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PREFACE

Recent years have witnessed extensive investigations on low-
dimensional systems in which the electron’s motion is restricted in all
directions. The effective size of such a structure may range from a few
nanometers to few hundred nanometers. Because of their ultra-small
size, these systems are categorized as zero-dimensional materials or
qguantum dots. As a consequence of quantum confinement, these
quantum dot (QD) systems have sharp energy levels and exhibit quite a
few new and exotic features which are quite distinct from those observed
in the corresponding bulk systems. One significant technological
advantage with Quantum dots (QDSs) is that they can be designed and
developed in various shapes and sizes and interestingly the shape and
the size of a QD system can also be tuned to obtain certain desired
properties. Because of the huge design flexibility together with the
important and exotic physical properties, the QD structures have
enormous application potential in nano-devices like molecular

transistors, spintronics and quantum computers.

It is necessary to have the knowledge of the form of the confininement
potential to develop a meaningful theory of QDs. Some early
experimental findings have advocated that the form of the confinement
potential in a QD structure is by and large parabolic. Understandably,
this proposition sparked off extensive research work on parabolic QDs.
Lately, some experimental results have, however, revealed that the QD

confininement potential is actually non-parabolic or anharmonic and

viii



also the depth of the potential is finite. It has been suggested, in this
context, that an attractive Gaussian potential serves as a more realistic
model for confinement in QD. Consequently, a good number of
researchers have studied QDs employing the Gaussian potential model.
More reently, a more general model for the confinement potential has
been proposed. This is the so called power-exponential (PE) potential
model. This potential contains a parameter called the steepness
parameter which can be tuned to obtain a family of potentials including

the ones used earlier.

A semiconductor QD can have various quasi-particles. One important
quasi-particle that can exist in a QD is an exciton. The formation of
exciton takes place when an electron and a hole form a bound state.
Quantum confinement plays an important role on the excitonic
processes in a QD and therefore the optical properties of QDs which
depend on excitonic processes can be significantly altered by controlling

the confinement potential.

Since most of the QDs are made up of polar semiconductors that have
sizable electron-phonon coupling strengths, it is but natural for polarons
to form in these systems. The electron-phonon interaction has the same
energy scale as the other important interactions in low-dimensional
systems and it is therefore important to examine the role of polaronic
effects in these systems. It has turned out that the manifestation of the
polaronic interaction becomes more prominent as the dimensionality of

the system is reduced.



Along with the confining potential of QD, the magnetic field and
temperature also take a crucial part in influencing the QD properties.
This thesis is an attempt to examine the magnetic field effect on the
exciton energy spectra in QD, the effect of temperature on the energy
levels and the self-energy of a polar QD, and the effect of the
confinement potential profile on the energy, heat capacity, and the
susceptibility of an electron and the persistent current in a GaAs QD at

finite temperature.



LIST OF ABBREVIATIONS

QD Quantum Dot

GQD Gaussian Quantum Dot

PQD Parabolic Quantum Dot

GS Ground State

EBOM Effective Bond — Orbital Model
ES Excited State

LO Longitudinal Optical

e-p electron — phonon

2D Two Dimensional

3D Three Dimensional

ND N Dimensional

RSPT Rayleigh Shrddinger Perturbation Theory
QC Quantum Confinement

DoS Density of States

CM Centre of Mass

GSE Ground State Energy

BE Binding Energy

PE Power Exponential

PEQD Power Exponential Quantum Dot
PCS Photonization Cross Section
WF Wave function

SE Self Energy

GC Gaussian Confinement

Xi



CONTENTS

Declaration............cooviiiiii i
Certificate. . ..o ii
Acknowledgements............oooiiiiiii iv
Preface. ..o viii
AbDbreviations. ... Xi
CHAPTERS
1. Introduction 1-40
1.1 Nanomaterials/Low dimensional Systems 1
1.2 Quantum Dots 2
1.3 Confinement Potential 3
1.4 Fabrication of Quantum Dots 5
1.5 Properties of Quantum Dots 7
1.5.1 Density of States 7
1.5.2 Optical Properties 10
1.6 Applications of Quantum Dots 11
1.7 Review of Literature on Quantum Dots 13
1.7.1 Experimental Background 14
1.7.2 Theoretical Background 15
1.8 Excitons in Quantum Dots 17
1.9 Electron — Phonon interaction (polaron) effects in Quantum
Dots 21
1.10 Organization of the Thesis 26
References 29

2. Effect of Magnetic field on the Exciton energy levels of
GaAs Quantum Dots: Application to Excitonic lasers

41-72
2.1 Introduction 41
2.2 Model 43

Xii



2.3 Formulation 44

2.4 Variational Methods 47
2.4.1 The Exciton Ground state Energy 47
2.4.2 The Exciton Binding Energy 48
2.4.3 The Size of Exciton 48
2.4.4 The Oscillator Strength 48
2.5 1/N Expansion Method 50
2.6 Ground state Results and Discussions 55
2.7 Excited states 66
2.6 Conclusions 69
References 71

3. Effect of Temperature on the Single Particle Ground state
and Self -Energy of a Polar Quantum Dot with Gaussian

Confinement 73-99
3.1 Introduction 73
3.2 Model 74
3.3 Formulation 76
3.4 Results and Discussions 87
3.5 Conclusions 96
References 98

4. Effect of Confinement potential shape on the Electronic,
Thermodynamic, Magnetic and Transport Properties of a

GaAs Quantum Dot at finite temperature 100 - 126
4.1 Introduction 101
4.2 Model 102
4.3 Formulation 103
4.4 Results and Discussions 107
4.4 Conclusions 119
References 121
5. Summary 127

List of Publications 131

xiii



“I would like to describe a field, in which little has been done,
but in which an enormous amount can be done in principle. This field is
not quite the same as the others in that it will not tell us much of
fundamental physics (in the sense of, What are the strange particles?)
but it is more like solid-state physics in the sense that it might tell us
much of great interest about the strange phenomena that occur in
complex situations. Furthermore, a point that is most important is that
it would have an enormous number of technical applications ™.

RICHARD FEYNMAN, CALTECH, 1959

“There is plenty of rooms at the bottom”

Xiv
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1.1 NANOMATERIALS /LOW DIMENSIONAL SYSTEMS

The area of nanoscience has occupied the limelight in research for the
last four decades and has acquired even greater momentum in recent
years for its role in technology. It appears that Nanotechnology serves
as the key driver for the economic development in the foreseeable future.
The term nano has come from the Greek word dwarf [1] which means
small and one nanometer (nm) is equal to 10~° meters. The materials
whose dimensions are of the order of 1200 nm (or less) are usually termed
as nanomaterials and they provide the foundations on which the
magnificent edifice of Nanotechnology is built. Nanomaterials, in
general, display very many important and interesting properties that are
extremely different from the bulk materials. These properties depend
on various parameters such as the structure of the atoms forming the
nanomaterial, the size and shape of the nanosystem, the so called
confinement potential which confines the charge particles, composition
defects and so on.
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Fig. 1.1 Material having different length scales.
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Research on low-dimensional systems has received an unprecedented
impetus with the tremendous growth and advances in modern nano-
fabrication techniques such as etching techniques, molecular beam
epitaxy, and nano-lithography. Indeed, it has now become viable to
develop nano-scale systems where electron’s motion can be restricted in
all the three dimensions. This is referred to as quantum confinement
(QC). The size of these structures may vary, in general, from a few
nanometers to a few hundreds of nanometers. Because of the ultra-
small size of these materials, they are also called zero-dimensional

objects. More technically they are referred to as quantum dots (QDSs).
1.2  QUANTUM DOTS

A guantum dot (QD) is often composed of semiconductors of groups of
-V, 111-V, or IV-VI materials. A QD is also referred to a giant artificial
atom because it may contain a humber of atoms. However, it has an
advantage over an atom because in a QD, the number of charge carriers
can be varied at will. A QD possesses discrete number of energy levels
like naturally occurring atoms or molecules [2-4]. Because of the small
size of the QD, the surface to volume ratio is high in a QD and

consequently, surface effects are much more important in a QD.
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Fig. 1.2 An AFM image of QD.

When a thin sheet of lower band-gap semiconductor such as GaAs is
placed between two thick layers of a wider band-gap semiconductor
such as AlGaAs , electrons are forced to move in a quasi-two
dimensional (quasi-2D) planar region and the structure thus produced is
referred to as a Quantum well [5] or we can say that, when the electrons
are allowed to move freely in two spatial dimensions and are completely
confined in the third direction in a nanostructure, then such systems are
called quantum wells. In a similar way, if in a system, the electrons have
free motion only in one direction and their motions are confined in the
other two directions, the system is known as a quantum wire. Because
of the confinement in all the spatial dimensions, the QD systems show

highly quantum effects. If the confinement lengths of QD are of the same
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order in all the three directions it is called three dimensional (3D) QD,
and, if the confinement length is much smaller in one direction
compared to that in the other two directions, the corresponding system
is called a 2D QD.

The subject of QDs has generated unwavering interest for the last forty
years or so especially for two reasons. First, because of the small length
scale, QDs are ideal objects for testing the results of quantum mechanics
[6]. Secondly, the QD systems exhibit enormously novel and important
physical features that are both fascinating and also fairly distinct as
compared to those of their bulk counter-parts. Besides, it is possible to
design QD systems in several different shapes/sizes and in both two and
three dimensions. Because of the huge flexibility in design and the very
many new and interesting properties, the QD structures are considered
highly promising for application in nano-devices like QD lasers [7],
single- or multi-molecular transistors [8], spintronics and quantum

computers.
1.3 CONFINEMENT POTENTIAL

In order to perform theoretical investigations on QD properties, it is
necessary to first prescribe the form of the confinement potential. One
simple choice would be to work with an infinite potential well. However,
initial experimental results [9, 10] in conjunction with the generalized
Kohn theorem [11, 12], indicated a parabolic nature for the confinement
potential in a QD. As a consequence, extensive theoretical research
studies on various electronic and other aspects of QDs were carried out

following straight-forward quantum mechanics with  parabolic or
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harmonic potential as the confinement potential [13-20]. A QD with a

parabolic or harmonic confinement potential is described as a parabolic

QD (PQD).

Lately, a few experimental studies have revealed that the QD
confinement potential is in reality anharmonic and it is not an infinite
well, rather it possesses a finite depth. Adamowski et al. [21] have
demonstrated that an attractive Gaussian potential serves as a much
more suitable confinement potential for a QD. The generalized Kohn
theorem is also approximately satisfied by the Gaussian potential.
Furthermore, around the dot centre, its behaviour is harmonic. The
Gaussian QD (GQD) possesses an advantage over PQD as it can
describe both excitation and ionization processes. The results of
Masumoto and Takagahara [22] suggest that the quantum confinement
in small QDs is undeniably well approximated by a Gaussian potential.
The Gaussian potential has been extensively used to probe the electronic
properties of QDs [23-35].

1.4  FABRICATION OF QUANTUM DOTS

There are several methods to fabricate QDs. Our ultimate aim is to
confine the electrons or any charge carriers in a small region. One way
to achieve this is by surrounding a metal particle with insulators [2]. We
can also confine the motion of electron within the semiconductor by
applying an electric field [2]. Another way to fabricate QD is by
sandwiching a thin sheet of a narrow band-gap semiconducting material
such as GaAs in between two thick layers of a wider band-gap
semiconductor such as [36] AlGaAs. Since, AlGaAs has similar crystal
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structure and identical lattice constant, it can be used as the sandwiching
material for making a GaAs QD. We can tune the confinement and
number of electrons by using metallic gates. Lateral confinement can
be attained by switching on an external electric field. This method was
essentially introduced by Cibert etal. [37] in 1986.
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Fig 1.3. Nanoparticle production: top-down method and bottom-up
method. (Image: Laboratory for Micro and Nanotechnology, Paul
Scherrer Institute)

Basically, there are two main ways for the production of nanomaterials.
One is called the top-down approach and the other is bottom-up method
(Fig 1.3). In the Top-down approach, nanoscale particles are produced
from the macroscale particles. This process uses the physical attributes
for the nanoparticle production. lon implantation, laser ablation,
sputtering, high-energy milling, lithography, vapor condensation, etc.
are few Top-down methods. But, in the case of a bottom-up method, one

starts from atoms or molecules to process nanoparticles. Some of the
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Bottom-up methods include Sol-gel technique, cluster consolidation,

electrical deposition, chemical vapor deposition, self-alignment etc..

One of the early methods was the chemical etching method, first
proposed by Allen et al. [38] in 1983 in a single quantum-well system
and by Reed et al. [39] in 1986 in a multiple quantum-well super-lattice.
However the name ‘Quantum dot” was first introduced by Reed. Earlier,
a quasi — 0D structure would be addressed as a quantumbox [40],
quantumbubble [41], quantumpoint [42],
semiconductor crystallite [43] etc. We can also obtain 3D quantum
confinement by using strained layer super-lattices. Here the lattice
incompatibility in the layers of a super-lattice makes the 2D layered
structure to organize into small islands and so they are called ‘self
assembled QDs’. This was first achieved by Goldstein in 1984 [44] and
further confirmed by Leonardo [45] in 1993.

1.5 PROPERTIES OF QUANTUM DOTS

Nanomaterials are being explored by the scientists in a wide range of
disciplines from materials science to nanotechnology, from condensed
matter to biology, from chemistry to drug delivery. The properties of
QDs have turned out to be highly size-dependent with a lot of fascinating

features.
1.5.1 DENSITY OF STATES FUNCTION

The Density of States (DoS) function gives the number of states per
energy interval and determines the distribution of carrier density in a
physical system. The DoS is defined as:; g(E) = dN/dE, where dN =
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g(E)dE is the number of electrons with an energy E lying within a
narrow range of energy dE. The DoS of QD is a delta function. The
DoS of different quantum strusctures are shown in the Fig. 1.4. The
figure shows that DoS behaves as E/2 in the bulk system (3D) and as a
Heaviside function for 2D systems. In 1D systems, it is proportional to
E~1/2 and for the OD materials or QDs, it is given by the Dirac delta
function. The formation of discrete energy levels is one of the main
properties of the low dimensional systems. If the confinement potential
is taken as an infinitely deep potential well, the energy levels are of the
form of E,, = A?m?n?/2m*L?, where m* is the Bloch mass of the
particle and L is the effective length scale the QD well. Fig 1.5 presents
the energy levels of a realistic quantum structure.

¥ ¥
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Fig. 1.4 Density of states versus energy profile in semiconducting
materials.
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Fig. 1.5 Energy levels in a realistic quantum structure: quantum wells.

At low temperature, a significant contribution to electronic specific heat
comes from the conduction electrons which are in the vicinity of the
Fermi level. On the other hand, the number of electrons around a certain
level is a function of the electronic DoS at that level. Since the electronic
DoS at the Fermi level varies with the dimensionality of the system, the
electronic specific heat of QD is naturally strongly dependent on the
system’s dimensionality. Also, the component of the susceptibility
emerging from the conduction electrons, called the Pauli susceptibility
is directly proportional to the DoS and thus depends on the

dimensionality of the system.
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1.5.2 OPTICAL PROPERTIES

Besides the nature of the material used for the construction of a QD
structure, the most important factor that affects the optical properties of
a QD system is the QD size. Since the energy level spacing depends on
the QD size (L), the color emitted or absorbed by a QD crystal
undergoes a blue-shift as the size of the QD decreases. This is the
quantum size effect. The band gap of a QD is found to be proportional

to L™, where n is between 1 and 2.

Size of Quantum Dots
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Fig. 1.6 The band gap energy and the size of a QD are approximately
inversely proportional to each other. So, the smaller dots produce lights

10
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in high frequency region while larger dots produce in the lower
frequency region.

1.6 APPLICATIONS OF QUANTUM DOTS

Research on QDs has generated interest in different fields of study.
Since the nanoparticles of metals or semiconductors of size 2-6 nm have
dimensional similarities with some of the biological macromolecules
such as nucleic acid, proteins etc. [46], the subject of QDs has also
captured the imagination of biologists. Due to quantum confinement
effect, QDs show good optical and electronic properties and so they have
more advantages than the currently available flourophores like organic
dyes and fluorescent proteins [47]. Since the QDs have thin emission
spectral band and large absorption band, they are more useful for the
multiplexed imaging in some biological studies. Photostability is an
important parameter in major fluorescence applications. Since QDs are
more stable and can have multiple excitation and fluorescence for a long
time with high degree of luminosity, they are also more advantageous in
this area. QDs are also used in gene technology. Some of the studies
show that QD-conjugated oligonucleotide sequences may get bonded
with DNA or mRNA [48]. Studies have also shown that red, green and
blue QDs can be used in different combinations to label and identify
target sequences of DNA [50]. QDs are also useful in fluorescent
labeling of cellular proteins [51]. They can also have application in cell
tracking and animal imaging. They are used in tumour detection and

targeted drug delivery also.

11
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QDs have potential applications in gquantum information processing.
They have paved the way for supercomputers called quantum
computers. They can store information as qubits which are the
elementary units of the quantum information processes and can be

created using the two spin states of the electron.

Fig. 1.7 Some of the displays in future. (a) Glasses; (b) Watch with
built-in biosensors; (c) Fabric; (d) Ultrathin electronic tattoo; (e)
Flexible display; (f) Transparent windows [52].

Light absorption and exposure of the photon-sensitive material to light
are the two main factors that govern the efficiency of a Solar cell.
Employing QD-adsorbed materials, one can achieve light absorption to
a very high degree. Using the advantage of tunability of the band gap of
QDs, absorption of various wavelengths of the visible spectrum of light
can be achieved. The incorporation of nanomaterials improves

photoenergy absorption as the surface to volume ratio increases as we

12
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go to lower dimensions. Most of the solar energy received by the earth
is mainly in the IR and near IR region. One important advantage with a
QD solar cell is that it can work in the IR region, which is not the case
with the conventional solar cells. The QD solar cells are less expensive
to fabricate than conventional solar cells and have better efficiencies.

So, QD solar cells are a highly desirable alternative.

Recently, Quantum Dot Light Emitting Diode (QLED) is being used in
display technology. Because of the outstanding color purity, high
brightness, low operation voltage and easy processability, QLED
displays are getting much attention in the scientific world. The inorganic
QDs enable increased life of the system because of the high thermal and
air stability they have. Furthermore, recent developments in patterning
techniques have enabled the accomplishment of ultrahigh-resolution
QLED array in full colour range. Conventional display processing

technologies could not implement these techniques [52].
1.7 REVIEW OF LITERATURE ON QUANTUM DOTS

In the last four decades, research investigations using both theory and
experiment have been conducted quite extensively on low-dimensional
systems in general and quantum dots in particular. These studies have
uncovered quite a few interesting physical properties of matter at the

fundamental level.
1.7.1 EXPERIMENTAL BACKGROUND

In the last four decades, a vast number of experimental investigations

have gone into studying the physical behavior of the confined charge

13
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carriers in zero dimension. Ashoori et al. [53] have explained a
spectroscopic tool for the study of discrete quantum energy levels in a
quantum dot. A few-electron QD energy spectrum was studied by
Meurer et al. using far infrared spectroscopy on GaAs QD [54]. Su et al.
have considered a few-electron QD created in a laterally confined
double-barrier heterostructure and investigated resonant tunneling
through it [55]. They have found that if the electron number in QD is
larger than or equal to 3, then the energy needed to add another electron
to QD is independent of the number of electrons present in QD. Norris
et al. have studied the excited states of QD using luminescence
excitation spectroscopy [56]. Medeiros-Ribeiro et al. have made a
capaciatance spectroscopic study of InAs self-assembled QD grown on
GaAs [58]. They have shown the effect of inter- and intra-dot Coulomb
interactions on the capacitance spectra. Some researchers have observed

the charge fluctuations in QD using semiconductor electrometer [59].

Kulakovskii et al. [61] have used magneto-photoluminescence to
investigate the influence of QD asymmetry and electron-hole exchange
interaction on the emission properties of a confined biexciton in single
3D CdSe/znSe QD. The role a magnetic field plays on the
recombination spectrum of strongly correlated electrons and holes in a
self-assembled InGaAs/GaAs QD has been demonstrated by Raymond
et al. [62]. The effect of magnetic field on the Zeeman splitting and the
diamagnetic shift in the magneto-luminescence lines have been studied
by Rinaldi et al. [63]. They have used In,Ga,_,As with parabolic
confinement in their studies. A third harmonic generation associated

with the intraband transition in a self-assembled InAs /GaAs QDs has

14
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been observed by Sauvage et al. [64]. Lee et al. have reported a
reflection high-energy electron diffraction study of InAs self-organized
QDs grown on GaAs (001). Dekel et al. [66] have carried out a
spectroscopical study on a single self-assembled QD and have given a
successful explanation for its power-dependent PL spectra. An
experimental study of multimode spectral emission in a QD laser has
been studied by Patane et al. [67]. They have investigated the
electroluminescence spectra of edge-emitting lasers with active medium
being self-assembled quantum dots. Zhao et al. [68] have reported a
work on single-emitter that studies the emission characteristics of
graphene QDs. They have shown that these QDs are stable and efficient
emitters of single photons at room temperature. Also the emission
wavelength of these emitters is adjustable via the functionalization of

their edges.
1.7.2 THEORETICAL BACKGROUND

Several theoretical works have been carried out in the field of QDs in
the last four decades. A variational study of an electron-hole system in
a finite barrier QD using effective mass theory was first reported by
Efros and Efros [69] and then by Brus [70]. Marzin and Bastard [71]
have performed an effective mass calculation for the energy levels in
InAs QD embedded in GaAs. Yip [72] has studied the absorption lines
for a system of electrons in a PQD placed in a magnetic field. The
calculation for nonlinear optical rectification of the electric field- biased
parabolic QDs have been done by Gu and Guo [73]. They have shown
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that that the rectification becomes more pronounced as we reduce the

dimensionality of QD.

Using the Chandrasheskhar-type wave function, variational solutions of
the ground state (GS) of negative donor centres in QDs have been
obatined by Zhu et al. [74]. They have also found the exact solutions of
the GS of neutral donor centres in different QDs. It has been shown that
the electron correlation effects depend strongly on the QD
dimensionality and weakly on the QD geometry. Bryant [75] has
considered a system of two electrons in an infinite rectangular well.
They could see that the ratio [, /1, where [, and [,, are the dimensions
of the box, has a strong effect on the energy spectrum. A many body
calculation has been carried out for a realistic QD geometry using the
Hatree approximation by Kumar et al. [76]. Later, Pfannkuche et al. [77]
have compared the results for the QD electron system obtained by using
the Hatree and the Harttree-Fock approximations. They have pointed out
that the results obtained by the Hartree mehod are inaccurate and those
obtained by the Hatree-Fock method cannot be trusted either,
particularly for small number of electrons, for they do not include the
correlation effect. Johnson and Payne [78] have made a breakthrough in
the field of theoretical studies by considering a model problem which is
simple enough to admit an exact solution but contains the essential
features of the actual problem. In this model problem, they have
considered a PQD with many spinless electrons interacting through a
repulsive parabolic interaction in a magnetic field. They have obtained

the exact solution for the electronic energy levels in terms of the number
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of electrons and the strength of the applied magnetic field. Taut [79] has
considered a 2D PQD with two electrons interacting through Coulomb
interaction and obtained an exact analytical solution for certain magnetic
field strengths. The impact of electron-electron interaction on
compressibility, capacitance and inverse compressibility of electrons in
a QD has been studied by Berkovits and Altshuller [80] using the
random phase approximation. The existence of the GS persistent current
in coherent 2D QD arrays in an external magnetic field has been
predicted by Kotlyar and Das Sarma [81]. Brouwer and Aleiner [82]
have studied the electron-electron interaction effect on the conductance
of open QDs. The size dependence of impurity levels in QD has been
studied by Bellesa and Combescot [83]. Ferreyra and Proetto [84] have
studied the properties of an exciton in an inhomogeneous QD in the
strong confinement regime. Andreev and Lipvoskii [85] have
experimentally and theoretically investigated the optical spectra of
spherical PbSe and PbS QDs.

1.8 EXCITONS IN QUANTUM DOTS

Quantum confinement of charge carriers in semiconductor QDs makes
them the objects of intense studies as they lead to numerous effects of
fundamental character. A semiconductor QD can have several
excitations. “Exciton” is one of them. A valence-band electron, after
acquiring some external energy, can get energized to be elevated to the
conduction band in a semiconductor. In this process a hole is created in
the valence band. The conduction band electron can however still

interact with the hole left behind by it in the valence band and constitute
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a bound pair. This bound state of the electron and the hole is known as
an Exciton. By illuminating a semiconductor with light, one can
accomplish the creation of an exciton. It goes without saying that
excitonic processes would have a crucial effect on several optical
properties of QD. Quantum confinement can strongly alter these
properties. The explanation for this is simple. It is easy to show that
confinement increases a particle’s energy. In the case of an exciton, there
is another effect. This is the Coulomb interaction between the electron
and the hole. The confinement would decrease the exciton size and
would consequently increase the attractive interaction or reduce the
energy. Thus there are two contrasting effects whose interplay may lead
to some interesting excitonic phenomena. Also, with increasing
confinement, the electron and hole would come close to each other
increasing the possibility of radiative recombination. Thus there are
several excitonic processes that are crucially dependent on confinement
and other QD parameters. It is therefore important to study the effects
of all these processes and examine how they can be tuned by controlling

different parameters of QD in order to obtain desired optical properties.

The studies on excitons have started long ago. Last few decades have
witnessed a number of exciting investigations on an exciton confined in
a low-dimensional system. Henry and Nassau [86] could calculate the
lifetime of a weakly-bound exciton in CdS which has a giant oscillator
strength that leads to extremely fast radiative lifetime. They have found

that 7, = 1.03 £ 0.1 nsec and 7, = 0.5 + 0.1 nsec, where I, refers to

an exciton bound to a neutral acceptor and I, that to a neutral donor. The
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binding energy (BE) of an exciton in a quantum well has been calculated
by Bastard et al. [87]. They have determined the GS BE for a GaAs-
GaAlAs quantum well using variational approach and have found that,
as we increase the thickness of the quantum well, GS BE decreases
monotonically. Degani and Hipolito [88] have also used a variational
calculation to get the exciton BE in a GaAs quantum wire (surrounded
by Ga,_,Al,As). They have found that the energy has a strong size-
dependence and also the magnitude is greater than that in a
corresponding quasi-two dimensional quantum well structure. The
effect on an exciton trapped in a quantum box has been studied by
Bryant [89]. He has employed a variational calculation to study the GS
energy and the optical properties. Confinement has been shown to
enhance the exciton Kkinetic energy, the Coulomb energies and the
oscillator strength and to reduce the electron-hole separation. Both the
theoretical and experimental confirmation for the states of the biexciton
in a semiconductor QD has been first provided by Hu [90]. He could see
that as we reduce the QD size there is an increase in the biexciton BE.
Einevoll [91] has studied theoretically the confinement of exciton in
small €dS and ZnS QDs . Using a combined effective bond-orbital
model (EBOM) and effective-mass approach, he could calculate the
energies of a single-hole in ZnS crystallites and the exciton energies in
CdS and ZnS crystallites. EBOM and the effective mass approximation
are expected to overestimate the confinement energies whereas the tight-
binding approximation is likely to underestimate them. The effect of
confinement on an exciton in QDs of indirect band-gap materials has

been studied by Takagahara and Takeda [92]. They have proposed a
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mechanism for the conversion of the band-gap character. With the help
of two - photon absorption and magneto-luminescence experiments,
Rinaldi et al. [93] have determined the exciton Bohr radius and BE of
an exciton in a V-shaped GaAs quantum wire. Lamouche and Lepine
[94] have used a two-band variational method for the study of the GS of
an exciton in a 2D QD superlattice which has been grown on a terraced
substrate. Heller et al. [95] have investigated the role of an electric field
on the excitons in QDs. With the help of micro-photoluminescence
spectroscopy, they could uncover the role of an electric field on excitons
that are confined by monolayer width fluctuations in narrow QWs. They
have been able to observe a redshift of GS and several excited states
(ESs) by switching on an electric field. It has been noticed that this stark
shift decreases with increasing number of exitons in QD due to the
screening of the electric filed. Oshiro et al. [96] have considered a
spherical QD and employed a variational approach to find the size-
dependence of a few polaronic properties. Song and Ulloa [97] have
investigated the role of magnetic field and confinement on an exciton in
a quantum ring and obtained the energy by numerically diagonalizing
the relevant effective-mass Hamiltonian. Using the density matrix
method, Karabulut et al. [98] have explored the part excitons play in
influencing the nonlinear optical features of semi-parabolic QDs.
Sakiroglu et al. [99] have considered a parabolic confinement potential
and used the Ritz variational method with a Hylleraas-like trial wave
function to examine the role of confinement on the exciton GS energy
in a spherical and in a disc-like QD. Florez and Camacho [100] have
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studied the role of excitons on second-order nonlinear optical features

of QDs with semi-pherical geometry.

Effects of excitonic processes have been observed in experiments on
photoluminescence [101]. It has also been realized that excitonic
processes have a major part to play in semiconductor-QD-based
optoelectronic devices [92,102-106].

Guo and Yu [107] have explored the excitonic effect on the third
harmonic generation in Si/Si 0, PQD. They have demonstrated that
incorporation of the excitonic effect increases the third harmonic
generation by about a factor of 2. Using an exact diagonalization
method, Yuan et al. [108] have examined the effect of excitons on the
optical absorptions in PQD. Their results show that quantum
confinement significantly enhances the optical absorption coefficients

and the excitonic effects increase it by about hundred percent.

1.9 ELECTRON - PHONON INTERACTION (POLARON)
EFFECTS IN QUANTUMDOTS.

The idea of Polaron was first predicted by Landau [109] more than 80
years ago. He suggested that an electronic charge carrier moving slowly
through an ionic medium can shift the equilibrium position of the ions
as shown in the Fig. 1.8. The term Polaron was coined by Pekar [110].
Shift in the equilibrium positions of the ions can lead to the formation
of a potential well for the charge carrier. If the potential well is
sufficiently deep, the electron gets trapped inside the potential well. This
phenomenon is known as self-trapping, as the potential trapping the
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electron has been created by the electron itself. The self-trapped charge
carrier together with the lattice distortions is defined as the strong
polaron [111].

Fig. 1.8 Polarons (Image from Google)
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The quantum mechanical description of the polaron was given by
Frohlich. In this description, an extra electron in a polar solid would
distort the lattice around it. The electron together with the lattice
distortion forms a quasi-particle called the polaron which can also be
viewed as an electron dressed with virtual longitudinal optical (LO)
phonons. This is precisely the effect of electron-phonon (e-p)
interaction. When the distortion of the lattice ranges over a few lattice
units, we have a large polaron. A large polaron possesses small velocity
and can thus move inside the solid medium essentially as a free electron
with a renormalized mass which is higher than the Bloch mass. If the
lattice deformation is confined within one lattice unit, the resulting
polaron is known as a small polaron. The motion of such a polaron is
generally described as taking place through a succession of occasional
phonon-assisted jumps between adjacent sites.

Two electrons experience a repulsive force from each other because of
the coulomb interaction. But when they are in a phonon bath, there will
be an additional phonon-mediated attractive interaction. If this attractive
force happens to be stronger than the Coulomb repulsion, then the two
electrons can form a bound pair called bipolaron [112]. Thus, a

bipolaron consists of two electrons together with a phonon cloud.

During the last three decades, many investigations have been made to
examine the effect of polaronic interaction on the electronic properties
of low-dimensional systems like QDs. Scmit-Rink, Miller and Chemla
[114] have studied theoretically the optical properties of InSb and GaAs
QDs. They have observed that if the QD size is much smaller than the

23



Introduction

bulk exciton size, the spectrum is linear with a sequence of lines and
they have studied the phonon broadening of these lines. Bockelmann
and Bastard [115] have investigated both theoretically and
experimentally the optical phonon broadening in QDs and have shown
that the strength of electron-phonon (e-p) coupling for polar
semiconductors is independent of the size. The static and dynamic
electronic properties of nanometer-size CdSe clusters have been studied
by Bawendi et al. [117] using optical experiments. They have also been
able to obtain the value of the strength of the e-p interaction.

The polaronic properties in a 2D QD with harmonic potential have been
studied by Zhu and Gu [118] by means of the second-order Rayleigh-
Schradinger perturbation theory (RSPT). They have observed that the
corrections in the GS and ES energies and the transition energies
increase with decreasing QD size. In a subsequent paper [119], they have
concluded that the phonon-confinement effect on polaron self-energy is
significantly large in small QDs. They have also examined the role of
polaronic interaction on the electron cyclotron mass in a GaAs PQD
using RSPT [120]. They have established that if the cyclotron frequency
w. is much larger than phonon frequency, the cyclotron mass splits into
two cyclotron masses (m3 and mZ ), mi (m*) being smaller (greater)
than the Bloch mass. By increasing the size of the QD, m3 can be
enhanced and made to approach the 2D value while m* may have a
significant value in small QDs. The cyclotron resonance of a bound
magnetoplaron in a 3D QD with strong parabolic confinement has been

studied by Yeung et al. [121]. They have shown that there exists a
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pinning effect in the presence of Coulomb impurity and the parabolic
potential. Chen et al. [122] have analyzed the impurity levels in a QD
and calculated the impurity BE in the presence and absence of e-p
interaction using second-order perturbation theory. Their investigation
reveals that BE depends crucially on the effective confinement length of

the QD, if it is reduced to the same length scale as the polaron size.

Mukhopadhyay and Chatterjee have obtained a closed-form analytical
result for the GS polaron self-energy in a polar semiconductor QD in
both 2D and 3D using RSPT. They have been able to provide a
dimensional scaling relation for the polaron GS energy [123]. They
have also studied the Zeeman effect for the first excited energy levels of
a 2D PQD of GaAs perturbatively in the presence of polaronic
interaction [124]. Polaronic effects have been investigated by Yanar et
al. [125] in a symmetric N-dimensional (ND) Gaussian QD using RSPT,
a modified Lee-Low-Pines method, and the path-integral formalism
due to Haken. They have provided numerical results for the polaronic

corrections to the energy for N =2 and N = 3.

Ribeiro et al. [126] have explored the polaron dynamics in armchair
graphene nanoribbons (GNRs) in an electric field. They have noticed
that polaron transport is dependent on the appropriate balance between
the e-p coupling strength and the GNR width. They have also examined
the role of spin-orbit coupling on the polaron properties in GNR [127].

1.10 ORGANIZATION OF THE THESIS

25



Introduction

In CHAPTER 2, we have considered the exciton problem in 2D and 3D
Gaussian QDs (GQDs) of GaAs placed in a magnetic field by means of
(a) the Rayleigh-Ritz variational approach, (b) the 1/N expansion
technique and (c) the shifted 1/N expansion scheme. We have obtained
the GS energy and BE of the exciton in terms of the (i) QD size, (ii)
strength of the confinement potential and (iii) the applied magnetic field
and made a comparison of our results with the available reported results.

The Rayleigh-Ritz variational approach provides a higher limit to the
GS energy while the % —expansion technique provides a lower bound.

It is shown that the results obtained by shifted 1/N expansion technique
match remarkably well with the exact numerical results. We have
studied the behaviour of the size of the exciton and its oscillator strength
with respect to QD size. Use of the shifted 1/N expansion technique has
also enabled us to compute the excited states. We have shown that by
controlling QD parameters we can realize the desired number of bound
excitonic states in GQD. This can pave the way for realizing excitonic

lasers using semiconductor QDs.

In CHAPTER 3, we have analyzed the impact of temperature on
polaron effects in GQD by means of Lee-Low-Pines-Huybrechts
(LLPH) unitary transformation, the Rayleigh-Ritz variational method
and statistical mechanics. Our calculations reveal that the electron GS
energy should increase with increase in temperature while the polaron
self-energy should reduce. We have also analyzed how the confinement
strength affects the polaron GS energy and BE. It has been shown that
the GS energy is higher for a 3D QD as compared to a 2D QD. Finally,
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the polaronic effects have been shown to increase as the dimensionality
of GQD is reduced.

In CHAPTER 4, we have studied the role of the nature of confinement
on different aspects of a GaAs QD considering a power-exponential
potential model. This potential contains a steepness parameter p which
determines the shape of the QD potential. A small value of p gives a soft
potential while a large p leads to a hard potential. We have determined
the average thermodynamic energy, magnetic susceptibility, specific
heat, and persistent current. It has been observed that for a soft potential,
the average thermodynamic energy has a strong dependence on p, while
in the case of hard confinement, it hardly depends on p. We have
observed that at low temperature, for the chosen magnetic field strength,
the potential profile has no bearing on the heat capacity. It has also been
observed that there can be a magnetic field-driven paramagnetic-
diamagnetic transition in the system. It has been further observed that
beyond a certain critical value of the magnetic field, the system exhibits
a diamagnetic behaviour for a shallow potential and then the shape of
the potential becomes unimportant. We have also found that if the
magnetic field belongs to a certain range and p lies in a certain window,
a diamagnetic phase can show a re-entrant behaviour. Finally, we have
demonstrated that the nature of the persistent current in the QD
considered here is diamagnetic and its magnitude shows an increasing
behaviour with increasing potential depth. However it does not show

any dependence on the steepness parameter p.
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Finally, in CHAPTER 5, we have summarized the important results of

this thesis and presented our conclusions.
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Effects of Magnetic field on the
Exciton Energy levels of a GaAs
Quantum Dot: Applications to
Excitonic Lasers

Abstract

We have studied the energetics of an exciton confined in two and three-
dimensional Gaussian GaAs quantum dots in a magnetic field employing
a variational approach, the 1/N expansion technique and the shifted
1/N expansion scheme. We have calculated the ground state energy of
the exciton and its binding energy in terms of the effective confinement
length, the strength of confinement and the magnetic field strength and
made a comparison of our results with the ones that have been reported.
The Ritz variational approach leads to an upper limit to the energy while
the 1/N expansion technique is known to yield a lower bound. We have
demonstrated that the energies calculated employing the shifted 1/N
expansion scheme match remarkably well with the exact results obtained
numerically. The behaviour of the size of the exciton as well as its
oscillator strength has also been investigated with respect to the effective
confinement length of the quantum dot. Finally, the energies of the
exciton excited states have been calculated with the help of the shifted
1/N expansion technique and it has been predicted that by controlling
the parameters of the quantum dot one can generate a desired number
of bound excitonic states in a quantum dot. This observation is important
in view of achieving excitonic lasers using quantum dots.




Chapter 2

2.1 INTRODUCTION

Excitons are one kind of excitations in QDs that are fundamentally
important in determining several key optical properties of
semiconductors [1-3]. Besides depending on the electrostatic interaction
between the electron and the hole, the exciton energy spectra depend
crucially on the confinement potential of the quantum dot (QD) [4-7].
During the last two decades, there have been several studies in the field
of excitonic physics in the context of QDs. Einevoll has considered
small CdS and ZnS QDs and studied the exciton problem in these
systems theoretically [8]. He has calculated and compared the exciton
energies for dots having diameter in the range of 10-80 A. Que has
studied the excitonic properties in a parabolic QD (PQD) [9]. Jaziri et
al. [10] have examined the role of electric and magnetic fields on
excitons in PQD using a combination of the perturbation and variational
theories. Xiao [11] has considered a spherical GaAs QD in a magnetic
field and determined the exciton binding energy (BE) in this system with
the help of a variational technique. The exciton binding energies in finite
potential quantum discs of GaAs have been calculated by Safwan et al.
[12].

As mentioned earlier, QD with Gaussian confinement will be called a
Gaussian QD (GQD). Though much attention has been directed to the
study of exciton ground-state (GS) problem in GQD, only a very few
studies are available on the exciton excited states [13, 14]. Undoubtedly,
the role of the excited states of an exciton is very crucial from in the

context of infrared and two-photon spectroscopic studies [15]. Xie [16]
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has determined the GS and excited state (ES) excitonic energies in GQD

using the method of matrix diagonalization.

A magnetic field is known to produce an added localizing potential
which may be utilized to control the electron’s motion in a more
regulated way. Gu and Liang [14] have examined the role of a magnetic
field on the exciton energy levels in GQD employing the technique of
matrix diagonalization. As the exciton problem in GQD is not exactly
soluble, an exact numerical diagonalization certainly serves a useful
purpose. But, quite a few times, the numerical solutions may not offer
some of the most intriguing and important aspects of the physical system
under consideration. Also, the wave function chosen in course of matrix
diagonalization procedure hardly offers any understanding or insight
about the physics of the system unlike in the case of analytical methods.
It is therefore only appropriate to devise approximate analytical methods
that would incorporate all the salient aspects of the system and provide

results that would agree well with the numerical data.

In this chapter we present our calculation of the GS exciton energy and
the corresponding BE in a spherically symmetric GQD placed in a
magnetic field. We show how the GS energy and BE of the exciton vary
with the QD size, magnetic field strength and the potential depth with

the help of the conventional variational approach, the % - expansion

technique and the shifted % - expansion scheme. We also study how the

exciton size and oscillator depend on QD size. Finally, we calculate the

ES excitonic energies for some sets of parameter values.
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2.2 MODEL

An exciton in GQD in a magnetic field B (0, 0, B) may be described by

the Hamiltonian

2 2
e
H = E A — Ve /2R~ (21
[Zml p‘+ ) 0¢ glr, — 1y (2.1)

where i = e (h) denotes an electron (a hole), q. (qp) denotes the
electron (hole) charge, r; =1, (r,) refers to the electron (hole)
coordinates and p; = p. (py ) the corresponding momentum operator,
m; = my (my,) stands for the band mass of the electron (hole), A; =
A.(A;) describes the vector potential for the electron (hole)
corresponding to B, R and V, give the range and depth of GQD

respectively and & represents the permittivity of the QD material.

Writing the A = (—i—y,BZ—x, 0) (symmetric gauge), we have, for the
Hamiltonian,
2 1
H—Z —Ve"r/2R+8mw 12
i=e,h
2
+ 5 (Wcelze — wenlzn) — o=l (2.2)

The spin of the charge carriers is not considered here. w, represents the
cyclotron frequency and L is the orbital angular momentum of the

electron (hole) in the z direction.
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2.3 FORMULATION

Now let us rewrite the Hamiltonian by adding and subtracting the terms

Zi=e,h%miw§ri2 + Vj;. The total Hamiltonian H is then writtenas: H =

Hy + H, , with
h? 1, 1
Hy = Z l_ Vi o wfrfl Vo +3 (@celse = wenlse)
i=eh t
e’ 2.3
glrg—ry I (23)
1 _r
Hl = -1 Z [Em?a)izoriz + VO <e 2R% — 1)] (24)
i=eh
where
2
~2 wCl 2 VO
2 _ <. 2 = 2.5
w; (l)lo + 4 Wi m;fRZ ( )

For parabolic confinement, A is equal to zero and in the case of
Gaussian confinement, A is equal to 1. For GS, the angular momentum
terms can be ignored. Furthermore, we make an assumption that H,

essentially renormalizes the frequency &;. Thus we replace H; by

2 V(e—rl/2R>
N T as LR
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hZ
*
Zmi

where the averaging state is GS of the Hamiltonian: [— v +

%m;-*a)izriz] [11]. Thus the wave functions we have used to find the

expectation values are:

For a three-dimensional (3D) QD,

~  3/4
bo = (—T?T(;;l> e~mairt/2h (2.7)
and a for two-dimensional (2D) QD,
~  1/2
b= () eI (2.8)
Since for three dimensions,
() = () = 5 () 29)
e I VR IT O \ma '
and
3/
(e_T92/2R2> — (e—rh2/2R2> — m53/2 2—1?2 ’ (2_10)
2moR?2 + h
and for two dimensions,
h
(r.2) = () = g (2.11)
and
2maR?
—1e2/2R?\ _ (,—Th?/2R?\ _ 212
(e )= )= omarz+ R’ P12
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we can write @2 + 2(1/miw? = &% + 2(1/m})wi: = w?. Now our
problem with Gaussian potential reduces to a problem having an

effective parabolic potential and the Hamiltonian becomes

2 2 1
Pe —+—miw?r? + Ph_y —m;,w?ré — 2V,

H= S —
2m; 2 2my 2 glr, — 1yl

(2.13)

Now we introduce two new coordinates r and R to solve this problem.
We define: r = (r, —ry) and R = (mgr, + myry)/M, where M =
m, + my,. Using the corresponding momenta: p = —ihV, and P =
—ihVyg, the electron and hole momenta p, and p,, are then written as:
Pe=p+ (mi/M)P; p,=—p+ (m;/M)P. The Hamiltonian H

now reads
H = Hy +H, (2.14)
with
1 2 1
H.=-V?+-w?r?——= =-2V,, Hy=—-Vi+-w?R?, (2.15)
4 r 4
where for a 3D QD,
341/2
“la-n w3 N w? N 204V, 20AV, [ ®R? \2 216
@= 2 '8 3 3 \1+®R? , (2.16)

and fora 2D QD,
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1
- ;1)“’5+w02+2/w( ® )E 2.17
w= 2 '8 °\1 + ®R? (2.17)

Here all the energies are measured in Rydberg units R;, = (ue*/2h%e?)
and the lengths in Bohr radius aj = (h?c/ue?), u(=[mim;]/M)

being the reduced mass of the electron-hole system.
2.4 VARIATIONAL METHOD
2.4.1 THE EXCITON GROUND STATE ENERGY

To calculate the energies of an exciton in QD, we have used the Ritz
variational method. If w(r,,1}) is the eigenfunction of H, then we can

write:

w(re,rn) = ¢(M)x(R) (2.18)

where ¢ (1) and y(R) are the eigenfunctions of H, and H; with the

eigenvalues E, and Ey respectively. The variational energy is given by,

_WIHY)

E==0m) (2.19)

Since we have: H = Hy + H, , the exciton energy E is given by:

WIHRlY)  WIH:|P)

E=brt b=y T )

(2.20)
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The eigen values of the Hy is well known (Harmonic oscillator).
Therefore, the GS energy for the centre of mass (CM) motion is Ex (=
3w/2) in 3D. In general, it is not possible to do the exact analytical
evaluation of E, and hence we employ the conventional variational

approach with the trial wave function:
b(r)~e~a Fr (2.21)
where a and g are variational parameters.
2.4.2 THE EXCITON BINDING ENERGY.
The exciton BE, E}, is defined as:

E, = (E, + E, — E) (2.22)

where E, (E;) denotes the electron (hole) GS energy in the QD.
2.4.3 THE SIZE OF EXCITON.
The size of the exciton is given by:

(r) = (w|r|w) (2.23)

2.44 THE OSCILLATOR STRENGTH.

Another important quantity we are interested in is the exciton oscillator
strength. We can derive the f — sum rule for a multi-electron system as
[17]

48



Chapter 2

Z fst = Ne (2.24)

where the summation is to be performed over all states, N, denotes the

electron number and

2|(s| 2Py, 1))
S my(Es — Ey)

(2.25)

is the oscillator strength, m; being the Bloch electron mass and i
running from 1 to N,. The GS exciton oscillator strength is calculated

as,

_ 2|(ex| 3Py, 0)]°
e m(Eex - EO)

(2.26)

We can re-write this expression for the exciton oscillator strength [18]

in the envelop-function approximation as,

2

2P?
fex = , (2.27)

B mO(Eex - EO)

f w(r,, rp)dr,

where P describes the intracell matrix-element effects, m,, is the bare
electron mass, and E,, — E, = E + E,, with E; as the optical band gap.

Making use of Eq. (2.18), we can write
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‘p(re're) = X(re)(l)(o) (228)
so that Eq. (2.27) becomes

2

fox = —e—— [G(O)2
ex mO(Eex - EO)

2
(2.29)

f x(re)dr,

2.5 %— EXPANSION TECHNIQUE

The %—expansion technique, where N is the dimensionality of the
system, is a powerful approach to obtain the energies of rotationally
invariant systems in quantum mechanics [19-22]. The % —expansion

technique hinges on expanding the wave function and energy in powers
of the parameter 1/k = 1/(N + 21) , where [ is the angular momentum

quantum number. Since it is a non-perturbative method, it is suitable for
. : - 1 : .
all values of the interaction coefficients. The  —expansion technique

often suffers from slow convergence problem. This particularly happens

for higher energy levels. To circumvent this problem, Sukhatme and

Imbo [20] have suggested a modified % —expansion scheme which is

. 1 . : .
known as the shifted - & —expansion method. In this modified method,
an additional parameter ‘a’ is introduced in the expansion parameter.

The new expansion parameter is written as: 1/k = 1/(N + 21 — a).

In N-dimensional (ND) space, the Schradinger equation for the radial

part R(r) is given by,
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R (4 N-1d) HN=2) o oo
2u\dr? r dr 212 r B (2:30)

where V(r) is a spherically symmetric potential. Making the
substitution: R(r) = r~™~=D/2y(r) in Eq. (2.30), we get

A% d?u <(k —1)(k-3)

- — 2y =E 2.31
20 dr? B2 +k V(r))u u (2.31)

which is an effective 1D equation and where k = (N + 20) and V(r) =

V(r)/k?. For % —expansion, one starts from Eq. (2.31). In the shifted

1 . . . .
 —expansion, one brings in an extra parameter ‘a’ and the expansion

parameter becomes: 1/k =1/(N + 2l —a). On using this new
parameter, Eq. (2.31) reads

_ d2u+ [k—(1-a)][k-CB-a)]

o arZ + k?V(r) |u=Eu (2.32)

where V(1) = V(r)/k? and we have chosen to work in units in which
h=2u=1.Inthe limit: N - o0, k — oo, and in this limit, leading

term in E can be written as:

Ew =k2(1/41¢ + V(r0)) = k* Vs (1) (2.33)
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where at r = 7, the effective potential V, s (r) has the minimum. We
now define: x = —k/2(1 —r/r,) and perform a Taylor-series

expansion of (2.33) around x = 0. This gives

d? 0?
(— TxZ + Tx + & + V(x))u(x) = u(x), (2.34)
where
1oV (o) Yz
0= <3 e ) , (2.35)
k 2-a) (1-a)(3-a) .
0= 4 2 + 4k +102kV (1), (2.36)
A= Ero (2.37)
== _
and
. 1
V(x) = kl/z (Slx + E3X ) + = (Szx + EyX )
1
k3/2 (61x + 83x3 + 85x°
+ ﬁ (6,x% + 8,x* + 6gx®) + ) (2.38)
with
g=02-a) (2.39)
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3(2 -
I C D) (2.40)
2
rOSV”’(rO)
&3 = I—l + W] (241)
5 6y71111(ry) 1,2
&4 = [Z+ oV [24k ] (2.42)
1-a)(3—
5, = a)z( ) (2.43)
3(1—-a)(3—
P Sl Cll) (2.44)
4
8 =2(2—a), (2.45)
5(2—a
5= 2229 (2.46)
2
3 rgvnnl(ro)
0 =— =+——F—, 2.47
> 2 120k? (247)
7 T(?V”””(r(’)
g ==+ ——— 2.48
T4 720k? (248)

Incorporating the effect of V7 (x) in (2.34) to fourth-order in perturbation

theory, we get

A =20 420 428 + 20 + 28 + (2.49)
10 _ 1
n =& + n+E.(2 (2.50)
© _ 1
AP =g+ (n + E) (2.51)
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P = gl + 208 +3(1 + 2n + 205,
+ gz[(l +2n)8, + 3(1 + 2n + 2n?)4,
+ 5(3+8n + 6n? + 4n3)5] (2:52)

NP = =282 +6(1 + 2n)é, 8 + (11 + 30n + 30n2)&F] —

2
% [(1+2n)&2 + 12(1 + 2n + 2n?)&é, + 2(21 + 59n + 51n? +

34n3)&7 + 28,6, | + 0(g®) (2.53)

20
g2
= o5 (4878 + 36(1 + 2n)& 58, + 24(1 + 2n)é}s,

+ 8(11 + 30n + 30n?)&,8% + 8(31 + 78n + 78n?)&,&&,

+12(57 + 189n + 225n? + 150n3)&24,]

+ 0(g3) (2.54)
9% s

4 =~ 58818 +108(1 + 2n)} 43

+48(11 + 30n + 30n2)& &
+30(31 + 109n + 141n? + 94n3)&%]
+0(g®) (2.55)

where g =1/k , & = &/@uR/h)//?, § = &/(2uR/h)//2. In the
conventional %— expansion approach, ‘a’ is equal to zero whereas in

the shifted scheme, ‘a’ is obtained from the prescription: EC = 0.
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This yields: a = 2 — (2n + 1)Q. From Eq. (15), we can see that in the
present case, V(r) = w?r?/4 — 2/r — 2V,. Results for the energies

have been obtained by employing both the unshifted and the shifted

. 1 . .
versions of the ~ — expansion technique.

2.6 GROUND STATE RESULTS AND DISCUSSIONS

The theories delineated in Section 2.5 are fairly general and we can
apply them to any QD. As an example, we consider a GaAs QD and
choose: ¢ =12.8, m; = 0.067m, and mj; = 0.099m, (light-hole

mass). Consequently, we obtain: ag = 17.7 nm, R}, = 3.1 meV, E; =

1.51 eV, P?/m, = 1 eV. We furthermore introduce a quantity y which
is linear in B. More specifically, = ehB/ 2ucR;, . It is easy to see that

1y = 0.47226B (T) [9,11].

In Fig.2.1, we show the exciton electron/hole distributions in a GaAs
QD. We find that the distribution decreases with increasing potential
depth. Also, the hole distribution is little higher than the electron
distribution. We see from Fig. 2.2 that the distribution decreases with

increasing magnetic field.
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Fig. 2.1 Exciton electron/hole distribution in a GaAs QD for two values
of ;.
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Fig. 2.2 Exciton electron/hole distribution in a GaAs QD for two values
of y.

We calculate the light-hole exciton GS energies in 2D and 3D GaAs

QDs with the help of the conventional variational approach, %—

expansion technique and the shifted %— expansion scheme and plot

them in Fig. 2.3 with respect to R for V, = 6meV and B =10T. All
the methods used here suggest that the exciton energy rises
monotonically as R is reduced and the rise in energy turns significantly

rapid if the QD size is made smaller than a certain
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Fig. 2.3 Exciton GS energy vs. QD size in 3D and 2D GQDs of GaAs
forB=10T.

value. The explanation of this effect is simple. A decrease in R increases
the uncertainty in the exciton momentum. Consequently, the exciton
momentum itself is increased and hence the exciton Kinetic energy also
increases. Thus, the GS energy undergoes an enhancement as R is
reduced. Also, it can be observed that the exciton GS has a lower energy
value in 2D than in 3D, as the QD confinement effect is stronger in the

former. The Ritz variational approach is known to provide an upper limit
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to the energy while the %— expansion technique provides a lower
limit. It is interesting that the GS energy obtained from the shifted
% —expansion scheme lies somewhere in between the energies obtained

from the other two methods.

10
Variational method
5 Shifted 1/N Expansion method
Matrix Diagonalization method
1/N Expansion method
or !
>
(]
& 5 ]
=
2
5 -10 - §
wn
&
15 ¢ _
-20 [ VO = 6meV 2
B=10T
-25 ' ' ' '
10 20 30 40 50

Radius (nm)

Fig. 2.4 Exciton GS energies calculated by our methods and their
comparison with those determined by Matrix diagonalization by Gu and
Liang.
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In Fig. 2.4, we have plotted the GS energy values calculated using the

methods mentioned above. We have also plotted for comparison the

results of Gu and Liang [14] obtained by the matrix diagonalization

method. The comparison reveals that the energy values calculated by the

shifted % —expansion scheme agree excellently with the exact results

computed numerically.
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- -
-

—
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Fig. 2.5 Exciton GS energy vs B in 2D PQD and GQD of GaAs.
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We depict in Fig. 2.5, how the exciton GS energy for a 2D QD with
Vo = 6 meV and R = 17.68 nm, varies with B. As B is increased, the
GS energy is found to increase. This is again a behaviour one would
normally expect. Though the parabolic and Gaussian potentials
qualitatively provide a similar trend for the variation for the GS energy
with B, the parabolic potential model apparently yields a higher value

for the exciton GS energy.

We find that the potential profile becomes essentially irrelevant when

the QD size is made sufficiently large (not shown here). Also it may be
mentioned that the shifted %—expansion technique has quite a few

palpable advantages as compared to the numerical method. First, as
mentioned earlier, it gives the energy in the analytical form. Secondly,
it can also provide analytical expression for the wave functions and thus
offers more insight about the system. Thirdly, once the wave functions
are determined, expectation values of different observables can be
calculated. Finally, as we obtain the whole set of energy eigenvalues
from this method, it becomes possible to obtain the thermodynamic

averages of the quantities relevant to the system.

In Fig. 2.6, we present the behaviour of the exciton BE in GQD with
respect to QD size. As the confinement potential is always negative, the
necessary condition for the formation of an exciton bound state is that it
should have a negative energy. However, this is not the sufficient
condition for a stable bound state. For a stable bound state, BE must
have a positive value. One may notice that as the QD confinement length
is reduced, the exciton binding becomes stronger and the enhancement
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in the strength of binding becomes more rapid at smaller confinement
lengths. This may be understood as follows. As the QD size is reduced,
the electron and hole have the higher probability of coming closer and
consequently the attractive Coulomb interaction between them will rise.
Our results also reveal that exciton binding is stronger in a 2D QD than

in a QD system. As indicated by Fig. 2.3, the shifted %—expansion

results are most trustworthy.

50 - - : .
3D Variational method
= = = 2D Variational method
= = = 3D shifted 1/N Expansion method
40 ¢ 2D Shifted 1/N Expansion method ||
S\ — — = 3D 1/N Expansion method
g 2D 1/N Expansion method
=
o
=
o
®ror  \N 2 oOTI—S~_ T --=== =
S S ——
.S — —
/M - - o
10 ] il
Gaussian QD
\% 0= 6 meV
0 B=10T , , ,
0 10 20 30 40 50

Radius of QD (nm)

Fig. 2.6 BE vs R for 2D and 3D GQDs of GaAs for B =10T.
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Fig. 2.7 Exciton BE vs. B in GQD for two values of V.

In Fig. 2.7, we plot the exciton BE with respect to B for Iy = 3 meV
and V, = 6meV . As one would normally expect, BE shows a
monotonically increasing behaviour with B. We observe that Gaussian
confinement provides stronger binding than the parabolic confinement

for the excitonic bound state.

In Fig. 2.8, we plot the exciton size versus R for three values of B. One
can see that the exciton size initially grows with R, but as R is made to
exceed a certain length, the exciton size reaches a saturation value. This
is of course the exciton size for the corresponding bulk system. From the
figure, the exciton size is also found to decrease with increasing B. The

genesis of this phenomenon can be attributed to the confining effect of
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the magnetic field. One can draw another conclusion from Figs. 2.6 and
2.8. Fig. 2.8 shows that the exciton size grows with R, while one
observes from Fig. 2.6 that as R increases, BE decreases. Thus, from
these two observations, we infer that BE reduces with the increase in the
exciton size. Fig. 2.9 describes the behaviour of the exciton size with
respect to B. As can be expected, the exciton size decreases as B

increases. Also, the exciton size decreases with increasing value of V.
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Fig. 2.8 Light-hole exciton size vs. QD size R in a 3D GQD.
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Fig. 2.9 Light-hole exciton size vs. B in a 3D GQD.

Fig. 2.10 gives the behaviour of the exciton oscillator strength f,, with
respect to R. One may note that f,, decreases with decreasing R. The
explanation is simple. The decrease in R increases the exciton energy
and hence in turn reduces f,,. One can also see from Fig. 2.10 that f,
decreases as B is strengthened. The explanation is again straight-
forward. The magnetic field provides an added confining effect which
causes an enhancement in the exciton energy and therefore one can

conclude that the oscillator strength should decrease with increasing B.
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Fig. 2.10 GS Exciton oscillator strength vs R in GQD for two values of
B.

2.7 EXCITED STATES

From Egs. (2.49) - (2.55), we can obtain the exciton energy spectrum.
Table 2.1 gives the ground and the excited state energy values of a
Gaussian GaAs QD with R = 88.5nm, V, =12 meV, situated in a
magnetic field of strength B = 1T . One would immediately notice that
18 bound states can be accommodated in this QD, though the calculation
of BE will only ensure the stability of these states. However, here we

shall loosely refer to all these states as bound states. If an exciton state
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has a positive energy, then, of course, it cannot be a bound state. It is
clear that we can have as many bound states as we wish by controlling
the QD parameters. For example, as displayed in Table 2.2, a GQD of
GaAs with R = 53 nm, V, = 3.98 meV and placed in magnetic field of
strength B = 4 T, will have at the most four exciton states. Table 2.3
gives the BE values for a set of QD parameters.

Table. 2.1 Exciton energy values (in meV) in a 2D GQD of GaAs

obtained by shifted 1/N - expansion technique with R = 88.5 nm, V, =
12 meV and B = 1T.

01 2 3 4 5 6 7 8 9

10

w| N~k O =

-27.46 | -15.88 | -15.36 | -15.08 | -14.85 | -14.63 | -14.43 | -14.24 | -14.05 | -13.86
-16.25 | -15.23 | -13.09 | -8.57

-14.19 | -9.59 | -147 | 11.38

-5.86 | 5.97

14.17

Table 2.2. Exciton energy values in GQD of GaAs with R = 53 nm,
Vo =3.98meV and B = 4T .

\o 1 2 3
0
1
2

-17.39 -5.088 -3.732 15.18
-1.603 28.43
60.274

Table 2.3. BE of an exciton in a GQD with R = 17.7nm, V, =
398meVand B = 1T.
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Fig. 2.11 Exciton BE vs B for a few states in GQD with R = 1 nm,

Vo = 3.98 meV.
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The BE behaviour of a few excitonic states in GQD with R = 1 nm,
Vo = 3.98 meV is examined with respect to B in Fig. 2.11. The binding
is evidently weaker for an excited state that is higher in energy. The
binding, however, becomes stronger with the increase in B. This can be
explained again in the light of the extra confining effect introduced by

the magnetic field.

2.8 CONCLUSION

In this chapter, the GS energy, BE and the size of an exciton ina GQD
of GaAs placed in a magnetic field have been obtained in both 2D and

3D by employing three approximate methods namely, the conventional

variational approach, %— expansion technique and the shifted

1 . .. .
~ —expansion scheme. The variational approach provides an energy

higher than the exact GS energy while the 1/N-expansion technique
provides a lower limit to the GS energy. Comparative analysis of the

results obtained from our work with those from exact numerical
diagonalization shows that the shifted %— expansion technique

provides highly accurate values. We find that the electron/hole
distribution reduces as the QD confinement and the magnetic field are
enhanced. Our results also show that the exciton GS energy rises with
reduction in QD size and acquires considerably large values as QD size

is made very small.

Our calculation reveals that the GS exciton binding becomes stronger as

R decreases. Our results also reveal that the GS binding becomes
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stronger as the confinement is increased. BE also increases with
increasing field B. we furthermore observe that the exciton reduces in
size as the confinement length is reduced. The exciton size also shrinks
as the potential is made deeper or the strength of the magnetic field is
enhanced.

Next, we have demonstrated that the GS oscillator strength of an exciton
in GQD becomes weaker with decreasing QD size or increasing

magnetic field.

Finally we have obtained the energies of a few excitonic ESs in a 2D
GQD placed in a magnetic field. We have shown that it is possible to
generate a specified number of exciton states in GQD by controlling
certain characteristic system parameters. To be more specific, we have
demonstrated a case in which four bound states can at most occur in
GQD of GaAs. This interesting property of tunability may be usefully
utilized in fabricating excitonic lasers with QDs. It may however be
noted that in the work discussed in this chapter, we have ignored the
spin-Zeeman term which may have important effect on exciton

energetics.
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Single-Particle Ground-State and
Self Energy of a Polar Quantum
Dot with Gaussian Confinement

3 Effect of Temperature on The

Abstract

The effect of temperature on polarons in a Gaussian quantum dot has
been studied by employing the Lee-Low-Pines-Huybrechts unitary
transformation, Ritz variational method and statistical mechanics. The
calculations reveal that with increasing temperature, the ground-state
energy increases while the ground state polaron self-energy corrections.
The results also uncover the role of quantum confinement on the polaron
ground-state and binding energies. It is also demonstrated that the
ground-state energy is higher in a three-dimensional dot than in a two-
dimensional one. In general, the polaronic effects become stronger with
the reduction in dimensionality.
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3.1 INTRODUCTION

The study of temperature dependence of polarons is of foremost
importance in the context of practical applications. However, the
investigations carried out hitherto on this issue have not yielded any
unequivocal answer. Two conflicting viewpoints have been reported in
the literature. There are some investigations that claim that with
increasing temperature, the phonon cloud of the polaron becomes thinner
and as a result the polaron binding becomes weaker. There is another set
of works that suggest that the polaron binding increases with temperature

with a concomitant increase in its effective mass [1-7].

Peeters and Devreese [1] have studied the temperature dependence of
polaron mass using the Feynman Polaron model. They have shown that
the polaron mass increases with the temperature. They have also
compared their results with those from experimental investigations. The
temperature dependence of polaron correction to the electron effective
mass in a GaAs — Al,Ga,_,As heterostructure has been studied by
Xeaoguang et al. [8] in zero magnetic field. They have found that the
polaron mass increases with increasing temperature up to 100K and then
starts decreasing with further increase in temperature. The effect of
temperature on bipolaronic properties in a quantum dot (QD) has been
investigated by Eerdunchalu and Xin [9] in the strong-coupling limit.
They have shown that the polaronic effects undergo an enhancement

with temperature and polaron coupling.
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There have been quite a few investigations on the effect of temperature
on polarons in QDs. Zhi-Xin Li has studied the temperature effect on the
polaronic properties in a triangular QD [10]. Quite a few studies have
been made to examine the effect of temperature in parabolic quantum
dots [11-20] with symmetric and asymmetric confinement. Shan et al.
[11] have considered the case of an impurity-bound strongly-coupled
magneto-polaron in an asymmetric QD. In this work, the Lee-Low-Pines
(LLP) transformation and an additional set of canonical transformations
have been carried out to show that the binding energy (BE) and the
average number of phonons in the polaron cloud increase with
temperature. A similar method has been used by Cai et al. [12] to study
the temperature effect on the binding energy of a strong-coupling

magneto-polaron in a RbCl QD with parabolic confinement.

However, apparently no detailed research investigations have hitherto
been taken up on Gaussian QD (GQD). This chapter will be devoted to
the delineation of the results of our recent study on the effects of
temperature and effective confinement length on the self-energy of an

electron in a polar GQD.
3.2 MODEL

We consider the motion of an electron with band mass m in an N -
dimensional (ND) GQD. The electron interacts with the longitudinal
optical (LO) phonons of frequency w, which is considered
dispersionless. The system under study can be represented by the model

Hamiltonian

74



Chapter 3

pz , , 1 —io' a'
H =%+V (r)'i‘h(l)ozb;lbq’ +Z[€qe ' b;’ +hC] (31)
q’ q

where r', p’, q', etc. are all ND vectors. Here r' and p’ refer

respectively to the position and momentum operators of the electron,

b;,(bqr) represents the LO-phonon creation (destruction) operator, q'
being the phonon wave vector and w, the frequency, {»’"I, gives the

measure of the electron—phonon (e-p) interaction strength and the

Gaussian confinement potential V'(r") is chosen as

2
T’

V') = —Vje 27 (3.2)

where V; gives a measure of how deep is the potential and R’ gives the
length scale over which the potential goes to zero. This range R’ can be

considered as the effective size of QD or the confinement length.

We use, in our calculation, the Feynman units. In this system of units,
haw, is chosen as the scale of energy, (= (h/mw,)*/?) as the scale of
length (which can be identified as the free polaron radius in the weak-
coupling regime) and q, = 1/r, as the scale of the wave vector. The
choice of the Feynman units essentially means choosing A = m = wy =
1. Then the Hamiltonian can be written as

2
p _ s
H ="~ Voe (r?/2R?) 4 E biby + E (¢,e797b} + he) . (3.4)
a q

where everything is dimensionless and |€q|2 is given by
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r (u) 2 (N=3/2) (N~1)/2

_ 2
- o a (3.5)

|2

i

where N is the system dimensionality, v, the system volume and « is

the e-p coupling constant. For a 2D system:

2 (V2m
[al” = (—vq )a : (35)
and for a 3D system
2 2\2m
|fq| = < qu >a . (36)

3.3 FORMULATION

Huybrechts modified the Lee-Low-Pines method to make it valid even
in the strong coupling limit. The results are satisfactory for the weak as
well as the strong-coupling regime [40,41]. In the Lee-Low-Pines-
Huybrechts (LLPH) approach, two unitary transformations are

successively performed on the Hamiltonian using the operators,

Uy =eSt =exp —iaZ(q.r)b;bq , (3.7)
q

and
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U, =e52 = exp Z(fqb;r —faby)| (3.8)

q

where a and f, are variational parameters. The transformed Hamiltonian
is then averaged using the phonon vacuum state and the system’s ground
state (GS) energy is finally calculated by averaging the effective

electronic Hamiltonian using an appropriate electron wave function.

The above-mentioned procedure is same as a variational calculation with

the following trial wave function
) = el-ieZa@mnival , [Zaliara~riva)lj)pryy, (3.9
where |0) =g |0q) denotes the phonon vacuum or the phonon GS and

|d(r)) is the electron state. We wish to compute the GS energy for (3.4).

Therefore we make the following prescription for |¢(r)):

SN 1/2
I¢>(r))=<nN/2> e~(6*/2) (3.10)

The variational energy can be written as,

E = (YIH[p) = (pG) 0] H|0)|p(r)) (3.11)

where

H = us'urtHULU, = UTLHU, (3.12)
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H=U{'HU, (3.13)

or

1
H =2 (U'PUL? - Voe™ T/2R* 4 Z Ur'blbaU;
q
+ ) (87U bYU, + ) (3.14)
q

In Eq. (3.14), we use the Campbell-Baker-Hausdorff Formula:
1
U7IPU, = e 51PeSi = P + [s,, P] +§[sl, [s1, P]] + - (3.15)

where

[s1,P] = —az qb;rbq

q
and

[Sll [Sl'P]] =0 (316)

Eqg. (3.15) becomes
U7'PU, = P — az qblb, (3.17)
q
Similarly, we get
- ) 1
by = U bgUy = by + [51,bg] + 5 51, [s1,b] | + - (3.18)

or
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by = e~@Xal@np, (3.19)

and
by = el*Zaanpl (3.20)

Therefore, we can write

2

~ 1 ) _
H = E P — az qb:;bq + Z elan(q.r)b;r e—Lan(q.r)bq
q q

2 . .
Voo™ fare 4 ) (e el K@t 4 he)  (3:21)
q

P o @ Pty pt -/ v
=7—aZP.qbqbq+72q.q bgbg bq,bqr—Voe 2R
q 9.9’

£ bibg+ ) (e b 4 he),  (322)
q q

Finally, we obtain

_ P? a’q’ t a* tp pt
H:7+Z<1+ 5 —aP.q)bqbq+7Zq.q’bqbq bybg
q a.q'

2 ,
— Vo 2Rt 43 (5e 0BT 4 hc),  (323)
q

Now,

=

H=U;'HU, (3.24)
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1
Uz_lquZ = bq - [52, bq] + E [52, [Sz, bq]] (325)

[52,b,] = lz:(fqbf, - f{l‘bq),bq‘ =f,  (3.26)
q

(52, [s2,b,]| = 0 (3.27)
Therefore,
Uz—lqu2 — bq + fq (328)
Now,
- p? ) a’q? .
H :?—Voe r*/2R? +Z<1—ap-Q+ ) >(bg+fq)(bq+fq)
q

az ! * *
+?Z q.q'(bf +£3) (bl +£) (bg + ) by + fy?)
q

+ ) [eqe 09 (b] +£) +hc] - (3.29)

q
Averaging (3.29) with respect to |0) gives

2

< |H| >:——V —rt/2R? +Z<1—ap q+ >|fq|
1/2
qufq

q

2

+ Z[E e—i(1- a)qrf* + h. c] (3.30)
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The averaging over the electron state gives the LLPH variational energy,

Eurn = (6] (0|7]0) [0) (331)
= (60| B |6 ) - (9 IVoe /2 )

) R Lae I
q

+ ) [qe7 00 1 hc], (3.32)

N[~

Minimizing E;,py With respect to £ gives,

0E 2.2
aLfoH (1 — a(gIPI¢).q + zq )fq +Eps=0  (333)
or,
fo=- 2l o (3.34)
(1-agIPiey.q+2L)
where,
pg = (ple7i-Dar|gp). (3.35)

We now use the following condition which is reasonable for symmetric

guantum dots,
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Z‘I|fq|2 =0 and (¢|p|$)=0. (3:36)

q

The ground state energy can be obtained as

1 2 2
Eripn = §<¢>(r)IP2I¢>(T)> - Vo(d)(r)le_r /2R |¢(T))

Z |§q| |pq . (3.37)

Now using Eg. (3.10) averaging over electronic states,

1
(@IP%1d) = (9IV21d) = —5 6%, (3.38)
21~
(p(M)]e™ /2R |p(M) = [1 + % (3.39)
where,
B? = - (3.40)
2R’ '
_(1—a)2q2
pg=e 45 . (3.41)

Inserting Egs. (3.38), (3.39), and (3.41) in Eq. (3.37), the GS state energy

reads as,

BZ
Eypy = 262 Vo l1+6zl
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(1-a)?

r (N = 1) 2 (N=3/2)  (N-1)/2 Ry h
- - a — v - (342)
N q qN_1< Zq )
We can write
2 > N J d 3.43
v (27_[)1\] q ( . )
q

Therefore Eq. (3.42) becomes,

BZ
Eppy =~ 252 Vo I1+

62
(1-a)?
r (N = 1) 2(N=3/2) L (N-1)/2 ’ ) 45(12 ai
N
— d
Un “ (Zﬂ)Nf 1 N-1 azq
q 1+—5— >
(3.44)
For a symmetric QD, §; = §, = 63 = - ........ = 6. S0, we can write
N p?
ELLPH = 252 - VO ll + S_Zl
—_ _¢.(1-a)* »
r (%) e 2i 462 !
+ N+1 aJ dq azqz . (345)
N S P

We can also write,
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qu = f .......qN‘lqudQ , (3.46)
and
j dq = FZ&N//ZZ) . (3.47)

Thus Eq. (3.42) reduces to

N
N p?] 2
Epipn = Z(S = Vo I1+6Zl

\/_F(N_l)a 1a2 1—a
5 —F(N/Z) ae( )erfc( Y ) (3.48)

Let us define a parameter t which is related to a as

1—a

t = ,
oa

(3.49)

or
1
—=1+t8 . (3.50)

The GS energy then reads

,82 /2

ELLPH —_ 82 _VO 1 + 82
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Vel ()
’ F(%)

The average phonon number in the polaron GS is defined as

(1 +td)et erfc(t) (3.51)

= (¥|Zqbgbg [1) (352)
which gives
Z |€q| |pq (3.53)
r (NZ_ 1) 2 (N=3/2) (N-1)/2 8—21(145? af
= - a — (3.54)
N 7 q¥ 71 (1 + Zq )
or,
r (N - 1)
Nph = ——5—La(l +t8)[2t + (1 — 22)V e“Erfe(t)] (3.55)
4r(7)
or,
N-1
1" —
Ny — (—ZN)zmu + t6)
4r(7)
1
= T\/_M [(1 - 2t2)et’ (1 + t8)Erfc(t)]  (3.56)

r(z)
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We can rearrange Eq. (3.48) as

N -1
@r(—ﬁ)(l + t8)et Erfe(t)
r(z)
N 271-N/2
= Z62 Vo |1+ ﬁ] —E 1pn (3.57)

From Eqgn (3.56) and (3.57) we can write,

()

Ny, — —ZNZat(l +t5)
4r(7)
-N/2
(1-2t2) [N g2
:T Z6Z_V0 1+§ _ELLPH ) (358)
Or

N
N B2l 2
Erpn = 152 -V ll +§l

N-1
__ Nyn —thu +t8)|. (359
S AeTie

We now replace N, by the phonon distribution function given by

1

N = hoo/KeD — 1 (3.60)
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The GS energy at finite temperature becomes,

N ., 2 /2] 2 =
ErLpu :Z5 - W1+ (p?/69)] 2 ———==5N

1— 2t
« ()
+ — 2t(1 + t5) (3.61)
2(1 —2t2) F(%)

The variational parameters t and & are determined by minimizing Eqg.
(3.62) numerically with respect these parameters and the GS energy and
polaronic correction are obtained at finite temperatures for N = 2 and
N = 3.

3.4 RESULTS AND DISCUSSIONS

The numerical computations have been carried out for small,
intermediate and large a values. Fig. 3.1 presents the polaron GS energy
(GSE) behaviour in a 3D GQD with respect to temperature (T) for V, =
10,R=2and 6 and @« = 4.8,5.0 and 5.2. It
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Fig. 3.1: Polaron GS energy (GSE) vs temperature T for V, = 10, and
R = 2 and 6 in the strong-coupling regime.

is clearly evident from the figure that Polaron GSE increases with the
increase in T. This implies that temperature weakens the polaronic effect.
The explanation is simple. An increase in T leads to excitation of larger
number of real phonons which suppresses the formation of the polaron.

As expected, polaron GSE decreases with increasing a and R.
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o @ =09
=~ a=10
3
'S 95(Solidline :3DQD a=12]
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I =12
12
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Fig. 3.2: Polaron GSE vs T for 2D and 3D GQDs in the intermediate-
coupling region.

In Fig. 3.2, GSE is plotted for an intermediate-coupling polaron for
both N =2 and 3. It is clearly visible that even at T # 0, the impact of e-
p interaction is stronger in 2D than in 3D. This is of course
understandable from the point of view of quantum mechanics. It is
interesting to note that in a 3D QD, GSE hardly shows any temperature
dependence whereas for the 2D system, we find that GSE shows a
marginal increase with T at low T, and then becomes essentially constant

as T is increased further. The temperature variation of GSE in the weak-
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coupling regime looks qualitatively similar to that in the intermediate-

coupling regime (not shown here).

13 - - -
Slid Line :R=2 3D QD
Dashed Line : R=6 V0=10
~ 127 k ]
£
)
= 11 K =52
= Ne-s2 a=50
L 10 ¢ N = —_—
- ‘a=5.0 a=438
m . il S
1 9 “a=48
8 L
0 20 40 60 80

FIG. 3.3: GS polaron binding energy (BE) vs T in the strong-coupling
regime for two values of R.

To determine the role of e-p coupling, we calculate the GS polaronic
correction AE, which is the energy by which the GS electron energy is
modified because of the e-p interaction. This is also called the GS
polaron self-energy which is defined as: AE = E(a) — E(a = 0). The
condition of polaron formation is given by: AE < 0. The negative of AE
or |AE| gives the polaron binding energy (BE) which is the energy
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required to strip off the phonons from the electron. In Figs. 3.3 and 3.4,
we have shown the nature of |AE| vs. T - curve in GQD. From Fig. 3.3,
one can conclude that in a 3D strongly-coupled GQD, as T increases,
|AE| initially decreases, and then gradually reaches a saturation value.
This is in conformity with Fig. 3.1. Fig. 3.4 describes the behaviour of

|AE| for intermediate values of a. We immediately see that in 2D QDs,

atlowT,asT
45
~35! a=1.2]
€& R _____a=10
2 3 f
= N e e e e e e e mm -
g‘zs R =2 a=0.9|
’ V. =10
£ 0
~ 2+ Solidline :3D QD f
ﬁ Dashes line : 2D QD a=12
LS a=10]
1t a=0.9.

0 10 20 30 40 50
T(K)

FIG. 3.4. |AE| vs T for intermediate values of a for 2D and 3D GQDs.

increases, |AE| shows a small decreasing behaviour. But as T increases

a little more, |AE| quickly reaches a saturation value. We have already
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explained this behaviour. For a 3D QD, |AE| is more or less T —
independent which is consistent with Fig. 3.2. From Fig. 3.4, we
conclude again that even at T > 0, the polaronic binding is weaker in 3D

QDs than in 3D ones.

80 - :
Solid lines  : 3D QD
Dashed Lines : 2D QD
— a=17.0
2 60 V. =10
c 0
= [~_ T=50K B
g ____________ a=6.0
S40 _
> T e e e e o ___«=50
=
2 20 ¢ a=17.0
~ \ —
o~ a=6.0
«
0 L L L
0 1 2 3 4
R (Feynman Units)

Fig. 3.5 |AE]| vs R for a polaron in 2D and 3D QDs in strong-coupling
regime.

In Figs. 3.5, 3.6 and 3.7, we have studied the behaviour of |AE| with
respect to R for large, intermediate and small values of o respectively at
a particular temperature namely, T = 50K . Fig. 3.5 reveals that in a
strongly-coupled GQD, |AE| has a weaker dependence on R in 3D than
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in 2D. As R decreases in a 3D QD, |AE] is found to increase, though

slowly, but below a certain R, it appears to decrease with the decrease in

R. The origin of this behaviour is completely quantum in nature. With
the reduction in QD size, the electron kinetic energy rises leading to the

reduction in the polaron binding. Interestingly enough, 2D QDs do not

show this behaviour.

Solid lines : 3D QD
151 Dashed lines : 2D QD
)
k= _
-) a=3.0 -
S 10§ vV, = 10
g 3 T=50K
Q
ET_-‘/ > ~ ~Oz~: 2.0
m 510 a=30" " ""—=-=-==---=
4
S a=2.0
/\7)&‘—'"1.9‘ ___________
0l a=1.0
0 2 4 6 8
R (Feynman Units)

Fig. 3.6 |AE| vs R for a polaron in 2D and 3D QDs in the intermediate-

coupling regime.

In Fig. 3.6, we plot |AE| with respect to R in the intermediate-coupling

range. The behaviour is qualitatively similar to the strong-coupling case.
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However, in the case of 3D QDs now, peaks in |[AE|’s appear a little

sharper than the corresponding strong-coupling cases.

1.2 - - -
Solid lines  :3D QD
| Dashed Lines : 2D QD
0.8 0=03 VO =10
T=100K

|AE| (Feynman Units)
= =
=~ N

S
S}

R (Feynman Units)

Fig. 3.7 |AE| vs R for a polaron in 2D and 3D QDs in the weak-
coupling regime.

Fig. 3.7 shows the variation of |AE| with R in the weak-coupling region.
One can see that in this region, as R is reduced, |AE| increases
monotonically for 2D as well as 3D QD. However, the polaron effect in

all cases, is stronger in 2D than in 3D. This is consistent with the general
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result that e-p interaction effect increases with the reduction in

dimensionality.

-~ a=35
12 ¢ S~ - ==a=5

GSE (Feynman Units)

-Solid lines :T=10 K
Dashed lines : T=50K

10 12 14 16
V0 (Feynman Units)

Fig. 38 GSE vs V, for a3D QD T =50K inT =50K T =50K T =
50K in strong and intermediate coupling regimes.

In Fig. 3.8, we plot GSE versus V, for R = 2 at T = 10K and 50K.
GSE is found to decrease with increasing V,. This indicates that the
polaronic binding is strengthed as V, is made greater. Needless to say,

the polaronic effect becomes stronger with increasing a. Fig. 3.9 shows
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this behaviour explicitly. Again, the polaron GSE value in 2D QD lies
below that in 3D QD.

——3DQD

o)
=)

GSE (Feynman Units)
2 3

-80

¥

Fig.3.9 GSEvs ain 2Dand3D QD at T = 50K.

3.5 CONCLUSION

In this chapter, we have presented our results on the effect of temperature

on the polaronic properties in GQD. These results have been found out
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with the help of the variational theory of Lee, Low, Pines and Huybrechts
and statistical mechanics. Our results reinforce the notion that the GS
polaron binding in ND GQD becomes weaker as temperature rises and
thus the polaronic effect weakens at higher temperature. The explanation
for this phenomenon is as follows. With the rise in temperature, the
probability of excitation of real phonons becomes certainly more. This
suppresses polaron formation. Finally we observe that even at non-zero

temperature, polaronic effects diminish with increasing dimensionality.

97



Effect of Temperature on The Single-Particle Ground-State ....

3.6 REFERENCES

[1]

[2]

[3]

[5]

[6]

[7]

[8]

[9]

F.M Peeters and J T Devrees, Temperature dependence of the
polaron mass in AgBr. Phys. Rev. B, 31 5500 (1985).

Ka-Di Zhu and S. W. Gu, Temperature dependence of polarons
in a harmonic quantum dot Phy. Lett. A 171 113 (1992).

S. Chen and J. Xiao, Temperature effect on impurity-bound
polaronic energy levels in a  GaAs parabolic quantum dot
Physica B 393 213 (2007).[4] Eerdunchaolu, and W. Xin,
Temperature dependence of the properties of strong-coupling
bipolaron in a quantum dot Physica B 406 358 (2011).

J. Zhang and S. Shan, Temperature Effect on Effective Mass of
the Polaron in an Asymmetric Quantum Dot J. Low. Temp. Phys
177 283(2014).

N. Issofa et. al, Energy Levels of Weak Coupling Magneto-
Optical Polaron and Temperature Effect in Spherical Quantum
Dot Am. J. Mod. Phys 4 (2015) 158-164.

G.Whitefield and M. Engineer, Temperature dependence of the
polaron Phys. Rev. B 12 5472 (1975).

W. Xeaoguang, F. M. Peeters & J. T. Devreese, Temperature
dependence of the polaron mass in a GaAs — Al,.Ga,_,As
heterostructure, Phys. Rev. B 36 9765 (1987)

Eerdunchalu and Wei Xin, The temperature dependence of the
properties of the strong coupling bipolaron in a QD, Physica B
406 358 (2011)

[10] Zhi-Xin Li, Temperature Dependence of Strong-Coupled Polaron

[11]

in a Triangular Potential Quantum Dot, J. Low Temp Phys. 165
36 (2011)

S.P. Shan, L. Q. Cai, Y. M. Liu and J. L. Xia, Temperature and

Impurity Effects of the Magnetopolaron in an Asymmetric
Quantum Dot, Chin. J. Phys.52 880 (2014)

98



Chapter 3

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

C.Y.Cai, C. L. Zhao and J. L. Xiao, Effects of temperature on
ground state binding energy of strong coupling magnetopolaron
in RbCI parabolic quantum Dot. Indian J. Pure&Appl. Phys. 54
56 (2016)

K. Zhu and S.Gu, Phys. Temperature dependence of polarons in
a harmonic quantum dot, Lett. A 171 113 (1992)

K. Zhu and S. Gu Temperature effects on the Self-trapping
energyof a polaron in a Ga As parabolic quantu dot, J. Mater.
Sci. Technol., 10 131 (1994)

S. H. Chen,Q. Z. Yaoand Y. H. Wei, Temperature Dependence
of Polaronic Correction to the Ground State Energy in a GaAs
Parabolic Quantum Dot,J. Low. Temp. Phys. 168 63 (2012)

S. H. Chen and J. L. Xia, Temperature effect on impurity-bound
polaronic energy levels in a GaAs parabolic quantum dot
,Physica B 393 217 (2007)

Temperature and impurity effects of the polaron in an
asymmetric quantum dot, S. P. Shan, Y. M. Liu and J. L. Xiao, J.
Low Temp. Phys. 39 607 (2013)

Temperature Effect on Effective Mass of the Polaron in an
Asymmetric Quantum Dot, J. F. Zhang and S. P. Shan, J. Low.
Temp. Phys. 117 283 (2014)

Effect of temperature on vibrational frequency of strong coupling
polaron in asymmetric quantum dot., X. J. Miao, Y. Sun and J.
L. Xiao, Indian J Phys.88 777 (2014)

W.Xin, Wuyungimuge, C.Han, Eerdunchaolu, Magnetic field
and temperature dependence of the effective mass of strong-
coupling bound magnetopolaron in quantum rods with
hydrogenic impurity SuperLat. Microstruct. 61 13 (2013).

99



shape on the electronic,
thermodynamic, magnetic and
transport properties of a GaAs
quantum dot at finite temperature

4 Effect of confinement potential

Abstract

Confinement potential profile has a major role to play in influencing the
quantum dot properties. Here we consider a general power-exponential
potential containing a tunable parameter p. By controlling p we can
create confinement potentials of different shapes. We study how different
quantum dot properties are influenced by the shape of the dot. We
determine the average thermodynamic energy, specific heat, persistent
current and magnetic susceptibility at low temperature within the frame-
work of the canonical ensemble approach of statistical mechanics. We
show that the average energy has a strong dependence on p for small p
while for large p, on the other hand, p has hardly any effect on the
energy. Interestingly, it turns out that the specific heat is unaffected by
the shape or depth of the confinement potential at low temperature as
well as the magnetic field for the range considered. The magnetic
behaviour of the system looks rather interesting. The system displays a
paramagnetic-diamagnetic transition at a certain magnetic field
strength. It is found that for small values of p, the system is diamagnetic
in a small temperature window, then for a temperature window the
system is paramagnetic and as the temperature is further increased, the
system goes into a re-entrant diamagnetic phase. For large p, the system
behaves in a similar way up to a certain temperature, namely till the
system enters into re-entrant diamagnetic phase. Here we see that y
exhibits well-developed minima and finally enters into the paramagnetic
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phase again. We furthermore show that at magnetic fields higher than a
critical value, the system is always diamagnetic for shallow confinement
potentials, irrespective of their shape. Thus, for a window of p values,
we expect the phenomenon of reentrant diamagnetic behaviour to show
up for a range of magnetic field strength. We finally show that in a
power-exponential quantum dot, the persistent current is diamagnetic at
low temperature and its magnitude is larger when the potential is
deeper. It is however independent of p. At high temperature, however,
the persistent current can be paramagnetic for small p.
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4.1 INTRODUCTION

In order to develop a theory of quantum dots it is absolutely necessary
to have a prescription for the confinement potential. Early experimental
results gave the indication that the quantum dot (QD) confinement
potential has a parabolic character. This led to extensive investigations
on parabolic QDs [1-29]. Some later experimental results on QDs
however contended that the confinement potential is anharmonic with a
depth that is finite [30,31]. Adamowsky et al. [32] have advocated the
Gaussian potential as the model for confinement potential. The Gaussian
potential turned out to be a more realistic model for the confinement
potential in QD. Consequently, a large number of studies [33-52] have
been conducted on several aspects of QDs by many researchers by
making use of the attracting Gaussian potential model. Ciurla et al. [53]
have introduced a general form for the QD potential namely, power-
exponential (PE) potential. It contains a steepness parameter p. By
tuning this parameter p one can generate potentials of different shapes.
Also, some of the widely used confinement potentials can be generated
from it in different limiting cases. Kwasniowski and Adamowski [54]
have considered the PE potential for the study of electron exchange
interaction in coupled QDs. Xie [55] has concluded using the PE model
that the photo-ionization of a donor impurity is highly influenced by the
QD shape.

In this chapter, we take up the problem of a two-dimensional (2D) QD
with PE potential and spin-Zeeman interaction in a magnetic field at
finite temperature and examine the effect of dot shape on the average
thermal energy, heat capacity and the susceptibility of the electron and

101



Effect of confinement potential shape on the electronic,....

the persistent current. We shall describe QD with PE confinement as
PEQD.

4.2 MODEL

An electron of charge e and band mass m* moving in a 2D PEQD in a
magnetic field B (0, 0, B) may be described by the Hamiltonian

::mm(p+§Af44Kp) (4.1)

where p (p) is the 2D electron position (momentum) operator, A is the
vector potential related to B as: B =V X A, and is chosen as: A =
(—By/2, Bx/2,0)so that V.A = 0 and V(p) is the PE potential [2]
given by .

Vp) = Voo ®), 4.2)

where 1, specifies the PE potential depth and thus gives the confinement
strength, R gives the effective QD size and p is the steepness parameter
and determines the shape of the potential. For small values of p, the
potential is soft. As p increases, the potential becomes harder. The
potential becomes Gaussian for p =2. For p >10, the potential becomes
very hard or steep at the QD boundary. As p increases further, we have
an extremely hard potential mimicking a rectangular potential (Fig.1)

[3].
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VIRp

Fig.4.1. Shape of the Power-exponential (PE) confinement potential for
p =0,2,4,10 and 50.

The Hamiltonian now reads

*

2 hw,

2

p
V2 — Ve ® + 2 (I, +9°5,),  (43)

8

H=- w2p? +

2m*

where L, and S, are respectively the z-components of the radial and spin

angular momentum operators of the electron, w, = eB/m*

4.3 FORMULATION

If the PE potential does not deviate much from the parabolic potential,
then the PE potential may be approximated by a potential which contains

a parabolic potential and a perturbation term. This approximation looks
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plausible if r takes only small values. Since in QD, the electron, in any
case, is restricted to move in a nanoscale confined geometry, this
approximation can be regarded as fairly reasonable. So we rewrite

Hamiltonian (4.3) as

H= HO + H1 ) (44)
with
2
LT S I 5y
Ho= =5 =V +m'@*p* + 5 hac(l +9°S;) = Vo, (45)
! @
Hy = -1 [Em*w,%pz + 7, (e R — 1)] (4.6)
where
2
~2 _ 2 We 2 _ VO
a)z—a)h+7 , a)h—m*Rz . (47)

One can immediately see that A = 0 describes a parabolic confinement
while A =1 implies that the PE potential is the confinement potential.
We include the effect of H; by a mean-field approach in which we
assume that H, effectively renormalizes the frequency @. Thus we write
H, as

vy 1 e @)

—m*wi -V, ) p?, (4.8)
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where the quantum mechanical averages are carried out with respect to

the ground state of the Hamiltonian: H (@) = [— 5+ %m*”’z 2].

Under this approximation, the Hamiltonian H reduces to

h? 1 1
H=- +-m w?p? += th(L +9°S,) = Vo, (4.9)

2m* P 2
where w given  by: w=[~2+ ((VO/(pZ))——m wi —

1/2
VO{(e‘(P/R)p)/(pZ)})] and g~ is the effective Lande-g factor. In the

case of GaAs QD, g* = —0.44. Thus effective Schrédinger equation is
given by

H ‘Pnls (P: 91 0) = ETllSqJ‘rllS (pr 9' 0-) ) (410)

where the wave function W,;;(p,8,0) is the Fock-Darwin wave

function given by

‘P”“(”'Q"’)?/ﬁ(ap)'”ﬂ”(azp%e TOHOy (0), (411)

where @ = (m'w/c)Y?2, n=0,1,2,3, ... , | =0,+1,+2,..., L
describes the associated Laguerre polynomial, and y,(o) satisfies the
eigenvalue equation: S, xs(0) =s ys(o) with s =+(1/2). The

eigenvalue E,,;; of H is obtained as

1
Eyus = @Cn+ |l + Daw + Ehwc(l +g*s) —V,. (4.12)
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The partition function corresponding to (4.12) can be exactly determined

and we get

= %cosh Gg*ﬁhwc> csch{ ph (oo - %)}
X csch{ Lh (oo + “;C)} (4.13)

where B = 1/kgT. Once the partition function is calculated, one can
determine the average thermodynamic energy, magnetization,
susceptibility and the heat capacity or specific heat using the following
relations:

(E) = - 1(03) (M )_BZ@g) e =2 (4.14)

0B T
We also wish to study the effect of temperature on the persistent current.

spin

We determine the thermal average of J,; using the canonical

ensemble approach [9]:

ans]spm ~BEwis
Zn,l,se ﬁEnls

(Jpimy = (4.15)
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4.4 NUMERICAL RESULTS AND DISCUSSIONS

Fig. 4.2 presents the behaviour of the thermodynamic average of the
electron energy ((E)) in PEQD of GaAs with respect to the steepness
parameter p for R = 1nm, B = 1T, T =1 and 300K, and for three
values of V, namely, V, = 50, 100, 300 meV. Itis clear that as p is

160
: p=200.. V,=50 meV
] B=ar.. . .. VO:IOO meV
120 :_ T= 1 K — v0=300 mev
>
£ 80 -
~ 1
w |
40 -

Fig. 4.2 (E) vs pinthe case of a PEQD of GaAs with V, = 50, 100,
300meV,R=10nm,B=1Tand T =1 and 300 K.
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reduced, (E) shows a monotonic increase and the rate of increase is
higher when p is smaller and Vo is larger. The reason is simple.
Softening of potential allows the sustenance of a larger number of states
in the potential well in general and at the Rydberg levels in particular.
This obviously leads to a higher value of (E). (E) also seems to
increase with increasing temperature T which is of course
understandable. As p increases, (E) approaches the same saturation
value irrespective of the value of /. This is also an expected behavior
because in the case of large p, the potential becomes very hard and then
the shape of the potential remains essentially independent of p. In this
limit, an increase in p does not change the number of states in the

potential and consequently (E’) saturates.

04 -
] (a)
e =0 —p=1—0p=2 —pp=10 —p=20
0.2 + . p 5 2 ; i
0 i T T :‘ \l A |
Q -
s -
§ -0.2 T+
1 R=10 nm
-04 - T=1K -
1 V,=50 meV
-0.6 -

B(T)
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(b)

B(T)

Fig. 4.3 Magnetization (M /) vs p of PEQD of GaAs with 1, = 50,
100, 300 meV,R =10nm,B=1T and (@) T = 1K and (b) 300 K.

Figs. 4.3 displays the behaviour of the average magnetization ((M)) of
PEQD of GaAs against B for several p values at: (a) = 1K ; (b) T =
300K . At T = 1K (Fig. 4.3(a)), (M) initially grows with B, attains a
peak at some critical B and then diminishes as B increases further and
eventually turns negative and keeps assuming increasingly higher
negative values with increase in B. A qualitatively similar behaviour is
observed for different p values. At T = 300K (Fig. 4.3(b)), (M)
behaves with B in a qualitatively different way. For =0,1,2 , (M)
remains always negative and its magnitude keeps on increasing with B,
while for p = 10, and 20, (M) remains always positive and increases
with B.
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Fig. 4.4 Magnetization (M /) vs p of PEQD of GaAs with V; = 50,
100, 300 meV,R =10nm,B =1T and T = 1 and 300 K.

In Fig. 4.4, we delineate the behaviour of (M) directly with respect to
p for PEQD of GaAs with R = 10 nm, V, = 50, 100, 300 meV and for
B = 1T and T= 1K and 300K. At low temperature (T ~ 1 K), (M) is
found to be always positive which is an expected behavior because of
low thermal disorder at low temperature. Furthermore, at small p, as p
increases, (M) grows slowly with p and reaches a small maximum and
as p increases further, it falls off slowly and finally reaches saturation.

At large p, the confinement potential mimics a hard rectangular potential
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and then increasing p does not change the potential structure much.
Under this situation, only low-energy states contribute substantially to
the partition function, higher excited states (which do not change much
with further increase in p) offering very little. This is the explanation
for the saturation of (M) at large p. With increasing V;, the maximum in
(M) appears to grow at small p, while at large p, (M) decreases with
increasing V. This happens because when p is small, an increase in 1,
gives rise to quite a few additional Rydberg-like states in the QD
potential. Therefore, as a function of p, (M) exhibits a crossing
behaviour. At T = 300K, (M) is negative if p is less than some
number which is dependent on V,,. However, above a critical p, (M) is
positive and initially increases with the increase in p, but finally reaches

a saturation value that is dependent on V.

In Figs. 4.5(a) and 4.5(b) we study the behaviour of susceptibility ()
of PEQD of GaAs with T for several p values. Fig. 4.5(a) gives the
results for B = 1 T and Fig. 4.5(b) gives that for B = 10 T. Fig. 4.5(a)
shows that at very low T, y in PEQD of GaAs is diamagnetic and as T
increases, at a certain T it acquires a paramagnetic character. Above this
critical T, y increases with T and attains a maximum at some T (T,,).
The maximum structure is demonstrated explicitly in the inset of Fig.
4.5(a). With further increase in T beyond T,,,, y starts decreasing and in
fact, becomes diamagnetic at another critical T. Beyond this T, x

develops a minimum or a minimum-like structure.
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R=10nm (3)
B=1T
V=50 meV
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Fig. 4.5 (a) Magnetic susceptibility (y/u,) vs T of PEQD of GaAs at
B = 1T withV, = 50 meV and R = 10 mm.

For small values of p (p = 1, 2), y remains diamagnetic for all T while
for large p (p = 10, 20), x finally becomes paramagnetic and seems to
saturate at sufficiently high T value. Thus, for small values of p, there
exits a small temperature window in which the system is diamagnetic,
then for a temperature window the system is paramagnetic and as the
temperature is further increased, the system enters into a re-entrant
diamagnetic phase. For large p, the system behaves in a similar way up
to a certain temperature, namely till the system enters into re-entrant
diamagnetic phase. Here we see that y exhibits well-developed minima

and it finally enters into the paramagnetic phase again. Thus it seems
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there are two paramagnetic phases for large p and two diamagnetic
phases for small p. Fig. 4.5(b) shows that if the magnetic field is strong
enough , then for small p values, a GaAs QD is always diamagnetic
whereas for large p, the system goes through a diamagnetic-

paramagnetic transition at a critical T.

0.05 + R=10nm (b)
B=10T
0.03 V=50 meV
a 0.01 +
! . .
N 01 200 250 300
-0.03
-0.05 ~p=0 _—p=1 —p=2 —p=10 —p=20

T(K)

Fig. 4.5(b) Magnetic susceptibility (y/u,) vs T of PEQD of GaAs at
B = 1T with V, = 50 meV, R = 10 mm.
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Fig. 4.6 (¥/ 1) vs p of PEQD of GaAs with V, = 50, 100, 300 meV,
R =10nm,B = 1T and 300 K.

The behaviour of y with p is shown explicitly in Fig. 4.6. At high
temperature (T = 300 K), y increases monotonically with p from a
diamagnetic value, undergoes a transition to the paramagnetic phase at
a certain p and eventually approaches a constant paramagnetic value for
all values of V, considered here. However, at low temperature
(T =1K), the behaviour of y is in general more interesting. For
example, at small values of p, y increases with the increase in p, reaches
a maximum and then falls off for the values of V, considered here. At
relatively small V, (V, = 50,100 meV’), y continues to be negative
irrespective of the value of p. For sufficiently high V, (V, = 150 meV/),

however, y is negative at small p values and as p exceeds a certain
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value, it becomes positive and with further increase in p, the system

makes a reentrant transition into the diamagnetic phase.

2
1p=0—p=1—p=2—p=10—p=20 _
15 - R=10nm
o
S 1T
U y
05 +
il
0 50 100 150 200

Fig.4.7(a) C/kg vsT for B=1T for PEQD of GaAs with ¥/, = 50 meV/,
R = 10 nm, and several values of p.
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Fig. 4.7(b) C/kg vs T for B= 10T for PEQD of GaAs with V, =
50 meV, R = 10 nm, and several values of p.

In Fig. 4.7 (a) we plot the heat capacity (C) of PEQD of GaAs versus T
for a few p values. Atvery low T, C displays a peak structure for all p
and up to a certain T, the results are independent of p. Beyond this
critical T, C increases with p, though for sufficiently large p, C does
not depend much on p. This is understandable because for p greater than
a certain value, the potential becomes almost like a square well which
hardly changes with the further increase in p. With increasing T, C

eventually saturates and the saturation value is about 2kg. The genesis
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of the peak appearing in the C-T-graph is however not clear, though it
looks similar to the Schottky anomaly one observes low T inthe C — T
behaviour of a two-level system. Fig. 7(b) gives the T-dependence of C
for PEQD of GaAs at a large B (B = 10T). Again the Schotky-like
behavior is visible for low values of p, while for large p, a monotonic

behavior is observed. Again at large p, the results are essentially

independent of p.
2 ——
t R=10 nm
15 1/ B=1T
i T=1K
o ] T=300K
- 1 L
o i
Q 2 cemmemee V=50 meV
. ——T Ay 11§ 114
0.5 - V,=300 meV
1/ AllV,
0 2 I I T I I T T ] T I I I I I
0 10 20 30
P

Fig. 4.8 C/kg vs p for B=1T, T=1 and 300K for PEQD GaAs with
R =10nm and V, = 50,100 and 300 meV.
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C is plotted directly against p for PEQD of GaAs in Fig. 4.8. The figure
shows the results for B = 1T, T = 1K and 300K at V/, = 50, 100 and
300 meV. C turns out to be completely independent of both V,, and p at
low T (T = 1K). However, at high T (T = 300 K), it increases with p
and finally approaches a constant value 2kg as p gets large. The value
2kg is reminiscent of the Dulong-Petit result.

0.02 |
4 gi 12 e e V=50 meV
0.01 E_\*‘. g e zoi;ggzzz
1% =300k —— =z
N0y
0
-0.01 +
002 T
0.03 1
o

Fig. 4.9 Persistent current (1) (in unit of ewy /eh) vs p for B=1T, T=1
and 300K for PEQD of GaAs with V, = 50,, 100 and 300 meV.
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In Fig. 4.9, we study the behaviour of the average persistent current (1)
with respecttop for B =1, T = 1 and 300K for PEQD of GaAs with
R =10 nm and V, = 50, 100 and 300 meV. One can see that | is
diamagnetic at low T (T = 1K) and its magnitude decreases with
increasing V,, but it is independent of p. At high T (T = 300 K), one
can see that | is paramagnetic for small values of p. However, it sharply
falls off with increasing p at small p and becomes diamagnetic at some
value of p which depends on V. The diamagnetic persistent current

rises further with increasing p and finally reaches a saturation value.
4.5 CONCLUSIONS

In the present chapter, the role of the confinement potential profile on
the average thermal energy of the electron, specific heat of the electron,
magnetization and susceptibility of the electron and the persistent
current has been examined in PEQD of GaAs at non-zero temperature
using the PE confinement potential model. The average energy is found
to increase with T and V,. At small p, the average energy falls off
sharply with the increase in p, but as p increases, the energy approaches

a T-independent saturation value.

Our calculation reveals that at low T, the shape and depth of the
confinement potential have no effect on the heat capacity C of PEQD of
GaAs. However, at high T (T =300K), C increases with p and

eventually reaches the saturation value 2k at large p.

We have shown that the susceptibility y of PEQD of GaAs increases
monotonically with p at high T (T =300K). At low p, y is
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diamagnetic and as p exceeds a critical value, y becomes paramagnetic.
At low T (T = 1K), initially y grows with p, attains a maximum and
then begins to fall off. Below a certain value of V,, y is always
diamagnetic. However, if V, is large enough (V, = 300 meV), the
system is diamagnetic at very small p and turns paramagnetic at some
higher value of p and if p is increased further, the system goes once
again into the diamagnetic phase. If V; is made substantially large, then
even at small p, y may be paramagnetic and the system would go into
a diamagnetic phase at a larger value of p. Thus the system can exhibit
a reentrant behaviour if the value of p falls in a certain window.
However, at very low T and large p, the system never shows

paramagnetism.

The persistent current (1) in PEQD of GaAs is found to be diamagnetic
atlow T (T = 1 K), and its magnitude increases with the increase in V.
At high T (T = 300 K), | has a paramagnetic character for small values
of p, but it sharply falls with increasing p and becomes diamagnetic at
some value of p which depends on V. The diamagnetic persistent

current increases as p is further increased and finally tends to a saturate.
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SUMMARY

In this thesis we have examined the effect of excitonic, polaronic and
electronic effects in a QD with Gaussian confinement. In the
introductory chapter, i. e., Chapter 1, we have started with the definitions
and properties of nanomaterials or low dimensional systems and then
presented a detailed introduction to QDs and their properties.
Specifically, we have discussed different types of confinement potential
in QDs and the motivation behind choosing the Gaussian potential for
our studies. Next, we have introduced briefly the idea of excitons
(electron — hole pair) and polarons (electron — phonon interaction) and
presented an overview of the experimental and theoretical investigations

carried out on excitonic and polaronic effects in QDs.

In Chapter 2, we have considered an exciton in a GQD of GaAs placed
in a magnetic field and calculated the exciton GS energy, binding energy

and the exciton size with the help the conventional variational approach,
%— expansion technique and the shifted % — expansion scheme. It is
well known that the conventional variational approach provides an

upper limit to the energy while the % — expansion scheme provides a

lower limit. We have shown that results from the shifted % — expansion

scheme fare excellently the exact numerical results. Our results have

revealed that the exciton binding is strengthened as QD size is reduced



and that the binding is stronger in GQD than in a Parabolic QD. We have
also demonstrated that the exciton dimension becomes smaller as QD
reduces in size or the confinement strength increases or the strength of
the magnetic field is enhanced. It has been observed that exciton
oscillator strength reduces as QD is made smaller or the magnetic field
is enhanced. Also the number of QD exciton levels can be controlled by
manipulating the system parameters. This tunability of the excitonic
states in a QD can be effectively used to realize a QD laser.

In Chapter 3, we have examined the role of temperature on the polaronic
effects in GQD using a variant of the Lee-Low-Pines transformation
method as modified by Huybrechts and the quantum statistical theory.
We have been able to show that as temperature is raised, the polaron GS
energy goes up. This implies lessening of polaronic effect with the rise
in temperature. Our results do reveal that the self-energy of a polaron in
a general N-dimensional GQD becomes smaller as the temperature rises.
We understand this phenomenon in the following way. As the
temperature rises, the probability of excitation of real phonons also rises.
This naturally impeds the formation of polarons. We have also shown
that polaronic phenomena become more strikingly visible in a 2D QD
than in a 3D QD. In GQD, in general, the polaronic binding shows an
increase with the reduction in R, particularly at small R. It has been
observed that if R is made smaller than a critical value in 3D QD, the
polaron binding starts weakening with the decrease in R. Furthermore,
the GS energy of a Gaussian QD has been shown to decrease with
increasing potential depth. This implies that the polaronic binding

strengthens with the increae in the potential depth.
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In Chapter 4, we have studied the role of the potential profile on several
properties of a GaAs QD at finite temperature. For this purpose we have
considered the power-exponential potential model with a steepness
parameter p. For a small value of p, the potential is soft and as p
increases, the potential becoms harder. In the case of p = 2, the power-
low potential transforms into a Gaussian potential. The thermodynamic
energy, specific heat, susceptibility and persistent current have been
determined at low temperature with the help of the canonical ensemble
approach. It has been demonstrated that the canonical average of the
thermodynamic energy increases with temperature T and the potential
depth V,. At small p, the average energy falls off sharply with the
increase in p, but as p increases, the energy approaches a T —

independent saturation value.

It has also been established that if the temperature is low, the specific
heat of a GaAs QD is unaffected by the nature of the potential profile.
However, at high temperature (T = 300 K), the specific heat initially
shows a rapid increase with p and then appears to a saturation value 2kg

as p exceeds a certain critical value.

We have shown that the susceptibility y of a GaAs QD increases
monotonically with p at high temperature (T = 300 K). At low p, y is
diamagnetic and as p exceeds a critical value, y becomes paramagnetic.
Furthermore, y seems to decrease with increasing V,. At low
temperature (T = 1K), y initially increases with p, reaches a
maximum and then begins to fall off. For small V,, y displays a

diamagnetic character. However, in the case of large V, (V, = 300
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meV), as p increases, the system initially exhibits a diamagnetic
behaviour and as p exceeds a critical value, it displays a paramagnetic
behaviour. Here too, y reaches a maximum at some value of p and then
falls off in a monotonic way and turns negative beyond a critical p.
However, if Vy is further strengthened, y may attain the paramagnetic
character even at a smaller p value and the diamagnetic character at a
larger p. Thus for a range of p values, a re-entrant phenomenon may
occur. But, if the temperature happens to be very low and p large, x

never shows any paramagnetic behaviour.

At low temperature (T = 1K), a GaAs QD can have a diamagnetic
persistent current which increases in magnitude as V,, decreases. At high
temperature (T = 300 K), the persistent current is paramagnetic for
small values of p, but it sharply falls off with increasing p and becomes
diamagnetic at a certain p depending on V. The diamagnetic persistent
current assumes higher values as p is increased further and finally

reaches a saturation value.
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