CALCIUM-CATALYZED *IN-SITU* SYNTHESIS AND CYCLIZATION REACTIONS OF TETRASUBSTITUTED ALLENES

A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

By
P. RAJESH
Reg. No. 16CHPH42

Dr. Srinivasarao Yaragorla (Supervisor)

SCHOOL OF CHEMISTRY, UNIVERSITY OF HYDERABAD
HYDERABAD - 500 046, INDIA
APRIL 2022

DEDICATED TO

MY FAMILY

&

FRIENDS

TABLE OF CONTENTS

		Page No.
Declara	tion	i
Certific	ate	iii
Acknov	vledgements	v
List of A	Abbreviation	vii
Synopsi	s	ix
Chapte	r 1. This Chapter is Divided in Two Sections.	
Section	-A: Introduction to Tetrasubstituted Allene Synthesis and Cyclizations	1-16
1.1	Introduction	3
1. 2	Previous Reports	4
1.3	Allene Cyclization	10
1.4	References	14
Section	-B: Introduction to Calcium Catalysis	17-34
1.6	Introduction	19
1.7	Lewis Acidic Calcium Catalysis	19
1.8	Why Is It Important to Develop Ca(II)-catalyzed Reactions	21
1.9	Reactions of Alcohols with Ca(II)	22
1.9.1	Ca(II)-catalyzed Friedel-Crafts Reactions	23
1.9.2	Reactions of Carbonyl Compounds with Ca(II)	24
1.9.3	Reactions of Olefins with Ca(II)	25
1.9.4	Ca(II)-catalyzed Carboarylation of Alkynes	26
1.9.5	Ca(II)-catalyzed Multicomponent Reactions	27
1.9.6	Exploration of Ca(II)-catalyzed reactions from our group	29
1.9.7	References	32

Chapt	ter 2. Synthesis and In-situ Cyclization of Tetrasubstituted A	llenes to Access
Substi	2 Previous Reports 38 3 Results and Discussion 41 4 Optimization Studies 42 2.4a Characterization of Compound 124a 44 2.4b Scope of the Reaction 46 5 Synthesis of fully Substituted Furans 46 2.5a Characterization of Compound 125a 46 2.5b Scope of the Reaction 46 6 Functional group transformation of dihydrofuran 48 7 X-ray Crystallography 50 8 Conclusions 51 9 Experimental Section 52 9.4 Spectral Data 53 9.5 References 64 2.9.5a Crystal data and structure refinement for 124h &125h 66 9.6 Spectral copies 69 hapter 3. Synthesis and In-situ Cyclization of Tetrasubstituted Allenes to Access Tricyclic Incremols 109-164 1 Hypothesis and planning 110 2 Previous Reports 111 3 Optimization Studies 112 3.3a Characterization of Compound 128a 113 3.3c The formation of regioisome	
2.1	Introduction	37
2.2	Previous Reports	38
2.3	Results and Discussion	41
2.4	Optimization Studies	42
	2.4a Characterization of Compound 124a	44
	2.4b Scope of the Reaction	44
2.5	Synthesis of fully Substituted Furans	46
	2.5a Characterization of Compound 125a	46
	2.5b Scope of the Reaction	46
2.6	Functional group transformation of dihydrofuran	48
2.7	X-ray Crystallography	50
2.8	Conclusions	51
2.9	Experimental Section	52
2.9.4	Spectral Data	53
2.9.5	References	64
	2.9.5a Crystal data and structure refinement for 124h &125h	66
2.9.6	Spectral copies	69
Chapt	ter 3. Synthesis and In-situ Cyclization of Tetrasubstituted Allen	es to Access Tricyclic
Fluor	enols	109-164
3.1	Hypothesis and planning	110
3.2	Previous Reports	111
3.3	Optimization Studies	112
	3.3a Characterization of Compound 128a	113
	3.3b Scope of the Reaction	113
	3.3c The formation of regioisomeric flurenols	115
	3.3d Control Experiments	116
3.4	Reaction Mechanism	117
3.5	Conclusions	121
3.6	Experimental Section	121
3.7	Spectral Data	125
3.8	References	133

3.9	Spectral copies	135
Chapte	r 4. Synthesis and In-situ Cyclization of Tetrasubstituted Alle	nes to Access
Tetracy	clic Fluorenofurans	165-232
4.1	Proposal for The Synthesis of Fluorenofuran and Pyran	166
4.2	Previous Reports	168
4.3	Result & Optimization Studies	172
4	4.3a Characterization of Compound 144a	173
4	4.3b Scope of the Reaction	173
4	4.3c X-ray Crystal Structure 144d	175
4.4	Reaction Mechanism	178
4.5	Conclusions	180
4.6	Experimental section	180
4.7	Spectral Data	182
4.8	References	195
	4.8a Crystal data and structure refinement for 129d	196
4.9	Spectral Copies	198
Chapte	r 5. Synthesis and In-situ Cyclization of Tetrasubstituted Allene	s to Access
Tetracy	clic Fluorenopyrans	233-283
5.1	Proposal for The Synthesis of Fluorenopyran	234
5.2	Result and discussion	235
5.3	Optimization Studies	236
5	.3a Characterization of Compound 150a	238
5	.3b Scope of the Reaction	238
5	.3c Reaction Mechanism	241
5	.3d Synthetic transformation of 151a	243
5.4	Acidochromic Properties	244
5.5	Conclusions	245
5.6	Experimental section	245
5.7	Crystal data and structure refinement for 150	248
5.8	Spectral Data	249
5.9	References	257
5.9.1	Spectral Copies	260
List of p	publications	285

DECLARATION

I hereby declare that the matter embodied in the thesis entitled "Calcium-Catalyzed In-Situ Synthesis and Cyclization Reactions of Tetrasubstituted Allenes" is the result of examination carried out by me in the School of Chemistry, University of Hyderabad, Hyderabad, India, under the supervision of Dr. Srinivasarao Yaragorla.

In keeping with the general practice reporting scientific explanations, due acknowledgements have been made on the basis of the finding of other investigators. Any omission, which might have occurred by oversight or error, is regretted. This research work is free from Plagiarism. I hereby agree that my thesis can be deposited in Shodhganga/INFLIBNET. A report on plagiarism statistics from the University Librarian is enclosed.

P. Rajesh

(16CHPH42)

Dr. Srinivasarao Yaragorla

Dr. Supervisor Associate Professor School of Chemistry University of Hyderabad Hyderabad-500 046, India.

CERTIFICATE

This is to certify that the thesis entitled. "Calcium-Catalyzed *In-Situ* Synthesis and Cyclization Reactions of Tetrasubstituted Allenes" submitted by Mr. P. RAJESH bearing registration number 16CHPH42 in partial fulfillment of the requirements for award of Doctor of Philosophy in the School of Chemistry, University of Hyderabad is a bonafide work carried out by him under my supervision and guidance.

This thesis is free from plagiarism and has not been submitted previously in part or in full to this or any other University or Institution for award of any degree or diploma.

Parts of this thesis have been published in the following Four publications:

- 1. S. Yaragorla, **P. Rajesh**, A. Pareek, A. Kumar, *Adv. Synth. Catal.* **2018**, *360*, 4422-4428.
- 2. S. Yaragorla, **P. Rajesh**, Eur. J. Org. Chem. **2019**, 5740-5748.
- 3. S. Yaragorla, P. Rajesh, Org. Biomol. Chem. 2019, 17, 1924-1928.
- 4. S. Yaragorla, **P. Rajesh**, Eur. J. Org. Chem. **2020**, 7243-7251.

He has also made presentations in the following conferences:

- Poster presentation in the 8th International Collaborative & Cooperative Chemistry Symposium -2017 held at University of Hyderabad, Hyderabad, India (Dec 18-19, 2017).
- 2. Poster presentation in the National Organic Symposium Trust (*XIV J-NOST 2018*) held at CSIR-Indian Institute of Chemical Technology, Hyderabad, India (28th Nov to 1st Dec 2018).
- 3. Poster presentation in the "*Chemfest 2018*" in house symposium held at University of Hyderabad, India (Mar 9-10, 2018).
- 4. Poster presentation in the "*Chemfest 2019*" in house symposium held at University of Hyderabad, India (Feb 22-23, 2019).
- 5. Oral presentation in the National Organic Symposium Trust (*XVI J-NOST 2020*) held at Indian Institute of Science (IISc), Bangalore, India (Oct 31-Nov 1, 2020).

- 6. Oral presentation in the "*Chemfest 2021*" in house symposium held at University of Hyderabad, Telangana, India (Mar 19-20, 2021).
- 7. Mini oral presentation in the "MedChem 2021" held at Indian Institute of Technology (IITM), Madras, India (Dec 1-3, 2021).

Further the student has passed the following courses towards fulfillment of coursework requirement for Ph.D.

Sl. No.	Course	Title	Credits	Pass/Fail	
1.	CY801	Research Proposal	3	Pass	
2.	CY802	Chemistry Pedagogy	3	Pass	
2.	CY806	Instrumental Methods-B	3	Pass	
4. CY502		Advanced Organic Synthesis	3	Pass	

Dr. Srinivasarao Yaragorla

School of Chemistry

Dean SCHOOL OF CHEMISTRY University of Hyderabad Hyderabad-500 046

Ahri Nangee

(Thesis supervisor)

Dr. Srinivasarao Yaragorla Associate Professor School of Chemistry University of Hyderabad Hyderabad-500 046, India.

ACKNOWLEDGEMENT

I would like to express my gratitude to everyone who helped and encouraged me throughout my Ph.D. journey.

At the outset I express my sincere gratitude to my honorific supervisor **Dr. Srinivasarao Yaragorla** for facilitating me with a lot of opportunities to accomplish my research work. I am extremely indebted to him for accepting me as his Ph.D. student without any hesitation. This work would not have been possible without his valuable advice, support, encouragement, relentless patience, constructive criticism, and extensive discussion around my work. Under his guidance, I have successfully overcome many difficulties and learned a lot. He has always been my great source of inspiration. My token of appreciation will be given to him through my future work.

I am grateful to **Prof. Ashwini Nangia** (Dean) and **Prof. K. C. Kumara Swamy** (former Dean) for providing the necessary facilities and infrastructure to carry out my research work.

I am extremely grateful to my doctoral committee members **Prof. D. B. Ramachary**, **Prof. P. Ramu Sridhar** for their valuable suggestions during my Ph.D.

My very special thanks to **Dr. Srihari Pabbaraja** from IICT Hyderabad for guiding me during my project days.

It is my pleasant duty to thank my respected teachers **Dr. Y. Jayaprakash Rao**, and **M. Surender Reddy**, **Srinivas Gandamalla** for their effort in teaching me the basics and essential concepts in chemistry.

I would like to thank the School of Chemistry, HCU for providing excellent facilities and a peaceful atmosphere for pursuing the research in a healthy manner. I express my warm thanks to Mr. Durgesh, Mr. Mahender for recording NMR. I also thank Mrs. Asia Pereez, Dr. Manasi, Mr. V. Bhaskar Rao for recording mass, HRMS, and A.V. Ramana and Mahesh for single-crystal X-ray analysis.

I am indebted to my lab mates for the invigorating and fun-filled environment. My special appreciation goes to Ms. Tabassum Khan (friend and labmate) and Ms. Sneha Latha (friend and labmate) for their constant support and encouragement from the first day of HCU to date. My sincere thanks to my other labmates Dr. Abhishek Pareek, Dr. D. Ravikrishna, Dr. Ankit Kumar, Mr. Debojyoti Bag, Mr. Doma Arun, Mr. Avinash Kumar, Mr. Liyaqat Ali, Mr. I.

Sanyasirao, Mr. Valmuri Srivardhan, Mr. Jazeel, Ms. Sayonika, Ms. T. Rajeshwari, Ms. Aayesha Shaik, Mr. Jyoti Prakash, Mr. Swapan shil for their friendly approach, cooperation, generous help, valuable suggestions and excellent working atmosphere in the laboratory. Furthermore, I would also like to acknowledge my former labmates Dr. Pyarelal Saini, Dr. Garima Singh for their kind help.

I am also grateful to my colleagues from the chemistry department Mr. M. Shankar, Mr. Sandeep, Ms. Kalyani, Mr. Intzar Ali, Ms. Kamala Lakshmi, Mr. Anjaneyulu, Mr. R. Santhosh, Mr. Ranadeep Raj Sumukam, Mr. Ravi Ketavath, Mr. Ashok, Mr. Pritam, Mr. Gora Chand, Mr. Vamshi for making my Research journey enjoyable.

I take this opportunity to thank my MSc classmates Dr. A. Chandrashekar Reddy, Mr. K. Sudhakar Reddy, Ms. Bindu, Ms. Rani, and Ms. Arundhati for making my Masters's study at Princeton college happier and unforgettable.

This acknowledgment would not be complete without mentioning the pain-staking efforts and patience of my parents **Shri. P. Krushnaiah**, **Smt. P. Shivamma**. Words cannot express how grateful I am to my parents for all the sacrifices that they made on my behalf. I wish to express my heartfelt thanks to my brother **Dr. P. Nagaraju** for his patience, sacrifice, affection, guidance, care, and love which encouraged me in times of mental pressure throughout my research program. My special thanks to my vadina **Mrs. P. Latha** for her support, encouragement and friendly nature. My most sincere and special thanks to my wife, **P. Lahari**, for her support through all the ups and downs of my life as a research scholar. My special thanks to **P. Devansh** (**chikku**), my dearest son and stress buster, for his love and affection.

I take this opportunity to acknowledge the Council of Scientific and Industrial Research (CSIR) for providing financial assistance in the form of Junior Research Fellowship and Senior Research Fellowship to carry out my work with ease. I extend my heartfelt gratitude to the University of Hyderabad for offering me an ideal environment to pursue my research.

Above all, I thank the almighty for giving me the energy and determination to work, the knowledge and vision to understand, and the ability to analyze and proceed further. It is only through His grace, that this achievement can truly be accomplished.

P. RAJESH

List of Abbreviations

 $[\alpha]$: specific rotation (expressed in without units)

Ac : acetyl

aq. : aqueous

 α : alpha

Ar : aryl

Bn : benzyl

bp : boiling point

brs : broad singlet (spectral)

^tBu : tert-butyl

 β : beta

°C : degree Celsius

cat. : catalytic

CCDC : Cambridge Crystallographic Data Centre

cm : wavenumber

δ : chemicalshift

CSA : camphorsulphonic acid

DCM : dichloromethane

DCE : 1,2-dichloroethane

DMF : dimethylformamide

DMSO : dimethyl sulfoxide

EAA : ethyl acetoacetate

EI : electron impact (in mass spectrometry)

eq. : equation

EtOAc : ethyl acetate

EtOH : ethanol

Equiv. : equivalent

g : gram (s) h : hour (s)

HRMS : high resolution mass spectrum

Hz : hertz

IR : infrared

J : coupling constant (in NMR spectroscopy)

LHMDS : lithium bis(trimethylsilyl)amide

m : multiplet (In nmr spectra)

Me : methyl

mg : milligram

MeOH : methanol

mmol : millimoles

MHz : megahertz

mp : melting point

MsOH : methanesulfonic acid

Nu : nucleophile

NMR : nuclear magnetic resonanceOTf : trifluoromethanesulfonate

ORTEP : Oak Ridge Thermal Ellipsoid Plot

PE : hexane Ph : phenyl

ppm : parts per million

p-TSA : *p*-toluenesulfonic acid

q : quartet

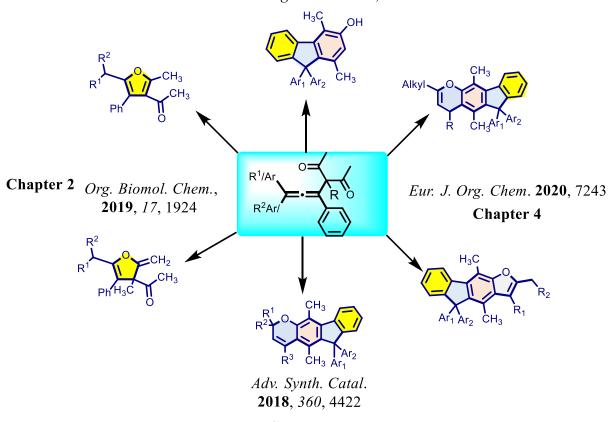
rt : room temperature

s : singlet

THF : tetrahydrofuran

TLC : thin layer chromatography

Ts : toluenesulfonyl/tosyl


UV : ultraviolet

SYNOPSIS

Tetrasubstituted Allenes" consists five chapters; chapter-I is divided in two sections, Section-A: Introduction to tetrasubstituted allene synthesis and cyclization, Section-B: Introduction to calcium catalysis; chapter-II: Synthesis and *in-situ* cyclization of tetrasubstituted allenes to access substituted furans; chapter-III: Synthesis and *in-situ* cyclization of tetrasubstituted allenes to access tricyclic fluorenols; chapter-IV: Synthesis and *in-situ* cyclization of tetrasubstituted allenes to access tetracyclic fluorenofurans; chapter-V: Synthesis and *in-situ* cyclization of tetrasubstituted allenes to access tetracyclic fluorenopyrans. The compounds reported in this thesis are characterized by ¹H NMR, ¹³C NMR, IR, MS, and HRMS spectral data. Structure of some of the representative compounds are unambiguously elucidated by X-ray crystallography.

Chapter 3

Eur. J. Org. Chem. 2019, 5740

Chapter 5

CHAPTER–I This chapter is divided in two sections.

Section-A: Introduction to tetrasubstituted allene synthesis and cyclization

Allenes are cumulative dienes with three carbon atoms, and the central "sp" carbon is the key unit in allene chemistry. Their orthogonal cumulative π systems often lead to a complementary and unique reactivity compared to olefins and alkynes. This structural aspect has only been well adapted in cyclization reactions to give products with olefins in a ring system. Allenes, their imitations, and especially the quaternary carbon center, is an extraordinarily important key structural unit that plays an essential role in reactive intermediates that lead to highly complex structures, bioactive useful intermediates, a wide range of natural products and pharmaceutical molecules, and they are also versatile building blocks in organic synthesis. This cumulative double bond formed by Lewis's acid is particularly useful as it enables nucleophilic attack that, due to its axial chirality, leads to the intramolecular formation of a new carbon - carbon or carbon - heteroatom bond.

Section-B: Introduction to calcium catalysis

The following of environmental friendliness, atom economy and sustainability have long been important goals of chemists in current organic synthesis. Alkaline Earth metals are across the board in nature, at lower cost and less environmental impact compared to rare metals. About over the past twenty years we have seen various elegant modification made possible by alkaline earth metal complexes. There are just a few examples of alkaline earth metals in the structure of heterocyclic compounds based on their special properties: sensitive to moisture, with one d⁰ electron, and +2 as the highest transition state. Their biocompatibility and potent chemical activities are devoted to chemists to use the alkaline earth metals in organic synthesis.

The reactivity of calcium (II) compounds can be divided into two sections. (i) alkali metal compounds have a strong ionic character, due to their low electronegativity and (ii) Calcium-bound anionic residues therefore have a strong nucleophilic character, coupled with strong basicity. At the same time, the calcium center is itself Lewis acidic, similar to the Group 3 metals. Although the Lewis acidity of calcium compounds is believed that it contributes to the result of the polymerization and asymmetric addition reactions for organic synthesis. The best results have been achieved with weakly coordinating, non-basic anions such as TfO-, F-, F₆*i*_{Pr}O- and a 1:1 mixture of triflimidate (NTf₂)- and hexafluorophosphate (PF₆)-. In contrast to before mentioned, strongly basic calcium catalysts, these new Lewis acids based on calcium are easy to handle because of their relatively high tolerance to air and moisture."

CHAPTER-II Synthesis and *in-situ* cyclization of tetrasubstituted allenes to access substituted furans

The annulation of *tert*-propargyl alcohols with 1,3-dicarbonyl compounds through a regiospecific S_N2 type mechanism to provide a regiodivergent synthetic protocol for furans.

In continuation of our research interests to explore the ambident reactivity of propargyl alcohols, particularly towards the annulation reactions, herein we reported a Ca(II)-catalyzed formal [3+2] annulation of *tert*-propargyl alcohols and 1,3-diketones in one–pot (Figure 1).

$$R^{1} \xrightarrow{R^{2}} R^{1} \xrightarrow{R^{2}} R^{4} \xrightarrow{S_{N}2'} Ca(II) \xrightarrow{R^{2}} R^{2} \xrightarrow{Q} R^{1} \xrightarrow{DBU} R^{2} \xrightarrow{R^{2}} R^{2} \xrightarrow{I} R^{2}$$

Figure 1: One-pot synthesis via S_N2 , followed by cycloisomerization of homoallenyl-ketone The present reaction allows the synthesis of various substituted furans with good yields. Gratefully, different propargyl alcohols were synthesized by employing the variety of terminal alkynes (keeping the benzophenone constant) such as 4-methylphenyl **1b**, 4-butylphenyl **1c**, 4-ethoxyphenyl **1d**, cyclopropyl **1e** acetylenes and treated them with **2a** under standard optimized conditions and obtained the respective 2-methylene-2,3-dihydrofurans **3b-3e** in good yields (Scheme 1).

Scheme 1: Selected examples of Ca(II)-catalyzed regiospecific annulation of 1 and 2.

Ca(II)-catalyzed regiospecific [3+2] annulation of propargyl alcohol 1 and 1,3-diketones (2b)

Substituted furans were synthesized by upon treatment of propargyl alcohol **1** with simple 1,3-diketone **2** under Ca(OTf)₂ conditions (Scheme 2). This method involves the isomerization of homo-allenyl ketones followed by 5-exo-trig cyclization. Having successfully optimized the

calcium (II)-catalyzed annulation reaction, the scope and limitation of propargylic alcohols **1** and diketones **2** were investigated (Scheme 2). Furthermore, the annulation reaction of **2b** was compatible with the propargylic substitutions **1** such as diphenyl, dimethyl, phenyl-methyl and cyclopropyl-methyl in providing the corresponding furans with diversity at 5th position (**4a** to **4d**) in good yields (Scheme 2).

Scheme 2: Selected examples of Ca(II)-catalyzed regiospecific [3+2] annulation of propargyl alcohol 1 and 1,3-diketones 2b

CHAPTER-III. Synthesis and *in-situ* cyclization of tetrasubstituted allenes to access tricyclic fluorenols

To further explore the applications of Ca(II)-catalyzed annulation reactions, a one-pot cascade benzannulation protocol was developed for the synthesis 9,9-diaryl-9*H*-fluorenol, which is a key structure of many important natural products which exhibit the significant biological activities particularly phosphodiesterase-4 (PDE4) inhibitory activity. This approach proceeds *via* the annulation of *tert*-propargyl alcohols with 2-methyl acetylacetone through an Intramolecular-Allene-Friedel-Crafts reaction employing Ca(OTf)₂ as the environmentally benign catalyst. Synthetic transformations of these compounds to useful materials are also presented here with the aid of cross-coupling and Ring-closing metathesis reactions.

After sucessfull exporation of optimized reaction conditions for one-pot cascade benzannulation reaction, the scope and generality of the reaction was examined. Various propargyl alcohols 1 tethered with alkyl substitutions on aryl ring moieties were subjected with diketones 2 under

standard conditions to furnish the corresponding fluorenols such as **5b-5e**, C7-methyl, "butyl, phenyl, ethoxy substituents respectively, in excellent yields.

Scheme 3: Selected examples of Ca(II)-catalyzed Intramolecular-Allene-Friedel-Crafts Annulation

CHAPTER-IV Synthesis and *in-situ* cyclization of tetrasubstituted allenes to access tetracyclic fluorenofurans

A novel synthetic methodology for the synthesis of *tetra*-annulated fluorenofurans and fluorenopyrans are developed using calcium(II)-catalyzed one-pot, three-component reaction. In this context, *tert*-propargyl alcohols react with 1,3-dicarbonyls to afford highly substituted allenes, which are subsequently undergoing regiodivergent annulation with *sec*-propargyl alcohols to produce the tetracyclic compounds. The significant features of the present methodology are broad substrate scope, regioselectivity, gram-scale synthesis and benzylic functionalization of products.

Scheme 4: Selected examples of Ca(II)-catalyzed Annulation reactions.

Initially, variety of *sec*-propargyl alcohols **6** were chosen which are tethered with different substitutions on benzylic aryl ring (such as 4–methyl, 4-bromo, 4-chloro and 4-methoxy groups) and treated with **1a** and **2a** under standard reaction conditions. Subsequently, the wide range of flourenofurans **7b-7e** was synthesized by employing the present developed methodology.

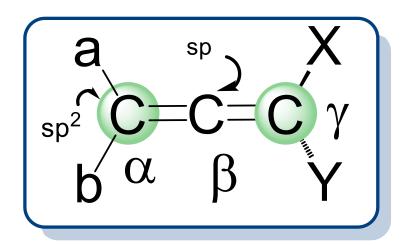
Scheme 5. Selected examples of Calcium(II)-Catalyzed, annulation reaction of 1, 2 with 8 bearing alkyl groups on alkyne terminus.

Then we sought to look at the regioselectivity of *sec*-propargyl alcohols bearing an alkyl group on the alkyne-terminus (Scheme 5). Hence substrates *sec*-propargyl alcohols **1a**, diketones **2a** and 1-phenylhept-2-yn-1-ol **8a** were refluxed in DCE with 10/5 mol% Ca(OTf)₂/Bu₄NPF₆ (standard reaction conditions of Scheme 5) for 4.5 hours and obtain the product **9a** in 76% yield. The same regioselectivity was again noticed when *tert*-propargyl alcohol **1**, diketones **2a** were subjected with 1-phenyloct-2-yn-1-ol **8a**, **8b** under optimized conditions and afforded the corresponding fluorenopyrans **9b**, **9c** in good yields (Scheme 5).

CHAPTER-V Synthesis and *in-situ* cyclization of tetrasubstituted allenes to access tetracyclic fluorenopyrans

In continuation, an unprecedented approach of tetracyclic fluorenopyrans from simple acyclic reactants was developed by employing with propargyl alcohols and 3-methylpentane-2,4-dione under calcium catalysis. The present novel one-pot 3-component reaction proceeds *via* a sequential allene formation followed by Friedel-Crafts cyclization/ cycloisomerization, then intramolecular aldol reaction, subsequently, Claisen rearrangement and 6-endo dig cyclization to afford the formation of fluorenopyrans (indeno[2,1-g]chromenes). This strategy was further utilized for the synthesis of 3-iodo-fluorenopyrans by iodocyclization to the above sequence of reactions (4-CR). Notably, this highly practical, atom and the step-economic procedure is catalyzed by a sustainable (alkaline earth) metal salt and tolerates the broad substrate scope, allowing the further transformations and synthetic utilities of these complex polycyclic moieties.

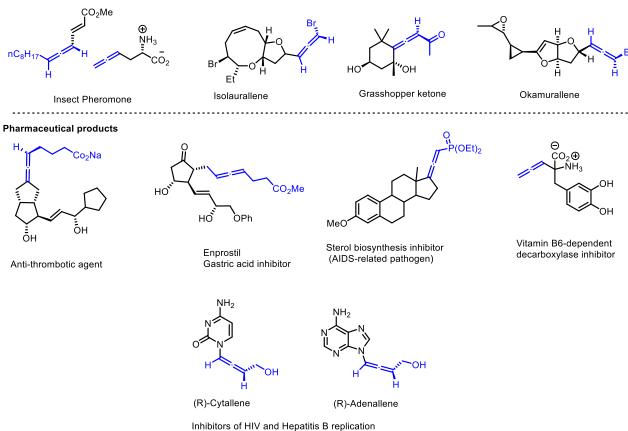
Scheme 6: Selected examples of Ca(II)-catalyzed synthesis of fluorenopyrans


After discovering the best reaction conditions for the regioselective, one-pot, annulation of propargyl alcohol **1a** and 2-methyl acetylacetone **2** to form fluorenopyran **10a**, next, the scope of the reaction was examined (Scheme 6). Accordingly, propargyl alcohol **1a** and 2-methyl acetylacetone **2** were refluxed in 1,2-DCE along with 10 mol% Ca(II)/5 mol% Bu₄NPF₆ until the consumption of starting materials (monitored by TLC) then propargyl alcohol **3b** was added to the reaction pot and continued the reaction till completion to isolate the fluorenopyran **10b** in 67% yield. Similarly, other propargyl alcohols **3c-3d** were subjected with propargyl alcohol **1a** and 2-methyl acetylacetone **2** under standard reaction conditions to show the diversity at the quaternary-C2-center and synthesized the flurenopyrans **10a-10d** in good yields.

Scheme 7: Selected examples of Ca(II)-catalyzed, one-pot, 4-component Iodo-cycloisomerization reaction

A careful observation of propargylic ether in reaction mechanism revealed that it is possible to activate the triple bond with molecular iodine so that an intramolecular-iodocyclization can occur (scheme 7) to furnish the iodo-fluorenopyrans. Based on this objective, the present experiment was designed accordingly; propargyl alcohol 1a and 2-methyl acetylacetone 2 were subjected to standard reaction condition to obtain the fluorenol then brought the reaction to room temperature and 3 was added as second alcoholic partner along with molecular iodine and 2 mL of toluene. Presumably, the iodocyclization proceeded well to yield 3-iodoflurenopyran 11a in 80% yield (Scheme 7).

Section-A:


Introduction to Tetrasubstituted Allene Synthesis and Cyclizations

1.1 INTRODUCTION

Allenes are structurally important components in most natural products, biologically active compounds, and pharmaceuticals.¹ The existence of two cumulative carbon-carbon double bonds characterizes them structurally and contributes to their high reactivity. They are employed in pharmaceuticals and complex compounds because of their widespread abundance in vitamins,² hormones,³ dyes,⁴ antibiotics,⁵ antitumors,⁶ anti-thrombotic,⁷ hepatites-B-virus,⁸ antiviral ⁹, anti-HIV,¹⁰ antidiabetic,¹¹ and natural products, etc, ¹ Moreover, they are of paramount importance for responding to harmful microorganisms and lead a healthy human life. Among all known allene compounds, fused cyclic derivatives possess an important role in medicinal chemistry with a broad spectrum of biological applications i.e. antifungal,¹² inhibitors of Hepatitis B,¹³ anti-inflammatories,^{14,} etc., (Figure 1).

Natural products

Figure 1. Representative examples of natural and pharmaceutical compounds having allene moieties.

In the last few generations, significant progress has been achieved in the development of allene frameworks, direct synthetic transformation of propargylic compounds is the most widely employed strategy among all those developed. Propargylic alcohols are useful synthons for building a variety of key structural frameworks in synthetic chemistry because of their unusual amphiphilic character.¹⁵ Propargylic alcohols have flexibility and accessibility, they can go through a lot of different reaction conditions to get different molecules.

1.2 PREVIOUS REPORTS

Yoshida *et al.* demonstrated the use of palladium catalyst to directly couple various propargylic alcohols and aryl boronic acids to form corresponding tetrasubstituted allene, this reaction proceeds through S_N^2 mechanism (Scheme 1).¹⁵

$$R^{2}$$
 R^{1} R^{1} R^{2} R^{1} R^{2} R^{2} R^{3} R^{1} R^{2} R^{2} R^{3} R^{1} R^{2} R^{2} R^{3} R^{4} R^{2} R^{2} R^{3} R^{4} R^{5} R^{5

Scheme 1. Direct coupling reaction of propargylic alcohols with aryl boronic acids using Pd(0) as a catalyst.

In 2008 H. Jiang *et al.* reported the allenylation of alkynoates which uses inactive propargyl alcohols as "allenylating" reagents and could be performed in the presence of water without any additional organic solvent. Hydroxyl being the leaving group on one of the alkyne molecules, permits the selective insertion of different alkynes in this water-promoted reaction (Scheme 2).¹⁶

Scheme 2. Pd(II)-catalyzed allenylation of alkynoates with propargyl alcohols.

In 2009 Sanz *et al.* reported the synthesis of allenylindoles by using *tert*-propargylic alcohols and 2-aryl-substituted indoles catalyzed by Brønsted acid *via* nucleophilic substitution. With the exact substituents on the alkynol molecule, a competitive allenylation reaction occurs (Scheme 3).¹⁷

$$R^2$$
 R^3 R^4 R^5 R^5 R^5 R^3 R^4 R^5 R^5 R^3 R^4 R^5 R^5 R^3 R^4 R^5 R^5 R^5 R^3 R^4 R^5 R^5

Scheme 3. Brønsted acid-catalyzed synthesis of 3-allenylindoles.

Sun *et al.* established an efficient catalytic system for performing the asymmetric transformation for direct coupling of propargylic alcohols with 1,3-diketones using chiral phosphoric acid, resulting in chiral tetrasubstituted allenes up to 96% yield and 97% ee (Scheme 4).¹⁸

Chiral catalyst (7)
$$R^{3} = P^{-MeOC_{6}H_{4}}$$

$$R^{1} = P^{-MeOC_{6}H_{4}}$$

$$R^{2} = Ph$$

$$R^{3} = p^{-MeOC_{6}H_{4}}$$

Scheme 4. Asymmetric synthesis of tetrasubstituted allenes.

Sundararaju's group reported an allenylation reaction between *tert*-propargylic alcohols and substituted arenes containing electron-rich group by cobalt catalysis to generate several tetrasubstituted allenes (Scheme 5).¹⁹

Scheme 5. Co(III)-catalyzed synthesis of tetrasubstituted allenes.

In 2017 Wang *et al.* reported an efficient, regioselective preparation of allenyltriazoles from triazoles and *tert*-propargylic alcohols with trifluoro boron etherate as a catalyst (Scheme 6). ²⁰

$$R^{2}$$
 R^{3} R^{1} R^{2} R^{3} R^{4} R^{4} R^{4} R^{5} R^{2} R^{2} R^{4} R^{5} R^{5

Scheme 6. BF₃·Et₂O-catalyzed synthesis of triazole substituted allenes.

Zn(OTf)₂-catalyzed reaction between *tert*-propargylic alcohols and imidazo heterocycles are reported to form imidazole-substituted allene molecules. A majority of fullysubstituted allenes with wide functionalities were synthesized with good yields (Scheme 7). ²¹

$$R^{2}$$
 R^{1} R^{2} R^{1} R^{2} R^{3} R^{4} R^{5} R^{5

Scheme 7. Zn(II)-catalyzed synthesis of imidazole substituted allenes.

Ma and his group established a unique Rh(II)-catalyzed "syn-OH elimination" method for the preparation of tetrasubstituted allenes from propargyl alcohols and arenes as the starting materials, with water as the only by-product, this method gave access to tetrasubstituted allenes with excellent yields tolerating different functional groups (Scheme 8). ²²

Scheme 8. Rh(II)-catalyzed preparation of tetrasubstituted allenes.

In 2012 C.Y. Li *et al.* reported Au(II)-catalyzed intermolecular reactions of *tert*-propargylic alcohols with aromatic molecules to produce functionalized allenes with moderate to high yields (Scheme 9).²³

Scheme 9. Au-catalyzed synthesis of tetrasubstituted allenes.

In 2015 S.-J. Tu *et al.* demonstrated a novel synthesis of tetrasubstituted allenes from *tert*-propargyl alcohols and sulfonyl hydrazides catalyzed by TBHP/TBAI in the presence of HOAc with moderate to good yields (Scheme 10).²⁴

$$R^{2}$$
 = R^{1} + $H_{2}N$ R^{0} TBAI (20 mol%)
 R^{3} TBHP (2.0 equiv)
HOAc, MeCN, 60 °C R^{3} R^{1} R^{2} R-S=0
 R^{3} R^{1} R^{2} R = 4-me-C₆H₅ Yield up to 84%

Scheme 10. Allenyl sulfones from propargyl alcohols and sulfonyl hydrazides.

In 2017 Wang *et al.* reported a dehydrative carbon-phosphorus cross-coupling reaction between *tert*-propargyl alcohols and P(O)H compounds catalyzed by CdCl₂. The ability of propargyl alcohols with sterically demanding substituents present at the triple bond is to generate products in high yields is a promising advantage of the reaction (Scheme 11).²⁵

$$R^{2}$$
 R^{1} R^{1} R^{2} R^{1} R^{2} R^{2} R^{2} R^{2} R^{2} R^{3} R^{1} R^{1} R^{2} R^{3} R^{1} R^{2} R^{3} R^{4} R^{2} R^{3} R^{4} R^{2} R^{3} R^{4} R^{5} R^{5

Scheme 11. Cd(II)-catalyzed C-P coupling of propargyl alcohols with di arylphosphine oxides.

Bi *et al.* reported the synthesis of [*gem*bis(alkylthio)vinyl]allenes using easily available starting materials and an environment-friendly iron catalyst. This method provides a quick and easy way to obtain fully substituted vinylallenes (Scheme 12).²⁶

$$R^2$$
 R^3 R^4 R^4

Scheme 12. Fe(III)-catalyzed synthesis of gembis(alkylthio)-substituted vinylallenes.

In 2011, McCubbin *et al.* developed a broad approach for the synthesis of propargyl/allenyl-substituted moieties from *tert*-propargylic alcohols and aromatic heterocycles by using perfluorophenylboronic acid with high yields and selectivity (Scheme 13). ²⁷

$$R^{2}$$
 R^{1} R^{1} R^{2} R^{1} R^{2} R^{2} R^{2} R^{2} R^{3} R^{1} R^{2} R^{2} R^{2} R^{2} R^{2} R^{3} R^{4} R^{2} R^{2} R^{2} R^{3} R^{4} R^{2} R^{2} R^{3} R^{4} R^{2} R^{2} R^{3} R^{4} R^{2} R^{3} R^{4} R^{2} R^{3} R^{4} R^{2} R^{3} R^{4} R^{2} R^{4} R^{5} R^{5

Scheme 13. Brønsted acid-catalyzed aryl-substituted allenes.

In 2017 Ma *et al.* demonstrated a method for the carboxylation of propargylic alcohols to synthesize allenes, which produced a broad scope of tetrasubstituted allenoates that tolerated beneficial efficient groups due to the cooperative binary catalysis of Pd and a phosphoric acid (Scheme 14).²⁸

$$[(\pi\text{-allyl})\text{PdCl}]_2 \text{ (2 mol\%)}$$

$$DPEphos (6 mol\%)$$

$$(PhO)_2 POOH (5 mol\%)$$

$$R^4 OH (8 mol\%)$$

$$CO \text{ balloon, toluene, 50 °C}$$

$$R^3 R^1$$

$$R^2 = \text{Me}$$

$$R^3 = \text{Ph}$$

$$R^4 = \text{Me}$$

Scheme 14. Pd(II)-catalyzed synthesis of multi-substituted 2,3- allenoates.

In 2008 K. Lee *et.al* reported the reactions of allyl indiums produced *in vitro* from indium & allyl halides with *tert*-propargylic alcohols, for preparing fully substituted allenes with allyl & methallyl (Scheme 15).²⁹

$$R^2$$
 R^3 R^4 R^4

Scheme 15. In-promoted synthesis of allenes.

Crandall *et al.* demonstrated the preparation of allenic esters between propargylic alcohols (terminal and internal) and triethyl orthoacetate using propionic acid. Propargylic alcohols and triethyl orthoacetates underwent nucleophilic addition, which created propargylic vinyl ethers a crucial intermediate in this reaction which is involved in a 3,3- Claisen rearrangement with the release of EtOH, resulting in the end products (Scheme 16).³⁰

Scheme 16. Brønsted acid-catalyzed synthesis of allenic esters.

1.3 ALLENE CYCLIZATION

Allenes can undergo a wide variety of reactions like cyclization, cycloaddition, nucleophilic and electrophilic addition reactions etc^{31} . This flexible nature of allenes makes them a valuable synthetic intermediate in the field of organic chemistry. Axial-to-central chirality transfer of allenes is another important feature that makes it a useful intermediate in asymmetric synthesis.³² Hence allenes have become one of the most studied topics among synthetic chemists.

Cumulative double bond activation using Brønsted or Lewis's acid is beneficial among many different reaction modes as it permits the nucleophilic attack which results in a new carbon-carbon or carbon-hetero bond intermolecularly/intramolecularly.³³

PREVIOUS REPORTS

A catalytic amount of AuCl₃ can be used to convert functionalized hydroxy allenes into their corresponding 2,5-dihydrofurans. At ambient temperature, this moderate and efficient cyclization method was used on allenes with alkyl and alkenyl substituents, to create different substituted dihydrofurans with moderate to outstanding yields, and a complete "axis to center chirality transfer" was reported (Scheme 17).³⁴

$$R^2$$
 R^3
 R^1
 R^2
 R^1
 R^2
 R^1
 R^2
 R^1
 R^2
 R^2
 R^1
 R^2
 R^3
 R^3

Scheme 17. Au(III)-catalyzed cyclization of a-hydroxy allenes to 2,5-dihydrofurans.

In 2006 N. Krause *et al.* developed the Au(I)-catalyzed *6-endo* cycloisomerization of β -hydroxy allenes to give chiral functionalized dihydropyrans with good yields at room temperature with "axis-to-center chirality transfer" (Scheme 18).³⁵

$$R^{1}$$
 R^{2}
 R^{4}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{6}
 R^{7}
 R^{7}
 R^{8}
 R^{1}
 R^{1}
 R^{2}
 R^{6}
 R^{6}
 R^{5}
 R^{4}
 R^{6}
 R^{5}
 R^{6}
 R^{5}
 R^{6}
 R^{5}
 R^{6}
 R^{5}
 R^{6}
 R^{5}
 R^{6}
 R^{5}
 R^{6}
 R^{6

Scheme 18. Au(I)-catalyzed cyclization of β -hydroxy allene.

An efficient system for producing, β , γ -unsaturated δ -lactones was reported using allene-substituted malonates, which can be cyclized by the nucleophilic attack of an ester moiety on allene in an Au-catalyzed reaction (Scheme 19).³⁶

MeO
$$R^2$$
 R^3
 R^3

Scheme 19. Au(III)-catalyzed formation of β , γ -unsaturated δ -lactones.

In 2009 S. A. Blum *et al.* reported a novel method using Au and Pd as dual catalysts that improved the synthetic usefulness of vinyl gold intermediates by facilitating carbon-carbon cross-coupling as opposed to protodemetalation. Substituted butenolides and isocoumarins were also synthesized using this approach from the corresponding allyl esters (Scheme 20).³⁷

$$R^{2}$$

$$R^{3}$$

$$3t$$

$$O$$

$$R^{1}$$

$$R^{2}$$

$$R^{3}$$

$$O$$

$$R^{1}$$

$$R^{2}$$

$$R^{2}$$

$$R^{3}$$

$$R^{1}$$

$$CD_{2}Cl_{2}, 23 C$$

$$R^{2}$$

$$R^{3}$$

$$R^{1}$$

$$R^{2}$$

$$R^{3}$$

$$R^{1}$$

$$R^{2}$$

$$R^{3}$$

$$R^{1}$$

$$R^{3}$$

$$R^{1}$$

$$R^{2}$$

$$R^{3}$$

$$R^{1}$$

$$R^{2}$$

$$R^{3}$$

$$R^{1}$$

$$R^{3}$$

$$R^{1}$$

$$R^{2}$$

$$R^{3}$$

$$R^{3}$$

$$R^{1}$$

$$R^{2}$$

$$R^{3}$$

$$R^{4}$$

$$R^{3}$$

$$R^{3}$$

$$R^{3}$$

$$R^{4}$$

$$R^{3}$$

$$R^{4}$$

$$R^{3}$$

$$R^{4}$$

$$R^{3}$$

$$R^{4}$$

$$R^{3}$$

$$R^{4}$$

$$R^$$

Scheme 20. Au and Pd-catalyzed butenolide rearrangement.

In the presence of PtCl₂, an efficient cyclization reaction of 3-allenylindols was reported to form multisubstituted carbazoles through 1,2-methyl migration of metal carbenes. (Scheme 21).³⁸

$$R^{4} \longrightarrow R^{2}$$

$$R^{2} \longrightarrow R^{2}$$

$$R^{1} = Me \qquad R^{2} = H$$

$$R^{3} = p\text{-MeC}_{6}H_{4} \quad R^{4} = Me$$

$$PtCl_{2} (5 \text{ mol}\%)$$

$$Toluene$$

$$R^{2} \longrightarrow R^{2}$$

$$R^{1} = Me \qquad R^{2} = H$$

$$R^{3} = p\text{-MeC}_{6}H_{4} \quad R^{4} = Me$$

$$12 \text{ Examples}$$

$$Yield \text{ up to } 83\%$$

Scheme 21. Pt(II)-catalyzed cyclization of 2-allenylindole.

In 2013 R. Sanz *et al.* proposed an Au(I) catalyzed reaction of 3-allenylmethylindole for the preparation of carbazoles. This reaction proceeds *via* C2-H bond functionalization between indole and allene units, whose selectivity depends on substrates (Scheme 22).³⁹

Scheme 22. Cycloisomerization of 3-allenylmethylindole.

A new and delicate protocol was reported to synthesize 2- iodoindenes, *via* "iodonium-induced carbocyclization" of a wide range of activated allenes in good to outstanding yields using N-iodosuccinimide, showing different functional group compatibility. Variations in allenic structures revealed a strong 5-*endo* selectivity as well as certain competing cyclization routes (Scheme 23).⁴⁰

R²
R³
NIS (1.2 equv.)
MeCN, rt

$$R^1 = Cy$$
 $R^2 = Me$
 $R^3 = Alkyl$
NIS (1.2 equv.)
MeCN of the sequence of the sequence

Scheme 23. Iodocyclization of arylallenes induced by iodonium.

Takahashi *et al.* reported a Ru-catalyzed unique cyclic carbonylation of allenic alcohols to generate lactones with more selectivity. This intramolecular tandem reaction selectively synthesizes γ , δ -lactones from allenyl alcohols and carbon monoxide (Scheme 43).⁴¹

$$R^3$$
 R^1
 R^2
 R^3
 R^2
 R^3
 R^2
 R^1
 R^2
 R^3
 R^2
 R^1
 R^2
 R^1
 R^2
 R^1
 R^2
 R^3
 R^2
 R^1
 R^2
 R^3
 R^2
 R^3
 R^2
 R^3
 R^2
 R^3
 R^3

Scheme 24. Carbonylation of allenyl alcohols.

1.4 REFERENCES

(1) a) "Naturally Occurring Allenes": S. R. Landor in The Chemistry of the Allenes (Ed.: S. R. Landor), Academic Press, London, 1982, pp. 679. b) Claesson, A. Biologically Active Allenes in The Chemistry of the Allenes (Ed.: S. R. Landor), Academic Press, London, 1982, pp. 709. c) "Biological Formation and Reactions": C. H. Robinson, D. F. Covey in The Chemistry of Ketenes, Allenes and Related Compounds (Ed.: S. Patai), Wiley, Chichester, 1980, pp. 451.


- (2) Walsh, C. Tetrahedron 1982, 38, 871.
- (3) a) Westmijze, H.; Nap, I.; Meijer, J.; Kleijn, H.; Vermeer, P. *Recl. Trav. Chim. Pays-Bas* **1983**, *102*, 154. b) Elsevier, C. J.; Stehouwer, P. M.; Westmijze, H.; Vermeer, P. *J. Org. Chem.* **1983**, *48*, 1103.
- (4) Rivera-Fuentes, P.; Diederich, F. Å. Angew. Chem. Int. Ed. 2012, 51, 2818.
- (5) Cooper, G. F.; McClure, N. L.; Van Horn, A. R.; Wren, D. Synth. Commun. 1983, 13, 225.
- (6) Dauvergne, J.; Burger, A.; Biellmann, J.-F. *Nucleosides Nucleotides Nucleic Acids* **2001**, *20*, 1775.
- (7) Collins, P.W.; Djuric, S. W. Chem. Rev. 1993, 93, 1533.
- (8) Zhu, Y.-L.; Pai, S. B.; Liu, S.-H.; Grove, K. L.; Jones, B. C. N. M. C. Simons, J.; Zemlicka, Y.-C.; Cheng. *Antimicrob. Agents Chemother.* **1997**, *41*, 1755.
- (9) a) Zemlicka, J. Nucleosides Nucleotides 1997, 16, 1003. b) Zemlicka, J. Pharmacol.
 Ther. 2000, 85, 251. c) Zemlicka, J. Biochim. Biophys. Acta 2002, 1587, 276. d) Xu, Z.-Q.; Joshi, R. V.; Zemlicka, J. Tetrahedron 1995, 51, 67.
- (10) a) Hayashi, S.; Phadtare, S.; Zemlicka, J.; Matsukura, M.; Mitsuya, H.; Broder, S. *Proc. Natl. Acad. Sci.* USA 1988, 85, 6127. b) Phadtare, S.; Zemlicka, J. *J. Am. Chem. Soc.* 1989, 111, 5925. c) Phadtare, S.; Kessel, D.; Corbett, T. H.; Renis, H. E.; Court, B. A.; Zemlicka, J. *J. Med. Chem.* 1991, 34, 421. d) Phadtare, S.; Zemlicka, J. *J. Am. Chem. Soc.* 1989, 111, 5925. e) Phadtare, S.; Kessel, D.; Corbett, T. H.; Renis, H. E.; Court, B. A.; Zemlicka, J. *J. Med. Chem.* 1991, 34, 421.
- (11) a) Landor, S. R.; Miller, B. J.; Regan, J. P.; Tatchell, A. R. J. Chem. Soc. Perkin Trans. 1 1974, 557. b) de Graaf, W.; Smits, A.; Boersma, J.; van Koten, G.; Hoekstra, W. P. Tetrahedron 1988, 44, 6699.
- (12) Ohigashi, H.; Kawazu, K.; Egawa, H.; Mitsui, T. Agric. Biol. Chem. 1972, 36, 1399.

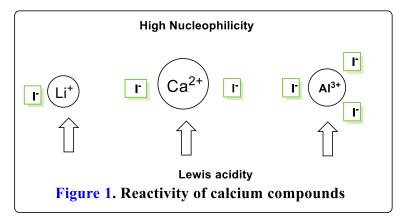
(13) Buynak, J. D.; Rao, A. S.; Ford, G. P.; Carver, C.; Adam, G.; Geng, B.; Bachmann, B.; Shobassy, S.; Lackey, S. *J. Med. Chem.* **1997**, *40*, 3423.

- (14) Takashima, J.; Asano, S.; Ohsaki, A.; Kagobutsu, T. Y.; Yoshishu, T. K. *Chem. Abstr.* **2001**, *135*, 104986.
- (15) Yoshida, M.; Gotou, T.; Ihara, M. *Tetrahedron Lett.* **2004**, *45*, 5573.
- (16) Jiang, H.; Liu, X.; Zhou, L. Chem. Eur. J. 2008, 14, 11305.
- (17) Sanz, R.; Gohaina, M.; Miguela, D.; Martíneza, A.; Rodríguez, F. Synlett. 2009, 1985.
- (18) Qian, D.; Wu, L.; Lin, Z. Sun, J. *Nat. Commun.* **2017**, *8*, 567.
- (19) Sen, M.; Dahiya, P.; Premkumar, J. R.; Sundararaju, B. Org. Lett. 2017, 19, 3699.
- (20) Huang, K.; Sheng, G.; Lu, P.; Wang, Y. J. Org. Chem. 2017, 82, 5294.
- (21) Jana, S.; Dey, A.; Singsardar, M.; Bagdi, A. K.; Hajra, A. *J. Org. Chem.* **2016**, *81*, 9489.
- (22) Wu, S.; Huang, X.; Fu, C.; Ma, S. Org. Chem. Front. 2017, 4, 2002.
- (23) Xu, C.; Xu, M.; Yang, L.; Li, C. J. Org. Chem. 2012, 77, 3010.
- (24) Yang, Z.; Hao, W.-J.; Wang, S.-L.; Zhang, J.-P.; Jiang, B.; Li, G.; Tu, S.-J. *J. Org. Chem.* **2015**, *80*, 9224.
- (25) Yang, J. M.; Zhang, K.; Qiu, L.; Wang, J.; Yu, Z.; Xia, Shen, R.; Han, L.-B. *Adv. Synth. Catal.* **2017**, *359*, 4417.
- (26) Li, Q.; Wang, Y.; Fang, Z.; Liao, P.; Barry, B. D.; Che, G.; Bi, X. *Synthesis*, **2013**, 45, 609.
- (27) McCubbin, J. A.; Nassar, C.; Krokhin, O. V. Synthesis **2011**, 3152.
- (28) Zhang, W.; Huang, C.; Yuan, Y.; Ma, S. Chem. Commun. 2017, 53, 12430.
- (29) Lee, K.; Lee, P. H. Org. Lett. 2008, 10, 2441.
- (30) Crandall, J. K.; Tindell, G. L. Chem. Commun. **1970**, 141.
- (31) a) Pu, X. T.; Ready, J. M. J. Am. Chem. Soc. 2008, 130, 10874. b) Li, C. Y.; Wang, X. B.; Sun, X. L.; Tang, Y.; Zheng, J. C.; Xu, Z. H.; Zhou, Y. G.; Dai, L. X. J. Am. Chem. Soc. 2007, 129, 1494. c) Li, C. Y.; Zhu, B. H.; Ye, L. W.; Jing, Q.; Sun, X. L. Tang, Y. Tetrahedron. 2007, 63, 8046. d) Lee, P.; Lee, K.; Kang, Y. J. Am. Chem. Soc. 2006, 128, 1139.
- (32) Hiroaki, O. Chem. Pharm. Bull. 2005, 53, 1211.
- (33) Krause, N.; Winter, C. Chem. Rev. 2011, 111, 1994.
- (34) Anja, H.-R.; Krause, N. *Org. Lett.* **2001**, *3*, 2537.

- (35) Gockel, B.; Krause, N. Org. Lett. 2006, 8, 4485.
- (36) Piera, J.; Krumlinde, P.; Strübing, D.; Bäckvall, J.-E. Org. Lett. 2007, 9, 2235.
- (37) Shi, Y.; Roth, K. E.; Ramgren, Stephen, D.; Blum, S. A. *J. Am. Chem. Soc.* **2009**, *131*,18022.
- (38) Kong, W.; Qiu, Y.; Zhang, X.; Fu, C.; Shengming, M. *Adv. Synth. Catal.* **2012**, *354*, 2339.
- Álvarez, E.; Manuel, P.G.-G.; Fernández-Rodríguez, A.; Sanz, R. *J. Org. Chem.*2013, 78, 9758.
- (40) Grandclaudon, C.; Michelet, V.; Toullec, P. Y. Org. Lett. 2016, 18, 676.
- (41) Yoneda, E.; Kaneko, T.; Zhang, S.-W.; Onitsuka, K.; Takahashi, S. *Org. Lett.* **2000**, 2, 4.

Section-B: Introduction to Calcium Catalysis

1.6 INTRODUCTION


Chemists in modern organic synthesis have long pursued environmental friendliness, atom economy, and sustainability as major goals.¹ In the synthesis of heterocyclic compounds, traditional transition metals have prevailed, while Group-II metals received less attention.² In comparison to rare metals, alkaline earth metals are easily available, cheaper, and are environmentally friendly. Group-II metal complexes have permitted a variety of graceful transformations over the last two decades.^{2, 3, 4,5} Even though Mg-based chemicals are produced as reliable stoichiometric catalysts in organic synthesis.⁶ There are very few elements of Group-II metals being used to make heterocyclic compounds, which can be attributed to their unique properties. With a d⁰ electron, they are sensitive to moisture, and the highest oxidation state is +2. Because there is less variation in their valence electrons than in other transition metals (Rh, Ni, Pd, etc) oxidative addition or reductive elimination is not easy. Alkaline earth metals are used in organic synthesis because of their abundance, bioactivity, and powerful chemical activity.^{7, 8}

1.7 LEWIS ACIDIC CALCIUM CATALYSIS

Calcium is one of the common metals found on earth and one of the very few which has no harmful effects. Calcium is found in abundance in the human body, with its primary quantitative function being the maintenance of the endoskeleton⁹. It also plays an important role in complex biological systems, where elaborate control mechanisms govern the attention of these ions in metabolic pathways ¹⁰. In addition, the atmosphere and hydrosphere also contain 3.4 % by weight of calcium. All these figures illustrate that Ca is one of the easily available metals on the planet. It exists in nature as sulfate, silicate, carbonate, phosphate, and fluoride. Calcium is redox-inert in all of these compounds and exists mostly in +2 oxidation state.

Calcium ions have a redox potential of E° = -2.869 V, which makes them inert metals in redox reactions. Whereas, reactions involving redox processes such as "oxidative addition and reductive elimination" in their catalytic cycles will be mainly a "transition-metal mediated catalysis". This is both a disadvantage and a benefit of these catalysts since unwanted side reactions caused by redox activity do not interfere with the desired pathway. Unevenly spoken, the responsiveness of Ca(II) compounds could be separated into two parts (Figure 1). Similarly Group-II metal compounds calcium have highly ionic, because of their low

electronegativity values. Thus, anionic residues bound to calcium(II) have nucleophilic character coupled with a strong basic nature.¹²

Although calcium's acidic nature was thought to play a role in polymerization reactions and asymmetric addition reactions, there weren't many studies conducted to explore it as a catalyst in organic synthesis until recently. F_6iPrO^- , F^- , TfO^- , and an equal mixture of triflimidate (NTf₂⁻) and hexafluorophosphate (PF₆⁻) being weakly coordinating non-basic anions have produced the best results (Figure 2). Unlike the very basic Ca-catalysts specified above, these novel Ca-based Lewis acids are much better in terms of the ease to handle them and their tolerance to moisture and oxygen.

$$Ca(NTf_2)_2 + nBu_4N(PF_6)$$
 anion metathesis
$$nBu_4NH_2(NTf_2) + Ca(NTf_2)(PF_6)$$
increased Lewis acidity
two binding sites available

Scheme 25. Formation of Ca(II) active species.

However, constraints like cost, toxicity, and waste management limit the growth of cost-effective and sustainable catalytic processes. ¹² Calcium, among the Group-II earth metals, has

a lot of potentials to meet these requirements and act as a good Lewis acid because of its high availability and low toxicity.¹³ Niggemann was the first to use Ca complexes as Lewis acids in the field of synthetic chemistry.^{14, 15} Highly stable Ca(NTf₂)₂ [NTf₂ = bis(triflimide)] catalyst along with Bu₄NPF₆ as an additive are used. The complex Ca(NTf₂)(PF₆) formed by anion metathesis enhances Lewis acidity (Scheme 25).¹⁴ The peculiar characteristics of the Tf₂N⁻ anion have a significant impact on the chemistry of metal triflimidates.¹⁵ Metal triflimidates when compared to metal triflates, are stronger Lewis acids, considering the fact that Tf₂NH is a poor proton donor than TfOH.¹⁶ This is due to

- (i) the negative charge on the Tf₂N⁻ anion which is widely delocalized.
- (ii) its relatively large volume". ¹⁷ Except for Ca, Sr, and Ba complexes, where it exists in η^2 -N, O binding geometry, the Tf₂N⁻ anion functions as a ligand and accepts a η^2 -O, O binding geometry to the metal. ¹⁸

We were interested in the fact that when Ca(NTf₂)₂ reacts with Bu₄NPF₆, not only a more Lewis acidic Ca(NTf₂)(PF₆) complex formed, but also two binding sites on Ca(NTf₂)(PF₆) become available.¹⁸

1.8 Why Is It Important to Develop Calcium-Catalyzed Reactions?

d-block metal catalysis has developed to be the best prevailing cascade for the formation of C-C and C-X (where X = hetero-atom) bonds in organic chemistry over the last few decades, with utilization in total synthesis of an excess of natural products, medicines, and resources. However, transition-metal catalysts do have certain essential drawbacks, to commence with, transition-metal catalysts are frequently hazardous, therefore, removing metallic contaminants from the required medicinal end products is a key distillation issue in d-block metal-catalyzed reactions. Secondly, most transition metals are precious metals, such as Pd, Au, Rh, and Ru. Thirdly, the pairing of d-block metals and complex ligands is essential to increase the reaction efficiency in most transition-metal catalyzed processes. Finally, as our finite natural resources are depleted, the accessibility of d-block metals is becoming gradually limited. As a result, the construction of high feasible replacements is in high necessity whenever possible. In this sense, processes catalyzed by low-priced, harmless, and abundant metals provide a new path to feasibility.

Being the 5th most abundant element in our planet's crust, Ca is generally considered non-toxic even in high amounts making it ideal for enduring sustainability. As a result, from an

environmental and commercial standpoint, reactions that are catalyzed by Ca are generally favored in synthetic organic chemistry.

1.9 REACTIONS OF ALCOHOLS

With the increase in the complexity of reactions, there is a need to find the best replacements for the existing common catalysts. It is also critical to replace inefficient reagents with more alternatives. The straight usage of alcohols as alkylation agents is one of the twelve concepts that this "ACS GCI Pharmaceutical Round table" strongly favors, as it offers solutions to various environmental issues. Water is generated as the only by-product during the reaction, and alcohols are easily available in a wide range of forms from natural sources. It is not essential to convert the -OH group to any other good leaving group and hence the overall salt load is significantly decreased. Alcohols can be employed as electrophilic coupling agents through S_N¹ reactions involving Brønsted or Lewis acids.²⁰ -OH being poor leaving group requires harsh reaction conditions. The Lewis acidic Ca-catalyst created by combining Ca(NTf₂)₂ with Bu₄NPF₆ was found to catalyze this reaction even at room temperature, unlike previously known catalysts. This is because of the calcium catalyst's dual role. Firstly, it stimulates the carbon-oxygen bond to undergo bond cleavage through the formation of a coordinate bond of the hydroxyl oxygen with the attacking calcium. Secondly, calciumoxygen bonds create a short "activating group" for the -OH group due to its unique stability. Catalyst activity is regained through the protonation of -OH at Ca²⁺ ion followed by H₂O release. (Figure 3).

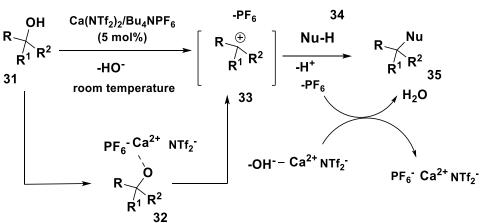


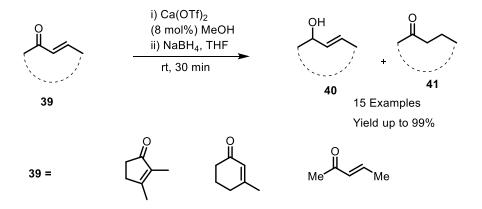
Figure 3. Calcium-catalyzed dehydration of alcohols

1.9.1 Ca(II)-CATALYZED FRIEDEL-CRAFTS REACTIONS

The Friedel–Crafts (FC) alkylation reactions are very well known for their exceptional synthetic ability for the functionalization of arenes. ²¹ Though, certain subjects of the original type, especially related to the environment, have to be addressed during the last 130 years to reach the current international deployment of FC techniques in industry and academia. Seminal FC procedures are unfeasible on a bulk scale due to the nature of the alkylating agents and promoters (i.e. high quantities of toxic metal salts). Most of these issues are solved when solid LAs /Bronsted acidic additives are used as promoters.

The electron-rich aromatic compounds were the first nucleophilic coupling partners studied in depth for the Ca-catalyzed substitution of alcohols. As a result, a Ca-catalyzed FC reaction with alcohols as alkylating agents can be an alternative to the organohalides (Scheme 26).²² The very element reaction conditions, wide substrate scope, as well as strong functional group tolerance, are some of the primary properties of the Ca-catalyzed reaction. Resorcinol dimethyl ether, a typical nucleophile was used to treat a diversity of secondary and tertiary alcohols. In all cases, the resultant arene was substituted in the *o,p* position with respect to resorcinol's ether moiety (Scheme 26). Reaction times were faster for tertiary alcohols compared to secondary alcohols.

$$\begin{array}{c} \text{OMe} \\ \text{R}^2 \\ \text{R}^1 \\ \text{31} \\ \text{R}^1 = \text{Me} \\ \text{R}^2 = \text{Ph} \\ \text{R} = \text{Allyl} \\ \end{array}$$


Scheme 26. Ca(II)-catalyzed Friedel-Crafts reaction with resorcinol dimethyl ether.

To demonstrate the adaptability of the latest Ca-catalyzed FC reaction, various arenes and heteroarenes were used to treat cyclohexenol **34** and the *tert*-propargylic alcohol ¹⁴. Both of these alcohols had never been converted before in a reaction like this using a Lewis acidic catalyst (Scheme 27).

Scheme 27. Cal(II)-catalyzed addition of arenes to allylic and propargylic alcohols.

1.9.2 REDUCTION OF CARBONYL COMPOUNDS USING Ca(II)

Fuchter and co-workers reported an effective Calcium-based procedure for a Luche-type reduction reaction that can compete with the traditional CeCl₃-catalyzed reaction.²³ Using Ca(OTf)₂ and NaBH₄ in a mixture of MeOH and THF, regioselective 1,2-reduction of different, α , β -unsaturated ketones, including the difficult 2-cyclopentenone, was effectively performed (Scheme 28). The resultant allylic alcohols were synthesized with excellent yields and regioselectivity. In addition, the approach was found to be effective for the selective reduction of aziridinyl ketones **42** (Scheme 29).

Scheme 28. Ca(II) mediated reduction of α , β -unsaturated ketones.

Scheme 29. Stereoselective reduction of α , β -aziridinyl ketones by calcium.

The first demonstration of Ca(II)-catalyzed selective Pictet-Spengler reactions was demonstrated by Stambuli and co-workers in 2008 for the reaction between m-tyramines 44 and aldehydes 45. The Pictet-Spengler reaction is a well-known method for synthesizing tetrahydroisoquinolines and β -carbonyl alkaloids. Furthermore, stoichiometric amounts with powerful Brønsted acids were utilized to promote it, leading to a number of drawbacks due to the severe conditions required for these transformations, like its inability to tolerate different kinds of functional groups, the Pictet-Spengler reaction, which is catalyzed by ecologically friendly calcium salts. ²⁴ Calcium catalysts are responsible for triggering the aldehyde 45 and imines 46 (Scheme 30). ²⁴ Stambuli $et\ al.$ discovered two years later that ketones considered less reactive were also acceptable for the Ca(II)-catalyzed Pictet-Spengler reaction. ^{24a}

Scheme 30. Ca(II)-catalyzed Pictet-Spengler reactions.

1.9.3 REACTIONS OF OLEFINS

In addition to the conversion of alcohols, calcium catalysis could also efficiently convert alkenes into their corresponding carbocations, which can be captured by aryl nucleophiles. As a result, calcium-catalyzed alkene hydroarylation was introduced in 2010. Moreover, calcium efficiently catalyzed the hydroarylation of a broad range of substituted alkenes and dienes.

Scheme 31. Classical transformation of alkenes.

Niggemann *et al.* in 2010 demonstrated a highly effective intermolecular hydroarylation process of aromatic and aliphatic olefins using calcium as a catalyst. Within an hour at room temperature, a lot of electron-rich, electron-poor, and substituted olefine molecules were transformed into required diaryl alkanes. Because of the strong reactivity of the Ca(NTf₂)₂/Bu₄NPF₆ system, dienes & evenly substituted alkenes were easily arylated. Under very moderate reaction conditions, a variety of starting materials are also tolerated. Typical reactions take place at ambient temperature, and no additional precautions to exclude moisture and air are required (Scheme 32).²⁵

Scheme 32. Ca(II)-catalyzed hydroarylation of alkenes.

1.9.4 Ca(II)-CATALYZED CARBOARYLATION OF ALKYNES

Background

products, pharmaceuticals, and materials frequently contain all-carbon tetrasubstituted olefins, which are resourceful starting materials for the preparation of complex fine chemicals.²⁵ However, the obstructed character of these alkenes makes them difficult to synthesize using traditional methods like carbonyl olefination or olefin metathesis. ^{26a} Despite the fact that numerous ways for accessing them from alkynes in a stepwise manner have been established, ^{26b}, catalytic conventions for the single-step assembly of these densely substituted building blocks remain a difficulty for organic chemists. This is certainly because most processes for adding substituents to alkynes involve a carbometallation phase followed by additional expansion of the resulting vinyl-metal species 57 (Scheme 33) this elaboration is frequently merely a simple protodemetallation in catalytic one-step methods, restricting the range of available olefins to trisubstituted ones. Furthermore, humidity responsive stoichiometric metal-organic reagents, as well as transition-metal catalysts such as Ni,27 Pd,28Cu 29, or Fe, salts ³⁰ are required.

path A
$$ML_x^{(+)}$$
 $R^3 = C-Nu$
 R^2
 $M(L_x)$
 $R^3 = C-Nu$
 $R^3 = C-Nu$

Scheme 33. Classical transformation of alkynes.

Niggemann *et al.* in 2015 have established a method for carboarylation of alkynes using viable and broadly existing alcohols as alkylation reagents to give a short way for the single-step synthesis of tetrasubstituted olefins in the presence of Ca-catalyst.³¹ Because the reaction is catalyzed by a very reactive trisubstituted vinyl cation, deactivated fluorine-substituted arenes can be used as a nucleophile, and it also tolerates steric crowding, most helpful because it allows the formation of potentially bioactive chromene and dihydroquinoline derivatives (Scheme 34).

Scheme 34. Ca(II)-catalyzed carboarylation of alkynes.

1.9.5 CALCIUM-CATALYZED MULTICOMPONENT REACTIONS

Niggemann *et al.* reported the dehydroxylation of 2-cyclohexenol in presence of bisubstituted alkynes is likely to produce the vinylic cation, which then rearranges to the highly stable non-symmetrical carbocation. It can then be trapped by H₂NTs, resulting in a single diastereomer of the bicyclic amine.³² The method described here is a simplified version of a considerably more complicated scenario involving the production of reversible covalent bonds. In fact,

amines can react readily with the hydroxyl group that has been extracted from it, and the hydroxyl group that has been removed from it can be trapped (Scheme 35).

OH

38

$$R^2$$
 R^3
 R^4
 R^3
 R^4
 R^4
 R^4
 R^3
 R^4
 R^4
 R^3
 R^4
 R^4

Scheme 35. Ca(II)-catalyzed multicomponent reaction.

Niggemann *et al.* in 2015 revealed that, when used in combination with calcium-based catalytic technology, cyclopentanone, is extremely effective at stabilizing allyl and vinyl cation intermediates.³³ As a result, the intermolecular carbohydroxylation of alkynes, which is generally pestered by side reactions arising from the passing nature of weakly stabilized cationic intermediates, was achieved using allylic and propargylic alcohols as alkylating agents (Scheme 36).

OH

$$R^{1}$$
 R^{2} + G^{2} + G^{2} + G^{2} $G^$

Scheme 36. Ca(II)-catalyzed intermolecular carbohydroxylation of alkynes.

1.9.6 EXPLORATION OF Ca(II)-CATALYZED REACTIONS FROM OUR GROUP

Yaragorla *et al.* have developed a method for the benzannulation of easily available compounds in single-step without solvent by $Ca(OTf)_2$ as a catalyst. This reaction proceeds through a high regioselective cascade involving " β -enamino ester" formation, Michael addition, intramolecular aldol reaction, elimination, aromatization, oxidative debenzylation, lactonization" with a wide range of substrate scope in good yields (Scheme 37).³⁴

$$H_3C$$
 OR^1
 R^2
 OR^1
 R^3
 R^4
 R

Scheme 37. Ca(II)-catalyzed amine-triggered benzannulation reaction.

Yaragorla *et al.* reported a selective cyclization reaction of *tert*-propargyl alcohols with cyclic nucleophiles using Ca(OTf)₂ as a suitable catalyst. We were able to introduce the acid derivatives of benzochromene moieties with novelty. An etherification, Claisen rearrangement, allene synthesis, and *endo* cyclization are all part of the reaction's cascade annulation (Scheme 38).³⁵

$$\begin{array}{c} R^2 \\ HO \\ \hline R^3 \\ 1 \\ \hline R^1 = CO_2Et \\ R^2 = Ph \\ R^3 = Me \\ \end{array}$$

$$\begin{array}{c} Ca(OTf)_2/Bu_4NPF_6 \\ (2/10 \text{ mol}\%) \\ \hline Neat, 110 \ ^{\circ}C \\ \hline \end{array}$$

$$\begin{array}{c} R^1 \\ 77 \\ \hline 34 \text{ Examples} \\ Yield \text{ up to } 91\% \\ \hline \end{array}$$

$$Ambident \text{ enols } = \begin{array}{c} OH \\ OH \\ \hline \end{array}$$

Scheme 38. Ca(II)-catalyzed regioselective annulation of propargyl alcohols with ambident enols.

Yaragorla et al. demonstrated a Ca(II)-catalyzed one-pot approach for the synthesis of oxindole-derived 1,5-enyne which then cycloisomerized to yield trisubstituted

cyclopentenylidenes, "benzannulation to yield phenanthridinones," and Diels-Alder cyclo additions which yields stereoselective 3-spirocyclic 2-indolinone derivatives (Scheme 39).³⁶

Scheme 39. Ca(II)-catalyzed synthesis of phenanthridinones, 3-(Cyclopentenylidene)indolin-ones, and 3- spirocyclic indolin-2-ones in a one-Pot.

Yaragorla and co-workers demonstrated Ca(II)-catalyzed regioselective synthesis of 2-methyl-3-acyl quinolines in solvent-free conditions. These quinolines undergoes *in situ* Csp3-H functionalization and produce a variety of quinoline heterocycles with good yields, atom and step economy for the first time in the literature (Scheme 40).³⁷

Scheme 40. Ca(II)-catalyzed tandem Friedlander annulation and Michael addition for the synthesis of substituted quinoline derivatives.

Yaragorla *et al.* reported a solvent-free single-step method for the preparation of fully functionalized furans using an environmentally benign and abundant calcium catalyst with high selectivity, broad substrate scope, and with excellent yields (Scheme 41).³⁸

OH
$$CO_2R'$$
 + OH $Ca(OTf)_2/Bu_4NPF_6$ $(10/10 \text{ mol}\%)$ $120 \, ^{\circ}\text{C}$, neat 99 24 Examples $Yield up to $93\%$$

Scheme 41. Ca(II)-catalyzed regioselective synthesis of fully substituted furans.

Yaragorla *et al.* reported an uncomplicated methodology for the regioselective preparation of internal olefines by dehydrative cross-coupling/direct coupling procedure, in presence of calcium as a catalyst. Several olefines and hydroxy compounds have experienced this kind of coupling process under solvent-free conditions in no time to synthesize corresponding olefines. This approach is further developed to demonstrate its use in the cascade preparation of new benzopyran moieties (Scheme 42).³⁹

Scheme 42. Ca(II)-catalyzed regioselective dehydrative cross-coupling reactions.

Yaragorla and co-workers developed the preparation of physiologically significant styryl azaarenes/1,3-bis azaarenes, & bisazaarenyl indolinones via S_N^1 reaction by using calcium catalyzed Csp3-H functionalization of 2-methyl azaarenes. In the first step, methyl azaarenes react with aromatic aldehydes to form β -OH derivatives, which are then thermodynamically eliminated by Ca(II) to form styryl azaarenes in one step (Scheme 43).⁴⁰

Scheme 43. Ca(II)-catalyzed facile synthesis of (E)-2-styryl azaarenes and 2-aryl-1,3-bisazaarenes.

1.9.7 REFERENCES

- (1) Trost, B. Science. 1991, 254, 1471.
- (2) a) Westerhausen, M.; Gartner, M.; Fischer, R.; Langer, J.; Yu, L.; Reiher, M. *Chem. Eur. J.* **2007**,*13*, 6292. b) Cotton, F. A.; Wilkinson, G.; Gaus, P. L. *Basic Inorganic Chemistry*, Wiley, New York, 3rd edn, **1995**.
- (3) Kobayashi, S.; Yamashita, Y. Acc. Chem. Res. 2011, 44, 58.
- (4) a) Hanusa, T. P. *Polyhedron*. **1990**, *9*, 1345. b) Hanusa, T.; P. *Chem. Rev.* **1993**, *93*, 1023. c) Wester, M.; Hausen, C. *Chem. Rev.* **1998**, *176*, 157.
- (5) a) Bickelhaupt, F. Chem. Soc. Rev. 1999, 28, 17. b) Henderson, K. W.; Kerr, W.; J. Chem.- Eur. J. 2001, 7, 3430.
- (6) Harder, S. Chem. Rev. 2010, 110, 3852.
- (7) Barrett, A. G.; Crimmin, M.; Hill, M. R. M.; Procopiou, S. P.; A. *Proc. R. Soc. London, Ser.* A, **2010**, *466*, 927.
- (8) Datta, H. K.; Ng, W. F.; Walker, J. A.; Tuck, S. P.; Varanasi, S.; S. "The cell biology of bone metabolism," Journal of Clinical Pathology, vol. 61, no. 5, 2008, pp. 577.
- (9) Campbell, A.; K. Intracellular Calcium: Its Universal Role as Regulator, Wiley, 1983.

(10) a) Frankland, A. D.; Hitchcock, P. B.; Lappert, M. T.; Lawless, G. A. J. Chem. Soc. Chem. Commun. 1994, 2435. b) Avent, A. G.; Crimmin, M. R.; Hill, M. S.; Hitchcock, P. B. Dalton Trans. 2005, 278. c) Westerhausen, M. Coord. Chem. Rev. 1998, 176, 157.

- (11) a) Kobayashi, S.; Yamashita, Y. Acc. Chem. Res. 2011, 44, 58. b) Harder, S. Chem. Rev. 2010, 110, 3852. c) Barrett, A. G. M.; Crimmin, M. R.; Hill, M. S.; Procopiou, P. A. Proc. R. Soc. London Ser. A 2010, 466, 927.
- (12) a) Feil, F.; Muller, C.; Harder, S. J. Organomet. Chem. 2003, 683, 56. b) Feil, F.; Harder, S. Eur. J. Inorg. Chem. 2003, 3401. c) Piesik, D. F.-J.; Hube, K.; Harder, S. Eur. J. Inorg. Chem. 2007, 5652.
- (13) Haubenreisser, S.; Niggemann, M. Adv. Synth. Catal. 2011, 353, 469.
- (14) Niggemann, M.; Meel, M. J. Angew. Chem. Int. Ed. **2010**, 49, 3684.
- (15) Rauser, M.; Schröder, S.; Niggemann, M. *In Early Main Group Metal Lewis Acid Catalysis: Concepts and Reactions*; Harder, S., Ed.; Wiley-VCH, **2020**, pp 279.
- (16) Harder, S. Chem. Rev. 2010, 110, 3852.
- (17) Xue, L.; DesMarteau, D. D.; Pennington, W. T. Solid State Sci. 2005, 7, 311.
- (18) Leboeuf, D.; Gandon, V. Synthesis 2017, 49.
- (19) a) Nomura, K.; Kitiyanan, B. Current Organic Synthesis 2008, 5, 217. b) Scholten,
 J. D.; Leal, B. C.; Dupont, J. ACS Catal. 2012, 2, 184.
- (20) Emer, E.; Sinsi, R.; Capdevila, M. G.; Petruzziello, D.; Vincentiis, F. D. Eur. J. Org. Chem. 2011, 647.
- (21) a) Olah, G. A. in Friedel-Crafts and Related Reactions, Vol. 2, Wiley-Interscience, New York, 1964. b) Bandini, M.; Tragni, M. Org. Biomol. Chem. 2009, 7, 1501. c)
 Poulsen, T. B.; Jørgensen, K. A. Chem. Rev. 2008, 108, 2903. d) Bandini, M.; Emer, E. S.; Tommasi, A.; Ronchi, U. Eur. J. Org. Chem. 2006, 3527. e) Bandini, M.; Melloni, A.; Ronchi, A. U. Angew. Chem. 2004, 116, 560. Angew. Chem. Int. Ed. 2004, 43, 550 –556.
- (22) Niggemann, M.; Meel, M. J. Angew. Chem. 2010, 122, 3767. Angew. Chem. Int. Ed. 2010, 49, 3684.
- (23) Forkel, N. V.; Henderson, D. A.; Fuchter, M. J. Green Chem. 2012, 14, 2129.
- (24) a) Eynden, M. J. V.; Stambuli, J. P. Org. Lett. 2008, 10, 5289. b) Eynden, M. J. V.; Kunchithapatham, K.; Stambuli, J. P. J. Org. Chem. 2010, 75, 8542.
- (25) Niggemann, M.; Bisek, N. Chem. Eur. J. **2010**, 16, 11246.

(26) a) Flynn, A. B.; Ogilvie, W. W. Chem. Rev. 2007, 107, 4698. b) Arai, T.; Ikematsu,
 Y.; Suemitsu, Y. Pure Appl. Chem. 2010, 82, 1485.

- (27) a) Patel, S. J.; Jamison, T. F. Angew. Chem. Int. Ed. 2003, 42, 1364. b) Nakao, Y.;
 Oda, S.; Hiyama, T. J. Am. Chem. Soc. 2004, 126, 13904.
- (28) a) Zhou, C. X. D.; Emrich, E.; Larock, R. C. Org. Lett. 2003, 5, 1579. b) Zhou, C. X.; Larock, R. C. Org. Lett. 2005, 7, 259.
- (29) Walkinshaw, A. J.; Xu, W.-S.; Suero, M. G.; Gaunt, M. J. J. Am. Chem. Soc. **2013**, 135, 12532.
- (30) Komeyama, K.; Yamada, T.; Igawa, R.; Takaki, K. *Chem. Commun.* **2012**, 48, 6372.
- (31) Fu, L.; Niggemann, M. Chem. Eur. J. 2015, 21, 6367.
- (32) Gao, S.; Stopka, T.; Niggemann, M. Org. Lett. 2015, 17, 5080.
- (33) Stopka, T.; Niggemann, M. Org. Lett. 2015, 17, 6, 1437.
- (34) Yaragorla, S.; Dada, R. ACS Omega 2017, 2, 4859.
- (35) Yaragorla, S.; Pareek, A.; Dada, R. Tetrahedron Lett. 2017, 58, 4642.
- (36) Yaragorla, S.; Pareek, A.; Dada, R. Adv. Synth. Catal. 2017, 359, 3068.
- (37) Singh, G.; Yaragorla, S. RSC Adv. 2017, 7, 18874.
- (38) Yaragorla, S.; Dada, R.; Pareek, A.; Singh, G. RSc. Adv. 2016, 6, 28865.
- (39) Yaragorla, S.; Pareek, A.; Dada, R.; Almansour, A. I. Arumugam, N. *Tetrahedron Lett.* 2016, *57*, 5841.
- (40) Yaragorla, S.; Dada, R.; Singh, G. Tetrahedron Lett. 2015, 56, 5924

Synthesis and in-situ cyclization of tetrasubstituted allenes to access substituted furans

Org. Biomol. Chem. 2019, 17, 1924-1928

2.1 INTRODUCTION

Furans and their derivatives are important 5-membered oxygen-containing aromatic heterocycles that occur in many biologically important natural products (Figure 1) and synthetic molecules. In particular, condensed and substituted furans, due to their structural features and biological activities, such as antifungal, antiviral, antidiabetic, antiparasitic, and pharmaceutical applications, 2,3 chemists have devised new synthetic methods for these scaffolds, which are both exciting and hard from a synthetic standpoint. Although many practical synthetic methods, most of them suffer from multistep synthesis, regioselectivity, usage of unavailable starting materials, expensive transition metal catalysts, strong bases, or acids. Therefore, it is very desirable to have a regioselective, and atom-economical synthesis of substituted furans.

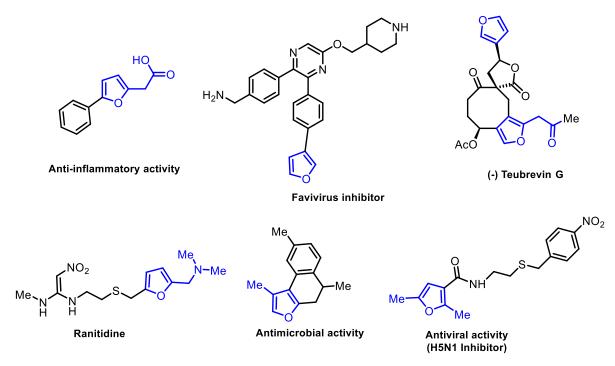


Figure 1. Representative examples of biologically important natural products containing furan moiety.

2.2 PREVIOUS APPROACHES

Two-step synthesis (through S_N^1): In 2007 Zhan and co-workers developed iron-catalyst two-step preparation of furans from propargylic acetates and enoxysilanes. These reactions were performed by using FeCl₃ and TsOH as a catalyst (Scheme 1). ^{8a}

Scheme 1. Two-step synthesis of furan via FeCl₃ catalyzed β -alkynyl ketones followed by TsOH-catalyzed cyclization.

Zhan *et al.* have demonstrated that polysubstituted furans could be synthesized from propargyl alcohols and terminal alkynes. Furans were synthesized *via* diynes, and the strategy for the furan synthesis is 100% atom economy (Scheme 2).^{8b}

HO

96a

1) HOTf (20 mol%)

CH₃CN, reflux

2) Toluene, reflux

$$R^{1} = nBut$$
 $R^{2} = Ph$

1) HOTf (20 mol%)

 $R^{2} = R^{3}$

1) HOTf (20 mol%)

 $R^{2} = R^{3}$

1) HOTf (20 mol%)

 $R^{2} = R^{3}$

1) HOTf (20 mol%)

R

 $R^{2} = R^{3}$

113b

14 Examples

Yield up to 80%

Scheme 2. HOTf-catalyzed synthesis of substituted furans from propargylic alcohols and terminal alkynes.

Preparation of fully substituted furans from propargylic alcohols and 1,3-diketone compounds was described by Zhan and co-workers. under FeCl₃-catalysis. Furans were synthesized *via* a one-step procedure involving the cycloisomerization reaction (Scheme 3). 8c

Scheme 3. Fe(III)-catalyzed synthesis of fully substituted furans from propargylic alcohols and 1,3-dicarbonyl compounds.

A synthesis of fully substituted furans from propargyl alcohols and methyl 2-perfluoroalkynoate to give trifluoromethylated furans (up to 98% yield) under mild conditions using DABCO was reported. This reaction proceeds through a "Michael addition" and Claisen rearrangement/cyclization process (Scheme 4). 8d

Scheme 4. DABCO-catalyzed synthesis of trifluoromethylated furans from propargylic alcohols and methyl 2-perfluoroalkynoate.

In 2017 Phil Ho Lee and co-workers reported a cascade for the preparation of furan using Pd-catalyzed, propargyl substitution, and cycloisomerization reaction from propargyl acetates and indium organothiolates in one pot (Scheme 5).^{8e}

Scheme 5. Pd(II)-catalyzed synthesis of multisubstituted furans from propargyl acetate and indium organothiolates.

Preparation of polysubstituted furans from Propargylic alcohols using Au(PPh₃)Cl and AgOTf as the catalyst was demonstrated. This reaction proceeds through a cyclization elimination-aromatization process (Scheme 6).^{8f}

Scheme 6. Au(I)-catalyzed cycloisomerization reaction.

We have reported a valuable method for the one-pot scalable synthesis of Naphthofurans from ambident nucleophiles and propargyl alcohols, this reaction proceeds through a method of benzylation and isomerization by using additive(Scheme 7).^{8g}

Scheme 7. Bu₄NPF₆ catalyzed one-pot cascade synthesis of 2-alkyl-3-aryl naphtho [2,1-*b*] furans.

They have reported the preparation of trisubstituted and tetra substituted furans using simple starting materials, a combination of triazole-Au and Cu catalysts, the furans were formed in a single step reaction cascade with good to excellent yields (Scheme 8).^{8h}

OH

$$R^2$$
 $96a$
 $R^1 = nBut$
 $R^2 = Aryl$
 $R^3 = Ph$
 R^3
 $R^4 = R^3$
 $R^3 = Ph$
 R^3
 $R^3 = Ph$
 R^3
 R^3
 R^4
 R^3
 R^4
 R^3
 R^4
 R^4

Scheme 8. Cu(II)-catalyzed propargyl alcohol addition to alkynes as an approach for the synthesis of substituted furans.

So far schemes 1-8 involved the synthesis of furans from propargylic alcohols through S_N^1 mechanism by using transition metal catalysts, so we were intrigued to check the synthesis of furans from propargylic alcohols *via* allenes. In addition, we want to try this reaction with sustainable lewis acid catalyst Ca(II).

All starting materials are synthesized from the reported procedure⁹ A mixture of aryl alkyne (1.2 equiv), *t*-BuOK (1.5 equiv), and respective ketone (1 equiv) was placed into a reaction flask at room temperature under nitrogen atmosphere and the mixture was stirred for 2–6h. After completion of the reaction (monitored by TLC), the resulting mixture was quenched with water and extracted into ethyl acetate (thrice). Combined organic layers were washed with brine solution and dried over anhydrous Na₂SO₄and the solvent was evaporated to obtain the pure compounds in good yield (Scheme 9).

Scheme 9. Synthesis of tert-propargylic alcohol

2.3 RESULTS AND DISCUSSION

In this figure, the explanation for regiodivergent one-pot annulation and cycloisomerization is shown (Figure 2). The allene intermediate is formed by nucleophilic substitution of activated propargyl alcohol with 1,3-diketone at the acetylenic carbon through the S_N^2 mechanism, which is followed by regioselective cyclization to create the tetrasubstituted furan. Pearson's¹⁰ popular concept of the hard-soft acid-base theory can also be used to support this hypothesis. Soft-soft interactions result in the formation of the allene intermediate¹¹, which would be followed by hard-hard interactions of carbonyl oxygen with acetylenic carbon (sp hybridized) of allenyl ketone to produce the substituted furan (S_N^2) (Figure 2).

Figure. 2 Rationale for our synthetic design.

2.4 Optimization studies

The implementation of our hypothesis was started by stirring a mixture of 1,1,3-triphenylprop-2-yn-1-ol (**1a**, 0.35 mmol), ¹² methylpentane-2,4-dione (63,0.52 mmol), and 10% Ca(OTf)₂/Bu₄NPF₆ in DCE at rt resulted in the synthesis of allene intermediate (**3ya**) in 45% after 40 minutes, but not the desired product. There is no more change in the reaction even after for 24 h. We added DBU (1 equiv.) after the generation of allene (around 40 minutes, monitored by TLC), assuming that a base is required for cyclization of this allene (110a) 1-(5-benzhydryl-3-methyl-2-methylene-4-phenyl-2,3-dihydrofuran-3-yl)ethan-1-one with some unreactive allene and 1a in a yield of 20% (entry 2, Table 1). The coupling constant of olefinic protons of **124a** is (2.8 Hz) found to be in the range of geminal coupling. The reaction yield was slightly increased to 37%, when DBU was introduced in 3 equiv. (entry 3). An attempt with Ca(NTf₂)₂/Bu₄NPF₆ (10/5 mol%) yielded **124a** in 64 %, using DBU (3 equiv.) at rt (entry 4). Intriguingly, the combination of 10 mol% Ca(NTf₂)₂/DBU (3 equiv.) yielded 80% of **124a** at rt in 6 h (entry 5). Nevertheless, increasing the catalyst loading did not improve the reaction yield. (entry 6). ¹² Our attempts to minimize the loading of catalyst or base (entries 7 and 8), and search for their alternatives by replacing DBU with other bases such as DABCO, K₂CO₃ (entries 9, 10); and replacing Ca(II) with Mg(II), PTSA and by changing DCE with other solvents like acetonitrile, toluene and ethanol or the absence of solvent were unsuccessful (entries 9-16).

Table 1. Optimization studies for the synthesis of 2,3-dihydrofuran 124a

^aReaction conditions: substrates **1a** (0.35 mmol), **72b** (0.52 mmol), ^bisolated yields. **124a** was not formed but 45% of allene intermediate (**3ya**) formed, ^cremaining mixture contains allene and 1a, ^doptimized condition.

2.4a Characterization of Compound

The isolated compound **124a** was fully characterized by ¹H NMR, ¹³C NMR & melting point. The characteristic olefin proton has appeared as a doublet at 4.64 and 4.15 ppm in ¹H NMR spectra and carbons at 64.6 ppm in ¹³C NMR spectra respectively. And carbonyl was confirmed by ¹³C NMR spectra shown at 205.5. The melting point was also recorded.

2.4b SCOPE OF THE REACTION

We were keen to check the generality of this approach after establishing the standard (optimum) reaction conditions (entry 5, Table 1) for the regiospecific annulation of **1a** and **72b**. As a result, we prepared various propargyl alcohols^{13,14} using a variety of terminal alkynes (while keeping benzophenone constant) such as 4-methylphenyl (**1d**), 4-butylphenyl (**1e**), 4-ethoxyphenyl (**1f**), cyclopropyl (**1g**) acetylenes and treated them with **72b** under standard reaction conditions, yielding the respective 2-methylene-2,3-dihydrofurans **124b-124e** (Table 2). The extent of the substitutions on propargylic phenyls was then examined, and we established that they are consistent with the procedure, giving the dihydrofurans **124f-124l** in good yields. The structural conformation of **124h** was further supported by the single crystal X-ray data. Compound **124m** was prepared from 9-(phenylethynyl)-9H-fluoren-9-ol (**1h**) and **72b** in 77% yield. By synthesising the respective dihydrofurans **124n** and **124o** in good yields, the scope of ethyl 2-methyl-3-oxobutanoate (**72c**) as the nucleophilic partner were investigated (Table 2).

Table 2. Scope of Ca(II)-catalyzed regiospecific annulation of 1 and 72b.^a

^aA mixture of **1** (1 equiv.), **72b** (1.5 equiv.) was used, DBU was added after the consumption of **1** or after the formation of allene (monitored by TLC)

2.5 Synthesis of fully substituted furans:

We wanted to see if a simple 1,3-diketone (without a methyl substitution on the α-carbon) like acetylacetone might react with ynols in the same way as this innovative regiospecific annulation process of ynols (1) with α-methyl-1,3-dicarbonyl compounds (72b, 72c). Therefore a mixture of 1a, pentane-2,4-dione (72), and Ca(NTf₂)₂ (10 mol%) was stirred in DCE at rt for 50 min and then added DBU (3 equiv) and continued the reaction for 18 h and obtained the desired furan 125a in 15 % yield along with diene 3y. The reaction yield was increased to 75% by refluxing it in DCE for 18 h. In the next experiment, we refluxed 1a and 72 in acetonitrile with 10 mol% of Ca(OTf)₂/Bu₄NPF₆ for 50 minutes and added 3 equiv. DBU and obtained the yield of 125a by 80% after 8 h. Therefore, we considered this as a suitable condition and extended this to check the generality of this protocol (Table 3).

2.5a Characterization of Compound

The isolated compound **125a** was fully characterized by ¹H NMR, ¹³C NMR & melting point. The characteristic benzylic proton has appeared as a singlet at 5.23 and two methyl's at 2.58, 1.94 ppm in ¹H NMR spectra, and carbonyl was confirmed by ¹³C NMR spectra shown at 205.5 ppm.

2.5b SCOPE OF THE REACTION

The annulation process of **72** was found to be compatible with propargylic substitutions of **1** such as diphenyl, dimethyl, phenyl-methyl, and cyclopropyl-methyl in yielding the corresponding furans with variety at the 5th position (**125a** to **125d**) good yields (Table 3). This technique also permitted substitutions on the propargylic phenyl groups of **1** and produced good yields of the respective tetra-substituted furans **125e-125j**. The structure of **125h** was further conformed by the single-crystal X-ray data. 1-phenylbutane-1,3-dione (**67d**) is proved as a good annulation partner with **1a** and furnished the corresponding furan derivatives **125k-125m** in good yields. Under standard reaction conditions, ethyl acetoacetate and methyl acetoacetates

also engage in the annulation with **1a**, yielding the furans **125n** to **125r** in good yields (Table 3).

Table 3. Scope of Ca(II)-catalyzed regiospecific [3+2] annulation of 1 and 1,3-diketones.^a

^aA mixture of 1 (1 equiv.), 72 (1.5 equiv.) was used, DBU was added after the consumption of 1a or after the

formation allene (monitored by TLC).

2.6 Functional group transformation of dihydrofuran 110a

Synthetic transformation of dihydrofuran **124a** is depicted in Scheme 8, hydrogenation of *exo*-double bond (5% Pd/C, H₂, MeOH) gave the dihydrofuran derivative **126** in 78% yield. A reduction of ketone functionality of **124a** was also performed with NaBH₄ to obtain the alcohol **127** in 80% yield.

Before suggesting the reaction mechanism, we have isolated the homo-allenyl ketone intermediate 3ya formed during the synthesis of 124a by the annulation of 1a and 72b. Similarly, diene intermediate 3y was isolated from the annulation reaction of 1a and 72a during the synthesis of 125a.

Scheme 10. Isolation of intermediates to propose the reaction mechanism.

Table 4. Synthesis of tetrasubstituted allenes using Ca(II)

We were able to distinguish allenes 3ya-3ye in great yields in a short time, after successfully isolating homo-allenyl ketone, which we believe is the crucial intermediate in this cyclization reaction, it was under $Ca(NTf_2)_2$ for 1h to confirm that the allene 3yc is also the intermediate for the synthesis of 124a, as the cyclopropyl ring present in 3yc

Soft-soft
$$R^4 = Me$$

Soft-soft
 $R^4 = Me$

Soft-soft
 $R^2 = Me$

Soft-soft
 $R^4 = Me$

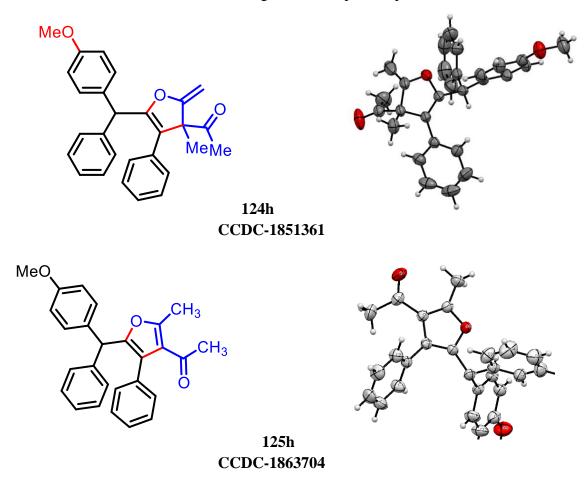
Soft-soft
 $R^4 = Me$

Soft-soft
 $R^2 = Me$

124

Scheme 11. Possible reaction mechanism.

The possible reaction mechanism for the Ca(II)/DBU mediated annulation of **1** and **72a** is described in (Scheme 10). Initially, the tautomer of **72a** adds to the activated propargyl alcohol through the S_N^2 mechanism, which is facilitated by the soft-soft interactions and yields the kinetically stable homo-allenyl ketone intermediate, allene-**3y**. This allenyl intermediate further reacts with DBU and gives enol intermediate (**3y**) which then undergo cyclization (**B**) and isomerization provides the quaternary centered dihydrofuran **124**.


Scheme 12. Possible reaction mechanism.

If there is no substitution on the α -carbon ($R^4 = H$) of allene-1, it will undergo isomerization to give a 1,6-conjugated system (**D**). Then DBU reacts with methyl ketone of **D** and gives enol **E**, which subsequently undergoes cycloisomerization *via 5-exo trig* passion to furnish fully substituted furan **125**.

2.7 X-ray Crystallography

Single crystal X-ray data for the compound **124h** and **125h** were collected using the Bruker D8 Quest CMOS detector system [λ (Mo-K α) = 0.71073 Å] at 291, graphite monochromator with a ω scan width of 0.3°, crystal-detector distance 60 mm, collimator 0.5 mm, The SMART software was used for the intensity data acquisition and the SAINTPLUS software was used data extraction. In each case, absorption correction was performed with the help of the SADABS program an empirical absorption correction using equivalent reflections was performed with the program. The crystal was solved using SHELX-97, and full-matrix least-

squares refinement against F² was carried out using SHELX-97. All non-hydrogen atoms were refined anisotropically. Aromatic and methyl hydrogens were introduced on calculated positions and included in the refinement riding on their respective parent atoms

Figure 3. Thermal ellipsoidal plot of compound **124h** and **125h** with atom labelling scheme. Displacement ellipsoids are drawn at 50% probability.

2.8 CONCLUSION

A simple Ca(II)-catalyzed regiospecific [3+2] annulation of *tert*-propargyl alcohols and acyclic 1,3-diketones has been developed. This is the first and only approach in terms of the mode of annulation, which involves the formation of homoallenyl ketone ($S_N^{2'}$) and regioselective cycloisomerization to create functionally related furans. At room temperature, dihydrofurans were produced. In both series, intermediates were detected. Dihydrofuran functional group transformations were shown. This work's highlights include a wide range of substrates, high yields, the use of Ca(II) as a catalyst, and a one-pot reaction. Because of their structural uniqueness and, of course, their privileged

character, we are confident that this technique will allow us to investigate the medical and material uses of these new chemical entities.

2.9 EXPERIMENTAL SECTION

2.9.1 General Information: Unless otherwise noted, all reagents were used as received from commercial suppliers. Reactions were performed in flame-dried or oven-dried glassware with magnetic stirring. Reactions were monitored using thin-layer chromatography (TLC) with aluminum sheets silica gel 60 F₂₅₄ from Merck. TLC plates were visualized with UV light (254 nm), iodine treatment, or using p-anisaldehyde or KMnO₄ stain. Column chromatography was carried out using silica gel 60–120 mesh as a stationary phase. NMR spectra were recorded at 500 MHz and 400 MHz (1 H) and at 125 MHz and 100 MHz (13 C), respectively on the Avance Bruker spectrometer. Chemical shifts (δ) are reported in ppm, using the residual solvent peak in CDCl₃ (1 H: δ = 7.26 and 13 C: δ = 77.16 ppm) as internal standard, and coupling constants (J) are given in Hz. HRMS were recorded using ESI-TOF techniques. Melting points were measured with LAB INDIA mepa melting apparatus.

2.9.2 General experimental procedure for the synthesis 1-(5-benzhydryl-3-methyl-2-methylene-4-phenyl-2,3-dihydrofuran-3-yl)ethan-1-one (124): A mixture of *tert*-propargylic alcohol 1 (1 equiv) and respective 3-methylpentane-2,4-dione **72b** (1.5 equiv) were stirred at rt in presence of Ca(NTf₂)₂ (10 mol%) for appropriate time till the formation of the allene (monitored by TLC). Then 3 equiv of DBU was added to the reaction mixture stirred till the completion of the reaction (monitored by TLC), the crude product was purified by using silica gel column chromatography (2-3 % EtOAc in pet ether) to obtain the desired product **124** in good yield.

2.9.3 General experimental procedure for the synthesis of tetra substituted (125): A mixture of *tert*-propargylic alcohol **1** (1 equiv) and respective acetyl acetone **72a** (1.5 equiv) were stirred at 90 °C presence of Ca(OTf)₂/Bu₄NPF₆ (10/5 mol%) for appropriate time till the

formation of the alkylated product (monitored by TLC). Then 3 equiv of DBU was added to the reaction mixture stirred till the completion of the reaction (monitored by TLC), the crude product was purified by using silica gel column chromatography (3-5 % EtOAc in pet ether) to obtain the desired product **125** in moderate to good yield.

2.9.4 Experimental Procedure for the Synthesis of 3-Methyl-3-(1,3,3- triphenylpropa-1,2-dien-1-yl)pentane-2,4-dione(3y): To a mixture of **1** (0.35 mmol) and 1,3-dicarbonyl compound **67b** (0.45 mmol) in DCE (2 mL), Ca(OTf)₂/Bu₄NPF₆ (10/5 mol%) was added. The reaction was stirred at 90 °C, for 30-40 min and was stopped after the formation of allene (monitor by TLC), the solvent was removed under reduced pressure, and the resultant residue was purified by silica gel column chromatography using EA/PE (10:90, v/v) to obtain the desired product **3y** in 92 % yield.

$$R^{1} = \begin{array}{c} R^{3} \\ OH \\ R^{2} \end{array} + \begin{array}{c} Me \\ Me \\ \hline Me \\ \hline 67b \\ \end{array} \begin{array}{c} Ca(OTf)_{2}/Bu_{4}NPF_{6} \\ \hline 1/2-DCE, 90 \\ {}^{\circ}C, 40 \text{ min} \\ \end{array} \begin{array}{c} R^{2} \\ R^{3} \\ \hline 3y \\ \end{array}$$

2.9.4 SPECTRAL DATA

1-(5-benzhydryl-3-methyl-2-methylene-4-phenyl-2,3-dihydrofuran-3-yl)ethanone) (124a). Following general experimental procedure 2.9.2 then purified by flash chromatography (silica gel, 2-3 % EtOAc in pet ether) the product was obtained as White solid 107 mg (80%); mp 137-138 °C. 1 H NMR (400 MHz, CDCl₃): δ 7.37-7.32 (m, 5H), 7.30-7.24 (m, 5H), 7.21 (t, J = 1.6 Hz, 3H), 7.04-7.01 (m, 2H), 5.29 (s, 1H), 4.63 (d, J = 2.8 Hz, 1H), 4.14 (d, J = 2.8 Hz, 1H), 2.13 (s, 3H), 1.38 (s, 3H) ppm. 13 C NMR (125 MHz, CDCl₃): δ 205.3, 164.7, 154.2, 140.3, 140.1, 131.8, 130.1, 128.9, 128.8, 128.7, 128.6, 128.4, 128.3, 127.6, 127.1, 126.9, 118.5, 85.5,

64.5, 48.4, 25.2, 21.4 ppm. HRMS (ESI): m/z calculated for $C_{27}H_{24}O_2$ [M+H]⁺: 381.1856, found: 381.1855.

1-(5-benzhydryl-3-methyl-2-methylene-4-(p-tolyl)-2,3-dihydrofuran-3-yl)ethanone (124b).

Following general experimental procedure 2.9.2 then purified by flash chromatography (silica gel, 2-3 % EtOAc in pet ether) the product was obtained as yellow liquid; $104 \text{ mg } (79\%).^1\text{H}$ NMR (500 MHz, CDCl₃): δ 7.36-7.22 (m, 9H), 7.13 (d, J = 8.5 Hz, 2H), 6.94 (d, J = 7.5Hz, 3H), 5.31 (s, 1H), 4.64 (d, J = 2.5 Hz, 1H), 4.15 (d, J = 2.5 Hz, 1H), 2.35 (s, 3H), 2.15 (s, 3H), 1.40 (s, 3H) ppm. ^{13}C NMR (125 MHz, CDCl₃): δ 205.3, 164.8, 153.8, 140.4, 140.2, 137.4, 129.5, 128.9, 128.6, 128.6, 128.3, 128.2, 126.9, 118.4, 64.6, 48.4, 25.2, 21.4, 21.1 ppm. HRMS (ESI): m/z calculated for $\text{C}_{28}\text{H}_{26}\text{O}_{2}$ [M+H] $^{+}$: 395.2013, found: 395.2014.

1-(5-benzhydryl-4-(4-butylphenyl)-3-methyl-2-methylene-2,3-dihydrofuran-3-l)ethenone

(*124c*). Following general experimental procedure 2.9.2 then purified by flash chromatography (silica gel, 2-3 % EtOAc in pet ether) the product was obtained as yellow liquid; 100 mg (78%). HNMR (CDCl₃, 400 MHz): δ 7.41-7.30 (m, 5H), 7.28-7.23 (m, 5H), 7.14 (d, J = 8 Hz, 2H), 6.96 (d, J = 8 Hz, 2H), 5.33 (s, 1H), 4.64 (d, J = 2.4 Hz, 1H), 4.15 (d, J = 2.8 Hz, 1H), 2.61 (t, J = 7.6 Hz, 2H), 2.16 (s, 3H), 1.65-1.58 (m, 2H), 1.41 (s, 3H), 1.39-31 (m, 2H), 0.96 (t, J = 7.2 Hz, 3H) ppm. The NMR (CDCl₃, 100 MHz): δ 205.6, 164.9, 153.8, 142.5, 140.5, 140.4, 129.1, 128.9, 128.8, 128.7, 128.5, 127.1, 127.0, 118.6, 85.4, 64.7, 48.5, 35.4, 33.5, 25.4, 22.5, 21.6, 14.1 ppm. HRMS (ESI): m/z calculated for C₃₁H₃₂O₂ [M+H]⁺: 437.2562, found: 437.2561.

1-(5-benzhydryl-4-(4-ethoxyphenyl)-3-methyl-2-methylene-2, 3-dihydrofuran-3-l) ethan one and the supplies of the supplies of

(124d). Following general experimental procedure 2.9.2 then purified by flash chromatography (silica gel, 2-3 % EtOAc in pet ether) the product was obtained as yellow liquid; 100 mg (78%). HNMR (CDCl₃, 400 MHz): δ 7.39 (q, J = 7.5 Hz, 2H), 7.35-7.31 (m, 5H), 7.30 (d, J = 1 Hz, 1H), 7.28-7.22 (m, 2H), 6.96 (q, J = 6.5 Hz, 2H), 6.84 (q, J = 7 Hz, 2H), 5.28 (s, 1H), 4.63 (d, J = 2.5 Hz, 1H), 4.14 (d, J = 2.5 Hz, 1H), 4.04 (q, J = 14 Hz, 2H), 2.14 (s, 3H), 1.43 (t, J = 7 Hz, 3H), 1.39 (s, 3H) ppm. To NMR (CDCl₃, 100 MHz): δ 205.5, 165.1, 158.6, 153.6, 140.5, 140.4, 129.8, 129.1, 128.8, 128.7, 128.5, 127.1, 123.9, 118.3, 114.9, 85.3, 64.8, 63.5, 48.5, 25.3, 21.6, 14.9 ppm. HRMS (ESI): m/z calculated for $C_{29}H_{28}O_3$ [M+H]⁺: 425.2118, found: 425.2119.

1-(5-benzhydryl-4-cyclopropyl-3-methyl-2-methylene-2,3-dihydrofuran-3-yl)ethanone 124e). Following general experimental procedure 2.9.2 then purified by flash chromatography

(silica gel, 2-3 % EtOAc in pet ether) the product was obtained as yellow liquid; 108 mg (78%). ^{1}H NMR (CDCl₃, 400 MHz): δ 7.32 (d, J = 1.6 Hz, 1H), 7.31 (d, J = 2.8 Hz, 1H), 7.29-7.26 (m, 3H), 7.24-7.21 (m, 4H), 7.18 (d, J = 8.4 Hz, 1H), 5.41 (d, J = 2.8 Hz, 1H), 4.51 (d, J = 2.8 Hz, 1H), 4.01 (d, J = 2.8 Hz, 1H), 1.98 (s, 3H), 1.40 (s, 3H), 1.21-1.15 (m, 1H), 0.77-0.61 (m, 2H), 048-0.29 (m, 2H) ppm. ^{13}C NMR (CDCl₃, 100 MHz): δ 205.5, 205.5, 164.8, 164.8, 153.8, 153.7, 139.8, 139.7, 138.8, 138.7, 132.8, 132.7, 130.2, 130.1, 128.7, 128.7, 128.6, 128.6, 128.5, 127.1, 127.1, 116.9, 116.9, 84.9, 64.5, 64.5, 47.1, 47.1, 25.1, 25.1, 21.8, 21.7, 5.2, 5.2, 5.1, 3.9, 3.9 ppm. HRMS (ESI): m/z calculated for $\text{C}_{24}\text{H}_{24}\text{O}_{2}$ [M+H]⁺: 344.1776, found: 344.1775.

1-(5-((4-chlorophenyl)(phenyl)methyl)-3-methyl-2-methylene-4-phenyl-2,3-dihydrofuran-3-)ethanone (124f). Following general experimental procedure 2.9.2 then purified by flash chromatography (silica gel, 2-3 % EtOAc in pet ether) the product was obtained as yellow liquid; 102.8 mg (79%). 1 H NMR (CDCl₃, 400 MHz): δ 7.40 (d, J = 7 Hz, 1H), 7.37-7.32 (m, 6H), 7.30-7.28 (m, 3H), 7.21 (d, J = 7 Hz, 1H), 7.17 (d, J = 8.5 Hz, 1H), 7.03 (t, J = 6.5 Hz, 2H), 5.28 (d, J = 11.5 Hz, 1H), 4.67 (d, J = 3 Hz, 1H), 4.18 (d, J = 2.5 Hz, 1H), 2.16 (s, 3H), 1.42 (s, 3H) ppm. 13 C NMR (CDCl₃, 100 MHz): δ 205.1, 164.6, 164.5, 153.6, 153.5, 139.8, 139.7, 138.8, 138.7, 132.9, 132.9, 131.6, 131.6, 130.3, 130.1, 128.8, 128.8, 128.8, 128.8, 128.6, 128.5, 128.5, 128.4, 128.3, 127.7, 127.7, 127.2, 118.8, 85.7, 64.6, 64.5, 47.8, 25.2, 25.2, 21.5, 21.4 ppm. HRMS (ESI): m/z calculated for $C_{27}H_{23}ClO_2$ [M+H]⁺: 414.1387, found: 414.1388.

1-(5-((4-fluorophenyl)(phenyl)methyl)-3-methyl-2-methylene-4-phenyl-2,3-dihydrofuran-3-yl)ethanone (124g). Following general experimental procedure 2.9.2 then purified by flash chromatography (silica gel, 2-3 % EtOAc in pet ether) the product was obtained as White solid 102.8 mg (78%); mp 108-109 °C. 1 H NMR (CDCl₃, 500 MHz): δ 7.41-7.28 (m, 8H), 7.28-7.18 (m, 2H), 7.09-6.99 (m, 4H), 5.29 (d, J = 11 Hz, 1H), 4.67 (d, J = 3 Hz, 1H), 4.18 (d, J = 5 Hz, 1H), 2.16 (s, 3H), 1.41 (s, 3H) ppm. 13 C NMR (CDCl₃, 125 MHz): δ 205.1, 164.6, 164.5, 162.8, 162.8, 160.8, 153.9, 153.8, 140.1, 140.1, 136.1, 135.8, 131.7, 131.6, 130.5, 130.4, 130.2, 130.2, 128.4, 128.3, 127.7, 127.6, 127.1, 127.1, 115.6, 115.4, 115.3, 115.2, 85.6, 64.6, 64.5, 47.7, 25.2, 21.5, 21.4 ppm. HRMS (ESI): m/z calculated for $C_{27}H_{23}FO_2$ [M+H]⁺: 399.1762, found: 399.1766.

1-(5-((4-methoxyphenyl)(phenyl)methyl)-3-methyl-2-methylene-4-phenyl-2,3-dihydrofuran-3-yl)ethanone (124h). Following general experimental procedure 2.9.2 then purified by flash chromatography (silica gel, 2-3 % EtOAc in pet ether) the product was obtained as White solid

104.5 mg (80%); mp 108-109 °C. ¹H NMR (CDCl₃, 400 MHz): δ 7.32-7.29 (m, 4H), 7.28-7.25 (m, 4H), 7.22 (t, J = 1.6 Hz, 2H),7.06-7.04 (m, 2H), 6.94-6.92 (m, 2H), 5.27 (s, 1H), 4.65 (d, J = 2.8 Hz, 1H), 4.15 (d, J = 2.8 Hz, 1H), 3.85 (s, 3H), 2.16 (s, 3H), 1.40 (s, 3H) ppm. ¹³C NMR (CDCl₃, 125 MHz): δ 205.6, 164.7, 158.6, 154.5, 140.7, 132.2, 131.9, 129.8, 128.9, 128.5, 128.4, 127.6, 127.1, 118.3, 114.1, 85.6, 64.6, 55.4, 47.7, 25.4, 21.5 ppm. HRMS (ESI): m/z calculated for C₂₈H₂₆O₃ [M+H]⁺: 410.1882; found: 410.1881.

1-(5-(bis(4-fluorophenyl)methyl)-3-methyl-2-methylene-4-phenyl-2,3-dihydrofuran-3-

yl)ethanone (*124i*). Following general experimental procedure 2.9.2 then purified by flash chromatography (silica gel, 2-3 % EtOAc in pet ether) the product was obtained as yellow liquid; 102.7 mg (79%). H NMR (CDCl₃, 500 MHz): δ 7.32 (t, J = 7.5 Hz, 2H), 7.29 (t, J = 2 Hz, 3H), 7.19 (q, J = 5.5 Hz, 2H),7.08 (t, J = 8.5 Hz, 2H),7.0 2 (q, J = 8.5 Hz, 4H), 5.25 (s, 1H), 4.67 (d, J = 2.5 Hz, 1H), 4.19 (d, J = 2.5 Hz, 1H), 2.15 (s, 3H), 1.41 (s, 3H) ppm. ¹³C NMR (CDCl₃, 100 MHz): δ 205.1, 164.6, 163.1, 162.9, 161.1, 161.1, 153.7, 136.1, 135.9, 135.8, 135.8, 131.6, 130.5, 130.4, 130.2, 130.2, 129.1, 128.4, 127.9, 118.9, 115.8, 115.6, 115.6, 115.4, 85.9, 64.7, 47.1, 25.3, 21.6 ppm. HRMS (ESI): m/z calculated for C₂₇H₂₂F₂O₂ [M+H]⁺: 416.1588, found: 416.1587.

3-yl)ethanone (124j) Following general experimental procedure 2.9.2 then purified by flash chromatography (silica gel, 2-3 % EtOAc in pet ether) the product was obtained as yellow liquid; 104.3 mg (80%). 1 H NMR (CDCl₃, 500 MHz): δ 7.39 (d, J = 7.5 Hz, 1H), 7.34-7.28 (m, 4H), 7.22-7.19 (m, 2H), 7.15- 7.00 (m, 4H), 6.94 (d, J = 2 Hz, 1H), 6.92 (d, J = 2 Hz, 1H), 5.27 (d, J = 10.5 Hz, 1H), 4.65 (d, J = 2.5 Hz, 1H), 4.16 (d, J = 2.5 Hz, 1H), 2.36 (s, 3H), 2.14 (s, 3H), 1.40 (s, 3H) ppm. 13 C NMR (CDCl₃, 100 MHz): δ 205.2, 164.7, 164.6, 153.4, 140.2, 140.1, 137.5, 30.5, 130.4, 130.2, 130.2, 129.5, 128.7, 128.7, 128.6, 128.5, 128.4, 128.3, 128.2,

127.1, 118.6, 115.5, 115.3, 115.3, 115.1, 85.4, 64.6, 64.5, 47.6, 25.2, 21.5, 21.4, 21.1 ppm.

HRMS (ESI): m/z calculated for $C_{28}H_{25}FO_2$ [M+H]⁺: 413.1919, found: 413.1919.

1-(5-((4-fluorophenyl)(phenyl)methyl)-3-methyl-2-methylene-4-(p-tolyl)-2,3-dihydrofuran-

1-(5-benzhydryl-4-(4-butylphenyl)-3-methyl-2-methylene-2,3-dihydrofuran-3-yl)ethanone (124k). Following general experimental procedure 2.9.2 then purified by flash chromatography (silica gel, 2-3 % EtOAc in pet ether) the product was obtained as yellow liquid; 98.9 mg (78%). ¹H NMR (CDCl₃, 500 MHz): δ 7.87 (t, J = 3.5 Hz, 1H), 7.81-7.79 (m, 1H), 7.52 (d, J = 8 Hz, 1H), 7.34-7.28 (m, 2H), 7.21-2.00 (m, 7H), 6.95-6.93 (m, 2H), 5.30 (d, J = 10 Hz, 1H), 4.64 (d,

J = 2.5Hz, 1H), 4.16 (d, J = 2.5Hz, 1H), 2.60 (t, J = 1.5 Hz, 2H), 2.15 (s, 3H), 1.63-1.41 (m, 2H), 1.40 (s, 3H), 1.39-0.95 (m, 2H), 0.94 (t, J = 1.0 Hz, 3H) ppm. ¹³C NMR (CDCl₃, 125 MHz): δ 205.4, 195.4, 164.7, 153.6, 153.5, 142.6, 140.3, 140.2, 137.6, 130.1, 128.9, 128.8, 128.4, 118.7, 115.6, 115.5, 115.5, 115.4, 115.2, 85.6, 64.7, 64.6, 47.7, 35.4, 33.5, 25.4, 22.5, 21.6, 21.5, `14.1 ppm. HRMS (ESI): m/z calculated for C₃₁H₃₂O₂ [M+H]⁺: 436.2402, found: 436.2401.

1-(5-((4-chlorophenyl)(phenyl)methyl)-4-cyclopropyl-3-methyl-2-methylene-2,3-

dihydrofuran-3-yl)ethanone (*124l*). Following general experimental procedure 2.9.2 then purified by flash chromatography (silica gel, 2-3 % EtOAc in pet ether) the product was obtained as yellow liquid; 104.5 mg (78%). 1 H NMR (CDCl₃, 500 MHz): δ 7.62-7.34 (m, 5H), 7.33-7.27 (m, 4H), 5.48 (s, 1H), 4.54 (d, J = 2.4 Hz, 1H), 4.03 (d, J = 2.8 Hz, 1H), 2.01 (s, 3H), 1.43 (s, 3H), 1.25-1.21 (m, 1H), 0.77-0.74 (m, 2H), 0.68-0.66 (m, 1H), 0.50-0.36 (m, 1H) ppm. 13 C NMR (CDCl₃, 100 MHz): δ 205.9, 165.1, 154.4, 140.3, 140.3, 132.5, 130.2, 128.9, 128.7, 128.6, 128.5, 128.4, 127.1, 126.9, 116.7, 84.8, 64.7, 47.8, 25.2, 21.8, 5.4, 5.2, 4.1 ppm. HRMS (ESI):m/z calculated for C₂₄H₂₃ClO₂ [M+H]⁺: 378.1387, found: 378.1387.

1-(5-(9H-fluoren-9-yl)-3-methyl-2-methylene-4-phenyl-2,3-dihydrofuran-3-

l)ethanone(*124m*). Following general experimental procedure 2.9.2 then purified by flash chromatography (silica gel, 2-3 % EtOAc in pet ether) the product was obtained as yellow liquid; 103.2 mg (77%). 1 H NMR (CDCl₃, 500 MHz): δ 8.37 (d, J = 7.5 Hz, 1H), 7.80-7.43 (m, 2H), 7.42 (d, J = 7.5 Hz, 1H), 7.42-7.32 (m, 6H), 7.29-7.16 (m, 3H), 5.20 (d, J = 3 Hz, 1H), 5.12 (s, 1H), 4.52 (d, J = 3 Hz, 1H), 2.33 (s, 3H), 1.03 (s, 3H) ppm. 13 C NMR (CDCl₃, 125 MHz): δ 205.1, 164.6, 164.5, 162.8, 162.8, 160.8, 153.9, 153.8, 140.1, 140.1, 136.1, 135.8, 135.8, 131.6, 131.6, 130.5, 130.4, 130.2, 130.2, 128.4, 128.3, 127.7, 127.6, 127.1, 127.1, 115.6, 115.4, 115.3, 115.2, 85.6, 64.6, 64.5, 47.7, 25.2, 25.1, 21.5, 21.4 ppm. HRMS (ESI): m/z calculated for $C_{27}H_{22}O_2$ [M+H] $^+$: 379.1700, found: 379.1700.

Ethyl5-benzhydryl-3-methyl-2-methylene-4-phenyl-2,3-dihydrofuran-3-carboxylate(124n).

Following general experimental procedure 2.9.2 then purified by flash chromatography (silica gel, 2-3 % EtOAc in pet ether) the product was obtained as yellow liquid; $114.10 \text{ mg} (79\%).^1\text{H}$ NMR (CDCl₃, 500 MHz): δ 7.39 (d, J = 1.5 Hz, 1H), 7.38-7.35 (m, 3H), 7.34-7.31 (m, 3H), 7.28 (t, J = 8.5 Hz, 4H), 7.24 (d, J = 7.5 Hz, 2H), 7.16-7.15 (m, 2H), 5.15 (s, 1H), 4.61 (d, J = 2.5 Hz, 1H), 4.29 (d, J = 3 Hz, 1H), 4.28-4.20 (m, 2H), 1.50 (s, 3H), 1.30 (t, J = 7 Hz, 3H)

ppm.¹³C NMR (CDCl₃, 125 MHz): δ 172.6, 165.1, 153.2, 140.8, 140.3,132.2, 129.3, 128.6, 128.5, 128.5, 128.1, 127.5, `126.1, 126.5,118.5, 84.4, 61.6, 58.1, 47.8, 22.9, 13.9 ppm. HRMS (ESI): m/z calculated for C₂₈H₂₆O₃ [M+H]⁺: 411.1962, found: 411.1961.

Ethyl5-((4-chlorophenyl)(phenyl)methyl)-3-methyl-2-methylene-4-phenyl-2,3-

dihydrofuran-3-carboxylate (124o). Following general experimental procedure 2.9.2 then purified by flash chromatography (silica gel, 2-3 % EtOAc in pet ether) the product was obtained as yellow liquid; 108.9 mg (78%). 1 H NMR (CDCl₃, 500 MHz): δ 7.39 (d, J = 7 Hz, 1H), 7.35-7.32 (m, 6H), 7.31-7.28 (m, 2H), 7.24 (d, J = 9 Hz, 2H), 7.16 (d, J = 8.5 Hz, 1H), 7.14 (t, J = 1.5 Hz, 2H), 5.10 (s, 1H), 4.62 (d, J = 2.5 Hz, 1H), 4.31 (d, J = 3 Hz, 1H), 4.26 (q, J = 7 Hz, 2H), 1.50 (s, 3H), 1.31 (t, J = 7 Hz, 3H) ppm. 13 C NMR (CDCl₃, 125 MHz): δ 172.4, 172.3, 164.9, 152.7, 140.3, 139.8, 139.3, 138.8, 132.8, 132.4, 132.1, 130.6, 130.1, 129.3, 129.2, 129.9, 128.7, 128.6, 128.5, 128.5, 128.2, 127.7, 127.6, 127.1, 126.7, 118.8, 84.6, 61.7, 61.6, 58.2, 58.1, 47.3, 22.9, 14.1 ppm. HRMS (ESI): m/z calculated for $C_{28}H_{25}ClO_3$ [M+H] $^+$: 445.1572, found: 445.1573.

1-(5-benzhydryl-2-methyl-4-phenylfuran-3-yl)ethanone(*125a* Following general experimental procedure 2.9.3 then purified by flash chromatography (silica gel, 2-3 % EtOAc in pet ether) the product was obtained as yellow liquid; 103. mg (80%). 1 H NMR (CDCl₃, 500 MHz): δ 7.44-7.40 (m, 5H), 7.33-7.28 (m, 5H), 7.27 (t, J = 7 Hz, 2H), 7.18 (d, J = 7.5 Hz, 3H), 5.23 (s, 1H), 2.58 (s, 3H), 1.94 (s, 3H) ppm. 13 C NMR (CDCl₃, 125 MHz): δ 195.9, 157.7, 150.1, 141.6,133.3, 132.6, 130.1, 129.7, 128.7, 128.6, 128.4, 128.4, 128.3, 128.0, 127.8, 126.6, 124.0, 122.9, 122.5, 47.8, 30.7, 14.5 ppm. HRMS (ESI): m/z calculated for $C_{26}H_{22}O_{2}$ [M+H] $^{+}$: 367.1700, found: 367.1701.

1-(5-isopropyl-2-methyl-4-phenylfuran-3-yl)ethanone (*125b*). Following general experimental procedure 2.9.3 then purified by flash chromatography (silica gel, 2-3 % EtOAc in pet ether) the product was obtained as yellow liquid; 119. mg (79%). ¹H NMR (CDCl₃, 400 MHz): δ 7.50-7.47 (m, 2H), 7.27-7.18 (m, 1H), 7.09 (t, J = 7.6 Hz, 2H), 5.36 (s, 1H), 2.35 (s, 3H), 2.27 (s, 3H), 1.40 (s, 6H) ppm. ¹³C NMR (CDCl₃, 125 MHz): δ 193.3, 164.2, 163.1, 135.1, 128.3, 127.9, 125.9, 123.4, 99.4, 47.9, 30.7, 28.4, 15.7 ppm. HRMS (ESI): m/z calculated for C₁₆H₁₈O₂ [M+H]⁺: 243.1387, found: 243.1389.

1-(2-methyl-4-phenyl-5-(1-phenylethyl)furan-3-yl)ethanone (125c). Following general experimental procedure 2.9.3 then purified by flash chromatography (silica gel, 2-3 % EtOAc

in pet ether) the product was obtained as yellow liquid; 108. mg (79%). 1 H NMR (CDCl₃, 400 MHz): δ 7.71 (d, J = 1.6 Hz, 1H) 7.69 (d, J = 3.2 Hz, 1H) 7.58-7.32 (m, 2H), 7.32-7.20 (m, 1H), 5.33 (s, 1H), 2.44 (s, 3H), 2.40 (s, 3H), 1.51 (s, 3H), 0.60-0.57 (m, 1H), 0.47-0.43 (m, 1H), 0.35-0.31 (m, 1H), 0.09-0.02 (m, 2H) ppm. 13 C NMR (CDCl₃, 100 MHz): δ 194.1, 164.8, 163.8, 144.8, 134.7, 128.5, 128.3, 128.1, 126.8, 126.4, 126.2, 123.2, 102.4, 54.2, 29.9, 26.6, 15.3 ppm. HRMS (ESI): m/z calculated for $C_{21}H_{20}O_{2}$ [M+H] $^{+}$: 305.1543, found: 305.1543.

1-(5-(1-cyclopropylethyl)-2-methyl-4-phenylfuran-3-yl)ethanone (*125d*). Following general experimental procedure 2.9.3 then purified by flash chromatography (silica gel, 2-3 % EtOAc in pet ether) the product was obtained as yellow liquid; 113. mg (78%). ¹H NMR (CDCl₃, 400 MHz): δ 7.71 (d, J = 1.6 Hz, 1H) 7.69 (d, J = 3.2 Hz, 1H) 7.58-7.32 (m, 2H), 7.32-7.20 (m, 1H), 5.33 (s, 1H), 2.44 (s, 3H), 2.40 (s, 3H), 1.51 (s, 3H), 0.60-0.57 (m, 1H), 0.47-0.43 (m, 1H), 0.35-0.31 (m, 1H), 0.09-0.02 (m, 2H) ppm. ¹³C NMR (CDCl₃, 100 MHz): δ 193.6, 163.1, 159.3, 145.1, 134.7, 131.7, 128.3, 128.3, 128.2, 127.7, 126.1, 126.1, 126.1, 123.4, 102.4, 51.4, 30.9, 24.5, 19.7, 15.6, 1.4, 1.3 ppm. HRMS (ESI): m/z calculated for C₁₈H₂₀O₂ [M+Na]⁺: 291.1360, found: 291.1354.

1-(5-((4-fluorophenyl)(phenyl)methyl)-2-methyl-4-phenylfuran-3-yl)ethanone (125e).

Following general experimental procedure 2.9.3 then purified by flash chromatography (silica gel, 2-3 % EtOAc in pet ether) the product was obtained as yellow liquid; 92. mg (78%). 1 H NMR (CDCl₃, 400 MHz): δ 7.43-7.40 (m, 3H), 7.32-7.30 (m, 2H), 7.27 (t, J = 2 Hz, 3H), 7.16-7.10 (m, 4H), 6.99 (t, J = 8.4 Hz, 2H), 5.20 (s, 1H), 2.58 (s, 3H), 1.93 (s, 3H) ppm. 13 C NMR (CDCl₃, 125 MHz): δ 196.0, 162.7, 160.8, 157.9, 149.9, 141.5, 137.4, 137.4, 133.3, 130.4, 130.3, 130.1, 128.7, 128.6, 128.0, 126.9, 123.0, 122.7, 115.4, 115.2, 47.2, 30.8, 14.7 ppm. HRMS (ESI): m/z calculated for $C_{26}H_{21}FO_{2}$ [M+H] $^{+}$: 385.1606, found: 385.1607.

1-(5-((4-chlorophenyl)(phenyl)methyl)-2-methyl-4-phenylfuran-3-yl)ethanone (125f).

Following general experimental procedure 2.9.3 then purified by flash chromatography (silica gel, 2-3 % EtOAc in pet ether) the product was obtained as yellow liquid; 98. mg (78%). 1 H NMR (CDCl₃, 400 MHz): δ 7.44 (d, J = 7.2 Hz, 3H), 7.33-7.27 (m, 7H), 7.16 (d, J = 7.2 Hz, 2H), 7.10 (d, J = 7.2 Hz, 2H), 5.20 (s, 1H), 2.59 (s, 3H), 1.95 (s, 3H) ppm. 13 C NMR (CDCl₃, 100 MHz): δ 195.9, 157.9, 149.5, 141.1, 140.1, 133.1, 132.5, 130.1, 130.1, 128.6, 128.5, 127.9, 126.9, 122.9, 122.7, 47.1, 30.8, 14.6 ppm. HRMS (ESI): m/z calculated for C₂₆H₂₁ClO₂ [M+Na]⁺ : 400.1230, found: 400.1230.

1-(5-((3,4-dichlorophenyl)(phenyl)methyl)-2-methyl-4-phenylfuran-3-yl)ethanone(125g).

Following general experimental procedure 2.9.3 then purified by flash chromatography (silica gel, 2-3 % EtOAc in pet ether) the product was obtained as yellow liquid; 95. mg (78%). 1 H NMR (CDCl₃, 400 MHz): δ 7.43-7.41(m, 3H), 7.36-7.29 (m, 3H), 7.28-7.21 (m, 4H), 7.15-6.98 (m, 3H), 5.16 (s, 1H), 2.58 (s, 3H), 1.93 (s, 3H) ppm. 13 C NMR (CDCl₃, 100 MHz): δ 195.7, 158.1, 148.8, 141.8, 140.4, 132.9, 132.4, 130.8, 130.6, 130.3, 129.9, 129.6, 128.7, 128.7, 128.6, 128.4, 128.4, 128.3, 128.1, 128.1, 127.1, 123.1, 122.9, 47.1, 30.7, 15.2, 14.6 ppm. HRMS (ESI): m/z calculated for $C_{26}H_{20}Cl_2O_2$ [M+Na]⁺ 435.0920, found: 435.0920.

1-(5-((4-methoxyphenyl)(phenyl)methyl)-2-methyl-4-phenylfuran-3-yl)ethanone (125h). Following general experimental procedure 2.9.3 then purified by flash chromatography (silica gel, 2-3 % EtOAc in pet ether) the product was obtained as white solid 95. mg (78%); mp 135-136 °C. 1 H NMR (CDCl₃, 500 MHz): δ 7.39-7.34 (m, 3H), 7.25 (t, J = 7.5 Hz, 4H), 7.21-7.17 (m, 1H), 7.13 (d, J = 7.5 Hz, 2H), 7.06 (d, J = 8.5 Hz, 2H), 6.81 (d, J = 9 Hz, 2H), 5.15 (s, 1H), 3.75 (s, 3H), 2.54 (s, 3H), 1.90 (s, 3H) ppm. 13 C NMR (CDCl₃, 125 MHz): δ 195.9, 158.3, 157.7, 150.4, 142.1, 133.7, 133.4, 130.1, 129.8, 128.7, 128.6, 128.4, 127.8, 126.6, 122.9, 122.3, 55.2, 47.1, 30.8, 12.6 ppm. HRMS (ESI): m/z calculated for $C_{27}H_{24}O_3$ [M+H]⁺: 397.1805, found: 397.1805.

1-(*5-*(*bis*(*4-fluorophenyl*)*methyl*)-2-*methyl*-4-*phenylfuran*-3-*yl*)*ethanone* (*125i*). Following general experimental procedure 2.9.3 then purified by flash chromatography (silica gel, 2-3 % EtOAc in pet ether) the product was obtained as white solid 99. mg (79%); mp 116-117 °C. 1 H NMR (CDCl₃, 500 MHz): δ 7.42 (d, J = 7.5 Hz, 3H), 7.24 (d, J = 6 Hz, 2H), 7.09 (t, J = 7.5 Hz, 4H), 6.99 (t, J = 8.5 Hz, 4H), 5.17 (s, 1H), 2.57 (s, 3H), 1.92 (s, 3H) ppm. 13 C NMR (CDCl₃, 125 MHz): δ 195.7, 162.6, 160.7, 157.8, 149.5, 137.1, 137.1, 133.1, 130.1, 130.1, 129.5, 128.6, 127.9, 122.9, 122.6, 115.4, 115.2, 64.3, 30.7, 15.6 ppm. HRMS (ESI): m/z calculated for $C_{26}H_{20}F_{2}O_{2}$ [M+Na]⁺: 403.1511, found: 403.1511.

1-(5-benzhydryl-2-methyl-4-(p-tolyl)furan-3-yl)ethanone (*125j*). Following general experimental procedure 2.9.3 then purified by flash chromatography (silica gel, 2-3 % EtOAc in pet ether) the product was obtained as yellow liquid; 99. mg (78%). 1 H NMR (CDCl₃, 400 MHz): δ 7.32-7.28 (m, 6H), 7.26 (t, J = 0.8 Hz, 4H), 7.23-7.16 (m, 4H), 5.22 (s, 1H), 2.56 (s, 3H), 2.42 (s, 3H), 1.94 (s, 3H) ppm. 13 C NMR (CDCl₃, 100 MHz): δ 196.2, 157.7, 155.1, 149.9,

141.7, 173.5, 130.2, 129.9, 129.3, 128.7, 128.4, 128.1, 126.6, 122.5, 47.6, 30.8, 21.3, 14.6 ppm. HRMS (ESI): m/z calculated for $C_{27}H_{24}O_2$ [M+H]⁺: 381.1856, found: 381.1855.

(*5-benzhydryl-2-methyl-4-phenylfuran-3-yl*)(*phenyl*)*methanone* (*125k*). Following general experimental procedure 2.9.3 then purified by flash chromatography (silica gel, 2-3 % EtOAc in pet ether) the product was obtained as white solid 99. mg (78%); mp 122-123 °C. ¹H NMR (CDCl₃, 500 MHz): δ 7.67 (d, J = 8.5 Hz, 1H), 7.39-7.28 (m, 8H), 7.28-7.25 (m, 4H), 7.23 (d, J = 8.0 Hz, 2H), 7.18 (d, J = 7.5 Hz, 2H), 7.16-7.12 (m, 3H), 5.49 (s, 1H), 2.40 (s, 3H) ppm. ¹³C NMR (CDCl₃, 125 MHz): δ 192.5, 156.3, 149.8, 141.8, 138.2, 132.4, 132.3, 129.6, 129.5, 129.5, 128.8, 128.8, 128.7, 128.5, 128.5, 128.4, 128.1, 127.9, 127.5, 126.9, 126.7, 123.6, 121.8, 47.8, 13.9 ppm. HRMS (ESI): m/z calculated for $C_{31}H_{24}O_{2}[M+H]^{+}$: 429.1856, found: 429.1857.

(5-((4-chlorophenyl)(phenyl)methyl)-2-methyl-4-phenylfuran-3-yl)(phenyl)methanone

(*1251*). Following general experimental procedure 2.9.3 then purified by flash chromatography (silica gel, 2-3 % EtOAc in pet ether) the product was obtained as yellow liquid; 114. mg (79%). 1 H NMR (CDCl₃, 400 MHz): δ 7.66 (t, J = 7.2 Hz, 2H), 7.36 (t, J = 6.4 Hz, 3H), 7.35-7.30 (m, 5H), 7.26-7.23 (m, 3H), 7.19-7.16 (m, 5H), 7.12 (d, J = 1.6 Hz, 1H), 5.45 (s, 1H), 2.40 (s, 3H) ppm. 13 C NMR (CDCl₃, 100 MHz): δ 192.4, 156.4, 149.3, 141.3, 140.3, 138.2, 132.6, 130.2, 129.4, 128.8, 128.6, 128.2, 128.1, 127.5, 127.1, 126.9, 123.8, 121.9, 47.3, 13.9 ppm. HRMS (ESI): m/z calculated for $C_{31}H_{23}ClO_{2}$ [M+H] $^{+}$: 463.1467, found: 463.1467.

(5-((4-fluorophenyl)(phenyl)methyl)-2-methyl-4-phenylfuran-3-l)(phenyl)methano(125m).

Following general experimental procedure 2.9.3 then purified by flash chromatography (silica gel, 2-3 % EtOAc in pet ether) the product was obtained as yellow liquid; 116. mg (79%). 1 H NMR (CDCl₃, 500 MHz): δ 7.67 (t, J = 1 Hz, 2H), 7.36 (t, J = 8.0 Hz, 3H), 7.28-7.22 (m, 4H), 7.21-7.17 (m, 6H), 7.11 (t, J = 1.5 Hz, 2H), 7.02 (t, J = 8.5 Hz, 2H), 5.45 (s, 1H), 2.39 (s, 3H) ppm. 13 C NMR (CDCl₃, 125 MHz): δ 192.4, 162.6, 160.7, 156.3, 149.6, 141.6, 138.2, 137.5, 137.5, 132.4, 132.2, 130.3, 129.4, 128.7, 128.5, 128.1, 127.9, 126.8, 123.6, 121.9, 115.3, 115.2, 47.2, 13.8 ppm. HRMS (ESI): m/z calculated for $C_{31}H_{23}FO_{2}$ [M+H] $^{+}$: 447.1762, found: 447.1768.

Ethyl 5-benzhydryl-2-methyl-4-phenylfuran-3-carboxylate (125n). Following general experimental procedure 2.9.3 then purified by flash chromatography (silica gel, 2-3 % EtOAc in pet ether) the product was obtained as white solid 99. mg (78%); mp 120-121 °C. 1 H NMR (CDCl₃, 500 MHz): δ 7.90 (d, J = 8 Hz, 1H),7.39-7.32 (m, 5H) 7.28-7.21 (m, 5H), 7.18-7.10

(m, 4H), 5.26 (s, 1H), 4.08 (q, J = 7 Hz, 2H) 2.57 (s, 3H), 1.05 (t, J = 7.5 Hz, 3H) ppm. ¹³C NMR (CDCl₃, 125 MHz): δ 192.8, 164.3, 158.8, 154.7, 141.9, 141.5, 139.1, 138.4, 132.8, 130.2, 129.9, 129.4, 128.9, 128.8, 128.7, 128.5, 128.5, 128.4, 128.1, 127.8, 127.2, 126.7, 124.2, 59.9, 47.9, 14.4, 14.1 ppm. HRMS (ESI): m/z calculated for $C_{27}H_{24}O_3$ [M+H]⁺: 397.1805; found: 397.1806.

Ethyl 5-benzhydryl-2-methyl-4-(p-tolyl)furan-3-carboxylate (1250). Following general experimental procedure 2.9.3 then purified by flash chromatography (silica gel, 2-3 % EtOAc in pet ether) the product was obtained as yellow liquid; 107. mg (78%). 1 H NMR (CDCl₃, 400 MHz): δ 7.32-7.28 (m, 7H), 7.24-7.17 (m, 7H), 5.30 (s, 1H), 4.14 (q, J = 7.2 Hz, 2H) 2.60 (s, 3H), 2.40 (s, 3H), 1.13 (t, J = 7.2 Hz, 3H) ppm. 13 C NMR (CDCl₃, 100 MHz): δ 164.6, 158.6, 150.1, 141.8, 136.8, 129.9, 129.7, 128.8, 128.5, 128.3, 126.5, 123.2, 59.8, 47.6, 21.3, 21.3, 14.4, 14.1 ppm. HRMS (ESI): m/z calculated for $C_{28}H_{26}O_{3}$ [M+H] $^{+}$: 411.1962, found: 411.1961.

Ethyl5-((4-chlorophenyl)(phenyl)methyl)-2-methyl-4-phenylfuran-3-rboxylate(125p).

Following general experimental procedure 2.9.3 then purified by flash chromatography (silica gel, 2-3 % EtOAc in pet ether) the product was obtained as white solid 99. mg (78%); mp 98-99 °C. 1 H NMR (CDCl₃, 400 MHz): δ 7.38-7.32 (m, 4H), 7.30-7.24 (m, 5H), 7.17 (t, J = 1.6 Hz, 3H), 7.10 (d, J = 8.4 Hz, 2H), 5.26 (s, 1H), 4.13 (q, J = 7.2 Hz, 2H), 2,61 (s, 3H), 1.09 (t, J = 7.2 Hz, 3H) ppm. 13 C NMR (CDCl₃, 100 MHz): δ 164.1, 158.9, 149.6, 141.2, 140.2, 132.7, 132.5, 130.1, 130.1, 128.7, 128.5, 127.8, 127.3, 126.8, 123.5, 113.8, 59.8, 47.1, 14.3, 13.9 ppm. HRMS (ESI): m/z calculated for $C_{27}H_{23}ClO_3$ [M+H]+: 431.1416, found: 431.1416.

Ethyl5-((3,4-dichlorophenyl)(phenyl)methyl)-2-methyl-4-phenylfuran-3-carboxylate (125q). Following general experimental procedure 2.9.3 then purified by flash chromatography (silica gel, 2-3 % EtOAc in pet ether) the product was obtained as yellow liquid; 102. mg (78%). 1 H NMR (CDCl₃, 500 MHz): δ 7.45 (t, J = 8 Hz, 1H), 7.42-7.36 (m, 5H), 7.35-7.28 (m, 2H), 7.24-7.22 (m, 1H), 7.16-7.15 (m, 2H), 7.00-6.97 (m, 2H), 5.23 (s, 1H), 4.13 (q, J = 5 Hz, 2H), 2.62 (s, 3H), 1.09 (t, J = 7.5 Hz, 3H) ppm. 13 C NMR (CDCl₃, 125 MHz): δ 164.0, 159.0, 148.9, 142.0, 140.6, 132.4, 131.4, 130.6, 130.2, 130.0, 129.8, 129.0, 128.7, 128.6, 128.6, 128.6, 128.6, 128.4, 128.2, 127.8, 127.4, 127.1, 124.5, 113.9, 59.9, 47.0, 14.4, 13.9 ppm. HRMS (ESI):m/z calculated for C₂₇H₂₂Cl₂O₃ [M+H]⁺: 465.1026, found: 465.1028.

Methyl5-((4-chlorophenyl)(phenyl)methyl)-2-methyl-4-phenylfuran-3-carboxylate (125r)
Following general experimental procedure 2.9.3 then purified by flash chromatography (silica

gel, 2-3 % EtOAc in pet ether) the product was obtained as white solid 103. mg (79%); mp 113-114 °C. H NMR (CDCl₃, 400 MHz): δ 7.40-7.37 (m, 3H), 7.32 (d, J = 7.6 Hz, 2H), 7.29-7.26 (m, 5H), 7.16 (d, J = 7.6 Hz, 2H), 7.10 (d, J = 8.4 Hz, 2H), 5.27 (s, 1H), 3.68 (s, 3H), 2.62 (s, 3H) ppm. CDCl₃, 100 MHz): δ 164.5, 159.1, 149.7, 141.2, 140.2, 132.5, 132.5, 130.1, 129.9, 128.7, 128.5, 127.9, 127.3, 126.8, 123.5, 113.5, 51.1, 47.1, 14.4 ppm. HRMS (ESI): m/z calculated for C₂₆H₂₁ClO₃ [M+Na]⁺: 417.1259, found: 417.1257.

1-(*5-benzhydryl-2,3-dimethyl-4-phenyl-2,3-dihydrofuran-3-yl)ethanone* (*126*). Purified by flash chromatography (silica gel, 2-3 % EtOAc in pet ether) the product was obtained as yellow liquid; 78. mg (78%). 1 H NMR (CDCl₃, 400 MHz): δ 7.31 (t, J = 2 Hz, 4H), 7.22 (t, J = 7.2 Hz, 3H), 7.20-7.14 (m, 4H), 7.09 (t, J = 1.6 Hz, 2H), 6.92-6.89 (m, 2H), 5.27 (s, 1H), 4.43 (q, J = 6.8 Hz, 1H), 1.95 (s, 3H), 1.18 (d, J = 6.8 Hz, 3H), 1.09 (s, 3H) ppm. 13 C NMR (CDCl₃, 100 MHz): δ 212.3, 156.5, 140.3, 133.7, 129.5, 128.8, 128.7, 128.6, 128.2, 127.5, 126.9, 126.8, 119.1, 86.7, 63.6, 49.1, 29.1, 19.4, 14.3 ppm. HRMS (ESI): m/z calculated for $C_{27}H_{26}O_{2}$ [M+H] $^{+}$: 382.1933, found: 382.1933.

1-(5-benzhydryl-3-methyl-2-methylene-4-phenyl-2,3-dihydrofuran-3-yl)ethanol (127). Purified by flash chromatography (silica gel, 2-3 % EtOAc in pet ether) the product was obtained as yellow liquid; 80. mg (80%). 1 H NMR (CDCl₃, 400 MHz): δ 7.38 (t, J = 3.2 Hz, 3H), 7.37-7.32 (m, 4H), 7.30 (d, J = 2 Hz, 1H), 7.29-7.25 (m, 6H), 7.20 (t, J = 1.2 Hz, 2H), 5.01 (s, 1H), 4.60 (d, J = 2.5 Hz, 1H), 4.19 (d, J = 2.4 Hz, 1H), 3.65 (q, J = 6 Hz, 1H), 1.41 (s, 3H), 1.21 (d, J = 6.4 Hz, 3H) ppm. 13 C NMR (CDCl₃, 100 MHz): δ 166.5, 152.4, 141.2, 140.7, 133.3, 130.4, 128.8, 128.6, 128.5, 128.3, 127.6, 126.7, 126.6, 118.5, 85.1, 73.1, 56.8, 47.9, 23.6, 17.1 ppm. HRMS (ESI): m/z calculated for $C_{27}H_{26}O_{2}$ [M+H] $^{+}$: 382.1933, found: 382.1933.

3-methyl-3-(1,3,3-triphenylpropa-1,2-dien-1-yl)pentane-2,4-dione(3ya) Following general experimental procedure 3.6.2 then purified by flash chromatography (silica gel, 7–9%, EtOAc in pet ether)) the product was obtained as White solid 123 mg (92%); mp 121-123 °C. 1 H NMR (CDCl₃, 500 MHz): δ 7.43-7.38 (m, 8H), 7.35-7.33 (m, 6H), 7.29-7-26 (m, 1H), 2.20 (s, 6H), 1.68 (s, 3H) ppm. 13 C NMR (CDCl₃, 125 MHz): δ 207.3, 207.1, 135.4, 134.1, 128.7, 128.7, 128.3, 127.9, 127.7, 127.5, 114.1, 109.9, 68.7, 27.9, 20.2 ppm. HRMS (ESI-TOF): m/z calcd. for C₂₇H₂₄O₂ [M+H]⁺: 380.1776, found:380.1780.

3-(3-(3,4-dichlorophenyl)-1,3-diphenylpropa-1,2-dien-1-yl)-3-methylpentane-2,4-dione (3yb) Following general experimental procedure 3.6.2 then purified by flash chromatography

(silica gel, 7–9%, EtOAc in pet ether)) the product was obtained as White solid 111 mg (88%); mp 125-127 °C. 1 H NMR (CDCl₃, 500 MHz): δ 7.46 (t, J = 2 Hz, 1H), 7.39 (d, J = 6.5 Hz, 2H), 7.35-7.33 (m, 3H), 7.32-7.27 (m, 3H), 7.26-7.24 (m, 4H), 2.16 (s, 6H), 1.64 (s, 3H) ppm. 13 C NMR (CDCl₃, 125 MHz): δ 207.2, 206.9, 135.9, 134.6, 133.8, 133.1, 133.1, 130.7, 130.1, 129.1, 128.9, 128.4, 128.3, 128.2, 127.7, 127.6, 112.3, 110.8, 69.1, 27.9, 20.4 ppm. HRMS (ESI-TOF): m/z calcd. for $C_{27}H_{22}Cl_2O_2$ [M+H] $^+$: 448.0997, found: 448.0998.

3-(1-cyclopropyl-3,3-diphenylpropa-1,2-dien-1-yl)-3-methylpentane-2,4-dione(3yc)

Following general experimental procedure 3.6.2 then purified by flash chromatography (silica gel, 7–9%, EtOAc in pet ether)) the product was obtained as White solid 104 mg (75%); mp 123-125 °C. 1 H NMR (CDCl₃, 400 MHz): δ 7.35-7.31 (m, 5H), 7.29-7.25 (m, 5H), 2.15 (s, 6H), 1.62 (s, 3H), 1.12 (d, J = 5.2 Hz, 1H), 0.82 (t, J = 2.4 Hz, 2H), 0.56 (t, J = 2 Hz, 2H) ppm. 13 C NMR (CDCl₃, 100 MHz): δ 207.1, 201.5, 136.1, 128.5, 128.1, 127.6, 115.1, 111.8, 69.8, 27.5, 19.2, 10.5, 8.4 ppm. HRMS (ESI-TOF): m/z calcd. for $C_{24}H_{24}O_{2}[M+H]^{+}$: 344.1776, found:344.1780.

3-(2-(9H-fluoren-9-ylidene)-1-phenylvinyl)-3-methylpentane-2,4-dione(3yd) Following general experimental procedure 3.6.2 then purified by flash chromatography (silica gel, 7–9%, EtOAc in pet ether)) the product was obtained as White solid 120 mg (90%); mp 121-124 °C. ¹H NMR (CDCl₃, 500 MHz): δ 7.77 (d, J = 8 Hz, 2H), 7.64 (d, J = 7.5 Hz, 2H), 7.41-7.38 (m, 2H), 7.33-7.30 (m, 2H), 7.29-7.25 (m, 5H), 2.38 (s, 6H), 1.67 (s, 3H) ppm. ¹³C NMR (CDCl₃, 125 MHz): δ 206.6, 204.9, 139.3, 137.1, 133.7, 128.9, 128.7, 128.4, 128.1, 127.5, 123.4, 120.5, 115.1, 109.8, 69.3, 27.8, 20.6 ppm. **HRMS** (ESI-TOF): m/zcalcd. for $C_{27}H_{22}O_2[M+H]^+:378.1620$, found: 378.1621.

3-(3-(2-chloro-5-nitrophenyl)-1,3-diphenylpropa-1,2-dien-1-yl)-3-methylpentane-2,4-

dione(*3ye*) Following general experimental procedure 3.6.2 then purified by flash chromatography (silica gel, 7–9%, EtOAc in pet ether)) the product was obtained as White solid 107 mg (85%); mp 128-130 °C. 1 H NMR (CDCl₃, 500 MHz): δ 8.26 (d, J = 3 Hz, 1H), 8.21-8.19 (m, 2H), 7.64 (d, J = 8.5 Hz, 2H), 7.38-7.31 (m, 3H), 7.30-7.24 (m, 5H), 2.2 (s, 3H), 2.18 (s, 3H), 1.67 (s, 3H) ppm. 13 C NMR (CDCl₃, 125 MHz): δ 206.6, 206.5, 146.8, 141.3, 136.2, 133.4, 133.4, 131.1, 129.2, 128.9, 128.4, 127.9, 126.5, 124.3, 112.2, 109.9, 69.1, 28.1, 27.5, 20.5 ppm. HRMS (ESI-TOF): m/z calcd. for C₂₇H₂₂ClNO₄[M+H]⁺:459.1237, found:459.1228.

2.9.5 REFERENCES

- (1) Lipshutz, B. H. Chem. Rev. 1986, 86, 795. b) Heaney, H.; Ahn, J. S. In Comprehensive Heterocyclic Chemistry II; Katritzky, A. R.; Rees, C. W.; Scriven, E. F. V. Eds. Elsevier: Oxford, 1996, 2, 297. c) Friedrichsen, W. In Comprehensive Heterocyclic Chemistry II; Katritzky, A. R.; Rees, C. W.; Scriven, E. F. V. Eds. Elsevier: Oxford, 1996, 2,351. d) Keay, B. A.; Dibble, P. W. InComprehensive Heterocyclic Chemistry II; Katritzky, A. R.; Rees, C. W.; Scriven, E. F. V. Eds. Elsevier: Oxford, 1996, 2,395. e) Cadierno, V.; Diez, J.; Gimeno, J.; Nebra, N. J. Org. Chem. 2008, 73, 5852. f) Jia, Y.; Li, T.; Yu, C.; Jiang, B.; Yao, C. Org. Biomol. Chem. 2016, 14, 1982.
- (2) a) Rao, R. R.; Chaturvedi, V.; Babu, K. S.; Reddy, P. P.; Rao, V. R. S.; Sreekanth, P.; Sreedhar, A. S.; Rao, J. M. Med. Chem. Res. 2012, 21, 634. b) Khan, M. W.; Alam, M. J.; Rashid, M. A.; Chowdhury, R. Bioorg. Med. Chem. 2005, 13, 4796.
- (3) a) Nakanish, K. *Natural Products Chemistry;* Kodansha, Ltd.: Tokyo, **1974**. b) Schulte, G.; Schener, P. J.; McConnel, O. *Helv. Chim. Acta.* **1980**, *63*, 2159. c) Dean, F. M. *In Advances in Heterocyclic Chemistry*; A. R. Katritzky, *Ed.; Academic Press*: New York, **1982**, *30*, 167. d) Dean, F. M.; Sargent, M. V. *In Comprehensive Heterocyclic Chemistry*; Bird, C. W.; Cheeseman, G. W. H. Eds.; *Pergamon Press*: New York, **1984**, *4*, 531. e) Wagner, H.; Fessler, B. *Planta Medica* **1986**, *52*, 374. (f) Jacobi, P. A.; Selnick, H. G. *J. Org. Chem.* **1990**, *55*, 202.
- (4) a) Hou, X. L.; Cheung, H. Y.; Hon, T. Y.; Kwan, P. L.; Lo, T. H.; Tong, S. Y. Wong, H. N. C. *Tetrahedron* 1998, *54*, 1955. b) Keay, B. A. *Chem. Soc. Rev.* 1999, *28*, 209. c) Jeevanandam, A.; Ghule, A.; Ling, Y.-C. *Curr. Org. Chem.* 2002, *6*, 841. d) Brown, R. C. D. *Angew. Chem. Int. Ed.* 2005, *44*, 850.
- (5) a) Ma, S.; Zhang, J. J. Am. Chem. Soc. 2003, 125, 12386. b) Jung, C.-K.; Wang, J. C.; Krische, M. J. J. Am. Chem. Soc. 2004, 126, 4118. c) Yao, T.; Zhang, X.; Larock, R. C. J. Org. Chem. 2005, 70, 7679. d) Song, C.; Sun, Y.; Wang, Y.; Chen, H.; Yao, J.; Tung, C. H. Org. Chem. Front. 2015, 2, 1366.
- (6) a) Minetto, G.; Raveglia, L. F.; Sega, A.; Taddei, M. Eur. J. Org. Chem. 2005, 24, 5277. b) Feist, F. Chem. Ber. 1902, 35, 1537. b) Bnary, E. Chem. Ber. 1911, 44, 489.
- (7) a) Nair, D. K.; Shaikh, M. M.; Irish, N. N. N. Tetrahedron 2012, 53, 3349. b) Huang,
 W. Y.; Chan, Y. C.; Kwunmin. C. Chem. Asian. J. 2012, 7, 688. c) Reddy, C. R;
 Vijaykumar, J.; Gree, R. Synthesis. 2010, 21, 3715.

- (8) a) Zhang, Z. P.; Cai, X. B.; Wang, S. P; Yu, J.-L.; Liu, H. J.; Cui, Y. Y. J. Org. Chem. 2007, 72, 9838. b) Wang, T.; Chen, X. 1.; Chen, L.; Zhan, Z. p. Org. Lett., 2011, 13, 3324. c) Ji, W. h.; Pan, Y. m.; Zhao, S. y. Z. p. Zhan, Synlett, 2008, 3046. d) Chong, Q.; Xin, X.; Wang, C.; Wu, F.; Wang, H.; Shi, J. C.; Wan, B. J. Org. Chem. 2014, 79, 2105. e) Ryu, T.; Eom, D.; Shin, S.; Son, J-Y.; Lee, P. H. Org. Lett. 2017, 19, 452. f) Zhang, X.; Lu, Z.; Fu, C.; Ma, S. J. Org. Chem. 2010, 75, 2589. g) Pareek, A.; Dada, R.; Rana, M.; Sharma, A. K.; Yaragorla, S. RSc Adv., 2016, 6, 89732. h) Hosseyni, S.; Su, Y.; Shi, X. Org. Lett. 2015, 17, 6010. i) Yaragorla, S.; Dada, R.; Pareek, A.; Rana, M.; Sharma, A. K. Chemistryselect 2016, 1, 6902. j) Sniady, A.; Durham, A.; Morreale, M. S.; Wheeler, K. A.; Dembinski, R. Org. Lett., 2007, 9, 1175; k) Tsuhi, H.; Yamagata, K.-i.; Ueda, Y.; Nakamura, E. Synlett, 2011, 1015.
- (9) Chen, S.; Yuan, F.; Zhao, H.; Li, B. Res. Chem. Intermed. 2013, 39, 2391.
- (10) a) Pearson, R. G. J. Am. Chem. Soc. 1963, 85, 3533. b) Pearson, R. G. Science, 1966, 151, 172. c) LokHo, T. Chem. Rev. 1975, 75, 1. d) Mayr, H.; Breugst, M.; Ofial, A. R. Angew. Chem., Int. Ed. 2011, 50, 6470.
- (11) a) Yaragorla, S.; Pareek, A.; Dada, R.; *Tetrahedron Lett.* **2017**, *58*, 4642. d) Yaragorla, S.; Dada, R.; Pareek, A.; Singh, G. *RSC Adv.* **2016**, *6*, 28865.
- (12) a) Sromek, A. W.; Rubina, M.; Gevorgyan, V. J. Am. Chem. Soc., 2005, 127, 10500.
 b) Zhou, C.-Y.; Chang, P. W. H.; Che, C.-M. Org. Lett., 2006, 8, 325.
- (13)a) Yaragorla, S.; Pareek, A.; Dada, R. Adv. Syn. Catalysis, 2017, 359, 3068. b)
 Yaragorla, S.; Pareek, A.; Dada, R. Eur. J. Org. Chem. 2017, 4600. c) Yaragorla, S.;
 Dada, R.; Rajesh, P.; Sharma, M. ACS Omega, 2018, 3, 3804.
- (14) sanz, R.; Migue, D.; Martinez, A.; Alvarez-Gutierez, J. M.; Rodriguez, F.; *Org. Lett.* **2007**, *9*, 727.

2.9.5a Crystal data and structure refinement for 124h &125h.

Chapter 2

Density (calculated)

Unit cell dimensions	a = 9.9166 (11) Å b = 10.0554 (13) Å	$\alpha = 106.883^{\circ} (5).$ $\beta = 98.953^{\circ} (5).$
	c = 12.1593 (15) Å	$\gamma = 94.007 ^{\circ} (5).$
Volume	1137.6(2)	
Z	2	
Density (calculated)	1.198 Mg/m^3	
Absorption coefficient	0.077 mm ⁻¹	
F(000)	436.0	
Crystal size	$0.4 \times 0.32 \times 0.28 \text{ mm}^3$	
Theta range for data collection	2.32 to 27.650 $^{\circ}$.	
Index ranges	-12<=h<=12,-13<=k<=13,-15<=l<=15	
Reflections collected	5243	
Independent reflections	2905 [R(int) = 0.0607]	
Max. and min. transmission	0.971 and 0.973	
Refinement method	Full-matrix least-squares on F ²	
restraints / parameters	0 / 287	
Goodness-of-fit on F ²	0.956	
Final R indices [I>2sigma(I)]	R1 = 0.0607, wR2 = 0.1611	
R indices (all data)	R1 = 0.1298, $wR2 = 0.1322$	
Crystal data and structure refinement for 125h.		
Identification code	'SHELXL-2014/7	
Empirical formula	$C_{27}H_{23}O_3$	
Formula weight	395.45	
Temperature	298 (2) K	
Wavelength	0.71073 Å	
Crystal system	'Triclinic'	
Space group	P-1	
Unit cell dimensions	a = 9.8049 (9) Å	$\alpha = 87.971^{\circ}$ (4).
	b = 9.8109 (10) Å	$\beta = 75.802 \circ (4)$.
	c = 11.3980 (12) Å	$\gamma = 85.937 ^{\circ} (4).$
Volume	1060.08(18)	
Z	2	

1.239 Mg/m³

Chapter 2

Absorption coefficient 0.080 mm⁻¹

F(000) 418.0

Crystal size $0.42 \times 0.32 \times 0.22 \text{ mm}^3$

Theta range for data collection 2.466 to 27.973°.

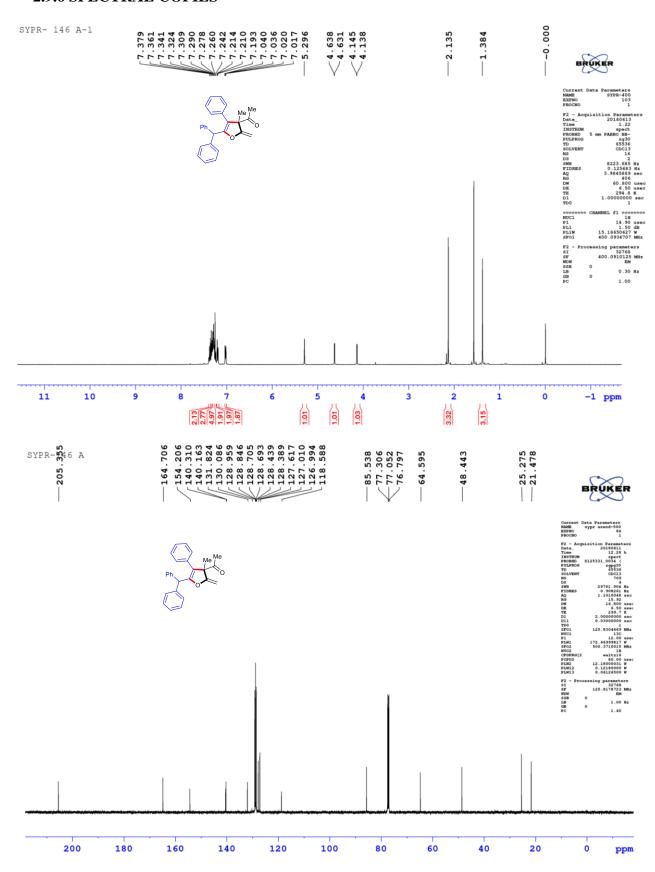
Index ranges -12 <= h <= 12, -12 <= k <= 12, -15 <= l <= 15

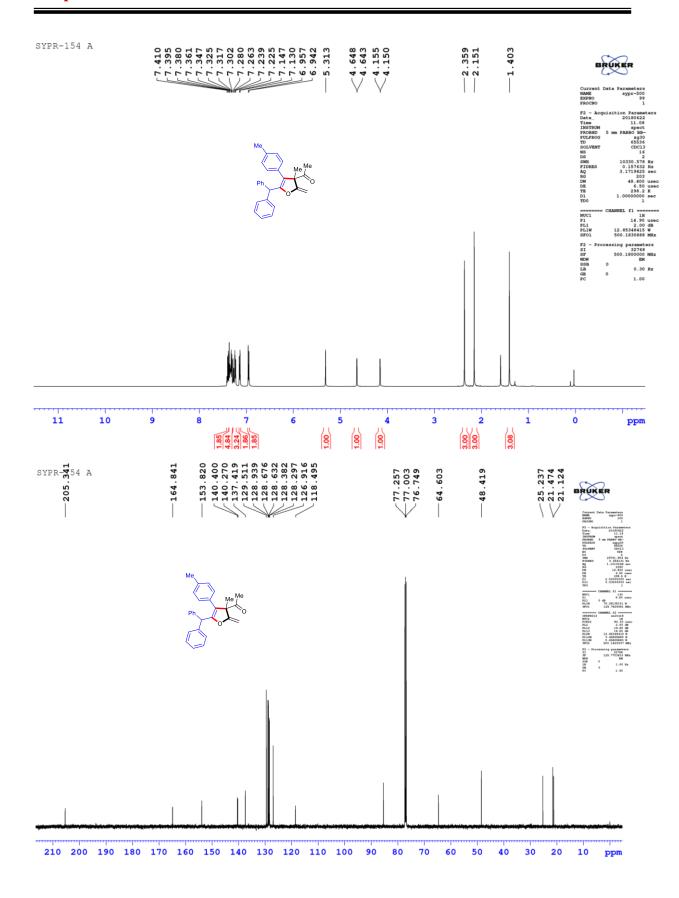
Reflections collected 5052

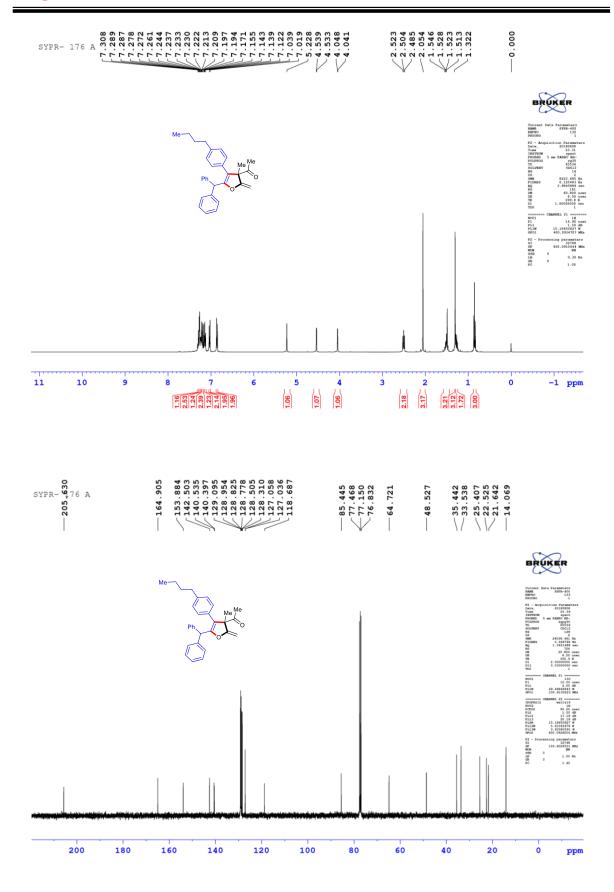
Independent reflections 3935 [R(int) = 0.0603]

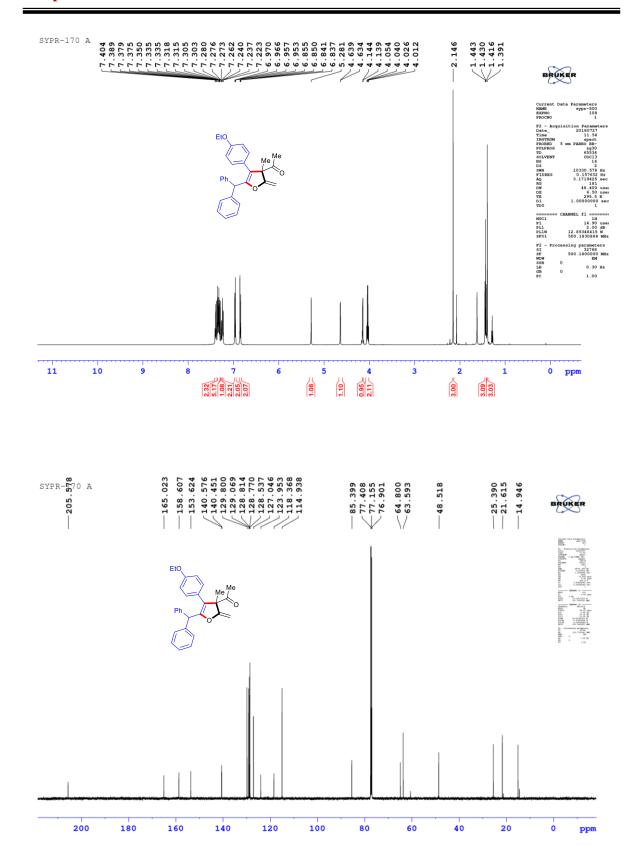
Max. and min. transmission 0.970 and 0.983

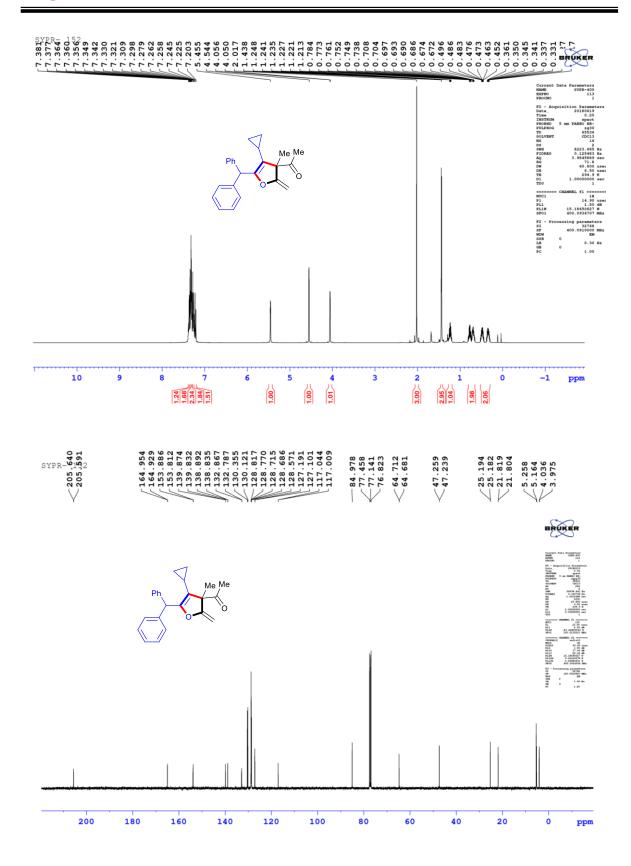
Refinement method Full-matrix least-squares on F²

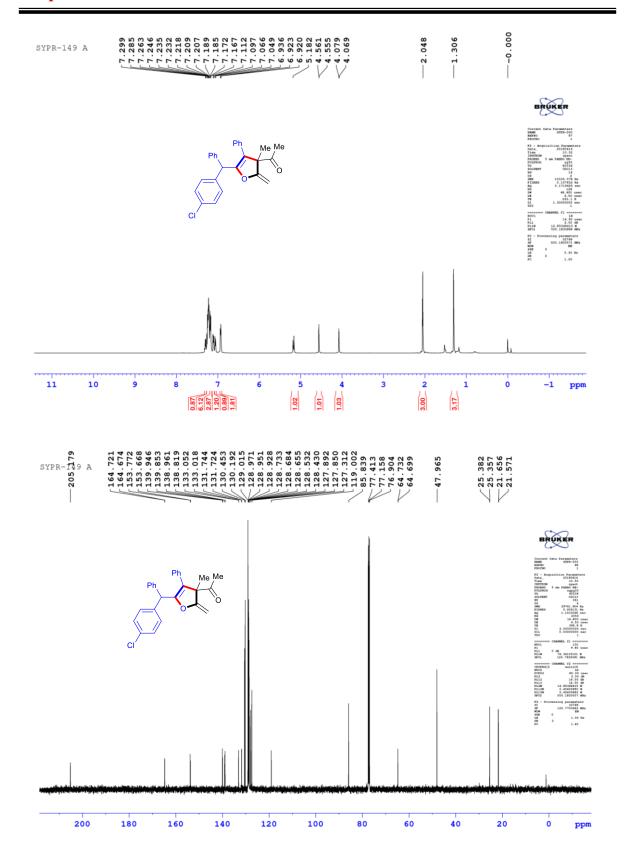

restraints / parameters 0 / 271

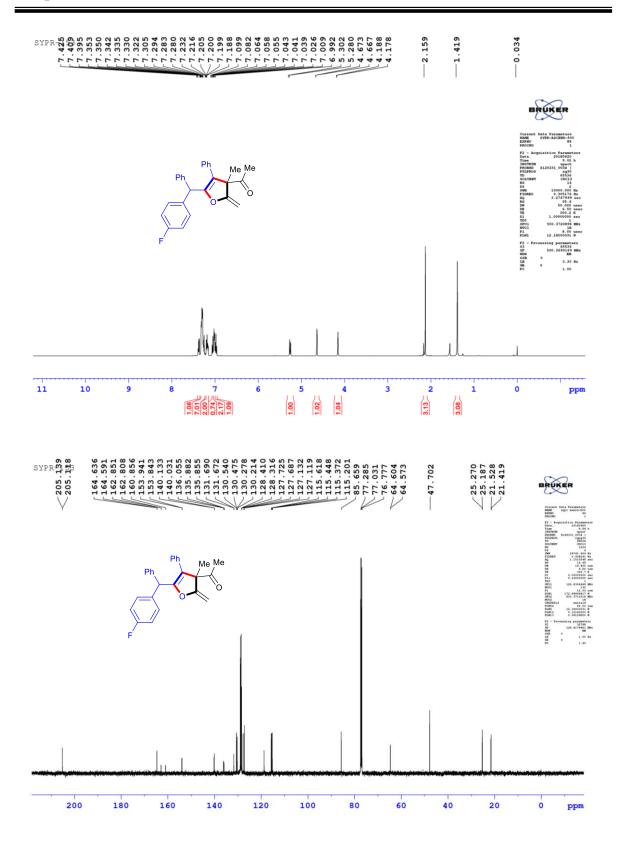

Goodness-of-fit on F^2 1.065

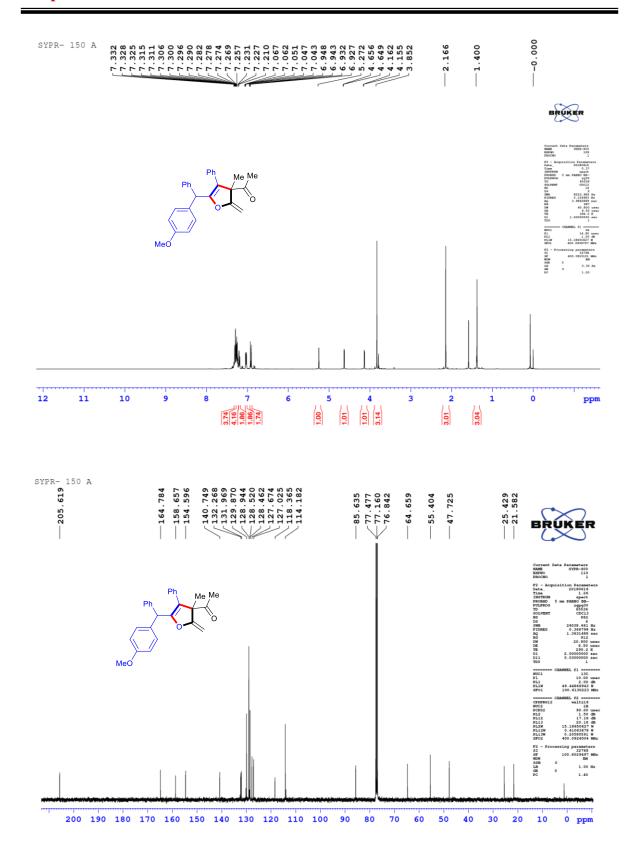

Final R indices [I>2sigma(I)] R1 = 0.0603, wR2 = 0.1658

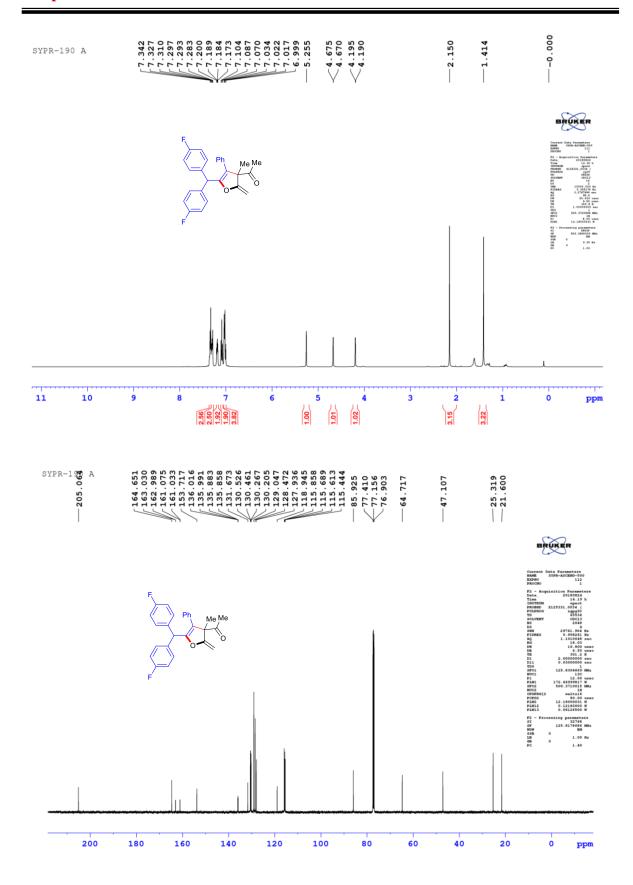

R indices (all data) R1 = 0.0779, wR2 = 0.1761

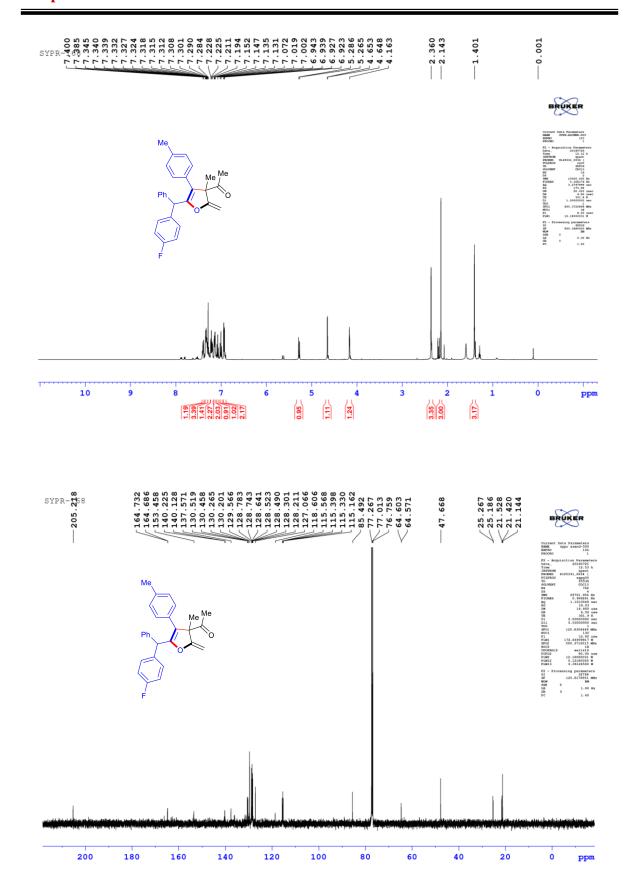

2.9.6 SPECTRAL COPIES

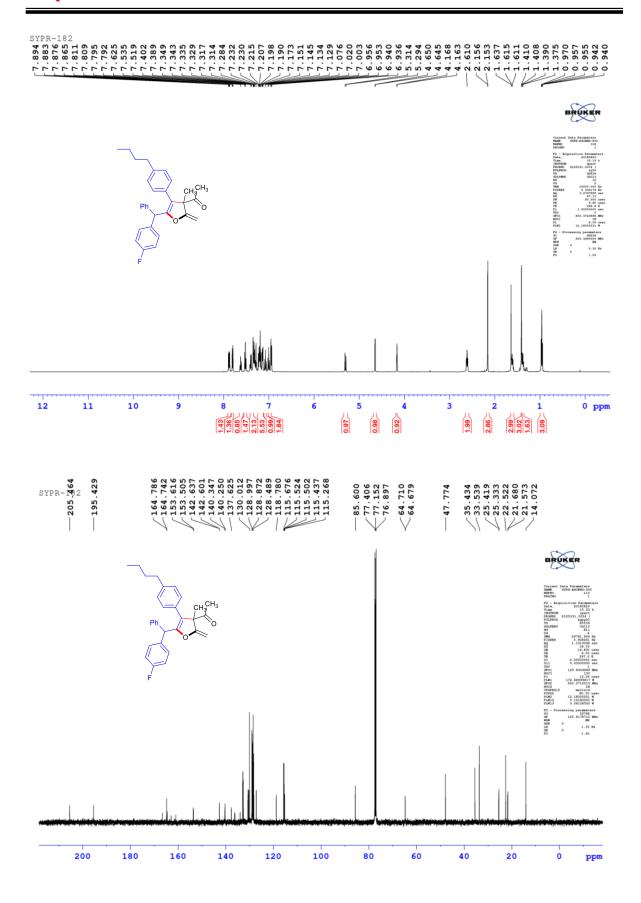


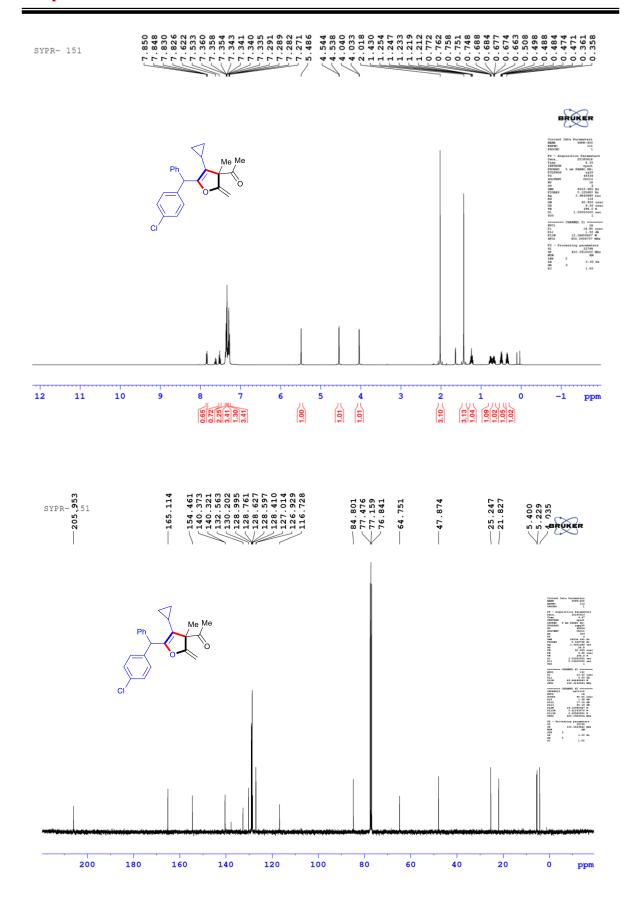


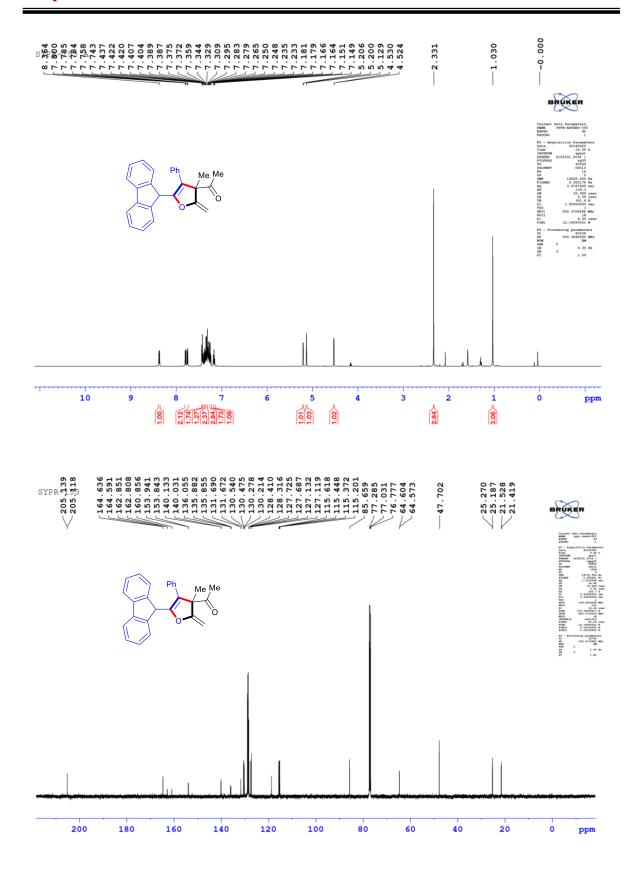


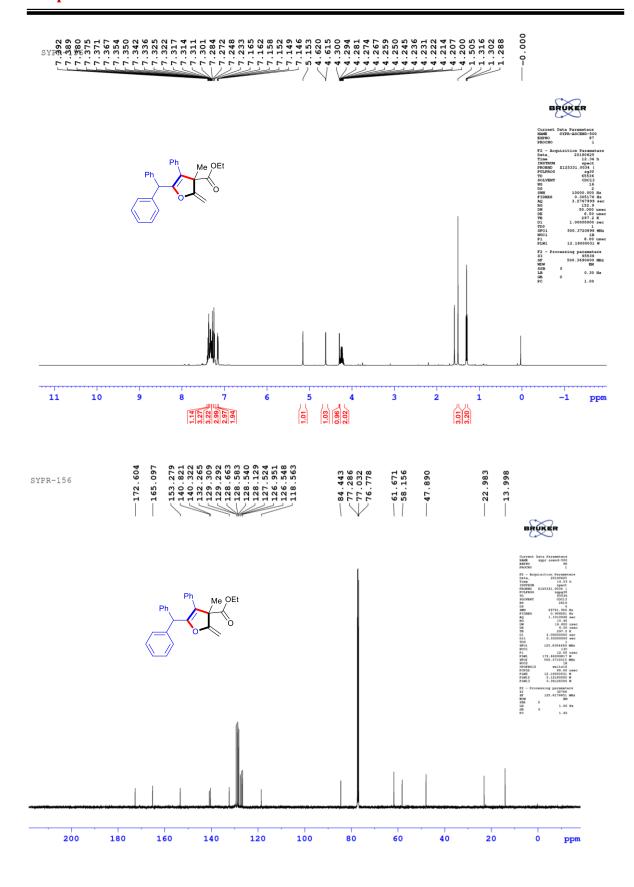


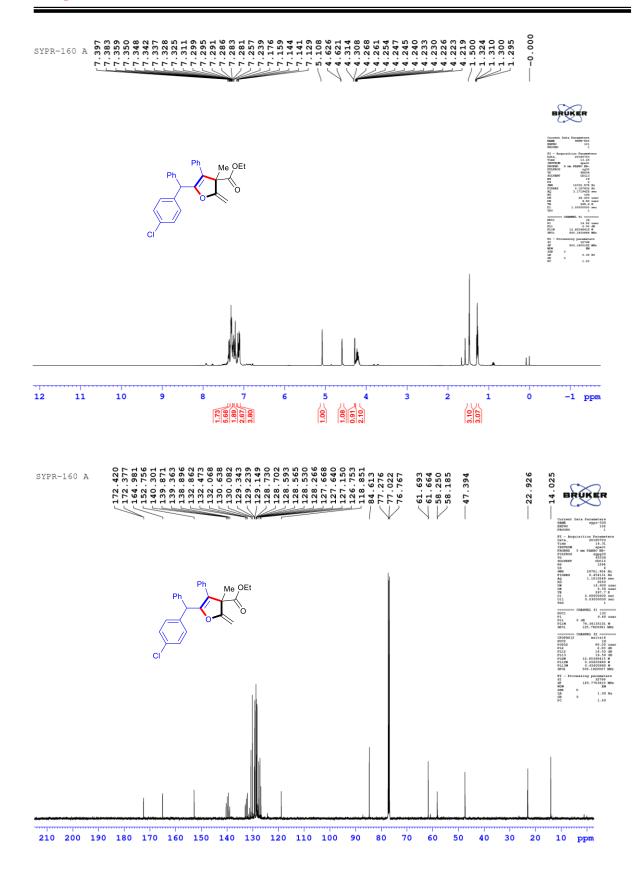


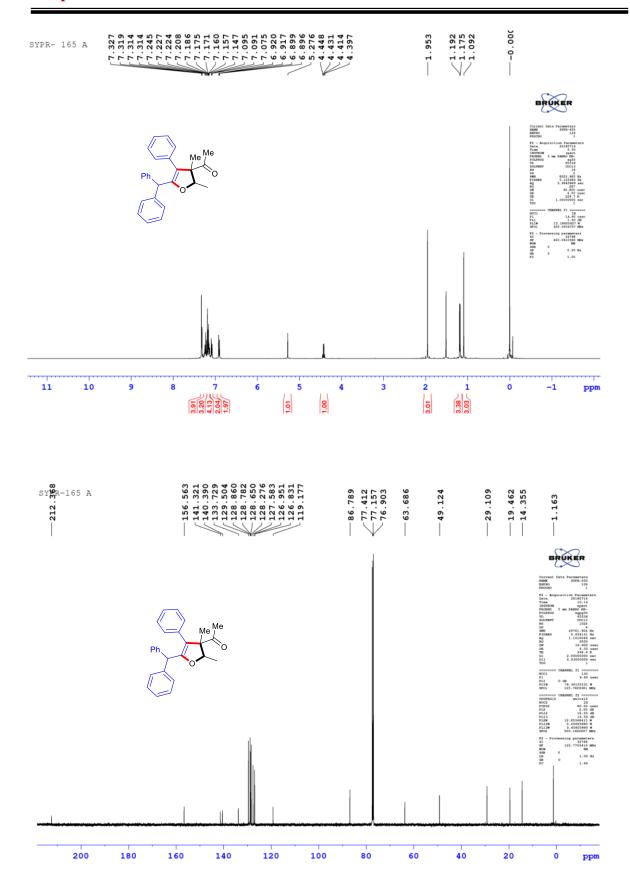


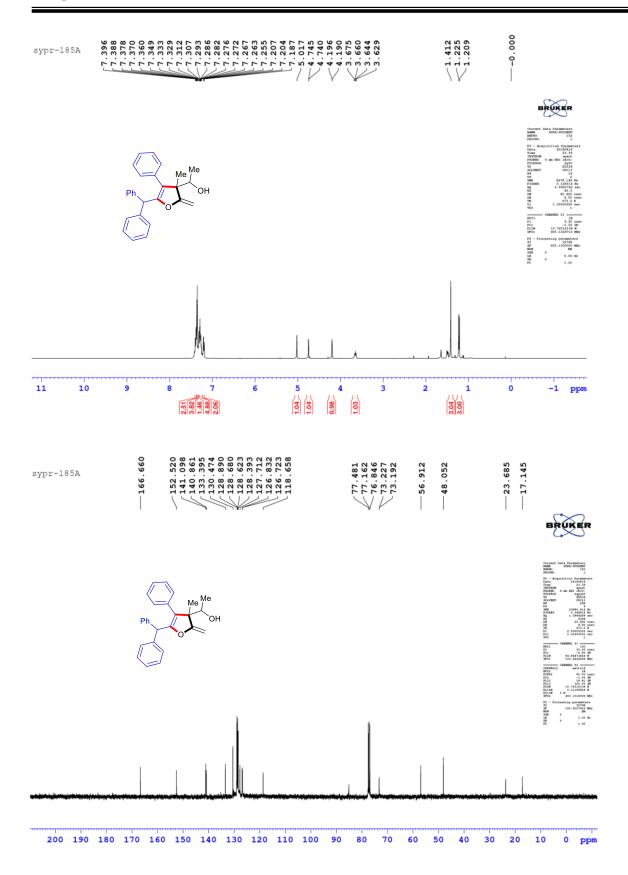


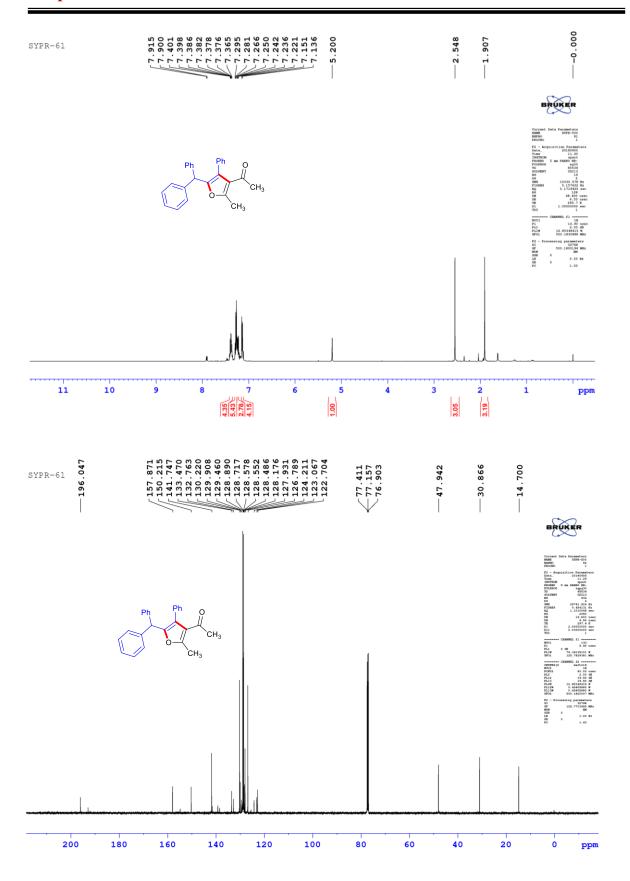


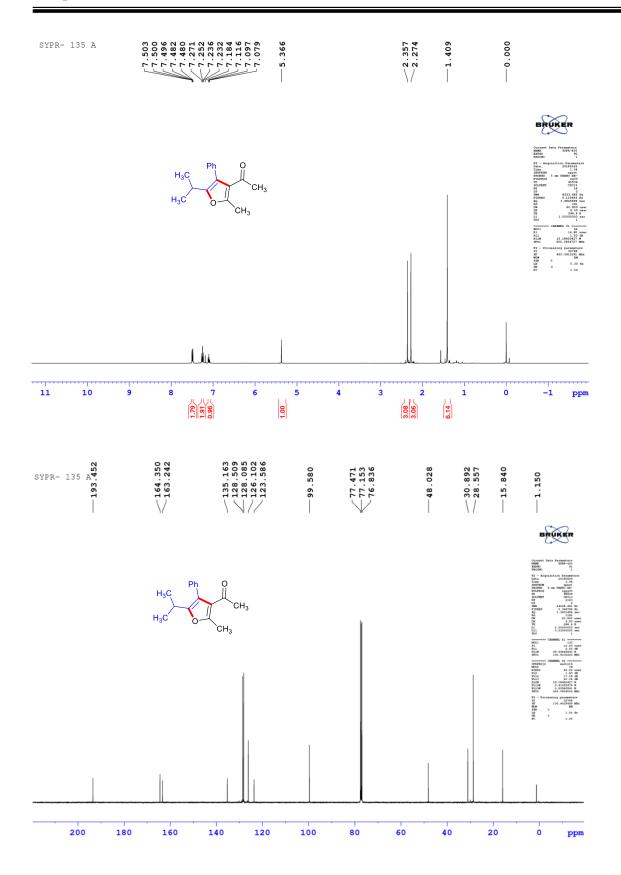


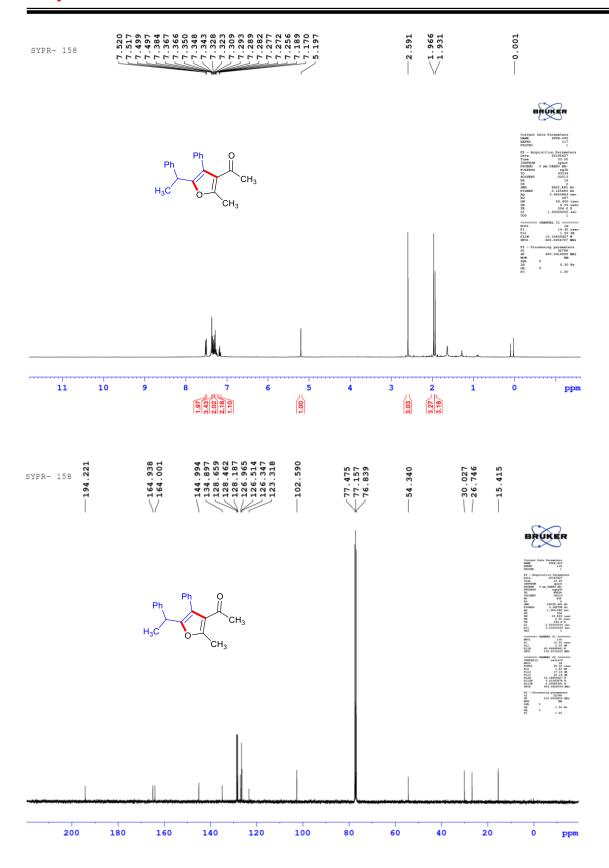


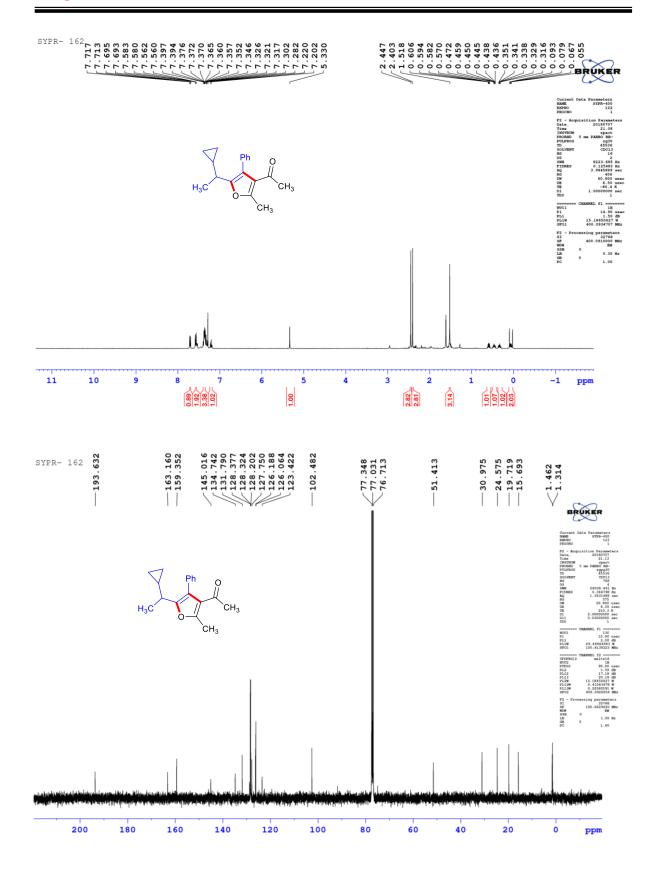


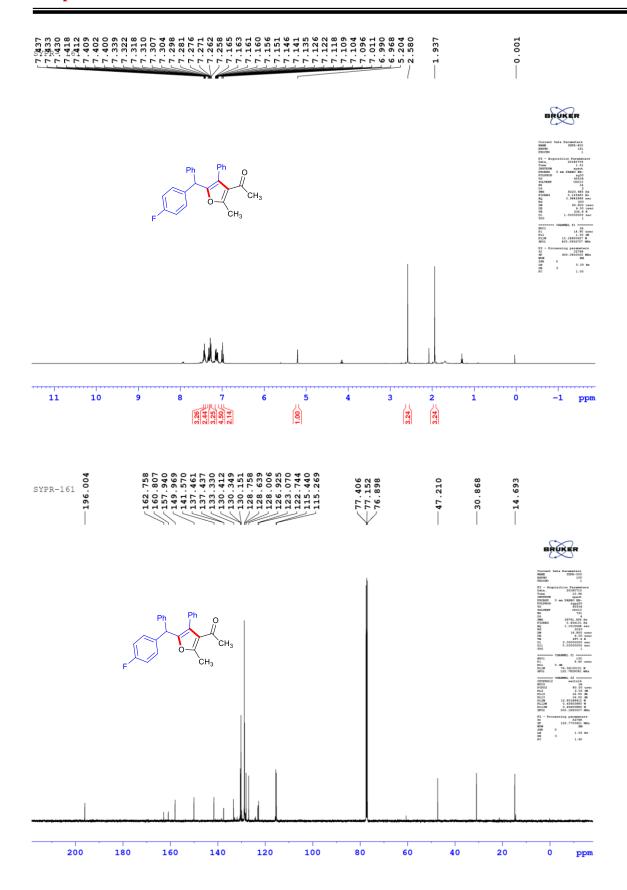


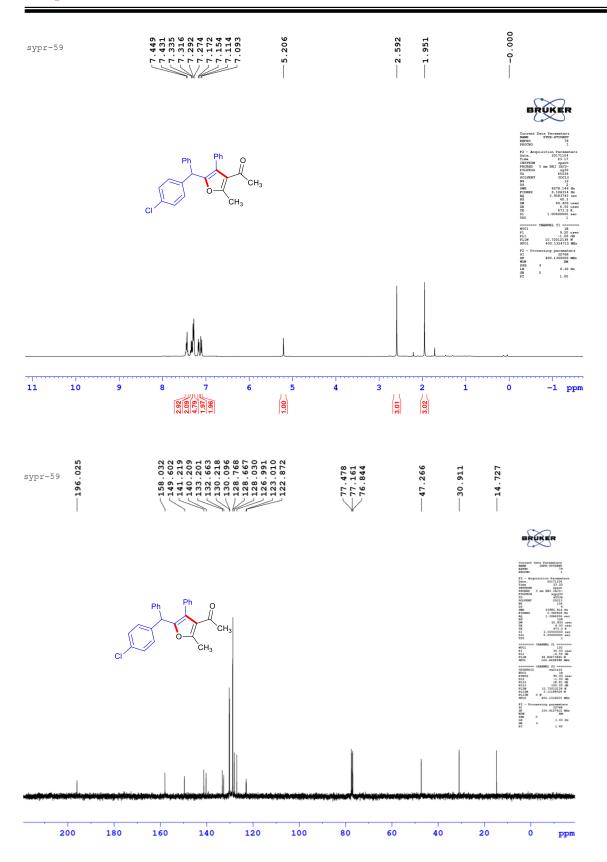


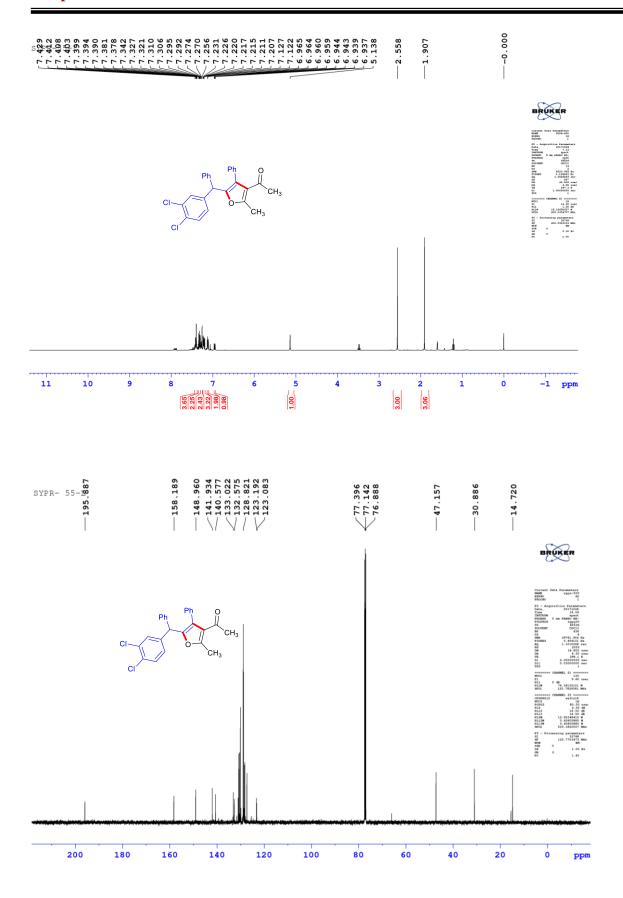


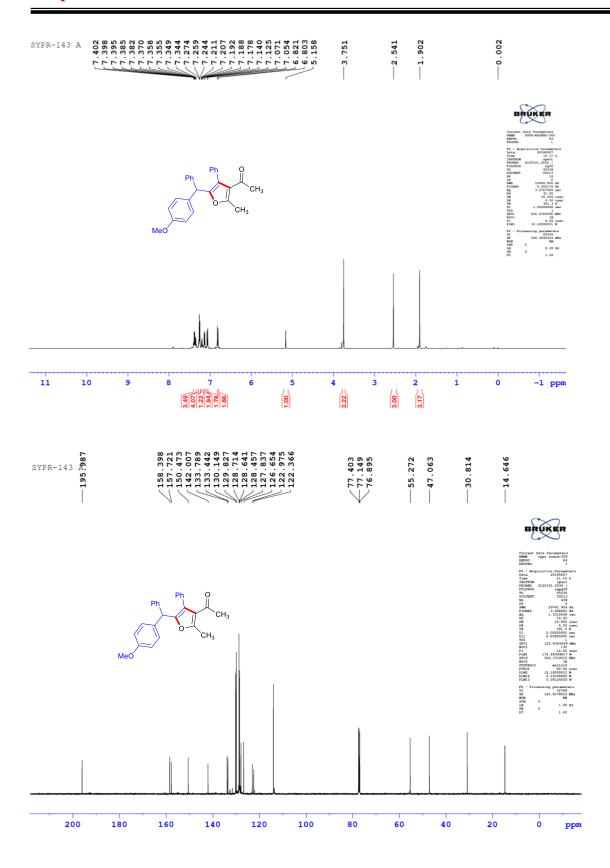


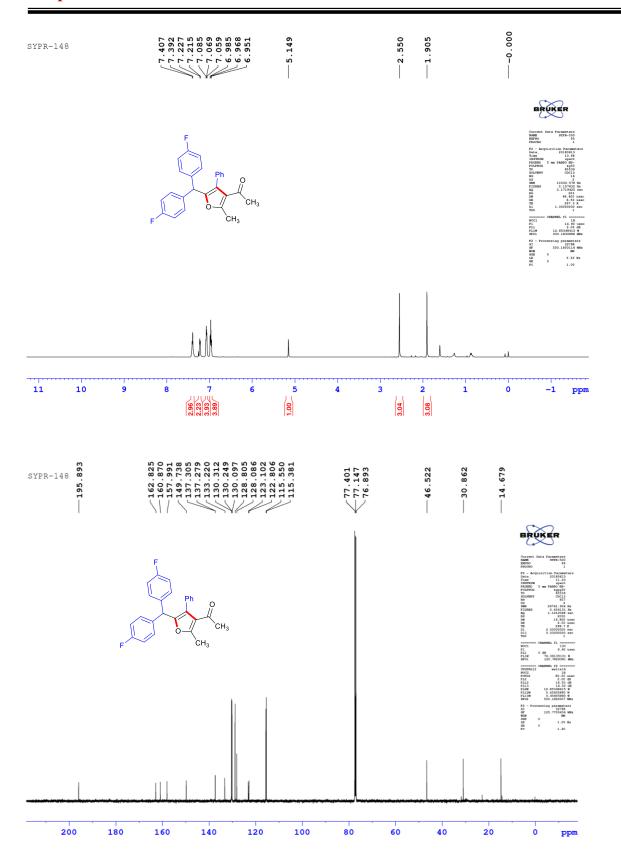


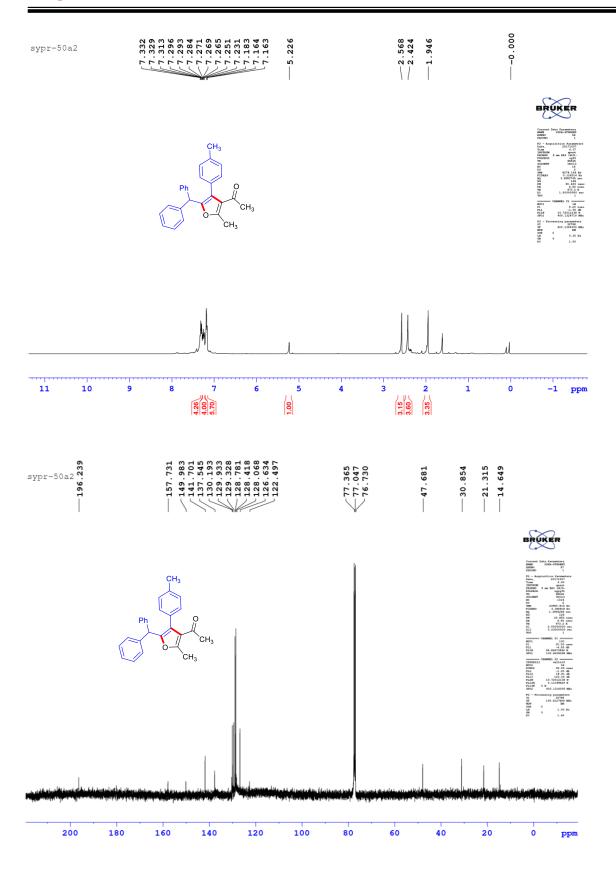


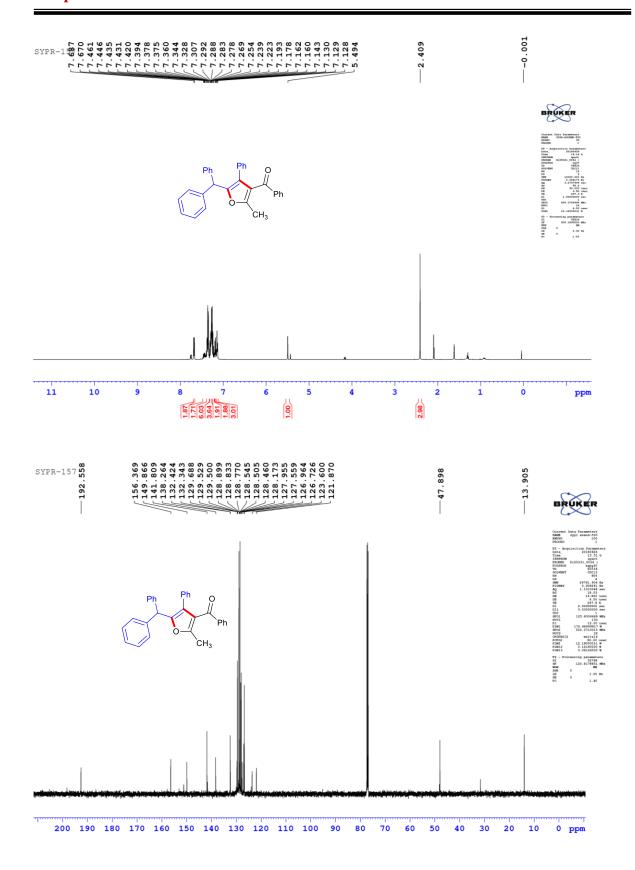


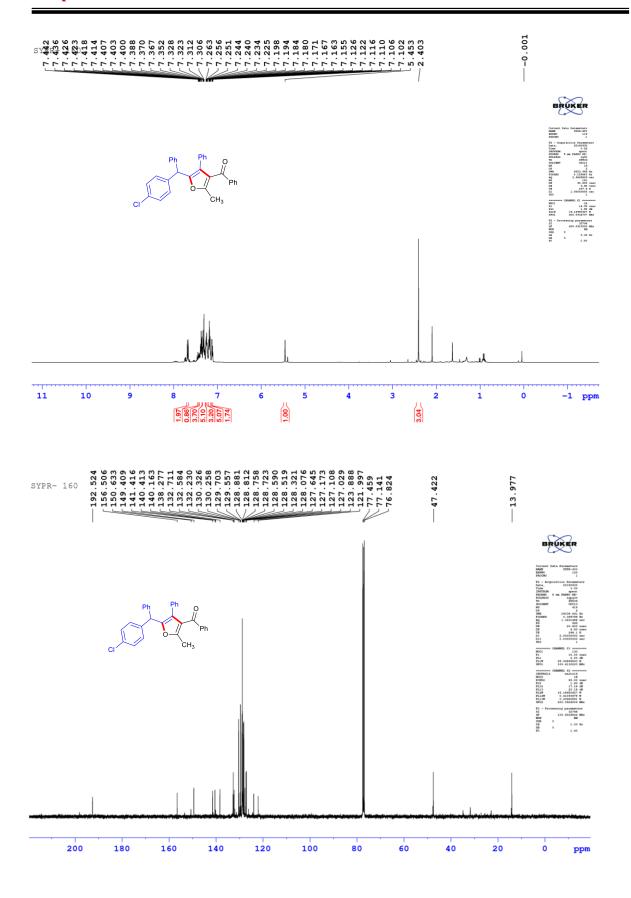


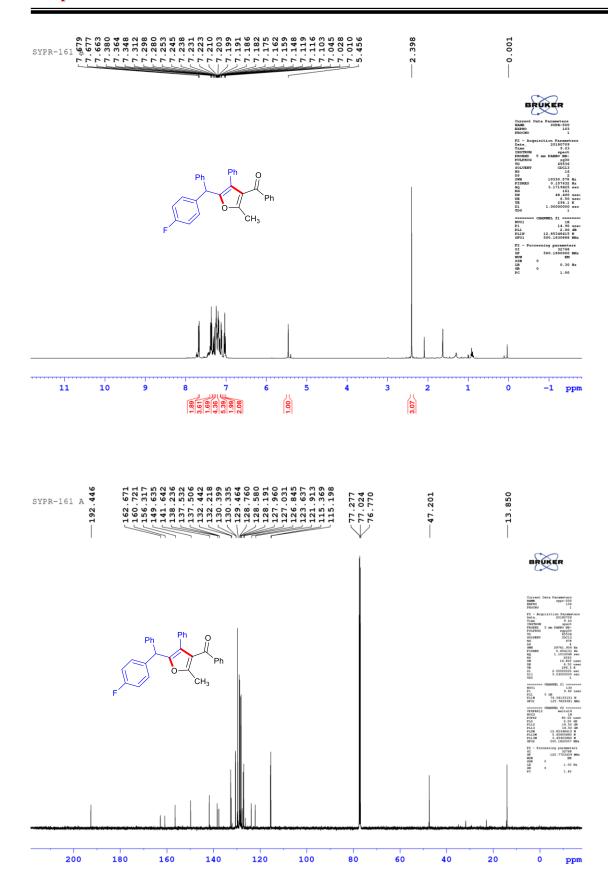


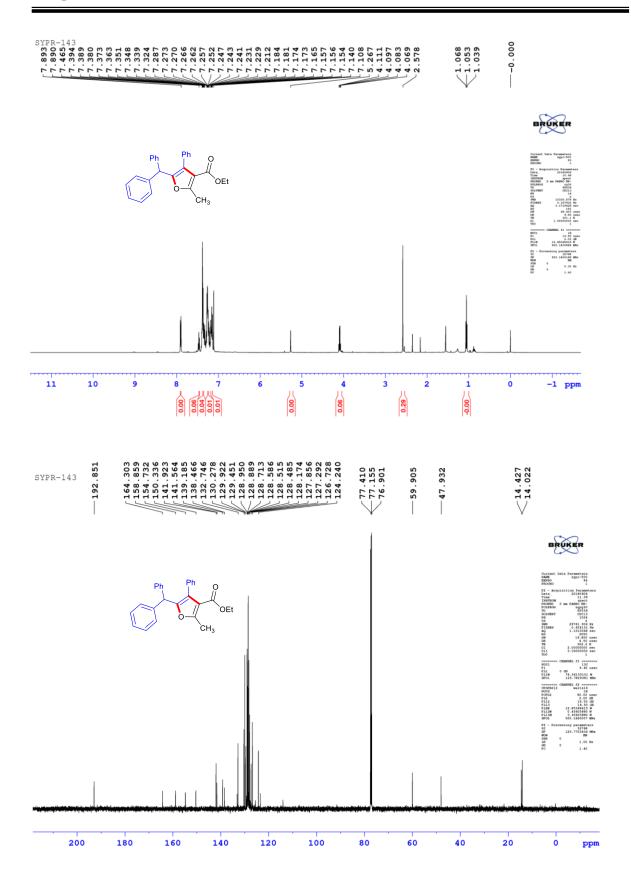


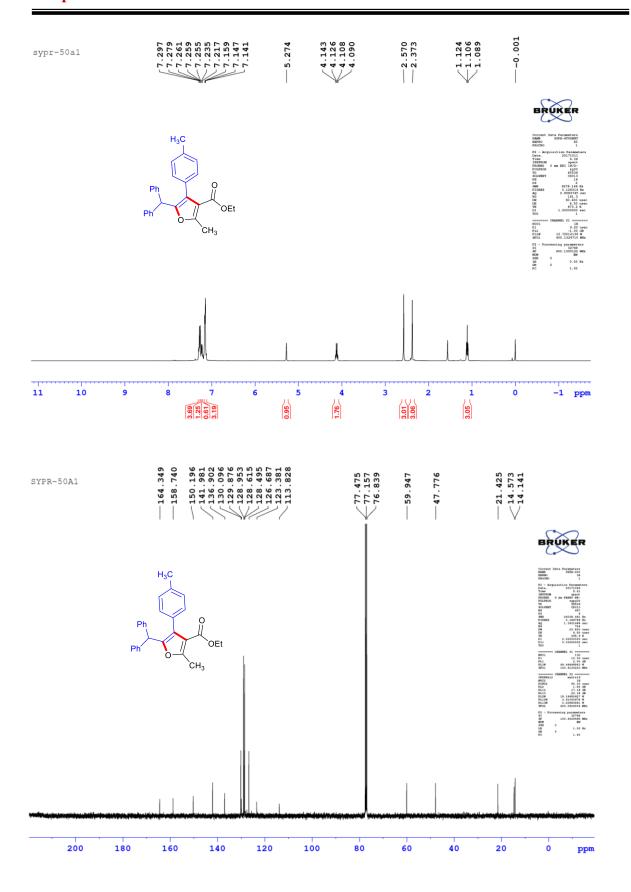


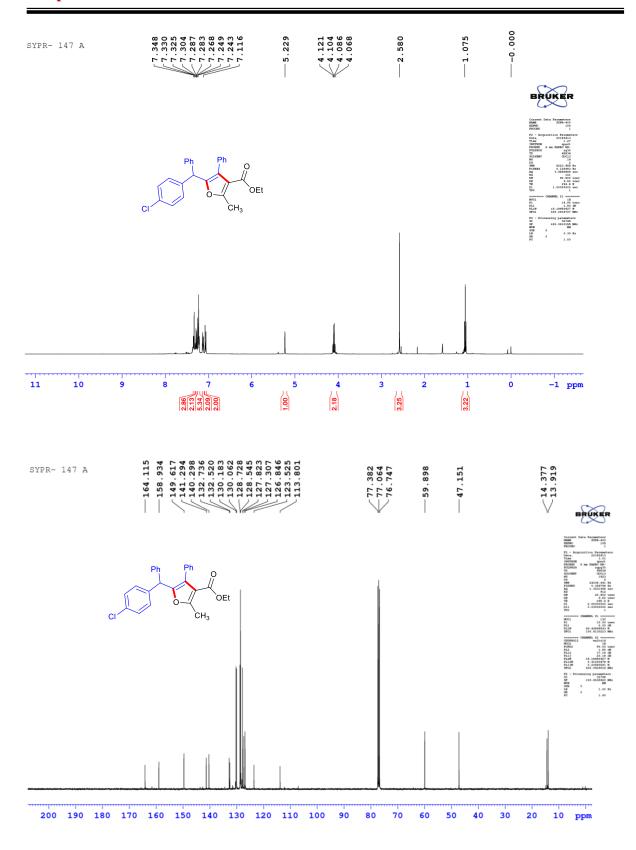


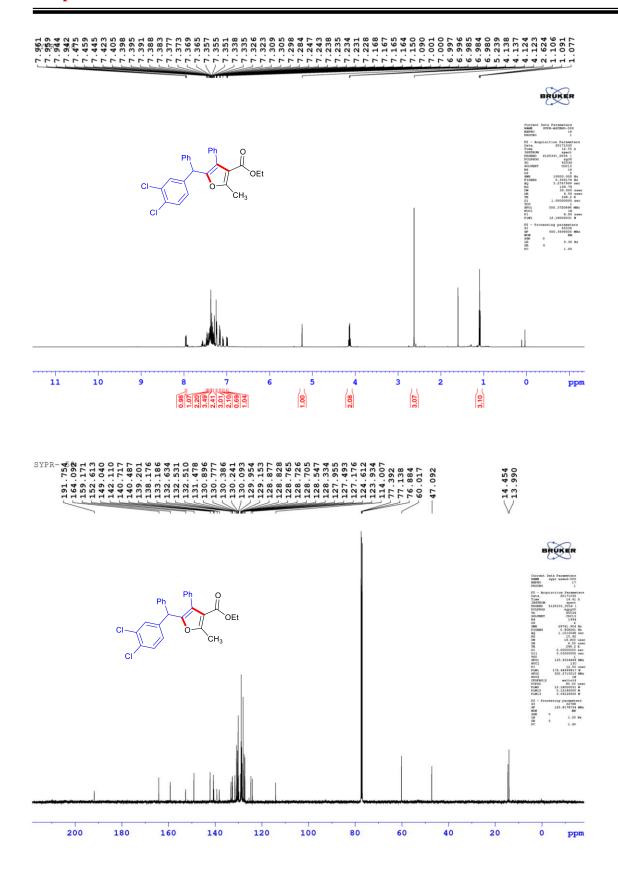


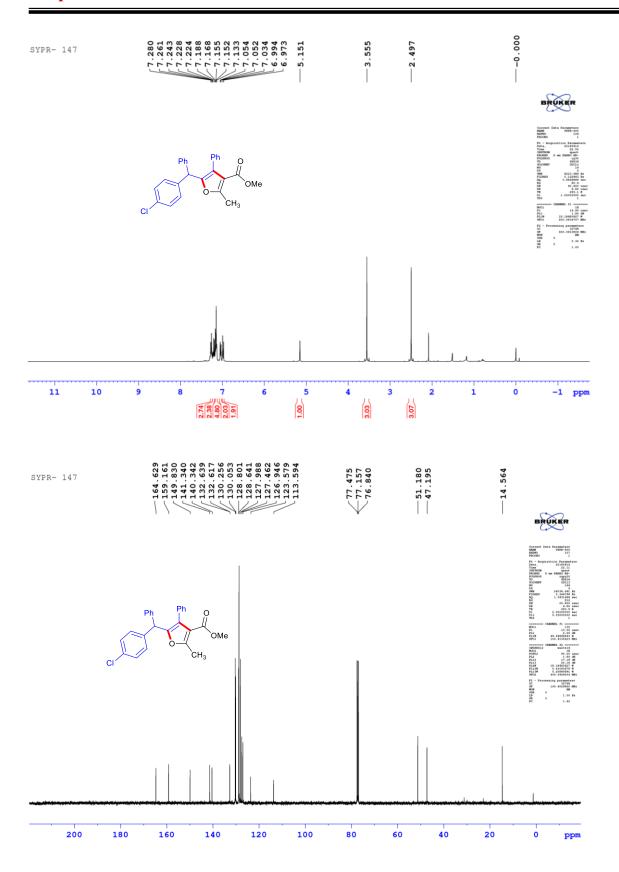


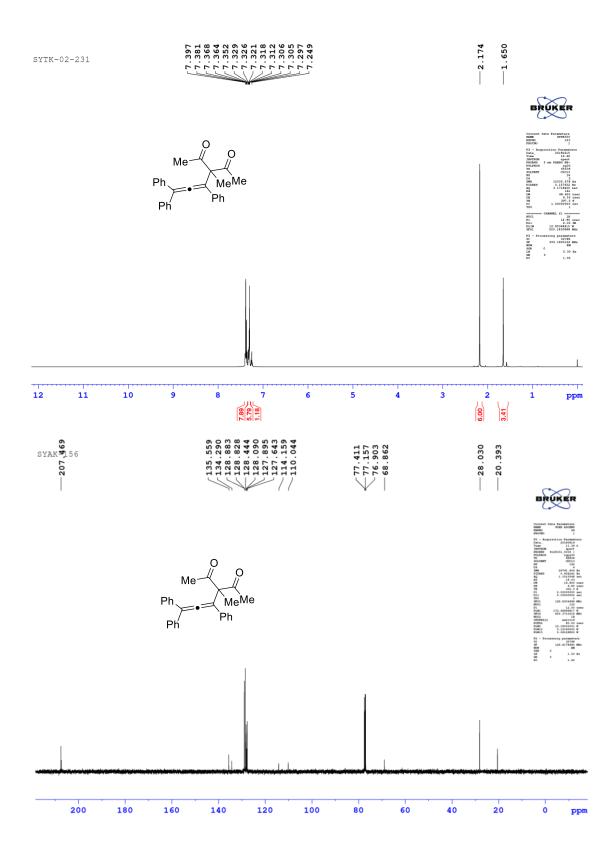


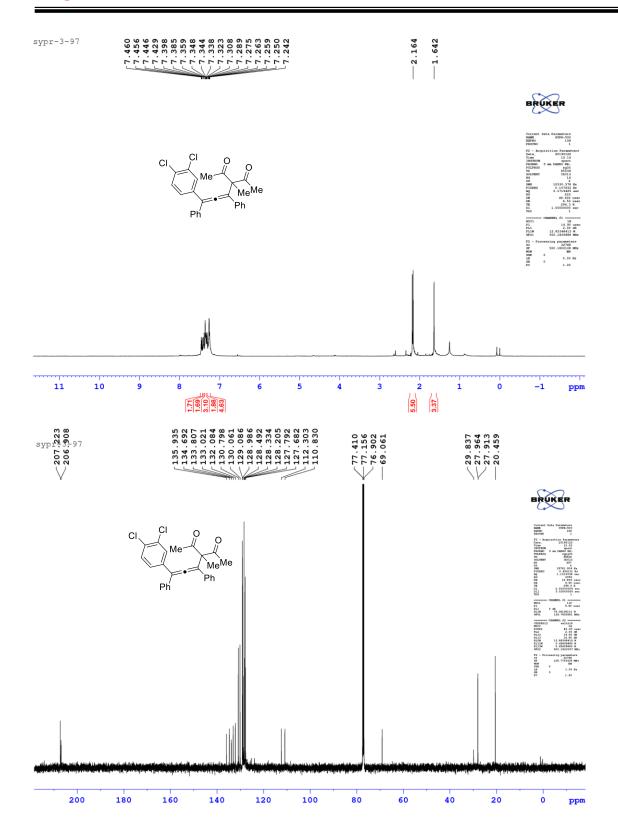


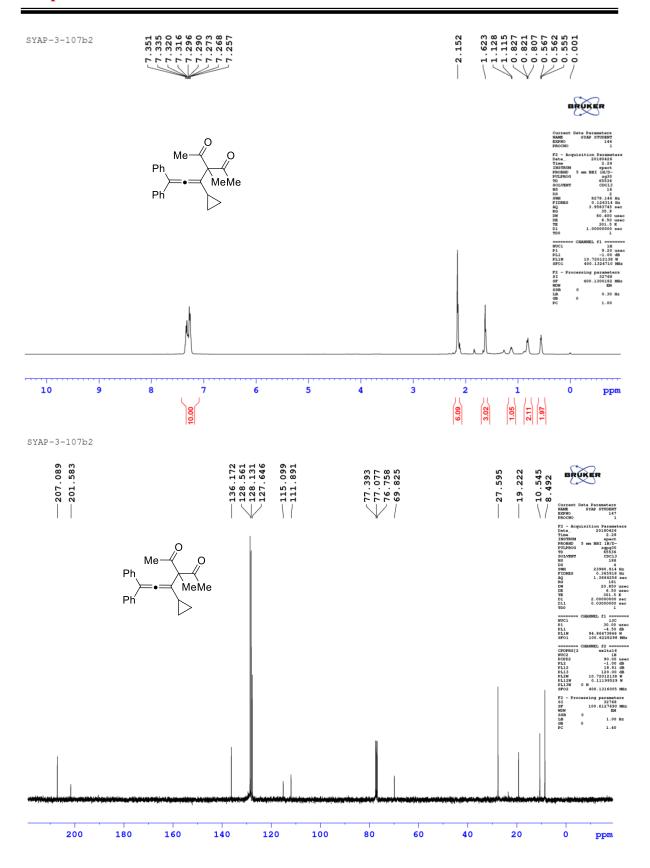


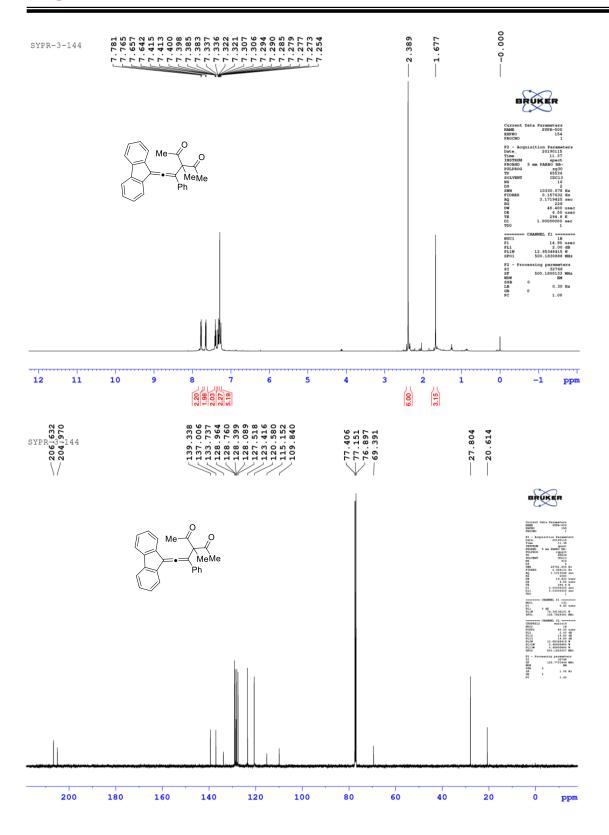


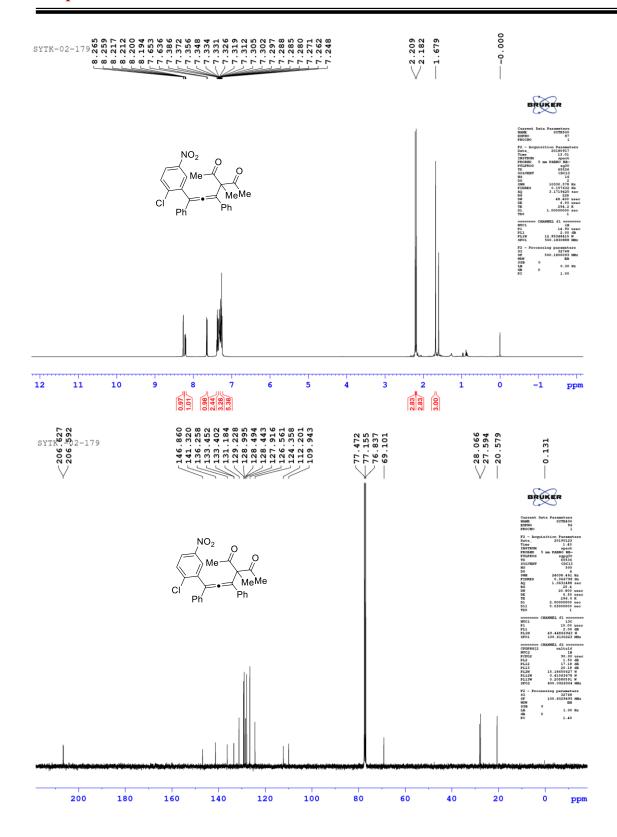












Synthesis and in-situ cyclization of tetrasubstituted allenes to access tricyclic fluorenols

Eur. J. Org. Chem. 2019, 5740-5748

3.1 Hypothesis and planning

In continuation of our earlier experimental studies on *tert*-propargyl alcohols and their reactivity towards the generation of the new kind of heterocyclics, aryl substitution at one of the allenic carbon can change the reactivity by participating in the annulation processes, a similar kind of reaction was already discussed in the previous chapter. In that case during the optimization studies to enhance the yield of the cyclized product, a trace amount of the annulated product was also observed. Later, we found that the formed product was fluorene moiety. After this positive outcome, we wanted to work further on this chemistry to get substituted fluorene compounds, because most of the fluorene-containing molecules show greater biological activities and can also be utilized in material science. When we look at the literature for fluorene chemistry, we found that a similar kind of reaction was done by using the starting materials with different reaction conditions as shown in scheme 1.

As fluorenols were found to be an important structural theme with a 6-5-6 tricyclic framework in biologically active natural molecules. These structures are commonly known as fluorenes, which are well-known privileged structures with applications in the fields of material science and the pharmaceutical industry.^{1,2} Due to their unique properties such as good charge transporters with high chemical stability, molecules with a core structure of fluorene are utilized as Dye Sensitized Solar Cells (DSSC) and light emitting diodes in material science.¹ The separation of fluostatins and pyrazolofluostatins demonstrates their abundance in natural products (Figure 1).^{3,4} The fluostatin family of natural compounds has been shown to have a wide range of bioactivities, including inhibition of dipeptidyl peptidases, antibacterial, and anticancer properties.³ Pyrazo fluostatins were recently identified from Micromonospora rosaria SCSIO N160, a sea-derived micromonospora from South China.⁴ Selanginpulvilins are a series of natural compounds with a structure of 9,9-diphenyl-9H-fluorenol (Figure 1) which were isolated and exhibited strong phosphodiesterase-4 (PDE4) inhibitory activity.^{5,6}

Figure.1 Representative examples of biologically active natural products with the core structure of fluorenol.

3.2 PREVIOUS REPORTS

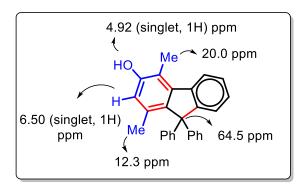
Only one report was available in the literature till now that is by K.W. Huang *et al.*⁷ in 2012, fluorenols were synthesized by the reaction of propargylic alcohol and 3-methylpentane-2,4-dione *via* Friedel-Crafts reaction, followed by a cyclization (Scheme 1).

Scheme 1. TsOH catalyzed synthesis of 1,4-dimethyl-9,9-diphenyl-9*H*-fluoren-3-ols.

Table 1. Optimization of reaction conditions for the one-pot synthesis of 1,4-dimethyl-9,9-diphenyl-9*H*-fluoren-3-ols (**128a**).^a

Entry	Catalyst (mol%)	Solvent (Temp °C)	Time (h)	Yield (%) ^[b]
1	Ca(OTf) ₂ /Bu ₄ NPF ₆ (10/5 mol%)	neat (90)	3	47
2	Ca(OTf) ₂ /Bu ₄ NPF ₆ (10/5 mol%)	CH ₃ CN (90)	2.5	55
3	Ca(OTf) ₂ /Bu ₄ NPF ₆ (10/5 mol%)	EtOH (90)	2.5	nr
4	Ca(OTf) ₂ /Bu ₄ NPF ₆ (10/5 mol%)	toluene (100)	2.5	45
5°	Ca(OTf) ₂ /Bu ₄ NPF ₆ (10/5 mol%)	DCE (90)	2.5	85
6	Ca(OTf) ₂ /Bu ₄ NPF ₆ (10/10mol%)	DCE (90)	2.5	85
7	Ca(OTf) ₂ /Bu ₄ NPF ₆ (5/10 mol%)	DCE (90)	3	67
8	Ca(OTf) ₂ /KPF ₆ (10/5 mol%)	DCE (90)	6	20
9	TsOH (10 mol%)	DCE (90)	3.5	69
10	FeCl ₃ (10 mol%)	DCE (90)	10	28

^aMixture of **1a** (1 equiv.), **72b** (1.3 equiv.) were used; ^bIsolated yields; ^cOptimum conditions; DCE: 1,2- dichloroethane; rt: room temperature

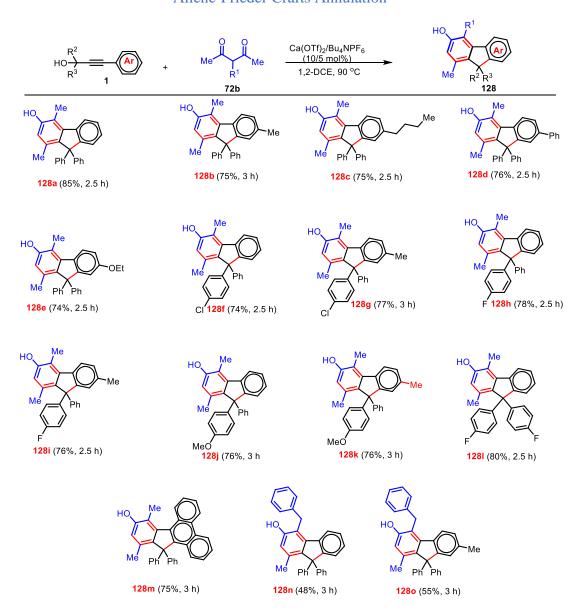

3.3 Optimization Studies

The 9,9-diaryl-9H-fluorenol core structure represents a viable lead for further biological properties study due to its unique structural framework and biological activities connected with these substances. Various research groups have released a few reports on total syntheses and a synthetic strategy in this area.⁶⁻⁹ Our research group has been working on developing new synthetic methods for annulation reactions for the past few years.¹⁰ Because of the high demand for 9,9-diaryl-9H-fluorenols, we present a single-step benzannulation synthesis of 9,9-diphenyl-9H-fluorenols. The search for tolerable reaction conditions for the synthesis of proposed 9,9-diaryl-9H-fluorenol began with the choice of 3-methylpentane-2,4-dione (72b)

and propargyl alcohol (**1a**) as reacting partners in the benzannulation process to produce the synthesis of (114a). **1a** (1 equiv.) and **72b** (1.3 equiv.) were heated directly (neat condition) with Ca(OTf)₂/Bu₄NPF₆ (10/5 mol%)¹⁰⁻¹¹ at 90 °C, and 9,9-diphenyl-9H-fluorenol **128a** was produced in 47% yield after 3 h, as expected. (entry 1, Table 1). We thought that using a solvent medium would help increase the reaction yield, so we refluxed the reaction in acetonitrile (polar aprotic) for 2.5 h, yielding 55% of **128a**. Next, the solvent was switched to ethanol (polar protic solvent), but there was no reaction in ethanol, but toluene (nonpolar solvent) gave 45% yield of **128a** (entries 2-4, table 1).1,2-dichloroethane as the solvent medium gave 85% yield of **128a** (entry 5, Table 1). Attempts to improve the yield of **128a** by increasing or decreasing the catalyst loadings failed. Alternative catalysts such as TsOH (10 mol%) and FeCl₃ (10 mol%) were also investigated, however, both provided moderate to poor yields. (entries 8, 9). Hence entry 5 (Table 1) was the best reaction setting for the synthesis of **128a** (85% yield) from **1a** and **72b** is considered.

3.3a Characterization of Compound 123a

The isolated compound **128a** was fully characterized by ¹H NMR, ¹³C NMR. The characteristic OH proton has appeared at 4.92 ppm in ¹H NMR spectra, and a quaternary carbon was noticed in ¹³C NMR spectra shown at 64.5 ppm. These all data were quite identical to reported data of compound **128a**.



3.3b Scope of the Reaction

We wanted to generalize this approach to examine the feasibility of various substituents on the reactants after determining the best reaction conditions for the synthesis of **128a** (Table 2). As a result, we treated **72b** with a variety of propargyl alcohols (1) with alkyl substitutions on the aryl ring under optimal reaction conditions and got the fluorenols **128b** (7-methyl) and **128c**, (7-butyl) in good yields. Fluorenol **128d** was synthesized with a C7-phenyl substitution and fluorenol **128e** was synthesised with a C7-ethoxy substitution. This approach tolerated

propargylic-phenyl replacements (on substrate 2) and produced high yields of the fluorenols 128f, 128h, and 128j containing *p*-chloro, *p*-fluoro, and *p*-methoxy groups. Fluorenol 128i was made which is bearing both the phenyl groups with *p*-fluoro substitutions at the quaternary center. Products 128g, 128i, 128k indicate that the protocol offers to have more than one substitution on reactant 1. Interestingly, when the aryl moiety of propargyl alcohol 1 was taken as phenanthrenyl and it also gave the product 128m in good yield. Then we decided to modify the methyl substitution on diketone (72g), so we made a diketone with a benzyl group¹² on the active methylene carbon (1b) and treated it with propargyl alcohols under usual circumstances to get the fluorenols 128n and 128o in modest yields (Table 2)

Table 2. Synthesis of 9,9-diphenyl-9*H*-fluorenols through a Ca(II)-catalyzed Intramolecular-Allene-Friedel-Crafts Annulation

All reactions were carried out using alcohol 1a (0.35 mmol) and 1,3-diketone 72b (0.45 mmol) under solvent DCE condition.

3.3c The formation of regioisomeric fluorenols

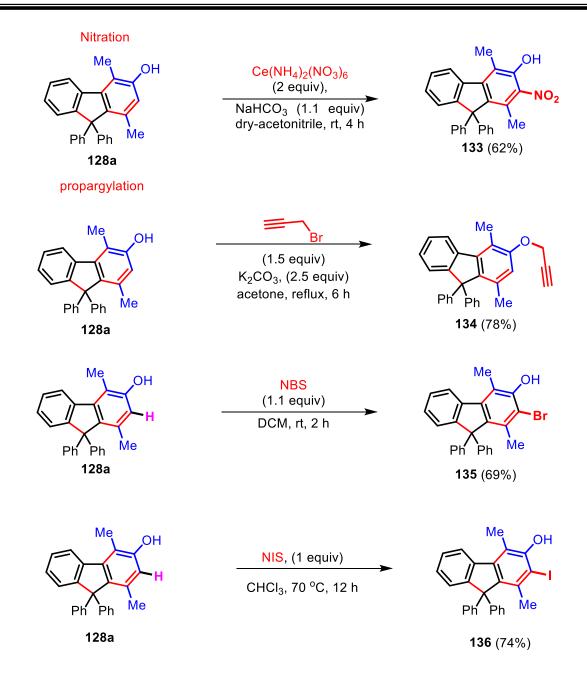
Under the same conditions, we treated **72b** with propargyl alcohol **1** bearing a 3-methyl on the aryl group (*meta* substitution), yielding a combination of two regioisomers 128p:128p¹ in a 1:0.2 ratio with a tot d al yield of 76 % (Scheme 3). The reaction also created a mixture of regioisomers 128q-128t with the *meta*-substituted aryl ring of 2. Careful observation of these annulated products found in Table 2 and Scheme 1 helps explain the reason for the creation of regioisomers. We could have three possibilities for this benzannulation reaction, based on the replacements of the aryl ring because the Friedel-Crafts annulation proceeds through the production of C-C bonds from ortho carbon. (ortho, para, and meta). Consider case-1, the para-substituted aryl ring, which has two equivalent ortho carbons, therefore it doesn't matter which carbon forms the ring, resulting in a single product (Case 1, Table 2), as proven by the synthesis of **128b-128e**, **128g**, **128i**, **128k**, and **128o**. On the other hand, when we have an ortho substitution on the aryl ring (case 2), there is only one carbon to undergo the IFCA reaction, and hence we got a single product (114m). The third case is a meta-substitution on the aryl group of 1 where two reactive carbons (ortho and para with respect alkyl group) are present, resulting in two regio-isomeric products via IFCA (128p-128t, Scheme 3). Of course, steric hindrance can be used to explain why there is unequal isomeric distribution.

Scheme 3. The schematic explanation for the formation of regioisomeric fluorenols **3.3d Control experiments**

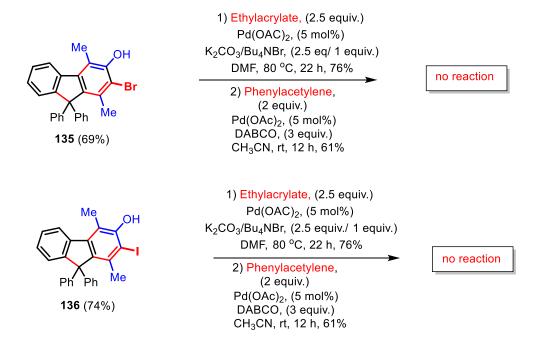
We performed control tests as shown in Scheme 4 to better understand the reaction process. The allene intermediate was produced by refluxing a combination of **1a**, **72b**and Ca(II) in DCE for 15 minutes (**3ya**) in 92% yield (eqn-a). To obtain the target product **128a**, the allene was exposed to conventional reaction conditions (eqn-b). Equations **a** and **b** indicate that fluorenol is formed from an intermediate allene (**3ya**). When 3-cyclopropyl-1,1-diphenylprop-2-yn-1-ol was utilized under conventional reaction conditions, the reaction did not proceed after allene intermediate (no fluorenol generation), confirming the necessity of the phenyl group linked to the alkyne to undergo intramolecular Friedel-Crafts annulation. we proposed the reaction mechanism depicted below based on these observations.

Scheme 4. Control experiments

3.4 Reaction Mechanism


The reaction mechanism is depicted in Schematic Diagram 4 below. Through the S_N^2 mechanism, a Ca(II) connected *tert*-propargyl alcohol 1 interacts with the nucleophilic diketone 72b to produce the allenyl ketone 3ya, which then undergoes an intramolecular Friedel-Crafts annulation (IFCA) to form the tricyclic molecule G. Strained cyclobutene G cycloisomerizes to create keto-enol H, which then goes through an intramolecular aldol annulation to give tricyclic-hydroxy ketone J. The fluorenol 128 is obtained by removing the aldol adduct and then aromatizing it

Scheme 5. Proposed reaction mechanism for the Ca(II) catalyzed annulation of fluorenol.


Furthermore, we have focused on important fluorenol synthetic transformations, for which we chose **128a** as the precursor. First, **128a** was o-allylated with allyl bromide and K₂CO₃ to give olefin **129**, and the *ortho*-allylation of **130** was obtained by a Claisen rearrangement at 180 °C, and the crude product was further allylated to provide a diene intermediate. ¹³ **131**. Ringclosing metathesis (RCM) of diene **131** with Grubbs 2nd generation catalyst gave the benzoxepine ¹⁴ fused indene **132** in 71% yield (Scheme 5).

Scheme 6. Synthesis of flrouenoxepine

Fluorenol **128a** was also *o*-nitro-fluorenol **133** was obtained in 62 % yield, by *o*-nitration with ceric ammonium nitrate; it's worth noting that the aryl ring is now entirely substituted in 73. Propargylation of **128a** with propargyl bromide and K₂CO₃ yielded 78 % of **134**. (Scheme 6). Then, on **128a**, we developed a reaction sequence that included bromination followed by Heck and Sonogashira cross-coupling reactions. Next, we performed **128a** was brominated with NBS and *o*-bromo phenol **135** was produced in a 69 % yield. We tried a Heck coupling with ethyl acrylate subsequently being encouraged by this outcome. We were disappointed to discover that the reaction did not progress, so we tried a Sonogashira coupling with phenyl acetylene, which also failed. As a result, we used NIS to try to install an *ortho*-iodide functionality on **128a** and obtained *o*-iodophenol **136** in a 74 % yield. Under Heck and Sonogashira conditions, however, the cross-coupling reactions of iodide **136** likewise failed to react (Scheme 6).

Scheme 7. Synthetic transformation of fluorenol

We speculated that the free hydroxyl group of **128a** was preventing the cross-coupling reaction, so we produced a methyl ether of **128a** by treating it with dimethyl sulfate (**137**), and then iodinating it with NIS, yielding iodide **138**¹⁵ in good yield, the iodide compound **133** completed a smooth cross-coupling reaction under Heck conditions, yielding the desired product **139**¹⁶ in 76 % of the time, Sonogashira coupling of **138** with phenylacetylene was also successfully yielded **140** (Scheme 7), thus our speculation was proved to be correct.

Scheme 8. Coupling reactions of 138

3.5 CONCLUSIONS

We established a one-pot benzannulation approach for the making of ideal structure 9,9-diphenyl-9H-fluorenols from basic starting materials. In addition, this approach allows you to make tetracyclic allenes. The reaction was catalyzed by the environmentally benign catalyst Ca(OTf)₂ and provided good to excellent yields of the products. Fluorenols have undergone synthetic transformations such as nitration, propargylation, iodination, and fluorenoxepine synthesis.

EXPERIMENTAL SECTION

3.6.1 General information: Unless otherwise noted, all reagents were used as received from commercial suppliers. Ca(OTf)₂ and Bu₄NPF₆ were obtained from Sigma-Aldrich and used without further purification. Reactions were performed in flame-dried or oven-dried glassware with magnetic stirring. Reactions were monitored using thin-layer chromatography (TLC) with aluminum sheets silica gel 60 F₂₅₄ from Merck. TLC plates were visualized with UV light (254 nm), and iodine treatment. Column chromatography was carried out using silica gel 60-120 mesh as the stationary phase. NMR spectra were recorded at 500 MHz and 400 MHz (H) and 125 MHz and 100 MHz (C), respectively on the Avance Bruker spectrometer. Chemical shifts (δ) are reported in ppm, using the residual solvent peak in CDCl₃ (H: δ = 7.26

and C: $\delta = 77.0$ ppm) as an internal standard, and coupling constants (*J*) are given in Hz. Melting points were measured with LAB INDIA mepa melting apparatus.

3.6.2 General experimental procedure for the synthesis of 1,4-dimethyl-9,9-diphenyl-9H-fluoren-3-ol(128a): To a mixture of 1 (0.35 mmol) and 1,3-dicarbonyl compound 67b (0.45 mmol) in DCE (2 mL), Ca(OTf) ₂/Bu₄ NPF₆ (10/5 mol%) was added. The reaction was stirred at 90 °C, and the completion of the reaction was monitored by TLC. After completion of the reaction, the solvent was removed under reduced pressure, and the residue was purified by silica gel column chromatography using EA/PE (10:90, v/v) to obtain the desired product **128a** in 85% yield.

3.6.4 General Experimental Procedure for the Synthesis of 2-Allyl-3-(allyloxy)-1,4-dimethyl-9,9-diphenyl-9H-fluorene (130): To a stirring solution of 1,4-dimethyl-9,9-diphenyl-9H-fluoren-3-ol (100 mg, 0.27 mmol) in anhydrous acetone (5.0 mL) were added K₂CO₃ (87 mg, 0.633 mmol) and allyl bromide (26 μL, 0.33 mmol), the resulting reaction mixture was heated at 80 °C for 3 h. After completion of the reaction, it was filtered through a short plug of Celite, and the filtrate was concentrated under reduced pressure to give a crude compound which was purified by silica gel column chromatography to afford the allyl ether. The above-obtained allyl ether was dissolved in toluene (2 mL) and placed in a sealed pressure tube and heated at 180 °C for 24 h. The reaction mixture was directly purified by silica gel column chromatography to afford the rearranged allyl compound.

3.6.5 General Experimental Procedure for the Synthesis of 6,12-Dimethyl-7,7-diphenyl-5,7-dihydro-2*H*-fluoreno[3,2-*b*]oxepine(132): 2-allyl-3-(allyloxy)-1,4-dimethyl-9,9-diphenyl-9*H*-fluorene (71,100 mg, 0.22 mmol) was dissolved in dry toluene (4 mL) and heated to reflux before adding II generation Grubbs catalyst (9 mg, 5 mol-%). The reaction was stirred at 100 °C for 6 h. After completion of the reaction, it was cooled to room temperature, and passed through a silica gel (20 % EtOAc/hexanes) and concentrated. The residual oil was further purified by flash chromatography (silica gel, gradient elution, 3–4 % EtOAc/hexanes) to afford the desired product **132** in 71 % yield.

3.6.6 General Experimental Procedure for the Synthesis of 2-Iodo- 1,4-dimethyl-9,9-diphenyl-9H-fluoren-3-ol (136): To a solution of compound 1,4-dimethyl-9,9-diphenyl-9H-fluoren-3-ol (100 mg, 0.27 mmol) in CHCl₃ (6 mL) was added catalytic TsOH followed by the addition of N-iodosuccinimide (61 mg, 0.22 mmol). The reaction mixture was heated at 55 °C for 16 h. After completion of the reaction, the reaction mixture was quenched with saturated aqueous NaHCO₃ (25 mL) and extracted with CH₂Cl₂ (20 mL × 3). The collected organic fractions were dried with anhydrous Na₂SO₄ and concentrated under a vacuum to afford a white solid compound which was forwarded to the next step without further purification and characterization.

3.6.7 General Experimental Procedure for the Synthesis of 3-Methoxy- 1,4-dimethyl-9,9-diphenyl-9H-fluorene (137): To a stirring solution of 1,4-dimethyl-9,9-diphenyl-9H-fluoren-3-ol (100 mg, 0.27 mmol) in anhydrous acetone (10.0 mL) were added K_2CO_3 (76.0 mg, 0.55 mmol) and Me_2SO_4 (58 μ L, 0.55 mmol). The resulting reaction mixture was heated at 80 °C for 3 h. After completion of the reaction, it was filtered through a short plug of

celite, and the filtrate was concentrated in rotavapor and purified by silica gel column chromatography to afford the methoxy-protected compound as a white solid.

3.6.8 Experimental procedure for Sonogashira cross-coupling of 138 to 140: Pd(OAc)2

(2 mol%) was dissolved in MeCN (1 mL), and was added to a mixture of phenylacetylene (45 mg, 0.45 mmol), **9** (100 mg, 0.19 mmol), DABCO (3 equiv.), and MeCN (4 mL). Then the mixture was stirred under N₂ at room temperature for 12 h. The resulting mixture was filtered off, washed andthe filtrate was extracted with diethyl ether. The combined organic layers were washed with brine and dried over anhydrous Na₂SO₄. The solvent was evaporated under reduced pressure, and the residue was purified by column chromatography (2–4%, EtOAc in pet ether) with silica gel to give product **140** in 61% yield.

3.6.9 Experimental procedure for Heck reaction of 138 to 139: Ethyl acrylate (49.8 mg, 0.49 mmol), was added to a solution of (100 mg, 0.19 mmol) in DMF (1.8 mL) containing K₂CO₃ (2.5 equiv.) and Bu₄NBr (1 equiv.) and stirred at room temperature for 5 min. Pd(OAc)₂ (5 mol %) was then added, and the flask was flushed with N₂, sealed, and allowed to stir at 80 °C for 22 h. The resulting mixture was filtered off, and washed and the filtrate was extracted with diethyl ether. The combined organic layers were washed with brine and dried over anhydrous Na₂SO₄. The solvent was evaporated under reduced pressure, and the residue was purified by column chromatography (6–8%, EtOAc in pet ether) with silica gel to give product in 76% yield.

3.7 SPECTRAL DATA

1,4-Dimethyl-9,9-diphenyl-9H-fluoren-3-ol (*128a*) Following general experimental procedure 3.6.2 then purified by flash chromatography (silica gel, 7–9%, EtOAc in pet ether)) the product was obtained as White solid 108 mg (85%); mp 205-206 °C. 1H NMR (CDCl3, 500 MHz): $\delta = 7.97$ (d, J =8 Hz, 1H), 7.38 (d, J =7.5 Hz, 1H), 7.32–7.24(m, 5H), 7.23-7.20 (m, 7H), 6.50 (s, 1H), 4.92 (s, 1H), 2.69 (s, 3H), 1.89 (s, 3H) ppm. ¹³C NMR (125 MHz, CDCl3): $\delta = 155.7$, 153.4, 142.7, 142.4, 141.0,140.5, 133.8, 129.1, 127.9, 127.3, 127.1, 126.4, 125.4, 123.2, 116.9, 64.5, 20.0, 12.3 ppm. IR (film): $v^*max = 3524$, 3022, 2923, 1589, 1491,1298, 1246, 1183, 1073, 912 cm–1. HRMS (ESI-TOF): m/z calcd.. For C₂₇H₂₂O [M+H]⁺:363.1751, found 363.1750.

1,4,7-Trimethyl-9,9-diphenyl-9H-fluoren-3-ol (*128b*) Following general experimental procedure 3.6.2 then purified by flash chromatography (silica gel, 7–9%, EtOAc in pet ether)) the product was obtained as White solid 93 mg (75%); mp 252-254 °C. ¹H NMR (CDCl3, 500 MHz): δ =7.80 (d, J =8 Hz, 1H), 7.28–7.24 (m, 4H), 7.22–7.17 (m, 8H), 7.13–7.08 (m, 2H), 6.43 (s, 1H), 4.73 (s, 1H), 2.62 (s, 3H), 2.26 (s, 3H), 1.82 (s, 3H) ppm. ¹³C NMR (125 MHz, CDCl3): δ =155.9, 153.4, 142.9, 142.4,140.1, 138.5, 137.2, 133.7, 129.2, 128.1, 127.9, 126.4, 126.1, 122.9, 116.7, 116.4, 64.4, 21.7, 19.9, 12.3 ppm. IR (film): v max = 3531, 2921, 2851, 1736, 1587, 1446, 1309, 850 cm–1. (LCMS): m/z [M + H]⁺: 377.

7-butyl-1,4-dimethyl-9,9-diphenyl-9H-fluoren-3-ol (128c) Following general experimental procedure 3.6.2 then purified by flash chromatography (silica gel, 7–9%, EtOAc in pet ether)) the product was obtained as White solid 92 mg (75%); mp 248-249 °C. ¹H NMR (CDCl₃, 500 MHz): δ 7.81 (d, *J*=7.0 Hz, 1H), 7.25 (m, 5H), 7.18 (m, 5H), 7.11 (m, 2H), 6.44 (s, 1H), 4.68 (s, 1H), 2.62 (s, 3H),2.52 (t, *J*=8.0 Hz, 2H), 1.83 (s, 3H), 1.48 (m, 2H), 1.25 (m, 2H), 0.85 (t, *J*=7.0 Hz, 3H) ppm. ¹³C NMR (CDCl₃, 125 MHz): δ 155.9, 153.4, 143.0, 142.4, 142.3, 140.7, 138.6, 133.8, 129.2, 127.9, 127.3, 126.4, 125.6, 122.9, 116.7, 116.4,

64.5, 35.8, 33.7, 22.4, 20.0, 14.0, 12.3 ppm. HRMS (ESI-TOF): m/z calcd. for $C_{31}H_{30}O[M+H]^+:419.5772$, found: 419.5769.

1,4-dimethyl-7,9,9-triphenyl-9H-fluoren-3-ol(128d) Following general experimental procedure 3.6.2 then purified by flash chromatography (silica gel, 7–9%, EtOAc in pet ether)) the product was obtained as White solid 92 mg (76%); mp 250-251 °C. ¹H NMR (CDCl₃, 500 MHz): δ 7.98 (d, *J*=6.5 Hz, 1H), 7.49 (m, 4H), 7.37 (t, *J*=7.5 Hz, 2H), 7.30 (m, 5H), 7.23 (m, 6H), 6.48 (s, 1H), 4.73 (s, 1H), 2.67 (s, 3H), 1.86 (s, 3H) ppm. ¹³C NMR (CDCl₃, 125 MHz): 156.5, 142.8, 142.7, 141.3, 140.3, 140.2, 133.9, 129.2, 128.8, 128.0, 127.3, 127.2, 126.5, 126.2, 124.2, 123.4, 117.1, 117, 64.7, 20, 12.4 ppm. HRMS (ESI-TOF): m/z calcd. for C₃₃H₂₆O [M+H]⁺ :439.2064, found: 439.2060.

7-ethoxy-1,4-dimethyl-9,9-diphenyl-9H-fluoren-3-ol(128e) Following general experimental procedure 3.6.2 then purified by flash chromatography (silica gel, 7–9%, EtOAc in pet ether)) the product was obtained as White solid 91 mg (74%); mp 246-247 °C. ¹H NMR (CDCl₃, 500 MHz): δ 7.81 (d, *J*=8.5 Hz, 1H), 7.26 (d, *J*=7.5 Hz, 5H),7.19 (m, 5H), 6.83 (m, 2H), 6.40 (s, 1H), 4.72 (s, 1H), 3.94 (m, 2H), 2.60 (s, 3H), 1.82 (s, 3H) 1.32 (t, *J*=7.0 Hz, 3H) ppm. ¹³C NMR (CDCl₃, 125 MHz): 158.7, 157.6, 153.4, 142.9, 142.1, 140.5, 134.0, 129.2, 128.0, 126.4, 123.9, 116.1, 115.8, 113.1, 112.1, 64.5, 63.6, 20.0, 14.9, 12.3 ppm. HRMS (ESI-TOF): m/z calcd. forC₂₉H₂₆O₂[M+H]⁺: 407.2013, found: 407.2010.

9-(4-chlorophenyl)-1,4-dimethyl-9-phenyl-9H-fluoren-3-ol(128f) Following general experimental procedure 3.6.2 then purified by flash chromatography (silica gel, 7–9%, EtOAc in pet ether)) the product was obtained as White solid 92 mg (74%); mp 179-180 °C. ¹H NMR (CDCl₃, 500 MHz): δ 7.92 (d, *J*=7.5 Hz, 1H), 7.30 (t, *J*=7.5 Hz, 2H), 7.20 (m, 10H), 6.47 (s, 1H), 4.75 (s, 1H), 2.64 (s, 3H), 1.83 (s, 3H) ppm. ¹³C NMR (CDCl₃,125 MHz): 155.3, 153.6, 142.2, 142.1, 141.5, 141.0, 133.7, 132.3, 130.6, 129.0, 127.5, 127.3, 126.3, 126.7, 125.3, 117.4, 117.0, 64.1, 20.0, 12.3 ppm. HRMS (ESI-TOF): m/z calcd. for C₂₇H₂₁ClO [M+H]⁺: 397.1361,found: 397.1362.

9-(4-chlorophenyl)-1,4,7-trimethyl-9-phenyl-9H-fluoren-3-ol(128g) Following general experimental procedure 3.6.2 then purified by flash chromatography (silica gel, 7–9%, EtOAc in pet ether)) the product was obtained as White solid 95 mg (77%); mp 180-181 °C.

¹H NMR (CDCl₃, 500 MHz): δ 7.79 (d, J=6.5 Hz, 1H), 7.20 (m, 9H), 7.09 (d, J=9.0 Hz, 2H), 6.42 (s, 1H), 4.81 (s, 1H), 2.60 (s, 3H), 2.26 (s, 3H), 1.81 (s, 3H) ppm. ¹³C NMR (CDCl₃, 125 MHz): 155.5, 153.6, 142.4, 142.0, 141.7, 140.6, 138.4, 137.4, 133.6, 132.2, 130.6, 129.0, 128.2, 128.0, 126.6, 126.0, 123.0, 117.0, 116.6, 64, 21.7, 20, 12.3 ppm. HRMS (ESI-TOF): m/z calcd. for C₂₈H₂₃ClO [M+Na]⁺: 433.1334, found: 433.1333.

9-(4-fluorophenyl)-1,4-dimethyl-9-phenyl-9H-fluoren-3-ol(128h) Following general experimental procedure 3.6.2 then purified by flash chromatography (silica gel, 7–9%, EtOAc in pet ether)) the product was obtained as White solid 98 mg (78%); mp 193-194 °C. 1 H NMR (CDCl₃, 500 MHz): δ 7.92 (d, J = 7.5 Hz, 1H), 7.24 (t, J = 2 Hz, 2H), 7.24-7.15 (m, 8H), 6.88 (t, J = 9 Hz, 2H), 6.46 (s, 1H), 4.83 (s, 1H) 2.63 (s, 3H), 1.83 (s, 3H) ppm. 13 C NMR (CDCl₃, 125 MHz): δ 162.5, 160.6, 155.6, 153.5, 142.5, 140.5, 140.4, 138.5, 138.5, 133.7, 130.7, 130.7, 129.1, 128.1, 127.4, 127.2, 126.6, 125.3, 123.3, 117.3, 117.1, 114.8, 114.6, 63.9, 19.9, 12.3 ppm. HRMS (ESI-TOF): m/z calcd. for C₂₇H₂₁FO [M+H]⁺:381.1656, found: 381.1655.

9-(4-fluorophenyl)-1,4,7-trimethyl-9-phenyl-9H-fluoren-3-ol(128i) Following general experimental procedure 3.6.2 then purified by flash chromatography (silica gel, 7–9%, EtOAc in pet ether)) the product was obtained as White solid 94 mg (76%); mp 202-203 °C. ¹H NMR (CDCl₃, 500 MHz): δ 7.79 (d, *J*=7.0 Hz, 1H), 7.23 (m, 5H), 7.18 (m, 2H), 7.00 (d, *J*=5 Hz, 2H), 6.88 (m, 2H), 6.42 (s, 1H), 4.78 (s, 1H), 2.61 (s, 3H), 2.26 (s, 3H), 1.81 (s, 3H) ppm. ¹³C NMR (CDCl₃, 125 MHz): δ 162.5, 160.6, 155.8, 153.5, 142.7, 142.2, 140.5, 138.7, 138.6, 138.3, 137.3, 133.6, 130.8, 130.7, 129.0, 128.2, 128.0, 126.5, 126.0, 123.0, 116.9, 116.5, 114.7, 114.6, 63.8, 21.7, 19.9, 12.3 ppm. (LCMS): *m/z* [M+H]⁺: 395.

9-(4-methoxyphenyl)-1,4-dimethyl-9-phenyl-9H-fluoren-3-ol(128j) Following general experimental procedure 3.6.2 then purified by flash chromatography (silica gel, 7–9%, EtOAc in pet ether)) the product was obtained as White solid 94 mg (76%); mp 208-209 °C. ¹H NMR (CDCl₃, 500 MHz): δ 7.90 (d, *J*=7.5 Hz, 1H), 7.27 (m, 4H), 7.18 (m, 6H), 6.75 (m,2H), 6.46 (s, 1H), 4.82 (s, 1H), 3.74 (s, 3H), 2.63 (s, 3H), 1.84 (s, 3H) ppm. ¹³C NMR (CDCl₃,125 MHz): δ 158.1, 156.0, 153.4, 143.0, 142.6, 140.9, 140.4, 134.5, 133.7, 130.2, 129.0, 127.9, 127.3, 127.0, 126.4, 125.3, 123.2, 117.1, 117.0, 63.9, 55.3, 20.0, 12.3 ppm. HRMS (ESI-TOF): m/z calcd. for C₂₈H₂₄O₂ [M+H]⁺: 393.1856, found: 393.1858.

9-(4-methoxyphenyl)-1,4,7-trimethyl-9-phenyl-9H-fluoren-3-ol(128k) Following general experimental procedure 3.6.2 then purified by flash chromatography (silica gel, 7–9%, EtOAc in pet ether)) the product was obtained as White solid 92 mg (75%); mp 210-211 °C. ¹H NMR (CDCl₃, 500 MHz): δ 7.82 (d, *J*=8.0 Hz, 1H), 7.51 (m, 1H), 7.20 (m, 11H), 6.78 (m, 2H), 6.46 (s, 1H), 4.77 (s, 1H),3.78 (s, 3H), 2.64 (s, 3H), 2.30 (s, 3H) ppm. ¹³C NMR (CDCl₃, 125 MHz): δ 158.1, 156.2, 153.4, 143.2, 142.6, 140.5, 138.3, 137.2, 134.8, 133.7, 130.3, 129.1, 128.8, 128.7, 127.9, 126.3, 126.0, 124.4, 123.0, 119.8, 116.7, 116.4, 114.9, 113.2, 63.7, 55.3, 21.7, 12.3, 10.9 ppm. HRMS (ESI-TOF): m/z calcd. for C₂₉H₂₆O₂[M+H]⁺: 407.2013, found: 407.2013.

9,9-bis(*4-fluorophenyl*)-*1,4-dimethyl-9H-fluoren-3-ol* (*128l*) Following general experimental procedure 3.6.2 then purified by flash chromatography (silica gel, 7–9%, EtOAc in pet ether)) the product was obtained as White solid 99 mg (80%); mp 236-237 °C. 1 H NMR (CDCl₃, 500 MHz): δ 7.93 (d, J =7.5 Hz, 1H), 7.31-7.25 (m, 3H), 7.21-7.19 (m, 5H), 6.91-6.87 (m, 3H), 6.49 (s, 1H), 4.77 (s, 1H), 2.64 (s, 3H), 1.83 (s, 3H) ppm. 13 C NMR (CDCl₃, 125 MHz): δ 162.8, 161.7, 155.4, 153.6, 142.1, 140.8, 140.3, 138.2, 133.5, 130.6, 130.5, 127.5, 127.4, 125.2, 123.4, 117.4, 117.1, 114.9, 114.7, 63.3, 20.1, 12.3 1 ppm. HRMS (ESITOF): m/z calcd. for $C_{27}H_{20}F_{2}O$ [M+H]⁺: 399. 4518, found: 399. 4516

9,12-dimethyl-13,13-diphenyl-13H-indeno[*1,2-l]phenanthren-10-ol* (*128m*) Following general experimental procedure 3.6.2 then purified by flash chromatography (silica gel, 7–9%, EtOAc in pet ether)) the product was obtained as White solid 90 mg (75%); mp 237-238 °C. ¹H NMR (CDCl₃, 500 MHz): δ 8.68-8.33 (m, 3H), 7.67-7.57 (m, 7H), 7.39-7.18 (m, 8H), 6.54 (s, 1H), 4.93 (s, 1H), 2.59 (s, 3H), 2.07 (s, 3H) ppm. ¹³C NMR (CDCl₃, 125 MHz): δ 154.8, 149.5, 145.4, 140.4, 135.7, 132.8, 131.6, 131.5, 129.7, 128.4, 128.1, 127.7, 126.9, 126.7, 126.1, 126.1, 126.1, 125.7, 125.2, 123.3, 123.3, 123.1, 116.1, 60.5, 19.9, 17.2 ppm. HRMS (ESI-TOF): m/z calcd. for C₃₅H₂₆O [M+H]⁺: 463.2064, found: 463.2063.

4-Benzyl-1-methyl-9,9-diphenyl-9H-fluoren-3-ol (*128n*) Following general experimental procedure 3.6.2 then purified by flash chromatography (silica gel, 7–9%, EtOAc in pet ether)) the product was obtained as White solid 74 mg (48%); mp 150-152 °C. 1 H NMR (CDCl₃, 400 MHz): $\delta = 7.24-7.20$ (m, 7H), 7.18–7.12 (m, 10H), 7.05–6.93 (m, 3H), 6.46 (s, 1H), 4.79 (s, 1H), 4.49 (s, 2H), 3.20 (s, 3H) ppm. 13 C NMR (125 MHz, CDCl₃): $\delta = 155.8,154.2,142.8,142.6,140.9,140.2,139.2,136.2,135.1,129.8,129.7,129.1,129.1,128.8,128.6,128.4,$

128.2, 128.1, 127.6, 127.3, 127.1, 126.5, 125.4, 123.9, 119.2, 117.4, 64.5, 37.5, 28.5 ppm. IR (film): $v^{-max} = 3523$, 3021, 2924, 1590, 1489, 1378, 1225, 1136, 868 cm–1. (LCMS): m/z [M + H]⁺: 439.

4-benzyl-1,7-dimethyl-9,9-diphenyl-9H-fluoren-3-ol (128o) Following general experimental procedure 3.6.2 then purified by flash chromatography (silica gel, 7–9%, EtOAc in pet ether)) the product was obtained as White solid 83 mg (55%); mp 137-138 °C. 1 H NMR (CDCl₃, 400 MHz): δ 7.56 (d, J = 8 Hz, 1H), 7.31 (d, J = 1.6 Hz, 1H) 7.29 (t, J = 8 Hz, 2H), 7.27-7.25 (m, 4H), 7.23-7.19 (m, 8H), 7.11 (s, 1H), 6.94 (t, J = 8 Hz, 1H), 6.48 (s, 1H), 4.72 (s, 1H), 4.54 (s, 2H), 2.20 (s, 3H), 1.87 (s, 3H) ppm. 13 C NMR (CDCl₃, 100 MHz): δ 156.1, 154.2, 142.8, 141.1, 139.3, 137.5, 137.5, 135.1, 129.2, 128.8, 128.2, 128.2, 128.1, 126.4, 126.2, 126.1, 122.7, 118.8, 116.9, 64.3, 31.7, 21.6, 20.1 ppm. HRMS (ESI-TOF): m/z calcd. for C₃₄H₂₈O [M+H]⁺: 453. 2218, found:453. 2218.

1,4,6-trimethyl-9,9-diphenyl-9H-fluoren-3-ol(128p) Following general experimental procedure 3.6.2 then purified by flash chromatography (silica gel, 7–9%, EtOAc in pet ether)) the product was obtained as White solid 95 mg (76%); mp 140-143 °C. ¹H NMR (CDCl₃, 500 MHz): δ 7.73 (s, 1H), 7.25 (m, 3H), 7.18 (m, 8H), 6.99 (d, *J*=8.0 Hz, 1H), 6.46 (s, 1H), 4.70 (s, 1H), 2.65 (s, 3H), 2.39 (s, 3H), 1.84 (s, 3H) ppm. ¹³C NMR (CDCl₃, 125 MHz): δ 153.4, 153.1, 143.0, 141.2, 140.6, 136.6, 133.8, 129.3, 129.1, 128.3, 127.9, 127.8, 126.4, 125.1, 123.9, 117.1, 116.8, 64.2, 21.8, 20.0, 12.4 ppm. HRMS (ESI-TOF): m/z calcd. for C₂₈H₂₄O [M+H]⁺: 377.1827, found: 377.1828.

9-(4-chlorophenyl)-1,4,6-trimethyl-9-phenyl-9H-fluoren-3-ol(128q) Following general experimental procedure 3.6.2 then purified by flash chromatography (silica gel, 7–9%, EtOAc in pet ether)) the product was obtained as White solid 92 mg (75%); mp 161-164 °C. ¹H NMR (CDCl₃, 500 MHz): δ 7.73 (s, 1H), 7.22 (m, 3H), 7.19 (m, 6H), 7.16 (m, 1H), 7.00 (m, 1H), 6.47 (s, 1H), 4.72 (s, 1H), 2.64 (s, 3H), 2.40 (s, 3H), 1.83 (s, 3H) ppm. ¹³C NMR (CDCl₃, 125 MHz): δ 153.6, 152.7, 142.5, 142.4, 141.7, 141.1, 140.6, 136.9, 133.7, 132.2, 130.7, 129.0, 128.4, 128.0, 127.9, 126.6, 125.0, 124.0, 117.3, 117.0, 63.7, 21.8, 20.0, 12.4 ppm. (LCMS): *m/z* [M+H]⁺: 411.

9-(4-fluorophenyl)-1,4,6-trimethyl-9-phenyl-9H-fluoren-3-ol(128r) Following general experimental procedure 3.6.2 then purified by flash chromatography (silica gel, 7–9%, EtOAc in pet ether)) the product was obtained as White solid 97 mg (78%); mp 177-179 °C. ¹H NMR

(CDCl₃, 500 MHz): δ 7.73 (s, 1H), 7.20 (m, 9H), 6.99 (d, J=7.0 Hz, 1H),6.87 (d, J=6.5 Hz, 1H), 6.45 (s, 1H), 4.80 (s, 1H), 2.64 (s, 3H), 2.39 (s, 3H), 1.82 (s, 3H) ppm. ¹³C NMR (CDCl₃, 125 MHz): δ 156.5, 142.8, 142.7, 141.3, 140.3, 140.2, 133.9, 129.2, 128.8, 128.0, 127.3, 127.2, 126.5, 126.2, 124.2, 123.4, 117.1, 117.0, 64.7, 20.0, 12.4 ppm. HRMS (ESI-TOF): m/z calcd. for C₂₈H₂₃FO [M+H]⁺: 395.1813, found: 395.1813.

9-(4-methoxyphenyl)-1,4,6-trimethyl-9-phenyl-9H-fluoren-3-ol(128s) Following general experimental procedure 3.6.2 then purified by flash chromatography (silica gel, 7–9%, EtOAc in pet ether)) the product was obtained as White solid 90 mg (73%); mp 137-138 °C. ¹H NMR (CDCl₃, 500 MHz): δ 7.26-7.24 (m, 3H), 7.22-7.14 (m, 6H), 6.99-6.97 (m, 1H), 6.75-6.73 (m, 2H), 6.43 (s, 1H), 4.90 (s, 1H), 3.73 (s, 3H), 2.63 (s, 3H), 2.38 (s, 3H), 1.83 (s, 3H) ppm. ¹³C NMR (CDCl₃, 125 MHz): δ 158.1, 153.3, 153.3, 143.2, 142.9, 141.1, 140.4, 136.5, 134.8, 133.7, 130.3, 130.2, 129.1, 129.1, 128.2, 127.9, 127.7, 126.3, 124.9, 123.9, 117.1, 116.7, 113.2, 113.1, 63.5, 53.3, 21.8, 19.9, 12.4 ppm. HRMS (ESI-TOF): m/z calcd. for C₂₉H₂₆O₂ [M+H]⁺: 407. 2013, found:407. 2015.

4-benzyl-1,6-dimethyl-9,9-diphenyl-9H-fluoren-3-ol (*128t*) Following general experimental procedure 3.6.2 then purified by flash chromatography (silica gel, 7–9%, EtOAc in pet ether)) the product was obtained as White solid 76 mg (50%); mp 188-190 °C. ¹H NMR (CDCl₃, 500 MHz): δ 7.43-7.41 (m, 1H), 7.32-7.30 (m, 7H), 7.27-7.20 (m, 9H), 7.05-7.03 (m, 1H), 6.55 (s, 1H), 4.83 (s, 1H), 4.58 (s, 2H), 3.30 (s, 3H), 2.25 (s, 3H) ppm. ¹³C NMR (CDCl₃, 125 MHz): δ 155.8, 154.2, 142.9, 142.6, 141.1, 140.2, 139.2, 135.2, 129.8, 129.1, 128.8, 128.6, 128.2, 128.1, 127.6, 127.3, 126.5, 126.3, 125.4, 123.1, 119.2, 117.4, 64.5, 37.5, 31.7, 20.1 ppm. HRMS (ESI-TOF): *m/z* calcd. for C₃₄H₂₈O [M+H]⁺: 453. 2218, found:453. 2218.

3-(*allyloxy*)-1,4-*dimethyl*-9,9-*diphenyl*-9H-fluorene (129) Following general experimental procedure then purified by flash chromatography (silica gel, 7–9%, EtOAc in pet ether) the product was obtained as yellow sticky compound 87 mg (79%). ¹H NMR (CDCl₃, 500 MHz): δ 7.34-7.29 (m, 3H), 7.27-7.25 (m, 4H), 7.22-7.15 (m, 7H), 6.55 (s, 1H), 6.15-6.09 (m, 1H), 5.49-5.47 (m, 1H), 5.30-5.28 (m, 1H), 4.56-4.55 (m, 2H), 2.67 (s, 3H), 1.90 (s, 3H) ppm. ¹³C NMR (CDCl₃, 125 MHz): δ 156.6, 155.7, 142.8, 142.3, 141.2, 140.2, 134.1, 133.4, 129.2, 127.9, 127.3, 127.1, 126.4, 125.5, 123.4, 120.1, 117.1, 114.1, 69.8, 64.6, 20.4, 12.4 ppm. (LCMS): *m/z* [M+H]⁺:403.

2-allyl-3-(allyloxy)-1,4-dimethyl-9,9-diphenyl-9H-fluorene(131) Following general experimental procedure 3.6.4 then purified by flash chromatography (silica gel, 7-9%, EtOAc in pet ether)) the product was obtained as White solid 66 mg (61%); mp 226-228 °C. 1 H NMR (CDCl₃, 400 MHz): δ 7.88 (d, J = 7.6 Hz, 1H), 7.33-7.28 (m, 4H), 7.27-7.21 (m, 5H), 7.20-7.14 (m, 4H), 6.18-6.11 (m, 2H), 5.96-5.89 (m, 1H), 5.51-5.47 (m, 1H), 5.30-5.27 (m, 1H), 4.97-4.94 (m, 1H), 4.93-4.78 (m, 1H), 4.33 (d, J = 5.2 Hz, 1H), 3.44-3.42 (m, 2H), 2.69 (s, 3H), 1.83 (s, 3H) ppm. 13 C NMR (CDCl₃, 100 MHz): δ 156.1, 155.5, 146.1, 142.7, 141.1, 138.5, 137.1, 134.2, 133.4, 131.1, 129.2, 129.1, 127.9, 127.5, 127.1, 127.1, 126.4, 125.4, 124.1, 122.9, 116.9, 114.8, 65.1, 31.4, 16.6, 13.9 ppm. HRMS (ESI-TOF): m/z calcd. for $C_{33}H_{30}O$ [M+Na]⁺: 465.2195, found: 465.2194.

6,12-dimethyl-7,7-diphenyl-5,7-dihydro-2H-fluoreno[3,2-b]oxepine (132) Following general experimental procedure 3.6.5 then purified by flash chromatography (silica gel, 7–9%, EtOAc in pet ether)) the product was obtained as White solid 71 mg (66%); mp 178-179 °C. 1 H NMR (CDCl₃, 500 MHz): δ 7.87 (d, J = 8 Hz, 1H), 7.30-7.18 (m, 6H), 7.17-7.14 (m, 6H), 7.11 (d, J = 1 Hz, 1H), 5.83-5.81 (m, 1H), 5.43-5.41 (m, 1H), 4.62 (t, J = 2.5 Hz, 2H), 3.44-3.42 (m, 2H), 2.68 (s, 3H), 1.88 (s, 3H) ppm. 13 C NMR (CDCl₃, 125 MHz): δ 156.5, 155.4, 145.9, 142.8, 141.1, 137.9, 136.2, 129.1, 127.9, 127.1, 126.9, 126.4, 126.2, 125.3, 123.4, 122.7, 70.6, 65.2, 25.8, 16.9, 12.8 ppm. HRMS (ESI-TOF): m/z calcd. for C₃₁H₂₆O [M+H] $^{+}$: 414.1984 found: 414.1983.

1,4-dimethyl-2-nitro-9,9-diphenyl-9H-fluoren-3-ol(133) Purified by flash chromatography (silica gel, 7–9%, EtOAc in pet ether)) the product was obtained as White solid 69 mg (62%); mp 158-160 °C. 1 H NMR (CDCl₃, 500 MHz): δ 10.47 (s, 1H), 8.04 (d, J = 8.5 Hz, 1H), 7.36-7.34 (m, 2H), 7.30-7.25 (m, 7H), 7.25-7.23 (m, 4H), 2.75 (s, 3H), 2.12 (s, 3H) ppm. 13 C NMR (CDCl₃, 125 MHz): δ 157.1, 153.3, 145.9, 142.4, 141.8, 138.6, 135.5, 130.6, 129.8, 128.8, 128.2, 127.9, 127.6, 127.1, 125.8, 124.9, 120.6, 65.2, 29.8, 18.7 ppm. (LCMS): m/z [M+H] $^{+}$: 406.

1,4-dimethyl-9,9-diphenyl-3-(prop-2-yn-1-yloxy)-9H-fluorene (*134*) Purified by flash chromatography (silica gel, 7–9%, EtOAc in pet ether)) the product was obtained as White solid 85 mg (78%); mp 192-193 °C. ¹H NMR (CDCl₃, 400 MHz): δ 7.94 (d, J = 7.6 Hz, 1H), 7.34-7.30 (m, 1H), 7.29-7.24 (m, 5H), 7.22-7.15 (m, 7H), 6.65 (s, 1H), 4.71 (d, J = 2.4 Hz, 2H), 2.65 (s, 3H), 2.52 (t, J = 2.4 Hz, 1H), 1.92 (s, 3H) ppm. ¹³C NMR (CDCl₃, 100 MHz): δ

155.8, 155.6, 142.1, 142.7, 141.1, 140.4, 133.5, 129.2, 127.9, 127.4, 127.1, 126.5, 125.5, 123.4, 120.5, 114.4, 79.3, 75.3, 64.6, 57.1, 20.4, 12.5 ppm. HRMS (ESI-TOF): m/z calcd. for $C_{30}H_{24}O$ [M+H]⁺: 401.1907 found: 401.1905.

2-bromo-1,4-dimethyl-9,9-diphenyl-9H-fluoren-3-ol(135) Purified by flash chromatography (silica gel, 7–9%, EtOAc in pet ether)) the product was obtained as White solid 66 mg (69%); mp 188-190 °C. 1 H NMR (CDCl₃, 400 MHz): δ 7.94 (d, J = 7.6 Hz, 1H), 7.31 (d, J = 8.4 Hz, 1H), 7.28-7.25 (m, 6H), 7.22-7.19 (m, 6H), 5.80 (s, 1H), 2.74 (s, 3H), 2.01 (s, 3H) ppm. 13 C NMR (CDCl₃, 125 MHz): δ 155.5, 150.2, 142.9, 142.4, 140.3, 139.9, 132.3, 129.1, 128.1, 127.8, 127.3, 126.6, 125.5, 123.4, 118.2, 114.4, 65.3, 20.8, 13.6 ppm. HRMS (ESI-TOF): m/z calcd. for C₂₇H₂₁BrO [M-H] $^{+}$: 439.0756, found: 439.0755.

2-iodo-1,4-dimethyl-9,9-diphenyl-9H-fluoren-3-ol (136) Purified by flash chromatography (silica gel, 7–9%, EtOAc in pet ether)) the product was obtained as White solid 99 mg (74%); mp 215-216 °C. 1 H NMR (CDCl₃, 400 MHz): δ 7.94 (d, J = 7.6 Hz, 1H), 7.32-7.26 (m, 7H), 7.22-7.19 (m, 6H), 5.5 (s, 1H), 2.76 (s, 3H), 2.0 (s, 3H) ppm. 13 C NMR (CDCl₃, 100 MHz): δ 155.5, 152.6, 142.9, 142.4, 140.5, 140.4, 135.8, 129.1, 128.7, 128.1, 127.9, 127.3, 126.6, 125.5, 123.5, 117.3, 95.9, 65.3, 26.7, 14.1 ppm. HRMS (ESI-TOF): m/z calcd. for C₂₇H₂₁IO [M+H]⁺: 488.0637 found: 488.0636.

3-methoxy-1,4-dimethyl-9,9-diphenyl-9H-fluorene (137) Following general experimental procedure 3.6.6 then purified by flash chromatography (silica gel, 7–9%, EtOAc in pet ether)) the product was obtained as White solid 83 mg (81%); mp 229-230 °C. 1 H NMR (CDCl₃, 400 MHz): δ 7.94 (d, J = 7.6 Hz, 1H), 7.33 (d, J = 7.6 Hz, 1H), 7.29-7.26 (m, 5H), 7.21-7.13 (m, 7H), 6.54 (s, 1H), 3.84 (s, 3H), 2.63 (s, 3H), 1.91 (s, 3H) ppm. 13 C NMR (CDCl₃, 100 MHz): δ 157.5, 155.6, 142.8, 141.9, 141.2, 140.1, 133.4, 129.1, 127.9, 127.3, 127.1, 126.4, 125.4, 123.4, 119.6, 112.5, 64.5, 56.1, 20.5, 12.2 ppm. HRMS (ESI-TOF): m/z calcd. for C₂₈H₂₄O [M+H]⁺: 377.4975 found: 377.4973.

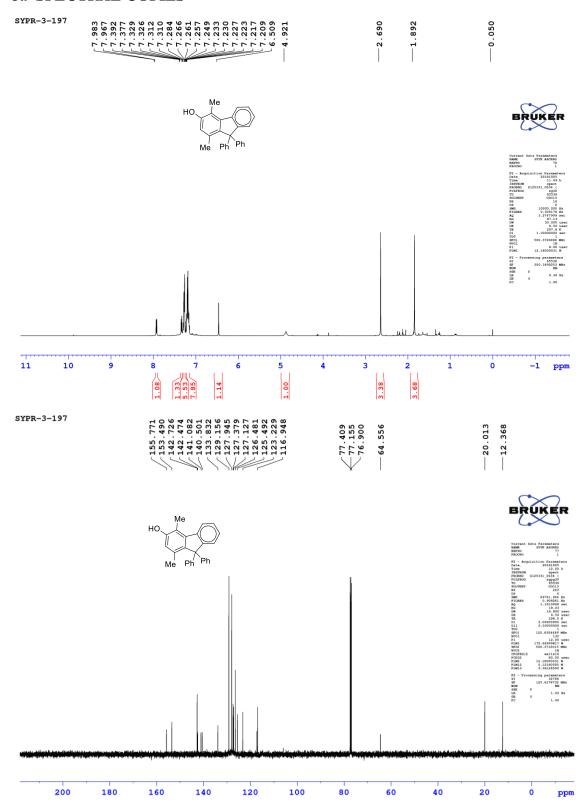
2-iodo-3-methoxy-1,4-dimethyl-9,9-diphenyl-9H-fluorene (138) Following general experimental procedure 3.6.6 then purified by flash chromatography (silica gel, 7–9%, EtOAc in pet ether)) the product was obtained as White solid 105 mg (79%); mp 224-225 °C. 1 H NMR (CDCl₃, 500 MHz): δ 7.90 (d, J = 8 Hz, 1H), 7.32-7.29 (m, 2H), 7.27-7.25 (m, 4H), 7.24-7.17 (m, 7H), 3.82 (s, 3H), 2.76 (s, 3H), 2.1 (s, 3H) ppm. 13 C NMR (CDCl₃, 100 MHz): δ 158.1, 155.4, 146.5, 142.1, 140.8, 140.1, 137.5, 129.1, 128.1, 127.9, 127.3, 126.7, 125.6,

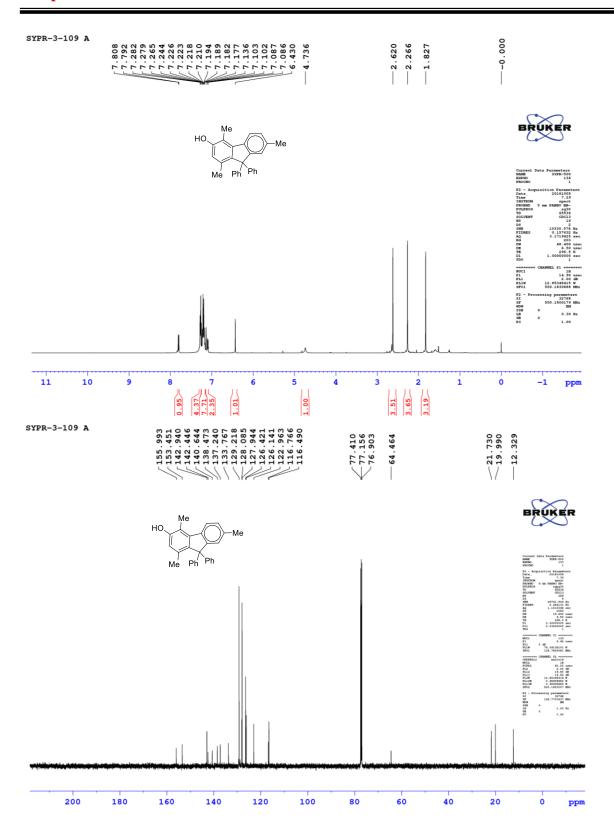
124.4, 123.4, 101.4, 65.6, 60.7, 26.8, 14.6 ppm. HRMS (ESI-TOF): m/z calcd. for C₂₈H₂₃IO [M+H]⁺: 502.0794 found: 502. 0793.

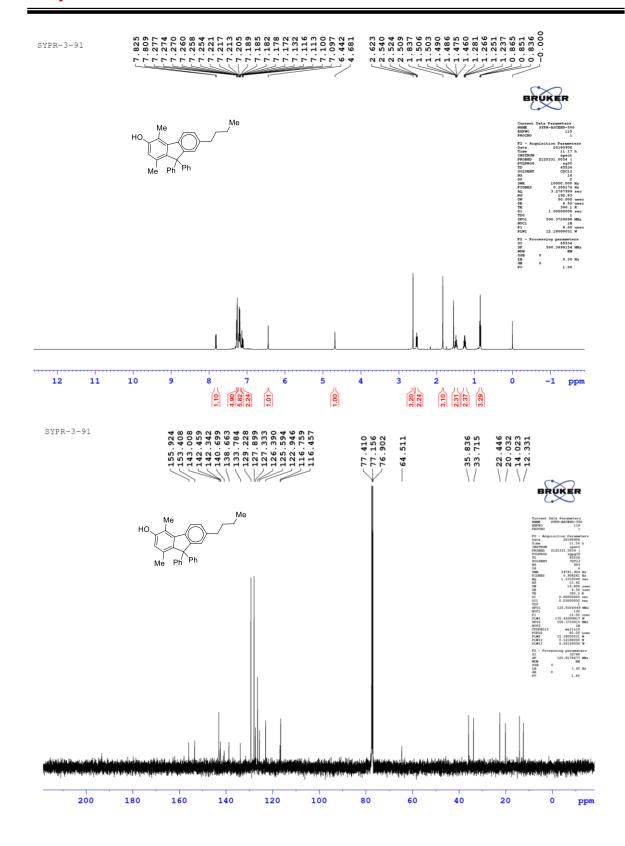
(E)-ethyl3-(3-methoxy-1,4-dimethyl-9,9-diphenyl-9H-fluoren-2-yl)acrylate (139)

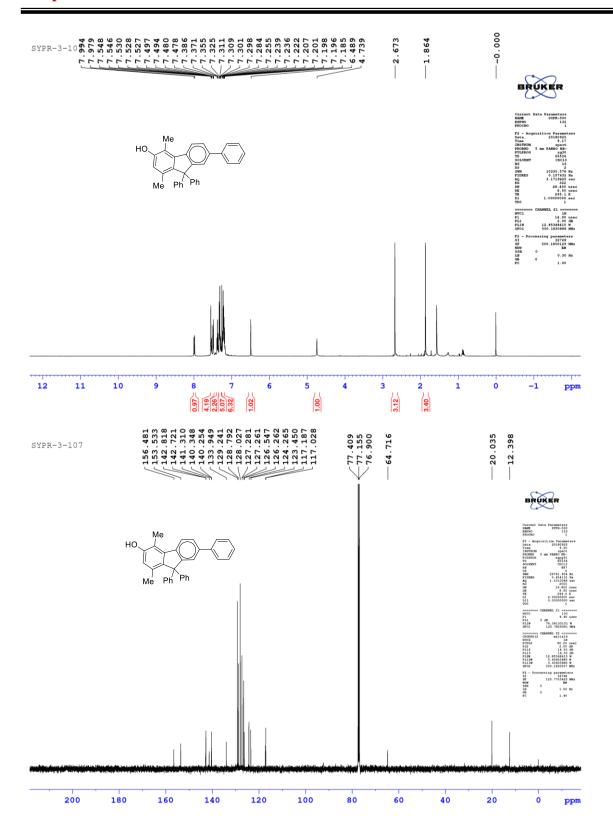
Following general experimental procedure 3.6.9 then purified by flash chromatography (silica gel, 12–15%, EtOAc in pet ether)) the product was obtained as White solid 71 mg (76%); mp 230-231 °C. 1 H NMR (CDCl₃, 400 MHz): δ 7.95-7.88 (m, 2H), 7.37-7.33 (m, 6H), 7.32-7.20 (m, 7H), 6.52 (d, J = 16.4 Hz, 1H), 4.29-4.24 (m, 2H), 3.74 (s, 3H), 2.74 (s, 3H), 2.19 (s, 3H), 1.33 (t, J = 7.2 Hz, 3H) ppm. 13 C NMR (CDCl₃, 100 MHz): δ 207.1, 167.6, 158.1, 155.9, 146.3, 142.2, 141.5, 140.3, 140.1, 133.8, 129.1, 128.1, 127.9, 127.2, 127.1, 126.6, 125.5, 124.6, 123.5, 123.2, 65.2, 60.6, 60.4, 31.1, 18.1, 14.4, 13.3 ppm. HRMS (ESI-TOF): m/z calcd. for $C_{33}H_{30}O_{3}$ [M+H] $^{+}$: 475.2275 found: 475. 2275.

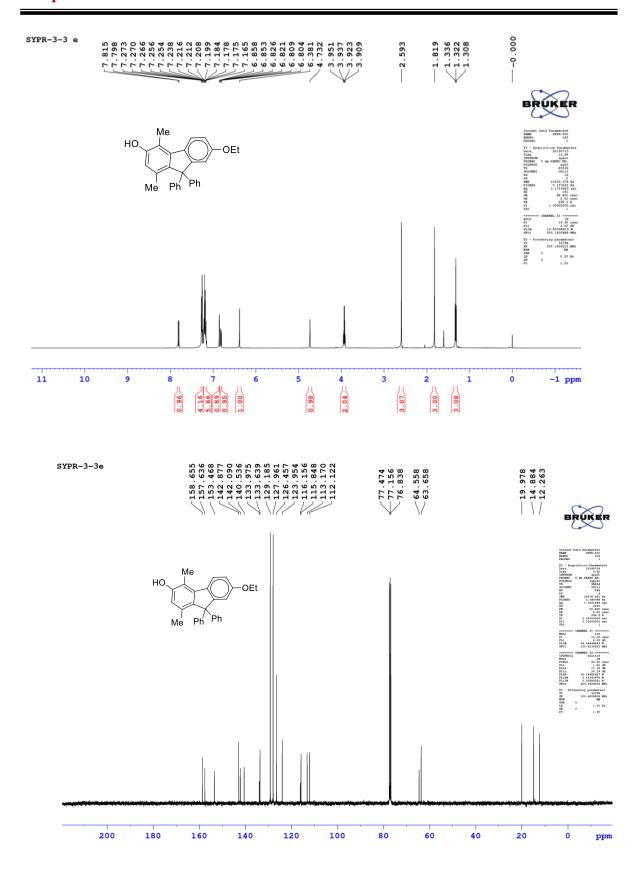
3-methoxy-1,4-dimethyl-9,9-diphenyl-2-(phenylethynyl)-9H-fluorene (140) Following general experimental procedure 3.6.8 then purified by flash chromatography (silica gel, 7–9%, EtOAc in pet ether)) the product was obtained as White solid 57 mg (61%); mp 216-218 °C. 1 H NMR (CDCl₃, 500 MHz): δ 7.90 (d, J = 7.5 Hz, 1H), 7.52 (d, J = 6.5 Hz, 1H), 7.36-7.31 (m, 5H), 7.29-7.25 (m, 5H), 7.24-7.20 (m, 7H), 3.82 (s, 3H), 2.77 (s, 3H), 2.08 (s, 3H) ppm. 13 C NMR (CDCl₃, 125 MHz): δ 158.1,155.4, 146.5, 142.1, 140.8, 140.1, 137.5, 132.6, 129.3, 129.1, 128.5, 128.1, 127.9, 127.3, 126.7, 125.6, 124.4, 123.4, 101.4, 65.6, 60.7, 26.8, 14.6 6 ppm. HRMS (ESI-TOF): m/z calcd. for $C_{36}H_{28}O$ [M+H]⁺: 477.2220 found: 477.2219.

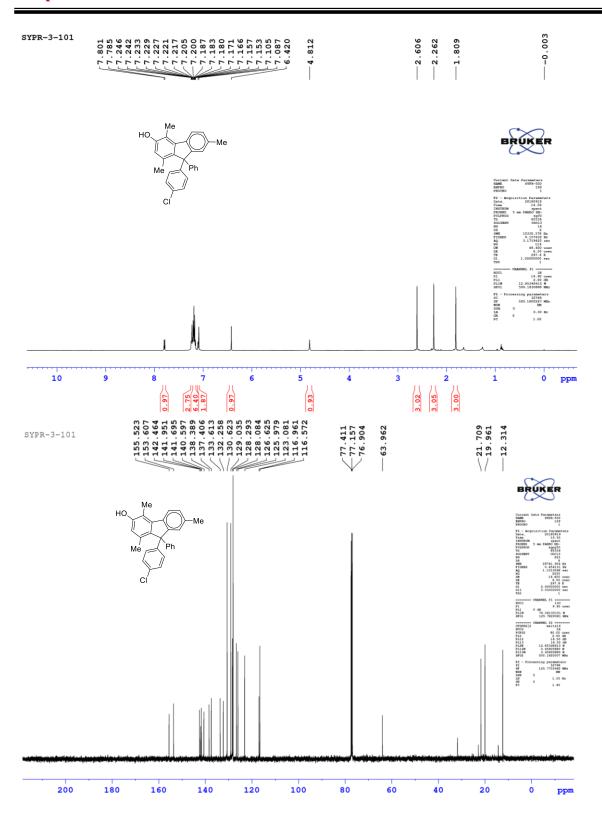

3.8 REFERENCES

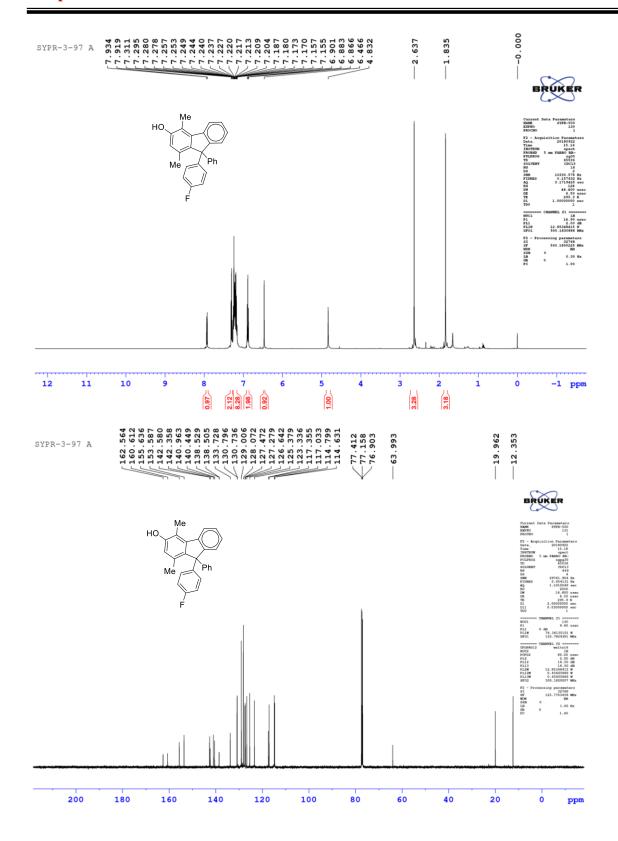

- a) Zeng, M. T.; Ballard, E.; Tkachenko, A.; Burns, V.; Feldheim, D.; Melander, C. *Bioorg. Med. Chem. Lett.* 2006, 16, 5148. b) Han, Y.; Bisello, A.; Nakamoto, C.; Rosenblatt, M.; Chorev, M. J. Pept. Res. 2000, 55, 230. c) Perry, P.; Read, M.; Davies, R.; Gowan, S.; Reszka, A.; Wood, A.; Kelland, L.; Neidle, S. J. Med. Chem. 1999, 42, 2679.
- (2) a) Tan, J.; Wang, Z.; Yuan, J.; Peng, Y.; Chen, Z. Adv. Synth. Catal. 2019, 361, 1295.b) Hadizad, T.; Zhang, J.; Wang, Z. Y.; Gorjanc T. C.; Py, C. Org. Lett. 2005, 7, 795. c) Merlet, S.; Birau, M.; Wang, Z. Y. Org. Lett. 2002, 4, 2157. d) Thirion, D.; Rault-Berthelot, J. l.; Vignau, L.; Poriel, C. Org. Lett. 2011, 13, 4418. e) Wong, K.-T.; Chi, L.-C.; Huang, S.-C.; Liao, Y.-L.; Liu Y.-H.; Wang, Y. Org. Lett. 2006, 8, 5029. f)

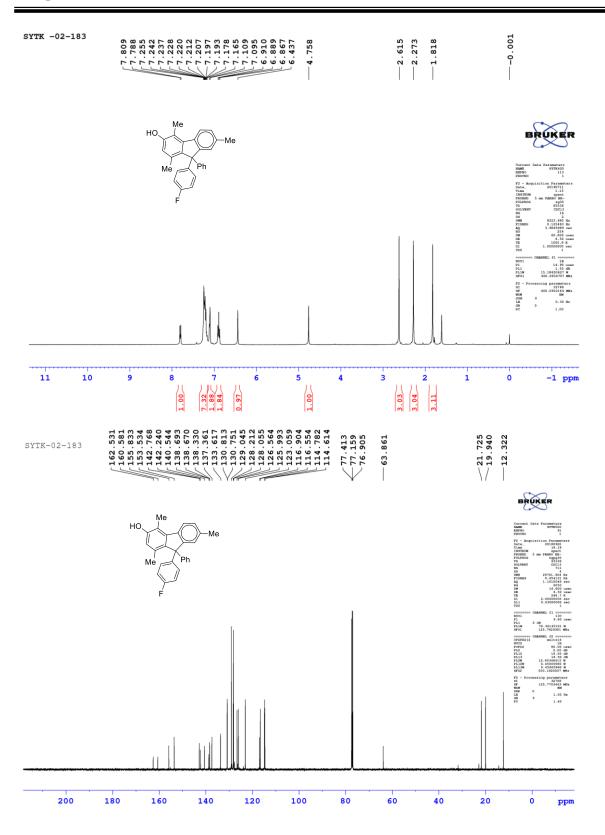

- Wong, K.-T.; Hwu, T.-Y.; Balaiah, A.; Chao, T.-C.; Fang, F.-C.; Lee C.-T.; Peng, Y.-C. Org. Lett. **2006**, *8*, 1415.
- (3) a) Akiyama, T.; Nakamura, K. T.; Takahashi, Y.; Naganawa, H.; Muraoka, Y.; Aoyagi, T.; Takeuchi, T. J. Antibiot. 1998, 51, 586. b) Feng, Z.; Kim, J. H.; Brady, S. F. J. Am. Chem. Soc. 2010, 132, 11902. c) Yang, C.; Huang, C.; Zhang, W; Zhu, Y.; Zhang, C.; Org. Lett. 2015, 17, 5324.
- (4) a) Zhang, W.; Yang, C.; Huang, C.; Zhang, L.; Zhang, H.; Zhang, Q.; Yuan, C.; Zhu, Y. Org. Lett. 2017, 19, 592. b) Zhang, W.; Liu, Z; Li, S.; Lu, Y.; Chen, Y.; Zhang, H.; Zhang, G.; Zhu, Y.; Zhang, G.; Zhang, W.; Liu, J.; Zhang C. J. Nat. Prod. 2012, 75, 1937. c) Yu, M.; Danishefsky, S. J. J. Am. Chem. Soc. 2008, 130, 2783.
- (5) a) Zhang, J.-S.; Liu, X.; Weng, J.; Guo, Y.-Q.; Li, Q.-J.; Ahmad, A.; Tang, G.-H.; Yin, S. Org. Chem. Front. 2017, 4, 170. b) Sengupta, S.; Mehta, G. Org. Biomol. Chem. 2018, 16, 6372.
- (6) a) Chinta, B. S.; Baire, B. Org. Biomol. Chem. 2017, 15, 5908. b) Karmakar, R.; Lee,
 D. Org. Lett. 2016, 18, 6105. c) Sowden, M. J.; Sherburn, M. S. Org. Lett. 2017,
 19, 636.
- (7) Yao, L.-F.; Tan, D.; Miao, X.; Huang, K.-W. RSC Adv. 2012, 2, 7594.
- (8) a) Grimsdale, A. C.; Leok Chan, K.; Martin, R. E.; Jokisz, P. G. Holmes, A. B. *Chem. Rev.* **2009**, *109*, 897. b) Luo, L.; Choi S. H.; Frisbie, C. D. *Chem. Mater.* **2010**, *23*, 631.
- (9) a) Facchetti, A. *Chem. Mater.* **2010**, *23*, 733. b) Siddhant, B. S.; Wagulde, V.; Ramasastry, S. S. V. *Chem. Commun.* **2017**, *53*, 8042.
- (10) a) Yaragorla, S.; Rajesh, P. *Org. Biomol. Chem.* 2019, 17, 1924. b) Yaragorla, S.;
 Rajesh, P.; Pareek, A.; Kumar, A. *Adv. Synth. Catal.* 2018, 360, 4422. c) Yaragorla, S.;
 Pareek, A.; *Tetrahedron Lett.* 2018, 59, 909. d) Yaragorla, S.; Pareek, A.; Dada, R. *Tetrahedron Lett.* 2017, 58, 4642. e) Singh, G.; Yaragorla, S. *RSC Adv.* 2017, 7, 18874.
- (11) For recent reviews on calcium catalysis see: a) Begouin, J.-M.; Niggemann, M. Chem. Eur. J. 2013, 19, 8030. b) Harder, S. Topics in Organometallic Chemistry, Springer, Berlin, 2013. (c) Lebœuf, D.; Gandon, V. Synthesis 2017, 49, 1500.
- (12) Kishor, G;.Thorat, P.; Kamble, Ray, A. K.; Sekar, N. *Phys. Chem. Chem. Phys.* **2015**, *17*, 17221.
- (13) Singh, S.; Samineni, R.; Pabbaraja, S. Mehta G. *Angew. Chem.* 2018, *130*, 17089.
 b) Tanaka, K.; Aoki, H.; Hosomi, H.; Ohba, S. *Org. Lett.* 2000, *2*, 2133.
- (14) Mondal, S.; Debnath, S. Synthesis **2014**, 46, 368.

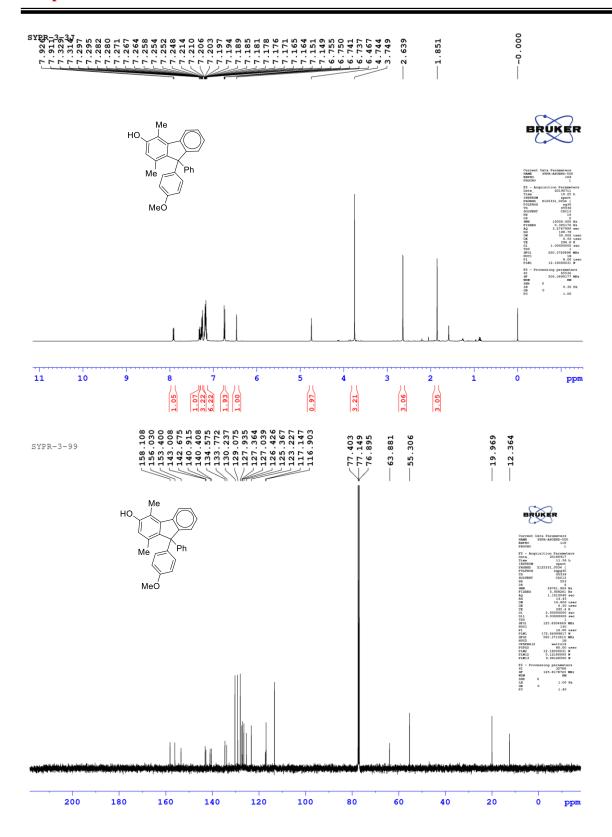

- (15) Das, P.; Mankada, Y.; Reddy, D. S. Tetrahedron Lett. 2019, 60, 831.
- (16) Heck, R. F.; Nolley, J. P. J. Org. Chem. 1972, 37, 2320.
- (17) Sonogashira, K.; Tohda, Y.; Hagihara, N. Tetrahedron Lett. 1975, 16, 4467.

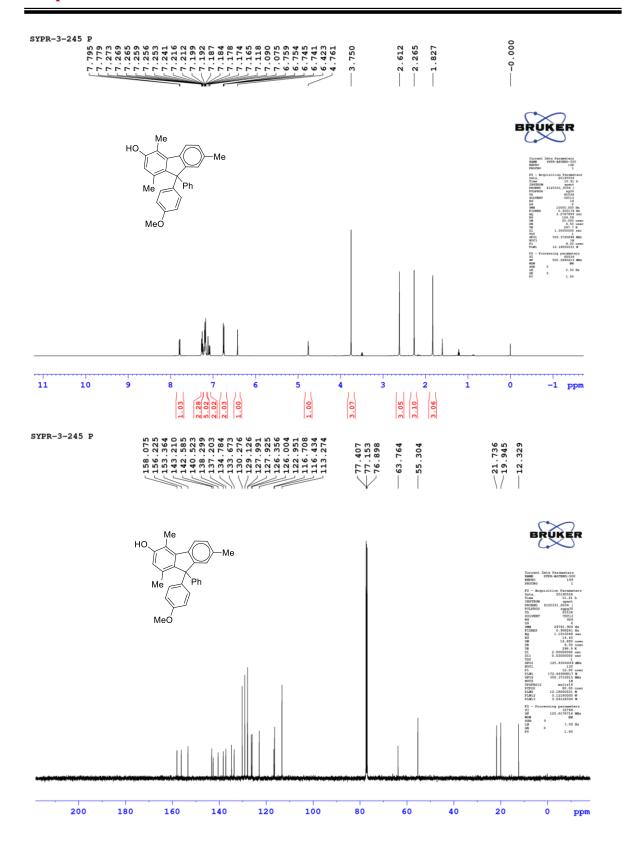

3.9 SPECTRAL COPIES

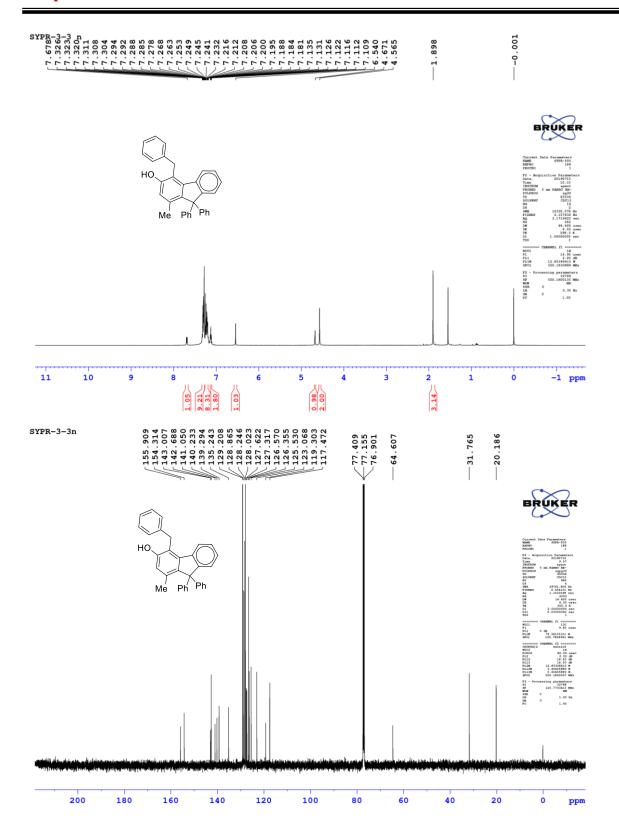


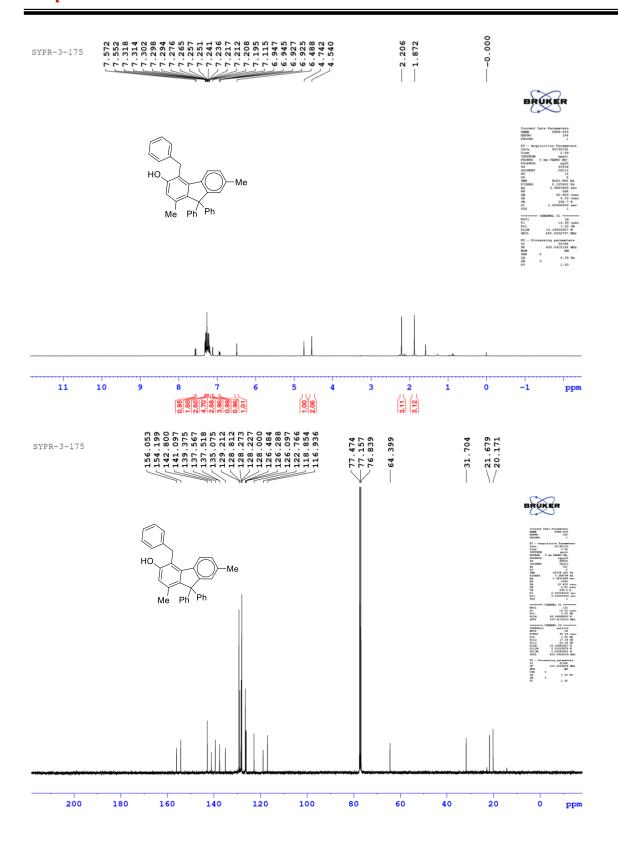


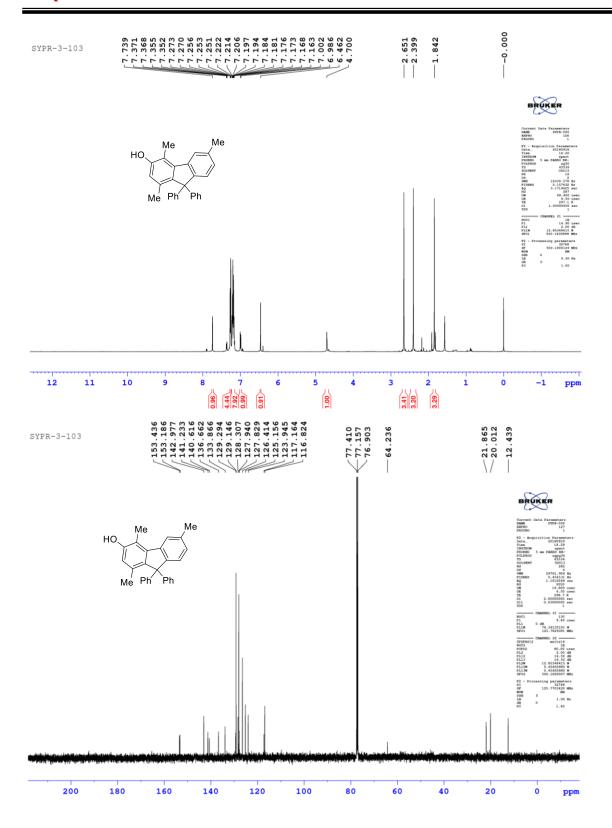


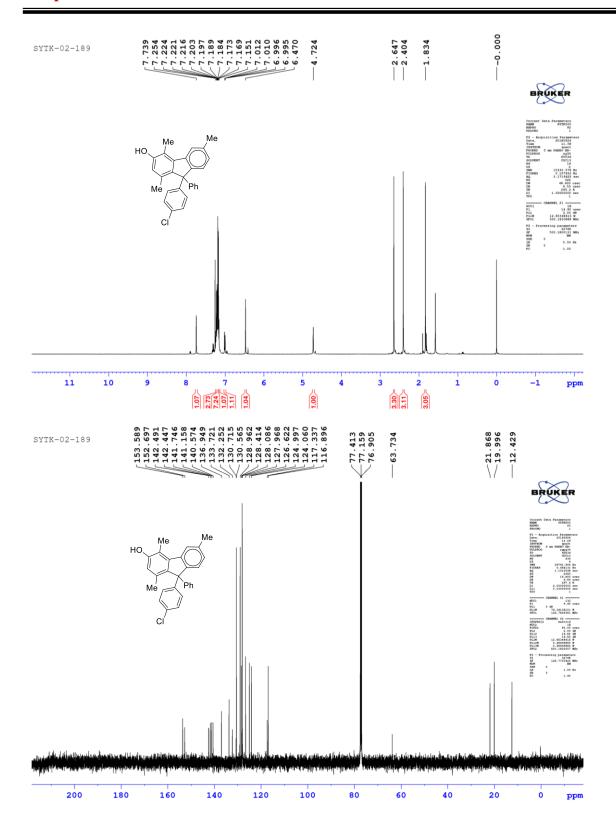


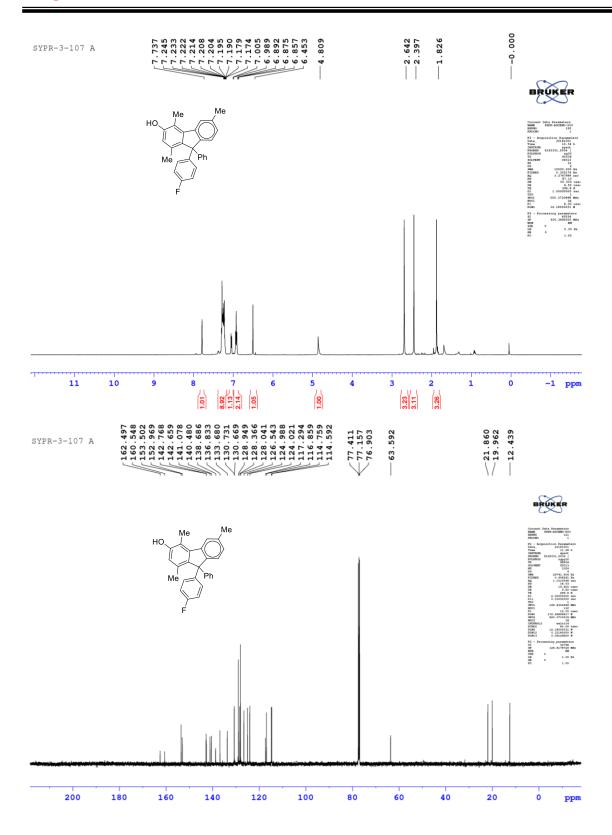


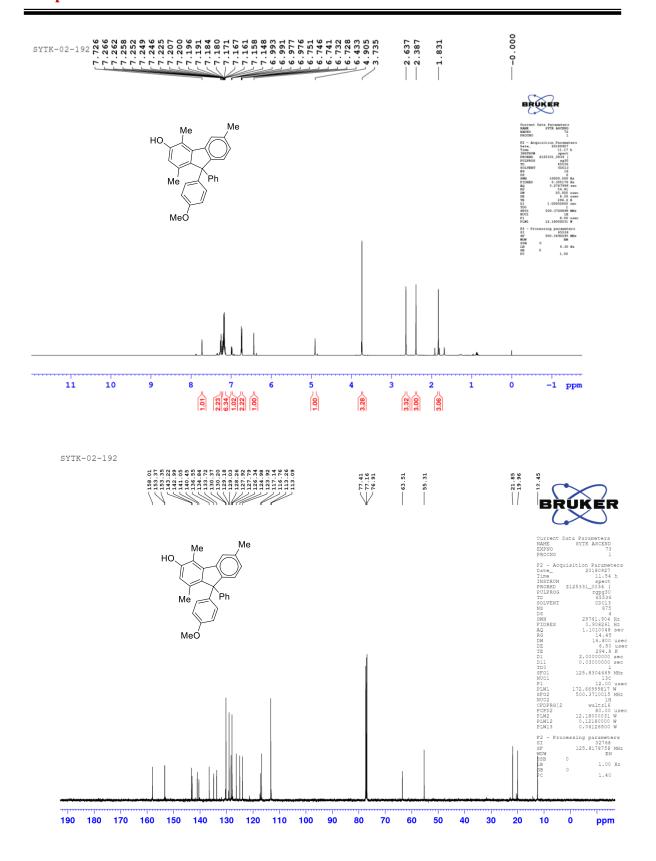


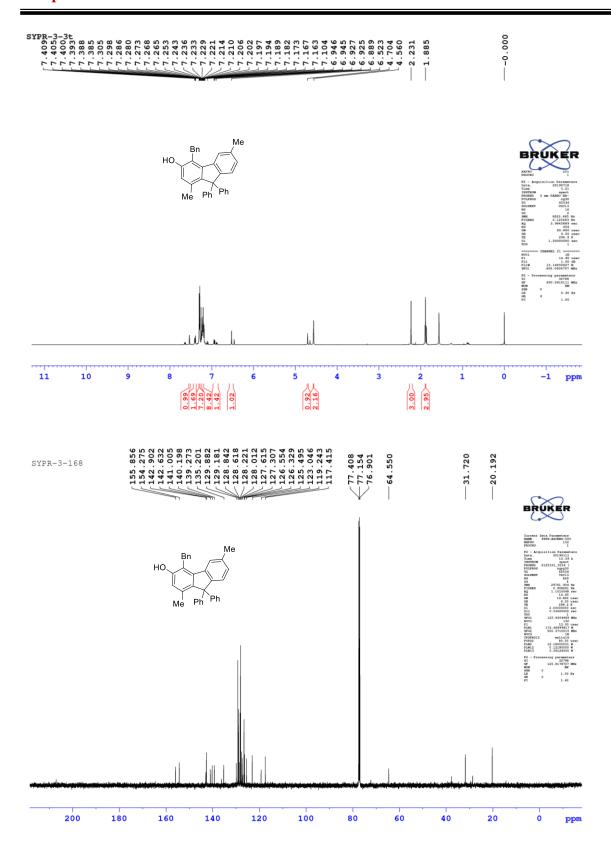


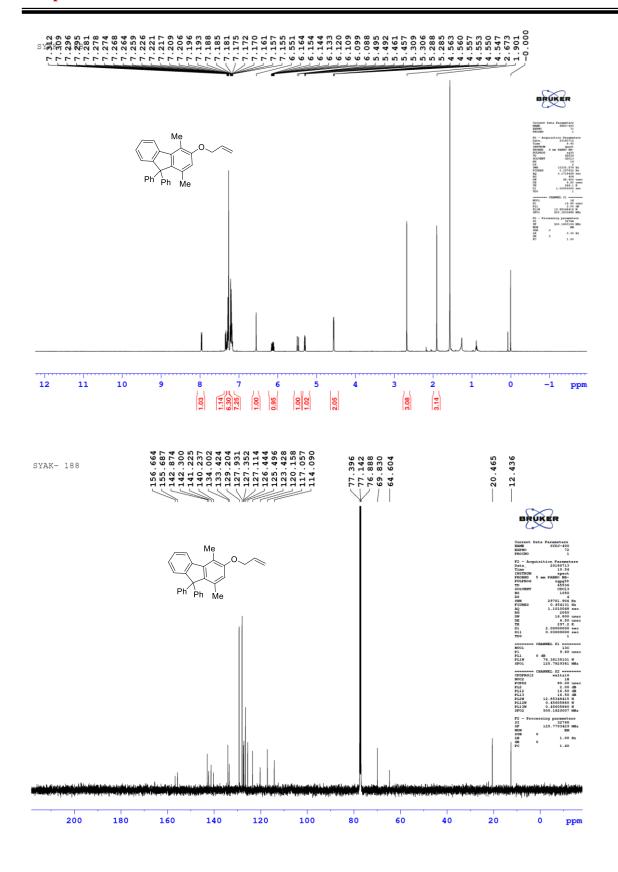


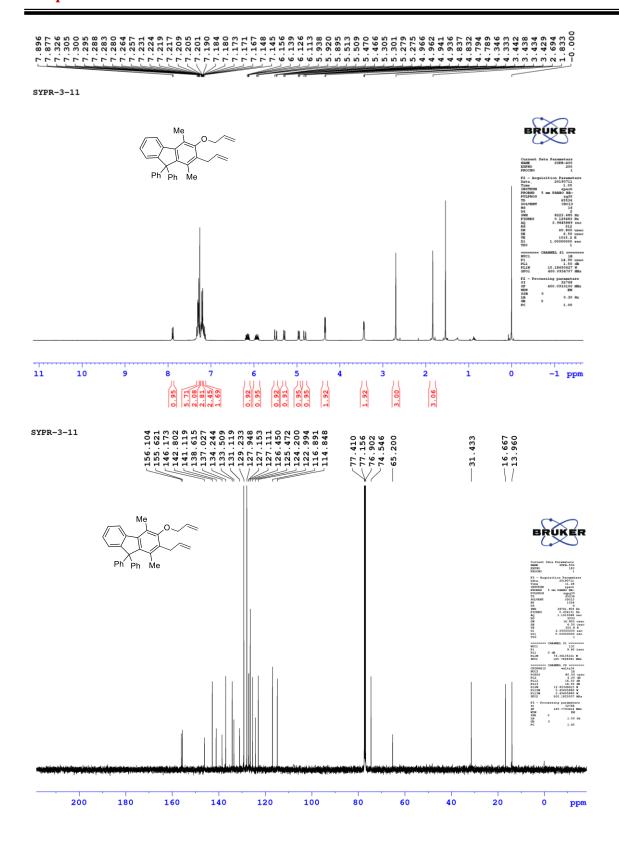


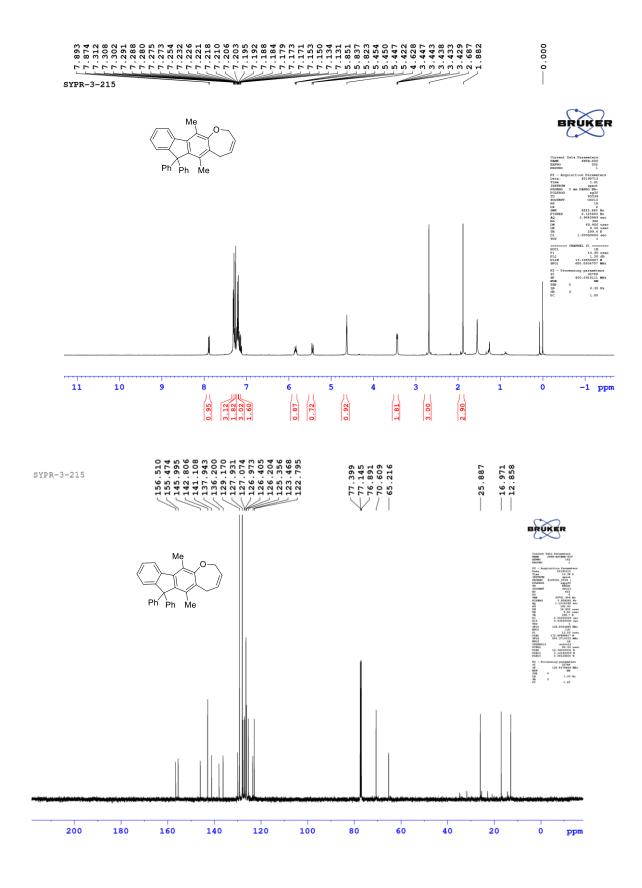


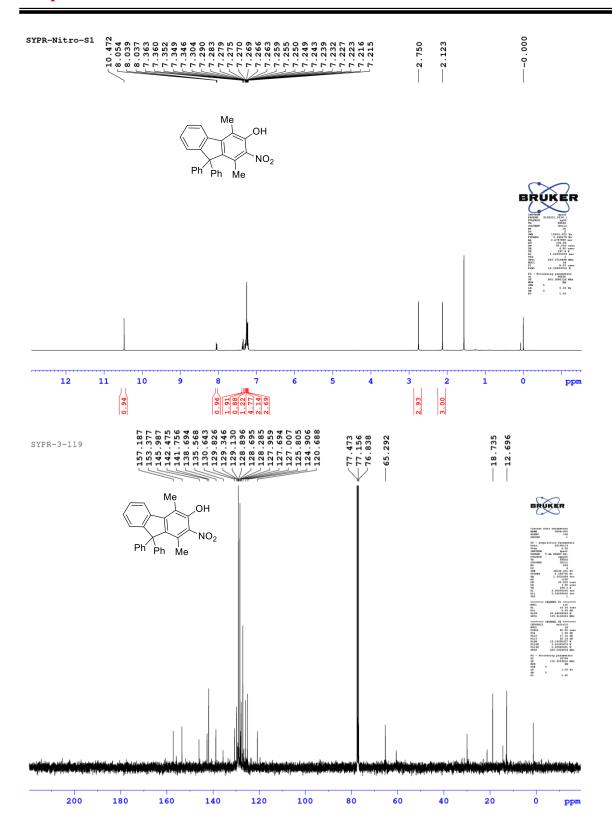


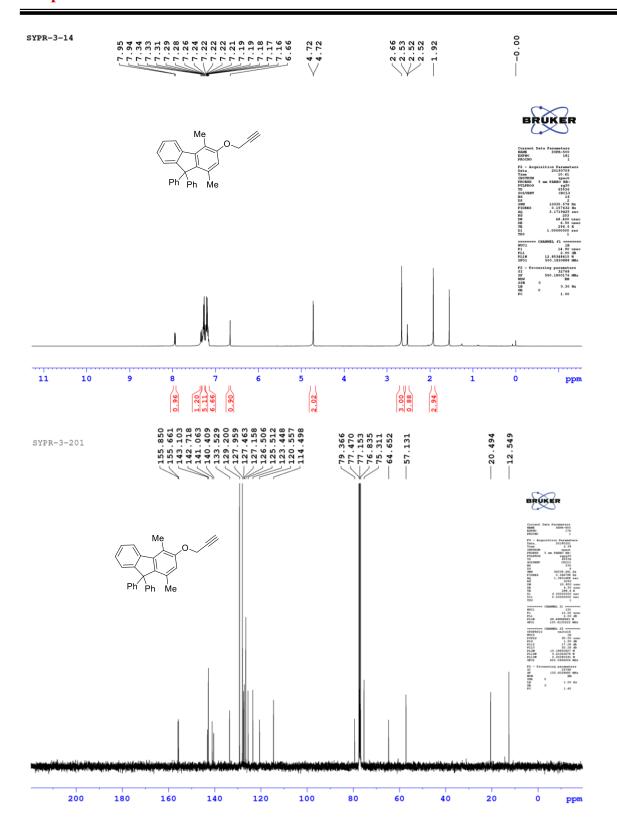


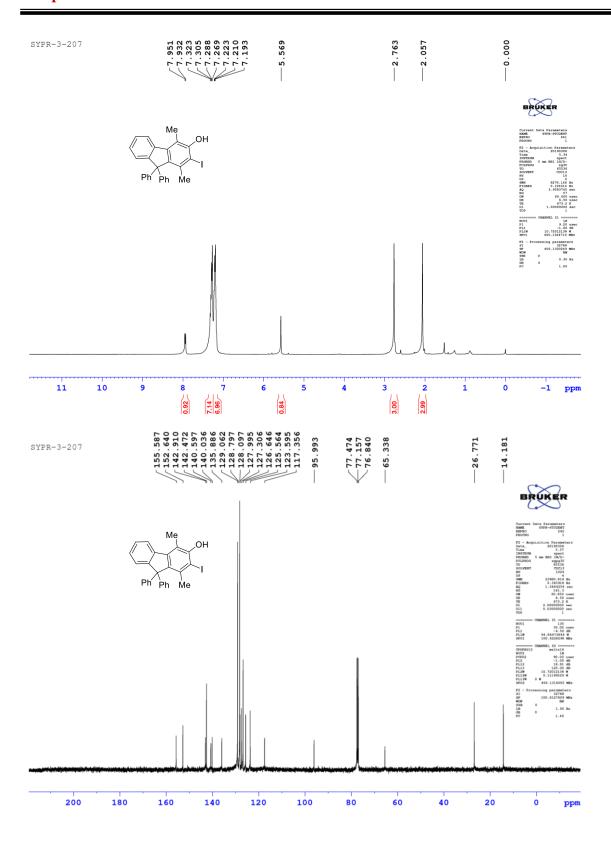


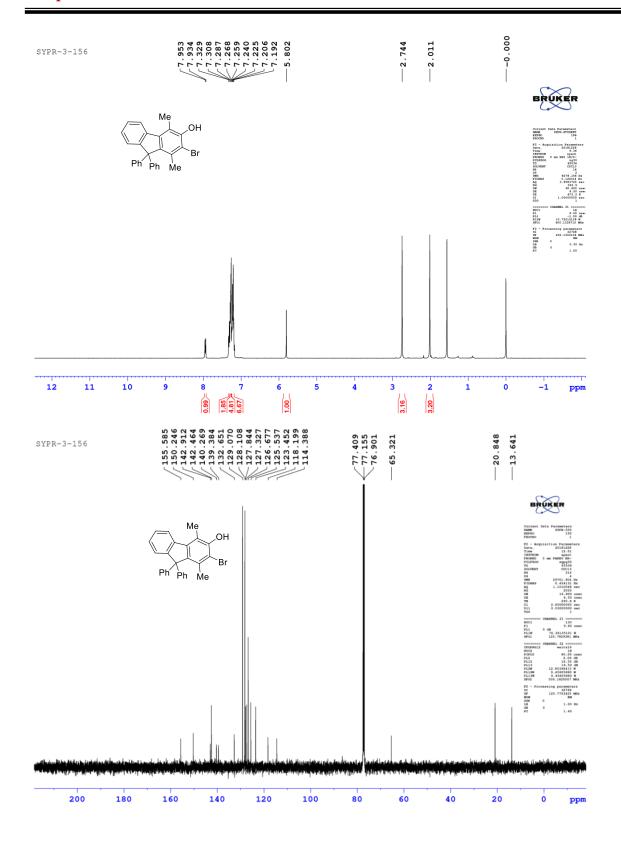


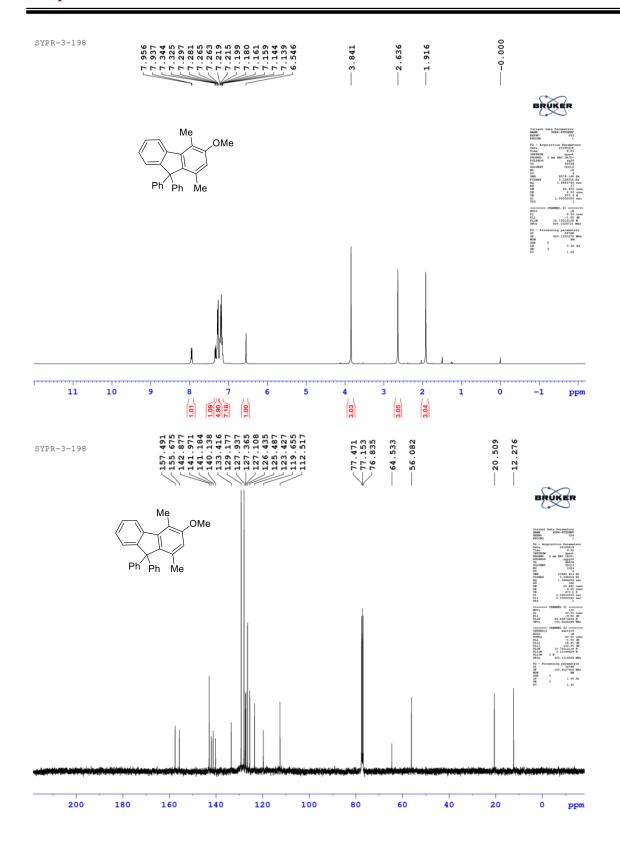


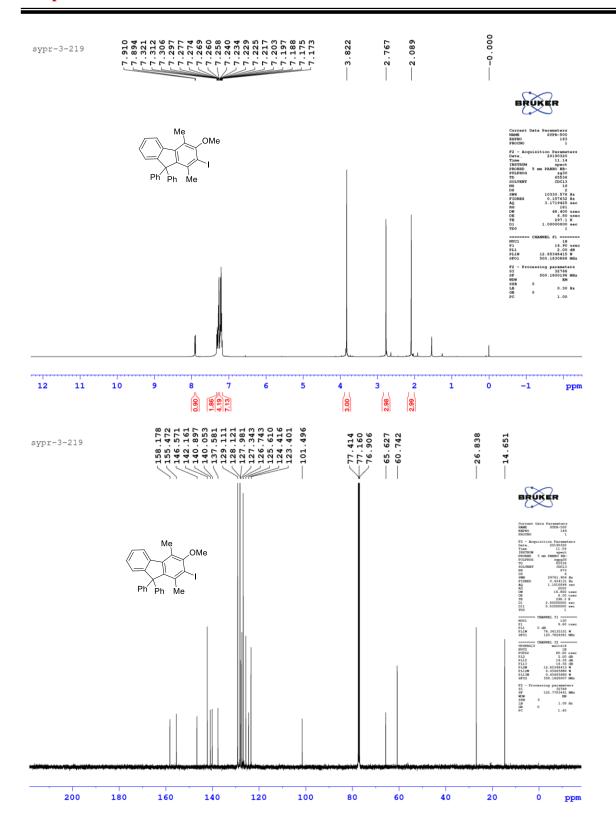


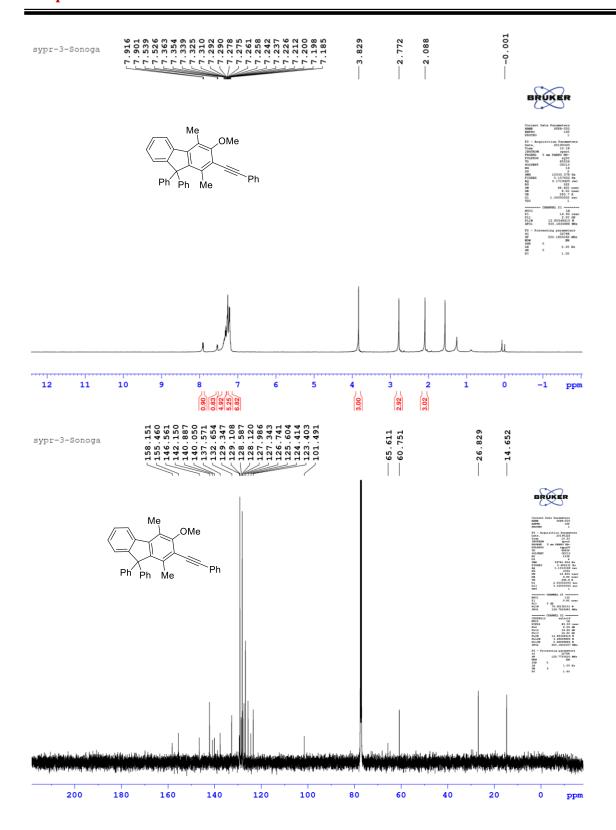


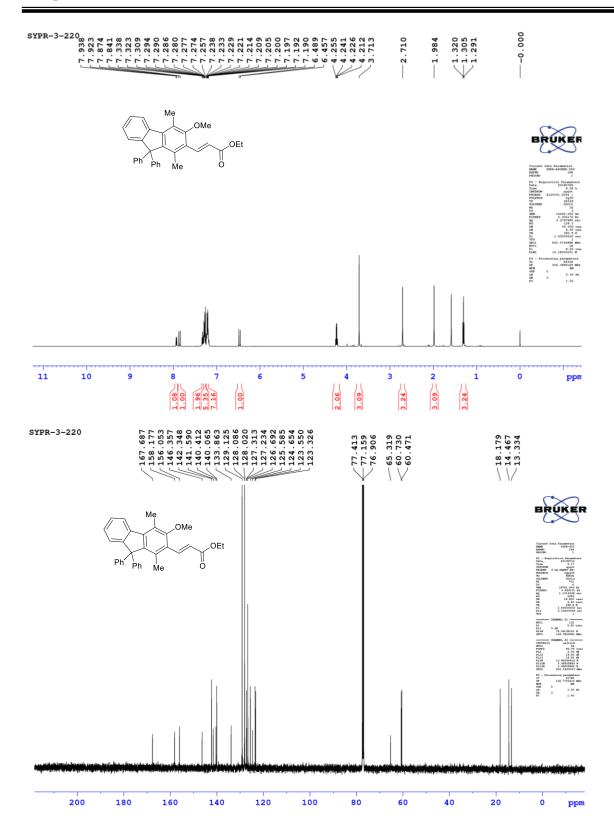












Synthesis and in-situ Cyclization of Tetrasubstituted Allenes to Access Tetracyclic Fluorenofurans

Eur. J. Org. Chem. 2020, 7243-7251

4.1 PROPOSAL FOR THE SYNTHESIS OF FLUORENOFURAN AND PYRAN

As mentioned before, ynol **1** and diketone **67b** react in the presence of calcium-catalyst to give allene intermediate **A**, which further cyclizes to produce fluorenol **123**. At this stage, we presumed that, the addition of a *sec*-propargyl alcohol to the fluorenol **123**, may lead to formation of new C-C bond due to the soft-soft interactions over the C-O bond to give compound **138aa** which may further undergo a 5-*exo-dig*-cyclization to give fluorenofuran or a 6-*endo-dig*-cyclization to form fluorenopyran. The selectivity of such cyclization can be controlled by the R²-group attached to the alkyne moiety.

(1)

Ar¹

$$Ar^{1}$$
 Ar^{1}
 Ar^{2}
 Ar^{2}
 Ar^{1}
 R^{2}
 R^{2

Figure 1. Conceptualization of highly regioselective synthesis of fluorenofuran and pyran derivatives

When we look at the literature for fluorene chemistry, we found that a similar kind of fluorene moiety was seen in various bioactive natural products and medicinal importants¹, and is often considered as a potential building block for the production of a variety of molecules with advanced material applications.² Furthermore, fluorenes fused with arenes or heteroarenes are known to exhibit interesting optoelectronic properties due to the presence of an extended π -conjugation.³ In addition to being a constituent of a variety of natural products (Figure 2),

some linearly fused polyaromatic hydrocarbons (PAHs) possess significant medicinal properties as well. Due to their critical importance, the synthesis of benzofluorenes has been thoroughly studied among these linearly fused fluorenes. For example, the fluostatin family of natural products inhibits dipeptidyl peptidases and exhibits antibacterial and anticancer properties.⁴ Similarly, Kinamycin natural products possess significant antibiotic and cytotoxic activities⁵; they serve as nonsteroidal drug candidates for the estrogen receptor-related treatments⁶ and are often used as synthetic precursors⁷. They are also used as functional materials with promising applications.⁸

Figure 2. Representative examples of naturally occurring [6-5-6-6] and [6-5-6-5] fused-fluorenes

4.2 PREVIOUS REPORTS

In 2007, Y.-M. Liang *et.al* reported a palladium-catalyzed tandem bis cyclization reaction that can be used to make different benzo[*b*]fluorene and fluorene analogs from propargylic compounds having terminal alkynes. This reaction proceeds through carboannulation, coupling, CH activation, and C-C bond formation (Scheme 1).⁹

Scheme 1. Synthesis of fused polycycles from propargylic compounds with terminal alkynes *via* a palladium-catalyzed cyclization reaction.

In 2012, Y. Liu *et.al* designed a new gold-catalyzed 1,6-diynylcarbonate cascade reaction that involved unusual arylation of oxocarbenium ion intermediates and decarboxylative etherification processes (Scheme 2). ¹⁰

OCOR₁

$$R_{2}$$

$$R_{1} = Me$$

$$R^{2} = t\text{-But}$$

$$R_{2} = t\text{-But}$$

$$R_{2} = t\text{-But}$$

$$R_{3} = Ne$$

$$R_{2} = t\text{-But}$$

$$R_{4} = Ne$$

$$R_{2} = t\text{-But}$$

$$R_{5} = Ne$$

$$R_{1} = Ne$$

$$R_{2} = t\text{-But}$$

$$R_{3} = Ne$$

$$R_{4} = Ne$$

$$R_{2} = t\text{-But}$$

$$R_{3} = Ne$$

$$R_{4} = Ne$$

$$R_{2} = t\text{-But}$$

$$R_{3} = Ne$$

$$R_{4} = Ne$$

$$R_{5} = Ne$$

$$Yield up to 85\%$$

Scheme 2. Gold-catalyzed cyclizations of 1,6-diynyl carbonates to benzo[b]fluorenes.

The oxidative cycloisomerization of acyclic 1,5-diynols has been performed in a regio- and chemoselective manner. The reaction proceeds with great efficiency and broad functional group tolerance under metal-free reaction conditions, offering a broad and straightforward pathway to benzo[b]fluorenones. Preliminary mechanistic studies revealed that a Meyer-

Schuster rearrangement in conjunction with an oxidative radical cyclization could be implicated (Scheme 3). 11

Scheme 3. Benzo[*b*]fluorenone synthesis *via* cycloisomerization protocols.

In 2016 K. Srinivasan *et.al* demonstrated a competent method for the preparation of a variety of fluorene derivatives from ortho-alkynyl dihydrochalcones. It follows a 5-*exo-dig* Coniaene reaction followed by Friedel-Crafts cyclization (Scheme 4).¹²

$$R^{2}$$

$$R^{1}$$

$$R^{2}$$

$$R^{1}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{2}$$

$$R^{3}$$

$$R^{3}$$

$$R^{3}$$

$$R^{4}$$

$$R^{1}$$

$$R^{2}$$

$$R^{2}$$

$$R^{3}$$

$$R^{2}$$

$$R^{3}$$

$$R^{3}$$

$$R^{2}$$

$$R^{3}$$

$$R^{3}$$

$$R^{2}$$

$$R^{3}$$

$$R^{3}$$

$$R^{3}$$

$$R^{3}$$

$$R^{4}$$

$$R^{4}$$

$$R^{4}$$

$$R^{4}$$

$$R^{2}$$

$$R^{3}$$

$$R^{2}$$

$$R^{3}$$

$$R^{2}$$

$$R^{3}$$

$$R^{3}$$

$$R^{4}$$

$$R^{4}$$

$$R^{4}$$

$$R^{4}$$

$$R^{3}$$

$$R^{4}$$

$$R^{4$$

Scheme 4. Tandem catalyzed by iron access to benzo[*b*]fluorenes through coniaEne/Friedel-Crafts reactions of *o*-Alkynyl dihydrochalcones.

Previously reported procedures¹⁴ were followed for the synthesis of starting materials. Initially, a mixture of phenylacetylene (1.1 equiv.) was dissolved in dry THF at -78 °C, LHMDS (1.2 equiv.) was added to the reaction mixture and stirred for 20 minutes at -78 °C, aldehyde (1 equiv.) was added slowly to the reaction mixture and the progress of the reaction was monitored by TLC. After completion, the reaction mixture was quenched with saturated NH₄Cl and extracted into EtOAc thrice. The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄ and the solvent was removed under reduced pressure. The crude product was purified by silica gel column chromatography (PE:EtOAc) to obtain the desired product.

RHO
$$R^{1}$$
 R^{1} R^{1}

Table 1. Optimization studies for the synthesis of fluorenofuran 144a

	72D 90a	444-	144aa 128a	;
Entry	Catalyst (mol%)	Base (equiv.)	Reaction conditions ^a	ield(
				$\%)^{b}$
1	Ca(OTf) ₂ /Bu ₄ NPF ₆ (10/10	0)	DCE, 90 °C, 12 h	10
2	Ca(OTf) ₂ /Bu ₄ NPF ₆ (10/10	0) DABCO (1)	DCE, 90 °C, 12 h	30
3	Ca(OTf) ₂ /Bu ₄ NPF ₆ (10/10	0) DABCO (2)	DCE, 90 °C, 12 h	42
4	Ca(OTf) ₂ /Bu ₄ NPF ₆ (10/10	0) DABCO (3)	DCE, 90 °C, 12 h	58
5	Ca(OTf) ₂ /Bu ₄ NPF ₆ (10/10	0) DABCO (3)	CH ₃ CN, 90 °C, 12 h	45
6	Ca(OTf) ₂ /Bu ₄ NPF ₆ (10/10	0) DABCO (3)	PhCH ₃ , 120 °C, 12 h	32
7	Ca(OTf) ₂ /Bu ₄ NPF ₆ (10/10	0) DABCO (3)	THF, 70 °C, 12 h	30
8	Ca(OTf) ₂ /Bu ₄ NPF ₆ (10/10	DABCO (3)	DCE + PhCH ₃ , 90 °C, 12 h	45
9	Ca(OTf) ₂ /Bu ₄ NPF ₆ (10/10	0) DABCO (3)	DCE + CH ₃ CN ₃ 90 °C, 7 h	80
10	Ca(OTf) ₂ /Bu ₄ NPF ₆ (5/10	DABCO (3)	DCE + CH ₃ CN ₂ 90 °C, 12 h	62
11 ^c	Ca(OTf) ₂ /Bu ₄ NPF ₆ (10/5	5) DABCO (3)	DCE + CH ₃ CN, 90 °C, 7 h	80
12	Ca(OTf) ₂ (10)	DABCO (3)	DCE + CH ₃ CN ₂ 90 °C, 12 h	48
13	Ca(OTf) ₂ /KPF ₆ (10/10)	DABCO (3)	DCE + CH ₃ CN, 90 °C, 12 h	25
14	Ca(OTf) ₂ /Bu ₄ NPF ₆ (10/5	DBU (3)	DCE + CH ₃ CN ₂ 90 °C, 12 h	52
15	Ca(OTf) ₂ /Bu ₄ NPF ₆ (10/5	K ₂ CO ₃ (3)	DCE + CH ₃ CN, 90 °C, 12 h	54
16	Ca(OTf) ₂ /Bu ₄ NPF ₆ (10/5	Na ₂ CO ₃ (3)	DCE + CH ₃ CN, 90 °C, 12 h	51
17	Mg(OTf) ₂ (10)	DABCO (3)	DCE + CH ₃ CN, 90 °C, 12 h	25
18	FeCl ₃ (10)	DABCO (3)	DCE + CH ₃ CN, 90 °C, 12 h	30
19	p-TsOH (10)	DABCO (3)	DCE + CH ₃ CN, 90 °C, 12 h	56
1	1	i	I .	1

^aconditions: **1a** (0.35mmol), **72b** (0.45 mmol), **96a** (0.42 mmol) was added after the formation of **144aa** and along with acetonitrile was added after the formation of **144aa**^I. Fisolated yields based on **1a**. Optimum condition. All reactions were monitored up to 12 h.DCE: Dichloromethane

4.3 Results and optimization Studies

To test the feasibility of our theory, (Scheme 4) was repeated using different types of tertpropargyl alcohols. 1,1,3-triphenylprop-2-vn-1-ol (1a), 3-methylpentane-2,4-dione (72b), and 1,3-diphenylprop-2-yn-1-ol (144a) were employed as reacting partners in a regioselective annulation reaction. Initially, a mixture of **1a** (0.35 mol), **72b**(0.45 mmol), and 10/10 mol% of Ca(OTf)₂/Bu₄NPF₆ was refluxed in 1,2-dichloroethane until the formation of fluorenol **144aa**¹⁵ (2 hours, monitored by TLC) was completed. To this, 0.42 mmol of sec-propargyl alcohol 96a was added and the reflux was continued for 12 hours (entry 1, Table 1). As predicted, the reaction yielded the desired tetracyclic compound, fluoreno[3,2-b]furan **144a**, ¹⁶ but in poor yield (10%) and the rest of the product was **144aa**^I, which is the key intermediate for the formation of 144a. Therefore, we decided to introduce a base to accelerate the cyclization of 144aa^I to 144a. Accordingly, after the formation of 144aa^I (as mentioned in entry 1), DABCO (1 equiv.) was added to the reaction and the reflux was continued for 12 hours, which resulted in a moderate increase of reaction yield (entry 2). Moreover, we observed that the addition of the extra-base (DABCO) into the reaction resulted in a proportional increase in the reaction yield (entries 3,4). The search for finding better solvent systems (acetonitrile, toluene and tetrahydrofuran) for this transformation did not give us satisfactory results (entries 5-7). However, a combination of solvents yielded better results. We found that a combination of DCE/CH₃CN (1:1) is the best solvent system for this transformation yielding 144a in 80% (entries 8,9). Next, we explored the possibility of minimizing the catalyst loadings (entries 10,11), and found that 10/5 mol% of Ca(II)/Bu₄NPF₆ gave the best reaction yield and as predicted the reaction furnished only 48% of 144a without the additive (entry 12). The use of KPF₆ as an alternative additive with Ca(II) combination was not effective (entry 13). The search for alternative bases such as DBU, potassium carbonate, and sodium carbonate to promote the cyclization of **144aa**^I to **144a** was not successful (entries, 14-16). The possibility of using other catalysts such as magnesium triflate (entry 17), ferric chloride (entry 18), and para-toluenesulfonic acid (entry 19) to promote the annulation reaction of 1a, 72b, and 96a was also explored. After performing a series of optimization reactions (entries 1-19), we finalized that entry 11 (Table 1) was the best condition.

4.3a Characterization of Compound 144a

¹H NMR, ¹³C NMR, and melting point have been used to completely describe the isolated compound **144a**. In ¹H NMR spectra, the classic CH₂ proton signals were observed at 3.87 ppm, while the corresponding carbon appeared at 32.96 ppm in ¹³C NMR spectra.

4.3b SCOPE OF THE REACTION

After establishing the typical reaction conditions for the annulation of propargyl alcohols with 1,3-diketone to produce fluoreno[3,2-b] furan, we were excited to investigate the flexibility of this approach in terms of substrates 1, 72b, and 96 (Table 2). To begin, we chose a number of sec-propargyl alcohols (96) with various benzylic aryl ring replacements (such as 4-methyl, 4-bromo, 4-chloro, and 4-methoxy groups) and treated them with 1a and 72b under typical reaction conditions. In all situations, this reaction produced good yields of the respective fluorenofurans **144b-144e**. In supplement to NMR and mass data, single-crystal X-ray data¹⁶ was used to augment the structural conformation of compound 144d. Next, we exposed that changes on the acetylenic aryl ring (144f), as well as both aryl rings of alcohol 96, had no discernible inhibitory effect on the reaction of 1a and 72b to yield 144g-144i. Later, by treating tert-propargyl alcohols (1) with various sec-propargyl alcohols (96) and diketone 72b, we investigated the scope of substitutions on the alkynyl-phenyl ring, which resulted in the creation of corresponding fluorenofurans 144j-144m in 68-76 % yields. These reaction conditions tolerated substitutions on the propargylic aryl rings of *tert*-propargyl alcohol (1), resulting in high yields of fluorenofurans 144n-144t with an unsymmetrical quaternary center at C5 (stereogenic centre). The related product 144u was produced in 60% yield by treating 3-benzylpentane-2,4-dione (72h) with 1a and 96b under typical annulation conditions. We were able to incorporate a styryl group on the third position in compound 144v by treating **72b** and **96a** with 1,3,5-triphenylpent-1-en-4-yn-3-ol.

Table 2. Substrate scope of annulation reaction. [a]

[[]a] Reaction conditions: A mixture of 1 (0.35 mmol), 72 (0.45 mmol), 10 mol% Ca(OTf)2, 5 mol% Bu_4NPF_6 was refluxed in 1,2- DCE for 2-3 h, then 96a (0.42 mmol) was added to the reaction mixture, after formation of alkylated product (40-60 min) DABCO (1.05 mmol) along with acetonitrile was introduced to the reaction mixture and refluxed for 2-3 h.

4.3c Data for Single X-Ray Crystal Structure 144d.

We used the vapor diffusion crystallization method to grow crystal for **144d** wherein the compound was dissolved in chloroform at elevated temperatures to make a saturated solution in a small vial which was then placed in a closed bottle with *n*-hexane as the other solvent.

Figure 2. ORTEP representation of compound **144d** and thermal ellipsoids are drawn with 50% probability.

Under standard conditions, the reaction of **1a** and **72b** with 1-phenyl-3-(trimethylsilyl) prop-2-yn-1-ol (**96k**) gave the fluorenofuran **144w**, but not **144w**′, as expected. (Scheme 5). This could be due to the presence of fluoride ion (from the additive) in the process, which has a strong affinity for the silyl group, resulting in desilylation **144w**²⁴.

Scheme 5. Synthesis of 5H-fluoreno[3,2-b]furan(144w) with TMS-alkyne (96k)

As a result of these findings, the reactivity of *sec*-propargyl alcohols (**96c**) with electron-withdrawing groups (on the alkyne side) with *tert*-propargyl alcohols (**1**) and diketones **72b** were investigated (Scheme 6). Compounds **1a**, **72b**, and **96c** were all exposed to typical reaction conditions, yielding fluorenofuran **145a** with a yield of 78%. Interestingly, we noticed that the presence of DABCO did not have any appreciable impact on the product formed *via* the addition of ester **96c** to the fluorenol intermediate (**144aa**, see the Scheme in Table 1). As a result, we duplicated the reaction conditions but in the absence of DABCO, and to our pleasant surprise, the result was a 75% yield of **145a**. Due to the presence of an ester group, the intermediate **145aa** effectively undergoes an intramolecular oxa-Michael addition

(Scheme 6) and as a result, an annulation reaction occurs without the use of any base. Similarly, the ester **96c** could produce the fluorenofurans **145b-145d** in good yields and the ester **96c** could produce the compound **145e** in good yields (Scheme 6).

^aReaction conditions: A mixture of **1** (0.35 mmol), **72b** (0.45 mmol), 10 mol% $Ca(OTf)_2$, 5 mol% Bu_4NPF_6 were refluxed in 1,2- DCE for 2-3 h then **96c** (0.42 mmol) was added to the reaction mixture and refluxed till the product formation (1-2 h).

Scheme 6. Ca(II)-catalyzed, annulation reaction of 1, 72b with propargyl esters (96c). [a]

The experimental results in schemes 5 and 6 demonstrated the regioselectivity during the formation of fluorenofurans, in which the alkyne-terminus of *sec*-propargyl alcohol **96d** (Scheme 5, 6) and **144** (Table 2) are aryl and ester groups, respectively. We then investigated the regioselectivity of *sec*-propargyl alcohols with alkylgroups on the alkyne-terminus (Scheme 7). As a result, the substrates **1a**, **72b**, and 1-phenylhept-2-yn-1-ol (**96d**) were refluxed in DCE for 4.5 hours with 10/5 mol% Ca(OTf)₂/Bu₄NPF₆ (typical reaction conditions of Scheme 6) to generate the product **146a** in 76% yield. The presence of an alkyl group on the alkyne-terminus of **96d** diverted the regioselectivity of the annulation reaction to create a fluorenopyran (rather than fluorenofuran) *via* a 6-endo-dig-cyclization pathway (refer to Scheme 10 for mechanistic details). When *tert*-propargyl alcohol **1** was made to react with **72b** and 1-phenyloct-2-yn-1-ol (**96e**) an identical type of regioselectivity was observed in the fluorenopyrans **146b** and **146c** formed (Scheme 7).

^aReaction conditions: A mixture of **1** (0.35 mmol), **72b** (0.45 mmol), 10 mol% Ca(OTf)₂, 5 mol% Bu₄NPF₆ were refluxed in 1,2- DCE for 2-3 h then **96d** (0.42 mmol) was added to the reaction mixture and refluxed till the product formation (1-2 h).

Scheme 7. Ca(II)-catalyzed, annulation reaction of 1, 72b with 96d bearing alkyl groups on alkyne terminus. [a]

After studying the regioselective annulation of propargylic alcohols with 1,3-diketones, we were able to achieve a gram-scale synthesis of **144a** from **1a**, **72b**, and **96a** under typical reaction conditions (Scheme 8).

Scheme 8. Gram Scale Synthesis of 138a.

We were interested in exploring the synthetic utility of **144a** by executing the benzylic C-H functionalization after the successful demonstration of gram-scale synthesis. After 24 hours, the dehydrogenative cross-coupling reaction of compound **144a** with phenylacetylene¹⁷ was accelerated by copper(II), and the cross-coupled product **147a** was produced in 50% yield (Scheme 8). Similarly, **144a** was treated to copper-catalyzed benzylic C-H functionalization with p-tolylacetylene and cyclopropyl acetylene to produce **147b** and **147c**, respectively (Scheme 9).

Scheme 9. Benzylic Csp3-H functionalization of **144a**: dehydrogenative cross-coupling with an alkyne.

The following synthetic transformation was constructed to demonstrate the potentiality of **144a** by exposing it to benzylic oxidation with p-methoxyphenol¹⁸ to provide the desired product. **149**(Scheme 10).

Scheme 10. Benzylic Csp3-H functionalization of 144a: Oxidative etherification

4.4 Reaction Mechanism

We hypothesized the likely reaction mechanism for this annulation reaction in Scheme 10 based on prior results acquired by us and other research groups¹⁵,¹⁷. The tetrasubstituted allene intermediate **3ya** is produced *via* the S_N² substitution process between compounds **1** and **72b** (isolated). Following the intramolecular-allene-Friedel-Crafts-Annulation reaction (I-AFCA) of **3ya**, the tricyclic molecule **L** is formed, which is easily isomerized to indene **M**. Compounds **M** and **N** exist in keto-enol tautomerism, and they undergo a calcium-catalyzed intramolecular-aldol reaction to yield tri-carbocyclic molecule **O**, which is then eliminated (**P**) and aromatized to give fluorenol **128**. (isolated). Between **128** and **96a**, calcium-catalyzed

C–C bond formation produces intermediate Q. (isolated). The nature of the R¹-group was used to define the cyclization mode. If R¹ is an aryl group (Case 1), DABCO-assisted Ca(II) raises the acidity of a nearby phenolic proton, allowing protonation of an alkyne through a tight six-membered transition state (R), resulting in the cationic molecule S. The steric- DABCO ligands bound to calcium limit bond rotation at this point, so the cation (S) isomerizes to T and enables the formation of the furan ring U, which eventually aromatizes to create compound 144. In case 2, where R¹ is an ester group (V), the Lewis acidity of calcium causes charge separation on propargyl ester (W), allowing for intramolecular Oxa-Michael addition to giving compound 145aa *via* the intermediates X, Y. If R¹ is an alkyl group (Z), the acidity of the phenolic proton increases due to the calcium and protonates the alkyne through a six-membered transition state to create the cation Za. The C–C bond twist provides the right orientation for cyclization to yield the pyran 146 (Zb, the positive charge is stabilized by the +I action of the alkyl groups)(Scheme 11).

Scheme 11. Reaction mechanism for the Ca(II) catalyzed regionelective synthesis of fluorenofuran

Mechanism for fluorenofuran

Isomerization
$$Ar^1 Ar^2 Me$$
 aromatization $Ar^1 Ar^2 Me$ $Ar^3 O$ $Ar^1 Ar^2 Me$ $Ar^2 Me$ $Ar^2 Me$ $Ar^3 O$ $Ar^1 Ar^2 Me$ $Ar^2 Me$ $Ar^2 Me$ $Ar^3 O$ $Ar^1 Ar^2 Me$ $Ar^2 Me$ $Ar^2 Me$ $Ar^3 O$ $Ar^1 Ar^2 Me$ $Ar^2 Me$ $Ar^2 Me$ $Ar^2 Me$ $Ar^3 O$ $Ar^2 Me$ $Ar^3 O$ $Ar^1 Ar^2 Me$ $Ar^2 Me$ $Ar^2 Me$ $Ar^2 Me$ $Ar^2 Me$ $Ar^3 O$ $Ar^2 Me$ $Ar^3 O$ $Ar^2 Me$ $Ar^3 O$ $Ar^2 Me$ $Ar^3 O$ $Ar^$

Mechanism for fluorenopyran

R¹= alkyl

4.5 CONCLUSIONS

We were also able to demonstrate that functionalized 5H-fluoreno[3,2-b]furans and indeno[2,1-g]furans could be generated using calcium-catalyzed, cascade, and highly regioselective sequential annulation process chromenes. This method uses a three-component, one-pot reaction to create structurally challenging tetra-annulated hetero-aryls with five C-C bonds and one C-O bond. The scope of substitutions on aryl rings has been well investigated, as has the role of sec-propargyl alcohol in determining regioselectivity. The cyclization process with sec-propargyl alcohols does not require a base if the alkyne terminal is aryl-substituted; if it is an ester or an alkyl group, it requires. Further, the gram-scale synthesis and synthetic transformations of the products through C_{sp3} -H functionalization is demonstrated.

4.6 EXPERIMENTAL SECTION

Unless otherwise noted, all reagents were used as received from commercial suppliers. Reactions were performed in flame-dried or oven-dried glassware with magnetic stirring. Reactions were monitored using thin-layer chromatography (TLC) with aluminum sheets silica gel 60 F-254 from Merck. TLC plates were visualized with UV light (25 nm), iodine treatment, or using p-anisaldehyde or KMnO₄ stain. Column chromatography was carried out using silica gel 60-120 mesh as the stationary phase. NMR spectra were recorded at 500 MHz and 400 MHz (1H-NMR), and ¹³C{1H} NMR was recorded using 125 MHz and 100 MHz on

an Avance Bruker spectrometer. Chemical shifts (δ) are reported in ppm, using the residual solvent peak in CDCl₃ (1H: δ = 7.26 and ¹³C: δ = 77.16 ppm) as an internal standard. The coupling constants (J) are given in Hz. HRMS were recorded using ESI-TOF techniques. Melting points were measured with LAB INDIA melting apparatus.

4.6a General experimental procedure for the synthesis of (144a): A mixture of tert-propargyl alcohol (1,1,3-triphenylprop-2-yn-1-ol)1a (0.35 mmol, 100 mg), 3-methylpentane-2,4-dione 72b (0.45 mmol, 52 mg) and Ca(OTf)₂/Bu₄NPF₆ (10/5 mol%) was refluxed in 1,2-dichloro ethane (2 mL) at 90 °C for 2h. After the complete conversion of compound 1a (monitored by TLC), 0.42 mmol (87 mg) of 1,3-diphenylprop-2-yn-1-ol 96a was added to the above reaction mixture and continued to reflux for 45 minutes. After the formation new spot on TLC, DABCO (3 eq.) in acetonitrile (2 ml) was added to the reaction mixture and continued the reflux till the complete formation of the product (monitored by TLC). After completion of the reaction, the solvent was directly evaporated under reduced pressure to obtain the crude product. Then the crude product was purified by column chromatography (3-6 %, EtOAc in pet. ether) to obtain the pure product 144a in 80% yield.

4.6b General procedure for the synthesis of fluoreno[3,2-*b*]furan (145a): A mixture of tert-propargyl alcohol (1,1,3-triphenylprop-2-yn-1-ol)1a (0.35 mmol, 100 mg), 3-methylpentane-2,4-dione **72b** (0.45 mmol, 52 mg) and Ca(OTf)₂/Bu₄NPF₆ (10/5 mol%) was refluxed in 1,2-DCE at 90 °C for 2h. After the complete conversion of compound 1a (monitored by TLC), 0.42 mmol of *sec*-propargyl alcohol (ethyl 4-hydroxy-4-phenylbut-2-ynoate) **96b** (86 mg) was added to the above reaction mixture and continued to reflux for 4-5 hours. After completion of the reaction (monitored by TLC), the solvent was directly concentrated under reduced pressure to isolate the crude product which was purified by column chromatography (3-5 %, EtOAc in pet. ether) to obtain the pure compound **145a** in 75% yield.

4.6c General procedure for the synthesis of fluorenopyran (146a): A mixture of tert-propargyl alcohol (1,1,3-triphenylprop-2-yn-1-ol)1a (0.35 mmol, 100 mg), 3-methylpentane-2,4-dione **72b** (0.45 mmol, 52 mg) and Ca(OTf)₂/Bu₄NPF₆ (10/5 mol%) was refluxed in 1,2-DCE at 90 °C for 2 h. After the complete conversion of compound 1a (monitored by TLC), 0.42 mmol of *sec*-propargyl alcohol **96d** (79 mg) was added to the above reaction mixture and continued to reflux for 2-4 hours. After completion of the reaction (monitored by TLC), the solvent was directly concentrated under reduced pressure to isolate the crude product, which was purified by column chromatography (3-5 %, EtOAc in pet. ether) to obtain the pure compound **146a** in 76% yield.

4.6d General experimental procedure for the synthesis of compound (147a):¹⁸ A mixture of Cu(OTf)₂ (10 mol%), DDQ (0.27 mmol), toluene (2 mL), phenylacetylene **68** (0.27 mmol) and fluoreno[3,2-*b*]furan **144a** (0.18 mmol) was placed in a sealable tube. The tube was sealed and flushed with nitrogen; then the mixture was stirred at 120 °C for 24 hours. After completion of the reaction (monitor by TLC), the mixture was cooled to room temperature and flushed through a short column of silica gel with ethyl acetate. The solvent was removed under vacuum; the resultant dark purple crude was isolated and purified by flash column chromatography to obtain the pure compound **147a** in 50% yield.

4.7 SPECTRAL DATA

2-Benzyl-4,10-dimethyl-3,5,5-triphenyl-5H-fluoreno[3,2-b]furan(144a). Following general experimental procedure-4.6a, the crude reaction mixture was purified by column chromatography (silica gel, 3-6 %, EtOAc in petroleum ether) the product was obtained as white solid (155.2 mg, 80%); mp 231–232°C. H NMR (400 MHz, CDCl₃): δ 7.84 (d, J = 7.6 Hz, 1H), 7.25-7.23 (m, 4H), 7.22-7.21 (m, 4H), 7.21-7.18 (m, 4H), 7.16-7.14 (m, 4H), 7.10-

7.05 (m, 7H), 3.87 (s, 2H), 2.81 (s, 3H), 1.55 (s, 3H) ppm. 13 C{1H}(100 MHz, CDCl₃) δ 155.4, 153.7, 153.6, 144.9, 143.0, 141.1, 138.2, 135.3, 134.1, 130.9, 129.1, 128.7, 128.6, 128.1, 127.9, 127.4, 127.1, 126.9, 126.5, 126.3, 125.5, 122.6, 119.6, 114.3, 64.7, 32.9, 16.8, 12.9 ppm. HRMS (ESI-TOF): m/z [M + H]⁺calculated for C₄₂H₃₂OH: 553.2531; found: 553.2533. IR (film): ν_{max} 3019, 1490, 1295, 1108, 769 cm⁻¹.

2-Benzyl-4,10-dimethyl-5,5-diphenyl-3-(p-tolyl)-5H-fluoreno[3,2-b]furan(144b).

Following general experimental procedure-4.6a, the crude reaction mixture was purified by column chromatography (silica gel, 3-6 %, EtOAc in petroleum ether) the product was obtained as white solid (155.22 mg, 78%); mp: 241-243 °C. 1 H NMR (400 MHz, CDCl₃): δ 7.90 (d, J = 7.6 Hz, 1H), 7.32-7.24 (m,10H), 7.18-7.14 (m, 6H), 7.12-7.09 (m, 6H), 3.90 (s, 2H), 2.88 (s, 3H), 2.30 (s, 3H), 1.62 (s, 3H) ppm. 13 C{1H}(100 MHz, CDCl₃) δ 155.3, 153.8, 153.5, 144.8, 142.9, 141.0, 135.9, 135.0, 134.1, 130.8, 129.0, 128.5, 127.9, 127.7, 127.2, 127.0, 127.0, 126.8, 126.1, 125.3, 122.5, 119.3, 114.1, 64.6, 32.4, 21.0, 16.7, 12.7 ppm. HRMS (ESI-TOF): m/z [M+H]⁺ calculated for C₄₃H₃₄OH: 567.2688; found: 567.2689. IR (film): ν_{max} 3025, 1736, 1512, 1445, 720 cm⁻¹.

$2-Benzyl-3-(4-bromophenyl)-4, 10-dimethyl-5, 5-diphenyl-5H-fluoreno \cite{Gamma}. 2-b\cite{Gamma} function \cite{Gamma} fu$

Following general experimental procedure-4.6a, the crude reaction mixture waspurified by column chromatography (silica gel, 3-5 %, EtOAc in petroleum ether) the product was obtained as white solid(167.96 mg, 76%); mp: 268-270 °C. 1 H NMR (500 MHz, CDCl₃): δ 7.84 (d, J = 7.5 Hz, 1H), 7.38 (t, J = 1.5 Hz, 1H), 7.22-7.17 (m, 8H), 7.14- 7.11(m, 5H), 7.09-7.04 (m, 8H), 3.85 (s, 2H), 2.81 (s, 3H), 1.56 (s, 3H) ppm. 13 C{1H}(100 MHz, CDCl₃) δ 155.3, 153.6, 153.6, 145.0, 142.8, 140.9, 137.8, 135.4, 133.1, 132.4, 131.2, 129.0, 128.5, 127.8, 127.1, 126.9, 126.7, 126.5, 126.2, 125.9, 125.4, 122.5, 121.6, 118.3, 114.2, 64.6, 32.8, 29.7, 16.9, 12.7 ppm. HRMS (ESI-TOF):m/z[M+Na]+calculated for C₄₂H₃₁BrONa: 653.1456; found: 653.1458. IR (film): ν_{max} 3082, 1736, 1600, 1466, 1100, 758 cm $^{-1}$.

2-Benzyl-3-(4-chlorophenyl)-4,10-dimethyl-5,5-diphenyl-5H-fluoreno[3,2

b]furan(*144d*). Following general experimental procedure-4.6a, the crude reaction mixture waspurified by column chromatography (silica gel, 3-5 %, EtOAc in petroleum ether) the product was obtained as white solid(158.62 mg, 77%); mp: 239-241 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.90 (d, J = 7.6 Hz, 1H), 7.30 (d, J = 2 Hz, 1H) 7.29-7.25 (m, 7H), 7.22-7.18 (m, 7H), 7.18-7.13 (m, 6H), 3.92 (s, 3H), 2.88 (s, 3H), 1.63 (s, 3H) ppm. ¹³C{1H}(100 MHz,

CDCl₃) δ 155.3, 153.7, 153.6, 145.0, 142.8, 140.9, 137.9, 135.4, 133.4, 132.6, 132.1, 129.0, 128.5, 128.3, 127.8, 127.1, 126.9, 126.8, 126.5, 126.2, 125.9, 125.4, 122.5, 118.3, 114.3, 64.6, 32.8, 16.9, 12.8 ppm. HRMS (ESI-TOF): m/z [M + H]⁺ calculated for C₄₂H₃₁ClOH: 587.2141; found: 587.2143. IR (film): ν_{max} 2977, 1734, 1596, 1491, 1032, 730 cm⁻¹.

2-Benzyl-3-(4-methoxyphenyl)-4,10-dimethyl-5,5-diphenyl-5H-fluoreno[3,2-

b]furan(*144e*). Following general experimental procedure-4.6a, the crude reaction mixture waspurified by column chromatography (silica gel, 3-6 %, EtOAc in petroleum ether), the product was obtained as white solid(163.2 mg, 80%); mp: 256-258 °C. ¹H NMR (500 MHz, CDCl₃): δ 7.83 (d, J = 1 Hz, 1H), 7.22-7.15 (m, 7H), 7.14-7.12 (m, 5H), 7.12-7.03 (m, 8H), 6.80 (t, J = 2 Hz, 2H), 3.90 (s 2H), 3.72 (s, 3H), 2.81 (s, 3H), 1.57 (s, 3H) ppm. 3 C{1H}(125 MHz, CDCl₃) δ 158.9, 155.3, 153.6, 153.5, 144.8, 142.9, 141.0, 138.2, 135.1, 131.9, 129.0, 128.6, 128.4, 127.7, 127.2, 127.0, 126.8, 126.3, 126.2, 126.1, 126.1, 125.3, 122.5, 119.0, 114.1, 113.4, 64.6, 55.2, 32.8, 16.6, 12.7 ppm. HRMS (ESI-TOF): m/z [M + Na]⁺ calculated for C₄₃H₃₄O₂Na: 605.2457; found: 605.2458. IR (film): v_{max} 3021, 2154, 1511, 1208, 854 cm⁻¹.

4,10-Dimethyl-2-(4-methylbenzyl)-3,5,5-triphenyl-5H-fluoreno[3,2-b]furan(144f). Following general experimental procedure-4.6a, the crude reaction mixture waspurified by column chromatography (silica gel, 3-6 %, EtOAc in petroleum ether), the product was obtained as white solid(159.43 mg, 80%); mp: 200-202°C. 1 H NMR (400 MHz, CDCl₃): δ 7.91 (d, J = 7.6 Hz, 1H), 7.30-7.25 (m, 7H), 7.25-7.21 (m, 3H), 7.19-7.16 (m, 6H), 7.15-7.10 (m, 6H), 3.94 (s, 2H), 2.88 (s, 3H), 2.34 (s, 3H), 1.64 (3H) ppm. 13 C{1H}(100 MHz, CDCl₃) δ 155.3, 153.5, 153.5, 144.8, 142.9, 141.0, 138.2, 137.0, 135.1, 130.9, 130.7, 129.0, 128.7, 128.6, 128.5, 127.7, 127.1, 127.0, 126.8, 126.4, 126.2, 126.2, 125.4, 122.5, 119.4, 114.1, 64.6, 32.8, 21.2, 16.7, 12.8ppm. HRMS (ESI-TOF): m/z [M + H]⁺ calculated for C₄₃H₃₄OH: 567.2688; found: 567.2684. IR (film): v_{max} 3021, 1596, 1491, 1219, 1109, 826, 772 cm⁻¹.

3-(4-Bromophenyl)-4,10-dimethyl-2-(4-methylbenzyl)-5,5-diphenyl-5H-fluoreno[3,2-

b]furan (*144g*). Following general experimental procedure-4.6a, the crude reaction mixture was purified by column chromatography (silica gel, 3-6 %, EtOAc in petroleum ether), the product was obtained as white solid(153.68 mg, 68%);mp: 226-228 °C. ¹H NMR (500 MHz, CDCl₃): δ 7.96 (d, J = 7.5 Hz, 1H), 7.95-7.49 (m, 7H), 7.35-7.31 (m, 8H), 7.30-7.13 (m, 6H), 3.93 (s, 2H), 2.93 (S, 3H), 2.35 (s, 3H), 1.68 (s, 3H) ppm. ¹³C{1H}(125 MHz, CDCl₃) δ 155.3, 153.9, 145.0, 142.8, 140.9, 136.0, 135.3, 134.8, 133.2, 132.5, 131.2, 129.2, 129.0, 128.4,

127.8, 127.1, 126.9, 126.8, 126.2, 125.9, 125.4, 122.5, 121.5, 118.2, 114.2, 64.6, 32.4, 21.0, 16.9, 14.1, 12.7ppm. HRMS (ESI-TOF): m/z [M + Na]⁺ calculated for $C_{43}H_{33}BrONa$ 667.1615; found: 667.1617.

3-(4-chlorophenyl)-4,10-dimethyl-2-(4-methylbenzyl)-5,5-diphenyl-5H-fluoreno[3,2-

b]furan(*144h*).Following general experimental procedure-4.6a, the crude reaction mixture was purified by column chromatography (silica gel, 3-5 %, EtOAc in petroleum ether), and the product was obtained as white solid(143.65 mg, 68%);mp: 238-240 °C. ¹H NMR (500 MHz, CDCl₃): δ 7.91 (d, J = 7.5 Hz, 1H), 7.31-7.29 (m, 3H), 7.28-7.25 (m, 6H), 7.22-7.21 (m, 2H), 7.19-7.14 (m, 6H), 7.13-7.09 (m, 4H), 3.89 (s, 2H), 2.88 (s, 3H), 2.30 (s, 3H), 1.62 (s, 3H) ppm. ¹³C{1H}(125 MHz, CDCl₃) δ 155.3, 153.9, 142.8, 136.0, 134.8, 133.4, 132.1, 129.2, 129.0, 128.4, 128.2, 127.8, 127.0, 126.9, 126.2, 125.9, 125.3, 122.5 64.6, 29.7, 16.8, 12.7ppm. HRMS (ESI-TOF): m/z [M + H]⁺ calculated for C₄₃H₃₃ClOH 601.2298; found: 601.2296. IR (film): v_{max} 2922, 2852, 1758, 1589, 1447, 1090, 702 cm⁻¹.

3-(4-Methoxyphenyl)-4,10-dimethyl-2-(4-methylbenzyl)-5,5-diphenyl-5H-luoreno[3,2-

b]furan(*144i*).Following general experimental procedure-4.6a, the crude reaction mixture was purified by column chromatography (silica gel, 3-6 %, EtOAc in petroleum ether), and the product was obtained as white solid(144.79 mg, 69%); mp: 248-250°C. ¹H NMR (500 MHz, CDCl₃): δ 7.83 (d, J = 7.5 Hz, 1H), 7.21-7.18 (m, 6H), 7.15-7.11 (m, 2H), 7.10-7.08 (m, 3H), 7.07-7.03 (m, 6H), 7.00 (d, J = 8 Hz, 2H), 6.78 (d, J = 8.5 Hz, 2H) 3.82 (s, 2H), 3.71 (s, 3H), 2.80 (s, 3H), 2.22 (s, 3H), 1.57 (s, 3H) ppm. ¹³C{1H}(125 MHz, CDCl₃) δ 158.9, 155.4, 153.9, 144.8, 142.9, 141.1, 135.8, 135.2, 135.1, 131.9, 129.1, 129.1, 128.5, 127.7, 127.2, 127.0, 126.7, 126.2, 126.1, 125.8, 122.5, 118.9, 114.1, 113.4, 64.6, 55.2, 32.4, 21.0, 16.6, 12.7ppm. HRMS (ESI-TOF): m/z [M+H]⁺ calculated for C₄₄H₃₆O₂H: 597.2795; found: 597.2797.

3-(4-Methoxyphenyl)-4,7,10-trimethyl-2-(4-methylbenzyl)-5,5-diphenyl-5H-fluoreno[3,2-

blfuran(*144j*). Following general experimental procedure-4.6a, the crude reaction mixture was purified by column chromatography (silica gel, 3-6 %, EtOAc in petroleum ether), and the product was obtained as white solid(153.51 mg, 75%);mp: 250-252°C. ¹H NMR (500 MHz, CDCl₃): δ 7.78 (d, J = 8.5 Hz, 1H), 7.28-7.23 (m, 5H), 7.20-7.15 (m, 4H), 7.14 (d, J = 7 Hz, 2H), 7.12-7.10 (m, 3H), 7.08-7.07 (m, 4H), 6.85 (d, J = 8.5 Hz, 2H), 3.89 (s, 2H), 3.79 (s, 3H), 2.85 (s, 3H), 2.30 (s, 3H), 2.25 (s, 3H), 1.62 (s, 3H) ppm. ¹³C{1H}(125 MHz, CDCl₃) δ

158.9, 155.5, 153.7, 153.5, 144.7, 143.1, 138.4, 136.5, 135.8, 135.2, 131.9, 129.1(2), 128.5, 128.0, 127.7, 126.8, 126.2, 126.1, 126.0, 122.2, 118.9, 113.4, 64.5, 55.2, 32.3, 21.6, 21.0, 16.6, 12.7ppm. HRMS (ESI-TOF): $m/z[M+H]^+$ calculated for $C_{45}H_{38}O_2H$: 611.2950; found: 611.2952. IR (film): $v_{max}2958$, 1509, 1286, 1030, 772 cm⁻¹.

3-(4-Methoxyphenyl)-4,8,10-trimethyl-2-(4-methylbenzyl)-5,5-diphenyl-5H-fluoreno[3,2-methylbenzyl)-5,5-diphenyl-5H-fluoreno[3,2-methylbenzyl)-6,8,10-trimethyl-2-(4-methylbenzyl)-6,5-diphenyl-6,8,10-trimethyl-2-(4-methylbenzyl)-6,5-diphenyl-6,8,10-trimethyl-2-(4-methylbenzyl)-6,5-diphenyl-6,8,10-trimethyl-6,8,

b]furan(*144k*). Following general experimental procedure-4.6a, the crude reaction mixture was purified by column chromatography (silica gel, 3-6 %, EtOAc in petroleum ether), and the product was obtained as white solid(155.56 mg, 76%); mp: 251-253 °C. ¹H NMR (500 MHz, CDCl₃): δ 7.82 (d, J = 6.3 Hz, 1H), 7.27-7.24 (m, 4H), 7.20-7.17 (m, 5H), 7.16-7.13 (m, 5H), 7.12-7.08 (m, 3H), 6.96-6.94 (m, 1H), 6.86 (d, J = 9 Hz, 2H), 3.89 (s, 2H), 3.79 (s, 3H), 2.88 (s, 3H), 2.40 (s, 3H), 2.30 (s, 3H), 1.63 (s, 3H) ppm. 13 C{1H}(125 MHz, CDCl₃) δ 159.0, 153.9, 153.6, 152.9, 145.2, 143.3, 141.3, 136.6, 136.0, 135.3, 135.2, 132.0, 129.2, 128.6, 127.8, 127.2, 126.3, 126.3, 126.2, 125.1, 123.2, 119.0, 114.2, 113.5, 64.3, 55.3, 32.5, 21.8, 21.1, 16.7, 12.9 ppm. HRMS (ESI-TOF): m/z [M+Na]+calculated for C₄₅H₃₈O₂Na: 633.2770, found: 633.2773.

$3-(4-Bromophenyl)-4,8,10-trimethyl-2-(4-methylbenzyl)-5,5-diphenyl-5H-fluoreno \cite{1}3,2-diphenyl-5,4,8,10-trimethyl-2-(4-methylbenzyl)-5,5-diphenyl-5H-fluoreno \cite{1}3,2-diphenyl-5,4,8,10-trimethyl-2-(4-methylbenzyl)-5,5-diphenyl-5H-fluoreno \cite{1}3,2-diphenyl-5,4,8,10-trimethyl-2-(4-methylbenzyl)-5,5-diphenyl-5H-fluoreno \cite{1}3,2-diphenyl-5,4,8,10-trimethyl-2-(4-methylbenzyl)-5,5-diphenyl-5H-fluoreno \cite{1}3,2-diphenyl-5,4,8,10-trimethyl-2-(4-methylbenzyl)-5,5-diphenyl-5H-fluoreno \cite{1}3,2-diphenyl-5,4,8,10-trimethyl-2-(4-methylbenzyl)-5,5-diphenyl-5,4,8,10-trimethyl-2-(4-methylbenzyl)-5,5-diphenyl-5H-fluoreno \cite{1}3,2-diphenyl-5,4,8,10-trimethyl-2-(4-methylbenzyl)-5,5-diphenyl-5,4,8,10-trimethyl-2-(4-methylbenzyl)-5,5-diphenyl-5,4,8,10-trimethyl-2-(4-methylbenzyl)-5,5-diphenyl-5,4,8,10-trimethyl-2-(4-methylbenzyl)-5,5-diphenyl-5,4,8,10-trimethyl-2-(4-methylbenzyl)-5,5-diphenyl-5,4,8,10-trimethyl-2-(4-methylbenzyl)-5,5-diphenyl-5,4,8,10-trimethyl-2-(4-methylbenzyl)-5,5-diphenyl-5,4,8,10-trimethyl-2-(4-methylbenzyl)-5,5-diphenyl-5,4,8,10-trimethyl-2-(4-methylbenzyl)-5,5-diphenyl-5,4,8,10-trimethyl-2-(4-methylbenzyl)-5,5-diphenyl-5,4,8,10-trimethyl-2-(4-methylbenzyl)-5,5-diphenyl-5,4,8,10-trimethyl-2-(4-methylbenzyl)-5,5-diphenyl-5,4,8,10-trimethyl-2-(4-methylbenzyl)-5,5-diphenyl-5,4,8,10-trimethyl-2-(4-methylbenzyl)-5,5-diphenyl-5,4,8,10-trimethyl-2-(4-methylbenzyl)-5,5-diphenyl-5,4,8,10-trimethyl-2-(4-methylbenzyl-5,4,8,10-trimethyl-2-(4-methylbenzyl-5,4,8,10-trimethyl-2-(4-methylbenzyl-5,4,8,10-trimethyl-2-(4-methylbenzyl-5,4,8,10-trimethyl-2-(4-methylbenzyl-5,4,8,10-trimethyl-2-(4-methylbenzyl-5,4,8,10-trimethyl-2-(4-methylbenzyl-5,4,8,10-trimethyl-2-(4-methylbenzyl-5,4,8,10-trimethyl-2-(4-methylbenzyl-5,4,8,10-trimethyl-2-(4-methylbenzyl-5,4,8,10-trimethyl-2-(4-methylbenzyl-5,4,8,10-trimethyl-2-(4-methylbenzyl-5,4,8,10-trimethyl-2-(4-methylbenzyl-5,4,8,10-trimethyl-2-(4-methylbenzyl-5,4,8,10-trimethyl-2-(4-methylbenzyl-5,4,8,10-trimethyl-2-(4-methylbenzyl-5,4,8,10-trimethyl-2-(4-methylbe$

b]furan(*144l*). Following general experimental procedure-4.6a, the crude reaction mixture was purified by column chromatography (silica gel, 3-6 %, EtOAc in petroleum ether), and the product was obtained as yellow sticky (150.14 mg, 68%). ¹H NMR (400 MHz, CDCl₃): δ 7.73 (s, 1H),7.45 (d, J = 8 Hz, 2H), 7.25 (d, J = 7.6 Hz, 3H), 7.18-7.14 (m, 10H), 7.13-7.09 (m, 4H), 6.8 (d, J = 8 Hz,1H), 3.88 (s, 2H), 2.88 (s, 3H), 2.40 (s, 3H), 2.30 (s, 3H), 1.62 (s, 3H) ppm. ¹³C{1H}(100 MHz, CDCl₃) δ 153.9, 153.6, 152.8, 145.4, 143.1, 141.1, 136.7, 136.1, 134.9, 133.3, 132.6, 131.3, 129.3, 129.1, 128.5, 127.9 (2), 127.8, 126.7, 126.2, 126.0, 125.1, 123.3, 121.6, 118.3, 114.3, 64.3, 32.5, 21.8, 21.1, 17.0, 12.9 ppm. HRMS (ESI-TOF): m/z [M+H]⁺ calculated for C₄₄H₃₅BrOH: 659.1949; found: 659.1950.

2-Benzyl-3-(4-bromophenyl)-4,10-dimethyl-5,5,7-triphenyl-5H-fluoreno[3,2-

b]furan(*144m*). Following general experimental procedure-4.6a, the crude reaction mixture was purified by column chromatography (silica gel, 3-6 %, EtOAc in petroleum ether), and the product was obtained as white solid(143.16 mg, 73%);mp: 221-223°C. ¹H NMR (400 MHz, CDCl₃): δ 7.89 (d, J = 8.4 Hz, 1H), 7.46-7.42 (m, 2H), 7.40-7.37 (m, 4H), 7.28 (t, J = 7.2 Hz, 2H), 7.24-7.22 (m, 5H), 7.22-7.21 (m, 2H), 7.12-7.02 (m, 11H), 3.81 (s, 2H), 2.83 (s,

3H), 2.23 (s, 3H) ppm. 13 C{1H}(100 MHz, CDCl₃) δ 156.1, 154.1, 153.7, 145.3, 142.9, 141.3, 140.3, 139.9, 136.1, 135.2, 134.9, 132.6, 131.3, 129.3, 129.2, 128.7, 128.5, 127.9, 127.1, 127.0, 126.4, 126.3, 126.1, 124.2, 122.8, 121.6, 118.3, 114.3, 64.8, 32.5, 21.1, 16.9, 12.8 ppm. HRMS (ESI-TOF): m/z [M+Na]⁺calculated for C₄₈H₃₅BrONa: 729.1769; found: 729.1770.

2-Benzyl-5-(4-fluorophenyl)-4,10-dimethyl-3,5-diphenyl-5H-fluoreno[3,2-

blfuran(*144n*). Following general experimental procedure-4.6a, the crude reaction mixture was purified by column chromatography (silica gel, 3-6 %, EtOAc in petroleum ether) the product was obtained as white solid(149.10 mg, 79%);mp: 225-227°C. ¹H NMR (500 MHz, CDCl₃): δ 7.92 (d, J = 7.6 Hz, 1H), 7.30-7.27 (m, 4H), 7.26-7.24 (m, 6H), 7.21-7.18 (m, 4H), 7.17-7.13 (m, 7H), 7.02 (t, J = 9 Hz, 1H), 3.93 (s, 2H), 2.89 (s, 3H), 1.62 (s, 3H) ppm. 13 C{1H}(125 MHz, CDCl₃) δ 155.3, 153.7, 153.5, 144.9, 142.8, 140.9, 137.9, 135.3, 132.4, 132.3, 129.0, 128.5, 128.5, 127.8, 127.0, 126.9, 126.9, 126.4, 126.2, 126.0, 125.4, 122.5, 118.4, 114.9, 114.2, 64.6, 32.8, 16.6, 12.7 ppm. HRMS (ESI-TOF): m/z[M+H]⁺ calculated for C₄₂H₃₁FOH:571.2437; found: 571.2438. IR (film): v_{max} 2932, 1677, 1453, 1230, 753 cm⁻¹

2-Benzyl-5-(4-chlorophenyl)-4,10-dimethyl-3,5-diphenyl-5H-fluoreno[3,2-]furan(144o).

Following general experimental procedure-4.6a, the crude reaction mixture waspurified by column chromatography (silica gel, 3-5 %, EtOAc in petroleum ether) the product was obtained as white solid (141.88 mg, 77%); mp: 228-230 °C. 1 H NMR (500 MHz, CDCl₃): δ 7.91(d, J = 8 Hz, 1H), 7.30-7.27 (m, 7H), 7.23-7.17 (m, 10H), 7.15-7.12 (m, 5H), 3.94 (s, 2H), 2.88 (s, 3H), 1.67 (s, 3H) ppm. 13 C{1H}(125 MHz, CDCl₃) δ 155.1, 153.84, 153.87, 144.56, 142.5, 141.8, 141.1, 138.2, 135.2, 134.0, 132.1, 130.9, 128.0, 122.7, 122.7, 119.6, 114.5, 64.2, 32.9, 16.8, 12.8 ppm. HRMS (ESI-TOF): m/z[M+H]⁺ calculated for C₄₂H₃₁ClOH:587.2131; found, 587.2132. IR (film): v_{max} 2962, 1623, 1398, 1060, 768 cm⁻¹.

2-Benzyl-5-(4-bromophenyl)-4,10-dimethyl-3,5-diphenyl-5H-fluoreno[3,2-

b]furan(*144p*). Following general experimental procedure-4.6a, the crude reaction mixture was purified by column chromatography (silica gel, 3-6 %, EtOAc in petroleum ether) the product was obtained as white solid(139.22 mg, 80%);mp: 226-228°C. ¹H NMR (500 MHz, CDCl₃): δ 7.91 (d, J = 7.5 Hz, 1H), 7.32-7.26 (m, 10H), 7.24-7.22 (m, 6H), 7.17-7.12 (m, 6H), 3.95 (s, 2H), 2.88 (s, 3H), 1.61 (s, 3H) ppm. ¹³C{1H}(125 MHz, CDCl₃) δ 154.9, 153.8 (2), 144.5, 142.5, 142.4, 141.1, 138.2, 135.2, 134.1, 131.0, 129.0, 128.7, 128.6, 128.2, 128.0, 127.5, 127.4, 127.3, 127.0, 126.5 (2), 126.2, 125.3, 122.7, 120.3, 119.6, 114.5, 64.3, 33.0,

16.8, 12.8 ppm. HRMS (ESI-TOF): m/z [M + H]⁺ calculated for $C_{42}H_{31}BrOH$: 631.1636; found: 631.1640.

2-Benzyl-5,5-bis(4-fluorophenyl)-4,10-dimethyl-3-phenyl-5H-fluoreno[3,2-]furan (144q). Following general experimental procedure-4.6a, the crude reaction mixture was procedurepurified by column chromatography (silica gel, 3-6 %, EtOAc in petroleum ether) the product was obtained as white solid (134.13 mg, 73%); mp: 239-241 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.95 (d, J = 7.6 Hz, 1H), 7.39-7.32 (m, 7H), 7.30-7.25 (m, 3H), 7.24-7.18 (m, 7H), 6.91-6.87 (m, 4H), 3.98 (s, 2H), 2.91 (s, 3H), 1.64 (s, 3H) ppm. 13 C{1H}(125 MHz, CDCl₃) δ 162.5, 160.5, 155.1, 153.9, 153.8, 144.7, 140.9, 138.6, 138.6, 138.1, 135.1, 134.0, 130.9, 130.6, 130.6, 128.7, 128.6, 128.2, 127.5, 127.4, 127.3, 127.0, 126.5, 126.0, 125.5, 122.8, 119.6, 114.8, 114.7, 114.5, 63.6, 33.0, 16.7, 12.8 ppm. HRMS (ESI-TOF): m/z [M+Na]⁺ calculated for C₄₂H₃₀F₂Ona: 611.2163; found: 611.2164. IR (film): ν_{max} 3025, 2360, 1597, 1502, 1225, 889, 754 cm⁻¹.

3,5-Bis(4-chlorophenyl)-4,10-dimethyl-2-(4-methylbenzyl)-5-phenyl-5H-fluoreno[3,2-

b]furan(*144r*).Following general experimental procedure-4.6a, the crude reaction mixture was purified by column chromatography (silica gel, 3-5 %, EtOAc in petroleum ether), and the product was obtained as white solid(143.35 mg, 71%); mp: 240-242°C. ¹H NMR (500 MHz, CDCl₃): δ 7.91 (d, J = 7.5 Hz, 1H), 7.32-7.28 (m, 3H), 7.25-7.22 (m, 4H), 7.20-7.17 (m, 4H), 7.15-7.12 (m, 5H), 7.12-7.08 (m, 4H), 3.88 (s, 2H), 2.87 (s, 3H), 2.30 (s, 3H), 1.61 (s, 3H) ppm. ¹³C{1H}(125 MHz, CDCl₃)δ 154.8, 154.1, 153.6, 144.5, 142.3, 141.6, 140.8, 136.0, 134.7, 133.5, 132.5, 132.1, 132.0, 130.4, 129.2, 128.8, 128.4, 128.3, 127.9, 127.3, 127.0, 126.4, 125.2, 122.6, 118.1, 114.4, 64.1, 32.4, 21.0, 16.8, 12.7 ppm. HRMS (ESI-TOF): m/z [M + Na]⁺ calculated for C₄₃H₃₂Cl₂Ona: 657.1728; found: 657.1729.

2-Benzyl-5-(4-fluorophenyl)-4,7,10-trimethyl-5-phenyl-3-(p-tolyl)-5H-fluoreno[3,2-

b]furan(*144s*). Following general experimental procedure-4.6a, the crude reaction mixture was purified by column chromatography (silica gel, 3-6 %, EtOAc in petroleum ether), and the product was obtained as white solid(132.46 mg, 70%);mp: 249-251°C. ¹H NMR (500 MHz, CDCl₃): δ 7.82 (d, J = 6.4 Hz, 1H), 7.34 (d, J = 6.4 Hz, 2H), 7.28-7.23 (m, 7H), 7.22-7.19 (m, 4H), 7.18-7.08 (m, 7H), 6.90-6.87 (m, 3H), 3.91 (s, 2H), 2.33 (s, 3H), 2.29 (s, 3H), 1.62 (s, 3H) ppm. ¹³C{1H}(125 MHz, CDCl₃)δ 155.5, 153.9, 153.7, 144.9, 143.0, 138.9 (2), 138.3, 136.9, 135.5, 134.9, 133.5, 133.5, 132.8, 130.8, 130.7, 129.3, 129.0, 128.5, 128.4,

128.3, 128.0, 126.6, 126.4, 126.0, 125.8, 122.5, 118.2, 114.7, 114.5, 114.0, 64.0, 32.5, 21.7, 21.1, 16.9, 12.8 ppm. HRMS (ESI-TOF): m/z [M+H]⁺ calculated for C₄₄H₃₅FOH: 599.2750; found: 599.2752.

2-Benzyl-3-(4-bromophenyl)-5-(4-fluorophenyl)-4,7,10-trimethyl-5-phenyl-5H-

fluoreno[3,2-b]*furan*(144t). Following general experimental procedure-4.6a, the crude reaction mixture waspurified by column chromatography (silica gel, 3-6 %, EtOAc in petroleum ether), and the product was obtained as white solid(163.40 mg, 78%);mp: 196-198°C. 1 H NMR (400 MHz, CDCl₃): δ 7.79 (d, J = 8 Hz, 1H), 7.46 (d, J = 7.5 Hz, 2H), 7.28-7.23 (m, 5H), 7.22-7.19 (m, 6H), 7.18-7.14 (m, 4H), 7.14-7.05 (m, 2H), 6.86 (t, J = 8.5 Hz, 1H), 3.92 (s, 2H), 2.85 (s, 3H), 2.26 (s, 3H), 1.60 (s, 3H) ppm. 13 C{1H}(125 MHz, CDCl₃) δ 162.4, 160.5, 155.5, 153.7, 153.6, 144.9, 143.0, 138.9, 138.9, 138.2, 138.0, 137.0, 135.6, 133.2, 132.6, 131.4, 130.8, 130.7, 129.0, 128.7, 128.6, 128.3, 128.0, 126.6, 126.5, 126.4, 126.0, 125.8, 122.5, 121.7, 118.4, 114.7, 114.6, 114.0, 64.0, 32.9, 21.7, 16.9, 12.8 ppm. HRMS (ESI-TOF): m/z [M+Na]⁺calculated for C₄₃H₃₂BrFONa: 685.1519; found: 685.1520. IR (film): ν_{max} 2915, 2360, 1504, 1224, 1030, 743 cm⁻¹.

2,10-Dibenzyl-4-methyl-3,5,5-triphenyl-5H-fluoreno[3,2-b]furan(144u). Following general experimental procedure-4.6a, the crude reaction mixture was purified by column chromatography (silica gel, 3-6 %, EtOAc in petroleum ether) the product was obtained as yellow sticky (1322.67 mg, 60%). ¹H NMR (500 MHz, CDCl₃): δ 7.75 (d, J = 7.5 Hz, 1H), 7.33-7.31 (m, 4H), 7.30-7.27 (m, 7H), 7.25-7.24 (m, 5H), 7.23-7.20 (m, 3H), 7.18-7.13 (m, 8H), 7.09-7.08 (m, 1H), 4.78 (s, 2H), 3.89 (s, 2H), 1.66 (s, 3H) ppm. ¹³C{1H}(100 MHz, CDCl₃) δ 155.6, 154.0, 153.9, 145.4, 143.0, 140.2, 139.7, 138.1, 135.6, 134.1, 131.0, 129.2, 128.7, 128.6, 128.5(2), 128.1, 127.9, 127.6, 127.5, 127.2, 127.1, 126.4, 126.3, 126.1, 125.5, 122.7, 119.5, 116.4, 64.7, 32.9, 32.1, 17.0 ppm. HRMS (ESI-TOF): m/z[M + H]⁺ calculated for C₄₈H₃₆OH: 629.2844; found: 629.2848.

(E)-2-Benzyl-4,10-dimethyl-5,5-diphenyl-3-styryl-5H-fluoreno[3,2-b]furan (144v).

Following general experimental procedure-4.6a, the crude reaction mixture was purified by column chromatography (silica gel, 3-5 %, EtOAc in petroleum ether) the product was obtained as Yellow liquid(130.24 mg, 64%). ¹H NMR (500 MHz, CDCl₃): δ 7.91(d, J = 7.5 Hz, 1H), 7.36-7.31 (m, 10H), 7.28 (d, J = 6 Hz, 2H), 7.22 (d, J = 3.5 Hz, 2H), 7.21-7.18 (m, 4H), 7.17-7.14 (m, 7H), 4.23 (s, 2H), 2.80 (s, 3H), 2.19 (s, 3H) ppm. ¹³C{1H}{(100 MHz, 100 MHz)}

CDCl₃) δ 155.4, 153.8, 153.4, 145.2, 143.1, 141.1, 138.5, 137.4, 135.5, 132.7, 129.2, 128.8, 128.7(2), 127.9, 127.7, 127.2, 127.0(2), 126.6, 126.4(2), 126.2, 125.5, 122.6, 120.9, 117.6, 114.3, 64.7, 33.5, 17.3, 12.8 ppm. HRMS (ESI-TOF): m/z [M+H]⁺calculated for C₄₄H₃₄OH: 579.2688; found: 579.2690.

2,4,10-trimethyl-3,5,5-triphenyl-5H-fluoreno[3,2-b]furan (144w). Following general experimental procedure-4.6a, the crude reaction mixture was purified by column chromatography (silica gel, 3-6 %, EtOAc in petroleum ether) the product was obtained as white solid(105.21 mg, 63%);mp: 168-169 °C. ¹H NMR (500 MHz, CDCl₃): δ 7.93 (d, J = 8.5 Hz, 1H), 7.32-7.30 (m, 2H), 7.29-7.26 (m, 9H), 7.18-7.17 (m, 3H), 7.15-7.19 (m, 5H), 2.92 (s, 3H), 2.31 (s, 3H), 1.63 (s, 3H) ppm. 13 C{1H}(125 MHz, CDCl₃)δ 155.5, 153.3, 152.3, 144.9, 143.0, 141.2, 134.9, 134.5, 131.1, 130.8, 129.2, 129.2, 128.0 (2), 127.8 (2), 127.3, 127.2, 127.1, 126.8, 126.6, 126.2 (2), 125.9, 125.5 (2), 122.5, 118.8, 114.0, 64.7, 16.9, 12.8, 12.5 ppm. HRMS (ESI-TOF): m/z [M+Na]⁺calculated for C₃₆H₂₈Ona:499.2038; found:499.2037. IR (film): v_{max} 3054, 1594, 1449, 1249, 1030, 720 cm⁻¹

Ethyl 2-(4,10-dimethyl-3,5,5-triphenyl-5H-fluoreno[3,2-b]furan-2-yl)acetate (145a). Following general experimental procedure-4.6b, the crude reaction mixture was purified by column chromatography (silica gel, 3-6 %, EtOAc in petroleum ether) the product was obtained as white solid (144.71 mg, 75%); mp: 149-151°C. 1 H NMR (500 MHz, CDCl₃): δ 7.94 (d, J = 8.5 Hz, 1H), 7.31-7.29 (m, 5H), 7.28-7.24 (m, 5H), 7.18 (t, J = 6 Hz, 3H) 7.15-7.13 (m, 5H), 4.18 (q, J = 7.5 Hz, 2H), 3.64 (s, 2H), 2.92 (s, 3H), 1.64 (s, 3H), 1.26 (t, J = 7 Hz, 3H) ppm. 13 C{1H}(100 MHz, CDCl₃)δ 169.4, 155.5, 153.9, 147.7, 145.1, 142.9, 141.1, 135.8, 133.5, 132.4, 131.3, 130.8, 129.1 (2), 128.1, 127.9 (2), 127.6, 127.2, 127.1, 126.8, 126.5, 126.4, 126.3, 125.5, 122.7, 121.6, 114.4, 64.7, 61.4, 33.2, 16.8, 14.3, 12.8 ppm. HRMS (ESI-TOF): m/z [M+H]⁺calculated for C₃₉H₃₂O₃H: 549.2429; found: 549.2430. IR (film): ν_{max} 3051, 2978, 1738, 1502, 1196, 759 cm⁻¹.

Ethyl2-(3-(4-methoxyphenyl)-4,10-dimethyl-5,5-diphenyl-5H-fluoreno[3,2-b]furan-2-

yl)acetate (*145b*). Following general experimental procedure-4.6b, the crude reaction mixture was purified by column chromatography (silica gel, 3-6 %, EtOAc in petroleum ether), and the product was obtained as white solid (146.16 mg, 72%); mp: 152-154°C. H NMR (500 MHz, CDCl₃): δ 7.85 (d, J = 5 Hz, 1H), 7.25-7.21 (m, 4H), 7.20-7.19 (m, 2H), 7.18-7.14 (m, 3H), 7.12-7.10 (m, 2H), 7.09-7.07 (m, 4H), 6.79 (d, J = 9 Hz, 2H), 4.11 (q, J = 7 Hz, 2H),

3.72 (s, 3H), 3.57 (s, 2H), 2.84 (s, 3H), 1.58 (s, 3H), 1.20 (t, J = 7 Hz, 3H) ppm. ¹³C{1H}(125 MHz, CDCl₃) δ 169.5, 159.1, 155.5, 153.8, 147.8, 145.0, 142.9, 141.0, 135.6, 131.8, 129.1, 127.8, 127.1, 127.0, 126.5, 126.3, 125.5, 125.5, 122.7, 121.1, 114.4, 113.5, 61.3, 55.3, 33.2, 16.7, 14.3, 12.8 ppm. HRMS (ESI-TOF): m/z[M+Na]⁺calculated for C₄₀H₃₄O₄Na: 601.2355; found: 601.2358. IR (film): v_{max} 3053, 1729, 1371, 1297, 1198, 771 cm⁻¹.

Ethyl2-(5-(4-fluorophenyl)-3-(4-methoxyphenyl)-4,10-dimethyl-5-phenyl-5H-

fluoreno[3,2-b]furan-2-yl)acetate (*145c*). Following general experimental procedure-4.6b, the crude reaction mixture was purified by column chromatography (silica gel, 3-6 %, EtOAc in petroleum ether) the product was obtained as Yellow liquid (143.81 mg, 73%). H NMR (500 MHz, CDCl₃): δ 7.96 (d, J = 7.5 Hz, 1H), 7.31-7.29 (m, 2H), 7.28-7.24 (m, 7H), 7.21 (d, J = 1.5 Hz, 1H), 7.19-7.18 (m, 3H), 6.19-6.87 (m, 4H), 4.22 (q, J = 7 Hz, 2H), 3.83 (s, 3H), 3.67 (s, 2H), 2.93 (s, 3H), 1.67 (s, 3H), 1.30 (t, J = 7 Hz, 3H) ppm. 13 C{1H}(125 MHz, CDCl₃)δ 169.5, 162.4, 159.2, 155.3, 153.8, 147.8, 144.8, 142.8, 140.9, 138.7, 138.7, 135.5, 131.8, 130.8, 130.7, 129.0, 128.0, 127.3, 127.1, 127.0, 126.4 (2), 125.4, 125.3, 122.8, 121.1, 114.7, 114.5, 114.5, 113.6, 64.1, 61.4, 55.3, 33.1, 16.6, 14.3, 12.8 ppm. HRMS (ESI-TOF): m/z [M+H]⁺calculated for C₄₀H₃₃FO₄H: 597.2441; found: 597.2442. IR (film): v_{max} 2985, 1748, 1368, 1257, 1189, 741 cm⁻¹.

Ethyl2-(3-(4-methoxyphenyl)-4,7,10-trimethyl-5,5-diphenyl-5H-fluoreno[3,2-b]furan-2-

yl)acetate (*145d*). Following general experimental procedure-4.6b, the crude reaction mixture was purified by column chromatography (silica gel, 3-6 %, EtOAc in petroleum ether) the product was obtained as white solid(132.66 mg, 67%); mp: 156-158°C. 1 H NMR (500 MHz, CDCl₃): δ 7.94 (d, J = 8.5 Hz, 1H), 7.22-7.18 (m, 4H), 7.15-7.14 (m, 3H), 7.11-7.09 (m, 5H), 7.09-7.03 (m, 2H), 6.78 (d, J = 8.5 Hz, 2H), 4.11 (q, J = 7.5 Hz, 2H), 3.27 (s, 3H), 3.56 (s, 2H), 2.81 (s, 3H), 2.19 (s, 3H), 1.56 (s, 3H), 1.20 (t, J = 7 Hz, 3H) ppm. 13 C{1H}(100 MHz, CDCl₃)δ 159.1, 158.3, 155.7, 153.8, 147.6, 143.1, 138.4, 136.8, 135.8, 131.8, 129.9, 129.2 (2), 129.1, 128.9, 128.1 (2), 128.0, 127.9, 126.7, 126.6, 126.4, 126.2, 126.1, 126.0, 125.6, 122.4, 121.1, 113.6, 64.6, 55.3, 33.2, 21.7, 16.7, 14.3, 12.8 ppm. HRMS (ESI-TOF): m/z [M+H]⁺calculated for C₄₁H₃₆O₄H: 593.2692; found: 593.2690.

Ethyl2-(5-(4-bromophenyl)-3-(4-fluorophenyl)-4,10-dimethyl-5-phenyl-5H-fluoreno[3,2-

b]furan-2-yl)acetate (*145e*).Following general experimental procedure-4.6b, the crude reaction mixture was purified by column chromatography (silica gel, 3-6 %, EtOAc in petroleum ether) the product was obtained as white solid (129.21 mg, 73%); mp: 258-260°C. H NMR (500 MHz, CDCl₃): δ 7.93 (d, J = 8 Hz, 1H), 7.33-7.26 (m, 6H), 7.24-7.23 (m, 3H), 7.18 (t, J = 6 Hz, 1H), 7.15-7.14 (m, 4H), 7.13-7.03 (m, 2H), 4.18 (q, J = 7.2 Hz, 2H), 3.63 (s, 2H), 2.90 (s, 3H), 1.62 (s, 3H), 1.27 (t, J = 7 Hz, 3H) ppm. 13 C{1H}(125 MHz, CDCl₃)δ 169.3, 163.5, 154.9, 153.9, 148.1, 144.7, 142.3, 140.9, 135.8, 132.4, 131.0, 130.9, 129.3, 128.9, 128.1, 127.4, 127.2, 126.8, 126.6, 126.2, 125.3, 122.8, 120.5, 120.4, 115.3, 115.1, 114.7, 64.3, 61.5, 33.1, 16.8, 14.3, 12.8 ppm. HRMS (ESI-TOF): m/z[M+Na]⁺ calculated for C₃₉H₃₀BrFO₃Na: 667.1260; found: 667.1261.

2-Butyl-5,11-dimethyl-4,6,6-triphenyl-4,6-dihydroindeno[2,1-g]chromene

(*146a*).Following general experimental procedure-4.6c, the crude reaction mixture waspurified by column chromatography (silica gel, 3-6 %, EtOAc in petroleum ether) the product was obtained as Yellow liquid(142.36 mg, 76%). ¹H NMR (500 MHz, CDCl₃): δ 7.92 (d, J = 7.5 Hz, 1H), 7.34-7.28 (m, 5H), 7.27-7.24 (m, 4H), 7.23-7.19 (m, 6H), 7.19-7.14 (m, 3H), 6.64 (s, 1H), 5.34 (s, 1H), 2.65 (s, 3H), 2.32-2.29 (m, 2H), 1.92 (s, 3H), 1.58-1.53 (m, 2H), 1.45-1.41 (m, 2H), 0.92 (t, J = 7.5 Hz, 3H) ppm. ¹³C{1H}(125 MHz, CDCl₃)δ 155.8, 153.3, 143.1, 143.0, 142.6, 140.9, 139.5, 139.4, 131.2, 129.3, 128.9, 128.6, 128.1, 127.9, 127.3, 127.1, 127.0 (2), 126.9, 126.4, 126.3, 125.4, 124.6, 123.2, 119.9, 87.5, 78.8, 65.1, 34.8, 30.8, 22.1, 18.7, 17.4, 13.7, 13.7, 12.8 ppm. HRMS (ESI-TOF): m/z [M+H]⁺calculated for C₄₀H₃₆OH: 533.2844; found: 533.2846. IR (film): v_{max} 2945, 1678, 1596, 1445, 1252, 1132, 1032, 850 cm⁻¹.

5,11-Dimethyl-2-pentyl-4,6,6-triphenyl-4,6-dihydroindeno[2,1-g] chromene (146b). Following general experimental procedure-4.6c, the crude reaction mixture waspurified by column chromatography (silica gel, 3-6 %, EtOAc in petroleum ether) the product was obtained aswhitesolid(140.34 mg, 73%); mp: 219-221°C. 1 H NMR (500 MHz, CDCl₃): δ 7.95 (d, J = 7.5 Hz, 1H), 7.23-7.27 (m, 7H), 7.26-7.25 (m, 10H), 7.24-7.18 (m, 1H), 5.77 (s, 1H), 4.51 (s, 1H), 2.72 (s, 3H), 2.00-1.98 (m, 1H), 1.82-1.80 (m, 1H), 1.65-1.61 (m, 2H), 1.39 (s, 3H), 1.28-0.94 (m, 4H), 0.93 (t, J = 1.5 Hz, 3H) ppm. 13 C{1H}(125 MHz, CDCl₃)δ 156.1, 154.6, 143.7, 142.6, 141.7, 141.0, 140.1, 139.3, 131.0, 129.2, 129.1, 128.3, 127.8, 127.7, 127.4, 127.1, 126.9, 126.4, 126.3, 125.3, 123.7, 123.3, 118.6, 65.1, 33.9, 31.8, 25.3,

20.6, 14.1, 12.8 ppm. HRMS (ESI-TOF): m/z [M+H]⁺calculated for C₄₁H₃₈OH: 547.3001; found: 547.3003.

2-Butyl-6-(4-chlorophenyl)-5,11-dimethyl-4,6-diphenyl-4,6-dihydroindeno[2,1-

glchromene (*146c*). Following general experimental procedure-4.6c, the crude reaction mixture was purified by column chromatography (silica gel, 3-6 %, EtOAc in petroleum ether) the product was obtained as Yellow liquid (117.21 mg, 68%). 1 H NMR (500 MHz, CDCl₃): δ 7.92 (d, J = 8 Hz, 1H), 7.30-7.25 (m, 10H), 7.23-7.19 (m, 3H), 7.18-7.13 (m, 4H), 6.66 (s, 1H), 5.34 (s, 1H), 2.65 (s, 3H), 2.32-29 (m, 2H), 1.90 (s, 3H), 1.59-1.53 (m, 2H), 1.45-1.41 (m, 2H), 0.92 (t, J = 7.5 Hz, 3H) ppm. 13 C{1H}(125 MHz, CDCl₃)δ 155.3, 153.5, 142.6, 142.2, 141.8, 140.9, 139.5, 139.3, 132.2, 131.1, 130.8, 130.3, 129.1, 128.7, 128.7, 128.1, 128.0, 127.4, 127.3, 127.1, 126.9, 126.5, 125.2, 124.7, 123.4, 120.0, 87.6, 78.7, 64.6, 34.8, 30.8, 22.2, 18.7, 17.4, 13.7, 12.8 ppm. (LCMS): m/z [M+H]⁺: 567. IR (film): v_{max} 2955, 1656, 1552, 1484, 1264, 1121, 1028, 819 cm⁻¹.

2-(1,3-diphenylprop-2-yn-1-yl)-4,10-dimethyl-3,5,5-triphenyl-5H-fluoreno[3,2-b] furantimethyl-3,5,5-triphenylprop-2-yn-1-yl)-4,10-dimethyl-3,5,5-triphenylprop-2-yn-1-yl)-4,10-dimethyl-3,5,5-triphenylprop-2-yn-1-yl)-4,10-dimethyl-3,5,5-triphenyl-5H-fluoreno[3,2-b] furantimethyl-3,5,5-triphenylprop-2-yn-1-yl)-4,10-dimethyl-3,5,5-triphenyl-5H-fluoreno[3,2-b] furantimethyl-3,5,5-triphenyl-5H-fluoreno[3,2-b] furantimethyl-3,5-triphenyl-5H-fluoreno[3,2-b] furantimethyl-3

(*147a*). Following general experimental procedure-4.6d, the crude reaction mixture was purified by column chromatography (silica gel, 3-5 %, EtOAc in petroleum ether) the product was obtained aswhite solid (59 mg, 50%); mp: 153-154 °C. ¹H NMR (500 MHz, CDCl₃): δ 7.91 (d, J = 7.5 Hz, 1H), 7.49-7.45 (m, 3H), 7.41-7.34 (m, 2H), 7.33-7.32 (m, 4H), 7.30-7.27 (m, 6H), 7.27-7.24 (m, 4H), 7.21-7.16 (m, 4H), 7.14-7.11 (m, 5H), 7.06 (t, J = 5.5 Hz, 1H), 5.23 (s, 1H), 2.90 (s, 3H), 1.63 (s, 3H) ppm. ¹³C{1H}(125 MHz, CDCl₃)δ 155.5, 151.9, 142.9 (2), 141.0, 138.7, 133.6, 131.9, 131.1, 130.9, 129.6, 129.2, 129.1, 129.0, 128.9, 128.7, 128.6, 128.4, 128.3, 128.2 (2), 128.1, 127.9 (2), 127.8 (2), 127.7, 127.6, 127.3, 127.2, 127.1, 126.9, 126.6, 126.3 (2), 125.5, 123.4, 122.7, 122.6, 119.4, 114.6, 87.3, 84.164.7, 36.1, 16.8, 12.9 ppm. (LCMS): m/z [M+H]⁺: 653 ppm. IR (film): v_{max} 2985, 1526, 1348, 748 cm⁻¹.

blfuran (*147b*). Following general experimental procedure-4.6d, the crude reaction mixture was purified by column chromatography (silica gel, 3-6 %, EtOAc in petroleum ether) the product was obtained aswhite solid(63.94 mg, 53%); mp: 168-170°C. ¹H NMR (500 MHz, CDCl₃): δ 7.95 (d, J = 8 Hz, 1H), 7.51 (d, J = 7.5 Hz, 2H) 7.43-7.36 (m, 6H), 7.35-7.33 (m, 9H), 7.32-7.13 (m, 10 H), 5.25 (s, 1H), 2.93 (s, 3H), 2.37 (s, 3H), 1.66 (s, 3H) ppm. ¹³C{1H}(125 MHz, CDCl₃)δ 155.5, 153.8, 152.1, 145.1, 143.0, 142.9, 141.0, 138.8, 138.2,

135.8, 133.6, 131.8, 131.1, 131.0, 129.2, 129.1, 129.0, 128.9, 128.7, 128.6, 128.4, 128.1, 127.9 (3), 127.7, 127.3, 127.2, 127.0 (2), 126.7, 126.5, 126.3 (2), 125.5, 122.7, 122.6, 120.4, 119.4, 114.7, 86.6, 84.2, 77.4, 64.8, 36.1, 21.5, 16.8, 12.9 ppm. (LCMS): m/z [M+H]⁺: 667. IR (film): v_{max} 2924, 1491, 1218, 772, 698 cm⁻¹.

2-(3-Cyclopropyl-1-phenylprop-2-yn-1-yl)-4,10-dimethyl-3,5,5-triphenyl-5H-fluoreno[3,2-b]furan (147c). Following general experimental procedure-4.6d, the crude reaction mixture was purified by column chromatography (silica gel, 3-6 %, EtOAc in petroleum ether) the product was obtained aswhite solid (53.56 mg, 48%);mp: 158-160°C.¹H NMR (500 MHz, CDCl₃): δ 7.92 (d, J = 8 Hz, 1H), 7.40-7.35 (m, 3H), 7.32-7.25 (m, 10H), 7.24-7.13 (m, 10H), 4.95 (s, 1H), 2.88 (s, 3H), 1.60 (s, 3H), 1.29-1.26 (m, 2H), 0.88-0.85 (m, 1H), 0.76-0.74 (m, 1H), 0.74-0.68 (m, 1H) ppm.\(^{13}C{1H}(125 MHz, CDCl₃) δ 155.5, 153.7, 152.5, 145.0, 143.0, 142.9 (2), 141.0, 139.2, 135.6, 133.7, 131.1, 130.9 (2), 129.1(2), 128.7, 128.6, 128.5, 128.3, 128.1, 128.0, 127.9, 127.9 (2), 127.8, 127.6, 127.2, 127.1, 127.0, 126.9, 126.6, 126.3 (2), 125.5, 122.7, 122.6, 119.0, 114.6, 87.3, 72.9, 64.7, 35.4, 16.8, 12.9, 8.3 ppm. (LCMS): m/z [M+H]\(^+: 617.

Experimental procedure for the synthesis of (149):¹⁹ A mixture of compound 144a (0.1 mmol), 4-methoxy phenol (148) (0.18 mmol), tricyclohexylphosphane (PCy₃, 40 mol%), and lithium chloride (5.0 eq.) was taken into a sealed tube. The tube was evacuated and re-filled with nitrogen for 3 cycles then, anhydrous DMF (2.0 mL) and DBU (2.5 eq.) were added. The tube was placed into a preheated oil bath at 100 °C for 14 h. After the completion of the reaction, the mixture was cooled to ambient temperature and diluted with EtOAc and water. The organic layer was separated, and the aqueous layer was further extracted with EtOAc (~10 mL×3). The combined organic layers were dried over Na₂SO₄ and evaporated under reduced pressure. The crude product was purified by flash column chromatography on silica gel (60-120 mesh), using 6-7%, EtOAc in pet ether to afford the pure product 149 in 55% yield.

2-((**4-Methoxyphenoxy**)(**phenyl**)**methyl**)**-4,10-dimethyl-3,5,5-triphenyl-5H-fluoreno[3,2-**]**furan** (**149**).white solid mp: 201-203°C; (67.15 mg, 55%). ¹H NMR (400 MHz, CDCl₃): δ 8.05-7.99 (m, 3H), 7.53 (d, J = 7.6 Hz, 1H), 7.43 (t, J = 8 Hz, 2H), 7.38-7.29 (m, 10H), 7.26-7.23 (m, 8H), 6.80 (t, J = 1.6 Hz, 4H), 4.61 (s, 1H), 3.79 (s, 3H), 3.01 (s, 3H), 1.68 (s, 3H) ppm. ¹³C{1H}(125 MHz, CDCl₃) δ 183.7, 155.7, 154.6, 153.3, 152.7, 148.4, 147.2, 144.9, 141.4, 140.9, 139.0, 138.5, 136.5, 132.0, 131.7, 131.3, 130.3, 128.9, 128.7, 128.0, 127.9,

127.5, 127.4, 127.2, 127.0, 126.8 (2), 126.7, 126.3, 125.5, 125.4, 125.1, 124.5, 124.3, 123.1, 122.2, 114.9, 113.9, 113.7, 63.6, 54.7, 28.6, 15.8, 11.7 3 ppm. (LCMS): m/z [M+H]⁺: 675. IR (film): v_{max} 2920, 2850, 1736, 1642, 1361, 797 cm⁻¹.

4.8 REFERENCES

- a) Yingbo, S.; Shuanhu, *Tetrahedron* 2016, 72, 1717. b) Zeng, M.; Ballard, T. E.; Tkachenko, A.; Burns, V.; Feldheim, D.; Melander, C. *Bioorg. Med. Chem. Lett.* 2006, 16, 5148. c) Han, Y.; Bisello, A.; Nakamoto, C.; Rosenblatt, M.; Chorev, M. *J. Pept. Res.* 2000, 55, 230. (d) Perry, P.; Read, M.; Davies, R.; Gowan, S.; Reszka, A.; Wood, A.; Kelland, L.; Neidle, S. *J. Med. Chem.* 1999, 42, 2679. e) George, R.; Francis, E. R. *Chem. Rev.* 1938, 23, 2, 287.
- a)Xiao, L.; Chen, Z.; Qu, B.; Luo, J. Kong, S.; Gong, Q.; Kido, J. Adv. Mater. 2011, 23, 926. b) Beaupré, S.; Boudreault, P.-L. T.; Leclerc, M. Adv. Mater. 2010, 22, E6-E27. c) Grimsdale, A. C.; Chan K. L.; Martin, R. E.; Jokisz, P. G.; Holmes, A. B. Chem. Rev. 2009, 109, 3, 897. d) Scherf, U.; List, E. J. W. Adv. Mater. 2002, 14, 477. e) Martin, R. E.; Diederich, F. Angew. Chem., Int. Ed. 1999, 38, 1350. f) Kraft, A.; Grimsdale, A. C.; Holmes, A. B. Angew. Chem., Int. Ed. 1998, 37, 402.
- (3) a) Kazlauskas, K.; Kreiza, G.; Radiunas, E.; Adomenas, P.; Adomeniene, O.; Karpavicius, K.; Bucevicius, J.; Jankauskas, V.; Jursenas, S. *Phys. Chem. Chem. Phys.*2015, 17, 12935. Z b) Kazlauskas, K.; Kreiza, G.; Bobrovas, O.; Adomeniene, O.; Adomenas, P.; Jankauskas, V.; Jursenas, S. *Appl. Phys. Lett.* 2015, 107, 043301.
- (4) a) Feng, Z.; Kim, J. H.; Brady, S. F. J. Am. Chem. Soc. 2010, 132, 11902. b) Akiyama,
 T.; Nakamura, K. T.; Takahashi, Y.; Naganawa, H.; Muraoka, Y.; Aoyagi, T.; Takeuchi,
 T. J. Antibiot. 1998, 51, 586.
- (5) a) Ouzouni, M.-D.; Fokas, D. Eur. J. Org. Chem. 2013, 6181. b) Feldman, K. S.;
 Eastman, K. J. J. Am. Chem. Soc. 2006, 128, 12562. c) Gould, S. J.; Melville, C. R.; Cone,
 M. C.; Chen, J.; Carnery, J. R. J. Org. Chem. 1997, 62, 320.
- (6) a) Loozen, H. J. J.; Wagener, M.; Veeneman, G. H.; Zwart, E. W. US patent 2004/0059004 A1. March 25, **2004**.
- (7) a) Wang, K. K.; Wang, Y.-H.; Yang, H.; Akhmedov, N. G.; Petersen, J. L. Org. Lett. 2009, 11, 2527. b) Kim, D.; Petersen, J. L.; Wang, K. K. Org. Lett. 2006, 8, 2313. c) Li, H.; Zang, H.-R.; Petersen, J. L.; Wang, K. K. J. Org. Chem. 2001, 66, 6662. d) Zhang, H.-R.; Wang, K. K. J. Org. Chem. 1999, 64, 7996-7999.

- (8) a) Lee, J.; Park, J. Org. Lett. 2015, 17, 3960. b) Liu, F.; Xie, L.-H.; Tang, C.; Liang, J.; Chen, Q.-Q.; Peng, B.; Wei, W.; Cao, Y.; Huang, W. Org. Lett. 2009, 11, 3850. c) Zhou, Y.; Liu, W.-J.; Zhang, W.; Cao, X.-Y.; Zhou, Q.-F.; Ma, Y.; Pei, J. J. Org. Chem. 2006, 71, 6822.
- (9) Guo, L.-N.; Duan, X.-H.; Liu, X.-Y.; Hu, J.; Bi, H.-P.; Liang, Y.-M. *Org. Lett.* **2007**, *9*, 5425.
- (10) Chen, Y.; Chen, M.; Liu, Y. Angew. Chem., Int. Ed. 2012, 51, 6493.
- (11) Zhu, H.; Chen, Z. Org. Lett. 2016, 18, 488.
- (12) Sikkandarkani, A.; Srinivasan, K. J. Org. Chem. 2016, 81, 1229.
- (13) For selected reviews on allene reactions see a) Ma, S. Chem. Rev. 2005, 105, 7, 2829. b) Kim, H.; Williams, L. J. Curr Opin Drug Discov. Devel., 2008,11, 870. c) Alcaide, B.; Almendros, P.; Aragoncillo, C. Chem. Soc. Rev., 2010, 39, 783. d) Alcaide, B.; Almendros, P. Chem. Soc. Rev., 2014, 43, 2886. e) Yu, S.; Ma, S. Angew. Chem. Int. Ed.2012, 51, 3074. f) Robynne, K. N.; Frantz, D. E. ACS Catal. 2014, 4, 2, 519. f) Davey, S. Nat. Rev. Chem., 2017, 1, 0093.
- (14) a) Guo, C.; Lu, X. J. Chem. Soc. Chem. Comm. 1993, 394. b) Yaragorla, S.; Muthyala, R. Tetrahedron Lett. 2010, 51, 467.
- (15) Yaragorla, S.; Rajesh, P. Eur. J. Org. Chem. 2019, 5740–5748.
- (16) Pareek, A. Dada, R.; Rana, M.; Sharma, A. K.; Yaragorla, S. RSC Adv., 2016, 6, 89732.
- (17) Correia, C. A.; Li, C.-J. Adv. Synth. Catal. **2010**, 352, 1446.
- (18) Xinwei, He.; Choy, P. Y.; Leung, M. P.; Yuen, O. Y.; Liu, T.; Shang, Y.; Kwong, F. Y. *Chem. Commun.* **2019**, *55*, 15069.

4.8a Crystal data and structure refinement for 129d.

Identification code shelx-97

Empirical formula C₄₂H₃₁ClO

Formula weight 1169.20

Temperature 297 K

Wavelength 0.71073 Å

Crystal system 'Monoclinic'

Space group P2(1)

Unit cell dimensions $a = 8.9086(10) \text{ Å } \alpha = 90.00.$

 $b = 23.856(3) \text{ Å } \beta = 90.076(6).$

 $c = 14.701(2) \text{ Å } \gamma = 90.00.$

Chapter 4

Volume 3124.4(7)

Z 2

Density (calculated) 1.243 Mg/m3

Absorption coefficient 0.155 mm-1

F(000) 1222.0

Crystal size 0.24 x 0.22 x 0.20 mm³

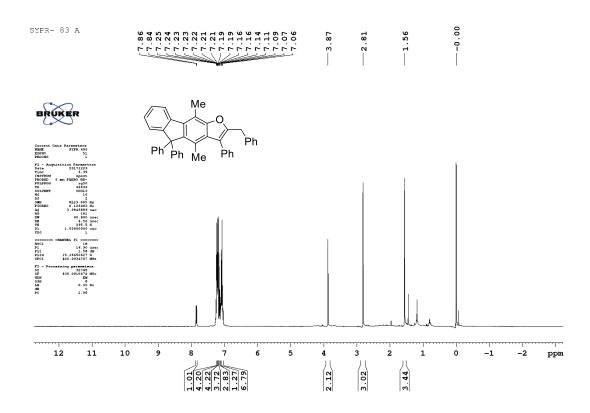
Theta range for data collection 2.29 to 24.99 °.

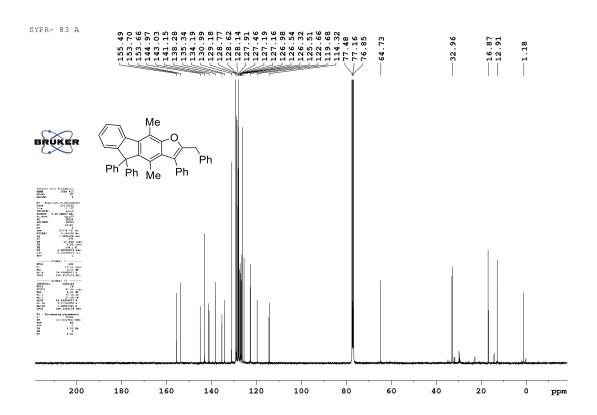
Index ranges -10 <= h <= 10, -28 <= k <= 28, -17 <= l <= 17

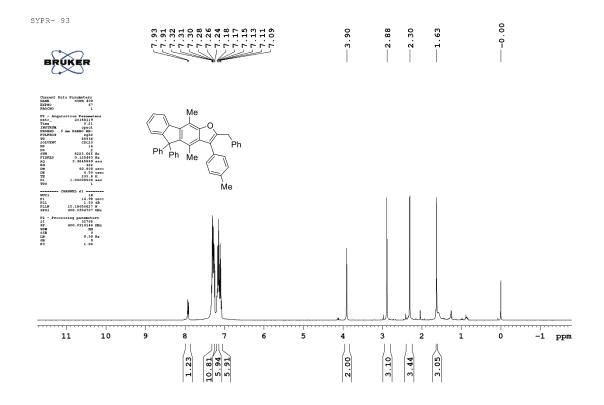
Reflections collected 11026

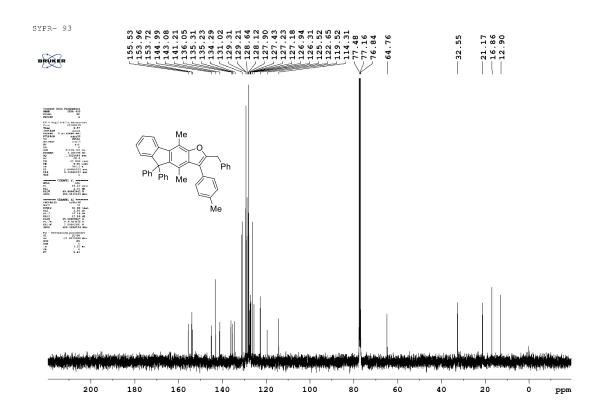
Independent reflections 8060 [R(int) = 0.0503]

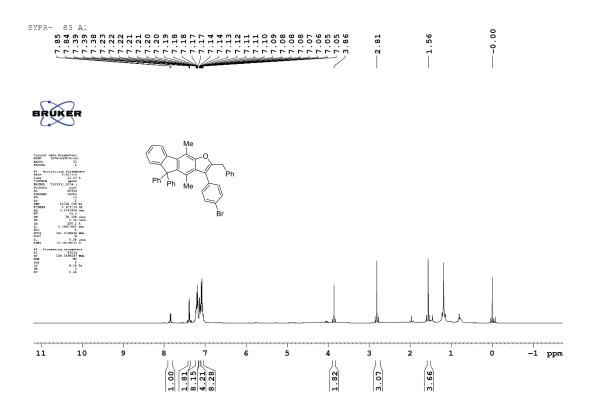
Max. and min. transmission 0.963 and 0.969

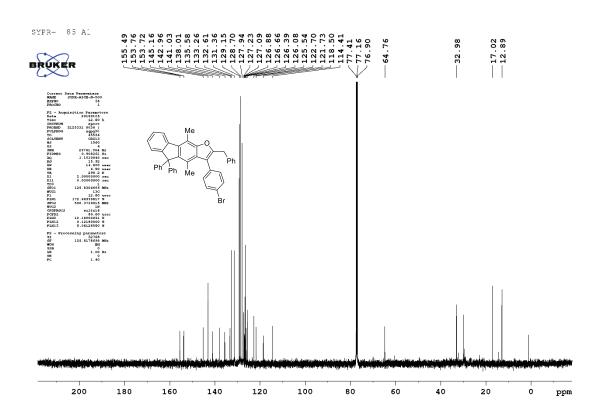

restraints / parameters 1 / 798

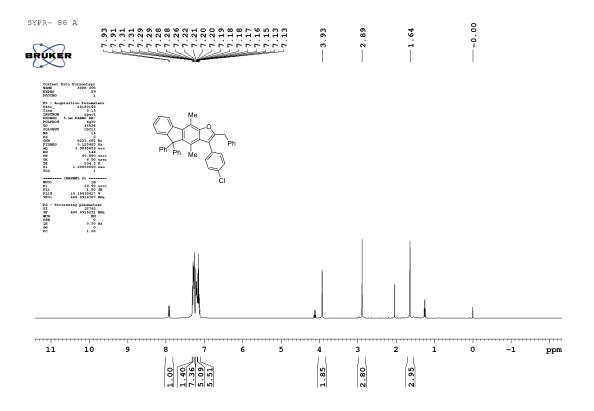

Goodness-of-fit on F^2 1.023

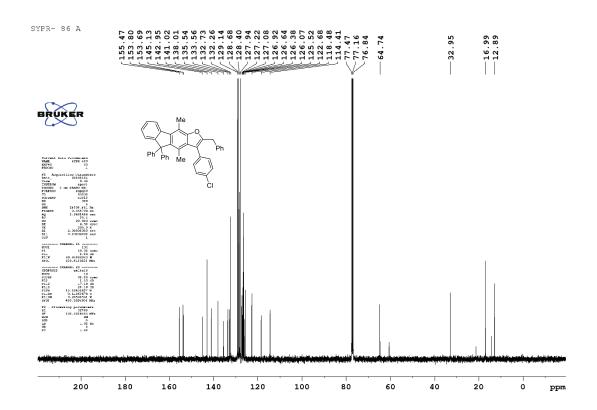

Final R indices [I>2sigma(I)] R1 = 0.0503, wR2 = 0.1222

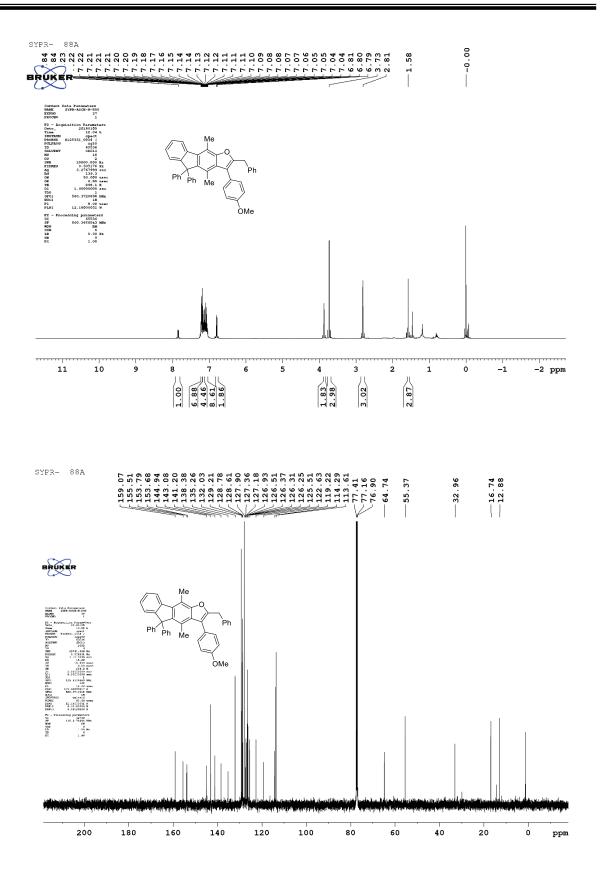

R indices (all data) R1 = 0.0824, wR2 = 0.1101

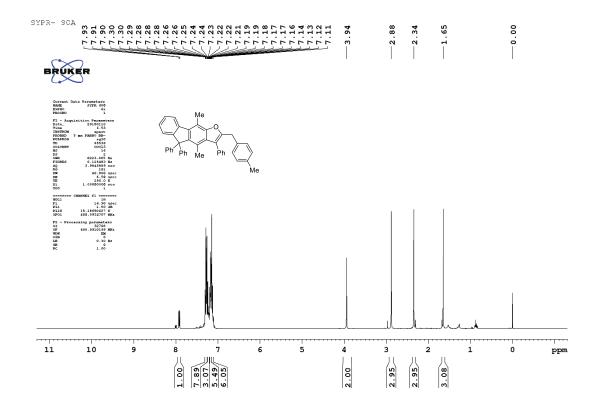

4.9 SPECTRAL COPIES

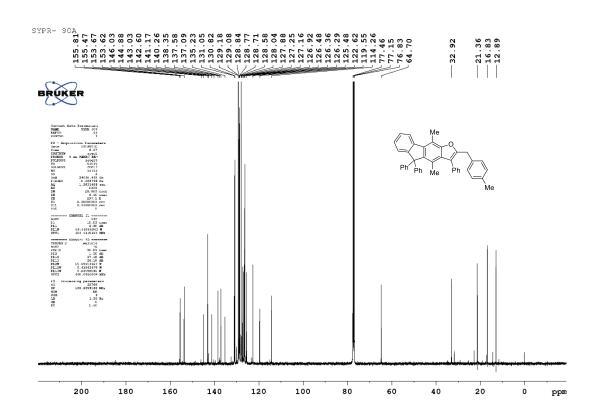


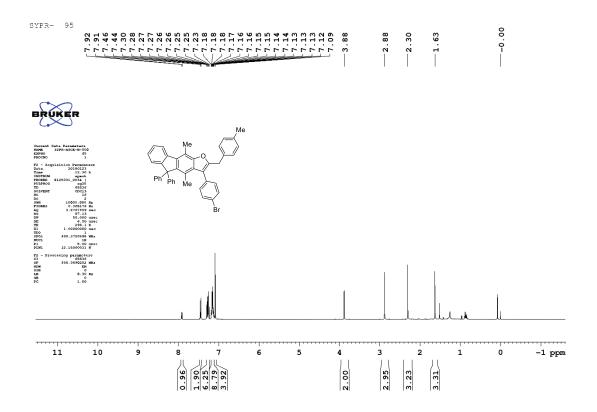


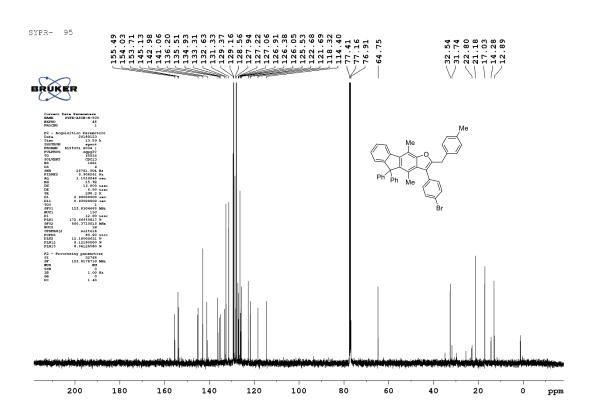


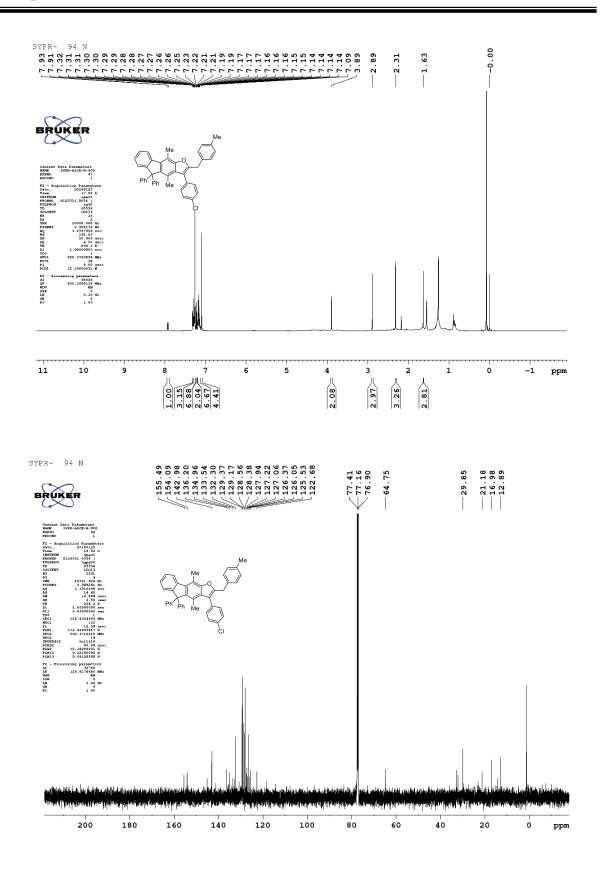


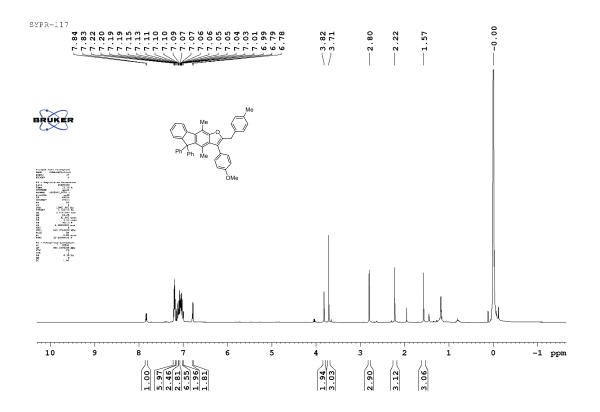


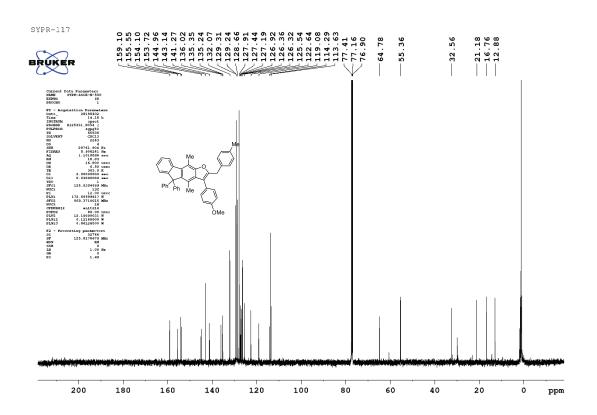


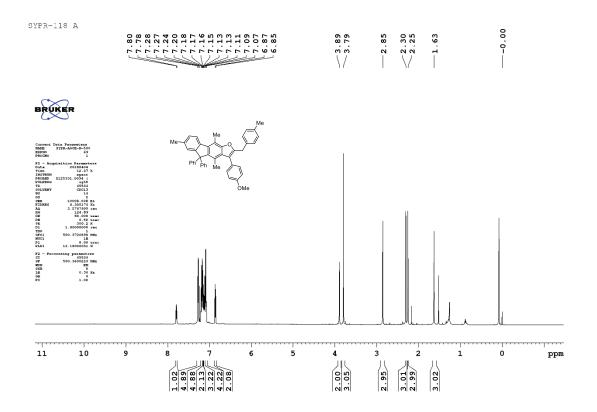


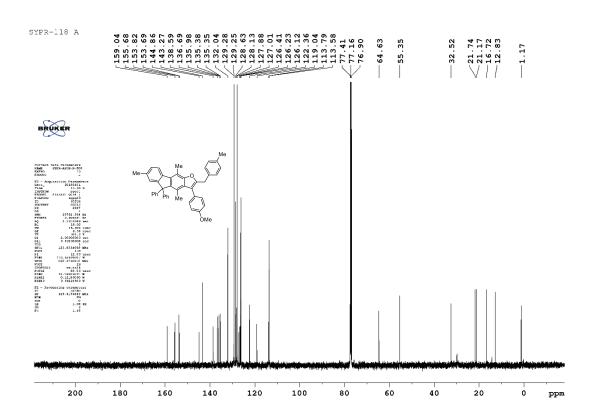


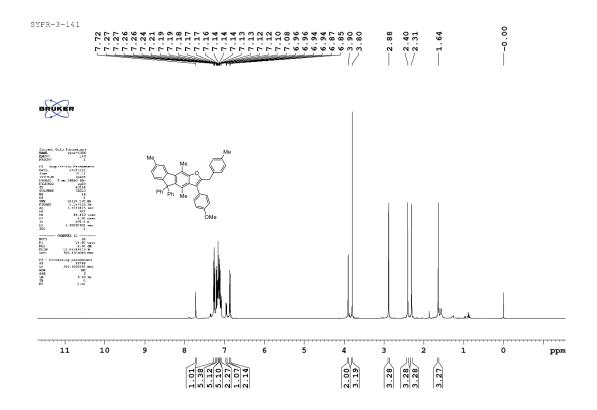


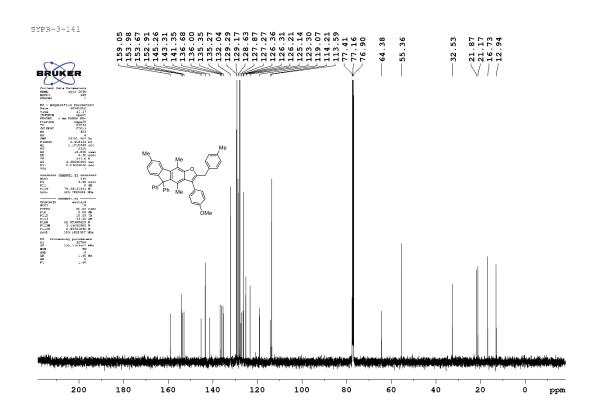


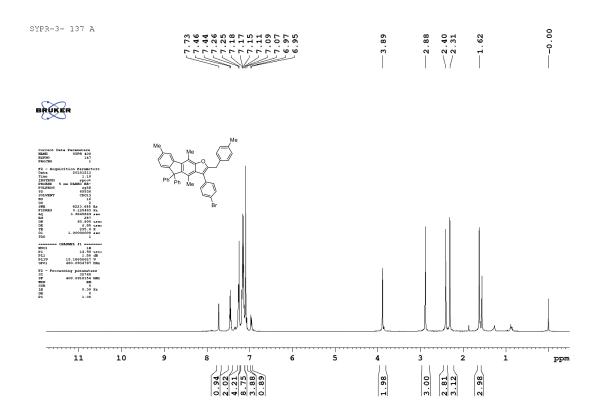


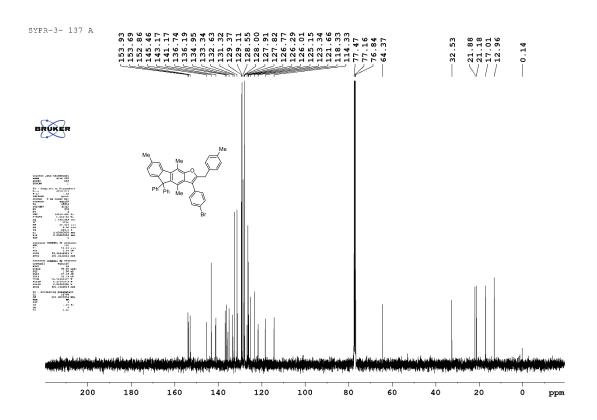


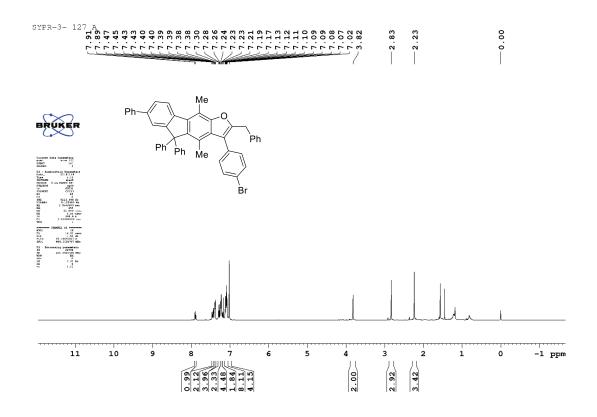


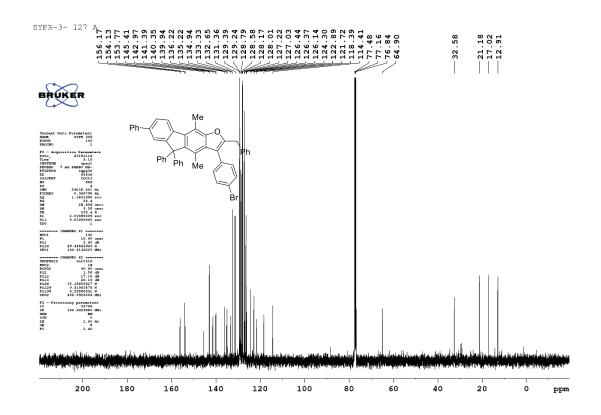


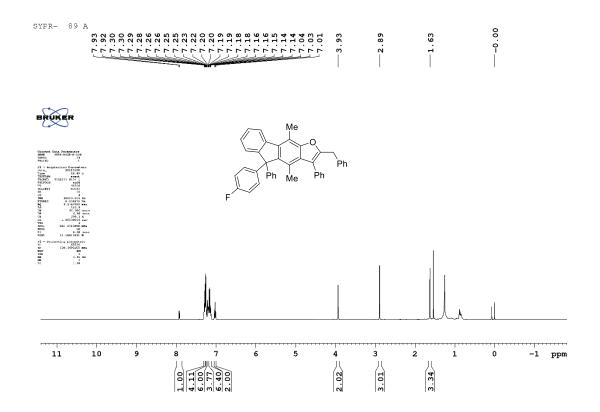


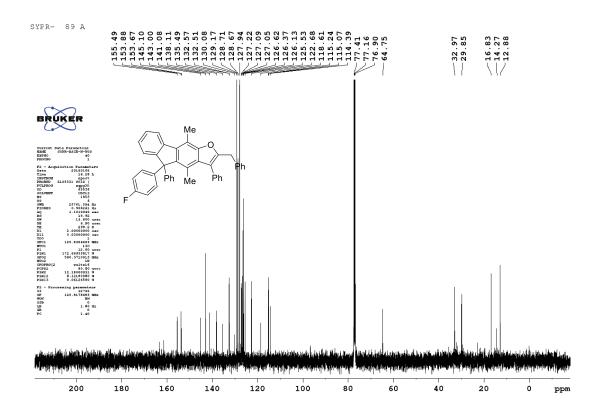


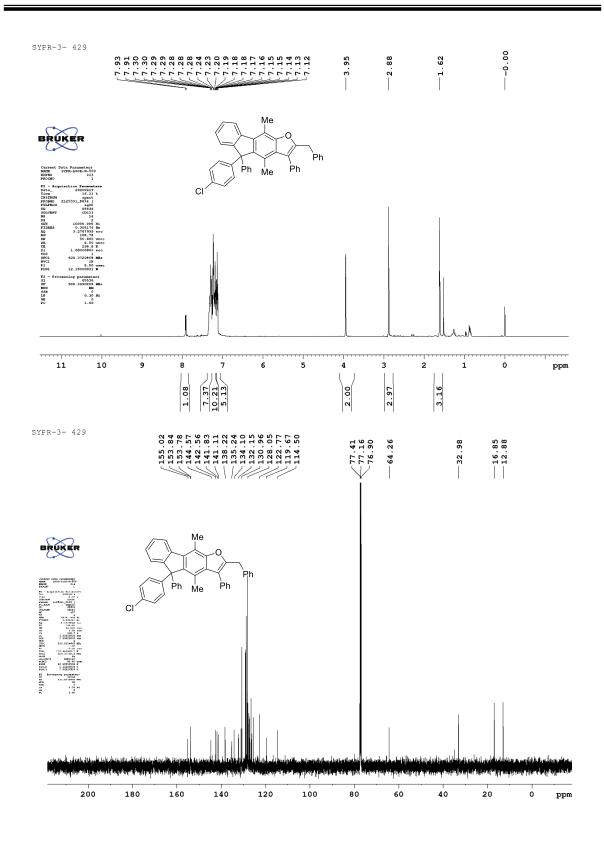


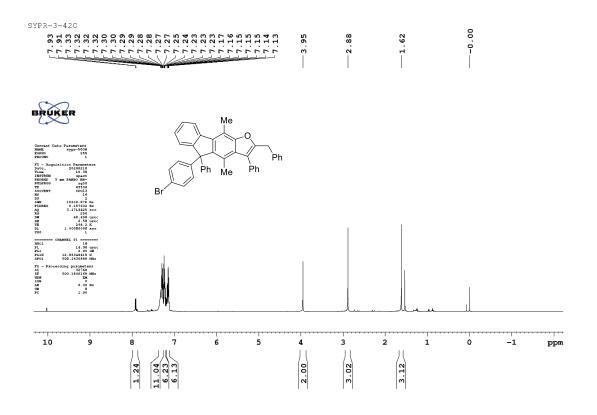


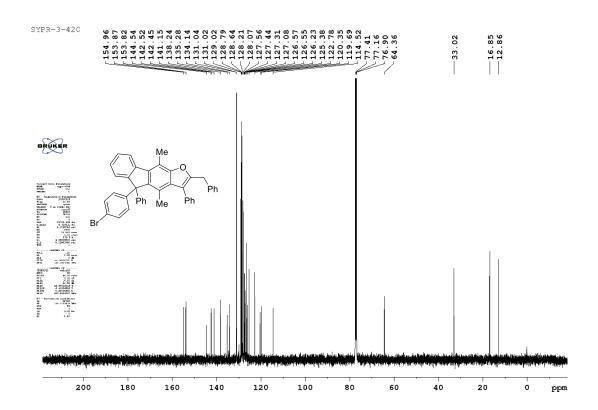


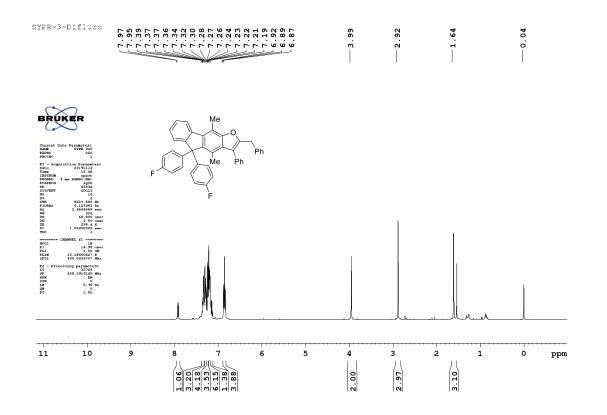


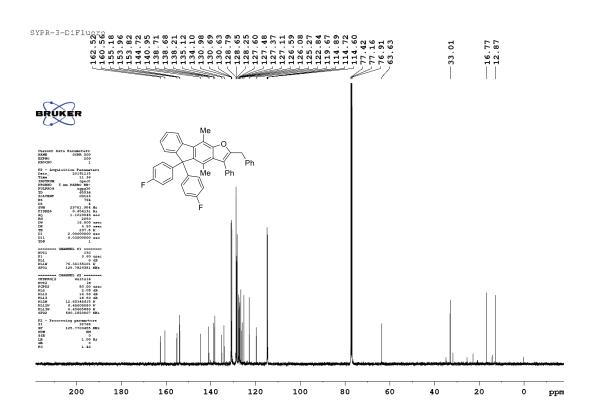


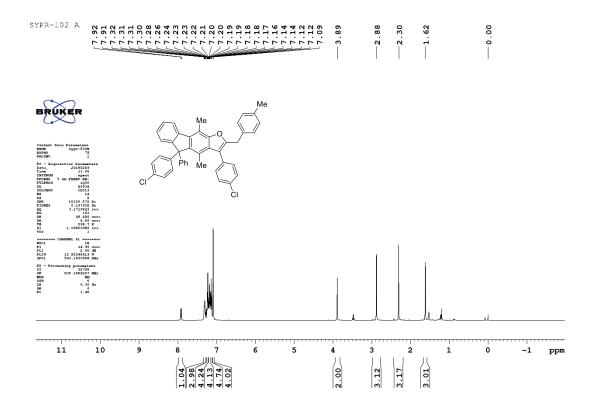


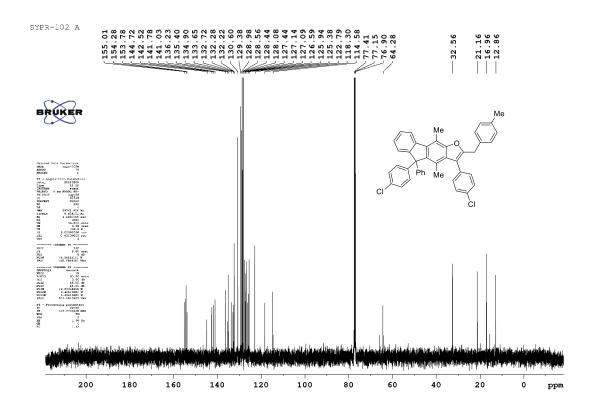


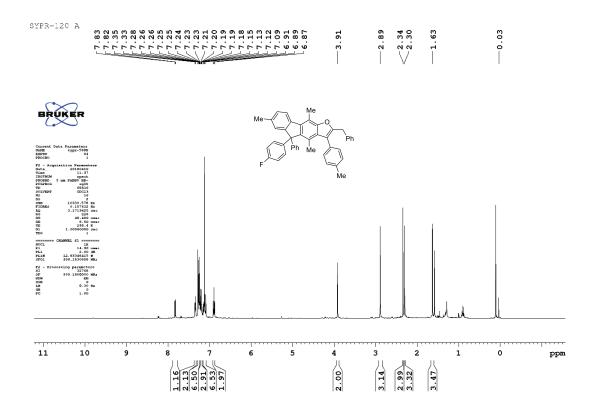


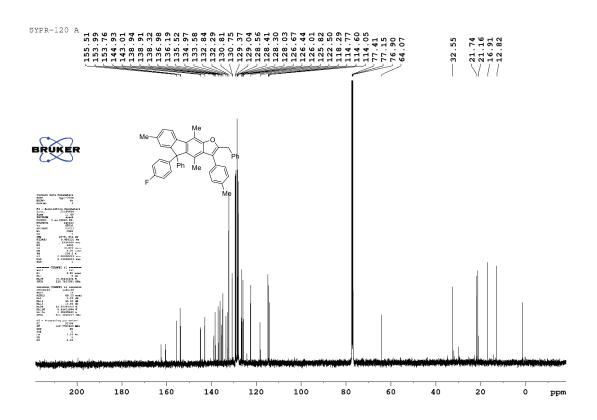


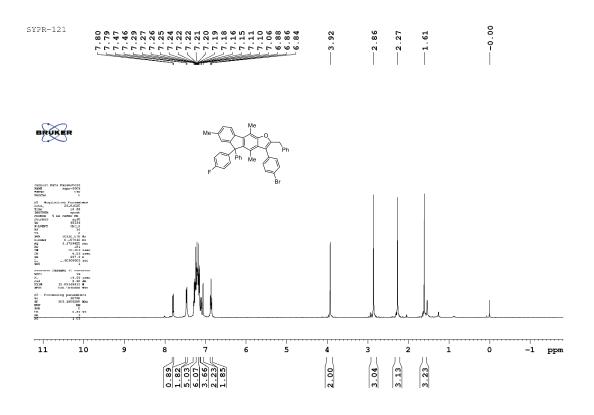


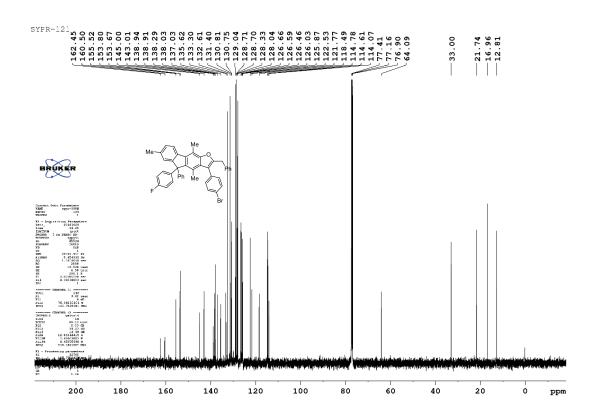


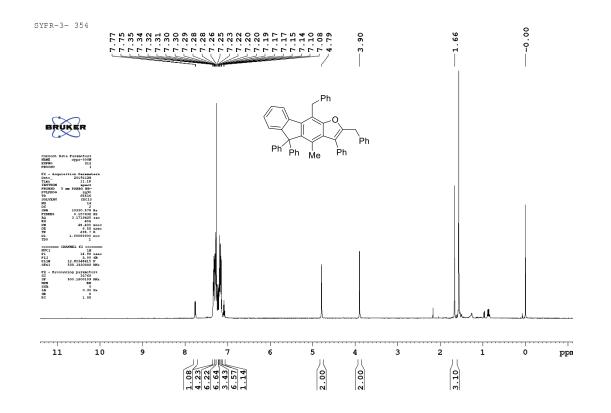


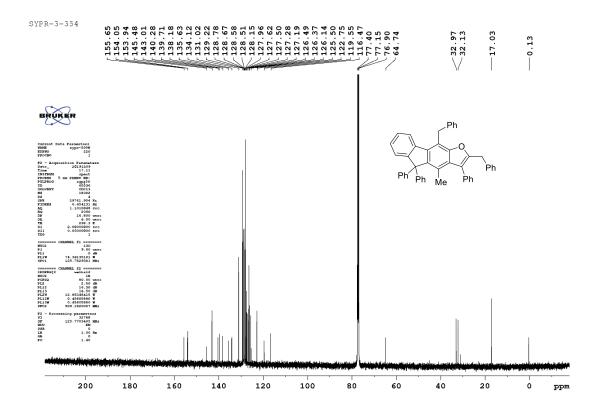


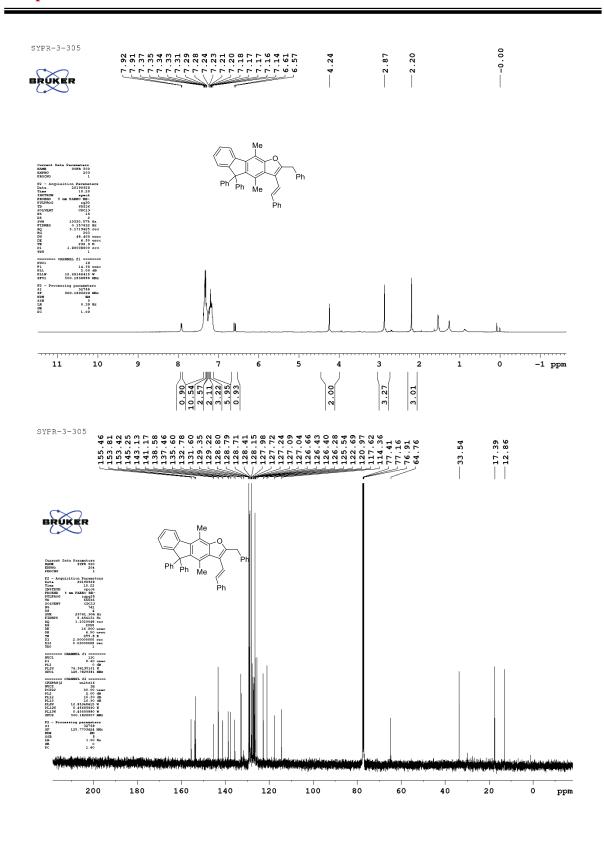


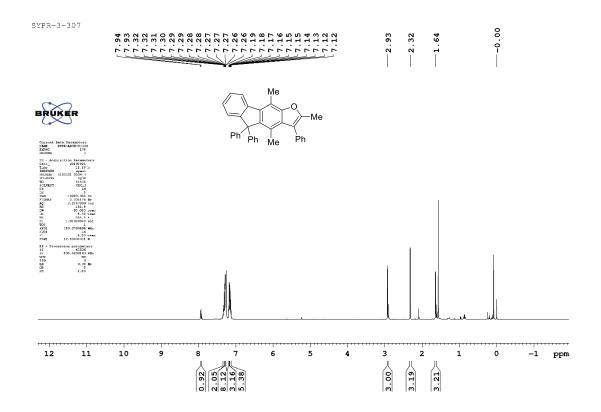


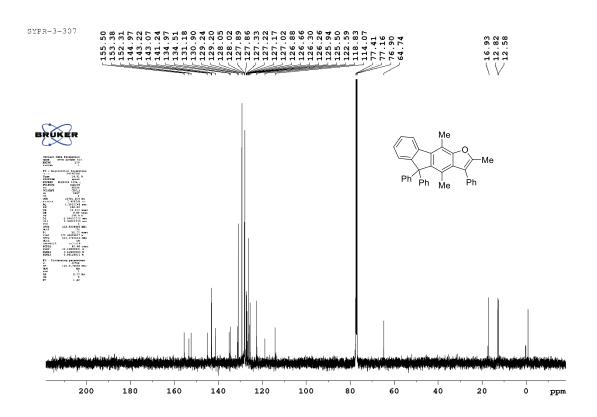


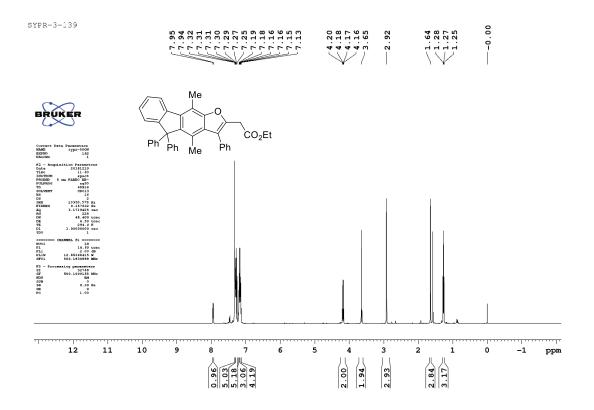


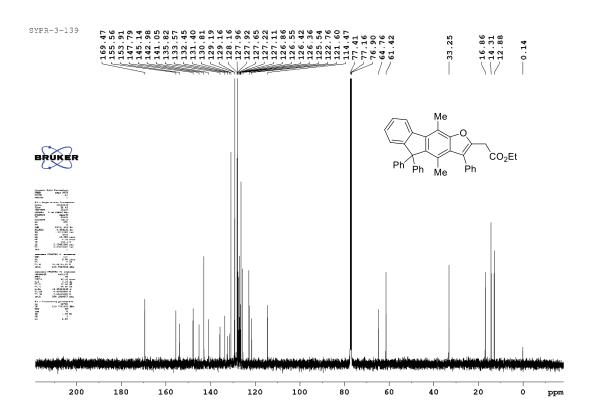


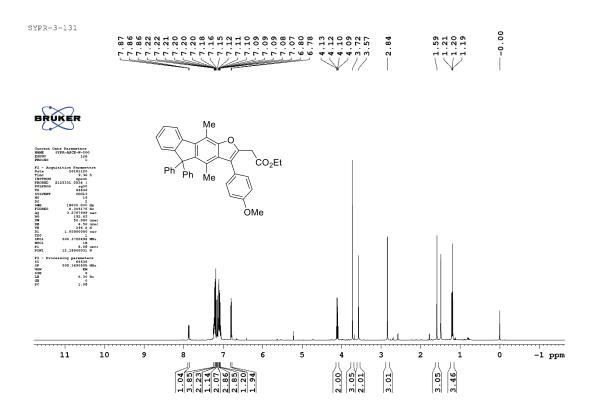


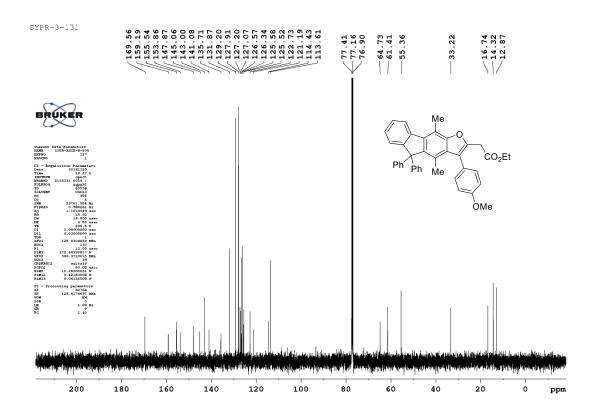


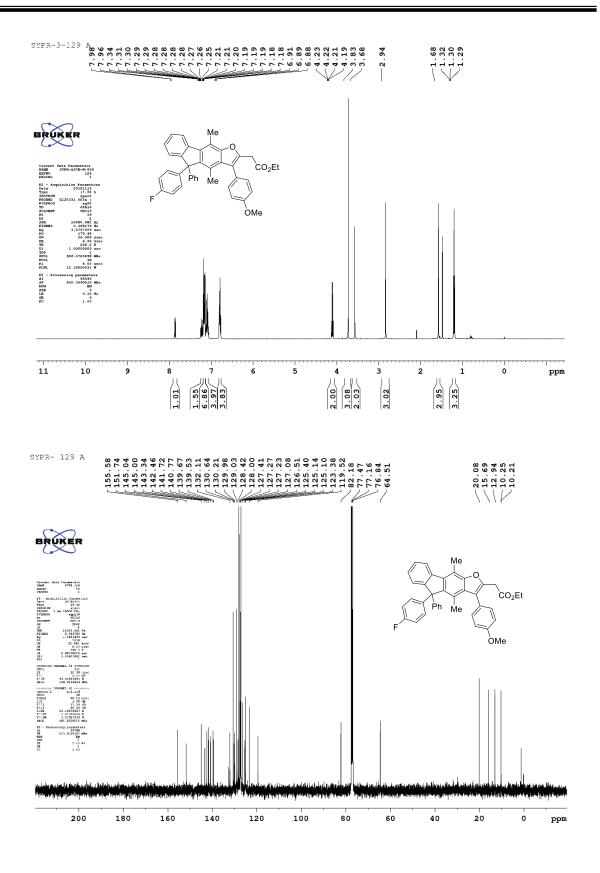


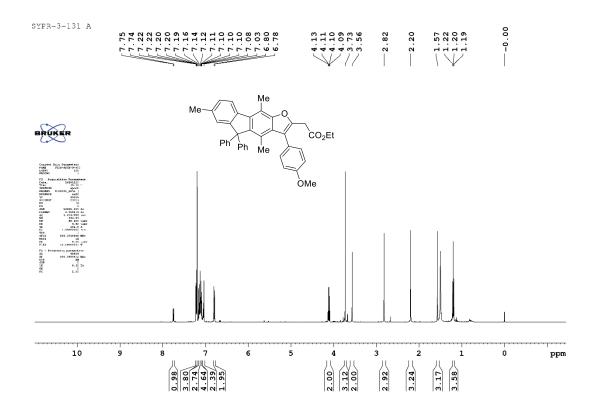


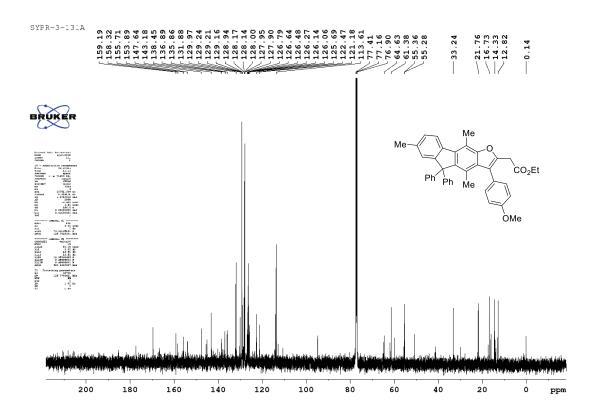


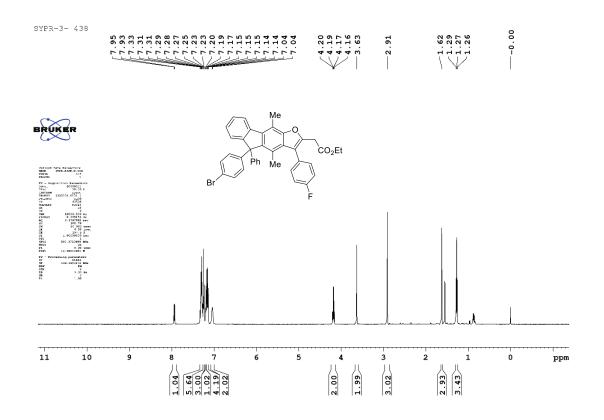


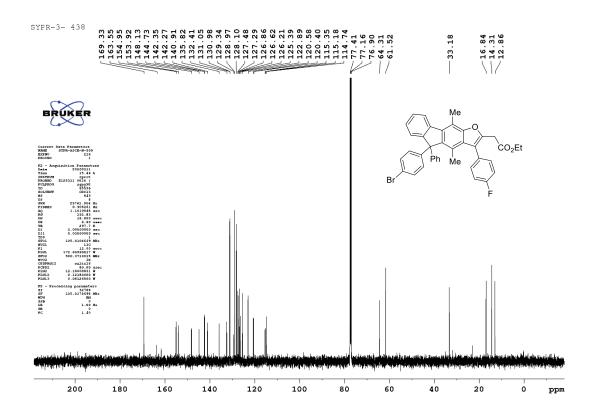


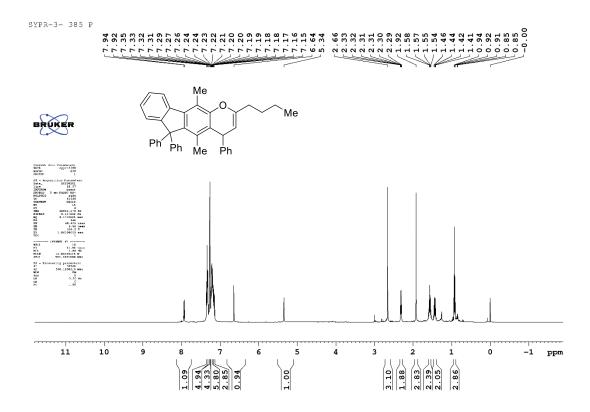


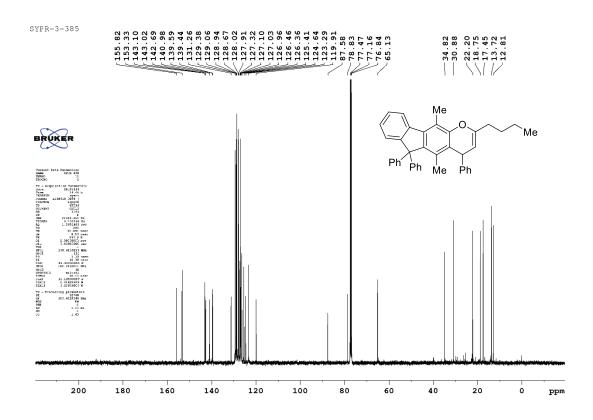


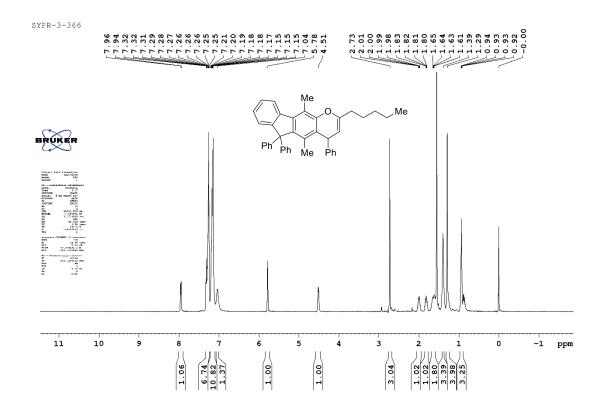


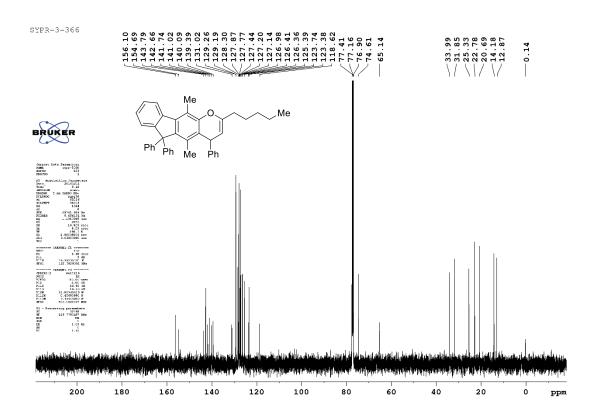


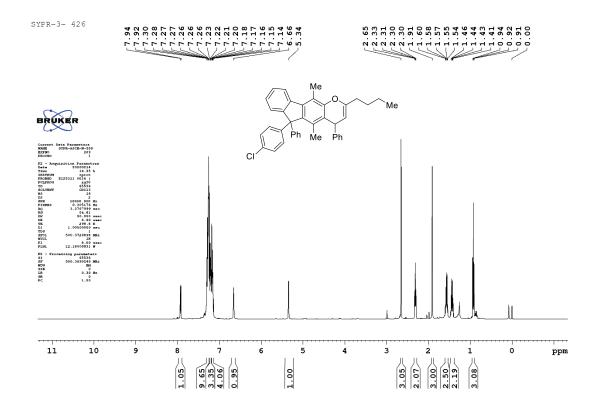


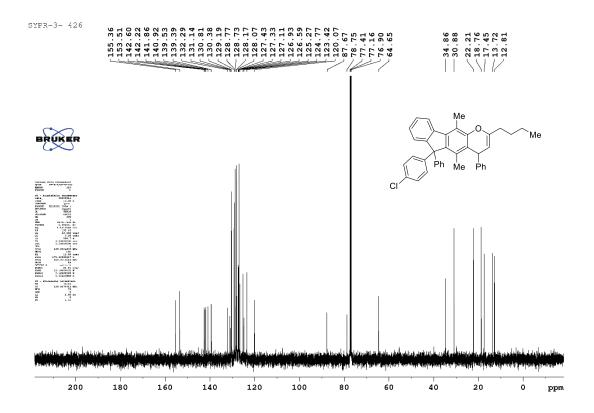


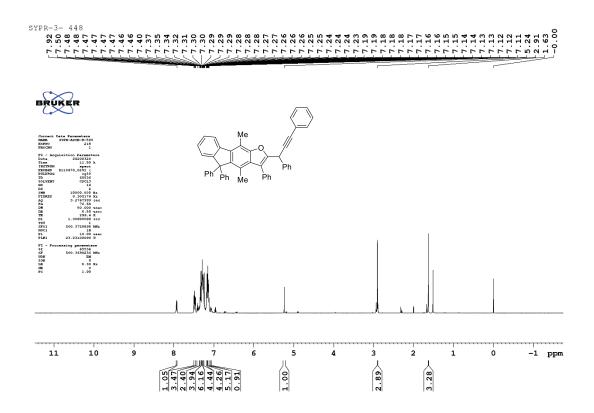


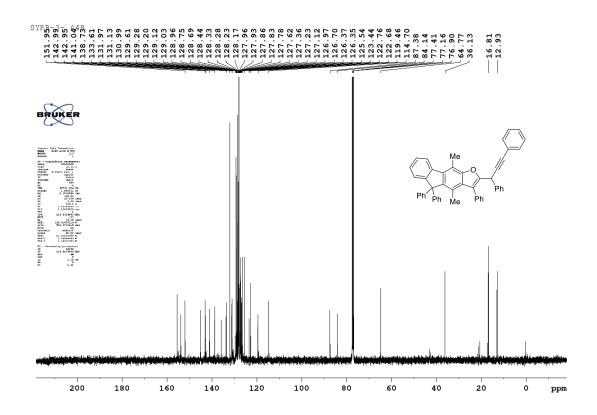


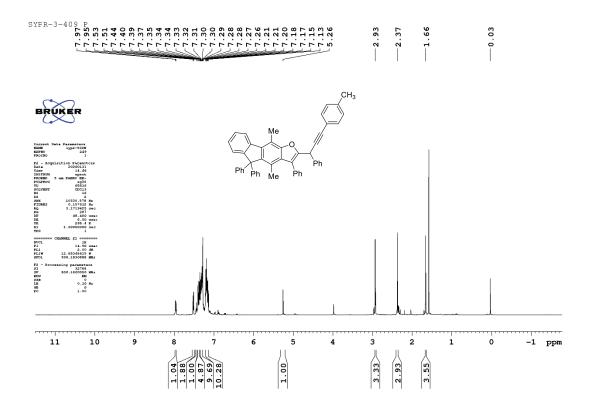


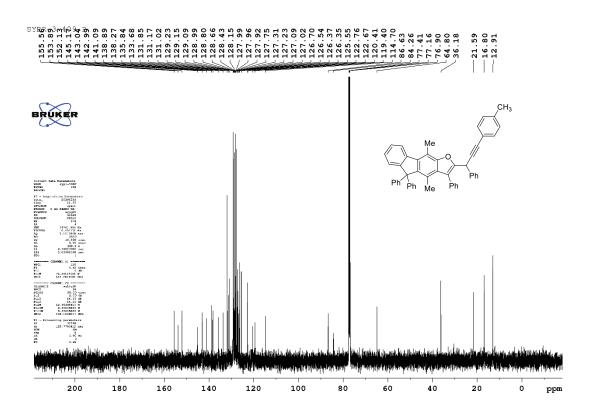


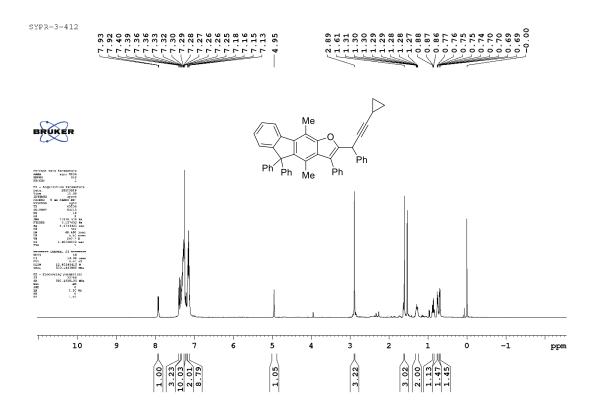


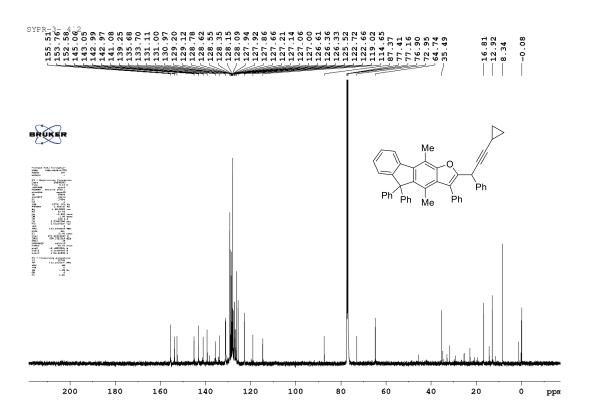


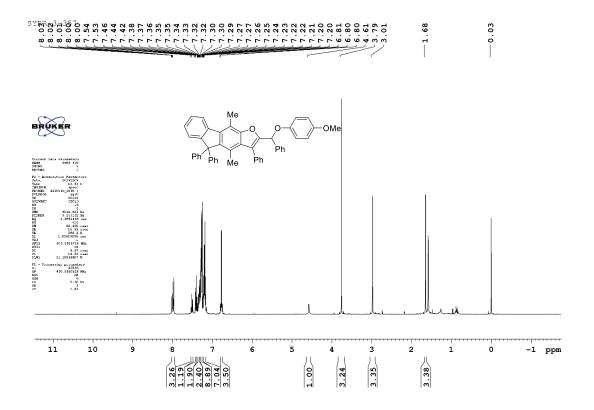


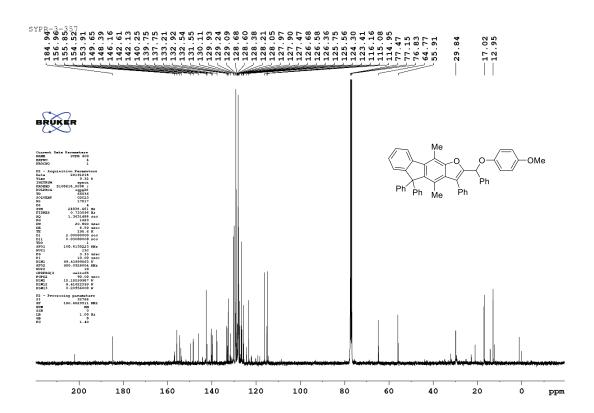












Synthesis and in-situ cyclization of tetrasubstituted allenes to access tetracyclic fluorenopyrans

Adv. Synth. Catal. 2018, 360, 4422

5.1 PROPOSAL FOR THE SYNTHESIS OF FLUORENOPYRAN

As mentioned before, ynol **1** and diketone **72b** react in the presence of calcium-catalyst to give allene intermediate **3ya**, which further cyclizes to produce fluorenol **128**. At this stage, we presume that if we can add *tert*-propargyl alcohol to the fluorenol **128**, it can form a C-O bond due to the hard-hard interactions over the C-C bond, to give ether compound **IX**. Once **IX** is formed, further it may undergo Claisen or [3,3]-rearrangement of ether to give allene intermediate followed by a 6-endo-trig-cyclization or 5-*endo-dig*-cyclization possibilities

(1)
$$Ar^1$$
 Ar^1 Ar^1 Ar^2 Ar^1 Ar^2 Ar^1 Ar^2 Ar^2 Ar^1 Ar^2 $Ar^$

Figure 1. Conceptualization of highly regioselective synthesis of fluorenopyran.

When we look at the literature for chromene chemistry, we found that similar kinds of polycyclic molecules are abundant in natural products and are of great importance in chemical biology and material science. Synthesis of these complex molecules from simple acyclic starting materials is always challenging and demanding. For example, chromenes as an important class of heterocyclic compounds from both pharmaceutical and biological point of view. As a result, the synthesis of chromenes has been attracted the attention of many synthetic chemists. Similarly, chromene is a useful carbocyclic moiety found in a wide variety of bioactive natural and synthetic compounds. Due to their unique features, such as good charge transporters with high chemical stability, these moieties are frequently utilized in material science, light-emitting diodes (OLEDs), and dyes sensitized solar cells (DSSC). Some of these tetracyclic frameworks, such as Gnetuhainins S, and Parvifolol A. were created by nature to use as a combination of fluorenyl and pyran scaffolds (Figure 2). When it

comes to the laboratory synthesis, very few reports are available for indeno[1,2-c]chromenes, ^{5,6} but none for the indeno[1,2-g]chromenes, except a patent. ¹⁰ According to this patent, these compounds exhibited excellent photochromic properties and are used in many types of plastics and especially for ophthalmic purposes.



Figure 2.Representative structures of natural polycyclic frameworks embedded with chromene, indene and fluorene

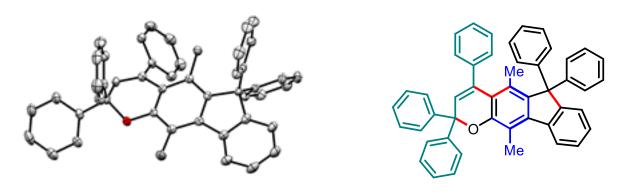
5.2 RESULTS AND DISCUSSION

However, difficulties such as a multi-step method, various protection, and deprotection strategies, less yield, and longer reaction periods have been found in the reported synthesis of these polycyclic moieties green synthetic methods are in short supply in modern synthetic chemistry, so various protocols have been developed and are being followed. One of them is a one-pot, multicomponent reaction (MCR) approach. Because of the potential use of fluorenopyrans and the rarity of synthetic procedures, we present the first one-pot, multicomponent annulation of acyclic propargyl alcohols and 2-methyl-1,3-diketones into tetracyclic fluorenopyrans utilizing calcium-catalysis. Our concept for fluorenopyran synthesis is that fluorene and pyrans are very well privileged scaffolds, thus we proposed

combining them into a single (hybrid) molecule such that the properties of both molecules can reinforce one another in the hybrid structure. We proposed a preliminary investigation on acidochromism for selected compounds to evaluate this. Our main concern while designing a synthetic methodology for this particular compounds is, to include as many green synthetic protocols as possible.

5.3 Optimization Studies

To test our hypothesis, we stirred a mixture of propargyl alcohol (1a, 2 equiv.), 3methylpentane-2,4-dione (72b, 1.3 equiv.), and 10 mol % Ca(OTf)₂/Bu₄NPF₆ in 1,2-DCE for 15 h at room temperature, discovering that the desired flurenopyran (150a) was formed in 10% along with other inseparable mixtures. After the formation of the fluorenol intermediate, (128), the second part of 1a was added to the same flask to enhance the production of the 150a (monitored by TLC). As expected, the yield of the product was increased to 25% (entry 1, Table 1). This prompted us to experiment with alternative conditions to improve the reaction yield. We refluxed the reaction in DCE at 90 °C and found that the yield of 150a was raised to 67%. (entry 2). Assuming that increasing the reaction temperature would enhance the yield of 150, the reaction was refluxed in a higher boiling solvent, toluene (120 °C), but the yield was only 40%. (entry 3). The reaction could not initiate in a protic solvent like ethanol at reflux, but solvent-free conditions gave a moderate yield of 48% at 110 °C (entries 4, 5). DCE was shown to be better at reflux conditions than the other solvent systems investigated, therefore it was selected as the best solvent. A few more experiments were carried out to reduce catalyst loadings, and it was determined that 10 mol% Ca(OTf)₂/5 mol% Bu₄NPF₆ provided 70% of 150a in 4 h (entry 6). To examine the importance of the catalyst, we performed the reaction without catalyst/additive (entry 10), without Ca(II) (entry 9), and without additive (entry 8). These results inferred to us that the combination of both is mandated as the mixture undergo a ligand metathesis to yield more soluble and more acidic Ca(II) salt. ¹⁴ KPF₆ was proved as a bad choice of additive along with a Ca(II) (entry 11). Other acid catalysts such as Mg(OTf)₂, FeCl₃, and p-TSA were found to be less effective (entries 12-14). Finally, entry 6 turned out to be the optimum condition for the formation of **150a**.


Table 1. Optimization studies for the synthesis of fluorenopyran

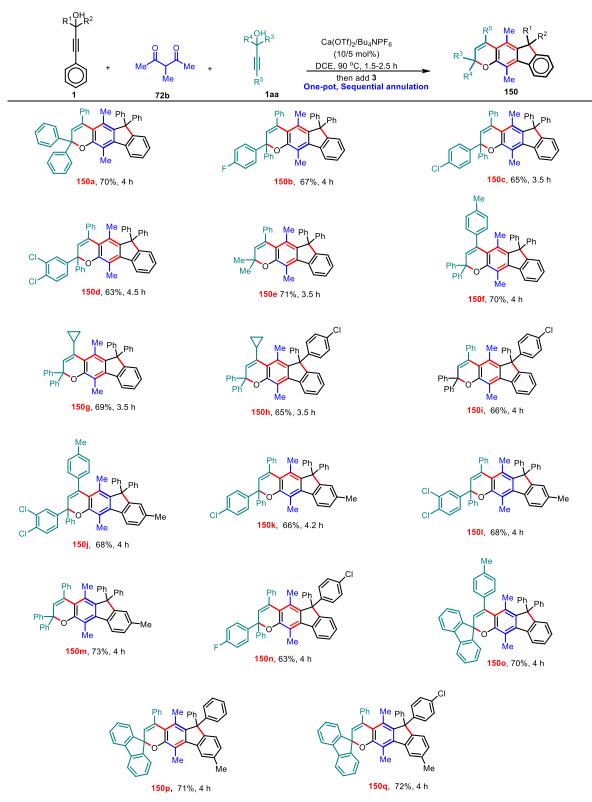
Entry	Catalyst (mol%)	Reaction conditions ^[a]	Yield (%) ^[b]
1	Ca(OTf) ₂ / Bu ₄ NPF ₆ (10/10)	DCE, rt, 15 h	25
2	Ca(OTf) ₂ / Bu ₄ NPF ₆ (10/10)	DCE, 90 °C, 4 h	67
3	Ca(OTf) ₂ / Bu ₄ NPF ₆ (10/5)	Toluene, 120 °C, 8h	40
4	Ca(OTf) ₂ / Bu ₄ NPF ₆ (10/5)	EtOH, 90 °C, 8 h	nr
5	Ca(OTf) ₂ / Bu ₄ NPF ₆ (10/5)	Neat, 110 °C, 8 h	48
6 ^[c]	Ca(OTf) ₂ / Bu ₄ NPF ₆ (10/5)	DCE, 90 °C, 4 h	70
7	Ca(OTf) ₂ / Bu ₄ NPF ₆ (5/10)	DCE, 90 °C, 4 h	53
8	Ca(OTf) ₂ , (10)	DCE, 90 °C, 12 h	nr
9	Bu ₄ NPF ₆ , (10)	DCE, 90 °C, 12 h	nr
10	No catalyst, no additive	DCE, 90 °C, 12 h	nr
11	Ca(OTf) ₂ / KPF ₆ (10/5)	DCE, 90 °C, 4 h	10
12	Mg(OTf) ₂ /Bu ₄ NPF ₆ (10/5)	DCE, 90 °C, 12 h	26
13	PTSA (10)	DCE, 90 °C, 4.5 h	60
14	FeCl ₃ (10)	DCE, 90 °C, 12 h	15

1a (1 equiv., 1.2 equiv.), **72b** (1.3 equiv.), were used; ^[b]Isolated yields; ^[c]Optimum conditions; DCE: 2-dichloroethane; rt: room temperature; nr=no reaction; OTf= trifluoromethanesulfonate

5.3a Characterization of Compound 150a

Isolated compound **150a** was fully characterized using ¹H NMR, ¹³C NMR, HRMS, IR, melting point & single-crystal XRD. Characteristic Pyran proton shows a sharp peak in proton NMR at 6.20 ppm and aromatic CH proton shows in proton NMR at 7.92-7.09 ppm. The quaternary center was characterized by ¹³C NMR signal present at 64.7 ppm and HRMS data also confirms the molecular weight of the compound **150a**. Single-crystal X-ray data was collected for compound **150a** which confirms the core structure of flurenopyran moiety (Figure 2)

CCDC: 1842703


Figure 2. Single crystal X-Ry structure of 150a

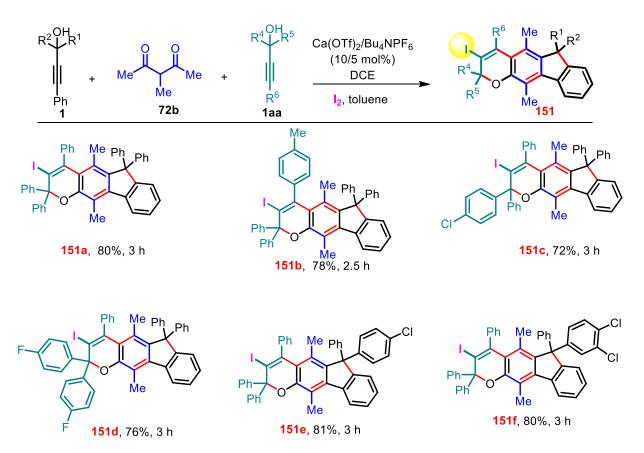
5.3b SCOPE OF THE REACTION

After successful optimization of reaction conditions for the regioselective, one-pot annulation of propargyl alcohol **1a** and 2-methyl acetylacetone to generate fluorenopyran **150a** (Table 2), we explored the flexibility of this reaction using different substrates. Correspondingly, **1a** and **72b** were refluxed in 1,2-DCE with 10 mol% Ca(II)/5 mol% Bu₄NPF₆ until the starting materials were consumed (as determined by TLC), after which propargyl alcohol **1b** was added to the reaction pot and the reaction was continued until completion to isolate the fluorenopyran **150b** in a 67 % yield. Other propargyl alcohols **1c-1f** were also treated with **1a** and **72b** under typical reaction conditions to demonstrate the diversity at the quaternary-C2-center and yielded good yields of flurenopyrans **150a-150e**. Compared to **150a**, the yields of **150b**, **150c**, and **150d** were somewhat lesser, this could be because the phenyl ring at the C2 center has a halogen substitution. Surprisingly, **150a** had a yield that was comparable to **150e** (diphenyl versus dimethyl at C2). By using **150h** & **1i** (*p*-tolyl and cyclopropyl groups) as the second alcoholic partners, the scope of substitutions at C4 was established, and the related polycyclic products **150f-150h** were synthesized in good yields. We also investigated the

potential of 1,1-diphenyl-3-(p-tolyl)prop-2-yn-1-ol (**1b**) with **72b** and other propargylic partners **1** to produce the fluorenopyrans **150j-150n** in modest yields. Following these findings, we planned to construct a spirocyclic quaternary center at the C2 position of compound **150** by using cyclic propargyl alcohol (**1**) second addition. To synthesize indeno[2,1-*g*]chromene **150o**, **1a** and diketone **72b** were annulated under standard conditions, and then fluorenyl propargyl alcohol(**1aa**) was added after the production of flurenol, and the reaction has proceeded. As shown in Table 2, the additional fluorenopyrans **150p & 150q** having a spirocyclic 9-fluorenyl moiety at the C2 center were also synthesized in good yields. The reaction could not progress beyond the synthesis of fluorenol when 1-(phenylethynyl)cyclohexan-1-ol(**1ab**) was utilized as the second propargylic partner because the 1-(phenylethynyl)cyclohexan-1-ol underwent Rupe elimination. ¹⁵

Table 2. substrate scope of the Ca(II)-catalyzed synthesis of fluorenopyrans.^[a]

 $^{[a]}$ Reaction conditions: A mixture of 1 equiv. 1, 1.3 equiv. 72b, 10 mol% Ca(OTf) $_2$ /5 mol% Bu $_4$ NPF $_6$ were refluxed in 1,2- dichloroethane for 1.5-2.5 h then 1.2 equiv. of 1aa was added


5.3c Reaction Mechanism

A plausible mechanism for the Ca(II) catalyzed regioselective synthesis of flurenopyran derivatives is described in Scheme 2. Initially the activated propargyl alcohol (1) interacts with the enol form of diketone **72b** *via* the S_N2^I process, yielding the tetra-substituted allene intermediate. (**3ya**)¹⁶ (*isolated and confirmed*). An intra-molecular Allene-Friedel-Crafts annulation of (**3ya**) gives the tricarbocyclic compound (**II**), which further cycloisomerizes to the indene (**III**) in the presence of Ca(II). Later enol (**III**) undergo tautomerism to give diketone **IV**. Then a Ca(II)-catalyzed intramolecular aldol condensation of diketone **IV** through enol **V** gives annulated-**VI**, followed by elimination provides tricyclic ketone **VII**^{17a,17b}. Aromatization of **VII** gives fluorenol **VIII**^{17c} (*isolated and characterized*), which forms ether **IX** with the second propargyl alcohol partner (**1**). Finally, Claisen or [3,3]-rearrangement ¹⁸ of ether **IX** yields allene intermediate (**X**), which then cyclizes through a 6-endo dig fashion to provide the fluorenpopyran **150**.

Scheme 1. Plausible reaction mechanism

A detailed examination of propargylic ether (**IX**) in the reaction mechanism (Scheme 2) revealed that molecular iodine can be used to activate the triple bond, resulting in intramolecular iodocyclization (Table 3) and the formation of iodo-fluorenopyrans. ¹⁸ We planned our experiment based on this assumption: **1a** and **72b** were exposed to typical reaction conditions to create fluorenol (**VIII**), then the reaction was brought to room temperature and **1a** was introduced as the second alcoholic partner together with molecular iodine and 2 mL of toluene. ¹⁹ Probably, the iodocyclization went smoothly, yielding 3-iodo flurenopyran **151a** in 80% yield (Table 3). This result prompted us to test the protocol's universality by combining other propargyl alcohols **1** and **1aa** with diketone **72b**. As a result, we were able to obtain the corresponding 3-iodo-fluorenopyrans **151b-151f** in good to excellent yields as depicted in Table 3.

Table 3. Ca(II)-catalyzed, one-pot, 4-component Iodo-cycloisomerization reaction.^[a]

[a]Reaction conditions: A mixture of 1 equiv. 1, 1.3 equiv. 72b, 10 mol% Ca(OTf)₂, 5 mol% Bu₄NPF₆ were refluxed in 1,2- dichloroethane for 2 h then the reaction was brought to rt and added 1.2 equiv. of 1aa and 2 equiv. of iodine in toluene and continued the reaction at rtuntill completion.

5.3d Synthetic transformations of 151a

We were excited to demonstrate the synthetic utility of these iodo compounds in cross-coupling processes after developing a simple 4-component synthesis of 3-iodo-fluorenopyrans (Scheme 3). Therefore, the first cross-coupling was executed with phenylboronic acid and iodide **151a** under Suzuki conditions²⁰ [5 mol% Pd(OAc)₂, Na₂CO₃, DMF:H₂O (1:1), 100 °C] to yield the cross-coupled product **152** in 73% yield. Another transformation of **151a** was achieved with ethyl acrylate under Heck conditions²¹ [Pd(OAc)₂, Bu₄NBr, Na₂CO₃, DMF, 80 °C] to furnish the acrylate compound **153** in 75% yield. The third reaction was performed with phenylacetylene under Sonogashira conditions²² [(Pd(OAc)₂, DABCO, CH₃CN, r.t.] and furnished the alkyne **154** in 70% yield (Scheme 3).

Scheme 2. Synthetic transformation of 151a

5.4 Acidochromic Properties:

Acidochromism is the change in colour of chromophores caused by the interaction of acids; this feature has been investigated in depth in recent years due to its usefulness in the sensor sector. He option of a cids investigate the acidochromic characteristics of a few compounds because they are known to have interesting electronic/physical properties. The compound's absorption spectrum **150a** (5,11-dimethyl-2,2,4,6,6-pentaphenyl-2,6-dihydroindeno[2,1-g]chromene) were recorded in chloroform solution (1x10⁻⁴ M) and showed strong absorption maxima at 254 nm, 309 nm, 321 nm and weak absorption at 348 nm as shown in Figure 2. The concentration of the proton was modulated by the addition of aliquots of trifluoroacetic acid (0.3 mL), upon gradual addition of aliquots of TFA to the solution, the lower wavelength band at 309 nm and 321 nm showed a gradual decrease in the intensity, and redshift was observed. A new broad peak appeared in the visible region around 512 nm. The change in the color of the solution was observed from colorless to maroon, which is due to the protonation of pyran segment **150a1** that generates a highly conjugated fluorenone **150a2** by ring-opening of pyran²³ as shown in Scheme 4.

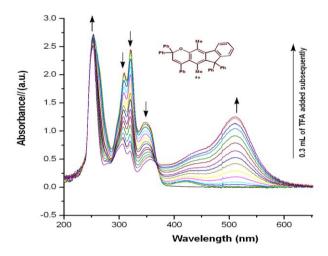


Figure 3. Absorption spectra of compound 135a measured in chloroform solution with different amounts of TFA

The solution turned colorless again by the addition of triethylamine (NEt₃) and further addition of acid to this solution lead to a maroon color solution (Scheme 4), which confirms the reversible switch in the reaction. The observation of two isosbestic points in absorption spectra suggests the presence of the neutral and protonated forms in equilibrium.²⁵

Scheme 3. Protonation-deprotonationequilibrium of the compound 144a in presence of TFA

5.5 Conclusions

we established an operationally affordable technique for the synthesis of sophisticated polycyclic compounds, fluorenopyrans, and 3-iodo-fluorenopyrans utilising a calcium(II) catalyst and simple acyclic propargyl alcohols and 3-methylpentane-2,4-dione. Isolation and characterization of key intermediates supported the proposed reaction mechanism. Wide substrate scope, the formation of seven new bonds (3-contiguous C-C bonds) in one pot, *via* the sequential Allene-Friedel-Crafts cyclization/cycloisomerization, intramolecular aldol reaction, Claisen rearrangement, iodocyclization, and 6-endo dig cyclization to get the desired products are some of the highlights of the synthesis. Acidochromic properties of selected compounds suggested that these compounds can be useful candidates in material applications.

5.6 EXPERIMENTAL SECTION

5.6a General information: Unless otherwise noted, all reagents were used as received from commercial suppliers. Reactions were performed in flame-dried or oven-dried glassware with magnetic stirring. Reactions were monitored using thin-layer chromatography (TLC) with aluminium sheets silica gel 60 F254 from Merck. TLC plates were visualized with UV light (254 nm), iodine treatment or using p-anisaldehyde or KMNO4 stain. Column chromatography was carried out using silica gel 60-120 mesh as stationary phase. NMR spectra were recorded at 500 MHz and 400 MHz (H) and at 125 MHz and 100 MHz (C), respectively on the Avance Bruker spectrometer. Chemical shifts (δ) are reported in ppm, using the residual solvent peak in CDCl3 (H: δ = 7.26 and C: δ = 77.0 ppm) as internal standard, and coupling constants (J) are given in Hz. HRMS were recorded using ESI-TOF techniques. Melting points were measured with the LABINDIA mepa melting apparatus.

5.6bTypical experimental procedure for the synthesis of flurenopyran (150a): A mixture of propargyl alcohol **1a** (0.35 mmol, 100 mg) and dione **72b** (0.45 mmol, 52 mg) were refluxed in 1,2-DCE at 90 °C in presence of Ca(OTf)₂/Bu₄NPF₆ (10/5 mol%) for 2 h. Then 0.42 mmol (119 mg) of propargyl alcohol **1aa** was added to the reaction mixture and continued till completion of the reaction (monitored by TLC). After completion of the reaction, the crude product was purified by silica gel column chromatography (3-5 %, EtOAc in pet ether) to obtain the desired product **150a** in 70% yield.

5.6c Typical experimental procedure for the synthesis of 3-iodo-flurenopyran (151a): A mixture of propargyl alcohol 1a (0.35 mmol, 100 mg) and dione 72b (0.45 mmol, 42.15 mg) was refluxed in 1,2-DCE at 90 °C in presence of Ca(OTf)₂/Bu₄NPF₆ (10/5 mol%) for 2 h. Then reaction mixture was brought to room temperature and 0.42 mmol (119 mg) of propargyl alcohol 1aa along with 1.42 mmol (180 mg) of I₂ and 1 mL of toluene were added to to it and continue at room temperature till completion of the reaction (monitored by TLC). After completion of the reaction, the reaction mixture was diluted with saturated Na₂S₂O₈ solution, extracted with EtOAc (thrice), the combined organic layers were washed with brine solution and dried over anhydrous Na₂SO₄. The solvent was removed under reduced pressure and the crude product was purified by silica gel column chromatography (3-5 %, EtOAc in pet ether) to obtain the desired product 151a in 80% yield.

5.6d Typical experimental procedure for the Suzuki cross coupling reaction (152): PhB(OH)₂ (41.1 mg, 0.33 mmol) was added to a solution of 3-iodo flurenopyran **151a** (203 mg, 0.27 mmol) in 3.0 mL of DMF/H₂O (2:1) containing Na₂CO₃ (1 equiv) and stirred at room

temperature for 5 min. Then Pd(OAc)₂ (5 mol %) was added and the flask was flushed with N₂, sealed and allowed to stir at 100 °C for 4 h. The resulting mixture was filtered off, washed and filtrate was extracted with diethyl ether. The combined organic layers were washed with brine and dried over anhydrous Na₂SO₄. The solvent was evaporated under reduced pressure and the residue was purified by column chromatography (4-6%, EtOAc in pet ether) with silica gel to give the product in **152** in 73% yield.

5.6e Typical experimental procedure for the Heck cross coupling reaction (153): Ethyl acrylate (47.9 mg, 0.47 mmol), was added to a solution of 3-iodo-flurenopyran **151a** (173 mg, 0.23 mmol) in DMF (1.8 mL) containing K₂CO₃ (2.5 equiv.) and Bu₄NBr (1 equiv.) and stirred at room temperature for 5 min. Pd(OAc)₂ (5 mol %) was then added and the flask was flushed with N₂, sealed, and allowed to stir at 80 °C for 22 h. The resulting mixture was filtered off, washed and filtrate was extracted with diethyl ether. The combined organic layers were washed with brine and dried over anhydrous Na₂SO₄. The solvent was evaporated under reduced pressure and the residue was purified by column chromatography (4-6%, EtOAc in pet ether) with silica gel to give product **153** in 75% yield.

5.6f Typical experimental procedure for the Sonogashira cross coupling reaction (154):

Solution of $Pd(OAc)_2$ (2 mol%) in acetonitrile (1 mL) was added to a mixture of phenyl acetylene (45 mg, 0.45 mmol), 3-iodo-flurenopyran **151a** (168 mg, 0.22 mmol), DABCO (3 equiv), and MeCN (4 mL). Then mixture was stirred under N_2 at room temperature for 12 h. The resulting mixture was filtered off, washed and filtrate was extracted with diethyl ether. The combined organics were washed with brine and dried over anhydrous Na_2SO_4 . The

solvent was evaporated under reduced pressure and the residue was purified by column chromatography (4-6%, EtOAc in pet ether) with silica gel to give product **154** in 70% yield.

5.7. Crystal data and structure refinement for 150a.

Identification code:	150a	
Empirical formula	$C_{48}H_{36}O$	
Formula weight	628.28	
Temperature	293(2) K	
Wavelength	0.71073 Å	
Crystal system	Triclinic	
Space group	P-1	
Unit cell dimensions	a = 10.944(2) Å	a= 69.944(8)°.
	b = 11.879(2) Å	b= 89.614(9)°.
	c = 16.351(3) Å	$g = 64.991(8)^{\circ}$.
Volume	1785.6(5) Å ³	
Z	53	
Density (calculated)	1.430 Mg/m^3	
Absorption coefficient	0.132 mm ⁻¹	
F(000)	795	
Theta range for data collection	2.29 to 25.00°.	
Index ranges	-13<=h<=13, -14<=k<=14, -19<=l<=19	
Reflections collected	58927	
Independent reflections	6287 [R(int) = 0.0713]	
Completeness to theta = 25.00°	99.9 %	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	6287 / 0 / 446	

Goodness-of-fit on F^2 1.376

Final R indices [I>2sigma(I)] R1 = 0.0943, wR2 = 0.3116

R indices (all data) R1 = 0.1198, wR2 = 0.3330

Largest diff. peak and hole 1.847 and -0.306 e. Å-3

X-ray diffractometer Bruker APEX II QUAZAR

CCDC 1842703

5.8 SPECTRAL DATA

5,11-dimethyl-2,2,4,6,6-pentaphenyl-2,6-dihydroindeno[*2,1-g*]*chromene* (*150a*): Following general experimental procedure 5.6b; yield: 156 mg (70%) as white solid; mp 297-298 °C. ¹H NMR (CDCl₃, 400 MHz): δ 7.91 (d, J = 8 Hz, 1H), 7.55 (d, J = 7.6 Hz, 4H), 7.31-7.22 (m, 13H), 7.16- 7.09 (m, 11H), 6.20 (s, 1H), 2.82 (s, 3H), 1.21 (s, 3H) ppm. ¹³C NMR (CDCl₃, 100 MHz): δ 155.9, 152.3, 144.5, 143.9, 142.4, 141.3, 140.6, 140.1, 139.1, 130.9, 130.5, 128.9, 128.2, 127.9, 127.6, 127.3, 127.2, 127.1, 127.1, 127.1, 126.9, 126.1, 125.1, 123.2, 119.3, 82.2, 64.7, 20.6, 12.8 ppm. HRMS (ESI): m/z calcd. for C₄₈H₃₆O[M+H]⁺: 629.2844; found 629.2844.

2-(4-fluorophenyl)-5,11-dimethyl-2,4,6,6-tetraphenyl-2,6-dihydroindeno[2,1-g] chromene (**150b**): Following general experimental procedure 5.6b; yield: 153 mg (67%) as yellow solid; mp 214-216 °C. ¹H NMR (CDCl₃, 400 MHz): δ 7.94 (d, J = 7.2 Hz, 1H), 7.90-7.86 (m, 1H), 7.81-7.79 (m, 1H), 7.64-7.60 (m, 1H), 7.57-7.52 (m, 5H), 7.36-7.28 (m, 17H), 7.17 (d, J = 10.4 Hz, 2H), 6.15 (s, 1H), 2.84 (s, 3H), 1.25 (s, 3H) ppm. ¹³C NMR (CDCl₃, 100 MHz): δ 160.8, 155.9, 152.1, 144.4, 144.1, 142.4, 142.3, 141.1, 140.6, 140.3, 139.4, 132.7, 132.6, 132.5, 130.6, 129.9, 128.9, 128.4, 128.3, 128.1, 127.8, 127.7, 127.6, 127.4, 127.2, 127.1, 126.9, 126.9, 126.2, 126.2, 125.2, 123.2, 123.2, 119.2, 115.6, 115.4, 114.9, 114.7, 81.9, 64.8, 20.6, 12.8 ppm. HRMS (ESI-TOF): m/z calcd. for C₄₈H₃₅FO [M+H]⁺:647.2750; found: 647.2752.

2-(4-chlorophenyl)-5,11-dimethyl-2,4,6,6-tetraphenyl-2,6-dihydroindeno[2,1- g]chromene (**150c**): Following general experimental procedure 5.6b; yield: 152 mg (65%) as white solid; mp 252-254 °C. ¹H NMR (CDCl₃, 500 MHz): δ 7.91 (d, J = 8 Hz, 1H), 7.65 (d, J = 1.5 Hz, 11 1H), 7.52 (t, J = 1 Hz, 3H), 7.33 (d, J = 2 Hz, 2H), 7.31 (d, J = 8 Hz, 2H), 7.28 (d,J = 3 Hz, 2H), 7.25-7.24 (m, 2H), 7.18-7.15 (m, 4H), 7.13 (d, J = 2 Hz, 2H), 7.13 (d, J = 3 Hz, 2H),

7.11-7.10 (m, 3H), 7.09-7.07 (m, 4H), 6.10 (s, 1H), 2.80 (s, 3H), 2.16 (s, 3H) ppm. ¹³C NMR (CDCl₃, 100 MHz): δ 155.9, 151.8, 144.8, 144.3, 143.4, 142.3, 142.2, 140.9, 140.5, 140.4, 140.0, 132.1, 131.4, 130.8, 130.0, 129.4, 129.2, 128.9, 128.9, 128.3, 128.2, 127.7, 127.6, 127.5, 127.3, 127.1, 127.0, 126.8, 126.6, 126.3, 126.2, 125.2, 123.3, 123.1, 119.2, 81.5, 64.8, 20.6, 12.8 ppm. HRMS(ESI-TOF): m/z calcd. for C48H35ClO [M+Na]⁺:685.2273; found 685.2257.

2-(3,4-dichlorophenyl)-5,11-dimethyl-2,4,6,6-tetraphenyl-2,6-dihydroindeno[2,1-g]

chromene (*150d*): Following general experimental procedure 5.6b; yield: 155 mg (63%) as white solid; mp 260-261°C. 1H NMR (CDCl3, 500 MHz): δ 7.95 (d, J = 8 Hz, 1H), 7.56 (d, J = 7.5 Hz, 2H), 7.51 (d, J = 8.5 Hz, 2H), 7.36-7.27 (m, 6H), 7.19 (d, J = 5 Hz, 5H), 7.16-7.11 (m, 11H), 6.11 (s, 1H), 2.84 (s, 3H), 1.25 (s, 3H) ppm. 13 C NMR (CDCl₃, 100 MHz): δ 156, 152.1, 144.2, 144.1, 143, 142.4, 142.3, 141, 140.5, 140.3, 139.6, 133.2, 130.7, 130.2, 129.8, 129.7, 129, 128.9, 128.7, 128.7, 128.6, 128.6, 128.5, 128.4, 128.4, 128.3, 128.2, 128.1, 127.7, 127.6, 127.5, 127.4, 127.3, 127.1, 127.1, 127, 126.9, 126.3, 126.2, 125.2, 123.3, 123.2,119.2, 81.9, 64.8, 20.6, 12.8 ppm. HRMS (ESI-TOF): m/z calcd. for C₄₈H₃₄Cl₂O [M+H]⁺:697.2064; found: 697.2077.

2,2,5,11-tetramethyl-4,6,6-triphenyl-2,6-dihydroindeno[2,1-g]chromene(150e): Following general experimental procedure 5.6b; yield: 126 mg (71%) as white solid; mp 263-265°C. ¹H NMR (CDCl₃, 500 MHz): δ 7.98 (d, J = 8Hz, 1H), 7.34-7.28 (m, 7H), 7.22-7.16 (m, 11H), 7.07-7.05 (m, 2H), 5.74 (s, 1H), 2.74 (s, 3H), 1.54 (s, 6H), 1.31 (s, 3H) ppm. 13C NMR (CDCl₃, 125 MHz): δ 155.9, 152.8, 143.4, 142.6, 142.1, 140.9, 139.8, 136.9, 132.1, 130.4, 129.1, 128.1, 127.6, 127.1, 127.1, 126.9, 126.6, 126.2, 125.2, 123.1, 122.4, 119.8, 64.4, 26.4, 20.7, 12.5 ppm. HRMS (ESI-TOF): m/z calcd. for C₃₈H₃₂O[M+H]⁺:505.2531; found: 505.2528.

5,11-dimethyl-2,2,6,6-tetraphenyl-4-(p-tolyl)-2,6-dihydroindeno[*2,1-g*]*chromene* (*150f*): Following general experimental procedure 5.6b; yield: 159 mg (70%) as white solid; mp 270-272°C. 1H NMR (CDCl3, 400 MHz): δ 7.97 (d, J = 8.4 Hz, 1H), 7.60 (d, J = 8 Hz, 4H), 7.36-7.27 (m, 8H), 7.20-7.12 (m, 13H), 7.01 (d, J = 8 Hz, 2H), 6.25 (s, 1H), 2.89 (s, 3H), 2.32 (s, 12 3H), 1.31 (s, 3H) ppm. ¹³C NMR (CDCl₃, 100 MHz): δ 156.1, 152.4, 144.6, 143.8, 142.5, 140.7, 139.1, 138.4, 136.8, 130.6, 130.5, 129.1, 128.9, 127.9, 127.6, 127.3, 127.2, 127.1,

127.1, 126.9, 126.1, 125.2, 123.3, 123.2, 119.3, 82.3, 64.8, 21.1, 20.6, 12.9 ppm. HRMS (ESITOF): m/z calcd. for $C_{49}H_{38}O[M+H]^+$:643.3000; found: 643.3000.

4-cyclopropyl-5,11-dimethyl-2,2,6,6-tetraphenyl-2,6-dihydroindeno[2,1-g]chromene

(*150g*): Following general experimental procedure 5.6b; yield:144 mg (69%) as yellow solid; mp 236-237°C. 1 H NMR (CDCl₃, 500 MHz): δ 7.80 (d, J = 7.5 Hz, 1H), 7.36-7.34 (m, 4H), 7.20 (t, J = 1 Hz, 1H), 7.19 (d, J = 1.5 Hz, 2H), 7.18-7.17 (m, 3H), 7.15-7,10 (m, 3H), 7.06-7.02 (m, 10H), 5.76 (s, 1H), 2.68 (s, 3H), 2.00 (s, 3H), 0.82-0.76 (m, 1H), 0.71-0.67 (m, 2H), 0.59-0.56 (m, 2H) ppm. 13 C NMR (CDCl₃, 125 MHz): δ 155.9, 151.4, 144.9, 143.6, 142.8, 140.7, 139.6, 139.5, 130.0, 129.1, 127.8, 127.7, 127.1, 127.1, 126.9, 126.1, 125.1, 125.1, 124.8, 123.1, 119.2, 81.9, 64.8, 19.9, 15.5, 12.8, 10.1 ppm. HRMS (ESITOF): m/z calcd. for C₄₅H₃₆O[M+H]⁺:593.2844; found: 593.2844.

6-(4-chlorophenyl)-4-cyclopropyl-5,11-dimethyl-2,2,6-triphenyl-2,6-dihydroindeno[2,1-g]chromene (150h): Following general experimental procedure 5.6b; yield: 122 mg (65%) as white solid; mp 240-241°C. ¹H NMR (CDCl₃, 400 MHz): δ 7.80 (d, J = 7.6 Hz, 1H), 7.35 (d, J = 8 Hz, 4H), 7.19-7.13 (m, 8H), 7.08-7.06 (m, 4H), 7.04-6.99 (m, 6H), 5.90 (s, 1H), 2.67 (s, 3H), 1.47 (s, 3H), 0.80-0.76 (m, 1H), 0.72-0.70 (m, 2H), 0.59-0.54 (m, 2H) ppm. ¹³C NMR (CDCl₃, 125 MHz): 155.4, 151.6, 144.9, 144.8, 143.2, 142.3, 141.5, 140.6, 139.5, 139.4, 131.9, 130.5, 130.1, 129.8, 128.9, 128.2, 127.8, 127.2, 127.1, 126.9, 126.3, 125.2, 125.1, 124.9, 123.2, 119.3, 82.1, 64.3, 19.5, 15.5, 12.8, 10.1, 10.1 ppm. HRMS (ESI-TOF): m/z calcd. for C₄₅H₃₅ClO [M+H]⁺:627.2454; found: 627.2459.

6-(4-chlorophenyl)-5,11-dimethyl-2,2,4,6-tetraphenyl-2,6-dihydroindeno[2,1- g]chromene (*150i*): Following general experimental procedure 5.6b; yield: 138 mg (66%) as white solid; mp 256-257 °C. 1H NMR (CDCl3, 500 MHz): δ 7.97 (d, J = 8 Hz, 1H), 7.61 (d, J = 7.5 Hz, 4H), 7.37-7.05 (m, 23H), 6.28 (s, 1H), 2.89 (s, 3H), 1.28 (s, 3H) ppm. 13C NMR (CDCl3, 125 MHz): δ 155.5, 152.5, 144.5, 144.4, 143.4, 142.1, 141.3, 141.2, 140.6, 140.1, 139.1, 132.1, 131.1, 130.4, 128.8, 128.3, 128.1, 127.8, 127.4, 127.3, 127.2, 13 127.2, 127.1, 127.1, 127.1, 126.4, 125.1, 123.4, 123.3, 119.5, 82.3, 64.3, 20.6, 12.9 ppm. HRMS (ESI-TOF): m/z calcd. for C48H35ClO [M+H]⁺:663.2454; found: 663.2456.

2-(3,4-dichlorophenyl)-5,8,11-trimethyl-2,6,6-triphenyl-4-(p-tolyl)-2,6-dihydroindeno

[2,1-g] chromene (150j): Following general experimental procedure 5.6b; yield: 166 mg (68%) as yellow solid; mp 246-247 °C. 1 H NMR (CDCl₃, 500 MHz): δ 7.81 (d, J =8.5 Hz, 1H), 7.67 (d, J = 1 Hz, 1H), 7.54-7.53 (m, 2H), 7.36-7.33 (m, 3H), 7.29-7.28 (m, 2H), 7.18-7.10 (m, 12H), 7.06 (d, J = 8 Hz, 2H), 7.00 (d, 2H), 6.08 (s, 1H), 2.80 (s, 3H), 2.29 (s, 3H), 2.28 (s, 3H), 1.26 (s, 3H) ppm. ¹³C NMR (CDCl₃, 100 MHz): δ 156.2, 151.8, 145.1, 144.1, 142.5, 142.5, 139.9, 138.1, 137.9, 137.4, 137.2, 132.2, 131.4, 130.8, 129.9, 129.3, 128.9, 128.8, 128.1, 127.7, 127.7, 127, 126.9, 126.7, 126.2, 126.2, 125.8, 123.1, 122.7, 118.7, 81.5, 64.7, 21.6, 21.1, 20.6, 12.8 **HRMS** (ESI-TOF): m/zcalcd. for ppm. $C_{50}H_{38}Cl_2O[M+Na]^+:747.2197$; found: 747.2197.

2-(4-chlorophenyl)-5,8,11-trimethyl-2,4,6,6-tetraphenyl-2,6-dihydroindeno[2,1-g]

hromene (*150k*): Following general experimental procedure 5.6b; yield:150 mg, (66%) as white solid; 262-264 °C. ¹H NMR (CDCl₃, 500 MHz): 7.84 (d, J = 8.5 Hz, 1H), 7.59-7.57 (m, 2H), 7.54-7.53 (m, 2H), 7.37-7.34 (2H), 7.31-7.28 (m, 4H), 7.21-7.17 (m, 12H), 7.14-7.12 (m, 4H), 6.19 (s, 1H), 2.84 (s, 3H), 2.29 (s, 3H), 1.26 (s, 3H) ppm. ¹³C NMR (CDCl₃, 100 MHz): δ 156.1, 152.1, 144.2, 144.1, 143.1, 142.6, 142.5, 141.1, 140.4, 139.5, 137.9, 137.3, 133.1, 131.4, 130.5, 129.9, 129.2, 128.9, 128.6, 128.6, 128.4, 128.2, 128.1, 127.9, 127.7, 127.6, 127.6, 127.4, 127.2, 127.1, 126.8, 126.2, 126.1, 125.8, 123.1, 122.7, 118.7, 81.8, 64.6, 21.6, 20.6, 12.8 ppm. HRMS (ESI-TOF): m/z calcd. for C₄₉H₃₇ClO [M+H]⁺:677.2611; found: 677.2611.

2-(3,4-dichlorophenyl)-5,8,11-trimethyl-2,4,6,6-tetraphenyl-2,6-dihydroindeno[2,1-

g]chromene (*1501*): Following general experimental procedure 5.6b; yield:163 mg (68%) as yellow solid; mp 251-253 °C. 1 H NMR (CDCl₃, 400 MHz): δ 7.81 (d, J = 8.8 Hz, 1H), 7.56 (d, J = 1.2 Hz, 2H), 7.53 (d, J = 10 Hz, 2H), 7.52-7.49 (m, 3H), 7.36-7.32 (m, 5H), 7.29-7.27 (m, 2H), 7.18-7.14 (m, 6H), 7.10 (d, J = 6.4 Hz, 5H), 6.15 (s, 1H), 2.81 (s, 3H), 2.27 (s, 3H), 1.22 (s, 3H) ppm. 13C NMR (CDCl₃, 100 MHz): δ 156.1, 152.1, 144.2, 143.9, 143.1, 142.6, 142.5, 141.1, 140.4, 139.6, 137.9, 137.2, 133.1, 130.5, 129.9, 129.1, 128.9, 128.6, 128.5, 128.2, 128.1, 127.9, 127.6, 127.5, 127.4, 127.1, 127.1, 126.8, 126.5, 14 126.1, 126.1, 125.7, 122.9, 122.7, 118.7, 81.8, 64.6, 21.6, 20.5, 12.8 ppm. HRMS (ESITOF): m/z calcd. for C₄₉H₃₆Cl₂O[M+H]⁺:711.2221; found: 711.2222.

5,8,11-trimethyl-2,2,4,6,6-pentaphenyl-2,6-dihydroindeno[*2,1-g*]*chromene*(*150m*):

Following general experimental procedure 5.6b; yield: 158 mg (73%) as yellow solid; mp $263-264^{\circ}\text{C}$. ^{1}H NMR (CDCl₃, 400 MHz): δ 7.84 (s, 1H), 7.59 (d, J = 7.2 Hz, 2H), 7.28 (t, J = 6.8 Hz, 5H), 7.23-7.21 (m, 3H), 7.13 (d, J = 12.4 Hz, 6H), 7.10-7.06 (m, 11H), 6.17 (s, 1H), 2.79 (s, 3H), 2.23 (s, 3H), 1.19 (s, 3H) ppm. ^{13}C NMR (CDCl₃, 100 MHz): δ 155.1, 151.2, 143.5, 142.7, 141.6, 140.3, 139.2, 138.1, 137.1, 136.1, 129.6, 129.4, 129.1, 128.1, 127.9, 127.2, 127.1, 126.8, 126.7, 126.6, 126.5, 126.1, 126.1, 125.9, 125.1, 124.7, 121.9, 121.7, 117.7, 81.1, 63.6, 20.5, 19.5, 11.8 ppm. HRMS (ESI-TOF): m/z calcd. for $C_{49}H_{38}O[M+H]^{+}$:643.3000; found: 643.2996.

$6\hbox{-}(4\hbox{-}chlor ophenyl)\hbox{-}2\hbox{-}(4\hbox{-}fluor ophenyl)\hbox{-}5\hbox{,}11\hbox{-}dimethyl\hbox{-}2\hbox{,}4\hbox{,}6\hbox{-}triphenyl\hbox{-}2\hbox{,}6\hbox{-}dihydro indeno$

[2,1 -g]chromene (150n): Following general experimental procedure 5.6b; yield: 135 mg (63%) as white solid; 232-236 °C. ¹H NMR (CDCl₃, 500 MHz): δ 7.95 (d, J = 8 Hz, 1H), 7.58-7.54 (m, 4H), 7.36-7.22 (m, 6H), 7.20-7.16 (m, 9H), 7.13-7.09 (m, 4H), 7.09-7.01 (m, 3H), 6.21 (s, 1H), 2.85 (s, 3H), 1.26 (s, 3H) ppm.¹³C NMR (CDCl₃, 125 MHz): δ 163.2, 160.8, 155.4, 152.3, 144.3, 143.5, 141.9, 141.2, 141.1, 140.5, 140.2, 139.3, 132.1, 130.8, 130.5, 130.4, 129.1, 128.9, 128.8, 128.7, 128.3, 128.1, 127.8, 127.5, 127.3, 127.2, 127.1, 126.9, 126.4, 125.1, 123.3, 119.4, 114.9, 114.7, 82.1, 64.3, 20.6, 12.8 ppm. HRMS (ESI-TOF): m/z calcd. for C₄₈H₃₄ClFO [M+H]⁺:681.2360; found: 681.2372.

5',11'-dimethyl-6',6'-diphenyl-4'-(p-tolyl)-6'H-spiro[fluorene-9,2'-indeno[2,1-

g]chromene] (*150o*): Following general experimental procedure 5.6b; yield 153 mg (70%) as colorless sticky solid. ¹H NMR (CDCl₃, 500 MHz): δ 7.88 (d, J = 8 Hz, 1H), 7.66 (d, J = 7.5 Hz, 2H), 7.42-7.37 (m, 4H), 7.35 (t, J = 2 Hz, 1H), 7.31 (t, J = 2 Hz, 2H), 7.29 (d, J = 2 Hz, 1H) 7.27 (d, J = 7.5 Hz, 2H) 7.24-7.23 (m, 4H), 7.22-7.20 (m, 2H), 7.20-7.14 (m, 3H), 7.05-7.00 (m, 4H), 5.94 (s, 1H), 2.50 (s, 3H), 2.29 (s, 3H), 1.44 (s, 3H) ppm. ¹³C NMR (CDCl₃, 125 MHz): δ 154.9, 154.5, 146.5, 143.3, 143.1, 140.7, 140.6, 140.1, 139.7, 139.6, 139.5, 138.4, 137.1, 131.9, 130.5, 130.5, 130.3, 129.7, 129.6, 129.6, 129.1, 128.8, 128.1, 128.1, 128.1, 127.9, 127.5, 127.4, 126.9, 126.6, 124.9, 123.5, 120.5, 15 119.9, 84.3, 64.3, 21.1, 20.8, 12.7 ppm. HRMS (ESI-TOF): m/z calcd. for C₄₉H₃₆O [M+H]⁺:641.2844; found: 641.2840.

5',8',11'-trimethyl-4',6',6'-triphenyl-6'H-spiro[fluorene-9,2'-indeno[2,1-g]chromene]

(*150p*): Following general experimental procedure 5.6b; yield:142 mg (71%) as white solid; mp 262-264 °C. ¹H NMR (CDCl₃, 400 MHz): δ 7.88 (d, J = 7.6 Hz, 1H), 7.67 (d, J = 8.8 Hz, 1H), 7.42-7.37 (m, 5H), 7.34 (d, J = 1.6 Hz, 1H), 7.32 (t, J = 6.8 Hz, 3H), 7.26 (d, J = 10.4 Hz, 3H), 7.21 (t, J = 2.4 Hz, 5H), 7.19 (s, 1H), 7.17 (d, J = 8 Hz, 1H), 7.14 (d, J = 7.6 Hz, 1H), 7.02-6.96 (m, 4H), 5.92 (s, 1H), 2.50 (s, 3H), 2.27 (s, 3H), 1.44 (s, 3H) ppm. 13 C NMR (CDCl₃, 100 MHz): δ 156.0, 146.7, 142.5, 140.7, 140.2, 139.6, 138.5, 136.8, 130.6, 129.5, 129.1, 128.9, 128.1, 127.7, 127.6, 127.3, 126.9, 126.3, 125.2, 125.1, 123.3, 120.1, 119.9, 84.2, 65.1, 21.1, 20.8, 12.7 ppm. HRMS (ESI-TOF): m/z calcd. for C₄₉H₃₆O [M+H]⁺:641.2844; found: 641.2844.

6'-(4-chlorophenyl)-5',11'-dimethyl-4',6'-diphenyl-6'H-spiro[fluorene-9,2'-indeno[2,1-

g]chromene] (*150q*): Following general experimental procedure 5.6b; yield: 188 mg (72%) as colorless sticky. 1 H NMR (CDCl₃, 500 MHz): δ 7.88 (d, J = 7.5 Hz, 1H), 7.67 (d, J = 7.5 Hz, 2H), 7.42- 7.38 (m, 4H), 7.29 (t, J = 7.5 Hz, 3H), 7.26 (d, J = 3.5 2H), 7.24 (d, J = 3 Hz, 3H), 7.22 (t, J = 8 Hz, 2H), 7.20-7.17 (m, 6H), 7.15 (d, J = 10 Hz, 1H), 7.12- 7.10 (m, 2H), 5.94 (s, 1H), 2.50 (s, 3H), 1.41 (s, 3H) ppm. 13 C NMR (CDCl₃, 100 MHz): δ 155.4, 154.3, 146.6, 146.5, 143.9, 142.1, 141.4, 141.3, 140.6, 140.2, 139.7, 132.1, 130.4, 130.3, 129.6, 128.8, 128.3, 128.2, 128.1, 127.9, 127.9, 127.4, 127.2, 127.1, 127.1, 126.5, 125.1, 124.9, 123.4, 123.2, 120.3, 119.9, 84.3, 64.5, 20.8, 12.7 ppm. HRMS (ESI-TOF): m/z calcd. for C₄₈H₃₃ClO [M+H]⁺:661.2298; found: 661.2297.

3-iodo-5,11-dimethyl-2,2,4,6,6-pentaphenyl-2,6-dihydroindeno[2,1-g]chromene(151a):

Following general experimental procedure 5.6c; yield: 213 mg (80%) as white solid; mp 200-202 °C. 1 H NMR (CDCl₃, 500 MHz): δ 7.92 (d, J = 8 Hz, 1H), 7.53 (t, J = 4 Hz, 5H), 7.34-7.24 (m, 7H), 7.19 (t, J = 10.5 Hz, 2H), 7.17-7.04 (m, 9H), 7.01-6.91 (m, 5H) 2.80 (s, 3H), 0.95 (s, 3H) ppm. 13 C NMR (CDCl₃, 100 MHz): δ 155.5, 152.1, 144.6, 144.3, 143.5, 141.9, 141.1, 140.3, 140.2, 131.9, 130.3, 130.2, 130.1, 128.8, 128.7, 128.2, 127.9, 127.7, 127.5, 127.5, 127.2, 127.1, 127.1, 127.2, 126.3, 125.3, 125.1, 123.3, 119.1, 104.3, 16 88.3, 64.2, 19.6, 12.6 ppm. HRMS (ESI-TOF): m/z calcd. for C48H35IO [M+Na]⁺:777.1630; found 777.1626.

3-iodo-5,11-dimethyl-2,2,6,6-tetraphenyl-4-(p-tolyl)-2,6-dihydroindeno[2,1-g]chromene

(*151b*): Following general experimental procedure 5.6c; yield: 212 mg (78%) as sticky orange solid. 1 H NMR (CDCl₃, 500 MHz): δ 7.93 (t, 2H), 7.53 (t, J = 7.5 Hz, 4H), 7.42-7.40 (m, 6H), 7.34-7.32 (m, 8H), 7.15-7.09 (m, 6H), 7.01 (t, J = 8 Hz, 2H), 3.77 (s, 3H), 2.80 (s, 3H), 0.98 (s, 3H) ppm. 13 C NMR (CDCl₃, 125 MHz): δ 158.7, 154.7, 144.7, 142.4, 141.4, 140.4, 140.3, 136.7, 132.6, 131.3, 129.7, 129.3, 128.8, 128.8, 128.7, 128.6, 128.4, 128.3, 128.3, 128.1, 127.9, 127.6, 127.5, 127.1, 126.1, 125.4, 125.4, 125.2, 124.1, 123.2, 118.7, 113.1, 103.8, 88.3, 64.7, 29.7, 19.7, 12.6 ppm. HRMS (ESITOF): m/z calcd. for C₄₉H₃₇IO [M+K]⁺:807.1526; found: 807.1774.

2-(4-chlorophenyl)-3-iodo-5,11-dimethyl-2,4,6,6-tetraphenyl-2,6-dihydroindeno[2,1-

glchromene (*151c*): Following general experimental procedure 5.6c; yield: 201 mg (72%) as yellow solid; mp 245-247 °C. ¹H NMR (CDCl₃, 500 MHz): δ 7.94-7.91 (m, 2H), 7.72-7.79 (m, 3H), 7.65-7.52 (m, 1H), 7.54-7.47 (m, 7H), 7.36-7.31 (m, 6H), 7.13- 7.10 (m, 6H), 7.03-7.01 (m, 3H), 2.80 (s, 3H), 0.97 (s, 3H) ppm. ¹³C NMR (CDCl₃, 125 MHz): δ 156.1, 151.7, 145.2, 144.2, 144.1, 143.3, 142.2, 140.5, 140.2, 133.9, 132.6, 131.5, 130.7, 130.6, 130.2, 130.1, 129.9, 129.8, 129.7, 129.4, 129.1, 128.8, 128.7, 128.6, 128.4, 128.2, 128.1, 127.7, 127.6, 127.1, 126.2, 126.1, 125.2, 125.1, 123.3, 118.7, 103.2, 87.8, 64.6, 19.7, 12.6 ppm. HRMS (ESI-TOF): m/z calcd. for C₄₈H₃₄CIIO [M+H]⁺:789.1421; found: 789.1415.

2,2-bis(4-fluorophenyl)-3-iodo-5,11-dimethyl-4,6,6-triphenyl-2,6-dihydroindeno[2,1-

glchromene (*151d*): Following general experimental procedure 5.6c; yield:212 mg (76%) as yellow sticky solid. H NMR (CDCl₃, 500 MHz): δ 7.93 (d, J = 7.5 Hz, 1H), 7.62-7.59 (m, 1H), 7.57 (d, J = 7.5 Hz, 3H), 7.51-7.49 (m, 3H), 7.40-7.39 (m, 3H), 7.29 (d, J = 3 Hz, 2H), 7.28 (d, J = 2 Hz, 3H), 7.22-7.17 (m, 1H), 7.13-7.10 (m, 5H), 7.08-7.02 (m, 5H), 2.80 (s, 3H), 0.99 (s, 3H) ppm. 13 C NMR (CDCl₃, 125 MHz): δ 163.4, 161.5, 156.1, 151.6, 144.1, 142.2, 140.3, 140.3, 131.8, 130.6, 130.5, 130.1, 129.7, 128.8, 128.5, 128.5, 128.4, 127.7, 127.6, 127.6, 127.1, 126.2, 125.2, 123.3, 115.1, 115.1, 114.6, 114.4, 103.5, 87.5, 64.7, 17 19.6, 12.6 ppm. HRMS(ESI-TOF): m/z calcd. for C₄₈H₃₃F₂IO [M+H]⁺:791.1622; found: 791.1617.

6-(4-chlorophenyl)-3-iodo-5,11-dimethyl-2,2,4,6-tetraphenyl2,6-dihydroindeno[2,1-

g]chromene (*151e*): Following general experimental procedure 5.6c; yield:201 mg (81%) as yellow sticky solid. ¹H NMR (CDCl₃, 400 MHz): δ 7.81-7.78 (m, 2H), 7.52- 7.50 (m, 1H), 7.49-7.45 (m, 3H), 7.43-7.42 (m, 4H), 7.40-7.30 (m, 12H), 7.15-7.11 (m, 4H), 7.02-7.00 (m,

2H), 2.80 (s, 3H), 0.97 (s, 3H) ppm. ¹³C NMR (CDCl₃, 125 MHz): δ 156.1, 151.7, 145.2, 144.2, 144.1, 143.3, 142.2, 140.5, 140.2, 133.9, 133.7, 133.5, 132.7, 131.5, 130.7, 130.6, 130.2, 130.1, 129.9, 129.8, 129.8, 129.4, 129.1, 129.1, 128.8, 128.8, 128.7, 128.7, 128.5, 128.5, 128.4, 128.2, 128.1, 127.7, 127.7, 127.6, 127.6, 127.5, 127.1, 126.2, 126.2, 125.2, 125.1, 123.3, 118.8, 103.2, 87.8, 64.6, 19.7, 12.7 ppm. HRMS (ESI-TOF): m/z calcd. for C₄₈H₃₄ClIO [M+H]⁺:789.1421; found: 789.1415.

6-(3,4-dichlorophenyl)-3-iodo-5,11-dimethyl-2,2,4,6-tetraphenyl-2,6-dihydroindeno[2,1-g] chromene (151f): Following general experimental procedure 5.6c; yield: 187 mg (80%) as yellow sticky solid. ¹H NMR (CDCl₃, 500 MHz): δ 7.54-7.52 (m, 1H), 7.35-7.28 (m, 4H), 7.25-7.21(m, 7H), 7.18-7.11 (m, 5H), 7.09-7.05 (m, 5H), 6.98-6.96 (m, 2H), 6.94-6.91 (m, 2H), 2.80 (s, 3H), 0.95 (s, 3H) ppm. ¹³C NMR (CDCl₃, 125 MHz): δ 155.5, 152.1, 144.9, 144.6, 144.6, 144.3, 143.5, 141.9, 141.2, 140.3, 140.3, 131.9, 130.4, 130.2, 128.9, 128.6, 128.3, 127.9, 127.7, 127.5, 127.5, 127.3, 127.2, 127.1, 126.3, 125.1, 123.4, 119.1,104.3, 88.3, 64.2, 19.7, 12.7 ppm. HRMS (ESI-TOF): m/z calcd. for C₄₈H₃₃Cl₂IO: 823.1031; found: 823.1025.

5,11-dimethyl-2,2,3,4,6,6-hexaphenyl-2,6-dihydroindeno[2,1-g]chromene (152):
Following experimental procedure 5.6d; yield: 68 mg (73%) as white solid; 260-262 °C. ¹H NMR (CDCl₃, 500 MHz): δ 7.89 (d, J = 7.5 Hz, 1H), 7.51-7.49 (m, 5H), 7.31-7.29 (m, 4H), 7.25 (d, J = 7 Hz, 3H), 7.22 (d, J = 7.5 Hz, 3H), 7.19-7.16 (m, 4H), 7.14-7.10 (m, 4H), 7.07-7.03 (m, 6H), 7.0-6.96 (m, 4H), 2.77 (s, 3H), 1.53 (s, 3H) ppm. ¹³C NMR (CDCl₃, 125 MHz): δ 156.1, 151.9, 145.1, 144.7, 144.3, 144.1, 142.3, 140.4, 140.3, 130.5, 130.2, 128.8, 128.8, 127.9, 127.6, 127.6, 127.5, 127.4, 127.4, 127.2, 127.1, 126.1, 125.2, 123.2, 18 118.8, 104.1, 88.2, 64.6, 19.7, 12.6 ppm. HRMS (ESI-TOF): m/z calcd. for C₅₄H₄₀O [M+Na]⁺: 727.2976; found: 727.2977.

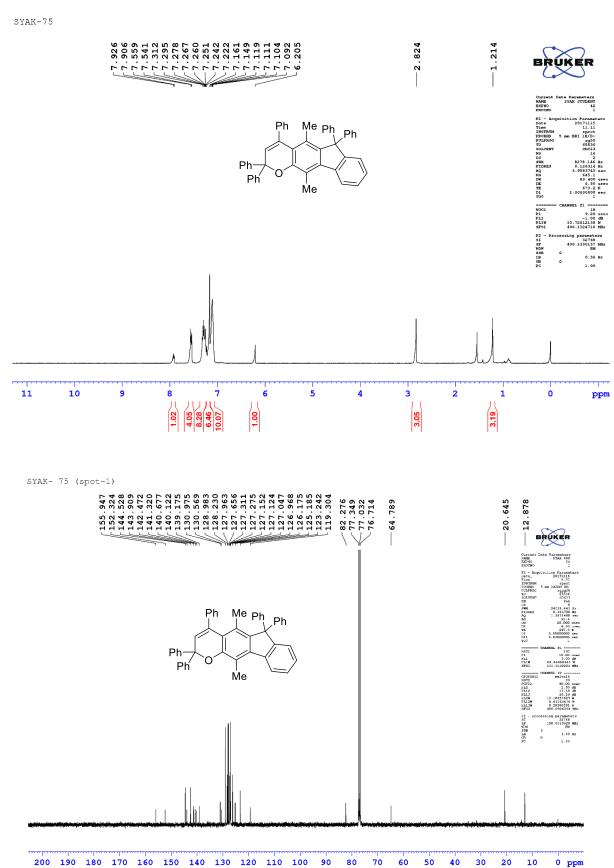
Ethyl3-(5,11-dimethyl-2,2,4,6,6-pentaphenyl-2,6-dihydroindeno[2,1-g]chromen-3-

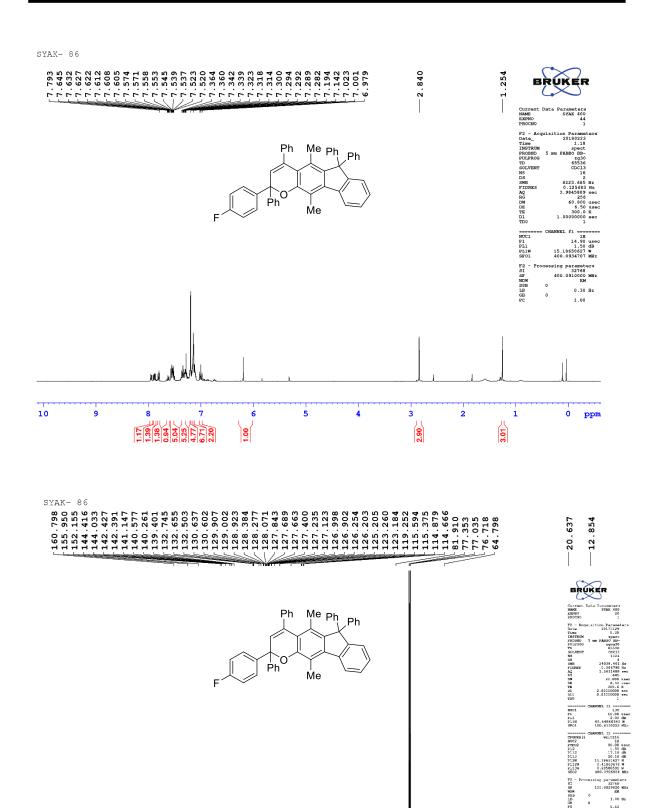
yl)acrylate (153): Following experimental procedure 5.6e; yield: 72 mg (75%) as yellow solid; mp 173-174°C. 1 H NMR (CDCl₃, 500 MHz): δ 7.92 (d, J = 8 Hz, 1H), 7.40-7.31 (m, 6H), 7.28- 7.20 (m, 11H), 7.10-6.99 (m, 12H), 5.01 (d, J = 16.5 Hz, 1H), 4.01-3.97 (q, J = 7 Hz, 2H), 2.75 (s, 3H), 1.58 (s, 3H), 1.12 (t, J = 9 Hz, 3H) ppm. 13 C NMR (CDCl₃, 125 MHz): δ 167.1, 156.1, 153.1, 144.2, 143.5, 142.5, 142.3, 141.8, 141.2, 140.3, 139.1, 132.9, 132.1, 130.6, 129.1, 128.8, 127.9, 127.8, 127.6, 127.6, 127.1, 126.1, 126.1, 125.2, 125.1, 123.4,

121.3, 118.6, 87.3, 64.6, 59.9, 19.4, 14.1, 12.5 ppm. HRMS (ESI-TOF): m/z calcd. for $C_{53}H_{42}O_3$ [M+H]⁺:727.3212; found: 727.3214.

5,11-dimethyl-2,2,4,6,6-pentaphenyl-3-(phenylethynyl)-2,6-dihydroindeno[2,1-

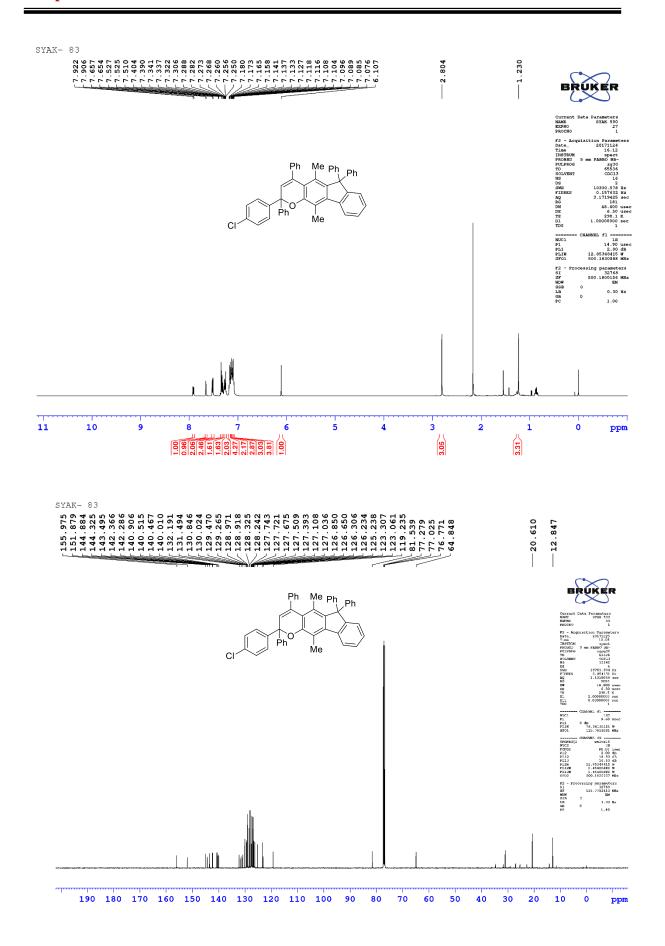
g]chromene (*154*): Following experimental procedure 5.6f; yield 67 mg (70%) as white solid; mp 115-116°C. 1 H NMR (CDCl₃, 500 MHz): δ 7.89 (d, J = 7.5 Hz, 1H), 7.53-7.49 (m, 6H), 7.36-7.28 (m, 9H), 7.24 (dd, J1 = 3 Hz, J1 = 1.5 Hz,4H), 7.18-7.16 (m, 5H), 7.06-7.03 (m, 6H), 6.98 (d, J = 1 Hz, 4H), 2.77 (s, 3H), 1.25 (s, 3H) ppm. 13 C NMR (CDCl₃, 125 MHz): δ 156.1, 151.9, 145.1, 144.7, 144.3, 144.1, 142.3, 140.4, 132.5, 130.5, 130.2, 129.2, 128.8, 128.8, 128.4, 128.3, 127.9, 127.7, 127.6, 126.5, 127.4, 127.4, 127.1, 126.1, 125.2, 123.2, 121.8, 118.8, 104.1, 88.2, 81.5, 73.9, 64.7, 19.7, 12.7 ppm. HRMS (ESI-TOF): m/z calcd. for $C_{56}H_{40}O$ [M+Na]⁺:751.2976; found: 751.2978.

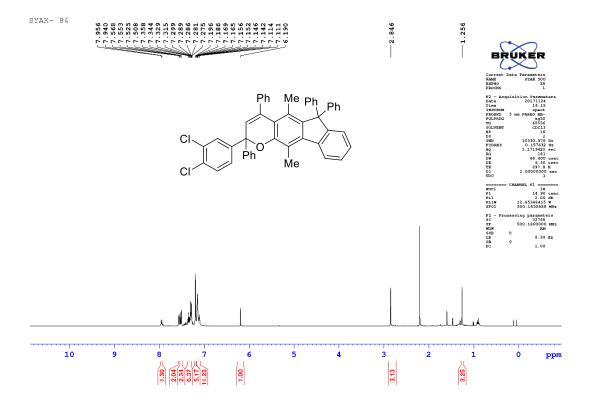

5.9 REFERENCES

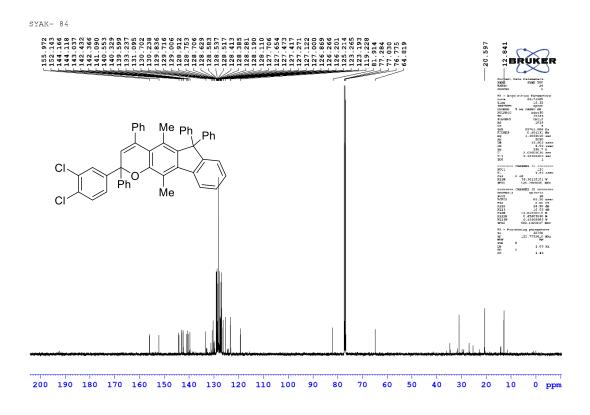

- a) Kumar, D.; Sharma, P.; Singh, H.; Nepali, K.; Gupta, G. K.; Jaina, S. K.; Kang, F.
 N. RSC Adv. 2017, 7, 36977. b) Goel, A.; Kumar, A.; Raghuvanshi, A. Chem. Rev. 2013, 113, 1614.
- (2) a) Majumdar, N.; Paul, N. D.; Mandal, S.; De-Bruin, B.; Wulff, W. D. *ACS Catal.***2015**, *5*, 2329. b) Pratap, R.; Ram, V. J. *Chem. Rev.***2014**, *114*, 10476.
- (3) a) Zeng, M.; Ballard, T. E.; Tkachenko, A.; Burns, V.; Feldheim, D.; Melander, C. Bioorg. Med. Chem. Lett. 2006, 16, 5148. b) Han, Y.; Bisello, A.; Nakamoto, C.; Rosenblatt, M.; Chorev, M. J. Pept. Res. 2000, 55, 230. c) Perry, P.; Read, M.; Davies, R.; Gowan, S.; Reszka, A.; Wood, A.; Kelland, L.; Neidle, S. J. Med. Chem. 1999, 42, 2679.
- (4) a) Xiao, L.; Chen, Z.; Qu, B.; Luo, J.; Kong, S.; Gong, Q.; Kido, Q. Adv. Mater.2011,
 23, 926. b) Beaupré, S.; Boudreault, P.-L. T.; Leclerc, M. Adv. Mater.2010, 22, E6.
 c) Grimsdale, A. C.; Chan, K. L.; Martin, R. E.; Jokisz, P. G.; Holmes, A. B. Chem. Rev.2009, 109, 897. d) Scherf, U.; List, E. J. W. Adv. Mater.2002, 14, 477.
- (5) a) Zhai, Y. M.; Jiang, K.; Qu, S. J.; Luo, H. F.; Tan, J. J.; Tan, C. H. RSC Adv. 2016, 6, 50083. b) Saisin, S.; Tip-pyang, S.; Phuwapraisirisan, P. Nat. Prod. Res. 2009, 23, 1472.

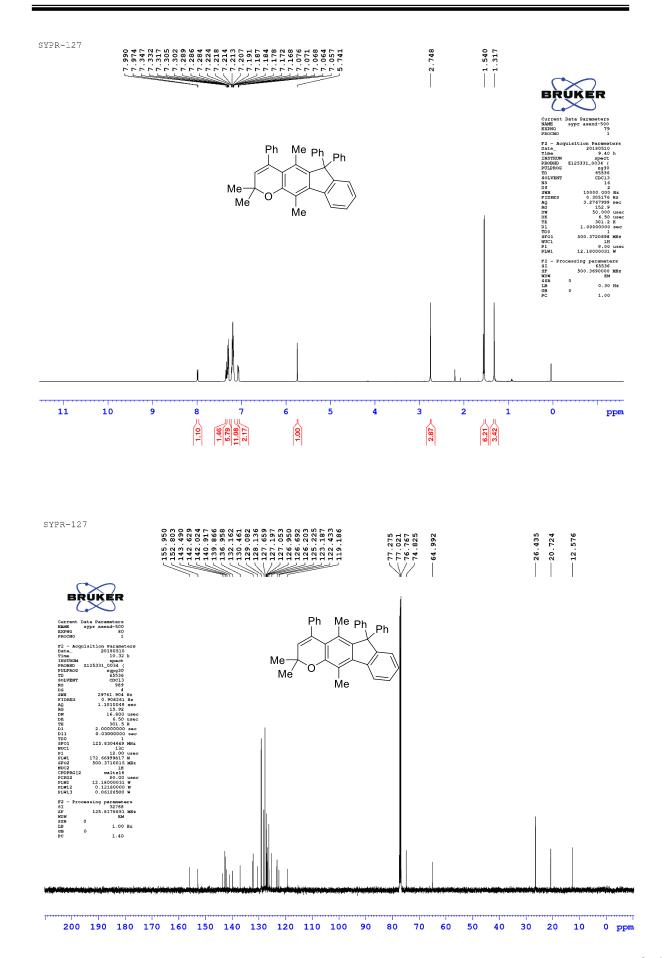
- (6) Tanaka, T.; Iliya, I.; Ito, T.; Furusawa, M.; Nakaya, K.; Iinuma, M.; Shirataki, Y.; Matsuura, N.; Ubukata, M.; Murata, J.; Simozono, F.; Hirai, K. Chem. Pharm. Bull. 2001, 49, 858.
- (7) Jiang, H.; Ferrara, J.; Zhang, X.; Oniwa, K.; Islam, A.; Han, L.; Sun, Y.-J.; Bao, M.; Asao, N.; Yamamoto, Y.; Jin, T. *Chem. Eur. J.***2015**, *21*, 4065 and references cited for JH dyes.
- (8) a) Pan, X.; Luo, Y.; Ding, Y.; Fan, X.; Wu, J. Adv. Synth. Catal. 2014, 356, 1072. b)
 Furusawa, M.; Arita, K.; Imahori, T.; Igawa, K.; Tomooka, K.; Irie, R. Tetrahedron Lett. 2013, 54, 7107. c) Luo, Y.; Hong, L.; Wu, J. Chem. Commun. 2011, 47, 5298.
 d) Wang, Z.-Q.; Lei, Y.; Zhou, M.-B.; Chen, G.-X.; Song, R.-J.; Xie, Y.-X.; Li, J.-H. Org. Lett. 2011, 13, 14.
- (9) a) Akbar, S.; Srinivasan, K. J. Org. Chem. 2016, 81, 1229. b) Zhu, H.; Chen, Z. Org. Lett. 2016, 18, 488. c) Chen, Z.; Zeng, M.; Yuan, J.; Yang, Q.; Peng, Y. Org. Lett. 2012, 14, 3588. d) Rodríguez, D.; Martínez, M.; Navarro, A.; Castedo, L.; Domínguez, D.; Saá, C. J. Org. Chem. 2004, 69, 3842. e) Rodríguez, D.; Navarro, A.; Castedo, L.; Domínguez, D.; Saá, C. Org. Lett. 2000, 2, 1497.
- (10) a) Fukashi, K.; Hideki, H.; Shinichi, S.; Jpn. S. Patent, JP 2017036248 A, 2017. b)
 Petrovskaia, O. G.; Kumar, A. Patent, PCT Int. Appl. WO 2002053553, 2002. c)
 Mukhopadhyay, A.; Kumar, M. V.; Moorthy, J. N. J. Org. Chem. 2016, 81, 7741.
- (11) a) Sarkar, A.; Santra, S.; Kundu, S. K.; Hajra, A.; Zyryanov, G. V.; Chupakhin, O. N.; Charushin, V. N.; Majee, A. *Green Chem.* 2016, 18, 4475. b) Sheldona, R. A. *Chem. Soc. Rev.* 2012, 41, 1437. c) Simona, M. O.; Li, C. J. *Chem. Soc. Rev.* 2012, 41, 1415. d) Tanaka, K.; Toda, F. *Chem. Rev.* 2000, 100, 1025. e) Yaragorla, S.; Pareek, A.; Dada, R.; Sain, P.L. *Eur. J. Org. Chem.* 2017,4600.
- (12) a) Tzitzikas, T. Z.; Chandgude, A. L.; Dömling, A. *Chem. Rec.* 2015, *15*, 981. b)
 Khan, M. M.; Yousuf, R.; Khan, S.; Shafiullah, *RSC Adv.* 2015, *5*, 57883. c) Rotstein,
 B. H.; Zaretsky, S.; Rai, V.; Yudin, A. K.; A. *Chem. Rev.* 2014, *114*, 8323. d) Dömling,
 A.; Wang, W.; Wang, K. *Chem. Rev.* 2012, *112*, 3083.
- (13) a) Yaragorla, S.; Dada, R.; Pareek, A. *ChemistrySelect* **2018**, *3*, 435. b) Qi, C.; Hasenmaile, F.; Gandon, V.; Lebœuf, D. *ACS Catal.***2018**, *8*, 1734. c) Yaragorla, S.; Pareek, A.; Dada, R. *Adv. Synth. Catal.***2017**, *359*, 3068. d) Yaragorla, S.; Dada, R.; Pareek, A.; Singh, G. *RSC Adv.* **2016**, *6*, 28865. e) Yaragorla, S.; Dada, R. *ACS Omega*, **2017**, *2*, 4859. f) Morcillo, S. P.; Leboeuf, D.; Bour, C.; Gandon, V. *Chem.*

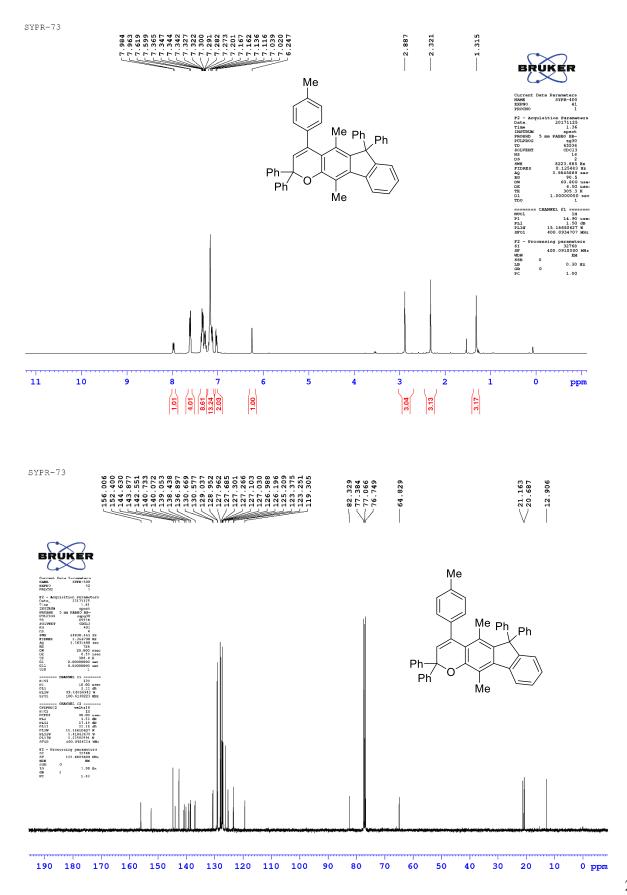
- Eur. J.2016, 22, 16974. g) Presset, M.; Michelet, B.; Guillot R.; Bour C.; Lafollée, S.
 B.; Gandon, V. Chem. Commun.2015, 51, 5318. h) Morcillo, S. P.; Presset, M.; Floquet,
 S.; Coeffard, V.; Greck, C.; Bour, C.; Gandon, V. Eur. J. Org. Chem. 2016, 2688.
- (14) a) Begouin, J.-M.; Niggemann, M. Chem. Eur. J.2013, 19, 8030. b) Leboeuf, D.;Gandon, V. Synthesis 2017, 49, 1500.
- (15) a) Rupe, H.; Glenz, K. *Justus Liebigs Ann. Chem.* 1924, 436, 195. b) Swaminathan,S.; Narayanan, K. V. *Chem. Rev.* 1971, 71, 429.
- (16) a) Sanz, R.; Miguel, D.; Martinez, A.; Gutierrez, J. M. A.; Rodriguez, F. *Org. Lett.* 2007, 9, 727. b) Chatterjee, P. N.; Roy, S. *Tetrahedron Lett.*2011, 67, 4569.
- (17) a) Izumiseki, A.; Yamamoto, H. J. Am. Chem. Soc. 2014, 136, 1308. b) Cauble, D.
 F.; Gipson, J. D.; Krische, M. J. J. Am. Chem. Soc. 2003, 125, 1110. c) Chatterjee, P.
 N.; Roy S. J. Org. Chem. 2010, 75, 4413.
- (18) a) Tanaka, K.; Aoki, H.; Hosomi, H.; Ohba, S. *Org. Lett.* **2000,**2, 2133. b) Yaragorla, S.; Pareek, A.; Dada, R. *Tetrahedron Lett.***2017**, *58*, 4642.
- (19) a) Yaragorla, S.; Pareek, A. Eur. J. Org. Chem. 2018, 1863. b) Yaragorla, S.;
 Pareek, A.; Dada, R.; Saini, P. L. Eur. J. Org. Chem. 2017, 4600. c) Ren, Y. M.; Cai,
 C.; Yanga, R. C. RSC Adv. 2013, 3, 7182. d) Mphahlele, M. J. Molecules 2009, 14, 4814.
- (20) Suzuki, A. J. Organomet. Chem. 1999, 576, 147.
- (21) Heck, R. F.; Nolley, J. P. J. Org. Chem. 1972, 37, 2320.
- (22) Sonogashira, K.; Tohda, Y.; Hagihara, N. Tetrahedron Lett. 1975, 16, 4467.
- (23) a) Sousa, C. M.; Berthet, J.; Delbaere, S.; Coelho, P. J. *J. Org. Chem.* 2013, 78, 6956. b) Singh, P.; Baheti, A.; Thomas, K. R. J. *J. Org. Chem.* 2011, 76, 6134. c) Dou, C.; Han, L.; Zhao, S.; Zhang, H.; Wang, Y. *J. Phys. Chem. Lett.* 2011, 2, 666. d) Wojtyk, J. T. C.; Wasey, A.; Xiao, N. N.; Kazmaier, P. M.; Hoz, S.; Yu, C.; Lemieux, R. P.; Buncel, E. *J. Phys. Chem. A*, 2007, 111, 2511.
- (24) a) Wohl, C. J.; Kuciauskas, D. J. Phys. Chem. B 2005, 109, 22186. b) Rini, M.; Holm, A.-K. E.; Nibbering, T. J.; Fidder, H. J. Am. Chem. Soc. 2003, 125, 3028. c) Hobbley, J.; Malatesta, V.; Millini, R.; Montanari, L.; Parker, Jr, W. O. N. Phys. Chem. Chem. Phys. 1999, 1, 3259.
- (25) a) Mohamed, E. H.; Lotfy, H. M.; Hegazy, M. A.; Mowaka S. Chem. Cent. J.
 2017, 11, 43. b) Mayer, R. G.; Drago, R. S. Inorg. Chem. 1976, 15, 2010.

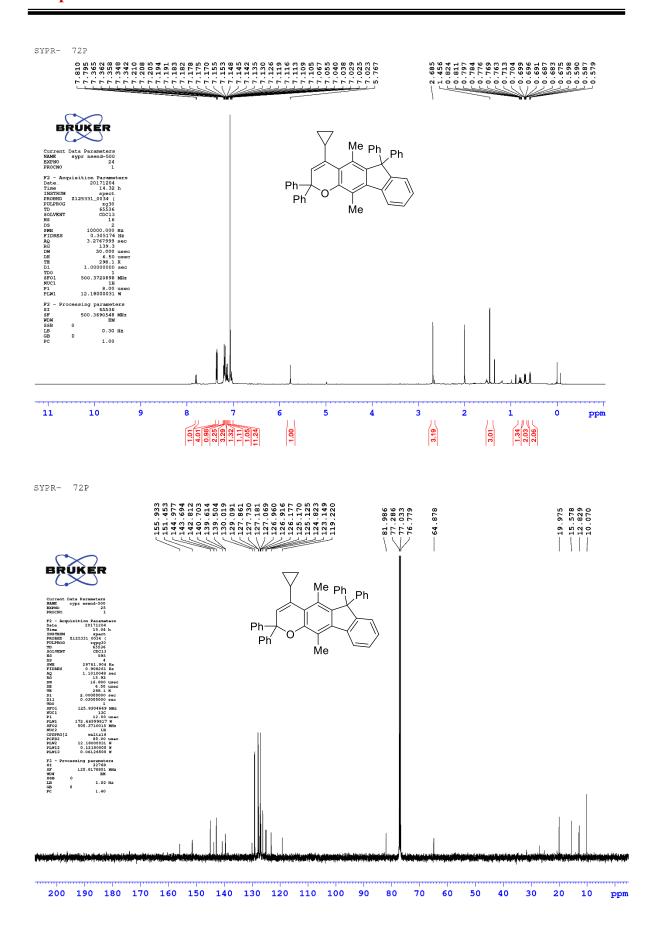

5.9.1 SPECTRAL COPIES

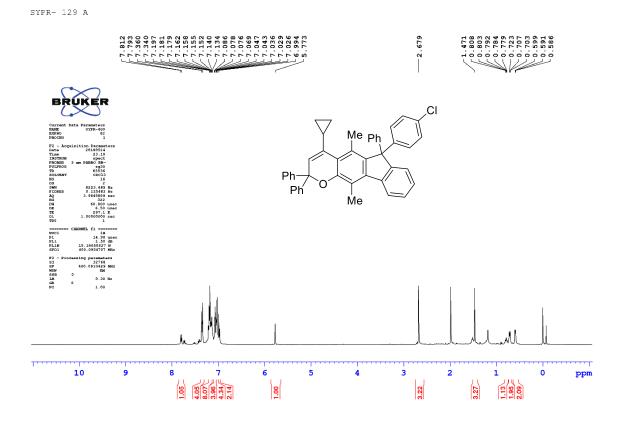


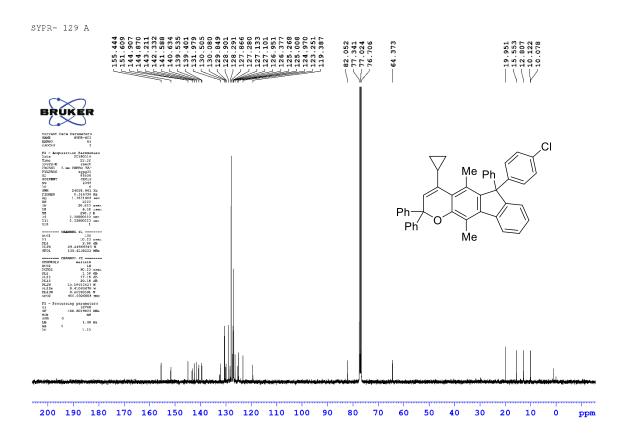


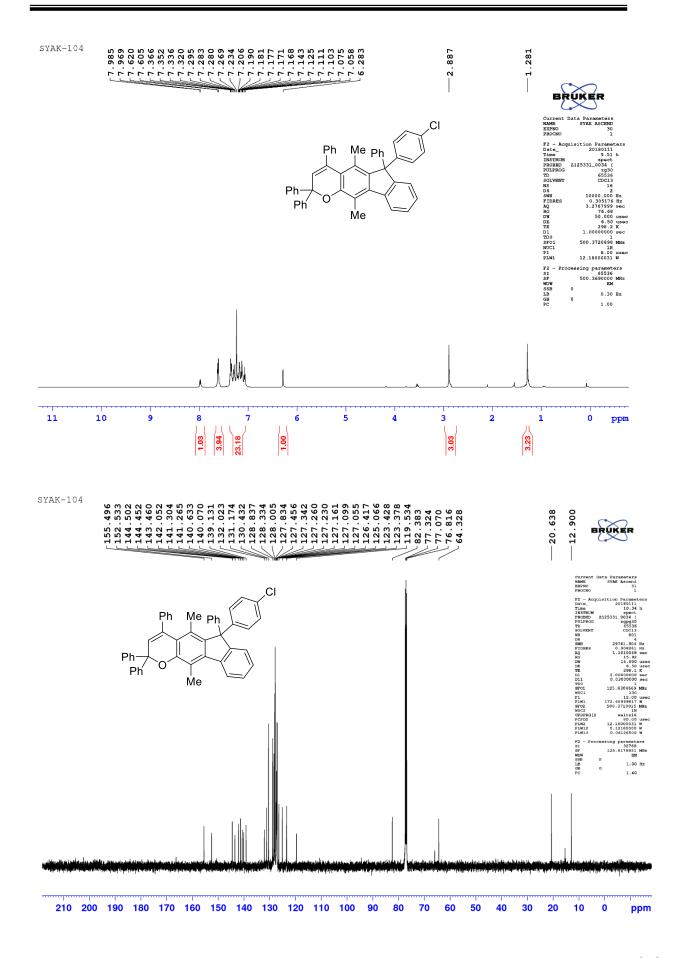

10 ppm

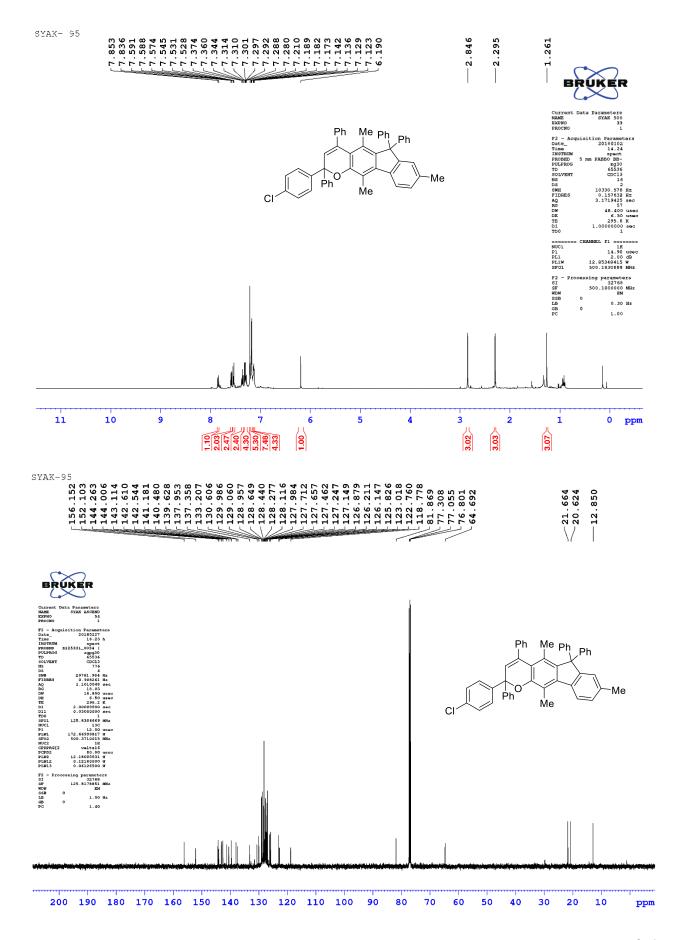

200 190 180 170 160 150 140 130 120 110 100

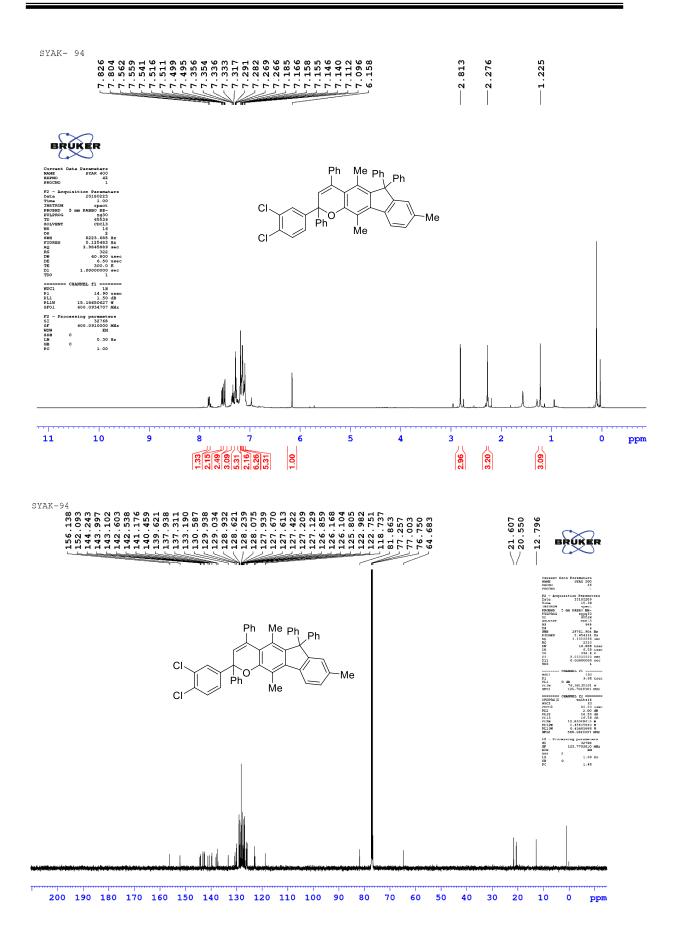


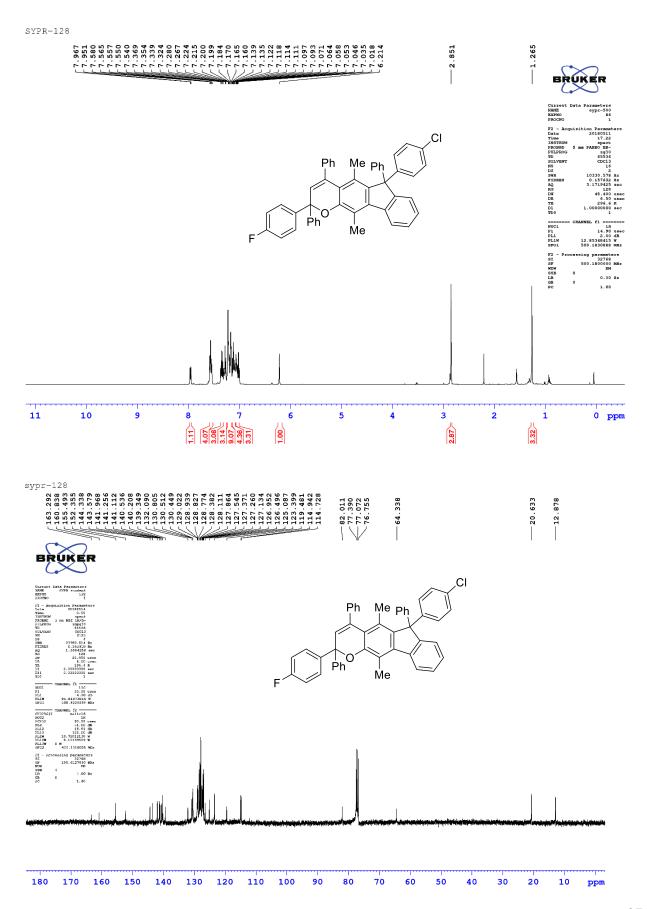


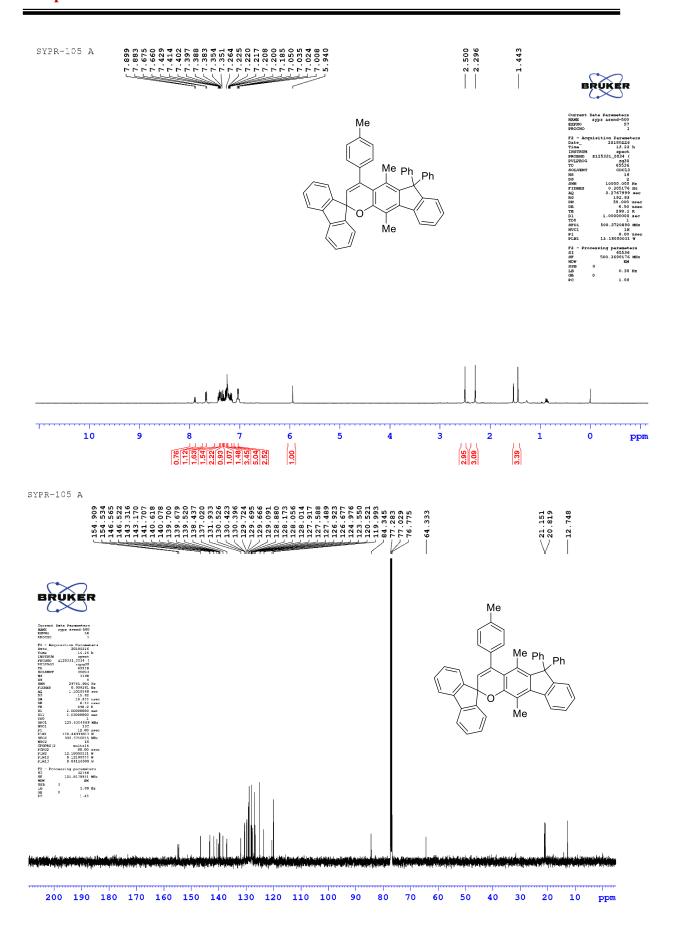


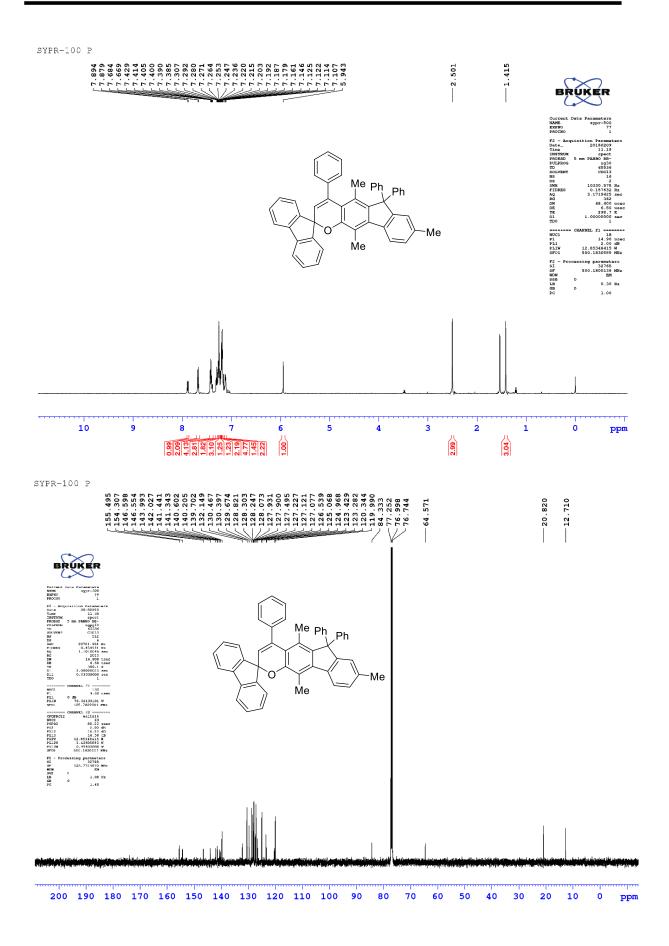


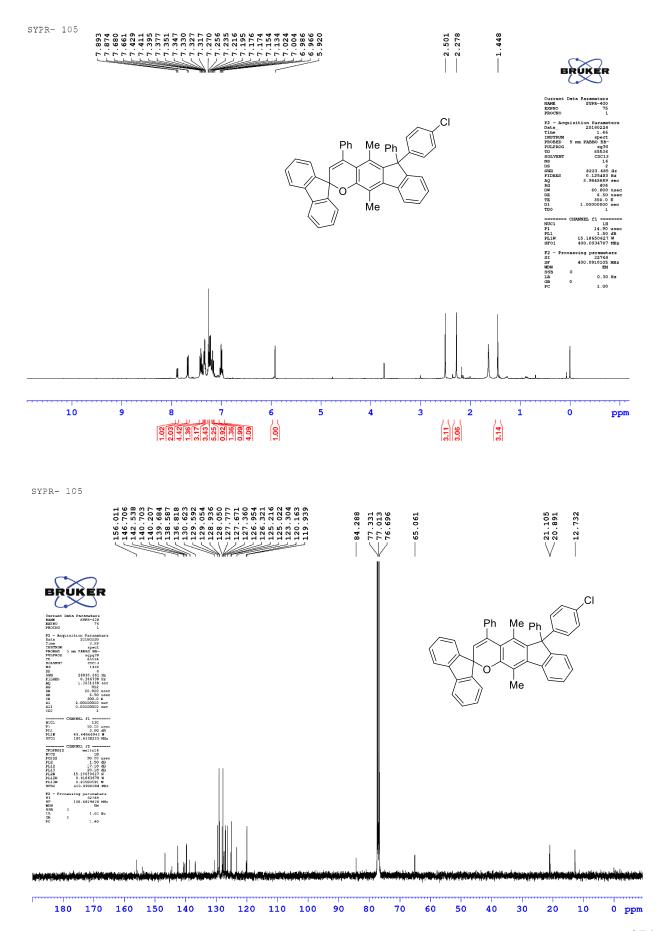


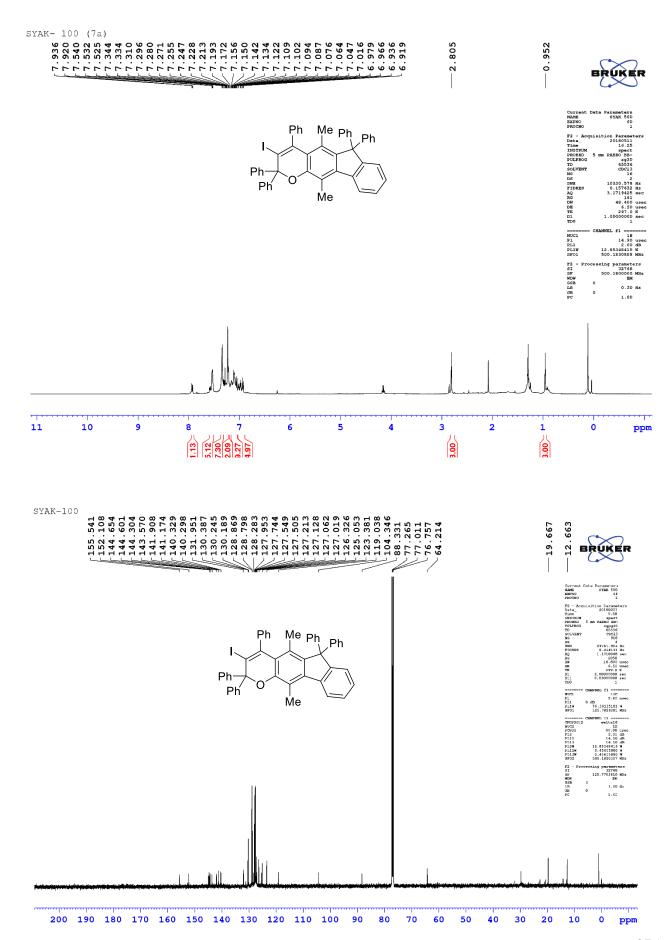


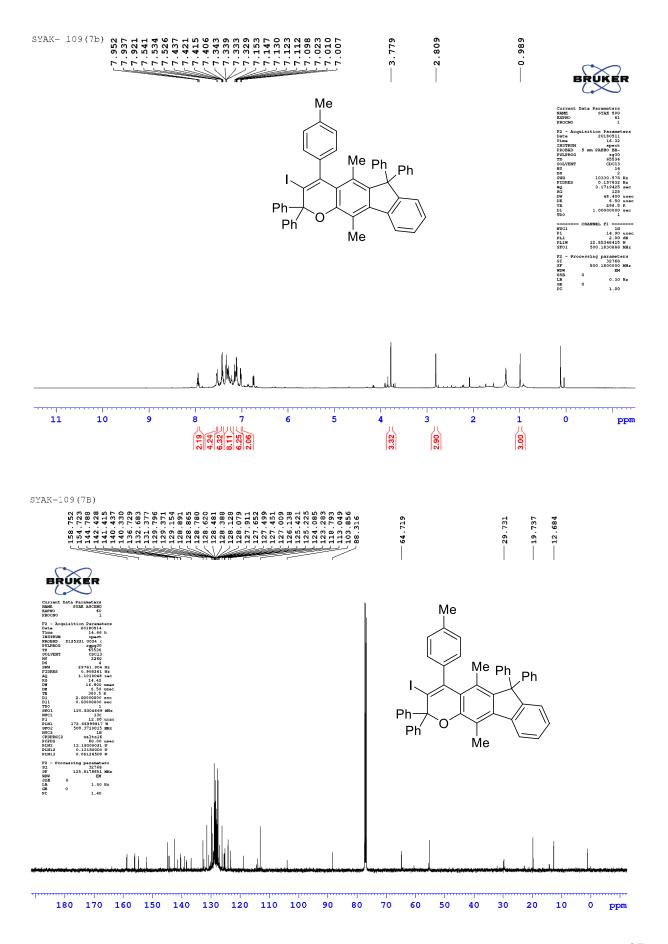


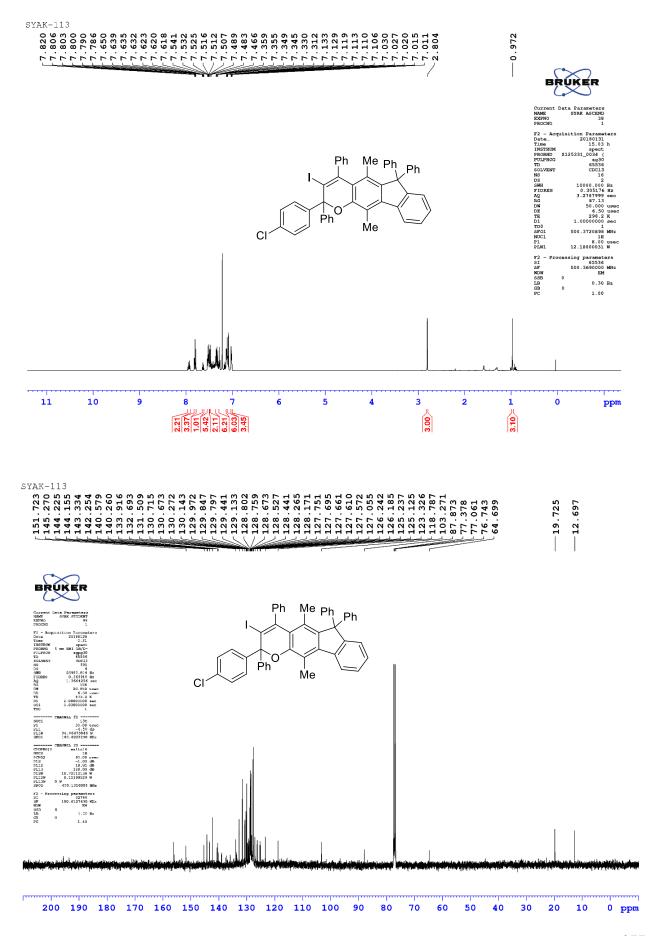


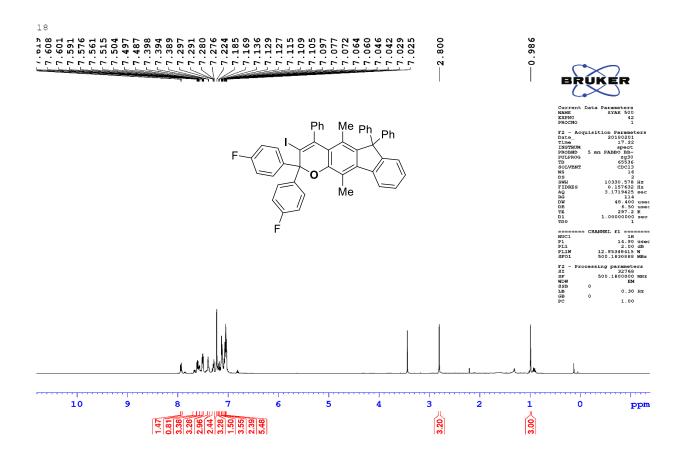


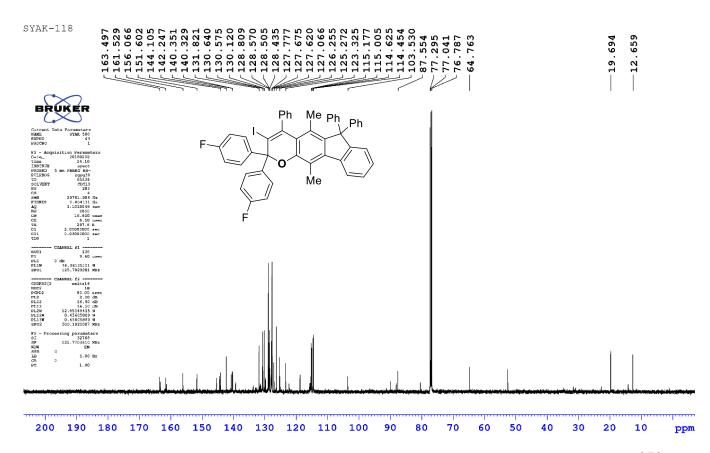


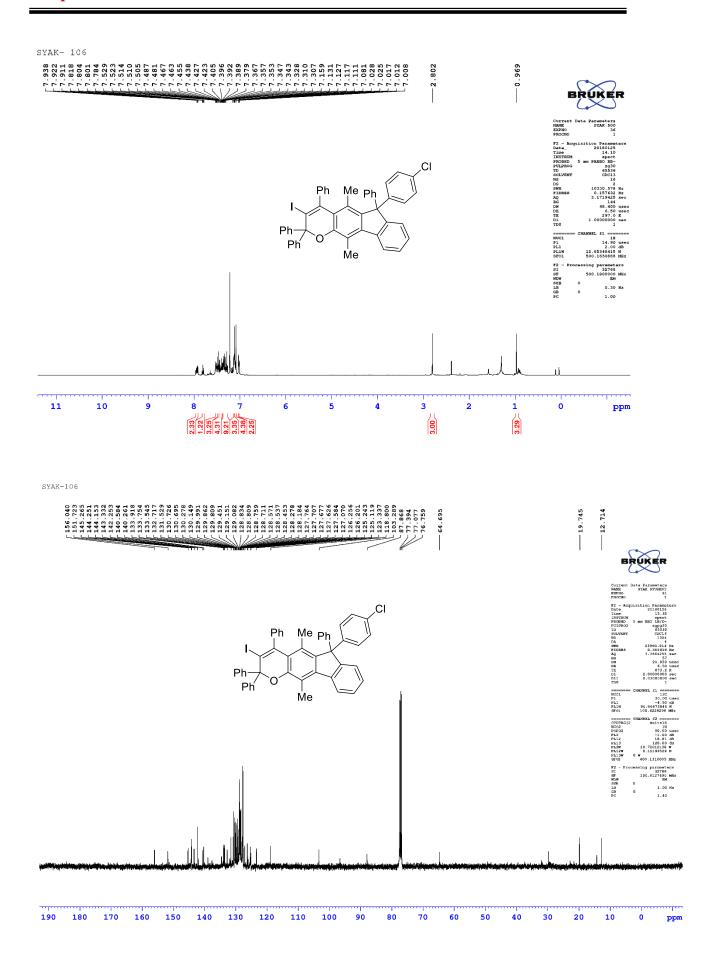


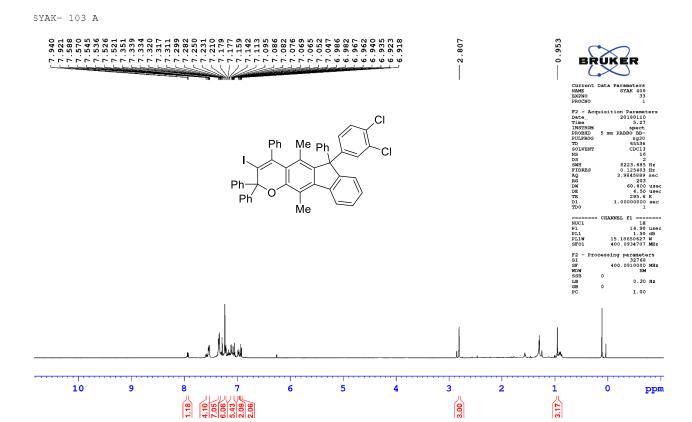


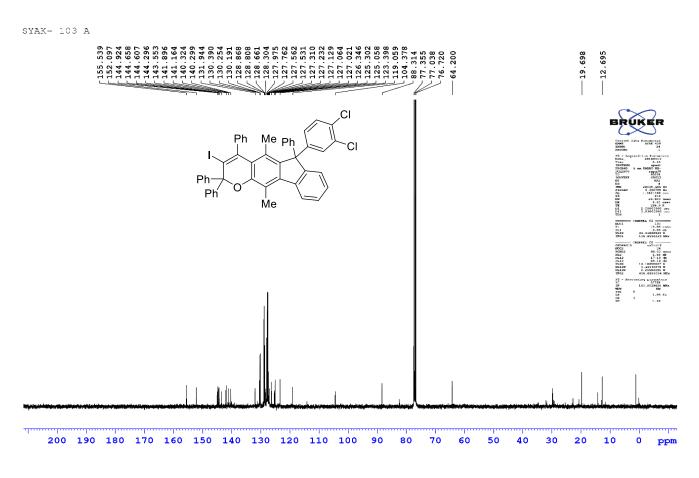


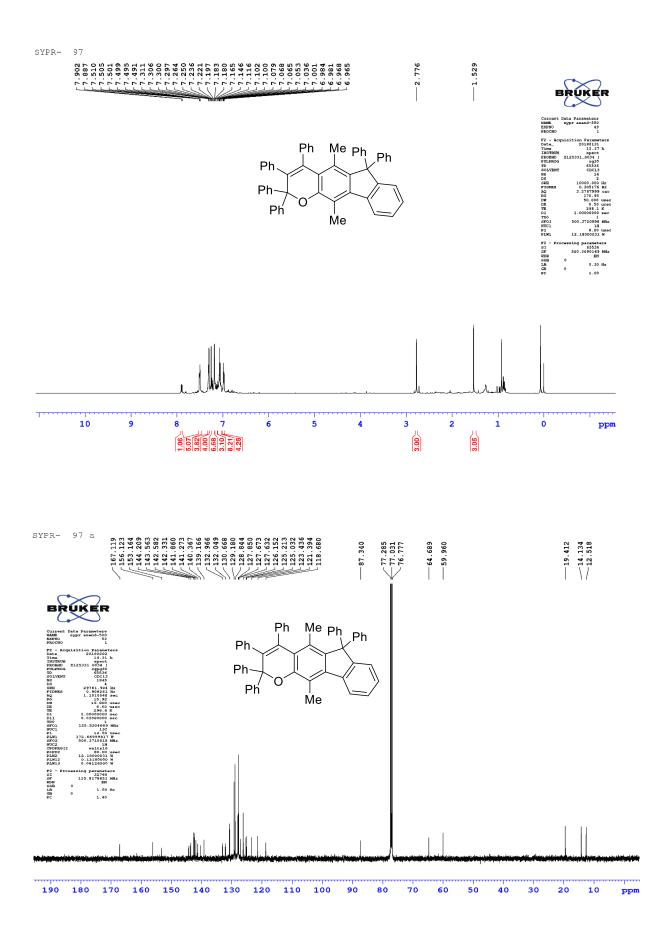


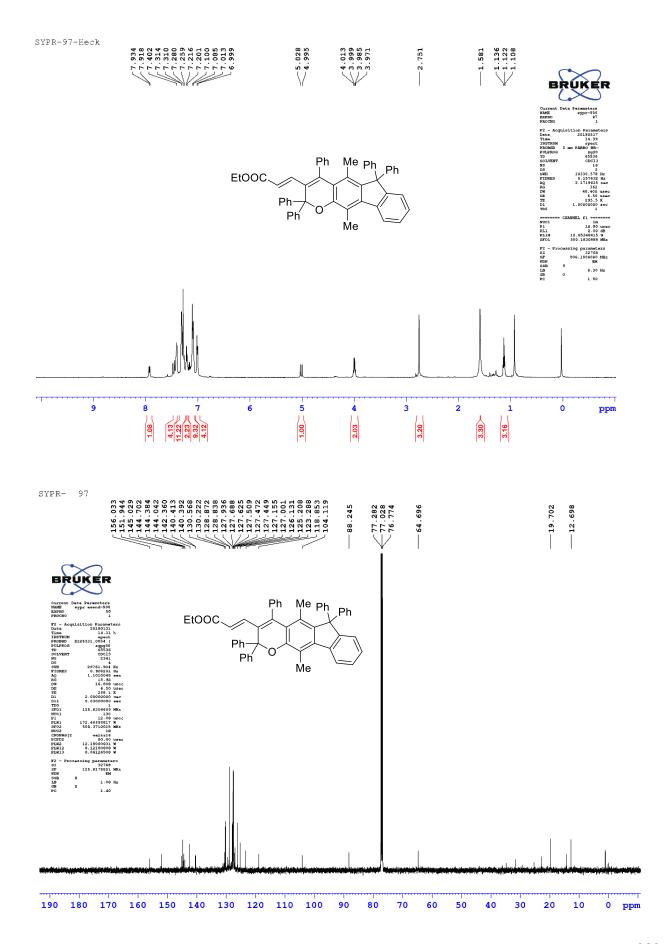


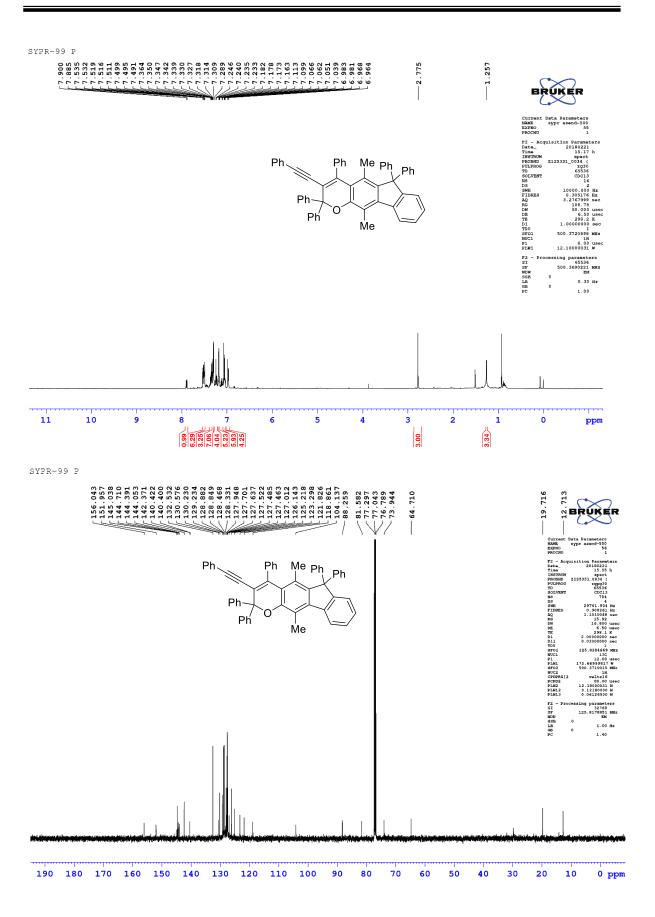












List of Publications

- Stereoselective Sulfenylation of Oxindole-derived Propargyl Alcohols: Calcium catalyzed, Solvent-Free Synthesis of Sulfenylated-3-Alkenyloxindoles, T. Khan, P. Rajesh, D. Arun, S. Yaragorla, *Org. Biomol. Chem.*, 2021,19, 10201.
- Calcium-Catalyzed Intramolecular Hydroamination-Deacylation Reaction of in situ formed β-Amino Allenes, S. Yaragorla, D. Sneha Latha. P. Rajesh, Adv. Synth. Catal. 2021, 363, 5486.
- 3. Calcium-catalyzed formal [3 + 2] annulation of C, N-diacyliminium ions with nucleophilic phenols: a diversity oriented synthesis of 3-aminofurans. **Rajesh P.**, A. I. Almansour, N. Arumugam, and S. Yaragorla. *Org. Biomol. Chem.* **2021**, *19*, 1060.
- 4. In Situ Generation of Allenes and their Application to One-Pot Assembly of Functionalized Fluoreno[3,2-b]furans by Calcium- Catalyzed, Regioselective, 3-Component Reactions. S Yaragorla, Rajesh. P *Eur. J. Org. Chem.* 2020, 7243.
- Brønsted acid promoted Thermal-Ring-Rearrangement of Fluorenopyrans to 2-(1H-inden-3-yl)-9H-fluoren-3-ols bearing two all-carbon-quaternary centres. T Khan, P Rajesh, D Praveen, K. V. Jovan Jose, S Yaragorla. *Eur. J. Org. Chem.* 2020, 2199.
- 6. An efficient Benzannulation protocol for the synthesis of 9,9-Diphenyl-9*H*-fluorenols using Intramolecular Allene Friedel-Crafts Annulation. S Yaragorla, **P** Rajesh. *Eur. J. Org. Chem.* 2019, 5740.
- 7. Regiospecific formal [3+2] annulation of tert-propargyl alcohols with acyclic1, 3-diketones via the cycloisomerization of homoallenyl ketones. S Yaragorla, P Rajesh. *Org. Biomol. Chem.* 2019, *17*, 1924.
- 8. Ca (II)-Mediated Regioselective One-pot Sequential Annulation of Acyclic compounds to Polycyclic Fluorenopyrans. S Yaragorla, **P Rajesh**, A Pareek, A Kumar. *Adv. Synth. Catal.* **2018**, *360*, 4422.
- 9. Highly Regioselective Synthesis of Oxindolyl-Pyrroles and Quinolines via a One-Pot, Sequential Meyer–Schuster Rearrangement, Anti-Michael Addition/C_{(sp}³)–H Functionalization, and Azacyclization. S Yaragorla, R Dada, **P Rajesh**, M Sharma. *ACS omega* **2018**, *3*, 2934.

Calcium-catalyzed in-situ synthesis and cyclization reactions of tetrasubstituted allenes

by Rajesh Pallava

Submission date: 05-Apr-2022 11:18AM (UTC+0530)

Submission ID: 1802200280

File name: Rajesh-Thesis.docx (4.23M)

Word count: 11628
Character count: 68283

Calcium-catalyzed in-situ synthesis and cyclization reactions of tetrasubstituted allenes

ORIGINALITY REPORT

SIMILARITY INDEX

PUBLICATIONS

STUDENT PAPERS

PRIMARY SOURCES

SRINIVASARAO YARAGORLA, Rajesh P, Abhishek pareek, Ankit Kumar. "Ca(II)-Mediated Regioselective One-pot Sequential From our public Annulation of Acyclic compounds to Polycyclic Fluorenopyrans", Advanced Synthesis & Catalysis, 2018

Dr. Srinivasarao Yaragorla Associate Professor School of Chemistry University of Hyderabad Hyderabad-500 046, India.

Publication

Srinivasarao Yaragorla, Pallava Rajesh. " In Situ Generation of Allenes and their Application to One - Pot Assembly of Functionalized Fluoreno[3,2 -]furans by Calcium - Catalyzed, Regioselective, 3 -Component Reactions ", European Journal Of Chemistry Of Chemistry Of Hyderabad Organic Chemistry, 2020

Associate Professor

Hyderabad-500 046, India.

Publication

pubs.rsc.org Internet Source

Srinivasarao Yaragorla, P. Rajesh. " An efficient Benzannulation protocol for the synthesis of 9,9-Diphenyl-9 -fluorenols using

Associate Professor School of Chemistry University

Intramolecular Allene Friedel-Crafts Annulation ", European Journal of Organic Chemistry, 2019

Publication

Srinivasarao Yaragorla, P. Rajesh. " Regiospecific formal [3 + 2] annulation of propargyl alcohols with acyclic 1,3-diketones the cycloisomerization of homoallenyl ketones ", Organic & Biomolecular Chemistry

2018

Publication

Associate Professor School of Chemistry University of Hyderabad Hyderabad-500 046, India.

Srinivasarao Yaragorla, P. Rajesh, Abhishek Pareek, Ankit Kumar. "Ca(II)-Mediated Regioselective One-pot Sequential Annulation of Acyclic compounds to Polycyclic Fluorenopyrans", Advanced Synthesis & Catalysis, 2018

Publication

Dr. Srinivasárao Yaragorla Associate Professor School of Chemistry University of Hyderabad Hyderabad-500 046, India.

Srinivasarao Yaragorla, Rajesh P. "Regiospecific formal [3+2] Annulation of tert-Propargyl alcohols with acyclic 1,3-diketones via the Cycloisomerization of homoallenyl ketones", Organic & Biomolecular Chemistry, Dr. Srinivasarao Yaragorla 2018

Publication

Associate Professor School of Chemistry University of Hyderabad Hyderabad-500 046, India.

8

irgu.unigoa.ac.in

Internet Source

%

- Srinivasarao Yaragorla, Ravikrishna Dada.
 "Amine-Triggered Highly Facile Oxidative
 Benzannulation Reaction for the Synthesis of
 Anthranilates under Solvent-Free Calcium(II)
 Catalysis", ACS Omega, 2017
 Publication
- <1%

Bingyu Yan, Yang Fu, Hui Zhu, Zhiyuan Chen. "
Synthesis of Divergent Benzo[]fluorenones
through Cycloaromatization Reactions of 1,5Enynols and 1,5-Diynols ", The Journal of
Organic Chemistry, 2019

<1%

<1%

Sikkandarkani Akbar, Kannupal Srinivasan. "

Iron-Catalyzed Tandem Conia–Ene/Friedel– Crafts Reactions of -Alkynyldihydrochalcones: Access to Benzo[]fluorenes ", The Journal of Organic Chemistry, 2016

Publication

Publication

Eiji Yoneda, Takayuki Kaneko, Shi-Wei Zhang, Kiyotaka Onitsuka, Shigetoshi Takahashi. "Ruthenium-Catalyzed Cyclic Carbonylation of Allenyl Alcohols. Selective Synthesis of γ- and δ-Lactones", Organic Letters, 2000 <1%

Publication

14	Abhishek Pareek, Garima Singh. " A calcium catalysed regioselective (5- dig) tandem process for the synthesis of fully substituted furans ", RSC Advances, 2016 Publication	<1%
15	Benito Alcaide, Pedro Almendros, Sara Cembellín, Teresa Martínez del Campo. "Gold as Catalyst for the Hydroarylation and Domino Hydroarylation/N1–C4 Cleavage of β- Lactam-Tethered Allenyl Indoles", The Journal of Organic Chemistry, 2015 Publication	<1%
16	Tabassum Khan, P. Rajesh, Dudam Praveen, K. V. Jovan Jose, Srinivasarao Yaragorla. "Brønsted Acid Promoted Thermal-Ring-Rearrangement of Fluorenopyrans to 2-(1 - Inden-3-yl)-9 -fluoren-3-ols Bearing Two All-Carbon-Quaternary Centres ", European Journal of Organic Chemistry, 2020 Publication	<1%
17	www.jove.com Internet Source	<1%
18	Kate Lauder, Anita Toscani, Nicolò Scalacci, Daniele Castagnolo. "Synthesis and Reactivity of Propargylamines in Organic Chemistry", Chemical Reviews, 2017	<1%

Exclude quotes On Exclude matches < 14 words

Exclude bibliography On