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Abstract

Cosmological density fluctuations play an important role in the evolution of the uni-

verse. They have important implications for the phase transitions that occur in the

early universe. These density fluctuations are often generated in the early universe from

topological defects. These defects are generated in symmetry breaking phase transi-

tions. Once generated, they survive in the early universe and generate different kinds

of density fluctuations. Since many of the particles in the early universe have a specific

baryon number, density fluctuations will mean fluctuations in the baryon number den-

sity too. These are called baryon inhomogeneities and once generated they have strong

consequences on the evolution of the universe, specially for the big bang nucleosynthesis

calculations. Baryon overdensities in the early universe plasma gradually diffuse out to

reach a state of equilibrium. The diffusion of these inhomogeneities are important. If

all the inhomogeneities diffuse out, then the big bang nucleosynthesis will occur in a

homogeneous way across the universe, but if there are inhomogeneities present in the

plasma we will end up with an inhomogeneous big bang nucleosynthesis. So, we study

the diffusion of baryon inhomogeneities generated from topological defects in both an ex-

panding and a non-expanding universe. We obtain the size and amplitude of the density

inhomogeneities generated at the electroweak and quark hadron phase transition which

can affect the nucleosynthesis results. We find that the electroweak inhomogeneities do

not have any effect on the nucleosynthesis epoch but large inhomogeneities generated at

the quark hadron transition will affect the nucleosynthesis results.

Apart from the nucleosynthesis calculations, density fluctuations can also lead to the

generation of seed magnetic fields in the early universe. We study the overdensities

generated by long cosmic strings as they move through the early universe plasma. Neu-

trinos moving around such strings can generate a neutral current close to the string. The

interaction of the neutrinos and the electrons would further generate an electric charge

separation in the overdensity behind the moving string. The non-alignment of the tem-

perature gradient and the charge gradient would then generate a primordial magnetic

field through the Biermann mechanism. We also make an estimate of the magnitude of

the generated magnetic field. Finally, we also study the dense compact stars which can

have a phase transition occurring in its core. The current observational data indicates

the presence of massive neutron stars which may have a quark core inside it. We have

discussed a model based on the extended bag model which leads to an isentropic phase

transition in the core of a hybrid star. We have made the bag constant dependent on

the chemical potential and the temperature. We then match the phase boundaries for

a hybrid star with quark gluon plasma in the core covered by a thin crust of hadron

and study the resultant parameter space to obtain stable compact objects. We find
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that the model satisfies all the conditions of stability of a compact object for certain

ranges of the bag constant in the presence of a massive strange quark. We calculate the

gravitational redshifts from the masses and the radii of these stable compact objects.

There are several observational candidates whose redshift values are in agreement with

the ones obtained from our model. Thus our model shows that it is possible to model

massive compact objects using extensions of the bag model with no exotic phases in its

core.
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Chapter 1

Introduction

1.1 Introduction

Density inhomogeneities are one of the fundamental building blocks of the early universe.

Initially, the universe plasma is considered to be homogeneous and isotropic. Due to the

various mechanisms, density inhomogeneities can be generated at different time scales

in the plasma. Phase transitions, evolution of topological defects like cosmic strings,

domain walls, etc. usually lead to the generation of inhomogeneities in the plasma.

These density inhomogeneities might have several effects in the early universe.

In modern cosmology, the understanding of structure formation, and the generation

and evolution of primordial magnetic fields in the early universe is still an important

subject that needs to be understood. These inhomogeneities are one of the possible

reasons for the generation of the large scale structures in the universe. They can also

help to generate the seed magnetic field in the early universe. Apart from these, density

inhomogeneities play an important role in nucleosynthesis calculations. In this thesis,

we have studied the consequences of density fluctuations in the early universe.

Density inhomogeneities can be generated any time in the early universe. The most

discussed inhomogeneities are either formed in electroweak scale or quark hadron scale

[1, 2]. There might be various reasons or mechanism behind the generation of these fluc-

tuations like, inflation, collapsing Z(3) domain wall or bubble nucleation etc. Inflation

generates super horizon fluctuations which has larger length scales than the horizon size.

Fluctuation generated by Z(3) domain walls have length scales smaller than the hori-

zon size. These are sub horizon fluctuations. If inhomogeneities generated in the early

universe survive up to the next phase transition then they may have a significant effect

on the phase transition dynamics. This will depend on the nature of their decay. It has

1
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been discussed that inhomogeneities generated in the electroweak scale generally do not

survive up to the nucleosynthesis epoch. However the inhomogeneities generated in the

quark hadron epoch may survive up to the nucleosynthesis. Dense inhomogeneities may

form metastable quark nuggets. Possibility of metastable H dibaryons are also there due

to the presence of strange quarks during the time of this transition.

In electroweak scale, the most abundant particles of these inhomogeneities are mostly

the quarks, the electrons, the muons and the neutrinos etc. Baryon number is carried by

the quarks in the electroweak scale. In the QCD scale, after hadronization, the neutrons,

the protons, the electrons and in some places the muons are the most abundant particles.

Baryon numbers are carried by the neutron and the proton in the QCD phase. Baryon

numbers from these overdensities gradually diffuse to the underdense regions to try and

attain an equilibrium state. The diffusion of the neutrons and the protons have been

discussed in many articles. These diffusions through the overdensities can change the

n/p ratio in various places in the plasma, which means they can modify the light element

abundances like lithium, helium etc.

Cosmic strings are example of one dimensional topological defects, formed due to the ax-

ial or cylindrical symmetry breaking. Mathematically, strings are the solutions of certain

field theories, whose energy is concentrated along an infinite line. We have got signa-

tures of them from the recent data of the Cosmic Microwave Background Radiation

(CMBR). Cosmic strings induce inconsistencies in the cosmic microwave background

power spectrum [3, 4]. The evolution of these strings have also been simulated. Moving

cosmic strings will generate wake like structure behind them. Those wake regions will

have higher particle density than the background. Due to the CP violating decay mech-

anisms, happening in the early universe, there will be an inherent lepton asymmetry

in the early universe plasma. Density inhomogeneities produced by these comic string

wakes can help to generate seed magnetic field in the early universe.

Density inhomogeneities not only affect the evolution of structure formation and nucle-

osynthesis in the early universe, they can be found in compact structures like hybrid

stars. The baryon density in an hybrid star is characterized by the chemical potential in

the Bag model. Observational data says there are possibilities of having massive hybrid

stars in the galaxies. Theoretical models are still trying to model those stars and match

the corresponding data. In this thesis we have discussed a model, where we have modi-

fied the bag constant with a finite chemical potential and temperature dependence. This

modified model can generate the higher mass radius limit to match the observational

data of these massive compact objects.
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In the next part of the introduction we will give a historical overview of the early

universe, then discusses about the density inhomogeneities and the primordial magnetic

field generation in the early universe.

1.1.1 Historical overview

The Standard Model of cosmology tells us that the origin and the evolution of the

universe is based on the Big Bang Model, proposed by Friedman and Lemaitre [5]. ‘Big

bang’, the term was first introduced by F. Hoyle. This theory is consistent with Hubble’s

law. The Universe began about ten to fifteen billion years ago. In 1929, Edwin Hubble

found that since the birth of the universe, it is expanding and the recessional velocities of

the galaxies from an astronomical object holds a proportional relation with the distance

from that particular astronomical object [6]. According to the Big Bang model, initially

the universe was an isotropic ball of radiation, having extremely high temperature and

density. It started out as a hot compressed, higher density state and gradually started

to cool and expand. The Big bang Model is developed within the frame work of two

basic assumptions : the principle of equivalence and the cosmological principle. Based

on these two principles, the universe evolved through different stages.

However this theory had some serious competitors( like the steady state theory by Hoyle

and Narlikar) up to 1960. This model also satisfies the Hubble’s law. Steady state

model says that at large scales the universe is completely homogeneous and evolves

with constant density in spite of the expansion of the universe [7, 8]. According to

this model the rate of the creation of new matter is equal to the rate of expansion.

This continuous creation is keeping the density of matter unchanged. But the Cosmic

Microwave Background Radiation (CMBR) data acts as a major evidence in support of

the Big Bang model and scientists accepted it as the most favorable model to describe

the origin and evolution of the universe. There are some key evidences that play a

pivotal role to support the Big Bang Model. These evidences for the Big Bang model

are called “The Pillars of the Big Bang Model” [9]. We will discuss those in the next

section.

1.1.2 The Pillars of the Big Bang Model

• The first and the most important evidence is the expanding universe. The expan-

sion of the universe is measured by the redshift of light coming from the galactic

objects. In 1929 Edwin Hubble measured the observational data of redshifts from

the galaxies [6]. Redshift is the shift of spectra towards longer wavelength for

distant objects, which describes that all the galactic objects are moving away from
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each other with some acceleration. So our universe is expanding gradually. This

phenomena is consistent with the Big Bang Model.

• In 1965, Penzias and Wilson have discovered the Cosmic Microwave Background

Radiation (CMBR) which is a strong land mark of the Big Bang Model [10, 11].

The Cosmic Microwave Background Radiation(CMBR) is the electromagnetic ra-

diation which is considered to be the remnant part from the Big Bang. The

temperature of this radiation is around 2.73K. At the recombination epoch ra-

diation is decoupled from matter. This radiation is the oldest radiation in the

universe. The photons become free streaming and do not interact with matter any

more. This gives rise to the CMBR. In 1992 COBE experiment first verified this

radiation.

• With the expansion of the universe, the temperature goes down and some of these

nucleons are synthesized into the light elements such as hydrogen, helium, and

deuterium etc. The most abundant atom in the universe is hydrogen atoms. It

covers nearly 90 % of the atoms in the universe. Theoretical calculations from

the Big bang nucleosynthesis predicts the abundance of these light elements, This

prediction match with current measurements of the primordial elements. So this

works as an evidence for the Big Bang Model.

• The standard Big Bang model also provides a framework for understanding the

separation of matter from radiation to form galaxies. At about 10, 000 years after

the Big Bang, the universe temperature had fallen to such an extant that matter

got detached from radiation. Big Bang model has the framework for the clustering

of the matter particles to form the large scale structure of the universe.

1.1.3 The Thermodynamic History of the Universe

According to the Big Bang model the universe started expanding at a very early stage

[5]. As the universe expanded and gradually cooled down from a very dense state it gave

rise to the universe as we see it today.

At the initial stage the universe consisted of a plasma of the relativistic elementary

particles. This initial stage is called the Planck era. At this stage the order of the

universe age is around 10−43 sec . This time scale is called the Planck time scale. The

universe was radiation dominated during this period. At this stage the energy and

the temperature of the universe were so high that all the four fundamental force were

speculated to be unified to form one force. It had a temperature of the order of 1019

GeV.
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the vacuum manifold. If the vacuum manifold is a circle after spontaneous symmetry

breakdown, then cosmic strings are produced. If the vacuum manifold is a 2-sphere

S2, then point like defects i.e monopoles are produced and if the vacuum manifold

has disconnected components, then sheet like defects i.e domain walls are produced.

The detailed study of these objects in different models and its comparison to the

observations, puts constraints on the parameters of the theory and restricts different

models.

The abundance of monopoles produced during GUT transition is so large that the

energy density would be at least 1013 times the critical energy density of the universe

now. So, the presence of these monopoles would be a cosmological disaster. Solving

this monopole problem was one of the main motivations which led Guth to propose

Figure 1.1: Thermodynamic history of the universe

The earliest phase transition is believed to be the GUT (Grand Unified Theory) Phase

Transition at the energy scale of 1015-1016 GeV [12]. At this time, the universe was

10−35 sec old. The inflationary stage follows the GUT stage. This stage undergoes a

stage of accelerated expansion. This stage terminates with the reheating of the universe.

The next is the Electroweak Phase Transition at the energy scale of 100 GeV. This is a
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symmetry breaking phase transition which resulted in the separation of the electromag-

netic and the weak force. In our universe, the number of particles, is greater than the

number of anti particles. This particle-antiparticle asymmetry might have been gener-

ated in this time. Magnetic fields are also present in our current universe. It is quite

possible that the seeds of these fields were generated in this period.

Following this, the next predicted phase transition is the Quark-Hadron Phase Tran-

sition which takes place around 200 MeV. During this epoch, hadrons were formed.

After hadronization, three quarks form the baryon and a quark and an anti-quark form

the meson. This phase transition may have generated baryon inhomogeneities in the

plasma [2]. Density inhomogeneities generated during this epoch will survive up to the

nucleosynthesis era [13]. The most abundant baryons in the universe after this phase

transition were the protons and the neutrons. The neutron proton ratio in the universe

determines the ratio of the light elements formed during nucleosynthesis.

After this comes the nucleosynthesis era. At this time the proton and the neutron

form the nuclei. These nuclei come together and form the light elements like hydrogen,

helium etc. This era happened around 0.1 MeV. Following this, matter decoupled from

the radiation and the radiation epoch ended. This was followed by the matter dominated

epoch. The matter dominated epoch saw the formation of the stars and galaxies. It is

the epoch in which we currently reside.

1.2 Primordial fluctuations

The theory of cosmological fluctuations has become an important part of modern cos-

mology as it is the framework which links the early universe with the recent data. The

theory was initially developed by Lifshitz [14] and a significant work to understand the

physics of cosmological fluctuations was done by Bardeen [15]. Primordial fluctuations

are considered to be the seeds of all the large scale structures. These fluctuations gen-

erated in the early universe are mostly in the form of metric perturbations or density

perturbations. The fluctuation can be of two types depending upon the Hubble scale :

super-horizon and sub-horizon fluctuations. Primordial fluctuations are scale-invariant

and adiabatic in nature. Adiabatic fluctuations tells that the local state of matter (deter-

mined by the energy density ρ and the pressure P ) at some space time of the perturbed

universe is the same as in the background universe at some slightly different time.

The Friedmann-Robertson-Lemaitre-Walker (FLRW) metric describes the homogeneous

and isotropic universe. The FLRW metric stress-energy tensor requires energy and

momentum transfer over a considerable scale to produce spatially dependent density
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perturbations. The radiation pressure plays a pivotal role by creating some fluctuations

and determining their characteristic scales. Besides, it modifies the pre-existing primor-

dial fluctuations. Primordial fluctuations can be decomposed into scalar, vector and

tensor modes. Vector fluctuations decay faster in the expanding universe, hence these

are not so important for the cosmological background. On the other hand, the scalar

metric fluctuations are indeed important. They are the key factor behind the large scale

structure of the universe. To show this we have to describe the evolution of the space-

time by the first Friedmann equation for a homogeneous and isotropic universe. Based

on this, a fluctuation of the energy density will lead to a fluctuation of the scale factor

which grows over time. The self gravity amplifies the fluctuations even for length-scales

larger than the Hubble radius. The most important fluctuations are the fluctuations

which are coupled with the matter density. These fluctuations will dissipate through

different processes. Diffusion is one of those processes.

Previously, considerable work have been done on fluctuations regarding the electroweak

phase transitions and the QCD epoch. Jedamzik and Fuller [16] worked on nonlinear

sub-horizon fluctuations, generated from an epoch of the early universe where there is

a deviation from an equilibrium phase transition (i.e., electroweak phase transition).

Witten showed that this phase transition may have produced isothermal baryon number

fluctuations due to the difference in the number density in the quark-gluon plasma and

the hadronic phase.

Primordial fluctuations can decay through different processes: photon inflation, neu-

trino inflation in the homogeneous and diffusive limits, hydrodynamic expansion, and

baryon diffusion. Here in this thesis, we have studied the diffusion of the baryonic

inhomogeneities. Applegate, Hogan and Scherrer [17] have shown the decay of the

baryon inhomogeneities in a scenario where the neutrons, the protons and the electrons

are present. The proton is positively charged particle and the neutron is the neutral

particle. So, they will diffuse differently in the plasma. As a result there would be

inhomogeneities in the proton and neutron rich regions. Banerjee and Chitre [18] have

showed that the diffusion coefficients have explicit dependence on the density of the

diffusive particles. They have worked in the non-relativistic limit and also showed that

the relativistic kinetic theory can be used to determine the diffusion coefficients for the

diffusion of particle before nucleosynthesis, in a classical approximation. Here in this

thesis we have discussed the diffusion of these density inhomogeneities for an expanding

and non expanding universe. Along with the neutrons, the protons, the electrons and as

a fourth particle, we have considered a significant amount of the muons, present in the

plasma in the hadronic phase. For the electroweak phase we have analyzed the scenario

considering the presence of the quarks, the electrons, the muons and the neutrinos in

the plasma.
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1.3 The Primordial magnetic field

The magnetic field is a crucial element of the early universe. We can observe the magnetic

field from all the astronomical objects, from all parts of the universe. Planets, stars,

galaxies, and even intergalactic space between galaxy clusters have significant magnetic

fields. It can be measured through various methods like, from radio synchrotron emission

data, Faraday rotation measurements and Zeeman splitting etc. The average magnetic

field strength in the Milky Way galaxy is 3−4 µG in the current time. But the origin of

this magnetic field is not clearly understood yet. It is argued that the current magnetic

fields can be the result of the magnification of the initial seed magnetic field from the

pregalactic era [19–21]. These seed magnetic fields will also have an effect on the Cosmic

Microwave Background Radiation, Big Bang nucleosynthesis etc.

How did the primordial magnetic fields arise in the early universe and how did they

evolve during the ages, is one of the fundamental questions in cosmology. There should

be some charge asymmetry in the plasma to generate a seed magnetic field. But, the

early universe plasma is nearly charge neutral and conducting. So, we need to generate

a charge asymmetry in the plasma through some mechanism first to get the magnetic

field. There could be various ways to generate a magnetic field like, cosmological phase

transitions ( generated during the electroweak phase transition or quark–hadron phase

transitions), topological defects ( moving GUT/Superconducting strings, collapsing do-

main walls ), inflation ( generated during the inflationary epoch ), plasma instabilities (

generated when structure formation has started ), and primordial vortices [19].

One of the methods for the production of the Primordial magnetic field is from plasma

vorticity due to the Harrison’s mechanism, which arises in the radiation dominated era

[22]. This magnetic field will be generated in those areas of the electron-ion plasma

which have a non-vanishing vorticity. This model was done by Harrison. In this method

we can get seed magnetic fields through vorticity produced by the velocity difference

in the plasma. According to the Harrison’s mechanism the rotational velocities of the

electrons and the ions will change differently in the pre-recombination era, because

Thomson scattering will have more effect in the case of the electrons than for the ions.

Electrons will be in the coupled state for a longer time to the radiation and behave like

a relativistic particle whereas ions are already nonrelativistic. The difference between

electron and ion velocities will generate an electromotive force in the plasma. Therefore

an electric current will follow which will generate the magnetic field. For cosmic strings,

two straight moving cosmic strings passing each other can generate vorticity due to the

drag effect[23]. Through the Harrison mechanism, the magnetic field can be generated

in this moving cosmic string system. In this thesis we have also discussed an unique way

of generating magnetic field from moving cosmic string wakes.
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The magnetic field generation and amplification will proceed mostly in three steps. At

the beginning using the Bierman battery mechanism, we can generate the primordial

magnetic field [24]. At this time, the generated magnetic field will be less than the

equipartition magnetic field. In the next step this, weak magnetic field will be magnified

to be a stronger magnetic field through turbulence. The Reynolds number of the early

universe plasma was very high. So from the fluid properties we can say that there will

be a turbulence in the early universe plasma. At the last step, this magnetic field will

increase again and will reach up to a saturation value due to the turbulent energy. This

is known as the equipartition value at that particular epoch.

In this thesis we have shown magnetic field generation in cosmic string wake by the

Bierman battery mechanism. We are getting a seed magnetic field in cosmic string wake

system. As the early universe plasma has a high Reynolds number that magnetic field

also can be amplified to the equipartition level using the turbulence property of the

plasma [25].

1.4 Plan of the thesis

After this brief introduction, I will give a brief outline of the remaining thesis.

In Chapter 2, we will start with a short introduction to phase transitions. Then we

will give a small review of the symmetry breaking phase transition which have happened

in the early universe. These phase transitions can generate topological defects. Next,

we will discuss about different types of topological defects that are formed in the early

universe. Most of the work of the thesis is related to the Quark Hadron phase transition.

So at the end we will discuss the Quark Hadron phase transition and its dynamics in

the early universe in more detail.

In Chapter 3, we will talk about the inhomogeneities generated in the early universe.

Density inhomogeneities play an important role in the early universe as they are one of

the key factors leading to all the large scale structures present in our universe. Besides

inhomogeneities may also be responsible for the seed magnetic field generated in the

early universe. Here we will focus on baryon inhomogeneities. In this chapter we will

present a brief overview of the generation and evolution of these baryon inhomogeneities.

Chapter 4 contains the study of the cosmological diffusion of particles from muon rich

overdense region in an non-expanding universe. We will discuss how overdensities can

be generated after the Quark Hadron phase transition. Next we will explain the high

muon abundances. We then inspect the decay of these muon rich inhomogeneities and

how these inhomogeneities can affect the big bang nucleosynthesis. There will be a
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lot of neutrinos in the plasma at that temperature scale. We will also examine how

these neutrinos will influence the helium and lithium abundance at the time of the

nucleosynthesis.

Chapter 5 presents cosmological diffusion in an expanding universe. Previously, we

have analyzed the inhomogeneities for a stationary universe. Here, we have simulated

relativistic diffusion to analyze the scenario in the expanding universe. We have studied

the decay starting from the electroweak phase transition up to the hadronic phase. There

will be inhomogeneities of different amplitude generated in the electroweak scale and the

QCD scale. This analysis will lead us to understand which inhomogeneities will survive

up to the nucleosynthesis epoch for an expanding universe and make a difference in the

particle abundances after nucleosynthesis.

In Chapter 6, we have suggested a new method of generating seed magnetic fields in

the early universe. The seed magnetic fields are generated in cosmic string wakes caused

by the neutrino density inhomogeneities in the wake of the Abelian Higgs strings. The

Abelian Higgs strings are linear topological defects, generated due to the symmetry

breaking phase transitions. Generally wakes will form behind a moving cosmic string.

Here we discuss about neutrino currents in that wake. We have shown that the neutral

particle (neutrino) motion in the wake can give rise to overdensities in the electron which

leads to a magnetic field in the early universe. At the end of this chapter, we have briefly

estimated the order of magnitude of that magnetic field.

Chapter 7 comprises of plasma property in bulk strange matter. The baryon density

in neutron stars is quantified by the chemical potential (µ). Here we have considered a

bag constant, which is dependent on temperature and chemical potential. This modified

bag model can lead to an isentropic phase transition in the core of the neutron star.

Then we have calculated the Maxwell construction for the isentropic phase transition

along the phase boundary.For our calculations, we have also considered the conservation

of various charges in the plasma. We have found that the mass of the stars depends on

both the bag constant and the mass of the strange quark. Next we have matched the

mass radius data from our model to some of the experimentally observed data and it is

quite consistent with our model.

In the end, we will summarize the thesis in Chapter 8.







Chapter 2

Phase Transitions in the Early

Universe

2.1 Phase Transition

Phase transitions are a well studied phenomena in physical systems. This phenomena

can be observed in our daily lives. In the previous chapter, we have discussed about

the thermodynamic history of the early universe. There we have mentioned about the

different phase transitions, that have occurred after the Big bang in the early universe.

In this chapter we will discuss briefly about this phenomenon and its consequences.

Phases are the different states of matter described by the thermodynamic properties of

the system and phase transition is the thermodynamical process of transition from one

state to the other state of matter. The intrinsic parameters that can describe a phase

of a system in equilibrium are temperature, pressure, volume, chemical potential etc.

We can draw a phase diagram using these parameters. In that diagram, equilibrium

phases are separated by the phase boundaries. There will be a discontinuity in the

thermodynamic free energy along these boundary lines. A phase transition moves a

system from across the phase boundary from one phase to another. In the fig. 2.1 we

have shown the phase diagram of water. At the triple point, the three phases of water

can coexist in a system. Fig. 2.2 represents the QCD phase diagram as a function of

baryon chemical potential and temperature. The quark-gluon plasma phase, the hadron

phase and the superconducting phase have been presented in the phase diagram.

The most common example of a phase transition from our day to day life is the boiling

of water and the freezing of ice. The boiling of water is a transition from the liquid

phase to the gaseous phase and the freezing of ice is a transition from the liquid phase

13
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Figure 2.1: Phase diagram of water (Ref.[26])

Figure 2.2: Phase diagram of QCD plasma (Ref.[27])
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to the solid phase. We can also observe melting, condensation, deposition etc between

these three states of matter. Besides this, some well known examples that can be ob-

served in experiments are the magnetic phase transition, the superconducting phase

transition and the superfluid phase transition. Metals like, iron and nickel show ferro-

magnetic property. We can convert these metals into a permanent magnet by orienting

all the magnetic dipole in the same direction. However above the Curie temperature

this alignment breaks to form a paramagnetic phase. This is a phase transition from fer-

romagnetic to paramagnetic phase. Liquid helium shows superfluidity property. Below

the critical temperature it behaves like a superfluid. Metals like, mercury and lead have

the superconducting property. Their resistance becomes zero below some temperature

and they go into the superconducting phase from the normal phase. A phase transition

from Type-I superconductor to Type-II superconductor also occurs. Similar to these

examples we have different phase transitions at different temperature scales of the Big

Bang Model.

2.1.1 Order of Phase transition and order parameter

A fundamental requirement of a system in equilibrium is energy minimization. Phase

transition happens in the process of attaining that ground state of the system. These

transitions are categorized into two types the First order and the Second order phase

transition. According to Paul Ehrenfest they can be classified depending on the be-

haviour of the Gibbs free energy. The first derivative of the Gibbs free energy is discon-

tinuous with respect to some intrinsic parameter for the first-order phase transitions. For

a second order phase transitions the first derivative of the Gibbs free energy is continuous

but the second derivative is discontinuous. Another definition of phase transition says

for the first order phase transition there will be the involvement of latent heat in the

transition process, while for the second order transition there is no contribution from

the latent heat. According to this definition, the water boiling is a first order phase

transition. The latent heat is involved in the process. The Ferromagnetic to paramag-

netic transition, superconductivity, superfluidity etc. are second order phase transitions.

For the magnetic system, magnetic susceptibility changes discontinuously which is the

second derivative of the free energy. Besides these two there is another type of phase

transition, which is a cross over phase transition. This is a cross over between first and

second order phase transition. The quark hadron phase transition is believed to be a

crossover phase transition at zero chemical potential.

One other way of describing phase transitions is by the order parameter which describe

the symmetry properties of these phases. It takes different value in different phases.

Generally in one phase the value of the order parameter is zero and in the other phase
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it takes a non-zero value. A system need not have an unique order parameter. It is

quite possible to define different order parameters for a given system. The order of the

phase transition may also become different if a different order parameter is chosen. As

an example, for the boiling of water density is the order parameter. In the ferromagnetic

phase, the orientation of the magnetic dipole is given by the “Magnetization”, and this is

used as an order parameter for the magnetic system. The value of the order parameter is

zero in the paramagnetic phase, but in the ferromagnetic phase it has a non-zero value.

So in the paramagnetic phase, the magnetic dipoles are randomly oriented but in the

ferromagnetic phase they have a specific orientation. So for the ferromagnetic phase

the rotational symmetry is broken. During a phase transition, the order parameter can

change discontinuously or continuously depending on the variation of the thermodynamic

parameters. For the first order phase transition the variation of the order parameter with

respect to the temperature is discontinuous and for the second order phase transition

there is a continuous change in the order parameter. The chiral condensate is one of the

order parameters for the QCD phase transition.

The first-order phase transition occurs through the nucleation of bubble like regions.

The order parameters changes its value across the bubble wall from zero to non-zero

value or vice versa. There is a new phase inside the bubble and an old phase outside the

bubble. Bubbles larger than the critical size will grow and merge with each other. This

way the entire early universe plasma will be transformed into the new phase. There are

several models of the quark hadron phase transitions. Most of them were first order

in nature. However, recent simulations and observational constraints indicate that it is

probably a cross-over phase transition.

The second-order phase transition is carried out by the continuous change of the or-

der parameter from zero to non-zero value or vice versa in the entire system. At the

initial stage, the whole system can be divided into multiple domains of different order

parameters. After this stage, the size of the domains increase. As time goes, when com-

plete equilibrium is reached, the order parameters of the entire sample become uniform

and the gradient energy is minimized. The second-order phase transition occurs in the

transition from a paramagnet to a ferromagnet, the normal superconducting transition

of type II superconductor, the transition from normal liquid to helium superfluid, and

so on. The strongly interacting chiral symmetric transitions are also expected to be

second-order.
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2.1.2 Spontaneous symmetry breaking

Phase transitions may also be associated with the spontaneous breaking of the symmetry

of a system. Before talking about the symmetry breaking, we will describe what we

mean by symmetry first. Symmetry plays an important role in Physics. By definition,

a symmetry is a transformation that conserves the physical properties of a system. The

most common types of symmetries that is observed in nature is translational symmetry,

rotational symmetry, and the reflection symmetry. From the field theoretical point of

view, the action of a system will remain invariant through a symmetry transformation.

For global symmetry, the physical properties of a system is constant throughout the

whole space-time. So the symmetry parameter is not dependent of space-time. But for

local symmetries the symmetry parameters depend on the space-time.

Some times at the time of a phase transition a physical system possess symmetry in

one phase of the system but the other phase of the system does not follow the same

symmetry. As the system undergoes a phase transition, the symmetry of the system

changes spontaneously, this phenomenon is called the spontaneous symmetry breaking.

However, all the phase transitions are not symmetry breaking phase transitions. The

order parameter will change due to the transition but symmetry may not be broken.

In this section, we will focus on those phase transitions which are related to spontaneous

symmetry breaking. For the paramagnetic to ferromagnetic transition the Hamiltonian

of the system is rotationally invariant , but the ground state does not exhibit rotational

invariance. Magnetic dipoles are scattered in every direction in paramagnetic phase,

but organized in the same direction in the ferromagnetic phase. So rotational symmetry

is broken for the ferromagnetic phase. This is spontaneous symmetry breaking in the

magnetic domain.

In the standard model of cosmology and particle physics also we come across sponta-

neous symmetry breaking phase transitions. In the early universe cosmology the grand

unification theory (GUT) model is based on spontaneous symmetry breaking. The grand

unification theory can be explained by SU(5) or SO(1O) group. Due to the phase tran-

sition this symmetry is broken in to SU(3) × SU(2) × U(1). This model tries to unify

electroweak interaction and strong interaction. In this model, the symmetry breaks to

generate the Majorana mass of the neutrino. Electro weak theory which unifies weak

and electromagnetic interaction is also based on spontaneous symmetry breaking. Due

to the symmetry breaking phase transition SU(3)× SU(2)× U(1) symmetry is broken

into SU(3)× U(1). The underlying symmetry associated with this renormalizable the-

ory is gauge invariance. Due to the breaking of the underlying symmetry in electroweak

theory, the gauge bosons which mediate the electroweak interaction i.e. W±, Z0 acquire
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mass. This is due to the Higgs Mechanism and Higgs boson particle is responsible for

giving mass to all the elementary particles.

From the field theoretic point of view, spontaneous symmetry breaking is described by

a complex scalar field. The effective potential of the fields contain all the information

about the phase and the order of the phase transition. During the phase transition the

symmetry of the Lagrangian is broken spontaneously. In the context of the particle

physics models this scalar field is the Higgs field. Now we will analyze an example

of scalar field theory to understand the essential features of spontaneous symmetry

breaking. This model was first studied by Goldstone [28]. The Lagrangian density for

the scalar field is given by,

L = (∂µφ
∗)(∂µφ)− V (φ) (2.1)

where, φ is the complex scalar field and V (φ) is the potential. The potential can be

written as,

V (φ) =
1

4
λ(φφ∗ − η2)2 (2.2)

Here λ and η are positive constant. This Lagrangian is invariant under the following

transformation,

φ(x)→ eiαφ(x) (2.3)

This is global U(1) invariance. This global symmetry transformation is independent of

space. This potential has only one minima in the symmetric phase. But it has infinite

number of minima in the broken phase. So this potential has degenerate minima and

all the minima lies on the circle |φ| = η. The vacuum manifold M structure of the

potential is a circle S1. Since the system has to choose a particular minima from among

the infinite minima, the symmetry of the system is broken.

Now the vaccum expectation value of the field cannot take a non zero value, but has to

choose a finite value. So the symmetry is spontaneously broken and it give rises to the

Goldstone bosons [29]. The mass term of the Lagrangian is −1
2λη

2φ∗φ. This mass term

arises due to a massive particle having mass MG =
√
λη.

All the vacuum states, having different θ values are equivalent in the broken symmetry

phase. To understand the low energy states we can write the complex scalar field in

terms of real scalar field as,
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φ(x) =
(
η +

1√
2
ϕ(x)

)
eiϑ(x) (2.4)

Here, ϕ and ϑ is the real scalar fields. Substituting the field expression, the Lagrangian

density can be written as,

L =
1

2
(∂µϕ)2 + η2(∂µϑ)2 − 1

2
λη2ϕ2 + Lint(ϕ, ϑ) (2.5)

Here, ϕ represent the real field due to massive scalar field, ϑ represent the real field

due to the Goldstone boson and Lint is the interaction term, including the higher order

terms from the field. So after the breaking of spontaneous global symmetry, a massless

Goldstone boson arises.

In the previous example we have discussed about U(1) global symmetry. Now we will

talk about U(1) local symmetry. This local symmetry transformations is called gauge

symmetries. If the gauge symmetry is spontaneously broken it leads to the Higgs mech-

anism. We can study this local symmetry transformation using the Abelian Higgs model

[30, 31]. The Abelian Higgs Lagrangian density is given by,

L = Dµφ∗Dµφ−
1

4
FµνF

µν − 1

4
λ(φφ∗ − η2)2 (2.6)

Here, φ is the complex scalar field, Dµ = ∂µ − ieAµ is the covariant derivative and

Fµν = ∂µAν − ∂νAµ is the antisymmetric vector field strength tensor, with gauge vector

potential Aµ and gauge coupling constant e. This Abelian Higgs Lagrangian is invariant

under the following transformation,

φ(x)→ eiαφ(x) , Aµ(x)→ Aµ(x) +
1

e
∂µα(x) (2.7)

This is local U(1) gauge invariance. This local symmetry transformation is dependent

on space. The potential has minima which lies on the circle |φ| = η. The vacuum state

is not invariant under this gauge symmetry. Vacuum expectation value of the Higgs field

is non zero. In our preferred gauge choice we can write the Higgs field φ(x) as real ,

φ = η +
ϕ√
2

(2.8)

Substituting the above field expression, the Lagrangian density can be written as,

L =
1

2
(∂µϕ)2 − 1

2
λη2ϕ2 + e2η2AµA

µ − 1

4
FµνF

µν + Lint (2.9)
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where, Lint is the interaction term. Due to the breaking of this local gauge symmetry

two masses will arise, the Higgs mass MH =
√
λη due to the radial field and the gauge

boson mass MW =
√

2eη due to the vector field. This field theoretic model would have

string like solution. This model leads to the formation of one dimensional topological

defects called cosmic strings.

2.2 Topological Defects

Topological defects are the consequences of spontaneous symmetry breaking phase tran-

sitions. If there is a symmetry breaking phase transition, topological defects may be

produced. At the time of phase transition as the system evolves, in some parts of the

system, the system will remain in the old symmetric state, while the remaining system

will be in the symmetry breaking phase. These locked regions are in general called

topological defects. Depending on the different types of symmetry breaking we can get

different defects of different dimension. The existence of topological defects essentially

depends on the nature of the order parameter changing through the phase transition,

depending on which several types of topological defects can exist. The Monopoles are

the point defects. These are point-like regions of one phase immersed in the other phase.

Cosmic strings are the string defects of dimension one. These are the thin tubular regions

of the previous phase embedded in the other. This occurs due to the breaking of U(1)

symmetry. Domain walls are the two dimensional topological defect. These are sheet

like defects. Formation of these defects is not necessarily confined to the field of high

energy physics, we can observe defects in the condensed matter system also. Common

examples of such defects in condensed matter systems are the vortices in liquid He3, flux

tubes in type II superconductor, or line defects in liquid crystals.

In 1961, Skyrme showed for the first time that the solution of topological defects comes

from nonlinear field theory [32]. Thereafter, the study of this defects has continued

for the Higgs and Yang-Mills theories. In 1973, Nielsen-Olesson [33] obtained vortex

solutions in the Abelian Higgs model. The cosmological implications of topological

defects were first described by Everett [34] and Zeldovich, Kobzarev and Okun [35].

They showed that the domain walls formed during the GUT phase transition would have

had enormous mass densities which can generate inhomogeneity in the early universe. In

1976, Kibble demonstrated the first comprehensive theory of the formation of topological

defects during phase transitions [36]. Much work has been done regarding the impact of

topological defects on cosmology. Zeldovich and Khlopov [37] and Preskill [38] studied

the monopole generation during the GUT phase transition. Besides, cosmic strings can

play an important role in early universe cosmology. Zeldovich [39] and Vilenkin [40]
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have shown that they may be responsible for the formation of large-scale structures. In

addition, cosmic strings can generate the baryonic asymmetry of the early universe [41–

44]. Recently, it has been investigated how topological defects can affect nucleosynthesis

by inducing fluctuations in the evolving cosmic string wake [45]. There is a possibility

of cosmic strings contributing to the cosmic microwave background radiation (CMBR)

anisotropy.

2.3 The QCD Phase transition

In the Big Bang Model, one important stage is the QCD phase transition, the transition

from quark matter to hadrons. Considerable work has already been done on the quark

gluon plasma and the dynamics of the quark-hadron phase transition. In this phase

transition the coloured quarks are confined to form colour singlet hadrons. Hence the

Quark-Hadron transition is also called the deconfinement-confinement transition. The

order of the phase transition is still not known satisfactorily. Computational studies of

the QCD Phase transition indicates that it might be a weakly first order phase transition

or a crossover phase transition. Initially it was treated as a first order phase transition.

One of the earliest model used to model this phase transition is the MIT Bag Model

which we will describe now.

2.3.1 The MIT Bag Model

A first order phase transition proceeds through the nucleation of bubbles. Bubble forma-

tion and their growth have been studied in details in the literatures [46–48]. One of the

simplest model to understand bubble nucleation is the bag model. The Bag model gives

a equation of state that describes the quark-hadron phase transition. The Lagrangian

for the MIT bag model can be written as the following form [49] :

LBag = [
i

2
(φ̄γα∂αφ− (∂αφ̄)γαφ)−B]θv −

1

2
φ̄φ4s (2.10)

where, φ is the free Dirac field, B is the bag constant, θβ is a step function and 4s

is derivative of θβ function, it can be described as order parameter. The value of this

parameter is 1 inside the bag and 0 outside the bag. The bag Constant can be derived

from the above equation.

Bubbles nucleate through thermal fluctuations. The rate of bubble nucleation is given

by the following equation [50, 51]:
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I(T ) = CTc
4e
−W
T (2.11)

Here Tc is the critical temperature, C is a constant associated with the bubble growth

and W is the change in the thermodynamic potential of the two phases and or change

in the surface free energy of the boundary between the two phases. The change in the

surface free energy is given by :

W =
4π

3
r3(Pq − Ph) + 4πσ(r)2 (2.12)

Here σ is the surface tension or the free energy per unit surface area of the phase

boundary, Pq is the pressure in the quark gluon plasma phase, and Ph is the pressure

in the hadronic phase. As the universe gradually cools down, bubbles of hadrons form.

Then these bubbles gradually grow and coalesce with each other. If the radius of these

bubbles is greater than the critical radius rc then only they will grow. Bubble having

radius less than the critical value will collapse and disappear. At the critical radius, the

surface free energy attain an extremum value. The critical radius of the bubbles is given

by the following equation :

Ph − Pq =
2σ

rc
(2.13)

At Tc the pressure in two phases is equal. So, the critical radius will diverge. Nucleation

of bubbles starts below the critical temperature. At high temperature (T > 1GeV ), we

obtain the color charges in the plasma, carried by the quarks and the gluons. With the

expansion of the universe the temperature goes down to the critical temperature where,

the quark-gluon plasma undergoes a phase transition to the hadronic phase. The new

hadronic phase does not appear immediately at the critical temperature. Property of

thermal nucleation states that the nucleation rate increases when the temperature goes

below the critical temperature. Super cooling happens until the probability of nucleation

of hadronic bubbles is high. Once the first generation of bubble nucleation happen, they

expands very quickly by releasing latent heat. Due to this latent heat universe reheats

and reach the critical temperature again. So, further nucleation of bubble stops. At

that time the quark-gluon plasma phase and the hadronic phase coexist in the early

universe plasma. Then again the universe expands and these hadronic bubbles grow in

size. Gradually through this nearly isothermal evolution process the whole universe is

converted in to the hadronic phase.
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2.3.2 Consequence of the Quark-Hadron Phase Transition

This first-order Quark-Hadron phase transition in the early universe leads to a rich

cosmological scenario. This phase transition will give rise to baryonic lumps or quark

nuggets in the plasma [13]. With the decrease in temperature of the universe hadronic

bubbles grow in size and after some time they start to coalesce. There are many small

regions between the hadronic bubbles where initially the quark gluon plasma become

trapped. Baryon density in this trapped region is greater than the phase inside the bub-

ble. Baryon number is carried by the more massive hadrons in hadronic phase and in

the QGP phase it is carried by the light quarks. Due to chemical equilibrium condition

baryon density in the high temperature QGP phase is greater than low temperature

hadronic phase. Quarks like to stay in the quark phase due to lower mass in the quark

phase. The expanding bubble will tend to expel baryon number which will be concen-

trated in the inter bubble spacing region. So this trapped region will have higher baryon

density. These QGP phase region will detach from one another and start to shrink. So

these excess baryon in that region will start to exert pressure.

With the decrease in temperature of the universe this over dense region will shrink

and be forced to hadronize completely and leave behind a baryon overdense region.

In the hadronic phase there is no existence of the Quark-Gluon Plasma. So after the

phase transition there will be many baryonic lump, generated coming from those small

trapped region between the bubbles. Since the baryon number density is higher in the

trapped regions there will be higher abundance of neutron and proton in those regions.

So instead of a uniform neutron-proton ratio, the universe will have a large scale non-

uniformity in the neutron-proton ratio in the plasma. This neutron and proton ratio

in the plasma will effect nucleosynthesis calculations. Nucleosynthesis is basically the

synthesis of the nuclei of the light elements such as hydrogen and helium and their

isotopes. The synthesis of the nucleus is related to the coming together of the neutron

and the proton to form a stable object. Hence, depending on the neutron-proton ration

different light element will form in different places of the plasma. So generation of these

baryon inhomogeneities have large number of consequences in the early universe.





Chapter 3

Density inhomogeneities in early

universe

3.1 Density Inhomogeneities

Density inhomogeneities have played a significant part in the early universe. They are

one of the reasons for all the large scale structure in the early universe. They can

also help to generate the seed magnetic field in the early universe. Apart from these,

density inhomogeneities play an important role in nucleosynthesis calculations. In this

chapter we will talk about the generation and evolution of these inhomogeneities in brief.

Density inhomogeneities can be generated in any time of the universe, starting from the

time of inflation, then in the electroweak scale and again in the QCD epoch. Depending

on the Hubble scale, these fluctuations are mainly of two types, super horizon and sub

horizon fluctuation. Super horizon fluctuations can be generated in the inflationary

epoch. But here in this thesis we will discuss about the sub horizon fluctuations only.

These fluctuations can be generated in the electroweak scale and the quark hadron scale.

These fluctuation can be generated from topological defects like cosmic string, domain

walls etc. In the next section we will discuss about inhomogeneities generated by cosmic

string in the early universe and there effects on phase transition dynamics.

We will first describe how the cosmic string defects are generated. We will discuss about

the static solution for the cosmic string, and the generation of density fluctuations by

cosmic string wakes.

25
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3.2 Density inhomogeneities due to cosmic string wake

Density inhomogeneities generated by cosmic string has been discussed in detail in many

articles. Here, I will give a brief overview of that.

3.2.1 Cosmic string

The cosmic string is a very thin line like one dimensional topological defect. It has been

studied in detail in the literature in the context of early universe cosmology. String

defect can be generated due to U(1) symmetry breaking. If the vacuum manifold of a

field is circle, a cosmic string may arise over there. This circular vacuum manifold can

shrink into a point and for three dimensional space it can generate string like defects.

Nielson and Oleson have got a vortex line solution for the Abelian Higgs model[33]. This

is the first string like solution ever got. This solution is a cosmic string and it is called

the Abelian Higgs string. Cosmic strings can arise from both global and local symmetry

breaking.

To describe this defect we can consider the following simplistic model

L = (∂µφ
∗)(∂µφ)− 1

4
λ(φφ∗ − η2)2 (3.1)

where, φ is the complex scalar field, λ and η are positive constants. This potential is

shown in fig 3.1. It is called a Mexican hat potential. The Mexican hat potential has

a circular vacuum manifold. It can give rise to a string like solution. This Lagrangian

is invariant under the global transformation. So we will get a global string from this

model.

Figure 3.1: Defect generated from Mexican hat potential. (Ref.[52])

To understand the local string we have to consider a gauge field. So we can analyze the

Abelian Higgs model. The Lagrangian for the Abelian Higgs model has been discussed
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in the previous chapter.

L =
1

2
(∂µϕ)2 − 1

2
λη2ϕ2 + e2η2AµA

µ − 1

4
FµνF

µν + Lint (3.2)

It is invariant under U(1) local symmetry transformation. Due to the breaking of this

local gauge symmetry two masses will arise, MH =
√
λη due to the scalar field and

MW =
√

2eη due to the vector field. Nielson and Oleson [33] got a vortex line solution

from the Abelian Higgs Model. This solution is a local string. We can determine the

mass per unit length of the string, which is given by

µs ≈ 2πη2ln(
MH

MW
) ≈ πη2ln(

λ

2e2
) (3.3)

Here, η is the symmetry breaking scale. Approximate mass per unit length of GUT scale

cosmic strings is about 1016 tons/cm.

Now if we consider the gravitational property of a cosmic string. We find that the

space time of a cosmic string is conical in nature. This conical structure has shown in

the fig 3.2. This string property is one of the reasons inhomogeneities are generated

by the cosmic strings. The cosmic string metric can be obtained based on two basic

assumptions. Cosmic string is an one dimensional line like defect. So the thickness of

the string is small and can be assumed as zero. Secondly the gravitational field of the

string is weak. Depending on these two assumption we can write the metric for cosmic

string along the z-axis as follows [53, 54],

ds2 = dt2 − dz2 − dρ2 − (1− 4Gµ)2ρ2dφ2 (3.4)

Figure 3.2: Deficit angle in cosmic string space time. (Credit-Smoot Group)

If we compare this equation with the normal cylindrical metric, we can see this φ co-

ordinate is different. We redefine the φ co-ordinate in the above equation by replacing
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the following,

φ′ = (1− 4Gµ)φ (3.5)

The above equation will look like,

ds2 = dt2 − dz2 − dρ2 − ρ2dφ′
2

(3.6)

In normal cylindrical coordinate φ varies from 0 to 2π, but here φ′ co-ordinate is varying

from 0 to (1 − 4Gµ)2π. So there is a deficiency in the azimuthal angle. This deficit

portion is called the deficit angle, ∆ = 8πGµ. So space time geometry of a cosmic string

will be a cone. So if two particle moving in parallel lines pass through the cosmic string

space time, they will meet after some time. This has been shown in the fig 3.3.

Figure 3.3: Motion of two particle moving in parallel line in cosmic string space time.
(Ref.[52])

So if a cosmic string is moving in the plasma, due to this conical space time, a wake like

structure can form behind the moving cosmic string. In the next section we will discuss

about the cosmic string wakes.

3.2.2 Wake formation

Cosmic strings are not stationary in the plasma, they always move with an high velocity.

The velocity of a cosmic string is near about the speed of light [55]. Moving cosmic strings

generates wake behind them. The geometry of space time is locally flat but globally

conical around a cosmic string. If a string moves through a plasma due to the conical

geometry of its space time, it will give a velocity perturbation to the nearby matter.

As the matter moves toward the region behind the cosmic string from both sides the

matter density will increase at that region and it will form some sort of two-dimensional

structure. This is called a cosmic string wake.
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Figure 3.4: Cosmic string wake

The formation of cosmic string wake has been studied both analytically as well as nu-

merically. Planar wake formation have been studied with both hot and cold dark matter.

Since cosmic string wakes were one of the important candidates for structure formation,

therefore, clustering of the baryons in the cosmic string wakes has also been studied.

As mentioned before, cosmic string wakes arise due to the conical nature of space time

around a cosmic string. A cosmic string has a deficit angle given by δθ = 8πGµ, where

µ is the mass per unit length of the string. If a string is moving with a velocity vsin a

particular direction in a plane, the particles moving along that plane will get a velocity

perturbation ∆v due to the deficit angle of the string. As the string moves forward, an

observer behind the string would see matter streaming past it. Apart from the velocity

of the particles, the particles also feel a velocity kick towards the center of the plane

behind the string. The magnitude of the kick is given by δv ≈ δθvsγs where vs is the

velocity of the string and γs is the relativistic factor. As more and more particles are

kicked towards the string, an overdensity or wake is generated behind the string. A

detailed description of wake formation is given in ref. [56, 57]. So overdensities are

generated in the cosmic string wake. These overdensities have several consequences in

the early universe. In the next section we will discuss about the baryon inhomogeneities

in the early universe.

3.3 Generation and evolution of baryon inhomogeneities

Baryon overdensities may be formed at the time of the quark-hadron transition in the

early universe. Initially, they were formed during the first order phase transition. The

first-order phase transition occurs with the nucleation of hadronic bubbles. As these

bubbles come together and coalesce, the baryon number is concentrated in small areas

between the bubble walls. This is because the baryon number prefers to be in the quark

phase rather than the hadronic phase. Details of the formation of such baryon inho-

mogeneities can be obtained from ref.[45, 58, 59] and references therein. Consequently

lattice QCD results showed that the quark hadron phase transition may not be a first
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order phase transition. However, there are several situations that may occur in the early

universe where the QCD phase transition is still a first order phase transition [60]. In

such cases baryon inhomogeneities will form in the early universe. Baryon overdensi-

ties can also be generated during the electroweak phase transition [1]. There are other

ways to generate such overdensities before the quark hadron transition. The baryon

overdensity can be generated by collapsing Z(3) domain walls [2] in the electroweak

scale.

The generation of baryon overdensities by moving Z(3) domain walls has been discussed

by Layek et. al [2]. The profile of the overdensity is measured by n(R) which is the

baryon density left behind at a distance R from the center of the collapsing Z(3) domain

wall. This n(R) can be about 1000 times the background density for an area of radius

10m. They had explicitly calculated the transmission coefficients of the up, down and

strange quarks through the domain wall. It has been found that the number density

of strange quarks is larger by an order of magnitude for the same size of the overden-

sity. So for R < 1, n(R) for up and down quarks is about 20, 000 while it is 6 × 105

for strange quarks. Even if the parameters of the model are varied to generate lower

overdensities, it has been found for the same radius, if n(R) for up and down quarks is

about 400, for strange quarks it is 5000. Therefore these overdensities generated by the

Z(3) domain walls are dominated by strange quarks. Some of these overdensities may

satisfy the conditions to form stable quark nuggets. However, since there are stringent

conditions that need to be satisfied to form a stable object, most of these overdensities

will subsequently hadronize when the phase transition temperature is reached.

There are other thermodynamical models that model the hadronization of quarks into

hadrons [61]. A detailed review of this hadronization process can be found in [62].

There are two phases here, one phase consists of the up, down and strange quarks

while the other phase has the hadrons, which are composites of these three quarks.

Since the universe is in thermal equilibrium, we can define the grand canonical partition

function for the composite particles. The composite particles are the hadrons. The grand

canonical partition function depends on the temperature and the chemical potential of

the particles. As the phase transition from the QGP phase to the hadronic phase takes

about 10µs, at the end of the phase transition chemical equilibrium is firmly established.

This allows us to associate the number density of the particles formed after the phase

transition from the initial number density of the quarks. This has been discussed in

detail in ref. [62]. They have shown that how the chemical potential of the quarks

evolves after the hadronization, in the absence of inhomogeneities as well as the hadrons

and mesons. According to them the number density of the protons, neutrons, kaons

and lambdas are of the order of 1035 particles/cm3 around 100 MeV. The kaons and

hyperons, formed after the phase transition, will however be unstable and decay to pions
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and muons. It has been shown in ref [62] that at around 10 MeV their number densities

decrease to about 1020 particles/cm3. Now we will see how the presence of the baryon

inhomogeneities generated by the collapsing domain walls can affect these numbers.

The collapsing domain walls generate inhomogeneities where the number density of

strange quarks is 10 times greater than the magnitude of the number density of the

up and down quarks. This means that ns ≈ 10nd. Now as mentioned in ref.[62], the

chemical potential of hadrons is equal to the sum of the chemical potentials of their

constituent quarks in equilibrium. However, the universe will still have to maintain the

various constraints such as charge neutrality, constant entropy to baryon ratio etc. So

after the hadronization, one will see a change in the number densities of the hadrons

formed. The number density of the particles is given by the following equation,

ni =
gi

2π2

∫ ∞
mi

dEE
√
E2 −m2

i ×
(

1

e(Ei−µi)/T ± 1
− 1

e(Ei+µi)/T ± 1

)
(3.7)

However, it has been argued [63] that at temperatures close to the QCD phase transition

the net number densities can be approximated to

ni =
1

6
giT

2µi +O(µ3
i ) (3.8)

for fermions. Here, i represents particles present in the plasma at that time.

The hadrons, formed after the phase transition, are the protons, the neutrons, the mesons

and the hyperons. Since the number density of strange quarks in the plasma are higher

than the other quarks, a larger number of hyperons and kaons will be obtained in the

region of the inhomogeneities.

Some of the particles like the Σ particle, which have a very short lifetime ((7.4± 0.7)×
10−20 secs) will decay instantaneously after the formation. Since the hadronization

occurs around 200MeV , the typical timescales are much longer. At the QCD phase

transition, the Hubble time is of the order of 10−5 secs [64]. One important thing is that

due to the background gas of photons and leptons, the timescale of the hadronic decay

processes may not be the same as in vacuum [62]. As the mass of the lambda particle

is closest to the protons and neutrons, it has a longer lifetime (2.60 × 10−10 s). The

lambda particles, after decay, will produce neutrons or protons and pions. The cascade

particles will also decay into neutrons or protons and pions in two steps. They have a

lifetime of (2.90× 10−10s).

Next we look at the mesons present after the hadronization, these are the pions and the

kaons. They have lifetimes of the order of 10−8 secs. The other mesons have significantly

smaller lifetimes 10−17 − 10−23 secs. The kaons decay into pions and muons as well as
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muon neutrinos. Fromerth et. al. [62] has shown that at least till 10 MeV a large number

of pions and muons remain in the plasma. So even in the absence of inhomogeneities, a

significant number density of muons (about 1038 particles/cm3) already existed in the

plasma. In the presence of the inhomogeneities, due to the decay of the excess hyperons

and kaons, number density of the pion and the muon in the plasma will increase in the

overdense regions. Hence after the completion of the quark hadron phase transition,

these overdense regions will have a higher muon concentration than the background

plasma.

So baryon inhomogeneities can be generated through different process in different tem-

perature scales. As there are inhomogeneities in the plasma in some places there will a

baryon overdensity and in some places the baryon number will be less. So there will be

diffusion in the plasma. As neutrons diffuse out of the inhomogeneity faster than the pro-

tons, so in these regions the neutron proton ratio will be different from the background.

The ratio of neutrons to protons is very important for the outcome of the primordial

nucleosynthesis. Neutron proton ratio in some place will change depending on how these

particles are diffusing. The amount of Helium produced in the plasma depends on the

amount of neutrons present as most of the neutrons contributes to the formation of

the helium. Due to the weak interaction, the neutron and the proton will be in equi-

librium. Hence if the neutron to proton ratio in the plasma is affected, it affects the

abundance of the light elements. But for all these effects to happen the inhomogeneities

have to survive up to the temperature of 1 MeV because nucleosynthesis will start at

that temperature. Baryon inhomogeneities that survive up to the nucleosynthesis epoch

will definitely affect the nucleosynthesis calculation. Hence, models generating these in-

homogeneities can be constrained using the results from the nucleosynthesis. Generally

inhomogeneities generated in the electroweak scale do not survive up to nucleosynthesis.

So they do not affect the light element abundance. But inhomogeneities generated in

the QCD scale if they have an amplitude larger than 108 will survive and affect the

nucleosynthesis calculation. [65]

As mentioned before these baryon inhomogeneities will decay through diffusion. So,

in the next two chapter we will have discussed in details about decay of these baryon

inhomogeneities in case of a stationary universe and in case of an expanding universe.

Our detailed calculations will provide constraints of the size and amplitude of inhomo-

geneities which survive up to the nucleosynthesis epoch.







Chapter 4

Decay of hadronic

inhomogeneities in an

non-expanding universe

4.1 Baryon inhomogeneities

As mentioned in chapter 3, baryon inhomogeneities can be generated during the quark

hadron phase transition in the early universe. The phase transition itself changes the

plasma from the quark gluon phase to the hadronic phase and takes place at 200 MeV.

So basically the inhomogeneities are generated at 200 MeV and start decaying after

that. The next crucial step in the evolution of the universe is the nucleosynthesis of the

light elements, which takes place at 1 MeV. So our interest is to study the evolution

of the baryonic inhomogeneities in this time period i.e between 200 MeV to 1 MeV. As

we have discussed in chapter 2, it is quite possible that the quark hadron transition

is a first order phase transition. It has been shown in the literature that during a

first order quark hadron transition, quarks trapped in regions between the hadronic

bubble walls gives rise to baryonic inhomogeneities after the phase transition [45, 58, 59].

It was also shown in some of these studies that these inhomogeneities will affect the

nucleosynthesis calculations [59]. This lead to various scenarios of inhomogeneous Big

Bang Nucleosynthesis. So the formation and evolution of baryonic inhomogeneities are

very important for the nucleosynthesis calculations.

The phase diagram of QCD based on the lattice calculations however seemed to indicate

that the quark hadron phase transition in the early universe is not a first order phase

transition. Since a second order phase transition does not have a coexistence phase

where both the phases co-exist, it is not possible to generate baryon inhomogeneities in

35
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a second order phase transition. So it seemed that baryon inhomogeneities could not

have formed during the QCD phase transition. Then Layek et. al [2] came up with

a method of generating baryon inhomogeneities irrespective of the order of the phase

transition. In their method, the baryon inhomogeneities were generated by collapsing

Z(3) domain walls. This meant that it was not necessary to have a first order phase

transition to generate baryon inhomogeneities. So even though recently there has been

some studies which imply that a first order phase transition may still occur during the

quark hadron epoch [60, 66, 67], it is no longer a necessary criteria for the study of baryon

inhomogeneities. It is also possible to generate dense inhomogeneities like metastable

quark nuggets, [68–71] and metastable H dibaryons if the strange quark is also taken

into account. However, in this chapter, we will only focus on the baryon over densities

in the hadronic plasma.

The two most stable hadrons are the neutron and the proton. So the baryon number is

carried by these particles in the hadronic plasma. Since there are regions of the plasma

which have a higher baryon number density, the baryon number starts to diffuse through

the plasma so that an equilibrium situation may be obtained. The diffusion occurs from

the over dense regions to the under dense regions of the plasma. This diffusion of

the neutron and the proton has been studied previously in the literature [17, 18, 72].

Other than the neutron and the proton, the other particles which are abundant at those

temperature are the electrons, the muons and their respective neutrinos. In the previous

studies, the muon was never taken into account since it’s number was always less than

the neutrons and protons. Other hadrons even if they are formed would be unstable and

decay over a short period of time. As we have mentioned before a new mechanism to

generate baryon overdensities was proposed by Layek et. al. this was followed by other

studies of collapsing Z(3) domain walls by Atreya et. al. [73, 74]. These studies showed

that the quarks did not pass uniformly through the Z(3) domain walls. This further

meant that there would be some regions in the plasma where the number density of

strange quarks would be greater than the number density of the up and down quarks.

The collapsing domain walls would then lead to the generation of a large number of

hadrons which have a strange quark. These are mostly the lambda hyperons, the kaons

etc. But these particles are unstable and would decay within a very short time. The

final decay products of these unstable particles are the muons and the pions as well as

the neutrinos. The pions again decay to give muons. Kaons also decay into muons.

Dense quark nuggets formed during the QCD phase transition evaporate by decaying

into kaons. These kaons further decay to give more muons. Thus for all these scenarios,

the muon number density in the plasma is quite high and cannot be neglected. We

therefore decided to look at the decay of baryonic inhomogeneities in the presence of the

muons.
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Since the neutrons and the protons are diffusing through the plasma, we have to use

the diffusion equation to study the evolution of the baryon number density. This would

mean obtaining the diffusion coefficient for the given plasma particles. The diffusion

coefficient has to be obtained in the presence of the neutrons, the protons, the muons

and the electrons. That the muon contribution cannot be neglected was shown in a recent

work [75] where the authors found that the inclusion of the muons increased the bulk

viscosity of the plasma. The viscosity is increased by a 100 million times. This means

that the contribution of the muon particles in the hadronic plasma cannot be neglected.

A similar conclusion can also be reached for the pions, studies have shown that the pion

contribution to the plasma affects the total entropy of the universe [76]. Pions, however

are unstable and decay into muons. Therefore, we only include the contribution of the

muons when calculating the diffusion coefficients of the plasma particles.

In this chapter, we proceed to calculate the nucleon diffusion coefficients (which are

necessary for the diffusion equation) in the presence of the muons. We refer to both the

neutron and the proton as the nucleon, since the two particles are in equilibrium with

respect to weak interactions at temperatures up to 1 MeV. The particles keep changing

continuously into each other and are generally indistinguishable. Later, below 1 MeV,

the weak interactions fall out of equilibrium and the neutron and proton are no longer

indistinguishable. Since the protons are charged they interact with both the neutrons

and the electrons. The interaction with the electrons is the Coulomb interaction. The

neutron being an uncharged particle does not interact with the electrons in the plasma.

This is also because the neutrons are far more heavier than the electrons. Now that we

are interested in the muons in the plasma, we have to obtain the scattering cross section

of the muon with the proton, the neutron and the electron. That will enable us to do a

proper study of the decay of the baryonic inhomogeneities in the hadronic plasma.

Another consequence of the decay of unstable particles is the production of a large

number of muon neutrinos. This changes the chemical potential of the muon neutrino.

Neutrino degeneracy and its effect on nucleosynthesis has been already studied before

[77]. Constraints on antimatter domains and other baryon inhomogeneities are also

obtained from nucleosynthesis calculations [78, 79]. We review some of these calculations

for the baryon inhomogeneous case dominated by strange quarks. As mentioned earlier,

such inhomogeneities would form from the collapse of Z(3) domains around the time of

the quark hadron transition. Although it is difficult to derive strict constraints from the

results of nucleosynthesis due to the fact that it is a combination of all three neutrino

degeneracies, some limitations may still be placed on degenerate muon neutrinos. We

use one of the available nucleosynthesis codes based on Wagoner-Kawano code [80] and

modified by S. Dodelson [81] to search for constraints coming from nucleosynthesis. The

nucleosynthesis code makes it possible to modify the parameters of neutrino degeneracy
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and obtain an abundance of primordial elements. There have been previous studies on

the effect of neutrino degeneracies on nucleosynthesis [77]. There are a very wide range

of baryon to photon ratios. We restrict ourselves to the current value of the baryon to

photon ratio and obtain the primordial abundances for different values of the chemical

potential for muon neutrinos (ξµ) and electronic neutrinos (ξe).

In the next section we will briefly discuss the baryon overdensities and deduce the diffu-

sion coefficient of the nucleon through the plasma including the neutrons, the protons,

the electrons and the muons.

4.2 Diffusion Coefficients of nucleons

We have already discussed the generation of baryon inhomogeneities in the previous

chapter. Here we will discuss about the diffusion from those inhomogeneities. The nu-

cleon diffusion coefficient has been studied extensively in many references [17, 18]. These

references have discussed the diffusion coefficients at the time when the weak interac-

tion is out of equilibrium, i.e for temperatures below 1 MeV. However, overdensities

are formed around the temperature scale 200 − 100 MeV. Therefore, nucleon diffusion

from the overdense regions begins at about the same time. In this temperature scale

weak interactions are in equilibrium. So at these temperatures we cannot distinguish

between protons and neutrons. However, to attain the equilibrium in the baryon num-

ber distribution hadronic particles would still try to move out of the overdense regions.

So we need to analyze the diffusion to understand how these overdense regions will

decay. Neutrons and protons collide with electrons and decay into each other. Other

hadrons, such as hyperons and kaons, will decay to give lots of pions and muons. Fi-

nally, the plasma is composed of protons, neutrons, electrons, muons and their respective

neutrinos. We need to determine the nucleon diffusion coefficient at this temperature.

Therefore, we have to calculate the scattering cross-section for the nucleon-electrons and

nucleon-muons interaction.

In a gaseous system if a heavier particle diffuses through a plasma of lighter particles,

the diffusion coefficient of a heavier particle is given by the Einstein’s equation D = b T .

Here, b is the mobility of the heavier particle and T is its temperature. For a Maxwellian

distribution of particles, the expression of the mobility is given by,

b−1 =
16π

T

∫
p2dp

3h
vp2σte

−E/T (4.1)

Here σt is the scattering cross-section, and v is the velocity of the particles.
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As we have considered many particles in the plasma, here we are dealing with multi-

particle diffusion. Multi-particle diffusion depends on the concentration of the particles

that we have considered in our plasma. The effective diffusion coefficient for multi-

particle diffusion is given by [82],

(1− xi)
Di

=
∑
i 6=j

xj
Dij

(4.2)

Here i and j denote different particles of the plasma. Di denotes the diffusion coefficient

of the ith particle and Dij denotes the diffusion coefficient of the ith particle in the

presence of the jth particle. As we are not considering the self interaction, to avoid self

interaction we have taken i 6= j. If N is the total particle density, and ni is the number

density of the ith particle, then xi = ni
N

Now we will calculate the scattering cross-sections of the interactions to get the diffusion

coefficients for each interactions. The nucleon - electron cross section is dominated by

form factors. The neutron - electron and the proton - electron scattering cross-sections

are not the same because neutron is a neutral particle but proton is the positively

charged particle. So we have to calculate the neutron - electron and the proton - electron

scattering cross-sections separately.

Now, let us consider the neutron-electron scattering. The amplitude of the electron

vertex is −ieγν(q2) and the neutron vertex is ieΓµ(q2), where

Γµ(q2) = γµF1(q2) +
iκ

2M
F2(q2)σµνq

ν (4.3)

Here M is the neutron mass, qν is the transferred four-momentum, F1(q2) and F2(q2)

are Dirac and Pauli form factor. γµ is the Dirac gamma matrices.

σµν =
1

2
i[γµ, γν ] (4.4)

At the energies we consider the form factors can be evaluated at q2 ≈ 0. For neutron

F1 = 0 and F2 = 1. Our neutron vertex will be

Γµ(q2) =
iκ

2M
σµνq

ν (4.5)

The invariant scattering matrix will be

m = [ū(k′)(γν)u(k)](−e
2

q2
)[ū(p′)(Γµ)u(p)] (4.6)
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The scattering amplitude will be given by

|m|2 =
1

4

e4

q4
Tr[( /k′ +m)γµ(/k +m)γν ]Tr[(/p′ +m)Γµ(/P +m)Γν ] (4.7)

As mentioned before we are looking at the mobility of a heavy particle passing through

a gas of light particles. Here, the neutron is the heavier particle and we assume that it

is moving through a electron-positron gas. The scattering cross section of the neutron

is then given by,

dσ

dΩ
=

α2κ2q2

16M2E2sin4(θ/2)

E′

E
×
[
1 + sin2(θ/2)

]
=
α2κ2

4M2
[1 + cosec2(θ/2)] (4.8)

Here E is the electron energy before the scattering and E′ is the electron energy after

scattering and θ is the scattering angle. The transport cross section σt, is defined by

σt =

∫
dσ

dΩ
(1− cosθ)dΩ (4.9)

Substituting the scattering cross-section we get,

σt = 3π

[
ακ

M

]2

(4.10)

Substituting the expression for the transport cross-section in the definition of the diffu-

sion coefficient, we finally obtain,

Dne =
M2

32m3

1

ακ2

e1/T

Tf(T )
. (4.11)

M , here is the neutron mass, m is the electron mass, κ = −1.91 is the anomalous

magnetic moment and the temperature is dimensionless as it is scaled by a factor of

mec
2. We also have f(T ) = 1 + 3T + 3T 2.

Similar to the nucleon- electron cross-section, we can also obtain the nucleon-muon

scattering cross-section. The amplitude of the muon vertex is similar to the electron

vertex. It is given by −ieγν(q2). Though the muon is heavier than the electron, it is

still lighter than the neutron. Hence we can still consider its mass to be much smaller

than the neutron mass. The heavier neutron will not move very fast compared to the

lighter particles, therefore we can consider q2 ≈ 0. The form factors will then be F1 = 0
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and F2 = 1. The neutron vertex is given by Γµ(q2) = iκ
2M σµνq

ν . The differential cross-

section will then be,

dσ

dΩ
=

α2κ2q2

8M2E2sin4(θ/2)

1

1 + 2Esin2(θ/2)/M
×
[
cos2(θ/2)

1− q2/4M2

(
q2

4M2
− 1

)
− 2sin2(θ/2)

]
(4.12)

We assume that the muon energy and mass are less than the neutron mass. This

simplifies the cross-section and we can get an approximate cross-section given by,

dσ

dΩ
≈ Kα2κ2

4M2
[1 + cosec2(θ/2)] (4.13)

Here all the constant values are put together and substituted by a single constant K = 1
2 .

We have also assumed that the heavy neutron particle is moving through a muon-

antimuon gas. The mobility of the neutron is given by the force on the neutron due to

the medium. This force is given by the interaction cross section. Substituting in the

definition of the diffusion constant, the diffusion coefficient of the neutron through the

muon-antimuon gas is given by,

Dnµ =
M2

32m3
µ

1

ακ2

e1/T ′

T ′f(T ′)
(4.14)

Here T ′ = T
mµc2

. Now that we have both Dne and Dnµ, we can get the total diffusion

coefficient for the neutron moving through the plasma of electrons, muons and their

anti-particles. From equation 4.2, we see that it depends on the concentration of the

particles in the plasma.

We now proceed to find the diffusion coefficient of the proton moving through the elec-

tron positron gas. For proton-electron scattering, we have to take into consideration the

Coulomb force. So the scattering cross section is given by,

dσ

dΩ
=

α2m2
e

4k4sin4(θ/2

[
1 +

k2

m2
e

cos2(θ/2)

]
(4.15)

The transport cross section is then given by,

σt = 4πα2

[
Eeh

2πk2

]2

ln(
2

θ0
) (4.16)

where θ0 is the minimum scattering angle. On substitution, we get the diffusion coeffi-

cient as,

Dpe =
3π

8α2ln( 2
θ0

)

[
h

2πme

]
Te1/T

f(T )
. (4.17)
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Similar to the proton electron cross section, we can calculate the proton muon cross

section too. The differential cross section is given by,

dσ

dΩ
=

α2

4E2sin4(θ/2)

1

1 + 2Esin2(θ/2)/M
×[(

1− κ2q2

4M2

)
cos2(θ/2)− q2

2M2
(1 + κ)2sin2(θ/2)

]
(4.18)

We are interested in the temperature dependence of the diffusion coefficient. There is

no simple analytical expression for the diffusion coefficient. However, we can still get

the coefficient value numerically by substituting the constants and calculate the final

diffusion coefficient by following the same steps as before. After getting the transport

cross-section we use it to calculate the diffusion coefficient. The values of the numerically

obtained diffusion coefficients are given in the next section. We have not considered here

the collision of neutrons and protons, because at high temperatures (above 100 MeV)

neutrons and protons are kept in thermal equilibrium with each other by weak interac-

tions. This equilibrium will be maintained as long as the duration of weak interactions is

short compared to the time of cosmic expansion. Therefore, we do not think of neutrons

and protons as two independent particles colliding.

Immediately after the hadronization of the quarks, the number density of the electrons

and the muons can be obtained at thermal equilibrium. We see from ref.[63] that the

number densities of leptons after hadronization is given for different values of the lepton

asymmetry . We have got that the number density of electrons and muon are of the same

order. For electrons and muons both number density is around ni
s ≈ (4×105)MeV −1 in

the temperature scale 200MeV − 100MeV . The number density starts to vary around

150MeV . If there were no inhomogeneities present then the muon number density is

equal to the electron number density. Due to the presence of the inhomogeneities, the

number densities can change. Here we make an estimate in the change of the number

density and then proceed to study how the diffusion coefficient changes depending on

the change in the concentration of the electrons and the muons.

4.3 Diffusion Coefficients after the Quark-Hadron phase

transition

We are looking at the diffusion coefficients at temperatures greater than 100 MeV. The

quark hadron phase transition occurs around 200 MeV. The inhomogeneities are formed

after the phase transition. As mentioned before, inhomogeneities with a large number

of strange quarks will hadronize to give a large number of hyperons immediately after



Chapter 4 Decay of hadronic inhomogeneities in an non-expanding universe 43

the phase transition. These hyperons have a short lifetime and decay into pions and

muons. The pions too subsequently decay into muons. So the number density of muons

would be high around these temperatures.

In ref.[62], the authors have calculated the number of particles per cm3 after hadroniza-

tion in the absence of inhomogeneities. There we find that the number density of the

electrons at 100 MeV is of the order of 1035 particles per cm3 and the muon num-

ber density is only slightly less than that. In their calculation, they have considered

µs = µd, however in the presence of the inhomogeneities due to Z(3) domain walls we

have ns ≈ 10nd. This translates to a higher number of hyperons and kaons. These will

decay to nucleons, electrons and the muons.

Since the plasma has the nucleons, electrons and the muons, we are using the multipar-

ticle diffusion coefficient mentioned previously. As xi is the fractional number density,

we have the constraint that
∑

i xi = 1. If all the particles are distributed evenly in

the plasma then xi = 0.25. However that is not so, hence we now need to find out

what should be the values of xn, xp, xe, xµ in the inhomogeneities. Generally at these

temperatures, the leptons dominate the energy density and the neutrons and protons

constantly change into one another so xn = xp and xn + xp < xe + xµ. The excess

of strange quarks in the inhomogeneities implies that the number density of hyperons

and kaons have increased. Now as has been mentioned before, the hyperons decay into

nucleons and pions. A typical decay mode of a hyperon would be Λ0− > p+ + π− or

Λ0− > n0 + π0. The pions decay into muons ( π−− > µ− + νµ). So the strange quarks

would increase the number density of nucleons as well as pions and muons. The decay

of the kaon may lead to two possibilities. The kaons can decay into muon/antimuon and

muon neutrino or electron/positron and electron neutrino. Now as per the branching ra-

tio of these reactions, the probability of kaons decaying into muon/antimuon and muon

neutrino is far greater than the probability of kaons decaying into electron/positron and

electron neutrino. According to the particle data group the branching ratio of the for-

mer is 64 % while it is only 5% for the latter. Thus it is clear that the inhomogeneities

will give rise to an excess muon number density. For the case of the kaons decaying to

muon/antimuon and muon neutrino we use the values xn = xp = 0.2, xµ = 0.4 and

xe = 0.2. This case is referred to in the graphs as xe < xµ. We have not considered the

case of xe > xµ since the current data suggests that it is highly improbable. The case

xe ≈ xµ is the absence of any inhomogeneity.

We start by calculating the diffusion coefficients of the neutrons and the protons in a

plasma that has a high density of muons. The number densities of the electrons and

the muons are kept the same. This is done so that we can focus on the presence of the

muons in the plasma. The fig. 4.1 shows the plot of the total Dn vs temperature while
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Figure 4.1: Diffusion coefficient of neutrons in the electron, neutron and muon plasma.
The (black) dashed line denotes xe < xµ and the (red) dot- dashed line denotes xe ≈ xµ.

fig 4.2 has the plot of the Dp vs temperature. The two lines denoting the two cases

are as follows, the (black) dashed line denotes case (1) (xe < xµ) and the (red) dot -

dashed line denotes case (2). Now, if the particle densities depend solely on temperature

(i,e in the absence of any inhomogeneities) then between 175 MeV and 100 MeV the

electron particle density will be close but higher than the muon particle density [75].

As the temperature decreases, the diffusion coefficients increase. The presence of the

inhomogeneities however increases the number density of the muons. As the number

density of muons increase, we notice that the diffusion coefficient is increasing more.

Thus the presence of muons changes the diffusion coefficient of the neutron considerably.

This will definitely affect the decay of hadronic inhomogeneities at temperatures above

100 MeV.

While we have calculated the number densities of the particles based on the standard

decay paths and branching ratios, there is always the possibility that non-standard

decays can occur and the nucleon density may be greater in the baryon inhomogeneity

then in the background plasma. This can occur if a large number of hyperons decay via

Λ0− > n0 + π0. The π0 will decay into photons and we will have a neutron excess in

the plasma. This means that the neutron density need not be fixed with respect to the

muon density. We have checked what happens if the neutron density are more but we

see no significant differences.
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Figure 4.2: Diffusion coefficient of protons in the electron, neutron and muon plasma.
The (black) dashed line denotes xe < xµ and the (red) dot- dashed line denotes xe ≈ xµ.

From all the figures we can conclude that the diffusion coefficient starts to increase

as the muon density is increased. Thus these graphs show that the presence of the

muons changes the diffusion coefficient of the neutron/proton through the plasma. The

diffusion coefficient being increased, the nucleons move faster through the plasma. So a

baryon over dense region will diffuse at a faster rate if the muon number density is higher.

However, this only happens when temperatures are quite high. As the temperature cools

to 1 MeV, the number density of muons go down. During this period, the contribution to

the diffusion coefficient from the muons becomes negligible. Fig. 4.3 gives the diffusion

coefficient at temperatures less than 1 MeV. As seen from fig. 4.3, the presence of

the muons does not really change the diffusion coefficient around 1 MeV. We have thus

established that the diffusion coefficient of the neutrons and protons change significantly

due to the presence of the muons in the plasma in the overdense regions immediately

after the quark hadron transition. We would now like to see what effect these new

diffusion coefficients would have on the diffusion of hadronic inhomogeneities formed

around the time of the quark hadron phase transition.
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Figure 4.3: Diffusion coefficient of neutrons in the electron, neutron, proton, and
neutrino plasma at temperatures below 10 MeV. The (red) dotted line denotes the
presence of muons in the plasma. The (blue) solid line denotes the plasma without the

presence of muons.

4.4 Decay of inhomogeneities

We now look at the decay of baryon inhomogeneities in the plasma around those temper-

atures. Baryon inhomogeneities generated at the quark hadron phase transition should

be at least of the scale of 0.4 m (at 200 MeV) to affect nucleosynthesis [83] calculations.

So the overdensities that may affect the nucleosynthesis results will be greater than 0.5

m. The horizon scale in the QCD epoch is of the order of a few kilometers. So an

inhomogeneity with a lengthscale of 0.5 m does not span the whole of the universe.

This means that for the over density the universe is practically stationary. Thus we will

neglect the expansion of the universe when considering the diffusion equation for these

overdensities.

We treat the inhomogeneity as a Gaussian function whose peak value at the initial time

t0, is given by 1015MeV 3. The average number density of the background plasma is

of the order of 107MeV 3 and baryon overdensities can be as large as 108 times the

background density [2]. In general, the diffusion equation is given by,

D(t)

a2

∂2n(x, t)

∂x2
=
∂n(x, t)

∂t
(4.19)

where D(t) is the diffusion coefficient which is dependent on the temperature and there-

fore the time in the early universe. Here a2 is the scale factor of the expanding universe.
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Figure 4.4: The decay of the inhomogeneity in a plasma with equal number of elec-
trons and muons.

Since the diffusion coefficient is time dependent, we solve the time dependent diffusion

equation numerically to see the evolution of the inhomogeneities with time. We use a fi-

nite difference method to obtain the numerical solution of the diffusion equation for the

different diffusion coefficients obtained previously. Since our diffusion coefficients are

expressed in terms of temperature, we use the standard time temperature expression

to obtain the diffusion equation in terms of temperature. Therefore, now our number

density depends on space and temperature n(x, T ). We consider the inhomogeneity at

T = 175 MeV, we then evolve the inhomogeneity with a given diffusion coefficient.

We assume for the time being that the ratio of the fractional number densities of the

different particles are more or less constant through out the time of evolution of the

diffusion equation. That way the diffusion coefficient is only dependent on temperature.

Initially the number density decreases slowly. As time increases (temperature decreases),

the peak of the inhomogeneity goes down and it spreads out in space. We initially show

how an overdensity decays in a plasma which has equal numbers of electrons and muons

in fig. 4.4, in fig. 4.5 we have plotted the decay of the overdensity in a muon rich plasma.

From the two plots, it is clear that the muon rich inhomogeneities decay faster. The

difference in the decay increases as the temperature cools down. The initial profile is

taken to be the same at a temperature of 175 MeV. The final profile of the inhomogeneity
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Figure 4.5: The decay of the baryon inhomogeneity in a muon rich plasma.

for the muon rich plasma is close to 2.5 × 1014MeV 3. In the case when the electron

and muon densities are the same the overdensity is close to about 2.75 × 1014MeV 3.

The initial size of the inhomogeneity was the same in both cases, so it indicates that

the hadronic inhomogeneity decays faster, in the presence of a large muon density. This

leads us to conclude that over densities which have a larger number of strange quarks

will decay away faster after hadronization. Thus they will have little or no impact on

the Big Bang Nucleosynthesis calculations.

4.5 Neutrino degeneracy parameters

Collapsing Z(3) domain walls will form inhomogeneities in the early universe and these

inhomogeneities will have a large number of strange quarks. After hadronization these

quarks will produce lots of unstable hyperons. These hyperons will decay through weak

interaction and will generate mesons and neutrinos. Since most of them decay through

the production of pions, pions continue to decay into muons and muon neutrinos, so

there will be a large number of muon neutrinos in the plasma.

The three standard model neutrinos oscillate among themselves and have the same

chemical potential at a particular temperature. So in the nucleosynthesis calculations

the three neutrinos are usually given the same chemical degeneracy parameter. However,
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it has also been shown previously, that if the lepton number densities are different for

the electron neutrino and the muon and tau neutrino, then the abundances of primordial

elements are affected [77]. Therefore if Z(3) domain walls collapse and form inhomo-

geneities during the quark hadron phase transition, we can expect a larger number

density of muon neutrinos compared to electron neutrinos. In nucleosynthesis calcula-

tions, the net lepton number is defined for each of the neutrinos. This is a dimensionless

number defined by,

Li =
nνi − nν̄i

nγ
(4.20)

This is related to the neutrino degeneracy parameters, ξi =
µνi
Tν

by the equation [84],

Lνi ≈
π2

12ζ(3)

(
Tν
Tγ

)3

(ξi +
ξ3
i

2π2
). (4.21)

During this time, the photon are slightly heated with respect to the neutrinos. Tν is

the temperature of the neutrinos and Tγ is the temperature of the background photons.

The integral can be simplified and solved in terms of the Riemann Zeta function of

order three (ζ(3)). This is what determines the energy density of the neutrinos during

nucleosynthesis.

We have used a standard code for the nucleosynthesis calculations. The core of the

computational routines is based on Wagoner’s code [80] but the code itself has been

modified by Scott Dodelson [81]. The code allows us to change the neutrino degeneracies

at the beginning of the calculation. The neutrino degeneracies depend on the chemical

potential of the neutrinos as well as the baryon to photon ratios. The current bound on

the baryon to photon ratio is quite stringent. Hence we just adhere to only one value of

the baryon to photon ratio and vary only the chemical potential of the neutrinos. The

chemical potentials depend on the number density and an order of magnitude estimate

can be obtained from eqn. 3.8 considering only the first term on the right hand side.

The temperature is taken as a constant and the degrees of freedom are the same for all

the neutrinos.

Neutrino degeneracies have been studied previously and some bounds on the degeneracy

values have already been obtained [77]. The neutrino degeneracy affects the helium and

the lithium abundances more than the other abundances so we just look at the primordial

helium and lithium abundances. In fig. 4.6, we show the abundances for ξe = ξµ in bold

while we have ξe < ξµ as the dashed line. We have considered η = 3.4×10−10. There are

two pairs of values we have considered. One of them is ξe = 0.2 and ξµ = 2.0, while the

other is ξe = 0.4 and ξµ = 4.0. Our motivation for using these values are the constraints

derived previously in ref.[85]. Accordingly, the neutrino degeneracy parameters have to

be in the ranges −0.06 ≤ ξe ≤ 1.1 and |ξµ| ≤ 6.9 to satisfy the CMB constraints. Our
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Figure 4.6: Comparison of abundances in the presence and absence of inhomogeneities
for muon degeneracy greater than the electron degeneracy.

ξe, ξµ are in these ranges and the number density of the muon neutrino is about ten

times that of the electron neutrino. As mentioned before, we cannot specify the decay

branches of the hyperons and kaons exactly hence we tried to see what could be the

maximum possible effect. Since the number density of s quarks is at least 10 times that

of the u and d quarks hence we have calculated ξµ and ξe by using eq.3.7. This gives

us the maximum possible bound. We have also tried other combinations within these

parameters but none of them showed any improvement in the final results.

Our results show that there are some small changes in the abundances of helium. The

changes are not too significant to put constraints on the inhomogeneities. However,

the lithium abundance is enhanced if we go to higher values of the degeneracies. Here,

we have kept the muon neutrino degeneracy to be higher than the electron neutrino

degeneracy at all times. Since the inhomogeneities in our model tend to decay into pions

and muons, the muon neutrino degeneracy will definitely be higher than the electron

neutrino degeneracy. This means that the lithium abundance will be higher than the

current calculated value. As is well known, the observed lithium abundance is less

than the calculated value, hence we can conclude that large inhomogeneities with a pre

dominance of strange quarks will be constrained by the lithium abundance.

Apart from the inhomogeneities from the collapsing Z(3) domains, there can be charged

inhomogeneities too. Charged inhomogeneities can be formed if the plasma has a small

charge imbalance during the quark hadron transition [86].So we also look at the case
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Figure 4.7: Plot of the abundances in the presence and absence of inhomogeneities
for electron neutrino degeneracy greater than the muon neutrino degeneracy included.

where the electron neutrino degeneracy is greater than the muon neutrino degener-

acy.This can happen if there are charged inhomogeneities in the plasma. The plot is

given in fig. 4.7. Here however we see that both the helium abundance and the lithium

abundance is reduced. Not only that, the large electron neutrino density also affects the

neutron to proton transformation rates. Thus the beginning of the lithium production

is also delayed.

Here, we notice that when the two parameters ξµ and ξe are varied there is variation in

the abundances of lithium and helium. When ξµ > ξe, the two abundances are enhanced

while if ξµ < ξe the abundances are decreased. Since the decay of the inhomogeneities

results in the variation of the degeneracy parameters, a detailed simulation would give

us further insight in understanding the quark hadron phase transition.

4.6 Summary

In summary, we have shown that baryonic inhomogeneities which have a larger number

of muons decay faster compared to inhomogeneities that exist in a muon underdense

region. In most cases, in the temperature ranges that we are considering, in the absence

of inhomogeneities, the plasma has a higher electron density compared to the muon

density. In the presence of inhomogeneities, the number density of muons are increased

depending on how the inhomogeneity is generated. It is quite possible that the muon
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density would be higher than the electron density in some of the inhomogeneities which

are formed by the collapse of Z(3) domain walls. Such a scenario had never been studied

before in the literature. Our first result concerns the diffusion coefficient of the neutron

and the proton in a muon rich plasma. We find that there are significant variations to the

numerical value of the diffusion coefficient that we obtain for the muon rich plasma. This

significant change will result in the faster decay of inhomogeneities above 100 MeV. It is

well known that an inhomogeneity decaying in a plasma with equal numbers of electrons

and muons, has to be of the order of 0.4 m to survive till the nucleosynthesis epoch.

But in a muon rich plasma, the size of the inhomogeneity has to be at least 5% bigger

to survive to the nucleosynthesis epoch. So any mechanism that segregates the strange

quarks more than the up and down quark must generate very large inhomogeneities

to have any effect on the nucleosynthesis calculations. Inhomogeneities which have a

predominance of strange quarks thus decay faster than inhomogeneities which have the

different quarks in a more or less equal proportions.







Chapter 5

Decay of baryon inhomogeneities

in an expanding universe

5.1 Introduction

The electroweak phase transition as well as the quark hadron transition generates baryon

inhomogeneities [1, 58, 59, 87–89]. Usually in the electroweak scale most of the inhomo-

geneities are generated by topological defects [90–99]. Baryonic inhomogeneities in the

early universe, are usually constrained by the nucleosynthesis calculations. Though they

do have other consequences, we are interested in inhomogeneities that survive till the

nucleosynthesis epoch. Inhomogeneities which are generated in the electroweak epoch

affect the quark-hadron phase transformation [100] but will probably not survive till the

nucleosynthesis epoch. The only study of the decay of these inhomogeneities was done

by Jedamzik et.al.[16] and they concluded that the inhomogeneities decay very little due

to the neutrino inflation in the quark gluon plasma. The study of Jedamzik et.al did not

include the presence of all the other particles in the plasma. There have been quite a few

studies of the decay of these overdensities in the hadronic plasma. However, as discussed

in the previous chapter not all particles were taken into account for these studies. In

this thesis, we want to do a complete study of the decay of these inhomogeneities in an

expanding universe using the diffusion equation.

Previously as mentioned in the last chapter, the diffusion equation has already been

studied for the case of baryon diffusion in a proton-neutron plasma [101–103]. In this

chapter, we will discuss the diffusion of baryon number carried by the quarks. This

has not been studied in the literature before. Since we develop a FORTRAN code for

solving the diffusion equation in an expanding universe, we also use it to redo the study

of diffusion in an expanding hadronic plasma. This is an extension of the diffusion in

55
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the hadronic plasma studied in the previous chapter [103]. The expansion term in the

diffusion equation is found to make a significant difference in the final results.

The inhomogeneities generated in the electroweak epoch and the inhomogeneities gener-

ated in the QCD epoch are different in scale and size. We have previously discussed the

generation of these inhomogeneities in the previous chapters. The universe size is smaller

in the electroweak epoch and so the size of the inhomogeneities are also smaller. For

the QCD epoch, the universe size is larger and therefore the sizes of the inhomogeneities

are also larger. Apart from this, the amplitude of the overdensities are greater in the

QCD epoch than in the electroweak epoch [45]. The particle content of the plasma is

also very different in the two epochs. The plasma in the electroweak epoch consists of

the quarks, the muons, the electrons and the neutrinos, while the plasma in the QCD

epoch consists of the neutrons, protons, muons and the three flavors of neutrinos. Due

to all these differences, we consider the cases of the electroweak epoch and the hadronic

epoch separately.

Since it is non trivial to solve the diffusion equation in an expanding universe, we make

some basic assumptions to simplify our problems. First and foremost, we look only at

sub horizon scale fluctuations. The second important assumption is about the size of

the fluctuations. The size should be larger than the mean free path of all the particles

in the plasma. Our third assumption is that all the baryon number violating processes

are neglected. Such processes can only occur around 200 GeV so this assumption will

not affect the diffusion in the hadronic phase. We also assume that the baryon den-

sity fluctuation is a Gaussian. The Gaussian distribution function is the most general

distribution function. Generally, the diffusion equation is solved in the Minkowski met-

ric, but here we have solved it in the Friedmann–Lemâıtre–Robertson–Walker (FLRW)

metric. To obtain the sizes and amplitudes of the Gaussian distribution, we refer to the

literature on the generation of the inhomogeneities in the electroweak epoch and the

QCD epoch. For the Gaussian distribution in the electroweak epoch we use the size and

amplitude from reference [1]. The scale is taken as 10−3 cm and the amplitude is taken

as 104 over the background baryon density. In the QCD epoch, the scale is about one

meter and the amplitude is between 1012 − 1013. Before going into the details of the

simulation, we would like to discuss the diffusion equation in an expanding universe.

5.2 The diffusion equation in the FLRW metric

The FLRW metric for the flat universe is defined by,

ds2 = c2dt2 − a2(t)d~r2 (5.1)
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Here a(t) is the scale factor of the expanding universe and ~r is the spatial coordinate.

This is the comoving distance in an expanding universe. We consider a region of the

universe with an inhomogeneity given by n(~r, t). As time evolves, the particles in the

over dense region tend to move towards the lesser dense region to restore equilibrium

and a particle flux is generated. In this case, we consider the diffusion to be isotropic.

The local observer then sees the particle flux as,

jk = −D(t)
∂

∂xk
n(~r, t) (5.2)

The diffusion coefficient D(t) depends on the scattering cross section and the velocity of

the particles. Since there are different kinds of particles in this plasma, we are dealing

with multi-particle diffusion here. The conservation of current gives us,

∂

∂xµ
(
√
gjµ) = 0 (5.3)

Here
√
g = a3(t) and using the definition of the Hubble parameter as H(t) = ȧ(t)

a(t) , the

diffusion equation can be written as,

∂

∂t
n(~r, t) + 3H(t)n(~r, t)− D(t)

a2
∇2n(~r, t) = 0 (5.4)

So we have obtained the diffusion equation for the FLRW metric. There is no exact

solution to this equation. Also, the diffusion coefficient in the equation is time dependent.

An exact form of the diffusion coefficient is also not available. Hence we need to solve this

equation numerically. The diffusion coefficient depends on the scattering cross section of

the particles present in the plasma. The scattering cross sections of relativistic particles

depend on temperature. Since the temperature of an equilibrium universe is related

to the time we can change the variable in the diffusion equation to temperature. This

would give us the numerical solution at a given temperature instead of a given time. In

the early universe, time is related to the temperature by,

t =
(0.95× 1010)2

T 2
(5.5)

Here t is in secs and T is in Kelvin. Now our independent variable is temperature instead

of time and we will solve the diffusion equation in terms of temperature ranging from

200 GeV - 200 MeV. Before we proceed to solve the diffusion equation, we must however

obtain the diffusion coefficients of the different particles in the plasma.
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5.3 Diffusion in the electroweak scale

For the inhomogeneities in the electroweak epoch, the relevant temperature scale is

200 GeV. The particles in the plasma at this temperature scale are the quarks, the

electrons, the muons and the neutrinos. Since the baryon number is carried by the

quarks, we need to study the diffusion of quarks through the electrons, the muons and

the neutrinos. The baryon over densities therefore translate to over densities in the

quark number in this epoch. We have to treat the individual interactions separately,

since the masses of the particles vary considerably. The diffusion of a massive particle

through a gas of lighter particles has to be analysed differently compared to the diffusion

of a lighter particle moving through a plasma of heavier particles. The detailed scenarios

are discussed in the textbook by Lifshitz [104]. Here we do not go into the derivation

of the diffusion coefficient from the transport equations of the individual particles. We

obtain the equations directly from the textbook that we have referred to. The derivation

of the coefficient D is straightforward and hence we do not reproduce them here again.

The quarks are lighter than the muon and hence we will have the diffusion coefficient of

the quarks moving through the muon as,

D =
1

3N

〈
v

σt

〉
=

(
T

πm

)1/2
23/2

3σt
(5.6)

Unlike the previous case, the quarks are heavier than the electrons so we find out the

mobility of the particle in a background fluid which is lighter than the particles moving

through it. This is done by choosing an appropriate distribution function. The distri-

bution of the particles is assumed to be Maxwellian. This means that the mobility of

the particle is given by,

b−1 =
16π

T

∫
p2dp

3h
vp2σte

−E/T =
16σtm

2t2

3π2
. (5.7)

Here σt is the scattering cross-section, m is the mass of the particle. We consider the

velocity of the particle to be ~v. So the mobility b can be related to the external force

(~f) by, ~v = b~f and the diffusion coefficient is given by,

D = bT (5.8)

Therefore, to obtain the value of the diffusion coefficients, we first need to calculate the

scattering cross sections. As there is no general expression for obtaining the scattering

cross section of the multiple particles present in the plasma, we calculate the scattering

cross section between any two individual particles separately in the next few subsections.
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We then substitute these in the expression for the diffusion coefficient D and solve the

diffusion equations numerically. We emphasize once more that our independent variable

here is the temperature and not the time.

5.3.1 Quark-electron scattering

We start with the motion of quarks through the electron gas. For this we need to find the

scattering cross section for the e−e+ −→ qq̄ interaction. The differential cross section is

given by,

dσ

dΩ
=
Q2
fα

2

2s

(
u2 + t2

s2

)
(5.9)

Here α ∼ 10−2 is the fine structure constant and Qf is the momentum transfer in this

interaction. The variables u, t and s are the Mandelstam variables. This gives,

σt =
Q2
fα

2

2s

∫ (
u2 + t2

s2

)
(1− cosθ)dΩ (5.10)

The total scattering cross section can be obtained after integrating over the solid angle.

The numerical value can be obtained once the energy scale of the colliding particles is

known. Since we are working around the electroweak scale, the colliding energy of the

particles are also in the GeV range. The mobility factor is thus given by,

b−1 =
2σtm

2

3π2
[8T 2(1− e−E/T )− 2E(2E + 4T )e−E/T ] (5.11)

As mentioned before, we obtain the mobility at different temperatures. This mobility is

then substituted in the expression for the diffusion coefficient. All this is incorporated

in the numerical simulation code that we have used for this study.

5.3.2 Quark-neutrino scattering

One of the numerous particles in this epoch are the neutrinos. Both neutrinos and quarks

come with different flavors. However, neutrinos are not electrically charged particles,

so the only interaction they have with the quarks is the weak interactions. Different

flavours of neutrinos interact differently with the different kinds of quarks. This would

result in a multitude of cross sections. On studying these cross sections, we noticed

that they have very similar order of magnitudes. So we consider the quark neutrino

scattering cross section as,

σt =
G2
F ŝ

π
(5.12)
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Here GF is the Fermi constant given by, GF = 1.166 × 10−5GeV −2. Numerically, the

cross section turns out to be σt = 17.2×10−42cm2× Eν
GeV [105]. Though we are working at

very high temperatures in the GeV scale, the value of the diffusion coefficient is difficult

to handle numerically with this value of σt. For the numerical calculation we therefore

rescale the variables suitably to obtain a stable numerical solution.

5.3.3 Quark-muon scattering

In both the previous cases we had a heavier particle moving through a lighter gas of

particles, however the scenario changes considerably when we consider the quarks moving

through a gas of muons. For the µ−µ+ −→ qq̄, though the expression for the interaction

cross sections are similar to the electrons, but here the quark is the lighter particle which

is moving through a heavier gas of particles (the muons). This means that, the diffusion

coefficient is given by eqn. 5.6,

D =

(
1

2π

) 3
2

(
s

1
2

Qfα

)2(
1

mT

) 1
2

[2T (1− e−E/T )− 2Ee−E/T ] (5.13)

We have the total cross section given by,

σt =
4πQ2

fα
2

3s
(5.14)

As can be seen from the expressions we have derived, the numerical values of the diffusion

coefficient are very large. The numerical code we use to simulate the decay of the

baryon over densities in the early universe cannot handle such large numbers. We

tackle this issue by rescaling the energy values. This gives us reasonable values of the

diffusion coefficient. This rescaling does not affect our results as we plot the amplitude

of the inhomogeneity at different temperature scales. We define the amplitude of the

inhomogeneity as the ratio of the enhanced density to the background density (
n′B
nB

). Here

n′B = ∆nB + nB and nB is the average baryon density at that temperature and ∆nB

is the increase in the baryon density in the inhomogeneity. The amplitude is therefore

dimensionless and not affected by the rescaling.

5.4 Decay of inhomogeneities in the quark gluon plasma

phase

For the numerical study, we have used a finite difference method for the second order

space derivative and an explicit forward Euler approximation for the first derivative in
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time. The Courant-Friedrichs-Loewy coefficient changes with temperature but care is

taken so that it never exceeds 0.5 for maintaining the stability of the program. We

consider the solution of Eq.5.4 to be spherically symmetric and dependent upon the

radius r. This is the length scale of the inhomogeneity. The origin is taken to be at the

centre and the particles diffuse out causing the radius of the inhomogeneity to increase.

The maximum value of the radial lattice is the horizon size. As we are working in the

FLRW metric, the universe size will also increase with decrease in temperature. This

feature is incorporated in our program by increasing the maximum size of the radius as

time increases and temperature decreases. We have kept the minimum step size fixed

at dr = 0.01. Time is represented by temperature and the maximum lattice size is

therefore calculated at each temperature before the r loop. The relationship is given

by, rmax = 314.01155
T . For both the electroweak and the QCD case, we start with a

Gaussian fluctuation given by f(r) = Ae(− r2

2b2
). The amplitude A and the variance b are

different in the two epochs. The amplitudes are different as the generation of baryon

inhomogeneities in the two epochs are different and the variance are different as length

scales in the two epochs are different.

We now look at baryon inhomogeneities generated during the electroweak phase tran-

sition. In ref.[1, 88], it is shown that a strong first order phase transition generates a

radially symmetric baryon inhomogeneity whose amplitude depends upon the ratio of

the minimum and maximum bubble wall velocity. They have shown that baryon inho-

mogeneities having amplitudes of the order of 102 are generated. Though we are not

emphasizing that these are the inhomogeneities we are interested in, they do provide

a measure of the possible magnitude of baryon inhomogeneities generated at the elec-

troweak scale. So we consider the amplitude of the inhomogeneities generated in the

electroweak epoch to be of the order of 103. We are also considering inhomogeneities

whose decay will be affected by the expanding universe. The horizon at these tempera-

tures is of the order of 1cm [64]. The size of the inhomogeneities we have considered are

always less than the horizon size. However we do not want them to be so small that their

lengthscale is negligible in comparison to the radius of the universe. So basically we have

looked at inhomogeneities which have a radius of less than a millimeter. We have pre-

sented results for inhomogeneities having a radius of 0.03 cm. Larger inhomogeneities

(with radius closer to 1 cm) will also decay in a similar way but it is rather difficult

to present the graphs in the same plot due to the vast change in the radius. Hence

for presenting our results we have chosen the radius of the initial inhomogeneity to be

about 0.03 cm. The diffusion coefficients can be obtained numerically, but the problem

is that they vary considerably in their numerical values. This indicates that the particle

content in the inhomogeneity would ultimately define how they decay. Though there

are multi particles present in the plasma, we do not go for multi particle diffusion as it
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Figure 5.1: The initial fluctuation at 200 GeV in the linear scale.

becomes numerically quite challenging. We look at each of these interactions separately

and see how much each of them contributes to the decay of the baryon inhomogeneity.

We believe this will give us some idea of how the baryon inhomogeneity decays in this

temperature range.

There are several challenges in the electroweak epoch.The biggest challenge is the large

change in the horizon size between 200 GeV and 200 MeV. At 200 GeV, the horizon

is of the order of 1 cm while at 200 MeV the horizon is of the order of 10 kms. We

divide this into two parts. We evolve the inhomogeneity from 200 GeV to about 1 GeV

and then again from 1 GeV to 200 MeV. Interestingly, we find that the inhomogeneity

decays considerably during this period depending on the particle interactions being

considered. We find that on the log scale, the amplitude decays quite rapidly irrespective

of the interactions considered. This means that low amplitude inhomogeneities will be

completely wiped out before the quark hadron phase transition. Let us first look at the

decay of the inhomogeneities between 200 GeV and 1 GeV. We give the figure of the

initial fluctuation in fig. 5.1. The graph is plotted in the linear scale, however in the

rest of the paper, the results are plotted in the log-log scale instead of the linear scale.

In the logarithmic scale, the function appears to end abruptly as the zero is not defined

on this scale. Since the lattice size of the simulation also changes with temperature, the
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Figure 5.2: The decay of the fluctuation is shown in logscale between 200 GeV - 17
GeV as the quarks moves through a sea of electrons. The fluctuation is smaller at

higher temperatures and spreads out further as temperature decreases.

data for the higher temperatures are for a smaller radius (horizon) size, while the data

for lower temperatures reflects the larger radius of the horizon. In the graphs, we have

focussed on the decrease in the amplitude of the inhomogeneity rather than the increase

in it’s size. Even with the increase in size, the fluctuations always remain within the

horizon.

In the electroweak epoch, the diffusion coefficients differ considerably as they are depen-

dent on the temperature and this is quite a large temperature range. So we look at the

decay of the inhomogeneities for different interactions separately. For all the different

figures, we have the baryon inhomogeneity (
n′B
nB

), on the y axis and the radial length

scale (denoted by distance) on the x- axis. In figure 5.2, we see the decay due to the

quarks moving through the electrons. The initial fluctuation is taken at 200 GeV and

the final is taken at 17 GeV. As we see the peak of the inhomogeneities goes down by

more than three orders of magnitude. The inhomogeneity also spreads out. If we plot

the solution up to the maximum radial distance, then for the initial curve we observe an

abrupt cut off. The abrupt cut off is an artefact of plotting the solution in the log-log

scale. The same plot in the linear scale resembles fig 5.1 but with a reduced peak and

larger variance. However, since there is a considerable decrease in the amplitude, it

is not possible to show both the graphs in a linear plot. The decay is similar in the
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Figure 5.3: The decay of the fluctuation is shown in logscale between 200 GeV -
17 GeV as the quarks are predominantly surrounded by neutrinos. The fluctuation is

smaller at higher temperatures and spreads out further as temperature decreases.

case when the surrounding particles are muons and neutrinos. We have used a different

scaling for the neutrinos but as mentioned before the scaling will not affect the relative

decay of the amplitude. Though the final amplitude is lower in the case of the neutrinos,

the order of magnitude is similar. Since all the graphs have similar decay in orders of

magnitude, we have only shown selected graphs. Fig 5.2, shows the decay due to the

motion of the quarks through the electrons while fig 5.3 shows the decay due to the

motion of the quarks through the neutrinos. Since the plasma at those high tempera-

tures is predominantly dominated by electrons, our results clearly show that the baryon

inhomogeneities decay by about three orders of magnitude in the high temperature GeV

range. This is true, even if there are a large number of muons and neutrinos in the

plasma.

We now look at the decay of the inhomogeneities between the temperatures 1 GeV

to 200 MeV. We find that the order of magnitude decay is again quite large for the

three diffusion coefficients. The individual numbers vary but we plot only the order

of magnitude estimates as before. In figure 5.4, we find that the inhomogeneity has

decreased by three orders of magnitude. In the case of fig. 5.4, the initial fluctuation

is at 1 GeV while the final is plotted at 236 MeV. We find that the curve flattens out

considerably. The radial distance up to which the inhomogeneity persists is actually
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Figure 5.4: The decay of the fluctuation is shown in log scale between 1 GeV - 236
MeV for a plasma where a quark is moving through a sea of electrons.

more than what is shown in the plot. Again we find that the initial inhomogeneity

appears to have a sudden cut off around 0.05 cm. This is again due to the log log nature

of the plot. The size of the inhomogeneity is also much smaller initially. Since the

maximum radius of the lattice is smaller at higher temperatures, the initial fluctuation

looks very narrow and sharp when plotted at a later time. This makes the shape of the

fluctuation different at different times. Not only are the particles diffusing away from

the centre of the inhomogeneity, the maximum size of the one dimensional lattice is also

increasing with time.

For the case of the quarks moving through a large number of muons, the amplitude

decay is less than the decay in the case when the particles surrounding the quarks are

the electrons. However, the decay is still quite significant. For the neutrinos, again

we have the inhomogeneity decaying by three orders of magnitude. So independent of

the particle distribution in the plasma, the amplitude of the inhomogeneities goes down

significantly. In fig 5.5, we have the quarks moving in a region of muons while in fig.

5.6, the quarks move through the neutrinos. As is seen from the plot, the inhomogeneity

decays much faster in the presence of neutrinos and quickly reaches an amplitude of

10−2. Compared to the initial amplitude, this is negligible and can be considered to be

zero. That is why in fig. 5.6 the plot is cut off at a distance 25 cm. Beyond this point,
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Figure 5.5: The decay of the fluctuation is shown in log scale between 1 GeV - 236
MeV for a plasma where a quark is moving through muons.

the inhomogeneity gradually goes down to zero. We thus find that the inhomogeneity

decays by three orders of magnitude between 200 GeV to 1 GeV, and again decays by

at least two orders of magnitude between 1 GeV to 200 MeV. This means that any

inhomogeneity generated at the electroweak epoch needs to have an amplitude greater

than 105 times the background density to survive till the quark hadron transition. Thus

if we had an inhomogeneity at the electroweak scale with an amplitude less than 105, it

would be completely wiped out before the quark hadron transition.

5.5 Decay of inhomogeneities in the hadronic phase

We have discussed our work on the decay of inhomogeneities in the hadronic phase in

the previous chapter [103], however in that case we were interested in specific inhomo-

geneities generated by Z(3) domain walls whose size was much smaller compared to the

horizon size. The expansion of the universe was ignored in those cases. We are now in-

terested to see the decay of larger inhomogeneities in the hadronic phase. As mentioned

before, inhomogeneities generated during or after the quark hadron phase transition are

not only larger in amplitude but they may also be larger in size. Consequently, the de-

cay of these inhomogeneities would be affected by the expanding universe. The plasma
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Figure 5.6: The decay of the fluctuation is shown in log scale between 1 GeV - 236
MeV for a plasma where a quark is moving through neutrinos. Since the inhomogeneity
decays faster here, as the magnitude goes down, the radial distance increases. The full
curve at 236 MeV is not given, it is cut off at some point where baryon inhomogeneity
is close to 0.01. Compared to the initial fluctuation which had an amplitude of 103,

this can be taken to be zero.

during this period consists of the muons, neutrons, protons. electrons and neutrinos.

We now solve the diffusion equation in the hadronic plasma for the expanding universe

and find that the expansion of the universe causes the inhomogeneities to decay much

faster. In the current section, we briefly describe the diffusion coefficient in the hadronic

phase and then proceed to present the results of the decay of the inhomogeneities in

the hadronic plasma. In this case, the size of the inhomogeneities is taken to be of the

of the order of kilometers as the horizon size is around 10 Kms after the quark hadron

transition.

As we have mentioned, the calculation of the diffusion coefficient will depend on which

particle is moving through the plasma. The baryon number is carried by the neutrons

and the protons, hence here we will be considering the motion of a heavier particle

through a lighter gas. The heavier particle is the neutron or the proton, while the

lighter gas is a gas of electrons and neutrinos. The muons only play a role till 100 MeV.

We thus have to use eqn.5.8 and the scattering cross-section of the neutrons with the

electron-positron gas to obtain the diffusion coefficient of the neutrons in the electron

positron gas. All the scattering cross-sections and diffusion co-efficients of the relevant
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interaction in context of hadronic plasma has been discussed in detail in the previous

section. So here we will briefly write about the diffusion co-efficient.

The diffusion coefficient for neutron-electron interaction is,

Dne =
M2

32m3

1

ακ2

e1/T

Tf(T )
. (5.15)

Here M , is neutron mass, m is electron mass and κ = −1.91 is the anomalous magnetic

moment. The temperature in this case is dimensionless as it is scaled by a factor of

mec
2. Finally, the function f(T ) is given by, f(T ) = 1 + 3T + 3T 2.

The diffusion coefficient for neutron-muon interaction is,

Dnµ =
M2

32m3
µ

1

ακ2

e1/T ′

T ′f(T ′)
(5.16)

Here T ′ = T
mµc2

. After obtaining both Dne and Dnµ, we calculate the total diffusion

coefficient of the neutron moving through the plasma.

Apart from the neutron, we need to find the diffusion coefficient of the proton moving

through the electron positron gas. The diffusion coefficient for proton-electron interac-

tion is

Dpe =
3π

8α2ln( 2
θ0

)

[
h

2πme

]
Te1/T

f(T )
. (5.17)

where θ0 is the minimum scattering angle

We obtain the numerical value of this diffusion coefficient by substituting the constants

in the transport cross section. Once we have the diffusion coefficients, we numerically

solve the diffusion equation in the FLRW metric. In this case, we use the same program

but double the stepsize to accommodate the larger radius of the horizon.

We are considering inhomogeneities whose sizes are in the range of 1 km. Since the

horizon size is around 10 kms in the hadronic phase, these are large inhomogeneities.

We have considered high amplitudes of the order of 1014 as well as smaller amplitudes,

we find that the decay rate does not depend significantly on the amplitudes. However,

we find that in an expanding universe the overdensity falls far more rapidly than in an

non-expanding universe. We have shown both the cases in figure 5.7. for comparison.

We have checked for the decay separately in the range 200 MeV - 100 MeV as the muon

is still present in the plasma at these temperatures. At lower temperatures the muon

density in the plasma becomes negligible.
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Figure 5.7: The decay of the initial fluctuation is shown in logscale between 200 MeV
- 100 MeV.

It seems that large inhomogeneities do decay significantly in an expanding universe but

as long as they have very large amplitude, they may still survive up to the nucleosynthesis

epoch. So an inhomogeneity whose amplitude is of the order of 108 will be decreased

to an amplitude of the order of 107. Hence inhomogeneities with low amplitudes of the

order of 10 will be wiped out. Finally, we look at the temperature range from 100 MeV -

1 MeV. The muons will be negligible in this epoch but the diffusion coefficients will not

change. Figure 5.8 shows the decay of the inhomogeneities in this epoch. We find that

the amplitude of the inhomogeneity decreases by an order of 104 in this period. This

means that any inhomogeneity with an amplitude less that 104 will be wiped out before

the nucleosynthesis epoch. So large baryon inhomogeneities generated during the quark

hadron transition must have amplitudes greater than 105 times the background density

to survive till the nucleosynthesis epoch.

5.6 Summary

Finally we summarize this chapter briefly, we have studied the decay of the baryon

inhomogeneities generated at both the electroweak scale and the QCD scale. If the

baryon inhomogeneities generated at the electroweak epoch survive till the quark hadron
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Figure 5.8: The decay of the initial fluctuation is shown in logscale between 100 MeV
- 1 MeV.

phase transition they will affect the phase transition dynamics. The quark hadron phase

transition is very important in the thermal history of the universe. Similarly, baryon

inhomogeneities generated during the quark hadron phase transition will have an effect

on the Big Bang Nucleosynthesis calculations. There has been no previous studies of

the decay of baryon inhomogeneities in the early universe during the electroweak scale.

Our study is the first study that shows that the decay of these baryon inhomogeneities

is affected by the expanding universe in the electroweak scale. To obtain the decay of

the baryon inhomogeneities, we have first obtained the diffusion coefficient of the quarks

through the electroweak plasma. We have then substituted it in the diffusion equation

for an expanding universe. The diffusion equation of the expanding universe is obtained

by writing the diffusion equation in the FLRW metric.

Our detailed study shows that baryon inhomogeneities generated at 200 GeV should

have an amplitude greater than 105, otherwise they will not survive till the quark hadron

phase transition. This makes it difficult for the baryon inhomogeneities generated in a

first order electroweak phase transition to have any effect on the quark hadron epoch.

In ref. [1, 88], spherical inhomogeneities with a radial profile are formed at the elec-

troweak phase transition. However, the amplitude of these inhomogeneities are bounded

by the ratio of the highest and lowest wall velocities reached during the bubble expansion
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phase. In most cases, this is of the order of 102. This is an order of magnitude lower

than the amplitude of the baryon inhomogeneities we have considered in our simulations.

Thus the baryon inhomogeneities generated due to a strong first order electroweak phase

transition would be completely wiped out before the QCD phase transition. To survive

up to the QCD phase transition, the baryon inhomogeneities have to have a very high

amplitude as they decay substantially during the period between 200 GeV - 200 MeV.

This is because the diffusion coefficient is temperature dependent. The quark hadron

transition occurs around 200 MeV. We have found that the amplitude of the baryon

inhomogeneity decreases to about five orders of magnitude during this period. This

means any inhomogeneity with an amplitude of 105 (or less) will be wiped away before

the quark hadron phase transition. We therefore conclude that any model which gener-

ates inhomogeneities with less than 105 amplitude in the electroweak epoch cannot affect

the quark hadron phase transition. They will therefore not contribute to inhomogeneous

BBN either.

In this work, due to the vast differences in the values of the diffusion coefficients of

the different particles in the electroweak epoch, we have not considered multi particle

diffusion. We have studied the diffusion of the quarks through a gas of similar particles

only. However, for all the different particles we find that the inhomogeneities will decay.

This indicates that even for a multi particle diffusion our results will hold. However, in

any region which has a predominance of neutrinos and electrons, the inhomogeneities

will probably decay faster, than in regions which have a predominance of muons.

Finally in the previous chapter, we had looked at the decay of baryon inhomogeneities

in the QCD epoch for a stationary universe. This would work only for small scale

inhomogeneities for which the expansion of the horizon does not matter. We have

extended that work for an expanding universe where we can work with large baryon

inhomogeneities. So we look at the decay of large baryon inhomogeneities in the QCD

epoch. We find that the baryon inhomogeneities decrease by 5-6 orders of magnitude.

This means that if large baryon inhomogeneities are generated by collapsing domain

walls and other topological defects during the quark hadron transition they will survive

till the nucleosynthesis epoch. We conclude that the big bang nucleosynthesis, can thus

be used to constrain models which generate large amplitude inhomogeneities in the QCD

epoch only.





Chapter 6

Generation of magnetic field in

cosmic string wake

We have discussed the generation of topological defects previously in chapter 3, there we

had mentioned that the linear defects generated in symmetry breaking phase transitions

are called the Abelian Higgs strings [33]. The Cosmic Microwave Background (CMB)

imposes certain restrictions on the masses of these defects [106]. The evolution of the

string network [107] and the consequences that these can have on several epochs in the

early universe are well documented in the literature [108]. As the string networks evolve

they lead to density fluctuations in the early universe. This is especially true for the

long Abelian Higgs strings which are known to generate wakes as they move through the

plasma of the early universe [56, 57, 109]. Various signatures related to cosmic string

wakes have also been discussed in the literature. [110, 111]. We have already discussed

about the wake formation in detail in chapter 3.

As mentioned before, the space time around a cosmic string is conical. This means that

the geodesics of particles moving around a cosmic string is curved. The Abelian Higgs

string also has two fields associated with it, so the geodesics of the particles around these

strings are often non trivial. A detailed study by Hartmann et. al [112] showed that there

are some particles which move in closed orbits around these strings. A subsequent study

by Saha et. al. [113] indicated that the closed orbits lead to a clustering of particles

around the cosmic string. The nature of the force and the geometry of the surface

combine together for certain values of angular momentum and energy and lead to these

closed orbits. This only happens for massive particles. Now, as we have mentioned

before, the long strings once formed will move through the cosmic plasma and generate

wakes behind them. Some of the most abundant particles in the early universe plasma

are the neutrinos. We also know that it is possible to have massive neutrinos. Hence

73
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neutrinos moving with certain energies and angular momentum close to a cosmic string

will get trapped in closed orbits and cluster around the cosmic strings. As there is

an inherent asymmetry in the neutrinos, the rotational motion will generate a neutral

current. The motion of the string will cause a density gradient of all particles in the wake

region, the neutrino will also be one of them. The combination of the motion of the string

and the neutral current generated by the neutrinos will result in a charge separation in

the plasma. An electron current is thus generated in the plasma which will then give

rise to a primordial magnetic field. Though electrons have mass themselves, the motion

of the electrons around a cosmic string do not generate an electron current since in the

early universe plasma, there are equal number of positrons in the plasma. The positrons

rotating in the opposite direction will neutralize the net electron current around the

cosmic string in the early universe plasma. That is why electrons rotating around the

cosmic string will not lead to a charge separation in the plasma. For neutrinos however,

an asymmetry between neutrinos and anti-neutrinos is well established [114, 115]. The

order of magnitude of the lepton asymmetry varies from 10−10 to higher values of 10−4

depending on the various leptogenesis models. It is this lepton asymmetry in the neutrino

sector which will give rise to a neutrino currents around the Abelian Higgs strings.

The electron current is generated from the non-uniform fluxes of neutrinos which interact

with the electrons by weak interactions. A weak ponderomotive force has been predicted

by several authors [116–118]. This force has also been used for the generation of magnetic

fields before[119]. Even though, the analogy with the ponderomotive force was not well

established but the results could also be established from the kinetic theory. It was shown

that neutrino gradients can also lead to instabilities in the plasma. Detailed studies [120,

121] using quantum field theory inspired models have led to the conclusion that gradient

of the electron and neutrino densities can generate an electric current in an electroweak

plasma. As is well known from Maxwell’s theory of electromagnetism, a changing current

can generate a magnetic field. The universe plasma at such high temperatures is a

turbulent plasma with a large Reynolds number. So the charge separation caused by the

neutrinos in the cosmic string wakes can be used to generate a magnetic field using the

Biermann battery mechanism. In this chapter we present the novel way of generating

magnetic fields from neutrino currents in cosmic string wakes. We also estimate the

magnitude of the generated magnetic field and find that it is within the limits of the

observational bounds on magnetic fields set by nucleosynthesis calculations.
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6.1 Neutrino current density around cosmic strings

As discussed in the previous section, we would now like to calculate the neutrino current

density around the cosmic strings. Though neutrinos in general have a very low mass,

some models have predicted more massive neutrinos[122]. The neutrinos in general have

a long mean free paths. It has been shown that the neutrino mean free path above 100

GeV is small but it increases with the decrease in temperature[16]. The mean free path

would affect the diffusion of the clustered particles around the string. If the energy scales

are high then the clustering is also enhanced due to the energy values giving rise to large

number of closed orbits around the string. It has been shown that the overdensity is

quite high and spreads over a lengthscale of 10 fm around the string [113]. To calculate

the current we first find the Fermi distribution of the neutrinos in a rotating system.

This is given by,

f(E, lz, β) =

[
exp

(
E − lzΩ− µβ

T

)
+ 1

]−1

(6.1)

where Ω is the angular velocity, µ, is the chemical potential of the neutrinos, and lz is

the projection of the particle’s total angular momentum on the direction of Ω and E

is the energy of the neutrinos. The factor β takes on the values 1 or −1 depending on

whether the neutrinos are more than the antineutrinos in the plasma. The Abelian Higgs

string is cylindrical in shape so we use the cylindrical coordinates. The most general

line element obeying all the symmetry properties pertaining to the Abelian Higgs string

is given by,

ds2 = N2(r)dt2 − dr2 − L2(r)dφ2 −N2(r)dz2 (6.2)

The factors L(r) and N(r) are determined by the boundary conditions. They are related

to the values of the fields at a distance r from the axis of the string (the z axis in this

case). Our string moves in the x − y plane and there is a magnetic field associated

with the Abelian Higgs string along the z-axis whose value depends on the scalar and

the vector potentials. The metric corresponds to a cylindrical metric with a deficit

angle δθ as mentioned in Chapter 2. The deficit angle far from the core of the string

is proportional to the energy per unit length of the string. Further, the Lagrangian of

the Abelian Higgs string is usually rescaled and written in terms of two dimensionless

constants 8πGη2 and λ
e2

. The deficit angle depends upon these two constants. The

cosmic string has a finite width with a core of magnetic flux as well as a scalar core.

The width of these cores are the inverse of the gauge boson mass and the Higgs mass

respectively. The lengthscales of the moving particles around the cosmic string are much

smaller compared to the Hubble radius at any time, so the expansion of the universe is
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neglected throughout this chapter. For all the calculations in this chapter the universe

is considered to be stationary.

The geodesics of the neutrinos around the cosmic string are open or closed circular orbits

[112]. So the neutrino particles appear to rotate about the z-axis. To obtain the neutrino

current density around the cosmic string, we first need to calculate the appropriate spinor

wave function ψ(E, pz, lz, β). We start with the neutrino field equations in the metric of

the cosmic string.

γµ(∂µ − Γµ)ψ −mψ = 0 (6.3)

Since we are looking at neutrinos with mass, m denotes the mass of the neutrinos. A

suitable choice of Gamma matrices for this metric are, γt = γ0, γr = γ1,γφ = γ2

L(r) ,γz =

γ3. Here we have considered N(r) = 1 as the particles are considered quite close to the

string and their distance from the core is small. Using these Gamma matrices, we then

solve the field equations by choosing the trial solution in the form,

χ = e−iEteipzze−ilzφ

[
ξ

ζ

]
(6.4)

Here E is the energy, pz in the component of linear momentum in the z direction and lz

is the projection of angular momentum along the z-axis. On solving the equations, we

get

ξ =

[
i(E +m− p)1/2Jlz+1/2(αr)

β(E +m+ p)1/2Jlz−1/2(αr)

]
(6.5)

Here Jlz+1/2(αr) are the Bessel functions. For a system with zero chemical potential

ξ = ζ [123]. However, for a non zero chemical potential ζ = βξ. As we have mentioned

before, since there is a lepton asymmetry in the early universe and it is manifested in

the neutrino sector, we take ζ = βξ. The wavefunction is then given by,

ψ(Epzlzβ) =
1

4π
e−iEteipzze−ilzφ

[
ξ

βξ

]
(6.6)

The normalization condition for the wavefunction would be,∫
ψ†EpzlzβψE′p′zl′zβ′rdrdφdz = δlz ,l′zδβ,β′δ(pz − p

′
z)δ(E − E′) (6.7)

Once the wavefunction is obtained, one can obtain the neutrino current. The direction

of the current is along the axis of the string i.e along the z-direction, however as the

wavefunction depends on the distance from the string, the magnitude of the current also

varies with the distance from the axis of the string. The current as a function of r, (the
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distance from the string axis) is given by,

j(Epzlzβ) = βψ†Epzlzβγ
tγzψEpzlzβ (6.8)

Hence the total current density as a function of r, is given by,

J(αr) =

∫ ∞
0

dE

∫ E

−E
dp
∑
β=±1

∑
lz

f(E, lz, β)j(Epzlzβ)(αr) (6.9)

To obtain the neutrino current around the cosmic string we have to solve eqn.6.9. Ana-

lytically this provides quite a challenge, as it is a summation over Bessel functions. One

can obtain an approximate solution close to r = 0 but it is the finite values of r that

generate the magnetic field. We need to obtain an estimate of the current numerically

since we are going to use it for the calculation of the magnetic field generated later on

in the paper. As expected a sum of Bessel functions will generate a sinusoidal curve.

We find that the numerical solution is in the form of a sinusoidal curve.

We now explain in detail the numerical values chosen to obtain this graph. The cosmic

string is generally characterized by it’s symmetry breaking scale. The two cores of

the cosmic string have width inverse to the Higgs mass (MH) and the W boson mass

(MW ). The masses are given by MH =
√
λη and MW =

√
2eη, where η is the symmetry

breaking scale. Generally for solving equations numerically all the quantities are made

dimensionless. This has been done in previous papers involving particle motion around

cosmic strings [112, 113]. The symmetry breaking scale is usually used to rescale the

variables; so that the momentum pz is scaled to pz/eη, lz by lz/e
2η2 and similarly for the

energy. To obtain the values in the cosmological scenario, all we have to do is to identify

the symmetry breaking scale. For the numerical values of energy and momentum, we

have taken the values from ref.[113]. The values are chosen such that they give rise to

clustering of particles around the string. In dimensionless variables, they are E = 1.083,

l2z = 0.025 and pz = 0.02. The symmetry breaking scales for these cosmic strings are very

high, usually above the electroweak scales [124]. The electroweak symmetry breaking

scales are of the order of 100 GeV. If we substitute the value of η in the equations, we

get the current in terms of GeV 3. The numerically obtained values of J(αr) are plotted

in figure 6.1. The distance from the core is in terms of αr. Here α =
√

(E +m)2 − p2
z.

Hence α is in GeV . This makes αr dimensionless. The neutrino current will also depend

on the amount of lepton asymmetry in the plasma. However we find that in the range of

10−10 to 10−4, there is no significant change in the magnitude of the neutrino current.

The current is oscillatory in nature and decreases with increase of distance from the

string. The maximum value is close to the core of the cosmic string. Though the values

appear to be small, in the context of the early universe plasma it is not negligible.
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Figure 6.1: A plot of the neutrino current as a function of r (distance from the cosmic
string). Here αr is dimensionless. The current is oscillatory in nature and decreases

with increase of distance from the string.

Detailed studies of neutrino currents in the plasma have been done and both charged

currents and neutral currents have been discussed in the literature [125]. However, there

are no numerical estimates of these currents. These currents depend on the interaction

cross section of the particles. Unlike these currents we want to emphasize our current

is a directed flux of particles moving collectively through the plasma. The numerical

estimate given in fig 6.1 shows that at high temperatures it is not negligible. We will use

this estimate when we calculate the magnetic field in the next section. This solution is

for a stationary string; but a cosmic string in the early universe is never really stationary.

It moves through the plasma with a velocity vs mentioned before. Behind the string a

wake is formed. Now the oscillatory neutrino distribution will thus change with time

due to the velocity of the moving string. The overdensity behind the string will enhance

the current further. As mentioned previously, generally the wake density is double the

background density of the plasma. So the neutrino distribution will be less in front of

the string while it will be much more behind the string. Both a spatial as well as a

temporal gradient in neutrino density is thus generated in the plasma.

6.2 Neutrino currents in moving cosmic string wakes

6.2.1 Ponderomotive force

Initial studies by Bingham et. al.[116, 117] showed that neutrino gradients in the early

universe led to a ponderomotive force in the background plasma. The ponderomotive
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force was initially a force that occurred in a dielectric in an arbitrary non-uniform

electric field. However, it was generalized in [118] to the interaction of any non uniform

field with a background medium. The non-uniform field was the neutrino field and the

background medium were the electrons. The ponderomotive force was due to the weak

interaction between the neutrinos and the electrons in a high temperature plasma. They

had shown that a force is exerted on the electrons due to the non-uniform distribution

of neutrinos in the plasma. This is the generalized ponderomotive force. The electrons

are thus forced to move away from the regions in which the neutrino density is higher.

Considering only the electrons in the plasma, the ponderomotive force was given by

[119],

Fν =
1

8π
(f2
ν − 1)∇

∑
kν

〈|ψkν |2〉. (6.10)

Here fν is the refractive index of neutrinos in plasma. However, the ponderomotive

force obtained here only contained the terms proportional to the gradients of the neutrino

number densities and not the term corresponding to the vector current. Bento [120, 121]

obtained the expression that included the terms due to the vector currents using a

quantum field theory approach. The other approach was using the relativistic kinetic

theory for describing the interaction between the neutrinos and the plasma [126]. They

showed that for relativistic neutrino jets, plasma instabilities can develop with growth

rates of the order of Fermi constant GF . In all these studies, it was well established

that a electromagnetic current is generated due to the neutrino currents in the early

universe. The interaction term in the Lagrangian leads to the force on the electron

and both weak-electric and weak-magnetic fields are generated as well as the familiar

electromagnetic fields. The electromagnetic fields are given by, [127]

~Ee = −∇ ~J0
e −

∂ ~Je
∂t

~Be = ∇× ~Je (6.11)

The weak-electric and weak magnetic fields are given by,

~Eν = −∇ ~J0
ν −

∂ ~Jν
∂t

~Bν = ∇× ~Jν (6.12)

The flow of neutrinos in a plasma medium is given by the following fluid equations

∂Nν

∂t
+∇. ~Jν = 0 (6.13)

∂ ~Pν
∂t

+ ( ~vν .∇) ~Pν = ~Fν =
√

2GF

(
~Ee +

~vν
c
× ~Be

)
(6.14)
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Similarly we can also obtain the continuity equations for the electron plasma dynamics,

∂Ne

∂t
+∇. ~Je = 0 (6.15)

∂ ~Pe
∂t

+ (~ve.∇) ~Pe = ~Fe = −e ~Ee +
√

2GF

(
~Eν +

~ve
c
× ~Bν

)
(6.16)

We then use the standard perturbative approach to obtain the relation between the

neutrino perturbation and the electron perturbation in the plasma. We consider δNe

to be the electron number density fluctuation and δNν to the neutrino number density

perturbation. The two density perturbations are then related by,(
∂2

∂t2
+ ω2

p

)
δNe = −

√
2GFNe

mec2

(
∂2

∂t2
− c2∇2

)
δNν (6.17)

Here Ne is the mean electron density of the plasma and ωp is the plasma oscillation

frequency. The neutrino current in the plasma will thus generate a plasma potential

φe due to the charge separation given by ∇2φe = 4πδNe. An electron current is thus

generated in the shock wave.

Now we look at our specific case, in our case, behind the cosmic string we have a non

- uniform stream of neutrino current. The cosmic string is generated very early in

the universe. Once created the string moves through the plasma generating a wake

behind it. Apart from the neutrinos, the early universe plasma contains a large number

density of electrons. Depending on the temperature of the surrounding plasma in the

early universe, the other particles may be quark and gluons (for temperatures above

the quark - hadron phase transition ) or the neutrons and protons (for temperatures

below the quark hadron temperature). We will look at very high temperatures in the

GeV range. The background particles will then be given by the quarks and the leptons.

At these temperatures, the particles in the plasma, experience both strongly coupled

forces as well as weakly coupled forces. In such a plasma, perturbative calculations and

the quasi-particle description used in deriving the generalized ponderomotive force in

the literature [118, 119] is not valid. A study by Muller et. al.[128] has shown that

in a high temperature plasma, the shear viscosity of the leptons is dominated by the

interaction between the leptons and the quarks. Thus the thermal leptons form a more

viscous fluid than the quarks. At lower temperatures below the quark hadron transition,

the plasma consists of the leptons and the neutrons/protons. The lower temperature

plasma is well studied. The velocity of the cosmic string being lower, the plasma can

be considered to be non-relativistic. Neutrino plasma interaction in non-relativistic

plasmas has been studied in the two fluid hydrodynamic description. Since both at high
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temperature and at low temperature, the plasma interaction can be considered as a two

fluid hydrodynamic description, we will use this to explain how magnetic fields can be

generated in the string wakes at any temperature due to the presence of the neutrino

density gradients.

As has been established in previous studies the neutrino gradient exerts pressure and

results in a local charge separation in the plasma. This leads to a current in the plasma.

The current is like a cross-perturbation across the shock. The perturbation is in the

form of density gradients in the direction of shock motion. Such perturbations have been

studied both numerically and experimentally in the classical regime. There are however

no studies for such perturbations for relativistic shocks. Generally if the perturbation

is small, the shock remains stable, though the perturbation itself can be accelerated in

the direction of the shock. The fact that the leptons in the quark gluon plasma behave

as a fluid with a higher viscosity means that accelerated neutrinos may generate shear

induced vorticity in the plasma. A better understanding can only be obtained by a

numerical simulation which is beyond the scope of this current work.

6.2.2 Magnetic field generation

In this section we will talk about the magnetic field generation in the moving cosmic

string wake using the Biermann battery mechanism and try to calculate the order of

magnitude of the magnetic field. The angle of scattering between the neutrinos and the

background plasma determines whether an instability will be generated in the plasma.

In this case, there is no head on collision between the neutrino current and the string

wake. The angle of scattering is closer to π/2. A detailed study has shown that for

small scattering angle, the elastic process dominates and the energy is transferred from

the neutrinos to the plasma, however here in this case the angles are closer to π/2. This

means that not much energy is transferred from the neutrinos to the plasma. So no

instability is expected to be generated in the plasma. However, the Reynolds number in

the plasma is very high. So we have shear induced vorticity in the plasma as well as a

high Reynolds number, therefore localized magnetic fields are generated in the string’s

wake by the Biermann battery mechanism. In a two-fluid description of the plasma

with massless electrons, the magnetic field evolution, as given by the Biermann battery

mechanism is [116],

∂ ~Be
∂t

= ∇× (~ve × ~Be) +
ηres
4π
∇2 ~Be −

1

eNe
∇× (~j × ~Be)−

1

Nee
∇Ne ×∇Te (6.18)

Here, ~ve is the electron fluid velocity, Ne is the number density of the electrons, Te is the

electron temperature and ηres is the resistivity of the plasma. The last term on the right
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Figure 6.2: An illustration to show the generation of magnetic field in the wakes of
cosmic strings due to the non uniform neutrino overdensities.

hand side is the Biermann battery term. In the case where there is no magnetic field

( ~Be = 0), this term generates the magnetic field due to the misalignment between the

density and the temperature gradients of the electrons. We now demonstrate why the

density gradient and the temperature gradient would be misaligned due to the neutrino

currents in the shocks of the cosmic strings.

Let us assume that the string is moving in the y - direction in the x − y plane. The

shock is therefore stretched along the y axis with a small width in the x-axis. The

temperature difference between the overdensity and the background plasma is primarily

along the x-axis. Now, as mentioned before, the neutrino current exerts a force on the

electrons which pushes them into regions where there are less neutrinos, so the electron

gradients will be complementary to the neutrino gradient caused by the Abelian Higgs

strings. This means that if the string was moving in the y-direction, they would also

be in the y-direction. Fig 6.1. plots the neutrino density with respect to αr, where r is

the radial distance away from the string, since r =
√
x2 + y2, the neutrino gradient and

the temperature gradient will not be parallel to each other. Since the neutrino gradient

and the electron gradient will be complimentary to each other, therefore, the Biermann

battery term will give rise to a small but finite magnetic field.

In fig 6.2, we have given an illustration to further explain the magnetic field generation.

Though an exact calculation is beyond the scope of this work we would like to make

an order of magnitude estimate for fields generated at around 100 GeV temperature

scales in the early universe. We assume that the density perturbation for neutrinos is

proportional to the density perturbation of the electrons which is taken to be in the y
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direction. The temperature gradient across a cosmic string shock (in the x-direction) is

of the order of 10−5T [129]. So from the Biermann mechanism,

∂B

∂t
∼
√

2GF
mec2

∂Nν

∂y

∂Te
∂x

(6.19)

We consider GF = 10−5GeV −2, ∂Nν
∂y ∼ 0.02GeV 3 and ∂Te

∂x ∼ 10−5 × 200GeV . The

lengthscales at around the electroweak scales are about 1GeV −1 and if we take a similar

time scale (about 1GeV −1) then the order of magnitude of the generated magnetic field

is about 1013 Gauss. Though this is not a very large field, we point out that this is

a conservative estimate as we have not considered the enhancement of the current due

to fluid dynamical processes. The ∂Nν
∂y is for a stationary cosmic string, as we have

mentioned previously, the density inhomogeneities will also be enhanced by a moving

string due to the high Reynolds number at those high temperatures. At the electroweak

scale the equipartition magnetic field is ∼ 1024G [130]. Though the field generated in

the shock region is far smaller than this, the Reynolds number is very high at such scale

∼ 1012, so it is quite possible that this small field can grow into a larger field due to

turbulence.

There are various methods of generating magnetic fields in the wakes of cosmic strings

through vorticity in the wake region in the literature [131, 132]. The correlation lengths

of these fields are of the order of 100 kpc after the recombination epoch. Though the

primordial fields generated were sufficiently large in magnitude, it was not clear whether

stable vorticity can be generated in wakes of these cosmic strings. The correlation

length of the cosmic strings generated by the neutrino currents in the cosmic string

wake will be of the order of magnitude of the wake itself. However it is expected that

there would be more than one string in one horizon volume. It may be quite possible

that there would be string loops or string networks. This would significantly change

the correlation length of the magnetic field generated; as the hydrodynamics of a string

loop is quite different from that of a straight string. Though we have found that the

magnitude of the generated field is lower than what is required, there is the possibility

that the turbulence generated in the wake will magnify this field. Turbulence in cosmic

string wakes has also been studied before [133, 134]. Turbulence will definitely occur in

the cosmic string wake and coupled with the Biermann battery mechanism will enhance

the generated magnetic field.
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6.3 Summary

In this work, we have shown that Abelian Higgs strings moving through the plasma

generate a neutrino current which has density gradients in the direction of motion of

the string. The wake formed behind the string will therefore have a cross perturbation

across it. This cross-perturbation creates density discontinuities in the wake. These

can be looked as interfaces through which the wakes pass. At very high temperatures,

shocks are formed in the wakes of cosmic strings. As the shocks cross the interface,

the magnitude of the neutrino current is too small to generate an instability but the

particles in the interface are accelerated by the shock wave. Due to the neutrino -

electron interaction in the plasma, an electron current is generated in the plasma. The

difference in the viscosity of the neutrino-electron fluid and the neutrino - quark fluid

will generate vorticity in the shocks. The Reynolds number of the plasma being high at

these temperature, this could lead to the generation of magnetic fields in the shocks of

Abelian Higgs strings by the Biermann mechanism.

At lower temperatures i.e after the quark - hadron phase transition, the plasma consists

of the heavier hadrons (neutron/proton) and the lighter leptons. The shock formed

behind the string will again have a cross-perturbation. Now, the collision angle between

the shock and the neutrinos will be closer to π
2 , hence the energy transfer to the plasma

will be less. Again no instabilities develop but an electric current is generated which

will lead to the generation of a magnetic field. This seems to indicate that the motion

of Abelian Higgs strings will always generate accelerated particles and magnetic fields

in their wake.

We have obtained an order of magnitude estimate for the generated magnetic field and

find that though low it is not negligible. Our estimate is very conservative as it does not

include the effect of the high Reynolds numbers in the early universe. There are other

mechanisms (such as bubble collisions at the electroweak scale ) which generate lower

magnetic fields which are subsequently enhanced due to the high Reynolds number in

the plasma. A detailed simulation of the wake structure including the neutrino current

will give an idea of the actual magnitudes of the fields generated.

In conclusion, neutrino currents around Abelian Higgs string act as a cross perturbation

to the wakes generated by the strings. This cross - perturbation leads to the generation

of magnetic fields in the wakes of the string at all temperatures. In the case of the

cosmic string, the electron current which is generated by the interaction of the neutrinos

with the plasma is of primary importance for us. The electron current leads to charge

separation and the generation of a magnetic field. So Abelian Higgs strings will always
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generate magnetic fields in the wakes behind them. This can occur at all temperatures

in the early universe.

We have done the analysis for an isolated straight cosmic string, apart from straight

cosmic strings one can also have loops of cosmic strings. The geodesics around cosmic

string loops are far more complicated [135]. This means that the clustering around loops

of Abelian Higgs strings might also be quite different from clustering of particles around

long cosmic strings. A detailed simulation is required to study the clustering of massive

particles around cosmic string loops.

Abelian Higgs cosmic string networks have been studied in detail recently [136]. Just as

we found clustering of particles around straight cosmic strings, there will be a possibility

of generating a large number of such clusters in evolving string networks. However, such a

scenario would be difficult to analyse as the neutrino currents may not lead to significant

charge separation. Only detailed simulations of cosmic string networks can determine

whether they can generate seed magnetic fields or not and that is beyond the scope of

our current work.





Chapter 7

Quark cores in modified MIT Bag

model

7.1 Introduction

In the previous chapters we have discussed the various consequences of cosmic string

wakes and density inhomogeneities in the early universe. We have dealt with finite

baryon densities non-uniformly distributed in an electroweak or hadronic plasma. In

this chapter we will deal with finite baryon densities in compact objects such as quark

stars/hybrid stars. These are hypothetical compact objects which have been predicted

to account for quite a few unexplained phenomenon in the current universe. These are

capable of generating gravitational waves. Since in recent years, large scale collabora-

tions have been able to detect signals of gravitational waves, it is quite possible that soon

we will start detecting more exotic objects in the current universe. The first prediction

of stable quark stars was by Witten [13] in 1984. Other authors also contributed to the

study of these exotic objects [137]. Neutron stars have already been predicted. There

were some models predicting that the core of these stars was also made up of quarks

[138–140]. In recent times, the Neutron Star Interior Composition Explorer (NICER),

which is a X- ray telescope stationed at the International Space Station has measured

the radius and mass of several massive neutron stars. These include the pulsars like PSR

J1614-2230 and PSRJ0348+0432. The theoretical challenges brought about by these ex-

citing new observations has lead to many new theories of the neutron stars. The latest

approach to modelling of neutron stars involves a Bayesian approach. In this method

different measurements of macroscopic observables are combined to put constraints on

the EoS of neutron stars and hybrid stars [141]. In most of these cases, a phenomeno-

logical parametrization of the EoS is used. These studies have put tighter constraints

87
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on the radii of the neutron stars. More details about the neutron stars and the cur-

rent challenges faced from recent observations can be obtained from a recent review of

neutron stars by Baym et. al. [142].

As we have discussed in chapter 2, the quark hadron transition is usually studied using

the bag model. Since the neutron star is composed mostly of neutrons, it’s equation

of state (EoS) can be modelled using this bag model [143–146]. Since now there are

several observational signals available, the EoS has to be modelled such that it fits

the observables. The simple bag model cannot give rise to these observational signals,

hence extensions to the bag model were proposed by several authors [147, 148]. The

sizes and masses of recent observed stars are very large. Primary among these are the

PSR J1614-2230 and PSRJ0348+0432 stars. But even the masses of these stars have

been successfully modelled by extensions of the bag model [149–153]. In reference [148],

the bag constant is considered to be dependent of the density. Such extensions have

also been used to study strange stars in ref. [154]. Various models of strange and

hybrid stars are mostly motivated by observational constraints. As has been mentioned

before the mass and radius of these stars can be measured quite accurately with today’s

telescopes. To fit these observations, it is often theorized that the core of the neutron

star is different from the crust of the star. The stability of quark matter has been well

established by ref.[155]. In ref. [156], a neutron star is gradually changed to a quark star

by the trapping of strange matter in the core of the star. Apart from the bag model, the

Nambu Jona Lasino model has also been used to model the core of a neutron star [157].

A color flavor locked phase has also been predicted in the core of the star by several

groups [158, 159].

The EoS also determines the boundary between the quark and hadron phases. The

boundary is important as it gives the order of the phase transition as well as its nature.

A fixed entropy per baryon has been suggested across the phase boundary [160]. There

are proto-neutron stars where several boundaries are defined as the star cools down. Gen-

erally, these boundaries are modelled by a Maxwell construction for an isentropic phase

transition. Detailed simulations have been carried out to study the birth of neutron

stars and usually an isentropic phase transition is used for these simulations [161, 162].

The model that we will describe in this chapter was first discussed by Leonidov [163] for

two quark flavours. This was mostly in the context of relativistic heavy ion collisions

[163–165]. In the case of the relativistic heavy ion collisions, the phase transition takes

place at a finite value of the chemical potential. However, in the case of the early uni-

verse the chemical potential is negligibly small. So the concept of the isentropic phase

transition was not required for the case of the early universe. The cores of hybrid stars

and neutron stars have a high baryon chemical potential so we choose to use the model

by Leonidov to study the cores of these stars. Our work was to apply Leonidiv’s model
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to the case of the cores of hybrid/neutron stars. Since strange quarks are expected to

be present in the cores of these stars, we have extended Leonidiv’s model to include

all the three flavors of quarks. Our principle aim in using this model was to show that

extensions of the bag model can be used to explain the current observations of massive

stars with a large radii.

Since our model is an extension of the bag model, we have several parameters in the

model. We have studied all the parameters in detail but we find that the mass and the

radius of the stars primarily depend upon two factors. These two parameters are the

bag constant and the mass of the strange quark. A caveat here is necessary, though we

have multiple parameters, we do not use a temperature dependent mass term nor do

we consider any medium effects. This is because medium effects have been shown to

have negligible effect on the mass and the radius of these stars [166]. There are several

constraints that we maintain in our model. The first and most important constraint

is that the quark matter we obtain has to be energetically favourable over the 56 Fe

crystal. This is because this crystal has the lowest mass per nucleon and is thus one

of the most stable nuclei in the periodic table. The second constraint comes from the

mass of the strange quark. The mass of the strange quark is constrained by multiple

observations to be in the range of 90−110 MeV. We therefore maintain this range except

for the case where the strange quark is considered to be massless. Finally, the object

should be gravitationally stable. For this, we solve the standard Tolman - Oppenheimer

- Volkoff (TOV) equations. The TOV equations are generally used to study the stability

of gravitational objects. The inputs of these equations are obtained from the partition

function corresponding to the EoS of our model. The equations have to be solved

numerically as there are no analytical solutions. The solution of the equations gives us

the mass radius ratio of the stars. We have solved these equations for different values

of the chemical potential and for different temperatures. These studies have lead us

to conclude that the stars are stable for a large range of chemical potentials at lower

temperatures.

In our studies we have concentrated on the cores of these stars, there will be an outer

crust for all these stars. In this current study we have neglected this outer crust. Though

there have been some EoS which have described both the core and the crust [167], in

our case we concentrate only on the core and assume that the crust is negligibly thin

compared to the core. While the mass and radius can be deduced from the experimental

observations, one of the direct observables is the surface redshift of the star. Since this

is the gravitational redshift, hence it is related to the compactness of the star. The

redshift can be calculated from the parameters of our EoS. We calculate it for several

values of the parameter space. We find that there are several candidates that match all
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these constraints. We will discuss these candidates after discussing in detail about our

model.

7.2 The extended bag model

We briefly discuss the model proposed by Leonidov and then explain how we have

extended it to include the third flavour of the quark, the strange quark. Leonidov’s

model was based on the MIT bag model that was discussed in chapter 2. This is a

phenomenological model which led to a first order phase transition from the quark gluon

plasma (QGP) state to the hadronic phase. The model has a constant known as the bag

constant. The model proposed by Leonidov et. al [163] had a bag constant which was not

a constant, but a variable dependent on chemical potential µ and temperature T . Their

model was consistent with the Gibbs equilibrium criteria for a phase transition. The

model also conserved baryon number and entropy across the phase boundary. Following

Leonidov’s approach others also modified the bag constant by making it dependent

on the chemical potential and temperature [164, 165]. This modification of the bag

constant resulted in a EoS which was stiff compared to the EoS obtained from the MIT

bag model. It is known that a stiff EoS results in more massive neutron stars [168]. In

recent observational data from telescopes, the mass of neutron stars was found to be

of the order of two times that of the solar mass. This indicates that the EoS in the

core of the star has to be reasonably stiff to give rise to such massive stable objects.

We therefore use Leonidov’s approach to obtain the EoS for the star. Since it is well

known that strange quarks may be found in the core of the stars, we extend the model

to include the strange quark. We study the model first for a massless strange quark

and then for a massive strange quark where the strange quark mass is constrained by

experimental observations.

The number density and the pressure of these stars can be calculated from the grand

canonical partition function obtained from Leonidov. For massless quarks, both two

flavors (u and d) as well as three flavors (u, d and s), the energy density and pressure is

given by,

ε =
NcNf

2
(

7

30
π2T 4 + µ2T 2 +

µ4

2π2
) +

π2

15
NcT

4+

B(µ, T )− ∂B(µ, T )

∂µ
T − ∂B(µ, T )

∂T
µ

(7.1)

Here Nc and Nf are the number of color and flavor degrees of freedom. µ is the chemical

potential and T is the temperature of the core. B(µ, T ) is the chemical potential and
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temperature dependent bag constant.

P =
NcNf

6
(

7

30
π2T 4 + µ2T 2 +

1

2π
µ4)+

π2

45
NgV T

4 −B(µ, T )

(7.2)

As mentioned before, the bag constant is not a constant in this model. It is dependent

on the chemical potential and the temperature of the core. In ref.[169], it is shown that

for a quark gluon plasma with a temperature dependent particle mass, standard thermo-

dynamical relations need to be supplemented by special requirements for maintaining

thermodynamic consistency. Though we do not have a temperature dependent mass

here, since the pressure is dependent on the bag pressure, we need to check for ther-

modynamic consistency in our case too. This is similar to checking for thermodynamic

consistency in the case of medium effects in systems with medium dependent effective

quark masses [166]. Such medium effects have also been considered in calculating the

bulk viscosity in interacting strange quark matter [170]. As has been pointed out in

ref. [166], changes due to these special requirements affect the mass radius relationship

of compact objects negligibly. They are only pertinent for the phase transition dynam-

ics. The question of thermodynamic self consistency for a first order phase transition

in a non-constant pressure has been discussed in detail in ref. [171]. For our case, we

have performed the Maxwell construction along the phase boundary and also taken into

account the conservation of various charges. The expression of the bag constant has

been obtained after considering the energy difference between the two phases. Thus

the special requirements for maintaining thermodynamic consistency are taken care of.

Moreover, finally we are interested in the mass radius relation of the compact objects

and hence the extra constants required to maintain thermodynamic consistency will have

a negligible effect on our final results.

In our model, we consider the EoS in the limit of high baryon density. As was shown by

Leonidov [163], in this limit, the thermodynamical quantities can be written as the sum

of two parts. One part gives the zero temperature contribution and the second part gives

the finite temperature contribution. When we consider the s quark to be massive, these

contributions change significantly. Hence in the next subsections, we will first consider

the quarks to be massless and obtain the mass and radius relations for the three flavor

case. Then we will consider the strange quark to be massive and obtain the mass and

radius relations for that case separately. We have found that the plasma is meta stable

for the two flavor case.
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7.2.1 Case 1: Two massless flavors (up and down)

We first look at the two flavor u and d case. We consider the core to be charge neutral.

Generally in the early universe the charge neutrality is maintained by the leptons but

in this case we do not consider the leptons. To maintain the charge neutrality we

therefore assume that the number of d quarks is twice that of the u quarks. As has

been shown in ref.[172], the plasma stability parameters are only weakly dependent on

lepton contributions in the case of the two flavor plasma so the lepton contribution to the

charge neutrality can be ignored. The general way to construct the EoS is to describe

the EoS in each of the two phases and then perform the Maxwell construction to join the

two phases along their common boundary. We follow Leonidov’s approach in modifying

the bag constant. This means that at the phase boundary the following equation must

hold,

Sq − ∂B(µ,T )
∂T

nq − ∂B(µ,T )
∂µ

=
SH
nH

(7.3)

Here S is the entropy and n the number density, the suffix ”q” denotes the thermody-

namical variables in the quark phase, while the suffix ”H” denotes the same variables in

the hadronic phase. The modified bag’s constant in our case is the following,

B(µ, T ) ' B0 + µ2T 2 − µ4T 2

θ2
H

(7.4)

where θH = (µ2 −m2
H)1/2 and mH is hadron mass.

While the core consists of the quarks, the other side of the boundary called the crust is

in the hadronic phase. Though we have mentioned right at the beginning that we are

interested in the EoS for the cores of the stars and the outer crust is considered to be

negligible, we do have to specify the nature of the outer crust. In this case, the outer

crust which is in the hadronic phase consists of a non-interacting neutron - pion gas.

The hadronic partition function, is based on a hard core neutron neutron repulsion. Due

to this, it is necessary to divide any thermodynamic quantity for point like particles by

a volume factor [163]. The volume factor is given by, (1 + 4
3πr

3
nnH), where rn is the

radius of the neutrons and nH is the number density of the hadrons. For the case of the

two flavor massless quarks, a change in the volume factor does not give any significant

change in the results. However,in the case of three flavor massless quarks, a change in

the volume factor affects the values of the chemical potential of the quarks and the value

of the corresponding bag constant for which the star is stable. The important quantity

that can bring in a change in the volume factor is the radius of the neutron. We will

discuss this later when we discuss the three flavor massless case. As mentioned in the

introduction, we need to check the gravitational stability of the massive objects. For
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this we need to solve the TOV equations using the pressure obtained from our EoS. So

the pressure, in our case turns out to be,

P =
1

3
(ε− 4B0)− 1

3

(
2µ4T 2

θ2
H

− 18µ6T 2

θ4
H

)
. (7.5)

Apart from the gravitational stability, to form a stable plasma state the energy per

baryon number of the quark gluon plasma has to be calculated. For the two flavor

quark matter at low pressures, the energy per baryon number should be larger than

that of the nuclear plasma (which is around 940 MeV) and also a 56Fe crystal which has

the minimum binding energy per nucleon [172, 173]. Substituting all these constraints,

we find the chemical potential is constrained between 313.5 MeV to 331 MeV. The bag

constant is also constrained within a narrow range between 149 MeV to 154 MeV. The

temperature does not have much effect on these constraints as long as it is below 1

MeV. The maximum size, can be obtained for the minimum bag constant and highest

value of chemical potential. The baryon density turns out to be 0.32/fm3. However,

the plasma in this case is meta stable and one cannot give a definite mass and radius to

this plasma, hence we introduce the strange quark and look at the plasma composed of

three massless quark flavors.

7.2.2 Case 2: Three massless flavors (up, down and strange)

The plasma with three massless flavors of quarks can be treated as a degenerate Fermi

gas with equal numbers of quarks of different flavors. This and the fact that the plasma

is beta equilibrated gives the necessary charge neutrality to the plasma. The only change

in the expressions for the bag constant and the pressure come from the fact that the

number of flavors have increased to three. The number densities of the three different

quarks may thus be different and so can their chemical potentials. We therefore use

the suffix u, d, s to denote the chemical potential of the three flavors. As of now the

assumption of µu = µd = µs holds as all the flavors are considered to be massless. The

bag parameter becomes,

B(µ, T ) ' B0 +
3

2

(
1

9
µ2T 2 − 1

81

µ4T 2

θ2
H

)
(7.6)

and the corresponding pressure equation is given by,

P =
1

3
(ε− 4B0)− 1

2

(
2µ4T 2

θ2
H

+
18µ6T 2

θ4
H

)
(7.7)
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Here B0 is the bag parameter at T = 0. For this case too, we have to check the stability

of the plasma. Since the number of flavors has increased, the energy per baryon will also

change accordingly. The preferred state of a stable plasma comprising of all the quark

flavors should have energy per baryon less than that the nuclear energy of 940 MeV so

that the plasma does not hadronize. Similarly, the energy per baryon should be less than

the binding energy of the 56Fe crystal. The lower energy per baryon will make the quark

gluon plasma the preferred state for the bulk matter [172, 173]. As mentioned before,

the stability of the plasma puts a constraint on the values of the chemical potential as

well as the bag constant. We see that the stability of the plasma increases with smaller

bag constant values.

Again similar to the previous case, since the hadronic phase is also present, there are

some parameters in the hadronic phase which also contribute to the stability of the

plasma. We find that in the three flavor case, the radius of the neutron which contributes

to the volume correction in the neutron - pion gas does change the stability values of the

core pressure. This is because we have equated the pressure of the hadronic phase and

the quark phase to obtain the bag constant. We have plotted the pressure in the core

for different values of bag constant for different values of the neutron radius for which

the quark plasma is stable in fig 7.1. As can be seen from the figure, the increasing bag

constant decreases the pressure in the core.

The graph further shows that the the core pressure rises abruptly to rather high values

once the neutron radius becomes 0.66fm. Beyond this radius, we notice all the curves

overlap. We have checked till 1fm. Below 0.6 fm, there is a rise in the pressure with

increase in the radius of the neutron, however above 0.66fm, the pressure in the hadronic

phase ceases to be dependent on the volume factor. The neutron radius from scattering

experiments is in this range for nuclear forces at short distances [174]. There have also

been some work on the correlation of the neutron radius of 208Pb and the radius of a

neutron star [175]. Generally, it has been observed that a larger value of neutron radius

generates a stiffer EoS with a larger pressure. We have observed the same thing in

our model except that in our model there is a critical radius beyond which the neutron

radius does not affect the stiffness of the EoS anymore.

We thus find that the change in the volume corrections to the non-interacting neutron-

pion gas affect the limiting values of the pressure and the density at the core. In all

the cases, we have considered we have kept the hadronic phase to be the same as we

are interested in the quark phase. We find that as long as the hadronic part consists of

a neutron - pion gas, the only parameter that affects the stability of the plasma is the

radius of the neutron through the volume corrections. Though this effect also occurs

when the strange quark mass is taken into account, the dominance of the strange quark
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Figure 7.1: The graph shows the core pressure for stable masses at different bag
constants for different values of the neutron radius. Beyond 0.66 fm all the curves

overlap.

mass leads to very small variations in the core pressure due to the change in the volume

corrections.

7.2.3 Case 3: Massless up, down and massive strange quarks

If we consider the s quark to be massive then we cannot have µu = µd = µs. So it

is important to consider the first order correction terms to the temperature and the

entropy. As in the previous case, strange matter is modelled as a Fermi gas of up, down,

and strange quarks. This time the charge neutrality of the system is maintained by

the electrons. Weak interactions (β equilibrium) will then lead to µs = µd = µ and

µu +µe = µ [176]. The number densities are related by, 2
3nu−

1
3nu−

1
3ns−ne = 0. This

means that effectively we are dealing with only two chemical potentials µu and µs.

To deal with high baryon densities and low temperatures, finite temperature corrections

are added to the zero temperature terms. This means that,

Ps ' P 0
s + P 1

s T
2 + P 2

s T
4 (7.8)

ns ' n0
s + n1

sT
2 + n2

sT
4 (7.9)

Ss ' S1
sT + S2

sT
3 (7.10)
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The zero temperature terms are given by,

P 0
s =

1

6π2
(µsθs(θ

2
s −

3m2
s

2
) +

3m4
s

2
ln(

µs + θs
ms

)) (7.11)

n0
s =

2θ3
s

9π2
(7.12)

Here ms is the mass of the s quark and θs =
√

(µ2
s −m2

s). The suffix ”s” denotes

the parts with the finite temperature corrections. At high baryon densities and low

temperatures ∂B
∂T dominates over ∂B

∂µ , based on that at the phase boundary one can

obtain the bag constant as,

B(µ, T ) ' B0 + (µ2
u + µ2

d −
2

3
µsθs)

T 2

2
− µsT

2

2θ2
H

(µ3
u + µ3

d +
2

3
θ3
s) (7.13)

Once the bag constant is obtained the pressure can be expressed as,
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(7.14)

As we can see apart from the chemical potentials of the u and s quark, the main param-

eter is the s quark mass. The s quark mass is already constrained by other experiments.

So though we do get large stable mass stars with a smaller value of the s quark mass,

we do not vary the s quark mass below 90 MeV . Generally this is the lower limit of the

s quark mass from various other sources [177]. The temperature is also below 1 MeV.

The constraint on the temperature comes as the entropy per baryon number has to be

continuous even in the bulk. Increasing the temperature violates this continuity and

hence we are constrained to temperatures below 1 MeV. The electron fraction in the

core increases in this temperature range reaching a maximum at 1 MeV, consequently

the strangeness fraction goes down. So we find that lower the temperature, higher is the

strangeness fraction in the core. However, the strangeness fraction saturates to a value

of 0.33 and becomes independent of temperature at lower values.

In the previous section, we had seen that some parameters in the hadronic phase also

affect the stability of the quark cores. We had found that changes in the volume cor-

rections to the neutron - pion gas cause variation to the core pressure. In this case,

the chemical potential of the quarks u and s along with the mass of the strange quark

dominate the core pressure. In fact as the chemical potential of the u quark is in-

creased, the electron fraction and the strangeness fraction required for a stable core goes
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Figure 7.2: The rate of change of the electron fraction ( ne
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), the strangeness fraction
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) and the baryon number density (nB) with respect to the chemical potential of the

u quark.

down while the baryon number density increases to maintain the stability. The rate

of increase(decrease) of the electron fraction, the strangeness fraction and the baryon

number density has been plotted against the chemical potential of the u quark in fig 7.2.

Generally a larger value of the chemical potential of the u quark (µu) results in more

stable quark cores provided the strange quark mass is on the lower side. This is seen by

calculating the energy density of the quark core, which has to be more stable than the

56Fe nucleus. For all the values in fig 7.2, we get stable quark matter. The stability is

checked by calculating the energy per baryon in the plasma.

Thus we have found that it is possible to have energetically stable quark matter us-

ing three flavors of the quark gluon plasma. As these are massive objects, we know

that gravitation plays an important role in establishing the stability of these stars. The

macroscopic quantities of mass and radius are thus calculated using the Tolman - Op-

penheimer - Volkoff equations [178, 179]. In the next sections, we briefly describe these

equations and their solutions.

7.3 The Tolman - Oppenheimer - Volkoff equations

We consider the TOV equations for a spherical and isotropic metric. We assume that the

core of the quark star has a uniform density in all the directions. The TOV equations
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are then given by,

dP

dr
=
G

r

(ε(r) + P (r))(M(r)c2 + 4πr3P (r)

(rc2 − 2GM(r))
(7.15)

and
dM

dr
=

4πr2ε(r)

c2
(7.16)

where the mass density ρ(r) = ε(r)
c2

and c (cm/sec) is the speed of light and ε(r) is

the energy density of the plasma in MeV. The TOV equations are solved numerically

with appropriate boundary conditions to obtain the mass distribution of the stars. The

solution also gives us the gravitationally allowed values of the mass and radius of the

stars. We solve the TOV equations numerically for the high baryon density regime. We

find that stable stars are possible for various values of the bag constant. Detailed results

and graphs are shown in the next section. We have only given plots for the parameters

which give a mass/radius diagram consistent with experimental results. Though, we

have done a through study of a large parameter space but we have only presented those

results which are consistent with experimental observations.

Apart from the mass radius ratio, we would also like to look at a direct observable that is

affected by the compactness of the star. One such observable is the surface gravitational

redshift values of the stars. It is a parameter that corresponds to the redshift experienced

by a radially propagating photon travelling from the star’s surface to infinity. It can be

directly calculated from the mass - radius ratio of a star.

zs =

(
1− 2GM

Rc2

)−1/2

− 1 (7.17)

For all the cases, where we have a stable configuration from plasma stability as well

as gravitational stability, we have calculated the gravitational red shift values of the

stars. In the next section, we will show that the surface gravitational redshift values

obtained for the strange stars in our case are consistent with experimentally observed

gravitational red shift values for different strange star candidates.

7.4 Results

7.4.1 Mass-radius ratios with three massless flavors (up, down and

strange)

Since the two flavor plasma only gives us a metastable plasma we do not solve the TOV

equations for the two flavor plasma. In the case of the three massless flavors of quarks
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we vary the various parameters and do a systematic search to put constraints on the

various parameters of the model.

For massless quarks, we do get large mass values close to 2.2M0 with a radius of 14

km. This occurs for lower bag constants. The strange quark is considered massless

here and therefore we get the mass values greater than two solar masses. The recent

measurements of PSR J0740+6620 from NICER [180] is in this region and would hold

for bag constants below 145 MeV. We have plotted only one value above this to show

the limits of the bag values that are possible. We then obtain the surface gravitational

red shift values for these large mass stars and the resultant plot is shown in fig 7.4.

As seen from fig 7.4., we obtain redshift values of 0.4 for massive stars of 2M0 or higher.

It has been predicted that PSR J0348+0432 has a radius of about 12 kms and mass

of 2.1M0 [149–151] with a red shift value of 0.4. So our model with massless quarks is

able to reproduce the mass - ratio required to have stable quark stars as seen from the

surface red shift data. The combined plots constrained by the PSR J0740+6620 data

and the PSR J0348+0432 data constrain the bag constant for large mass stars to be

around 130− 140 MeV.
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7.4.2 Mass-radius ratios for the massive strange quark

We now present the results of the TOV equations with the pressure obtained from

the EoS corresponding to the massive strange quarks. The mass of the quark puts a

constraint on the quark chemical potentials. We plot the mass radius ratio for stable

stars for two different masses of the strange quark. Since we know that the larger mass

stars would occur in the range of bag constant values between 130− 140 MeV, we give

the results for two values within this range.

We can see from the figures 7.5 and 7.6, that larger mass stars are obtained with smaller

values of the strange quark mass. For a star with massive strange quarks in it’s core,

the compactness of the star is constrained by the strange quark mass. The plot of the

gravitational redshift values for different masses of the stars in given in fig 7.7 and fig

7.8.

Here since we have constrained the strange quark value to a lower limit of 90 MeV, we

do not get massive stars with masses greater than 2M0. We can get such values if we

lower the strange quark values to around 75 MeV. We find that stars with masses of the

order of 1.5M0 would typically have surface red shift values around 0.22. This has also

been seen in other models [149–153]. Thus the observational constraints given by red

shift values are all satisfied with different values of strange quark mass in our model.

We now discuss some observational data in support of our model.
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There are many observational instances of stars with these kind of parameters. We

discuss only some of them in this section. The XTE J1739-285 has a mass of 1.51 solar

mass and a radius of 10.9 km [181]. It is sometimes referred to as a quark star and

sometimes as a neutron star. Recent observational data for XTE J1739-285 has been

made available by the NICER collaboration.It is rapidly spinning and has a red shift

ranging from 1.8 to values of 2.4 depending on its radius. Our model for the quark star

with a massive strange quark of 100 MeV and bag constants between 130 − 135 MeV

gives red shifts in this range.

The low mass X-ray binary, EXO 0748-676 has a mass of 2.1 solar masses and a radius

of 13.8 km [182]. It has a red shift value of 0.35. There have been speculations that this

neutron star has a color flavor locked phase in its core. In our model, the EXO 0748-676

can be a quark star with a bag constant of 135 MeV. So it is possible that the EXO

0748-676 is a quark star with a very thin crust, the core having been formed due to an

isentropic phase transition. This source has been monitored over a long time and there

are other observations which can be used to further understand it’s structure.

We have already mentioned the massive stars like PSR J1614-2230; the gravitational

redshift values of these stars are in the range 0.41 − 0.5. From our studies we have

obtained such high redshift values for the quark plasma with massless quarks. As we

have mentioned before the mass - radius ratio and the red shift values depend crucially

on the masses of the strange quark. The recent NICER results of PSR J0030+0451

[183, 184] is also consistent with the strange quarks masses of 100 MeV and a bag

constant of 130 MeV.

All these candidates are being extensively studied by various telescopes. As we have

just discussed, our model is able to accommodate quite a few of these candidates for

reasonable values of the bag constant and the strange quark mass. While lower strange

quark masses give more stability to the cores, a strange quark mass of 100 MeV gives us

reasonable values of gravitational redshift compatible with experimental observations.

The range of the bag constant is found to be between 130 − 140 MeV. This is a very

narrow range. We can hope to narrow it down further when we consider the spinning

motion of the objects. The spinning of the stars though a well known phenomenon has

not been studied in this work.

7.5 Summary

We would like to conclude this chapter by summarizing our results on the cores of the

hybrid/neutron stars. Basically we have suggested an extension of the bag model where
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the bag constant is dependent on the chemical potential and the temperature. Such a

model has been used previously by Leonidov et. al. for two massless flavors of quarks in

the context of heavy ion collisions. As has been discussed in detail in this chapter, we

have extended the Leonidov’s model to three flavors of quarks by including the strange

quark. In the model we propose, an isentropic phase transition takes place and this

phase transition can lead to a stable quark core inside the star. The presence of the

massless strange quark increases the stability of the plasma. This leads to stars of larger

masses and sizes. The model we have proposed has quite a lot of parameters. Some

of these parameters are already severely constrained by ongoing experiments. The best

example of this is the strange quark mass. The strange quark mass is already constrained

by different experiments. So though the stability of the core increases with decreasing

value of the strange quark mass, we are constrained to keep the value above 90 GeV.

The most stable core is obtained for a massless strange quark. There have been cases

where the strange quark mass was taken as low as 80 MeV [185]. In this chapter, we

have discussed the detailed systematic study we have done for all the parameters of the

model. We have also found different limitations to the values of these parameters. The

stability of the plasma limits our bag constant to the lowest value of 130 MeV.

The mass radius ratio determines the surface redshift of a star. The surface redshift of

these stars is measured by several experimental collaborations and is a good measure

of constraining different models of the stars. We have therefore determined the surface

redshift of stars of various masses using our model. We found that the model is success-

ful in reproducing the surface redshift of stars like PSR J1614-2230, PSR J0348-0432,

XTE J1739-285 and EXO 0748-676. The observational values basically put a stringent

constraint on the bag value of our model. The bag values are constrained to lie between

130−140 MeV. These constraints are well within the purview of the recent experimental

results released by NICER. So an isentropic phase transition in the core of a neutron

star or a hybrid star can lead to massive stars with a large radius already observed by

several experimental groups.

In the end we would like to mention, that nowhere in our model have we taken the

rotational aspects of the stars into account. As is well known in the literature, rotational

effects of these stars affect various parameters of the bag model. We have not considered

this in our current study. Though the rotation will bring additional constraints on the

different parameters, the main results will be unaffected. We strongly believe that the

mass of the strange quark will play an important role in the EoS of the core of the

neutron/hybrid star. Our work also established that it is also possible to have a stable

quark gluon plasma bulk phase in the core of a massive star with no other exotic phases.







Chapter 8

Summary and Conclusion

In this chapter, we will finally wrap up the discussions and conclude them with a short

summary and remarks on the work done throughout the thesis. The origin and evolution

of the seed magnetic field is still a fundamental question in cosmology. The current

magnetic field in the universe is believed to be the magnification of the seed magnetic

field of the early universe. There are density inhomogeneities which are generated in the

early universe. They can help to generate the seed magnetic field in the early universe.

Density inhomogeneities are one of the reasons for all the large scale structure in the

universe. The diffusion of particles are also important in the early universe. Apart from

these, density inhomogeneities play an important role in the nucleosynthesis calculations.

In this thesis, we have talked about density inhomogeneities and phase transition and

their consequences in the context of the early universe.

We have begun our discussion by discussing the background of our work. In the first

chapter, we have looked at the history of the early universe. We have talked about the

Big Bang model and the thermodynamic history of the universe. There we have discussed

about the phase transition that took place in the plasma of the early Universe. As a

consequence of these symmetry breaking phase transition, topological defects arise in

the present universe. This produce density fluctuations in the plasma. Then, we briefly

discuss about the primordial fluctuations and the magnetic fields.

Next, we have explored the phase transitions in the early universe. We have given a

small review of the symmetry breaking phase transition from the field theoretic point of

view. These phase transitions generate topological defects. We have talked about these

defects. As we have mostly worked in the QCD temperature scale, so we have ended the

discussion on phase transition with a discussion on quark-hadron phase transition and

its consequences.

107
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Then we have proceeded to describe the density fluctuations. We have discussed the

importance of studying density inhomogeneities in the context of the early universe cos-

mology. These density inhomogeneities can generate large scale structure. Topological

defects can also generate density inhomogeneities in the plasma. So we have given a

brief review of cosmic string and how the density inhomogeneities can be generated

by a cosmic string. We have talked about the generation and evolution of baryon in-

homogeneities in the plasma to highlight their importance in the context of the early

universe.

After this, we have moved on to study the decay of the baryon inhomogeneities in the

early universe. Baryon inhomogeneities can be generated by first order phase transition.

Generally early universe plasma has high electron density. But for certain scenarios, like

the collapsing Z(3) domain walls we can have large strange quark density in some re-

gions in the plasma. Those regions will have high muon density. There are other particle

decay mechanisms in the plasma which decays into muon. Due to these processes we

can have higher muon density than the electron density in some inhomogeneous regions

in the plasma. These inhomogeneities will decay gradually due to diffusion. Here we

have studied the decay of inhomogeneities in an expanding as well as the non-expanding

universe to understand their effects on the subsequent evolution of the universe. If the

size of the inhomogeneities is small, then the stationary universe consideration to under-

stand the decay will not affect the nature of the decay. But for large inhomogeneities,

we have to consider the expansion factor. Inhomogeneities that have a large number of

strange quarks, will be rich in muon density. But, at low temperature muon density is

very low. Therefore, we have analyzed the decay of these inhomogeneities for temper-

ature up to 100 MeV. From the study of the stationary universe, we have shown that

the inhomogeneities in a muon rich plasma are decaying faster than the inhomogeneities

in the electron rich plasma. So, considering muon for the decay calculation is chang-

ing the nature of inhomogeneities. Hence, any process that accumulates more strange

quarks than the other quarks will need to generate large baryon inhomogeneities in order

to have an impact on nucleosynthesis calculations. Again inhomogeneities, which have

large number of strange quarks also generate a larger number of muon neutrinos with

respect to the electron neutrinos. So, we have analyzed the neutrino degeneracy param-

eter too and there is a possibility of having large muon neutrino degeneracy parameter.

As we know, the lithium abundance problem is still not solved. The theoretically cal-

culated abundance does not match with the observed data. We have discussed about

the modification in the lithium and helium abundance in the context of the stationary

universe. This large muon neutrino degeneracy results in higher lithium abundance than

the observed lithium abundance.
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Density inhomogeneities can be generated at any time of the universe i.e. electroweak

scale, QCD scale etc. All off these inhomogeneities will not survive up to the next phase

transition or up to the nucleosynthesis epoch. Here, we have analyzed the decay of

inhomogeneities in an expanding universe scenario. Inhomogeneities generated in the

electroweak scale may contribute to the quark hadron phase transition dynamics. The

order of amplitude of these inhomogeneities have to be greater than 105 to be present

at the time of the quark hadron phase transition. But most of the inhomogeneities

generated in the electroweak scale has order of magnitude less than 104. Therefore, the

inhomogeneities generated due to the electroweak phase transition would be wiped out

before the QCD phase transition. Next, we have looked into the decay of baryon inhomo-

geneities generated in quark hadron epoch. The muon density of the plasma will be less

after 100 MeV temperature. We have analyzed the decay by dividing whole temperature

scale into two parts. Hence up to 100 MeV temperature we have studied the decay for a

muon rich plasma and below that temperature analyzed it for the electronic plasma. As

the orders of magnitude of the inhomogeneities generated in the QCD epoch decay by

5-6 order, they can survive up to nucleosynthesis. Therefore, we have shown that these

electroweak phase generated inhomogeneities will not survive up to the nucleosynthesis,

but hadronic phase generated inhomogeneities will survive. Large scale baryon overden-

sities generated by the collapsing domain walls and the other topological defects during

the phase transition will survive up to the nucleosynthesis epoch. We have restricted

the minimum order for the amplitude of those inhomogeneities. This will also help to

understand which inhomogeneities we can consider for the nucleosynthesis calculations.

Thus constraints can be obtained on the various models of the inhomogeneity generation

in the early universe.

The other problem that density inhomogeneities can contribute to is in the genera-

tion of primordial magnetic fields in the early universe. There can be many sources

of magnetic field generation like, cosmological phase transition and topological defects

(cosmic strings, domain walls etc.). Here, we have proposed a completely new method

of generating the seed magnetic field in the early universe. We have investigated how

density inhomogeneities generated by a moving cosmic string can give rise to a seed

magnetic field in the early universe. A neutral density current indirectly generates the

magnetic field. Cosmic strings once produced will always be there in the plasma and

they will always move throughout the plasma. So, this model can be valid throughout

the temperature scale under the proper conditions. Here, we have talked about density

inhomogeneities and magnetic field generation for an Abelian Higgs string system. The

motion of cosmic strings gives rise to wakes behind them. For a specific value of en-

ergy, angular momentum and linear momentum, particles have closed orbits around the

Abelian Higgs cosmic string. As a result, particles will be trapped close to the string.
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We have studied neutrinos in the wakes of Abelian Higgs cosmic strings. As neutrinos

have mass, for definite values of angular momentum, linear momentum, and energy,

they will rotate in closed orbits around the string. This rotating neutrinos will generate

a neutrino current. This current acts as a cross-perturbation across the cosmic string

wake. Therefore, there will be the neutrino-electron interaction in the plasma. This two

fluid description of the plasma leads to the electron current, generated in the plasma.

This perturbation together with the high Reynolds number of the plasma generates a

seed magnetic field in the wake of the cosmic string. Particles around moving cosmic

strings are subjected to generate a velocity kick towards the string. This velocity kick

enhance the current in the wake region. The neutrino current density is oscillatory in

nature and depends on its distance from the string. This neutral current leads to the

neutrino density gradients in the plasma. Electron gradients generated by these neutrino

density gradients give rise to the magnetic fields. We have done an order of magnitude

estimation of this seed magnetic field using the Biermann battery mechanism. Here, we

are getting a magnetic field of the order of 1013 Gauss at around 200 GeV temperature

scale. This order is smaller than the equipartition magnetic field at that time, which is

around 1026 Gauss. As the Reynolds number of the plasma is very high in the plasma,

this magnetic field value can be magnified up to the equipartition magnetic field value.

Since we have looked into the quark hadron phase transition, we have also discussed

about the phase transition in a compact object. Modelling higher massive stars is an

ongoing challenge in cosmology. Here, we have successfully modeled some higher massive

compact star. These compact stars have a very high baryon density. We have done our

calculations for the high baryon density regime. For a high baryon dense system the

bag model is one of the models that give rise to a phase transition from quarks to

hadrons. It predominantly gives a first order phase transition in QCD, and has been

used previously to model such compact objects. A density dependant bag model has

been used extensively to model the compact stars. In our case, we have considered a bag

constant dependant on temperature and chemical potential, which is an extension of the

original bag model. Previously in literature, for bag constant calculation strange quark

chemical potential has not been considered. But here we have taken into account the

strange quark potential for bag constant derivation. We have studied how this extended

bag model can lead to stable massive stars that have been observed recently. This

modified bag model can lead to an isentropic phase transition in the core of the neutron

star. Here, we have calculated the Maxwell construction along the phase boundary

and have also taken into account the conservation of various charges. With decrease of

the bag constant, the stability of the quark matter increases. We have found that the

stability of the plasma and mass of the compact stars depends on both the bag constant

and the mass of the strange quark. As we can calculate the surface redshift value of
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the stars from the mass-radius ratio, so we have obtained the redshift values for both

massless and massive strange quark stars. Next, we have matched the mass radius and

the redshift data from our model to some of the experimentally observed data and it is

quite consistent with our model.

In conclusion, in this thesis we have studied certain aspects of the density inhomo-

geneities and the phase transition in the early universe. Our main motivation is to study

the consequences of density inhomogeneities and phase transitions that have occurred

in the early universe and see whether they will lead to any observational consequences.

We have studied the decay of density inhomogeneities in the electroweak and the QCD

scale. Our studies indicate that electroweak inhomogeneities can not be constrained by

observable data, but inhomogeneities generated at QCD scale can be constrained by

observable data. We have also studied a unique way of generating seed magnetic field in

the early universe. The seed magnetic field is generated from inhomogeneities in cosmic

string wakes. Finally, we have analyzed the first order QCD phase transition in the

context of compact stars, where the bag constant was dependant on the temperature

and the chemical potential. Our study indicates the cosmological density fluctuations

have important consequences in early universe cosmology. More detailed studies of these

will yield better understanding of the history of the evolution of the universe.
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