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Abstract

In today’s big data era, a graph is an essential tool that models the semi-

structured or unstructured data. Graph reachability with vertex or edge

constraints is one of the basic queries to extract useful information from the

graph data. In real-time, the vertices of the graph have multiple attributes

and different relationships between them. We study different variants of

vertex and edge constraints and the techniques to solve the constrained

reachability queries.

One of the variants is the Label Constraint Reachability (LCR) query.

It finds the existence of a path between the given vertices satisfying the

given edge-label constraints. We extend the LCR queries by considering

weighted directed graphs and propose a novel technique for finding not

only the existence of paths but also the exact paths bounded by given

path weight. We propose Implicit Landmark Path Indexing and query

processing technique that includes the implicit paths which satisfy the user

constraints but need not satisfy the minimality of edge label sets. The

problem of Bounded Label Constrained Reachable Paths is challenging as

(1) we need to handle exponential number of edge label combinations with

an additional total path weight constraint, and (2) we need to discover a

technique that finds exact reachable paths between the given vertices. This

problem can be applied to real network scenarios like road networks, social

networks and protein-protein interaction networks.

Another variant of constrained reachability queries is the problem of

finding multidimensional constraint reachable paths. In this problem, we

find the path between the given vertices that match the user specified

multidimensional vertex and edge constraints. An important challenge is

to store the graph topology and attribute information while constructing

reachability index. We propose optimized hashing based heuristic search
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technique to solve the multidimensional constraint reachability queries. In

the proposed technique, we optimized hashing and applied an efficient clus-

tering technique which is based on matrix factorization. Furthermore, we

proposed an extended heuristic search technique to improve the accuracy.

During the process of solving constraint reachability queries, we ob-

served the need and importance of finding frequent subgraphs and sub-

paths. Finding frequent subgraphs from the dynamic graph streams of

big data is challenging as streams are non-uniformly distributed and are

continuously needed to be processed. From these frequent subgraphs, we

can extract unknown and useful information. Its applications include find-

ing strongly interacting groups in social networks and sensor networks and

finding frequent molecular interactions to predict protein functions and

types of diseases in bio-informatics. To extract frequent subgraphs from

graph streams of data, we proposed static and dynamic sliding window

techniques. In addition, we applied our proposed static and dynamic tech-

niques to extract frequent subpaths from sequence of paths of a directed

graph.

Our contributions are further integrated into a novel query processing

framework to solve the constrained reachable paths efficiently. Using our

proposed query processing framework, we can store the resultant paths

of queries in the Query Path Log (QPL) for future retrieval and also to

extract frequent subpaths. The QPL constitutes the query and resultant

path information. This log can be used to handle all types of queries such as

new, same and similar queries. The frequent subpaths information is used

for solving similar queries. We evaluated the performance of the proposed

framework and techniques on real and synthetic datasets.
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Chapter 1

Introduction

1.1 Graph Mining

Big data constitutes large amounts of data generated from different data sources

very fast. The discovery of useful and unknown information in such data is

challenging for research and technical groups. Graph is one of the important

tools that can represent the complex relationships between the objects of big

data. Graph mining refers to extracting knowledge from the data represented as

a graph [29]. Some of specific operations of mining graph data from real-world

domains such as graph pattern matching, clustering graphs and finding frequent

subgraphs are the important contributions of deriving new knowledge. They have

broad applications in social networks, biology, chemistry, Resource Description

Framework (RDF), image processing and software engineering.

1.2 Graph Reachability

One of the fundamental operations to manage graph data is to find the reacha-

bility from one vertex to another vertex in the graph. Let G = (V, E) be a large

directed graph that has n vertices and m edges. A reachability query between

u and v ( u and v are the vertices in G) returns true if and only if there is a

path in the directed graph G from u to v. There are two possible approaches to

process a reachability query in a graph G. It can be processed on demand using
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Breadth-First Search (BFS) or Depth-First Search (DFS) over the graph G. It

incurs high cost as O(n + m) time. On the other hand, it can be processed offline

by precomputing and maintaining the edge transitive closure on disk. The former

requires too much time in querying and the latter requires too much space. Thus,

in the state-of-the-art literature, many reachability techniques are developed that

have a trade-off with time and space.

1.2.1 Label Constraint Reachability (LCR)

Many real-world graphs are edge-labelled graphs with edges in the graph having

a label from a pre-defined label set. This changes a reachability-query into a

Label-Constrained Reachability query or “LCR” query. The question for such a

query is: “Can we reach from point A to another point B in the graph using only

certain types of edges?” For instance, let us consider road networks of figure 1.1,

in which each location can be represented as a vertex. Any location is connected

with another location with relationships like road types (narrow, street, two-

wheeler and highway). We may explore the graph to find paths between locations

connected with only certain types of roads like either street or highway. Ruoming

Jin et al. [45] formally defined Label-Constraint Reachability as “ Given two

vertices, s and d in the edge labeled directed graph G, and a label set A, where

s, d ∈ V and A ⊆ Tl where Tl is a pre-defined label set, if there is a path p from

vertex s to d whose path label L(p) is a subset of A, i.e., L(p) ⊆ A, then we say

s can reach d with label-constraint A. We also refer to path p as an A-path from

s to d”.[45]

In other words, “Given two vertices s and d, and a label set A, the label-

constraint reachability (LCR) query asks if there exists an A-path from s to d”.

[45]

1.2.2 Multidimensional Constraint Reachability (MCR)

Multidimensional Constraint Reachability queries are another variant of con-

straint reachability queries for attributed graphs. Attributed graph is widely

used for modeling variety of information networks. In an attributed graph, every

vertex can have a set of vertex attributes and their values. Similarly, every edge

2



1.3 Solving Constraint Reachability Queries and Finding Frequent
Subgraphs

can have edge attributes and their values. An MCR query finds the existence of a

path from the source vertex to the destination vertex satisfying the given attribute

constraints for attributed graphs. The attribute constraints are the conditions

on vertex attributes’ and edge attributes’ values. This problem is applicable for

many real-time information networks like social networks, transportation net-

works and metabolic networks. For instance, consider the attributed graph of

figure 1.2. The vertex attributes include Country and IncomeGroup. The edge

attribute is the communication content that is either “xml” or “skyl”. For exam-

ple, an MCR query can be to find the existence of path between the vertices ‘a’

and ‘h’ with vertex constraints “I, H” and edge constraint “xml”.

1.2.3 Frequent subgraphs and subpaths

A graph stream is a sequence of graphs that are updated dynamically as streams of

edges. Graph streams are used to model streams of semantic web, sensor network,

social network and road network data. In this data, there may exist implicit,

previously unknown and potentially useful knowledge. One of the techniques to

extract such useful knowledge is to find collections of frequent connected edges.

From these frequent edges, we can extract frequent subgraphs by satisfying the

threshold value. Similarly, we can find the frequent subpaths from the sequence

of paths by satisfying the threshold value.

1.3 Solving Constraint Reachability Queries and

Finding Frequent Subgraphs

By solving constraint reachability queries, we can find the existence of path be-

tween the vertices while satisfying the user specified vertex constraints and edge

constraints. One of the varaints of constraints reachability is LCR queries. Max-

imal spanning tree based index framework [45] is one of the approaches to solve

label-constrained reachability queries. Another approach [93] is the path-label

transitive closure technique that uses Dijkstra like algorithm over augmented

directed acyclic graph. But, these approaches are not scalable and cannot be ap-

plied for large and dense graphs to solve LCR queries. Landmark index and query
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processing technique [79] is the current state-of-the-art technique that computes

partial transitive closure as index for subset of vertices called landmark vertices.

Using this partial index, another index is computed, which denotes reachability

from nonlandmark vertices to limited number of landmark vertices. It includes

path labels information along with the reachable landmark vertices. The resultant

index along with BFS is used to solve LCR queries efficiently.

Another variant of constrained reachability queries is MCR queries. Indexing

vertex attribute values and edge attribute values using hashing [88], [89] is a

prominent indexing technique. Heuristic search technique using naive clustering

[88] is developed to solve MCR queries faster for attributed graphs. In the current

state-of-the-art literature, many graph clustering techniques are developed that

consider graph topology or attribute information or both [92], [84], [37],[3],[83].

By optimizing hashing and adopting an efficient clustering technique, we can

further enhance the efficiency of the heuristic search technique [88].

To solve similar queries, finding frequent subgraphs from the graph data is

essential. Sliding window technique through direct 1-step algorithm [31] is the

state-of-the-art technique to extract frequent connected edges or frequent sub-

graphs from graph stream data by satisfying the given threshold value. Besides,

polynomial strategies and fuzzy techniques [91] are developed to compute actual

threshold for finding frequent patterns.

1.4 Challenges of Graph Mining

The following are the current challenges of mining graph data [59], [49]:

• Graph data Integration: Due to heterogeneity of data, there is need to

develop graph data systems that support different types of vertices and

different types of edges with different attributes with no fixed schema.

• Graph data Visualization: Large graphs or a large group of small graphs

should be easily visualized within the screen space of the user and based on

the requirements of the user.
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• Analysis of dynamic graphs: Most of the graphs like social networks are

dynamic graphs in which the related vertices and edges change constantly.

Hence, there is need to update the existing graph mining algorithms to

support the dynamic graphs. For example, to identify highly influencing

groups from Twitter data, products recommendations for users based on

their click stream analysis or to identify on real-time the best path for users

mobility taking account of traffic events.

• High performance and scalability: Another challenge is to improve the per-

formance and scalability of graph processing and analysis to handle large

graphs with billions of entities and relationships.

• User-friendly and Efficient Graph Search Engine: It is extremely challenging

to develop a search engine for big graphs such that the user-interface is

friendly, the results are accurate and retrieved with high efficiency.

1.5 Motivation

We address some of the challenges of graph mining such as graph data integration

by the study of different techniques for handling multiple vertex attributes and

edge attributes in solving constraint reachability queries. The challenges and

applications that motivate our research are described as follows:

• We identified two significant challenges in finding the Bounded Label Con-

strained Reachable Paths, one of them is that there can exist an exponen-

tial number of label combinations as constraints between the given vertices.

Another challenge is to compute the exact paths.

• We observed the need to store both graph topology and attribute informa-

tion while indexing the reachability to solve constraint reachability queries.

Besides, we observed that there is a need to find an efficient attributed

graph clustering technique for faster query processing of large graphs.

• Finding frequent subgraphs can extract useful and interesting knowledge in

social networks, bio-informatics and IP routing [55]. For instance, we can
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derive the groups of users who are frequently communicating in the social

network. In bio-informatics, based on the frequent interactions between

molecules, we can predict protein functions and identify types of diseases.

The applications for finding frequent subpaths can be in IP routing in which

we can find the frequent paths of data flows across multiple networks. In

a traffic network, we can find the paths/subpaths that are frequently tra-

versed by commuters. Besides, we observed that the developed solutions in

the literature have certain limitations which include the partially resolved

duplicate calculations. Another possible limitation, frequent subgraphs in

the past can be infrequent due to incomplete storage of edges in the sliding

window.

These challenges and scope of usage in real-time applications motivate us to study

LCR queries and its variants for the development of query processing framework.

1.6 Problem Definitions

The following problems of our interest are addressed in the thesis:

• We extend LCR queries by including path bound which is a real-time con-

straint and propose novel problem of bounded LCR paths. The path bound

constraint refers to maximum allowed path weight for LCR query given by

user in addition to edge label constraint. This bounded LCR paths problem

is applicable for edge-labeled weighted directed graphs.

• We also solve another problem of multidimensional constraint reachability

queries. It considers vertex constraints and edge constraints for attributed

graphs. Besides, we extend MCR queries by finding the resultant paths

information.

• Once we find paths for constrained reachability queries, we can store and

maintain repository with the previous queries and its resultant paths to

solve same queries. Besides, we can extract frequent subpaths from the

repository to solve the similar queries. We identified the extraction of fre-

quent subpaths by satisfying the threshold value as a special problem. We
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related it to the problem of finding frequent subgraphs from the sequence

of graph streams.

• We also propose query processing framework by integrating the constraint

reachability query techniques along with subpath information.

1.7 Applications

One of the applications of our proposed Bounded Label Constrained Reachable

Paths (BLCRP) is in transportation networks. For instance, in road networks, we

can find the paths between two places X and Y bounded by the given distance

d, which are connected through labeled roads. Fig. 1.1 illustrates a local road

network with vertices denoting the locations and edges representing the existence

of road between the locations/places. Each edge has a label that constitutes two

parts W:Ty ; W denotes the distance between the two locations and Ty denotes

the type of roads. For instance, the type of roads are assumed to be Highway (H),

Street (S), Narrow (N) and Two-wheeler road (accessible by only two-wheelers)

(T) for the Figure 1.1. Suppose the user query is to find the paths from “P1”

to “P4” within distance of 100Km in a two-wheeler without using Highway. The

query can be considered as the problem of finding BLCRP for the given labeled

weighted directed graph, G1, with label set constraint “SNT” and the bound

for path weight 100. The resultant bounded label constraint reachable path is {
“P1”, “P2”, “P3”, “P4”}.

Multidimensional Constraint Reachability (MCR) queries have wide applica-

tions in social networks. For instance, let us consider the attributed graph for an

email network as shown in Figure 1.2. Let the vertex attributes be Country and

Income Group. The domain of attribute Country is VCountry={ India (I), United

Kingdom (U)} and that of the attribute Income Group is VIncomeGroup={ High

(H), Medium (M), Low (L)}. The domain of edge attribute for communication

content is { XML (xml), Skyline(skyl)}. Thus, for vertex ‘a’, VCountry(a)=‘I’

and VIncomeGroup(a)=‘H’. Similarly, the edge attribute between vertices ‘a’ and

‘c’ is “xml”. Let us consider the MCR query q1(‘a’, ‘j’, ‘I:H’, “xml”), for the

attributed graph of Fig. 1.2. The given MCR query q1 returns true as the source
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Figure (1.1) Road network, G1 with distances (Km.) and types of roads
(S:Street, N:Narrow, H:Highway, T:Two-wheeler only)

vertex ‘a’ can reach the destination vertex ‘j ’ through vertex ‘c’ while satisfying

the given vertex constraints ‘I:H’ and edge constraint “xml”. Thus, the MCR

path is {‘a’, ‘c’, ‘j’ }.

1.8 Research Objective and Scope of Thesis

The objective of our research is to efficiently find the existence of path between

the given vertices satisfying the given constraints. The constraints can be vertex

constraints or edge constraints or both. We perform comprehensive study of

LCR queries and their variants to identify optimal solutions that can efficiently

Figure (1.2) Attributed graph
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handle the vertex or edge label constraints for reachability queries between the

vertices. We identify the issues related to Label Constraint Reachability such as

finding an efficient indexing technique. Besides, we identify the different types

of constrained reachability queries of real world that demand novel and efficient

techniques. Our research aims at finding techniques for different scenarios to find

paths for reachability queries with constraints.

In the thesis, we focus on finding paths for LCR queries of edge labeled

weighted directed graphs with path bound. The scope of the thesis also includes

finding paths for vertex constraints and edge constraints of constrained reacha-

bility queries in attributed graphs. In addition, we solve the problem of finding

frequent subgraphs from graph streams and finding frequent subpaths from the

sequence of paths to solve similar queries. Besides, we propose a novel framework

for efficiently finding paths for constrained reachability queries.

1.9 Thesis Contributions

We propose landmark path indexing technique by extending the landmark in-

dexing and query processing technique [79] to find bounded label constrained

reachable paths. This technique includes indexing the paths along with labels

and path weights for edge labeled weighted directed graphs. Besides, the implicit

paths are included that need not satisfy the minimality of edge label sets or Dijk-

stra’s relaxation property. We find the BLCRP by using the proposed landmark

path indexing and BFS based query processing.

We adopted the idea of hashing vertex attributes and edge attributes [88] and

proposed an optimized hashing based search technique to solve the multidimen-

sional constraint reachability queries. We enhanced the heuristic search technique

[88] through including structural and attributed graph clustering based on matrix

factorization [37] and proposed an efficient heuristic search technique.

To find frequent subgraphs, we proposed static single-window technique and

dynamic sliding window techniques. We also proposed enhancements by extend-

ing the proposed static and dynamic approaches with its variations. Besides, we

solved the subproblem to extract frequent subpaths from sequence of paths, a

special case of the problem by using our proposed techniques.
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We integrate our contributions and propose novel query processing frame-

work. Our proposed query processing framework can find paths for constrained

reachability queries. In the framework, the proposed techniques of BLCRP and

MCR will address the new queries. Besides, using our proposed query processing

framework, we can store the query and path information in the Query Path Log

to extract frequent subpaths. These stored paths information can be used to

handle same queries and similar queries.

1.9.1 Publications of the thesis

1. Bhargavi B., and K. Swarupa Rani, “Finding Frequent Subgraphs and Sub-

paths through Static and Dynamic Window Filtering Techniques”, EAI En-

dorsed Transactions on Scalable Information Systems, Vol. 7, No. 27, p.

13, EAI [DBLP Indexed and ESCI Indexed] ISSN: 2032-9407, Web

of Sciences, 2020. Work reported in this paper appears in Chapter 5.

2. Bhargavi B, Swarupa Rani K., Rohit Kumar, and Sanmeet Kaur. “Static

and Dynamic Techniques to Extract Frequent Subgraphs from Graph Stream

Data” , to appear in International Conference on Big Data, Machine Learn-

ing, and Applications (BigDML), 2019. Work reported in this paper appears

in Chapter 5.

3. Bhargavi B., K. Swarupa Rani, “Implicit Landmark Path Indexing for

Bounded Label Constrained Reachable Paths”, International Journal of Re-

cent Trends in Engineering (IJRTE), Vol. 8, No. 4, p. 10, ISSN: 2277-3878,

2019. Work reported in this paper appears in Chapter 3.

4. B. Bhargavi and K. Swarupa Rani, “Bounded Paths for LCR Queries in

Labeled Weighted Directed Graphs”, in Proceedings of Advances in Com-

puting and Data Sciences (ICACDS), Communications in Computer and

Information Sciences, Vol. 905, Springer [Scopus Indexed], pp. 124133,

2018. Work reported in this paper appears in Chapter 3.

5. Bhargavi B., and K. Swarupa Rani, and Arunjyothi Neog, “Finding Multi-

dimensional Constraint Reachable Paths for Attributed Graphs”, Applied
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Intelligence, Springer, [SCI Indexed], Web of Sciences, 2020 [Communi-

cated and received first level reviews]. Work reported in this paper appears

in Chapter 4.

1.10 Organization of Thesis

The thesis is organized as follows: Chapter 1 briefly introduces the prob-

lems addressed in constrained reachability queries along with our contribu-

tions. Chapter 2 describes the survey of reachability techniques, different

constraint reachability techniques, LCR techniques, and attributed graph

clustering techniques. Besides, we discuss state-of-the-art techniques to

find frequent subgraphs and frequent subpaths. In Chapter 3, we propose

a novel problem of finding Bounded Label Constrained Reachable Paths in

edge labeled weighted directed graphs. We then describe our proposed solu-

tion with experiments evaluated on real and synthetic benchmark datasets.

In chapter 4, we solve Multidimensional Constraint Reachability queries us-

ing our proposed matrix factorization-based heuristic search techniques and

validate the efficiency by experiments and analysis. Chapter 5 deals with

finding frequent subgraphs and frequent subpaths by using our proposed

static and dynamic approaches. In chapter 6, we integrate our contribu-

tions and propose a novel query processing framework. In chapter 7, we

summarize our contributions with the conclusions and also provide future

directions of our research.
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Chapter 2

Literature Survey

Graph is a powerful modeling tool. Graph mining is the extraction of inter-

ested knowledge from the data represented as graph. We identified super-

graph search [58], constraint based graph reachability [88], graph pattern

mining [9], frequent subgraphs [31], community detection [37] and graph

partitioning [70] as the trending problems in graph research. They have

broad applications in social networks, biology, chemistry, Resource Descrip-

tion Framework (RDF), image processing and software engineering.

In this chapter, we review various techniques through 5 C’s by Citing

state-of-the-art literature, Comparing, Contrasting, Critiquing and Con-

necting with our research pertaining to the problems of our interest. Table

2.1 describes the extensive study of our problems of interest. Section 2.1

describes the different types of graph queries in general, while section 2.2 dis-

cusses about the current state-of-the art reachability techniques. Section 2.3

describes techniques to find shortest paths, and constrained paths. In sec-

tion 2.4, we describe the different label constrained reachability techniques.

Also, we survey on other constraint reachability techniques in section 2.4.1.

Besides, we review Multidimensional Constraint Reachability (MCR) tech-

niques and community detection techniques for attributed graphs in section

2.6. Furthermore, we review techniques that find frequent subgraphs from

graph stream data and frequent subpaths from sequence of paths in section
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2.8. We also briefly reviewed about query logs and framework development

in section 2.10.

2.1 Queries in Data Graphs

In general, there are two types of queries for data graphs [38] : (1) pattern

match query and (2) reachability query. Pattern match query finds the

existence of patterns that match the user given graph pattern. This pattern

match query can be solved by finding subgraphs that are isomorphic to the

given graph pattern. Supergraph search [58] is one of the similar problems

to that of graph pattern matching.

Another kind of solving graph pattern query is based on reachability and

using join based techniques [21]. Reachability query is a special case of

pattern match query [38] where we find if there exists path between the

two given vertices. Reachability queries can be solved based on full index

or partial index based techniques discussed in the next section. Shortest

path query requires to find the shortest path between the given vertices. In

this thesis, we focus on reachability queries wih constraints and constrained

path queries and discuss the techniques to solve them.

2.2 Reachability Techniques

Graph reachability finds the existence of path between the vertices in a

graph. There are two possible approaches to process a reachability query in

a graph G. It can be processed on demand using Breadth-First Search (BFS)

or Depth-First Search (DFS) over the graph G. It incurs high cost as O(n

+ m) time. On the other hand, it can be processed offline by precomputing

and maintaining the edge transitive closure on disk. The former requires

too much time in querying and the latter requires too much space. Thus, in

the state-of-the-art literature, many reachability techniques are developed
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that have a trade-off with time and space. Beamer et al. [19] developed

direction optimizing breadth first search technique which combined top-

down BFS and bottom-up BFS. In the hybrid algorithm, search began with

top-down approach and continued untill the frontier is too large, at which

point bottom-up search is started. This approach can be applicable to find

reachability online between vertices. This work accelerated the processing

of parallelizing BFS.

In [87], [9], detailed survey of reachability techniques is specified. H. Wei

et al. [82] classified the reachability techniques into following two categories.

• Label-only approaches

• Label+G approaches

Label-only approaches directly find the existence of reachability between

the given vertices from the constructed index. Label-only approaches in-

clude 2-hop [28], 3-hop [47], Chain-cover [27], Path-Tree Cover [48], Tree-

Cover [10], and Dual Labeling [80].

Label+G approaches use index labels and BFS/DFS to find the reach-

ability between the given vertices. Tree+SSPI [25] and GRIPP [82] are

Label+G approaches which have linear index size and query time in terms

of the number of vertices of the graph. H. Wei et al. [82] developed an in-

dependent permutation labeling approach with high probability guarantee

which is Label+G approach to find the reachability between the vertices.

Besides, they introduced level labels and huge vertex labels to handle reach-

ability for dense graphs.

2.3 Path Finding Techniques

In this section, we explore the different techniques that find paths between

the vertices. In the literature, many techniques are developed that find the
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Table (2.1) Survey of Constrained Reachability Query Processing [2005-2018]

S. No. Technique (Authors, Year) Observations

1
MST-based index and query
processing (Jin et al., 2010
[45])

The tree-based index framework used to
solve LCR queries is not scalable

2
LandmarkIndex and Query
algorithms(Valstar et al., 2017
[79])

Found reachability satisfying given label
constraint with significant speedups in
query processing for LCR queries

3
Spanning Tree based BPFilter
algorithm (Minghan Chen et
al., 2014 [26])

Generated subpath graph and
approximate reachability is found in
uncertain graphs for LDCR queries

4

Heuristic Search Technique
through GuidedBFS and
hashing(Duncan Yung et al.,
2016 [88])

Developed heuristic search technique and
computed reachability with
multi-dimensional constraints in
attributed graphs faster

5
ANCA Clustering (Falih et
al., 2018 [37])

Computed clusters in attributed graphs
considering both graph topology and
attribute information through matrix
factorization

6
Edge Induced Matrix
Factorization (Qi et al., 2012
[65])

Used matrix factorization based
technique on edge content to detect
communities

7
Cluster Affiliation Model for
Big Networks (Yang et al.,
2013 [85])

Developed the algorithm to detect
overlapping communities through
non-negative matrix factorization

8

Ensemble gradient descent
algorithm based on matrix
factorization (Amin et al.,
2017 [12])

Identified polarization and clusters in
social networks specifically Twitter
through matrix factorization

9

Probabilistic approach to find
dense patterns in graph
streams (Aggarwal et al., 2010
[8])

Formally defined graph streams and
developed the probabilistic min-hash
approach to mine dense patterns from
graph streams

10
Direct 1-step algorithm
(Cuzzocrea et al., 2015 [31])

Used DS Matrix and sliding window
technique to extract frequent subgraphs
from graphstreams

11
Sliding Window Filtering
(SWF) algorithm (Lee et al.,
2005 [52]

Developed sliding window filtering
algorithm with relative support to
extract frequent patterns and the
resulting association rules

12

Polynomial and fuzzy
strategies for actual minimum
support (Zhang et al., 2008
[91])

Computed actual minimum support from
the user-specified minimum support for
frequent pattern mining
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exact paths, approximate shortest paths, bounded paths and paths that

satisfy constraints between vertices.

Chris Barrett et al. [17] defined edge label and edge weight constraints

in formal language and also defined the formal language constrained short-

est path and simple path problems. They developed a general approach

that model the constrained path problems based on Nondeterministic Fi-

nite Automaton (NFA) to find the constrained paths. They used dynamic

programming technique to further improve the performance. They proved

that the problem of finding a simple path between a source and given des-

tination is NP-hard when the label set is restricted to even simple classes

of graphs like complete grids.

The constrained TreeSketch algorithm of Ankita et al. [57], considered

edge label constraint (A) and found approximate A-paths between the given

vertices. They formally defined label constrained shortest paths problem

as the shortest path between the given vertices such that the edge labels

involved in the path are subset of given labelset constraint. They extended

labeled path sketches by adding edge label information and designed Con-

strained TreeSketch algorithm. This algorithm mainly involved BFS traver-

sal through tree of constrained paths of source vertex and destination vertex

to find the approximate shortest paths. This technique is applicable to label

order constrained shortest path queries. Minghan Chen et al. [26] worked

on uncertain graphs with their new sampling techniques to find approximate

shortest paths constrained through distance parameter.

Thorup et al. [76] studied the distance queries problem which involved

finding the distance between an arbitrary pair of vertices. They have devel-

oped approximate distance oracles by modifying Dijkstra’s algorithm and

designing index that used finite stretch to settle for approximate distance

instead of exact one. These oracles had constant query time and are appli-

cable for weighted undirected graphs. The distance query algorithm can be
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extended to find the path whose length is atmost given distance based on

lowest common ancestor algorithm. But, stretched distances may not be

acceptable under all scenarios.

In [11], Akiba et al. studied the distance queries problem. They devel-

oped a landmark-based approach with efficient pruning to solve the queries

to find the exact shortest path distance between the vertices. In the pruned

landmark labeling approach, the landmark vertices are selected based on

highest degree criterion. For every landmark vertex, BFS is performed and

distance to the reachable vertices are indexed. Pruning is performed during

BFS when there is an intermediate reachable vertex w between the vertices

v and u whose sum of distances from v and u is lesser than total distance

from v to u via another path. Thus, the vertex u is not added to label

of v and any edges from u are not traversed along the path with longer

distance. Moreover, Akiba et al. developed another labeling scheme that

used bit-level parallelism on pruned labeling method to improve the per-

formance. Their approaches can be easily extended to find shortest path

between the vertices by storing the parent of every reachable vertex in labels

and performing backtracking.

In [32], Delling et al. developed a scalable solution based on 2-hop labels

for solving the distance queries in large networks. They have designed an

exact algorithm which is based on hierarchical hub labeling and a special

kind of 2-hop labeling. They introduced the label representation that finds

good ordering of subset of vertices using which labels are computed and also

compressed. They presented a token based compression that transforms

labels into trees to achieve higher compression.

Su et al. [72] considered the more generalized problem of finding paths

with desired bounded path lengths in acyclic networks. They developed a

path length model of acyclic networks which transformed paths into simple

parameters of vertices and arcs. The parameters are designed based on
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shortest paths, longest paths and intermediate edges. They designed a

simple polynomial algorithm based on the parameters of path length model

to find the desired bounded paths.

Erez et al. [35] addressed the problem of automation of constrained

clock routing in Integrated Circuit networks by considering the transistors

as vertices, wires between them as edges and delay across them as edge-

weights. Thus, this problem is reduced to finding bounded paths in a grid

graph. They reduced the problem to bit vector logic by storing active

neighbours as connectivity constraints using SAT-based bit-vector SMT

(SATisfiability Modulo Theories) solver. This solver is further enhanced by

a novel graph aware solving approach based on Dijkstra’s algorithm and

core decision strategies for graph-aware conflict analysis.

Bast et al. [18] performed an extensive survey of different techniques

for route planning in transportation networks which had trade-offs between

preprocessing effort, space requirements and query time. They have ex-

plored shortest path techniques for static networks that find the length

of shortest path. These techniques include basic techniques based on Di-

jkstra’s algorithm, goal-directed techniques such as A* search, separator

based techniques such as Customized Route Planning algorithm, hierarchi-

cal techniques, bounded hop techniques such as hub labeling and combi-

nations of some of these techniques. Bast et al. observed that the actual

paths can be found from these techniques by either storing parent vertex

information or building shortcuts. They investigated the applicability of

these techniques to dynamic networks. They identified the techniques and

use of finding alternate paths by either concatenation of shortest paths or

compactly representing as a small graph. In this paper, journey planning in

a multi-modal scenario is also discussed. It included the label-constrained

shortest path approaches, combining costs and multicriteria optimization.
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In [73, 74], a B+ tree index based solution was used to solve path queries.

Path queries are specified by projections on label-paths over the given label

set in graphs. Sumrall et al. [74] developed a path index based on B+tree to

accelerate query processing to find paths. It is a workload based index that

involved updating index with efficient joins based on previous queries. This

index supported ordered access to paths and designed for external memory

storage and retrieval. Besides, they used δ compression scheme for gap bits

to further reduce key size in leaf nodes of B+tree. But, the limitation of this

approach is only paths upto limited length can be indexed using B+tree.

Besides, we explored the centrality measures like degree, betweenness

centrality, eigen vector centrality, pagerank and closeness centrality [64]

and their usefulness in choosing highly central nodes [62]. Qin et al. [67]

investigated the influence of an edge in the graph that lead to reachability

changes in the graph brought by possible deletion of the edge in the case of

dynamic graphs.

2.4 Label Constraint Reachability Techniques

The Label-Constraint Reachability (LCR) query which was first formally

defined by Ruoming Jin et al. [45] is for finding the existence of the label-

constrained reachable paths in an edge labeled directed graph. Ruoming Jin

et al. [45] developed tree-based index framework where partial transitive

closure and spanning tree are used. In this approach, maximal spanning

tree is constructed for the directed graph using Chu-Liu/ Edmonds algo-

rithm [34]. The maximal spanning tree would cover the maximum possible

reachable paths in the graph. Partial transitive closure index is constructed

considering paths whose starting edge and ending edge are non-tree edges.

The path labels computed from spanning tree and the partial transitive

closure index are used to solve LCR queries. But, this technique is not

efficient and scalable for large and dense graphs.
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Wenfei Fan et al. [38] developed bidirectional BFS technique to solve

graph pattern matching queries, in which one of the special case is label-

constrained reachability queries. Bidirectional BFS involved storing adja-

cent nodes based on label-constraint set from source node in one list and

from destination node in another list and checking if there is any match

in both the lists. If there is no match, adjacent node from the smaller list

is searched recursively based on BFS technique till match is found. This

technique is not scalable for large graphs.

Zou et al. [93] solved LCR queries based on augmented Directed Acyclic

Graph (DAG). The local transitive closure index is computed for the aug-

mented DAG to solve LCR queries. Besides, they developed partition based

DFS technique for large graphs. In Zou et al. [92] technique, the edge-

labeled graph is transformed into DAG by computing Strongly Connected

Components (SCC) for the graph. The edge labels within SCC are com-

bined to form the edge label of every edge in DAG. A Dijkstra-like method is

used to compute single source transitive closure for every vertex by storing

only minimal labels and paths for all the reachable vertices. The transitive

closure of the entire graph is computed by extending the index to the ver-

tices of SCCs. This transitive closure method had good performance, but

it had huge offline processing cost for large graphs. Besides, they developed

another technique in which a large graph is partitioned into subgraphs and

for every local vertex, transitive closure is computed by creating augmented

DAG to preserve the labels of nodes. Then, label constrained DFS and in-

dex is applied on partitioned graph to solve LCR query. This technique has

greater index construction time and is not effective on graphs with relatively

large strongly connected components.

Valstar et al. [79] technique of landmark based query processing is the

current state-of-the-art technique to find the existence of reachability for

LCR queries. The landmark vertices are selected based on criteria such as

the top ‘k’ highest degree or any of the centrality measures of the graph.
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In [79], while constructing the landmark index for the landmark vertices,

the edge label sets minimality is considered and landmark vertices are se-

lected based on highest total degree criterion. The index is constructed for

landmark vertices using BFS and forward propagation of indexed landmark

vertices. For the remaining vertices, reachability of upto ‘b’ landmark ver-

tices are indexed [79]. These indices along with BFS is used to solve LCR

queries.

2.4.1 Other constraint reachability techniques

Different variants of reachability are formed by incorporating constraints to

vertices and edges of the graph. The vertex/edge constraints can be a spe-

cific bound for each edge weight, specific vertex labels, specific edge labels,

membership of specific edge labels, membership of specific vertex labels,

vertex labels in a specified order, edge labels in a specified order and bound

on the entire path between the vertices. Reachability techniques such as

2-hop cover cannot be directly applied to solve the constraint reachabil-

ity queries. This is because the vertex or edge attributes information is

not stored while indexing. Hence, there is need to explore the different

constraint reachability techniques.

Bonchi et al. [24] studied the problem of efficient approximation of

shortest-path queries with edge-label constraints for undirected graphs.

They developed indexes based on the idea of landmarks. The distance

from all vertices of the graph to a selected subset of landmark vertices is

computed based on shortest path minimality and is indexed. This index

is further optimized through pruning search space by skipping unnecessary

label sets. They developed an online query processing technique that used

this index to find the approximate shortest path distance between the given

vertices while satisfying the edge label constraints.
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Miao Qiao et al. [66] studied the problem of weighted constrained reach-

ability for weighted undirected graphs. Given two vertices and a range

constraint on edge weight, the Weighted Constrained Reachability (WCR)

query finds the existence of path between the vertices such that every edge

weight along the path satisfies the given range constraint. Miao Qiao et

al. developed efficient memory based algorithms and disk based algorithms

by exploiting the cut property of Minimum Spanning Tree (MST). MST is

built using Kruskal’s algorithm with union-find technique [30]. According

to cut property [30] of minimum spanning tree, for any cut C in the graph,

if the weight of an edge e ∈ C is smaller than weights of any other edges in

C, then this edge belongs to all MSTs of the graph. By using this property,

an edge-based index tree is constructed from the MST by choosing edge

with maximum weight as root node and leaf nodes being the vertices of the

graph. During query processing, the lowest common ancestor node of source

vertex and destination vertex is found from edge-based index tree satisfying

the range constraint. If such vertex exists, then WCR query returns true.

Miao Qiao et al. further enhanced it by developing an I/O efficient disk

based algorithm in which rebalancing MST is performed. They compared

their algorithms with baseline approaches like BFS, DFS and LCR tech-

nique [45]. The LCR technique is applied by converting LCR query into

WCR query. We observed that LCR problem is much harder than that of

WCR.

Ruoming Jin et al. [46] investigated the problem of distance constraint

reachability in uncertain graphs. For the user-defined distance constraint,

this problem finds the probability that the distance between the given ver-

tices is less than or equal to the given distance threshold. They solved this

problem by computing possible subgraphs that satisfy the given constraints.

They introduced a unified unequal probabilistic sampling estimation frame-

work for finding possible subgraphs to significantly reduce the estimation

variance.
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Minghan Chen et al. [26] defined the Label and Distance Constraint

Reachability (LDCR) problem over uncertain graphs. The LDCR problem

is different from LCR problem, as it included querying for paths whose la-

bels must contain all labels in the label constraint set. Given two vertices u

and v, distance constraint and a label set, the label and distance constraint

reachability problem computes the probability of paths for which the vertex

v is LD-reachable from u. Minghan Chen et al. developed DFS based algo-

rithm to compute subpaths between the given vertices. The subpaths that

do not satisfy the given distance threshold are pruned. The subpaths with

common path expressions are merged based on lowest common ancestor al-

gorithm. Divide-Conquer tree (DC-tree) adopted from [46] for the resultant

subpaths is built for which some of the leaf nodes are LD-paths. Besides,

they developed branch path pruning algorithm, to remove subpaths that

do not reach the given destination vertex. To perform quick and efficient

approximations, DC-tree sampling techniques are developed. They have

used an unbiased sampling estimator, i.e. Yates-Grundy Sen estimator [86]

that avoids sampling the same nodes.

In[43], the partition replication method, workload prediction method,

and workload balancing method addressed the data locality and workload

balancing issues while finding reachability with node label constraints in

large attributed graphs for distributed environment.

2.5 Identified Research Gaps of LCR

From the literature review, we observed that there is a scope for finding

efficient reachability techniques that have lesser index construction time,

lesser index size and faster query processing. The existing reachability

techniques cannot be applied directly to constrained reachability queries as

the attributes of vertices/edges are not stored while computing the index.

Many approximate shortest path techniques do not compute exact paths.

Hence, there is a need to find techniques that compute the exact reachable
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paths satisfying the given vertex/edge attribute constraints. Hashing is

found to be an efficient data structure for secondary storage access than

B+tree [39]. We observed that dynamic programming is more complex

than Dijkstra’s algorithm and critical path method for finding paths in

large scale networks[72].

We observed that the landmark indexing and query processing technique

(Valstar et al. [79]) is current state-of-the-art literature and a scalable

solution for solving LCR queries in edge-labeled directed graphs. Besides,

we are motivated by the inclusion of bounded path weight constraint in

real-time scenarios [35, 72]. These observations from the literature led to

novel problem of bounded paths for LCR queries which is described in detail

in Chapter 3.

2.6 Techniques in Attributed Graphs

In this section, we describe the survey related to techniques to solve Mul-

tidimensional Constraint Reachability (MCR) queries and graph clustering

techniques for attributed graphs.

2.6.1 MCR techniques

An attributed graph acts as an efficient modeling tool to represent informa-

tion networks [88] [81]. Ho et al. [43] investigated on processing node-label

constrained reachability queries in distributed environment for attributed

graphs. They addressed data locality and workload balancing issues of dis-

tributed processing that reduced the communication overhead and improved

efficient cluster usage respectively by developing partition-replication, work-

load prediction and balancing techniques. We observed that the developed

techniques used Ford-Fulkerson algorithm of flow networks [30].
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Sakr et al. [68] developed G-SPARQL, a query execution engine with the

defined algebraic operators on the graph by using join operations to find the

reachability for large attributed graphs. They designed an efficient hybrid

representation to store the topology of the graph in main memory and access

the attributes of the graph from the secondary memory. The attributes from

the secondary memory are stored in fully decomposed model which included

unique table for storing the unique vertex and edge attributes. But, this

technique is not scalable when number of vertex and edge attributes are

very large.

Yung et al. [88] developed hashing based index for finding constrained

reachability in attributed graphs. The hashing based index involved as-

signing unique hash index for group of vertex attributes or edge attributes.

They used non-cryptographic hash function like Murmur hash function [2]

for hashing which has almost no collision. The unique group of attribute

values of all vertices and the corresponding hash values are stored in pri-

mary memory. The attribute values of every vertex and edge are stored in

the relational database and are retrieved only when there is hash collision.

They designed heuristic search technique based on GuidedBFS using naive

clustering to traverse across the graph regions from the source vertex that

are likely to reach destination to solve the MCR queries. We observed that

the use of naive clustering is not efficient as the computation of probabil-

ity cost considering attribute values during search is vaguely mentioned.

Hence, there is need to find efficient clustering technique that can be used

in solving multidimensional constraint reachability for attributed graphs.

2.6.2 Clustering techniques

Many graph clustering techniques are developed in the literature that are

based on the topology of the graph, attribute similarity in the graph or

both. In this subsection, we discuss the attributed graph clustering tech-

niques that consider both graph topology and attribute information while

clustering.
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Zhou et al. [92] developed Structure and Attribute clustering (SA Clus-

tering) that finds the clusters for an attributed graph based on both graph

topology and attributes of the graph. SA clustering involved construction

of an augmented attributed graph and computation of random walks from

the augmented attributed graph. SA clustering is limited to small networks

with few attribute values.

Xu et al. [84] developed Bayesian model based approach to cluster at-

tributed graphs. But, this approach is found to be slow and not scalable.

Z. Wu et al. [83] developed Structure and Attributes using Global struc-

ture and Local neighborhood features (SAGL) clustering. SAGL clustering

considered both global structure and local neighbours and assigned different

weights to different topological links. SAGL clustering technique is faster

than SA clustering as the former technique doesn’t increase the size of at-

tributed graph, yet uses both global importance of the vertex and attribute

information to find clusters. We observed that although SAGL clustering is

faster than SA clustering, to determine attribute similarity, SAGL cluster-

ing adopts voting mechanism similar to that of SA clustering. This leads

to further construction and use of augmented attributed graph.

Falih et al. [37] observed that social networks are dense and hence require

high attribute similarity factor whereas road networks need a balanced at-

tribute similarity and topological similarity metric while computing node

similarity. Topological distance metric can be categorized into neighbor-

hood based metric and path based metric. Based on type of attribute data

(categorical/numerical/binary), the attribute similarity measure can be, in

general euclidean distance computed between pair of vertices [33]. Falih

et al. [37] developed ANCA clustering algorithm by considering shortest

path metric for topological measure and Euclidean distance for attribute

similarity. Then, matrix factorization is applied on both topological and
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attribute similarity measures. Finally, they used k-means clustering on the

resultant matrix to form k clusters.

Guo Qi et al. [65] used matrix factorization based technique on edge con-

tent to detect communities. Yang et al. [85] developed non-negative matrix

factorization based model to identify disjoint or overlapping communities

at large scale. Alim et al. [12] developed matrix factorization and gradi-

ent descent based technique to identify polarization and clusters in social

networks like Twitter.

2.7 Identified Research Gaps of MCR

From the literature, we observed that matrix factorization is a standard

technique that has scope to find similarity by considering graph topology

as well as node /edge attributes. We identified the hashing based heuristic

search is the current state-of-the-art literature that can provide scalable

solution for multidimensional constraint reachability (MCR) for attributed

graphs. We also observed that there is need to reduce the missing con-

strained reachable paths due to the heuristic [88]. Hence, we adopted the

clustering that used matrix factorization to heuristic search to solve the

problem of MCR queries using optimized hashing efficiently described in

Chapter 4 of the thesis.

2.8 Techniques for Frequent Subgraphs and

Subpaths

Massive graphs are considered as streams of data to analyze and extract

useful information. Henzinger et al. [42] were the first to introduce graph

streams and they also considered graph problems of paths and connectivity.
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Aggarwal et al. [8] determined frequent and dense patterns in graph

streams. They defined graph streams as sequence of edge sets. They as-

sumed that the graph constituted large number of nodes, but the edge sets

contained only small fraction of the nodes.They designed a probabilistic

approach based on node co-occurrence and edge density by utilizing the

sparsity property of underlying graphs. They used min-hash approach to

summarize the graph streams and extract dense patterns efficiently.

Andrew McGregor [61] presented a detailed survey of graph streams. Due

to the dynamic nature [40], [44] and the large volume of graph stream data,

Nan Tang et. al. [75] proposed graph summarization sketch that can store

frequent counts and paths of graph streams.

Alfredo Cuzzocrea et al. [31] studied various methodologies of mining

dense patterns in graph streams and proposed probabilistic algorithms for

determining such structural patterns effectively and efficiently. They pre-

sented two algorithms to extract frequent subgraphs - (i) Indirect 2-step al-

gorithm (ii) Direct 1-step algorithm using Data Stream Matrix (DS Matrix)

and sliding window technique. DS Matrix stored the existence of edges in

bit vectors. The sliding window tracked the latest window of graph streams

from which frequent singleton edges are extracted. Their experimental re-

sults showed that their techniques with DSMatrix consumed less memory.

Kyoungsoo Bok et al. [23] observed that the algorithm proposed by Al-

fredo Cuzzocrea et al. [31] had the limitation of duplicate calculations.

They introduced slidenum variable [23] to store the frequency of edges in-

crementally for batches of graph streams to resolve duplicate calculations.

Leung et al. [55] investigated on mining frequent subgraphs from streams

of uncertain data. They used Data Stream Matrix and expected support

to find frequent connected edges. The expected support is computed from

the product of existential probability of edges. They developed uncertain
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frequent trees instead of Frequent Pattern trees (FP-trees) and direct 1-step

algorithm to extract the frequent subgraphs from the uncertain data.

We observed that finding frequent subpaths from paths is another prob-

lem in the literature that can be related to the problem of finding frequent

subgraphs. Sumanta Guha [41] developed Apriori based technique to ex-

tract frequent subpaths from paths in an undirected graph. Schwartz et al.

[69] studied demand of frequent subpaths in a transportation network tra-

versed by several users. Hence, there is need to find techniques that discover

frequent subpaths efficiently by storing useful historical information.

2.9 Identified Research Gaps of Frequent Sub-

graphs

From the literature, we observed that the direct 1-step algorithm [31] that

used DS Matrix is an efficient technique to find the frequent edges and

the resultant frequent subgraphs. Besides, we observed that while finding

frequent subgraphs, although sliding window based techniques execute fast,

they may lead to loss of useful historical information. This motivated us

to find the actual minimum support from the given minimum support [91]

and develop static and dynamic sliding window filtering techniques [52].

We also observed that we need to reduce duplicate calculations further.

We related the problem of finding frequent subgraphs to the problem of

finding frequent subpaths from sequence of paths. Thus, we applied the

proposed frequent subgraph finding techniques to find frequent subpaths

from the sequence of paths described in Chapter 5 of the thesis.
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2.10 Query Logs and Framework

Query logs are used to find the previous repeated queries and its results

faster. Bonifati et al. [14] analysed query logs for Resource Descrition

Framework (RDF) queries. They have extracted syntactic structure as well

as semantic hypergraph representation of queries. The study on large num-

ber of queries led to the queries classification and their shape analysis.

A framework involves integration of components or modules to solve the

specific problem efficiently. Yusoff et al. [90] define framework as generic

combination of data and processes where subcomponents may be substi-

tuted. An architecture is defined as the combination of data and processes

where subcomponents are not substituted.

Petrou et al. [36] developed big data framework that involved trajectory

prediction algorithms in aviation and maritime domains. The framework

involved different modules with batch processing and stream processing

layers. The major modules include synopses generator, semantic integrator,

data manager, trajectory clustering and future location predictions with

demonstrations.

2.11 Developing Query Processing Framework

We observed that we can store the query information and path informa-

tion for constrained reachability queries in Query Path Log for faster query

processing. We find that there is a need to combine our proposed tech-

niques and Query Path Log to develop a novel framework for constrained

reachability queries.
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2.12 Summary

The description of different modules and their integration into a novel

query processing framework is discussed in Chapter 6 of the thesis. Table 2.1

describes a summary of the prominent techniques and significant observa-

tions in the literature that are reviewed by Citing, Comparing, Contrasting,

Critiquing and Connecting with the research corresponding to constrained

reachability query processing in the thesis.

2.12 Summary

We performed extensive survey of LCR techniques, other constraint reacha-

bility techniques, clustering techniques and techniques to find frequent sub-

graphs from graph streams. We identified the research gaps and progressed

further by proposing techniques that are presented in the subsequent chap-

ters of the thesis as contributions. Besides, we integrated our contributions

and developed a novel query processing framework presented in Chapter 6.
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Chapter 3

Bounded Label Constrained

Reachable Paths

One of the fundamental operations to manage graph data is to find the

reachability from one vertex to another vertex in the graph. In real-time,

the vertices and edges of a graph consist of attributes. In this chapter, we

solved and formulated the novel problem by extending the problem of Label

Constrained Reachability by developing efficient techniques. The publica-

tions of this chapter are listed below. In section 3.2, we describe and illus-

trate the preliminaries that are helpful in understanding our research. In

section 3.3, we describe the techniques in the literature related to reachabil-

ity, constrained reachability, and finding paths. In sections 3.4 and 3.5, we

describe our contributions, which constitutes the proposed landmark path

indexing and query processing algorithms. Section 3.6 describes the in-

dex construction, evaluation of our proposed techniques based on accuracy

measures and statistical analysis on datasets.

B. Bhargavi and K. Swarupa Rani, “Bounded paths for LCR queries in labeled weighted directed
graphs”, in Proceedings of Advances in Computing and Data Sciences, Springer ,pp. 124–133,
2018.
Bhargavi B. and Swarupa Rani K., “Implicit Landmark Path Indexing for Bounded Label
Constrained Reachable Paths”, International Journal of Recent Technology and Engineering
(IJRTE), Vol. 8, Issue 4, pages 10, pp. 10661-10669, November 2019.
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3.1 Introduction

In the big data era, there are huge databases with relational and graphical

information. The discovery of useful and unknown information in such data

is challenging for research and professional groups. The graph is one of the

important tools that can represent the complex relationships between the

objects of big data. Graph mining refers to mining data represented as a

graph [29]. One of the challenges is to develop algorithms that can store,

manage and provide analysis over a large number of graphs for the real-

world applications. Another challenge is to develop efficient graph database

systems. Neo4j [5] and InfiniteGraph [6] are some of the graph databases

optimized for handling graph data. In addition, big data companies like

Twitter and Google designed graph database systems such as FlockDB [7]

and Pregel [60] respectively. Some of the specific operations of mining graph

data from real-world domains such as graph pattern matching, clustering

graphs, and finding frequent subgraphs are the important contributions of

deriving new knowledge.

One of the fundamental operations to manage graph data is to find the

reachability from one vertex to another vertex in the graph. In real-time,

the vertices and edges of a graph consist of attributes. These attributes give

information about the type of vertices, type of relationship and strength of

the relationship between the vertices. For instance, consider road network

of figure 3.1 where the vertices denote the loactions or places and the edges

denote the link between the locations. The edge weight denotes the distance

between the locations. The edge labels denote the type of roads such as

Narrow, Street, Two-wheeler and Highway. The constrained reachability

query finds the existence of reachability between the two given vertices

while satisfying the given constraints. The Label-Constraint Reachability

(LCR) query that was first formally defined by Ruoming Jin et al. [45] is

for finding the existence of the label constrained reachable path between

the given vertices in an edge labeled directed graph.
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Figure (3.1) Road network (G1) denoting an edge labeled weighted directed
graph

We extended the LCR query by formulating a novel problem formally

referred as Bounded Label Constrained Reachable Paths (BLCRP) defined

in Section 3.2. It involves finding the exact paths satisfying the given con-

straints instead of finding only the existence of paths [45].

3.1.1 Applications and challenges

One of the applications of BLCRP is in road networks. For instance, in road

networks, we can find the paths between two places X and Y bounded by

the given distance d, which are connected through labeled roads. Fig. 3.1

illustrates a local road network with vertices {P1, P2, ..., P12} denoting

the locations or places and edges representing the link between the adjacent

locations. Each edge has a label that constitutes two parts W:Ty ; W (edge

weight) denotes the distance between the two locations in Kms. and Ty

(edge label) denotes the type of roads. For instance, the type of roads are

assumed to be Highway (H), Street (S), Narrow road (N) and Two-wheeler

road (accessible by only two-wheelers)(T) for the Figure 3.1. Suppose the

user query is to find the paths from “P1” to “P4” within distance of 100Km

in a two-wheeler without using High-way. The query can be considered

as the problem of finding BLCRP for the given labeled weighted directed
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graph, G1, with label set constraint “SNT” and the bound for path weight

100.

Another application is in protein-protein networks [63] where the edge

weight represents the reliability of interaction between two proteins and

edge labels are enzymes that transform the proteins. In this case, the

BLCRP query can find the transformation path from one protein to an-

other within the given bound. Furthermore, in social networks, the vertices

denote the users, the edge labels between the users represent the relation-

ships like isFriend, isRelative or isColleague and the edge weights can be the

strength of the relationships. Thus, the BLCRP query, in social network,

can find the paths between the given remote users within the constraints

on relationships.

One of the significant challenges to find the BLCRP is that there can

exist an exponential number of label combinations between the two given

vertices. Another challenge is to compute the exact paths. But, in the

literature, shortest path finding techniques [57] exist that compute only the

approximate paths. These observational studies persuade us towards the

real network context that considers the categorical edge label constraints

and real-valued edge weight constraints while finding the exact paths.

In this chapter, we focused on edge labels and total path weight con-

straints for labeled weighted directed graphs. (1) The edge labels must

satisfy the given membership constraint while finding graph reachability.

(2) We find not only the reachability between the two given vertices but

also the exact paths whose path weight is less than or equal to the given

maximum path weight. Considering the above two constraints are challeng-

ing, as it leads to the slower index construction time.
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We formulated the problem and solved Bounded LCR Paths by extending

the Landmark Index and Query algorithms [79] and proposed novel algo-

rithms. We extended by incorporating paths and path weights in the index

in addition to the reachable vertex and the path label [79] for the land-

mark vertices. By including minimality of label sets [79], a new index is

constructed that is termed as Landmark Path Index [20]. Besides, we also

considered Dijkstra’s relaxation property for specific cases while indexing.

We also observed that some of the implicit paths were not included in the

index that satisfy the given constraints. In order to strengthen the efficiency

of our proposed approach [20], in this chapter, we modified the proposed

algorithm [20] and improved it by constructing an index that considers the

implicit paths for the specific cases.

In summary, our main contributions in this chapter are:-

• Proposed a novel problem of finding Bounded LCR Paths in labeled

weighted directed graphs.

• Proposed algorithms to find the exact Bounded LCR Paths described

in section 3.4 instead of finding only the existence of paths [79].

• Proposed and extended algorithms of landmark path index by includ-

ing the implicit paths while indexing to find the paths described in

section 3.5.

• Theoretically proved the correctness of our proposed algorithms.

• Evaluated the accuracy by computing the precision and recall for all

the queries of the real and synthetic datasets in section 3.6.

• Conducted experiments and statistically evaluated the efficiency of our

proposed approaches on real and synthetic benchmark datasets.

• Presented extensive survey of constrained reachability techniques, which

is given in Table 3.2 for future reseach directions.

36



3.2 Preliminaries

3.2 Preliminaries

An edge-labeled directed graph is denoted by G (V, E, Tl, λ), where V is

the set of vertices, E is the set of edges, Tl is the set of edge labels, and λ is

the function that assigns each edge e ∈ E, a label λ(e) ∈ Tl . We describe

the path p from vertex ‘vs ’ to ‘vd ’ in the edge labeled directed graph G

as a vertex sequence, i.e., p = (vs, vm1, ..., vmi, ..., vd). vmi indicates the

ith intermediate vertex along the path from ‘vs ’ to ‘vd ’. We use path label

L(p) to denote the set of all edge labels in the path p, i.e., L(p) = { λ(e1)

∪ λ(e2) ∪ ∪ λ(en)}.

DEFINITION 1. (Label-Constraint Reachability) Given two ver-

tices, ‘vs’ and ‘vd’ in the edge labeled directed graph G, and a label set

A, where ‘vs’, ‘vd’ ∈ V and A ⊆ Tl, if there is a path p from vertex ‘vs’ to

‘vd’ whose path label L(p) is a subset of A, i.e., L(p) ⊆ A, then we say ‘vs’

can reach ‘vd’ with label-constraint A. We also refer to path p as an A-path

from ‘vs’ to ‘vd’.[45]

LCR Query: Given two vertices ‘vs ’ and ‘vd ’, and a label set A, the

label-constraint reachability (LCR) query asks if there exists an A-path

from ‘vs ’ to ‘vd ’.[45]

We demonstrate the LCR query for the road network in Fig. 3.2 through

the following cases:

Case 1: For instance, the LCR query (P1, P4, “HN”) returns true as there

exists a path {P1, P5, P4} satisfying the given constraint.

Case 2: For the LCR query (P1, P7, “NT”), it returns false because

there doesn’t exist any path from P1 to P7 satisfying the given label-set

constraint.

Case 3: There can exist a reachability query (P3, P1, “NT”) for which

there does not exist any path in the entire graph even without satisfying

the given label set constraint.

Case 4: There can exist a reachability query (P1, P7, “NT”) for which
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Figure (3.2) Road network with types of roads (S:Street, N:Narrow, H:Highway,
T:Two-wheeler only)

there exists a path p= {P1, P6, P7} for which L(p) is not a subset of the

given label set, i.e., L(p)=“HS” 6⊂ “NT”.

In this chapter, we handle LCR queries of type case 1, case 2 and case

3. Case 4 type of reachability query is a why-not reachability query that is

beyond the scope of the thesis.

DEFINITION 2. (Landmark Vertex) The landmark vertices (denoted

by VL) are defined as the subset of vertices for the given graph G(V, E ), i.e.,

VL ⊆ V. These are selected based on criteria such as the top ‘k’ vertices of

highest degree or any of the centrality measures of the graph. For instance,

in Fig. 3.2, the top 4 vertices of highest total degree that can be considered

as landmark vertices are {P5, P6, P8, P1}.

3.2.1 Problem definition

We denote an edge labeled weighted directed graph as G’ (V, E, Tl, λ, w)

where V represent vertex set, E denotes the edge set, Tl is the total set of

different labels in G and for every edge e ∈E, w(e) ∈ R+ and λ(e) ∈ Tl.

The path weight or path cost is computed by adding edge weights (w(ei))
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along the path (p). Thus, the path weight for the path p denoted by C(p)

is Σ(w(ei)).

Figure (3.3) (a)Edge labeled weighted directed graph, G and (b) Resultant
Bounded LCR Path for query (v4, v7, ‘ac’, 50 )

Figure 3.3(a) illustrates an edge labeled weighted directed graph, G with

V={ v1, v2, v3, v4, v5, v6, v7} and E={ (v1, v2), (v1, v4), (v1, v5), (v2,

v5), (v3, v2), (v4, v3), (v5, v6), (v6, v3), (v6, v4), (v6, v7) }, the set of

edge labels Tl={‘a’, ‘b’, ‘c’}, for instance, λ (v1, v2)=‘a’ and w(v1, v2)=2.

We formulated a new problem by extending the LCR definition of Ruoming

Jin et al. [45] as follows:

DEFINITION 3. (Bounded Label Constrained Reachable Paths)

Given two vertices ‘vs’ and ‘vd’, the label set A⊆ Tl and bound for the path-

weight δ ∈ R+ in an edge-labeled weighted directed graph G’, if there is an

A-path lpi from ‘vs’ to ‘vd’ such that the path weight C(lpi) ≤ δ, then we

say ‘vs’ can reach ‘vd’ with label-constraint A and the path weight bound

δ. In other words, it can also be referred as follows: Given two vertices

‘vs’ and ‘vd’, a label set A and bound δ, the bounded label constrained

reachable paths are the A-paths lpi, between ‘vs’ and ‘vd’ that satisfy the

bounded path weight constraint C(lpi) ≤ δ.

In the thesis, we referred and termed the Bounded Label Constrained

Reachable Paths as BLCRP.

39



3.3 Related Work

For example, let us consider the edge labeled weighted directed graph of

figure 3.3(a). The resultant path for the BLCRP query (v4, v7, ‘ac’, 50 )

is p= { v4, v3, v2, v5, v6, v7 } as shown in figure 3.3(b). The path cost

C(p)= w(v4, v3)+ w(v3, v2)+ w(v2, v5)+ w(v5, v6)+ w(v6, v7)=31.

For instance, in figure 3.1, we need to find the path for BLCRP query q(vs,

vd, A, δ) with vs=“P1”, vd=“P4”, A=“SNT” and δ=100. The resultant

bounded A-path lp is {P1, P2, P3, P4} with the path cost of 95.

We further extend our proposed Landmark Path index algorithm by in-

cluding implict paths during indexing.

DEFINITION 4. (Implicit Paths) Implicit paths are defined as the

paths in the given graph that implicitly satisfy the given reachability con-

straints but need not satisfy the minimality of label sets.

For instance, in Fig. 3.1, there exist two paths from P1 to P5, i.e.,

lp1={P1, P2, P5} and lp2={ P1, P5}. For the BLCRP query q( P1, P5,

“NT”, 45), the resultant bounded paths satisfying the given constraints can

be both lp1 and lp2. The path lp1 although violating minimality of label

sets property [79], satisfies the given reachability constraints. Hence, lp1 is

an implicit path.

Table 3.1 shows the different notations used in this chapter with their de-

scription.

3.3 Related Work

In this section, we reviewed various techniques that find the reachability,

constrained reachability, shortest paths and constrained paths. Also, we

surveyed on finding path compression techniques and efficient ways to index

paths.
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Table (3.1) Description of Notations

Notation Description
G Given graph
V Set of vertices
E Set of edges
Tl Total set of edge labels in G
λ(e) Edge label of the edge e ∈ E
w(e) Edge weight of the edge e ∈ E
L(p) Path label of path p
C(p) Total path weight or cost of path p
δ Given bound on path weight
k Number of landmark vertices
n Total number of vertices in G
m Total number of edges in G

Reachability techniques Graph reachability finds the existence of path

between the vertices in a graph. In [87], [9], the detailed survey of reach-

ability techniques is specified. H. Wei et al. [82] classified the reachability

techniques into two categories; Label-only approaches and Label+G ap-

proaches. Label-only approaches directly find the existence of reachability

between the two vertices from the constructed index. Label-only approaches

include 2-hop [28], 3-hop [47], Chain-cover [27], Path-Tree Cover [48], Tree-

Cover [10], and Dual Labeling [80]. Label+G approaches use index labels

and BFS/DFS to find the reachability between two vertices. Tree+SSPI

[25] and GRIPP [78] are Label+G approaches which have linear index size

and query time in terms of the number of vertices of the graph. H. Wei et

al. [82] also developed an independent permutation labeling approach and

two additional labels to find the reachability between two vertices.

Different variants of reachability are formed by incorporating constraints

to vertices and edges of the graph. The vertex/edge constraints can be

a specific bound for each edge weight, specific vertex labels, specific edge

labels, membership of specific edge labels, membership of specific vertex

labels, and edge/vertex labels in a specified order. Table 3.2 describes the

different constraints with their state-of-the-art reachability techniques.
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Table (3.2) Survey of Constrained Reachability Techniques from [2010-2018]

S.No. Constraint Technique (Authors,Year) Advantages

1
edgelabel
set
member

Maximal Spanning Tree
based Query Processing
(Jin et al., 2010 [45])

compress the transitive
closure of the graph to
more than two orders of
magnitude

2
edgelabel
set
member

Bidirectional labeled
BFS(Fan et al., 2011 [38] )

used as base technique in
JoinMatch and SplitMatch
algorithms to find
matching graph patterns in
large graphs

3
every edge
weight
bound

Memory-based and
Disk-based Index and
query processing
algorithms(Miao Qiao et
al., 2013 [66])

highly scalable disk based
algorithm and faster query
processing

4

path
distance
and exact
edge label
match in
uncertain
graphs

Spanning Tree based
BPFilter
algorithm(Minghan Chen
et al., 2014 [26])

Generate subpath graph
and find approximate
reachability in uncertain
graphs

5
edge label
set
member

Augmented Transitive
Closure technique and
Partition approach(Zou et
al., 2014 [93])

scalability is addressed
using sampling based
solution for good partition

6

multidi-
mensional
vertex and
edge
attributes

Hashing and graph
clustering based
solution(Duncan Yung et
al., 2016 [88])

finds reachability with
multi-dimensional attribute
constraints

7
edge label
set
member

LandmarkIndex and Query
algorithms(Valstar et al.,
2017 [79])

finds reachability satisfying
given label constraint with
significant speedups in
query processing

Ruoming Jin et al. [45] formally defined label-constraint reachability as the

problem of finding if there exists path between two vertices that satisfies the
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given edge-label membership constraint. Ruoming Jin et al. [45] developed

spanning tree based solution to LCR problem. Fan. et al [38] developed

bidrectional BFS technique for LCR queries and used constraint reacha-

bility solution as the base technique for finding matching graph patterns.

Lei Zou et al. [93] constructed augmented Directed Acyclic Graph (DAG)

and developed transitive closure technique and partition-based technique

to solve LCR queries. Valstar et. al. [79] developed a landmark based in-

dexing technique which can handle LCR queries efficiently for large graphs.

Duncan Yung et al. [88] designed hashing based technique to handle multi-

dimensional vertex and edge label constraints while finding the reachabil-

ity. Miao Qiao et al. [66] formalized weight constraint reachability query

in which every edge weight through the path must satisfy the given range

constraint.

Path finding techniques Chris Barrett et al. [17] defined edge label and

edge weight constraints in formal language and computed the constrained

shortest paths through dynamic programming. Ankita et al. [57] developed

constrained TreeSketch algorithm that considered edge label constraint(A)

and found approximate A-paths between the given vertices. Frances et al.

[24] developed landmark-based indexes to compute approximate shortest

path distance. Minghan Chen et al. [26] worked on uncertain graphs with

sampling techniques to find approximate shortest paths constrained through

distance parameter.

In [73], [74], a B+ tree index based solution is developed to solve reach-

ability queries for graphs. Akiba et al. [11] developed a landmark-based

approach with efficient pruning to solve queries of finding the exact shortest

path distance between two vertices. Delling et al. [32] designed a scalable

solution based on 2-hop labels for the distance queries in large networks.

Ho L-Y et al. [43] developed partition replication, workload prediction and

workload balancing methods to address the data locality and workload bal-

ancing while finding vertex label constrained reachability in large attributed

graphs.
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From the literature review, we observe that there is a scope for finding

efficient reachability techniques that have lesser index construction time,

lesser index size, and faster query processing. The current state-of-the-art

reachability techniques cannot be applied directly to constrained reachabil-

ity queries as the attributes of vertices/edges are not stored while comput-

ing the index. Many approximate shortest path techniques are developed

which do not compute exact paths. Hence, there is a need to find techniques

that compute the exact reachable paths satisfying the given vertex/edge at-

tribute constraints. Hashing is found to be an efficient data structure for

secondary storage access than B+tree [39]. Duncan Yung et al. [88] used

BFS with hashing techniques to compute vertex-labeled reachability on big

attributed graphs.

3.4 Proposed Technique to find Bounded La-

bel Constrained Reachable Paths

In this section, our contributions are explained. We extended and modified

the landmark based indexing [79] and proposed algorithms to compute path

index and to find the Bounded Label Constrained Reachable Paths. In the

landmark based indexing technique [79], ‘k’ landmark vertices were selected

based on highest total degree. Min-heap based prioirty queue with path

label size as priority was used to add labelsets satisfying minimality.

During index construction, we selected ‘k’ vertices sorted in descending

order of total degree as landmark vertices. The ‘k’ value is considered to

be d
√

(n)e which is derived from theoretical observation of upper bound on

the burning number of graph [51], [79]. To find bounded paths, we extended

the landmark index by including intermediate paths as well as path weight

while indexing. We considered path-weight as prioirty in min-heap based

priority queue. While adding paths, we incorporated Dijsktra’s relaxation

property when path labels are same. While processing the BLCRP query(s,

t, L, δ), we find the L-paths using BFS-based query processing along with
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the path index and return the L-paths whose path-weights are bounded by

δ.

First, we preprocessed the graph data for faster indexing and query exe-

cution. In preprocessing, vertices are numbered from 0 to n-1. The labels

are also numbered from 0 to |Tl|-1. The corresponding bits of numbered

labels are set during path index construction. For instance, fig. 3.4 shows

the preprocessed directed graph G′ of fig. 3.1. Thus, the preprocessing step

saves storage space while indexing.

3.4.1 Path indexing algorithm

In the algorithm (LWPathIndex), for each landmark vertex, all reachable

vertices, their labels, the path and path-weight are computed using LW-

PathIndexPerLM() procedure and stored in Path LandMark index(PLM).

In AddPathInfo() procedure, we add paths to path index by considering

minimality of labelsets [79] and cost constraints. While adding paths with

same labels, we add only paths that preserve Dijkstra’s relaxation property.

Table 3.3 describes how label constraints and weight constraints are con-

sidered while indexing. For any reachable vertex v from s, let (L′, cost′) be

the path label and path-weight (cost) for path p′ that is already inserted

and (L, cost) represent the path label and cost for path p that is to be

inserted based on Table 3.3. Minimality of labelsets is preserved as well

as Dijkstra’s relaxation property for weights is not violated for the cases

5-8. But, for the cases 1-4, we have performed trade-off for faster indexing

by adding paths preserving minimality of labelsets. For instance, let ‘0’ be

one of landmark vertices for the graph G′ in Fig. 3.4. Suppose PLM[0] for

vertex ‘6’ has L′=7 , p′=‘0-4-5-6’ and cost′=141. If a tuple(‘6’, L, p, cost)

with L=5, p=‘0-5-6’ and cost=106 is encountered, it is inserted into PLM[0]

and the record (‘6’, L′, p′, cost′) is deleted. We add only those simple paths

to the path index whose path length≤ ddiameter/2e for faster indexing.
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Algorithm 1: LWPathIndex

PLM[vi]←LWPathIndexPerLM (vi)// i ∈ 1:k

PNL[vj]←LWPathIndexPerNM (vj)// j ∈ remaining (n-k) vertices

procedure LWPathIndexPerLM (v) // Let q be priority queue

while q is not empty do
Dequeue u and add its path information to PLM[s] through
AddPathInfo ()
Add u to transL[s][S] if same labeled data exists else add(u, L) to
transL[s]
if u is indexed then

ExpandOut (); continue

for w ∈ adj(u) do
if PathLength(s,w)≤ ddiameter(g)/2e then

Enqueue w

procedure LWPathIndexPerNM (v, b)
while q is not empty do

Add u and its path information to PNL[s] through AddPathInfo ()
if u is indexed then

ExpandOutNM (s, u, L, iv, cost) upto b landmark vertices

for w ∈ adj(u) do
Enqueue w

procedure AddPathInfo (s, v, L, intv, cost)
if (v, L′, intv′, cost′) ∈ PInd[s] and L′ ⊆ L then

return false
Delete any (v, L′, intv′, cost′ ) with L⊂ L′ or (L′ = L and cost′ > cost)
from PInd[s].
Add (v, L, intv, cost) to PInd[s].// PInd=PLM for LM index, else

PInd=PNL

return true

An additional index transL is created for the landmark vertices for which

we either generate a new entry (L, v) or append v to the previous entry in

transL[li][L] used for efficient pruning in query processing. For each non-

landmark vertex, LWPathIndexPerNM() computes Path Non-Landmark in-

dex (PNL). ExpandOut() and ExpandOutNM() methods propogate the

reachability information of indexed vertices that lead to faster index con-

struction for PLM and PNL respectively.

46



3.4 Proposed Technique to find Bounded Label Constrained
Reachable Paths

Table (3.3) Cases of label constraints and cost constraints while indexing

Case
Label set Cost (L′, cost′) (L, cost) Dijkstra’s Minimality

No. condition condition removed? added?
property
preserved?

preserved?

1 L′ ⊂ L cost<cost′ No No No Yes
2 L ⊂ L′ cost>cost′ Yes Yes No Yes
3 L 6⊂ L′ & L′ 6⊂ L cost<cost′ No Yes No Yes
4 L 6⊂ L′ & L′ 6⊂ L cost>cost′ No Yes No Yes
5 L ⊂ L′ cost≤cost′ Yes Yes Yes Yes
6 L = L′ cost≤cost′ Yes Yes Yes Yes
7 L = L′ cost>cost′ No No Yes Yes
8 L′ ⊂ L cost≥cost′ No No Yes Yes

3.4.2 Query processing algorithm

We modified and extended the BFS-based query processing approach [79] by

accessing the path index and returning the label constrained paths whose

path-weight is within given maximum bound. The query processing of

BLCRP queries is evaluated based on QBPath Algorithm. If s is landmark

vertex, then QPathLM() procedure is invoked that checks if there exists (l,

p, cost) in PLM[s] for the target vertex t where l is the path label for p and

cost is path-weight with l⊆L and cost ≤ maxcost, then p is returned. If s

is non-landmark vertex, the vertices are either checked in PNL or traversed

through breadth-first search, till t is reached. The vertices from s along

the path that cannot reach t are marked as visited using QCheckMark().

For example, let the BLCRP query be (0, 6, 5, 150) for the graph of figure

3.4. Since, ‘0’ is a landmark vertex, the constraints are directly checked

in PLM index and the resultant retrieved path is {0, 5, 6}. Thus, we

find the multiple exact paths by using proposed path indexing and query

processing algorithms (referred as LM2 in section 3.6) by satisfying the

given constraints of the query.
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Algorithm 2: QBPath

Input : s, t, L, maxcost
Output: Bounded Paths p[i] ∈ p
if s∈ VL then

QPathLM (s, t, L, maxcost)

// PLM index is invoked in QPathLM()

for (v, L′, intv′, cost′) ∈ PNL[s] do
if ( L′ ⊆ L and QCheckMark (v, t, L, marked, maxcost)=true) then

Add path s∼v∼t to p

// v∼t derived from QPathLM()in QCheckMark()

while q is not empty do
if v=t then

Add path s∼t to p; break

if v ∈ VL and QCheckMark (v, t, L, marked, maxcost)=true then
Add path s∼v∼t to p

for w ∈ adj(v) do
if (marked(w)=false and λ(v, w) ⊆ L) then

Insert w into q

if (p is not empty and pcost(p[i])≤maxcost, p[i] ∈ p) then
return p

3.5 Extended Proposed Technique by includ-

ing Implicit Paths

The extended works include incorporating implicit paths. By including the

implicit paths in the index, we achieve higher recall than LM2. These exten-

sions along with implicit paths, i.e., LWPathIndexImplicit and BImplPath

algorithms are referred as LandMark path extensions (LM3) in section 3.6.

3.5.1 Path indexing algorithm by including implicit

paths

For each landmark vertex (v), we construct a reachable Implicit Path

Landmark index (IPL) that includes reachable vertex (from v), its label,
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Figure (3.4) Pre-processed directed graph G′ of the road network G1

path and weight. While inserting the same vertex with different labels or

weights, we consider the minimality of label sets [79] and Dijkstra’s relax-

ation property based on Table 3.6.

Assumption We assume only simple paths, whose path length is less than

or equal to half the diameter of the graph exist between the source landmark

vertex and most of its reachable vertices. Therefore, faster indexing is

achieved.

Table 3.4 shows the path landmark index for vertices 0, 4 and 7 of pre-

processed directed graph G′ of Fig. 3.4. For instance, the tuple <4, 10,

1, 42> in IPL[0] of Table 3.4 indicates the vertex 0 can reach vertex 4

via vertex 1 with bit processed label constraint 10, and total path weight

of path {0, 1, 4} is 42. For non-landmark vertices, upto ‘b’ reachable

landmark vertices are indexed in Path Non-Landmark (PNL). Table 3.5

shows the PNL index for non-landmark vertices 5, 6 and 8 of Fig. 3.4.

Table 3.6 shows the different possible cases during path indexing for

which minimality and Dijkstra’s relaxation properties are handled. We

denote the path label to be indexed by L and path label already indexed

by L′. We denote v as the reachable vertex and iv and iv′ denote the
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Algorithm 3: LWPathIndexImplicit
Input : Edge-Labeled Weighted Directed Graph, G
Output: transL, IPL, PNL
procedure ImplPathperLV (v) // Enqueue (v,,,0)in priority queue q

while q is not empty do
Add (u, L, iv, wt) IPL[s] through AddIPath ()
// L is the path label from s to u

Append u to transL[s][S] if L=S, else insert (u, L) to transL[s]
if u is indexed then

ImplExpand (); continue

for (w, L′, wt′) ∈ outneighbors(u) do
iv←join(iv,w); L′′ ← L∪ L′

wt′′ ← wt+wt′

if PathLength of s∼w is less than half of graph diameter then
Add (w, L′′, iv, wt′′) to q

procedure AddIPath (s, v, L, intv, C)
if (v, L′, intv′, C′) ∈ PInd[s] and L′ ⊆ L then

return false

if (L⊂ L′ or (L′ = L and C′ > C)) then
Delete entry (v, L′, intv′, C′) from PInd[s]

. if (L⊂ L′ and C′ > C) then
Delete (v, L′, intv′, C′ ) from PInd[s].

IE← (v, L, intv, C)
Insert IE into PInd[s].// PInd=IPL for LM index, else PInd=PNL

return true
procedure ImplPathIndNV (v, b)
while q is not empty do

Dequeue (u, L, iv, wt)
if (isLandmark(u)=true) then

Add (u, L, iv, wt) to PNL[s] through AddIPath ()

if ((u is indexed)& b>0) then
ImplExpandNM (s, u, L, iv, C);b=b-1;

for (w, L′, wt′) ∈ outneighbors(u) do
iv←join(iv,w); L′′ ← L∪ L′

wt′′ ← wt+wt′; Enqueue (w, L′′, iv, wt′′)

procedure ImplExpand (s, u, PL, iv, C)
for every (v, PL′, intv′, C′ ) in IPL[u] do

PL′′=PL ∪ PL′;intv′′=join(iv, intv′);C′′=C+C′; Add (v, PL′′, intv′′, C′′)
through AddIPath ()

procedure ImplExpandNM (s, u, PL, iv, C)
// PInd=IPL if isLandmark(u)=true, else PInd=PNL

for every (v, PL′, intv′, C′) in PInd[u] do
if (v is indexed & isLandmark(v)=true) then

PL′′ ← PL ∪ PL′;intv′′ ← join(iv,intv′);C′′ ← C+C′; Add (v, PL′′, intv′′,
C′′) through AddIPath ()
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Table (3.4) Path Landmark index of landmark vertices for Fig. 3.4

Index Tuples

IPL[0]

<1, 8, -, 16>, <4, 10, 1, 42>, <4, 2, -, 44>, <5, 1, -, 45>,
<2, 8, -, 49>, <3, 8, 1-2, 95>, <6, 5, 5, 106>, <8, 7, 5-6,
122>, <7, 5, 5-6, 142>, <3, 3, 4, 164>

IPL[4]
<5, 1, -, 36>,<6, 5, 5, 97>, <8, 7, 5-6, 113>, <3, 1, -,
120>, <7, 5, 5-6, 133>

IPL[7]
<10, 4, -, 14>, <9, 4, 10, 26>, <11, 1, -, 40>

Table (3.5) Path Non-Landmark index for Fig. 3.4

Index Tuples

PNL[5]
<7, 5, 6, 97>, <4, 6, 6-8, 163>

PNL[6]
<7, 1, -, 36>, <4, 6, 8, 102>

PNL[8]
<4, 4, -, 86>, <7, 4, -, 20>

... ...

intermediate paths of the new tuple (to be indexed) and indexed tuple

respectively. We denote the path weight (or cost) to be indexed by C and

indexed path weight by C′.

Table (3.6) Label and cost constraints while indexing with implicit paths

Case
No.

Label set Cost (L′, C′) (L, C) Dijkstra’s Minimality

condition condition removed? added? property preserved? preserved?

1 L′ ⊂ L C<C′ No Yes No No
2 L ⊂ L′ C>C′ No Yes No No

3
L 6⊂ L′ &
L′ 6⊂ L

C<C′ No Yes No Yes

4
L 6⊂ L′ &
L′ 6⊂ L

C>C′ No Yes No Yes

5 L ⊂ L′ C≤C′ Yes Yes Yes Yes
6 L = L′ C<C′ Yes Yes Yes Yes
7 L = L′ C≥C′ No No Yes Yes
8 L′ ⊂ L C≥C′ No No Yes Yes
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For the cases 1 and 2 of Table 3.6, both minimality of label sets and

Dijkstra’s relaxation property are not preserved; yet the resultant paths

may implicitly satisfy the given label constraints and the bounded path

constraint. Hence, both the existing tuple <v, L′, iv′, C′> and new tuple

<v, L, iv, C> are retained. For instance, in Table 3.4, for IPL[0], both

tuples < 4, 10, 1, 42> and <4, 2, -, 44> are retained although minimality

of label sets and Dijkstra’s relaxation property constraints are violated.

Thus, implicit paths are included in the constructed index through case 1

and case 2 of Table 3.6.

When L 6= L′, irrespective of C≤C′ or C≥C′, the tuple <v, L, iv, C>

can be added to path index for cases 3 and 4 of Table 3.6. For case 5 and

case 6, L ⊆ L′ and C < C′, both minimality of label sets and Dijkstra’s

relaxation property constraints are satisfied. Hence, the existing index tuple

<v, L′, iv′, C′> is removed and the new tuple <v, L, iv, C> is added. For

case 7 and case 8, L′ ⊆ L and C > C′, both minimality of label sets and

Dijkstra’s relaxation property constraints are satisfied. Hence, the existing

index tuple <v, L′, iv′, C′> is retained and the new tuple <v, L, iv, C> is

not added.

The proposed Algorithm 3 describes landmark path index construction

by including implicit paths for the edge-labeled weighted directed graph.

Landmark vertices (VL ⊆ V ) are obtained by sorting vertices in decreasing

order of their total degree and selecting the first ‘k’ vertices from the sorted

vertices. Algorithm 3 first generates Implicit Path Landmark index (IPL)

for landmark vertices by invoking call to ImplPathperLV() for each land-

mark vertex. Next, ImplPathIndNV() procedure is invoked that generates

Path Non-Landmark index (PNL).

For each landmark vertex vs, its descendent vertices are traversed and

pushed into a priority queue q. In priority queue, vertices are prioritized
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based on increasing path length from the vertex vs. Each descendant ver-

tex (v), its label (L), intermediate path (iv) and total path weight (wt)

are stored as tuple <v, L, iv, wt> in IPL[vs] through AddIPath() in the

algorithm. IPL is the path landmark index which stores the tuples in a list

for each landmark vertex. AddIPath() adds the tuples by considering min-

imality of labelsets and Dijkstra’s relaxation property constraints as shown

in Table 3.6.

If vs encounters an already indexed descendant vertex v′, all the tuples of

v′ are joined to vs using ImplExpand(). The reachable paths with interme-

diate path length less than or equal to half of the diameter of the graph are

enqueued. For instance, in Table 3.4, for vertex 0 of graph G′ (Fig. 3.4),

IPL[0] stores the reachable vertices with their path information.

ImplPathIndNV() stores upto ‘b’ reachable landmark vertices for each

non-landmark vertex in Algorithm 3. In ImplPathIndNV(), for each non-

landmark vertex vn, its descendent vertices are pushed into the priority

queue. If dequeued vertex v′ is a landmark vertex, the vertex (v′), its

label (L), intermediate path (iv) and total pathweight (wt) are stored as

tuple < v′, L, iv, wt> in PNL[vn] by invoking AddIPath(). If v′ is already

indexed, its tuples are joined and stored in PNL[vn] using ImplExpandNM().

In ImplExpandNM(), if vertex passed is non-landmark vertex, PNL[v′] is

used, otherwise IPL[v′] is used to join the tuples. Thus, upto ‘b’ reachable

landmark vertices are stored in PNL for each non-landmark vertex. For

instance, for non-landmark vertex 8 of graph G′, PNL[8] in Table 3.5 shows

its reachable landmark vertices 4 and 7 and their path information.

3.5.2 Query processing algorithm by including im-

plicit paths

During query processing, the first step is to check if the source vertex is a

landmark vertex or not. The proposed Algorithm 4(BImplPath) describes
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the query processing of BLCRP query q(s, t, L, maxcost) through im-

plicit path indexing. If ‘s’ is a landmark vertex, QPathLM() is invoked.

QPathLM() uses IPL[s] to find the target vertex. If the target vertex

is reached and the given constraints are satisfied, then the corresponding

paths are added to p. For instance, consider BLCRP query q(0, 7, 5, 180)

of Fig. 3.4, the resultant path {0, 5, 6, 7} is returned using IPL[0] through

QPathLM() of Algorithm 4.

If source vertex is non-landmark vertex and target vertex is landmark

vertex, the target vertex can be reached through PNL. If target vertex is

non-landmark vertex, source vertex may reach the target vertex through an

intermediate landmark vertex by invoking QMark(). For instance, BLCRP

query q(8, 10, 4, 60) of Fig. 3.4 returns the resultant path {8, 7, 10}
through PNL[8] and IPL[7]. The descendant vertices are traversed till tar-

get vertex is reached satisfying the label constraints. If an intermediate

landmark vertex is reached, its reachable vertices are checked for the target

vertex using QMark().

3.5.3 Correctness proof

Lemma 1: Let G(V, E, L, w) be a graph and k ∈ N. Let {IPL[vi]} i∈[k]

be index constructed by LWPathIndexImplicit(G) where v1, v2, v3,..vk are

landmark vertices. Then, for every i ∈ [1, k], IPL[vi] is sound but not

complete.

Proof: The paths indexed in IPL[vi] are valid from vi to any reachable

vertex v as we traverse through the descendant vertices of vi. IPL[vi] is

not complete as we consider indexing only those paths whose intermediate

path length is less than or equal to half of the diameter of the graph. We

include the labels by union of labels along the path. We also include the

intermediate vertices and path weight for each record in the path index.

Thus, all possible reachable vertices are traversed and indexed with their

path information. Hence, we can say that IPL[vi] is sound.
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Algorithm 4: BImplPath
Input : s, t, L, maxcost
Output: Bounded Paths p[i], i∈[1, maxp] where maxp is maximum number of

paths allowed
if s∈ VL then

p[i]=QPathLM (s, t, L, maxcost)
return p

for (v, PL′, intv′, C′) ∈ PNL[s] do
if ( PL′ ⊆ L and (v= t))// when target vertex is a landmark vertex

then
if C(s∼v)≤maxcost then

Insert s∼v to p;break

if ( PL′ ⊆ L and QMark (v, t, L, marked, maxcost)=true) then
Insert s∼v∼pi into p // pi is path from v to t through QMark()

Enqueue s
while q is not empty do

Dequeue vertex v
if (v=t) then

p′ ← s∼t
if (pcost(p′) ≤ maxcost) then

Add path p′ to p;break

if (v ∈ VL and QMark (v, t, L, marked, maxcost)=true) then
p′ ← s∼v∼pi

// pi is intermediate path from QMark()

if (pcost(p′) ≤ maxcost) then
Add path p′ to p

for (w, PL′) ∈ outneighbors(v) do
if (marked(w)=false and PL′ ⊆ L) then

Enqueue w

if (p is not empty & pcost(p[i])≤maxcost, p[i] ∈ p) then
return p

procedure QPathLM (s, t, PL, bound)
for ((u, PL′, iv′, wt′) in IPL[s]) do

if (u=t) & (PL′ ⊆ PL) then
p[i] =s ∼iv′ ∼ t
if (wt′ ≤ bound) then

Add p[i] to p

procedure QMark (s, t, PL, marked, bound)
if ( QPathLM (s, t, PL, bound)=true) then

return true

for (S′, PL′) ∈ transL[s] do
if (PL′ ⊂ PL) then

marked= S′ ∪ marked

return false
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Lemma 2: Let G(V, E, L, w) be a graph and k ∈ N. Let {PNL[vi]} i∈[k+1,n]

be index constructed by LWPathIndexImplicit(G) where vk+1, vk+2, ..vn are

non-landmark vertices. Then, for every i ∈[k+1, n], PNL[vi] is sound.

Proof: For each non-landmark vertex vi, its descendant vertices are tra-

versed by invoking ImplicitPathIndNV(). Only landmark vertices are added

to PNL[vi]. It is not complete because upto ‘b’ landmark reachable vertices

are only indexed. Thus, every reachable landmark vertex and its path in-

formation is included in PNL[vi] upto ‘b’ records. Hence, PNL[vi] is sound.

Theorem 3.1. Bounded path for LCR query, q=(s, t, L, δ) is a true query

if BImplPath(s, t, L, δ) using the path index from LWPathIndexImplicit

algorithm returns atleast one bounded path.

Proof: We can prove the above theorem in the following cases:

Case 1: If s is a landmark vertex, BImplPath(s, t, L, δ) invokes call to

QPathLM() which finds the target vertex information from IPL[s ] in the

algorithm and returns the resultant path if it is within the bound(δ).

Case 2: If s is not landmark vertex, its reachable landmark vertices are

traversed through PNL[s ]. From each of the landmark vertex, vl, reachable

vertices are checked for target vertex through IPL[vl] in QMark() procedure.

Thus, the query returns the resultant bounded path when target vertex is

reached.

Case 3: If s is not landmark vertex, and the target vertex t is not reached

through PNL[s ], then breadth first traversal of s is carried out till landmark

vertex or target vertex is reached. If an intermediate landmark vertex (vl)

is reached, the existence of target vertex is checked in IPL[vl]. If target

vertex is reached, the query returns the resultant bounded path.

If no paths are found from all the above cases, then BImplPath() for the

query q returns zero paths.

3.5.4 Time complexity

To compute time complexity of LWPathIndexImplicit algorithm, it involves

computing time complexity for the following significant steps:
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• Algorithm 3 invokes call to ImplPathperLV() k times. It takes O(kx )

time where x is time complexity of ImplPathperLV().

• It takes O((n-k)y) time where y is the time complexity of ImplPathIndNV().

• It takes atmost 2|L| labels for each landmark vertex in the worst case

where |L| denotes the total number of labels in Tl. Each push into

priority queue requires O(logn) time. Thus, for all landmark vertices,

the time complexity is O(x)=O(n*(logn+2|L|)).

• It requires atmost 2|L| time to store all possible labels in transL.

• ImplicitPathIndNV() method has O((n*(logn+b)+m)2|L|) time complex-

ity because upto ‘b’ landmark vertices are considered.

Thus, the total time complexity is O(k((n(logn+2|L|)+m)*2|L|))+O((n-k)

(n(logn+b)+m)*2|L|). The query processing time complexity is computed

through following steps:

• QPathLM() of BImplPath algorithm requires O(2|L|+logn) as finding any

specific w in IPL needs O(logn) time.

• QMark() requires worst case running time of QPathLM() and setting n

bits as marked for atmost 2|L| labels. Thus, the worst case running

time of QMark() is O(n+2|L|).

• The remaining graph exploration part of Algorithm 4 takes atmost O(n+m)

time.

Thus, the total query processing requires O(m+k(2|L|+n)) time.

3.6 Experimental Evaluation

We conducted experiments on real and synthetic data sets shown in Table

3.7. The following subsection describes the datasets. While constructing

landmark path index, we considered k=d
√
ne and b=20 based on the pa-

rameter values set in [79] for the proposed approaches. Fig. 3.5 shows
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the resultant index path construction size and Fig. 3.6 shows the index

construction time for the datasets described in Table 3.7 respectively. We

observe that our proposed approach (LM3) has a faster index construc-

tion time and lesser index size than LM2 [20], which is because we do not

consider the minimality of label sets for all the cases.

Table (3.7) Dataset repository

S.No. Dataset n m |TL| real/synthetic

1 Robots[1] 1724 3596 4 real
2 Erdos-Renyi Graph[53] 987 2000 8 synthetic
3 Preferential-Attachment graph[53] 1000 1997 8 synthetic

Figure (3.5) Landmark path index construction size for the proposed LM2 and
LM3 techniques

3.6.1 Dataset description

We describe the significance and generation of the real and synthetic datasets

of Table 3.7. The edge weights are assigned values from {10, 20, 30, 40, 50,

60, 70, 80, 90, 100, 110, 120} randomly to all datasets described in Table

3.7.
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Figure (3.6) Landmark path index construction time for the proposed LM2 and
LM3 techniques

3.6.1.1 Erdos-Renyi Graph

Erdos-Renyi (E-R) graphs are the basic random graphs [13] with near uni-

form degree distribution. E-R graph is generated using SNAP [53] with

possible edges for each vertex set to 2 and n=1000. We assign 8 labels are

randomly to the edges.

3.6.1.2 Preferential-Attachment Graph

Preferential-attachment (P-A) graphs are synthetic graphs with the prop-

erty that vertices with higher degree are more likely to have edges to be

added in the future. These graphs have skewed degree distribution. P-A

Graphs are scale-free networks [13] and hence, mimic the real world net-

works. P-A graph is generated using SNAP [53] with n=1000 and m=2000.

The 8 labels are randomly distributed to the edges.

3.6.1.3 Robots

Robots is a real trust network [1] with 4 edge labels; M-master, A-apprentice,

Journeyer-J and Observer-O. The edge labels denote the level of trust in-

teraction between the users.
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3.6.2 Query generation and evaluation

We generated 100 true queries and 100 false queries based on BFS query

generation [79] with random path weights and tested with different labels for

different datasets. For synthetic datasets, we generated queries with labels,

|L|=4, 6 out of the total eight labels, and for Robots dataset, we generated

queries with |L|=2, 3 out of the 4 labels. During query generation, we

randomly generated the bound for all queries with their values in range

[10*diameter, 120*diameter]. We have considered this range for bound, as

paths, in general, have path length near to the diameter of the graph.

Figure (3.7) Landmark path index construction time for the proposed LM2
technique with degree vs eigenvector centrality

Figure 3.7 shows the index construction time and figure 3.8 shows the

index construction size of the proposed LM2 technique using degree vs

eigenvector centrality for selection of landmark vertices. Figure 3.9 shows
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Figure (3.8) Landmark path index construction size for the proposed LM2 tech-
nique with degree vs eigenvector centrality

the index construction time and figure 3.10 shows the index construction

size of the proposed LM3 technique using degree vs eigenvector centrality

for selection of landmark vertices. From these, we observe that using eigen

vector centrality measure, the index was constructed relatively faster and

occupied lesser space.

Table 3.8 shows the average query execution time and false negative ratio

of BLCRP queries for the proposed technique using degree and eigen vector

centrality. From this table, we observe that by using degree, the average

query execution time is relatively lesser for almost all the datasets. Hence,

it shows that using degree for landmark selection is better than using eigen

vector centrality, although index construction size and time may be lesser.

The false negative ratios are due to the inclusion of the condition path

length≤ (.5*diameter) of the graph in the proposed landmark path index.
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Figure (3.9) Landmark path index construction time for the proposed LM3
technique with degree vs eigenvector centrality

It is found to be considerably small.

We computed accuracy measures of Precision and Recall for the proposed

landmark based path indexing algorithms. We computed precision based on

equation 3.1 by checking if the resultant retrieved paths are present in the

graph and if they satisfy the given label constraints and bounded weights.

Precision =
Numberofretrievedpaths

Numberofretrievedandrelevantpaths
(3.1)

Recall is computed based on equation 3.2 considering minimality of label

sets and Dijkstra’s relaxation property based on Table 3.6 for the LM3

approach to find whether all possible relevant paths are retrieved from the
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Figure (3.10) Landmark path index construction size for the proposed LM3
technique with degree vs eigenvector centrality

given graph. The total number of possible paths is computed based on DFS

satisfying the given label constraints and bound constraints.

Recall =
Numberofretrievedpaths

TotalNumberofrelevantpaths
(3.2)

The precision percentage is computed on the real and synthetic datasets

for proposed Landmark based path indexing technique (LM3) and found

to be 100% for all the datasets. The recall percentage is computed for

verification and is found to be between 16% and 100% for Landmark based

path indexing technique tested on real and synthetic benchmark datasets

for the true queries. Table 3.9 shows the minimum, maximum, and average

recall computed for 100 true queries on different datasets which reveals

that landmark based path indexing computes bounded label constrained
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reachable paths efficiently.

Table (3.8) Average query execution time and the false negative ratio(τ) of true
queries(tq) and average query execution time of false queries(fq) in milli seconds
using degree(D) and eigen vector centrality(EV) as criteria with the number of
labels, nl for LM3

Dataset nl tq(D) tq(EV) τ (D) τ (EV) fq(D) fq(EV)
Robots 2 .0433 .0452 .072 .072 .0113 .0116

3 .038 .0344 .063 .063 .0118 .0124
E-R graph 4 .0008 .0985 .0858 .0858 .0135 .0135

6 .0379 .0442 .205 .06 .06 .0168
P-A graph 4 .0967 .0837 .08 .08 .0252 .0185

6 .0755 .0942 .078 .078 .0165 .0168

We evaluate the efficiency of our proposed approach (LM3) by statistical

analysis of recall. Paired t-test is used to find the statistical significance of

LM3 over LM2. The sample data values need to be in the normal distri-

bution to use the paired t-test. Also, the sample size must be at least 30

for non-normal data [71]. We have tested recall values for 100 random true

queries with |L|=4 for synthetic datasets and |L|=2 for real dataset to find

the statistical significance of LM3 compared to LM2.

The following are the parameters set and formulas used to compute paired

t-test [71] :

The null hypothesis is set to difference of recall values to 0.

α=0.05.

Number of samples, n=100

The t-statistic is computed using t=x̄/SD/
√
n where x̄ is the average and

SD is the standard deviation of differences(x) respectively.

The probabilistic value p is calculated using statistical function tdist() as

p=tdist(t,df,1) where df is the degrees of freedom (df=n-1).
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Table (3.9) Recall analysis of the proposed approach (LM3)

S.No. Dataset |L| Min. recall Max. recall Average Recall

1 Erdos-Renyi Graph 4 0.3 1 0.8097
2 Preferential -Attachment Graph 4 0.1666 1 0.5673
3 Robots 2 0.1666 1 0.59385

Table (3.10) Statistical analysis of recall between LM3 and LM2

S.No. Dataset |L| t-statistic p value

1 Erdos-Renyi Graph 4 4.328 0.00001
2 Preferential -Attachment Graph 4 7.228 0.000005
3 Robots 2 3.155 0.001076

Table 3.10 shows that our proposed approach is statistically significant

than previous approach with respect to recall for real and synthetic datasets.

Between two groups, if p≤0.05, they are statistically significant. If p≤0.01,

then they are statistically highly significant. If p≤0.001, then they are

statistically extremely significant. From Table 3.10, we observe that LM3

is statistically significant than LM2.

3.7 Conclusions

We proposed an efficient solution to the problem of finding BLCRP by ex-

tending the landmark based indexing and query processing. We find the

reachable paths that satisfy given label constraints and bounded by weight.

Landmark vertices are selected by choosing top ‘k’ vertices based on the

descending order of the total degree of vertices. For each landmark ver-

tex, all reachable paths and their path information are stored in the path

landmark index. We also addressed the specific cases by including implicit

paths. While computing reachable paths, the implicit paths that may sat-

isfy the edge label constraints but do not consider the minimality of label

sets and Dijkstra’s relaxation properties are also included. The bounded

path based LCR query is processed by using IPL and PNL indices to get

the resultant paths. We evaluated accuracy of our proposed techniques by
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using precision and recall measures on the resultant paths. We observed

that our approach is statistically significant on synthetic and real datasets.
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Chapter 4

Multidimensional Constraint

Reachable Paths for

Attributed Graphs

In big data era, a graph can be rendered as a significant modeling tool to rep-

resent complex relationships between the objects. In real time, these objects

or vertices of the graph have multiple attributes and different relationships

between them. The problem of multidimensional constraint reachable paths

is to find the path between the given vertices that match the user specified

multidimensional vertex and edge constraints. An important challenge is

to store the graph topology and attribute information while constructing

reachability index. We proposed hashing based heuristic search technique to

solve the multidimensional constraint reachability queries. In this chapter,

we experimented our proposed techniques and evaluated their performance

on real and synthetic datasets. This chapter publication is communicated

and listed below. Section 4.1 introduces the multidimensional constraint

reachability queries and summarizes main findings and contributions of

this chapter. Section 4.2 describes the terminologies and problem state-

ment. In section 4.3, we describe the literature on attributed graphs, the

Bhargavi B., and K. Swarupa Rani, and Arunjyothi Neog, “Finding Multidimensional Con-
straint Reachable Paths for Attributed Graphs”, Communicated to Applied Intelligence,
Springer, 2020.

67



4.1 Introduction

constrained reachability techniques and attributed graph clustering tech-

niques. Section 4.4 and section 4.5 describe our proposed approaches with

illustrations. Section 4.6 describes the experiments and evaluation of our

proposed techniques.

4.1 Introduction

Graph mining is the process of extracting useful knowledge from the graphs.

Here, the data is represented in the form of graphs. Some of the impor-

tant operations of graph mining include extracting subgraphs, finding the

reachability satisfying the given constraints and detecting the communities

in graph.

Graph reachability is one of the basic operations that finds the existence

of paths between the vertices of the given graph. But, in real time, there

are queries which require certain constraints to be satisfied while finding

the reachability of the graph. The constraints are usually the conditions

on vertex attributes or edge attributes or both. For instance, in social net-

works, the vertex denotes the unique identifier assigned to a person, vertex

attributes can be the name of a person and organization of the user. The

edge attributes include relationships like friendOf, colleagueOf or supervi-

sorOf. For example, the constraint reachability query is to find if Bob and

Adam are from same organization and are colleagues in the organization.

An attributed graph is a graph that stores attribute information of ver-

tices and edges. This attributed graph acts as an efficient modeling tool to

represent information networks [88] [81]. Figure 4.1 illustrates an attributed

graph. It includes different vertices of type paper, conference, author and

affiliation and its vertex attributes are location, keyword, age and state.

The edge attributes constitute labels such as published, authorOf, affiliat-

edTo, citedBy, knows and supervisorOf. Other edge attributes include Vol,

Issue, Order and StudentOf. For instance, consider the vertex with label
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Figure (4.1) Example of an attributed graph

Paper1. Its attributes include keyword whose value is graph. Similarly, the

domain of vertex attribute age is numerical values. The domain of vertex

attributes location, keyword and state are categorical values. The domain

of edge attributes Vol, Issue and Order are numerical values. The domain

of edge attribute StudentOf is boolean value, i.e. True (T) or False (F).

A multidimensional constraint reachability query finds the existence of a

path from the source vertex to the destination vertex satisfying the given

attribute constraints. For instance, for the given attributed graph G of

Figure 4.1, the query is to find if there is a path from Raju to Waheed whose

Age is 38 through edge labels knows. The vertex constraint is Age=38 and

the edge constraint is knows. From the figure, there exists a path between

Raju and Waheed satisfying the given constraints.

One of the challenges of the constraint reachability is that we need to

store both graph topology and attribute information while indexing the

reachability. Another challenge is that there is no prior information of con-

straints before query processing. This problem is applicable for many real-

time information networks like social networks, transportation networks

and metabolic networks. These observations motivate us to find a faster
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and efficient solution to solve the problem of multidimensional constraint

reachability queries.

Duncan Yung et al. [88] developed a constraint verification approach

to solve the multidimensional constraint reachability queries. They also

implemented a heuristic search technique that offered direct passage across

graph regions which are likely to satisfy attribute constraints from source

to destination. The heuristic search involved the construction of a super

graph. They used clustering based on BFS by choosing a random subset of

vertices and their traversal forming clusters.

We observed from the state-of-the-art literature [88] that we can fur-

ther optimize the hashing through Murmur hash function which has least

collision. We also observed that there is a need to identify an efficient

clustering technique that considers both graph topology and attributes in-

formation while clustering. Furthermore, we observed that there is a scope

of extending the problem of MCR queries by finding the resultant paths.

We enhanced the heuristic search [88] by using optimized hashing to han-

dle multidimensional attributes and proposed an efficient clustering tech-

nique based on matrix factorization to detect the clusters for efficient su-

pergraph construction. In addition, we extended the MCR queries problem

by finding the resultant paths.

Our proposed solution is based on heuristic search that considers both

graph topology and attribute information while creating super graph for

the given attributed graph. Thus, we can solve the constraint reachability

queries faster for even large attributed graphs.

4.1.1 Assumptions

The assumptions in this chapter include
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(a) We assume that the vertex attribute values and edge attribute values

are single and discrete. We also assume that all vertices are of same

type.

(b) We assume that if reachability exists, it is found along the super path

of the super graph.

4.1.2 Findings

The main findings of this chapter include

• We find that the hashing used in [88] can be optimized as there is least

chance of hash collision. We adopted the hashing [88] and optimized

the usage of hashing during index retrieval in our proposed hashing

based BFS search technique.

• We find that heuristic search developed by Yung et al. [88] had vague

description of computation of probability cost for super vertices based

on attributes. They have used random clustering based on BFS for

constructing supergraph which does not consider graph topology and

attributes information while clustering. Besides, we observed that the

technique had a limitation of possible false negative outcomes.

4.1.3 Contributions

The main contributions in this chapter include

• To overcome the limitations, we performed comprehensive literature

survey on recent structural and attributed graph clustering techniques

[37], [92], [83], [84], [65], [12], [85]. We identified an efficient structural

and attributed graph clustering technique [37] which is based on ma-

trix factorization and applied during super graph construction to solve

multidimensional constraint reachability queries.

• We computed the optimal number of clusters by applying gap statistic

[77] for ANCA clustering and evaluated the proposed techniques.
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Figure (4.2) A toy dataset of an email network

• We solved the multidimensional constrained reachability queries by

computing the path information instead of finding the existence of

paths [88].

• We proposed an extended heuristic search technique to reduce the false

negative outcomes.

• We compared our proposed techniques to constrained BFS and heuris-

tic search with naive clustering [88] to solve multidimensional con-

straint reachability queries on real and synthetic datasets.

• We evaluated the accuracy of our proposed techniques using false neg-

ative ratio and tested the scalability for large graphs.

4.2 Preliminaries

Definition 1.(Attributed Graph) “An attributed graph, G, is a graph

denoted as G=(V, E, Va, Ea), where V is a set of vertices, E ⊆ V × V

is a set of edges, Va is a set of vertex-specific attributes and Ea is a set of

edge-specific attributes”[81].

Let Va = (Va1, Va2, ..., Vax) is a set of x vertex-specific attributes. For

each vertex p ∈ V, there exists a multidimensional tuple Va(p) denoted as

Va(p) = (Va1(p), Va2(p), ..., Vax(p)). Let Ea=(Ea1, Ea2, ..., Ear) is a set of

r edge-specific attributes. There is a multidimensional tuple Ea(q) denoted

as Ea(q)= (Ea1(q), Ea2(q), ..., Ear(q)) for every edge q ∈ E.
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For instance, let us consider the attributed graph for an email network as

shown in figure 4.2. Let the vertex attributes be Country and IncomeGroup.

The domain of attribute Country is {India (I), United Kingdom (U)} and

the attribute IncomeGroup is {High (H), Medium (M), Low (L)}. The

domain of edge attribute for communication content is {XML (xml), Sky-

line(skyl)}. Thus, for vertex ‘a’, VCountry(a)=I and VIncomeGroup(a)=H.

Similarly, the edge attribute between vertices ‘a’ and ‘c’ is xml.

Table 4.1 shows the different notations used in this chapter with their

description.

Table (4.1) Notations

Notation Description
Va Set of vertex attributes

Va(p) Set of vertex attributes values for vertex p
Ea Set of edge attributes

Ea(q) Set of edge attributes values for edge q
CVa Constraints on Vertex attribute values
CEa Constraints on Edge attribute values

G(V, E, Va, Ea) Attributed graph
Gs Super graph
SV Super Vertex
SE Super Edge
SP Super Path

4.2.1 Problem statement

Definition 2. (Multidimensional Constraint Reachability) “Given

an attributed graph G, a source vertex s, a destination vertex t, vertex

constraint CVa, and edge constraint CEa, the multidimensional constraint

reachability query on attributed graph verifies whether s can reach t under

vertex and edge constraint CVa, CEa” [88].
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In this thesis, we use MCR query in short, to denote the term Multidimensional

Constraint Reachability query. We define Multidimensional Constraint

Reachable path (or MCR path) as the resultant path from the given source

vertex to the destination vertex while satisfying the vertex and/or edge

attribute constraints.

Let us consider the MCR query q1(‘a’, ‘j’, ‘I:H’, ‘xml’), for the attributed

graph of Fig. 4.2. The given MCR query q1 returns true as the source

vertex ‘a’ can reach the destination vertex ‘j’ via vertex ‘c’ while satisfying

the given vertex constraints ‘I:H’ and edge constraint ‘xml’. Thus, the MCR

path is {‘a’, ‘c’, ‘j’ }. Consider another instance of MCR query q2(‘b’, ‘c’,

‘I:M’, ‘xml’). The MCR query q2 returns no path as the source vertex ‘b’

cannot reach ‘c’ as well as the given constraints are not satisfied.

The objective of our research is not only to find the resultant paths for

MCR queries faster but also to propose a scalable solution based on cluster-

ing for large attributed graphs. We observed that we can optimize hashing

for faster hash generation and constraint verification. We identified that

there is need to find an efficient graph clustering algorithm that consid-

ers both graph topology and attributes while clustering. Thus, we solve

MCR queries by optimizing hashing and proposing the efficient clustering

technique in our proposed approaches described in section 4.4 and section

4.5.

4.3 Related Work

In this section, we describe the survey related to constraint reachability

techniques, attributed graph clustering techniques and we derived impor-

tant observations to solve efficiently and effectively.
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4.3.1 Constraint reachability techniques

Many graph reachability techniques are developed in literature which in-

clude 2-hop [28], 3-hop [47], Dual labeling [80] and Path-Tree cover [9]. But,

these indices do not include attribute information. Hence, the reachability

techniques cannot be applied directly to solve the constraint reachability

queries.

Ruoming Jin et al. [45] introduced formally the problem of Label Con-

straint Reachability (LCR) query which is a special case of attribute con-

straint reachability queries. They developed spanning tree based solution

to solve LCR queries. With this cited state-of-the-art, we further performed

extensive survey about different types of constraint reachability queries and

techniques in chapter 3. Besides, we developed landmark index based path

indexing and query processing technique [20] to find bounded paths for LCR

queries in case of edge labeled weighted directed graphs.

An attributed graph acts as a modeling tool to represent information

networks [88] [81]. Sakr et al. [68] developed G-SPARQL, a query execution

engine with the defined algebraic operators on the graph by using join

operations to find the reachability for large attributed graphs. They have

designed a model that stored the topology of the graph in main memory

and accessed the attributes of the graph from the secondary memory. The

attributes from the secondary memory are stored in fully decomposed model

which includes unique table for storing the unique vertex attributes and edge

attributes in separate tables. Graph pattern matching queries are mainly

solved by SPARQL-based systems.

We observed that Yung et al. [88] developed hashing based index instead

of fully decomposed model [68] to store vertex attributes or edge attributes

for attributed graphs. The hashing based index involves assigning unique

hash index for group of vertex attributes or edge attributes. The attributes
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and the corresponding hash values are stored in secondary storage. They

have also designed BFS based heuristic search using random clustering to

solve the multidimensional constraint reachability queries.

4.3.2 Attributed graph clustering techniques

Zhou et al. [92] designed Structure and Attribute (SA-Cluster) cluster-

ing which is one of the prominent attributed graph clustering technique

based on random walks over augmented attributed graph. SA clustering is

limited to small networks with few attribute values. Xu et al. [84] devel-

oped Bayesian model based approach to cluster attributed graphs. But, we

observed that this approach is slow and not scalable.

Z.Wu et al. [83] developed Structure and Attributes using Global struc-

ture and Local neighborhood features (SAGL) clustering algorithm. SAGL

clustering considers both global importance of the vertex and local neigh-

bours structure while assigning weights to different topological links. SAGL

clustering technique is faster than SA clustering as the former technique

doesn’t increase the size of attributed graph, yet uses both global impor-

tance of the vertex and attribute information to find clusters. We have

observed that though SAGL clustering [83] is faster technique than SA clus-

tering to find the clusters in an attributed graph, it relies on SA clustering

to find the attribute similarity between the vertices.

Issam Falih et al. [37] developed Attributed Network Clustering (ANCA)

algorithm that is based on matrix factorization of both graph topology and

vertex attributes. Falih et al. [37] observed that social networks are dense

and hence require high attribute similarity factor whereas road networks

need a balanced attribute similarity and topological similarity metric while

computing vertex similarity. Topological distance metric can be categorized

into neighborhood based metric and path based metric. Based on type

of attribute data (categorical/numerical/binary), the attribute similarity
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measure can be the euclidean distance computed between the pair of vertices

[33].

Falih et al. [37] developed ANCA clustering algorithm by considering

shortest path metric for topological measure and Euclidean distance for at-

tribute similarity. Then, matrix factorization is applied on both topological

and attribute similarity measures. Finally, they use k-means clustering on

the resultant matrix to form k clusters.

Guo Qi et al. [65] used matrix factorization based technique on edge con-

tent to detect communities. Yang et al. [85] developed non-negative matrix

factorization based model to identify disjoint or overlapping communities

at large scale. Amin et al. [12] developed matrix factorization and gradi-

ent descent based technique to identify polarization and clusters in social

networks specifically Twitter.

From the literature, we observed that Yung et al. [88], [89] used a prob-

ability cost metric by sampling attributes for each super vertex that is

vaguely mentioned. Besides, we observed that matrix factorization is a

standard technique that has scope to find similarity by considering graph

topology as well as vertex /edge attributes. Hence, we apply matrix factor-

ization in supergraph construction without the probability cost metric and

develop a heuristic based BFS search to solve the problem of MCR using

hashing.

4.4 Proposed Approach: Heuristic search us-

ing Hashing and Matrix Factorization

In this section, we describe our proposed technique to solve the problem

of MCR queries. We adopt the hashing and heuristic search developed

by Yung et al. [88] to solve the multidimensional constraint reachability
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queries. First, we perform pre-processing which includes hashing the ver-

tex attributes or edge attributes and construction of supergraph based on

attributed graph clustering [37]. We observed that Yung et al. [89] used a

probability cost metric by sampling attributes for each super vertex which

is vaguely mentioned. We identified an efficient attributed graph clustering

algorithm [37] which is based on matrix factorization. We use the clustering

algorithm [37] to construct the super graph.

In our proposed approach, we use the supergraph without considering

any probability cost metric. We optimize the usage of hash index and use

the graph clustering based supergraph to implement our proposed heuris-

tic based BFS approach and efficiently solve multidimensional constraint

reachability queries.

4.4.1 Hashing based index

During pre-processing, first, we construct an attribute hash index by col-

lating attribute values of every vertex into a single string sa. Every unique

sa is compressed to a hash value and stored in primary storage for an-

swering queries. This hash value is mapped to its vertex. For instance,

consider vertex attribute values of vertex ‘b’ in figure 4.2, i.e., Va(b)={I,
H}. The resultant hash value computed for collated attribute values “I, H”

is 2555692664 as shown in Table 4.2. Similarly, for every vertex and edge,

the corresponding hash values for the attribute values are computed and

stored in primary memory.

Secondly, the hash value for the given vertex/edge attribute constraints

of the given query is computed. This hash value is verified against stored

hash values in primary memory withot approaching the secondary storage.

Hence, it leads to faster query procesing.

Algorithm 5 describes hash index construction of vertex attributes for an

attributed graph. First, it gets attribute set aio, of vertex u, from secondary
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Algorithm 5: HashIndexConstruct
Input : Attributed graph G
Output: Hash Index, hInd
procedure HashIn(G,hInd)
for all u ∈ G do

h ← GetHashAttr(u, G)
aio ← AttrIO(u, G)
if hashaddr(h)=NULL then

Generate addr from hInd and aio
Set count=1
hashaddr[h]=addr

else Append aio to addr in hInd and update count of the hash value
hashaddr[h]=addr

memory. Then it checks whether its hash value h is already present in hInd.

If it is NULL, then the new hash value of u, corresponding set of attribute

and count is stored in hInd. If hash value is already present in hInd, then the

new set of attributes are appended to the already present set and count is

incremented by one. A non-cryptographic hash function like Murmur hash

function [2] is used to generate hash values for attributes. Murmur hash

function has no hash collision. During heuristic search, the constraints

of vertex in hInd are verified with the constraints given by the user by

retrieving the hash of constraints and comparing with the hash values stored

in primary memory. This reduces the need to access secondary memory for

multidimensional attributes verification.

For instance, let us consider the attributed graph of Fig. 4.2. Table 4.2

shows the computed hash values for vertex attribute combinations of Fig.

4.2. The count variable with value one indicates the assignment of unique

hash value to each combination. The hash value is mapped to every vertex

corresponding to its attribute values’ combination and stored in primary

memory as array.
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Table (4.2) Hash Index

vattrHash attr count
1071913501 U, M 1
1139838478 I, L 1
2555692664 I, H 1
2608081465 U, H 1
29059796901 I, M 1

4.4.2 Super graph construction

We divide the graph based on clustering and construct a structure called

super graph.

Definition 3. (Super Graph): A Super graph Gs is a directed graph

constructed by computing super vertices and super edges for the given at-

tributed graph G.

Definition 4. (Super Vertex): A super vertex, SVi, is a vertex in Gs

such that every vertex p of G belongs to only one super vertex SVi. Thus,

∀ p ∈ V in G, p ∈ SVi, p 6∈ SVj, if i 6= j where SVi, SVj ∈ Gs.

Definition 5. (Super Edge): A super edge SEij, is a directed edge in Gs

formed between the super vertices SVi and SVj. This edge is formed only

when, for any pair of vertices (p, q) ∈ G such that p ∈ SVi and q ∈ SVj,

there exists an edge between p and q. Thus, if there exists an edge e(p, q)

∈ E in G, p ∈ SVi, q ∈ SVj and i 6= j then ∃ SEij (SVi, SVj) ∈ Gs.

Definition 6. (Super Path): A super path, SPi, is a simple path in Gs

formed by sequence of super vertices (SV1, SV2, ..., SVd) such that (SVi−1,

SVi) ∈ Gs.

For instance, Fig. 4.3 shows the super graph for fig. 4.2. Thus, the super

vertices include SV1, SV2, SV3 and SV4. The super edges are { (SV1, SV3),

(SV3, SV2), (SV3, SV1), (SV4, SV2), (SV3, SV4) }.
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During super graph construction, we choose K vertices as super ver-

tices from K clusters using an efficient clustering algorithm. Algorithm 6

describes the super graph construction using clustering based on matrix

factorization adopted from [37]. We further improved [37] by applying gap-

statistic [77] to find the optimal K value.

• In the algorithm, first the subset of vertices are identified as seeds. The

seeds are selected by considering top 15% of vertices by using centrality

measures such as highest degree, closeness centrality, page rank and

eigen vector centrality [37]. The seeds also include the outlier vertices

for coverage by considering 5% of vertices with the least centrality [37].

• Next, we compute the topological matrix for the vertices and seeds

based on shortest path distance between them. This matrix is normal-

ized and singular value decomposition is applied.

• We find the attribute similarity between the vertices by computing

euclidean distance [33] between them. The euclidean distance between

the two vertices u, v ∈ V is given by equation 4.1.

d(u,v) =

√√√√ t∑
j=1

(|Aj(u)− Aj(v)|)2,∀u, v ∈ V (4.1)

• We use matrix factorization on attribute similarity between the ver-

tices.

• We join the topological similarity and attribute similarity factorized

vectors to get the decomposed matrix U and normalize it.

• Then, we apply k-means clustering on the decomposed matrix U to

get resultant K clusters.

• If there exist p ∈ SVi and q ∈ SVj such that there exists edge from p

to q in G, then we add the super edge SEij to the super graph Gs as

described in the algorithm.
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Algorithm 6: SuperGraphMF

Input : Attributed graph G(V, E, A), Number of clusters K
Output: Super Graph Gs with K Clusters
Select subset of vertices as seeds S.
Compute topological closeness between the vertices and seeds using shortest
path metric
Form topological matrix, Mtopo(v,s)=SPath(v,s), ∀v ∈ V and ∀s ∈ S.
Apply singular value decomposition on Mtopo to get Utopo.
Compute attribute similarity matrix Mattr between the vertices using Euclidean
distance based on equation 4.1.
Apply matrix factorization on Mattr to get Uattr.
U← Utopo +Uattr

Normalize each of U’s rows defined by Uij=Uij/
√∑

j U
2
ij

Apply k-means clustering on U to get K clusters.
Construct Super graph Gs (Vs,Es) with K vertices Vs={sv1, sv2,..., svK}with
each cluster considered as super vertex svi

for each edge e(u,v) ∈ E do
svu=findSuperVertex(u)
svv=findSuperVertex(v)
if (svu6=svv) then

Add edge sei=(svu, svv) to Es

i←i+1

Illustration of super graph construction Let us consider the at-

tributed graph of Fig. 4.2. The resultant set of seeds based on the centrality

measures is { ‘a’, ‘e’, ‘f ’, ‘h’, ‘i’}. We use singular value decomposition as

described in the SuperGraphMF algorithm by considering both topological

distance and attribute similarity. Let us assume the number of clusters

K =4. We can also compute an optimal K value by applying gap statistic

[77]. The resultant clusters with K =4 after applying k-means algorithm

are the subsets {‘a’, ‘b’, ‘c’, ‘i’}, { ‘g’, ‘h’} , {‘d’, ‘e’, ‘j’} and {‘f’, ‘k’, ‘l’}.
These clusters are denoted by vertices as SV1, SV2, SV3 and SV4 respec-

tively which form the super vertices as shown in figure 4.3a. We add the

super edge based on existence of edge between vertices of the clusters. For

instance, in Fig. 4.2, there exists edge between vertices ‘e’ and ‘f ’. The su-

per vertex of ‘e’ is SV3, while the super vertex of ‘f ’ is SV4. Hence, we add

the super edge (SV3, SV4). Thus, the resultant super graph is constructed
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(a) Clusters (b) Super graph

Figure (4.3) Clusters and the resultant super graph

as shown in Fig. 4.3b.

4.4.3 Proposed heuristic search technique

We solve the multidimensional constraint reachability query using our pro-

posed heuristic search which is based on optimized hashing and efficient

attributed graph clustering. Algorithm 7 describes the heuristic search to

find the existence of reachability between the given vertices satisfying the

user constraints. Given the source vertex, destination vertex and vertex

constraints, the super vertex of source vertex is first identified from the su-

per graph. Then, the super vertex of destination vertex is identified. These

super vertices are checked for the existence of super path between them in

the supergraph. The super vertices of source vertex, destination vertex and

their intermediate super vertices along the super path are stored in sPath.

BFS along with sPath information finds the existence of reachability by

verifying the user given constraints through hashing (from Algorithm 5)

while finding the reachability between the vertices.

Heuristic In the proposed approach, we assume that if reachability exists,

it is found along the path sPath. By including this heuristic, we can find
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Algorithm 7: HeuristicSearchMF
Input : Attributed graph G, source vertex s, destination vertex t, Vertex

Constraint Cv, Super Graph Gs, Hash index.
Output: rpi/“No path”
Let q be queue
Enqueue (s)
superSrc←findSuperVertex(s)
superDst←findSuperVertex(t)
sPath ← findPathBFS(superSrc, superDst, Gs)
while isEmpty(q) do

Dequeue v
if (visited[v] = true) then

continue

for v′ ∈ v.adjList do
if (visited[v′]=true) then

continue
superiv← findSuperVertex(v′)
if (superiv ∈ sPath) then

visited[v′]=true
if (CheckConstraint(v′, hInd, Cv, G)=true) then

if (v′=t) then
return rpi

Enqueue v′

visited[v] ← true

return “No path”
procedure CheckConstraint(v, HashIndex, Cv)
hc←getHash(Cv)
hv←getHashAttr(v,G)
if (hc6=hv) then

return false

if (getCount(HashIndex,hc)=1) then
return true

else Attr← Get attributes from secondary storage
if (CheckAttrConstraint(Attr,Cv)=true) then

return true
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the reachability between the vertices faster as we traverse only the vertices

that belong to the super vertices of the path sPath thus minimizing the

search space. In the algorithm, we include the heuristic through finding

super path (sPath) and verifying if each super vertex of adjacent vertex

belongs to sPath.

Optimized Hashing In Algorithm 7, we optimize the hash retrieval

through CheckConstraint() procedure. In this procedure, we retrieve the

hash of given constraints and compare with the hash of vertex. If both

hash values are same, we check the count by retrieving it from hash index.

If count returned is one, we need not check the secondary storage and we

declare the two hash values are equal and return true.

Illustration For instance, consider the MCR query q1 (‘a’, ‘j’, ‘I:H’ ).

The super vertex of a is SV1 and super vertex of j is SV3. Since there

exists path in the super graph from a to j, our proposed heuristic search

technique then traverses only the vertices within super vertices SV1 and

SV3. The vertex constraint is combined and its hash value is computed.

While traversing, the hash value of the given vertex constraint is compared

to the existing hash value in hash index table (Table 4.2). If the match

exists, it traverses to the next adjacent vertices until the destination vertex

(j ) is reached. Thus, our proposed heuristic search technique returns the

path {‘a’, ‘c’, ‘j’} for the MCR query q1.

4.5 Extended Heuristic Search

In our proposed HeuristicSearchMF algorithm, we observe that there may

exist path between two vertices that is not included in the super path of

the constructed supergraph. To overcome this problem, we have modified

our proposed approach by extending the heuristic to include those vertices

whose super vertex has destination super vertex as the adjacent vertex.
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Figure (4.4) Example for extended heuristic search technique

Algorithm ExtendedHeuristicSearchMF describes our proposed exten-

sions to the previously proposed heuristic search technique. In our pro-

posed technique, we have extended the heuristic by including those vertices

whose super vertex has destination super vertex as the adjacent vertex. For

each adjacent vertex traversed, we find its super vertex and check if it is

neighbor to the super vertex of the destination vertex. Thus, our proposed

extended heuristic search technique can find most of the missed reachable

paths resulted by using HeuristicSearchMF algorithm.

Let us consider the example of Fig. 4.4. To find the path from source

vertex ‘s’ to destination vertex ‘t’, we first compute the super path be-

tween the super vertices of ‘s’ and ‘t’. The resultant super path is {SV1,

SV2, SV4, SV3 }. When we execute the HeuristicSearchMF algorithm, we

cannot reach the destination vertex through the super path. But, in the

ExtendedHeuristicSearchMF algorithm, we can reach the destination ver-

tex via intermediate vertex ‘v9 ’ whose super vertex SV7 is adjacent to the

destination super vertex SV3. Thus, the number of missed reachable paths

using extended heuristic can be effectively reduced.
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Algorithm 8: ExtendedHeuristicSearchMF
Input : Attributed graph G, source vertex s, destination vertex t, Vertex

Constraint Cv, Super Graph Gs.
Output: rpi/“No path”
Let q be queue
Enqueue (s)
superSrc←findSuperVertex(s)
superDst←findSuperVertex(t)
sPath ← findPathBFS(superSrc, superDst, Gs)
while isEmpty(q) do

Dequeue v
reached← false
if (visited[v] = true) then

continue

for v′ ∈ v.adjList do
if (visited[v′]=true) then

continue
superiv← findSuperVertex(v′)
for v′′ ∈ v′.adjList do

superiv2← findSuperVertex(v′′)
if (edgeExists(superiv2,superDst,Gs) OR superiv2=superDst) then

reached←true

if ((superiv ∈ sPath)OR reached=true) then
if (CheckConstraint(v′, Gh, Cv)=true) then

if (v′=t) then
return rpi

Enqueue v′

if (reached=true) then
break

visited[v] ← true

return “No path”
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4.6 Experiments and Results

In this section, we describe the datasets used for experiments, the param-

eters set, the environment of experiments and the results of our proposed

techniques.

4.6.1 Experiment setup

During experimentation, for hashing, we used Murmur hash function [2].

We assume the number of super vertices (K ) to be 15 based on size of

the dataset and constructed the supergraph. Besides, we also computed

optimal K value by applying gap statistic [77].

Table 4.3 describes the different parameter settings used in the experi-

ments adopted from [88]. We used vertex attributes and vertex constraints

throughout our experiments. Besides, we used edge attributes and edge

constraints along with vertex constraints for real dataset. Table 4.4 shows

the different vertex attributes and edge attributes assigned to the datasets.

We generated 25 to 100 MCR true queries (whose path length is greater

than 1) for the real and synthetic datasets by randomly selecting attribute

values and verifying the constraints through constrained breadth first search

and traversal.

Table (4.3) Parameter values

Parameter Value
Number of Vertex Attributes 2, 3
Number of Edge Attributes 3
Number of Super-vertex (K) 15, 50

Number of Vertex Constraints 2
Number of Edge Constraints 1
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4.6.2 Baselines

We evaluated the efficiency of our proposed approaches (HeuristicSearchMF

and ExtendedHeuristicSearchMF algorithms) by comparing with two exist-

ing techniques as follows :

(1) Breadth First Search or BFS [30] in which the constraints are checked

while performing breadth first search from source vertex till the desti-

nation vertex is reached. This is considered as ConstrainedBFS.

(2) Yung et al. developed BFS based heuristic search technique using

naive clustering [88].

To solve MCR queries, we have the following two approaches with respect

to proposed techniques.

(1) We can solve only by using hashing mechanism described in section 4.4.3

(with optimized hashing only). We denote this approach by Constrained-

Hash.

(2) We can solve using both hashing and clustering mechanism to obtain the

resultant path efficiently. We consider HMF as the implementation of our

proposed HeuristicSearchMF algorithm described in section 4.4. We con-

sider EHMF technique as the implementation of our proposed Extended-

HeuristicSearchMF algorithm described in section 4.5.

Table (4.4) Vertex attributes and edge attributes

Vertex Attribute Domain Size, Distribution
Country 5, uniform
Region 3, uniform
Gender 2, uniform

Edge Attribute Domain Size, Distribution
Trustlevel 4, real
isFamily 2, uniform
isFriend 2, uniform
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4.6.3 Datasets description

Table 4.5 summarizes the real and synthetic datasets used for experiments. We

generated synthetic graphs from SNAP [53]. We assigned randomly vertex at-

tribute values for the vertices and edge attribute values for the edges. Table 4.4

states the synthetic vertex attributes that are assigned randomly to the datasets.

Table (4.5) Datasets overview

Graph |V| |E|
Robots [1] 1724 3596

Erdos-Renyi [53] 1000 2000
ForestFire [53] 5000 12620

4000 10252
3000 7751
2000 4865
1000 2833

4.6.3.1 Robots

Robots is a real trust network [1] with edge labels that denote the level of trust

interaction between the users. We pre-process the dataset by assigning unique

identifier to the vertices, resulting in 1724 vertices and 3596 edges. Each vertex

has synthetic attributes whose values are randomly assigned as shown in Table

4.4. Each edge has Trustlevel as the real attribute whose value is derived from

the data set. The trust level can be Master (M), Apprentice (A), Journeyer (J)

or Observer (O). Besides, we assigned two synthetic attributes whose values are

randomly assigned for every edge of the Robots dataset.

4.6.3.2 Erdos-Renyi Graph

Erdos-Renyi (E-R) graphs are the synthetic graphs that follow power law dis-

tribution [13]. These graphs have their degree near uniformly distributed. We

generate E-R graph using SNAP [53] with number of vertices set to 1000 and
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maximum degree for each vertex set to 2. Besides, we assign two attributes de-

scribed in Table 4.4 for each vertex with randomly assigned values within the

domain.

4.6.3.3 ForestFire Graph

ForestFire graphs are the synthetic random graphs [54]. The ForestFire model

graphs exhibit the properties of time-evolving real-world graphs [54] that include

densification of graphs and decreasing effective diameter. We generate ForestFire

graphs using SNAP [53] for testing scalability with the number of vertices varying

from 1000 to 5000. The other parameters including forward probability is set to

0.4 and backward probability is set to 0.2 [53] and maximum degree for each

vertex set to 2. Besides, we assign two attributes for each vertex as described in

Table 4.4.

4.6.4 Results and analysis

We evaluated the efficiency of our proposed techniques based on average execution

time and false negative ratio. The average execution time for true queries denotes

the average time taken to execute given set of true queries. The MCR true queries

are the constrained reachable queries that have atleast one path between the given

vertices. We evaluated the accuracy of our proposed techniques based on false

negative ratio. The false negative ratio (τ) is defined as “The fraction of queries

which fail to return any path that satisfies the given constraint, although at least

one such path exists” [57].

Table (4.6) Average execution time of true queries for Erdos-Renyi graph with
only vertex constraints

S.No. Technique Average Execution time (s) τ
Proposed

1 HMF 0.01280 0.65
2 EHMF 0.01290 0.05
3 ConstrainedHash 0.00009 0

Existing
4 ConstrainedBFS 0.01162 0
5 Yung et al. [88] 0.013038 0.55
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Table 4.6 shows the average execution time and false negative ratio on MCR

true queries using our proposed techniques compared to constrained BFS for E-R

graphs. In the Table 4.6, we find that there is considerable decrease in the false

negative ratio for our proposed extended heuristic technique i.e. EHMF than

that of HMF. We also observed that ConstrainedHash technique executed faster

for MCR queries than the other techniques.

Figure (4.5) Varying graph size for Forest Fire synthetic graph

Figure 4.5 shows the average execution time for Forest Fire graphs with varying

graph size from 1000 vertices to 5000 vertices. From Fig. 4.5, we observe that

ConstrainedHash technique has the least average execution time than our other

proposed techniques and ConstrainedBFS. We also observe that our proposed

techniques executed faster than the heuristic search based on naive clustering

([88]). Besides, the false negative ratio varied from 0.04 to 0.36 for the MCR true
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queries on ForestFire graphs using our proposed HMF approach. By using our

proposed EHMF and ConstrainedHash techniques, the false-negative ratio is 0.

Table (4.7) Average execution time of true queries for Robots dataset with only
vertex constraints

S.No. Technique Average Execution time (s) τ
Proposed

1 HMF 0.214636 0.32
2 EHMF 0.229042 0
3 ConstrainedHash 0.00011 0

Existing
4 ConstrainedBFS 0.301144 0
5 Yung et al. [88] 0.092135 0.6

Table 4.7 shows the average execution time and false negative ratio on MCR

true queries using our proposed techniques compared to constrained BFS for

Robots dataset. We computed optimal K value for Robots dataset by applying

gap statistic [77]. The resultant computed K value is 15. We generated 100 MCR

true queries for evaluation of Robots dataset. From Table 4.7, using our proposed

HMF approach, the false negative ratio (τ) is 0.32. Based on our proposed

extended heuristic technique, i.e., EHMF, the false negative ratio reduced to 0.

Table (4.8) Average execution time of true queries for Robots dataset with
vertex constraints and edge constraints

S.No. Technique Average Execution time (s) τ
Proposed

1 HMF 0.4684 0.8
2 EHMF 0.178258 0
3 ConstrainedHash 0.0151944 0

Existing
4 ConstrainedBFS 0.300613 0
5 Yung et al. [88] 0.034883 0.96

Table 4.8 shows the average execution time and false negative ratio for 25 true

MCR queries with vertex constraints and edge constraints for Robots dataset.
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4.7 Conclusions

We choose the TrustLevel as edge constraint and generated MCR true queries

based on constrained BFS. For clustering, we assumed K to be 50. We observed

that our proposed techniques have lesser false negative ratio than that of existing

technique [88]. Besides, we observed that ConstrainedHash technique executed

faster for MCR queries than the other techniques.

4.7 Conclusions

In this chapter, we studied the problem of MCR queries on attributed graphs.

We solved this problem by using our proposed heuristic search technique that

includes hashing and clustering. We computed hash value for multidimensional

attribute values for faster comparison of attributes. We used matrix factorization

based graph clustering on the attributed graph to construct supergraph. We used

shortest path from super graph and hashing for checking constraints in our pro-

posed approach to efficiently solve the multidimensional constraint reachability

queries for large graphs. Besides, we proposed an extended heuristic search tech-

nique that increased the accuracy. From the experiments and evaluation, we find

that our proposed techniques are scalable and solved MCR queries efficiently.
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Chapter 5

Frequent Subgraphs and

Frequent Subpaths

Finding frequent subgraphs from the dynamic graph streams can be a challeng-

ing task as streams are non-uniformly distributed and are continuously needed

to be processed. From these frequent subgraphs, we can extract unknown and

useful information. In this chapter, we not only developed techniques to extract

frequent subgraphs from graph stream data but also applied the techniques to

the special case of finding frequent subpaths from the data of paths. This chap-

ter publications are listed below. In section 5.1, we introduce the problem of

finding frequent subgraphs and frequent subpaths. Section 5.2 deals with the

preliminaries and problem definitions. Section 5.3 deals with literature survey of

frequent subgraph algorithms and extracting frequent subpaths from sequence of

paths. Section 5.4 describes our proposed static and dynamic techniques to ex-

tract frequent subgraphs. Besides, it discusses the enhancements to our proposed

techniques by solving the problem of finding frequent subpaths from paths data

for the directed graph. Section 5.5 describes the experiments and evaluation of

results.

Bhargavi B, Swarupa Rani K., Rohit Kumar, and Sanmeet Kaur. “Static and Dynamic Tech-
niques to Extract Frequent Subgraphs from Graph Stream Data” , to appear in Proceedings of
International Conference on Big Data, Machine Learning, and Applications (BigDML), 2019.
Bhargavi B., and K. Swarupa Rani, “Finding Frequent Subgraphs and Subpaths through Static
and Dynamic Window Filtering Techniques”, EAI Endorsed Transactions on Scalable Informa-
tion Systems, Vol. 7, No. 27, p. 13, EAI [DBLP Indexed and ESCI Indexed] ISSN: 2032-9407,
Web of Sciences, 2020.
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5.1 Introduction

5.1 Introduction

In Big data era, we find large amounts of data generated from different data

sources very fast. For instance, there are 22.2 million Twitter users in India and

152 million daily active Twitter users all over the world [3]. Data stream model

deals with such Big data and data stream algorithms [22] make very few passes

and take lesser space. Data streams constitute of structured, semi-structured and

unstructured data which are time consuming as streams are continuous and are

also unbounded. Massive graphs are rendered as streams of graphs to analyze

and extract useful and unknown information. Graph streams as dynamic stream

model has been studied in the literature [44, 61, 75] which are the sequence of ‘m’

edges between ‘n’ nodes with the edges being updated sequentially. Processing

graph streams are challenging as they have large volume and are highly dynamic

in nature.

During the process of solving constraint reachability queries, we observed the

need and importance of finding frequent subgraphs and subpaths. In this chapter,

we review the problem of finding frequent subgraphs from the graph streams. A

frequent subgraph is a connected subgraph that occurs above the given threshold

in the sequence of graph streams. The problem of finding frequent subgraphs is

defined as follows: Given a sequence of graph streams and a minimum support

threshold, the problem is to find the frequent subgraphs having useful information

from the graph streams efficiently. One of the applications of finding frequent

subgraphs can be in social networks [56]. For instance, we can derive the groups of

users who are frequently communicating in the social network. In bio-informatics,

based on the frequent interactions between molecules, we can predict protein

functions and identify types of diseases.

We also solve another sub-problem of extracting frequent subpaths from se-

quence of paths. The applications for finding frequent subpaths can be in IP

routing in which we can find the frequent paths of data flows across multiple net-

works. In a traffic network, we can find the paths/subpaths that are frequently

traversed by commuters.

Alfredo Cuzzocrea et al. [31] proposed two algorithms to discover collections

of frequent subgraphs, one of which is the direct 1-step algorithm based vertical
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mining approach using Data Stream Matrix (DSMatrix). Besides, this approach

[31] used sliding window technique to process the graph streams in finding the

frequent subgraphs. This sliding window technique has the limitation of repeated

calculations. To overcome this limitation, Kyoungsoo Bok et. al. [23] proposed an

incremental frequent subgraph detection technique. The limitation of Kyoungsoo

Bok et al. [23] approach is that their approach did not completely resolve the

duplicate calculations.

We observed that the above solutions have certain limitations which include

the partially resolved duplicate calculations. Another possible limitation is that

frequent subgraphs in the past can be infrequent due to incomplete storage of

edges in the sliding window. To overcome these limitations, we proposed static

and dynamic approaches to find the frequent subgraphs. The key contributions

of this work include

• Proposed static and dynamic techniques to extract frequent subgraphs

• Compared the proposed techniques with the conventional approach thus

evaluating the efficiency

• We improved and proposed static approach by computing actual minimum

support.

• We also proposed partition based static approach with actual minimum

support for sequential and parallel environments.

• We improved and extended the dynamic sliding window filtering technique

with variable batch size.

• We solved the sub-problem to find frequent subpaths from sequence of paths

by applying our proposed static and dynamic techniques.

• We analysed our proposed static and dynamic techniques for efficiency on

real and synthetic datasets.

The above key contributions of proposed approaches and its variations are

also given in Table 5.1.
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Table (5.1) Proposed approaches and its variations

Static Approach Dynamic Approach

1. Single window with
minimum support

1. Incremental
approach with fixed
batch size of graph
data with relative
support

2. Single window
approach with actual
minimum support

2. Incremental
approach with
variable batch size of
graph data with
relative support

3. Partition based
approach with actual
minimum support in
sequential and
parallel environments

5.2 Preliminaries

Definition 1. (Graph stream) “Graph stream is defined as the sequence G1,

G2, . . .. Gi . . .Gs, where each graph Gi is a set of edges. We assume that the

edge set Gi contains only a small fraction of the underlying nodes” [8].

Definition 2. (Frequent Subgraph) A subgraph Gs(Vs, Es) is a part of a

graph G(V,E) such that Vs ⊂ V and Es ⊂ E. A frequent subgraph is a connected

subgraph that occurs above the given threshold (th) in the sequence of graph

streams.

Definition 3. (Path) “Given a graph G(V, E), a path p of length k from a

vertex u to u′ is a sequence (v0, v1, . . . , vk) of vertices such that vi ∈V, v0 = u

and vk = u′ and (vi−1, vi) ∈ E for i = 1, 2, . . . , k” [41].

Definition 4. (Subpath) “A path Q in G is said to be a subpath of P if Q

= (w0, w1, . . ., wk′), where (w0, w1, . . . , wk′) is a contiguous sub-sequence of

path P(v0, v1, . . . , vk), i.e., if, for some i such that 0 ≤ i ≤ i+k′ ≤ k, we have

w0 = vi, w1 = vi+1, . . . , wk′= vi+k′” [41].

Definition 5. (Minimum Support) Minimum support is defined as the

threshold specified by the user.
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5.2 Preliminaries

Figure (5.1) Sequence of graph streams G1, G2, G3, G4, G5, G6

Definition 6. (Actual Minimum Support) Actual minimum support is

defined as the minimum support based on user’s mining requirements which is

appropriate to the database to be mined [91].

Definition 7. (Relative Support) We define the relative support as the

partial minimum support assigned to subset of data. In this chapter, we adopt

the filtering threshold [52] to find the relative support.

5.2.1 Problem definitions

In this chapter, we propose techniques to find frequent subgraphs from graph

stream data and to find frequent subpaths from sequence of paths for a directed

graph efficiently.

5.2.1.1 Finding frequent subgraphs from graph stream data

Given a sequence of graph streams, for a minimum support threshold (th), the

problem is to find the frequent subgraphs from the graph streams efficiently.
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5.2 Preliminaries

Figure (5.2) Directed graph

For instance, for the sequence of graph streams, shown in Fig. 5.1, with th=3,

the set of frequent subgraphs include { <(v1, v2), (v1, v4)>, <(v1, v2), (v1,

v5)>, <(v1, v2), (v3, v4)>, < (v1, v4), (v3, v4) >, <(v1, v4), (v1, v5) > , <(v1,

v2), (v1, v4), (v1, v5) >, < (v1, v2), (v1, v4), (v2, v3)>}

5.2.1.2 Finding frequent subpaths from paths data

Given a sequence of paths of a graph, for a minimum support (th), the problem

is to extract frequent subpaths from paths data.

For instance, for the sequence of paths in Table 5.2 of the graph in Fig. 5.2,

the set of frequent subpaths with th=3 are {(v5, v6, v7), (v3, v5, v6)}.
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Table (5.2) Data of paths

S.No. Paths
1 (v1, v2, v5, v6)
2 (v1, v3, v5, v6, v7)
3 (v1, v2, v4)
4 (v1, v2, v4, v5)
5 (v2, v4, v5)
6 (v2, v5, v6)
7 (v2, v4, v6, v7)
8 (v4, v5, v6, v7)
9 (v4, v6, v8)
10 (v3, v4, v5, v6)
11 (v3, v5, v6)
12 (v3, v5, v6, v7)

5.3 Related Work

Massive graphs are considered as streams of data to analyze and extract useful

information. Henzinger et. al. [42] were the first to introduce graph streams

and they also worked on graph problems of paths and connectivity. Andrew

McGregor [61] presented a detailed survey of graph streams. Due to the dynamic

nature [40], [44] and the large volume of graph stream data, Nan Tang et. al. [75]

proposed graph summarization sketch that can store frequent counts and paths

of graph streams.

Alfredo Cuzzocrea et al. [31] studied various methodologies of mining dense

patterns in graph streams and proposed probabilistic algorithms for determining

such structural patterns effectively and efficiently. Alfredo Cuzzocrea et al. [31]

presented two algorithms to extract frequent subgraphs - (i) Indirect 2-step al-

gorithm (ii) Direct 1-step algorithm. Experimental results by Alfredo Cuzzocrea

et al. [31] stated that mining with DSMatrix consumes lesser memory due to the

information stored in a secondary storage device as they store the existence of

edges in bit vectors.
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Kyoungsoo Bok et. al. [23] observed that the algorithm developed by Alfredo

Cuzzocrea et. al. [31] has a limitation of duplicate calculations. They introduced

slidenum variable [23] to store the frequency of edges incrementally for batches

of graph streams to resolve duplicate calculations.

Table (5.3) DSMatrix for graph streams of Fig. 5.1

Edge G1 G2 G3 G4 G5 G6
(v1, v2) 1 1 1 1 0 1
(v1, v4) 1 1 1 1 1 1
(v1, v5) 1 1 0 1 1 0
(v2, v5) 1 1 1 0 1 1
(v2, v3) 0 1 1 0 0 1
(v3, v4) 0 0 1 1 1 0

From the literature, we observe that while finding frequent subgraphs, although

sliding window based techniques execute fast, they may lead to loss of useful

historical information. We also observe that we need to reduce duplicate calcula-

tions further. We observed that finding frequent subpaths from paths is another

problem in the literature that can be related to the problem of finding frequent

subgraphs. We identified and formulated ways to apply our proposed and ex-

tended techniques to find frequent subpaths from sequence of paths. Sumanta

Guha [41] developed Apriori based technique to extract frequent subpaths from

paths in an undirected graph. Schwartz et al. [69] studied demand of frequent

subpaths in a transportation network traversed by several users. Hence, there is

need to find techniques that discover frequent subgraphs and frequent subpaths

efficiently by storing useful historical information.

5.4 Proposed Static and Dynamic Techniques

for Finding Frequent Subgraphs

We have extended the direct 1-step algorithm of Alfredo Cuzzocrea et al. [31]

by modifying the parameters of sliding window size and by using relative sup-

port. We have proposed static single window approach and dynamic approach of
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Table (5.4) Characteristics of Proposed Static and Dynamic Approaches com-
pared to Conventional Approach

Proposed approaches
Characteris-
tic

Static Dynamic Conventional

Size
Entire graph
stream data

incremental
data

sliding window
size

Minimum
Support

user given
minimum
support and
actual minimum
support [91] can
be used

relative support
[52]

user given
minimum
support

Applicability for existing data
present stream
of data

present stream
of data

Streams of
data

single window
incremental in
batches

sliding window

Loss of
historical
data

No loss of
frequent
subgraphs

No loss of
significant
frequent
subgraphs

Loss of some
significant
frequent
subgraphs

Time

faster technique
in distributed
and parallel
environments

moderate
technique
without loss of
significant
information

faster technique
with loss of
information

Parallelism

can be applied
by dividing the
data and
minsup into
equal partitions

cannot be
applied

cannot be
applied

Distributed

can be applied
by using
MapReduce
technique

cannot be
applied

may not be
applicable

sliding window to find frequent subgraphs from graph streams using DSMatrix

[50]. Table 5.4 shows the characteristics of our proposed approaches w.r.t. size,

environment and compatible features. The proposed approaches are explained in
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the following subsections.

5.4.1 DSMatrix

Data Stream Matrix or DSMatrix constitutes assigning the presence (or absence)

of each edge by a bit 1 (or 0) for each graph of graph stream data [31]. For

instance, consider the sequence of graph streams in figure 5.1. Table 5.3 shows

the contents of DSMatrix. We find the rowsum from DSMatrix to compute the

frequency of every edge in graph stream data.

5.4.2 Static single window technique

In the static single-window, we consider the entire data set of graph streams as

a single window. We describe the proposed static single window approach in

StaticFreqSubgraph algorithm. In this algorithm, for the entire graph streams,

it creates a DSMatrix. The rowsum of the DSMatrix is computed and compared

to the minimum support threshold minsup. If rowsum is greater than or equal to

minsup, the resultant edges are the frequent singleton edges.

Then, combination of edge pairs are found based on the neighbouring informa-

tion (in list, N ). The AND operation is performed between the k-frequent single-

ton edge combinations’ bit vectors by checking whether the edges are present for

each graph to form a bit vector for the combination. The sum of non-zero bits is

computed and compared to the given minimum support to check if it is frequent

or not. If the resultant sum is greater than or equal to minsup, the k+1-subgraph

is frequent. Thus, the algorithm generates all the possible frequent subgraphs.

For example, for graph streams of Fig. 5.1 with minsup=3, the resultant fre-

quent singleton edges are {(v1, v2), (v1, v4), (v2, v5), (v1, v5),(v2, v3),(v3, v4)}.
The resultant frequent subgraphs for the graph streams of Fig. 5.1 generated

using StaticFreqSubgraph algorithm are { <(v1, v2), (v1, v4)>, <(v1, v4), (v1,

v5)>, <(v2, v3), (v2, v5)>, <(v1, v2), (v2, v3)>, <(v1, v2), (v1, v4), (v1, v5)>

}.
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Algorithm 9: StaticFreqSubgraph
Input : Edges in graph streams, total number of graphs in the whole data and

minsup = minimum support threshold
Output: Set of frequent subgraphs
// m= number of graph streams, n= number of edges in the entire

graph streams sequence

// Mat A[m][n] = 2-D DSMatrix with m rows and n columns

// rowsum = count of 1s in a row of DSMatrix

Create neighbouring list, N for the graph streams by finding common vertex for
the stream of edges
for each graph gj do

if edge i ∈ gj then
Mat A[i][j]=1

else
Mat A[i][j]=0

Calculate rowsum for each row of Mat A.
if (rowsum(i) ≥minsup) then

Edge i is frequent

else
Edge i is not frequent

Join k frequent connected edges with common vertices using neighboring list N
to get k+1 frequent subgraphs , fl for all k≤m.
Compute freq(fl) by AND of the bit vectors of k recurrent edges for the graph
streams in the DSMatrix
if freq(fl)≥minsup then

fl is frequent.

else
fl is infrequent.
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5.4.3 Dynamic approach of sliding window technique

In this approach, we proposed a dynamic sliding window technique that is de-

scribed in DynamicFreqSubgraph algorithm. DSMatrix for each batch is created

and a relative support is applied. For example, if batch 1 contains 3 graph in-

stances, then we calculate 40% of frequent edges of the 3 graph instances and

store it in the map. This technique is incrementally applied for the next batches.

The frequency threshold for the edges is based on the number of graph instances.

Thus, this approach preserves the previous history information. After the sin-

gleton frequent edges are calculated, the combination is formed based on the

neighbouring information. DynamicFreqSubgraph algorithm computes AND op-

eration on the edges and calculates the final row sum. If the final row sum satisfies

the minimum support threshold, then it is marked as frequent.

5.4.3.1 Illustration for dynamic sliding window technique

For instance, in the graph streams of Figure 5.1, Let batch size=2. Then, batch 1

constitutes graph streams G1, G2 of Fig. 5.1. For batch 1, the frequent singleton

edges along with edge count are stored in map M for each edge satisfying 40%

of batch size (percentminsup=0.4), i.e., d0.4*2e=1. Thus, the initial map M for

Fig. 5.1 with relative support 1 includes all the edges with count greater than or

equal to 1 as shown in Table 5.5.

This map is incrementally maintained as shown in Table 5.6 for the next batch

with relative support 2. When the batch 3 is encountered, the edge counts are

incremented as shown in Table 5.7 with relative support of 4. Thus, the resul-

tant frequent singleton edges by applying Algorithm 10 with the given minimum

support of 4 are {(v1, v2), (v1, v4), (v1, v5), (v2, v5)}.

5.4.4 Enhancements to the proposed static and dynamic

sliding window filtering techniques

We adopt the polynomial strategy [91] and modify it to compute the actual min-

imum support based on dataset information for graph stream data. We use this
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Algorithm 10: DynamicFreqSubgraph
Input : Edges in the graph streams, percentminsup
Output: Set of Frequent subgraphs
// n=Total number of graph streams in the entire sequence

// DSMatrix[m][n]= 2D matrix of m rows and n columns

// batchsize = number of graphs in a batch

totalbatch= n / batchsize
batchpointer=0
k1=0
repeat

Compute DSMatrix for each batch of graph streams
Calculate edge count for each batch
minsup=percentminsup*(batchpointer*batchsize+1)
k1=k1+1
if (edge count[i] ≥ minsup) then

Store < edge i, edge count[i] > in a map M
batchpointer= batchpointer + batchsize

until k1 < totalbatches;
relativesup=d(percentminsup*n)e
for i=0 to m do

if (edge count[i]≥ relativesup) then
Edge i is frequent

else
Edge i is not frequent

Join k recurrent connected edges with common edge based on neighbouring
information to k+1 recurrent connected edges by intersecting their bit vectors
from DSMatrix, fl for all k≤m.
if freq(fl)≥minsup then

fl is frequent.

else
fl is infrequent.
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Table (5.5) Frequent edges with count for Batch 1

edge count
(v1,v2) 2
(v1, v4) 2
(v1,v5) 2
(v2,v5) 2
(v2, v3) 1

Table (5.6) Frequent edges with count for Batch 1 and Batch 2

edge count
(v1,v2) 4
(v1, v4) 4
(v1,v5) 3
(v2,v5) 3
(v2, v3) 2
(v3, v4) 2

Table (5.7) Frequent edges with count for Batch 1, Batch 2 and Batch 3

edge count
(v1,v2) 5
(v1,v4) 6
(v1,v5) 4
(v2,v5) 5

minimum support in the proposed static approach to compute frequent singleton

edges. Besides, we propose partition based sequential and parallel static approach

with actual minimum support. In addition, we observed that our earlier proposed

dynamic approach may miss some of the frequent singleton edges for large graph

streams with the iterative increase in relative threshold. To overcome this limi-

tation, we modified the dynamic approach by using incremental relative support

along with variable batch size.

5.4.4.1 Enhancement #1: Computing actual minimum support for

proposed static approach

We observed that there is a need to compute actual minimum support while find-

ing frequent singleton edges in real-time as the user may not have prior knowl-
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edge about the characteristics of the graph database. Another observation is

that there may be loss of significant and required frequent subgraphs because of

lack of knowledge of the actual minimum support. Hence, we consider the mini-

mum support given by the user as input to compute the actual minimum support

based on distribution of frequent singleton edges in the graph stream database

in the interval [amin, bmax ]. amin denotes minimum frequency of the edge and

bmax denotes the maximum frequency of the edge in the graph stream data. We

adopt the approximate polynomial function of degree i [91] and compute the ac-

tual minimum support (Actualminsup) based on the user given minimum support

(minsup) through the equation below:

Actualminsupi = minsup ∗ (bmaxi − amini) + amini (5.1)

We then apply the proposed static approach with the actual minimum support

to compute the resultant frequent subgraphs. For instance, consider the graph

stream data in figure 5.1, with the user given minimum support, minsup=0.5, the

minimum frequency amin=1/6 and maximum frequency bmax=5/6. The actual

minimum support computed using equation (1) with linear strategy (i=1) is 0.49

and with cubic strategy (i=3) is 0.66. We use actual minimum support when

the user is not an expert about the minimum support using which the significant

frequent subgraphs can be retrieved.

5.4.4.2 Proposed partition based static approach

We modify our proposed static approach with single window by partitioning the

data into windows of fixed size for faster execution. We then compute the actual

minimum support for each window used to compute frequent singleton edges.

We can run each partition in parallel to extract the frequent singleton edges.

Algorithm 11 describes our proposed partition based static approach with actual

minimum support.

Illustration of Proposed Partition based Static Approach For graph

streams, with actual minimum support using linear strategy of 2.774∼3 (given

user minsup=2), with partition size=2, the frequent singleton edges for the first
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Algorithm 11: PartitionStaticFreqSubgraph
Input : Edges in graph streams, total number of graphs in the whole data,

minsup = minimum support threshold, partition no be number of
partitions

Output: Set of frequent subgraphs
// m= number of graph streams, n= number of edges in the entire

graph streams sequence

amin= 1
m // Mat A[m][n] = 2-D DSMatrix with m rows and n columns

// rowsum = count of 1s in a row of DSMatrix

Create neighbouring list, N for the graph streams by finding common vertex for
the stream of edges
for each partition p ∈ [1, partition no] do

for each graph gj do
if edge i ∈ gj then

Mat A[i][j]:=1

else
Mat A[i][j]:=0

Calculate rowsum for each row of Mat A.
Compute bmax, maximum frequency of any edge by considering maximum
rowsum
bmax= bmax

m
Compute Actualminsup using (5.1)
for each edge i do

if (rowsum(i) ≥Actualminsup) then
Add edge i to set F

Join k recurrent connected edges from F with common edge using neighboring
list N and to get k+1 recurrent connected edges , fl for all k≤m.
Compute freq(fl) by intersecting the bit vectors of k recurrent edges from
DSMatrix and adding all the resultant non-zero bits
if freq(fl)≥Actualminsup then

fl is frequent

else
fl is infrequent
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partition are {(v1, v2), (v1, v4), (v2, v5)}. The frequent singleton edges for the

second partition are {(v1, v4)}. The resultant frequent subgraphs include { <(v1,

v2), (v1, v4)>, <(v1, v4), (v2, v5)>, <(v1, v2), (v1, v4), (v2, v5)> }.

5.4.4.3 Enhancement #2: Dynamic sliding window filtering technique

In the proposed dynamic sliding window technique (described in Section 5.4.3),

we observed that with increase in relative support, we may miss some of the sig-

nificant frequent subgraphs. Hence, we modified the proposed dynamic approach

by storing the batch number in addition to frequency for the edges in a map.

For the first batch, we start with relative support and find the frequent singleton

edges. The relative support is iteratively increased with next batch if the edge

obtained in the current batch is frequent in the previous batch. If the edge is

not frequent in the previous batch, but is frequent in the current batch, then we

compare the frequency of the edge in the current batch with the relative support.

For the next batch, the relative support is iteratively incremented. Thus, this

approach preserves the previous history information. In addition, our proposed

approach described in Algorithm 12 considers batches with variable sizes. Af-

ter the frequent singleton edges are calculated, the combination is formed based

on the neighbouring information. DynamicVarFreqSubgraph algorithm computes

AND operation on the neighbouring frequent singleton edges and calculates the

final row sum. If the final row sum satisfies the relative frequency threshold, then

it is frequent.

Illustration of Dynamic Sliding Window Filtering Technique For in-

stance, in the graph streams of Fig. 5.1, let batch size=3. Then, batch 1 con-

stitutes graph streams G1, G2 and G3 of Fig. 5.1. For batch 1, the frequent

singleton edges along with edge count are stored in map M for each edge with

its relative frequency in the batch satisfying 40% of batch size. Thus, the initial

map M for Fig. 5.1 with relative support 2 includes all the edges with count

greater than or equal to 2 denoted by � symbol in Table 5.8.
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Algorithm 12: DynamicVarFreqSubgraph
Input : Edges in graph streams, Let rel be percentage for computing relative

support
Output: Set of Frequent subgraphs
// n=Total number of graph streams in the entire sequence

// DSMatrix[m][n]= 2D matrix of m rows and n columns

// batchsize = variable number of graphs in a batch

// Let b be the number of batches in the graph

totalbatch= n / batchsize
k1=1
Compute DSMatrix for each batch of graph streams
repeat

Calculate edge count for each batch
batchpointer=0
minsup=drel*(batchsize)e
if existsEdge(i) then

ec=edge count[i]+ Edge count of i in the current batch
minsup=drel*(k1-batchno[i]+1)*batchsizee
if (ec ≥ minsup) then

// Edge i is frequent

Update edge count of i to ec in map M

if (!existsEdge(i) & edge count[i] ≥ minsup) then
Store < edge i, batchno[i], edge count[i] > in a map M

batchpointer= batchpointer + batchsize
k1=k1+1

until k1 ≤ b;
Join k frequent connected edges with common edge to k+1 frequent connected
edges by intersecting their bit vectors from DSMatrix, fl for all k≤m.
minsup=drel*ne
if freq(fl)≥minsup then

fl is frequent

else
fl is infrequent.

This map is incrementally maintained as shown in Table 5.9 for the next batch,

with relative support 3, if the edge is frequent in the previous batch. If the edge

is not frequent in the previous batch, then the relative support for such edge is

2. For instance, in Table 5.9, the edge (v3, v4) is not frequent in batch 1, but

is frequent in the current batch as the relative support for that edge is set to 2.

Thus, the resultant frequent singleton edges by applying Algorithm 12 with the
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Table (5.8) Frequent edges with relative count for Batch 1

edge Batch No. count
�(v1, v2) 1 3
�(v1, v4) 1 3
�(v1, v5) 1 2
�(v2, v3) 1 2
�(v2,v5) 1 3
(v3, v4) 1 1

Table (5.9) Frequent edges with relative count for Batch 1 and Batch 2

edge Batch No. count
�(v1, v2) 1 5
�(v1, v4) 1 6
�(v1, v5) 1 4
�(v2, v3) 1 3
�(v2, v5) 1 5
�(v3, v4) 2 2

relative frequency threshold are {(v1, v2), (v1, v4), (v1, v5), (v2, v5), (v2, v3),

(v3, v4)}. The resultant frequent subgraphs with relative support 3 are { <(v1,

v2), (v1, v4)>, <(v1, v2), (v1, v5)>, <(v2, v5), (v1, v5)>,<(v2, v3), (v2, v5)>,

< (v1, v2), (v1, v4), (v1, v5) > }.

5.4.5 Finding frequent subpaths from sequence of paths

For a directed graph, given a sequence of reachable paths [20], we can extract

the frequent subpaths by using our proposed static and dynamic techniques. For

this problem, algorithm 9 and algorithm 10 can be modified by considering each

path as a graph stream input and the resultant output are frequent subpaths. In

addition, while extracting frequent subpaths, we consider the sequence of neigh-

bouring vertices that form a subpath. Algorithm 13 describes our proposed static

single window technique to extract the frequent subpaths from sequence of paths.

Algorithm 11 and Algorithm 12 can also be similarly applied to find the frequent

subpaths from sequence of paths for the given directed graph. For instance, for

the directed graph in Fig 5.2, let us assume that the edges (v3, v5) and (v4, v5)
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are frequent. Then, we cannot join the edges (v3, v5) and (v4, v5) as they do

not form a subpath. Thus, the group of edges that do not form a subpath are

not included.

Application areas of frequent subpaths extraction include analysis of traffic

sub-routes based on the routes taken by vehicles (stored as paths database) to

extract congested sections. In IP routing, we can analyse the routes taken by

messages to extract the hot-spots. For instance, for graph of figure 5.2, Table

5.2 shows some of the paths extracted from the graph. The following subsections

illustrate the extraction of frequent subpaths from paths data using the proposed

static and dynamic techniques.

Algorithm 13: StaticFreqSubpath
Input : Sequence of paths and minsup = minimum support threshold
Output: Set of frequent subpaths
// m= sequence of paths, n= number of edges in the entire paths

data

// Mat A[m][n] = 2-D DSMatrix with m rows and n columns

// rowsum = count of 1s in a row of DSMatrix

Create neighbouring list, N for the paths by finding common vertex for the
stream of edges
for each path gj do

if edge i ∈ gj then
Mat A[i][j]=1

else
Mat A[i][j]=0

Calculate rowsum for each row of Mat A.
if (rowsum(i) ≥minsup) then

Edge i is frequent

else
Edge i is not frequent

Join k frequent connected edges with common connecting vertices using
neighboring list N to get k+1 frequent subpaths, fl for all k≤m.
Compute freq(fl) by AND of the bit vectors of k recurrent edges for the path
streams in the DSMatrix
if freq(fl)≥minsup then

fl is frequent.

else
fl is infrequent.
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5.4.5.1 Illustration of static single window technique to find frequent

subpaths

By considering each path as input for static single window technique, we retrieve

the frequent subpaths for the set of paths. To extract frequent subpaths, we

construct DSMatrix for the unique edges present in the paths set. Then, we

extract frequent singleton edges from DSMatrix as described in Algorithm 13.

From the frequent edges and neighbouring information, we extract the frequent

subpaths. For instance, for the set of paths of Table 5.2, with minsup=3, the

frequent singleton edges extracted using proposed static single window technique

are {(v1, v2), (v2, v4), (v2, v5), (v3, v5), (v4, v5), (v5, v6), (v6, v7)} and the

resultant frequent subpaths are { (v3, v5, v6), (v5, v6, v7)}

5.4.5.2 Illustration of dynamic sliding window filtering technique to

find frequent subpaths

By considering each path as input for dynamic sliding window filtering technique,

we retrieve the frequent subpaths for the set of paths. Initially, we construct the

DSMatrix for the data of paths for each batch. Then, we extract the frequent

singleton edges by using dynamic variable sliding window filtering technique de-

scribed in Algorithm 12. For instance, let batch size=6 for paths data of Table

5.2. By using dynamic sliding window filtering technique, the resultant frequent

singleton edges for the first batch with relative support=3 for path 1 to path 6

are {(v1, v2), (v5, v6)}. The resultant frequent singleton edges for the second

batch for the remaining paths include {(v1, v2), (v5, v6), (v6, v7)}. Finally,

the resultant frequent edges are {(v1, v2), (v5, v6), (v6, v7)} and the resultant

frequent subpaths are {(v5, v6, v7)}.

5.4.6 Analysis of proposed static and dynamic approaches

The proposed static single window approach can be used for small datasets as this

approach efficiently stores all the frequent subgraphs. Thus, the useful history in-

formation is retained. In addition, our proposed static approach with actual min-

imum support can retrieve the required number of frequent subgraphs/subpaths

based on user minimum support. However, for large streams of graph data, we
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can use the partition based static approach by running each partition of data in

parallel to find frequent singleton edges. For large streams of data with variable

batch size, the proposed dynamic sliding window approach efficiently finds the

frequent subgraphs as relative support computation involves the number of graph

streams. With the increase in the number of graph streams, the relative support

is also proportionately increased thus storing the significant frequent subgraphs

as well as minimizing the duplicate calculations. In addition, to extract frequent

subpaths from large sequence of paths, our proposed dynamic sliding window

filtering technique can be applied for large directed graphs. Table 5.4 shows dif-

ferent characteristics of proposed static and dynamic techniques compared to the

conventional approach [31].

5.5 Experimental Evaluation

The direct 1-step algorithm (Conventional approach) of Alfredo Cuzzocrea et

al. [31] and its modified versions, the proposed static single window approach

(Static), proposed static approach with actual minimum support using linear

strategy (StaticLinear) and cubic strategy (StaticCubic), proposed partition based

static approach in sequential and parallel environments, dynamic sliding window

technique (DynFixed) and dynamic variable sliding window filtering techniques

(DynVar) are implemented.

The minsup is varied from 10% to 80% of number of graph streams/paths. For

conventional approach, we set window size=5 and batch size=100. In dynamic

approach and its variations, the batchsize is 100 for fixed batches and for variable

batches, the batch size is randomly varied such that total number of batches are

set to 10. In the experiments, the actual minimum support is computed based on

the user given minimum support using equation 5.1 with i=1 for linear strategy

and i=3 for cubic strategy. The relative support for batches are varied from 10%

to 80% for the proposed dynamic sliding window filtering technique.

Experiment #1: Finding frequent subgraphs from graph stream data

with minimum support and actual minimum support To extract fre-

quent subgraphs from graph stream data, the proposed algorithms are exper-
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imented on real dataset, Connect-4 [4]. We have considered each record of

Connect-4 dataset as graph stream and constructed 1000 graph instances. The

Connect-4 dataset can be used to find the most frequent moves chosen by the

winner of the game. In each record, there are 1s, -1s and 0s for each position

of 6×7 matrix of Connect-4 dataset. During pre-processing of the dataset, each

grid position of the matrix is rendered as vertex. Thus, there are 42 vertices. The

adjacent 1s and -1s in those grids are taken as edges. The two adjacent 1s or -1s

represent an edge denoted using their respective grid positions.

Table (5.10) Number of frequent singleton edges (|FSE|) for graph stream data
with varying minsup for proposed static approach compared to Conventional
Approach

minsup
|FSE| for

Proposed Static
approach

|FSE| for
Conventional

Approach
0.1 121 104
0.2 101 72
0.3 87 47
0.4 71 23
0.5 59 0
0.6 45 0
0.7 34 0

0.8 23 0

Table 5.10 shows the number of frequent singleton edges with varying minsup

for proposed static approach and conventional approach. From the table and its

graph as shown in figure 5.3, we observe that with increase in minsup, the number

of frequent singleton edges for conventional approach reduced to zero from 50%

minsup, whereas our proposed static approach retained frequent singleton edges.

From Table 5.10 and Table 5.11 , we also observe that the actual minimum

support computed using linear strategy (Actualminsupl) is closer to the user given

minimum support than that of cubic strategy (Actualminsupc) for graph stream

data. Fig. 5.4 shows the number of frequent singleton edges for graph stream

data extracted using our proposed approaches, i.e., static approach (Static), static
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Figure (5.3) Number of frequent singleton edges (|FSE|) for proposed static
approach compared to conventional approach for graph stream data

Table (5.11) Number of frequent singleton edges (|FSE|) for graph stream data
with varying minsup for proposed static approach with actual minimum support
using linear strategy with and cubic strategy

minsup Actualminsupl |FSE| linear Actualminsupc |FSE| cubic
0.1 0.099 121 0.450 64
0.2 0.198 101 0.576 49
0.3 0.296 87 0.661 40
0.4 0.390 73 0.726 30
0.5 0.490 61 0.783 25
0.6 0.590 46 0.832 20
0.7 0.690 37 0.875 12
0.8 0.789 24 0.915 10

approach with actual minimum support computed using linear strategy (Stati-

cLinear) and cubic strategy (StaticCubic) compared to conventional approach.

We observe that more number of frequent singleton edges are retained using our

proposed static approach with linear strategy than the conventional approach

with increase in minimum support.

Experiment #2: Finding frequent sub graphs through sequential and

parallel approaches Table 5.12 shows the execution time of our proposed

118



5.5 Experimental Evaluation

Figure (5.4) Number of frequent singleton edges (|FSE|) for proposed ap-
proaches with actual support using linear strategy and cubic strategy compared
to conventional approach for graph stream data

partition based static approach (with number of partitions assumed to be 4) with

actual minimum support computed using linear strategy in sequential and parallel

environment. Table 5.13 shows the execution time of our proposed partition based

static approach in sequential and parallel environment using cubic strategy, with

the proposed partition based static approach in parallel environment executing

faster. We implemented the parallel environment based on multi-threading, with

each thread executing each partition while using the computed actual minimum

support for every partition.
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Table (5.12) Execution time (in milliseconds) to find frequent singleton edges for
graph stream data using proposed static approach with actual minimum support
through linear strategy in sequential and parallel environment

minsup Actualminsupl

Execution time
in sequential

envt.

Execution time
in parallel

envt.
0.1 0.102 0.417 0.262
0.2 0.199 0.454 0.260
0.3 0.296 0.388 0.245
0.4 0.394 0.414 0.271
0.5 0.49 0.430 0.270
0.6 0.59 0.381 0.215
0.7 0.687 0.355 0.209

0.8 0.785 0.394 0.203

Table (5.13) Execution time (in milliseconds) to find frequent singleton edges for
graph stream data using proposed static approach with actual minimum support
through cubic strategy in sequential and parallel environment

minsup Actualminsupc

Execution time
in sequential

envt.

Execution time
in parallel

envt.
0.1 0.455 0.391 0.187
0.2 0.573 0.369 0.167
0.3 0.656 0.391 0.253
0.4 0.722 0.377 0.218
0.5 0.078 0.360 0.198
0.6 0.827 0.334 0.177
0.7 0.870 0.363 0.187

0.8 0.909 0.34 0.148

Experiment #3: Finding frequent subgraphs through dynamic sliding

window filtering approach Table 5.14 shows the number of frequent singleton

edges extracted with relative support varying from 10% to 80% of batch size using

our proposed dynamic sliding window technique (DynFixed) and dynamic vari-

able sliding window filtering technique (DynVar). We observe that with increase

in relative support, the number of frequent singleton edges extracted decreased.

We also observe that we can consider the relative support from 20% upto 60%
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to retrieve significant number of frequent singleton edges and thus the frequent

subgraphs.

Table (5.14) Number of frequent singleton edges for graph stream data with
varying % of relative support(relsup) for proposed dynamic approach with fixed
batch size (DynFixed) and variable batch size (DynVar)

relsup |FSE| for DynFixed |FSE| for DynVar
0.1 127 124
0.2 108 108
0.3 90 89
0.4 76 75
0.5 64 64
0.6 51 49
0.7 39 39
0.8 25 25

Table (5.15) Number of frequent singleton edges (|FSE|) for paths data for pro-
posed Static approach compared to Conventional approach

minsup

|FSE| for
proposed

Static
Approach

|FSE| for
Conven-
tional

Approach
0.1 31 7
0.2 4 0
0.3 0 0
0.4 0 0
0.5 0 0

0.6 0 0

Experiment #4: Finding frequent subpaths and their analysis with

varying parameters For reachability path queries with constraints, the result

of the query is sequence of paths. This database constitutes the reachable paths

for reachability queries with constraints. These paths are stored in log file. We

generate synthetic graph, i.e., E-R graph [53] with n=1000 and m=2000 edges.

Next, we generate 800 reachability queries and retrieve 1000 possible paths sat-

isfying the given constraints based on constrained BFS technique. We used the
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same query generation process for constraint reachable paths addressed in [20].

Each path is considered as graph instance. We apply the conventional approach

and the proposed static and dynamic techniques to find the frequent subpaths.

Table (5.16) Number of frequent singleton edges (|FSE|) for paths data using
proposed static approach with actual minimum support using linear strategy and
cubic strategy

minsup Actualminsupl |FSE| linear Actualminsupc |FSE| cubic
0.1 0.024 178 0.105 24
0.2 0.047 105 0.133 14
0.3 0.068 61 0.152 12
0.4 0.091 38 0.167 7
0.5 0.114 21 0.180 7
0.6 0.137 14 0.191 5
0.7 0.159 9 0.202 4
0.8 0.182 7 0.21 4

Table 5.15 shows the number of frequent singleton edges extracted from the

sequence of paths using our proposed static approaches compared to conventional

approach. We observe that as the paths data is sparse, the number of frequent

singleton edges extracted for conventional approach is very less and is zero from

20% of minimum support. Our proposed static approach has zero frequent sin-

gleton edges with the user given minimum support from 30%.

From Table 5.16 and Table 5.15, we observe that the proposed static approach

with actual minimum support using linear strategy and cubic strategy retained

the significant frequent singleton edges than the conventional approach and pro-

posed static approach with minimum support. Fig. 5.5 shows the number of fre-

quent singleton edges extracted for paths data using our proposed approaches, i.e.,

static approach (Static), static approach with actual minimum support computed

using linear strategy (StaticLinear) and cubic strategy (StaticCubic) compared to

conventional approach. We observe that the number of frequent singleton edges

are retained more using our proposed static approach using linear strategy with

increase in minimum support for the generated paths data.

122



5.5 Experimental Evaluation

Figure (5.5) Number of frequent singleton edges (|FSE|) for proposed ap-
proaches with actual support using linear strategy and cubic strategy compared
to conventional approach for sequence of paths

Table 5.17 and Table 5.18 shows the number of frequent singleton edges and

frequent subpaths respectively that are extracted using our proposed dynamic

approach with fixed batch size and variable batch size. Since the paths data is

sparse, we observe that the relative support of 0.5% upto 1% retrieves significant

number of frequent subpaths.

From the experiments and results, we observe that our proposed static ap-

proach with linear strategy extracted significant number of frequent singleton

edges than that of cubic strategy. From these observations, we can conclude that

our proposed techniques can efficiently extract frequent subpaths from sequence

of paths.
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Table (5.17) Number of frequent singleton edges (|FSE|) for paths data with
varying relative support(relsup) for proposed dynamic approach with fixed batch
size (DynFixed) and variable batch size (DynVar)

relsup |FSE| for DynFixed |FSE| for DynVar
0.005 599 529
0.01 488 414
0.02 329 267
0.03 240 210
0.04 193 167
0.05 159 139
0.06 133 119
0.07 108 100
0.08 98 84
0.09 88 75
0.1 73 100
0.2 14 12
0.3 4 2

Table (5.18) Number of frequent subpaths (|FSP|) for paths data with varying
relative support (relsup) for proposed dynamic approach with fixed batch size
(DynFixed) and variable batch size (DynVar)

relsup |FSP| for DynFixed |FSP| for DynVar
0.005 75 75
0.01 35 35
0.02 9 9
0.03 9 7
0.04 5 5
0.05 3 3
0.06 2 2

5.6 Conclusions

To discover the collections of frequent edges, we proposed two approaches the

static single window approach and dynamic approach of sliding window. The pro-

posed static approach finds frequent subgraphs by considering the entire graph

streams as a single window and applying the given minimum support for them.

In addition, we adopt polynomial strategy to compute the actual minimum sup-

port from the user given minimum support and apply it to our proposed static
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approach that retained more number of frequent subgraphs. We also propose

partition based static approach with actual minimum support that can be ex-

ecuted in parallel environment. In the dynamic approach, for each batch with

variable size, we incrementally compute relative support and extract frequent

edges. Finally, we join the frequent edges that share the common edge to extract

the frequent subgraphs above the relative support computed for the entire graph

stream data.

In addition, we also solve the problem of finding frequent subpaths from the

sequence of paths by using our proposed techniques. From experiments, we ob-

serve that our proposed static approach with linear strategy retrieved significant

number of frequent subpaths. The intention to propose these techniques is to

solve similar type of queries of constraint reachability which will be discussed in

Chapter 6.
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Chapter 6

Query Processing Framework

A framework is defined as a generic combination of data and processes, where

sub-components may be substituted. This chapter integrates our contributions

and we propose a novel query processing framework to find paths for constrained

reachability queries. Section 6.1 gives a brief introduction about the framework

and its functionality. In section 6.2, we define the terminologies and discuss

the problem statement by identifying important research questions. Section 6.3

describes the proposed query processing framework and its flow with examples.

We perform experiments and analyze the usefulness of integrating every module

of the proposed framework in section 6.4.

6.1 Introduction

One of the fundamental operations to manage graph data is to find the reachabil-

ity from one vertex to another vertex in the graph. In real-time, the vertices and

edges of a graph consist of attributes. These attributes give information about

the type of vertices, type of relationship, and strength of the relationship between

vertices. These real-time constraints motivate us to find reachability between the

given vertices with vertex constraints and edge constraints.

To find the reachability for heterogeneous types of queries, the procesing struc-

ture is desired to fulfil the requirements of the user. Hence, query processing plays

a vital role. The query processing would mean the entire process (module) or ac-

tivity which involves query optimization, evaluation of query and extraction of
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resultant information from respective components. In this chapter, the query pro-

cessing starts when constraint reachability query is routed to a specific module.

We studied different constrained reachability techniques described in Chapter 2.

Our objective in this chapter is to propose a new query processing framework that

can find paths for different variants of constrained reachability queries efficiently.

Thus, we can apply our proposed techniques described in chapter 3 and chapter

4 for solving constraint reachability queries.

A framework [90] allows flexibility in choosing the most appropriate or avail-

able sub-modules as long as they perform the same specified functions. Integrated

framework is used to place all the components required to implement systems and

applications. We observe that collation of knowledge from different components

or modules is a complex task. This chapter integrates our contributions and

proposes a novel query processing framework to find paths for constrained reach-

ability queries.

Our proposed query processing framework can find paths for variants of con-

strained reachability queries. Using the proposed query processing framework,

we can store the resultant paths for queries in the Query Path Log (QPL) and

extract frequent subpaths from them. These frequent subpaths can be used to

handle similar queries. The results of the queries in QPL are used to solve the

same queries.

One of the applications of the query processing framework is in social net-

works. Social networks may include information in the form of multiple vertex

attributes values and edge attributes values. The constraints can be on the values

of vertex attributes and edge attributes. In real-time, large number of queries can

be invoked by many users to extract useful and unknown information from these

social networks. These queries can also be repeated or similar to the previous

queries. Our proposed framework can efficiently solve such queries. Our main

contributions in this chapter are described as follows:

• We proposed Query Path Log and updation to handle same queries.

• We proposed a novel query processing framework to efficiently find paths for

new queries, same queries and similar queries by integrating the proposed

techniques for constrained reachability queries in the framework.
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• We evaluated the usefulness and efficiency of our proposed query processing

framework on real and synthetic datasets.

6.2 Problem Description

6.2.1 Problem statement

Consider Q={q1, q2, ..., qn} are the different types of queries with respect to

constraint reachability of a directed graph, for each qi ∈ Q, owned by different

modules M= {m1, m2, ..., mr } where mi 6= φ, we find paths for the constrained

reachability queries efficiently.

Given a source vertex, destination vertex, and a set of vertex constraints or

edge constraints for the directed graph, the problem of finding paths for con-

strained reachability queries is to find the path between the given source vertex

and destination vertex satisfying the given constraints.

It includes finding paths for MCR queries for attributed graphs and bounded

LCR queries in case of weighted directed graphs. Besides, we identify techniques

to handle the same queries and similar queries. We also address the usage of

QPL and updating the paths and frequent subpaths in the log to handle such

constraint reachability queries.

By analyzing the constraint reachability queries, we answer the following ques-

tions:

• Which techniques are used to compute reachable paths for constraint reach-

ability queries based on constraints?

• How can we extract frequent subpaths from resultant paths?

• How can we update QPL?

• How can we handle new queries, same queries and similar queries?

For instance, let us consider a new MCR query q1(‘a’, ‘j’, ‘I:H’, ‘xml’), for

the attributed graph of Figure 6.1. The resultant MCR path for the query q1 is

{‘a’, ‘c’, ‘j’}. Now let us consider the bounded LCR query q2(‘P1’, ‘P7’, ‘SH’,
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200) for the graph of the figure 6.3. The resultant bounded LCR path is {‘P1’,

‘P6’, ‘P7’}. Consider bounded LCR query q3(‘P1’, ‘P6’, ‘SH’, 200). Since q3 is

a similar query to that of q1, the resultant stored path is {‘P1’, ‘P6’}. Let us

consider another bounded LCR query q4(‘P1’, ‘P7’, ‘SH’, 200). Since q4 is the

same query as that of q2, the resultant stored path is {‘P1’, ‘P6’, ‘P7’}.

6.2.2 Definitions

Label-Constraint Reachability: Given two vertices, ‘vs’ and ‘vd’ in the edge

labeled directed graph G, and a label set A, where ‘vs’, ‘vd’ ∈ V and A ⊆ Tl, if

there is a path p from vertex ‘vs’ to ‘vd’ whose path label L(p) is a subset of A,

i.e., L(p) ⊆ A, then we say ‘vs’ can reach ‘vd’ with label-constraint A. We also

refer to path p as an A-path from ‘vs’ to ‘vd’.[45]

LCR Query: Given two vertices ‘vs ’ and ‘vd ’, and a label set A, the label-

constraint reachability (LCR) query asks if there exists an A-path from ‘vs ’ to

‘vd ’.[45]

Path: “Given a graph G(V, E), a path p of length k from a vertex u to u′ is a

sequence (v0, v1, . . . , vk) of vertices such that vi ∈V, v0 = u and vk = u′ and

Figure (6.1) An instance of attributed graph for a toy email network
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(vi−1, vi) ∈ E for i = 1, 2, . . . , k.”[41]

Subpath: “A path Q in G is said to be a subpath of P if Q = (w0, w1, . . .,

wk′), where (w0, w1, . . . ,wk′) is a contiguous sub-sequence of path P(v0, v1, .

. . , vk), i.e., if, for some i such that 0 ≤ i ≤ i+k′ ≤ k, we have w0 = vi, w1 =

vi+1, . . . , wk′= vi+k′.”[41]

Bounded Label Constrained Reachable Paths: Given two vertices ‘vs’ and

‘vd’, the label set A⊆ Tl and bound for the path-weight δ ∈ R+ in an edge-labeled

weighted directed graph G’, if there is an A-path lpi from ‘vs’ to ‘vd’ such that

the path weight C(lpi) ≤ δ, then we say ‘vs’ can reach ‘vd’ with label-constraint

A and the path weight bound δ. In other words, it can also be referred as follows:

Given two vertices ‘vs’ and ‘vd’, a label set A and bound δ, the bounded label

constrained reachable paths are the A-paths lpi, between ‘vs’ and ‘vd’ that satisfy

the bounded path weight constraint C(lpi) ≤ δ.

We referred and termed the Bounded Label Constrained Reachable Paths as

BLCRP.

Multidimensional Constraint Reachability: Given an attributed graph G,

a source vertex s, a destination vertex t, vertex constraint CVa, and edge con-

straint CEa, the multidimensional constraint reachability query on attributed

graph verifies whether s can reach t under vertex and edge constraint CVa, CEa

[88].

6.3 Proposed Query Processing Framework

In this section, we propose a novel query processing framework to find paths for

constraint reachability queries. The siginificant contributions are as follows:

• We extract the paths information for bounded LCR queries based on our

proposed query processing with landmark-based path indexing.
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• We extract the paths information for MCR queries using the proposed hash-

ing based heuristic search technique.

• We update these queries and paths information in our proposed Query Path

Log (QPL). We use this QPL to particularly handle the same queries and

similar queries. We propose a novel technique to extract frequent subpaths

from the QPL and update the log with the frequent subpaths information.

6.3.1 Query Path Log (QPL)

We construct QPL from new constraint reachability queries by storing the source

vertex, destination vertex, constraints, and resultant paths. For each new query,

we update the log by appending query information and resultant paths. The

QPL is retrieved when the new queries, same queries and similar queries appear.

QPL decides the type of query and subsequently identifies the respective modules

for further processing to obtain the resultant path. We update the log with new

queries/similar queries and the resultant paths. We extract frequent subpaths

from the log after reaching a certain number of paths to solve similar queries. We

maintain separate log files for BLCRP queries and MCR queries.

6.3.1.1 Query description

New Queries We identify a query as New query (N ), if the query is not found

in the QPL. Based on the type of constraints, the new query is executed as shown

in query processing framework of figure 6.2 to extract the resultant paths.

If the constraints are edge label and bound on path weights, we compute the

resultant constraint reachable paths using implicit landmark path indexing and

query processing [15] explained in Chapter 3. If the constraints are on vertex

attribute and edge attribute values, then the proposed hashing based heuristic

search technique explained in Chapter 4 is invoked. For instance, consider a new

bounded LCR query q1 (‘P1’, ‘P4’, ‘T’, 110). We invoke our proposed BLCRP

technique and retrieve the resultant path of {‘P1’, ‘P2’, ‘P3’, ‘P4’}. This query

and path information is added to the QPL.
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6.3 Proposed Query Processing Framework

Same Queries The same queries constitute the queries which are previously

executed using proposed techniques. Thus, the query information such as given

source vertex, destination vertex and constraints should match with at least one

of the query information from the records of QPL.

If the queries are same (S ), the results are directly extracted from the QPL

as shown in figure 6.2 without executing the respective modules leading to faster

query processing. For instance, let us consider a bounded LCR query q2 (‘P1’,

‘P4’, ‘T’, 110). Since q2 is same query as that of q1, the resultant path is retrieved

from QPL (Table 6.1) is {‘P1’, ‘P2’, ‘P3’, ‘P4’}.

Similar Queries We identify the similar (SI ) queries as those queries whose

source vertex or destination vertex are same, but constraints may differ. The

constraints can be members or subset of the constraints present in QPL. We

also consider similar queries whose source vertex and destination vertex can be

different but constraints are same.

We solve similar queries by extracting query and path information from fre-

quent subpaths of the QPL as shown in figure 6.2. For instance, let us consider

a bounded LCR query q3 (‘P3’, ‘P4’, ‘T’, 110). We observe that in QPL file, q3

is similiar query to queries with ids QT1 and QT3 (Table 6.1) as q3 has same

destination vertex as that of QT1 and QT3. Thus, the resultant path extracted

for solving q3 is {‘P3’, ‘P4’}.

True Queries The true queries are the queries that return atleast one path.

For instance, these queries are denoted with query id QT1, QT2,... in QPL file

as shown in Table 6.1. For example, the query q1 (‘P1’, ‘P4’, ‘T’, 110) is a true

query with query id QT1 (Table 6.1) and resultant path {‘P1’, ‘P2’, ‘P3’, ‘P4’} .

False Queries The false queries are the queries that have no paths. For in-

stance, these queries are denoted with query id QF1, QF2,... in QPL as shown in

Table 6.1. For example, the query q4 (‘P9’, ‘P6’, ‘H’, 150) is a false query with

result “No path” as there doesn’t exist any path between ‘P9’ and ‘P6’ satisfying

the given constraints. This query is denoted as QF1 in QPL as shown in the

Table 6.1.
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6.3.1.2 Path index construction

We initialize the log file by inserting the query information and results whenever

we invoke a new query. The query information includes source vertex, destina-

tion vertex, and constraints. The constraints can be vertex constraints or edge

constraints, or both. For instance, Table 6.1 shows the QPL file for the constraint

reachability queries of graph of Figure 6.1.

Table (6.1) Query Path Log

Query ID Source Destination Constrainte Path
QT1 ‘P1’ ‘P4’ T,110 {‘P1’, ‘P2’, ‘P3’, ‘P4’}
QF1 ‘P9’ ‘P6’ H,150 “No Path”
QT2 ‘P9’ ‘P4’ SH, 250 {‘P9’, ‘P5’, ‘P4’ }
QT3 ‘P2’ ‘P4’ T,100 {‘P2’, ‘P3’, ‘P4’}
QT4 ‘P2’ ‘P10’ NHT,210 {‘P2’, ‘P5’, ‘P6’, ‘P10’}
QT5 ‘P1’ ‘P10’ NHT,300 {‘P1’, ‘P5’, ‘P6’, ‘P10’}
QF2 ‘P3’ ‘P6’ NH,100 “No Path”
... .. .. .. ...

6.3.1.3 Path index updation

Whenever a new query or similar query is executed, the QPL is updated as

follows:

• When a new query is encountered, based on type of constraints, either

BLCRP query or MCR query is identified. Then, module 1 of Chapter 3 or

module 2 of Chapter 4 is invoked that consists of our proposed techniques

to solve the query. Then, the resultant path information is updated along

with query information in QPL.

• When a similar query is encountered, the frequent subpath information can

be used to solve the similar query. If the similar query information does

not match the extracted frequent subpaths, then that query is considered

as new query.
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Frequent Subpaths Extraction Once the log is updated with previous queries

and their corresponding paths, the frequent subpaths are extracted from paths of

QPL by using our proposed techniques described in chapter 5. The constraints

of these subpaths are extracted and preserved to compare with the queries.

To extract constraints for the frequent subpaths of MCR queries, the con-

straints of corresponding paths in QPL are directly considered. This is because

the constraints of every subpath of the path in QPL remains same as the con-

straints of the corresponding path. But, for bounded LCR paths, the constraints

of the resultant frequent subpaths are to be verified before preserving, as the

constraints on edge labels for the corresponding paths are the subset of the given

set of edge labels. Hence, we extracted the constraints of subpaths for bounded

LCR paths from the given graph instead of QPL file.

For instance, we observe that, in Table 6.1, the frequent subpaths extracted

using our proposed technique are { (‘P3’, ‘P4’), (‘P5’, ‘P6’, ‘P10’) }. The resultant

constraints for the frequent subpaths extracted from the graph of figure 6.3 are

{‘T’, 100} and {‘HS’, 150 } respectively.

6.3.2 Integrated framework

We integrate our contributions by combining four modules and developing novel

query processing framework as shown in Figure 6.2. Given source vertex ‘s ’, des-

tination vertex ‘t ’ and constraints as a query, the resultant path from ‘s’ to ‘t’

satisfying the constraints is found using the following modules:

Module 1: In this module, we compute the Bounded Label Constrained Reach-

able Paths (BLCRP) using our proposed technique. It involves the new bounded

label constrained reachability query (N ) execution. It is solved using the pro-

posed implicit landmark path indexing and query processing technique (described

in chapter 3). For instance, let us consider a new BLCRP query q1 (‘P1’, ‘P4’,

‘T’, 110) for the graph of figure 6.3. The resultant path retrieved using this mod-

ule is {‘P1’, ‘P2’, ‘P3’, ‘P4’}.
Module 2: In this module, we compute paths for Multidimensional Constraint

Reachability (MCR) queries. When new multidimensional constraint reachability

query (N ) is to be executed, we use our proposed hashing based heuristic search
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technique (described in chapter 4). For instance, let us consider a new MCR

query q7 (‘a’, ‘j’, ‘I:H’, ‘xml’) for the graph shown in figure 6.1. The resultant

path retrieved using this module is {‘a’, ‘c’, ‘j’}.
Module 3: In this module, we can extract the paths for similar queries (SI )

from the partial information of paths in the QPL. The partial information ex-

traction involves computing frequent subpaths from the paths in the log. The

frequent subpaths can be found based on our proposed static technique with lin-

ear strategy (described in chapter 5). For example, from the paths in Table 6.1,

the frequent subpaths extracted using our proposed technique are {(‘P3’, ‘P4’),

(‘P5’, ‘P6’, ‘P10’)}.
Module 4: The structure of QPL is shown in Table 6.1. Each record of QPL

constitutes the query and its resultant path information. In this module, we ex-

tract the paths for same queries (S ) from the QPL. QPL also stores the Updated

New Queries Results (UNQR) and Updated Similar Queries Results (USIQR)

from the respective modules.

6.3.2.1 Types of queries

We demonstrate the types of constrained reachability queries through the follow-

ing cases:

Case 1: The bounded LCR query for which at least one path exists. For in-

stance, let us consider LCR query q1(‘P1’, ‘P4’, ‘T’, 100) for the graph of the

Figure 6.3. The resultant bounded LCR path is {‘P1’, ‘P2, ‘P3’, ‘P4’}.
Case 2: The bounded LCR query for which there doesn’t exist any path satisfy-

ing the given label-set constraint. For instance, let us consider the query q2(‘P2’,

‘P10’, ‘HT’, 170). The result for q2 is no path exists between ‘P2’ and ‘P10’.

Case 3: The same bounded LCR query, for which at least one path exists. For

instance, let us consider bounded LCR query q3(‘P1’, ‘P4’, ‘T’, 100) for the graph

of the Figure 6.3. q3 is same query as that of q1 and thus, its resultant LCR

path is {‘P1’, ‘P2’, ‘P3’, ‘P4’}.

Case 4: The multidimensional constraint reachability query with vertex con-

straints or edge constraints or both for which at least one path exists. Let us
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consider a new constraint reachability query q4(‘a’, ‘j’, ‘I:H’, ‘xml’), for the graph

of Figure 6.1. For the given query q4, the source vertex ‘a’ can reach the desti-

nation vertex ‘j’ via vertex ‘c’ while satisfying the given vertex constraints ‘I:H’

and the edge constraint ‘xml’ along the path. The resultant constraint reachable

path is {‘a’, ‘c’, ‘j’}.
Case 5: There can exist a multidimensional constraint reachability query for

which there does not exist any path in the entire graph even without satisfying

the given label set constraint. For instance, let us consider MCR query q5(‘k’,

‘e’, ‘I:L’, ‘xml’). The result for q5 is no path exists between ‘k’ and ‘e’.

Case 6: The same multidimensional constraint reachability query for which at

least one path exists. For example, let us consider the constraint reachability

query q6(‘a’, ‘j’, ‘I:H’, ‘xml’). q6 is same query as that of q4 and thus, its resul-

tant path is {‘a’, ‘c’, ‘j’}.
Case 7: There can exist a reachability query for which there exists a path p

whose edge labels along the path are not the subset of the given label set. For

instance, let us consider bounded LCR query q7(‘P2’, ‘P10’, ‘NT’, 150). There

exists a path {‘P2’, ‘P5’, ‘P6’, ‘P10’} with the path label ‘NHT’ which is not

subset of the given edge-label constraint ‘NT’.

We work on finding paths for the reachability queries with constraints for the

cases 1-5. Cases 1-3 are queries related to bounded label constrained reachable

Figure (6.3) Road network
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paths. Cases 4-6 are queries related to multidimensional constraint reachable

paths. Case 7 is a why-not reachability query which is beyond the scope of the

thesis and can be considered for future research directions. Currently, Case 7

type of queries are considered as new queries in our proposed framework.

6.3.3 Flow and functionality of modules

Algorithm QPModules (Query Processing Modules) describes the flow of frame-

work and functionality of modules. For each constrained reachability query qi of

the given graph G, the resultant path information rpi is retrieved. First, the QPL

of module 4 is invoked for verifying the query qi in which the given source and

destination vertices and constraints are checked for matching. If match exists,

the resultant path information is retrieved.

Algorithm 14: QPModules

Input : Constrained Reachability Queries Q={q1, q2, ...qi}, graph G, minsup
= minimum support threshold

Output: Path Information rpi

// QPL storing query information and its path information

for each query qi of graph G do
if query qi ∈ QPL then

return rpi from QPL of Module 4

else
if isSimilarQuery(qi) then

return rpi from FS with the given minsup of Module 3
Update QPL with qi and rpi in Module 4

else
if isBLCRPQuery(qi) then

return rpi from BLCRP technique of Module 1
Update QPL with qi and rpi in Module 4

if isMCRQuery(qi) then
return rpi from MCR technique of Module 2
Update QPL with qi and rpi in Module 4

If the match is not found in QPL, module 3 is invoked. In module 3, the

similar queries are solved by extracting frequent subpaths from paths of the QPL
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in which the given source and destination vertices and constraints are checked

for matching and resultant paths are retrieved. Here, the frequent subpaths are

extracted from paths using our proposed techniques described in Chapter 5.

If the query is a new query and bounded LCR query, then module 1 is invoked

in which the proposed implicit landmark path indexing and query processing

technique (described in Chapter 3) is executed. If the query is a new query

and multidimensional constraint reachability query, then module 2 is invoked in

which proposed hashing based heuristic search technique (described in Chapter

4) is executed. After the query is processed, module 4 updates the new query

information or similar query information and their respective resultant paths in

the QPL as shown in figure 6.2.

6.4 Experimental Evaluation

During experimental evaluation of our proposed framework, murmur hash func-

tion [2] is used for hashing. We constructed the supergraph by using the existing

ANCA clustering [37]. We assumed the number of super vertices to 15 and con-

structed the supergraph for all the datasets. While constructing landmark path

index, we considered k=dsqrt(n)e and b=20 based on the parameter values set

in [79] for the proposed approach.

6.4.1 Datasets description

Table 6.2 summarizes the real and synthetic datasets used for experiments. We

generated synthetic graphs from SNAP [53]. We assigned randomly vertex at-

tribute values for the vertices and edge attribute values for the edges. Table 6.3

states the synthetic vertex attributes that are assigned randomly to the datasets.

6.4.1.1 Robots

Robots is a real trust network [1] with edge labels that denote the level of trust

interaction between the users. We pre-process the dataset by assigning unique
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Table (6.2) Datasets Overview

Real Graph |V| |E|
Robots [1] 1724 3596

Synthetic Graph |V| |E|
Erdos-Renyi [53] 1000 2000

identifier to the vertices, thus, resulting in 1724 vertices and 3596 edges. Each

vertex has synthetic attributes whose values are randomly assigned (Table 6.3).

Each edge has Trustlevel as the real attribute whose value is derived from the

data set. The trust level can be Master (M), Apprentice (A), Journeyer (J) or

Observer (O).

6.4.1.2 Erdos-Renyi Graph

Erdos-Renyi (E-R) graphs are the synthetic graphs that follow power law dis-

tribution [13]. These graphs have their degree near uniformly distributed. We

generate E-R graph using SNAP [53] with number of vertices set to 1000 and

maximum degree for each vertex set to 2. Besides, we assign two attributes (as

described in Table 6.3) for each vertex with randomly assigned values within the

domain. For BLCRP queries, we randomly assigned edge weights in the range

[10, 120]. In addition, we assigned one of 8 unique edge labels for every edge.

Table (6.3) Vertex attributes and edge attributes

Vertex Attribute Domain Size, Distribution
Country 5, uniform
Region 3, uniform

6.4.2 Query generation

We generated true BLCRP queries through BFS based query generation process

[79] with same queries for the datasets. Besides, we also generated true MCR

queries based on constrained BFS for both the real and synthetic datasets.
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6.4.3 Experiments and result analysis

We performed extensive experiments to evaluate our proposed query processing

framework on real and synthetic datasets. We compared the average execution

time of our proposed techniques with and without QPL for BLCRP queries and

MCR queries. Besides, we extracted frequent subpaths and updated it in the

QPL.

We use our proposed Implicit Path LandMark indexing and query processing

technique (IPLM ) [15] described in Chapter 3 to solve BLCRP queries. We

denote IPLM QPL as the proposed technique that uses landmark path indexing

and query processing for new queries and the resultant paths are stored in the

QPL. If the query is same query, the resultant paths are retrieved from QPL. We

denote IPLM QPLFS as our proposed technique, in which we extract frequent

subpaths and update with their constraints information into QPL. We extracted

the frequent subpaths from the resultant paths by using our proposed static single

window technique with linear strategy [16]. If the query is same query or similar

query, we can invoke QPL with frequent subpaths to extract the resultant paths.

Similarly, for MCR queries, we evaluate the query processing framework by

finding average execution time using our proposed Extended Heuristic search

technique with Matrix Factorization technique (EHMF ) described in Chapter 4.

We denote EHMF QPL to denote the usage of proposed technique and QPL for

new queries and same queries. We denote EHMF QPLFS to denote the updation

of QPL with frequent subpaths information.

Table (6.4) Average query execution time in milliseconds(ms) of proposed tech-
niques on BLCRP queries for Robots dataset

Technique Average Execution Time(ms)
IPLM 0.095

IPLM QPL 0.00775
IPLM QPLFS 0.085
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6.4.3.1 Experiment # 1: Testing on the real and synthetic datasets

with fixed number of queries

We generated 100 BLCRP true queries and 100 MCR true queries randomly for

the real and synthetic datasets with atleast 20% of same queries. Table 6.4 shows

the average execution time for BLCRP queries of Robots dataset. From the

table, we observe that our proposed technique with QPL, i.e., IPLM QPL has

lesser execution time than the IPLM technique.

Table (6.5) Average query execution time of proposed techniques on BLCRP
queries for E-R graphs

Technique Average Execution Time(ms)
IPLM 0.005

IPLM QPL 0.000211
IPLM QPLFS 0.00023

Table 6.7 shows the average query execution time of MCR queries with only

vertex constraints for Robots dataset. We observe that our proposed technique

with QPL and frequent subpaths, i.e. EHMF QPLFS has faster execution time

than the EHMF technique. Furthermore, our proposed technique with only QPL,

i.e. EHMF QPL has relatively lesser average execution time than EHMF, reveal-

ing the usefulness of QPL. Table 6.5 and Table 6.6 show the average query exe-

cution time of BLCRP queries and MCR queries respectively for E-R graphs.

For MCR queries, we observe that EHMF QPLFS has lesser execution time

than only EHMF and EHMF QPL. Besides, for BLCRP queries, IPLM QPL and

IPLM QPLFS executed faster than only IPLM technique. These results reveal

the usefulness of our proposed query processing framework.

Table (6.6) Average query execution time of proposed techniques on MCR
queries for E-R graphs

Technique Average Execution Time(ms)
EHMF 14.322

EHMF QPL 3.681
EHMF QPLFS 0.148
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Figure (6.4) Average execution time with varying number of BLCRP queries
for E-R graphs

Table (6.7) Average query execution time of proposed techniques on MCR
queries for Robots dataset

Technique Average Query Execution Time (ms)
EHMF 359.39

EHMF QPL 206.04
EHMF QPLFS 0.29025

6.4.3.2 Experiment # 2: Varying number of queries

In this experiment, we generated true BLCRP queries varying from 100 to 500

for E-R graphs and computed average query execution time of our proposed

techniques. Figure 6.4 shows the average query execution time with varying

number of queries. We observe by using our proposed technique with QPL, the

average query execution time is lesser thus revealing the efficiency of our proposed

query processing framework.
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6.5 Conclusions

We proposed a novel query processing framework to find paths for constrained

reachability queries. We proposed an efficient QPL based technique to solve

the same queries or similar queries efficiently. We identified the use of extracting

frequent subpaths for handling similar queries. Using our proposed query process-

ing framework, we integrated our contributions to get the resultant constrained

reachable paths. We evaluated the integration of modules of our proposed query

processing framework on real and synthetic datasets. We observed that by using

our proposed technique with QPL, the average query execution time is lesser thus

revealing the efficiency of our proposed query processing framework.
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Chapter 7

Conclusions and Future Scope

7.1 Conclusion

In this thesis, we focused on finding paths for constrained reachability queries

through efficient techniques. The constraints include membership based edge-

label constraints, bound on path weight and multidimensional vertex constraints

and edge constraints.

In Chapter 3 of the thesis, we introduced a novel problem of finding bounded

paths for label constrained reachable paths. Given source vertex, destination

vertex, edge label constraint and bound on path weight, the bounded label con-

strained reachable query finds the path between the vertices satisfying the con-

straints. We proposed an efficient landmark path indexing and query processing

technique to solve the bounded label constrained reachable paths in edge labeled

weighted directed graphs. In our proposed indexing technique, we identified dif-

ferent combinations of path labels and path weights for which minimality of label

sets and Dijkstra’s relaxation property need to be considered. We evaluated our

proposed technique on real and synthetic graphs. We also evaluated the accuracy

of our proposed techniques using measures such as precision, recall and performed

statistical analysis.

We investigated the problem of finding the existence of paths for MCR queries

in Chapter 4 of the thesis. We observed that indexing multiple vertex attribute

combinations or edge attribute combinations can be efficiently performed through

hashing. We observed and identified that matrix factorization based clustering
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that considers both graph topology and attributes is an efficient clustering tech-

nique that can be used to solve multidimensional constrained reachability queries.

We proposed an extended heuristic search by using the clustering and evaluated

our proposed techniques on real and synthetic benchmark datasets.

We also discussed the problem of finding frequent subgraphs from graph

streams in Chapter 5 of the thesis. We observed that the state-of-the-art tech-

niques in the literature do not consider historical information which may lead to

loss of significant frequent subgraphs. We proposed static single window technique

and also applied actual threshold to retrieve the frequent subgraphs. Besides, we

proposed dynamic window filtering techniques with relative support to incremen-

tally find frequent edges and thus frequent subgraphs. One of the significant

contribution of the thesis is that we related our proposed static and dynamic

window filtering techniques to find frequent subpaths from the sequence of paths.

In chapter 6 of the thesis, we proposed a novel query processing framework

integrating our contributions to find paths for constrained reachability queries.

In the proposed framework, we solved new queries by applying our proposed tech-

niques. The query information and resultant paths are stored in QPL. Besides,

frequent subpaths are also extracted using our proposed techniques and updated

in the log. We handled same queries and similar queries using the log to retrieve

relevant constrained reachable paths. QPL plays an important role by handling

all types of queries efficiently and triggering the respective modules of framework.

We evaluated the efficiency of our proposed query processing framework on real

and synthetic datasets.

7.2 Future Scope

In future, we can optimize the proposed technique for finding bounded constrained

reachable paths by using path compression techniques to compress the intermedi-

ate paths. We can investigate further to find an efficient maintenance algorithm

for adding and removing edges during landmark path indexing. The impact of

such edges during the indexing can measured and evaluated in case of dynamic

graphs [67]. The index construction time is still relatively high for the large
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datasets. It can be reduced further only with trade-off in terms of memory or

speed-up.

We can extend our research by applying our proposed techniques to find paths

for all LCR queries in edge-labeled directed graphs. We can also extend our

research to find the distance between the vertices satisfying the given edge label

constraints. Besides, we can do finer analysis of the impact of graph topology on

the performance of queries. We can investigate the implementation of landmark

path indexing in multi-core or distributed environments [43]. Further, we can

apply the landmark path index to practical query languages like OpenCypher

queries and validate its use.

In addition, we can extend our work on MCR queries by finding an efficient

index or computing extra hash values for membership based constraint reacha-

bility queries or reachability queries with set attribute constraints. We can also

extend our research by constructing hash-based index for dynamic graphs.

Moreover, we can perform extensive study to perform attributed clustering

for dynamic graphs. We can further optimize the super graph construction by

constructing directed acyclic graph from the super graph and analyze its impact

on solving multidimensional constrained reachability queries. We can also use

our proposed technique to solve constrained reachability queries for single source

vertex and multiple destination vertices. We can further perform research to

identify techniques to find reachability between the given vertices with constraints

specified on only some of the vertex attributes or edge attributes which is beyond

the scope of the thesis.

In this thesis, we assumed that the vertex and edge attribute values are inde-

pendent of each other and are discrete. In future, we can investigate the functional

dependencies between attributes and their impact during clustering. Besides, we

can extend our research to validate attribute values, to update the attribute val-

ues and remove outdated attributes while solving multidimensional constrained

reachability queries.

We can further extend our proposed techniques to find frequent subgraphs

by applying distributed techniques to partition the large dataset. We can then

apply the proposed techniques to each partition and then group the resultant

frequent subgraphs of each partition to get the final frequent subgraphs. We
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can also extend by extracting frequent subgraphs from graph streams arriving

from different sources. We observed from the experiments that we can compute

the actual minimum support for the relative support of our proposed dynamic

sliding window filtering technique which is part of our future work. In addition,

we can extend by computing the actual minimum support to extract the frequent

sub patterns based on the user minimum support using fuzzy membership based

approach and analyse its efficiency. Besides, we can use our proposed techniques

that extract frequent subpaths from the sequence of paths to compress the stored

paths while indexing paths.

We can further optimize the proposed query processing framework by finding

the partial information from stored paths and applying algebra to constraints

of similar queries. Thus, we can identify and analyse the special cases for solv-

ing similar constrained reachability queries. Besides, we can investigate on the

efficient storage and retrieval of query logs with queries and resultant paths. Fur-

thermore, we can extend our proposed QPL and framework to find constrained

reachable paths for undirected graphs. We can extend our proposed framework

to identify the techniques that consider other real-time constraints like bound on

edge weights. We can also apply the proposed framework on specific scenarios like

social networks and transportation networks. Our proposed techniques cannot

be applied on hierarchical graphs or layered graphs where each layer has unique

labels. The study and implementation of constrained reachability techniques on

such graphs is beyond the scope of the thesis.
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