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Abstract

The thesis entitled “Effects of multimode light-matter coupling on semiclassical and quan-
tum Rabi oscillations of a two-level system” presents the work done by us during the
last four years and six months. The thesis consists of six chapters viz., [i] introduc-
tion, [ii] Rabi model result for the Einstein B coefficient, [iii] multimode Jaynes-Cummings
model results for the Einstein A and B coefficients, [iv] multimode Jaynes-Cummings model
results for the collapse and the revival of the quantum Rabi oscillations in a lossy resonant
cavity, [v] population dynamics of two-level systems for the generalized Einstein coefficients,
[vi] conclusions & future scope. The main contents and the discussion pertaining to the

contents are systematically presented chapter wise.

Chapter 1: Introduction

Here we begin with the motivation of writing the thesis. Then we have mentioned
the key findings in the thesis and the significance of our theoretical results. Then we
have described the system of interest i.e. a two-level interacting with the thermal
radiation field or the coherent field or a monochromatic light. Then we have briefly
described the existing models and theories necessary for the rest of the chapters
of the thesis. We have briefly shown how Dirac determined the Einstein B coeffi-
cient within the first order perturbation theory of quantum mechanics. We also have
briefly shown how Weisskopf-Wigner determined Einstein’s A coefficient within the
quantum theory of electrodynamics. We have introduced the population dynamics
of the two-level systems with the help of Einstein rate equations. We have explic-
itly shown failure of the first order time-dependent perturbation theory of quantum
mechanics. We have introduced Rabi model and Jaynes-Cummings model for the
explanation of the Rabi oscillations of a two-level system both from the semiclassi-
cal point of view and the quantum mechanical point of view, respectively. We also
have introduced the Purcell effect in this regard. We have introduced the collapse
and revival of the quantum Rabi oscillations. Finally, we have mentioned chapter-
wise organization of the thesis.

Chapter 2: Rabi model result for the Einstein B coefficient

This chapter contains Rabi model result for the Einstein B coefficient. The system of
interest for this chapter is mainly a two-level system (atom/molecule) in the ther-
mal radiation field. Starting from the Rabi Hamiltonian, which is useful in arriving
at non-perturbative results within the rotating wave approximation, we have found
Einstein’s B coefficient to be time-dependent: B(t) = By|Jo(Qrt)| for a two-level
system in thermal radiation field. Here By is the original Einstein B coefficient, Qg
is the Rabi flopping (angular) frequency of the two level system, and J is the zeroth
order Bessel function of the first kind. Here the light-matter interaction is treated

classically but the two-level system is treated quantum mechanically, and our result
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can be considered as a semiclassical result. We, of course, get back the original B co-
efficient in the limiting case of (O)r — 0. We also have obtained Rabi model result for
the Einstein B coefficient for a monochromatic light incident of the two-level system.

Chapter 3: Multimode Jaynes-Cummings model results for the Einstein A and B co-
efficients

Here we have generalized the Einstein A and B coefficients from quantum field the-
oretic point of view by bringing the fundamental processes and the quantum Rabi
oscillation in a single footing for the light-matter interactions for nonzero Rabi fre-
quency . We have analytically obtained multimode Jaynes-Cummings model results
for the quantum Rabi oscillation of a two-level system in a lossy resonant cavity
containing (i) thermal photons and (ii) injected photons of a coherent field . We have
renormalized the coupling constant for the light-matter interactions for these cases.
The net transition probability calculated for “‘vacuum’ Rabi oscillation of a two-level
system in a lossy Resonant cavity matches well with the seminal experimental data
obtained by Brune et al [Phys. Rev. Lett. 76, 1800 (1996)]. The net transition prob-
ability calculated for the quantum Rabi oscillations of two-level system interacting
with an injected coherent field in a lossy Resonant cavity also matches well with the
seminal experimental data obtained by Brune et al.

Chapter 4: Multimode Jaynes-Cummings model results for the collapse and the re-
vival of the quantum Rabi oscillations in a lossy resonant cavity

Here we have numerically obtained theoretical results for the collapse and the re-
vival of the quantum Rabi oscillations for low average number of coherent photons
injected on a two-level system in a lossy resonant cavity . We have adopted the
multimode Jaynes-Cummings model for the same and especially treated the Ohmic
losses from the cavity. We have compared our results with two sets of experimental
data for low average number of coherent photons (7 = 0.85 and 1.77) incident on
a two-level system in the lossy resonant cavity. Our results match reasonably well
with the experimental data, at least, better than the theoretical one obtained for only
the resonant mode and no loss from the cavity under consideration.

Chapter 5: Population dynamics of two-level systems for the generalized Einstein
coefficients

Here we have studied population dynamics of two-level systems interacting with
both the thermal radiation field and the monochromatic light. While the interactions
of the two-level systems and the monochromatic light have been treated classically
(with the Rabi model), the interactions of the two-level systems and the thermal ra-
diation field have been treated both classically (with the Rabi model) and quantum
mechanically (with the multimode Jaynes-Cummings model). For the semiclassical
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cases we already have obtained the generalized (time-dependent) Einstein B coeffi-
cient. For the quantum mechanical case too we already have obtained the general-
ized (time-dependent) Einstein A and B coefficients. We have studied the population
dynamics for all these cases with the help of Einstein rate equations where the origi-
nal Einstein coefficients are replaced by the generalized Einstein coefficients. The A
coefficient is, of course, kept unaltered for the semiclassical cases. Time-dependence
of the generalized Einstein coefficients opens a path to go beyond Pauli-von Neu-
mann formalism of the non-equilibrium statistical mechanics. The population dy-
namics allows us to further study the entropy production of a level-system. For
the semiclassical cases, we have shown that the Rabi oscillation can drive the two-
level system away from the thermodynamic equilibrium. On the other hand, for the
quantum mechanical case, we have shown that the Rabi oscillation of a small Rabi
frequency (Q2r) can not drive the two-level system away from the thermodynamic
equilibrium. However, reaching the thermodynamic equilibrium is prolonged due

to the quantum Rabi oscillations in the two-level system.

Chapter 6: Conclusions and future scope

Here we have briefed the conclusions of the Ph.D. works, especially the summaries.
We also have mentioned the future scopes of the Ph.D. works.
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Chapter 1

Introduction

1.1 Motivation

The system of our interest is a two-level system (atom/molecule) in a thermal or co-
herent radiation field. Fundamental processes such as spontaneous emission, stim-
ulated emission and absorption have been widely discussed for such a system. Ein-
stein’s A and B coefficients characterise these fundamental processes, in particular,
the A coefficient is related to the spontaneous emission and the B coefficient is re-
lated to the stimulated emission or absorption for a two-level system in the thermal
radiation field [1]. While Weisskopf-Wigner [2] determined Einstein’s A coefficient
within the quantum theory of electrodynamics, Dirac [3] determined Einstein’s B
coefficient within the first order time-dependent perturbation theory of quantum
mechanics. Dirac determined the B coefficient from the well known transition prob-
ability [4]

, sin?([w — wylt/2)

PZﬁl(t) = QR (w — w0>2 (1.1)

where Qr = [(y1|d - Eg|p,)|/h represents the light-matter coupling as well as the
Rabi frequency of the two-level system, wy = [E; — E1]/h is the Bohr frequency of
the two-level system of energy eigenvalues E; and E; (E; > E;), w is the frequency of
the sinusoidal electromagnetic wave (Eo cos(wt)) incident on the two-level system,
and t is the time. It is considered for the above transition probability that the two-
level system initially (t = 0) was at the upper level. For the validity of perturbation

we have |w(3120 " < 1 [4]. Calculation of the B coefficient needs consideration of the

above transition probability for all possible frequencies of the thermal radiation field
incident on the two-level system [4]. However, it is clear from the above expression
that most of the transitions occur for frequencies at around the resonance (w — wy)
[4].

Interestingly, there is a problem of normalization of the transition probability at

2 42
the resonance (w — wy). The transition probability takes the form P,_,1(t) — Qit

at the resonance. This form of the transition probability is not normalizable rather
P,,1(t) — oo for t — oo for any finite small value of Qg for w — wy. Hence the 1%
order perturbation theory of the quantum mechanics fails at around the resonance
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even for a non-zero weak light-matter coupling of the sinusoidal perturbation. Since
most of the contributions in the B coefficient come from around the resonance, the
expression of the B coefficient determined by Dirac is questionable even for the weak
coupling regime [4, 5]. Another drawback of the 1/ order perturbation theory is
that the periodicity in stimulated transition is lost at the resonance (w — wy). The
periodicity can be found in non-pertubative model such as the Rabi model [6] which
is able to explain the nuclear magnetic resonance.

Thus we are motivated to determine the B coefficient within a non-perturbative
model, such as the Rabi model, which though is often used for strong coupling
regime, can also be used for weak coupling regime as it is an exactly solvable model
for the entire range of light-matter coupling.

The Rabi model, however, treats the light-matter interaction classically. The
Jaynes-Cummings model, on the other hand, is another exactly solvable model for
light-matter interactions. This is a quantum mechanical model where light-matter
interactions are treated within the quantum field theory. We are also interested to de-
termine the Einstein A and B coefficients within the multimode Jaynes-Cummings
model.

There are experimental data available for the collapse and the revival of the quan-
tum Rabi oscillations of a two-level system in a lossy resonant cavity. We are also
motivated to explain these data within the multimode Jaynes-Cummings model.

We are also motivated to study the population dynamics of a two-level system
in thermal radiation field with the model dependent Einstein coefficients.

The population dynamics allows us to study non-equilibrium statistical mechan-
ics of the two-level system in thermal radiation field. We are motivated to determine
entropy production of the system.

Let us now introduce various topics related to our findings.
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1.2 Einstein’s A and B coefficients

In the early 20" century, within the era of the old quantum mechanics, Einstein
proposed the ideas of spontaneous emission, stimulated emission and stimulated
absorption rate coefficients which are commonly known as Einstein’s A and B coeffi-
cients [1]. Spontaneous emission is a fundamental process undergone on a two-level
system (atom/molecule) such that the system transits spontaneously from its excited
state (|1p2)) to its ground state (|11)) and emits a photon having energy similar to the
energy difference of the two states of the two-level system [2]. Vacuum fluctuations
around the two-level system play a significant role for the spontaneous emission [2].
The Einstein A coefficient is defined as the rate of spontaneous emission from the
excited state to the ground state of the two-level system [4, 7, 8].

Stimulated emission, on the other hand, is another fundamental process under-
gone on a two-level system such that the system transits from its excited state (|7))
to its ground state (|¢1)) once a photon incidents on it and the system emits a pho-
ton. The characteristics of the emitted photon in stimulated emission have phase,
polarization, frequency and direction of propagation similar to the incident pho-
ton of the electromagnetic field [4]. These characteristics raise the possibility of the
light amplification i.e. if there is a bottle of two-level systems (atoms/molecules),
all in the excited state, and the bottle is triggered with a single photon, then a chain
reaction may take place. The first photon would produce two photons, these two
photons would produce four photons, and so on [4]. This is the principle behind the
light amplification by stimulated emission of radiation (LASER) [4]. The Einstein
By coefficient is defined as the rate of stimulated emission per unit energy den-
sity (u(wp)) per unit frequency interval around the resonance and it is denoted as
By1 = Ro—1/u(wo) [4,7, 8]. Here, by resonance, we mean the matching of the (angu-
lar) frequency of the incident photon (w) and the Bohr frequency (wo = [E; — E1]/h)
of the two-level system having energy E; in the state |¢») and energy E; in the state
|91)-

Stimulated absorption (or simply the absorption) is another fundamental process
undergone on a two-level system such that the system transits from its ground state
to its excited state once a photon incidents on it and the photon is absorbed by the
system [4]. The Einstein B, coefficient is defined as the rate of stimulated absorption
per unit energy density (u(wp)) per unit frequency interval around the resonance
and it is denoted as Bip = Ry_/u(wy) [4,7, 8].

A schematic diagram for the fundamental processes related to the light-matter

interactions for a two-level system are shown in figure 1.1.
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FIGURE 1.1: Schematic diagram for the fundamental processes un-
dergone on a two-level system.

Einstein’s rate equations for the occupation probabilities P, (for the excited state)
and P; (for the ground state) of a two-level system in the thermal radiation field in a
blackbody cavity are given by [1, 4]

dP.
cTtZ = — AP, — PyByu(wy) + P1Byau(wy) (1.2)
and
dpP;
O AP, + P,Byu(wg) — P1Brau(wy). (1.3)

The occupation probabilities can take the form P; = N;/N (where (i = 1,2)) where
N; is the occupation number of the two-level systems in the state |i) and N is the
total number of the two-level systems in the thermal radiation field. A schematic
diagram for the occupation of the two-level systems is shown in figure 1.2. We, of

course, have the relation P; + P, = 1 for the conservation of the total probability.

Energy (E)

—_—ee 00
N, E,

FIGURE 1.2: Occupation of the two-level systems (blue circles).

It is clear from Eqn. (1.2) that the population of the excited state (NP, = Ny) is
(i) reduced at the rate A due to the spontaneous emission, (ii) reduced at the rate
By1u(wp) due to the stimulated emission, and (iii) increased at the rate Byyu(wy) due
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to the stimulated absorption. On the other hand, it is clear from Eqn. (1.3) that
the population of the ground state (NP; = Nj) is (i) increased at the rate A due to
the spontaneous emission, (ii) increased at the rate By u(wp) due to the stimulated
emission, and (iii) decreased at the rate Bypu(wy) due to the stimulated absorption
[4, 7]. In thermal equilibrium, the occupation probabilities of the two-level system
becomes constant (% = %1 = 0) and they take the form of the Boltzmann probabil-
ity P; o e Ei/ksT where T is the temperature of the blackbody cavity. Thus from the

above two equations we get [4]

A

14
P;/Py)Biy — By 14

u(wp) = (

for P; /P, = elf2~Ell/ksT ynder the consideration of the thermal equilibrium at tem-
perature T. Now comparing this formula for the energy density per unit frequency
interval around the resonance with Planck’s blackbody radiation formula [9]

o) = 258 [ i (15
we get [1]
B = By; = Bpp (1.6)
and [1]

where c is the speed of light. This is how Einstein determined the A and B coeffi-
cients [1]. The Einstein coefficients are well known to the scientific community in
connection with the atomic spectral lines and the laser transitions. The equality of
the stimulated emission rate and the stimulated absorption rate was also a key to
reach Plank’s blackbody radiation formula. The Einstein coefficients quantify intrin-
sic properties of atoms/molecules and is independent of the populations and of the
radiation field.

1.3 Two-level system

A two-level system, also known as a two-state system, is a quantum mechanical
system which has only two non-degenerate energy eigenstates. There are infinitely
many energy eigenstates for an atom or a molecule. Hilbert space is infinite di-
mensional for such quantum mechanical systems [4]. Electric dipole transitions
of the atoms/molecules are the common study of interest. Hydrogen atom emits
sharp spectral lines as a consequence of the electric dipole transitions. The spectral
lines, of course, are formed as a result of allowed transitions between the two en-
ergy eigenstates [10]. For many experimental realizations, electric dipole transitions
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of an atom/molecule are considered between its only two energy eigenstates. The
atom/molecule under consideration for these two energy eigenstates can be treated
as a two-level system. The Hilbert space of a two-level system is, of course, two di-
mensional. The two-level system has an advantage of easily studying its dynamics
analytically without making any approximation.

The two-level consideration of atomic or molecular systems in low concentra-
tion in resonance is of great importance especially in laser transitions. The simplest
two-level system in quantum mechanics is a spin 1/2 particle of energy eigenvalues
pupB and —ppB in a magnetic field (B = Bk). The interaction of a two-level system
with the electromagnetic field is of great importance and it has huge applications in
quantum optics [11].

Let the bare Hamiltonian of a two-level system be Hj. Let the energy eigenstates
of the two-level system be |;) and |¢,) such that Hy|1) = Eq|¢1) and Hylg,) =
E>|¢y). Here, E; and E; (E; > E;) are two energy eigenvalues. We further have the
orthonormality condition (¢ |i2) = d12.

The quantum mechanical state of the two-level system at time t can be written as
linear combination (superposition) of the energy eigenstates |¢1) and |¢2) as [5]

¥ (1)) = cre B ypy) + coeE2t M py) (1.8)

where c; and ¢ are the probability amplitudes of the states ; and », respectively
and follows the normalization condition |c;|? + |c2|? = 1 [4].

1.3.1 Transition dipole moment

The transition dipole moment decides whether a transition is possible under the
electric dipole interaction. In electrostatics, if two equal charges +q are separated by
a distance 7, then the dipole moment of the system of the two charges can be written
asd = g7. The direction of the dipole moment is considered from the location of the
negative to the location of the positive charge. In quantum mechanics, the dipole in-
teraction resulting in the atomic transition from the initial state |i,) to the final state
|y is characterised by the transition dipole moment dy; such that dy; = (¢, |CT . ]A(’lpﬁ
where d is the dipole moment operator for the two-level system and k is the unit vec-
tor along the z-axis [4, 12]. Since the dipole operator is a Hermitian operator, we can
conveniently assume the transition dipole moment to be a real quantity. In that case,
we have dy; = djp. Otherwise we can take only the absolute value of <1,b2|ET . IA<]1,U1>
as the transition dipole moment. If d»; is zero then there will be no dipole transition
and the transition is said to be forbidden [5]. The atomic spectroscopic selection rule
(Al = £1) determines whether a transition is possible. The transition dipole mo-
ment determines the strength of the light-matter interactions. The transition dipole
moment is also defined to be as a vector dy; = (1»|d|ip;). This vector definition is

useful for the determination of the Einstein A and B coefficients.
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FIGURE 1.3: A typical interaction between the light and the matter
(a two-level system). The fundamental processes for the light-matter
interactions are shown in figure 1.1.

1.3.2 Interaction of a two-level system with the electromagnetic field

The wave-particle duality of light has its own significance in explaining various ex-
perimental outcomes. While both the semiclassical light-matter interactions and the
quantum light-matter interactions describe the Rabi oscillation in a two-level sys-
tem, the former cannot explain the spontaneous emission and the collapse-revival
phenomena [13]. However, the stimulated emission from a two-level system and
the stimulated absorption by a two-level system can be explained by both the semi-
classical theory and the quantum theory for the light-matter interactions. Effective
Hamiltonian for a two-level system interacting with an electromagnetic wave via
its electric dipole moment, can be written within the electric dipole approximation
k-7 < 1) as[7,11, 14, 15, 16]

CE(1) (1.9)

where Hy is the bare Hamiltonian for the two-level system, d is the electric dipole
moment operator of the two-level system, and E (t) is the time (t) dependent electric
field operator [8]. A schematic diagram for a typical light-matter interaction for a
two-level system in shown in figure 1.3. The operator over the electric field is re-
moved in the semiclassical theory. While for the classical case of the oscillatory elec-
tric field (E(t)) with the (angular) frequency w we haveAE (t) = Eg cos (wt) [4,11], for

hwz i
E\1/275., o—iwgt
2V (g e ™%

the quantum (field theoretic) case of the same we have E(t) = i R (

Here, 7 is position of an electron in an atom/molecule.
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ﬁ%sei“’?t ] where a;_is the annihilation operator which annihilates a photon (boson) of
the wave-vector k and the polarization s in the Fock space, ﬁ%s is the creation oper-
ator which creates a photon (boson) of the wave-vector k and the polarization s in
the Fock space, wy, is the frequency of the photon of the wave-vector k, é; is the unit
vector for the polarization of the photon of the wave-vector k, and V is the effective
volume of a cavity where the light-matter interactions are taking place [11, 8].

In the classical case the light-matter coupling term ~d-E (t) is replaced by —d-
E(t) where d is the electric dipole moment [4]. On the other hand, in the quantum
field theoretic case, the light-matter coupling term —d-E(t (t) requires d- & in operator
formd - & = (y|d - éxlw2) [11) (Y| + |1h2) (ip1]] where = (pr]d - &; ¢|$2) is assumed to
be as a real quantity [8]. While the operator |1) (2| = o- is called as the lowering
operator for the electric dipole transition (emission), the operator |¢») (1| = o is
called as the raising operator for the electric dipole transition (absorption) [8]. It
should be mentioned that the explicit time dependence of the coupling term d-E (1)
is often ignored in the Schrodinger picture of the quantum field theoretic models,
such as the Jaynes-Cumming model, because the quantized electromagnetic field is
not treated as an external object with given time dependence [17]. In the quantum
field theoretic models, the quantized electromagnetic field is included in the degree
of freedom of the entire system [17]. The light-matter coupling d E has four types

At

of terms, e.g. o_dy,, 0. dz, 01(1%5, and oyl . The interaction terms involving the

operators 04y, and o ﬁ%s oscillate so fast in the interaction picture that they can be
neglected under the rotating wave approximation [8]. These terms also leads to the

energy non-conserving (off-shell) processes [11].

1.3.3 Rotating wave approximation

The rotating wave approximation (RWA) is a approximation applicable for light-
matter interactions around the resonance. The RWA is applied to get approximate
analytic form for the transition probability of a two-level system [14]. The RWA is
applied not only to the exactly solvable models such as Rabi model [6] and Jaynes-
Cummings model [18], but also to the case of time-dependent sinusoidal perturba-
tion in the first order perturbation theory of quantum mechanics [4]. This approxi-
mation is used to neglect the rapidly oscillating terms which appear in the interac-
tion picture. Suppose a two-level system with E; — E; = Ty is interacting with a
single-mode resonant electromagnetic field of frequency w. The terms like e /(< ~@0)!
and e (@@t appear in the interaction picture. One can neglect the terms e*(«< o)t
comparing with terms e*(@~©)! in the interaction picture for frequency (w) of the
incident electromagnetic wave near around the Bohr frequency (wp). The fast oscil-
lating terms quickly averages to zero in an appreciable time scale. The RWA can also
be conveniently written as w + wy > |w — wy| [8, 14].
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1.4 Light-matter coupling regimes

A semiclassical theory for the light-matter interactions was introduced by Einstein
almost a century back [1]. In the early eighties, it was possible for atoms in optical
and microwave cavities to couple with the cavity modes. This led to the foundation
of the cavity quantum electrodynamics (QED) [7, 19]. The most interesting feature of
the cavity QED is that, the spontaneous emission from excited atoms or molecules
can be greatly suppressed or enhanced by placing them in mirrors or in cavities,
such as Fabry-Perot cavity, by virtue of the Purcell effect [20, 21]. Experimentalists
basically engineer the vacuum inside the cavity to observe the Purcell effect [21].
Recently with the great advent of technologies it has become possible to explore
the quantum dynamics of a two-level system in the deep and ultra strong coupling
regimes [22].

Strength of the light-matter coupling for a two-level system is usually analysed
at the resonance condition which is achieved by tuning the cavity in such a way
that frequency of one of the cavity mode becomes equal to the Bohr frequency of
the system. The relative strength of the light matter interactions in the cavity is
determined based on the three parameters as follows [7]:

i). k= %: the photon decay rate of the cavity of the quality factor Q,

ii). 7: the non-resonant decay rate, and

iii). u,: the light-matter coupling constant.

The non-resonant decay rate 7, however, is related to the Einstein A coefficient
by the relation v = %( - %) where AQ) is the solid angle subtended by the cavity
mode [7].

By the weak light-matter interactions we mean g, < sup{<y, x} where sup{+y, «}
represents the larger of x and - [7].

On the other hand, by the strong light-matter interactions, we mean g., >
sup{7y, «} [7].

While the quantum Rabi oscillation is studied for strong light-matter interac-
tions (gw, > sup{v, «} [7]), the Einstein rate equations are often applied for weak
light-matter interactions (g, < sup{7, «} [7]). Incidentally, the Jaynes-Cummings
model gives results in both the weak coupling regime and the strong coupling regime
as far as the rotating wave approximation is applicable. The Jaynes-Cummings
model, however, is not applicable in the ultrastrong coupling (g., ~ wp) and deep
strong coupling (g, > wp) regimes [23, 24]. The quantum Rabi model which gen-
eralizes the Jaynes-Cummings model is applicable in these regimes [22, 25].

1.5 Time-dependent perturbation theory of quantum mechan
ics

The time-dependent perturbation theory of quantum mechanics was originally de-
veloped by Dirac [3]. Let us consider an orthonormal and complete set of functions
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({¢n}) which are the solutions to the time-independent Schrodinger equation

T 2 (0), o
—%V + V()| pn(F) = E ¢ (7) (1.10)

such that [ ¢ (7) ¢, (7) d*7 = 8, ,» holds for the orthonormality and Y, ¢ (7) ¢, (7') =
83(7 — 7') holds for the completeness [4]. Here, E,SO) is energy eigenvalue of the sys-
tem (e.g. a point particle) in the state |¢;,).

Let us now consider a time-dependent Hamiltonian [26]

2
H= —z’imvz + VO +AV(7, 1) (1.11)
where H®) = — %VZ + VO (r) is the time-independent part (original Hamiltonian)

and AV(7,t) is the time-dependent part (H'(t)) of the Hamiltonian H. The time-
dependent part can be treated as a perturbation if A < 1. The quantum mechanical
state ((7,t)) of the system follows Schrédinger equation

ihaatzp(?,t) = Hy(7,1) (1.12)

and takes the form of the superposition of the energy eigenstates as
P(F, 1) = Y ca(t)e BV g, () (1.13)
n

where {c, ()} are time-dependent coefficients. These coefficients are time-independent
for the case of time-independent perturbation theory.

Let the system initially was in the state (7, t) = e Bt/ "¢ (7) and the perturba-
tion was switched on at t = ty. To the first order in A, the time-dependent coefficients
can be determined as

t , N
cn(t) ~ Gpje+ % / B (6, | V() [g) oY (1.14)
fo

for t > ty. On the other hand, we have ¢, (f) = 6, for —oco < t < ty. The transition
probability comes into the consideration for t > ty and it is defined as Py, (t) =
lcn () — cu(to)|? for the transition of the system from the sate |¢) to the state |¢,).
Here-from we get the transition probability within the first order as [26]

A 2

B ip0 _pO1y .
Peown(t) = |5 [ lE" B (0, 9 ) | (1.15)
0

1.5.1 Sinusoidal perturbation

For a sinusoidal perturbation we take the time-dependent perturbing termas AV (7, t) =
H'(7,t) = V(r) cos(wt) where w is the (angular) frequency of the perturbation. Thus
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Transition probability for t=1.5 [s]
P (D/QF [57]
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FIGURE 1.4: Transition probability as a function of frequency of the

electromagnetic field. The plot follows Eqn. (1.18).

we recast Eqn. (1.14) for tp = 0 as

Vo ei[wfwo}t -1 efi[wngw}t -1 16
T2h | w—wy  wytw (1.16)

cn(t) —cn(0) ~

where Vi = (¢n| V |¢y) and wy = [EY — EJ]/h. Now applying the rotating wave
approximation (w + wp > |w — wy|) we get the above transition probability as

2 | Vil? sin®(w — wo)t/2

Pk—m(t) = ’Cn<t) - CH<O)’ - hz [w — WO]Z (1.17)

1.5.2 Sinusoidal perturbation for a two-level system

Let a two-level system (atom) be interacting with the electric field part (E (t)) of an
electromagnetic field. Under the electric dipole approximation the perturbing term,
which represents the light-matter interaction, can be written as V(r) cos(wt) = —d -
E(t) = —d - Ey cos(wt) where Eg = Eok is the amplitude of the electric field, d = —e
is the electric dipole moment of the two-level system, 7 is the position of the electron
with respect to the nucleus of two-level system, and k is the unit vector along the
z-axis. Let us consider |¢) = |ip2) with the energy eigenvalue E; and |¢,) = |¢1)
with the energy eigenvalue E;. Bohr frequency of the two-level system is wy =
[Ex — E1]/h > 0. Now we get the transition probability for the two level-system
from Eqn. (1.17) as [4]

? ([w = wolt/2)
[w — wp)?

sin
Py (t) =~ OF (1.18)

where Qp = [W2l4old)]

is the Rabi frequency [6]. Above formula of the transition
probability is plotted in figure 1.4. It is clear from the figure that most of the transi-

tions take place near around the resonance (w = wy).
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1.5.3 Dirac’s determination of the Einstein B coefficient

Although Einstein obtained a relation between the Einstein coefficients (see Eqn.
(1.7)) he could not determine either of the coefficients because of limitations of the
old quantum mechanics. While the Einstein A coefficient was determined by Weisskopf-
Wigner [2] within the quantum field theory for the electrodynamics, the Einstein B
coefficient was determined by Dirac [3] within the 1st order perturbation theory of
quantum mechanics. Before going to the derivation of the A coefficient let us see
how Dirac determined the B coefficient [3]. Dirac determined the Einstein B coef-
ficient for a two-level system system in large blackbody cavity (V — o0). Thermal
radiation field inside the blackbody cavity interact with the two-level system in this
regard.

The energy density of the incident monochromatic electromagnetic field, as de-
scribed in the previous subsection, can be written as u = Z—OE% [4]. Thus in terms of
the energy density, we recast the transition probability of Eqn. (1.18) as [4]

2u 2 sin? ([w — wolt/2)

Py yq(t) ~ o2’ [w — wo?

(1.19)

where the transition dipole moment do; = (2 |d - k|1;) is assumed real and k is a unit
vector along the z-axis. If the transition dipole moment is not real then we have to
replace it by its absolute value (dy; — |da1]). All the frequencies (0 < w < o0) of the
electromagnetic fields contribute in the light-matter interactions for the two-level
system in the thermal radiation field. The thermal radiation field is also unpolar-
ized. For such a case we replace u by u(w) in Eqn. (1.19) and call u(w) as energy
density per unit frequency interval. If the z-axis be the direction of propagation of
the electromagnetic field, then the unit vector for the polarization €; can be oriented
arbitrarily in the x — y plane. Now we further have to integrate the transition proba-
bility over all possible frequencies to get the net transition probability. We also have
to take averaging \(j . éE\Z over all the directions of incidence of the electromagnetic
fields and all the independent polarizations of the electromagnetic fields [4]. Thus

we get the net transition probability as [4]

702 0 i 02 _
_ 2[da| / y w)sm ([w wo]t/Z)dw (1.20)
0

P2—>1(t) - 3€0h2 [w _ CUO]Z

where jﬂ = <lp2|cﬂlp1> is the transition dipole moment. Here, the factor % comes
from averaging over all the directions of incidence and the two independent polar-
izations [4]. However, since most of the transitions are taking place at around the
resonance (w = wy), we replace u(w) with u(wp) in Eqn. (1.20). It is clear from Eqn.
(1.20) that most of the contributions in the net transition probability are coming from

around the removal singularity in the sinc function i.e. from around the resonance
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(w — wp). We can further assume wyt — co. Thus we recast Eqn. (1.20) as [4]

7t|dos |2

Pron () = 3eoht?
0

u(wo)t (1.21)

for wot — co. Note that the net transition probability for a two-level system in the
thermal radiation field is linear with the time ¢ for the limiting case wot — oo. This
result is compatible with the Fermi’s golden rule [27]. It is clear from Eqn. (1.21)
that the rate (R, = %Pzﬁl (t)) of transitions i.e. the rate of stimulated emission is
independent of time for wypt — co, and it takes the form

7t|don >

= 3ot u(wp). (1.22)

2—1

Now by following the definition (By; = Ry_,1/u(wo)), we get the Einstein B coeffi-
cient from Eqn. (1.22) as [3]

7|1 |?
3€0h2 '

21 = (1.23)

This is Dirac’s determination of the Einstein B coefficient [3].

1.6 Weisskopf-Wigner determination of the Einstein A coef-
ficient

The Einstein A coefficient was determined by Weisskopf and Wigner within the
quantum field theory for a two-level system interacting with the vacuum modes
of the electromagnetic field [2]. No photons are involved in making a spontaneous
emission from the two-level system [2]. What it requires are the quantum (vacuum)
fluctuations of the electromagnetic field around the system [2].

Let the two bare states of the two-level system be given by |¢) with energy
eigenvalue E; = 0 and |¢,) with energy eigenvalue E; > 0. Bohr frequency of the
system is wg = (E; — 0)/h. Let the two-level system be kept inside a blackbody
cavity of volume V — co. The effective Hamiltonian for the two-level system, elec-
tromagnetic field, and the light-matter interactions can be written within the rotating

wave approximation after quantization of the electromagnetic field as [11]

H = hewo o) (ol + ) heopdy g, — ) (g, ) (| ag, + Hoc] (1.24)
ks ks

where the first term represents the bare Hamiltonian of the two-level system, the sec-

ond term represents the Hamiltonian of the electromagnetic field, the third term rep-

resents the light-matter interactions, i, is the bosonic annihilation operator which

annihilates a photon of energy fhiwy, polarization s and momentum 1k (having dis-

persion wy = ck) in the Fock space, gz = i/ % (py|d - éz.[P2) is the light-matter
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coupling constant, & is the unit-vector for the polarization of a photon in the mode
k, and d is the electric dipole moment operator for the two-level system.

Let us consider that the two-level system is initially (f = 0) in the excited state
|t) and there are no photons at time t = 0. Therefore, the combined state of the
two-level system and field can be written at t = 0 as |((0)) = |¢o, {0}). After some
time the two-level system makes a spontaneous transition to the ground state |¢;)
after emitting a photon. Therefore, the combined state of the two-level system and
field at time t can be written as [2]

[¥(£)) = a(t)e™ " |pa, {0}) + Y by (e ¥ |pn, {15.}) (1.25)
ks

where |1, {11, }) represents the combined state of the two-level system (in the ground
state) and the emitted photon (of mode k and polarization s), a(t) represents the am-
plitude of decay due to the spontaneous emission, and by (t) is the amplitude for a
radiation (of wave-vector k and polarization state s) due to the spontaneous emis-
sion. Now solving the Schrodinger equation, ihw = H|¥(t)), for the initial

conditions as mentioned above, we get [11]

da(t) b i(wr—wy) (t—t
G~ Llsal’ [[ e aeyar 1.26)
and [11]
db; (t) ,
k _ sox l(wp—wo)t
dst = 18&‘3( Fotg(p). (1.27)

The discrete set of modes set to be continuum for V' — co. Let us now consider
the Weisskopf-Wigner approximation (a(t') = a(t)), i.e. the amplitude a(t) varies
with the constant rate A for A < wy. Such an approximation is compatible with the
weak light-matter coupling regime. Under this approximation and for V. — oo, Eqn.
(1.26) takes the form [2, 11]

a(t) = e 4t/2 (1.28)
where [2]
31712
_ wylda|
~ 3mephc (1.29)

is the Einstein A coefficient and dy; = <1[J2‘6?|l[11> is the transition dipole moment.
Since the amplitude a(t) decay with the rate A/2 due to the spontaneous emission,
the energy (~ |a(t)|?) decays with the constant rate A. Thus the Einstein A coeffi-
cient is the natural decay rate. Now from Eqn. (1.27), we get Lorentzian broadening
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(2]
2

lim [b_(£)? 5,

f—00 - A2/4 =+ [(UE — w0]2 (130)

for the frequencies of the emitted photons around the Bohr frequency. It is interest-
ing to note that the width of this distribution is the Einstein A coefficient. It should
be mentioned in this regard that the A coefficient becomes constant because of the
consideration of the Weisskopf-Wigner approximation. The A coefficient may not

necessarily be constant beyond this approximation [13].

1.7 Population dynamics and entropy production for two-level

systems

The Einstein rate equations (Eqns. (1.2) ans (1.3)) allow us to study nonequilibrium
statistical mechanics e.g. population dynamics and entropy production of two-level
systems in the thermal radiation field.

1.7.1 Population dynamics

Let us consider an ideal classical gas of two-level systems in a large (V — o) black-
body cavity at a temperature T. Let P; be the probability of occupation of the ground
state (|¢1)) of the system and P, be the probability of occupation of the excited state
(|¢2)) of the system. Bohr frequency of the two-level system has already been men-
tioned to be as wy = [E; — E;]/h. We already have mentioned in Section 1.2 that the
population dynamics of the gas of the two-level systems follows from the Einstein
rate equations [1, 4, 28]:

dp
dTZ — — AP, — PyRo; + PiRy» (1.31)
and
dp
d—tl = AP, + PRy, — PiRypp. (1.32)

where Ry, = Byju(wp) = Rip = Bppu(wp) = R is the rate of stimulated transitions of
a two-level system at the resonance (w = wp). Above two rate equations, however,

can be combined as

dp,

—— =R —-|A+2R|P 1.
= [A+2R]P, (133)

by virtue of the conservation of the occupation probabilities i.e.

P+P=1. (1.34)
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Upper line —=> P4(t) and Lower line —> P5(t) for P»(0)=0, A=1 Hz, R=2 Hz
Pi(t), Pa(t)

t[s]

FIGURE 1.5: The solid line (P,(t)) follows Eqn. (1.35) for the initial

condition P,(0) = 0 and the parameters as mentioned in the plot

label. The dotted line (P (t)) follows Eqn. (1.34) for the same initial
condition and the same parameters.

Initial condition: P,(0) =0

If initially i.e. at time t = 0, the two-level system is found to be in the ground statei.e.
P;(0) = 0, then Eqn. (1.33) has the physical solution for the occupation probability
Py (t) as

R )
Pt) = 55w [1—e [A+2RV]. (1.35)

We plot this probability in figure 1.5. For t — oo, the two level systems come in
equilibrium with the thermal radiation field and the occupation probability P> ()

reaches the Boltzmann probability P;(c0) = 4 sz = — ﬁ;ﬁf Z_Z e [1, 4]

Initial condition: P,(0) =1

If initially i.e. at time t = 0, the two-level system is found to be in the excited state
i.e. P,(0) = 1, Eqn. (1.33) has the physical solution for the occupation probability
Py(t) as

R
Py(t) = A+ 2R

n [1 }e*WZRJf, (1.36)

R
A+2R
For t — oo, the two level systems come in equilibrium with the thermal radiation
field and the occupation probability P, () reaches the same Boltzmann probability
Py(o0) = et

SETT ra FaTksT [1, 4]. The Boltzmann probability does not depend on the
initial condition.
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Entropy production for P»(0)=0, A=1 Hz, R=2 Hz
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FIGURE 1.6: Entropy production of a two-level system in a blackbody

cavity. The plot follows Eqn. (1.37) for the initial condition P,(0) = 0

and the parameters as mentioned in the plot label. The plot in the

inset follows Eqn. (1.37) for the initial condition P>(0) = 1 and the
same parameters as mentioned in the plot label.

1.7.2 Entropy production

Entropy production of a single two-level system in the blackbody cavity can be de-
scribed by the formula [10]

S(t) = —kp[Py(t) In(Py(t)) + P2(t) In(P2(t))] (1.37)

where S(f) denotes the entropy of the two-level system at time t and P;(t) & P(t)
represents the occupation probabilities which obey the Einstein rate equations (Eqns.
(1.31) and (1.32)). Above form of the entropy production formula is compatible with
the form prescribed by Pauli and von Neumann [29, 30].

We plot the entropy production in figure 1.6 for both the initial conditions P»(0) =
0 and P,(0) = 1. It is interesting to note that the entropy always increases with time
if the two-level system initially occupies the ground state. Otherwise the entropy
may decrease at some interval of time. However, the entropy averaged over both
the realizations of the initial condition may not decrease in time as far as the light-
matter couplings are considered to be weak. Incidentally, the light-matter couplings
are considered to be weak for a two-level system in a blackbody cavity of volume
V — oo. Otherwise, for strong light-matter interactions, the two-level system would
be treated as an open system where the second law of thermodynamics is not appli-
cable.
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1.8 Failure of the 1* order time-dependent perturbation the-
ory of quantum mechanics at around the resonance (w —
wo)

Let us recall the quantum mechanical result

? ([w — wo]t/2)

sin
P (t) ~ O3
2—)1( ) R [(U — wo]z

(1.38)

for the transition probability for a time-dependent sinusoidal perturbation on a two-
level system as described in Eqn. (1.18). In Section 1.5.3 we have noticed that this is
the key result for the derivation of the Einstein B coefficient for a two-level system
in a large blackbody cavity. We have noticed that most of the contributions in the B
coefficient come from around the resonance (w — wy).

I w(_ll;d < 1[4]. Interestingly,
there is a problem of normalization of the transition probability at the resonance

2 42
(w — wp). The transition probability takes the form P>_,1 () — Qﬁt at the resonance.

The time-dependent perturbation theory is valid for

This form of the transition probability is not normalizable rather P>_,;(t) — oo for
t — oo for any finite small value of Qg for w — wy. Hence the 15 order perturbation
theory of the quantum mechanics fails at around the resonance even for a non-zero
weak light-matter coupling (Qr/A < 1) of the sinusoidal perturbation.

Since most of the contributions in the B coefficient come from around the reso-
nance, the expression of the B coefficient determined by Dirac is questionable even
for the weak coupling regime [4, 5].

Another drawback of the 1% order perturbation theory is that the periodicity in
stimulated transition is lost at the resonance (w — wy). The periodicity can be
found in non-pertubative model such as the Rabi model [6] which is able to explain
the nuclear magnetic resonance.

Hence we are motivated to determine the B coefficient within a non-perturbative
model, such as Rabi model, which though is often used for strong coupling regime,
can also be used for weak coupling regime as it is an exactly solvable model for the
entire range of light-matter coupling.

Rabi model, however, treats the light-matter interaction classically. The Jaynes-
Cummings model [18] on the other hand is another exactly solvable model for light-
matter interaction. This is quantum mechanical model where light-matter interac-
tion is treated with the quantum field theory. We are also interested to determine the
Einstein A and B coefficients within the multimode Jaynes-Cummings model.

There are experimental data available for the collapse and the revival of the quan-
tum Rabi oscillations of a two-level system in a lossy resonant cavity. We are also
motivated to explain these data within the multimode Jaynes-Cummings model.

We are also motivated to study the population dynamics of a two-level system
in thermal radiation field with the model dependent Einstein coefficients.
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The population dynamics allows us to study non-equilibrium statistical mechan-
ics of the two-level system in thermal radiation field. We are motivated to determine
entropy production of the system.

Let us now introduce the two exactly solvable models.

1.9 Exactly solvable models for light-matter interactions

By the virtue of the existence of spin, electron has an intrinsic angular momentum as
well as an intrinsic magnetic moment. The Stern-Gerlach experiment first demon-
strated the space quantization of the angular momentum of an atom as well as the
existence of spin of an electron. Extending the theory related to the Stern-Gerlach
experiment, Rabi et al first theorised and observed the nuclear magnetic resonance
(NMR) in molecular beams in 1939 [6]. The NMR is a phenomenon where a nuclei
is perturbed by a weakly oscillating magnetic field and produce a electromagnetic
tield of frequency characteristic of the nucleus. The NMR spectroscopy is a result of
magnetic properties of certain atomic nuclei. Rabi et al in their experiment consid-
ered the problem of a spin-1/2 magnetic dipole undergoing precession in a magnetic
tield. Rabi obtained an expression for the probability that a spin-1/2 atom incident
on a Stern-Gerlach apparatus would be flipped from the +1/2 or —1/2 state to the
—1/2 or +1/2 state, respectively, by an applied radio-frequency magnetic field [11].
The periodic flipping of the states is coined as the Rabi oscillation [6].

Just as the spin-1/2 system undergoes Rabi oscillation by the action of an oscillat-
ing magnetic field, a two-level system (atom/molecule) also shows Rabi oscillation
by the action of an electromagnetic field [11]. While the interaction of a two-level
system with magnetic field is described by —ji - B under the magnetic dipole inter-
action, the interaction with electric field is described by —d - E under the electric
dipole interaction [4, 5].

1.9.1 Rabi model

Let us consider a two-level system (atom/molecule) having the excited state |¢,)
and the ground state |¢;) with corresponding energy eigenvalues E; and E; (E; >
E,), respectively. The Bohr frequency of the two-level system is wy = [E; — E1]/h.
Let us further consider that the two-level system is interacting with a plane monochro-
matic electromagnetic wave incident on it. Let the electric field part of the incident
electromagnetic wave be E = Ejcos (wt) where Eq be the amplitude of oscillation
of the electric field and w be the (angular) frequency of oscillation of the electro-
magnetic field. Let the electric dipole moment of the two-level system be d. The
Rabi Hamiltonian for the two-level system interacting with the electromagnetic field
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FIGURE 1.7: Schematic diagram for the fundamental processes re-
lated to the Rabi model.

within rotating wave approximation (w + wp > |w — wyp|) and the electric dipole ap-

proximation is given by [6, 5]

R En-d. . .
H = E1[¢1) (1| + Ea|p2) (2| —OT[GI“”\1P1><1/J2| +e o) (] (1.39)

Bare part of the Hamiltonian: Hy

Interaction part of the Hamiltonian: A’ (t)

The Rabi Hamiltonian describes the Rabi model. It should be mentioned in this
regard that the Rabi model is a semiclassical model because the bare part of the
Hamiltonian is treated quantum mechanically and the light-matter interaction part
is treated classically. While the first term of the interaction part containing [11) (]|
leads to an electric dipole transition from the excited state to the ground state, the
second term of the interaction part containing |¢,) (1| leads to an electric dipole
transition from the ground state to the excited state. The operator |1) (| is called
as the lowering operator and the operator |¢,) (i1] is called as the raising operator.
These are also called as transition operators. Schematic diagram for the fundamental
processes related to the Rabi model is shown in figure 1.7.

The state of the system at time f can be written as [6]

(1)) = cr(t)e B/ ) + o (t)e F2 M py) (1.40)

where ¢ (t) is the probability amplitude of the bare state 1) and c»(f) is the proba-
bility amplitude of the bare state |i,). From conservation of the total probability we
have

le1 () + |ea (D) = 1. (141)

Time evolution of the probability amplitude can, however, be determined from the

Schrodinger equation

0)

5 = Hlp(t). (1.42)

It should be mentioned in this regard that if the system is initially (f = 0) found
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in the excited state (|1»)), then |c1(¢)|> would be called as the transition probability
(P,1(t) = |c1()]?) or the probability of a stimulated emission from the excited
state to the ground state. We also have |cz(t)|> = Py_,»(t) as the probability of a
stimulated absorption [4]. On the other hand, if the system is initially found in
the ground state (|1)), then |cz(#)|> would be called as the transition probability
(Py_2(t) = |ca(t)]?) or the probability of a stimulated absorption. In this case, we
also have |c1(t)|? = P_,1(t) as the probability of a stimulated emission.

If we move on to the interaction picture from the Schrodinger picture, we have

following equation for the time-dependent probability amplitudes [5]

i (le(t)) _ ( 0 ) (mw) 11
Cz(t) Vyelwot 0 Cz(t)

where V;p = —wew, Vo = —@e_iw, and Vj; = Va = 0. Since Ey - d
is an Hermitian operator, we are assuming that (¢, |Ep - 6T|1p2> be a real quantity so
that (1|Eo - d|p2) = (¥n|Eo - d|g1) holds. Otherwise we replace (1|Ey - d|i,) with
| (1] Eo - d|y2)| and (12 |Ep - d|wy) with | (1| Eg - d|ip1)| for convenience [5]. Now Eqn.
(1.43) leads to the following coupled differential equations

in S eyt = — 1B A2) a4 (1.44)
dt 2
and
ihSet) = —We“‘“%“cl(t» (1.45)

Let us now solve the coupled differential equations (Eqns. (1.44) and (1.45)) for
the initial conditions ¢1(0) = 1 and c»(0) = 0. It is clear from the initial conditions
that the two-level system initially was in the ground state (|4;)). Let us now take the

ansatz
Cl(t) — B(t>ei(w—wo)t/2 ) )
ea(t) = A(t)e—ilw—anr? where |B*(t)| + |A“(t)| = 1 due to Eqn. (1.41).
2 pum—

Eqgns. (1.44) and (1.45) take the forms [31]

inb(r) 590 _2‘”0> B(t) = —<¢1‘E°2' W2 5 4) (1.46)
imA(t) + h(w_ZwO)A(t) = _WB(” (1.47)
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with B(0) = 1and A(0) = 0. Let us now take another ansatz

B(t) = Bpe'?'"

A(H) = 4 iQ,t} provided that Ag and B are constants.
t) = Age

Substituting the above forms of B(t) and A(t) in Eqns. (1.46) and (1.47) we get non-
trivial solutions of B(t) and A() if the following [31]

h Ql _ 2 _ <¢1|Eﬂoﬂ¢2>
[ + (“,; .dqw?>/ ] 2 —0 (1.48)
_M RO — (w — wp) /2]
holds by resulting in
7] 2 1/2
o — 41 [|<¢1|Eof|¢2>| + (w — wo)z} . (1.49)
2 h
Now we write the general solutions for B(t) and A(t) as [31]
B(t) = ae'®! 4 g~ (1.50)
A(t) = aree™t + prge ! (1.51)
O +w—wp)/2 O —[w—wy] /2
where Ty = — [w,y <ol - Q/,[w’lwo]/zz 1"‘3 - [(U’Y <ol - - Q’Jr[wllwo]/z and Y=
(yn|Eo - d|yn) /2h. Now applying the initial conditions we have B(0) = a + 8 =1
and A(0) = ar, + prg = 0. Here-from we get « = rﬂrfra and 2iar, = —%.
Now Eqn. (1.51) can be recast as [31]
A(t) = 2iary sin (Q't)
(1Eo - d|y2) [sin (1)
- i2h o) (1.52)
Therefore c;(t) takes the form cy(t) = —%@lwﬁe_i[“_wwz sin ((V't). Thus the
transition probability P;_»(t) = |ca2(t)|? takes the form [6]
in” (/2
Pra(t) = 03 S0 1O1/2) (153)

QZ

where O = %ﬂ#)z)\ is the Rabi frequency, Q = £,/03% + A2 = 2(Y is the gener-
alized Rabi frequency, and A = w — wy is the detuning parameter. The other prob-
ability amplitude, on the other hand, takes the form c¢;(t) = —% [r/;eim/ 2 4
rae I/ z]ei[“’f‘dow 2 [31]. However, from the conservation of the total probability
now we can safely write

2(Qt/2)

sin
Pra(t) = ()P =1-Or—4; (1.54)
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FIGURE 1.8: A two-level system in an optical cavity.

It should be mentioned in this regard that if the initial conditions are now re-
versed i.e. if the two-level system is initially (t+ = 0) found in the excited state, then
the transition probability (P,_,1(t)) takes the form

(Qt/2)

102
S

(1.55)
of Eqn. (1.53).

It is to be noted that the transition probability oscillates periodically in the time
domain with the generalized Rabi frequency Q. It is also to be noted that this oscil-
lation, called the Rabi oscillation, does not stop even at the resonance (w — wy). The
transition probability oscillates with the Rabi frequency (Q2r) in the resonance. Such
as oscillation was observed in connection with the NMR [6].

1.9.2 Jaynes-Cummings model

Let us consider a two-level system (atom/molecule) having the excited state |¢,)
and the ground state |¢;) with corresponding energy eigenvalues E; and E; (E; >
E,), respectively. The Bohr frequency of the two-level system is wy = [E; — E1]/h.
Let us further consider that the two-level system be placed in a 1-D optical cavity
and the system is interacting with a single quantized mode corresponding to the
frequency w of the cavity’s electromagnetic field as shown in figure 1.8. Let the
light-matter interaction in this case takes place due the coupling of the electric dipole
moment d of the two-level system and the electric field part (E = Egcos(wt)) of
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the electromagnetic field under the electric dipole approximation. Let z-axis be the
cavity axis. The Jaynes-Cummings Hamiltonian for the two-level system interacting
with the electromagnetic field within rotating wave approximation (w + wp > |w —
wy|) and the electric dipole approximation is given by [18, 8, 15]

N 1 I . A
H= 5?1(000’3 + hwa'a —ihglo d — o _a'] (1.56)
?w/ Field System-Field Interaction
ystem
where we are following the notations [8]: ¢y = [¢,) (¢1] is the raising operator
for the two-level system, o— = |¢1) (¢2] is the lowering operator for the two-level
system, 07 = [0y +0_], 00 = —i[oy —0_], 03 = |P2) (2| — |P1) (P1] is the inversion

operator for the two-level system, 4 (4") annihilates (creates) a photon of energy hiw
in the Fock space, § =/ ey (¥1 |d- &|p,) is the coupling constant (assumed real) for
the light-matter interaction, € is the unit vector for the polarization of the cavity field,
and V is the effective volume of the cavity. It should be mentioned that the operators
01, 02, and o3 obey Pauli spin algebra and the operators 4 and at obey the bosonic
commutation relation ([,4"] = 1). The Jaynes-Cummings Hamiltonian is explicitly
time-independent in the Schrodinger picture because the quantized electromagnetic
field is not treated as an external object with given time dependence [17].

The Jaynes-Cummings Hamiltonian describes the Jaynes-Cummings model. The
first term (%hwoag,) of the Jaynes-Cumming Hamiltonian represents the bare Hamil-
tonian of the two-level system, the second term (iwa'a) of the Jaynes-Cummings
Hamiltonian represents the bare Hamiltonian of the (second) quantized electromag-
netic field, and the third term (—ifig[c}4 — 0_a']) of the Jaynes-Cummings Hamil-
tonian represents the light-matter interaction for the two-level system. The first
two terms together form the bare part (i.e. non-interacting part) of the Jaynes-
Cummings Hamiltonian. It should be mentioned in this regard that the Jaynes-
Cummings model is a purely quantum mechanical model because the atomic/molecular
part of the Hamiltonian is treated quantum mechanically, the electromagnetic field
part of the Hamiltonian is treated quantum field theoretically, and the light-matter
interaction part of the Hamiltonian is also treated quantum field theoretically. The
Jaynes-Cumming model is a model for cavity quantum electrodynamics. While the
first term of the interaction part corresponds to an absorption (annihilation) of a
photon by the two level system, the second term of the interaction part corresponds
to an emission (creation) of a photon from the two-level system. Schematic diagram
for the fundamental processes related to the Jaynes-Cummings model is shown in
figure 1.9. It should also be mentioned in this regard that if the position of the two-
level system in the cavity becomes significant, then the coupling constant has to be
modified. If the cavity-mirrors are situated at z = 0 and z = L on the z-axis and
the two-level system is found at z = z(, then the coupling constant would be modi-
fiedtoas g = \/% sin(kzo) (1 |d - &|,) where k = w/c is the wave-number. The
fundamental processes related to the Jaynes-Cummings model are shown in figure
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1.9. Jaynes-Cummings model is mainly used for the theoretical explanation of the
quantum Rabi oscillations of a two-level system in an optical cavity [8]. It is also
used to describe the phenomena of the collapse and the revival of the quantum Rabi

oscillations [8].

E, E, E,
hw hw hw hw
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E, E, E
Spontaneous Emission Stimulated Emission Stimulated Absorption

FIGURE 1.9: Schematic diagrams for the fundamental processes re-
lated to the Jaynes-Cummings model.

It is to be noted that the light-matter interaction part of the Hamiltonian com-
mutes with non-interacting part (i.e. bare part) of the Hamiltonian. Thus the eigen-
states of the Jaynes-Cummings Hamiltonian can be written as linear combination
of the bare states (|n,92),|n+1,¢1)) [8, 15, 32]. Bare states representation of the
Hamiltonian for n photons, however, is read as [15, 32]

g, — | (wyelHng) Lyl Hin )
<1’l,l[J2‘H|n+l,lP1> <1’l+1,lP1|H|1’l+1,lP1>
_ [ Lh + nhw +ihgvn +1 ]

1.57
—ihgyn+1 —9Lh+ (n+1)hw 1.57)

Here-from we get the energy eigenstates (as well as the dressed states) of the two-

level system, as

|n,+) = cos(0,/2) |n, o) +sin(6,/2) |n+ 1, ¢1) (1.58)

and
|n, —) = —sin(60,/2) |n, P2) + cos(6,/2) [n + 1, 1) (1.59)
where tan(6,,) = — Ziﬁ follows from the orthonormality of the dressed states [32].

Energy eigenvalues corresponding to the dressed states are given by? [15, 32]

Ei =hw(n+ 1) + h(;"

5 (1.60)

where ), = \/(w — wy)? +4¢2(n + 1) is the generalized n-photon Rabi frequency.
Here E. is the energy eigenvalue of the dressed state |1, +) and E_ is the energy
eigenvalue of the dressed state |1, —). Let us now express the bare states in terms of

2Here, the upper sign corresponds to|n, +) and the lower sign corresponds to |1, —).
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the dressed states, as
|n,n) = cos(0,/2) |n,+) —sin(6,/2) |n, —) (1.61)
and
|n+1,41) =sin(6,/2) |n,+) + cos(6,/2) |n, —) (1.62)

It is clear from the diagonal elements of the matrix in Eqn. (1.57) that the energy

eigenvalues of the bares states [n + 1, ¢1) and |n, ,) are
EQ = (n+1/2)hw £ hlw — wo] /2 (1.63)

where the upper sign (+) is applicable for the bare state |n+1,¢;) and the lower
sign (—) is applicable for the bare state |1, §»). Energy eigenvalues of the dressed
states and the bare states are plotted with respect to the detuning parameter in figure
1.10. It is clear from the figure that the energy eigenvalues of the bare states cross
each other at the resonance (w = wyp). This crossing, however, is avoided for the
energy eigenvalues of the dressed states. It is clear from Eqn. (1.60) and Eqn. (1.63)
that the dress state energy eigenvalues reach the bare state energy eigenvalues in the
limiting case of g — 0.

E:=(n+1/2)hw EQ) —(n+1/2) hw

th hwo

FIGURE 1.10: Energy eigenvalues of the dressed states and the bare
states. The upper solid line ([E4 — (1 + 1/2)hw]/hw) and the lower
solid line ([E— — (1 +1/2)hw]/hwy) follow Eqn. (1.60) for ¢/wy = 0.1

and n = 1. The right upper dotted line ([ESB) — (n+1/2)hw]/hwy)

and the right lower dotted line ([ESO) — (n +1/2)hw]/hwy) follow
Eqn. (1.63) forn = 1.
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The quantum mechanical state |¢()) of the two-level system follows Schrodinger
equation for its time evolution. Thus if the system initially (t = 0) were in the upper

state with n photons, then its time evolution takes place, as [i(t)) = e/ | ) =

e iHt/Mcos(6,/2) |n, +) — sin(6,/2) |n, —)]. Since the dressed states are stationary

states, we can write
lp(t)) = cos(8,/2)e E+t/M |, +) —sin(6,, /2)e E-1/" |n, —) . (1.64)

Here-from we get the transition probability to the ground state with n + 1 photons,
as [18, 8, 15]

P = [n+ L pily(1) P

= |[sin(6,/2) (n, 4| + cos(0,/2) (n, —|][cos(8, /2)e E+t/T |n, +)
—sin(,/2)e E-t/M |, —)])?

sin2 (\/(w—wo)z;‘lgz(”ﬂ)f)

(w—wp)?+4¢2(n+1)

= 4¢*x (n+1)x (1.65)

This is the Jaynes-Cummings model result for the transition probability Py /()

for the initial condition that the two-level system initially (+ = 0) was in the excited
state |¢,). This transition probability can be recast as

_4%n+1]
Q2

Ot

Py (t) sin? (T) (1.66)

where O, o = /A2 +4¢2(n + 1) is generalized n-photon (quantum) Rabi frequency
and A = (w — wyp) is the detuning parameter. At the resonance (w — wy), the
generalized n-photon quantum Rabi frequency simply becomes the n-photon Rabi
frequency ), = 2¢+v/n + 1. It is also to be noted that this transition (emission) prob-
ability is non-zero even if n = 0 i.e. even if no photons are incident on the two-level
system. This nontrivial result for n = 0 can not be obtained from the semiclassi-
cal Rabi model as described in Section 1.9.1. Quantum vacuum fluctuations which
are compatible with the Jaynes-Cumming model are necessary to get this non trivial
result. While the transition |n,2) — |n+ 1, ¢;) for n = 0 would be called as spon-
taneous emission, the transition |n, ) — |n+1,¢,) for n # 0 would be called as
stimulated emission. On the other hand, the transition |n + 1, 1) — |n, ) would
be called as stimulated absorption. When there is no field inside the cavity,i.e. n =0,
the transition probability in Eqn. (1.66) oscillates with the 0-photon Rabi frequency
()9 = 2g at the resonance. Such an oscillation is known as vacuum Rabi oscillation
[11, 13, 14]. The semicalssical Rabi model can not, of course, explain the vacuum
Rabi oscillation.
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1.10 Collapse and revival

The Jaynes-Cummings model as described in Section 1.9.2 is able to describe the
quantum Rabi oscillations of a two-level system (atom/molecule) in an optical cav-
ity. The quantum Rabi oscillations, however, are most prominent at the resonance
(w — wo). The optical cavity is often tuned with the resonant frequency and be-
comes a resonant cavity. There are many quantum Rabi oscillations of the transi-
tion probabilities (Eqn. (1.66)) with different n-photon Rabi frequencies in a single
two-level system. Collapse of the Rabi oscillations takes place when they interfere
destructively. The quantum Rabi oscillations for different photons numbers dephase
in this situation with the phase difference 7r. On the other hand, revival of the Rabi
oscillations takes place when they interfere constructively. The quantum Rabi oscil-
lations for two consecutive photons numbers n and n + 1 rephase in this situation
with the phase difference 27.

The collapse and the revival of the quantum Rabi oscillations have been observed
for the case of the injection of the coherent electromagnetic field to a two-level system
(atom) in a lossy resonant cavity [33]. Observation of the collapse and the revival,
however, were first reported for the investigation of the dynamics of the interaction
of a single Rydberg atom with the resonant mode of an electromagnetic field in a
superconducting cavity [34]. The phenomena of the collapse and the revival become
even more interesting if a large number of coherent photons are injected to a two-
level system in a resonant cavity [35]. A theory for the collapse and the revival was
proposed in this regard by Eberly et al [36] even before the experiment was carried
out by Rempe et al [34]. We describe the theory given by Eberly et al [36] in the
following.

For the description of the collapse and the revival of the quantum Rabi oscilla-
tions we take the Jaynes-Cumming model result for the transition probability ob-
tained in Eqn. (1.66). We take A = 0 for the consideration of the light-matter cou-
pling for only the resonant mode (w = wy). We further have to consider the statisti-
cal weight of the n-photon Rabi oscillation. The statistical weight can be determined

e "

from the Poisson distribution p, = *— where p, represents the probability of oc-

cupation of n coherent photons for average number of coherent photons 7. Thus we
get the net transition (emission) probability from Eqn. (1.66) as [36]

0 =1

Py (t) = Z z

n=0

" sin? (gtv/n 1), (1.67)

n!

It should be mentioned in this regard that we have considered the two-level sys-
tem to be in the excited state (|¢)) at time t+ = 0 while deriving the above equa-
tion. In spite of large amount of simplicity of the Jaynes-Cumming model, the
net transition probability P,_,;(t) is a sum of infinite series [36]. This tells us that
the net transition probability varies with various different n-photon Rabi frequen-
cies Q, = 2¢v/n+1. Another important parameter related to the dynamics of
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Collapse and revival for n=20
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FIGURE 1.11: Collapse and revival of the quantum Rabi oscillations of

a two-level system in a resonant cavity. The plot follows Eqn. (1.68)

for the average number of injected coherent photons 7 = 20. The

plot in the inset follows Eqn. (1.67) for the same average number of
injected coherent photons.

the Jaynes-Cummings model is the population inversion W(t) = Py_5(t) — Po_,1(t)
where P;_,5(t) = 1 — P,,1(t) is the net transition probability from the ground state
(|g1)) to the excited state (|¢2)) [36]. Thus we get the population inversion from Eqn.
(1.67) as [11, 14, 36, 37]

Nno—

© [cos®(gtv/n + 1) — sin®(gtv/n + 1)]
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While the net transition probability P;_,;(f) ranges from 0 to 1, the population inver-
sion W(t) oscillates ranges from +1 to —1. However, both the population inversion
W(t) and the net transition probability P,_,;(t) describe the collapse and the revival
of the quantum Rabi oscillations [36, 33].

We know that the peak of the Poisson distribution takes place at n = 7 for i > 1.
The most significant contribution to the quantum Rabi frequency comes from the
symmetric spread 2An of n about the peak at n = 7 [38]. The symmetric spread
2An is twice of the standard deviation An. For the Poisson distribution the standard

1/2

deviation is An = 7*/“. Therefore the dephasing condition of the quantum Rabi

oscillations can be set for the collapse time t. as [38]

[Qiian — Qa—anlte =7
or 2g[(A+1+ V)2 —(A+1—Va)' At = (1.69)
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From this equation we estimate the collapse time as ¢, ~ % for 71 > 1. On the other
hand, the rephasing condition of the quantum Rabi oscillations can be set for the
revival time ¢, as [38, 39, 35]

Q1 — Oty =27
or 2g[(m+2)1?—(n+1)V2)t, = 2m. (1.70)

From this equation we estimate the revival time as t, ~ % for7n > 1.
We plot the population inversion (Eqn. (1.68)) in figure 1.11 for i = 20. The

collapse time ¢, ~ % is indicated by a vertical line at gt ~ 1.6. The revival time ¢, ~

2\/nm
g
probability (Eqn. (1.67)) in the inset of the same figure for the same parameters. It

is indicated by another vertical line at gt ~ 28. We also plot the net transition

is clear from the inset that the collapse and the revival are also captured by the net
transition probability.

In the (semi) classical limit we have V — oo. This implies that g = | / 5 (Y1 d-
€|P2) — 0. We also have 71 — oo in the classical limit so the Rabi frequency Qr =
2¢\/f + 1 ~ 2¢+/7 remains constant. Since Qg is a constant and ¢ — 0, the collapse
time t. ~ % — 0. This result indicates that the collapse and the revival phenomena

are absent in the classical limit.

1.11 Purcell effect

The most interesting feature of the cavity quantum electrodynamics is that, the spon-
taneous emission from excited atoms or molecules can be greatly suppressed or en-
hanced by placing them in mirrors or in cavities, such as Fabry-Perot cavity, by virtue
of the Purcell effect which is nothing but an enhancement or suppression of the rate
of the spontaneous emission (A) from the atoms or molecules [20, 21]. Experimen-
talists engineer the vacuum inside the cavity to observe the Purcell effect [21]. Mode
quality factor (Q) of resonant cavity plays an important role in this regard. Let us
now briefly describe the Purcell effect [20].

The rate of spontaneous emission in the free space, often called as the Einstein
A coefficient, follows from the exponential decay N(t) = N, (0)e~4! of the popula-
tion (N, (t)) of the excited state of a two-level system interacting with the quantized
electromagnetic field in the vacuum. In 1946 Purcell described that the spontaneous
emission probability of a two-level system coupled to a resonant optical cavity is
increased over its bulk value (A) by a factor [20]

3(2mc/won)?Q

Ep —
P 42V

(1.71)

where wy is the Bohr frequency of the two-level system, V is the effective volume
(also called as mode volume) of the cavity, and 7 is the refractive index of the medium

inside the cavity. The enhanced value of the spontaneous emission rate of a two-level
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system in the resonant cavity of the mode quality factor Q can be given by

cavity
Aenhanced =AXxFp (1'72)
31712
where A = ‘3‘]73‘:[1]2?}!3 is the Einstein A coefficient [2] of the two-level system in the free

space. For cavities with very large quality factor, the enhanced spontaneous rate in-
side the cavity increases linearly with the quality factor Q [14]. A requirement to ob-
serve enhanced spontaneous emission is that the cavity mode volume (V ~ (%)3)
must be small in size so that the quantum (vacuum) fluctuations strongly affect the
two-level system [7]. The experimental observation of the Purcell effect was made in
1987 by Heinzen [40] for visible spontaneous emission from atoms. The Purcell effect
was also later observed in a microscopic optical cavity and a microcavity [41, 42].
The Purcell factor can be heuristically derived as follows. The density of states
of photons in the resonant cavity around the resonance frequency w = wy is given
by pc ~ i [43] where Aw is the spread of the frequency around the resonance.
The density of states of photons at around the resonance in the bulk medium, on the

2,3
wyn

other hand, is py = —37 [43]. The mode quality factor is defined as Q = KT(L [43].

2 3
mle/won)’Q  The numerical pre-factors

Thus we get the Purcell factor as Fp = 5—; ~
are missing due to the heuristic derivation. Detailed derivation of the Purcell factor
is found in Ref. [43].

While for Fp > 1 the spontaneous emission rate is enhanced, for Fp < 1 the
spontaneous emission rate is inhibited or suppressed. If the dimension of cavity is
small than the atomic transition wavelength, then the rate of spontaneous emission
would be inhibited [44]. Such an inhibition was experimentally observed by Hulet,

Hilfer, and Kleppner in 1985 [45].

1.12 Experiments on two-level systems

We already have mentioned in connection with the Einstein A and B coefficients that
the stimulated emission is a fundamental process undergone on a two-level system
such that the system transits from its excited state (|if2)) to its ground state (|¢1))
once a photon incidents on it and the system emits a photon. The characteristics of
the emitted photon in stimulated emission have phase, polarization, frequency and
direction of propagation similar to the incident photon of the electromagnetic field
[4]. These characteristics raise the possibility of the light amplification i.e. if there
is a bottle of two-level systems (atoms/molecules), all in the excited state, and the
bottle is triggered with a single photon, then a chain reaction may take place. The
tirst photon would produce two photons, these two photons would produce four
photons, and so on [4]. This is the principle behind both the microwave amplifi-
cation by stimulated emission of radiation (MASER) and the light amplification by
stimulated emission of radiation (LASER) [4]. Ladenburg confirmed the existence of
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stimulated emission phenomena in 1928 [46]. Fabrikant predicted the use of stim-
ulated emission to amplify short waves in 1939 [46]. Kastler proposed the method
of optical pumping, as a consequence of stimulated absorption in three or four level
systems, in the early 1950s [47]. Weber proposed the idea to use stimulated emission
phenomena to make microwave amplifier in 1951 [48]. Using Weber’s idea, in 1953,
Townes, Gordon, and Zeiger invented the first microwave amplifier device which
amplify microwave radiation (A ~ (1mm — 1m)) popularly known as MASER (mi-
crowave amplification by stimulated emission of radiation) [46]. This MASER was
incapable to produce continuous output. This problem was sorted out by Basov and
Prokhorov using more than two energy levels. The LASER was eventually invented
by Maiman in 1960 for the radiation in the visible (higher frequency) range [46].
However, both the LASER and the MASER need three-level or higher level systems
(atoms/molecules) to make the optical pumping in action.

1.12.1 Micromaser

A single-atom maser is called as a micromaser [11]. The development of the mi-
cromaser eases detailed study of the light-matter interactions for a two-level system
(atom) in a resonant cavity [11]. The micromaser was first realized in a supercon-
ducting cavity by Meschede, Walther, and Miiller in 1985 [49]. In a micromaser set
up, a large number of two-level atoms are injected into a high Q superconducting
cavity so that only one atom is present inside the cavity at any instant of time. This,
of course, depends on the rate of injection of the two-level system. Higher value of
the mode quality factor (Q) of the cavity guarantees the atom-field interaction time
to be much less than the radiation decay time. This allows a two-level system to
strongly couple to the cavity field through periodic energy exchanges between the
cavity field and the two-level atom [11].

Micromaser captures the cavity quantum electrodynamics (CQED) for the light-
matter interactions for a two-level system (atom) in a high Q resonant cavity [21].
The photon statistics of a micromaser has interesting applications towards gener-
ation of number states, quantum measurement, manipulation of atoms, quantum
information, quantum computation, efc [11].

1.12.2 Rydberg atoms

The two-level systems in a micromaser setup are often realized with the Rydberg
atoms. A Rydberg atom is an ordinary atom where one of its electrons, say the
valence election, is excited to the very high principal quantum number. The state of
an atom with a very high principal quantum number is called as the Rydberg state.
Alkali atoms of very high principal quantum number, such as Rubidium atom (¥Rb)
of the principal quantum number n = 50, are often chosen to be as Ryaberg atoms.
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The electronic binding energy of a Rydberg state is given by [14]

E, = —[anHW (1.73)
where Ry ~ 13.6 eV is the Rydberg constant, n = 1,2,3, ... is the principal quan-
tum number, I = 0,1,2,...,n — 1 is the azimuthal quantum number, and J; is the
“quantum defect" due to the hydrogenic “core". Here the “quantum defect" §; cor-
rects for the deviation of the binding energy from the purely hydrogenic situation
and ¢ is small for high [. The Rydberg state, for which I takes the highest value
(I = n —1) and the magnetic quantum number m takes the highest or the lowest
value (|m| = n — 1), is called as the circular Rydberg state. A Rydberg atom in the
Circular Rydberg states with only the principal quantum numbers n and n + 1 can
be realized as a two-level system. The electric dipole transition is allowed between
these two states according to the selection rules Al = £1 and Am = =+1 because
the principle quantum number, the azimuthal quantum number, and the magnetic
quantum number changes as n <+ n+1, n—1 <> n,and £(n — 1) + =+n, re-
spectively [14]. Circular Rydberg states are used in the micromaser setups for the
experiments on the cavity quantum electrodynamics (CQED) [33].

There are several reasons to consider the circular Rydberg atoms for CQED ex-
periments. A few reasons are as follows. Only one electric dipole transition is al-
lowed, n — 1 <> n, |m — 1| > |m]|, so that such states closely approximate to a two-
level system [14]. The Bohr radius of a Rydberg atom scales as agn®. The transition
dipole moment dy = (¢, |5T . ]2’1[)1) for such a case becomes dy; ~ en2ag. Forn = 1, we
have dy; ~ 1390 A.U. (eap = 1 A.U.) [14]. Such a transition dipole moment is about
300 times larger than the transition dipole moment for a typical optical transition
[14]. Incidentally, the light-matter coupling constant is proportional to the transition
dipole moment. Thus circular Rybderg states are considered for strong light-matter
coupling. The Bohr frequency for the above electric dipole transition takes the form
wo = [Epy1in — Enn-1]/h ~ ZFIRTQI for n > 1. For n ~ 50, the (angular) frequency
of the emitted radiation becomes w ~ wy ~ 6 GHz. This frequency corresponds to
the wavelength A = %C ~ 8 mm. Here-from one can estimate the experimentally
achievable dimension of the resonant cavity to support a standing microwave field.
Another reason for considering the circular Rydberg atom for the CQED experiment
is that the circular Rydberg states have low spontaneous emission rate and long ex-
cited state lifetime (T = % = 1on°) [14, 50, 51]. For nn ~ 50 we get T ~ 10~ !s which is
a very long life time in comparison to an ordinary life time 7 ~ 107 (correspond-
ing to n = 1) [14]. Another advantage with the circular Rydberg atom is that it can
be selectively ionized by an applied electric field to achieve selective state detection
[14].
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FIGURE 1.12: Schematic diagram for the cavity quantum electrody-

namics. A two-level system (atom/molecule) (blue circle) in an opti-

cal cavity (red walls) is interacting with a cavity mode (black dotted
lines).

1.12.3 A few experimental results on the cavity quantum electrodynamics

Cavity quantum electrodynamics (CQED) is the study of the light-matter interac-
tions in an optical cavity where quantum nature of both the matter (e.g. two-level
atom) and the electromagnetic field is significant. The most interesting feature of the
cavity quantum electrodynamics is that, the spontaneous emission from an excited
atom or a molecule can be greatly suppressed or enhanced by placing it inside an
optical cavity, by virtue of the Purcell effect [20, 21]. Micromaser captures the cavity
quantum electrodynamics (CQED) for the light-matter interactions for a two-level
system in a high Q resonant cavity [21]. A Rydberg atom in the superposition of
its two circular states is considered as the two-level system in this regard [33]. A
schematic diagram for a model of the CQED is shown in figure 1.12. There have
been many experimental investigations on the CQED since late 1980s [21, 52].

The 2012 Nobel Prize for Physics was shared by Haroche and Wineland “for
ground-breaking experimental methods that enable measuring and manipulation
of individual quantum systems" [52, 53]. A significant part of these experimental
methods is subject to the CQED [52].

Vacuum Rabi oscillation, collapse and revival of the quantum Rabi oscillations,
etc of the net transition probability (P,_,1(t)) of a two-level atom were observed as
results of experimental studies of the CQED [33]. Experimental data of a few of such
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(a): Data for the "vacuum' Rabi oscillation (b): Data for the coherent field induced quantum Rabi oscillations for 7=0.40£0.02
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FIGURE 1.13: (a): Experimental data (circles) for the ‘vacuum” Rabi
oscillation of the net transition probability P,_,1 () of a two-level sys-
tem for the Bohr frequency wy = 27 x 51.099 x 10° Hz, Rabi fre-
quency Qg = 27 x 47 x 10° Hz and average number of thermal pho-
tons 71 = 0.0489. The data are adapted for the circular Rydberg states
(with the principal quantum number n = 50 and n = 51) of Rb
atoms in a lossy resonant cavity of the Q-factor Q = 7 x 107 and size
7(50/2)? x 27 mm? at the temperature T = 0.8 K [33].
(b): Experimental data for the coherent field induced quantum Rabi
oscillations in the two-level system. The data are adapted from the
same source [33] for the same parameters as mentioned above except
for Rabi frequency and the average number of injected photons 71 =
0.4 £ 0.02 in the lossy resonant cavity.
(c): Experimental data for the coherent field induced quantum Rabi
oscillations in the two-level system showing the collapse and the re-
vival. The data are adapted from the same source [33] for the same
parameters as mentioned above except for Rabi frequency and the
average number of injected photons 7 = 0.85 = 0.04 in the lossy reso-
nant cavity.
(d): Experimental data for the coherent field induced quantum Rabi
oscillations in the two-level system showing the collapse and the re-
vival. The data are adapted from the same source [33] for the same
parameters as mentioned above except for Rabi frequency and the
average number of injected photons 7 = 1.77 £ 0.15 in the lossy reso-
nant cavity.

tips]

tlus]



36 Chapter 1. Introduction

observations on the two-level system in a lossy resonant cavity are shown in figure
1.13. These experimental data, however, have not been theoretically explained with
the consideration of the multimodes into account.

1.13 Objectives

We already have discussed the failure of the 1st order time-dependent perturbation
theory of quantum mechanics at around the resonance (w — wy) in Section 1.8. This
failure motivates us to determine the Einstein B coefficient within a non-perturbative
model, such as the Rabi model [6].

The Rabi model, however, treats the light-matter interaction classically. The
Jaynes-Cummings model, on the other hand, is another exactly solvable model for
light-matter interaction. This is a quantum mechanical model where light-matter
interaction is treated with the quantum field theory. We are also interested to de-
termine the Einstein A and B coefficients within the multimode Jaynes-Cummings
model.

The experimental data obtained by Brune et al [33] for the net transition proba-
bility of a two-level system (¥’Rb atom) in a lossy resonant cavity of a micromaser
setup, have been shown in figure 1.13. While figure 1.13-a represents the data for
the ‘vacuum” Rabi oscillation of the two-level system, the data in 1.13-b represents
the quantum Rabi oscillations of the two-level system for very low coherent field
injected on it. Figure 1.13-c and figure 1.13-d, on the other hand, represent experi-
mental data for the collapse and the revival of the quantum Rabi oscillations of the
two-level system for low coherent field injected on it. These data have not been the-
oretically explained so far taking multimodes into account. Our aim is to explain
these data within the multimode Jaynes-Cummings model [13].

The generalized Einstein coefficients lead interesting features of the occupation
probabilities of a two-level system. We also aim to study the population dynamics
of a two-level system in thermal radiation field with the model dependent Einstein
coefficients. The population dynamics allows us to study non-equilibrium statistical
mechanics of the two-level system in the thermal radiation field. We also aim to
determine the entropy production of the two-level system in this regard.

Let us now mention the organization of the thesis below.

1.14 Organization of the thesis

The thesis entitled “Effects of multimode light-matter coupling on semiclassical and quan-
tum Rabi oscillations of a two-level system” presents the work done by us during the
last four years and six months. The thesis consists of six chapters viz., [i] introduc-
tion, [ii] Rabi model result for the Einstein B coefficient, [iii] multimode Jaynes-Cummings
model results for the Einstein A and B coefficients, [iv] multimode Jaynes-Cummings model
results for the collapse and the revival of the quantum Rabi oscillations in a lossy resonant
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cavity, [v] population dynamics of two-level systems for the generalized Einstein coefficients,
[vi] conclusions & future scope. The main contents and the discussion pertaining to the

contents are systematically presented chapter wise.

Chapter 1: Introduction

Here we begin with the motivation of writing the thesis. Then we have mentioned
the key findings in the thesis and the significance of our theoretical results. Then we
have described the system of interest i.e. a two-level interacting with the thermal
radiation field or the coherent field or a monochromatic light. Then we have briefly
described the existing models and theories necessary for the rest of the chapters
of the thesis. We have briefly shown how Dirac determined the Einstein B coeffi-
cient within the first order perturbation theory of quantum mechanics. We also have
briefly shown how Weisskopf-Wigner determined Einstein’s A coefficient within the
quantum theory of electrodynamics. We have introduced the population dynamics
of the two-level systems with the help of Einstein rate equations. We have explic-
itly shown failure of the first order time-dependent perturbation theory of quantum
mechanics. We have introduced Rabi model and Jaynes-Cummings model for the
explanation of the Rabi oscillations of a two-level system both from the semiclassi-
cal point of view and the quantum mechanical point of view, respectively. We also
have introduced the Purcell effect in this regard. We have introduced the collapse
and revival of the quantum Rabi oscillations. Finally, we have mentioned chapter-

wise organization of the thesis.

Chapter 2: Rabi model result for the Einstein B coefficient

This chapter contains Rabi model result for the Einstein B coefficient. The system of
interest for this chapter is mainly a two-level system (atom/ molecule) in the ther-
mal radiation field. Starting from the Rabi Hamiltonian, which is useful in arriving
at non-perturbative results within the rotating wave approximation, we have found
Einstein’s B coefficient to be time-dependent: B(t) = By|Jo(Qrt)| for a two-level
system in thermal radiation field. Here By is the original Einstein B coefficient, Qg
is the Rabi flopping (angular) frequency of the two level system, and ] is the zeroth
order Bessel function of the first kind. Here the light-matter interaction is treated
classically but the two-level system is treated quantum mechanically, and our result
can be considered as a semiclassical result. We, of course, get back the original B co-
efficient in the limiting case of Qg — 0. We also have obtained Rabi model result for
the Einstein B coefficient for a monochromatic light incident of the two-level system.

Chapter 3: Multimode Jaynes-Cummings model results for the Einstein A and B co-
efficients

Here we have generalized the Einstein A and B coefficients from quantum field the-

oretic point of view by bringing the fundamental processes and the quantum Rabi
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oscillation in a single footing for the light-matter interactions for nonzero Rabi fre-
quency. We have analytically obtained multimode Jaynes-Cummings model results
for the quantum Rabi oscillation of a two-level system in a lossy resonant cavity
containing (i) thermal photons and (ii) injected photons of a coherent field. We have
renormalized the coupling constant for the light-matter interactions for these cases.
The net transition probability calculated for ‘vacuum’ Rabi oscillation of a two-level
system in a lossy Resonant cavity matches well with the seminal experimental data
obtained by Brune et al [Phys. Rev. Lett. 76, 1800 (1996)]. The net transition prob-
ability calculated for the quantum Rabi oscillations of two-level system interacting
with an injected coherent field in a lossy Resonant cavity also matches well with the

seminal experimental data obtained by Brune et al.

Chapter 4: Multimode Jaynes-Cummings model results for the collapse and the re-
vival of the quantum Rabi oscillations in a lossy resonant cavity

Here we have numerically obtained theoretical results for the collapse and the re-
vival of the quantum Rabi oscillations for low average number of coherent photons
injected on a two-level system in a lossy resonant cavity . We have adopted the
multimode Jaynes-Cummings model for the same and especially treated the Ohmic
losses from the cavity. We have compared our results with two sets of experimental
data for low average number of coherent photons (7 = 0.85 and 1.77) incident on
a two-level system in the lossy resonant cavity. Our results match reasonably well
with the experimental data, at least, better than the theoretical one obtained for only

the resonant mode and no loss from the cavity under consideration.

Chapter 5: Population dynamics of two-level systems for the generalized Einstein

coefficients

Here we have studied population dynamics of two-level systems interacting with
both the thermal radiation field and the monochromatic light. While the interactions
of the two-level systems and the monochromatic light have been treated classically
(with the Rabi model), the interactions of the two-level systems and the thermal ra-
diation field have been treated both classically (with the Rabi model) and quantum
mechanically (with the multimode Jaynes-Cummings model). For the semiclassical
cases we already have obtained the generalized (time-dependent) Einstein B coeffi-
cient. For the quantum mechanical case too we already have obtained the general-
ized (time-dependent) Einstein A and B coefficients. We have studied the population
dynamics for all these cases with the help of Einstein rate equations where the origi-
nal Einstein coefficients are replaced by the generalized Einstein coefficients. The A
coefficient is, of course, kept unaltered for the semiclassical cases. Time-dependence
of the generalized Einstein coefficients opens a path to go beyond Pauli-von Neu-
mann formalism of the non-equilibrium statistical mechanics. The population dy-
namics allows us to further study the entropy production of a level-system. For
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the semiclassical cases, we have shown that the Rabi oscillation can drive the two-
level system away from the thermodynamic equilibrium. On the other hand, for the
quantum mechanical case, we have shown that the Rabi oscillation of a small Rabi
frequency (Qg) can not drive the two-level system away from the thermodynamic
equilibrium. However, reaching the thermodynamic equilibrium is prolonged due
to the quantum Rabi oscillations in the two-level system.

Chapter 6: Conclusions and future scope

Here we have briefed the conclusions of the Ph.D. works, especially the summaries.

We also have mentioned the future scopes of the Ph.D. works.
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Chapter 2

Rabi model result for the Einstein
B coefficient

2.1 Introduction

Einstein’s A and B coefficients are quite known to the scientific community in con-
nection with the formation of spectral lines involving the fundamental processes,
such as spontaneous emission, stimulated absorption and stimulated emission, un-
dergone on a two-level system (atom or molecule) in the presence of an oscillatory
electromagnetic field, say laser light, thermal radiation, efc. [1]. While the A coeffi-
cient is the rate of spontaneous emission from a higher energy level to a lower en-
ergy level of the two-level system caused by vacuum fluctuations of electromagnetic
tield, the B coefficient is the rate of stimulated absorption By, (or emission By;) of (or
from) the same system in the radiation field for unit energy density of the radiation
per unit (angular) frequency interval around the Bohr frequency [1, 2]. Einstein’s A
and B coefficients are of very high importance, as because, the spectral lines have
huge applications almost everywhere in the modern science, engineering, and tech-
nology. These coefficients also determine density of photons in thermal equilibrium
when the probability of transitions for a two-level system reaches a steady state.
Historically, almost a century back—during the era of old quantum mechanics
when time-dependent perturbation theory was not known [1], Einstein’s A and B
coefficients were proposed to be time-independent. These coefficients, for the two-
level system in thermal radiation field at an absolute temperature T, were deter-
mined in terms of fundamental constants by Dirac, Weisskopf, and Wigner in the
quantum mechanics era within (i) the frameworks of the time-dependent perturba-
tion theory for the light-matter interactions and (ii) the quantum field theory of the
stimulated emission, the stimulated absorption, and the spontaneous emission of
radiation [3, 4]. However, neither Einstein’s semi-classical theory of radiation [1]
nor Dirac’s first order quantum mechanical perturbation theory of radiation [3] pre-
dicted regularity in the stimulated transitions (absorption and emission) though the
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electromagnetic field incident on the two-level system oscillates in a regular man-
ner. This regularity was predicted a decade later by Rabi [5]. He and his collab-
orators showed resonance in the two-level system in the course of stimulated ab-
sorption and emission within a nonperturbative model which is now known as the
Rabi model [5, 6]. For the two-level system (having the electric dipole moment d
and the Bohr (angular) frequency wy corresponding to energy eigenstates |¢1) and
|¢2)) in presence of an oscillatory electromagnetic field with the electric field compo-
nent E = Ejcos(wt), Rabi et al. obtained a generalized (angular) frequency for the

transition induced flopping of the two states, as () = \/ (w — wp)? + O% which is

now known as the Rabi formula where Qr = |(1|d - Eg|$)| /% is the Rabi flopping
frequency [6].

It it quite known, that, the generalized Rabi flopping frequency ((2) tends to the
Rabi flopping frequency (Qr) at resonance (w — wp), i.e., where the probability of

the stimulated transitions for the stimulated emission from the initial (¢ = 0) state

. . in2(Qt/2 in?(4/ (w—wp)2+Q%t/2
|y) to the final state |¢) at time t, say Po_1 () = Q%Sm(ﬂizt/) =0 ( (a(iw:])%lrﬂ%f ),

is sharply peaked [6, 7, 8, 9]. The expression of transition probability (involving the

Rabi flopping frequency) is quite successful, as it gives a reliable value of the nuclear
magnetic moment to experimentalists [6]. Later experimentalists found this expres-
sion quite successful for atoms, molecules, semiconductors, Bose-Einstein conden-
sates, many-bodies, efc. exposed in laser light [10, 11, 12, 13, 14, 15, 16]. One can
get the perturbation result (which is compatible with Fermi’s golden rule) [3, 7] back
if one assumes |w — wyp| > Qg in the Rabi formula. But, condition for the time-
dependent perturbation (P> () < 1V t,i.e.,, Q% /(w — wp)? < 1) does not hold [7]
at the resonance (w — wy) at least for t — oo however weak the light-matter cou-
pling (~ Qg) may be. The problem with the upper limit of time (0 < t < co) can
not be avoided to get the frequency matching condition (6(w — wy) !) for the dipole-
transitions stimulated by a sinusoidal perturbation [3, 7]. Thus, the divergence of the
transition probability questions soundness of the 1st order perturbation theory at the
resonance for t — co. The soundness can, of course, be restored only for Qg — 0 so
that limqa, 0,0—w, QrO(w — wp) = constant 3 1.

Since the condition for the sinusoidal perturbation with non-vanishing light-
matter coupling (~ () is not satisfied [7] at the resonance (w — wp) where the
stimulated transitions (emission) are most probable, the first order perturbation re-
sult (Bj = By = 360% |(g1]d|2) |2 [3, 7] 2) for the B coefficient obtained by Dirac [3]
is not reliable for QO — 0. This is a problem with the quantum mechanical perturba-
tion theory, and it remains so even in the weak coupling regime ((Qr /A < 1) as long
as the coupling (~ Qg) does not tend to zero keeping the natural decay rate (i.e.,
the A coefficient) fixed to a nonzero value. Consequently, a question arises: what

IThe frequency matching condition follows from the limiting case of the square root of the stimu-
lated transition probability lim; e \/Pr—1(t) = lims e Q R%ﬁ]tm = QR27é(w — wpy) within
the 1st order sinusoidal perturbation.

2If degeneracy of the two states are g1 and g», respectively, then By; /B, would be given by
B21/B1z = 81/82 [2]-
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would be the reliable expression for the B coefficient in the weak coupling regime?
This issue could have been addressed with a nonperturbative model such as the
Rabi model [5, 6], but has surprisingly been overlooked for the last eight decades,
though there are several works done in the intermediate regime (0 % Qr/A S 1)
with the consideration of moderate system-bath (i.e., system-radiation field) inter-
actions. These interactions are often (i) semiclassically modelled as perturbation
terms in the Bloch-Redfield (Markovian master) equation within the density ma-
trix formalism [17, 18], (ii) quantum mechanically modelled as non-perturbation
terms in the Schrodinger equation within the generalized Weisskopf-Wigner (nat-
ural) decay formalism for discrete and continuum modes [19], and (iii) quantum
mechanically modelled as non-perturbation terms in the Nakajima—-Zwanzig-type
(non-Markovian master) equation within the density matrix formalism [20, 21].

While the stimulated transition rates are time-independent in the (quantum)
Markovian master equations and are solvable for the case of the time-dependent
perturbation on the system [22, 18, 17], they are time-dependent in the (quantum)
non-Markovian master equations and are usually hard to solve [20, 21]; the explicit
time-dependent terms in the stimulated transition rates render the non-Markovian
master equations analytically intractable. Of course, some simplified versions of
the non-Markovian master equations can be solved either in the limiting cases of
weak [23] and linear [24] interactions between the system and the bath or in the lim-
iting case of structured bath even for strong interactions [25]. Nevertheless, popula-
tion dynamics of the open quantum system of our interest, i.e., the two-level system
in the thermal radiation field, has not been described so far through exact analytical
solutions of the non-Markovian master equations.

The semiclassical Rabi model, we are considering, though is a non-perturbative
one, gives exact results even in the weak coupling regime, as the model is exactly
solvable for the entire range of coupling constant (~ (). Hence, we aim (i) to get
a single reliable expression of Einstein’s B coefficient from the (semiclassial) Rabi
model not only for the weak coupling regime ((Qr/A < 1) but also for the entire
regime including the strong coupling regime (QQr/A > 1), (ii) to generalize Ein-
stein’s rate equations with the reliable B coefficient for the two-level system in the
thermal radiation field.

The next section of this chapter begins with the Rabi model for the two-level
system in a sinusoidally oscillating electromagnetic field [5, 6, 7, 8]. Then we write
down transition probabilities for the electric-dipole transitions among the two (en-
ergy) levels, and recast the transition probabilities for the two-level system in the
thermal radiation by integrating over all possible frequencies and polarizations of

the thermal radiation field. This result significantly differs from the perturbation
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result. This result, however, is a semiclassical result 3. We get oscillatory type time-
dependent B coefficient, from the corresponding transition probability (i.e., the stim-
ulated emission’s probability) for the thermal photons. We also consider monochro-
matic radiation field side by side throughout the chapter.

2.2 Two-level system in thermal radiation field

2.2.1 Rabi model

The Rabi Hamiltonian for the two-level system having electric dipole moment d in
the oscillatory electromagnetic field (with the electric field component E = Eycos(wt))
is given by [5, 6, 8, 26]

H =" Exlpn) (1] + Eal2) (2]

—EOZ'd [ 1) (ol + e o) (i ] 1)
where |¢1) and |¢») constitute a set of two orthonormal states of the two-sate sys-
tem (in absence of the external field) with energy eigenvalues E; and E, (E; >
E;) respectively. The third term of the Hamiltonian represents the classical inter-
action between the two-level system (atom or molecule) and the external electro-
magnetic field. The interaction term, although is not a perturbation, is consistent
with the rotating wave approximation (wp + w >> |wo — w|) which is also used in
the time-dependent perturbation theory [6, 7]. Validity of the rotating wave ap-
proximation, however, is not questioned at the resonance (w — wyp) as long as
wo = (Ey — Eq)/h is fairly large, say wo > Qg. Thus, the Rabi model is appli-
cable for large Bohr frequency (wp) of the two-level system, and incidentally, the
Schrodinger equation for the two-level system corresponding to the Rabi Hamilto-
nian is exactly solvable under the transformation into the interaction-picture [6, 7].
The Rabi model is of course an integrable one due to the presence of a discrete
symmetry in it [28]. The energy eigenvalues of the Rabi Hamiltonian in Eqn. (2.1)
thus takes the form Ex = [E; + Eq1]/2 F %\/(w — wp)? + % [6]. Corresponding
eigenstates are now dressed due to the light-matter coupling resulting the energy

eigenvalues different from those (E;, Ez) of the uncoupled bare states (|1), [12)).
Both the eigenstates eventually are linear combinations of the uncoupled bare states:
[p-) = cos(0)|¢1) + sin(0)[¢2) & |py) = —sin(0)[¢1) + cos(6)[¢2) for tan(6) =
O/ [/ (@ — wo)? + OF — (@ — wo)] [29].

Eventually, the two-level system will always be in the superposition state |i) of

the two energy eigenstates as well as of the uncoupled bare states as long as energy
of the system is not measured. Thus, time evolution of the state of the system takes

3Semiclassical results, in this respect, are found with the quantum mechanical treatment of the two-
level system and the classical treatment of the light-matter interactions [7, 8]. Inclusion of the operator
algebra for photon-annihilation and photon-creation operators would make the treatment quantum
electrodynamic (QED) [27].
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the form * | (t)) = c1(t)e F/M|y1) + co(t)e B2t/ |y, ), where ¢ (t) is the transition
probability amplitude for the dipole-transition from the uncoupled bare state |¢,) to
|¢1) and cy(t) is that from the uncoupled bare state |i1) to |i2) [3, 5, 6]. Transforma-
tion of the Schrodinger equation for the two-level system corresponding to the Rabi

Hamiltonian into the interaction picture results in the transition probability [6, 7, 8]

(Qt/2)

s 2
SN
Proyi(t) = |er () * = O o (2.2)

once we use the initial condition that the system was initially (f = 0) only in the
state ). Here, ) = \/(w —wp)2+ 0% = (w—wp)y/1+ [(ﬂi’fﬂo 2 is the generalized

Rabi flopping (angular) frequency and Qg = |(y1|d - Eo|p,) |/ is the Rabi flopping
frequency for the stimulated emission from the state |i,) to the state |i1). Also, we
keep in mind that

P1_>2<t) = ’Cz(t)‘z =1- P2_>1(t) (23)

is the transition probability for the stimulated absorption from the state |¢) to the
state [i2).

Egs. (2.2) and (2.3) hold good for a linearly polarized monochromatic light (hav-
ing energy density, u = 1eoE3 °) incident on the two-level system.

2.2.2 Rabi model result for the Einstein B coefficient

Let us now consider the system be placed at the thermal radiation field in the free
space ® where all possible frequencies of the incident light are present with two in-
dependent arbitrary polarization directions. While averaging over the polarization
states there results in factor 1/3 [7] in the r.h.s. of Eqn. (2.2), contribution of the
thermal radiation of all possible frequencies leads to an integration in the r.h.s. of
Eqn. (2.2) over w with the weight-factor u(w). This follows from Planck’s distribu-
tion formula (or Bose-Einstein statistics for photons). Thus, we get the net transition
probability from Eqn. (2.2) as

Py <t> = (2.4)

(1 |d]2) > 1% 2u(w) sin®(Qt/2)
312 /0 €0 @

41t takes another form, viz., [(t)) = c_e E-/"|p_) + ¢, e E+t/M|y ), in the basis of the energy
eigenstates with time-independent coefficients (cs) resulting in no transitions between the dressed
eigenstates |1 ) and |p_).

5Actual energy density, u = eoEg cos?(wt), where magnetic field part also contributes equally is
averaged out here, as because, (i) w goes to wy at the resonance, and (ii) electromagnetic field oscillates
many times within a single Rabi cycle for wy > Qg [7].

®Here free space is an idealization of a big black-body cavity of volume V — co. The two-level
system would not come to equilibrium with the thermal radiation field in ideal free space.
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where [30, 7]

i’ 1
ww) =53 Lhw/kﬂ - 1] (2.5)

is the average energy density of the thermal radiation (electromagnetic) field per
unit (angular) frequency interval 7. The average energy density of the thermal radi-
ation (electromagnetic) field per unit (angular) frequency interval u(w) in Eqn. (2.5)
incidentally represents the average contribution for the thermal photons at the tem-
perature T and is responsible for the stimulated emission.

The generalized Rabi frequency (Q2), by the definition, ranges form — /w3 + %
to —Qr and QR to co following the avoided crossing as w varies from 0 to wp and
wyp to oco. The integrand in Eqn. (2.4) is peaked at the resonant frequency, w = wy
(i.e., at O = £Q0Og), so that most of the integration comes from w close to wy. Fur-
ther considering wy to be fairly large (i.e., wp > Qg which is compatible with the
rotating-wave approximation), we recast Eqn. (2.4) as

Pyt (1 2d2,u(wp) /QR sin?(Qt/2) 1 i
2t 3eph? | /-0 Q2 1— (Qr/Q)2
© gin2
+/ sin (ta/2) 1 dﬂ}
o O 1- (Qr/Q)2
2d3u(wy) 7 1 3, O3
fry Wﬂ 1F2({§},{1,§},— 4 )QRt (2.6)

where 1 F is a generalized hypergeometric function ®, d1, = | (i |6T|1P2> | = [{¥2 |j|1/71> |
is the transition dipole moment, and the lower limit Q) = —/w? 4+ Q% (which fol-
lows from the avoided crossing) has been replaced ° by —oo as the typical full-width
of the transition probability, AQ) = 47t/t, is well contained (for reasonable values
of t) within the lowest possible value (—/w3 + Q%) and the highest possible value
(00) of Q) for fairly large wy. All these approximations for evaluating the above in-
tegrations are also applied in the time-dependent perturbative calculation keeping
Qr — 03, 7]. We differ from the perturbation result [3, 7] only by keeping Qg # 0.

The natural question arises about quantifying the Rabi flopping frequency for
the two-level system in the thermal radiation field. Eqn. (2.6) is the generalization of
Eqn. (2.2) with proper normalization for all the frequencies of the thermal radiation
around wy. Thus for t — o0 and w — wy, the right hand sides of both Eqn. (2.2) and
Eqn. (2.6) are averaged out to 1/2 under the consideration that u(wy) remains fixed
for stimulated emission and stimulated absorption processes. Thus, we get the Rabi

"Here, time averaging is taken in the very short time scale of 1/wy. Grand canonical ensemble
averaging is further taken for the thermal photons.
81F>({1/2},{1,3/2}, —(1/4)a*?) = L [ Jo(ar)dT
Correction to the integration, for this replacement, quickly vanishes as [—7/2 + Si(wpt) +
2 /02
O(O% /w)lt.
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flopping frequency for the two-level system in the thermal radiation field as

Zmﬁzu(wo)

Qp =
. 3607’12

(2.7)
This form of the Rabi flopping frequency is quite general for the two-level system.
Now, using Egs. (2.6) and (2.7), we get the net transition probability for the stimu-
lated emission as

P = 2 m(d), 00,2, - 50, 28)

Eqn. (2.8) is our semiclassical result for the Rabi flopping for thermal radiation.
Time-averaged transition probability was alternatively calculated within the same
(semiclassical) Rabi model not for multi-frequency components rather for a single
frequency component of the incident electromagnetic field decades back by Shirley [9].
His result on the time-averaged transition probability is significantly different from
our net time-dependent transition probability, presented in Eqn. (2.8), where contri-
butions of all the frequency components of the thermal radiation field are averaged
out with the Planck’s distribution. It needs a full quantum electrodynamic (QED)
description to capture all the quantum mechanical features of the interactions of the
two-level system (atom/molecule) with the thermal (as well as coherent) radiation
field. Such a QED description was given long before by Jaynes and Cummings but
for interactions with a single cavity mode in a resonant cavity [27]. However, our
semiclassical result is still useful for interactions in the free space with the broad-
band modes near around the resonance frequency. It would be important in relating
the Rabi model with Einstein’s rate (master) equations which are useful in describing
nonequilibrium phenomena in terms of the fundamental processes.

The rate of stimulated emission (Ry_,1(t) = ]%Pz_ﬂ(t) |) is the modulus of the
time-derivative of the net transition probability P,_,1(t). Here, the modulus comes
into definition of the rate of the transitions because the transition probability is now
time dependent and there is an oscillation in it. If the time-derivative is negative
then it refers to backward transition, say stimulated absorption, whose rate may be
denoted by Rj_(t). By convention, we don’t want to say Ryo_,1(t) = —Ri_2(t),
rather we want to say Ry, (t) = Ry (t) for all the time. Hence we need the mod-
ulus in the definition of the rate of the stimulated emission. Thus we get the rate of
the stimulated emission from Eqn. (2.6) as

d2u(wo) [ Ok sin(Qt) 1
Ry (t) = |22+ aQ
2 () 3e0h2 U-oo QO \/1-(Qr/Q)2

® sin(t) 1
O (@) 1—(QR/Q)2 Q”
”du”(WO)

= 3€0h2 |Jo(Qrt)| (2.9)

+




50 Chapter 2. Rabi model result for the Einstein B coefticient

d?
21
Rabi model result for Einstein's B coefficient (with By=B,,=B,,= )
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FIGURE 2.1: The solid line follows Eqn. (2.11) and represents the

Rabi model result for the Einstein B coefficient. The dotted line

(B(t)/ By = 2/ tQrt) represents envelope for the oscillations in the
B coefficient.

where Jo(Qgrt) is the Bessel function of the order zero of the first kind. The rate of
absorption (Ri_2(t) = |4 P1_5(t)|) from the state [¢;) to |12), on the other hand, is
just the opposite, i.e., R12(t) = Ro,1(t) as Pay1(f) + P1—2(t) = 1. From Egs. (2.3)
and (2.9), it is clear that the rate of stimulated absorption from the state |¢;) to the
state |i,) would be

Rioalt) = Rooa () = 22400 0y @10)

3eph

Einstein’s B coefficient was already defined as the rate of stimulated transitions
(emission or absorption) per unit energy density of radiations per unit (angular)
frequency interval around the Bohr frequency. However, the rate of transitions in
Eqgn. (2.10) quasi-periodically alters its sign in the course of time as if the absorp-
tion becomes emission and vice-versa whenever there is an alternation of the sign.
Thus, by following the definition of the B coefficient, we get Einstein’s B coefficient
(B(t) = Rioo(t) /u(wo) = Ro—1(t) /u(wp)) from Egs. (2.9) and (2.10), as

B(t) = Bo|Jo(Qrt)] (2.11)

2

where By = 372 j;lzz is the original B coefficient obtained by Dirac [3, 7]. The time-

dependent coefficient B(t) in Eqn. (2.11) is the Rabi model result for the Einstein B
coefficient. We have got this result published in Ref. [31]. The time-dependent coef-

ficient B(t) can be called as the generalized Einstein B coefficient as B(t) becomes the
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Einstein B coefficient (Byg = By = Bi2) in the limit Qg — 0. The generalized B coef-
ficient would be unaltered if we alter the initial conditions, by taking ¢1(0) = 1 and
c2(0) = 0, as we always have R;_»(t) = Rp—,1(t). We show the time-dependence in
the B coefficient in figure 2.1. We are not able to compare this result with the existing
experimental data because they have not been obtained by any direct measurement
(as far as we know); rather, experimentalists apply time-dependent perturbation the-
ory for the indirect measurement of the B coefficient [32].

2.3 Generalized Einstein B coefficient for monochromatic ra-
diation field

For the case of a monochromatic light (having a single polarization perpendicular
to a fixed direction of propagation and time averaged '° energy density u = }eoE?)
incident on the two-level system, we don’t need to average over the directions of
polarizations and frequencies as done in Eqn. (2.4). For such a case, we get the rate
of stimulated emission (or absorption) from Eqn. (2.2) as

d d2,u | sin(Qt
Ry—1(t) = Ria(t) = %P2—>1(t)| = e;%'é”

(2.12)
Now, if we define the B coefficient (B(t) = Ri_2(t)/[u/Q] = Ryo1(t)/[u/Q)) for
a monochromatic wave, as the rate of the stimulated transitions (emission and ab-
sorption) per unit time average energy density per unit generalized Rabi flopping
frequency, then it would be

B(t) = 3%0 sin(Qf)]. (2.13)

This is the Rabi model result for the Einstein B coefficient for a monochromatic
radiation field. We show the time-dependence in this form of the B coefficient in
figure 2.2. We have got this result published in Ref. [31].

2.4 Conclusion

We have shown that the Rabi model result for Einstein’s B coefficient depends on
time and the Rabi flopping frequency for the two-level system (atom or molecule)
in the thermal radiation field at an absolute temperature T. This result is accu-
rate for fairly large Bohr frequency (wp > Qg ) and fairly higher temperature
(kT Z hQR), and is significantly different from the perturbation result which is not

reliable near the resonance in the Rabi flopping. Our analytical result regarding the

10Here, time averaging is taken in the very short time scale of 1/ wj.
I This is also a requirement for the rotating wave approximation, which is inbuilt in the Rabi model,
to be valid.
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Einstein B coefficient for monochromatic wave
B(t)/B(0)
1.0

0.6

0.4

0.2 1

T

0 27T 47 67T

FIGURE 2.2: Plot follows Eqn. (2.13) and represents the Rabi model re-
sult for the Einstein B coefficient for a monochromatic radiation field.

B coefficient is an invitation for the experimentalists to do direct measurement of the
B coefficient.

While the Rabi flopping usually is studied for strong light-matter interactions
(Qr/A > 1), Einstein’s rate equations are usually applied for weak light-matter in-
teractions (Qr/A < 1). Incidentally, the Rabi model, which gives exact results in
both the weak coupling regime and the strong coupling regime, is not phenomeno-
logically different from the fundamental processes” point of view. We have been
interested in bringing the Rabi flopping and the rate equations together in a single
footing for this reason. We have been specially interested in the intermediate regime
03 Or/ASL

The generalized Einstein B coefficient obtained in Eqn. (2.11) may take place in
the time-dependent rate coefficients R;_,»(¢) and Rp_,1(t) in the Einstein rate equa-
tions if the time-independent rate coefficients are replaced by the time-dependent
rate coefficients. Population dynamics would have to be studied in terms of the
time-dependent rate coefficients in such a case. Such a population dynamics with
the time-dependent rate coefficients would be interesting for analysing the entropy
production of a two-level system in the thermal radiation field. In Chapter-5 we will
study the population dynamics and entropy production for both the time-dependent
forms of the B coefficient obtained in Eqns. (2.11) and (2.13).
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Chapter 3

Multimode Jaynes-Cummings
model results for the Einstein A
and B coefficients

3.1 Introduction

Seminal experimental work of Brune at al [1] regarding the quantum Rabi oscilla-
tions (or flopping) of the occupation of the two energy eigenstates of %Rb atom in a
lossy resonant cavity at finite temperatures opened the possibilities of experimental
[2, 3, 4] and theoretical [5] study of the cavity quantum electrodynamics (QED) spe-
cially in the field of measuring and manipulation of individual quantum systems a
quarter century back [1, 6, 7, 8]. The most interesting feature of the cavity-QED is
that, the spontaneous emission from excited atoms or molecules can be greatly sup-
pressed or enhanced by placing them in mirrors or in cavities, such as Fabry-Perot
cavity, by virtue of the Purcell effect [9, 2]. Experimentalists basically engineer the
vacuum inside the cavity to observe the Purcell effect [2]. Mode quality factor (Q) of
resonant cavity plays an important role in this regard.

A two-level system (atom or molecule) in the free space once makes a sponta-
neous emission, say at time t = 0, the emitted photon goes away from the system in
an irreversible manner. The possibility that after some finite time-interval the emit-
ted photon would be further absorbed by the two-level system, was not considered
in Einstein’s semiclassical description [10]. However, observation of the quantum
(vacuum) Rabi oscillations [1] in the high-Q cavity reveals the fact that, the boundary
conditions greatly influence the atomic radiation [11] and consequently, the emitted
photon is reabsorbed by the two-level system [2, 3]. The spontaneous emission be-
comes reversible in an ideal! cavity as the two-level system and the field exchange
excitation at the rate of Rabi frequency (Q) [2]. The periodicity in the exchange of
the excitation leads to the time dependence in the Einstein coefficients.

Three-dimensional multimode Jaynes-Cummings (J-C) Hamiltonian A= %hwoag +

IThe mode quality factor goes to infinity for an ideal cavity.
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Y, hwgﬁ%ﬁﬁs — iy hgy lovay, — U_ﬁ%s]z [12, 13, 14] which was proposed several
decades back in this regard, is able to describe the quantum theory of radiation
in a resonant cavity beyond (i) Dirac’s determination of the Einstein B coefficient
[15] within the 1st order time-dependent perturbation theory of quantum mechan-
ics and (ii) Weisskopf-Wigner determination of the Einstein A coefficient [16] within
the 1st order time-dependent perturbation theory of quantum field theory (quantum
electrodynamics). Perturbation theories, however, can not explain the Rabi oscilla-
tion of a two-level system. The quantum Rabi oscillations, on the other hand, is
well understood for the J-C model [12] even for a single mode [17, 18]. This model
basically offers an understanding of the light-matter interactions in terms of the fun-
damental processes (spontaneous emission, stimulated emission and absorption) in
the light of the cavity-QED. Though there have been an enormous amount of theo-
retical investigation in the field of the cavity-QED [17, 19], nobody has come up with
a cavity-QED theory, except a few quantum master equation approaches with the J-
C model (for only the resonant mode) and a phenomenological damping [20, 21] for
the quantum Rabi oscillations of a two-level system in a lossy resonant cavity. Loss
of the electromagnetic energy from the lossy resonant cavity, however, takes place
for the frequency broadening around the resonant mode. This broadening naturally
brings multimodes into account.

Now we are coming up with a cavity-QED theory within the J-C model for multi-
modes around the resonance for explaining the quantum Rabi oscillations in a lossy
resonant cavity as observed by Brune et al [1]. Multimode J-C model [13] has be-
come quite popular not only for an extension of the single-mode J-C model but also
for the multi-photon transitions [22], the dynamics of entanglement [23], etc. We are,
however, aiming to generalize the Einstein A and B coefficients in connection with
the quantum Rabi oscillations under single-photon transitions.

The 3-D multimode J-C model result for the probability of stimulated or sponta-
neous emission a photon of (angular) frequency w;, wavevector k and polarization
s over n such photons at time t = 0 from a two-level system having the Bohr fre-
quency wo = (Ep — Eq)/h found initially (+ = 0) in the excited state in a cavity, takes

2Here we are following the notations [14]: o4 = [¢o) (Y1, o= = |P1) (o], o1 = [0+ + 0],
o = —iloy —o-], 03 = [¢2) (2| — [¥1) (Y1], dg, (ﬁ%s) annihilates (creates) a photon of energy fiw-,
polarization s and momentum 7k (having dispersion w = ck) in the Fock space, |{1) (|1)) is the
energy eigenstate for the lower (higher) energy E; (E;) of the two-level system in absence of the light-
matter interactions, gz is the coupling constant (assumed real) for the light-matter interaction for the

mode ks, and wp = (Ey — E1)/h is the Borh (angular) frequency of the two-level system.
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the form within the dipole approximation® as [12, 24, 14]

P g t) = dgh x (n+1)
sin? (\/(wrwo)zzﬂg%s(nﬂ)t) -
(wp —wo)? +4g7 (n+1) '

X

where g = 4/ % (yn |j' - & [P2) [13], d is the electric dipole moment operator for
the two-level system, &, is the unit-vector for the polarization of the cavity field?,
n is the number of photons of energy fiw; and mode ks each present at around the
two-level system before it undergoes a spontaneous or stimulated emission resulting
n + 1 photons of energy fiw;; and momentum hik each after the emission and V is the
volume of space occupied by both the two-level system and the photons. It should
be mentioned in this regard that Eqn. (3.1) has a similarity with the single-mode
J-C model result [12] because we are not considering any coupling between any two
modes in the multimode J-C model.

Let us first consider the case of two-level system in a 3-D blackbody cavity [14].
There can be infinitely large number of choices of the modes (ks) of a photon for a
fixed w; = w. This causes appearance of the density of states (“’ *V5 for two inde-
pendent polarizations) once we go to description of the (angular) frequency. Thus
averaging over all directions and polarizations for fixed k| = w/c we get the net

transition (spontaneous emission or stimulated emission) probability

n—n+1 w?V
P (t) = / (@) P50 (8w, w, ) —5 5 dw
i(w)d3,
= pn (W) P32 Y (g, w, 1) ——25 2 dw (3.2)
,;)/ A e 3e2h?g2,

where ¢z is replaced by the new coupling constant g, (such that

2 .2 N a2 . .
8w = <gl-{‘s>all directions and polarizations = e,y 3-) once the averaging over all the direc-

tions is taken, dip = (Y1 |d$\1,bz> is the transition dipole moment, the factor 1/3 comes
from averaging over the two independent polarization states of the blackbody radi-
ation field, ii(w) = Z“’ ® represents the average energy density per thermal photon
per unit (angular) frequency interval, and p,(w) = (1—e By Ye "w/ksT [6] is the oc-
cupation probability for n thermal photons which take part in spontaneous (n = 0)

or stimulated (n > 1) emission. While the transition probability Py /! (w,t) is

31f the dimensions of the two-level system are small in comparison with the wavelength of the field
and the wave functions of different two-level systems do not overlap, then only we can apply the
dipole approximation (ef*To ~ 1). Position (7y) of the two-level system in the cavity is not important
within the dipole approximation

4Here & &, is perpendicular to k.

5Tt follows from 2 ‘(4”)]‘ dk =2 (V47§“’ dw (for 2 independent polarizations) where c is the speed of

light in the space inside the blackbody cavity.

%ii(wp) often appears in the Planck’s distribution formula and is commonly known as the ratio of

the Einstein A coefficient and the Einstein B coefficient [25].
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sharply peaked at the resonance, the functions #(w)/g2 and p,(w) are smooth in

comparison to Py~ (w, t) at around the resonance.

The transition probability PZ”__;{ZH (8w, w, t) in Eqn. (3.2) takes the form PZV’__fl”H (S, w, t) =
492 (n + 1)7156(w — wp) in the limiting case of the weak coupling constant and
long time exposition (g, < 1/t < wy). This result is compatible with Fermi’s
golden rule. The net transition probability as in Eqn. (3.2) thus takes the form in
this limiting case as P,_,1(t) — Yoo tpn(n +1) ”%(ec(‘;o)d%l/ h?. Here-from one gets
the rate of the emission as |4£P,,1(t)| = Ro1(t) — A(0) + u(wp)Bo1(0) where

- . R .
A(0) = 3rne is Einstein’s A coefficient, By (0) = se 18 Einstein’s B coefficient
hw? 1

and u(wo) = #(wo) Lio "Pn = p5 Jwyrigr—7 1S the average energy density of the

thermal photons per unit (angular) frequency interval’. This is a common way of
deriving Einstein coefficients from the J-C model in the weak coupling limit and
long time limit [14]. However, if we don’t take these limits, both the time and the
coupling constant would enter into the expression of the rates of the spontaneous
emission and stimulated emission. Thus one can generalize the Einstein coefficients
with time and coupling constant dependences. This chapter is dedicated to explore
the time and the coupling constant dependences in the generalized Einstein coeffi-
cients and its consequences.

The rest of this chapter deals with the Eqn. (3.2). We calculate the net transition
(spontaneous or stimulated emission) probability by integrating the right hand side
of the Eqn. (3.2) over the (angular) frequency w with proper normalization for both
the range (0 < w < o0) of the frequency and the distribution of the thermal pho-
tons at a temperature T. Then we renormalize the coupling constant (g.,) of the J-C
model taking the quantum Rabi oscillations into account and subsequently, we gen-
eralize the Einstein coefficients towards time-dependence. Using the renormalized
coupling constant we calculate the net transition probability for a lossy resonant
cavity with the relevant losses into account, and subsequently we discuss on the
‘vacuum’ Rabi oscillation. Then we do the similar study of the quantum Rabi os-
cillations for the injected coherent field. We compare our results with the quantum
Rabi oscillations data obtained by Brune at al [1] for various situations. Finally, we
discuss and conclude.

3.2 Jaynes-Cummings model result for the net transition prob-
ability

Since most of the contributions in the net transition probability in Eqn. (3.2) is com-
ing from around the resonance (w — wy), we can safely replace ii(w) by i(wy),
pn(w) by pn(wo) and gw by gw, while integrating over w in the domain 0 < w < o
or alternatively integrating over the generalized n-photon Rabi frequency (), =
i\/(w —wo)? +4g% (n+1) from—\/wﬁ +4g2, (14 1) to-28w,Vn + Tand 2g,,v/n + 1

"The expression for u(wy) is often called as Planck’s distribution formula.
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to oo as w varies from 0 to wp and wy to oo respectively with an avoided crossing at
w = wy. The first part of the integrations takes a closed form and becomes equal

to the second part if we send the lower limit —\/ w3 + 482 (14 1) to —oco within the

rotating wave approximation (wj > 4gz, ). Thus we recast Eqn. (3.2) as

Pra(t) ~ A(O)iopnwo)(nm

X 1F ({;}, {1,%}, - (“’Zt)Z)t (3.3)

where 1 F; is a generalized hypergeometric function expressed in the usual notation °
and w, = Zgwo\/m is the n-photon Rabi frequency. Involvement of the different
values of the photon numbers (along with the different values of the n-photon Rabi
frequency) in the Rabi oscillation is referred to as the quantum Rabi oscillations.
The generalized hyper geometric function reaches 1 exhibiting the expected result
Py (t) — [A(0) 4+ u(wp)B21(0)]t in the weak coupling limit (¢, < 1) and long
time limit (wot > 1) [14].

3.2.1 Renormalization of the coupling constant for thermal photons in a

blackbody cavity

The requirement that, P>_,1(t) in Eqn. (3.3) reaches 1/2 as t goes to infinity (which
has also been experimentally observed [1]), renormalizes g, to be the effective (or

renormalized) coupling constant as

) (3.4)

8oy (1) =
where 71 = ) o°n pu(wp) = m is the average number of thermal photons in
the blackbody cavity at the temperature T and Lij(x) = x + x?/2/ +x3/3/ + ... is
the poly-Logarithmic function of order j. The real function Li;(x) though is defined
for x < 1V j, its special form Lif% (Hin) is defined for all finite values of 7i. The
renormalized coupling constant g;, (1), which takes the light-matter coupling for
both the thermal photons and no photons (i.e. vacuum) into account, reaches the
Einstein A coefficient A(0) at T — 0. We show the same in the inset of figure 3.1.
The net transition probability in Eqn. (3.3) is a quasi-periodic function of time and
has the quasi (angular) frequency w, = 2gw,v/7 + 1 which can also be renormal-
ized with the effective coupling constant g/, (71), as Qr(i1) = 2/, (i1)v/7i + 1. This
renormalized frequency is the Rabi flopping frequency of the two-level system in

8The rotating wave approximation w + wy > |w — wp| (¥ w) implies w(z) > 4g£,0 to hold near the
resonance.
t

15 ({1/2},{1,3/2}, —(1/4)a*?) = 1 [; Jo(aT)dT
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U (wo) N Bz (1) oA o U(wo)(n+1)Bi2(t)y
—— (Dotted line), —— (Dashed line), (Solid line)
A(0) A(0) A(0)

Flow of the renormalized coupling constant (Solid line)

1.0 R\ 9'wo(M)/A(0)
R\ 3.0
08h 25}
- 20F
15F

Qgt

FIGURE 3.1: Multimode J-C model results for generalized Einstein
coefficients for wy = 271 x 51.099 x 10° Hz and T = 0.8 K as taken
in Ref.[1] for the circular Rydberg states (with the principal quantum
number n = 50 and n = 51) of a ¥Rb atom. While the solid and
the dotted lines follow Eqn. (3.5), the dashed line follows Eqn. (3.6).
Envelope of the dashed lines follow A(t)/A(0) = +/2/mQgt for large
t. Solid line of the inset represents temperature dependence of the
renormalized coupling constant and follows Eqn. (3.4).

the thermal radiation field'°. One can, however, determine the value of the A co-
efficient using the relation Qg (1) = 2g;, (7)V/7 + 1 from the experimental data of
Qg = 27 x 47 x 103 Hz ~ 0.295310 x 10° Hz [1].

3.2.2 Generalization of the Einstein coefficients towards time-dependence
under the quantum Rabi oscillations

It is to be mentioned that the rate of transitions (Ro—1(t) = |$Pa—s1(t)]) of the two-
level system at t — 0 can be directly obtained from Eqn. (3.3) without referring to the
Fermi’s golden rule as Ry_,1(0) = A(0) Y5—o pu(wo)(n +1) = B21(0) u(wp) + A(0).
If the time-derivative (%P2_>1(t)) be negative, then it represents the rate of transi-
tions in the reverse order. Thus we have defined the rate of transitions with the ab-
solute value. While the rate R,_,1(0) reaches u(wy) times the Einstein B coefficient in
absence of the vacuum fluctuations, it reaches the Einstein A coefficient in absence
of the thermal photons. The coupling constant g, in Eqn. (3.3) further has to be
replaced by the renormalized coupling constant g;, (72) to ensure P, ,1(0) = 1/2.
Eqn. (3.3) with g, replaced by g;,,(72) thus unifies both the Dirac’s theory of stimu-
lated emission and the Weisskopf-Wigner theory of spontaneous emission in a single

framework of the J-C model for multimodes. Such a unification was previously done

10Connection of this form of the Rabi frequency with the low 7 will be shown below Eqn. (3.6).
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only for the resonant frequency (w — wp) by the use of the Fermi’s golden rule on the
time-derivative of the transition probability Py~/""!(w, t) [14]. Our consideration of
the frequency broadening (Aw ~ Qg/2) of the transition probability Py /"' (w,t)
around the resonant frequency (w = wyp) generalizes the previous unification by
bringing time-dependence in the rate of the transitions Ry_1(t) = | & P,_1(t)| as one
can expect the same from the experimental observation of P,_,1(t) [1].

It is clear from the Eqn. (3.3) that, the stimulated emission part (n of (n + 1)) and
the spontaneous emission part (1 of (n 4 1)) though are primarily independent in
the short time scale, are secondarily dependent on each other through the 1 F, part of
the net transition probability as time goes on. This is possible because spontaneously
emitted photon can also take part in the stimulated emission. Eventually both the
spontaneous emission part and the stimulated emission part of the transition rate
Ryo1(t) = |$Prsi(t)| become secondarily hybrid. Thus we get the emission rate
Ry-,1(t) for the renormalized coupling constant g, (7) as Ry—1(t) = #(wo)Bay (t) +
A(t) = By (f)u(wp) + A(t) such that

Ba(t) = Bar(0) Y 1 pulcn)lJo 2L (Vi + 1)/

n=0

~ Bxn(0)|Jo(Qr(7)t)] (3.5)

and

At = A(0) Y. pulwo)lJo(28L, (1) VT 1)

n=0

A0)[Jo(Qr(71)8)] (3.6)

12

where Qg (71) ~ 2g/, (1)v/71 + 1 is the Rabi flopping frequency as defined before for
low photon number fluctuation (An = /fiv/ii +1 5 1 [26]) for low 7. The transi-
tion rate Ry_,1(f) becomes time-dependent along with its stimulated emission part
By1 (t)u(wp) and the spontaneous emission part A(f) only for the nonzero values of
the Rabi frequency Qr. We can call By (t) as the generalized Einstein By; coefficient
and A(t) as the generalized Einstein A coefficient. We can also have By, (t) as the
generalized Einstein Bj, coefficient. The generalized Einstein coefficients, however,
become the original time-independent Einstein coefficients for Qg — 0 i.e. for the
case of no Rabi flopping [10, 15, 16]. Eqns. (3.5) and (3.6) represent the multimode
J-C model results for the Einstein coefficients. We have got these results published in
Ref. [27]. It should also be mentioned that, the generalized Einstein B coefficient as
shown in Eqn. (3.5) takes the form similar to that obtained in the semiclassical Rabi
model [28]. The semiclassical Rabi model, however, can not generalize the Einstein
A coefficient. The generalized Einstein B coefficients obtained within the two mod-
els (Rabi model and multimode J-C model) are not exactly same. They significantly
differ in the limiting case of 7 — 0.

On the other hand, if P{'t])7"(gw, w,t) be the transition probability counter to



6 Chapter 3. Multimode Jaynes-Cummings model results for the Einstein A and B
coefficients

P;j}{‘“(gw,w,t) for the (stimulated) absorption of 1 photon from #n 4 1 photons

of frequency w each and P;_;,(t) be the corresponding net transition probability
counter to P»_,1(t), then we must have Py /"1 (w, t) + Pt ) 7" (w, t) = 1and Py () +
P_,»(t) = 1. Here-from we can show that, the rate of the transition probabil-
ity for the absorption of the two-level system in presence of the average thermal
photons 7 and 1 emitted photon at any arbitrary time is Ri_»(t) = |$ P12 (t)] =
ii(wo) (7 + 1)Byz(t). This relation leads to the equality Bio(f) = By (t) as because
ii(wo)Bo1(t) = A(t) holds for any arbitrary time according to Eqns. (3.5) and (3.6).

We plot all the generalized Einstein coefficients with proper weightage for stim-
ulated emission rate (dotted line), spontaneous emission rate (dashed line) and ab-
sorption rate (solid line) all in units of A(0) in figure 3.1 for a low temperature
T = 0.8 K so that the background of two-level system is filled with a very small
number of average thermal photons (77 = 0.0489 [1]). While on average 7i thermal
photons are present in the background of the two-level system for its stimulated
emission, on average 7 thermal photons and one emitted photon are present in the
background of two-level system for its absorption. This makes significant difference
between the two processes corresponding to the observation of the ‘vacuum’!! Rabi
oscillation at the low temperature (T = 0.8 K) by Brune et al [1]. It is clear from
figure 3.1 that, the “'vacuum’ Rabi oscillation takes place due to subsequent interplay
of the spontaneous emission and absorption. Role of the stimulated emission is sup-
pressed in the “vacuum’ Rabi oscillation. On the other hand, role of the spontaneous
emission is suppressed at a higher temperature. In that case, the dotted line and the
solid line in figure 3.1 would come close to each other.

3.2.3 Renormalization of the coupling constant for photons in a lossy res-
onant cavity

Let us now consider the spontaneous or stimulated emission from the two-level sys-
tem in a lossy resonant cavity, say a Fabry-Perot cavity, with z-axis be the cavity axis
[1, 3]. Above result for the blackbody cavity is expected to be unaltered if the sepa-
ration of the two reflecting walls of the resonant cavity is several times larger than
the wavelength of the resonant mode. The quantum Rabi oscillations need the emit-
ted photon to have lifetime (~ 200 us) longer than the light-matter interaction time,
so that it can be repeatedly reflected back and forth with the mirrors of the cavity
before it leaks out through the holes (of size ~mm? each) on the axis of the cavity or
becomes absorbed (or scattered) in the walls of the cavity resulting in the “Ohmic"
loss [29]. The parameter which ensures the longer lifetime is the higher mode qual-
ity factor (Q = 7 x 107 [1]) of the cavity. The leakage and the “Ohmic" loss can
be attributed to this value (Q = 7 x 107 [1]) of the mode quality factor. However,
there is additional loss as because the curved surface of the cylindrical geometry of
the cavity is open. Thus the probability that the emitted photon escapes from the

HWe are calling it to be “vacuum’ because the background of the two-level system in the cavity is
truly not empty at T = 0.8 K.
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cavity through the curved surface of the cylindrical shaped open cavity (of circular

mirrors of radius r each and separation h) is py = % = ﬁ which results
the net quality factor as Q' = T ;0 o 2. Derivation of the net quality factor (Q') is

Q w
shown in Sec. 3.A (Appendix A). SiI(l)CG the individual loss leads to a Lorentzian dis-

tribution, convolution of the relevant losses (leakage, “Ohmic" loss, and the loss due
the spontaneous emission through the open surface of the cavity) also leads to the

. . / . 2 (wo/Q")? . . ’
Lorentzian distribution u'(w) = u(wo)% o —wo P o T with the net width wp/Q
over the Planck’s distribution u(w) ~ u(wy). However, above form of the net tran-

sition probability (Eqn. (3.3)) would be unaltered if the broadening due to the rele-
vant losses is much higher than that due to the natural decay (i.e. wo/Q’' > A(0)).
Thus, we recast Eqn. (3.3) by further renormalizing the coupling constant as shown
in Eqn. (3.4) as

Pra(t) ~ A(O)iopn<wo><n+1)
<R (501 31—l VAT 1)1 67)

Incidentally we have A(0) ~ 15.6765 Hz in free space or in a (very large) black-
body cavity for dy; = 1250ape [3] of the two-level system (¥Rb) of our interest
and wy/Q" ~ 250210 Hz for the cavity of our interest [1]. Hence the condition
wo/Q" > A(0) is well met if the value of A(0) remains same (or decreases) in the
cavity space. Otherwise, each (angular) frequency in the net transition probability
(Eqn. (3.7)) would have to be weighted by the Lorentzian distribution u'(w).

3.2.4 Quantum Rabi oscillations for the two-level system in a lossy reso-
nant cavity

However, value of the Einstein A coefficient (A(0)) increases enormously in the
Fabry-Perot cavity due to the Purcell effect [9]. Broadening due to the relevant losses
may not be so large in comparison to A(0) in this situation. Each frequency in the
net transition probability (Eqn. (3.7)) should be weighted by the Lorentzian distribu-
tion 1’ (w) = u(wo) 2 4(w_(f]‘;)(’2/ 5(2]20 7o in this case. Thus Eqn. (3.7) would be further
recast in a similar way of reaching Eqn. (3.3) from Eqn. (3.1) as

= 4
PZ—)l(t) = A(O) Z pn(wo)[y[ + ”E %
n=0
* (wo/Q')? sin?(Q,t/2)

12Here A(0) is the frequency broadening (Aw around the resonance frequency wy) for the natural

decay in the free space [16]. The natural decay in the free space results in the Q-factor X% = %.
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where w, = 2g, (7,Q")v/n + 1 is the new renormalized n-photon Rabi frequency
and g;,, (11, Q") is the new renormalized coupling constant which is to be determined
by setting the limit P_,1(c0) = 1/2.

‘Vacuum’ Rabi oscillation

Eqgn. (3.8) would be approximated by further neglecting the photon-number fluctu-
ation (An = v/7iv/1+ 7 [26]) at the higher order of the Taylor expansion of P,_1(f)
about n = 7 for low 7i (77 5 1) at a low temperature'?, as

Py(t) ~ A(O)[ﬁ+1]%x
o (wo/Q')? sin?(Qut/2) 40 (3.9)

wn 4(QF — WF) + ()2 Qi /2 — w? !

The number 1 next to 71 in Eqn. (3.9) arises purely from the quantum fluctuations. Ef-

fect of the quantum fluctuations are suppressed in the classical regime (kpT /Ty >>
1). Thus Eqn. (3.9) corresponds to the classical Rabi oscillation for 7 > 1. How-
ever, the new renormalized coupling constant used in Eqn. (3.9) can be determined

. s _ I (= ) A(0)VA+1 . _
by setting the limit P, ,1(c0) = 1/2as g, (7,Q") = Trag, (L)W 10 ey which fur
ther determines the Rabi frequency for a lossy resonant cavity at a low temperature

—1+4/1+16A(0)[a+1]Q' / wy

as Or(7,Q') = 28, (7, Q)Vi+1 = 07700 . This relation further
determines the Einstein A coefficient to be as A(0) = 2(%’31) + w?(j’ilgl) While the

1st term of A(0) represents the Einstein A coefficient in the free space, the 2nd term
represents enhancement of the A coefficient due to the Purcell effect in the resonant
cavity. Now we get enhanced value of the A coefficient as A(0) ~ 0.473053 x 10°Hz
for the %Rb atom in the resonant cavity of our interest [1]. The net quality factor
corresponding to this A(0) now takes the value Q' = 1.28318 x 10°.

We plot the right hand side of the Eqn. (3.9) in the figure 3.2-a for the Rb atom
in the resonant cavity [1]. The solid line in the figure 3.2-a represents the ‘vacuum’
Rabi oscillation in the resonant cavity for the parameters as mentioned in the figure-
caption. The cavity is truly not empty rather has on the average 71 = 0.0489 thermal
photons in it [1]. For this reason we are not calling the Rabi oscillation to be as the
vacuum Rabi oscillation, rather we are calling it to be as the “vacuum’ Rabi oscilla-
tion. Note that only n = 0 photons are involved in the case of the (true) vacuum Rabi
oscillation. The dotted line represents a fit with the same equation but for a lower
value (Q = 7 x 10°) of the Q-factor. Damping of the Rabi oscillation even in the high
Q cavity, as shown in figure 3.2-a, is caused due to the finite width (~ Qg /2) of the
frequency distribution around the resonance. We have got this result published in
Ref. [27]. Better matching for the lower Q-factor can be attributed to the substantial
losses from the resonant cavity corresponding to the frequency broadening due to

13Here 71 is a small quantity at a low temperature. Thus /7 + 1 at the argument of the generalized
hypergeometric function in Eqn. (3.7) is approximated as v/7i + 1V n.
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(a): Multimode J-C model result for "vacuum' Rabi oscillation in a lossy cavity at T=0.8 K
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(b): Multimode J-C model result for injected coherent field induced quantum Rabi oscillations
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FIGURE 3.2: (a): Solid line represents the “vacuum’ Rabi oscillation,
and follows Eqn. (3.9) for the Bohr frequency wy = 27t x 51.099 x
10° Hz, Rabi frequency Qr = 27 x 47 x 10° Hz and average num-
ber of thermal photons 77 = 0.0489. Circles represent corresponding
experimental data [1] adapted for the circular Rydberg states (with
the principal quantum number n = 50 and n = 51) of 8Rb atoms
in an open resonant cavity of the Q-factor Q = 7 x 107 and size
7(50/2)? x 27 mm? at the temperature T = 0.8 K. The dotted line

represents the same for Q =7 x 10°.
(b): Solid line represents injected coherent field induced quantum
Rabi oscillations, and follows Eqn. (3.8) for the same parameters as
mentioned above except for Rabi frequency Qg = 27 x 55.6949 x
10° Hz and the average number of injected photons 7i = 0.4 in the
lossy cavity. Circles represent corresponding experimental data [1]
adapted for the same two-level system.
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inhomogeneous light-matter coupling along the cavity axis [1], Doppler broadening
due to the speed distribution of 8Rb atoms in the cavity, thermal broadening, efc.

Quantum Rabi oscillations for injected coherent field

Quantum Rabi oscillation was not only observed in the form of “vacuum’” Rabi oscil-
lation but also in the form of coherent field induced Rabi oscillation [1]. Let us also
do similar study of injected coherent field induced quantum Rabi oscillations. The
main difference in this respect comes from the probability distribution of photons.
While the probability distribution follows exponential law for the thermal photons,
it follows Poisson distribution p,(wy) = ’Z—';e*ﬁ for 7 average number photons of
frequency wy in the coherent field. Averaging of the transition probability P>_,;(t)
over the polarization is no longer needed. Thus the factor 1 is no longer needed
in Eqn. (3.2). All values of the frequencies as mentioned in Eqn. (3.2) are also not
welcome in the injected coherent field as because the coherent field has finite maxi-
mum detuning, say (w — wo)max = 10° Hz in Brune et als’ experiment [1]. However,
significant contribution in the integrals in Eqns. (3.2) and (3.8) are coming from the
domain wy — Qg to wo + Qg of the frequency w. Incidentally, the maximum detun-
ing is about 3 times of Qg [1]. Thus Eqn. (3.8) with p,(wp) = Zre™ would still be
okay for the net transition probability of the spontaneous emission or the stimulated
emission induced by the injected coherent field. Injected coherent field increases the
light-matter coupling constant so as the Rabi frequency. The renormalized coupling
constant (g, (72, Q’)) can be determined from the limiting value P, ,1(c0) = 1/2 for
the previous values of A(0) (= 0.473053 x 10° Hz) and Q' (= 1.28318 x 10° Hz)).
We determine the new renormalized coupling constant to the second order in exper-
imental value 1 = 0.4 (5 1) [1] as ., (0.40, Q') ~ 0.147877 x 10° Hz. Here-from we
get the Rabi frequency as Qr = 2g4,(0.40, Q")1/0.4 + 1 ~ 55.6949 x 27 x 103 Hz.

The solid line in the figure 3.2-b represents the injected coherent field induced
quantum Rabi oscillations in the resonant cavity for the parameters as mentioned in
the figure-caption. Amplitude of the quantum Rabi oscillations in the figure 3.2-b is
observed to be less than that in the figure 3.2-a because of the larger photon number
fluctuation in the case of the figure 3.2-b. Photon number fluctuation kills the quan-
tum Rabi oscillations for large values of 7 (> 1). Damping of the Rabi oscillations
even for the coherent field in the cavity, as shown in figure 3.2-b, is caused due to
the finite width of the frequency broadening at around the resonance. However, we
see good agreement of our theoretical result with the experimental data in the figure
3.2-b. We have got this result published in Ref. [27]. The matching would have been
better had we considered additional losses from the cavity, inhomogeneous light-
matter coupling, Doppler broadening, finite detuning of the injected coherent field,
thermal broadening, higher order effect of 7 in the light-matter coupling constant,
etc.
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3.3 Conclusion

We have obtained multimode Jaynes-Cummings model results for all the general-
ized Einstein coefficients for a two-level system in the thermal radiation field and
have shown that all the generalized Einstein coefficients depend on time and Rabi
frequency in a similar manner for low photon number fluctuation. These results are
accurate for fairly large Bohr frequency (wp > Qg) and are significantly different
from the results obtained within the first order time-dependent perturbation theory
which considers Qg — 0. Renormalization of the light-matter coupling done for
both the vacuum field and thermal photons together leads to such a difference from
the previous theories. We have obtained analytical results within the multimode
Jaynes-Cummings model for the quantum Rabi oscillations for both the thermal
photons and the photons of an injected coherent field. Our results on the quan-
tum Rabi oscillations match well with the experimental data [1]. Our generalization
of the Einstein coefficients is an invitation to the experimentalists for direct measure-
ment of the Einstein coefficients for the two-level system(s) in a blackbody cavity.

While the Einstein coefficients deal with the fundamental processes (e.g. sponta-
neous emission, stimulated emission and absorption), they don’t directly deal with
the Rabi oscillation. On the other hand, the quantum Rabi oscillations deal with the
fundamental processes. Hence it is possible to derive Einstein coefficients from the
analyses of the quantum Rabi oscillations and we have done that for a nonzero Rabi
frequency. Thus we have generalized the Einstein coefficients towards time and Rabi
frequency dependences.

Drexhage observed alterations in the rate of spontaneous emission, regarding the
influence the atomic radiation, while working on the fluorescence of organic dyes
deposited on dielectric films over a metallic mirror [11, 2]. Once a two-level system
in a resonant cavity emits a photon it is periodically reabsorbed in the cavity exhibit-
ing the quantum Rabi oscillation. Thus time-dependence of the Einstein coefficients
is not a surprise at least for a two-level system in a resonant cavity. However, proba-
bility of the reabsorption is negligibly small for the same system in the free space'*.
Thus the Einstein coefficients are not found to be time-dependent in the free space.

We are not able to compare the result on the generalized Einstein B coefficient
with the existing experimental data as because they have not been obtained by
any direct measurement; rather, experimentalists apply time-dependent perturba-
tion theory (A/B = ZZLC%) for the indirect measurement of the Einstein B coefficient
from the experimental value of the Einstein A coefficient [30]. Time-dependence of
the generalized Einstein A coefficient could have been caught by the experimental-
ists had they measured it for longer time scale i.e. the time scale of the quantum Rabi
oscillations. Measurement of the absorption coefficient [25] for a two-level system
doesn’t also serve the purpose of capturing the time-dependence of the generalized

4Here, free space refers to a large blockbody cavity.
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Einstein B coefficient, as because, averaging of the absorption of photons of all pos-
sible frequencies and of all possible directions of incidence is not considered in the
measurement [31].

Throughout the chapter by “frequency” we have meant “angular frequency".

We have dealt with a single two-level system (qubit) in the 3-D multimode J-C
model. Transition probability calculated for this system would not have changed if
we had taken non-interacting and distinguishable identical two-level systems.

While the quantum Rabi oscillation is studied for strong light-matter interac-
tions (gw, > sup{<y, x}'° [32]), the Einstein rate equations are often applied for
weak light-matter interactions (g, < sup{7, «} [32]). Incidentally, the multimode
J-C model gives results in both the weak coupling regime and the strong coupling
regime as far as the rotating wave approximation (2¢.,, < wp) is applicable. Thus we
have been interested in bridging the quantum Rabi oscillation and the phenomeno-
logical rate equations by the multimode J-C model. The experimental data [1], which
we have compared with our results in the figure 3.2, satisfy both the strong coupling
condition and the rotating wave approximation. The J-C model, however, is not ap-
plicable in the ultrastrong coupling (3., ~ wo) and deep strong coupling (g, > wo)
regimes [33, 34]. The quantum Rabi model which generalizes the J-C model is appli-
cable in these regimes [35, 36].

The generalized Einstein A and B coefficients obtained in Eqns. (3.5) and (3.6)
may take place in the time-dependent rate coefficients R1_5(#), Ro—1(t), and A(t) in
the Einstein rate equations if the time-independent rate coefficients are replaced by
the time-dependent rate coefficients. Population dynamics would have to be stud-
ied in terms of the time-dependent rate coefficients in such a case. Such a popula-
tion dynamics with the time-dependent rate coefficients would be interesting for
analysing the entropy production of a two-level system in the thermal radiation
field. In Chapter-5 we will study the population dynamics and entropy produc-
tion for the time-dependent forms of the generalized Einstein coefficients obtained
in Egns. (3.5) and (3.6).

3.A Appendix A: Derivation of the net quality factor

The quality factor Q of a resonant optical cavity is defined as follows [37]

w
Ploss

Q = wy (3.A.10)
where wy is the (angular) resonance frequency, W is the electromagnetic energy
stored in the resonant mode of the cavity, and P, is the electromagnetic energy
lost per optical cycle to the walls of the cavity.

The “Ohmic" loss, apart from the loss due to the surface a.c. current flow in the

(conducting) cavity walls, also includes the losses due to the host-crystal absorption,

15Here 1 is the non-resonant decay rate and x = wp/Q is the photon decay rate of the cavity [32].
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impurities, scattering loss, excited-state absorption, and other effects [29]. We are
also considering the loss of the stored electromagnetic energy due to the leakage
from the holes on the cavity axis in addition to the “Ohmic" loss. If Q1 be the quality
factor of the cavity corresponding to the “Ohmic" loss and Q; be the quality factor
of the cavity corresponding to the leakage, then the inverse of quality factor (Q) of
the cavity corresponding to both the losses is given by [37]

1_1 1

Q QA Q
The “Ohmic" loss, however, would be very low for a superconducting cavity and
the quality factor for such a cavity would be very high (Q = 7 x 107 [1]). The differ-

ential equation for the variation of the stored electromagnetic energy over the time ¢
follows [37, 38]

(3.A.11)

dw . Wo
- = _5W (3.A.12)

for both the “Ohmic" loss and the leakage together. A solution to this equation is
W(t) =W(0)e <. (3.A.13)

Here-from we can write the temporal part of the electric field associated with the

resonant mode as [38]
wot .
E(t) = Ege™ 20 e 0!, (3.A.14)

It is clear from the above equation that the oscillation of the electric field dies as
wot

E(t) Eoe_% in the resonant optical cavity. Fourier transform of the above tempo-

ral part of the electric field becomes

- 00wt Ep2iQ
F(w) = E 2 gilo-wltqy — 0 3.A.15
(@) 0 /0 ¢ e d 2Q[w — wo| + iwy ( )
for the time t > 0 and the (angular) frequency w > 0. Here-from we get the spectral
distribution of the (angular) frequencies as [38]

E(w)P = B2 r (3.A.16)

[w—WQ]Z—i—%

The shape of this spectral distribution is Lorentzian and the full width at half maxi-
mum (FWHM) of the distribution is given by Aw = % [38].

Another Lorentzian broadening of the (angular) frequencies, similar to the one in
Eqn. (3.A.16), is also obtained for the spontaneous emission from a two-level system
(atom/molecule) in the free space within the Weisskopf-Wigner approximation as
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[16, 39]

_ 1
|E(w)|* = E§ AP (3.A.17)

where A(0) is the Einstein A coefficient. The width (FWHM) of this Lorentzian
broadening is given by Aw = A(0) [38]. However, if the two-level system be kept
in the cavity, then only a fraction of the total spontaneous emission can escape from
the cavity resulting in an additional loss through the open surface of the cavity. Let
the cavity be of cylindrical shape and its curved surface is open. The probability

that an emitted photon escapes from the cavity through the curved surface is py =

27trh _ 1
2rrh+2mr?2 T 14

the separation of the two mirrors. Thus Eqn. (3.A.17) would be modified for the

where r is the radius of each of the mirrors of the cavity and & is

spontaneous emission through the curved surface of the cavity as

1

|E(w)|® = E} (3.A.18)

[w — wol? + M.
Convolution of the two Lorentzian distributions of Eqns. (3.A.16) and (3.A.18) is also
another Lorentzian distribution with the net width (FWHM) A«w’ = % + poA(0)
which is the addition of the widths (FWHM) of the two distributions [40]. If we
compare Eqn. (3.A.18) with Eqn. (3.A.16) then we can assign a quality factor for
the loss associated with the spontaneous emission through the curved surface of the

cavity as

wo

B = 00A0)

: (3.A.19)

The inverse of the net quality factor corresponding to the broadenings of Eqns.
(3.A.16) and (3.A.18), on the other hand, would be an addition of the inverse of
the individual quality factors as mentioned in Eqn. (3.A.11) [37]. Thus the inverse
of the net quality factor of the lossy resonant optical cavity of our interest would be
é = é + é = é + 2AO) Here-from we get the desired net quality factor as [27]

wo

Q=

O (3.A.20)
Q wo

This form of the net quality factor has been used in Eqn. (3.8).
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Chapter 4

Multimode Jaynes-Cummings
model results for the collapse and
revival of the quantum Rabi
oscillations in a lossy cavity

4.1 Introduction

Collapse and revival of the quantum Rabi oscillations of a two-level system (atom /
molecule) is an interesting area of research in the field of cavity quantum electrody-
namics [1, 2, 3,4,5,6,7,8,9, 10, 11]. Eberly et al first predicted the phenomena of
the collapse and the revival within the single-mode Jaynes-Cummings (J-C) model
[12] for the quantum Rabi oscillations of a two-level system interacting with coher-
ent photons in a cavity [1]. The collapse and the revival were subsequently observed
by investigating the dynamics of the interaction of a single Rydberg atom with the
resonant mode of an electromagnetic field in a superconducting cavity [5]. While the
existing theories [1, 2, 3, 4, 10, 11] for the collapse and the revival usually require a
large average number of photons (77 > 1) in the coherent field, a seminal experiment
[7] on the same was carried out by Brune et al for a low average number of photons
(71 2 1) in the coherent field. In fact, as far as we know;, all the experiments on the col-
lapse and the revival were carried out for low average number of photons [5, 13, 7]
except the one [14] carried out for 7 = 13.4. Hence we theoretically investigate the
collapse and the revival for a low average number of photons in a coherent field.
Theory for the collapse and the revival is also available for low average number of
injected coherent photons as well as for all values of the average number of the in-
jected coherent photons [15, 6, 16, 7, 14, 17, 10]. This theory takes only the resonant
mode into account for the light-matter interactions. We are, however, interested in
considering multimodes into account.

J-C model takes only the resonant cavity mode into account for the explanation
of the collapse and the revival of the quantum Rabi oscillations of a two-level system
in a loss-less cavity [12, 1]. However, the cavities are not loss-less in reality [7]. This
brings a frequency broadening as well as the appearance of multimodes around the
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FIGURE 4.1: Schematic diagram for a two-level system interacting
with injected coherent photons in a lossy resonant cavity.

resonant mode into account. Brune et al’s experiment on the collapse and the revival
were carried out in a lossy resonant cavity of the mode quality factor Q = 7 x 107
[7]. The schematic diagram for the two-level system interacting with the injected
coherent photons in the lossy resonant cavity is shown in figure 4.1. It is clear from
figure 4.1 how the injected coherent photons are introduced into the cavity and how
the two-level system is interacting with the multi-modes of the injected coherent
photons in the cavity. Losses from the cavity are shown by the wavy arrows in the
same figure. The frequency broadening in Brune ef al’s experiment can be attributed
to the multimode J-C model, A = hwoos + Yz, hw,ﬁ%sﬁ—kos —iY g hgployay, —o- ﬁ%s]l
[18, 19], rather than the single-mode Jaynes-Cummings model [20]. Thus the theo-
retical explanation of the collapse and revival of the quantum Rabi oscillations in a
lossy resonant cavity needs a novel approach with the multimode Jaynes-Cummings
model. The novel approach must take relevant losses from the cavity into account

for the explanation of Brune et al’s experimental data [7]. Here we provide such a

Here H is the Hamiltonian operator for a two-level system interacting with photons in a lossy
resonant cavity. We are following the notations [19]: o4 = |¢) (1|, 0= = 1) (Y], o1 = [0 + 0],
o = —iloy —0-], 03 = [¢2) (2| — |1) (Y11, ag, (ﬁ%s) annihilates (creates) a photon of energy hw:,

polarization s and momentum #ik (having dispersion w = ck) in the Fock space, |1) (|)) is the
energy eigenstate for the lower (higher) energy E; (E;) of the two-level system in absence of the light-
matter interactions, g;_ is the coupling constant (assumed real) for the light-matter interaction for the

mode ks, and wy = (E; — E;)/h is the Borh (angular) frequency of the two-level system.
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novel theory for the collapse and the revival by considering relevant losses from the
cavity especially the “Ohmic" loss [21] to the walls of the cavity, the leakage from the
cavity, and the loss due to the spontaneous emission through the open surface of the
cavity.

Multimode J-C model [18] is popular not only for an extension of the single-
mode J-C model [12] but also for the multi-photon transitions [22], the dynamics of
entanglement [23], etc [20]. Multimode J-C model has been successfully used by us
[20] to explore the quantum Rabi oscillations of a two-level system interacting with a
very low average number of injected coherent photons (77 = 0.4) in a lossy resonant
cavity as described in Brune et al’s experiment [7]. Such a very low average number
of photons was treated perturbatively (up to the second order in 72 < 1) in Ref. [20].
However, Brune et al [7] obtained two more sets of data for low average number
of injected coherent photon numbers 7 = 0.85 £0.04 and 7 = 1.77 £ 0.15 in the
same cavity showing the collapse and the revival of the quantum Rabi oscillations
of a two-level system (¥Rb atom). A non-perturbative method is needed for the
theoretical explanation of these two sets of data for the collapse and the revival.
Hence we extend our method described in Ref. [20] for this purpose. The collapse
and the revival of the quantum Rabi oscillations, of course, were not discussed in
Ref. [20].

Calculation in this chapter begins with Eqn. (3.8) of the previous chapter. This
equation is an outcome of the multimode J-C model and it is nothing but the net tran-
sition probability (P, (t)) which describes the quantum Rabi oscillations in time (t)
domain for a two-level system interacting with coherent photons in a lossy resonant
cavity. This transition probability is a function of time and a number of parame-
ters including the renormalized coupling constant which can be determined by the
mode quality factor of the cavity and the average number of coherent photons in-
cident on the two-level system. We determine the transition probabilities for the
average numbers of coherent photons 77 = 0.85 and 7 = 1.77 and the mode quality
factor Q = 7 x 107 after determining the renormalized coupling constants within a
graphical method. We compare our theoretical results with the experimental data
obtained by Brune et al [7] and the existing theoretical results obtained within the
single-mode J-C model [7, 8, 14]. We also estimate the collapse time and the revival
time for 77 = 0.85 and 1.77. Finally, we conclude.

4.2 Collapse and Revival

Let us consider the two-level system in a lossy resonant Fabry-Perot cavity of the
resonance frequency wy and the mode quality factor Q. The two-level system is in-
teracting with the coherent photons which are injected through a hole on the cavity
axis. Let the average number of coherent photons injected on the two-level sys-
tem be 71. We consider the quantum Rabi oscillations of the two-level system in the
processes of the spontaneous emission, the stimulated emission and the stimulated
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absorption. The quantum Rabi oscillations need the two-level system to strongly in-
teract with the injected photons of the cavity field. The high mode quality factor of
the cavity ensures strong light-matter coupling. The photon emitted from the two-
level has a long life-time (~ 200 us) in such a situation. The emitted photon repeat-
edly reflects back and forth with the mirrors of the cavity before it leaks out through
the holes on the axis of the cavity or becomes absorbed (or scattered) in the walls
of the cavity resulting in the “Ohmic" loss [21]. However, the curved surface of the
cylindrical geometry of the cavity is also kept open. This causes additional loss from
the cavity. This loss is associated with the spontaneous emission from the two-level

system through the curved surface of the cavity [20]. The probability that an emitted

27rh — 1
2mrh+27mr? 1+

where r is the radius of each of the mirrors of the cavity and / is the separation of the

photon escapes from the cavity through the curved surface is py =

two mirrors [20]. All these losses result in the net quality factor as Q" = W [20]

where A(0) is the frequency broadening due to the natural decay in the staczoinside
the cavity. Here A(0) is nothing but the enhanced value of the Einstein A coefficient
due to the Purcell effect [24]. Let us consider that initially (¢ = 0) the two-level sys-
tem was at the excited state. Thus we get the net transition probability of two-level

system from the excited state (|42)) to the ground state (|ip1)) at time ¢, as [20]

o0

Pya(t) = A(0) Z%pn[n—kl] «
n=0

° (wo/Q")? sin?(Q),t/2) 0
won MR D)+ (G O/ —w?

where w;, = 2g;, (71, Q")v/n + 1 is the renormalized n-photon Rabi frequency, p, =

(4.1)

T-e~™ represents the probability of occupation of 1 coherent photons, and g/, (7, Q')
is the renormalized light-matter coupling constant.

Eqn. (4.1) was already there in the previous chapter (Eqn. (3.8)) and it is able to
describe the collapse and revival of the quantum Rabi oscillations of the two-level
system in the lossy resonant cavity for the low average number of coherent photons
(1 2 1). The descriptions of the collapse and the revival require determination of the
renormalized coupling constant which, however, was not done in any literature for
the low average number of coherent photons (77 2 1). We determine renormalized
coupling constants for low average numbers of coherent photons as follows. We also
describe the collapse and the revival below.

For t — oo, we have sin’(Q,t/2) — 3 in Eqn. (4.1). Experimental results sug-
gest us to take the limiting value lim; ;o P»1(t) = 1/2 [7, 13]. Now by setting
Py_,1(00) = 1/2 and integrating over (), in Eqn. (4.1), we get

1
f(&w) = 5 (4.2)
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Graphical solution of g‘wo(ﬁ,Q') for wy=271%51 .099x10° Hz, Q'=1.28318+10°, and n=0.85
1
f(g'wy)s —
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FIGURE 4.2: Solid line represents the left-hand side of Eqn. (4.2)

for the parameters as mentioned in the plot label and for A(0) =

0.473053 x 10° Hz. Dotted line represents the right-hand side of the
same equation for the same parameters.

where

= ( )[('UO/Q/] 77_1_” 43
Fl8) = L 37 0, Q) gl (1, Q) + Tt 43

The Einstein A coefficient was calculated from the experimental data [7] for the
‘vacuum’ Rabi oscillation of the two-level system (¥Rb atom) for the Rabi frequency
Qr = 27 x 47 x 10°Hz, the Bohr frequency as well as resonance frequency wy =
27t x 51.099 x 10° Hz, the average number of thermal photons 7i;;, = 0.0489, and the
cavity specification r = 25 mm, h = 27 mm and Q = 7 x 107, as A(0) = 0.473053 x
10° Hz [20]. The net quality factor is resulted in as Q" = 1.28318 x 10° out of all
these parameters [20]. The experiment on the collapse and revival of the quantum
Rabi oscillations of the same two-level system was done in the same setup except the
thermal photons replaced with the injected coherent photons. Such a replacement
does not change the Einstein A coefficient rather changes the renormalized coupling
constant g/, (71, Q") as well as the Rabi frequency Or = 2g/, (7, Q') v/ + 1 [20].

Let us now determine the renormalized coupling constant g, (7, Q") from Eqn.
(4.2) for fixed 7i and for A(0) = 0.473053 x 10° Hz, wy = 27 x 51.099 x 10° Hz and
Q' = 1.28318 x 10° as mentioned above. We already have mentioned that Brune et al
took 71 = 0.85 £ 0.04 and 1.77 & 0.15 for the observations of the collapse and revival
[7]. We employ the graphical method for the determination of the renormalized cou-
pling constant from Eqn. (4.2) for the above parameters. This method is considered
to be a non-perturbative method. We plot both the left-hand side (solid line) and the
right-hand side (dotted line) of Eqn. (4.2) with respect to the renormalized coupling
constant in figure 4.2 for the above parameters and for 7 = 0.85. The intersection
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(a): Multimode J-C model result for coherent field induced quantum Rabi oscillations for n=0.85

()

20 40 60 80

FIGURE 4.3: (a): Solid line represents coherent field induced quan-
tum Rabi oscillations, and it follows Eqn. (4.1) for the Bohr fre-
quency wp = 27 x 51.099 x 10° Hz, renormalized coupling constant
Sw, = 149084 Hz, Rabi frequency QO = 27 x 64.5457 x 10® Hz and
average number of coherent photons 77 = 0.85 in a lossy resonant cav-
ity of specification r = 25 mm, h = 27 mmand Q =7 x 107. Circles
represent corresponding experimental data [7] adapted for the circu-
lar Rydberg states (with the principal quantum number #n = 50 and
n = 51) of ¥ Rb atoms in the lossy resonant cavity. Dotted line follows
Eqn. (4.4) for g = g, = 149084 Hz and 72 = 0.85.
(b): Solid line represents coherent field induced quantum Rabi oscil-
lations, and it follows Eqn. (4.1) for the Bohr frequency wy = 27 x
51.099 x 10° Hz, renormalized coupling constant L, = 152852 Hz,
Rabi frequency Qg = 27 x 80.9769 x 10° Hz and average number of
coherent photons 71 = 1.77 in the same lossy resonant cavity. Circles

represent corresponding experimental data for the same system. Dot-
ted line follows Eqn. (4.4) for ¢ = g,, = 152852 Hz and 71 = 1.77.

tlug

tlug
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of these two plots solves the renormalized coupling constant on the horizontal axis
of figure 4.2. Thus for 7 = 0.85 we get the renormalized coupling constant to be
as g,,, = 149084 Hz. This graphical solution can be called as a numerical solution
because the left-hand side of Eqn. (4.2) is evaluated numerically before being plot-
ted in figure 4.2. Similarly, for the same parameters except for 7 = 1.77 we get the
renormalized coupling constant to be as g, = 152852 Hz. Value of the renormalized
coupling constant enables us to plot Eqn. (4.1) where periodic dephasing over the
time for various photon numbers (1) results in the collapse in the quantum Rabi os-
cillations and periodic rephasing over the time for various photon numbers results
in revival in the quantum Rabi oscillations. Multimodes further result in dephasing
in the quantum Rabi oscillations. We plot Eqn. (4.1) in figure 4.3-a for 7i = 0.85 and
in figure 4.3-b for 7 = 1.77. We compare our results (solid lines) with the correspond-
ing sets of experimental data in figures 4.3-a and 4.3-b. We also need to compare our
results with the existing theoretical result [7, 14, 8]

o0 —fi=n
Py (t Z n sin? (gtv/n + 1) (4.4)

obtained for similar purpose under the consideration of the light-matter coupling
with only the resonant mode (w = wp) and no loss from the cavity. Dotted lines
in figure 4.3-a and 4.3-b follow Eqn. (4.4) and represent single-mode J-C model re-
sults for the coherent field-induced quantum Rabi oscillations for the same coupling
constants {g = g, } and the same average photon numbers {7} taken for the solid
lines. We have got these results published in Ref. [25].

The collapse happens at a point (t = t.) when different quantum Rabi oscillations
take place in 71 amount of out of phase. This causes destructive interference in the
quantum Rabi oscillations. For low average number of coherent photons (72 2 1) too,
the maximum of the Poisson distribution p, = %e_f’ in Eqn. (4.1) occurs at around
n = 7i. The standard deviation for the distribution is An = /7. Thus we apply the
condition ([wjy Ay — Wi an]te = 71 [26]) for the collapse in Eqn. (4.1), as

Zgé‘)O(ﬁ,Q/){\/ﬁ—i-\/%—f-l—\/ﬁ—\/ﬁ—i—l]tczn. (4.5)

Here-from we estimate the collapse times as t, ~ 15 us for the first set of data (for
figure 4.3-a) and f, ~ 12 us for the second set of data (for figure 4.3-b). Vertical
lines at t = 15 us and 12 us indicate the collapse of the quantum Rabi oscillations in
figures 4.3-a and 4.3-b, respectively. We have got these results published in Ref. [25].

The revival takes place at a point (f = t,) when all the neighbouring quantum
Rabi oscillations come in phase again and add up for constructive interference. Thus
we apply the condition ((ws+1 — walt, = 27 [14, 10, 26]) for the revival in Eqn. (4.1),
as

280, (1, Q) |V +2— Vi +1|t, =27 (4.6)
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Here-from we estimate the revival times as t, ~ 64 us for the first set of data (for
tigure 4.3-a) and t, ~ 74 us for the second set of data (for figure 4.3-b). Vertical lines
att = 64 us and 74 us indicate the revival of the quantum Rabi oscillations in figures
4.3-a and 4.3-b, respectively. We have got these results published in Ref. [25].

4.3 Conclusion

We have theoretically obtained multimode Jaynes-Cummings model results for the
collapse and the revival of the quantum Rabi oscillations of a two-level system inter-
acting with injected coherent photons in a lossy resonant cavity. We have extended
our previous theory [20] within a non-perturbative method in this regard. We have
compared our results with two sets of experimental data [7] for low average number
of coherent photons (77 = 0.85 and 1.77) incident on a two-level system in the lossy
resonant cavity. Our results match reasonably well with the experimental data, at
least, better than the theoretical one (Eqn. (4.4) [7, 14, 8] obtained for only the reso-
nant mode and no loss from the cavity under consideration.

We had to cite Ref. [20] quite often in this chapter because it is an extension of
the previous work [20] on the quantum Rabi oscillations. This extension is necessary
because the collapse and the revival of the quantum Rabi oscillations of a two-level
system, however, have separate existence [1, 2, 3, 4, 5, 10, 11, 14, 15, 17] over the
usual discussion on the quantum Rabi oscillations.

The solid line, which represents the function f(gy,,) of the renormalized coupling
constant in figure 4.2, appears to be straight in the figure for the small range of the
renormalized coupling constant. It would not have appeared to be a straight line if
we had taken a large range of the renormalized coupling constant in the figure.

It is clear from figure 4.3 that the multimode Jaynes-Cummings model result is
almost the same as the single-mode Jaynes-Cummings model result for short time-
evolution of the net transition probability. These two results significantly differ at a
large time. This implies that the non-resonant modes are significant at large times.

It appears that we have developed a theory for the collapse and the revival for
the low average number of injected coherent photons. Eqns. (4.1) and (4.2) are our
key results in this regard. However, nowhere in these two equations, even in the
subsequent equations, we have considered 7 to be small. Hence our theory is appli-
cable for all values of the average number of injected coherent photons.

Our results are significantly different from the previous theoretical results [7, 14,
8] from (i) the consideration of the multimodes around the resonant mode into ac-
count, and (ii) the consideration of the frequency broadening due to the “Ohmic"
loss to the walls of the cavity, the leakage from the cavity, and the loss due to the
spontaneous emission through the open surface of the cavity. Further consideration
of substantial losses corresponding to the frequency broadening due to inhomoge-
neous light-matter coupling along the cavity axis, Doppler broadening due to the
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speed distribution of Rb atoms in the cavity, thermal broadening, etc may improve
our theory. Such an improvement is kept as an open problem.
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Chapter 5

Population dynamics of two-level
systems for the generalized
Einstein coefficients

5.1 Introduction

While the stimulated transition-rates are time-independent in the (quantum) Marko-
vian master equations and are solvable for the case of the time-dependent perturba-
tion on the system [1, 2, 3], they are time-dependent in the (quantum) non-Markovian
master equations and are usually hard to solve [4, 5]. The explicit time-dependent
terms in the stimulated transition rates render the non-Markovian master equa-
tions analytically intractable. Some simplified versions of the non-Markovian mas-
ter equations can, of course, be solved either in the limiting cases of weak [6] and
linear [7] interactions between the system and the bath or in the limiting case of
structured bath even for strong interactions [8].

Nonequilibrium statistical mechanics is often modelled with the semiclassical
or the quantum master equations which to some extent are generalizations of Ein-
stein’s rate equation, such as the Pauli master equation [9], the Boltzmann-Uehling-
Uhlenbeck equation or the quantum statistical Boltzmann equation [9, 10], the Gorini-
Kossakowski-Sudarshan-Lindblad equation [1], the Bloch-Redfield master equa-
tion [3, 2], the Caldeira-Leggett master equation [11, 2], the quantum Fokker—Planck
equation [12], the adiabatic/nonadiabatic master equation [13], Van Hove master
equation [14], and the Nakajima—Zwanzig master equation [4]. These equations are
either of Markovian master equation or non-Markovian master equation ! type irre-
spective of the strength of the system-bath (i.e., light-matter or matter-matter) cou-
pling. None of these equations can be derived fully from either the Schrodinger
equation or the Liouville-von Neumann equation or even the Heisenberg equation
of motion because the system can not be found in a pure state in the thermal radia-
tion field. These equations (so as Einstein’s rate equations) are arrived purely from
phenomenological point of view because (i) the bath is assumed to be not affected

Here only Van Hove and Nakajima-Zwanzig master equations are listed to be of non-Markovian

type.
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by the (much smaller) system, and (ii) the effects of the bath-variables are averaged
out with heuristically structured spectral line-shapes of the bath or in turn tempo-
ral correlations in the system within various approximations such as the Markov
approximation, the Born approximation, efc.) [15]. The stimulated rate coefficients
in the master equations, in general, are time-dependent within the finite time inter-
val after commencement of the light-matter interactions. However, the fundamental
processes remain phenomenologically same in both the weak coupling regime and
the strong coupling regime even if the rate coefficients are time-dependent. Thus, we
are generalizing Einstein’s rate equations for the time-dependent rate coefficients for
the two-level systems (atoms/molecules) in the thermal radiation field because the
time-dependent coefficients are not bringing any other (new) fundamental processes
into the consideration. Application of the generalized rate equations would be a use-
ful model for studying nonequilibrium statistical mechanics for both the weak and
the strong light-matter couplings. The generalized rate equations may be classified
as a time-dependent semiclassical Markovian master equation as (i) the rates of the
stimulated transitions are essentially derived from a semi-classical (Rabi) model and
are found to be time-dependent, and (ii) all the occupation probabilities (P; and P»)
in the generalized rate equations are employed at the same time with no memory
kernels in the equations.

In this chapter we describe the population dynamics of identical two-level sys-
tems (atoms/molecules) for the generalized Einstein coefficients. We are also aiming
to study the entropy production of a two-level system from the population dynam-
ics. The two-level systems are assumed to be distinguishable so that the systems
obey classical statistics. The population dynamics of the two-level systems can be
understood from the population dynamics of only one two-level system in such a
situation. The two level systems, of course, are interacting with either the thermal
radiation field or the monochromatic radiation field. We are considering two cases
for the population dynamics. We are considering the (semicalssical) Rabi model, as
described in Chapter-2, for case-I and the multimode Jaynes-Cummings model, as
described in Chapter-3, for case-II.

For case-l, the generalized Einstein B coefficient obtained in Eqn. (2.11) within
the Rabi model takes place in the time-dependent rate coefficients Ry, (f) and Rp_,1(t)
in the Einstein rate equations if the time-independent rate coefficients are replaced
by the time-dependent rate coefficients. The Einstein A coefficient can not be touched
within the Rabi model. It is kept unaltered for this case. We study the population
dynamics and entropy production for both the time-dependent forms of the B coef-
ficient obtained in Eqn. (2.11) for the thermal radiation field and in Eqn. (2.13) for
the monochromatic radiation field.

For case-II, the generalized Einstein A and B coefficients obtained in Eqns. (3.5)
and (3.6) take place in the time-dependent rate coefficients Ry_,»(t), Ro—1(f), and
A(t) in the Einstein rate equations if the time-independent rate coefficients are re-
placed by the time-dependent rate coefficients. We study the population dynamics
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and entropy production for the time-dependent forms of the generalized Einstein
coefficients obtained in Eqns. (3.5) and (3.6).

5.2 Case-I: Population dynamics and entropy production of

a two-level system within the Rabi model

In this section we aim (i) to generalize Einstein’s rate equations with the generalized
Einstein B coefficient for the two-level system in the thermal radiation field and (ii)
to describe population dynamics of the system by finding exact analytic solutions
of the rate equations. It should be mentioned in this regard that, the thermal radia-
tion field is not coherent. The time-dependence of the transition probability, which
is related to the population dynamics, is also of high interest, and has been experi-
mentally investigated by Brune et al for a two-level system (atom) in the coherent ra-
diation field (and ‘vacuum’ field) in a high-Q cavity [16]. Theoretical explanation of
the population dynamics has been found numerically by Escher and Ankerhold [8]
in connection with the dissipative quantum dynamics of the two-level system inter-
acting with a structured reservoir consisting of damped harmonic modes. However,
we are considering the light-matter interactions at the semi-classical level, so that,
the population dynamics can be analytically described in a fairly accurately manner,
at least for wp > Qg and kT  hOr.

5.2.1 Population dynamics within the Rabi model

We already have mentioned in Chapters 2 and 3 that the bare energy eigenstates
of the two-level system (atom/molecule) of our interest are given by |;) and [¢).
While |¢) corresponds to the energy eigenvalue Ej, |¢;) corresponds to the energy
eigenvalue E; (such that E; > E;). The Bohr frequency of the two-level system is
given by wy = [Ex — E;1|/h. The rate of stimulated emission from the state |i7) to
the state ;) at time f is given by Rp_,1(¢). The rate of (stimulated) absorption from
the state |¢1) to the state |¢p) at time ¢ is given by Rj_»(¢). The Rabi frequency
of the two-level system, of course, is given by (Qg. Occupation probabilities of the
two-level systems are given by P; () for the state |¢1) and P, (t) for the state |¢,).

It is to be noted that QQg, however small, can greatly influence the time-evolution
of the statistical mechanical occupation probabilities P; (t) and P, (t) of the states |¢1)
and |¢,) respectively even for the case of thermal radiation field. Time-evolution
of the occupation probabilities are to be determined from Einstein’s rate (master)
equations [17, 18, 19] which are now revised with the time-dependent stimulated

transition rates as

% = —APy(t) — Ros1 (1) Pa(t) + Risa () Pr(t) (5.1)
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and

dp;

S = AP() + Roa (DP2(H) = Risa(HPi (1) (5.2)

where A = wo ;11263 [20, 18] is the original (time-independent) Einstein’s A coefficient

which represents the rate of spontaneous emission from the upper level to the lower

level due to the quantum (vacuum) fluctuations. The time-evolution of these prob-
abilities, because of the constraint P (t) + P»(t) = 1, can be solely determined from
any one of the above two equations, say Eqn. (5.1), with P; (t) replaced by 1 — P,(¢).
Thus, we recast Eqn. (5.1) with the time-dependent rates of stimulated absorption
and stimulated emission, R(#) = Ry_,2(t) = Ro1(t) as

(111;2 = R(t) — (A+2R(t))Pa(t). (5.3)
The rate of stimulated transitions was found in Ref. [21] to be time-independent:
R(t) = R(0) = Byau(wp) = Bayju(wp) > 0, within the first order time-dependent
perturbation theory of quantum mechanics [18]. Here B, = By is the original Ein-
stein B coefficient and u(wy) is the average energy density of the thermal photons
per unit (angular) frequency interval around wg. Weisskopf and Wigner determined
the rate coefficient A within the domain of quantum field theory [21, 20]. Eqn. (5.3),
in such a case, has a physical solution with the initial condition: P,(0) = 0, as [17, 18]

R(0)

™Y 11 A [A+2R(0))t
A+2R0) ¢ ] ©4)

P(t) =

which is often equated with the (time-independent) Boltzmann probability, P»(c0) =
%, in thermodynamic equilibrium for t — oo [17, 18]. Occupation prob-
ability of the lower level, on the other hand, can be given by Pi(t) = 1 — DP(t).
Eqn. (5.4) is Einstein’s semiclassical result for the occupation probability [17, 18].
Let us call the time-dependent probabilities, P;(t) and P»(t), which follow from
Eqn. (5.4), as Einstein probabilities. Dotted lines in figures 5.1 and 5.2 represent the
Einstein probabilities. Our aim for the rest of the subsection is to modify the Einstein
probabilities due to the presence of the Rabi flopping in the same system within the

semiclassical description.

For the two-level system in the thermal radiation field

We solve Eqn. (5.3) with the initial condition P>(0) = 0, for the stimulated transition
rate R(t) in Eqn. (2.10) as

P(t) = )|eAE2R(O0) for (1)
t

AT RO for (0| Jo (Qg ) d (5.5)

X =
0\8
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Upper lines—>P; (1), Lower lines—> P, (t); wy=3.1948x10"® Hz, T=5x10* K, Q;=1.96405x10° Hz
Pi(), Pa(t)

1.0
0.8
0.6

0.4

0.2

FIGURE 5.1: Occupation probabilities for the 35% and 3p% states

of an >Na atom in the thermal radiation field with the condition

that the system initially was in the lower level. Lower and upper

solid lines follow Eqns. (5.5) and (5.7), respectively, for the param-

eters as mentioned in the figure corresponding to dip = 2.5eap =

2.1196 x 10~2’Cm [22]. Lower and upper dotted lines represent Ein-

stein probabilities for the same system, and follow Eqn. (5.4) and its
follow-up respectively.

where fq, (t) is given by

242
O3

fou®) = 1R {3k {130, ~ 755 ) [20(n(O0et)) ~ 1

[Qrt] _ 2.
- % [cvmak(Gh o1

j=1

2
Qrt —70,j) | = .
xU(QR 70,])] Ox (5.6)
where 7 is the jth zero of Jo and U is the unit step function. Now, we get the
occupation probability of the lower level from Eqn. (5.5) as

Pi(t) =1 - Py(t). (5.7)

Eqgns. (5.5) and (5.7) are our semiclassical results for the occupation probabilities of
the two states of the two-level system in the thermal radiation field. We have got
these results published in Ref. [23]. We plot these probabilities in figure 5.1 for the
relevant values of the parameters for the 3s 1 and 3p 1 states of an 2*Na atom. For this
plot, we have purposefully considered the temperature to be very high (T = 5 x 10*
K) so that both the rates of spontaneous ones (A/Qr = 0.314566) and stimulated
ones (R(0)/Qg = 1/2) are comparable to the Rabi flopping frequency to show oscil-
lations in the occupation probabilities. An *Na atom is not expected to be ionized
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even in such a high temperature, as its first ionization potential is 5.1 eV=59183 kK.

While the occupation probability (P(t)) of the upper level asymptotically (i.e., for

Qgt > 1) vanishes as @ m%Rt,

the occupation probability (P;(t)) of the lower

level asymptotically reaches unity as 1 — @ H(Z)R -

the occupation probabilities of the two-level system are significantly deviating from

It is clear from figure 5.1 that

the Einstein probabilities (as well as the Boltzmann probabilities) as time evolves
and the system goes away from thermodynamic equilibrium as a consequence of
the Rabi flopping with non-zero frequency. Our results, of course, match with Ein-
stein probabilities if Rabi flopping is turned off, i.e., if Qg — 0.

For the two-level system in the monochromatic radiation field

On the other hand, for the case of the monochromatic wave, we solve Eqn. (5.3) with
the initial condition P>(0) = 0 for R(¢) in Eqn. (2.12) as

Pz(t) _ R<O)efAt72R(O)gQK(t)

t
X / AT+ 2RO0)20x (V) 5in (O T)|dT (5.8)
0
where g, (t) is given by
1 —cos(Qrt) ) 2
sl = T2 pusin(n) -1 - 2
[Qrt] ,
x Y (=1)[1 = cos(jm)]U(Qgt — jm). (5.9)
j=1
For this case of monochromatic radiation field too, we have Pi(f) = 1 — Py(t).

These occupation probabilities are semiclassical (but not statistical mechanical) for
the study of the single frequency in the monochromatic wave. We have got these
results published in Ref. [23]. We plot these semiclassical probabilities in figure
5.2 for the relevant values of the parameters for the same system. It is clear from
this figure that, the semiclassical probabilities oscillate near the corresponding Ein-
stein probabilities without decay of their amplitudes. Thus, the two-level system
(atom/molecule) neither in thermal radiation field nor in the monochromatic radia-
tion field equilibrate with the surroundings as long as the Rabi flopping frequency

is non-zero.

5.2.2 Entropy production within the Rabi model

Although the two-level system in the rapidly oscillating electromagnetic field makes
transitions (if frequency of the oscillations is close to the Bohr frequency of the two
levels), the transitions occur over a much larger time scale (f ~ 1/Qg). Thus, it is
not exactly known when the system would make a transition. Instead, we know
the probability of the transition and consequently, the occupancy of the two states
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Upper lines—>P; (), Lower lines—>Py(t); w=w,=3.1948x10" Hz, Qz=1.96405x10% Hz
P (), Pa()
1.0
0.8
0.6

0.4

0.2

TR R N UL ST S R Y
2 4 6 8 10 12 14

FIGURE 5.2: Lower and upper solid lines represent occupation prob-

abilities, and follow Eqn. (5.8) and its follow-up for the same param-

eters of the two-level system at the resonance in the monochromatic

radiation field as mentioned in figure 5.1. Adjacent dotted lines rep-

resent corresponding Einstein probabilities, and follow Eqn. (5.4) and
its follow-up respectively.

becomes probabilistic. This loss of information can be quantified by the entropy pro-
duction of the system. The entropy production of the two-level system either in the
thermal radiation field or in the monochromatic radiation field can be written, by fol-
lowing the Pauli-von Neumann formalism of nonequilibrium statistical mechanics
as [9, 24, 19]

S(t) = —kp[P1(t) In(Py(t)) + Pa(t) In(P2(t))]. (5.10)

We illustrate the time-dependence of the entropy in figure 5.3 for both the cases.
The result corresponding to the monochromatic case is shown in the inset of figure
5.3. Pauli proved the quantum mechanical H-theorem (i.e., % > 0) even for a
single atom/molecule (say, a two-level system) in the radiation field by introducing
the Pauli master equation (which is analogous to Einstein’s rate equation for A =
0) [9, 10]. Here the rates of stimulated transitions to be time-independent for this
purpose [9].

However, the two-level system in thermal (or monochromatic) radiation field
does not fully evolve spontaneously. The stimulated transitions have control over
the evolution of the system. Moreover, the spontaneous emission favour the lower
level, as clear from figure 5.1, once control of the thermal (broad band) radiation
to the stimulated transitions is damped (as ~ 1/1/Qgt) after sufficiently long time
(Qrt > 1). Such a damping of the Rabi flopping in free space (large blackbody cav-
ity) is caused due to the finite width (~ Qg) of the frequency distribution around

the resonance because all the frequency components of the thermal radiation field
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Entropy production for w,=3.1948x10"® Hz, T=5x10*K, and Q/=1.96405x10® Hz

S(t)kg
071
06F
05F
04F Entropy production for monochromatic radiation for same Qg

- S(ty/ks
03F :
0.2
01§

H 1 1 1 1 1 QRt

2 4 6 8 10

FIGURE 5.3: Entropy production for the 3s 1 and 3p 1 states of an 2Na

atom in the thermal radiation field. Plots follow from Eqn. (5.10) for
the parameters as mentioned in figure 5.1. Dotted lines represent the
same obtained from Einstein probabilities (Eqn. (5.4) and its follow-

up).

incoherently contribute to the resultant Rabi flopping. Thus, a nonzero finite value
of the Rabi flopping frequency causes extraordinary favour on top of the sponta-
neous transitions to the lower level after sufficiently long time, and consequently,
the entropy (S(t)) of the two-level system, instead of always increasing with time,
asymptotically (i.e., for Qgt > 1) vanishes as k3$®[1 —In [@ \/gﬂ]]
This feature is apparent in figure 5.3 where we also have plotted the entropy pro-

duction based on the Einstein probabilities. Such a damping, however, is not pos-
sible for the monochromatic wave, as clear from figure 5.2, as there is no frequency
distribution of the incident waves which causes damping to the Rabi flopping. Thus
the Rabi flopping causes oscillations of the entropy near the non-decreasing semi-
classical result (having the saturation value kgIn(2)) as clear in the inset of figure
5.3. We have got these results published in Ref. [23]. All the oscillations or the
damping are caused for nonzero finite value of the Rabi flopping frequency. Thus,
if Qg — 0, we again get back Einstein’s semiclassical result. It is clear from figure
5.3 that the entropy of the system is not always increasing. This is not a surprise
because the two-level system we are considering is no longer a thermodynamically
isolated system rather it is open to interact with the radiation field. The second law
of thermodynamics is not applicable to such a system.

A question naturally arises: whether there would be any change in the occu-
pation probabilities if we take an alternative initial condition such that initially the
two-level system is at the upperlevel (i.e., P; (0) = 0, P,(0) = 1) like that in Eqn. (2.2).
The Rabi flopping frequency would not certainly change under this alternation. The
rate of transitions R(t) would not also change. However, some of the results would
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change, e.g., an additional term e~ A72RO)fox (M) would have to be added to the r.h.s.
of Eqn. (5.5) 2. The two solid lines both in figure 5.1 and figure 5.2 would intersect
keeping their individual tails unaltered.

5.3 Case-II: Population dynamics and entropy production of
a two-level system within the multimode Jaynes-Cummings

model

While the generalized Einstein B coefficients are same and time-dependent within
the (semiclassical) Rabi model, the Einstein A coefficient remains the original time-
independent A coefficient in the same model [23]. This causes even a small Qr to
greatly influence the time-evolution of the statistical mechanical occupation proba-
bilities Py (t) and P, (t) of the two states |¢;) and |¢,), respectively . However, in
Section 3.3.2 we have all the generalized Einstein coefficients to be time-dependent
within the (quantum mechanical) multimode Jaynes-Cummings (J-C) model. Let us
now investigate how the occupation probabilities (P (t) and P»(t)) of the two-level
system in the thermal radiation field evolve with time for the multimode J-C model

results of the generalized Einstein coefficients obtained in Eqns. (3.5) and (3.6).

5.3.1 Population dynamics within the multimode Jaynes-Cummings model

Time-evolution of the occupation probabilities (P; (t) and P, (t)) of the two-level sys-
tem in the thermal radiation field are to be determined from Einstein’s rate (master)
equations [17, 18, 19] which are now revised with the generalized Einstein coeffi-
cients in Eqns. (3.5) and (3.6) as

% = —A(t)P(t) — u(wo)Baxn (t)Pa(t)
+u(wo)Bia(t) Py(t) (5.11)
and
‘iﬁl A(£)Po(t) + u(wo) B (£ Pa(t)

—u(wo)Bu(t)Pl(t) (512)

where P (t) is the occupation probability of the bare state |i1) of the two-level sys-
tem at time f, P»(t) is the occupation probability of the bare state |i;) of the two-level
system at time ¢, wy is the Bohr frequency of the two-level system, A(t) is the gen-
eralized Einstein A coefficient as obtained in Eqn. (3.6), By (t) is the generalized
Einstein B coefficient as obtained in Eqn. (3.5), and u(wy) is the average energy den-
sity of the thermal photons per unit (angular) frequency interval around wy. We also

2 An additional term e~ 4/~2R(0)80: (1) would have to be added to the r.h.s. of P, (t) in Eqn. (5.8).
3See the previous section for the same.
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have Bi,(t) = By (t) as discussed below Eqn. (3.6). Time-evolution of the occupation
probabilities, because of the constraint P;(t) + P>(t) = 1, can be solely determined
from any one of the above two equations, say Eqn. (5.11), with P, (¢) be replaced by
1 — P5(t). Thus, we recast Eqn. (5.11) with the spontaneous emission rate A(t) and
the stimulated emission rate R(#) = Bp1(#)u(wo) = Bra(t)u(wy) as

dP.

de — R(t) — [A(t) + 2R ()] P2 (t). (5.13)
While R(0) is the rate-coefficient for stimulated emission/absorption found within
the first order time-dependent perturbation theory of quantum mechanics [21], A(0)
is the rate-coefficient for the spontaneous emission found within the first order per-
turbation theory* of quantum electrodynamics [20]. Eqn. (5.13) has a physical solu-

tion for R(t) = R(0) and A(t) = A(0) with the initial condition P>(0) = 1 as [17, 18]

+]1— | [AO+2RO) (5.14)

which is often equated with the (time-independent) Boltzmann probability P,(c0) =
% in thermal equilibrium for t — oo [17, 18]. Occupation probability
of the lower level, on the other hand, can be given by P;(t) = 1 — P»(t). Eqn. (5.14)
is Einstein’s semiclassical result for the occupation probability [17, 18]. Let us call
the time-dependent probabilities P;(t) and P (t) which follow from Eqn. (5.14), as
Einstein probabilities [17, 18]. Dotted lines in figure 5.4 represent the Einstein prob-
abilities. It is clear from Eqns. (3.5) and (3.6) that, R(t) = R(0) and A(t) = A(0) are
possible only when Qg — 0 i.e. when there is no Rabi oscillation. Our aim for the
rest of the subsection is to modify the Einstein probabilities due to the presence of
the Rabi flopping in the same system within the quantum field theoretic description
of the multimode J-C model.

We solve Eqn. (5.13) with the initial condition P,(0) = 1 for By (t) = B1a(t) =
R(t)/u(wp) of Eqn. (3.5) and A(t) of Eqn. (3.6) as

Py(t) = e lAO+2RO)og (1) [1+ R(0)

/t o[A0)+2R(0)] fap (7) Jo(QrT) |dr} (5.15)
0

4The first order perturbation theory is compatible with Fermi’s golden rule.



5.3. Case-II: Population dynamics and entropy production of a two-level system 95
within the multimode Jaynes-Cummings model
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FIGURE 5.4: Occupation probabilities for the 3s 1 and 3p 1 states of an

23Na atom in the thermal radiation field with the condition that the

system initially was in the upper level. Right lower and right upper

solid lines follow Eqns. (5.15) and (5.17), respectively for the param-

eters as mentioned in the figure corresponding to dy; = 2.5eap =

2.1196 x 10-2Cm [22]. Lower and upper dotted lines represent Ein-

stein probabilities for the same system, and follow Eqn. (5.14) and its
complementary, respectively.

where fq, (f) is given by

2 42
farlt) = 1F2({.}z}'{1'i}f—ﬂit )[ZUUO(ORt)) —1]¢
2 [Qx] . 1 3 ,)/2.
o ]; [(—1)]’)’0,]'11:2({2},{1,2},—Z’]>
XU(QRt — ’)’0’]'):| (516)

where 7y ; is the jth zero of the Bessel function (Jo) of the first kind of order 0 and U
is the unit step function. Now we get the occupation probability of the lower level
from Eqn. (5.15) as

Pi(t) = 1— Py(1). (5.17)

Eqgns. (5.15) and (5.17) are our quantum mechanical results for the occupation prob-
abilities of the two states of the two-level system in the thermal radiation field.
We have got these results published in Ref. [25]. We plot these probabilities in
the figure 5.4 for the relevant values of the parameters for the 35% and 3p% states
of an ZNa atom. We have profusely considered the temperature to be equal to
2700 K which is the usual temperature of the sodium vapour lamp and the usual

temperature for the excitement of the two states. Rate of the stimulated emission
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Entropy production for P,(0)=1, wy=3.1948x10'° Hz, T=2.7x10° K, and Qp=1.2358 x10° Hz
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FIGURE 5.5: Entropy production for the 3s 1 and 3p 1 states of an

23Na atom in the thermal radiation field. The plot (solid line) follows

from Eqn. (5.18) for the parameters as mentioned in figure 5.4. The

dotted line represents the same obtained from Einstein probabilities

(Eqn. (5.14) and its complementary). The solid line in the inset rep-

resents the average entropy production for same parameters except

the initial condition. The dotted line in the inset represents the same
based on the Einstein probabilities.

(R(0) = 0.000059409 Q2R) is much less than that of the spontaneous emission (A(0) =
0.499941 Qr) at such a temperature. This causes significant deviation of the occu-
pation probability from the Einstein probability. Amplitude of the partial oscillation
having quasi-frequency Qg / 7t in the occupation probability would have increased if
we had taken even a lower value of R(0)/A(0) (< 1) at a lower temperature. Occu-
pation probability, in contrary to that of the semiclassical Rabi model [23], asymptot-
ically (t — c0) approaches the Einstein probability so as the Boltzmann probability.
This is possible for low average number of thermal photons (77) because all the gen-
eralized Einstein coefficients (A(t), By1(t), and Byp(t)) vary with time in a similar
fashion for low average number of thermal photons °. It is clear from the figure 5.4
that, the quantum Rabi oscillation slows down the occupation probability reaching
the Boltzmann probability. The deviation of the occupation probability from the Ein-
stein probability as well as the amplitude of the partial oscillation would decrease
had the ratio R(0)/A(0) been taken large (2 1) at a higher temperature. Our re-
sult, of course, exactly matches with the Einstein probability if the Rabi flopping is
completely turned off, i.e., if we take Qg — 0.
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5.3.2 Entropy production within the multimode Jaynes-Cummings model

Though the light-matter interactions take place in short time scale (t ~ 1/wy), dipole-
transitions take place in longer time scale (t ~ 1/Qg). Occupancy of the two levels
of the system becomes probabilistic as because it is not known exactly when the
two-level system makes a transition. This loss of information leads to the entropy
production of the two-level system as [19, 23]

S(t) = —kg[P1(t) In(P1(t)) + Pa(t) In(Pa(t))]. (5.18)

We show the time-dependence of the entropy production in the figure 5.5 for the oc-
cupation probabilities (Eqns. (5.15) and (5.17)) and the Einstein probabilities (Eqn. (5.14)
and its complementary) for the fixed temperature T = 2700 K and initial condition
P,(0) = 1. We already have mentioned that, the quantum Rabi oscillation slows
down the occupation probability reaching the Boltzmann probability. Similar feature
is also apparent in the entropy production (solid line) in the figure 5.5 where we also
have plotted the entropy production (dotted line) which has been calculated based
on the Einstein probabilities. The entropy of the two-level system is always less than
equal to kgIn(2) as expected. The two forms of the entropy production eventually
meet the equilibrium entropy at t — co. It is clear from the figure 5.5 that, entropy of
the two-level system is not always an ever non-decreasing function of time at least
for the initial condition P,(0) = 1. This is, however, not an example of the violation
of the second law of stochastic thermodynamics. Jarzynski equality rather allows
non-increase of the entropy for some (not all) realizations of the initial conditions
[26]. We also show average entropy production of two-level system in the inset of
the figure 5.5 for all the realizations of the initial conditions (P>(0) =1 & P;(0) = 1)
with their proper statistical weights (Boltzmann probabilities). We have got these
results published in Ref. [25].

It is clear from the inset of the figure 5.5 that, the average entropy productions
which are calculated based on both the occupation probabilities (solid line) and the
Einstein probabilities (dotted line), however, are always non-decreasing function of
time at least for R(0) / A(0) < 1 as well as for low photon number fluctuation (An =
Viiv/fi+1 5 1). Thus we validate the second law stochastic thermodynamics for a
two-level system in the thermal radiation field for a low average number of thermal
photons. Hence we can safely say that, a two-level system or a gas of two-level
systems in the thermal radiation field is a practical example of a thermodynamically
isolated system for R(0)/A(0) < 1. However, the two-level system in the thermal
radiation field would behave like an open system for a large average number of
incident photons. The second law of thermodynamic would not be applicable for
such a case.

5Gee Section 3.3.2 for the same.
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5.4 Conclusion

5.4.1 Conclusion for the population dynamics and entropy production
within the Rabi model

Although the limit Qg — Oretrieves the original B coefficient, yet the time-dependence
plays a significant role in the population dynamics. The oscillations in the B coef-
ficient, even for very small Q)g, drives the system away from the thermodynamic
equilibrium at any finite temperature. This is at odds with the Einstein’s assump-
tion about the thermodynamic equilibrium of a two-level system with the thermal
radiation field [17]. The predicted equilibrium, however, can be ensured for the case
Qr — 0, i.e,, in absence of the Rabi flopping, as is expected. Nonzero finite value
of the light-matter coupling (~ QR) quasi-periodically drives the two-level system
for the multi-frequency modes of the thermal radiation field. We have also obtained
results for the same system in the monochromatic radiation field. The drive would
be periodic for this case.

While the Rabi flopping usually is studied for strong light-matter interactions
(Qr/A > 1), Einstein’s rate equations are usually applied for weak light-matter in-
teractions ((Qr/A < 1). Incidentally, the Rabi model, which gives exact results in
both the weak coupling regime and the strong coupling regime, is not phenomeno-
logically different from the fundamental processes” point of view. We have been
interested in bringing the Rabi flopping and the rate equation together in a sin-
gle footing for this reason. We have been specially interested in the intermediate
regime (0 5 Qr/A S 1) where the partial oscillations, as shown in figure 5.1 for
Qr/A = 3.17898, are expected to be damped for the broadband excitations [27].
These partial oscillations, of course, are not periodic ¢ for the nonzero width (Aw) of
the frequency broadening around the resonance. The partial oscillations as shown in
figure (5.2), however, would neither be damped nor be aperiodic for monochromatic
wave, i.e., for extremely narrow band (Aw — 0).

Roles of the fundamental processes (the spontaneous emission, the stimulated
emission, and the stimulated absorption) in the evolution of the entropy of a system
are exemplified by considering the Rabi model as a toy model for the two-level sys-
tem in the thermal radiation field. We are, however, not shaking the usual notion
of the thermal equilibrium between atoms (or molecules) and black body radiation
and Einstein’s conclusions, as they are all correct for memory-less transitions under
no external drive due to the light-matter interactions. The second law of thermo-
dynamics is not applicable for such an external drive because the two-level system
is no longer a thermodynamically isolated system, rather becomes an open system,
under the influence of the external drive.

Before concluding this subsection, we take this opportunity to point out that, our
work opens avenue of one interesting research possibility: how to calculate entropy

This aperiodicity can be linked to the non-regular intervals of the zeros of the Bessel function (Jp)
in Eqn. (2.9).
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productions of the laser trapped ultra-cold Bose and Fermi systems by generalizing
the toy model.

5.4.2 Conclusion for the population dynamics and entropy production
within the multimode Jaynes-Cummings model

We have studied the population dynamics for the two-level system by generalizing
the Einstein rate equations with the generalized Einstein coefficients. The popula-
tion dynamics obtained by us differs significantly from that obtained in the semi-
classical theory [17, 18] for a low temperature. While the quantum Rabi oscillation
is studied for strong light-matter interactions (g.,, > sup{<y, x}’ [28]), the Einstein
rate equations are often applied for weak light-matter interactions (., < sup{7, «}
[28]). Incidentally, the multimode J-C model gives results for both the weak coupling
regime and the strong coupling regime as far as the rotating wave approximation
(28w, < wy) is applicable. Thus we have been interested in bridging the quan-
tum Rabi oscillation and the phenomenological rate equations by the multimode J-C
model. The partial oscillations, as shown in figure (5.4), are expected to be damped
for the broadband excitations in the intermediate regime [27].

Although the limit Qg — 0 gives all the Einstein coefficients back, yet the time-
dependence of the generalized Einstein coefficients plays a significant role in the
dynamics of probabilities of the two states of the system either at a low temperature
or at a low average number of thermal photons. The two-level system approaches
thermal equilibrium in the thermal radiation field as because the temporal parts of
all the generalized Einstein coefficients are same as far as low photon number fluc-
tuation (An = VAV +1 < 1) is concerned [25]. The second law of (stochastic)
thermodynamics is applicable in such a situation because the two-level system be-
haves like a thermodynamically isolated system for low average number of photons.
Had the generalized A coefficient been a constant, the oscillations in the generalized
B coefficient even for very small Qr, would have driven the system away from the
thermal equilibrium at any finite temperature [25]. The temporal parts are expected
to be differed for large photon number fluctuation, and the two-level system is ex-
pected to go away from thermal equilibrium. The second law of (stochastic) thermo-
dynamics is not applicable in such a situation because the two-level system behaves
like an open system for large average number of photons. Study of the generalized
Einstein coefficients and population dynamics of the two-level system in the thermal
radiation field having large photon number fluctuation is kept as an open problem.

Role of the fundamental processes in the time-evolution of entropy of a system
are shown by considering the multimode J-C model as a toy model for the two-
level system in the thermal radiation field. Time-dependence of the generalized Ein-
stein coefficients opens a path to go beyond Pauli-von Neumann formalism of the

non-equilibrium statistical mechanics [25]. The population dynamics studied by us

"Here 7y is the non-resonant decay rate and x = wy/Q is the photon decay rate of the cavity [28].
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would be useful for studying non-perturbative quantum nonequilibrium statistical
mechanics for the time-dependent Markovian process undergone on a cold gas of

atoms or molecules.
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Chapter 6

Conclusions and future scope

6.1 Conclusions

Chapter-1 contains the basic elements of the works done in this thesis. Conclusions
have already been mentioned at the end of the other chapters. However, brief con-
clusions of the Ph.D. works, especially the summaries, can be described chapter-wise

as follows.

In Chapter-2, we have obtained Rabi model [1] result for the Einstein B coef-
ficient [2]. The system of interest for this chapter is mainly a two-level system
(atom/molecule) in the thermal radiation field. Starting from the Rabi Hamiltonian,
which is useful in arriving at non-perturbative results within the rotating wave ap-
proximation, we have found Einstein’s B coefficient to be time-dependent: B(t) =
Bo|Jo(Qrt)| for a two-level system in thermal radiation field [2]. Here By is the
original Einstein B coefficient, (Or is the Rabi flopping (angular) frequency of the
two level system, and ] is the zeroth order Bessel function of the first kind. Here
the light-matter interaction is treated classically but the two-level system is treated
quantum mechanically, and our result can be considered as a semiclassical result.
We, of course, get back the original B coefficient in the limiting case of Qg — 0. Our
result for the generalized B coefficient is fairly accurate for large Bohr frequency
(wo > Q) and fairly high temperature (kT 7 7Qr), and is significantly different
from the perturbation result [3] which is not reliable near the resonance (w — wy).
Our analytical result regarding the B coefficient is an invitation for the experimen-
talists to do direct measurement of the B coefficient. We also have obtained Rabi
model result for the Einstein B coefficient for a monochromatic light incident on the

two-level system [2].

In Chapter-3, we have generalized the Einstein A and B coefficients from quan-
tum field theoretic point of view by bringing the fundamental processes and the
quantum Rabi oscillation in a single footing for the light-matter interactions for
nonzero Rabi frequency [4]. The generalized Einstein coefficients are found to be
as A(t) = A(0)|Jo(Qr(7)t)| and B12(t) = B (t) = Bo|Jo(Qr(7)t)| where A(0) is
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the original Einstein A coefficient, By is the original Einstein B coefficient, Qg () is
the Rabi frequency, 71 is the average number of thermal photons incident on a two-
level system (atom/molecule) [4], ]y is the zeroth order Bessel function of the first
kind, and t is the time. Our results for the generalized Einstein coefficients are fairly
accurate for large Bohr frequency (wp > Qg(71)) and low average number of ther-
mal photons (72 5 1). Our results are significantly different from the results of the
previous theories for the Einstein A coefficient [5] and the Einstein B coefficient [3].
We also have analytically obtained multimode Jaynes-Cummings model results for
the quantum Rabi oscillations of a two-level system in a lossy resonant cavity con-
taining (i) thermal photons and (ii) injected photons of a coherent field [4]. We have
renormalized the coupling constants for the light-matter interactions for these cases.
The net transition probability calculated [4] for “‘vacuum’ Rabi oscillation of a two-
level system in a lossy Resonant cavity matches well with the seminal experimental
data obtained by Brune et al [6]. The net transition probability calculated [4] for the
quantum Rabi oscillations of the two-level system interacting with an injected coher-
ent field in a lossy Resonant cavity also matches well with the seminal experimental
data obtained by Brune et al [6].

In Chapter-4, we have numerically obtained theoretical results for the collapse
and the revival of the quantum Rabi oscillations for low average number of co-
herent photons injected on a two-level system in a lossy resonant cavity [7]. We
have adopted the multimode Jaynes-Cummings model for the same and especially
treated the Ohmic losses from the cavity. We have compared our results with two
sets of experimental data [6] for low average number of coherent photons (77 = 0.85
and 1.77) incident on a two-level system in the lossy resonant cavity. Our results
match reasonably well with the experimental data, at least, better than the theoret-
ical one [6, 8, 9] obtained for only the resonant mode and no loss from the cavity

under consideration.

In Chapter-5, we have studied population dynamics of two-level systems inter-
acting with both the thermal radiation field and the monochromatic light. While the
interactions of the two-level systems and the monochromatic light have been treated
classically (with the Rabi model) [2], the interactions of the two-level systems and the
thermal radiation field have been treated both classically (with the Rabi model) [2]
and quantum mechanically (with the multimode Jaynes-Cummings model) [4]. For
the semiclassical cases we already have obtained the generalized (time-dependent)
Einstein B coefficient in Chapter-2 [2]. For the quantum mechanical case too we al-
ready have obtained the generalized (time-dependent) Einstein A and B coefficients
in Chapter-3 [4]. We have studied the population dynamics for all these cases with
the help of Einstein rate equations where the original Einstein coefficients are re-
placed by the generalized Einstein coefficients [2, 4]. The A coefficient is, of course,
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kept unaltered for the semiclassical cases [2]. Time-dependence of the generalized
Einstein coefficients opens a path to go beyond Pauli-von Neumann formalism of
the non-equilibrium statistical mechanics [2, 4]. The population dynamics allows
us to further study the entropy production of a a two-level system [2, 4]. For the
semiclassical cases, we have shown that the Rabi oscillation can drive the two-level
system away from the thermodynamic equilibrium [2]. On the other hand, for the
quantum mechanical case, we have shown that the Rabi oscillation of a small Rabi
frequency (Qg) can not drive the two-level system away from the thermodynamic
equilibrium [4]. However, reaching the thermodynamic equilibrium is prolonged

due to the quantum Rabi oscillations in the two-level system [4].
Throughout the thesis by “frequency” we have meant “angular frequency".

6.2 Future scope

The future scopes of the Ph.D. works can be described chapter-wise as follows.

In Chapter-2, we have theoretically obtained (semiclassical) Rabi model result
for the Einstein B coefficient for a two-level system (atom/molecule). This B coef-
ficient depends on time and Rabi frequency. It is a generalization of the original B
coefficient. Experimentalists may verify our theory by directly measuring the Ein-
stein B coefficient in the time scale of the time-period of the Rabi oscillation of the
two-level system. This generalized Einstein B coefficient would be useful to study
the population dynamics of a gas of two-level systems (atoms/molecules) at a large
temperature. Such a population dynamics would be useful to study nonequilibrium
statistical mechanics beyond the Pauli-von Neumann formalism [10, 11] at a large
temperature.

In Chapter-3, we have theoretically obtained (quantum mechanical) multimode
Jaynes-Cummings model results for the Einstein A and B coefficients for a two-level
system (atom/molecule). These coefficients depend on time and Rabi frequency.
These are generalizations of the original Einstein coefficients. Experimentalists may
verify our theory by directly measuring the Einstein coefficients in the time scale of
the time-period of the Rabi oscillation of the two-level system. These generalized
Einstein coefficients would be useful to study the population dynamics of a gas of
two-level systems (atoms/molecules) at a low temperature. Such a population dy-
namics would be useful to study nonequilibrium statistical mechanics beyond the
Pauli-von Neumann formalism [10, 11] at a low temperature. All these exercises can
be further extended for a three-level system by adopting the mutimode three-level
Jaynes-Cummings model. We also have studied the quantum Rabi oscillations of
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the two-level system in a lossy resonant cavity by adopting the multimode Jaynes-
Cummings model. Such a study can be further extended by adopting the multimode
quantum Rabi model for the ultra-strong coupling regime and the deep-strong cou-
pling regime [12, 13].

In Chapter-4, we have numerically obtained theoretical results for the collapse
and the revival of the quantum Rabi oscillations for low average number of coher-
ent photons injected on a two-level system (¥Rb atom) in a lossy resonant cavity. We
have adopted the multimode Jaynes-Cummings model for the same and especially
treated the Ohmic losses from the cavity. Our results match reasonably well with the
experimental data [6], at least, better than the theoretical one [6, 8, 9] obtained for
only the resonant mode and no loss from the cavity under consideration. However,
our results can be further improved by considering the losses due to the frequency
broadening of inhomogeneous light-matter coupling along the cavity axis, Doppler
broadening due to the speed distribution of Rb atoms in the cavity, thermal broad-
ening, efc.

In Chapter-5, we have theoretically described the population dynamics of ideal
distinguishable two-level systems (atoms/molecule) in the thermal radiation field
by adopting the multimode Jaynes-Cummings model. These results are applicable
for the low average number of thermal photons incident on the two-level systems.
Our results can be further extended for the large number of thermal photons incident
on the two-level systems. Our results can also be further extended for the laser
trapped ultra-cold Bose or Fermi gas of two-level systems.
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