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PREFACE 

 

Recent years have witnessed extensive investigations on low- 

dimensional systems in which the electron’s motion is restricted in all 

directions. The effective size of such a structure may range from a few 

nanometers to few hundred nanometers. Because of their ultra-small 

size, these systems are categorized as zero-dimensional materials or 

quantum dots. As a consequence of quantum confinement, these 

quantum dot (QD) systems have sharp energy levels and exhibit quite a 

few new and exotic features which are quite distinct from those observed 

in the corresponding bulk systems. One significant technological 

advantage with Quantum dots (QDs) is that they can be designed and 

developed in various shapes and sizes and interestingly the shape and 

the size of a QD system can also be tuned to obtain certain desired 

properties. Because of the huge design flexibility together with the 

important and exotic physical properties, the QD structures have 

enormous application potential in nano-devices like molecular 

transistors, spintronics and quantum computers.  

It is necessary to have the knowledge of the form of the confininement 

potential to develop a meaningful theory of QDs. Some early 

experimental findings have advocated that the form of the confinement 

potential in a QD structure is by and large parabolic. Understandably, 

this proposition sparked off extensive research work on parabolic QDs. 

Lately, some experimental results have, however, revealed that the QD 

confininement potential is actually non-parabolic or anharmonic and 
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also the depth of the potential is finite. It has been suggested, in this 

context, that an attractive Gaussian potential serves as a more realistic 

model for confinement in QD. Consequently, a good number of 

researchers have studied QDs employing the Gaussian potential model. 

More reently, a more general model for the confinement potential has 

been proposed. This is the so called power-exponential (PE) potential 

model. This potential contains a parameter called the steepness 

parameter  which can be tuned to obtain a family of potentials including 

the ones used earlier.  

A semiconductor QD can have various quasi-particles. One important 

quasi-particle that can exist in a QD is an exciton. The formation of 

exciton takes place when an electron and a hole form a bound state. 

Quantum confinement plays an important role on the excitonic 

processes in a QD and therefore the optical properties of QDs which 

depend on excitonic processes can be significantly altered by controlling 

the confinement potential.   

Since most of the QDs are made up of polar semiconductors that have 

sizable electron-phonon coupling strengths, it is but natural for polarons 

to form in these systems. The electron-phonon interaction has the same 

energy scale as the other important interactions in low-dimensional 

systems and it is therefore important to examine the role of polaronic 

effects in these systems. It has turned out that the manifestation of the 

polaronic interaction becomes more prominent as the dimensionality of 

the system is reduced.  



 x 

Along with the confining potential of QD, the magnetic field and 

temperature also take a crucial part in influencing the QD properties. 

This thesis is an attempt to examine the magnetic field effect on the 

exciton energy spectra in QD, the effect of temperature on the energy 

levels and the self-energy of a polar QD, and the effect of the 

confinement potential profile on the energy, heat capacity, and the 

susceptibility of an electron and the persistent current in a GaAs QD at 

finite temperature.   
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“I would like to describe a field, in which little has been done, 

but in which an enormous amount can be done in principle. This field is 

not quite the same as the others in that it will not tell us much of 

fundamental physics (in the sense of, What are the strange particles?) 

but it is more like solid-state physics in the sense that it might tell us 

much of great interest about the strange phenomena that occur in 

complex situations. Furthermore, a point that is most important is that 

it would have an enormous number of technical applications”. 

                                                                                                  

                                          RICHARD FEYNMAN, CALTECH, 1959 

                                            “There is plenty of rooms at the bottom” 
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1.1 NANOMATERIALS / LOW DIMENSIONAL SYSTEMS 

The area of nanoscience has occupied the limelight in research for the 

last four decades and has acquired even greater momentum in recent 

years for its role in technology. It appears that Nanotechnology serves 

as the key driver for the economic development in the foreseeable future.  

The term nano has come from the Greek word dwarf [1] which means 

small and one nanometer (nm) is equal to 10−9 meters.  The materials 

whose dimensions are of the order of 100 nm (or less) are usually termed 

as nanomaterials and they provide the foundations on which the 

magnificent edifice of Nanotechnology is built. Nanomaterials, in 

general, display very many important and interesting properties that are 

extremely different from the bulk materials.  These properties depend 

on various parameters such as the structure of the atoms forming the 

nanomaterial, the size and shape of the nanosystem, the so called 

confinement potential which confines the charge particles, composition 

defects and so on. 

 

Fig. 1.1 Material having different length scales. 
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Research on low-dimensional systems has received an unprecedented 

impetus with the tremendous growth and advances in modern nano-

fabrication techniques such as etching techniques, molecular beam 

epitaxy, and nano-lithography. Indeed, it has now become viable to 

develop nano-scale systems where electron’s motion can be restricted in 

all the three dimensions. This is referred to as quantum confinement 

(QC). The size of these structures may vary, in general, from a few 

nanometers to a few hundreds of nanometers.   Because of the ultra-

small size of these materials, they are also called zero-dimensional 

objects. More technically they are referred to as quantum dots (QDs).  

1.2 QUANTUM DOTS 

A quantum dot (QD) is often composed of semiconductors of groups of 

II-VI, III-V, or IV-VI materials. A QD is also referred to a giant artificial 

atom because it may contain a number of atoms. However, it has an 

advantage over an atom because in a QD, the number of charge carriers 

can be varied at will. A QD possesses discrete number of energy levels 

like naturally occurring atoms or molecules [2-4]. Because of the small 

size of the QD, the surface to volume ratio is high in a QD and 

consequently, surface effects are much more important in a QD.  
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Fig. 1.2 An AFM image of QD. 

 

When a thin sheet of lower band-gap semiconductor such as 𝐺𝑎𝐴𝑠 is 

placed between two thick layers of a wider band-gap semiconductor 

such as 𝐴𝑙𝐺𝑎𝐴𝑠 , electrons are forced to move in a quasi-two 

dimensional (quasi-2D) planar region and the structure thus produced is 

referred to as a Quantum well [5] or we can say that, when the electrons 

are allowed to move freely in two spatial dimensions and are completely 

confined in the third direction in a nanostructure, then such systems are 

called quantum wells. In a similar way, if in a system, the electrons have 

free motion only in one direction and their motions are confined in the 

other two directions, the system is known as a quantum wire. Because 

of the confinement in all the spatial dimensions, the QD systems show 

highly quantum effects. If the confinement lengths of QD are of the same 
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order in all the three directions it is called three dimensional (3D) QD, 

and, if the confinement length is much smaller in one direction 

compared to that in the other two directions, the corresponding system 

is called a 2D QD. 

The subject of QDs has generated unwavering interest for the last forty 

years or so especially for two reasons. First, because of the small length 

scale, QDs are ideal objects for testing the results of quantum mechanics 

[6]. Secondly, the QD systems exhibit enormously novel and important 

physical features that are both fascinating and also fairly distinct as 

compared to those of their bulk counter-parts. Besides, it is possible to 

design QD systems in several different shapes/sizes and in both two and 

three dimensions. Because of the huge flexibility in design and the very 

many new and interesting properties, the QD structures are considered 

highly promising for application in nano-devices like QD lasers [7], 

single- or multi-molecular transistors [8], spintronics and quantum 

computers.  

1.3 CONFINEMENT POTENTIAL  

In order to perform theoretical investigations on QD properties, it is 

necessary to first prescribe the form of the confinement potential. One 

simple choice would be to work with an infinite potential well. However, 

initial experimental results [9, 10] in conjunction with the generalized 

Kohn theorem [11, 12], indicated a parabolic nature for the confinement 

potential in a QD. As a consequence, extensive theoretical research 

studies on various electronic and other aspects of QDs were carried out 

following straight-forward quantum mechanics with   parabolic or 
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harmonic potential as the confinement potential [13-20]. A QD with a 

parabolic or harmonic confinement potential is described as a parabolic 

QD (PQD).   

Lately, a few experimental studies have revealed that the QD 

confinement potential is in reality anharmonic and it is not an infinite 

well, rather it possesses a finite depth. Adamowski et al. [21] have 

demonstrated that an attractive Gaussian potential serves as a much 

more suitable confinement potential for a QD. The generalized Kohn 

theorem is also approximately satisfied by the Gaussian potential.  

Furthermore, around the dot centre, its behaviour is harmonic.  The 

Gaussian QD (GQD) possesses an advantage over PQD as it can 

describe both excitation and ionization processes. The results of 

Masumoto and Takagahara [22] suggest that the quantum confinement 

in small QDs is undeniably well approximated by a Gaussian potential. 

The Gaussian potential has been extensively used to probe the electronic 

properties of QDs [23-35].  

1.4 FABRICATION OF QUANTUM DOTS 

There are several methods to fabricate QDs. Our ultimate aim is to 

confine the electrons or any charge carriers in a small region. One way 

to achieve this is by surrounding a metal particle with insulators [2]. We 

can also confine the motion of electron within the semiconductor by 

applying an electric field [2]. Another way to fabricate QD is by 

sandwiching a thin sheet of a narrow band-gap semiconducting material 

such as GaAs in between two thick layers of a wider band-gap 

semiconductor such as [36] AlGaAs. Since, AlGaAs has similar crystal 
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structure and identical lattice constant, it can be used as the sandwiching 

material for making a GaAs QD.  We can tune the confinement and 

number of electrons by using metallic gates.  Lateral confinement can 

be attained by switching on an external electric field. This method was 

essentially introduced by Cibert 𝑒𝑡𝑎𝑙. [37] in 1986.  

 
Fig 1.3. Nanoparticle production: top-down method and bottom-up 

method. (Image: Laboratory for Micro and Nanotechnology, Paul 

Scherrer Institute) 

Basically, there are two main ways for the production of nanomaterials. 

One is called the top-down approach and the other is bottom-up method 

(Fig 1.3). In the Top-down approach, nanoscale particles are produced 

from the macroscale particles. This process uses the physical attributes 

for the nanoparticle production. Ion implantation, laser ablation, 

sputtering, high-energy milling, lithography, vapor condensation, etc. 

are few Top-down methods. But, in the case of a bottom-up method, one 

starts from atoms or molecules to process nanoparticles. Some of the 



Chapter 1 

 

 7 

Bottom-up methods include Sol-gel technique, cluster consolidation, 

electrical deposition, chemical vapor deposition, self-alignment etc..  

One of the early methods was the chemical etching method, first 

proposed by Allen et al. [38] in 1983 in a single quantum-well system 

and by Reed et al. [39] in 1986 in a multiple quantum-well super-lattice.  

However the name ‘Quantum dot’ was first introduced by Reed. Earlier, 

a 𝑞𝑢𝑎𝑠𝑖 − 0𝐷 structure would be addressed as a  𝑞𝑢𝑎𝑛𝑡𝑢𝑚𝑏𝑜𝑥 [40], 

𝑞𝑢𝑎𝑛𝑡𝑢𝑚𝑏𝑢𝑏𝑏𝑙𝑒  [41], 𝑞𝑢𝑎𝑛𝑡𝑢𝑚𝑝𝑜𝑖𝑛𝑡  [42], 

𝑠𝑒𝑚𝑖𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑜𝑟 𝑐𝑟𝑦𝑠𝑡𝑎𝑙𝑙𝑖𝑡𝑒 [43] etc. We can also obtain 3𝐷 quantum 

confinement by using strained layer super-lattices.   Here the lattice 

incompatibility in the layers of a super-lattice makes the 2𝐷  layered 

structure to organize into small islands and so they are called ‘self 

assembled QDs’. This was first achieved by Goldstein in 1984 [44] and 

further confirmed by Leonardo [45] in 1993.  

1.5   PROPERTIES OF QUANTUM DOTS 

Nanomaterials are being explored by the scientists in a wide range of 

disciplines from materials science to nanotechnology, from condensed 

matter to biology, from chemistry to drug delivery. The properties of 

QDs have turned out to be highly size-dependent with a lot of fascinating 

features.  

1.5.1    DENSITY OF STATES FUNCTION    

The Density of States (DoS) function gives the number of states per 

energy interval and determines the distribution of carrier density in a 

physical system.  The DoS is defined as:; 𝑔(𝐸) = 𝑑𝑁 𝑑𝐸⁄ , where 𝑑𝑁 =
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𝑔(𝐸)𝑑𝐸  is the number of electrons with an energy 𝐸  lying within a 

narrow range of energy 𝑑𝐸.  The DoS of QD is a delta function. The 

DoS of different quantum strusctures are shown in the Fig. 1.4.  The 

figure shows that DoS behaves as 𝐸1 2⁄  in the bulk system (3D) and as a 

Heaviside function for 2D systems. In 1D systems, it is proportional to  

𝐸−1 2⁄  and for the 0D materials or QDs, it is given by the Dirac delta 

function.  The formation of discrete energy levels is one of the main 

properties of the low dimensional systems. If the confinement potential 

is taken as an infinitely deep potential well, the energy levels are of the 

form of 𝐸𝑛 = ℏ2𝜋2𝑛2 2𝑚∗𝐿2⁄ , where 𝑚∗  is the Bloch mass of the 

particle and 𝐿 is the effective length scale the QD well. Fig 1.5 presents 

the energy levels of a realistic quantum structure. 

 

Fig. 1.4 Density of states versus energy profile in semiconducting 

materials. 
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Fig. 1.5 Energy levels in a realistic quantum structure: quantum wells.  

 

At low temperature, a significant contribution to electronic specific heat 

comes from the conduction electrons which are in the vicinity of the 

Fermi level. On the other hand, the number of electrons around a certain 

level is a function of the electronic DoS at that level. Since the electronic 

DoS at the Fermi level varies with the dimensionality of the system, the 

electronic specific heat of QD is naturally strongly dependent on the 

system’s dimensionality. Also, the component of the susceptibility 

emerging from the conduction electrons, called the Pauli susceptibility 

is directly proportional to the DoS and thus depends on the 

dimensionality of the system.  
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1.5.2   OPTICAL PROPERTIES 

Besides the nature of the material used for the construction of a QD 

structure, the most important factor that affects the optical properties of 

a QD system is the QD size. Since the energy level spacing depends on 

the QD size (𝐿) , the color emitted or absorbed by a QD crystal 

undergoes a blue-shift as the size of the QD decreases. This is the 

quantum size effect. The band gap of a QD is found to be proportional 

to 𝐿𝑛, where 𝑛 is between  1 and 2.  

 

Fig. 1.6 The band gap energy and the size of a QD are approximately 

inversely proportional to each other. So, the smaller dots produce lights 



Chapter 1 

 

 11 

in high frequency region while larger dots produce in the lower 

frequency region. 

 1.6 APPLICATIONS OF QUANTUM DOTS 

Research on QDs has generated interest in different fields of study. 

Since the nanoparticles of metals or semiconductors of size 2-6 nm have 

dimensional similarities with some of the biological macromolecules 

such as nucleic acid, proteins etc. [46], the subject of QDs has also 

captured the imagination of biologists. Due to quantum confinement 

effect, QDs show good optical and electronic properties and so they have 

more advantages than the currently available flourophores like organic 

dyes and fluorescent proteins [47]. Since the QDs have thin emission 

spectral band and large absorption band, they are more useful for the 

multiplexed imaging in some biological studies. Photostability is an 

important parameter in major fluorescence applications. Since QDs are 

more stable and can have multiple excitation and fluorescence for a long 

time with high degree of luminosity, they are also more advantageous in 

this area. QDs are also used in gene technology. Some of the studies 

show that QD-conjugated oligonucleotide sequences may get bonded 

with DNA or mRNA [48]. Studies have also shown that red, green and 

blue QDs can be used in different combinations to label and identify 

target sequences of DNA [50]. QDs are also useful in fluorescent 

labeling of cellular proteins [51]. They can also have application in cell 

tracking and animal imaging. They are used in tumour detection and 

targeted drug delivery also. 
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QDs have potential applications in quantum information processing. 

They have paved the way for supercomputers called quantum 

computers. They can store information as qubits which are the 

elementary units of the quantum information processes and can be 

created using the two spin states of the electron.  

 

Fig. 1.7   Some of the displays in future. (a) Glasses; (b) Watch with 

built-in biosensors; (c) Fabric; (d) Ultrathin electronic tattoo; (e) 

Flexible display; (f) Transparent windows [52]. 

Light absorption and exposure of the photon-sensitive material to light 

are the two main factors that govern the efficiency of a Solar cell. 

Employing QD-adsorbed materials, one can achieve light absorption to 

a very high degree. Using the advantage of tunability of the band gap of 

QDs, absorption of various wavelengths of the visible spectrum of light 

can be achieved. The incorporation of nanomaterials improves 

photoenergy absorption as the surface to volume ratio increases as we 
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go to lower dimensions. Most of the solar energy received by the earth 

is mainly in the IR and near IR region. One important advantage with a 

QD solar cell is that it can work in the IR region, which is not the case 

with the conventional solar cells. The QD solar cells are less expensive 

to fabricate than conventional solar cells and have better efficiencies. 

So, QD solar cells are a highly desirable alternative. 

Recently, Quantum Dot Light Emitting Diode (QLED) is being used in 

display technology. Because of the outstanding color purity, high 

brightness, low operation voltage and easy processability, QLED 

displays are getting much attention in the scientific world. The inorganic 

QDs enable increased life of the system because of the high thermal and 

air stability they have. Furthermore, recent developments in patterning 

techniques have enabled the accomplishment of ultrahigh-resolution 

QLED array in full colour range. Conventional display processing 

technologies could not implement these techniques [52]. 

1.7 REVIEW OF LITERATURE ON QUANTUM DOTS  

In the last four decades, research investigations using both theory and 

experiment have been conducted quite extensively on low-dimensional 

systems in general and quantum dots in particular. These studies have 

uncovered quite a few interesting physical properties of matter at the 

fundamental level. 

1.7.1 EXPERIMENTAL BACKGROUND 

In the last four decades, a vast number of experimental investigations 

have gone into studying the physical behavior of the confined charge 
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carriers in zero dimension.  Ashoori et al. [53] have explained a 

spectroscopic tool for the study of discrete quantum energy levels in a 

quantum dot. A few-electron QD energy spectrum was studied by 

Meurer et al. using far infrared spectroscopy on GaAs QD [54]. Su et al. 

have considered a few-electron QD created in a laterally confined 

double-barrier heterostructure and investigated resonant tunneling 

through it [55]. They have found that if the electron number in QD is 

larger than or equal to 3, then the energy needed to add another electron 

to QD is independent of the number of electrons present in QD. Norris 

et al. have studied the excited states of QD using luminescence 

excitation spectroscopy [56]. Medeiros-Ribeiro et al. have made a 

capaciatance spectroscopic study of InAs self-assembled QD grown on 

GaAs [58]. They have shown the effect of inter- and intra-dot Coulomb 

interactions on the capacitance spectra. Some researchers have observed 

the charge fluctuations in QD using semiconductor electrometer [59]. 

Kulakovskii et al. [61] have used magneto-photoluminescence to 

investigate the influence of QD asymmetry and electron-hole exchange 

interaction on the emission properties of a confined biexciton in single 

3D CdSe/ZnSe QD. The role a magnetic field plays on the 

recombination spectrum of strongly correlated electrons and holes in a 

self-assembled InGaAs/GaAs QD has been demonstrated by Raymond 

et al. [62]. The effect of magnetic field on the Zeeman splitting and the 

diamagnetic shift in the magneto-luminescence lines have been studied 

by Rinaldi et al. [63]. They have used 𝐼𝑛𝑥𝐺𝑎1−𝑥𝐴𝑠  with parabolic 

confinement in their studies. A third harmonic generation associated 

with the intraband transition in a self-assembled InAs /GaAs QDs has 
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been observed by Sauvage et al. [64].  Lee et al. have reported a 

reflection high-energy electron diffraction study of InAs self-organized 

QDs grown on GaAs (001). Dekel et al. [66] have carried out a 

spectroscopical study on a single self-assembled QD and have given a 

successful explanation for its power-dependent PL spectra. An 

experimental study of multimode spectral emission in a QD laser has 

been studied by Patane et al. [67]. They have investigated the 

electroluminescence spectra of edge-emitting lasers with active medium 

being self-assembled quantum dots.  Zhao et al. [68] have reported a 

work on single-emitter that studies the emission characteristics of 

graphene QDs. They have shown that these QDs are stable and efficient 

emitters of single photons at room temperature. Also the emission 

wavelength of these emitters is adjustable via the functionalization of 

their edges.  

1.7.2 THEORETICAL BACKGROUND 

Several theoretical works have been carried out in the field of QDs in 

the last four decades. A variational study of an electron-hole system in 

a finite barrier QD using effective mass theory was first reported by 

Efros and Efros [69] and then by Brus [70]. Marzin and Bastard [71] 

have performed an effective mass calculation for the energy levels in 

InAs QD embedded in GaAs. Yip [72] has studied the absorption lines 

for a system of electrons in a PQD placed in a magnetic field. The 

calculation for nonlinear optical rectification of the electric field- biased 

parabolic QDs have been done by Gu and Guo [73]. They have shown 
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that that the rectification becomes more pronounced as we reduce the 

dimensionality of QD. 

Using the Chandrasheskhar-type wave function, variational solutions of 

the ground state (GS) of negative donor centres in QDs have been 

obatined by Zhu et al. [74]. They have also found the exact solutions of 

the GS of neutral donor centres in different QDs. It has been shown that 

the electron correlation effects depend strongly on the QD 

dimensionality and weakly on the QD geometry. Bryant [75] has 

considered a system of two electrons in an infinite rectangular well. 

They could see that the ratio 𝑙𝑥 𝑙𝑦⁄ , where 𝑙𝑥 and 𝑙𝑦  are the dimensions 

of the box, has a strong effect on the energy spectrum. A many body 

calculation has been carried out for a realistic QD geometry using the 

Hatree approximation by Kumar et al. [76]. Later, Pfannkuche et al. [77] 

have compared the results for the QD electron system obtained by using 

the Hatree and the Harttree-Fock approximations. They have pointed out 

that the results obtained by the Hartree mehod are inaccurate and those 

obtained by the Hatree-Fock method cannot be trusted either, 

particularly for small number of electrons, for they do not include the 

correlation effect. Johnson and Payne [78] have made a breakthrough in 

the field of theoretical studies by considering a model problem which is 

simple enough to admit an exact solution but contains the essential 

features of the actual problem. In this model problem, they have 

considered a PQD with many spinless electrons interacting through a 

repulsive parabolic interaction in a magnetic field. They have obtained 

the exact solution for the electronic energy levels in terms of the number 
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of electrons and the strength of the applied magnetic field. Taut [79] has 

considered a 2D PQD with two electrons interacting through Coulomb 

interaction and obtained an exact analytical solution for certain magnetic 

field strengths. The impact of electron-electron interaction on 

compressibility, capacitance and inverse compressibility of electrons in 

a QD has been studied by Berkovits and Altshuller [80] using the 

random phase approximation. The existence of the GS persistent current 

in coherent 2D QD arrays in an external magnetic field has been 

predicted by Kotlyar and Das Sarma [81]. Brouwer and Aleiner [82] 

have studied the electron-electron interaction effect on the conductance 

of open QDs. The size dependence of impurity levels in QD has been 

studied by Bellesa and Combescot [83]. Ferreyra and Proetto [84] have 

studied the properties of an exciton in an inhomogeneous QD in the 

strong confinement regime. Andreev and Lipvoskii [85] have 

experimentally and theoretically investigated the optical spectra of 

spherical PbSe and PbS QDs.  

1.8 EXCITONS IN QUANTUM DOTS 

Quantum confinement of charge carriers in semiconductor QDs makes 

them the objects of intense studies as they lead to numerous effects of 

fundamental character. A semiconductor QD can have several 

excitations. “Exciton” is one of them. A valence-band electron, after 

acquiring some external energy, can get energized to be elevated to the 

conduction band in a semiconductor. In this process a hole is created in 

the valence band.  The conduction band electron can however still 

interact with the hole left behind by it in the valence band and constitute 
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a bound pair. This bound state of the electron and the hole is known as 

an Exciton. By illuminating a semiconductor with light, one can 

accomplish the creation of an exciton. It goes without saying that 

excitonic processes would have a crucial effect on several optical 

properties of QD. Quantum confinement can strongly alter these 

properties. The explanation for this is simple. It is easy to show that 

confinement increases a particle’s energy. In the case of an exciton, there 

is another effect. This is the Coulomb interaction between the electron 

and the hole. The confinement would decrease the exciton size and 

would consequently increase the attractive interaction or reduce the 

energy. Thus there are two contrasting effects whose interplay may lead 

to some interesting excitonic phenomena. Also, with increasing 

confinement, the electron and hole would come close to each other 

increasing the possibility of radiative recombination. Thus there are 

several excitonic processes that are crucially dependent on confinement 

and other QD parameters.  It is therefore important to study the effects 

of all these processes and examine how they can be tuned by controlling 

different parameters of QD in order to obtain desired optical properties.  

The studies on excitons have started long ago. Last few decades have 

witnessed a number of exciting investigations on an exciton confined in 

a low-dimensional system. Henry and Nassau [86] could calculate the 

lifetime of a weakly-bound exciton in CdS which has a giant oscillator 

strength that leads to extremely fast radiative lifetime.  They have found 

that  𝜏𝐼1 = 1.03 ± 0.1 nsec and 𝜏𝐼2 = 0.5 ± 0.1 nsec, where 𝐼1 refers to 

an exciton bound to a neutral acceptor and 𝐼2 that to a neutral donor. The 
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binding energy (BE) of an exciton in a quantum well has been calculated 

by Bastard et al. [87]. They have determined the GS BE for a GaAs-

GaAlAs quantum well using variational approach and have found that, 

as we increase the thickness of the quantum well, GS BE decreases 

monotonically. Degani and Hipolito [88] have also used a variational 

calculation to get the exciton BE in a GaAs quantum wire (surrounded 

by 𝐺𝑎1−𝑥𝐴𝑙𝑥𝐴𝑠). They have found that the energy has a strong size-

dependence and also the magnitude is greater than that in a 

corresponding quasi-two dimensional quantum well structure. The 

effect on an exciton trapped in a quantum box has been studied by 

Bryant [89].  He has employed a variational calculation to study the GS 

energy and the optical properties. Confinement has been shown to 

enhance the exciton kinetic energy, the Coulomb energies and the 

oscillator strength and to reduce the electron-hole separation. Both the 

theoretical and experimental confirmation for the states of the biexciton 

in a semiconductor QD has been first provided by Hu [90]. He could see 

that as we reduce the QD size there is an increase in the biexciton BE. 

Einevoll [91] has studied theoretically the confinement of exciton in 

small 𝐶𝑑𝑆  and 𝑍𝑛𝑆  QDs . Using a combined effective bond-orbital 

model (EBOM) and effective-mass approach, he could calculate the 

energies of a single-hole in ZnS crystallites and the exciton energies in 

CdS and ZnS crystallites. EBOM and the effective mass approximation 

are expected to overestimate the confinement energies whereas the tight-

binding approximation is likely to underestimate them. The effect of 

confinement on an exciton in QDs of indirect band-gap materials has 

been studied by Takagahara and Takeda [92]. They have proposed a 
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mechanism for the conversion of the band-gap character. With the help 

of two - photon absorption and magneto-luminescence experiments, 

Rinaldi et al. [93] have determined the exciton Bohr radius and BE of 

an exciton in a V-shaped GaAs quantum wire. Lamouche and Lepine 

[94] have used a two-band variational method for the study of the GS of 

an exciton in a 2D QD superlattice which has been grown on a terraced 

substrate. Heller et al. [95] have investigated the role of an electric field 

on the excitons in QDs. With the help of micro-photoluminescence 

spectroscopy, they could uncover the role of an electric field on excitons 

that are confined by monolayer width fluctuations in narrow QWs. They 

have been able to observe a redshift of GS and several excited states 

(ESs) by switching on an electric field. It has been noticed that this stark 

shift decreases with increasing number of exitons in QD due to the 

screening of the electric filed. Oshiro et al. [96] have considered a 

spherical QD and employed a variational approach to find the size-

dependence of a few polaronic properties. Song and Ulloa [97] have 

investigated the role of magnetic field and confinement on an exciton in 

a quantum ring and obtained the energy by numerically diagonalizing 

the relevant effective-mass Hamiltonian. Using the density matrix 

method, Karabulut et al. [98] have explored the part excitons play in 

influencing the nonlinear optical features of semi-parabolic QDs. 

Sakiroglu et al. [99] have considered a parabolic confinement potential 

and used the Ritz variational method with a Hylleraas-like trial wave 

function to examine the role of confinement on the exciton GS energy 

in a spherical and in a disc-like QD. Florez and Camacho [100] have 
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studied the role of excitons on second-order nonlinear optical features 

of QDs with semi-pherical geometry.   

Effects of excitonic processes have been observed in experiments on 

photoluminescence [101]. It has also been realized that excitonic 

processes have a major part to play in semiconductor-QD-based 

optoelectronic devices [92,102-106].  

Guo and Yu [107] have explored the excitonic effect on the third 

harmonic generation in 𝑆𝑖 𝑆𝑖⁄ 𝑂2  PQD. They have demonstrated that 

incorporation of the excitonic effect increases the third harmonic 

generation by about a factor of 2. Using an exact diagonalization 

method, Yuan et al. [108] have examined the effect of excitons on the 

optical absorptions in PQD. Their results show that quantum 

confinement significantly enhances the optical absorption coefficients 

and the excitonic effects increase it by about hundred percent.     

1.9  ELECTRON - PHONON INTERACTION (POLARON) 

EFFECTS IN     QUANTUMDOTS. 

The idea of Polaron was first predicted by Landau [109] more than 80 

years ago. He suggested that an electronic charge carrier moving slowly 

through an ionic medium can shift the equilibrium position of the ions 

as shown in the Fig. 1.8. The term Polaron was coined by Pekar [110]. 

Shift in the equilibrium positions of the ions can lead to the formation 

of a potential well for the charge carrier. If the potential well is 

sufficiently deep, the electron gets trapped inside the potential well. This 

phenomenon is known as self-trapping, as the potential trapping the 
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electron has been created by the electron itself.  The self-trapped charge 

carrier together with the lattice distortions is defined as the strong 

polaron [111].  

 

 

Fig. 1.8 Polarons (Image from Google) 
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The quantum mechanical description of the polaron was given by 

Fr𝑜̈hlich. In this description, an extra electron in a polar solid would 

distort the lattice around it. The electron together with the lattice 

distortion forms a quasi-particle called the polaron which can also be 

viewed as an electron dressed with virtual longitudinal optical (LO) 

phonons. This is precisely the effect of electron-phonon (e-p) 

interaction. When the distortion of the lattice ranges over a few lattice 

units, we have a large polaron. A large polaron possesses small velocity 

and can thus move inside the solid medium essentially as a free electron 

with a renormalized mass which is higher than the Bloch mass. If the 

lattice deformation is confined within one lattice unit, the resulting 

polaron is known as a small polaron. The motion of such a polaron is 

generally described as taking place through a succession of occasional 

phonon-assisted jumps between adjacent sites.  

Two electrons experience a repulsive force from each other because of 

the coulomb interaction. But when they are in a phonon bath, there will 

be an additional phonon-mediated attractive interaction. If this attractive 

force happens to be stronger than the Coulomb repulsion, then the two 

electrons can form a bound pair called bipolaron [112].  Thus, a 

bipolaron consists of two electrons together with a phonon cloud. 

During the last three decades, many investigations have been made to 

examine the effect of polaronic interaction on the electronic properties 

of low-dimensional systems like QDs. Scmit-Rink, Miller and Chemla 

[114] have studied theoretically the optical properties of InSb and GaAs 

QDs. They have observed that if the QD size is much smaller than the 
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bulk exciton size, the spectrum is linear with a sequence of lines and 

they have studied the phonon broadening of these lines. Bockelmann 

and Bastard [115] have investigated both theoretically and 

experimentally the optical phonon broadening in QDs and have shown 

that the strength of electron-phonon (e-p) coupling for polar 

semiconductors is independent of the size. The static and dynamic 

electronic properties of nanometer-size CdSe clusters have been studied 

by Bawendi et al. [117] using optical experiments. They have also been 

able to obtain the value of the strength of the e-p interaction. 

The polaronic properties in a 2D QD with harmonic potential have been 

studied by Zhu and Gu [118] by means of the second-order Rayleigh-

Schr𝑜̈dinger perturbation theory (RSPT). They have observed that the 

corrections in the GS and ES energies and the transition energies 

increase with decreasing QD size. In a subsequent paper [119], they have 

concluded that the phonon-confinement effect on polaron self-energy is 

significantly large in small QDs. They have also examined the role of 

polaronic interaction on the electron cyclotron mass in a GaAs PQD 

using RSPT [120]. They have established that if the cyclotron frequency 

𝜔𝑐 is much larger than phonon frequency, the cyclotron mass splits into 

two cyclotron masses (𝑚+
∗  and 𝑚−

∗   ), 𝑚+
∗  (𝑚_

∗)  being smaller (greater) 

than the Bloch mass. By increasing the size of the QD,  𝑚+
∗  can be 

enhanced and made to approach the 2D value while  𝑚_
∗  may have a 

significant value in small QDs. The cyclotron resonance of a bound 

magnetoplaron in a 3D QD with strong parabolic confinement has been 

studied by Yeung et al. [121]. They have shown that there exists a 
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pinning effect in the presence of Coulomb impurity and the parabolic 

potential. Chen et al. [122] have analyzed the impurity levels in a QD 

and calculated the impurity BE in the presence and absence of e-p 

interaction using second-order perturbation theory. Their investigation 

reveals that BE depends crucially on the effective confinement length of 

the QD, if it is reduced to the same length scale as the polaron size.  

Mukhopadhyay and Chatterjee have obtained a closed-form analytical 

result for the GS polaron self-energy in a polar semiconductor QD in 

both 2D and 3D using RSPT. They have been able to provide a  

dimensional scaling relation for the polaron GS energy [123].  They 

have also studied the Zeeman effect for the first excited energy levels of 

a 2D PQD of GaAs perturbatively in the presence of polaronic 

interaction [124]. Polaronic effects have been investigated by Yanar et 

al. [125] in a symmetric N-dimensional (ND) Gaussian QD using RSPT, 

a modified Lee–Low–Pines method, and the path-integral formalism 

due to Haken. They have provided numerical results for the polaronic 

corrections to the energy for N = 2 and N = 3.  

Ribeiro et al. [126] have explored the polaron dynamics in armchair 

graphene nanoribbons (GNRs) in an electric field. They have noticed 

that polaron transport is dependent on the appropriate balance between 

the e-p coupling strength and the GNR width. They have also examined 

the role of spin-orbit coupling on the polaron properties in GNR [127].   

1.10    ORGANIZATION OF THE THESIS 
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In CHAPTER 2, we have considered the exciton problem in 2D and 3D 

Gaussian QDs (GQDs) of GaAs placed in a magnetic field by means of 

(a) the Rayleigh-Ritz variational approach, (b) the 1 𝑁⁄  expansion 

technique and (c) the shifted 1 𝑁⁄  expansion scheme. We have obtained 

the GS energy and BE of the exciton in terms of the (i) QD size, (ii) 

strength of the confinement potential and (iii) the applied magnetic field 

and made a comparison of our results with the available reported results. 

The Rayleigh-Ritz variational approach provides a higher limit to the 

GS energy while the 
1

𝑁
−expansion technique provides a lower bound. 

It is shown that the results obtained by shifted 1/N expansion technique 

match remarkably well  with the exact numerical results. We have 

studied the behaviour of the size of the exciton and its oscillator strength 

with respect to QD size. Use of the shifted 1/N expansion technique has 

also enabled us to compute the excited states. We have shown that by 

controlling QD parameters we can realize the desired number of bound 

excitonic states in GQD. This can pave the way for realizing excitonic 

lasers using semiconductor QDs.   

In CHAPTER 3, we have analyzed the impact of temperature on  

polaron effects in GQD by means of Lee-Low-Pines-Huybrechts 

(LLPH) unitary transformation, the Rayleigh-Ritz variational method 

and statistical mechanics. Our calculations reveal that the electron GS 

energy should increase with increase in temperature while the polaron 

self-energy should reduce. We have also analyzed how the confinement 

strength affects the polaron GS energy and BE. It has been shown that 

the GS energy is higher for a 3D QD as compared to a 2D QD. Finally, 
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the polaronic effects have been shown to increase as the dimensionality 

of GQD is reduced. 

In CHAPTER 4, we have studied the role of the nature of confinement 

on different aspects of a GaAs QD considering a power-exponential 

potential model. This potential contains a steepness parameter p which 

determines the shape of the QD potential. A small value of p gives a soft 

potential while a large p leads to a hard potential. We have determined 

the average thermodynamic energy, magnetic susceptibility, specific 

heat, and persistent current. It has been observed that for a soft potential, 

the average thermodynamic energy has a strong dependence on p, while 

in the case of hard confinement, it hardly depends on p. We have 

observed that at low temperature, for the chosen magnetic field strength, 

the potential profile has no bearing on the heat capacity. It has also been 

observed that there can be a magnetic field-driven paramagnetic-

diamagnetic transition in the system. It has been further observed that 

beyond a certain critical value of the magnetic field, the system exhibits 

a diamagnetic behaviour for a shallow potential and then the shape of 

the potential becomes unimportant. We have also found that if the 

magnetic field belongs to a certain range and p lies in a certain window, 

a diamagnetic phase can show a re-entrant behaviour. Finally, we have 

demonstrated that the nature of the persistent current in the QD 

considered here is diamagnetic and its magnitude shows an increasing 

behaviour with increasing potential depth. However it does not show 

any dependence on the steepness parameter p.  
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Finally, in CHAPTER 5, we have summarized the important results of 

this thesis and presented our conclusions. 
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Effects of Magnetic field on the 

Exciton Energy levels of a GaAs 
Quantum Dot: Applications to 

Excitonic Lasers 

 
 

Abstract 

We have studied the energetics of an exciton confined in two and three-

dimensional Gaussian GaAs quantum dots in a magnetic field employing 

a variational approach, the 1/𝑁 expansion technique and the shifted 

1/𝑁 expansion scheme. We have calculated the ground state energy of 

the exciton and its binding energy in terms of the effective confinement 

length, the strength of confinement and the magnetic field strength and 

made a comparison of our results with the ones that have been reported. 

The Ritz variational approach leads to an upper limit to the energy while 

the 1/𝑁 expansion technique is known to yield a lower bound. We have 

demonstrated that the energies calculated employing the shifted 1/N 

expansion scheme match remarkably well with the exact results obtained 

numerically. The behaviour of the size of the exciton as well as its 

oscillator strength has also been investigated with respect to the effective 

confinement length of the quantum dot.  Finally, the energies of the 

exciton excited states have been calculated with the help of the shifted 

1/N expansion technique and it has been predicted that by controlling 

the parameters of the quantum dot one can generate a desired number 

of bound excitonic states in a quantum dot. This observation is important 

in view   of achieving excitonic lasers using quantum dots.  
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2.1 INTRODUCTION 

Excitons are one kind of excitations in QDs that are fundamentally 

important in determining several key optical properties of 

semiconductors [1-3]. Besides depending on the electrostatic interaction 

between the electron and the hole, the exciton energy spectra depend 

crucially on the confinement potential of the quantum dot (QD) [4-7]. 

During the last two decades, there have been several studies in the field 

of excitonic physics in the context of QDs. Einevoll has considered 

small CdS and ZnS QDs and studied the exciton problem in these 

systems theoretically [8]. He has calculated and compared the exciton 

energies for dots having diameter in the range of 10-80 Å. Que has 

studied the excitonic properties in a parabolic QD (PQD) [9]. Jaziri et 

al. [10] have examined the role of electric and magnetic fields on 

excitons in PQD using a combination of the perturbation and variational 

theories. Xiao [11] has considered a spherical GaAs QD in a magnetic 

field and determined the exciton binding energy (BE) in this system with 

the help of a variational technique. The exciton binding energies in finite 

potential quantum discs of GaAs have been calculated by Safwan et al. 

[12]. 

As mentioned earlier, QD with Gaussian confinement will be called a 

Gaussian QD (GQD). Though much attention has been directed to the 

study of exciton ground-state (GS) problem in GQD, only a very few 

studies are available on the exciton excited states [13, 14]. Undoubtedly, 

the role of the excited states of an exciton is very crucial from in the 

context of infrared and two-photon spectroscopic studies [15]. Xie [16] 
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has determined the GS and excited state (ES) excitonic energies in GQD 

using the method of matrix diagonalization.  

A magnetic field is known to produce an added localizing potential 

which may be utilized to control the electron’s motion in a more 

regulated way. Gu and Liang [14] have examined the role of a magnetic 

field on the exciton energy levels in GQD employing the technique of 

matrix diagonalization.  As the exciton problem in GQD is not exactly 

soluble, an exact numerical diagonalization certainly serves a useful 

purpose. But, quite a few times, the numerical solutions may not offer 

some of the most intriguing and important aspects of the physical system 

under consideration. Also, the wave function chosen in course of matrix 

diagonalization procedure hardly offers any understanding or insight 

about the physics of the system unlike in the case of analytical methods.  

It is therefore only appropriate to devise approximate analytical methods 

that would incorporate all the salient aspects of the system and provide 

results that would agree well with the numerical data.   

In this chapter we present our calculation of the GS exciton energy and 

the corresponding BE in a spherically symmetric GQD placed in a 

magnetic field. We show how the GS energy and BE of the exciton vary 

with the QD size, magnetic field strength and the potential depth with 

the help of the conventional variational approach, the 
1

𝑁
 - expansion 

technique and the shifted  
1

𝑁
 - expansion scheme. We also study how the 

exciton size and oscillator depend on QD size. Finally, we calculate the 

ES excitonic energies for some sets of parameter values.  
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2.2  MODEL 

An exciton in GQD in a magnetic field  𝑩 (0, 0, B) may be described by 

the Hamiltonian 

  𝐻 = ∑ [
1

2𝑚𝑖
∗
(𝒑𝑖 +

𝑞𝑖
𝑐
𝑨𝑖  )

2

− 𝑉0𝑒
−𝑟𝑖

2 2𝑅2⁄ ] −
𝑒2

𝜀|𝒓𝒆 − 𝒓ℎ|
 ,

𝑖=𝑒,ℎ

   (2.1) 

 

where 𝑖 = 𝑒  (h) denotes an electron (a hole),  𝑞𝑒   (𝑞ℎ ) denotes the 

electron (hole) charge, 𝐫𝑖 = 𝒓𝑒 (𝒓ℎ)  refers to the electron (hole) 

coordinates  and 𝒑𝑖 = 𝒑𝑒 (𝒑ℎ ) the corresponding momentum operator, 

 𝑚𝑖
∗ = 𝑚𝑒

∗  (𝑚ℎ
∗ ) stands for the band mass of the electron (hole),  𝑨𝑖 =

𝑨𝑒(𝑨ℎ)  describes the vector potential for the electron (hole) 

corresponding to  𝑩 , 𝑅  and 𝑉0  give the range and depth of GQD 

respectively and  𝜀  represents the permittivity of the QD material. 

Writing the  𝑨 =  (−
𝐵𝑦

2
,
𝐵𝑥

2
, 0) (symmetric gauge), we have, for the 

Hamiltonian,   

𝐻 = ∑ [−
ℏ2

2𝑚𝑖
∗ 𝜵𝑖

2 − 𝑉0𝑒
−𝑟𝑖

2 2𝑅2⁄ +  
1

8
𝑚𝑖
∗𝜔𝑐𝑖

2 𝑟𝑖
2]

𝑖=𝑒,ℎ 

+
1

2
(𝜔𝑐𝑒𝐿𝑧𝑒 − 𝜔𝑐ℎ𝐿𝑧ℎ) − 

𝑒2

𝜀|𝒓𝒆 − 𝒓𝒉|
 .                 (2.2) 

 

The spin of the charge carriers is not considered here. 𝜔𝑐 represents the 

cyclotron frequency and 𝐿𝑧𝑒(ℎ) is the orbital angular momentum of the 

electron (hole) in the z direction.  
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2.3 FORMULATION 

Now let us rewrite the Hamiltonian by adding and subtracting the terms 

∑
1

2
𝑚𝑖𝜔𝑖

2𝑟𝑖
2 + 𝑉0𝑖.𝑖=𝑒,ℎ  The total Hamiltonian 𝐻 is then written as : 𝐻 =

𝐻0 + 𝐻1 , with  

 𝐻0 = ∑ [−
ℏ2

2𝑚𝑖
∗ 𝜵𝑖

2   +  
1

2
𝑚𝑖
∗ῶ𝑖

2𝑟𝑖
2]

𝑖=𝑒,ℎ 

− 𝑉0  +
1

2
(𝜔𝑐𝑒𝐿𝑧𝑒 − 𝜔𝑐ℎ𝐿𝑧𝑒)

−
𝑒2

𝜀 𝒓𝒆 − 𝒓𝒉 
,                                                               ( 2.3) 

  𝐻1 = −𝜆 ∑ [ 
1

2
𝑚𝑖
∗𝜔𝑖0

2 𝑟𝑖
2 + 𝑉0 (𝑒

− 
𝑟𝑖
2

2𝑅2 − 1)]

𝑖=𝑒,ℎ

      (2.4) 

  where   

 ῶ𝑖
2 = 𝜔𝑖0

2 +
𝜔𝑐𝑖
2

4
  ;        𝜔𝑖0

2 =
𝑉0

𝑚𝑖
∗𝑅2

,                          (2.5) 

For parabolic confinement,  𝜆  is equal to zero and in the case of 

Gaussian confinement, 𝜆 is equal to 1. For GS, the angular momentum 

terms can be ignored. Furthermore, we make an assumption that  𝐻1 

essentially renormalizes the frequency ῶ𝑖 . Thus we replace 𝐻1 by   

 𝐻1 = 𝜆 ∑ [
𝑉0
〈𝑟𝑖

2〉
−
1

2
𝑚𝑖
∗𝜔0𝑖

2 −
𝑉0〈𝑒

−𝑟𝑖
2/2𝑅2〉

〈𝑟𝑖
2〉

]

𝑖=𝑒,ℎ

𝑟𝑖
2 = 𝜆 ∑ 𝜔𝑖

2

𝑖=𝑒,ℎ

𝑟𝑖
2, (2.6) 
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where the averaging state is GS of the Hamiltonian: [−
ℏ2

2𝑚𝑖
∗𝜵𝑖

2   +

 
1

2
𝑚𝑖
∗ῶ𝑖

2𝑟𝑖
2] [11].  Thus the wave functions we have used to find the 

expectation values are:  

 

For a three-dimensional (3D) QD, 

 

                                                 𝜙0 = (
𝑚𝜔̃𝑖
𝜋ℏ

)
3/4

𝑒−𝑚𝜔̃𝑖𝑟
2/2ℏ    ,               (2.7) 

 

and a for two-dimensional (2D) QD, 

 

                                                𝜙0 = (
𝑚𝜔̃𝑖
𝜋ℏ

)
1/2

𝑒−𝑚𝜔̃𝑖𝑟
2/2ℏ  .                  (2.8) 

Since for three dimensions, 

                                                   〈𝑟𝑒
2〉 = 〈𝑟ℎ

2〉 =
3

2
 (

ℏ

𝑚𝜔̃
)                     (2.9) 

 and        

〈𝑒−𝑟𝑒
2/2𝑅2〉 = 〈𝑒−𝑟ℎ

2/2𝑅2〉 = 𝑚𝜔̃
3
2⁄ (

2𝑅2

2𝑚𝜔̃𝑅2 + ℏ
)

3
2⁄

         (2.10) 

and for two dimensions,      

    〈𝑟𝑒
2〉 = 〈𝑟ℎ

2〉 =
ℏ

𝑚𝜔̃
 ,                  (2.11) 

and 

〈𝑒−𝑟𝑒
2/2𝑅2〉 = 〈𝑒−𝑟ℎ

2/2𝑅2〉 =
2𝑚𝜔̃𝑅2

2𝑚𝜔̃𝑅2 + ℏ
 ,           (2.12) 
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we can write 𝜔̃𝑒
2 + 2(𝜆/𝑚𝑒

∗)𝜔𝑒
2 = 𝜔̃ℎ

2 + 2(𝜆/𝑚ℎ
∗ )𝜔ℎ

2 ≡ 𝜔2.  Now our 

problem with Gaussian potential reduces to a problem having an 

effective parabolic potential and the Hamiltonian becomes  

𝐻 =
𝑝𝑒

2

2𝑚𝑒
∗ +

1

2
𝑚𝑒
∗𝜔2𝑟𝑒

2 +
𝑝ℎ
2

2𝑚ℎ
∗ + 

1

2
𝑚ℎ
∗𝜔2𝑟ℎ

2 − 2𝑉0 − 
2

𝜀|𝒓𝑒 − 𝒓ℎ|
 .     (2.13) 

Now we introduce two new coordinates 𝒓 and 𝑹 to solve this problem. 

We define:  𝒓 = (𝒓𝒆 − 𝒓𝒉)  and 𝑹 = (𝑚𝑒
∗𝒓𝑒 +𝑚ℎ

∗𝒓ℎ)/𝑀,  where 𝑀 =

𝑚𝑒 +𝑚ℎ . Using the corresponding momenta:  𝒑 = −𝑖ℏ𝛁𝑟  and 𝑷 =

−𝑖ℏ𝛁𝑅, the electron and hole momenta 𝒑𝒆 and  𝒑𝒉 are then written as: 

 𝒑𝒆 = 𝒑 + (𝑚𝑒
∗/𝑀)𝑷 ;  𝒑𝒉 = − 𝒑 + (𝑚ℎ

∗/𝑀)𝑷 . The Hamiltonian 𝐻 

now reads   

𝐻 = 𝐻𝑅 + 𝐻𝑟                                               (2.14) 

with 

 𝐻𝑟 = −𝛻𝑟
2 +

1

4
𝜔2𝑟2 −

2

𝑟
 − 2𝑉0 ,   𝐻𝑅 = − 𝛻𝑅

2 +
1

4
𝜔2𝑅2 ,      (2.15) 

 

where for a 3D QD, 

 

𝜔 = [(1 − 𝜆)
𝜔0
2

2
+
𝜔𝑐
2

8
+
2ῶ𝜆𝑉0
3

−
2ῶ𝜆𝑉0
3

(
ῶ𝑅2

1 + ῶ𝑅2
)

3
2

]

1/2

,    (2.16) 

 

and for a 2D  QD, 
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   𝜔 = [(1 − 𝜆)
𝜔0
2

2
+
𝜔𝑐
2

8
+ 2𝜆𝑉0 (

ῶ

1 + ῶ𝑅2
)]

1
2

             (2.17) 

Here all the energies are measured in Rydberg units 𝑅𝑦
∗ = (𝜇𝑒4 2ℏ2ɛ2⁄ ) 

and the lengths in Bohr radius 𝑎0
∗ = (ℏ2ɛ 𝜇𝑒2⁄ ),  𝜇(= [𝑚𝑒

∗𝑚ℎ
∗ ]/𝑀) 

being the reduced mass of the electron-hole system. 

2.4  VARIATIONAL METHOD 

2.4.1 THE EXCITON GROUND STATE ENERGY 

To calculate the energies of an exciton in QD, we have used the Ritz 

variational method. If ᴪ(𝒓𝒆, 𝒓𝒉) is the eigenfunction of 𝐻, then we can 

write:  

   ᴪ(𝒓𝒆, 𝒓𝒉) = ф(𝒓)𝜒(𝑹)                                                        (2.18) 

 

 where ф(𝒓) and 𝜒(𝑹) are the eigenfunctions of 𝐻𝑟  and 𝐻𝑅   with the 

eigenvalues 𝐸𝑟 and 𝐸𝑅 respectively. The variational energy is given by, 

𝐸 =
⟨𝜓|𝐻|𝜓⟩

⟨𝜓|𝜓⟩
                                            (2.19) 

                                                                           

Since we have:     𝐻 = 𝐻𝑅 + 𝐻𝑟  , the exciton energy 𝐸 is given by: 

𝐸 = 𝐸𝑅 + 𝐸𝑟 =
⟨𝜓|𝐻𝑅|𝜓⟩

⟨𝜓|𝜓⟩
+
⟨𝜓|𝐻𝑟|𝜓⟩

⟨𝜓|𝜓⟩
                    (2.20) 
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The eigen values of the 𝐻𝑅  is well known (Harmonic oscillator).  

Therefore, the GS energy for the centre of mass (CM) motion is 𝐸𝑅(=

3𝜔/2)   in 3D. In general, it is not possible to do the exact analytical 

evaluation of  𝐸𝑟  and hence we employ the conventional variational 

approach with the trial wave function: 

                           ф(𝒓)~𝑒−𝛼𝑟
2−𝛽𝑟                                                                 (2.21) 

where 𝛼 and 𝛽 are variational parameters.  

2.4.2 THE EXCITON BINDING ENERGY. 

The exciton BE, 𝐸𝑏 is defined as:  

      𝐸𝑏 = (𝐸𝑒 + 𝐸ℎ − 𝐸)                                      (2.22) 

              

where 𝐸𝑒 (𝐸ℎ) denotes the electron (hole) GS energy in the QD.  

2.4.3 THE SIZE OF EXCITON. 

The size of the exciton is given by:          

〈𝑟〉 = ⟨ᴪ|𝑟|ᴪ⟩                                                      (2.23) 

           

2.4.4 THE OSCILLATOR STRENGTH. 

Another important quantity we are interested in is the exciton oscillator 

strength.  We can derive the 𝑓 − sum rule for a multi-electron system as 

[17] 



Chapter 2 

 

 49 

∑𝑓𝑠,𝑡 = 𝑁𝑒
𝑠

                                                            (2.24) 

                                                                                                                                                                                                                                                                                                                                       

where the summation is to be performed over all states, 𝑁𝑒 denotes the 

electron number and 

                           𝑓𝑠,𝑡 =
2|⟨𝑠| ∑ 𝑃𝑥𝑖𝑖 |𝑡⟩|

2

𝑚𝑒
∗(𝐸𝑠 − 𝐸𝑡)

                                                (2.25) 

        

is the oscillator strength, 𝑚𝑒
∗  being the Bloch electron mass and 𝑖 

running from 1 to 𝑁𝑒 .  The GS exciton oscillator strength is calculated 

as, 

                 𝑓𝑒𝑥 =
2|⟨𝑒𝑥| ∑ 𝑃𝑥𝑖𝑖 |0⟩|

2

𝑚(𝐸𝑒𝑥 − 𝐸0)
  .                                                    (2.26) 

   

We can re-write this expression for the exciton oscillator strength [18] 

in the envelop-function approximation as,  

                 𝑓𝑒𝑥 =
2𝑃2

𝑚0(𝐸𝑒𝑥 − 𝐸0)
|∫ᴪ(𝒓𝒆, 𝒓𝒆)𝑑𝑟𝑒|

2

 ,        (2.27) 

                                                    

where 𝑃 describes the intracell matrix-element effects, 𝑚0 is the bare 

electron mass, and 𝐸𝑒𝑥 − 𝐸0 = 𝐸 + 𝐸𝑔, with 𝐸𝑔 as the optical band gap. 

Making use of Eq. (2.18), we can write 
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                                ᴪ(𝒓𝒆, 𝒓𝒆) = 𝜒(𝒓𝒆)ф(0)                                          (2.28)    

so that Eq. (2.27) becomes  

𝑓𝑒𝑥 =
2𝑃2

𝑚0(𝐸𝑒𝑥 − 𝐸0)
|ф(0)|2 |∫𝜒(𝑟𝒆)𝑑𝑟𝑒|

2

                                     (2.29) 

 

2.5   
𝟏

𝑵
− EXPANSION TECHNIQUE  

The 
𝟏

𝑵
− expansion technique, where 𝑁  is the dimensionality of the 

system, is a powerful approach to obtain the energies of rotationally 

invariant systems in quantum mechanics [19-22]. The 
𝟏

𝑵
−expansion 

technique hinges on expanding the wave function and energy in powers 

of the parameter 1/𝑘 = 1/(𝑁 + 2𝑙) , where 𝑙 is the angular momentum 

quantum number. Since it is a non-perturbative method, it is suitable for 

all values of the interaction coefficients. The 
𝟏

𝑵
−expansion technique 

often suffers from slow convergence problem. This particularly happens 

for higher energy levels. To circumvent this problem, Sukhatme and 

Imbo [20] have suggested a modified 
𝟏

𝑵
−expansion scheme which is 

known as the shifted - 
𝟏

𝑵
−expansion method. In this modified method, 

an additional parameter ‘𝑎’ is introduced in the expansion parameter. 

The new expansion parameter is written as: 1/𝑘 = 1/(𝑁 + 2𝑙 − 𝑎).  

In N-dimensional (ND) space, the Schr𝑜̈dinger equation for the radial 

part 𝑅(𝑟) is given by, 
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     [−
ℏ2

2𝜇
(
𝑑2

𝑑𝑟2
+
𝑁 − 1

𝑟

𝑑

𝑑𝑟
) +

𝑙(𝑙 + 𝑁 − 2)

2𝑟2
+ 𝑉(𝑟)]𝑅 = 𝐸𝑅     (2.30) 

     

where 𝑉(𝑟)  is a spherically symmetric potential. Making the 

substitution:  𝑅(𝑟) = 𝑟−(𝑁−1) 2⁄ 𝑢(𝑟) in Eq. (2.30), we get  

  − 
ℏ2

2𝜇

𝑑2𝑢

𝑑𝑟2
+ (

(𝑘 − 1)(𝑘 − 3)

8𝜇𝑟2
+ 𝑘2𝑉̃(𝑟))𝑢 = 𝐸𝑢                     (2.31) 

 

which is an effective 1D equation and where 𝑘 = (𝑁 + 2𝑙) and 𝑉̃(𝑟) =

𝑉(𝑟)/𝑘2. For 
𝟏

𝑵
−expansion, one starts from Eq. (2.31).  In the shifted 

𝟏

𝑵
−expansion, one brings in an extra parameter ‘𝑎’ and the expansion 

parameter becomes: 1/𝑘̅ = 1/(𝑁 + 2𝑙 − 𝑎).  On using this new 

parameter, Eq. (2.31) reads   

     − 
𝑑2𝑢

𝑑𝑟2
+ (

[𝑘̅ − (1 − 𝑎)][𝑘̅ − (3 − 𝑎)]

4𝑟2
+ 𝑘̅2𝑉̃(𝑟))𝑢 = 𝐸𝑢   (2.32) 

      

where 𝑉̃(𝑟) = 𝑉(𝑟) 𝑘̅2⁄  and we have chosen to work in units in which 

ℏ = 2𝜇 = 1. In the limit: 𝑁 → ∞,  𝑘̅   → ∞, and in this limit, leading 

term in 𝐸   can be written as: 

                        𝐸∞ = 𝑘̅2(1 4𝑟0
2 + 𝑉̃(𝑟0)⁄ ) = 𝑘̅2𝑉𝑒𝑓𝑓(𝑟0)                  (2.33)       
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where at 𝑟 = 𝑟0, the effective potential 𝑉𝑒𝑓𝑓(𝑟) has the minimum. We 

now define: 𝑥 = −𝑘̅1 2⁄ (1 − 𝑟/𝑟0)   and perform a Taylor-series 

expansion of  (2.33) around 𝑥 = 0.  This gives   

   

                  (− 
𝑑2

𝑑𝑥2
 +  

𝛺2

4
𝑥2 + 𝜀0 + 𝑉̂(𝑥))𝑢(𝑥) = 𝜆𝑢(𝑥),          (2.34) 

                                           

 where    

                        𝛺 = (3 +
𝑟0𝑉

′′(𝑟0)

𝑉′(𝑟0)
)

1 2⁄

 ,                                               (2.35) 

     𝜀0 =
𝑘̅

4
−
(2 − 𝑎)

2
+
(1 − 𝑎)(3 − 𝑎)

4𝑘̅
+ 𝑟0

2𝑘̅𝑉̃(𝑟0) ,                 (2.36) 

                                     𝜆 =
𝐸𝑟0

2

𝑘̅ 
                                                             (2.37) 

                 

 and 

     𝑉̂(𝑥) =
1

𝑘̅1 2⁄
(𝜀1𝑥 + 𝜀3𝑥

3) +
1

𝑘̅
(𝜀2𝑥

2 + 𝜀4𝑥
4)

+
1

𝑘̅3 2⁄
(𝛿1𝑥 + 𝛿3𝑥

3 + 𝛿5𝑥
5

+
1

𝑘̅2
(𝛿2𝑥

2 + 𝛿4𝑥
4 + 𝛿6𝑥

6) + ⋯)                       (2.38) 

with         

     𝜀1 = (2 − 𝑎)                                                                 (2.39) 
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 𝜀2 = −
3(2 − 𝑎)

2
                                                          (2.40) 

   𝜀3 = [−1 +
𝑟0
5𝑉′′′(𝑟0)

6𝑘̅2
]                                               (2.41) 

𝜀4 = [
5

4
+ 𝑟0

6𝑉′′′′(𝑟0) 24𝑘̅2⁄ ]                                      (2.42) 

𝛿1 = −
(1 − 𝑎)(3 − 𝑎)

2
                                               (2.43) 

𝛿2 =
3(1 − 𝑎)(3 − 𝑎)

4
                                               (2.44) 

 𝛿3 = 2(2 − 𝑎),                                                              (2.45) 

 𝛿4 = − 
5(2 − 𝑎)

2
,                                                        (2.46) 

   𝛿5 = − 
3

2
+
𝑟0
7𝑉′′′′′(𝑟0)

120𝑘̅2
,                                              (2.47) 

 𝛿6 =
7

4
+
𝑟0
8𝑉′′′′′′(𝑟0)

720𝑘̅2
                                                   (2.48) 

 

Incorporating the effect of 𝑉̂(𝑥) in (2.34) to fourth-order in perturbation 

theory, we get   

 𝜆𝑛 = 𝜆𝑛
(0) + 𝜆𝑛

(1) + 𝜆𝑛
(2) + 𝜆𝑛

(3) + 𝜆𝑛
(4) +⋯                         (2.49) 

                                                                                               

𝜆𝑛
(0) = 𝜀0 + (𝑛 +

1

2
)𝛺                                                 (2.50) 

                                                                                                            

                           𝜆𝑛
(0) = 𝜀0 + (𝑛 +

1

2
)                                       (2.51)  
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𝜆𝑛
(1) = 𝑔[(1 + 2𝑛)𝜀2̃ + 3(1 + 2𝑛 + 2𝑛2)𝜀4̃]

+ 𝑔2[(1 + 2𝑛)𝛿2 + 3(1 + 2𝑛 + 2𝑛2)𝛿4

+  5(3 + 8𝑛 + 6𝑛2 + 4𝑛3)𝛿6]                               (2.52) 

 

𝜆𝑛
(2)

= −
𝑔

Ω
[𝜀1̃
2 + 6(1 + 2𝑛)𝜀1̃𝜀3̃ + (11 + 30𝑛 + 30𝑛2)𝜀3̃

2]   −

 
𝑔2

Ω
[(1 + 2𝑛)𝜀2̃

2 + 12(1 + 2𝑛 +   2𝑛2)𝜀2̃𝜀4̃  +  2(21 + 59𝑛 + 51𝑛2 +

34𝑛3)𝜀4̃
2 + 2𝜀1̃𝛿1 ] + 𝑂(𝑔3)                                                                (2.53)                                                

 

𝜆𝑛
(3)

=
𝑔2

Ω2
[4𝜀1̃

2𝜀2̃ + 36(1 + 2𝑛)𝜀1̃𝜀2̃𝜀3̃ + 24(1 + 2𝑛)𝜀1̃
2𝜀4̃

+ 8(11 + 30𝑛 + 30𝑛2)𝜀2̃𝜀3̃
2 + 8(31 + 78𝑛 + 78𝑛2)𝜀1̃𝜀3̃𝜀4̃  

+ 12(57 + 189𝑛 + 225𝑛2 + 150𝑛3)𝜀3̃
2𝜀4̃]

+ 𝑂(𝑔3)                                                                                                      (2.54) 

𝜆𝑛
(4) = −

𝑔2

Ω3
[8𝜀1̃

3𝜀3̃ + 108(1 + 2𝑛)𝜀1̃
2𝜀3̃

2

+ 48(11 + 30𝑛 +  30𝑛2)𝜀1̃𝜀3̃
3

+ 30(31 + 109𝑛 + 141𝑛2 + 94𝑛3)𝜀3̃
4]

+ 𝑂(𝑔3)                                                                       (2.55) 

where  𝑔 = 1/𝑘̅  , 𝜀𝑗̃ = 𝜀𝑗/(2𝜇𝛺 ℏ⁄ )𝑗 2⁄ , δ̃j = δj/(2𝜇𝛺 ℏ⁄ )𝑗 2⁄ .  In the 

conventional 
1

𝑁
− expansion approach, ‘𝑎’ is equal to zero whereas in 

the shifted scheme, ‘𝑎’ is obtained from the prescription: 𝐸(−1) = 0. 
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This yields: 𝑎 = 2 − (2𝑛 + 1)Ω. From Eq. (15), we can see that in the 

present case, 𝑉(𝑟) = 𝜔2𝑟2/4 − 2/𝑟 − 2𝑉0 . Results for the energies 

have been obtained by employing both the unshifted and the shifted 

versions of the 
1

𝑁
− expansion technique. 

2.6 GROUND STATE RESULTS AND DISCUSSIONS 

The theories delineated in Section 2.5 are fairly general and we can 

apply them to any QD. As an example, we consider a GaAs QD and 

choose: 𝜀 = 12.8 , 𝑚𝑒
∗ = 0.067𝑚𝑒  and 𝑚ℎ

∗ = 0.099𝑚𝑒  (light-hole 

mass). Consequently, we obtain: 𝑎0
∗ = 17.7 𝑛𝑚, 𝑅𝑦

∗ = 3.1 𝑚𝑒𝑉, 𝐸𝑔 =

1.51 𝑒𝑉, 𝑃2 𝑚0⁄ = 1 𝑒𝑉. We furthermore introduce a quantity 𝛾 which 

is linear in 𝐵. More specifically, = 𝑒ℏ𝐵/ 2𝜇𝑐𝑅𝑦
∗   . It is easy to see that  

1𝛾 = 0.47226𝐵 (𝑇)  [9,11].  

In Fig.2.1, we show the exciton electron/hole distributions in a GaAs 

QD. We find that the distribution decreases with increasing potential 

depth. Also, the hole distribution is little higher than the electron 

distribution. We see from Fig. 2.2 that the distribution decreases with 

increasing magnetic field.  
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Fig. 2.1 Exciton electron/hole distribution in a GaAs QD for two values 

of 𝑉0.  
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Fig. 2.2 Exciton electron/hole distribution in a GaAs QD for two values 

of  𝛾. 

 

We calculate the light-hole exciton GS energies in 2D and 3D GaAs 

QDs  with the help of the conventional variational approach, 
1

𝑁
− 

expansion technique and the shifted  
1

𝑁
− expansion scheme and plot 

them in Fig. 2.3 with respect to 𝑅 for 𝑉0 = 6𝑚𝑒𝑉 and  𝐵 = 10 𝑇.  All 

the methods used here suggest that the exciton energy rises 

monotonically as 𝑅 is reduced and the rise in energy turns significantly 

rapid if the QD size is made smaller than a certain  
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Fig. 2.3 Exciton GS energy vs. QD size in 3D and 2D GQDs of GaAs  

for 𝐵 = 10 𝑇.  

 

value. The explanation of this effect is simple. A decrease in 𝑅 increases 

the uncertainty in the exciton momentum. Consequently, the exciton 

momentum itself is increased and hence the exciton kinetic energy also 

increases. Thus, the GS energy undergoes an enhancement as 𝑅  is 

reduced.  Also, it can be observed that the exciton GS has a lower energy 

value in 2D than in 3D, as the QD confinement effect is stronger in the 

former. The Ritz variational approach is known to provide an upper limit 
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to the energy while the    
1

𝑁
− expansion technique provides a lower 

limit. It is interesting that the GS energy obtained from the shifted  

1

𝑁
−expansion scheme lies somewhere in between the energies obtained 

from the other two methods. 

 

 

Fig. 2.4   Exciton GS energies calculated by our methods and their 

comparison with those determined by Matrix diagonalization by Gu and 

Liang. 
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In Fig. 2.4, we have plotted the GS energy values calculated using the 

methods mentioned above.  We have also plotted for comparison the 

results of Gu and Liang [14] obtained by the matrix diagonalization 

method. The comparison reveals that the energy values calculated by the 

shifted 
1

𝑁
−expansion scheme agree excellently with the exact results 

computed numerically.  

 

 

Fig. 2.5 Exciton GS energy vs  𝐵  in 2D PQD and GQD of GaAs. 
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We depict in Fig. 2.5, how the exciton GS energy for a 2D QD with 

𝑉0 = 6 𝑚𝑒𝑉 and 𝑅 = 17.68 𝑛𝑚, varies with 𝐵. As 𝐵 is increased, the 

GS energy is found to increase. This is again a behaviour one would 

normally expect. Though the parabolic and Gaussian potentials 

qualitatively provide a similar trend for the variation for the GS energy 

with B, the parabolic potential model apparently yields a higher value 

for the exciton GS energy.  

We find that the potential profile becomes essentially irrelevant when 

the QD size is made sufficiently large (not shown here). Also it may be 

mentioned that the shifted  
1

𝑁
−expansion technique has quite a few 

palpable advantages as compared to the numerical method. First, as 

mentioned earlier, it gives the energy in the analytical form.  Secondly, 

it can also provide analytical expression for the wave functions and thus 

offers more insight about the system. Thirdly, once the wave functions 

are determined, expectation values of different observables can be 

calculated. Finally, as we obtain the whole set of energy eigenvalues 

from this method, it becomes possible to obtain the thermodynamic 

averages of the quantities relevant to the system.  

In Fig. 2.6, we present the behaviour of the exciton BE in GQD with 

respect to QD size. As the confinement potential is always negative, the 

necessary condition for the formation of an exciton bound state is that it 

should have a negative energy.  However, this is not the sufficient 

condition for a stable bound state. For a stable bound state, BE must 

have a positive value. One may notice that as the QD confinement length 

is reduced, the exciton binding becomes stronger and the enhancement 
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in the strength of binding becomes more rapid at smaller confinement 

lengths. This may be understood as follows. As the QD size is reduced, 

the electron and hole have the higher probability of coming closer and 

consequently the attractive Coulomb interaction between them will rise. 

Our results also reveal that exciton binding is stronger in a 2D QD than 

in a QD system.  As indicated by Fig. 2.3, the shifted 
1

𝑁
−expansion 

results are most trustworthy.  

 

 

Fig. 2.6 BE vs 𝑅 for 2D and 3D GQDs of GaAs for 𝐵 = 10 𝑇.   
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Fig. 2.7 Exciton BE vs. 𝐵 in GQD for two values of 𝑉0. 

In Fig. 2.7, we plot the exciton BE with respect to B  for 𝑉0 = 3 𝑚𝑒𝑉  

and 𝑉0 = 6 𝑚𝑒𝑉 . As one would normally expect, BE shows a 

monotonically increasing behaviour with B. We observe that Gaussian 

confinement provides stronger binding than the parabolic confinement 

for the excitonic bound state.  

In Fig. 2.8, we plot the exciton size versus 𝑅 for three values of B. One 

can see that the exciton size initially grows with 𝑅, but as 𝑅 is made to 

exceed a certain length, the exciton size reaches a saturation value. This 

is of course the exciton size for the corresponding bulk system. From the 

figure, the exciton size is also found to decrease with increasing 𝐵. The 

genesis of this phenomenon can be attributed to the confining effect of 
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the magnetic field. One can draw another conclusion from Figs. 2.6 and 

2.8. Fig. 2.8 shows that the exciton size grows with 𝑅 , while one 

observes from Fig. 2.6 that as 𝑅 increases, BE decreases. Thus, from 

these two observations, we infer that BE reduces with the increase in the 

exciton size.   Fig. 2.9 describes the behaviour of the exciton size with 

respect to 𝐵.  As can be expected, the exciton size decreases as 𝐵 

increases. Also, the exciton size decreases with increasing value of 𝑉0.    

 

 
Fig. 2.8 Light-hole exciton size vs. QD size R in a 3D GQD. 
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Fig. 2.9 Light-hole exciton size vs. 𝐵  in a 3D GQD.  

 

 

Fig. 2.10 gives the behaviour of the exciton oscillator strength 𝑓𝑒𝑥 with 

respect to 𝑅. One may note that 𝑓𝑒𝑥 decreases with decreasing 𝑅. The 

explanation is simple. The decrease in 𝑅 increases the exciton energy 

and hence in turn reduces 𝑓𝑒𝑥. One can also see from Fig. 2.10 that 𝑓𝑒𝑥 

decreases as B is strengthened. The explanation is again straight-

forward. The magnetic field provides an added confining effect which 

causes an enhancement in the exciton energy and therefore one can 

conclude that the oscillator strength should decrease with increasing B.  
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Fig. 2.10  GS Exciton oscillator strength vs 𝑅 in GQD for two values of  

𝐵.  

 

2.7 EXCITED STATES  

From Eqs. (2.49) - (2.55), we can obtain the exciton energy spectrum. 

Table 2.1 gives the ground and the excited state energy values of a 

Gaussian GaAs QD with  𝑅 = 88.5 𝑛𝑚,   𝑉0 = 12 𝑚𝑒𝑉, situated in a 

magnetic field of strength 𝐵 = 1𝑇 . One would immediately notice that 

18 bound states can be accommodated in this QD, though the calculation 

of BE will only ensure the stability of these states. However, here we 

shall loosely refer to all these states as bound states. If an exciton state 
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has a positive energy, then, of course, it cannot be a bound state. It is 

clear that we can have as many bound states as we wish by controlling 

the QD parameters. For example, as displayed in Table 2.2, a GQD of 

GaAs with 𝑅 = 53 𝑛𝑚, 𝑉0 = 3.98 𝑚𝑒𝑉 and placed in magnetic field of 

strength 𝐵 =  4 𝑇 ,  will have at the most four exciton states. Table 2.3 

gives the BE values for a set of QD parameters. 

Table. 2.1 Exciton energy values (in meV) in a 2D GQD of GaAs 

obtained by shifted 1/𝑁 - expansion technique with 𝑅 = 88.5 𝑛𝑚, 𝑉0 =
12 𝑚𝑒𝑉 and  𝐵 = 1𝑇.  

   l 

n 

 

        0 

 

1 

   

     2 

     

   3 

   

    4 

 

5 

 

6 

 

7 

 

8 

 

9 

 

10 

0 -27.46 -15.88 -15.36 -15.08 -14.85 -14.63 -14.43 -14.24 -14.05 -13.86 9.698 

1 -16.25 -15.23 -13.09 -8.57        

2 -14.19 -9.59 -1.47 11.38        

3 -5.86 5.97          

   4 14.17           

 

Table 2.2.  Exciton energy values in GQD of GaAs with 𝑅 = 53 𝑛𝑚,  

𝑉0 = 3.98 𝑚𝑒𝑉 and  𝐵 = 4𝑇 . 

l 

n 
0 1 2 3 

0 -17.39 -5.088 -3.732 15.18 

1 -1.603 28.43   

2 60.274    

 

Table 2.3. BE of an exciton in a GQD with  𝑅 =  17.7 𝑛𝑚, 𝑉0  =
 3.98 𝑚𝑒𝑉 and 𝐵 =  1 𝑇. 
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   l 

n 

 

0 

 

1 

   

     2 

     

   3 

   

    4 

 

5 

 

6 

 

7 

 

8 

 

9 

 

10 

0 12.68 10.46 9.52 8.23 6.53 4.42 3.25 2.15 1.28 0.32 0.032 

1 9.23 6.79 5.42 3.67 1.51 0.73      

2 8.11 5.43 4.67 2.77 0.76       

3 3.78 2.63 1.97 1.28 0.52       

   4 1.52           

 

              

Fig. 2.11   Exciton BE vs B for a few states in GQD with 𝑅 = 1 𝑛𝑚,  

𝑉0 = 3.98 𝑚𝑒𝑉.  
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The BE behaviour of a few excitonic states in GQD with 𝑅 = 1 𝑛𝑚,  

𝑉0 = 3.98 𝑚𝑒𝑉 is examined with respect to 𝐵 in Fig. 2.11. The binding 

is evidently weaker for an excited state that is higher in energy. The 

binding, however, becomes stronger with the increase in 𝐵. This can be 

explained again in the light of the extra confining effect introduced by 

the magnetic field.   

 

2.8 CONCLUSION 

In this chapter, the GS energy, BE and the size of an exciton  in a GQD 

of GaAs placed in a magnetic field have been obtained in both 2D and 

3D by employing three approximate methods namely, the conventional 

variational approach, 
1

𝑁
−  expansion technique and the shifted 

1

𝑁
−expansion scheme. The variational approach provides an energy 

higher than the exact GS energy while the 1/𝑁-expansion technique 

provides a lower limit to the GS energy. Comparative analysis of the 

results obtained from our work with those from exact numerical 

diagonalization shows that the shifted 
1

𝑁
−  expansion technique 

provides highly accurate values. We find that the electron/hole 

distribution reduces as the QD confinement and the magnetic field are 

enhanced. Our results also show that the exciton GS energy rises with 

reduction in QD size and acquires considerably large values as QD size 

is made very small.   

Our calculation reveals that the GS exciton binding becomes stronger as 

R decreases. Our results also reveal that the GS binding becomes 
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stronger as the confinement is increased. BE also increases with 

increasing field B. we furthermore observe that the exciton reduces in 

size as the confinement length is reduced. The exciton size also shrinks 

as the potential is made deeper or the strength of the magnetic field is 

enhanced.   

Next, we have demonstrated that the GS oscillator strength of an exciton 

in GQD becomes weaker with decreasing QD size or increasing 

magnetic field.  

Finally we have obtained the energies of a few excitonic ESs in a 2D 

GQD placed in a magnetic field. We have shown that it is possible to 

generate a specified number of exciton states in GQD by controlling 

certain characteristic system parameters. To be more specific, we have 

demonstrated a case in which four bound states can at most occur in 

GQD of GaAs. This interesting property of tunability may be usefully 

utilized in fabricating excitonic lasers with QDs. It may however be 

noted that in the work discussed in this chapter, we have ignored the 

spin-Zeeman term which may have important effect on exciton 

energetics.    
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3 
Effect of Temperature on The 

Single-Particle Ground-State and 
Self Energy of a Polar Quantum 
Dot with Gaussian Confinement 

 

 

 

 

 

 

 

 

Abstract 

The effect of temperature on polarons in a Gaussian quantum dot has 

been studied by employing the Lee-Low-Pines-Huybrechts unitary 

transformation, Ritz variational method and statistical mechanics. The 

calculations reveal that with increasing temperature, the ground-state 

energy increases while the ground state polaron self-energy corrections. 

The results also uncover the role of quantum confinement on the polaron 

ground-state and binding energies. It is also demonstrated that the 

ground-state energy is higher in a three-dimensional dot than in a two-

dimensional one.  In general, the polaronic effects become stronger with 

the reduction in dimensionality.  
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3.1 INTRODUCTION 

The study of temperature dependence of polarons is of foremost 

importance in the context of practical applications. However, the 

investigations carried out hitherto on this issue have not yielded any 

unequivocal answer. Two conflicting viewpoints have been reported in 

the literature. There are some investigations that claim that with 

increasing temperature, the phonon cloud of the polaron becomes thinner 

and as a result the polaron binding becomes weaker. There is another set 

of works that suggest that the polaron binding increases with temperature 

with a concomitant increase in its effective mass [1-7]. 

Peeters and Devreese [1] have studied the temperature dependence of 

polaron mass using the Feynman Polaron model. They have shown that 

the polaron mass increases with the temperature. They have also 

compared their results with those from experimental investigations. The 

temperature dependence of polaron correction to the electron effective 

mass in a 𝐺𝑎𝐴𝑠 − 𝐴𝑙𝑥𝐺𝑎1−𝑥𝐴𝑠  heterostructure has been studied by 

Xeaoguang et al. [8] in zero magnetic field. They have found that the 

polaron mass increases with increasing temperature up to 100K and then 

starts decreasing with further increase in temperature.  The effect of 

temperature on bipolaronic properties in a quantum dot (QD) has been 

investigated by Eerdunchalu and Xin [9] in the strong-coupling limit. 

They have shown that the polaronic effects undergo an enhancement 

with temperature and polaron coupling.  
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   There have been quite a few investigations on the effect of temperature 

on polarons in QDs. Zhi-Xin Li has studied the temperature effect on the 

polaronic properties in a triangular QD [10]. Quite a few studies have 

been made to examine the effect of temperature in parabolic quantum 

dots [11-20] with symmetric and asymmetric confinement. Shan et al. 

[11] have considered the case of an impurity-bound strongly-coupled 

magneto-polaron in an asymmetric QD. In this work, the Lee-Low-Pines 

(LLP) transformation and an additional set of canonical transformations 

have been carried out to show that the binding energy (BE) and the 

average number of phonons in the polaron cloud increase with 

temperature. A similar method has been used by Cai et al. [12] to study 

the temperature effect on the binding energy of a strong-coupling 

magneto-polaron in a RbCl QD with parabolic confinement.  

However, apparently no detailed research investigations have hitherto 

been taken up on Gaussian QD (GQD).   This chapter will be devoted to 

the delineation of the results of our recent study on the effects of 

temperature and effective confinement length on the self-energy of an 

electron in a polar GQD.  

3.2 MODEL 

We consider the motion of an electron with band mass 𝑚  in an 𝑁 - 

dimensional (𝑁𝐷) GQD. The electron interacts with the longitudinal 

optical (LO) phonons of frequency 𝜔0  which is considered 

dispersionless.  The system under study can be represented by the model 

Hamiltonian  
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𝐻 =
𝒑2

2𝑚
+ 𝑉′(𝒓′) + ℏ𝜔𝑂∑𝑏

𝒒′
† 𝑏𝒒′

𝐪′

+∑[𝜉𝒒
′𝑒−𝑖𝒒

′.𝒒′𝑏
𝒒′
† + ℎ. 𝑐]

𝐪′

(3.1) 

where  𝒓′, 𝒑′, 𝒒′,   etc.  are all 𝑁𝐷  vectors.  Here 𝒓′  and 𝒑′  refer 

respectively to the position and momentum operators of the electron, 

𝑏
𝒒′
† ( 𝑏𝒒′) represents the LO-phonon creation (destruction) operator, 𝒒′ 

being the phonon wave vector and 𝜔0  the frequency,   𝜉𝒒′
′  gives the 

measure of the electron–phonon (e-p) interaction strength and the 

Gaussian confinement potential  𝑉′(𝒓′) is chosen as   

                                      𝑉′(𝒓′) = −𝑉0
′𝑒
− 

𝒓′
2

2𝑅′
2                                         (3.2)      

 

where 𝑉0
′ gives a measure of how deep is the potential and 𝑅′ gives the 

length scale over which the potential goes to zero. This range 𝑅′ can be 

considered as the effective size of QD or the confinement length.  

We use, in our calculation, the Feynman units. In this system of units, 

ℏ𝜔0 is chosen as the scale of energy, 𝑟0(= (ℏ/𝑚𝜔0)
1/2) as the scale of 

length (which can be identified as the free polaron radius in the weak-

coupling regime) and 𝑞0  =  1/𝑟0  as the scale of the wave vector.  The 

choice of the Feynman units essentially means choosing ℏ = 𝑚 = 𝜔0 =

1. Then the Hamiltonian can be written as    

  𝐻 =
𝒑2

2
− 𝑉0𝑒

−(𝑟2 2𝑅2)⁄ +∑𝑏𝒒
†𝑏𝒒

𝑞⃗ 

+∑(𝜉𝒒𝑒
−𝑖𝒒.𝒓𝑏𝒒

† + ℎ𝑐)

𝑞⃗ 

 .     (3.4) 

  

where everything is dimensionless and  |𝜉𝑞|
2
 is given by 
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                     |𝜉𝑞|
2
= [

𝛤 (
𝑁 − 1
2 ) 2(𝑁−3 2⁄ )𝜋(𝑁−1) 2⁄

𝑣𝑁𝑞𝑁−1
] 𝛼   ,                   (3.5) 

 

where 𝑁 is the system dimensionality, 𝑣𝑁  the system volume and 𝛼 is 

the e-p coupling constant. For a 2D system: 

|𝜉𝑞|
2
= (

√2𝜋

𝑣𝑞
)𝛼     ,                                                    (3.5) 

 

and for a 3D system 

|𝜉𝑞|
2
= (

2√2𝜋

𝑣𝑞2
)𝛼        .                                                     (3.6) 

  

3.3   FORMULATION 

    Huybrechts modified the Lee-Low-Pines method to make it valid even 

in the strong coupling limit. The results are satisfactory for the weak as 

well as the strong-coupling regime [40,41]. In the Lee-Low-Pines-

Huybrechts (LLPH) approach, two unitary transformations are 

successively performed on the Hamiltonian using the operators, 

𝑈1 = 𝑒𝑆1 = 𝑒𝑥𝑝 [−𝑖𝑎∑(𝒒. 𝒓)𝑏𝒒
†𝑏𝒒

𝒒

]   ,                        (3.7) 

 

and  
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    𝑈2 = 𝑒𝑆2 = 𝑒𝑥𝑝 [∑(𝑓𝒒𝑏𝒒
† − 𝑓𝒒

∗𝑏𝒒)

𝒒

]   ,                       (3.8) 

                                                   

where 𝑎 and 𝑓𝒒 are variational parameters. The transformed Hamiltonian 

is then averaged using the phonon vacuum state and the system’s ground 

state (GS) energy is finally calculated by averaging the effective 

electronic Hamiltonian using an appropriate electron wave function.    

The above-mentioned procedure is same as a variational calculation with 

the following trial wave function 

 

  |𝜓⟩  =  𝑒[−𝑖𝑎
∑ (𝒒.𝒓)𝑏𝒒

†
𝑏𝒒𝒒 ] ∗ 𝑒[

∑ (𝑓𝒒𝑏𝒒
†
−𝑓𝒒

∗𝑏𝒒)𝒒 ]|0⟩|𝜙(𝒓)⟩ ,           (3.9) 

 

where |0⟩ = ∏ |0𝒒⟩𝒒  denotes the phonon vacuum or the phonon GS and 

|ϕ(𝐫)⟩ is the electron state. We wish to compute the GS energy for (3.4). 

Therefore we make the following prescription for |𝜙(𝒓)⟩:   

|𝜙(𝒓)⟩ =  (
𝛿𝑁

𝜋𝑁 2⁄
)

1 2⁄

𝑒−(𝛿
2𝑟2 2⁄ )       ,          (3.10) 

                                       
 
The variational energy can be written as, 

𝐸 = ⟨𝜓|𝐻|𝜓⟩ = ⟨𝜙(𝒓)|⟨0| 𝐻̃̃|0⟩|𝜙(𝒓)⟩                     (3.11) 

                                              

where                                                 

    𝐻̃̃ = 𝑈2
−1𝑈1

−1𝐻𝑈1𝑈2 = 𝑈1
−1𝐻̃𝑈1                          (3.12)  
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  𝐻̃ = 𝑈1
−1𝐻𝑈1                                                 (3.13) 

                                                                                
or          

  𝐻̃ =
1

2
(𝑈1

−1𝐏𝑈1)
2 − 𝑉0e

− r2/2R2 +∑𝑈1
−1b𝐪

†b𝐪𝑈1
𝐪

 

 

                   +∑(ξ𝐪e
−i𝐪.𝐫𝑈1

−1b𝐪
†𝑈1 + hc)

𝐪

 .                                       (3.14) 

     

In Eq. (3.14), we use the Campbell-Baker-Hausdorff Formula: 

 

 𝑈1
−1𝐏𝑈1 = 𝑒−𝑆1𝑷𝑒𝑆1 = 𝑷 + [𝑠1, 𝑷] +

1

2
[𝑠1, [𝑠1, 𝑷]] + ⋯           (3.15) 

 

where      
         

[𝑠1, 𝑃] = −𝑎∑𝒒𝑏𝑞
†𝑏𝑞

𝑞

 

  and     
   

   [𝑠1, [𝑠1, 𝑷]] = 0                                          (3.16) 

 
Eq. (3.15) becomes                                                                         

𝑈1
−1𝐏𝑈1 = 𝑷− 𝑎∑𝒒𝑏𝒒

†𝑏𝒒
𝒒

                         (3.17) 

Similarly, we get    

   𝑏̃𝑞 = 𝑈1
−1𝑏𝒒𝑈1 = 𝑏𝒒 + [𝑠1, 𝑏𝒒] +

1

2
[𝑠1, [𝑠1, 𝑏𝒒]] + ⋯  (3.18) 

 or        
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 𝑏̃𝒒 = 𝑒−𝑖𝑎∑ (𝒒.𝒓)𝑞 𝑏𝒒                                                           (3.19) 

   and     

 𝑏̃𝒒
† = 𝑒𝑖𝑎∑ (𝒒.𝒓)𝑞 𝑏𝒒

†                                                             (3.20) 

Therefore, we can write 

𝐻̃ =
1

2
(𝑷 − 𝑎∑𝒒𝑏𝒒

†𝑏𝒒
𝒒

)

2

+∑𝑒𝑖𝑎∑ (𝒒.𝒓)𝑞 𝑏𝒒
† 𝑒−𝑖𝑎∑ (𝒒.𝒓)𝑞 𝑏𝒒

𝑞

  

                −𝑉0e
−r

2

2R2
⁄

+∑(ξ𝐪e
−i𝐪.𝐫𝑒𝑖𝑎∑ (𝒒.𝒓)𝑞 𝑏𝒒

† + ℎ. 𝑐)

𝑞

           (3.21) 

 

=
𝑷2

2
− 𝑎∑𝑃.𝒒

𝑞

𝑏𝒒
†𝑏𝒒 +

𝑎2

2
∑𝒒. 𝒒′

𝑞,𝑞′

𝑏𝒒
†𝑏𝒒 𝑏𝒒′

† 𝑏𝒒′ − 𝑉0e
−r

2

2R2
⁄

+∑𝑏𝒒
†𝑏𝒒 +

𝒒

∑(ξ𝐪e
−i(1−a)𝐪.𝐫𝑏𝒒

† + ℎ. 𝑐),

𝑞

           (3.22) 

 
Finally, we obtain 

 

𝐻̃ =
𝑷2

2
+∑(1 +

𝑎2𝑞2

2
− 𝑎 𝑷. 𝒒)

𝑞

𝑏𝒒
†𝑏𝒒 +

𝑎2

2
∑𝒒. 𝒒′

𝑞,𝑞′

𝑏𝒒
†𝑏𝒒 𝑏𝒒′

† 𝑏𝒒′

− 𝑉0e
−r

2

2R2
⁄

+∑(ξ𝐪e
−i(1−a)𝐪.𝐫𝑏𝒒

† + ℎ. 𝑐)

𝑞

,      (3.23) 

                                             

Now,                

 𝐻̃̃ = 𝑈2
−1𝐻̃𝑈2                                           (3.24) 
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 𝑈2
−1𝑏𝑞𝑈2 = 𝑏𝑞 − [𝑠2, 𝑏𝑞] +

1

2
[𝑠2, [𝑠2, 𝑏𝑞]]…    (3.25) 

 [𝑠2, 𝑏𝑞] = [∑(f𝐪b𝐪
† − f𝐪

∗b𝐪)

𝐪

, 𝑏𝐪] = f𝐪             (3.26)  

                                              [𝑠2, [𝑠2, 𝑏𝑞]] = 0                                     (3.27) 

Therefore, 

                                          𝑈2
−1𝑏𝑞𝑈2 = 𝑏𝒒 + 𝑓𝒒                                    (3.28) 

Now,     

H̃̃  =
𝐩2

2
− V0e

−r2 2R2⁄  +∑(1 − a𝐩. 𝐪 +
a2q2

2
) (b𝐪

† + f𝐪
⋆)(b𝐪 + f𝐪)

𝐪

  

+
a2

2
∑𝐪. 𝐪′(b𝐪

† + f𝐪
⋆) (b

𝐪′
† + f𝐪′

⋆ ) (b𝐪 + f𝐪)(b𝐪′ + f𝐪′)

𝐪

 

 

             +∑[ξ𝐪e
−i(1−a)𝐪.𝐫(b𝐪

† + f𝐪
⋆) + h. c]

𝐪

  .                                 (3.29) 

 

Averaging (3.29) with respect to |0⟩ gives 

 
 

⟨0|𝐻̃̃|0⟩ =
𝐩2

2
− V0e

−r2 2R2⁄  +∑(1 − a𝐩. 𝐪 +
a2q2

2
)

𝐪

|𝑓𝑞|
2
 

 

                   +
a2

2
[∑𝐪|𝑓𝑞|

2

𝐪

]

1/2

+∑[ξ𝐪e
−i(1−a)𝐪.𝐫f𝐪

⋆ + ℎ. 𝑐]

𝐪

.  (3.30) 
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The averaging over the electron state gives the LLPH variational energy, 

𝐸𝐿𝐿𝑃𝐻 = ⟨𝜙(𝑟)| ⟨0|𝐻̃̃|0⟩ |𝜙(𝑟)⟩                                                (3.31) 

= ⟨𝜙(𝑟)|
𝐩2

2
|𝜙(𝑟)⟩ − ⟨𝜙(𝑟)|V0e

−r2 2R2⁄ |𝜙(𝑟)⟩ 

             +∑(1 − a𝐩. 𝐪 +
a2q2

2
)

𝐪

|𝑓𝑞|
2
+
a2

2
[∑𝐪|𝑓𝑞|

2

𝐪

]

1
2

 

 

                         +∑[ξ𝐪e
−i(1−a)𝐪.𝐫f𝐪

⋆ + ℎ. 𝑐]

𝐪

 ,                                     (3.32) 

 

Minimizing  𝐸𝐿𝐿𝑃𝐻 with respect to 𝑓𝒒
⋆ gives, 

   
𝜕𝐸𝐿𝐿𝑃𝐻
𝜕f𝐪⋆

= (1 − a⟨𝜙|𝑷|𝜙⟩. 𝐪 +
a2q2

2
)𝑓𝑞 + ξ𝐪𝜌𝑞

∗ = 0          (3.33) 

or, 

  𝑓𝑞 = −
ξ𝐪𝜌𝑞

∗

(1 − a⟨𝜙|𝑷|𝜙⟩. 𝐪 +
a2q2

2
)
                     (3.34) 

where, 

                                           𝜌𝑞
∗ = ⟨𝜙|e−i(1−a)𝐪.𝐫|𝜙⟩ .                               (3.35) 

 
We now use the following condition which is reasonable for symmetric 

quantum dots, 
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                              ∑𝒒|𝑓𝒒|
2

𝒒

= 0  𝑎𝑛𝑑   ⟨𝜙|𝒑|𝜙⟩ = 0 .                      (3.36) 

 

The ground state energy can be obtained as  

        𝐸𝐿𝐿𝑃𝐻 =
1

2
⟨𝜙(𝑟)|𝑃2|𝜙(𝑟)⟩ − 𝑉0⟨𝜙(𝑟)|𝑒

−𝑟2 2𝑅2⁄ |𝜙(𝑟)⟩ 

 

                                        +∑
|𝜉𝑞|

2
|𝜌𝑞|

2

1 +
𝑎2𝑞2

2𝑞

   .                                         (3.37) 

 

Now using Eq. (3.10) averaging over electronic states, 

                  ⟨𝜙|𝑃2|𝜙⟩ =  ⟨𝜙|∇2|𝜙⟩ = −
1

2
𝛿2   ,                                    (3.38) 

⟨𝜙(𝑟)|e−r
2 2R2⁄ |𝜙(𝑟)⟩ = [1 +

𝛽2

𝛿2
]

−1 2⁄

                             (3.39) 

where,  

                                                     𝛽2 =
1

2𝑅
  ,                                             (3.40) 

                                                    𝜌𝑞 = 𝑒
−
(1−𝑎)2

4𝛿2
𝑞2
    .                               (3.41) 

 
Inserting Eqs. (3.38), (3.39), and (3.41) in Eq. (3.37), the GS state energy 

reads as, 

𝐸𝐿𝐿𝑃𝐻 =
1

4
∑𝛿𝑖

2

𝑖

− 𝑉0 [1 +
𝛽2

𝛿𝑖
2 
]

−
1
2
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             − [
𝛤 (

𝑁 − 1
2 ) 2(𝑁−3 2⁄ )𝜋(𝑁−1) 2⁄

𝑣𝑁
] 𝛼∑

𝑒
−∑

(1−𝑎)2

4𝛿𝑖
2 𝑞𝑖

2
𝑖

𝑞𝑁−1 (1 +
𝑎2𝑞2

2
)𝑞

 . (3.42) 

 

We can write  

 

                                ∑

𝑞

                     
𝑣𝑁

  (2𝜋)𝑁
∫  𝑑𝑞                     (3.43) 

 

Therefore Eq. (3.42) becomes, 

𝐸𝐿𝐿𝑃𝐻 =
1

4
∑𝛿𝑖

2 − 𝑉0 [1 +
𝛽2

𝛿𝑖
2 
]

−
1
2

𝑖

 

    

       − [
𝛤 (

𝑁 − 1
2 ) 2(𝑁−3 2⁄ )𝜋(𝑁−1) 2⁄

𝑣𝑁
] 𝛼

𝑣𝑁
  (2𝜋)𝑁

∫𝑑𝑞
𝑒
−∑

(1−𝑎)2

4𝛿𝑖
2 𝑞𝑖

2
𝑖

𝑞𝑁−1 (1 +
𝑎2𝑞2

2
)
 

 
                                                                                                                (3.44) 

 

For a symmetric QD, 𝛿1 = 𝛿2 = 𝛿3 = ⋯…… . . = 𝛿. So, we can write 

 𝐸𝐿𝐿𝑃𝐻 =
𝑁

4
𝛿2 − 𝑉0 [1 +

𝛽2

𝛿2 
]

−
𝑁
2

 

                          +
𝛤 (

𝑁 − 1
2 )

2√2𝜋
𝑁+1
2

𝛼∫𝑑𝑞
𝑒
−∑

(1−𝑎)2

4𝛿𝑖
2 𝑞𝑖

2
𝑖

𝑞𝑁−1 (1 +
𝑎2𝑞2

2
)
 .                  (3.45) 

We can also write,  
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  ∫𝑑𝑞 = ∫…… . 𝑞𝑁−1𝑑𝑞∫𝑑Ω  ,                                             (3.46) 

 

and                             

∫𝑑Ω =
2𝜋𝑁/2

Γ(𝑁/2)
     .                                                              (3.47) 

 
Thus Eq. (3.42) reduces to 

𝐸𝐿𝐿𝑃𝐻 = 
𝑁

4
𝛿2 − 𝑉0 [1 +

𝛽2

𝛿2 
]

− 
𝑁
2

 

 

                        −
√𝜋

2

𝛤 (
𝑁 − 1
2 )

Γ(𝑁 2⁄ )

𝛼

𝑎
𝑒(
1−𝑎
𝑎𝛿

)
2

𝑒𝑟𝑓𝑐 (
1 − 𝑎

𝑎𝛿
).                   (3.48) 

 

Let us define a parameter 𝑡 which is related to 𝑎 as  

𝑡 =
1 − 𝑎

𝛿𝑎
   ,                                                                       (3.49) 

or                                                        

  
1

𝑎
= 1 + 𝑡𝛿      .                                                                 (3.50) 

 

The GS energy then reads  

𝐸𝐿𝐿𝑃𝐻 =
𝑁

4
δ2 − V0 [1 +

𝛽2

δ2
]

−N
2⁄
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                     −
√πα

2

Γ (
𝑁 − 1
2 )

Γ (
𝑁 
2 )

(1 + tδ)et
2
𝑒𝑟𝑓𝑐(t)                     (3.51) 

The average phonon number in the polaron GS is defined as 

                            Nph = ⟨𝜓| ∑ b𝒒
†b𝒒𝒒 |𝜓⟩                                             (3.52) 

which gives 

Nph =∑
|𝜉𝑞|

2
|𝜌𝑞|

2

1 +
𝑎2𝑞2

2𝑞

                                                                              (3.53) 

= [
𝛤 (

𝑁 − 1
2 ) 2(𝑁−3 2⁄ )𝜋(𝑁−1) 2⁄

𝑣𝑁
] 𝛼∑

𝑒
−∑

(1−𝑎)2

4𝛿𝑖
2 𝑞𝑖

2
𝑖

𝑞𝑁−1 (1 +
𝑎2𝑞2

2
)𝑞

         (3.54) 

or, 

   Nph = 
Γ (
N − 1
2 )

4 Γ (
N 
2 )

α(1 + tδ)[2t + (1 − 2t2)√π et
2
Erfc(t)]    (3.55) 

or, 

𝑁𝑝ℎ − 
𝛤 (
𝑁 − 1
2 )

4 𝛤 (
𝑁 
2 )

2𝛼𝑡(1 + 𝑡𝛿)

=
𝛼√𝜋

4

𝛤 (
𝑁 − 1
2 )

 𝛤 (
𝑁 
2 )

[(1 − 2𝑡2)𝑒𝑡
2
(1 + 𝑡𝛿)𝐸𝑟𝑓𝑐(𝑡)]      (3.56) 
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We can rearrange Eq. (3.48) as 

 

  
√𝜋𝛼

2

𝛤 (
𝑁 − 1
2

)

𝛤 (
𝑁 
2 )

(1 + 𝑡𝛿)𝑒𝑡
2
𝐸𝑟𝑓𝑐(𝑡)

=
𝑁

4
𝛿2 − 𝑉0 [1 +

𝛽2

𝛿2
]

−𝑁/2

− 𝐸𝐿𝐿𝑃𝐻                              (3.57) 

 

From Eqn (3.56) and (3.57) we can write,   

N𝑝ℎ −
𝛤 (

𝑁 − 1
2 )

4 𝛤 (
𝑁 
2 )

2𝛼𝑡(1 + 𝑡𝛿) 

 

              =
(1 − 2𝑡2)

2
[
𝑁

4
𝛿2 − 𝑉0 [1 +

𝛽2

𝛿2
]

−𝑁/2

− 𝐸𝐿𝐿𝑃𝐻] , (3.58) 

Or 

      𝐸𝐿𝐿𝑃𝐻 =
𝑁

4
𝛿2 − 𝑉0 [1 +

𝛽2

𝛿2
]

−
𝑁
2

−
2

(1 − 2𝑡2)
[𝑁𝑝ℎ −

𝛤 (
𝑁 − 1
2 )

4 𝛤 (
𝑁 
2 )

2𝛼𝑡(1 + 𝑡𝛿)] .   (3.59) 

 
We now replace 𝑁𝑝ℎ by the phonon distribution function given by  

                                  N =
1

𝑒(ħω0 KBT⁄ ) − 1
                                      (3.60) 
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The GS energy at finite temperature becomes,  

𝐸𝐿𝐿𝑃𝐻  =
𝑁

4
𝛿2 − 𝑉0[1 + (𝛽2 𝛿2)⁄ ]−

𝑁
2 −

2

1 − 2𝑡2
𝑁  

+  
𝛼

2(1 − 2𝑡2)

Γ (
𝑁 − 1
2 )

 Γ (
𝑁
2)

2𝑡(1 + 𝑡𝛿)                (3.61) 

 
The variational parameters 𝑡 and 𝛿 are determined by minimizing Eq. 

(3.62) numerically with respect these parameters and the GS energy and 

polaronic correction are obtained at finite temperatures for 𝑁 = 2 and 

𝑁 = 3.  

3.4 RESULTS AND DISCUSSIONS 

The numerical computations have been carried out for small, 

intermediate and large 𝛼 values. Fig. 3.1 presents the polaron GS energy 

(𝐺𝑆𝐸) behaviour in a 3D GQD with respect to temperature (T) for 𝑉0 =

10, R=2 and 6 and 𝛼 = 4.8, 5.0 and 5.2. It  
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Fig. 3.1:  Polaron GS energy (𝐺𝑆𝐸) vs temperature T for 𝑉0 = 10, and  

𝑅 = 2 and 6 in the strong-coupling regime. 

 

is clearly evident from the figure that Polaron GSE increases with the 

increase in T. This implies that temperature weakens the polaronic effect. 

The explanation is simple. An increase in T leads to excitation of larger 

number of real phonons which suppresses the formation of the polaron. 

As expected, polaron GSE decreases with increasing 𝛼 and 𝑅.  
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Fig. 3.2:  Polaron GSE vs 𝑇 for 2D and 3D GQDs     in the intermediate-

coupling region. 

 

   In Fig. 3.2, GSE is plotted for an intermediate-coupling polaron for 

both N = 2 and 3. It is clearly visible that even at 𝑇 ≠ 0, the impact of e-

p interaction is stronger in 2D than in 3D. This is of course 

understandable from the point of view of quantum mechanics. It is 

interesting to note that in a 3D QD, GSE hardly shows any temperature 

dependence whereas for the 2D system, we find that GSE shows a 

marginal increase with 𝑇 at low 𝑇, and then becomes essentially constant 

as 𝑇 is increased further. The temperature variation of GSE in the weak-
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coupling regime looks qualitatively similar to that in the intermediate-

coupling regime (not shown here). 

 

FIG. 3.3:  GS polaron binding energy (BE) vs 𝑇 in the strong-coupling 

regime for two values of  𝑅. 

 

To determine the role of e-p coupling, we calculate the GS polaronic 

correction ∆E, which is the energy by which the GS electron energy is 

modified because of the e-p interaction. This is also called the GS 

polaron self-energy which is defined as:  ∆𝐸 = 𝐸(𝛼) − 𝐸(𝛼 = 0). The 

condition of polaron formation is given by: ∆𝐸 < 0.  The negative of ∆𝐸 

or |∆𝐸|  gives the polaron binding energy (BE) which is the energy 
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required to strip off the phonons from the electron.   In Figs. 3.3 and 3.4, 

we have shown the nature of  |∆𝐸|  vs. 𝑇 - curve in GQD. From Fig. 3.3, 

one can conclude that in a 3D strongly-coupled GQD, as 𝑇 increases,  

|∆𝐸| initially decreases, and then gradually reaches a saturation value. 

This is in conformity with Fig. 3.1. Fig. 3.4 describes the behaviour of 

|∆𝐸|  for intermediate values of α. We immediately see that in 2D QDs, 

at low 𝑇, as T  

 

FIG. 3.4:  |∆𝐸| vs T for intermediate values of α for 2D and 3D GQDs. 

 

increases, |∆𝐸| shows a small decreasing behaviour. But as 𝑇 increases 

a little more, |∆𝐸| quickly reaches a saturation value. We have already 
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explained this behaviour. For a 3D QD, |∆𝐸|  is more or less 𝑇 − 

independent which is consistent with Fig. 3.2. From Fig. 3.4, we 

conclude again that even at 𝑇 > 0, the polaronic binding is weaker in 3D 

QDs than in 3D ones.  

      

Fig. 3.5  |∆𝐸| vs 𝑅 for a polaron in 2𝐷 and 3𝐷 QDs in strong-coupling 

regime.  

 

In Figs. 3.5, 3.6 and 3.7, we have studied the behaviour of |∆𝐸| with 

respect to 𝑅 for large, intermediate and small values of α respectively at 

a particular temperature namely, 𝑇 = 50𝐾 . Fig. 3.5 reveals that in a 

strongly-coupled GQD, |∆𝐸|  has a weaker dependence on 𝑅 in 3D than 
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in 2D. As R decreases in a 3D QD, |∆𝐸| is found to increase, though 

slowly, but below a certain 𝑅, it appears to decrease with the decrease in 

𝑅.  The origin of this behaviour is completely quantum in nature. With 

the reduction in QD size, the electron kinetic energy rises leading to the 

reduction in the polaron binding. Interestingly enough, 2D QDs do not 

show this behaviour.  

 

Fig. 3.6  |∆𝐸| vs 𝑅 for a polaron in 2𝐷 and 3𝐷 QDs in the intermediate-

coupling regime.  

 

  In Fig. 3.6, we plot |∆𝐸| with respect to 𝑅 in the intermediate-coupling 

range. The behaviour is qualitatively similar to the strong-coupling case. 
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However, in the case of 3D QDs now, peaks in |∆𝐸|’s appear a little 

sharper than the corresponding strong-coupling cases.   

 

Fig. 3.7 |∆𝐸|  vs 𝑅  for a polaron in 2𝐷  and 3𝐷  QDs in the  weak-

coupling regime.  

 

Fig. 3.7 shows the variation of |∆𝐸| with R in the weak-coupling region. 

One can see that in this region, as R is reduced,  |∆𝐸|  increases 

monotonically for 2D as well as 3D QD. However, the polaron effect in 

all cases, is stronger in 2D than in 3D. This is consistent with the general 
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result that e-p interaction effect increases with the reduction in 

dimensionality.  

  

 

Fig. 3.8 GSE vs 𝑉0 for a 3𝐷 QD 𝑇 = 50𝐾 in 𝑇 = 50𝐾 𝑇 = 50𝐾 𝑇 =
50𝐾 in strong and intermediate coupling regimes.  

 

In Fig. 3.8, we  plot GSE versus 𝑉0 for 𝑅 =  2  at 𝑇 = 10𝐾 and 50𝐾.  

GSE is found to decrease with increasing 𝑉0 . This indicates that the 

polaronic binding is strengthed as 𝑉0 is made greater. Needless to say, 

the polaronic effect becomes stronger with increasing 𝛼. Fig. 3.9 shows 
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this behaviour explicitly. Again, the polaron GSE value in 2D QD lies 

below that in 3D QD.  

 

 

                    Fig. 3.9  GSE vs  𝛼 in  2D and 3D QD at  𝑇 = 50𝐾. 

 

 

 

3.5 CONCLUSION 

In this chapter, we have presented our results on the effect of temperature 

on the polaronic properties in GQD. These results have been found out 
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with the help of the variational theory of Lee, Low, Pines and Huybrechts 

and statistical mechanics. Our results reinforce the notion that the GS 

polaron binding in ND GQD becomes weaker  as temperature rises and 

thus the polaronic effect weakens at higher temperature. The explanation 

for this phenomenon is as follows. With the rise in temperature, the 

probability of excitation of real phonons becomes certainly more. This 

suppresses polaron formation. Finally we observe that even at non-zero 

temperature, polaronic effects diminish with increasing dimensionality.   
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4
Effect of confinement potential 

shape on the electronic, 
thermodynamic, magnetic and 
transport properties of a GaAs 

quantum dot at finite temperature 

Abstract 

Confinement potential profile has a major role to play in influencing the 

quantum dot properties. Here we consider a general power-exponential 

potential containing a tunable parameter p. By controlling p we can 

create confinement potentials of different shapes. We study how different 

quantum dot properties are influenced by the shape of the dot. We 

determine the average thermodynamic energy, specific heat, persistent 

current and magnetic susceptibility at low temperature within the frame-

work of the canonical ensemble approach of statistical mechanics. We 

show that the average energy has a strong dependence on p for small p 

while for large p, on the other hand,   p has hardly any effect on the 

energy. Interestingly, it turns out that the specific heat is unaffected by 

the shape or depth of the confinement potential at low temperature as 

well as the magnetic field for the range considered. The magnetic 

behaviour of the system looks rather interesting. The system displays a 

paramagnetic-diamagnetic transition at a certain magnetic field 

strength. It is found that for small values of 𝑝, the system is diamagnetic 

in a small temperature window, then for a temperature window the 

system is paramagnetic and as the temperature is further increased, the 

system goes into a re-entrant diamagnetic phase. For large 𝑝, the system 

behaves in a similar way up to a certain temperature, namely till the 

system enters into re-entrant diamagnetic phase. Here we see that 𝜒 

exhibits well-developed minima and finally enters into the paramagnetic 
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phase again. We furthermore show that at magnetic fields higher than a 

critical value, the system is always diamagnetic for shallow confinement 

potentials, irrespective of their shape. Thus, for a window of p values, 

we expect the phenomenon of reentrant diamagnetic behaviour to show 

up for a range of magnetic field strength. We finally show that in a 

power-exponential quantum dot, the persistent current is diamagnetic at 

low temperature and its magnitude is larger when the potential is 

deeper. It is however independent of p.  At high temperature, however, 

the persistent current can be paramagnetic for small 𝑝. 
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4.1 INTRODUCTION 

In order to develop a theory of quantum dots it is absolutely necessary 

to have a prescription for the confinement potential. Early experimental 

results gave the indication that the quantum dot (QD) confinement 

potential has a parabolic character. This led to extensive investigations 

on parabolic QDs [1-29]. Some later experimental results on QDs 

however contended that the confinement potential is anharmonic with a 

depth that is finite [30,31]. Adamowsky et al. [32] have advocated the 

Gaussian potential as the model for confinement potential. The Gaussian 

potential turned out to be a more realistic model for the confinement 

potential in QD.  Consequently, a large number of studies [33-52] have 

been conducted on several aspects of QDs by many researchers by 

making use of the attracting Gaussian potential model. Ciurla et al. [53] 

have introduced a general form for the QD potential namely, power-

exponential (PE) potential. It contains a steepness parameter p. By 

tuning this parameter p one can generate potentials of different shapes. 

Also, some of the widely used confinement potentials can be generated 

from it in different limiting cases. Kwaśniowski and Adamowski [54] 

have considered the PE potential for the study of electron exchange 

interaction in coupled QDs. Xie [55] has concluded using the PE model 

that the photo-ionization of a donor impurity is highly influenced by the 

QD shape.  

In this chapter, we take up the problem of a two-dimensional (2D) QD 

with PE potential and spin-Zeeman interaction in a magnetic field at 

finite temperature and examine the effect of dot shape on the average 

thermal energy, heat capacity and the susceptibility of the electron and 
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the persistent current. We shall describe QD with PE confinement as 

PEQD. 

4.2 MODEL 

An electron of charge 𝑒 and band mass 𝑚∗ moving in a 2D PEQD in a 

magnetic field 𝑩 (0, 0, 𝐵) may be described by the Hamiltonian     

                                              𝐻 =
1

2𝑚∗
(𝒑 +

𝑒

𝑐
𝑨)

2

+ 𝑉(𝝆),                  (4.1) 

where 𝝆 (𝒑) is the 2D electron position (momentum) operator,  𝑨 is the 

vector potential related to 𝑩  as: 𝑩 = 𝛁 × 𝐀 , and is chosen as: 𝑨 =

(−𝐵𝑦 2,  𝐵𝑥 2, 0)⁄⁄  so that 𝛁. 𝑨 = 0 and  𝑉(𝝆) is the PE potential [2] 

given by .  

                                               𝑉(𝝆) = −𝑉0𝑒
−(
𝜌
𝑅
)
𝑝

,                                  (4.2) 
 

where 𝑉0 specifies the PE potential depth and thus gives the confinement 

strength, R gives the effective QD size and p is the steepness parameter 

and determines the shape of the potential. For small values of p, the 

potential is soft. As p increases, the potential becomes harder. The 

potential becomes Gaussian for p = 2.  For p ≥10, the potential becomes 

very hard or steep at the QD boundary. As p increases further, we have 

an extremely hard potential mimicking a rectangular potential (Fig.1) 

[3]. 



Chapter 4 

 

 103 

 

Fig.4.1. Shape of the Power-exponential (PE) confinement potential for 

𝑝 = 0, 2, 4, 10 and 50. 

 

The Hamiltonian now reads    

  𝐻 = −
ℏ2

2𝑚∗
𝛁𝜌
2 − 𝑉0𝑒

−(
𝜌
𝑅
)
𝑝

+
𝑚∗

8
𝜔𝑐
2𝜌2 +

ℏ𝜔𝑐
2

(𝐿̂𝑧 + 𝑔∗𝑆̂𝑧), (4.3) 

where 𝐿𝑧 and 𝑆𝑧 are respectively the z-components of the radial and spin 

angular momentum operators of the electron, 𝜔𝑐 = 𝑒𝐵 𝑚∗⁄  

 

4.3 FORMULATION 

If the PE potential does not deviate much from the parabolic potential, 

then the PE potential may be approximated by a potential which contains 

a parabolic potential and a perturbation term. This approximation looks 
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plausible if r takes only small values.  Since in QD, the electron, in any 

case, is restricted to move in a nanoscale confined geometry, this 

approximation can be regarded as fairly reasonable. So we rewrite 

Hamiltonian (4.3) as 

                                                         𝐻 = 𝐻0 +𝐻1  ,                                 (4.4) 

with                    

  𝐻0 = −
ℏ2

2𝑚∗
𝛁𝜌
2 +

1

2
𝑚∗𝜔̃2𝜌2 +

1

2
ℏ𝜔𝑐(𝐿̂𝑧 + 𝑔∗𝑆̂𝑧) − 𝑉0,         (4.5) 

        𝐻1 = −𝜆 [
1

2
𝑚∗𝜔ℎ

2𝜌2 + 𝑉0 (𝑒
−(
𝜌
𝑅
)
𝑝

− 1)],                                   (4.6) 

where 

                                       𝜔̃2 = 𝜔ℎ
2 +

𝜔𝑐
2

4
   ,   𝜔ℎ

2 =
𝑉0

𝑚∗𝑅2
  .                   (4.7) 

One can immediately see that  = 0 describes a parabolic confinement 

while   = 1 implies that the PE potential is the confinement potential. 

We include the effect of 𝐻1  by a mean-field approach in which we 

assume that 𝐻1 effectively renormalizes the frequency 𝜔̃. Thus we write 

𝐻1 as  

  𝐻1 = 𝜆 [
𝑉0
〈𝜌2〉

−
1

2
𝑚∗𝜔ℎ

2 − 𝑉0
〈𝑒−(

𝜌
𝑅
)
𝑝

〉

〈𝜌2〉
] 𝜌2 ,                         (4.8) 

   



Chapter 4 

 

 105 

where the quantum mechanical averages are carried out with respect to  

the ground state of the Hamiltonian: ℋ(𝜔̃) = [−
ℏ2

2𝑚∗ 𝛁𝜌
2 +

1

2
𝑚∗𝜔̃2𝜌2]. 

Under this approximation, the Hamiltonian 𝐻 reduces to   

𝐻 = −
ℏ2

2𝑚∗
𝛁𝜌
2 +

1

2
𝑚∗𝜔2𝜌2 +

1

2
ℏ𝜔𝑐(𝐿̂𝑧 + 𝑔∗𝑆̂𝑧) − 𝑉0,               (4.9) 

where 𝜔  given by: 𝜔 = [𝜔̃2 +
2𝜆

𝑚∗
((𝑉0/〈𝜌

2〉) −
1

2
𝑚∗𝜔ℎ

2 −

𝑉0{〈𝑒
−(𝜌/𝑅)𝑝〉/〈𝜌2〉})]

1/2

 and 𝑔∗ is the effective Lande-g factor. In the 

case of GaAs QD,  𝑔∗ = −0.44. Thus effective Schrödinger equation is 

given by   

 

  𝐻 Ψ𝑛𝑙𝑠(𝜌, 𝜃, 𝜎) = 𝐸𝑛𝑙𝑠Ψ𝑛𝑙𝑠(𝜌, 𝜃, 𝜎) ,                             (4.10) 

where the wave function  Ψ𝑛𝑙𝑠(𝜌, 𝜃, 𝜎)  is the Fock–Darwin wave 

function given by  

  Ψ𝑛𝑙𝑠(𝜌, 𝜃, 𝜎) = √
𝛼2𝑛!

(𝑛 + |𝑙|)! 𝜋
(𝛼𝜌)|𝑙|𝐿𝑛

|𝑙|(𝛼2𝜌2)𝑒−
𝛼2

2
𝜌2+𝑖𝑙𝜃𝜒𝑠(𝜎),    (4.11) 

where 𝛼 = (𝑚∗𝜔 𝑐⁄ )1 2⁄ , 𝑛 = 0, 1, 2, 3, . ..   ,   𝑙 = 0,±1, ±2,…  ,   𝐿𝑛
|𝑙|

 

describes the associated Laguerre polynomial, and 𝜒𝑠(𝜎) satisfies the 

eigenvalue equation: 𝑆𝑧 𝜒𝑠(𝜎) = 𝑠 𝜒𝑠(𝜎)  with 𝑠 = ±(1/2).
 
The 

eigenvalue 𝐸𝑛𝑙𝑠  of 𝐻 is obtained as  

               𝐸𝑛𝑙𝑠 = (2𝑛 + |𝑙| + 1)ℏ𝜔 +
1

2
ℏ𝜔𝑐(𝑙 + 𝑔∗𝑠) − 𝑉0 .         (4.12) 



Effect of confinement potential shape on the electronic,…. 

 

 106 

The partition function corresponding to (4.12) can be exactly determined 

and we get         

 

 𝑍(𝑇, 𝐵) =  ∑∑ ∑ 𝑒−𝛽𝐸𝑛𝑙𝑠 

𝑠=½

𝑠=−½

±∞

𝑙=0

∞

𝑛=0

 

               =
1

2
𝑐𝑜𝑠ℎ (

1

4
𝑔∗𝛽ℏ𝜔𝑐)  𝑐𝑠𝑐ℎ {

1

2
𝛽ℏ (ω −

𝜔𝑐
2
)} 

                               × 𝑐𝑠𝑐ℎ {
1

2
𝛽ℏ (ω +

𝜔𝑐
2
)} ,                                     (4.13) 

 

where 𝛽 = 1 𝑘𝐵𝑇⁄ . Once the partition function is calculated, one can 

determine the average thermodynamic energy, magnetization, 

susceptibility and the heat capacity or specific heat using the following 

relations:  

〈𝐸〉 = −
1

𝑍
(
𝜕𝑍

𝜕𝛽
) ; 〈𝑀〉 =

1

𝛽𝑍
(
𝜕𝑍

𝜕𝐵
) ; 𝜒 =

𝜕〈𝑀〉

𝜕𝐵
;  𝐶 =

𝜕〈𝐸〉

𝜕𝑇
.   (4.14) 

We also wish to study the effect of temperature on the persistent current.  

We determine the thermal average of 𝐽𝑛𝑙
𝑠𝑝𝑖𝑛  using the canonical 

ensemble approach [9]:      

  

                     〈𝐽𝑛𝑙
𝑠𝑝𝑖𝑛〉 =

∑ 𝐽𝑛𝑙
𝑠𝑝𝑖𝑛 𝑒−𝛽𝐸𝑛𝑙𝑠𝑛,𝑙,𝑠

∑ 𝑒−𝛽𝐸𝑛𝑙𝑠𝑛,𝑙,𝑠

 .                                         (4.15) 
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4.4 NUMERICAL RESULTS AND DISCUSSIONS  

Fig. 4.2 presents the behaviour of the thermodynamic average of the 

electron energy (〈𝐸〉) in PEQD of GaAs with respect to the steepness 

parameter 𝑝 for 𝑅 = 1 𝑛𝑚, 𝐵 = 1𝑇 ,  𝑇 = 1 and 300𝐾,  and for three 

values of 𝑉0 namely, 𝑉0 = 50,  100,  300 𝑚𝑒𝑉.  It is clear that as 𝑝 is 

 

 

Fig. 4.2  〈𝐸〉  vs   p in the case of a PEQD of GaAs with 𝑉0 = 50, 100, 
300 meV, 𝑅 = 10 nm, 𝐵 = 1𝑇 and  𝑇 = 1 and 300 𝐾. 
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reduced, 〈𝐸〉 shows a monotonic increase and the rate of increase is 

higher when 𝑝  is smaller and V0 is larger. The reason is simple. 

Softening of potential allows the sustenance of a larger number of states 

in the potential well in general and at the Rydberg levels in particular. 

This obviously leads to a higher value of 〈𝐸〉 .   〈𝐸〉  also seems to 

increase with increasing temperature 𝑇  which is of course 

understandable. As 𝑝  increases, 〈𝐸〉  approaches the same saturation 

value irrespective of the value of 𝑉0. This is also an expected behavior 

because in the case of large 𝑝, the potential becomes very hard and then 

the shape of the potential remains essentially independent of 𝑝.  In this 

limit, an increase in 𝑝  does not change the number of states in the 

potential and consequently 〈𝐸〉 saturates. 
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 Fig. 4.3 Magnetization (𝑀 
𝐵
)⁄  vs p of PEQD of GaAs with 𝑉0 = 50, 

100,  300 meV, 𝑅 = 10 nm, 𝐵 = 1𝑇 and (a)  𝑇 = 1𝐾 and (b) 300 𝐾. 

   

   Figs. 4.3 displays the behaviour of the average magnetization (〈𝑀〉) of 

PEQD of GaAs against 𝐵 for several 𝑝 values at: (a) = 1𝐾  ; (b) 𝑇 =

300𝐾 . At 𝑇 = 1𝐾 (Fig. 4.3(a)), 〈𝑀〉 initially grows with 𝐵, attains a 

peak at some critical 𝐵 and then diminishes as 𝐵 increases further and 

eventually turns negative and keeps assuming increasingly  higher 

negative values with increase in 𝐵. A qualitatively similar behaviour is 

observed for different 𝑝  values. At 𝑇 = 300𝐾  (Fig. 4.3(b)), 〈𝑀〉 

behaves with 𝐵  in a qualitatively different way. For = 0, 1, 2  , 〈𝑀〉 

remains always negative and its magnitude keeps on increasing with 𝐵, 

while for 𝑝 = 10, and 20, 〈𝑀〉 remains always positive and increases 

with 𝐵.  
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Fig. 4.4 Magnetization (𝑀 
𝐵
)⁄  vs  p of PEQD of GaAs with 𝑉0 = 50,  

100,  300 meV, 𝑅 = 10 nm, 𝐵 = 1𝑇 and  𝑇 = 1 and 300 𝐾. 

 

 In Fig. 4.4, we delineate the behaviour of 〈𝑀〉  directly with respect to  

𝑝 for PEQD of GaAs with 𝑅 = 10 𝑛𝑚, 𝑉0 = 50, 100, 300 meV and for 

𝐵 = 1𝑇 and  T= 1K and 300K. At low temperature (𝑇 ~ 1 K), 〈𝑀〉 is 

found to be always positive which is an expected behavior because of 

low thermal disorder at low temperature. Furthermore, at small 𝑝, as 𝑝 

increases, 〈𝑀〉 grows slowly with 𝑝 and reaches a small maximum and 

as 𝑝 increases further, it falls off slowly and finally reaches saturation. 

At large 𝑝, the confinement potential mimics a hard rectangular potential 
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and then increasing 𝑝  does not change the potential structure much. 

Under this situation, only low-energy states contribute substantially to 

the partition function, higher excited states (which do not change much 

with further increase in p) offering very little.  This is the explanation 

for the saturation of 〈𝑀〉 at large 𝑝. With increasing 𝑉0, the maximum in 

〈𝑀〉 appears to grow at small p, while at large p,  〈𝑀〉 decreases with 

increasing 𝑉0. This happens because when 𝑝 is small, an increase in 𝑉0 

gives rise to quite a few additional Rydberg-like states in the QD 

potential. Therefore, as a function of 𝑝 , 〈𝑀〉  exhibits a crossing 

behaviour.  At  𝑇 = 300 𝐾,   〈𝑀〉 is negative if  𝑝 is less than some 

number which is dependent on 𝑉0. However, above a critical 𝑝, 〈𝑀〉 is 

positive and initially increases with the increase in 𝑝, but finally reaches 

a saturation value that is dependent on 𝑉0.  

In Figs. 4.5(a) and 4.5(b) we study the behaviour of susceptibility (𝜒) 

of PEQD of GaAs with  𝑇 for several 𝑝 values. Fig. 4.5(a) gives the 

results for 𝐵 = 1 𝑇 and Fig. 4.5(b) gives that for 𝐵 = 10 𝑇. Fig. 4.5(a) 

shows that at very low T,  𝜒 in PEQD of GaAs is diamagnetic and as 𝑇 

increases, at a certain 𝑇 it acquires a paramagnetic character. Above this 

critical 𝑇, 𝜒 increases with 𝑇 and attains a maximum at some 𝑇 (𝑇𝑚).  

The maximum structure is demonstrated explicitly in the inset of Fig. 

4.5(a).  With further increase in 𝑇 beyond 𝑇𝑚, 𝜒 starts decreasing and in 

fact, becomes diamagnetic at another critical 𝑇 . Beyond this T ,   𝜒  

develops a minimum or a minimum-like structure.  
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Fig. 4.5 (a) Magnetic susceptibility ( 
𝐵
)⁄  vs 𝑇 of PEQD of GaAs at  

𝐵 = 1𝑇 with 𝑉0 = 50 meV and 𝑅 = 10 𝑚𝑚.    

  

 For small values of 𝑝 (𝑝 = 1, 2), 𝜒 remains diamagnetic for all T while 

for large 𝑝 (𝑝 = 10, 20), 𝜒 finally becomes paramagnetic and seems to 

saturate at sufficiently high T value.  Thus, for small values of 𝑝, there 

exits a small temperature window in which the system is diamagnetic, 

then for a temperature window the system is paramagnetic and as the 

temperature is further increased, the system enters into a re-entrant 

diamagnetic phase. For large 𝑝, the system behaves in a similar way up 

to a certain temperature, namely till the system enters into re-entrant 

diamagnetic phase. Here we see that 𝜒 exhibits well-developed minima 

and it finally enters into the paramagnetic phase again. Thus it seems 
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there are two paramagnetic phases for large 𝑝  and two diamagnetic 

phases for small 𝑝.  Fig. 4.5(b) shows that if the magnetic field is strong 

enough , then for small 𝑝  values, a GaAs QD is always diamagnetic  

whereas for large 𝑝 , the system goes through a diamagnetic-

paramagnetic transition at a critical T.   

                                  

 
Fig. 4.5(b) Magnetic susceptibility ( 

𝐵
)⁄  vs 𝑇  of PEQD of GaAs at 

𝐵 = 1𝑇 with 𝑉0 = 50 meV,  𝑅 = 10 𝑚𝑚. 
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Fig. 4.6 ( 

𝐵
)⁄  vs p of PEQD of GaAs with 𝑉0 = 50, 100,  300 meV, 

𝑅 = 10 nm, 𝐵 = 1𝑇 and 300 𝐾.      

 

The behaviour of 𝜒  with p is shown explicitly in Fig. 4.6. At high 

temperature (𝑇 = 300 𝐾) , 𝜒  increases monotonically with 𝑝  from a 

diamagnetic value, undergoes a transition to the paramagnetic phase at 

a certain p and eventually approaches a constant paramagnetic value for 

all values of 𝑉0  considered here. However, at low temperature 

(𝑇 = 1 𝐾),  the behaviour of 𝜒  is in general more interesting. For 

example, at small values of 𝑝, 𝜒 increases with the increase in 𝑝, reaches 

a maximum and then falls off for the values of 𝑉0 considered here. At 

relatively small 𝑉0   (𝑉0 = 50, 100 𝑚𝑒𝑉) , 𝜒  continues to be negative 

irrespective of the value of 𝑝.  For sufficiently high 𝑉0 (𝑉0 = 150 𝑚𝑒𝑉), 

however, 𝜒  is negative at small p values and as 𝑝  exceeds a certain 
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value, it becomes positive and with further increase in p, the system 

makes a reentrant transition into the diamagnetic phase.    

  

 
Fig. 4.7(a)  𝐶 𝑘𝐵⁄  vs T for B= 1T for PEQD of GaAs with 𝑉0 = 50 𝑚𝑒𝑉,  

𝑅 = 10 𝑛𝑚, and several values of 𝑝.    
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 Fig. 4.7(b)  𝐶 𝑘𝐵⁄  vs T for B= 10T for PEQD of GaAs with 𝑉0 = 

50 𝑚𝑒𝑉,  𝑅 = 10 𝑛𝑚, and several values of 𝑝. 
 

In Fig. 4.7 (a) we plot the heat capacity (𝐶) of PEQD of GaAs versus  𝑇 

for a few 𝑝 values.  At very low  𝑇, 𝐶 displays a peak structure for all 𝑝 

and up to a certain 𝑇,  the results are independent of 𝑝.  Beyond this 

critical 𝑇,  𝐶 increases with 𝑝, though for sufficiently large 𝑝, 𝐶 does 

not depend much on 𝑝. This is understandable because for 𝑝 greater than 

a certain value, the potential becomes almost like a square well which 

hardly changes with the further increase in 𝑝 . With increasing T, C 

eventually saturates and the saturation value is about 2𝑘𝐵. The genesis 
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of the peak appearing in the C-T-graph is however not clear, though it 

looks similar to the Schottky anomaly one observes low T in the 𝐶 − 𝑇 

behaviour of a two-level system. Fig. 7(b) gives the T-dependence of C 

for PEQD of GaAs at a large B (𝐵 = 10𝑇). Again the Schotky-like 

behavior is visible for low values of 𝑝, while for large 𝑝, a monotonic 

behavior is observed. Again at large 𝑝,  the results are essentially 

independent of 𝑝.   

 

 

Fig. 4. 8  𝐶 𝑘𝐵⁄  vs p for   B=1T, T=1 and 300K for PEQD GaAs with 

𝑅 = 10 𝑛𝑚 and 𝑉0 = 50, 100 and 300 meV.  
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C is plotted directly against 𝑝 for PEQD of GaAs in Fig. 4.8. The figure 

shows the results for 𝐵 = 1𝑇, 𝑇 = 1𝐾 and 300𝐾 at 𝑉0 = 50, 100 and 

300 meV. C turns out to be completely independent of both 𝑉0 and 𝑝 at 

low T (𝑇 = 1𝐾). However, at high T  (𝑇 = 300 𝐾), it increases with 𝑝 

and finally approaches a constant value 2kB as 𝑝 gets large. The value 

2kB  is reminiscent of the Dulong-Petit result.  

 

 

Fig. 4.9    Persistent current (I) (in unit of 𝑒𝜔ℎ/𝑒ℏ) vs  p for B=1T , T=1 

and 300K for PEQD of GaAs  with 𝑉0 = 50, ,   100 and 300 meV. 
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In Fig. 4.9, we study the behaviour of the average persistent current (𝐼) 

with respect to 𝑝  for 𝐵 = 1, 𝑇 = 1 and 300𝐾 for PEQD of GaAs with 

𝑅 = 10  nm and 𝑉0 = 50, 100  and  300  meV. One can see that I is 

diamagnetic at low T (𝑇 = 1 𝐾)  and its magnitude decreases with 

increasing 𝑉0, but it is independent of p.  At high T  (𝑇 = 300 𝐾), one 

can see that I is paramagnetic for small values of 𝑝.  However, it sharply 

falls off with increasing 𝑝 at small 𝑝 and becomes diamagnetic at some 

value of 𝑝  which depends on 𝑉0.  The diamagnetic persistent current 

rises further with increasing 𝑝 and finally reaches a saturation value. 

4.5 CONCLUSIONS 

In the present chapter, the role of the confinement potential profile on 

the average thermal energy of the electron, specific heat of the electron, 

magnetization and susceptibility of the electron and the persistent 

current has been examined in PEQD of GaAs at non-zero temperature 

using the PE confinement potential model. The average energy is found 

to increase with 𝑇  and 𝑉0 .   At small 𝑝,  the average energy falls off 

sharply with the increase in 𝑝, but as 𝑝 increases, the energy approaches 

a T-independent saturation value.   

Our calculation reveals that at low T, the shape and depth of the 

confinement potential have no effect on the heat capacity C of PEQD of 

GaAs.  However, at high T (𝑇 = 300 𝐾) , C increases with 𝑝  and 

eventually reaches the saturation value 2𝑘𝐵 at large 𝑝.  

We have shown that the susceptibility 𝜒 of PEQD of GaAs increases 

monotonically with 𝑝  at high T (𝑇 = 300 𝐾) . At low 𝑝 , 𝜒  is 



Effect of confinement potential shape on the electronic,…. 

 

 120 

diamagnetic and as 𝑝 exceeds a critical value, 𝜒 becomes paramagnetic.  

At low T (𝑇 = 1 𝐾), initially 𝜒  grows with 𝑝, attains a maximum and 

then begins to fall off. Below a certain value of 𝑉0 , 𝜒  is always 

diamagnetic.  However, if 𝑉0  is large enough (𝑉0 = 300  meV), the 

system is diamagnetic at very small 𝑝 and turns paramagnetic at some 

higher value of 𝑝 and if 𝑝 is increased further, the system goes once 

again into the diamagnetic phase. If 𝑉0 is made substantially large, then 

even at small 𝑝, 𝜒 may be paramagnetic and the system would go into 

a diamagnetic phase at a larger value of 𝑝. Thus the system can exhibit 

a reentrant behaviour if the value of 𝑝  falls in a certain window. 

However, at very low T and large 𝑝 , the system never shows 

paramagnetism. 

The persistent current (I) in PEQD of GaAs is found to be diamagnetic 

at low T (𝑇 = 1 𝐾), and its magnitude increases with the increase in 𝑉0.  

At high T (𝑇 = 300 𝐾), I has a paramagnetic character for small values 

of 𝑝,  but it sharply falls with increasing 𝑝 and becomes diamagnetic at 

some value of 𝑝  which depends on 𝑉0.  The diamagnetic persistent 

current increases as 𝑝 is further increased and finally tends to a saturate. 
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5                        SUMMARY 
 

In this thesis we have examined the effect of excitonic, polaronic and 

electronic effects in a QD with Gaussian confinement. In the 

introductory chapter, i. e., Chapter 1, we have started with the definitions 

and properties of nanomaterials or low dimensional systems and then 

presented a detailed introduction to QDs and their properties.  

Specifically, we have discussed different types of confinement potential 

in QDs and the motivation behind choosing the Gaussian potential for 

our studies.  Next, we have introduced briefly the idea of excitons 

(electron – hole pair) and polarons (electron – phonon interaction) and 

presented an overview of the experimental and theoretical investigations 

carried out on excitonic and polaronic effects in QDs.   

In Chapter 2, we have considered an exciton in a GQD of GaAs placed 

in a magnetic field and calculated the exciton GS energy, binding energy 

and the exciton size with the help the conventional variational approach, 

1

𝑁
− expansion technique and the shifted 

1

𝑁
− expansion scheme. It is 

well known that the conventional variational approach provides an 

upper limit to the energy while the 
1

𝑁
− expansion scheme provides a 

lower limit. We have shown that results from the shifted 
1

𝑁
− expansion 

scheme fare excellently the exact numerical results. Our results have 

revealed that the exciton binding is strengthened as QD size is reduced 
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and that the binding is stronger in GQD than in a Parabolic QD. We have 

also demonstrated that the exciton dimension becomes smaller as QD 

reduces in size or the confinement strength increases or the strength of 

the magnetic field is enhanced. It has been observed that exciton 

oscillator strength reduces as QD is made smaller or the magnetic field 

is enhanced. Also the number of QD exciton levels can be controlled by 

manipulating the system parameters.  This tunability of the excitonic 

states in a QD can be effectively used to realize a QD laser.  

In Chapter 3, we have examined the role of temperature on the polaronic 

effects in GQD using a variant of the Lee-Low-Pines transformation 

method as modified by Huybrechts and the quantum statistical theory. 

We have been able to show that as temperature is raised, the polaron GS 

energy goes up. This implies lessening of polaronic effect with the rise 

in temperature. Our results do reveal that the self-energy of a polaron in 

a general N-dimensional GQD becomes smaller as the temperature rises. 

We understand this phenomenon in the following way. As the 

temperature rises, the probability of excitation of real phonons also rises. 

This naturally impeds the formation of polarons. We have also shown 

that polaronic phenomena become more strikingly visible in a 2D QD 

than in a 3D QD. In GQD, in general, the polaronic binding shows an 

increase with the reduction in 𝑅, particularly at small 𝑅. It has been 

observed that if 𝑅 is made smaller than a critical value in 3D QD, the 

polaron binding starts weakening with the decrease in 𝑅. Furthermore, 

the GS energy of a Gaussian QD has been shown to decrease with 

increasing potential depth. This implies that the polaronic binding 

strengthens with the increae in the potential depth.   
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In Chapter 4, we have studied the role of the potential profile  on several 

properties of a GaAs QD at finite temperature. For this purpose we have 

considered the power-exponential potential model with a steepness 

parameter 𝑝 . For a small value of 𝑝 , the potential is soft and as 𝑝 

increases, the potential becoms harder.  In the case of 𝑝 = 2, the power-

low potential transforms into a Gaussian potential. The thermodynamic 

energy, specific heat, susceptibility and persistent current have been 

determined at low temperature with the help of the canonical ensemble 

approach. It has been demonstrated that the canonical average of the 

thermodynamic energy increases with temperature 𝑇 and the potential 

depth 𝑉0 .   At small 𝑝,  the average energy falls off sharply with the 

increase in 𝑝 , but as 𝑝  increases, the energy approaches a 𝑇 − 

independent saturation value.    

It has also been established that if the temperature is low, the specific 

heat of a GaAs QD is unaffected by the nature of the potential profile. 

However, at high temperature (𝑇 = 300 𝐾), the specific heat initially 

shows a rapid increase with 𝑝 and then appears to a saturation value 2𝑘𝐵 

as 𝑝 exceeds a certain critical value.  

We have shown that the susceptibility 𝜒  of a GaAs QD increases 

monotonically with 𝑝 at high temperature (𝑇 = 300 𝐾). At low 𝑝, 𝜒 is 

diamagnetic and as 𝑝 exceeds a critical value, 𝜒 becomes paramagnetic.  

Furthermore, 𝜒   seems to decrease with increasing 𝑉0 . At low 

temperature (𝑇 = 1 𝐾),  𝜒  initially increases with 𝑝 , reaches a 

maximum and then begins to fall off. For small 𝑉0 , 𝜒  displays a 

diamagnetic character.  However, in the case of large 𝑉0  (𝑉0 = 300 
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meV), as 𝑝  increases, the system initially exhibits a diamagnetic 

behaviour and as 𝑝 exceeds a critical value, it displays a paramagnetic 

behaviour.  Here too, 𝜒 reaches a maximum at some value of 𝑝 and then 

falls off in a monotonic way and turns negative beyond a critical 𝑝. 

However, if 𝑉0 is further strengthened, 𝜒 may attain the paramagnetic 

character even at a smaller 𝑝 value and the diamagnetic character at a 

larger 𝑝.  Thus for a range of 𝑝 values, a re-entrant phenomenon may 

occur. But, if the temperature happens to be very low and 𝑝 large, 𝜒 

never shows any paramagnetic behaviour.   

At low temperature (𝑇 = 1 𝐾), a GaAs QD can have a diamagnetic  

persistent current which increases in magnitude as 𝑉0 decreases. At high 

temperature (𝑇 = 300 𝐾 ), the persistent current is paramagnetic for 

small values of 𝑝,  but it sharply falls off with increasing 𝑝 and becomes 

diamagnetic at a certain 𝑝 depending on 𝑉0. The diamagnetic persistent 

current assumes higher values as 𝑝  is increased further and finally 

reaches a saturation value.  
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