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ABSTRACT

BigData Analytics is the analysis performed onBigData, i.e., the data characterized
by 5Vs viz. Volume, Velocity, Variety, Veracity, and Value. The analysis results in
the extraction of knowledge from structured, unstructured, and semi­structured data.
This knowledge helps us to make business decisions and necessary actions. Ana­
lyzing Big Data with traditional systems may not be possible; hence it is preferred
to go for a cluster of traditional systems where the resources can be shared, and fault
tolerance can be maintained. Such a computational framework is provided by the
Apache Hadoop or Apache Spark. Hadoop or Spark computational framework has
been employed for the research works presented in this thesis. The thesis starts with
a comprehensive review presenting a critical analysis of two hundred and sixty­one
(261) research articles that appeared between 2009 and 2020 dealing with paral­
lel and distributed versions of regression, classification, clustering, association rule
mining, recommendation systems, outlier detection problems in data mining.

Regression is one of the critical tasks in data mining. We proposed a hybrid
model combining Auto­Associative Extreme Learning Machine and Multiple Lin­
ear Regression for performing Big Data regression. It is implemented with Hadoop
MapReduce computational framework.

We proposed a one­class classification suitable for BigData by employingAuto­
Associative Neural Network optimizedwith Particle SwarmOptimization. The pro­
posed method is implemented in a parallel, distributed manner. Credit card fraud
is one of the severe challenges faced by the banking and financial industries. The
detection of the scarce fraudulent transaction can be performed by one­class classi­
fication.

Clustering is the most often used unsupervised learning method. Implementa­
tion of clustering involving volume and velocity is a challenging task. We have
presented a parallel distributed incrementally evolving clustering method for the
Big Data paradigm employing a parallel distributed version of the Evolving Clus­
tering Method.

Iterative training has its drawbacks while analyzing Big Data. So, we need
trainingmodels where training can happen in one­pass. We have proposed a parallel
distributed one­pass regression model for performing regression in the Big Data

ix



paradigm. The work has implemented a parallel distributed version of the General
Regression Neural Network.

Classification is the most popularly used data mining task across industries.
Considering Big Data classification, we have proposed a parallel distributed one­
pass classifier employing a parallel distributed version of Probabilistic Neural Net­
work.

We have implemented a parallel distributed version of the Radial Basis Function
Network, which is amenable for Big Data. The versatility of the architecture allows
performing regression and classification for Big Data.

The last chapter of the thesis summarizes the contributions and suggests the
research gaps as the future directions for the upcoming researchers. We observe
that the Big Data analytical algorithms proposed in the thesis are eminently suitable
for solving regression, one­class classification, binary classification, and clustering
problems in various domains.
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Chapter 1

Introduction

This chapter presents an introduction to the thesis. This chapter provides the mo­
tivation and necessary context for the work presented in this thesis. The chapter
begins with the introduction to Big Data and Big Data Analytics. It presents differ­
ent application domains where big data analytics is performed. Later, it presents the
motivation of work, defines the problem statement, describes the problems found
in big data analytics, and lists the contributions of the thesis related to the problem
statement.

The organization of the chapter is as follows: Section 1.1 presents an intro­
duction to big data analytics. Section 1.3 presents the motivation that has driven
the research in the area of big data analytics. The problem statement is outlined in
Section 1.2. The organization of the whole thesis is presented in Section 1.4.

1.1 Introduction to Big Data and Big Data Analytics

1.1.1 Introduction to Big Data

Before moving to the introduction of Big Data, let the data be defined. Informally
the data can be defined as, the numerics, characters, or symbols on which several
operations can be performed by a system, which can be stored and communicated
in the form of electrical or optical signals and stored on magnetic, optical, or me­
chanical storage media.
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Big data is also about the data, which is of enormous volume. Big data is the
term used for data, which is so huge and complex that none of the traditional data
management tools can store or process the data efficiently. The multi­faceted chal­
lenge includes capturing or collection of data, curating the missing values or error
present in data, storing the data, searching the data, sharing the data over memory,
processes and network, transferring the data over the network, analyzing the data,
and visualization of the data. Big data results from IoT sensor data, social media,
e­commerce transactions, enterprise data, and public data.

Some examples of Big Data can be viz.

• About 1 TB/day new trade data is generated by the New York Stock Ex­
change.

• Statistics present that everyday 500+ TB of new data in the form of audio,
video, image, and text are uploaded into the databases of Facebook.

• A single Jet engine can synthesize 20+ TB of data in 1 hour of flight time.

• The Walmart processes customer transactions that surpass 1 million every
hour.

• The Tweeter receives 230+ millions of tweets every day.

• 48 hours of new video is uploaded to YouTube by its users every minute.

• The recommendation system of Amazon processes 15 million customer­
click­stream data per day.

• The mailing systems analyze 294 billion emails that are sent every day to find
the spams.

• Modern automobiles have numerous sensors for monitoring fuel level, tyre
pressure, etc. Each vehicle generates a huge volume of sensor data.

• Weather monitoring system, defense surveillance, satellite imagery, and sev­
eral other applications.
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The above are some of the examples of Big data. The size of data generated
by human­to­human interaction, machine­to­machine interaction, and human­to­
machine interaction on social media itself is of huge volume.

The Big data may be of three different forms, i.e., (i) Structured, (ii) Unstruc­
tured, and (iii) Semi­structured.

The storage, access, and processing of any data if happen to be in the form of
fixed­format is termed as a ‘structured’ data. The storage of data in a relational
database management system (RDBMS) is an example of ‘structured’ data. Here,
the data is stored with a fixed schema and which makes it easy to process. The data
with unknown form, that can not be stored with RDBMS and can not be processed
without converting into a structured format; is known as unstructured data. Apart
from size being voluminous, unstructured data presents multiple challenges in terms
of its processing for getting insights out of it. A typical example of unstructured data
is a heterogeneous data source such as data uploaded by Facebook users containing
a combination of simple text, images, videos, etc. Semi­Structured Data does not
have a formal structure, i.e., like a given schema in a relational DBMS. Still, it has
some structural properties like tags and other markers to group the data having sim­
ilar semantics that makes it convenient to process. The examples of semi­structured
data are XML files or JSON documents.

Big data has the following characteristics:

1. Volume ­The nameBigData itself represents to an enormous size. Hence any
data which is having a large size is considered to be big data, and ‘Volume’ is
one of the significant features for Big Data. International Data Corporation
(IDC) estimates 175 Zettabytes of data will be generated annually by 2025.
It has been projected by IDC that the amount of generated digital data (also
called Datasphere) will grow from 33 ZB in 2018 to 175 ZB by 2025, as
shown in the Figure 1.1 [1].

2. Velocity ­ The term ‘Velocity’ indicates the speed of generation of data. Big
data velocity refers to the speed of data generation and the flow of data from
the source of generation. The flow of data is massive and continuous. If such
velocity can be handled, then insights can be generated out of it, and decisions
can be taken based on real­time data.
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3. Variety ­ The term ‘Variety’ refers to heterogeneous sources of data genera­
tion and the nature of data, i.e., structured, unstructured, and semi­structured.
Earlier, spreadsheets and databases were the only sources of data. Nowadays,
data is getting generated in the form of emails, photos, videos, audios, PDFs,
and many other file formats. This variety of unstructured data poses specific
issues for storage, mining, and data analysis.

4. Veracity – The term ‘Veracity’ indicates the uncertainty present in the avail­
ability of the data due to data inconsistency and incompleteness. In the
dataset, there are many missing values and many data which are inconsis­
tent according to the business rule. This inconsistency and incompleteness
is Veracity. The Big Data from different sources poses a challenge in main­
taining accuracy and quality of data where the volume of Big Data plays a
prime role in the veracity of data. For example, Twitter posts with hashtags,
abbreviations, typos, and colloquial speech.

5. Value ­ The term ‘Value’ indicates the worth associated with the data. Unless
the big data collected results into monetary worth; it is useless. Turning the
big data into valuemeans adding to the benefits of the organizations by adding
to their profits.

Figure 1.1: Year­wise growth of Global Datasphere
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1.1.2 Application of Big Data

Now, Big Data has touched our lives in every aspect. The industries in almost all the
domains today are reaping the benefits of Big Data applications in multiple ways.
A few of them are listed here.

• Smarter Healthcare: The healthcare units analyze petabytes of patient’s
health data to extract insights out of it and then build applications for pre­
dicting the patient’s health condition.

• Telecom: Telecom industries collect data, analyze it, and present solutions to
different problems. With the help of Big Data applications, telecom compa­
nies are able to predict network failure, network load balance and thus have
been able to significantly reduce data packet loss, and thus, providing a seam­
less connection to their customers.

• Retail: The retail industry has received the maximum benefits from Big
Data. The retail industry has tried to understand its customer by analyzing
the consumer behavioral data. Amazon’s recommendation engine provides
suggestion of a product based on past browsing history data of the consumer.
Similarly, Netflix suggests a movie to a customer based on his past viewing
preferences.

• Traffic control: Worldwide, many cities face the problem of traffic conges­
tion. The effective analysis of sensor data with meaningful insights will be
vital in managing traffic.

• Manufacturing: Analyzing data collected from the sensors in the production
chain in the manufacturing industry can reduce component defects, improve
product quality, increase efficiency, and save time and money. Apart from
that inventory data, supply chain data all need big data analytics for the opti­
mal demand­supply management.

• Search Quality: Whenever we are searching for some information on
Google search engine, we are also generating data for Google in parallel.
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Google saves this data and analyzes it to improve the search quality and con­
sumer experience.

Some challenges of Big Data can be listed as follows:

(i) Data Quality ­ The major challenge is posed by Veracity. The ingested data
from the source is very messy, inconsistent, and incomplete.

(ii) Discovery – Extracting insights from the high volume of data with multiple
variety to receive value from it ultimately is a challenging task. Analyzing
the petabytes of data with machine learning algorithms to find patterns and
insights are very difficult.

(iii) Storage –When the collected data becomes enormous, it leads to more com­
plex challenges of its management and maintenance. It presents the require­
ment of a storage system that can easily scale up or down on­demand.

(iv) Analytics – In Big Data, wemay not be sure of the type and format of the data
we are dealing with, so processing data with such variety is a great challenge.

(v) Security – As the data is voluminous, maintaining its security is also a chal­
lenge. It includes user authentication, restricted access, maintaining data ac­
cess history, proper data encryption, etc.

(vi) Lack of Talent – Multiple application domains present their own Big Data
projects. That requires a skillful team of developers, data scientists, and ana­
lysts with domain knowledge, which is the challenge still faced by the indus­
try.

1.1.3 Big data analytics

Big Data Analytics (BDA) is the process of analyzing big data and derive insights
out of it. BDA involves exploratory analytics, predictive analytics, and prescriptive
analytics. For exploratory analytics, specific tools are used for Big Data visual­
ization with their challenges and limitation. Supervised and unsupervised machine
learning algorithms amenable for BDA is employed for prescriptive analytics. The
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ultimate aim of BDA is to provide Business insights from the analyzed data to move
forward in the business.

In order to perform BDA, we have to consider the task at hand and depending
on that, we can utilize horizontal scaling or vertical scaling. We have to consider the
cluster structure, the computational framework, the application tool to implement
the task. The cluster should be fault­tolerant, robust, scalable, and cost­effective.

Some of the prominent challenges involved in BDA are listed below:

• Right degree of horizontal and vertical scaling for the hardware requirement
for the BDA.

• Selection of a computational framework and the right tool for data mining or
machine learning task.

• Tweaking the resources in the cluster and parameters in the application for
optimal performance.

• Voluminous data and the velocity of its generation poses a challenge to its
analysis.

• Selection of proper machine learning algorithms that can be parallelized for
optimal performance.

• Preprocessing of a huge volume of data with high dimensionality poses its
challenge.

1.2 Problem statement: Problems found in the area
of BDA

Based on our literature survey, we defined problem statement according to the gaps
identified in the area of big data analytics.

In view of the foregoing and based on our literature survey, we defined problem
statement according to the gaps identified in the area of big data analytics.

1. To develop a parallel, distributed architecture to perform a regression task in
a Big Data paradigm.
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2. To implement a one­class classification algorithm for an imbalanced dataset
in a parallel, distributed environment.

3. To develop an incremental clustering method that is amenable for a large
volume of data in a parallel, distributed architecture.

4. To develop a novel approach for regression where the task can be achieved
through one pass and suitable for voluminous data.

5. To implement an architecture in the parallel, distributed environment for the
classification of large volume data with one pass.

6. To implement an architecture that is amenable for big data and able to perform
regression as well as classification.

1.3 Motivation

The big data analytics requires special hardware architecture and software frame­
works to process the huge volume of data. This constraint requires a parallel dis­
tributed computational framework to implement a parallel version of a machine
learning algorithm to perform the analytics to extract the knowledge out of it. Be­
cause of the nature of the Big Data, a single computer is inadequate and inefficient
for storage and processing the data in most cases. To provide the requirement of
high processing power and storage space to analyze Big Data, computer clusters is
a suitable choice. A cluster managing software aggregates the resources of many
smaller individual machines to provide Big Data processing requirements. The fol­
lowing key factors should be present in a cluster.

• Resource Pooling: The resource pooling indicates aggregating available
computing resources, e.g., CPU, memory, and storage space. Processing Big
Data requires all three of the above resources in combination.

• High Availability: Clusters should provide high fault tolerance and the high
availability. The cluster availability assures successful access of data and
its processing instead of hardware or software failures. This fault tolerance
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and availability becomes highly essential for real­time and quasi­ real­time
analytics.

• Easy Scalability: Clusters should be made easily horizontally scalable by
adding machines to the group. This scalability indicates the system is adapt­
able to the changes in resource requirements.

Using clusters requires a solution for managing cluster membership, coordi­
nating resource sharing, and scheduling actual work on individual nodes. Cluster
membership and resource allocation can be handled by cluster manager software
like Spark’s standalone cluster manager, Hadoop’s YARN, or Apache Mesos.

Looking into the requirements, the Spark standalone cluster has been selected to
carry out all the research experiments, but one where the Hadoop MapReduce envi­
ronment was chosen to perform the experiment. The different work­based research
works are presented here as separate chapters, which is depicted by the overarching
diagram (ref. Figure 1.2) of the thesis.

1.4 Organization of the thesis

The rest of the thesis is organized in 8 chapters, including a concluding chapter. The
content of each of these chapters is summarized below:

1.4.1 Chapter 2: Literature Review

This chapter presents a comprehensive review of the articles related to data min­
ing tasks viz., association rule mining, regression, classification, clustering, outlier
detection, and recommendation, which are implemented with Hadoop MapReduce
and Spark. This chapter discusses the articles related to big data analytics in hori­
zontally scaled out environments on different data mining tasks and also some stud­
ies related to them. We summarized each of the surveyed articles in four aspects
viz. the computational framework employed, data mining task addressed, machine
learning technique implemented, analyzed dataset details. We included the obtained
results, metrics for the evaluation of themodel, and indicated future directions along
with our critical reviews for each data mining task. We provided a detailed list of
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Big Data Analytics

Horizontal

Parallelization

(Apache Spark)

Regression

AAELM +MLR

(Chapter 3)

(Hadoop)

GRNN++

(Chapter 6)

PRBFN

(Chapter 8)

Classification

PSOAANN

(Chapter 4)

PNN++

(Chapter 7)

PRBFN

(Chapter 8)

Clustering
PECM

(Chapter 5)

Figure 1.2: Overarching Diagram for the Thesis†

†AAELM: Auto­associative Extreme Learning Machine, MLR: Multiple Linear Regression, GRNN: General Regression
Neural Network, PRBFN: Parallel Radial Basis Function Network, PSOAANN: Auto­associative Neural Network

optimized with Particle Swarm Optimization, PNN: Probabilistic Neural Network, PECM: Parallel Evolving Clustering
Method

analyzed real and synthetic datasets with references to the articles. We provided
a list of employed machine learning techniques and evaluation metrics with the
references to the articles. We also presented detailed exploratory analytics of the
reviewed articles.

1.4.2 Chapter 3: Parallel Distributed Hybrid Regression Model

Wepropose a hybridmodel that combines the AAELMwithMLR (AAELM+MLR)
for performing big data regression. It works using Hadoop MapReduce parallel
computing model, which is implemented in Python using Dumbo API. It works in
two phases. In the first phase, three­layered AAELM is trained. The output of the
hidden nodes of AAELM is treated as NLPCs. In the second phase, the MLRmodel
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is fitted using these NLPCs as input variables. Effectiveness of the AAELM+MLR
model is demonstrated on two large datasets viz., airline flight delay dataset and gas
sensor array dataset, taken from the web. It is observed that AAELM+MLR outper­
formed the MLR model by yielding less average Mean Squared Error (MSE) and
Mean Absolute Percentage Error (MAPE) values under the 10­fold cross­validation
framework. A statistical test confirms its superiority at a 1% level of significance.

1.4.3 Chapter 4: Parallel Distributed One­class Classifier

Banking and financial industries are facing severe challenges in the form of fraud­
ulent transactions. Credit card fraud is one example of them. To detect credit card
fraud, we employed the one­class classification approach in the Big Data paradigm.
We implemented a hybrid architecture of Particle Swarm Optimization and Au­
toAssociative Neural Network for one­class classification in the Spark computa­
tional framework. In this chapter, we implemented the parallelization of the auto­
associative neural network in the hybrid architecture.

1.4.4 Chapter 5: Parallel Distributed Incremental One­pass
Clustering Method

A novel parallel implementation of the ECM is proposed in this chapter. The origi­
nal serial version of the ECM is the clustering method, which computes online and
with a single­pass. The parallel version of ECM (Parallel ECM or PECM) is im­
plemented in the Apache Spark framework, which makes it work in real­time. The
parallelization of the algorithm aims to handle a dataset with a large volume. Many
of the extant clustering algorithms do not involve a parallel one­pass method. The
proposed method addresses this shortcoming. Its effectiveness is demonstrated on
a credit card fraud dataset (with size 297MB), and a Higgs dataset was taken from
Physics pertaining to particle detectors in the accelerator (with size 1.4GB). The ex­
perimental setup included a cluster of 10 machines having 32 GB RAM each with
Hadoop Distributed File System (HDFS) and Spark computational environment. A
remarkable achievement of this research is a dramatic reduction in computational
time compared to the serial version of the ECM.
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1.4.5 Chapter 6: Parallel Distributed One­pass Regression
Model

Among the neural network architectures for prediction, Multi­layer Perceptron
(MLP), RBFN, wavelet neural network (WNN), GRNN, and group method of data
handling (GMDH) are popular. Out of these architectures, GRNN is preferable
because it involves single­pass learning and produces reasonably good results. Al­
though GRNN involves single­pass learning, it cannot handle big datasets because
the pattern layer is required to store all the cluster centers after clustering all the
samples. Therefore, this chapter proposes a hybrid architecture, GRNN++, which
makes GRNN scalable for big data by invoking parallel, distributed clusteringmeth­
ods viz., K­Means∥ in the pattern layer of GRNN. The whole architecture is imple­
mented in the parallel distributed computational architecture of Apache Spark with
HDFS. Further we proposed the extension of GRNN++ (EGRNN++) employing
another clustering approach, parallel Bisecting K­Means, in place of K­Means∥.
Also, we proposed to employ Logistic, Cauchy activation functions in the pattern
layer of EGRNN++ in place of the Gaussian activation function. The effectiveness
of the variants of EGRNN++ was tested on two datasets taken from Chemistry and
Amazon Movie Review dataset for customer review rating prediction under ten­
fold cross­validation (10­FCV) setup. The proposed variants of EGRNN++ pro­
duced very low Mean Squared Error (MSE). It is worthwhile to mention that the
primary objective of this article is to present a distributed and parallel version of
the traditional GRNN to handle big datasets.

1.4.6 Chapter 7: Parallel Distributed One­pass Classifier

The popular neural network architectures for classification are MLP, RBFN, WNN,
PNN, and GMDH. Out of these, PNN is preferable because it involves single­pass
learning and produces reasonably good results. Although PNN involves single­pass
learning, it cannot handle big data sets because the pattern layer is required to store
all the cluster centers after clustering all the samples. Therefore, this chapter pro­
poses two hybrid architectures, PNN1++ and PNN2++, which make PNN scalable
for big data by invoking parallel, distributed clustering methods viz., K­Means∥
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and parallel Bisecting K­Means respectively, before the pattern layer of PNN. The
whole architecture is implemented in the distributed parallel framework of Apache
Spark with HDFS. The performance of the variants of PNN++ was demonstrated on
HEPMASS, HIGGS, ccFraud, and Amazon Movie Review dataset under a ten­fold
cross­validation setup. The proposed variants of PNN++ produced high AUC. They
also turned out to be statistically the same with the help of a t­test conducted at a 1%
level of significance and 18 degrees of freedom. It is worthwhile to mention that
the primary objective of this article is to present a distributed and parallel version
of the traditional PNN to handle big datasets.

1.4.7 Chapter 8: Parallel Distributed Versatile Architecture for
Regression and Classification

RBFN is one of the versatile neural network architectures, in that it can be used
to solve regression as well as classification tasks. The proposed work implements
RBFN in a parallel and distributed environment of Apache Spark. The new version
of RBFN is referred to as PRBFN. The main contribution in this work is embed­
ding of K­Means∥ or Bisecting K­Means (parallel, distributed clustering methods)
in between input and hidden layer and implementation of parallel least square es­
timation employing outer product of matrices. The PRBFN employed Gaussian as
well as Logistic activation functions in the hidden layer for non­linear transforma­
tion. The effectiveness of the PRBFN was tested on HEPMASS, HIGGS, ccFraud,
and Amazon Movie Review (for sentiment classification) datasets under 10 Fold
Cross­Validation (10­FCV) setup for classification problem. Again, the PRBFN
was tested with gas sensor array dataset and Amazon Movie Review (for movie
review prediction) datasets under 10­FCV setup for a regression problem. It is em­
phasized that the chief objective is to present a distributed and parallel version of
the RBFN to handle regression and classification in the Big Data paradigm.

1.4.8 Chapter 9: Conclusions and future directions

Chapter 9 summarizes the contributions of the thesis to the research community in
the parallel distributed computational framework for big data analytics in multiple
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data mining tasks viz., regression, binary classification, one­class classification, and
clustering. The chapter also presents a list of gaps in the current literature as the
future directions, which can be addressed by the budding researchers.
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Chapter 2

Literature Review

In this chapter, articles involving parallel distributed computation for different data
mining tasks employing machine learning techniques are reviewed. The critical
reviews are presented, and research gaps are suggested. At the end of the review,
in the open problems section, the research opportunities for the new research work
are identified. The chapter discusses the opportunities and challenges present in
data analytics in the BFSI sector. The chapter also presents the literature study, for
the different research work carried out in the further chapters. The next section of
the chapter presents an introduction to the current review work. Section 2.2 lists
out the previous review works carried out by the community in the big data area.
The review methodology that has been conducted for the current review work has
been presented in Section 2.3. Section 2.4 presents a review of the articles that were
included in the review process. Section 2.5 discusses the insights gained out of the
review work. Section 2.6 presents the conclusions and open problems.

2.1 Introduction

In the current digital era, there is enormous progress in the computational world;
in other words, there is a spectacular growth of the internet. These developments,
in return, account for a huge volume of data in a structured, semi­structured, and
unstructured manner. These huge volume of data are generated by people, ma­
chines, and their interactions. So today, we have a gold mine of data from which
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hidden insights can be drawn. These large voluminous data are generated in various
forms like structured, semi­structured, and unstructured data. These data are also
produced in a very fast manner from different types of the internet of things (IoT)
devices and other digitization sources. This kind of data generation has led to the
definition of Big Data defined by Gartner which states,

“Big data is high­volume, high­velocity and/or high variety informa­
tion assets that demand cost­effective, innovative forms of information
processing that enable enhanced insight, decision making, and process
automation [2].”

The voluminous data can be attributed to business sales records, the results gath­
ered from scientific experiments, or real­time sensors used in the IoT. Data may
also exist in a wide variety of file formats, including structured data, unstructured
data, or streaming data. Further, Big Data may involve multiple, simultaneous data
sources, which may not otherwise be integrated, resulting in a source of a variety
of data formats. Finally, velocity refers to the speed at which big data is generated,
processed and analyzed. Every Big Data Analytics (BDA) project will ingest, pro­
cess, and analyze the data, and then provide an insight based on an existing business
problem.

McKinsey Global Institute specified the potential of Big Data in five main top­
ics: Healthcare, Public Sector, Retail, Manufacturing, and Personal location data
[3].

The Big Data computation requires a scalable solution with distributed parallel
computation. The scaling is defined as the ability of the system to adapt to increased
demands regarding data processing. The BDA architectures can be classified into
two types of scaling presented below:

• Horizontal Scaling: It involves distribution of the workload across multi­
ple machines, which may be even commodity hardware. It is also known
as “scale­out”, where multiple independent computing devices are added to­
gether to increase the processing capability [4].

• Vertical Scaling: It involves increasing the number of processors, amount
of memory, and installing other faster hardware, typically, within a single
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machine. It is also known as “scale up”, and it usually involves a single
machine [2].

As part of this review chapter, we would like to address the following research
questions:

Q1: Can statistical andmachine learning algorithmsmeant for datamining
tasks be made scalable for big datasets in Hadoop and Spark frameworks?

Q2: If ‘yes’ what are they and why they are scalable?
Q3: Can some pointers be suggested using which any researcher can at­

tempt parallelizing hitherto unparallelized ML techniques?
These research questions shall be answered in Section 2.5 after the review of

the papers.
In this chapter, we reviewed the papers concerned with a distributed parallel

computing environment implemented with horizontal scaling. The review is per­
formed, keeping in mind the different data mining tasks with the concerned ma­
chine learning techniques. The critical analysis of the papers is furnished, pointing
the areas for future research work. There are some dedicated Big Data journals
that came into existence in the recent past, viz. Big Data Research, Journal of
Big Data, IEEE Transactions on Big Data, International Journal of Big Data
Intelligence, Big Data. Articles from these journals were collected apart from the
journal and proceeding articles from well­known publishers.

2.2 Existing Related Review Works

The current literature presents many review articles dealing with various aspects
of big data processing. Some papers discussed hardware platform issues. The
scope and challenges in different hardware platforms with different configuration
and their performance was analyzed. Singh and Reddy [4] examined different plat­
forms available for performing BDA. They reviewed different hardware platforms
available for BDA and estimated the advantages and drawbacks of various plat­
forms based on different metrics such as scalability, data I/O rate, fault tolerance,
real­time processing, data size supported, and iterative task support. Saecker and
Markl [5] presented a review of hardware architectures used for BDA. The authors
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considered the horizontal and vertical scaling with the technical aspect for the BDA.
Chen et al. [6] in the survey work reviewed the related technologies of Big Data
such as cloud computing, Internet of Things, data centers, and Hadoop. The survey
work highlighted the four phases of the value chain of Big Data, i.e., data gener­
ation, data acquisition, data storage, and data analysis. The review included the
technical challenges and the latest advances for each phase. Liu et al. [7] presented
an analysis of the opensource technologies that support big data processing in a
real­time or near real­time fashion. They analyzed their system architectures and
platforms.

There are some review works concerning the software aspects as data models
supporting Big Data, discussing risks and challenges in Big Data computational en­
vironments. In addition, there are studies concerning the analysis of MapReduce
computational environment, with its challenges. Sharma et al. [8] presented a re­
view paper on leading Big Data models that are leading contributors to the NoSQL
era and claim to address Big Data challenges in reliable and efficient ways. The
survey paper compares the features of different data models serving for big data
analysis. Al­Jarrah [9] presented a review of the theoretical and experimental data­
modeling literature in large­scale data­intensive fields. The study is related tomodel
efficiency while learning, the new algorithmic approaches with the least memory re­
quirements, and the processing power to minimize computational cost while main­
taining/improving its predictive/classification accuracy and stability. Sagiroglu and
Sinanc [10] presented an overview of Big Data’s content, scope, samples, methods,
advantages, and challenges and discussed privacy concerns on it. Sri and Anusha
[11] presented a survey of Big Data where they analyzed the Hadoop architecture,
including HDFS and MapReduce environment and its security issues. Khan et al.
[12], Ekbia et al. [13], Chen and Zhang [14] had reviewed the challenges, tech­
niques, and technologies involved in the Big Data computational environment. The
survey work also included the risks and security issues involved with the Big Data
environment. Lee et al. [15] presented a review paper on the parallel data processing
with MapReduce. They have analyzed various technical aspects of the MapReduce
framework. The inherent pros and cons were discussed, along with the introduction
to the optimization strategies for MapReduce programming. Ward and Barker [16]
presented a survey on Big Data definitions. The review paper has collated various
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definitions that have gained some degree of attraction and had furnished a clear and
concise definition of the term ‘Big Data.’

The research community has also presented some reviewwork considering indi­
vidual data mining (DM) tasks like clustering, data analysis aids like visualization
methods, and studied the in­memory data management system. Shirkhorshidi et
al. [17], Fahad et al. [18] presented a survey of clustering algorithms for Big Data.
The surveywork included analysis of the improved clustering algorithms for the Big
Data paradigm. Gorodov and Gubarev [19] presented a review of data visualization
methods in application to Big Data. They reviewed the existing methods for data vi­
sualization in application to Big Data. The survey work included the classification
of visualization methods in application to Big Data. Zhang et al. [20], presented
a review of in­memory data management and processing on Big Data paradigm.
The survey involved a broad range of in­memory data management and processing
systems, including both data storage systems and data processing frameworks.

Table 2.1 presents the details of all the previous review papers. The following
are the key reasons which necessitated writing the current, unique review work.

(i) The existing literature on the review of Big Data covered the hardware plat­
forms, data models, challenges, risks, and security issues in BDA, data visu­
alization, and a DM task like clustering.

(ii) It is evident that there is no survey paper existing, which exclusively deals
with data mining tasks with different machine learning techniques applicable
to parallel distributed programming considering horizontal scaling platform,
viz., Apache Hadoop MapReduce and Apache Spark framework.

(iii) This review, by virtue of its theme, provides a plethora of opportunities to
budding researchers in parallelizing various DM tasks applied to any do­
main. This will allow researchers and practitioners to not only employ the
extant scaled versions of the popular ML techniques for data mining tasks
in diverse domains but also suggest pointers to develop scaled versions of
hitherto unparallelized algorithms.

Therefore, the present review will be a significant contribution to the BDA re­
search from the viewpoint of parallelizing analytical techniques.
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Table 2.1: Existing Review Articles

Ref.
Journal /
Conference

Journal /
Proceeding Name Publisher

Scope of
Review

[4] Journal Journal of Big data Springer Hardware
Platforms

[5] Conference

European Business
Intelligence Summer
School (eBISS),

2012

Springer Hardware
architectures

[6] Journal
Mobile Networks

and
Applications

Springer

Challenges, and
the latest advances
in data generation,
data acquisition,
data storage,
and data analysis

[7] Conference

International
Database

Engineering
& Applications
Symposium,

2014

ACM

Technologies that
support big data
processing in a
real­time or
near real­time
fashion

[8] Journal
Data Science

Journal
Ubiquity Press Data Models

[9] Journal Big Data Research Elsevier

Theoretical and
experimental
data­modeling
literature for
model efficiency
while learning
with least
memory
requirements

[10] Conference

Int. Conf. on
Collaboration
Technologies
and Systems

IEEE

Scope, methods,
advantages,
challenges and
privacy concern
of big data

Continued on next page. . .
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Ref. Journal /
Conference

Journal /
Proceeding Name Publisher

Scope of
Review

[11] Journal

Indonesian
Journal of
Electrical
Engineering

and Informatics

Institute
of

Advanced
Engineering

and
Science
(IAES)

HDFS and
MapReduce
environment and
its security
issues

[12] Journal
The Scientific
World Journal

Hindawi Challenges,
techniques, and
technologies
involved
in the big data
computational
environment.
Risks and security
issues.

[13] Journal

Journal of
the Association for
Information Science
and Technology

Wiley

[14] Journal
Information
Sciences

Elsevier

[15] Journal
ACM

SIGMOD Record
ACM

Various
technical aspects
of the MapReduce
framework

[16] Journal CoRR ­ Definition of
big data

[17] Conference ­ Springer Clustering
algorithms
for big data

[18] Journal

IEEE
Transactions on
emerging topics
in computing

IEEE

[19] Journal

Journal of
Electrical and
Computer
Engineering

Hindawi

Data
visualization
methods in
application to
big data

Continued on next page. . .
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Ref. Journal /
Conference

Journal /
Proceeding Name Publisher

Scope of
Review

[20] Journal

IEEE
Transactions on
Knowledge and
Data Engineering

IEEE

In­memory
data management
and processing
on big data
paradigm

End of Table

2.3 Review Methodology

The review covers all the articles in the different Data Mining (DM) tasks that dis­
cuss different Machine Learning (ML) techniques which are carried out in the par­
allel distributed computational environment of Apache Hadoop/Spark. Thus, the
scope of the review can be considered as the intersection of these three (Figure 2.1).
The current review work has followed four main steps (Figure 2.2) to bring the re­
view work to its final form. The steps are Review definition, Search of Articles,
Filtration of articles for review, and Analysis of the review process.

Step 1: Review Definition
Step 1.1: Scope of review. The present literature survey covers the research

articles related to the data mining tasks employing different machine learning tech­
niques in the Big Data paradigm. The review paper has focused only on the research
articles related to parallel distributed processing with horizontal scaling. Thus, re­
search articles related to Hadoop MapReduce and Spark are only considered for the
review process.

Step 1.2: Goal of the review process. The review chapter aims to provide ana­
lytical insights from past papers with indications to the research gaps and suggesting
directions for future work.

Step 2: Search for Articles
Step 2.1: Scope of the articles used for the review process. The articles are

about Data Mining (DM) tasks, viz. Association Rule Mining (ARM), Regression,
Classification, Clustering, Outlier detection, Recommendation along with the asso­
ciated machine learning techniques form the focus of the present review. Further,
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we restrict our attention to only horizontal scaling, i.e., parallel distributed process­
ing with a cluster of nodes. Hence, the review process considered only Hadoop and
Spark­based papers (Figure 2.1).

DM

Tasks

Scope of

Review

ML
Techniques

Hadoop /
Spark

Framework

Big Data Analytics

Figure 2.1: Scope of Review

It did not include parallelization using Field ProgrammableGate­Array (FPGA),
Message Passing Interface (MPI) or General­purpose graphics processing unit
(GPGPU). The research works related to social media analytics; visualization was
not included in the purview of the current review. This review did not focus on
application domains such as healthcare, finance, bioinformatics, and telecommu­
nication sectors. We have excluded the articles from paid journals. The edited
volumes were excluded from the scope of the review.

Step 2.2: Defining the search terms. We refined our search using various
words like “MapReduce”, “Apache Spark”, along with words representing data
mining tasks such as, “Clustering”, “Classification”, “Association Rule Mining”,
“K­Means”, “SVM (Support Vector Machine)”, etc.

Step 2.3: Scope of the online databases in the review process. Primarily, we
gathered research papers from the scientific articles databases such as ACM digi­
tal library, Taylor, and Francis, Science Direct, Wiley, Google Scholar, Springer,
and IEEE­Xplore. We collected around 700 articles that were published during the
2009­2019.

Step 3: Filtration of articles for review
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Step 3.1: Elimination of unrelated articles. The scope of the articles was de­
fined, and the articles were filtered with the specified criteria.

The collection and filtration process resulted in 261 papers to review for this
survey that was published during 2009–2019 in various conferences and journals.

Figure 2.2: Review Process Methodology

Step 3.2: Verification of the articles with defined criteria. The articles were
validated to have used real­world or synthetic datasets for the experiment with some
results, compared with some ML techniques (Figure 2.3).

Step 4: Analysis of review process
Step 4.1: DM task­wise analysis of selected papers with future research direc­

tion. DM task­wise, the articles were reviewed and categorized with Hadoop and
Spark­based articles, in chronological order. The critical analysis of the articles
in each section of the DM task led to identifying research gaps and addressed for
future research work. The bird’s­eye view of the analysis of the reviewed articles
with some suggestions for future research work is presented after the discussion of
the reviewed articles.

2.4 Review of the articles

The review process involves articles related to distributed parallel computing envi­
ronment of Hadoop and Spark with different DM tasks with ML techniques (Fig­
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Papers, book chapters

collected for parallel

processing published

from 2009-2020

Papers involving

vertical scaling,

FPGA and MPI

are excluded

Papers with horizontal

scaling using Hadoop

and Spark framework

filtered

Papers not having

experimental results

and comparison with

ML techniques are

excluded

Papers with

experimental results

using real-world and

synthesized datasets

filtered

All paid Journals, non-

referred Conferences

and edited volumes are

excluded

Papers from reputed

Journals and Conference

proceedings finalized for

review

Figure 2.3: Filtering Procedure for Selection of Articles to Review
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ure 2.1). Various data mining tasks with the machine learning techniques used for
distributed parallel processing covered in the review process are depicted in Fig­
ure 2.4.

2.4.1 Association Rule Mining / Pattern Mining

2.4.1.1 Hadoop MapReduce­based Journal papers

Karim et al. [21] proposed an approach for extraction of frequent patterns (FPs)
which is of maximum length and present contiguously. The concerned works in­
cludedHumanGenome (HomoSapiens GRCh37.64 DNAChromosome Part 1), and
Bacteria DNA sequence datasets downloaded from the National Center of Biotech­
nology InformationGene ExpressionOmnibus (NCBIGEO) repository. The results
proved the approach to be efficient.

Karim et al. [22] presented a distributed model for extraction of useful pat­
terns in large datasets. The proposed method was applied to the real world datasets,
viz. Connect­4, Mushroom, and Agaricas were downloaded from UCI repository
[23]. Experimental results exhibited that the proposed technique was efficient and
scalable.

Bhuiyan and Al Hasan [24] advocated a frequent subgraph extraction method
(FSM­H) implemented on MapReduce framework. The experimental work was
carried out with the following datasets: (i) real­world graph datasets collected from
a website [25] containing graphs from the PubChem [26], (ii) graph dataset from
DBLP [27], (iii) synthetic datasets from Graphgen [28]. The results presented sig­
nificantly better performance of the proposed FSM­H over that proposed by Hill et
al. [29].

Xun et al. [30] proposed an approach FiDoop­HD, an extension of FiDoop, for
parallel mining of frequent itemsets. The FiDoop­HD was evaluated with a syn­
thetic dataset D1000W was generated using the IBM quest market­basket synthetic
data generator, and a real dataset Celestial Spectral Dataset was used. The results
presented that the suggested approach was sensitive to both data distribution and
dimensions.

Salah et al. [31] suggested a method called Parallel Highly Informative K­
ItemSet (PHIKS). The authors used three real­world data sets: the complete 2013
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Figure 2.4: Data Mining Tasks and Machine Learning Techniques parallelized for
BDA
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Amazon Reviews dataset [32], the 2014 English Wikipedia dataset [33], a sample
of ClueWeb English dataset [34]. The proposed approach, PHIKS outperformed an
alternative parallel approach.

Breier and Branišová [35] have proposed a dynamic rule creation based on
an anomaly detection method for recognizing security breaches in log files. The
datasets used were 1998 DARPA Intrusion Detection Evaluation Set [36] and Snort
logs [37] created by analyzing the DARPA dataset. The proposed approach found
to perform better than FP­growth and Apriori methods.

Yan et al. [38] employed a parallel method for the constrained frequent pattern.
The experimental work involved the SDSS star spectrum datasets. Experimental re­
sults claimed the proposed method to be scalable, expandable and with availability.

Leroy et al. [39] introduced item­centric mining, a new semantics for frequent
itemset mining over long­tailed datasets. The proposed algorithm, TopPI, was com­
pared with parallel FP­Growth. The research study involved the analysis of two
real­world datasets, viz., Supermarket, and LastFM. The experimental outcomes
presented the proposed method to be effective over standard itemset mining and
global top­k algorithms.

Sohrabi and Taheri [40] proposed a parallel version of PrePost+ algorithm
(HBPrePost+) based on Hadoop for frequent itemset mining. The experimental
work was carried out with four datasets, viz., pumsb, connect, chess, and mush­
room from Frequent Itemset Mining Implementations (FIMI) repository [41]. The
experimental results showed that HBPrePost+ algorithm has a superior execution
time.

Liu et al. [42] proposed a Hadoop­based Association rule mining method em­
ploying Maximal frequent itemsets mining. The experiments were conducted with
synthetic datasets and real datasets collected from FIMI repository [41]. The pro­
posed method was compared with state­of­the­art maximal frequent itemsets min­
ing algorithms. The experimental results proved the proposed approach had less
execution time with efficient memory utilization and scalability.

Singh et al. [43] proposed MapReduce based Apriori algorithms along with
its optimized version. The experimental results showed that the optimized version
is more efficient in terms of execution time. The above experimental work was
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carried out with the synthetic dataset c20d10k generated by IBM Generator and
real datasets, viz., chess and mushroom from FIMI repository [41].

2.4.1.2 Spark­based Journal papers

Zhang et al. [44] proposed a distributed frequent itemset mining algorithm. The
proposed algorithm presented a reduction in the number of candidate itemsets. The
datasets used in the research work are T10I4D100K and T40l10D100K [41]. The
experimental result was compared with parallel FP growth (PFP) and found to out­
perform PFP in execution time for both the datasets.

Chen and An [45] proposed a Parallel High Utility Itemset (PHUI)­Miner algo­
rithm, which is the parallel version of High Utility Itemset (HUI)­Miner algorithm.
The experimental study was conducted on different datasets, viz. kosarak, acci­
dents, chess [46], twitter [47], T5000L10I1P10PL6, tafeng [48] and globe where
only T5000L10I1P10PL6 was a synthetic dataset. The experimental results showed
that the PHUI­Miner had superior performance to its serial counterpart HUI­Miner.

Karim et al. [49] proposed a method called Maximal Frequent Pattern for find­
ing frequent patterns implemented with Apache Spark. The experiments were car­
ried out with synthetic datasets generated by the IBM Quest [50]; a real dataset
Mushroom from UCIML data repository [23]; a real retail dataset [51]; and a retail
market basket data. The experimental results indicated the superior performance
of the proposed method over other state­of­the­art maximal frequent pattern algo­
rithms.

Martín et al. [52] have proposed a generic parallel framework MRQAR for
quantitative association rule mining in the Spark framework. The experimental
work was carried out with Susy, Higgs dataset from UCI repository [23]; epsilon
from LIBSVM [53] and ECBDL’14 competition. The proposed framework is to be
implemented when any standard algorithm to find a quantitative association rule is
not able to execute in the Big Data paradigm.

2.4.1.3 Hadoop MapReduce­based Conference papers

Hill et al. [29] proposed a method for frequent subgraph mining in biological
datasets utilizing iterative MapReduce framework. The experimental study was
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carried out with (i) synthetic dataset generated using a graph generator [54] and
(ii) the real datasets extracted from the PubChem website [26]. The experimental
results showed the proposed algorithm outperformed other methods.

Farzanyar and Cercone [55] proposed an approach for an efficient frequent
itemset mining algorithm, called Improved MapReduce Apriori (IMRApriori) al­
gorithm. The experimental study utilized IBM synthetic datasets T10.I5.D1000K
[56] and real dataset BMS­POS [57]. The proposed approach had superior execu­
tion time in comparison with the MRApriori algorithm.

Farzanyar and Cercone [58] proposed a method of mining of frequent itemsets.
The authors have demonstrated a comparative analysis of their proposed algorithm
with the IMRApriori algorithm [55]. The authors have used synthetic IBM dataset
for their experiments. The results demonstrated a reduction in communication over­
head and execution time.

Mao and Guo [59] proposed an improved association rules mining algorithm,
AprioriPMR, which involved the power set. The experimental study utilized breast
cancer datasets from Weka. The results presented the superior performance of the
proposed algorithm to the parallel Apriori algorithm regarding processing time and
scalability.

Natarajan and Sehar [60] proposed an algorithm, named Association rule min­
ing (ARM) based on Hadoop (ARMH), to extract FPs from large databases. The
experimental work carried out with a dataset generated by IBM’s Quest data genera­
tor [56]. The proposed algorithm had improved scalability and efficiency compared
to BTP­tree.

Rong et al. [61] implemented a parallel version of the Apriori and FPGrowth
algorithm for voluminous data. The study involved real datasets from FIMI repos­
itory [41]. The results showed the proposed method is efficient, scalable, and with
reliability when compared to its serial counterpart.

Moens et al. [62] analyzed Frequent Itemset Mining (FIM) for significant­sized
data. The experimental study involved datasets from FIMI repository [41]. The
results indicated the scalability of the proposed method.

Chen et al. [63] presented a method for parallel mining FPs for large­scale data.
The experimental study involved synthetic datasets generated by IBM synthetic data
generator [56]. The results indicated the efficiency and scalability of the method.
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Leung and Jiang [64] proposed a framework called BigAnt to extract FPs from
large­scale data. The study utilized various datasets from the UCI Machine Learn­
ing Repository [23] and the FIMI Repository [41] and also the IBM synthetic
datasets, which were generated using the IBM Quest Dataset Generator [65]. The
experimental result was compared with the UF­growth algorithm [66] and found
that the proposed method had superior execution time with scalability and speedup.

Yu et al. [67] designed an efficient algorithm Frequent Patterns Mining Al­
gorithm based on MapReduce Framework (FAMR) by modifying the traditional
Apriori algorithm. The experiments were carried out with data generated from the
IBM data generator [56]. The experimental results showed FAMR could reduce
the number of candidate itemsets and achieved an excellent reduction in execution
time.

Yu et al. [68] proposed a new planted (l, d) motif discovery algorithm named
MCES, which identified motifs by mining and combining emerging substrings. The
experimental work was carried out with simulated data as well as real data from
mESC (mouse embryonic stem cell) data. Experimental results showed that MCES
could identify (l, d) motifs efficiently and effectively.

Zhou and Huang [69] implemented an improved parallel Apriori algorithm in
which both count and candidate generation steps were employed. The experimental
study utilized the synthetic data generated by an opensource tool package, Artool
[70]. The results showed the proposed method had a superior performance regard­
ing execution time.

Fumarola and Malerba [71] proposed a parallel algorithm for approximate fre­
quent itemset mining using MapReduce called MrAdam. The experimental work
was carried out with the datasets mushroom, pumsb, and accidents. The experi­
mental results presented the superior performance and scalability of the proposed
approach over other FP mining algorithms.

Bhuiyan and Al Hasan [24] proposed a frequent subgraph mining algorithm
called FSM­H. The study involved four real­world graph datasets that were col­
lected from the PubChem website [26]. Also, four synthetic datasets were created
from a tool called Graphgen [54]. The experimental results showed that the pro­
posed approach was efficient regarding execution time in comparison with existing
methods.
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Liu et al. [72] proposed a Frequent ItemsetMiningAlgorithm. The proposed ap­
proach used an improved Apriori algorithm that used the length of each transaction
to determine the size of the maximum merge candidate itemsets. The experimental
study utilized a synthetic dataset. The results indicated the proposed approach to be
efficient.

Cao et al. [73] proposed an approach for mining of repetitive sequences
across a collection of genomes implemented with theMapReduce framework called
MRSMRS. The dataset used in the experiment contained the base pairs from the
genome of six species, viz. human, mouse, rat, dog, chicken, and macaque. The
results indicated that the proposed method had superior speedup, linear scalability,
and less execution time.

Liu and Li [74] proposed an approach for parallel FP discovery in a noniterative
manner. The experimental work utilized the file SogouQ provided by the Sogou lab.
The proposed approach had a better execution time with comparison to algorithms
bagging the idea of traditional Apriori.

Chang et al. [75] proposed the Parallel Block FP­Growth algorithm (PBFP­
Growth) by combining the Apriori and FP­Growth algorithms. The experimental
results proved that the performance of the PBFPGrowth algorithm was better than
that of both the Apriori algorithm and the FPGrowth algorithm.

Sun et al. [76] proposed a method Vertical Apriori Map­reduce (VAMR) by ag­
gregating MapReduce mechanism with Apriori and vertical frequent mining for ex­
traction of frequent patterns from a large dataset. The experimental work involved
datasets from FIMI repository [41] and synthesized datasets. The performance of
the proposed algorithm was measured against the Apriori MapReduce and OPUS
miner algorithm and found to be better than both.

Ferrucci et al. [77] proposed an architecture for developing parallel GAs. The
approach was employed for feature subset selection problem. The Chicago Crime
dataset was analyzed for experimental work. The results showed the proposed
framework was superior to its serial counterpart with respect to the execution time
and had comparable accuracy.

Jiang et al. [78] proposed amethod formining “Following” patterns in big social
network. It was implemented with MapReduce framework and called MR­PFP.
The experimental work was carried out with social network datasets from Stanford
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Network Analysis Project (SNAP) [79]. The experiment compared the proposed
algorithm MRPFP with its sequential counterpart, and the result showed a good
speedup of the proposed algorithm.

Salah et al. [80] proposed an algorithm called Parallel Highly Informative
K­ItemSet (PHIKS) algorithm. The experimental study utilized two real­world
datasets, viz., 2014 English Wikipedia dataset articles, sample of ClueWeb English
dataset. The results indicated that PHIKS demonstrated superior execution time and
scalability.

Liu et al. [81] proposed an algorithm for the detection of significant patterns
called Pampas. The experimental study was carried out with three datasets EMS­
POS, connect4, and mushroom collected from FIMI repository [41]. The results
indicated that the Pampas was efficient, scalable on the dataset­size, and cluster­
size.

Apiletti et al. [82] proposed Parallel Frequent Pattern Mining for High­
Dimensional data, called PaMPa­HD. The experimental study involved the real
Kent Ridge Breast Cancer dataset [83] and two synthetic datasets [84]. The study
results showed the efficiency and scalability of PaMPa­HD, which outperformed
avant­garde algorithms.

Baralis et al. [85] proposed a Parallel Weighted Itemset Mining (PaWI) algo­
rithm. The experimental study involved a real­world dataset having a collection of
34 million of Amazon reviews. The experimental results showed that PaWI had
less execution time with scalability.

Leung et al. [86] presented a model for FP analysis. The development of the
model utilizes (i) IBM synthetic datasets [56], (ii) the online retail dataset fromUCI
Machine Learning Repository [23], and (iii) ego­Facebook dataset and ego­Twitter
dataset from Stanford Network Analysis Project (SNAP) [79] for its evaluation.
The proposed algorithm has outperformed several avant­garde algorithms.

Gonen and Gudes [87] proposed an algorithm for mining closed frequent item­
sets. The study involved a real dataset webdocs from the FIMI repository [41]
and synthetic dataset from the IBM data generator [56]. The experimental results
showed the proposed algorithm had superior execution time and communication
cost.
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Thakare et al. [88] proposed an improved PrePost algorithm. The experimen­
tal work utilized the synthetic dataset constructed with the spawner data generator
tool. T15l106D100K, T15I106D1000K, and T15I106D2000K were used as experi­
mental data. The results showed that with an increase in dataset size, the proposed
algorithm performed better.

Chang et al. [89] proposed an approach for parallel association rule mining,
called Improved Parallel Association Rule Based on Combination (IPARBC). The
experimental study involved a synthetic dataset. The experimental results showed
the superior execution time of the proposed method.

Sheshikala et al. [90] proposed a parallel approach for finding a colocation
pattern. The proposed method determines the spatial neighbor relationship to iden­
tify co­location instances and co­location rules. The experiment involved synthetic
datasets. The experimental results showed the proposed approach was computa­
tionally more efficient.

2.4.1.4 Spark­based Conference papers

Gui et al. [91] proposed a distributed approach for frequent itemset mining em­
ploying matrix­based pruning algorithm. The research work involved synthetic
dataset T10I4D100K. The proposed method was compared with the MapReduce­
based Apriori algorithm and found to have less execution time with scalability.

Deng and Lou [92] proposed an FP­Growth algorithm. The experimental study
involved datasets from the UCI ML and FIMI repository, viz. Mushroom [23] and
Accidents [41], respectively. The results indicated superior efficiency of the pro­
posed algorithm.

Rathee et al. [93] proposed an algorithm Reduced­Apriori (R­Apriori), which is
an efficient apriori­based algorithm. The experimental study utilized five datasets,
viz. (i) T10I4D100K, a synthetic dataset (ii) Retail dataset (iii) Kosarak dataset,
contains the click­stream data of a Hungarian on­line news portal (iv) BMSWeb­
View2, from KDD 2000 (v) T25I10D10K, a synthetic dataset. The results indicated
that the proposed R­Apriori outperformed other avant­garde algorithms.

Utama and Distiawan [94] proposed a method for mining of frequent N­grams,
called Spark­gram. The study included Wikipedia articles collection dataset col­
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lected from Wikipedia dump repository. The experimental results showed that
Spark­gram outperformed its Hadoop MapReduce equivalent when more frequent
n­grams were considered.

Joy and Sherly [95] proposed a method for prediction of chances of heart attack
using parallel frequent itemset mining. The experimental study involved dataset
containing information about heart disease collected from UCI repository [23]. The
results showed the proposed approach to be efficient.

The review of articles related to ARM in Hadoop and Spark framework revealed
the following research insights.

• In all the reviewed articles, we can observe that frequent itemset mining had
been more than any other ARM method. The frequent itemset mining is in­
herently data­independent, i.e., the algorithm can be implemented in different
chunks of data in a parallel manner.

• Frequent subgraphmining has been less explored in distributed parallel com­
puting environments leading to a fertile ground for research work.

• The evolutionary computation has not been used to its full potential in BDA
using a distributed framework for frequent pattern mining, which the re­
searchers can explore.

• FP­growth and FP­tree are less explored areas in comparison to the Apriori
method in Hadoop or Spark environment.

• High Utility Itemset miner presents an open space for research in the dis­
tributed parallel framework.

2.4.2 Regression / Prediction / Forecasting

2.4.2.1 Hadoop MapReduce­based Journal papers

He et al. [96] proposed an efficient parallel ELM (PELM) for regression. The ex­
perimental work involved the stock dataset from UCI [23]. The results showed that
the proposed algorithm, PELM, had a good speedup, scaleup, and sizeup perfor­
mance.
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Luts [97] employed semi­parametric regression analysis of large­scale data. The
research work analyzed domestic flight data from United States. The proposed
method analyzed air traffic delays in real­time, which was published on a website
[98].

Naimur Rahman et al. [99] utilized a back­propagation neural network (BPNN)
for the electricity generation forecasting system. The experimental study involved
US power consumption data, which is 20 years of historical data. The experimental
results showed the proposed forecasting system could predict the power generation
which is required for consumption accurately near to 99 % of the real utilization.

Saranya and Nagarajan [100] implemented a metaheuristic optimized artificial
neural network for agricultural yield prediction using satellite image employing
Hadoop computational framework. The work has analyzed remote sensing data.
The experimental results indicated the Artificial Neural Network models to be effi­
cient in finding complex correlations among the dependent variable, crop yield and
the independent variables, spectral reflectance values.

2.4.2.2 Spark­based Journal papers

Chen et al. [101] proposed a patient treatment time prediction algorithm and a
Hospital Queuing­Recommendation (HQR) system. The experimental work car­
ried out with datasets covering three years of data gathered from an actual hospital.
The results indicated that the proposed algorithm achieved high accuracy and per­
formance.

Rodríguez­Fdez et al. [102] proposed a Scalable Fuzzy Rule Learning through
Evolution for Regression (S­FRULER) which is a distributed version of FRULER
(a genetic fuzzy system (GFS)) that learns for regression problems. The study in­
cluded ten regression datasets from the KEEL project repository [103], viz. Delta
Ailerons, Delta Elevators, California Housing,MV Artificial Domain, House­16H,
Elevators, Computer Activity, Pole Telecommunications, Pumadyn, and Ailerons
and a dataset from bioinformatics problem also used. Experimental results showed
that S­FRULER scaled well with comparable precision.

Galicia et al. [104] proposed a method for predicting time series data in a Big
Data paradigm, i.e., time series with high­frequency measurement. It is used to

36



Chapter 2 – Literature Review

predict a time horizon whereby the generation of prediction models was carried out
with linear models like regression and with non­linear methods based on decision
trees (DT). The experiments were carried out with real­time series data related to
the consumption of electric energy in Spain. The proposed method presented a
reasonable high accuracy.

Talavera­Llames et al. [105] proposed an approach for forecasting with huge
volume of data employing the k­weighted nearest neighbor algorithm. The experi­
ment was conducted with energy demand time series data. The proposed algorithm
was compared with deep learning, and other machine learning techniques, viz., de­
cision tree (DT), gradient­boosted tree (GBT), random forest (RF), and linear re­
gression and found to be outperforming them.

Xu et al. [106] proposed a distributed computational framework for wind speed
prediction employing extreme learning machines in the distributed computational
framework of Apache Spark. Three datasets of real wind speed data and a dataset
of analog wind speed big data are used to analyze the performance of the pro­
posed method. The performance was evaluated by Mean Absolute Percentage Er­
ror (MAPE), the Mean Absolute Error (MAE) and the Root Mean Square Error
(RMSE).

Ding et al. [107] proposed a system that will issue early warning for an electric
vehicle charging and also planning an optimal path based on Spark. The Spark
computing framework was utilized to parallelize the optimized Dijkstra algorithm.
The parallel algorithm is applied to the path planning problem.

2.4.2.3 Hadoop MapReduce­based Conference papers

Yin et al. [108] proposed a scalable regression tree learning on the Hadoop MapRe­
duce framework using OpenPlanet, an opensource counterpart of a proprietary re­
gression tree algorithm PLANET. The experimental study involved two years of
power consumption data from 24 buildings at the University of Southern California
campus. The above data was extrapolated to larger synthetic datasets utilized in the
study. The experimental outcomes indicated that the proposed method was efficient
and scalable.
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Tejasviram et al. [109] proposed a hybrid model combining the Auto­
Associative ExtremeLearningMachine (AAELM)withMultiple Linear Regression
(MLR) for performing regression on scalable data. The experimental work was car­
ried out with (i) Gas sensor array under dynamic gas mixtures and (ii) Airlineflight
datasets collected from UCI repository [23]. The hybrid model was compared with
MLR, and the results proved the proposed model outperformed the MLR in the
context of MSE and MAPE.

Rehab and Boufares [110] proposed a parallel MLR. The experimental study
analyzed a real­world dataset, i.e., Airline on­time dataset and a synthetic dataset.
The outcomes indicated that the proposed approach has superior efficiency and scal­
ability with respect to the dataset size and the count of nodes present in the cluster.

Chavda and Dhobi [111] proposed a method for the prediction of web users
browsing behavior using SVM. The experimental study involved http log from the
NASA server. The results showed the proposed approach to be efficient and scal­
able.

Xu et al. [112] proposed a prediction model for forecasting user behavior for
smart home employing BPNN. The experimental study used the smart home dataset
generated from intelligent residential districts. The proposed algorithm had an out­
standing superiority in accuracy, efficiency, and scalability.

2.4.2.4 Spark­based Conference papers

Vluymans et al. [113] proposed a method for weighted k­NN regression along with
fuzzy rough set theory. The experimental work carried out with two healthcare
datasets [114], [115]. The experimental outcomes demonstrated that the proposed
approach had improved performance of k­NN.

Oneto et al. [116] proposed a method for predicting train delays based on the
ELM. The study was carried out with the real­world data collected from Rete Fer­
roviaria Italiana (RFI). The results showed that the proposed approach had improved
delay prediction.

Kamaruddin and Ravi [117] have implemented a parallel version of GRNN for
regression in the Big Data paradigm. They have implemented a parallel distributed
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version of GRNN in Apache Spark, where the unsupervised learning part is imple­
mented through K­Means∥ and parallel Bisecting K­Means. They have analyzed
the gas sensor dataset. The proposed method produces a very low mean squared
error.

After reviewing the articles related to the regression in a distributed parallel
computational environment, the following research gaps are discovered.

• It is not explored to its full extent.

• There has been very less research work carried out in the field of regression
task using the distributed parallel framework, which is the goldmine for bud­
ding researchers.

• During the review process, we found few articles had utilized Artificial Neu­
ral Network (ANN) in the form of BPNN. The other types of Neural Network
(NN) like General Regression Neural Network (GRNN), Radial Basis Func­
tion Network (RBFN), Wavelet Neural Network (WNN), Quantile Regression
Neural Network (QRNN) are not considered at all.

• Evolutionary computation and Fuzzy methods for regression present an ex­
cellent opportunity for researchers to explore it in the distributed parallel
framework.

• Nonlinear regression has not been explored in the distributed parallel envi­
ronment leading it to be a fertile area for research.

• Support vector regression has not been explored to its extent. It has not been
explored in the Spark environment at all.

• Quantile regression, Ridge regression, Lasso regression, Cox regression, and
Poisson regression are not explored at all.

• Kernel methods are not explored at all.

• Multivariate Adaptive Regression Splines (MARS), Treenet, extreme gradient
boosting are not explored at all.
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2.4.3 Classification

2.4.3.1 Hadoop MapReduce­based Journal papers

He et al. [118] implemented an approach comprising a parallelized version of ex­
treme support vector machine (ESVM), (PESVM) and an incremental learning al­
gorithm for ESVM (IESVM), which can incorporate online learning to update the
existing model. The proposed approach implemented the parallelization of IESVM,
called PIESVM. The experimental works utilized the Australian dataset from the
public UCI repository [23]. The large­scale datasets were synthesized by duplicat­
ing the data. The experimental results showed that the proposed algorithms PESVM
and PIESVM were efficient and scalable.

Janaki Meena et al. [119] proposed a parallel version of the Ant Colony Opti­
mization (ACO) algorithm for feature selection which is to be implemented for text
categorization. The experimental study involved two datasets formed with docu­
ments from the 20Newsgroup benchmark. The experimental results exhibited that
the features selected by the proposed method has improved performance.

Caruana et al. [120] presented a parallel SVM algorithm for scalable spam filter
training. The experimental work carried out with the SpamBase dataset from UCI
repository [23]. The experimental results exhibited an improved accuracy of the
proposed approach.

You et al. [121] proposed a parallel SVM model for predicting protein­protein
interactions (PPI). The experimental work utilized the PPI dataset downloaded from
the human protein references database (HPRD) [122]. Experimental results exhib­
ited the proposed method had an excellent speedup performance, scalability with
dataset size with comparable performance to its serial counterpart.

Singh et al. [123] proposed a framework for peer­to­peer botnet detection us­
ing RF­based DT­model. The experiment was carried out with the CAIDA UCSD
dataset [124]. The experimental results showed the proposed method produced bet­
ter accuracy than many other classifiers.

Chen et al. [125] proposed a classifier employing a parallel and scalable ap­
proach for network intrusion detection. The experimental study involved two in­
trusion detection datasets, viz., KDD99 and CMDC2012. The experimental results
demonstrated the proposed approach had a faster execution speed.
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Kumar and Rath [126] implemented proximal support vector machine
(mrPSVM) classifier to classify the microarray data with selected relevant fea­
tures. The dataset for classification was collected from Kent Ridge Bio­medical
Data Set Repository [127] and NCBI GEO [128]. The datasets were LEukemia,
MULTMYEL, ovarian cancer, and breast cancer. The results showed the mrPSVM
was efficient with less execution time in comparison with its sequential counterpart.

Han et al. [129] proposed a Distributed Extreme LearningMachine (DELM) for
matrix operations over voluminous data along with Weighted Ensemble classifier
based on DELM (WE­DELM), for efficiently classifying uncertain streaming data.
The experimental study involved real­world dataset KDDcup99 [130], and the pop­
ular static datasets Iris and Spambase [23]. The experimental results showed that
the proposed algorithms had better efficiency, accuracy, and speedup.

Barkhordari and Niamanesh [131] proposed a scalable and distributable method
to solve Patient Similarity (ScaDiPaSi) problems. The study utilized real patient
Electronic Health Records (EHRs) from laboratories and hospitals. The experi­
mental results showed better execution time and accuracy.

López et al. [132] proposed a cost­sensitive linguistic fuzzy rule­based classifi­
cation systems for imbalanced large­scale data. The proposed method was analyzed
with datasets from the UCI ML repository [23]. The outcomes indicated that the
proposed approach had a competitive accuracy and execution time.

Xin et al. [133] proposed an Adaptive Distributed Extreme Learning Machine
(A­ELM*). It overcomes the weakness of ELM* in learning large datasets. The
experiment was carried out with the synthetic dataset. A­ELM* was compared with
ELM* while increasing dimensionality, the number of records in the dataset, and
found to outperform the latter.

Xia et al. [134] presented a Nearest Neighborhood approach with MapReduce
framework for predicting the traffic flow employing correlation analysis. The au­
thors have utilized real­world trajectory dataset [135], which comprises large­scale
GPS trajectories generated by 12,000 taxis and developed a parallel k­nearest neigh­
bor optimized classifier to predict the traffic flow in a real­time basis.

Bechini et al. [136] proposed a distributed association rule­based classification.
The experimental study employed seven big datasets extracted from the UCI repos­
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itory [23] and LIBSVM repository [53]. The results presented the superiority of the
proposed method over DT and were comparable with RF in terms of accuracy.

Kumar et al. [137] proposed various statistical methods for feature selection
and then implemented a MapReduce­based K­nearest neighbor classifier. The pro­
posed approach classified microarray leukemia data obtained from the NCBI GEO
repository [128], viz. dataset with accession number GSE13159, GSE13204, and
GSE15061. The experimental results exhibited superiority in performance.

Chen et al. [138] proposed aMapReduce­based extreme learningmachine (MR­
ELM). The experimental study involved classification and regression datasets col­
lected from UCI ML repositories [23] and FCUP [139]. The experimental results
showed the scalability of the proposed algorithmwhen comparedwith original ELM
and with other parallel versions of ELM.

Huang et al. [140] suggested aMapReduce­based parallel ensemble of an online
sequential extreme learning machine (PEOS­ELM) algorithm. The experimental
work involved the evaluation of the PEOS­ELM algorithm with the real and syn­
thetic dataset. The real­world datasets used were MNIST [53], DNA [53] and KD­
DCup99 [130]. The result demonstrated that PEOS­ELM could learn large­scale
data accurately and efficiently in comparison with EOS­ELM and POS­ELM algo­
rithms. The proposed algorithm had excellent scalability and speed­up ratio.

Zhai et al. [141] employed a voting­based instance selection with random
weight networks and MapReduce framework. The proposed algorithm is called
MapReduce, and Voting­based Instance Selection (MRVIS). The experimental
study was conducted with 8 data sets, including two synthetic datasets and 6 UCI
datasets, viz. banana, cloud, Gaussian, shuttle, artificial, cod_rn, poker and susy.
The proposed MRVIS was compared with Convolutional Neural Networks (CNN),
Ensemble Neural Networks (ENN), and Recurrent Neural Networks (RNN). The
outcomes indicated MRVIS to be effective and efficient.

Huang et al. [142] presented a MapReduce­based parallel method for batched
online sequential extreme learning machine (BPOS­ELM). The proposed method
of BPOS­ELM has analyzed real and synthetic data. There were three real­world
datasets, viz. MNIST, DNA [53], and KDDCup99 [130]. Two synthetic datasets
were generated based on Flower [143] and CIFAR­10 respectively. The experi­
mental results exhibited a comparable accuracy with higher execution speed.
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Li et al. [144] proposed a parallel feature selection method for text classifica­
tion implemented on iterative MapReduce with Twister. The experimental work
involved web page documents in Chinese from the Internet and abstracts of papers
from CNKI, an electronic journal database of China. The experimental results pre­
sented the proposed approach to be efficient and scalable.

Zhai et al. [145] implemented the classification of large imbalanced datasets
based on MapReduce and the ensemble of ELM classifiers. The experimental work
involved one synthetic dataset and six datasets collected fromUCImachine learning
repository, viz. Yeast, Abalone, Shuttle, Skin_segment, MiniBooNE, and Cod_rna.
The experimental results showed that the performance of the proposed algorithm
statistically outperformed the three state­of­the­art approaches, viz. SMOTE­Vote,
SMOTEBoost, and SMOTE­Bagging. The proposed algorithm also had a good
speed­up and scale­up performance.

Jedrzejowicz et al. [146] proposed a parallel distributed framework for imbal­
anced data classification employing a MapReduce computation environment. The
proposed framework involves the implementation of the splitting­based data bal­
ancing method (SplitBal) [147] and the dissimilarity­based imbalanced data classi­
fication (EDBC) [148]. The proposed framework was tested over the benchmark
datasets obtained from KEEL [103] and UCI machine learning repository [23]. The
experimental outcomes indicated that the proposed framework is scalable.

Elkano et al. [149] proposed a Fuzzy Rule­Based Classification Systems (FR­
BCS) for Big Data classification system with the MapReduce framework. The ex­
periment was conducted with 20 binary datasets obtained from 8 different multi­
class datasets available at the UCI repository [23]. The experimental outcomes
indicated that the proposed distributed algorithm outperformed its local counterpart
in accuracy and execution time.

Thakur and Deshpande [150] proposed a parallel approach for sentiment clas­
sification using the MapReduce framework. They implemented Kernel Optimized
SVM classifier to analyze train review [151] and movie review [152] dataset. The
performance of the classifier was compared with SentiWordNet, Naïve Bayes, Lin­
ear SVM, and Neural Network. The proposed approach had superior accuracy,
sensitivity, and specificity.
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2.4.3.2 Spark­based Journal papers

Maillo et al. [153] implemented k­NN Classification based on Apache Spark. The
study included three datasets, viz. PokerHand, Susy, and Higgs collected from the
UCI ML repository [23] and one dataset from the ECBDL’14 competition. The
proposed approach kNN­IS achieved the same accuracy as k­NN, and the execution
time was reduced by almost ten times with respect to MR­kNN based on Hadoop.

Arias et al. [154] implemented Bayesian Network Classifiers for studying their
adaptability to MapReduce and Apache Spark frameworks. The experimental work
was carried out with splice [23], epsilon [53], and ECBDL’14 dataset along with
some synthetic dataset for the test of scalability of the proposed approach. The
outcomes proved that the proposed approach was scalable and efficient.

Liu et al. [155] proposed a Parallel Back Propagation Neural Network (PBPNN)
implemented in three distributed computing environments, i.e., Hadoop, HaLoop,
and Spark. The experimental work involved Iris dataset. The outcomes demon­
strated, the PBPNN algorithm outperformed standalone BPNN in terms of accuracy
and stability.

Chen et al. [156] proposed a Parallel Random Forest (PRF) algorithm. The
experimental study carried out by two groups of datasets with large scale and high
dimensionality, viz. (i) URL Reputation, YouTube Video Games, Bag ofWords and
Gas sensor arrays datasets from the UCI ML repository and (ii) Patient, Outpatient,
Medicine, and Cancer datasets from an actual medical project. The classification
accuracy of PRF was evaluated by comparison with RF, dynamic random forest
(DRF), and Apache Spark Mllib parallelized RF. Experimental results indicated the
superiority of PRF in terms of accuracy, performance, and scalability.

Shi et al. [157] presented an integrated data pre­processing framework imple­
mented with the Spark computational environment for fault diagnosis of power grid
equipment. The classification was achieved with logistic regression and SVM. The
experiment was carried out with data collected from the State Grid of China. The
proposed method yielded higher classification accuracy than the traditional ones
with scalability.

Lin et al. [158] proposed an ensemble random forest algorithm implemented
with Spark. The experiments were conducted with the data from China Life Insur­
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ance Company. The experimental results proved that the proposed methodology
outperformed SVM and logistic regression in both performance and accuracy.

Nair et al. [159] presented a real­time remote health status prediction sys­
tem. The system was deployed on streaming Big Data through user tweets with
the Apache Spark environment. The experiments were carried out with a Heart dis­
ease dataset [23]. The health status was predicted as whether heart disease is present
or absent by employing the decision tree model.

Gonzalez­Lopez et al. [160] proposed a distributed multi­label k­nearest neigh­
bor (ML­KNN) implemented with Apache Spark. The proposed work involved a
comparison of three strategies while analyzing 22 benchmark datasets. The out­
comes prove that the tree­based index strategy outperforms the other approaches.

Venkataramana et al. [161] proposed a parallel multilevel feature selection pro­
cedure for cancer classification. The proposed method selects optimal and impor­
tant features and evaluate them employing parallel Random Forest on Spark. The
work analyzed three biological datasets. The proposed method was compared with
extant parallel feature selection methods and sequential methods. The proposed
approach is found to be better in performance in terms of accuracy and execution
time.

2.4.3.3 Hadoop MapReduce­based Conference papers

Magnusson and Kvernvik [162] proposed a subscriber classification within telecom
networks. The experimental study involved real traffic data from a telecom operator
and synthetic dataset from a randomly generated graph, and another one generated
based on the ErdõsRényi algorithm [163]. The results showed the performance of
the proposed method.

Khuc et al. [164] proposed large­scale distributed systems for real­time Twitter
sentiment analysis. The experimental study involved Twitter dataset. The experi­
mental result showed that the proposed classifier obtained superior accuracy. The
proposed approach was scalable.

Wang et al. [165] proposed a hybrid method combining DT and SVM­ for stock
futures prediction. The work carried out with real­world data from stock exchange.
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The research outcomes exhibited the superior performance of the hybrid architec­
ture in comparison with BootstrapSVM, Bootstrap­DT, and BPNN.

Han et al. [166] proposed SMRF algorithm, an improved scalable RF algorithm.
The study analyzed ten UCI publicly available datasets. The experimental results
demonstrated that the proposed algorithm had excellent scalability and comparable
accuracy with traditional RF algorithm.

Chen et al. [167] proposed an extreme learning machine (ELM) ensemble clas­
sifier based on the MapReduce framework (ELM­MapReduce). The experimental
study amalyzed the Remote Sensing (RS) images captured by satellite. The ex­
perimental results showed that the ELM­MapReduce presented scalability, higher
accuracy, and efficiency with large datasets.

Liu et al. [168] proposed an approach tomachine learning for large­scale dataset
withmeta­learning. The experiments utilized eleven real­world datasets, viz., yeast,
wineRed, wineWhite, pendigits, spambase, musk, telescope, kdd, isolet, org, and
census [23]; and two synthetic datasets, viz., S1 and S2, generated by applying the
RDG1 data generator in WEKA data mining tool [169]. The outcomes indicated
that the proposed approach could reduce computational complexity with less error
rate.

Lubell­Doughtie and Sondag [170] proposed an approach for distributed classi­
fication using the Alternating Direction Method of Multipliers (ADMM) algorithm.
The experimental work was carried out with historical data consisting of approxi­
mately 25 million records of website visit attributes with 440 features per record.
The performance of the proposed approach was measured with a change in loss
function per iteration. It was found that the loss decreased, or in other words, the
accuracy consistently improved as more iterations passed.

Al­Madi and Ludwig [171] proposed scalable genetic programming for data
classification called MRGP, implemented with MapReduce framework. The exper­
imental study involved six datasets, viz. Ionosphere, Vertebral Column (Vertebral­
2C and Vertebral­3C), Blood Transfusion Service Center, Balance Scale, Car­
diotocography. The research results showed that the proposed approach had higher
accuracy with speedup and scalability properties.

Kiran et al. [172] proposed an approach for Parallel SVM algorithm. The exper­
imental work involved a comparison of sequential SVM and parallel SVM on the

46



Chapter 2 – Literature Review

MapReduce framework. The observed results showed that the proposed approach
had superior efficiency in terms of execution time and with scalability.

Wang et al. [173] have presented an instance­weighted variant SVM with a
parallel meta­learning algorithm analyzing eleven datasets fromUCIML repository
[23] and a real­world dataset Maritime. The outcomes proved that the proposed
method could improve the prediction performance of the classifier.

Park and Ha [174] proposed an approach for data classification over imbalanced
data for traffic accident prediction. The experimental study utilized traffic data col­
lected from the Korea Highway Corporation. The results showed that the proposed
approach was efficient with reasonable accuracy.

López et al. [175] proposed a method for linguistic fuzzy rule­based classi­
fication systems for large­scale data achieved with the MapReduce framework,
called Chi­FRBCS­BigData. The algorithm had been developed in two versions:
Chi­FRBCSBigData­Max and Chi­FRBCS­BigDataAve. The study involved six
datasets from the UCI machine learning repository. The two versions of the pro­
posed algorithm produced different classification results. The experimental results
presented that Chi­FRBCS­BigData­Ave generated more accuracy with higher ex­
ecution time, whereas Chi­FRBCSBigDataMax produced a faster but less accurate
result.

Kolias et al. [176] proposed a method RuleMR for generating classifica­
tion rules out of large­scale data. The experimental work involved datasets from
UCI repository [23] for measuring the accuracy, viz. breast, car eval, connect­4,
weather, mushroom, nursery, vote, and tic. Four synthetic datasets were used for
measuring execution time. The outcomes proved that the proposed method had
scalability with respect to the size of the dataset and a comparable accuracy with
state­of­the­art algorithms.

Kakade et al. [177] proposed a spam filtering technique implemented with SVM
along with Sequential Minimal Optimization (SMO). The experimental study was
carried out with SpamBase dataset available on UCI repository [23]. The research
outcomes showed that the proposed approach with SMO was efficient and had a
superior speed up to Linear as well as the Gaussian kernel.

Anchalia and Roy [178] proposed a MapReduce­based k­NN algorithm. The
experimental work involved a comparison of MapReduce k­NN with sequential
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k­NN. The work included a synthetic dataset for the study. The experimental out­
comes proved that the MapReduce k­NN outperformed the sequential k­NN with
voluminous data.

Ke et al. [179] proposed a method for distributed SVM for binary andmulticlass
classification. The proposed method involves parallel decomposition solver on two
datasets, MNIST, and Cover­Type. The experimental results projected substantial
growth in speed­up.

Kolias et al. [180] implemented a classification rule induction algorithm. The
algorithm produces an ordered list of classification rules from massive categorical
data. The datasets from UCI ML Repository [23] used for comparing the accuracy
and quality of the proposed approach and four synthesized datasets used for verifi­
cation of the algorithm for scaled­up datasets. The algorithm does not work on the
numerical dataset.

Maillo et al. [181] employed k­NN classification. The experimental study was
carried out over the PokerHand dataset, collected from the UCI repository [23].
The experimental results exhibited the reduction of computational time achieved
by the proposed algorithm in comparison to its sequential version.

Chatzigeorgakidis et al. [182] proposed a new k­Nearest Neighbour (k­NN)­
based algorithm. The proposed Flink zkNN (F­zkNN) algorithm was extended over
a Hadoop­based implementation of the k­NN (H­zkNN). The experimental work
involved water usage time­series data. The algorithm was evaluated with respect to
forecasting and prediction precision.

Wang et al. [183] proposed an ordinal RF algorithm based on the variable con­
sistency dominance­based rough set approach (VC_DRSA). The experimental work
utilized two synthetic datasets. The experimental results confirmed that the pro­
posed algorithm was effective and efficient.

Cui and Zhao [184] proposed a method for gender classification. Three classi­
fication algorithms were involved, viz. (i) SVM, (ii) k­NN, and (iii) Adaboost to
implement gender parallelize machine learning (GPML). The experimental work
was carried out with images from the CAS­PEAL dataset. The proposed algorithm
was compared with parallelized Adaboost. The experimental results showed that
GPML had higher recognition rates.
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Yuan et al. [185] proposed a GA optimized DT algorithm (MRGAOT) imple­
mented in MapReduce environment. The parallelized MR­GAOT was compared
with the traditional decision tree algorithm, and the results showed higher classifi­
cation accuracy and shorter execution time.

Wakayama et al. [186] proposed a distributed RF. The experiments were carried
out with Letter Recognition dataset from UCIML Repository. The results indicated
that the proposed approach had an excellent classification performance along with
lower computational costs compared to the naïve implementation of RFs.

Triguero et al. [187] proposed an evolutionary under­sampling method for im­
balanced Big Data classification. The experimental study involved the KDDCup99
dataset from the UCI ML repository. The research outcomes proved the scalability
of the proposed method.

Zdravevski et al. [188] proposed an approach for feature ranking based on in­
formation gain for large data classification problems. The ranking of features led to
feature selection for which the FedCSIS AAIA’14 data mining competition dataset
[189] was used for the study. The proposed approach had excellent scalability.

Kumar et al. [190] proposed a method for feature selection and classification
of microarray data. The experimental study utilized large datasets from NCBI
GEO [128], viz. Leukemia, Ovarian Cancer, Breast Cancer, MULTMYEL, and
LEukemia. The research outcomes proved that the proposed approach was efficient
and scalable.

Bhukya and Gyani [191] proposed a fuzzy associative classification algorithm.
The experimental study involved Record linkage comparison pattern dataset from
UCI machine learning repository [23]. The study showed the proposed approach
had superior accuracy and efficiencywith a comparison to its sequential counterpart.

Arias et al. [192] proposed a k­dependence Bayesian Classifier (KDB). The
proposed approach was evaluated with three datasets, viz. Splice, ECBLD14, and
Epsilon. The experimental work showed the proposed method to be efficient.

Sukanya et al. [193] implemented SVMs in linear and parallel distributed frame­
works. The experimental study utilized three datasets, namely Spam, Wine, and
Heart. The experimental results showed MapReduce­based SVM performed supe­
riorly regarding execution time and accuracy with scalability on dataset size.
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Yang et al. [194] proposed a method for a parallelized Rocchio relevance feed­
back algorithm implemented with the MapReduce framework called, MR­Rocchio
algorithm. The experimental study involved the earthquake information source text
for Beijing. The experimental results showed that the performance of the MR­
Rocchio algorithm was significantly improved in comparison with the traditional
Rocchio algorithm, better than the KNN algorithm, and only slightly inferior to the
SVM algorithm.

2.4.3.4 Spark­based Conference papers

Peng et al. [195] implemented and evaluated parallel LogR models in the Big Data
paradigm. The experimental study involved a synthetic dataset, 2d, and four real­
world datasets, viz., 20NewsGroup dataset, Gisette dataset, ECUESpam dataset,
and URL­Reputation dataset. The experimental work involved an analysis of three
optimization approaches implemented with two computing platforms, viz. Hadoop
and Spark framework to train the LogR model on high­volume, high­dimensional
datasets for classification. The results showed that Spark outperformed Hadoop for
LogR model implementation.

Tao et al. [196] proposed a budgeted mini­batch parallel gradient descent algo­
rithm (BMBPGD) for large­scale kernel SVM training. The experimental work
involved three datasets, viz. a9a, w8a, covtype from UCI/Adult, JP98a, and
UCI/Covertype respectively. The work included a comparative analysis of the
proposed approach with SVMWithSGD and LibSVM. The experimental outcomes
proved that the proposed approach had a superior accuracy than the SGD­based
SVM.

Lin et al. [197] implemented LogR and linear SVMs in largescale data. The
study involved datasets from the LIBSVM dataset page along with Yahoo­Japan
and Yahoo­Korea dataset. The implemented method was efficient and scalable.

Wang et al. [198] proposedWeighted Label Propagation Algorithm with Proba­
bility Threshold (P­WLPA) algorithm. The experimental study utilized Iris dataset
from UCI repository [23] and a synthetic dataset. The work involved a comparison
of Serial and parallel P­WLPA. The results showed the feasibility and efficiency of
the proposed parallel P­WLPA algorithm.
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Roy [199] proposed a method for online feature selection by employing an en­
semble of Kohonen neurons which is trained through high­dimensional streaming
data. The experimental work was carried out with five datasets, viz. (i) Leukemia,
(ii) Central Nervous System (CNS), (iii) Colon Tumor, (iv) Lymphoma and (v) small
round blue­cell tumors (SRBCT). The work involved a comparison of the proposed
algorithm with the state­of­the­art algorithm for average test error, standard devi­
ation, and an average number of selected features. The Kohonen ensemble had
superior performance in almost all cases.

Ramírez­Gallego et al. [200] proposed a distributed implementation of the en­
tropy minimization discretizer. The datasets employed in the experiment are (i)
ECBDL14, (ii) epsilon. The experimental results demonstrated the improvement in
both classification accuracy and execution time for the proposed algorithm.

Bhagat and Patil [201] proposed an Enhanced SMOTE algorithm for the clas­
sification of imbalanced data using RF. The experimental study involved datasets,
viz., Landsat, Lymphography, Zoo, Segment, Iris, Car, Vehicle, andWaveform [23].
The proposed approach was implemented on the Hadoop MapReduce framework
and the Apache Spark platform. The results showed that the proposed method car­
ried out with Spark outperformed other methods.

Chandorkar et al. [202] proposed an approach for SVM employing fixed­size
least squares for high­volume data classification. The model was evaluated with
datasets available in UCI repository [23]. The experimental outcomes indicated that
the proposed approach had a substantial speed up over the existing implementations.

Venturini et al. [203] proposed a distributed Bagged Associative Classifier
(BAC), employing an ensemble techniques with voting to provide a unique clas­
sification outcome. The experiment was carried out with three datasets, viz. yeast,
nursery, and census, from the UCI repository [23] and a synthetic dataset, gener­
ated from IBM data generator [65]. The experimental results showed that bagging
achieved an accuracy above or at par with the sampling­only approach.

Semberecki and Maciejewski [204] implemented classification of text docu­
ments. The classifier was verified with documents belonging to three categories,
viz. Art, History, and Law. ML algorithms, viz., Naive Bayes Classifier, DT, and
RFs were utilized for building the classification model. The outcomes indicated
that the Naive Bayes algorithm had the best accuracy.
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Nodarakis et al. [205] proposed a method for sentiment analysis on Twitter. The
proposedmethod analyzed two Twitter datasets collected through the Twitter Search
API. The research outcomes indicated that the proposed approach was efficient,
robust, and scalable.

Ray et al. [206] proposed a method that employed a mutual information feature
selection method based on spark framework (sfMIFS) to determine the relevant
features. After the feature selection process, the machine learning techniques, viz.,
Logistic Regression (LogR) and Naive Bayes (NB) using Spark were implemented
to classify the microarray datasets. The dataset utilized for the study was LEukemia
dataset collected from NCBI GEO [128]. The experimental results showed that
sf­MIFS provided superior accuracy with NB as compared to LogR.

Tayde and Patil [207] proposed an approach for genome data classification em­
ploying n­gram for genome sequence encoding. The features were gathered imple­
menting n­gram. The SVM classifier was used to classify the genome data of the
cat and rat species. The Spark­based approach was found to be efficient in terms of
execution time.

Kamaruddin and Ravi [208] proposed a hybrid architecture involving AutoAs­
sociative Neural Network (AANN) and PSO called PSOAANN for credit card fraud
detection using one­class classification. The experimental study utilized ccFraud
dataset [209]. The research outcomes proved that the proposed approach had supe­
rior accuracy.

Talavera­Llames et al. [210] proposed nearest neighbors based algorithm for
long time series data forecasting. The experimental work involved datasets related
to electrical energy consumption from a Spanish public university. The experimen­
tal work showed satisfactory results regarding both mean relative error (MRE) and
execution time.

Lincy and Nagarajan [211] implemented a parallel distributed SVM along with
data augmentation for Semi­supervised Classification. The experimental work an­
alyzed real­world datasets. The proposed methodology was compared with Spark­
based Logistic regression with Stochastic gradient descent, Random Forest, Lin­
earSVM, and Decision Tree algorithms. The outcomes indicated that the proposed
methodology has better performance with respect to execution time and accuracy.
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We identified the following research insights during the review of articles related
to classification.

• It has been observed that SVM, ELM, K­NN, DT, and RF are the most imple­
mented in a parallel and distributed manner. Maintaining the same distribu­
tion of the samples in all data partitions, we can implement SVM, K­NN, and
similar algorithms to run in a parallel manner. The algorithms like DT, RF
are inherently parallel as they partition the sample space independently and
so can be implemented in a parallel manner.

• Logistic regression and Fuzzy rule­based classifiers are the least explored in
distributed parallel architecture leading to an open research space for the
researchers.

• Only a few papers were found using the Evolutionary computational method
for classification in Hadoop and Spark environment leading to the fertile
ground to explore.

• The most explored ML technique is SVM with its variants for classification
in the distributed parallel environment.

• Any architecture of NN is conspicuous by its absence.

• The algorithms like Very Fast Decision Tree (VFDT), Classification and
Regression Trees (CART), and Chi­square Automatic Interaction Detection
(CHAID) are not explored at all.

• Extreme gradient boosting is not explored at all.

• Kernel methods and class association rule mining are not explored at all.

2.4.4 Clustering

2.4.4.1 Hadoop MapReduce­based Journal papers

Sun et al. [212] proposed a clustering method using a parallel information bottle­
neck (IB) theory clustering method along with a centroid­based clustering method
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to determine the clusters. The experimental study was carried out with 16S rRNA
dataset [213]. Interpolation Multi­dimensional scaling (MDS) was used for fea­
ture dimension reduction for visualization of clustering results in 2D and 3D. The
outcomes indicated scalability of the proposed method.

Xu et al. [214] proposed a clustering approach K­means++. This proposed
approach had a significant reduction in communication and I/O costs. The study
involved one real dataset Oxford Buildings dataset and a synthetic dataset. The
experimental results indicated that the proposed MapReduce K­means++ method
was much more efficient and scalable.

Cui et al. [215] proposed the K­Means algorithm inMapReduce environment to
eliminate the iteration dependence and obtain high performance. The experimental
study involved a synthetic dataset, Gauss Distribution Set, and two real datasets,
Bag of Words and House collected from UCI ML repository. The experimental
results showed that the proposed algorithm was efficient and superior to parallel
K­Means, K­Means∥, and stand­alone K­Means++ algorithms.

Ludwig [216] proposed a parallel approach for the fuzzy c­means clustering
algorithm implemented with the MapReduce framework (MR­FCM). The experi­
mental study involved Covertype dataset [23]. The proposed algorithm was com­
pared with other clustering approaches. The experimental evaluation indicated a
comparable purity along with excellent scalability.

Yang et al. [217] proposed a semi­supervised multi­ant colonies consensus clus­
tering algorithm. The experimental study involved datasets Iris, Wine, Balance­
scale, Sonar, Covertype, Shuttle,MinibooNE from the UCI machine learning repos­
itory [23] along with USCensus1990, and the image database [218]. The research
outcomes demonstrated the proposed method to be effective.

Bi et al. [219] proposed Semantic Driven Subtractive Clustering Method
(SDSCM) based on the Subtractive Clustering Method (SCM) and fuzzy cmeans
(FCM), to alleviate the risk of customer churn. Business Support System and Oper­
ations Support System data ofChina Telecom used for customer churnmanagement.

Liu et al. [220] proposed a method for similarity join using Similarity Join
Tree (SJT) and Extended Fiduccia–Mattheyses (EFM) algorithm. The work in­
volved two real datasets, viz. dataset containing time­series recordings from UCI
ML repository [23] and articles extracted from Wikipedia in the English domain
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[221]. The research outcomes depicted the proposed method to be more efficient
and scalable.

Zhang et al. [222] proposed a Distributed Density Peaks clustering algorithm
with Locality Sensitive Hashing (LSH­DDP). The experimental study involved nine
datasets of different dimensions [23], [223]. Experimental results on local cluster
and cloud showed that LSH­DDP achieved a superior speedup over other distributed
density peaks clustering algorithms.

Alewiwi et al. [224] proposed a document similarity approach with a filtering
method of cosine similarity measure. The experimental study utilized the Enron
dataset [223] and Reuters dataset [225]. The observed results demonstrated the
proposed method had superior efficiency.

Fang et al. [226] proposed algorithms for nearest­neighbor joins amenable for
high­volume trajectory data rendering scalability. The experimental study analyzed
two synthetic datasetsDS1 andDS2, generated from GSTD [227]; and another syn­
thetic dataset DS3 was constructed from Brinkhoff [228]. One real dataset Bei­
jing taxi dataset [229] was also analyzed in the study. The experimental outcomes
proved that the proposed algorithm was efficient and scalable.

Wu et al. [230] proposed a SIMPLifying and Ensembling (SIMPLE) frame­
work for parallel community detection. The work involved six network datasets,
out of which five were of friendship networks derived from different social net­
working sites, viz. Oklahoma, UNC, Twitter, Gowalla and LiveJournal; and Skitter
is an Internet topology graph. The experimental results showed that SIMPLE could
identify high­quality community structures on various networks demonstrated by
the Q­function.

Shahrivari and Jalili [231] proposed a single­pass and linear time solution for
the K­Means algorithm called MRK­Means. The experimental study utilized a
set of synthesized datasets and five real­world datasets, viz. USCensus, KDD04,
Poker, Skin, and Birch [23]. The experimental results showed the proposed ap­
proach, MRK­Means, had faster execution times, and higher quality of clustering
with linear scalability.

Banharnsakun [232] proposed a MapReduce­based artificial bee colony called
MR­ABC for data clustering. The author has used four synthesized datasets gen­
erated from Iris, CMC, Wine, and Vowel [23] by duplicating the records. The ex­
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perimental outcomes presented that the proposed algorithm had a superior value in
comparison with PKMeans and K­PSO algorithms with respect to F­measure.

Capó et al. [233] proposed an efficient approximation to the K­Means algorithm
for voluminous data. The experimental results exhibited that the proposed method
outperformed other methods like the K­Means++ and the minibatch K­Means.

Tidke et al. [234] proposed topic sensitive user clustering based on sentiment
score and similarity measures employing theMapReduce computational framework
of Hadoop. They have collected tweets from Tweeter API to detect the cluster of
users having similar sentiments. The experimental work compared the performance
of the method in terms of execution time against the serial approach.

2.4.4.2 Spark­based Journal papers

Lu et al. [235] proposed an improved K­means clustering algorithm with a Tabu
Search strategy to enable it to handle Big Data applications. The experimental work
involved Iris,Wine, Yeast, and Seeds datasets [23]. The research outcomes disclose
that the proposed method had a superior solution to the K­Means algorithm of Spark
MLLib.

Xia et al. [236] proposed a parallel adaptive canopy­K­Means clustering al­
gorithm for a large dataset employed in a parallel computational environment of
Apache Spark. The performance of the proposed method is analyzed with the Stan­
ford Network Analysis Project (SNAP) dataset and the author­built Dimension Net­
works dataset. The research outcomes indicated that the proposed method is effec­
tive.

Yuan [237] proposed a parallel K­Means clustering, which is optimized by em­
ploying particle swarm optimization with the Spark computational environment.
The proposed approach is employed for mining the anomaly from sensor networks.
The work included analysis of the dataset KDDCUP99. The results of analysis
demonstrated that the proposed method is having high accuracy and better execu­
tion time when compared with other parallel clustering approaches.

Ianni et al. [238] proposed a complex hierarchical clustering algorithm
CLUBS+ in a parallel computational environment of MapReduce and Spark. The
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work has analyzed synthetic datasets from an open­source synthetic data generator1.
The experimental results show that CLUBS+ with Spark generates high­quality
clusters of data clustered around their centroids. The accuracy and scalability of
the CLUBS+ with Spark is improved over other parallel clustering algorithms.

2.4.4.3 Hadoop MapReduce­based Conference papers

Zhao et al. [239] proposed a parallel K­Means clustering. The experimental study
utilized a synthetic dataset. The experimental results demonstrated the scalability
and efficiency of the proposed algorithm.

Ene et al. [240] proposed clustering algorithms, viz. k­center and K­Median
implemented with the MapReduce framework. The study involved a random set of
points in R3 as the dataset. The research outcomes demonstrated that the proposed
algorithms had comparable accuracy with better execution time in comparison with
other tested algorithms.

Zongzhen et al. [241] presented a fuzzy clustering approach for document cat­
egorization. In the experiment, five different classes, viz. Diabetes, Happiness,
Yoga, Ebook, and Security selected and one hundred articles of each class chosen
for training and to test the model. The experimental results were containing the F1
measure that exhibited the performance of clustering.

Liao et al. [242] proposed an improved parallel K­Means clustering algorithm.
The proposed algorithm presented a superior performance in both processing speed
and accuracy than the traditional parallel K­Means algorithm.

Esteves et al. [243] proposed a Competitive K­Means algorithm. The experi­
ments were carried out with four datasets, viz. (i)Hypercube, (ii)Google, (iii) Elec­
trical, and (iv) KDD99. The work involved a comparative analysis of the proposed
algorithm with serial K­Means++ and streaming K­Means. The results showed the
proposed algorithm had increased accuracy and decreased variance with scalability
related to the dimension of the dataset.

Kumar et al. [244] proposed an approach for the parallel K­Means algorithm.
The experimental result showed that the proposed method had a superior efficiency
with scalability.

1https://github.com/gmmazzeo/clugen
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Lin et al. [245] proposed a K­Means clustering algorithmwith optimized initial­
centers based on data dimensional density. The experimental results demonstrated
the stability of the algorithm with a cost of execution time.

Zhang and Wang [246] proposed an enhanced agglomerative fuzzy K­Means
clustering algorithm. Experimental works were carried out on a synthetic data set,
the WINE dataset. The observed outcomes presented that the proposed algorithm
had superior accuracy and scalability.

Bousbaci and Kamel [247] proposed a hybrid architecture with K­Means and
PSO. The experimental work was carried out with two synthetic numerical multi­
dimensional datasets [248]. The experimental results presented that the proposed
approach had improved execution time and cluster quality.

Garg and Trivedi [249] proposed fuzzy k­mean clustering. The study involved
datasets viz. Iris dataset, Synthetic control dataset, and KDDCUP99 dataset. The
experimental results depicted the excellent execution time.

Anchalia [250] proposed an improved method to implement the K­Means Clus­
tering Technique. The experiment involved generated synthetic data. The research
outcomes showed the proposed method outperformed the regular implementation.

Zhu et al. [251] proposed an improved algorithm for the optimal search of
medoids to cluster Big Data using K­Medoids clustering. The results showed that
the proposed algorithm had high efficiency and effectiveness in comparison to its
serial counterpart.

Choi and So [252] proposed amethod for theK­Means algorithmwith an FPGA­
accelerated computer cluster. The experimental study used dataset collected from
UCI machine learning repository [23]. The outcomes showed that the proposed
FPGA K­Means implementation had superior performance compared to the base­
line software implementation.

Garcia and Naldi [253] proposed a method for parallel K­Means clustering.
The experimental work involved five synthetic datasets generated by the MixSim R
Package [254]. The results presented that the proposed method outperformed other
implementations of K­Means in terms of execution time.

Daoudi et al. [255] proposed a method for the parallel differential evolution
clustering algorithm. The experimental study involved 18 publicly available gene
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expression datasets. The experimental outcomes indicated that the proposed ap­
proach was efficient and produced comparable results with existing algorithms.

Al­Madi et al. [256] proposed an algorithm for clustering large­scale data us­
ing parallel glowworm swarm optimization implemented with MapReduce, called
MRCGSO. The experimental study utilized four real­world datasets, viz. magic,
poker hand, cover type collected from UCI repository [23] and Electricity collected
fromMOA [257]. Apart from real­world datasets, four synthetic datasets were gen­
erated using the data generator [258]. The experimental results demonstrated the
proposed algorithm had good accuracy with scalability and with a linear speed up
while maintaining cluster quality.

Jiang and Zhang [259] proposed a parallel K­Medoids clustering algorithm im­
plemented with the Hadoop MR framework, called HK­Medoids. The experimen­
tal study involved Iris dataset from UCI repository [23]. The experimental results
showed that the proposed HK­Medoids algorithm had scalability with cluster node
count. The results showed the proposed algorithm had a linear speedup for large­
scale data with good clustering results.

Yuan et al. [260] proposed a distributed link prediction algorithm based on
clustering on social networks. The research work involved five classical datasets
on the social network: USAir, PB, Yeast, Power, and Router. The experimental
results proved that the proposed parallel algorithm had a superior performance in
terms of execution time in comparison with its serial counterpart.

Shettar and Purohit [261] proposed an enhanced K­Means algorithm. The ex­
perimental work carried out with two types of datasets. One was randomly gener­
ated numbers, and another dataset was collected from the DEBS­2014 grand chal­
lenge [262]. The experimental outcomes presented that the proposed method had
better accuracy than traditional counterparts.

Yu and Ding [263] proposed an improved Fuzzy C­Means (FCM) algorithm
with the help of the canopy algorithm called canopy­FCM. The research work was
carried out with Church dataset. The experimental results presented that the pro­
posed canopy­FCM algorithm in MapReduce had lesser execution time in compar­
ison with the FCM algorithm in MapReduce.

Boukhdhir et al. [264] proposed an advanced K­Means algorithm with the re­
moval of outliers and selection of initial centroids, called IM­KMeans algorithm.
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The experimental work involved a real­world stock exchange data. The experimen­
tal results presented the superior performance of IM­KMeans regarding execution
time in comparison with traditional K­Means, Parallel K­Means (PK­Means), and
Fast K­Means.

Lachiheb et al. [265] proposed an improved K­Means algorithm, called SMRK­
Means. The algorithm was applied to identify stock investments with risks based
on variation in stock data. The experimental work carried out with (i) a real­world
stock exchange data and (ii) a synthetic dataset with random values. The research
outcomes proved that the proposed method reduces the execution time while keep­
ing 80% of the clustering accuracy. The proposed algorithm was compared with
traditional K­Means, PK­Means, and FastK­Means.

Mao et al. [266] proposed an optimal distributed K­Means clustering algorithm.
The proposed algorithm was improvised with, (i) partially random center selection
algorithm (PRCSA), to select the initial points (ii) implementing Haloop, to sup­
port the iterative calculation model of machine learning while saving the interme­
diate results generated during each iteration to the cache. The experiments utilized
data from the household electricity consumption dataset. The experimental results
showed the proposed algorithm with haloop performed better in terms of execution
time than its Hadoop counterpart.

Saranya and Sumalatha [267] proposed a dynamic neighborhood selection
(DNS) clustering algorithm based on MapReduce framework (DNS­MR). The ex­
perimental work involved person health care dataset. The results demonstrated,
the proposed DNS­MR algorithm was superior in efficiency and had less execution
time in comparison to DBCURE­MR.

Ketu et al. [268] proposed an approach for large­scale text data clustering using
a distributed K­Means algorithm combined with a corpus selection technique for a
significant reduction of overall computational time. The experimental study utilized
four large text datasets, viz. Wikilanguage [269],Wikilinks [269], Enron [223], and
Wikipedia dataset [270]. The performance of the proposed algorithm was compared
with traditional K­Means and parallel K­Means. The experimental results showed
that the corpus selection technique was significantly effective in the reduction of
overall processing time.
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Karimov and Ozbayoglu [271] developed a hybrid model, H(EC)2S, Hybrid
Evolutionary Clustering with Empty Clustering Solution, for clustering of Big Data.
The experimental study involved two datasets, i.e., public dataset and ATM logs
dataset. The outcomes proved that the proposed method outperformed other models
with a significant clustering quality gain.

Karimov et al. [272] proposed a method for the K­Means clustering algorithm
with centroid calculation heuristics. The work involved a comparative study of
serial and parallel implementations of the proposed algorithm and analyzed two
real­world datasets. The research outcomes proved that the proposed method out­
performed other compared methods.

Garg et al. [273] proposed a modified fuzzy K­Means clustering implemented
with MapReduce. The experimental study involved datasets from UCI ML reposi­
tory [23]. The experimental result showed that the proposed approach was efficient
in terms of execution time as compared to its counterpart.

Ling and Yunfeng [274] proposed a distributed K­Means clustering algorithm
based on set pair analysis. The experimental study used the extended Iris dataset and
Wine dataset available onUCImachine learning repository [23]. The results showed
that the proposed algorithm was more efficient than other compared algorithms.

Tao et al. [275] proposed the parallel K­Modes algorithm. K­Modes is a con­
ventional categorical clustering algorithm. The experimental study used US Cen­
sus Data (1990) dataset. The experimental results showed that parallel K­Modes
achieved a good speedup ratio with large­scale categorical data.

Phan et al. [276] proposed an approach for range­based clustering support­
ing similarity searches in Big Data. The experimental study involved Gutenberg
datasets. The research outcomes indicated that the proposed approach was superior
to avant­garde algorithms.

Chunne et al. [277] proposed a method for real­time clustering of tweets using
adaptive PSO technique. The parallel PSO was compared with the K­Means algo­
rithm. The experimental results showed that the F­Measure was increasing with an
increase in the number of particles.

Chen et al. [278] proposed two distributed clustering algorithms, i.e., Dis­
tributed Density­based Clustering (DDC) and Distributed Grid­based Clustering
(DGC) algorithm with a reduction in communication and merging overheads. The
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experimental study was carried out with a synthetic dataset generated from a data
generator [279]. The experimental results showed that the proposed algorithms
DDC and DGC were able to reduce the execution time and achieve scalability.

Wu et al. [280] proposed an approach for improved K­Means algorithm. The
experimental study involved Reuters news set. The experimental outcomes proved
that the proposed approach had superior efficiency in comparison with its serial
counterpart and scalability.

Gao et al. [281] implemented K­Means clustering for fixed traffic bottleneck
detection. The proposed method analyzed the data collected from the Jilin urban
regional road net. The experimental outcomes indicated that the proposed method
had scalability and was superior with respect to execution time.

de Oliveira and Nald [282] proposed a scalable evolutionary K­Means cluster­
ing method called, Scalable Fast Evolutionary Algorithm for Clustering (SF­EAC).
The experimental work was carried out with three synthetic datasets generated by
the MixSim R Package [254]. In addition to that, one real­world dataset fromMed­
line database (PubMed) was also analyzed. The outcomes indicated that the pro­
posed SF­EAC approach obtained comparable quality with MRMK­Means with
lesser execution time.

Moertini and Venica [283] employed an enhanced parallel K­Means imple­
mented with the MapReduce framework for clustering large datasets. The experi­
mental study was carried out with household energy consumption dataset obtained
from UCI ML repository [23]. The results showed the proposed method had linear
scalability.

Akthar et al. [284] proposed a method for the K­Means clustering algorithm.
The 20 Newsgroups dataset [23] was considered for the evaluation of the proposed
algorithm. The experimental results showed that the proposed approach had a supe­
rior performance in terms of precision, recall, F­measure with less execution time
in comparison with the simple K­Means algorithm.

Zhong and Liu [285] suggested the application of the K­Means clustering al­
gorithm for clustering spatial data. The user data of Sina Weibo was used for the
study. The experimental result showed the efficiency of the proposed approach.

Budhraja et al. [286] proposed a fuzzy clustering­based classification for large­
scale TCP dump dataset implemented with Hadoop Framework. The study included
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KDD’99 dataset [130]. The outcomes indicated that the proposed fuzzy c­means
algorithm had superior accuracy to the K­Means algorithm.

Alshammari et al. [287] proposed a genetic algorithm based parallel K­Means
algorithm employing the MapReduce computational framework in the Hadoop en­
vironment. They have analyzed five synthetic datasets [288] (ADS1­ADS5) for the
experiment. The outcomes indicated that the proposed method had superior execu­
tion time.

2.4.4.4 Spark­based Conference papers

Sarazin et al. [289] proposed Self Organizing Map (SOM) clustering. The experi­
mental work involved datasets from UCI repository [23]. The experimental results
showed the proposed approach had scalability and efficiency in terms of execution
time in comparison with its serial counterpart.

Tsapanos et al. [290] proposed an approach for distributed implementation of
the Nearest Neighbour and �­ball variations of Kernel K­Means, which was imple­
mented with Apache Spark. The experimental work utilized the MNIST handwrit­
ten digits database and BF0502 dataset, containing descriptors of the faces. The
proposed approach provided improved results over baseline Kernel K­Means and
approximated Kernel K­Means in a time­efficient manner.

Govindarajan et al. [291] proposed a method for Parallel Particle Swarm Op­
timization (PPSO) clustering. The experimental results showed the proposed al­
gorithm outperformed sequential clustering algorithms and existing parallel algo­
rithms regarding execution time, speedup, inter­ and intra­cluster distance mea­
sures.

Ketu and Agarwal [292] proposed an approach for distributed K­Means clus­
tering for large­scale data analytics. The study included four benchmark datasets,
viz. Wikilanguage [269],Wikilinks [269], Enron [223], andWikipedia dataset [270].
The experimental outcomes indicated that the proposed distributed K­Means is 10x
faster than the Hadoop MapReduce implementation.

Zhu et al. [293] proposed an approach for distributed SAR image change de­
tection. The proposed method employed kernel fuzzy c­means clustering algorithm
with Spark called S­KFCMwas used to group the changed area and unchanged area
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in the difference map. The experimental work involved a comparison of Spark­
based KFCM (S­KFCM) and Hadoop­based KFCM (H­KFCM). The SAR images
were gathered as the data for the experimental study. The experimental results
showed that the S­KFCM was efficient in terms of execution time on H­KFCM.

Peng et al. [294] designed a parallel nonlinear clustering algorithm DenPeak.
The experimental task involved nine synthetic datasets that represent the typical
nonlinearly separable datasets. The experimental results depicted the performance
regarding the number of points, the dimension of data, and the number of nodes
present in the Spark cluster.

Han et al. [295] proposed a parallel DBSCAN clustering algorithm. The exper­
imental setup analyzed a synthetic dataset. The experimental results presented the
scalability and efficiency of the proposed algorithm.

Jȩdrzejowicz et al. [296] proposed a classification algorithm based on Kernel­
based fuzzy C­means clustering. The proposed algorithm was tested on several
datasets from UCI Machine Learning Repository [23]. The experimental results
showed the proposed approach had better performance in execution time with good
accuracy.

Tsapanos et al. [297] proposed a Kernel K­Means clustering algorithm with
a distributed implementation called Trimmed Kernel K­Means, which employed
subsampling. The experimental study involved Youtube Faces dataset. The experi­
mental results indicated that the proposed method runs much faster than the original
Trimmed Kernel K­Means.

Bharill et al. [298] proposed a fuzzy­based clustering algorithm to handle volu­
minous data. The proposed algorithm was a partitional clustering algorithm called
Scalable Random Sampling with Iterative Optimization Fuzzy c­Means algorithm
(SRSIO­FCM). The experimental work involved analysis of four datasets collected
from UCI repository [23], viz. Minst8m, Replicated­USPS, Monarch­Skin, and
SUSY dataset. The experimental results showed that the proposed SRSIO­FCM
had superior performance in terms of F­measure, Adjusted Rand index (ARI), an
Objective function value, runtime, and scalability.

Gouineau et al. [299] implemented an algorithm called PatchWork, a scalable
density­grid clustering algorithm. The proposed algorithm was evaluated with four
synthetic datasets, viz. Jain, Spiral, Aggregation and Compound datasets. The
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PatchWork was also tested with a real­world dataset, SFPD (San Francisco Police
Department) Incidents dataset. The outcomes presented that the proposed algorithm
was considerably faster in comparison with the K­Means implemented with Spark.

After reviewing articles in clustering with distributed parallel computing archi­
tecture, the following insights were discovered.

• The predominant algorithm that has been parallelized is the K­Means. It can
be implemented on different chunks of data independently and finally merg­
ing the results, which will be the approximation of the optimal result but with
lesser execution time.

• K­Means, Fuzzy c­means are highly explored in the distributed parallel en­
vironment.

• Density­based clustering algorithms are least explored in Hadoop and Spark
framework leading to a fertile ground for the new researchers.

• Evolutionary methods for clustering are explored to a great extent with ACO,
ABC, DE, Glowworm Swarm Optimization (GSO), PSO, Fireworks algo­
rithm, and Cuckoo search. These algorithms with modifications and the other
algorithms of evolutionary methods can be explored.

• SOM is the least exploited technique.

2.4.5 Outlier Detection / Intrusion Detection System

2.4.5.1 Hadoop MapReduce­based Journal papers

Zhu et al. [300] proposed an algorithm combining cell­based outlier detection and
single­layer perceptron. The experimental data were two­dimensional datasets gen­
erated randomly by MATLAB 7.0. The experimental results exhibited, the paral­
lelized cell­based outlier detection algorithm produced better accuracy than its se­
rialized counterpart.

Soltani Halvaiee and Akbari [301] proposed a model for credit card fraud de­
tection using the Artificial Immune System (AIS), known as AIS­based Fraud De­
tection Model (AFDM). The experiments worked on transactions collected from a
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Brazilian bank. The improvisation made on the base algorithm AIS demonstrated
an improvement of accuracy, reduction in cost, and reduction in system response
time in the experimental results.

Natesan et al. [302] proposed a Parallel Binary Bat Algorithm for efficient fea­
ture selection and classification for network intrusion detection in the Hadoop plat­
form (HPBBA). The proposed method analyzed the KDDCup99 dataset [130]. The
outcomes proved that the proposed method was superior to the sequential comput­
ing approach.

El­Alfy and Alshammari [303] proposed an approach based on rough sets for
scalable attribute subset selection to detect intrusion using the parallel GA. The
work utilized four cybersecurity datasets, viz. Spambase, NSL­KDD, Kyoto, and
CDMC2012. The outcomes showed that the proposed approach reduced the execu­
tion time without degrading the solution quality regarding the reduct size.

Rathore et al. [304] propose a real­time intrusion detection system (IDS)
for high­speed Big Data environments. The study used three publicly available
datasets, viz. DARPA [36], KDDCUP99 [130], and NSL­KDD dataset [305]. The
proposed system employed five different ML classifiers, viz. J48, REPTree, RF
tree, conjunctive rule, SVM, and Naïve Bayes classifiers. The experimental out­
comes showed that REPTree, and J48 are the best in terms of accuracy and effi­
ciency.

2.4.5.2 Spark­based Journal papers

Carcillo et al. [306] presented a SCAlable Real­time Fraud Finder (SCARFF),
which is an amalgamation of Big Data tools, viz., Kafka, Spark and Cassandra with
a machine learning approach for fraud detection in credit cards. The experimental
work involved more than 8 million of e­commerce transactions from almost 2 mil­
lion cardholders. The experimental outcomes proved that the proposed method is
scalable.

2.4.5.3 Hadoop MapReduce­based Conference papers

Tanupabrungsun and Achalakul [307] introduced a feature reduction method with
GA/kNN for anomaly detection in manufacturing. The experimental study involved
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six standard datasets from UCI machine learning repository [23], viz. Connection­
ist, WBDC, Ionosphere, Hill Valley, Musk, and Wine. The results showed the pro­
posed algorithm had a comparable accuracy with its sequential counterpart with
excellent scalability.

Aljarah and Ludwig [308] proposed a method for IDS based on a parallel
PSO clustering algorithm, called IDS­MRCPSO. The experimental study involved
KDD99 intrusion detection dataset for evaluation of the proposed approach. The
results showed that the IDS­MRCPSO was efficient and scalable with dataset size.
Also, it had close to linear speedup.

Xiang et al. [309] proposed an approach for intrusion detection employing ex­
treme learning machine with the MapReduce framework, called MR_ELM. The
experimental study involved KDDcup99 dataset. The experimental result showed
that the proposed MR_ELM had an excellent efficiency with respect to execution
time, speedup, and sizeup in comparison with the local ELM.

Sharma et al. [310] proposed a classification approach for IDS. The experimen­
tal study used NSL­KDD dataset [305], which was derived from the KDDcup99
dataset by refining it for missing and duplicate values. The experimental results
showed the proposed classifiers in theMapReduce environment had more accuracy,
specificity, precision, F1 scores than its corresponding WEKA implementations.

2.4.5.4 Spark­based Conference papers

Gupta and Kulariya [311] proposed a method whereby a fast and efficient intru­
sion detection in the massive network traffic is implemented. The experiment in­
volved two real­time network traffic datasets: DARPA KDD’99 dataset [130] and
NSL­KDD dataset [305]. The implemented feature selection algorithms involved
correlation­based feature selection and Chi­square feature selection, and classifica­
tion algorithms included LogR, SVM, RF, Gradient Boosted Decision Trees, and
Naive Bayes. The experimental results were compared and contrasted.

Kumari et al. [312] implemented K­Means clustering for anomaly detection in
network traffic utilizing the MapReduce programming environment in the Apache
Spark platform. The experimental work was carried out with the KDDCup99
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dataset. The result showed the detection of anomalies in the dataset by implement­
ing a threshold to the distance of a data point from the nearest centroid of a cluster.

The following research insights are obtained after reviewing the articles related
to outlier detection in Hadoop and Spark frameworks.

• The outlier detection or intrusion detection has been implemented with clas­
sification and clustering approaches that are popular in parallel implementa­
tion. But, it has not been explored to its full scale.

• The DM task, outlier detection, is one of the less explored areas in the dis­
tributed parallel computational environment, leading it to be a fertile ground
for the budding researcher to explore.

• ANN has not been utilized in outlier detection. Hence, the rich features of
ANN can be exploited for outlier detection.

• Evolutionary methods have not been explored to its full extent for outlier
detection. Hence, the researchers can exploit it to its full potential.

2.4.6 Recommendation

2.4.6.1 Hadoop MapReduce­based Journal papers

Veloso et al. [313] implemented a collaborative recommendation filter employing
singular value decomposition with stochastic gradient descent (SVD­SGD). The
work analyzed the Yelp dataset [314]. The experimental results showed that the
proposed method was effective and scalable.

2.4.6.2 Hadoop MapReduce­based Conference papers

Schelter et al. [315] proposed a scalable similarity­based neighborhood methods.
The proposed approach employed pairwise item comparison and top­N recommen­
dation. The experimental study was carried out with Movielens dataset [316] and
Flixster dataset [317]. The outcomes indicated that the proposed approach had lin­
ear scalability with the number of users and a linear speedup with the addition of
new computational nodes.
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Ghuli et al. [318] developed a collaborative filtering recommendation engine.
They presented a comparison between item­based and user­based collaborative fil­
tering (CF) with the help of MovieLens dataset [316], where the item­based CF
showed better scalability than user­based CF algorithm.

Shang et al. [319] proposed a scalable collaborative filtering recommendation
algorithm. The study involved a real­world dataset, MovieLens [316], and a syn­
thetic dataset in analyzing the performance of the proposed algorithm. The exper­
imental results demonstrate that the proposed implementation had scalability con­
cerning numbers of users and items, ensuring recommendation accuracy.

Pozo and Chiky [320] proposed a method of a Distributed Stochastic Gradient
Descent (DSGD) for Recommender Systems based on MapReduce computational
environment. The performance of the proposed algorithm was evaluated with the
implementation ofMovieLens dataset [316]. The experimental outcomes presented
a better performance of the proposed method in respect of accuracy and scalability.

Lu et al. [321] implemented a distributed item­based collaborative filtering al­
gorithm on the Hadoop MapReduce framework. The experimental study utilized
theMovieLens dataset [316]. The algorithm was evaluated with a root mean square
error (RMSE) and mean absolute error (MAE). The proposed method improved the
accuracy of the algorithm.

Subramaniyaswamy et al. [322] proposed an approach for unstructured data
analysis on large­scale data. The study used the Twitter dataset. The unstructured
data was converted to the structured format, and the proposed approach imple­
mented collaborative filtering and sentiment analysis on the data. The proposed
method showed scalability with respect to the size of the data.

Shen and Jiamthapthaksin [323] proposed an improved algorithm DIMSUM+
which is the improvised version of DIMSUM algorithm, an all­pair similarity al­
gorithm The experimental work involved (i) the MovieLens 1M dataset provided
by GroupLens project [316] and (ii) the Yahoo! Music dataset provided by Yahoo!
Webscope Program [324]. The experimental results showed the proposed algorithm
DIMSUM+ outperformed DIMSUM regarding accuracy and execution time.
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2.4.6.3 Spark­based Conference papers

Panigrahi et al. [325] implemented a hybrid algorithm involving dimensionality re­
duction and Clustering techniques for user­oriented collaborative filtering method.
The algorithm utilized benchmark dataset of MovieLens [316]. The experimental
results proved the efficacy of the proposed algorithm.

Singh et al. [326] have proposed a distributed music recommendation engine
using collaborative filtering. The collaborative filtering method is implemented
on a distributed Apache Spark cluster. The experimental work has analyzed the
ListenBrainz dataset. The performance of the proposed method is measured with
root mean squared error.

Kumar et al. [327] have implemented music tagging and similarity analysis
for recommendation systems employing the computational framework of Apache
Spark. The proposed method is evaluated with precision, recall, F1 score, and accu­
racy. The proposed method gives high average true positive value and less average
false positive value.

After reviewing the articles related to recommender system in the distributed
parallel environment, following research insights are found.

• The recommendation system has been implemented with user­based and
item­based recommendations. These approaches are susceptible to parallel
implementation.

• There has been very little research work carried out by the research commu­
nity in the recommendation system utilizing distributed parallel computation.
A lot of exploration can be achieved in this rich area.

• A few research articles were published related to user­based and item­based
collaborative filtering, thus, resulting in a most explorable area.

• Many similarity indices can be explored with different classification or clus­
tering techniques to produce a better result.
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2.4.7 Others

The articles reviewed under this category covers some articles utilizing ML tech­
niques such as Bayesian Network, Rough set approximations, PSO, SGD, LDA,
GA, ABC, etc.

2.4.7.1 Hadoop MapReduce­based Journal papers

Zhang et al. [328] suggested a parallel approach for computing rough set approx­
imations. The research work implemented three parallel algorithms involving real
dataset KDDCup­99, and three synthetic datasets generated with the help of the
WEKA data generator [169]. The performance of the proposed parallel algorithms
was evaluated with speedup, scaleup, and sizeup performance metrics and found to
be superior to its serial counterpart.

Chen et al. [329] employed a feature selection method based on differential pri­
vacy and Gini index. The experimental study included validation of the proposed
algorithm with the utilization of five benchmark datasets from UCI repository [23],
viz. Car Evaluation, Mushrooms, Connect­4, Covertype, Pokerhand; and one syn­
thetic dataset S1. The results indicated that the proposed algorithm was time effi­
cient than its centralized counterpart.

Qian et al. [330] proposed a parallel feature reduction algorithm. The exper­
imental study was carried out with two real datasets, i.e., Mushroom and Gisette
[23] and four synthetic datasets (DS3­6). The research outcomes proved that the
proposed parallel algorithm was efficient and scalable.

Yue et al. [331] proposed a parallel and incremental approach for learning of
Bayesian Network (BN). The research work utilized (i) Chest­clinic network and
(ii) HepaerII network. The experimental results depict the proposed methods to be
scalable and efficient.

Zhang et al. [332] proposed i2MapReduce, an incremental processing extension
to MapReduce. Four iterative mining algorithms were implemented: (i) PageRank
(one­to­one correlation) with ClueWeb dataset [34], (ii) Single Source Shortest Path
(SSSP, one­to­one correlation) withClueWeb2 dataset [34], (iii) Kmeans (all­to­one
correlation) with BigCross dataset [333], and (iv) GIM­V (many­to­one correlation)
withWikiTalk dataset [334] and also a one­step mining algorithm, Apriori was also
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implemented with Twitter dataset. Experimental results demonstrated significant
performance enhancements of i2MapReduce compared to both plain and iterative
MapReduce.

Yue et al. [335] presented a method for measuring the similarity among the
users utilizing Bayesian Network called User Bayesian Network (UBN). The au­
thors analyzedDBLP and Sina Weibo dataset. The similarities depend on the social,
behavioral interactions as well as on the contents involved in it.

Wang et al. [336] proposed a MapReduce­based cooperative particle swarm
optimization (MRCPSO). The experimental work involved 11 scalable optimization
problems. The experimental results showed that the proposed algorithm MRCPSO
outperformed its sequential counterpart in terms of execution time and the quality
of the solution.

2.4.7.2 Spark­based Journal papers

Qi et al. [337] proposed a parallel genetic algorithm based on Spark (PGAS). The
experimental work carried out with synthetic and real­world benchmarks presented
by Jia et al. [338] and Garvin et al. [339]. The results showed that the proposed
approach outperformed its sequential counterpart in both size and execution time in
almost all benchmarks.

Eiras­Franco et al. [340] implemented the parallel version of four traditional
feature selection algorithms, i.e., InfoGain, RELIEF­F, CFS, and SVM­RFE. The
study included seven high dimensional datasets, viz. Higgs, Epsilon, KDD99, Iso­
let,USPS,Poker andKDDB. The research outcomes demonstrated that the proposed
approach had the speed­up and efficiency in comparison with sequential approach.

Ramírez�Gallego et al. [341] proposed a parallelized version of the minimum­
redundancy­maximum­relevance method, called fast­mRMR for dimensionality re­
duction. The experimental work involved a comparison of CPU­based, GPU­based,
and parallel distributed execution performance. The study included real datasets for
a sequential version of fast­mRMR vs. mRMR, viz. Lung, NCI, Colon, Leukemia,
and Lymphoma. Performance comparison of CPU­ and GPU­based architecture
was executed with the help of a synthetic dataset. The distributed parallel compu­
tational environment was studied with ECBDL14, epsilon, and kddb datasets. The

72



Chapter 2 – Literature Review

experimental results showed that fast­mRMR outperformed the original mRMR.

2.4.7.3 Hadoop MapReduce­based Conference papers

Gemulla et al. [342] proposed an approach for large­scale matrix factorization with
distributed stochastic gradient descent (DSGD). The analyzed the Netflix competi­
tion dataset. They compared DSGD with its sequential counterpart. The outcomes
proved that the proposed approach is efficient, scalable, and fast.

Zhang and Sun [343] proposed a method for microblog mining using distributed
MicroBlog­Latent Dirichlet Allocation (MB­LDA). The experimental study in­
volved a microblog dataset originally from the Twitter dataset for comparative anal­
ysis of MB­LDA and distributed MBLDA. The observed results presented that the
proposed MB­LDA outperformed the baseline of LDA.

Thompson et al. [344] proposed a fast, scalable selection algorithm. The study
involved a synthetic dataset generated using the TeraGen program included in the
Hadoop distribution. The results showed the proposed method outperformed sev­
eral other alternatives.

Hu et al. [345] proposed a MapReduce enabled simulated annealing genetic
algorithm. The proposed approachwas the amalgam of the conventional GA and the
SA algorithm. The hybridization in the proposed algorithm led to maintain a higher
probability of getting the optimal global solution than traditional GAs. The research
work involved Traveling Salesman Problem (TSP) dataset [346]. The experimental
results indicated that the convergence speed of the proposed algorithm significantly
outperformed its traditional genetic rivals.

He et al. [347] employed a parallel feature selection using a positive approxi­
mation, called PSFPA. The experiment used Shuttle and Handwritten datasets [23].
The results demonstrated that the proposed algorithm was efficient to process large
scale and high dimensional dataset.

Hilda and Rajalaxmi [348] proposed an approach for feature selection using GA
for supervised learning through the K­Nearest Neighbor (k­NN) classifier. The ex­
perimental study used five real­world datasets. The experimental results indicated
that the Parallel GA produced high accuracy than other methods.

73



Chapter 2 – Literature Review

Kourid and Batouche [349] proposed an approach for feature selection, using
K­Means clustering combined with Binary Particle Swarm Optimization (BPSO).
The experimental work was carried out with two datasets of cancer RNA­seq gene
expression data (gastric cancer, ESCA (esophageal carcinoma)). The scalability
of the proposed method was validated with a synthetic dataset by duplicating the
genes of each dataset. The experimental results proved that the proposed method
outperformed the sequential approaches in terms of accuracy.

Alshammari and El­Alfy [350] proposed an approach for minimum reduct us­
ing parallel GA. The study utilized four intrusion detection datasets that are pub­
licly available, viz. Spambase, NSL­KDD, Kyoto, and CDMC2012. The outcomes
showed that the proposed approach reduced the execution time with a comparable
solution on reduct size.

Yu et al. et al. [351] proposed a MapReduce­based distributed keyword search
(DKS). The proposed method modeled the keyword database as a data graph. The
data graphwas partitioned intomultiple subgraphs fromwhich the candidate Steiner
tree was searched using map operation and later combined in reduce phase to gener­
ate the Steiner tree. The top­k keywords could be found my merging Steiner trees.

2.4.7.4 Spark­based Conference papers

Li et al. [352] proposed parallel multi­objective artificial bee colony (MOABC)
algorithm. The experimental study analyzed real­world datasets and showed that
MOABC performed efficiently for solving multi­objective optimization problems.

Hu and Tan [353] proposed an algorithm for feature selection to classify mal­
ware based on N­Gram partitioning. The experimental study involved malicious
files from the VX Heaven virus collection [354]. The outcomes proved the pro­
posed algorithm to be efficient and superior.

2.5 Discussion

The review work addressed the two research questions posed at the beginning of
Section 2.1. Research question Q1 is answered affirmatively because we could find
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261 studies where a majority of statistical and machine learning family of tech­
niques that are relevant to data mining tasks could be scaled up in a distributed and
parallel manner under the Hadoop and Spark frameworks. The reason could be that
all of them involved several vector­matrix, matrix­matrix, and matrix­vector multi­
plications, which are easily amenable for parallelization and distributed processing.

Research question Q2 is answered as follows: The techniques left out are either
not amenable to parallelization or not yet attempted because of lack of popularity
and/or wide applicability. Examples could be LASSO [355], ridge regression [356],
Linear discriminant analysis [357], Quadratic discriminant analysis [358], canoni­
cal correlation analysis [359], factor analysis [360], correspondence analysis [361],
conjoint analysis [362], and hierarchical clustering [363].

Various publication resources of this review and distribution of these are pre­
sented in Table 2.2. The review noticed that the highest number of papers were from
IEEE, followed by Elsevier and Springer. Figure 2.5 depicts an eagle­eye view of
the distribution of articles publisher­wise that has been considered in the current re­
view work. This illustrates that the IEEE has the maximum number of publications
followed by Elsevier, Springer, and so on. Figure 2.6 depicts the count of articles
from individual conference proceedings. It emphasizes that the highest number of
articles is from IEEE, followed by ACM and Springer. Similarly, Figure 2.7 depicts
the publisher­wise distribution of journal articles, which indicates Elsevier has pro­
duced the highest number of journal publications followed by Springer and IEEE.
The Figure 2.9 depicts the count of articles from individual journals that have been
surveyed. According to the count, the highest number of journals are published in
Information Sciences, Knowledge­Based Systems, and Neurocomputing, followed
by IEEE Transactions on Knowledge and Data Engineering, and so on.

The year­wise distribution of the reviewed papers with the categorization of
Hadoop MapReduce­based and Apache Spark­based is depicted in Figure 2.8. The
highest number of articles (i.e., 59) appeared in 2015, followed by 2014 and 2016
in the Hadoop MapReduce framework category. Similarly, in the case of Apache
Spark­based papers, the highest number of articles (i.e., 24) appeared in 2016, fol­
lowed by 2015.

Figure 2.10 depicts the distribution of the papers according to various data min­
ing tasks. It reveals that there is an almost equal share of classification and cluster­
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Table 2.2: Publication wise Reviewed Papers

Source No. of Journal Papers No. of Conference Papers Total No. of Papers
ACM ­ 17 17
Elsevier 46 7 53
IEEE 15 126 141
Springer 28 14 42
Taylor & Francis 4 ­ 4
Wiley 1 ­ 1
Others 1 2 3
Total 95 166 261

17, 7%

53, 20%

141, 54%

42, 16%

4, 2%
1, 0%

3, 1%

DISTRIBUTION OF PAPERS: PUBLISHERWISE

ACM

Elsevier

IEEE

Springer

Taylor & Francis

Wiley

Others

Figure 2.5: Publisher­wise distribution of Papers
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ing articles in horizontal scaling platforms using Hadoop MapReduce and Apache
Spark followed by ARM/pattern mining and so on.

50, 19%
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21, 8%
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Figure 2.10: Datamining task­wise paper distribution

Figure 2.11 depicts one step further in detail, giving the paper distribution, again
categorized on the computational framework, i.e., HadoopMapReduce and Apache
Spark with journal and conference distribution. It demonstrated that a maximum
number of publications have occurred in clustering followed by classification and
association rule mining task in Hadoop­based conference papers whereas, classifi­
cation task is followed by clustering in the case of Hadoop­based journal articles.
Similarly, the publications in the category of classification are followed by clus­
tering and association rule mining in the case of Spark­based conference articles.
Moreover, it depicts the total count of Hadoop­based articles in each data mining
task category that presents clustering is the most explored task, followed by the
classification, ARM, and so on. Similarly, the total count of Apache Spark­based
articles present classification is followed by clustering, ARM, and so on.

Figure 2.12 depicts the distribution of the papers according to different machine
learning techniques involved in various data mining tasks further categorized with
Hadoop and Spark article. It presents the distribution of papers in different ma­
chine learning techniques used for Association Rule Mining (ARM) / Frequent Pat­
tern Mining (FPM), Regression, Classification, and Clustering. It indicates some
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Figure 2.11: Distribution of papers: data mining task and computational framework­
wise

research has been carried out in Apriori and FP­growth and FP­tree for ARM or
FPM. The Apriori technique is the most widely used for ARM. BPNN and ELM
have been explored for regression, but overall the regression task has been less ex­
plored in Hadoop and Spark platform. The SVM, k­NN, and RF are the most used
techniques for classification, out of which the SVM is the most widely used tech­
nique for classification in both Hadoop and Spark platform. Similarly, the K­Means
algorithm is rigorously studied by the research community, followed by fuzzy clus­
tering. We can observe that the centroid­based clustering technique has fascinated
many researchers for its study.

We can figure out that the Apriori for ARM; SVM, K­NN for classification; and
K­Means for clustering are widely used in the MapReduce paradigm. It is due to
the inherent nature of the algorithm and the fact that the model can be developed
with partial data in a parallel and distributed manner.

The ‘Others’ mentioned in the ARM category represents all those articles not
utilizing Apriori, FP growth, or FP tree approach. They have used other approaches,
viz. parallel Genetic Algorithm (GA), GA with k­NN, High Utility Itemset (HUI)
miner, etc. The ‘Others’ mentioned in the Regression category represents all ar­
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ticles utilizing Support Vector Machine (SVM), Random Forest (RF), Stochastic
Gradient Descent (SGD) for Extreme Learning Machine (ELM), etc. The ‘Oth­
ers’ mentioned in the classification category represents all articles utilizing Ant
Colony Optimization (ACO), Genetic programming, Auto­Associative Neural Net­
work (AANN) with Particle Swarm Optimization (PSO), Social Network Analysis
(SNA) algorithms, etc. The ‘Others’ in the clustering category represents all arti­
cles utilizing Latent Dirichlet Allocation (LDA), Differential Evolution (DE), Self
Organizing Map (SOM), Artificial Bee Colony (ABC) algorithms, etc.

The Figure 2.13 depicts summarized information of the datasets analyzed in the
papers reviewed. It demonstrates that 68% of the articles reviewed have used only
real­world datasets, 11% of the articles have used only synthetic datasets, whereas
15% of the articles have used both real and synthetic datasets. This analysis indi­
cates the trend of the researchers for having a preference for real­world datasets over
a synthetic one. Figure 2.14 depicts the distribution of different types of datasets
used over Hadoop MR and Spark articles.

68%

11%

15%

6%

DISTRIBUTION OF DATASETS

Real-world / Benchmark

datasets

Synthetic dataset

Both Real and Synthetic dataset

Not mentioned

Figure 2.13: Distribution of papers: Dataset wise

These are the different descriptive insights we can draw from the review work.
The survey work led us to some research gaps those are presented in the following
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section in the open problems part.

Apart from the above, the review discovers the following insights:

v The advanced method of the ARM, such as Parallel High Utility Itemset
Miner (PHUI­Miner), yielded better results compared to its sequential coun­
terpart. Parallel Highly Informative K­ItemSet (PHIKS), and Complete Par­
allel Apriori (CPA) yielded better results compared to other parallel methods.

v The modified approaches such as parallel ELM (PELM), Parallel Auto­
Associative ELM (AAELM) yielded better results for the regression task with
respect to their sequential counterpart.

v The improved methods, viz. Parallel Incremental Extreme SVM (PIESVM),
Adaptive Distributed Extreme Leaning Machine (A­ELM*), and Parallel
Random Forest (PRF) produced better results while solving the classification
task in comparison with its serial version. The improved method Weighted
Ensemble classifier based on Distributed ELM (WE­DELM) yielded a better
result in comparison with parallel ELM.

v The ANN, with its different form along with Evolutionary optimization tech­
niques, can be employed for regression and classification due to the inherent
nature of ANN to be parallelized. The parallelization of ANN is achievable
as it involves vector­matrix, matrix­vector, or matrix­matrix multiplication.

v The modified method of FCM, called MRFCM, produced a better result than
its sequential counterpart. The improved parallel K­Means and IM­K­Means
approach yielded a better result in comparison to the parallel version of K­
Means.

v Many papers are found to experiment with the real­world dataset(s). The
synthetic dataset was used for the test of the scalability of the algorithms. The
synthetic datasets were generated through some data generators or replicating
the samples of small real­world datasets.
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v Neither the large­scale real­world datasets nor the benchmark datasets for
evaluating DM tasks in Big Data paradigm are available in the public domain.
Therefore, many researchers replicated the existing benchmark dataset many
times so as to get an artificial flavor of Big Data. This jugglery leads to the
inaccurate modeling of a DM task and ultimately rendering the model not so
useful.

v There are only a few works that have been carried out employing ML tech­
niques with Evolutionary optimization techniques.

2.6 Conclusion and Open Problems

The review work included 261 papers from 2009 to 2019. This chapter presents a
comprehensive review of data mining tasks with a distributed parallel computing
environment with horizontal scaling. The different data mining tasks on which we
categorize the review papers are Association Rule Mining / Pattern Mining, Re­
gression / Prediction, Classification, Clustering, Outlier Detection (OD) / Intrusion
Detection (ID), and Recommendation. We could see that Hadoop MapReduce was
the preferred choice over Apache Spark, as seen by the number of publications re­
viewed. One reason for this is the latter is relatively new.

The study concludes with some of the key open problems:

v There remains a lot of work to be carried out in Regression / Prediction in
both Hadoop MapReduce as well as Apache Spark environment.

v The Kernel density estimation has not been parallelized.

v The rough set approximation is scantily scaled out.

v A very few papers were found related to various NN architectures. The
different NN architecture such as GRNN, QRNN, PNN, WNN, RBFN,
Group Method of Data Handling (GMDH), Functional Link Neural Net­
work (FLNN), Single Multiplicative Neural Network (SMNN), Sigma­Pi­
Sigma Neural Network (SPSNN), Multi­Layer Morphological Neural Net­
work (MLMNN) is not explored at all, thus, resulting in it into a fertile ground
to explore.
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v Though a lot of work is reported in clustering, classification, and ARM, they
are carried out with the Hadoop MapReduce framework. Therefore, there is
also a great scope for conducting the research in the Apache Spark environ­
ment, i.e., with the in­memory computational framework, in order to reap the
benefits of the Spark environment.

v The least explored OD / ID, and Recommendation presents an open area to
conduct more research work.

v The unbalanced datasets and high dimensional datasets pose significant chal­
lenges in Big Data paradigm too. These areas need full exploration.

v Streaming data analytics, Social Network Analysis (SNA), and Social Media
Analysis (SMA) also pose challenges. There are very few papers on real­time
or quasi­real­time streaming analysis. These are open areas for future work.

v Scalable Advanced Massive Online Analysis (SAMOA) has not been ex­
plored at all for streaming data analytics.

v Soft computing hybrid models and their applications were explored, but not
as much as the field deserves.

v Evolutionary algorithms, in their stand­alone mode, were not explored for
solving the data mining tasks. These are again some open areas for future
research.

v A few papers were found on fuzzy logic­based techniques covering fuzzy
classification and fuzzy clustering. Their combination with optimization
techniques can be an area to explore further.

v SOM is scantily employed, thus rendering an open space for exploration.

v Deep learning is now a growing research area that can handle complex nonlin­
ear data with high dimensionality. It can be applied to solve DM tasks. Deep
learning architectures are computationally expensive due to the presence of
multiple hidden layers, where there is a scope or parallelization. They can be
explored with in­memory computing utilizing Apache Spark.
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v The Relevance Vector Machine (RVM), Independent Component Analy­
sis (ICA), Singular Value Decomposition (SVD), Latent Semantic Indexing
(LSI), One­Class SVM (OCSVM), Class Association Rule Mining (CARM)
techniques are not explored at all, thus, resulting into an open space for ex­
ploration.

v There are hardly any research papers on mining of spatial and temporal data,
as they pose numerous challenges due to their high dimensionality, which has
to be explored with respect to different DM tasks.

v It is also found that a few articles were published on GPGPU based vertical
parallelization usingMapReduce and Apache Spark. Therefore, this provides
a fertile ground for budding and future researchers.

v To the best of our knowledge, we came across only a few research papers hy­
bridizing horizontal parallelization with vertical parallelization, i.e., a cluster
of GPGPU based machines. Therefore, the cluster of GPGPU is an area to
explore.

v Surprisingly, Big Data visualization using MapReduce or Apache Spark is a
conspicuously rarely researched topic.

v In our current review work, we could include only a few articles based on
large­scale optimization algorithms implemented using Hadoop MapReduce
or Apache Spark frameworks. Hence, there is a vast scope for the researchers
to explore this exciting area.

v The absence of papers in banking, insurance, and finance sectors is conspic­
uous as far as the application domain of BDA is concerned.

The multiple research works that have been carried out after going through a
thorough survey of literature and finding gaps in it also require a literature survey
related to the proposed work. Those literature reviews are presented below.

For one­class classification, the following articles were studied: Ravi and Singh
[364] performed OCC using Auto­Associative Extreme Learning Factory (AAELF)
for bankruptcy prediction in banks, credit risk prediction, and phishing detection.
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Tax and Duin [365] proposed Support Vector Data Description (SVDD) for the de­
tection of outliers. Strackeljan et al. [366] demonstrated a fault detection system
using SVDD and a feature selection method for OCC. Another approach used for
OCC was the implementation of a One­class Support Vector Machine (OC­SVM)
for patient classification by Mourão­Miranda et al. [367].

For one­class classification using auto­encoder or auto­associative neural net­
work, the following articles were referred: Pandey and Ravi [368], where they have
proposed a model using PSOAANN for phishing detection in emails. Ravi et al.
[369] presented the classifying capability of PSOAANN in bankruptcy prediction
in banks.

The experimental work involved the Apache Spark environment, and it led to
the study of several research works related to the work, and they are as follows:
the study of an open­source distributed machine learning library, MLLib, presented
by Meng et al. [370]. MLI, an API for distributed machine learning proposed by
Sparks et al. [371]. Also, some application­oriented articles implemented with
Spark were studied, viz. Bharill et al. [298], where they have proposed a clustering
algorithm called Scalable Random Sampling with Iterative Optimization Fuzzy c­
Means algorithm(SRSIO­FCM)with Spark to handle the challenges associated with
Big Data clustering. Panigrahi et al. [325] have proposed a Hybrid Distributed
Collaborative Filtering Recommender Engine (HDCFRE) using Spark. McNeil et
al. [372] implemented Scalable Real­time Anomalies Detection and Notification of
Targeted Malware in Mobile Devices (SCREDENT) using Spark. Bello­Orgaz et
al. [373] surveyed the different tools for machine learning for social media data on
a Big Data paradigm using Spark for massive data processing.

The implementation of PECM led to the study of several articles on clustering.
Foremost the K­Means algorithm proposed by Macqueen [374] was referred. Sev­
eral articles implementing a parallel version of K­Means were studied, viz. [212],
[233], [242], [243], [245]. other centroid­based clustering approaches were studied,
such as the parallel k­median algorithm proposed by Ene et al. [240]. The parallel
version of the k­medoid proposed by Zhu et al. [251], and Jiang and Zhang [259].
Also, fuzzy c­means proposed by [216], [263].

Some other clusteringmethods were also studied, viz. the parallel density­based
clustering proposed by Han et al. [295], and Chen et al. [278]. Parallel grid­based
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clustering proposed by Chen et al. [278], and Gouineau et al. [299]. Articles imple­
menting clustering in parallel and distributed environment of Spark were referred,
viz. [290], [292], [297]. And finally, the sequential version of ECM proposed by
Song and Kasabov [375] was referred to conduct the work.

The work EGRNN++ was carried out after a strong literature review, which
includes the following articles. For the implementation of EGRNN++, which is the
parallel version of GRNN, proposed by Specht [376], was referred. The different
articles involving applications of GRNN that were studied are as follows. Exchange
rate forecasting employing GRNN by Leung et al. [377]. GRNN implemented
by Kayaer and Yildirim [378] for medical diagnosis of diabetes, for image quality
assessment by Li et al. [379]. Li et al. [380] implemented GRNN with a fruit fly
optimization algorithm for power load distribution prediction. Software reliability
prediction employed with GRNN byMohanty et al. [381]. Pradeepkumar and Ravi
[382] employed GRNN for forecasting financial time series volatility. Raj Kiran
and Ravi [383] employed GRNN for software reliability prediction. Kamini et al.
[384] implemented GRNN for the prediction of cash demands in ATMs. Ravi et al.
[385] employed GRNN for financial time series prediction.

The work PNN++ was also carried with a sound literature study, which includes
the article about PNN, which is proposed by Specht [386]. There are several arti­
cles spanning different application domains employing PNN that are referred to as
follows. Othman and Basri [387][ employed PNN for brain tumor classification;
Virmani et al. [388] for Breast density classification which has a significant as­
sociation with breast cancer; Sweeney et al. [389] for chromosome classification;
Lozano et al. [390] for wine classification; Mo and Kinsner [391] for power line
fault classification. In a novel application, Nishanth and Ravi [392] implemented
PNN for categorical data imputation. Ravisankar et al. [393] employed PNN for
financial statement fraud detection. Mohanty et al. [394] implemented PNN for
web­services classification. Ravi et al. [395] implemented a hybrid version of PNN
along with PCA, and the PNN was trained with a genetic algorithm for bank perfor­
mance prediction. Ravisankar et al. [396] employed PNN for the failure prediction
of dotcom companies. Nishanth et al. [397] implemented PNN for the prediction
of the severity of the phishing attack. Sundarkumar and Ravi [398] proposed PNN
for the classification of unbalanced datasets in the banking and insurance sector.
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Ghosh et al. [399] hybridized PNN with Restricted Boltzmann Machine in a hybrid
deep learning architecture for sentiment classification and reported the best results
for this hybrid compared to several other hybrids.

The work PRBFN has led to the study of several articles related to regression
and classification, which are mentioned in the Chapter 8. The parallel implementa­
tion of RBFN by De Souza and Fernandes [400] in a field programmable gate array
(FPGA) was also referred. Among the other referred articles, there were articles
related to parallel clustering, viz., parallel K­Means employing MapReduce frame­
work proposed by Zhao et al. [239], an improved version of parallel K­means using
MapReduce proposed by Liao et al. [242]. The K­Means++ [401] with optimized
initial cluster centers selection. The parallel version of K­Means++ proposed by
Bahmani et al. [402]. Bisecting K­Means [403], which is a combination of hierar­
chical clustering and K­Means clustering.

There are some related articles that are referred to for the completion of the
research work are mentioned in the respective chapters and not discussed here to
avoid repetition.
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Chapter 3

Parallel Distributed Hybrid
Regression Model

This chapter presents a proposed parallel distributed hybrid model in which the
amalgamation of the Auto Associative Extreme Learning Machine (AAELM) and
Multiple Linear Regression (MLR), performs Big Data regression. The next section
of the chapter presents an introduction to the current work. Section 3.2 presents the
proposed approach. The experimental setup is described in Section 3.3. Results and
discussion are presented in Section 3.4. The chapter is concluded in Section 3.5.

3.1 Introduction

With the emergence of SMAC (Social, Mobile, Analytics & Cloud) stack in Infor­
mation Technology, we are confronted with huge volumes of data coming at a high
velocity and from a variety of sources in various forms in almost all branches of
science, engineering, finance, and business. This has led to the crystallization of
the definition of what is known as Big Data comprising three Vs [404]. The data
is highly voluminous and exceeds the storage and computing capability of a sin­
gle machine. Hence, it requires a parallel distributed architecture for storage and
analytical purposes.

Voluminous datasets not only possess a massive number of records but also are
plagued by the curse of dimensionality of the feature space. Therefore, dimension­
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ality reduction of the feature space often becomes mandatory. Principal component
analysis (PCA) [405], [406] is often used as a method of dimensionality reduction in
many applications, such as image processing, pattern recognition, and signal pro­
cessing. But, the fundamental drawback of the PCA is that it assumes there is a
linear correlation among the features, also known as multi­collinearity. However,
when multi­collinearity is absent, one could suspect non­linear correlations among
the features. Therefore, researchers have shown keen interest in non­linear PCA
(NLPCA), which is a non­linear generalization of PCA and overcomes the afore­
mentioned drawback of PCA. Kramer [407] proposed an auto­associative neural
network for NLPCA. Baldi and Hornik [408] proposed Back Propagation Neural
Network (BPNN) for PCA.

In this chapter, we propose AAELM to perform NLPCA and extract the output
of the hidden nodes of the AAELM and teat them as Non­Linear Principal Com­
ponents (NLPCs), once the training was over. The literature review suggests that a
hybrid architecture comprising AAELM and Multiple Linear Regression (MLR) in
tandem for performing Big Data regression has not yet been reported. Therefore,
we extracted the NLPCs from the trained AAELM and fed them to MLR for regres­
sion purposes. Since we intend to exploit this hybrid architecture in the Big Data
paradigm, we analyzed two data sets, taken from theweb, using theHadoopMapRe­
duce architecture. The advantage of AAELM is that its training algorithm, apart
from being very fast and single­pass, is free from the drawbacks of the backprop­
agation algorithm used for training the traditional AANN. The points mentioned
above motivated us to propose a hybrid architecture AAELM+MLR.

In this chapter, we propose and implement the AAELM+MLR for Big
Data applications using MapReduce to improve the scalability and speed of the
AAELM+MLR. Moreover, as a prominent parallel data processing technique,
MapReduce [409], [410] can process the decomposable problems with huge
amounts of data that can effectively run in a parallel manner on a distributed sys­
tem and has been used in a variety of applications for its scalability, ease­of­use
and fault tolerance [411], [412], [413], [414], [415]. In training the AAELM, one
must remember that the most expensive computational part is a series of matrix
multiplication operations used in the calculation of the Moore­Penrose generalized
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inverse matrix. The matrix multiplication operation is decomposable, and the com­
putational cost can be reduced drastically by parallelizing using Mapreduce [416].

3.2 Proposed Approach

In this chapter implementation of MLR hybridized with AAELM in the parallel
distributed framework is presented for a regression problem. The next two sections
present an overall introduction to ELM and NLPCA, followed by the proposed ar­
chitecture.

3.2.1 ELM

Extreme learing machine (ELM) was proposed [417] as a faster alternative to the
extant single layer feed forward neural networks. ELM is a 3 layered neural net­
work, where the weights connecting the input and the hidden layers are assigned
randomly, while that between the hidden and the output layers are estimated as a
linear problem using Moore­Penrose inverse. Output produced by ELM is:

fL (x) =
h

∑
i=1

βiL ∗ g(wi.x + bi) (3.1)

where, β = [β1L,β2L, . . . ,βhL]
T is the output weight vector connecting the hidden

layer to the Lth output node; Wi is the weight vector connecting input nodes to the
ith hidden node; bi is the bias corresponding to ith hidden node. In the chapter, g is
sigmoid function; x is the record vector.

After transforming the input records into a sigmoid hidden layer matrix using
random weights and biases, the next step involves training, which involves estimat­
ing the weights between the hidden nodes and the output node. It is achieved by
solving the minimum norm least square solution to the following problem.

min
β ∈ RL×M

∥Hβ − Y∥2 (3.2)

Optimal solution to above problem is given by β = H+Y , H+ is the Moore
Penrose generalized inverse of matrix H, where β is minimum norm least square
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solution to the problem Hβ = Y , where H is the hidden layer output matrix.

H =

g(w1 · x1 + b1) · · · g(wh · x1 + bh)
... . . . ...

g(w1 · xn + b1) · · · g(wh · xn + bh)


and Y is the taining data target matrix

Y =

yT
1...

yT
n

 =

y11 · · · y1m
... . . . ...

yn1 · · · ynm


Whenever H is of full rank; H+ =

(
HT H

)−1
HT . In a rare situation, when H

is rank deficient, H+ can be calculated using Singular Value Decomposition [418].
ELM has universal approximation ability, and it maintains its ability with ran­

domly generated hidden nodes, as shown in theoretical studies [417]. It has an
excellent generalization performance as compared to a backpropagation based feed­
forward neural network [417].

3.2.2 NLPCA

NLPCA is a non­linear generalization of linear PCA. The principal components are
curves (non­linear), which are generalized forms of straight lines [419]. Non­linear
PCA can be achieved by using an auto­associative neural network, also known as
an autoencoder or replicator network. Initially, such an auto­associative neural net­
work is a multi­layer perceptron that performs an identity mapping, meaning that
the output of the network is considered to be identical to the input. However, in the
middle layer of the network achieves dimension reduction non­linearly through the
use of non­linear activation function. The nodes in this layer turn out to be the de­
sired non­linear principal components [407]. If there exists a non­linear correlation
between variables, then NLPCA can describe the data with greater accuracy than
the traditional linear PCA.
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3.2.3 Proposed AAELM driven NLPCA based regression

In this chapter, the proposed model is a hybrid model, wherein, the first phase in­
volves AAELM, and the second phase comprises MLR (see Figure 3.1).

AAELM consists of three layers, namely the input layer, hidden layer, and the
output layer, which performs identity mapping between the input and output layer.
The hidden layer output is treated as NLPCs. The generated NLPCs are fed to
MLR for prediction in Phase­II. Here the number of hidden nodes, a user­defined
parameter, is less than the number of input nodes.

Multiple Linear Regression

NLPCs along with the

actual output

Phase II

Input Output

Phase I:

AAELM

xn

x1’

x2’

xn’

x2

x1

Figure 3.1: Architecture of AAELM+MLR hybrid model

3.2.4 Algorithm for the Hybrid model

Training algorithm with training dataset
Phase­I
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1. Standardize the data matrix comprising only the features and not the depen­
dent variable.

2. The standardized data matrix (X ) is then converted into typed bytes format
(sequence format) using Mapreduce [420], [421].

3. Choose the number of hidden nodes, h, a value lying between 3 and d­1,
where d is the feature dimension of dataset.

4. Random feature mapping of input matrix into a non­linear sigmoid matrix
using MapReduce:

The matrix from step 2, X is multiplied with a random matrix, whose entries
are uniformly distributed between ­1 and 1. Then, h bias node values are
generated using uniform distribution U(­1, 1) and are added to each row of
the resultant matrix. After that, the sigmoid activation function is applied to
each entry of the matrix, resulting in the matrix H, which signifies the output
of the hidden nodes. The generated random matrix and bias values are saved
for the test data.

In this step, X is divided into smaller blocks, where a block refers to a matrix
having the same number of columns as X matrix but having very fewer rows
than the X. The number of rows in a block can be specified by the user. Map­
pers (MapReduce) perform multiplication of block with random matrix and
then add bias values to each row of the resultant matrix and subsequently, ap­
ply sigmoid function g(), to each entry of matrix (see Figure 3.2). The output
of Mappers is fed to the identity reducer, which produces the final output.

5. Then, HT H and HT X are computed using MapReduce.

Computation of HT H:

HT H = ∑n
i=1 HT

i Hi, where H is divided into n small matrices Hi, having
the same number of columns as H but smaller number of rows. Mapping
operation is performed as HT

i Hi. This mapping operation produces a matrix
with h×h dimension. Corresponding to this h×h matrix, h key ­ value pairs
of form (row_id, row_array) will be produced where row_id varies from 0 to
h­1 and row_array is the vector corresponding to the row_id. Corresponding
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to each row_id there is a reduce operation, which adds the rows element by
element corresponding to that row_id [421] (see Figure 3.3). Code for matrix
multiplication is available at GitHub [420].

Similarly, HT X is computed as follows:

HT X = sumn
i=1HT

i Xi

Here Mappers distribute data to reducers. Reducers perform the task of block
multiplication and addition. The summation method is similar to HT H.

Figure 3.2: Step 4 of Training Algorithm

6. The result obtained in the previous step is multiplied locally in a node in the
following way:

β =
(

HT H
)−1

HT X . As
(

HT H
)
is of order h×h and HT X is of order h×d

so that this computation can be easily done on a single node.

7. Compute H * β using MapReduce. H * β is the matrix comprising the pre­
dicted values of the output variable of the AAELM, which is the same as the
input variables themselves, as AAELM is auto­associative.
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Figure 3.3: Multiplication of HT H

8. Compute mean square error (MSE) for the predicted data.

9. Repeat the steps from 4 to 10 for the different number of hidden nodes. The
number of hidden nodes should vary from h = 3 to h = l ­ 1, where l is the
dimension.

10. Choose the number of hidden nodes for which the model gives the minimum
MSE.

Phase­II

11. Compute H by fine tuning the number h, in order to obtain minimum RMSE.
Compute HT H and HTY , where Y represents the target vector corresponding
to training dataset. Above computations are done usingMapReduce similarly
as demonstrated matrix computations in phase I.

12. Compute α =
(

HT H
)−1

HTY locally.

Algorithm for testing the trained model with a test set

1. Standardized test data matrix is multiplied with the random matrix, and then
bias values are added to each row of the result. Subsequently, the sigmoid
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function is applied to each entry of the resultant matrix. Let us denote it as
H_test.

MapReduce is applied to the above step, similar to step 4 of the training of the
hybrid model. Random matrix, bias node values, and the number of hidden
nodes are the same as used in step 11 of the training algorithm.

2. Multiply H_test withα obtained in step 12 of the algorithm for training hybrid
model to obtain the predicted result for test data.

3.3 Experimental Setup

Hadoop version 2.6.0 is used for the experiments. A cluster of 7 nodes is connected
through a 100megabit network using Ubuntu 14.04 platform. The replication factor
is 3, while the block size is 64MB.MapReduce is used for parallelizing the process.
The detailed hardware description of cluster is presented in Table 3.1.

Python 2.7.6 is used with Dumbo API 0.21.36 for Hadoop Streaming. It is a
python framework for working with Hadoop. It is mature, concise, and easy to
debug. It is suitable for complex jobs that may involve complex keys and in a
situation where multiple MapReduce steps are involved. It carries out the task of
serialization using typed bytes. It quickly reads sequence files. Dumbo programs
can be executed very efficiently using a single command line.

Table 3.1: Hardware specification of the cluster

Node type Node count CPU Clock speed RAM

Master 1 Intel(R)Core(TM)i5­
4200M 2.5GHz 8 GB

Slave 7 Intel(R) Core(TM) 2
Duo CPU E7500 2.93GHz 4 GB

Slave 1 Intel(R) Core(TM) 2
Duo CPU E7500 2.20GHz 8 GB

100



Chapter 3 – Parallel Distributed Hybrid Regression Model

3.4 Results and Discussion

In order to demonstrate the proposed approach, the hybrid model has analyzed two
datasets. The details of the datasets, results generated after analyzing the datasets
are presented in further sections.

3.4.1 Datasets Analyzed

The effectiveness of AAELM+MLR hybrid model is tested on the following
datasets,

(i) the data from an array of gas sensors involving different gas mixtures, and

(ii) Airline flight dataset.

The gas sensor dataset [422] was collected from UCI ML repository [423]. It
has 4208262 numbers of samples. The data corresponding to the Ethylene­COmix­
ture has been used in this chapter. The input data size is 1.071GB after converting
each entry to a floating­point variable. There are 16 features in this dataset, which
denote the value of sensor readings. The sensors respond to gas concentration, with
a sensitivity that is different for each gas type. Hence, the response of the sensor
is indeed correlated with the input gas concentration. These 16 sensor readings are
used as independent variables to predict the concentration of Ethylene gas. The
other variable, which is the concentration of carbon monoxide, is treated as an en­
vironment variable.

The Airline flight dataset is collected from http://statcomputing.org/dataexpo/
2009/. Six years of data from the year 2000 to 2005 has been considered for analy­
sis. Seven attributes have been selected for the work, which is as follows: (i) CRS
departure time, (ii) CRS arrival time, (iii) CRS elapsed time, (iv) Distance, (v) Tax­
i­out time, (vi) Departure­delay, (vii) Arival­delay.

Arrival­delay is the dependent variable, and the rest are independent variables.
The original data is transformed so that the CRS departure time and CRS arrival
time are converted into the minute format. The negative arrival and departure delay
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are excluded from the data. Data is standardized before using the proposed method­
ology. The total number of instances is 10024916. The input file size is 1.1 GB after
converting each entry to a floating­point variable.

3.4.2 Analysis of Results

The experiments are conducted using a 10­fold cross­validation framework. The
results of the experiments are presented as average MSE and MAPE in Table 3.2
and Table 3.3, respectively. The sensitivity analysis is performed by studying the
influence of the number of hidden nodes of the AAELM on the overall accuracy of
the AAELM+MLR hybrid. The optimal number of hidden nodes is 13 and 4 in the
case of Gas sensor dataset and air flight dataset, respectively.

Table 3.2: Average MSE Values over 10­Fold Cross Validation

Dataset MLR Hybrid t­statistic
Gas sensor array 0.001 0.0008 283.484
Airline flight 1.88 1.0000003 145.828

Table 3.3: Average MAPE Values over 10­Fold Cross Validation

Dataset MLR Hybrid t­statistic
Gas sensor array 4.707 4.263 14.208
Airline flight 8001.799 107.437 168.699

It is clear from Table 3.2 and Table 3.3 that the hybrid model outperformed the
MLR model on both datasets in terms of both MSE and MAPE. This is because
standalone MLR cannot account for the non­linear relationships among the input
features. The proposed hybrid model not only models the non­linearity in the data
but also generates NLPCs in the form of hidden nodes outputs, which are, in turn,
fed as input to MLR. The t­test performed at a 1% level of significance to figure
out if the results are statistically significant, indicating that the hybrid is indeed
statistically superior to MLR (see Table 3.2 and Table 3.3).
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3.5 Conclusions

The proposed work is a novel application of AAELM towards performing NLPCA
and then non­linear principal component regression with the help of MLR for Big
Data regression analysis under the MapReduce paradigm. The experiments con­
ducted and the statistical significance test performed demonstrates that the hybrid
AAELM+MLR model outperforms the standalone MLR model in terms of both
MSE and MAPE.
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Chapter 4

Parallel Distributed One­class
Classifier

This chapter presents the proposed parallel distributed one­class classifier. The next
section of the chapter presents an introduction to the current work. Section 4.2
presents the proposed approach. The experimental setup is described in Section 4.3.
Results and discussion are presented in Section 4.4. The chapter is concluded in
Section 4.5.

4.1 Introduction

A credit card is a payment card provided by every bank to eligible customers (card­
holders) to make day­to­day transactions. A cardholder can pay for goods and ser­
vices without having money in his account at that particular moment and can pay
back to banks at a later point in time. The legitimate transactions made by the card­
holder provide a pattern of his/her expenditures. If a card is stolen or accessed by
some fraudsters, the transactions show an abnormal expenditure pattern, and such
a transaction is called a fraudulent transaction. But, compared to large voluminous
legitimate transactions, these types of transactions are relatively rare. Therefore, the
identification of such fraudulent transactions is quite a complex task, and it is a part
of fraud analytics. Due to the complexity involved in fraud analytics, identifica­
tion of fraudulent transactions always has been an interesting research problem for
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banking and financial industries, research communities, and academia. Fraud ana­
lytics can be achieved using different data mining tasks like classification, outlier
detection, etc.

Classification can be performed in various ways viz. binary, multi­, and One­
Class Classification (OCC). Binary classification is the process of classifying a set
of samples into two classes. Similarly, the multi­class classification is used to clas­
sify a sample into three or more classes. In the case of OCC, there is a sufficient
amount of samples available for one class, whereas samples for other classes will
be rare. In this case, some rare samples do not belong to any of the known classes.
Some examples of rare events are a failure of a nuclear plant, credit card fraud,
network intrusion, etc. Hence, whenever the normal/regular samples are present in
abundance, and the targeted event is scarce, a one­class classification approach can
be employed to detect such a rare event.

In this study, OCC has been employed for credit card fraud detection in the Big
Data framework. Big Data can be attributed using 4 V’s viz. Volume, Velocity,
Variety, and Veracity [424]. Volume refers to a massive amount of data. Veloc­
ity implies how fast data are generated. Variety attributed to various formats of
data. Finally, Veracity represents the accuracy of the data. In the case of credit card
transactions, every bank deals with a huge amount of credit card transactions every
hour. Here, a huge amount refers to volume, and the number of transactions per
hour implies velocity. So, credit card transactions can be attributed to two V’s of
Big Data, i.e., volume and velocity. Here the study has relied upon one­class classi­
fication. Since there is a scarcity of fraudulent credit card transactions and a binary
classification approach needs sufficient amount of historical data for both classes
like legitimate and fraudulent, the work has extended one­class classification model
proposed by Paramjeet et al. [425] in Big Data environment using Apache Spark
framework for credit card fraud detection. Henceforth, “Apache Spark” is referred
to as “Spark” only.

In this chapter, the parallelization of a hybrid architecture involving Particle
Swarm Optimization (PSO) and Auto­Associative Neural Network (AANN) has
been proposed, which is referred to as PSOAANN architecture. The PSOAANN
architecture was proposed by Paramjeet et al. [425]. In this chapter, the AANN
is implemented in a parallel manner over a Spark standalone cluster for one­class
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classification. The weight update steps using PSO is implemented in a parallel
manner in all the partitions of data where the update of particles takes place in a
parallel manner.

4.2 Proposed Approach

In this work (PSOAANN) is implemented in a parallel, distributed manner where
the weights are updated by particle swarm optimization. The next two section
presents an overall introduction to PSO and AANN, followed by the proposed ar­
chitecture.

4.2.1 Particle Swarm Optimization (PSO)

PSO, developed by Eberhart and Kennedy [426] is a population­based optimization
algorithm. It is a bio­inspired algorithm that mimics the behavior of a flock of
birds or a school of fish in search of food. PSO implementation is easy due to
the tweaking of a few parameters. PSO generates a solution by sharing knowledge
mutually among all the particles present in the population to achieve the goal.

The process of PSO involves two basic steps. First, an update of the velocity of
a particle. Second, the update of the position with the help of updated velocity of
the particle. The two equations are given below:

V i+1
d = w∗V i

d + c1 ∗ ri
1 ∗
(

Pg
d − xi

d

)
+ c2 ∗ ri

2 ∗
(

Pl
d − xi

d

)
(4.1)

xi+1
d = xi

d + V i+1
d (4.2)

where V i
d is the velocity of the particle at the instant of ith iteration i.e. old

velocity,V i+1
d is the velocity of the particle at the instant of (i+1)th iteration i.e. new

velocity, Pl
d is the best position travelled through a particle, Pg

d is the best position
travelled through all the particles, xi

d and xi+1
d are the positions of a particle at the

instant of ith iteration and (i+1)th iteration respectively. The subscript d is the dth

dimension of the data object. The variablew is the inertia weight value, c1 and c2 are
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two predefined positive constants, r1 and r2 are random numbers generated through
uniform distribution U(0, 1). The flowchart for PSO is depicted in Figure 4.1.

The equaiton for velocity update i.e., Equation (4.1) in PSO has three compo­
nents, (i) inertia, (ii) personal influence, and (iii) social influence. The different
components are shown in following equation.

V i+1
d = w∗V i

d︸ ︷︷ ︸
inertia

+ c1 ∗ ri
1 ∗
(

Pg
d − xi

d

)
︸ ︷︷ ︸

social in f luence

+ c2 ∗ ri
2 ∗
(

Pl
d − xi

d

)
︸ ︷︷ ︸

personal in f luence

• inertia: It ensures the particle to move in the same direction and with the
same velocity.

• social influence: It persuades the particle to follow the best neighbor’s direc­
tion.

• personal influence: It improves the individual particle in the search space.
It makes the particle return to a previous position, better than the current po­
sition if it happens to be. It is a conservative approach by the particle to find
the best position.

The above three components influence the direction of movement of the parti­
cles towards the optimal position. The particles move step­wise towards the opti­
mum and converge to it. The Figure 4.2 shows how the particles are influenced by
the different factors while merging towards the optimal value.

4.2.2 Auto­Associative Neural Network (AANN)

AANN, developed by Kramer [407], is a variant of the neural network where the
number of nodes in the input layer is the same as the output layer. Thus, it is named
as auto­associative. The proposed model of Kramer contains three hidden layers
viz. mapping layer, bottle­neck layer, and de­mapping layer. The AANN is a su­
pervised model where the inputs are compared against the outputs of the model.
Thereupon, the error between inputs and outputs is optimized.

1https://www.slideshare.net/rkmohammadi/particle­swarm­optimization­pso/
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Figure 4.1: Flowchart for PSO
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4.2.3 PSOAANN: Proposed architecture

Paramjeet et al. [425] proposed PSOAANN, which comprises three layers, i.e.,
input, hidden, and an output layer. The input and output layers contain an equal
number of nodes that is to represent the same variables in the input as well as the
output layer. The number of hidden nodes is specified by the user. Each input node
of the input layer is connected to all the nodes of the hidden layer. Similarly, each
hidden node, in turn, is connected to all nodes of the output layer. The Sigmoid
activation function is used in the hidden and output layers [425].

At the end of the training phase, the nodes in the output layer contain the per­
turbed values of the original input variables. In other words, the PSOAANN is
non­linearly transforming the original set of input variables into a set of perturbed
values. There are well­known drawbacks in the back­propagation algorithm, such
as slow convergence and entrapment in local minima. To overcome these draw­
backs, we have used a swarm intelligence technique, PSO, which is an evolutionary
approach for weight update, instead of the back­propagation.

Figure 4.3 presents the architecture of PSOAANN, which depicts the training
and test modules of PSOAANN. Themean squared error (MSE) is considered as the
error function. The advantages of using a three­layered AANN for one­class clas­
sification over the five­layered architecture of AANN [407] are decreasing compu­
tation time and the associated complexity.
The working procedure for PSOAANN is as follows:
Step 1: Training phase of PSOAANN algorithm:
Specify the required number of hidden nodes. Initialize randomly the weight values
between the input and the hidden layers (W) and also between the hidden and the
output layers (W′) using uniform distribution in the range [5,5). The PSOAANN
model is trained with negative class or majority class samples (i.e. legitimate credit
card transactions) only. The input nodes take the normalized input which is calcu­
lated as below. The output nodes contain the input variables as the target variables
thereby bringing in the auto association concept.

xnormalized
dk =

xdmax− xdk

xdmax− xdmin
(4.3)
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Figure 4.2: Movement of the particles under the influence of inertia, social and per­
sonal influence in PSO1
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Figure 4.3: Architecture of hybrid model of PSOAANN
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where, xdmax, xdmin are the maximum and minimum value of the dimension ‘d’
in the input data object and xdk is the input value of dimension ‘d’ of kth input object.

Step 2: Compute x̂dk as follows: xdk is the actual input and xdk is the predicted
input. Let ‘m’ be the number of nodes in the both input and output layer; ‘n’ be the
number of nodes in the hidden layer. The predicted output is calculated as follows.
Computation at Hidden layer for each hidden node:

The input value is multiplied by the weight values ‘W’ between the input and
hidden layer is given by (H j):

H j =
m

∑
k=1

xdk ∗ wk j (4.4)

where, j = 1 to n, for n hidden nodes; xdk is the input value of dimension ‘d’ of kth

input object and wk j is the weight from kth input node to jth hidden node.
Then sigmoid function is applied to H j, given as below.

S
(
H j
)
=

1
1 + e−H j

(4.5)

where, H j is given by Equation (4.4).
Computation at Output layer for each output node:

The output of sigmoid function at hidden layer (S(H j)) is multiplied by the
weight values W′ between the hidden and output layer is given by (Oi):

Oi =
n

∑
j=1

S
(
H j
)
∗ w ji (4.6)

where, i = 1 to m, for, m output (= input) nodes, S(H j) is given by Equation (4.5)
and w ji is the weight from jth hidden node to ith output node.

Then sigmoid function is applied to Oi, given as below:

S (Oi) =
1

1 + e−Oi
(4.7)

where, Oi is given by Equation (4.6).
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As the sigmoid function results in a predictive value, x̂dk in [0, 1], which is
compared with the normalized input, xdk that results into the Mean Squared Error
(MSE).

Step 3: Compute error measure (MSE) E as follows:

E =
1

mn

m

∑
k=1

n

∑
d=1

(x̂dk− xdk)
2 (4.8)

Step 4: The MSE is optimized using PSO by updating all weights. The user­
defined parameters in Equation (4.1) are considered as, inertia weight = 0.9, c1 =
c2 = 2.

Step 5: Repeat Steps 2 to 4 until convergence is achieved or the max number of
iterations is completed.

Step 6: The Testing phase of PSOAANN algorithm:
The PSOAANNmodel was trained on negative samples. Themodel learns the char­
acteristics of samples belonging to the majority class. The objective is to minimize
the MSE. When the model was properly trained, it was tested on positive samples,
i.e., minority class or fraudulent transactions. The model will produce larger MSEs
at the testing time compared to the training phase. Pattern classification is achieved
at the test phase by computation of relative error for each of the features present in
the input and output data. In this case, the outputs are approximations of inputs. If
the relative error is having a larger value than a threshold value for all the input fea­
tures, then a sample is considered to belong to the positive class. Here, the threshold
value is specified by the user, and we have taken it as 0.05. Otherwise, the sample
is identified to belong to the negative class.

Relative Error =
|x̂dk− xdk|

xdk
(4.9)
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The classification rate is computed as

Classi f ication rate =
No. o f transactions classi f ied as Fraud
No. o f transactions classi f ied as Fraud

∗ 100 (4.10)

The training of PSOAANN falls under both unsupervised and supervised learn­
ing. It is unsupervised because we do not provide the class or output variable infor­
mation to the AANN during training. The input variables are mapped onto them­
selves. It is supervised because the weights of AANN are updated by PSO, where
the fitness function of the particles viz., MSE, is minimized. Therefore, the PSO­
based training algorithm provides supervised learning. The concise algorithm for
PSOAANN is presented in Algorithm 1.

4.3 Experimental Setup

The experimental setup consists of a standalone Spark cluster using the local file
system as the storage system and Apache Zeppelin as an editor. The Spark cluster
comprises 9 worker nodes and a master node running the driver program. All the
10 nodes had the same configuration, i.e., Intel® Core™ i7­6700 CPU@ 3.40GHz
with 8 logical cores. We allocated 24 GB of memory to worker nodes and 28GB of
memory to the master node. Out of 8 logical cores, we allocated 6 logical cores in
all ten nodes.

The model was executed in Spark 1.6.1 and Apache Zeppelin 0.5.6. The best
execution time was achieved by tweaking the memory used by the executors in each
worker nodewith the right number of data partitions. The data locality was achieved
by using the local file system, thus improving the performance in execution time.

4.4 Results and Discussion

The number of credit card transactions is growing day­by­day rapidly. This problem
of credit card fraud detection can be considered as a Big Data problem because of
the following reasons. This growth leads to a high Volume of data. The speed of
credit card transactions results in a high Velocity of the generation of credit card
transaction data. In general, credit card transaction data is structured. Still, we
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Algorithm 1: Algorithm for PSOAANN
Input: Specify the number of hidden nodes. Initialize random weight

values ‘W’ between the input and the hidden layers and also
between the hidden and the output layers ‘W′’ using a uniform
distribution. The min­max normalized data from the majority class
is used for the training of the model. The model is tested with
normalized data from minority class. For PSO, the user­defined
parameters are as inertia weight = 0.9, c1 = c2 = 2.

Output: ‘Classification rate’ which is the number of transactions
identified to be fraudulent out of all the fraudulent transactions.

Data: data distributed in partitions
1 Training phase of PSOAANN algorithm:

The normalized training data is fed to the nodes in the input layer of
AANN, where the number of nodes in the input layer is the same as the
number of features, which again is the same as the number of nodes in the
output layer.

2 The normalized input data is multiplied by the weight values ‘W’ and its
summation is calculated at each hidden node. The value computed is
given by H j where, j = 1 to n, for n hidden nodes.
Then sigmoid function is applied to H j.
The output of sigmoid function at hidden layer, S(H j) is multiplied by the
weight values W′ is given by (Oi), where, i = 1 to m, for, m output (=
input) nodes.
Then sigmoid function is applied to Oi
The sigmoid function results in a predictive value, x̂dk in [0, 1].

3 Compute error measure MSE by comparing x̂dk with the normalized input,
xdk.

4 The MSE is optimized using PSO by updating all weights. The PSO was
executed with specified user­defined parameters.

5 Repeat Steps 2 to 4 until convergence is achieved or the maximum number
of iterations is completed.

6 The test phase of PSOAANN algorithm:
Input the normalized test data to the trained model. Compute MSE.
Compute relative error for each of the features present in the input and
output data.

7 If the relative error is having a larger value than a threshold value for all
the input features, then a sample is considered to belong to the positive
class. Otherwise, the sample is identified to belong to the negative class.

8 The performance of the classifier is measured by computing classification
rate.
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can make a better detection of a fraudulent transaction if we include the profile
information of the cardholder and the transaction into the fraud detection model.
The inclusion of profile information incorporates the Variety feature of the BigData.
The portfolio data are not always complete, which can play a significant role in the
prediction. The Veracity dimension refers to the biases, noise, and uncertainty in
data. The credit card transactions dataset is a highly biased one, as a fraudulent
transaction is a rare occurrence. Thus, resulting in the veracity or uncertainty in the
data.

The details of the datasets, results generated after analyzing the datasets are
presented in further sections.

4.4.1 Datasets Analyzed

We experimented with credit card fraud dataset i.e., ccFraud dataset [209]. The
ccFraud dataset has a high volume of transactions. It has been analyzed with a par­
allel distributed processing environment of Apache Spark. This dataset is a snapshot
at a particular instant of time for processing, as there is non­availability of credit card
dataset having a real­time inflow of transactions in the public domain. The ccFraud
dataset is a highly unbalanced dataset with only 5.96% of fraudulent transactions,
rendering the veracity in the data.

The ccFraud dataset contains ten million samples with 9 features. In the pro­
posed model, 7 features have been considered to train the PSOAANN model. The
feature “custID” has been discarded since it contains unique values in all samples,
which will disturb the generalization of patterns. The class variable “fraudRisk”
is also not provided at the time of training a PSOAANN since the model is to be
trained with only one class, i.e., negative samples.

4.4.2 Analysis of Results

The current literature does not have any experimental result with credit card data set
in the Apache Spark or MapReduce distributed environment. So our result could
not be compared with any other result to confront.

The dataset is having 94.04% of legitimate or genuine credit card transactions
and only 5.96% of fraudulent transactions. Hence the dataset is highly unbalanced,
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yielding to the complexity involved in the classification task. Without going for un­
dersampling or oversampling of the biased data, we have experimented with one­
class classification using legitimate transactions only and later tested the perfor­
mance of the model by the fraudulent transactions.

The training of the PSOAANN model was completed with 30 runs where each
run is of 20 iterations. The computational time for each iteration is about 51sec on
an average. The model was dependent on the evolutionary algorithm, PSO, which
uses a random seed. Every run is dependent on the random seed, thus producing
varying results for different runs. Hence, in order to nullify the effect of randomness
caused, we ran the model for 30 times. The execution time for each run is observed
to be, on average, about 17m 05sec.

The AANN had three­layered architectures with six nodes in the hidden layer.
The weights between input and hidden layer, as well as hidden and output layers
are initialized using uniform distribution in the range of [−5,5). The MSE calcula­
tion resulting from AANN was minimized by PSO. The objective function was to
minimize the MSE between the actual input and predicted output. PSO was used to
minimize the MSE. The convergence plot for mean MSE value over 30 runs versus
20 iterations is depicted in Figure 4.4.
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Figure 4.4: Mean MSE convergence plot
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We had conducted several experiments with different PSO parameters and found
that the inertia weight w = 0.9 gives the best result. We also varied the values of c1
and c2 so that their summation equals 4 and with several experiments, it is found
that c1 = c2 = 2 yields a better result. Incidentally, many research papers e.g., Bansal
et al. [427], Maheshkumar et al. [428] support the values of c1 and c2 to be 2 for
producing a superior result. Bansal et al. [427] describe that for minimizing error,
the best strategy for inertia weight is to take a constant value for it. In our case, it
is found to be the value 0.9, which produces a better result.

The classification rate of the above runs was in the range of 85% to 95%. The
statistical inferences are as follows. The minimum value of Classification Rate
(CR): 85.89%, maximum value of CR: 95.312%, arithmetic mean of CR: 89.16%,
median of CR: 88.645%, mode of CR: 87.16%, and standard deviation: 2.67%.

The median of CR being 88.64% indicates that for 50% of the runs, CR lies
above 88.64%. The arithmetic mean lies on the right side of the median at 89.16%,
indicating that the data is right­skewed. The mode of CR at 87.15% indicates more
chances to get 87% of the classification rate. The standard deviation of 2.67%
clearly shows that the observations for CR are closely placed, and hence the al­
gorithm yielded a stable result.

The proposed parallel approach uses Apache Spark for the parallelization of
datasets in a distributed clustered computation. In addition to that, we have im­
plemented the parallelization of the algorithm for the AANN. The implementa­
tion involved parallelization of computations in the AANN in training as well as
the test phase of the model. Each instruction in AANN is carried out in a par­
allel manner over multiple worker nodes in the Spark cluster. The weight update
scheme in AANN using PSO is also parallelized in all the worker nodes. The whole
model could not be constructed in a single system, as the transaction volume is large
enough to fit in the memory of a single system. Hence, the speedup and efficiency
measure could not be computed due to the lack of serial computation of the algo­
rithm on a single machine.
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4.5 Conclusions

In this chapter, a hybrid architecture has been employed involving particle swarm
optimization (PSO) and auto­associative neural network (AANN) to get a solution
for one­class classification (OCC) in a Big Data paradigm in a SPARK cluster. In
this work, we parallelized AANN and PSO with the achievement of an average of
89% true classification of the credit card fraud transactions. By the inclusion of
portfolio data, the variety and veracity can be incorporated, which is identified to
be a problem area.
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Chapter 5

Parallel Distributed
Incremental One­pass
Clustering Method

This chapter presents our proposed parallel distributed incremental clustering ap­
proach. The next section of the chapter presents an introduction to the current work.
Section 5.2 presents the proposed approach. The experimental setup is described
in Section 5.3. Results and discussion are presented in Section 5.4. The chapter is
concluded in Section 5.5.

5.1 Introduction

Clustering is the process of assembling objects having similarity in some aspect in
the same group. There are several types of clustering methods viz. Centroid­based
(partition based) clustering methods [374], Connectivity­based clustering (Hierar­
chical clustering) Methods, Agglomerative Approach [429], Divisive Approach
[430], Density­based Clustering Method [431], Grid­based Clustering Method
[432] and Model­based method [433].

The algorithms belonging to these methods are iterative in nature, i.e., mak­
ing several passes over the data samples, thus rendering it unsuitable for Big Data
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Analytics (BDA).
In centroid­based clustering methods, clusters are delineated by a central vector,

called the centroid of the cluster, which may not inevitably be an element of the
dataset. The distance of the data points are calculated from the centroids of all the
clusters, and the data point belongs to the cluster with the minimum distance. These
are iterative methods, which constitute several passes over the data.

The density­based clustering method searches for the dense regions in the data
space. It differentiates different density regions, and the data points within a given
locality are considered to belong to the same cluster.

The grid­based clustering method divides the data space into a specific number
of cells to construct a grid­like structure. Then, selecting dense regions from the
cells in the grid structure results in the clusters.

All the clustering approaches mentioned above have shortcomings to handle
large­sized data with faster execution. Either they have the curse of dimensionality,
or they are multi­pass algorithms, which render them inefficient for large datasets.
Being online, the Evolving Clustering Method (ECM) can handle a stream of data
while the clustering process goes on. Thus, the clustering process evolves with the
incoming data points. Being one­pass and evolving in its approach, the ECM is
suitable for large­sized dataset [375].

The afore­mentioned feature has provided a firm motivation for implementing
a parallel version of ECM to handle massive datasets efficiently.

5.2 Proposed Approach

The proposed Parallel Evolving Clustering Method (PECM) is implemented in
Apache Spark computational framework with distributed data storage in HDFS.
Thus, the PECM algorithm executes in a parallel, distributed manner.

5.2.1 The Evolving Clustering Method (ECM) Algorithm

The algorithm of ECM is a distance­based clustering technique, which uses Dthr, a
clustering parameter, which is the threshold value for similarity index. A sample
point belonging to a cluster which is the farthest from the cluster center should be
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less than or equal to Dthr, the threshold value. Dthr influences the count of clusters
that the algorithm yields. The ECM is presented below:

Step 1: Initialize the first cluster C1 with the first data point from the input
dataset and its position is considered as the cluster center Cc1, for the cluster C1

and the radius of the cluster C1 is Ru1, which is set to a value 0.
Step 2: If the analysis of entire samples from the dataset is completed then the

clustering process comes to an end. Else, the present input instance, xi, is considered
and the normalized Euclidean distances d(i, j), between this instance and the cluster
centers Ccj of all n already existing clusters,

d (i, j) =
∥∥xi − Cc j

∥∥ (5.1)

where j = 1, 2, 3, . . . , n, are evaluated. Here d(a, b) is the normalized Euclidean
distance between the two q­dimensional vectors a and b and are defined as follows:

∥a − b∥ =

(
q

∑
i=1
|ai − bi|2

)1/2/
q1/2 (5.2)

where a,b ∈ Rq.
Step 3: The distance d(i, m) between a sample xi and a cluster center Ccm where

Ccm is the center of a cluster Cm with radius Rum is defined as follows:

d(i,m) = min
j

d(i, j) = min
j

(∥∥xi − Cc j
∥∥) (5.3)

where, j = 1,2, . . . ,n and if d(i,m)≤ Rum.
Then the current sample xi is a member of the cluster Cm. On this occasion, no

new cluster is formed. Also, no existing cluster is modified. The algorithm then
goes back to Step 2. Else,

Step 4: The extended distance s(i, j) between sample xi and cluster center Ccj
is evaluated by adding the distance value d(i, j) and radius Ruj of cluster Cj.

s(i, j) = d(i, j) + Ru j (5.4)

where j = 1,2, . . . ,n and then choosing the cluster Ca with the minimum value s(i,
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a):
s(i,a) = d(i,a) + Rua = min

j
s(i, j) (5.5)

where j = 1,2, . . . ,n.
Step 5: If s(i,a) > 2Dthr, the sample xi cannot be a member of any existing

clusters. A new cluster is formed asmentioned in Step 1. The algorithm then returns
to Step 2. Else,

Step 6: If s(i,a) ≤ 2Dthr, the cluster Ca is modified by relocating its center,
Cca, and enlarging its radius value, Rua. The modified radius Runew

a is assigned the
value equal to s(i,a)/2 and the new center Ccnew

a is positioned on the line joining
input vector xi and the former cluster center Cca so that the sample point xi is at a
distance of Runew

a from the newly formed center Ccnew
a . The algorithm then returns

to Step 2.

5.2.2 The PECM Algorithm

The PECM algorithm is a parallel implementation of the ECM algorithm. The
PECM algorithm follows below:

Required: The dataset D has to be uploaded to HDFS for distributed storage.
The dataset is normalized using min­max normalization.

Step 1: The data is divided into a specified number of partitions in the dis­
tributed storage to make the parallel execution efficient.

Step 2: The ECM algorithm is executed in all the partitions of the dataset, i.e.,
the number of instances of ECM is the same as the number of partitions, running
in parallel. The different partitions of the dataset produce clusters the same as the
number of classes for a given Dthr value.

Step 3: The sub­clusters are collected at the master node from each partition
of data and merged in a parallel manner. The merging process is executed over the
worker nodes in a parallel manner with the partitioning of sub­clusters, i.e., the sub­
clusters are divided into partitions, and each partition produces clusters the same as
the number of classes. The merging process is carried out with a parallel merging
threshold. These clusters are collected andmerged in themaster node, whichwe call
the serial merging with a serial merging threshold, thereby producing the required
number of clusters.
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The workflow of PECM is depicted in Figure 5.1.
The map­reduce operation in Spark is executed with transformation and action

operations. The PECM is executed in a parallel manner by mapping it to all the
partitions of the dataset by a map operation e.g.

val clusterCentersRDD = partitionedData.mapPartitions(ECM)
where, the partitioned data is represented with partitionedData and ECM is the

function passed to the mapPartitions function.
Then the reduce operation collects all the sub­clusters formed in each partition

of the dataset. The reduce operation is carried out with collect action operation e.g.
val clusterCenters = clusterCentersRDD.collect()
Here, all the cluster centers are collected in clusterCenters.
According to Step 1, initially, the dataset is divided into a number of partitions

across the worker nodes, i.e., the data is stored in the HDFS spanning over the
worker nodes. The partition number is chosen to be high enough using a trial and
error method to reduce the latency. The count of ECM instances running in parallel
is the same as the number of partitions of the dataset. In Step 2, depending on the
Dthr value, a different number of sub­clusters are formed in each partition, which is
the output of each instance of ECM.

Then, the sub­clusters are collected in the master node. The high number of par­
titions entails a high number of sub­clusters resulting from a high number of ECM
instances running in parallel. Therefore, the situation warrants a parallel merging
phase.

In the parallel merging phase, firstly, the collected sub­cluster centers are par­
titioned at the master node and are distributed over the worker nodes. Secondly, a
merging process is executed on each partition of sub­cluster centers as follows. Two
sub­clusters aremerged if the distance between their centers is within a pre­specified
merging threshold value. This process results in a new group of sub­cluster centers
which are collected at the master node.

These new sub­cluster centers are then merged at the master node (which is
called the serial merging phase) so that the final desired number of clusters is
achieved.
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Start

Input data
from HDFS

Pre­process the dataset

Start Dthr with 0.5 and decrement it by 0.1 so that the
number of sub­clusters formed in each partition is the

same as or less than the number of classes in the dataset

Parallel and distributed execution of ECM
on n partitions of dataset with a given Dthr

ECM1 ECM2 . . . ECMn

Merge all the sub­clusters employing paral­
lel merging process (Step 3 in the algorithm)

Collect the newly formed sub­clusters at the
master node and merge them using a serial
merging process. (Step 3 in the algorithm)

Report the number
of clusters formed

End

Figure 5.1: Execution flowchart for PECM
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In summary, the proposed PECM comprises (i) running as many instances of
ECM in parallel as the number of partitions effected on the data (ii) a merging pro­
cess involving a parallel phase at worker nodes and a serial phase at the master
node in tandem. We observed that, without the invocation of the merging process,
the parallel and distributed version of ECM could not be developed. In other words,
the merging process helps PECM to reduce the huge number of sub­clusters formed
of the data at various worker nodes. We believe that the proposed novel merging
process is an essential contribution to the literature of parallel incremental clustering
techniques.

It may be noted that the total count of the clusters produced by the proposed
PECM algorithm is the same as the number of class variables. If the class variable
is not present in the dataset, then we can start with a random Dthr value and find the
Dunn Index [434] of the clusters formed in each partition. Then, the sub­clusters
from each partition with the highest Dunn Index value obtained by varying the Dthr

value will be collected at the master node for the serial merging process. Another
way to resolve this problem is to visualize the data either in a multi­dimensional
space using the method of parallel coordinates [435] or a 3­dimensional space using
principal component analysis plot [436]. Finally, while solving problems related to
the business domain, one can take the help of a domain expert to determine the
number of clusters.

5.3 Experimental Setup

The experimental setup consists of a standalone Spark cluster using the HDFS as
the storage system and Apache Zeppelin 0.7.1 as an editor. The Spark cluster com­
prises a master node running the driver program and tenworker nodes including one
worker node running on the master node. All the ten nodes have the same configu­
ration, i.e., Intel® Core™ i7­6700 CPU@ 3.40GHz with 8 logical cores with 32GB
RAM and Ubuntu 14.04 LTS Operating System (see Table 5.1). We allocated 28
GB of memory in nine worker nodes. In each of the worker nodes, four executors
with 7GB memory and two cores are configured. The worker in the master node is
configured with three executors with 6GB memory and two cores each. The driver
process was allocated 10 GB of memory (see Table 5.2).
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The PECMwas executed in Spark 2.1.0 cluster with Hadoop 2.7.3 as distributed
storage using Scala 2.11.8 programming language (see Table 5.2). The best exe­
cution time was achieved by tweaking the memory used by the executors in each
worker node with the optimal number of data partitions.

Table 5.1: System description

CPU Intel® Core™ i7­6700 CPU @ 3.40GHz with 8 logical cores
Memory 32GB
Operating System Ubuntu 14.04 LTS

Table 5.2: Parallel distributed computational environment configuration

Configuration details Node Type
Master Slaves

Driver memory 10GB ­
Number of workers 3 4
Worker memory 6GB 7GB
Number of executors 3 4
Executor memory 6GB 7GB
Number of cores/executors 2 2
Total executor memory 18GB 28GB
Total memory utilized(out of 32GB) 28GB 28GB
Computational framework Apache Spark 2.1.0
Distributed storage system HDFS (Hadoop 2.7.3)
Editor for code development Apache Zeppelin 0.7.1
Language used for coding Scala 2.11.8

5.4 Results and Discussion

The proposed PECM is implemented in a parallel distributed computational envi­
ronment. The ccFraud dataset and Higgs dataset have been analyzed to verify the
performance of the proposed approach. The details of the datasets, results generated
after analyzing the datasets are presented in further sections.
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5.4.1 Datasets Analyzed

The first dataset that has been analyzed is the credit card fraud dataset i.e., ccFraud
dataset [209]. The credit card transaction count is growing day­by­day with leaps
and bounds. There is a large volume of data generated through credit card trans­
actions. The data is also generated at a high velocity. These conditions make the
problem amenable to the application of BDA.

This dataset is a snapshot at a particular instant of time for processing, as there
is non­availability of credit card dataset having a real­time inflow of transactions in
the public domain.

The details of the ccFraud dataset can be found at Appendix C.2. In the proposed
model, seven features have been considered for the clustering process of PECM.We
discarded the “custID” since it contains unique values in all samples, which will
disturb the similarity calculation of the patterns. The class variable “fraudRisk”, is
also not included in the process of clustering to perform unsupervised learning.

The other dataset, we analyzed is the Physics dataset generated from particle
detectors in the accelerator, the HIGGS dataset [437]. The data is produced using
Monte Carlo simulations. The details of the dataset can be found at Appendix C.4.
We have utilized 7 high­level features for clustering purpose those are extracted
from 21 low­level features for the PECM to cluster it into two clusters. The resulting
dataset is 1.4GB in size.

5.4.2 Analysis of Results

The ccFraud dataset contains two values for the class variable viz., legitimate trans­
action, and fraudulent transaction. The PECM produced the clusters for each parti­
tion of the dataset present in the distributed storage system. These sub­clusters are
then merged in a parallel as well as a serial manner to produce the final clusters.
In the parallel merging process, the sub­clusters produced by PECM were merged
using the Spark cluster with a parallel merging threshold. Then the result of the
parallel merging process was submitted to the serial merging process with its merg­
ing threshold. The selection of merging thresholds was automated to produce the
clusters, which are the same as the number of class values present in the dataset.
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The ccFraud and Higgs dataset are binary classification datasets, hence contains
two class values. Table 5.3 and Table 5.4 presents the different combinations of par­
allel and serial merging thresholds those produced the desired clusters for ccFraud,
and Higgs dataset, respectively. It may be noted that we can not present classifica­
tion accuracy for the dataset because PECM is a clustering algorithm, which cannot
output the accuracy of prediction.

Table 5.3: Parallel and serial merging thresholds for ccFraud dataset

Merging Threshold for parallel merging Merging Threshold for serial merging No. of Clusters formed
0.1 0.08 2
0.15 0.13 2
0.2 0.06 2
0.25 0.17 2
0.35 0.05 2

Table 5.4: Parallel and serial merging thresholds for Higgs dataset

Merging Threshold for parallel merging Merging Threshold for serial merging No. of Clusters formed
0.15 0.05 2
0.2 0.18 2
0.25 0.05 2
0.3 0.08 2
0.4 0.06 2

The ccFraud dataset is having 94.04% of legitimate credit card transactions and
only 5.96% of fraudulent transactions. Hence the dataset is highly unbalanced,
yielding to the complexity involved in the clustering task.

The Higgs dataset is having 53% of positive samples and 47% of negative sam­
ples. Hence, the dataset is a balanced one leading to the simplicity of the clustering
process.

The PECM has a dramatic improvement over the serial ECM in terms of execu­
tion time. The ECM completed the execution of the ccFraud dataset in 74s, whereas
PECM completed with 28s. The ECM completed execution of Higgs dataset 77s
whereas PECM completed with 10s (See Figure 5.2).

Though the Higgs dataset is quite larger than the ccFraud dataset, the execution
of the Higgs dataset is much faster than the ccFraud dataset. This discrepancy is
attributed to data distribution. The Higgs dataset is balanced, whereas the ccFraud
dataset is a highly unbalanced one.
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Figure 5.2: Execution time comparison ECM Vs. PECM for ccFraud and Higgs
dataset

5.5 Conclusions

The PECM is implemented with the Apache Spark with distributed storage of data
points using HDFS. The PECM has achieved clustering of the large­sized dataset
with a single go and thus is faster than any other clustering method. The PECM
is implemented with the Scala programming language. The ccFraud and Higgs
datasets are analyzed.

An essential contribution of the current work is the simple and innovative merg­
ing of sub­clusters involving both parallel and serial phases that is central to the
distributed and parallel implementation of the ECM.

The performance of PECM is found to be 2.6x faster in the ccFraud dataset and
7.7x faster in the case of the Higgs dataset.
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Chapter 6

Parallel distributed one­pass
regression model

This chapter presents our proposed parallel distributed one­pass regression model.
The next section of the chapter presents an introduction to the current work. Sec­
tion 6.2 presents the proposed approach. The experimental setup is described in
Section 6.4. Results and discussion are presented in Section 6.5. The chapter is
concluded in Section 6.6.

6.1 Introduction

Regression is one of the most fundamental tasks of data mining, having a wide vari­
ety of applications in many domains. Numerous techniques from a diverse family of
techniques viz., statistics andmachine learning (subsuming decision tree regression,
support vector regression, and feed­forward neural networks) have been proposed
for this task. Under neural networks category, various architectures were proposed
for regression, viz., MLP, RBFN [438], WNN [439], GRNN [376], and GMDH
[440], Counter Propagation Neural Network (CPNN).

MLP has been used for regression in several research works, viz., Kusakunniran
et al. [441] presented a gait recognition system based on motion regression using
MLP, Agirre­Basurko et al. [442] suggested MLP to forecast gas levels, Gaudart et
al. [443] performed a regression for epidemiological data employing MLP.
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RBFN has been used for regression, viz., Mignon and Jurie [444] proposed a
face reconstruction algorithm based onRBF­regression in Eigenspace, Hannan et al.
[445] presented heart disease diagnosis employing RBF, Taki et al. [446] employed
RBF for energy consumption prediction for wheat production.

WNN is used for regression models for forecasting reservoir inflow [447],
Vinaykumar et al. [448] implemented WNN for the estimation of the cost of soft­
ware development, Chauhan et al. [449] employed DE trainedWNN for bankruptcy
prediction in banks, Rajkiran and Ravi [450] employed WNN for predicting the re­
liability of software.

So also GMDH is employed for regression, viz., Astakhov and Galitsky [451]
presented tool life prediction in gundrilling, Elattar et al. [452] employed GMDH
for short­term load forecasting, Srinivasan [453] employed GMDH for energy de­
mand prediction, Ravisankar and Ravi [454] implemented GMDH for bankruptcy
prediction in banks, Mohanty et al. [381] employed GMDH for prediction of soft­
ware reliability, Reddy and Ravi [455] proposed kernel GMDH for regression.

Ravisankar and Ravi [454] employed CPNN for financial distress prediction in
banks. Chandan and Ravi [456] implemented CPNN for data imputation. CPNN
can be applied to pattern recognition, function approximation, statistical analysis,
and data compression [457].

Multi­Layer Perceptron (MLP) have vast variations of architectures and have
been implemented in different application domains, viz., wireless networks [458],
robot manipulator control [459], wind energy systems [460], cancer prediction in
healthcare [461], crop production [462], business [463].

Among these neural network architectures, GRNN is preferable for regression,
as it uses a single pass for learning and produces reasonably good results. Further,
GRNN does exploit non­parametric estimation, which often produces good results.
While single­pass learning is a desirable property in analyzing big datasets, GRNN
is not scalable due to its vast memory requirement. Hence, this chapter focusses on
scaling up GRNN in the Apache Spark environment.

It is worthwhile to mention that the primary objective of this chapter is to present
a distributed and parallel version of the traditional GRNN to handle big datasets.
Therefore, it is not compared with the parallel versions of any of its competitors.
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In this chapter, we have proposed a parallel distributed hybrid version of GRNN
for prediction in the Big Data paradigm (GRNN++). Further, we have extended
GRNN++ reported in Kamaruddin and Ravi [117] and is henceforth will be termed
as EGRNN++. The GRNN++ has been extended to EGRNN++ with the following
modifications:

• GRNN++ implemented GRNN with K­Means∥, whereas the EGRNN++ has
been extended with the implementation of another parallel clustering method
of Bisecting K­Means for prediction of data in a Big Data paradigm. The em­
bedding of an efficient parallel clustering approach in the traditional GRNN
architecture is an innovative contribution to the work.

• TheGRNN++was implementedwith the Gaussian activation function, which
has been extended with rigorous experimentation with two more additional
activation functions viz., Logistic, and Cauchy in EGRNN++.

• The GRNN++ had analyzed one gas mixture dataset, whereas the EGRNN++
includes twomore datasets, viz., another additional gas mixture dataset which
is of numeric type and Amazon movie reviews data which is of the text data
type.

• The EGRNN++ analyzes the utility of the model for both structured and un­
structured format of data, where the unstructured data comes from the social
media, which adds up the complexity due to its voluminous size.

Finally, the EGRNN++ has been implemented with two clustering methods,
each of which implementing three activation functions and analyzing three sets of
datasets.

6.2 Proposed Approach

GRNN is not able to handle large­sized datasets without efficient clustering. It
falters withmemory issues and increased execution time. These limitations attribute
to the incapability of the standard clustering approach to handle large­sized dataset.
In the proposed method, EGRNN++, these drawbacks are addressed.
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The training data is clustered with K­Means∥ or Bisecting K­Means∥. Thus, the
cluster centers represent the data samples belonging to the cluster most effectively.
Then the Dunn­like Index (a modified Dunn Index), a cluster validity index, is used
for measuring the cluster validity.

The Dunn Index, proposed by Dunn [434], presents the approach for measuring
the cluster quality so that the best clusters were selected based on the high compact­
ness of clusters and high separation among them, i.e., compact and well­separated
clusters. The compactness with good separation is found by the ratio of minimum
intra­cluster distance to the maximum inter­cluster distance. The Dunn Index can
be presented as:

Dunn Index(D) = min
16i6M

 min
i+16 j6M

(
dist

(
ci,c j

)
max
16l6M

(
diam(cl)

))
 (6.1)

where, M is the total number of clusters under consideration, dist(ci,c j) is the
inter­cluster distance and diam(cl) is the maximum intra­cluster distance or the
largest diameter among all the clusters.

As the Dunn Index performs a calculation of maximum intra­cluster distance,
i.e., the diameter of a cluster under consideration, it is not suitable for large­scale
dataset as it will involve large computational overhead. Also, it is affected by noisy
data and outliers. So, we have employed a Dunn­like index [464] for cluster validity
measurement. In this approach, the diameter, i.e., the denominator of Equation (6.1)
is calculated by finding the radius using the distance from each sample present in
the cluster to its cluster center, i.e., c̄l , where x ∈ cl cluster and c̄l is its center. The
|cl| is the count of samples present in cl cluster. This Dunn­like index is not affected
by noise or outlier present in the data. The Dunn­like index can be presented as:

Dunn− like Index(DL) =

min
16i6M

 min
i+16 j6M

 dist
(
ci,c j

)
max
16l6M

(
2∗ 1
|cl |

Σx∈cl d (x, c̄l)
)

 (6.2)
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The cluster centers form the clusters generated by the clustering algorithm and
validated byDunn­like Index, now represent the pattern nodes of EGRNN++. Then,
each test sample is passed on to the neurons present in the Pattern layer, where one
of the Gaussian, Logistic, or Cauchy activation functions results in higher value if
the neuron has a strong similarity to the test sample. Now, the summation layer
represents the numerator, denominator, and the output layer presents the predic­
tion similar to GRNN. The training algorithm for EGRNN++ with the Gaussian
activation function is presented below. The algorithms for the other variants of
EGRNN++, i.e., with Logistic or Cauchy activation function, can be presented by
replacing the Gaussian activation function with Logistic or Cauchy activation func­
tion. The different activation functions are discussed below.
Algorithm 2: Training Algorithm for EGRNN++
Input: σ value iterated from 0.001 to 1.0 with an increment of 0.001
Output: Average MSE in 10­FCV setup
Data: data distributed in partitions

1 Perform data normalization with the range [0,1].
2 Divide the data to perform 10­Fold cross­validation.
3 Take the training set and cluster them with either K­Means∥ or Bisecting

K­Means∥ with the k = 2 to 10.
4 Compute Dunn­like Index by varying the value of k and find the k, which

produces optimal clustering.
5 Consider the cluster centers represented by the optimal k as the neurons in

the pattern layer of EGRNN++ and pass the training or test data, as the
case may be, to the pattern layer nodes with a Gaussian activation
function.

6 The product of Ai, i.e., the sum of the output values of the samples present
in the ith cluster and the result of activation function for ith neuron in the
pattern layer Fi† i.e., ∑n

i=1 Ai ∗Fi forms the numerator term in the
summation layer (say Num).

7 The product of Bi, i.e., count of the samples present in the ith cluster and
the result of activation function for ith neuron in the pattern layer Fi i.e.,
∑n

i=1 Bi ∗Fi forms the denominator term in the summation layer (say
Denom).

8 In the output layer, the prediction is computed as Ŷ (x) = Num
Denom .

9 The accuracy of prediction is measured by computing MSE.
10 Steps 3 to 9 are repeated for the 10 folds of data.
11 Average MSE for 10­FCV is computed and reported.
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†Fi is the activation function for ith neuron and it can be PDF of Gaussian, Logistic or Cauchy.

The probability distribution function (PDF) for Gaussian distribution can be
represented as:

f (x) =
1√

2πσ2
e

(
−(x−µ)2

2σ2

)
(6.3)

where, x ∈ (−∞,+∞), µ is the mean of the distribution and σ2 ≥ 0 is the vari­
ance. The EGRNN++ predictionwith Gaussian activation function can be presented
as:

Ŷ (X) =
∑n

i=1 Ai ∗ e

(
−(xi−µ)2

2σ2

)

∑n
i=1 Bi ∗ e

(
−(xi−µ)2

2σ2

) (6.4)

where, (xi−µ)2 represents the squared distance between the test sample and the
cluster center, Ai represents the sum of the target values of the samples present
in the ith cluster, Bi represents the count of the samples present in the ith cluster.
These symbols carry their meanings in the prediction equation represented with
Logistic (5.6) and Cauchy (5.8) activation function. The constant part 1√

2πσ2 in
Equation (6.3) is cancelled out from the numerator and denominator of the predic­
tion Equation (6.4).

The PDF for Logistic distribution is presented as:

f (x) =
e
(
−(x−µ)

σ

)

σ

(
1+ e

(
−(x−µ)

σ

))2 (6.5)

where, x∈ (−∞,+∞), σ ≥ 0 is standard deviation and µ is the mean of the distribu­
tion. The EGRNN++ prediction with Logistic activation function can be presented
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as:

Ŷ (X) =

∑n
i=1 Ai ∗ e

(
−(xi−µ)

σ

)

σ

1+e

(
−(xi−µ)

σ

)
2

∑n
i=1 Bi ∗ e

(
−(xi−µ)

σ

)

σ

1+e

(
−(xi−µ)

σ

)
2

(6.6)

where the σ present in the denominator of the PDF Equation (6.5) is canceled
out from the numerator and denominator of the prediction Equation (6.6).

The PDF for Cauchy distribution is presented as:

f (x) =
1

πγ
[

1+
(

x−µ
γ

)2
] (6.7)

where, x ∈ (−∞,+∞), γ > 0 is a scale variable and µ is the median of the distribu­
tion. The EGRNN++ prediction with Cauchy activation function can be presented
as:

Ŷ (X) =

∑n
i=1 Ai ∗ 1

2π
[

1+
(

xi−µ
2

)2
]

∑n
i=1 Bi ∗ 1

2π
[

1+
(

xi−µ
2

)2
] (6.8)

where, γ is considered to be 2.
The architecture of EGRNN++ is the same as the traditional GRNN except for

the presence of the clusters (obtained through K­Mean∥ or Bisecting K­Means∥)
occupying the pattern layer in place of the training patterns themselves (see Fig­
ure B.1). The 3rd and 4th layer of EGRNN++ are identical to that of GRNN. The
architecture of EGRNN++ is depicted in Figure 6.1.
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Figure 6.1: EGRNN++: Architecture

6.3 Social Media Analytics

Socialmedia analytics is the procedure of collecting data from social mediawebsites
or social networks viz., Facebook, Instagram, LinkedIn, and Twitter, and analyzing
that data using social media analytics tools tomake business decisions. Social media
analytics also defined as “the art and science of extracting valuable hidden insights
from vast amounts of semi­structured and unstructured social media data to enable
informed and insightful decision making” [465]. The utilization of social media
generates an enormous amount of data on a daily basis, including customer reviews,
preferences, and sentiments towards brands, products, and services that are valuable
to business [466].

The presence of social media has changed the way customers interact with the
products, services, businesses, and brands. They have started to rely on the informa­
tion on social media to support their decision­making [467]. Reviews, preferences,
and sentiments towards products or services may be either positive or negative and
may affect attitudes, perceptions, and purchase decisions of customers [468].

The tremendous growth in the use of social media has led to an increasing accu­
mulation of data, which is known as Social Media Big Data. Social media platforms
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offer a variety of data formats, which includes images, audios, videos, text data, and
geolocations. Generally, this data can be categorized into unstructured data and
structured data [469]. In social networks, the text content is the unstructured data,
while the follower/followed by relationship is the structured data.

Whenever, there is a post on social media, social data will be generated. Data
created by consumers ­ comments, sentiment, likes, shares, retweets, etc. These
social data help in leading the social media marketing campaigns to huge success.

Following are the few reasons why we need social media analytics:

• Understand the audience ­ One should know when the targeted audience
is online, it will be futile to post if they are snoozing. The post should be
in multiple languages based on the geographical location of the audience.
Figuring out the interest of the audience will help to deliver more relevant
content to them. Knowing the details of the audience will help with customer
segmentation, which may help for targeted campaigns.

• Selection of the social platform ­ One should find out which social plat­
form the target audience is online. The social platform that is suitable for
the product should be chosen, e.g., a visually attractive product or product
part that can be campaigned on an image­based network like Instagram. The
performance of the campaign can be figured out using the platforms’ inbuilt
analytics tools.

• Competitive benchmarking ­ It allows to analyze competitor’s data to find
what leads to success and what doesn’t. One can follow the path of successes,
and the risks can be avoided.

• Creation of better content ­ The content of a campaign can be identified,
which has resulted in the campaign success. The content can be the inspira­
tion for future campaigns. One should figure out which form of content is
more approachable to the audience ­ text, links, images, videos.

• Brand reputation = The organization should get informed about how the
brand is being accepted by the consumers. This information is available
across social networks, blogs, and forums. A good social media analytics
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platform can provide the media monitoring data along with social media an­
alytics data.

• Protection of brand assets ­ Image recognition can be utilized to figure how
brand assets such as logos are being used online. It will help to identify po­
tential misuse/trademark infringement of the logo, tagline, etc.

• Tracking of Social campaigns ­ Once the social campaign is launched, it
can be monitored to check whether it is working or not. Is there a pocket to
improve the campaign? Is it performing as per expectation or not? Should
it be stopped? These questions should be addressed. The sentiment analysis
can be used to figure out how consumers feel about the campaigns, brand,
and products.

The most prevalent use of social media analytics is to extract consumer senti­
ments to support and enhance marketing and post sale customer service activities.
Sentiment analysis is about extracting consumer attitudes, emotions, experiences.
In general, sentiment analysis aims to figure out the attitude presented by the text
writer or speaker in relation to the topic or the overall contextual polarity of a doc­
ument [470]. Pang and Lee [471] provided a detailed review on the fundamentals
and the methods of sentiment classification and extraction.

Sentiment analysis can be divided into the following specific subtasks:

• Sentiment context — To mine opinion or sentiments, one needs to know
the ‘context’ of the text, which can vary considerably from specialist review
portals/feeds to general forums where opinions can cover a spectrum of topics
[472].

• Sentiment level — Text analytics can be conducted at the document, sen­
tence, or attribute level.

• Sentiment subjectivity — Deciding whether a given text expresses an opin­
ion or is factual.

• Sentiment orientation/polarity — It indicates whether an opinion in a text
is positive, neutral, or negative.

140



Chapter 6 – Parallel distributed one­pass regression model

• Sentiment strength ­ It presents the ‘strength’ of an opinion in a text: weak,
mild, or strong.

The insights obtained through SMA can lead to multi­facet brand operations.
Following are some of the examples:

• Increase Customer Acquisition ­ By delivering the content the customer
wants, an organization can increase its customer base.

• Protect Brand Health ­ Using social media, any organization can produce
contents reflecting the positive sides of its products and thus can enhance the
brand health.

• Lower Customer Care Costs ­ The consumer wishes and complaints can be
addressed using the social media platform. Thus, customer care costs can be
cut down while performing efficient and effective customer management.

• Maximize Product Launches ­ By providing the content and product to the
right influencers in the social network, the product launch can be maximized.

• Boost Campaign Performance ­ By smartly using influencers in a social
network, the campaign performance can be increased.

• Improve Crisis Management ­ Social monitoring can be used to understand
public misperception, and it can be utilized to respond to potential crises.

6.4 Experimental Setup

The system configuration for carrying out experimental work consists of standalone
Spark cluster 2.2.0 as the computational framework on top of HDFS, which is the
distributed storage system. The program development environment used is Apache
Zeppelin 0.7.3, with Scala 2.11.8 as the coding environment. The Spark cluster
consists of a system as amaster node and seven systems as worker nodes. The driver
program resides in the master node, along with two instances of worker daemons.
Each of the worker nodes executes four instances of worker daemons. All the seven
systems have a similar configuration, (refer to Table 6.1). In a stand­alone cluster
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system, each worker daemon has one executor. The details of resources allocated to
worker daemon or executor, driver process, and programming environment details
are presented in Table 6.2.

Table 6.1: System configuration description

Central Processing Unit Intel® Core™ i7­6700 CPU @ 3.40GHz
No. of Cores 4 Physical cores or 8 logical cores

Primary Memory 32GB
OS Ubuntu 16.04 LTS

Table 6.2: Details of Resource allocation in the Cluster and coding environment

Allocated resource details Node Type
Master Worker

Memory allocated for Driver process 14GB ­
Count of worker daemons 2 4
Memory allocated to worker daemon 7GB 7GB
Number of executors per node 2 4
Memory allocated to each executor 7GB 7GB
Cores allocated per executor 2 2
Memory allocated to all executors 14GB 28GB
Total memory utilized(out of 32GB) 28GB 28GB
Framework for computation Apache Spark 2.2.0
Distributed storage system HDFS (Hadoop 2.7.3)
Coding interface Apache Zeppelin 0.7.3
Programming language Scala 2.11.8

The GRNN++ was implemented with the above cluster configuration and pro­
gramming environment. We found the best execution time by adjustment of the
amount of memory allocation to the executors along with the optimum data parti­
tions.

6.5 Results and Discussion

In order to demonstrate the proposed approach, we presented two variants of
EGRNN++, viz. EGRNN1++ and EGRNN2++ with two activation functions, viz.
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Logistic and Cauchy activation function. The proposed approaches are compared
with the traditional Gaussian activation function. Both the variant of EGRNN++
were analyzed with six datasets. The details of the datasets, results generated after
analyzing the datasets are presented in further sections.

6.5.1 Datasets Analyzed

The EGRNN++ has analyzed

(i) the data from an array of gas sensors involving different gas mixtures, and

(ii) Amazon movie review (AMR) dataset that includes movie reviews from dif­
ferent users.

The gas sensor dataset [422] was collected from UCI ML repository [423]. The
dataset contains the readings gathered from sixteen sensors exposed to varying con­
centrations of gas mixtures. The dataset contains the sensor readings of mixtures
of Ethylene with Methane, and Ethylene with CO gas in the Air. We have analyzed
the dataset for the prediction of Ethylene, Methane, and CO concentration in Air.
The two mixtures of gases present two datasets with 19 features. The details of
the features for Ethylene­Methane is in Table C.2 and for Ethylene­CO is in Ta­
ble C.1.The Ethylene­CO dataset contains 4.2 million samples and is of 643MB.
The Ethylene­Methane dataset contains 4.17 million samples and is of 638 MB.

For our regression work, we have dropped the first feature being the time se­
ries values. Out of the second and third features, one is selected as the dependent
variable. We have selected the features from the fourth to the last as independent
variables for our experimentation.

The AMR dataset [473] available on the Stanford Network Analysis Platform
(SNAP) data repository [474]. It contains 7,911,684 reviews on 253,059 movies
provided by 889,176 users, which were collected from August 1997 to October
2012. The reviews include product and user information, ratings, and a plaintext
review. The ratings are in five levels of the Likert scale. The detailed structure of
each review is depicted in Table C.6. The dataset is containing social media reviews,
and it is used here for social media analytics for predicting the sentiment score of
the movie reviewers.
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In the experimental work, we have selected the review score or ratings as our de­
pendent variable. The plain text review underwent a preprocessing phase whereby
the special characters, HTML tags, emojis, the short form of texts were removed.
Then, the stop words were removed, and the text was tokenized. After the prepro­
cessing of the text was over, the tokens were converted to hashing Document Term
Matrix (DTM)with feature­length of 20 and 100. Then, its TF­IDF value was calcu­
lated. Thus, two datasets were generated one with 20 TF­IDF values and the other
with 100 TF­IDF values. These TF­IDF values were considered as independent
variables for the EGRNN++ model.

6.5.2 Analysis of Results

The research work conducted comprises the analysis of the datasets mentioned
above with the proposed approach. The results of the carried out work cannot be
compared with any other technique as we could not find any work carried out in the
same domain and using such hybrid architectural techniques.

The experiment was carried out with ten­fold cross­validation (10­FCV) of the
min­max normalized dataset. The K­Means∥ or Bisecting K­Means∥ was carried
out with k value ranging from 2 to 10, and then the Dunn­like Index was taken into
account for cluster validity for finding out the optimal cluster centers. Then, with
the selected cluster centers, EGRNN++ was carried out with the sigma (σ ) value
ranging from 0.001 to 1.0 with an increment of 0.001.

The performance of EGRNN++ is measured asMSE. Three activation functions
used in EGRNN++ viz., Gaussian, Logistic, and Cauchy function, which captures
the features of a test data and correspondingly presents the prediction value. The
traditional GRNN employs the Gaussian activation function. We have proposed the
Logistic and Cauchy activation function to be implemented. The Table 6.3 and Ta­
ble 6.4 lists the averageMSE of 10­FCV for the two implementations of EGRNN++
i.e., EGRNN1++ (K­Means∥ embedded in GRNN) and EGRNN2++ (Bisecting K­
Means∥ embedded in GRNN), respectively.

The results shown in bold in Table 6.3 and Table 6.4 are the better values of
mean MSE when the results of EGRNN1++ and EGRNN2++ are compared against
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each other. As the results do not present a clear winner, we proceeded for a t­test
and calculated the p­value. The results are presented in Table 6.5.

6.6 Conclusions

We propose GRNN++, which is the parallel version of GRNN with Gaussian AF,
and later it has been extended to EGRNN++, where apart fromGaussianAFLogistic
and Cauchy AF have been included and for unsupervised learning parallel Bisecting
K­Means has been added. The two variants of parallel and distributed version of
EGRNN++ viz., EGRNN1++, EGRNN2++ in Apache Spark have been presented,
where HDFS takes care of the distributed data storage. These are implemented
in the Scala programming language. Both variants of EGRNN++ could perform
Big Data regression in a single pass and yielded good results under 10­fold cross­
validation. The hallmark of the proposed architectures is the invocation of (i) the
parallel distributed K­Means++ aka K­Means∥ (in case of EGRNN1++) and (ii)
Bisecting K­Means∥ (in case of EGRNN2++) into the architecture of the traditional
GRNN.

The experiment involved structured numeric data as well as unstructured tex­
tual data. Both models have performed equally well, which is the inference from
the statistical significance test and hypothesis test. Here, the architecture presents
its superiority and efficiency in handling both structured and unstructured data. In
this real­world, a high volume of unstructured data is generated and with significant
speed. The movie review dataset presents the unstructured voluminous social net­
work data. The experiment presents the efficacy of the EGRNN++ to handle both
structured and unstructured large­sized data.

The innovation of the proposed method resulted in a drastic reduction in the
number of pattern nodes in EGRNN++. This feature overcame the major short­
coming of GRNN, which is the computational overhead.
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Chapter 7

Parallel distributed one­pass
classifier

This chapter elucidates our proposed parallel distributed one­pass classifier. The
next section of the chapter presents an introduction to the current work. Section 7.2
presents the proposed approach. The experimental setup is described in Section 7.3.
Results and discussion are presented in Section 7.4. The chapter is concluded in
Section 7.5.

7.1 Introduction

Classification is the most fundamental task of data mining, having a wide variety of
applications in many domains. Numerous techniques from a diverse family of tech­
niques viz., statistics, and machine learning (subsuming decision tree, fuzzy clas­
sification, Support vector machine, and feed­forward neural networks) have been
proposed for this task. The popular neural network architectures for classification
are Multi­layer Perceptron (MLP), Radial Basis Function Network (RBFN) [438],
Wavelet Neural Network (WNN) [439], Probabilistic Neural Network (PNN) [386]
and Group Method of Data Handling (GMDH) [440].

RBFN has been used for classification in many applications, viz., Lin [475] has
employed RBFN for facial expression classification, Radha, and Nallammal [476]
have implemented face recognition using RBFN. WNN also has been employed for
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classification tasks viz., Subasi et al. [477] employed WNN for electromyographic
(EMG) signal classification, Geethanjali, and Priya [478] implemented WNN for
fault detection and classification in transmission lines. Similarly, several works
have been carried out in classification using GMDH viz., Baig et al. [479] im­
plemented GMDH for intrusion detection, El­Alfy, and Abdel­Aal [480] employed
GMDH for spam detection.

Among these architectures, PNN is preferable as it uses a single pass for learning
and produces reasonably good results. The architecture of PNN in detail is presented
at Appendix B.5. While single­pass learning is a desirable property in analyzing
sets, PNN is not scalable due to its huge memory requirement. Hence, this paper
focusses on scaling up PNN in the Apache Spark environment. It is worthwhile
to mention that the primary objective of this article is to present a distributed and
parallel version of the traditional PNN to handle big datasets.

7.2 Proposed Approach

PNN is not able to handle large­sized datasets without efficient clustering. It falters
with memory issues and increased execution time. These limitations attribute to
the incapability of the standard clustering approach to handle large­sized dataset.
In the proposed method PNN++, this drawback has been addressed. The PNN++ is
implemented with Apache Spark and HDFS. It has two components, viz.,

(i) clustering component implemented with K­Means∥ clustering (Ap­
pendix B.2) or parallel bisecting K­Means (BK­Means∥) (Appendix B.3),
and

(ii) PNN (Appendix B.5) for classification.

The training data is clustered with K­Means∥ or Bisecting K­Means∥. Thus, the
cluster centers represent the data samples belonging to the cluster most effectively.
Then the Dunn­like Index [464] (a modified Dunn Index [434]), a cluster validity
index, is used for measuring the cluster validity.

The cluster centers generated by the clustering algorithm and validated byDunn­
like Index, now represent the nodes in the pattern layer of PNN++. Then, each test
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sample is passed on to the neurons present in the pattern layer with one of the Gaus­
sian, Logistic, or Cauchy activation function that results in a higher value if the
neuron has a strong similarity to the test sample. Now, the summation layer repre­
sents the Probability Density Functions (PDFs) of each class involved in the clas­
sification process, and the output layer presents the classifier’s prediction as in the
PNN (Appendix B.5). The training algorithm for PNN++ with the Gaussian activa­
tion function is presented below. The algorithms for the other variants of PNN++,
i.e., with Logistic or Cauchy activation function, can be presented by replacing the
Gaussian activation function with Logistic or Cauchy activation function.

The architecture of PNN++ is the same as the traditional PNN except for the
presence of the cluster centers (obtained through K­Mean∥ or Bisecting K­Means∥)
occupying the pattern layer in place of the training patterns themselves (see Fig­
ure B.2). The 3rd and 4th layers of PNN++ are identical to that of PNN. The archi­
tecture of PNN++ is depicted in Figure 7.1.

After the PNN++model is trained in a parallel and distributed environment, test­
ing the network also happens in a parallel distributed computational environment,
and the overall Accuracy or AUC is computed at the master node.
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Figure 7.1: Architecture of PNN++

151



Chapter 7 – Parallel distributed one­pass classifier

Algorithm 3: Training Algorithm for PNN++
Input: σ value iterated from 0.001 to 1.0 with an increment of 0.001
Output: Average AUC, Sensitivity and Specificity in 10­FCV setup
Data: data distributed in partitions

1 Perform data normalization with the range [0,1].
2 Divide the data to perform 10­Fold cross­validation.
3 Take the training set and cluster them with either K­Means∥ or Bisecting

K­Means∥ with the k = 2 to 10.
4 Compute Dunn­like Index by varying the value of k and find the k, which

produces optimal clustering.
5 Consider the cluster centers represented by the optimal k as the neurons in

the pattern layer of PNN++ and pass the training or test data, as the case
may be, to the pattern layer nodes with a Gaussian activation function.

6 The sum of the result of activation function Fi†, for ith neuron (for class
C j)in the pattern layer over n samples of that class i.e., ∑n

i=1 fi forms the
predicted probability value of the classC j in the summation layer (say
Pj), where j value ranges upto 2 for binary classification or to the number
of classes for the multiclass classification.

7 In the output layer, the classifier’s prediction is computed as Ŷ (x), where
Ŷ (x) represents the class label of the larger probability for the binary
classification or the largest one among all the probabilities, in case of
multiclass classification.

8 The performance of the classifier is measured by computing AUC,
Sensitivity, and Specificity.

9 Steps 3 to 8 are repeated for the 10 folds of data.
10 Average AUC, Sensitivity, and Specificity for 10­FCV are computed and

reported.
†Fi is the activation function for ith neuron and it can be PDF of Gaussian, Logistic or Cauchy.

7.3 Experimental Setup

The system configuration for carrying out experimental work consists of standalone
Spark cluster 2.2.0 as the computational framework on top of HDFS, which is the
distributed storage system. The program development environment used is Apache
Zeppelin 0.7.3, with Scala 2.11.8 as the coding environment. The Spark cluster
consists of a system as amaster node and seven systems as worker nodes. The driver
program resides in the master node, along with two instances of worker daemons.
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Each of the worker nodes executes four instances of worker daemons. All the seven
systems have a similar configuration (refer to Table 7.1). In a stand­alone cluster
system, each worker daemon has one executor. The details of resources allocated to
worker daemon or executor, driver process, and programming environment details
are presented in Table 7.2.

Table 7.1: System configuration description

Central Processing Unit Intel® Core™ i7­6700 CPU @ 3.40GHz
No. of Cores 4 Physical cores or 8 logical cores

Primary Memory 32GB
OS Ubuntu 16.04 LTS

Table 7.2: Details of Resource allocation in the Cluster and coding environment

Allocated resource details Node Type
Master Worker

Memory allocated for Driver process 14GB ­
Count of worker daemons 2 4
Memory allocated to worker daemon 7GB 7GB
Number of executors per node 2 4
Memory allocated to each executor 7GB 7GB
Cores allocated per executor 2 2
Memory allocated to all executors 14GB 28GB
Total memory utilized(out of 32GB) 28GB 28GB
Framework for computation Apache Spark 2.2.0
Distributed storage system HDFS (Hadoop 2.7.3)
Coding interface Apache Zeppelin 0.7.3
Programming language Scala 2.11.8

The PNN++ was implemented with the above cluster configuration and pro­
gramming environment. We found the best execution time by adjustment of the
amount of memory allocation to the executors along with the optimum data parti­
tions.
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7.4 Results and Discussion

In order to demonstrate the proposed approach, two variants of PNN++, viz.
PNN1++ and PNN2++ with two activation functions, viz. Logistic and Cauchy
activation function has been presented. The proposed approaches are compared
with the traditional Gaussian activation function. Both the variant of PNN++ were
analyzed with seven datasets. The details of the datasets, results generated after
analyzing the datasets are presented in further sections.

7.4.1 Datasets Analyzed

The current work has analyzed

(i) the data from HEPMASS dataset and HIGGS dataset involving data from
Physics experiment,

(ii) ccFraud dataset involving credit card fraud data, and

(iii) Amazon Movie Review (AMR) dataset that includes movie reviews from
different users.

The HEPMASS and HIGGS dataset was collected from UCI ML repository.
The HEPMASS dataset [481] contains the high energy physics experiments data to
search for the presence of exotic particles. The dataset contains 28 attributes and
10500000 number of instances. The dataset is 7.8 GB, which has been used in the
experiment. Here, we have analyzed the dataset to classify the particles producing
collisions from a background source. The details of the attributes of the dataset are
depicted in Table C.4.

The HIGGS dataset [482] has been produced using Monte Carlo simulations.
The dataset contains 28 attributes and 11000000 number of instances. The dataset
is of 8.0 GB. Here we have considered 7 high­level features out of 28, which were
derived from 21 remaining low­level features. Hence, the dataset we have analyzed
is 1.4 GB. Here, we have analyzed the dataset to classify the signal data from the
background. The attribute details are in Table C.5.
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The ccFraud dataset [209] contains credit card fraud data. The dataset contains
9 features and 10000000 number of instances. The negative class (genuine trans­
actions) has 9,403,986 samples. The positive class (fraudulent transactions) has
596,014 samples. The dataset is 292 MB, which has been analyzed. This dataset is
quite imbalanced, with a ratio of 94:6 genuine to fraudulent transactions. Here, we
have analyzed how the classifier handles imbalanced numerical data. The details of
the attributes are mentioned in Table C.3.

The AMR dataset [473] available on the Stanford Network Analysis Platform
(SNAP) data repository [474]. It contains 7,911,684 reviews on 253,059 movies
provided by 889,176 users, which were collected from August 1997 to October
2012. The reviews include product and user information, ratings, and a plaintext
review. The ratings are in five levels of the Likert scale. The detailed structure
of each review is depicted in Table C.6. The dataset is used here for sentiment
classification. Here the sentiments are classified as positive and negative. The
details of sentiment analysis, which is a part of social media analytics, can be found
at Section 6.3.

In the experimental work, we have modified the 5­level review score to two
class labels. We have made all the review scores less than 3 (< 3) to be labeled
as 1.0, and the rest review scores, i.e., review scores 3, 4, and 5, are labeled as
0.0. Here the class we are interested in (i.e., positive class) is the negative review
score which, we have labeled as 1.0. The dataset is imbalanced, with a ratio of
86:14 positive to negative reviews. The plain text review underwent a preprocessing
phase whereby the special characters, HTML tags, emojis, the short form of texts
were removed. Then, the stop words were removed, and the text was tokenized.
After the preprocessing of the text was over, the tokens were converted to hashing
Document Term Matrix (DTM) with TF­IDF values. We have considered the top
20 and 100 frequency terms from the hashing DTM for generating two different
datasets. Also, a dataset was created with TF­IDF weights based DTM having a
dimension of 100 features. The doc2Vec transformation was also made to generate
features for analysis. Thus, four datasets were generated for analyzing the classifier.
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7.4.2 Analysis of Results

The research work conducted comprises the analysis of the datasets mentioned
above with the proposed approach. The results of the carried out work cannot be
compared with any other technique as we could not find any work carried out in the
same domain and using such hybrid architectural techniques.

The experiment was carried out with ten­fold cross­validation (10­FCV) of the
min­max normalized dataset. The K­Means∥ or Bisecting K­Means∥ was carried
out with k value ranging from 2 to 10, and then the Dunn­like Index was taken
into account for cluster validity for finding out the optimal cluster centers. Then,
with the selected cluster centers, PNN++ was carried out with the sigma (σ ) value
ranging from 0.001 to 2.0 with an increment of 0.001. The performance is measured
as Average AUC, Sensitivity, and Specificity of 10­FCV.

Three activation functions have been used in PNN++ viz., Gaussian, Logistic,
and Cauchy function, which captures the features of a test data and correspondingly
classifies it. The traditional PNN employs the Gaussian Activation Function. We
have proposed the Logistic and Cauchy activation function to be implemented.

We have reported average Accuracy of 10­FCV obtained with HEPMASS and
HIGGS dataset, as both the datasets are balanced dataset, for the two implementa­
tions of PNN++, i.e., PNN1++ (K­Means∥ embedded in PNN) and PNN2++ (Bi­
secting K­Means∥ embedded in PNN) in the Table 7.3. But we have reported the
average AUC, Sensitivity and Specificity of 10­FCV generated with ccFraud and
AMRdataset, as both the datasets are imbalanced dataset, for PNN1++ and PNN2++
in Table 7.4 and Table 7.5, respectively.

Table 7.3: Mean Accuracy for 10­FCV with PNN1++ and PNN2++

Dataset
†PNN1++ ‡PNN2++

Gaussian
AF⋆

Logistic
AF

Cauchy
AF

Gaussian
AF

Logistic
AF

Cauchy
AF

HEPMASS 69.577 72.911 56.126 73.704 76.361 67.950
HIGGS 62.042 62.056 62.013 62.034 62.052 62.022

† K­Means∥ embedded in PNN ‡Bisecting K­Means∥ embedded in PNN
⋆ AF = Activation Function
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Table 7.4: Mean AUC, SV, SP for 10­FCV of PNN1++ (K­Means∥ embedded in PNN)

Dataset Gaussian AF Logistic AF Cauchy AF
AUC SV SP AUC SV SP AUC SV SP

ccFraud 0.792 0.774 0.810 0.791 0.771 0.810 0.763 0.681 0.846
AMR
DTM100

0.6159 0.505 0.727 0.6157 0.510 0.721 0.554 0.198 0.910

AMR
hDTM20

0.545 0.717 0.374 0.547 0.785 0.308 0.504 0.974 0.035

AMR
hDTM100

0.568 0.718 0.417 0.570 0.771 0.369 0.507 0.975 0.038

AMR
D2V100

0.91217 0.907 0.916 0.9122 0.91168 0.913 0.537 0.782 0.293

AF = Activation Function, SV = Sensitivity, SP = Specificity, DTM = Document Term Matrix,
hDTM = hashing DTM, D2V = Doc2Vec

Table 7.5: Mean AUC, SV, SP for 10­FCV of PNN2++ (Bisecting K­Means∥ embed­
ded in PNN)

Dataset Gaussian AF Logistic AF Cauchy AF
AUC SV SP AUC SV SP AUC SV SP

ccFraud 0.79336 0.756 0.830 0.79335 0.756 0.831 0.7926 0.756 0.829
AMR
DTM100

0.616 0.505 0.727 0.6157 0.510 0.721 0.554 0.198 0.910

AMR
hDTM20

0.545 0.719 0.371 0.547 0.790 0.303 0.504 0.974 0.035

AMR
hDTM100

0.568 0.721 0.414 0.570 0.770 0.369 0.507 0.975 0.039

AMR
D2V100

0.919 0.865 0.973 0.920 0.866 0.973 0.919 0.867 0.971

AF = Activation Function, SV = Sensitivity, SP = Specificity, DTM = Document Term Matrix,
hDTM = hashing DTM, D2V = Doc2Vec

The results are shown in bold in Table 7.3 are the better values ofmeanAccuracy
when the results of PNN1++ and PNN2++ are compared against each other along
with three AFs. In Table 7.4 and Table 7.5, the bold figures represent the better
values of mean AUC when the results are compared among the three AFs. As the
results do not present a clear winner, we proceeded for a t­test and calculated the
p­value. The results are presented in Table 7.6. The Mean Accuracy/AUC column
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in Table 7.6 represents the average of 10­Fold Accuracy for the balanced datasets
viz., HEPMASS and HIGGS dataset and it represents the average of 10­Fold AUC
for the imbalanced datasets viz., ccFraud and AMR datasets.

The t­test is conducted to detect whether any model is statistically significant.
The t­test was conducted at a 1% level of significance with 18 degrees of freedom.
The t­test value is found to be less than 2.83 (which is the t­table value at 10+10­2
= 18 degrees of freedom) for all models except one case, which is for AMR D2V
dataset with Cauchy Activation function. Hence, all the models are statistically
equivalent except the one aforementioned. Themodel with the Bisecting K­Means∥
and Cauchy Activation function is found to be statistically significant with AMR
D2V dataset. Also, we performed a p­value test with a confidence level of 1%.
The results present that both the models are statistically the same except the case of
BK­Means∥ with Cauchy AF for AMR D2V dataset.

Our results are compared to those of Ravi et al. [483]. They implemented Logis­
tic regression (LogR), Decision Tree (DT), Random Forest (RF), Gradient Boosted
Tree (GBT), MLP, and Support Vector Machine (SVM) for the classification of the
reviews. Our proposed variants of PNN++ for DTMwith 100 features outperformed
DT, RF, GBT, and SVM. Then, both variants of PNN++ with hashing DTM with
20 features as input, surpassed LogR, DT, RF, and SVM. However, both variants
of PNN++ have not fared well compared to all the methods for the hashing DTM
with 100 features. Finally, both variants of PNN++ outperformed LogR and DT for
the Doc2Vec dataset with 100 features.

The experiment involved structured numeric data as well as unstructured textual
data. With the help of a t­test at 18 degrees of freedom, both models turned out to
be statistically no different at a 1% level of significance.

We know the K­Means∥ chooses the first center at random following a uniform
distribution. Then, the next centers are chosen non­uniformly with a given proba­
bility, which is stochastically biased by the already chosen centers [402]. Similarly,
the Bisecting K­Means algorithm bisects a cluster into two and proceeds with the
cluster having higher Within Set Sum of Squares (WSSE) in each bisecting step.
Thus, at each bisecting step, two clusters are formed [403]. Both the algorithms
deal with a new cluster center at each step. Though both the clustering methods
produced numerically different cluster centers, the PNN1++ and PNN2++ turned
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out to be statistically the same. But, we recommend the PNN1++ as it is found to
be faster in terms of execution time.

Interestingly, numerically, both Gaussian and Logistic activation functions per­
formed almost the same, while Cauchy activation function did not perform that
well.

7.5 Conclusions

We propose two variants of parallel and distributed versions of PNN, namely
PNN1++ and PNN2++ in Apache Spark, where HDFS takes care of the distributed
data storage. These are implemented in the Scala programming language. Both
variants of PNN++ could perform Big Data classification in a single pass and
yielded good results under 10­fold cross­validation. The hallmark of the proposed
architectures is the invocation of

(i) the parallel distributed K­Means++ aka K­Means∥ (in the case of PNN1++)
and

(ii) Bisecting K­Means∥ (in the case of PNN2++) into the architecture of the tra­
ditional PNN.

The innovation of the proposed method resulted in a drastic reduction in the
number of pattern layer nodes of PNN. This feature overcame the major shortcom­
ing of PNN, which is the computational overhead.
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Chapter 8

Parallel Distributed Versatile
Architecture for Regression
and Classification

This chapter presents a versatile network for both classification and regression prob­
lems in parallel distributed computational framework. The next section of the chap­
ter presents an introduction to the current work. Section 8.2 presents the proposed
approach. The experimental setup is described in Section 8.3. Results and discus­
sion are presented in Section 8.4. The chapter is concluded in Section 8.5.

8.1 Introduction

Classification is one of the most fundamental tasks of data mining, which has a
wide variety of applications in many domains. Similarly, another significant task
of data mining is regression. Various techniques from a diverse family of methods
viz., statistics, and machine learning (subsuming decision tree, fuzzy classification,
support vector machine, and feed­forward neural networks) have been proposed for
these tasks. Under neural networks category, various architectures were proposed
for classification, viz., MLP, RBFN [484], WNN [439], PNN [386], and GMDH
[440]. Also, for regression, a number of architectures were proposed, viz., MLP,
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RBFN, WNN, GRNN [376], and GMDH.
There are several neural network architectures that can be called versatile ar­

chitecture in the way that they can handle multiple data mining tasks. Such archi­
tectures are MLP, WNN, GMDH, and RBFN. Out of them, we have considered
RBFN to implement in the parallel distributed computational environment as we
did not come across any literature where the versatility of the architecture has been
explored over parallel distributed computational environment.

RBFN has been used for regression in several domains in literature. Mignon
and Jurie [444] proposed a face reconstruction algorithm, based on RBF­regression
in Eigenspace. Hannan et al. [445] presented a heart disease diagnosis employ­
ing RBF. Taki et al. [446] employed RBF for energy consumption prediction for
wheat production. Nikolaos [485] has employed RBFN for financial status evalu­
ation of corporations. Feng and Chou [486] implemented RBFN for prediction in
time­series data. Also, several implementations of RBFN have been used for classi­
fication. Lin [475] has employed RBFN for facial expression classification. Radha
and Nallammal [476] have implemented face recognition using RBFN. Ravi et al.
[487] have implemented RBFN for bankruptcy prediction for banks. Naveen et al.
[488] have employed differential evolution trained RBFN for bankruptcy predic­
tion in banks. Acır [489] implemented a modified RBFN to classify EEG signals
for epileptiform pattern detection.

It is worthwhile to mention that the primary objective of this chapter is to present
a distributed and parallel version of the traditional RBFN to handle big datasets.
Therefore, it is not compared with the parallel versions of any of its competitors.

8.2 Proposed Approach

The proposed methodology is the parallel implementation of RBFN, where unsu­
pervised learning employs a parallel implementation of either K­Means ++, which
is known as K­Means∥ or parallel Bisecting K­Means. The supervised learning in­
volves the parallel implementation of Least Square Estimation (LSE) using the outer
product of matrices. An overview to the K­Means++, K­Means∥, and parallel Bi­
secting K­Means is presented in Appendix B: K­Means++, Appendix B: K­Means∥,
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and Appendix B: Bisecting K­Means∥, respectively. The following subsections
present an overview of RBFN and parallel RBFN (PRBFN).

8.2.1 RBFN: An Overview

RBFN [484] is a feed­forward neural network that implements a combination of un­
supervised and supervised learning. The architecture can be used for classification
as well as regression.

The topology of RBFN involves three layers of neurons, viz., input, hidden,
and output. The hidden layer comprises ‘k’ training neurons, which are k samples
obtained from the training dataset with random sampling. The test sample is fed
to the input layer. The di is the distance between the training sample present as
a neuron in the hidden layer and the data point from the test set. The output of
the hidden layer is calculated with the Gaussian activation function. The weights
from the hidden layer to the output layer are calculated with LSE. The output of
each hidden node is multiplied with a corresponding weight wi present between the
hidden and the output node. Then, the sum of all the above products is calculated
in the output node. The output with a proper threshold is classified into one of
the two classes (for binary classification). In the case of a regression problem, the
architecture works similarly. Only, in the last step, the above­said sum in the output
layer is the predicted value. The architecture of RBFN is presented in Figure 8.1.

8.2.2 PRBFN: The Proposed Method

The training data is clustered with K­Means∥ or parallel Bisecting K­Means. Thus,
the cluster centers represent the data samples belonging to the cluster most effec­
tively. Then the Dunn­like Index [464] (a modified Dunn Index [434]), a cluster
validity index, is used for measuring the cluster validity.

The cluster centers generated by the clustering algorithm and validated byDunn­
like Index, now represent the nodes in the hidden layer of PRBFN. Then, each test
sample is passed on to the neurons present in the hidden layer with activation func­
tion (i.e., Gaussian or Logistic activation function). The activation function results
in higher value, i.e., closer to 1, if the neuron has substantial similarity to the test

163



Chapter 8 – Parallel Distributed Versatile Architecture for Regression and
Classification

Hidden Layer

X
1

X
2

X
q-1

X
q

Input Layer

Hidden layer neurons with activation function:

Output Layer

Unsupervised

Learning

(Clustering)

Figure 8.1: Architecture of RBFN

sample else it is closer to 0. We have considered the Gaussian and Logistic activa­
tion function in the hidden layer nodes. The vanilla version of RBFN implements
the Gaussian activation function, and we have selected the Logistic activation func­
tion in addition to it. The reason for the selection of the Logistic activation function
is that it has a similar distribution to the Gaussian activation function. The Gaussian
activation function can be represented as:

f (x) =
1√

2πσ2
e

(
−(x−µ)2

2σ2

)
(8.1)

where, x ∈ (−∞,+∞), µ is the mean of the distribution and σ2 ≥ 0, is the vari­
ance.
The PDF for Logistic distribution is presented as:

f (x) =
e
(
−(x−µ)

σ

)

σ

(
1+ e

(
−(x−µ)

σ

))2 (8.2)

where, x ∈ (−∞,+∞), σ ≥ 0, is the standard deviation, and µ is the mean of the
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distribution.
The architecture of PRBFN is the same as that of the traditional RBFN except for

the presence of the cluster centers (obtained through either by K­Means∥ or parallel
bisecting K­Means) occupying the hidden layer. The hidden and output layers of
PRBFN are identical to that of RBFN. The architecture of PRBFN is depicted in
Figure 8.2.
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Figure 8.2: Architecture of PRBFN

The supervised learning in RBFN is achieved through LSE. A parallel version
of LSE is implemented through the outer product of matrices, which can handle
large­sized dataset.

The proposed methodology has implemented a parallel clustering approach of
K­Means∥ and parallel bisecting K­Means for unsupervised learning, then the clus­
ter validity is measured with a parallel implementation of Dunn­like index, and
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finally, the supervised learning of LSE is implemented with a parallel version of
the outer product of matrices. Thus, the proposed method is an end­to­end parallel
implementation of RBFN, i.e., PRBFN.

8.3 Experimental Setup

The system configuration for carrying out experimental work consists of standalone
Spark cluster 2.2.0 as the computational framework on top of HDFS (Hadoop 2.7.3),
which is the distributed storage system. The program development environment
used is Apache Zeppelin 0.7.3, with Scala 2.11.8 as the coding environment. The
Spark cluster consists of a system as a master node and seven systems as worker
nodes. The driver program resides in the master node, along with two instances of
worker daemons. The driver program is allocated a memory of 14 GB. Each of the
worker nodes executes four instances of worker daemons. Each worker daemon is
assigned a memory of 7 GB. All seven systems have a similar configuration. In a
stand­alone cluster system, each worker daemon has one executor. Thus, the total
memory utilized in each of the systems is 28 GB.

The PRBFN was implemented with the above cluster configuration and pro­
gramming environment. We found the best execution time by adjustment of the
amount of memory allocation to the executors along with the optimum data parti­
tions.

8.4 Results and Discussion

The research work conducted comprises the analysis of the datasets mentioned in
the next subsection with the proposed approach. The results of the carried out work
cannot be compared with any other technique as we could not find any work carried
out in the same domain and using such hybrid architectural techniques.
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8.4.1 Datasets Analyzed

8.4.1.1 Datasets for classification

The PRBFN analyzed HEPMASS dataset [481] and HIGGS dataset [482] (col­
lected from UCI ML repository), ccFraud dataset [209], and Amazon Movie Re­
view (AMR) dataset [473] for classification problem. The HEPMASS dataset (re­
fer Appendix C) contains the high energy physics experiments data to search for
the presence of exotic particles. The dataset contains 28 attributes and 10500000
number of instances. The dataset is 7.8 GB, which has been used in the experiment.
Here, we have analyzed the dataset to classify the particles producing collisions
from a background source.

The HIGGS dataset (refer Appendix C) has been produced using Monte Carlo
simulations. The dataset contains 28 attributes and 11000000 number of instances.
The dataset is of 8.0 GB. Here we have considered 7 high­level features out of 28,
which are derived from 21 remaining low­level features. Hence, the dataset we
have analyzed is 1.4 GB. Here, we have analyzed the dataset to classify the signal
data from the background.

The ccFraud dataset (refer Appendix C) contains credit card fraud data. The
dataset includes 9 features and 10,000,000 number of instances. The negative class
(genuine transactions) has 9,403,986 samples. The positive class (fraudulent trans­
actions) has 596,014 samples. The dataset is 292 MB, which is analyzed. This
dataset is quite imbalanced, with a ratio of 94:6 genuine to fraudulent transactions.
Here, we have analyzed how the classifier handles imbalanced numerical data.

The AMR dataset (refer Appendix C) is available on the SNAP data repository
[474]. It contains social media data, and the dataset is also included for analysis
as it comes under the purview of Big Data Analytics (BDA). Why the dataset is
considered and how it satisfies the conditions for BDA are addressed in Section 6.3.
It contains 7,911,684 reviews on 253,059 movies provided by 889,176 users. The
reviews include product and user information, ratings, and a plaintext review. The
ratings are in five levels of the Likert scale. The detailed structure of each review
is present in Appendix C.

In the experimental work, the 5­level review score is modified to two class labels
for the classification problem. The details can be found at Ch. 7 Section 7.4.1.
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8.4.1.2 Datasets for regression

The PRBFN analyzed (i) the data from an array of gas sensors involving different
gas mixtures, and (ii) Amazon movie review (AMR) dataset that includes movie
reviews from different users for the regression problem.

The gas sensor dataset [422] was collected from UCI ML repository [423]. The
dataset contains the readings gathered from sixteen sensors exposed to varying con­
centrations of gas mixtures. The original dataset includes readings of two different
mixtures of gas in Air, viz., Ethylene with Methane, and Ethylene with Carbon
monoxide (CO) in two different datasets. We have analyzed the datasets for the
prediction of Ethylene, Methane, and CO concentration in Air.

The ‘Ethylene and COmixture in Air’ dataset, as well as ‘Ethylene andMethane
mixture in Air’ dataset, contain 19 features. Here, the first feature represents the
time of sensor reading, the second feature represents CO andMethane concentration
in ppm in former and later datasets respectively, the third feature represents the
Ethylene concentration in ppm. The next 16 features represent the sensor readings
from 16 chemical sensors (refer Appendix C).

For our regression work, we have dropped the first feature being the time se­
ries values. Out of the second and third features, one is selected as the dependent
variable. We have selected the features from the fourth to the last as independent
variables for our experimentation.

The AMR dataset contains the movie reviews that include product and user in­
formation, ratings, and a plaintext review. The ratings are in five levels of the Likert
scale. The detailed structure of each review is depicted in Appendix C. The more
details regarding why the dataset has been considered for analysis and how it fits
into the Big Data paradigm is discussed at Section 6.3.

The details of the dependent and independent variable for the regression model
used in the experimental work can be referred at Section 6.5.1.

8.4.2 Analysis of Results

The experiment was carried out with ten­fold cross­validation (10­FCV) of the min­
max normalized dataset. The unsupervised learning was carried out with the K­
Means∥ (employing k value ranging from 2 to 10) and parallel Bisecting K­Means
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then the Dunn­like Index was taken into account for cluster validity for finding out
the optimal clusters. Then, with the selected cluster centers, PRBFN was carried
out with sigma (σ ) values ranging from 0.01 to 1.0 with an increment of 0.01.

The performance of PRBFN for classification is measured as average accuracy
of 10­FCV where the dataset is balanced (e.g., HEPMASS and Higgs) and AUC of
10­FCVwhere the dataset is imbalanced (e.g., ccFraud andAMR). The performance
for regression is measured with an average Mean Squared Error (MSE) of 10­FCV.
For both the classification and regression problem, the architecture employed the
Gaussian and Logistic activation functions in the hidden layer of PRBFN that cap­
tures the features of a test data. Hence, it enables the architecture to classify the
data or find the predicted value.

We have reported an average accuracy of 10­FCV of the balanced datasets in
Table 8.1. The Table 8.2 and Table 8.3 report the average AUC of 10­FCV of the
imbalanced datasets for PRBFN1 (i.e., K­Means∥ + PRBFN) and PRBFN2 (i.e.,
parallel Bisecting K­Means + PRBFN), respectively. The average MSE of 10­FCV
for PRBFN1 is presented in Table 8.4, and the averageMSE of 10­FCV for PRBFN2

is presented in Table 8.5.

Table 8.1: Mean Accuracy for 10­FCV with PRBFN1 and PRBFN2

Dataset PRBFN1 (K­Means∥ + PRBFN) PRBFN2 (Bisecting K­Means∥ + PRBFN)
Gaussian Activation Function (AF) Logistic AF Gaussian AF Logistic AF

HEPMASS 0.50031 0.50038 0.50049 0.50038
HIGGS 0.57314 0.5731 0.57317 0.57311

Table 8.2: Mean AUC for 10­FCV of PRBFN1 (K­Means∥ + PRBFN)

Dataset Gaussian Activation Function (AF) Logistic AF
ccFraud 0.50000025 0.50000027
AMR DTM100 0.50031 0.5003
AMR hDTM20 0.5001 0.50002
AMR hDTM100 0.50011 0.50012
AMR D2V100 0.50005 0.50002

The Table 8.1 shows the result for the balanced dataset, and here for PRBFN2

the Gaussian activation function is a winner and in PRBFN1 also the Gaussian AF
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Table 8.3: Mean AUC for 10­FCV of PRBFN2 (Bisecting K­Means∥ + PRBFN)

Dataset Gaussian Activation Function (AF) Logistic AF
ccFraud 0.500002 0.500001
AMR DTM100 0.50031 0.5003
AMR hDTM20 0.5001 0.50002
AMR hDTM100 0.50011 0.50012
AMR D2V100 0.50004 0.50002

wins in case of Higgs dataset. When we refer at imbalanced datasets in Table 8.2
and Table 8.3, we can observe in PRBFN1 Gaussian AF is a winner in three out of
five cases. If we observe PRBFN2 Gaussian AF is again the winner in four out of
five cases. We have found the Gaussian AF is performing better in the case of the
classification problem.

When we observe at the regression results, we figured out the Logistic function
is a clear winner in the case of AMR dataset in both PRBFN1 and PRBFN2. The
same is the winner in for gas sensor dataset in three out of four cases. Here, we
figured out the Logistic regression as a winner.

8.5 Conclusions

In the proposed parallel distributed architecture of RBFN (PRBFN) where the un­
supervised learning component is employed through a parallel clustering approach
of either K­Means∥ or parallel Bisecting K­Means which is validated through par­
allel Dunn­like index. The supervised learning component of PRBFN, i.e., LSE,
is implemented with a parallel version of the outer product of matrices. Thus, a
complete parallel version of RBFN, i.e., PRBFN, is implemented with a parallel
distributed computational environment of Apache Spark, where HDFS takes care
of the distributed data storage. The PRBFN is implemented in the Scala program­
ming language. We have implemented binary classification and regression with
PRBFN amenable for Big Data. The PRBFN performed semi­supervised learning
and yielded results under 10­fold cross­validation. The experimental results pre­
sented the Gaussian activation function as the best performer for the classification
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problem and the Logistic activation function for the regression problem. The hall­
mark of the proposed architectures is the invocation of (i) the parallel distributed
K­Means∥ or the parallel Bisecting K­Means as unsupervised learning, (ii) parallel
version of Dunn­like index, and (iii) parallel implementation of the outer product
of matrices for LSE as the supervised learning of PRBFN.
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Chapter 9

Conclusions and Future
Directions

9.1 Conclusions

The thesis is mainly aimed at proposing some data mining algorithms scaled in a
parallel distributed programming environment for Big Data Analytics. The pro­
posed scaled parallel distributed algorithms include:

1. We proposed a comprehensive review of machine learning techniques imple­
mented in a parallel, distributed computational framework of Apache Spark.
These machine learning techniques are grouped into data mining tasks, viz.
association rule mining, regression, classification, clustering, outlier detec­
tion. The review will help research communities to know the current devel­
opments and issues in the state­of­the­art.

2. We proposed a novel application of AAELM for performing non­linear prin­
cipal component analysis in a parallel, distributed environment. We hy­
bridized it withMLR for the purpose of BigData regression under theHadoop
MapReduce paradigm.

3. We proposed PSOAANN in a parallel, distributed environment of Apache
Spark for one­class classification.
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4. We proposed an incremental one­pass clustering method ECM in parallel,
distributed computational framework of Spark. The clustering method is
amenable for the Big Data environment where PECM is capable of handling
the velocity and the volume aspects of Big Data.

5. We proposed a parallel distributed one­pass regression model EGRNN++
which makes GRNN scalable for Big Data by invoking K­Means∥ (paral­
lel, distributed version of K­Means++) or parallel Bisecting K­Means in the
pattern layer of EGRNN++.

6. We proposed a parallel distributed one­pass classifier PNN++, which is capa­
ble of handling Big Data for binary as well as multiclass classification prob­
lems. To make it amenable for Big Data K­Means∥ or parallel Bisecting
K­Means is employed in the pattern layer of PNN++.

7. We proposed a parallel, distributed implementation of Radial Basis Function
Network (PRBFN) where the unsupervised learning part of RBFN was im­
plemented with either K­Means∥ or Bisecting K­Means∥ and the supervised
learning part(Least Square Estimation) was implemented with a parallel ver­
sion of the outer product of matrices. The versatility of the RBFN continues
to be a feature in PRBFN also, and hence we solved regression and classifi­
cation problems.

9.2 Future Directions

The budding researchers are suggested to explore the following research areas in
parallel distributed computation paradigm:

1. The quantile regression and elastic net regression in a parallel distributed en­
vironment can be explored.

2. The parallel, distributed version of Kernel density estimation can be em­
ployed.

3. The rough set approximation can be implemented with horizontal scaling.
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4. The presence of less number of articles in various NN architectures such as
QRNN, WNN, GMDH, Functional Link Neural Network (FLNN), Single
Multiplicative Neural Network (SMNN), Sigma­Pi­Sigma Neural Network
(SPSNN), Multi­Layer Morphological Neural Network (MLMNN) present a
fertile ground to be explored.

5. Though a lot of work is reported in clustering, classification, and association
rule mining, they are carried out with the Hadoop MapReduce framework.
Therefore, there is also excellent scope for conducting the research in the
Apache Spark environment, i.e., with the in­memory computational frame­
work, too, in order to reap the benefits of the Spark environment.

6. The outlier detection/intrusion detection, and Recommendation present an
open area to conduct more research work.

7. The unbalanced datasets and high dimensional datasets pose significant chal­
lenges in Big Data paradigm and thus present themselves as a rich area to be
explored.

8. Streaming data analytics, Social Network Analysis (SNA), and Social Me­
dia Analysis (SMA) also pose challenges. The real­time or quasi­real­time
streaming analysis are open areas for future work.

9. Scalable Advanced Massive Online Analysis (SAMOA) has not been ex­
plored at all for streaming data analytics.

10. Soft computing hybrid models and their applications are also attractive to
explore.

11. Evolutionary algorithms present an open area for future research.

12. A few papers were found on fuzzy logic­based techniques covering fuzzy
classification and fuzzy clustering. Their combination with optimization
techniques can be an area to explore further.

13. Self­organizing Map (SOM) is a fascinating topology for exploration.
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14. Deep learning is now a growing research area that can handle complex non­
linear data with high dimensionality. It can be applied to solve Data Mining
(DM) tasks. Deep learning architectures are computationally expensive due
to the presence of multiple hidden layers, where there is a scope of paral­
lelization. They can be explored with in­memory computing utilizing Apache
Spark.

15. The Relevance Vector Machine (RVM), Independent Component Analy­
sis (ICA), Singular Value Decomposition (SVD), Latent Semantic Indexing
(LSI), One­Class SVM (OCSVM), Class Association Rule Mining (CARM)
techniques are not explored at all, thus, resulting into an open space for ex­
ploration.

16. The different DM tasks on spatial and temporal data can be explored with
their inherent challenge of high dimensionality.

17. It is also found that General­purpose Graphics Processing Unit (GPGPU)
based vertical parallelization using MapReduce and Apache Spark is another
fertile ground for budding and future researchers.

18. The hybridization of horizontal parallelization with vertical parallelization,
i.e., a cluster of GPGPU based machines, is also an area to explore.

19. Big data visualization using MapReduce or Apache Spark is an area to be
researched.

20. There is a vast scope to explore the optimization algorithms in Hadoop
MapReduce or Apache Spark frameworks.

21. The research in the application domain of BDA involving the banking, insur­
ance and the finance sector is an attractive area to explore.

22. AAELM driven NLPCA can be implemented for logistic regression in Big
Data classification.

23. The Parallel evolving clustering method (PECM) can be scaled up to solve
big data analytics problems with streaming data.

177



Chapter 9 – Conclusions and Future Directions

24. EGRNN++ or PNN++ can be extended to suit online streaming data mining
by invoking the parallel evolving clustering method (PECM) in the clustering
phase of EGRNN++ or PNN++.

25. The PRBFN can perform both binary and multiclass classification with some
modification to the architecture. The multiclass classification can be an av­
enue to explore.
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Appendix A

Hadoop and Apache Spark:
Introduction

A.1 Hadoop MapReduce Vs. Apache Spark

Hadoop MapReduce (MR) [409] is difficult to program and needs abstraction,
whereas Spark is easy to program and does not require any abstraction. The Spark
has an interactive mode, whereas Hadoop MR does not possess interactive mode
except Pig and Hive. Hadoop MR processes data in batch mode and produces re­
ports for answering the queries on historical data. On the other hand, Spark can
handle streaming data and allows us to modify the data in real­time. Hadoop MR
has more latency as the partial results are stored in the disk. In the case of Spark, it
uses primary memory for caching partial results across the memory of distributed
workers, which helps in faster execution. Zaharia et al. [490] claimed that Hadoop
falls behind Spark by a factor of 10 in iterative machine learning workloads. A ma­
chine learning algorithm involves the iterative and interactive mode of execution.
In this case, Hadoop falls behind in the latency of execution time in comparison to
Spark.
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A.2 Apache Spark:Introduction

Apache Spark is an open­source distributed in­memory computational framework
for data analytics in the big data paradigm utilizing a cluster of commodity hard­
ware, i.e., a group of affordable low­performance systems. A Cluster is a group of
machines connected to LAN and communicating through Secure Shell (SSH). Za­
haria [490] developed Spark at UCBerkeley’s AMPLab in 2009. It was an academic
project at UC Berkley. It provides iterative, interactive, and scalable computational
capabilities, especially for machine learning. In the year 2013, the spark project
was passed on to the Apache Software Foundation.

It provides high­level APIs in Java, Scala, Python, and R and also interactively
can be used from Scala, Python, and R shells. Spark can run on a single machine as
well as over several machines with existing cluster managers. Spark has the follow­
ing options for deployment: (i) Cloud deployment, (ii) Standalone Deploy Mode,
(iii) Apache Mesos, and (iv) Hadoop YARN. It can access diverse data sources, in­
cluding Hadoop Distributed File System (HDFS), Cassandra, HBase, and Amazon
S3 (Simple Storage Service) [491].

The Spark is comparably advantageous than other big data analytical technolo­
gies like Hadoop and Storm, employing the MapReduce framework. Spark is faster
than MapReduce and offers low latency due to reduced disk input and output oper­
ation. Spark has the capability of in­memory computation on a distributed environ­
ment with fault­tolerance, which makes the data processing faster thanMapReduce.

Unlike Hadoop, Spark maintains the intermediate results in memory rather than
writing every intermediate output to disk. This operation hugely cuts down the exe­
cution time of the job, resulting in faster execution. When data crosses the threshold
of the memory storage, it is spilled to the disk.

Spark uses data abstraction through the use of Resilient Distributed Datasets
(RDDs) for data processing [492], which is a distributedmemory abstraction. RDDs
present an influential role in two types of applications viz. iterative algorithms and
interactive approach. Other computing frameworks like Hadoop MR does not pro­
vide the same. Each RDD is having five pieces of information that can be accessed
through a common interface. First, a set of partitions, which are atomic pieces of the
dataset. Second, the preferred location for a partition, which is required for faster
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access due to data locality. Third, a set of dependencies on parent RDDs, which
is needed for computation on RDDs. Fourth, an iterator, which is required for the
computation of elements in the partition with the help of iterators of parent RDDs.
Finally, the fifth one is metadata about the partitioning scheme and data placement
[492]. The concept of RDD provides the parallelization of the algorithm through
the partitions of data. Apart from providing in­memory storage, RDDs can also au­
tomatically recover from failures. Each RDD tracks the graph of transformations
that were used to build it, called its lineage graph. These lineage graphs help in
the reconstruction of any lost partitions through the re­execution of operations on
base data [493]. Spark doesn’t execute the tasks immediately but maintains a chain
of operations as meta­data of the job called DAG (Directed Acyclic Graph), which
is the lineage graph and is due to the transformation operation. The action on the
DAG happens only when an ‘action’ operation is called on. This process is called
lazy evaluation. The lazy evaluation allows optimized execution of the queries on
Big Data [494].

A.3 Parallel and Distributed Computation in Spark

Spark has an inherent feature of executing iterative programs and interactive mode
of execution for user­friendly data analysis. Figure A.1 depicts the components of
the Spark computational environment. The user interacts with the top layer through
the computing interface. The top layer provides the usage of different APIs for
the Spark application. The Spark applications interact with a cluster manager for
accessing the data from the distributed data storage.

A Spark cluster has twomain components: master node andworker nodes. Each
machine in the cluster is known as a node. There is a single master node and more
than one worker nodes in a cluster. The system, which is the master node, can also
serve as a worker node. The master node allocates jobs to the worker nodes. A
distributed file system, e.g., HDFS, a cloud storage system, e.g., S3 or a local file
system, is used for data storage. Spark can run on a single­node cluster setup hav­
ing both master node and the worker node on the same machine. It also runs in a
multi­node cluster setup. Spark applications run as independent sets of processes
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Computing Interface for Spark

API (Scala, Python, Java, R)

Cluster Manager for Distributed

Computing

(Standalone, Yarn or Mesos)

Distributed Data Storage

(HDFS, other formats)

Figure A.1: Components of Spark Computational Environment

on a cluster. The Spark applications coordinate among themselves using a Spark­
Context object in the main program, which is also known as the driver program.
For running Spark on a cluster, the SparkContext connects to one of the cluster
managers. A Spark cluster can have several types of cluster managers (i.e., either
Spark’s standalone cluster manager, Mesos or YARN), which allocate resources
across applications. When the SparkContext is connected with the cluster manager,
Spark acquires executors on worker nodes of the cluster. Here, an executor is a pro­
cess that performs computations and storage operations for an application. Next, it
sends application code to the executors. Finally, SparkContext assigns tasks to the
executors to run [491]. The cluster components are presented in Figure A.3.

A job is a part of the code in the Spark application which takes inputs from
HDFS/local file system, performs computations on them. A job writes outputs to
an HDFS/local file system. Figure A.2 depicts how a job is distributed on a Spark
Cluster. A driver process runs on the master node and executes a job over the Spark
Engine. Each job is split into a number of stages which can be either map or reduce
stages. One stage may be dependent on the outcomes of a previous stage. So the
stages are executed sequentially. Each stage comprises several tasks which can run
in parallel. The data is split and spread over the cluster in several partitions. The
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computations of one stage are performed on each partition in the form of a task.
These tasks are executed as processes running in parallel over the worker nodes
by the executor processes. Only one task is performed on one partition on each
executor [298].
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Figure A.2: Execution of Job, Stage, and Task in Apache Spark

A.4 Spark Features

Apache Spark has other features, such as:

1. It supports a wide variety of operations compared to Map and Reduce func­
tions.

2. It presents a compact and stable Application Programming Interface (API) in
the programming languages such as Scala, Java, and Python.

3. Spark is written in Scala Programming Language and runs in Java Virtual
Machine (JVM).

4. An application can be developed employing any of the following program­
ming languages: Scala, Java, Python, and R; in Spark.
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5. It provides an interactive programming interface called shell for Scala and
Python.

6. It leverages the distributed cluster memory for doing computations for in­
creased speed and data processing.

7. It runs on top of the existing Hadoop cluster and access HDFS; it can also
process data stored by HBase structure. It employs three different cluster
managers for managing the resources of cluster viz. Yet Another Resource
Negotiator (YARN) in Hadoop, Apache Mesos, and standalone mode.

8. Apache Spark can be integrated with various data sources like SQL, NoSQL,
S3, HDFS, local file system, etc.

9. It is a good fit for iterative tasks like Machine Learning (ML) algorithms.

10. Apart from MapReduce computational framework, it supports SQL­like
queries, streaming data, machine learning, and graph analysis.

A.5 Apache Spark Components and Architecture

Multiple applications run in Spark with independent resources and processes on a
cluster. The main program or the driver program contains an object called Spark­
Context, which coordinates the applications.

For running an application on a cluster, the SparkContext connects to the clus­
ter manager (i.e., either YARN, or Mesos, or standalone). The cluster manager is
responsible for resource allocation across applications. But, the standalone cluster
can manage a single application only. Once Spark is connected to the cluster man­
ager through the SparkContext, it acquires executors and resources for the executors
on the worker nodes in the cluster. The executors are processes that perform com­
putational work and storage of data for the application. SparkContext sends tasks
to the executors to run Figure A.3.
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Figure A.3: Components of Apache Spark Cluster[491]
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Machine Learning Techniques

B.1 K­Means++

The K­Means clustering algorithm chooses a random initial ‘K’ cluster centers. It
updates the cluster centers with iterations until there is no further change in the
cluster center and thus finds reasonable solutions quickly. However, it suffers from
at least two major drawbacks

i the algorithm has the worst­case execution time which is super­polynomial
of input size,

ii the formed clusters may not be optimal with respect to the objective function.

The K­Means++ [401] has addressed the deficiency of optimal clustering by the
introduction of a method for cluster center initialization before the execution of the
iterations of K­Means algorithm. The K­Means++ clustering algorithm employ­
ing an innovative method for initial cluster center selection or seed selection was
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proposed by Arthur and Vassilvitskii [401]. The algorithm is as follows:
Algorithm 4: K­Means++ algorithm
Input: dataset D with p points in Rq and x ∈ D. d(x) is the smallest

distance from any given data point to its nearest cluster center
which has been already selected.

Output: ‘K’ cluster centers
Data: data distributed in partitions

1 Select first centerC1 uniformly at random from D.
2 For each data point x ∈ D, compute d(x) and take a new centerCi, with

probability d(x)2

∑xεD d(x)2 .
3 Repeat Step 2 until k centers have been selected all together.
4 Proceed with the iterations of the K­Means.

B.2 K­Means∥

The K­Means∥ is the parallel implementation of K­Means++. Say, n number of
samples are there, and k initial cluster centers are needed. The K­Means++ per­
forms k number of passes to sample one initial cluster center in each pass. But,
K­Means∥ samples the first center uniformly at random. Then, the next centers will
be chosen non­uniformly with a given probability, which is stochastically biased
by the already chosen centers. This happens in a parallel way across all partitions.
Thus, so obtained O(k logn) points are finally, re­clustered into k initial centers for
the standard K­Means iterations.

B.3 Parallel Bisecting K­Means

Bisecting K­Means [403] is an approach that combines the best features of K­Means
and hierarchical clustering, i.e., divisive clustering. Here, instead of partitioning the
data into ‘k’ clusters in each iteration, Bisecting K­Means splits one cluster into two
sub­clusters at each bisecting step(by using K­Means) until k clusters are obtained.

Bisecting K­Means is more efficient when ‘k’ is large. For the K­Means algo­
rithm, the computation involves every data point of the data set and k centroids.
But, in Bisecting K­Means, only the data points of one cluster and two centroids
are involved in the computation in each bisecting step. Thus, the computation time
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is reduced. Bisecting K­Means produce clusters of similar sizes, while K­Means is
known to produce clusters of widely different sizes [495].

The algorithm for bisecting K­Means is presented below.
Algorithm 5: Bisecting K­Means algorithm
1 repeat
2 Pick a cluster to split.

/* The following for loop is executed for a fixed `n' number of
times */

3 for i← 1 to n do
4 Find 2 sub­clusters using the basic K­means algorithm (bisecting

step).
5 Take the split that produces the clustering with the highest overall

similarity.
6 until the desired number of clusters is reached
The Bisecting K­Means has been implemented in a parallel and distributed com­

putational environment by Spark Mllib library [496]. The algorithm starts from a
single cluster that contains all points. Iteratively it finds divisible clusters on the
bottom level and bisects each of them using K­means until there are ‘K’ leaf clus­
ters in total or no leaf clusters are divisible. The bisecting steps of clusters on the
same level are grouped together to increase parallelism. If bisecting all divisible
clusters on the bottom level would result in more than ‘K’ leaf clusters, larger clus­
ters get higher priority. The parallel version of Bisecting K­Means is referred to as
Bisecting K­Means∥, in the thesis.

B.4 Generalized Regression Neural Network
(GRNN)

GRNN [376] is a feed­forward neural network having roots in statistics. GRNN
represents an advanced architecture in the neural networks that implements non­
parametric regression with one­pass training.

The topology of GRNN is depicted in Figure B.1 and involves four layers of
neurons, viz., input, pattern, summation, and the output.

The pattern layer comprises ‘n’ training neurons. The test sample is fed to the
input layer. The distance, di, between the training sample present as a neuron in the
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pattern layer and the data point from the test set used for regression, is used to figure
out how well each training neuron in pattern layer can represent the feature space
of the test sample, X. This probability density is calculated with Gaussian activa­
tion function. Thus, the summation of the product of target value and the result of

activation function for each neuron i.e., ∑n
i=1Yi ∗ e

(
−d2

i
2σ2

)
forms the numerator term

in the summation layer and the summation of the term e

(
−d2

i
2σ2

)
i.e., ∑n

i=1 e

(
−d2

i
2σ2

)

forms the denominator term in the summation layer. Then, in the output layer, the

prediction is calculated as Ŷ (X) = ∑n
i=1 Yi∗e

−d2
i

2σ2



∑n
i=1 e

−d2
i

2σ2

 . Here, d2
i = (X −Xi)

T ∗ (X −Xi).

X is a test sample and Xi is the neuron present in the pattern layer. For big datasets,
the equations involved in summation and output layer change to accommodate the
information about the cluster centers. For further details please see the training
algorithm presented in Algorithm 2.

Pattern Layer

X1

X2

Xq-1

Xq

Input Layer
n Pattern layer Neurons with activation function:

Summation Layer

Denominator

Numerator

Output Layer

Figure B.1: Generalized Regression Neural Network: Architecture
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B.5 Probabilistic Neural Network (PNN)

PNN [386] is a feed­forward neural network having roots in statistics. PNN repre­
sents an advanced architecture in the neural networks that implements classification
with one­pass training.

The topology of PNN is depicted in Figure B.2 and involves four layers of neu­
rons, viz., input, pattern, summation, and the output.

The pattern layer comprises training neurons. The test sample is fed to the in­
put layer. The distance, di, between the training sample present as a neuron in the
presentation layer and the data point from the test set used for classification, is used
to figure out how well each training neuron in presentation layer can represent the
feature space of the test sample, X. This probability density is calculated with the
Gaussian activation function. Thus, the summation of the value of activation func­

tion for each neuron i.e., ∑n
i=1 e

d2
i

2σ2 forms the Probability Density Function (PDF)
for one class (say, C1) in the summation layer and similarly, the summation of the

term e
d2
i

2σ2 i.e., ∑n
i=1 e

d2
i

2σ2 forms the PDF for the second class (say, C2) in the sum­
mation layer. Then, in the output layer, the classification Ŷ (X) is performed by
comparing the larger value between the PDFs for both the classes, whichever is
larger, the test sample belongs to that class. Here, d2

i = (X −Xi)
T ∗ (X −Xi). X is

a test sample, and Xi is the neuron present in the pattern layer. If the classification
task involves multiple classes, then the PDFs for all the classes are compared, and
the largest among them signifies that the sample belongs to that class.
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Datasets Analyzed

C.1 Gas Sensor Dataset

The gas sensor dataset contains the readings gathered from sixteen sensors exposed
to varying concentrations of gas mixtures. The dataset includes readings of two
different mixtures of gas in air, viz., Ethylene with Methane, and Ethylene with CO
in two different datasets. The sensor readings were the data from 16­sensor array
signals gathered uninterruptedly for about 12 hours.

The Ethylene and COmixture in Air dataset, and Ethylene andMethane mixture
in Air dataset, both contain 19 features. Here, the first feature represents the time of
sensor reading; the second feature represents CO andMethane concentration in ppm
in former and later datasets respectively, the third feature represents the Ethylene
concentration in ppm. The next 16 features represent the sensor readings from 16
chemical sensors. The Ethylene­CO dataset contains 4.2 million samples and is of
643MB. The Ethylene­Methane dataset contains 4.17 million samples and is of 638
MB. The details of the attributes are mentioned in Table C.1 and Table C.2.

C.2 ccFraud Dataset

The ccFraud dataset contains credit card fraud data. The dataset contains 9 features
and 10000000 number of instances. The negative class (genuine transactions) has
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Table C.1: Attribute details of Ethylene­CO Gas Sensor dataset
Attribute Name Attribute details
Time (seconds) Time measured in seconds for the sensor readings.
CO conc. (ppm) The concentration of CO measured in ppm.
Ethylene conc.
(ppm)

The concentration of Ethylene measured in ppm.

Sensor Readings
(16 channels)

Readings from 16 chemical sensors forming the data
comprising 16 columns.

Table C.2: Attribute details of Ethylene­Methane Gas Sensor dataset
Attribute Name Attribute details
Time (seconds) Time measured in seconds for the sensor readings.
Methane conc.
(ppm)

The concentration of Methane measured in ppm.

Ethylene conc.
(ppm)

The concentration of Ethylene measured in ppm.

Sensor Readings
(16 channels)

Readings from 16 chemical sensors forming the data
comprising 16 columns.

9,403,986 samples. The positive class (fraudulent transactions) has 596,014 sam­
ples. The dataset is of 292 MB. This dataset is quite imbalanced, with a ratio of
94:6 genuine to fraudulent transactions. The details of the attributes are mentioned
in Table C.3.

Table C.3: Attribute details of ccFraud dataset
Attribute Name Attribute details
custID customer ID, auto­incrementing integer value.
gender taking two values either 1 or 2 for male and female.
state state number given as integer.
cardholder number of cards per customer with a maximum value of 2.
balance credit balance.
numTrans number of transactions made in integer.
numIntlTrans number of international transactions made in integer.
creditLine credit limit of a customer in integer.
fraudRisk whether a given transaction is fraud or not (0 = genuine, 1

= fraud)
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C.3 HEPMASS Dataset

The HEPMASS dataset contains the high energy physics experiments data to search
for the presence of exotic particles. The dataset contains 28 attributes and 10500000
number of instances. The dataset is 7.8 GB. The details of the attributes of the
dataset are depicted in Table C.4.

Table C.4: Attribute details of HEPMASS dataset
Attribute Name Attribute details
# label Class label (1 for signal, 0 for background).
f0 – f26 27 normalized features (22 low­level features then 5

high­level features).
mass Mass of the particle.

C.4 HIGGS Dataset

The HIGGS dataset has been produced using Monte Carlo simulations. The dataset
contains 28 attributes and 11000000 number of instances. The dataset is a balanced
one with 53% positive samples in the dataset. In this, the first feature is the class
variable with two values, i.e., 1 and 0 for representing signal and background, re­
spectively. The dataset contains 28 more features following the class variable, out
of which the first 21 are low­level features, the next 7 are high­level features. The
low­level features are kinematic attributes measured by the particle detectors in the
accelerator. The low­level features are mapped to the high­level features. These
high­level features are employed to define the class value. The dataset is of 8.0 GB.
The attribute details are in Table C.5.

Table C.5: Attribute details of HIGGS dataset
Attribute Name Attribute details
“V1” Class label (1 for signal, 0 for background).
“V2” – “V22” 21 low­level features.
“V23” – “V29” 7 high­level features derived from 21 low­level features.
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C.5 Amazon Movie Review (AMR) Dataset

The AMR dataset is available on the Stanford Network Analysis Platform (SNAP)
data repository [474]. It contains 7,911,684 reviews on 253,059 movies provided
by 889,176 users, which were collected from August 1997 to October 2012. The
movie review ratings are on five levels of Likert scale. The detailed structure of the
dataset is depicted in Table C.6.

Table C.6: Attribute details of Amazon Movie Review dataset
Attribute Name Attribute details
product/productId Unique id of the product about which the review is made.
review/userId Unique id of the user performing the review.
review/profileName Profile name of the user performing the review.
review/helpfulness Fraction of users who found the review helpful.
review/score Review score or ratings in 5 levels of Likert scale.
review/time System time when the review was made (unix time).
review/summary A summary of the review.
review/text Plain text review of the movie.
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Summarized Veiw of
Literature Review Chapter

D.1 Table for DM task­wise categorization of articles
with ML techniques and Performance measure

Table D.1: DM Task­wise categorization of articles describing ML techniques used in
it

DM Task
Article

Reference
Number

Year
Machine
Learning
Techniques

Performance
Measure

Association
Rule

Mining/
Pattern
Mining

Hadoop­based Articles
[21] 2012 FP mining Not mentioned

[22] 2013 FP Growth

Interestingness
Measure,

all­confidence,
α(X) =

Sup(X)/

Max_item_sup(X)

[24] 2015 Frequent
Subgraph mining Not mentioned

[30] 2016 Frequent
itemset mining Not mentioned

Continued on next page. . .
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DM Task
Article

Reference
Number

Year
Machine
Learning
Techniques

Performance
Measure

[31] 2017 Apriori Not mentioned

[35] 2017 Dynamic
rule creation

True Positive
Rate (TPR)
= TP/(TP + FN)

False Positive
Rate (FPR)
= FP/(FP + TN)

[38] 2017 FP Growth Not mentioned

[39] 2017 Frequent
itemset mining Not mentioned

[40] 2018 Frequent
itemset mining Execution time

[42] 2018 Maximal frequent
itemsets mining Exection time

[43] 2018 Apriori Execution time

[29] 2012 Frequent
Subgraph mining Not mentioned

[55] 2013 Apriori Not mentioned
[58] 2013 Apriori Not mentioned
[59] 2013 Apriori Not mentioned
[60] 2013 FP Tree Not mentioned

[61] 2013 Apriori +
FP Growth Not mentioned

[62] 2013 Apriori + Eclat Not mentioned
[63] 2013 FP mining Not mentioned
[64] 2014 FP Growth Not mentioned
[67] 2014 Apriori Not mentioned

[68] 2014

String mining
algorithm using
suffix array
(SA) and the

longest common
prefix array
(LCP)

Not mentioned

[69] 2014 Apriori Not mentioned
Continued on next page. . .
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DM Task
Article

Reference
Number

Year
Machine
Learning
Techniques

Performance
Measure

[71] 2014 Frequent
itemset mining Not mentioned

[497] 2014 Frequent
Subgraph mining Not mentioned

[72] 2014 Apriori Not mentioned

[73] 2014 Repetitive
Sequence mining Not mentioned

[74] 2014 Frequent
pattern mining Not mentioned

[75] 2015 Apriori +
FP Growth Not mentioned

[76] 2015 Apriori Not mentioned
[77] 2015 Parallel GA Not mentioned

[78] 2015 Follower
pattern mining Not mentioned

[80] 2015 PHIKS Not mentioned

[81] 2015
Vertical mining
with breadth­first

search
Not mentioned

[82] 2015

Carpenter
algorithm

+ Depth first
search for

closed itemset

Not mentioned

[85] 2015 Weighted itemset
mining Not mentioned

[86] 2016 Apriori Not mentioned

[87] 2016 Mining closed
frequent itemsets Not mentioned

[88] 2016 Prepost algorithm Not mentioned

[89] 2016 Apriori +
FP Growth Not mentioned

[90] 2016

Grid based
partitioning
for spatial

neighborhood

Not mentioned

Spark­based Articles
Continued on next page. . .
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DM Task
Article

Reference
Number

Year
Machine
Learning
Techniques

Performance
Measure

[44] 2015 Apriori Execution time

[45] 2016 High utility
itemset mining Execution time

[49] 2018 Maximal Frequent
Pattern mining Not mentioned

[52] 2018
Quantitative
association
rule mining

Not mentioned

[91] 2015 Apriori Not mentioned
[92] 2015 FP­Growth Not mentioned
[93] 2015 Apriori Not mentioned
[94] 2015 Suffix method Not mentioned
[95] 2016 Faster­IAPT Not mentioned

Regression/
Prediction

Hadoop­based Articles

[96] 2013 Extreme Learning
Machine (ELM)

Speedup,
Scaleup,
Sizeup

[97] 2015 Semiparametric
regression Not mentioned

[99] 2016 BPNN MAPE

[100] 2020 MLR
Correlation
Coefficient,
RMSE

[108] 2012 Regression Tree Not mentioned

[109] 2015 AAELM and MLR MSE, MAPE,
t­test

[110] 2015 MLR Not mentioned
[111] 2015 SVM Not mentioned

[112] 2016 BPNN Execution time,
Accuracy

Spark­based Articles
[101] 2016 Random Forest (RF) Not mentioned

[102] 2016
Fuzzy rule
learning

through GA
Not mentioned

Continued on next page. . .
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DM Task
Article

Reference
Number

Year
Machine
Learning
Techniques

Performance
Measure

[104] 2018
Linear regression

and
Regression Tree

Mean Relative
Error (MRE)

[105] 2018 k­Weighted
Nearest Neighbour Not mentioned

[106] 2020 ELM
MAPE,
MAE,
RMSE

[107] 2020 Not mentioned

[113] 2015

Weighted k­NN
regression +

prototype selection
method based on
fuzzy rough set
theory (FRPS)

RMSE

[116] 2016

Stochastic Gradient
Descent (SGD) for
Extreme Learning
Machines (ELM)

Not mentioned

[117] 2020 GRNN MSE

Classi­
fication

Hadoop­based Articles
[118] 2011 SVM Not mentioned

[119] 2012 ACO Precision, recall,
accuracy

[120] 2013 SVM
Speedup,
efficiency,
accuracy

[121] 2014 SVM

Accuracy,
Sensitivity,

Precision, and
Matthews
correlation
coefficient

Continued on next page. . .
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DM Task
Article

Reference
Number

Year
Machine
Learning
Techniques

Performance
Measure

[4] 2014 RF

TPR, FPR,
precision, recall,

Pearson
product­moment

coefficient

[125] 2014 Horizontal and
vertical compression Not mentioned

[126] 2015 SVM Not mentioned
[129] 2015 ELM Not mentioned

[131] 2015
Execuiton time,

accuracy,
precision

[132] 2015 Fuzzy rule­based
classification Not mentioned

[133] 2016 ELM Not mentioned

[134] 2016 k­NN

MAPE, RMSE,
mean absolute
error (MAE),
maximum
error (ME)

[136] 2016 FP­Growth Not mentioned

[137] 2016 k­NN
Confusion matrix,
Recall, Precision,

Accuracy
[138] 2016 ELM Speedup, sizeup
[140] 2016 ELM Not mentioned

[141] 2016

Voting based
instance selection
+ random weight

networks

Not mentioned

[142] 2016 ELM Speedup
[144] 2016 SVM Not mentioned

[145] 2016 ELM

Speedup, scaleup,
Precision, Recall,
F­measure and

G­mean
Continued on next page. . .
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DM Task
Article

Reference
Number

Year
Machine
Learning
Techniques

Performance
Measure

[146] 2018
dissimilarity­based
imbalance data
classification

Not mentioned

[149] 2018 Fuzzy rule­based
classification Execution time

[150] 2019 Kernel­optimized
SVM

Accuracy,
execution time

[162] 2012
Social Network
Analysis (SNA)
algorithms

Centrality
measures

[164] 2012 Sentiment classifier Accuracy

[165] 2013 DT + SVM Precision, recall,
F1 measure

[166] 2013 RF Accuracy
[167] 2013 ELM Speedup, sizeup

[168] 2013 Meta­learning Accuracy,
speedup

[170] 2013 Logistic
regression (LogR) Not mentioned

[171] 2013 Genetic Programming Accuracy,
speedup

[172] 2013 SVM Not mentioned

[180] 2014 Classification
rule induction

Speedup,
scaleup,
sizeup

[173] 2014 SVM Speedup

[174] 2014 K­means + LogR Accuracy,
TPR, FPR

[175] 2014 Fuzzy rule­based
classification Accuracy

[176] 2014 Classification rule Accuracy
[177] 2014 SVM Not mentioned
[178] 2014 k­NN Not mentioned
[179] 2015 SVM Not mentioned
[181] 2015 k­NN Not mentioned
[182] 2015 k­NN Not mentioned

Continued on next page. . .
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DM Task
Article

Reference
Number

Year
Machine
Learning
Techniques

Performance
Measure

[183] 2015 RF Not mentioned

[184] 2015 SVM, k­NN,
Adaboost Speedup

[185] 2015 GA optimized DT Not mentioned
[186] 2015 RF Not mentioned

[187] 2015 Evolutionary
undersampling AUC, gmean

[188] 2015 Feature ranking Information
gain

[190] 2015 k­NN Not mentioned

[191] 2015 Fuzzy Associative
classification Not mentioned

[192] 2015 Bayesian classifier Not mentioned

[193] 2015 SVM Accuracy,
execution time

[194] 2016
TF­IDF +

cosine similarity
+ Rocchio algorithm

Recall,
Precision,
F1 measure,
speedup

Spark­based Articles

[153] 2016 k­NN
Accuracy,

execution time,
speedup

[154] 2016 Bayesian Classifier Not mentioned
[155] 2016 BPNN Accuracy

[156] 2017 RF
Accuracy,

execution time,
speedup

[157] 2017 LogR, SVM Accuracy

[158] 2017 RF Accuracy,
execution time

[159] 2018 DT Not mentioned
[160] 2018 Tree based index Not mentioned

[161] 2020 Random Forest Accuracy,
execution time

Continued on next page. . .
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DM Task
Article

Reference
Number

Year
Machine
Learning
Techniques

Performance
Measure

[195] 2013 LogR Accuracy,
execution time

[196] 2014 SVM Accuracy,
execution time

[197] 2014 LogR, linear SVM Execution time
[198] 2014 k­NN Execution time

[199] 2015 Kohonen Neuron
Average error
rate, Standard
Deviation (SD)

[200] 2015
NB + Entropy
minimization
discretizer

Accuracy,
execution time

[201] 2015 SMOTE + RF

Sensitivity,
specificity,
precision,
G­mean,
F­measure,

execution time

[202] 2015
Least Squares
Support Vector
Machines

Accuracy

[203] 2016 Associative classifier Accuracy

[204] 2016 Naïve Bayes (NB),
DT, RF

Accuracy,
sensitivity,
specificity

[205] 2016 k­NN Accuracy

[206] 2016 LogR, NB Accuracy,
execution time

[207] 2016 SVM Accuracy

[208] 2016 AANN + PSO Classification
Rate, MSE

[210] 2016 k­NN MRE

[211] 2019 SVM Accuracy,
execution time

Clustering

Hadoop­based Articles

[212] 2014 Centroid­based
clustering Not mentioned

Continued on next page. . .
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DM Task
Article

Reference
Number

Year
Machine
Learning
Techniques

Performance
Measure

[214] 2014 k­means++ Not mentioned

[215] 2014 K­means Davies–Bouldins
index

[216] 2015 Fuzzy c­means Cluster purity

[217] 2015 Ant colony
clustering

F­measure,
Davies­Bouldin
index, Dunn

index, Speedup,
Scaleup,
Sizeup

[219] 2016
Semantic­Driven

Subtractive
Clustering

Execution time

[220] 2016 Similarity Join
Tree Not mentioned

[222] 2016 Density Peaks
clustering Not mentioned

[224] 2016
top­k similarity
using cosine
similarity

Accuracy,
execution time

[226] 2016 k­NN Not mentioned
[230] 2016 K­means Not mentioned
[231] 2016 K­means Speedup

[232] 2016 Artificial Bee
Colony (ABC)

F­ measure,
execution time,

speedup
[233] 2016 K­means Not mentioned

[234] 2020

User clustering
based on

sentiment score
and

cosine similarity

Execution time

[239] 2009 K­means
Speedup,
scaleup,
sizeup

[240] 2011 K­center, K­median Execution time
Continued on next page. . .
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DM Task
Article

Reference
Number

Year
Machine
Learning
Techniques

Performance
Measure

[241] 2013 Text document
clustering

Purity,
Rand index,
F­measure

[242] 2013 K­means Execution time

[243] 2013 K­means Accuracy,
execution time

[244] 2013 K­means Execution time

[245] 2014 K­means Accuracy,
execution time

[246] 2014 Fuzzy K­means Not mentioned
[247] 2014 K­means Execution time

[249] 2014 Fuzzy K­mean Accuracy,
execution time

[250] 2014 K­means Not mentioned

[251] 2014 K­medoids Silhouette
coefficient

[252] 2014 K­means Execution time

[253] 2014 K­means Silhouette
coefficient

[255] 2014
Differential
evolution
clustering

Purity

[256] 2014
Glowworm Swarm

Optimization
(GSO) clustering

Purity,
speedup,
scaleup

[259] 2014 K­medoids Speedup

[260] 2015
Clustering based
on similarity of

nodes
Not mentioned

[261] 2015 K­means Silhouette
coefficient

[263] 2015 Fuzzy C­Means
Precision,
recall,

execution time
[264] 2015 K­means Execution time

[265] 2015 K­means Accuracy,
execution time

Continued on next page. . .
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DM Task
Article

Reference
Number

Year
Machine
Learning
Techniques

Performance
Measure

[266] 2015 K­means Accuracy

[267] 2015
Dynamic

neighborhood
selection (DNS)

Execution time,
speedup

[268] 2015 K­means

Connectivity,
Dunn index,
Silhouette
measure,

execution time

[271] 2015

Evolutionary
Clustering with
Fireworks and

Cuckoo­search based
evolutionary
algorithms

Execution time

[272] 2015 K­means Execution time
[273] 2015 Fuzzy K­means Execution time
[274] 2015 K­means Execution time
[275] 2015 K­modes Execution time

[276] 2015 Range­based
clustering Execution time

[277] 2015 PSO

Precision,
recall,

F­measure,
execution time

[278] 2015 Density­based,
grid­based clustering Execution time

[280] 2015 K­means Execution time
[281] 2015 K­means Execution time
[282] 2015 K­means Execution time
[283] 2016 K­means Execution time

[284] 2016 K­means

Precision,
recall,

F­measure,
execution time

[285] 2016 K­means Execution time,
speedup

Continued on next page. . .
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DM Task
Article

Reference
Number

Year
Machine
Learning
Techniques

Performance
Measure

[286] 2016 Fuzzy c­means Execution time
[287] 2020 K­means Execution time

Spark­based Articles
[235] 2018 K­means Not mentioned
[236] 2020 Canopy K­means Not mentioned

[237] 2020 K­means Accuracy,
execution time

[238] 2020 Hierarchical
clustering

Accuracy,
scalability

[289] 2014 SOM clustering
Accuracy,
Rand Index,
execution time

[290] 2015 K­means Execution time,
accuracy

[291] 2015 PSO

Processing time,
Acceleration,
Intra Cluster
Distance, and
Inter Cluster
Distance

[292] 2015 K­means Execution time
[293] 2015 Fuzzy c­means Execution time
[294] 2016 DenPeak Execution time
[295] 2016 DBSCAN Execution time
[296] 2016 Fuzzy c­means Execution time
[297] 2016 K­means Execution time

[298] 2016 Fuzzy c­Means

F­measure,
Adjusted

Rand Index,
execution time

[299] 2016 Density­grid clustering Not mentioned

Outlier
Detection/
Intrusion
Detection

Hadoop­based Articles

[300] 2014 Cell­based
outlier detection Execution time

Continued on next page. . .
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DM Task
Article

Reference
Number

Year
Machine
Learning
Techniques

Performance
Measure

[301] 2014 Artificial
Immune Systems

FPR,
accuracy,
recall

[302] 2016 Binary Bat
Algorithm

Speedup,
scaleup,
sizeup,

Detection rate,
FPR

[303] 2016
Rough set +

Genetic Algorithm
(GA)

Execution time

[304] 2016

NB, SVM,
conjunctive rule,
RF tree, REPTree,
and J48 (C4.5

Java implementation)

Accuracy

[307] 2013 GA + k­NN Accuracy,
execution time

[308] 2013 PSO clustering
TPR,

speedup,
execution time

[309] 2014 ELM
TPR, FPR,
speedup,
sizeup

[310] 2016 NB + k­NN

Accuracy,
Sensitivity,
Specificity,

FPR, Precision,
F1 measure

Spark­based Articles
[306] 2018 Random Forest Not mentioned

[311] 2016
LogR, SVM, RF,

Gradient Boosted DT,
and NB

Accuracy,
sensitivity,
specificity,

execution time
Continued on next page. . .
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DM Task
Article

Reference
Number

Year
Machine
Learning
Techniques

Performance
Measure

[312] 2016 K­means Not mentioned

Recommen­
dation
System

Hadoop­based Articles

[313] 2018 SVD RMSE,
Target Recall

[315] 2012 Top­N
recommendation

Prediction
quality,
speedup

[318] 2014

Item­based and
User­based
Collaborative
Filtering (CF)

Execution time,
speedup

[319] 2014 User­based CF Accuracy,
execution time

[320] 2015 Stochastic Gradient
Descent

Accuracy
using RMSE

[321] 2015 Item­based CF RMSE, MAE
[322] 2015 User­based CF Execution time

[323] 2016 Cosine similarity,
k­NN, CF MAE

Spark­based Articles

[325] 2016 User­based CF RMSE,
execution time

[326] 2020 Collaborative
filtering RMSE

[327] 2020 SVM

Precision,
recall,

F1 score,
and accuracy

Others

Hadoop­based Articles

[328] 2012 Rough set
approximations

Speedup,
scaleup,
sizeup

[329] 2013 Privacy preserving
Feature selection Not mentioned

[330] 2014 Feature reduction Not mentioned
Continued on next page. . .

D­15



Appendix D – Summarized Veiw of Literature Review Chapter

DM Task
Article

Reference
Number

Year
Machine
Learning
Techniques

Performance
Measure

[331] 2015 Bayesian Network Execution time,
speedup

[332] 2015 Incremental
MapReduce Execution time

[335] 2016 Bayesian Network Recall,
execution time

[336] 2016 PSO Execution time

[342] 2011 SGD Not mentioned

[343] 2012 Latent Dirichlet
Allocation

Execution time,
speedup

[344] 2013 Selection algorithms Execution time

[345] 2014
Genetic algorithm

and
simulated annealing

Execution time

[347] 2014 Positive
Approximation Not mentioned

[348] 2015 GA + k­NN Accuracy

[349] 2015 K­means + SVM
Sensitivity,
specificity,
accuracy

[350] 2015 GA Execution time
[351] 2016 Steiner tree Not mentioned

Spark­based Articles

[337] 2016 GA Execution time,
speedup

[340] 2016

Feature selection
using Information
Gain, RELIEF­F,
Correlation­based
Feature Selection

(CFS), Support Vector
Machine Recursive
Feature Elimination

(SVM­RFE)

Not mentioned

Continued on next page. . .
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DM Task
Article

Reference
Number

Year
Machine
Learning
Techniques

Performance
Measure

[341] 2016
minimum­redundancy­
maximum­relevance

(mRMR)
Not mentioned

[352] 2016 artificial bee colony Not mentioned

[353] 2016 N­Gram Feature
selection Information Gain

End of Table

D.2 Table for Dataset­wise distribution of Papers

Table D.2: Distribution of Papers: Dataset wise

Type of Dataset
Hadoop MapReduce

Papers
Spark
Papers Total

CountReference
Number Count Reference

Number Count

Real­world/
Benchmark
Datasets

[21] [31] [35] 123 [44] [52] [92] 56 179[38] [39] [40] [94] [95] [101]
[59] [61] [62] [102] [104] [105]
[67] [68] [71] [113] [116] [153]
[73] [74] [77] [154] [155] [156]
[78] [80] [81] [157] [158] [159]
[85] [96] [97] [160] [196] [197]
[108] [109] [111] [199] [200] [201]
[112] [118] [119] [202] [204] [205]
[120] [121] [4] [206] [207] [208]
[125] [126] [129] [210] [211] [235]
[131] [132] [134] [268] [289] [290]
[136] [137] [138] [292] [293] [296]
[144] [145] [146] [297] [298] [306]
[149] [150] [164] [311] [312] [325]
[165] [166] [167] [340] [341] [352]
[171] [173] [174] [353] [117] [106]
[175] [177] [179] [161] [236] [237]
[181] [182] [184] [238] [326]

Continued on next page. . .
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Type of Dataset
Hadoop MapReduce

Papers
Spark
Papers Total

CountReference
Number Count Reference

Number Count

[186] [187] [188]
[190] [191] [192]
[193] [194] [212]
[216] [217] [219]
[220] [222] [224]
[230] [241] [243]
[249] [252] [255]
[259] [260] [263]
[264] [265] [266]
[267] [271] [272]
[273] [274] [275]
[276] [280] [281]
[283] [284] [285]
[286] [301] [302]
[303] [304] [307]
[308] [309] [310]
[313] [315] [318]
[320] [321] [322]
[323] [331] [332]
[335] [342] [343]
[345] [347] [348]
[349] [350] [100]

Synthetic
Datasets

[58] [60] [63] 23 [91] [294] [295] 3 26[69] [72] [88]
[89] [90] [133]
[178] [183] [232]
[233] [239] [240]
[247] [250] [253]
[278] [300] [344]
[287] [234]

Both Real
and

Synthetic
Datasets

[22] [24] [29] 33 [49] [93] [195] 7 40[30] [42] [43] [198] [203] [299]
[55] [64] [497] [337]
[76] [82] [86]
[87] [110] [140]
[141] [142] [162]

Continued on next page. . .

D­18



Appendix D – Summarized Veiw of Literature Review Chapter

Type of Dataset
Hadoop MapReduce

Papers
Spark
Papers Total

CountReference
Number Count Reference

Number Count

[168] [180] [176]
[214] [215] [226]
[231] [246] [256]
[261] [282] [319]
[328] [329] [330]

Not
Mentioned

[75] [99] [170] 12 [45] [291] [107] 4 16[172] [185] [242] [327]
[244] [245] [251]
[277] [336] [351]

End of Table
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