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Chapter 1

Chapter 1

Introduction

1.1. Cell-fate decisions and regulatory motifs

The cell that forms the fundamental unit of life is a miniature biochemical machine that plays
many crucial and complex roles in supporting life. There are receptors present on the cell
surface that receive signals from the environment. There are receptors inside the cell as well
that check for cytoplasmic pH, damaged proteins or DNAs, availability of energy and various
internal requirements. A cell is continuously processing these information, making decisions
and exhibiting appropriate responses that include gene expression, metabolic activities,
growth, movements, cell-division, cell lineage determination and apoptosis. The process of a
cell to make decisions according to the stimuli is known as cell-fate decision making
processes'™. Cell-fate decisions are cellular processes where a cell decides upon its future
cell-types and functions. The differentiation of pluripotent stem cells into different cell types
that forms the organs during embryo development>~8, the decision a cell makes at each phase

of the cell-cycle whether to continue or withdraw from the cycle®!?, the differentiation of
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Chapter 1

multipotent hematopoietic stem cells into different blood cell types'>™* are a few examples
of cell-fate decisions. Cell-fate decisions are crucial for cell’s growth, survival, proliferation,

adaptation, differentiation, lineage commitment, and apoptosis.

The cell-fate decision network host interactions of large number of genes and proteins
forming complex network pathways through which the cell process information®®. Proteins
are one of the most important biomolecules that play important roles as regulatory entities
in these complex networks. Proteins function as receptors and transducers of signals, as
output generating moieties, as transcription factors regulating the gene expression and many
such crucial functions. The decision making is mainly done by proteins, genes, and RNA
molecules that regulate each other’s synthesis, degradation, localization and a variety of
activities through biochemical reactions that are connected via feedback and feed forward
loops with high complexity. The complex biological networks are analogous to the electrical
circuits. In electrical circuits, resistors, capacitors, inductors are connected by means of
current carrying wires whereas in biological networks, proteins, genes, mRNAs are connected

through biochemical interactions.

A cell receives varieties of signals from the environment and responds to these signals by
producing appropriate proteins through the process of gene expression regulated by special
proteins called transcription factors (TFs) that carry out the burden of regulating gene
expression. The TFs bind to the DNA at specific promoter sites and regulate the rate of
transcription. Following the binding of the TFs, the mRNAs are transcribed which are then
translated into proteins. These proteins can then act on the signals it receives from the
environment. Since the cell-fate decision systems have complex networking pathways, it is
quite difficult to study them at the systems level. Previous studies suggest that the complex
biological network system contains several 'smaller sub-network' patterns that occur
frequently and forms the simple building blocks of the larger complex network. These smaller
building blocks are termed as network 'motifs''¢18, Network motifs often form the core
regulatory networks that regulate the cell-fate decisions. Therefore, study of these network
motifs are of paramount importance and helps in understanding the larger complex network

pathways of the biological system and its functions.
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A network motif usually consist of nodes and edges where the nodes represent the
biomolecules such as proteins, genes, TFs, DNAs, mRNAs, etc. and the edges are the
biochemical interactions between the nodes. It was in Escherichia coli that the network motifs
were first defined and studied in a systematic manner!’. The transcription network in
Escherichia coli were found to have repeated patterns of smaller network motifs. Regulatory
motifs are often found in signalling networks and play important roles®2% in signal processing
and transduction such as in maintaining homeostasis in the internal functioning of the cell,
generating sustained oscillations??, in crucial cellular decision making processes such as cell
fate and lineage?%?3 and cellular development?3, Regulatory motifs can be of various types
based on the type of interactions between the nodes. The interactions between the nodes
can be unidirectional or bidirectional and the regulations can be positive or negative. Positive
regulations correspond to activation and negative regulation correspond to inhibition or
repression. Based on the type of interactions, the regulatory motifs are named as 1)
feedforward loops 2) feedback loops. In the next section, we shall discuss about different

regulatory motifs and their functions.

1.1.1. Feedforward loops

A feedforward loop (FFL) is a signalling network motif where a target gene Z is regulated by
an input TF, X, either directly (direct arm) or indirectly (indirect arm) through an intermediate
TF, Y (Figure 1.1). The FFLs are categorized into two types based on the nature of the
regulations between the input and the output node?*. A positive regulation (arrow-head bars)
represent an activation and a negative regulation (T-head bars) represent an inhibition. If the
regulatory signs of the direct and indirect arms are same (either positive or negative), then
the FFL is known as a coherent FFL and if they are of opposite signs then the FFL is known as
an incoherent FFL. Based on different combinations of positive and negative regulations, the
FFLs are of eight types, four of them are coherent and four of them are incoherent types.
Incoherent FFLs are sign-sensitive accelerators?*- they speed up the response of the output

node. On the other hand, coherent FFLs delay responses. Incoherent FFLs can also act as
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pulsers?®, FFLs form the most important regulatory motifs in Escherichia coli and also in

yeast!®l7

Coherent FFL
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Figure 1.1: Network diagrams of Feedforward Loops (FFL): The two different categories of
FFL, coherent (upper panel) and incoherent (lower panel). Each of them has four subtypes
shown as Typel, Type2, Type3 and Typed. The arrows represent activation and the T-head

bars represent inhibition.

1.1.2. Feedback loops

Feedback loops are networks where the output of a node is fed as input to the same node.
Feedback loops are of two types: 1) Positive feedback loop (PFL) and 2) Negative feedback
loop (NFL) (Figure 1.2). A PFL is one where the input and the output nodes mutually help each
other (Figure 1.2, left panel). The nodes can have regulations with either of them being

positive (mutual activation) (Figure 1.2b, left panel) or either of them being negative (mutual
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inhibition) (Figure 1.2c, left panel). A mutual inhibitory loop is also known as a double
negative feedback loop (DNFL) which is effectively a PFL. A NFL is one where the output and
input nodes have opposite functions or regulations (Figure 1.2, right panel). A feedback loop
can consist of a single node known as ‘self-regulation’ or it can have several nodes. In self-
regulation, the node self-activates or self-inhibits its own activity (Figure 1.2a, both panels).
In a feedback loop with several nodes, the overall sign of the network decides if it is a positive
or negative feedback loop. In a circular network, if there are only positive regulations or even
number of negative regulations then it is a PFL (Figure 1.2d-f, left panel) overall. Similarly, if
there are odd number of negative regulations in a circular network then it is a NFL overall

(Figure 1.2c-d, right panel).

Positive Feedback Loops
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Figure 1.2: Network diagrams for Positive and Negative feedback loops: Left panel: Different
types of PFL; self-activatory (a), a mutual activatory PFL (b), a mutual inhibitory or double
negative feedback loop (DNFL) (c), circular signalling cascades (d-f). Right panel: Different

types of NFLs; self-inhibitory (a), a classic NFL (b), circular cascades (c-d).

1.1.2.1. Positive feedback loops

One of the most important roles of a PFL is that it can amplify signals?>:26, where, for a small
change in input the change in output is abrupt or large. The other important role is that under
proper circumstances PFLs can generate bistable and multistable switches?’30. PFLs are

known to regulate many cell-fate decision making systems. The lysis-lysogene decision
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making circuit in Bacteriophage lambda consist of a PFL3L. The metabolic gene expression of
lactose utilization in Escherichia coli and galactose utilization in Saccharomyces cerevisiae
exhibit bistability that is complimented by the presence of PFLs3273%. One of the firsts
synthetically engineered PFL is the construction of a genetic toggle switch in Escherichia coli
to establish conditions necessary to exhibit bistability®>. A PFL with sufficient ultrasensitivity
or non-linearity in the feedback system is enough to produce bistability?’-3, Bistability is a
phenomena that the cell utilizes during crucial decision making processes such as in cellular
differentiation36738, memory3>4°, Xenopus oocyte maturation*>#?, cell-cycle®*=%>. A bistable
system has the capacity to convert a graded signal into a digital switch-like “all-or-none”
response?®46, In the context of cellular differentiation, bistable switches regulate epithelial to
mesenchymal transitions (EMT)?’, adipocyte differentiation3® and osteogenic-myogenic

differentiation®’.

1.1.2.2. Interlinked positive feedback loops

A single PFL can have a single node with self-activation or can have two nodes with mutual
inhibition or mutual activation between the nodes. In addition to this, often times the PFLs
are coupled to each other forming interlinked PFLs. In fact, it is quite intriguing that a large
number of physiological or cellular systems such as cell cycle, polarisation of budding yeast,
maturation of Xenopus oocytes, calcium signalling, adipocyte differentiation, p53 regulation,
eukaryotic chemotaxis, B cell fate decision making, EGF receptor signalling, Bcl2 apoptotic
switch have interlinked PFLs as their core regulatory motifs. There are many benefits of
interlinked PFLs over a single unit of PFL. One of them is that it produces bistable region over
a large parameter space (cellular conditions) that is otherwise not achieved using a single
PFL%®. This was demonstrated experimentally by constructing a synthetic gene circuit in

Escherichia coli®.
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1.1.2.3. Negative feedback loops

NFLs consist of antagonistic regulations between the participating nodes. The most important
role of a NFL is maintenance of homeostasis in cellular systems?®. NFLs can also generate
oscillatory responses*=C, Few examples of systems with negative feedbacks are circadian
rhythms and NF-kB oscillations?°1, A NFL in general, attenuates noisy signals in a system by
supressing signal amplitudes?>2®, A NFL can respond more rapidly compared to a PFL thus
making quick and prompt decisions at crucial times. Interlinked NFLs generate sustained
oscillations as seen in many circadian networks and chemotactic signalling network in
amoeba. Coupled NFLs can generate sustained oscillations from a damped oscillation

generated by a single NFL.

1.1.2.4. Interlinked positive and negative feedback loops

NFL forms the core regulatory network motif in many biological systems like circadian
systems?1°2°3 cAMP signalling®®, glycolysis®®, somitogenesis®®>’, DNA damage response
(p53)?3, NF-kB signaling systems. However this core negative feedback motif is often
accompanied by a positive feedback motif in these systems thus forming an interlinked
positive-negative feedback loop. A coupled PFL and a NFL has properties of both individual
positive and negative feedback loops. A PFL has a delayed response time and a NFL has a
smaller response time whereas a coupled PFL-NFL has an intermediate response time. If the
NFL is stronger than the PFL, generating a bistability is quite difficult and oscillations are
induced instead. A coupled PFL-NFL can filter out noisy signals with optimum response time.
While a PFL can produce bistable response, a NFL helps in efficient switching rates between

different phenotypic states>®°°,

Often times, owing to the complexity of the regulatory networks, experimental analysis of the
underlying biological system becomes difficult at the systems level. Mathematical modelling
of regulatory motifs is an important tool to achieve a better understanding of the system and

its dynamics. Mathematical modelling can also validate experimental data and predict future

Table of contents List of abbreviations References



Chapter 1

outcomes. In the next section, we shall discuss about the mathematical modelling and

modelling methodologies of gene regulations.

1.2. Mathematical modelling of regulatory motifs

1.2.1. Mathematical modelling of a simple gene regulation

Consider a TF, A, that positively regulates its target gene B according to the network motif
A > B. The positive regulation of A on B means that as the concentration or the activity of A
increases, the concentration or the activity of B increases. Thus, the rate of change of

expression or activity of B is a function of concentration of A and is represented as

2 o Bot F) ~ B (1.0

dt
where, X represents either the number of molecules or concentration of the species X. The
right-hand side of the equation has three terms. The first term [, is the basal synthesis rate
of B which is a non-zero minimal expression rate. The second term, f(A), is the regulated
synthesis rate of B and the third term, y5. B, is the degradation rate of B where y is the
degradation constant of B. The function f(A) is usually a monotonic sigmoidal shaped
function that increases with A. The function f (A) can be represented as a Hill function® which
is commonly used to represent gene regulation. In this regulatory network where A activates
B, the Hill function represent the equilibrium binding of the TF, A, to the promoter sites of the
gene B thus activating its expression. The funciton f(A) in Eq. 1.1 is given as
B.A"
T =y

There are three parameters here, K, 8 and n that determine the behaviour of the function

(1.2)

f(A) with A. B is the maximal expression rate of gene B. The maximal expression rate is
reached when A > K. At high concentrations of A, the probability of A binding to the
promoter in B is high which causes the gene B to produce more number of proteins per unit

time. K is the activation coefficient which is defined as the amount of A needed to activate

gene B. At K = A, the expression rate of the gene B is half-maximal (g) The parameter n
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represents the Hill coefficient that controls the steepness (ultrasensitivity) of the Hill function.
The steepness of the Hill function increases with increase in n. The Hill coefficient also

describes the cooperativity of the binding dynamics.

e Positive cooperativity (n > 1): Binding of the TF A to the promoter region of gene B
increases the affinity of binding of subsequent TFs to the same promoter.

e Negative cooperativity (n < 1): Binding of the TF A to the promoter region of gene B
decreases the affinity of binding of subsequent ligands to the same promoter.

e Noncooperativity (n = 1): Binding of the TF A to the promoter region of gene B does

not alter the affinity of binding of subsequent ligands to the same promoter.

For A inhibiting B, A 4 B, the Hill function will be a decreasing sigmoidal shaped curve and is
represented by the equation

f(a) = K”L-l-A” (1.3)
Here, K is the repression coefficient and the meaning of all other parameters remain same as
inthe Eq. 1.2. The Hill function approaches a saturating value at large concentration of A. The
approach to the saturation is due to the fact that the probability of A binding to the promoter
of gene B cannot exceed 1. Having constructed a mathematical modelling methodology for a

simple gene regulation, in the next section, we extend the methodology to a simple PFL.

1.2.2. Mathematical modelling of a simple positive feedback loop

Mathematical modelling of a PFL can be an useful tool in understanding bistable phenomena
observed in many biological systems. Consider a simple two component PFL between A and
B where A and B either mutually activate or inhibit each other (Figure 1.3). If A and B mutually
activate each other, higher concentrations of A will produce higher concentrations of B and
vice-versa. If A and B mutually inhibit each other higher concentration of A will produce lower

concentrations of B and vice-versa. Let S be an input signal activating A.
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(a) (b)
S

s
1 1
aA=® —®

Figure 1.3: The network diagrams for a single positive feedback loop. (a) PFL with mutual

activation between A and B. (b) PFL with mutual inhibition between A and B. S is an input

signal.

Using the Hill function, the dynamical equations corresponding to A and B in the PFL network

motif (Figure 1.3a) can be represented as

dA
dB B. A
E= B+—Kn+An—)/B.B (1.5)

Similarly, the dynamical equations corresponding to A and B in the DNFL network motif

(Figure 1.3b) can be represented as

dA

dB B

- = L —— 1.7
it e tgm Ve (1.7)

These dynamical equations are deterministic in nature whose exact solutions can be tracked
over time. The steady state (SS) equation of A is obtained by setting dA/dt = 0 and the SS
equation of B is obtained by setting dB/dt = 0. The SS equation of A and B are known as
nullclines and are plotted as phase-plane diagrams. In the top panel of Figure 1.4, the phase-
plane (a) and bifurcation diagrams (b,c) for the PFL network are plotted and in the bottom

panel of Figure 1.4, the phase-plane (d) and bifurcation diagrams (e,f) for the DNFL network
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are plotted. The non-linear curves (red, black) in the phase-plane diagrams are the B-nullclines
whereas the straight lines (various colors) are the A-nullclines. The A-nullcline move up and
down with varying parameter value of S. The point of intersection of the two nullclines
represent a SS of the system. For a single intersection, the SS value is always stable and for
three intersections, the SSs at the extreme points are stable with unstable SS in between. In
the figure, the black filled circles represent the stable and the red filled circles represent the
unstable SSs. The loci of the stable and unstable SSs with respect to a parameter is known as

a bifurcation diagram and the parameter is known as the bifurcation parameter.

2 8 . -
Bistable (b)
15t 6 region J
<<1lrp < 4 _
0.5 ® Stable SS 2r -
® Unstable SS BT
0 L : L 0 A . L
1

Figure 1.4: Phase-plane and bifurcation diagrams: Top panel (a,b,c): The phase-plane (a) and
1-parameter bifurcation diagrams (b,c) for the classic PFL (mutual activation) network.
Bottom panel (d,e,f): The phase-plane (d) and the 1-parameter bifurcation diagrams (e,f) for
the DNFL (mutual inhibition) network. The nonlinear line and the straight lines in the phase-
plane diagrams represent B nullcline (red and black) and A nullclines (various colors),
respectively. The red and black filled circles represent the stable and unstable SSs,

respectively. In the bistable bifurcation diagrams, the black solid and the red broken lines
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represent the stable and unstable SSs, respectively. The two saddle-node (SN) bifurcation
points are shown by arrows as SN, (saddle-node left) and SNr (saddle-node right) (b). The

green arrows show the transition from OFF to ON state and vice versa (c).

In Figure 1.4, (b) and (e) represent the bifurcation for A and (c) and (f) represent the
bifurcation for B. Since, there are two stable SSs (black solid lines) separated by an unstable
SS (red broken line), this type of bifurcation is known as a bistable bifurcation diagram. The
signal value where the stable and unstable SSs coalesce and destroy each other are known as
saddle-node (SN) points (Figure 1.4b). In case of a reversible bistable diagram, there are two
SN points, one at lower S value (SN) and one at higher S value (SNg). The region between two
SN points in the bifurcation diagram (yellow region) represent the bistable region where the
two stable SSs co-exists simultaneously for a certain range of S values. For A and B mutually
activating network (PFL), at low S, the SS values of both A and B are low and at high S, the SS
values of both A and B are high (Figure 1.4b-c). For A and B mutually inhibiting network
(DNFL), at low S, the SS value of A is low whereas the SS value of B is high and at high S it is
the opposite (Figure 1.4e-f). In a bistable system, the transition from one stable SS to another
stable SS occurs at the SN points. The SN points are also known as the threshold points where

SNRr is associated with ON threshold and SN, is associated with OFF threshold (Figure 1.4c).

In the context of cell physiology, each of these different stable SSs (lower and upper)
represent a distinct phenotypic state of the cell. In a bistable system, depending on the initial
concentrations of the molecular species (variables), the system can converge into one of the
two stable SSs. For example, adipocyte cellular differentiation is governed by a bistable switch
and PPARG is a protein that regulates the differentiation process. Based on the expression
level of PPARG, lower stable SS (OFF-state) represent the undifferentiated state of the
adipocyte cells whereas the upper stable SS (ON-state) represent the differentiated state®?.
In the lactose utilization system of the Escherichia coli, mediated by /ac operon, the activity
of the B-galactosidase can converge into one of the two stable SSs depending upon the initial
concentrations of the molecular species involved®?. Similarly, in cell cycle system, interphase
and mitosis are the two stable states corresponding to low and high activity of the kinase
Cdc2, respectively?16364 |n the eukaryotic cell cycle, a PFL is formed by Cdc25 and Weel on

Cyclin B-Cdk. With changing cyclin concentration, the Cdk activity exhibit bistability with one
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stable SS representing the interphase state and the other stable SS representing the mitotic
state of the cell cycle?426365 Bistability is also known to regulate many of these cell fate
determination systems*%6-70 The bistable system is associated with hysteresis?®’® meaning
the system’s ability to shift between the alternate stable SS at a range of signal values?®7!, A
bistable system can be reversible or irreversible. In case of a reversible bistable system, there
are two SN points and the system can transition to an alternate stable SS with decrease or
increase in signal values. While in case of an irreversible bistable system there is only a single
SN point and after the transition to an alternate stable SS, the system is unable to transition

back to the initial stable SS of the system’%72 when the signal is removed.

While a single PFL generates bistability, interlinked PFLs can generate tristability (Figure 1.5)
and multistability. The bistable, tristable and multistable switches are known as biological
switches and play crucial roles in regulating cell-fate decisions. The interlinked PFL can be
through a self-activation on one of the nodes (Figure 1.5a-b) or can be through a third-
component via mutual activation or mutual inhibition (Figure 1.5c-e). A tristable switch has
three stable SSs separated by two unstable SSs and has four different SN bifurcation points

(Figure 1.5f).

B=@=0c <3
(c) 2
®—=0—0 =
(d)
®—0—C
(e)

Figure 1.5: Interlinked positive feedback loops: Different types of 2 and 3-component
interlinked PFLs. A mutual-activation-self-activation (MASA) motif (a), a mutual-inhibition-

self-activation (MISA) motif (b), a mutual-activation-mutual-activation (MAMA) motif (c), a
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mutual-inhibition-mutual-activation (MIMA) motif (d), a mutual-inhibition-mutual-inhibition
(MIMI) motif (e). A tristable bifurcation diagram of the interlinked PFLs (f). The black solid and
red broken lines are stable and unstable SSs respectively. The SN points are indicated

accordingly.

In general, in a biological switch, there are ‘m’ number of stable SSs separated by ‘m — 1’
number of unstable SSs, where m is a positive integer. The tristable switch has an
intermediate stable SS that enhances the phenotypic plasticity of the system. A phenotypic
plasticity is the organism’s ability to adapt to different phenotypic states in response to
variation in environmental conditions in order to grow and survive and is considered as an
evolutionary strategy. The more the number of phenotypic states the better the chances of
the cell’s growth and survival under fluctuating environment. In a tristable system, when the
three different phenotypic states coexist for some values of control parameter, it is observed
both experimentally and theoretically that the most probable state is the intermediate stable
SS73. There are many biological systems that exhibit tristability, for example, differentiation
of naive CD4+ T cells’’>, Th1/Th2 differentiation’®78, macrophage-neutrophil

differentiation®®7°, epithelial-to-mesenchymal transition (EMT)37:80,

When two PFLs were interlinked it resulted in a bigger region of bistability over a broader
range of inducer concentrations. When one of the PFLs was removed, the bistable region
decreased. It has been observed that an additional PFL to a bistable network shifts the right
and left SN points towards right and left respectively thus widening the bistable region8?.
Another benefit of coupled PFLs in many biological systems is that if the different PFLs
function at different time scales (fast and slow) they make the system more robust and stable.
For example, in experimental studies of budding yeast polarisation, the interlinked fast and
slow PFLs generated a bistable switch. The slow PFL regulated the polarised ON state and the
fast PFL regulated the speed of switching between the unpolarised OFF state and the

polarised ON state®?,

Regulatory motifs serve as the core functional motifs in many cell-fate decision making
systems. A biological cell is constantly under the influence of chemical noise or stochasticity

which can cause detrimental effect on the smooth and accurate functioning of the cell.
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Therefore, it is important to understand the various sources of stochasticity and its effects on

the cell-fate decisions.

1.3. Stochasticity and cell-fate decisions

1.3.1. The origin of stochasticity

The process of gene expression, inherently, is random and therefore produces noisy
outcomes. In two genetically identical cells, over time, a gene will not produce the same
number of mMRNAs and proteins even if the cells are kept in identical environmental
conditions®38, This is due to the fact that the copy number of biological molecules like genes,
MRNAs, proteins, TFs are low in numbers because of which the chemical reactions are discrete
and random. For example, in a single bacterial cell, the mean copy number of genes are 1-2,
mRNAs are 1-30 and proteins are 10%-10°. These low copy humber of biomolecules react with
each other to form products. The reaction events are random and discrete in nature which
gives rise to stochastic fluctuations in the protein or mRNA abundance over time.
Experimental evidences suggest that the number of proteins and mRNAs show remarkable
cell-to-cell variability in an isogenic population of cells 8384879092 Experimental evidences of
cellular variations dates back to 1957 where Novak and Weiner showed that the expression
level of the gene producing the enzyme beta-galactosidase in individual Escherichia coli cells
was not equal and was highly variable and random 32. The origin of cell-to-cell variability can
be tracked down to two sources: the extrinsic noise source and the intrinsic noise source.

Together these sums up the total cellular noise 8488,

1.3.1.1. Intrinsic noise

In an isogenic population of cells, even if all the extrinsic sources of noise are identical, the
end products of gene expression will be inherently noisy and each cell will have different
amounts of mMRNAs and proteins thus giving rise to cell-to-cell variability. This is due to the

presence of finite copy number of the reacting species because of which the events in the
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gene expression are random and hence generate noisy outputs. This is inherent to the
chemical reaction and is known as intrinsic noise which arises from the discrete nature of the

chemical reactions in gene expression. Intrinsic noise also gives rise to extrinsic noise.

1.3.1.2. Extrinsic noise

In a population of genetically identical cells, each cell is different from the other in terms of
its shape, size, density of the cytoplasm, pH, cellular pressure, stage in the cell cycle and
number of the participating molecules. These sources of perturbations or noise that differ

between isogenic cells is known as extrinsic noise.

Elowitz et al. experimentally demonstrated the consequences of presence of both sources of
noise 8. They built copies of Escherichia coli by incorporating the cyan and yellow alleles of
green fluorescence proteins as the reporter genes. The two reporter genes were controlled
by identical promoters in each copy. In presence of extrinsic noise only, they observed that in
a clonal population of Escherichia coli, both the proteins were produced in same quantity in
each cell but were different from cell to cell. They also observed that in presence of intrinsic
noise only, the amount of proteins produced by the two genes were different in each cell as
well as in different cells. Thus, in a population, due to presence of intrinsic noise, a fraction of
cells expresses higher level of one of the fluorescent proteins than the other thus giving rise
to a population heterogeneity. The presence of stochasticity in gene expression can be
guantitatively visualized by experimentally measuring the relative amount of proteins
produced by genetically identical living cells using fluorescent proteins 83848791 However, the
measurement of protein abundance using reporter genes is actually the combined result of
transcription and translation since the amount of mRNAs are not accounted for. It was much
needed to analyse single-mRNA resolution in a single cell to better understand how mRNA
expression effects the variability in gene expression. Much later, through the advancement
of experimental tools such as single molecule RNA fluorescence in-situ hybridization (sm-
FISH) and MS2 tagging, it was revealed that the genes are expressed in a pulse like manner or

as bursts 8892794,
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1.3.1.3. Transcriptional bursting

The pulse-like or the burst phenomena in mRNA production can be theoretically better

understood by the two-state random telegraph model 8384387,90,91,95

, Which explains that the
gene has two states, namely, the active or the ON state and the inactive or the OFF state °>°°>-
%, 1t is only in the active (ON) state that the gene can be transcribed and there is no
transcription in the inactive (OFF) state. The transition between these two states is random
and mRNAs are produced in short bursts when the gene is in active state. Transcriptional
bursting can give rise to cell-to-cell variability in the amount of mRNAs produced in genetically
identical cells. Because of the transcriptional bursts, the amount of mRNAs produced will
follow a population distribution rather than a single deterministic value. The possible
mechanisms reported in recent studies show that the ON and OFF states of the gene is caused
by the supercoiling of the DNA during transcriptional elongation®'% and promoter

architecture®? that ultimately results in transcriptional bursting. After the mRNAs are

produced in bursts, the mRNAs also undergoes degradation after a short lifetime.

1.3.1.4. Translational bursting

The mRNAs are translated into proteins until they degrade. Therefore, just like the mRNAs,
the proteins are also produced in bursts by these short-lived mRNAs and the protein bursts
seize to exist when the mRNAs degrade. This phenomena is known as the translational

102

bursting®? and has been identified in single molecule experiments©3,

Just like the production of mRNAs follows a population distribution because of the
transcriptional bursting phenomena, protein production over time also follows a similar
population distribution because of the translational bursting. The bursting phenomena is
inherent to the system and can be advantageous as well as disadvantageous to the
functioning of the cell depending upon the circumstances. Several biological circuits
regulating gene expression has to carry out the process in presence of this inherent
stochasticity. While in many cellular processes, it is necessary to filter out the noise in order

to function efficiently and robustly'%4, this noise can also be utilized by the cells to adapt to
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different useful situations and switch between phenotypes under stressful environmental
conditions 19, To better understand how the dynamics of the regulatory motifs are altered
by the chemical noise, it is important to incorporate stochasticity into the mathematical
modelling of the regulatory motifs. In the next section, we shall discuss about the

mathematical modelling of chemical noise.

1.3.2. Mathematical modelling of a stochastic system

Mathematically, in presence of stochasticity, a system of chemical reactions can be modelled
using the well-known Chemical Master Equation (CME)!°®1%7 The CME is a system of
dynamical equations that measures the probability of a system to be in a particular state at a
given time. The CME can be considered as a jump type Markov process where the current
state of a system is achieved by two jump processes, arriving to the current state from the

preceding state and leaving the current state.

1.3.2.1. The general form of chemical master equation

For a well stirred system with constant temperature and fixed volume, let there be
S1,S,, ..., Sy number of chemical species reacting. Let the number of chemical reactions
occurring be R{, Ry, ...,Ry . Let X(t) = (n4, ny, ..., ny) be the state of the system at a given
time t, where n; is the number of molecules of the i -th chemical species. Each reaction R; is
associated with a propensity function a; and state-change vector element v; where the
propensity function a; is the probability that only one reaction R; will occur accordingly in the
time between ¢ and t + dt. The state-change vector element v;; counts the change in the

number of molecules of §; chemical species after a reaction R; occurs between t and t + dt.

The General form of the CME is given as

M
dP(X,
% B Z[aj(x —v)P(X =) - ;(X)P(X)] o

j=1
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Eg. 1.8 is the general form of the chemical master equation (CME), which is a state-discrete
equation in a continuous time. The left-hand side of the equation is the rate of change of
probability of the system to be in state X at time t. The right-hand side of the equation has
two terms. The first term is the rate of probability of arriving at state X at time t and the

second term represents the rate of probability of leaving state X at time t.

Solving for P(X, t) in the equation reveals information about the state X(t) of the system.
Finding the exact solution of the CME is a difficult task because of the high dimensionality of
the system which arises due to the many number of possible states of the system under
consideration. An alternate method known as the Gillespie algorithm is discussed in the next

section which exactly captures the dynamics of the CME.

1.3.2.2. Gillespie algorithm

Computationally, the solutions of the CME can be obtained by iterating an ensemble of
stochastic trajectories over time and finding the mean of the ensemble. Such ensemble of
stochastic trajectories can be generated using the Stochastic Simulation Algorithm (SSA)
formulated by D.T. Gillespie %, Popularly known as the Gillespie Algorithm and also known
as ‘next reaction’ method, this method makes an assumption that all the reactions are
Markovian and the time for the next reaction is calculated based on the current state of the
system. Consider the same system as explained above with N number of chemical species
and M number of reactions with propensities a;(X) and X(t) as the state of the system. The

time to the next reaction 'dt’ is randomly selected from the exponential distribution with

mean ai where ay = 29'4:1 a;(X) the sum of all the propensities of all the reactions. The next
0

step is to find which reaction takes place out of the M possible reactions. The possibility of

(X
a;( ). The time t is advanced to t +
0

occurrence of a reaction is decided by the probability of

dt and the number of molecules of the chemical species are updated depending on the
reaction that has occurred in the time interval dt. Using this method many time dependent
stochastic solution trajectories of the functions are generated. The mean of ensemble of the

stochastic trajectories for a system having dynamical equations expressed as mass-action
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kinetics is equal to the deterministic mean. Thus this method is useful in finding the exact

solution of a stochastic system.

The noise is measured in terms of coefficient of variation (CV) which is defined as the ratio of

standard deviation to the mean and typically scales as CV « 1/+/N, where N is the population
number of random variable. This means that if the population number is low, the noise is
large and the noise reduces with increase in the population number. To show the effect of
population number on the measure of CV, stochastic trajectories for low and high (Figure 1.6)
number of mRNAs and proteins are generated using the Gillespie’s SSA for the gene
expression model where the mRNAs and proteins are produced with constant synthesis rate
and are exponentially degraded. From the figures, it is clear that the CV for the population
distribution of mRNAs and proteins are relatively high (noisier) when less number of proteins

and mRNAs (Figure 1.6, left panel) are present compared to their high abundance (Figure 1.6,

right panel).
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Figure 1.6: The number effect on noise: The time evolution of stochastic and the

deterministic trajectories for low number of mRNAs (a) and proteins (b) and high number of

Table of contents List of abbreviations References




Chapter 1

MRNAs (c) and proteins (d). The corresponding population distribution (black for mRNAs and

green for proteins) are plotted with the coefficient of variations (CV) values.

Stochasticity in chemical reactions can alter the dynamics of the cell-fate decisions.
Stochasticity can have both positive and negative effects on the functioning of a cell. Cells can
utilise the noise to survive under stressful conditions or noise can have detrimental effects on
the cells. In the next section, we discuss about few effects of stochasticity on cell-fate

decisions.

1.3.3. Effect of stochasticity on cell-fate decisions

1.3.3.1. Stochasticity and population heterogeneity

Bistability and multistability is a mechanism utilised by cells to effectively carry out
phenotypic state transitions represented by the stable SSs. The expression levels of a master
regulator protein determines the phenotypes of the cells. For a clonal population of cells, in
a purely deterministic system with bistability, all the cells will switch from one stable SS to
another at the SN bifurcation parameter (Figure 1.4c) thus representing an ‘all-or-none’
mechanism at the population level. Whereas in a stochastic system with bistability, a clonal
population of cells will give rise to a population heterogeneity'®>!1°, In a noisy system,
bistability can give rise to a bimodal distribution, whereas tristability and multistability can

give rise to a trimodal and multimodal distributions, respectively.

1.3.3.2. Stochasticity as a nuisance

The chemical noise can be advantageous or can act as a nuisance to the system. For example,
in the human prostate cancer cells, the cells can switch between two alternate states in
presence of noise thus giving rise to a population heterogeneity. A subpopulation of the cells
are sensitive to antibiotic treatment and the other subpopulation is tolerant to antibiotic
treatment thus making the tumor cells to conveniently escape drug treatment!!l. In

preadipocyte to adipocyte differentiation, the noise helps the system to transition from
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undifferentiated state to the differentiated state. But, the same noise causes the cells to lose
the differentiated state and revert back to the undifferentiated state thus resulting in low rate
of preadipocyte differentiation®!. p53 is a tumor suppressor gene that plays a master role in
cell-fate decision making in cell cycle!!?7115, Cellular stress such as DNA damage activates p53
gene which in turn promotes cell cycle arrest, DNA damage repair or direct the cell towards
apoptosis. Chemical noise can change the expression dynamics of p53 thus making the cells

vulnerable to escape from the cell cycle arrest with the DNA damage!!%116-118,

Environmental cues affect the functioning of a cell. The receiving of the environmental cues
(signals), processing it and exhibiting appropriate response is maintained by the complex
signalling pathways in cell-fate decisions. The cell-fate decision making systems must be able
to work with high degree of accuracy and produce robust output in presence of chemical
noise. Often times, the complex signalling system must also direct the cell to different cell
types and lineages and hence the signalling system must be versatile to function in different
cell types and in presence of fluctuating input signals. Therefore, the three important
properties that a signalling system in cell-fate decisions should require are- precision,
robustness and versatility!'°. Regulatory motifs are found to have all these three requisites

and are often found to play important roles in cell-fate decision making systems.

Feedback loops function as the core regulatory network motif in many cell-fate decision
making systems such as cell cycle!?%-123, p53 regulation?3, the lysis-lysogeny decision in phage
lambda3?, cellular differentiation3637.61,68124125 the Jgc operon in Escherichia coli®?. Feedback
loops can consist of either as PFLs, or as NFLs or as fused positive and negative feedback loops.
The design principles of the feedback regulatory motifs, their dynamical and functional
properties in regulating the cell-fate decisions are being explored using both experimental as
well as computational approaches. In the next section, we present some findings from
previous works highlighting the role of feedback loops as the core regulatory motifs in many

cell-fate decision systems.
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1.4. Previous works

Cell-fate decisions are carried out by the gene regulatory networks where an input signal
triggers gene expression resulting in a desirable decision making as the outcome. Often times,
feedback loops form the core regulatory motif of the gene regulatory networks. In Escherichia
coli, a majority of the gene regulatory networks have auto-repression (NFL with a single node)
as the regulatory motif!”1?¢, Early findings by Becskei et al. showed that NFLs in Escherichia
coli exhibited stability in the regulatory network!?’. They experimentally demonstrated that
negative auto-regulation reduces the cell-to-cell variabilities by resulting in a narrower
protein distribution levels. Although NFLs are known to attenuate noise but the noise
reduction is traded off with the signal sensitivity'?$12°, Many gene regulatory networks also
consist of interlinked positive and negative feedback loops as the core regulatory motif.
Computational models showed that interlinked positive and negative feedback loops resulted
in oscillations with tunable frequency and constant amplitude3°. Furthermore, it was also
shown that tuning the feedback strength can exhibit diverse dynamic behaviour such as
monostability, bistability, excitability and oscillations thus rendering a robust desirable
outcome®3!, The multiple antibiotic resistance activator (MarA) network in Escherichia coli
consist of a coupled positive and negative feedback loop as the core regulatory network motif.
The uninduced MarA under environmental noise generates population heterogeneity for bet
hedging and upon induction, it generates uniform deterministic response!32. The galactose
uptake control system of Saccharomyces cerevisiae also consist of interlinked positive and
negative feedback loops as the regulatory motif. Experimentation on this system showed that
the PFL generated different phenotypic states, the NFL ensured efficient switching between

the different phenotypic states>®.

PFLs are often found to regulate many cell-fate decision making systems such as the
maturation of Xenopus laevis oocytes®3%®, adipogenesis3®%?, differentiation of hematopoietic
stem cells133134 differentiation of naive CD4+ T cells’#7>, and EMTs3>" 137, PFLs have the
potential to generate biological switches that are known to convert a graded response into
‘all-or-none’ response. Brandman et. al., through mathematical modelling, showed that two
interlinked PFLs each working at disparate time scales can attenuate noisy stimulus®?. PFLs

are able to reduce the effect of gene expression noise while maintaining signalling sensitivity
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even when the input signal fluctuates'?®. Previous experimental and theoretical works predict
that PFLs provide an excellent mechanism in limiting cellular variability or chemical noise.
Stochastic modelling of the yeast cell cycle revealed that the PFLs present at the G1/S
transition point play crucial role in limiting cell cycle variability'?3. The differentiation of
preadipocyte to adipocyte cells consist of fused PFLs which help in controlling the low rate of
adipogenesis3®®l, Although all the networks having PFLs can generate biological switches,
however, not all PFLs are found to act as the regulatory motifs in many cell-fate decisions.
Cell-fate decisions are crucial for the cells in terms of their survival, adaptation, lineage
choices and proliferation among many others. Therefore, a cell has to carry out the decision
making with high degree of accuracy and robustness in presence of stochasticity. How the
cells maintain a robust mechanism of the cell-fate decisions? Do the topology of the
regulatory networks play any role in generating robust responses to chemical noise? In this
thesis, we aim to understand the role of topology of the regulatory networks in generating

robust biological switches relevant to cell-fate decisions.

1.5. Aim and layout of the thesis

The main aim of this thesis is to understand how topology of the regulatory network motifs is
associated with robustness of the cell-fate decision making systems. Cell-fate decisions such
as differentiation are often regulated by PFLs. PFLs are known to generate multistable
biological switches which are associated with different phenotypic state of the cells
undergoing decision making process. The PFLs can consist of different topologies such as
mutual activation (MA), mutual inhibition (Ml), self-activation (SA) and coupled PFLs formed
by the fusion of same or different regulations. Stochasticity or chemical noise is inherent to
the chemical reactions and can interfere and alter the outcome of the cell-fate decisions. It is
therefore essential for the cell to function with high degree of accuracy and robustness to
produce desirable outcome in the face of stochasticity. What contributes to the robustness
in the functioning of the cell in presence of noise? Do the topology of the PFLs play any crucial
role in generating robust and tunable regulatory motifs? In this thesis, using mathematical

modelling, we seek answers to these questions by investigating the robustness of regulatory
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motifs in generating biological switches relevant to cell-fate decisions. This thesis also aims to
seek answer to why are certain regulatory motifs recurrently represented in many cell-fate

decision systems?
A brief introduction to each chapter in this thesis is discussed below.

In Chapter 2, we discussed about the role of tristable switches in justifying the presence of
hybrid or mixed phenotype in many cell-fate decisions. We investigated minimal 2 and 3-
component tristable networks that have the potential to generate tristable switches. Our aim
was to find the robustness score of each tristable network in generating tristable responses
in presence of noise. To do this, we introduced a new automated method of bifurcation
analysis using the concept of potential energy landscape of the non-linear system. This energy
based method allowed us to generate millions of bifurcation diagrams in an automated
manner while the parameters were randomly sampled from independent distributions. Using
systematic analysis of the tristable responses generated by each network, we showed that
the networks having mutual inhibition self-activation (MISA) motif are the most robust
compared to the networks having mutual activation self-activation (MASA) motif.
Furthermore, we showed that in EMT, introduction of a new Ml loop to the core regulatory
motif made the hybrid phenotypic state more accessible as compared to introduction of a

new MA loop. We also discussed about the origin and robustness of the tristable networks.

In Chapter 3, we investigated robustness of networks having a PFL fused with a FFL in
generating isola and mushroom bifurcations which are known to regulate the differentiation
of neural stem cells and the dynamics of heat shock proteins. In particular, our aim was to
understand the design principles of the networks in generating mushroom bifurcations and
bifurcations with broken branches such as isola. We showed that our energy based method
of bifurcation analysis is able to identify bifurcations with broken branches of the SSs in
addition to the typical continuous bifurcations. We termed the isola and mushroom
bifurcations as the atypical bifurcations. Using systematic analysis, we showed that the
incoherent networks have the potential to generate both typical and atypical bifurcations
whereas the coherent networks produced only typical bifurcations. Furthermore, by

perturbing the incoherent networks, we showed that the atypical bifurcations are formed by
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the congregation of two qualitatively different bistable bifurcations. We also explored the
dependency of different modelling methodologies in generating normal and inverted atypical

bifurcations.

In Chapter 4, we discussed about the different arrangements of multiple PFLs and robustness
of bistable switches created by such arrangements. We investigated two different
arrangements of multiple PFLs in regulating cellular variability in differentiation. We
incorporated both extrinsic and intrinsic noises into our network models and showed that
PFLs in parallel arrangement are more efficient in reducing both the noises as compared to
PFLs in serial arrangement. Furthermore, we showed that the SN points in the serial PFLs are
more susceptible to extrinsic noise as compared to parallel PFLs. Using mean residence time
analysis, we showed that the stable SSs in the serial PFLs are more sensitive to intrinsic noise

as compared to parallel PFLs.

In Chapter 5, we discussed about the role of different cooperativities in generating bistable
switches in receptor-ligand binding system. By incorporating a PFL in the receptor-ligand
binding model, we showed that the conditions where a negative cooperativity generated
robust bistability, positive cooperativity exhibited poor bistability and vice-versa thus giving
rise to a dichotomous nature of the bistable switch. We showed that the control parameters,
the bifurcation parameters, and the stability of the receptor-ligand complex regulate the

dichotomous nature of the bistability.

In Chapter 6, we summarised the overview and the results of the investigations carried out
during the course of this thesis work. The scope of further studies based on the current

findings and the application of the energy based bifurcation analysis method is also discussed.
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Chapter 2

Robustness of Tristable Networks with Fused Positive

Feedback Loops

2.1. Introduction

In many decision making systems, bistability (BS) was able to explain the presence of two
mutually exclusive phenotypic states of the cells generated by the mutual inhibition of two
genes. However, BS was unable to justify the presence of mixed or hybrid phenotypic state in
addition to the two mutually exclusive states. Many in vivo and in vitro experiments have
suggested the presence of mixed phenotypes. For example, subpopulation of interleukin-17
secreting hybrid CD4+Roryt+Foxp3+ cells was observed during the activation of antigen
challenged naive CD4+ T cell’*#’>. During the primary immune response in murine model, a
mixed phenotype of cells having expression levels of both Tbet and GATA3 was observed!3%-
140 Mixed population has also been observed in differentiation of macrophage/neutrophil
system®®79, |In epithelial-to-mesenchymal transitions (EMT), partial EMT state (pEMT) was
identified which has properties of both the epithelial and mesenchymal cells378%141 The
hybrid pEMT state is attributed to play important role in metastatic state of cancer!®?.

Dynamical modelling of the gene regulatory networks suggested that the mixed or hybrid
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phenotypic state can be justified by tristability (TS)1#3-148, A tristable switch consists of three
stable SSs each separated by an unstable SS and the intermediate stable SS is associated with

the mixed phenotype.

A single PFL with sufficient non-linearity is able to produce BS. To produce TS, an additional
PFL is required in the bistable network. Therefore, a fusion of two PFLs can produce tristable
signal responses. The fused PFLs can be formed either by coupling two mutual inhibitory loops
or by coupling two mutual activatory loops or by coupling a mutual inhibitory loop to a mutual
activatory loop. Although all of these fused PFLs are able to generate tristable responses but
all may not have the same potential to do so. As robust network motifs are important for
decision making, here we investigated the robustness of minimal 2- and 3-component
networks with fused PFLs in generating 1-parameter tristable signal response curves. In
particular, we aim to find the robustness of the tristable networks under fluctuating
parameter space which can be due to extrinsic noise. Genetic mutations which bring
variations in the binding constants or other rate parameters can also be incorporated as

fluctuating parameter space.

In this chapter, the robustness of the tristable networks is measured in terms of their capacity
to produce tristable bifurcation diagrams under random variation in parameter space. To do
this in an algorithmic way, we calculated the effective potential landscape of the non-linear
system. By monitoring the birth and death of the valleys and hills in the potential landscape,
we constructed 1-parameter tristable bifurcation diagrams. By counting the total number of
tristable bifurcations generated by each network under fluctuating parameter space, we
estimated the robustness of these networks. The tristable responses can be categorized into
four different types based on the relative location of the SN points. We also estimated the
robustness of the four types of tristable bifurcations for every network. We report that a self-
activation to a mutual inhibition loop either directly or indirectly via a third component is the
most robust tristable network. Whereas, a self-activation to a mutual activation loop is least
robust in producing tristable bifurcations. In addition, by perturbing the network regulations
in producing bistable and tristable responses allowed us to determine the origin of the
robustness of the mutual inhibition networks. Using the potential energy landscape method,

we also investigated the robustness of self-activating toggle switches (SATS) with input signals
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on both the components. We report that addition of a mutual inhibition loop to the core

regulatory motif of EMT increases its robustness and also stabilizes the pEMT state.

2.2. Modelling and methodology

2.2.1. Model networks and dynamical equations

A 2-component (2-C) motif having mutual activation or mutual inhibition, also known as

double negative feedback loop (DNFL) can produce bistability with sufficient non-linearity in

the system. To generate tristability, an additional PFL is required such that a new pair of

stable-unstable SSs are produced!#>14%130 The additional self-activatory PFL can be fused to

either a PFL or a DNFL, thus, giving rise to four new 2-C network motifs (Figure 2.1).
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Figure 2.1: Network diagrams and classifications: The two main categories are MISA and

MASA. MISA and MASA are further categorised into MISA-A, MISA-B, MASA-A and MASA-B.
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In the 3-component networks, the self-activation is replaced by a third component C. The
name of the network is mentioned at the bottom of the network. The —A and —B indicate the
node that consists the self-activation. The ‘p? and ‘n? indicate the self-activation is through
mutual activation and mutual inhibition, respectively. The T-arrows and the arrow-headed

lines represent inhibition and activation, respectively.

Based on the regulations and fusions, the four motifs are classified into two groups of motifs,
MISA (mutual inhibition self-activation) and MASA (mutual activation self-activation) motifs.
In MISA motifs, the additional PFL was fused as a self-activation into a DNFL circuit and in
MASA motifs, the self-activation was fused to a PFL (MA) circuit. We further classified MISA
into two subcategories (MISA-A and MISA-B) based on the node where the self-activation was
fused to. We used similar classification for MASA motifs as well (MASA-A and MASA-B). The
self-activation can happen indirectly through a third TF either by a mutual activation or
mutual inhibition. Therefore, every 2-C network will have two equivalent 3-C networks. Thus,

there are eight 3-C network motifs in total (Figure 2.1).

We modelled these gene regulatory networks by following the modelling methodology
proposed by Lu et al.**! In this, the dynamical equation of each TF consist of two terms- the
gain term, representing the production of the TF and the loss term, representing the dilution
due to cell growth or degradation. For the 2-C motifs with self-activation on B (MISA-B and

MASA-B), the dynamical equations are written as

dA
i G4(S,B) — k4. A (2.1)
dB

where, G4(S, B) and Gz (A, B) are the regulated transcription rates of A and B, respectively.
The dilution or degradation rate constants of A and B are given by k, and kg, respectively.
Following Lu et al. and assuming non-competitive binding of S and B to the promoter region

of the target gene A, the regulated transcription rate of A is given by

G4(S,B) = gas p H (S).H (B) + gas,p. H(S).H (B)

(2.3)
+9as g, H (S).H*(B) + gas,5, H (S).H"(B)
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The functions H~(B) and H* (B) are the inhibition and activation rates of A by B, respectively,
and are given by Hill function as H™(B) = 1/(1 + (B/Bag) ~*) and H*(B) = 1 — H™(B),
where, B, o and np 4 are the threshold amount of B required to change the activation state
of A and the Hill coefficient, respectively. The relative magnitudes of the rate parameters
9das_B_r9as.s_»9as_p, and ga s, p, determine the nature of regulation between the TF and
the target gene. In the 2-C MISA-B network, based on the regulations on the target gene A by
the TFs S and B, the following inequalities holds gas 5, < gas . = Jas,B, < Jas,B_-

Similar methodology was used to express Gg (4, B), the regulated transcription rate of B.

The dynamical equations for the 2-C motifs having self-activation on A (MISA-A and MASA-A)

are given as
dA
— = G4(S,A,B) —k,. A (2.4)
dt
dB
T Gg(A) — kg.B (2.5)

Here, the gene A is regulated by three TFs and the transcription rate of A is expressed as

Ga(S,A,B) = gas_a_p_H (S).H (A).H™(B)
+ gas,a_p . H"(S).H (A).H™(B)
+ 9as_a,p. H (S).H*(A).H™(B)
+ 9as_a_p,H (S).H(A).H*(B)
+ 9as,a,p H(S).H*(A).H™(B)
+ gas,a s, H (S).H (A).H*(B)
+ 9gas_a,p,H (S).H (A).H*(B)
+ 9gas,a,8,H (S).H (A).H*(B) (2.6)

Since gene B is regulated by a single TF, the transcription rate of gene B can be represented
by the usual Hill function. The transcription rates for inhibition and the activation are given
by Gg(A) = gpo — gpa_H (A) and Gg(A) = gpo — gpa,H' (A), respectively with gz, <

9p.a- In all these models, S is an external signal and acts as a parameter.
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Similar to 2-C networks, we used this methodology to express the transcription rates for 3-C

network motifs. For the 3-C MISA-B and MASA-B networks, the general dynamical equations

are given as

Z—? = G4(S,B) — ko A (2.7)
Z—f = G5(4,C) — ky. B (2.8)
Z—i = Ge(B) —k¢.C (2.9)

For the 3-C MISA-A and MASA-A motifs, the dynamical equations are given as

dA
— =G4(S,B,C) — k4. A (2.10)
dt
dB 2.11
— = Gs(A) — ky.B (2.11)
dc 2.12

2.2.2. Potential landscapes and bifurcation diagrams

At the bifurcation points, the stability of the SS undergoes a qualitative change which is
assessed by the eigenvalues of the Jacobian matrix in the linear stability analysis of the non-
linear dynamical systems'®2. Therefore, to generate the bifurcation diagram, the eigenvalues
of the SSs are monitored while the bifurcation parameter is varied*>3. In order to estimate the
robustness of the network motifs in producing 1-parameter tristable bifurcation diagrams, we
needed to generate a large number of bifurcations with random variation in the parameter
space. The existing tools for bifurcation analysis such as XPPAUT and Oscil8 are based on
numerical continuation method with initial value approach. In these tools, to see the effect
of parameter perturbations on the bifurcation dynamics, the parameters must be manually
changed to generate a new bifurcation diagrams. Therefore, for a large set of random
parameters, the bifurcation analysis becomes quite challenging and time consuming. In this

regard, we used potential energy landscape to generate 1-parameter bifurcation diagrams in
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a high-throughput manner that does not require manual interventions during analysis. The
potential landscape carries the signatures of the qualitative nature of the SSs where the local
minima and maxima in the potential landscapes corresponds to the stable and unstable SSs,
respectively. The theory of potential energy landscape in cell-fate decisions was originally
proposed by Waddington>* and has become an alternate approach to study the cell-fate
determination®>>. At the SN bifurcation point, a pair of stable-unstable SSs are either “born”
or “die”. Analogous to this, in the potential energy landscape, the SN point can be reflected
as the creation or annihilation of a pair of local minima-maxima such that a qualitative change
occurs in the landscape beyond the bifurcation point. Therefore, close monitoring of the local
minima and maxima for different values of bifurcation parameter allowed us to construct 1-

parameter bifurcation diagrams.

The main problem in the calculation of potential energy landscape is the non-Newtonian
nature of the dynamical equations of the biochemical system. Therefore, the definitions of
the potential energy for the multi-dimensional systems poses a great challenge. To deal with
this problem, we used the method of composite function to define the effective potential of
multi-dimensional systems. Using the composite function method, we were able to express a
multivariate system into a univariate system. From Eq. 2.1, for the 2-C MISA-B and MASA-B
networks, the SS expression of A can be written as A = G,(S,B)/k, = G;(S,B). On

substitution of this expression in Eqg. 2.2, we get the expression for effective force of the

system as
F(B,S) = Gg(Gi(S,B),B) —ky.B (2.13)
With the expression of effective force, the effective potential function of the system can be
defined as
B
V(B,S) = _jo [Gg(GA(S,x),x) — kg.x]dx (2.14)

The effective potential in Eq. 2.14 is a function of only B and it parametrically depends on the
external input signal S. Similarly, for the 2-C MISA-A and MASA-A motifs, from Eqg. 2.5, the SS

expression of B is written as B = Gz(A4)/kg = Gi(A) and the effective potential is written as
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A
V(A S) = — f [G4(S, %, GB(x)) — k. x]dx (2.15)

0

For the 3-C network motifs of MISA-B and MASA-B, using the method of composite function,

the effective potential is given as

B
V(B,S) = — f (G5 (GL(S, x), GL(x)) — k. x]dx (2.16)

0

where, G1(S, B) = G,(S,B)/k, and GL(S, B) = G.(B)/k,.

Similarly for the 3-C MISA-A and MASA-A motifs, the effective potential is given as

A

V(4,S) = - ] [Ga(S, G (x), GE(x)) — kg x]dlx (16)
0

Where, GA(A) = Gz(A)/kg and GL(A) = G-(A)/kc. The systematic analysis of the effective
potential allowed us to calculate the potential landscape of the variables A or B while we

varied the signal S.

2.3. Results and discussions

Using the effective potential function, we calculated the potential landscape as a function of
the dynamical variable and the bifurcation parameter S. At each value of S, we calculated the
number and nature of the local minima and maxima to determine the qualitative and
guantitative nature of the SSs. In the potential landscape, we carefully monitored the creation
and annihilation of the local minima-maxima with gradual change in S to determine the
bifurcation points (Figure 2.2). The S value at which a pair of local minima-maxima appears or

disappears in the potential landscape was identified as the SN bifurcation point.
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Figure 2.2: The potential energy based method of bifurcation analysis for the DNFL-B
network: (a) Plots of the potential energy V(B) (Eq. 2.2) landscape at different values of the
input signal S. The local minima are indicated by By, B; and Bs. The local maxima are
indicated by B, and B3. (b) The 1-parameter bifurcation diagram generated from the
potential energy landscape. The local minima and maxima of the potential energy represent
the stable and unstable SSs respectively in the bifurcation diagram. (c) The 1-parameter
bifurcation diagram generated using XPPAUT. Starting from the upper branch and flowing the
SSs, the SN bifurcation points are labelled. The input signal S is scaled as S/100 in this and all

other figures in this chapter. The parameter values are mentioned in Table 2.1 under Type |.

In Figure 2.2, we present the potential energy landscape for the 2-C DNFL-B network at
different values of S. At S = 0.7, and S= 0.8, there is only one local minima (B1) representing
one stable SS (monostability) with a value of B. With gradual increase in S and monitoring the
local extrema allowed us to locate the SN bifurcation point at S = 0.85. As a result of this, a
new pair of local minima-maxima appeared (B, and Bs) at the intermediate value of Bat S =
0.9. Thus, at S > 0.85, the system is bistable. Following similar method of gradual increase in

S and subsequent monitoring of the local extrema, we located another SN point at S = 1.09.
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Consequently, at S = 1.2, a new pair of local minima-maxima appeared (Bs and Bs) with low
levels of B. Therefore, for S > 1.09, the system becomes tristable. As we increased the value
of S, a pair of local minima-maxima disappeared (B1 and B) at S = 1.59, indicating another SN
point. Similar disappearance of local extrema (B3 and Ba) occurred at S = 1.95. From these
potential landscapes at different values of S, we recorded the coordinates and nature of the
local extrema to construct the 1-parameter bifurcation diagram for the system (Figure 2.2b).
This bifurcation diagram is identical to the bifurcation produced using XPPAUT*>® which is a
conventional tool for bifurcation analysis based on numerical continuation method (Figure
2.2c). Based on the relative locations of the four SN bifurcation points, the reversible tristable
bifurcation diagrams can be categorised into four different types®’ (Figure 2.3). The number
of ON and OFF signalling thresholds and the relative ordering of the four SN points are
different for different types. In Figure 2.3, we have plotted the bifurcation diagrams over their
potential energy landscapes to highlight the correlation between the effective potential of

the multi-dimensional system and the bifurcation diagrams.
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Figure 2.3: Categorisation of the tristable responses: 1-parameter tristable bifurcation
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of In(V (S, B)) for the DNFL-B network. Based on the relative location of the SN bifurcation

points, the tristable bifurcations are categorised into four different types: Type-l: SN; >
SNl > SN4 > SNZ, Type-ll: SN1 > SN3 > SN4 > SNz, Type-lll SN3 > SNl > SN2 > SN4,

Type-IV: SN; > SN; > SN, > SN,. The color gradient in the contours represent the depth of

the potential landscape with green being deepest. The parameter values for each bifurcation

type are mentioned in Table 2.1.

Table 2.1: The parameter values corresponding to the four types of tristable bifurcations for

the DNFL-B network.

Values Values

Parameters | Type | Type | Type | Type | Parameters | Type | Type | Type | Type
| 1l 1] v | Il 1l v

9as_B_ 4.0 4.0 4.0 4.0 Bao 370.0 | 335.0 | 350.0 | 300.0

9as,B_ 18.0 18.0 18.0 18.0 Ago 130.0 | 130.0 | 130.0 | 130.0
9as_B, 0.7 0.7 0.7 0.7 Bg o 67.0 67.0 75.0 75.0
9as.B, 4.0 4.0 4.0 4.0 Ng 4 2.0 2.0 2.0 2.0
9BB_A_ 7.5 7.5 7.5 7.5 Ng 4 6.0 6.0 4.0 4.0
9B,B A_ 39.0 | 39.0 | 39.0 | 39.0 Ny p 5.0 5.0 5.0 5.0
9B.B_A, 1.0 1.0 1.0 1.0 Ngp 4.0 4.0 6.0 6.0
9B,B, A, 7.5 7.5 7.5 7.5 k4 0.05 0.05 0.05 0.05

Sa0 140.0 | 140.0 | 140.0 | 140.0 kg 0.075 | 0.075 | 0.075 | 0.075
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2.3.1. Robustness of tristable networks

We applied the high throughput method of generating bifurcations using potential landscapes
to determine the robustness of the network motifs (Figure 2.1). We initially created triplicates
of 500,000 random parameter sets and in each set the parameters were randomly chosen
from independent uniform distributions. For the threshold parameters, we used the half-
functional rule given by Huang et al.*>® to determine the parameter range. The half-functional
rule ensured that a regulation has equal probability of being functional or non-functional. For
an isolated gene having only synthesis and degradation, the SS distribution was estimated by
randomly sampling the synthesis and the degradation rate constants from independent
distributions. The SS values in this case are the threshold values for the isolated genes. For a
non-isolated gene with incoming regulations only, the threshold values were calculated from
the SS equation with the parameters chosen randomly from independent distributions. In
order to remove the extreme values, the log, of the SS distribution was truncated at 0.02 and
1.98 of the median value. The threshold values in our method were randomly picked from the

truncated distribution of the relevant genes.

For every random parameter set, we ran 1l-parameter bifurcation analysis with S as the
bifurcation parameter using the potential energy landscape method. From the ensemble
runs, we calculated the robustness score by counting the total number of tristable bifurcation
diagrams each network generated. Further, using the energy based method, we were able to
categorise the tristable bifurcations into four different types according to the relative
ordering of the SN bifurcation points (Figure 2.3). The automated energy based method
generated thousands of tristable bifurcations without any manual interventions. The
representative potential landscapes and the corresponding tristable bifurcations are shown

in Figure 2.4.
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Figure 2.4: Bifurcations on the energy contours: The 1-parameter tristable bifurcations for
the network DNFL-B are overlaid on top of the contours of the potential energy. The red and

black lines represent the stable and the unstable SSs, respectively.

From the robustness score of each network, we found that MISA networks generated the
most number of tristable responses as compared to MASA networks (Figure 2.5a). The
average percentage (over triplicate) of tristable responses for MISA was much more than
MASA. Among the different subcategories in the MISA and MASA, we found the order of
robustness to be MISA-B > MISA-A > MASA-A > MASA-B for the 2-C and 3-C networks together
(Figure 2.5b). For the individual 2-C and 3-C networks, the plot of robustness score (Figure
2.5c¢) reveals consistent nature of the robustness among the different subcategories. These

results suggest that MISA motifs having mutual inhibition are significantly more robust in
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generating tristable responses as compared to the MASA motifs having mutual activation.
Further, MISA-B is robust than MISA-A, suggesting that if the self-activation and the input
signal S are on different nodes, the motif is more robust compared to motifs where the self-
activation and S are on the same node. Based on the nature of interactions between the
nodes, the 3-C networks can further be classified into 3 subtypes- mutual activation mutual
activation (MAMA), mutual inhibition mutual activation (MIMA) and mutual inhibition mutual
inhibition (MIMI). The network motifs under the MAMA are PFL-Ap?, and PFL-Bp2. The
networks under the MIMA are DNFL-Ap?, DNFL-Bp?, PFL-An?, and PFL-Bn?. The networks
under the MIMI are DNFL-An?, and DNFL-Bn?. The robustness score among these categories
again point out the importance of mutual inhibition in generating robust tristable responses

(Figure 2.5d).
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Figure 2.5: Robustness of the networks with two fused PFLs: (a) A pie chart depicting the
mean percentage of tristable responses generated by the MISA and the MASA networks. The

average tristable responses generated by the four sub categories of motifs for 2-C and 3-C
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networks taken together (b) and (c) taken separately. (d) The average tristable responses
generated by the three different types of 3-C networks MIMA (mutual inhibition mutual
activation), MIMI (mutual inhibition mutual inhibition) and MAMA (mutual activation mutual
activation). (e) The average number of tristable responses generated by all the individual 3-C

networks. The average tristable region (AS) for the 2-C (f) and 3-C (g) networks.

Our calculations also show that networks having fused mutual activation loops are not at all
robust in generating tristable responses. Among the individual 3-C network motifs, here too,
the motifs having mutual inhibition (DNFL) are more robust in producing tristable responses
compared to the motifs having mutual activation (PFL) (Figure 2.5e). Further, the robustness
score increases if the self-activation is on the far side of the input signal (DNFL-Bp2 and DNFL-
Ap?). We also found that the robust networks produced larger tristable region (Figure 2.5f
and 2.5g) suggesting that the tristable regions for the MISA networks are bigger than the
MASA networks.

Using the automation energy based method, we were able to categorise different types of
tristable bifurcations during the run. Among the four different types, Type-IV and Type-l were
found to be most and least prevalent, respectively (Figure 2.6a) in the four categories of the
network motifs. Type-Il and Type-Illl had similar values of robustness scores across all the
motifs. The robustness of four different bifurcation types are in the order Type-IV > Type-Ill >
Type-ll > Type-l in the most robust 2-C and 3-C networks DNFL-B and DNFL-Bp?, respectively
(Figure 2.6b).
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Figure 2.6: Robustness of types of tristable responses: (a) Mean percentage of four types of
tristable responses for four sub categories of the networks. (b) Average percentage of four

types of tristable responses for DNFL-B and DNFL-Bp? networks.

Similar robustness score for other networks were also realised (not shown). Type-IV is most
robust tristable due to the fact that the system can be tristable even with a small stable branch
sandwiched in between one ON and one OFF threshold (see Figure 2.3 for the bifurcations).
Type-l has two ON and two OFF thresholds indicating that this might have formed due to
fusion of two independent bistable switches from two feedback loops. This highlights the fact
that in the particular parameter space, the two feedback loops independently must be
bistable before their fusion to give rise to a tristable with two ON and two OFF thresholds.
The probability of simultaneously satisfying all these criterion is small and hence Type-Il is the

least prevalent.
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2.3.2. Robustness of SATS

In order to broaden the scope of our method, we next investigated the robustness of self-
activating toggle switches (SATS) that are known to drive epithelial-to-mesenchymal
transitions (EMT) during cancer progression4*1>°, Careful observation of the SATS topology
on the EMT suggest that they are MISA motifs with input signal on both the nodes. Based on
the nature of input signal on the two nodes, the SATS are classified into four types (Figure
2.7a). We found that all the EMT motifs are capable of generating tristable responses (Figure
2.7b). Out of the four motifs, EMT-B1 is several fold robust in generating tristable responses
than the others. EMT-B1 has a MISA-B motif with an additional inhibition from S to B which
increases its robustness compared to EMT-B, which has MISA-A motif with inhibitory input
signal on A. This is in accordance with the result that 2-C MISA-B is more robust than 2-C
MISA-A motif. Comparison of the robustness scores for the MISA-B (1330 + 9), EMT-B1 (2881
+ 40), and EMT-B3 (320 + 9), we found that an inhibitory signal on the node with self-
activation increases the robustness of MISA-B networks. The robustness of different types of
tristable responses follow a similar trend as was observed in 2-C and 3-C network motifs
(Figure 2.7c). The different robustness score of the tristable types might have a significant
impact in the outcome of cellular fates in the EMT. The different robustness scores are
associated with the percentage of cells that would exhibit the corresponding bifurcation types
or phenotypes under cell-to-cell variations due to various extrinsic factors. The frequent
occurrence of Type-IV TS suggest that in a population, a major percentage of the cells (~ 55%)
will not exhibit the pEMT state neither during the EMT nor during the reverse mesenchymal-
to-epithelial transition (MET) in a typical single-cell dose response experiment. In Type-III TS,
a significant population of cells (~ 25%) will exhibit the pEMT state during the EMT but not
during the MET. The cells can be in pEMT state both during EMT and MET only in case of Type-
| and Type-Il TS. However, such possibilities are quite low because the prevalence of Type-I
and Type-Il are quite low in the robustness score. This highlights the fact that the cell-to-cell
variability due to extrinsic noise has significant effect on the phenotypic outcome during EMT

or MET.
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Figure 2.7: Robustness of SATS motifs relevant to EMT: (a) Network diagrams of the four
SATS motifs relevant to EMT. (b) Average tristable counts for the four networks. (c) Average
percentage of four types of tristable responses for the four networks. (d) The core regulatory
network of EMT. An additional PFL loop with mutual inhibition between GRHL2 and ZEB
generated the network EMT-B2n?. The additional loop with mutual activation between GRHL2

and ZEB generated the network EMT-B.p>.

Previously, it was shown that and additional DNFL between the TFs Zeb-Ovol and also
between Zeb-Grhl2 in the EMT network stabilizes the pEMT state through a dual-bistable
switch®21%0 |n a dual-bistable switch, the upper branch of one bistable becomes the lower
branch of the other bistable switch. Following this, we investigated on two different EMT
networks EMT-B2n? and EMT-B2p?, where we incorporated an additional DNFL and PFL to the
respective networks (Figure 2.7d) to determine the role of DNFL in stabilizing the pEMT state.
From the robustness counts of the tristable responses, we found that EMT-B,n? produced 2.5

fold increase in tristable responses compared to EMT-B; (Figure 2.7e). On the other hand,
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there was marginal increase of tristable responses in EMT-B,p?. These results highlight the
importance of mutual inhibition in producing robust tristable responses in EMT network!°8,
We also found that EMT-B2n? produced greater number of dual-bistable responses compared
to EMT-B,p? and EMT-B; (Figure 2.7f). Therefore, under fluctuating parameter space, an
additional DNFL between Zeb-Grhl2 or between Zeb-Ovol stabilizes the pEMT state compared
to addition of a PFL.

2.3.3. The origin of robustness

Our results suggest that mutual inhibition (DNFL) is important in generating robust tristable
responses. However, it is important to understand the dynamical origin of the robustness of
these networks. To determine the origin of the robustness in MISA networks, we compared
the tristable response from the unperturbed network and bistable response from the
perturbed network. To perturb the network, we removed the self-activation keeping all other
parameter values unchanged (Figure 2.8). We found that in MISA-B network, both the TS and
BS resulted in similar levels of B at low and high S values. This is due to the fact that at low S,
the addition of the self-activation on B did not cause any further increase in B because the
basal activation is sufficient for full induction of B. At high S, B is completely shut down by the
negative regulation from A even with the self-activation on B. However, addition of the self-
activation on B created an intermediate level of B thus stabilising the TS in the DNFL-B
network. In the MISA-A network (DNFL-A), at low S, the levels of A in BS and TS is similar due
to negative regulation on A by fully active B. At high S, the self-activation on A further
increases the level of A in TS compared to BS. Thus, the self-activation helps in stabilizing the
intermediate level of A in the TS in the DNFL-A network. In addition to this, the mutual
inhibition (DNFL) in the MISA motifs, prevent full induction of the genes, thus allowing to
stabilize the intermediate levels of the regulators and ultimately functioning as the stabilizer
for the TS. In the motifs with mutual activation, at high S values, the gene is fully active
therefore even adding the self-activation did not further increase the levels of the genes in
MASA-A (PFL-A) and in MASA-B (PFL-B). Addition of the self-activation only decreases the

threshold values as the SN bifurcations shifted to lower S values in the TS. Therefore, in motifs
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with mutual activation, the possibility of having an intermediate level of the genes is low as

compared to the motifs with mutual inhibition.
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Figure 2.8: Comparison of the multistability from the perturbed and the unperturbed
networks: Each of the MISA and MASA networks were perturbed by removing the self-
activation and keeping all the parameters unchanged. Bistable and tristable bifurcations were
generated and were compared. The blue-black and yellow-black lines are the tristable and

bistable responses, respectively.

2.3.4. Sensitivity of model parameters

Multistability in non-linear chemical systems largely depends on the parameter values. So far,
we have analysed the robustness of the motifs based on the tristable responses under
random variation of the parameter space. However, robustness score did not provide much

information about the key parameters in generating tristable responses. To address this
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problem, we performed a local parameter sensitivity analysis of the 2-C network motifs. Here,

we started with a parameter set that resulted in tristability and then we randomly varied a

particular parameter keeping all other parameters fixed to see how many times the change

leads to tristable responses. We repeated this method for every parameter in the model to

determine their sensitivity in producing tristable responses. Consistent with the robustness

results, we found that the MISA motifs (DNFL-A and DNFL-B) were less sensitive to parameter

variations (Figure 2.9). The threshold parameters(Bg,Ap,B40), the degradation rates

(ka, k) and the Hill coefficients (14 5, np 5, 14 4) Were found to be highly sensitive compared

to other parameters.
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Figure 2.9: Sensitivity of parameters: Average tristable counts generated by perturbing each

parameter by keeping the other parameters fixed for the different MISA and MASA networks.
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2.4. Summary and conclusions

Cell fate decisions are crucial physiological processes that accounts for diverse nature of
cellular identities in multicellular organisms®1-163 Cell-fate decisions are governed by gene
regulatory networks that must perform with high accuracy for appropriate results. Therefore,
the networks must be robust enough to achieve desired outcomes under continuous
influence of cellular variabilities due to intrinsic and extrinsic factors. In this chapter, we
investigated the robustness of 2-C and 3-C network motifs having fused PFLs in generating
tristable bifurcations under random parameter variations. In order to do this, we developed
a new method of bifurcation analysis using the effective potential energy landscape where
the local minima-maxima represents the stable and unstable SSs, respectively. With change
in the bifurcation parameter, the qualitative nature of the effective potential landscape
changed with the birth and death of a pair of local extrema whose dose monitoring allowed
us to generate 1-parameter bifurcation diagrams of the system. Using this method, for every
network motif, we ran bifurcation analysis for 1.5 million random parameter sets. We
calculated the robustness score by counting the total number of tristable responses each

network generated.

We found that that the networks having mutual inhibition with self-activation (MISA) are
most robust in producing tristable responses as compared to the networks having mutual
activation with self-activation (MASA) motifs. Further investigations into individual 3-C
networks suggested that mutual inhibition is prominent in producing robust tristable
responses. We also showed that the robust networks produced bigger tristable regions.
Additionally, we also showed that if the self-activation and the input signal are on different
nodes, it increases the robustness of the network. Using the energy based method, we were
able to categorise the tristable response into four different types based on the relative
locations of the SN bifurcation points. We showed that Type-IV tristable (one ON and one OFF
thresholds) is the most abundant and Type-I tristable (two ON and two OFF thresholds) is the
least abundant across various networks. We applied our method to four different SATS
networks to determine their robustness in generating tristable responses. We found that an
inhibitory input signal on the node with self-activation is more robust compared to activatory

input signal on the same node. We also showed that addition of a mutual inhibition loop to
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the TF Zeb in the core regulatory network motif of EMT made the pEMT state accessible as
compared to that of adding a mutual activation loop to Zeb. The pEMT state was stabilised by
a dual-bistable switch. This conclusion is in accordance with the recent findings that mutual

inhibition between Zeb-Ovol and Zeb-Grhl2 stabilises the pEMT state.

Many networks that are found naturally in the context of cell-fate decisions have mutual
inhibition with self-activation motif'®*. For example, the core regulatory networks in
differentiation programs of trophectoderm-inner cell mass (Cdcx2-Oct3/4)'°, primitive
endoderm epiblast (Gata6-Nanog)'#¢, differentiation of HSCs into myeloid and erythroid
(PU.1-Gata1)'®, Th1-Th2 (Tbet-Gata3)!3914°, Th17-Treg (Roryt-Foxp3)’47>, EMT (miR34-Snail,
miR200-Zeb)43166.167 and endocrine-acinar differentiation (Nkx6-Ptfla) all consist of MISA
motifs. Regulatory networks controlling cell-fate decisions are continuously influenced by
chemical noise that has the potential to change the dynamics and outcome of the decision
making systems. Therefore, the regulatory networks must be robust and tunable to limit the
effects of chemical noise. Our findings suggest that it is the system’s strategy to naturally
select the most robust MISA motifs over MASA motifs for accurate performance under the
chemical noise. We believe that our work will be helpful in designing network motifs with

greater tunability and robustness.

Previous studies explored searching of parameter space for multistability in the context of
EMT®8, These studies were able to determine only the SS values via numerical integration of
the model equations with random variation in initial conditions. In contrast to this, our
method can generate a complete 1-parameter bifurcation diagram by detecting the stable
and unstable SSs. Our energy based method is significantly faster and is independent of initial
conditions compared to the numerical integration method. Since the potential based method
is independent of initial conditions, it has the ability to detect all the SS values whereas the
initial condition dependent numerical integration method has difficulty in detecting a SS
having weak basin of attraction. Further construction of bifurcation diagrams using the
effective potential landscape is a new paradigm of analysing non-linear systems. The
numerical continuation method where a particular solution of the dynamical system is
followed to construct the bifurcation can face difficulty in detecting broken SSs. Such broken

SSs have recently been shown to occur in early T-cell lineage commitment!®®. Broken
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branches can also generate atypical bifurcations, like the isola bifurcations, that were

169 and neural stem cell differentiation

proposed to be relevant in long-term memory
mediated by BMP2 protein'’®. The potential based method is able to detect the broken

branches since it determines the SS based on the local extrema of the potential landscape.

Our potential energy based method can also be applied to find multistable bifurcation
diagrams. However, it depends on the accurate calculation of the effective potential function.
For a multi-dimensional system, calculation of the potential energy landscape becomes
challenging. Recent studies have proposed new methods of calculating potential energy
landscapes for multi-dimensional systems!’172 in context of cellular differentiation’3and
therefore can be used for the construction of bifurcation diagrams for larger network systems.
In all our networks that we have investigated here, the multivariate system was reduced to a
univariate system such that the effective potential is calculated. However, for more complex
networks, such reduction of multivariate to univariate systems may not always be possible.
Recently, Ye et al.'®® have investigated network topologies that have the potential to generate
irreversible tetrastability with sequential activation of genes. They found that certain
networks were enriched and were responsible for such qualitative behaviour in the SSs in
early T cell development. Consistent with our findings, the occurrence frequency of MISA
motifs in these subnetworks is quite large highlighting the importance of mutual inhibition in

dictating the robustness in many cell-fate decisions.
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Chapter 3

Robustness of Networks with Positive Feedback

Loops Fused to Feedforward Loops

3.1. Introduction

A typical bistable switch has a continuous S- or Z-shape signal response curve. Studies on the
molecular network of the long-term memory (LTM) of Aplysia®® revealed that in addition to
the typical continuous S- and Z- shape curves of the BS, there exist ‘mushroom’-type and
‘isola’ type BS responses. Using systematic analysis of 2-parameter bifurcations, the authors
showed that different regions in the 2-parameter bifurcation diagram represent different
‘types’ of the BS responses. Further analysis of the heat-shock protein network dynamics
under different stress levels'’4 also featured similar ‘mushroom’ and ‘isola’ type BS switches.
Recent studies on the differentiation of neural stem cells mediated by bone morphogenetic

170 3lso suggested the

protein 2 (BMP2) in the central and peripheral nervous systems
existence of mushroom and isola type bistable bifurcations. These findings suggest that apart
from the typical BS switch, the ‘atypical’ mushroom and isola bifurcations also play crucial
roles in cell-fate decisions. It is therefore important to understand the dynamical features of

these atypical bifurcations in order to understand the underlying cellular functions. However,
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the origin of the atypical bifurcations and the role of network topology in generating these
atypical bifurcations still remains elusive. In this Chapter, we address the origin and the
dynamical features of the atypical bifurcations by investigating the robustness of network

motifs in generating such responses.

In order to understand the role of network motifs in developing typical and atypical BS signal
response curves, we designed networks with a single PFL in the form of self-activation and
the component with the PFL is under the influence of external input signal via a feed-forward
signalling. Therefore, the entire motif represents a fusion between a PFL and a FFL. The FFL
has regulations through two different arms, direct and indirect via an intermediate
component. By modifying the regulations in the two different arms, we generated eight
different network motifs, depending on the different types of regulations (positive or
negative) in the FFL. We categorised these networks into two major groups as incoherent and
coherent networks. Since all these motifs consist of one PFL, these networks have potential
to generate BS switches, however, with disparate abilities. We, therefore investigated the
robustness of these networks in generating 1-parameter bistable bifurcations under random
parameter perturbations using the potential energy based bifurcation analysis method

discussed in Chapter 2.

Systematic analysis of the robustness of these networks reveal that the incoherent networks
are capable of producing both typical and atypical bistable responses whereas the coherent
networks produced only typical bistability. By perturbing the regulations in the incoherent
networks, we found that the mushroom and isola bifurcations are formed by the congregation
of two disparate S- and Z-shaped bistable bifurcations. Using phase-plane analysis of these
bifurcations, we show that the positive and negative arms of the FFL work in two different
signalling regimes as determined by the average signalling thresholds. We show that in the
OR gate configuration of the multiple input signals on the target node, the inverted isola (ll)
and inverted mushrooms (IM) are more robust as compared to the normal isola (NI) and
normal mushrooms (NM) and it reverses for the AND and MIXED gate configurations. Finally,
we extended the scope of the work by investigating fusion of two PFLs with a FFL where it

produces tristable typical and atypical signal response curves.
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3.2. Modelling and methodology

3.2.1. The model networks

Consider a component B that self-activates itself thus forming a PFL. S is an input node that
regulates B through two different signalling pathways where S directly regulates B and S also
indirectly regulates B through A, thus forming a feed-forward loop (FFL) between S and B. The
regulations from S to B via the direct and indirect arms can either be positive (activation) or
negative (inhibition). Based on the different combination of regulations on the two arms of
the FFL, there are eight different networks possible (Figure 3.1). If both the arms in the FFL
have different regulations (either positive or negative) it is an incoherent FFL (Figure 3.1, top
panel) and if both the arms have same regulations it is a coherent FFL (Figure 3.1, bottom

panel).
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Figure 3.1: Model networks: Network motifs with fusion between a PFL (self-activation on B)
and a FFL. Two classes of the networks motifs: Incoherent (top row) and coherent (bottom
row). The name of the networks are mentioned below the network diagram. In the name, ‘IC’
stands for incoherent and ‘C’ stands for coherent. The number ‘1’ in the name indicates the
presence of a PFL. The ‘N’ and ‘P’ in the subscript stands for negative and positive regulation,
respectively. The first and second letter in the subscript indicate the type of regulation from

Sto Ainthe indirect arm and S to B in the direct arm, respectively.
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We have used three different modelling methodologies to account for AND, OR and MIXED
logic configurations of the regulation of B by the A, S and B itself. Our aim was to determine
the robustness of the model networks in generating bistable signal responses including the
atypical mushroom and isola bifurcations under random variation of parameter space. To
perform this large scale analysis of bifurcations, we resorted to the automation method of

bifurcation analysis based on the potential energy landscapes introduced in Chapter 2.

Modelling using AND gate configurations

We used Hill functions to represent the regulatory interactions in the networks. The
dynamical equations for the model networks in the AND gate input configurations of node B

are written as

dA

-~ 9aot gan Hy1(S) —va-4A (3.1)

dB

2 - 9Iso + 98,1-Hp1(B).-Hp2(S).-Hp3(A) —vB- B (3.2)

(L)”XY
where, in the case of activation the Hill function is represented as Hy ;(X) = % and
1+(5;)
in the case of inhibition it is Hy ;(X) = ﬁ
1+(55)

The parameters of the type Xy, and ny, represent the threshold value of X required to
activate/inhibit Y and Hill coefficient, respectively. In the Egs. 3.1 and 3.2, g4 and gg o are
the basal synthesis rates, and g, 1 and gg; are the maximal expression rates of A and B,

respectively. y, and y are the degradation rate constants of A and B, respectively.
Modelling using OR gate configuration

We have used OR logic of modelling different regulations on B to see if the robustness of the
networks depend on the modelling methodologies. In OR gate configurations, the different

regulations regulate B in an additive manner thereby suggesting independent regulations on
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B. The general form of the dynamical equations for the model networks with OR logic is

written as
dA
a5~ 940 + ga1-Ha1(S) —va.- A (3.3)
dB
Frie 9po + 9p1-Hp1(B) + gp 2. Hp2(S) + gp3.Hp3(A) — vg. B (3.4)

where, gp 1,92 and gg3 are the maximal expression rates of B due to B itself, S and A,

respectively.

Modelling using MIXED gate configuration

We have incorporated a third type of methodology where the regulations on B are through a
MIXED gate configurations of OR and AND gates. In the MIXED gate, the regulations on B from
S and A are in AND configuration and this combine regulation is in OR gate configuration with
the self-activation. The general form of the dynamical equations for the networks with MIXED

gate configurations is written as

dA
ar = 9ao + ga1-Hp1(S) —va-A (3.5)
dB
a 9po + 9p1-Hp1(B) + gp 2. Hp2(S). Hp 3(A) — vg. B (3.6)

Since all the model networks (Figure 3.1) have a PFL, we anticipate that all the networks have
the potential to generate bistable bifurcations which includes both the typical BS and atypical
isola and mushrooms. For all the model networks modelled using AND, OR and MIXED gate
configurations, we investigated the robustness of the network motifs in generating typical as
well as atypical bistable signal response curves under random parameter variations. The

parameters were randomly chosen from independent distributions (Table 3.1) and the
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threshold parameters (S0, 55,0, 45,0, Bpo) Were determined using the half-functional rule

discussed in Chapter 2.

Table 3.1: The parameters and their ranges

Parameters Ranges
Jao and gp o 1-10
9a1, 98,1, 98,2)9B,3 1-100
S4,0,58,004B,0, Bp o Using half-functional rule
Nsa,Nsp, Nap, NBB 1-10
Yar¥YB 0.01-0.1

3.3. Results and discussions

3.3.1. Bifurcation analysis using the potential energy landscapes

The potential energy landscape based bifurcation analysis is an efficient tool in analysing large
number of bifurcation diagrams without the need of manual interventions. For a multi-
dimensional system, however, it is difficult to express the effective potential energy function.
We therefore reduce the multivariable system into a univariate system using transfer
function. In this section, we discuss the method of arriving at the effective potential energy
function for a multivariate system. For simplicity purpose, we discuss the method for the

model networks with AND gate configuration.

Eq. 3.2 is a dynamical equation of B involving multiple variables. The dynamical equations
involving multiple variables is reduced to an equation with a single variable using transfer
function. In the model networks, B is regulated by S, A and B itself and can be expressed as a

function of these variables. Similarly, A can be expressed as a function of S. Therefore, to
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reduce Eqg. 3.2 into a single variable, we use the concept of transfer function. Using Eq. 3.1,

the SS equation of A can be written as

A= (gaot gas-Ha1(5)/va (3.7)

Substituting Eq. 3.7 in Eq. 3.2, we get

dB (3.8)

q 9po + 9gp1-Hp1(B).Hp »(S). Hp 3 (Hj,1(5)) —Yg-B

where Hz 1(S) = (gao0 + 9a1-Ha1(5)/¥a

Eq. 3.8 is the dynamical equation of B with a single variable B. Note that S is an input signal

and used as a parameter in the equations.
The effective force of the system, therefore, can be written as

F(B,S) = Gg(S,B) — Yg.B (3.9)

where, G (S, B) = g + 9p1- Hp1(B). Hp 2(S). Hp 3(H4 1 (S)). Using the effective force, the

effective potential function can be obtained as

B

V(B,S) = —] [G5(S,x) —yg.x] dx (3.10)
0

Using Eqg. 3.10, the potential landscapes were generated at different values of the input signal
S. By monitoring the local minima-maxima in the potential landscape at different values of S
the bifurcation diagrams were generated. The local minima and maxima in the potential
landscapes are associated with stable and unstable SSs. The S value associated with the birth
and death of a pair of local minima-maxima represents the SN bifurcation points. Following
this method, a large number of bifurcations were generated where we randomly varied the
parameter space. Similar method was followed for generating the bifurcation diagrams for

the models with OR and MIXED gate configurations.

Apart from the typical bistable bifurcations, the potential energy based method can also
identify mushroom bifurcations and bifurcations with broken branches such as isola (Figure

3.2). In Figure 3.2a-b the bistable bifurcation diagrams are overlaid on top of the potential

Table of contents List of abbreviations References




Chapter 3

energy contours. The normal isola (NI) and the inverted isola (1) are presented in Figure 3.2c
and Figure 3.2d, respectively. Both NI and Il have two SN points denoted by SN1 and SNoz. In
the normal mushroom (NM) (e) and the inverted mushroom (IM) (f) there are four SN points
represented by SN1, SN2, SN3 and SNa4. The bistable, NI and Il bifurcations have one bistable
region between SN1 and SN2, whereas in the NM and IM bifurcations, there are two separate

bistable regions, one between SN1 and SN; and the other between SN3 and SNa.

900 T 2400 T
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0 200 400 50 250 500
500 T 3000 T T T
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Isola (NI 2500 - Isola (II) ]
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1500
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3
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Figure 3.2: The bistable bifurcations generated by the potential energy method: The 1-
parameter bifurcations are laid over the contours of the potential energy (log(V(B)).
Continuous bifurcations with two SN points consist of the typical bistable bifurcations (a-b).

Bifurcations with broken branches consist of normal isola (NI) (c) and inverted isola (II) (d).
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Continuous bifurcations with four SN points consist of normal mushroom (NM) (e) and
inverted mushroom (IM) (f). The black and red lines in the bifurcations represent stable and
unstable SSs, respectively. The blue filled circles indicate the saddle-node (SN) bifurcation
points. The color gradient in the contour plots represent the depth of the potential landscapes

with green being the deepest.

3.3.2. Robustness of networks with AND gate configuration

For all the models with AND gate, using the potential energy method, we ran bifurcation
analysis for 100,000 random parameter sets. We repeated these calculations 5 times to
obtain a quintuplet set. From these runs, we determined the average robustness score for
each network motif by counting the number of bistable bifurcations the network generated
for 100,000 random parameters averaged over 5 runs. We also categorised each of the
bifurcations into typical bistable, normal isola (NI), inverted isola (IlI), normal mushroom (NM)
and inverted mushroom (IM) using the potential energy based method run in MATLAB. We
found that the incoherent networks generated a larger number (60%) of total bistable (both
typical and atypical) responses as compared to the coherent networks (40%) (Figure 3.3a).
However, the incoherent networks are least potent (24%) in generating the typical bistable
switches as compared to the coherent networks (76%) (Figure 3.3b). Surprisingly, only the
incoherent networks generated atypical bistable responses whereas none of the coherent
networks produced any atypical switches (Figure 3.3c). Among the different types of atypical
responses generated by the incoherent networks, the NI and NMs are the most robust as
compared to the Il and IMs (Figure 3.3d). Furthermore, the NI are more robust than the NM
in all of the incoherent networks. All the incoherent networks are equally robust in generating

the atypical isola and mushroom bifurcations.
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Figure 3.3: The average count of the bistable responses for AND gate: (a) Average
percentage of total bistable count (typical and atypical) by the incoherent (green) and
coherent (orange) networks. The numerical figure in the parenthesis represent the average
count. The average percentage of typical bistable (b) and atypical bistable (c) by incoherent
and coherent networks. (d) Average counts of atypical bifurcations generated by the
incoherent networks. NI: Normal Isola, II: Inverted Isola, NM: Normal Mushroom and IM:

Inverted Mushroom. The error bars represent +1 standard error of mean.

3.3.3. The origin of the isola and mushroom bifurcations

To understand the rationale behind coherent networks not generating any atypical isola or

mushroom bifurcations, we systematically analysed the origin of isola and mushroom
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bifurcations by the incoherent networks. To begin with, we looked into the origin of isola
bifurcation. We considered the incoherent network IC1pp and systematically perturbed it by
removing the regulation from the two arms without changing the parameter values. We first
removed the regulation from A to B in the indirect arm. This perturbed network generated a
typical bistable response (Figure 3.4a). The bistable bifurcation showed an increasing
response with increase in input signal S due to the fact that S positively regulates B. Next, we
removed the regulation from the direct arm which also resulted in a typical bistable response
(Figure 3.4b). However, this bistable bifurcations showed a decreasing response with increase
in S because of the negative regulation from S to B. Hence the two bistable bifurcations
generated by the two different perturbations are qualitatively opposite in nature. The
congregation of these two qualitatively opposite bistable bifurcations resulted in an isola

bifurcation for the full unperturbed network (Figure 3.4c-d).
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Figure 3.4: The origin of the isola bifurcations: The network IC1pp was perturbed by removing

the regulations from the two arms. Bistable response on removing the regulation from Ato B
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in the indirect arm (a) and from S to B in the direct arm (b). (c) The congregation of the two
distinct bistable responses. (d) The formation of isola due to the congregation of the two
distinct bistable bifurcations for the full network. The parameters used to plot the NI are:
Jgao = 8.0346,9,1 = 85.4358, g = 4.8210, gp 1 = 44.9532,5, = 135.3604, S5y =
94.4814,Bg o = 201.0295,Ap o = 599.6196,n54 = 2,n5p = 6,Npg = 4, up = 3,¥4 =
0.0995,yp = 0.0714. To plot the bistable response in (a) and (b), the interaction Hg 3(A) and

Hp »(S) was removed, respectively, without altering the parameter values.

Similar analysis was performed to understand the origin of the mushroom bifurcations. Here
too, the congregation of two qualitatively opposite bistable bifurcations from the two
differently perturbed networks resulted in a mushroom bifurcation for the full unperturbed

network (Figure 3.5).
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Figure 3.5: The origin of the mushroom bifurcations: The network IC1pp was perturbed by

removing the regulations from the two arms. Bistable response on removing the regulation
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from A to B in the indirect arm (a) and from S to B in the direct arm (b). (c) The congregation
of the two distinct bistable responses. (d) The formation of mushroom due to the
congregation of the two distinct bistable bifurcations for the full network. The parameters
used to plot the NI are: g,0=38761,9,1=74.6160,95, = 2.7198,g5, =
51.4442,5,0 = 162.1356,S55 o = 52.7809,Bg o = 220.9353, A, = 688.9720,n5,4 =

3,nsg = 9,ngg = 5,145 =7,y4 = 0.0119,y5 = 0.0301. To plot the bistable response in (a)
and (b), the interaction Hg 3(A) and Hg ,(S) was removed, respectively, without altering the

parameter values.

Similar perturbation analysis performed on other incoherent networks also resulted in similar
conclusions. We conclude that the congregation of two qualitatively opposite bistable
bifurcations give rise to atypical isola and mushroom bifurcations. The qualitatively opposite
nature of the bistable bifurcations is an important criteria in the formation of the atypical
isola and mushroom bifurcations. The opposite nature of the two bistable responses is due to
the fact that the regulation from S to B in the incoherent networks are different in the two
different arms. Whereas, in the coherent networks, the regulations are identical in two
different arms, hence, cannot produce opposite bistable responses. Therefore, coherent

networks do not produce any atypical isola and mushroom bifurcations.

AND gate configurations of the input signal on B generated a large number of NI and NM
bifurcations and rarely produced Il and IM bifurcations (Figure 3.3d). For the AND logic gate
the Hill functions for different regulations on B are represented in a multiplicative manner
[Hp 1(B).Hg »(S). Hg 3(A)] because of which all the regulations are significant. Due to the
contrasting nature of the regulations in the incoherent FFL, the effective regulation on B is
low at low and high S input values. Therefore, the average counts of NI and NMs are
significantly higher as compared to the Il and IMs. One important feature of the NI and NM
bifurcations is that the positive and the negative arms are initiated at low and high values of
S, respectively in the incoherent networks. This feature can also be supported by analysing
the phase-plane diagrams (Figure 3.6) corresponding to the NI bifurcation shown in Figure
3.2c¢, for the incoherent network IC1pp. In the phase-plane diagrams, A and B-nullclines are
plotted at different S values. At low input signal S (S = 80,90,120, 150), the A-nulicline

changes a little while the B-nullcline changes in shape and values significantly (Figure 3.6a-d)
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suggesting the onset of the positive regulation. Whereas at high values of § (S =
180, 200, 220, 250), the B-nullcline becomes static but the A-nullcline changes significantly
(Figure 3.6d-h) suggesting the onset of the negative regulation. Similar results were observed
in the phase-plane diagrams for the NM bifurcations generated by the same network (Figure

3.7).
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Figure 3.6: The phase-plane analysis for the normal isola bifurcation: The normal isola
(Figure 3.2c) is generated by the incoherent network IC1pp. The blue and green curves
represent B and A nullclines, respectively. The intersection of the two nullclines indicate a SS.
The black and the red solid circles represent stable and unstable SSs, respectively. The S
indicates the input signal. The grey lines represent the trajectories obtained from various

initial conditions. The parameter values reported in Figure 3.4 are used here.
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Figure 3.7: The phase-plane analysis for the normal mushroom bifurcation: The normal
mushroom (Figure 3.2e) is generated by the incoherent network IC1lpp. The blue and green
curves represent B and A nullclines, respectively. The intersection of the two nullclines
indicate a SS. The black and the red solid circles represent stable and unstable SSs,
respectively. The S indicates the input signal. The grey lines represent the trajectories
obtained from various initial conditions. The parameter values reported in Figure 3.5 are used

here.

In order to establish the generality of the finding that for the NI and NMs, the positive and
the negative arms must trigger at low and high signal strengths, respectively, we recorded the
threshold of the regulations of these two arms for normal atypical bistable responses for all
the incoherent networks. In Figure 3.8 we present the average of these thresholds for all the

incoherent networks.
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Figure 3.8: The average threshold values of S for the incoherent networks with AND gate:
Sa0 and Sg o are the threshold values of S for the indirect and the direct arm, respectively.

The error bars represent +1 standard error of mean.

In all the incoherent networks, for the NI and NM bifurcations, the average threshold value
of the positive arm is much lower compared to the average threshold value in the negative
arm. For the typical bistable bifurcations, the average threshold values in the two different
arms are of comparable values. The low threshold value in the positive arm indicate that at
low values of the input signal S, the positive arm is initiated while the high threshold value in
the negative arm indicate that at high S, the negative arm is initiated, thus giving rise to a

normal atypical bistable response.

3.3.4. Robustness of networks with OR gate configuration

We again made use of the potential method to generate 1-parameter bifurcation diagrams
for 100,000 random parameter combinations ran in quintuplet. We used Eq. 3.3 and Eq. 3.4
in this case. We found that the coherent networks are most robust (60%) in producing total

bistable responses as compared to the incoherent networks (40%) (Figure 3.9a). This is
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opposite to what we found in case of AND gate configuration. Furthermore, in OR gate
configurations, the coherent networks are once again more robust (71%) in generating typical
bistable responses as compared to the incoherent networks (29%) (Figure 3.9b). Similar to
the AND gate, here too, the coherent networks did not produce any atypical bifurcations
(Figure 3.8c). Among the various atypical responses, the robustness of Il and IMs are higher
than that of the NI and NMs. This finding is opposite to the responses observed in the AND

gate configurations where the NI and NMs were most robust than Il and IMs.
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Figure 3.9: The average count of the bistable responses for OR logic: (a) Average percentage
of total bistable count (typical and atypical) by incoherent (green) and coherent (orange)
networks. The numerical figure in the parenthesis represent the average value of the count.
The average count of typical bistable (b) and atypical bistable (c) by incoherent and coherent

networks. (d) Different types of atypical bifurcations generated by the incoherent networks.
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NI: Normal Isola, II: Inverted Isola, NM: Normal Mushroom and IM: Inverted Mushroom. The

error bars represent +1 standard error of mean.

Since in the OR logic all the different regulations are independently regulating B in an additive

manner [Hp 1(B) + Hp »(S) + Hp 3(A)], there is a possibility of getting both inverted and

normal atypical bifurcations. However, because of the contrasting regulations of the

incoherent FFL, the effective regulation on B is high at low and high S values. Therefore, the

counts for Il and IMs are more than NI and NMs for OR logic since the Il and IMs have high

induction of the gene at low and high signal values.

The average threshold values S;, and Sg, for the two different arms in the incoherent

networks suggest that in case of Il and IMs, the negative arm is initiated at lower values of S

whereas the positive arm is initiated at higher values of S (Figure 3.10).
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Figure 3.10: The average threshold values of S for the incoherent networks with OR gate:

Sa0 and Sg o are the threshold values of S for the indirect and the direct arm, respectively.

The error bars represent +1 standard error of mean.
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The smaller threshold value of the negative arm for the Il and IM bifurcations in all the
incoherent networks suggest that at lower S input signals, the negative arm is initiated.
Similarly the threshold values for the positive arm for the same bifurcations are larger
indicating that at higher S values, the positive arm is initiated. Whereas, for NI and NM
bifurcations, the threshold values for the positive arm are smaller than the threshold values
for the negative arm suggesting that at lower S values, the positive arm is initiated and at
higher S values, the negative arm is initiated. These are the characteristic features of the

threshold values for different bistable responses.

3.3.5. Robustness of networks with MIXED gate configuration

Much like the OR gate configurations, in the MIXED gate we found that the coherent networks
are most robust (63%) in producing total bistable responses as compared to the incoherent
networks (37%) (Figure 3.11a). Similar to the AND and OR gate configurations, we found that
in the MIXED gate also the coherent networks produced more number (77%) of typical
bistable switches than the incoherent networks (23%) (Figure 3.11b). Once again, the
coherent networks are not at all capable of generating any type of atypical isola and
mushroom bifurcations (Figure 3.11c). Among the different types of the atypical switches, the
NI and NMs are more robust in all the incoherent networks as compared to the Il and IMs
(Figure 3.9d). These findings are similar to that of in AND gate (Figure 3.3d) but opposite to
that of in OR gate configuration (Figure 3.9d).
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Figure 3.11: The average count of the bistable responses for the MIXED logic: (a) Average
percentage of total bistable count (typical and atypical) by incoherent (green) and coherent
(orange) networks. The average count is denoted in the parenthesis. The average count of
typical bistable (b) and atypical bistable (c) by incoherent and coherent networks. (d) Different
types of atypical bifurcations generated by the incoherent networks. NI: Normal Isola, II:
Inverted Isola, NM: Normal Mushroom and IM: Inverted Mushroom. The error bars represent

+1 standard error of mean.

Again, for the same reasons that the two contrasting regulations ((Hp ,(S) and Hp 5(A)) are
in multiplicative manner, the SS value of B is low at low and high S input signal values.
Therefore, in MIXED gate configurations, the number of NI and NMs are more compared to

the number of Il and IMs, similar to in AND gate.
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3.3.6. Addition of a second PFL to the model networks

We extended the model networks by adding an additional PFL by introducing an interaction
from B to A (Figure 3.12). The model networks now have two fused PFLs and S regulate both
the components A and B. Based on the regulations from S to B via the two different arms,
these networks can be categorised into two classes, incoherent and coherent. Since two PFLs
are present in the networks, all the networks have the potential to produce tristable
responses. We used the potential energy based method to carry out the tristable bifurcation
analysis. We found that all the incoherent networks are able to produce both typical as well

as atypical tristable bifurcations (Figure 3.13).
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Figure 3.12: Networks with added PFL: A regulation from A to B (grey) is added to the network
motifs in Figure 3.1, thus incorporating an additional PFL. Two classes of the networks motifs:
Incoherent (top row) and coherent (bottom row). The name of the networks are mentioned
below the network diagram. The grey lines represent the trajectories obtained from various
initial conditions. The number ‘2’ in the name stands for two PFLs. The ‘N’ and ‘P’ in the
subscript stands for negative and positive regulation, respectively. The first and second letter
in the subscript indicate the type of regulation from A to B in the indirect arm and S to B in

the direct arm, respectively.
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Figure 3.13: The tristable bifurcations overlaid on top of the contours of the potential
energy: Different tristable bifurcations generated by the incoherent tristable networks. (a-b)
are the typical tristable bifurcations whereas the remaining (c-1) are the atypical tristable

bifurcations. The black and red lines represent the stable and unstable SSs, respectively.

3.4. Summary and conclusions

Bistable switch is employed by many cell-fate decision making systems to convert a graded
response into a digital ‘all-or-none’ response. A typical bistable response consists of a
continuous S- or Z-shape loci of the SSs of the variable of interest as a function of input signal.
However, not all BS responses are continuous. Previous works suggest the existence of
bistable responses with ‘broken’ branches of the SSs and are known as isola bifurcations.

Furthermore, previous investigations also suggest the presence of bistable switches which
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have a combined S- and Z- shape signal response curves and are known as mushroom
bifurcations. The isola and mushroom bifurcations can be termed as ‘atypical’ bistable

bifurcations.

The typical bistable and atypical mushroom are continuous curves whereas the atypical isola
has a discontinuous curve or ‘broken’ SSs. The conventional method of analysing bifurcations
using XPPAUT or Oscil8 uses numerical continuation method which rely on initial conditions
to generate the SS values from the differential equations. Therefore, the numerical
continuation method has the ability to analyse the continuous bifurcations such as the typical
bistable and atypical mushrooms, whereas, it is difficult to identify bifurcations with
discontinuous or broken branches such as the isola. We here, used the potential energy
landscape method discussed in Chapter 2 to identify the broken SSs thereby analysing the

atypical isola bifurcations and also various other bistable bifurcations.

Isola and mushrooms are known to regulate the differentiation of neural stem cells, and the
dynamics of heat shock proteins. Chemical noise can interfere with the cell-fate decisions and
change its dynamics and outcomes. The cell-fate decisions, therefore, adapt to certain
topology of the regulatory motifs to limit the effects of the chemical noise. In this Chapter,
we investigated the robustness of networks with PFL fused to FFL (Figure 3.1) that have the
potential to generate both typical as well as atypical bifurcations under variation of random
parameter space. The networks are classified into incoherent and coherent based on the
regulations on the two different arms of the FFL. In case of incoherent networks, the
regulations are different whereas in case of coherent the regulations are same. Using the
potential based bifurcation analysis method, we found that these model networks are able to
generate typical as well as atypical bistable bifurcations (Figure 3.2). We modelled the
dynamical equations for the networks with AND, OR and MIXED gate configurations of the
input signals on B to determine if the robustness of the bistable bifurcations depend on the

modelling methodologies.

To investigate the robustness of the networks, we generated 100,000 random parameter
combinations in quintuplet sets and ran bifurcation analysis for each network. We then

calculated the average number of bistable bifurcations generated by each network to
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determine the robustness score. The bistable bifurcations are categorised into typical and
atypical using the potential based method. We found that all the incoherent networks are
able to generate both typical as well as atypical bistable bifurcations whereas the coherent
networks generated only typical bistable responses. Among the different atypical
bifurcations, with OR gate, Il and IMs are most robust as compared to the NI and NMs (Figure
3.9). Whereas with AND and MIXED gate configurations, the NI and NMs are most robust
compared to Il and IMs (Figure 3.3 and Figure 3.11). With OR gate, since the different
interactions on B are added in the dynamical equations (Eq. 3.4), the effective regulation can
generate either normal or inverted atypical bistable responses. On the other hand with AND
and MIXED gate configurations, the interactions are multiplied (Eq. 3.2 and Eq. 3.6) which
lowers the effective regulation on B at low and high input signals, thus generating mostly

normal atypical responses.

What makes the incoherent network more robust than coherent networks in generating isola
and mushroom bifurcations? To address this question, we investigated the origin of the isola
and mushroom bifurcations. With systematic perturbations of the incoherent networks, we
found that the isola and mushroom bifurcations are formed by the congregation of two
qualitatively opposite bistable bifurcations (Figure 3.4 and Figure 3.5). We observed that the
two qualitatively opposite bistable bifurcations are formed due to the two different
regulations in the incoherent networks. Similar opposite behaviour of the bistable
bifurcations are not observed in the coherent networks due to the presence of similar
regulations on the two different arms. Therefore, coherent networks do not have the

potential to generate atypical isola and mushroom bifurcations.

Furthermore, we observed that the NI and NM bifurcations are formed when the positive arm
of the FFL is initiated at low signal and the negative arm is initiated at high signal (Figure 3.6
and Figure 3.7). However, the Il and IM bifurcations are formed when the negative arm acts
as low signal and positive arm acts at high signal. These observations are supported by the
mean threshold values of the component S for the two different regulations (Figure 3.8 and
Figure 3.10). We extended the networks by incorporating an additional PFL that resulted in
tristable networks (Figure 3.12). The incoherent tristable networks generated typical as well

as atypical tristable bifurcations (Figure 3.13
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Chapter 4

Arrangements of Multiple Positive Feedback Loops

and the Robustness of Bistable Switches

4.1. Introduction

A clonal population of cells in identical environmental conditions exhibit significant cell-to-
cell variations thus creating cellular heterogeneity. Cellular heterogeneity is a natural
phenomenon where in an isogenic population a cell differs from other cells in terms of its size,
shape, protein and mRNA contents, cell cycle duration and response to stimulil®>7>, Cellular
heterogeneity is caused due to the presence of the two types of chemical noise: intrinsic®%-176
and extrinsic noises®384177-180 ntrinsic noise is inherent to a cell and arises because of
fluctuations of low copy numbers of the chemical species undergoing chemical reactions in
the cell and extrinsic noise has global effect on all the chemical reactions in the cell. While in

183

182 3poptosis®, HIV virus

181 p53 dynamics

some cellular processes such as cell cycle
latency/replication®18>, aneuploidy'8®, the cellular noise creates nuisance whereas in others
the cellular noise helps the cells to adapt to continuously fluctuating environment*®7:188, An
intriguing question that arises here is how does a living cell minimizes the effects of chemical

noise that can cause hindrance to the cellular functions?
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From earlier findings, it is known that NFL might minimize the effects of stochastic
fluctuations!?’. Since then, a number of researchers in both theoretical/computational!’®18-
194 and experimental'®~17 fields shifted their focus on the role of negative feedback in cellular
noise. Negative feedback indeed has the potential to attenuate noise but are more sensitive
to external signals?®'2°, Hornung et al., based on calculations on simple network motifs,
predicted that PFLs can filter noise and are not sensitive to external signals'?®, A PFL also has
the potential to convert a graded signal into a digital ‘all-or-none’ response by creating
bistability’°. Bistability is a common phenomenon found in many biological systems such as
cellular differentiation3®-3%, memory324°, cell cycle transitions***°, and maturation of frog
eggs**2. Using system-level stochastic model of budding yeast cell cycle!?3, it was found that

PFLs filter noise in various cell cycle events.

Cellular differentiation processes such as epithelial-to-mesenchymal transitions (EMT)%’,
adipocyte differentiation®, myogenic and osteogenic differentiation®” are regulated by
bistable switches. For a cell to be locked in its differentiated state, the system must be able
to reduce the effects of noise such that the cells are not reverted to their initial states and
vice versa. This is important in cases where from a large pool of precursor cells only a small
fraction of cells are differentiated in presence of weak signalling regime. Coupling of a NFL to
a bistable response will only generate excitability, hence this is not a feasible solution to
minimize the noise in bistable systems>®>°. Contrary to this it was shown that two fused PFLs
functioning individually in disparate time scales have the potential to reduce the chemical
noise®>1%, Thus fusion of two or more PFLs might be a possible solution to the problem.
However, the way the PFLs are fused can have altering effects on the noise propagation in
the system. In a recent study, Ahrends et al., showed that preadipocyte to adipocyte
differentiation uses a bistable switch which is generated by seven PFLs arranged in a
consecutive manner around a master regulator peroxisome proliferator-activated receptory
(PPARG)®L. This consecutive arrangement of PFLs around a master regulator PPARG can also
be named as parallel arrangement of PFLs. They showed that addition of PFLs reduces noise

more efficiently compared to a single PFL with high cooperativity.

At this point, a question that is needed to be answered is how the arrangement of multiple

PFLs regulate the noise in bistable systems. Just like parallel arrangement, multiple PFLs can
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also be arranged in a sequential chain-like fashion that we call serial arrangement of PFLs.
Here, the parallel and serial arrangement of PFLs are analogous to the parallel and serial
arrangement of resistors in electrical circuits. Both the parallel and serial topologies can
produce bistable switches with identical average properties, the SS values and the region of
bistability. In this chapter, using mathematical modelling and stochastic calculations, we
investigated the role of parallel and serial topologies in reducing extrinsic and intrinsic noises.
We found that compared to serial arrangements, the cells in parallel PFLs are more stable and
less sensitive to chemical noise and are able to maintain their respective differentiated states.
Thus, parallel PFLs efficiently reduces the noise compared to serial arrangement of PFLs. Our
investigations and calculations suggest that the SN bifurcation points are less sensitive to
extrinsic noise and the distribution of SN points are less skewed in parallel PFLs. Also, using
mean residence time calculations we found that the stable SSs in parallel arrangement are
more stable to intrinsic fluctuations compared to the same in serial PFLs. We have also shown
that our results are consistent for both AND or OR-gate configurations of input signals and

are independent of modelling methodologies.

4.2. Modelling of the networks

We fused multiple PFLs in two different ways namely parallel and serial arrangements, where,
both classes of network topologies have the potential to generate bistable responses. In
parallel arrangement, the PFLs are independently fused to a central regulator Xo and in serial
arrangements the PFLs are linked to one another head-to-tail in a chain like manner (Figure
4.1). To begin with, we first created a PFL between Xo and X1 where Xoand X1 mutually activate
each other. This is a single PFL (1L) and serves as a repeating unit for multiple PFLs. Adding
another component X; via a PFL to Xo will create a two-loop (2L) parallel motifs whereas if X,
is fused with X; via a PFL it becomes a 2L serial motifs. In parallel motifs, all the new
components are added as independent PFLs to Xo (Figure 4.1a, left) whereas in serial motifs
all the new components are added to the preceding component as PFLs (Figure 4.1a, right).

This way we generated up to five loops (5L) of both parallel and serial PFLs.
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In a signalling system, input signals can be redundant or non-redundant in a way to trigger
response. In signal transduction pathways non-redundant input signals behave as AND logic
gates and redundant signals functions as OR gate signals much like in electrical circuits?*. In
this work we have considered both AND and OR gate signalling configurations whenever or
wherever required. For example, in parallel motifs, production of X is positively regulated by
X1, Xz, etc. either by AND or OR logic gates configuration. In serial motifs, the production of
Xi is positively regulated by Xi.1 and Xi+1, again either by AND or OR gate configurations except

for the terminal components.

(a)

5 Loops 5 Loops
Parallel Arrangement Serial Arrangement
400 400
(b) ! ! ! (C) T T T

1L

2L
>~ 200 - 3L

4L

0
0 0.5 1 1.5 2

Figure 4.1: Network circuit diagrams and the bistable bifurcation diagrams for the models:
(a) PFL between Xoand X1 creates a 1L PFL and several of these are fused together either in a

parallel (left) or serial arrangements (right). One-parameter bistable bifurcation diagrams for
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different number of loops for parallel (b) and for serial (c) motifs. The solid lines represent the
stable SSs and the broken lines represent the unstable SSs. The right and left SN points (SNr
and SN) are indicated by the arrows. The upper and the lower stable branches represent the

differentiated and undifferentiated (dedifferentiated) states respectively.

In the basic repeat unit of a PFL, the production rate of X is directly proportional to the
amount of X1 present and X in turn helps the production of X; through enzymatic activation
of the TF (T1) for X1. The TF (T1) has two states, active (T1,a) and inactive (T1,), and Xo catalyzes
the transcription activation (Figure 4.2). The synthesis rate of the component X; is directly
proportional to the amount of active TF (T1,4). This represent a single PFL (1L) and is capable

of generating bistable response in presence of enough non-linearity or ultrasensitivity*®°.
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Figure 4.2: Mechanistic details of the networks. Xis are the main regulators. Tiaand Tiare
active and inactive TFs, respectively. The solid arrows associated with the regulators
represent synthesis and degradation. The solid arrows associated with the TFs represent
interconversion between active and inactive states of the TFs. The broken arrow represents

enzymatic regulation on a certain chemical reaction.
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To introduce ultrasensitivity into the PFL, we used Goldbeter-Koshland’s (GK) zero-order
ultrasensitivity in the activation-deactivation of the TF?%, To satisfy the requirement of GK
switch, we assumed that the total amount of TF (Tr = Ta + T)) is constant and that the state
change of the TF follows Michaelis-Menten enzyme kinetics. In parallel motifs, the TF (T;) of
any component X is enzymatically activated by Xo and in turn the synthesis rate of Xo is
positively regulated by all other components Xis either through AND or OR gate
configurations. Similarly for serial motifs, the TF (Ti) of any component X; is enzymatically
activated by two neighbouring components Xi.1 and X1 either by AND or OR gate

configurations (Figure 4.2).
The dynamical equations for the models are listed in the Table 4.1

Table 4.1: List of dynamical equations for the parallel and serial models.

Parallel Serial
dX, dX,
— =s(koV + k1Py) —vX, — =s(rV+nrX) —vX,
dt dt
dX; , dX; ,
E: k2V+k2Ti,A—)/Xi E=7"2V+7”2Ti 2
dTia _ keXo(V.Tr —Tin)  kpV.Tia dTia _ 17:Gi(V-Tr—=Tix)  nV.Tig
dt  KyV+(V.Tp—Ti) KuV+Tia dt  KyV+V.Tr —Tin) KuV+Tia
For AND-gate Py, = % N . X; and for OR-gate | For AND-gate G; = %Xi—1Xi+1 and for OR-gate
Po=3YN . X; Gi = X;_1+X;41; for N=1, G, = X, and for
i=N, Gy =Xy-1

Fori = 1,2,... N, where N=number of loops, V is a scaling factor to change the number of molecules

of chemical species

The dynamical equations for Xo and Xi s are written as mass action kinetics that has synthesis
part and degradation part whereas the dynamical equations of the TFs are written using GK
function. For all the different loops (1L, 2L, ..., 5L) in parallel motifs, we have used the same
set of parameter values. For serial motifs, the activation rate constant of the TF for X1 (rs1)
and the regulated synthesis rate constant of Xo (r1) are carefully adjusted so as to generate

similar bistable bifurcation diagrams as in the corresponding parallel motifs. We have also
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introduced a cell-volume parameter V, to alter the number of molecules of various species

without altering the qualitative dynamics of the system.

4.3. Results and discussions

4.3.1. Modelling using AND-gate input signal configuration

We first investigated the SS deterministic responses of both parallel and serial motifs in the
absence of intrinsic or extrinsic noise using XPPAUT software®® in order to generate 1-
parameter bifurcation diagrams. All of these PFLs generate reversible bistable bifurcation
diagrams with respect to the parameter s which acts as external signal that regulates the
preadipocyte-to-adipocyte differentiation process. The choice of parameter s as the
bifurcation parameter is supported by the fact that the external stimulus rosiglitazone
initiates the differentiation in mouse OP9 cells*® in preadipocyte differentiation. The
parameter s is termed as ‘signal’ in the rest of this chapter. The parameters k, and r,
represent the ‘effectiveness’ of the signal. As the number of PFLs are increased, the region of
bistability also increases for both parallel (Figure 4.1.b) and serial (Figure 4.1c) arrangements.
For both parallel and serial motifs, we managed to generate similar bistable bifurcation
diagrams including the region of bistability and the SS values. This forms an important criteria
in comparing these topologies for noise propagation. The effectiveness of the serial and
parallel PFLs can be determined by quantifying the deviation from the average SS values in
presence of noise. For cellular differentiation process, the lower stable SS represent the
undifferentiated or de-differentiated state while the upper stable SS represent the
differentiated state of the cells. It has been proposed that two different types of bifurcations,
a SN and a pitchfork, drive the cell fate decision making processes. The much celebrated
Waddington’s epigenetic landscape'®* recruits supercritical pitchfork bifurcations while
adipocyte differentiation happens through SN bifurcations. In the SN bifurcation points, the
alternate states are present well before the critical points whereas in pitchfork bifurcations
the alternate states emerge only after the critical point. This difference has important

consequences when the intrinsic noise interferes with the decision making processes. In
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presence of intrinsic noise, the alternate stable SSs can coexist before the critical point in case
of SN bifurcations whereas there is no possibility of coexistence of alternate states before the
critical point in pitchfork bifurcations. Also, the cell fate decision making is always reversible
in Waddington’s epigenetic landscape model whereas in SN bifurcations, the differentiation

processes can be irreversible as well.

In absence of any chemical noise, every cell in a genetically identical population will behave
identically, hence, there will be a clear switch-like transitions of the entire population from
undifferentiated (or dedifferentiated) state to the differentiated state after the right critical
point (SNR). Similarly all the cells will revert back to the undifferentiated (or dedifferentiated)
state from the differentiated state if the signal is lowered below the left critical point (SN). In
absence of any noise, the population is ‘pure’ in terms of its differentiation-meaning the
entire population of cells is either differentiated or undifferentiated (or dedifferentiated).
Therefore, a bistable switch represent ‘all-or-none’ digital switch-like response. However, in
presence of intrinsic noise, each cell behaves differently even in a genetically identical cell
population and hence results in a non-switch like response which leads to mixed population
of differentiated and undifferentiated cells. To estimate the extent of mixed population due
to chemical noise, we calculated the percentage of differentiated (high Xo, Upper stable SS)

and undifferentiated (low Xo, Lower stable SS) cells with varying doses of signal s.

4.3.1.1. Control of population heterogeneity in presence of extrinsic noise

In our models, the extrinsic noise was introduced by choosing the unregulated synthesis rates
(ko, 19, k2, 15) from independent log-normal distributions with a coefficient of variation (CV)
of 30%. The choice of 30% variation was due to the fact that similar variations have been
observed in many protein expression levels. Our aim here was to see among parallel and serial
motifs which one filters out extrinsic noise more efficiently. We calculated the fraction of cells
that gets differentiated or dedifferentiated as we change the signal s in presence of extrinsic
noise. To calculate the fraction of differentiated cells we first initialized the population in
undifferentiated state (low Xo, Lower stable SS) and calculated the fraction of population that

gets differentiated (high Xo, Upper stable SS) with increase in signal doses. Likewise, to
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calculate the fraction of dedifferentiated cells, we started with the assumption that all the
cells are differentiated (high Xo, Upper stable SS) and calculated the fraction of population
that gets dedifferentiated (low Xo, Lower stable SS) with decrease in signal values. Our
objective here was to find out the fraction of cells that gets differentiated at a given signal
and out of the differentiated cells the fraction of cells that gets dedifferentiated back at the
same signal. For a single PFL (1L) we found that the differentiation and dedifferentiation
curves intersect each other at intermediate signal value thus giving rise to a mixed population
(Figure 4.3a and 4.3b). This indicates that at intermediate signal values, a fraction of the
differentiated cells will undergo dedifferentiation. For parallel motifs, with increase in
feedback loops, these two curves moves away from each other thus reducing the extent of
mixed population (Figure 4.3a). In case of serial motifs, with increase in feedback loops these
two curves does not move away much from each other thus retaining the mixed population

throughout (Figure 4.3b).

o 10°f 10
8
o)
]
g 10'E 10'F
%
o
o
10° 10° —

0 0 05 1 1.5 2 2.5
- Signal Signal
% N T T T T T ] N T T T T T
o rLow nonlinearity . rHigh nonlinearity
5 o e E
= 10'F 3 10'f E
© ]
0 L ]
> L H ]
(&) L i
© 10° “ 107 —= @

1 2 3 4 5 1 2 3 4 5
No. of PFLs No. of PFLs

Figure 4.3: Differentiation with AND-gate in presence of extrinsic noise: (a-b) The
percentage of differentiated (solid lines) and dedifferentiated (broken lines) cells with varying
signal doses for parallel (left) and serial (right) motifs for different number of PFLs having low

non-linearity (K, = 0.05). (c-d) The percentage of cells at the intersection of differentiated
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and dedifferentiated curves with different number of PFLs for low (c; Ky, = 0.05) and for high

(d; Ky = 0.01) nonlinearity in parallel (cyan) and serial (orange) motifs.

To estimate the extent of population heterogeneity, we calculated the percentage population
at the intersection point of differentiation and dedifferentiation curves for both parallel and
serial arrangements. We found that in parallel motifs, the percentage population at the
intersection decreased with increase in number of feedback loops whereas in serial motifs it
did not (Figure 4.3c). Therefore, it is safe to conclude that serial motifs are less efficient in
minimizing or filtering out the extrinsic noise compared to parallel motifs although their
bistable bifurcation diagrams are almost identical. To find out whether the efficacy of parallel
motifs in reducing the extrinsic noise has to do anything with non-linearity or ultrasensitivity
of the system, we reduced the Michaelis constant (Kj,;) by five times from 0.05 to 0.01.
Decreasing the Kj, value leads to increase in the non-linearity or ultrasensitivity of the system.
Even with increased ultrasensitivity, we found that parallel PFLs reduced extrinsic noise more
efficiently than serial PFLs however, serial motifs performed better in reducing noise in this

as compared to with low non-linearity (Figure 4.3d).

4.3.1.2. Control of population heterogeneity in presence of intrinsic noise

We explored the effect of intrinsic noise on the differentiation dynamics both in parallel and
serial arrangements of PFLs by simulating the chemical reactions of the model networks using
Gillespie’s stochastic simulation algorithm!%, Depending upon the amount of stochastic
(intrinsic) noise present in the system, the value of the variable (Xo) of the system may jump
between the two stable SSs. In the bistable region, the system transitions between the two
stable SSs and ultimately at equilibrium some fraction of the cells will reside in the upper
stable SS and the remaining will settle down in the lower stable SS. As the number of feedback
loops increases, the percentage of mixed population with intrinsic noise decreases in parallel
PFLs (Figure 4.4a) whereas there is no significant change in mixed population in serial PFLs
(Figure 4.4b). The percentage of cells at the intersection reduces more effectively in parallel
arrangements and in serial arrangements they do not change much (Figure 4.4c). With

increased non-linearity, the parallel motifs were able to reduce the effect of noise significantly
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but the heterogeneity in serial motifs did not change much. Therefore, based on our
calculations, we conclude that parallel arrangement of PFLs reduce both extrinsic and intrinsic

noise more efficiently than serial arrangement.

-
o
™

10%

10"

Percentage of cells
3_‘
T

10° 10° '

06 08 . 06 08 1 12 14 16 18
c Signal
-8 102 T T T T T E 1025 T T T T T
3 = oo ] . o s = om
o
@
£
7 10'¢ 7 10'F 3
» ] ; ]
© ] [ ]
- H ( {c)] [ (d)]
© (o] 0 |
< 10 10
S 1 2 3 4 5 1 2 3 4 5

No. of PFLs No. of PFLs

Figure 4.4: Differentiation with AND-gate in presence of intrinsic noise: (a-b) The percentage
of differentiated (solid lines) and dedifferentiated (broken lines) cells with varying signal
doses for parallel (left) and serial (right) motifs for different number of PFLs having low non-
linearity (Ky; = 0.05). (c-d) The percentage of cells at the intersection of differentiated and
dedifferentiated curves with different number of PFLs for low (c; K3, = 0.05) and for high (d;

Ky, = 0.01) nonlinearity in parallel (cyan) and serial (orange) motifs.

4.3.1.3. Sensitivity of SN bifurcation points in presence of extrinsic noise

While performing calculations using extrinsic noise, we observed that the SN bifurcation
points of the bistable switch moved left and right. Therefore, we hypothesized that the SN
points might be sensitive to extrinsic noise and might play a role in regulating the extrinsic
noise in both parallel and serial motifs. To validate this hypothesis, we calculated the signal s
values corresponding to left and right SN bifurcation points for 10000 cells in presence of

extrinsic noise. We calculated the CV of the distribution of both left and right SN points and
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found that the CV in serial motifs are higher than that of in parallel motifs (Figure 4.5a). We
found that the higher amount of noise in serial motifs is due to the skewness of the
distribution of the SN points (Figure 4.5b). While the distribution of the right SN points is
similar in parallel and serial motifs, the distribution of left SN points are highly positively

skewed in serial motifs as compared to parallel motifs (Figure 4.5c).
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Figure 4.5: Sensitivity of SN bifurcation points to extrinsic noise in models with low non-
linearity (K, = 0.05): The variation in CV (a) and skewness (b) of the distributions of right
and left SN points in presence of extrinsic noise for different number of PFLs. (c) Comparison
of distribution of right (c; top panel) and left (c; bottom panel) SN bifurcation points for the

parallel and serial motifs.

Consistent with the skewness of the left SN points, the dedifferentiation curves in serial motifs
have long tails (Figure 4.3b). We repeated the calculations with increased non-linearity and
found similar results as well. Therefore, in serial motifs, the left SN bifurcation points that
dictates the transition from differentiation to dedifferentiation are very susceptible to

extrinsic noise compared to the same in parallel motifs.
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4.3.1.4. Sensitivity of the steady states in presence of intrinsic noise

The extent of fluctuations in an ensemble of SS values in presence of intrinsic noise is

201 Mean residence time (MRT) of the SSs can

determined by how stable the SSs are
determine the stability of the SSs in a bistable system under intrinsic noise. We calculated the
MRT of upper and lower stable branches in the bistable region and found that in both the
branches the MRT is higher in parallel motifs compared to the same in serial motifs (Figure
4.6). This is a clear indication of the fact that because of the high MRT in parallel motifs, the
stable SSs are less susceptible to intrinsic noise as compared to the same in serial motifs. In
serial motifs, the chain-like architecture contributes to the noise amplification because of

which the SSs might be more susceptible to intrinsic noise as compared to the parallel motifs

where the PFLs are independent.
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Figure 4.6: Stability of steady states in presence of intrinsic noise determined by mean
residence time (MRT): Comparison of mean residence time for upper (USS) and lower (LSS)
SSs for parallel and serial motifs with AND gate. The top panel is for low non-linearity (K =

0.05) and bottom panel is for high non-linearity (K, = 0.01) of the models.
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4.3.2. Modelling using OR-gate input signal

The above results were for AND-gate configurations, but we also performed calculations using
OR-gate configurations of the input signals. Using OR configurations we generated almost-
identical bistable bifurcation diagrams (Figure 4.7a and 4.7b) both for parallel and serial
topologies and performed similar calculations as done in AND configurations. In OR
configurations, parallel motifs, again reduced both extrinsic and intrinsic noise efficiently
compared to serial motifs although serial motifs did a better job in reducing noise in OR gate
compared to in AND gate (Figure 4.7c-f). Using mean residence calculations, we again found
that the stable branches in parallel motifs are more stable than the same in serial motifs.
From these calculations we found that OR-gate signalling input show less variability compared

to AND gate due to the noise getting amplified in a multiplicative manner in AND gate.
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Figure 4.7: Differentiation with OR-gate configuration: (a-b) One-parameter bistable
bifurcation diagrams for parallel (left) and serial (right) motifs. (c-d) The percentage of

differentiated (solid lines) and dedifferentiated (broken lines) cells in presence of intrinsic
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noise and with low non-linearity (K, = 0.05) for parallel (left) and serial (right) models. The

extent of mixed population for low (e) and for high (f) non-linearity in the models.

4.3.3. Modelling using Hill functions

We also modelled our system with Hill functions instead of Goldbeter-Koshland’s switch to

determine if the results depend on modelling methodologies (Table 4.2). We performed

similar calculations and found that even using Hill functions, parallel motifs reduce noise more

efficiently than serial motifs (Figure 4.9).

Table 4.2. Dynamical equations for the models with Hill function. List of dynamical

equations for models with Hill function.

Parallel Serial
dX, aV [N xM dX,
— = V+ 2. —_—= —
at 805< VNV T XM 120 at s(koV + poX1) — ¥Xo
dX; ax; pV X1, X[,
ac = Gt vk dt T pyaM g xM xM T T
Nis the number of PFLs and M is the cooperativity, Xy41 =1
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Figure 4.9: Differentiation using AND-gate Hill functions in presence of extrinsic and intrinsic
noise: The one-parameter bistable bifurcation diagrams for parallel (left) and serial (right)
models using AND-gate Hill function for different number of PFLs with cooperativity 2.
Comparison of the percentage of mixed population at the intersection of the differentiation
and dedifferentiation curves for parallel and serial motifs in presence of extrinsic (c) and

intrinsic (d) noise.

4.4. Methodologies and calculations

4.4.1. Calculation of differentiation-dedifferentiation percentages

We estimated the percentages of cells in a population of 10000 cells that have differentiated
or dedifferentiated in presence of extrinsic and intrinsic noise with varying signal doses s. In
single cell quantification of proteins in eukaryotic cells, it was reported that protein
distributions usually are asymmetric and are positively skewed that resembles log-normal
distributions!’®183202 Extrinsic noise in cellular population arises due to difference in cell size,
shape, cellular contents, matrix density, cell cycle stages and pH. This extrinsic noise greatly

contributes to population heterogeneity in protein numbers that results in positive skewness
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in protein distributions. Therefore, in order to mimic this distribution we picked the
unregulated rate constant values (ky and k, for parallel motifs and 1y and r, for serial motifs)
from independent log-normal distributions with 30% variation around the mean. Unregulated

proteins were found to have log-normal distributions with a typical CV of 30%.

We started with 10000 cells being in lower stable SS (undifferentiated state) and numerically
solved the coupled differential equations listed in Table 4.1 using MATLAB at different values
of signal s. We numerically integrated the dynamical equations for sufficient long time to
ensure the system reached SS. To estimate the fraction of differentiated cells, we initialised
the system at lower stable SS and at each signal value we calculated the number of cells whose
SS value was greater than Xo corresponding to the right saddle-node (SNg) bifurcation point.
Similarly, to estimate the fraction of dedifferentiated cells, we initialised the system at upper
stable SS and at each signal value we calculated the cells whose SS value was less than Xo

value corresponding to the left saddle-node (SNy) bifurcation point.

To estimate the percentage of differentiated-dedifferentiated cells in presence of intrinsic
noise, we used Gillespie’s stochastic simulation algorithmi%® and simulated the chemical
reactions for both the network models (Figure 4.8). To estimate the percentage of
differentiated cells, we initialised the system at lower stable SS and at each signal value we
calculated the number of cells whose SS value was greater than the separatrix (corresponding
unstable SS) value. Similarly, to estimate the fraction of dedifferentiated cells, we initialised
the system at upper stable SS and at each signal value we calculated the number of cells

whose SS value was less than the corresponding separatrix value.
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Figure 4.8: The steady state distribution in presence of intrinsic noise in models with low
non-linearity (K = 0.05): The distribution of SS values of Xo for 10000 cells distributed
over the bifurcation diagram in presence of intrinsic noise for different number of PFLs with
low non-linearity and with AND-gate configuration. The upper two panels (blue) and the lower

two panels (orange) represent cells initialized in the lower and upper SSs, respectively.

4.4.2. Calculation of sensitivity of bifurcation points

In presence of extrinsic noise, the SN bifurcation points for different cell will be different.
Under the influence of extrinsic noise, we recorded both left and right SN bifurcation points
for 10000 different cells. We then calculated the CV and the skewness of the left and right SN
points for different number of PFLs for both serial and parallel topologies. We also plotted

the population distributions of the two SN points for the two different arrangements of PFLs.
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4.4.3. Calculation of mean residence time (MRT)

In presence of intrinsic noise, we calculated the mean residence time of the stable SSs
(undifferentiated and differentiated states) in the bistable region. We started from lower
stable SS (undifferentiated state) and simulated the chemical reactions using Gillespie’s SSA
and recorded the time the SS value of Xo crossed the separatrix for the first time to get the
first passage time or residence time of the lower stable SS. To estimate the residence time of
the upper stable SS, we started from the upper stable SS (differentiated state) and followed
similar procedure mentioned above. We repeated these calculations for 10000 times to get
the mean residence time (MRT) for both lower and upper stable SSs. The maximum time of

calculation was 1 X 10° arbitrary time units.

4.5. Summary and conclusions

Cellular functions such as differentiation are regulated by network motifs that are capable of
generating distinct SSs and dynamical properties. The properties of regulatory networks
crucially depend on the architectural design or the topology of these networks. For example,
a PFL generates multistable SSs and a NFL generates oscillations and excitability?°3. The
average properties of some of these regulatory networks could be similar however in
presence of chemical noise the properties might get perturbed differently. In many biological
systems, chemical noise acts as a nuisance and cause hindrance to the functioning of the
system. Therefore, the system’s natural tendency would be to adapt to a network
architecture that has the potential to minimize the effect of chemical noise for smooth
functioning of the system. In this context, PFLs are known to reduce the fluctuations in various
cellular phenomena**>123128 Also, multiple PFLs create bistable switches that are known to
regulate many cellular differentiation processes3®3749, Multiple PFLs helps the system to
generate robust bistability, however the arrangements of these PFLs might have some crucial
role in minimizing the effects of chemical noise in the system. Therefore, investigating the
architecture of regulatory networks might help in understanding how the system lock the cells

either in differentiated or undifferentiated states even in presence of chemical noise.
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Ahrends et al., showed that preadipocyte to adipocyte differentiation is regulated by a
bistable switch and the low rate of differentiation is maintained by the stochastic fluctuations
of chemical species within a weak signalling regime. However, this same stochastic
fluctuations might lead to the loss of differentiated state, thus locking the cells in the
differentiated state is a crucial task the system has to achieve. This indicates that there must
be some mechanism in place using which the system might be able to reduce the effect of
this stochastic fluctuation so as to avoid the loss of differentiated state. As discussed before,
the architecture of the regulatory network might have some relevance in noise filtration3%1%,
They found out that the adipocyte differentiation process is regulated by seven independent
PFLs arranged in a consecutive manner around a master regulator PPARG, thus creating a
parallel topology of the PFLs. This raises a question as to why these PFLs are arranged in a

parallel manner only while a serial arrangement of these PFLs may as well serve the purpose.

In order to address the concern of how different arrangement of PFLs control noise, we
generated bistable switches with almost similar region of bistabilities and SS properties from
both parallel and serial arrangements. We calculated the percentage of cells that gets
differentiated or dedifferentiated at different signal values both in case of parallel and serial
topologies. We found that both in AND-gate and OR-gate input signalling configurations,
parallel arrangement of PFLs reduce both extrinsic and intrinsic sources of noise much
effectively as compared to the same in serial arrangement. Our calculations suggest that the
left SN bifurcation points in serial motifs are more sensitive to extrinsic noise compared to
that of the same in parallel motifs and this leads to highly skewed distribution of SN points in
serial motifs indicating high amount of noise. In case of intrinsic noise, the stability of the two
SSs in the bistable region measured by the mean residence time is much higher in parallel
motifs than in serial motifs. This indicates that the cells residing in either of the stable SSs in

parallel motifs are less susceptible to stochastic fluctuations thus locking their states.

In absence of any type of chemical noise, parallel and serial motifs would not make any
difference in differentiation dynamics. However, based on our results, in presence of both
types of noise, parallel motifs reduce noise much better than serial motifs. Therefore, the
choice of parallel arrangement of PLFs over serial arrangement in differentiation process

might be an evolutionary strategy of the system to adapt to the most robust network in order
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to minimize the effect of noise and work efficiently. Parallel architecture of PFLs are not only
limited to cellular differentiation systems but also found in other biological systems. In cell
cycle network of Saccharomyces cerevisiae (budding yeast), activation of b-type cyclins Clb1,
2 are regulated by three PFLs through independent involvement of Cdh1, Sicl and Fkh2 in OR-
gate configuration'?3, Stochastic model of the cell cycle predicted that if one of these PFLs are
removed, the variability in the system increases and that hampers the properties such as cell
cycle time, size at birth and division etc. Similar architecture of PFLs are also present in
activation of maturation promoting factor (MPF) in cell cycle network of Saccharomyces

pombe (fission yeast)?%4,

All the parameters that we used in our models fall under biologically relevant ranges. For
proteins, we have chosen ~70 min as the half-life which is typical average half-life of many
proteins. The synthesis rate constants that we chose in our models also falls in the molecular
abundance in the physiological range of few hundred molecules per cell. We have performed
simulations where rate constants were picked from log-normal distributions with 30% CV
which takes into account the reasonable range in parameter values. Further, we have studied
two different configurations of input signals (AND and OR-gate) using two different modelling
methodologies (Goldbeter-Koshland’s switch and Hill function) to generate bistable switches
that regulate the differentiation dynamics. In all of these case, our calculations provide similar

conclusion indicating the generality of our findings.
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Chapter 5

Negative Cooperativity and Bistability in Receptor-

Ligand Binding

5.1. Introduction

A vast majority of cellular responses to external stimuli are due to binding of the signalling
molecules or ligands to their cognate cell surface receptors. Receptor-ligand interaction
dynamics play a crucial role in signal transduction pathway as binding of ligands to cell surface
receptors triggers intracellular signalling pathways to allow the cell to carry out various

205 class | and class Il cytokine

physiological functions. For example, TGF-B receptor
superfamily?°62%°, receptor tyrosine kinases?'%?!! and G-protein coupled receptors?'?213
control cellular functions such as cell-division, proliferation, apoptosis, differentiation,
metabolism etc. The binding of ligands to multimeric receptors often leads to cooperativity in
receptor-ligand binding dynamics. In a multimeric receptor, binding of a ligand alters the
dynamics of binding of subsequent ligands to the same receptor. This leads to allosteric

interactions among the binding sites which is often recognized as the mechanism of

cooperativity?'#2%5, If the binding of a ligand increases the affinity of binding of subsequent
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ligands, it is known as positive cooperativity and if it dampens the binding of subsequent
ligands it is known as negative cooperativity?!®2!’, In subsequent binding of ligands to a
multimeric receptor, the definition of cooperativity can be best explained by the Gibb’s free
energy change (AG) of binding. In positive cooperativity, AG in the subsequent binding steps
becomes more negative, in negative cooperativity it becomes less negative and in non-
cooperativity AG value does not change?!®. The cooperative nature of the binding kinetics can
be extracted from the typical sigmoidal ligand binding curve and fitting the curve by the Hill
function 219220 The Hill coefficient (ny) associated with the cooperativity represents positive,
negative and non-cooperativity binding with ny > 1,ny <1 and ny = 1, respectively.
Positive cooperativity generates a stiff sigmoidal response consisting of a threshold in the
required amount of ligand for full engagement of the receptor??’. Thus, positive cooperativity
produces an ultrasensitive switch in the activity of the receptor. Owing to its ultrasensitive
nature, positive cooperativity plays important roles in generating system level phenomena

such as bistability, multistability and oscillations in feedback regulated networks?03222,223,

Unlike positive cooperativity, negative cooperativity generally produces hyperbolic responses
without any signalling threshold?'®??4 Epidermal growth factor receptors??>=2?7, insulin

231 are a few example of receptor-ligand

receptor??8-23° and glycoprotein hormone receptors
system where negative cooperativity has been observed. Both the positive and negative
cooperativities are common in biology yet, negative cooperativity was never really explored
much. A detailed mathematical model was developed by Kiselyov et al.?3? based on the
concept of harmonic oscillator to account for several experimental observations and includes
negative cooperativity for a dimeric insulin receptor. In dimeric receptor-ligand binding it was
shown by Ha et al.?33 that negative cooperativity can generate ultrasensitive response with a
threshold if the ligand has strong affinity towards the receptor. This shows that negative

cooperativity can be a source of non-linearity which is required to generate bistability in a

PFL.
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5.2. Modelling and methodology

The basic structure of our model has a dimeric receptor with a single ligand binding spot on
each monomer. The fully ligated receptor is the active form of the receptor and regulates
downstream signalling pathway. We have considered two different models of downstream
regulation of the signalling pathways. In the first one, the active receptor-ligand complex
upregulates the gene that produces the ligand and in the second one the active receptor-
ligand complex also upregulates the receptor. The former case creates a single PFL and the

latter case creates a fusion of two PFLs.

5.2.1. Mechanism of the binding dynamics

In both the models discussed above, the mechanism of binding is same. Each monomer in the
dimeric receptor (R,) is capable of binding only one ligand (L) molecule. The binding of a
ligand to the receptor is a two-step sequential process. In the first step, the ligand binds to
one of the monomers of the unoccupied receptor (R,) and in the second step, another ligand
molecule binds to the remaining monomer of the singly-occupied receptor (R,L) to form
the active receptor-ligand complex (R,L,). Similarly, the unbinding of the ligands from the

engaged receptors also follows two-step sequential process.
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5.2.1.1. Module 1: Positive feedback in the ligand upregulation

Figure 5.1 shows the schematic representation of the binding-unbinding mechanism of the

ligand and receptor in the system with a single PFL.

YL Sy,
: ©—

K,
klf G noo
&)= R\R/
T k2p
Inactive t,} Active
U Receptors Receptors

Figure 5.1: Schematic representation of the receptor-ligand binding model: The ligand (L)
binds to the dimeric receptor (R,) in a sequential manner. The fully occupied receptor is
responsible for synthesis of the ligand thereby creating a PFL between the ligand and the
active receptor. The solid arrow represents chemical binding whereas the dashed arrow
represents catalytic effect on a chemical reaction. The degradation reaction is represented by
an open-ended arrow. The rate constants of the binding/unbinding reactions are mentioned

on the top of the respective arrows.

The active cell surface receptor triggers gene regulation by activating or deactivating the
cytoplasmic signalling molecules. These cytoplasmic molecules transmit information from cell
surface to the nucleus. In our model, we reduced the complex signalling pathway by
considering that the active receptor directly activates the synthesis of ligands, without the
loss of generality. Apart from the regulated synthesis of the ligands by the active receptor, we
have also considered the unregulated basal synthesis of the ligands (s;) to initiate the
signalling feedback. Therefore, this module is a simple representation of an autocrine
signalling module?3%23>, k, is the rate constant of the regulated ligand production which also
serves as the strength of the PFL in the model. y; is the degradation rate of the ligands that
degrades exponentially with a mean life-time of 1/y;. In this model, we assumed that the

total amount of receptors are constant and follows the expression Ry = Ry + R,L; + R, L,.
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All the chemical reactions in the module follow mass action rate laws and the dynamical

equations are presented in Table 5.1.

We have considered both ordered and disordered binding of the ligand to the receptor. In the
disordered binding, the free ligand can bind to any of the two available sites on the dimeric
receptor. The resulting ‘conformers’ are not distinguishable from one another. In general, the
disordered binding of ligands to multimeric receptors with N binding sites, the number of
ways i -th binding can happen is given by the binomial factor("). For a dimeric receptor, the
value of this factor is 2 (N =2andi = 1) for the first binding event. Similarly, for the
unbinding event from the fully engaged receptor (R, L), there are two ways by which a single
ligand can unbind. Therefore, the rate of binding of a ligand to a dimeric unoccupied receptor
and the rate of unbinding of a ligand from the fully engaged receptor increases by a factor of
2. Table 5.1 consists of the kinetic equations of the model with the binomial factor
represented as v (= 2) for disordered binding. For the ordered binding, the ligand binds to
the unoccupied receptor at a specific site and hence the value of the factoris 1 (v = 1). We,

here report the results for the disordered binding case.

Table 5.1: The dynamical equations for the receptor-ligand binding model with PFL in ligand

upregulation

dL
5.1
..l (5.1)
—2 = kyy.RyL; —v. Ky R, L
. V. .R,.
dt 1b- N2Lq 1f- 2 (5.2)
21— y.kyr Ry L +V.kyy. RyLy — kyp. RyLy — Kyp. RyLy. L
V. .R,. V. . . . .
It 1f- 142 2b- Mol 1b- M2 Lq 2f- ol (5.3)
22 — ke, RyLi L —v.kyp. R,L
. . V. .
dt 2f- Rala 2b- alip (5.4)
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5.2.1.2. Module 2: Positive feedback in both ligand and receptor upregulation

In the previous module (Figure 5.1), we had a PFL in ligand upregulation by the fully engaged
receptor R,L,. However, in many receptor-ligand systems, the receptor abundance is
upregulated by the active receptor, thus, forming a PFL23>723°_ |n this section, we introduced
a second PFL where the active receptor complex R,L, upregulates the receptor synthesis

(Figure 5.2).

Inactive U Active
U Receptors Receptors

Figure 5.2: Schematic model of the receptor-ligand binding model with an additional
positive feedback loop: In addition to the PFL in ligand upregulation, a second PFL is added

where the active receptor R, L, upregulates receptor synthesis.

We included the production and degradation of the receptor complexes where sp represents
the basal production rate and ki represent the upregulation from the active receptor R, L,.
yr is the degradation rate of the free and ligated receptors. During the degradation process,
only the receptors degrade but the ligands gets replenished. This mechanism represents the
internalization of cell surface receptors. The list of dynamical equations are presented in

Table 5.2.
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Table 5.2: The dynamical equations for the model with two PFLs

dL
E = SL + kL-R2L2 + klb'Rle + V. kzb.Rsz - V. klf'RZ'L - sz.Rle.L
5.6
—y L+ Vr RyLy + 2.7g. Ryl (5.6)
dR + kg.R,L, + kqy.R,L kir.R,.L R
— =35 . . — . .R,.L —vyp.
dt R R- 2Ll 1b- Ralq 1f- 12 )4: 3y (5.7)
Ry ke Ryl —v.kop RyLy — kup. RoLs — kyr. RyLy.L R,L
= . .R,.L — . ) - ) — ) L —yp.
dt 1f- I 2p- oLy 1b- 2Ly 2f- ol Yr:-Raly (5.8)
RoLs o RLiL—v.kyy RoL R,L
= ) L —w. ) — Vp.
dt 2f-fialg 2b- N2l — VR- Rl (5.9)

In a receptor-ligand binding, the binding affinity of the ligand to the receptor is typically
measured by the dissociation constant. In the model, the dissociation constant of the first and
second steps are given by K; and K, respectively. The dissociation constants are further
defined as the ratio of the rate constants of the unbinding and the binding reactions (K; =
kip/vkir and K, = vkyy /k,r). The measure of cooperativity is defined as C = K;/K;. The
numerical value of C determines the measure of cooperativity in the receptor-ligand binding.
Based on the value of C, the three different regimes of cooperativity can be identified. For the
positive, negative and non-cooperative binding the regimes of Care € > 1 (K; > K,), C <
1(K; <K;) and C =1 (K; =K;), respectively. By adjusting the values of binding
(klf and sz) and unbinding (kq;, and k,;) rate constants, different cooperativities can be
achieved as C = kqp,.ky5 /(4. kq5. kap). The factor 4 is the binomial factor (v = 2) which is

due to the disordered binding of the ligands to the dimeric receptor.
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5.3. Results and discussions

5.3.1. Positive feedback in ligand upregulation: Single PFL

We first carried out 1- parameter bifurcation analysis of the model using XPPAUT software

(http://www.math.pitt.edu/~bard/xpp/xpp.html). The 1-parameter bifurcation diagrams of

the model with different values of cooperativities C are presented in the Figure 5.3 with

unregulated basal synthesis rate of ligands (s;) as the bifurcation parameter.
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Figure 5.3: The one-parameter bifurcation diagrams: (a) Bistable bifurcation diagrams with
basal rate of ligand synthesis s; as the bifurcation parameter. The solid and the broken lines
represent the stable and unstable SSs, respectively. The ‘ON’ and ‘OFF thresholds are
indicated as SNon and SNorr for the bifurcation for C = 1.0. The shaded region indicates the
bistable region for C = 1.0. The different colors of the bifurcations plots represent different
values of C achieved by changing K; with a fixed K, value. (b) Bistable bifurcation diagrams
for different cooperativities achieved by changing K, with a fixed K;. The parameter values
are kqp =0.2,ky, = 025,k = 0.1,kyr = 0.5,k;, = 2.66,y, = 1.0. kq;, was modified
keeping ks fixed at 0.1 to achieve different cooperativities at constant K. Similarly different
cooperativities were achieved by varying K, by modifying k,, with k,r = 0.5 and keeping K;
fixed.

We found that the module exhibit bistability with two stable SSs separated by an unstable SS.
Our aim here was to see the effect of cooperativity on the bistability. To change the

cooperativity C, the values of K; and K, were modified accordingly. In the Figure 5.3, the
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cooperativity C was initially kept at 1 with K; = K, = 1. The cooperativity of the system can
be modified either by changing K; or by changing K,. First, the cooperativity C was changed
by changing K; keeping K, (= 1) fixed. We found that the negative cooperativity (C = 0.7)
regime leads to bigger region of bistability (SNon-SNorf) as compared to the non-cooperativity
(C = 1) or positive cooperativity (C = 1.3) regimes (Figure 5.3a). The two SN bifurcation
points moved to the right (high s;) in both positive and non-cooperativity relative to the
negative cooperativity and at higher positive cooperativities (C > 1.3), the model did not
exhibit bistability. On the other hand, increased negative cooperativity (C < 0.7) exhibited
bigger region of irreversible bistability with SNorr in the negative region. Note that the ‘ON’
signalling threshold in the negative cooperativity is much lower as compared to the positive
cooperativity. This is due to the fact that as K; is reduced to get negative cooperativity, the
singly occupied receptor (R,L,) is stabilized requiring less ligands (s;) to achieve the fully
engaged receptor (R,L,) that kick starts the positive feedback cycle. Whereas in the positive
cooperativity, K; is increased destabilizing the singly occupied receptor (R,L;) and hence
SNon is pushed to higher s; because more amount of ligands are required to start the
feedback cycle. Due to large abundance of R, L, when the signal was removed, more amount
of ligands are needed to be removed to get back to the OFF state and hence the SNor moved
to the left in the negative cooperativity. In case of positive cooperativity, the abundance of
R, L, was less and hence removal of small amounts of ligands reverted the system back to the
OFF state causing SNorr to move to high value of s; resulting in a narrow bistable region.
Further, the SS value of the ON state representing the extent of response was much higher in
the negative cooperativity as compared to the positive cooperativity. Therefore, negative
cooperativity when achieved by adjusting K;, can cause stronger response at low signal

concentration region.

Next, we changed K, to achieve different cooperativities keeping K, fixed at 1. This resulted
in an opposite trend to that of when K; was changed with K, fixed. In this, K, was increased
to get negative cooperativity and that resulted in a smaller region of bistability as compared
to non-cooperativity and positive cooperativity (Figure 5.3b). When K, was increased to get
negative cooperativity, the doubly engaged receptor (R,L,) became less abundant due to

shift of equilibrium to the left. Thus more ligands are required to kick start the feedback cycle
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and as a result the SNorr moved to the far right in negative cooperativity. Similarly, when small
amounts of ligands were removed the system fell back to the OFF state and hence the SNon
was also at high s; value. When K, was decreased to get positive cooperativity, the
abundance of R, L, increased which needed less ligands to trigger the feedback cycle and also
more amounts of ligands were needed to be removed to come back to OFF state. Therefore,
here both SNon and SNorr moved to the left resulting in a bigger bistable region. Thus, negative
cooperativity generates robust bistability when R, L, is stabilized by reducing K; and positive

cooperativity generates robust bistability when R, L., is stabilized by reducing K.

To examine the bistable behaviour of the model for different K; and K, values, we carried

out 2-parameter bifurcation analysis using the XPPAUT software.
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Figure 5.4: The two-parameter bifurcation analysis for the model: the solid colored lines are
the loci of the SN bifurcation points. The region bounded by these lines represent bistable
region and outside region represents monostability. The non-cooperativity, C =1, is

represented by the dashed horizontal lines that separates the positive (C > 1) and negative
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(C < 1) cooperativity regions. Two-parameter bifurcations with fixed value of K, (left) and

K; (right), respectively.

In Figure 5.4a, we present the 2-parameter bifurcation analysis with varying K; and fixed K.
The region bounded by the two lines represents the bistable region and the region outside of
it represents the monostable region. The lower and the upper lines represent the loci of SNon
and SNorr, respectively. The horizontal broken line at € = 1 divides the space into two
regions-positive (C > 1) and negative (C < 1) cooperativities. Figure 5.4a suggests that a
bigger region of bistability occurs in the negative cooperativity and as the two lines approach
the positive cooperativity space, the bistable region decreases. We repeated this calculation
for different values of K, and here too negative cooperativity leads to bigger bistable region
that increases with decrease in K, value (Figure 5.4b). This highlights the fact that the ligand
must strongly bind to the receptor to achieve strong ultrasensitivity with the negative
cooperativity?33. Similar calculations were carried out where K, was changed with fixed K;
(Figure 5.4c-d). In these figures, bigger bistable region existed in the positive cooperativity
and the bistable region decreases as the two lines moves towards negative cooperativity.

Overall Figures 5.4c-d has completely opposite results compared to Figure 5.4a-b.

The strength of the PFL is important in understanding the bistability in any PFLs. We carried
out 2-parameter bifurcation analysis of the model with different cooperativities and different
feedback strength (k;) (Figure 5.5a). With the feedback strength increased, the bistable
region increased. Further, in negative cooperativity, a lower feedback strength is required for
robust bistability compared to that in positive cooperativity. Figure 5.5b represent a 2-
parameter bifurcation analysis of bistability with respect to total receptor concentration
(Rr). Bistability can be observed in negative cooperativity at smaller receptor concentrations
than in positive cooperativity. Overall, Figure 5.5 indicates that bistability in negative
cooperativity can be achieved with small positive feedback strength and low receptor

concentrations.
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Figure 5.5: Two parameter bifurcation analysis showing the effect of feedback strength (k;)
and total receptors (Ry): The different colored lines are for different cooperativity values as
indicted in the legends. The cooperativity C was changed by varying K; while K, was fixed at

1.

Until now, we have considered the amount of ligand s; as the main bifurcation parameter. In
this section we present the bifurcation analysis with total receptor concentration (Ry) as the
bifurcation parameter (Figure 5.6). Similar to that with s; as the bifurcation parameter, here
too we analysed the bistable region in negative and positive cooperativities by changing either
K; and K. Figure 5.6 resulted in a complete opposite trend to what we observed with s; as
the bifurcation parameter. Here, when K; was changed with fixed K, (Figure 5.6a,c), positive
cooperativity generated robust bistability and when K, was changed with fixed K;, negative
cooperativity resulted in robust bistability (Figure 5.6b,d). Here, the variation of right SN point
(SNon) with K is similar to that of with s; as the bifurcation parameter. This is due to the fact
that as K; was decreased to get negative cooperativity, the intermediate R,L; complex gets
stabilized which requires less ligands (s;) and also less receptors (Ry) to shift the system to
the ON state. Hence, in negative cooperativity the SNon is at low value of R as compared to
the same in positive cooperativity (Figure 5.6a,c). On the other hand, when K, was decreased
to get positive cooperativity, R,L, gets stabilised and hence less ligands (s;) and less
receptors (Rr) are required for ON threshold (Figure 5.6b,d). However, the behaviour of
SNorr with K; or K, depends crucially on the bifurcation parameters s; and Ry. In Figure 5.6a,
the bistable region increased in positive cooperativity because the SNorr moved left. This is

because R, L, helps start the PFL due to which there is an increase in number of ligands that
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allowed the ‘ON’ state to survive even though when receptors were removed. This resulted
in smaller value of SNorr and consequently bigger bistable region. Similarly when K, was
increased to get negative cooperativity, the stability of R,L, decreases but again, the large
amounts of ligands allowed the system to maintain the ‘ON’ state even though large amounts

of receptors were removed.
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Figure 5.6: Bifurcation analysis for the model with total receptors as the bifurcation
parameter: (a,b) One-parameter bifurcation diagrams showing the effect of different
cooperativities by varying K;(a) and varying K,(b). (c,d) Two-parameter bifurcations at

different cooperativity regime modified by varying K, (c) and varying K, (d).

5.3.2. Positive feedback in both ligand and receptor upregulation: Fused PFLs

Our aim here was to explore the bistability in different cooperativities when an additional PFL
is introduced. Here too, we carried out 2-parameter bifurcation analysis to investigate the

effect of different cooperativities on the bistable region. Note that when the PFL in ligand
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upregulation is switched-off, the system did not exhibit any bistability at any parameter
values even in presence of a PFL in receptor upregulation (Figure 5.7). This happened due to

lack of non-linearity when k; was made zero.

kL = off; kR = on k|_ = on; kR = off
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Figure 5.7: One-parameter bifurcation analysis depicting the effect of receptor and ligand
upregulation: The model loses bistability when the PFL in ligand upregulation is switched off
(left) and bistability is sustained even when the PFL in receptor upregulation is switched off

(right).

We wused Chemical Reaction Network Theory (CRNT) toolbox version 2.35
(http://crnt.osu.edu/CRNTWin) to confirm this. Indeed, CRNT predicted that when both the

PFLs are present, the module exhibited multistability. Figure 5.8 present the 2-parameter
bifurcation analysis of the model with different cooperativities with different values of
receptor upregulation strength (kg). The qualitative nature of the bifurcation diagrams are
similar to those observed with only one PFL via ligand upregulation. However, here the
bifurcations are quite sensitive to k. With increased in ki value, the region of bistability

increased significantly. Particularly, the SNors bifurcation point is more sensitive to changing
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kg as compared to SNon points. As ki was increased, more receptors were synthesized which
shifted the equilibrium to the right thus allowing the ON state for increased removal of the
ligands. This also shifted the SNorr points to lower values of s;. Whereas, if the bifurcation
parameter is the synthesis rate of receptor (sg), the bifurcations are weakly dependent on

kg (Figure 5.8c, d).

2 . . T 2 2 . T— 2
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{ cooperativity
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Figure 5.8: Two-parameter bifurcation analysis showing the effect of strength of receptor
upregulation (kg): The different values for the strength of receptor upregulation is indicted
in the legend. The parameter values are ky; = 0.2,k;, = 0.25,k;f = 0.1,k = 0.5,y =
0.18,yg = 0.06,k; = ki = 0.03, s = 1.0 when s; is the bifurcation parameterand s; = 0.5

when sj is the bifurcation parameter.

5.4. Summary and conclusions

Ultrasensitivity in the biochemical reaction network is a prerequisite to generate
multistability in a positive feedback regulated network!®®?23, Mathematical modelling and

experiments have recently shown that negative cooperativity in a receptor-ligand binding
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dynamics can generate ultrasensitive response when the ligand strongly binds to the
receptors?33. In this work, we have incorporated a PFL in a dimeric receptor-ligand binding
system to investigate the effect of different types of cooperative binding on the bistable
response. We explored the effect of negative cooperativity on the bistable region by adjusting
the dissociation constants K; and K,. Our results suggest that negative cooperativity can
generate robust bistability under certain conditions (Figure 5.4). The bistability in negative
cooperativity regime can be observed both in case of amount of ligands (s;) (Figure 5.3) and
amount of receptors (Rr) (Figure 5.6). Negative cooperativity generated robust bistability
when K; was changed and positive cooperativity generated robust bistability when K, was
changed with amount of ligands (s;) as the bifurcation parameter (Figure 5.3). Whereas, if
the bifurcation parameter is the amount of receptors (Rr), negative cooperativity generated
robust bistability when K, was changed and positive cooperativity generated robust
bistability when K; was changed (Figure 5.6). The variation of different dissociation constants
to achieve different cooperativities resulted in a dichotomous nature of bistability. From our
2-parameter bifurcation analysis, it can be concluded that the relative stability of the singly
engaged receptor (R,L,) and doubly engaged receptor (R,L,) control the bistable region in
the models. When the bifurcation parameter is the amount of ligands (s, ), the stabilization
of (R,L;) and R,L, generated robust bistability in negative and positive cooperativity,
respectively. Alternately, when the bifurcation parameter is the amount of receptors (Rr),
stabilization of R,L; and R,L, favoured robust bistability in positive and negative
cooperativities, respectively. Our calculations also suggest that negative cooperativity can
generate bigger bistable region with low positive feedback strength and low receptor
concentrations (Figure 5.5). Altogether, our modelling and calculations explored the
conditions under which negative cooperativity can generate robust bistability in receptor-

ligand dynamics system.

Our results highlights that the nature of bistability defined by the bistable region under
different cooperative binding depends on the bifurcation parameter and the tuning of the
dissociation constants to change the cooperativity. When the synthesis rate of ligand is the
bifurcation parameter, adjusting cooperativity with the first dissociation constant gives

robust bistability in negative cooperativity and when the second dissociation constant is
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changed, positive cooperativity generate robust bistability. This behaviour is however, quite
opposite, when the bifurcation parameter is changed to amount of receptors (Rz). Thus our
model shows a contrasting and dichotomous nature of the bistability that depends on the

choice of parameters used to modify cooperativity and the choice of bifurcation parameter.

While traditionally, ultrasensitivity has been achieved using Hill functions for positive
cooperativity, the zero-order ultrasensitive Goldbeter-Koshland switch in enzyme kinetics?4°,
multisite phosphorylation?*-24 and molecular titration?4>24, it is indeed important to note
that negative cooperativity also has potential to generate ultrasensitive response.
Particularly in the case of synthetic biology approaches, negative cooperativity can be

explored further to explore its potential to develop new devices.
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Summary, Conclusions and Future Scopes

Cell-fate decisions are crucial for a cell’s survival and growth as well as the survival and growth
of the multicellular organism of which the cell is a part of. During the development of the
embryo, the embryonic stem cells differentiate into organ specific cells that form the different
organs in the organism. The cell-fate decisions are tightly coordinated by the interactions
between proteins, genes, RNAs and other biomolecules, thus forming a complex network of
signalling pathways. Smaller subunits called regulatory motifs form the basic functional unit
of the complex network. Positive (activation) and negative (inhibition) regulations are the two
different types of regulations found in these regulatory motifs. Feedforward and feedback
loops are the two types of regulatory motifs, where the signal is transmitted uni-directionally
in the FFLs whereas in feedback loops the signal is transmitted bi-directionally. PFLs are often
found to regulate many cell-fate decisions such as the preadipocyte to adipocyte
differentiation36®!, differentiation of T helper cells’®78, EMTs37:143, A single PFL can consist of
either mutual activation (MA), or mutual inhibition (MI), or self-activation (SA) whereas

coupled PFLs are formed by the fusion between two or more PFLs of the similar or different
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regulations, thus giving rise to different topologies of the PFLs. PFLs are known to generate
multistable switches also known as biological switches in response to signal doses. A biological
switch has the potential to convert a graded response to a digital ‘all-or-none’ response at
the population level. A multistable biological switch has stable SSs separated by unstable SSs
and the different stable SSs correspond to different expression levels of the genes which are

associated with different phenotypic states of the cells.

Stochasticity or chemical noise are often found to interfere with the cell-fate decision making
processes which can alter the dynamics and outcome of the decision making. Stochasticity
can give rise to population heterogeneity or cellular variabilities in an isogenic population of
cells. A cell has to function and produce responses with high degree of accuracy and
robustness even under the unavoidable threat from chemical noise. What role the regulatory
motifs play in regulating or limiting the effects of chemical noise? Do the topologies of the
regulatory motifs contribute to limit the cellular variabilities? This thesis tries to address these
guestions by mathematically modelling the regulatory motifs involving PFLs and
understanding the role of different topologies of the PFLs in generating robust biological

switches relevant to cell-fate decisions.

The tristable switch could justify the presence of mixed phenotypic states in many cell-fate
decisions such as in EMT, differentiation of naive CD4+ cells, differentiation of T helper cells.
Therefore, we investigated the robustness of different topologies of tristable networks
involving two PFLs in generating tristable responses under random variation of parameter
space. We generated three sets of 500,000 random parameter combinations where the
parameters were sampled from independent distributions. We developed a new automation
method of bifurcation analysis using potential energy landscapes which allowed us to
generate 1.5 million 1-parameter bifurcation diagrams for each different tristable networks.
We then estimated the number of tristable responses each network generated to analyse the
robustness score. We found that the networks having mutual inhibition self-activation (MISA)
motif are the most robust in producing tristable switches as compared to the networks having
mutual activation self-activation (MASA) motif. In the context of cellular differentiation, many
natural systems have MISA as the core regulatory network motifs such as differentiation of

trophectoderm-inner cell mass'®®, primitive endoderm-epiblast'®, myeloid-erythroid
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differentiation'®?, differentiation of T helper cells!3°247, EMT!43166 The choice of MISA motifs
over other motifs in these cell-fate decisions might be the system’s evolutionary strategy to
adapt to robust networks in the face of chemical noise. The potential energy based method
also allowed us to automatically segregate the four different types of tristable responses
defined based on the number of ON and OFF thresholds and on the relative ordering of the
SN bifurcation points. We observed that Type-IV tristable response with one ON and one OFF
signalling threshold is the most robust while Type-I with two ON-OFF signalling thresholds is
the least robust. Our investigations on the EMT network suggest that introducing an
additional PFL with Ml to the core regulatory network of EMT made the pEMT state more
accessible as compared to introducing a PFL with MA. It is indeed seen that addition of the TF
GRHL2 to ZEB as a mutual inhibition loop in the EMT network ‘stabilizes’ the pEMT
state38159160  Fyrthermore, systematic analysis of the bi- and tri-stable switches for the
perturbed and unperturbed networks revealed that introduction of a SA to the MI loop
generated and stabilized the intermediate stable SS as compared to the same when the SA

was introduced to a MA loop.

The potential energy based method of automated bifurcation analysis has an advantage over
the existing numerical continuation method of bifurcation analysis such as XPPAUT and
Oscil8. The potential energy based method can identify bifurcations with broken branches
such as isola whereas it is difficult to identify one using the numerical continuation method.
Thus, the potential method can analyse both the typical multistable switches as well as the
atypical isola and mushroom bifurcations. The isola and mushroom bifurcations are known to
regulate neural stem cell differentiation, heat shock protein dynamics under different stress
levels. What are the minimal networks that generate the atypical bifurcations? What is the
origin of the isola and mushroom bifurcations? How the robustness of the atypical
bifurcations depend on the networks modelled with different input gate configurations? To
address these issues, we investigated the robustness of networks with a PFL fused to a FFL
that have the potential to generate typical and atypical bistable bifurcations. Based on the
regulations in the FFL, we classified the networks into incoherent and coherent where in the
incoherent networks the regulation on the two arms of the FFL are different whereas in

coherent networks the regulations are same. We then generated 500,000 random parameter
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sets to analyse the robustness of the networks in generating bistable bifurcations. We found
that the incoherent networks generated both typical as well as atypical bistable bifurcations
whereas the coherent networks produced only typical bistable responses. To understand why
the coherent networks are not potent in producing atypical isola and mushrooms, we looked
into the origin of the atypical bifurcations. We perturbed the incoherent networks by deleting
the different regulations from the input signal to the self-activating node. We found that the
atypical isola and mushroom bifurcations are formed due to the congregation of two
gualitatively opposite bistable bifurcations. The qualitatively opposite bifurcations are
generated by incoherent networks due to the presence of opposite regulations in the FFL
whereas coherent networks produced similar bistable bifurcations due to the presence of
similar regulations in the FFL. Furthermore, we found that if the regulations in the incoherent
networks are modelled using OR gate configurations, the inverted isola (ll) and inverted
mushrooms (IMs) are more robust than the normal isola (NI) and normal mushrooms (NMs)
whereas the results are opposite for AND and MIXED gate configurations. We showed that
the NI and NMs are formed if the positive and negative regulations in the FFL is initiated at

lower and higher signals, respectively whereas if the opposite occurred, Il and IMs are formed.

In differentiation programmes, chemical noise can give rise to mixed population or cellular
variability which can affect the rate of differentiation. Therefore, we investigated how
different arrangements of multiple PFLs regulate chemical noise or cellular variability in
differentiation programmes. We explored parallel and serial arrangements of PFLs where in
parallel arrangements the PFLs independently regulate the master regulator and in serial
arrangements the PFLs are in end-to-end chain like fashion. In presence of extrinsic and
intrinsic noise, we found that the parallel PFLs have better efficacy in reducing cell-to-cell
variability as compared to serial PFLs. To understand the reasons behind these observations,
we performed susceptibility analysis of the SN points and SSs in presence of extrinsic and
intrinsic noises, respectively. We found that the SN points in serial arrangements are more
sensitive to extrinsic noise as compared to the same in parallel PFLs. Using mean residence
time calculations, we found that the stable SSs in serial PFLs are more susceptible to intrinsic
noise as compared to that of in parallel PFLs. We found similar results using different input

configurations such as AND and OR gates and also using different modelling methodologies
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such as Goldbeter-Koshland (GK) switch and Hill functions. The parallel arrangements of PFLs
being robust in reducing cellular variability is indeed found in many cellular systems such as
in preadipocyte to adipocyte differentiation3®, in the cell cycle network of budding yeast!?3

and fission yeast?%4,

A PFL and ultrasensitivity is required to generate a bistable switch. Although positive
cooperativity is a source of ultrasensitivity. Recently it was shown that negative cooperativity
can generate ultrasensitive response in receptor-ligand (RL) binding dynamics. Therefore, we
investigated the role of negative cooperativity in generating bistable switches in the RL
binding systems. We incorporated a PFL in the system by upregulating the ligand synthesis by
the active receptors. We found that the conditions where positive cooperativity generated
robust bistability, negative cooperativity showed poor bistability and vice-versa, thus
exhibiting the dichotomous nature of the bistability under different types of cooperativities.
Furthermore, we showed that the dichotomous nature of the bistability depends on the
control parameters, the bifurcation parameters and the stability of the RL complex. In our RL
system, we have modified the dissociation rate constants to adjust the cooperativities. In vitro
experimental modifications of the dissociation constants are difficult to achieve,

nevertheless, this feat has been achieved by introducing mutations in the proteins?48,

Future scope

A single PFL can generate a bistable response whereas an additional PFL can generate a
tristable response. In general, addition of an extra PFL to an existing PFL(s) has the potential
to generate a new pair of stable-unstable SSs. Multistable switches with more than three
stable SSs are found to regulate many cell-fate determination systems!4>249.250 However, the
dynamics of these multistable switches are not explored much. In multistable switches such
as quadrastability, the intermediate stable SSs can reveal the functional and dynamical
features of the hybrid phenotypic states of the cells. In a quadrastable switch, there are six
SN bifurcation points and based on the relative ordering of these points and the number of
ON and OFF signalling thresholds, the quadrastable switch can be categorised into different

types. The minimal networks that can generate a quadrastable response consists of three
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fused PFLs. Therefore, it would be interesting to investigate the robustness of different
topologies of the minimal 2- and 3-C networks with three fused PFLs in generating
guadrastable responses under random variation of parameter space. The potential energy
based method of bifurcation analysis can be a useful tool in understanding the robustness

networks via large number of bifurcation analysis.

Another area which can be of prime focus is understanding the dynamical aspects of the
different types of atypical switches with three stable SSs. Typical bistable switch is known to
regulate many cell-fate decisions whereas, the atypical switches are not well explored. The
new approach of bifurcation analysis using the potential energy method can have great

applications in exploring different atypical bifurcations with broken branches.

Understanding the dynamical features of different phenotypic states of the cell is crucial in
understanding the physiology of the cell. Mathematical models of biological systems is an
important tool in mimicking the functions of the underlying biological systems. The topology
of the regulatory motifs that govern the cell-fate decisions play a crucial role in providing
robustness to the system to accurately and efficiently function in the presence of chemical
noise. Therefore, it is important to investigate and understand the role of regulatory motifs
to gain insights into the mechanism of the biological systems such as cancer progression and

human disease thereby identifying novel therapeutic targets
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