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Chapter 1 

Introduction 

 

 

 

 

1.1. Cell-fate decisions and regulatory motifs 

The cell that forms the fundamental unit of life is a miniature biochemical machine that plays 

many crucial and complex roles in supporting life. There are receptors present on the cell 

surface that receive signals from the environment. There are receptors inside the cell as well 

that check for cytoplasmic pH, damaged proteins or DNAs, availability of energy and various 

internal requirements. A cell is continuously processing these information, making decisions 

and exhibiting appropriate responses that include gene expression, metabolic activities, 

growth, movements, cell-division, cell lineage determination and apoptosis. The process of a 

cell to make decisions according to the stimuli is known as cell-fate decision making 

processes1–4. Cell-fate decisions are cellular processes where a cell decides upon its future 

cell-types and functions. The differentiation of pluripotent stem cells into different cell types 

that forms the organs during embryo development5–8, the decision a cell makes at each phase 

of the cell-cycle whether to continue or withdraw from the cycle9–11, the differentiation of 
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multipotent hematopoietic stem cells into different blood cell types12–14 are a few examples 

of cell-fate decisions. Cell-fate decisions are crucial for cell’s growth, survival, proliferation, 

adaptation, differentiation, lineage commitment, and apoptosis.  

The cell-fate decision network host interactions of large number of genes and proteins 

forming  complex network pathways through which the cell process information15. Proteins 

are one of the most important biomolecules that play important roles as regulatory entities 

in these complex networks. Proteins function as receptors and transducers of signals, as 

output generating moieties, as transcription factors regulating the gene expression and many 

such crucial functions. The decision making is mainly done by proteins, genes, and RNA 

molecules that regulate each other’s synthesis, degradation, localization and a variety of 

activities through biochemical reactions that are connected via feedback and feed forward 

loops with high complexity. The complex biological networks are analogous to the electrical 

circuits. In electrical circuits, resistors, capacitors, inductors are connected by means of 

current carrying wires whereas in biological networks, proteins, genes, mRNAs are connected 

through biochemical interactions.  

A cell receives varieties of signals from the environment and responds to these signals by 

producing appropriate proteins through the process of gene expression regulated by special 

proteins called transcription factors (TFs) that carry out the burden of regulating gene 

expression. The TFs bind to the DNA at specific promoter sites and regulate the rate of 

transcription. Following the binding of the TFs, the mRNAs are transcribed which are then 

translated into proteins. These proteins can then act on the signals it receives from the 

environment. Since the cell-fate decision systems have complex networking pathways, it is 

quite difficult to study them at the systems level. Previous studies suggest that the complex 

biological network system contains several 'smaller sub-network' patterns that occur 

frequently and forms the simple building blocks of the larger complex network. These smaller 

building blocks are termed as network 'motifs'16–18. Network motifs often form the core 

regulatory networks that regulate the cell-fate decisions. Therefore, study of these network 

motifs are of paramount importance and helps in understanding the larger complex network 

pathways of the biological system and its functions.  
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A network motif usually consist of nodes and edges where the nodes represent the 

biomolecules such as proteins, genes, TFs, DNAs, mRNAs, etc. and the edges are the 

biochemical interactions between the nodes. It was in Escherichia coli that the network motifs 

were first defined and studied in a systematic manner17. The transcription network in 

Escherichia coli were found to have repeated patterns of smaller network motifs. Regulatory 

motifs are often found in signalling networks and play important roles19,20 in signal processing 

and transduction such as in maintaining homeostasis in the internal functioning of the cell, 

generating sustained oscillations21, in crucial cellular decision making processes such as cell 

fate and lineage22,23 and cellular development23. Regulatory motifs can be of various types 

based on the type of interactions between the nodes. The interactions between the nodes 

can be unidirectional or bidirectional and the regulations can be positive or negative. Positive 

regulations correspond to activation and negative regulation correspond to inhibition or 

repression. Based on the type of interactions, the regulatory motifs are named as 1) 

feedforward loops 2) feedback loops. In the next section, we shall discuss about different 

regulatory motifs and their functions. 

 

1.1.1. Feedforward loops 

A feedforward loop (FFL) is a signalling network motif where a target gene Z is regulated by 

an input TF, X, either directly (direct arm) or indirectly (indirect arm) through an intermediate 

TF, Y (Figure 1.1). The FFLs are categorized into two types based on the nature of the 

regulations between the input and the output node24. A positive regulation (arrow-head bars) 

represent an activation and a negative regulation (T-head bars) represent an inhibition. If the 

regulatory signs of the direct and indirect arms are same (either positive or negative), then 

the FFL is known as a coherent FFL and if they are of opposite signs then the FFL is known as 

an incoherent FFL. Based on different combinations of positive and negative regulations, the 

FFLs are of eight types, four of them are coherent and four of them are incoherent types. 

Incoherent FFLs are sign-sensitive accelerators24- they speed up the response of the output 

node. On the other hand, coherent FFLs delay responses. Incoherent FFLs can also act as 
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pulsers24. FFLs form the most important regulatory motifs in Escherichia coli and also in 

yeast16,17 . 

 

Figure 1.1: Network diagrams of Feedforward Loops (FFL): The two different categories of 

FFL, coherent (upper panel) and incoherent (lower panel). Each of them has four subtypes 

shown as Type1, Type2, Type3 and Type4. The arrows represent activation and the T-head 

bars represent inhibition. 

 

1.1.2. Feedback loops 

Feedback loops are networks where the output of a node is fed as input to the same node. 

Feedback loops are of two types: 1) Positive feedback loop (PFL) and 2) Negative feedback 

loop (NFL) (Figure 1.2). A PFL is one where the input and the output nodes mutually help each 

other (Figure 1.2, left panel). The nodes can have regulations with either of them being 

positive (mutual activation) (Figure 1.2b, left panel) or either of them being negative (mutual 
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inhibition) (Figure 1.2c, left panel). A mutual inhibitory loop is also known as a double 

negative feedback loop (DNFL) which is effectively a PFL. A NFL is one where the output and 

input nodes have opposite functions or regulations (Figure 1.2, right panel). A feedback loop 

can consist of a single node known as ‘self-regulation’ or it can have several nodes. In self-

regulation, the node self-activates or self-inhibits its own activity (Figure 1.2a, both panels). 

In a feedback loop with several nodes, the overall sign of the network decides if it is a positive 

or negative feedback loop. In a circular network, if there are only positive regulations or even 

number of negative regulations then it is a PFL (Figure 1.2d-f, left panel) overall. Similarly, if 

there are odd number of negative regulations in a circular network then it is a NFL overall 

(Figure 1.2c-d, right panel).  

 

Figure 1.2: Network diagrams for Positive and Negative feedback loops: Left panel: Different 

types of PFL; self-activatory (a), a mutual activatory PFL (b), a mutual inhibitory or double 

negative feedback loop (DNFL) (c), circular signalling cascades (d-f). Right panel: Different 

types of NFLs; self-inhibitory (a), a classic NFL (b), circular cascades (c-d).  

 

1.1.2.1. Positive feedback loops 

One of the most important roles of a PFL is that it can amplify signals25,26, where, for a small 

change in input the change in output is abrupt or large. The other important role is that under 

proper circumstances PFLs can generate bistable and multistable switches27–30. PFLs are 

known to regulate many cell-fate decision making systems. The lysis-lysogene decision 
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making circuit in Bacteriophage lambda consist of a PFL31. The metabolic gene expression of 

lactose utilization in Escherichia coli and galactose utilization in Saccharomyces cerevisiae 

exhibit bistability that is complimented by the presence of PFLs32–34. One of the firsts 

synthetically engineered PFL is the construction of a genetic toggle switch in Escherichia coli 

to establish conditions necessary to exhibit bistability35. A PFL with sufficient ultrasensitivity 

or non-linearity in the feedback system is enough to produce bistability27–30. Bistability is a 

phenomena that the cell utilizes during crucial decision making processes such as in cellular 

differentiation36–38, memory39,40, Xenopus oocyte maturation41,42, cell-cycle43–45. A bistable 

system has the capacity to convert a graded signal into a digital switch-like “all-or-none” 

response28,46. In the context of cellular differentiation, bistable switches regulate epithelial to 

mesenchymal transitions (EMT)37, adipocyte differentiation36 and osteogenic-myogenic 

differentiation47.  

 

1.1.2.2. Interlinked positive feedback loops 

A single PFL can have a single node with self-activation or can have two nodes with mutual 

inhibition or mutual activation between the nodes. In addition to this, often times the PFLs 

are coupled to each other forming interlinked PFLs. In fact, it is quite intriguing that a large 

number of physiological or cellular systems such as cell cycle, polarisation of budding yeast, 

maturation of Xenopus oocytes, calcium signalling, adipocyte differentiation, p53 regulation, 

eukaryotic chemotaxis, B cell fate decision making, EGF receptor signalling, Bcl2 apoptotic 

switch have interlinked PFLs as their core regulatory motifs. There are many benefits of 

interlinked PFLs over a single unit of PFL. One of them is that it produces bistable region over 

a large parameter space (cellular conditions) that is otherwise not achieved using a single 

PFL26. This was demonstrated experimentally by constructing a synthetic gene circuit in 

Escherichia coli39. 
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1.1.2.3. Negative feedback loops 

NFLs consist of antagonistic regulations between the participating nodes. The most important 

role of a NFL is maintenance of homeostasis in cellular systems26. NFLs can also generate 

oscillatory responses48–50. Few examples of systems with negative feedbacks are circadian 

rhythms and NF-κB oscillations21,51. A NFL in general, attenuates noisy signals in a system by 

supressing signal amplitudes25,26. A NFL can respond more rapidly compared to a PFL thus 

making quick and prompt decisions at crucial times. Interlinked NFLs generate sustained 

oscillations as seen in many circadian networks and chemotactic signalling network in 

amoeba. Coupled NFLs can generate sustained oscillations from a damped oscillation 

generated by a single NFL.  

 

1.1.2.4. Interlinked positive and negative feedback loops 

NFL forms the core regulatory network motif in many biological systems like circadian 

systems21,52,53, cAMP signalling54, glycolysis55, somitogenesis56,57, DNA damage response 

(p53)23, NF-κB signaling systems. However this core negative feedback motif is often 

accompanied by a positive feedback motif in these systems thus forming an interlinked 

positive-negative feedback loop. A coupled PFL and a NFL has properties of both individual 

positive and negative feedback loops. A PFL has a delayed response time and a NFL has a 

smaller response time whereas a coupled PFL-NFL has an intermediate response time. If the 

NFL is stronger than the PFL, generating a bistability is quite difficult and oscillations are 

induced instead. A coupled PFL-NFL can filter out noisy signals with optimum response time. 

While a PFL can produce bistable response, a NFL helps in efficient switching rates between 

different phenotypic states58,59.  

Often times, owing to the complexity of the regulatory networks, experimental analysis of the 

underlying biological system becomes difficult at the systems level. Mathematical modelling 

of regulatory motifs is an important tool to achieve a better understanding of the system and 

its dynamics. Mathematical modelling can also validate experimental data and predict future 
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outcomes. In the next section, we shall discuss about the mathematical modelling and 

modelling methodologies of gene regulations. 

 

1.2. Mathematical modelling of regulatory motifs 

 

1.2.1. Mathematical modelling of a simple gene regulation 

Consider a TF, A, that positively regulates its target gene B according to the network motif      

A  B. The positive regulation of A on B means that as the concentration or the activity of A 

increases, the concentration or the activity of B increases. Thus, the rate of change of 

expression or activity of B is a function of concentration of A and is represented as 

𝑑𝐵

𝑑𝑡
= 𝛽0 + 𝑓(𝐴) − 𝛾𝐵. 𝐵 (1.1) 

where, 𝑋 represents either the number of molecules or concentration of the species X.  The 

right-hand side of the equation has three terms. The first term 𝛽0 is the basal synthesis rate 

of B which is a non-zero minimal expression rate. The second term, 𝑓(𝐴), is the regulated 

synthesis rate of B and the third term, 𝛾𝐵. 𝐵, is the degradation rate of B where 𝛾𝐵 is the 

degradation constant of B. The function 𝑓(𝐴) is usually a monotonic sigmoidal shaped 

function that increases with A. The function 𝑓(𝐴) can be represented as a Hill function60 which 

is commonly used to represent gene regulation. In this regulatory network where A activates 

B, the Hill function represent the equilibrium binding of the TF, A, to the promoter sites of the 

gene B thus activating its expression. The funciton  𝑓(𝐴) in Eq. 1.1 is given as  

𝑓(𝐴) =
𝛽. 𝐴𝑛

𝐾𝑛 + 𝐴𝑛
 (1.2) 

There are three parameters here,  𝐾, 𝛽 and 𝑛 that determine the behaviour of the function 

𝑓(𝐴) with A. 𝛽 is the maximal expression rate of gene B.  The maximal expression rate is 

reached when 𝐴 ≫ 𝐾. At high concentrations of A, the probability of A binding to the 

promoter in B is high which causes the gene B to produce more number of proteins per unit 

time.  𝐾 is the activation coefficient which is defined as the amount of A needed to activate 

gene B. At  𝐾 = 𝐴, the expression rate of the gene B is half-maximal (
𝛽

2
). The parameter 𝑛 
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represents the Hill coefficient that controls the steepness (ultrasensitivity) of the Hill function. 

The steepness of the Hill function increases with increase in 𝑛. The Hill coefficient also 

describes the cooperativity of the binding dynamics.  

 Positive cooperativity (n > 1): Binding of the TF A to the promoter region of gene B 

increases the affinity of binding of subsequent TFs to the same promoter.  

 Negative cooperativity (n < 1): Binding of the TF A to the promoter region of gene B 

decreases the affinity of binding of subsequent ligands to the same promoter.  

 Noncooperativity (n = 1): Binding of the TF A to the promoter region of gene B does 

not alter the affinity of binding of subsequent ligands to the same promoter. 

For A inhibiting B, A ⊣ B, the Hill function will be a decreasing sigmoidal shaped curve and is 

represented by the equation 

𝑓(𝐴) =
𝛽

𝐾𝑛 + 𝐴𝑛
 (1.3) 

Here, 𝐾 is the repression coefficient and the meaning of all other parameters remain same as 

in the Eq. 1.2. The Hill function approaches a saturating value at large concentration of A. The 

approach to the saturation is due to the fact that the probability of A binding to the promoter 

of gene B cannot exceed 1. Having constructed a mathematical modelling methodology for a 

simple gene regulation, in the next section, we extend the methodology to a simple PFL. 

 

1.2.2. Mathematical modelling of a simple positive feedback loop 

Mathematical modelling of a PFL can be an useful tool in understanding bistable phenomena 

observed in many biological systems. Consider a simple two component PFL between A and 

B where A and B either mutually activate or inhibit each other (Figure 1.3). If A and B mutually 

activate each other, higher concentrations of A will produce higher concentrations of B and 

vice-versa. If A and B mutually inhibit each other higher concentration of A will produce lower 

concentrations of B and vice-versa. Let S be an input signal activating A.  
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Figure 1.3: The network diagrams for a single positive feedback loop. (a) PFL with mutual 

activation between A and B. (b) PFL with mutual inhibition between A and B. S is an input 

signal. 

Using the Hill function, the dynamical equations corresponding to A and B in the PFL network 

motif (Figure 1.3a) can be represented as 

𝑑𝐴

𝑑𝑡
= 𝑘𝐴 + 𝑘1. 𝑆 + 𝑘2. 𝐵 − 𝛾𝐴. 𝐴 (1.4) 

𝑑𝐵

𝑑𝑡
= 𝑘𝐵 +

𝛽. 𝐴𝑛

𝐾𝑛 + 𝐴𝑛
− 𝛾𝐵. 𝐵 (1.5) 

 

Similarly, the dynamical equations corresponding to A and B in the DNFL network motif 

(Figure 1.3b) can be represented as 

𝑑𝐴

𝑑𝑡
= 𝑘𝐴 + 𝑘1. 𝑆 − 𝑘2. 𝐴. 𝐵 − 𝛾𝐴. 𝐴 (1.6) 

𝑑𝐵

𝑑𝑡
= 𝑘𝐵 +

𝛽

𝐾𝑛 + 𝐴𝑛
− 𝛾𝐵. 𝐵 (1.7) 

 

These dynamical equations are deterministic in nature whose exact solutions can be tracked 

over time. The steady state (SS) equation of A is obtained by setting 𝑑𝐴 𝑑𝑡⁄ = 0 and the SS 

equation of B is obtained by setting 𝑑𝐵 𝑑𝑡⁄ = 0. The SS equation of A and B are known as 

nullclines and are plotted as phase-plane diagrams. In the top panel of Figure 1.4, the phase-

plane (a) and bifurcation diagrams (b,c) for the PFL network are plotted and in the bottom 

panel of Figure 1.4, the phase-plane (d) and bifurcation diagrams (e,f) for the DNFL network 
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are plotted. The non-linear curves (red, black) in the phase-plane diagrams are the B-nullclines 

whereas the straight lines (various colors) are the A-nullclines. The A-nullcline move up and 

down with varying parameter value of S. The point of intersection of the two nullclines 

represent a SS of the system. For a single intersection, the SS value is always stable and for 

three intersections, the SSs at the extreme points are stable with unstable SS in between. In 

the figure, the black filled circles represent the stable and the red filled circles represent the 

unstable SSs. The loci of the stable and unstable SSs with respect to a parameter is known as 

a bifurcation diagram and the parameter is known as the bifurcation parameter.  

 

Figure 1.4: Phase-plane and bifurcation diagrams: Top panel (a,b,c): The phase-plane (a) and 

1-parameter bifurcation diagrams (b,c) for the classic PFL (mutual activation) network. 

Bottom panel (d,e,f): The phase-plane (d) and the 1-parameter bifurcation diagrams (e,f) for 

the DNFL (mutual inhibition) network. The nonlinear line and the straight lines in the phase-

plane diagrams represent B nullcline (red and black) and A nullclines (various colors), 

respectively. The red and black filled circles represent the stable and unstable SSs, 

respectively. In the bistable bifurcation diagrams, the black solid and the red broken lines 
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represent the stable and unstable SSs, respectively. The two saddle-node (SN) bifurcation 

points are shown by arrows as SNL (saddle-node left) and SNR (saddle-node right) (b). The 

green arrows show the transition from OFF to ON state and vice versa (c). 

In Figure 1.4, (b) and (e) represent the bifurcation for A and (c) and (f) represent the 

bifurcation for B. Since, there are two stable SSs (black solid lines) separated by an unstable 

SS (red broken line), this type of bifurcation is known as a bistable bifurcation diagram. The 

signal value where the stable and unstable SSs coalesce and destroy each other are known as 

saddle-node (SN) points (Figure 1.4b). In case of a reversible bistable diagram, there are two 

SN points, one at lower S value (SNL) and one at higher S value (SNR). The region between two 

SN points in the bifurcation diagram (yellow region) represent the bistable region where the 

two stable SSs co-exists simultaneously for a certain range of S values. For A and B mutually 

activating network (PFL), at low S, the SS values of both A and B are low and at high S, the SS 

values of both A and B are high (Figure 1.4b-c). For A and B mutually inhibiting network 

(DNFL), at low S, the SS value of A is low whereas the SS value of B is high and at high S it is 

the opposite (Figure 1.4e-f). In a bistable system, the transition from one stable SS to another 

stable SS occurs at the SN points. The SN points are also known as the threshold points where 

SNR is associated with ON threshold and SNL is associated with OFF threshold (Figure 1.4c).  

In the context of cell physiology, each of these different stable SSs (lower and upper) 

represent a distinct phenotypic state of the cell. In a bistable system, depending on the initial 

concentrations of the molecular species (variables), the system can converge into one of the 

two stable SSs. For example, adipocyte cellular differentiation is governed by a bistable switch 

and PPARG is a protein that regulates the differentiation process. Based on the expression 

level of PPARG, lower stable SS (OFF-state) represent the undifferentiated state of the 

adipocyte cells whereas the upper stable SS (ON-state) represent the differentiated state61. 

In the lactose utilization system of the Escherichia coli, mediated by lac operon, the activity 

of the β-galactosidase can converge into one of the two stable SSs depending upon the initial 

concentrations of the molecular species involved62. Similarly, in cell cycle system, interphase 

and mitosis are the two stable states corresponding to low and high activity of the kinase 

Cdc2, respectively41,63,64. In the eukaryotic cell cycle, a PFL is formed by Cdc25 and Wee1 on 

Cyclin B-Cdk. With changing cyclin concentration, the Cdk activity exhibit bistability with one 
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stable SS representing the interphase state and the other stable SS representing the mitotic 

state of the cell cycle41,42,63,65. Bistability is also known to regulate many of these cell fate 

determination systems40,66–70. The bistable system is associated with hysteresis28,70 meaning 

the system’s ability to shift between the alternate stable SS at a range of signal values28,71. A 

bistable system can be reversible or irreversible. In case of a reversible bistable system, there 

are two SN points and the system can transition to an alternate stable SS with decrease or 

increase in signal values. While in case of an irreversible bistable system there is only a single 

SN point and after the transition to an alternate stable SS, the system is unable to transition 

back to the initial stable SS of the system71,72 when the signal is removed. 

While a single PFL generates bistability, interlinked PFLs can generate tristability (Figure 1.5) 

and multistability. The bistable, tristable and multistable switches are known as biological 

switches and play crucial roles in regulating cell-fate decisions. The interlinked PFL can be 

through a self-activation on one of the nodes (Figure 1.5a-b) or can be through a third-

component via mutual activation or mutual inhibition (Figure 1.5c-e). A tristable switch has 

three stable SSs separated by two unstable SSs and has four different SN bifurcation points 

(Figure 1.5f).  

 

Figure 1.5: Interlinked positive feedback loops: Different types of 2 and 3-component 

interlinked PFLs. A mutual-activation-self-activation (MASA) motif (a), a mutual-inhibition-

self-activation (MISA) motif (b), a mutual-activation-mutual-activation (MAMA) motif (c), a 
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mutual-inhibition-mutual-activation (MIMA) motif (d), a mutual-inhibition-mutual-inhibition 

(MIMI) motif (e). A tristable bifurcation diagram of the interlinked PFLs (f). The black solid and 

red broken lines are stable and unstable SSs respectively. The SN points are indicated 

accordingly. 

In general, in a biological switch, there are ′𝑚′ number of stable SSs separated by ′𝑚 − 1′ 

number of unstable SSs, where 𝑚 is a positive integer. The tristable switch has an 

intermediate stable SS that enhances the phenotypic plasticity of the system. A phenotypic 

plasticity is the organism’s ability to adapt to different phenotypic states in response to 

variation in environmental conditions in order to grow and survive and is considered as an 

evolutionary strategy. The more the number of phenotypic states the better the chances of 

the cell’s growth and survival under fluctuating environment.  In a tristable system, when the 

three different phenotypic states coexist for some values of control parameter, it is observed 

both experimentally and theoretically that the most probable state is the intermediate stable 

SS73. There are many biological systems that exhibit tristability, for example, differentiation 

of naïve CD4+ T cells74,75, Th1/Th2 differentiation76–78, macrophage-neutrophil 

differentiation68,79, epithelial-to-mesenchymal transition (EMT)37,80.  

When two PFLs were interlinked it resulted in a bigger region of bistability over a broader 

range of inducer concentrations. When one of the PFLs was removed, the bistable region 

decreased. It has been observed that an additional PFL to a bistable network shifts the right 

and left SN points towards right and left respectively thus widening the bistable region81. 

Another benefit of coupled PFLs in many biological systems is that if the different PFLs 

function at different time scales (fast and slow) they make the system more robust and stable. 

For example, in experimental studies of budding yeast polarisation, the interlinked fast and 

slow PFLs generated a bistable switch. The slow PFL regulated the polarised ON state and the 

fast PFL regulated the speed of switching between the unpolarised OFF state and the 

polarised ON state82.  

Regulatory motifs serve as the core functional motifs in many cell-fate decision making 

systems. A biological cell is constantly under the influence of chemical noise or stochasticity 

which can cause detrimental effect on the smooth and accurate functioning of the cell. 
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Therefore, it is important to understand the various sources of stochasticity and its effects on 

the cell-fate decisions.  

 

1.3. Stochasticity and cell-fate decisions 

 

1.3.1. The origin of stochasticity 

The process of gene expression, inherently, is random and therefore produces noisy 

outcomes. In two genetically identical cells, over time, a gene will not produce the same 

number of mRNAs and proteins even if the cells are kept in identical environmental 

conditions83–89. This is due to the fact that the copy number of biological molecules like genes, 

mRNAs, proteins, TFs are low in numbers because of which the chemical reactions are discrete 

and random. For example, in a single bacterial cell, the mean copy number of genes are 1-2, 

mRNAs are 1-30 and proteins are 102-106. These low copy number of biomolecules react with 

each other to form products. The reaction events are random and discrete in nature which 

gives rise to stochastic fluctuations in the protein or mRNA abundance over time. 

Experimental evidences suggest that the number of proteins and mRNAs show remarkable 

cell-to-cell variability in an isogenic population of cells 83,84,87,90–92. Experimental evidences of 

cellular variations dates back to 1957 where Novak and Weiner showed that the expression 

level of the gene producing the enzyme beta-galactosidase in individual Escherichia coli cells 

was not equal and was highly variable and random 32. The origin of cell-to-cell variability can 

be tracked down to two sources: the extrinsic noise source and the intrinsic noise source. 

Together these sums up the total cellular noise 84,88.  

 

1.3.1.1. Intrinsic noise 

In an isogenic population of cells, even if all the extrinsic sources of noise are identical, the 

end products of gene expression will be inherently noisy and each cell will have different 

amounts of mRNAs and proteins thus giving rise to cell-to-cell variability. This is due to the 

presence of finite copy number of the reacting species because of which the events in the 
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gene expression are random and hence generate noisy outputs. This is inherent to the 

chemical reaction and is known as intrinsic noise which arises from the discrete nature of the 

chemical reactions in gene expression.  Intrinsic noise also gives rise to extrinsic noise. 

 

1.3.1.2. Extrinsic noise 

In a population of genetically identical cells, each cell is different from the other in terms of 

its shape, size, density of the cytoplasm, pH, cellular pressure, stage in the cell cycle and 

number of the participating molecules. These sources of perturbations or noise that differ 

between isogenic cells is known as extrinsic noise.  

Elowitz et al. experimentally demonstrated the consequences of presence of both sources of 

noise 84. They built copies of Escherichia coli by incorporating the cyan and yellow alleles of 

green fluorescence proteins as the reporter genes. The two reporter genes were controlled 

by identical promoters in each copy. In presence of extrinsic noise only, they observed that in 

a clonal population of Escherichia coli, both the proteins were produced in same quantity in 

each cell but were different from cell to cell.  They also observed that in presence of intrinsic 

noise only, the amount of proteins produced by the two genes were different in each cell as 

well as in different cells. Thus, in a population, due to presence of intrinsic noise, a fraction of 

cells expresses higher level of one of the fluorescent proteins than the other thus giving rise 

to a population heterogeneity. The presence of stochasticity in gene expression can be 

quantitatively visualized by experimentally measuring the relative amount of proteins 

produced by genetically identical living cells using fluorescent proteins 83,84,87,91. However, the 

measurement of protein abundance using reporter genes is actually the combined result of 

transcription and translation since the amount of mRNAs are not accounted for. It was much 

needed to analyse single-mRNA resolution in a single cell to better understand how mRNA 

expression effects the variability in gene expression. Much later, through the advancement 

of experimental tools such as single molecule RNA fluorescence in-situ hybridization (sm-

FISH) and MS2 tagging, it was revealed that the genes are expressed in a pulse like manner or 

as bursts 88,92–94.  
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1.3.1.3. Transcriptional bursting 

The pulse-like or the burst phenomena in mRNA production can be theoretically better 

understood by the two-state random telegraph model 83,84,87,90,91,95, which explains that the 

gene has two states, namely, the active or the ON state and the inactive or the OFF state 92,95–

98. It is only in the active (ON) state that the gene can be transcribed and there is no 

transcription in the inactive (OFF) state. The transition between these two states is random 

and mRNAs are produced in short bursts when the gene is in active state. Transcriptional 

bursting can give rise to cell-to-cell variability in the amount of mRNAs produced in genetically 

identical cells. Because of the transcriptional bursts, the amount of mRNAs produced will 

follow a population distribution rather than a single deterministic value. The possible 

mechanisms reported in recent studies show that the ON and OFF states of the gene is caused 

by the supercoiling of the DNA during transcriptional elongation99,100 and promoter 

architecture101 that ultimately results in transcriptional bursting. After the mRNAs are 

produced in bursts, the mRNAs also undergoes degradation after a short lifetime.  

 

1.3.1.4. Translational bursting 

The mRNAs are translated into proteins until they degrade. Therefore, just like the mRNAs, 

the proteins are also produced in bursts by these short-lived mRNAs and the protein bursts 

seize to exist when the mRNAs degrade. This phenomena is known as the translational 

bursting102 and has been identified in single molecule experiments103.   

Just like the production of mRNAs follows a population distribution because of the 

transcriptional bursting phenomena, protein production over time also follows a similar 

population distribution because of the translational bursting. The bursting phenomena is 

inherent to the system and can be advantageous as well as disadvantageous to the 

functioning of the cell depending upon the circumstances. Several biological circuits 

regulating gene expression has to carry out the process in presence of this inherent 

stochasticity. While in many cellular processes, it is necessary to filter out the noise in order 

to function efficiently and robustly104, this noise can also be utilized by the cells to adapt to 
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different useful situations and switch between phenotypes under stressful environmental 

conditions 105. To better understand how the dynamics of the regulatory motifs are altered 

by the chemical noise, it is important to incorporate stochasticity into the mathematical 

modelling of the regulatory motifs. In the next section, we shall discuss about the 

mathematical modelling of chemical noise. 

 

1.3.2. Mathematical modelling of a stochastic system 

Mathematically, in presence of stochasticity, a system of chemical reactions can be modelled 

using the well-known Chemical Master Equation (CME)106,107. The CME is a system of 

dynamical equations that measures the probability of a system to be in a particular state at a 

given time. The CME can be considered as a jump type Markov process where the current 

state of a system is achieved by two jump processes, arriving to the current state from the 

preceding state and leaving the current state.  

 

1.3.2.1. The general form of chemical master equation 

For a well stirred system with constant temperature and fixed volume, let there be 

S1, S2, … , SN number of chemical species reacting. Let the number of chemical reactions 

occurring be R1, R2, … , RM . Let 𝑿(𝑡) = (𝑛1, 𝑛2, … , 𝑛𝑁)  be the state of the system at a given 

time 𝑡, where 𝑛𝑖  is the number of molecules of the 𝑖 -th chemical species. Each reaction Rj is 

associated with a propensity function 𝑎𝑗 and state-change vector element 𝑣𝑗𝑖  where the 

propensity function 𝑎𝑗 is the probability that only one reaction Rj will occur accordingly in the 

time between 𝑡 and 𝑡 + 𝑑𝑡. The state-change vector element 𝑣𝑗𝑖  counts the change in the 

number of molecules of  Si chemical species after a reaction Rj occurs between 𝑡 and 𝑡 + 𝑑𝑡.  

The General form of the CME is given as 

𝑑𝑃(𝑿, 𝑡)

𝑑𝑡
=  ∑[𝑎𝑗(𝑿 − 𝑣𝑗)𝑃(𝑿 − 𝑣𝑗) − 𝑎𝑗(𝑿)𝑃(𝑿)]

𝑀

𝑗=1

 (1.8) 



 

Table of contents List of abbreviations References 

19   Chapter 1 

Eq. 1.8 is the general form of the chemical master equation (CME), which is a state-discrete 

equation in a continuous time. The left-hand side of the equation is the rate of change of 

probability of the system to be in state 𝑿 at time 𝑡. The right-hand side of the equation has 

two terms. The first term is the rate of probability of arriving at state 𝑿 at time 𝑡 and the 

second term represents the rate of probability of leaving state 𝑿 at time 𝑡. 

Solving for 𝑃(𝑿, 𝑡) in the equation reveals information about the state 𝑿(𝑡) of the system. 

Finding the exact solution of the CME is a difficult task because of the high dimensionality of 

the system which arises due to the many number of possible states of the system under 

consideration. An alternate method known as the Gillespie algorithm is discussed in the next 

section which exactly captures the dynamics of the CME. 

 

1.3.2.2. Gillespie algorithm 

Computationally, the solutions of the CME can be obtained by iterating an ensemble of 

stochastic trajectories over time and finding the mean of the ensemble. Such ensemble of 

stochastic trajectories can be generated using the Stochastic Simulation Algorithm (SSA) 

formulated by D.T. Gillespie 108. Popularly known as the Gillespie Algorithm and also known 

as ‘next reaction’ method, this method makes an assumption that all the reactions are 

Markovian and the time for the next reaction is calculated based on the current state of the 

system. Consider the same system as explained above with 𝑁 number of chemical species 

and 𝑀 number of reactions with propensities 𝑎𝑗(𝑋) and 𝑿(𝑡) as the state of the system. The 

time to the next reaction ′𝑑𝑡′ is randomly selected from the exponential distribution with 

mean 
1

𝑎0
 where 𝑎0 =  ∑ 𝑎𝑗(𝑋)𝑀

𝑗=1  the sum of all the propensities of all the reactions. The next 

step is to find which reaction takes place out of the 𝑀 possible reactions. The possibility of 

occurrence of a reaction is decided by the probability of 
𝑎𝑗(𝑋)

𝑎0
. The time 𝑡 is advanced to 𝑡 +

𝑑𝑡 and the number of molecules of the chemical species are updated depending on the 

reaction that has occurred in the time interval 𝑑𝑡. Using this method many time dependent 

stochastic solution trajectories of the functions are generated. The mean of ensemble of the 

stochastic trajectories for a system having dynamical equations expressed as mass-action 
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kinetics is equal to the deterministic mean. Thus this method is useful in finding the exact 

solution of a stochastic system. 

The noise is measured in terms of coefficient of variation (CV) which is defined as the ratio of 

standard deviation to the mean and typically scales as 𝐶𝑉 ∝ 1 √𝑁⁄ , where 𝑁 is the population 

number of random variable. This means that if the population number is low, the noise is 

large and the noise reduces with increase in the population number. To show the effect of 

population number on the measure of CV, stochastic trajectories for low and high (Figure 1.6) 

number of mRNAs and proteins are generated using the Gillespie’s SSA for the gene 

expression model where the mRNAs and proteins are produced with constant synthesis rate 

and are exponentially degraded. From the figures, it is clear that the CV for the population 

distribution of mRNAs and proteins are relatively high (noisier) when less number of proteins 

and mRNAs (Figure 1.6, left panel) are present compared to their high abundance (Figure 1.6, 

right panel).  

 

Figure 1.6: The number effect on noise: The time evolution of stochastic and the 

deterministic trajectories for low number of mRNAs (a) and proteins (b) and high number of 
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mRNAs (c) and proteins (d). The corresponding population distribution (black for mRNAs and 

green for proteins) are plotted with the coefficient of variations (CV) values. 

Stochasticity in chemical reactions can alter the dynamics of the cell-fate decisions. 

Stochasticity can have both positive and negative effects on the functioning of a cell. Cells can 

utilise the noise to survive under stressful conditions or noise can have detrimental effects on 

the cells. In the next section, we discuss about few effects of stochasticity on cell-fate 

decisions. 

 

1.3.3. Effect of stochasticity on cell-fate decisions 

 

1.3.3.1. Stochasticity and population heterogeneity 

Bistability and multistability is a mechanism utilised by cells to effectively carry out 

phenotypic state transitions represented by the stable SSs. The expression levels of a master 

regulator protein determines the phenotypes of the cells. For a clonal population of cells, in 

a purely deterministic system with bistability, all the cells will switch from one stable SS to 

another at the SN bifurcation parameter (Figure 1.4c) thus representing an ‘all-or-none’ 

mechanism at the population level. Whereas in a stochastic system with bistability, a clonal 

population of cells will give rise to a population heterogeneity109,110. In a noisy system, 

bistability can give rise to a bimodal distribution, whereas tristability and multistability can 

give rise to a trimodal and multimodal distributions, respectively.  

 

1.3.3.2. Stochasticity as a nuisance 

The chemical noise can be advantageous or can act as a nuisance to the system. For example, 

in the human prostate cancer cells, the cells can switch between two alternate states in 

presence of noise thus giving rise to a population heterogeneity. A subpopulation of the cells 

are sensitive to antibiotic treatment and the other subpopulation is tolerant to antibiotic 

treatment thus making the tumor cells to conveniently escape drug treatment111. In 

preadipocyte to adipocyte differentiation, the noise helps the system to transition from 
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undifferentiated state to the differentiated state. But, the same noise causes the cells to lose 

the differentiated state and revert back to the undifferentiated state thus resulting in low rate 

of preadipocyte differentiation61. p53 is a tumor suppressor gene that plays a master role in 

cell-fate decision making in cell cycle112–115. Cellular stress such as DNA damage activates p53 

gene which in turn promotes cell cycle arrest, DNA damage repair or direct the cell towards 

apoptosis. Chemical noise can change the expression dynamics of p53 thus making the cells 

vulnerable to escape from the cell cycle arrest with the DNA damage112,116–118.  

Environmental cues affect the functioning of a cell. The receiving of the environmental cues 

(signals), processing it and exhibiting appropriate response is maintained by the complex 

signalling pathways in cell-fate decisions. The cell-fate decision making systems must be able 

to work with high degree of accuracy and produce robust output in presence of chemical 

noise. Often times, the complex signalling system must also direct the cell to different cell 

types and lineages and hence the signalling system must be versatile to function in different 

cell types and in presence of fluctuating input signals. Therefore, the three important 

properties that a signalling system in cell-fate decisions should require are- precision, 

robustness and versatility119. Regulatory motifs are found to have all these three requisites 

and are often found to play important roles in cell-fate decision making systems.  

Feedback loops function as the core regulatory network motif in many cell-fate decision 

making systems such as cell cycle120–123, p53 regulation23, the lysis-lysogeny decision in phage 

lambda31, cellular differentiation36,37,61,68,124,125, the lac operon in Escherichia coli62. Feedback 

loops can consist of either as PFLs, or as NFLs or as fused positive and negative feedback loops. 

The design principles of the feedback regulatory motifs, their dynamical and functional 

properties in regulating the cell-fate decisions are being explored using both experimental as 

well as computational approaches. In the next section, we present some findings from 

previous works highlighting the role of feedback loops as the core regulatory motifs in many 

cell-fate decision systems. 
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1.4. Previous works 

Cell-fate decisions are carried out by the gene regulatory networks where an input signal 

triggers gene expression resulting in a desirable decision making as the outcome. Often times, 

feedback loops form the core regulatory motif of the gene regulatory networks. In Escherichia 

coli, a majority of the gene regulatory networks have auto-repression (NFL with a single node) 

as the regulatory motif17,126. Early findings by Becskei et al. showed that NFLs in Escherichia 

coli exhibited stability in the regulatory network127. They experimentally demonstrated that 

negative auto-regulation reduces the cell-to-cell variabilities by resulting in a narrower 

protein distribution levels. Although NFLs are known to attenuate noise but the noise 

reduction is traded off with the signal sensitivity128,129. Many gene regulatory networks also 

consist of interlinked positive and negative feedback loops as the core regulatory motif. 

Computational models showed that interlinked positive and negative feedback loops resulted 

in oscillations with tunable frequency and constant amplitude130. Furthermore, it was also 

shown that tuning the feedback strength can exhibit diverse dynamic behaviour such as 

monostability, bistability, excitability and oscillations thus rendering a robust desirable 

outcome131. The multiple antibiotic resistance activator (MarA) network in Escherichia coli 

consist of a coupled positive and negative feedback loop as the core regulatory network motif. 

The uninduced MarA under environmental noise generates population heterogeneity for bet 

hedging and upon induction, it generates uniform deterministic response132. The galactose 

uptake control system of Saccharomyces cerevisiae also consist of interlinked positive and 

negative feedback loops as the regulatory motif. Experimentation on this system showed that 

the PFL generated different phenotypic states, the NFL ensured efficient switching between 

the different phenotypic states59.  

PFLs are often found to regulate many cell-fate decision making systems such as the 

maturation of Xenopus laevis oocytes63,66, adipogenesis36,61, differentiation of hematopoietic 

stem cells133,134, differentiation of naïve CD4+ T cells74,75, and EMTs135–137. PFLs have the 

potential to generate biological switches that are known to convert a graded response into 

‘all-or-none’ response. Brandman et. al., through mathematical modelling, showed that two 

interlinked PFLs each working at disparate time scales can attenuate noisy stimulus82. PFLs 

are able to reduce the effect of gene expression noise while maintaining signalling sensitivity 
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even when the input signal fluctuates128. Previous experimental and theoretical works predict 

that PFLs provide an excellent mechanism in limiting cellular variability or chemical noise. 

Stochastic modelling of the yeast cell cycle revealed that the PFLs present at the G1/S 

transition point play crucial role in limiting cell cycle variability123. The differentiation of 

preadipocyte to adipocyte cells consist of fused PFLs which help in controlling the low rate of 

adipogenesis36,61. Although all the networks having PFLs can generate biological switches, 

however, not all PFLs are found to act as the regulatory motifs in many cell-fate decisions. 

Cell-fate decisions are crucial for the cells in terms of their survival, adaptation, lineage 

choices and proliferation among many others. Therefore, a cell has to carry out the decision 

making with high degree of accuracy and robustness in presence of stochasticity. How the 

cells maintain a robust mechanism of the cell-fate decisions? Do the topology of the 

regulatory networks play any role in generating robust responses to chemical noise? In this 

thesis, we aim to understand the role of topology of the regulatory networks in generating 

robust biological switches relevant to cell-fate decisions. 

 

1.5. Aim and layout of the thesis 

The main aim of this thesis is to understand how topology of the regulatory network motifs is 

associated with robustness of the cell-fate decision making systems. Cell-fate decisions such 

as differentiation are often regulated by PFLs. PFLs are known to generate multistable 

biological switches which are associated with different phenotypic state of the cells 

undergoing decision making process. The PFLs can consist of different topologies such as 

mutual activation (MA), mutual inhibition (MI), self-activation (SA) and coupled PFLs formed 

by the fusion of same or different regulations. Stochasticity or chemical noise is inherent to 

the chemical reactions and can interfere and alter the outcome of the cell-fate decisions. It is 

therefore essential for the cell to function with high degree of accuracy and robustness to 

produce desirable outcome in the face of stochasticity. What contributes to the robustness 

in the functioning of the cell in presence of noise? Do the topology of the PFLs play any crucial 

role in generating robust and tunable regulatory motifs? In this thesis, using mathematical 

modelling, we seek answers to these questions by investigating the robustness of regulatory 
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motifs in generating biological switches relevant to cell-fate decisions. This thesis also aims to 

seek answer to why are certain regulatory motifs recurrently represented in many cell-fate 

decision systems? 

A brief introduction to each chapter in this thesis is discussed below. 

In Chapter 2, we discussed about the role of tristable switches in justifying the presence of 

hybrid or mixed phenotype in many cell-fate decisions. We investigated minimal 2 and 3-

component tristable networks that have the potential to generate tristable switches. Our aim 

was to find the robustness score of each tristable network in generating tristable responses 

in presence of noise. To do this, we introduced a new automated method of bifurcation 

analysis using the concept of potential energy landscape of the non-linear system. This energy 

based method allowed us to generate millions of bifurcation diagrams in an automated 

manner while the parameters were randomly sampled from independent distributions. Using 

systematic analysis of the tristable responses generated by each network, we showed that 

the networks having mutual inhibition self-activation (MISA) motif are the most robust 

compared to the networks having mutual activation self-activation (MASA) motif. 

Furthermore, we showed that in EMT, introduction of a new MI loop to the core regulatory 

motif made the hybrid phenotypic state more accessible as compared to introduction of a 

new MA loop. We also discussed about the origin and robustness of the tristable networks.  

In Chapter 3, we investigated robustness of networks having a PFL fused with a FFL in 

generating isola and mushroom bifurcations which are known to regulate the differentiation 

of neural stem cells and the dynamics of heat shock proteins. In particular, our aim was to 

understand the design principles of the networks in generating mushroom bifurcations and 

bifurcations with broken branches such as isola. We showed that our energy based method 

of bifurcation analysis is able to identify bifurcations with broken branches of the SSs in 

addition to the typical continuous bifurcations. We termed the isola and mushroom 

bifurcations as the atypical bifurcations. Using systematic analysis, we showed that the 

incoherent networks have the potential to generate both typical and atypical bifurcations 

whereas the coherent networks produced only typical bifurcations. Furthermore, by 

perturbing the incoherent networks, we showed that the atypical bifurcations are formed by 
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the congregation of two qualitatively different bistable bifurcations. We also explored the 

dependency of different modelling methodologies in generating normal and inverted atypical 

bifurcations. 

In Chapter 4, we discussed about the different arrangements of multiple PFLs and robustness 

of bistable switches created by such arrangements. We investigated two different 

arrangements of multiple PFLs in regulating cellular variability in differentiation. We 

incorporated both extrinsic and intrinsic noises into our network models and showed that 

PFLs in parallel arrangement are more efficient in reducing both the noises as compared to 

PFLs in serial arrangement. Furthermore, we showed that the SN points in the serial PFLs are 

more susceptible to extrinsic noise as compared to parallel PFLs. Using mean residence time 

analysis, we showed that the stable SSs in the serial PFLs are more sensitive to intrinsic noise 

as compared to parallel PFLs.  

In Chapter 5, we discussed about the role of different cooperativities in generating bistable 

switches in receptor-ligand binding system. By incorporating a PFL in the receptor-ligand 

binding model, we showed that the conditions where a negative cooperativity generated 

robust bistability, positive cooperativity exhibited poor bistability and vice-versa thus giving 

rise to a dichotomous nature of the bistable switch. We showed that the control parameters, 

the bifurcation parameters, and the stability of the receptor-ligand complex regulate the 

dichotomous nature of the bistability. 

In Chapter 6, we summarised the overview and the results of the investigations carried out 

during the course of this thesis work. The scope of further studies based on the current 

findings and the application of the energy based bifurcation analysis method is also discussed.
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Chapter 2 

Robustness of Tristable Networks with Fused Positive 

Feedback Loops 

 

 

2.1. Introduction 

In many decision making systems, bistability (BS) was able to explain the presence of two 

mutually exclusive phenotypic states of the cells generated by the mutual inhibition of two 

genes. However, BS was unable to justify the presence of mixed or hybrid phenotypic state in 

addition to the two mutually exclusive states. Many in vivo and in vitro experiments have 

suggested the presence of mixed phenotypes. For example, subpopulation of interleukin-17 

secreting hybrid CD4+Rorγt+Foxp3+ cells was observed during the activation of antigen 

challenged naïve CD4+ T cell74,75. During the primary immune response in murine model, a 

mixed phenotype of cells having expression levels of both Tbet and GATA3 was observed138–

140. Mixed population has also been observed in differentiation of macrophage/neutrophil 

system68,79. In epithelial-to-mesenchymal transitions (EMT), partial EMT state (pEMT) was 

identified which has properties of both the epithelial and mesenchymal cells37,80,141. The 

hybrid pEMT state is attributed to play important role in metastatic state of cancer142. 

Dynamical modelling of the gene regulatory networks suggested that the mixed or hybrid 
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phenotypic state can be justified by tristability (TS)143–148. A tristable switch consists of three 

stable SSs each separated by an unstable SS and the intermediate stable SS is associated with 

the mixed phenotype.  

A single PFL with sufficient non-linearity is able to produce BS.  To produce TS, an additional 

PFL is required in the bistable network. Therefore, a fusion of two PFLs can produce tristable 

signal responses. The fused PFLs can be formed either by coupling two mutual inhibitory loops 

or by coupling two mutual activatory loops or by coupling a mutual inhibitory loop to a mutual 

activatory loop. Although all of these fused PFLs are able to generate tristable responses but 

all may not have the same potential to do so. As robust network motifs are important for 

decision making, here we investigated the robustness of minimal 2- and 3-component 

networks with fused PFLs in generating 1-parameter tristable signal response curves. In 

particular, we aim to find the robustness of the tristable networks under fluctuating 

parameter space which can be due to extrinsic noise. Genetic mutations which bring 

variations in the binding constants or other rate parameters can also be incorporated as 

fluctuating parameter space.  

In this chapter, the robustness of the tristable networks is measured in terms of their capacity 

to produce tristable bifurcation diagrams under random variation in parameter space. To do 

this in an algorithmic way, we calculated the effective potential landscape of the non-linear 

system. By monitoring the birth and death of the valleys and hills in the potential landscape, 

we constructed 1-parameter tristable bifurcation diagrams. By counting the total number of 

tristable bifurcations generated by each network under fluctuating parameter space, we 

estimated the robustness of these networks. The tristable responses can be categorized into 

four different types based on the relative location of the SN points. We also estimated the 

robustness of the four types of tristable bifurcations for every network. We report that a self-

activation to a mutual inhibition loop either directly or indirectly via a third component is the 

most robust tristable network. Whereas, a self-activation to a mutual activation loop is least 

robust in producing tristable bifurcations. In addition, by perturbing the network regulations 

in producing bistable and tristable responses allowed us to determine the origin of the 

robustness of the mutual inhibition networks. Using the potential energy landscape method, 

we also investigated the robustness of self-activating toggle switches (SATS) with input signals 
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on both the components.  We report that addition of a mutual inhibition loop to the core 

regulatory motif of EMT increases its robustness and also stabilizes the pEMT state.  

 

2.2. Modelling and methodology 

 

2.2.1. Model networks and dynamical equations 

A 2-component (2-C) motif having mutual activation or mutual inhibition, also known as 

double negative feedback loop (DNFL) can produce bistability with sufficient non-linearity in 

the system. To generate tristability, an additional PFL is required such that a new pair of 

stable-unstable SSs are produced145,149,150. The additional self-activatory PFL can be fused to 

either a PFL or a DNFL, thus, giving rise to four new 2-C network motifs (Figure 2.1).  

 

Figure 2.1: Network diagrams and classifications: The two main categories are MISA and 

MASA. MISA and MASA are further categorised into MISA-A, MISA-B, MASA-A and MASA-B. 
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In the 3-component networks, the self-activation is replaced by a third component C. The 

name of the network is mentioned at the bottom of the network. The –A and –B indicate the 

node that consists the self-activation. The ‘p2’ and ‘n2’ indicate the self-activation is through 

mutual activation and mutual inhibition, respectively. The T-arrows and the arrow-headed 

lines represent inhibition and activation, respectively.  

Based on the regulations and fusions, the four motifs are classified into two groups of motifs, 

MISA (mutual inhibition self-activation) and MASA (mutual activation self-activation) motifs. 

In MISA motifs, the additional PFL was fused as a self-activation into a DNFL circuit and in 

MASA motifs, the self-activation was fused to a PFL (MA) circuit. We further classified MISA 

into two subcategories (MISA-A and MISA-B) based on the node where the self-activation was 

fused to. We used similar classification for MASA motifs as well (MASA-A and MASA-B). The 

self-activation can happen indirectly through a third TF either by a mutual activation or 

mutual inhibition. Therefore, every 2-C network will have two equivalent 3-C networks. Thus, 

there are eight 3-C network motifs in total (Figure 2.1).  

We modelled these gene regulatory networks by following the modelling methodology 

proposed by Lu et al.151 In this, the dynamical equation of each TF consist of two terms- the 

gain term, representing the production of the TF and the loss term, representing the dilution 

due to cell growth or degradation. For the 2-C motifs with self-activation on B (MISA-B and 

MASA-B), the dynamical equations are written as 

𝑑𝐴

𝑑𝑡
= 𝐺𝐴(𝑆, 𝐵) − 𝑘𝐴. 𝐴 (2.1) 

𝑑𝐵

𝑑𝑡
= 𝐺𝐵(𝐴, 𝐵) − 𝑘𝐵. 𝐵 (2.2) 

where, 𝐺𝐴(𝑆, 𝐵) and 𝐺𝐵(𝐴, 𝐵) are the regulated transcription rates of A and B, respectively. 

The dilution or degradation rate constants of A and B are given by 𝑘𝐴 and 𝑘𝐵, respectively. 

Following Lu et al. and assuming non-competitive binding of S and B to the promoter region 

of the target gene A, the regulated transcription rate of A is given by 

𝐺𝐴(𝑆, 𝐵) = 𝑔𝐴,𝑆−𝐵−
𝐻−(𝑆). 𝐻−(𝐵) + 𝑔𝐴,𝑆+𝐵−

𝐻+(𝑆). 𝐻−(𝐵)

+ 𝑔𝐴,𝑆−𝐵+
𝐻−(𝑆). 𝐻+(𝐵) + 𝑔𝐴,𝑆+𝐵+

𝐻+(𝑆). 𝐻+(𝐵) 
(2.3) 
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The functions 𝐻−(𝐵) and 𝐻+(𝐵) are the inhibition and activation rates of A by B, respectively, 

and are given by Hill function as 𝐻−(𝐵) = 1/(1 + (𝐵 𝐵𝐴,0⁄ )
𝑛𝐵,𝐴

) and 𝐻+(𝐵) = 1 − 𝐻−(𝐵), 

where, 𝐵𝐴,0 and 𝑛𝐵,𝐴 are the threshold amount of B required to change the activation state 

of A and the Hill coefficient, respectively. The relative magnitudes of the rate parameters 

𝑔𝐴,𝑆−𝐵−
, 𝑔𝐴,𝑆+𝐵−

, 𝑔𝐴,𝑆−𝐵+
 and 𝑔𝐴,𝑆+𝐵+

determine the nature of regulation between the TF and 

the target gene. In the 2-C MISA-B network, based on the regulations on the target gene A by 

the TFs S and B, the following inequalities holds 𝑔𝐴,𝑆−𝐵+
<  𝑔𝐴,𝑆−𝐵−

= 𝑔𝐴,𝑆+𝐵+
<  𝑔𝐴,𝑆+𝐵−

. 

Similar methodology was used to express 𝐺𝐵(𝐴, 𝐵), the regulated transcription rate of B.  

The dynamical equations for the 2-C motifs having self-activation on A (MISA-A and MASA-A) 

are given as 

𝑑𝐴

𝑑𝑡
= 𝐺𝐴(𝑆, 𝐴, 𝐵) − 𝑘𝐴 . 𝐴 (2.4) 

𝑑𝐵

𝑑𝑡
= 𝐺𝐵(𝐴) − 𝑘𝐵. 𝐵 (2.5) 

Here, the gene A is regulated by three TFs and the transcription rate of A is expressed as 

𝐺𝐴(𝑆, 𝐴, 𝐵) = 𝑔𝐴,𝑆−𝐴−𝐵−
𝐻−(𝑆). 𝐻−(𝐴). 𝐻−(𝐵)

+ 𝑔𝐴,𝑆+𝐴−𝐵−
𝐻+(𝑆). 𝐻−(𝐴). 𝐻−(𝐵)

+ 𝑔𝐴,𝑆−𝐴+𝐵−
𝐻−(𝑆). 𝐻+(𝐴). 𝐻−(𝐵)

+ 𝑔𝐴,𝑆−𝐴−𝐵+
𝐻−(𝑆). 𝐻−(𝐴). 𝐻+(𝐵)

+ 𝑔𝐴,𝑆+𝐴+𝐵−
𝐻+(𝑆). 𝐻+(𝐴). 𝐻−(𝐵)

+ 𝑔𝐴,𝑆+𝐴−𝐵+
𝐻+(𝑆). 𝐻−(𝐴). 𝐻+(𝐵)

+ 𝑔𝐴,𝑆−𝐴+𝐵+
𝐻−(𝑆). 𝐻+(𝐴). 𝐻+(𝐵)

+ 𝑔𝐴,𝑆+𝐴+𝐵+
𝐻+(𝑆). 𝐻+(𝐴). 𝐻+(𝐵) (2.6) 

 

Since gene B is regulated by a single TF, the transcription rate of gene B can be represented 

by the usual Hill function. The transcription rates for inhibition and the activation are given 

by 𝐺𝐵(𝐴) = 𝑔𝐵,0 − 𝑔𝐵,𝐴−
𝐻−(𝐴) and 𝐺𝐵(𝐴) = 𝑔𝐵,0 − 𝑔𝐵,𝐴+

𝐻+(𝐴), respectively with 𝑔𝐵,0 <

𝑔𝐵,𝐴. In all these models, S is an external signal and acts as a parameter.  
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Similar to 2-C networks, we used this methodology to express the transcription rates for 3-C 

network motifs. For the 3-C MISA-B and MASA-B networks, the general dynamical equations 

are given as 

𝑑𝐴

𝑑𝑡
= 𝐺𝐴(𝑆, 𝐵) − 𝑘𝐴. 𝐴 

(2.7) 

𝑑𝐵

𝑑𝑡
= 𝐺𝐵(𝐴, 𝐶) − 𝑘𝐵 . 𝐵 

(2.8) 

𝑑𝐶

𝑑𝑡
= 𝐺𝐶(𝐵) − 𝑘𝐶 . 𝐶 

(2.9) 

For the 3-C MISA-A and MASA-A motifs, the dynamical equations are given as 

𝑑𝐴

𝑑𝑡
= 𝐺𝐴(𝑆, 𝐵, 𝐶) − 𝑘𝐴. 𝐴 

(2.10) 

𝑑𝐵

𝑑𝑡
= 𝐺𝐵(𝐴) − 𝑘𝐵. 𝐵 

(2.11) 

𝑑𝐶

𝑑𝑡
= 𝐺𝐶(𝐴) − 𝑘𝐶 . 𝐶 

(2.12) 

 

2.2.2. Potential landscapes and bifurcation diagrams 

At the bifurcation points, the stability of the SS undergoes a qualitative change which is 

assessed by the eigenvalues of the Jacobian matrix in the linear stability analysis of the non-

linear dynamical systems152. Therefore, to generate the bifurcation diagram, the eigenvalues 

of the SSs are monitored while the bifurcation parameter is varied153. In order to estimate the 

robustness of the network motifs in producing 1-parameter tristable bifurcation diagrams, we 

needed to generate a large number of bifurcations with random variation in the parameter 

space. The existing tools for bifurcation analysis such as XPPAUT and Oscil8 are based on 

numerical continuation method with initial value approach. In these tools, to see the effect 

of parameter perturbations on the bifurcation dynamics, the parameters must be manually 

changed to generate a new bifurcation diagrams. Therefore, for a large set of random 

parameters, the bifurcation analysis becomes quite challenging and time consuming. In this 

regard, we used potential energy landscape to generate 1-parameter bifurcation diagrams in 
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a high-throughput manner that does not require manual interventions during analysis. The 

potential landscape carries the signatures of the qualitative nature of the SSs where the local 

minima and maxima in the potential landscapes corresponds to the stable and unstable SSs, 

respectively. The theory of potential energy landscape in cell-fate decisions was originally 

proposed by Waddington154 and has become an alternate approach to study the cell-fate 

determination155. At the SN bifurcation point, a pair of stable-unstable SSs are either “born” 

or “die”. Analogous to this, in the potential energy landscape, the SN point can be reflected 

as the creation or annihilation of a pair of local minima-maxima such that a qualitative change 

occurs in the landscape beyond the bifurcation point. Therefore, close monitoring of the local 

minima and maxima for different values of bifurcation parameter allowed us to construct 1-

parameter bifurcation diagrams.  

The main problem in the calculation of potential energy landscape is the non-Newtonian 

nature of the dynamical equations of the biochemical system. Therefore, the definitions of 

the potential energy for the multi-dimensional systems poses a great challenge. To deal with 

this problem, we used the method of composite function to define the effective potential of 

multi-dimensional systems. Using the composite function method, we were able to express a 

multivariate system into a univariate system. From Eq. 2.1, for the 2-C MISA-B and MASA-B 

networks, the SS expression of A can be written as 𝐴 = 𝐺𝐴(𝑆, 𝐵) 𝑘𝐴⁄ = 𝐺𝐴
1(𝑆, 𝐵). On 

substitution of this expression in Eq. 2.2, we get the expression for effective force of the 

system as 

𝐹(𝐵, 𝑆) = 𝐺𝐵(𝐺𝐴
1(𝑆, 𝐵), 𝐵) − 𝑘𝐵. 𝐵 (2.13) 

With the expression of effective force, the effective potential function of the system can be 

defined as 

𝑉(𝐵, 𝑆) = − ∫ [𝐺𝐵(𝐺𝐴
1(𝑆, 𝑥), 𝑥) − 𝑘𝐵. 𝑥]𝑑𝑥

𝐵

0

 (2.14) 

The effective potential in Eq. 2.14 is a function of only B and it parametrically depends on the 

external input signal S. Similarly, for the 2-C MISA-A and MASA-A motifs, from Eq. 2.5, the SS 

expression of B is written as 𝐵 = 𝐺𝐵(𝐴) 𝑘𝐵⁄ = 𝐺𝐵
1(𝐴) and the effective potential is written as 
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𝑉(𝐴, 𝑆) = − ∫ [𝐺𝐴(𝑆, 𝑥, 𝐺𝐵
1(𝑥)) − 𝑘𝐴. 𝑥]𝑑𝑥

𝐴

0

 (2.15) 

For the 3-C network motifs of MISA-B and MASA-B, using the method of composite function, 

the effective potential is given as 

𝑉(𝐵, 𝑆) = − ∫ [𝐺𝐵(𝐺𝐴
1(𝑆, 𝑥), 𝐺𝐶

1(𝑥)) − 𝑘𝐵. 𝑥]𝑑𝑥
𝐵

0

 (2.16) 

where, 𝐺𝐴
1(𝑆, 𝐵) = 𝐺𝐴(𝑆, 𝐵)/𝑘𝐴 and 𝐺𝐶

1(𝑆, 𝐵) = 𝐺𝐶(𝐵)/𝑘𝐶. 

Similarly for the 3-C MISA-A and MASA-A motifs, the effective potential is given as 

𝑉(𝐴, 𝑆) = − ∫ [𝐺𝐴(𝑆, 𝐺𝐵
1(𝑥), 𝐺𝐶

1(𝑥)) − 𝑘𝐴. 𝑥]𝑑𝑥
𝐴

0

 (16) 

Where, 𝐺𝐵
1(𝐴) = 𝐺𝐵(𝐴)/𝑘𝐵 and 𝐺𝐶

1(𝐴) = 𝐺𝐶(𝐴)/𝑘𝐶. The systematic analysis of the effective 

potential allowed us to calculate the potential landscape of the variables A or B while we 

varied the signal S.  

 

2.3. Results and discussions 

Using the effective potential function, we calculated the potential landscape as a function of 

the dynamical variable and the bifurcation parameter S. At each value of S, we calculated the 

number and nature of the local minima and maxima to determine the qualitative and 

quantitative nature of the SSs. In the potential landscape, we carefully monitored the creation 

and annihilation of the local minima-maxima with gradual change in S to determine the 

bifurcation points (Figure 2.2). The S value at which a pair of local minima-maxima appears or 

disappears in the potential landscape was identified as the SN bifurcation point.  
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Figure 2.2: The potential energy based method of bifurcation analysis for the DNFL-B 

network: (a) Plots of the potential energy 𝑉(𝐵) (Eq. 2.2) landscape at different values of the 

input signal 𝑆. The local minima are indicated by 𝐵1, 𝐵3 and 𝐵5. The local maxima are 

indicated by 𝐵2 and 𝐵3. (b) The 1-parameter bifurcation diagram generated from the 

potential energy landscape. The local minima and maxima of the potential energy represent 

the stable and unstable SSs respectively in the bifurcation diagram. (c) The 1-parameter 

bifurcation diagram generated using XPPAUT. Starting from the upper branch and flowing the 

SSs, the SN bifurcation points are labelled. The input signal 𝑆 is scaled as 𝑆 100⁄  in this and all 

other figures in this chapter. The parameter values are mentioned in Table 2.1 under Type I.  

In Figure 2.2, we present the potential energy landscape for the 2-C DNFL-B network at 

different values of S. At S = 0.7, and S= 0.8, there is only one local minima (B1) representing 

one stable SS (monostability) with a value of B. With gradual increase in S and monitoring the 

local extrema allowed us to locate the SN bifurcation point at S = 0.85. As a result of this, a 

new pair of local minima-maxima appeared (B2 and B3) at the intermediate value of B at S = 

0.9. Thus, at S > 0.85, the system is bistable. Following similar method of gradual increase in 

S and subsequent monitoring of the local extrema, we located another SN point at S = 1.09. 
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Consequently, at S = 1.2, a new pair of local minima-maxima appeared (B4 and B5) with low 

levels of B. Therefore, for S > 1.09, the system becomes tristable. As we increased the value 

of S, a pair of local minima-maxima disappeared (B1 and B2) at S = 1.59, indicating another SN 

point. Similar disappearance of local extrema (B3 and B4) occurred at S = 1.95. From these 

potential landscapes at different values of S, we recorded the coordinates and nature of the 

local extrema to construct the 1-parameter bifurcation diagram for the system (Figure 2.2b). 

This bifurcation diagram is identical to the bifurcation produced using XPPAUT156 which is a 

conventional tool for bifurcation analysis based on numerical continuation method (Figure 

2.2c). Based on the relative locations of the four SN bifurcation points, the reversible tristable 

bifurcation diagrams can be categorised into four different types157 (Figure 2.3). The number 

of ON and OFF signalling thresholds and the relative ordering of the four SN points are 

different for different types. In Figure 2.3, we have plotted the bifurcation diagrams over their 

potential energy landscapes to highlight the correlation between the effective potential of 

the multi-dimensional system and the bifurcation diagrams.  

 

Figure 2.3: Categorisation of the tristable responses: 1-parameter tristable bifurcation 

diagrams generated using the potential energy based method are projected over the contours 
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of ln (𝑉(𝑆, 𝐵)) for the DNFL-B network. Based on the relative location of the SN bifurcation 

points, the tristable bifurcations are categorised into four different types: Type-I: 𝑆𝑁3 >

𝑆𝑁1 > 𝑆𝑁4 > 𝑆𝑁2, Type-II: 𝑆𝑁1 > 𝑆𝑁3 > 𝑆𝑁4 > 𝑆𝑁2, Type-III: 𝑆𝑁3 > 𝑆𝑁1 > 𝑆𝑁2 > 𝑆𝑁4, 

Type-IV: 𝑆𝑁1 > 𝑆𝑁3 > 𝑆𝑁2 > 𝑆𝑁4. The color gradient in the contours represent the depth of 

the potential landscape with green being deepest. The parameter values for each bifurcation 

type are mentioned in Table 2.1. 

Table 2.1: The parameter values corresponding to the four types of tristable bifurcations for 

the DNFL-B network. 

Parameters 

Values 

Parameters 

Values 

Type  

I 

Type 

II 

Type 

III 

Type 

IV 

Type  

I 

Type 

II 

Type 

III 

Type 

IV 

𝑔𝐴,𝑆−𝐵−
 4.0 4.0 4.0 4.0 𝐵𝐴,0 370.0 335.0 350.0 300.0 

𝑔𝐴,𝑆+𝐵−
 18.0 18.0 18.0 18.0 𝐴𝐵,0 130.0 130.0 130.0 130.0 

𝑔𝐴,𝑆−𝐵+
 0.7 0.7 0.7 0.7 𝐵𝐵,0 67.0 67.0 75.0 75.0 

𝑔𝐴,𝑆+𝐵+
 4.0 4.0 4.0 4.0 𝑛𝑆,𝐴 2.0 2.0 2.0 2.0 

𝑔𝐵,𝐵−𝐴−
 7.5 7.5 7.5 7.5 𝑛𝐵,𝐴 6.0 6.0 4.0 4.0 

𝑔𝐵,𝐵+𝐴−
 39.0 39.0 39.0 39.0 𝑛𝐴,𝐵 5.0 5.0 5.0 5.0 

𝑔𝐵,𝐵−𝐴+
 1.0 1.0 1.0 1.0 𝑛𝐵,𝐵 4.0 4.0 6.0 6.0 

𝑔𝐵,𝐵+𝐴+
 7.5 7.5 7.5 7.5 𝑘𝐴 0.05 0.05 0.05 0.05 

𝑆𝐴,0 140.0 140.0 140.0 140.0 𝑘𝐵 0.075 0.075 0.075 0.075 
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2.3.1. Robustness of tristable networks 

We applied the high throughput method of generating bifurcations using potential landscapes 

to determine the robustness of the network motifs (Figure 2.1). We initially created triplicates 

of 500,000 random parameter sets and in each set the parameters were randomly chosen 

from independent uniform distributions. For the threshold parameters, we used the half-

functional rule given by Huang et al.158 to determine the parameter range. The half-functional 

rule ensured that a regulation has equal probability of being functional or non-functional. For 

an isolated gene having only synthesis and degradation, the SS distribution was estimated by 

randomly sampling the synthesis and the degradation rate constants from independent 

distributions. The SS values in this case are the threshold values for the isolated genes. For a 

non-isolated gene with incoming regulations only, the threshold values were calculated from 

the SS equation with the parameters chosen randomly from independent distributions. In 

order to remove the extreme values, the log2 of the SS distribution was truncated at 0.02 and 

1.98 of the median value. The threshold values in our method were randomly picked from the 

truncated distribution of the relevant genes.  

For every random parameter set, we ran 1-parameter bifurcation analysis with S as the 

bifurcation parameter using the potential energy landscape method. From the ensemble 

runs, we calculated the robustness score by counting the total number of tristable bifurcation 

diagrams each network generated. Further, using the energy based method, we were able to 

categorise the tristable bifurcations into four different types according to the relative 

ordering of the SN bifurcation points (Figure 2.3). The automated energy based method 

generated thousands of tristable bifurcations without any manual interventions. The 

representative potential landscapes and the corresponding tristable bifurcations are shown 

in Figure 2.4. 
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Figure 2.4: Bifurcations on the energy contours: The 1-parameter tristable bifurcations for 

the network DNFL-B are overlaid on top of the contours of the potential energy. The red and 

black lines represent the stable and the unstable SSs, respectively. 

From the robustness score of each network, we found that MISA networks generated the 

most number of tristable responses as compared to MASA networks (Figure 2.5a). The 

average percentage (over triplicate) of tristable responses for MISA was much more than 

MASA.  Among the different subcategories in the MISA and MASA, we found the order of 

robustness to be MISA-B > MISA-A > MASA-A > MASA-B for the 2-C and 3-C networks together 

(Figure 2.5b). For the individual 2-C and 3-C networks, the plot of robustness score (Figure 

2.5c) reveals consistent nature of the robustness among the different subcategories. These 

results suggest that MISA motifs having mutual inhibition are significantly more robust in 
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generating tristable responses as compared to the MASA motifs having mutual activation. 

Further, MISA-B is robust than MISA-A, suggesting that if the self-activation and the input 

signal S are on different nodes, the motif is more robust compared to motifs where the self-

activation and S are on the same node. Based on the nature of interactions between the 

nodes, the 3-C networks can further be classified into 3 subtypes- mutual activation mutual 

activation (MAMA), mutual inhibition mutual activation (MIMA) and mutual inhibition mutual 

inhibition (MIMI). The network motifs under the MAMA are PFL-Ap2, and PFL-Bp2. The 

networks under the MIMA are DNFL-Ap2, DNFL-Bp2, PFL-An2, and PFL-Bn2. The networks 

under the MIMI are DNFL-An2, and DNFL-Bn2. The robustness score among these categories 

again point out the importance of mutual inhibition in generating robust tristable responses 

(Figure 2.5d).  

 

Figure 2.5: Robustness of the networks with two fused PFLs: (a) A pie chart depicting the 

mean percentage of tristable responses generated by the MISA and the MASA networks. The 

average tristable responses generated by the four sub categories of motifs for 2-C and 3-C 
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networks taken together (b) and (c) taken separately. (d) The average tristable responses 

generated by the three different types of 3-C networks MIMA (mutual inhibition mutual 

activation), MIMI (mutual inhibition mutual inhibition) and MAMA (mutual activation mutual 

activation). (e) The average number of tristable responses generated by all the individual 3-C 

networks. The average tristable region (∆𝑆) for the 2-C (f) and 3-C (g) networks.  

Our calculations also show that networks having fused mutual activation loops are not at all 

robust in generating tristable responses. Among the individual 3-C network motifs, here too, 

the motifs having mutual inhibition (DNFL) are more robust in producing tristable responses 

compared to the motifs having mutual activation (PFL) (Figure 2.5e). Further, the robustness 

score increases if the self-activation is on the far side of the input signal (DNFL-Bp2 and DNFL-

Ap2). We also found that the robust networks produced larger tristable region (Figure 2.5f 

and 2.5g) suggesting that the tristable regions for the MISA networks are bigger than the 

MASA networks.  

Using the automation energy based method, we were able to categorise different types of 

tristable bifurcations during the run. Among the four different types, Type-IV and Type-I were 

found to be most and least prevalent, respectively (Figure 2.6a) in the four categories of the 

network motifs. Type-II and Type-III had similar values of robustness scores across all the 

motifs. The robustness of four different bifurcation types are in the order Type-IV > Type-III > 

Type-II > Type-I in the most robust 2-C and 3-C networks DNFL-B and DNFL-Bp2, respectively 

(Figure 2.6b).  
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Figure 2.6: Robustness of types of tristable responses: (a) Mean percentage of four types of 

tristable responses for four sub categories of the networks. (b) Average percentage of four 

types of tristable responses for DNFL-B and DNFL-Bp2 networks. 

 

Similar robustness score for other networks were also realised (not shown). Type-IV is most 

robust tristable due to the fact that the system can be tristable even with a small stable branch 

sandwiched in between one ON and one OFF threshold (see Figure 2.3 for the bifurcations). 

Type-I has two ON and two OFF thresholds indicating that this might have formed due to 

fusion of two independent bistable switches from two feedback loops. This highlights the fact 

that in the particular parameter space, the two feedback loops independently must be 

bistable before their fusion to give rise to a tristable with two ON and two OFF thresholds. 

The probability of simultaneously satisfying all these criterion is small and hence Type-I is the 

least prevalent.  
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2.3.2. Robustness of SATS 

In order to broaden the scope of our method, we next investigated the robustness of self-

activating toggle switches (SATS) that are known to drive epithelial-to-mesenchymal 

transitions (EMT) during cancer progression143,159. Careful observation of the SATS topology 

on the EMT suggest that they are MISA motifs with input signal on both the nodes. Based on 

the nature of input signal on the two nodes, the SATS are classified into four types (Figure 

2.7a). We found that all the EMT motifs are capable of generating tristable responses (Figure 

2.7b). Out of the four motifs, EMT-B1 is several fold robust in generating tristable responses 

than the others. EMT-B1 has a MISA-B motif with an additional inhibition from S to B which 

increases its robustness compared to EMT-B2 which has MISA-A motif with inhibitory input 

signal on A. This is in accordance with the result that 2-C MISA-B is more robust than 2-C 

MISA-A motif. Comparison of the robustness scores for the MISA-B (1330 ± 9), EMT-B1 (2881 

± 40), and EMT-B3 (320 ± 9), we found that an inhibitory signal on the node with self-

activation increases the robustness of MISA-B networks. The robustness of different types of 

tristable responses follow a similar trend as was observed in 2-C and 3-C network motifs 

(Figure 2.7c). The different robustness score of the tristable types might have a significant 

impact in the outcome of cellular fates in the EMT. The different robustness scores are 

associated with the percentage of cells that would exhibit the corresponding bifurcation types 

or phenotypes under cell-to-cell variations due to various extrinsic factors. The frequent 

occurrence of Type-IV TS suggest that in a population, a major percentage of the cells (~ 55%) 

will not exhibit the pEMT state neither during the EMT nor during the reverse mesenchymal-

to-epithelial transition (MET) in a typical single-cell dose response experiment. In Type-III TS, 

a significant population of cells (~ 25%) will exhibit the pEMT state during the EMT but not 

during the MET. The cells can be in pEMT state both during EMT and MET only in case of Type-

I and Type-II TS. However, such possibilities are quite low because the prevalence of Type-I 

and Type-II are quite low in the robustness score. This highlights the fact that the cell-to-cell 

variability due to extrinsic noise has significant effect on the phenotypic outcome during EMT 

or MET.  
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Figure 2.7: Robustness of SATS motifs relevant to EMT: (a) Network diagrams of the four 

SATS motifs relevant to EMT. (b) Average tristable counts for the four networks. (c) Average 

percentage of four types of tristable responses for the four networks. (d) The core regulatory 

network of EMT. An additional PFL loop with mutual inhibition between GRHL2 and ZEB 

generated the network EMT-B2n2. The additional loop with mutual activation between GRHL2 

and ZEB generated the network EMT-B2p2.  

Previously, it was shown that and additional DNFL between the TFs Zeb-Ovol and also 

between Zeb-Grhl2 in the EMT network stabilizes the pEMT state through a dual-bistable 

switch159,160. In a dual-bistable switch, the upper branch of one bistable becomes the lower 

branch of the other bistable switch. Following this, we investigated on two different EMT 

networks EMT-B2n2 and EMT-B2p2, where we incorporated an additional DNFL and PFL to the 

respective networks (Figure 2.7d) to determine the role of DNFL in stabilizing the pEMT state. 

From the robustness counts of the tristable responses, we found that EMT-B2n2 produced 2.5 

fold increase in tristable responses compared to EMT-B2 (Figure 2.7e). On the other hand, 
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there was marginal increase of tristable responses in EMT-B2p2. These results highlight the 

importance of mutual inhibition in producing robust tristable responses in EMT network158.  

We also found that EMT-B2n2 produced greater number of dual-bistable responses compared 

to EMT-B2p2 and EMT-B2 (Figure 2.7f). Therefore, under fluctuating parameter space, an 

additional DNFL between Zeb-Grhl2 or between Zeb-Ovol stabilizes the pEMT state compared 

to addition of a PFL.  

 

2.3.3. The origin of robustness 

Our results suggest that mutual inhibition (DNFL) is important in generating robust tristable 

responses. However, it is important to understand the dynamical origin of the robustness of 

these networks. To determine the origin of the robustness in MISA networks, we compared 

the tristable response from the unperturbed network and bistable response from the 

perturbed network. To perturb the network, we removed the self-activation keeping all other 

parameter values unchanged (Figure 2.8). We found that in MISA-B network, both the TS and 

BS resulted in similar levels of B at low and high S values. This is due to the fact that at low S, 

the addition of the self-activation on B did not cause any further increase in B because the 

basal activation is sufficient for full induction of B. At high S, B is completely shut down by the 

negative regulation from A even with the self-activation on B. However, addition of the self-

activation on B created an intermediate level of B thus stabilising the TS in the DNFL-B 

network. In the MISA-A network (DNFL-A), at low S, the levels of A in BS and TS is similar due 

to negative regulation on A by fully active B. At high S, the self-activation on A further 

increases the level of A in TS compared to BS. Thus, the self-activation helps in stabilizing the 

intermediate level of A in the TS in the DNFL-A network. In addition to this, the mutual 

inhibition (DNFL) in the MISA motifs, prevent full induction of the genes, thus allowing to 

stabilize the intermediate levels of the regulators and ultimately functioning as the stabilizer 

for the TS. In the motifs with mutual activation, at high S values, the gene is fully active 

therefore even adding the self-activation did not further increase the levels of the genes in 

MASA-A (PFL-A) and in MASA-B (PFL-B). Addition of the self-activation only decreases the 

threshold values as the SN bifurcations shifted to lower S values in the TS. Therefore, in motifs 
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with mutual activation, the possibility of having an intermediate level of the genes is low as 

compared to the motifs with mutual inhibition.  

 

Figure 2.8: Comparison of the multistability from the perturbed and the unperturbed 

networks: Each of the MISA and MASA networks were perturbed by removing the self-

activation and keeping all the parameters unchanged. Bistable and tristable bifurcations were 

generated and were compared. The blue-black and yellow-black lines are the tristable and 

bistable responses, respectively. 

 

2.3.4. Sensitivity of model parameters 

Multistability in non-linear chemical systems largely depends on the parameter values. So far, 

we have analysed the robustness of the motifs based on the tristable responses under 

random variation of the parameter space. However, robustness score did not provide much 

information about the key parameters in generating tristable responses. To address this 
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problem, we performed a local parameter sensitivity analysis of the 2-C network motifs. Here, 

we started with a parameter set that resulted in tristability and then we randomly varied a 

particular parameter keeping all other parameters fixed to see how many times the change 

leads to tristable responses. We repeated this method for every parameter in the model to 

determine their sensitivity in producing tristable responses. Consistent with the robustness 

results, we found that the MISA motifs (DNFL-A and DNFL-B) were less sensitive to parameter 

variations (Figure 2.9). The threshold parameters(𝐵𝐵,0, 𝐴𝐵,0, 𝐵𝐴,0), the degradation rates 

(𝑘𝐴, 𝑘𝐵) and the Hill coefficients (𝑛𝐴,𝐵, 𝑛𝐵,𝐵, 𝑛𝐴,𝐴) were found to be highly sensitive compared 

to other parameters.  

 

Figure 2.9: Sensitivity of parameters: Average tristable counts generated by perturbing each 

parameter by keeping the other parameters fixed for the different MISA and MASA networks.  
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2.4. Summary and conclusions 

Cell fate decisions are crucial physiological processes that accounts for diverse nature of 

cellular identities in multicellular organisms161–163. Cell-fate decisions are governed by gene 

regulatory networks that must perform with high accuracy for appropriate results. Therefore, 

the networks must be robust enough to achieve desired outcomes under continuous 

influence of cellular variabilities due to intrinsic and extrinsic factors. In this chapter, we 

investigated the robustness of 2-C and 3-C network motifs having fused PFLs in generating 

tristable bifurcations under random parameter variations. In order to do this, we developed 

a new method of bifurcation analysis using the effective potential energy landscape where 

the local minima-maxima represents the stable and unstable SSs, respectively. With change 

in the bifurcation parameter, the qualitative nature of the effective potential landscape 

changed with the birth and death of a pair of local extrema whose dose monitoring allowed 

us to generate 1-parameter bifurcation diagrams of the system. Using this method, for every 

network motif, we ran bifurcation analysis for 1.5 million random parameter sets. We 

calculated the robustness score by counting the total number of tristable responses each 

network generated.  

We found that that the networks having mutual inhibition with self-activation (MISA) are 

most robust in producing tristable responses as compared to the networks having mutual 

activation with self-activation (MASA) motifs. Further investigations into individual 3-C 

networks suggested that mutual inhibition is prominent in producing robust tristable 

responses. We also showed that the robust networks produced bigger tristable regions. 

Additionally, we also showed that if the self-activation and the input signal are on different 

nodes, it increases the robustness of the network. Using the energy based method, we were 

able to categorise the tristable response into four different types based on the relative 

locations of the SN bifurcation points. We showed that Type-IV tristable (one ON and one OFF 

thresholds) is the most abundant and Type-I tristable (two ON and two OFF thresholds) is the 

least abundant across various networks. We applied our method to four different SATS 

networks to determine their robustness in generating tristable responses. We found that an 

inhibitory input signal on the node with self-activation is more robust compared to activatory 

input signal on the same node. We also showed that addition of a mutual inhibition loop to 
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the TF Zeb in the core regulatory network motif of EMT made the pEMT state accessible as 

compared to that of adding a mutual activation loop to Zeb. The pEMT state was stabilised by 

a dual-bistable switch. This conclusion is in accordance with the recent findings that mutual 

inhibition between Zeb-Ovol and Zeb-Grhl2 stabilises the pEMT state.  

Many networks that are found naturally in the context of cell-fate decisions have mutual 

inhibition with self-activation motif164. For example, the core regulatory networks in 

differentiation programs of trophectoderm-inner cell mass (Cdcx2-Oct3/4)165, primitive 

endoderm epiblast (Gata6-Nanog)146, differentiation of HSCs into myeloid and erythroid 

(PU.1-Gata1)161, Th1-Th2 (Tbet-Gata3)139,140, Th17-Treg (Rorγt-Foxp3)74,75, EMT (miR34-Snail, 

miR200-Zeb)143,166,167 and endocrine-acinar differentiation (Nkx6-Ptf1a) all consist of MISA 

motifs. Regulatory networks controlling cell-fate decisions are continuously influenced by 

chemical noise that has the potential to change the dynamics and outcome of the decision 

making systems. Therefore, the regulatory networks must be robust and tunable to limit the 

effects of chemical noise. Our findings suggest that it is the system’s strategy to naturally 

select the most robust MISA motifs over MASA motifs for accurate performance under the 

chemical noise. We believe that our work will be helpful in designing network motifs with 

greater tunability and robustness.  

Previous studies explored searching of parameter space for multistability in the context of 

EMT158. These studies were able to determine only the SS values via numerical integration of 

the model equations with random variation in initial conditions. In contrast to this, our 

method can generate a complete 1-parameter bifurcation diagram by detecting the stable 

and unstable SSs. Our energy based method is significantly faster and is independent of initial 

conditions compared to the numerical integration method. Since the potential based method 

is independent of initial conditions, it has the ability to detect all the SS values whereas the 

initial condition dependent numerical integration method has difficulty in detecting a SS 

having weak basin of attraction. Further construction of bifurcation diagrams using the 

effective potential landscape is a new paradigm of analysing non-linear systems. The 

numerical continuation method where a particular solution of the dynamical system is 

followed to construct the bifurcation can face difficulty in detecting broken SSs. Such broken 

SSs have recently been shown to occur in early T-cell lineage commitment168. Broken 
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branches can also generate atypical bifurcations, like the isola bifurcations, that were 

proposed to be relevant in long-term memory169 and neural stem cell differentiation 

mediated by BMP2 protein170. The potential based method is able to detect the broken 

branches since it determines the SS based on the local extrema of the potential landscape.  

Our potential energy based method can also be applied to find multistable bifurcation 

diagrams. However, it depends on the accurate calculation of the effective potential function. 

For a multi-dimensional system, calculation of the potential energy landscape becomes 

challenging. Recent studies have proposed new methods of calculating potential energy 

landscapes for multi-dimensional systems171,172 in context of cellular differentiation173and 

therefore can be used for the construction of bifurcation diagrams for larger network systems. 

In all our networks that we have investigated here, the multivariate system was reduced to a 

univariate system such that the effective potential is calculated. However, for more complex 

networks, such reduction of multivariate to univariate systems may not always be possible. 

Recently, Ye et al.168 have investigated network topologies that have the potential to generate 

irreversible tetrastability with sequential activation of genes. They found that certain 

networks were enriched and were responsible for such qualitative behaviour in the SSs in 

early T cell development. Consistent with our findings, the occurrence frequency of MISA 

motifs in these subnetworks is quite large highlighting the importance of mutual inhibition in 

dictating the robustness in many cell-fate decisions.
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Chapter 3 

Robustness of Networks with Positive Feedback 

Loops Fused to Feedforward Loops 

 

 

 

3.1. Introduction 

A typical bistable switch has a continuous S- or Z-shape signal response curve. Studies on the 

molecular network of the long-term memory (LTM) of Aplysia169 revealed that in addition to 

the typical continuous S- and Z- shape curves of the BS, there exist ‘mushroom’-type and 

‘isola’ type BS responses. Using systematic analysis of 2-parameter bifurcations, the authors 

showed that different regions in the 2-parameter bifurcation diagram represent different 

‘types’ of the BS responses. Further analysis of the heat-shock protein network dynamics 

under different stress levels174 also featured similar ‘mushroom’ and ‘isola’ type BS switches. 

Recent studies on the differentiation of neural stem cells mediated by bone morphogenetic 

protein 2 (BMP2) in the central and peripheral nervous systems170 also suggested the 

existence of mushroom and isola type bistable bifurcations. These findings suggest that apart 

from the typical BS switch, the ‘atypical’ mushroom and isola bifurcations also play crucial 

roles in cell-fate decisions. It is therefore important to understand the dynamical features of 

these atypical bifurcations in order to understand the underlying cellular functions. However, 
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the origin of the atypical bifurcations and the role of network topology in generating these 

atypical bifurcations still remains elusive. In this Chapter, we address the origin and the 

dynamical features of the atypical bifurcations by investigating the robustness of network 

motifs in generating such responses.  

In order to understand the role of network motifs in developing typical and atypical BS signal 

response curves, we designed networks with a single PFL in the form of self-activation and 

the component with the PFL is under the influence of external input signal via a feed-forward 

signalling. Therefore, the entire motif represents a fusion between a PFL and a FFL. The FFL 

has regulations through two different arms, direct and indirect via an intermediate 

component. By modifying the regulations in the two different arms, we generated eight 

different network motifs, depending on the different types of regulations (positive or 

negative) in the FFL. We categorised these networks into two major groups as incoherent and 

coherent networks. Since all these motifs consist of one PFL, these networks have potential 

to generate BS switches, however, with disparate abilities. We, therefore investigated the 

robustness of these networks in generating 1-parameter bistable bifurcations under random 

parameter perturbations using the potential energy based bifurcation analysis method 

discussed in Chapter 2. 

Systematic analysis of the robustness of these networks reveal that the incoherent networks 

are capable of producing both typical and atypical bistable responses whereas the coherent 

networks produced only typical bistability. By perturbing the regulations in the incoherent 

networks, we found that the mushroom and isola bifurcations are formed by the congregation 

of two disparate S- and Z-shaped bistable bifurcations. Using phase-plane analysis of these 

bifurcations, we show that the positive and negative arms of the FFL work in two different 

signalling regimes as determined by the average signalling thresholds. We show that in the 

OR gate configuration of the multiple input signals on the target node, the inverted isola (II) 

and inverted mushrooms (IM) are more robust as compared to the normal isola (NI) and 

normal mushrooms (NM) and it reverses for the AND and MIXED gate configurations. Finally, 

we extended the scope of the work by investigating fusion of two PFLs with a FFL where it 

produces tristable typical and atypical signal response curves. 
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3.2. Modelling and methodology 

 

3.2.1. The model networks 

Consider a component B that self-activates itself thus forming a PFL. S is an input node that 

regulates B through two different signalling pathways where S directly regulates B and S also 

indirectly regulates B through A, thus forming a feed-forward loop (FFL) between S and B. The 

regulations from S to B via the direct and indirect arms can either be positive (activation) or 

negative (inhibition). Based on the different combination of regulations on the two arms of 

the FFL, there are eight different networks possible (Figure 3.1). If both the arms in the FFL 

have different regulations (either positive or negative) it is an incoherent FFL (Figure 3.1, top 

panel) and if both the arms have same regulations it is a coherent FFL (Figure 3.1, bottom 

panel).  

 

Figure 3.1: Model networks: Network motifs with fusion between a PFL (self-activation on B) 

and a FFL. Two classes of the networks motifs: Incoherent (top row) and coherent (bottom 

row). The name of the networks are mentioned below the network diagram. In the name, ‘IC’ 

stands for incoherent and ‘C’ stands for coherent. The number ‘1’ in the name indicates the 

presence of a  PFL. The ‘N’ and ‘P’ in the subscript stands for negative and positive regulation, 

respectively. The first and second letter in the subscript indicate the type of regulation from 

S to A in the indirect arm and S to B in the direct arm, respectively. 
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We have used three different modelling methodologies to account for AND, OR and MIXED 

logic configurations of the regulation of B by the A, S and B itself. Our aim was to determine 

the robustness of the model networks in generating bistable signal responses including the 

atypical mushroom and isola bifurcations under random variation of parameter space. To 

perform this large scale analysis of bifurcations, we resorted to the automation method of 

bifurcation analysis based on the potential energy landscapes introduced in Chapter 2.  

 

Modelling using AND gate configurations 

We used Hill functions to represent the regulatory interactions in the networks. The 

dynamical equations for the model networks in the AND gate input configurations of node B 

are written as 

𝑑𝐴

𝑑𝑡
= 𝑔𝐴,0 + 𝑔𝐴,1. 𝐻𝐴,1(𝑆) − γA. 𝐴 (3.1) 

𝑑𝐵

𝑑𝑡
= 𝑔𝐵,0 + 𝑔𝐵,1. 𝐻𝐵,1(𝐵). 𝐻𝐵,2(𝑆). 𝐻𝐵,3(𝐴) − γB. 𝐵 (3.2) 

where, in the case of activation the Hill function is represented as  𝐻𝑌,𝑖(𝑋) =
(

𝑋

𝑋𝑌,0
)

𝑛𝑋𝑌

1+(
𝑋

𝑋𝑌,0
)

𝑛𝑋𝑌 and 

in the case of inhibition it is 𝐻𝑌,𝑖(𝑋) =
1

1+(
𝑋

𝑋𝑌,0
)

𝑛𝑋𝑌  

The parameters of the type 𝑋𝑌,0 and 𝑛𝑋𝑌 represent the threshold value of X required to 

activate/inhibit Y and Hill coefficient, respectively. In the Eqs. 3.1 and 3.2, 𝑔𝐴,0 and 𝑔𝐵,0 are 

the basal synthesis rates, and 𝑔𝐴,1 and 𝑔𝐵,1 are the maximal expression rates of A and B, 

respectively. 𝛾𝐴 and 𝛾𝐵 are the degradation rate constants of A and B, respectively.  

Modelling using OR gate configuration 

We have used OR logic of modelling different regulations on B to see if the robustness of the 

networks depend on the modelling methodologies. In OR gate configurations, the different 

regulations regulate B in an additive manner thereby suggesting independent regulations on 
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B. The general form of the dynamical equations for the model networks with OR logic is 

written as 

𝑑𝐴

𝑑𝑡
= 𝑔𝐴,0 + 𝑔𝐴,1. 𝐻𝐴,1(𝑆) − γA. 𝐴 (3.3) 

𝑑𝐵

𝑑𝑡
= 𝑔𝐵,0 + 𝑔𝐵,1. 𝐻𝐵,1(𝐵) + 𝑔𝐵,2. 𝐻𝐵,2(𝑆) +  𝑔𝐵,3. 𝐻𝐵,3(𝐴) − γB. 𝐵 (3.4) 

where, 𝑔𝐵,1, 𝑔𝐵,2 and  𝑔𝐵,3 are the maximal expression rates of B due to B itself, S and A, 

respectively. 

 

Modelling using MIXED gate configuration 

We have incorporated a third type of methodology where the regulations on B are through a 

MIXED gate configurations of OR and AND gates. In the MIXED gate, the regulations on B from 

S and A are in AND configuration and this combine regulation is in OR gate configuration with 

the self-activation. The general form of the dynamical equations for the networks with MIXED 

gate configurations is written as 

𝑑𝐴

𝑑𝑡
= 𝑔𝐴,0 + 𝑔𝐴,1. 𝐻𝐴,1(𝑆) − γA. 𝐴 (3.5) 

𝑑𝐵

𝑑𝑡
= 𝑔𝐵,0 + 𝑔𝐵,1. 𝐻𝐵,1(𝐵) + 𝑔𝐵,2. 𝐻𝐵,2(𝑆). 𝐻𝐵,3(𝐴) − γB. 𝐵 (3.6) 

Since all the model networks (Figure 3.1) have a PFL, we anticipate that all the networks have 

the potential to generate bistable bifurcations which includes both the typical BS and atypical 

isola and mushrooms. For all the model networks modelled using AND, OR and MIXED gate 

configurations, we investigated the robustness of the network motifs in generating typical as 

well as atypical bistable signal response curves under random parameter variations. The 

parameters were randomly chosen from independent distributions (Table 3.1) and the 
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threshold parameters (𝑆𝐴,0, 𝑆𝐵,0, 𝐴𝐵,0, 𝐵𝐵,0) were determined using the half-functional rule 

discussed in Chapter 2. 

Table 3.1: The parameters and their ranges 

Parameters Ranges 

𝑔𝐴,0 and 𝑔𝐵,0 1-10 

𝑔𝐴,1, 𝑔𝐵,1, 𝑔𝐵,2, 𝑔𝐵,3 1-100 

𝑆𝐴,0, 𝑆𝐵,0, 𝐴𝐵,0, 𝐵𝐵,0 Using half-functional rule 

𝑛𝑆𝐴, 𝑛𝑆𝐵 , 𝑛𝐴𝐵, 𝑛𝐵𝐵 1-10 

𝛾𝐴, 𝛾𝐵 0.01-0.1 

 

 

3.3. Results and discussions 

 

3.3.1. Bifurcation analysis using the potential energy landscapes 

The potential energy landscape based bifurcation analysis is an efficient tool in analysing large 

number of bifurcation diagrams without the need of manual interventions. For a multi-

dimensional system, however, it is difficult to express the effective potential energy function. 

We therefore reduce the multivariable system into a univariate system using transfer 

function. In this section, we discuss the method of arriving at the effective potential energy 

function for a multivariate system. For simplicity purpose, we discuss the method for the 

model networks with AND gate configuration.  

Eq. 3.2 is a dynamical equation of B involving multiple variables. The dynamical equations 

involving multiple variables is reduced to an equation with a single variable using transfer 

function. In the model networks, B is regulated by S, A and B itself and can be expressed as a 

function of these variables. Similarly, A can be expressed as a function of S. Therefore, to 
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reduce Eq. 3.2 into a single variable, we use the concept of transfer function. Using Eq. 3.1, 

the SS equation of A can be written as 

𝐴 = (𝑔𝐴,0 + 𝑔𝐴,1. 𝐻𝐴,1(𝑆))/γA (3.7) 

Substituting Eq. 3.7 in Eq. 3.2, we get 

𝑑𝐵

𝑑𝑡
= 𝑔𝐵,0 + 𝑔𝐵,1. 𝐻𝐵,1(𝐵). 𝐻𝐵,2(𝑆). 𝐻𝐵,3(𝐻𝐴,1

1 (𝑆))  − γB. 𝐵 
(3.8) 

where 𝐻𝐴,1
1 (𝑆) = (𝑔𝐴,0 + 𝑔𝐴,1. 𝐻𝐴,1(𝑆))/𝛾𝐴  

Eq. 3.8 is the dynamical equation of B with a single variable B. Note that S is an input signal 

and used as a parameter in the equations.  

The effective force of the system, therefore, can be written as 

𝐹(𝐵, 𝑆) = 𝐺𝐵(𝑆, 𝐵) − γB. 𝐵 (3.9) 

where, 𝐺𝐵(𝑆, 𝐵) = 𝑔𝐵,0 + 𝑔𝐵,1. 𝐻𝐵,1(𝐵). 𝐻𝐵,2(𝑆). 𝐻𝐵,3(𝐻𝐴,1
1 (𝑆)). Using the effective force, the 

effective potential function can be obtained as 

𝑉(𝐵, 𝑆) =  − ∫ [𝐺𝐵(𝑆, 𝑥) − 𝛾𝐵. 𝑥]
𝐵

0

 𝑑𝑥 (3.10) 

Using Eq. 3.10, the potential landscapes were generated at different values of the input signal 

𝑆. By monitoring the local minima-maxima in the potential landscape at different values of 𝑆 

the bifurcation diagrams were generated. The local minima and maxima in the potential 

landscapes are associated with stable and unstable SSs. The 𝑆 value associated with the birth 

and death of a pair of local minima-maxima represents the SN bifurcation points. Following 

this method, a large number of bifurcations were generated where we randomly varied the 

parameter space. Similar method was followed for generating the bifurcation diagrams for 

the models with OR and MIXED gate configurations. 

Apart from the typical bistable bifurcations, the potential energy based method can also 

identify mushroom bifurcations and bifurcations with broken branches such as isola (Figure 

3.2). In Figure 3.2a-b the bistable bifurcation diagrams are overlaid on top of the potential 



 

Table of contents List of abbreviations References 

58   Chapter 3 

energy contours. The normal isola (NI) and the inverted isola (II) are presented in Figure 3.2c 

and Figure 3.2d, respectively. Both NI and II have two SN points denoted by SN1 and SN2. In 

the normal mushroom (NM) (e) and the inverted mushroom (IM) (f) there are four SN points 

represented by SN1, SN2, SN3 and SN4. The bistable, NI and II bifurcations have one bistable 

region between SN1 and SN2, whereas in the NM and IM bifurcations, there are two separate 

bistable regions, one between SN1 and SN2 and the other between SN3 and SN4.  

 

Figure 3.2: The bistable bifurcations generated by the potential energy method: The 1-

parameter bifurcations are laid over the contours of the potential energy (log (𝑉(𝐵)). 

Continuous bifurcations with two SN points consist of the typical bistable bifurcations (a-b). 

Bifurcations with broken branches consist of normal isola (NI) (c) and inverted isola (II) (d). 
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Continuous bifurcations with four SN points consist of normal mushroom (NM) (e) and 

inverted mushroom (IM) (f). The black and red lines in the bifurcations represent stable and 

unstable SSs, respectively. The blue filled circles indicate the saddle-node (SN) bifurcation 

points. The color gradient in the contour plots represent the depth of the potential landscapes 

with green being the deepest. 

 

3.3.2. Robustness of networks with AND gate configuration 

For all the models with AND gate, using the potential energy method, we ran bifurcation 

analysis for 100,000 random parameter sets. We repeated these calculations 5 times to 

obtain a quintuplet set. From these runs, we determined the average robustness score for 

each network motif by counting the number of bistable bifurcations the network generated 

for 100,000 random parameters averaged over 5 runs. We also categorised each of the 

bifurcations into typical bistable, normal isola (NI), inverted isola (II), normal mushroom (NM) 

and inverted mushroom (IM) using the potential energy based method run in MATLAB. We 

found that the incoherent networks generated a larger number (60%) of total bistable (both 

typical and atypical) responses as compared to the coherent networks (40%) (Figure 3.3a). 

However, the incoherent networks are least potent (24%) in generating the typical bistable 

switches as compared to the coherent networks (76%) (Figure 3.3b). Surprisingly, only the 

incoherent networks generated atypical bistable responses whereas none of the coherent 

networks produced any atypical switches (Figure 3.3c). Among the different types of atypical 

responses generated by the incoherent networks, the NI and NMs are the most robust as 

compared to the II and IMs (Figure 3.3d). Furthermore, the NI are more robust than the NM 

in all of the incoherent networks. All the incoherent networks are equally robust in generating 

the atypical isola and mushroom bifurcations. 
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Figure 3.3: The average count of the bistable responses for AND gate: (a) Average 

percentage of total bistable count (typical and atypical) by the incoherent (green) and 

coherent (orange) networks. The numerical figure in the parenthesis represent the average 

count. The average percentage of typical bistable (b) and atypical bistable (c) by incoherent 

and coherent networks. (d) Average counts of atypical bifurcations generated by the 

incoherent networks. NI: Normal Isola, II: Inverted Isola, NM: Normal Mushroom and IM: 

Inverted Mushroom. The error bars represent ±1 standard error of mean. 

 

3.3.3. The origin of the isola and mushroom bifurcations  

To understand the rationale behind coherent networks not generating any atypical isola or 

mushroom bifurcations, we systematically analysed the origin of isola and mushroom 
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bifurcations by the incoherent networks. To begin with, we looked into the origin of isola 

bifurcation. We considered the incoherent network IC1PP and systematically perturbed it by 

removing the regulation from the two arms without changing the parameter values. We first 

removed the regulation from A to B in the indirect arm. This perturbed network generated a 

typical bistable response (Figure 3.4a). The bistable bifurcation showed an increasing 

response with increase in input signal 𝑆 due to the fact that S positively regulates B. Next, we 

removed the regulation from the direct arm which also resulted in a typical bistable response 

(Figure 3.4b). However, this bistable bifurcations showed a decreasing response with increase 

in 𝑆 because of the negative regulation from S to B. Hence the two bistable bifurcations 

generated by the two different perturbations are qualitatively opposite in nature. The 

congregation of these two qualitatively opposite bistable bifurcations resulted in an isola 

bifurcation for the full unperturbed network (Figure 3.4c-d).  

 

Figure 3.4: The origin of the isola bifurcations: The network IC1PP was perturbed by removing 

the regulations from the two arms. Bistable response on removing the regulation from A to B 
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in the indirect arm (a) and from S to B in the direct arm (b). (c) The congregation of the two 

distinct bistable responses. (d) The formation of isola due to the congregation of the two 

distinct bistable bifurcations for the full network. The parameters used to plot the NI are: 

𝑔𝐴,0 = 8.0346, 𝑔𝐴,1 = 85.4358, 𝑔𝐵,0 = 4.8210, 𝑔𝐵,1 = 44.9532, 𝑆𝐴,0 = 135.3604, 𝑆𝐵,0 =

94.4814, 𝐵𝐵,0 = 201.0295, 𝐴𝐵,0 = 599.6196, 𝑛𝑆𝐴 = 2, 𝑛𝑆𝐵 = 6, 𝑛𝐵𝐵 = 4, 𝑛𝐴𝐵 = 3, 𝛾𝐴 =

0.0995, 𝛾𝐵 = 0.0714. To plot the bistable response in (a) and (b), the interaction 𝐻𝐵,3(𝐴) and 

𝐻𝐵,2(𝑆) was removed, respectively, without altering the parameter values.  

Similar analysis was performed to understand the origin of the mushroom bifurcations. Here 

too, the congregation of two qualitatively opposite bistable bifurcations from the two 

differently perturbed networks resulted in a mushroom bifurcation for the full unperturbed 

network (Figure 3.5).  

 

Figure 3.5: The origin of the mushroom bifurcations: The network IC1PP was perturbed by 

removing the regulations from the two arms. Bistable response on removing the regulation 
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from A to B in the indirect arm (a) and from S to B in the direct arm (b). (c) The congregation 

of the two distinct bistable responses. (d) The formation of mushroom due to the 

congregation of the two distinct bistable bifurcations for the full network. The parameters 

used to plot the NI are: 𝑔𝐴,0 = 3.8761, 𝑔𝐴,1 = 74.6160, 𝑔𝐵,0 = 2.7198, 𝑔𝐵,1 =

51.4442, 𝑆𝐴,0 = 162.1356, 𝑆𝐵,0 = 52.7809, 𝐵𝐵,0 = 220.9353, 𝐴𝐵,0 = 688.9720, 𝑛𝑆𝐴 =

3, 𝑛𝑆𝐵 = 9, 𝑛𝐵𝐵 = 5, 𝑛𝐴𝐵 = 7, 𝛾𝐴 = 0.0119, 𝛾𝐵 = 0.0301. To plot the bistable response in (a) 

and (b), the interaction 𝐻𝐵,3(𝐴) and 𝐻𝐵,2(𝑆) was removed, respectively, without altering the 

parameter values.  

Similar perturbation analysis performed on other incoherent networks also resulted in similar 

conclusions. We conclude that the congregation of two qualitatively opposite bistable 

bifurcations give rise to atypical isola and mushroom bifurcations. The qualitatively opposite 

nature of the bistable bifurcations is an important criteria in the formation of the atypical 

isola and mushroom bifurcations. The opposite nature of the two bistable responses is due to 

the fact that the regulation from S to B in the incoherent networks are different in the two 

different arms. Whereas, in the coherent networks, the regulations are identical in two 

different arms, hence, cannot produce opposite bistable responses. Therefore, coherent 

networks do not produce any atypical isola and mushroom bifurcations.  

AND gate configurations of the input signal on B generated a large number of NI and NM 

bifurcations and rarely produced II and IM bifurcations (Figure 3.3d). For the AND logic gate 

the Hill functions for different regulations on B are represented in a multiplicative manner 

[𝐻𝐵,1(𝐵). 𝐻𝐵,2(𝑆). 𝐻𝐵,3(𝐴)] because of which all the regulations are significant. Due to the 

contrasting nature of the regulations in the incoherent FFL, the effective regulation on B is 

low at low and high 𝑆 input values. Therefore, the average counts of NI and NMs are 

significantly higher as compared to the II and IMs. One important feature of the NI and NM 

bifurcations is that the positive and the negative arms are initiated at low and high values of 

𝑆, respectively in the incoherent networks. This feature can also be supported by analysing 

the phase-plane diagrams (Figure 3.6) corresponding to the NI bifurcation shown in Figure 

3.2c, for the incoherent network IC1PP. In the phase-plane diagrams, A and B-nullclines are 

plotted at different 𝑆 values. At low input signal 𝑆 (𝑆 = 80, 90, 120, 150), the A-nullcline 

changes a little while the B-nullcline changes in shape and values significantly (Figure 3.6a-d) 
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suggesting the onset of the positive regulation. Whereas at high values of 𝑆 (𝑆 =

180, 200, 220, 250), the B-nullcline becomes static but the A-nullcline changes significantly 

(Figure 3.6d-h) suggesting the onset of the negative regulation. Similar results were observed 

in the phase-plane diagrams for the NM bifurcations generated by the same network (Figure 

3.7).  

 

Figure 3.6: The phase-plane analysis for the normal isola bifurcation: The normal isola 

(Figure 3.2c) is generated by the incoherent network IC1PP. The blue and green curves 

represent B and A nullclines, respectively. The intersection of the two nullclines indicate a SS. 

The black and the red solid circles represent stable and unstable SSs, respectively. The S 

indicates the input signal. The grey lines represent the trajectories obtained from various 

initial conditions. The parameter values reported in Figure 3.4 are used here. 
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Figure 3.7: The phase-plane analysis for the normal mushroom bifurcation: The normal 

mushroom (Figure 3.2e) is generated by the incoherent network IC1PP. The blue and green 

curves represent B and A nullclines, respectively. The intersection of the two nullclines 

indicate a SS. The black and the red solid circles represent stable and unstable SSs, 

respectively. The S indicates the input signal. The grey lines represent the trajectories 

obtained from various initial conditions. The parameter values reported in Figure 3.5 are used 

here. 

In order to establish the generality of the finding that for the NI and NMs, the positive and 

the negative arms must trigger at low and high signal strengths, respectively, we recorded the 

threshold of the regulations of these two arms for normal atypical bistable responses for all 

the incoherent networks. In Figure 3.8 we present the average of these thresholds for all the 

incoherent networks. 
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Figure 3.8: The average threshold values of S for the incoherent networks with AND gate: 

𝑆𝐴,0 and 𝑆𝐵,0 are the threshold values of S for the indirect and the direct arm, respectively. 

The error bars represent ±1 standard error of mean. 

In all the incoherent networks, for the NI and NM bifurcations, the average threshold value 

of the positive arm is much lower compared to the average threshold value in the negative 

arm. For the typical bistable bifurcations, the average threshold values in the two different 

arms are of comparable values. The low threshold value in the positive arm indicate that at 

low values of the input signal 𝑆, the positive arm is initiated while the high threshold value in 

the negative arm indicate that at high 𝑆, the negative arm is initiated, thus giving rise to a 

normal atypical bistable response. 

 

3.3.4. Robustness of networks with OR gate configuration 

We again made use of the potential method to generate 1-parameter bifurcation diagrams 

for 100,000 random parameter combinations ran in quintuplet. We used Eq. 3.3 and Eq. 3.4 

in this case. We found that the coherent networks are most robust (60%) in producing total 

bistable responses as compared to the incoherent networks (40%) (Figure 3.9a). This is 
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opposite to what we found in case of AND gate configuration. Furthermore, in OR gate 

configurations, the coherent networks are once again more robust (71%) in generating typical 

bistable responses as compared to the incoherent networks (29%) (Figure 3.9b). Similar to 

the AND gate, here too, the coherent networks did not produce any atypical bifurcations 

(Figure 3.8c). Among the various atypical responses, the robustness of II and IMs are higher 

than that of the NI and NMs. This finding is opposite to the responses observed in the AND 

gate configurations where the NI and NMs were most robust than II and IMs. 

 

Figure 3.9: The average count of the bistable responses for OR logic: (a) Average percentage 

of total bistable count (typical and atypical) by incoherent (green) and coherent (orange) 

networks. The numerical figure in the parenthesis represent the average value of the count. 

The average count of typical bistable (b) and atypical bistable (c) by incoherent and coherent 

networks. (d) Different types of atypical bifurcations generated by the incoherent networks. 
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NI: Normal Isola, II: Inverted Isola, NM: Normal Mushroom and IM: Inverted Mushroom. The 

error bars represent ±1 standard error of mean. 

Since in the OR logic all the different regulations are independently regulating B in an additive 

manner [𝐻𝐵,1(𝐵) + 𝐻𝐵,2(𝑆) + 𝐻𝐵,3(𝐴)], there is a possibility of getting both inverted and 

normal atypical bifurcations. However, because of the contrasting regulations of the 

incoherent FFL, the effective regulation on B is high at low and high 𝑆 values. Therefore, the 

counts for II and IMs are more than NI and NMs for OR logic since the II and IMs have high 

induction of the gene at low and high signal values.  

The average threshold values 𝑆𝐴,0 and 𝑆𝐵,0 for the two different arms in the incoherent 

networks suggest that in case of II and IMs, the negative arm is initiated at lower values of 𝑆 

whereas the positive arm is initiated at higher values of 𝑆 (Figure 3.10). 

 

Figure 3.10: The average threshold values of S for the incoherent networks with OR gate: 

𝑆𝐴,0 and 𝑆𝐵,0 are the threshold values of S for the indirect and the direct arm, respectively. 

The error bars represent ±1 standard error of mean. 
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The smaller threshold value of the negative arm for the II and IM bifurcations in all the 

incoherent networks suggest that at lower 𝑆 input signals, the negative arm is initiated. 

Similarly the threshold values for the positive arm for the same bifurcations are larger 

indicating that at higher 𝑆 values, the positive arm is initiated. Whereas, for NI and NM 

bifurcations, the threshold values for the positive arm are smaller than the threshold values 

for the negative arm suggesting that at lower 𝑆 values, the positive arm is initiated and at 

higher 𝑆 values, the negative arm is initiated. These are the characteristic features of the 

threshold values for different bistable responses. 

 

3.3.5. Robustness of networks with MIXED gate configuration 

Much like the OR gate configurations, in the MIXED gate we found that the coherent networks 

are most robust (63%) in producing total bistable responses as compared to the incoherent 

networks (37%) (Figure 3.11a). Similar to the AND and OR gate configurations, we found that 

in the MIXED gate also the coherent networks produced more number (77%) of typical 

bistable switches than the incoherent networks (23%) (Figure 3.11b). Once again, the 

coherent networks are not at all capable of generating any type of atypical isola and 

mushroom bifurcations (Figure 3.11c). Among the different types of the atypical switches, the 

NI and NMs are more robust in all the incoherent networks as compared to the II and IMs 

(Figure 3.9d). These findings are similar to that of in AND gate (Figure 3.3d) but opposite to 

that of in OR gate configuration (Figure 3.9d).  
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Figure 3.11: The average count of the bistable responses for the MIXED logic: (a) Average 

percentage of total bistable count (typical and atypical) by incoherent (green) and coherent 

(orange) networks. The average count is denoted in the parenthesis. The average count of 

typical bistable (b) and atypical bistable (c) by incoherent and coherent networks. (d) Different 

types of atypical bifurcations generated by the incoherent networks. NI: Normal Isola, II: 

Inverted Isola, NM: Normal Mushroom and IM: Inverted Mushroom. The error bars represent 

±1 standard error of mean. 

Again, for the same reasons that the two contrasting regulations ((𝐻𝐵,2(𝑆) and 𝐻𝐵,3(𝐴)) are 

in multiplicative manner, the SS value of B is low at low and high 𝑆 input signal values. 

Therefore, in MIXED gate configurations, the number of NI and NMs are more compared to 

the number of II and IMs, similar to in AND gate. 
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3.3.6. Addition of a second PFL to the model networks 

We extended the model networks by adding an additional PFL by introducing an interaction 

from B to A (Figure 3.12). The model networks now have two fused PFLs and S regulate both 

the components A and B. Based on the regulations from S to B via the two different arms, 

these networks can be categorised into two classes, incoherent and coherent. Since two PFLs 

are present in the networks, all the networks have the potential to produce tristable 

responses. We used the potential energy based method to carry out the tristable bifurcation 

analysis. We found that all the incoherent networks are able to produce both typical as well 

as atypical tristable bifurcations (Figure 3.13).  

 

Figure 3.12: Networks with added PFL: A regulation from A to B (grey) is added to the network 

motifs in Figure 3.1, thus incorporating an additional PFL. Two classes of the networks motifs: 

Incoherent (top row) and coherent (bottom row). The name of the networks are mentioned 

below the network diagram. The grey lines represent the trajectories obtained from various 

initial conditions. The number ‘2’ in the name stands for two PFLs. The ‘N’ and ‘P’ in the 

subscript stands for negative and positive regulation, respectively. The first and second letter 

in the subscript indicate the type of regulation from A to B in the indirect arm and S to B in 

the direct arm, respectively. 
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Figure 3.13: The tristable bifurcations overlaid on top of the contours of the potential 

energy: Different tristable bifurcations generated by the incoherent tristable networks. (a-b) 

are the typical tristable bifurcations whereas the remaining (c-l) are the atypical tristable 

bifurcations. The black and red lines represent the stable and unstable SSs, respectively. 

 

3.4. Summary and conclusions 

Bistable switch is employed by many cell-fate decision making systems to convert a graded 

response into a digital ‘all-or-none’ response. A typical bistable response consists of a 

continuous S- or Z-shape loci of the SSs of the variable of interest as a function of input signal. 

However, not all BS responses are continuous. Previous works suggest the existence of 

bistable responses with ‘broken’ branches of the SSs and are known as isola bifurcations. 

Furthermore, previous investigations also suggest the presence of bistable switches which 
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have a combined S- and Z- shape signal response curves and are known as mushroom 

bifurcations. The isola and mushroom bifurcations can be termed as ‘atypical’ bistable 

bifurcations.  

The typical bistable and atypical mushroom are continuous curves whereas the atypical isola 

has a discontinuous curve or ‘broken’ SSs. The conventional method of analysing bifurcations 

using XPPAUT or Oscil8 uses numerical continuation method which rely on initial conditions 

to generate the SS values from the differential equations. Therefore, the numerical 

continuation method has the ability to analyse the continuous bifurcations such as the typical 

bistable and atypical mushrooms, whereas, it is difficult to identify bifurcations with 

discontinuous or broken branches such as the isola. We here, used the potential energy 

landscape method discussed in Chapter 2 to identify the broken SSs thereby analysing the 

atypical isola bifurcations and also various other bistable bifurcations.  

Isola and mushrooms are known to regulate the differentiation of neural stem cells, and the 

dynamics of heat shock proteins. Chemical noise can interfere with the cell-fate decisions and 

change its dynamics and outcomes. The cell-fate decisions, therefore, adapt to certain 

topology of the regulatory motifs to limit the effects of the chemical noise. In this Chapter, 

we investigated the robustness of networks with PFL fused to FFL (Figure 3.1) that have the 

potential to generate both typical as well as atypical bifurcations under variation of random 

parameter space. The networks are classified into incoherent and coherent based on the 

regulations on the two different arms of the FFL. In case of incoherent networks, the 

regulations are different whereas in case of coherent the regulations are same. Using the 

potential based bifurcation analysis method, we found that these model networks are able to 

generate typical as well as atypical bistable bifurcations (Figure 3.2). We modelled the 

dynamical equations for the networks with AND, OR and MIXED gate configurations of the 

input signals on B to determine if the robustness of the bistable bifurcations depend on the 

modelling methodologies.  

To investigate the robustness of the networks, we generated 100,000 random parameter 

combinations in quintuplet sets and ran bifurcation analysis for each network. We then 

calculated the average number of bistable bifurcations generated by each network to 
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determine the robustness score. The bistable bifurcations are categorised into typical and 

atypical using the potential based method. We found that all the incoherent networks are 

able to generate both typical as well as atypical bistable bifurcations whereas the coherent 

networks generated only typical bistable responses. Among the different atypical 

bifurcations, with OR gate, II and IMs are most robust as compared to the NI and NMs (Figure 

3.9). Whereas with AND and MIXED gate configurations, the NI and NMs are most robust 

compared to II and IMs (Figure 3.3 and Figure 3.11). With OR gate, since the different 

interactions on B are added in the dynamical equations (Eq. 3.4), the effective regulation can 

generate either normal or inverted atypical bistable responses. On the other hand with AND 

and MIXED gate configurations, the interactions are multiplied (Eq. 3.2 and Eq. 3.6) which 

lowers the effective regulation on B at low and high input signals, thus generating mostly 

normal atypical responses.  

What makes the incoherent network more robust than coherent networks in generating isola 

and mushroom bifurcations? To address this question, we investigated the origin of the isola 

and mushroom bifurcations. With systematic perturbations of the incoherent networks, we 

found that the isola and mushroom bifurcations are formed by the congregation of two 

qualitatively opposite bistable bifurcations (Figure 3.4 and Figure 3.5). We observed that the 

two qualitatively opposite bistable bifurcations are formed due to the two different 

regulations in the incoherent networks. Similar opposite behaviour of the bistable 

bifurcations are not observed in the coherent networks due to the presence of similar 

regulations on the two different arms. Therefore, coherent networks do not have the 

potential to generate atypical isola and mushroom bifurcations.  

Furthermore, we observed that the NI and NM bifurcations are formed when the positive arm 

of the FFL is initiated at low signal and the negative arm is initiated at high signal (Figure 3.6 

and Figure 3.7). However, the II and IM bifurcations are formed when the negative arm acts 

as low signal and positive arm acts at high signal. These observations are supported by the 

mean threshold values of the component S for the two different regulations (Figure 3.8 and 

Figure 3.10). We extended the networks by incorporating an additional PFL that resulted in 

tristable networks (Figure 3.12). The incoherent tristable networks generated typical as well 

as atypical tristable bifurcations (Figure 3.13
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Chapter 4 

Arrangements of Multiple Positive Feedback Loops 

and the Robustness of Bistable Switches 

 

 

 

4.1. Introduction 

A clonal population of cells in identical environmental conditions exhibit significant cell-to-

cell variations thus creating cellular heterogeneity. Cellular heterogeneity is a natural 

phenomenon where in an isogenic population a cell differs from other cells in terms of its size, 

shape, protein and mRNA contents, cell cycle duration and response to stimuli102,175. Cellular 

heterogeneity is caused due to the presence of the two types of chemical noise: intrinsic91,176 

and extrinsic noises83,84,177–180. Intrinsic noise is inherent to a cell and arises because of 

fluctuations of low copy numbers of the chemical species undergoing chemical reactions in 

the cell and extrinsic noise has global effect on all the chemical reactions in the cell. While in 

some cellular processes such as cell cycle181, p53 dynamics182, apoptosis183, HIV virus 

latency/replication184,185, aneuploidy186, the cellular noise creates nuisance whereas in others 

the cellular noise helps the cells to adapt to continuously fluctuating environment187,188. An 

intriguing question that arises here is how does a living cell minimizes the effects of chemical 

noise that can cause hindrance to the cellular functions? 
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From earlier findings, it is known that NFL might minimize the effects of stochastic 

fluctuations127. Since then, a number of researchers in both theoretical/computational176,189–

194 and experimental195–197 fields shifted their focus on the role of negative feedback in cellular 

noise. Negative feedback indeed has the potential to attenuate noise but are more sensitive 

to external signals128,129. Hornung et al., based on calculations on simple network motifs, 

predicted that PFLs can filter noise and are not sensitive to external signals128. A PFL also has 

the potential to convert a graded signal into a digital ‘all-or-none’ response by creating 

bistability70. Bistability is a common phenomenon found in many biological systems such as 

cellular differentiation36–38, memory39,40, cell cycle transitions43–45, and maturation of frog 

eggs41,42. Using system-level stochastic model of budding yeast cell cycle123, it was found that 

PFLs filter noise in various cell cycle events.  

Cellular differentiation processes such as epithelial-to-mesenchymal transitions (EMT)37, 

adipocyte differentiation36, myogenic and osteogenic differentiation47 are regulated by 

bistable switches. For a cell to be locked in its differentiated state, the system must be able 

to reduce the effects of noise such that the cells are not reverted to their initial states and 

vice versa. This is important in cases where from a large pool of precursor cells only a small 

fraction of cells are differentiated in presence of weak signalling regime. Coupling of a NFL to 

a bistable response will only generate excitability, hence this is not a feasible solution to 

minimize the noise in bistable systems58,59. Contrary to this it was shown that two fused PFLs 

functioning individually in disparate time scales have the potential to reduce the chemical 

noise82,198. Thus fusion of two or more PFLs might be a possible solution to the problem. 

However, the way the PFLs are fused can have altering effects on the noise propagation in 

the system. In a recent study, Ahrends et al., showed that preadipocyte to adipocyte 

differentiation uses a bistable switch which is generated by seven PFLs arranged in a 

consecutive manner around a master regulator peroxisome proliferator-activated receptor γ 

(PPARG)61. This consecutive arrangement of PFLs around a master regulator PPARG can also 

be named as parallel arrangement of PFLs. They showed that addition of PFLs reduces noise 

more efficiently compared to a single PFL with high cooperativity.  

At this point, a question that is needed to be answered is how the arrangement of multiple 

PFLs regulate the noise in bistable systems. Just like parallel arrangement, multiple PFLs can 
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also be arranged in a sequential chain-like fashion that we call serial arrangement of PFLs. 

Here, the parallel and serial arrangement of PFLs are analogous to the parallel and serial 

arrangement of resistors in electrical circuits. Both the parallel and serial topologies can 

produce bistable switches with identical average properties, the SS values and the region of 

bistability. In this chapter, using mathematical modelling and stochastic calculations, we 

investigated the role of parallel and serial topologies in reducing extrinsic and intrinsic noises. 

We found that compared to serial arrangements, the cells in parallel PFLs are more stable and 

less sensitive to chemical noise and are able to maintain their respective differentiated states. 

Thus, parallel PFLs efficiently reduces the noise compared to serial arrangement of PFLs.   Our 

investigations and calculations suggest that the SN bifurcation points are less sensitive to 

extrinsic noise and the distribution of SN points are less skewed in parallel PFLs. Also, using 

mean residence time calculations we found that the stable SSs in parallel arrangement are 

more stable to intrinsic fluctuations compared to the same in serial PFLs. We have also shown 

that our results are consistent for both AND or OR-gate configurations of input signals and 

are independent of modelling methodologies.  

 

4.2. Modelling of the networks 

We fused multiple PFLs in two different ways namely parallel and serial arrangements, where, 

both classes of network topologies have the potential to generate bistable responses. In 

parallel arrangement, the PFLs are independently fused to a central regulator X0 and in serial 

arrangements the PFLs are linked to one another head-to-tail in a chain like manner (Figure 

4.1). To begin with, we first created a PFL between X0 and X1 where X0 and X1 mutually activate 

each other. This is a single PFL (1L) and serves as a repeating unit for multiple PFLs. Adding 

another component X2 via a PFL to X0 will create a two-loop (2L) parallel motifs whereas if X2 

is fused with X1 via a PFL it becomes a 2L serial motifs. In parallel motifs, all the new 

components are added as independent PFLs to X0 (Figure 4.1a, left) whereas in serial motifs 

all the new components are added to the preceding component as PFLs (Figure 4.1a, right).  

This way we generated up to five loops (5L) of both parallel and serial PFLs. 
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In a signalling system, input signals can be redundant or non-redundant in a way to trigger 

response. In signal transduction pathways non-redundant input signals behave as AND logic 

gates and redundant signals functions as OR gate signals much like in electrical circuits24. In 

this work we have considered both AND and OR gate signalling configurations whenever or 

wherever required. For example, in parallel motifs, production of X0 is positively regulated by 

X1, X2, etc. either by AND or OR logic gates configuration.  In serial motifs, the production of 

Xi is positively regulated by Xi-1 and Xi+1, again either by AND or OR gate configurations except 

for the terminal components.  

 

Figure 4.1: Network circuit diagrams and the bistable bifurcation diagrams for the models: 

(a) PFL between X0 and X1 creates a 1L PFL and several of these are fused together either in a 

parallel (left) or serial arrangements (right). One-parameter bistable bifurcation diagrams for 
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different number of loops for parallel (b) and for serial (c) motifs. The solid lines represent the 

stable SSs and the broken lines represent the unstable SSs. The right and left SN points (SNR 

and SNL) are indicated by the arrows. The upper and the lower stable branches represent the 

differentiated and undifferentiated (dedifferentiated) states respectively.   

In the basic repeat unit of a PFL, the production rate of X0 is directly proportional to the 

amount of X1 present and X0 in turn helps the production of X1 through enzymatic activation 

of the TF (T1) for X1. The TF (T1) has two states, active (T1,A) and inactive (T1,I), and X0 catalyzes 

the transcription activation (Figure 4.2). The synthesis rate of the component X1 is directly 

proportional to the amount of active TF (T1,A). This represent a single PFL (1L) and is capable 

of generating bistable response in presence of enough non-linearity or ultrasensitivity199.  

 

Figure 4.2: Mechanistic details of the networks. Xis are the main regulators. Ti,A and Ti,I are 

active and inactive TFs, respectively. The solid arrows associated with the regulators 

represent synthesis and degradation. The solid arrows associated with the TFs represent 

interconversion between active and inactive states of the TFs. The broken arrow represents 

enzymatic regulation on a certain chemical reaction. 
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To introduce ultrasensitivity into the PFL, we used Goldbeter-Koshland’s (GK) zero-order 

ultrasensitivity in the activation-deactivation of the TF200. To satisfy the requirement of GK 

switch, we assumed that the total amount of TF (TT = TA + TI) is constant and that the state 

change of the TF follows Michaelis-Menten enzyme kinetics.  In parallel motifs, the TF (Ti) of 

any component Xi is enzymatically activated by X0 and in turn the synthesis rate of X0 is 

positively regulated by all other components Xis either through AND or OR gate 

configurations. Similarly for serial motifs, the TF (Ti) of any component Xi is enzymatically 

activated by two neighbouring components Xi-1 and Xi+1 either by AND or OR gate 

configurations (Figure 4.2). 

The dynamical equations for the models are listed in the Table 4.1  

Table 4.1: List of dynamical equations for the parallel and serial models. 

Parallel Serial 

𝑑𝑋0

𝑑𝑡
= 𝑠(𝑘0𝑉 +  𝑘1𝒫0) − 𝛾𝑋0 

𝑑𝑋0

𝑑𝑡
= 𝑠(𝑟0𝑉 + 𝑟1𝑋1) − 𝛾𝑋0 

𝑑𝑋𝑖

𝑑𝑡
= 𝑘2𝑉 + 𝑘2

′ 𝑇𝑖,𝐴 − 𝛾𝑋𝑖 
𝑑𝑋𝑖

𝑑𝑡
= 𝑟2𝑉 + 𝑟2

′𝑇𝑖 − 𝛾𝑋𝑖 

𝑑𝑇𝑖,𝐴

𝑑𝑡
=

𝑘𝑓𝑋0(𝑉. 𝑇𝑇 − 𝑇𝑖,𝐴)

𝐾𝑀𝑉 + (𝑉. 𝑇𝑇 − 𝑇𝑖,𝐴)
−

𝑘𝑏𝑉. 𝑇𝑖,𝐴

𝐾𝑀𝑉 + 𝑇𝑖,𝐴
 

𝑑𝑇𝑖,𝐴

𝑑𝑡
=

𝑟𝑓,𝑖𝒢𝑖(𝑉. 𝑇𝑇 − 𝑇𝑖,𝐴)

𝐾𝑀𝑉 + (𝑉. 𝑇𝑇 − 𝑇𝑖,𝐴)
−

𝑟𝑏𝑉. 𝑇𝑖,𝐴

𝐾𝑀𝑉 + 𝑇𝑖,𝐴
 

For AND-gate 𝒫0 =
1

𝑉𝑁−1
∏ 𝑋𝑖

𝑁
𝑖=1  and for OR-gate 

𝒫0 = ∑ 𝑋𝑖
𝑁
𝑖=1  

For AND-gate 𝒢𝑖 =
1

𝑉
𝑋𝑖−1𝑋𝑖+1 and for OR-gate 

𝒢𝑖 = 𝑋𝑖−1+𝑋𝑖+1; for 𝑁 = 1,  𝒢1 = 𝑋0 and for  

𝑖 = 𝑁, 𝒢𝑁 = 𝑋𝑁−1 

For 𝑖 = 1,2, … 𝑁, where 𝑁=number of loops, 𝑉 is a scaling factor to change the number of molecules 

of chemical species 

 

The dynamical equations for X0 and Xi s are written as mass action kinetics that has synthesis 

part and degradation part whereas the dynamical equations of the TFs are written using GK 

function.  For all the different loops (1L, 2L, …, 5L) in parallel motifs, we have used the same 

set of parameter values. For serial motifs, the activation rate constant of the TF for X1 (rf,1) 

and the regulated synthesis rate constant of X0 (r1) are carefully adjusted so as to generate 

similar bistable bifurcation diagrams as in the corresponding parallel motifs. We have also 
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introduced a cell-volume parameter V, to alter the number of molecules of various species 

without altering the qualitative dynamics of the system.  

 

4.3. Results and discussions 

 

4.3.1. Modelling using AND-gate input signal configuration 

We first investigated the SS deterministic responses of both parallel and serial motifs in the 

absence of intrinsic or extrinsic noise using XPPAUT software156 in order to generate 1-

parameter bifurcation diagrams. All of these PFLs generate reversible bistable bifurcation 

diagrams with respect to the parameter 𝑠 which acts as external signal that regulates the 

preadipocyte-to-adipocyte differentiation process. The choice of parameter s as the 

bifurcation parameter is supported by the fact that the external stimulus rosiglitazone 

initiates the differentiation in mouse OP9 cells36 in preadipocyte differentiation. The 

parameter s is termed as ‘signal’ in the rest of this chapter. The parameters 𝑘0 and 𝑟0 

represent the ‘effectiveness’ of the signal. As the number of PFLs are increased, the region of 

bistability also increases for both parallel (Figure 4.1.b) and serial (Figure 4.1c) arrangements. 

For both parallel and serial motifs, we managed to generate similar bistable bifurcation 

diagrams including the region of bistability and the SS values. This forms an important criteria 

in comparing these topologies for noise propagation. The effectiveness of the serial and 

parallel PFLs can be determined by quantifying the deviation from the average SS values in 

presence of noise. For cellular differentiation process, the lower stable SS represent the 

undifferentiated or de-differentiated state while the upper stable SS represent the 

differentiated state of the cells. It has been proposed that two different types of bifurcations, 

a SN and a pitchfork, drive the cell fate decision making processes. The much celebrated 

Waddington’s epigenetic landscape154 recruits supercritical pitchfork bifurcations while 

adipocyte differentiation happens through SN bifurcations. In the SN bifurcation points, the 

alternate states are present well before the critical points whereas in pitchfork bifurcations 

the alternate states emerge only after the critical point. This difference has important 

consequences when the intrinsic noise interferes with the decision making processes. In 



 

Table of contents List of abbreviations References 

82   Chapter 4 

presence of intrinsic noise, the alternate stable SSs can coexist before the critical point in case 

of SN bifurcations whereas there is no possibility of coexistence of alternate states before the 

critical point in pitchfork bifurcations. Also, the cell fate decision making is always reversible 

in Waddington’s epigenetic landscape model whereas in SN bifurcations, the differentiation 

processes can be irreversible as well.  

In absence of any chemical noise, every cell in a genetically identical population will behave 

identically, hence, there will be a clear switch-like transitions of the entire population from 

undifferentiated (or dedifferentiated) state to the differentiated state after the right critical 

point (SNR). Similarly all the cells will revert back to the undifferentiated (or dedifferentiated) 

state from the differentiated state if the signal is lowered below the left critical point (SNL). In 

absence of any noise, the population is ‘pure’ in terms of its differentiation-meaning the 

entire population of cells is either differentiated or undifferentiated (or dedifferentiated). 

Therefore, a bistable switch represent ‘all-or-none’ digital switch-like response. However, in 

presence of intrinsic noise, each cell behaves differently even in a genetically identical cell 

population and hence results in a non-switch like response which leads to mixed population 

of differentiated and undifferentiated cells. To estimate the extent of mixed population due 

to chemical noise, we calculated the percentage of differentiated (high X0, Upper stable SS) 

and undifferentiated (low X0, Lower stable SS) cells with varying doses of signal 𝑠.  

 

4.3.1.1. Control of population heterogeneity in presence of extrinsic noise 

In our models, the extrinsic noise was introduced by choosing the unregulated synthesis rates 

(𝑘0, 𝑟0, 𝑘2, 𝑟2) from independent log-normal distributions with a coefficient of variation (CV) 

of 30%. The choice of 30% variation was due to the fact that similar variations have been 

observed in many protein expression levels. Our aim here was to see among parallel and serial 

motifs which one filters out extrinsic noise more efficiently. We calculated the fraction of cells 

that gets differentiated or dedifferentiated as we change the signal 𝑠 in presence of extrinsic 

noise. To calculate the fraction of differentiated cells we first initialized the population in 

undifferentiated state (low X0, Lower stable SS) and calculated the fraction of population that 

gets differentiated (high X0, Upper stable SS) with increase in signal doses. Likewise, to 
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calculate the fraction of dedifferentiated cells, we started with the assumption that all the 

cells are differentiated (high X0, Upper stable SS) and calculated the fraction of population 

that gets dedifferentiated (low X0, Lower stable SS) with decrease in signal values. Our 

objective here was to find out the fraction of cells that gets differentiated at a given signal 

and out of the differentiated cells the fraction of cells that gets dedifferentiated back at the 

same signal. For a single PFL (1L) we found that the differentiation and dedifferentiation 

curves intersect each other at intermediate signal value thus giving rise to a mixed population 

(Figure 4.3a and 4.3b). This indicates that at intermediate signal values, a fraction of the 

differentiated cells will undergo dedifferentiation. For parallel motifs, with increase in 

feedback loops, these two curves moves away from each other thus reducing the extent of 

mixed population (Figure 4.3a). In case of serial motifs, with increase in feedback loops these 

two curves does not move away much from each other thus retaining the mixed population 

throughout (Figure 4.3b).  

 

Figure 4.3: Differentiation with AND-gate in presence of extrinsic noise: (a-b) The 

percentage of differentiated (solid lines) and dedifferentiated (broken lines) cells with varying 

signal doses for parallel (left) and serial (right) motifs for different number of PFLs having low 

non-linearity (𝐾𝑀 = 0.05). (c-d) The percentage of cells at the intersection of differentiated 
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and dedifferentiated curves with different number of PFLs for low (c; 𝐾𝑀 = 0.05) and for high 

(d; 𝐾𝑀 = 0.01) nonlinearity in parallel (cyan) and serial (orange) motifs.  

To estimate the extent of population heterogeneity, we calculated the percentage population 

at the intersection point of differentiation and dedifferentiation curves for both parallel and 

serial arrangements. We found that in parallel motifs, the percentage population at the 

intersection decreased with increase in number of feedback loops whereas in serial motifs it 

did not (Figure 4.3c). Therefore, it is safe to conclude that serial motifs are less efficient in 

minimizing or filtering out the extrinsic noise compared to parallel motifs although their 

bistable bifurcation diagrams are almost identical. To find out whether the efficacy of parallel 

motifs in reducing the extrinsic noise has to do anything with non-linearity or ultrasensitivity 

of the system, we reduced the Michaelis constant (𝐾𝑀) by five times from 0.05 to 0.01. 

Decreasing the 𝐾𝑀 value leads to increase in the non-linearity or ultrasensitivity of the system. 

Even with increased ultrasensitivity, we found that parallel PFLs reduced extrinsic noise more 

efficiently than serial PFLs however, serial motifs performed better in reducing noise in this 

as compared to with low non-linearity (Figure 4.3d).  

 

4.3.1.2. Control of population heterogeneity in presence of intrinsic noise 

We explored the effect of intrinsic noise on the differentiation dynamics both in parallel and 

serial arrangements of PFLs by simulating the chemical reactions of the model networks using 

Gillespie’s stochastic simulation algorithm108. Depending upon the amount of stochastic 

(intrinsic) noise present in the system, the value of the variable (X0) of the system may jump 

between the two stable SSs. In the bistable region, the system transitions between the two 

stable SSs and ultimately at equilibrium some fraction of the cells will reside in the upper 

stable SS and the remaining will settle down in the lower stable SS. As the number of feedback 

loops increases, the percentage of mixed population with intrinsic noise decreases in parallel 

PFLs (Figure 4.4a) whereas there is no significant change in mixed population in serial PFLs 

(Figure 4.4b). The percentage of cells at the intersection reduces more effectively in parallel 

arrangements and in serial arrangements they do not change much (Figure 4.4c). With 

increased non-linearity, the parallel motifs were able to reduce the effect of noise significantly 
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but the heterogeneity in serial motifs did not change much. Therefore, based on our 

calculations, we conclude that parallel arrangement of PFLs reduce both extrinsic and intrinsic 

noise more efficiently than serial arrangement.  

 

Figure 4.4: Differentiation with AND-gate in presence of intrinsic noise: (a-b) The percentage 

of differentiated (solid lines) and dedifferentiated (broken lines) cells with varying signal 

doses for parallel (left) and serial (right) motifs for different number of PFLs having low non-

linearity (𝐾𝑀 = 0.05). (c-d) The percentage of cells at the intersection of differentiated and 

dedifferentiated curves with different number of PFLs for low (c; 𝐾𝑀 = 0.05) and for high (d; 

𝐾𝑀 = 0.01) nonlinearity in parallel (cyan) and serial (orange) motifs.  

 

4.3.1.3. Sensitivity of SN bifurcation points in presence of extrinsic noise 

While performing calculations using extrinsic noise, we observed that the SN bifurcation 

points of the bistable switch moved left and right. Therefore, we hypothesized that the SN 

points might be sensitive to extrinsic noise and might play a role in regulating the extrinsic 

noise in both parallel and serial motifs. To validate this hypothesis, we calculated the signal 𝑠 

values corresponding to left and right SN bifurcation points for 10000 cells in presence of 

extrinsic noise. We calculated the CV of the distribution of both left and right SN points and 
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found that the CV in serial motifs are higher than that of in parallel motifs (Figure 4.5a). We 

found that the higher amount of noise in serial motifs is due to the skewness of the 

distribution of the SN points (Figure 4.5b). While the distribution of the right SN points is 

similar in parallel and serial motifs, the distribution of left SN points are highly positively 

skewed in serial motifs as compared to parallel motifs (Figure 4.5c).  

 

Figure 4.5: Sensitivity of SN bifurcation points to extrinsic noise in models with low non-

linearity (𝑲𝑴 = 𝟎. 𝟎𝟓): The variation in CV (a) and skewness (b) of the distributions of right 

and left SN points in presence of extrinsic noise for different number of PFLs. (c) Comparison 

of distribution of right (c; top panel) and left (c; bottom panel) SN bifurcation points for the 

parallel and serial motifs.  

Consistent with the skewness of the left SN points, the dedifferentiation curves in serial motifs 

have long tails (Figure 4.3b). We repeated the calculations with increased non-linearity and 

found similar results as well. Therefore, in serial motifs, the left SN bifurcation points that 

dictates the transition from differentiation to dedifferentiation are very susceptible to 

extrinsic noise compared to the same in parallel motifs.  
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4.3.1.4. Sensitivity of the steady states in presence of intrinsic noise 

The extent of fluctuations in an ensemble of SS values in presence of intrinsic noise is 

determined by how stable the SSs are201. Mean residence time (MRT) of the SSs can 

determine the stability of the SSs in a bistable system under intrinsic noise. We calculated the 

MRT of upper and lower stable branches in the bistable region and found that in both the 

branches the MRT is higher in parallel motifs compared to the same in serial motifs (Figure 

4.6). This is a clear indication of the fact that because of the high MRT in parallel motifs, the 

stable SSs are less susceptible to intrinsic noise as compared to the same in serial motifs. In 

serial motifs, the chain-like architecture contributes to the noise amplification because of 

which the SSs might be more susceptible to intrinsic noise as compared to the parallel motifs 

where the PFLs are independent.  

 

Figure 4.6: Stability of steady states in presence of intrinsic noise determined by mean 

residence time (MRT): Comparison of mean residence time for upper (USS) and lower (LSS) 

SSs for parallel and serial motifs with AND gate. The top panel is for low non-linearity (𝐾𝑀 =

0.05) and bottom panel is for high non-linearity (𝐾𝑀 = 0.01) of the models.  
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4.3.2. Modelling using OR-gate input signal 

The above results were for AND-gate configurations, but we also performed calculations using 

OR-gate configurations of the input signals. Using OR configurations we generated almost-

identical bistable bifurcation diagrams (Figure 4.7a and 4.7b) both for parallel and serial 

topologies and performed similar calculations as done in AND configurations. In OR 

configurations, parallel motifs, again reduced both extrinsic and intrinsic noise efficiently 

compared to serial motifs although serial motifs did a better job in reducing noise in OR gate 

compared to in AND gate (Figure 4.7c-f). Using mean residence calculations, we again found 

that the stable branches in parallel motifs are more stable than the same in serial motifs. 

From these calculations we found that OR-gate signalling input show less variability compared 

to AND gate due to the noise getting amplified in a multiplicative manner in AND gate.  

 

Figure 4.7: Differentiation with OR-gate configuration: (a-b) One-parameter bistable 

bifurcation diagrams for parallel (left) and serial (right) motifs. (c-d) The percentage of 

differentiated (solid lines) and dedifferentiated (broken lines) cells in presence of intrinsic 
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noise and with low non-linearity (𝐾𝑀 = 0.05) for parallel (left) and serial (right) models. The 

extent of mixed population for low (e) and for high (f) non-linearity in the models.  

 

4.3.3. Modelling using Hill functions 

We also modelled our system with Hill functions instead of Goldbeter-Koshland’s switch to 

determine if the results depend on modelling methodologies (Table 4.2). We performed 

similar calculations and found that even using Hill functions, parallel motifs reduce noise more 

efficiently than serial motifs (Figure 4.9).  

Table 4.2. Dynamical equations for the models with Hill function. List of dynamical 

equations for models with Hill function. 

Parallel Serial 

𝑑𝑋0

𝑑𝑡
=  𝜀0𝑠 (𝑉 +

𝛼𝑉 ∏ 𝑋𝑖
𝑀𝑁

𝑖

𝑉𝑁𝑀 +  ∏ 𝑋𝑖
𝑀𝑁

𝑖

 ) −  𝛾𝑋0 
𝑑𝑋0

𝑑𝑡
=  𝑠(𝑘0𝑉 + 𝑝0𝑋1) −  𝛾𝑋0 

𝑑𝑋𝑖

𝑑𝑡
=  𝜀𝑖𝑋0 −  𝛾𝑋𝑖 

𝑑𝑋𝑖

𝑑𝑡
= 𝑘𝑖𝑉 +  

𝑝𝑖𝑉 𝑋𝑖−1
𝑀  𝑋𝑖+1

𝑀  

𝑏1𝑉2𝑀 +  𝑋𝑖−1
𝑀  𝑋𝑖+1

𝑀 −  𝛾𝑋𝑖  

𝑁is the number of PFLs and M is the cooperativity, 𝑋𝑁+1 = 1 
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Figure 4.9: Differentiation using AND-gate Hill functions in presence of extrinsic and intrinsic 

noise: The one-parameter bistable bifurcation diagrams for parallel (left) and serial (right) 

models using AND-gate Hill function for different number of PFLs with cooperativity 2. 

Comparison of the percentage of mixed population at the intersection of the differentiation 

and dedifferentiation curves for parallel and serial motifs in presence of extrinsic (c) and 

intrinsic (d) noise.  

 

4.4. Methodologies and calculations 

 

4.4.1. Calculation of differentiation-dedifferentiation percentages 

We estimated the percentages of cells in a population of 10000 cells that have differentiated 

or dedifferentiated in presence of extrinsic and intrinsic noise with varying signal doses 𝑠. In 

single cell quantification of proteins in eukaryotic cells, it was reported that protein 

distributions usually are asymmetric and are positively skewed that resembles log-normal 

distributions179,183,202. Extrinsic noise in cellular population arises due to difference in cell size, 

shape, cellular contents, matrix density, cell cycle stages and pH. This extrinsic noise greatly 

contributes to population heterogeneity in protein numbers that results in positive skewness 
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in protein distributions. Therefore, in order to mimic this distribution we picked the 

unregulated rate constant values (𝑘0 and 𝑘2 for parallel motifs and 𝑟0 and 𝑟2 for serial motifs) 

from independent log-normal distributions with 30% variation around the mean. Unregulated 

proteins were found to have log-normal distributions with a typical CV of 30%.  

We started with 10000 cells being in lower stable SS (undifferentiated state) and numerically 

solved the coupled differential equations listed in Table 4.1 using MATLAB at different values 

of signal 𝑠. We numerically integrated the dynamical equations for sufficient long time to 

ensure the system reached SS. To estimate the fraction of differentiated cells, we initialised 

the system at lower stable SS and at each signal value we calculated the number of cells whose 

SS value was greater than X0 corresponding to the right saddle-node (SNR) bifurcation point. 

Similarly, to estimate the fraction of dedifferentiated cells, we initialised the system at upper 

stable SS and at each signal value we calculated the cells whose SS value was less than X0 

value corresponding to the left saddle-node (SNL) bifurcation point.  

To estimate the percentage of differentiated-dedifferentiated cells in presence of intrinsic 

noise, we used Gillespie’s stochastic simulation algorithm108 and simulated the chemical 

reactions for both the network models (Figure 4.8). To estimate the percentage of 

differentiated cells, we initialised the system at lower stable SS and at each signal value we 

calculated the number of cells whose SS value was greater than the separatrix (corresponding 

unstable SS) value. Similarly, to estimate the fraction of dedifferentiated cells, we initialised 

the system at upper stable SS and at each signal value we calculated the number of cells 

whose SS value was less than the corresponding separatrix value.  
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Figure 4.8: The steady state distribution in presence of intrinsic noise in models with low 

non-linearity (𝑲𝑴 = 𝟎. 𝟎𝟓): The distribution of SS values of X0 for 10000 cells distributed 

over the bifurcation diagram in presence of intrinsic noise for different number of PFLs with 

low non-linearity and with AND-gate configuration. The upper two panels (blue) and the lower 

two panels (orange) represent cells initialized in the lower and upper SSs, respectively.  

 

4.4.2. Calculation of sensitivity of bifurcation points 

In presence of extrinsic noise, the SN bifurcation points for different cell will be different. 

Under the influence of extrinsic noise, we recorded both left and right SN bifurcation points 

for 10000 different cells. We then calculated the CV and the skewness of the left and right SN 

points for different number of PFLs for both serial and parallel topologies. We also plotted 

the population distributions of the two SN points for the two different arrangements of PFLs.  
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4.4.3. Calculation of mean residence time (MRT) 

In presence of intrinsic noise, we calculated the mean residence time of the stable SSs 

(undifferentiated and differentiated states) in the bistable region. We started from lower 

stable SS (undifferentiated state) and simulated the chemical reactions using Gillespie’s SSA 

and recorded the time the SS value of X0 crossed the separatrix for the first time to get the 

first passage time or residence time of the lower stable SS. To estimate the residence time of 

the upper stable SS, we started from the upper stable SS (differentiated state) and followed 

similar procedure mentioned above. We repeated these calculations for 10000 times to get 

the mean residence time (MRT) for both lower and upper stable SSs. The maximum time of 

calculation was 1 X 106 arbitrary time units.  

 

4.5. Summary and conclusions 

Cellular functions such as differentiation are regulated by network motifs that are capable of 

generating distinct SSs and dynamical properties. The properties of regulatory networks 

crucially depend on the architectural design or the topology of these networks. For example, 

a PFL generates multistable SSs and a NFL generates oscillations and excitability203. The 

average properties of some of these regulatory networks could be similar however in 

presence of chemical noise the properties might get perturbed differently. In many biological 

systems, chemical noise acts as a nuisance and cause hindrance to the functioning of the 

system. Therefore, the system’s natural tendency would be to adapt to a network 

architecture that has the potential to minimize the effect of chemical noise for smooth 

functioning of the system. In this context, PFLs are known to reduce the fluctuations in various 

cellular phenomena44,45,123,128. Also, multiple PFLs create bistable switches that are known to 

regulate many cellular differentiation processes36,37,40. Multiple PFLs helps the system to 

generate robust bistability, however the arrangements of these PFLs might have some crucial 

role in minimizing the effects of chemical noise in the system. Therefore, investigating the 

architecture of regulatory networks might help in understanding how the system lock the cells 

either in differentiated or undifferentiated states even in presence of chemical noise.  
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Ahrends et al., showed that preadipocyte to adipocyte differentiation is regulated by a 

bistable switch and the low rate of differentiation is maintained by the stochastic fluctuations 

of chemical species within a weak signalling regime. However, this same stochastic 

fluctuations might lead to the loss of differentiated state, thus locking the cells in the 

differentiated state is a crucial task the system has to achieve. This indicates that there must 

be some mechanism in place using which the system might be able to reduce the effect of 

this stochastic fluctuation so as to avoid the loss of differentiated state. As discussed before, 

the architecture of the regulatory network might have some relevance in noise filtration82,198. 

They found out that the adipocyte differentiation process is regulated by seven independent 

PFLs arranged in a consecutive manner around a master regulator PPARG, thus creating a 

parallel topology of the PFLs. This raises a question as to why these PFLs are arranged in a 

parallel manner only while a serial arrangement of these PFLs may as well serve the purpose.  

In order to address the concern of how different arrangement of PFLs control noise, we 

generated bistable switches with almost similar region of bistabilities and SS properties from 

both parallel and serial arrangements. We calculated the percentage of cells that gets 

differentiated or dedifferentiated at different signal values both in case of parallel and serial 

topologies. We found that both in AND-gate and OR-gate input signalling configurations, 

parallel arrangement of PFLs reduce both extrinsic and intrinsic sources of noise much 

effectively as compared to the same in serial arrangement. Our calculations suggest that the 

left SN bifurcation points in serial motifs are more sensitive to extrinsic noise compared to 

that of the same in parallel motifs and this leads to highly skewed distribution of SN points in 

serial motifs indicating high amount of noise. In case of intrinsic noise, the stability of the two 

SSs in the bistable region measured by the mean residence time is much higher in parallel 

motifs than in serial motifs.  This indicates that the cells residing in either of the stable SSs in 

parallel motifs are less susceptible to stochastic fluctuations thus locking their states.  

In absence of any type of chemical noise, parallel and serial motifs would not make any 

difference in differentiation dynamics. However, based on our results, in presence of both 

types of noise, parallel motifs reduce noise much better than serial motifs. Therefore, the 

choice of parallel arrangement of PLFs over serial arrangement in differentiation process 

might be an evolutionary strategy of the system to adapt to the most robust network in order 
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to minimize the effect of noise and work efficiently. Parallel architecture of PFLs are not only 

limited to cellular differentiation systems but also found in other biological systems. In cell 

cycle network of Saccharomyces cerevisiae (budding yeast), activation of b-type cyclins Clb1, 

2 are regulated by three PFLs through independent involvement of Cdh1, Sic1 and Fkh2 in OR-

gate configuration123. Stochastic model of the cell cycle predicted that if one of these PFLs are 

removed, the variability in the system increases and that hampers the properties such as cell 

cycle time, size at birth and division etc. Similar architecture of PFLs are also present in 

activation of maturation promoting factor (MPF) in cell cycle network of Saccharomyces 

pombe (fission yeast)204.  

All the parameters that we used in our models fall under biologically relevant ranges. For 

proteins, we have chosen ~70 min as the half-life which is typical average half-life of many 

proteins. The synthesis rate constants that we chose in our models also falls in the molecular 

abundance in the physiological range of few hundred molecules per cell. We have performed 

simulations where rate constants were picked from log-normal distributions with 30% CV 

which takes into account the reasonable range in parameter values. Further, we have studied 

two different configurations of input signals (AND and OR-gate) using two different modelling 

methodologies (Goldbeter-Koshland’s switch and Hill function) to generate bistable switches 

that regulate the differentiation dynamics. In all of these case, our calculations provide similar 

conclusion indicating the generality of our findings.
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Chapter 5 

Negative Cooperativity and Bistability in Receptor-

Ligand Binding 

 

 

 

5.1. Introduction 

A vast majority of cellular responses to external stimuli are due to binding of the signalling 

molecules or ligands to their cognate cell surface receptors. Receptor-ligand interaction 

dynamics play a crucial role in signal transduction pathway as binding of ligands to cell surface 

receptors triggers intracellular signalling pathways to allow the cell to carry out various 

physiological functions. For example, TGF-β receptor205, class I and class II cytokine 

superfamily206–209, receptor tyrosine kinases210,211 and G-protein coupled receptors212,213 

control cellular functions such as cell-division, proliferation, apoptosis, differentiation, 

metabolism etc. The binding of ligands to multimeric receptors often leads to cooperativity in 

receptor-ligand binding dynamics. In a multimeric receptor, binding of a ligand alters the 

dynamics of binding of subsequent ligands to the same receptor. This leads to allosteric 

interactions among the binding sites which is often recognized as the mechanism of 

cooperativity214,215. If the binding of a ligand increases the affinity of binding of subsequent 
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ligands, it is known as positive cooperativity and if it dampens the binding of subsequent 

ligands it is known as negative cooperativity216,217. In subsequent binding of ligands to a 

multimeric receptor, the definition of cooperativity can be best explained by the Gibb’s free 

energy change (ΔG) of binding.  In positive cooperativity, ΔG in the subsequent binding steps 

becomes more negative, in negative cooperativity it becomes less negative and in non-

cooperativity ΔG value does not change218. The cooperative nature of the binding kinetics can 

be extracted from the typical sigmoidal ligand binding curve and fitting the curve by the Hill 

function 219,220. The Hill coefficient (𝑛𝐻) associated with the cooperativity represents positive, 

negative and non-cooperativity binding with  𝑛𝐻 > 1, 𝑛𝐻 < 1 and 𝑛𝐻 = 1, respectively. 

Positive cooperativity generates a stiff sigmoidal response consisting of a threshold in the 

required amount of ligand for full engagement of the receptor221. Thus, positive cooperativity 

produces an ultrasensitive switch in the activity of the receptor. Owing to its ultrasensitive 

nature, positive cooperativity plays important roles in generating system level phenomena 

such as bistability, multistability and oscillations in feedback regulated networks203,222,223.  

Unlike positive cooperativity, negative cooperativity generally produces hyperbolic responses 

without any signalling threshold216,224. Epidermal growth factor receptors225–227, insulin 

receptor228–230, and glycoprotein hormone receptors231 are a few example of receptor-ligand 

system where negative cooperativity has been observed. Both the positive and negative 

cooperativities are common in biology yet, negative cooperativity was never really explored 

much. A detailed mathematical model was developed by Kiselyov et al.232 based on the 

concept of harmonic oscillator to account for several experimental observations and includes 

negative cooperativity for a dimeric insulin receptor. In dimeric receptor-ligand binding it was 

shown by Ha et al.233 that negative cooperativity can generate ultrasensitive response with a 

threshold if the ligand has strong affinity towards the receptor. This shows that negative 

cooperativity can be a source of non-linearity which is required to generate bistability in a 

PFL.  
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5.2. Modelling and methodology 

The basic structure of our model has a dimeric receptor with a single ligand binding spot on 

each monomer. The fully ligated receptor is the active form of the receptor and regulates 

downstream signalling pathway. We have considered two different models of downstream 

regulation of the signalling pathways. In the first one, the active receptor-ligand complex 

upregulates the gene that produces the ligand and in the second one the active receptor-

ligand complex also upregulates the receptor. The former case creates a single PFL and the 

latter case creates a fusion of two PFLs. 

 

5.2.1. Mechanism of the binding dynamics 

In both the models discussed above, the mechanism of binding is same. Each monomer in the 

dimeric receptor (𝑅2) is capable of binding only one ligand (𝐿) molecule. The binding of a 

ligand to the receptor is a two-step sequential process. In the first step, the ligand binds to 

one of the monomers of the unoccupied receptor (𝑅2) and in the second step, another ligand 

molecule binds to the remaining monomer of the singly-occupied receptor (𝑅2𝐿1) to form 

the active receptor-ligand complex (𝑅2𝐿2). Similarly, the unbinding of the ligands from the 

engaged receptors also follows two-step sequential process.  
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5.2.1.1. Module 1: Positive feedback in the ligand upregulation 

Figure 5.1 shows the schematic representation of the binding-unbinding mechanism of the 

ligand and receptor in the system with a single PFL. 

 

Figure 5.1: Schematic representation of the receptor-ligand binding model: The ligand (𝐿)  

binds to the dimeric receptor (𝑅2) in a sequential manner. The fully occupied receptor is 

responsible for synthesis of the ligand thereby creating a PFL between the ligand and the 

active receptor. The solid arrow represents chemical binding whereas the dashed arrow 

represents catalytic effect on a chemical reaction. The degradation reaction is represented by 

an open-ended arrow. The rate constants of the binding/unbinding reactions are mentioned 

on the top of the respective arrows. 

The active cell surface receptor triggers gene regulation by activating or deactivating the 

cytoplasmic signalling molecules. These cytoplasmic molecules transmit information from cell 

surface to the nucleus. In our model, we reduced the complex signalling pathway by 

considering that the active receptor directly activates the synthesis of ligands, without the 

loss of generality. Apart from the regulated synthesis of the ligands by the active receptor, we 

have also considered the unregulated basal synthesis of the ligands (𝑠𝐿) to initiate the 

signalling feedback.   Therefore, this module is a simple representation of an autocrine 

signalling module234,235. 𝑘𝐿 is the rate constant of the regulated ligand production which also 

serves as the strength of the PFL in the model. 𝛾𝐿 is the degradation rate of the ligands that 

degrades exponentially with a mean life-time of 1/𝛾𝐿. In this model, we assumed that the 

total amount of receptors are constant and follows the expression 𝑅𝑇 = 𝑅1 + 𝑅2𝐿1 + 𝑅2𝐿2. 
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All the chemical reactions in the module follow mass action rate laws and the dynamical 

equations are presented in Table 5.1.  

We have considered both ordered and disordered binding of the ligand to the receptor. In the 

disordered binding, the free ligand can bind to any of the two available sites on the dimeric 

receptor. The resulting ‘conformers’ are not distinguishable from one another. In general, the 

disordered binding of ligands to multimeric receptors with N binding sites, the number of 

ways i -th binding can happen is given by the binomial factor(𝑁
𝑖
). For a dimeric receptor, the 

value of this factor is 2 (𝑁 = 2 and 𝑖 = 1) for the first binding event. Similarly, for the 

unbinding event from the fully engaged receptor (𝑅2𝐿2), there are two ways by which a single 

ligand can unbind. Therefore, the rate of binding of a ligand to a dimeric unoccupied receptor 

and the rate of unbinding of a ligand from the fully engaged receptor increases by a factor of 

2. Table 5.1 consists of the kinetic equations of the model with the binomial factor 

represented as 𝜈 (= 2) for disordered binding. For the ordered binding, the ligand binds to 

the unoccupied receptor at a specific site and hence the value of the factor is 1 (𝜈 = 1). We, 

here report the results for the disordered binding case. 

Table 5.1: The dynamical equations for the receptor-ligand binding model with PFL in ligand 

upregulation 

𝑑𝐿

𝑑𝑡
= 𝑠𝐿 + 𝑘𝐿 . 𝑅2𝐿2 + 𝑘1𝑏 . 𝑅2𝐿1 + 𝜈. 𝑘2𝑏 . 𝑅2𝐿2 − 𝜈. 𝑘1𝑓 . 𝑅2. 𝐿 − 𝑘2𝑓 . 𝑅2𝐿1. 𝐿

− 𝛾𝐿 . 𝐿 

 

(5.1) 

𝑑𝑅2

𝑑𝑡
= 𝑘1𝑏 . 𝑅2𝐿1 − 𝜈. 𝑘1𝑓 . 𝑅2. 𝐿 

 

(5.2) 

𝑑𝑅2𝐿1

𝑑𝑡
= 𝜈. 𝑘1𝑓 . 𝑅2. 𝐿 + 𝜈. 𝑘2𝑏 . 𝑅2𝐿2 − 𝑘1𝑏 . 𝑅2𝐿1 − 𝑘2𝑓 . 𝑅2𝐿1. 𝐿 

 

(5.3) 

𝑑𝑅2𝐿2

𝑑𝑡
= 𝑘2𝑓 . 𝑅2𝐿1. 𝐿 − 𝜈. 𝑘2𝑏 . 𝑅2𝐿2 

 

(5.4) 

𝑅𝑇 = 𝑅2 + 𝑅2𝐿1 + 𝑅2𝐿2 (5.5) 
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5.2.1.2. Module 2: Positive feedback in both ligand and receptor upregulation 

In the previous module (Figure 5.1), we had a PFL in ligand upregulation by the fully engaged 

receptor 𝑅2𝐿2. However, in many receptor-ligand systems, the receptor abundance is 

upregulated by the active receptor, thus, forming a PFL235–239. In this section, we introduced 

a second PFL where the active receptor complex 𝑅2𝐿2 upregulates the receptor synthesis 

(Figure 5.2).  

 

Figure 5.2: Schematic model of the receptor-ligand binding model with an additional 

positive feedback loop: In addition to the PFL in ligand upregulation, a second PFL is added 

where the active receptor 𝑅2𝐿2 upregulates receptor synthesis. 

We included the production and degradation of the receptor complexes where 𝑠𝑅 represents 

the basal production rate and 𝑘𝑅 represent the upregulation from the active receptor 𝑅2𝐿2. 

𝛾𝑅 is the degradation rate of the free and ligated receptors. During the degradation process, 

only the receptors degrade but the ligands gets replenished. This mechanism represents the 

internalization of cell surface receptors. The list of dynamical equations are presented in 

Table 5.2.  
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Table 5.2: The dynamical equations for the model with two PFLs 

𝑑𝐿

𝑑𝑡
= 𝑠𝐿 + 𝑘𝐿 . 𝑅2𝐿2 + 𝑘1𝑏 . 𝑅2𝐿1 + 𝜈. 𝑘2𝑏 . 𝑅2𝐿2 − 𝜈. 𝑘1𝑓 . 𝑅2. 𝐿 − 𝑘2𝑓 . 𝑅2𝐿1. 𝐿

− 𝛾𝐿 . 𝐿 + 𝛾𝑅 . 𝑅2𝐿1 + 2. 𝛾𝑅. 𝑅2𝐿2 

 

(5.6) 

𝑑𝑅

𝑑𝑡
= 𝑠𝑅 + 𝑘𝑅 . 𝑅2𝐿2 + 𝑘1𝑏 . 𝑅2𝐿1 − 𝜈. 𝑘1𝑓 . 𝑅2. 𝐿 − 𝛾𝑅. 𝑅2 

 

(5.7) 

𝑑𝑅2𝐿1

𝑑𝑡
= 𝜈. 𝑘1𝑓 . 𝑅2. 𝐿 − 𝜈. 𝑘2𝑏 . 𝑅2𝐿2 − 𝑘1𝑏 . 𝑅2𝐿1 − 𝑘2𝑓 . 𝑅2𝐿1. 𝐿 − 𝛾𝑅 . 𝑅2𝐿1 

 

(5.8) 

𝑑𝑅2𝐿2

𝑑𝑡
= 𝑘2𝑓 . 𝑅2𝐿1. 𝐿 − 𝜈. 𝑘2𝑏 . 𝑅2𝐿2 − 𝛾𝑅 . 𝑅2𝐿2 

 

(5.9) 

 

In a receptor-ligand binding, the binding affinity of the ligand to the receptor is typically 

measured by the dissociation constant. In the model, the dissociation constant of the first and 

second steps are given by 𝐾1 and 𝐾2 respectively. The dissociation constants are further 

defined as the ratio of the rate constants of the unbinding and the binding reactions (𝐾1 =

𝑘1𝑏/𝜈𝑘1𝑓 and 𝐾2 = 𝜈𝑘2𝑏/𝑘2𝑓). The measure of cooperativity is defined as 𝐶 = 𝐾1/𝐾2. The 

numerical value of C determines the measure of cooperativity in the receptor-ligand binding. 

Based on the value of C, the three different regimes of cooperativity can be identified. For the 

positive, negative and non-cooperative binding the regimes of C are 𝐶 > 1 (𝐾1 > 𝐾2), 𝐶 <

1 (𝐾1 < 𝐾2) and  𝐶 = 1 (𝐾1 = 𝐾2), respectively. By adjusting the values of binding 

(𝑘1𝑓 and 𝑘2𝑓) and unbinding (𝑘1𝑏 and 𝑘2𝑏) rate constants, different cooperativities can be 

achieved as 𝐶 = 𝑘1𝑏 . 𝑘2𝑓/(4. 𝑘1𝑓 . 𝑘2𝑏). The factor 4 is the binomial factor (𝜈 = 2) which is 

due to the disordered binding of the ligands to the dimeric receptor.  
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5.3. Results and discussions 

 

5.3.1. Positive feedback in ligand upregulation: Single PFL 

We first carried out 1- parameter bifurcation analysis of the model using XPPAUT software 

(http://www.math.pitt.edu/~bard/xpp/xpp.html). The 1-parameter bifurcation diagrams of 

the model with different values of cooperativities C are presented in the Figure 5.3 with 

unregulated basal synthesis rate of ligands (𝑠𝐿) as the bifurcation parameter.  

 

Figure 5.3: The one-parameter bifurcation diagrams: (a) Bistable bifurcation diagrams with 

basal rate of ligand synthesis 𝑠𝐿 as the bifurcation parameter. The solid and the broken lines 

represent the stable and unstable SSs, respectively. The ‘ON’ and ‘OFF’ thresholds are 

indicated as SNON and SNOFF for the bifurcation for 𝐶 = 1.0. The shaded region indicates the 

bistable region for 𝐶 = 1.0. The different colors of the bifurcations plots represent different 

values of 𝐶 achieved by changing 𝐾1 with a fixed 𝐾2 value. (b) Bistable bifurcation diagrams 

for different cooperativities achieved by changing 𝐾2 with a fixed 𝐾1. The parameter values 

are 𝑘1𝑏 = 0.2, 𝑘2𝑏 = 0.25, 𝑘1𝑓 = 0.1, 𝑘2𝑓 = 0.5, 𝑘𝐿 = 2.66, 𝛾𝐿 = 1.0. 𝑘1𝑏 was modified 

keeping 𝑘1𝑓 fixed at 0.1 to achieve different cooperativities at constant 𝐾2. Similarly different 

cooperativities were achieved by varying 𝐾2 by modifying 𝑘2𝑏 with 𝑘2𝑓 = 0.5 and keeping 𝐾1 

fixed. 

We found that the module exhibit bistability with two stable SSs separated by an unstable SS. 

Our aim here was to see the effect of cooperativity on the bistability. To change the 

cooperativity 𝐶, the values of 𝐾1 and 𝐾2 were modified accordingly. In the Figure 5.3, the 

http://www.math.pitt.edu/~bard/xpp/xpp.html
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cooperativity 𝐶 was initially kept at 1 with 𝐾1 = 𝐾2 = 1. The cooperativity of the system can 

be modified either by changing 𝐾1 or by changing 𝐾2. First, the cooperativity 𝐶 was changed 

by changing 𝐾1 keeping 𝐾2 (= 1) fixed. We found that the negative cooperativity (𝐶 = 0.7) 

regime leads to bigger region of bistability (SNON-SNOFF) as compared to the non-cooperativity 

(𝐶 = 1) or positive cooperativity (𝐶 = 1.3) regimes (Figure 5.3a). The two SN bifurcation 

points moved to the right (high 𝑠𝐿) in both positive and non-cooperativity relative to the 

negative cooperativity and at higher positive cooperativities (𝐶 > 1.3), the model did not 

exhibit bistability. On the other hand, increased negative cooperativity (𝐶 < 0.7) exhibited 

bigger region of irreversible bistability with SNOFF in the negative region. Note that the ‘ON’ 

signalling threshold in the negative cooperativity is much lower as compared to the positive 

cooperativity. This is due to the fact that as 𝐾1 is reduced to get negative cooperativity, the 

singly occupied receptor (𝑅2𝐿1) is stabilized requiring less ligands (𝑠𝐿) to achieve the fully 

engaged receptor (𝑅2𝐿2) that kick starts the positive feedback cycle. Whereas in the positive 

cooperativity, 𝐾1 is increased destabilizing the singly occupied receptor (𝑅2𝐿1) and hence 

SNON is pushed to higher 𝑠𝐿 because more amount of ligands are required to start the 

feedback cycle. Due to large abundance of 𝑅2𝐿1, when the signal was removed, more amount 

of ligands are needed to be removed to get back to the OFF state and hence the SNOFF moved 

to the left in the negative cooperativity. In case of positive cooperativity, the abundance of 

𝑅2𝐿1 was less and hence removal of small amounts of ligands reverted the system back to the 

OFF state causing SNOFF to move to high value of 𝑠𝐿 resulting in a narrow bistable region. 

Further, the SS value of the ON state representing the extent of response was much higher in 

the negative cooperativity as compared to the positive cooperativity. Therefore, negative 

cooperativity when achieved by adjusting 𝐾1, can cause stronger response at low signal 

concentration region. 

Next, we changed 𝐾2 to achieve different cooperativities keeping 𝐾1 fixed at 1. This resulted 

in an opposite trend to that of when 𝐾1 was changed with 𝐾2 fixed. In this, 𝐾2 was increased 

to get negative cooperativity and that resulted in a smaller region of bistability as compared 

to non-cooperativity and positive cooperativity (Figure 5.3b). When 𝐾2 was increased to get 

negative cooperativity, the doubly engaged receptor (𝑅2𝐿2) became less abundant due to 

shift of equilibrium to the left. Thus more ligands are required to kick start the feedback cycle 
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and as a result the SNOFF moved to the far right in negative cooperativity. Similarly, when small 

amounts of ligands were removed the system fell back to the OFF state and hence the SNON 

was also at high 𝑠𝐿 value. When 𝐾2 was decreased to get positive cooperativity, the 

abundance of 𝑅2𝐿2 increased which needed less ligands to trigger the feedback cycle and also 

more amounts of ligands were needed to be removed to come back to OFF state. Therefore, 

here both SNON and SNOFF moved to the left resulting in a bigger bistable region. Thus, negative 

cooperativity generates robust bistability when 𝑅2𝐿1 is stabilized by reducing 𝐾1 and positive 

cooperativity generates robust bistability when 𝑅2𝐿2  is stabilized by reducing 𝐾2. 

To examine the bistable behaviour of the model for different 𝐾1 and 𝐾2 values, we carried 

out 2-parameter bifurcation analysis using the XPPAUT software.  

 

Figure 5.4: The two-parameter bifurcation analysis for the model: the solid colored lines are 

the loci of the SN bifurcation points. The region bounded by these lines represent bistable 

region and outside region represents monostability. The non-cooperativity, 𝐶 = 1, is 

represented by the dashed horizontal lines that separates the positive (𝐶 > 1) and negative 



 

Table of contents List of abbreviations References 

106   Chapter 5 

(𝐶 < 1) cooperativity regions. Two-parameter bifurcations with fixed value of 𝐾2 (left) and 

𝐾1 (right), respectively.  

In Figure 5.4a, we present the 2-parameter bifurcation analysis with varying 𝐾1 and fixed 𝐾2. 

The region bounded by the two lines represents the bistable region and the region outside of 

it represents the monostable region. The lower and the upper lines represent the loci of SNON 

and SNOFF, respectively. The horizontal broken line at 𝐶 = 1 divides the space into two 

regions-positive (𝐶 > 1) and negative (𝐶 < 1) cooperativities. Figure 5.4a suggests that a 

bigger region of bistability occurs in the negative cooperativity and as the two lines approach 

the positive cooperativity space, the bistable region decreases. We repeated this calculation 

for different values of 𝐾2 and here too negative cooperativity leads to bigger bistable region 

that increases with decrease in 𝐾2 value (Figure 5.4b). This highlights the fact that the ligand 

must strongly bind to the receptor to achieve strong ultrasensitivity with the negative 

cooperativity233. Similar calculations were carried out where 𝐾2 was changed with fixed 𝐾1 

(Figure 5.4c-d). In these figures, bigger bistable region existed in the positive cooperativity 

and the bistable region decreases as the two lines moves towards negative cooperativity. 

Overall Figures 5.4c-d has completely opposite results compared to Figure 5.4a-b.  

The strength of the PFL is important in understanding the bistability in any PFLs. We carried 

out 2-parameter bifurcation analysis of the model with different cooperativities and different 

feedback strength (𝑘𝐿) (Figure 5.5a). With the feedback strength increased, the bistable 

region increased. Further, in negative cooperativity, a lower feedback strength is required for 

robust bistability compared to that in positive cooperativity. Figure 5.5b represent a 2-

parameter bifurcation analysis of bistability with respect to total receptor concentration 

(𝑅𝑇). Bistability can be observed in negative cooperativity at smaller receptor concentrations 

than in positive cooperativity. Overall, Figure 5.5 indicates that bistability in negative 

cooperativity can be achieved with small positive feedback strength and low receptor 

concentrations.  
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Figure 5.5: Two parameter bifurcation analysis showing the effect of feedback strength (𝒌𝑳) 

and total receptors (𝑹𝑻): The different colored lines are for different cooperativity values as 

indicted in the legends. The cooperativity 𝐶 was changed by varying 𝐾1 while 𝐾2 was fixed at 

1. 

Until now, we have considered the amount of ligand 𝑠𝐿 as the main bifurcation parameter. In 

this section we present the bifurcation analysis with total receptor concentration (𝑅𝑇) as the 

bifurcation parameter (Figure 5.6). Similar to that with 𝑠𝐿 as the bifurcation parameter, here 

too we analysed the bistable region in negative and positive cooperativities by changing either 

𝐾1 and 𝐾2. Figure 5.6 resulted in a complete opposite trend to what we observed with 𝑠𝐿 as 

the bifurcation parameter. Here, when 𝐾1 was changed with fixed 𝐾2 (Figure 5.6a,c), positive 

cooperativity generated robust bistability and when 𝐾2 was changed with fixed 𝐾1, negative 

cooperativity resulted in robust bistability (Figure 5.6b,d). Here, the variation of right SN point 

(SNON) with 𝐾1 is similar to that of with 𝑠𝐿 as the bifurcation parameter. This is due to the fact 

that as 𝐾1 was decreased to get negative cooperativity, the intermediate 𝑅2𝐿1 complex gets 

stabilized which requires less ligands (𝑠𝐿) and also less receptors (𝑅𝑇) to shift the system to 

the ON state. Hence, in negative cooperativity the SNON is at low value of 𝑅𝑇 as compared to 

the same in positive cooperativity (Figure 5.6a,c). On the other hand, when 𝐾2 was decreased 

to get positive cooperativity, 𝑅2𝐿2 gets stabilised and hence less ligands (𝑠𝐿) and less 

receptors (𝑅𝑇) are required for ON threshold (Figure 5.6b,d). However, the behaviour of 

SNOFF with 𝐾1 or 𝐾2 depends crucially on the bifurcation parameters 𝑠𝐿 and 𝑅𝑇. In Figure 5.6a, 

the bistable region increased in positive cooperativity because the SNOFF moved left. This is 

because 𝑅2𝐿2 helps start the PFL due to which there is an increase in number of ligands that 
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allowed the ‘ON’ state to survive even though when receptors were removed.  This resulted 

in smaller value of SNOFF and consequently bigger bistable region. Similarly when 𝐾2 was 

increased to get negative cooperativity, the stability of 𝑅2𝐿2 decreases but again, the large 

amounts of ligands allowed the system to maintain the ‘ON’ state even though large amounts 

of receptors were removed.  

 

Figure 5.6: Bifurcation analysis for the model with total receptors as the bifurcation 

parameter: (a,b) One-parameter bifurcation diagrams showing the effect of different 

cooperativities by varying 𝐾1(a) and varying 𝐾2(b). (c,d) Two-parameter bifurcations at 

different cooperativity regime modified by varying 𝐾1(c) and varying 𝐾2(d).   

 

5.3.2. Positive feedback in both ligand and receptor upregulation: Fused PFLs 

Our aim here was to explore the bistability in different cooperativities when an additional PFL 

is introduced. Here too, we carried out 2-parameter bifurcation analysis to investigate the 

effect of different cooperativities on the bistable region. Note that when the PFL in ligand 



 

Table of contents List of abbreviations References 

109   Chapter 5 

upregulation is switched-off, the system did not exhibit any bistability at any parameter 

values even in presence of a PFL in receptor upregulation (Figure 5.7). This happened due to 

lack of non-linearity when 𝑘𝐿 was made zero.  

 

Figure 5.7: One-parameter bifurcation analysis depicting the effect of receptor and ligand 

upregulation: The model loses bistability when the PFL in ligand upregulation is switched off 

(left) and bistability is sustained even when the PFL in receptor upregulation is switched off 

(right).  

We used Chemical Reaction Network Theory (CRNT) toolbox version 2.35 

(http://crnt.osu.edu/CRNTWin) to confirm this. Indeed, CRNT predicted that when both the 

PFLs are present, the module exhibited multistability. Figure 5.8 present the 2-parameter 

bifurcation analysis of the model with different cooperativities with different values of 

receptor upregulation strength (𝑘𝑅). The qualitative nature of the bifurcation diagrams are 

similar to those observed with only one PFL via ligand upregulation. However, here the 

bifurcations are quite sensitive to 𝑘𝑅. With increased in 𝑘𝑅 value, the region of bistability 

increased significantly. Particularly, the SNOFF bifurcation point is more sensitive to changing 

http://crnt.osu.edu/CRNTWin
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𝑘𝑅 as compared to SNON points. As 𝑘𝑅 was increased, more receptors were synthesized which 

shifted the equilibrium to the right thus allowing the ON state for increased removal of the 

ligands. This also shifted the SNOFF points to lower values of 𝑠𝐿. Whereas, if the bifurcation 

parameter is the synthesis rate of receptor (𝑠𝑅), the bifurcations are weakly dependent on 

𝑘𝑅 (Figure 5.8c, d).  

 

Figure 5.8: Two-parameter bifurcation analysis showing the effect of strength of receptor 

upregulation (𝒌𝑹): The different values for the strength of receptor upregulation is indicted 

in the legend. The parameter values are 𝑘1𝑏 = 0.2, 𝑘2𝑏 = 0.25, 𝑘1𝑓 = 0.1, 𝑘2𝑓 = 0.5, 𝛾𝐿 =

0.18, 𝛾𝑅 = 0.06, 𝑘𝐿 = 𝑘𝑅 = 0.03, 𝑠𝑅 = 1.0 when 𝑠𝐿 is the bifurcation parameter and 𝑠𝐿 = 0.5 

when 𝑠𝑅 is the bifurcation parameter. 

 

5.4. Summary and conclusions 

Ultrasensitivity in the biochemical reaction network is a prerequisite to generate 

multistability in a positive feedback regulated network199,223. Mathematical modelling and 

experiments have recently shown that negative cooperativity in a receptor-ligand binding 
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dynamics can generate ultrasensitive response when the ligand strongly binds to the 

receptors233. In this work, we have incorporated a PFL in a dimeric receptor-ligand binding 

system to investigate the effect of different types of cooperative binding on the bistable 

response. We explored the effect of negative cooperativity on the bistable region by adjusting 

the dissociation constants 𝐾1 and 𝐾2. Our results suggest that negative cooperativity can 

generate robust bistability under certain conditions (Figure 5.4). The bistability in negative 

cooperativity regime can be observed both in case of amount of ligands (𝑠𝐿) (Figure 5.3) and 

amount of receptors (𝑅𝑇) (Figure 5.6). Negative cooperativity generated robust bistability 

when 𝐾1 was changed and positive cooperativity generated robust bistability when 𝐾2 was 

changed with amount of ligands (𝑠𝐿) as the bifurcation parameter (Figure 5.3). Whereas, if 

the bifurcation parameter is the amount of receptors (𝑅𝑇), negative cooperativity generated 

robust bistability when 𝐾2 was changed and positive cooperativity generated robust 

bistability when 𝐾1 was changed (Figure 5.6). The variation of different dissociation constants 

to achieve different cooperativities resulted in a dichotomous nature of bistability. From our 

2-parameter bifurcation analysis, it can be concluded that the relative stability of the singly 

engaged receptor (𝑅2𝐿1) and doubly engaged receptor (𝑅2𝐿2) control the bistable region in 

the models. When the bifurcation parameter is the amount of ligands (𝑠𝐿), the stabilization 

of (𝑅2𝐿1) and 𝑅2𝐿2 generated robust bistability in negative and positive cooperativity, 

respectively. Alternately, when the bifurcation parameter is the amount of receptors (𝑅𝑇), 

stabilization of 𝑅2𝐿1 and 𝑅2𝐿2 favoured robust bistability in positive and negative 

cooperativities, respectively. Our calculations also suggest that negative cooperativity can 

generate bigger bistable region with low positive feedback strength and low receptor 

concentrations (Figure 5.5). Altogether, our modelling and calculations explored the 

conditions under which negative cooperativity can generate robust bistability in receptor-

ligand dynamics system.  

Our results highlights that the nature of bistability defined by the bistable region under 

different cooperative binding depends on the bifurcation parameter and the tuning of the 

dissociation constants to change the cooperativity. When the synthesis rate of ligand is the 

bifurcation parameter, adjusting cooperativity with the first dissociation constant gives 

robust bistability in negative cooperativity and when the second dissociation constant is 
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changed, positive cooperativity generate robust bistability. This behaviour is however, quite 

opposite, when the bifurcation parameter is changed to amount of receptors (𝑅𝑇). Thus our 

model shows a contrasting and dichotomous nature of the bistability that depends on the 

choice of parameters used to modify cooperativity and the choice of bifurcation parameter.  

While traditionally, ultrasensitivity has been achieved using Hill functions for positive 

cooperativity, the zero-order ultrasensitive Goldbeter-Koshland switch in enzyme kinetics240, 

multisite phosphorylation241–244 and molecular titration245,246, it is indeed important to note 

that negative cooperativity also has potential to generate ultrasensitive response.  

Particularly in the case of synthetic biology approaches, negative cooperativity can be 

explored further to explore its potential to develop new devices.
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Chapter 6 

Summary, Conclusions and Future Scopes 

 

 

 

 

 

Cell-fate decisions are crucial for a cell’s survival and growth as well as the survival and growth 

of the multicellular organism of which the cell is a part of. During the development of the 

embryo, the embryonic stem cells differentiate into organ specific cells that form the different 

organs in the organism. The cell-fate decisions are tightly coordinated by the interactions 

between proteins, genes, RNAs and other biomolecules, thus forming a complex network of 

signalling pathways. Smaller subunits called regulatory motifs form the basic functional unit 

of the complex network. Positive (activation) and negative (inhibition) regulations are the two 

different types of regulations found in these regulatory motifs. Feedforward and feedback 

loops are the two types of regulatory motifs, where the signal is transmitted uni-directionally 

in the FFLs whereas in feedback loops the signal is transmitted bi-directionally. PFLs are often 

found to regulate many cell-fate decisions such as the preadipocyte to adipocyte 

differentiation36,61, differentiation of T helper cells76–78, EMTs37,143. A single PFL can consist of 

either mutual activation (MA), or mutual inhibition (MI), or self-activation (SA) whereas 

coupled PFLs are formed by the fusion between two or more PFLs of the similar or different 
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regulations, thus giving rise to different topologies of the PFLs. PFLs are known to generate 

multistable switches also known as biological switches in response to signal doses. A biological 

switch has the potential to convert a graded response to a digital ‘all-or-none’ response at 

the population level. A multistable biological switch has stable SSs separated by unstable SSs 

and the different stable SSs correspond to different expression levels of the genes which are 

associated with different phenotypic states of the cells. 

Stochasticity or chemical noise are often found to interfere with the cell-fate decision making 

processes which can alter the dynamics and outcome of the decision making. Stochasticity 

can give rise to population heterogeneity or cellular variabilities in an isogenic population of 

cells. A cell has to function and produce responses with high degree of accuracy and 

robustness even under the unavoidable threat from chemical noise. What role the regulatory 

motifs play in regulating or limiting the effects of chemical noise? Do the topologies of the 

regulatory motifs contribute to limit the cellular variabilities? This thesis tries to address these 

questions by mathematically modelling the regulatory motifs involving PFLs and 

understanding the role of different topologies of the PFLs in generating robust biological 

switches relevant to cell-fate decisions. 

The tristable switch could justify the presence of mixed phenotypic states in many cell-fate 

decisions such as in EMT, differentiation of naïve CD4+ cells, differentiation of T helper cells. 

Therefore, we investigated the robustness of different topologies of tristable networks 

involving two PFLs in generating tristable responses under random variation of parameter 

space. We generated three sets of 500,000 random parameter combinations where the 

parameters were sampled from independent distributions. We developed a new automation 

method of bifurcation analysis using potential energy landscapes which allowed us to 

generate 1.5 million 1-parameter bifurcation diagrams for each different tristable networks. 

We then estimated the number of tristable responses each network generated to analyse the 

robustness score. We found that the networks having mutual inhibition self-activation (MISA) 

motif are the most robust in producing tristable switches as compared to the networks having 

mutual activation self-activation (MASA) motif. In the context of cellular differentiation, many 

natural systems have MISA as the core regulatory network motifs such as differentiation of 

trophectoderm-inner cell mass165, primitive endoderm-epiblast146, myeloid-erythroid 
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differentiation161, differentiation of T helper cells139,247, EMT143,166. The choice of MISA motifs 

over other motifs in these cell-fate decisions might be the system’s evolutionary strategy to 

adapt to robust networks in the face of chemical noise. The potential energy based method 

also allowed us to automatically segregate the four different types of tristable responses 

defined based on the number of ON and OFF thresholds and on the relative ordering of the 

SN bifurcation points. We observed that Type-IV tristable response with one ON and one OFF 

signalling threshold is the most robust while Type-I with two ON-OFF signalling thresholds is 

the least robust. Our investigations on the EMT network suggest that introducing an 

additional PFL with MI to the core regulatory network of EMT made the pEMT state more 

accessible as compared to introducing a PFL with MA. It is indeed seen that addition of the TF 

GRHL2 to ZEB as a mutual inhibition loop in the EMT network ‘stabilizes’ the pEMT 

state38,159,160. Furthermore, systematic analysis of the bi- and tri-stable switches for the 

perturbed and unperturbed networks revealed that introduction of a SA to the MI loop 

generated and stabilized the intermediate stable SS as compared to the same when the SA 

was introduced to a MA loop.  

The potential energy based method of automated bifurcation analysis has an advantage over 

the existing numerical continuation method of bifurcation analysis such as XPPAUT and 

Oscil8. The potential energy based method can identify bifurcations with broken branches 

such as isola whereas it is difficult to identify one using the numerical continuation method. 

Thus, the potential method can analyse both the typical multistable switches as well as the 

atypical isola and mushroom bifurcations. The isola and mushroom bifurcations are known to 

regulate neural stem cell differentiation, heat shock protein dynamics under different stress 

levels. What are the minimal networks that generate the atypical bifurcations? What is the 

origin of the isola and mushroom bifurcations?  How the robustness of the atypical 

bifurcations depend on the networks modelled with different input gate configurations? To 

address these issues, we investigated the robustness of networks with a PFL fused to a FFL 

that have the potential to generate typical and atypical bistable bifurcations. Based on the 

regulations in the FFL, we classified the networks into incoherent and coherent where in the 

incoherent networks the regulation on the two arms of the FFL are different whereas in 

coherent networks the regulations are same. We then generated 500,000 random parameter 
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sets to analyse the robustness of the networks in generating bistable bifurcations. We found 

that the incoherent networks generated both typical as well as atypical bistable bifurcations 

whereas the coherent networks produced only typical bistable responses. To understand why 

the coherent networks are not potent in producing atypical isola and mushrooms, we looked 

into the origin of the atypical bifurcations. We perturbed the incoherent networks by deleting 

the different regulations from the input signal to the self-activating node. We found that the 

atypical isola and mushroom bifurcations are formed due to the congregation of two 

qualitatively opposite bistable bifurcations. The qualitatively opposite bifurcations are 

generated by incoherent networks due to the presence of opposite regulations in the FFL 

whereas coherent networks produced similar bistable bifurcations due to the presence of 

similar regulations in the FFL. Furthermore, we found that if the regulations in the incoherent 

networks are modelled using OR gate configurations, the inverted isola (II) and inverted 

mushrooms (IMs) are more robust than the normal isola (NI) and normal mushrooms (NMs) 

whereas the results are opposite for AND and MIXED gate configurations. We showed that 

the NI and NMs are formed if the positive and negative regulations in the FFL is initiated at 

lower and higher signals, respectively whereas if the opposite occurred, II and IMs are formed.  

In differentiation programmes, chemical noise can give rise to mixed population or cellular 

variability which can affect the rate of differentiation. Therefore, we investigated how 

different arrangements of multiple PFLs regulate chemical noise or cellular variability in 

differentiation programmes. We explored parallel and serial arrangements of PFLs where in 

parallel arrangements the PFLs independently regulate the master regulator and in serial 

arrangements the PFLs are in end-to-end chain like fashion. In presence of extrinsic and 

intrinsic noise, we found that the parallel PFLs have better efficacy in reducing cell-to-cell 

variability as compared to serial PFLs. To understand the reasons behind these observations, 

we performed susceptibility analysis of the SN points and SSs in presence of extrinsic and 

intrinsic noises, respectively. We found that the SN points in serial arrangements are more 

sensitive to extrinsic noise as compared to the same in parallel PFLs. Using mean residence 

time calculations, we found that the stable SSs in serial PFLs are more susceptible to intrinsic 

noise as compared to that of in parallel PFLs. We found similar results using different input 

configurations such as AND and OR gates and also using different modelling methodologies 
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such as Goldbeter-Koshland (GK) switch and Hill functions. The parallel arrangements of PFLs 

being robust in reducing cellular variability is indeed found in many cellular systems such as 

in preadipocyte to adipocyte differentiation36, in the cell cycle network of budding yeast123 

and fission yeast204.  

A PFL and ultrasensitivity is required to generate a bistable switch. Although positive 

cooperativity is a source of ultrasensitivity. Recently it was shown that negative cooperativity 

can generate ultrasensitive response in receptor-ligand (RL) binding dynamics. Therefore, we 

investigated the role of negative cooperativity in generating bistable switches in the RL 

binding systems. We incorporated a PFL in the system by upregulating the ligand synthesis by 

the active receptors. We found that the conditions where positive cooperativity generated 

robust bistability, negative cooperativity showed poor bistability and vice-versa, thus 

exhibiting the dichotomous nature of the bistability under different types of cooperativities. 

Furthermore, we showed that the dichotomous nature of the bistability depends on the 

control parameters, the bifurcation parameters and the stability of the RL complex. In our RL 

system, we have modified the dissociation rate constants to adjust the cooperativities. In vitro 

experimental modifications of the dissociation constants are difficult to achieve, 

nevertheless, this feat has been achieved by introducing mutations in the proteins248.  

 

Future scope  

A single PFL can generate a bistable response whereas an additional PFL can generate a 

tristable response. In general, addition of an extra PFL to an existing PFL(s) has the potential 

to generate a new pair of stable-unstable SSs. Multistable switches with more than three 

stable SSs are found to regulate many cell-fate determination systems145,249,250. However, the 

dynamics of these multistable switches are not explored much. In multistable switches such 

as quadrastability, the intermediate stable SSs can reveal the functional and dynamical 

features of the hybrid phenotypic states of the cells. In a quadrastable switch, there are six 

SN bifurcation points and based on the relative ordering of these points and the number of 

ON and OFF signalling thresholds, the quadrastable switch can be categorised into different 

types. The minimal networks that can generate a quadrastable response consists of three 
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fused PFLs. Therefore, it would be interesting to investigate the robustness of different 

topologies of the minimal 2- and 3-C networks with three fused PFLs in generating 

quadrastable responses under random variation of parameter space. The potential energy 

based method of bifurcation analysis can be a useful tool in understanding the robustness 

networks via large number of bifurcation analysis.  

Another area which can be of prime focus is understanding the dynamical aspects of the 

different types of atypical switches with three stable SSs. Typical bistable switch is known to 

regulate many cell-fate decisions whereas, the atypical switches are not well explored. The 

new approach of bifurcation analysis using the potential energy method can have great 

applications in exploring different atypical bifurcations with broken branches.  

Understanding the dynamical features of different phenotypic states of the cell is crucial in 

understanding the physiology of the cell. Mathematical models of biological systems is an 

important tool in mimicking the functions of the underlying biological systems. The topology 

of the regulatory motifs that govern the cell-fate decisions play a crucial role in providing 

robustness to the system to accurately and efficiently function in the presence of chemical 

noise. Therefore, it is important to investigate and understand the role of regulatory motifs 

to gain insights into the mechanism of the biological systems such as cancer progression and 

human disease thereby identifying novel therapeutic targets



 

Table of contents List of abbreviations References 

119   References 

 

References 

1. Ehebauer, M., Hayward, P. & Arias, A. M. Notch, a universal arbiter of cell fate 
decisions. Science 314, 1414–1415 (2006). 

2. Zhang, J., Nie, Q. & Zhou, T. Revealing Dynamic Mechanisms of Cell Fate Decisions 
From Single-Cell Transcriptomic Data. Front. Genet. 10, 1280 (2019). 

3. Tatapudy, S., Aloisio, F., Barber, D. & Nystul, T. Cell fate decisions: emerging roles for 
metabolic signals and cell morphology. EMBO Rep. 18, 2105–2118 (2017). 

4. Garcia-Ojalvo, J. & Martinez Arias, A. Towards a statistical mechanics of cell fate 
decisions. Curr. Opin. Genet. Dev. 22, 619–626 (2012). 

5. Osakada, F., Ikeda, H., Sasai, Y. & Takahashi, M. Stepwise differentiation of 
pluripotent stem cells into retinal cells. Nat. Protoc. 4, 811–824 (2009). 

6. Boheler, K. R. et al. Differentiation of Pluripotent Embryonic Stem Cells Into 
Cardiomyocytes. Circ. Res. 91, 189–201 (2002). 

7. Yoder, M. C. Differentiation of pluripotent stem cells into endothelial cells. Curr. Opin. 
Hematol. 22, 252–257 (2015). 

8. Rajala, K., Pekkanen-Mattila, M. & Aalto-Setälä, K. Cardiac Differentiation of 
Pluripotent Stem Cells. Stem Cells Int. 2011, 1–12 (2011). 

9. Dalton, S. Linking the Cell Cycle to Cell Fate Decisions. Trends Cell Biol. 25, 592–600 
(2015). 

10. Ohnuma, S., Philpott, A. & Harris, W. A. Cell cycle and cell fate in the nervous system. 
Curr. Opin. Neurobiol. 11, 66–73 (2001). 

11. Pauklin, S. & Vallier, L. The Cell-Cycle State of Stem Cells Determines Cell Fate 
Propensity. Cell 155, 135–147 (2013). 

12. Ogawa, M. Differentiation and proliferation of hematopoietic stem cells. Blood 81, 
2844–2853 (1993). 

13. Dharampuriya, P. R. et al. Tracking the origin, development, and differentiation of 
hematopoietic stem cells. Curr. Opin. Cell Biol. 49, 108–115 (2017). 

14. Lai, A. Y. & Kondo, M. T and B lymphocyte differentiation from hematopoietic stem 
cell. Semin. Immunol. 20, 207–212 (2008). 

15. D, B. Protein molecules as computational elements in living cells. Nature 376, 307–
312 (1995). 

16. Milo, R. et al. Network motifs: simple building blocks of complex networks. Science 
298, 824–827 (2002). 

17. Shen-Orr, S. S., Milo, R., Mangan, S. & Alon, U. Network motifs in the transcriptional 



 

Table of contents List of abbreviations References 

120   References 

regulation network of Escherichia coli. Nat. Genet. 31, 64–68 (2002). 

18. Alon, U. An Introduction to Systems Biology: Design Principles of Biological Circuits. 
(Chapman & Hall/CRC, 2007). 

19. Yeger-Lotem, E. et al. Network motifs in integrated cellular networks of transcription-
regulation and protein-protein interaction. Proc. Natl. Acad. Sci. U. S. A. 101, 5934–9 
(2004). 

20. Wolf, D. M. & Arkin, A. P. Motifs, modules and games in bacteria. Curr. Opin. 
Microbiol. 6, 125–134 (2003). 

21. Paranjpe, D. A. & Sharma, V. K. Evolution of temporal order in living organisms. J. 
Circadian Rhythms 3, 7 (2005). 

22. Spiller, M. P. et al. The Myostatin Gene Is a Downstream Target Gene of Basic Helix-
Loop-Helix Transcription Factor MyoD. Mol. Cell. Biol. 22, 7066–7082 (2002). 

23. Harris, S. L. & Levine, A. J. The p53 pathway: positive and negative feedback loops. 
Oncogene 24, 2899–2908 (2005). 

24. Mangan, S. & Alon, U. Structure and function of the feed-forward loop network motif. 
Proc. Natl. Acad. Sci. U. S. A. 100, 11980–11985 (2003). 

25. Brandman, O. & Meyer, T. Feedback loops shape cellular signals in space and time. 
Science 322, 390–395 (2008). 

26. Kim, J.-R., Yoon, Y. & Cho, K.-H. Coupled Feedback Loops Form Dynamic Motifs of 
Cellular Networks. Biophys. J. 94, 359–365 (2008). 

27. Angeli, D., Ferrell, J. E. & Sontag, E. D. Detection of multistability, bifurcations, and 
hysteresis in a large class of biological positive-feedback systems. Proc. Natl. Acad. 
Sci. U. S. A. 101, 1822–1827 (2004). 

28. Ferrell, J. E. & Xiong, W. Bistability in cell signaling: How to make continuous 
processes discontinuous, and reversible processes irreversible. Chaos An Interdiscip. J. 
Nonlinear Sci. 11, 227–235 (2001). 

29. Leite, M. C. A. & Wang, Y. Multistability, oscillations and bifurcations in feedback 
loops. Math. Biosci. Eng. 7, 83–97 (2010). 

30. Siegal-Gaskins, D., Grotewold, E. & Smith, G. D. The capacity for multistability in small 
gene regulatory networks. BMC Syst. Biol. 3, 96 (2009). 

31. Ptashne M. A genetic switch: phage lambda revisited. (Cold Spring Harbour Lab, 
2004). 

32. Novick, A. & Weiner, M. Enzyme induction is an all-or-none phenomenon. Proc. Natl. 
Acad. Sci. U. S. A. 43, 553–566 (1957). 

33. Acar, M., Becskei, A. & van Oudenaarden, A. Enhancement of cellular memory by 
reducing stochastic transitions. Nature 435, 228–232 (2005). 



 

Table of contents List of abbreviations References 

121   References 

34. E. M. Ozbudak, M. Thattai, H. N. Lim, B. I. Shraiman & Oudenaarden, A. Van. 
Multistability in the lactose utilization network of Escherichia coli. Nature 427, 737–
740 (2004). 

35. Gardner, T. S., Cantor, C. R. & Collins, J. J. Construction of a genetic toggle switch in 
Escherichia coli. Nature 403, 339–342 (2000). 

36. Park, B. O., Ahrends, R. & Teruel, M. N. Consecutive positive feedback loops create a 
bistable switch that controls preadipocyte-to-adipocyte conversion. Cell Rep. 2, 976–
990 (2012). 

37. Zhang, J. et al. TGF-β-induced epithelial-to-mesenchymal transition proceeds through 
stepwise activation of multiple feedback loops. Sci. Signal. 7, ra91 (2014). 

38. Hong, T. et al. An Ovol2-Zeb1 Mutual Inhibitory Circuit Governs Bidirectional and 
Multi-step Transition between Epithelial and Mesenchymal States. PLOS Comput. Biol. 
11, e1004569 (2015). 

39. Chang, D.-E. et al. Building biological memory by linking positive feedback loops. Proc. 
Natl. Acad. Sci. U. S. A. 107, 175–180 (2010). 

40. Xiong, W. & Ferrell, J. E. A positive-feedback-based bistable ‘memory module’ that 
governs a cell fate decision. Nature 426, 460–465 (2003). 

41. Sha, W. et al. Hysteresis drives cell-cycle transitions in Xenopus laevis egg extracts. 
Proc. Natl. Acad. Sci. U. S. A. 100, 975–80 (2003). 

42. Pomerening, J. R., Sontag, E. D. & Ferrell, J. E. Building a cell cycle oscillator: hysteresis 
and bistability in the activation of Cdc2. Nat. Cell Biol. 5, 346–351 (2003). 

43. Yao, G., Tan, C., West, M., Nevins, J. R. & You, L. Origin of bistability underlying 
mammalian cell cycle entry. Mol. Syst. Biol. 7, 485 (2011). 

44. Skotheim, J. M., Di Talia, S., Siggia, E. D. & Cross, F. R. Positive feedback of G1 cyclins 
ensures coherent cell cycle entry. Nature 454, 291–296 (2008). 

45. Yang, X., Lau, K.-Y., Sevim, V. & Tang, C. Design Principles of the Yeast G1/S Switch. 
PLoS Biol. 11, e1001673 (2013). 

46. Ferrell, J. E. Tripping the switch fantastic: how a protein kinase cascade can convert 
graded inputs into switch-like outputs. Trends Biochem. Sci. 21, 460–466 (1996). 

47. Wang, L. et al. Bistable switches control memory and plasticity in cellular 
differentiation. Proc. Natl. Acad. Sci. U. S. A. 106, 6638–6643 (2009). 

48. Pigolotti, S., Krishna, S. & Jensen, M. H. Oscillation patterns in negative feedback 
loops. Proc. Natl. Acad. Sci. U. S. A. 104, 6533–6537 (2007). 

49. Snoussi, E. H. Necessary Conditions for Multistationarity and Stable Periodicity. J. Biol. 
Syst. 06, 3–9 (1998). 

50. Gouzé, J.-L. Positive and Negative Circuits in Dynamical Systems. J. Biol. Syst. 06, 11–
15 (1998). 



 

Table of contents List of abbreviations References 

122   References 

51. Hoffmann, A., Levchenko, A., Scott, M. L. & Baltimore, D. The IkappaB-NF-kappaB 
signaling module: temporal control and selective gene activation. Science 298, 1241–
1245 (2002). 

52. Duong, H. A., Robles, M. S., Knutti, D. & Weitz, C. J. A molecular mechanism for 
circadian clock negative feedback. Science 332, 1436–1439 (2011). 

53. Aronson, B. D., Johnson, K. A., Loros, J. J. & Dunlap, J. C. Negative feedback defining a 
circadian clock: autoregulation of the clock gene frequency. Science 263, 1578–1584 
(1994). 

54. Mika, D., Richter, W. & Conti, M. A CaMKII/PDE4D negative feedback regulates cAMP 
signaling. Proc. Natl. Acad. Sci. U. S. A. 112, 2023–2028 (2015). 

55. Liu, Y. et al. Long noncoding RNA LINC00518 induces radioresistance by regulating 
glycolysis through an miR-33a-3p/HIF-1α negative feedback loop in melanoma. Cell 
Death Dis. 12, 245 (2021). 

56. Aulehla, A. et al. Wnt3a Plays a Major Role in the Segmentation Clock Controlling 
Somitogenesis. Dev. Cell 4, 395–406 (2003). 

57. Kageyama, R., Niwa, Y., Isomura, A., González, A. & Harima, Y. Oscillatory gene 
expression and somitogenesis. Wiley Interdiscip. Rev. Dev. Biol. 1, 629–641 (2012). 

58. Pfeuty, B. & Kaneko, K. The combination of positive and negative feedback loops 
confers exquisite flexibility to biochemical switches. Phys. Biol. 6, 046013 (2009). 

59. Avendaño, M. S., Leidy, C. & Pedraza, J. M. Tuning the range and stability of multiple 
phenotypic states with coupled positive-negative feedback loops. Nat. Commun. 4, 
2605 (2013). 

60. Hill, A. . The possible effects of the aggregation of the molecules of haemoglobin on 
its dissociation curves. J. Physiol. 40, i–vii (1910). 

61. Ahrends, R. et al. Controlling low rates of cell differentiation through noise and 
ultrahigh feedback. Science 344, 1384–1389 (2014). 

62. Yildirim, N. & Mackey, M. C. Feedback regulation in the lactose operon: A 
mathematical modeling study and comparison with experimental data. Biophys. J. 84, 
2841–2851 (2003). 

63. Novak, B. & Tyson, J. J. Numerical analysis of a comprehensive model of M-phase 
control in Xenopus oocyte extracts and intact embryos. J. Cell Sci. 106, 1153–1168 
(1993). 

64. Tyson, J. J., Chen, K. & Novak, B. Network dynamics and cell physiology. Nat. Rev. 
Mol. Cell Biol. 2, 908–916 (2001). 

65. Pomerening, J. R., Kim, S. Y. & Ferrell, J. E. Systems-Level Dissection of the Cell-Cycle 
Oscillator: Bypassing Positive Feedback Produces Damped Oscillations. Cell 122, 565–
578 (2005). 



 

Table of contents List of abbreviations References 

123   References 

66. Ferrell, J. E. & Machleder, E. M. The biochemical basis of an all-or-none cell fate 
switch in Xenopus oocytes. Science 280, 895–898 (1998). 

67. Ingolia, N. T. Topology and Robustness in the Drosophila Segment Polarity Network. 
PLoS Biol. 2, e123 (2004). 

68. Laslo, P. et al. Multilineage Transcriptional Priming and Determination of Alternate 
Hematopoietic Cell Fates. Cell 126, 755–766 (2006). 

69. Shvartsman, S. Y., Muratov, C. B. & Lauffenburger, D. A. Modeling and computational 
analysis of EGF receptor-mediated cell communication in Drosophila oogenesis. 
Development 129, 2577–2589 (2002). 

70. Ferrell, J. E. Self-perpetuating states in signal transduction: positive feedback, double-
negative feedback and bistability. Curr. Opin. Cell Biol. 14, 140–148 (2002). 

71. Smits, W. K., Kuipers, O. P. & Veening, J.-W. Phenotypic variation in bacteria: the role 
of feedback regulation. Nat. Rev. Microbiol. 4, 259–271 (2006). 

72. Guidi, G. M. & Goldbeter, A. Bistability without Hysteresis in Chemical Reaction 
Systems: A Theoretical Analysis of Irreversible Transitions between Multiple Steady 
States. J. Phys. Chem. A 101, 9367–9376 (1997). 

73. Silveira, D. A. & Mombach, J. C. M. Dynamics of the feedback loops required for the 
phenotypic stabilization in the epithelial‐mesenchymal transition. FEBS J. 287, 578–
588 (2020). 

74. Voo, K. S. et al. Identification of IL-17-producing FOXP3+ regulatory T cells in humans. 
Proc. Natl. Acad. Sci. U. S. A. 106, 4793–4798 (2009). 

75. Lochner, M. et al. In vivo equilibrium of proinflammatory IL-17+ and regulatory IL-10+ 
Foxp3+ RORγt+ T cells. J. Exp. Med. 205, 1381–1393 (2008). 

76. Fang, M., Xie, H., Dougan, S. K., Ploegh, H. & van Oudenaarden, A. Stochastic cytokine 
expression induces mixed T helper cell States. PLoS Biol. 11, e1001618 (2013). 

77. Antebi, Y. E. et al. Mapping differentiation under mixed culture conditions reveals a 
tunable continuum of T cell fates. PLoS Biol. 11, e1001616 (2013). 

78. Peine, M. et al. Stable T-bet+GATA-3+ Th1/Th2 Hybrid Cells Arise In Vivo, Can Develop 
Directly from Naive Precursors, and Limit Immunopathologic Inflammation. PLoS Biol. 
11, e1001633 (2013). 

79. Olsson, A. et al. Single-cell analysis of mixed-lineage states leading to a binary cell fate 
choice. Nature 537, 698–702 (2016). 

80. Sarrió, D. et al. Epithelial-Mesenchymal Transition in Breast Cancer Relates to the 
Basal-like Phenotype. Cancer Res. 68, 989–997 (2008). 

81. Dey, A. & Barik, D. Parallel arrangements of positive feedback loops limit cell-to-cell 
variability in differentiation. PLoS One 12, e0188623 (2017). 

82. Brandman, O., Ferrell, J. E., Li, R. & Meyer, T. Interlinked fast and slow positive 



 

Table of contents List of abbreviations References 

124   References 

feedback loops drive reliable cell decisions. Science 310, 496–498 (2005). 

83. Raser, J. M. & O’Shea, E. K. Control of stochasticity in eukaryotic gene expression. 
Science 304, 1811–1814 (2004). 

84. Elowitz, M. B., Levine, A. J., Siggia, E. D. & Swain, P. S. Stochastic gene expression in a 
single cell. Science 297, 1183–1186 (2002). 

85. Chabot, J. R., Pedraza, J. M., Luitel, P. & van Oudenaarden, A. Stochastic gene 
expression out-of-steady-state in the cyanobacterial circadian clock. Nature 450, 
1249–1252 (2007). 

86. Newman, J. R. S. et al. Single-cell proteomic analysis of S. cerevisiae reveals the 
architecture of biological noise. Nature 441, 840–846 (2006). 

87. Ozbudak, E. M., Thattai, M., Kurtser, I., Grossman, A. D. & van Oudenaarden, A. 
Regulation of noise in the expression of a single gene. Nat. Genet. 31, 69–73 (2002). 

88. Raj, A., Peskin, C. S., Tranchina, D., Vargas, D. Y. & Tyagi, S. Stochastic mRNA Synthesis 
in Mammalian Cells. PLoS Biol. 4, e309 (2006). 

89. Stewart-Ornstein, J., Weissman, J. S. & El-Samad, H. Cellular Noise Regulons Underlie 
Fluctuations in Saccharomyces cerevisiae. Mol. Cell 45, 483–493 (2012). 

90. Becskei, A., Kaufmann, B. B. & van Oudenaarden, A. Contributions of low molecule 
number and chromosomal positioning to stochastic gene expression. Nat. Genet. 37, 
937–944 (2005). 

91. Blake, W. J., KÆrn, M., Cantor, C. R. & Collins, J. J. Noise in eukaryotic gene 
expression. Nature 422, 633–637 (2003). 

92. Golding, I., Paulsson, J., Zawilski, S. M. & Cox, E. C. Real-Time Kinetics of Gene Activity 
in Individual Bacteria. Cell 123, 1025–1036 (2005). 

93. Dar, R. D. et al. Transcriptional burst frequency and burst size are equally modulated 
across the human genome. Proc. Natl. Acad. Sci. U. S. A. 109, 17454–17459 (2012). 

94. Raj, A. & van Oudenaarden, A. Single-Molecule Approaches to Stochastic Gene 
Expression. Annu. Rev. Biophys. 38, 255–270 (2009). 

95. Peccoud, J. & Ycart, B. Markovian Modeling of Gene-Product Synthesis. Theor. Popul. 
Biol. 48, 222–234 (1995). 

96. Suter, D. M., Molina, N., Naef, F. & Schibler, U. Origins and consequences of 
transcriptional discontinuity. Curr. Opin. Cell Biol. 23, 657–662 (2011). 

97. Coulon, A., Chow, C. C., Singer, R. H. & Larson, D. R. Eukaryotic transcriptional 
dynamics: from single molecules to cell populations. Nat. Rev. Genet. 14, 572–584 
(2013). 

98. Chubb, J. R., Trcek, T., Shenoy, S. M. & Singer, R. H. Transcriptional Pulsing of a 
Developmental Gene. Curr. Biol. 16, 1018–1025 (2006). 



 

Table of contents List of abbreviations References 

125   References 

99. Chong, S., Chen, C., Ge, H. & Xie, X. S. Mechanism of Transcriptional Bursting in 
Bacteria. Cell 158, 314–326 (2014). 

100. Levens, D. & Larson, D. R. A New Twist on Transcriptional Bursting. Cell 158, 241–242 
(2014). 

101. Jones, D. L., Brewster, R. C. & Phillips, R. Promoter architecture dictates cell-to-cell 
variability in gene expression. Science 346, 1533–1536 (2014). 

102. Kærn, M., Elston, T. C., Blake, W. J. & Collins, J. J. Stochasticity in gene expression: 
from theories to phenotypes. Nat. Rev. Genet. 6, 451–464 (2005). 

103. Cai, L., Friedman, N. & Xie, X. S. Stochastic protein expression in individual cells at the 
single molecule level. Nature 440, 358–362 (2006). 

104. Hinczewski, M. & Thirumalai, D. Cellular signaling networks function as generalized 
Wiener-Kolmogorov filters to suppress noise. Phys. Rev. X 4, 1–15 (2014). 

105. Balázsi, G., van Oudenaarden, A. & Collins, J. J. Cellular Decision Making and Biological 
Noise: From Microbes to Mammals. Cell 144, 910–925 (2011). 

106. D. T, G. The chemical Langevin equation. J. Chem. Phys. 113, 297–306 (2000). 

107. Lei, J. Stochastic Modeling in Systems Biology. J. Adv. Math. Appl. 1, 76–88 (2013). 

108. Gillespie, D. T. A general method for numerically simulating the stochastic time 
evolution of coupled chemical reactions. J. Comput. Phys. 22, 403–434 (1976). 

109. Tian, T. & Burrage, K. Stochastic models for regulatory networks of the genetic toggle 
switch. Proc. Natl. Acad. Sci. U. S. A. 103, 8372–8377 (2006). 

110. Kobayashi, H. et al. Programmable cells: interfacing natural and engineered gene 
networks. Proc. Natl. Acad. Sci. U. S. A. 101, 8414–8419 (2004). 

111. Jolly, M. K., Kulkarni, P., Weninger, K., Orban, J. & Levine, H. Phenotypic Plasticity, 
Bet-Hedging, and Androgen Independence in Prostate Cancer: Role of Non-Genetic 
Heterogeneity. Front. Oncol. 8, 50 (2018). 

112. Zhang, X.-P., Liu, F., Cheng, Z. & Wang, W. Cell fate decision mediated by p53 pulses. 
Proc. Natl. Acad. Sci. U. S. A. 106, 12245–12250 (2009). 

113. Purvis, J. E. et al. p53 dynamics control cell fate. Science 336, 1440–1444 (2012). 

114. Hafner, A., Bulyk, M. L., Jambhekar, A. & Lahav, G. The multiple mechanisms that 
regulate p53 activity and cell fate. Nat. Rev. Mol. Cell Biol. 20, 199–210 (2019). 

115. Luo, Q., Beaver, J., Liu, Y. & Zhang, Z. Dynamics of p53: A Master Decider of Cell Fate. 
Genes (Basel). 8, 66 (2017). 

116. Lestas, I., Vinnicombe, G. & Paulsson, J. Fundamental limits on the suppression of 
molecular fluctuations. Nature 467, 174–178 (2010). 

117. Wang, D.-G., Wang, S., Huang, B. & Liu, F. Roles of cellular heterogeneity, intrinsic and 
extrinsic noise in variability of p53 oscillation. Sci. Rep. 9, 5883 (2019). 



 

Table of contents List of abbreviations References 

126   References 

118. Reyes, J. et al. Fluctuations in p53 Signaling Allow Escape from Cell-Cycle Arrest. Mol. 
Cell 71, 581-591.e5 (2018). 

119. Freeman, M. Intercellular signalling in development. Nature 408, 313–319 (2000). 

120. Tyson, J. J. Modeling the cell division cycle: cdc2 and cyclin interactions. Proc. Natl. 
Acad. Sci. U. S. A. 88, 7328–7332 (1991). 

121. Crosby, M. E. Cell Cycle: Principles of Control. Yale J. Biol. Med. 80, 141–142 (2007). 

122. Hoffmann, I., Clarke, P. R., Marcote, M. J., Karsenti, E. & Draetta, G. Phosphorylation 
and activation of human cdc25-C by cdc2--cyclin B and its  involvement in the self-
amplification of MPF at mitosis. EMBO J. 12, 53–63 (1993). 

123. Barik, D., Ball, D. A., Peccoud, J. & Tyson, J. J. A Stochastic Model of the Yeast Cell 
Cycle Reveals Roles for Feedback Regulation in Limiting Cellular Variability. PLOS 
Comput. Biol. 12, e1005230 (2016). 

124. Olsson, A. et al. Single-cell analysis of mixed-lineage states leading to a binary cell fate 
choice. Nature 537, 698–702 (2016). 

125. Jia, D. et al. Operating principles of tristable circuits regulating cellular differentiation. 
Phys. Biol. 14, (2017). 

126. Rosenfeld, N., Elowitz, M. B. & Alon, U. Negative Autoregulation Speeds the Response 
Times of Transcription Networks. J. Mol. Biol. 323, 785–793 (2002). 

127. Becskei, A. & Serrano, L. Engineering stability in gene networks by autoregulation. 
Nature 405, 590–593 (2000). 

128. Hornung, G. & Barkai, N. Noise propagation and signaling sensitivity in biological 
networks: a role for positive feedback. PLoS Comput. Biol. 4, e8 (2008). 

129. Bruggeman, F. J., Blüthgen, N. & Westerhoff, H. V. Noise Management by Molecular 
Networks. PLOS Comput. Biol. 5, e1000506 (2009). 

130. Tsai, T. Y.-C. et al. Robust, tunable biological oscillations from interlinked positive and 
negative feedback loops. Science 321, 126–139 (2008). 

131. Tian, X. J., Zhang, X. P., Liu, F. & Wang, W. Interlinking positive and negative feedback 
loops creates a tunable motif in gene regulatory networks. Phys. Rev. E - Stat. 
Nonlinear, Soft Matter Phys. 80, 11926 (2009). 

132. Garcia-Bernardo, J. & Dunlop, M. J. Tunable Stochastic Pulsing in the Escherichia coli 
Multiple Antibiotic Resistance Network from Interlinked Positive and Negative 
Feedback Loops. PLOS Comput. Biol. 9, e1003229 (2013). 

133. Krumsiek, J., Marr, C., Schroeder, T. & Theis, F. J. Hierarchical Differentiation of 
Myeloid Progenitors Is Encoded in the Transcription Factor Network. PLoS One 6, 
e22649 (2011). 

134. Boller, S. & Grosschedl, R. The regulatory network of B‐cell differentiation: a focused 
view of early B‐cell factor 1 function. Immunol. Rev. 261, 102–115 (2014). 



 

Table of contents List of abbreviations References 

127   References 

135. Jia, D. et al. Distinguishing Mechanisms Underlying EMT Tristability. Cancer Converg. 
1, 2 (2017). 

136. Silveira, D. A. & Mombach, J. C. M. Dynamics of the feedback loops required for the 
phenotypic stabilization in the epithelial‐mesenchymal transition. FEBS J. 287, 578–
588 (2020). 

137. Preca, B.-T. et al. A novel ZEB1/HAS2 positive feedback loop promotes EMT in breast 
cancer. Oncotarget 8, 11530–11543 (2017). 

138. Antebi, Y. E. et al. Mapping Differentiation under Mixed Culture Conditions Reveals a 
Tunable Continuum of T Cell Fates. PLoS Biol. 11, e1001616 (2013). 

139. Peine, M. et al. Stable T-bet+GATA-3+ Th1/Th2 Hybrid Cells Arise In Vivo, Can Develop 
Directly from Naive Precursors, and Limit Immunopathologic Inflammation. PLoS Biol. 
11, e1001633 (2013). 

140. Fang, M., Xie, H., Dougan, S. K., Ploegh, H. & van Oudenaarden, A. Stochastic Cytokine 
Expression Induces Mixed T Helper Cell States. PLoS Biol. 11, e1001618 (2013). 

141. Leroy, P. & Mostov, K. E. Slug is required for cell survival during partial epithelial-
mesenchymal transition  of HGF-induced tubulogenesis. Mol. Biol. Cell 18, 1943–1952 
(2007). 

142. Williams, E. D., Gao, D., Redfern, A. & Thompson, E. W. Controversies around 
epithelial–mesenchymal plasticity in cancer metastasis. Nat. Rev. Cancer 19, 716–732 
(2019). 

143. Lu, M., Jolly, M. K., Levine, H., Onuchic, J. N. & Ben-Jacob, E. MicroRNA-based 
regulation of epithelial-hybrid-mesenchymal fate determination. Proc. Natl. Acad. Sci. 
U. S. A. 110, 18144–18149 (2013). 

144. Tian, X. J., Zhang, H. & Xing, J. Coupled reversible and irreversible bistable switches 
underlying TGFβ-induced epithelial to mesenchymal transition. Biophys. J. 105, 1079–
1089 (2013). 

145. Guantes, R. & Poyatos, J. F. Multistable Decision Switches for Flexible Control of 
Epigenetic Differentiation. PLoS Comput. Biol. 4, e1000235 (2008). 

146. Bessonnard, S. et al. Gata6, Nanog and Erk signaling control cell fate in the inner cell 
mass through a tristable regulatory network. Development 141, 3637–3648 (2014). 

147. De Mot, L. et al. Cell Fate Specification Based on Tristability in the Inner Cell Mass of 
Mouse Blastocysts. Biophys. J. 110, 710–722 (2016). 

148. Tosenberger, A. et al. A multiscale model of early cell lineage specification including 
cell division. npj Syst. Biol. Appl. 3, 16 (2017). 

149. Huang, S., Guo, Y. P., May, G. & Enver, T. Bifurcation dynamics in lineage-commitment 
in bipotent progenitor cells. Dev. Biol. 305, 695–713 (2007). 

150. Macía, J., Widder, S. & Solé, R. Why are cellular switches Boolean? General conditions 



 

Table of contents List of abbreviations References 

128   References 

for multistable genetic circuits. J. Theor. Biol. 261, 126–135 (2009). 

151. Lu, M. et al. Tristability in Cancer-Associated MicroRNA-TF Chimera Toggle Switch. J. 
Phys. Chem. B 117, 13164–13174 (2013). 

152. Strogatz, S. . Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, 
Chemistry, And Enginnering. (Westview Press, 2001). 

153. Kuznetsov, Y. Elements of Applied Bifurcation Theory. (Springer-Verlag, 2004). 

154. Waddington, C. H. The Strategy of the Genes. (George Allen and Unwin, 1957). 

155. Wang, J., Zhang, K., Xu, L. & Wang, E. Quantifying the Waddington landscape and 
biological paths for development and differentiation. Proc. Natl. Acad. Sci. U. S. A. 
108, 8257–8262 (2011). 

156. Ermentrout GB. Simulating, Analyzing, and Animating Dynamical systems: A Guide to 
XPPAUT for Researchers and Students. (2002). 

157. Huang, B., Xia, Y., Liu, F. & Wang, W. Realization of tristability in a multiplicatively 
coupled dual-loop genetic network. Sci. Rep. 6, 28096 (2016). 

158. Huang, B. et al. Interrogating the topological robustness of gene regulatory circuits by 
randomization. PLoS Comput. Biol. 13, e1005456 (2017). 

159. Jolly, M. K. et al. Stability of the hybrid epithelial/mesenchymal phenotype. 
Oncotarget 7, 27067–27084 (2016). 

160. Jia, D. et al. OVOL guides the epithelial-hybrid-mesenchymal transition. Oncotarget 6, 
15436–15448 (2015). 

161. Graf, T. & Enver, T. Forcing cells to change lineages. Nature 462, 587–594 (2009). 

162. Moris, N., Pina, C. & Arias, A. M. Transition states and cell fate decisions in epigenetic 
landscapes. Nat. Rev. Genet. 17, 693–703 (2016). 

163. Ye, Z. & Sarkar, C. A. Towards a Quantitative Understanding of Cell Identity. Trends 
Cell Biol. 28, 1030–1048 (2018). 

164. Huang, S. Hybrid T-helper cells: stabilizing the moderate center in a polarized system. 
PLoS Biol. 11, e1001632 (2013). 

165. Niwa, H. et al. Interaction between Oct3/4 and Cdx2 determines trophectoderm 
differentiation. Cell 123, 917–929 (2005). 

166. Burk, U. et al. A reciprocal repression between ZEB1 and members of the miR-200 
family promotes EMT and invasion in cancer cells. EMBO Rep. 9, 582–589 (2008). 

167. Siemens, H. et al. miR-34 and SNAIL form a double-negative feedback loop to regulate 
epithelial-mesenchymal transitions. Cell Cycle 10, 4256–4271 (2011). 

168. Ye, Y., Kang, X., Bailey, J., Li, C. & Hong, T. An enriched network motif family regulates 
multistep cell fate transitions with restricted reversibility. PLOS Comput. Biol. 15, 
e1006855 (2019). 



 

Table of contents List of abbreviations References 

129   References 

169. Song, H., Smolen, P., Av-Ron, E., Baxter, D. A. & Byrne, J. H. Bifurcation and Singularity 
Analysis of a Molecular Network for the Induction of Long-Term Memory. Biophys. J. 
90, 2309–2325 (2006). 

170. Sengupta, D. & Kar, S. Deciphering the Dynamical Origin of Mixed Population during 
Neural Stem Cell Development. Biophys. J. 114, 992–1004 (2018). 

171. Wang, J., Li, C. & Wang, E. Potential and flux landscapes quantify the stability and 
robustness of budding yeast cell cycle network. Proc. Natl. Acad. Sci. U. S. A. 107, 
8195–8200 (2010). 

172. Zhang, B. & Wolynes, P. G. Stem cell differentiation as a many-body problem. Proc. 
Natl. Acad. Sci. U. S. A. 111, 10185–10190 (2014). 

173. Li, C. & Balazsi, G. A landscape view on the interplay between EMT and cancer 
metastasis. npj Syst. Biol. Appl. 4, 34 (2018). 

174. Sriram, K., Rodriguez-Fernandez, M. & Doyle, F. J. A Detailed Modular Analysis of 
Heat-Shock Protein Dynamics under Acute and Chronic Stress and Its Implication in 
Anxiety Disorders. PLoS One 7, e42958 (2012). 

175. Raj, A. & van Oudenaarden, A. Nature, Nurture, or Chance: Stochastic Gene 
Expression and Its Consequences. Cell 135, 216–226 (2008). 

176. Thattai, M. & van Oudenaarden, A. Intrinsic noise in gene regulatory networks. Proc. 
Natl. Acad. Sci. U. S. A. 98, 8614–8619 (2001). 

177. Das, D., Dey, S., Brewster, R. C. & Choubey, S. Effect of transcription factor resource 
sharing on gene expression noise. PLoS Comput. Biol. 13, e1005491 (2017). 

178. Huh, D. & Paulsson, J. Non-genetic heterogeneity from stochastic partitioning at cell 
division. Nat. Genet. 43, 95–100 (2011). 

179. Sherman, M. S., Lorenz, K., Lanier, M. H. & Cohen, B. A. Cell-to-Cell Variability in the 
Propensity to Transcribe Explains Correlated Fluctuations in Gene Expression. Cell 
Syst. 1, 315–325 (2015). 

180. Volfson, D. et al. Origins of extrinsic variability in eukaryotic gene expression. Nature 
439, 861–864 (2006). 

181. Talia, S. Di, Skotheim, J. M., Bean, J. M., Siggia, E. D. & Cross, F. R. The effects of 
molecular noise and size control on variability in the budding yeast cell cycle. Nature 
448, 947–951 (2007). 

182. Geva-Zatorsky, N. et al. Oscillations and variability in the p53 system. Mol. Syst. Biol. 
2, 2006.0033 (2006). 

183. Spencer, S. L., Gaudet, S., Albeck, J. G., Burke, J. M. & Sorger, P. K. Non-genetic origins 
of cell-to-cell variability in TRAIL-induced apoptosis. Nature 459, 428–432 (2009). 

184. Burnett, J. C., Miller-Jensen, K., Shah, P. S., Arkin, A. P. & Schaffer, D. V. Control of 
Stochastic Gene Expression by Host Factors at the HIV Promoter. PLoS Pathog. 5, 



 

Table of contents List of abbreviations References 

130   References 

e1000260 (2009). 

185. Weinberger, L. S., Burnett, J. C., Toettcher, J. E., Arkin, A. P. & Schaffer, D. V. 
Stochastic Gene Expression in a Lentiviral Positive-Feedback Loop: HIV-1 Tat 
Fluctuations Drive Phenotypic Diversity. Cell 122, 169–182 (2005). 

186. Beach, R. R. et al. Aneuploidy Causes Non-genetic Individuality. Cell 169, 229-242.e21 
(2017). 

187. Acar, M., Mettetal, J. T. & Van Oudenaarden, A. Stochastic switching as a survival 
strategy in fluctuating environments. Nat. Genet. 40, 471–475 (2008). 

188. Çağatay, T., Turcotte, M., Elowitz, M. B., Garcia-Ojalvo, J. & Süel, G. M. Architecture-
Dependent Noise Discriminates Functionally Analogous Differentiation Circuits. Cell 
139, 512–522 (2009). 

189. Ghusinga, K. R., Dennehy, J. J. & Singh, A. First-passage time approach to controlling 
noise in the timing of intracellular events. Proc. Natl. Acad. Sci. U. S. A. 114, 693–698 
(2017). 

190. Simpson, M. L., Cox, C. D. & Sayler, G. S. Frequency domain analysis of noise in 
autoregulated gene circuits. Proc. Natl. Acad. Sci. U. S. A. 100, 4551–4556 (2003). 

191. Lestas, I., Vinnicombe, G. & Paulsson, J. Fundamental limits on the suppression of 
molecular fluctuations. Nature 467, 174–178 (2010). 

192. Tomioka, R., Kimura, H., J. Kobayashi, T. & Aihara, K. Multivariate analysis of noise in 
genetic regulatory networks. J. Theor. Biol. 229, 501–521 (2004). 

193. Swain, P. S. Efficient Attenuation of Stochasticity in Gene Expression Through Post-
transcriptional Control. J. Mol. Biol. 344, 965–976 (2004). 

194. Maithreye, R. & Sinha, S. Propagation of extrinsic perturbation in a negatively auto-
regulated pathway. Phys. Biol. 4, 48–59 (2007). 

195. Dublanche, Y., Michalodimitrakis, K., Kümmerer, N., Foglierini, M. & Serrano, L. Noise 
in transcription negative feedback loops: simulation and experimental analysis. Mol. 
Syst. Biol. 2, 41 (2006). 

196. Niwa, H., Miyazaki, J. & Smith, A. G. Quantitative expression of Oct-3/4 defines 
differentiation, dedifferentiation or self-renewal of ES cells. Nat. Genet. 24, 372–376 
(2000). 

197. Hooshangi, S., Thiberge, S. & Weiss, R. Ultrasensitivity and noise propagation in a 
synthetic transcriptional cascade. Proc. Natl. Acad. Sci. U. S. A. 102, 3581–3586 
(2005). 

198. Wang, L., Xin, J. & Nie, Q. A Critical Quantity for Noise Attenuation in Feedback 
Systems. PLOS Comput. Biol. 6, e1000764 (2010). 

199. Tyson, J. J., Chen, K. C. & Novak, B. Sniffers, buzzers, toggles and blinkers: Dynamics of 
regulatory and signaling pathways in the cell. Curr. Opin. Cell Biol. 15, 221–231 (2003). 



 

Table of contents List of abbreviations References 

131   References 

200. Goldbeter, A. & Koshland, D. E. An amplified sensitivity arising from covalent 
modification in biological systems. Proc. Natl. Acad. Sci. U. S. A. 78, 6840–6844 
(1981). 

201. W, H. & Lefever, R. Noise Induced Transitions. (Springer-Verlag, 1984). 

202. Feinerman, O., Veiga, J., Dorfman, J. R., Germain, R. N. & Altan-Bonnet, G. Variability 
and robustness in T cell activation from regulated heterogeneity in protein levels. 
Science 321, 1081–1084 (2008). 

203. Tyson, J. J. & Novák, B. Functional Motifs in Biochemical Reaction Networks. Annu. 
Rev. Phys. Chem. 61, 219–240 (2010). 

204. Sveiczer, A. Modelling the fission yeast cell cycle. Briefings Funct. Genomics 
Proteomics 2, 298–307 (2004). 

205. Heldin, C.-H. & Moustakas, A. Signaling Receptors for TGF-β Family Members. Cold 
Spring Harb. Perspect. Biol. 8, a022053 (2016). 

206. Renauld, J.-C. Class II cytokine receptors and their ligands: Key antiviral and 
inflammatory modulators. Nat. Rev. Immunol. 3, 667–676 (2003). 

207. Wang, X., Lupardus, P., LaPorte, S. L. & Garcia, K. C. Structural Biology of Shared 
Cytokine Receptors. Annu. Rev. Immunol. 27, 29–60 (2009). 

208. Broughton, S. E., Hercus, T. R., Lopez, A. F. & Parker, M. W. Cytokine receptor 
activation at the cell surface. Curr. Opin. Struct. Biol. 22, 350–359 (2012). 

209. Platanias, L. C. Mechanisms of type-I- and type-II-interferon-mediated signalling. Nat. 
Rev. Immunol. 5, 375–386 (2005). 

210. Gschwind, A., Fischer, O. M. & Ullrich, A. The discovery of receptor tyrosine kinases: 
targets for cancer therapy. Nat. Rev. Cancer 4, 361–370 (2004). 

211. Furnari, F. B., Cloughesy, T. F., Cavenee, W. K. & Mischel, P. S. Heterogeneity of 
epidermal growth factor receptor signalling networks in glioblastoma. Nat. Rev. 
Cancer 15, 302–310 (2015). 

212. Dorsam, R. T. & Gutkind, J. S. G-protein-coupled receptors and cancer. Nat. Rev. 
Cancer 7, 79–94 (2007). 

213. Rosenbaum, D. M., Rasmussen, S. G. F. & Kobilka, B. K. The structure and function of 
G-protein-coupled receptors. Nature 459, 356–363 (2009). 

214. Whitty, A. Cooperativity and biological complexity. Nat. Chem. Biol. 4, 435–439 
(2008). 

215. Cornish-Bowden, A. Understanding allosteric and cooperative interactions in 
enzymes. FEBS J. 281, 621–632 (2014). 

216. Koshland, D. E. J. & Hamadani, K. Proteomics and models for enzyme cooperativity. J. 
Biol. Chem. 277, 46841–46844 (2002). 



 

Table of contents List of abbreviations References 

132   References 

217. Cornish-Bowden, A. The physiological significance of negative cooperativity revisited. 
Journal of theoretical biology vol. 319 144–147 (2013). 

218. von Krbek, L. K. S., Schalley, C. A. & Thordarson, P. Assessing cooperativity in 
supramolecular systems. Chem. Soc. Rev. 46, 2622–2637 (2017). 

219. Weiss, J. N. The Hill equation revisited: uses and misuses. FASEB J. 11, 835–841 
(1997). 

220. Prinz, H. Hill coefficients, dose–response curves and allosteric mechanisms. J. Chem. 
Biol. 3, 37–44 (2010). 

221. Ferrell, J. E., Jr & Ha, S. H. Ultrasensitivity part II: multisite phosphorylation, 
stoichiometric inhibitors, and positive feedback. Trends Biochem. Sci. 39, 556–569 
(2014). 

222. Straube, R. Analysis of network motifs in cellular regulation: Structural similarities, 
input–output relations and signal integration. Biosystems 162, 215–232 (2017). 

223. Ferrell, J. E. & Ha, S. H. Ultrasensitivity part III: cascades, bistable switches, and 
oscillators. Trends Biochem. Sci. 39, 612–618 (2014). 

224. Bush, E. C. et al. Modeling the Role of Negative Cooperativity in Metabolic Regulation 
and Homeostasis. PLoS One 7, e48920 (2012). 

225. Macdonald, J. L. & Pike, L. J. Heterogeneity in EGF-binding affinities arises from 
negative cooperativity in an aggregating system. Proc. Natl. Acad. Sci. U. S. A. 105, 
112–117 (2008). 

226. Alvarado, D., Klein, D. E. & Lemmon, M. A. Structural Basis for Negative Cooperativity 
in Growth Factor Binding to an EGF Receptor. Cell 142, 568–579 (2010). 

227. Arkhipov, A., Shan, Y., Kim, E. T. & Shaw, D. E. Membrane Interaction of Bound 
Ligands Contributes to the Negative Binding Cooperativity of the EGF Receptor. PLoS 
Comput. Biol. 10, e1003742 (2014). 

228. Levitzki, A. Negative cooperativity at the insulin receptor. Nature 289, 442–443 
(1981). 

229. De Meyts, P. The insulin receptor: a prototype for dimeric, allosteric membrane 
receptors? Trends Biochem. Sci. 33, 376–384 (2008). 

230. Surinya, K. H. et al. An Investigation of the Ligand Binding Properties and Negative 
Cooperativity of Soluble Insulin-like Growth Factor Receptors. J. Biol. Chem. 283, 
5355–5363 (2008). 

231. Urizar, E. et al. Glycoprotein hormone receptors: link between receptor 
homodimerization and negative cooperativity. EMBO J. 24, 1954–1964 (2005). 

232. Kiselyov, V. V., Versteyhe, S., Gauguin, L. & De Meyts, P. Harmonic oscillator model of 
the insulin and IGF1 receptors’ allosteric binding and activation. Mol. Syst. Biol. 5, 243 
(2009). 



 

Table of contents List of abbreviations References 

133   References 

233. Ha, S. H. & Ferrell, J. E. Thresholds and ultrasensitivity from negative cooperativity. 
Science 352, 990–993 (2016). 

234. Shvartsman, S. Y. et al. Autocrine loops with positive feedback enable context-
dependent cell signaling. Am. J. Physiol. Physiol. 282, C545–C559 (2002). 

235. Afkarian, M. et al. T-bet is a STAT1-induced regulator of IL-12R expression in naïve 
CD4+ T cells. Nat. Immunol. 3, 549–557 (2002). 

236. Busse, D. et al. Competing feedback loops shape IL-2 signaling between helper and 
regulatory T lymphocytes in cellular microenvironments. Proc. Natl. Acad. Sci. U. S. A. 
107, 3058–3063 (2010). 

237. Becskei, A. & Grusby, M. J. Contribution of IL-12R mediated feedback loop to Th1 cell 
differentiation. FEBS Lett. 581, 5199–5206 (2007). 

238. Waysbort, N., Russ, D., Chain, B. M. & Friedman, N. Coupled IL-2–Dependent 
Extracellular Feedbacks Govern Two Distinct Consecutive Phases of CD4 T Cell 
Activation. J. Immunol. 191, 5822–5830 (2013). 

239. Tkach, K. E. et al. T cells translate individual, quantal activation into collective, analog 
cytokine responses via time-integrated feedbacks. Elife 3, e01944 (2014). 

240. Goldbeter, A. & Koshland, D. E. An amplified sensitivity arising from covalent 
modification in biological systems. Proc. Natl. Acad. Sci. U. S. A. 78, 6840–6844 
(1981). 

241. Gunawardena, J. Multisite protein phosphorylation makes a good threshold but can 
be a poor switch. Proc. Natl. Acad. Sci. U. S. A. 102, 14617–14622 (2005). 

242. Huang, C. Y. & Ferrell, J. E. Ultrasensitivity in the mitogen-activated protein kinase 
cascade. Proc. Natl. Acad. Sci. U. S. A. 93, 10078–10083 (1996). 

243. Kapuy, O., Barik, D., Domingo Sananes, M. R., Tyson, J. J. & Novák, B. Bistability by 
multiple phosphorylation of regulatory proteins. Prog. Biophys. Mol. Biol. 100, 47–56 
(2009). 

244. Markevich, N. I., Hoek, J. B. & Kholodenko, B. N. Signaling switches and bistability 
arising from multisite phosphorylation in protein kinase cascades. J. Cell Biol. 164, 
353–359 (2004). 

245. Buchler, N. E. & Cross, F. R. Protein sequestration generates a flexible ultrasensitive 
response in a genetic network. Mol. Syst. Biol. 5, 272 (2009). 

246. Cuba Samaniego, C., Giordano, G., Kim, J., Blanchini, F. & Franco, E. Molecular 
Titration Promotes Oscillations and Bistability in Minimal Network Models with 
Monomeric Regulators. ACS Synth. Biol. 5, 321–333 (2016). 

247. Fang, M., Xie, H., Dougan, S. K., Ploegh, H. & van Oudenaarden, A. Stochastic Cytokine 
Expression Induces Mixed T Helper Cell States. PLOS Biol. 11, e1001618 (2013). 

248. Seo, M.-H., Park, J., Kim, E., Hohng, S. & Kim, H.-S. Protein conformational dynamics 



 

Table of contents List of abbreviations References 

134   References 

dictate the binding affinity for a ligand. Nat. Commun. 5, 3724 (2014). 

249. Wu, F., Su, R.-Q., Lai, Y.-C. & Wang, X. Engineering of a synthetic quadrastable gene 
network to approach Waddington landscape and cell fate determination. Elife 6, 
e23702 (2017). 

250. Ye, Y., Kang, X., Bailey, J., Li, C. & Hong, T. An enriched network motif family regulates 
multistep cell fate transitions with restricted reversibility. PLOS Comput. Biol. 15, 
e1006855 (2019). 

 

 

 

 

 

 

 

 

 

 

 

 

 



Understanding the Robustness
of Regulatory Motifs in

Generating Biological Switches
Relevant to Cell-fate Decisions

by Anupam Dey

Submission date: 08-Jun-2021 02:42AM (UTC+0530)
Submission ID: 1602411603
File name: 15CHPH34_AnupamDey_PlagiarismCheck.pdf (6.05M)
Word count: 33938
Character count: 178530





6 <1%

7 <1%

8 <1%

9 <1%

10 <1%

11 <1%

12 <1%

13 <1%

www.ncbi.nlm.nih.gov
Internet Source

cdn.vizio.com
Internet Source

"Formal Methods for Computational Systems
Biology", Springer Science and Business
Media LLC, 2008
Publication

Alexander Y. Mitrophanov. "Positive feedback
in cellular control systems", BioEssays,
06/2008
Publication

ale.physics.sunysb.edu
Internet Source

jov.arvojournals.org
Internet Source

Kerner, Boris S.. "Complex Dynamics of Traffic
Management, Introduction to", Encyclopedia
of Complexity and Systems Science, 2009.
Publication

Rotem Golan, Christian Jacob, Savraj Grewal,
Jörg Denzinger. "Predicting patterns of gene
expression during drosophila
embryogenesis", Proceedings of the 2014
conference on Genetic and evolutionary
computation - GECCO '14, 2014
Publication



14 <1%

15 <1%

16 <1%

17 <1%

18 <1%

19 <1%

20 <1%

John J. Tyson. "Design principles of
biochemical oscillators", Nature Reviews
Molecular Cell Biology, 10/30/2008
Publication

oa.upm.es
Internet Source

epub.uni-regensburg.de
Internet Source

Konstantinos P. Koutsoumanis, Zafiro
Aspridou. "Individual cell heterogeneity in
Predictive Food Microbiology: Challenges in
predicting a “noisy” world", International
Journal of Food Microbiology, 2017
Publication

open.library.ubc.ca
Internet Source

Ali H. Nayfeh, Balakumar Balachandran.
"Applied Nonlinear Dynamics", Wiley, 1995
Publication

Anissa Guillemin, Elisabeth Roesch, Michael
P.H. Stumpf. "Uncertainty in cell fate decision
making: Lessons from potential landscapes of
bifurcation systems", Cold Spring Harbor
Laboratory, 2021
Publication



21 <1%

22 <1%

23 <1%

24 <1%

25 <1%

26 <1%

27 <1%

Bhattacharya, A.. "On a conjecture of
Manickam and Singhi", Discrete Mathematics,
20031106
Publication

www.repository.cam.ac.uk
Internet Source

Javier Fluixá Sanmartín. "Adaptation
strategies of dam safety management to new
climate change scenarios informed by risk
indicators", Universitat Politecnica de
Valencia, 2020
Publication

"Progress in Pattern Recognition, Image
Analysis and Applications", Springer Science
and Business Media LLC, 2005
Publication

Saúl López-Escobar, J. A. Carrasco-Ochoa, J.
Fco. Martínez-Trinidad. "Chapter 41 Global k-
Means with Similarity Functions", Springer
Science and Business Media LLC, 2005
Publication

neimerk.com
Internet Source

vdoc.pub
Internet Source



Exclude quotes On

Exclude bibliography On

Exclude matches < 14 words


	DeanSignPage.pdf
	Binder1.pdf
	AupamSignPage.pdf
	15CHPH34_AnupamDey_Thesis.pdf
	DeanSignPage.pdf
	15CHPH34_AnupamDey_Thesis.pdf
	15CHPH34_AnupamDey_Thesis.pdf
	15CHPH34_AnupamDey_Thesis.pdf
	15CHPH34_AnupamDey_Thesis.pdf
	15CHPH34_AnupamDey_Thesis.pdf
	15CHPH34_AnupamDey_Thesis.pdf
	Pages from ReportLibrary_15CHPH34_AnupamDey_Thesis.pdf


	SimilarityPage1.pdf

	Pages from ReportLibrary_15CHPH34_AnupamDey_Thesis.pdf







