A Study of Constrained Reachability
Query Processing in Directed Graphs

A thesis submitted to the University of Hyderabad

in partial fulfilment of the requirements for the award of

Doctor of Philosophy
in
Computer Science
by

Bhargavi B
15MCPC02
Under the supervision of

Dr. K. Swarupa Rani

School of Computer and Information Sciences
University of Hyderabad
P.O. Central University, Gachibowli
Hyderabad — 500046

Telangana, India

2020

CERTIFICATE

This is to certify that the thesis entitled “A Study of Constrained Reachabil-
ity Query Processing in Directed Graphs” submitted by Bhargavi B. bearing
registration number 15MCPCO02 in partial fulfilment of the requirements for award of
Doctor of Philosophy in the School of Computer and Information Sciences is

a bonafide work carried out by her under my supervision and guidance.

This thesis is free from plagiarism and has not been submitted previously in part or

in full to this or any other University or Institution for award of any degree or diploma.

The student has the following publications before submission of the thesis for adju-
dication and has produced evidence for the same in the form of acceptance letter or

the reprint in the relevant area of her research:

1. Bhargavi B., and K. Swarupa Rani, “Finding Frequent Subgraphs and Sub-
paths through Static and Dynamic Window Filtering Techniques”, FAI Endorsed
Transactions on Scalable Information Systems, Vol. 7, No. 27, p. 13, EAI

[DBLP Indexed and ESCI Indexed] ISSN: 2032-9407, Web of Sciences,
2020. Work reported in this paper appears in Chapter 5.

2. Bhargavi B., K. Swarupa Rani, “Implicit Landmark Path Indexing for Bounded
Label Constrained Reachable Paths” | International Journal of Recent Trends in
Engineering (IJRTE), Vol. 8, No. 4, p. 10, ISSN: 2277-3878, 2019. Work
reported in this paper appears in Chapter 3.

3. Bhargavi B., Swarupa Rani K., Rohit Kumar, and Sanmeet Kaur, “Static
and Dynamic Techniques to Extract Frequent Subgraphs from Graph Stream
Data”. To appear in Proceedings of the 2019 International Conference on Big
Data, Machine Learning, and Applications (BigDML-2019). Work reported in
this paper appears in Chapter 5.

11

4 B. Bhargavi and K. Swarupa Rani, “Bounded Paths for LCR Queries in Labeled
Weighted Directed Graphs”, in Proceedings of Advances in Computing and Data
Sciences (ICACDS), Communications in Computer and Information Sciences,
Vol 905, Springer [Scopus Indexed], pp. 124-133, 2018. Work reported in

this paper appears in Chapter 3.
s has made the presentations in the following conferences:

1 2019 International Conference on Big Data, Machine Learning, and Applications
(BigDML-2019), December 16-19, 2019, NIT Silchar, Assam, India.

2 2018 International Conference on Advances in Computing and Data Sciences
(ICACDS-2018), April 20-21, 2018, Uttaranchal University, Dehradun, Uttarak-

hand, India.

Further, the student has passed the following courses towards fulfilment of coursework
requirement for Ph.D:

Course Code Name Credits Pass/Fail
CSs801 Data Structures and Algorithms 4 Pass
CS802 Operating Systems and Programming 4 Pass
CS811 High Performance Computing 4 Pass
AI851 Trends in Soft Computing 4 Pass

vz
N”‘*PC"%M L]wm

(Dr. K. Swarupa Ram) (Prof. Chakravarthy Bhagvati)

Supervisor Dean
Compnter and Information Sciences School of Computer and Information Sciences
T niversity of Hyderabad University of Hyderabad
oo EB5Bidia Hyderabad - 500 %6, India
fCIS DEA
School © cIs
Rao Road, School of
prof. C.R. ty Dr. C.R. Rao Road,
Central Univers Central University Campus PO
H‘y‘del‘abad -46. (‘“d'a) Gachibowli, Hyderabad-46. (India}

-

DECLARATION

I. Bhargavi B, hereby declare that this thesis entitled “A Study of Constrained
Reachability Query Processing in Directed Graphs” submitted by me under the
guidance and supervision of Dr. K. Swarupa Rani is a bonafide research work that
is also free from plagiarism. I also declare that it has not been submitted previously in
part or in full to this University or any other University or Institution for the award
of any degree or diploma. I hereby agree that my thesis can be deposited in Shod-
hganga /INFLIBNET.

A report on plagiarism statistics from the University Library is enclosed.

Date : R‘\ll\aﬁaﬁ

Signature of the Student
Name: Bhargavi B
Reg. No.: 15MCPC02

=

Signature of the Supervisor;: oy o=
W M’{) 7,1] lb{ 20,0

I\

Abstract

In today’s big data era, a graph is an essential tool that models the semi-
structured or unstructured data. Graph reachability with vertex or edge
constraints is one of the basic queries to extract useful information from the
graph data. In real-time, the vertices of the graph have multiple attributes
and different relationships between them. We study different variants of
vertex and edge constraints and the techniques to solve the constrained

reachability queries.

One of the variants is the Label Constraint Reachability (LCR) query.
It finds the existence of a path between the given vertices satisfying the
given edge-label constraints. We extend the LCR queries by considering
weighted directed graphs and propose a novel technique for finding not
only the existence of paths but also the exact paths bounded by given
path weight. We propose Implicit Landmark Path Indexing and query
processing technique that includes the implicit paths which satisfy the user
constraints but need not satisfy the minimality of edge label sets. The
problem of Bounded Label Constrained Reachable Paths is challenging as
(1) we need to handle exponential number of edge label combinations with
an additional total path weight constraint, and (2) we need to discover a
technique that finds exact reachable paths between the given vertices. This
problem can be applied to real network scenarios like road networks, social

networks and protein-protein interaction networks.

Another variant of constrained reachability queries is the problem of
finding multidimensional constraint reachable paths. In this problem, we
find the path between the given vertices that match the user specified
multidimensional vertex and edge constraints. An important challenge is
to store the graph topology and attribute information while constructing

reachability index. We propose optimized hashing based heuristic search

technique to solve the multidimensional constraint reachability queries. In
the proposed technique, we optimized hashing and applied an efficient clus-
tering technique which is based on matrix factorization. Furthermore, we

proposed an extended heuristic search technique to improve the accuracy.

During the process of solving constraint reachability queries, we ob-
served the need and importance of finding frequent subgraphs and sub-
paths. Finding frequent subgraphs from the dynamic graph streams of
big data is challenging as streams are non-uniformly distributed and are
continuously needed to be processed. From these frequent subgraphs, we
can extract unknown and useful information. Its applications include find-
ing strongly interacting groups in social networks and sensor networks and
finding frequent molecular interactions to predict protein functions and
types of diseases in bio-informatics. To extract frequent subgraphs from
graph streams of data, we proposed static and dynamic sliding window
techniques. In addition, we applied our proposed static and dynamic tech-
niques to extract frequent subpaths from sequence of paths of a directed

graph.

Our contributions are further integrated into a novel query processing
framework to solve the constrained reachable paths efficiently. Using our
proposed query processing framework, we can store the resultant paths
of queries in the Query Path Log (QPL) for future retrieval and also to
extract frequent subpaths. The QPL constitutes the query and resultant
path information. This log can be used to handle all types of queries such as
new, same and similar queries. The frequent subpaths information is used
for solving similar queries. We evaluated the performance of the proposed

framework and techniques on real and synthetic datasets.

vi

To my Family and Teachers

Acknowledgements

First and foremost, I would like to offer my sincere gratitude to my super-
visor Dr. K. Swarupa Rani for her invaluable guidance, planning and
support during all these years and giving me the freedom to pursue my
research in my own way. Without her continual inspiration and support,

it would not have been possible to complete this study.

My gratitude also goes to my Doctoral Review Committee (DRC) mem-
bers Prof. S. Durga Bhavani and Dr. P. S. V. S. Sai Prasad for
their constructive criticism and helpful suggestions that guided me in every

aspect of my research.

I take this opportunity to convey my respectful regards to the present
Dean Prof. Chakravarthy Bhagvati for his encouragement and sup-
port. I also thank previous Deans of School of Computer and Information
Sciences for providing the necessary resources and a pleasant working at-

mosphere.

I sincerely thank and admire the contributions of the MCA students,
Ms. Sanmeet Kaur, Mr. Rohith Kumar and Mr. Arunjyothi
Neog of School of Computer and Information Sciences for many useful
discussions at University of Hyderabad. I would also like to thank my

research scholars of the school for their constant support.

My research would have been impossible without the support of my
husband Mr. B. Vinod Kumar. His love and support has always been
my strength and helped in every important aspect of the Ph. D. journey.
I would also like to thank my parents Mr. B. Venkateswara Rao and

Mrs. B. Rama Devi, and in-laws for their understanding and support

in pursuing my career goals and aspirations. Finally, I sincerely thank
all my teachers for their constant support, suggestions, motivation and

encouragement.

BHARGAVI B

Contents

List of Figures

List of Tables

1

2

Introduction
1.1 Graph Mining
1.2 Graph Reachability oo
1.2.1 Label Constraint Reachability (LCR)
1.2.2 Multidimensional Constraint Reachability (MCR)
1.2.3 Frequent subgraphs and subpaths
1.3 Solving Constraint Reachability Queries and Finding Frequent Sub-
graphs L
1.4 Challenges of Graph Mining
1.5 Motivationo
1.6 Problem Definitions 0oL
1.7 Applications
1.8 Research Objective and Scope of Thesis.
1.9 Thesis Contributions
1.9.1 Publications of the thesis
1.10 Organization of Thesis

Literature Survey

2.1 Queries in Data Graphs 0.
2.2 Reachability Techniques
2.3 Path Finding Techniques

B EEBEBHH @ E

[S2 [9 = ot

g ®@ =

24

2.5
2.6

2.7

2.8
2.9

2.10
2.11
2.12

CONTENTS

Label Constraint Reachability Techniques
2.4.1 Other constraint reachability techniques

Identified Research Gaps of LCR
Techniques in Attributed Graphs
2.6.1 MCR techniques
2.6.2 Clustering techniques
Identified Research Gaps of MCR
Techniques for Frequent Subgraphs and Subpaths
Identified Research Gaps of Frequent Subgraphs
Query Logs and Framework
Developing Query Processing Framework

SUMMATY . . . o o o v o e e

Bounded Label Constrained Reachable Paths

3.1

3.2

3.3
3.4

3.5

3.6

3.7

Introduction
3.1.1 Applications and challenges
Preliminaries
3.2.1 Problem definition
Related Work
Proposed Technique to find Bounded Label Constrained Reachable

3.4.1 Path indexing algorithm
3.4.2 Query processing algorithm
Extended Proposed Technique by including Implicit Paths

3.5.1 Path indexing algorithm by including implicit paths
3.5.2 Query processing algorithm by including implicit paths . .
3.5.3 Correctness proof L.
3.5.4 Time complexity oo
Experimental Evaluation 00000
3.6.1 Dataset description 0oL
3.6.2 Query generation and evaluation

Conclusions

X1

CONTENTS

4 Multidimensional Constraint Reachable Paths for Attributed Graphs

4.1 Introduction 6]
4.1.1 Assumptions. 70
4.1.2 Findings 1
4.1.3 Contributions 1
4.2 Preliminaries 72
4.2.1 Problem statement
4.3 Related Work 4
4.3.1 Constraint reachability techniques 70
4.3.2 Attributed graph clustering techniques 70
4.4 Proposed Approach: Heuristic search using Hashing and Matrix
Factorization |
4.4.1 Hashing based index 78]
4.4.2 Super graph construction 0
4.4.3 Proposed heuristic search technique 83]
4.5 Extended Heuristic Search
4.6 Experiments and Results 88
4.6.1 Experiment setup S8
4.6.2 Baselines. 89
4.6.3 Datasets description 90
4.6.4 Results and analysis OT]
4.7 Conclusions 04
5 Frequent Subgraphs and Frequent Subpaths 95
5.1 Imtroduction 00!
5.2 Preliminaries 08
5.2.1 Problem definitions L. 99
5.3 Related Work 101
5.4 Proposed Static and Dynamic Techniques for Finding Frequent
Subgraphs
54.1 DSMatrix 104
5.4.2 Static single window technique 104
5.4.3 Dynamic approach of sliding window technique 100!

xii

CONTENTS

5.4.4 Enhancements to the proposed static and dynamic sliding

window filtering techniques 106!

5.4.5 Finding frequent subpaths from sequence of paths 113}

5.4.6 Analysis of proposed static and dynamic approaches

5.5 Experimental Evaluation 116
5.6 Conclusions 124

6 Query Processing Framework 126
6.1 Introduction 120)
6.2 Problem Description 128
6.2.1 Problem statement 128

6.2.2 Definitions L 129

6.3 Proposed Query Processing Framework T30
6.3.1 Query Path Log (QPL) 131

6.3.2 Integrated framework 135

6.3.3 Flow and functionality of modules 138

6.4 Experimental Evaluation 139
6.4.1 Datasets description 139

6.4.2 Query generation 140

6.4.3 Experiments and result analysis 1411

6.5 Conclusions 144

7 Conclusions and Future Scope 145!
7.1 Conclusion 145
7.2 Future Scope T406]
References 149

xiil

List of Figures

1.1

1.2

3.1
3.2

3.3

3.4
3.5

3.6

3.7

3.8

3.9

3.10

4.1
4.2

Road network, G1 with distances (Km.) and types of roads (S:Street,

N:Narrow, H:Highway, T:Two-wheeler only) 3]
Attributed graph oo]

Road network (G1) denoting an edge labeled weighted directed graph B4

Road network with types of roads (S:Street, N:Narrow, H:Highway,
T:Two-wheeler only)
(a)Edge labeled weighted directed graph, G and (b) Resultant
Bounded LCR Path for query (v4, v7, ‘ac’, 50) 39
Pre-processed directed graph G’ of the road network G1. 49
Landmark path index construction size for the proposed LM2 and
LMS3 techniques 5%
Landmark path index construction time for the proposed LM2 and
LM3 techniqueso ha
Landmark path index construction time for the proposed LM2

technique with degree vs eigenvector centrality 60
Landmark path index construction size for the proposed LM2 tech-
nique with degree vs eigenvector centrality 1]

Landmark path index construction time for the proposed LMS3

technique with degree vs eigenvector centrality 62
Landmark path index construction size for the proposed LM3 tech-

nique with degree vs eigenvector centrality 63
Example of an attributed graph 69
A toy dataset of an email network 72

Xiv

4.3
4.4
4.5

5.1
5.2
5.3

5.4

2.5

6.1
6.2
6.3
6.4

LIST OF FIGURES

Clusters and the resultant super graph 33
Example for extended heuristic search technique 86
Varying graph size for Forest Fire synthetic graph 02
Sequence of graph streams G1, G2, G3, G4, G5, G6 99
Directed graph 100

Number of frequent singleton edges (|FSE|) for proposed static
approach compared to conventional approach for graph stream datallI8
Number of frequent singleton edges (|FSE|) for proposed approaches
with actual support using linear strategy and cubic strategy com-
pared to conventional approach for graph stream data 119
Number of frequent singleton edges (|FSE|) for proposed approaches

with actual support using linear strategy and cubic strategy com-

pared to conventional approach for sequence of paths 123]
An instance of attributed graph for a toy email network 129
Query Processing Framework for Constrained Reachability Queries
Road network 137
Average execution time with varying number of BLCRP queries

for E-R graphs oo T43]

XV

List of Tables

2.1 Survey of Constrained Reachability Query Processing [2005-2018]

3.1 Description of Notations

3.2 Survey of Constrained Reachability Techniques from [2010-2018] .
3.3 Cases of label constraints and cost constraints while indexing . . .
3.4 Path Landmark index of landmark vertices for Fig. (3.4].

3.5 Path Non-Landmark index for Fig. [3.4

3.6 Label and cost constraints while indexing with implicit paths . . .

3.7 Dataset repository

3.8 Average query execution time and the false negative ratio(r) of

true queries(tq) and average query execution time of false queries(fq)

in milli seconds using degree(D) and eigen vector centrality(EV)

as criteria with the number of labels, n/ for LM3

3.9 Recall analysis of the proposed approach (LM3)
3.10 Statistical analysis of recall between LM3 and LM2

4.1 Notations
4.2 Hash Index

4.3 Parameter values

4.4 Vertex attributes and edge attributes

4.5 Datasets overview L

4.6 Average execution time of true queries for Erdos-Renyi graph with

only vertex constraints

4.7 Average execution time of true queries for Robots dataset with

only vertex constraints

XVv1

™

1)

BEHEH

5Y

50
5
59

90

9 1]

4.8

5.1
5.2
5.3
5.4

2.9
5.6
2.7
5.8
5.9
5.10

5.11

5.12

5.13

5.14

0.15

LIST OF TABLES

Average execution time of true queries for Robots dataset with

vertex constraints and edge constraints00 03
Proposed approaches and its variations O]
Dataof paths 101
DSMatrix for graph streams of Fig. o.1] 102
Characteristics of Proposed Static and Dynamic Approaches com-

pared to Conventional Approach 103
Frequent edges with count for Batch 1 108
Frequent edges with count for Batch 1 and Batch 2 T08]
Frequent edges with count for Batch 1, Batch 2 and Batch 3 . . . [I08
Frequent edges with relative count for Batch 1 113
Frequent edges with relative count for Batch 1 and Batch 2 [113

Number of frequent singleton edges (|JFSE|) for graph stream data
with varying minsup for proposed static approach compared to
Conventional Approach 0L 117
Number of frequent singleton edges (|JFSE|) for graph stream data
with varying minsup for proposed static approach with actual min-
imum support using linear strategy with and cubic strategy IS
Execution time (in milliseconds) to find frequent singleton edges
for graph stream data using proposed static approach with actual
minimum support through linear strategy in sequential and parallel
environment L. L 120
Execution time (in milliseconds) to find frequent singleton edges
for graph stream data using proposed static approach with actual
minimum support through cubic strategy in sequential and parallel
environment L. 120
Number of frequent singleton edges for graph stream data with
varying % of relative support(relsup) for proposed dynamic ap-
proach with fixed batch size (DynFized) and variable batch size
(DynVar) o 21
Number of frequent singleton edges (|FSE|) for paths data for pro-
posed Static approach compared to Conventional approach [I2]]

xvil

5.16

5.17

0.18

6.1
6.2
6.3
6.4
6.5

6.6

6.7

LIST OF TABLES

Number of frequent singleton edges (|FSE|) for paths data using
proposed static approach with actual minimum support using lin-
ear strategy and cubic strategy
Number of frequent singleton edges (|FSE|) for paths data with

varying relative support(relsup) for proposed dynamic approach

with fixed batch size (DynFized) and variable batch size (DynVar) [24

Number of frequent subpaths (|FSP|) for paths data with varying
relative support (relsup) for proposed dynamic approach with fixed
batch size (DynFized) and variable batch size (DynVar)

Query Path Log
Datasets Overview
Vertex attributes and edge attributes
Average query execution time in milliseconds(ms) of proposed tech-
niques on BLCRP queries for Robots dataset
Average query execution time of proposed techniques on BLCRP
queries for E-R graphs 000
Average query execution time of proposed techniques on MCR
queries for E-R graphso
Average query execution time of proposed techniques on MCR

queries for Robots dataset

xXviii

Chapter 1

Introduction

1.1 Graph Mining

Big data constitutes large amounts of data generated from different data sources
very fast. The discovery of useful and unknown information in such data is
challenging for research and technical groups. Graph is one of the important
tools that can represent the complex relationships between the objects of big
data. Graph mining refers to extracting knowledge from the data represented as
a graph [29]. Some of specific operations of mining graph data from real-world
domains such as graph pattern matching, clustering graphs and finding frequent
subgraphs are the important contributions of deriving new knowledge. They have
broad applications in social networks, biology, chemistry, Resource Description

Framework (RDF), image processing and software engineering.

1.2 Graph Reachability

One of the fundamental operations to manage graph data is to find the reacha-
bility from one vertex to another vertex in the graph. Let G = (V, E) be a large
directed graph that has n vertices and m edges. A reachability query between
v and v (u and v are the vertices in G) returns true if and only if there is a
path in the directed graph G from u to v. There are two possible approaches to

process a reachability query in a graph G. It can be processed on demand using

1.2 Graph Reachability

Breadth-First Search (BFS) or Depth-First Search (DFS) over the graph G. It
incurs high cost as O(n + m) time. On the other hand, it can be processed offline
by precomputing and maintaining the edge transitive closure on disk. The former
requires too much time in querying and the latter requires too much space. Thus,
in the state-of-the-art literature, many reachability techniques are developed that

have a trade-off with time and space.

1.2.1 Label Constraint Reachability (LCR)

Many real-world graphs are edge-labelled graphs with edges in the graph having
a label from a pre-defined label set. This changes a reachability-query into a
Label-Constrained Reachability query or “LCR” query. The question for such a
query is: “Can we reach from point A to another point B in the graph using only
certain types of edges?” For instance, let us consider road networks of figure [I.1]
in which each location can be represented as a vertex. Any location is connected
with another location with relationships like road types (narrow, street, two-
wheeler and highway). We may explore the graph to find paths between locations
connected with only certain types of roads like either street or highway. Ruoming
Jin et al. [45] formally defined Label-Constraint Reachability as ¢ Given two
vertices, s and d in the edge labeled directed graph G, and a label set A, where
s, d € Vand A C T, where T} is a pre-defined label set, if there is a path p from
vertex s to d whose path label L(p) is a subset of A, i.e., L(p) C A, then we say
s can reach d with label-constraint A. We also refer to path p as an A-path from
s to d”.[45]

In other words, “Given two vertices s and d, and a label set A, the label-
constraint reachability (LCR) query asks if there exists an A-path from s to d”.
[45]

1.2.2 Multidimensional Constraint Reachability (MCR)

Multidimensional Constraint Reachability queries are another variant of con-
straint reachability queries for attributed graphs. Attributed graph is widely
used for modeling variety of information networks. In an attributed graph, every

vertex can have a set of vertex attributes and their values. Similarly, every edge

1.3 Solving Constraint Reachability Queries and Finding Frequent
Subgraphs

can have edge attributes and their values. An MCR query finds the existence of a
path from the source vertex to the destination vertex satisfying the given attribute
constraints for attributed graphs. The attribute constraints are the conditions
on vertex attributes’ and edge attributes’ values. This problem is applicable for
many real-time information networks like social networks, transportation net-
works and metabolic networks. For instance, consider the attributed graph of
figure [[.2l The vertex attributes include Country and IncomeGroup. The edge
attribute is the communication content that is either “zml” or “skyl”. For exam-
ple, an MCR query can be to find the existence of path between the vertices ‘a’

and ‘h” with vertex constraints “I, H” and edge constraint “zml”.

1.2.3 Frequent subgraphs and subpaths

A graph stream is a sequence of graphs that are updated dynamically as streams of
edges. Graph streams are used to model streams of semantic web, sensor network,
social network and road network data. In this data, there may exist implicit,
previously unknown and potentially useful knowledge. One of the techniques to
extract such useful knowledge is to find collections of frequent connected edges.
From these frequent edges, we can extract frequent subgraphs by satisfying the
threshold value. Similarly, we can find the frequent subpaths from the sequence

of paths by satisfying the threshold value.

1.3 Solving Constraint Reachability Queries and
Finding Frequent Subgraphs

By solving constraint reachability queries, we can find the existence of path be-
tween the vertices while satisfying the user specified vertex constraints and edge
constraints. One of the varaints of constraints reachability is LCR queries. Max-
imal spanning tree based index framework [45] is one of the approaches to solve
label-constrained reachability queries. Another approach [93] is the path-label
transitive closure technique that uses Dijkstra like algorithm over augmented
directed acyclic graph. But, these approaches are not scalable and cannot be ap-

plied for large and dense graphs to solve LCR queries. Landmark index and query

1.4 Challenges of Graph Mining

processing technique [79] is the current state-of-the-art technique that computes
partial transitive closure as index for subset of vertices called landmark vertices.
Using this partial index, another index is computed, which denotes reachability
from nonlandmark vertices to limited number of landmark vertices. It includes
path labels information along with the reachable landmark vertices. The resultant
index along with BFS is used to solve LCR queries efficiently.

Another variant of constrained reachability queries is MCR queries. Indexing
vertex attribute values and edge attribute values using hashing [88], [89] is a
prominent indexing technique. Heuristic search technique using naive clustering
[88] is developed to solve MCR, queries faster for attributed graphs. In the current
state-of-the-art literature, many graph clustering techniques are developed that
consider graph topology or attribute information or both [92], [84], [37],[3],[83].
By optimizing hashing and adopting an efficient clustering technique, we can
further enhance the efficiency of the heuristic search technique [8§].

To solve similar queries, finding frequent subgraphs from the graph data is
essential. Sliding window technique through direct 1-step algorithm [31] is the
state-of-the-art technique to extract frequent connected edges or frequent sub-
graphs from graph stream data by satisfying the given threshold value. Besides,
polynomial strategies and fuzzy techniques [91] are developed to compute actual

threshold for finding frequent patterns.

1.4 Challenges of Graph Mining

The following are the current challenges of mining graph data [59], [49]:

e Graph data Integration: Due to heterogeneity of data, there is need to
develop graph data systems that support different types of vertices and
different types of edges with different attributes with no fixed schema.

e Graph data Visualization: Large graphs or a large group of small graphs
should be easily visualized within the screen space of the user and based on

the requirements of the user.

1.5 Motivation

e Analysis of dynamic graphs: Most of the graphs like social networks are
dynamic graphs in which the related vertices and edges change constantly.
Hence, there is need to update the existing graph mining algorithms to
support the dynamic graphs. For example, to identify highly influencing
groups from Twitter data, products recommendations for users based on
their click stream analysis or to identify on real-time the best path for users

mobility taking account of traffic events.

e High performance and scalability: Another challenge is to improve the per-
formance and scalability of graph processing and analysis to handle large

graphs with billions of entities and relationships.

e User-friendly and Efficient Graph Search Engine: It is extremely challenging
to develop a search engine for big graphs such that the user-interface is

friendly, the results are accurate and retrieved with high efficiency.

1.5 Motivation

We address some of the challenges of graph mining such as graph data integration
by the study of different techniques for handling multiple vertex attributes and
edge attributes in solving constraint reachability queries. The challenges and

applications that motivate our research are described as follows:

e We identified two significant challenges in finding the Bounded Label Con-
strained Reachable Paths, one of them is that there can exist an exponen-
tial number of label combinations as constraints between the given vertices.

Another challenge is to compute the exact paths.

e We observed the need to store both graph topology and attribute informa-
tion while indexing the reachability to solve constraint reachability queries.
Besides, we observed that there is a need to find an efficient attributed

graph clustering technique for faster query processing of large graphs.

e Finding frequent subgraphs can extract useful and interesting knowledge in

social networks, bio-informatics and IP routing [55]. For instance, we can

1.6 Problem Definitions

derive the groups of users who are frequently communicating in the social
network. In bio-informatics, based on the frequent interactions between
molecules, we can predict protein functions and identify types of diseases.
The applications for finding frequent subpaths can be in IP routing in which
we can find the frequent paths of data flows across multiple networks. In
a traffic network, we can find the paths/subpaths that are frequently tra-
versed by commuters. Besides, we observed that the developed solutions in
the literature have certain limitations which include the partially resolved
duplicate calculations. Another possible limitation, frequent subgraphs in
the past can be infrequent due to incomplete storage of edges in the sliding

window.

These challenges and scope of usage in real-time applications motivate us to study

LCR queries and its variants for the development of query processing framework.

1.6 Problem Definitions

The following problems of our interest are addressed in the thesis:

e We extend LCR queries by including path bound which is a real-time con-
straint and propose novel problem of bounded LCR paths. The path bound
constraint refers to maximum allowed path weight for LCR query given by
user in addition to edge label constraint. This bounded LCR paths problem
is applicable for edge-labeled weighted directed graphs.

e We also solve another problem of multidimensional constraint reachability
queries. It considers vertex constraints and edge constraints for attributed
graphs. Besides, we extend MCR queries by finding the resultant paths

information.

e Once we find paths for constrained reachability queries, we can store and
maintain repository with the previous queries and its resultant paths to
solve same queries. Besides, we can extract frequent subpaths from the
repository to solve the similar queries. We identified the extraction of fre-

quent subpaths by satisfying the threshold value as a special problem. We

1.7 Applications

related it to the problem of finding frequent subgraphs from the sequence

of graph streams.

e We also propose query processing framework by integrating the constraint

reachability query techniques along with subpath information.

1.7 Applications

One of the applications of our proposed Bounded Label Constrained Reachable
Paths (BLCRP) is in transportation networks. For instance, in road networks, we
can find the paths between two places X and Y bounded by the given distance
d, which are connected through labeled roads. Fig. illustrates a local road
network with vertices denoting the locations and edges representing the existence
of road between the locations/places. Each edge has a label that constitutes two
parts W:Ty; W denotes the distance between the two locations and Ty denotes
the type of roads. For instance, the type of roads are assumed to be Highway (H),
Street (S), Narrow (N) and Two-wheeler road (accessible by only two-wheelers)
(T) for the Figure Suppose the user query is to find the paths from “P1”
to “P4” within distance of 100Km in a two-wheeler without using Highway. The
query can be considered as the problem of finding BLCRP for the given labeled
weighted directed graph, G1, with label set constraint “SNT” and the bound
for path weight 100. The resultant bounded label constraint reachable path is {
“P17, “P2”, “P3”, “P4”}.

Multidimensional Constraint Reachability (MCR) queries have wide applica-
tions in social networks. For instance, let us consider the attributed graph for an
email network as shown in Figure [I.2] Let the vertex attributes be Country and
Income Group. The domain of attribute Country is Vcountr,={ India (I), United
Kingdom (U)} and that of the attribute Income Group is Vrncomecroup=1{ High
(H), Medium (M), Low (L)}. The domain of edge attribute for communication
content is { XML (xml), Skyline(skyl)}. Thus, for vertex ‘a’, Veountry(a)="1
and Veomecroup(@)=‘H’. Similarly, the edge attribute between vertices ‘a” and
‘¢’ is “eml”. Let us consider the MCR query q1(‘a’, 4’, ‘I:H’, “xml”), for the
attributed graph of Fig. [I.2l The given MCR query ¢! returns true as the source

1.8 Research Objective and Scope of Thesis

P10

33T

P3¢

46:T

P4

P9

Figure (1.1) Road network, G1 with distances (Km.) and types of roads
(S:Street, N:Narrow, H:Highway, T:Two-wheeler only)

vertex ‘a’ can reach the destination vertex ‘j’ through vertex ‘¢’ while satisfying
the given vertex constraints ‘[:H’ and edge constraint “xml”. Thus, the MCR
path is {‘a’, ‘¢, 4 }.

1.8 Research Objective and Scope of Thesis

The objective of our research is to efficiently find the existence of path between
the given vertices satisfying the given constraints. The constraints can be vertex
constraints or edge constraints or both. We perform comprehensive study of

LCR queries and their variants to identify optimal solutions that can efficiently

Country: 1
IncomeGroup:H

ml

Country:1
IncomeGroup : H

Country: 1

Country: 1 xml e IncomeGroup: L
IncomeGroup: L |
skyl
xml

ntry:

Country: 1
IncomeGroup : H

1.9 Thesis Contributions

handle the vertex or edge label constraints for reachability queries between the
vertices. We identify the issues related to Label Constraint Reachability such as
finding an efficient indexing technique. Besides, we identify the different types
of constrained reachability queries of real world that demand novel and efficient
techniques. Our research aims at finding techniques for different scenarios to find
paths for reachability queries with constraints.

In the thesis, we focus on finding paths for LCR queries of edge labeled
weighted directed graphs with path bound. The scope of the thesis also includes
finding paths for vertex constraints and edge constraints of constrained reacha-
bility queries in attributed graphs. In addition, we solve the problem of finding
frequent subgraphs from graph streams and finding frequent subpaths from the
sequence of paths to solve similar queries. Besides, we propose a novel framework

for efficiently finding paths for constrained reachability queries.

1.9 Thesis Contributions

We propose landmark path indexing technique by extending the landmark in-
dexing and query processing technique [79] to find bounded label constrained
reachable paths. This technique includes indexing the paths along with labels
and path weights for edge labeled weighted directed graphs. Besides, the implicit
paths are included that need not satisfy the minimality of edge label sets or Dijk-
stra’s relaxation property. We find the BLCRP by using the proposed landmark
path indexing and BFS based query processing.

We adopted the idea of hashing vertex attributes and edge attributes [88] and
proposed an optimized hashing based search technique to solve the multidimen-
sional constraint reachability queries. We enhanced the heuristic search technique
[88] through including structural and attributed graph clustering based on matrix
factorization [37] and proposed an efficient heuristic search technique.

To find frequent subgraphs, we proposed static single-window technique and
dynamic sliding window techniques. We also proposed enhancements by extend-
ing the proposed static and dynamic approaches with its variations. Besides, we
solved the subproblem to extract frequent subpaths from sequence of paths, a

special case of the problem by using our proposed techniques.

1.9 Thesis Contributions

We integrate our contributions and propose novel query processing frame-

work. Our proposed query processing framework can find paths for constrained

reachability queries. In the framework, the proposed techniques of BLCRP and

MCR will address the new queries. Besides, using our proposed query processing

framework, we can store the query and path information in the Query Path Log

to extract frequent subpaths. These stored paths information can be used to

handle same queries and similar queries.

1.9.1 Publications of the thesis

1.

Bhargavi B., and K. Swarupa Rani, “Finding Frequent Subgraphs and Sub-
paths through Static and Dynamic Window Filtering Techniques”, EAI En-
dorsed Transactions on Scalable Information Systems, Vol. 7, No. 27, p.

13, EAI [DBLP Indexed and ESCI Indexed] ISSN: 2032-9407, Web
of Sciences, 2020. Work reported in this paper appears in Chapter 5.

. Bhargavi B, Swarupa Rani K., Rohit Kumar, and Sanmeet Kaur. “Static

and Dynamic Techniques to Extract Frequent Subgraphs from Graph Stream
Data” , to appear in International Conference on Big Data, Machine Learn-
ing, and Applications (BigDML), 2019. Work reported in this paper appears
in Chapter 5.

. Bhargavi B., K. Swarupa Rani, “Implicit Landmark Path Indexing for

Bounded Label Constrained Reachable Paths”, International Journal of Re-
cent Trends in Engineering (IJRTE), Vol. 8, No. 4, p. 10, ISSN: 2277-3878,
2019. Work reported in this paper appears in Chapter 3.

. B. Bhargavi and K. Swarupa Rani, “Bounded Paths for LCR Queries in

Labeled Weighted Directed Graphs”, in Proceedings of Advances in Com-
puting and Data Sciences (ICACDS), Communications in Computer and
Information Sciences, Vol. 905, Springer [Scopus Indexed], pp. 124133,
2018. Work reported in this paper appears in Chapter 3.

. Bhargavi B., and K. Swarupa Rani, and Arunjyothi Neog, “Finding Multi-

dimensional Constraint Reachable Paths for Attributed Graphs”, Applied

10

1.10 Organization of Thesis

Intelligence, Springer, [SCI Indexed], Web of Sciences, 2020 [Communi-
cated and received first level reviews|. Work reported in this paper appears
in Chapter 4.

1.10 Organization of Thesis

The thesis is organized as follows: Chapter 1 briefly introduces the prob-
lems addressed in constrained reachability queries along with our contribu-
tions. Chapter 2 describes the survey of reachability techniques, different
constraint reachability techniques, LCR techniques, and attributed graph
clustering techniques. Besides, we discuss state-of-the-art techniques to
find frequent subgraphs and frequent subpaths. In Chapter 3, we propose
a novel problem of finding Bounded Label Constrained Reachable Paths in
edge labeled weighted directed graphs. We then describe our proposed solu-
tion with experiments evaluated on real and synthetic benchmark datasets.
In chapter 4, we solve Multidimensional Constraint Reachability queries us-
ing our proposed matrix factorization-based heuristic search techniques and
validate the efficiency by experiments and analysis. Chapter 5 deals with
finding frequent subgraphs and frequent subpaths by using our proposed
static and dynamic approaches. In chapter 6, we integrate our contribu-
tions and propose a novel query processing framework. In chapter 7, we
summarize our contributions with the conclusions and also provide future

directions of our research.

11

Chapter 2

Literature Survey

Graph is a powerful modeling tool. Graph mining is the extraction of inter-
ested knowledge from the data represented as graph. We identified super-
graph search [58|, constraint based graph reachability [88], graph pattern
mining [9], frequent subgraphs [31], community detection [37] and graph
partitioning [70] as the trending problems in graph research. They have
broad applications in social networks, biology, chemistry, Resource Descrip-

tion Framework (RDF), image processing and software engineering.

In this chapter, we review various techniques through 5 C’s by Citing
state-of-the-art literature, Comparing, Contrasting, Critiquing and Con-
necting with our research pertaining to the problems of our interest. Table
describes the extensive study of our problems of interest. Section [2.1
describes the different types of graph queries in general, while section[2.2] dis-
cusses about the current state-of-the art reachability techniques. Section[2.3
describes techniques to find shortest paths, and constrained paths. In sec-
tion [2.4] we describe the different label constrained reachability techniques.
Also, we survey on other constraint reachability techniques in section [2.4.1}
Besides, we review Multidimensional Constraint Reachability (MCR) tech-
niques and community detection techniques for attributed graphs in section
2.6 Furthermore, we review techniques that find frequent subgraphs from

graph stream data and frequent subpaths from sequence of paths in section

12

2.1 Queries in Data Graphs

2.8l We also briefly reviewed about query logs and framework development
in section [2.10]

2.1 Queries in Data Graphs

In general, there are two types of queries for data graphs [38] : (1) pattern
match query and (2) reachability query. Pattern match query finds the
existence of patterns that match the user given graph pattern. This pattern
match query can be solved by finding subgraphs that are isomorphic to the
given graph pattern. Supergraph search [58] is one of the similar problems

to that of graph pattern matching.

Another kind of solving graph pattern query is based on reachability and
using join based techniques [2I]. Reachability query is a special case of
pattern match query [38] where we find if there exists path between the
two given vertices. Reachability queries can be solved based on full index
or partial index based techniques discussed in the next section. Shortest
path query requires to find the shortest path between the given vertices. In
this thesis, we focus on reachability queries wih constraints and constrained

path queries and discuss the techniques to solve them.

2.2 Reachability Techniques

Graph reachability finds the existence of path between the vertices in a
graph. There are two possible approaches to process a reachability query in
a graph G. It can be processed on demand using Breadth-First Search (BFS)
or Depth-First Search (DFS) over the graph G. It incurs high cost as O(n
+ m) time. On the other hand, it can be processed offline by precomputing
and maintaining the edge transitive closure on disk. The former requires
too much time in querying and the latter requires too much space. Thus, in

the state-of-the-art literature, many reachability techniques are developed

13

2.3 Path Finding Techniques

that have a trade-off with time and space. Beamer et al. [19] developed
direction optimizing breadth first search technique which combined top-
down BFS and bottom-up BFS. In the hybrid algorithm, search began with
top-down approach and continued untill the frontier is too large, at which
point bottom-up search is started. This approach can be applicable to find
reachability online between vertices. This work accelerated the processing

of parallelizing BF'S.

In [87], [9], detailed survey of reachability techniques is specified. H. Wei

et al. [82] classified the reachability techniques into following two categories.

e Label-only approaches

e Label+G approaches

Label-only approaches directly find the existence of reachability between
the given vertices from the constructed index. Label-only approaches in-
clude 2-hop [28], 3-hop [47], Chain-cover [27], Path-Tree Cover [4§], Tree-
Cover [I0], and Dual Labeling [80].

Label+G approaches use index labels and BFS/DFS to find the reach-
ability between the given vertices. Tree+SSPI [25] and GRIPP [82] are
Label+G approaches which have linear index size and query time in terms
of the number of vertices of the graph. H. Wei et al. [82] developed an in-
dependent permutation labeling approach with high probability guarantee
which is Label+G approach to find the reachability between the vertices.
Besides, they introduced level labels and huge vertex labels to handle reach-

ability for dense graphs.

2.3 Path Finding Techniques

In this section, we explore the different techniques that find paths between

the vertices. In the literature, many techniques are developed that find the

14

2.3 Path Finding Techniques

Table (2.1) Survey of Constrained Reachability Query Processing [2005-2018]
S. No. | Technique (Authors, Year) Observations
MST—b?Lsed 1r.1dex and query The tree-based index framework used to

1 processing (Jin et al., 2010 ..

i) solve LCR queries is not scalable
LandmarkIndex and Query Found reachability satisfying given label

2 algorithms(Valstar et al., 2017 | constraint with significant speedups in
[79]) query processing for LCR queries
Spanning Tree based BPFilter | Generated subpath graph and

3 algorithm (Minghan Chen et approximate reachability is found in
al., 2014 [26]) uncertain graphs for LDCR queries
Heuristic Search Technique Developed heuristic search technique and

A through GuidedBFS and computed reachability with
hashing(Duncan Yung et al., multi-dimensional constraints in
2016 [88]) attributed graphs faster

Computed clusters in attributed graphs

5 ANCA Clustering (Falih et considering both graph topology and

al., 2018 [37])) attribute information through matrix
factorization
Edge Induced Matrix Used matrix factorization based

6 Factorization (Qi et al., 2012 | technique on edge content to detect
[65]) communities
Cluster Affiliation Model for Developed the algorithm to detect

7 Big Networks (Yang et al., overlapping communities through
2013 [85]) non-negative matrix factorization
Ensemble gradient descent . L :

. . Identified polarization and clusters in
algorithm based on matrix) . .

8 factorization (Amin et al social networks specifically Twitter
2017 [12)) v through matrix factorization
Probabilistic approach to find | Formally defined graph streams and

9 dense patterns in graph developed the probabilistic min-hash
streams (Aggarwal et al., 2010 | approach to mine dense patterns from
18]) graph streams

o | et v ot | S DS Mt e i
(Cuzzocrea et al., 2015 [31]) from graphstreams
Sliding Window Filtering Deve?oped sbdlng Wl'ndOW filtering

1 (SWF) algorithm (Lee et al algorithm with relative support to
2005 [52] 7| extract frequent patterns and the

resulting association rules
Polynoprual and fuzzy . Computed actual minimum support from
strategies for actual minimum . ..

12 the user-specified minimum support for

support (Zhang et al., 2008
[911)

frequent pattern mining

15

2.3 Path Finding Techniques

exact paths, approximate shortest paths, bounded paths and paths that

satisfy constraints between vertices.

Chris Barrett et al. [I7] defined edge label and edge weight constraints
in formal language and also defined the formal language constrained short-
est path and simple path problems. They developed a general approach
that model the constrained path problems based on Nondeterministic Fi-
nite Automaton (NFA) to find the constrained paths. They used dynamic
programming technique to further improve the performance. They proved
that the problem of finding a simple path between a source and given des-
tination is NP-hard when the label set is restricted to even simple classes

of graphs like complete grids.

The constrained TreeSketch algorithm of Ankita et al. [57], considered
edge label constraint (A) and found approximate A-paths between the given
vertices. They formally defined label constrained shortest paths problem
as the shortest path between the given vertices such that the edge labels
involved in the path are subset of given labelset constraint. They extended
labeled path sketches by adding edge label information and designed Con-
strained TreeSketch algorithm. This algorithm mainly involved BFS traver-
sal through tree of constrained paths of source vertex and destination vertex
to find the approximate shortest paths. This technique is applicable to label
order constrained shortest path queries. Minghan Chen et al. [26] worked
on uncertain graphs with their new sampling techniques to find approximate

shortest paths constrained through distance parameter.

Thorup et al. [76] studied the distance queries problem which involved
finding the distance between an arbitrary pair of vertices. They have devel-
oped approximate distance oracles by modifying Dijkstra’s algorithm and
designing index that used finite stretch to settle for approximate distance
instead of exact one. These oracles had constant query time and are appli-

cable for weighted undirected graphs. The distance query algorithm can be

16

2.3 Path Finding Techniques

extended to find the path whose length is atmost given distance based on
lowest common ancestor algorithm. But, stretched distances may not be

acceptable under all scenarios.

In [I1], Akiba et al. studied the distance queries problem. They devel-
oped a landmark-based approach with efficient pruning to solve the queries
to find the exact shortest path distance between the vertices. In the pruned
landmark labeling approach, the landmark vertices are selected based on
highest degree criterion. For every landmark vertex, BFS is performed and
distance to the reachable vertices are indexed. Pruning is performed during
BFS when there is an intermediate reachable vertex w between the vertices
v and v whose sum of distances from v and u is lesser than total distance
from v to uw via another path. Thus, the vertex u is not added to label
of v and any edges from w are not traversed along the path with longer
distance. Moreover, Akiba et al. developed another labeling scheme that
used bit-level parallelism on pruned labeling method to improve the per-
formance. Their approaches can be easily extended to find shortest path
between the vertices by storing the parent of every reachable vertex in labels

and performing backtracking.

In [32], Delling et al. developed a scalable solution based on 2-hop labels
for solving the distance queries in large networks. They have designed an
exact algorithm which is based on hierarchical hub labeling and a special
kind of 2-hop labeling. They introduced the label representation that finds
good ordering of subset of vertices using which labels are computed and also
compressed. They presented a token based compression that transforms

labels into trees to achieve higher compression.

Su et al. [72] considered the more generalized problem of finding paths
with desired bounded path lengths in acyclic networks. They developed a
path length model of acyclic networks which transformed paths into simple

parameters of vertices and arcs. The parameters are designed based on

17

2.3 Path Finding Techniques

shortest paths, longest paths and intermediate edges. They designed a
simple polynomial algorithm based on the parameters of path length model
to find the desired bounded paths.

Erez et al. [35] addressed the problem of automation of constrained
clock routing in Integrated Circuit networks by considering the transistors
as vertices, wires between them as edges and delay across them as edge-
weights. Thus, this problem is reduced to finding bounded paths in a grid
graph. They reduced the problem to bit vector logic by storing active
neighbours as connectivity constraints using SAT-based bit-vector SMT
(SATisfiability Modulo Theories) solver. This solver is further enhanced by
a novel graph aware solving approach based on Dijkstra’s algorithm and

core decision strategies for graph-aware conflict analysis.

Bast et al. [18] performed an extensive survey of different techniques
for route planning in transportation networks which had trade-offs between
preprocessing effort, space requirements and query time. They have ex-
plored shortest path techniques for static networks that find the length
of shortest path. These techniques include basic techniques based on Di-
jkstra’s algorithm, goal-directed techniques such as A* search, separator
based techniques such as Customized Route Planning algorithm, hierarchi-
cal techniques, bounded hop techniques such as hub labeling and combi-
nations of some of these techniques. Bast et al. observed that the actual
paths can be found from these techniques by either storing parent vertex
information or building shortcuts. They investigated the applicability of
these techniques to dynamic networks. They identified the techniques and
use of finding alternate paths by either concatenation of shortest paths or
compactly representing as a small graph. In this paper, journey planning in
a multi-modal scenario is also discussed. It included the label-constrained

shortest path approaches, combining costs and multicriteria optimization.

18

2.4 Label Constraint Reachability Techniques

In |73, [74], a B+ tree index based solution was used to solve path queries.
Path queries are specified by projections on label-paths over the given label
set in graphs. Sumrall et al. [74] developed a path index based on B+tree to
accelerate query processing to find paths. It is a workload based index that
involved updating index with efficient joins based on previous queries. This
index supported ordered access to paths and designed for external memory
storage and retrieval. Besides, they used o compression scheme for gap bits
to further reduce key size in leaf nodes of B+tree. But, the limitation of this

approach is only paths upto limited length can be indexed using B+tree.

Besides, we explored the centrality measures like degree, betweenness
centrality, eigen vector centrality, pagerank and closeness centrality [64]
and their usefulness in choosing highly central nodes [62]. Qin et al. [67]
investigated the influence of an edge in the graph that lead to reachability
changes in the graph brought by possible deletion of the edge in the case of
dynamic graphs.

2.4 Label Constraint Reachability Techniques

The Label-Constraint Reachability (LCR) query which was first formally
defined by Ruoming Jin et al. [45] is for finding the existence of the label-
constrained reachable paths in an edge labeled directed graph. Ruoming Jin
et al. [45] developed tree-based index framework where partial transitive
closure and spanning tree are used. In this approach, maximal spanning
tree is constructed for the directed graph using Chu-Liu/ Edmonds algo-
rithm [34]. The maximal spanning tree would cover the maximum possible
reachable paths in the graph. Partial transitive closure index is constructed
considering paths whose starting edge and ending edge are non-tree edges.
The path labels computed from spanning tree and the partial transitive
closure index are used to solve LCR queries. But, this technique is not

efficient and scalable for large and dense graphs.

19

2.4 Label Constraint Reachability Techniques

Wenfei Fan et al. [38] developed bidirectional BFS technique to solve
graph pattern matching queries, in which one of the special case is label-
constrained reachability queries. Bidirectional BFS involved storing adja-
cent nodes based on label-constraint set from source node in one list and
from destination node in another list and checking if there is any match
in both the lists. If there is no match, adjacent node from the smaller list
is searched recursively based on BFS technique till match is found. This

technique is not scalable for large graphs.

Zou et al. [93] solved LCR queries based on augmented Directed Acyclic
Graph (DAG). The local transitive closure index is computed for the aug-
mented DAG to solve LCR queries. Besides, they developed partition based
DFS technique for large graphs. In Zou et al. [92] technique, the edge-
labeled graph is transformed into DAG by computing Strongly Connected
Components (SCC) for the graph. The edge labels within SCC are com-
bined to form the edge label of every edge in DAG. A Dijkstra-like method is
used to compute single source transitive closure for every vertex by storing
only minimal labels and paths for all the reachable vertices. The transitive
closure of the entire graph is computed by extending the index to the ver-
tices of SCCs. This transitive closure method had good performance, but
it had huge offline processing cost for large graphs. Besides, they developed
another technique in which a large graph is partitioned into subgraphs and
for every local vertex, transitive closure is computed by creating augmented
DAG to preserve the labels of nodes. Then, label constrained DFS and in-
dex is applied on partitioned graph to solve LCR query. This technique has
greater index construction time and is not effective on graphs with relatively

large strongly connected components.

Valstar et al. [79] technique of landmark based query processing is the
current state-of-the-art technique to find the existence of reachability for
LCR queries. The landmark vertices are selected based on criteria such as

the top ‘k’ highest degree or any of the centrality measures of the graph.

20

2.4 Label Constraint Reachability Techniques

In [79], while constructing the landmark index for the landmark vertices,
the edge label sets minimality is considered and landmark vertices are se-
lected based on highest total degree criterion. The index is constructed for
landmark vertices using BF'S and forward propagation of indexed landmark
vertices. For the remaining vertices, reachability of upto ‘b’ landmark ver-
tices are indexed [79]. These indices along with BFS is used to solve LCR

queries.

2.4.1 Other constraint reachability techniques

Different variants of reachability are formed by incorporating constraints to
vertices and edges of the graph. The vertex/edge constraints can be a spe-
cific bound for each edge weight, specific vertex labels, specific edge labels,
membership of specific edge labels, membership of specific vertex labels,
vertex labels in a specified order, edge labels in a specified order and bound
on the entire path between the vertices. Reachability techniques such as
2-hop cover cannot be directly applied to solve the constraint reachabil-
ity queries. This is because the vertex or edge attributes information is
not stored while indexing. Hence, there is need to explore the different

constraint reachability techniques.

Bonchi et al. [24] studied the problem of efficient approximation of
shortest-path queries with edge-label constraints for undirected graphs.
They developed indexes based on the idea of landmarks. The distance
from all vertices of the graph to a selected subset of landmark vertices is
computed based on shortest path minimality and is indexed. This index
is further optimized through pruning search space by skipping unnecessary
label sets. They developed an online query processing technique that used
this index to find the approximate shortest path distance between the given

vertices while satisfying the edge label constraints.

21

2.4 Label Constraint Reachability Techniques

Miao Qiao et al. [66] studied the problem of weighted constrained reach-
ability for weighted undirected graphs. Given two vertices and a range
constraint on edge weight, the Weighted Constrained Reachability (WCR)
query finds the existence of path between the vertices such that every edge
weight along the path satisfies the given range constraint. Miao Qiao et
al. developed efficient memory based algorithms and disk based algorithms
by exploiting the cut property of Minimum Spanning Tree (MST). MST is
built using Kruskal’s algorithm with union-find technique [30]. According
to cut property [30] of minimum spanning tree, for any cut C in the graph,
if the weight of an edge e € C is smaller than weights of any other edges in
C, then this edge belongs to all MSTs of the graph. By using this property,
an edge-based index tree is constructed from the MST by choosing edge
with maximum weight as root node and leaf nodes being the vertices of the
graph. During query processing, the lowest common ancestor node of source
vertex and destination vertex is found from edge-based index tree satisfying
the range constraint. If such vertex exists, then WCR, query returns true.
Miao Qiao et al. further enhanced it by developing an I/O efficient disk
based algorithm in which rebalancing MST is performed. They compared
their algorithms with baseline approaches like BFS, DFS and LCR tech-
nique [45]. The LCR technique is applied by converting LCR query into
WCR query. We observed that LCR problem is much harder than that of
WCR.

Ruoming Jin et al. [46] investigated the problem of distance constraint
reachability in uncertain graphs. For the user-defined distance constraint,
this problem finds the probability that the distance between the given ver-
tices is less than or equal to the given distance threshold. They solved this
problem by computing possible subgraphs that satisfy the given constraints.
They introduced a unified unequal probabilistic sampling estimation frame-
work for finding possible subgraphs to significantly reduce the estimation

variance.

22

2.5 Identified Research Gaps of LCR

Minghan Chen et al. [26] defined the Label and Distance Constraint
Reachability (LDCR) problem over uncertain graphs. The LDCR problem
is different from LCR problem, as it included querying for paths whose la-
bels must contain all labels in the label constraint set. Given two vertices u
and v, distance constraint and a label set, the label and distance constraint
reachability problem computes the probability of paths for which the vertex
v is LD-reachable from u. Minghan Chen et al. developed DF'S based algo-
rithm to compute subpaths between the given vertices. The subpaths that
do not satisfy the given distance threshold are pruned. The subpaths with
common path expressions are merged based on lowest common ancestor al-
gorithm. Divide-Conquer tree (DC-tree) adopted from [46] for the resultant
subpaths is built for which some of the leaf nodes are LD-paths. Besides,
they developed branch path pruning algorithm, to remove subpaths that
do not reach the given destination vertex. To perform quick and efficient
approximations, DC-tree sampling techniques are developed. They have
used an unbiased sampling estimator, i.e. Yates-Grundy Sen estimator [86]

that avoids sampling the same nodes.

In[43], the partition replication method, workload prediction method,
and workload balancing method addressed the data locality and workload
balancing issues while finding reachability with node label constraints in

large attributed graphs for distributed environment.

2.5 Identified Research Gaps of LCR

From the literature review, we observed that there is a scope for finding
efficient reachability techniques that have lesser index construction time,
lesser index size and faster query processing. The existing reachability
techniques cannot be applied directly to constrained reachability queries as
the attributes of vertices/edges are not stored while computing the index.
Many approximate shortest path techniques do not compute exact paths.

Hence, there is a need to find techniques that compute the exact reachable

23

2.6 Techniques in Attributed Graphs

paths satisfying the given vertex/edge attribute constraints. Hashing is
found to be an efficient data structure for secondary storage access than
B+tree [39]. We observed that dynamic programming is more complex
than Dijkstra’s algorithm and critical path method for finding paths in

large scale networks[72].

We observed that the landmark indexing and query processing technique
(Valstar et al. [79]) is current state-of-the-art literature and a scalable
solution for solving LCR queries in edge-labeled directed graphs. Besides,
we are motivated by the inclusion of bounded path weight constraint in
real-time scenarios [35], [72]. These observations from the literature led to
novel problem of bounded paths for LCR queries which is described in detail
in Chapter 3.

2.6 Techniques in Attributed Graphs

In this section, we describe the survey related to techniques to solve Mul-
tidimensional Constraint Reachability (MCR) queries and graph clustering
techniques for attributed graphs.

2.6.1 MCR techniques

An attributed graph acts as an efficient modeling tool to represent informa-
tion networks [8§] [81]. Ho et al. [43] investigated on processing node-label
constrained reachability queries in distributed environment for attributed
graphs. They addressed data locality and workload balancing issues of dis-
tributed processing that reduced the communication overhead and improved
efficient cluster usage respectively by developing partition-replication, work-
load prediction and balancing techniques. We observed that the developed

techniques used Ford-Fulkerson algorithm of flow networks [30].

24

2.6 Techniques in Attributed Graphs

Sakr et al. [68] developed G-SPARQL, a query execution engine with the
defined algebraic operators on the graph by using join operations to find the
reachability for large attributed graphs. They designed an efficient hybrid
representation to store the topology of the graph in main memory and access
the attributes of the graph from the secondary memory. The attributes from
the secondary memory are stored in fully decomposed model which included
unique table for storing the unique vertex and edge attributes. But, this
technique is not scalable when number of vertex and edge attributes are

very large.

Yung et al. [88] developed hashing based index for finding constrained
reachability in attributed graphs. The hashing based index involved as-
signing unique hash index for group of vertex attributes or edge attributes.
They used non-cryptographic hash function like Murmur hash function [2]
for hashing which has almost no collision. The unique group of attribute
values of all vertices and the corresponding hash values are stored in pri-
mary memory. The attribute values of every vertex and edge are stored in
the relational database and are retrieved only when there is hash collision.
They designed heuristic search technique based on GuidedBFS using naive
clustering to traverse across the graph regions from the source vertex that
are likely to reach destination to solve the MCR queries. We observed that
the use of naive clustering is not efficient as the computation of probabil-
ity cost considering attribute values during search is vaguely mentioned.
Hence, there is need to find efficient clustering technique that can be used

in solving multidimensional constraint reachability for attributed graphs.

2.6.2 Clustering techniques

Many graph clustering techniques are developed in the literature that are
based on the topology of the graph, attribute similarity in the graph or
both. In this subsection, we discuss the attributed graph clustering tech-
niques that consider both graph topology and attribute information while

clustering.

25

2.6 Techniques in Attributed Graphs

Zhou et al. [92] developed Structure and Attribute clustering (SA Clus-
tering) that finds the clusters for an attributed graph based on both graph
topology and attributes of the graph. SA clustering involved construction
of an augmented attributed graph and computation of random walks from
the augmented attributed graph. SA clustering is limited to small networks

with few attribute values.

Xu et al. [84] developed Bayesian model based approach to cluster at-
tributed graphs. But, this approach is found to be slow and not scalable.

Z. Wu et al. [83] developed Structure and Attributes using Global struc-
ture and Local neighborhood features (SAGL) clustering. SAGL clustering
considered both global structure and local neighbours and assigned different
weights to different topological links. SAGL clustering technique is faster
than SA clustering as the former technique doesn’t increase the size of at-
tributed graph, yet uses both global importance of the vertex and attribute
information to find clusters. We observed that although SAGL clustering is
faster than SA clustering, to determine attribute similarity, SAGL cluster-
ing adopts voting mechanism similar to that of SA clustering. This leads

to further construction and use of augmented attributed graph.

Falih et al. [37] observed that social networks are dense and hence require
high attribute similarity factor whereas road networks need a balanced at-
tribute similarity and topological similarity metric while computing node
similarity. Topological distance metric can be categorized into neighbor-
hood based metric and path based metric. Based on type of attribute data
(categorical /numerical /binary), the attribute similarity measure can be, in
general euclidean distance computed between pair of vertices [33]. Falih
et al. [37] developed ANCA clustering algorithm by considering shortest
path metric for topological measure and Euclidean distance for attribute

similarity. Then, matrix factorization is applied on both topological and

26

2.7 Identified Research Gaps of MCR

attribute similarity measures. Finally, they used k-means clustering on the

resultant matrix to form k clusters.

Guo Qi et al. [65] used matrix factorization based technique on edge con-
tent to detect communities. Yang et al. [85] developed non-negative matrix
factorization based model to identify disjoint or overlapping communities
at large scale. Alim et al. [12] developed matrix factorization and gradi-
ent descent based technique to identify polarization and clusters in social

networks like Twitter.

2.7 Identified Research Gaps of MCR

From the literature, we observed that matrix factorization is a standard
technique that has scope to find similarity by considering graph topology
as well as node /edge attributes. We identified the hashing based heuristic
search is the current state-of-the-art literature that can provide scalable
solution for multidimensional constraint reachability (MCR) for attributed
graphs. We also observed that there is need to reduce the missing con-
strained reachable paths due to the heuristic [88]. Hence, we adopted the
clustering that used matrix factorization to heuristic search to solve the
problem of MCR queries using optimized hashing efficiently described in
Chapter 4 of the thesis.

2.8 Techniques for Frequent Subgraphs and
Subpaths

Massive graphs are considered as streams of data to analyze and extract
useful information. Henzinger et al. [42] were the first to introduce graph

streams and they also considered graph problems of paths and connectivity.

27

2.8 Techniques for Frequent Subgraphs and Subpaths

Aggarwal et al. [§] determined frequent and dense patterns in graph
streams. They defined graph streams as sequence of edge sets. They as-
sumed that the graph constituted large number of nodes, but the edge sets
contained only small fraction of the nodes. They designed a probabilistic
approach based on node co-occurrence and edge density by utilizing the
sparsity property of underlying graphs. They used min-hash approach to

summarize the graph streams and extract dense patterns efficiently.

Andrew McGregor [61] presented a detailed survey of graph streams. Due
to the dynamic nature [40], [44] and the large volume of graph stream data,
Nan Tang et. al. [75] proposed graph summarization sketch that can store

frequent counts and paths of graph streams.

Alfredo Cuzzocrea et al. [31] studied various methodologies of mining
dense patterns in graph streams and proposed probabilistic algorithms for
determining such structural patterns effectively and efficiently. They pre-
sented two algorithms to extract frequent subgraphs - (i) Indirect 2-step al-
gorithm (ii) Direct 1-step algorithm using Data Stream Matrix (DS Matrix)
and sliding window technique. DS Matrix stored the existence of edges in
bit vectors. The sliding window tracked the latest window of graph streams
from which frequent singleton edges are extracted. Their experimental re-

sults showed that their techniques with DSMatrix consumed less memory.

Kyoungsoo Bok et al. [23] observed that the algorithm proposed by Al-
fredo Cuzzocrea et al. [3I] had the limitation of duplicate calculations.
They introduced slidenum variable [23] to store the frequency of edges in-

crementally for batches of graph streams to resolve duplicate calculations.

Leung et al. [55] investigated on mining frequent subgraphs from streams
of uncertain data. They used Data Stream Matrix and expected support
to find frequent connected edges. The expected support is computed from

the product of existential probability of edges. They developed uncertain

28

2.9 Identified Research Gaps of Frequent Subgraphs

frequent trees instead of Frequent Pattern trees (FP-trees) and direct 1-step

algorithm to extract the frequent subgraphs from the uncertain data.

We observed that finding frequent subpaths from paths is another prob-
lem in the literature that can be related to the problem of finding frequent
subgraphs. Sumanta Guha [41] developed Apriori based technique to ex-
tract frequent subpaths from paths in an undirected graph. Schwartz et al.
[69] studied demand of frequent subpaths in a transportation network tra-
versed by several users. Hence, there is need to find techniques that discover

frequent subpaths efficiently by storing useful historical information.

2.9 Identified Research Gaps of Frequent Sub-
graphs

From the literature, we observed that the direct 1-step algorithm [31] that
used DS Matrix is an efficient technique to find the frequent edges and
the resultant frequent subgraphs. Besides, we observed that while finding
frequent subgraphs, although sliding window based techniques execute fast,
they may lead to loss of useful historical information. This motivated us
to find the actual minimum support from the given minimum support [91]

and develop static and dynamic sliding window filtering techniques [52].

We also observed that we need to reduce duplicate calculations further.
We related the problem of finding frequent subgraphs to the problem of
finding frequent subpaths from sequence of paths. Thus, we applied the
proposed frequent subgraph finding techniques to find frequent subpaths
from the sequence of paths described in Chapter 5 of the thesis.

29

2.10 Query Logs and Framework

2.10 Query Logs and Framework

Query logs are used to find the previous repeated queries and its results
faster. Bonifati et al. [I4] analysed query logs for Resource Descrition
Framework (RDF) queries. They have extracted syntactic structure as well
as semantic hypergraph representation of queries. The study on large num-

ber of queries led to the queries classification and their shape analysis.

A framework involves integration of components or modules to solve the
specific problem efficiently. Yusoff et al. [90] define framework as generic
combination of data and processes where subcomponents may be substi-
tuted. An architecture is defined as the combination of data and processes

where subcomponents are not substituted.

Petrou et al. [36] developed big data framework that involved trajectory
prediction algorithms in aviation and maritime domains. The framework
involved different modules with batch processing and stream processing
layers. The major modules include synopses generator, semantic integrator,
data manager, trajectory clustering and future location predictions with

demonstrations.

2.11 Developing Query Processing Framework

We observed that we can store the query information and path informa-
tion for constrained reachability queries in Query Path Log for faster query
processing. We find that there is a need to combine our proposed tech-
niques and Query Path Log to develop a novel framework for constrained

reachability queries.

30

2.12 Summary

The description of different modules and their integration into a novel
query processing framework is discussed in Chapter 6 of the thesis. Table[2.T]
describes a summary of the prominent techniques and significant observa-
tions in the literature that are reviewed by Citing, Comparing, Contrasting,
Critiquing and Connecting with the research corresponding to constrained

reachability query processing in the thesis.

2.12 Summary

We performed extensive survey of LCR techniques, other constraint reacha-
bility techniques, clustering techniques and techniques to find frequent sub-
graphs from graph streams. We identified the research gaps and progressed
further by proposing techniques that are presented in the subsequent chap-
ters of the thesis as contributions. Besides, we integrated our contributions

and developed a novel query processing framework presented in Chapter 6.

31

Chapter 3

Bounded Label Constrained
Reachable Paths

One of the fundamental operations to manage graph data is to find the
reachability from one vertex to another vertex in the graph. In real-time,
the vertices and edges of a graph consist of attributes. In this chapter, we
solved and formulated the novel problem by extending the problem of Label
Constrained Reachability by developing efficient techniques. The publica-
tions of this chapter are listed below. In section we describe and illus-
trate the preliminaries that are helpful in understanding our research. In
section |3.3 we describe the techniques in the literature related to reachabil-
ity, constrained reachability, and finding paths. In sections and [3.5], we
describe our contributions, which constitutes the proposed landmark path
indexing and query processing algorithms. Section describes the in-
dex construction, evaluation of our proposed techniques based on accuracy

measures and statistical analysis on datasets.

B. Bhargavi and K. Swarupa Rani, “Bounded paths for LCR queries in labeled weighted directed
graphs”, in Proceedings of Advances in Computing and Data Sciences, Springer ,pp. 124-133,
2018.

Bhargavi B. and Swarupa Rani K., “Implicit Landmark Path Indexing for Bounded Label
Constrained Reachable Paths”, International Journal of Recent Technology and Engineering
(IJRTE), Vol. 8, Issue 4, pages 10, pp. 10661-10669, November 2019.

32

3.1 Introduction

3.1 Introduction

In the big data era, there are huge databases with relational and graphical
information. The discovery of useful and unknown information in such data
is challenging for research and professional groups. The graph is one of the
important tools that can represent the complex relationships between the
objects of big data. Graph mining refers to mining data represented as a
graph [29]. One of the challenges is to develop algorithms that can store,
manage and provide analysis over a large number of graphs for the real-
world applications. Another challenge is to develop efficient graph database
systems. Neodj [5] and InfiniteGraph [6] are some of the graph databases
optimized for handling graph data. In addition, big data companies like
Twitter and Google designed graph database systems such as FlockDB [7]
and Pregel [60] respectively. Some of the specific operations of mining graph
data from real-world domains such as graph pattern matching, clustering
graphs, and finding frequent subgraphs are the important contributions of

deriving new knowledge.

One of the fundamental operations to manage graph data is to find the
reachability from one vertex to another vertex in the graph. In real-time,
the vertices and edges of a graph consist of attributes. These attributes give
information about the type of vertices, type of relationship and strength of
the relationship between the vertices. For instance, consider road network
of figure [3.I where the vertices denote the loactions or places and the edges
denote the link between the locations. The edge weight denotes the distance
between the locations. The edge labels denote the type of roads such as
Narrow, Street, Two-wheeler and Highway. The constrained reachability
query finds the existence of reachability between the two given vertices
while satisfying the given constraints. The Label-Constraint Reachability
(LCR) query that was first formally defined by Ruoming Jin et al. [45] is
for finding the existence of the label constrained reachable path between

the given vertices in an edge labeled directed graph.

33

3.1 Introduction

y P10

33T

P3¢

46:T

P4

P9

Figure (3.1) Road network (G1) denoting an edge labeled weighted directed
graph

We extended the LCR query by formulating a novel problem formally
referred as Bounded Label Constrained Reachable Paths (BLCRP) defined
in Section [3.2] It involves finding the exact paths satisfying the given con-
straints instead of finding only the existence of paths [45].

3.1.1 Applications and challenges

One of the applications of BLCRP is in road networks. For instance, in road
networks, we can find the paths between two places X and Y bounded by
the given distance d, which are connected through labeled roads. Fig. |3.1
illustrates a local road network with vertices {P1, P2, ..., P12} denoting
the locations or places and edges representing the link between the adjacent
locations. Each edge has a label that constitutes two parts W:Ty; W (edge
weight) denotes the distance between the two locations in Kms. and Ty
(edge label) denotes the type of roads. For instance, the type of roads are
assumed to be Highway (H), Street (S), Narrow road (N) and Two-wheeler
road (accessible by only two-wheelers)(T) for the Figure Suppose the
user query is to find the paths from “P1” to “P4” within distance of 100Km
in a two-wheeler without using High-way. The query can be considered
as the problem of finding BLCRP for the given labeled weighted directed

34

3.1 Introduction

graph, G1, with label set constraint “SNT” and the bound for path weight
100.

Another application is in protein-protein networks [63] where the edge
weight represents the reliability of interaction between two proteins and
edge labels are enzymes that transform the proteins. In this case, the
BLCRP query can find the transformation path from one protein to an-
other within the given bound. Furthermore, in social networks, the vertices
denote the users, the edge labels between the users represent the relation-
ships like isFriend, isRelative or isColleague and the edge weights can be the
strength of the relationships. Thus, the BLCRP query, in social network,
can find the paths between the given remote users within the constraints

on relationships.

One of the significant challenges to find the BLCRP is that there can
exist an exponential number of label combinations between the two given
vertices. Another challenge is to compute the exact paths. But, in the
literature, shortest path finding techniques [57] exist that compute only the
approximate paths. These observational studies persuade us towards the
real network context that considers the categorical edge label constraints

and real-valued edge weight constraints while finding the exact paths.

In this chapter, we focused on edge labels and total path weight con-
straints for labeled weighted directed graphs. (1) The edge labels must
satisfy the given membership constraint while finding graph reachability.
(2) We find not only the reachability between the two given vertices but
also the exact paths whose path weight is less than or equal to the given
maximum path weight. Considering the above two constraints are challeng-

ing, as it leads to the slower index construction time.

35

3.1 Introduction

We formulated the problem and solved Bounded LCR Paths by extending
the Landmark Index and Query algorithms [79] and proposed novel algo-
rithms. We extended by incorporating paths and path weights in the index
in addition to the reachable vertex and the path label [79] for the land-
mark vertices. By including minimality of label sets [79], a new index is
constructed that is termed as Landmark Path Index [20]. Besides, we also

considered Dijkstra’s relaxation property for specific cases while indexing.

We also observed that some of the implicit paths were not included in the
index that satisfy the given constraints. In order to strengthen the efficiency
of our proposed approach [20], in this chapter, we modified the proposed
algorithm [20] and improved it by constructing an index that considers the

implicit paths for the specific cases.
In summary, our main contributions in this chapter are:-
e Proposed a novel problem of finding Bounded LCR Paths in labeled
weighted directed graphs.

e Proposed algorithms to find the exact Bounded LCR Paths described
in section instead of finding only the existence of paths [79].

e Proposed and extended algorithms of landmark path index by includ-
ing the implicit paths while indexing to find the paths described in
section 3.0

e Theoretically proved the correctness of our proposed algorithms.

e Evaluated the accuracy by computing the precision and recall for all

the queries of the real and synthetic datasets in section [3.6

e Conducted experiments and statistically evaluated the efficiency of our

proposed approaches on real and synthetic benchmark datasets.

e Presented extensive survey of constrained reachability techniques, which
is given in Table for future reseach directions.

36

3.2 Preliminaries

3.2 Preliminaries

An edge-labeled directed graph is denoted by G (V, E, T;, A), where V is
the set of vertices, F is the set of edges, Tj is the set of edge labels, and A is
the function that assigns each edge e € E, a label A\(e) € T, . We describe
the path p from vertex ‘ws’ to ‘vd’ in the edge labeled directed graph G
as a vertex sequence, i.e., p = (VS, Uni, .-y Umi, -, Vd). Up, indicates the
1th intermediate vertex along the path from ‘vs’ to ‘vd’. We use path label
L(p) to denote the set of all edge labels in the path p, i.e., L(p) = { A(e1)
UAlea) U U A(e,)}.

DEFINITION 1. (Label-Constraint Reachability) Given two ver-
tices, ‘vs’ and ‘vd’ in the edge labeled directed graph G, and a label set
A, where ‘vs’, ‘vd’ € V and A C T;, if there is a path p from vertexr ‘vs’ to
‘vd” whose path label L(p) is a subset of A, i.e., L(p) C A, then we say ‘vs’
can reach ‘vd’ with label-constraint A. We also refer to path p as an A-path
from ‘vs’ to ‘vd’.[45]

LCR Query: Given two vertices ‘vs’ and ‘vd’, and a label set A, the
label-constraint reachability (LCR) query asks if there exists an A-path

from ‘vs’ to ‘vd’.[45]

We demonstrate the LCR query for the road network in Fig. through
the following cases:
Case 1: For instance, the LCR query (P1, P/, “HN”) returns true as there
exists a path {P1, P5, P4} satisfying the given constraint.
Case 2: For the LCR query (P1, P7, “NT”), it returns false because
there doesn’t exist any path from PI to P7 satisfying the given label-set
constraint.
Case 3: There can exist a reachability query (P3, P1, “NT”) for which
there does not exist any path in the entire graph even without satisfying
the given label set constraint.
Case 4: There can exist a reachability query (P1, P7, “NT”) for which

37

3.2 Preliminaries

P9

Figure (3.2) Road network with types of roads (S:Street, N:Narrow, H:Highway,
T:Two-wheeler only)

there exists a path p= {P1, P6, P7} for which L(p) is not a subset of the
given label set, i.e., L(p)=“HS” ¢ “NT”.

In this chapter, we handle LCR queries of type case 1, case 2 and case
3. Case 4 type of reachability query is a why-not reachability query that is
beyond the scope of the thesis.

DEFINITION 2. (Landmark Vertex) The landmark vertices (denoted
by V1) are defined as the subset of vertices for the given graph G(V, E), i.e.,
Vi, C V. These are selected based on criteria such as the top ‘k’ vertices of
highest degree or any of the centrality measures of the graph. For instance,
in Fig. B.2] the top 4 vertices of highest total degree that can be considered
as landmark vertices are { P5, P6, P8, P1}.

3.2.1 Problem definition

We denote an edge labeled weighted directed graph as G’ (V, E, T}, A\, w)
where V represent vertex set, E' denotes the edge set, T; is the total set of
different labels in G and for every edge e €FE, w(e) € RT and \(e) € T.
The path weight or path cost is computed by adding edge weights (w(e;))

38

3.2 Preliminaries

along the path (p). Thus, the path weight for the path p denoted by C(p)
is X(w(e;)).

vl o
a:2 g
a:14 gl
<..... a:3 v3
A7 AT
a6 @ vé
c:lO'-..'
VS:‘ c:4
'-_. b:5
c:10 "-,
¥
v6 ;2
e V7

(b)

Figure (3.3) (a)Edge labeled weighted directed graph, G and (b) Resultant
Bounded LCR Path for query (v4, v7, ‘ac’, 50)

Figure (a) illustrates an edge labeled weighted directed graph, G with
V={ vl, v2, v3, v4, v5, v6, v7} and E={ (v1, v2), (v1, v4), (v1, v5), (v2,
vh), (v3, v2), (v4, v3), (vb, v6), (v6, v3), (v6, v4), (v6, v7) }, the set of
edge labels T;={‘a’, ‘b’, ‘c’}, for instance, A (v1, v2)=‘a’ and w(vl, v2)=2.
We formulated a new problem by extending the LCR definition of Ruoming
Jin et al. [45] as follows:

DEFINITION 3. (Bounded Label Constrained Reachable Paths)

Given two vertices ‘vs’ and ‘vd’, the label set AC T; and bound for the path-
weight 0 € RT in an edge-labeled weighted directed graph G’, if there is an
A-path Ip; from ‘ws’ to ‘vd’ such that the path weight C(ip;) < ¢, then we
say ‘vs’ can reach ‘vd’ with label-constraint A and the path weight bound
0. In other words, it can also be referred as follows: Given two vertices
‘vs” and ‘vd’, a label set A and bound 9, the bounded label constrained
reachable paths are the A-paths Ip;, between ‘ws” and ‘vd’ that satisfy the
bounded path weight constraint C(lp;) < 4.

In the thesis, we referred and termed the Bounded Label Constrained
Reachable Paths as BLCRP.

39

3.3 Related Work

For example, let us consider the edge labeled weighted directed graph of
figure (a). The resultant path for the BLCRP query (v4, v7, ‘ac’, 50)
is p={ v4, v3, v2, v5, v6, v7 } as shown in figure 3.3(b). The path cost
C(p)= w(v4, v3)+ w(v3, v2)+ w(v2, v5)+ w(vh, v6)+ w(v6, v7)=31.

For instance, in ﬁgure we need to find the path for BLCRP query ¢(vs,
vd, A, 0) with vs=“P1”, vd=“P4”, A=“SNT” and §=100. The resultant
bounded A-path lp is {P1, P2, P3, P4} with the path cost of 95.

We further extend our proposed Landmark Path index algorithm by in-
cluding implict paths during indexing.

DEFINITION 4. (Implicit Paths) Implicit paths are defined as the
paths in the given graph that implicitly satisfy the given reachability con-
straints but need not satisfy the minimality of label sets.

For instance, in Fig. [B.I] there exist two paths from PI to P3, i.e.,
I;={P1, P2, P5} and Ilp,={ P1, P5}. For the BLCRP query ¢(P1, P5,
“NT”, 45), the resultant bounded paths satisfying the given constraints can
be both Ip; and lp,. The path Ip; although violating minimality of label
sets property [79], satisfies the given reachability constraints. Hence, Ip; is

an implicit path.

Table [3.1] shows the different notations used in this chapter with their de-

scription.

3.3 Related Work

In this section, we reviewed various techniques that find the reachability,
constrained reachability, shortest paths and constrained paths. Also, we
surveyed on finding path compression techniques and efficient ways to index

paths.

40

3.3 Related Work

Table (3.1) Description of Notations

Notation Description
G Given graph
\Y Set of vertices
E Set of edges
T, Total set of edge labels in G

Edge label of the edge e € E
Edge weight of the edge e € E
Path label of path p
Total path weight or cost of path p
Given bound on path weight
Number of landmark vertices
Total number of vertices in G
Total number of edges in G

@)

>
= =
[©)
NS

Qg =
SR

S 3 >

Reachability techniques Graph reachability finds the existence of path
between the vertices in a graph. In [87], [9], the detailed survey of reach-
ability techniques is specified. H. Wei et al. [82] classified the reachability
techniques into two categories; Label-only approaches and Label+G ap-
proaches. Label-only approaches directly find the existence of reachability
between the two vertices from the constructed index. Label-only approaches
include 2-hop [28], 3-hop [47], Chain-cover [27], Path-Tree Cover [48], Tree-
Cover [10], and Dual Labeling [80]. Label4+G approaches use index labels
and BFS/DFS to find the reachability between two vertices. Tree+SSPI
[25] and GRIPP [7§] are Label4+G approaches which have linear index size
and query time in terms of the number of vertices of the graph. H. Wei et
al. [82] also developed an independent permutation labeling approach and

two additional labels to find the reachability between two vertices.

Different variants of reachability are formed by incorporating constraints
to vertices and edges of the graph. The vertex/edge constraints can be
a specific bound for each edge weight, specific vertex labels, specific edge
labels, membership of specific edge labels, membership of specific vertex
labels, and edge/vertex labels in a specified order. Table describes the

different constraints with their state-of-the-art reachability techniques.

41

3.3 Related Work

Table (3.2) Survey of Constrained Reachability Techniques from [2010-2018]
S.No. | Constraint | Technique (Authors,Year) Advantages
edgelabel Maximal Spanning Tree compress the transitive
. closure of the graph to
1 set based Query Processing more than two orders of
member (Jin et al., 2010 [45]) :
magnitude
used as base technique in
5 g;ifelabel Bidirectional labeled i?glgﬁiﬁ}; ?scflifé)htMatch
member BEFS(Fan et al., 2011 [38]) matching graph patterns in
large graphs
Memory-based and
every edge | Disk-based Index and highly scalable disk based
3 weight query processing algorithm and faster query
bound algorithms(Miao Qiao et processing
al., 2013 [66])
path
distance Spanning Tree based Generate subpath graph
and exact . .
4 edee label BPFilter and find approximate
ge ‘4l algorithm(Minghan Chen reachability in uncertain
match in et al., 2014 [260]) raphs
uncertain v grap
graphs
edge label Augmented Transwlve scalability is addressed
Closure technique and . .
5 set o using sampling based
member Partition approach(Zou et solution for good partition
al., 2014 [93]) g0oc P
multidi- .
mensional Hashlng and graph finds reachability with
clustering based . . .
6 vertex and . multi-dimensional attribute
solution(Duncan Yung et .
edge al., 2016 [83)) constraints
attributes v
edge label | LandmarkIndex and Query ﬁn ds reachability S.atley.mg
: given label constraint with
7 set algorithms(Valstar et al., sionificant speedubs in
member | 2017 [79]) & beectp

query processing

Ruoming Jin et al. [45] formally defined label-constraint reachability as the

problem of finding if there exists path between two vertices that satisfies the

42

3.3 Related Work

given edge-label membership constraint. Ruoming Jin et al. [45] developed
spanning tree based solution to LCR problem. Fan. et al [3§] developed
bidrectional BFS technique for LCR queries and used constraint reacha-
bility solution as the base technique for finding matching graph patterns.
Lei Zou et al. [93] constructed augmented Directed Acyclic Graph (DAG)
and developed transitive closure technique and partition-based technique
to solve LCR queries. Valstar et. al. [79] developed a landmark based in-
dexing technique which can handle LCR queries efficiently for large graphs.
Duncan Yung et al. [88] designed hashing based technique to handle multi-
dimensional vertex and edge label constraints while finding the reachabil-
ity. Miao Qiao et al. [66] formalized weight constraint reachability query
in which every edge weight through the path must satisfy the given range

constraint.

Path finding techniques Chris Barrett et al. [I7] defined edge label and
edge weight constraints in formal language and computed the constrained
shortest paths through dynamic programming. Ankita et al. [57] developed
constrained TreeSketch algorithm that considered edge label constraint(A)
and found approximate A-paths between the given vertices. Frances et al.
[24] developed landmark-based indexes to compute approximate shortest
path distance. Minghan Chen et al. [26] worked on uncertain graphs with
sampling techniques to find approximate shortest paths constrained through

distance parameter.

In [73], [74], a B+ tree index based solution is developed to solve reach-
ability queries for graphs. Akiba et al. [II] developed a landmark-based
approach with efficient pruning to solve queries of finding the exact shortest
path distance between two vertices. Delling et al. [32] designed a scalable
solution based on 2-hop labels for the distance queries in large networks.
Ho L-Y et al. [43] developed partition replication, workload prediction and
workload balancing methods to address the data locality and workload bal-
ancing while finding vertex label constrained reachability in large attributed

graphs.

43

3.4 Proposed Technique to find Bounded Label Constrained
Reachable Paths

From the literature review, we observe that there is a scope for finding
efficient reachability techniques that have lesser index construction time,
lesser index size, and faster query processing. The current state-of-the-art
reachability techniques cannot be applied directly to constrained reachabil-
ity queries as the attributes of vertices/edges are not stored while comput-
ing the index. Many approximate shortest path techniques are developed
which do not compute exact paths. Hence, there is a need to find techniques
that compute the exact reachable paths satisfying the given vertex/edge at-
tribute constraints. Hashing is found to be an efficient data structure for
secondary storage access than B+tree [39]. Duncan Yung et al. [88] used
BFS with hashing techniques to compute vertex-labeled reachability on big
attributed graphs.

3.4 Proposed Technique to find Bounded La-
bel Constrained Reachable Paths

In this section, our contributions are explained. We extended and modified
the landmark based indexing [79] and proposed algorithms to compute path
index and to find the Bounded Label Constrained Reachable Paths. In the
landmark based indexing technique [79], ‘k’ landmark vertices were selected
based on highest total degree. Min-heap based prioirty queue with path

label size as priority was used to add labelsets satisfying minimality.

During index construction, we selected ‘k’ vertices sorted in descending
order of total degree as landmark vertices. The ‘k’ value is considered to
be [1/(n)] which is derived from theoretical observation of upper bound on
the burning number of graph [51], [79]. To find bounded paths, we extended
the landmark index by including intermediate paths as well as path weight
while indexing. We considered path-weight as prioirty in min-heap based
priority queue. While adding paths, we incorporated Dijsktra’s relaxation
property when path labels are same. While processing the BLCRP query(s,
t, L, §), we find the L-paths using BFS-based query processing along with

44

3.4 Proposed Technique to find Bounded Label Constrained
Reachable Paths

the path index and return the L-paths whose path-weights are bounded by
J.

First, we preprocessed the graph data for faster indexing and query exe-
cution. In preprocessing, vertices are numbered from 0 to n-1. The labels
are also numbered from 0 to |T;|-1. The corresponding bits of numbered
labels are set during path index construction. For instance, fig. [3.4] shows
the preprocessed directed graph G’ of fig. [3.1] Thus, the preprocessing step

saves storage space while indexing.

3.4.1 Path indexing algorithm

In the algorithm (LWPathIndex), for each landmark vertex, all reachable
vertices, their labels, the path and path-weight are computed using LW-
PathIndexPerLM() procedure and stored in Path LandMark index(PLM).
In AddPathInfo() procedure, we add paths to path index by considering
minimality of labelsets [79] and cost constraints. While adding paths with

same labels, we add only paths that preserve Dijkstra’s relaxation property.

Table [3.3] describes how label constraints and weight constraints are con-
sidered while indexing. For any reachable vertex v from s, let (L', cost’) be
the path label and path-weight (cost) for path p’ that is already inserted
and (L, cost) represent the path label and cost for path p that is to be
inserted based on Table [3.3] Minimality of labelsets is preserved as well
as Dijkstra’s relaxation property for weights is not violated for the cases
5-8. But, for the cases 1-4, we have performed trade-off for faster indexing
by adding paths preserving minimality of labelsets. For instance, let ‘0’ be
one of landmark vertices for the graph G’ in Fig. Suppose PLM[0] for
vertex ‘6" has I'=7 | p’=‘0-4-5-6" and cost’'=141. If a tuple(‘6’, L, p, cost)
with L=5, p=‘0-5-6" and cost=106 is encountered, it is inserted into PLM]0]
and the record (‘6’, L/, p’, cost’) is deleted. We add only those simple paths
to the path index whose path length< [diameter/2]| for faster indexing.

45

3.4 Proposed Technique to find Bounded Label Constrained
Reachable Paths

Algorithm 1: LWPathIndex

PLM|[v;|<-LWPathIndexPerLM (v;)// i € 1:k
PNL[v;]<-LWPathIndexPerNM (v;)// j € remaining (n-k) vertices
procedure LWPathIndexPerLM (v) // Let q be priority queue
while ¢ is not empty do
Dequeue u and add its path information to PLM]s| through
AddPathInfo ()
Add u to transL[s][S] if same labeled data exists else add(u, L) to
transLs]
if u is indezred then

| ExpandQOut (); continue

for w € adj(u) do
L if PathLength(s,w)< [diameter(g)/2] then

| Enqueue w

procedure LWPathIndexPerNM (v, b)
while ¢ is not empty do
Add u and its path information to PNL[s] through AddPathInfo ()
if u is indexred then
| ExpandOutNM (s, u, L, iv, cost) upto b landmark vertices

for w € adj(u) do
| Enqueue w

procedure AddPathInfo (s, v, L, intv, cost)
if (v, I, int/, cost’) € Plnd[s] and L' C L then
| return false

Delete any (v, L', intv’, cost’) with LC L’ or (L' = L and cost’ > cost)

from PlInd]s|.

Add (v, L, intv, cost) to PInd[s].// PInd=PLM for LM index, else
PInd=PNL

return true

An additional index transL is created for the landmark vertices for which
we either generate a new entry (L, v) or append v to the previous entry in
transL[l;][L] used for efficient pruning in query processing. For each non-
landmark vertex, LWPathIndexPerNM() computes Path Non-Landmark in-
dex (PNL). ExpandOut() and ExpandOutNM() methods propogate the
reachability information of indexed vertices that lead to faster index con-
struction for PLM and PNL respectively.

46

3.4 Proposed Technique to find Bounded Label Constrained
Reachable Paths

Table (3.3) Cases of label constraints and cost constraints while indexing
Caso Label set Cost (L', cost’) | (L, cost) | Dijkstra’s Minimality
No. | condition condition removed? added? property preserved?
preserved?
1 L'cL cost<cost/ No No No Yes
2 LcL cost>cost’ | Yes Yes No Yes
3 LgL &L ¢ L | cost<cost’ | No Yes No Yes
4 LgL' &L ¢ L | cost>cost’ | No Yes No Yes
5 Lcl/ cost<cost’ Yes Yes Yes Yes
6 L=1/ cost<cost’ Yes Yes Yes Yes
7 L=L cost>cost’ | No No Yes Yes
8 L' cL cost>cost/ No No Yes Yes

3.4.2 Query processing algorithm

We modified and extended the BFS-based query processing approach [79] by
accessing the path index and returning the label constrained paths whose
path-weight is within given maximum bound. The query processing of
BLCRP queries is evaluated based on QBPath Algorithm. If s is landmark
vertex, then QPathLM() procedure is invoked that checks if there exists (I,
p, cost) in PLM[s] for the target vertex ¢ where [is the path label for p and
cost is path-weight with [CL and cost < mazcost, then p is returned. If s
is non-landmark vertex, the vertices are either checked in PNL or traversed
through breadth-first search, till ¢ is reached. The vertices from s along
the path that cannot reach ¢ are marked as visited using QCheckMark().
For example, let the BLCRP query be (0, 6, 5, 150) for the graph of figure
3.4]
in PLM index and the resultant retrieved path is {0, 5, 6}. Thus, we
find the multiple exact paths by using proposed path indexing and query
processing algorithms (referred as LM2 in section by satisfying the

Since, ‘0’ is a landmark vertex, the constraints are directly checked

given constraints of the query.

47

3.5 Extended Proposed Technique by including Implicit Paths

Algorithm 2: QBPath

Input : s, t, L, maxcost
Output: Bounded Paths pl[i] € p
if s V; then
| QPathLM (s, t, L, maxcost)
// PLM index is invoked in QPathLM()
for (v, L', int/, cost') € PNL[s] do
if (I/ C L and QCheckMark (v, t, L, marked, mazcost)=true) then
| Add path s~v~t to p
// v~t derived from QPathLM()in QCheckMark()

while ¢ is not empty do
if v=t then
| Add path s~t to p; break
if v € V;, and QCheckMark (v, t, L, marked, mazcost)=true then
| Add path s~v~t to p
for w € adj(v) do
if (marked(w)=false and \(v, w) C L) then
| Insert w into q

if (p is not empty and pcost(pfi])<mazcost, pfi] € p) then
| return p

3.5 Extended Proposed Technique by includ-
ing Implicit Paths

The extended works include incorporating implicit paths. By including the

implicit paths in the index, we achieve higher recall than LM2. These exten-

sions along with implicit paths, i.e., LWPathIndexImplicit and BlmplPath
algorithms are referred as LandMark path extensions (LM3) in section [3.6]

3.5.1 Path indexing algorithm by including implicit
paths

For each landmark vertex (v), we construct a reachable Implicit Path

Landmark index (IPL) that includes reachable vertex (from v), its label,

48

3.5 Extended Proposed Technique by including Implicit Paths

Figure (3.4) Pre-processed directed graph G’ of the road network G1

path and weight. While inserting the same vertex with different labels or
weights, we consider the minimality of label sets [79] and Dijkstra’s relax-

ation property based on Table |3.0

Assumption We assume only simple paths, whose path length is less than
or equal to half the diameter of the graph exist between the source landmark
vertex and most of its reachable vertices. Therefore, faster indexing is

achieved.

Table shows the path landmark index for vertices 0, 4 and 7 of pre-
processed directed graph G’ of Fig. (3.4, For instance, the tuple <4, 10,
1, 42> in IPL[0] of Table indicates the vertex 0 can reach vertex 4
via vertex 1 with bit processed label constraint 10, and total path weight
of path {0, 1, 4} is 42. For non-landmark vertices, upto ‘b’ reachable
landmark vertices are indexed in Path Non-Landmark (PNL). Table
shows the PNL index for non-landmark vertices 5, 6 and 8 of Fig. |3.4]

Table shows the different possible cases during path indexing for
which minimality and Dijkstra’s relaxation properties are handled. We
denote the path label to be indexed by L and path label already indexed

by L'. We denote v as the reachable vertex and iv and it/ denote the

49

3.5 Extended Proposed Technique by including Implicit Paths

Algorithm 3: LWPathIndexImplicit

Input : Edge-Labeled Weighted Directed Graph, G
Output: transL, IPL, PNL
procedure ImplPathperLV (v) // Enqueue (v,,,0)in priority queue g¢
while ¢ is not empty do
Add (u, L, iv, wt) IPL[s] through AddIPath ()
// L is the path label from s to u
Append u to transL[s][S] if L=S, else insert (u, L) to transL]s]
if u is indexed then
| ImplExpand (); continue
for (w, L', wt') € outneighbors(u) do
iv—join(iv,w); L” «+~ LU L/
wt” < wt+wt’

if PathLength of s~w is less than half of graph diameter then
| Add (w, L”, iv, wt”) to ¢

procedure AddIPath (s, v, L, intv, C)
if (v, L, intd/, C') € PInd[s] and I’ C L then
L return false
if (L I or (L' = L and C' > C)) then
| Delete entry (v, L', intv/, C’) from PInd]s]
.if (LC I and C' > C) then
| Delete (v, L/, intv/, C") from PInd[s].
IE<+ (v, L, intv, C)
Insert IE into PInd[s].// PInd=IPL for LM index, else PInd=PNL
return true
procedure ImplPathIndNV (v, b)
while ¢ is not empty do
Dequeue (u, L, iv, wt)
if (isLandmark(u)=true) then
| Add (u, L, iv, wt) to PNL[s] through AddIPath ()
if ((u is indexed)& b>0) then
| ImplExpandNM (s, u, L, iv, C);b=b-1;
for (w, L', wt') € outneighbors(u) do
iv<join(iv,w); L < LU L/
L wt” «— wt+wt'; Enqueue (w, L”, iv, wt”)

procedure ImplExpand (s, u, PL, iv, C)
for every (v, PL', intv/, C') in IPL[u] do
PL"=PL U PL/;intv"=join(iv, intv’);C"=C+C’; Add (v, PL”, intv”, C")
L through AddIPath ()
procedure ImplExpandNM (s, u, PL, iv, C)
// PInd=IPL if isLandmark(u)=true, else PInd=PNL
for every (v, PL', intv/, C') in PInd[u] do
if (v is indexed & isLandmark(v)=true) then
PL” + PL U PL/;intv” « join(iv,intv’);C” - C+C’; Add (v, PL”, intv”,
L C”) through AddIPath ()

90

3.5 Extended Proposed Technique by including Implicit Paths

Table (3.4) Path Landmark index of landmark vertices for Fig.

Index Tuples

<1,8, -, 16>, <4, 10, 1, 42>, <4, 2, -, 44>, <5, 1, -, 45>,
<2, 8, -, 49>, <3, 8, 1-2, 95>, <6, 5, 5, 106>, <8, 7, 5-6,
122> <7, 5, 5-6, 142>, <3, 3, 4, 164>

<5, 1, -, 36>,<6, 5, 5, 97>, <8, 7, 5-6, 113>, <3, 1, -,
IPL[4] 120>, <7, 5, 5-6, 133>

IPL|0]

IPL] <10, 4, -, 14>, <9, 4, 10, 26>, <11, 1, -, 40>

Table (3.5) Path Non-Landmark index for Fig.
Index Tuples

PNL) <7.5,6,97>, <4, 6, 6-8, 163>

PNL <7.1,-, 36>, <4, 6, 8, 102>

PNL <4, 4, -, 86>, <T, 4, -, 20>

intermediate paths of the new tuple (to be indexed) and indexed tuple
respectively. We denote the path weight (or cost) to be indexed by C' and
indexed path weight by C'.

Table (3.6) Label and cost constraints while indexing with implicit paths

gzse Label set Cost (L, ¢ (L, C) | Dijkstra’s Minimality
condition condition | removed? | added? | property preserved? | preserved?

1 L'cL C<C’ No Yes No No

2 LclL Cc>C’ No Yes No No
LgL & ,))

3 L' ¢ L C<C No Yes No Yes
LgL & ,

4 et C>C No Yes No Yes

5 LcL c<c! Yes Yes Yes Yes

6 L=1L' C<C’ Yes Yes Yes Yes

7 L=1/ c>C No No Yes Yes

8 L'cL c>C No No Yes Yes

51

3.5 Extended Proposed Technique by including Implicit Paths

For the cases 1 and 2 of Table [3.6] both minimality of label sets and
Dijkstra’s relaxation property are not preserved; yet the resultant paths
may implicitly satisfy the given label constraints and the bounded path
constraint. Hence, both the existing tuple <v, L/, it/, ¢'> and new tuple
<w, L, v, C’> are retained. For instance, in Table for IPL[0], both
tuples < 4, 10, 1, 42> and <4, 2, -, 44> are retained although minimality
of label sets and Dijkstra’s relaxation property constraints are violated.

Thus, implicit paths are included in the constructed index through case 1
and case 2 of Table B.6

When L # L/, irrespective of C<C' or C>(', the tuple <wv, L, v, C>
can be added to path index for cases 3 and 4 of Table |3.6| For case 5 and
case 6, L C L' and C < (', both minimality of label sets and Dijkstra’s
relaxation property constraints are satisfied. Hence, the existing index tuple
<w, I/, i/, C'> is removed and the new tuple <v, L, w, C'> is added. For
case 7 and case 8, I/ C L and C > (', both minimality of label sets and
Dijkstra’s relaxation property constraints are satisfied. Hence, the existing
index tuple <v, L/, it/, C'> is retained and the new tuple <wv, L, v, C'> is
not added.

The proposed Algorithm 3 describes landmark path index construction
by including implicit paths for the edge-labeled weighted directed graph.
Landmark vertices (V, C V) are obtained by sorting vertices in decreasing
order of their total degree and selecting the first ‘k’ vertices from the sorted
vertices. Algorithm 3 first generates Implicit Path Landmark index (IPL)
for landmark vertices by invoking call to ImplPathperLV() for each land-
mark vertex. Next, ImplPathIndNV() procedure is invoked that generates
Path Non-Landmark index (PNL).

For each landmark vertex v, its descendent vertices are traversed and

pushed into a priority queue . In priority queue, vertices are prioritized

52

3.5 Extended Proposed Technique by including Implicit Paths

based on increasing path length from the vertex v,. Each descendant ver-
tex (v), its label (L), intermediate path (iv) and total path weight (wt)
are stored as tuple <w, L, i, wt> in IPL[vs] through AddIPath() in the
algorithm. IPL is the path landmark index which stores the tuples in a list
for each landmark vertex. AddIPath() adds the tuples by considering min-
imality of labelsets and Dijkstra’s relaxation property constraints as shown
in Table B.6

If v, encounters an already indexed descendant vertex ¢/, all the tuples of
v are joined to v, using ImplExpand(). The reachable paths with interme-
diate path length less than or equal to half of the diameter of the graph are
enqueued. For instance, in Table , for vertex 0 of graph G’ (Fig. ,

IPL[0] stores the reachable vertices with their path information.

ImplPathIndNV() stores upto ‘b’ reachable landmark vertices for each
non-landmark vertex in Algorithm 3. In ImplPathIndNV(), for each non-
landmark vertex w,, its descendent vertices are pushed into the priority
queue. If dequeued vertex ¢ is a landmark vertex, the vertex (¢), its
label (L), intermediate path (iv) and total pathweight (wt) are stored as
tuple < ¢/, L, i, wt> in PNL[uv,] by invoking AddIPath(). If ¢/ is already
indexed, its tuples are joined and stored in PNL|v,] using ImplExpandNM().
In ImplExpandNM(), if vertex passed is non-landmark vertex, PNL|[¢/] is
used, otherwise IPL[v/] is used to join the tuples. Thus, upto ‘b’ reachable
landmark vertices are stored in PNL for each non-landmark vertex. For
instance, for non-landmark vertex 8 of graph G, PNL[8] in Table shows

its reachable landmark vertices 4 and 7 and their path information.

3.5.2 Query processing algorithm by including im-
plicit paths

During query processing, the first step is to check if the source vertex is a

landmark vertex or not. The proposed Algorithm 4(BImplPath) describes

93

3.5 Extended Proposed Technique by including Implicit Paths

the query processing of BLCRP query q(s, t, L, mazxcost) through im-
plicit path indexing. If ‘s’ is a landmark vertex, QPathLM() is invoked.
QPathLM() uses IPL[s| to find the target vertex. If the target vertex
is reached and the given constraints are satisfied, then the corresponding
paths are added to p. For instance, consider BLCRP query ¢(0, 7, 5, 180)
of Fig. the resultant path {0, 5, 6, 7} is returned using IPL[0] through
QPathLM() of Algorithm 4.

If source vertex is non-landmark vertex and target vertex is landmark
vertex, the target vertex can be reached through PNL. If target vertex is
non-landmark vertex, source vertex may reach the target vertex through an
intermediate landmark vertex by invoking QMark(). For instance, BLCRP
query ¢(8, 10, 4, 60) of Fig. returns the resultant path {8, 7, 10}
through PNL[8] and IPL[7]. The descendant vertices are traversed till tar-
get vertex is reached satisfying the label constraints. If an intermediate
landmark vertex is reached, its reachable vertices are checked for the target

vertex using QMark().

3.5.3 Correctness proof

Lemma 1: Let G(V, E, L, w) be a graph and k € N. Let {IPL[v;]} icpy
be index constructed by LWPathIndexImplicit(G) where vy, vy, vs,..v are
landmark vertices. Then, for every i € [1, kJ, IPL[v;] is sound but not
complete.

Proof: The paths indexed in IPL[y;] are valid from v; to any reachable
vertex v as we traverse through the descendant vertices of v;. IPL[v;] is
not complete as we consider indexing only those paths whose intermediate
path length is less than or equal to half of the diameter of the graph. We
include the labels by union of labels along the path. We also include the
intermediate vertices and path weight for each record in the path index.
Thus, all possible reachable vertices are traversed and indexed with their

path information. Hence, we can say that IPL[v;] is sound.

o4

3.5 Extended Proposed Technique by including Implicit Paths

Algorithm 4: BlmplPath

Input : s, t, L, maxcost
Output: Bounded Paths p[i], i€[1, maxp] where maxp is maximum number of
paths allowed
if se Vi then
p[i]=QPathLM (s, t, L, maxcost)
| return p
for (v, PL', int/, C') € PNL[s] do
if (PL' C L and (v=1t))// when target vertex is a landmark vertex
then

if C(s~v)<mazcost then
| Insert s~v to p;break

if (PL' C L and QMark (v, t, L, marked, mazcost)=true) then
L Insert s~v~p; into p // p; is path from v to t through QMark()

Enqueue s

while ¢ is not empty do

Dequeue vertex v

if (v=t) then

p/ <+ s~t

if (pcost(p') < mazcost) then
| Add path p’ to p;break

if (v e Vi and QMark (v, t, L, marked, mazcost)=true) then
p’ < s~v~p;
// pi; is intermediate path from QMark()
if (pcost(p') < mazcost) then
| Add path p’ to p

for (w, PL') € outneighbors(v) do
if (marked(w)=false and PL' C L) then
| Enqueue w

if (p is not empty & pcost(p[i])<mazcost, p[i] € p) then
| return p
procedure QPathLM (s, t, PL, bound)
for ((u, PL', «/, wt') in IPL[s]) do
if (u=t) & (PL' C PL) then
pli] =s ~iv/ ~ t
if (wt' < bound) then
| Add pl[i] to p

procedure QMark (s, t, PL, marked, bound)
if (QPathLM (s, t, PL, bound)=true) then
L return true
for (S, PL') € transL[s] do
L if (PL' C PL) then

L marked= S’ U marked

return false

95

3.5 Extended Proposed Technique by including Implicit Paths

Lemma 2: Let G(V, E, L, w) be a graph and k € N. Let { PNL[v;]} iclit1,n]
be index constructed by LWPathIndexImplicit(G) where vgi1, Vgia, ..V, are
non-landmark vertices. Then, for every i € [k+1, n/, PNL[v;] is sound.

Proof: For each non-landmark vertex v;, its descendant vertices are tra-
versed by invoking ImplicitPathIndNV(). Only landmark vertices are added
to PNL[v;]. It is not complete because upto ‘b’ landmark reachable vertices
are only indexed. Thus, every reachable landmark vertex and its path in-

formation is included in PNL[;] upto ‘b’ records. Hence, PNL[v;] is sound.

Theorem 3.1. Bounded path for LCR query, g=(s, t, L, 0) is a true query
if BImplPath(s, t, L, §) using the path index from LWPathIndexImplicit

algorithm returns atleast one bounded path.

Proof: We can prove the above theorem in the following cases:

Case 1: If s is a landmark vertex, BlmplPath(s, ¢, L, §) invokes call to
QPathLM() which finds the target vertex information from IPL[s] in the
algorithm and returns the resultant path if it is within the bound(J).
Case 2: If s is not landmark vertex, its reachable landmark vertices are
traversed through PNL[s]. From each of the landmark vertex, v, reachable
vertices are checked for target vertex through IPL[y;] in QMark() procedure.
Thus, the query returns the resultant bounded path when target vertex is
reached.

Case 3: If s is not landmark vertex, and the target vertex ¢ is not reached
through PNL[s], then breadth first traversal of s is carried out till landmark
vertex or target vertex is reached. If an intermediate landmark vertex (v;)
is reached, the existence of target vertex is checked in IPL[y]. If target

vertex is reached, the query returns the resultant bounded path.

If no paths are found from all the above cases, then BlmplPath() for the

query ¢ returns zero paths.

3.5.4 Time complexity

To compute time complexity of LWPathIndexImplicit algorithm, it involves

computing time complexity for the following significant steps:

o6

3.6 Experimental Evaluation

Algorithm 3 invokes call to ImplPathperLV() k times. It takes O(kz)
time where z is time complexity of ImplPathperLV ().

It takes O((n-k)y) time where y is the time complexity of ImplPathIndNV ().

It takes atmost 2/X labels for each landmark vertex in the worst case

where |L| denotes the total number of labels in T;. Each push into
priority queue requires O(logn) time. Thus, for all landmark vertices,
the time complexity is O(x)=0(n*(logn+2!L1)).

It requires atmost 2!/ time to store all possible labels in transL.

ImplicitPathIndNV() method has O((n*(logn+b)-+m)2/*!) time complex-

ity because upto ‘b’ landmark vertices are considered.

Thus, the total time complexity is O(k((n(logn+21)4+m)*2/L1))+O((n-k)
(n(logn+b)4+m)*2!L1). The query processing time complexity is computed
through following steps:

e QPathLM() of BImplPath algorithm requires O(2/*!4-logn) as finding any
specific w in IPL needs O(logn) time.

e QMark() requires worst case running time of QPathLM() and setting n
bits as marked for atmost 2/*! labels. Thus, the worst case running
time of QMark() is O(n+2#).

e The remaining graph exploration part of Algorithm 4 takes atmost O(n+m)

time.

Thus, the total query processing requires O(m-+k(2/4/4n)) time.

3.6 Experimental Evaluation

We conducted experiments on real and synthetic data sets shown in Table
B.7 The following subsection describes the datasets. While constructing
landmark path index, we considered k=[y/n| and =20 based on the pa-
rameter values set in [79] for the proposed approaches. Fig. ﬂ shows

o7

3.6 Experimental Evaluation

the resultant index path construction size and Fig. [3.6] shows the index
construction time for the datasets described in Table respectively. We
observe that our proposed approach (LM3) has a faster index construc-
tion time and lesser index size than LM2 [20)], which is because we do not

consider the minimality of label sets for all the cases.

Table (3.7) Dataset repository

S.No. Dataset n m |T;| real/synthetic
1 Robots[1] 1724 3596 4 real
2 Erdos-Renyi Graph[53] 987 2000 8 synthetic
3 Preferential-Attachment graph[53] 1000 1997 8 synthetic

1600

1 ° o Robots
4 E-Rgraph
P-A graph

IndexSize(KB)
1200 1400
1

1000
1

800
I

LM2 LM3

Proposed Techniques

Figure (3.5) Landmark path index construction size for the proposed LM2 and
LM3 techniques

3.6.1 Dataset description

We describe the significance and generation of the real and synthetic datasets
of Table . The edge weights are assigned values from {10, 20, 30, 40, 50,
60, 70, 80, 90, 100, 110, 120} randomly to all datasets described in Table
B.7

o8

3.6 Experimental Evaluation

o Robots
4 E-R graph
P-A graph

15000
I

10000
1

IndexTime(s)

5000
1

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Proposed Techniques

Figure (3.6) Landmark path index construction time for the proposed LM2 and
LM3 techniques

3.6.1.1 Erdos-Renyi Graph

Erdos-Renyi (E-R) graphs are the basic random graphs [13] with near uni-
form degree distribution. E-R graph is generated using SNAP [53] with
possible edges for each vertex set to 2 and n=1000. We assign 8 labels are
randomly to the edges.

3.6.1.2 Preferential-Attachment Graph

Preferential-attachment (P-A) graphs are synthetic graphs with the prop-
erty that vertices with higher degree are more likely to have edges to be
added in the future. These graphs have skewed degree distribution. P-A
Graphs are scale-free networks [I3] and hence, mimic the real world net-
works. P-A graph is generated using SNAP [53] with n=1000 and m=2000.
The 8 labels are randomly distributed to the edges.

3.6.1.3 Robots

Robots is a real trust network [I] with 4 edge labels; M-master, A-apprentice,
Journeyer-J and Observer-O. The edge labels denote the level of trust in-

teraction between the users.

99

3.6 Experimental Evaluation

3.6.2 Query generation and evaluation

We generated 100 true queries and 100 false queries based on BFS query
generation [79] with random path weights and tested with different labels for
different datasets. For synthetic datasets, we generated queries with labels,
|L|=4, 6 out of the total eight labels, and for Robots dataset, we generated
queries with |L|=2, 3 out of the 4 labels. During query generation, we
randomly generated the bound for all queries with their values in range
[10*diameter, 120*diameter]. We have considered this range for bound, as

paths, in general, have path length near to the diameter of the graph.

§) T f\. Eoémts :
] -R grap
) + P-Agraph —_—
o
(=]
D —
(]
w @
o
E
= o
% 9 -
= (]
=
(o]
D —
g _|_
T &
l |
Degree EigenVector
Criteria

Figure (3.7) Landmark path index construction time for the proposed LM2
technique with degree vs eigenvector centrality

Figure [3.7] shows the index construction time and figure |3.8] shows the
index construction size of the proposed LM2 technique using degree vs

eigenvector centrality for selection of landmark vertices. Figure |3.9| shows

60

3.6 Experimental Evaluation

+ 2 Robots
4 E-R graph
+ P-A graph
w |
(o]
2
= T
T _—,
n o
b
w
o
=
w |
L] [}
T T
Degree EigenVector
Criteria

Figure (3.8) Landmark path index construction size for the proposed LM2 tech-
nique with degree vs eigenvector centrality

the index construction time and figure [3.10| shows the index construction
size of the proposed LM3 technique using degree vs eigenvector centrality
for selection of landmark vertices. From these, we observe that using eigen
vector centrality measure, the index was constructed relatively faster and

occupied lesser space.

Table |3.8|shows the average query execution time and false negative ratio
of BLCRP queries for the proposed technique using degree and eigen vector
centrality. From this table, we observe that by using degree, the average
query execution time is relatively lesser for almost all the datasets. Hence,
it shows that using degree for landmark selection is better than using eigen
vector centrality, although index construction size and time may be lesser.
The false negative ratios are due to the inclusion of the condition path

length< (.5*diameter) of the graph in the proposed landmark path index.

61

3.6 Experimental Evaluation

© Robots
4 E-R graph
P-A graph

14000
!

IndexTime(seconds)
6000 8000 10000 12000
| | 1

4000

2000

Degree EigenVecior

Criteria

Figure (3.9) Landmark path index construction time for the proposed LM3
technique with degree vs eigenvector centrality

It is found to be considerably small.

We computed accuracy measures of Precision and Recall for the proposed
landmark based path indexing algorithms. We computed precision based on
equation by checking if the resultant retrieved paths are present in the
graph and if they satisfy the given label constraints and bounded weights.

Numbero fretrievedpaths

Precision = (3.1)

Numbero fretrievedandrelevantpaths

Recall is computed based on equation considering minimality of label
sets and Dijkstra’s relaxation property based on Table for the LM3

approach to find whether all possible relevant paths are retrieved from the

62

3.6 Experimental Evaluation

o © Robots
4 E-R graph
P-A graph

25
1

2.0

IndexSize(MB)

1.6

Degree EigenVecior

Criteria

Figure (3.10) Landmark path index construction size for the proposed LM3
technique with degree vs eigenvector centrality

given graph. The total number of possible paths is computed based on DFS

satisfying the given label constraints and bound constraints.

Numbero fretrievedpaths

Recall = (3.2)

Total Numbero frelevantpaths

The precision percentage is computed on the real and synthetic datasets
for proposed Landmark based path indexing technique (LM3) and found
to be 100% for all the datasets. The recall percentage is computed for
verification and is found to be between 16% and 100% for Landmark based
path indexing technique tested on real and synthetic benchmark datasets
for the true queries. Table|3.9|shows the minimum, maximum, and average
recall computed for 100 true queries on different datasets which reveals

that landmark based path indexing computes bounded label constrained

63

3.6 Experimental Evaluation

reachable paths efficiently.

Table (3.8) Average query execution time and the false negative ratio() of true
queries(tq) and average query execution time of false queries(fq) in milli seconds

using degree(D) and eigen vector centrality(EV) as criteria with the number of
labels, nl for LM3

Dataset nl tq(D) tq(EV) 7 (D) 7 (EV) fq(D) fq(EV)

Robots 2 .0433 .0452 072 072 0113 .0116
3 .038 .0344 .063 063 .0118 .0124
E-R graph 4 .0008 .0985 .0858 .0858 .0135 .0135
6 .0379 .0442 205 .06 .06 .0168
P-A graph 4 .0967 .0837 .08 .08 0252 .0185
6 .0755 .0942 078 078 .0165 .0168

We evaluate the efficiency of our proposed approach (LM3) by statistical
analysis of recall. Paired t-test is used to find the statistical significance of
LM3 over LM2. The sample data values need to be in the normal distri-
bution to use the paired t-test. Also, the sample size must be at least 30
for non-normal data [7I]. We have tested recall values for 100 random true
queries with |L|=4 for synthetic datasets and |L|=2 for real dataset to find
the statistical significance of LM3 compared to LM2.

The following are the parameters set and formulas used to compute paired
t-test [71] :
The null hypothesis is set to difference of recall values to 0.
a=0.05.
Number of samples, n=100
The t-statistic is computed using t=%/SD/\/n where T is the average and
SD is the standard deviation of differences(x) respectively.
The probabilistic value p is calculated using statistical function tdist() as
p=tdist(t,df,1) where df is the degrees of freedom (df=n-1).

64

3.7 Conclusions

Table (3.9) Recall analysis of the proposed approach (LM3)

.No. Dataset |L| Min. recall Max. recall Average Recall
1 Erdos-Renyi Graph 4 0.3 1 0.8097
2 Preferential -Attachment Graph 4 0.1666 1 0.5673
3 Robots 2 0.1666 1 0.59385

Table (3.10) Statistical analysis of recall between LM3 and LM2

S.No. Dataset |L| t-statistic p value
1 Erdos-Renyi Graph 4 4.328 0.00001
2 Preferential -Attachment Graph 4 7.228 0.000005
3 Robots 2 3.155 0.001076

Table [3.10] shows that our proposed approach is statistically significant
than previous approach with respect to recall for real and synthetic datasets.
Between two groups, if p<0.05, they are statistically significant. If p<0.01,
then they are statistically highly significant. If p<<0.001, then they are
statistically extremely significant. From Table [3.10, we observe that LM3
is statistically significant than LM2.

3.7 Conclusions

We proposed an efficient solution to the problem of finding BLCRP by ex-
tending the landmark based indexing and query processing. We find the
reachable paths that satisfy given label constraints and bounded by weight.

Y

Landmark vertices are selected by choosing top ‘k’ vertices based on the
descending order of the total degree of vertices. For each landmark ver-
tex, all reachable paths and their path information are stored in the path
landmark index. We also addressed the specific cases by including implicit
paths. While computing reachable paths, the implicit paths that may sat-
isfy the edge label constraints but do not consider the minimality of label
sets and Dijkstra’s relaxation properties are also included. The bounded
path based LCR query is processed by using IPL and PNL indices to get

the resultant paths. We evaluated accuracy of our proposed techniques by

65

3.7 Conclusions

using precision and recall measures on the resultant paths. We observed

that our approach is statistically significant on synthetic and real datasets.

66

Chapter 4

Multidimensional Constraint

Reachable Paths for
Attributed Graphs

In big data era, a graph can be rendered as a significant modeling tool to rep-
resent complex relationships between the objects. In real time, these objects
or vertices of the graph have multiple attributes and different relationships
between them. The problem of multidimensional constraint reachable paths
is to find the path between the given vertices that match the user specified
multidimensional vertex and edge constraints. An important challenge is
to store the graph topology and attribute information while constructing
reachability index. We proposed hashing based heuristic search technique to
solve the multidimensional constraint reachability queries. In this chapter,
we experimented our proposed techniques and evaluated their performance
on real and synthetic datasets. This chapter publication is communicated
and listed below. Section 1] introduces the multidimensional constraint
reachability queries and summarizes main findings and contributions of
this chapter. Section describes the terminologies and problem state-

ment. In section 4.3 we describe the literature on attributed graphs, the

Bhargavi B., and K. Swarupa Rani, and Arunjyothi Neog, “Finding Multidimensional Con-
straint Reachable Paths for Attributed Graphs”, Communicated to Applied Intelligence,
Springer, 2020.

67

4.1 Introduction

constrained reachability techniques and attributed graph clustering tech-
niques. Section [.4] and section [£.5] describe our proposed approaches with
illustrations. Section describes the experiments and evaluation of our

proposed techniques.

4.1 Introduction

Graph mining is the process of extracting useful knowledge from the graphs.
Here, the data is represented in the form of graphs. Some of the impor-
tant operations of graph mining include extracting subgraphs, finding the
reachability satisfying the given constraints and detecting the communities

in graph.

Graph reachability is one of the basic operations that finds the existence
of paths between the vertices of the given graph. But, in real time, there
are queries which require certain constraints to be satisfied while finding
the reachability of the graph. The constraints are usually the conditions
on vertex attributes or edge attributes or both. For instance, in social net-
works, the vertex denotes the unique identifier assigned to a person, vertex
attributes can be the name of a person and organization of the user. The
edge attributes include relationships like friendOf, colleagueOf or superuvi-
sorOf. For example, the constraint reachability query is to find if Bob and

Adam are from same organization and are colleagues in the organization.

An attributed graph is a graph that stores attribute information of ver-
tices and edges. This attributed graph acts as an efficient modeling tool to
represent information networks [88] [81]. Figure[d.1]illustrates an attributed
graph. It includes different vertices of type paper, conference, author and
affiliation and its vertex attributes are location, keyword, age and state.
The edge attributes constitute labels such as published, authorOf, affiliat-
edTo, citedBy, knows and supervisorOf. Other edge attributes include Vol,

Issue, Order and StudentOf. For instance, consider the vertex with label

68

4.1 Introduction

State: Uttarkhand
Location:Dehradun
Vol: 1
eq | Issue: 1

Jadavpur HCU IBM

University
State: Telangana State: Karnataka
Location: Hyderabad Location: Bangalore

Figure (4.1) Example of an attributed graph

State: West Bengal
Location: Kolkata

Paperi. Tts attributes include keyword whose value is graph. Similarly, the
domain of vertex attribute age is numerical values. The domain of vertex
attributes location, keyword and state are categorical values. The domain
of edge attributes Vol, Issue and Order are numerical values. The domain
of edge attribute StudentOf is boolean value, i.e. True (T) or False (F).

A multidimensional constraint reachability query finds the existence of a
path from the source vertex to the destination vertex satisfying the given
attribute constraints. For instance, for the given attributed graph G of
Figure the query is to find if there is a path from Raju to Waheed whose
Age is 38 through edge labels knows. The vertex constraint is Age=38 and
the edge constraint is knows. From the figure, there exists a path between

Raju and Waheed satisfying the given constraints.

One of the challenges of the constraint reachability is that we need to
store both graph topology and attribute information while indexing the
reachability. Another challenge is that there is no prior information of con-
straints before query processing. This problem is applicable for many real-
time information networks like social networks, transportation networks

and metabolic networks. These observations motivate us to find a faster

69

4.1 Introduction

and efficient solution to solve the problem of multidimensional constraint

reachability queries.

Duncan Yung et al. [88] developed a constraint verification approach
to solve the multidimensional constraint reachability queries. They also
implemented a heuristic search technique that offered direct passage across
graph regions which are likely to satisfy attribute constraints from source
to destination. The heuristic search involved the construction of a super
graph. They used clustering based on BFS by choosing a random subset of

vertices and their traversal forming clusters.

We observed from the state-of-the-art literature [88] that we can fur-
ther optimize the hashing through Murmur hash function which has least
collision. We also observed that there is a need to identify an efficient
clustering technique that considers both graph topology and attributes in-
formation while clustering. Furthermore, we observed that there is a scope

of extending the problem of MCR queries by finding the resultant paths.

We enhanced the heuristic search [8§] by using optimized hashing to han-
dle multidimensional attributes and proposed an efficient clustering tech-
nique based on matrix factorization to detect the clusters for efficient su-
pergraph construction. In addition, we extended the MCR queries problem

by finding the resultant paths.

Our proposed solution is based on heuristic search that considers both
graph topology and attribute information while creating super graph for
the given attributed graph. Thus, we can solve the constraint reachability

queries faster for even large attributed graphs.

4.1.1 Assumptions

The assumptions in this chapter include

70

4.1 Introduction

(a) We assume that the vertex attribute values and edge attribute values

are single and discrete. We also assume that all vertices are of same
type.

(b) We assume that if reachability exists, it is found along the super path
of the super graph.

4.1.2 Findings

The main findings of this chapter include

e We find that the hashing used in [88] can be optimized as there is least
chance of hash collision. We adopted the hashing [88] and optimized
the usage of hashing during index retrieval in our proposed hashing

based BF'S search technique.

e We find that heuristic search developed by Yung et al. [88] had vague
description of computation of probability cost for super vertices based
on attributes. They have used random clustering based on BFS for
constructing supergraph which does not consider graph topology and
attributes information while clustering. Besides, we observed that the

technique had a limitation of possible false negative outcomes.

4.1.3 Contributions

The main contributions in this chapter include

e To overcome the limitations, we performed comprehensive literature
survey on recent structural and attributed graph clustering techniques
[37], [92], [83], [84], [65], [12], [85]. We identified an efficient structural
and attributed graph clustering technique [37] which is based on ma-
trix factorization and applied during super graph construction to solve

multidimensional constraint reachability queries.

e We computed the optimal number of clusters by applying gap statistic
[77] for ANCA clustering and evaluated the proposed techniques.

71

4.2 Preliminaries

Figure (4.2) A toy dataset of an email network

e We solved the multidimensional constrained reachability queries by
computing the path information instead of finding the existence of
paths [8§].

e We proposed an extended heuristic search technique to reduce the false

negative outcomes.

e We compared our proposed techniques to constrained BFS and heuris-
tic search with naive clustering [8§] to solve multidimensional con-

straint reachability queries on real and synthetic datasets.

e We evaluated the accuracy of our proposed techniques using false neg-

ative ratio and tested the scalability for large graphs.

4.2 Preliminaries

Definition 1.(Attributed Graph) “An attributed graph, G, is a graph
denoted as G=(V, E, V,, E,), where V is a set of vertices, E C V x V
s a set of edges, V, is a set of vertex-specific attributes and E, is a set of

edge-specific attributes”[81].

Let Vo = (Va1, Vg, ..., Vau) is a set of z vertex-specific attributes. For
each vertex p € V, there exists a multidimensional tuple V,(p) denoted as
Va(p) = (Var(p), Va2(p), ooy Vaz(p)). Let Eg=(Eq1, Eaz, ..., Eq) is a set of
r edge-specific attributes. There is a multidimensional tuple E,(q) denoted

as Eq(q)= (Eq1(q), Ea2(q), -, Ear(q)) for every edge q € E.

72

4.2 Preliminaries

For instance, let us consider the attributed graph for an email network as
shown in figure[f.2] Let the vertex attributes be Country and IncomeGroup.
The domain of attribute Country is {India (I), United Kingdom (U)} and
the attribute IncomeGroup is {High (H), Medium (M), Low (L)}. The
domain of edge attribute for communication content is {XML (zml), Sky-
line(skyl)}. Thus, for vertex ‘a’; Veountry(@)=I1 and VincomeGroup(a)=H.

Similarly, the edge attribute between vertices ‘a” and ‘c” is xml.

Table shows the different notations used in this chapter with their

description.

Table (4.1) Notations

Notation Description
V. Set of vertex attributes
V.(p) Set of vertex attributes values for vertex p
E, Set of edge attributes
E.(q) Set of edge attributes values for edge ¢
Ccv, Constraints on Vertex attribute values
CE, Constraints on Edge attribute values
G(V, E, V., E,) Attributed graph
Gg Super graph
SV Super Vertex
SE Super Edge
SP Super Path

4.2.1 Problem statement

Definition 2. (Multidimensional Constraint Reachability) “Given
an attributed graph G, a source vertex s, a destination vertex ¢, vertex
constraint C'V,, and edge constraint CF,, the multidimensional constraint
reachability query on attributed graph verifies whether s can reach ¢ under
vertex and edge constraint C'V,, CE,” [8§].

73

4.3 Related Work

In this thesis, we use MCR query in short, to denote the term Multidimensional
Constraint Reachability query. We define Multidimensional Constraint
Reachable path (or MCR path) as the resultant path from the given source
vertex to the destination vertex while satisfying the vertex and/or edge

attribute constraints.

Let us consider the MCR query q1(‘a’, ’, ‘I:H’, ‘eml’), for the attributed
graph of Fig. The given MCR, query ¢ returns true as the source
vertex ‘a’ can reach the destination vertex ‘j’ via vertex ‘c’ while satisfying
the given vertex constraints ‘I:H” and edge constraint ‘xml’. Thus, the MCR
path is {‘a’, ‘¢’, ‘j’ }. Consider another instance of MCR query ¢2(‘b’, ‘c’,
‘I:M’°, ‘eml’). The MCR query ¢2 returns no path as the source vertex ‘b’

cannot reach ‘c’ as well as the given constraints are not satisfied.

The objective of our research is not only to find the resultant paths for
MCR queries faster but also to propose a scalable solution based on cluster-
ing for large attributed graphs. We observed that we can optimize hashing
for faster hash generation and constraint verification. We identified that
there is need to find an efficient graph clustering algorithm that consid-
ers both graph topology and attributes while clustering. Thus, we solve
MCR queries by optimizing hashing and proposing the efficient clustering
technique in our proposed approaches described in section [£.4] and section

2851

4.3 Related Work

In this section, we describe the survey related to constraint reachability
techniques, attributed graph clustering techniques and we derived impor-

tant observations to solve efficiently and effectively.

74

4.3 Related Work

4.3.1 Constraint reachability techniques

Many graph reachability techniques are developed in literature which in-
clude 2-hop [28], 3-hop [47], Dual labeling [8(] and Path-Tree cover [9]. But,
these indices do not include attribute information. Hence, the reachability
techniques cannot be applied directly to solve the constraint reachability

queries.

Ruoming Jin et al. [45] introduced formally the problem of Label Con-
straint Reachability (LCR) query which is a special case of attribute con-
straint reachability queries. They developed spanning tree based solution
to solve LCR queries. With this cited state-of-the-art, we further performed
extensive survey about different types of constraint reachability queries and
techniques in chapter 3. Besides, we developed landmark index based path
indexing and query processing technique [20] to find bounded paths for LCR
queries in case of edge labeled weighted directed graphs.

An attributed graph acts as a modeling tool to represent information
networks [88] [81]. Sakr et al. [68] developed G-SPARQL, a query execution
engine with the defined algebraic operators on the graph by using join
operations to find the reachability for large attributed graphs. They have
designed a model that stored the topology of the graph in main memory
and accessed the attributes of the graph from the secondary memory. The
attributes from the secondary memory are stored in fully decomposed model
which includes unique table for storing the unique vertex attributes and edge
attributes in separate tables. Graph pattern matching queries are mainly
solved by SPARQL-based systems.

We observed that Yung et al. [8§] developed hashing based index instead
of fully decomposed model [68] to store vertex attributes or edge attributes
for attributed graphs. The hashing based index involves assigning unique

hash index for group of vertex attributes or edge attributes. The attributes

75

4.3 Related Work

and the corresponding hash values are stored in secondary storage. They
have also designed BFS based heuristic search using random clustering to

solve the multidimensional constraint reachability queries.

4.3.2 Attributed graph clustering techniques

Zhou et al. [92] designed Structure and Attribute (SA-Cluster) cluster-
ing which is one of the prominent attributed graph clustering technique
based on random walks over augmented attributed graph. SA clustering is
limited to small networks with few attribute values. Xu et al. [84] devel-
oped Bayesian model based approach to cluster attributed graphs. But, we

observed that this approach is slow and not scalable.

Z.Wu et al. [83] developed Structure and Attributes using Global struc-
ture and Local neighborhood features (SAGL) clustering algorithm. SAGL
clustering considers both global importance of the vertex and local neigh-
bours structure while assigning weights to different topological links. SAGL
clustering technique is faster than SA clustering as the former technique
doesn’t increase the size of attributed graph, yet uses both global impor-
tance of the vertex and attribute information to find clusters. We have
observed that though SAGL clustering [83] is faster technique than SA clus-
tering to find the clusters in an attributed graph, it relies on SA clustering

to find the attribute similarity between the vertices.

Issam Falih et al. [37] developed Attributed Network Clustering (ANCA)
algorithm that is based on matrix factorization of both graph topology and
vertex attributes. Falih et al. [37] observed that social networks are dense
and hence require high attribute similarity factor whereas road networks
need a balanced attribute similarity and topological similarity metric while
computing vertex similarity. Topological distance metric can be categorized
into neighborhood based metric and path based metric. Based on type

of attribute data (categorical/numerical/binary), the attribute similarity

76

4.4 Proposed Approach: Heuristic search using Hashing and Matrix
Factorization

measure can be the euclidean distance computed between the pair of vertices
[33].

Falih et al. [37] developed ANCA clustering algorithm by considering
shortest path metric for topological measure and Euclidean distance for at-
tribute similarity. Then, matrix factorization is applied on both topological
and attribute similarity measures. Finally, they use k-means clustering on

the resultant matrix to form k clusters.

Guo Qi et al. [65] used matrix factorization based technique on edge con-
tent to detect communities. Yang et al. [85] developed non-negative matrix
factorization based model to identify disjoint or overlapping communities
at large scale. Amin et al. [12] developed matrix factorization and gradi-
ent descent based technique to identify polarization and clusters in social

networks specifically Twitter.

From the literature, we observed that Yung et al. [8§], [89] used a prob-
ability cost metric by sampling attributes for each super vertex that is
vaguely mentioned. Besides, we observed that matrix factorization is a
standard technique that has scope to find similarity by considering graph
topology as well as vertex /edge attributes. Hence, we apply matrix factor-
ization in supergraph construction without the probability cost metric and
develop a heuristic based BFS search to solve the problem of MCR using
hashing.

4.4 Proposed Approach: Heuristic search us-
ing Hashing and Matrix Factorization
In this section, we describe our proposed technique to solve the problem

of MCR queries. We adopt the hashing and heuristic search developed

by Yung et al. [88] to solve the multidimensional constraint reachability

7

4.4 Proposed Approach: Heuristic search using Hashing and Matrix
Factorization

queries. First, we perform pre-processing which includes hashing the ver-
tex attributes or edge attributes and construction of supergraph based on
attributed graph clustering [37]. We observed that Yung et al. [89] used a
probability cost metric by sampling attributes for each super vertex which
is vaguely mentioned. We identified an efficient attributed graph clustering
algorithm [37] which is based on matrix factorization. We use the clustering

algorithm [37] to construct the super graph.

In our proposed approach, we use the supergraph without considering
any probability cost metric. We optimize the usage of hash index and use
the graph clustering based supergraph to implement our proposed heuris-
tic based BFS approach and efficiently solve multidimensional constraint

reachability queries.

4.4.1 Hashing based index

During pre-processing, first, we construct an attribute hash index by col-
lating attribute values of every vertex into a single string s,. Every unique
s, is compressed to a hash value and stored in primary storage for an-
swering queries. This hash value is mapped to its vertex. For instance,
consider vertex attribute values of vertex ‘b’ in figure ie., Vo(b)={L,
H}. The resultant hash value computed for collated attribute values “I, H”
is 2555692664 as shown in Table [£.2] Similarly, for every vertex and edge,
the corresponding hash values for the attribute values are computed and

stored in primary memory.

Secondly, the hash value for the given vertex/edge attribute constraints
of the given query is computed. This hash value is verified against stored
hash values in primary memory withot approaching the secondary storage.

Hence, it leads to faster query procesing.

Algorithm 5 describes hash index construction of vertex attributes for an

attributed graph. First, it gets attribute set aio, of vertex u, from secondary

78

4.4 Proposed Approach: Heuristic search using Hashing and Matrix
Factorization

Algorithm 5: HashIndexConstruct

Input : Attributed graph G
Output: Hash Index, hind
procedure HashIn(G,hInd)
for all w e G do

h < GetHashAttr(u, G)
aio < AttrIO(u, G)

if hashaddr(h)=NULL then
L Generate addr from hInd and aio

Set count=1
hashaddr[h]|=addr

else Append aio to addr in hind and update count of the hash value
| hashaddr[h|=addr

memory. Then it checks whether its hash value A is already present in Alnd.
If it is NULL, then the new hash value of u, corresponding set of attribute
and count is stored in hlnd. If hash value is already present in hind, then the
new set of attributes are appended to the already present set and count is
incremented by one. A non-cryptographic hash function like Murmur hash
function [2] is used to generate hash values for attributes. Murmur hash
function has no hash collision. During heuristic search, the constraints
of vertex in hlnd are verified with the constraints given by the user by
retrieving the hash of constraints and comparing with the hash values stored
in primary memory. This reduces the need to access secondary memory for

multidimensional attributes verification.

For instance, let us consider the attributed graph of Fig. .2 Table
shows the computed hash values for vertex attribute combinations of Fig.
4.2l The count variable with value one indicates the assignment of unique
hash value to each combination. The hash value is mapped to every vertex
corresponding to its attribute values’ combination and stored in primary

memory as array.

79

4.4 Proposed Approach: Heuristic search using Hashing and Matrix
Factorization

Table (4.2) Hash Index

vattrHash attr | count
1071913501 | U, M 1
1139838478 | I, L 1
2555692664 | I, H 1
2608081465 | U, H 1
29059796901 | I, M 1

4.4.2 Super graph construction

We divide the graph based on clustering and construct a structure called

super graph.

Definition 3. (Super Graph): A Super graph Gy is a directed graph
constructed by computing super vertices and super edges for the given at-
tributed graph G.

Definition 4. (Super Vertex): A super vertex, SV;, is a vertex in G
such that every vertex p of G belongs to only one super vertex SV;. Thus,
VpeVin G, pe SV, p €SV;, ifi# j where SV;, SV, € G.
Definition 5. (Super Edge): A super edge SE;;, is a directed edge in G;
formed between the super vertices SV; and SV;. This edge is formed only
when, for any pair of vertices (p, q) € G such that p € SV, and q € SV},
there exists an edge between p and . Thus, if there exists an edge e(p, q)
€ Ein G, p € SV;, q € SV, and i # j then 3 SE;; (SV;, SV;) € G.
Definition 6. (Super Path): A super path, SP;, is a simple path in G
formed by sequence of super vertices (SVy, SVs, ..., SVy) such that (SV;_,
SV;) € Gs.

For instance, Fig. [£.3|shows the super graph for fig. [1.2] Thus, the super
vertices include SVy, SV,, SV3 and SV,. The super edges are { (SVy, SV3),
(SV3, SVs), (SVs, SVy), (SVy, SVa), (SV3, SVy) }.

80

4.4 Proposed Approach: Heuristic search using Hashing and Matrix
Factorization

During super graph construction, we choose K vertices as super ver-
tices from K clusters using an efficient clustering algorithm. Algorithm 6
describes the super graph construction using clustering based on matrix
factorization adopted from [37]. We further improved [37] by applying gap-
statistic [T7] to find the optimal K value.

e In the algorithm, first the subset of vertices are identified as seeds. The
seeds are selected by considering top 15% of vertices by using centrality
measures such as highest degree, closeness centrality, page rank and
eigen vector centrality [37]. The seeds also include the outlier vertices

for coverage by considering 5% of vertices with the least centrality [37].

e Next, we compute the topological matrix for the vertices and seeds
based on shortest path distance between them. This matrix is normal-

ized and singular value decomposition is applied.

e We find the attribute similarity between the vertices by computing
euclidean distance [33] between them. The euclidean distance between

the two vertices u, v € V is given by equation {4.1]

t

d(u,0) = | > (14;(u) = A;(v))2,Vu, ve V (4.1)

j=1
e We use matrix factorization on attribute similarity between the ver-

tices.

e We join the topological similarity and attribute similarity factorized

vectors to get the decomposed matrix U and normalize it.

e Then, we apply k-means clustering on the decomposed matrix U to

get resultant K clusters.

o If there exist p € SV; and ¢ € SV such that there exists edge from p
to ¢ in G, then we add the super edge SE;; to the super graph G, as
described in the algorithm.

81

4.4 Proposed Approach: Heuristic search using Hashing and Matrix
Factorization

Algorithm 6: SuperGraphMF

Input : Attributed graph G(V, E, A), Number of clusters K

Output: Super Graph G with K Clusters

Select subset of vertices as seeds S.

Compute topological closeness between the vertices and seeds using shortest
path metric

Form topological matrix, Myopo(v,s)=SPath(v,s), Vv € V and Vs € S.

Apply singular value decomposition on Mg, to get Uiopo-

Compute attribute similarity matrix Mgy, between the vertices using Euclidean
distance based on equation [£.]

Apply matrix factorization on Mgy, to get Uggsr-

U« Utopo + Uattr

Normalize each of U’s rows defined by U;j=U;;/,/>; Ufj
Apply k-means clustering on U to get K clusters.

Construct Super graph Gg (Vg,Eg) with K vertices Vs={svy, sva,..., svg }with
each cluster considered as super vertex sv;
for each edge e(u,v) € E do

svu=findSuper Vertex(u)

svv=findSuperVertex(v)

if (svuzsvv) then

L Add edge se;=(svu, svv) to E;
i+—i+1

Illustration of super graph construction Let us consider the at-
tributed graph of Fig. 4.2] The resultant set of seeds based on the centrality
measures is { ‘a’, ‘e¢’, f’, ‘h’, “%’}. We use singular value decomposition as
described in the SuperGraphMF algorithm by considering both topological
distance and attribute similarity. Let us assume the number of clusters
K=4. We can also compute an optimal K value by applying gap statistic
[77]. The resultant clusters with K'=4 after applying k-means algorithm
are the subsets {‘a’, ‘b’, ‘¢’, i'}, { ‘¢’, ‘W’}, {‘d’, ‘¢, '} and {f’, k', ‘I'}.
These clusters are denoted by vertices as SV, SV5, SV3 and SV, respec-
tively which form the super vertices as shown in figure [£.3al We add the
super edge based on existence of edge between vertices of the clusters. For
instance, in Fig. there exists edge between vertices ‘e’ and ‘f’. The su-
per vertex of ‘e’ is SV3, while the super vertex of ‘f”is SV;. Hence, we add

the super edge (SV3, SVy). Thus, the resultant super graph is constructed

82

4.4 Proposed Approach: Heuristic search using Hashing and Matrix
Factorization

(a) Clusters (b) Super graph

Figure (4.3) Clusters and the resultant super graph

as shown in Fig. [£.3b]

4.4.3 Proposed heuristic search technique

We solve the multidimensional constraint reachability query using our pro-
posed heuristic search which is based on optimized hashing and efficient
attributed graph clustering. Algorithm 7 describes the heuristic search to
find the existence of reachability between the given vertices satisfying the
user constraints. Given the source vertex, destination vertex and vertex
constraints, the super vertex of source vertex is first identified from the su-
per graph. Then, the super vertex of destination vertex is identified. These
super vertices are checked for the existence of super path between them in
the supergraph. The super vertices of source vertex, destination vertex and
their intermediate super vertices along the super path are stored in sPath.
BFS along with sPath information finds the existence of reachability by
verifying the user given constraints through hashing (from Algorithm 5)

while finding the reachability between the vertices.

Heuristic In the proposed approach, we assume that if reachability exists,

it is found along the path sPath. By including this heuristic, we can find

33

4.4 Proposed Approach: Heuristic search using Hashing and Matrix
Factorization

Algorithm 7: HeuristicSearchMF

Input : Attributed graph G, source vertex s, destination vertex ¢, Vertex
Constraint C,, Super Graph Gs, Hash index.
Output: rp;/“No path”
Let g be queue
Enqueue (s)
superSrc«—findSuperVertex(s)
superDst<«findSuperVertex(t)
sPath <+ findPathBFS(superSrc, superDst, Gj)
while isEmpty(q) do
Dequeue v
if (visited[v] = true) then
L continue
for € v.adjList do
if (visited[/ [=true) then
L continue
superiv¢+— findSuperVertex(v')
if (superiv € sPath) then
visited[v']=true
if (CheckConstraint(v/, hind, C,, G)=true) then
L if (vV=t) then
| return rp;
Enqueue v/

| visited[v] < true

return “No path”

procedure CheckConstraint(v, HashIndex, C,)
hc—getHash(C,)

hv<getHashAttr(v,G)

if (hc#hv) then

L return false

if (getCount(HashIndex,hc)=1) then
L return true
else Attr< Get attributes from secondary storage

if (CheckAttrConstraint(Attr,C,)=true) then
L return true

84

4.5 Extended Heuristic Search

the reachability between the vertices faster as we traverse only the vertices
that belong to the super vertices of the path sPath thus minimizing the
search space. In the algorithm, we include the heuristic through finding
super path (sPath) and verifying if each super vertex of adjacent vertex
belongs to sPath.

Optimized Hashing In Algorithm 7, we optimize the hash retrieval
through CheckConstraint() procedure. In this procedure, we retrieve the
hash of given constraints and compare with the hash of vertex. If both
hash values are same, we check the count by retrieving it from hash index.
If count returned is one, we need not check the secondary storage and we

declare the two hash values are equal and return true.

Illustration For instance, consider the MCR query q¢1(‘a’, 4, ‘I:H’).
The super vertex of a is SV; and super vertex of j is SV3. Since there
exists path in the super graph from a to j, our proposed heuristic search
technique then traverses only the vertices within super vertices SV; and
SV3. The vertex constraint is combined and its hash value is computed.
While traversing, the hash value of the given vertex constraint is compared
to the existing hash value in hash index table (Table 4.2]). If the match
exists, it traverses to the next adjacent vertices until the destination vertex
(7) is reached. Thus, our proposed heuristic search technique returns the
path {‘a’, ‘¢’, ‘j’} for the MCR query q¢I.

4.5 Extended Heuristic Search

In our proposed HeuristicSearchMF algorithm, we observe that there may
exist path between two vertices that is not included in the super path of
the constructed supergraph. To overcome this problem, we have modified
our proposed approach by extending the heuristic to include those vertices

whose super vertex has destination super vertex as the adjacent vertex.

85

4.5 Extended Heuristic Search

Figure (4.4) Example for extended heuristic search technique

Algorithm ExtendedHeuristicSearchMF describes our proposed exten-
sions to the previously proposed heuristic search technique. In our pro-
posed technique, we have extended the heuristic by including those vertices
whose super vertex has destination super vertex as the adjacent vertex. For
each adjacent vertex traversed, we find its super vertex and check if it is
neighbor to the super vertex of the destination vertex. Thus, our proposed
extended heuristic search technique can find most of the missed reachable

paths resulted by using HeuristicSearchMF algorithm.

Let us consider the example of Fig. 4.4l To find the path from source
vertex ‘s’ to destination vertex ‘t¢’, we first compute the super path be-
tween the super vertices of ‘s’ and ‘¢”. The resultant super path is {SVy,
SVs, SV, SV3 }. When we execute the HeuristicSearchMF algorithm, we
cannot reach the destination vertex through the super path. But, in the
ExtendedHeuristicSearchMF algorithm, we can reach the destination ver-
tex via intermediate vertex ‘v9’ whose super vertex SV; is adjacent to the
destination super vertex SV3. Thus, the number of missed reachable paths

using extended heuristic can be effectively reduced.

86

4.5 Extended Heuristic Search

Algorithm 8: ExtendedHeuristicSearchMF

Input : Attributed graph G, source vertex s, destination vertex ¢, Vertex
Constraint C,, Super Graph Gs.
Output: rp;/“No path”
Let g be queue
Enqueue (s)
superSrc«—findSuper Vertex(s)
superDst<—findSuperVertex(t)
sPath < findPathBFS(superSrc, superDst, Gy)
while isEmpty(q) do
Dequeue v
reached<— false
if (visited[v] = true) then
L continue
for v € v.adjList do
if (visited[v/ |[=true) then
L continue
superiv¢+— findSuperVertex(v')
for v/ € v.adjList do
superiv2<— findSuperVertex(v”)
if (edgeFExists(superiv2,superDst,Gs) OR superiv2=superDst) then
L reached<«true
if ((superiv € sPath)OR reached=true) then
if (CheckConstraint(v/, Gy, C,)=true) then
if (v =t) then
| return rp;

Enqueue v/

if (reached=true) then
| break

| visited[v] < true

return “No path”

87

4.6 Experiments and Results

4.6 Experiments and Results

In this section, we describe the datasets used for experiments, the param-
eters set, the environment of experiments and the results of our proposed

techniques.

4.6.1 Experiment setup

During experimentation, for hashing, we used Murmur hash function [2].
We assume the number of super vertices (K) to be 15 based on size of
the dataset and constructed the supergraph. Besides, we also computed

optimal K value by applying gap statistic [77].

Table describes the different parameter settings used in the experi-
ments adopted from [88]. We used vertex attributes and vertex constraints
throughout our experiments. Besides, we used edge attributes and edge
constraints along with vertex constraints for real dataset. Table [£.4] shows
the different vertex attributes and edge attributes assigned to the datasets.
We generated 25 to 100 MCR true queries (whose path length is greater
than 1) for the real and synthetic datasets by randomly selecting attribute
values and verifying the constraints through constrained breadth first search

and traversal.

Table (4.3) Parameter values

Parameter Value
Number of Vertex Attributes 2,3
Number of Edge Attributes 3
Number of Super-vertex (K) | 15, 50
Number of Vertex Constraints 2
Number of Edge Constraints 1

38

4.6 Experiments and Results

4.6.2 Baselines

We evaluated the efficiency of our proposed approaches (HeuristicSearchMF
and ExtendedHeuristicSearchMF algorithms) by comparing with two exist-

ing techniques as follows :

(1) Breadth First Search or BFS [30] in which the constraints are checked
while performing breadth first search from source vertex till the desti-

nation vertex is reached. This is considered as Constrained BF'S.

(2) Yung et al. developed BFS based heuristic search technique using

naive clustering [88].

To solve MCR queries, we have the following two approaches with respect

to proposed techniques.

We can solve only by using hashing mechanism described in section m
(with optimized hashing only). We denote this approach by Constrained-
Hash.

We can solve using both hashing and clustering mechanism to obtain the
resultant path efficiently. We consider HMF' as the implementation of our
proposed HeuristicSearchMF algorithm described in section 4.4 We con-
sider FHMF' technique as the implementation of our proposed Extended-
HeuristicSearchMF' algorithm described in section

Table (4.4) Vertex attributes and edge attributes

Vertex Attribute | Domain Size, Distribution
Country 5, uniform
Region 3, uniform
Gender 2, uniform
Edge Attribute | Domain Size, Distribution
Trustlevel 4, real
isFamily 2, uniform
isFriend 2, uniform

39

4.6 Experiments and Results

4.6.3 Datasets description

Table summarizes the real and synthetic datasets used for experiments. We
generated synthetic graphs from SNAP [53]. We assigned randomly vertex at-
tribute values for the vertices and edge attribute values for the edges. Table [4.4]

states the synthetic vertex attributes that are assigned randomly to the datasets.

Table (4.5) Datasets overview
Graph A\ |E|
Robots [1] 1724 | 3596

Erdos-Renyi [53] | 1000 | 2000
ForestFire [53] | 5000 | 12620

4000 | 10252
3000 | 7751
2000 | 4865
1000 | 2833

4.6.3.1 Robots

Robots is a real trust network [I] with edge labels that denote the level of trust
interaction between the users. We pre-process the dataset by assigning unique
identifier to the vertices, resulting in 1724 vertices and 3596 edges. Each vertex
has synthetic attributes whose values are randomly assigned as shown in Table
4.4l Each edge has Trustlevel as the real attribute whose value is derived from
the data set. The trust level can be Master (M), Apprentice (A), Journeyer (J)
or Observer (O). Besides, we assigned two synthetic attributes whose values are

randomly assigned for every edge of the Robots dataset.

4.6.3.2 FErdos-Renyi Graph

Erdos-Renyi (E-R) graphs are the synthetic graphs that follow power law dis-
tribution [I3]. These graphs have their degree near uniformly distributed. We
generate E-R graph using SNAP [53] with number of vertices set to 1000 and

90

4.6 Experiments and Results

maximum degree for each vertex set to 2. Besides, we assign two attributes de-
scribed in Table for each vertex with randomly assigned values within the

domain.

4.6.3.3 ForestFire Graph

ForestFire graphs are the synthetic random graphs [54]. The ForestFire model
graphs exhibit the properties of time-evolving real-world graphs [54] that include
densification of graphs and decreasing effective diameter. We generate ForestFire
graphs using SNAP [53] for testing scalability with the number of vertices varying
from 1000 to 5000. The other parameters including forward probability is set to
0.4 and backward probability is set to 0.2 [53] and maximum degree for each

vertex set to 2. Besides, we assign two attributes for each vertex as described in

Table 441

4.6.4 Results and analysis

We evaluated the efficiency of our proposed techniques based on average execution
time and false negative ratio. The average execution time for true queries denotes
the average time taken to execute given set of true queries. The MCR true queries
are the constrained reachable queries that have atleast one path between the given
vertices. We evaluated the accuracy of our proposed techniques based on false
negative ratio. The false negative ratio (7) is defined as “The fraction of queries
which fail to return any path that satisfies the given constraint, although at least

one such path exists” [57].

Table (4.6) Average execution time of true queries for Erdos-Renyi graph with
only vertex constraints

S.No. Technique Average Execution time (s) | 7
Proposed
1 HMF 0.01280 0.65
2 EHMF 0.01290 0.05
3 ConstrainedHash 0.00009 0
Existing
4 Constrained BFS 0.01162 0
5 Yung et al. [8§] 0.013038 0.55

91

4.6 Experiments and Results

Table shows the average execution time and false negative ratio on MCR
true queries using our proposed techniques compared to constrained BF'S for E-R
graphs. In the Table .6 we find that there is considerable decrease in the false
negative ratio for our proposed extended heuristic technique i.e. EHMF than
that of HMF. We also observed that ConstrainedHash technique executed faster
for MCR queries than the other techniques.

x HMF

< EHMF
ConstrainedHash

* ConstrainedBFS

7 Yung et al. [84]

100

80

60

ExecutionTime (millisec)

40

T T T
1000 2000 3000 4000 5000

VI

Figure (4.5) Varying graph size for Forest Fire synthetic graph

Figure|4.5|shows the average execution time for Forest Fire graphs with varying
graph size from 1000 vertices to 5000 vertices. From Fig. we observe that
ConstrainedHash technique has the least average execution time than our other
proposed techniques and Constrained BFS. We also observe that our proposed
techniques executed faster than the heuristic search based on naive clustering
([88]). Besides, the false negative ratio varied from 0.04 to 0.36 for the MCR true

92

4.6 Experiments and Results

queries on ForestFire graphs using our proposed HMF approach. By using our

proposed EHMF and ConstrainedHash techniques, the false-negative ratio is 0.

Table (4.7) Average execution time of true queries for Robots dataset with only
vertex constraints

S.No. Technique Average Execution time (s) | 7
Proposed
1 HMF 0.214636 0.32
2 FEHMF 0.229042 0
3 ConstrainedHash 0.00011 0
Existing
4 Constrained BF'S 0.301144 0
5 Yung et al. [88] 0.092135 0.6

Table [1.7] shows the average execution time and false negative ratio on MCR
true queries using our proposed techniques compared to constrained BFS for
Robots dataset. We computed optimal K value for Robots dataset by applying
gap statistic [77]. The resultant computed K value is 15. We generated 100 MCR
true queries for evaluation of Robots dataset. From Table[4.7] using our proposed
HMEF approach, the false negative ratio (7) is 0.32. Based on our proposed
extended heuristic technique, i.e., FHMF, the false negative ratio reduced to 0.

Table (4.8) Average execution time of true queries for Robots dataset with
vertex constraints and edge constraints

S.No. Technique Average Execution time (s) | 7
Proposed
1 HMF 0.4684 0.8
EHMF 0.178258 0
3 ConstrainedHash 0.0151944 0
Existing
4 Constrained BFS 0.300613 0
5 Yung et al. [88] 0.034883 0.96

Table shows the average execution time and false negative ratio for 25 true

MCR queries with vertex constraints and edge constraints for Robots dataset.

93

4.7 Conclusions

We choose the TrustLevel as edge constraint and generated MCR true queries
based on constrained BFS. For clustering, we assumed K to be 50. We observed
that our proposed techniques have lesser false negative ratio than that of existing
technique [88]. Besides, we observed that ConstrainedHash technique executed

faster for MCR queries than the other techniques.

4.7 Conclusions

In this chapter, we studied the problem of MCR queries on attributed graphs.
We solved this problem by using our proposed heuristic search technique that
includes hashing and clustering. We computed hash value for multidimensional
attribute values for faster comparison of attributes. We used matrix factorization
based graph clustering on the attributed graph to construct supergraph. We used
shortest path from super graph and hashing for checking constraints in our pro-
posed approach to efficiently solve the multidimensional constraint reachability
queries for large graphs. Besides, we proposed an extended heuristic search tech-
nique that increased the accuracy. From the experiments and evaluation, we find

that our proposed techniques are scalable and solved MCR. queries efficiently.

94

Chapter 5

Frequent Subgraphs and
Frequent Subpaths

Finding frequent subgraphs from the dynamic graph streams can be a challeng-
ing task as streams are non-uniformly distributed and are continuously needed
to be processed. From these frequent subgraphs, we can extract unknown and
useful information. In this chapter, we not only developed techniques to extract
frequent subgraphs from graph stream data but also applied the techniques to
the special case of finding frequent subpaths from the data of paths. This chap-
ter publications are listed below. In section [5.1] we introduce the problem of
finding frequent subgraphs and frequent subpaths. Section deals with the
preliminaries and problem definitions. Section deals with literature survey of
frequent subgraph algorithms and extracting frequent subpaths from sequence of
paths. Section describes our proposed static and dynamic techniques to ex-
tract frequent subgraphs. Besides, it discusses the enhancements to our proposed
techniques by solving the problem of finding frequent subpaths from paths data
for the directed graph. Section describes the experiments and evaluation of

results.

Bhargavi B, Swarupa Rani K., Rohit Kumar, and Sanmeet Kaur. “Static and Dynamic Tech-
niques to Extract Frequent Subgraphs from Graph Stream Data” | to appear in Proceedings of
International Conference on Big Data, Machine Learning, and Applications (BigDML), 2019.

Bhargavi B., and K. Swarupa Rani, “Finding Frequent Subgraphs and Subpaths through Static
and Dynamic Window Filtering Techniques”, FAI Endorsed Transactions on Scalable Informa-
tion Systems, Vol. 7, No. 27, p. 13, EAI [DBLP Indexed and ESCI Indexed] ISSN: 2032-9407,
Web of Sciences, 2020.

95

5.1 Introduction

5.1 Introduction

In Big data era, we find large amounts of data generated from different data
sources very fast. For instance, there are 22.2 million Twitter users in India and
152 million daily active Twitter users all over the world [3]. Data stream model
deals with such Big data and data stream algorithms [22] make very few passes
and take lesser space. Data streams constitute of structured, semi-structured and
unstructured data which are time consuming as streams are continuous and are
also unbounded. Massive graphs are rendered as streams of graphs to analyze
and extract useful and unknown information. Graph streams as dynamic stream
model has been studied in the literature |44} 611 [75] which are the sequence of ‘m’
edges between ‘n’ nodes with the edges being updated sequentially. Processing
graph streams are challenging as they have large volume and are highly dynamic
in nature.

During the process of solving constraint reachability queries, we observed the
need and importance of finding frequent subgraphs and subpaths. In this chapter,
we review the problem of finding frequent subgraphs from the graph streams. A
frequent subgraph is a connected subgraph that occurs above the given threshold
in the sequence of graph streams. The problem of finding frequent subgraphs is
defined as follows: Given a sequence of graph streams and a minimum support
threshold, the problem is to find the frequent subgraphs having useful information
from the graph streams efficiently. One of the applications of finding frequent
subgraphs can be in social networks [56]. For instance, we can derive the groups of
users who are frequently communicating in the social network. In bio-informatics,
based on the frequent interactions between molecules, we can predict protein
functions and identify types of diseases.

We also solve another sub-problem of extracting frequent subpaths from se-
quence of paths. The applications for finding frequent subpaths can be in IP
routing in which we can find the frequent paths of data flows across multiple net-
works. In a traffic network, we can find the paths/subpaths that are frequently
traversed by commuters.

Alfredo Cuzzocrea et al. [31] proposed two algorithms to discover collections

of frequent subgraphs, one of which is the direct 1-step algorithm based vertical

96

5.1 Introduction

mining approach using Data Stream Matrix (DSMatrix). Besides, this approach
[31] used sliding window technique to process the graph streams in finding the
frequent subgraphs. This sliding window technique has the limitation of repeated
calculations. To overcome this limitation, Kyoungsoo Bok et. al. [23] proposed an
incremental frequent subgraph detection technique. The limitation of Kyoungsoo
Bok et al. [23] approach is that their approach did not completely resolve the

duplicate calculations.

We observed that the above solutions have certain limitations which include
the partially resolved duplicate calculations. Another possible limitation is that
frequent subgraphs in the past can be infrequent due to incomplete storage of
edges in the sliding window. To overcome these limitations, we proposed static
and dynamic approaches to find the frequent subgraphs. The key contributions

of this work include

e Proposed static and dynamic techniques to extract frequent subgraphs

Compared the proposed techniques with the conventional approach thus

evaluating the efficiency

e We improved and proposed static approach by computing actual minimum

support.

e We also proposed partition based static approach with actual minimum

support for sequential and parallel environments.

e We improved and extended the dynamic sliding window filtering technique

with variable batch size.

e We solved the sub-problem to find frequent subpaths from sequence of paths

by applying our proposed static and dynamic techniques.

e We analysed our proposed static and dynamic techniques for efficiency on

real and synthetic datasets.

The above key contributions of proposed approaches and its variations are
also given in Table

97

5.2 Preliminaries

Table (5.1) Proposed approaches and its variations

Static Approach Dynamic Approach
1. Incremental
approach with fixed
batch size of graph
data with relative

1. Single window with
minimum support

support

2. Incremental
2. Single window approach with
approach with actual | variable batch size of
minimum support graph data with

relative support

3. Partition based
approach with actual
minimum support in
sequential and
parallel environments

5.2 Preliminaries

Definition 1. (Graph stream) “Graph stream is defined as the sequence Gi,
Gy, Gy . . .G, where each graph Gj; is a set of edges. We assume that the
edge set G; contains only a small fraction of the underlying nodes” [§].
Definition 2. (Frequent Subgraph) A subgraph G,(Vy, E;) is a part of a
graph G(V,E) such that V, C V and E; C E. A frequent subgraph is a connected
subgraph that occurs above the given threshold (th) in the sequence of graph

streams.

Definition 3. (Path) “Given a graph G(V, E), a path p of length k from a
vertex u to u' is a sequence (vy, vy, . . . , V) of vertices such that v; €V, vy = u
and vy = v and (v;i_, v;) € E fori=1,2, ...,k 4.

Definition 4. (Subpath) “A path Q in G is said to be a subpath of P if Q
= (wo, wy, . . ., wy), where (wo, wy, . . . , W) is a contiguous sub-sequence of
path P(vy, v1, . . . , w), i.e., if, for some i such that 0 < i < i+K < k, we have
Wy = Vi, Wy = Vi, - - ., W= Vg [A].

Definition 5. (Minimum Support) Minimum support is defined as the
threshold specified by the user.

98

5.2 Preliminaries

vl vl
v3
2 v4 w2 v4
v5 v5

vl
v4
v5
vl
v3 v4
v5
6

v2 v3 va v2 v3 v4a V2
S

v2
v5 ¥
G4 G5 G

Figure (5.1) Sequence of graph streams G1, G2, G3, G4, G5, G6

Definition 6. (Actual Minimum Support) Actual minimum support is
defined as the minimum support based on user’s mining requirements which is
appropriate to the database to be mined [91].

Definition 7. (Relative Support) We define the relative support as the
partial minimum support assigned to subset of data. In this chapter, we adopt
the filtering threshold [52] to find the relative support.

5.2.1 Problem definitions

In this chapter, we propose techniques to find frequent subgraphs from graph
stream data and to find frequent subpaths from sequence of paths for a directed
graph efficiently.

5.2.1.1 Finding frequent subgraphs from graph stream data

Given a sequence of graph streams, for a minimum support threshold (th), the

problem is to find the frequent subgraphs from the graph streams efficiently.

99

5.2 Preliminaries

Figure (5.2) Directed graph

For instance, for the sequence of graph streams, shown in Fig. [5.1 with th=3,
the set of frequent subgraphs include { <(v1, v2), (vl, v4)>, <(vl, v2), (v1,
vh)>, <(vl, v2), (v3, vd)>, < (v1, v4), (v3, v4) >, <(v1, v4), (v1, v5) >, <(v1,
v2), (v1, v4), (v1, vb) >, < (v1, v2), (v1, v4), (v2, v3)>}

5.2.1.2 Finding frequent subpaths from paths data

Given a sequence of paths of a graph, for a minimum support (th), the problem

is to extract frequent subpaths from paths data.

For instance, for the sequence of paths in Table [5.2] of the graph in Fig. [5.2]
the set of frequent subpaths with th=3 are {(v5, v6, v7), (v3, v5, v6)}.

100

5.3 Related Work

Table (5.2) Data of paths

S.No. | Paths

vl, v2, vb, v6)
vl, v3, v5, v6, vT7)
vl, v2, v4)
vl, v2, v4, vb)
, v4, vb)

, Vb, v6)

, vd, v6, vT7)

A%
\%

<

vh, v6, v7)
v6, v8)
vd, v5, v6)
v5, v6)
vh, v6, v7)

— =
oo uo ot W

(
(
(
(
(
(
(
(
(
(
(
(

2
2
2
v4
v4
v3
v3
v3

—_
N}

5.3 Related Work

Massive graphs are considered as streams of data to analyze and extract useful
information. Henzinger et. al. [42] were the first to introduce graph streams
and they also worked on graph problems of paths and connectivity. Andrew
McGregor [61] presented a detailed survey of graph streams. Due to the dynamic
nature [40], [44] and the large volume of graph stream data, Nan Tang et. al. [75]
proposed graph summarization sketch that can store frequent counts and paths

of graph streams.

Alfredo Cuzzocrea et al. [31] studied various methodologies of mining dense
patterns in graph streams and proposed probabilistic algorithms for determining
such structural patterns effectively and efficiently. Alfredo Cuzzocrea et al. [31]
presented two algorithms to extract frequent subgraphs - (i) Indirect 2-step al-
gorithm (ii) Direct 1-step algorithm. Experimental results by Alfredo Cuzzocrea
et al. [31] stated that mining with DSMatrix consumes lesser memory due to the
information stored in a secondary storage device as they store the existence of

edges in bit vectors.

101

5.4 Proposed Static and Dynamic Techniques for Finding Frequent
Subgraphs

Kyoungsoo Bok et. al. [23] observed that the algorithm developed by Alfredo
Cuzzocrea et. al. [31] has a limitation of duplicate calculations. They introduced
slidenum variable [23] to store the frequency of edges incrementally for batches

of graph streams to resolve duplicate calculations.

Table (5.3) DSMatrix for graph streams of Fig.

Edge |GI G2 G3 G4 G5 G6
GLv2) | 1 1 1 1 0 1
vi,vd)| 1 1 1 1 1 1
(vl,vh) | 1 1 0 1 1 0
v2v5)| 1 1 1 0 1 1
(v2,v3) | 0 1 1 0 0 1
(v3,v4) | 0 0 1 1 1 0

From the literature, we observe that while finding frequent subgraphs, although
sliding window based techniques execute fast, they may lead to loss of useful
historical information. We also observe that we need to reduce duplicate calcula-
tions further. We observed that finding frequent subpaths from paths is another
problem in the literature that can be related to the problem of finding frequent
subgraphs. We identified and formulated ways to apply our proposed and ex-
tended techniques to find frequent subpaths from sequence of paths. Sumanta
Guha [A1] developed Apriori based technique to extract frequent subpaths from
paths in an undirected graph. Schwartz et al. [69] studied demand of frequent
subpaths in a transportation network traversed by several users. Hence, there is
need to find techniques that discover frequent subgraphs and frequent subpaths

efficiently by storing useful historical information.

5.4 Proposed Static and Dynamic Techniques
for Finding Frequent Subgraphs

We have extended the direct 1-step algorithm of Alfredo Cuzzocrea et al. [31]
by modifying the parameters of sliding window size and by using relative sup-

port. We have proposed static single window approach and dynamic approach of

102

5.4 Proposed Static and Dynamic Techniques for Finding Frequent
Subgraphs

Table (5.4) Characteristics of Proposed Static and Dynamic Approaches com-
pared to Conventional Approach

Proposed approaches
Silaracterls- Static Dynamic Conventional
. Entire graph incremental sliding window
Size .
stream data data size
user given
minimum user given
Minimum support and relative support . ‘g
. . minimum
Support actual minimum | [52] -
support [91] can PP
be used
. - . present stream present stream
Applicability | for existing data of data of data
Streams of single window incremental in sliding window
data & batches &
Loss of No loss of NO I.OSS of ITOSS. of some
. significant significant
historical frequent
frequent frequent
data subgraphs
subgraphs subgraphs
faster technique mode?"ate .
e technique faster technique
. in distributed :)
Time without loss of with loss of
and parallel . . .
) significant information
environments . .
information
can be applied
o h
. by dividing the cannot be cannot be
Parallelism data and anplied annlied
minsup into PP PP
equal partitions
can be applied
Distributed by using cann'ot be may.not be
MapReduce applied applicable
technique

sliding window to find frequent subgraphs from graph streams using DSMatrix
[50]. Table shows the characteristics of our proposed approaches w.r.t. size,

environment and compatible features. The proposed approaches are explained in

103

5.4 Proposed Static and Dynamic Techniques for Finding Frequent
Subgraphs

the following subsections.

5.4.1 DSMatrix

Data Stream Matrix or DSMatrix constitutes assigning the presence (or absence)
of each edge by a bit 1 (or 0) for each graph of graph stream data [31]. For
instance, consider the sequence of graph streams in figure 5.1 Table shows
the contents of DSMatrix. We find the rowsum from DSMatrix to compute the

frequency of every edge in graph stream data.

5.4.2 Static single window technique

In the static single-window, we consider the entire data set of graph streams as
a single window. We describe the proposed static single window approach in
StaticFreqSubgraph algorithm. In this algorithm, for the entire graph streams,
it creates a DSMatrix. The rowsum of the DSMatrix is computed and compared
to the minimum support threshold minsup. If rowsum is greater than or equal to

minsup, the resultant edges are the frequent singleton edges.

Then, combination of edge pairs are found based on the neighbouring informa-
tion (in list, N). The AND operation is performed between the k-frequent single-
ton edge combinations’ bit vectors by checking whether the edges are present for
each graph to form a bit vector for the combination. The sum of non-zero bits is
computed and compared to the given minimum support to check if it is frequent
or not. If the resultant sum is greater than or equal to minsup, the k+1-subgraph

is frequent. Thus, the algorithm generates all the possible frequent subgraphs.

For example, for graph streams of Fig. with minsup=3, the resultant fre-
quent singleton edges are {(v1, v2), (v1, v4), (v2, vb), (v1, vb),(v2, v3),(v3, v4)}.
The resultant frequent subgraphs for the graph streams of Fig. [5.1] generated
using StaticFreqSubgraph algorithm are { <(v1, v2), (v1, v4)>, <(v1, v4), (v1,
vh)>, <(v2, v3), (v2, vbB)>, <(v1, v2), (v2, v3)>, <(vl, v2), (v1, v4), (v1, vb)>
}.

104

5.4 Proposed Static and Dynamic Techniques for Finding Frequent
Subgraphs

Algorithm 9: StaticFreqSubgraph

Input : Edges in graph streams, total number of graphs in the whole data and
minsup = minimum support threshold

Output: Set of frequent subgraphs

// m= number of graph streams, n= number of edges in the entire
graph streams sequence

// Mat_A[m] [n] = 2-D DSMatrix with m rows and n columns

// rowsum = count of 1s in a row of DSMatrix

Create neighbouring list, N for the graph streams by finding common vertex for

the stream of edges

for each graph g; do
if edge i € g; then

| MatAfifjj=1
else
| Mat_Afl[jl=0

Calculate rowsum for each row of Mat_A.
if (rowsum(i) >minsup) then
| Edgeiis frequent
else
| Edge i is not frequent
Join k frequent connected edges with common vertices using neighboring list N
to get k+1 frequent subgraphs , f; for all £<m.
Compute freq(f;) by AND of the bit vectors of k recurrent edges for the graph
streams in the DSMatrix
if freq(f;)>minsup then
| fi is frequent.

else
| fi is infrequent.

105

5.4 Proposed Static and Dynamic Techniques for Finding Frequent
Subgraphs

5.4.3 Dynamic approach of sliding window technique

In this approach, we proposed a dynamic sliding window technique that is de-
scribed in DynamicFreqSubgraph algorithm. DSMatrix for each batch is created
and a relative support is applied. For example, if batch 1 contains 3 graph in-
stances, then we calculate 40% of frequent edges of the 3 graph instances and
store it in the map. This technique is incrementally applied for the next batches.
The frequency threshold for the edges is based on the number of graph instances.
Thus, this approach preserves the previous history information. After the sin-
gleton frequent edges are calculated, the combination is formed based on the
neighbouring information. DynamicFreqSubgraph algorithm computes AND op-
eration on the edges and calculates the final row sum. If the final row sum satisfies

the minimum support threshold, then it is marked as frequent.

5.4.3.1 Illustration for dynamic sliding window technique

For instance, in the graph streams of Figure [5.1], Let batch size=2. Then, batch 1
constitutes graph streams G1, G2 of Fig. [5.1] For batch 1, the frequent singleton
edges along with edge count are stored in map M for each edge satisfying 40%
of batch size (percentminsup=0.4), i.e., [0.4*2]=1. Thus, the initial map M for
Fig. [5.1] with relative support 1 includes all the edges with count greater than or

equal to 1 as shown in Table [5.5}

This map is incrementally maintained as shown in Table for the next batch
with relative support 2. When the batch 3 is encountered, the edge counts are
incremented as shown in Table with relative support of 4. Thus, the resul-
tant frequent singleton edges by applying Algorithm 10 with the given minimum
support of 4 are {(vl, v2), (vl, v4), (v1, vb), (v2, vb)}.

5.4.4 Enhancements to the proposed static and dynamic

sliding window filtering techniques

We adopt the polynomial strategy [91] and modify it to compute the actual min-

imum support based on dataset information for graph stream data. We use this

106

5.4 Proposed Static and Dynamic Techniques for Finding Frequent
Subgraphs

Algorithm 10: DynamicFreqSubgraph

Input : Edges in the graph streams, percentminsup
Output: Set of Frequent subgraphs

// n=Total number of graph streams in the entire sequence
// DSMatrix[m] [n]= 2D matrix of m rows and n columns
// batchsize = number of graphs in a batch
totalbatch= n / batchsize

batchpointer=0

k1=0

repeat

Compute DSMatrix for each batch of graph streams
Calculate edge_count for each batch
minsup=percentminsup* (batchpointer*batchsize+1)
kl=kl+1

if (edge_countfi] > minsup) then

Store < edge i, edge_count[i] > in a map M
batchpointer= batchpointer + batchsize
until k1 < totalbatches;
relativesup=|(percentminsup*n)]|

for i=0to m do

if (edge_countfi[> relativesup) then
| Edge iis frequent

else
| Edgeiis not frequent

Join k recurrent connected edges with common edge based on neighbouring
information to k+1 recurrent connected edges by intersecting their bit vectors
from DSMatrix, f; for all k<m.
if freq(f;)>minsup then

| fi is frequent.

else
| fi is infrequent.

107

5.4 Proposed Static and Dynamic Techniques for Finding Frequent
Subgraphs

Table (5.5) Frequent edges with count for Batch 1

edge count

(v1,v2) 2
(v, v4) 2
(v1,v5) 2
(v2,v5) 2
(v2, v3) 1

Table (5.6) Frequent edges with count for Batch 1 and Batch 2

edge count
v1,v2) 4

DN DN W W

Table (5.7) Frequent edges with count for Batch 1, Batch 2 and Batch 3

edge | count
~iv2) | 5
(v1,v4) 6
(v1,v5) 4
(v2,v5) 5

minimum support in the proposed static approach to compute frequent singleton
edges. Besides, we propose partition based sequential and parallel static approach
with actual minimum support. In addition, we observed that our earlier proposed
dynamic approach may miss some of the frequent singleton edges for large graph
streams with the iterative increase in relative threshold. To overcome this limi-
tation, we modified the dynamic approach by using incremental relative support

along with variable batch size.

5.4.4.1 Enhancement #1: Computing actual minimum support for

proposed static approach

We observed that there is a need to compute actual minimum support while find-

ing frequent singleton edges in real-time as the user may not have prior knowl-

108

5.4 Proposed Static and Dynamic Techniques for Finding Frequent
Subgraphs

edge about the characteristics of the graph database. Another observation is
that there may be loss of significant and required frequent subgraphs because of
lack of knowledge of the actual minimum support. Hence, we consider the mini-
mum support given by the user as input to compute the actual minimum support
based on distribution of frequent singleton edges in the graph stream database
in the interval [amin, bmaz]. amin denotes minimum frequency of the edge and
bmaz denotes the maximum frequency of the edge in the graph stream data. We
adopt the approximate polynomial function of degree ¢ [91] and compute the ac-
tual minimum support (Actualminsup) based on the user given minimum support

(minsup) through the equation below:
Actualminsup' = minsup * (bmax’ — amin') + amin’ (5.1)

We then apply the proposed static approach with the actual minimum support
to compute the resultant frequent subgraphs. For instance, consider the graph
stream data in figure [5.1] with the user given minimum support, minsup=0.5, the
minimum frequency amin=1/6 and maximum frequency bmaz=5/6. The actual
minimum support computed using equation (1) with linear strategy (i=1) is 0.49
and with cubic strategy (i=3) is 0.66. We use actual minimum support when
the user is not an expert about the minimum support using which the significant

frequent subgraphs can be retrieved.

5.4.4.2 Proposed partition based static approach

We modify our proposed static approach with single window by partitioning the
data into windows of fixed size for faster execution. We then compute the actual
minimum support for each window used to compute frequent singleton edges.
We can run each partition in parallel to extract the frequent singleton edges.
Algorithm 11 describes our proposed partition based static approach with actual

minimum support.
Illustration of Proposed Partition based Static Approach For graph

streams, with actual minimum support using linear strategy of 2.774~3 (given

user minsup=2), with partition size=2, the frequent singleton edges for the first

109

5.4 Proposed Static and Dynamic Techniques for Finding Frequent
Subgraphs

Algorithm 11: PartitionStaticFreqSubgraph

Input : Edges in graph streams, total number of graphs in the whole data,
minsup = minimum support threshold, partition_no be number of
partitions

Output: Set of frequent subgraphs

// m= number of graph streams, n= number of edges in the entire

graph streams sequence

amin:% // Mat_A[m] [n] = 2-D DSMatrix with m rows and n columns

// rowsum = count of 1s in a row of DSMatrix

Create neighbouring list, N for the graph streams by finding common vertex for

the stream of edges

for each partition p € [1, partition_no] do

for each graph g; do

if edge i € g; then
| Mat_A[i][j]:=1
else

| Mat_Al[i][j]:=0

Calculate rowsum for each row of Mat_A.

Compute bmazr, maximum frequency of any edge by considering maximum
rowsum

Compute Actualminsup using ({5.1))
for each edge i do

if (rowsum(i) >Actualminsup) then
| Add edge i to set F

Join k recurrent connected edges from F' with common edge using neighboring
list N and to get k+1 recurrent connected edges , f; for all k<m.
Compute freq(f;) by intersecting the bit vectors of k recurrent edges from
DSMatrix and adding all the resultant non-zero bits
if freq(f;)> Actualminsup then

| fi is frequent

else
| fi is infrequent

110

5.4 Proposed Static and Dynamic Techniques for Finding Frequent
Subgraphs

partition are {(v1l, v2), (v1, v4), (v2, v5)}. The frequent singleton edges for the
second partition are {(v1, v4)}. The resultant frequent subgraphs include { <(v1,
v2), (v1, vd)>, <(v1, v4), (v2, v5)>, <(v1, v2), (v1, v4), (v2, v5)> }.

5.4.4.3 Enhancement #2: Dynamic sliding window filtering technique

In the proposed dynamic sliding window technique (described in Section ,
we observed that with increase in relative support, we may miss some of the sig-
nificant frequent subgraphs. Hence, we modified the proposed dynamic approach
by storing the batch number in addition to frequency for the edges in a map.
For the first batch, we start with relative support and find the frequent singleton
edges. The relative support is iteratively increased with next batch if the edge
obtained in the current batch is frequent in the previous batch. If the edge is
not frequent in the previous batch, but is frequent in the current batch, then we
compare the frequency of the edge in the current batch with the relative support.
For the next batch, the relative support is iteratively incremented. Thus, this
approach preserves the previous history information. In addition, our proposed
approach described in Algorithm 12 considers batches with variable sizes. Af-
ter the frequent singleton edges are calculated, the combination is formed based
on the neighbouring information. DynamicVarFreqSubgraph algorithm computes
AND operation on the neighbouring frequent singleton edges and calculates the
final row sum. If the final row sum satisfies the relative frequency threshold, then

it is frequent.

Illustration of Dynamic Sliding Window Filtering Technique For in-
stance, in the graph streams of Fig. let batch size=3. Then, batch 1 con-
stitutes graph streams G1, G2 and G3 of Fig. [5.1, For batch 1, the frequent
singleton edges along with edge count are stored in map M for each edge with
its relative frequency in the batch satisfying 40% of batch size. Thus, the initial
map M for Fig. [5.] with relative support 2 includes all the edges with count
greater than or equal to 2 denoted by ¢ symbol in Table [5.8]

111

5.4 Proposed Static and Dynamic Techniques for Finding Frequent
Subgraphs

Algorithm 12: DynamicVarFreqSubgraph
Input : Edges in graph streams, Let rel be percentage for computing relative
support
Output: Set of Frequent subgraphs
// n=Total number of graph streams in the entire sequence
// DSMatrix[m] [n]= 2D matrix of m rows and n columns
// batchsize = variable number of graphs in a batch
// Let b be the number of batches in the graph
totalbatch= n / batchsize
kl=1
Compute DSMatrix for each batch of graph streams

repeat
Calculate edge_count for each batch

batchpointer=0
minsup=|rel*(batchsize) |
if existsEdge(i) then

ec=edge_count[i]+ Edge count of i in the current batch

minsup=|rel* (k1-batchno[i]4+1)*batchsize|

if (ec > minsup) then

L // Edge i is frequent

Update edge count of i to ec in map M

if (lexistsEdge(i) & edge_countfi] > minsup) then
| Store < edge i, batchnoli], edge_count[i] > in a map M
batchpointer= batchpointer + batchsize
k1=kl+1
until k1 < b;

Join k frequent connected edges with common edge to k+1 frequent connected
edges by intersecting their bit vectors from DSMatrix, f; for all k<m.
minsup=|rel*n|
if freq(f;)>minsup then

| fi is frequent

else
| fi is infrequent.

This map is incrementally maintained as shown in Table [5.9] for the next batch,
with relative support 3, if the edge is frequent in the previous batch. If the edge
is not frequent in the previous batch, then the relative support for such edge is
2. For instance, in Table the edge (v3, v4) is not frequent in batch 1, but
is frequent in the current batch as the relative support for that edge is set to 2.

Thus, the resultant frequent singleton edges by applying Algorithm 12 with the

112

5.4 Proposed Static and Dynamic Techniques for Finding Frequent
Subgraphs

Table (5.8) Frequent edges with relative count for Batch 1

edge Batch No. | count
o(vl, v2) 1 3
o(vl, v4) 1 3
o(v1, v5) 1 2
o(v2, v3) 1 2
o(v2,vh) 1 3
(v3, v4) 1 1

Table (5.9) Frequent edges with relative count for Batch 1 and Batch 2

edge Batch No. | count
o(vl, v2) 1 5
o(vl, v4) 1 6
o(vl, vb) 1 4
o(v2, v3) 1 3
o(v2, vb) 1 5
o(v3, v4) 2 2

relative frequency threshold are {(vl, v2), (vl, v4), (v1, vb), (v2, v5), (v2, v3),
(v3, v4)}. The resultant frequent subgraphs with relative support 3 are { <(v1,
v2), (v1, vd)>, <(v1, v2), (v1, vB)>, <(v2, v5), (v1, vB)>,<(v2, v3), (v2, vH)>,
< (vl, v2), (v1, v4), (v1, v5) > }.

5.4.5 Finding frequent subpaths from sequence of paths

For a directed graph, given a sequence of reachable paths [20], we can extract
the frequent subpaths by using our proposed static and dynamic techniques. For
this problem, algorithm 9 and algorithm 10 can be modified by considering each
path as a graph stream input and the resultant output are frequent subpaths. In
addition, while extracting frequent subpaths, we consider the sequence of neigh-
bouring vertices that form a subpath. Algorithm 13 describes our proposed static

single window technique to extract the frequent subpaths from sequence of paths.
Algorithm 11 and Algorithm 12 can also be similarly applied to find the frequent

subpaths from sequence of paths for the given directed graph. For instance, for
the directed graph in Fig[5.2] let us assume that the edges (v3, v5) and (v4, v5)

113

5.4 Proposed Static and Dynamic Techniques for Finding Frequent
Subgraphs

are frequent. Then, we cannot join the edges (v3, v5) and (v4, v5) as they do
not form a subpath. Thus, the group of edges that do not form a subpath are
not included.

Application areas of frequent subpaths extraction include analysis of traffic
sub-routes based on the routes taken by vehicles (stored as paths database) to
extract congested sections. In IP routing, we can analyse the routes taken by
messages to extract the hot-spots. For instance, for graph of figure [5.2] Table
5.2 shows some of the paths extracted from the graph. The following subsections
illustrate the extraction of frequent subpaths from paths data using the proposed

static and dynamic techniques.

Algorithm 13: StaticFreqSubpath

Input : Sequence of paths and minsup = minimum support threshold

Output: Set of frequent subpaths

// m= sequence of paths, n= number of edges in the entire paths
data

// Mat_A[m] [n] = 2-D DSMatrix with m rows and n columns

// rowsum = count of 1s in a row of DSMatrix

Create neighbouring list, N for the paths by finding common vertex for the

stream of edges

for each path g; do
if edge i € g; then

| Mat.Afi[j)=1
else
| Mat_Afil[jl=0

Calculate rowsum for each row of Mat_A.
if (rowsum(i) >minsup) then

| Edgeiis frequent
else

| Edgeiis not frequent
Join k frequent connected edges with common connecting vertices using
neighboring list N to get k+1 frequent subpaths, f; for all £<m.
Compute freq(f;) by AND of the bit vectors of k recurrent edges for the path
streams in the DSMatrix
if freq(f;)>minsup then

| fi is frequent.

else
| fi is infrequent.

114

5.4 Proposed Static and Dynamic Techniques for Finding Frequent
Subgraphs

5.4.5.1 Illustration of static single window technique to find frequent

subpaths

By considering each path as input for static single window technique, we retrieve
the frequent subpaths for the set of paths. To extract frequent subpaths, we
construct DSMatrix for the unique edges present in the paths set. Then, we
extract frequent singleton edges from DSMatrix as described in Algorithm 13.
From the frequent edges and neighbouring information, we extract the frequent
subpaths. For instance, for the set of paths of Table |5.2] with minsup=3, the
frequent singleton edges extracted using proposed static single window technique
are {(vl, v2), (v2, v4), (v2, v5), (v3, v5), (v4, vb), (vb, v6), (v6, v7)} and the
resultant frequent subpaths are { (v3, v5, v6), (v5, v6, v7)}

5.4.5.2 Illustration of dynamic sliding window filtering technique to
find frequent subpaths

By considering each path as input for dynamic sliding window filtering technique,
we retrieve the frequent subpaths for the set of paths. Initially, we construct the
DSMatrix for the data of paths for each batch. Then, we extract the frequent
singleton edges by using dynamic variable sliding window filtering technique de-
scribed in Algorithm 12. For instance, let batch size=6 for paths data of Table
b.2] By using dynamic sliding window filtering technique, the resultant frequent
singleton edges for the first batch with relative support=3 for path 1 to path 6
are {(vl, v2), (vb, v6)}. The resultant frequent singleton edges for the second
batch for the remaining paths include {(v1, v2), (v5, v6), (v6, v7)}. Finally,
the resultant frequent edges are {(v1, v2), (v5, v6), (v6, v7)} and the resultant
frequent subpaths are {(v5, v6, v7)}.

5.4.6 Analysis of proposed static and dynamic approaches

The proposed static single window approach can be used for small datasets as this
approach efficiently stores all the frequent subgraphs. Thus, the useful history in-
formation is retained. In addition, our proposed static approach with actual min-
imum support can retrieve the required number of frequent subgraphs/subpaths

based on user minimum support. However, for large streams of graph data, we

115

5.5 Experimental Evaluation

can use the partition based static approach by running each partition of data in
parallel to find frequent singleton edges. For large streams of data with variable
batch size, the proposed dynamic sliding window approach efficiently finds the
frequent subgraphs as relative support computation involves the number of graph
streams. With the increase in the number of graph streams, the relative support
is also proportionately increased thus storing the significant frequent subgraphs
as well as minimizing the duplicate calculations. In addition, to extract frequent
subpaths from large sequence of paths, our proposed dynamic sliding window
filtering technique can be applied for large directed graphs. Table shows dif-
ferent characteristics of proposed static and dynamic techniques compared to the

conventional approach [31].

5.5 Experimental Evaluation

The direct 1-step algorithm (Conventional approach) of Alfredo Cuzzocrea et
al. [31] and its modified versions, the proposed static single window approach
(Static), proposed static approach with actual minimum support using linear
strategy (StaticLinear) and cubic strategy (StaticCubic), proposed partition based
static approach in sequential and parallel environments, dynamic sliding window
technique (DynFized) and dynamic variable sliding window filtering techniques
(DynVar) are implemented.

The minsup is varied from 10% to 80% of number of graph streams/paths. For
conventional approach, we set window size=5 and batch size=100. In dynamic
approach and its variations, the batchsize is 100 for fixed batches and for variable
batches, the batch size is randomly varied such that total number of batches are
set to 10. In the experiments, the actual minimum support is computed based on
the user given minimum support using equation [5.1] with =1 for linear strategy
and =3 for cubic strategy. The relative support for batches are varied from 10%

to 80% for the proposed dynamic sliding window filtering technique.
Experiment #1: Finding frequent subgraphs from graph stream data

with minimum support and actual minimum support To extract fre-

quent subgraphs from graph stream data, the proposed algorithms are exper-

116

5.5 Experimental Evaluation

imented on real dataset, Connect-4 [4]. We have considered each record of
Connect-4 dataset as graph stream and constructed 1000 graph instances. The
Connect-4 dataset can be used to find the most frequent moves chosen by the
winner of the game. In each record, there are 1s, -1s and 0Os for each position
of 6x7 matrix of Connect-4 dataset. During pre-processing of the dataset, each
grid position of the matrix is rendered as vertex. Thus, there are 42 vertices. The
adjacent 1s and -1s in those grids are taken as edges. The two adjacent 1s or -1s

represent an edge denoted using their respective grid positions.

Table (5.10) Number of frequent singleton edges (|[FSE|) for graph stream data
with varying minsup for proposed static approach compared to Conventional
Approach

|FSE| for |FSE| for
minsup | Proposed Static Conventional
approach Approach
0.1 121 104
0.2 101 72
0.3 87 47
0.4 71 23
0.5 99 0
0.6 45 0
0.7 34 0
0.8 23 0

Table shows the number of frequent singleton edges with varying minsup
for proposed static approach and conventional approach. From the table and its
graph as shown in figure|5.3 we observe that with increase in minsup, the number
of frequent singleton edges for conventional approach reduced to zero from 50%

minsup, whereas our proposed static approach retained frequent singleton edges.

From Table |5.10] and Table , we also observe that the actual minimum
support computed using linear strategy (Actualminsup,) is closer to the user given
minimum support than that of cubic strategy (Actualminsup.) for graph stream
data. Fig. [5.4] shows the number of frequent singleton edges for graph stream

data extracted using our proposed approaches, i.e., static approach (Static), static

117

5.5 Experimental Evaluation

200
1

150
1

|FSE]
100
I
o =
[
/
/
/
/

minsup

Figure (5.3) Number of frequent singleton edges (|FSE|) for proposed static
approach compared to conventional approach for graph stream data

Table (5.11) Number of frequent singleton edges (|[FSE|) for graph stream data
with varying minsup for proposed static approach with actual minimum support
using linear strategy with and cubic strategy

minsup | Actualminsup, | |FSE| linear | Actualminsup. | |FSE|_cubic
0.1 0.099 121 0.450 64
0.2 0.198 101 0.576 49
0.3 0.296 87 0.661 40
0.4 0.390 73 0.726 30
0.5 0.490 61 0.783 25
0.6 0.590 46 0.832 20
0.7 0.690 37 0.875 12
0.8 0.789 24 0.915 10

approach with actual minimum support computed using linear strategy (Stati-
cLinear) and cubic strategy (StaticCubic) compared to conventional approach.
We observe that more number of frequent singleton edges are retained using our
proposed static approach with linear strategy than the conventional approach

with increase in minimum support.

Experiment #2: Finding frequent sub graphs through sequential and
parallel approaches Table shows the execution time of our proposed

118

5.5 Experimental Evaluation

Proposed approaches are Static, StaticLinear and StaticCubic

& -
" @ Static
g | B StaticLinear
= m StaticCubic
= Conventional
S -
o o
. |l
- H
<
N [Lﬂ
™~
Qo —
01 02 03 04 05 06 07 08

minsup

Figure (5.4) Number of frequent singleton edges (|FSE|) for proposed ap-
proaches with actual support using linear strategy and cubic strategy compared
to conventional approach for graph stream data

partition based static approach (with number of partitions assumed to be 4) with
actual minimum support computed using linear strategy in sequential and parallel
environment. Table[5.13|shows the execution time of our proposed partition based
static approach in sequential and parallel environment using cubic strategy, with
the proposed partition based static approach in parallel environment executing
faster. We implemented the parallel environment based on multi-threading, with
each thread executing each partition while using the computed actual minimum

support for every partition.

119

5.5 Experimental Evaluation

Table (5.12) Execution time (in milliseconds) to find frequent singleton edges for
graph stream data using proposed static approach with actual minimum support
through linear strategy in sequential and parallel environment

Ezecution time | Ezecution time
minsup Actualminsup; i sequential i parallel

enut. enut.
0.1 0.102 0.417 0.262
0.2 0.199 0.454 0.260
0.3 0.296 0.388 0.245
0.4 0.394 0.414 0.271
0.5 0.49 0.430 0.270
0.6 0.59 0.381 0.215
0.7 0.687 0.355 0.209
0.8 0.785 0.394 0.203

Table (5.13) Execution time (in milliseconds) to find frequent singleton edges for
graph stream data using proposed static approach with actual minimum support
through cubic strategy in sequential and parallel environment

Ezecution time | Ezecution time
MINSUP Actualminsup, i sequential in parallel

enut. enut.
0.1 0.455 0.391 0.187
0.2 0.573 0.369 0.167
0.3 0.656 0.391 0.253
0.4 0.722 0.377 0.218
0.5 0.078 0.360 0.198
0.6 0.827 0.334 0.177
0.7 0.870 0.363 0.187
0.8 0.909 0.34 0.148

Experiment #3: Finding frequent subgraphs through dynamic sliding
window filtering approach Table[5.14]shows the number of frequent singleton
edges extracted with relative support varying from 10% to 80% of batch size using
our proposed dynamic sliding window technique (DynFized) and dynamic vari-
able sliding window filtering technique (DynVar). We observe that with increase
in relative support, the number of frequent singleton edges extracted decreased.

We also observe that we can consider the relative support from 20% upto 60%

120

5.5 Experimental Evaluation

to retrieve significant number of frequent singleton edges and thus the frequent

subgraphs.

Table (5.14) Number of frequent singleton edges for graph stream data with
varying % of relative support(relsup) for proposed dynamic approach with fixed
batch size (DynFized) and variable batch size (DynVar)

relsup | |FSE| for DynFized | |FSE| for DynVar
0.1 127 124
0.2 108 108
0.3 90 89
0.4 76 75
0.5 64 64
0.6 o1 49
0.7 39 39
0.8 25 25

Table (5.15) Number of frequent singleton edges (|FSE|) for paths data for pro-
posed Static approach compared to Conventional approach

|FSE| for |FSE| for
minsup proposed Conven-
Static tional

Approach | Approach

0.1 31 7

0.2 4 0

0.3 0

0.4 0 0

0.5 0 0

0.6 0 0

Experiment #4: Finding frequent subpaths and their analysis with
varying parameters For reachability path queries with constraints, the result
of the query is sequence of paths. This database constitutes the reachable paths
for reachability queries with constraints. These paths are stored in log file. We
generate synthetic graph, i.e., E-R graph [53] with n=1000 and m=2000 edges.
Next, we generate 800 reachability queries and retrieve 1000 possible paths sat-

isfying the given constraints based on constrained BFS technique. We used the

121

5.5 Experimental Evaluation

same query generation process for constraint reachable paths addressed in [20].
Each path is considered as graph instance. We apply the conventional approach

and the proposed static and dynamic techniques to find the frequent subpaths.

Table (5.16) Number of frequent singleton edges (|FSE|) for paths data using
proposed static approach with actual minimum support using linear strategy and
cubic strategy

minsup | Actualminsup, | |FSE| linear | Actualminsup, | |FSE|-cubic
0.1 0.024 178 0.105 24
0.2 0.047 105 0.133 14
0.3 0.068 61 0.152 12
0.4 0.091 38 0.167 7
0.5 0.114 21 0.180 7
0.6 0.137 14 0.191)
0.7 0.159 9 0.202 4
0.8 0.182 7 0.21 4

Table shows the number of frequent singleton edges extracted from the
sequence of paths using our proposed static approaches compared to conventional
approach. We observe that as the paths data is sparse, the number of frequent
singleton edges extracted for conventional approach is very less and is zero from
20% of minimum support. Our proposed static approach has zero frequent sin-

gleton edges with the user given minimum support from 30%.

From Table |5.16| and Table [5.15 we observe that the proposed static approach
with actual minimum support using linear strategy and cubic strategy retained
the significant frequent singleton edges than the conventional approach and pro-
posed static approach with minimum support. Fig. [5.5 shows the number of fre-
quent singleton edges extracted for paths data using our proposed approaches, i.e.,
static approach (Static), static approach with actual minimum support computed
using linear strategy (StaticLinear) and cubic strategy (StaticCubic) compared to
conventional approach. We observe that the number of frequent singleton edges
are retained more using our proposed static approach using linear strategy with

increase in minimum support for the generated paths data.

122

5.5 Experimental Evaluation

Proposed approaches are Static, StaticLinear and StaticCubic = Static

© Conventional
4 StaticLinear
A StaticCubic

200
|

150
|

|FSE|
100
|

50

minsup

Figure (5.5) Number of frequent singleton edges (|FSE|) for proposed ap-
proaches with actual support using linear strategy and cubic strategy compared
to conventional approach for sequence of paths

Table and Table [5.18[shows the number of frequent singleton edges and
frequent subpaths respectively that are extracted using our proposed dynamic
approach with fixed batch size and variable batch size. Since the paths data is
sparse, we observe that the relative support of 0.5% upto 1% retrieves significant
number of frequent subpaths.

From the experiments and results, we observe that our proposed static ap-
proach with linear strategy extracted significant number of frequent singleton
edges than that of cubic strategy. From these observations, we can conclude that
our proposed techniques can efficiently extract frequent subpaths from sequence

of paths.

123

5.6 Conclusions

Table (5.17) Number of frequent singleton edges (|FSE|) for paths data with
varying relative support(relsup) for proposed dynamic approach with fixed batch
size (DynF'ized) and variable batch size (DynVar)

relsup | |FSE| for DynFized | |FSE| for DynVar
0.005 299 529
0.01 488 414
0.02 329 267
0.03 240 210
0.04 193 167
0.05 159 139
0.06 133 119
0.07 108 100
0.08 98 84
0.09 88 75
0.1 73 100
0.2 14 12
0.3 4 2

Table (5.18) Number of frequent subpaths (|FSP|) for paths data with varying
relative support (relsup) for proposed dynamic approach with fixed batch size
(DynFized) and variable batch size (DynVar)

relsup | |FSP| for DynFized | |FSP| for DynVar
0.005 5 75
0.01 35 35
0.02 9 9
0.03 9 7
0.04 5 5
0.05 3 3
0.06 2 2

5.6 Conclusions

To discover the collections of frequent edges, we proposed two approaches the
static single window approach and dynamic approach of sliding window. The pro-
posed static approach finds frequent subgraphs by considering the entire graph
streams as a single window and applying the given minimum support for them.
In addition, we adopt polynomial strategy to compute the actual minimum sup-

port from the user given minimum support and apply it to our proposed static

124

5.6 Conclusions

approach that retained more number of frequent subgraphs. We also propose
partition based static approach with actual minimum support that can be ex-
ecuted in parallel environment. In the dynamic approach, for each batch with
variable size, we incrementally compute relative support and extract frequent
edges. Finally, we join the frequent edges that share the common edge to extract
the frequent subgraphs above the relative support computed for the entire graph
stream data.

In addition, we also solve the problem of finding frequent subpaths from the
sequence of paths by using our proposed techniques. From experiments, we ob-
serve that our proposed static approach with linear strategy retrieved significant
number of frequent subpaths. The intention to propose these techniques is to
solve similar type of queries of constraint reachability which will be discussed in
Chapter 6.

125

Chapter 6

Query Processing Framework

A framework is defined as a generic combination of data and processes, where
sub-components may be substituted. This chapter integrates our contributions
and we propose a novel query processing framework to find paths for constrained
reachability queries. Section [6.1] gives a brief introduction about the framework
and its functionality. In section [6.2] we define the terminologies and discuss
the problem statement by identifying important research questions. Section [6.3
describes the proposed query processing framework and its flow with examples.
We perform experiments and analyze the usefulness of integrating every module

of the proposed framework in section [6.4]

6.1 Introduction

One of the fundamental operations to manage graph data is to find the reachabil-
ity from one vertex to another vertex in the graph. In real-time, the vertices and
edges of a graph consist of attributes. These attributes give information about
the type of vertices, type of relationship, and strength of the relationship between
vertices. These real-time constraints motivate us to find reachability between the
given vertices with vertex constraints and edge constraints.

To find the reachability for heterogeneous types of queries, the procesing struc-
ture is desired to fulfil the requirements of the user. Hence, query processing plays
a vital role. The query processing would mean the entire process (module) or ac-

tivity which involves query optimization, evaluation of query and extraction of

126

6.1 Introduction

resultant information from respective components. In this chapter, the query pro-
cessing starts when constraint reachability query is routed to a specific module.
We studied different constrained reachability techniques described in Chapter 2.
Our objective in this chapter is to propose a new query processing framework that
can find paths for different variants of constrained reachability queries efficiently.
Thus, we can apply our proposed techniques described in chapter 3 and chapter
4 for solving constraint reachability queries.

A framework [90] allows flexibility in choosing the most appropriate or avail-
able sub-modules as long as they perform the same specified functions. Integrated
framework is used to place all the components required to implement systems and
applications. We observe that collation of knowledge from different components
or modules is a complex task. This chapter integrates our contributions and
proposes a novel query processing framework to find paths for constrained reach-
ability queries.

Our proposed query processing framework can find paths for variants of con-
strained reachability queries. Using the proposed query processing framework,
we can store the resultant paths for queries in the Query Path Log (QPL) and
extract frequent subpaths from them. These frequent subpaths can be used to
handle similar queries. The results of the queries in QPL are used to solve the
same queries.

One of the applications of the query processing framework is in social net-
works. Social networks may include information in the form of multiple vertex
attributes values and edge attributes values. The constraints can be on the values
of vertex attributes and edge attributes. In real-time, large number of queries can
be invoked by many users to extract useful and unknown information from these
social networks. These queries can also be repeated or similar to the previous
queries. Our proposed framework can efficiently solve such queries. Our main

contributions in this chapter are described as follows:

e We proposed Query Path Log and updation to handle same queries.

e We proposed a novel query processing framework to efficiently find paths for
new queries, same queries and similar queries by integrating the proposed

techniques for constrained reachability queries in the framework.

127

6.2 Problem Description

e We evaluated the usefulness and efficiency of our proposed query processing

framework on real and synthetic datasets.

6.2 Problem Description

6.2.1 Problem statement

Consider Q={qi, q2, ..., qn} are the different types of queries with respect to
constraint reachability of a directed graph, for each q; € Q, owned by different
modules M= {m;, my, ..., m, } where m; # ¢, we find paths for the constrained
reachability queries efficiently.

Given a source vertex, destination vertex, and a set of vertex constraints or
edge constraints for the directed graph, the problem of finding paths for con-
strained reachability queries is to find the path between the given source vertex
and destination vertex satisfying the given constraints.

It includes finding paths for MCR queries for attributed graphs and bounded
LCR queries in case of weighted directed graphs. Besides, we identify techniques
to handle the same queries and similar queries. We also address the usage of
QPL and updating the paths and frequent subpaths in the log to handle such
constraint reachability queries.

By analyzing the constraint reachability queries, we answer the following ques-

tions:

e Which techniques are used to compute reachable paths for constraint reach-

ability queries based on constraints?
e How can we extract frequent subpaths from resultant paths?
e How can we update QPL?
e How can we handle new queries, same queries and similar queries?

For instance, let us consider a new MCR query ql(‘a’, ¢j’, ‘LH’, ‘xml’), for
the attributed graph of Figure 6.1l The resultant MCR path for the query ql is
‘a’; ‘¢’, 7’}. Now let us consider the bounded LCR query q2(‘P1’, ‘P7’, ‘SH’,

128

6.2 Problem Description

200) for the graph of the figure . The resultant bounded LCR path is {‘P1’,
‘P6’, ‘P7’}. Consider bounded LCR query q3(‘P1°, ‘P6’, ‘SH’, 200). Since 3 is
a similar query to that of ql, the resultant stored path is {‘P1’, ‘P6’}. Let us
consider another bounded LCR query q4(‘P1’, ‘P7’, ‘SH’, 200). Since g4 is the
same query as that of q2, the resultant stored path is {‘P1’, ‘P6’, ‘P7’}.

6.2.2 Definitions

Label-Constraint Reachability: Given two vertices, ‘vs’ and ‘vd’ in the edge
labeled directed graph G, and a label set A, where ‘vs’, ‘vd’ € V and A C Ty, if
there is a path p from vertex ‘vs’ to ‘vd’ whose path label L(p) is a subset of A,
i.e., L(p) C A, then we say ‘vs’ can reach ‘vd’ with label-constraint A. We also
refer to path p as an A-path from ‘vs’ to ‘vd’.[45]

LCR Query: Given two vertices ‘vs’ and ‘vd’, and a label set A, the label-
constraint reachability (LCR) query asks if there exists an A-path from ‘vs’ to
‘vd’.[45]

Path: “Given a graph G(V, E), a path p of length k from a vertex u to u' is a

sequence (v, vi, . . . , V) of vertices such that v; €V, 19 = u and v, = v and

Country: 1
IncomeGroup: H

Country: 1
IncomeGroup : H

skyl

Country: U
IncomeGroup : H

Country: 1
IncomeGroup: L

Country: 1
IncomeGroup: H

Country: 1
IncomeGm‘mp :L I Comcz;m_ ! ‘H Country: U
- franeer IncomeGroup : H

Figure (6.1) An instance of attributed graph for a toy email network

129

6.3 Proposed Query Processing Framework

(vi—1, v;) € E fori=1,2, ..., kA

Subpath: “A path Q in G is said to be a subpath of P if Q = (wo, wy, . . .,
wy), where (wy, wy, . . . ,wg) S a contiguous sub-sequence of path P(vy, vy, .
.y W), td.e., if, for some i such that 0 < i < i+kK < k, we have wy = v;, w; =

Vi1, - - - 5, Wr= Ui+k’-’;[41]

Bounded Label Constrained Reachable Paths: Given two vertices ‘vs” and
‘vd’, the label set AC T; and bound for the path-weight 6 € R* in an edge-labeled
weighted directed graph G’, if there is an A-path Ip; from ‘vs’ to ‘vd’ such that
the path weight C(lp;) < d, then we say ‘vs’ can reach ‘vd’ with label-constraint
A and the path weight bound §. In other words, it can also be referred as follows:
Given two vertices ‘vs” and ‘vd’, a label set A and bound ¢, the bounded label
constrained reachable paths are the A-paths Ip;, between ‘vs” and ‘vd’ that satisfy
the bounded path weight constraint C(lp;) < 4.

We referred and termed the Bounded Label Constrained Reachable Paths as
BLCRP.

Multidimensional Constraint Reachability: Given an attributed graph G,
a source vertex s, a destination vertex t, vertex constraint C'V,, and edge con-
straint CF,, the multidimensional constraint reachability query on attributed
graph verifies whether s can reach ¢ under vertex and edge constraint C'V,, CE,
188].

6.3 Proposed Query Processing Framework

In this section, we propose a novel query processing framework to find paths for

constraint reachability queries. The siginificant contributions are as follows:

e We extract the paths information for bounded LCR queries based on our

proposed query processing with landmark-based path indexing.

130

6.3 Proposed Query Processing Framework

e We extract the paths information for MCR queries using the proposed hash-

ing based heuristic search technique.

e We update these queries and paths information in our proposed Query Path
Log (QPL). We use this QPL to particularly handle the same queries and
similar queries. We propose a novel technique to extract frequent subpaths

from the QPL and update the log with the frequent subpaths information.

6.3.1 Query Path Log (QPL)

We construct QPL from new constraint reachability queries by storing the source
vertex, destination vertex, constraints, and resultant paths. For each new query,
we update the log by appending query information and resultant paths. The
QPL is retrieved when the new queries, same queries and similar queries appear.
QPL decides the type of query and subsequently identifies the respective modules
for further processing to obtain the resultant path. We update the log with new
queries/similar queries and the resultant paths. We extract frequent subpaths
from the log after reaching a certain number of paths to solve similar queries. We

maintain separate log files for BLCRP queries and MCR queries.

6.3.1.1 Query description

New Queries We identify a query as New query (NN), if the query is not found
in the QPL. Based on the type of constraints, the new query is executed as shown
in query processing framework of figure [6.2f to extract the resultant paths.

If the constraints are edge label and bound on path weights, we compute the
resultant constraint reachable paths using implicit landmark path indexing and
query processing [I5] explained in Chapter 3. If the constraints are on vertex
attribute and edge attribute values, then the proposed hashing based heuristic
search technique explained in Chapter 4 is invoked. For instance, consider a new
bounded LCR query ql (‘P1’, ‘P4’, “T’, 110). We invoke our proposed BLCRP
technique and retrieve the resultant path of {‘P1’, ‘P2’ ‘P3’, ‘P4’}. This query
and path information is added to the QPL.

131

seLIoN() AY[IqRYDRIY POUIRIISUO)) I0] JIoMowel] JUIssanol Aenl) (g'9) oS

6.3 Proposed Query Processing Framework
132

6.3 Proposed Query Processing Framework

Same Queries The same queries constitute the queries which are previously
executed using proposed techniques. Thus, the query information such as given
source vertex, destination vertex and constraints should match with at least one
of the query information from the records of QPL.

If the queries are same (), the results are directly extracted from the QPL
as shown in figure without executing the respective modules leading to faster
query processing. For instance, let us consider a bounded LCR query q2 (‘P1’,
‘P4’ “T", 110). Since q2 is same query as that of q1, the resultant path is retrieved
from QPL (Table is {‘P1’, ‘P2’, ‘P3’, ‘P4’}.

Similar Queries We identify the similar (S7) queries as those queries whose
source vertex or destination vertex are same, but constraints may differ. The
constraints can be members or subset of the constraints present in QPL. We
also consider similar queries whose source vertex and destination vertex can be
different but constraints are same.

We solve similar queries by extracting query and path information from fre-
quent subpaths of the QPL as shown in figure [6.2} For instance, let us consider
a bounded LCR query q3 (‘P3’, ‘P4’, ‘T, 110). We observe that in QPL file, 3
is similiar query to queries with ids QT1 and QT3 (Table as g3 has same
destination vertex as that of QT1 and QT3. Thus, the resultant path extracted
for solving q3 is {‘P3’, ‘P4’}.

True Queries The true queries are the queries that return atleast one path.
For instance, these queries are denoted with query id QT1, QT2,... in QPL file
as shown in Table . For example, the query ql (‘P1’, ‘P4’, ‘T’ 110) is a true
query with query id QT1 (Table[6.1)) and resultant path {‘P1’, ‘P2’, ‘P3’, ‘P4’} .

False Queries The false queries are the queries that have no paths. For in-
stance, these queries are denoted with query id QF1, QF2,... in QPL as shown in
Table For example, the query q4 (‘P9’, ‘P6’, ‘H’, 150) is a false query with
result “No path” as there doesn’t exist any path between ‘P9” and ‘P6’ satisfying
the given constraints. This query is denoted as QF1 in QPL as shown in the

Table G.11

133

6.3 Proposed Query Processing Framework

6.3.1.2 Path index construction

We initialize the log file by inserting the query information and results whenever
we invoke a new query. The query information includes source vertex, destina-
tion vertex, and constraints. The constraints can be vertex constraints or edge
constraints, or both. For instance, Table shows the QPL file for the constraint
reachability queries of graph of Figure |6.1

Table (6.1) Query Path Log
Query ID | Source | Destination | Constraint, Path

QT1 P Py T,110 {PU, P2, P3, P4’}
QF1 ‘P9’ ‘PG’ H,150 “No Path”

QT2 ‘P9’ ‘P4’ SH, 250 {‘P9’, ‘P5’, ‘P4’ }
QT3 ‘P2’ ‘P4’ T,100 {‘P2’, ‘P3’, ‘P4’}
QT4 ‘P2’ ‘P10’ NHT,210 | {‘P2’, ‘P5’, ‘P6’, ‘P10’}
QT5 P’ Py’ NHT,300 | {‘P1’, ‘P5’, ‘P6", P10’}
QF2 ‘P3’ ‘PG’ NH,100 “No Path”

6.3.1.3 Path index updation

Whenever a new query or similar query is executed, the QPL is updated as

follows:

e When a new query is encountered, based on type of constraints, either
BLCRP query or MCR query is identified. Then, module 1 of Chapter 3 or
module 2 of Chapter 4 is invoked that consists of our proposed techniques
to solve the query. Then, the resultant path information is updated along

with query information in QPL.

e When a similar query is encountered, the frequent subpath information can
be used to solve the similar query. If the similar query information does
not match the extracted frequent subpaths, then that query is considered

as new query.

134

6.3 Proposed Query Processing Framework

Frequent Subpaths Extraction Once the logis updated with previous queries
and their corresponding paths, the frequent subpaths are extracted from paths of
QPL by using our proposed techniques described in chapter 5. The constraints
of these subpaths are extracted and preserved to compare with the queries.

To extract constraints for the frequent subpaths of MCR queries, the con-
straints of corresponding paths in QPL are directly considered. This is because
the constraints of every subpath of the path in QPL remains same as the con-
straints of the corresponding path. But, for bounded LCR paths, the constraints
of the resultant frequent subpaths are to be verified before preserving, as the
constraints on edge labels for the corresponding paths are the subset of the given
set of edge labels. Hence, we extracted the constraints of subpaths for bounded
LCR paths from the given graph instead of QPL file.

For instance, we observe that, in Table the frequent subpaths extracted
using our proposed technique are { (‘P3’, ‘P4’), (‘P5’, ‘P6’, ‘P10’) }. The resultant
constraints for the frequent subpaths extracted from the graph of figure [6.3] are
{‘T", 100} and {‘HS’, 150 } respectively.

6.3.2 Integrated framework

We integrate our contributions by combining four modules and developing novel
query processing framework as shown in Figure [6.2] Given source vertex ‘s’, des-
tination vertex ‘¢’ and constraints as a query, the resultant path from ‘s’ to ‘¢’
satisfying the constraints is found using the following modules:

Module 1: In this module, we compute the Bounded Label Constrained Reach-
able Paths (BLCRP) using our proposed technique. It involves the new bounded
label constrained reachability query (N) execution. It is solved using the pro-
posed implicit landmark path indexing and query processing technique (described
in chapter 3). For instance, let us consider a new BLCRP query ql (‘P1’, ‘P4’
‘T’, 110) for the graph of figure The resultant path retrieved using this mod-
ule is {‘P1’, ‘P2’, ‘P3’, ‘P4’}.

Module 2: In this module, we compute paths for Multidimensional Constraint
Reachability (MCR) queries. When new multidimensional constraint reachability

query (N) is to be executed, we use our proposed hashing based heuristic search

135

6.3 Proposed Query Processing Framework

technique (described in chapter 4). For instance, let us consider a new MCR
query q7 (‘a’, §’, ‘LH’, ‘xml’) for the graph shown in figure The resultant
path retrieved using this module is {‘a’, ‘¢’, ‘j’}.

Module 3: In this module, we can extract the paths for similar queries (SI)
from the partial information of paths in the QPL. The partial information ex-
traction involves computing frequent subpaths from the paths in the log. The
frequent subpaths can be found based on our proposed static technique with lin-
ear strategy (described in chapter 5). For example, from the paths in Table ,
the frequent subpaths extracted using our proposed technique are {(‘P3’, ‘P4’),
(‘P5’, ‘P6’, ‘P10")}.

Module 4: The structure of QPL is shown in Table Each record of QPL
constitutes the query and its resultant path information. In this module, we ex-
tract the paths for same queries (S) from the QPL. QPL also stores the Updated
New Queries Results (UNQR) and Updated Similar Queries Results (USIQR)

from the respective modules.

6.3.2.1 Types of queries

We demonstrate the types of constrained reachability queries through the follow-
ing cases:

Case 1: The bounded LCR query for which at least one path exists. For in-
stance, let us consider LCR query ql(‘P1’, ‘P4’, “T”, 100) for the graph of the
Figure[6.3] The resultant bounded LCR path is {‘P1’, ‘P2, ‘P3’, ‘P4'}.

Case 2: The bounded LCR query for which there doesn’t exist any path satisfy-
ing the given label-set constraint. For instance, let us consider the query q2(‘P2’,
‘P10’, ‘HT", 170). The result for q2 is no path exists between ‘P2’ and ‘P10’.
Case 3: The same bounded LCR query, for which at least one path exists. For
instance, let us consider bounded LCR query q3(‘P1’, ‘P4’, “T", 100) for the graph
of the Figure [6.3] q3 is same query as that of q1 and thus, its resultant LCR
path is {‘P1’, ‘P2’, ‘P3’, ‘P4’}.

Case 4: The multidimensional constraint reachability query with vertex con-

straints or edge constraints or both for which at least one path exists. Let us

136

6.3 Proposed Query Processing Framework

consider a new constraint reachability query q4(‘a’, ‘j’, ‘[:H’, ‘xml’), for the graph
of Figure [6.1. For the given query g4, the source vertex ‘a’ can reach the desti-
nation vertex ‘j’ via vertex ‘¢’ while satisfying the given vertex constraints ‘I:H’
and the edge constraint ‘xml” along the path. The resultant constraint reachable
path is {‘a’, ‘¢’, j’}.

Case 5: There can exist a multidimensional constraint reachability query for
which there does not exist any path in the entire graph even without satisfying
the given label set constraint. For instance, let us consider MCR query q5(‘k’,
‘e’, ‘I, ‘xml’). The result for g5 is no path exists between ‘k’ and ‘e’.

Case 6: The same multidimensional constraint reachability query for which at
least one path exists. For example, let us consider the constraint reachability
query g6(‘a’, j’, ‘I:H’, ‘xml’). 6 is same query as that of q4 and thus, its resul-
tant path is {‘a’, ‘¢’, j’}.

Case 7: There can exist a reachability query for which there exists a path p
whose edge labels along the path are not the subset of the given label set. For
instance, let us consider bounded LCR query q7(‘P2’, ‘P10°, ‘NT’, 150). There
exists a path {‘P2’, ‘P5’, ‘P6’, ‘P10’} with the path label ‘NHT’ which is not
subset of the given edge-label constraint ‘NT".

We work on finding paths for the reachability queries with constraints for the

cases 1-5. Cases 1-3 are queries related to bounded label constrained reachable

9 P10

33:T

P3¢

46:T

P4

P9

Figure (6.3) Road network

137

6.3 Proposed Query Processing Framework

paths. Cases 4-6 are queries related to multidimensional constraint reachable
paths. Case 7 is a why-not reachability query which is beyond the scope of the
thesis and can be considered for future research directions. Currently, Case 7

type of queries are considered as new queries in our proposed framework.

6.3.3 Flow and functionality of modules

Algorithm QPModules (Query Processing Modules) describes the flow of frame-
work and functionality of modules. For each constrained reachability query q; of
the given graph G, the resultant path information rp; is retrieved. First, the QPL
of module 4 is invoked for verifying the query q; in which the given source and
destination vertices and constraints are checked for matching. If match exists,

the resultant path information is retrieved.

Algorithm 14: QPModules

Input : Constrained Reachability Queries Q={q1, q2, ...q;}, graph G, minsup
= minimum support threshold
Output: Path Information rp;
// QPL storing query information and its path information
for each query ¢; of graph G do
if query ¢; € QPL then
| return rp; from QPL of Module 4
else
if isSimilarQuery(q;) then
return rp; from FS with the given minsup of Module 3
| Update QPL with q; and rp; in Module 4

else

if isBLCRPQuery(¢;) then
L return rp; from BLCRP technique of Module 1

Update QPL with q; and rp; in Module 4

if isMCRQuery(q;) then
L return rp; from MCR technique of Module 2

Update QPL with q; and rp; in Module 4

If the match is not found in QPL, module 3 is invoked. In module 3, the

similar queries are solved by extracting frequent subpaths from paths of the QPL

138

6.4 Experimental Evaluation

in which the given source and destination vertices and constraints are checked
for matching and resultant paths are retrieved. Here, the frequent subpaths are

extracted from paths using our proposed techniques described in Chapter 5.

If the query is a new query and bounded LCR query, then module 1 is invoked
in which the proposed implicit landmark path indexing and query processing
technique (described in Chapter 3) is executed. If the query is a new query
and multidimensional constraint reachability query, then module 2 is invoked in
which proposed hashing based heuristic search technique (described in Chapter
4) is executed. After the query is processed, module 4 updates the new query
information or similar query information and their respective resultant paths in
the QPL as shown in figure [6.2

6.4 Experimental Evaluation

During experimental evaluation of our proposed framework, murmur hash func-
tion [2] is used for hashing. We constructed the supergraph by using the existing
ANCA clustering [37]. We assumed the number of super vertices to 15 and con-
structed the supergraph for all the datasets. While constructing landmark path
index, we considered k=[sqrt(n)] and b=20 based on the parameter values set

in [79] for the proposed approach.

6.4.1 Datasets description

Table summarizes the real and synthetic datasets used for experiments. We
generated synthetic graphs from SNAP [53]. We assigned randomly vertex at-
tribute values for the vertices and edge attribute values for the edges. Table (6.3

states the synthetic vertex attributes that are assigned randomly to the datasets.

6.4.1.1 Robots

Robots is a real trust network [I] with edge labels that denote the level of trust

interaction between the users. We pre-process the dataset by assigning unique

139

6.4 Experimental Evaluation

Table (6.2) Datasets Overview
Real Graph V| | |E]|
Robots [1] 1724 | 3596
Synthetic Graph | |V| | |E|
Erdos-Renyi [23] | 1000 | 2000

identifier to the vertices, thus, resulting in 1724 vertices and 3596 edges. Each
vertex has synthetic attributes whose values are randomly assigned (Table .
Each edge has Trustlevel as the real attribute whose value is derived from the
data set. The trust level can be Master (M), Apprentice (A), Journeyer (J) or
Observer (O).

6.4.1.2 FErdos-Renyi Graph

Erdos-Renyi (E-R) graphs are the synthetic graphs that follow power law dis-
tribution [I3]. These graphs have their degree near uniformly distributed. We
generate E-R graph using SNAP [53] with number of vertices set to 1000 and
maximum degree for each vertex set to 2. Besides, we assign two attributes (as
described in Table for each vertex with randomly assigned values within the
domain. For BLCRP queries, we randomly assigned edge weights in the range

[10, 120]. In addition, we assigned one of 8 unique edge labels for every edge.

Table (6.3) Vertex attributes and edge attributes

Vertex Attribute | Domain Size, Distribution
Country 5, uniform
Region 3, uniform

6.4.2 Query generation

We generated true BLCRP queries through BFS based query generation process
[79] with same queries for the datasets. Besides, we also generated true MCR

queries based on constrained BFS for both the real and synthetic datasets.

140

6.4 Experimental Evaluation

6.4.3 Experiments and result analysis

We performed extensive experiments to evaluate our proposed query processing
framework on real and synthetic datasets. We compared the average execution
time of our proposed techniques with and without QPL for BLCRP queries and
MCR queries. Besides, we extracted frequent subpaths and updated it in the
QPL.

We use our proposed Implicit Path LandMark indexing and query processing
technique (IPLM) [I5] described in Chapter 3 to solve BLCRP queries. We
denote IPLM_QPL as the proposed technique that uses landmark path indexing
and query processing for new queries and the resultant paths are stored in the
QPL. If the query is same query, the resultant paths are retrieved from QPL. We
denote IPLM_Q)PLFS as our proposed technique, in which we extract frequent
subpaths and update with their constraints information into QPL. We extracted
the frequent subpaths from the resultant paths by using our proposed static single
window technique with linear strategy [16]. If the query is same query or similar
query, we can invoke QPL with frequent subpaths to extract the resultant paths.

Similarly, for MCR queries, we evaluate the query processing framework by
finding average execution time using our proposed Extended Heuristic search
technique with Matrix Factorization technique (FHMF') described in Chapter 4.
We denote EHMF_QPL to denote the usage of proposed technique and QPL for
new queries and same queries. We denote FHMF_QPLFS to denote the updation
of QPL with frequent subpaths information.

Table (6.4) Average query execution time in milliseconds(ms) of proposed tech-
niques on BLCRP queries for Robots dataset

Technique Average Execution Time(ms)
IPLM 0.095
IPLM_QPL 0.00775
IPLM_QPLFS 0.085

141

6.4 Experimental Evaluation

6.4.3.1 Experiment # 1: Testing on the real and synthetic datasets

with fixed number of queries

We generated 100 BLCRP true queries and 100 MCR true queries randomly for
the real and synthetic datasets with atleast 20% of same queries. Table shows
the average execution time for BLCRP queries of Robots dataset. From the
table, we observe that our proposed technique with QPL, i.e., IPLM_QPL has

lesser execution time than the IPLM technique.

Table (6.5) Average query execution time of proposed techniques on BLCRP
queries for E-R graphs

Technique | Average Execution Time(ms)
IPLM 0.005
IPLM_QPL 0.000211
IPLM_QPLFS 0.00023

Table shows the average query execution time of MCR queries with only
vertex constraints for Robots dataset. We observe that our proposed technique
with QPL and frequent subpaths, i.e. EHMF_QPLFS has faster execution time
than the EHMF technique. Furthermore, our proposed technique with only QPL,
i.e. EHMF_QPL has relatively lesser average execution time than EHMF, reveal-
ing the usefulness of QPL. Table [6.5(and Table show the average query exe-
cution time of BLCRP queries and MCR queries respectively for E-R graphs.
For MCR queries, we observe that EHMF_QPLFS has lesser execution time
than only EHMF and EHMF_QPL. Besides, for BLCRP queries, IPLM_QPL and
IPLM_QPLEFS executed faster than only IPLM technique. These results reveal

the usefulness of our proposed query processing framework.

Table (6.6) Average query execution time of proposed techniques on MCR
queries for E-R graphs

Technique Average Execution Time(ms)
EHMF 14.322
EHMF_QPL 3.681
EHMF_QPLFS 0.148

142

6.4 Experimental Evaluation

O A % IPLM
< IPLM_QPL
IPLM_QPLFS

ExecutionTime (microsec)

300 400 500

|Number of Queries|

Figure (6.4) Average execution time with varying number of BLCRP queries

for E-R graphs

Table (6.7) Average query execution time of proposed techniques on MCR

queries for Robots dataset

Technique Average Query Execution Time (ms)
EHMF 359.39
EHMF_QPL 206.04
EHMF_QPLFS 0.29025

6.4.3.2 Experiment # 2: Varying number of queries

In this experiment, we generated true BLCRP queries varying from 100 to 500

for E-R graphs and computed average query execution time of our proposed

techniques. Figure [6.4] shows the average query execution time with varying

number of queries. We observe by using our proposed technique with QPL, the

average query execution time is lesser thus revealing the efficiency of our proposed

query processing framework.

143

6.5 Conclusions

6.5 Conclusions

We proposed a novel query processing framework to find paths for constrained
reachability queries. We proposed an efficient QPL based technique to solve
the same queries or similar queries efficiently. We identified the use of extracting
frequent subpaths for handling similar queries. Using our proposed query process-
ing framework, we integrated our contributions to get the resultant constrained
reachable paths. We evaluated the integration of modules of our proposed query
processing framework on real and synthetic datasets. We observed that by using
our proposed technique with QPL, the average query execution time is lesser thus

revealing the efficiency of our proposed query processing framework.

144

Chapter 7

Conclusions and Future Scope

7.1 Conclusion

In this thesis, we focused on finding paths for constrained reachability queries
through efficient techniques. The constraints include membership based edge-
label constraints, bound on path weight and multidimensional vertex constraints
and edge constraints.

In Chapter 3 of the thesis, we introduced a novel problem of finding bounded
paths for label constrained reachable paths. Given source vertex, destination
vertex, edge label constraint and bound on path weight, the bounded label con-
strained reachable query finds the path between the vertices satisfying the con-
straints. We proposed an efficient landmark path indexing and query processing
technique to solve the bounded label constrained reachable paths in edge labeled
weighted directed graphs. In our proposed indexing technique, we identified dif-
ferent combinations of path labels and path weights for which minimality of label
sets and Dijkstra’s relaxation property need to be considered. We evaluated our
proposed technique on real and synthetic graphs. We also evaluated the accuracy
of our proposed techniques using measures such as precision, recall and performed
statistical analysis.

We investigated the problem of finding the existence of paths for MCR. queries
in Chapter 4 of the thesis. We observed that indexing multiple vertex attribute
combinations or edge attribute combinations can be efficiently performed through

hashing. We observed and identified that matrix factorization based clustering

145

7.2 Future Scope

that considers both graph topology and attributes is an efficient clustering tech-
nique that can be used to solve multidimensional constrained reachability queries.
We proposed an extended heuristic search by using the clustering and evaluated
our proposed techniques on real and synthetic benchmark datasets.

We also discussed the problem of finding frequent subgraphs from graph
streams in Chapter 5 of the thesis. We observed that the state-of-the-art tech-
niques in the literature do not consider historical information which may lead to
loss of significant frequent subgraphs. We proposed static single window technique
and also applied actual threshold to retrieve the frequent subgraphs. Besides, we
proposed dynamic window filtering techniques with relative support to incremen-
tally find frequent edges and thus frequent subgraphs. One of the significant
contribution of the thesis is that we related our proposed static and dynamic
window filtering techniques to find frequent subpaths from the sequence of paths.

In chapter 6 of the thesis, we proposed a novel query processing framework
integrating our contributions to find paths for constrained reachability queries.
In the proposed framework, we solved new queries by applying our proposed tech-
niques. The query information and resultant paths are stored in QPL. Besides,
frequent subpaths are also extracted using our proposed techniques and updated
in the log. We handled same queries and similar queries using the log to retrieve
relevant constrained reachable paths. QPL plays an important role by handling
all types of queries efficiently and triggering the respective modules of framework.
We evaluated the efficiency of our proposed query processing framework on real

and synthetic datasets.

7.2 Future Scope

In future, we can optimize the proposed technique for finding bounded constrained
reachable paths by using path compression techniques to compress the intermedi-
ate paths. We can investigate further to find an efficient maintenance algorithm
for adding and removing edges during landmark path indexing. The impact of
such edges during the indexing can measured and evaluated in case of dynamic

graphs [67]. The index construction time is still relatively high for the large

146

7.2 Future Scope

datasets. It can be reduced further only with trade-off in terms of memory or
speed-up.

We can extend our research by applying our proposed techniques to find paths
for all LCR queries in edge-labeled directed graphs. We can also extend our
research to find the distance between the vertices satisfying the given edge label
constraints. Besides, we can do finer analysis of the impact of graph topology on
the performance of queries. We can investigate the implementation of landmark
path indexing in multi-core or distributed environments [43]. Further, we can
apply the landmark path index to practical query languages like OpenCypher
queries and validate its use.

In addition, we can extend our work on MCR queries by finding an efficient
index or computing extra hash values for membership based constraint reacha-
bility queries or reachability queries with set attribute constraints. We can also
extend our research by constructing hash-based index for dynamic graphs.

Moreover, we can perform extensive study to perform attributed clustering
for dynamic graphs. We can further optimize the super graph construction by
constructing directed acyclic graph from the super graph and analyze its impact
on solving multidimensional constrained reachability queries. We can also use
our proposed technique to solve constrained reachability queries for single source
vertex and multiple destination vertices. We can further perform research to
identify techniques to find reachability between the given vertices with constraints
specified on only some of the vertex attributes or edge attributes which is beyond
the scope of the thesis.

In this thesis, we assumed that the vertex and edge attribute values are inde-
pendent of each other and are discrete. In future, we can investigate the functional
dependencies between attributes and their impact during clustering. Besides, we
can extend our research to validate attribute values, to update the attribute val-
ues and remove outdated attributes while solving multidimensional constrained
reachability queries.

We can further extend our proposed techniques to find frequent subgraphs
by applying distributed techniques to partition the large dataset. We can then
apply the proposed techniques to each partition and then group the resultant
frequent subgraphs of each partition to get the final frequent subgraphs. We

147

7.2 Future Scope

can also extend by extracting frequent subgraphs from graph streams arriving
from different sources. We observed from the experiments that we can compute
the actual minimum support for the relative support of our proposed dynamic
sliding window filtering technique which is part of our future work. In addition,
we can extend by computing the actual minimum support to extract the frequent
sub patterns based on the user minimum support using fuzzy membership based
approach and analyse its efficiency. Besides, we can use our proposed techniques
that extract frequent subpaths from the sequence of paths to compress the stored
paths while indexing paths.

We can further optimize the proposed query processing framework by finding
the partial information from stored paths and applying algebra to constraints
of similar queries. Thus, we can identify and analyse the special cases for solv-
ing similar constrained reachability queries. Besides, we can investigate on the
efficient storage and retrieval of query logs with queries and resultant paths. Fur-
thermore, we can extend our proposed QPL and framework to find constrained
reachable paths for undirected graphs. We can extend our proposed framework
to identify the techniques that consider other real-time constraints like bound on
edge weights. We can also apply the proposed framework on specific scenarios like
social networks and transportation networks. Our proposed techniques cannot
be applied on hierarchical graphs or layered graphs where each layer has unique
labels. The study and implementation of constrained reachability techniques on

such graphs is beyond the scope of the thesis.

148

References

9]

Robots. http://tinyurl.com/gnexfoy/, 2017. (58] 59 140))

Murmur Hash. https://sites.google.com/site/murmurhash/, 2011.

Y

Tweet Statistics, 2020. (4]

Connect4. https://wwuw.kaggle.com/tbrewer/connect-4.
Neo4j. https://neo4j.com/.

InfiniteGraph. https://www.objectivity.com/products/
infinitegraph/, 2020.

Twitter FlockDB. https://github.com/twitter/flockdb.

CHARU C AGGARWAL, YAO L1, PuiLip S Yu, AND RuoMING JIN. On
dense pattern mining in graph streams. Proceedings of the VLDB FEn-

dowment, 3(1-2):975-984, 2010. (17}

CHARU C. AGGARWAL AND HAIXUN WANG. Graph Data Management and
Mining: A Survey of Algorithms and Applications. Springer US, 2010. ,

14 11 [75)

[10] R. AGrAawAL, A. BORGIDA, AND H. V. JacaDisH. Efficient Man-

agement of Transitive Relationships in Large Data and Knowledge
Bases. In Proceedings of the 1989 ACM SIGMOD International Conference
on Management of Data, SIGMOD ’89, pages 253-262, New York, NY, USA,

1989. ACM. (T4}

149

http://tinyurl.com/gnexfoy/
https://sites.google.com/site/murmurhash/
https://www.kaggle.com/tbrewer/connect-4
https://neo4j.com/
https://www.objectivity.com/products/infinitegraph/
https://www.objectivity.com/products/infinitegraph/
https://github.com/twitter/flockdb

REFERENCES

[11] TAKUYA AKIBA, YOICHI IWATA, AND YUICHI YOSHIDA. Fast exact
shortest-path distance queries on large networks by pruned land-
mark labeling. In Proceedings of the 2013 ACM SIGMOD International
Conference on Management of Data, pages 349-360. ACM, 2013.

[12] M. T. AL AmiN, C. AGGARWAL, S. YAO, T. ABDELZAHER, AND L. KA-

PLAN. Unveiling polarization in social networks: A matrix factoriza-
tion approach. In I[EEE INFOCOM 2017 - IEEE Conference on Computer

Communications, pages 1-9, 2017. ,

[13] RKA ALBERT AND ALBERT LSZL BARABSI. Statistical mechanics of
complex networks. Rev. Mod. Phys, pages 47-94, 2002. 140))

[14] TuoMAs TiMM ANGELA BONIFATI, WIM MARTENS. An Analytical
Study of large SPARQL query logs. VLDB Journal, 29(2-3):655-679,

2020.

[15] BHARGAVI B. AND SWARUPA RANI K. Implicit Landmark Path Index-
ing for Bounded Label Constrained Reachable Paths. International
Journal of Recent Technology and Engineering (IJRTE), 8(4):10, 2019. (131},
141))

[16] BHARGAVI B. AND K. SwARUPA RANI. Finding Frequent Subgraphs
and Subpaths through Static and Dynamic Window Filtering Tech-
niques. FAI Endorsed Transactions on Scalable Information Systems, 7(27),

4 2020. (T47)

[17] CHR1S BARRETT, RIKO JACOB, AND MADHAV MARATHE. Formal-
Language-Constrained Path Problems. SIAM J. Comput., 30(3):809—

837, May 2000. (L6}

[18] HANNAH BAST, DANIEL DELLING, ANDREW GOLDBERG, MATTHIAS
MULLER-HANNEMANN, THOMAS PAJOR, PETER SANDERS, DOROTHEA
WAGNER, AND RENATO F WERNECK. Route planning in transporta-
tion networks. In Algorithm engineering, pages 19-80. Springer, 2016. (18]

150

REFERENCES

[19] ScoTT BEAMER, KRSTE ASANOVIC, AND DAVID PATTERSON. Direction-
optimizing breadth-first search. In SC’12: Proceedings of the Interna-

tional Conference on High Performance Computing, Networking, Storage and

Analysis, pages 1-10. IEEE, 2012.

[20] B. BHARGAVI AND K. SwARUPA RANI. Bounded Paths for LCR
Queries in Labeled Weighted Directed Graphs. In MAYANK SINGH,
P. K. GupTa, VIPIN TYAGI, JAN FLUSSER, AND TUNCER OREN, editors,
Advances in Computing and Data Sciences, pages 124—133, Singapore, 2018.

Springer Singapore. [75] [113]

[21] B BHARGAVI AND KP SUPREETHI. Graph pattern mining: A survey of

issues and approaches. International Journal of Information Technology,
5(2):401-407, 2012.

[22] ALBERT BIFET, GEOFF HOLMES, BERNHARD PFAHRINGER, AND RI-
CARD GAVALDA. Mining Frequent Closed Graphs on Evolving Data
Streams. In Proceedings of the 17th ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining, KDD 11, pages 591-599,
New York, NY, USA, 2011. ACM. (96|

[23] KyouNGsoO BOK, JAEYUN JEONG, DoJIN CHOI, AND JAESOO YOO.
Detecting Incremental Frequent Subgraph Patterns in IoT Envi-

ronments. Sensors, 18(11):4020, Nov 2018. [97] [L02)

[24] FRANCESCO BoONCHI, ARISTIDES GIONIS, FRANCESCO GULLO, AND
ANTTI UKKONEN. Distance oracles in edge-labeled graphs. In Proceed-

ings of the 17th International Conference on Extending Database Technology,
EDBT 2014, Athens, Greece, March 24-28, 2014., pages 547-558, 2014. (21}

43)

[25] L1t CHEN, AMARNATH GUPTA, AND M. ERDEM KURUL. Stack-based
Algorithms for Pattern Matching on DAGs. In Proceedings of the 31st
International Conference on Very Large Data Bases, VLDB 05, pages 493~
504. VLDB Endowment, 2005.

151

REFERENCES

[26) MINGHAN CHEN, YU Gu, YUBIN BAo, AND GE Yu. Label and
Distance-Constraint Reachability Queries in Uncertain Graphs. In
Database Systems for Advanced Applications, pages 188-202, Cham, 2014.

Springer International Publishing. , ,

[27] YANGJUN CHEN AND YIBIN CHEN. An Efficient Algorithm for An-
swering Graph Reachability Queries. In Proceedings of the 2008 IEEE
24th International Conference on Data Engineering, ICDE *08, pages 893-902,
Washington, DC, USA, 2008. IEEE Computer Society. ,

[28] EpiTH COHEN, ERAN HALPERIN, HAIM KAPLAN, AND URI ZWICK.
Reachability and Distance Queries via 2-hop Labels. In Proceedings
of the Thirteenth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 02, pages 937-946, Philadelphia, PA, USA, 2002. Society for Indus-

trial and Applied Mathematics. ,

[29] DIANE J. COOK AND LAWRENCE B. HOLDER. Mining Graph Data. John
Wiley & Sons, Inc., USA, 2006. ([

[30] THOMAS H. CORMEN, CHARLES E. LEISERSON, RONALD L. RIVEST,
AND CLIFFORD STEIN. Introduction to Algorithms, Third Edition. The MIT

Press, 3rd edition, 2009. (22

[31] ALFREDO CUZZOCREA, ZHAO HAN, FAN JIANG, CARSON K. LEUNG, AND
Hao Zuanc. Edge-based Mining of Frequent Subgraphs from Graph
Streams. Procedia Computer Science, 60:573-582, 2015. Knowledge-Based
and Intelligent Information & Engineering Systems 19th Annual Conference,

KES-2015, Singapore, September 2015 Proceedings. , , , @,
(101} 102} {104} [L16])

[32] DANIEL DELLING, ANDREW V GOLDBERG, THOMAS PAJOR, AND RE-
NATO FF WERNECK. Robust distance queries on massive networks. In

European Symposium on Algorithms, pages 321-333. Springer, 2014.

[33] RiIcHARD O. DupA, PETER E. HART, AND DAVID G. STORK. Pattern
Classification (2nd Edition). Wiley-Interscience, USA, 2000. ,

152

REFERENCES

[34] Jack EDMONDS. Optimum branchings. Journal of Research of the na-
tional Bureau of Standards B, 71(4):233-240, 1967.

[35] AMIT EREZ AND ALEXANDER NADEL. Finding Bounded Path in
Graph Using SMT for Automatic Clock Routing. In CAV (2), 9207
of Lecture Notes in Computer Science, pages 20-36. Springer, 2015.

[36) PETROS PETROU ET AL. ARGO: A Big Data Framework for Online
Trajectory Prediction. In Proceedings of the Sixteenth International Sym-
posium on Spatial and Temporal Databases, SSTD 19, pages 194-197. ACM,

2019.

[37] Issam FALIH, NISTOR GROZAVU, RUSHED KANAWATI, AND YOUNES
BENNANI. ANCA : Attributed Network Clustering Algorithm. In
Complex Networks € Their Applications VI, pages 241-252, Cham, 2018.

Springer International Publishing. |§|, , , ,

[38] WENFEI FAN, JIANZHONG L1, SHUAT MA, NAN TANG, AND YINGHUI
Wu. Adding regular expressions to graph reachability and pattern
queries. In ICDE Proceedings, pages 39-50. IEEE Computer Society, 2011.

(131 R0l 22} [13)

[39] MicHAEL J. FOLK, GREG RICCARDI, AND BILL ZOELLICK. File Struc-
tures: An Object-Oriented Approach with C++. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 3rd edition, 1997.

[40] SunpipTO GUHA, ANDREW MCGREGOR, AND DAVID TENCH. Vertex
and Hyperedge Connectivity in Dynamic Graph Streams. In Pro-
ceedings of the 34th ACM SIGMOD-SIGACT-SIGAI Symposium on Princi-
ples of Database Systems, PODS 15, pages 241-247, New York, NY, USA,

2015. ACM. (28|

[41] SUMANTA GUHA. Finding frequent subpaths in a graph. International
Journal of Data Mining & Knowledge Management Process, 4(5):35, 2014.

(29 P8} [102 [£30)

153

REFERENCES

[42] MONIKA R. HENZINGER, PRABHAKAR RAGHAVAN, AND SRIDHAR RA-
JAGOPALAN. Computing on Data Streams. In JAMES M. ABELLO AND
JEFFREY SCOTT VITTER, editors, Fxternal Memory Algorithms, pages 107—
118. American Mathematical Society, kston, MA, USA, 1999.

[43] Li-Yunc Ho, JAN-JAN WU, AND PANGFENG L1U. Workload prediction
and balance for distributed reachability processing for large-scale

attribute graphs. Concurrency and Computation: Practice and Ezxperience,

30(6):1-19, 2018. 4]

[44] ZENGFENG HUANG AND PAN PENG. Dynamic Graph Stream Algo-
rithms in O(n) Space. Algorithmica, 81(5):1965-1987, May 2019. (28] [06]
101))

[45] RuoMING JIN, Hut HONG, HAIXUN WANG, NING RUAN, AND YANG XI-
ANG. Computing Label-constraint Reachability in Graph Databases.
In Proceedings of the 2010 ACM SIGMOD International Conference on Man-
agement of Data, SIGMOD ’10, pages 123-134, New York, NY, USA, 2010.

ACM. @ B [15 [22 B3, B4 B7 B9 B2 B3} (75} [129)

[46] RuoMING JIN, LiN Liu, BOLIN DING, AND HAIXUN WANG. Distance-

constraint reachability computation in uncertain graphs. Proceedings
of the VLDB Endowment, 4(9):551-562, 2011.

[47] RUOMING JIN, YANG XIANG, NING RUAN, AND DAvID FUHRY. 3-HOP:
A High-compression Indexing Scheme for Reachability Query. In
Proceedings of the 2009 ACM SIGMOD International Conference on Man-
agement of Data, SIGMOD ’09, pages 813-826, New York, NY, USA, 20009.

ACM.

[48] RUOMING JIN, YANG XIANG, NING RUAN, AND HAIXuN WANG. Ef-
ficiently Answering Reachability Queries on Very Large Directed
Graphs. In Proceedings of the 2008 ACM SIGMOD International Confer-
ence on Management of Data, SIGMOD 08, pages 595-608, New York, NY,

USA, 2008. ACM. (4,

154

REFERENCES

[49] MARTIN JUNGHANNS, ANDRE PETERMANN, MARTIN NEUMANN, AND
ERHARD RAHM. Management and Analysis of Big Graph Data: Cur-
rent Systems and Open Challenges. Handbook of Big Data Technologies,
page 457, 2017. (4)

[50] RoHIT KUMAR, SANMEET KAUR, AND K. SWARUPA RANI (SUPERVI-
SOR). Finding Frequent Subgraphs using Direct Vertical Mining from Graph
Streams. Master’s thesis, (MCA), School of Computer and Information Sci-
ences, University of Hyderabad, India, 2019.

[51] Max R. LAND AND LINYUAN Lu. An Upper Bound on the Burn-
ing Number of Graphs. In WAW, 10088 of Lecture Notes in Computer
Science, pages 1-8, 2016. ({44])

[52] CHANG-HUNG LEE, CHENG-RU LIN, AND MING-SYAN CHEN. Sliding
window filtering: an efficient method for incremental mining on a
time-variant database. Information Systems, 30(3):227-244, 2005. (|15}

29} 99} [r03)

[53] JURE LEscovEc. SNAP: A general purpose network analysis and
graph mining library in C+4++4. <Khttp://snap.stanford.edu/snap>.,

2016. (3 [F9% 0 B} (121, 139} [170)

[54] JURE LESKOVEC, JON KLEINBERG, AND CHRISTOS FALOUTSOS. Graph
Evolution: Densification and Shrinking Diameters. ACM Trans.
Knowl. Discov. Data, 1(1), March 2007.

[55] CARSON K. LEUNG AND ALFREDO CUZZOCREA. Frequent Subgraph
Mining from Streams of Uncertain Data. In Proceedings of the Fighth

International C* Conference on Computer Science € Software Engineering,
C3S2E 15, pages 18-27, New York, NY, USA, 2008. ACM.

[56] CARSON KAI-SANG LEUNG, FAN JIANG, ADAM G. M. PAZDOR, AND
AARON M. PEDDLE. Parallel Social Network Mining for Interesting
following’ Patterns. Concurr. Comput.: Pract. Ezper., 28(15):3994-4012,

October 2016.

155

<http://snap.stanford.edu/snap>.

REFERENCES

[57] ANKITA LIKHYANI AND SRIKANTA BEDATHUR. Label Constrained
Shortest Path Estimation. In Proceedings of the 22Nd ACM Interna-
tional Conference on Information € Knowledge Management, CIKM ’13,

pages 1177-1180, New York, NY, USA, 2013. ACM. 33

[58] BINGQING Lyu, Lu QIN, XUEMIN LIN, LIJUN CHANG, AND JEFFREY XU
YUu. Scalable supergraph search in large graph databases. In 2016
IEEE 32nd International Conference on Data Engineering (ICDE), pages

157-168. IEEE, 2016.

[59] SHUAI MA, JiA L1, CHUNMING Hu, XUELIAN LIN, AND JINPENG HUAL

Big graph search: challenges and techniques. Frontiers of Computer
Science, 10(3):387-398, 2016.

[60] GRZEGORZ MALEWICZ, MATTHEW H. AUSTERN, AART J. C BIK,
JAMES C. DEHNERT, ILAN HORN, NATY LEISER, AND GRZEGORZ CZA-
JKOWSKI. Pregel: A System for Large-Scale Graph Processing. In
Proceedings of the 2010 ACM SIGMOD International Conference on Man-
agement of Data, pages 135-146, NewYork, NY, USA, 2010. ACM.

[61] ANDREW MCGREGOR. Graph Stream Algorithms: A Survey. SIG-
MOD Rec., 43(1):9-20, May 2014. [96], [101))

[62] PASQUALE DE MEO, KATARZYNA MUSIAL-GABRYS, DOMENICO ROSACI,
GIUSEPPE ML SARNE, AND LORA AROYO. Using centrality measures to

predict helpfulness-based reputation in trust networks. ACM Trans-
actions on Internet Technology (TOIT), 17(1):1-20, 2017. (|19

[63] CHRISTIAN VON MERING, MARTIJN HUYNEN, DANIEL JAEGGI, STEF-
FEN SCHMIDT, PEER BORK, AND BEREND SNEL. STRING: a database

of predicted functional associations between proteins. Nucleic acids
research, 31(1):258-261, 2003. ([35))

[64] M. E. J. NEWMAN. Networks: an introduction. Oxford University Press,

2010.

156

REFERENCES

[65] G. Q1, C. C. AGGARWAL, AND T. HuaNG. Community Detection
with Edge Content in Social Media Networks. In 2012 IEEE 28th
International Conference on Data Engineering, pages 534-545, 2012. , ,

[66] Miao Qiao, HoNG CHENG, Lu QIN, JEFFREY XU YU, S YU PHILIP,
AND L1juN CHANG. Computing weight constraint reachability in large

networks. The VLDB journal, 22(3):275-294, 2013. (22 [42] [43)

[67] YONGRUI QIN, QUAN Z SHENG, SIMON PARKINSON, AND NickKoLAS JG
FALKNER. Edge Influence Computation in Dynamic Graphs. In Inter-

national Conference on Database Systems for Advanced Applications, pages

649-660. Springer, 2017. 146

[68] SHERIF SAKR, SAMEH ELNIKETY, AND YUXIONG HE. G-SPARQL: A
Hybrid Engine for Querying Large Attributed Graphs. Technical
Report MSR-TR-2011-138, Microsoft Research, December 2011. ,

[69] STEPHAN SCHWARTZ, LEONARDO BALESTRIERI, AND RALF
BORNDORFER. On Finding Subpaths With High Demand. In
Operations Research Proceedings 2017, pages 355-360, Cham, 2018. Springer

International Publishing. (29} [102))

[70] YINGXIA SHAO, BIN Cul, AND LIN MA. Page: a partition aware engine
for parallel graph computation. [FEFE Transactions on Knowledge and
Data Engineering, 27(2):518-530, 2014. (12))

[71] HENRY H SU AND P ETER A. L ACHENBRUCH. Paired t-test. In Wiley
Encyclopedia of Clinical Trials. John Wiley & Sons Inc., 2008.

[72] ZHIXIONG Su, JIANXUN QI1, AND HANYING WEIL Path problem simpli-

fication with desired bounded lengths in acyclic networks. Journal
of Systems Science and Systems Engineering, 24(4):500-519, 2015. ,

[73] JONATHAN M SUMRALL. Path Indexing for Efficient Path Query Process-

ing in Graph Databases. Master’s thesis, Department of Mathematics and
Computer Science, Eindhoven University of Technology, 2015. ,

157

REFERENCES

[74] JONATHAN M SUMRALL, GEORGE HL FLETCHER, ALEXANDRA POULO-
VASSILIS, JOHAN SVENSSON, MAGNUS VEJLSTRUP, CHRIS VEST, AND JIM
WEBBER. Investigations on Path Indexing for Graph Databases. In
FEuropean Conference on Parallel Processing, pages 532—544. Springer, 2017.

[75] NAN TANG, QING CHEN, AND PRASENJIT MITRA. Graph Stream Sum-
marization: From Big Bang to Big Crunch. In Proceedings of the 2016
International Conference on Management of Data, SIGMOD ’16, pages 1481—
1496, New York, NY, USA, 2016. ACM. [96],

[76] MIKKEL THORUP AND URI ZWICK. Approximate distance oracles.
Journal of the ACM (JACM), 52(1):1-24, 2005. ([16])

[77) ROBERT TIBSHIRANI, GUENTHER WALTHER, AND TREVOR HASTIE. Es-
timating the Number of Clusters in a Data set via the Gap Statistic.
Journal of the Royal Statistical Society: Series B (Statistical Methodology),

63(2):411-423, 2001. R,

[78] SILKE TRrissL AND ULF LESER. Fast and practical indexing and query-
ing of very large graphs. In Proceedings of the 2007 ACM SIGMOD in-
ternational conference on Management of data, pages 845-856, 2007.

[79] LucieNn D. J. VALSTAR, GEORGE H. L. FLETCHER, AND YUICHI
YosHIDA. Landmark Indexing for Evaluation of Label-Constrained
Reachability Queries. In Proceedings of the 2017 ACM International Con-
ference on Management of Data, SIGMOD Conference 2017, Chicago, IL,
USA, May 14-19, 2017, pages 345-358, 2017. ({4] [24] [36], [40] [42]

[80] HAIxUN WANG, HAao HE2, JUN YANG, PHILIP S. YU, JEFFREY XU YU,
AND JEFFREY XU YU. Dual Labeling: Answering Graph Reachabil-
ity Queries in Constant Time. In Proceedings of the 22Nd International
Conference on Data Engineering, ICDE ’06, page 75, Washington, DC, USA,

2006. IEEE Computer Society.

158

REFERENCES

[81] ZHENGKUI WANG, QI FAN, Huyu WANG, KIAN LEE TAN, DIVYAKANT
AGRAWAL, AND AMR EL ABBADI. Pagrol: Parallel Graph OLAP over
large-scale attributed graphs. In Proceedings - International Conference
on Data Engineering, pages 496-507. IEEE Computer Society, 1 2014. (|24}

[68 [[75)

[82] HAo WEI, JEFFREY XU YU, CAN Lu, AND RuoMING JIN. Reachability
Querying: An Independent Permutation Labeling Approach. The
VLDB Journal, 27(1):1-26, February 2018.

[83] ZHONGGANG WU, ZHAO Lu, AND SHAN-YUAN Ho. Community De-
tection with Topological Structure and Attributes in Information
Networks. ACM Trans. Intell. Syst. Technol., 8(2):33:1-33:17, November

2016. [71]

[84] ZuiQianG Xu, YIpING KE, Yi WaNG, HonG CHENG, AND JAMES
CHENG. A Model-Based Approach to Attributed Graph Cluster-
ing. In Proceedings of the 2012 ACM SIGMOD International Conference on
Management of Data, SIGMOD 12, pages 505516, New York, NY, USA,

2012. Association for Computing Machinery. , ,

[85] JAEWON YANG AND JURE LESKOVEC. Overlapping Community De-
tection at Scale: A Nonnegative Matrix Factorization Approach.
In Proceedings of the Sixth ACM International Conference on Web Search
and Data Mining, WSDM 13, pages 587-596, New York, NY, USA, 2013.

Association for Computing Machinery. , ,

[86) FRANK YATES AND P MICHAEL GRUNDY. Selection without replace-
ment from within strata with probability proportional to size. Jour-
nal of the Royal Statistical Society: Series B (Methodological), 15(2):253-261,
1953. (123))

[87] CHENG J. YU J.X. Graph Reachability Queries: A Survey, 40. Springer,
Boston, MA, 2010.

159

REFERENCES

[88] DUNCAN YUNG AND SHI-KuO CHANG. Fast reachability query com-
putation on big attributed graphs. In Big Data (Big Data), 2016 IEEE

International Conference on, pages 3370-3380. IEEE, 2016. |§|, , ,

[89] KA WAI (DUNCAN) YUNG. Query Processing on Attributed Graphs. PhD
thesis, University of PittsBurgh, 2017. ,

[90] ZAHARIN YUSOFF. On Architectures, Frameworks, and Models in
Thesis Writing for Computer Science. Journal of IT in Asia, 6(1):1-10,

2016. (30}

[91] SHICHAO ZHANG, XINDONG WU, CHENGQI ZHANG, AND JINGLI Lu.
Computing the minimum-support for mining frequent patterns.

Knowledge and Information Systems, 15(2):233-257, 2008. 229 o9l
[103} [106}, [109)

[92] YANG ZHOU, HONG CHENG, AND JEFFREY XU YU. Graph Cluster-
ing Based on Structural/Attribute Similarities. Proc. VLDB Endow.,

2(1):718-729, August 2009. [20]

[93] LE1 Zou, KuN Xu, JEFFREY XU YU, LEI CHEN, YANGHUA XIAO, AND
DonNncyAN ZHAO. Efficient Processing of Label-constraint Reachabil-

ity Queries in Large Graphs. Inf. Syst., 40:47-66, March 2014. ,

160

A Study of Constrained
eachability Query Processing in
Directed Graphs

by Bhargavi B

ission date: 16-Dec-2020 02:36PM (UTC+0530)

ission ID: 1476629944 Smilarity Screening Do "(1GM Library
name: 15SMCPCO02_BhargaviB_SCIS_PhDthesis.pdf (2.3M)
count: 38630 Vet
cter count: 199815 Librarian / BEFAL /%[& i
IGM Lib \,_;U:?H_‘ \\ B il 8 -
""\\ \/ |
]\\ VoV

A Study of Constrained Reachability Query Processing in
Directed Graphs

ORIGINALITY REPORT

41, 21 23, 7,

SIMILARITY INDEX INTERNET SOURCES PUBLICATIONS STUDENT PAPERS

PRIMARY SOURCES @vaa/t(5Lr*ru(a/u(_,hdl}\ = 4—!‘-(] st 161—5) 04_/(‘:0,3;3
bEtpo! [/ eud. eu/contﬂn Anding + {7e nk 7
ﬁt:lr?:tgoﬂrce @ﬁdo{)e& ag H’w Eﬂz/ L H’Lﬂ L
This bub(x(dt@n » by the /5I:udm

"Implicit Landmark Path Indexing Qor Bounded™”
Label Constrained Reachable Paths",
International Journal of Recent Technology and %

Engineering, 2019
Publlcatlonm Ple)l&C(L{ztB'n LZ))Ob{ the ékU—du\t

B. Bhargavi, K. Swarupa Rani. "CFQapter 13 30
Bounded Paths for LCR Queries in Labeled i j{
Weighted Directed Graphs", Springer Science HC,{LLFL%"

and Business Media LLC, 2018
Puplication ‘TLu?b Pub‘f@ﬁ%¥ :biai Uu ééuduhl"

www.scribd.com ~
<1 %

Internet Source

d- scholarshl itt.edu
Internet Source p p <1 %
Submitted to National Institute of Technology, < 1

%
Silchar y
Student Paper Sim 1|3f|ty SLI""‘Qﬂmg Dane | & a IGM .&b'm{\'] »{\

(’ | DL L ‘J—ﬁ['\o(}l | _/7,’3{4 2

Todes 1612 Qoig;ﬂ\\fj “/

Librarian / Bl
IGM Library (UOH) L_\‘\ v
T ¥

ure.tue.nl
IF:ternet Source <1 %
n Duncan Yung, Shi-Kuo Chang. "Fast reachability <1 o
query computation on big attributed graphs”, °
2016 IEEE International Conference on Big
Data (Big Data), 2016
Publication
n Lecture Notes in Computer Science, 2014. <1 .
Publication A)
Hamilton Wilfried Yves Adoni, Tarik Nahhal, <1 y
Moez Krichen, Brahim Aghezzaf, Abdeltif °
Elbyed. "A survey of current challenges in
partitioning and processing of graph-structured
data in parallel and distributed systems”,
Distributed and Parallel Databases, 2019
Publication
Zhixiong Su, Jianxun Qi, Hanying Wei. "Path <1 o
problem simplification with desired bounded °
lengths in acyclic networks", Journal of Systems
Science and Systems Engineering, 2015
Publication
Lecture Notes in Computer Science, 2015.
Publication g <1 %
www.springerprofessional.de
Internet Soﬁce g p <1 %

Miao Qiao, Hong Cheng, Lu Qin, Jeffrey Xu Yu,

Philip S. Yu, Lijun Chang. "Computing weight 1
constraint reachability in large networks", The <1%
VLDB Journal, 2012
Publication
Submitted to Carnegie Mellon Universit
Student Paper g y <1 %
Jacek Czekaj. "Comparison of the Exact and <1 o
Approximate Algorithms in the Random Shortest °
Path Problem", IFIP Advances in Information
and Communication Technology, 2009
Publication
Zhonggang Wu, Zhao Lu, Shan-Yuan Ho. <1 o
"Community Detection with Topological °
Structure and Attributes in Information
Networks", ACM Transactions on Intelligent
Systems and Technology, 2017
Publication
Carson K. Leung, Alfredo Cuzzocrea. "Frequent <1 o
Subgraph Mining from Streams of Uncertain °
Data", Proceedings of the Eighth International
C* Conference on Computer Science &
Software Engineering - C3S2E '15, 2008
Publication
"Handbook of Big Data Technologies", Springer <1 o

Science and Business Media LLC, 2017

Publication

"Algorithms - ESA 2014", Springer Science and

Business Media LLC, 2014

Publication < 1 %
Luo Chen, Ye Wu, Zhinong Zhong, Wei Xiong, <1 o
Ning Jing. "A hierarchical model for label °
constraint reachability computation”,
Neurocomputing, 2015
Publication
docplayer.net
InterneptSoz/rce <1 %
Lucien D.J. Valstar, George H.L. Fletcher, <1 .
.y : . Yo
Yuichi Yoshida. "Landmark Indexing for
Evaluation of Label-Constrained Reachability
Queries", Proceedings of the 2017 ACM
International Conference on Management of
Data - SIGMOD '17, 2017
Publication
Zhiwei Zhang, Jeffrey Xu Yu, Lu Qin, Qing Zhu, <1 y
Xiaofang Zhou. "I/O cost minimization", °
Proceedings of the 15th International
Conference on Extending Database Technology
- EDBT 12, 2012
Publication
hysiolgenomics.physiology.or
Eter}]/et Sou?ce p y gy g <1 %
Statistical Methods for Global Health and <1 o

Epidemiology", Springer Science and Business

Media LLC, 2020

Publication

Zou, Lei, Kun Xu, Jeffrey Xu Yu, Lei Chen, <1 o
Yanghua Xiao, and Dongyan Zhao. "Efficient °
processing of label-constraint reachability
queries in large graphs”, Information Systems,

2013.
Publication
www.learningace.com

Internet Source g <1 %

"Databases Theory and Applications"”, Springer <1 o
Science and Business Media LLC, 2016 °
Publication
link.springer.com

Internet Spourceg <1 %

Duncan Yung, Shi-Kuo Chang. "Answering How- <1 o
to-Reach Query in Big Attributed Graph °
Databases”, 2017 IEEE Third International
Conference on Big Data Computing Service and
Applications (BigDataService), 2017
Publication

Kamal Taha, Ramez Elmasri. "CXLEngine", <1 o

Proceedings of the 2008 EDBT workshop on
Database technologies for handling XML
information on the web - DataX '08, 2008

Publication

33 scholarcommons.usf.edu

Internet Source

<1%

Exclude quotes On

Exclude bibliography On

Exclude matches

< 14 words

Message from EAI President regarding COVID-19

- e -
Thousands of EUDL articles are free to download thanks to the support from EAl, Europe's largest not-for-profit research
community dedicated to employing the latest developments in information technology to build a greener, healthier and smarter Donate
world. EAl membership is free! Consider donating to help EAI's vision grow by engaging world's brightest minds to build a better ve: N,
future regardless of their age, economic status or country of origin. Learn more at www.eai eu or donate by clicking the
accompanying link X

Register | Log
Proceedings Series Journals Search EAI
.m-llﬂon-Dlnm Library
finding frequent subgraphs Ordered by litle or year

About | Contact Us

«EAI

RESEARCH MEETS INNOvation PORTICO)

Page 1 of 1 (3 results)

Finding Frequent Subgraphs and Subpaths through Static and Dynamic Window Filtering Technigues
Research Article in EAI Endorsed Transactions on Scalable Information Systems —
Authors: Bhargz B., K Swarupa Rani

Abstract”
Big data era has large volumes of data generated at high velocity from different data sources. Finding frequent subgraphs from the |
graph streams can be a challenging task as streams are non-uniformly distributed and continuously processed Its applications |
include finding strongly interacting gro

more »

Prefix Tree Based MapReduce Approach for Mining F requent Subgraphs 1
Research Article in Ubiquitous Communications and Network Computing Second EA| International Conference Bangalore. India
February 8-10, 2019 Proceedings

Authors: Supriya Movva, Saketh Prata. Sai Sampath R Gayathn

Abstract

The frequent subgraphs are the subgraphs which appear in a number, more than or equal to a user-defined threshold Many
algorithms assume that the apriori based approach yields an efficient result for finding frequent subgraphs, but in our research. we
found out that Apriori algorithm lacks scalabi

more »

Target Gene Mining Algorithm Based on gSpan

Research Article in Collaborative Computing: Networking, Applications and Worksharing. 14th EA| International Conference
CollaborateCom 2018, Shanghai, China, December 1-3, 2018, Proceedings

Authors: Liangfu Lu, Xiaoxu Ren. Lianyong Qi, Chenming Cui, Yichen Jiao

Abstract

In recent years, the focus of bioinformatics research has turned to biological data processing and information extraction. New minis
algorithm was designed to mine target gene fragment efficiently from a huge amount of gene data and to study specific gene
expression in this paper The extracted ge

more »

1 Page size: 10 25 &

DIRECTORY OF —
DO / 3 J OPEN ACCESS dbip EBSCO
JOURNALS mp—pre——

12/17/2020

	List of Figures
	List of Tables
	1 Introduction
	1.1 Graph Mining
	1.2 Graph Reachability
	1.2.1 Label Constraint Reachability (LCR)
	1.2.2 Multidimensional Constraint Reachability (MCR)
	1.2.3 Frequent subgraphs and subpaths

	1.3 Solving Constraint Reachability Queries and Finding Frequent Subgraphs
	1.4 Challenges of Graph Mining
	1.5 Motivation
	1.6 Problem Definitions
	1.7 Applications
	1.8 Research Objective and Scope of Thesis
	1.9 Thesis Contributions
	1.9.1 Publications of the thesis

	1.10 Organization of Thesis

	2 Literature Survey
	2.1 Queries in Data Graphs
	2.2 Reachability Techniques
	2.3 Path Finding Techniques
	2.4 Label Constraint Reachability Techniques
	2.4.1 Other constraint reachability techniques

	2.5 Identified Research Gaps of LCR
	2.6 Techniques in Attributed Graphs
	2.6.1 MCR techniques
	2.6.2 Clustering techniques

	2.7 Identified Research Gaps of MCR
	2.8 Techniques for Frequent Subgraphs and Subpaths
	2.9 Identified Research Gaps of Frequent Subgraphs
	2.10 Query Logs and Framework
	2.11 Developing Query Processing Framework
	2.12 Summary

	3 Bounded Label Constrained Reachable Paths
	3.1 Introduction
	3.1.1 Applications and challenges

	3.2 Preliminaries
	3.2.1 Problem definition

	3.3 Related Work
	3.4 Proposed Technique to find Bounded Label Constrained Reachable Paths
	3.4.1 Path indexing algorithm
	3.4.2 Query processing algorithm

	3.5 Extended Proposed Technique by including Implicit Paths
	3.5.1 Path indexing algorithm by including implicit paths
	3.5.2 Query processing algorithm by including implicit paths
	3.5.3 Correctness proof
	3.5.4 Time complexity

	3.6 Experimental Evaluation
	3.6.1 Dataset description
	3.6.2 Query generation and evaluation

	3.7 Conclusions

	4 Multidimensional Constraint Reachable Paths for Attributed Graphs
	4.1 Introduction
	4.1.1 Assumptions
	4.1.2 Findings
	4.1.3 Contributions

	4.2 Preliminaries
	4.2.1 Problem statement

	4.3 Related Work
	4.3.1 Constraint reachability techniques
	4.3.2 Attributed graph clustering techniques

	4.4 Proposed Approach: Heuristic search using Hashing and Matrix Factorization
	4.4.1 Hashing based index
	4.4.2 Super graph construction
	4.4.3 Proposed heuristic search technique

	4.5 Extended Heuristic Search
	4.6 Experiments and Results
	4.6.1 Experiment setup
	4.6.2 Baselines
	4.6.3 Datasets description
	4.6.4 Results and analysis

	4.7 Conclusions

	5 Frequent Subgraphs and Frequent Subpaths
	5.1 Introduction
	5.2 Preliminaries
	5.2.1 Problem definitions

	5.3 Related Work
	5.4 Proposed Static and Dynamic Techniques for Finding Frequent Subgraphs
	5.4.1 DSMatrix
	5.4.2 Static single window technique
	5.4.3 Dynamic approach of sliding window technique
	5.4.4 Enhancements to the proposed static and dynamic sliding window filtering techniques
	5.4.5 Finding frequent subpaths from sequence of paths
	5.4.6 Analysis of proposed static and dynamic approaches

	5.5 Experimental Evaluation
	5.6 Conclusions

	6 Query Processing Framework
	6.1 Introduction
	6.2 Problem Description
	6.2.1 Problem statement
	6.2.2 Definitions

	6.3 Proposed Query Processing Framework
	6.3.1 Query Path Log (QPL)
	6.3.2 Integrated framework
	6.3.3 Flow and functionality of modules

	6.4 Experimental Evaluation
	6.4.1 Datasets description
	6.4.2 Query generation
	6.4.3 Experiments and result analysis

	6.5 Conclusions

	7 Conclusions and Future Scope
	7.1 Conclusion
	7.2 Future Scope

	References

