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SYNOPSIS

The thesis entitled “Rhenium- and Technetium-tricarbonyl Core-based
Supramolecular Metallocavitands and Helicates™ consists of six chapters.

Chapter 1: Introduction

Chapter 1 begins with the general introduction of supramolecular chemistry and its two main
branches, i.e., host-guest chemistry and self-assembly. Further, the developments and applications
of metallosupramolecular chemistry, including metallacalixarene and metallo- helicate/ mesocates,
are discussed with a very short classification of calixarenes, helicates, and mesocates. The chapter
highlights the rhenium and technetium-based metallocycles, their basic design principle, and mainly
literature survey and discussion on various aspects of the chemistry of Re(CO); core-based
metallacalix[n]arenes (n = 3, 4), metallo-helicates, meso-helicates, and Tc(CO); core based
metallocycles.

C x‘\
Re™
N /\ ReZ(CO 10 o¢

N
VW \\\f@ﬁ

N=
oc 0 § oc co
\Re
N/Re \\\\\\ OC—/RG ‘‘‘‘‘‘
N

CO

R /\ \
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od o

Scheme 1. Various known examples of M(l) core-based (M = Re/Tc) metallacycles.

IX



Chapter 2: Re(l)-based Irregular Pentagonal-shaped Metallocavitands:
Self-Assembly and Molecular Recognition Studies.

This chapter describes the design and synthesis of three new neutral ditopic flexible N-donor
ligands (L" = (L' = bis(4-(naphtho[2,3-d]imidazol-1-ylmethyl)phenyl)methane, L?* = bis(4-
(benzimidazol-1-ylmethyl)phenyl)methane and L® =  bis(4-(2-nonyl  benzimidazol-1-
ylmethyl)phenyl)methane)) possessing bis(4-methylphenyl)methane spacer with multi-arene fused
imidazole donor unit. The L" were further utilized to develop metallocavitands analogous of
calix[5]arene framework with larger cavity. The metallocavitands 1-4 were assembled from
Re,(CO)qo, rigid bis-chelating donor (H,-dhaq = 1,4-dihydroxy-9,10-anthraquinone and H,-CA =
chloranilic acid) and L" via solvothermal approach. The ligands and metallocavitands were
characterized by analytical and spectroscopic methods and further 1 and 4 were confirmed by single
crystal X-ray diffraction analysis which reveals that a toluene molecule is residing in the
hydrophobic cavity. The L" and 1-4 are emissive at room temperature. The internal cavity of the
metallocavitand acts as host for aromatic guest molecules. The host-guest interaction properties of 1
with various nitroaromatic and polyaromatic hydrocarbons were studied by emission spectroscopic
method. The study provides a way to prepare metallocavitands with a tunable cavity and functional
group via simple one-pot method.

() 8 (s Q
! Hy-dhaq H,-CA 4
0.0 < ReZ(CO)»]O —— Cl Cl
L" L )
Q ‘ j

N"=N Oé \CO N=N

Q oG €O
4

1,L"=L", R = H; N donor = naphthanoimidazoly!
2,L"=L? R = H; N donor = benzimidazolyl
3,L" = L3, R = -(CH,)s—CHj; N donor = benzimidazolyl

Scheme 2. Synthesis of irregular pentagonal-shaped metallocavitands.



Chapter 3: Rhenium(l) Based Heteroleptic Pentagonal Toroid-Shaped
Metallocavitands: Self-Assembly and Molecular Recognition Studies.

In chapter 3, a family of neutral, heteroleptic, dinuclear M,LL'-type pentagonal toroid-shaped
metallomacrocycles (1-8) were synthesized using Re,(CO)yo, rigid bis-chelating ligands and
flexible ditopic N donor ligands in a one-pot solvothermal self-assembly approach. The ligands
and the metallomacrocycles were characterized using ATR-IR, ESI-MS, NMR, UV-Vis, and
emission spectroscopic methods. The molecular structures of 1, 2, 4, 6, and 7 were confirmed by
X-ray diffraction study. The solid-state structures of the supramolecules reveal that they can
accommodate acetone, mesitylene, toluene and chlorobenzene like guest molecules inside their
internal cavity. The photo-physical properties of the ligands and the metallomacrocycles were
studied. The host-guest recognition properties of metallocavitands 1, 2, 7, and 8 as a model host
with phenol- and nitrobenzene-derivatives as guest molecules were studied by emission

spectroscopic methods.

(0] R' O~ _0 R!
HO R = N ~ /
e Re\ Re’,
= S
g R e
R T OH s R d
1,R=H,R'=H; 2,R=H,R =0CH,;
3,R=ClLR'=H; 4, R=CI, R =0CH;3

Re,(CO)1o

7 ' N N '
L N HsC, S 7 CHs
o N N 0
OH O
R' R’

(Ho-E)
2 Og\\ /0770\ //O
- _ORer ~Re
e
Il Dl Il

. 6,E =dhag, R'= OCHj
. 8 E=dhng, R'= OCH;

Scheme 3. Synthesis of pentagonal toroid -shaped metallocavitands.
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Chapter 4: Calix[4]arene-Analogous Technetium and Rhenium
Core-based Supramolecules

In chapter 4, two new type of neutral flexible bidentate nitrogen donor ligands (L and L?)
consisting of four arene units covalently joined via methylene units with bismesitylene spacer were
designed and synthesized. The L" were further utilized to self-assemble calix[4]arene-analogous
technetium supramolecules (1-2) using (NBu4)[Tc(u-Cl)3(CO)e]. The neutral homoleptic
technetium macrocycles adopt a partial cone/cone-shaped conformation in the solid-state. These
supramolecules are the first example of fac-[Tc(CO)s]" core-based metallacalix[4]arenes and
second example of fac-[Tc(CO)s]* core-based metallomacrocycles. Structurally similar fac-
[Re(CO)s]" core-based macrocycles (3-4) were also prepared using [Re(CO)sX] (where X = Cl or
Br) and L' or L2 The products were characterized spectroscopically and by X-ray analysis. The
solid-state structures of the supramolecules reveal that these molecules adopt bowl-shaped
structures. The molecular recognition studies of rhenium macrocycles were studied using emission
spectroscopic methods.

.
THE  0C, ci__ f© CH,Cl,

OC—;’Tc{uC|m>TC<"CO
21| reflux oc \CI co reflux 512
1h + 2.5h
(NBuy)

[Re(CO)sX] + L CrHg or CHCl fac-[Re(CO)sXLM
5 - 3

reflux 1 v
10hor24 h 3a,L"=L"; X=Cl
3b,L"=L"; X=Br

4,L"=12; X=Br

/

Scheme 4. Synthesis of calix[4]arene-analogous fac-M(CO); (M = Tc/ Re) core-based
supramolecules.
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Chapter 5: Self-Assembly and Photophysical Properties of

Rheniumtricarbonyl-Based Helicates and Mesocates

In Chapter 5, five rhenium tricarbonyl core-based supramolecular coordination complexes (SCCs)
(1-5) were assembled using Re,(CO)1o, rigid/flexible bis-chelating ligands (L', L?), and flexible
ditopic N donor ligands (L3, L* L° L°) via a one-pot approach. The metallosupramolecules were
characterized spectroscopically and by X-ray analysis. The supramolecular structures of the
complexes closely remain in the solution based on the '"H NMR and ESI-mass analysis. Single-
crystal X-ray analysis reveals that the dinuclear SCCs adopt heteroleptic double-stranded helical
and mesocate architectures in the solid-state. The photophysical properties of the complexes were
studied both in solution and solid state. All the supramolecules display emissions both in solution
and solid state.
L1- LS8
Re,(CO)q 1-5

mesitylene: acetone/ toluene
reflux

5
Lz

1, Ln=L" 3 3,L"=L"L® 4,L"=12L°
2, L"=L" L4 5 LN=1L2 L%

j

Scheme 5. Synthesis of Re(CO); core-based Helicates (1-2) and Mesocates (3-5).
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Chapter 6: Conclusion and Future Perspective

The thesis is summarized, and the possible future direction of the work is also discussed in this
chapter. A series of new neutral, flexible bidentate nitrogen donor ligands with diarylmethane
spacers were designed and synthesized. Further the nitrogen donor ligands were utilized to
construct various sizes and shapes of [fac-M(CO);]" (M = Re/Tc) core-based supramolecular
architectures,  including  rhenium-  or  technetium-based = mononuclear  homoleptic
metallacalix[4]arenes, dinuclear rhenium heteroleptic metallacalix[5]arenes, and dinuclear rhenium
heterostranded helicates and mesohelicates. Host-guest studies were carried out for rhenium-based

metallacalix[n]arenes (n = 4, 5) by using emission spectroscopy.
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Chapter 1

Chapter 1

Introduction

1.1. Supramolecular chemistry

The field of supramolecular chemistry mainly focuses on the chemistry aspects of molecular
assemblies and on intermolecular bonds.! Jean-Marie Lehn defines supramolecular chemistry
as the “Chemistry beyond the molecules” as it deals with intermolecular interactions.
Supramolecular chemistry can also be called as “Lego block chemistry”, where each
molecular building block can be compared to a lego brick. Various intermolecular
interactions such as hydrogen bonding, metal coordination, 7---7 interaction, Van der Waals
forces, electrostatic and hydrophobic or solvatophilic interactions are responsible for holding

these discrete molecular units together.'?

Supramolecular chemistry is mainly divided into two main categories, i.e., host-guest
chemistry and self-assembly."® Host-guest chemistry involves the study of large host
molecules having a convergent binding site, capable of encapsulating small guest molecules
with divergent binding sites through non-covalent interactions and best regarded as lock and
key principle given by Emili Fischer in 1894. *° In host- guest chemistry both should have
mutual spatially and electronically complementary binding sites to form a supramolecules
like a perfect fitting pieces of jigsaw puzzle.* Lehn and co-workers first introduced the
concept of “self-assembly” which describes the spontaneous and reversible association of two
or more units to make highly ordered non-covalently bound aggregate. * * ° Self-assembly is
the main synthetic method for the design of metallo-supramolecular complexes, where the
predesigned ligands and metal precursor units organize themselves into a stable, structurally

well-defined aggregate. ™
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(A)
‘ Covalent

= >
synthesis

_—
Small molecular
"guest"

Small molecules

Host-guest complex

Large "host" molecule

(B) I
Covalent ' Spontaneous
—_— _ >
synthesis
Larger molecule

Small molecules Self-assembled

aggregate

Figure 1.1. Supramolecular systems developed from molecular building blocks (binding sites
are represented by circles); (A) host-guest complex (B) self-assembly between

complementary molecules.?

1.2. Metallosupramolecular chemistry

Supramolecular assemblies, which involve the interaction between the metal ions and the
predesigned organic ligand strands, are termed as metallo-supramolecular chemistry.” The
appropriate choice of metal source and predesigned ligand plays an important role in tuning
the shape and size of metallamacrocycles.® The metal ion’s coordination preference, shape,
and bonding mode of the ligands control the self-assembly of metallacycles.® The lability and
reversibility of the metal-ligand coordination bond are crucial elements for the assembly of
supramolecular complexes due to the possibility of formation of both kinetic and
thermodynamic products. Some well-known examples of discrete metallo-supramolecular

assemblies include metallacycles,®® metallocavitands, helicates,** ™

81,12.13 8213 814 grids,”® ladder/rack*® catenane,®

polygon/polyhedra, tetrahedra, cages,
rotaxane,*® knot,*®7 links,**'” and various other architectures. The metallacycles offer the
benefits of the properties of metal-ligand bonds along with photophysical, redox generated
features and photochemical as a result of the metal-ligand orbital overlap. Supramolecular
metallacycles can be assembled by using several synthetic approaches, including orthogonal

bonding, directional-bonding, symmetry interactions, weak-link, and rigidity modulated
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approaches.®42415¢ qut of all the class of discrete metallo-supramolecules calixarene shaped
metallocavitands and supramolecular helicates has gained special attention in the
supramolecular chemistry field due to their potential application in molecular recognition
including DNA recognition, selective reactivity, catalysis, bioimaging, selective sensors for

biological analytes, anticancer agents and photo-sensitizers. 8¢ %

1.3. Calixarenes and metallacalixarenes

David Gutsche and co-workers first introduced the word calixarene in 1975.'® Calix[n]arenes
are the organic macrocycles or cyclic oligomers obtained spontaneously via phenol-
formaldehyde condensation under alkaline conditions.***® The word calix comes from the
resemblance of the shape of calyx krater vases of ancient Greece, and the term arene refers to
the repeating aryl groups.’® Calixarenes possess a hydrophobic wide upper rim and a

hydrophilic narrow lower rim, and a central annulus (cavity) in their molecular architectures.

Calix[4]arene Calix[5]arene Calix[6]arene

Figure 1.2. Various types of calixarenes.

Upper rim

Annulus

/

OH OH oH HO <«—— Lowerrim

Cup-shaped presentation of calix[4]arene Calyx Krater

Figure 1.3. Structure and pictorial presentation of the shape of calix[4]arene.



Chapter 1

Calixarenes have hydrophobic cavities that can accommodate ions or smaller guest molecules
and fit in to the class of cavitands recognized in host-guest chemistry. The easy rotation of
—CH,—Ar—-CH,- leads to have four limiting calixarene conformations, including cone, partial

cone, 1,2-alternate and 1,3-alternate.®

T /
OR' OR'OR'OR’

Cone Partial cone 1,3-alternate 1,2-alternate

Figure 1.4. Various conformations of calix[4]arene.

Bernhard Lippert first coined the name “metallacalixarenes” in 1992, and compared the
structures of self-assembled palladium and platinum discrete organic macrocycles derived
from the nucleobases, theophylline and, guanine to the classical calixarene structure.? Thus,
metallacalixarenes can defined as a class of metallacycles whose structures are similar to
classic calixarene, where metal core replace the —CH,— groups and phenol rings are replaced

by aromatic units, mimicking the calixarene walls.?

‘
N, __N—_ ', _—
_M/ M
Y O

/ oH  \
N N
(o w0
N OH
o\ /
—M—NZ NNy = pe2* or pq2*

\\/&o|

Calix[4]arene Metallacalix[4]arene

Figure 1.5. Schematic representation of the structural resemblance between a classical

calix[4]arene (left) and a metallacalix[4]arene (right).
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1.4. Molecular helicates and mesocates

Jean-Marie Lehn and co-workers first introduced the term ‘“helicate” in 1987 to describe
polynuclear copper double-stranded helical complexes containing 2,2'-bipyridine binding
groups joined through bridging motifs as ligand strands.'® The term helicate is coined from
the greek word helix (spiral, twist or winding) with suffix “—ate” which refer to the
complexes between metal ions and pre-organized ligand strands.!®® The supramolecular
helicates are the discrete complexes where ligand strands are wrapped around the metal-metal
helical axis in a helical fashion and ligands adopt a more linear “S” type conformation.***#2!
The “C” type conformation of the ligands in complexes leads to meso-helicate structure,
where ligand strands are arranged in a side-by-side manner with respect to the helical
axis. M+ Spacers are responsible for the size of cavity and the chirality of the helicate. Helicate
architectures can be categorized by defining structural nature of helicate.?! On the basis of
number of metal ions; helicates can be mononuclear, dinuclear or trinucluear.’® Number of

1€ 1 homostranded

ligand strands defines the double, triple or quadruple stranded helicates.
helicates the ligand strands are identical whereas in heterostranded helicates the strands are
different.’® The binding domains on the ligand strands can be same or different which give on to
the formation of homotopic or heterotopic helicates.'® The parallel or antiparallel alignment of
heterotopic strands leads to head-to-head or head-to-tail manner, respectively.’® When the
coordination sphere of the metal ion is satisfied by the binding units of the ligand strands, they
are referred as saturated helicates whereas they are described as unsaturated helicates when
supplementary ligands are coordinated to the metal centres to enable their steriochemical

requirments.*™

1.5. Rhenium-based metallamacrocycles

Among several synthetic approaches involving various metal precursors, the fac-Re(CO)s
core based metallamacrocycles exhibit a distinctive class of stable, functional and robust
metal-based cyclic architectures to form neutral 2D and 3D metallacycles.??* We are mainly
interested in the fac-Re(CO); core based neutral metallamacrocycles because these SCCs
display potential applications in molecular recognition, as photoluminescence quenching

probes, cavity controlled catalysis, anticancer agents, photo- and electro-chemical sensing.?*
24,
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Figure 1.6. Various examples of helicates and mesocate.
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Figure 1.7. Classification of self-assembled helicates.



Chapter 1

The fac-Re(CO); fragment is Kinetically inert and biocompatible which makes it as a very
significant unit in medicinal field. Due to virtually identical chemical and physical properties
of Re and Tc (Atomic radii: Re- 1.37 A; Tc- 1.36 A, lipophilicity, ionic mobility, and formal
charge), advances in the fac-Re(CO); based chemistry might be exploited for the designing
and development of new fac-**"Tc(CO); core based radiopharmaceuticals as diagnostic and
therapeutic agents.”> Known examples of different shapes of fac-Re(CO); core based cyclic
supramolecular architectures are (M = Re(l); M’ = other metal ions) mononuclear-ML,
dinuclear-MM’L,, M,LL', MyLy; trinuclear- Msls, MsLsL!, MsM'Lg; tetranuclear squares-
MyL, Myls, MgLL';; rectangles-MyL,L’s, Myl,Ll's; bowls-MyL,L’>; gondolas-MyLoL's;
calixarene-M,LL";  bicycles-M4L,L',  MglL,L'3;  spheroids-MgLL's;  wheel-MgL,L's;

hexanuclear prisms- MgL,L's, MgL,L'3; and octanuclear prisms-MglL,L's, MgLL's.
1.5.1. General synthetic methods for rhenium-based metallamacrocycles

Rhenium carbonyl metal precursors such as Rey(CO)p, Re(CO)sOTf, Re(CO)sBr,
Re(CO)sCl, and [Re(CO)s(dmso-0)3](CF3SO3) are mostly used to synthesize various fac-
Re(CO); core based metallacycles along with organic ligand strands.?** Two dimensional
rhenium metallacycles can be synthesized by using the metal precursors such as
Re(CO)sOTf, Re(CO)sBr, and Re(CO)sCl, which provides the ditopic metal-acceptor fac-
[Re(CO)3X] (X= Br/Cl) core with cis bis-coordinating vacant sites that can assist two neutral
organic donors. The dinuclear Re,(CO)1p metal precursor provides tritopic metal acceptor
fac-Re(CO); core having three vacant sites along with an angle of 90°. Neutral 3D
metallacycles can be self-assembled by combining fac-Re(CO); core and suitable ditopic or
tritopic neutral ligands with two electron donor along with a three electron donor bis-
chelating anionic units. The organic ligand strands used to construct rhenium metallacycles
are mainly nitrogen, phosphorous donors and other ligands such as thiols, alcohols, selenols
and anionic organic bis-chelating motifs. The heteroleptic or homoleptic metallacycles can be
achieved by the appropriate choice of nitrogen donors with/without ancillary ligands and
rhenium metal precursors. Further these supramolecules can be obtained by one-step or two-

step or by multi-step approaches.
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Figure 1.8. Various rheniumcarbonyl core-based starting materials used for the construction
of fac-[Re(CO);] core-based SCCs.
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Figure 1.9. Different types of vacant coordination sites available on fac-Re(CO); core.

1.6. Technetium-based metallamacrocycles

The design and synthesis of stable and kinetically inert fac-[M(CO)s]* (M = ®™Tc/ 1#/188Re)
core-based complexes have been gaining continuous research interest for the development of
new radiopharmaceuticals as diagnostic and therapeutic agents.>%* ®™Tc is still the
workhorse of nuclear diagnostics due to its ideal nuclear decay properties (ty, = 6.02 h, pure y
emitter, Ey = 140 keV, 89%), whereas the beta-emitting rhenium nuclides **®Re (ty, = 17 h,
Ep = 2.12 MeV) and *°Re (t, = 89.3 h, E; = 1.07 MeV) possess potential for therapy.* Iso-
structural technetium and rhenium complexes are good candidates for nuclear medical
theranostics. The known synthetic approaches for making fac-[Re(CO)s]" core-based discrete
supramolecules can be applied to create structurally analogous fac-[Tc(CO)s]" core-based
supramolecules.?** Technetium carbonyl metal precursors such as (NBug)[Tca(u—Cl)s
(CO)s], (NEt,)2[TcCl3(CO)3], and [Tc(CO)3(H20)3]" are mostly used to synthesize various
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fac-Tc(CO)s core-based complexes along with organic ligands.*?" The synthesis of fac-
[Tc(CO)s]" core-based macrocycles may result in a new class of supramolecules that may
find potential utility in the medicinal fields due to the combined properties of the
technetium(l) tricarbonyl core and discrete 2D/3D supramolecular structures.

o | o |7 co |

OC/////, /Cl\ / Cl//////,/ | \\\\\\\Cl OH2 ////// | \\\\\CO
OC e T gz TE1ICO /’TC‘\ /,'TC‘\\
OC/ \CI \CO oc éo o Oz | \CO

Figure 1.10. Various technetiumcarbonyl core-based starting materials used for the
construction of fac-[Tc(CO)s]" core-based complexes.

1.7.  Molecular Recognition

One of the utmost important achievements of supramolecular chemistry is the design and
synthesis of molecular architectures which can encapsulate and recognize guest molecules
selectively and detect signals for the presence of specific guest molecules. Various non-
covalent interactions like van der Waals interactions, hydrogen-bonding, and electrostatic
interactions are involved and govern the ability of supramolecular complexes to act as a host
for molecular recognition. Metallo-supramolecules are of great interest due to their ease of
synthesis from simple complementary units. In particular, fac-Re(CO); metal core-based
metallacycles have been proved to be potential hosts for various guest molecules, including,
cations, anions, and aromatic molecules, where the right choice of ligand motifs can easily
tune the dimension of the internal cavity. Potential applications of supramolecular
coordination complexes in molecular recognition have encouraged the design and synthesis
of molecules that can be used therapeutically by interacting with biological systems as

anticancer drugs.

The following sections cover the literature survey and discussion on various aspects of the
chemistry of Re(CO); core-based metallacalix[n]arenes (n = 3, 4), helicates, and meso-

helicates and Tc(CO); core-based cyclic systems.
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1.8. Re(CO); core-based metallacalix[3]arenes

Few rheniumtricarbonyl-based supramolecules with calix[3]arene shaped structures are
known. These molecules have hydrophobic cavity suitable to accommodate neutral molecules
and ions. The mononuclear complex fac-[ReBr(C;HsN30)(CO)s][NEt]s (1), which was
obtained from [ReBr3(CO)3][NEts],, 3-hydroxy-1,2,3-benzotriazine-4(3H)-one (2), and KOH
in methanol.?® This mononuclear complex (1) transformed to cyclic metallacalix[3]arene (3)
by abstraction of coordinated bromide and counter cation by using AgBrs. This ionic

trirhenium metallacalix[3]arene acts as host for boron tetrabromide ion.?

Re(CO)3Bry] 2~
[Re(CO)3Br3] o oc
co AgBF
+ \ / g5k \\
O\Re\Br

o) w/o/\co oo\l/ N \ co

Figure 1.11. Synthesis of ionic trirhenium metallacalix[3]arene.

The reaction of bispyridylpyridone (4) with [Re(CO)sX] (X = Br, CI) resulted in
calix[3]arene analogous trinuclear rhenium metallacycles (5 and 6) which acts as a molecular
vessel. % The pyridyl pendants are coordinated to a silver ion and form a propeller-shaped
stopper to the molecular vessel. Upon irradiation at 405 nm, the Ag ion detaches from the
system and the resulting neutral host-system is useful for silver ions transport through cell
membrane. On cupper binding this luminescent vessel suggests that it can be a potential as

PET imaging agents/biomedical fluorescence.

10
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Figure 1.12. Trinuclear rhenium metallacalix[3]arenes.

Pyrazolonaterhenium(l) complexes were synthesised by treating [ReX(CO)s] (X = CI, Br),
with thiosemicarbazones ligands (7 and 8) obtained from B-keto esters in refluxing toluene
which resulted in the cyclization of the ligand to give an unexcpected homoleptic
metallacalix[3]arenes (9 and 10).*° Another example of trinuclear rhenium
metallacalix[3]arene (11) were self-assembled from the one pot reflux reaction of
[Re(CO)sX] (X = CI, Br), triethylamine and, 2-pyridyltetrazolate (12) in toluene. They adopt
partial cone conformations and possess good luminescent properties and showed reversible

three electron oxidation.®
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Figure 1.13. Thiosemicarbazones and 2-pyridyltetrazolate ligand based trinuclear rhenium
metallacalix|[3]arenes.
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It is well known that the combination of imidazole (H-L) and Cu(l) or Pd(ll) ions provide
cyclic trinuclear MsL; metallacycles. The neutral rheniumtetracarbonyl-based trinuclear
metallacalix[3]arene (13) was obtained from Re»(CO)i and 1,1-carbonyldiimidazole ligand
(14).% The complex adopts calix-shaped structure and has two recognition units. The wide
hydrophobic cavity can accommodate spherical shaped guest molecule. The other recognition
unit is exocyclic receptor site provided by the lower rim of the metallacalix[3]arene where
three imidazolate motifs deliver three set of exo C-H bonds that act as hydrogen-bond donors

to the anions.

CcO
OC\|/CO
o] /Rle\
AN Iy )
Rey(CO)1g  + <j;l L\/,\> - > ocC /N \ (6]0)
OC—\Re—CO OC-R{—CO
PN
14 N N
oC \/ cO
13

Figure 1.14. Synthesis of Re(CO), core-based trinuclear metallacalix[3]arene.

Capped metallacalix[3]arenes (15-19) with additional recognition unit were obtained by
combining Re,(CO);o and imidazole (20) or benzimidazole (21) or benzotriazole (22) with
flexible tritopic ligands [1,3,5-tris(imidazol-1-ylmethyl)-2,4,6-trimethylbenzene (23), , 1,3,5-
tris(benzimidazol-1-ylmethyl)-2,4,6-trimethylbenzene  (24), 1,3,5-tris(benzimidazol-1-
ylmethyl)- benzene (25)].*** These metallamacrocycles contain two types of exocyclic
cavity (26 and 27) and one type of endocyclic cavity (28) .The exocyclic receptor site (26)
provided by the lower rim of the metallacalix[3]arenes where three imidazolate motifs deliver

three set of exo C-H bonds that act as hydrogen-bond donors to the anions.

12
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15, HL = 20, 1'= 23, R = CHy; 16, HL = 21, L' = 23, R = CH,4

17,HL=21,1'=24,R=CH;; 18, HL=22,1L' =24, R = CH;4

19,HL=21,L'=25,R=H

N

"
84
o

24 25

Figure 1.15. Synthesis of rhenium-based M3LsL'-type metallacycles.

Coordination of the flexible neutral tripodal nitrogen donor ligand governs the arrangement

of three benzimidazolium units in such a fashion that three set of exo C-H bonds may act as

hydrogen-bond donors to the anions whereas, three benzimidazolate motifs from the cone-

shaped metallacalix[3]arene unit in 19 delivers three set of exo C-H bonds that may act as the

hydrogen-bond donors to the anion and neutral molecules. The metallacalix[3]arene 19

contains three additional exocyclic cavity around the molecule.

13
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Figure 1.16. Different types of cavity frameworks in metallacycles 15-19.

1.9. Re(CO); core-based spheroids with metallacalix[3]arenes and

metallacalix[4]arenes units.

In order to increase the number of molecular receptor units in one metallacycle,
hexatopic flexible ligand (29) instead of tritopic ligands (23-25) were chosen as one of the
basic building units. These ligands were treated with rigid imidazole/benzimidazole/
benzotriazole (20-22) and Re,(CO);o to obtain multiple molecular receptor containing
spheroid-shaped metallacycles (30-32).%® The molecules have two metallacalix[3]arene units
(33) and six- metallacalix[4]arene motifs (34). Further each cavity in the spheroid has ability

to accommodate guest molecules, which is evident from X-ray structure.

/
N
OC\

30, X =20;31, X =21; 32, X =22

Figure 1.17. Synthesis of Re(CO); core-based hexanuclear spheroid metallocavitands.
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Further, the size of the calix[4]arenes cavity in 31 can be easily tuned by modulating
heteroleptic coordinating units from benzimidazoly to naphthoimidazolyl.®” The functionality
of the metallacalix[3]arene motifs (33) in the spheroids can be tuned by modulating the
heteroarene  units. For example, the metallacalix[3]Jarene unit  containing
imidazolate/benzimidazolate structural building unit may act as hydrogen bond donors and
able to accommodate neutral and anionic guest molecules. When the heteroarene unit is
benzotriazole, the metallacalix[3]arene unit contains nitrogen atoms and is suitable to

accommodate neutral molecule or cation.
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Figure 1.18.

(CO)3

31

open form of spheroid

34

(@) Spheroid cage 31; (b) metallacalix[3]arene motif with enforced small

cavity; (c) open form of spheroid showing six metallacalix[4]arene cavities with guest

molecules (pink).

1.10. Re(CO); core-based homoleptic tetranuclear metallacalix[4]arene.

Calix[4]arene is a cyclic organic molecule and contains four arene motifs and four methylene
groups. The alternate arrangement of these motifs provides bowl-shaped structure with wider
upper cyclic cavity and narrow lower cavity'® Calix[4]arenes have the ability to
accommodate various guest molecules in their hydrophobic internal cavity. Ligands
containing calix[4]arene spacer are rarely used for making Re(CO)s-core based metallacycle,
in particular metallocavitand. In principle, large depth cavity containing metallacycles can be
achieved from the calix[4]arene spacer-based nitrogen donor ligands (35).%® Larger size

15
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cavity containing tetranuclear metallocavitand (36) was designed and synthesized using
[Re(CO)sBr] and orthotopic nitrogen donor with calix[4]arene spacer (octatopic nitrogen
donor). The ligand is designed in such a way that calix[4]arene spacer has four symmetrically
arranged 3,8-phenathroline cores. Each 3,8-phenathroline core acts as rigid ditopic bridging
donor. All together there are four symmetrically arranged ditopic nitrogen donor like 4,4°-
bipyridine which binds with four rhenium cores resulting in the funnel shaped cavity
containing metallacalix[4]arene. The cyclic framework is stabilized by hydrogen bonding
interactions that occur between water molecule and two adjacent nitrogen donors. The
hydrophobic cavity is large and accommodates various guest molecules with the binding
constant (K = ~ 1 x 10°M™).

Figure 1.19. Synthesis of rhenium metallobridged cavitand.
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Another example of tetranuclear homoleptic metallacalix[4]arene (37) is formed by treating

[Re(CO)sCl] with methyl acetoacetate (38) which resulted in cyclization of the ligand to give

pyrazolone as bis-chelating five electron donor and coordinated to fac-Re(CO)3 core through

their S and N3 atoms.*
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Figure 1.20. Homoleptic tetranuclear rhenium metallacalix[4]arene.

1.11. Re(CO); core-based heteroleptic dirhenium metallacalix[4]arenes

The fac-Re(CQO); core based neutral, heteroleptic dinuclear metallacalix[4]arene

supramolecules (39-50) are synthesized using rigid bis-chelating ligands, flexible ditopic

ligand containing “phenylene(—~CH,—heterocycle),” framework and Rey(CO)ip via reflux

method or one pot solvothermal approach.®® The flexible ligands (L'-L?) used for making

these metallacalixarenes can be prepared easily by simple condensation of phenyl-dibromide

and heteroarene N-donor motifs. Further, the functional groups of the metallacalixarenes can

be tuned by the introducing suitable functional unit on hetero(arene) motifs in the flexible

ligands.
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Figure 1.21. One-pot synthesis of functional dirhenium metallacalix[4]arenes.

The hydrophobic cavity present in these metallamacrocycles can accommodate small guest
molecules. However the solid-state structural evidence for accommodating guest molecules
inside cavity of these metallocavitands is rare. Ditopic ligand (51) was used with bis-
chelating motifs (52-55) to self-assemble metallacalix[4]arenes (56-59) via one-pot
approach.*® Metallacalix[4]arene 56 accommodates toluene as a guest molecule in its internal

cavity, and the methyl groups of toluene are directed towards its hydrophobic cavity.
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Figure 1.22. Self-assembly of heteroleptic dirhenium metallacalix[4]arenes.

Figure 1.23. (a) Solid-state structure of metallacycle 56, (b) space-filling representation of 56

with guest toluene (ball-and-stick model)

The fac-Re(CO); core-based complexes having -SMe decorated heteroleptic
metallacalix[4]arene are very rare. First example of —-SMe decorated dirhenium-based
metallacalix[4]arenes (60-64) were self-assembled from flexible tritopic donor ligands (1,3-
bis(2-methylmercaptobenzimidazol-1-ylmethyl)benzene,1,3-bis(2-methylmercaptobenzimida
zol-1-ylmethyl)-2,4,6-trimethylbenzene, 1,4-bis(2-methylmercaptobenzimidazol-1-ylmethyl)
benzene,1,4-bis(2-methylmercaptobenzimidazol-1-ylmethyl)-2,5-dimethylbenzene, 1,4-bis(2-
methylmercaptobenzimidazol-1-ylmethyl)-2,5-dimethoxybenzene, L3-L"), chlorinilic acid

and Re,(CO)1o. Each metallacycle has two thiomethyl groups on the cyclic rim.*
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Figure 1.24. Self-assembly of 2-methylmercaptobenzimidazolyl ligand based dinuclear

rhenium metallacalix[4]arenes.

Flexible tritopic ligands containing m-phenylene(CH,-heterocycle); framework have the
ability to form dinuclear heteroleptic metallacalix[4]arenes adorned with free functionalized
hetroarene  motifs. Ligand  1,3,5-tri(2-(methylthio)benzimidazol-1-ylmethyl)-2,4,6-
trimethylbenzene (65) was used to prepare functionalized dinuclear metallocavitands (66-68)
in the presence of additional framework units 2,2’-biimidazole (69) or tetrahydroxy-1,4-
quinone (55) or 6,11-dihydroxy- 5,12-naphthacenedione (52) with Re;(CO);o. In addition to
the internal cavity suitable to accommodate guest molecules, these molecules possess
functional units on the rim which have potential to interact with bio-systems. **

H
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H
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Figure 1.25. One-pot self-assembly of functionalized dinuclear rhenium metallocavitands.
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The above synthetic approach was extended to thiophene-functionalized nitrogen donor
ligand 1,3,5-tri(2-(thiophene-2-yl)benzimidazol-1-ylmethyl)-2,4,6-trimethylbenzene  (70),
treated with tetrahydroxy 1,4-benzoquinone bis-chelating anionic donor (71) and Rey(CO)1o

to get thiophene motifs decorated dinuclear metallacalix[4]arene (72). 2
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Figure 1.26. Thiophene motifs decorated dinuclear rhenium metallacalix[4]arene.

1.12. Re(CO); core-based heteroleptic tetrarhenium metallacalix[4]arenes.

Tetranuclear rhenium metallacalix[4]arenes (73-76) with larger inner cavity can be self-
assembled by using three component (Rex(CO).o, 4,7-phenanthroline, and bis-chelating
donor) via self-assembly approach.* The choice of neutral ditopic N-donor ligand is crucial
in dictating the bowl structure in these combinations. The 4,7-phenanthroline is rigid ditopic
N-donor and has the binding angle of ~120°. The bis-chelating ligands have to orient in a V-
shaped arrangement to adjust the angle to be suitable for octahedral geometry around the
metal core. This geometrical arrangement leads to the perfect bowl-shaped structure. These
metallacalix[4]arenes are neutral, heteroleptic and have inner cavity suitable to accommodate
guest molecules. The solvent molecules used to prepare these metallacalix[4]arenes are
accommodated in the cavity. Physical properties such as colors, solubility, functionality of
metallacalix[4]arenes can be tuned by modulating the bis-chelating ligands. The molecular
recognition studies show that these cavitands can act as host for naphthalene, anthracene,
phenathroline and pyrene like guest molecules.
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Figure 1.27. Self-assembly of syceelike tetrarhenium metallocavitands.

Metallocavitands 74 and 75 are utilized as evanescent wave infrared molecular
sensors for the selective recognition of odorous amino compounds in air.* The selective and
sensitive detection of amino compounds by the hydrophobic pocket of the metallocavitands
found to follow the order as: aromatic amine > aliphatic primary amine ~ cyclo-amine >
aliphatic secondary amine > aliphatic tertiaryamine. The cavity size and the hydrogen
bonding donors present on the framework of the metallocavitands determine selective

trapping of amine guest molecules.

1.13. Re(CO); core-based heteroleptic bismetallacalix[4]arenes.

The fac-[Re(CO);] core-based supramolecule having two dinuclear heteroleptic
metallacalix[4]arene motifs is very rare. First example of rhenium core containing bis
metallacalix[4]arene units (77) was self-assembled from flexible tritopic donorl,3,5-tri(2-
methylmercaptobenzimidazol-1-ylmethyl)-2,4,6-trimethylbenzene (63), chlorinilic acid and
Re»(CO)10.* Each metallacycle has two thiomethyl groups on the cyclic rim. The

hydrophobic cavity on the metallacycle can accommodate small guest molecules.
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Figure 1.28. Re(CO)3 core-based bismetallacalix[4]arenes.

The nitrogen donor ligands play a crucial role in determining the supramolecular
architectures. Flexible tetratopic ligand structural framework (78) provides suitable
coordination angle for the formation of dinuclear bis-metallacalix[4]arene supramolecules
79-80) when combined with chlorinilc acid and Rex(CO)10.* The central phenylene unit of
the tetratopic ligand share for both the metalllacalix[4]arene. By tuning the bis-chelating

motif, the cavity size of each metallacalix[4]arene can be varied.
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Figure 1.29. Rhenium core-based dinuclear bis-metallacalix[4]arene supramolecules.
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Other examples for bis-metallacalix[4]arenes (81-82) were synthesized using flexible
tetratopic nitrogen donor ligand (83), 1,4-dihydroxy-9,10-anthraquinone (51), or 11-
dihydroxy-5,12-naphthacenedione (50) with Rex(CO)yo via solvothermal approach.”” The
tetratopic ligand was designed in such a way it acts as a two ditopic N-donor ligands. Two
dinuclear metallacalix[4]arenes in the complexes were connected via a C-C bond; therefore it

can be best considered as bridgeless bis-metallacalix[4]arenes.

2 Rey(CO)qq

81, H,L =50
82, H,L - 51

Figure 1.30. One-pot self-assembly of rhenium bridgeless bis-metallacalix[4]arenes.

1.14. Re(CO); core-based helicates and mesocates.

The combination of two types of flexible ligands i.e., neutral flexible bis-monodentate
nitrogen donor ligand (84) and bis-bidentate NO donor ligand (85), incorporating a flexible p-
xylene motif (~CH,—Ph—CH,-) between two donors and Re,(CO);o were used for assembling
dinuclear heteroleptic helicate (86).*® The spacer p-phenylene motif in both the ligands (84-
85) plays an important role in adopting helical structure. This was evident when the spacer
motif in the ligand strands was changed to m-xylene motif (87-88) which results in the
mesohelical structure (89). These metallacycles exhibit fluorescence and phosphorescence

both in solution and solid state.
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Figure 1.31. Dirhenium(l)-double-heterostranded helicates and mesocates.

Changing or modulating the bis(bidentate) NO donor ligands (85 and 88) can influence the
resulting architectures. By treating the orthogonal tritopic fac-Re(CQO); metal acceptor with
flexible bis-chelating dianionic OO-donor (90) and flexible bis-monodentate nitrogen donors
(84 and 87) in toluene via one-pot solvothermal synthesis results in heteroleptic, neutral

dinuclear helicates (91-92).%

SOR®
HO OH
S0

90

Figure 1.32. Dinuclear rhenium unsaturated double-stranded helicates.

Modulating the central spacer motif from p-phenylene spacer in 84 and 87 to Troger’s base
spacer motif in the neutral ditopic N-donor ligand (93) and treated with 85 or 88 and
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Re,(CO)yp in toluene results in Re(l)-based dinuclear double hetero-stranded helicates (94-
95) 50
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Figure 1.33. Re(l)-based dinuclear heteroleptic double-stranded helicates.

1.15. Tc(CO); core-based cyclic complex

To the best of our knowledge, fac-[{Tc(CO)s;Cl}2(ptc),] (ptc = 4-pyridyl-thiosemicarbazone =
CsHsN-C(CH3)=N-NH-C(S)-NH,) (96), is the only known example for a metallamacrocycle
based on the fac-[Tc(CO)3]" core and formed by treating (NEt,),[Tc(CO)sCls] with ptc ligand
(97) in acetonitrile.®® In solid state the neighboring molecules are held by hydrogen bonds,

and acetonitrile solvent molecules occupy the channels formed along the b-axis.
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Figure 1.34. Synthesis of Tc(CO); core-based metallamacrocycle.
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1.16. Scope of the present thesis

It is clear from the preceding section that fac-[Re(CO)s] core-based metallacalix[4]arenes
have gained attention in the field of supramolecular chemistry owing to their interesting
properties in the fields of molecular recognition, catalysis, selective reactivity and biology.
The flexible benzimidazolyl and its structural analogous based ditopic N-donors have
attracted attention as versatile structural framework for making cavity-containing fac-
[Re(CO);] core-based metallacalix[4]arenes. The terminal heteroarene N-donor and
phenelyne spacer in the ditopic flexible ligands act as aromatic/heteroaromatic walls of the
metallacalixarenes. The bis-chelating organic ligands also act as one of the structural
frameworks of the rhenium metallacalix[4]arenes. Although a variety of dirhenium
heteroleptic, neutral metallacalixarenes can be obtained by using flexible ditopic N- donor
ligands containing phenylene spacer, the hydrophobic cavity in the metallacalixarenes is
small to accommodate guest moleculescompletely or partially. There is a lot of scope to
modulate the ditopic benzimidazolyl/benzimidazolyl derivatives based nitrogen donor ligands
by incorporating diphenylmethane as a spacer to prepare larger size cavity containing
dinuclear rhenium metallacalixarenes. Functionalization on the lower rim of the bigger
cavitands can result in longer hydrophobic cavity containing metallocavitands. The designed
metallocavitands with increased width and depth may accommodate aromatic guest
molecules and other potential guest molecules entirely inside their hydrophobic cavity. The
anionic bis-chelating units used as structural framework to construct metallocavitands are
rigid having an angle of 180 between the two chelating units. The use of the semi-rigid or
flexible anionic donors possessing a longer binding length and an angular chelating angle
may result in either metallocavitands with bigger hydrophobic cavity or helicate/meso-

helicate kind of architectures.

The present thesis describes the design and synthesis of a series of new diotopic N-donor
ligands with diarylmethanespacer and several fac-[M(CO);] (M = Re/ Tc) core-based
mononuclear homoleptic metallacalix[4]arenes, and fac-[Re(CO)s] core-based dinuclear

heteroleptic metallacalix[5]arenes, dinuclear heterostranded helicates and meso-helicates.
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Chapter 2

Re(l)-based Irregular Pentagonal-shaped Metallocavitands:

Self-Assembly and Molecular Recognition Studies

Abstract

Neutral ditopic flexible N-donor ligands (L" = (L' = bis(4-(naphtho[2,3-d]imidazol-1-
ylmethyl)phenyl)methane, L? = bis(4-(benzimidazol-1-ylmethyl)phenyl)methane and L® =
bis(4-(2-nonyl benzimidazol-1-ylmethyl)phenyl)methane)) possessing bis(4-
methylphenyl)methane spacer with multi-arene fused imidazole donor unit were designed and
synthesized. The L" were utilized to develop metollacavitands analogous of pillar[5]arene
framework with larger cavity. The metallocavitands 1-4 were assembled from Re,(CO)qp,
rigid bis-chelating donor (H,-dhagq = 1,4-dihydroxy-9,10-anthraquinone and H,-CA =
chloranilic acid) and L" via solvothermal approach. The ligands and metollacavitands were
characterized by analytical and spectroscopic methods and further 1 and 4 were confirmed by
single crystal X-ray diffraction analysis which reveals that a toluene molecule is residing in
the hydrophobic cavity. The L" and 1-4 are emissive at room temperature. The internal
cavity of the metallocavitand acts as host for aromatic guest molecules. The host-guest
interaction properties of 1 with various aromatic (anthracene (An), naphthalene (Np)) and
nitroaromatic molecules (nitrobenzene (NB), 2-nitrotoluene (2-NT), 4-nitrotoluene (4-NT)

and 2,4-dinitrotoluene (DNT)) were studied by emission spectroscopic method.

This work has been published in Dalton Trans. 2018, 47, 4494 -4500.
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2.1. Introduction

The design and synthesis of metallocavitands similar to calixarenes have been growing
due to their interest in the field of molecular recognition, catalysis, selective reactivity
and biology.’™ Most of the studies in this area are focused on making neutral/ionic
metallacalix[n]arenes (n = 3 and 4) to tune the hydrophobic cavity and functional
groups at the rim.>® Further, various approaches various metal ions and organic
building units have been attempted to modulate the properties. Up to now, attempt to
make neutral metallocavitand framework similar to calix[5]arene is scarce. It is
expected that the metallocavitand may display properties similar to the calix[5]arene
and is conformationally rigid and has larger hydrophobic cavity than the
metallocavitand which is similar to calix[4]arene framework.’>*® Herein, we report a
simple synthetic approach for metallocavitand with larger cavity. The neutral
heteroleptic metallocavitand was assembled using Re,(CO)io, rigid bis-chelating
donors and a flexible ditopic N-donor possessing bis(4-methylphenyl)methane spacer,
via solvothermal approach. Though the approach is similar to dirhenium-based
metallacalix[4]arene i.e., combination of ditopic ligands containing a “phenylene(CH.-
hydrocycle),” flexible framework, rigid bis-chelating donor, and Rey(CO)io, this
approach uses “CH,-(phenylene-CH,-heterocycle),” that results metallocavitand
framework with solvent accessible hydrophobic cavity (Scheme 2.2-2.3).%2

2.2. Experimental

2.2.1 Materials and Methods

Starting materials such as Re;(CO)i, Hy-dhag, H,-CA, benzimidazole(H-bimz), 2,3-
diaminonaphthalene, diphenylmethane, phosphoric acid, paraformaldehyde, 30-33% HBr in
AcOH, glacial acetic acid, formic acid and KOH were obtained from commercial sources and
used as received. Naphthanoimidazole (H-nimz) and bis(4-(bromomethyl)phenyl)methane
were prepared by using reported procedure.® Toluene and mesitylene were purified and
distilled by conventional procedure. Spectroscopic grade solvent were used for analysis. FT-
IR spectra were recorded on a Nicolet 380 FT-IR Spectrometer and Bruker ALPHA Il FTIR
Spectrometer. *H NMR spectra were recorded on a Bruker Avance 111 500 and 400 MHz
spectrometers. HR-MS spectra were recorded on a Bruker maXis mass spectrometer.
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Elemental analysis data were performed on a Flash EA 1112 Series CHNS analyzer. UV-Vis
and Fluorescence spectra were recorded on Shimadzu UV-VIS-NIR (UV-3600)

spectrophotometer and Horiba Jobin Yvon (Fluoromax-4) spectrophotometer, respectively.

2.2.2 Synthesis of ligands and complexes.

Synthesis of bis(4-(naphtho[2,3-d]imidazol-1-ylmethyl)phenyl)methane (LY).

A mixture of powdered KOH (0.1001 g, 1.784 mmol) and H-nimz (0.3 g, 1.784 mmol) in
DMF (10 mL) was stirred at room temperature for 3 h. Bis(4-(bromomethyl)phenyl)methane
(0.3157 g, 0.892 mmol) was added to the solution. The reaction mixture was then stirred
continuously for 24 h. The residue was poured into ice cold water (300 mL). The resulting
gray precipitate was filtered, washed several times with water, and air dried. The crude was
purified by column chromatography (ethyl acetate/hexane, 4/6, v/v). Yield: 69% (324 mg).
'H NMR (400 MHz, DMSO-dg): d 8.61 (s, 2H, H?), 8.22 (s, 2H, H®), 8.01-7.99 (m, 2H, H®),
7.96 (s, 2H, H%), 7.91-7.89 (m, 2H, H°), 7.38-7.35 (m, 4H, H"®), 7.23 (d, Jun = 8.16 Hz, 4H,
H*Y, 7.14 (d, Jun = 8.16 Hz, 4H, H*®'?), 5,50 (s, 4H, H*°, -CH,-), and 3.82 (s, 2H, H®, -
CHy-). ESI (HR-MS). Calcd for Cs7HzsN4 [M+H]": m/z 529.2387. Found: m/z 529.2395.
Anal. Calcd for C37H2sN,4: C, 84.06; H, 5.34; N, 10.60. Found: C, 84.17; H, 5.39; N, 10.48.

Synthesis of bis(4-(benzimidazol-1-ylmethyl)phenyl)methane (L?).

A mixture of powdered KOH (0.239 g, 4.232 mmol) and H-bimz (0.5 g, 4.232 mmol) in
DMF (10 mL) was stirred at room temperature for 3 h. Bis(4-(bromomethyl)phenyl)methane
(0.750 g, 2.116 mmol) was added to the solution. The reaction mixture was then stirred
continuously for 48 h. The residue was poured into ice cold water (300 mL) and filtered. The
resulting sticky white precipitate was washed with hexane and air dried. The crude was
purified by column chromatography (methanol/chloroform, 2.5/97.5, v/v). Yield: 51% (462
mg). *H NMR (500 MHz, DMSO-dg): J 8.36 (s, 2H, H?), 7.65-7.62 (m, 2H, H'), 7.50-7.47
(m, 2H, H*, 7.20-7.16 (m, 8H, H'*%%®), 7.15-7.13 (m, 4H, H'*°%), 5.41 (s, 4H, H®, -CH,-),
and 3.83 (s, 2H, H™, -CH,-). ESI (HR-MS). Calcd for CagHasNs [M+H]": m/z 429.2079.
Found: m/z 429.2119. Anal. Calcd for CyH24N4: C, 81.28: H, 5.65; N, 13.07. Found: C,
81.12; H, 5.58; N, 13.21.
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Synthesis of bis(4-(2-nonyl benzimidazol-1-ylmethyl)phenyl)methane)) (L).

A mixture of powdered KOH (0.115 g, 2.046 mmol) and H-nbimz (0.5 g, 2.046 mmol) in
DMF (10 mL) was stirred at room temperature for 3 h. Bis(4-(bromomethyl)phenyl)methane
(0.362 g, 1.023 mmol) was added to the solution. The reaction mixture was then stirred
continuously for 24 h. The residue was poured into water and chloroform mixture, and stirred
for overnight. The organic layer was extracted, washed with saturated NaCl solution, dried
over Na,SO, and concentrated. The sticky precipitate was purified by column
chromatography (hexane) to afford yellow coloured liquid. The resulting product was left
open and the powder was obtained after 7-10 days. The powder was washed with hexane and
dried. Yield: 48% (334 mg). *H NMR (500 MHz, DMSO-dg): J 7.56-7.54 (m, 2H, H'), 7.41-
7.39 (m, 2H, H?), 7.13-7.09 (m, 8H, H*°%%) 6.95 (d, Jun = 8.1 Hz, 4H, H'**%), 5.40 (s, 4H,
H8, -CH,-), and 3.82 (s, 2H, H*3, -CHy-), 2.79-2.75 (t, Jun = 7.6 Hz, 4H, H'%), 1.67-1.61 (m,
4H, HY), 1.18 (s, 24H, H*%), and 0.84-0.81 (t, Jun = 6.8 Hz, 6H, H?). ESI (HR-MS).
Calcd for C47HgoN4 [M+H]": m/z 681.4896. Found: m/z 681.4952. Anal. Calcd for C47HgoN4:
C, 82.89; H, 8.88; N, 8.23. Found: C, 82.76; H, 8.32; N, 8.79.

Synthesis of [{(CO)sRe(u—dhaq)Re(CO)3}(u—L"] (1).

A mixture of Re(CO)yo (100 mg, 0.1532 mmol), H,-dhaq (36.80 mg, 0.1532 mmol), L*
(80.99 mg, 0.1532 mmol), and toluene (10 mL) in a Teflon flask was placed in a steel bomb.
The bomb was kept in an oven at 160 °C for 48 h and cooled to 30 °C. Compound 1 was
obtained as dark coloured crystals and powder. The product was filtered, washed with
hexane and air-dried. Yield: 76% (153 mg). *H NMR (400 MHz, DMSO-dg): 6 9.32 (s, 2H,
H?), 8.52-8.49 (m, 4H, H%%), 8.31 (s, 2H, H*), 8.13-8.10 (m, 2H, H®), 8.03-8.00 (m, 2H, HP),
7.93-7.91 (m, 2H, H°), 7.43-7.40 (m, 4H, H®7), 7.15 (s, 2H, H°), 7.08 (d, Jun = 8.21 Hz, 4H,
H*11Y), 6.80 (d, Jun = 8.21 Hz, 4H, H***?), 5.55-5.35 (m, H™°, -CH,-), and 3.64-3.54 (m, H",
-CH,-). ESI (HR-MS). Calcd for Cs;H3sN4O1oRe; [M+H]": m/z 1309.1465. Found: m/z
1309.1463. Anal. Calcd for Cs7H34N4O1gRes: C, 52.37; H, 2.62; N, 4.29. Found: C, 52.43; H,
2.58: N, 4.35. FT-IR (KBr, cm%): 2011 (s), 1913 (s), and 1856 (s).

Synthesis of [{(CO)sRe(u—dhaq)Re(CO)3}(u—L?)] (2).
A mixture of Re;(CO)1o (50 mg, 0.0766 mmol), H,-dhaq (18.4 mg, 0.0766 mmol), L? (32.83
mg, 0.0766 mmol), and mesitylene (30 mL) was refluxed for 6 h. The product was filtered in

hot condition, washed with hexane and air-dried. Compound 2 was obtained as dark coloured
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powder. Yield: 49% (45 mg). *H NMR (500 MHz, DMSO-dg): d 9.13 (s, 2H, H?), 8.52-8.50
(m, 2H, H%), 8.04-8.03 (m, 2H, H®), 7.98-7.96 (d, Jun = 7.45 Hz, 2H, H'), 7.83-7.82 (d, Juy =
7.35 Hz, 2H, H*), 7.36-7.30 (m, 4H, H®?), 7.10-7.09 (d, Jun = 8.1 Hz, 4H, H'*®), 7.06 (s, 2H,
H°), 6.84-6.82 (d, Jun = 8.1 Hz, 4H, H*'%), 5.50-5.32 (m, 4H, H®, -CH,-), and 3.65-3.58 (m,
2H, H', -CH,-). Anal. Calcd for CagH3oNsORey: C, 48.75; H, 2.50; N, 4.64. Found: C,
48.82; H, 2.56; N, 4.58. FT-IR (KBr, cm™%): 2007 (s), and 1864 (s).

Synthesis of [{(CO)sRe(u—dhaq)Re(CO)3}(u—L%)] (3).

A mixture of Re;(CO)4p (50 mg, 0.0766 mmol), H,-dhaqg (18.4 mg, 0.0766 mmol), L3 (52 mg,
0.0766 mmol), and mesitylene (30 mL) was refluxed for 6 h. The resulting liquid was
concentrated, washed with distilled hexane and air-dried. Compound 3 as dark coloured
powder was obtained. Yield: 65% (73 mg). *H NMR (500 MHz, DMSO-dg): & 8.36-8.34 (m,
2H, H?), 7.94-7.92 (m, 2H, H), 7.56-7.54 (m, 2H, H), 7.41-7.39 (m, 2H, H?), 7.29 (s, 2H,
H°), 7.13-7.09 (m, 8H, H'?%®?), 6.96-6.95 (d, Juy = 8.1 Hz, 4H, H'"*?), 5.39 (s, 4H, H?, -
CH,-), and 3.83 (s, 2H, H®, -CHy-), 2.79-2.76 (t, Jun = 7.5 Hz, 4H, H*), 1.68-1.62 (m, 4H,
H™), 1.18 (s, 24H, H*?) and 0.84-0.82 (t, Jun = 6.85 Hz, 6H, H?®). Anal. Calcd for
Ce7HesN4O1oRez: C, 55.13; H, 4.56; N, 3.84. Found: C, 55.23; H, 4.48; N, 3.81. FT-IR (KBr,
cm1): 2010 (s), and 1874 (s).

Synthesis of [{(CO)sRe(u—CA)Re(CO)3}(u—L")] (4).

Dark coloured crystals and powder of 4 were obtained by following the procedure similar to
that for 1, using a mixture of Re,(CO)yp (100 mg, 0.1532 mmol), H,-CA (32 mg, 0.1532
mmol), L* (80.60 mg, 0.1532 mmol), and toluene (10 mL) in a Teflon flask. Yield: 57%
(112.4 mg), (Major isomer). *H NMR (500 MHz, DMSO-dg): 6 8.66 (s, 2H, H?), 8.22 (s, 2H,
H®%), 8.11-7.98 (m, 2H, H®), 7.97 (s, 2H, H*), 7.92-7.89 (m, 2H, H?), 7.47-7.32 (m, 4H, H"®),
7.27-7.21 (m, 4H, H**), 7.19-7.12 (m, 4H, H*'?), 5,51 (m, 4H, H', -CH,-), and 3.82 (m,
2H, H™, -CH»-). ESI (HR-MS). Calcd for CagH2sN4Cl,010Re, [M+H]": m/z 1277.0366.
Found: m/z 1277.0356. Anal. Calcd for CsH2sN4Cl,010Re;: C, 46.12; H, 2.21; N, 4.39.
Found: C, 46.18; H, 2.25; N, 4.32. FT-IR (KBr, cm’l): 2017 (s), and 1890 (5s).

2.2.3 Host-Guest Studies.

Quenching experiments of host 1 in the presence of aromatic nitro compounds (Nitrobenzene,
NB; 2-Nitrotoluene, 2-NT; 4-Nitrotoluene, 4-NT; 2,4- dinitrotoluene, 2,4-DNT) and planar
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aromatic compounds (Benzene, Bn; Mesitylene, Ms; Naphthalene, Np; Anthracene, An)
were carried out by fluorescence spectroscopic method. The solvent (DMSO) used in this
study was of spectroscopic grade and used as received. Aromatic guests stock solutions (NB;
1.7x107% M for 2-NT, 4-NT and 2,4-DNT; 1.7x107* M for Bn and Ms; 0.14x10% M for Np;
0.17x10°3 M for An) were prepared in DMSO. Complex 1 stock solutions (1.92x10“* M for
NB, 2-NT, 4-NT and 2,4-DNT; 1.92x10* M for both Bn and Ms; 2.13x10* M for Np;
1.92x10* M for An) were prepared in DMSO. Test solutions were prepared by the addition
of an appropriate aliquot (0.02-3mL) of each guest stock into 5ml standard volumetric flask
followed by placing 1 mL of stock solution of host 1 and then diluting the solution to 5 mL
with DMSO. The excitation wavelengths (Aexc) Were 336 nm for NB, 2-NT and 4-NT and 2,4-
DNT; 350 nm for Bn; 325 nm for Ms; 290 nm for Np and 336 nm for An. The slit width was
5 nm for both the excitation and emission. The binding characteristics of host 1 with guest
molecules were determined by the emission spectroscopic method. The binding constants
were calculated on the basis of the Benesi-Hildebrand equation [1/Al = 1/Almax + (1/ K[G]
Almax)]; here Al = I-lnin, Almax = lo—Imin, lo IS the emission intensity of free host 1, I is the
intensity measured with guest, Imin is the intensity measured with an excess of guest, K is the

binding constant, and [G] is the concentrations of guest molecules.

2.3. Results and discussion

2.3.1 Synthesis, characterization, and molecular structure of ligands

L L°

Neutral nitrogen donor ligands (L'-L®) were obtained using bis(4-
bromomethylphenyl)methane and heterocyclic motif (naphthanoimidazole, H-nimz;

benzimidazole, H-bimz; 2-nonylbenzimidazole, H-nbimz) in the presence of base.™

The *H NMR spectra of L" displayed single set of signals for all the protons. In
particular, two singlet signals in the aliphatic region corresponds to two methylene
protons (~5-6 ppm for N-CH,-C and ~3.5-4.0 ppm for C-CH,-C), suggesting
formation of the ligands and are flexible in solution i.e., various conformers which
interconvert each other in the solution. Ligand L* takes M-shaped conformation mode
in the solid state ligand L? adopts cis-conformation. Two nimz units of L* are arranged

anti-cofacially, whereas two bimz motifs of L? are in syn-orientation.
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2.3.2 Synthesis and characterization of metallocavitands (1-4).

The treatment of Re2(CO)10, 1,4-dihydroxy-9,10-anthraquinone (Hz-
dhaq)/chloranilicacid (H,-CA), L" and toluene or mesitylene yielded metallocavitands
(1-4) with toluene molecule (Scheme 2.3).}* The complexes are air and moisture
stable, and moderately soluble in polar organic solvents. The FT-IR spectra of 1-4
showed strong bands around 2017-1856 cm*, characteristic of the fac-Re(CO)s units

in the asymmetric environment.*

Scheme 2.2. Synthesis of an irregular pentagonal-shaped metallocavitand (1). A=D =
heterocyclic nitrogen donor; B = C = phenylene; H,E = bis-chelating unit; @ = CHy; o
= fac-Re(CO)s.

W, 1 W, 3L
! Hy-dhaq H,-CA /
0‘0 ~  ReyCO)p——— cl cl
Q ) - /

N/_'bN/ SN

E »

= oc o
<\\\_'!//> Q

1,L"=L", R =H; N donor = naphthanoimidazolyl 4

2,L"=12 R =H: N donor = benzimidazolyl

3,L"=L3R= -(CH5)g—CHg3; N donor = benzimidazolyl

Scheme 2.3. Synthesis of 1-4.
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The *H NMR spectra of 1 and 2 displayed a single set of chemical resonances for
protons of both L" and dhaq in a 1:1 integration ratio, ascribed to M,LL'-type
complexes. The proton of N-CH-N in 1 and 2 was significantly downfield shifted
relative to uncoordinated L'/L? confirms the coordination of N to rhenium. The
methylene protons (N-CH,-C and C-CH,-C) of 1 and 2 were appeared as multiplets,
suggesting the rigidity of LY/L? in the complexes. Remaining protons of L" and dhagq
motifs were shifted in relative to those protons in the uncoordinated ligands. In the
case of 3, no shift in the peaks for the protons of L* compared to those protons in free
L3 while the peaks for the protons of dhag unit were shifted compared to those protons
in uncoordinated H,-dhag. Complex 4 displays two types of *H NMR pattern for
protons of L. The pattern of major peaks resembled to the ligand proton peaks with
slight downfield shift. The minor peaks resembled to the peaks of L' in 1. We suggest
that 4 exists as various conformers i.e. two major conformers, and more than two

minor conformers, in solution.'*?
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Figure 2.5. Partial ‘H NMR spectra of 1, Hp-dhaq and L*in DMSO-ds.
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Figure 2.7. Partial *H NMR spectra of 3, H,-dhaq and L*in DMSO-ds.
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Figure 2.8. Partial '"H NMR spectra of 4 and L*in DMSO-dg.

2.3.3 Molecular structure of metallocavitands (1 and 4).
The result of SCXRD study showed that 1 adopts M,LL'-type of SCC with irregular

pentagon (Fig. 2.9). The cyclic assembly of 1 can be viewed as [2+1+1] assembly of
two fac-Re(CO); cores, one dianionic dhag® motif, and one neutral nitrogen donor
ligand L'. The arrangement of five organic units i.e., “Re—dhag®—Re—nimz—CH,—
phenylene—CH,—phenylene—-CH,—nimz”, provide distorted pentagonal-shaped
structure i.e three methylene units (-C*H,—, —C?*H,—, —C®H,-) and two Re atoms are
related to five vertices and dhag?®, two nimz units and two phenylene units are the
edges. The dimensions of 1 are 8.390 A (Re---Re), 5.679 A (Re%.-C**{CH.}), 5.875 A
(C**{CH,}--C*{CH,}), 5820 A (C*{CH,}--C*{CH,}), and 5.665 A
(C**{CH,}---Re") including van der Waals radii. The height of structure of 1 is 8.7 A
(length of nimz unit). Among the five pentagonal walls, two phenylene walls are tilted
oppositely with dihedral angle 115.7". The remaining three walls are perpendicular to
the plane created by five vertices with the dihedral angle of 88.5°, 88.63" and 88.47".
The five interior angles of pentagonal structure are 1007, 95, 112", 115 and 117, and
the sum of the pentagonal angle is 540°. It is noteworthy to mention that pentagonal

shaped metal-directed SCCs are very limited.
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c126

Figure 2.9. Molecular structure of 1 (left: H atoms and six CO units were removed to show
cyclic framework; right: space-filling view of 1. C = gray, H = white, N = blue, O =red, Re

= green, toluene = yellow.

Complex 4 adopts a similar structure like that of 1 (Fig. 2.10). The distances between the
vertices of pentagonal structure of 4 are similar to those found in 1 except Re---Re distance
(8.13 A) which is 0.26 A shorter than Re---Re distance in 1. The major differences found
among these two complexes are the orientation of two nimz units in the cyclic framework.
The two nimz units of 1 are cofacial with the dihedral angle of 6.598 A. The distance of
centre of nimz to centre of another nimz is 9.52 A in 1. However, two nimz in 4 are tilted in
such a way that the edges of the six-membered core of nimz are close to each other with the
dihedral of angle of 32.672". The shortest non-bonded distance between two nimz in 4 is
4.745 A which is above the five vertices plane and longest distance (9 A) is below to the
plane. The electronic arrangements found in dianionic ligands, dhag” in 1 and CA? in 4, are
usual i.e., delocalization of = electrons both in dhag® and CA?". The crescent bending nature

of dhag® in 1 is similar to other ionic/neutral metallacycles possessing this unit.** 12> 14

2.3.4 Host-guest interactions in solid-state.

The hydrophobic cavity of 1 (width: 6.12 A excluding the van der Waals radii i.e.,
distance between two nmiz units and height: 8.7 A) contains one toluene solvent
molecule, which resides deep in the cavity. The cavitand size is similar to cavity size
of pillar[6]arene (ca. 6.7 A) and is bigger than pillar[5S]arene cavity (ca. 4.7 A).*> All
five walls of metallocavitand 1 contact with guest toluene via face-to-face n-n

stacking interactions and the edge-to-face aromatic C-H---wt interactions. The benzene
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plane of toluene guest is oriented parallel to dhag® plane and perpendicular to two
nimz planes. The crescent shaped dhag® molecule is above the plane of Re---Re with
the distance of 0.6 A. This arrangement may be due to m---m interactions with guest
toluene (t = 7°; d = 3.25-3.77 A and d.y. = 3.45 A). The dhag® and CA? units are used
to make SCC rectangles and other cyclic structures. However, to the best of our
knowledge the m---m stacking interactions between the dhag®/CA? units and guest
aromatic solvent molecule is scarce. The distance of centre of mass (COM) of toluene
and COM of nimz ring is 4.8 A, indicating the strong edge-to-face aromatic C-H---xt
interactions between them. The methyl group of toluene lie at bottom of cavitand and

is stabilized by multiple aliphatic C-H---xt interactions.

Rel

c19

Figure 2.10. Molecular structure of 4 (left: H atoms and six CO units were removed; right:
space-filling view of 4. C = gray, H = white, N = blue, Cl = green, O =red, Re = dark green,

toluene = yellow.

The volume of the hydrophobic cavity in 4 is reduced as compared to molecule 1 due
to the orientation of two nimz units. In contrary to 1, the plane of guest toluene is
parallel to the two nimz units and perpendicular to the CA? plane. The distance
between two COM of nimz units is 7 A i.e., diameter is 3.6 A excluding the van der
Waals radii. The distances of benzene unit of toluene and plane of nimz in 4 are 3.35,
3.47, 3.58, 3.84, 3.93 and 4.7 A, indicates aromatic edge-to-face C-H---xt interactions.
Further, the distance between the one of hydrogen atoms of toluene and chlorine of
CA% is 2.992 A which is equal to the sum of the van der Waals distance of chlorine
(1.80 A) and hydrogen (1.20 A), indicates very weak C-H---Cl interaction. In addition,
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the methyl group of toluene guest molecule is upward in the cavity and is away from

the walls of cyclic framework of 4.

2.3.5 Photophysical properties.

The photophysical properties of ligands (L*-L*) and complexes (1-4) were studied in
DMSO. The absorption properties of known SCCs possessing [benzimidazolyl-
Re(CO)s-dhag-Re(CO)s-benzimidazolyl] unit are well-studied both experimentally
and theoretically by Lu and others.*® Hence, the assignment of electronic transitions is
based on the literature report.*® The absorption spectra of L*, L? and L* display bands
in the range of 257-347, 257-283, and 258-285 nm, respectively (Table 1). High
energy bands (Aaps = 257, 325, 336, and 350 nm for 1, 262 nm for 2 and 3, and 256,
326, 336, and 348 nm for 4) are assigned to ligand centred n—n* electronic transitions,
whereas low energy bands (at As;s = 407 nm for 1, 410 for both 2 and 3) may
correspond to metal-to-ligand charge transfer (MLCT) transitions. In addition, the
weak bands (Aaps = 593, 641 nm for 1, 596, 644 nm for 2, and 601, 650 nm for 3) may
be attributed to intraligand transition of the dhag”® moiety. Ligand L* shows structured
emission in the visible region (345-420nm), whereas L? and L® show structurelss
emission band centred at 294 and 296 nm, respectively. All the complexes show
ligand-centred emission in the presence/absence of oxygen at room temperature. No

emission was observed in the visible region for all the complexes.

Table 2.1. Absorption and emission spectral data for the ligands and the complexes.

L' 257,318, 332, 347 318 345, 349, 359, 382, 399, 420
L2 257,268, 276, 283 257 294

L3 258,278, 285 258 296
1 257,325,336, 350, 325 355, 370, 387
407, 593, 641

2 262,410, 596, 644 262 294
3 262,410, 601, 650 262 303
4 256, 326, 335, 348 328 353, 370, 390, 415
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Figure 2.11. UV—Vis spectrum of L' in DMSO (0.68 x 10 M).
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Figure 2.12. Fluorescence spectra of L' in DMSO (0.68 x 10 M).
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Figure 2.13. UV—Vis and fluorescence spectra of L? in DMSO (1 x 10* M).
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Figure 2.14. UV—Vis and fluorescence spectra of L3 in DMSO (0.2x10™* M).
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Figure 2.15. UV—Vis spectrum of 1 in DMSO (0.60x102M).
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Figure 2.16. Fluorescence spectra of 1 in DMSO (1.92x10™* M).
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Figure 2.17. UV—Vis spectrum of 2 in DMSO (0.3x10°> M).
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Figure 2.18. Fluorescence spectrum of 2 in DMSO (1 x 1074 M).
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Figure 2.19. UV—Vis spectrum of 3 in DMSO (0.4x10> M).
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Figure 2.20. Fluorescence spectrum of 3 in DMSO (1x 10°* M).
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—— Absorption spectra of 4
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Figure 2.21. UV—Vis spectrum of 4 in DMSO (0.2x10* M).

2.4 Binding studies of host 1 with aromatic and nitroaromatic molecule.

In order to study the host-guest interaction, we selectively chosen nitro
substituted aromatic molecules and planar aromatic compounds in DMSO,
using emission spectroscopic method (chart 2.1). The study was carried for
complex 1 as host. The fluorescence spectrum of 1 exhibits an intense emission
at 375 nm upon excitation at 336 nm. Figure 2.22 shows the changes in the
fluorescence spectrum upon titrating 1 against nitrobenzene (NB). The
fluorescence of 1 is effectively quenched upon addition of NB. Among
nitrobenzene, 2-nitrotoluene, 4-nitrotoluene, and 2,4-dinitrotoluene (DNT),
DNT display strong fluorescence quenching of 1. The effective quenching was
achieved through electron transfer process from the photo-excited fluorophore
(1) to the electron deficient nitroaromatic compounds at ground state.”* The
fluorescence quenching data was analysed using linear regression plot which
indicates the formation of 1:1 host-guest complex. The solid-state structure of 1
shows strong evidence that complex 1 can accommodate one toluene molecule

in the cavity. The binding constants (K) were calculated on the basis of Benesi—
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Hildebrand equation for complexation of 1 with 2,4-DNT, NB, 4-NT and 2-NT
and are 2.5x10° M™%, 4.7x10° M, 4.5x10° M, 1.1x10° M, respectively.”
Similarly, the titrations of 1 with various aromatic compounds were carried out
by fluorescence method. The fluorescence spectra of 1 with gradual addition of
anthracene/naphthalene show hyperchromic shift at 387/322 nm and
hypochromic shift at 352/457 nm upon excitation at 336/290 nm. The emission
profile of anthracene (An) and naphthalene (Np) are also merging with
emission pattern of 1 in the range of 382-508 nm and 300-400 nm, respectively.
Hence, we have chosen the emission intensity at 352/457 nm which is not
merging with guest emission range, for binding constant calculation using
Benesi— Hildebrand equation.?® Anthracene shows higher binding ability than
naphthalene, (K = 1.3x10* M for An and 1.7x10° M for Np). In case of
benzene and mesitylene with 1, both fluorescence enhancement and quenching
was observed simultaneously. This phenomenon may be due to the process of
fast dissociation and association (guest go in/out the cavity) of host-guest
complex. The above emission studies indicate that the accessible size of 1 is
suitable to accommodate planar aromatic molecules as well as nitroaromatic
compounds, which may be stabilized by the effective n---m and C-H- =&

interactions with host framework wall.

NO,
i ©/N02 i NO,
NO,

NO,
NB 2-NT 4-NT 2,4-DNT
Benzene Mesitylene NP AN

Chart 2.1: Guest molecules used for molecular recognition studies.
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Figure 2.22. Changes in the emission spectra of 1 (3.84x10> M, Aexc = 336 nm) with the

addition of nitro benzene in DMSO. The arrows indicate the changes in the fluorescence

intensity by addition of an appropriate aliquot of nitrobenzene.
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Figure 2.23. Benesi-Hildebrand plot for the emission quenching of host 1 (at 371 nm) with

an increase in the concentration of nitrobenzene in DMSO.
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Figure 2.24. Changes in the emission spectra of 1 (3.84x10° M, Aexc = 336 nm) with the

addition of 2-nitrotoluene in DMSO. The arrows indicate the changes in the fluorescence

intensity by addition of an appropriate aliquot of 2-nitrotoluene.
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Figure 2.25. Benesi-Hildebrand plot for the emission quenching of host 1 (at 371 nm) with
an increase in the concentration of 2-nitrotoluene in DMSO.
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Figure 2.26. Changes in the emission spectra of 1 (3.84x10> M, Aexc = 336 nm) with the

addition of 4-nitrotoluene in DMSO. The arrows indicate the changes in the fluorescence
intensity by addition of an appropriate aliquot of 4-nitrotoluene.
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Figure 2.27. Benesi-Hildebrand plot for the emission quenching of host 1 (at 372 nm) with

an increase in the concentration of 4-nitrotoluene in DMSO.
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Figure 2.28. Changes in the emission spectra of 1 (3.84x10°> M, Aexc = 336 nm) with the
addition of 2,4-dinitrotoluene in DMSO. The arrows indicate the changes in the fluorescence

intensity by addition of an appropriate aliquot of 2,4-dinitrotoluene.
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Figure 2.29. Benesi-Hildebrand plot for the emission quenching of host 1 (at 371 nm) with
an increase in the concentration of 2,4-dinitrotoluene in DMSO.
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Figure 2.30. Changes in the emission spectra of 1 (4.26x10> M, Aexc = 290 nm) with the
addition of naphthalene in DMSO. The arrow indicates the changes in the fluorescence

intensity by addition of an appropriate aliquot of naphthalene.

H B
e | inear Fit of Sheet1 B
Intercept 0.02619

0.15 - SIcrpe 1.58064E-5
Adj. R 0.9971

0.10

1/(1, - 1)

0.05 -

I M 1 ' ) ' 1
2000 4000 6000 8000
1/[G]

Figure 2.31. Benesi-Hildebrand plot for the emission quenching of host 1 (at 457 nm) with

an increase in the concentration of naphthalene in DMSO.
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Figure 2.32. Changes in the emission spectra of 1 (3.84x10° M, Aexc = 336 nm) with the

addition of anthracene in DMSO. The arrows indicate the changes in the fluorescence

intensity by addition of an appropriate aliquot of anthracene.
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Figure 2.33. Benesi-Hildebrand plot for the emission quenching of host 1 (at 352 nm) with
an increase in the concentration of anthracene in DMSO.
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Figure 2.34. Changes in the emission spectra of 1 (3.84x107° M, Aexc = 350 nm).with the

addition of benzene in DMSO. The arrows indicate the arbitrary changes in the fluorescence

intensity (not detectable) by addition of an appropriate aliquot of benzene.
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Figure 2.35. Changes in the emission spectra of 1 (3.84x107> M, Aexc = 325 nm) with the
addition of mesitylene in DMSO. The arrows indicate the arbitrary changes in the

fluorescence intensity (not detectable) by addition of an appropriate aliquot of mesitylene.
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2.5 Conclusion

A new synthetic principle, i.e. treatment of Re,(CO)io, rigid bis-chelating donor,
and flexible ditopic nitrogen donor possessing four arene/heteroarene units connected
by three methylene bridge via one-pot approach, was developed for making distorted
pentagonal shaped metallocavitand. The metallocavitands possess hydrophobic inner
cavity is suitable to accommodate molecule like toluene. Molecular recognition
studies of 1 indicate that these metallocavitands can act as molecular host for small
aromatic guest. The study provides a way to prepare metallocavitands with a tunable

cavity and functional group via simple one-pot method.
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Chapter 3

Rhenium(l) Based Heteroleptic Pentagonal Toroid Shaped

Metallocavitands: Self-Assembly and Molecular Recognition Studies

Abstract

A family of neutral, heteroleptic, dinuclear M,LL'-type pentagonal toroid-shaped
metallomacrocycles (1-8) were synthesized using flexible ditopic N donors (L" = L'-L3),
rigid bis-chelating ligands (H—L' = H,—E) and Re,(CO)yo in a one-pot solvothermal self-
assembly approach. The ligands and the metallomacrocycles were characterized using ATR-
IR, ESI-MS, NMR, UV-Vis, and emission spectroscopic methods. The molecular structures
of 1, 2, 4, 6, and 7 were confirmed by X—ray diffraction study and are similar to those of
calix[5]arene. The cyclic inner cavities of the metallomacrocycles accommodate
toluene/mesitylene/acetone/chlorobenzene as guest molecules that are stabilized by
cumulative C—H---wt and =---7 interactions with the cyclic framework of metallomacrocycle.
The photophysical properties of the ligands and the metallomacrocycles were studied. The
host-guest recognition properties of metallocavitands 1, 2, 7, and 8 as a model host with
phenol- and nitrobenzene-derivatives as guest molecules were studied by emission

spectroscopic methods.

This work has been published in Inorg. Chem. 2022, DOI: 10.1021/acs.inorgchem.2c02061.
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3.1. Introduction

The design and synthesis of metallomacrocycles similar to calixarene-shaped geometry have
been attracting significant research interest because of their potential applications in host-
guest encapsulation, catalysis, selective reactivity, sensing, and biomimetic structures.
Naked metal ions and complexes containing partially protected metal ions are employed
along with pre-designed organic ligands to self-assemble calixarene-shaped complexes.®°
These metallamacrocycles are commonly called as metallocavitands, more specifically
metallacalix[n]arenes."  Among various metal ions and metal complexes,
Re,(CO)10/[Re(CO)sX], where X = CI or Br, provide a way to make neutral, heteroleptic
metallacalix[n]arenes.'*™® Up to now, neutral ditopic donors including 4,7-phenanthroline,
imidazole, and semi-rigid ditopic N-donor ligands containing phenyl (—CgHs—) spacer, and
rigid bis-chelating ligands are utilized for assembling tunable rhenium tricarbonyl-based
metallacalix[3]arenes, and metallacalix[4]arenes.”**** Recently, the focus in the area has
shifted to make functional and cavity tunable metallacalixarenes. To the best of our
knowledge, the design approach for making rhenium-core based metallocavitands similar to
calix[5]arene are limited.®® We have recently designed and employed diphenylmethane
(-CgH4—CH,—CgH4—) spacer-based semi-rigid ditopic N-donor ligands along with rigid bis-
chelating ligand and Re,(CO)y, to assemble irregular pentagonal-shaped metallocavitands.'®
These metallocavitands adopt tubular structure, accommodate toluene molecule in the solid
state and are able to recognize the guest molecules including nitroaromatic compounds and
polyaromatic hydrocarbons in the solution. The central cyclic framework i.e., annulus of the
metallocavitand, consists of two phenyl motifs, two imidazolyl motifs, and bis-chelating
ligand. The size of the cavity thereby the chemistry associated with molecular cavity can be
tuned by increasing the fused arenemotif(s) either by modifying the imidazolyl motif or/and
by changing the bis-chelating motifs. In continuation of our research in this field, we envision
introducing the 4-methoxyphenyl/3,4,5-trimethoxyphenyl motif at the 2-position of
benzimidazolyl unit in the ditopic N donor would result in metallocavitands with more
extended cavity suitable to accommodate various types of guest molecules. In addition, the
solubility of the metallocavitands in general organic solvents would be increased due to the

presence of methoxy units at the periphery of the metallocavitands.
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Herein, we report two new flexible neutral ditopic nitrogen donors (L%/L?) consisting
of two terminal 4-methoxyphenyl benzimidazolyl/3,4,5-trimethoxyphenyl benzimidazolyl
nitrogen donor and diphenylmethane spacer and eight new neutral heteroleptic dinuclear
metallocavitands (1-8) in a one-pot approach. The molecular structures of the five
metallocavitands (1, 2, 4, 6 and 7) are unambiguously determined by a single crystal X-ray
diffraction analysis, which reveal that these metallocavitands adopt pentagonal toroid-shaped
structure with acetone and mesitylene/toluene/chlorobenzene as guest molecules in their
internal cavities. The photophysical properties of the ligands and the complexes were studied
in DMSO. The host: guest recognition properties of the metallocavitands 1, 2, 7, and 8 as
model hosts were studied with nineteen molecules, phenol, and nitrobenzene-derivatives, as

guest molecules using emission spectroscopic methods.
3.2. Experimental
Materials and Methods

3.2.1. Materials

Starting materials such as Rey(CO)i, Hy-dhbg, H,-CA, Hs-dhag, H,-dhng, 1,2
diaminobenzene, 4-methoxybenzaldehyde, 3,4,5-trimethoxybenzaldehyde, diphenylmethane,
phosphoric acid, paraformaldehyde, 30-33% HBr in AcOH, glacial acetic acid, formic acid,
and NaH were obtained from commercial sources and used as received. Commercial grade
solvents, mesitylene, acetone, and chlorobenzene were used as received without further
purification. Bis(4-(bromomethyl) phenyl)methane,’’” 2-(4-methoxyphenyl)-benzimidazole®
and 2-(3,4,5-trimethoxyphenyl)-benzimidazole'® were prepared by using the reported

procedure. THF, hexane, and toluene were purified and distilled by conventional procedure.

3.2.2. Physical Measurement

ATR-IR spectra were recorded on a Nicolet iS5 ATR- spectrometer. *H NMR spectra were
recorded on a Bruker Avance Il 500 MHz spectrometer. HR-MS spectra were recorded on a
Bruker maXis mass spectrometer. UV-Vis and emission spectra were recorded on Shimadzu
UV-VIS-NIR (UV-3600), and JASCO (V-750) spectrophotometer and JASCO (FP-8500)

spectrofluorometer, respectively.
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3.2.3. Materials and Methods for Emission Titration Experiments

The solvent (DMSO) used in this study was of spectroscopic grade and used as received. All
the guest molecules were obtained from commercial sources and used as received. Quenching
experiments of host 1, 2, 7, and 8 were carried out by emission spectroscopic method.
Metallocavitand 1 stock solutions (2x10° M for Phenol; 1.5x10> M for BA, m-cresol, p-
cresol, 3, 4- DMP, 2, 4, 6- TMP, catechol, resorcinol, 2-CP, 4-CP, 2, 4-DCP, 2- NP, 4- NP, 2,
4- DNP, 2, 4, 6-TNP, NB, 2-NT, 4-NT, 2, 4-DNT), metallocavitand 7 stock solutions (2x10‘5
M for all the guest molecules), metallocavitand 2 and 8 stock solutions (1x10°> M for all the
guest molecules) were prepared using DMSO. For host 1, aromatic guests stock solutions;
1x10% M for phenol, BA; 1x10° M for m-cresol, p-cresol, 3, 4- DMP, 2, 4, 6- TMP,
catechol, resorcinol, 2-CP, 4-CP, 2, 4-DCP , 2- NP, 2, 4- DNP, 2, 4, 6-TNP, NB, 2-NT, 4-
NT, 2, 4-DNT, and 1x10* M for 4-NP were prepared in DMSO. For host 2, aromatic guests
stock solutions; 1x10 2 and 1x10* M for BA; 1x10° and 1x10% M for phenol, 3, 4- DMP, 2,
4, 6- TMP, resorcinol, 2, 4-DCP; 1x10~> M for m-cresol, p-cresol, catechol, 2-CP, 4-CP, 2-
NP, 4-NP, 2, 4- DNP, 2-NT, 4-NT, 2, 4-DNT; 1x10* M and 1x10 M for 2, 4, 6-TNP and
NB were prepared in DMSO. For host 7, aromatic guests stock solutions; 1x102 M for
phenol, BA; 1x10° M for m-cresol, p-cresol, 2-CP, 4-CP, 2- NP, 4-NP, 2, 4- DNP, 2, 4, 6-
TNP, 2-NT, 4-NT, 2, 4-DNT; 1x103 M and 1x10> M for 3, 4- DMP, 2, 4, 6- TMP, catechol,
resorcinol, 2, 4-DCP; 1x10“* M and 1x10° M for NB were prepared in DMSO. For host 8,
aromatic guests stock solutions; 1x10 7 for BA, 3, 4- DMP, 2, 4, 6- TMP; 1x10° and 1x10°?
M for catechol, resorcinol, 2, 4-DCP; 1x10~* M for phenol, m-cresol, p-cresol, 2-CP, 4-CP, 2-
NP, 4-NP, 2, 4- DNP, 2-NT, 4-NT, 2, 4-DNT; 1x10* M and 1x10 M for 2, 4, 6-TNP and
1x10™* M for NB were prepared in DMSO. Test solutions were prepared by the addition of an
appropriate aliquot (0.02- 4mL) of each guest stock into 5mL standard volumetric flask
followed by placing 0.5 or 1 mL of stock solution of host 1 or 2 or 7 or 8 and then diluting
the solution to 5 mL with DMSO. The excitation wavelengths were 283 nm, 285 nm, 276 nm
and 275 nm for host 1, 2, 7 and 8, respectively. In all the cases the excitation wavelength was
260 nm for BA. The slit width was 2.5 nm for both the excitation and emission (2.5-5 nm for
BA). The binding characteristics of the host molecules with guest molecules were determined
by the emission spectroscopic method. The binding constants were calculated based on the
Benesi-Hildebrand equation for a 1:1 stoichiometry molar ratio (1/Al = 1/Almax + (1/ K[G]

Almax). Here, Al = I-Inin, Almax = Ip—Imin, lo IS the emission intensity of free host molecule, |
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is the intensity measured with guest, Iy, is the intensity measured with an excess of guest, K

is the binding constant, and [G] is the concentration of guest molecule.*®

3.2.4. Crystallography

Single crystal X-ray diffraction data were collected on Rigaku Oxford XtaLAB Synergy or
Bruker APEX-1I CCD instruments with Mo-Ko radiation (A = 0.71073 A). Standard
procedures were applied for data reduction, and absorption correction. Structure solutions
and refinements were performed with the SHELX program package.?’ Non-H atoms were

refined anisotropically.

3.2.5. Synthesis of Ligands

Synthesis of L.

A mixture of powdered NaH (0.169 g, 4.24 mmol) and 2-(4-methoxyphenyl)-
benzimidazole(0.633 g, 2.82 mmol) in THF (10 mL) was stirred at room temperature for 3 h.
Bis(4-(bromomethyl)phenyl)methane (0.5 g, 0.141 mmol) was added to the solution. The
reaction mixture was then stirred continuously for 24 h. Half of the solvent was removed by
rotavapor. Water (~200 mL) was added to this residue. The resulting pale brown precipitate
was filtered, washed several times with water, and air dried. Yield: 88% (1.6 g). *H NMR
(500 MHz, DMSO-ds): J 7.68-7.64 (m, 6H, H*** %), 7.38 (d, Jun = 7.5 Hz, 2H, H'), 7.23-
7.16 (m, 4H, H>®), 7.10 (d, Jun = 8.1 Hz, 4H, H'® ™), 7.05 (d, Jun = 8.7 Hz, 4H, H**), 6.89
(d, Jun = 8 Hz, 4H, H>'?), 5.49 (s, 4H, H®, -CH,-), and 3.80 (s, 8H, H*®, -CH,- , -OCHj3). °C
NMR (500 MHz, DMSO-ds): 6 160.4, 153.2, 142.7, 140.3, 135.9, 134.7, 130.5, 129.0, 126.2,
122.4, 122.1, 119.0, 114.2, 55.3, 47.2. HRMS- ESI. Calcd for CysHzsN4O2 [L + H]': m/z
641.2917. Found: m/z 641.2918.

Synthesis of L.

By following the similar approach of L, ligand L? was synthesized by using NaH (0.06 g, 1.6
mmol), 2-(3,4,5-trimethoxyphenyl)-benzimidazole (0.3 g, 1 mmol), THF (5 mL), and bis(4-
(bromomethyl)phenyl)methane (0.187 g, 0.528 mmol). The crude was purified by column
chromatography (ethyl acetate/hexane, 8/2, v/v).Yield: 75 % (0.6 g). *H NMR (500 MHz,
DMSO-ds): 6 7.73 (d, Jun = 7.1 Hz, 2H, H?), 7.46 (d, Jun = 7.3 Hz, 2H, H), 7.26-7.20 (m,
4H, H> ), 7.11 (d, Jun = 8.1 Hz, 4H, H %), 6.96 (d, Jun = 8.1 Hz, 4H, H®'?), 6.91 (s, 4H,
H**%), 5.54 (s, 4H, H®, -CH,-), 3.82 (s, 2H, H*3, -CH,-), 3.71 (s, 6H, -OCHs), and 3.58 (s,
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12H, -OCH3;).*C NMR (500 MHz, DMSO-dg): § 152.9, 142.5, 140.5, 138.7, 136.3, 135.1,
129.0, 126.0, 125.2, 122.7, 122.2, 119.2, 110.8, 106.3, 60.1, 55.6, 47.4. HRMS-ESI. Calcd
for C47H4sN4Os [L? + H]": m/z 761.3339. Found: m/z 761.3350.

3.2.6. Synthesis of Complexes

General Synthesis of metallocavitands (1-8).

A mixture of Re,(CO)yo, bis-chelating ligand, L", and toluene or mesitylene:acetone or
chlorobenzene in a Teflon flask was placed in a steel bomb. The bomb was kept in a
microprocessor-programmed oven at 160 °C for 48 h and cooled to 30 °C. The product
(powder or crystals) obtained in the solvothermal vessel was filtered and washed with

distilled hexane.

Synthesis of fac-[{(CO);Re(u—dhbg)Re(CO)s}(n—LY] (2).

Brown crystals of 1 were obtained from a mixture of Re,(CO)1o (50 mg, 0.077 mmol), H,-
dhbq (10.7 mg, 0.0766 mmol), L* (49 mg, 0.077 mmol), and mesitylene:acetone (6:1 mL).
Yield: 54% (55 mg).'"H NMR (500 MHz, DMSO-dg): 6 8.00 (d, Jun = 7.31 Hz, 1H), 7.84 (d,
Jun = 7.72 Hz, 1H), 7.68-7.64 (m, 5H), 7.46 (t, Jun = 7.15 Hz, 1H), 7.39-7.34 (m, 3H), 7.23-
7.16 (m, 4H), 7.10 (d, Jun = 8.16 Hz, 3H), 7.06 (d, Jun = 8.76 Hz, 4H), 6.89 (d, Jun = 8 Hz,
3H), 6.54 (s, 2H, H* dhbq), 5.79-5.15 (m, 4H, H® -CH,-), 3.80 (s, 6H, -OCH3), and 3.77-
3.73 (m, 2H, H™ -CH,-). ATR-IR (cm™): 2012 (C=0), and 1886 (C=0). HRMS-ESI. Calcd
for CssH3sN4O12Re; [1 + H]': m/z 1321.1681. Found: m/z 1321.1739.

Synthesis of fac-[{(CO);Re(u—dhbg)Re(CO)s}(u—L?] (2).

The clear solution obtained from a mixture of Re,(CO)io (100 mg, 0.153 mmol), H,-dhbg
(21.4 mg, 0.153 mmol), L? (117 mg, 0.153 mmol), and mesitylene:acetone (10:1 mL) was
concentrated, washed with hexane and air-dried. Suitable single crystals of 2 for X-ray
analysis were obtained from the slow evaporation of the mother liquor at room temperature
after ~25 days. Yield: 37% (82 mg). *H NMR (500 MHz, DMSO-dg): § 7.73-7.71 (m, 2H,
H?), 7.50-7.48 (m, 2H, H'), 7.28-7.22 (m, 4H, H>°), 7.12 (d, Jun = 8.0 Hz, 4H, H'> '), 6.96
(d, Jun = 8.0 Hz, 4H, H*'?), 6.89 (s, 4H, H**%), 5.79 (s, 2H, H?), 5.55 (s, 4H, H®, -CH,-), 3.83
(s, 2H, H™, -CH,-), 3.69 (s, 6H, -OCHs3), and 3.58 (s, 12H, -OCHj). ATR-IR (cm™): 2012
(C=0), 1916 (C=0), 1879 (C=0). HRMS-ESI. Calcd for CsgHssNsO16Re; [2 + H]™: m/z
1441.2099. Found: m/z 1441.1906.
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Synthesis of fac-[{(CO);Re(u—CA)Re(CO)s}(u—LY] (3).

Dark powder was obtained from a mixture of Re,(CO)1 (50 mg, 0.077 mmol), H,-CA (16
mg, 0.077 mmol), L* (49 mg, 0.077 mmol), and toluene:acetone (6:1 mL). Yield: 80% (85
mg)."H NMR (500 MHz, DMSO-dg): § 7.80-7.75 (m, 6H, H* > %), 7.62 (d, Ju = 7.1 Hz,
2H, H"), 7.51-7.36 (m, 4H, H>®), 7.17 (d, Jun = 8.6 Hz, 4H, H'® ™), 7.13 (d, Jun = 8.05 Hz,
4H, H**), 7.07- 7.00 (m, 4H, H%'?), 5.61-5.51 (m, 4H, H® -CH,-), and 3.84 (s, 8H, H™, -
CHy- , -OCHj). ATR-IR (cm™): 2013 (C=0), 1888(C=0). HRMS-ESI. Calcd for
CssH36N4012CloRe; [3 + H]™: m/z 1389.0875. Found: m/z 1389.0689.

Synthesis of fac-[{(CO)sRe(L—CA)Re(CO)s}(p—L>)] (4).

Clear solution obtained from a mixture of Re,(CO)1 (100 mg, 0.153 mmol), H,-CA (32 mg,
0.15 mmol), L? (117 mg, 0.153 mmol), and mesitylene:acetone (12:2 mL) was concentrated,
washed with hexane and air-dried. Suitable single crystals of 4 for X-ray analysis were
obtained from the slow evaporation of the mother liquor at room temperature after ~30
days.Yield: 35% (80 mg).'H NMR (500 MHz, DMSO-ds): 6 7.72 (d, Jun = 8.16 Hz, 2H, H%),
7.48 (d, Jun = 8.67 Hz, 2H, H'), 7.27-7.22 (m, 4H, H>°®), 7.11 (d, Jun = 8.11 Hz, 4H, H'* 1Y),
6.95 (d, Juy = 7.82 Hz, 4H, H>'?), 6.88 (s, 4H, H**), 5.54 (s, 4H, H®, -CH,-), 3.83 (s, 2H,
H3, -CH,-), 3.69 (s, 6H, -OCHs), and 3.57 (s, 12H, -OCHs). ATR-IR (cm™): 2012 (C=0),
1913 (C=0), 1879 (C=0). HRMS-ESI. Calcd for CsgHauN4O1CloRe; [4 + H]™: m/z
1509.1313. Found: m/z 1509.1170.

Synthesis of fac-[{(CO)sRe(u—dhaq)Re(CO)s}(u—L")] (5).

Dark colored powder was obtained from a mixture of Re,(CO)o (50 mg, 0.077 mmol), H,-
dhaq (18.4 mg, 0.0766 mmol), L* (49 mg, 0.077 mmol), and mesitylene:acetone (6:1 mL).
Yield: 62% (68 mg).*H NMR (500 MHz, DMSO-dg): J 8.36-8.34 (m, 2H, H%), 7.94-7.92 (m,
2H, HP), 7.69-7.64 (m, 6H, H* "), 7.38 (d, Jun = 8 Hz, 2H, H"),7.30 (d, 2H, H°), 7.23-7.16
(m, 4H, H>°), 7.10 (d, Jun = 8.2 Hz, 4H, H'® ), 7.06 (d, Jun = 8.9 Hz, 4H, H>**), 6.90 (d,
Jun = 8 Hz, 4H, H%'?), 5.49 (s, 4H, H®, -CH,-), and 3.80 (s, 8H, H™, -CH,- , -OCH3). ATR-
IR (cm™): 2008 (C=0), 1902 (C=0), 1873(C=0). HRMS-ESI. Calcd for Cg3HN4O1:Re; [5
+ H]™: m/z 1421.1996. Found: m/z 1421.1831.
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Synthesis of fac-[{(CO)sRe(p—dhag)Re(CO)s}(H—L?)] (6).

Clear solution obtained from a mixture of Re,(CO)io (50 mg, 0.077 mmol), H,-dhaq (18.4
mg, 0.0766 mmol), L? (58.5 mg, 0.0766 mmol), and toluene (6 mL) was allowed to evaporate
at room temperature. The crystals of 6 were obtained from the solution after 30 days at room
temperature. Yield: 67% (80 mg)."H NMR (500 MHz, DMSO-dg): J 8.31-8.29 (m, 2H, H?),
8.01-7.99 (m, 2H, H°), 7.73-7.71 (m, 2H, H*), 7.48-4.44 (m, 4H, H', H%), 7.27-7.21 (m, 4H,
H>©), 7.12 (d, Jun = 8.08 Hz, 4H, H** ), 6.95 (d, Juy = 8.19 Hz, 4H, H>'?), 6.88 (s, 4H,
H*%), 5.54 (s, 4H, H®, -CH,-), 3.83 (s, 2H, H™, -CH,-), 3.69 (s, 6H, -OCH3), and 3.57 (s,
12H, -OCHs). ATR-IR (cm™): 2009 (C=0), 1899 (C=0), 1876(C=0). HRMS-ESI. Calcd for
Ce7H50N4016Re; [6 + H]™: m/z 1541.2419. Found: m/z 1541.2327.

Synthesis of fac-[{(CO)s;Re(u—dhng)Re(CO)s}(u—LH] (7).

Dark colored powder of 7 was obtained from a mixture of Re;(CO)1o (50 mg, 0.077 mmol),
H,-dhng (22 mg, 0.077 mmol), L'(49 mg, 0.077 mmol), and mesitylene:acetone (5:1 mL).
Suitable single crystals for the X-ray analysis were obtained from the same reaction with
chlorobenzene (12mL). Yield: 57% (65 mg)."H NMR (500 MHz, DMSO-dg): § 8.42-8.40
(m, 4H, H?), 7.94-7.92 (m, 4H, H®), 7.68-7.64 (m, 6H, H* 2> %), 7.38 (d, Jun = 7.4 Hz, 2H,
H), 7.23-7.16 (m, 4H, H> %), 7.10 (d, Jun = 8 Hz, 4H, H'® ), 7.06 (d, Juy = 8.8 Hz, 4H,
H**), 6.90 (d, Jun = 8.2 Hz, 4H, H%'?), 5.50 (s, 4H, H®, -CH,-), and 3.80 (s, 8H, H™, -CH,- ,
-OCH3). ATR-IR (cm™): 2008 (C=0), 1874(C=0). HRMS-ESI. Calcd for Cs;HaN4O1:Re;
[7 + H]": m/z 1471.2153. Found: m/z 1471.1960.

Synthesis of fac-[{(CO)sRe(u—dhng)Re(CO)s}(u—L?)] (8).

Dark colored powder was obtained from a mixture of Re;(CO)1o (50 mg, 0.077 mmol), H,-
dhng (22 mg, 0.077 mmol), L? (58.5 mg, 0.0766 mmol), and mesitylene:acetone (5:1 mL).
Yield: 51% (62 mg). *H NMR (500 MHz, DMSO-dg): 6 8.42-8.40 (m, 4H, H%), 7.94-7.92 (m,
4H, H®), 7.73-7.71 (m, 2H, H%), 7.48-7.46 (m, 2H, H'), 7.27-7.21 (m, 4H, H*>°), 7.12 (d, Jun
=8.1 Hz, 4H, H* 1Y), 6.95 (d, Jun = 8.1 Hz, 4H, H>*?), 6.89 (s, 4H, H**%), 5.54 (s, 4H, H®, -
CHy-), 3.83 (s, 2H, H'*, -CH,-), 3.69 (s, 6H, -OCHs), and 3.57 (s, 12H, -OCH3). ATR-IR
(cm™): 2008 (C=0), 1875(C=0). HRMS- ESI. Calcd for C7;Hs,N4O16Re, [8 — 3H + NH4]™:
m/z 1605.2607. Found: m/z 1605.2667.
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3.3. Results and discussion

3.3.1. Synthesis and characterization of ligands L- L.

Ligands L' and L?® were synthesized from bis(4-bromomethylphenyl)methane, 2-(4-
methoxyphenyl)-1H-benzimidazole or 2-(3,4,5-trimethoxyphenyl)-1H-benzimidazole, and
NaH in THF (Scheme 3.1). The ligands are air stable and soluble in DMSO, CH,Cl,, and
CHCIs. The *H NMR spectrum of the ligands displayed a single set of chemical resonances,
corresponding to the protons of the three methylene (—CH,—) motifs and two
methoxyphenylbenzimidazolyl/trimethoxyphenyl benzimidazolyl motifs. Further, the
formation of the ligands was confirmed by high resolution ESI-MS analysis, which displayed
molecular ion peaks at m/z, 641.2918 for [L! + H]" and 761.3350 for [L? + H]*. Experimental
mass peaks of the ligands match well with the theoretical values.

Br

BY L"R=H

Scheme 3.1. Synthesis of ligands L*-L2.
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3.3.2. Synthesis and characterization of metallocavitands 1-8.

Complexes 1-8 were prepared from Rey(CO)io, bis-chelating ligand (H.-dhbg (2,5-
dihydroxy-1,4-benzoquinone) or H,-CA (chloranilic acid) or Hy-dhag (1,4-
dihydroxyanthraquinone) or H,-dhngq (6,11-dihydroxy-5,12-naphthacenedione)), L", and high
boiling aromatic solvents via a one-pot solvothermal procedure (Scheme 3.2- 3.3). The
complexes are air- and moisture-stable, and soluble in DMSO, CHCI3, CH,Cl,, and CH3CN.
Further, the complexes are sparingly soluble in methanol. The ATR-IR spectra of the
complexes showed three strong bands in the 2012-1874 cm™ region, which are characteristic
peaks of fac-Re(CO); core in an asymmetric surrounding.**?! The high resolution ESI-MS
analysis of the complexes displayed molecular ion peaks (m/z = 1321.1739 for [1 + H]",
1441.1906 for [2 + H]*, 1389.0689 for [3 + H]*, 1509.1170 for [4 + H]", 1421.1831 for [5 +
H]*, 1541.2327 for [6 + H]", 1471.1960 for [7 + H]*, and 1605.2667 for [8 - 3H + NH4]")

with isotope pattern that match well with the theoretical values.

Re,(CO)40

Ln
Scheme 3.2. Cartoon representation of synthetic strategy for metallocavitand: A = D =

heterocyclic nitrogen donor; B = C = phenylene spacer, H,E = bis-chelating unit; ®= CHy;

= OCHgs; © =fac-Re(CO)3, guest molecule = ellipsoid motif.
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Scheme 3.3. Synthesis of metallocavitands 1-8 (H,-dhaq = 1,4-dihydroxyanthraquinone; Ho-
dhng = 6,11-dihydroxy-5,12-naphthacenedione).
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'H NMR analysis of complexes 1-8.

The *H NMR spectrum of 1 and 2 displayed the chemical resonances of the protons of L*/L?.
The proton of dhbg unit of 1 showed singlet and was downfield shifted as compared to free
H,-dhbq ligand. The proton ratio of dhbg:L' was 1:1, suggesting the stoichiometry of
complex 1. The H*, H%*? H**® H® H'®of L?, and protons of dhbq in 2 were upfield shifted,
whereas H’, H>®, H'%! of L? was downfield shifted relative to the free ligand. The proton
NMR spectra of 3 and 4 displayed a single set of chemical resonances for all the protons of
L' and L? respectively. All the protons of L* in 3 were downfield shifted significantly as
compared to the free ligand L*. In the case of 4, H** ¢ protons were noticeably upfield
shifted, whereas the signals of other protons were shifted slightly upfield/downfield in
comparison with free ligand L The proton NMR spectra of 5-8 displayed simple pattern with
chemical resonances for the protons of L'/L? and dhag/dhng. The proton signals of L*/L? in 5-
8 are similar to those of the free ligands. In addition to these peaks, two symmetrical
multiplets and one single signal corresponding to the dhaq unit were observed for 5 and 6.
The H* and H™ © signals of dhaq in 5 were upfield and downfield shifted respectively. All
protons (H*®) of dhaq in 6 were downfield shifted relative to free H,-dhaq ligand. In addition
to the signals for the protons of LY/L? two symmetrical multiplets (H* and H®) for dhng
protons were observed in 7 and 8. The H® signal of dhng in 7 and 8 was downfield shifted
relative to free H,-dhng. The upfield and downfield shifts of the protons of the ligand
framework in the complexes as compared to the free ligands suggest that the cyclic nature of
the complexes in solution state.
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Figure 3.21. *H NMR (500 MHz) spectrum of 4 in dg-DMSO.
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Figure 3.22. *H NMR (500 MHz) spectrum of 5 in dg-DMSO.
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Figure 3.23. 'H NMR (500 MHz) spectrum of 6 in dg-DMSO.
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Figure 3.24. 'H NMR (500 MHz) spectrum of 7 in dg-DMSO.
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Figure 3.25. 'H NMR (500 MHz) spectrum of 8 in dg-DMSO.
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Figure 3.26. ESI mass spectrum of 1 in positive ion mode.
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Figure 3.27. Experimental (top) and calculated (below) ESI mass spectrum of 1 in positive

ion mode.
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Figure 3.28. ESI mass spectrum of 2 in positive ion mode.
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Figure 3.29. Experimental (top) and calculated (below) ESI mass spectrum of 2 in positive
ion mode.
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Figure 3.30. ESI mass spectrum of 3 in positive ion mode.
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Figure 3.31. Experimental (top) and calculated (below) ESI mass spectrum of 3 in positive

ion mode.
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Figure 3.32. ESI mass spectrum of 4 in positive ion mode.
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Figure 3.33. Experimental (top) and calculated (below) ESI mass spectrum of 4 in positive

ion mode.
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Figure 3.34. ESI mass spectrum of 5 in positive ion mode.
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Figure 3.35. Experimental (top) and calculated (below) ESI mass spectrum of 5 in positive

ion mode.
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Figure 3.36. ESI mass spectrum of 6 in positive ion mode.
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Figure 3.37. Experimental (top) and calculated (below) ESI mass spectrum of 6 in positive

ion mode.
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Figure 3.38. ESI mass spectrum of 7 in positive ion mode.
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Figure 3.39. Experimental (top) and calculated (below) ESI mass spectrum of 7 in positive

ion mode.
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Figure 3.40. ESI mass spectrum of 8 in positive ion mode.
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Figure 3.41. Experimental (top) and calculated (below) ESI mass spectrum of 8 in positive
ion mode.

119



Chapter 3

3.3.3. Crystal structures of metallocavitands.

Crystals of 1, 2, 4, 6, and 7 were obtained by either directly from the solvothermal reactions
or by slow evaporation of the solution obtained from the solvothermal reactions at room
temperature. The structures of the complexes were confirmed by the single-crystal X-ray
diffraction method. All the complexes adopt an M,LL'-type metallomacrocyclic structure and
consist of two fac-Re(CO); cores, one dhbg? /CA* /dhag® /dhng®™ (E*") motif, and one L*/L?
motif (Figure 3.42- 3.43). The rigid E>~ motif binds two rhenium ions using its four oxygen
atoms in a symmetrical bis-chelating manner resulting in (2+1) assembly of
fac—[(CO);Re(u—E)Re(CO)s]. Ligand LY/L? acts as an arc-type bidentate clip and binds two
rhenium ions of the binuclear assembly using the benzimidazolyl nitrogen atom, leading to
the distorted pentagonal tubular architecture. Therefore, the complexes can be considered as
metallacalix[5]arene in which the hetero(arene) units (two benzimidazolyl-, and two p-
phenylene-motifs), E*” motif, three methylene (~CH;—) groups and two rhenium ions in the
metallomacrocycle are related to the five p-phenylene frames, three methylene (—CH,-)
groups, and two methylene (—CH>—) cores of calix[5]arene, respectively. To the best of our
knowledge, these complexes are the second examples of heteroleptic fac-Re(CO)s-based
metallacalix[5]arene.'® Important parameters describing the metallomacrocyclic structures are
given in Table 3.1. The size of the cyclic framework of the compounds is described on the
basis of the two adjacent connectors (Re---Re, Re:--CH,, CH,:--CH;, CH;---CH,, and
CHy:--Re) of hetero(arene)/E>™ motifs. Among the two p-phenylene units of LY/L? in the
metallomacrocycles, one unit is twisted with respect to the other unit presumably either to
have effective non-covalent interactions with the guest molecule residing in the cyclic cavity
and/or to avoid steric interactions between the two o-hydrogen atoms of the two p-phenylene
motifs. The two substituents, 4-methoxyphenyl or 3,4,5-trimethoxyphenyl motifs, decorated
at the lower rim of the metallomacrocycles are parallel to each other and perpendicular to the
benzimidazolyl motif. The two p-methoxy units in 1 and 7 are directed away from each other,
resulting in an extended hydrophobic cavity containing molecular tubes. In the case of 2, 4,
and 6, the two m-methoxy units are directed towards each other, resulting in a pentagonal
cylindrical bowl.
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Figure 3.42. Various views of molecular structures of 1 (a-d), 2 (e-h), and 4 (i-1) with guest
molecules (H atoms of metallocavitand are removed for clarity in a, c, €, g, i, and k; CO units
and methoxyphenyl units are omitted to show the metallocavitand framework clearly in c, g,
and k; C = gray, H= pale blue, CI = pale green, N = blue, O= red, Re= green, guest acetone =
green and red, guest mesitylene = yellow, lattice mesitylene = pink, lattice acetone = sky and

orange.

All the metallomacrocycles crystallize with one or more solvent molecules and accommodate
one solvent molecule as a guest in their cyclic hydrophobic internal cavity. For example,
compound 1 crystallizes with one acetone and one mesitylene. Among the two guest
molecules, acetone occupies the center of the internal cavity of the complex. The plane of the
acetone is parallel to the dhbg plane and perpendicular to the two benzimidazolyl planes.
Cumulative C—Hr, C-H O and lone pair-rt interactions were found between the acetone
and the framework of the host. The mesitylene solvent almost occupies the cavity present at
the lower rim and the extended cavity available between the two phenoxy units.
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Figure 3.43. Various views of molecular structures of 6 (a-d), and 7 (e-h) with guest

molecules (H atoms of metallocavitand are removed for clarity in a, c, e, and f; CO units and

methoxyphenyl units are omitted to show the metallocavitand framework clearly in c, and f;

C = gray, H= pale blue, Cl = pale green, N = blue, O= red, Re= green, toluene = yellow,

chlorobenzene

= yellow and green.

Table 3.1. Structural parameters of the metallocavitands.

complex | perimeters of molecular ~1° (benz)® and T° Guest(s)

pentagons: ~H..H (A)P° (phenyl)*

~d, A: Re-Re, Re-CH,, (benz)

CHj--CH;, CHj---:CH;, CH»---Re

(A)
1 8.08,5.72,5.75,5.85, 5.71 35and 6.69, 7.72 67 acetone

mesitylene

2 8.09,5.71,5.82,5.82,5.75 27 and 7.14, 8.08 77 mesitylene
4 8.10, 5.70, 5.80, 5.83, 5.71 27 and 7.51, 6.74 81 mesitylene
6 8.49,5.75, 5.84, 5.83, 5.75 16 and 10.35, 9.82 65 toluene
7 8.62,5.70, 5.78,5.78, 5.73 23 and 7.87, 7.83 48,73 | chlorobenzene

*dihedral angle between two benzimidazolyl motifs; "non-bonding distances between the H

atoms of the oppositely arranged benzimidazolyl motifs; “dihedral angle between two p-

phenylene motifs.
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The molecular pentagons 2, 4, 6, and 7 accommodate mesitylene, toluene, and
chlorobenzene, respectively, in the hydrophobic internal cavity. Multiple non-covalent
contacts (C—H = or/fand == interactions) were found between the guest and the cyclic
framework of the host. A portion of the mesitylene molecule resides in the internal cavity of
2 and 4, whereas a full molecule of toluene/chlorobenzene occupies the cavity of 6 and 7. The
different arrangement of the guest molecules in the cavity of the complexes correlates with
the different sizes and electronic environment of the cyclic framework due to varying the
bridging motifs (E*"). The results further indicate that the molecular pentagons 6 and 7 are

the most suitable host for mono-substituted benzene molecules.

The crystal structures of the metallamacrocycles were stabilized by various types of non-
covalent interactions. Metallomacrocycles 1 arrange to form a tubular structure (Figure 3.44).
Solvent molecules reside only in the non-covalent tubes in 1. Metallamacrocycles 4 also
forms a tubular structure (Figure 3.45). In addition, two one-dimensional voids are present
that is perpendicular to the tubular structure of 4. Both lattice acetone and lattice mesitylene
molecules occupy the void space in 4. Complex 6 packs in such a way that solvent mesitylene
molecule resides in the lattice cavity created by four neighboring molecules which contacts
each other through various non-covalent interactions (Figure 3.46). Each macrocycle 7

interacts with two neighboring macrocycles along the tubular axis (Figure 3.47).

Figure 3.44 (a) Partial packing diagram of 1 showing the tubular arrangement of neighboring

metallocavitands with guest acetone molecules (green and red) and lattice mesitylene
molecules (yellow, stick representation) (b) One set of tubular framework of “a” without

guest molecules. (c¢) Side view of “b” with and without guest molecules.
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The space (cavity) below the lower rim of one molecule is occupied by the portion of dhnq
unit of the neighboring molecule. Mesityelene is not sterically possible to fit completely in
the hydrophobic cavity of metallomacrocycles 1, 2, and 4 due to the overall size, whereas
toluene and chlorobenzene are fully occupied in the hydrophobic cavity of

metallomacrocycles 6 and 7.

Figure 3.45. (a-b) Partial packing diagram of 4 showing the tubular arrangement of
neighboring metallocavitands without and with guest mesitylene molecules (green and white)

(c) side view of “b”.

Figure 3.46. Two different views of partial packing diagram of metallocavitand 6 (stick

representation) with guest toluene (yellow), and lattice toluene (gray and white).

Figure 3.47. (a-b) Partial packing diagram of 7 showing the tubular arrangement of

neighboring metallocavitands without and with guest chlorobenzene molecules (green and

white) (c-d) two different side views of “b”.
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3.3.4. Photophysical properties of the ligands and the complexes.

The UV-Vis absorption spectra of L' and L? show strong absorption bands with maxima
ca~296 nm in DMSO (Table 3.2). The bands are attributed to spin-allowed n—=* electronic
transitions of the aromatic motifs of the ligands. Complexes 1-4 displayed intense absorption
bands in the UV-region similar to that of the ligands in DMSO. In addition, complexes 1-4
show moderate broad absorption bands in the range of 400-650 nm (Amax, NM = ~493 for 1,
~489 for 2, ~505 for 3 and 4). These bands may be assigned to metal-to-ligand charge
transfer (MLCT) transitions from rhenium core to the bis-chelating framework (Re —
dhbg/CA) and intra-ligand charge transfer (ILCT) transitions of quinonoid motif (dhbq/CA—
dhbg/CA) in the complexes.?*# Complexes 5-8 show strong absorption bands at high energy
region, medium broad absorption bands in the range of ~350-540 nm, and structured weak
absorption bands in the range of 550-700 nm. The absorption spectra of 5-8 are similar to
previously reported metallocycles (fac-[{(CO)s;Re(u—E)Re(CO)s}(u—L)]I-II, where E =
dhag for I, E = dhng for IlI, and L = 1,4-bis(5,6-dimethylbenzimidazol-1-
ylmethyl)naphthalene)  containing  almost  similar ~ chromophoric  unit  fac-
[{(CO)sRe(u—E)Re(CO)s}(benzimidazolyl)].?* The absorption bands around 400 nm may be
ascribed to both MLCT- (Re — dhag/dhng)and LLCT-charge transfer transitions. The low
energy absorptions of the complexes are ascribed to intra-ligand charge transfer (ILCT)
transitions (dhag/dhnqg — dhaq/dhng) mainly centered on dhaq®/dhng®  motifs in the

complexes.

Both the ligands display broad emission at ~363 nm in DMSO at room temperature (Table
3.2). The complexes containing monomethoxyphenyl-bezimidazolyl-based ligand framework
(1, 3, 5, and 7) and trimethoxyphenyl-bezimidazolyl-based ligand framework (2, 4, 6, and 8)
displayed structured emission around ~337, ~352, ~368 nm, and structureless emission
around ~360 or ~363 nm, respectively. The emission of complexes 5 and 7 are blue shifted as
compared to the free ligand. No emission was observed while exciting at other absorption
bands for 5 and 7. Complex 6 shows two different emission bands while exciting at two
different absorption maxima. Similar to the other complexes, complex 6 displayed emission
at ~360 nm when excited at ~285 nm. All the results show the origins of emission around
~363 nm are from the excited state of nitrogen donor motifs. In addition, the emission at the

visible region (Aem max) = 567 nm) was observed while exciting at 458 nm for compound 6.
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Table 3.2. Absorption and Emission Spectral Data for L', L? and 1-8 in
DMSO at 298 K.

absorption emission
compounds Amax (NM) Aexc, max (NM) Aem, max (NM)
Lt 296 296 363
L2 296 296 363
1 283, 493 283 337, 352, 368
2 285, 489 285 363
3 285, 505 285 338, 352, 367
4 277, 505 277 364
5 262, 292, 405, 583, 626 292 337, 352, 369
6 260, 285, 458, 581, 626 285 360
458 567
7 276, 381, 551, 593 276 337, 353, 368
8 275, 383, 559, 591 275 360
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Figure 3.48. Absorption (top) and emission (bottom) spectra of L* in DMSO (0.2 x 10* M,
hexc = 296 nm).
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Figure 3.49. Absorption (top) and emission (bottom) spectra of L? in DMSO (0.2 x 10°* M,
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Figure 3.50. Absorption (top) and emission (bottom) spectra of 1 in DMSO (0.2 x 107 M,
Aexc = 283 nm).
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Figure 3.51. Absorption (top) and emission (bottom) spectra of 2 in DMSO (0.3 x 10 M,
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Figure 3.52. Absorption (top) and emission (bottom) spectra of 3 in DMSO (0.3 x 103 M,
hexc = 285 nm).
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Figure 3.53. Absorption (top) and emission (bottom) spectra of 4 in DMSO (0.55 x 10°° M,

Aexc = 277 nm).
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Figure 3.54. Absorption (top) and emission (bottom) spectra of 5 in DMSO (0.67 x 10> M,

hexc = 292 nm).
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Figure 3.56. Absorption (top) and emission (bottom) spectra of 7 in DMSO (0.32 x 10™° M,

hexc = 276 nm).
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Figure 3.57. Absorption (top) and emission (bottom) spectra of 8 in DMSO (0.16 x 102 M,
Aexc = 275 nm).
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3.4. Binding studies of host 1, 2, 7, and 8 with substituted phenol and

nitrobenzene based guest molecules.
The crystal structures of the metallocavitands reveal that these molecules can act as
molecular hosts for substituted benzene guest molecules. Host-guest binding studies of 1, 2,
7, and 8 with nineteen phenol- and nitrobenzene- substituted guest molecules were performed
using the emission feature of these metallocavitands in DMSO (Chart 1, Table 3.3). Upon
titrating with the guest molecules, the emission pattern of metallocavitands 1 and 7 is
quenched effectively with a slight blueshift of 2- 4 nm at 337/352 nm and a slight redshift of
3-5 nm at 368 nm. On the other hand, the emission pattern of 2 and 8 is quenched smoothly
with a considerable blue shift of 2-10 nm, whereas on titrating with 2-NP and 4-NP, the
quenching was observed with a significant redshift of 18-20 nm. Further, the analysis of the
titration studies of metallocavitands 1, 2, 7, and 8 with guest molecules using the Benesi-
Hildebrand relationship reveals the formation of a 1:1 host:guest system.* Binding
measurements reveal that dhng®™ and 4-methoxyphenyl benzimidazolyl N-donor substituted
metallocavitand 7 is a more effective host, and shows better binding constant with guest
molecules than metallocavitand 1. This may be due to the presence of dhng® motif in 7,
which increases the hydrophobic cavity size [(~d, A: Re---Re, 8.62 (for 7) 8.08 (for 1)] and
the higher n-surface of dhng®™ motif leads to have better non-covalent interactions between
the host-guest system. Metallocavitand 8 shows a significantly higher binding constant for
phenol, BA, NB, resorcinol, and 2,4-DNT, whereas a slightly higher or a similar association
constant was observed for m-Cresol, 2-CP, 2-NT, 4-NT, and 2,4,6-TNP in comparison with
metallocavitand 2. The possible reason can be the compact cavity size of host 8 due to the
presence of dhng®™ motifs and 3,4,5-trimethoxyphenyl benzimidazolyl motif on N-donor
ligand, which maximizes the non-covalent interactions between the host framework and guest
molecules effectively. For all other guest molecules, host 2 shows a higher binding constant
than 8, which can be due to the slight rigid nature of the cyclic framework of 2 in the
presence of dhbg®™ motif, which accommodates the guest molecules with better interaction
than metallocavitand 8. In general, for all the host molecules, substituted nitrobenzene
molecules bind more effectively than the other selected guest molecules. The emission
quenching of these metallocavitands may be due to the electron transfer process from the
metallocavitands to the electron-deficient guest molecules at the ground state.?*** Introducing
H,-dhng motif as bis-chelating ligand and 4-methoxyphenyl/3,4,5-trimethoxyphenyl motif at

the 2-position of benzimidazolyl unit in the ditopic N donor resulted in metallocavitands with
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a more extended higher dimensional hydrophobic cavity as compared to the irregular
pentagonal-shaped metallocavitands synthesized in our previous paper.’® The 4-
methoxyphenyl/3,4,5-trimethoxyphenyl motif provides additional hydrogen bonding and
C-H-- & interactions to stabilize the host-guest system. The binding constant measurements
for nitro-substituted guest molecules reveal that hosts 1, 2, 7, and 8 with larger hydrophobic

cavities have higher binding constants than the previously reported complex (Table 3.4).1°

OH OH OH OH OH OH
i CH,4 CH,
CH,4 CH, CH,

Phenol BA m-Cresol p-Cresol 3,4-DMP 2,4,6-TMP
OH OH OH OH OH OH
i OH HO : OH i cl i i Cl i NO, i

Cl Cl NO,

Catechol Resorcinol 2-CP 4-CP 2,4-DCP 2-NP 4-NP
OH OH NO, CH; CH, CH,

NO, O,N i NO, i i NO, i NO,
NO, NO, NO, NO,
2,4-DNP 2,4,6-TNP NB 2-NT 4-NT 2,4-DNT

Chart 3.1. Guest molecules used in the current work.
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Table 3.3. Binding Constants K, (M‘l) of Metallocavitands 1, 2, 7, and 8
towards Various Guest Molecules Calculated by Emission Titration in
DMSO at 298K.

guest molecules 1 (K M7 2 (Ko, M) 7 (Ko, M7 8 (Ko, M)
Phenol 2.8 x 10° 3.6 x 10° 7.0 x 10° 1.0 x 10°
Benzyl alcohol (BA) 1.2 x 10° 4.3 x 10° 7.3 x 10° 7.2 x 10°
m-Cresol 1.9 x 10° 1.2 x 10* 5.5 x 10° 1.4 x 10
p-Cresol 1.5 x 10° 9.8 x 10° 4.5 x 10° 2.6 x 10°
3,4-Dimethylphenol 8.1 x 10? 2.5 x 10° 2.1 x 10° 1.6 x 10°
2,4,6-Trimethylphenol 1.2 x 10° 1.8 x 10° 2.6 x 10° 1.2 x 10°
Catechol 3.3x10° 4.1 x 10° 3.5 x 10° 2.6 x 10°
Resorcinol 1.0 x 10° 1.1 x 10° 2.1 x10° 3.2 x 10°
2-Chlorophenol 6.0 x 10° 1.2 x 10* 2.1 x10* 1.0 x 10*
4-Chlorophenol 1.4 x 10° 8.9 x 10° 7.0 x 10° 5.6 x 10°
2,4-Dichlorophenol 2.4 % 10° 4.0 x 10° 1.4 x 10° 2.0 x 10°
2-Nitrophenol 9.8 x 10° 8.5 x 10° 1.3 x 10* 7.8 x 10°
4-Nitrophenol 1.4 x 10° 2.1 x 10* 2.2 x 10* 9.6 x 10°
2,4-Dinitrophenol 2.1x10* 2.0 x 10* 2.0 x 10* 1.5 x 10*
2,4,6-Trinitrophenol 2.2 x 10* 4.6 x 10* 4.0 x 10* 5.0 x 10*
Nitrobenzene 1.4 x 10* 2.4 x 10* 8.3 x 10* 6.2 x 10*
2-Nitrotoluene 1.1 x 10* 1.8 x 10* 2.8 x 10° 2.0 x 10*
4-Nitrotoluene 1.7 x 10* 1.6 x 10* 2.3x10* 1.5 x 10°
2,4-Dinitrotoluene 1.5 x 10* 8.5 x 10° 1.7 x 10* 1.9 x 10
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Figure 3.58. Changes in the emission spectra of 1 (4 x 10° M, Aexc = 283 nm) with the

addition of phenol in DMSO. The arrow indicates the quenching of the fluorescence intensity
by addition of an appropriate aliquot of phenol.
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Figure 3.59. Benesi-Hildebrand plot for the emission quenching of host 1 (at 352 nm) with
an increase in the concentration of phenol in DMSO.
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Figure 3.60. Changes in the emission spectra of 1 (3 x 10° M, Aexe = 260 nm) with the

addition of BA in DMSO. The arrow indicates the quenching of the fluorescence intensity by
addition of an appropriate aliquot of BA.
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Figure 3.61. Benesi-Hildebrand plot for the emission quenching of host 1 (at 352 nm) with
an increase in the concentration of BA in DMSO.
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Figure 3.62. Changes in the emission spectra of 1 (1.5 x 10° M, Aexc = 283 nm) with the
addition of m-cresol in DMSO. The arrow indicates the quenching of the fluorescence
intensity by addition of an appropriate aliquot of m-cresol.
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Figure 3.63. Benesi-Hildebrand plot for the emission quenching of host 1 (at 368 nm) with
an increase in the concentration of m-cresol in DMSO.
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Figure 3.64. Changes in the emission spectra of 1 (1.5 x 10° M, Aexc = 283 nm) with the
addition of p-cresol in DMSO. The arrow indicates the quenching of the fluorescence
intensity by addition of an appropriate aliquot of p-cresol.
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Figure 3.65. Benesi-Hildebrand plot for the emission quenching of host 1 (at 368 nm) with
an increase in the concentration of p-cresol in DMSO.
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Figure 3.66. Changes in the emission spectra of 1 (1.5 x 10° M, Aexec = 283 nm) with the
addition of 3, 4- DMP in DMSO. The arrow indicates the quenching of the fluorescence
intensity by addition of an appropriate aliquot of 3, 4- DMP
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Figure 3.67. Benesi-Hildebrand plot for the emission quenching of host 1 (at 368 nm) with
an increase in the concentration of 3, 4- DMP in DMSO.
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Figure 3.68. Changes in the emission spectra of 1 (1.5 x 10° M, Aexec = 283 nm) with the
addition of 2, 4, 6- TMP in DMSO. The arrow indicates the quenching of the fluorescence
intensity by addition of an appropriate aliquot of 2, 4, 6- TMP.
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Figure 3.69. Benesi-Hildebrand plot for the emission quenching of host 1 (at 368 nm) with
an increase in the concentration of 2, 4, 6- TMP in DMSO.
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Figure 3.70. Changes in the emission spectra of 1 (3 x 10° M, Aexc = 283 nm) with the

addition of catechol in DMSO. The arrow indicates the quenching of the fluorescence
intensity by addition of an appropriate aliquot of catechol.
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Figure 3.71. Benesi-Hildebrand plot for the emission quenching of host 1 (at 368 nm) with
an increase in the concentration of catechol in DMSO.
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Figure 3.72. Changes in the emission spectra of 1 (3 x 10° M, Aexe = 283 nm) with the
addition of resorcinol in DMSO. The arrow indicates the quenching of the fluorescence
intensity by addition of an appropriate aliquot of resorcinol.
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Figure 3.73. Benesi-Hildebrand plot for the emission quenching of host 1 (at 368 nm) with
an increase in the concentration of resorcinol in DMSO.
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Figure 3.74. Changes in the emission spectra of 1 (1.5 x 10° M, Aexc = 283 nm) with the
addition of 2-CP in DMSO. The arrow indicates the quenching of the fluorescence intensity
by addition of an appropriate aliquot of 2-CP.
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Figure 3.75. Benesi-Hildebrand plot for the emission quenching of host 1 (at 352 nm) with
an increase in the concentration of 2-CP in DMSO.
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Figure 3.76. Changes in the emission spectra of 1 (1.5 x 10° M, Aexec = 283 nm) with the

addition of 4-chlorophenol in DMSO. The arrow indicates the quenching of the fluorescence
intensity by addition of an appropriate aliquot of 4-CP.

0.0075

®  Data points

Linear fit
Intercept 7.94616E-4
Slope 5.87011E-7

Adj. R-Square 0.9954

0.0050

11y - 1)

0.0025

1 % I b I i I
2500 5000 7500 10000
1/[G]

Figure 3.77. Benesi-Hildebrand plot for the emission quenching of host 1 (at 368 nm) with
an increase in the concentration of 4-CP in DMSO.
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Figure 3.78. Changes in the emission spectra of 1 (1.5 x 10° M, Aexc = 283 nm) with the
addition of 2, 4-DCP in DMSO. The arrow indicates the quenching of the fluorescence
intensity by addition of an appropriate aliquot of 2, 4-DCP.
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Figure 3.79. Benesi-Hildebrand plot for the emission quenching of host 1 (at 368 nm) with
an increase in the concentration of 2, 4-DCP in DMSO.
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Figure 3.80. Changes in the emission spectra of 1 (3 x 10° M, Aexe = 283 nm) with the
addition of 2- NP in DMSO. The arrow indicates the quenching of the fluorescence intensity
by addition of an appropriate aliquot of 2-NP.
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Figure 3.81. Benesi-Hildebrand plot for the emission quenching of host 1 (at 352 nm) with
an increase in the concentration of 2-NP in DMSO.
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Figure 3.82. Changes in the emission spectra of 1 (3 x 10° M, Aexe = 283 nm) with the

addition of 4- NP in DMSO. The arrow indicates the quenching of the fluorescence intensity
by addition of an appropriate aliquot of 4-NP.
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Figure 3.83. Benesi-Hildebrand plot for the emission quenching of host 1 (at 352 nm) with
an increase in the concentration of 4-NP in DMSO.
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Figure 3.84. Changes in the emission spectra of 1 (3 x 10° M, Aexe = 283 nm) with the
addition of 2, 4- DNP in DMSO. The arrow indicates the quenching of the fluorescence
intensity by addition of an appropriate aliquot of 2, 4- DNP.
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Figure 3.85. Benesi-Hildebrand plot for the emission quenching of host 1 (at 368 nm) with
an increase in the concentration of 2, 4- DNP in DMSO.
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Figure 3.86. Changes in the emission spectra of 1 (3 x 10° M, Aexe = 283 nm) with the

addition of 2, 4, 6- TNP/ picric acid in DMSO. The arrow indicates the quenching of the
fluorescence intensity by addition of an appropriate aliquot of picric acid.
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Figure 3.87. Benesi-Hildebrand plot for the emission quenching of host 1 (at 368 nm) with
an increase in the concentration of 2, 4, 6- TNP in DMSO.
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Figure 3.88. Changes in the emission spectra of 1 (3 x 10° M, Aexc = 283 nm) with the
addition of NB in DMSO. The arrow indicates the quenching of the fluorescence intensity by
addition of an appropriate aliquot of NB.
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Figure 3.89. Benesi-Hildebrand plot for the emission quenching of host 1 (at 352 nm) with
an increase in the concentration of NB in DMSO.
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Figure 3.90. Changes in the emission spectra of 1 (3 x 10° M, Aexc = 283 nm) with the
addition of 2-NT in DMSO. The arrow indicates the quenching of the fluorescence intensity
by addition of an appropriate aliquot of 2-NT.
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Figure 3.91. Benesi-Hildebrand plot for the emission quenching of host 1 (at 352 nm) with
an increase in the concentration of 2-NT in DMSO.
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Figure 3.92. Changes in the emission spectra of 1 (3 x 10° M, Aexe = 283 nm) with the

addition of 4-NT in DMSO. The arrow indicates the quenching of the fluorescence intensity
by addition of an appropriate aliquot of 4-NT.
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Figure 3.93. Benesi-Hildebrand plot for the emission quenching of host 1 (at 352 nm) with
an increase in the concentration of 4-NT in DMSO.
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Figure 3.94. Changes in the emission spectra of 1 (3 x 10° M, Aexe = 283 nm) with the
addition of 2, 4-DNT in DMSO. The arrow indicates the quenching of the fluorescence
intensity by addition of an appropriate aliquot of 2, 4-DNT.
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Figure 3.95. Benesi-Hildebrand plot for the emission quenching of host 1 (at 352 nm) with
an increase in the concentration of 2, 4-DNT in DMSO.
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Figure 3.96. Changes in the emission spectra of 2 (1 x 10° M, Aexe = 285 nm) with the
addition of phenol in DMSO. The arrow indicates the quenching of the fluorescence intensity

by addition of an appropriate aliquot of phenol.
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Figure 3.97. Benesi-Hildebrand plot for the emission quenching of host 2 (at 360 nm) with
an increase in the concentration of phenol in DMSO.
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addition of an appropriate aliquot of BA.
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Figure 3.99. Benesi-Hildebrand plot for the emission quenching of host 2 (at 360 nm) with
an increase in the concentration of BA in DMSO.
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Figure 3.100. Changes in the emission spectra of 2 (1 x 10° M, Aexe = 285 nm) with the
addition of m-cresol in DMSO. The arrow indicates the quenching of the fluorescence
intensity by addition of an appropriate aliquot of m-cresol.
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Figure 3.101. Benesi-Hildebrand plot for the emission quenching of host 2 (at 360 nm) with
an increase in the concentration of m-cresol in DMSO.
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Figure 3.102. Changes in the emission spectra of 2 (1 x 10°° M, hexc = 285 nm) with the

addition of p-cresol in DMSO. The arrow indicates the quenching of the fluorescence
intensity by addition of an appropriate aliquot of p-cresol.
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Figure 3.103. Benesi-Hildebrand plot for the emission quenching of host 2 (at 360 nm) with
an increase in the concentration of p-cresol in DMSO.
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Figure 3.104. Changes in the emission spectra of 2 (1 x 10° M, Aexc = 285 nm) with the
addition of 3, 4- DMP in DMSO. The arrow indicates the quenching of the fluorescence
intensity by addition of an appropriate aliquot of 3, 4- DMP.
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Figure 3.105. Benesi-Hildebrand plot for the emission quenching of host 2 (at 360 nm) with
an increase in the concentration of 3, 4- DMP in DMSO.
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Figure 3.106. Changes in the emission spectra of 2 (1 x 10° M, Aexc = 285 nm) with the

addition of 2, 4, 6- TMP in DMSO. The arrow indicates the quenching of the fluorescence
intensity by addition of an appropriate aliquot of 2, 4, 6- TMP.
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Figure 3.107. Benesi-Hildebrand plot for the emission quenching of host 2 (at 360 nm) with
an increase in the concentration of 2, 4, 6- TMP in DMSO.
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Figure 3.108. Changes in the emission spectra of 2 (1 x 10° M, Aexe = 285 nm) with the
addition of catechol in DMSO. The arrow indicates the quenching of the fluorescence
intensity by addition of an appropriate aliquot of catechol.
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Figure 3.109. Benesi-Hildebrand plot for the emission quenching of host 2 (at 360 nm) with
an increase in the concentration of catechol in DMSO.
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Figure 3.110. Changes in the emission spectra of 2 (1 x 10° M, Aexc = 285 nm) with the
addition of resorcinol in DMSO. The arrow indicates the quenching of the fluorescence

intensity by addition of an appropriate aliquot of resorcinol.
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Figure 3.111. Benesi-Hildebrand plot for the emission quenching of host 2 (at 360 nm) with

an increase in the concentration of resorcinol in DMSO.
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Figure 3.112. Changes in the emission spectra of 2 (1 x 10° M, Aexc = 285 nm) with the
addition of 2-CP in DMSO. The arrow indicates the quenching of the fluorescence intensity
by addition of an appropriate aliquot of 2-CP.
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Figure 3.113. Benesi-Hildebrand plot for the emission quenching of host 2 (at 360 nm) with
an increase in the concentration of 2-CP in DMSO.
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Figure 3.114. Changes in the emission spectra of 2 (1 x 10° M, Aexc = 285 nm) with the

addition of 4-chlorophenol in DMSO. The arrow indicates the quenching of the fluorescence
intensity by addition of an appropriate aliquot of 4-CP.
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Figure 3.115. Benesi-Hildebrand plot for the emission quenching of host 2 (at 360 nm) with
an increase in the concentration of 4-CP in DMSO.
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Figure 3.116. Changes in the emission spectra of 2 (1 x 10° M, Aexc = 285 nm) with the
addition of 2, 4-DCP in DMSO. The arrow indicates the quenching of the fluorescence
intensity by addition of an appropriate aliquot of 2, 4-DCP.
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Figure 3.117. Benesi-Hildebrand plot for the emission quenching of host 2 (at 360 nm) with
an increase in the concentration of 2, 4-DCP in DMSO.
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Figure 3.118. Changes in the emission spectra of 2 (1 x 10° M, Aexc = 285 nm) with the
addition of 2- NP in DMSO. The arrow indicates the quenching of the fluorescence intensity
by addition of an appropriate aliquot of 2-NP.
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Figure 3.119. Benesi-Hildebrand plot for the emission quenching of host 2 (at 360 nm) with
an increase in the concentration of 2-NP in DMSO.
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Figure 3.120. Changes in the emission spectra of 2 (1 x 10° M, Aexc = 285 nm) with the
addition of 4- NP in DMSO. The arrow indicates the quenching of the fluorescence intensity
by addition of an appropriate aliquot of 4-NP.
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Figure 3.121. Benesi-Hildebrand plot for the emission quenching of host 2 (at 360 nm) with
an increase in the concentration of 4-NP in DMSO.
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Figure 3.122. Changes in the emission spectra of 2 (1 x 10° M, Aexc = 285 nm) with the

addition of 2, 4- DNP in DMSO. The arrow indicates the quenching of the fluorescence
intensity by addition of an appropriate aliquot of 2, 4- DNP.
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Figure 3.123. Benesi-Hildebrand plot for the emission quenching of host 2 (at 360 nm) with
an increase in the concentration of 2, 4- DNP in DMSO.

172



2500

2000

1500 -

1000 -

500 -

Fluorescence intensity (a. u.)

0

I
300

1
350

400
Wavelength (nm)

500

Chapter 3

Figure 3.124. Changes in the emission spectra of 2 (1 x 10° M, Aexc = 285 nm) with the
addition of 2, 4, 6- TNP/ picric acid in DMSO. The arrow indicates the quenching of the
fluorescence intensity by addition of an appropriate aliquot of picric acid.
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Figure 3.125. Benesi-Hildebrand plot for the emission quenching of host 2 (at 360 nm) with
an increase in the concentration of 2, 4, 6- TNP in DMSO.
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Figure 3.126. Changes in the emission spectra of 2 (1 x 10° M, Aexc = 285 nm) with the
addition of NB in DMSO. The arrow indicates the quenching of the fluorescence intensity by
addition of an appropriate aliquot of NB.
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Figure 3.127. Benesi-Hildebrand plot for the emission quenching of host 2 (at 360 nm) with
an increase in the concentration of NB in DMSO.
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Figure 3.128. Changes in the emission spectra of 2 (1 x 10° M, Aexe = 285 nm) with the
addition of 2-NT in DMSO. The arrow indicates the quenching of the fluorescence intensity

by addition of an appropriate aliquot of 2-NT.
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Figure 3.129. Benesi-Hildebrand plot for the emission quenching of host 2 (at 360 nm) with

an increase in the concentration of 2-NT in DMSO.

175



Chapter 3

2400

1800

1200

600

Fluorescence intensity (a. u.)

T T >
400 450 500

Wavelength (nm)

= I
300 350

Figure 3.130. Changes in the emission spectra of 2 (1 x 10° M, Aexc = 285 nm) with the
addition of 4-NT in DMSO. The arrow indicates the quenching of the fluorescence intensity
by addition of an appropriate aliquot of 4-NT.
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Figure 3.131. Benesi-Hildebrand plot for the emission quenching of host 2 (at 360 nm) with
an increase in the concentration of 4-NT in DMSO.
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Figure 3.132. Changes in the emission spectra of 2 (1 x 10° M, Aexc = 285 nm) with the
addition of 2, 4-DNT in DMSO. The arrow indicates the quenching of the fluorescence
intensity by addition of an appropriate aliquot of 2, 4-DNT.
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Figure 3.133. Benesi-Hildebrand plot for the emission quenching of host 2 (at 360 nm) with
an increase in the concentration of 2, 4-DNT in DMSO.
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Figure 3.134. Changes in the emission spectra of 7 (4 x 10° M, Aexc = 276 nm) with the
addition of phenol in DMSO. The arrow indicates the quenching of the fluorescence intensity

by addition of an appropriate aliquot of phenol.
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Figure 3.135. Benesi-Hildebrand plot for the emission quenching of host 7 (at 353 nm) with

an increase in the concentration of phenol in DMSO.
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Figure 3.136. Changes in the emission spectra of 7 (4 x 10° M, Aexc = 260 nm) with the
addition of BA in DMSO. The arrow indicates the quenching of the fluorescence intensity by

addition of an appropriate aliquot of BA.
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Figure 3.137. Benesi-Hildebrand plot for the emission quenching of host 7 (at 353 nm) with

an increase in the concentration of BA in DMSO.
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Figure 3.138. Changes in the emission spectra of 7 (4 x 10° M, Aexc = 276 nm) with the
addition of m-cresol in DMSO. The arrow indicates the quenching of the fluorescence
intensity by addition of an appropriate aliquot of m-cresol.
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Figure 3.139. Benesi-Hildebrand plot for the emission quenching of host 7 (at 369 nm) with
an increase in the concentration of m-cresol in DMSO.
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Figure 3.140. Changes in the emission spectra of 7 (4 x 10° M, Aexc = 276 nm) with the
addition of p-cresol in DMSO. The arrow indicates the quenching of the fluorescence
intensity by addition of an appropriate aliquot of p-cresol
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Figure 3.141. Benesi-Hildebrand plot for the emission quenching of host 7 (at 369 nm) with
an increase in the concentration of p-cresol in DMSO.
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Figure 3.142. Changes in the emission spectra of 7 (4 x 10° M, Aexc = 276 nm) with the
addition of 3, 4- DMP in DMSO. The arrow indicates the quenching of the fluorescence
intensity by addition of an appropriate aliquot of 3, 4- DMP.
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Figure 3.143. Benesi-Hildebrand plot for the emission quenching of host 7 (at 369 nm) with
an increase in the concentration of 3, 4- DMP in DMSO.
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Figure 3.144. Changes in the emission spectra of 7 (2 x 10° M, Aexc = 276 nm) with the
addition of 2, 4, 6- TMP in DMSO. The arrow indicates the quenching of the fluorescence

intensity by addition of an appropriate aliquot of 2, 4, 6- TMP.
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Figure 3.145. Benesi-Hildebrand plot for the emission quenching of host 7 (at 369 nm) with

an increase in the concentration of 2, 4, 6- TMP in DMSO.
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Figure 3.146. Changes in the emission spectra of 7 (2 x 10° M, Aexe = 276 nm) with the
addition of catechol in DMSO. The arrow indicates the quenching of the fluorescence
intensity by addition of an appropriate aliquot of catechol.

® Data Points |

Linear Fit
Intercept 4.9242E-4
Slope 1.42796E-7

Adj. R-Square 0.99765

0.002 -

111, - 1)

0.001

50'00 | 10600 ' 15600
1/[G]
Figure 3.147. Benesi-Hildebrand plot for the emission quenching of host 7 (at 369 nm) with

an increase in the concentration of catechol in DMSO.
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Figure 3.148. Changes in the emission spectra of 7 (2 x 10° M, Aexc = 276 nm) with the
addition of resorcinol in DMSO. The arrow indicates the quenching of the fluorescence

intensity by addition of an appropriate aliquot of resorcinol.
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Figure 3.149. Benesi-Hildebrand plot for the emission quenching of host 7 (at 369 nm) with

an increase in the concentration of resorcinol in DMSO.
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Figure 3.150. Changes in the emission spectra of 7 (2 x 10° M, Aexc = 276 nm) with the
addition of 2-CP in DMSO. The arrow indicates the quenching of the fluorescence intensity
by addition of an appropriate aliquot of 2-CP.
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Figure 3.151. Benesi-Hildebrand plot for the emission quenching of host 7 (at 353 nm) with
an increase in the concentration of 2-CP in DMSO.
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Figure 3.152. Changes in the emission spectra of 7 (2 x 10° M, Aexc = 276 nm) with the
addition of 4-chlorophenol in DMSO. The arrow indicates the quenching of the fluorescence
intensity by addition of an appropriate aliquot of 4-CP.
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Figure 3.153. Benesi-Hildebrand plot for the emission quenching of host 7 (at 369 nm) with
an increase in the concentration of 4-CP in DMSO.
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Figure 3.154. Changes in the emission spectra of 7 (2 x 10° M, Aexe = 276 nm) with the
addition of 2, 4-DCP in DMSO. The arrow indicates the quenching of the fluorescence
intensity by addition of an appropriate aliquot of 2, 4-DCP.
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Figure 3.155. Benesi-Hildebrand plot for the emission quenching of host 7 (at 369 nm) with
an increase in the concentration of 2, 4-DCP in DMSO.
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Figure 3.156. Changes in the emission spectra of 7 (4 x 10° M, Aexc = 276 nm) with the
addition of 2- NP in DMSO. The arrow indicates the quenching of the fluorescence intensity
by addition of an appropriate aliquot of 2-NP.
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Figure 3.157. Benesi-Hildebrand plot for the emission quenching of host 7 (at 353 nm) with
an increase in the concentration of 2-NP in DMSO.

189



Chapter 3

2000 - ‘
1500
1000 -

500 -

Fluorescence intensity (a. u.)

1 1 X
400 450 500

Wavelength (nm)

1 1
300 350

Figure 3.158. Changes in the emission spectra of 7 (2 x 10° M, Aexc = 276 nm) with the
addition of 4- NP in DMSO. The arrow indicates the quenching of the fluorescence intensity
by addition of an appropriate aliquot of 4-NP.
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Figure 3.159. Benesi-Hildebrand plot for the emission quenching of host 7 (at 353 nm) with
an increase in the concentration of 4-NP in DMSO.
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Figure 3.160. Changes in the emission spectra of 7 (2 x 10° M, Aexe = 276 nm) with the

addition of 2, 4- DNP in DMSO. The arrow indicates the quenching of the fluorescence
intensity by addition of an appropriate aliquot of 2, 4- DNP.
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Figure 3.161. Benesi-Hildebrand plot for the emission quenching of host 7 (at 369 nm) with

an increase in the concentration of 2, 4- DNP in DMSO.
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Figure 3.162. Changes in the emission spectra of 7 (2 x 10° M, Aexc = 276 nm) with the
addition of 2, 4, 6- TNP/ picric acid in DMSO. The arrow indicates the quenching of the
fluorescence intensity by addition of an appropriate aliquot of picric acid.
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Figure 3.163. Benesi-Hildebrand plot for the emission quenching of host 7 (at 369 nm) with

an increase in the concentration of 2, 4, 6- TNP in DMSO.
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Figure 3.164. Changes in the emission spectra of 7 (2 x 10° M, Aexc = 276 nm) with the
addition of NB in DMSO. The arrow indicates the quenching of the fluorescence intensity by
addition of an appropriate aliquot of NB.
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Figure 3.165. Benesi-Hildebrand plot for the emission quenching of host 7 (at 353 nm) with
an increase in the concentration of NB in DMSO.
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Figure 3.166. Changes in the emission spectra of 7 (2 x 10° M, Aexc = 276 nm) with the
addition of 2-NT in DMSO. The arrow indicates the quenching of the fluorescence intensity
by addition of an appropriate aliquot of 2-NT.
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Figure 3.167. Benesi-Hildebrand plot for the emission quenching of host 7 (at 353 nm) with
an increase in the concentration of 2-NT in DMSO.

194



Chapter 3

2100 *
5
8
2>
2 1400 -
]
£
Q
Q
c
(]
@
g 700
[}
3
(18
0 T T T T T T T T >
300 350 400 450 500

Wavelength (nm)

Figure 3.168. Changes in the emission spectra of 7 (2 x 10° M, Aexc = 276 nm) with the
addition of 4-NT in DMSO. The arrow indicates the quenching of the fluorescence intensity
by addition of an appropriate aliquot of 4-NT.
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Figure 3.169. Benesi-Hildebrand plot for the emission quenching of host 7 (at 353 nm) with
an increase in the concentration of 4-NT in DMSO.
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Figure 3.170. Changes in the emission spectra of 7 (2 x 10° M, Aexc = 276 nm) with the
addition of 2, 4-DNT in DMSO. The arrow indicates the quenching of the fluorescence
intensity by addition of an appropriate aliquot of 2, 4-DNT.
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Figure 3.171. Benesi-Hildebrand plot for the emission quenching of host 7 (at 353 nm) with

an increase in the concentration of 2, 4-DNT in DMSO.
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Figure 3.172. Changes in the emission spectra of 8 (1 x 10° M, Aexc = 275 nm) with the

addition of phenol in DMSO. The arrow indicates the quenching of the fluorescence intensity
by addition of an appropriate aliquot of phenol.
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Figure 3.173. Benesi-Hildebrand plot for the emission quenching of host 8 (at 360 nm) with
an increase in the concentration of phenol in DMSO.
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Figure 3.174. Changes in the emission spectra of 8 (1 x 10° M, Aexc = 260 nm) with the
addition of BA in DMSO. The arrow indicates the quenching of the fluorescence intensity by
addition of an appropriate aliquot of BA.
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Figure 3.175. Benesi-Hildebrand plot for the emission quenching of host 8 (at 360 nm) with
an increase in the concentration of BA in DMSO.
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Figure 3.176. Changes in the emission spectra of 8 (1 x 10° M, Aexc = 275 nm) with the

addition of m-cresol in DMSO. The arrow indicates the quenching of the fluorescence
intensity by addition of an appropriate aliquot of m-cresol.
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Figure 3.177. Benesi-Hildebrand plot for the emission quenching of host 8 (at 360 nm) with
an increase in the concentration of m-cresol in DMSO.
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Figure 3.178. Changes in the emission spectra of 8 (1 x 10° M, Aexe = 275 nm) with the
addition of p-cresol in DMSO. The arrow indicates the quenching of the fluorescence

intensity by addition of an appropriate aliquot of p-cresol.

0.006 -

-1)

o 0.004

11

0.002

m Data Points

Linear Fit

Intercept 6.63487E-4
Slope 2.53356E-7
Adj. R-Square 0.99277

I
7000

1
14000

1/[G]

I
21000

Figure 3.179. Benesi-Hildebrand plot for the emission quenching of host 8 (at 360 nm) with
an increase in the concentration of p-cresol in DMSO.
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Figure 3.180. Changes in the emission spectra of 8 (1 x 10° M, Aexc = 275 nm) with the
addition of 3, 4- DMP in DMSO. The arrow indicates the quenching of the fluorescence
intensity by addition of an appropriate aliquot of 3, 4- DMP.
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Figure 3.181. Benesi-Hildebrand plot for the emission quenching of host 8 (at 360 nm) with
an increase in the concentration of 3, 4- DMP in DMSO.
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Figure 3.182 Changes in the emission spectra of 8 (1 x 10° M, Aexe = 275 nm) with the
addition of 2, 4, 6- TMP in DMSO. The arrow indicates the quenching of the fluorescence
intensity by addition of an appropriate aliquot of 2, 4, 6- TMP.
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Figure 3.183 Benesi-Hildebrand plot for the emission quenching of host 8 (at 360 nm) with
an increase in the concentration of 2, 4, 6- TMP in DMSO.
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Figure 3.184 Changes in the emission spectra of 8 (1 x 10° M, Aex = 275 nm) with the

addition of catechol in DMSO. The arrow indicates the quenching of the fluorescence
intensity by addition of an appropriate aliquot of catechol.
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Figure 3.185. Benesi-Hildebrand plot for the emission quenching of host 8 (at 360 nm) with
an increase in the concentration of catechol in DMSO.
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Figure 3.186. Changes in the emission spectra of 8 (1 x 10° M, Aexc = 275 nm) with the
addition of resorcinol in DMSO. The arrow indicates the quenching of the fluorescence
intensity by addition of an appropriate aliquot of resorcinol.
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Figure3.187. Benesi-Hildebrand plot for the emission quenching of host 8 (at 360 nm) with
an increase in the concentration of resorcinol in DMSO.
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Figure 3.188. Changes in the emission spectra of 8 (1 x 10°° M, hexc = 275 nm) with the

addition of 2-CP in DMSO. The arrow indicates the quenching of the fluorescence intensity
by addition of an appropriate aliquot of 2-CP.
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Figure 3.189. Benesi-Hildebrand plot for the emission quenching of host 8 (at 360 nm) with
an increase in the concentration of 2-CP in DMSO.
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Figure 3.190. Changes in the emission spectra of 8 (1 x 10° M, Aexc = 275 nm) with the

addition of 4-chlorophenol in DMSO. The arrow indicates the quenching of the fluorescence
intensity by addition of an appropriate aliquot of 4-CP.
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Figure 3.191. Benesi-Hildebrand plot for the emission quenching of host 8 (at 360 nm) with
an increase in the concentration of 4-CP in DMSO.
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Figure 3.192. Changes in the emission spectra of 8 (1 x 10° M, Aexc = 275 nm) with the
addition of 2, 4-DCP in DMSO. The arrow indicates the quenching of the fluorescence
intensity by addition of an appropriate aliquot of 2, 4-DCP.
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Figure 3.193. Benesi-Hildebrand plot for the emission quenching of host 8 (at 360 nm) with
an increase in the concentration of 2, 4-DCP in DMSO.
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Figure 3.194. Changes in the emission spectra of 8 (1 x 10° M, Aexc = 275 nm) with the
addition of 2- NP in DMSO. The arrow indicates the quenching of the fluorescence intensity
by addition of an appropriate aliquot of 2-NP.
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Figure 3.195. Benesi-Hildebrand plot for the emission quenching of host 8 (at 360 nm) with
an increase in the concentration of 2-NP in DMSO.
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Figure 3.196. Changes in the emission spectra of 8 (1 x 10° M, Aexc = 275 nm) with the
addition of 4- NP in DMSO. The arrow indicates the quenching of the fluorescence intensity
by addition of an appropriate aliquot of 4-NP.
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Figure 3.197. Benesi-Hildebrand plot for the emission quenching of host 8 (at 360 nm) with
an increase in the concentration of 4-NP in DMSO.
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Figure 3.198. Changes in the emission spectra of 8 (1 x 10° M, Aexc = 275 nm) with the

addition of 2, 4- DNP in DMSO. The arrow indicates the quenching of the fluorescence
intensity by addition of an appropriate aliquot of 2, 4- DNP.
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Figure 3.199. Benesi-Hildebrand plot for the emission quenching of host 8 (at 360 nm) with
an increase in the concentration of 2, 4- DNP in DMSO.
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Figure 3.200. Changes in the emission spectra of 8 (1 x 10° M, Aexc = 275 nm) with the
addition of 2, 4, 6- TNP/ picric acid in DMSO. The arrow indicates the quenching of the

fluorescence intensity by addition of an appropriate aliquot of picric acid.
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Figure 3.201. Benesi-Hildebrand plot for the emission quenching of host 8 (at 360 nm) with
an increase in the concentration of 2, 4, 6- TNP in DMSO.
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Figure 3.202. Changes in the emission spectra of 8 (1 x 10° M, Aexe = 275 nm) with the
addition of NB in DMSO. The arrow indicates the quenching of the fluorescence intensity by
addition of an appropriate aliquot of NB.
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Figure 3.203. Benesi-Hildebrand plot for the emission quenching of host 8 (at 360 nm) with
an increase in the concentration of NB in DMSO.
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Figure 3.204. Changes in the emission spectra of 8 (1 x 10° M, Aexc = 275 nm) with the

addition of 2-NT in DMSO. The arrow indicates the quenching of the fluorescence intensity
by addition of an appropriate aliquot of 2-NT.
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Figure 3.205. Benesi-Hildebrand plot for the emission quenching of host 8 (at 360 nm) with
an increase in the concentration of 2-NT in DMSO.
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Figure 3.206. Changes in the emission spectra of 8 (1 x 10° M, Aexc = 275 nm) with the
addition of 4-NT in DMSO. The arrow indicates the quenching of the fluorescence intensity
by addition of an appropriate aliquot of 4-NT.
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Figure 3.207. Benesi-Hildebrand plot for the emission quenching of host 8 (at 360 nm) with
an increase in the concentration of 4-NT in DMSO.
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Figure 3.208. Changes in the emission spectra of 8 (1 x 10° M, Aexc = 275 nm) with the

addition of 2, 4-DNT in DMSO. The arrow indicates the quenching of the fluorescence
intensity by addition of an appropriate aliquot of 2, 4-DNT.
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Figure 3.209. Benesi-Hildebrand plot for the emission quenching of host 8 (at 360 nm) with
an increase in the concentration of 2, 4-DNT in DMSO.
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Table 3.4. Comparison of Binding Constants K, (M) of previously reported complex (C1),
and Metallocavitands 1, 2, 7, and 8 towards Nitro-substituted Guest Molecules Calculated by

Emission Titration in DMSO at 298K.

guest molecule, C1 1 2 7 8

Nitrobenzene 47x10°  14x10*  24x10*  83x10*  62x10*
2-Nitrotoluene 1.1x10°  1.1x10* 1.8x10* 28x10* 2.0x10*
4-Nitrotoluene 45x10>  1.7x10" 1.6x10* 23x10* 1.5x10*
2,4-Dinitrotoluene 25x10° 15x10° 85x10°  1.7x10*  1.9x10"

3.5 Conclusion

Eight neutral, heteroleptic fac-[Re(CO)3z] core-based metallocavitands (1-8) analogous to
calix[5]arene were self-assembled using two new neutral, flexible ditopic nitrogen donors
(L'-L?), bis-chelating ligands and Re,(CO)so via one-pot approach. The inner cavity of the
metallocavitands is tuneable by modulating the bis-chelating framework motifs. The solid-
state structures of the metallocavitands confirm that their inner cavity is suitable to
accommodate acetone, mesitylene, toluene and chlorobenzene. The host-guest recognition
studies of metallocavitands 1, 2, 7 and 8 with a family of substituted phenol and nitrobenzene
as guest molecules have suggested that the metallocavitands may act as hosts for substituted
benzene core-based molecules. This study provides an easy synthetic approach for
assembling neutral, heteroleptic pentagonal toroid-shaped host molecules. Further research to
increase the width, tuning functional groups at the periphery as well as to make calix[n]arene
(n = 6, 7)-shaped fac-[Re(CO)s]-core based metallocavitands are currently under process in

our laboratory.
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Chapter 4

Calix[4]arene-Analogous Technetium and Rhenium

Core-based Supramolecules

Abstract

Calix[4]arene-analogous technetium supramolecules (1-2) were assembled using
(NBu,)[Tco(n-Cl)3(CO)s] and neutral flexible bidentate nitrogen donor ligands (L* and L?)
consisting of four arene units covalently joined via methylene units. The neutral homoleptic
technetium macrocycles adopt a partial cone/cone-shaped conformation in the solid-state.
These supramolecules are the first example of fac-[Tc(CO)s]" core-based
metallacalix[4]arenes and second example of fac-[Tc(CO)s]* core-based metallomacrocycles.
Structurally similar fac-[Re(CO)s]" core-based macrocycles (3-4) were also prepared using
[Re(CO)sX] (where X = Cl or Br) and L' or L% The products were characterized
spectroscopically and by X-ray analysis. The molecular recognition studies of rhenium
macrocycles were studied with PAHs and imidazole derivatives using by emission

spectroscopic methods

This work has been published in Inorg. Chem. 2022, 61, 5173-5177.
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4.1. Introduction

The design and synthesis of stable and kinetically inert fac-[M(CO)s]* (M = ®MTc/ 1#/188Re)
core-based complexes have been gaining continuous research interest for the development of
new radiopharmaceuticals as diagnostic and therapeutic agents.’*” *™Tc is still the
workhorse of nuclear diagnostics due to its ideal nuclear decay properties (ty, = 6.02 h, pure y
emitter, Ey = 140 keV, 89%), whereas the beta-emitting rhenium nuclides **®Re (t, = 17 h,
Ep = 2.12 MeV) and "*Re (ty2 = 89.3 h, Eg = 1.07 MeV) possess potential for therapy.” Iso-
structural technetium and rhenium complexes are good candidates for nuclear medical
theranostics and there exist procedures for the synthesis of the aqua complexes
[P Tc/*BRe(CO)3(H.0)s]" as appropriate precursor molecules.™® 2> 4 6 Several attempts have
been made towards the synthesis of organometallic technetium complexes using various
types of heterocyclic ligands due to their importance in medicinal fields.™ Recently, efforts
have been directed towards the design and synthesis of fac-[Re(CO)s]" core-based metal-
organic macrocycles, i.e., supramolecular coordination complexes or metallomacrocycles,

due to their potential applications as bio-imaging and anti-cancer agents.®%

We envision that the synthesis of fac-[Tc(CO)s]" core-based macrocycles may result in a new
class of supramolecules that may find potential utility in the medicinal fields due to the
combined properties of the technetium(l) tricarbonyl core and discrete 2D/3D supramolecular
structures. In general, the known synthetic approaches for making fac-[Re(CO)s]" core-based
discrete supramolecules can be applied to create structurally analogous fac-[Tc(CO)s]"* core-
based supramolecules.?®?? To the best of our knowledge, fac-[{Tc(CO)sCl}.(ptc),] (ptc = 4-
pyridyl-thiosemicarbazone = CgHsN-C(CH3)=N-NH-C(S)-NH), is the only known example
for a metallomacrocycle based on the fac-[Tc(CO)s]* core.”® Here, we report the fac-
[Tc(CO)sCl] core-based supramolecules analogous to calix[4]arenes and isostructural

rhenium macrocycles.
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4.2. Experimental

4.2.1. Radiation Precautions

Caution: ®Tc is a long-lived weak B~ emitter (Emax = 0.292 MeV). Normal glassware
provides sufficient protection against the weak beta radiation when milligram amounts are
used. Secondary X-rays (bremsstrahlung) play a significant role only when larger amounts of
%Tc compounds are handled. All manipulations were performed in a laboratory approved for

the handling of radioactive materials.

Materials and Methods
4.2.2. Materials

All chemicals and solvents were reagent grade and used as received without further
purification. The starting materials,  (NBus)[TcOCIs],”® (NBug)[Tca(u-Cl)s(CO)g], %
Re(CO)sBr,® Re(CO)sCl,® naphtho[2,3-d]imidazole,?” bis-(mesityl)methane,® and bis(3-
(bromomethyl-2,4,6-trimethylphenyl)methane,®® have been synthesized by the following
previously published procedures. Solvents including toluene, CHCI3, CH,Cl, and THF were

purified and distilled by conventional procedures.

4.2.3. Physical Measurement

FT-IR spectra of *Tc complexes were recorded on a Shimadzu FTIR spectrometer as KBr
pellets. All other IR spectra were measured on a Nicolet iS10 and iS5 ATR- IR
spectrometers. NMR spectra were recorded on a JEOL 400 MHz multinuclear spectrometer
or a Bruker Avance 111 500 MHz spectrometer. *H chemical shifts are reported relative to
residual solvent protons as a reference (7.26 ppm for CDCls, 5.30 for CD,Cl,). For the **Tc
chemical shifts, KTcO, in D,O was used as the external reference. ESI-HR-MS spectra were

collected on a Bruker maXis mass spectrometer.

4.2.4. Materials and Methods for Emission Titration Experiments

Emission spectra were recorded on a JASCO (FP-8500) spectrofluorometer. All the
experiments were done in HPLC and spectroscopy grade dichloromethane and used as
received from FINAR. Metallacalix[4]arene 3a stock solutions (1 x 10 M for benzene,
anthracene and benzimidazole; 1 x 10> M for naphthalene, imidazole) were prepared using

CH,Cl,. Aromatic guests stock solutions (1 x 10> M for naphthalene; 1 x 10 M and
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1 x 10 M for anthracene, and 1 x 10" M for benzene, imidazole and benzimidazole) were
prepared in CH,Cl,. Metallacalix[4]arene 4 stock solutions (1 x 10° M for benzene,
naphthalene and anthracene; 1 x 10° M for imidazole and 1 x 10* M for benzimidazole)
were prepared using CH,Cl,. Aromatic guests stock solutions (1 x 10 M for benzene and
naphthalene; 1 x 10° M for anthracene; 3 x 10 M for imidazole and 5 x 102 M for
benzimidazole) were prepared in CH,Cl,. Test solutions were prepared by the addition of an
appropriate aliquot (0.04- 3.5 mL) of each guest stock into 5mL standard volumetric flask
followed by placing 1 mL of stock solution of host 3a /4 and then diluting the solution to 5
mL with CH,Cl,. The excitation wavelength was 231 nm and 240 nm for 3a and 4
respectively. The slit bandwidth was 5 nm for both the excitation and emission. The binding
characteristics of host 3a and 4 with guest molecules were determined by the emission
spectroscopic method. The binding constants were calculated on the basis of the Benesi-
Hildebrand equation for a 1:1 stoichiometry molar ratio (1/AI = 1/Alpax + (1/ K[G] Alnax).
Here, Al = I-lyin, Almax = lo—Imin, lo 1S the emission intensity of free host 3a or 4, | is the
intensity measured with guest, Iy IS the intensity measured with an excess of guest, K is the

binding constant, and [G] is the concentration of guest molecule.

4.2.5. Crystallography

Single crystal X-ray diffraction data were collected on STOE IPDS 2T, Bruker D8 Quest
diffractometer or Rigaku Oxford XtaLAB Synergy instruments with Mo-Ka radiation (A =
0.71073 A). Standard procedures were applied for data reduction, and absorption correction.
Structure solutions and refinements were performed with the SHELX program package.*

Non-H atoms were refined anisotropically.

4.2.6. Synthesis of Ligands
Bis(3-(benzimidazol-1-ylmethyl)-2,4,6-trimethylphenyl)methane (L%):

A mixture of powdered KOH (125 mg, 2.11 mmol) and benzimidazole (250 mg, 2.11 mmol)
was stirred in DMF (8 mL) at room temperature for 2.5 h. Bis(3-(bromomethyl)-2,4,6-
trimethylphenyl)methane (463 mg, 1.05 mmol) was added to the colourless solution and
stirred for further 32 h at room temperature under N, atmosphere. The reaction was quenched
by adding ice water (200 mL). The resulting colourless powder was collected by filtration,
washed several times with water, and air-dried. Yield: 61% (331 mg). *H NMR (500 MHz,
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CDCls): § 7.81-7.79 (m, 2H, H'), 7.44 - 7.43 (m, 2H, H%), 7.35 (s, 2H, H?), 7.32 - 7.29 (m,
4H, H*®), 6.94 (s, 2H, H®), 5.21 (s, 4H, H® ~CH,-), 4.12 (s, 2H, H'® —-CH,-), 2.26 (s, 6H,
—CHa), 2.19 (s, 6H, —CH3) and 1.92 (s, 6H, —CH3). *C NMR (500 MHz, CDCls): ¢ 144.0,
141.7,137.8, 137.1, 136.8, 135.5, 134.2, 131.4, 128.4, 123.0, 122.4, 120.4, 109.7, 43.9, 32.3,
21.3, 19.8, 16.4. ESI-HRMS (m/z): [L' + H]" calcd. for CaHosNs 513.3018; found,
513.3031.

Bis((3-(naphtho[2,3-d]imidazol-1-yl)methyl)-2,4,6-trimethylphenyl)methane (L?):

A mixture of powdered KOH (117 mg, 2.081 mmol) and naphtho[2,3-d]imidazole (350 mg,
2.081 mmol) in DMF (10 mL) was stirred at room temperature for 2.5h. Bis(3-
(bromomethyl)-2,4,6-trimethylphenyl)methane (456 mg, 1.041 mmol) was added to the
greyish colored solution, and the reaction mixture was stirred for another 32 h. The reaction
was quenched by adding water (200 mL), and the resulting grey precipitate was filtered off,
washed several times with water, and air-dried. Yield: 78% (500 mg). *H NMR (500 MHz,
CDCl3): 6 8.28 (s, 2H, H?), 8.03 - 8.01 (d, J= 7.26 Hz, 2H, H®), 7.97 - 7.95 (d, J= 7.54 Hz,
2H, H°), 7.82 (s, 2H, H®), 7.53 (s, 2H, H*), 7.45 - 7.34 (m, 4H, H®"), 6.96 (s, 2H, H'), 5.25
(s, 4H, H'® —CH,-), 4.13 (s, 2H, H'?* —CH,-), 2.29 (s, 6H, —CH3), 2.22 (s, 6H, —CHj) and
1.93 (s, 6H, —CHs). *C NMR (500 MHz, CDCl3): 6 145.7, 144.2, 137.9, 137.2, 136.9, 135.5,
134.8, 131.5, 130.6, 130.4, 128.7, 128.5, 127.6, 124.7, 123.7, 117.5, 105.5, 44.0, 32.4, 21.4,
19.8, 16.4. ESI-HRMS (m/z): [L? + H]" calcd. for C4sHaoN4, 613.3331; found, 613.3331.

4.2.7. Synthesis of Technetium and Rhenium Complexes

Synthesis of fac-[Tc(CO)sCI(LM] (1):

(NBug)[Tco(n-Cl)3(CO)s] (9 mg, 0.0126 mmol) was dissolved in THF (0.5 mL) and L* (13
mg, 0.0254 mmol) in THF (2 mL) was added. The mixture was heated under reflux for 1 h.
The clear solution was filtered. Colorless single crystals were obtained by the slow
evaporation of a THF/hexane solution. Yield: 11 mg (0.015 mmol, 60%). *Tc NMR (CDCls,
ppm): -1172 (v, = 788 Hz). 'H NMR (400 MHz, CDCls): 6 8.52 (s, 1H, H*), 8.21 (s, 1H,
H%) 7.54 - 7.46 (d, 3H, H* "7, 6.94 (s, 4H, H****"), 6.79 (s, 3H, H>"), 5.49-5.38 (dd, J = 16
Hz, 2H, H* -CH,-), 5.08-5.04 (d, J =16 Hz, 1H, H® —CH,-), 4.74-4.72 (d, J = 8 Hz, 1H,
H®, -CH,-), 4.10-3.84 (dd, J = 16 -20 Hz, 2H, H® —CH,-), 2.58 (s, 3H, —CH3), 2.40 (s,
6H, —CH3), 2.00 (s, 3H, —CH3), 1.43 (s, 3H, —CHs).and 0.81 (s, 3H, —CHs). FT-IR (KBr,
cm 1): 2029 (C=0), 1923 (C=0), 1896 (C=0).
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Synthesis of fac-[Tc(CO)sCI(LY)] (2):

(NBu,)[Tco(n-Cl)3(CO)e] (9 mg, 0.0126 mmol) was dissolved in CH,Cl, (0.5 mL) and L? (16
mg, 0.0261 mmol) in CH,Cl, (2 mL) was added. The mixture was heated on reflux for 2.5 h.
The clear brown solution was filtered. Yellow single crystals deposited by slow evaporation
of CH,Cl,/methanol solution. The crystals were filtered off and washed with hexane. Yield:
10 mg (0.012 mmol, 46%).%Tc NMR (CD,Cl,, ppm): -1165 (11, = 1378 Hz). *H NMR (400
MHz, CD,Cl,): § 8.74 (s, 2H, H**%), 8.25-8.01 (m, 4H, H*****), 7.70 - 7.56 (m, 4H,
H*¢"7Y, 7.31 - 7.01 (m, 6H, H>®!"1) 554-5.09 (m, 4H, H'**'® _CH,-), 4.10-3.82 (dd, J
=18 Hz, 2H, H'2 —CH,-), 2.44 (s, 6H, —CH3), 2.06 (s, 3H, —CHg), 1.26 (s, 3H, —CHs), 0.88
(s, 3H, —CHz).and 0.60 (s, 3H, —CHj). FT-IR (KBr, cm%): 2027(C=0), 1924 (C=0), 1894
(C=0).

Synthesis of fac-[Re(CO)sCI(LY)] (3a):

A mixture of Re(CO)sCl (30 mg, 0.083 mmol) and L' (43 mg, 0.083 mmol) was dissolved in
toluene (10 mL) and heated on reflux for 10 h under an argon atmosphere. Colourless single
crystals deposited after slow evaporation of the solvent. Yield: 35 mg (0.043 mmol, 52%). 'H
NMR (500 MHz, CDCls): 6 8.83 (s, 1H, H*), 8.30 (s, 1H, H?) 7.60 - 7.50 (d, 3H, H*™""),
7.06 -6.92 (m, 4H, H***?), 6.72 - 6.61 (d, 3H, H>"), 5.53 - 5.42 (dd, J = 15 Hz, 2H, H*
—CH,-), 5.06-5.03 (d, J = 14 Hz, 1H, H® —CH,-), 4.68-4.66 (d, J = 10 Hz, 1H, H®, —CH,-),
4.12 - 3.85 (dd, J = 18 Hz, 2H, H'® —CH,-), 2.65 (s, 3H, —CHs), 2.41 (s, 6H, —CH3), 1.94 (s,
3H, -CH3), 1.40 (s, 3H, —CHs) and 0.80 (s, 3H, —CH3). *C NMR (500 MHz, CDCl3): ¢
196.3, 196.0, 192.8, (1:1:1, CO), 148.7, 143.1, 1415, 137.3, 137.1, 136.7, 136.1, 134.1,
133.1, 132.3, 131.8, 131.0, 126.3, 124.8, 124.6, 124.0, 123.6, 120.4, 118.2, 111.8, 110.4,
46.0, 43.9, 32.6, 22.1, 21.6, 20.6, 19.2. ATR-IR (v,cm%): 2015 (C=0), 1901(C=0),
1878(C=0). ESI-HRMS (m/z): [3a + Na]" calcd for CzsH3sCIN,O3Re, 841.1931; found,
841.1932.

Synthesis of fac-[Re(CO)3sBr(LY)] (3b):

A mixture of Re(CO)sBr (50 mg, 0.123 mmol) and L* (63 mg, 0.123 mmol) was dissolved in
toluene (10 mL) and heated on reflux for 10 h under an inert atmosphere. Colourless single
crystals are obtained from the vapour diffusion of acetonitrile and hexane solvents. Yield: 57
mg (0.066 mmol, 54%). *H NMR (500 MHz, CDCls): ¢ 8.83 (s, 1H, H*), 8.30 (s, 1H, H?)
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7.60 - 7.50 (d, 3H, H*"7), 7.06 -6.92 (m, 4H, H*****), 6.72 - 6.61 (d, 3H, H>"), 5.52 - 5.42
(dd, J = 15 Hz, 2H, H® —CH,-), 5.06-5.03 (d, J = 14 Hz, 1H, H®, —CH,-), 4.68-4.66 (d, J =
10 Hz, 1H, H®, —CH,-), 4.11 - 3.85 (dd, J = 18 Hz, 2H, H*® —CH,-), 2.65 (s, 3H, —CHa),
2.41 (s, 6H, —CHs3), 1.93 (s, 3H, —CH3), 1.39 (s, 3H, —CHs) and 0.80 (s, 3H, —CHs). *C NMR
(500 MHz, CDCls): 6 195.9, 195.7,192.1 (1:1:1, CO), 150.1, 145.9, 141.6, 137.3, 137.2,
136.7, 136.0, 134.1, 133.0, 132.3, 131.8, 131.0, 126.3, 124.9, 124.6, 124.0, 123.6, 120.5,
118.4, 111.9, 110.4, 46.1, 43.9, 32.6, 22.2, 21.6, 20.6, 19.2. ATR-IR (v, cm™): 2012 (C=0),
1901(C=0), 1874 (C=0). ESI-HRMS (m/z): [3b + Na]* calcd for CsgHzsBrN4OsRe,
885.1426; found, 885.1425,

Synthesis of fac-[Re(CO)sBr(L%)] (4):

A mixture of Re(CO)sBr (30 mg, 0.074 mmol) and L? (45 mg, 0.074 mmol) was dissolved in
CHCI;3 (20 mL) and heated on reflux for 24 h under an inert atmosphere. The solution was
filtered and the solvent was removed under vacuum. The residue was dissolved in CH,Cl, and
layered with methanol. Suitable single crystals were obtained for X-ray diffraction. Yield: 52
mg (0.054 mmol, 73%).'H NMR (500 MHz, DMSO-ds): 5 9.39 (s, 1H, H*), 8.72 (s, 1H, H),
8.36-7.89 (m, 4H, H* ¥, 7.62 (s, merged, 4H, H***""), 7.28 — 6.65 (m, 6H, H>®!!11Y,
6.00-4.53 (m, 4H, H'"*!° —_CH,-), 4.01-3.72 (dd, J =17.5 Hz, 2H, H* —CH,-), 2.37-1.84 (s,
merged, 12H, —CHj), 1.33 (s, 3H, —CH3) and 1.21 (s, 3H, —CH3)."*C NMR (500 MHz,
DMSO-dg): 6196.1, 192.0 (2:1, CO). ATR IR (v, cmY): 2014 (C=0), 1904 (C=0), 1875
(C=0). ESI-HRMS (m/z): [4 - H]" calcd for C4sH40BrN4O3zRe, 961.1763; found, 961.2436.

4 3. Results and discussion

4.3.1. Synthesis and characterization of ligands L'- L.

Ligands L* and L? were designed as single building units for assembling mononuclear calix-
shaped supramolecules because of two reasons: (i) the ligands contain four hetero(arene)
units that are linked via three methylene (-CH,—) groups alternatively as
(heteroarene)—CH,—(meta-phenylene)-CH,—(meta-phenylene)-CH,—(heteroarene), which is
almost the basic structural units in the ring of calix[4]arene, and (ii) the ligands are flexible
and have ability to chelate one metal ion using their two terminal heteroarene motifs, thus
chelating to metal ion could result in bowl-shaped macrocycles. The ligands were obtained by
the reactions of benzimidazole/naphtho[2,3-d]imidazole, bis(3-(bromomethyl)-2,4,6-
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trimethylphenyl)methane and KOH in DMF (scheme 4.1). The formation of the ligands was

confirmed by 'H NMR spectroscopy. The spectra display single sets of well-resolved

resonances. High resolution mass spectra of the ligands show the molecular ion peaks (m/z =
513.3031 for [L' + H]* and 613.3331 for [L? + H]"), which match well with the theoretical

values.
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Scheme 4.1. Synthesis of ligands L*-L?
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Figure 4.1. Partial *H NMR spectrum of L' in CDCls.
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Figure 4.10. **C NMR spectrum of L? in CDCls.

4.3.2. Synthesis and characterization of metallocycles 1-4.

The self-assembly of technetium macrocycles 1 and 2 was achieved by treating
(NBu,)[Tco(p-Cl)3(CO)6] with ligand L* or L2 respectively in THF/CH,Cl, (Scheme 4.2). The
metallomacrocycles fac-[Tc(CO)sCI(L")] (1 and 2) were self-assembled via reaction between
(NBug)[Tca(u-Cl)3(CO)s] and the neutral flexible bidentate nitrogen donors (L' for 1 and L?
for 2), see Scheme 4.2. Isostructural rhenium macrocycles fac-[Re(CO)sX(L")] (3a, 3b and 4)
were assembled using [Re(CO)sX] and the nitrogen donor ligands of Scheme 4.2 (X = Cl, L"
= L' for 3a, X = Br, L" = L* for 3b and X = Br, L" = L? for 4).

The IR spectra of the products display three strong bands in the range ~2029-1894 cm™,
which are characteristic of the fac-[Tc(CO)s]* unit (2029 or 2027 cm™ for symmetric in-
phase CO vibration, 1923 or 1924 cm™ for asymmetric equatorial CO vibration, and 1896 or
1894 cm™ for symmetric out of-phase CO vibration).® 3 The *Tc-NMR spectra of the
macrocycles show intense upfield signals (-1172 ppm, Av,, = 788 Hz for 1, -1165 ppm,
Avy, = 1378 Hz for 2), compared to the resonance of the starting material (NBug)[Tco(u-
CI)3(CO)¢] at —947 ppm.
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OC—}TC{:CW}TC{"CO
21| reflux oc” ¢ co reflux |, 2
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(NBuy)

, C,Hgor CHClI3 - N 1
[Re(CO)sX] + L » fac-[Re(CO);XL" (1)
reflux n 1
10hor24h 3a,L"=L"; X=Cl

3b,L"=L"'; X=Br
4,L"=L%; X=Br

Scheme 4.2. Synthesis of technetium and rhenium core-based supramolecules.

This is typical for the coordination of N donor ligands to the Tc core.’” The *H NMR
spectrum of 1 in CDCI; displays well-separated slightly broad, but not well-resolved
resonances for all arene protons, whereas the *H resonances of the arene and heteroarene
motifs of complex 2 are broad resulting in a merged pattern. On the other hand, the protons of
the methylene motifs (C-CH,-C) show two well-resolved doublets with a coupling constant
of 16-19 Hz, while the resonance of the N-bound methylene group (N-CH,-C) appears as
four doublets. The data suggest that the complexes adopt cyclic structures and the aromatic
frameworks are flexible (moving back and forth) in solution. Further, it indicates the
asymmetrical arrangement of all four arene motifs that causes a duplication of the proton
signals as compared to the free ligands. The fac-[Re(CO)3X] core-based macrocycles 3a, 3b
and 4 were assembled by the reactions of [Re(CO)sX] (3a, X = Cl; 3b, X =Br and 4, X = Br)
with L or L? in toluene (C;Hg) or CHCI; (Equation 1). The complexes are air and moisture
stable and soluble in polar organic solvents. The *H NMR patterns of 3 and 4 are similar to
those of 1 and 2. The arene framework in complex 4 exhibits the highest degree of

239



Chapter 4

fluxionality among all other complexes of this study. The ESI-MS spectra of the Re
macrocycles display their respective molecular ion peaks (m/z = 841.1932 for [3a + Na]",
m/z = 885.1425 for [3b + Na]*, m/z = 961.2436 for [4 - H]") with experimental isotopic

distribution patterns that match well with the theoretical values.
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Figure 4.11. FT-IR (KBr) spectrum of 1.
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Figure 4.12. FT-IR (KBr) spectrum of 2.

240



Chapter 4

MB-UAL-16

—9L25S
___L0°0V9
98'€59

—evvvl

— €0°€98
— 6126
— LZ’eLol

— ¢E'e8ll
—1'82¢1

—vezect

— €€'6.L€1

— 8€°29%1
— L8'LISL

—€9°G191

———————

N

— 6¥'5102

—2e'8.81
90°L061

=

100

|
o
(=]

95

(%) @ouepiwisues |

85

80

500

1000

1500

2000

2500

-1)

Wavenumbers (cm

Figure 4.13. ATR-IR spectrum of 3a.
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Figure 4.16. ®Tc NMR spectrum of 1 in CDCls.
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4.3.3. Molecular structure of metallacycles 1-4.

The molecular structures of 1 and 2 are unambiguously confirmed by X-ray diffraction
analysis and adopt a bowl-shaped structure similar to calix[4]arene (Figure 4.38).% In the
calix-like cyclic structure, the technetium atom can be considered as one of the methylene
units. Due to the syn, syn, anti, syn/syn, syn, syn, syn arrangement of four arene units with
respect to each other, 1 adopts a partial-cone conformation, whereas 2 takes a cone
conformation. One of the mesitylene motifs in 1 is arranged in such a way that two methyl
units are directed below the plane, generated by the four corner atoms of the cycle, i.e.,
Tcl---C28---C18---C8.

Figure 4.38. Molecular structures of technetium supramolecules. A: Stick and space-filling
representations of 1. B and C: Arrangement of two neighboring molecules in the crystal
structure of 2. Hydrogen atoms and solvent molecules are removed for clarity in stick

representation.

The oppositely arranged pair of arene motifs, i.e., benzimidazolyl and mesitylene, is almost
parallel (dihedral angle = 12.6°), and another arene and heteroarene pair is arranged away
from each other (dihedral angle = 74° or 106°). Similar to 1, one of the oppositely arranged
arene pairs in 2 come close to each other (dihedral angle = 31°), whereas the other pair is
flattened with respect to each other (dihedral angle = 45° or 135°). The crystal structures of 1
and 2 are stabilized by various types of intermolecular non-covalent interactions [(C—H---x,
N-CH,—C/phenylene(H)---Cl-Tc, (-CH3)H---N-Tc for 1 C-H---x, ©---x, CHCI3(H)---O=C—Re
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for 2)]. Particularly in the solid-state crystal structure of 2, two neighbouring molecules
partially occupy each other’s internal cavity using their naphthoimidazolyl arm to form a
non-covalent dimer, which is stabilized by offset parallel displaced r--- interactions (~3.385
A) between parallelly arranged naphthoimidazolyl motifs. The CH,CI, solvent molecules
occupy the lattice voids in the crystal structure of 2.

Figure 4.39. Partial packing diagram of 2 (capped stick representation) with CH,CI, solvent

molecules (space-filling model) along b-axis.

The molecular structures of the rhenium-based macrocycles 3a, 3b and 4 are similar to those
of 1 and 2, respectively. Complex 3a crystallized with solvent toluene molecules. In the
solid-state structure of 3a, the macrocycles interact with each other via various types of
intermolecular non-covalent interactions, which result in a three-dimensional network
structure with a one-dimensional channel along the a axis. In particular, four of the
macrocycles interact with each other through non-classical H-bonding interactions
(C(H)--O=C-Re; 3.432, A, 6 = 160°, 3.304 A, 6 = 128°) resulting in a lattice cavity, in which
the disordered toluene sits perfectly. The disordered toluene molecules are arranged in a
helical structure that is stabilized through edge-to-face C—H---nt interactions. The toluene
molecules reside in the 1D column and interact with the metallocycle via non-classical
hydrogen bonding interactions C—H---O=C—Re (~2.580 A, 6 = 135°) (Figure 4.40). Single
crystals of 3b were obtained from acetonitrile. The molecular structure of 3b is similar to that
of 3a. In the crystal structure, each molecule of 3b is surrounded by two CH3CN molecules
that are in contact with the outside wall of the cyclic framework via H-bonding interactions
(C35-H---N6, ~2.586 A, 0~130°, C28-H---N6, ~2.731 A, 0 ~135°, and C39-H---02, ~2.704
A, 0~119°).
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Figure 4.40. (A) Partial packing diagram of 3a showing a 3D network structure with a one-
dimensional cavity, which is occupied by toluene solvent molecules (space-filling view). (B)
Space filling and wireframe structures showing how the disordered toluene sits perfectly in
the lattice cavity, created by four adjacent molecules in “A” (C) Packing of one layered
structure of macrocycles in “A” showing four intermolecular cavities with and without

solvent molecules (space filling and wireframe view).

Figure 4.41. (A) Molecular structure of 3b without hydrogen atoms and solvent molecules.
(B-C) Space-filling and stick views of 3b showing plane (green) generated through four
corner atoms Rel---C8---C18---C28. (D) Two CH3CN solvent molecules contact with
framework of 3b (C35-H---N6, ~2.586 A, 6~130°, C28-H---N6, ~2.731 A, 6 ~135°, and

C39-H---02, ~2.704 A, 0 ~119°).
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Figure 4.42. Molecular structure of 4, A: Capped stick representation (Hydrogen atoms and
solvent molecules are removed for clarity), B: Space-filling model (C= grey, N = blue, O =
red, Br = brown, H = light blue, Re = deep pink).

4.4. Binding studies of metallacalix[4]arenes 3a and 4 with polyaromatic

hydrocarbons and imidazole derivative guest molecules.

In order to study the host guest interaction, preliminary experiments were performed on host
3a with the potential guest molecules benzene, naphthalene, anthracene, imidazole, and
benzimidazole. In the absence of guest molecule, complex 3a displayed a structured emission
(Amax = 333, 344, and 400 nm) upon excitation at 231 nm in CH,Cl, at room temperature. The
emission maxima of 3a quenched upon the addition of an appropriate aliquot of the guest
molecules, which suggests host-guest interactions between 3a and the guest molecules. The
emission pattern of guest molecules is partially overlapping with the emission profile of 3a in
the range of 300-375 nm for naphthalene, and 375-500 nm for both anthracene and imidazole.
Therefore, the emission intensities at 400 nm for naphthalene and 333 nm for both anthracene
and imidazole were chosen for the determination of the binding constant. In contrast, the
emission maxima of 3a are randomly quenched and enhanced during the addition of
benzimidazole guest molecule, suggesting a dynamic association and dissociation of the
formed host-guest complex. The binding constant (K) were calculated using Benesi-
Hildebrand method, and a linear fit plot of 1/(Al) vs [G]™ indicates the formation of 1:1
host:guest complex.*® The corresponding binding constant is 8.7 x 10* M~ for benzene, 6.7 x
10° M for naphthalene, 1.35 x 10* M™* for athracene, and 7.5 x 10" M for imidazole.
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Figure 4.43. Changes in the emission spectra of 3a (2x10° M, Aex = 231 nm) with the

addition of benzene in DCM. The arrow indicates the quenching of the emission intensity by

addition of an appropriate aliquot of benzene.
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Figure 4.44. Benesi-Hildebrand plot for the emission quenching of host 3a (at 334 nm) with

an increase in the concentration of benzene in DCM.
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Figure 4.45. Changes in the emission spectra of 3a (2x10° M, Aee = 231 nm) with the

addition of naphthalene in DCM. The arrow indicates the quenching of the emission intensity

by addition of an appropriate aliquot of naphthalene.

B Data points
0.0025 - Linear fit
Intercept 7.56911E-4
Slope 1.12881E-7
Adj. R-Square 0.99778
0.0020 -
o
¥ 0.0015 -
0.0010 -
T z T T T T T
0 5000 10000 15000

1/[G]
Figure 4.46. Benesi-Hildebrand plot for the emission quenching of host 3a (at 400 nm) with

an increase in the concentration of naphthalene in DCM.
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Figure 4.47. Changes in the emission spectra of 3a (2x10™° M, ke = 231 nm) with the
addition of anthracene in DCM. The arrows indicate the quenching of the emission intensity
by addition of an appropriate aliquot of anthracene.
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Figure 4.48. Benesi-Hildebrand plot for the emission quenching of host 3a (at 333 nm) with

an increase in the concentration of anthracene in DCM.
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Figure 4.49. Changes in the emission spectra of 3a (2x10° M, Aee = 231 nm) with the
addition of imidazole in DCM. The arrows indicate the quenching of the emission intensity
by addition of an appropriate aliquot of imidazole.
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Figure 4.50. Benesi-Hildebrand plot for the emission quenching of host 3a (at 333 nm) with

an increase in the concentration of imidazole in DCM.
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Figure 4.51. Changes in the emission spectra of 3a (2x10° M, Aee = 231 nm) with the

addition of benzimidazole in DCM. The arrows indicate the quenching and enhancement of

the emission intensity randomly by addition of an appropriate aliquot of benzimidazole.

The host—guest behaviour of 3a with naphthalene and anthracene were studied using ‘H
NMR studies in CDCl3 to understand how the guests interact with the macrocycle. The
protons of naphthalene were shifted upfield, whereas the protons of the aromatic unit and part
of the aliphatic protons of 3a were shifted downfield relative to those of the free naphthalene
and the free macrocycle. No additional peaks for either the naphthalene or the complex were
observed. This data suggests that the cavity of macrocycle 3a is suitable for accommodating
naphthalene guest. However, there was dynamic equilibrium between 3a and naphthalene i.e.,
the host—guest complex assembles and disassembles in the solution, on the NMR time
scale.®® In the case of anthracene, the protons of 3a were shifted upfield noticeably, whereas
the protons of the anthracene remain unaffected. These data suggest that the anthracene
contacts with the macrocycle by sitting on the top of the rim of the macrocycle.® The higher
binding constant of anthracene with macrocycle 3a may be due to the cooperative C—H---nt
contacts between these molecules. The host-guest binding studies of 4 with benzene (K = 1.0
x 10 M™), naphthalene (K = 7.4 x 10> M), anthracene (K = 1.9 x 10* M), imidazole (K =
0.3 x 10* M™), and benzimidazole (K = 0.4 x 10" M™) were studied by using the emission
titration method. The higher binding constant of 3a with naphthalene than 4 with naphthalene
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may be due to the compact cavity of 3a, which maximizes the non-covalent interactions

between the host-guest systems effectively.
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Figure 4.52. Partial 'H NMR spectra from the titration of 3a with naphthalene (top =
aromatic; bottom = aliphatic region) in CDCl; (# = free naphthalene; *= bound naphthalene;
@ = CDCly).
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Figure 4.53. Partial '"H NMR spectra (aliphatic region) from the titration of 3a with
naphthalene in CDCls.
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Figure 4.54. "H NMR spectra from the titration of 3a with naphthalene in CDCls (# = free
naphthalene; *= bound naphthalene; @ = CDCls).
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Figure 4.55. Partial '"H NMR spectra from the titration of 3a with anthracene (top = aromatic;

bottom = aliphatic region) in CDClI; (*= anthracene; @ = CDClI3). The minor peak signals are
from the free anthracene.
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Figure 4.56. Partial ‘H NMR spectra (aliphatic region) from the titration of 3a with

anthracene in CDCls.
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Figure 4.57. *H NMR spectra from the titration of 3a with anthracene in CDCl; (*=
anthracene; @ = CDCly).
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Figure 4.58. Changes in the emission spectra of 4 (2x10° M, Aexe = 240 nm) with the

addition of benzene in DCM. The arrow indicates the quenching of the emission intensity by

addition of an appropriate aliquot of benzene.
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Figure 4.59. Benesi-Hildebrand plot for the emission quenching of host 4 (at 346 nm) with

an increase in the concentration of benzene in DCM.
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Figure 4.60. Changes in the emission spectra of 4 (2x10° M, Aexe = 240 nm) with the

addition of naphthalene in DCM. The arrow indicates the quenching of the emission intensity

by addition of an appropriate aliquot of naphthalene.
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Figure 4.61. Benesi-Hildebrand plot for the emission quenching of host 4 (at 403 nm) with

an increase in the concentration of naphthalene in DCM.
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Figure 4.62. Changes in the emission spectra of 4 (2x10° M, Aexc = 240 nm) with the

addition of anthracene in DCM. The arrows indicate the quenching of the emission intensity

by addition of an appropriate aliquot of anthracene.
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Figure 4.63. Benesi-Hildebrand plot for the emission quenching of host 4 (at 346 nm) with

an increase in the concentration of anthracene in DCM.
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Figure 4.64. Changes in the emission spectra of 4 (2x10" M, Aexc = 240 nm) with the

addition of imidazole in DCM. The arrows indicate the quenching of the emission intensity

by addition of an appropriate aliquot of imidazole.
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Figure 4.65. Benesi-Hildebrand plot for the emission quenching of host 4 (at 344 nm) with

an increase in the concentration of imidazole in DCM.
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Figure 4.66. Changes in the emission spectra of 4 (2x107° M, Aexe = 240 nm) with the

addition of benzimidazole in DCM. The arrows indicate the quenching and enhancement of

the emission intensity randomly by addition of an appropriate aliquot of benzimidazole.
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Figure 4.67. Benesi-Hildebrand plot for the emission quenching of host 4 (at 403 nm) with

an increase in the concentration of benzimidazole.
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45 Conclusion

In conclusion, technetium supramolecules analogous to calix[4]arene were self-
assembled using (NBug)[Tca(u-Cl)3(CO)s] and neutral flexible ditopic nitrogen donors.
Structurally similar rhenium metallocavitands were assembled from [Re(CO)sX] (X= Cl, Br)
and L". The solid-state structures of the supramolecules reveal that these molecules adopt
bowl-shaped structures. To the best of our knowledge, the technetium complexes are the first
examples of fac-[Tc(CO)3]" core-based SCCs analogous to calix[4]arenes and the second Tc-
containing metallomacrocycles. The results enable the design of unique fac-[Tc(CO)s]” core-
based supramolecules and extend the entry into the field of supramolecules. In the future, the
suitable design of fac-[Tc(CO)s]" core-based supramolecules may find potential utility in the
medicinal fields due to the combined properties of the technetium core and guest

encapsulation properties of the macrocyclic cavity.
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Chapter 5

Self-Assembly and Photophysical Properties of

Rheniumtricarbonyl-Based Helicates and Mesocates

Abstract

The self-assembly of five rheniumtricarbonyl core based supramolecular coordination
complexes (SCCs), fac-[Re(CO)z(u-L)(u-L")Re(CO)3] (1-5) was assembled using Re(CO)1o,
rigid/flexible bis-chelating ligand (HONN-Ph—-NNOH (LY /
HONN—-CH,—mesitylene—CH,—N~OH (L), where HONN = 2-
hydroxyphenylbenzimidazolyl), and flexible ditopic N donor (L* = bis(3-((1H-
benzoimidazol-1-yl)methyl)-2,4,6-trimethylphenyl)methane, L* = bis(3-((1H-naphtho[2,3-
d]imidazol-1-yl)methyl)-2,4,6-trimethylphenyl)methane, L> = bis(4-(benzimidazol-1-
ylmethyl)phenyl)methane, L°® = bis(4-(naphtho[2,3-d]imidazol-1-ylmethyl)phenyl)methane)
via a one-pot approach. The dinuclear SCCs adopt heteroleptic double stranded helical/meso-
helical architectures in the solid-state. The supramolecular structures of the complexes
closely remain in the solution based on the 'H NMR and ESI-mass analysis. The
photophysical properties of the complexes were studied both in solution and solid state. All

the supramolecules display emission both in solution and solid state.

PR
Za ~
0L @ aw

where
—/ =

monodentate ® = [-CH,-(p-Ph)-CH,-] Q- fac-[Re(CO)s]
L1 = chelate or bidentate or [-CHy-(m-Ph")-CHy-]
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5.1. Introduction

The design and synthesis of discrete metallosupramolecules such as helicates, mesocates,
2D and 3D metallocycles with/without cavities and cages have attracted much attention not
only due to their potential applications in various fields, but also for providing hitherto
unknown aesthetically pleasing simple to complex molecular architectures via simple
combinations of pre-designed ligands and suitable metal ions or complex motifs.""> Among
the various metal ion sources, Re>(CO);¢ and [Re(CO)sX] where X = Cl or Br are two of the
versatile organometallic complexes used as pre-designed metal sources for assembling

7-13
Due to

various types of fac-[Re(CO)3]- and fac—[Re(CO);X]-cores based supramolecules.
their intrinsic properties such as kinetic stability and phosphorescence and their importance in
host-guest chemistry, catalysis, photosensitizers in hydrogen evolution, carbon dioxide
reduction, bioimaging, and anticancer agents, the research are being directed towards making

new functional rheniumcarbonyl-based metallosupramolecules.”"

Although error-free
synthetic principles are currently available to make desired rheniumcarbonyl-core based
molecular squares, rectangles, prisms, bowls, spheroids and other cavity containing

- 1 11-1
metallomacrOCycles,Ba b, 9, 10a, 11-15

the synthetic approaches for self-assembling mononuclear-,
dinuclear-, trinuclear-, and polynuclear-helicates are scarce.”” However, helicates based on
other metal ions and organic ligand strands are well-known and prevalent.' To the best of

our knowledge, only a handful of fac—[Re(CO)s]-core based helicates are known till now. "

We first demonstrated the combination of two types of flexible ligands i.e., neutral flexible
bis(monodentate) ligand N-donor (pbenzbix) and bis(bidentate) NO donor (H,—pBC),
incorporating a flexible p-xylene motif (—CH,—Ph—CH,—) between two donors with
Rey(CO); for assembling dinuclear heteroleptic helicate (Scheme 5.1 and Figure 5.1)."*" The
spacer p-phenylene motif in both the ligands (pbenzbix and H,—pBC) plays an important role
in adopting helical structure. This was evident when the spacer motif in the ligand strands
was changed to m-xylene motif which results in the mesohelical structure.'*® Though the
above design principle can be applied to generate fac—[Re(CO);] core-based dinuclear
helicates with similar types of ligands, many examples have to be prepared to validate the
synthetic approach. We decided modulating the length of the spacer motif from “phenylene
or mesitylene” spacer by longer and more flexible spacer unit such as biphenylmethane

(-Ph—CH,—Ph-) or bimesitylmethane (—mesitylene—-CH,—mesitylene—) motif in the neutral
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bi(dentate) ligand and combining with semirigid bis(bidentate) ligand H,—mBC ((H,—~mBC =
p-phenylene(benzimidazolylphenol),))or rigid bis(bidentate) ligand (H,—RBC = p-
phenylene(benzimidazolylphenol),) and Re,(CO);o in order explore the helicate architecture.
Ligands 1-6 have ability to adopt helical twisting along Re---Re axis due to the rotatable

nature of terminal donors with respect to m- (or) p-phenyl spacer.

ZN T

] ~-
~
Lm

where
—1 =

monodentate ® = [-CH,~(p-Ph)-CHy-] Q = fac-[Re(CO)s]
L1 = chelate or bidentate or [-CHy-(m-Ph")-CHo-]

Scheme 5.1. Cartoon Representation of Self-Assembly of fac-Re(CO); Core—Based Neutral

Unsaturated Heteroleptic Dinuclear Double-Stranded Helicate and Mesocate.

In this chapter, two new fac{Re(CO);]core- based helicates (1-2) and three mesocates (3-5)
are reported. The metallosupramolecules were characterized by ATR-IR, ESI-MS, 1D and 2D
NMR spectroscopic methods. The molecular structures of the metallosupramolecules were
confirmed by single-crystal X-ray analysis. The photophysical properties of the complexes
were studied in both solution and solid state. All the supramolecules display emission both in

solution and solid state.

5.2. Experimental Section
5.2.1. Materials

All starting materials and products were found to be stable towards moisture and air, and
nonspecific precautions were taken to rigorously exclude air when solvothermal methods

were used. Starting materials such as Rey(CO)1o, 1,4-dibromobenzene, Cul, Cs,COs, 1,10-
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phenanthroline, H3PO4, HBr in acetic acid 33%, paraformaldehyde, acetic acid glacial, formic
acid, benzimidazole, KOH and NaH were procured from commercial sources and used as
received. Then 2-(2-Hydroxyphenyl)-1H-benzimidazole,® naphtho[2,3-d]imidazole,*’ 2,4-
bis(bromomethyl)-1,3,5-trimethylbenzene,*® bis-(mesityl)methane,* and bis(3-
(bromomethyl)-2,4,6-trimethylphenyl)methane % were synthesized as described by literature
methods.  Bis(3-((1H-benzoimidazol-1-yl)methyl)-2,4,6-trimethylphenyl)methane ~ (L?),*
bis(3-((1H-naphtho[2,3-d]imidazol-1-yl)methyl)-2,4,6-trimethylphenyl)methane (L*),** bis(4-
(benzimidazol-1-ylmethyl)phenyl)methane (L%, bis(4-(naphtho[2,3-d]imidazol-1-
ylmethyl)phenyl)methane (L9),? 1,4-Bis(2-(2-hydroxyphenyl)benzimidazole-1-
ylmethyl)benzene  (H,-pBC),”  1,3-Bis(2-(2-hydroxyphenyl)benzimidazole-1-ylmethyl)-
2,4,6-trimethibenzene (H,-mBC)™* were synthesized from previously reported methods.
Toluene, hexane and THF were purified and distilled by conventional procedure. LR grade
solvents like DMF, mesitylene and HPLC acetone were obtained from Sigma Aldrich and
used directly. Conventional synthetic methods were routinely carried out in room

atmosphere.

5.2.2 Physical Measurement

A Bruker ALPHA 11 FTIR Spectrometer was used to record the FT -IR spectra. ‘H NMR
spectra were obtained by using Bruker Avancelll 500 and 400 spectrometers. All NMR
spectra were recorded using DMSO-ds as solvent. HR-MS spectra were recorded on a Bruker
maXis mass spectrometer. The UV-Vis spectra were performed on a Shimadzu UV-VIS-NIR
(UV-3600) spectrophotometer. A JASCO (FP-8500) spectrofluorometer was used to record

emission spectra.

5.2.3 X-ray Crystallography.

A single crystal X-ray structural study of 1, 2, 3 and 5 was performed on a Rigaku Oxford
XtaLAB Synergy or a Bruker D8 Quest diffractometer. Data were collected at low
temperature or room temperature using Mo Ka radiation [A(Mo Ka) = 0.71073 A]. The
structure was solved by direct methods using SHELXS-97%* and refined by full matrix least
squares with SHELXL-2018/>*" All non-hydrogen atoms were refined anisotropically. The
remaining hydrogen atoms were placed in geometrically constrained positions and refined

with isotropic temperature factors.

284



Chapter 5

5.2.4 Synthesis of Complexes

Synthesis of [{(CO)sRe(u—pBC)Re(CO)3}(u—L%)] ().

A mixture of Re;(CO)yo (50 mg, 0.0766 mmol), H,-pBC (38 mg, 0.0766 mmol), L* (40 mg,
0.0766 mmol), and toluene (6 mL) in a Teflon flask was placed in a steel bomb. The bomb
was kept in an oven, maintained at 160 °C for 48 h and then cooled to 30 °C. Light gray
powder with yellow colour crystals was obtained. The product was filtered, washed with
distilled hexane and air-dried. Yield: 41% (48 mg). *H NMR (500 MHz, DMSO-ds): 6 8.50
(s, 2H, Ph°), 8.29 (d, Jun = 8.3 Hz, 2H, H%), 7.95 (d, Jun = 8.2 Hz, 2H, H'), 7.75 (t, Iy = 7.9
Hz, 2H, H%), 7.63 (t, Juu = 7.8 Hz, 2H, H%), 7.39 (t, Jun = 7.6 Hz 2H, H®), 7.29 (d, Jun = 8.1
Hz, 2H, H%), 7.18-7.13 (m, 6H, H*®, H°), 7.04 (s, 2H, H%), 6.91 (d, Ju = 8.0 Hz, 2H, HA),
6.78 (d, Jun = 8.2 Hz, 2H, HP), 6.52 (t, Iy = 7.7, Hz, 2H, H®), 5.61(s, 2H, H?), 5.50 (s, 2H,
Ph"), 5.21 (dd, Jun = 14.7 Hz, 4H, H®, -CH,-), 3.87 (s, 2H, H™, -CH,-), 2.32 (s, 6H, -CHs),
0.88 (s, 6H, -CHs3), and 0.69 (s, 6H, -CHs). ESI-HR-MS. Calcd for C73HssNgOgRe, [M+H]":
m/z 1547.3414 Found: m/z 1547.3038. FT-IR (cm™): 2012 (s), 1888 (s) and 1858 (s).

Synthesis of [{(CO)sRe(u—pBC)Re(CO)3}(u—LY)] (2).

A mixture of Re; (CO)1o (50 mg, 0.0766 mmol), H,-pBC (38 mg, 0.0766 mmol), L* (47 mg,
0.0766 mmol), and toluene (6 mL) in a Teflon flask was placed in a steel bomb. The bomb
was kept in an oven, maintained at 160 °C for 48 h and then cooled to 30 °C. Dark gray
powder with dark brown colour crystals was obtained. The product was filtered, washed with
distilled hexane and air-dried. Yield: 56% (70 mg). *"H NMR (500 MHz, DMSO-ds): ¢ 8.80
(s, 2H, H*), 8.52 (s, 4H, H*, Ph°), 8.37- 8.35 (m, 2H, H®), 8.20-8.18 (m, 2H, H®), 7.67- 7.65
(m, 4H, H%), 7.37 (pseudo t, Jun = 7. 7 Hz, 2H, H°), 7.31-7.29 (m, 4H, H* %), 7.16-7.09 (m,
6H, H'C, H°), 6.93 (d, Jun = 7.9 Hz, 2H, H?), 6.81 (d, Jun = 8.3 Hz, 2H, HP) 6.54 (t, Jun =
7.6 Hz, 2H, H®), 5.65 (s, 2H, H?), 5.53 (s, 2H, Ph'), 5.30 (dd, Jun = 14.5 Hz, 4H, H*, -CH,-),
3.90 (s, 2H, H**, -CH,-), 2.36 (s, 6H, -CH3), 0.92 (s, 6H, -CHs), and 0.72 (s, 6H, -CHz). ESI-
HR-MS. Calcd for CgHgoNgOgRe, [M+H]": m/z 1647.8410 Found: m/z 1647.3723. FT-IR
(cm™): 2011 (s), 1890 (s) and ¢ 1862(s).

Synthesis of [{(CO)sRe(u—pBC)Re(CO)3}(u—L°)] (3).
A mixture of Re, (CO)y (100 mg, 0.1532 mmol), H,-pBC (75.77 mg, 0.1532 mmol), L°
(80.99 mg, 0.1532 mmol), and toluene (12 mL) in a Teflon flask was placed in a steel bomb.
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The bomb was kept in an oven, maintained at 160 °C for 48 h and then cooled to 30 °C. Light
gray powder with brown crystals + yellow crystals was obtained. The product was filtered,
washed with distilled hexane and air-dried. Yield: 65% (155 mg). 'H NMR (400 MHz,
DMSO-dg): J 8.85 (d, Jun = 20 .7 Hz, 2H), 8.74 (s, 1H), 8.37 (s, 1H), 8.27-8.15 (m, 4H),
8.08-7.99 (m, 3H), 7.92 (d, Jun = 7.4 Hz, 3H), 7.79 (s, 2H), 7.67 (s, 2H), 7.56- 7.45 (m, 8H ),
7.06- 7.00 (m, 4H ), 6.90- 6.75 (m, 6H), 6.62 (d, Jyn = 7.6 Hz, 2H), 6.43 (t, Jun = 7.6 Hz,
1H), 6.30 (d, Jun = 6.1 Hz, 2H), 6.17 (d, Jun = 7.4 Hz, 1H), 5.53-5.31 (m, 4H, H', -CH,-),
and 3.58 (s, 2H, H'®, -CH,-).ESI-HR-MS. Calcd for CzsHasNgOgRe, [M+H]": m/z 1563.2788
Found: m/z 1563.2436. FT-IR (cm™): 2010 (s) and 1867 (s).

Synthesis of [{(CO)sRe(u—mBC)Re(CO)3}(u—L)] (4).

A mixture of Rez(CO)1o (50 mg, 0.0766 mmol), H,-mBC (43 mg, 0.0766 mmol), L° (33 mg,
0.0766 mmol), and mesitylene:acetone (10 mL: 1 mL) in a Teflon flask was placed in a steel
bomb. The bomb was kept in an oven, maintained at 160 °C for 48 h and then cooled to 30
°.The product was obtained as gray powder, filtered at hot conditions and washed with
distilled hexane. Yield: 44% (55 mg). *H NMR (500 MHz, DMSO-ds): J 8.36 (s, 2H, H?),
7.64-7.63 (m, 2H, H'), 7.59 (d, Jun = 8.0 Hz, 2H, HP), 7.49-7.47 (m, 2H, H*), 7.43-7.35 (m,
4H, H"9), 7.20- 7.09 (m, 14H, H>® %12 H°%), 7.05 -7.01 (m, 2H, H%), 6.94 (t, Jun = 7.5 Hz, 2H,
H®), 6.90 (s, 1H, HF), 6.85 (t, Jun = 8.1 Hz, 2H, H®), 6.50 (d, Jun = 8.3 Hz, 2H, H®), 5.41 (s,
4H, H® -CH,-), 5.27 (s, 4H, HF, -CH,-), 3.83 (s, 2H, H™3, -CH,-), 2.04 (s, 6H, -CH3), 1.74 (s,
3H, -CHas). ESI-HR-MS. Calcd for C7,Hs4sNgOgRe; [M+H]™: m/z 1533.3263 Found: m/z
1533.2883. FT-IR (cm™1): 2009 (s), 1892 (s) and 1861 (s).

Synthesis of [{(CO)sRe(u—mBC)Re(CO)3}(u—L%)] (5).

A mixture of Re,(CO)1o (50 mg, 0.0766 mmol), H,-mBC (43 mg, 0.0766 mmol), L® (41 mg,
0.0766 mmol), and mesitylene:acetone (10 mL: 0.5 mL) refluxed for 6 h in a round bottom
flask. Compound 4 was obtained as gray powder. The product was filtered at hot conditions
and washed with distilled hexane. Yield: 44% (55 mg). *H NMR (500 MHz, DMSO-ds): ¢
8.62 (s, 2H, H*), 8.50 (s, 2H, H°), 8.19 (s, 2H, H?), 8.09-8.07 (m, 2H, H™), 7.99- 7.97 (m, 2H,
H®), 7.95 (s, 2H, HF), 7.89-7.87 (m, 2H, H®), 7.60-7.58 (m, 2H, H'%), 7.42 (d, Juy = 8.1 Hz,
4H, H*Y), 7.36-7.34 (m, 4H, H®"), 7.26-7.19 (m, 10H, H™ACH" 9 7.16- 7.12 (m, 6H,
H'*BP), 570 (s, 4H, H"), 5.50 (s, 4H, H', -CH,-), 4.25-4.22 (m, 2H, H*®, -CH-), 2.28 (s,
3H, -CH3), 2.07 (s, 3H, -CHg3), 1.21 (s, 3H, -CHj3).Crystals obtained from mesitylene and
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acetone mixture via a solvothermal approach. ESI-HR-MS. Calcd for CgyHsgNgOgRe;
[M+H]*: m/z 1633.3571 Found: m/z 1633.3389. FT-IR (cm™): 2010 (s), 1894 (s) and 1869

(9).

5.3. Results and Discussion

5.3.1. Synthesis and characterization of Helicates and Mesocates (1-5).

Helicates 1 and 2 were self-assembled from Re(CO)1o, L! and L® or L* via a one-pot
solvothermal approach (Scheme 5.2). Similarly, mesocates (3—5) were prepared from
Rez(CO)1, L or L2 and L° or L% All the metallosupramolecules are air- and
moisture-stable, and are completely soluble in DMSO. The ATR-IR spectra of 1-5
display three strong bands around 2012-1858 cm™ of almost similar pattern which are
the characteristic of fac-[Re(CO)s] motif in an asymmetric coordination geometry.**?°
The above IR data further indicate that the electronic environments around the
rhenium centres in 1-5 are similar. The ESI-mass analysis of 1-5 showed signals that
correspond to molecular ion peaks (m/z 1547.3039 for [1 + H]"; 1647.3723 for [2 +
H]*; 1563.2499 for [3 + H]*; 1533.2883 for [4 + H]";1633.3389 for [5 + K]*) with an

experimental isotope pattern that matches the calculated values.

Figure 5.1. Ligands used in this work.
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Scheme 5.2. Self-assembly of Helicates (1-2) and Mesocates (3-5).
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Figure 5.2. ATR- IR spectrum of 1.
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Figure 5.7. ESI mass spect
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Figure 5.12. Experimental (top) and calculated (below) ESI mass spectrum of 3 in
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Figure 5.13. ESI mass spectrum of 4 in positive ion mode.
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Figure 5.15. ESI mass spectrum of 5 in positive ion mode.
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'H NMR Analysis of Complexes 1-5.

The *H NMR spectra of 1 and 2 displayed well-separated chemical resonances for the protons
of both the ligands in dg-DMSO. All the protons of the complexes are assigned based on
'H-'H COSY spectrum. The presence of a single complex in the solution was further
confirmed by DOSY experiment. The signals in region 3.7 to 7.45 ppm are similar for both
complexes 1 and 2. This clearly indicates that both complexes 1 and 2 adopt a highly
symmetrical structure in the solution and are structurally similar to each other. The proton
signals of 1 and 2 differ only in the region above 7.45 ppm, which are assigned to the
terminal benzimidazolyl/naphthanoimidazolyl motifs of L%L* in the complexes. This is
expected obviously because complex 1 differs from complex 2 based on terminal
coordination donor motif. The methylene protons for both the complexes appeared as doublet
of doublets with coupling constant 14.6 Hz. due to geminal coupling. In both the cases, the
H,—proton (N-C?H-N of benzimidazolyl/naphthanoimidazolyl) is shifted upfield remarkably
in comparison with the corresponding free ligands, indicating that the H? proton is directed to
the nearby aromatic face in the complex and experiences the ring current effect. This

indicates that the metallocycles remain intact in the solution.

The proton *H NMR spectrum of 3 displayed more number of signals than expected for the
complex. Interpreting the *H-"H COSY NMR spectrum of 3 also proved to be fruitless. The
methylene protons appeared as multiplets in the spectrum which may be due to the flexible
and flipping nature of the two p-phenylene units resulting in back and forth movement of the
units in solution. This may result in various conformers which rapidly interconvert in solution
in the NMR timescale.

The proton *H NMR spectrum of 5 displayed simple, sharp, and mostly well-separated peaks
for the protons of the ligand frameworks. The methylene protons of both ligand strands
appeared as two distinguished singlets due to the flexible nature of the ligand frameworks. In
case of 4, both the ligand strands displayed a similar chemical resonance pattern to that of
complex 4. The H? proton of the benzimidazolyl /naphthanoimidazolyl motif of L° /L®
displayed a singlet at 8.4 ppm and 8.2 ppm in the complex spectra of 4 and 5, respectively.

These data indicates that metallocycle 4 and 5 adopt mesocate structures in solution.
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5.3.2. Crystal Structure of Complexes 1-3 and 5.

Molecular structures of the complexes were determined by single-crystal X-ray diffraction
analysis. Complexes 1-2 adopt a helical architecture, whereas complexes 3 and 5 adopt
mesocate structures. In all the complexes Re(I) ion is coordinated by a NNO chelating unit
from the bis-chelating motif, a nitrogen atom from neutral nitrogen donor
benzimidazolyl/naphthanoimidazolyl, and three oxygen atoms from three carbonyl groups.
The overall size of helicates 1 and 2 are ~21.2 (length) x ~10.5 (width) for 1, and ~25.8
(length) x ~10.5 (width) for 2. The length is calculated from two terminal hydrogen atoms
along the helical axis. The width of the helicates is calculated from the two terminal hydrogen
atoms of the benzimidazolyl-phenolate motif. Both the ligand strands wrap around the
Re---Re axis in a helical manner. In helicate 1, the rigid ligand as well as the neutral N donor
wrap around the helical axis in a left-handed way with twist angles of 84° (the dihedral angle
between the planes of the two Re—O(Chel)-N(Chel) units) and ~87° (the dihedral angle
between the two Re-N(benzimidazolyl) motifs). The opposite trend was observed in the case

of helicate 2 with closely similar twisting.

Figure 5.27. (a) Molecular structure of 1 (hydrogen atoms are omitted for clarity). (b & c)
Different space fill representation, the carbon atoms of the two strands and CO atoms are
differently colored for clarity (green = pink = gray = C, blue = N, red = O, light blue = H,

orange = Re).
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Figure 5.28 (a) Molecular structure of 2 (hydrogen atoms are omitted for clarity). (b & c)
Different space fill representation, the carbon atoms of the two strands and CO atoms are
differently colored for clarity (green = pink = gray = C, blue = N, red = O, light blue = H,

orange = Re).

Single-crystal X-ray diffraction method reveals that metallacycles 3 and 5 adopt M,LL’-type
mesohelical architecture in which both dianionic bis-chelating and neutral bidentate ligand
strands are arranged parallel to each other along the Re---Re axis. Though mesocate 3 and
helicate 1 or 2 have same bis-chelating motifs, no helical twisting was observed in 3. The
dihedral angle between two [Re—Oche—N(chenJunits is ~1°. The bis(p-phenylene) spacer
adopt v-shaped geometry and their plane was parallel to the Re...Re axis as well as central
phenylene unit of bis-chelating motif of 3. The two naphthanoimidazolyl motifs are directed
their fused arene core along the Re---Re axis, resulting the longer size mesocate structure i.e.,
length of mesocate is ~26.3 A. The dihedral angle between the two line of Re-
N(naphthaimidazolyl) is ~1°, indicating the non-helical nature of flexible ligand in 3. Similar
to 3, in mesocate 5 both the ligands are arranged parallel to each other along the Re...Re axis.
The neutral ligand conformation in 5 is slightly different from that of in 3. The plane of the
bis-phenylene spacer is perpendicular to the Re:--Re axis and is almost parallel to the

terminal naphthanoimidazolyl planes. The four hetero(arene) motifs of neutral ligand in 5 are
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arranged like ‘W”-shaped structure. The length of mesocate is ~21.3 A and the Re...Re axis
distance is ~15 A.

In crystal packing of 1 and 2, the adjacent metallocycles are held together by various
intermolecular non-covalent interactions including parallel displaced n-- & interactions, edge-
to-face C—H-- - interactions, C(H)---O=C—Re non-classical hydrogen bonding interactions.
In case of 2 solvent molecule mesitylene resides in the lattice void created by three adjacent
helicate molecules and stabilized by C—H---n and =7 interactions. In the crystal structures
of 3 and 5, the neighbouring molecules interact with each other via edge-to-face C-H- ‘%
interactions and C(H)---O=C—Re non-classical hydrogen bonding interactions. In case of 5,
the solvent mesitylene molecules sit in the crystal lattice void created by two neighbouring
mesocate molecules in a AA pattern and held with the metallocycle framework by C—H--‘n
interactions. Further solvent acetone and the disordered mesitylene molecules occupies the
lattice void in the 2D arrangement and are stabilized by non-classical H-bonding interactions

C(H)---O=C-Re and C—H:--x interactions, respectively.

Figure 5.29. (a) Partial packing diagram of 1 showing a 1D sheet along b-axis constructuted by

various non-covalent interactions (Gray = C, blue = N, red = O, light blue = H, orange = Re).
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C, blue = N,

Figure 5.30. Partial packing diagram of 2 showing a 2D sheet along b-axis (Gray

yellow).
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Figure 5.31. (a) Molecular structure of 3 (hydrogen atoms are omitted for clarity). (b & c)
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Figure 5.32. (a) Molecular structure of 5 (hydrogen atoms are omitted for clarity). (b & c)
Different space fill representation, the carbon atoms of the two strands and CO atoms are
differently colored for clarity (green = pink = gray = C, blue = N, red = O, light blue = H,

orange = Re).

Figure 5.33. (a/b) Partial packing diagram of 5 showing a 2D sheet along c-axis (Gray = C, blue =
N, red = O, light blue = H, orange = Re, guest mesitylene = red, lattice mesitylene = yellow, acetone=
purple and red).
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1 2 3 5
Size of the complex
*length (A) ~21.17 ~25.79 ~26.32 ~21.25
*width (A) ~10.46 ~10.46 ~10.46 ~10.46
Re---Re (A) ~13.56 ~13.34 ~13.59 ~15.2
7(N donor to N donor in L") (deg) ~87 ~86 ~10.7 ~86.9
tRe-N (L") (deg) ~89.6 ~80.9 ~0.9 ~34.5
tRe—O(chel)-N(chel) (deg) ~84.2 ~80.8 ~14.6 ~20.0
Arrangement of two anti anti syn syn
benzimidazolylphenolate

“distance between two terminal hydrogen atoms along the Re---Re axis
°distance between two terminal hydrogen atoms of benzimidazolylphenolate motif

T = dihedral angle

5.3.3 Photophysical properties of helicates 1-2 and mesocates 3-5 in

solution and solid-state.

The photophysical properties of complexes (1-5) were studied in both solution (DMSO) and
solid-state. The absorption spectra of 1, 2, 3, 5, and 4 display bands in the range of 254-373
nm and 256-362 nm, respectively. Benzimidazolyl moiety-based complexes (1 and 4) showed
one type of absorption pattern, whereas naphthoimidazolyl moiety-based complexes (2, 3,
and 5) displayed another type of absorption pattern. The high energy bands (Amax = 256, 273,
~280, 292 nm for 1 and 4; ~254, 292, 323, ~338, 353 for 2, 3, and 5) corresponds to spin-
allowed m—n* electronic transitions and intra-ligand charge transfer (ILCT), whereas low
energy bands (Amax = 373 nm for 1, 3, 4, 5, and 362 for 2) are assigned to spin-allowed metal-

to-ligand charge transfer (MLCT) transitions. The assignment of electronic transitions is
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based on the literature report.’** > All the complexes show ligand-centred emission in the
presence of oxygen and nitrogen at room temperature. The emission profile is quenched in
the presence of air; the effect is more in the case of complex 1 than in other complexes. The
benzimidazolyl moiety-based complexes (Amax = ~518 nm for 1, and Amax = ~504 nm for 4)
showed a similar structureless emission profile. In contrast, naphthoimidazolyl moiety-based
complexes (2, 3, and 5) displayed a similar pattern of structured emission in the range of
~356-547 nm. The appearance of broad emission shoulder at 455 nm for 2 and 437/464 (b)
for 3 is due to the presence of L' (H,-pBC), whereas it is absent in the case of 5. The minor
shoulder peak at ~493 nm for 1 may due to the nature of the H,-pBC motifs, which is absent
in complex 4. The solid-state absorption spectra of the complexes are observed almost in the
same range (~250-450 nm) as the solution state. All the complexes displayed a structureless
emission pattern. The luminescence rigidochromic effect is more in the case of 1, while other
complexes show a more or less similar shift in both solid and solution states. The nature of
the N-donor ditopic ligands and bischelating anionic donor ligands, the substituents and
spacer units on them impact the luminescence behaviour of the complexes both in solution as

well as solid state.

1.0

0.5 1

Absorbance (a. u.)

0.0 L : : : : : , .
250 300 350 400 450

Wavelength (nm)

Figure 5.34. Absorption spectra of complex 2 (1.2 x 10° M, middle), 3 (1.0 x 10™° M,
bottom), and 5 (1.0 x 107 M, top) in DMSO.
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Figure 5.35. Absorption spectra of complex 1 (1.0 x 107 M, top) and 4 (1.2 x 10 M,

bottom) in DMSO.
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Figure 5.36. Emission spectra of complex 1 (1.16 x 10~* M) in DMSO.
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Figure 5.37. Emission spectra of complex 1 (1.16 x 10™* M) in DMSO.
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Figure 5.38. Emission spectra of complex 2 (6.10 x 10~ M) in DMSO.
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Figure 5.39. Emission spectra of complex 3 (6.40 x 10~ M) in DMSO.
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Figure 5.40. Emission spectra of complex 4 (9.13 x 10° M ) in DMSO.
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Figure 5.41. Emission spectra of complex 5 (6.13 x 10> M) in DMSO.
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Figure 5.42. Absorption spectra of complex 1 (solid line, black) and 4 (---, red) in solid state.

321



Chapter 5

-
o
|

Normalized Absorbance (a. u.)
o
(3]

0.0,

250 300 350 400 450 500
Wavelength (nm)
Figure 5.43. Absorption spectra of complex 2 (solid line, black), 3 (——-, blue), and 5 (:--,

red) in solid state.
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Figure 5.44. Emission spectra of complex 1 (solid line, black) and 4 (---, red) in solid state.
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Figure 5.45. Emission spectra of complex 2 (solid line, black), 3 (——, blue), and 5 (---, red)

in solid state.

Table 5.2. Solid State Absorption and Emission Spectral Data for 1-5 in DMSO at 298

absorption emission
compounds Amax (NM) exc (NM) Aem, max (NM)
1 261, 300, 317, 388 420 509
2 252, 363, 385 363 436
3 250, 362, 384 362 440
4 247, 321, 351, 386 420 506
5 250, 360, 378 360 436
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Table 5.3. Solution State Absorption and Emission Spectral Data for 1-5 in DMSO at
298 K.

absorption emission
complexes Dumax (NM) Dexc (M) Dem, max (NM)
1 256, 273, 280, 292, 373 (b) 292 350 (less intensity), 494,
518 (b, MLCT)
373 414/436 (less intensity), 493
514 (b, MLCT)
2 254, 292, 323, 338, 353, 376 323 356, 373, 392, 415, 455(b)
376 414, 437, 466, 544 (less
intensity)
3 254, 292, 323, 336, 352, 376 323 356, 372, 391, 412,
437/464 (b), 546 (less
intensity)
376 414, 438, 466, 547 (less
intensity)
4 256, 273, 281, 292, 362 (b) 281 332 (less intensity), 401(less
intensity), 503 (b, MLCT)
362 413 (less intensity), 504 (b,
MLCT)
5 256, 292, 323, 338, 353, 323 356, 373, 391, 414
373(b) 376 416, 437, 470

5.4 Conclusion

The self-assembly of rheniumtricarbonyl core based SCCs, 1-5 was achieved using
Re,(CO)qo, rigid/flexible bis-chelating HONN donor ligands and flexible ditopic N donor
ligands via a one-pot approach. The metallosupramolecules were characterized by ATR-IR,
ESI-MS, 1D and 2D NMR spectroscopy. The supramolecular structures of the complexes
closely remain in the solution based on the *H NMR and ESI-mass analysis. Single-crystal X-
ray analysis reveals that the dinuclear SCCs adopt heteroleptic double stranded helical and
mesocate architectures in the solid-state. The photophysical properties of the complexes were
studied both in solution and solid state. All the supramolecules display emission both in

solution and solid state.
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Chapter 6

Conclusion and Future Prospects

Abstract

The thesis entitled “Rhenium- and Technetium-tricarbonyl Core-based Supramolecular
Metallocavitands and Helicates” discusses the design, and synthetic principles for the
construction of novel neutral, flexible bidentate nitrogen donor ligands with diarylmethane
spacers and their corresponding [fac-M(CO)s]" (M = Re/Tc) core-based supramolecular
architectures, which include mononuclear rhenium/technetium homoleptic
metallacalix[4]arenes, dinuclear rhenium heteroleptic metallacalix[5]arenes, and dinuclear
rhenium heterostranded helicates and mesohelicates. In this chapter, the thesis is summarized,
and the possible future direction of the present work and potential future application of the

rhenium- and technetiumtricarbonyl complexes are briefly discussed.

Design and synthesis of
fac-Re(CO); core-based
metallacalix[n]arenes
(n = 4, 5), and their
molecular  recognition
studies.

Design and synthesis of
fac-Tc(CO); core-based
supramolecules.

Overview of the
present work

Design and synthesis of
fac-Re(CO); core-based

Chapter 6 helicates/mesocates and
their photophysical
properties.

Host-guest encapsulation
Catalysis /Bio-imaging
Future Anti-cancer agents
applications Nuclear theranostics
Drug delivery
Photosensitizers
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6.1. Overview of the present work

The facial rheniumtricarbonyl core-based metallomacrocycles exhibit a distinctive class of
stable, functional, and robust metal-based cyclic architectures to form neutral 2D and 3D
metallocycles.”® The fac-Re(CO); fragment is kinetically inert and biocompatible, which
makes it a very significant unit in the medicinal field. ** Further, the fac-Re(CO)s core-based
SCCs display potential applications in molecular recognition, as photoluminescence
quenching probes, cavity-controlled catalysis, anticancer agents, photo- and electro-chemical
sensing.’® The appropriate choice of nitrogen donors with/without ancillary ligands and
rhenium metal precursors can achieve various shapes and sizes of metallocycles. Due to
virtually identical chemical and physical properties of Re and Tc (Atomic radii: Re- 1.37 A;
Tc- 1.36 A, lipophilicity, ionic mobility and formal charge), advances in the fac-Re(CO);
based chemistry can be exploited for the designing and development of new stable and
kinetically inert fac-[M(CO)s]* (M = *™Tc¢/ 818Re) core-based radiopharmaceuticals as
diagnostic and therapeutic agents.”® Though a considerable amount of research has focused
on acyclic systems with fac-Tc(CO)s core, till now, only one example has been reported for

Tc(I) core containing metallomacrocycles.

The flexible benzimidazolyl and its structural analogous based ditopic N-donors have
attracted attention as versatile structural framework for making cavity-containing fac-
[Re(CO)3] core-based metallacalix[4]arenes. Although a variety of rhenium heteroleptic,
neutral metallacalixarenes are reported, the hydrophobic cavity is small to accommodate
guest molecules entirely or partially. This research focuses on increasing the cavity size by
modulating the spacer on N-donor ligands which can accommodate potential guest molecules
entirely inside their hydrophobic cavity. Rhenium(l) based metallocavitands analogous to
calix[5]arene framework with larger cavity were synthesized by using Re(CO)1o, rigid bis-
chelating donor, and neutral ditopic flexible N-donor ligands possessing bis(4-
methylphenyl)methane spacer via solvothermal approach. These metallocavitands adopt
tubular structure, accommodate toluene molecule in the solid state, and are able to recognize
the guest molecules, including nitroaromatic compounds and polyaromatic hydrocarbons in
the solution. We are successful in making fac-[Re(CO)s] core-based metallocavitands
analogous to calix[5]arene and have a larger hydrophobic cavity than the metallocavitand
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similar to calix[4]arene framework. To the best of our knowledge, this is the first example of
rhenium-core based metallocavitands analogous to calix[5]arene. This study provides a way
to prepare metallocavitands with a tunable cavity and functional group via a simple one-pot
method.

The internal cavity size of the fac-[Re(CO)s] core-based metallocavitands can be further
tuned by modifying the N-donor ligands or/and by changing the bis-chelating motifs. The
heteroleptic fac-[Re(CO);] core-based metallocavitands analogous to calix[5]arene were
synthesized using two new neutral, flexible ditopic nitrogen donors, bis-chelating ligands and
Rey(CO)1p via one-pot synthesis. These metallocavitands adopt tubular structure,
accommodate acetone, mesitylene, toluene, and chlorobenzene guest molecules in the solid
state and are able to recognize substituted phenol and nitrobenzene as guest molecules in the
solution. To the best of our knowledge, this is the second example of rhenium-core based
metallocavitands similar to calix[5]arene from our research group. This study provides an
easy synthetic approach for assembling neutral, heteroleptic pentagonal toroid-shaped fac-

[Re(CO);] core-based host molecules.

This research work provides a new synthetic strategy to design and synthesize fac- Tc(CO)3
core-based supramolecules analogous to calix[4]arene. Two new types of neutral, flexible
ditopic nitrogen donor ligands with bismesitylene spacer were designed and synthesized.
Further, N-donor ligands are utilized to assemble technetium supramolecules using
(NBug)[Tco(u-Cl)3(CO)g]. Isostructural rhenium macrocycles were also assembled from
[Re(CO)sX] (X= CI, Br) and L". The solid-state structures of the supramolecules reveal that
these molecules adopt bowl-shaped structures. The molecular recognition studies of rhenium
macrocycles were studied with potential guest molecules, including benzene, naphthalene,
anthracene, imidazole, and benzimidazole. To the best of our knowledge, the technetium
complexes are the first examples of fac-[Tc(CO)s]" core-based SCCs analogous to
calix[4]arenes and the second Tc-containing metallomacrocycles. The results enable the
design of unique fac-[Tc(CO)as]" core-based supramolecules and extend the entry into the

field of supramolecules.
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The nature and length of the spacer motifs in the organic ligand frameworks play an essential
role in getting the helicate or meso-helicate architectures. This research focuses on the design
principles of synthesizing fac—[Re(CO)3] core-based dinuclear helicates and mesocates. The
helicates/ meso-helicates were self-assembled using Rey(CO)io, rigid/flexible bis-chelating
HOANN donor ligands, and flexible ditopic N donor ligands via a one-pot approach. Photo-
physical properties show that all the supramolecules display emissions in solution and solid
states. We have successfully synthesized fac—[Re(CQO)s] core-based dinuclear helicates and

mesocates, which may have the potential application in biology.

6.2. Future directions

The development of new synthetic approaches is still under process to increase the width of
the fac-[Re(CO)3] and fac-[Tc(CO)3] core-based metallocavitands, tuning functional groups
at the periphery as well as to make calix[n]arene (n = 6,7)-shaped metallocavitands. Host-
guest properties will be studied in both solid and solution states with various potential guest
molecules, including biomolecules. In future, the suitable design of fac-[Tc(CO)s]* core-
based supramolecules may find potential utility in the medicinal fields due to the combined
properties of the technetium core and guest encapsulation properties of the macrocyclic
cavity. DNA recognition properties of the helicates/mesocates will be carried out, and the
photophysical properties will be studied by using the time-dependent density functional

theory.

The stable and kinetically inert fac-[M(CO)s]" (M = ®™Tc/ 18®Re) core-based complexes
have been gaining continuous research interest for the development of new
radiopharmaceuticals as diagnostic and therapeutic agents.*® The low spin d° electronic
configuration of Re(l) and Tc(l) makes their complexes kinetically inert and biocompatible,
providing high advantages in the medicinal field." In addition to their kinetic inertness,
thermal and phot-stability, luminescence, membrane permeability, and large stoke’s shift
properties offer numerous opportunities for developing novel supramolecules for applications
in host-guest encapsulation, bio-imaging, transport through the cell membrane, DNA

recognition, anti-cancer activities, and light-harvesting systems.*™
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Rhenium(i) based irregular pentagonal-shaped
metallacavitandsy

Mamina Bhol, Bhaskaran Shankar and Malaichamy Sathiyendiran@*

Neutral ditopic flexible N-donor ligands (L" = bis(4-(naphtho[2,3-dlimidazol-1-ylmethyl)phenyl)methane,
L! bis(4-(benzimidazol-1-ylmethyl)phenyl)methane, L2 or bis(4-(2-nonylbenzimidazol-1-ylmethyl)phenyl)
methane, L®) possessing a bis(4-methylphenyl)methane spacer with two imidazolyl donor units were designed
and synthesized. The ligands were utilized to develop metallacavitands analogous to irregular pentago-
nal-shaped metallacavitands with larger cavities. The metallacavitands 1-4 were assembled from
Re»(CO)4q, a rigid bis-chelating donor (1,4-dihydroxy-9,10-anthraquinone or chloranilic acid) and L" via a
solvothermal approach. The ligands and the metallacavitands were characterized by analytical and
spectroscopic methods. The molecular structures of 1 and 4 were further confirmed by single crystal
X-ray diffraction analysis which revealed that a toluene molecule resides in the hydrophobic cavity. L™ and
1-4 are emissive in DMSO at room temperature. The internal cavity of the metallacavitand acts as a host
for aromatic guest molecules. The host—guest interaction properties of 1 with anthracene, naphthalene,
nitrobenzene, 2-nitrotoluene, 4-nitrotoluene and 2,4-dinitrotoluene were studied by an emission spec-

rsc.li/dalton troscopic method.

Introduction

The design and synthesis of metallacavitands similar to calix-
arenes is a growing area due to their applications in the fields
of molecular recognition, catalysis, selective reactivity and
biology." ™ Most of the studies in the area are focused on
making neutral/ionic metallacalix[rn]arenes (n = 3 and 4) to
tune the hydrophobic cavity and functional groups at the
rim.”"® Further, various approaches ie., various metal ions
and organic building units have been used to modulate the
properties. Till now attempts to make a neutral metalla-
cavitand framework larger than calix[4]arene are scarce. It is
likely that the expected conformationally rigid metallacavitand
may display properties similar to calix[5]arene/pillar[5]arene
and may possess a larger hydrophobic cavity.”'® Herein, we
report a simple synthetic approach to a metallacavitand with a
larger cavity. The neutral heteroleptic metallacavitands were
assembled using Re,(CO)o, rigid bis-chelating donors and
flexible ditopic N-donor ligands possessing a bis(4-methyl-
phenyl)methane spacer, via a solvothermal approach. Though
the approach is similar to the synthesis of a dirhenium-based

School of Chemistry, University of Hyderabad, Hyderabad-500 046, India.

E-mail: msathi@uohyd.ac.in

tElectronic supplementary information (ESI) available: Experimental section
and crystallographic data of L', 1?, 1 and 4. CCDC 1587398, 1587399, 1587406
and 1587407. For ESI and crystallographic data in CIF or other electronic format
see DOI: 10.1039/c8dt00574¢e
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metallacalix[4]arene i.e., combining ditopic ligands containing
a “phenylene(CH,-heterocycle),” flexible framework, a rigid
bis-chelating donor, and Re,(CO);,,"""* this approach uses a
“CH,-(phenylene-CH,-heterocycle),” framework that results in
a metallacavitand with a solvent-accessible hydrophobic cavity
(Scheme 1).

Results and discussion
Synthesis and molecular structure of ligands

Neutral nitrogen donor ligands (L'-L?) were obtained using bis
(4-bromomethylphenyl)methane and a heterocyclic motif
(naphthanoimidazole, H-nimz; benzimidazole, H-bimz; 2-non-
ylbenzimidazole, H-nbimz) in the presence of base."* The 'H
NMR spectra of L" displayed a single set of signals for all of
the protons. In particular, two singlet signals in the aliphatic
region correspond to two methylene protons (~5-6 ppm for

Rey(CO)yo
—_—
' IE'

Scheme 1 Synthesis of an irregular pentagonal-shaped metallacavitand
(1). A = D = heterocyclic nitrogen donor; B = C = phenylene; HE = bis-
chelating unit; ® = CHy; O = fac-Re(CO)s.

This journal is © The Royal Society of Chemistry 2018
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ABSTRACT: A family of neutral, heteroleptic, dinuclear M,LL'-
type pentagonal toroid-shaped metallomacrocycles (1—8) were
synthesized using flexible ditopic N donors (L" = L'=L?), rigid bis-
chelating ligands (H,—L’' = H,—E), and Re,(CO),, in a one-pot
solvothermal self-assembly approach. The ligands and the metal-
lomacrocycles were characterized using ATR-IR, electrospray
ionization mass spectrometry, nuclear magnetic resonance, ultra-
violet—visible, and emission spectroscopy methods. The molecular
structures of 1, 2, 4, 6, and 7 were confirmed by an X-ray diffraction
study and are similar to those of calix[S]arene. The cyclic inner

’ H h ﬂ Re;(CO)yq o
I H2-E| !

cavities of the metallomacrocycles accommodate toluene/mesitylene/acetone/chlorobenzene as guest molecules that are stabilized
by cumulative C—H:--7 and 7---7 interactions with the cyclic framework of metallomacrocycle. The photophysical properties of the
ligands and the metallomacrocycles were studied. The host—guest recognition properties of metallocavitands 1, 2, 7, and 8 as a
model host with phenol and nitrobenzene derivatives as guest molecules were studied by emission spectroscopy methods.

B INTRODUCTION

The design and synthesis of metallomacrocycles similar to
calixarene-shaped geometry have been attracting significant
research interest because of their potential applications in
host—guest encapsulation, catalysis, selective reactivity, sens-
ing, and biomimetic structures.' > Naked metal ions and
complexes containing partially protected metal ions are
employed along with pre-designed organic ligands to self-
assemble calixarene-shaped complexes.” " These metalloma-
crocycles are commonly called as metallocavitands, more
specifically metallocalix[n]arenes.’ Among various metal ions
and metal complexes, Re,(CO),o/[Re(CO)X], where X = Cl
or Br, provides a way to make neutral, heteroleptic
metallocalix[n]arenes.''~"> Until now, neutral ditopic donors
including 4,7-phenanthroline, imidazole, and semi-rigid ditopic
N-donor ligands containing the phenyl (—C¢H,—) spacer and
rigid bis-chelating ligands are utilized for assembling tunable
rhenium tricarbonyl-based metallocalix[3]arenes and
metallocalix[4]arenes.'”'>'* Recently, the focus in the area
has shifted to make functional and cavity-tunable metal-
localixarenes. To the best of our knowledge, the design
approach for making rhenium-core-based metallocavitands
similar to calix[5]arene is limited.' We have recently designed
and employed diphenylmethane (—C¢H,—CH,—CsH,—)
spacer-based semi-rigid ditopic N-donor ligands along with
the rigid bis-chelating ligand and Re,(CO),, to assemble
irregular pentagonal-shaped metallocavitands.'® These metal-
locavitands adopt a tubular structure, accommodate toluene
molecules in the solid state, and are able to recognize the guest
molecules including nitroaromatic compounds and polyar-

© XXXX American Chemical Society

WACS Publications A

omatic hydrocarbons in the solution. The central cyclic
framework, that is, annulus of the metallocavitand, consists
of two phenyl motifs, two imidazolyl motifs, and a bis-chelating
ligand. The size of the cavity, thereby the chemistry associated
with molecular cavity, can be tuned by increasing the fused
arene motif(s) either by modifying the imidazolyl motif and/or
by changing the bis-chelating motifs. In continuation of our
research in this field, we envision that introducing the 4-
methoxyphenyl/3,4,5-trimethoxyphenyl motif at the 2-position
of the benzimidazolyl unit in the ditopic N donor would result
in metallocavitands with a more extended cavity suitable to
accommodate various types of guest molecules (Scheme 1). In
addition, the solubility of the metallocavitands in general
organic solvents would be increased due to the presence of
methoxy units at the periphery of the metallocavitands.
Herein, we report two new flexible neutral ditopic nitrogen
donors (L'/L?) consisting of two terminal 4-methoxyphenyl
benzimidazolyl/3,4,5-trimethoxyphenyl benzimidazolyl nitro-
gen donors and diphenylmethane spacer and eight new neutral
heteroleptic dinuclear metallocavitands (1—8) in a one-pot
approach. The molecular structures of the five metal-
locavitands (1, 2, 4, 6, and 7) are unambiguously determined

Received: June 14, 2022
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ABSTRACT: Calix[4]arene-analogous technetium supramolecules (1 and 2) were assembled using (NBu,)[Tc,(u-Cl);(CO)4] and
neutral flexible bidentate nitrogen-donor ligands (L' and L*) consisting of four arene units covalently joined via methylene units.
The neutral homoleptic technetium macrocycles adopt a partial cone/cone-shaped conformation in the solid state. These
supramolecules are the first example of fac-[Tc(CO);]* core-based metallocalix[4]arenes and second example of fac-[Tc(CO);]*
core-based metallomacrocycles. Structurally similar fac-[Re(CO);]* core-based macrocycles (3 and 4) were also prepared using
[Re(CO)¢X] (where X = Cl or Br) and L' or L% The products were characterized spectroscopically and by X-ray analysis.

he design and synthesis of stable and kinetically inert fac- flexible bidentate nitrogen donors (L' for 1 and L? for 2;
[M(CO),]* (M = #™Tc/8/185Re) core-based complexes Scheme 1).
have been gaining continuous research interest for the

development of new radiopharmaceuticals as diagnostic and Scheme 1. Synthesis of Technetium Metallocalix[4]arenes
therapeutic agents.'~'” *™Tc is still the workhorse of nuclear B

diagnostics because of its ideal nuclear decay properties (t; n= THE oc, Cl /COT CHoCly

6.02 h, pure y emitter, and E, = 140 keV, 89%), whereas the f- , U’m Ogr?n'\"é'l‘}"ni“cgo wal i
emitting rhenium nuclides "**Re (t,, = 17 h and Eg =212 T (NBug® 28h

MeV) and "Re (t,, = 89.3 h and E; = 1.07 MeV) have
potential for therapy.” Isostructural technetium and rhenium
complexes are good candidates for nuclear medical theranos-
tics, and procedures exist for the synthesis of aqua complexes
[#™Tc/'®¥Re(CO);(H,0),]" as appropriate precursor mole-
cules."“*>*° Several attempts have been made toward the
synthesis of organometallic technetium complexes using
various types of heterocyclic ligands because of their
importance in medicinal fields.'”"’ Recently, efforts have
been directed toward the design and synthesis of fac- 1
[Re(CO);]* core-based metal—organic macrocycles, i.e.,

supramolecular coordination complexes or metallomacro-

cycles, because of their potential applications as bioimaging ~ ~ N//\NM\N/\\N
and anticancer agents.lg_20 N NN N O O O O
We envision that the synthesis of fac-[Tc(CO);]* core-based @ g @ O , '

macrocycles may result in a new class of supramolecules that -
may find potential utility in medicinal fields because of the
combined properties of the technetium(I) tricarbonyl core and
discrete 2D/3D supramolecular structures. In general, the
known synthetic approaches for making fac-[Re(CO);]* core-
based discrete supramolecules can be applied to create
structurally analogous fac-[Tc(CO);]* core-based supramole-
cules.’™**> To the best of our knowledge, fac-[{Tc-
(CO);Cl},(pte),] [ptc = 4-pyridylthiosemicarbazone =
C¢HN-C(CH;)=N-NH-C(S)-NH,], is the only known Received: November 27, 2021
example for a metallomacrocycle based on the fac-[Tc(CO);]* Published: March 23, 2022
core.”> Here, we report fac-[Tc(CO);Cl] core-based supra-

molecules analogous to calix[4]arenes. The metallomacro-

cycles fac-[Tc(CO);CI(L")] (1 and 2) were self-assembled via

the reaction between (NBu,)[Tc,(u-Cl);(CO)¢] and neutral

Isostructural rhenium macrocycles fac-[Re(CO),X(L")] (3a,
3b, and 4) were assembled using [Re(CO);X] and the
nitrogen-donor ligands of Scheme 1 (X = Cl and L" = L' for
3a; X = Brand L" = L! for 3b; X = Br and L" = L? for 4). The
molecular structures of the metallomacrocycles were unambig-

© 2022 American Chemical Society https://doi.org/10.1021/acs.inorgchem.1c03691
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A monoanionic 2-(2’-phenolate)benzimidazole (HPBI™) stabilized in organometallic complex [Re(CO),
(dppe)2](HPBI) (1) which was obtained by treating 2-(2'-hydroxyphenyl)benzimidazole (H,—PBI), 1,2-
bis(diphenylphosphino)ethane (dppe), and Rey(CO)jo, in toluene using a one-pot approach. Solid state
structure of complex was determined using a single crystal X-ray diffraction analysis. The monoanionic
HPBI™ in 1 is nearly planar and adopts trans-anion conformation i.e., both oxygen atom and NH proton
are on the same side and are stabilized by the intramolecular N—H- - -O hydrogen bonding interaction.
The photophysical properties of 1 in solution are corroborated with the monoanionic HPBI™ anion
generated in situ from neutral HpPBI by adding base. The solid state emission of 1 is red-shifted in
compared to that of 1 in the solution. The monoanionic HPBI~ in 1 was transformed into dianionic PBI*~
in the complex, {[Re(CO), (dppe)2](HPBI) (1) — (BugN)[Re(CO), (dppe),](PBI) (2)}, by adding tetrabu-
tylammonium fluoride (BusNF) without decomposing the coordination complex.

Rhenium

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Research on synthesis, structural characterization and photo-
physical studies of 2-(2’-hydroxyphenyl)benzimidazole H,—PBI
and its analogues have been gaining great importance due to their
potential applications in the photoactive materials including pho-
toactive switches, fluorescence sensors, and laser dyes [1—8]. The
photophysical properties of neutral HoPBI were studied both in the
solid state and in the solution state [3,6a]. In particular, photo-
physical studies of neutral HyPBI in various solvents, different
temperatures and different pH conditions were studied thoroughly
by various groups. Recently, the anionic forms, monoanionic HPBI~
or dianionic PBI>~, were generated in situ by adding a base in the
solution of neutral H,PBI. The ground state and excited state pho-
tophysical properties of monoanionic HPBI~ or dianionic PBI?~ are
studied [6]. Similar to neutral H,PBI, these anions can adopt a

* Corresponding author.
** Corresponding author.
E-mail addresses: mailtorvkk@yahoo.co.in (R.V. Krishnakumar), msathi@uohyd.
ac.in (M. Sathiyendiran).
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different conformation in the solution depending upon the sol-
vents, and base and display unique emission properties. In partic-
ular, each conformer, which originated due to the rotation, displays
a unique absorptions and emission properties. Though the solid
state structure of neutral H,PBI was determined using single crystal
X-ray diffraction data (SCXRD), solid state structure of the mono-
anionic HPBI™ was not studied. The isolation of monoanionic HPBI™
or dianionic PBI?~ with an ion which should not interact/influence
the conformation of the monoanionic HPBI~ or dianionic PBI?~ will
be useful to get benchmark photophysical data.

Herein, we report on the synthesis, solid state structural char-
acterization of 2-(2’-phenolate)benzimidazole (HPBI~), which is
stabilized by non-coordinating counter coordination complex. The
complex [Re(CO), (dppe)2](H-PBI) (1) was obtained by treating
neutral HoPBI, dppe and Re,(CO);g in a one-pot approach seren-
dipitously. The monoanionic HPBI~ adopts trans-conformation both
in solid and solution states. The complex 1 was characterized using
SCXRD analysis, FI-IR, and '"H NMR spectroscopy. The photo-
physical properties of 1 in both solution state and solid state were
studied. The monoanionic HPBI™ in 1 was transformed into dia-
nionic PBI>~ in the complex, {[Re(CO) (dppe);](HPBI) (1) — (BugN)
[Re(CO); (dppe)2](PBI) (2)}, by adding tetrabutylammonium
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Abstract: The design and self-assembly of supramolecular coordination complexes (SCCs) i.e.,
discrete cyclic metalloarchitectures such as cycles, cages, mesocates, and helicates with desired
size, shape, and properties have been increasing exponentially owing to their potential
applications in molecular sensors, molecular cargos, molecular recognition, and catalysis. The
introduction of the organic motifs and metal complexes as a spacer provides functionality to the
metalloarchitecture. This review mainly focusses on newly evolving spacer based ligands
employed to yield simple to high-order metallosupramolecular assemblies using straight-forward
approaches. The new spacers including corannulene, organic cyclic framework, bicyclic organic
motifs, aliphatic chain, metalloligands, triarylboron, BODIPY, azaphosphatrane, phosphine, and
thio/selenophosphates offer a great set of properties and in-built functionalities to the
metalloarchitectures which are discussed in this review.

Keywords: Supramolecular chemistry, Self-assembly, Molecular recognition, Schiff bases,

Sandwich complexes

1. Introduction

The design and synthesis of supramolecular coordination

(SCCs)

2-3]

complexes such as metallosupramolecules,"’

metallocages,' metallomacrocycles[41 using complementary
motifs of predesigned ligands and metal precursors through
self-assembly approach have been increasing tremendously
day by day.'™ The continuous increase of research in this
area is owing to the ease of preparation of the SCCs and
their potential applications including molecular sensors,”!
selective purification of molecules,”” molecular vessels for
selective functionalization of guest molecules,”’ molecular
catalysts by providing cavity as well as catalytic cores,™
[3a—d,9] and

molecular drugs.""” The simple cyclic structures to aestheti-

photoactive molecules,”® cell imaging agents,

cally pleasing high-order complex structures can be obtained
by mixing the predesigned motifs and metal precursor, at
appropriate conditions."" The careful selection of metal
precursor and ligand design play the crucial role in
achieving the desired self-assembly of SCCs. In particular,
the predesign of the ligands by incorporating different types
of organic spacer motifs has been elevating the field to an
advanced level by providing in-built functionality.™'" There
are two types of ligands often used in metal-directed
assembly. The first one is organic coordinating motifs

(Example: 4,4'-bipyridyl ligand) which are directly linked to
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each other and are used as the structural framework for
based

assemblies.'”? Another type of ligand framework is spacer

constructing a variety of metal-core cyclic
based coordinating motif in which the spacer separates the
coordinating donor units. A typical example is alkene
spacer-based 1,2-di(pyridin-4-yl)ethene which is a structural
and functional analog of 4,4"-bipyridine."” The spacer units
provide unique flexibility/rigidity and directionality for the
ligands to achieve desired geometry of SCCs with distinct

-1
features. ™"

! Our review focuses on the work that appeared
in the literature from the year 2018 onwards till now and
includes SCCs based on newly evolving spacer-based
ligands. Herein, we discuss metalloarchitecures constructed
based on corannulene, organic cyclic framework, bicyclic
organic motifs, aliphatic chain, metalloligands, triarylboron,
(BODIPY), azaphosphatrane,
phosphine, and thio/selenophosphates as spacers-based

ligands.

boron  dipyrromethene

2. Corannulene Spacer Based Ligands and its SCCs

Corannulene is a polycyclic aromatic hydrocarbon and adopts

0415) Thjg unique arrangement with 7-

bowl-shaped structure.
conjugation gives the corannulene a curved aromatic surface.
The periphery of the corannulene offers a rare opportunity to
synthesize symmetrical pentatopic ligands."” The predesigned
corannulene spacer based ligands are good candidates for
assembling spherical metallacages due to their unique curva-
ture. The spherical cages with corannulene motifs are suitable
host for molecules like fullerenes due to the expected
complementary concave-convex noncovalent aromatic stacking
interactions.

The unique properties of corannulene were utilized by
Jiang and co-workers to synthesize a spectacular spherical ionic
coordination cage [Ags(L'),]’" (1) from a pentatopic ligand
possessing corannulene spacer (L')." The ligand was ration-
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