand strands are arranged parallel to each other along the Re···Re axis. Though mesocate 3 and helicate 1 or 2 have same bis-chelating motifs, no helical twisting was observed in 3. The dihedral angle between two [Re-O_(Chel)-N_(Chel)]units is ~1°. The bis(p-phenylene) spacer adopt v-shaped geometry and their plane was parallel to the Re...Re axis as well as central phenylene unit of bis-chelating motif of 3. The two naphthanoimidazolyl motifs are directed their fused arene core along the Re···Re axis, resulting the longer size mesocate structure i.e., length of mesocate is ~26.3 Å. The dihedral angle between the two line of Re-N(naphthaimidazolyl) is ~1°, indicating the non-helical nature of flexible ligand in 3. Similar to 3, in mesocate 5 both the ligands are arranged parallel to each other along the Re···Re axis. The neutral ligand conformation in 5 is slightly different from that of in 3. The plane of the bis-phenylene spacer is perpendicular to the Re···Re axis and is almost parallel to the terminal naphthanoimidazolyl planes. The four hetero(arene) motifs of neutral ligand in 5 are

arranged like 'W"-shaped structure. The length of mesocate is \sim 21.3 Å and the Re...Re axis distance is \sim 15 Å.


In crystal packing of **1** and **2**, the adjacent metallocycles are held together by various intermolecular non-covalent interactions including parallel displaced $\pi\cdots\pi$ interactions, edgeto-face C-H··· π interactions, C(H)···O \equiv C-Re non-classical hydrogen bonding interactions. In case of **2** solvent molecule mesitylene resides in the lattice void created by three adjacent helicate molecules and stabilized by C-H··· π and π ··· π interactions. In the crystal structures of **3** and **5**, the neighbouring molecules interact with each other *via* edge-to-face C-H··· π interactions and C(H)···O \equiv C-Re non-classical hydrogen bonding interactions. In case of **5**, the solvent mesitylene molecules sit in the crystal lattice void created by two neighbouring mesocate molecules in a AA pattern and held with the metallocycle framework by C-H··· π interactions. Further solvent acetone and the disordered mesitylene molecules occupies the lattice void in the 2D arrangement and are stabilized by non-classical H-bonding interactions C(H)···O \equiv C-Re and C-H··· π interactions, respectively.


Figure 5.29. (a) Partial packing diagram of $\mathbf{1}$ showing a 1D sheet along b-axis constructuted by various non-covalent interactions (Gray = C, blue = N, red = O, light blue = H, orange = Re).

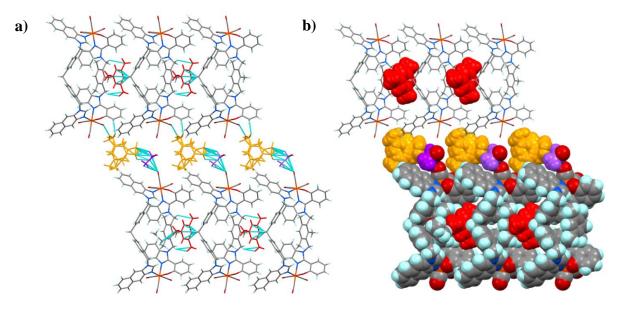

Figure 5.30. Partial packing diagram of **2** showing a 2D sheet along b-axis (Gray = C, blue = N, red = O, light blue = H, orange = Re, guest toluene = yellow).

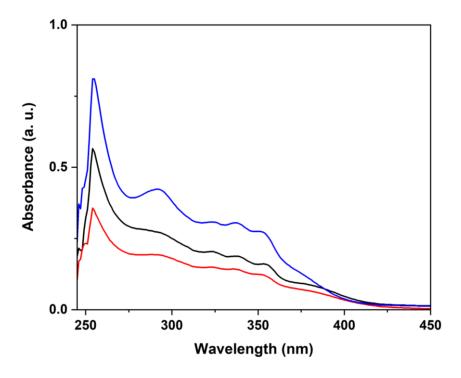
Figure 5.31. (a) Molecular structure of **3** (hydrogen atoms are omitted for clarity). (b & c) Different space fill representation, the carbon atoms of the two strands and CO atoms are differently colored for clarity (green = pink = gray = C, blue = N, red = O, light blue = H, orange = Re)

Figure 5.32. (a) Molecular structure of **5** (hydrogen atoms are omitted for clarity). (b & c) Different space fill representation, the carbon atoms of the two strands and CO atoms are differently colored for clarity (green = pink = gray = C, blue = N, red = O, light blue = H, orange = Re).

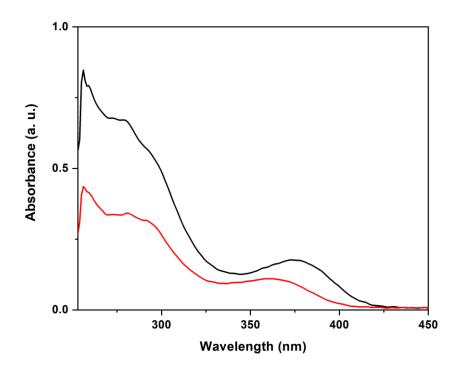
Figure 5.33. (a/b) Partial packing diagram of **5** showing a 2D sheet along c-axis (Gray = C, blue = N, red = O, light blue = H, orange = Re, guest mesitylene = red, lattice mesitylene = yellow, acetone= purple and red).

Table 5.1. Some Important Parameters of the Complexes

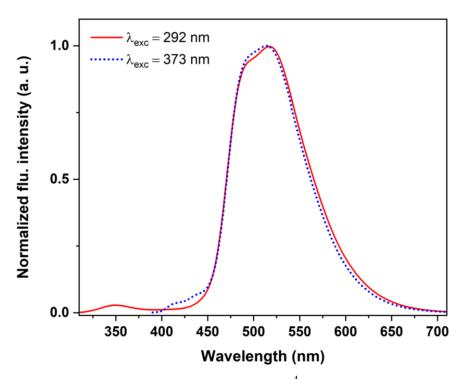
	1	2	3	5
Size of the complex				
^a length (Å)	~21.17	~25.79	~26.32	~21.25
^b width (Å)	~10.46	~10.46	~10.46	~10.46
Re···Re (Å)	~13.56	~13.34	~13.59	~15.2
$\tau(N \text{ donor to } N \text{ donor in } L^n) \text{ (deg)}$	~87	~86	~10.7	~86.9
$\tau \text{Re-N} (L^n) (\text{deg})$	~89.6	~80.9	~0.9	~34.5
τRe–O(chel)–N(chel) (deg)	~84.2	~80.8	~14.6	~20.0
Arrangement of two benzimidazolylphenolate	anti	anti	syn	syn

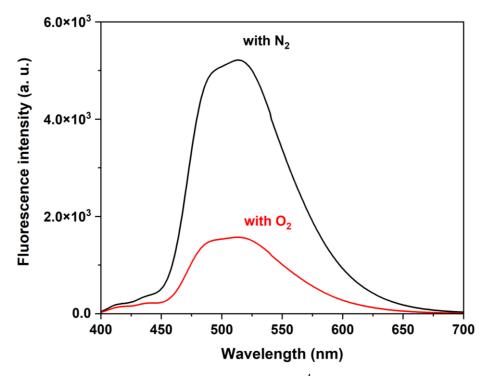

^adistance between two terminal hydrogen atoms along the Re···Re axis

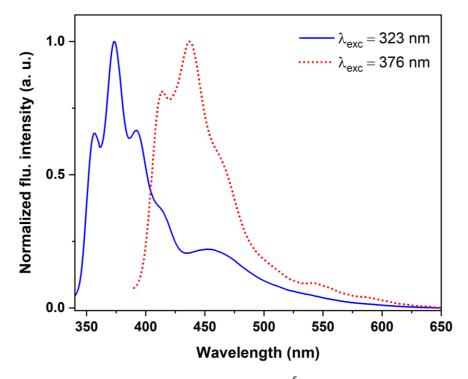
5.3.3 Photophysical properties of helicates 1-2 and mesocates 3-5 in solution and solid-state.

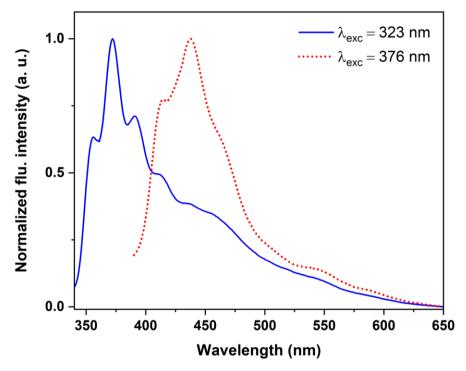

The photophysical properties of complexes (1-5) were studied in both solution (DMSO) and solid-state. The absorption spectra of 1, 2, 3, 5, and 4 display bands in the range of 254-373 nm and 256-362 nm, respectively. Benzimidazolyl moiety-based complexes (1 and 4) showed one type of absorption pattern, whereas naphthoimidazolyl moiety-based complexes (2, 3, and 5) displayed another type of absorption pattern. The high energy bands ($\lambda_{max} = 256$, 273, ~280, 292 nm for 1 and 4; ~254, 292, 323, ~338, 353 for 2, 3, and 5) corresponds to spin-allowed π - π * electronic transitions and intra-ligand charge transfer (ILCT), whereas low energy bands ($\lambda_{max} = 373$ nm for 1, 3, 4, 5, and 362 for 2) are assigned to spin-allowed metal-to-ligand charge transfer (MLCT) transitions. The assignment of electronic transitions is

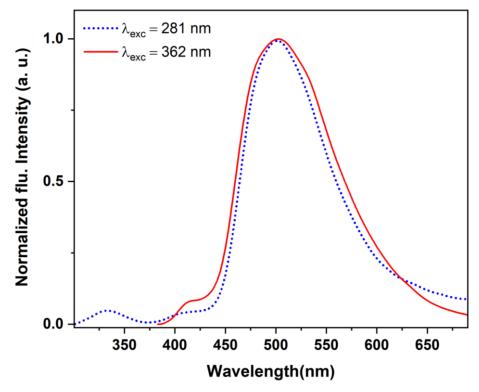
^bdistance between two terminal hydrogen atoms of benzimidazolylphenolate motif τ = dihedral angle


based on the literature report. 13a, 22 All the complexes show ligand-centred emission in the presence of oxygen and nitrogen at room temperature. The emission profile is quenched in the presence of air; the effect is more in the case of complex 1 than in other complexes. The benzimidazolyl moiety-based complexes ($\lambda_{max} = ~518$ nm for 1, and $\lambda_{max} = ~504$ nm for 4) showed a similar structureless emission profile. In contrast, naphthoimidazolyl moiety-based complexes (2, 3, and 5) displayed a similar pattern of structured emission in the range of ~356-547 nm. The appearance of broad emission shoulder at 455 nm for 2 and 437/464 (b) for 3 is due to the presence of L¹ (H₂-pBC), whereas it is absent in the case of 5. The minor shoulder peak at ~493 nm for 1 may due to the nature of the H₂-pBC motifs, which is absent in complex 4. The solid-state absorption spectra of the complexes are observed almost in the same range (~250-450 nm) as the solution state. All the complexes displayed a structureless emission pattern. The luminescence rigidochromic effect is more in the case of 1, while other complexes show a more or less similar shift in both solid and solution states. The nature of the N-donor ditopic ligands and bischelating anionic donor ligands, the substituents and spacer units on them impact the luminescence behaviour of the complexes both in solution as well as solid state.


Figure 5.34. Absorption spectra of complex **2** (1.2 \times 10⁻⁵ M, middle), **3** (1.0 \times 10⁻⁵ M, bottom), and **5** (1.0 \times 10⁻⁵ M, top) in DMSO.


Figure 5.35. Absorption spectra of complex **1** $(1.0 \times 10^{-5} \text{ M}, \text{ top})$ and **4** $(1.2 \times 10^{-5} \text{ M}, \text{ bottom})$ in DMSO.


Figure 5.36. Emission spectra of complex **1** $(1.16 \times 10^{-4} \text{ M})$ in DMSO.


Figure 5.37. Emission spectra of complex **1** $(1.16 \times 10^{-4} \text{ M})$ in DMSO.

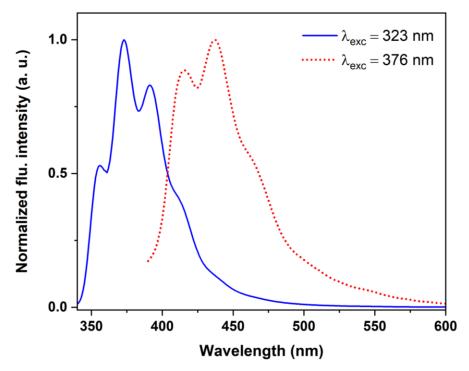

Figure 5.38. Emission spectra of complex **2** $(6.10 \times 10^{-5} \text{ M})$ in DMSO.

Figure 5.39. Emission spectra of complex 3 $(6.40 \times 10^{-5} \text{ M})$ in DMSO.

Figure 5.40. Emission spectra of complex **4** $(9.13 \times 10^{-5} \text{ M})$ in DMSO.

Figure 5.41. Emission spectra of complex **5** $(6.13 \times 10^{-5} \text{ M})$ in DMSO.

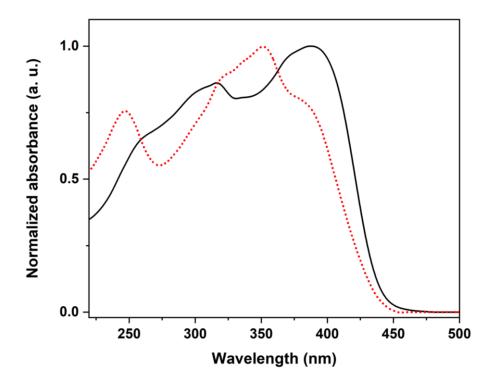
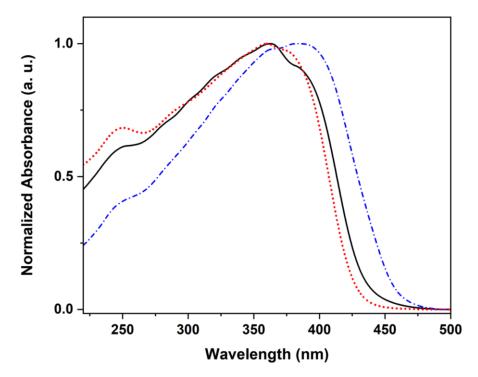



Figure 5.42. Absorption spectra of complex 1 (solid line, black) and $4 (\cdots, red)$ in solid state.

Figure 5.43. Absorption spectra of complex **2** (solid line, black), **3** (----, blue), and **5** (---, red) in solid state.

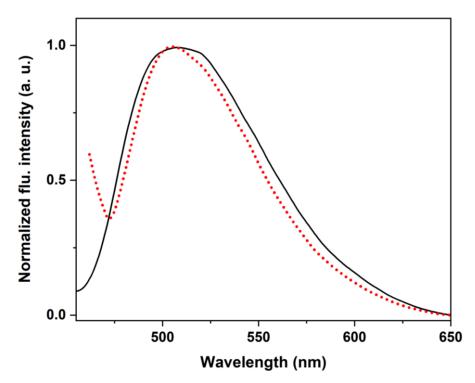


Figure 5.44. Emission spectra of complex 1 (solid line, black) and 4 (···, red) in solid state.

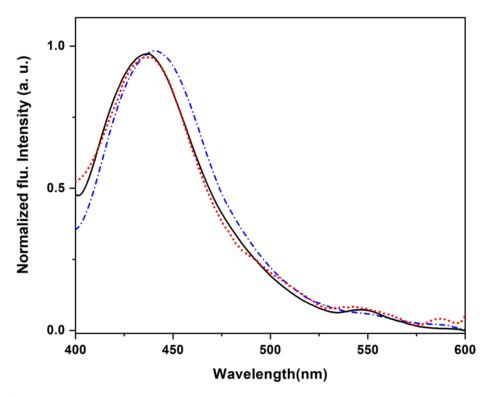


Figure 5.45. Emission spectra of complex 2 (solid line, black), 3 ($-\cdots$, blue), and 5 (\cdots , red) in solid state.

Table 5.2. Solid State Absorption and Emission Spectral Data for 1-5 in DMSO at 298

	absorption	emission	
compounds	λ_{max} (nm)	$\lambda_{\rm exc} ({\rm nm})$	$\lambda_{em, max}(nm)$
1	261, 300, 317, 388	420	509
2	252, 363, 385	363	436
3	250, 362, 384	362	440
4	247, 321, 351, 386	420	506
5	250, 360, 378	360	436

Table 5.3. Solution State Absorption and Emission Spectral Data for 1–5 in DMSO at 298 K.

	absorption		emission	
complexes	$\lambda_{\max}(nm)$	$\lambda_{exc}(nm)$	λ _{em, max} (nm)	
1	256, 273, 280, 292, 373 (b)	292	350 (less intensity), 494, 518 (b, MLCT)	
		373	414/436 (less intensity), 493 514 (b, MLCT)	
2	254, 292, 323, 338, 353, 376	323	356, 373, 392, 415, 455(b)	
		376	414, 437, 466, 544 (less intensity)	
3	254, 292, 323, 336, 352, 376	323	356, 372, 391, 412, 437/464 (b), 546 (less intensity)	
		376	414, 438, 466, 547 (less intensity)	
4	256, 273, 281, 292, 362 (b)	281	332 (less intensity), 401(less intensity), 503 (b, MLCT)	
		362	413 (less intensity), 504 (b, MLCT)	
5	256, 292, 323, 338, 353, 373(b)	323	356, 373, 391, 414	
		376	416, 437, 470	

5.4 Conclusion

The self-assembly of rheniumtricarbonyl core based SCCs, 1–5 was achieved using Re₂(CO)₁₀, rigid/flexible bis-chelating HO∩N donor ligands and flexible ditopic N donor ligands via a one-pot approach. The metallosupramolecules were characterized by ATR-IR, ESI-MS, 1D and 2D NMR spectroscopy. The supramolecular structures of the complexes closely remain in the solution based on the ¹H NMR and ESI-mass analysis. Single-crystal X-ray analysis reveals that the dinuclear SCCs adopt heteroleptic double stranded helical and mesocate architectures in the solid-state. The photophysical properties of the complexes were studied both in solution and solid state. All the supramolecules display emission both in solution and solid state.

5.5 References

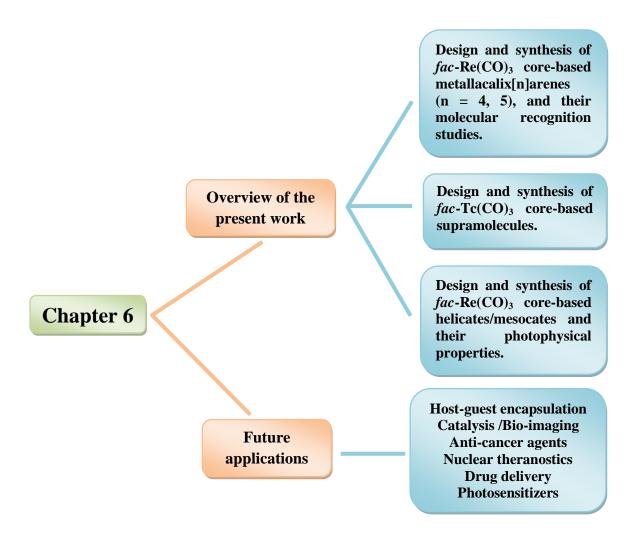
- (a) Lehn, J. -M. Supramolecular Chemistry—Concepts and Perspectives, VCH, Weinheim, 1995.
 (b) Lehn, J. -M. Perspectives in chemistry—steps towards complex matter. Angew. Chem., Int. Ed. 2013, 52, 2836-2850.
 (c) Hannon, M. J.; Childs, L. J. Helices and Helicates: Beautiful Supramolecular Motifs with Emerging Applications. J. Supramol. Chem. 2004, 16, 7-22.
 (d) Albrecht, M. Let's Twist Again—Double-Stranded, Triple-Stranded, and Circular Helicates Chem. Rev. 2001, 101, 3457-3498.
 (e) Piguet, C.; Bernardinelli, G.; Hopfgartner, G.; Helicates as Versatile Supramolecular Complexes. Chem. Rev. 1997, 97, 2005-2062.
- (a) Paneerselvan, A. P.; Mishra, S. S.; Chand, D. K. Linear and circular helicates: A brief review. *J. Chem. Sci.* 2018, *130*, 1–18. (b) Lehn, J. M.; Rigault, A.; Siegel, J.; Harrowfield, J.; Chevrier, B.; Moras, D. Spontaneous assembly of double-stranded helicates from oligobipyridine ligands and copper(I) cations: Structure of an inorganic double helix. *Proc. Natl. Acad. Sci. USA.* 1987, *84*, 2565-2569. (c) Naranthatta, C. M.; Bandi, S.; Jagan R.; Chand, K. D.; Double-Stranded Binuclear Helicates and Helicity Modulation. *Cryst. Growth Des.* 2016, 16, 6722–6728. (d) Ayme, J. F.; Lehn, J. M.; Bailly, C.; Karmazin, L. Simultaneous Generation of a [2 × 2] Grid-Like Complex and a Linear Double Helicate: a Three-Level Self-Sorting Process. *J. Am. Chem. Soc.* 2020, 142, 5819–5824.
- (a) Martínez-Calvo, M.; Romero M. J.; Pedrido. R.; González-Noya A. M.; Zaragozac. G. Bermejoa. M. R. Metal self-recognition: a pathway to control the formation of dihelicates and mesocates *Dalton Trans.* 2012, 41, 13395-13404. (b) Zhanga, Z.; Dolphin, D. A triple-stranded helicate and mesocate from the same metal and ligand. *Chem. Commun.* 2009, 6931-6933. (c) Cui, F.; Li, S.; Jia, C.; Mathieson, J. S.; Cronin, L.; Yang, X.-J.; Wu, B. Anion-Dependent Formation of Helicates versus Mesocates of Triple-Stranded M₂L₃ (M = Fe²⁺, Cu²⁺) Complexes. *Inorg. Chem.* 2012, 51, 179–187. (d) Allison, S. J.; Cooke, D.; Davidson, F. S.; Elliott, P. I. P.; Faulkner, R. A.; Griffiths, H. B. S.; Harper, O. J.; Hussain, O.; Owen-Lynch, P. J.; Phillips, R. M.; Rice, C. R.; Shepherd, S. L.; Wheelhouse, R. T. Ruthenium-Containing Linear Helicates and Mesocates with Tuneable p53-Selective Cytotoxicity in Colorectal Cancer Cells. *Angew. Chem. Int. Ed.* 2018, 57, 9799-9804.
- 4. (a) Li, X.; Wu, J.; Wang, L.; He, C.; Chen, L.; Jiao, Y.; Duan, C. Mitochondrial DNA-targeted Ir^{III}-Containing Metallohelices with Tunable Photodynamic Therapy Efficacy in

- Cancer Cells. Angew. Chem. Int. Ed. **2020**, *59*, 6420- 6427. (b) Li, X.; Shi, Z.; Wu, J.; Wu, J.; C, He.; Haoa, X.; Duan, C. Lighting up metallohelices: from DNA binders to chemotherapy and photodynamic therapy *Chem. Commun.* **2020**, *56*, 7537-7548
- (a) Cook, T. R.; Vajpayee, V.; Lee, M. H.; Stang, P. J.; Chi, K. -W. Biomedical and Biochemical Applications of Self-Assembled Metallacycles and Metallacages. *Acc. Chem. Res.* 2013, 46, 2464–2474. (b) Casini, A.; Woods, B.; Wenzel, M. The Promise of Self-Assembled 3D Supramolecular Coordination Complexes for Biomedical Applications. *Inorg. Chem.* 2017, 56, 14715–14729. (c) Gao, W. -X.; Zhang. H. N.; Jin, G. -X. Supramolecular catalysis based on discrete heterometallic coordinationdriven metallacycles and metallacages. *Coord. Chem. Rev.* 2019, 386, 69–84. (d) Chakrabarty, R.; Mukherjee, P. S.; Stang, P. J. Supramolecular Coordination: Self-Assembly of Finite Two- and Three-Dimensional Ensembles. *Chem. Rev.* 2011, 111, 6810–6918.
- 6. (a) Frischmann, P. D.; MacLachlan, M. J. Metallocavitands: an emerging class of functional multimetallic host molecules. *Chem. Soc. Rev.* 2013, 42, 871-890 and references therein. (b) Lippert, B.; Sanz Miguel, P. J. Metallatriangles and metallasquares: the diversity behind structurally characterized examples and the crucial role of ligand symmetry. *Chem. Soc. Rev.* 2011, 40, 4475-4487 and references therein. (c) Han, Y. F.; Li, H.; Jin, G. X. Host–guest chemistry with bi-and tetra-nuclear macrocyclic metallasupramolecules. *Chem. Commun.* 2010, 46, 6879-6890. (d) Therrien, B. Drug Delivery by Water-Soluble Organometallic Cages *Top. Curr. Chem.* 2012, 319, 35-55. (e) Smulders, M. M. J.; Riddell, I. A.; Browne, C.; Nitschke, J. R. Building on architectural principles for three-dimensional metallosupramolecular construction. *Chem. Soc. Rev.* 2013, 42, 1728–1754. (f) Cook, T. R.; Stang, P. J. Recent Developments in the Preparation and Chemistry of Metallacycles and Metallacages via Coordination. *Chem. Rev.* 2015, 115, 7001–7045.
- 7. (a) Bauer, E. B.; Haase, A. A.; Reich, R. M.; Crans, D. C.; Kühn, F. E. Organometallic and coordination rhenium compounds and their potential in cancer therapy. *Coord. Chem. Rev.* **2019**, *393*, 79-117. (b) Haase, A. A.; Bauer, E. B.; Kühn, F. E.; Crans, D. C. Speciation and toxicity of rhenium salts, organometallics and coordination complexes. *Coord. Chem. Rev.* **2019**, *394*, 135-161.
- 8. (a) Ramakrishna, B.; Nagarajaprakash, R.; Veena, V.; Sakthivel, N.; Manimaran. B. Self-assembly of oxamidato bridged ester functionalised dirhenium metallastirrups: synthesis, characterisation and cytotoxicity studies. *Dalton Trans.* **2015**, *44*, 17629-17638. (b) Gupta, D.; Sathiyendiran, M. Rhenium-Carbonyl-Based Supramolecular Coordination

- Complexes: Synthesis, Structure and Properties. ChemistrySelect 2018, 3, 7439-7458 and references cited therein. (c) Orsa, D. K.; Haynes, G. K.; Pramanik, S. K.; Iwunze, M. O.; Greco, G. E.; Krause, J. A.; Ho, D.; Williams, A. L.; Hill, D. A.; Mandal, S. K. Synthesis, characterization, and fluorescence and cytotoxicity studies of a tetrarhenium molecular rectangle. Inorg. Chem. Commun. 2007, 10, 821-824. (d) Balasingham, R. G.; Thorp-Greenwood, F. L.; Williams, C. F.; Coogan, M. P.; Pope, S. J. A. Biologically Phosphorescent Dimetallic Rhenium Complexes Linked through Compatible, Functionalized Alkyl Chains: Syntheses, Spectroscopic Properties, and Applications in Imaging Microscopy. Inorg. Chem. 2012, 51, 1419-1426. (e) Gupta, D.; Singh, V.; Hohloch, S.; Sathiyendiran, M.; Tedin, K.; Sarkar, B. Utilizing a series of fac-Re(CO)₃ core based quinonoid containing complexes for photophysical and cell imaging studies. Polyhedron 2015, 100, 243-250. (f) Govindarajan, R.; Nagarajaprakash, R.; Veena, V.; Sakthivel, N.; Manimaran, B. One-pot reaction of amide functionalized Re(I) based dinuclear metallacycles: Synthesis, characterization and evaluation for anticancer potential. Polyhedron. 2018, 139, 229-236.
- (a) Dinolfo, P. H.; Hupp, J. T. Supramolecular coordination chemistry and functional microporous molecular materials. *Chem. Mater.* 2001, 13, 3113–3125. (b) Hupp, J. T. Rhenium-Linked Multiporphyrin Assemblies: Synthesis and Properties. *Struct. Bonding*, 2006, 121, 145-165. (c) Rohacova, J.; Ishitani, O. Photofunctional Multinuclear Rhenium(I) diimine Carbonyl Complexes. *Dalton Trans.* 2017, 46, 8899–8919. (d) Thanasekaran, P.; Lee, C. C.; Lu, K. L. One-Step Orthogonal-Bonding Approach to the Self-Assembly of Neutral Rhenium-Based Metallacycles: Synthesis, Structures, Photophysics, and Sensing Applications. *Acc. Chem. Res.* 2012, 45, 1403–1418. (e) Kumar, A.; Sun, S. S.; Lees, A. J. Directed assembly metallocyclic supramolecular systems for molecular recognition and chemical sensing, *Coord. Chem. Rev.* 2008, 252, 922-939.
- 10. (a) Sato, S.; Ishitani, O. Photochemical reactions of fac-rhenium(I) tricarbonyl complexes and their application for synthesis. *Coord. Chem. Rev.* **2015**, 282–283, 50–59. (b) Cancelliere, A. M.; Puntoriero, F.; Serroni, S.; Campagna, C.; Tamaki, Y.; Saito, D.; Ishitani, O. Efficient trinuclear Ru(ii)–Re(i) supramolecular photocatalysts for CO₂ reduction based on a new tris-chelating bridging ligand built around a central aromatic ring. *Chem. Sci.* **2020**, 11, 1556–1563. (c) Sinha, D.; Parua, S. P.; Rajak, K. K. Synthesis and characterization of acrylate cyanide bridged dimeric fac-Rhenium(I) complex: Photophysical, selective CO₂ adsorption and theoretical studies. *J. Organomet*.

- *Chem.* **2019**, 889, 62–69.Dilworth, J. R. Rhenium chemistry Then and Now. *Coord. Chem. Rev.* **2021**, 436, 213822.
- (a) Tseng, T. W.; Luo, T. T.; Liao, S. H.; Lu, K. H.; Lu, K. L. Isorecticular Synthesis of Dissectible Molecular Bamboo Tubes of Hexarhenium(I) Benzene-1,2,3,4,5,6-hexaolate Complexes. *Angew. Chem., Int. Ed.* 2016, 55, 8343-8347. (b) Coogan, M. P.; Fernndez-Moreira, V.; Kariuki, B. M.; Pope, S. J. A.; Thorp-Greenwood, F. L. A Rhenium Tricarbonyl 4'-Oxo-terpy Trimer as a Luminescent Molecular Vessel with a Removable Silver Stopper. *Angew. Chem., Int. Ed.* 2009, 48, 4965-4968. (c) Sathiyendiran, M.; Liao, R. T.; Thanasekaran, P.; Luo, T. T.; Venkataramanan, N. S.; Lee, G. H.; Peng, S. M.; Lu, K. L. Gondola-Shaped Luminescent Tetrarhenium Metallacycles with Crown-Ether-like Multiple Recognition Sites. *Inorg. Chem.*, 2006, 45, 10052-10054. (d) Sathiyendiran, M.; Tsai, C. C.; Thanasekaran, P.; Luo, T. T.; Yang, C. I.; Lee, G. H.; Peng, S. M.; Lu, K. L. Organometallic Calixarenes: Syceelike Tetrarhenium(I) Cavitands with Tunable Size, Color, Functionality, and Coin–Slot Complexation. *Chem. Eur. J.* 2011, 17, 3343-3346.
- 12. (a) Shankar, B.; Marimuthu, R.; Sathiyashivan, S. D.; Sathiyendiran, M. Spheroid metallacycles and metallocavitands with calixarene-and/or cleft-shaped receptors on the surface. *Inorg. Chem.* **2016**, *55*, 4537-4544. (b) Gupta, D.; Rajakannu, P.; Shankar, B.; Hussain, F.; Sathiyendiran, M. Synthesis and crystal structure of a wheel-shaped supramolecular coordination complex. *J. Chem. Sci.*, **2014**, *126*, 1501-1506.
- (a) Shankar, B.; Sahu, S.; Deibel, N.; Schweinfurth, D.; Sarkar, B.; Elumalai, P.; Gupta, D.; Hussain, F.; Krishnamoorthy, G.; Sathiyendiran, M. Luminescent Dirhenium(I)-Double-Heterostranded Helicate and Mesocate. *Inorg. Chem.* 2014, 53, 922–930. (b) Saxena, P.; Shankar, B.; Sathyanarayana, A.; Prabusankar G.; Sathiyendiran, M. Rhenium(i)-based Double-heterostranded Helicates. *Chimia.* 2015, 69, 675–677. (c) Soumya, K. R.; Arumugam, R.; Shankar B.; Sathiyendiran, M.; *Inorg. Chem.* 2018, 57, 10718–10725. (d) Shankar, B.; Elumalai, P.; Jackmil, P. J.; Kumar, P.; Singh, S.; Sathiyendiran, M. Synthesis of rhenium-based M₂LL⁰-type supramolecular coordination complexes from flexible ligands. *J. Organomet. Chem.* 2013, 743, 109-113.
- 14. (a) Botana, E.; Silva, E. D.; Benet-Buchholz, J.; Ballester, P.; de Mendoza, Inclusion of Cavitands and Calix[4]arenes into a Metallobridged para -(1H -Imidazo[4,5-f][3,8]phenanthrolin-2-yl)-Expanded Calix[4]arene. *Angew. Chem., Int. Ed.* **2007**, *46*, 198-201. (b) Lu, Z. Z.; Lee, C. C.; Velayudham, M.; Lee, L. W.; Wu, J. Y.; Kuo, T. S.; Lu, K. L. Control of Light-Promoted [2+2] Cycloaddition Reactions by a Remote

- Ancillary Regulatory Group That Is Covalently Attached to Rhenium Rectangles. *Chem. Eur. J.* **2012**, *18*, 15714-15721. (c) Su, C. Y.; Cai, Y. P.; Chen, C. L.; Smith, M. D.; Kaim, W.; zur Loye, H. C. Ligand-Directed Molecular Architectures: Self-Assembly of Two-Dimensional Rectangular Metallacycles and Three-Dimensional Trigonal or Tetragonal Prisms. *J. Am. Chem. Soc.* **2003**, *125*, 8595-8613.
- 15. (a) Slone, R. V.; Benkstein, K. D.; Bélanger, S.; Hupp, J. T.; Guzei, I. A.; Rheingold, A. L. Luminescent transition-metal-containing cyclophanes ("molecular squares"): covalent self-assembly, host-guest studies and preliminary nanoporous materials applications. *Coord. Chem. Rev.* 1998, 171, 221-243. (b) Sun, S. S.; Lees, A. J. Transition metal based supramolecular systems: synthesis, photophysics, photochemistry and their potential applications as luminescent anion chemosensors. *Coord. Chem. Rev.* 2002, 230, 171-192.
- 16. Han, X.; Ma, H.; Wang, Y. A Simple and Efficient Synthesis of 2-Aryl-Substituted Benzimidazoles. *Russ. J. Org. Chem.* **2008**, *44*, 872-874.
- 17. Grobler, I.; Smith, V. J.; Bhatt, P. M.; Herber, S. A.; Barbour, L. J. Tunable Anisotropic Thermal Expansion of a Porous Zinc(II) Metal–Organic Framework. *J. Am. Chem. Soc.* **2013**, *135*, 6411–6414.
- 18. van der Made, A. W.; van der Made, R. H. A Convenient Procedure for Bromomethylation of Aromatic Compounds, Selective Mono-, Bis-, or Trisbromomethylation. *J. Org. Chem.* **1993**, *58*, 1262-1263.
- 19. Zhao, X. -L.; Sun, D.; Hu, T. -P.; Yuan, S.; Gu, L. -C.; Cong, H. -J.; Hea, H. -Y.; Sun, D. -F. Phase transfer catalyst supported, room temperature biphasic synthesis:a facile approach to the synthesis of coordination polymers. *Dalton Trans.* **2012**, *41*, 4320–4323.
- 20. Chahen, L.; Therrien, B.; Suss-Fink, G. Square-planar dichloro palladium complexes with trans-configurated phosphine ligands avoiding ortho-metallation: Ligand design, complex synthesis, molecular structure and catalytic potential for Suzuki cross-coupling reactions. *J. Organomet. Chem.* **2006**, *691*, 4257–4264.
- 21. Bhol, M.; Claude, G.; Jungfer, M. R.; Abram, U.; Sathiyendiran, M. Calix[4]arene-Analogous Technetium Supramolecules. *Inorg. Chem.* **2022**, *61*, 5173–5177.
- 22. Bhol, M.; Shankar, B.; Sathiyendiran, M. Rhenium(I) based irregular pentagonal-shaped metallacavitands. *Dalton Trans.* **2018**, *47*, 4494–4500.
- 23. Arumugam, R.; Shankar, B.; Soumya, K. R.; Sathiyendiran, M. fac-Re(CO)3-based neutral heteroleptic tetrahedrons. *Dalton Trans.* **2019**, *48*, 7425-7431.


- 24. (a) Sheldrick, G. M. "SHELXS-97 and SHELXL-97, Program for Crystal Structure Solution and Refinement," University of Gottingen, Gottingen, 1997. (b) Sheldrick, G. M. A short history of SHELX. *Acta Crystallogr.*, *Sect. A: Found. Crystallogr.* **2008**, *64*, 112–122. (c) Sheldrick, G. M. Crystal structure refinement with SHELXL. *Acta Crystallogr.*, *Sect. C: Struct. Chem.* **2015**, *71*, 3–8.
- 25. (a) Vlcek, A. Ultrafast Excited-State Processes in Re(I)Carbonyl-Diimine Complexes: From Excitation to Photochemistry. *Top. Organomet. Chem.* **2009**, *29*, 115–158. (b) Giordano, P. J.; Wrighton, M. S. The Nature of the Lowest Excited State in *fac*-Tricarbonylhalobis(4-phenylpyridine) rhenium (I) and *fac*-Tricarbonylhalobis(4, 4' bipyridine) rhenium(I): Emissive Organometallic Complexes in Fluid Solution. *J. Am. Chem. Soc.* **1979**, *101*, 2888–2897.

Chapter 6

Conclusion and Future Prospects

Abstract

The thesis entitled "Rhenium- and Technetium-tricarbonyl Core-based Supramolecular Metallocavitands and Helicates" discusses the design, and synthetic principles for the construction of novel neutral, flexible bidentate nitrogen donor ligands with diarylmethane spacers and their corresponding [fac-M(CO)₃]⁺ (M = Re/Tc) core-based supramolecular architectures, which include mononuclear rhenium/technetium homoleptic metallacalix[4]arenes, dinuclear rhenium heteroleptic metallacalix[5]arenes, and dinuclear rhenium heterostranded helicates and mesohelicates. In this chapter, the thesis is summarized, and the possible future direction of the present work and potential future application of the rhenium- and technetiumtricarbonyl complexes are briefly discussed.

6.1. Overview of the present work

The facial rheniumtricarbonyl core-based metallomacrocycles exhibit a distinctive class of stable, functional, and robust metal-based cyclic architectures to form neutral 2D and 3D metallocycles. The fac-Re(CO)₃ fragment is kinetically inert and biocompatible, which makes it a very significant unit in the medicinal field. Further, the fac-Re(CO)₃ core-based SCCs display potential applications in molecular recognition, as photoluminescence quenching probes, cavity-controlled catalysis, anticancer agents, photo- and electro-chemical sensing. The appropriate choice of nitrogen donors with/without ancillary ligands and rhenium metal precursors can achieve various shapes and sizes of metallocycles. Due to virtually identical chemical and physical properties of Re and Tc (Atomic radii: Re- 1.37 Å; Tc- 1.36 Å, lipophilicity, ionic mobility and formal charge), advances in the fac-Re(CO)₃ based chemistry can be exploited for the designing and development of new stable and kinetically inert fac-[M(CO)₃]⁺ (M = 99m Tc/ $^{186/188}$ Re) core-based radiopharmaceuticals as diagnostic and therapeutic agents. Though a considerable amount of research has focused on acyclic systems with fac-Tc(CO)₃ core, till now, only one example has been reported for Tc(I) core containing metallomacrocycles.

The flexible benzimidazolyl and its structural analogous based ditopic N-donors have attracted attention as versatile structural framework for making cavity-containing *fac*-[Re(CO)₃] core-based metallacalix[4]arenes. Although a variety of rhenium heteroleptic, neutral metallacalixarenes are reported, the hydrophobic cavity is small to accommodate guest molecules entirely or partially. This research focuses on increasing the cavity size by modulating the spacer on N-donor ligands which can accommodate potential guest molecules entirely inside their hydrophobic cavity. Rhenium(I) based metallocavitands analogous to calix[5]arene framework with larger cavity were synthesized by using Re₂(CO)₁₀, rigid bischelating donor, and neutral ditopic flexible N-donor ligands possessing bis(4-methylphenyl)methane spacer via solvothermal approach. These metallocavitands adopt tubular structure, accommodate toluene molecule in the solid state, and are able to recognize the guest molecules, including nitroaromatic compounds and polyaromatic hydrocarbons in the solution. We are successful in making *fac*-[Re(CO)₃] core-based metallocavitands analogous to calix[5]arene and have a larger hydrophobic cavity than the metallocavitand

similar to calix[4] arene framework. To the best of our knowledge, this is the first example of rhenium-core based metallocavitands analogous to calix[5] arene. This study provides a way to prepare metallocavitands with a tunable cavity and functional group via a simple one-pot method.

The internal cavity size of the fac-[Re(CO)₃] core-based metallocavitands can be further tuned by modifying the N-donor ligands or/and by changing the bis-chelating motifs. The heteroleptic fac-[Re(CO)₃] core-based metallocavitands analogous to calix[5]arene were synthesized using two new neutral, flexible ditopic nitrogen donors, bis-chelating ligands and Re₂(CO)₁₀ via one-pot synthesis. These metallocavitands adopt tubular structure, accommodate acetone, mesitylene, toluene, and chlorobenzene guest molecules in the solid state and are able to recognize substituted phenol and nitrobenzene as guest molecules in the solution. To the best of our knowledge, this is the second example of rhenium-core based metallocavitands similar to calix[5]arene from our research group. This study provides an easy synthetic approach for assembling neutral, heteroleptic pentagonal toroid-shaped fac-[Re(CO)₃] core-based host molecules.

This research work provides a new synthetic strategy to design and synthesize fac- $Tc(CO)_3$ core-based supramolecules analogous to calix[4]arene. Two new types of neutral, flexible ditopic nitrogen donor ligands with bismesitylene spacer were designed and synthesized. Further, N-donor ligands are utilized to assemble technetium supramolecules using $(NBu_4)[Tc_2(\mu-Cl)_3(CO)_6]$. Isostructural rhenium macrocycles were also assembled from $[Re(CO)_5X]$ (X=Cl, Br) and L^n . The solid-state structures of the supramolecules reveal that these molecules adopt bowl-shaped structures. The molecular recognition studies of rhenium macrocycles were studied with potential guest molecules, including benzene, naphthalene, anthracene, imidazole, and benzimidazole. To the best of our knowledge, the technetium complexes are the first examples of fac- $[Tc(CO)_3]^+$ core-based SCCs analogous to calix[4]arenes and the second Tc-containing metallomacrocycles. The results enable the design of unique fac- $[Tc(CO)_3]^+$ core-based supramolecules and extend the entry into the field of supramolecules.

The nature and length of the spacer motifs in the organic ligand frameworks play an essential role in getting the helicate or meso-helicate architectures. This research focuses on the design principles of synthesizing fac–[Re(CO)₃] core-based dinuclear helicates and mesocates. The helicates/ meso-helicates were self-assembled using Re₂(CO)₁₀, rigid/flexible bis-chelating HO \cap N donor ligands, and flexible ditopic N donor ligands via a one-pot approach. Photophysical properties show that all the supramolecules display emissions in solution and solid states. We have successfully synthesized fac–[Re(CO)₃] core-based dinuclear helicates and mesocates, which may have the potential application in biology.

6.2. Future directions

The development of new synthetic approaches is still under process to increase the width of the fac-[Re(CO)₃] and fac-[Tc(CO)₃] core-based metallocavitands, tuning functional groups at the periphery as well as to make calix[n]arene (n = 6,7)-shaped metallocavitands. Host-guest properties will be studied in both solid and solution states with various potential guest molecules, including biomolecules. In future, the suitable design of fac-[Tc(CO)₃]⁺ core-based supramolecules may find potential utility in the medicinal fields due to the combined properties of the technetium core and guest encapsulation properties of the macrocyclic cavity. DNA recognition properties of the helicates/mesocates will be carried out, and the photophysical properties will be studied by using the time-dependent density functional theory.

The stable and kinetically inert *fac*-[M(CO)₃]⁺ (M = ^{99m}Tc/ ^{186/188}Re) core-based complexes have been gaining continuous research interest for the development of new radiopharmaceuticals as diagnostic and therapeutic agents. ⁴⁻⁵ The low spin d⁶ electronic configuration of Re(I) and Tc(I) makes their complexes kinetically inert and biocompatible, providing high advantages in the medicinal field. ¹⁻⁵ In addition to their kinetic inertness, thermal and phot-stability, luminescence, membrane permeability, and large stoke's shift properties offer numerous opportunities for developing novel supramolecules for applications in host-guest encapsulation, bio-imaging, transport through the cell membrane, DNA recognition, anti-cancer activities, and light-harvesting systems. ¹⁻³

6.3. References

- (a) Thanasekaran, P.; Lee, C. C.; Lu, K. L. One-Step Orthogonal-Bonding Approach to the Self-Assembly of Neutral Rhenium-Based Metallacycles: Synthesis, Structures, Photophysics, and Sensing Applications. *Acc. Chem. Res.* 2012, 45, 1403–1418. (b) Dinolfo, P. H.; Hupp, J. T. Supramolecular coordination chemistry and functional microporous molecular materials. *Chem. Mater.* 2001, 13, 3113–3125. (c) Gupta, D.; Sathiyendiran, M. Rhenium-Carbonyl-Based Supramolecular Coordination Complexes: Synthesis, Structure and Properties. *ChemistrySelect.* 2018, 3, 7439-7458 and references cited there in.
- 2. (a) Cook, T. R.; Vajpayee, V.; Lee, M. H.; Stang, P. J.; Chi, K. W. Biomedical and Biochemical Applications of Self-Assembled Metallacycles and Metallacages. *Acc. Chem. Res.* **2013**, *46*, 2464-2474. (b) Cook, T. R.; Stang, P. J. Recent Developments in the Preparation and Chemistry of Metallacycles and Metallacages via Coordination. *Chem. Rev.* **2015**, *115*, 7001-7045.
- (a) Bauer, E. B.; Haase, A. A.; Reich, R. M.; Crans, D. C.; Kühn, F. E. Organometallic and coordination rhenium compounds and their potential in cancer therapy. *Coord. Chem. Rev.* 2019, 393, 79-117. (b) Ramakrishna, B.; Nagarajaprakash, R.; Veena, V.; Sakthivel, N.; Manimaran. B. Self-assembly of oxamidato bridged ester functionalised dirhenium metallastirrups: synthesis, characterisation and cytotoxicity studies. *Dalton Trans.* 2015, 44, 17629-17638. (c) Balasingham, R. G.; Thorp-Greenwood, F. L.; Williams, C. F.; Coogan, M. P.; Pope, S. J. A. Biologically Compatible, Phosphorescent Dimetallic Rhenium Complexes Linked through Functionalized Alkyl Chains: Syntheses, Spectroscopic Properties, and Applications in Imaging Microscopy. *Inorg. Chem.* 2012, 51, 1419–1426. (d) Sato, S.; Ishitani, O. Photochemical reactions of fac-rhenium(I) tricarbonyl complexes and their application for synthesis. *Coord. Chem. Rev.* 2015, 282–283, 50–59.
- 4. Fernandez-Moreira, V.; Thorp-Greenwood, F. L.; Coogan, M. P. Application of d⁶ transition metal complexes in fluorescence cell imaging. *Chem. Commun.* **2010**, *46*, 186-202.
- 5. a) Alberto, R.; Schibli, R.; Waibel, R.; Abram, U.; Schubiger, A. P. Basic aqueous chemistry of $[M(OH_2)_3(CO)_3]^+$ (M=Re, Tc) directed towards radiopharmaceutical

- application. *Coord. Chem. Rev.* **1999**, *190-192*, 901-919. (b) Waibel, R.; Alberto, R.; Willuda, J.; Finnern, R.; Schibli, R.; Stichelberger, A.; Egli, A.; Abram, U.; Mach, J. –P.; Plückthun, A.; Schubiger, P. A. Stable one-step technetium-99m labeling of Histagged recombinant proteins with a novel Tc(I)–carbonyl complex. *Nature Biotechnol.* **1999**, *17*, 897-901.
- (a) Abram, U.; Alberto, R. Technetium and rhenium: coordination chemistry and nuclear medical applications. *J. Braz. Chem. Soc.* 2006, 17, 1486-1500. (b) Papagiannopoulou, D. Technetium-99m radiochemistry for pharmaceutical applications. *J. Labelled Comp. Radiopharm.* 2017, 60, 502-520.

Publications

A. Publications from thesis work:

- 1. **Bhol, M.**; Shankar, B.; Sathiyendiran, M. Rhenium(I) based irregular pentagonal-shaped metallacavitands. *Dalton Trans.* **2018**, *47*, 4494-4500.
- Bhol, M.; Claude, G.; Roca Jungfer, M.; Abram, U.; Sathiyendiran. M. Calix[4]arene-Analogous Technetium Supramolecules. *Inorg. Chem.* 2022, 61, 5173–5177.
- Bhol, M.; Shankar, B.; Sathiyendiran, M. Rhenium(I) Based Heteroleptic Pentagonal Toroid Shaped Metallocavitands: Self-Assembly and Molecular Recognition Studies. *Inorg. Chem.* 2022, DOI:10.1021/acs.inorgchem.2c02061.
- **4. Bhol, M.**; Shankar, B.; Wolff, M.; Sathiyendiran, M. Self-Assembly and Photophysical Properties of Rheniumtricarbonyl-Based Helicates and Mesocates (*To be communicated*).

B. Other Publications:

- 1. **Bhol, M.**; Priyatharsini, M.; Krishnakumar, R. V.; Sathiyendiran, M. Solid state structure and photophysical properties of monoanionic 2-(2'-hydroxyphenyl)benzimidazole as an anionic core in rhenium complex. *J. Organomet. Chem.* **2019**, 889, 27-32.
- 2. Mishra, I.; † **Bhol. M.**; † Kalimuthu. P.; Sathiyendiran. M. Emerging Spacers-Based Ligands for Supramolecular Coordination Complexes. *Chem. Rec.* **2021**, *21*, 594-614 (†Equal Contribution).

Poster and Oral Presentations

- 1. **Poster:** *NMSTC-2017: National Meeting of Synthetic and Theoretical Chemists*, University of Hyderabad, Telangana, India; 2017 Oct. 13-14.
- 2. **Poster:** *ICCCS-2017:* 8th *International Collaborative* & *Cooperative Chemistry* Symposium, University of Hyderabad, Telangana, India; 2017 Dec 18-19.
- 3. **Poster:** *CHEMFEST-2018:* 15th Annual in- House Symposium, University of Hyderabad, Telangana, India; 2018 Mar. 9-10 (**Best Poster Award**).
- 4. **Poster:** *CHEMFEST-2019:* 16th Annual in- House Symposium, University of Hyderabad, Telangana, India; 2019 Feb. 22-23 (**Best Poster Award**).
- 5. **Oral:** *ACST-2019: International Conference on Advances in Chemical Sciences and Technologies*, National Institute of Technology, Warangal, India; 2019 Sep. 23-25.
- Poster: MTIC 2019: International Conference on Modern Trends In Inorganic Chemistry-XVIII, Indian Institute of Technology Guwahati, Assam, India; 2019 Dec.11-14.
- 7. **Poster:** *CHEMFEST-2020:* 17th Annual in- House Symposium, University of Hyderabad, Telangana, India; 2020 Feb. 27-28.
- 8. **Oral:** *CHEMFEST-2020:* 19th Annual in- House Symposium, University of Hyderabad, Telangana, India; 2022 Apr. 22-23 (**Best Oral Presentation Award by RSC**).

Rhenium- and Technetiumtricarbonyl Core-based Supramolecular Metallocavitands and Helicates

by Mamina Bhol

Submission date: 15-Jul-2022 12:38PM (UTC+0530)

Submission ID: 1870784185

File name: Mamina_Bhol_Thesis_16CHPH14.pdf (1.57M)

Word count: 16861 Character count: 92054

Rhenium- and Technetium-tricarbonyl Core-based Supramolecular Metallocavitands and Helicates

ORIGINALITY REPORT **PUBLICATIONS** STUDENT PAPERS SIMILARITY INDEX INTERNET SOURCES **PRIMARY SOURCES** Mamina Bhol, Bhaskaran Shankar, Malaichamy Sathiyendiran. "Rhenium(I)-Based Heteroleptic Pentagonal Toroid-Shaped Dr. M.Sathiyendiran Metallocavitands: Self-Assembly and Molecular Recognition Studies", Inorganic School of Chemistry University of Hyderabad Hyderabad - 500 046, India. Chemistry, 2022 Publication Mamina Bhol, Guilhem Claude, Maximilian Roca Jungfer, Ulrich Abram, Malaichamy Sathiyendiran. "Calix[4]arene-Analogous Dr. M.Sathiyendiran Technetium Supramolecules", Inorganic School of Chemistry University of Hyderabad Chemistry, 2022 Hyderabad - 500 046, India. Publication Dr. M.Sathiyendiran Professor pubs.rsc.org School of Chemistry University of Hyderabad Internet Source Mamina Bhol, Bhaskaran Shankar,

Malaichamy Sathing in the state of th Malaichamy Sathiyendiran. " Rhenium() based irregular pentagonal-shaped metallacavitands ", Dalton Transactions, 2018 Dr. M. Sathiyendiran Publication School of Chemistry

School of Chemistry
University of Hyderabad
Hyderabad - 500 046, India

5	Submitted to University of Hyderabad, Hyderabad Student Paper	1%
6	Deepak Gupta, Malaichamy Sathiyendiran. "Rhenium - Carbonyl - Based Supramolecular Coordination Complexes: Synthesis, Structure and Properties", ChemistrySelect, 2018 Publication	1%
7	www.pubfacts.com Internet Source M. Cally live. Dr. M. Sathiyendiran Professor School of Chemistry University of Hyderabad University of Hyderabad	1%
8	docksci.com Internet Source School of Hyderabad University of Hyderabad Hyderabad - 500 046, India.	<1%
9	Antonio Shegani, Myrto Ischyropoulou, Ioanna Roupa, Christos Kiritsis et al. "Synthesis and evaluation of new mixed "2 + 1" Re, 99mTc and 186Re tricarbonyl dithiocarbamate complexes with different monodentate ligands", Bioorganic & Medicinal Chemistry, 2021 Publication	<1%
10	Bhaskaran Shankar, Palani Elumalai, Ramasamy Shanmugam, Malaichamy Sathiyendiran. "Neutral heteroleptic rhenium- based M3L3L' type metallacycles: Synthesis, structural characterization and DFT/TDDFT studies", Journal of Organometallic Chemistry, 2014	<1%

K. R. Soumya, Ramar Arumugam, Bhaskaran Shankar, Malaichamy Sathiyendiran. "Sulfate Donor Based Dinuclear Heteroleptic Triple-Stranded Helicates from Sulfite and Ditopic Nitrogen Donor Ligands and Their Transformation to Dinuclear Homoleptic Double-Stranded Mesocates", Inorganic Chemistry, 2018

<1%

Publication

Publication

Isha Mishra, Maruthupandiyan Priyatharsini, Malaichamy Sathiyendiran. "Synthesis and characterization of binuclear manganese carbonyl complex of 1,4-bis(2-(2'-hydroxyphenyl)benzimidazol-1-yl)benzene and dimethylaminopyridine", Journal of Organometallic Chemistry, 2021

<1%

Bhaskaran Shankar, Palani Elumalai, Shankar Deval Sathiyashivan, Malaichamy Sathiyendiran. "Spheroid Metallocavitands with Eight Calixarene-Shaped Receptors on the Surface", Inorganic Chemistry, 2014

<1%

Isha Mishra, Malaichamy Sathiyendiran.

"Luminescent [fac-Re(CO)3-N∩Ophenylimidazole] complexes with parallel
arrangement of twisted ligand motifs", Journal
of Organometallic Chemistry, 2019

<1%

15	Submitted to Higher Education Commission Pakistan Student Paper	<1%
16	"Calixarenes and Beyond", Springer Science and Business Media LLC, 2016 Publication	<1%
17	vital.seals.ac.za:8080 Internet Source	<1%
18	Palanisamy Rajakannu, Bhaskaran Shankar, Malaichamy Sathiyendiran. "fac -Re(CO) 3 - based organometallic supramolecular coordination complexes using thiophene motif decorated flexible ditopic benzimidazolyl donor", Journal of Organometallic Chemistry, 2018 Publication	<1%
19	pubs.acs.org Internet Source	<1%
20	www.linknovate.com Internet Source	<1%
21	Bhaskaran Shankar, Firasat Hussain, Malaichamy Sathiyendiran. "Synthesis of rhenium-based M3L3L'-type metallacycle from benzimidazole and flexible tri(benzimidazole) ligands", Journal of Organometallic Chemistry, 2012	<1%

Upasana Phukan, Priya Maruthupandian, Malaichamy Sathiyendiran. "Self-assembly of rhenium core-based conjoined bicyclic supramolecule from pyrazole and flexible hexatopic pyrazolyl ligands", Journal of Organometallic Chemistry, 2020

<1%

Publication

Genin Gary Huang, Chung-Jay Lee, Jyisy Yang, Zong-Zhan Lu et al. "Cavity-containing rhenium metallacycle treated evanescent wave infrared chemical sensors for the selective determination of odorous amines in the atmosphere", Sensors and Actuators B: Chemical, 2018

<1%

Publication

Publication

scholar.uwindsor.ca
Internet Source

<1%

Casanova, Massimo, Ennio Zangrando, Fabio Munini, Elisabetta lengo, and Enzo Alessio. "fac-[Re(CO)3(dmso-O)3](CF3SO3): a new versatile and efficient Re(i) precursor for the preparation of mono and polynuclear compounds containing fac-[Re(CO)3]+ fragments", Dalton Transactions, 2006.

<1%

26

Deepak Gupta, Vikash Singh, Stephan Hohloch, Malaichamy Sathiyendiran, Karsten

<1%

Tedin, Biprajit Sarkar. "Utilizing a series of fac-Re(CO)3 core based quinonoid containing complexes for photophysical and cell imaging studies", Polyhedron, 2015

Publication

Isha Mishra, Maruthupandiyan Priyatharsini, Malaichamy Sathiyendiran. "Rhenium(I) complexes from 2-(2'-hydroxyphenyl)benzimidazolyl based bischelating ligand and 4-(amino)pyridine/4-(dimethylamino)pyridine", Journal of Organometallic Chemistry, 2020

<1%

coek.info
Internet Source

<1%

29 www.science.gov

Publication

<1%

George Makris, Lauren L. Radford, Marina Kuchuk, Fabio Gallazzi, Silvia S. Jurisson, Charles J. Smith, Heather M. Hennkens. "
NOTA and NODAGA [Tc]Tc- and [Re]ReTricarbonyl Complexes: Radiochemistry and First Example of a [Tc]Tc-NODAGA
Somatostatin Receptor-Targeting
Bioconjugate ", Bioconjugate Chemistry, 2018

<1%

Kathleen V. Kilway, Shiping Deng, Sean Bowser, Joseph Mudd, Laronda Washington,

<1%

Douglas M. Ho. "Molecular assembly of 1,3,5-tris(cyanomethyl) and 1,4-bis(cyanomethyl)arenes with silver triflate", Pure and Applied Chemistry, 2006

Publication

Thanasekaran, P.. "Metal-containing molecular rectangles: synthesis and photophysical properties", Coordination Chemistry Reviews, 200505

<1%

Publication

www.cochemist.com

<1%

Bhaskaran Shankar, Saugata Sahu, Naina Deibel, David Schweinfurth et al.
"Luminescent Dirhenium(I)-DoubleHeterostranded Helicate and Mesocate",
Inorganic Chemistry, 2014

<1%

Publication

infoscience.epfl.ch

<1%

internet Source

Exclude quotes O

Exclude matches

< 14 words

Exclude bibliography Or

Dalton Transactions

PAPER

View Article Online

Cite this: *Dalton Trans.*, 2018, **47**, 4494

Received 10th February 2018, Accepted 23rd February 2018 DOI: 10.1039/c8dt00574e

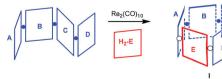
Rhenium(ı) based irregular pentagonal-shaped metallacavitands†

Mamina Bhol, Bhaskaran Shankar and Malaichamy Sathiyendiran **D**

Neutral ditopic flexible N-donor ligands ($L^n = bis(4-(naphtho[2,3-d]imidazol-1-ylmethyl)phenyl)methane, L^1 bis(4-(benzimidazol-1-ylmethyl)phenyl)methane, L^2 or bis(4-(2-nonylbenzimidazol-1-ylmethyl)phenyl) methane, L^3) possessing a bis(4-methylphenyl)methane spacer with two imidazolyl donor units were designed and synthesized. The ligands were utilized to develop metallacavitands analogous to irregular pentagonal-shaped metallacavitands with larger cavities. The metallacavitands <math>1-4$ were assembled from $Re_2(CO)_{10}$, a rigid bis-chelating donor (1,4-dihydroxy-9,10-anthraquinone or chloranilic acid) and L^n via a solvothermal approach. The ligands and the metallacavitands were characterized by analytical and spectroscopic methods. The molecular structures of 1 and 10 were further confirmed by single crystal X-ray diffraction analysis which revealed that a toluene molecule resides in the hydrophobic cavity. 11 and 12 are emissive in DMSO at room temperature. The internal cavity of the metallacavitand acts as a host for aromatic guest molecules. The host-guest interaction properties of 11 with anthracene, naphthalene, nitrobenzene, 12-nitrotoluene, 13-nitrotoluene and 14-dinitrotoluene were studied by an emission spectroscopic method.

Introduction

rsc.li/dalton


The design and synthesis of metallacavitands similar to calixarenes is a growing area due to their applications in the fields of molecular recognition, catalysis, selective reactivity and biology. 1-4 Most of the studies in the area are focused on making neutral/ionic metallacalix[n] arenes (n = 3 and 4) to tune the hydrophobic cavity and functional groups at the rim.⁵⁻⁸ Further, various approaches *i.e.*, various metal ions and organic building units have been used to modulate the properties. Till now attempts to make a neutral metallacavitand framework larger than calix[4] arene are scarce. It is likely that the expected conformationally rigid metallacavitand may display properties similar to calix[5]arene/pillar[5]arene and may possess a larger hydrophobic cavity. 9,10 Herein, we report a simple synthetic approach to a metallacavitand with a larger cavity. The neutral heteroleptic metallacavitands were assembled using Re2(CO)10, rigid bis-chelating donors and flexible ditopic N-donor ligands possessing a bis(4-methylphenyl)methane spacer, via a solvothermal approach. Though the approach is similar to the synthesis of a dirhenium-based

metallacalix[4]arene *i.e.*, combining ditopic ligands containing a "phenylene(CH_2 -heterocycle)₂" flexible framework, a rigid bis-chelating donor, and $Re_2(CO)_{10}$, ^{11,12} this approach uses a " CH_2 -(phenylene- CH_2 -heterocycle)₂" framework that results in a metallacavitand with a solvent-accessible hydrophobic cavity (Scheme 1).

Results and discussion

Synthesis and molecular structure of ligands

Neutral nitrogen donor ligands (L^1 – L^3) were obtained using bis (4-bromomethylphenyl)methane and a heterocyclic motif (naphthanoimidazole, H-nimz; benzimidazole, H-bimz; 2-nonylbenzimidazole, H-nbimz) in the presence of base. The 1 H NMR spectra of L^n displayed a single set of signals for all of the protons. In particular, two singlet signals in the aliphatic region correspond to two methylene protons (\sim 5–6 ppm for

Scheme 1 Synthesis of an irregular pentagonal-shaped metallacavitand (I). A = D = heterocyclic nitrogen donor; B = C = phenylene; $H_2E =$ bischelating unit; $\bullet = CH_2$; O = fac-Re(CO)₃.

School of Chemistry, University of Hyderabad, Hyderabad-500 046, India. E-mail: msathi@uohyd.ac.in

 \dagger Electronic supplementary information (ESI) available: Experimental section and crystallographic data of $L^1,\,L^2,\,\mathbf{1}$ and 4. CCDC 1587398, 1587399, 1587406 and 1587407. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c8dt00574e

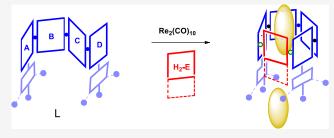
Inorganic Chemistry

pubs.acs.org/IC Article

Rhenium(I)-Based Heteroleptic Pentagonal Toroid-Shaped Metallocavitands: Self-Assembly and Molecular Recognition Studies

Mamina Bhol, Bhaskaran Shankar, and Malaichamy Sathiyendiran*

Cite This: https://doi.org/10.1021/acs.inorgchem.2c02061


ACCESS

III Metrics & More

Article Recommendations

Supporting Information

ABSTRACT: A family of neutral, heteroleptic, dinuclear M_2LL' -type pentagonal toroid-shaped metallomacrocycles (1–8) were synthesized using flexible ditopic N donors ($L^n = L^1 - L^2$), rigid bischelating ligands ($H_2 - L' = H_2 - E$), and $Re_2(CO)_{10}$ in a one-pot solvothermal self-assembly approach. The ligands and the metallomacrocycles were characterized using ATR-IR, electrospray ionization mass spectrometry, nuclear magnetic resonance, ultraviolet—visible, and emission spectroscopy methods. The molecular structures of 1, 2, 4, 6, and 7 were confirmed by an X-ray diffraction study and are similar to those of calix[5]arene. The cyclic inner

cavities of the metallomacrocycles accommodate toluene/mesitylene/acetone/chlorobenzene as guest molecules that are stabilized by cumulative $C-H\cdots\pi$ and $\pi\cdots\pi$ interactions with the cyclic framework of metallomacrocycle. The photophysical properties of the ligands and the metallomacrocycles were studied. The host–guest recognition properties of metallocavitands 1, 2, 7, and 8 as a model host with phenol and nitrobenzene derivatives as guest molecules were studied by emission spectroscopy methods.

■ INTRODUCTION

The design and synthesis of metallomacrocycles similar to calixarene-shaped geometry have been attracting significant research interest because of their potential applications in host–guest encapsulation, catalysis, selective reactivity, sensing, and biomimetic structures. $^{1-5}$ Naked metal ions and complexes containing partially protected metal ions are employed along with pre-designed organic ligands to selfassemble calixarene-shaped complexes. 6-10 These metallomacrocycles are commonly called as metallocavitands, more specifically metallocalix[n]arenes. Among various metal ions and metal complexes, $Re_2(CO)_{10}/[Re(CO)_5X]$, where X = Clor Br, provides a way to make neutral, heteroleptic metallocalix [n] arenes. Until now, neutral ditopic donors including 4,7-phenanthroline, imidazole, and semi-rigid ditopic N-donor ligands containing the phenyl $(-C_6H_4-)$ spacer and rigid bis-chelating ligands are utilized for assembling tunable rhenium tricarbonyl-based metallocalix[3] arenes and metallocalix[4] arenes. Recently, the focus in the area has shifted to make functional and cavity-tunable metallocalizarenes. To the best of our knowledge, the design approach for making rhenium-core-based metallocavitands similar to calix[5] arene is limited. 16 We have recently designed and employed diphenylmethane $(-C_6H_4-CH_2-C_6H_4-)$ spacer-based semi-rigid ditopic N-donor ligands along with the rigid bis-chelating ligand and $Re_2(CO)_{10}$ to assemble irregular pentagonal-shaped metallocavitands. These metallocavitands adopt a tubular structure, accommodate toluene molecules in the solid state, and are able to recognize the guest molecules including nitroaromatic compounds and polyaromatic hydrocarbons in the solution. The central cyclic framework, that is, annulus of the metallocavitand, consists of two phenyl motifs, two imidazolyl motifs, and a bis-chelating ligand. The size of the cavity, thereby the chemistry associated with molecular cavity, can be tuned by increasing the fused arene motif(s) either by modifying the imidazolyl motif and/or by changing the bis-chelating motifs. In continuation of our research in this field, we envision that introducing the 4-methoxyphenyl/3,4,5-trimethoxyphenyl motif at the 2-position of the benzimidazolyl unit in the ditopic N donor would result in metallocavitands with a more extended cavity suitable to accommodate various types of guest molecules (Scheme 1). In addition, the solubility of the metallocavitands in general organic solvents would be increased due to the presence of methoxy units at the periphery of the metallocavitands.

Herein, we report two new flexible neutral ditopic nitrogen donors (L^1/L^2) consisting of two terminal 4-methoxyphenyl benzimidazolyl/3,4,5-trimethoxyphenyl benzimidazolyl nitrogen donors and diphenylmethane spacer and eight new neutral heteroleptic dinuclear metallocavitands (1-8) in a one-pot approach. The molecular structures of the five metallocavitands (1, 2, 4, 6,and 7) are unambiguously determined

Received: June 14, 2022

Inorganic Chemistry

pubs.acs.org/IC Communication

Calix[4]arene-Analogous Technetium Supramolecules

Mamina Bhol, Guilhem Claude, Maximilian Roca Jungfer, Ulrich Abram,* and Malaichamy Sathiyendiran*

Cite This: Inorg. Chem. 2022, 61, 5173-5177

ACCESS I

Metrics & More

Article Recommendations

Supporting Information

ABSTRACT: Calix[4] arene-analogous technetium supramolecules (1 and 2) were assembled using (NBu₄)[Tc₂(μ -Cl)₃(CO)₆] and neutral flexible bidentate nitrogen-donor ligands (L¹ and L²) consisting of four arene units covalently joined via methylene units. The neutral homoleptic technetium macrocycles adopt a partial cone/cone-shaped conformation in the solid state. These supramolecules are the first example of fac-[Tc(CO)₃]⁺ core-based metallocalix[4] arenes and second example of fac-[Tc(CO)₃]⁺ core-based metallomacrocycles. Structurally similar fac-[Re(CO)₃]⁺ core-based macrocycles (3 and 4) were also prepared using [Re(CO)₅X] (where X = Cl or Br) and L¹ or L². The products were characterized spectroscopically and by X-ray analysis.

he design and synthesis of stable and kinetically inert fac- $[M(CO)_3]^+$ (M = $^{99m}Tc/^{186/188}Re$) core-based complexes have been gaining continuous research interest for the development of new radiopharmaceuticals as diagnostic and therapeutic agents. 1-17 99mTc is still the workhorse of nuclear diagnostics because of its ideal nuclear decay properties ($t_{1/2}$ = 6.02 h, pure γ emitter, and E_{γ} = 140 keV, 89%), whereas the β emitting rhenium nuclides ¹⁸⁸Re ($t_{1/2} = 17$ h and $E_{\beta} = 2.12$ MeV) and ¹⁸⁶Re ($t_{1/2} = 89.3$ h and $E_{\beta} = 1.07$ MeV) have potential for therapy. ² Isostructural technetium and rhenium complexes are good candidates for nuclear medical theranostics, and procedures exist for the synthesis of aqua complexes $[^{99\text{m}}\text{Tc}/^{188}\text{Re}(\text{CO})_3(\text{H}_2\text{O})_3]^+$ as appropriate precursor molecules. 1c,2b,4,6 Several attempts have been made toward the synthesis of organometallic technetium complexes using various types of heterocyclic ligands because of their importance in medicinal fields. Recently, efforts have been directed toward the design and synthesis of fac- $[Re(CO)_3]^+$ core-based metal-organic macrocycles, i.e., supramolecular coordination complexes or metallomacrocycles, because of their potential applications as bioimaging and anticancer agents. 18-20

We envision that the synthesis of fac- $[Tc(CO)_3]^+$ core-based macrocycles may result in a new class of supramolecules that may find potential utility in medicinal fields because of the combined properties of the technetium(I) tricarbonyl core and discrete 2D/3D supramolecular structures. In general, the known synthetic approaches for making fac-[Re(CO)₃]⁺ corebased discrete supramolecules can be applied to create structurally analogous fac-[Tc(CO)₃]⁺ core-based supramolecules. 20-22 To the best of our knowledge, fac-[{Tc- $(CO)_3Cl$ ₂ $(ptc)_2$ [ptc = 4-pyridylthiosemicarbazone = $C_6H_5N-C(CH_3)=N-NH-C(S)-NH_2$, is the only known example for a metallomacrocycle based on the fac- $[Tc(CO)_3]$ + core. 15 Here, we report fac-[Tc(CO)3Cl] core-based supramolecules analogous to calix[4] arenes. The metallomacrocycles fac- $[Tc(CO)_3Cl(L^n)]$ (1 and 2) were self-assembled via the reaction between $(NBu_4)[Tc_2(\mu-Cl)_3(CO)_6]$ and neutral flexible bidentate nitrogen donors (L^1 for 1 and L^2 for 2; Scheme 1).

Scheme 1. Synthesis of Technetium Metallocalix[4]arenes

Isostructural rhenium macrocycles fac-[Re(CO)₃X(Lⁿ)] (3a, 3b, and 4) were assembled using [Re(CO)₅X] and the nitrogen-donor ligands of Scheme 1 (X = Cl and Lⁿ = L¹ for 3a; X = Br and Lⁿ = L¹ for 3b; X = Br and Lⁿ = L² for 4). The molecular structures of the metallomacrocycles were unambig-

Received: November 27, 2021 Published: March 23, 2022

FISEVIER

Contents lists available at ScienceDirect

Journal of Organometallic Chemistry

journal homepage: www.elsevier.com/locate/jorganchem

Solid state structure and photophysical properties of monoanionic 2-(2'-hydroxyphenyl)benzimidazole as an anionic core in rhenium complex

Mamina Bhol ^a, Maruthupandiyan Priyatharsini ^b, Rajaputi Venkatraman Krishnakumar ^{b, **}, Malaichamy Sathiyendiran ^{a, *}

ARTICLE INFO

Article history:
Received 9 February 2019
Received in revised form
13 March 2019
Accepted 15 March 2019
Available online 20 March 2019

Keywords: bis(diphenylphosphino)ethane 2-(2'-phenol)benzimidazole Luminescence Hydrogen bonding Rhenium

ABSTRACT

A monoanionic 2-(2'-phenolate)benzimidazole (HPBI $^-$) stabilized in organometallic complex [Re(CO)₂ (dppe)₂](HPBI) (1) which was obtained by treating 2-(2'-hydroxyphenyl)benzimidazole (H₂ $^-$ PBI), 1,2-bis(diphenylphosphino)ethane (dppe), and Re₂(CO)₁₀, in toluene using a one-pot approach. Solid state structure of complex was determined using a single crystal X-ray diffraction analysis. The monoanionic HPBI $^-$ in 1 is nearly planar and adopts *trans*-anion conformation i.e., both oxygen atom and NH proton are on the same side and are stabilized by the intramolecular N $^-$ H $^+$ O hydrogen bonding interaction. The photophysical properties of 1 in solution are corroborated with the monoanionic HPBI $^-$ anion generated in situ from neutral H₂PBI by adding base. The solid state emission of 1 is red-shifted in compared to that of 1 in the solution. The monoanionic HPBI $^-$ in 1 was transformed into dianionic PBI $^-$ in the complex, {[Re(CO)₂ (dppe)₂](HPBI) (1) $^-$ (Bu₄N)[Re(CO)₂ (dppe)₂](PBI) (2)}, by adding tetrabutylammonium fluoride (Bu₄NF) without decomposing the coordination complex.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Research on synthesis, structural characterization and photophysical studies of 2-(2'-hydroxyphenyl)benzimidazole H₂-PBI and its analogues have been gaining great importance due to their potential applications in the photoactive materials including photoactive switches, fluorescence sensors, and laser dyes [1–8]. The photophysical properties of neutral H₂PBI were studied both in the solid state and in the solution state [3,6a]. In particular, photophysical studies of neutral H₂PBI in various solvents, different temperatures and different pH conditions were studied thoroughly by various groups. Recently, the anionic forms, monoanionic HPBI or dianionic PBI²⁻, were generated in situ by adding a base in the solution of neutral H₂PBI. The ground state and excited state photophysical properties of monoanionic HPBI⁻ or dianionic PBI²⁻ are studied [6]. Similar to neutral H₂PBI, these anions can adopt a

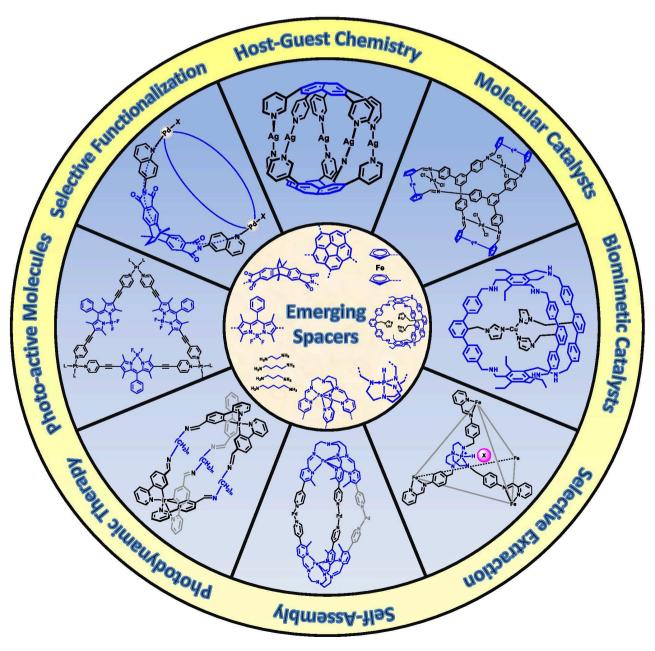
E-mail addresses: mailtorvkk@yahoo.co.in (R.V. Krishnakumar), msathi@uohyd. ac.in (M. Sathivendiran).

different conformation in the solution depending upon the solvents, and base and display unique emission properties. In particular, each conformer, which originated due to the rotation, displays a unique absorptions and emission properties. Though the solid state structure of neutral H₂PBI was determined using single crystal X-ray diffraction data (SCXRD), solid state structure of the monoanionic HPBI⁻ was not studied. The isolation of monoanionic HPBI⁻ or dianionic PBI²⁻ with an ion which should not interact/influence the conformation of the monoanionic HPBI⁻ or dianionic PBI²⁻ will be useful to get benchmark photophysical data.

Herein, we report on the synthesis, solid state structural characterization of 2-(2'-phenolate)benzimidazole (HPBI⁻), which is stabilized by non-coordinating counter coordination complex. The complex [Re(CO)₂ (dppe)₂](H-PBI) (1) was obtained by treating neutral H₂PBI, dppe and Re₂(CO)₁₀ in a one-pot approach serendipitously. The monoanionic HPBI⁻ adopts *trans*-conformation both in solid and solution states. The complex 1 was characterized using SCXRD analysis, FT-IR, and 1 H NMR spectroscopy. The photophysical properties of 1 in both solution state and solid state were studied. The monoanionic HPBI⁻ in 1 was transformed into dianionic PBI²⁻ in the complex, {[Re(CO)₂ (dppe)₂](HPBI) (1) \rightarrow (Bu₄N) [Re(CO)₂ (dppe)₂](PBI) (2)}, by adding tetrabutylammonium

^a School of Chemistry, University of Hyderabad, Hyderabad, 500046, India

^b Department of Physics, Thiagarajar College, Madurai, 625009, India


^{*} Corresponding author.

^{**} Corresponding author.

THE CHEMICAL RECORD

Emerging Spacers-Based Ligands for Supramolecular Coordination Complexes

Isha Mishra, $^{[a]}$ Mamina Bhol, $^{[a]}$ Palanisamy Kalimuthu, $^{*[b]}$ and Malaichamy Sathiyendiran $^{*[a]}$

Abstract: The design and self-assembly of supramolecular coordination complexes (SCCs) i.e., discrete cyclic metalloarchitectures such as cycles, cages, mesocates, and helicates with desired size, shape, and properties have been increasing exponentially owing to their potential applications in molecular sensors, molecular cargos, molecular recognition, and catalysis. The introduction of the organic motifs and metal complexes as a spacer provides functionality to the metalloarchitecture. This review mainly focusses on newly evolving spacer based ligands employed to yield simple to high-order metallosupramolecular assemblies using straight-forward approaches. The new spacers including corannulene, organic cyclic framework, bicyclic organic motifs, aliphatic chain, metalloligands, triarylboron, BODIPY, azaphosphatrane, phosphine, and thio/selenophosphates offer a great set of properties and in-built functionalities to the metalloarchitectures which are discussed in this review.

Keywords: Supramolecular chemistry, Self-assembly, Molecular recognition, Schiff bases, Sandwich complexes

1. Introduction

The design and synthesis of supramolecular coordination complexes (SCCs) such as metallosupramolecules, [1] metallocages, [2-3] metallomacrocycles [4] using complementary motifs of predesigned ligands and metal precursors through self-assembly approach have been increasing tremendously day by day. [1-4] The continuous increase of research in this area is owing to the ease of preparation of the SCCs and their potential applications including molecular sensors, [5] selective purification of molecules, [6] molecular vessels for selective functionalization of guest molecules, [7] molecular catalysts by providing cavity as well as catalytic cores, [8] photoactive molecules, [3] cell imaging agents, [3a-d,9] and molecular drugs. [10] The simple cyclic structures to aesthetically pleasing high-order complex structures can be obtained by mixing the predesigned motifs and metal precursor, at appropriate conditions.[11] The careful selection of metal precursor and ligand design play the crucial role in achieving the desired self-assembly of SCCs. In particular, the predesign of the ligands by incorporating different types of organic spacer motifs has been elevating the field to an advanced level by providing in-built functionality. [1,11] There are two types of ligands often used in metal-directed assembly. The first one is organic coordinating motifs (Example: 4,4'-bipyridyl ligand) which are directly linked to

[a] I. Mishra,* M. Bhol,* Dr. M. Sathiyendiran
School of Chemistry
University of Hyderabad, Hyderabad 500 046, India
E-mail: msathi@uohyd.ac.in
[b] Dr. P. Kalimuthu
Department of Chemistry
The Gandhigram Rural Institute (Deemed to be University)
Gandhigram-624 302, Tamil Nadu, India
E-mail: pakalimuthu@gmail.com
[*] Both IM and MB are contributed equally.

each other and are used as the structural framework for constructing a variety of metal-core based cyclic assemblies. [12] Another type of ligand framework is spacer based coordinating motif in which the spacer separates the coordinating donor units. A typical example is alkene spacer-based 1,2-di(pyridin-4-yl)ethene which is a structural and functional analog of 4,4'-bipyridine. [13] The spacer units provide unique flexibility/rigidity and directionality for the ligands to achieve desired geometry of SCCs with distinct features. [1-13] Our review focuses on the work that appeared in the literature from the year 2018 onwards till now and includes SCCs based on newly evolving spacer-based ligands. Herein, we discuss metalloarchitecures constructed based on corannulene, organic cyclic framework, bicyclic organic motifs, aliphatic chain, metalloligands, triarylboron, dipyrromethene (BODIPY), azaphosphatrane, phosphine, and thio/selenophosphates as spacers-based ligands.

2. Corannulene Spacer Based Ligands and its SCCs

Corannulene is a polycyclic aromatic hydrocarbon and adopts bowl-shaped structure. [14,15] This unique arrangement with π -conjugation gives the corannulene a curved aromatic surface. The periphery of the corannulene offers a rare opportunity to synthesize symmetrical pentatopic ligands. [16] The predesigned corannulene spacer based ligands are good candidates for assembling spherical metallacages due to their unique curvature. The spherical cages with corannulene motifs are suitable host for molecules like fullerenes due to the expected complementary concave-convex noncovalent aromatic stacking interactions.

The unique properties of corannulene were utilized by Jiang and co-workers to synthesize a spectacular spherical ionic coordination cage $[Ag_5(L^1)_2]^{5+}$ (1) from a pentatopic ligand possessing corannulene spacer (L^1) . [17] The ligand was ration-