Identification and expression analysis of *sox* family genes in common carp: *sox30* and *sox19* regulate gonadal function

A thesis submitted to University of Hyderabad for the award of the degree Doctor of Philosophy

> In Animal Biology

Supervisor:

Prof. B. Senthilkumaran

By:

Anitha Arumugam

Department of Animal Biology
School of Life Sciences
University of Hyderabad
P.O. Central University
Hyderabad 500 046, Telangana, India

December, 2020 Regd. No.: 15LAPH08

University of Hyderabad

(A Central University by an Act of Parliament)

Department of Animal Biology School of Life Sciences P.O. Central University, Gachibowli, Hyderabad-500046

CERTIFICATE

This is to certify that the thesis entitled "Identification and expression analysis of sox family genes in common carp: sox30 and sox19 regulate gonadal function" submitted by Ms. Anitha Arumugam bearing registration number 15LAPH08 in partial fulfillment of the requirements for award of Doctor of Philosophy in the School of Life Sciences is a bona fide work carried out by his under my supervision and guidance.

This thesis is free from plagiarism and has not been submitted previously in part or in full to this or any other University or Institution for award of any degree or diploma.

Parts of this thesis have been:

Published in the following publications:

- 1. **Anitha, A.**, Senthilkumaran, B., 2020. Role of *sox30* in regulating testicular steroidogenesis of common carp. Journal of Steroid Biochemistry and Molecular Biology. 204, 105769 (ISSN: 0960-0760, Elsevier) (Part of thesis: Chapter 1)
- 2. **Anitha, A.**, Gupta, Y.R., Deepa, S., Ningappa, M., Rajanna, K.B., Senthilkumaran, B., 2019. Gonadal transcriptome analysis of the common carp, *Cyprinus carpio*: Identification of differentially expressed genes and SSRs. General and Comparative Endocrinology. 279, 67–77 (ISSN: 0016-6480, Elsevier) (Part of thesis: Chapter 2)

Presented in the following conferences:

- 1. International Conference on Comparative Endocrinology and Physiology (ICCEP-2019), "Identification and expression analysis of sox family genes: relevance to gonadal development in *Cyprinus carpio*": Oral presentation, 7-9th January, 2019, Nagpur, Maharashtra, India (International)
- 2. **6**th **International Conference on Molecular Signalling** (ICMS-2018), "Analysis of Testes and Ovary Transcriptome of *Cyprinus carpio*: Assembly, Annotation and differential gene expression" **Poster presentation**, 8-10th February, 2018, University of Hyderabad, Hyderabad, India (**International**)

3. International Symposium on Recent Advances in Comparative Endocrinology (ISRACE-2017), "Comparative transcriptome analysis of testes and ovaries for the discovery of novel genes from common carp (Cyprinus carpio)": Oral presentation, 30th November-1st December, 2017, Madras Christian College, Chennai India (International)

Further, the student has passed the following courses towards the fulfillment of course work required for the award of Ph.D.

Course	Name	Credits	Pass/Fail
Code			· · ·
AS 801	Analytical Techniques	4	Pass
AS 802	Research Ethics, Data Analysis and Biostatistics	3	Pass
AS 803	Lab Work and Seminar	5	Pass

B. Sent hollman 23.12.2020

Supervisor

Prof. B. Senthilkumaran, FNA, FASc, FNASc Department of Animal Biology School of Life Sciences University of Hyderabad Hyderabad-500046. TS. INDIA

Anila Jagolo 23/12/2020 Head of the Department

> अध्यक्ष / HEAD जंतू जैविकी विभाग Department of Animal Biology

DEAN School of Life Sciences University of Hyderabad Hyderabad - 500 046.

University of Hyderabad

(A Central University by an Act of Parliament)
Department of Animal Biology
School of Life Sciences
P.O. Central University, Gachibowli, Hyderabad-500046

DECLARATION

I, Anitha Arumugam hereby declare that this thesis entitled "Identification and expression analysis of sox family genes in common carp: sox30 and sox19 regulate gonadal function" submitted by me under the guidance and supervision of Prof. B. Senthilkumaran is an original and independent research work. I also declare that it has not been submitted previously in part or in full to this university or any other University or Institute for the award of any degree or diploma.

Date: 23-12-2020

Name: Anitha Arumugam

Signature of the Student

A. Anitha

Regd. No.: 15LAPH08

ACKNOWLEDGEMENTS

- * I would like to express my heartfelt gratitude to my beloved supervisor Prof. B Senthilkumaran for his overall guidance and suggestions throughout the period of my work. His constant motivation and encouragement helped me to improve in all aspects of my research. I feel privileged and joyful that his trust on me has come up with a good result.
- ❖ I would like to thank my Doctoral Committee members, 'Late' Prof. Aparna Dutta-Gupta, Prof. Sreenivasulu Kurukuti and Dr. Y Suresh for their insightful comments and encouragement to widen my research from various perspectives.
- My special thanks to 'Late' Prof. Aparna Dutta-Gupta for her kind help and valuable suggestions.
- ❖ I am very much grateful to Dr. CC Sudhakumari for all her affection and support at both professional and personal front.
- ❖ I sincerely thank Dr. V Sukumaran for being instrumental and introducing me to Prof. B. Senthilkumaran.
- ❖ I thank the present Dean, Prof. S Dayananda and former Deans Prof. KVA Ramaiah, Prof. P Reddanna and Prof. RP Sharma for the best school facilities.
- * My sincere thanks to the present Head, Prof. Anita Jagota and former Heads Prof. Jagan Pongubala and Prof. B. Senthilkumaran, Department of Animal Biology, for providing good equipment facilities in the department.
- ❖ I would like to thank all the faculty members of School of Life Sciences who gave access to the laboratory and research facilities.
- I thank all my present and former colleagues, Dr. A Rajakumar, Dr. SK Mamta, Dr. Y Prathibha, Dr. Murugananthkumar, Dr. C Laldinsangi, Dr. Yugantak Raj Gupta, Dr. S Deepa, Dr. S Durai, Dr. J Varshini, Dr.

- S Anshu, Mrs. T Swathi, Ms. Sonika Kar, Ms. Akanksha Pranoty, Mr. S Prabhakar and Mrs. N Anusha for their all their personal and professional help and making memorable moments in the laboratory.
- ❖ My heartful thanks to Ms. Anurupa Devi Yadavalli for her help with bioinformatics.
- My sincere thanks to Dr. Vinod Kumar Chauhan and Mr. Sandeep Dey for helping me in antibody generation.
- My special thanks to Mr. Shabbir Ahmad and Ms. Rutuparna Jena for their timely help.
- I thank Mrs. Leena Bashyam, Mrs. Monica Kannan, Mrs. Kalpana and Ms. Nalini for their help in Genomics, Proteomics and microscope facilities, respectively.
- My sincere thanks to Dr. Murali Dharan Bashyam, CDFD, Hyderabad for helping in radioactive experiments.
- This journey wouldn't have been possible without Dr. Naren Dhania, Dr. YNS Harshitha, Mrs. Annapoorni Lakshman Sagar, Mrs. Nandavaram Aparna, Mr. Anand Rao Ravula, Mr. Munipalli Suresh Babu and so many for their love, care and fun.
- ❖ I also would like to thank all the project students for their help in lab.
- * Thanks to all non-teaching staffs in the School, Department and Animal house for their help and all our lab attenders for the maintenance of aquaculture facility.
- ❖ I thank all the staffs in finance office and student service section for their help.
- * I would like to acknowledge all the teachers I learnt from since my childhood, I would not have been here without their guidance, blessing and support.
- ❖ I thank DBT (JRF & SRF) for giving me the financial assistance.

- ❖ I also thank SERB, DBT, DBT-MI, DBT-TATA, and CSIR for funding our laboratory (Grants given to Prof. BS) and WOS-(A) given to Dr. CCS and Dr. SKM.
- ❖ DST-FIST (Level II, Phase I), DST-PURSE, DBT-CREBB, UGC-SAP/CAS, UPE and University of Hyderabad funding to the Department and the School are also acknowledged.
- ❖ My heartful thanks to my lovable husband Mr. Karthik Arumugam for his encouragement, motivation and support throughout my research.
- ❖ I specially thank my parents, my grandparents, my mother-in-law and my father-in-law for their love and constant support.
- ❖ Special mention of my lovely kids Nirmalan Karthik and Niralya Karthik who have been always cheerful and inspiring me with their innocent and beautiful smile.

4 Anitha Arumugam

Table of contents

Abbreviations	xi
General Introduction	1
Chapter 1	
Identification of differentially expressed genes in go carp by RNA sequencing-based transcriptome profiling of sox family genes	
Abstract	32
Introduction	33
Materials and methods	36
Results	40
Discussion	54
Conclusion	60
References	61
Chapter 2	
Significance of sox30 along with sox9a/b in testicula	r steroidogenesis
Abstract	75
Introduction	75
Materials and methods	77
Results	86

Discussion	98
Conclusion	103
References	104
Chapter 3	
Understanding the role of sox19 in ovarian function	
Abstract	113
Introduction	113
Materials and methods	115
Results	121
Discussion	131
Conclusion	135
References	136
Summary	148
Research Publications	
Conference certificates	
Antiplagiarism certificate	
Copyright permission / licenses	

Abbreviations

3RWGD — third round of whole genome duplication

11-KT – 11-ketotestosterone

-11β-hydroxytestosterone

 17α ,20β-DP -17α ,20β-dihydroxy-4-pregnen-3-one

aa – amino acid

ad4bp/sf-1 – adrenal 4 binding protein/steroidogenic factor-1

amh – anti-Mullerian hormone

amhr2 – anti-Mullerian hormone receptor type 2

amhy Y – chromosome-linked anti-Mullerian hormone

ar – androgen receptor

atm – Ataxia telanglectasia mutated

COG – clusters of orthologous groups

CPCSEA - Committee for the Purpose of Control and Supervision on

Experiments on Animals

creb – cAMP-responsive element binding protein

Ct – cycle threshold

ctnnbip1 – catenin beta interacting protein 1

cux1 – cut like homeobox 1

cux2a – cut like homeobox 2a

cxcl12 – C-X-C motif chemokine ligand 12

- C-X-C motif chemokine receptor 4

cvp11 – cytochrome P450, family 11

cyp11b1 – cytochrome P450, family 11, subfamily b, polypeptide 1

cyp17 - cytochrome P450 17-hydroxylase/lyase

cyp19a1 – cytochrome P450, family 19, subfamily a, polypeptide 1

- dosage-sensitive sex-reversal, adrenal hypoplasia critical region,

on chromosome X

- dosage-sensitive sex-reversal, adrenal hypoplasia critical region,

on chromosome X, gene 1

DDRT-PCR – Differential display reverse transcription-PCR

DEG – differentially expressed genes

DMEM – Dulbecco's modified Eagle's medium

- doublesex and mab-3 related transcription factor 1

DMY/dmY – DM-domain gene on the Y chromosome

dph – days post hatch

 E_2 – estradiol-17 β

eSRS21 – eel spermatogenesis related substances 21

egr2b – early growth response 2b

EIA – enzyme immunoassay

Er – estrogen receptor

fam101b – family with sequence similarity 101, member B

fam192a – family with sequence similarity 192, member A

fam210b – family with sequence similarity 210, member B

fbox43 – F-box only protein 43

fem1b – fem-1 homolog B

ff1b – Fushi tarazu factor 1b

ff1d – Fushi tarazu factor 1d

fgfr1a2 – fibroblast growth factor receptor 1-A-like

foxk2 – forkhead box k2

foxl2 – forkhead box L2

FSH – follicle stimulating hormone

fshr – follicle stimulating hormone receptor

fstl – follistatin

fstl3 – follistatin-like 3 (secreted glycoprotein)

fzd8 – frizzled class receptor 8

ftz-f1 – Fushi tarazu factor 1

gata4 – GATA binding protein 4

gata6 – GATA binding protein 6

GC – granulosa cells

gdf9 – growth differentiation factor 9

GEO – Gene Expression Omnibus

gnrh – gonadotropin releasing hormone

GO – gene ontology

gsdf – gonadal somatic cell-derived factor

GTH – Gonadotropin hormone

hCG – human chorionic gonadotropin

HEPES – 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid

HMG – high mobility group

HRP – horseradish peroxidase

hsd11b – hydroxysteroid 11-β dehydrogenase

hsd11b2 – hydroxysteroid 11- beta dehydrogenase 2

hsd17b – hydroxysteroid 17- β dehydrogenase

hsd17b2 – hydroxysteroid 17- beta dehydrogenase 2

hsd20b – hydroxysteroid 20- β dehydrogenase

hsd20b2 – hydroxysteroid 20- beta dehydrogenase 2

hsd3b – hydroxy- Δ-5-steroid dehydrogenase, 3β

hsd3b7 – hydroxy-delta-5-steroid dehydrogenase, 3 beta- and steroid delta-

isomerase 7

hsd11b1 – hydroxysteroid 11-beta dehydrogenase 1

IAEC – Institutional Animal Ethics Committee

IGF1 – insulin-like growth factor-1

igf1ra – insulin-like growth factor 1a receptor

IHC – immunohistochemistry

ipo4 – importin 4

KASS – KEGG automatic annotation server

KEGG – Kyoto encyclopedia of genes and genomes

kiss2 – kisspeptin2

KPO₄ – potassium phosphate buffer

KVAFSU – Karnataka Veterinary Animal and Fisheries Sciences University

L15 – Leibovitz-15

LH – luteinizing hormone

lhcgr – luteinizing hormone/choriogonadotropin receptor

lhr – luteinizing hormone receptor

mapk – mitogen-activated protein kinase

MDHT -17α -methyl-di-hydroxy-testosterone

mis – Mullerian inhibiting substance

MS222 – ethyl 3-aminobenzoate methanesulfonate

msl1b – male-specific lethal 1 homolog b

MT – 17αmethyltestosterone

NGS – next generation sequencing

NR5A1 – nuclear receptor subfamily 5 group A member 1

ORF – open reading frame

PBS – phosphate-buffered saline

pcna – proliferating cell nuclear antigen

pdgf – platelet-derived growth factor

PEI – polyethylenimine

PFA – paraformaldehyde

PGC – primordial germ cells

plzf – promyelocytic leukemia zinc finger

pou5f1 – POU class 5 homeobox 1

pou5f3/oct4 - POU domain, class 5, transcription factor 3/octamer-binding

transcription factor 4

PPA – protein phosphatase 2A

prlhr2a – prolactin releasing hormone receptor 2a

qPCR – quantitative PCR

RA – retinoic acid

RAR-RXR – retinoic acid receptor/retinoid x receptor heterodimers

RNA-Seq – RNA sequencing

rspo1 - R-spondin 1

RT – room temperature

- sexually dimorphic on the Y chromosome

siRNA – small interfering RNA

smad3b - SMAD family member 3b

sox - SRY-box

srd5a1 – steroid 5 α-reductase 1

SRY – sex-determining region Y

SSR – simple sequence repeat

Star – steriodogenic acute regulatory protein

sycp1 – synaptonemal complex protein 1

sycp3 – synaptonemal complex protein 3

T - testosterone

tac3a – tachykinin 3a

TC – theca cells

tcf3a – transcription factor 3a

TGF- β — transforming growth factor- β

TSGD – teleost-specific genome duplication

wnt – wingless-type MMTV integration site family

wt1 — Wilms' tumor suppressor 1

zarl – zygote arrest 1

zp2 – zona pellucida sperm-binding protein 2

General Introduction

Sex determination/differentiation in fish

Sex determination/differentiation and gonadal development are central processes in sexually reproducing living organisms. A bipotential gonad develops into a testis or an ovary, termed as sex determination is governed by genetic factors, the dose of gene, and time. Following which, hormones secrete and the gonad grows phenotypically different in both the sexes termed as sex differentiation (Hughes, 2001; Short, 1998). Teleost (bony fishes) exhibit various mechanisms of sex determination/differentiation, acquiring recognition in scientific research (Fig. 1). In fishes, sex determination could be polygenic or monogenic with determinants in autosomes or sex chromosomes (Devlin and Nagahama, 2002). In fishes, DMY was the first identified sex determining gene (Matsuda et al., 2002) in the Japanese medaka, Oryzias latipes also named as dmrt1Y (Nanda et al., 2002). Subsequently, a series of sex determination/differentiation and gonadal development related genes have been reported in different fishes like sdY in rainbow trout (Oncorhynchus mykiss), amhy in pejerrey (Odontesthes hatcheri), dmrt1 in the African catfish (Clarias gariepinus), amhr2 in fugu (Takifugu rubripes), and gsdf in (O. luzonensis) medaka (Chen et al., 2014; Hattori et al., 2012; Kamiya et al., 2012; Myosho et al., 2012; Raghuveer and Senthilkumaran, 2009; Yano al., 2012). Teleost reproduction involves unisexuality/hermaphroditism/gonochorism modes of sex differentiation (Dipper and Pullin, 1979; Schartl et al., 1995; Warner, 1984). The direct development of testis or ovary from an undifferentiated gonad is termed gonochorism (Sadovy and Shapiro, 1987). Hermaphroditism comprises of synchronic (both gonads are simultaneously active) and sequential, which is subdivided into protogynic (female to male sex change) and protandric (male to female sex change).

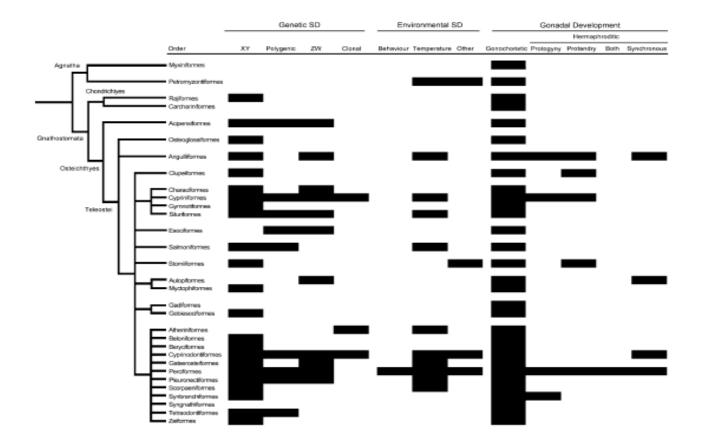


Fig. 1 Summary of endogenous mechanisms and external variables influencing different types of sex differentiation utilized by major orders of fish. Licensed for reuse from Elsevier; Devlin and Nagahama, 2002. Aquaculture 208, 191–364.

Fish gonadal differentiation

In teleost, the bipotential gonad differentiates into ovary or testis through ontogenesis involving PGC and somatic cells (Meijide *et al.*, 2005). During embryogenesis, totipotent blastomeres lead to the formation of PGC, which differentiates further and develops into a functional ovary/testis. The maternal cytoplasmatic components (germ plasma) specify PGC formation (Knaut *et al.*, 2000). The formed PGC migrate along dorsal mesentery of the intestine with peritoneal hedge besides genital crest region and later situated beneath mesonephric ducts (Molyneaux and Wylie,

2004; Patiño and Takashima, 1995). The gonadal somatic components are of embryonic origin (Hoar, 1969).

Ovarian differentiation and development

Generally, in gonochoristic fish ovarian differentiation starts earlier than testicular differentiation. Ovarian differentiation consists of (germ cell proliferation) mitosis, meiosis, and (arrangements of somatic cells) cavity formation (Nakamura *et al.*, 1998). The gonads destined to become ovary have more germ cells in undifferentiated stage (Nakamura *et al.*, 1998), thus higher quantity of germ cells prior to meiosis is an indicate of ovary. The increase in germ cell mitosis leads to formation of characteristic clusters, followed by meiosis (Strüssmann *et al.*, 1996). Besides in females, germinal and somatic differentiations occur instantaneously leading to the formation of follicles, containing oocytes with an internal GC and external TC (Nagahama, 1983). Teleostean ovary (Fig. 2) could be cystovarian (membrane bound) or gymnovarian (ovarian lamellae is open to abdominal cavity) by nature (Kagawa, 2013).

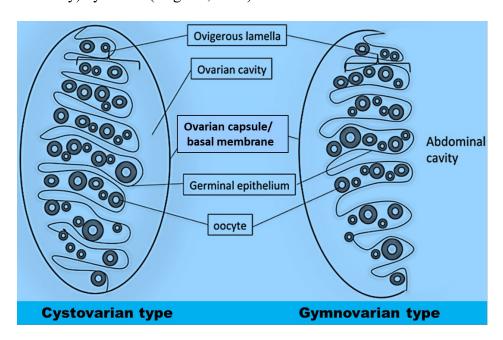


Fig.2 Types of teleostean ovary adapted and modified with permission from Aqua-BioScience Monographs; Kagawa, 2013. Aqua-Bio Sci. Monogr. 6, 99–127.

The germ cells in different stages are present in adult fishes (Nakamura *et al.*, 2011) distinct to mammals. The ovarian structure with GC enveloping oocytes and outer TC over the basal membrane is maintained through follicular growth (Patiño and Takashima, 1995; Wallace and Selman, 1990). The ovarian follicle grows with distinctive previtellogenic and vitellogenic stages, during which nutrients for oocyte development are stored. Accumulation of lipid droplets in ooplasm occurs in previtellogenesis. During vitellogenesis, *vtg* (phospholipid-rich yolk protein precursor) produced in liver is transported via blood to the ovary gets accumulated in the oocytes. Post vitellogenesis the oocyte maturates and ovulates, controlled by hormones (Nath and Maitra, 2001; van–Bohemen *et al.*, 1982; Wallace, 1985).

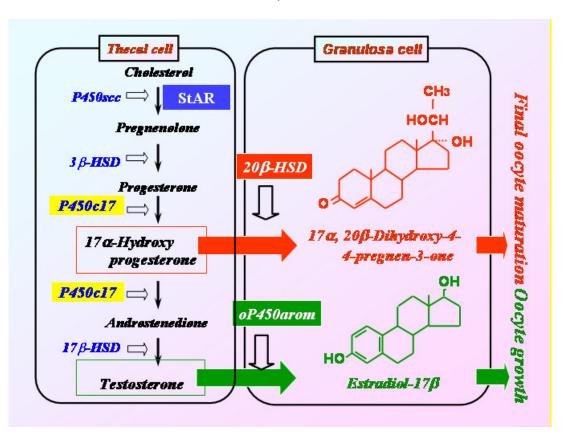


Fig. 3 Schematic representation of two-cell type model in the shift in steroidogenesis occurring in teleost ovarian follicles prior to oocyte maturation. Licensed for reuse from Elsevier; Senthilkumaran *et al.*, 2004. Mol. Cell. Endocrinol. 215, 11–18.

Nagahama (1997) projected the two-cell model in teleost ovary, wherein LH regulates conversion of progesterone to 17α -hydroxyprogesterone by cyp17 in TC, which passes to GC through the basal lamina and by the action of hsd20b converts to 17α , 20β -DP (Gur et~al., 2002; Nagahama, 1997; Sherwood et~al., 2000). Besides, in TC GTH stimulates steroidogenic pathway in which cholesterol under the action of various enzymes gets converted to T and by cyp19a1a in GC into E₂ during oocyte growth (Senthilkumaran et~al., 2004), whereas 17α , 20β -DP is synthesized during final oocyte maturation (Fig. 3). Further, catechol estrogens are important for maturation of oocyte in the catfish, C. batrachus and Heteropneustes fossilis (Senthilkumaran and Joy, 2001). The role of various genes involved in oocyte maturation of teleost bony fishes are has been reviewed extensively (Senthilkumaran, 2011).

Testicular differentiation and development

In general, the gonads intended to become testis remains undifferentiated for a longer time and soma differentiates prior to migration of germ cells (Patiño and Takashima, 1995). In 'differentiated' gonochorists, if the germinal and somatic elements stay quiescent for more time than those gonads are assumed to become testis. During testicular differentiation, development of a lobed structure (Patiño *et al.*, 1996) was evident in channel catfish (*Ictalurus punctatus*). In guppy (*Poecilia reticulata*) testis differentiation is identified by stromatic cell aggregation which later becomes sperm ducts in addition to interstitial tissues (Nakamura *et al.*, 1998). Testicular differentiation is also signaled by sperm duct formation, developing lobule appearance, blood vessels occurrence in stroma (Rasmussen *et al.*, 2006). Spermatogenesis controlled by intrinsic and extrinsic factors marks the transformation of (diploid) spermatogonia into (haploid) sperms. Sertoli cells are prime in regulating spermatogenesis and testis development, controlling germ cell development to spermatozoa and seminiferous tubules environment (Nóbrega *et al.*, 2009).

Spermatogenesis comprise of (mitotic) spermatogonial, meiotic and spermiogenic phases. In mitotic phase, the gonad progresses from undifferentiated to differentiating spermatogonia stage. In meiotic phase, diploid to haploid conversion of spermatogonia results in primary and secondary spermatocytes. Lastly, spermatids mature giving rise to motile spermatozoa (Schulz *et al.*, 2010). Spermatogenesis process is continuous in few species and discontinuous (superimposing cycles) in other fishes (Billard, 1986). Cystic spermatogenesis is observed in fishes (Fig. 4). Each cyst consists of germ cell clone surrounded by Sertoli cells, which produce factors/hormones for development of germ cell and production of sperm (Matta *et al.*, 2002; Schulz *et al.*, 2005). In fishes, spermatogonia do not bind with basal lamina and acrosome is absent, contrasting to mammals (Schulz *et al.*, 2010). Spermiation, release of milt (sperm fluid) into water occurs in natural habitat, while in laboratory an abdominal massage causes milt expulsion. Spermatogenesis period varies from 4 – 21 days under different environmental conditions (Schulz *et al.*, 2010).

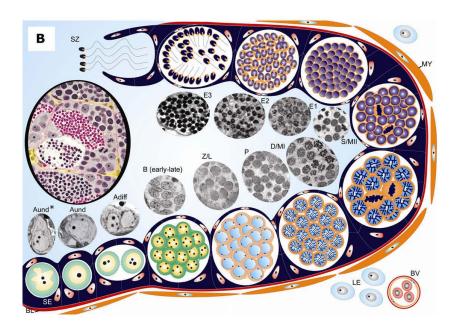


Fig. 4 Schematic representation of cystic spermatogenesis in fish. Licensed for reuse from Elsevier; Schulz *et al.*, 2010. Gen. Comp. Endocrinol. 165, 390–411.

Endocrine control of sex differentiation

Endocrine regulation of sex differentiation (Fig. 5) is well documented in fishes (Bieniarz and Epler, 1992; Nagahama, 1994).

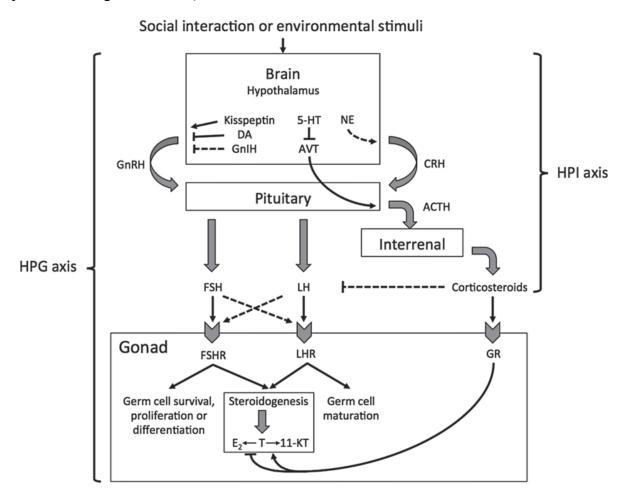


Fig. 5 Representation of neuroendocrine regulation of steroidogenesis in teleost. Solid lines denote interactions in fish, and dashed lines denote interactions in non-teleost models. ACTH-adrenocorticotropic hormone, AVT-arginine vasotocin, CRH-corticotropin releasing hormone, DA-dopamine, E₂-estradiol-17β, GnIH-gonadotropin inhibitory hormone, GnRH-gonadotropin releasing hormone, FSH-follicle stimulating hormone, FSHR-FSH receptor, LH-luteinizing hormone, LHR-LH receptor, MIH-maturation inducing hormone, NE-norepinephrine, T-testosterone, 5-HT-serotonin, 11-KT, 11-ketotestosterone. Licensed for reuse from S. Karger AG, Basel; Todd *et al.*, 2016. Sex. Dev. 10, 223–241.

Sex differentiation occurs in coordination with steroidogenesis (von Hofsten and Olsson, 2005). Though nonsteroids (IGF and somatotropins) act upon gonads (Duan *et al.*, 1993; Kagawa *et al.*, 1995), the most studied are (Van der Kraak *et al.*, 1990) the sex steroids. E₂ (Yamamoto, 1969) and 11-KT (Todo *et al.*, 1999) are the potent estrogen and androgen respectively, in fishes. Furthermore, maturation induction by 17α, 20β-DP and significance of several hormones have been reported in fish (Kime, 1993). Fishes display sexual plasticity controlled by genetic as well as environmental factors (Devlin and Nagahama, 2002; Nakamura *et al.*, 1998). Exogeneous hormonal treatments have been proven to reverse sex in several teleost (Billard *et al.*, 1982; Gomelsky *et al.*, 1994; Olito and Brock, 1991).

Molecular mechanisms involved in fish sex differentiation

Several genetic elements like transcription factors, signaling molecules and other factors also influence teleostean gonadal differentiation and development as reviewed by Sudhakumari and Senthilkumaran (2013). *dmrt1* was reported to play a crucial role in catfish testicular differentiation (Raghuveer and Senthilkumaran, 2009). Analogous to *amh*, eSRS21 was observed in eel testis (Miura *et al.*, 2002). *amh* transcripts were reported in both the gonads of zebrafish and medaka (Klüver *et al.*, 2007; Rodríguez-Marí *et al.*, 2005). An essential role of *ad4bp/sf-1* in testicular development has been shown in catfish (Murugananthkumar and Senthilkumaran, 2016). In zebrafish (*Danio rerio*) *ad4bp/sf-1* homologs (*ff1b* and *ff1d*) were expressed in Sertoli and Leydig cells (Chai and Chan, 2000). Similar genes were reported in medaka (Watanabe *et al.*, 1999), chum salmon (*O. keta*) and (Higa *et al.*, 2000) sockeye salmon (*O. nerka*). Significant role of *gata4* in testicular growth was showcased in catfish (Murugananthkumar and Senthilkumaran, 2016). *dax1* was reported (Wang *et al.*, 2002) with significant expression during sex differentiation of the Nile tilapia (*Oreochromis niloticus*). In zebrafish and medaka isoforms of *wt1* was evident

in gonads (Klüver et al., 2009; Perner et al., 2007). In catfish (Murugananthkumar and Senthilkumaran, 2016), wt1 regulates gata4 and ad4bp/sf-1 by influencing steroidogenesis. wt1 was also reported in zebrafish mesoderm (von Hofsten and Olsson, 2005). In teleost, foxl2 is abundantly expressed in ovary (Liu et al., 2007), specifically in GC of previtellogenic and vitellogenic follicles (Wang et al., 2004). foxl2 modulates ad4bp/sf-1 and ovarian aromatase in the Nile tilapia (Wang et al., 2007). Besides, foxl2 might be a marker of (female) brain and ovarian development in catfish (Sridevi and Senthilkumaran, 2011). Androgens and estrogens are produced by steroidogenesis and the balance between them is vital for proper sexual development. cyp19a1 is crucial for ovarian development in the Nile tilapia (Chang et al., 2005) and catfish (Chourasia and Joy, 2008; Rasheeda et al., 2010). Aromatase, the product of cyp19a1 directs T to E2 conversion and is decisive in regulating their balance (Fig. 6). In teleost, genetic regulation of gonadal steroidogenesis was reviewed (Rajakumar and Senthilkumaran, 2020).

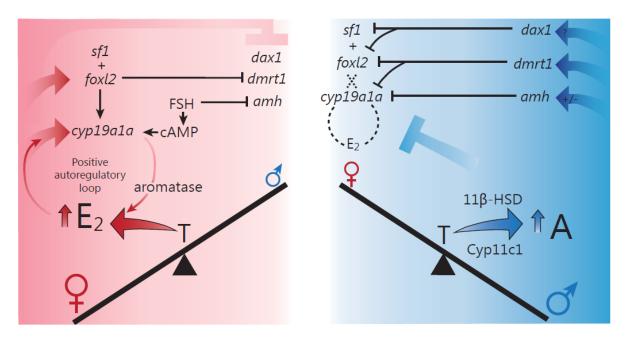


Fig. 6 Antagonistic sex-specific gene networks maintain sexual fate in fishes by promoting either an estrogenic or androgenic environment. Licensed for reuse from S. Karger AG, Basel; Todd *et al.*, 2016. Sex. Dev. 10, 223–241.

SOX genes

SOX genes have been reported to play significant role in various processes such as chondrogenesis, organ growth, neural crest cell development, cell-type specification, central nervous system neurogenesis, germ layer construction and oligodendrocyte development (Betancur *et al.*, 2010; Hong *et al.*, 2005; Kiefer, 2007, Wegner, 1999). In addition, *SOX* transcription factors are also important for sex determination, gonadal growth and development (Graves, 1998).

Table 1. Classification of *SOX* genes

Subgroup	Gene
SOXA	SRY
SOXB1	SOX1
	SOX2
	SOX3
	SOX19
SOXB2	SOX14
	SOX21
SOXC	SOX4
	SOX11
	SOX12
SOXD	SOX5
	SOX6
	SOX13
SOXE	SOX8
	SOX9
	SOX10
SOXF	SOX7
	SOX17
	SOX18
SOXG	SOX15
SOXH	SOX30
SOXI	SOX31
SOXJ	SOXJ
SOXK	SOX32

SOX family genes are specific to animals and constitute to HMG superfamily, encoding ~80 aa DNA-binding domain with a conserved "RPMNAFMVW" motif (Bowles *et al.*, 2000). They bind

to "(A/T)(A/T)CAA(A/T)G" sequence and classified (Zhang *et al.*, 2018) into subgroups A–K (Table1). *SOX* genes also share structural domains distant from HMG among subgroup (Koopman *et al.*, 2004). SOX protein expression is dynamic as well as tissue-specific (Cui *et al.*, 2011). The target specificity is accomplished by complicated mechanisms involving coordinated cell-specific transcription along with spatio-temporal expressions (Kamachi *et al.*, 1999, 2000; Wilson and Koopman, 2002). *SRY*, male determining factor in mice and human, was the first (Sinclair *et al.*, 1990) documented *SOX* family gene (Gubbay *et al.*, 1990).

Most sox genes are present in fish. sox9 is a requisite for testis development in teleost. Two sox9 forms (Chiang et al., 2001) was identified in teleost like fugu, zebrafish, catfish, rice field eel, and the Japanese medaka, reported to have risen during whole genome duplication (Klüver et al., 2005). sox9a plays a role in testis differentiation while sox9b is essential during ovarian differentiation (Raghuveer and Senthilkumaran, 2010). sox3 (Rajakumar and Senthilkumaran, 2014) regulates testicular development and recrudescence and binds to hsd11b promoter in catfish (Rajakumar and Senthilkumaran, 2016) and initiates testicular differentiation (Takehana et al., 2014) in the Indian rice-fish (O. dancena). The involvement of sox5 in germ-cell regulation of medaka (Schartl et al., 2018) was evident. In medaka, sox14, sox10, sox11, sox2, and sox7 were found in ovary, while sox17, sox21 and sox4 were expressed in both gonads (Cui et al., 2011). Galay-Burgos et al. (2004) have reported the evidence of sox2, sox4, sox1, sox3, sox14, sox10, sox9, sox31, and sox17 in both testis and ovary of the European sea bass (*Dicentrarchus labrax*). In rice field eel (Monopterus albus) sox14, sox1 and sox4 were evident (Zhou et al., 2002). Significance of sox2 during testis development was reported in (Kumar et al., 2020) gold fish (Carassius auratrus) and in (Patra et al., 2015) the Indian major carp (Labeo rohita). Yu et al. (2018) observed that sox8 is testis-biased while sox2, sox7 and sox10 were ovary-biased in the

Japanese flounder (*Paralichthys olivaceus*). In zebrafish and medaka (Voldoire *et al.*, 2017) duplicated *sox* (*sox11*, *sox10*, *sox9*, *sox4* and *sox8*) genes were observed during embryogenesis. Kanda *et al.* (1998) detected *sox24* maternal transcripts in rainbow trout. *sox8* was evident in both the gonads of platyfish (*Xiphophorus maculatus*) while *sox9*, *sox11* and *sox4* were expressed only in testis (Voldoire *et al.*, 2017). In zebrafish *sox9*, *sox11* and *sox9* were present in testis and ovary, whereas *sox4* was observed only in testis. On the other hand, in medaka *sox9* was expressed in both the gonads, while *sox11* and *sox4* were expressed in testis (Voldoire *et al.*, 2017). In channel catfish, Zhang *et al.*, (2018) observed *sox11*, and *sox3* in both ovary and testis, while *sox17*, *sox4*, and *sox9* were found only in testis. *sox* genes were expressed in large yellow croaker (*Larimichthys crocea*) during embryogenesis (Wan *et al.*, 2019). In the Chinese sturgeon, (*Acipenser sinensis*) *sox1*, *sox14*, and *sox2*, were expressed in both the gonads, in ovary *sox3*, *sox21*, and *sox12* were evident while, in testis *sox18*, *sox5*, and *sox11* were observed (Yang *et al.*, 2020).

Despite these findings, the significance of *SOX* family genes during sex determination/differentiation, gonadal development and function is yet to be understood in teleost. Hence, this thesis work intended to identify and examine the function of *SOX* family genes apart from those whose roles have been well-known. The recognition of gonadal DEG is important to understand teleostean gonadal differentiation process and a means to acquire *SOX* family genes.

Methods to identify DEG to obtain SOX genes

Conventionally, DEG were identified using qPCR. RNA fingerprinting with amplified restriction fragment polymorphism was used to view DEG (Bachem *et al.*,1996). Using DDRT-PCR, low transcript, DEG, and alternate splice variants could be detected (Steinau and Rajeevan, 2009). Though the technique is cost-effective, still very time consuming and laborious. Another means of DEG identification is subtractive hybridization. The above-mentioned techniques are difficult with

requirement of larger preliminary material (Diatchenko et al., 1999). Though microarray enables DEG identification with the real-time analysis of whole genome, the prerequisite of prior sequence data limits its usage (Yang, 2005). High-throughput sequencing is gaining popularity in gene expression quantification (Mortazavi et al., 2008). Further, RNA-Seq enables 'de novo' transcriptome reconstruction (Costa-Silva et al., 2017) without reference sequence information. RNA-Seq is data highly reproducible, quantifies unidentified transcripts expression and also identifies isoforms (Habegger et al., 2010). In view of the above, the current study planned to perform gonadal transcriptome analysis using RNA-Seq to identify DEG.

Common carp

The common carp (henceforth referred to as carp), *Cyprinus carpio* has more (~50) *sox* genes than other fishes (Xu *et al.*, 2014) being a suitable animal model for this study. Carp, belongs to the Cypriniformes (order) and Cyprinidae (family). *C. carpio*, is a differentiated gonochoristic teleost species following primary gonochoric pattern of sex differentiation (Devlin and Nagahama, 2002; Komen *et al.*, 1992). They are found in several (olive green silvery yellow/silvery grey) colors, often used as ornamental fish in ponds of tourist attractions. Carp is a one of the major freshwater food fish in India, thus economically important. Further, carps are extensively researched (Hulata, 1995; Horvath and Orban, 1995) with its genome partially sequenced (Xu *et al.*, 2014). This research thesis explored potential genes involved in carp sex differentiation to focus on *sox* family. Carps follow a seasonal reproductive cycle in the Southern part of India, spawning biannually during monsoon and winter (Routray *et al.*, 2007). Four distinct phases of reproductive cycle of carp are preparatory, pre–spawning, spawning, and post–spawning (Fig. 7).

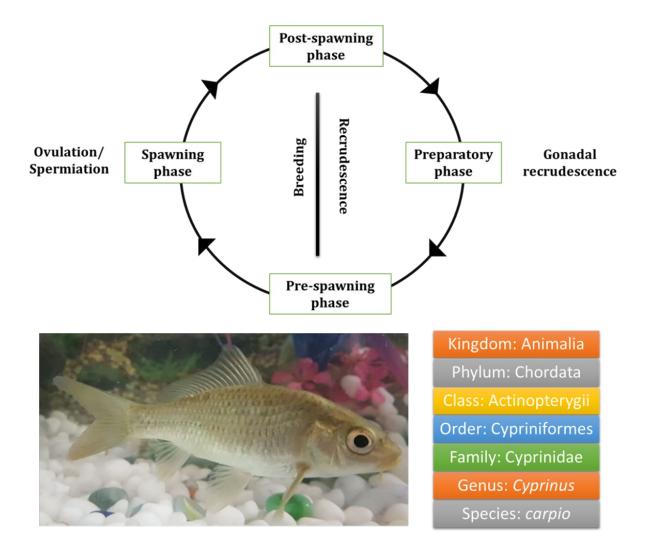


Fig. 7 Carp

Considering these, the present Ph.D. thesis work aimed to identify *sox* family genes involved in carp gonadal development by using a transcriptome analysis for DEG among the gonads. Nearly ten genes belonging to the *sox* family were identified from carp gonadal transcriptome. Expression profiling of *sox* family genes was done in different tissues and in gonads during the distinct phases of the reproductive cycle. To elucidate the significance of few genes of *sox* family, gene silencing using siRNA and its effect on other transcription factors, steroidogenic enzymes and certain gonad-related genes was also analyzed.

The findings of the present study are compiled into three major chapters for the Ph.D. thesis entitled, "Identification and expression analysis of sox family genes in common carp: sox30 and sox19 regulate gonadal function" with a general introduction and a consolidated summary as below mentioned.

Chapter 1 Identification of differentially expressed genes in gonads of the common carp by RNA sequencing-based transcriptome analysis: Expression profiling of *sox* family genes

Chapter 2 Significance of sox30 along with sox9a/b in testicular steroidogenesis

Chapter 3 Understanding the role of sox19 in ovarian function

Each chapter has separate bibliography in order to correlate the findings with earlier reports. All the abbreviations used in the thesis were listed and hence the same has been used without abbreviating again in chapters as wel as general introduction.

REFERENCES

- Betancur, P., Bronner-Fraser, M., Sauka-Spengler, T., 2010. Genomic code for SOX10 activation reveals a key regulatory enhancer for cranial neural crest. Proc. Natl. Acad. Sci. USA 107, 3570–3575.
- 2) Bieniarz, K., Epler, P., 1992. Advances in reproductive endocrinology of fish. J. Physiol. Pharmacol. 43, 215–222.
- 3) Billard, R., 1986. Spermatogenesis and spermatology of some teleost fish species. Reprod. Nutr. Develop. 26, 877–920.
- 4) Billard, R., Richard, M., Rombauts, R., 1982. Inhibition of spermatogenesis and vitellogenesis in rainbow trout by hormonal additives in the diet. Prog. Fish-Culturist 44, 15–18.

- 5) Bowles, J., Schepers, G., Koopman, P., 2000. Phylogeny of the *SOX* family of developmental transcription factors based on sequence and structural indicators. Dev. Biol. 227, 239–255.
- 6) Chai, C., Chan, W.K., 2000. Developmental expression of a novel *Ftz-F1* homologue, *ff1b* (NR5A4), in the zebrafish *Danio rerio*. Mech. Dev. 91, 421–426.
- 7) Chang, X., Kobayashi, T., Senthilkumaran, B., Kobayashi-Kajura, H., Sudhakumari, C.C., Nagahama, Y., 2005. Two types of aromatase with different encoding genes, tissue distribution and developmental expression in Nile tilapia (*Oreochromis niloticus*). Gen. Comp. Endocrinol. 141, 101–115.
- 8) Chen, S., Zhang, G., Shao, C., Huang, Q., Liu, G., Zhang, P., Song, W., An, N., Chalopin, D., Volff, J.N., Hong, Y., Li, Q., Sha, Z., Zhou, H., Xie, M., Yu, Q., Liu, Y., Xiang, H., Wang, N., Wu, K., Yang, C., Zhou, Q., Liao, X., Yang, L., Hu, Q., Zhang, J., Meng, L., Jin, L., Tian, Y., Lian, J., Yang, J., Miao, G., Liu, S., Liang, Z., Yan, F., Li, Y., Sun, B., Zhang, H., Zhang, J., Zhu, Y., Du, M., Zhao, Y., Schartl, M., Tang, Q., Wang, J., 2014. Whole-genome sequence of a flatfish provides insights into ZW sex chromosome evolution and adaptation to a benthic lifestyle. Nat. Genet. 46, 253–260.
- 9) Chiang, E.F., Pai, C.I., Wyatt, M., Yan, Y.L., Postlethwait, J., Chung, B., 2001. Two *sox9* genes on duplicated zebrafish chromosomes: expression of similar transcription activators in distinct sites. Dev. Biol. 231, 149–163.
- 10) Chourasia, T.K., Joy, K.P., 2008. Ovarian P450 aromatase activity in the catfish Heteropneustes fossilis: seasonal changes and effects of catecholestrogens. Gen. Comp. Endocrinol. 156, 537–543.

- 11) Cui, J., Shen, X., Zhao, H., Nagahama, Y., 2011. Genome-wide analysis of *sox* genes in Medaka (*Oryzias latipes*) and their expression pattern in embryonic development. Cytogenet. Genome Res. 134, 283–294.
- 12) Das, D., Khan, P.P., Maitra, S., 2017. Endocrine and paracrine regulation of meiotic cell cycle progression in teleost oocytes: cAMP at the centre of complex intra-oocyte signalling events. Gen. Comp. Endocrinol. 241, 33–40.
- 13) Devlin, R.H., Nagahama, Y., 2002. Sex determination and sex differentiation in fish: an overview of genetic, physiological, and environmental influences. Aquaculture 208, 191–364.
- 14) Dipper, F.A., Pullin, R.S.V., 1979. Gonochorism and sex-inversion in British Labridae (*Pisces*). J. Zool. 187, 97–112.
- 15) Duan, C., Duguay, S., Plisetskaya, E., 1993. Insulin-like growth factor I (IGF-I) mRNA expression in coho salmon, *Oncorhynchus kisutch*: tissue distribution and effects of growth hormone/prolactin family proteins. Fish Physiol. Biochem. 11, 371–379.
- 16) Galay-Burgos, M., Llewellyn, L., Mylonas, C.C., Canario, A.V., Zanuy, S., Sweeney, G.E.,2004. Analysis of the Sox gene family in the European sea bass (*Dicentrarchus labrax*).Comp. Biochem. Physiol. B Biochem. Mol. Biol. 137, 279–284.
- 17) Gomelsky, B., Cherfas, N.B., Peretz, Y., Ben-Dom, N., Hulata, G., 1994. Hormonal sex inversion in the carp (*Cyprinus carpio L.*). Aquaculture 126, 265–270.
- 18) Gur, G., Bonfil, D., Safarian, H., Naor, Z., Yaron, Z., 2002. Pituitary adenylate cyclase activating polypeptide and neuropeptide Y regulation of gonadotropin subunit gene expression in tilapia: role of PKC, PKA and ERK. Neuroendocrinology 75, 164–174.

- 19) Graves, J.A., 1998. Interactions between *SRY* and *SOX* genes in mammalian sex determination. Bioessays 20, 264–269.
- 20) Gubbay, J., Collignon, J., Koopman, P., Capel, B., Economou, A., Münsterberg, A., Vivian, N., Goodfellow, P., Lovell-Badge, R., 1990. A gene mapping to the sex-determining region of the mouse Y chromosome is a member of a novel family of embryonically expressed genes. Nature 346, 245–250.
- 21) Hattori, R.S., Murai, Y., Oura, M., Masuda, S., Majhi, S.K., Sakamoto, T., Fernandino, J.I., Somoza, G.M., Yokota, M., Strussmann, C.A., 2012. A Y-linked anti-Mullerian hormone duplication takes over a critical role in sex determination. Proc. Natl. Acad. Sci. USA 109, 2955–2959.
- 22) Higa, M., Kanda, H., Kitahashi, T., Ito, M., Shiba, T., Ando, H., 2000. Quantitative analysis of fushi tarazu factor 1 homolog messenger ribonucleic acids in the pituitary of salmon at different prespawning stages. Biol. Reprod. 63, 1756–1763.
- 23) Hoar, W.S., 1969. Reproduction. In: Fish physiology. Hoar, W.S., Randall, D.J., (eds), vol 3. Academic Press, New York, pp, 1–72.
- 24) Hong, C.S., Saint-Jeannet, J.P., 2005. Sox proteins and neural crest development. Semin. Cell. Dev. Biol.16, 694–703.
- 25) Hughes, I.A., 2001. Minireview: Sex Differentiation. Endocrinology 142, 3281–3287.
- 26) Kagawa, H., 2013. Oogenesis in teleost fish. Aqua–BioSci. Monogr. 6, 99–127.
- 27) Kagawa, H., Moriyama, S., Kawauchi, H., 1995. Immunocytochemical localization of IGF-I in the ovary of the red seabream, *Pagrus major*. Gen. Comp. Endocrinol. 99, 307–315.
- 28) Kamachi, Y., Cheah, K.S., Kondoh, H., 1999. Mechanism of regulatory target selection by

- the SOX high-mobility-group domain proteins as revealed by comparison of SOX1/2/3 and SOX9. Mol. Cell. Biol. 19, 107–120.
- 29) Kamachi, Y., Uchikawa, M., Kondoh, H., 2000. Pairing *SOX* off with partners in the regulation of embryonic development. Trends Genet. 16, 182–187.
- 30) Kamiya, T., Kai, W., Tasumi, S., Oka, A., Matsunaga, T., Mizuno, N., Fujita, M., Suetake, H., Suzuki, S., Hosoya, S., 2012. A trans-species missense SNP in *Amhr2* is associated with sex determination in the tiger pufferfish, *Takifugu rubripes* (fugu). PLoS Genet. 8, e1002798.
- 31) Kanda, H., Kojima, M., Miyamoto, N., Ito, M., Takamatsu, N., Yamashita, S., Shiba, T., 1998. Rainbow trout *sox24*, a novel member of the *sox* family, is a transcriptional regulator during oogenesis. Gene 211, 251–257.
- 32) Kiefer, J.C., 2007. Back to basics: SOX genes. Dev. Dyn. 236, 2356–2366.
- 33) Kime, D.E., 1993. "Classical" and "non-classical" reproductive steroids in fish. Rev. Fish Biol. Fish. 3, 160–180.
- 34) Klüver, N., Herpin, A., Braasch, I., Driessle, J., Schartl, M., 2009. Regulatory back-up circuit of medaka *wt1* co-orthologs ensures PGC maintenance. Dev. Biol. 325, 179–188.
- 35) Klüver, N., Kondo, M., Herpin, A., Mitani, H., Schartl, M., 2005. Divergent expression patterns of *sox9* duplicates in teleosts indicate a lineage specific subfunctionalization. Dev. Genes Evol. 215, 297–305.
- 36) Klüver, N., Pfennig, F., Pala, I., Storch, K., Schlieder, M., Froschauer, A., Gutzeit, H.O., Schartl, M., 2007. Differential expression of anti-Müllerian hormone (*amh*) and anti-Müllerian hormone receptor type II (*amhrII*) in the teleost medaka. Dev. Dyn. 236, 271–281.

- 37) Knaut, H., Pelegri, F., Bohmann, K., Schwarz, H., Nusslein-Volhard, C., 2000. Zebrafish *vasa* RNA but not its protein is a component of the germ plasm and segregates asymmetrically before germline specification. J. Cell Biol. 149, 875–888.
- 38) Komen, J., Yamashita, M., Nagahama, Y., 1992. Testicular development induced by a recessive mutation during gonadal differentiation of female common carp (*Cyprinus carpio, L.*). Dev. Growth Differ. 34, 535–544.
- 39) Koopman, P., Schepers, G., Brenner, S., Venkatesh, B., 2004. Origin and diversity of the *sox* transcription factor gene family: genome-wide analysis in *Fugu rubripes*. Gene 328, 177–186.
- 40) Kumar, A., Tripathi, G., Vimal, B., Bedekar, M.K., Kumar A.P., 2020. Expression study of pluripotency marker genes in gold fish, *Carassius auratrus*. Int. J. Curr. Microbiol. App. Sci. 9, 639–649.
- 41) Liu, Z., Wu, F., Jiao, B., Zhang, X., Hu, C., Huang, B., Zhou, L., Huang, X., Wang, Z., Zhang, Y., Nagahama, Y., Cheng, C.H., Wang, D., 2007. Molecular cloning of doublesex and mab-3-related transcription factor 1, forkhead transcription factor gene 2, and two types of cytochrome P450 aromatase in Southern catfish and their possible roles in sex differentiation. J. Endocrinol. 194, 223–241.
- 42) Matsuda, M., Nagahama, Y., Shinomiya, A., Sato, T., Matsuda, C., Kobayashi, T., Morrey, C.E., Shibata, N., Asakawa, S., Shimizu, N., 2002. *DMY* is a Y-specific DM-domain gene required for male development in the medaka fish. Nature 417, 559–563.
- 43) Matta, S.L., Vilela, D.A., Godinho, H.P., França, L.R., 2002. The goitrogen 6-n-propyl-2-thiouracil (PTU) given during testis development increases Sertoli and germ cell numbers per cyst in fish: the tilapia (*Oreochromis niloticus*) model. Endocrinology 143, 970–978.

- 44) Meijide, F.J., Lo Nostro, F.L., Guerrero, G.A., 2005. Gonadal development and sex differentiation in the cichlid fish *Cichlasoma dimerus* (Teleostei, Perciformes): a light- and electron-microscopic study. J. Morphol. 264, 191–210.
- 45) Miura, T., Miura, C., Konda, Y., Yamauchi, K., 2002. Spermatogenesis-preventing substance in Japanese eel. Development 129, 2689–2697.
- 46) Molyneaux, K.A, Wylie, C., 2004. Primordial germ cell migration. Int. J. Dev. Biol. 48, 537–544.
- 47) Murugananthkumar, R., Senthilkumaran, B., 2016. Expression analysis and localization of wt1, ad4bp/sf-1 and gata4 in the testis of catfish, Clarias batrachus: Impact of wt1-esiRNA silencing. Mol. Cell. Endocrinol. 431, 164–176.
- 48) Myosho, T., Otake, H., Masuyama, H., Matsuda, M., Kuroki, Y., Fujiyama, A., Naruse, K., Hamaguchi, S., Sakaizumi, M., 2012. Tracing the emergence of a novel sex determining gene in medaka, *Oryzias luzonensis*. Genetics 191, 163–170.
- 49) Nagahama, Y., 1983. The functional morphology of teleost gonads, Fish Physiol. 9, 223–275.
- 50) Nagahama, Y., 1994. Endocrine regulation of gametogenesis in fish. Int. J. Dev. Biol., 38, 217–229.
- 51) Nagahama, Y., 1997. 17α, 20β-Dihyroxy-4-pregnen-3-one, a maturation-inducing hormone in fish oocytes: Mechanism of synthesis and action. Steroids 62, 190–196.
- 52) Nakamura, M., Kobayashi, T., Chang, X.T., Nagahama, Y., 1998. Gonadal sex differentiation in teleost fish. J. Exp. Zool. 281, 362–372.
- 53) Nakamura, S., Kobayashi, K., Nishimura, T., Tanaka, M. 2011. Ovarian germline stem cells in the teleost fish, medaka (*Oryzias latipes*). Int. J. Biol. Sci. 7, 403–409.

- 54) Nanda, I., Kondo, M., Hornung, U., Asakawa, S., Winkler, C., Shimizu, A., Shan, Z., Haaf, T., Shimizu, N., Shima, A., Schmid, M., Schartl, M., 2002. A duplicated copy of DMRT1 in the sex-determining region of the Y chromosome of the medaka, *Oryzias latipes*. Proc. Natl. Acad. Sci. USA 99, 11778–11783.
- 55) Nath, P., Maitra, S., 2001. Role of two plasma vitellogenins from Indian major carp (*Cirrhinus mrigala*) in catfish (*Clarias batrachus*) vitellogenesis. Gen. Comp. Endocrinol. 124, 30–44.
- 56) Nóbrega, R.H., Batlouni, S.R., França, L.R., 2009. An overview of functional and stereological evaluation of spermatogenesis and germ cell transplantation in fish. Fish Physiol. Biochem. 35, 197–206.
- 57) Olito, C., Brock, I., 1991. Sex reversal of rainbow trout creating an all-female population. Prog. Fish-Cult. 53, 41–44.
- 58) Patiño, R., Davis, K.B., Schoore, J.E., Uguz, C., Strüssmann, C.A., Parker, N.C., Simco, B.A. and Goudie, C.A., 1996. Sex differentiation of channel catfish gonads: Normal development and effects of temperature. J. Exp. Zool. 276, 209–218.
- 59) Patino, R., Takashima, F., 1995. Gonads. In: An atlas of fish histology: normal and pathological features. Takashima, F., Hibiya, T., (eds). Gustav Fisher, Tokyo, pp, 128–153.
- 60) Patra, S.K., Chakrapani, V., Panda, R.P., Mohapatra, C., Jayasankar, P., Barman, H.K., 2015. First evidence of molecular characterization of rohu carp *SOX2* gene being expressed in proliferating spermatogonial cells. Theriogenology 84, 268–776.e1.
- 61) Perner, B., Englert, C., Bollig, F., 2007. The Wilms tumor genes *wt1a* and *wt1b* control different steps during formation of the zebrafish pronephros. Dev. Biol. 309, 87–96.

- 62) Raghuveer, K., Senthilkumaran, B., 2009. Identification of multiple *dmrt1*s in catfish: localization, dimorphic expression pattern, changes during testicular cycle and after methyltestosterone treatment. J. Mol. Endocrinol. 42, 437–448.
- 63) Raghuveer, K., Senthilkumaran, B., 2010. Isolation of *sox9* duplicates in catfish localization, differential expression pattern during gonadal development and recrudescence, and hCG-induced up-regulation of *sox9* in testicular slices, Reproduction 140, 477–487.
- 64) Rajakumar, A., Senthilkumaran, B., 2014. Expression analysis of *sox3* during testicular development, recrudescence, and after hCG induction in catfish, *Clarias batrachus*. Sex. Dev. 8, 376–386.
- 65) Rajakumar, A., Senthilkumaran, B., 2016. *Sox3* binds to 11β-hydroxysteroid dehydrogenase gene promoter suggesting transcriptional interaction in catfish, J. Steroid Biochem. Mol. Biol. 158, 90–103.
- 66) Rajakumar, A., Senthilkumaran, B., 2020. Steroidogenesis and its regulation in teleost-a review, Fish Physiol. Biochem. 46, 803–818.
- 67) Rasheeda, M.K., Sridevi, P., Senthilkumaran, B., 2010. Cytochrome P450 aromatases: Impact on gonadal development, recrudescence and effect of hCG in the catfish, *Clarias gariepinus*. Gen. Comp. Endocrinol. 167, 234–245.
- 68) Rasmussen, T. H., Jespersen, A., Korsgaard, B., 2006. Gonadal morphogenesis and sex differentiation in intraovarian embryos of the viviparous fish *Zoarces viviparus* (Teleostei, Perciformes, Zoarcidae): a histological and ultrastructural study. J. Morphol. 267, 1032–1047.

- 69) Rodríguez-Marí, A., Yan, Y.L., Bremiller, R.A., Wilson, C., Canestro, C., Postlethwait, J.H., 2005. Characterization and expression pattern of zebrafish Anti-Mullerian hormone (*amh*) relative to *sox9a*, *sox9b*, and *cyp19a1a*, during gonad development. Gene Expr. Patterns 5, 655–667.
- 70) Routray, P., Verma, D.K., Sarkar, S.K., Sarangi, N., 2007. Recent advances in carp seed production and milt cryopreservation. Fish Physiol. Biochem. 33, 413–427.
- 71) Sadovy, Y., Shapiro, D.Y., 1987. Criteria for the diagnosis of hermaphroditism in fishes. Copeia 1987, 136–156.
- 72) Schartl, M., Schories, S., Wakamatsu, Y., Nagao, Y., Hashimoto, H., Bertin, C., Mourot, B., Schmidt, C., Wilhelm, D., Centanin, L., Guiguen, Y., Herpin, A., 2018. *Sox5* is involved in germ-cell regulation and sex determination in medaka following co-option of nested transposable elements. BMC Biol. 16, 16.
- 73) Schartl, M., Wilde, B., Schlupp, I., Parzefall, J., 1995. Evolutionary origin of a parthenoform, the Amazon molly *Poecilia formosa*, on the basis of a molecular genealogy. Evolution 49, 827–835.
- 74) Schulz, R.W., de França, L.R., Lareyre, J.J., Le Gac, F., Chiarini-Garcia, H., Nobrega, R.H., Miura, T., 2010. Spermatogenesis in fish. Gen. Comp. Endocrinol. 165, 390–411.
- 75) Schulz, R.W., Menting, S., Bogerd, J., Franca, L.R., Vilela, D.A.R., Godinho, H.P., 2005.
 Sertoli cell proliferation in the adult testis: evidence from two fish species belonging to different orders. Biol. Reprod. 73, 891–898.
- 76) Senthilkumaran, B., 2011. Recent advances in meiotic maturation and ovulation: comparing mammals and pisces. Front. Biosci. (Landmark Ed). 16, 1898–1914.

- 77) Senthilkumaran, B., Joy, K.P., 2001. Periovulatory changes in catfish ovarian oestradiol—17beta, oestrogen—2—hydroxylase and catechol—O—methyltransferase during GnRH analogue—induced ovulation and in vitro induction of oocyte maturation by catecholoestrogens. J. Endocrinol. 168, 239–247.
- 78) Senthilkumaran, B., Yoshikuni, M., Nagahama, Y., 2004. Shift in steroidogenesis occurring in ovarian follicles prior to oocyte maturation. Mol. Cell Endocrinol. 215, 11–18.
- 79) Sherwood, N.M., Krueckl, S.L., McRory, J.E., 2000. The origin and function of the pituitary adenylate cyclase-activating polypeptide (PACAP)/glucagon superfamily. Endocr. Rev. 21, 619–670.
- 80) Short, R.V., 1998. Difference between a testis and an ovary. J. Exp. Zool. 281, 359–361.
- 81) Simpson, E.R., Mahendroo, M.S., Means, G.D., Kilgore, M.W., Hinshelwood, M.M., Graham-Lorence, S., Amarneh, B., Ito, Y., Fisher, C.R., Michael, M.D., 1994. Aromatase cytochrome P450, the enzyme responsible for estrogen biosynthesis. Endocr. Rev. 15, 342–355.
- 82) Sinclair, A.H., Berta, P., Palmer, M.S., Hawkins, J.R., Griffiths, B.L., Smith, M.J., Foster, J.W., Frischauf, A.M., Lovell-Badge, R., Goodfellow, P.N., 1990. A gene from the human sex-determining region encodes a protein with homology to a conserved DNA-binding motif. Nature 346, 240–244.
- 83) Sridevi, P., Senthilkumaran, B., 2011. Cloning and differential expression of *foxl2* during ovarian development and recrudescence of the catfish, *Clarias gariepinus*. Gen. Comp. Endocrinol. 174, 258–267.

- 84) Strüssmann, C.A., Calsina Cota, J.C., Phonlor, G., Higuchi, H., Takashima, F., 1996. Temperature effects on sex differentiation of two South American atherinids, *Odontesthes argentinensis* and *Patagonina hatcheri*. Environ. Biol. Fish. 47, 143–154.
- 85) Sudhakumari, C.C., Senthilkumaran, B., 2013. Expression profiling of various marker genes involved in gonadal differentiation of teleosts: molecular understanding of sexual plasticity. In B. Senthilkumaran (Ed.), Sexual plasticity and gametogenesis in fishes. Nova Biomedical, USA, pp, 401–421.
- 86) Takehana, Y., Matsuda, M., Myosho, T., Suster, M.L., Kawakami, K., Shin, I.T., Kohara, Y., Kuroki, Y., Toyoda, A., Fujiyama, A., Hamaguchi, S., Sakaizumi, M., Naruse, K., 2014. Co-option of *sox3* as the male-determining factor on the Y chromosome in the fish *Oryzias dancena*. Nat. Commun. 5, 4157.
- 87) Todd, E.V., Liu, H., Muncaster, S., Gemmell, N.J., 2016. Bending genders: the biology of natural sex change in fish. Sex. Dev. 10, 223–241.
- 88) Todo, T., Ikeuchi, T., Kobayashi, T., Nagahama, Y., 1999. Fish androgen receptor: cDNA cloning, steroid activation of transcription in transfected mammalian cells, and tissue mRNA levels, Biochem. Biophys. Res. Commun. 254, 378–383.
- 89) Van der Kraak, G., Rosenblum, P.M., Peter, R.E., 1990. Growth hormone-dependent potentiation of gonadotropin-stimulated steroid production by ovarian follicles of the goldfish. Gen. Comp. Endocrinol. 79, 233–239
- 90) van–Bohemen, C.G., Lambert, J.G.D., van Oordt, P.G.W.J., 1982. Vitellogenin induction by estradiol in estrone–primed rainbow trout, *Salmo gairdneri*. Gen. Comp. Endocrinol. 46, 136–139.

- 91) Voldoire, E., Brunet, F., Naville, M., Volff, J. N., Galiana, D., 2017. Expansion by whole genome duplication and evolution of the *sox* gene family in teleost fish. PloS One 12, e0180936.
- 92) von Hofsten, J., Olsson, P.E., 2005. Zebrafish sex determination and differentiation: involvement of FTZ-F1 genes. Reprod. Biol. Endocrinol. 3, 63.
- 93) Wallace, R.A., 1985. Vitellogenesis and oocyte growth in nonmammalian vertebrates. In: Dev. Biol. (NY) 1, 127–177.
- 94) Wallace, R.A., Selman, K. 1990. Ultrastructural aspects of oogenesis and oocyte growth in fish and amphibians. J. Electron Microsc. Tech. 16, 175–201.
- 95) Wan, H., Han, K., Jiang, Y., Zou, P., Zhang, Z., Wang, Y., 2019. Genome-wide identification and expression profile of the *sox* gene family during embryo development in large yellow croaker, *Larimichthys crocea*. DNA Cell Biol. 38, 1100–1111.
- 96) Wang, D., Kobayashi, T., Zhou, L., Nagahama, Y., 2004. Molecular cloning and gene expression of *foxl2* in the Nile tilapia, *Oreochromis niloticus*. Biochem. Biophys. Res. Commun. 320, 83–89.
- 97) Wang, D.S., Kobayashi, T., Zhou, L.Y., Paul-Prasanth, B., Ijiri, S., Sakai, F., Okubo, K., Morohashi, K., Nagahama, Y., 2007. *Foxl2* up-regulates aromatase gene transcription in a female-specific manner by binding to the promoter as well as interacting with ad4 binding protein/steroidogenic factor 1. Mol. Endocrinol. 21, 712–725.
- 98) Warner, R.R., 1984. Mating behavior and hermaphroditism in coral reef fishes. Am. Sci. 72, 128–136.
- 99) Watanabe, M., Tanaka, M., Kobayashi, D., Yoshiura, Y., Oba, Y., Nagahama, Y., 1999.

 Medaka (*Oryzias latipes*) FTZ-F1 potentially regulates the transcription of P-450

- aromatase in ovarian follicles: cDNA cloning and functional characterization. Mol. Cell. Endocrinol. 149, 221–228.
- 100) Wegner, M., 1999. From head to toes: the multiple facets of SOX proteins. Nucleic Acids Res. 27, 1409–1420.
- 101)Wilson, M., Koopman, P., 2002. Matching SOX: partner proteins and cofactors of the SOX family of transcriptional regulators. Curr. Opin. Genet. Dev. 12, 441–446.
- 102) Yamamoto, T., 1969. Sex differentiation. In: Hoar, W., Randall, D. (Eds.), Fish Physiology. Academic Press, pp, 117–175.
- 103) Yang, J., Hu, Y., Han, J., Xiao, K., Liu, X., Tan, C., Zeng, Q., Du, H., 2020. Genomewide analysis of the Chinese sturgeon *sox* gene family: identification, characterisation and expression profiles of different tissues. J. Fish Biol. 96, 175–184.
- 104)Yano, A., Guyomard, R., Nicol, B., Jouanno, E., Quillet, E., Klopp, C., Cabau, C., Bouchez, O., Fostier, A., Guiguen, Y., 2012. An immune related gene evolved into the master sex-determining gene in rainbow trout, *Oncorhynchus mykiss*. Curr. Biol. 22, 1423–1428.
- 105)Yoshikuni, M., Matsuda, M., Morohashi, K., Nagahama, Y., 2002. Molecular cloning of DAX1 and SHP cDNAs and their expression patterns in the Nile tilapia, *Oreochromis niloticus*. Biochem. Biophys. Res. Commun. 297, 632–640.
- 106)Yu, H., Du, X., Li, X., Qu, J., Zhu, H., Zhang, Q., Wang, X., 2018. Genome-wide identification and transcriptome-based expression analysis of *sox* gene family in the Japanese flounder *Paralichthys olivaceus*. J. Oceanol. Limnol. 36, 1731–1745.
- 107)Zhang, S., Chen, X., Wang, M., Zhang, W., Pan, J., Qin, Q., Zhong, L., Shao, J., Sun, M., Jiang, H., 2018. Genome-wide identification, phylogeny and expressional profile of the *sox*

gene family in channel catfish (*Ictalurus punctatus*). Comp. Biochem. Physiol. D. 28, 17–26.

108)Zhou, R., Cheng, H., Zhang, Q., Guo, Y., Cooper, R.K., Tiersch, T.R., 2002. SRY-related genes in the genome of the rice field eel (*Monopterus albus*). Genet. Sel. Evol. 34, 129–137.

Chapter 1

Identification of differentially expressed genes in gonads of the common carp by RNA sequencing-based transcriptome analysis: Expression profiling of sox family genes

ABSTRACT

Carp is a world-wide freshwater fish of eutrophic waters. C. carpio, have various reproductive traits, including early sexual maturity, that may make them excellent, large, realistic, aquaculture model species. In the present work, de novo assembly of gonadal (testicular and ovarian) transcriptomes from juvenile carp was performed to identify genes involved in gonadal development. A total of 81,757 and 43,257 transcripts with average lengths of 769 and 856 bp, were obtained from the immature testicular and ovarian transcriptomes, respectively. About 84,367 unigenes were constructed after removing redundancy involving the representation of transcripts in both gonadal transcriptomes. GO (39,171 unigenes), COG analysis (6,651 unigenes), and KAAS analysis (4,783 unigenes) were performed to identify potential genes along with their functions. Furthermore, 18,342 (testis) and 8,693 (ovary) SSRs were identified. Nearly 809 genes related to reproduction were identified, the sex-wise expression pattern of genes related to steroid synthesis, endocrine regulation, germ cell maintenance, and other factors related to gonadal differentiation was observed. About 298 DEG were identified, of which 171 and 127 genes were up-regulated in testis and ovary, respectively. qPCR was performed to validate the differential expression of selected genes in the testis and ovary. Interestingly, several genes belonging to the sox family were obtained from the transcriptome. Expression profiling of sox family genes namely, the tissue distribution and reproductive phase analysis were performed, which warranted the importance to analyze the significance of sox30 and sox19 in gonadal function. The present study identified certain important genes/factors involved in the gonadal development of C. carpio which may provide insights into the understanding of sex differentiation and gonadal development processes.

1 INTRODUCTION

Carp belonging to the family Cyprinidae is native to western Asia and was translocated or introduced throughout the world. Certain native wild populations were considered vulnerable to extinction in 2008 by the International Union for Conservation of Nature. The carp has become one of the most important food fishes with many strains and varieties in different parts of the world (Xu et al., 2012). There are abundant strains and local populations of carp found in India, including many hybrid populations. The Indian carp spawn in two peak breeding periods, from January to March and from July to August. Furthermore, at different stages, the gonads show discrete changes during the reproductive cycle. Due to its economic and ecological importance, different genetic and genomic studies were performed in the carp (Ji et al., 2012; Kongchum et al., 2010). Despite the reports being available on different aspects of reproduction and breeding (Routray et al., 2007), the molecular mechanisms underlying gonadal maturation and breeding of carp in tropical or subtropical climates have not been clearly understood. In comparison with the bisexual reproduction in higher vertebrates, teleosts have different approaches for sexual reproduction, like unisexuality (Schartl et al., 1995), hermaphroditism (Warner, 1984), and gonochorism (Dipper and Pullin, 1979). Besides, there are two mechanisms of sex determination, genetic and environmentally regulated (Janzen, 1995). Teleost fishes are an excellent model for studying the evolution of sex chromosomes as they have a broad range of sexual developmental systems, with an absence of morphologically distinct genders in most species. A master set of sex determination and gonadal phenotype-related genes have been identified in multiple fish species (Chen et al., 2014; Hattori et al., 2012; Kamiya et al., 2012; Matsuda et al., 2002; Myosho et al., 2012; Nanda et al., 2002; Raghuveer and Senthilkumaran, 2009; Yano et al., 2012). Several conserved genes playing critical roles in the sexual development of mammals were also analyzed in fish, including

ad4bp/sf-1, dax1, foxl2, gata4, mis, sox3, sox9a, sox9b, StAR, wt1, cyp11b1, cyp17, cyp19a1, hsd3b, and hsd11b (Raghuveer et al., 2011; Sandra et al., 2010). These genes act together in a complex network to direct gonadal development. Besides, hormones and various biological pathways, such as estrogen signaling pathway, steroid hormone biosynthesis (Baroiller et al., 1999), $TGF-\beta$ signaling pathway (Liu et al., 2017), and wnt signaling pathway (Amberg et al., 2013; Prathibha and Senthilkumaran, 2017) also play a vital role in the gonadal differentiation. Although much is known about the process of sex differentiation in fish, the precise mechanisms of sex differentiation, as well as those involved in primary sex determination, remain undefined in several teleosts (Devlin and Nagahama, 2002). Fish gonadal sex differentiation shows varied strategies and physiological regulations compared to mammals (Baron and Guiguen, 2003). The differentiation of bi-potential gonad to either testis or ovary depends on the regulation of the steroidogenic pathway. In lower vertebrates, sex steroids (androgens and estrogens) play a critical role in gonadal differentiation (Devlin and Nagahama, 2002; Strüssmann and Nakamura, 2002). However, the mechanism of action of these steroids on gonad sex differentiation is not well understood. Unlike sex-determining systems, the genes involved in gonadal differentiation appear to be relatively conserved. Nevertheless, studies on the functional connections of these genes to relevant pathways are minimal in fish. Novel sex-related genes are required to elucidate the complex mechanisms of gonadal development in fishes. Over the last decade, NGS technologies have provided operative tools for high throughput sequencing, which has enhanced the efficacy and speed of gene discovery. Compared to whole-genome sequencing, NGS via RNA-Seq affords a cost-effective approach to retrieve transcriptome sequences and molecular markers that can reveal DEG associated with phenotypic traits and gender. DEG between testis and ovary gives prospective information to recognize and understand the molecular basis of gonadal development and growth. Groups of gonadal development-related genes have been revealed by scrutiny of sexbiased transcriptomes in several species including, as examples, gilthead sea bream (Calduch-Giner et al., 2013), the Nile tilapia (Tao et al., 2013), the Japanese flounder (Zhang et al., 2016), the Russian sturgeon, A. gueldenstaedtii (Hagihara et al., 2014), the Southern bluefin tuna, Thunnus maccoyii (Bar et al., 2016), and the yellow catfish, Pelteobagrus fulvidraco (Lu et al., 2014). The transcriptome of carp (Ji et al., 2012) has been sequenced and assembled employing NGS platforms, and differences between the ovary and testis transcriptomes of adult carp from the China's yellow river have been explored using suppression subtractive hybridization (Chen et al., 2015). However, ideally, such differences will be fully explored only by using a comprehensive set of transcriptomes from every tissue through each life stage across every major habitat (Ji et al., 2012). Furthermore, complete annotation and functional validation of the carp genome or transcriptome have not been done concerning gonadal stage and function. Hence, in this study, gonadal transcriptomes of juvenile carp were sequenced to obtain a critical overview of genes potentially involved in gonadal growth and development. Besides, DEG and biological pathways were also identified by comparing testis and ovary transcriptomes. These data provide information on marker genes found expressed in gonads sex-wise at specific reproductive stages, genes related to steroid synthesis, endocrine regulation, germ cell maintenance, and other factors, which are crucial for acquiring valuable insights into mechanisms of gonadal differentiation in fish. The present study also identified a major group of reproduction-related genes, potential players in gonadal development, and characterized SSRs to be employed for genetic improvement purposes. The large number of reproduction-related genes identified in this study also provide direction for future genetic and genomic research in carp.

2 MATERIALS AND METHODS

2.1 Animals and sampling

Carps used for this study were reared at the aquaculture facility of KVAFSU, Bangalore, India. Nearly 2,000 offsprings were raised in a 2000 m² pond and fed four times daily under a standard feeding regime (3% feed/bodyweight ratio daily). The oxygen level was retained at 3 mg/L or above. Animals were procured and during acclimatization, fishes were maintained under natural photo-thermal conditions by feeding commercial carp food ad libitum and kept in 1 m³ tanks with filtered tap water, until experimentation. Fifteen juvenile carps, 110 to 130 dph were randomly selected and gonadal tissues were dissected out. A portion of the gonadal tissue was fixed in Bouin's fixative (15:5:1, saturated picric acid, formaldehyde, and glacial acetic acid) for histological observation, and the remaining tissue was snap-frozen in liquid nitrogen and stored at -80°C for RNA-Seq. To perform tissue distribution analysis, various tissues from adult carp (n=5), males (muscle, liver, testis, kidney, and brain), and females (ovary) were collected during the late preparatory phase of the reproductive cycle, snap-frozen in liquid nitrogen and stored at -80°C. Carps follow a seasonal reproductive cycle in the Southern part of India, spawning biannually during monsoon and winter (Routray et al., 2007). Gonads from adult carp were collected (n=5) during the seasonal reproductive cycle flanking preparatory, pre-spawning, spawning, and resting phases for quantifying gene expression. Following anesthetization with 100 mg/L of MS222 (Sigma, MO, USA) in mild ice-cold water, fishes were sacrificed, tissues were collected and kept at -80 °C until experimentation. Fish sampling was performed following the general procedures and with the endorsement of the IAEC, University of Hyderabad (CPCSEA, Inst. Reg# No#151/1999 dt.22.07.1999).

2.2 Histology

The male and female gonads of juvenile carp, 110 to 130 dph were fixed in Bouin's solution, dehydrated, and embedded in paraplast (Sigma). Sections of 5 µm were cut using a microtome (Leica, Wetzler, Germany), stained with hematoxylin-eosin and photomicrographs were taken using Olympus CX41 bright field light microscope (Olympus, Tokyo, Japan).

2.3 Total RNA isolation and cDNA library construction

The gonads of the juvenile carp were staged by histology. Total RNA was prepared from immature gonad tissue (testis and ovary) samples of carp individually using TRI reagent (Sigma). The concentration and integrity of RNA were examined with Ribogreen method using Agilent 2100 Bioanalyzer (Agilent Technologies, USA). RNA with RIN values >7.0 were selected. Equal amounts of the high quality RNA from gonads were then pooled together for mRNA isolation, cDNA synthesis, and sequencing. Library preparation was performed following NEB Next Ultra RNA Library Prep Kit (New England Biolabs, USA) following the manufacturer's instructions. In brief, one µg of total RNA was used to isolate mRNA using NEB Next Poly (A) mRNA Magnetic Isolation Module which was time-dependently fragmented using RNA binding buffer provided in the kit. Then first strand cDNA was prepared using ProtoScript II Reverse Transcriptase, following which the second strand cDNA was synthesized, purified using AMPure XP Beads, end-repaired using NEBNext End Prep Enzyme Mix, and NEBNext Adaptor ligated using Blunt/TA Ligase. These adapter-ligated fragments were subjected to 12 cycles of enrichment and barcoding and the products were purified using Ampure XP beads.

2.4 Sequencing and assembly

Sequencing was done using Illumina Next Seq 500 Sequencer with 75 PE chemistry. The pairedend reads obtained after massive parallel sequencing were subjected to several filters to obtain the potential reads that are specific to identify the transcripts. First, a quality check using FASTQC was performed. The low quality reads (mean Phred_score<20) were removed and the reads with adapter sequences were trimmed. If the length of the trimmed read was below 50 bp, then such reads were discarded. All processed reads were then assembled into transcripts without any reference (*de novo*) using Trinity software (trinityrnaseq20140413p1).

2.5 Functional annotation and ontology

The homology search was done for assembled transcripts' sequences against *T. rubripes*, *Danio rerio*, and (partially annotated) *C. carpio* protein sequences downloaded from the UniProt database (http://www.uniprot.org/uniprot/). NCBI-blast2.2.29 was used for homology search between the sequences. BLASTX program was used to perform similarity searches. Gene annotation was assigned to the RNA-Seq transcripts based on the top BLAST hit. GO annotation analysis was then performed. The annotation results were categorized into biological process, molecular function, and cellular components. KEGG pathways were assigned to those assembled contigs using the online KAAS server (http://www.genome.jp/tools/kaas). COG annotation for transcripts of testis and ovary were based on homology (https://www.ncbi.nlm.nih.gov/COG/).

2.6 Identification of DEG

The reads for both gonadal tissues were separately aligned to the unigene sequences of *C. carpio* and read count profiles were generated. DESeq "R" package was used for differential gene expression. The package DESeq provides methods for testing for differential expression by use of the negative binomial distribution and a shrinkage estimator for the distribution's variance. The threshold for the P-value was set at 0.05. DEG between male or female gonads were identified.

2.7 SSRs

SSRs were identified by mapping all clean reads to the assembled transcript reference using the MIcroSAtellite identification tool (MISA, version 1.0, http://pgrc.ipkatersleben.de/misa/). The minimum repeat number used for every unit was ten for mononucleotide, six for dinucleotide, five for tri-, tetra-, penta- and hexa-nucleotide microsatellites.

2.8 Experimental validation by qPCR

Few candidate DEG were validated by qPCR to verify the expression profile obtained from the transcriptome data. The tissue distribution pattern of different transcripts was analyzed using the SYBR Green detection method. For this, total RNA was extracted from different tissues (brain, kidney, liver, muscle, ovary, and testis) of adult carp using the TRI (Sigma) method. Following DNase I treatment, cDNA synthesis (OneScript® Plus cDNA Synthesis Kit, Applied Biological Materials Inc., BC, Canada) was carried out as described in the manufacturer's manual. Each reaction was performed in triplicate for five distinct biological samples using gene-specific primers designed cautiously to prevent the amplification of genomic DNA with one of the primers straddling the exon-exon boundary. The gene-specific primers (Table 1) were designed based on the sequences obtained from transcriptome analysis and the NCBI GenBank database. The manufacturer's manual was shadowed for amplification (Power SYBRTM Green PCR Master Mix, Thermo Fisher Scientific, MA, US) in ABI Step One Plus real time PCR (Thermo Fisher Scientific). Ct value was estimated from the exponential phase of the PCR amplification and the gene expression was normalized using $18S \, rRNA$ (reference gene) to obtain ΔCt (Ct of target gene - Ct of endogenous control). From the preliminary experiments of this study, as per the validation done based on Radonic' et al. (2004), 18S rRNA (FJ710827.1) normalization was found to be efficient and constitutive with the lowest transcription range compared with other reference genes

such as β -actin (M24113.1) and gapdh (JX244278.1). For estimating fold changes in gene expression, $2^{-\Delta Ct}$ was used.

Table 1: Primers used for qPCR

S. No.	Gene name/symbol	Forward primer (5'-3')	Reverse primer (5'-3')
1	18s rRNA	GCTACCACATCCAAGGAAGGCAGC	CGGCTGCTGGCACCAGACTTG
2	ad4bp/sf-1	CGGACCTGGAAGAGTTGT	GGTTCTCTTGGCATGCAG
3	amh	CCGTGATGAGCAAAGGACACC	CAAAGAGACAATGTTTGCAC
4	dax	CCAGATGTTGCAGGGCTGC	CCTCCATGTTGACAGCGCC
5	dmrt1	GCAGCCCAGGTGGCGTTA	CGTGCTGTCAGTGTGCCCTC
6	egr2b	GACGGCAGGAGGAGAGT	TCAACCAGGAAGCTGGTC
7	gata6	CCCTGCCGACATGTATCAGAC	GGCTGCGACGACACGCTG
8	fbox43	CTACCGGTTCGGCCAGGTGTC	GTGTGTGTGCGGCGTGCG
9	foxk2	GGGCTGGCAAAACTCGAT	GCTGGAGCGCTCCTGGAT
10	mapk	TGGGAACCCCTTCTCTGG	CAATGGTGTGTTCCCGCT
11	sox5	GGACAGCCTGGTGGAGAAAG	CTGCTGTTGTCGTGCAATC
12	sox6	CCGGGGAAGGAACAGCAAC	GTGCCTGCTCCTCATAATATG
13	sox9a	GGTGAACAACGGCCAGAG	GACTGGCCTGAGTGCTCG
14	sox9b	GAACGGCCAGAGCGAGAG	GACCCTGGGACTGACCTG
15	sox11	GCACCAAGTGGAATAAACACCTG	CTGATTTTCTTGCTGCTAGTCAC
16	sox13	GGCCAAAGACGAAAGACGG	GGCCGGGGTTTGTATTTGTAG
17	sox18	GATGCTGGGTCAATCCTGG	CGATGTGGCGAGTAGGCATC
18	sox19	GGCACAGGAGAACCCCAAAATG	CTTCATGAGGGCTTTGGTC
19	sox21	GGTAAGGTTCATGTTGAGCTTTG	CATTACTCAATGCTCGGGTATC
20	sox30	CAGAGCAGTCTAAATTCTCCAGC	GGCTAGAAGAGCTTGAACATGG
21	zp2	CCCTGTGGATGAGTCTTC	GTACCATCTGCTGGGGTC
22	fzd8	CGCGCTGCCGAGGATGAGTA	GCTGCTTCACCTCCGCTATG
23	wtl	CCAGGAATCAGGGTTACGGCAC	GCCTGACTTCCTGTACAGCTG

3 RESULTS

3.1 Histological observation

The maturation level of gonads was histologically determined. Upon observation, the testis (Fig. 1A) showed the presence of primary spermatogonia, secondary spermatogonia, and spermatids/sperms indicating the progression from meiotic to spermiogenic phase of

spermatogenesis. The ovary showed several nucleoli appearing at the periphery of the nucleus indicating the perinucleolar stage (Fig. 1B) of primary oocyte growth.

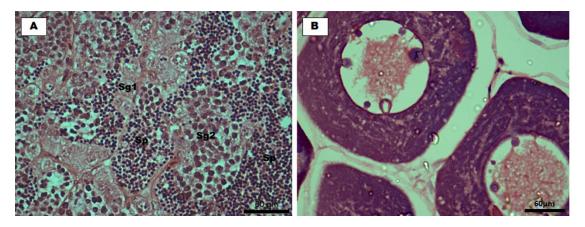


Fig. 1 Histology of gonads A-Immature testis showing Sg1: Primary spermatogonia, Sg2: Secondary spermatogonia, Sp: Sperms/spermatids; B-Immature ovary at perinucleolar-oil droplet stage (Scale: 60 μm).

3.2 Sequencing and reads assembly

A total of 17.06 and 14.87 million paired-end reads with 94.1% and 93.6% high quality bases (Phredscore > 20) were generated from high throughput sequencing of the testis and ovary cDNA libraries, respectively. The transcriptome sequences generated from this study have been deposited in NCBI's GEO Series accession number GSE112157. Nearly, 81,757 and 43, 257 transcripts with average lengths of 769 and 856 bp, and N50 of 1364 and 1453 bp, were obtained after *de novo* assembly for testis and ovary, respectively (Table 2). From these, 84,367 unigenes were constructed after removing redundancy which was a representation of all testicular and ovarian transcriptomes. The total size of the transcriptome was 62.9 and 37 Mbp for testis and ovary, respectively. All transcripts longer than 201 bp were selected and nearly 18,472 and 12,574 transcripts longer than 1000 bp of testis and ovary, respectively were obtained. About, 62,231

unigenes (50%) showed significant hits compared to known proteins. Of these, only 39,171 unigenes could be fully annotated with the available GO data.

Table 2. Summary of immature *C. carpio* gonadal transcriptome.

Transcriptome Assembly	Testis	Ovary
Transcripts generated	43,257	81,757
Maximum transcript length	14,732 bp	14,333 bp
Minimum transcript length	201 bp	201 bp
Average transcript length	856 bp	769 bp
Total transcripts length	37 Mbp	62 Mbp
Transcripts > 200 bp	43,257	81,757
Transcripts > 500 bp	21,462	34,010
Transcripts > 1000 bp	12,574	18,472
Transcripts > 10 Kbp	2	3
N50 value	1453 bp	1364 bp
Number of reads used	1,38,84,178	1,01,99,309
Total number of reads	1,62,67,344	1,39,16,372
Percentage of reads used	85.35	73.29

3.3 Unigene annotation

The unigenes with counterparts in public protein databases were annotated with GO, which offers a dynamically organized vocabulary and classified relationships to symbolize information regarding the categories of Biological process, Cellular component, and Molecular function. Analysis of GO term distribution showed that 'regulation of transcription, DNA templated [GO: 0006355]', 'integral component of membrane [GO: 0016021]', and 'ATP binding [GO: 0005524]'

were the most common annotation terms within the three GO categories, respectively. For the Biological process, 'regulation of transcription' (1745 unigenes) and 'transcription' (1668 unigenes) were the predominant groups. Under the Cellular component, the 'integral component of membrane' (12405 unigenes) represented the most abundant classification followed by 'nucleus' (6951 unigenes). Under the Molecular function, 'ATP binding' (6821 unigenes) and 'zinc ion binding' (4686 unigenes) represented nearly half of the category (Fig. 2).

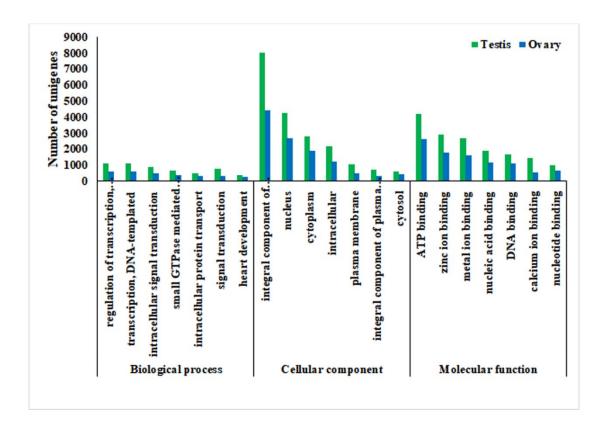


Fig. 2 GO analysis of the *C. carpio* testicular and ovarian transcriptomes of immature carp. The distribution of GO terms portrayed in the three categories: Biological process, cellular component, and molecular function.

To conduct further functional prediction and classification, all unigenes were compared with proteins from the COG database. In total, 6,651 unigenes were classified into 26 categories (Fig. 3). The top three classifications are general function prediction only (1089 unigenes), signal

transduction mechanisms (813 unigenes); and translation, ribosomal structure, and biogenesis (760 unigenes). Following the most abundant three groups were post translational modification, protein turnover, chaperones (674 unigenes), and amino acid transport and metabolism.

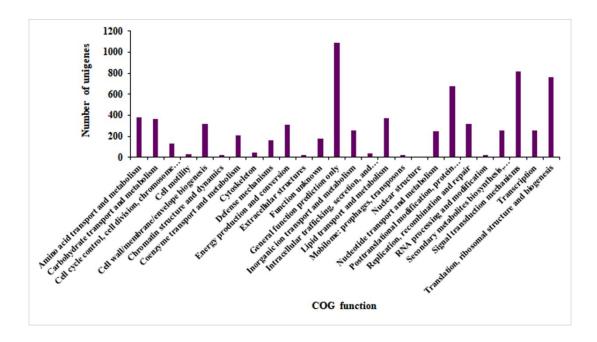


Fig. 3 COG classification of *C. carpio* testicular and ovarian transcriptomes of immature carp. KAAS was used to perform pathway analysis for functional categorization. Enzyme Commission (EC) numbers were assigned with 3,012 enzyme codes for 4,782 unigenes. Pathways were categorized into 6 main groups (Table 3), metabolism (1440 unigenes), organismal systems (175 unigenes), environmental information processing (917 unigenes), genetic information processing (1511 unigenes), cellular processes (697 unigenes), and human diseases (42 unigenes). The majority of the mapped unigenes represented (Fig. 4) signal transduction (13.1%, 627 unigenes), followed by folding, sorting, and degradation (11.7%, 563 unigenes) and translation (11.2%, 538 unigenes). KAAS annotation identified 96 genes related to reproduction, distributed in 7 pathways (Table 4). These genes covered the major processes of reproduction, including the *wnt* signaling

pathway, GnRH signaling pathway, steroid biosynthesis, oocyte meiosis, steroid hormone biosynthesis, neuroactive ligand-receptor, and insulin signaling pathway.

Table 3. KAAS mapping for the gonadal transcriptome of *C. carpio*.

KAAS categories represented	Number of KO	Unique sequences			
Metabolism					
Amino acid metabolism	104	140			
Biosynthesis of other secondary metabolites	1	1			
Carbohydrate metabolism	126	183			
Energy metabolism	105	170			
Glycan biosynthesis and metabolism	128	174			
Lipid metabolism	145	217			
• Metabolism	119	180			
Metabolism of cofactors and vitamins	76	109			
Metabolism of other amino acids	16	47			
Metabolism of terpenoids and polyketides	18	25			
Nucleotide metabolism	123	188			
• Xenobiotics biodegradation and metabolism	5	6			
Cellular Processes					
 Cell growth and death 	93	142			
Cell motility	37	60			
Cellular community	44	84			
Transport and catabolism	226	411			
Organismal Systems	<u> </u>				
Circulatory system	22	30			
Development	5	16			
Endocrine system	40	67			

Immune system	42	56		
Sensory system	5	6		
Human Diseases				
Endocrine and metabolic diseases	4	7		
Infectious diseases	19	35		
Genetic Information Processing				
Folding, sorting, and degradation	327	563		
Replication and repair	120	149		
• Transcription	143	261		
• Translation	339	538		
Environmental Information Processing				
Membrane transport	19	22		
Signal transduction	371	627		
Signaling molecules and interaction	190	268		
Total	3012	4782		

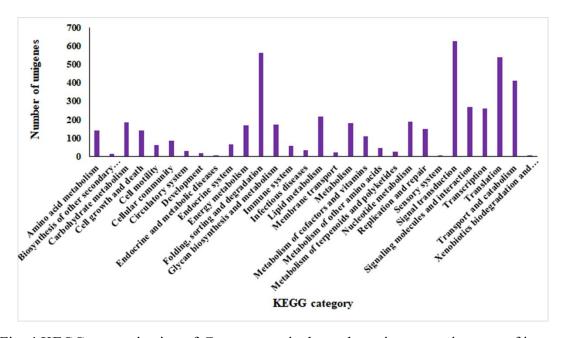


Fig. 4 KEGG categorization of *C. carpio* testicular and ovarian transcriptomes of immature carp.

Table 4: Reproduction-related pathways identified in carp gonadal transcriptome.

Description	Number of genes in the pathway
Wnt signaling pathway	47
Steroid biosynthesis	14
Oocyte meiosis	12
Insulin signaling pathway	10
Steroid hormone biosynthesis	8
GnRH signaling pathway	3
Neuroactive ligand-receptor interaction	2

3.4 Identification of SSRs

A total of 18,342 and 8,693 SSRs were finally obtained from the testis and ovary, respectively. Within SSRs in the testis, the most abundant type of repeat motif was mono (10938), di-nucleotide repeats (3748), followed by tri (2127), quadra- (194), penta- (6), and hexa-nucleotide (4) repeat units (Fig. 5). Within SSRs in the ovary, the most abundant types of repeat motif were mono (4805) and di-nucleotide repeats (1919), followed by tri- (1298), quadra- (87), penta- (13), and hexa-nucleotide (1) repeat units (Fig. 6A). The most abundant repeat motif in SSRs (Fig. 6B) was A/T (18115), followed by AC/GT (3792), AG/CT (1603), AT/AT (1281), and ATC/ATG (787).

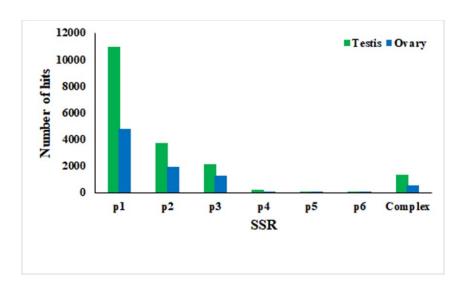


Fig. 5 Distribution of SSRs identified from carp testis and ovary transcriptomes of immature carp.

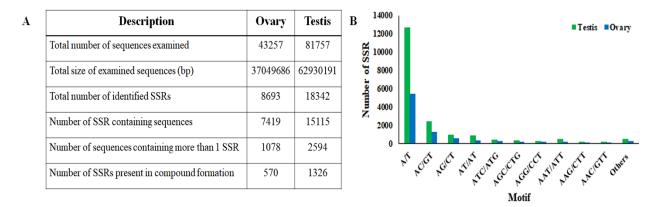


Fig. 6 A. Statistics of SSRs from the gonadal transcriptome of immature *C. carpio*. B. Frequency distribution of SSRs based on motif sequence types.

3.5 DEG

Differential expression between testis and ovary were analyzed to identify the genes involved in sex differentiation. Based on the applied criteria (twofold or greater change and $p \le 0.05$), 171 unigenes were showing higher expression in the testis than in the ovary, and 127 unigenes showed higher expression in the ovary than in the testis. There was no significant difference in the

expression of most unigenes between testis and ovary. To visualize comprehensive similarities and differences in gene expression between testis and ovary, a scatterplot was generated using R package and clear differences in gene expression between testis and ovary could be observed (Fig.7). The DEG report has been uploaded in NCBI's GEO GSE112157.

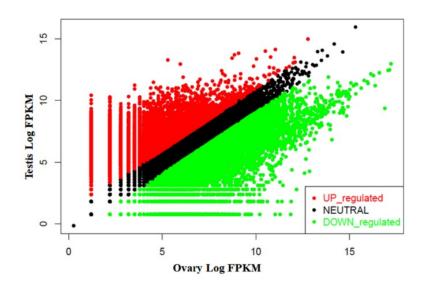


Fig. 7 Analysis of the DEG between the (immature) testis and ovary from the gonadal transcriptome of *C. carpio*. FPKM (fragments per kilobase of transcript per million mapped reads).

3.6 DEG validation in gonads

Twelve DEG such as *amh*, *egr2b*, *dax1*, *dmrt1*, *fbox43*, *foxk2*, *fzd8*, *gata6*, *mapk*, *sox9a*, *wt1*, and *zp2* related to sex differentiation, were chosen to verify the changes in their expression levels in gonads. Expression of *amh*, *dax1*, *dmrt1*, *gata6*, *sox9a*, and *wt1* was higher in testis, whereas *egr2b*, *fbox43*, *foxk2*, *fzd8*, *mapk*, and *zp2* were found to be elevated in the ovary, (Fig. 8). These results reiterate the differential gene expression pattern observed in gonadal transcriptome analysis.

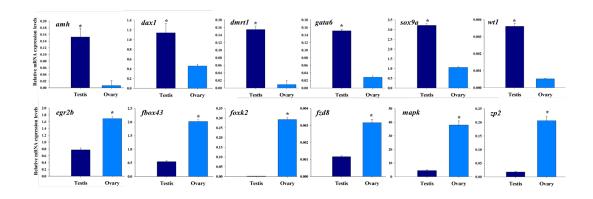


Fig. 8 Validation of immature *C. carpio* gonadal tissue transcriptome results by qPCR using 12 selected DEG in testis and ovary. qPCR fold changes are normalized by changes in 18SrRNA values (P < 0.05; ANOVA followed by Student–Newman–Keuls' test). All data from qPCR studies were expressed as mean ± SEM.

3.7 Identification of reproduction-related genes

Nearly, 809 genes related to reproduction were identified by literature supported searching. The gonadal transcriptome data was used to profile the expression of several reproduction-related genes. Sex steroid synthesis related genes such as *star*, *hsd3b7*, *hsd17b*, *hsd20b2*, *cyp19a*, and *er* showed higher expression levels in the ovary than in the testis. The exceptions are *hsd11b*, and *ar* which showed higher expression in testis (Fig. 9A). Genes involved in various gonadotropin pathway receptors such as *lhcgr*, *fgfr1a2*, *tac3a*, *notch2*, and *fshr*, *prlhr2a*, *kiss2* were moderately over-expressed in the testis and ovary, respectively (Fig. 9B). Some of the genes involved in germ cell maintenance were highly expressed in the ovary, namely *vasa*, *pou5f1*, *ipo4*, *pcna*, and *notch1* and other germ cell-related genes like *sycp3*, *piwi*, *plzf*, *cxcr4*, and *cxcl12* showed higher expression in testis (Fig. 9C). Another set of genes that were found to be over-expressed in testicular tissue included various factors related to gonadal differentiation such as *igf1ra*, *wt1*, *rspo1*, *ctnnbip1*, *tcf3a*, *msl1b*, and *atm* while *fem1b* and *smad3b* showed higher expression in the ovary (Fig. 9D).

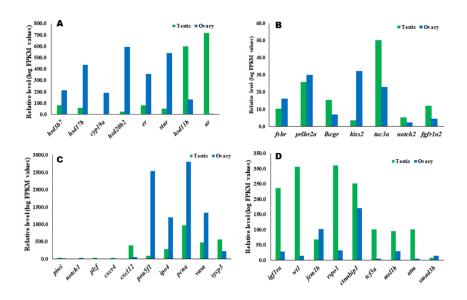


Fig. 9 Relative levels of transcripts of genes potentially involved in gonadal differentiation in juvenile carp (A-steroid synthesis, B-endocrine regulation, C-germ cell maintenance, D-other factors).

3.8 Identification and expression profiling of sox family genes

About ten genes, a representative from each of the sub-group (B-H) of the *sox* family were also obtained from the transcriptome analysis and few of them showed differential expression between testis and ovary (Fig. 10).

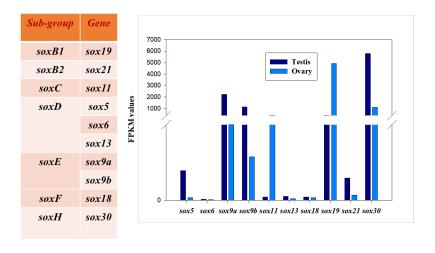


Fig. 10 Relative levels of transcripts of sox family genes obtained from the transcriptome.

Primers were designed based on the sequences obtained from transcriptome and qPCR was performed. Tissue distribution analysis revealed that the expression of sox family genes was ubiquitous in the tissues (n=5) analyzed (Fig. 11). The expression of sox5 was high in gonads, while sox6, sox13, sox18, and sox21 showed varied expression in the tissue distribution analysis. The expression of sox9a/b was high in the brain followed by the testis, whereas the predominant expression of sox30 was evident in the testis followed by the ovary. The expression of sox19 was high in the brain followed by the ovary, while sox11 showed higher expression in the ovary as compared to other tissues analyzed.

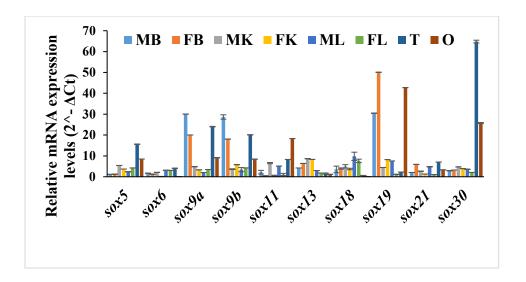


Fig. 11 Tissue distribution analysis of *sox* family genes. Abbreviations: MB-male brain, FB-female brain, MK-male kidney, FK-female kidney, ML-male liver, FL-female liver, T-testis, O-ovary. All other details are the same as Fig. 8.

Analysis through the testicular reproductive cycle of carp displayed significant expression of sox30 during pre-spawning (P < 0.05) followed by spawning in comparison with the post-spawning phase (Fig. 12). Notable expression of sox5, sox9a/b was observed in pre-spawning and spawning phases.

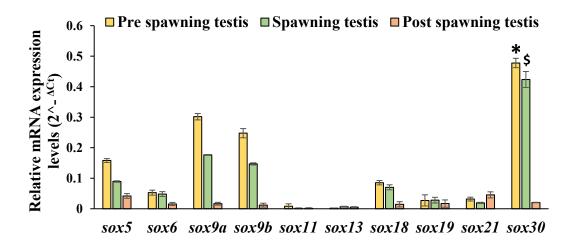


Fig. 12 Testicular reproductive phase analysis of *sox* family genes. All other details are the same as Fig. 8.

Analysis through the ovarian reproductive cycle of carp exhibited significant high expression of sox19 in pre-spawning (P < 0.05) and spawning, and minimal expression during the post-spawning phase (Fig. 13). Notable expression of sox11 and sox30 was observed in pre-spawning and spawning phases.

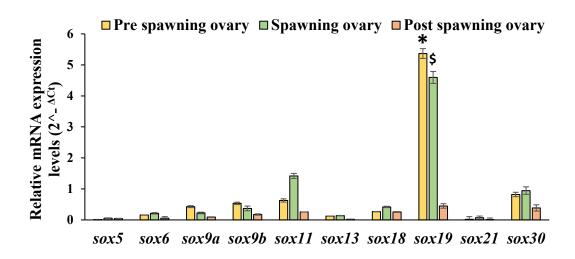


Fig. 13 Ovarian reproductive phase analysis of *sox* family genes. All other details are the same as in Fig. 8.

4 DISCUSSION

With the advancement of NGS technology, the information on DEG between testis and ovary is growing, and these genetic databases offer libraries facilitating the identification of corresponding genes in other fish species. Though the available gonadal transcriptomic data continues to increase, there is a need for novel sex-related genes to understand the convoluted process of gonadal development in fishes. To gain insight into the molecular fundamentals of gonad development and growth, in this study, the gonadal transcriptome of *C. carpio* was obtained after *de novo* assembly of RNA-Seq data from developing testis and ovary of immature fish. Several new players showing dimorphic gene expression were identified. Candidate genes for sex differentiation and development, showing differential gene expression, were further tested to validate our findings. Further, the major group of reproduction-related genes identified were similar with previous reports indicating that these genes are functional in fishes. The data obtained in this study adds to the transcriptomic profile available for the family Cyprinidae.

4.1 GO, COG, KEGG

One of the essential features of transcriptome analysis is to associate individual sequences and related expression information with biological functions. The juvenile stage is transcriptionally active as the bipotential gonad differentiates into a specific and functionally active gonad, either testis or ovary. GO, COG, and mapped unigenes were majorly involved in translational machinery, indicating that juveniles are at a crucial phase of gonadal development. The KAAS pathway analysis is based on sequence similarities and accommodates bi-directional best hit information, enabling it to attain a high degree of accuracy in comparison to a manually curated KEGG GENES database. Hence, KASS can facilitate research on the relationship between different genes obtained from the transcriptome (Moriya *et al.*, 2007). Transcripts encoding enzymes or other proteins

involved in reproductive pathways, for example, *hsd3b*, GnRH, serine/threonine-PP2A, corticosteroid *hsd11b*, sterol 14-demethylase, lanosterol synthase, and many more were detected. Pathway analysis mapped some of the genes involved in the *wnt* signaling pathway, oocyte meiosis, and steroid hormone biosynthesis, all of which play a pivotal role in sex differentiation and gonadal development (Baroiller *et al.*, 1999; Prathibha and Senthilkumaran, 2017). Recognizing these pathways permits the analysis of reproduction mechanisms in *C. carpio*, although most of the genes present in the putative KEGG pathways that were identified were not found in the present study.

4.2 SSRs

SSRs or microsatellites are polymorphic regions existing in genomic DNA consisting of 2 to 6 bp repeated core sequences (Queller *et al.*, 1993) and important to perform research on evolution, molecular ecology, quantitative trait loci analysis, genetic diversity, gene mapping, population genetic analysis comparative genomics, and marker-assisted selective breeding. The SSRs identified in the current study, provide a valuable resource for molecular research in carp.

4.3 DEG

Studies have suggested that the sex-biased genes, primarily or absolutely expressed in one sex, drive the phenotypic differences in males and females (Assis *et al.*, 2012; Ellegren and Parsch 2007) and cause the phenotypic sexual dimorphism in zebrafish (Small *et al.*, 2009). In juveniles, a group of genes is differentially expressed to fulfil the requirement of gonadal development. A total of 298 genes showed significant differences between the testicular and ovarian transcriptomes, including 171 and 127 genes showing higher expression in the testis and ovary, respectively. The higher number of testis versus ovary up-regulated genes found in the carp was in accordance with the result obtained in the Nile tilapia (Tao *et al.*, 2013). The histological

observations depict (Fig 1A) active stages of spermatogenesis in the testis with evidence of the presence of spermatocytes and spermatids in the spermatogenic cysts, and the increase in the mass of the testis during this time is largely due to materials synthesized locally coinciding with our transcriptome data showing a greater number of transcripts and DEG in testis. On the other hand, the ovary (Fig 1B) was observed to be in late primary oocyte growth or early secondary growth before the onset of vitellogenesis. Possibly, at this stage, the intense transcriptional activity in the oocyte subsides as it transits into the main phase of growth, which is due to the acquisition of materials (such as neutral lipid precursors and yolk proteins) produced in other tissues due to which the number of transcripts and DEG may be lesser in the ovary in comparison to the testis. Overall, the difference of gene numbers between females and males might imply that male gonadal development may require a larger number of early expressing transcripts compared with females in teleosts, triggering an early testis upregulated gene expression pattern before any female pattern emerges. DEG were investigated exposing several genes that might be enriched in sex-related biological pathways. Among DEG, a few candidate genes like amh, dmrt1, sox9a, associated with testicular differentiation (Kamiya et al., 2012; Kobayashi et al., 2008; Nagahama 2005; Raghuveer and Senthilkumaran, 2009; Raghuveer and Senthilkumaran, 2010a), dax1 and gata6 involved in gonadogenesis (Liu et al., 2016; Wang et al., 2002), wtl regulating SRY (Hossain and Saunders, 2001), zp2 and mapk playing roles in oocyte development (Chang et al., 1997; Ponza et al., 2011), foxk2 involved in gonadal development (Yuan et al., 2014), fbox43 having a role in oocyte meiosis (Tung et al., 2005), fzd8 receptor of wnt signaling (von Schalburg et al., 2006) and egr2b expressed in murine granulosa cells (Jin et al., 2016) were selected and their differential expression was validated by qPCR to indicate their critical role in gonadal development. The previous study by Chen et al. (2015) also identified differential expression of wt1 and zp3 in testis and ovary of adult carp using suppression subtractive hybridization. Thus, *wt1*, *zp2*, and *zp3* show dimorphic expression from the juvenile stage and is consistent up to adulthood.

4.4 Identification of new players from DEG

New players like *cux1*, *dmrt2a*, *fam192a*, *fst13*, *retinoic acid receptor RXR-beta-A*, *stathmin*, *sycp1*, and *zar1* also showed dimorphic gene expression pattern. CDP/Cut (CCAAT displacement protein) is a transcription factor involved in the regulation of cell growth and differentiation-related genes (Nepveu, 2001). Vanden Heuvel *et al.* (1996) reported that *cux1* represents an example of a transcription factor that undergoes testis-specific alternative splicing during spermatogenesis. Previous studies have reported *cux* is required for reproductive functions and its genetic ablation results in reduced male fertility (Luong *et al.*, 2002) and impaired lactation (Tufarelli *et al.*, 1998) in mice. A dimorphic expression pattern of *cux2a* was observed, indicating its role in the reproduction of fishes as well.

Gene expression of *dmrt1* is associated with testicular development in many species (Raghuveer and Senthilkumaran, 2009). Differential gene expression pattern of *dmrt2a* was observed, coinciding with the previous report by Peng *et al.* (2016) in which *dmrt2b* showed dimorphic expression pattern, suggesting these new players' *dmrt2a* and *dmrt2b* might potentially be associated with sex differentiation in carp.

A recent transcriptomic study on developmental gonads in protandrous black porgy, *Acanthopagrus schlegelii* (Zhang *et al.*, 2018) reported up-regulated expression of *fam101b* in ovary coinciding with *fam192a* and *fam210b* showing dimorphic expression in carp, elucidating their importance in ovarian development.

FSTL is an FSH-suppressing protein that is produced in the pituitary and upon binding to *activin*, neutralizes the FSH stimulatory actions of *activin* (Nakamura *et al.*, 1990). FSTL, which encodes

a TGF-β superfamily binding protein, inhibits the formation of the XY-specific coelomic vessel in XX gonads, a feature normally associated with testis differentiation (Yao *et al.*, 2004). *fstl* displayed early sexually dimorphic expression profile in rainbow trout (Vizziano *et al.*, 2007). Incidentally, *fstl3* showed a dimorphic expression pattern, revealing its crucial role in carp gonadal differentiation.

RA is an active derivative of vitamin A that diffuses through tissues and binds to heterodimers of the nuclear receptors RAR-RXR, which recognize RA-response elements in DNA to control the expression of RA-target genes (Duester 2008). RA signaling stimulates differentiation of spermatogonial germ cells and induces meiosis in male but not female gonads (Duester 2013). RA receptor RXR-beta-A showed differential gene expression in juvenile carp coinciding with the report of Rodríguez-Marí *et al.* (2013) in zebrafish suggesting that the continuous availability of retinoic acid to germ cells in bipotential gonads prohibits the sexually dimorphic onset of meiosis and is consistent with the initial development of meiotic oocytes in juvenile teleosts.

Stathmin is a neuron-enriched gene mediating tubulin depolymerization (Sobel et al., 1989). Studies demonstrated that maternal stathmin accumulates in oocytes and is redistributed in pre-implantation embryos (Koppel et al., 1999). Chu et al. (2006) observed an intense expression of stathmin in the ovary of tilapia. The dimorphic expression pattern of stathmin observed in the present study indicates its functional significance in the gonads of carp.

Sycp3 is a meiosis-specific component of the synaptonemal complex, required for the synapsis of homologous chromosomes, and is a marker of meiosis in mammals (Page et al., 2006). Its importance in gametogenesis and fertility has been studied in a few teleost species such as medaka and zebrafish (Iwai et al., 2006; Ozaki et al., 2011). Laldinsangi and Senthilkumaran (2018) demonstrated that sycp3 has a potential role in the development and maintenance of testicular

function in catfish. The dimorphic expression pattern of *sycp1* revealed its crucial role during the gonadal development of carp as well.

Ovary-specific maternal factor, zar1 plays an essential role during the oocyte-to-embryo transition (Wu et al., 2003). Expression of zar1 was identified in gonads of carp, coinciding with a recent transcriptome study in tilapia (Tao et al., 2018) that reported a correlation of zar1 with the expression of genes previously known to be involved in sex differentiation. Further investigations including functional analysis of these genes in female and male fishes are needed to substantiate our findings.

4.5 Genes related to reproduction

A large number of genes (809) related to reproduction have been identified by gonadal transcriptome analysis. Corticosteroids (hsd3b7, hsd17b, hsd11b) and their receptors (ar and er) play a crucial role in the regulation of reproduction by acting as transcription factors in somatic cells of gonads (Milla et al., 2009). Steroid synthesis gene hsd3b7, expressed in Leydig cells and responsible for the biosynthesis of steroids, mainly progesterone and testosterone, was moderately over-expressed in the ovary. Besides, hsd17b, which regulates the concentration of biologically active androgens and estrogens and is involved in the synthesis of E2, was also over-expressed in the ovary. Other steroid-related genes like, the sterol transfer-coding gene star, genes coding for er and cyp19a1 (Barney et al., 2008) which is responsible for E2 biosynthesis in females, followed similar expression patterns as reported in transcriptome analysis of the Russian sturgeon (Hagihara et al., 2014). On the other hand, hsd11b, an enzyme which converts gonad maturation inhibiting cortisol or corticosterone into inactive cortisone or 11-dihydrocorticosterone, respectively, and the gene coding for ar showed higher expression in testis, like that of the expression pattern in the Nile Tilapia gonadal transcriptome analysis (Tao et al., 2013). Key marker genes of germ cells

namely, *vasa*, *pou5f1* (Raghuveer and Senthilkumaran, 2010b; Wang *et al.*, 2011) playing role in stem cell maintenance and regulation, and *pcna*, playing a crucial role in meiosis (Miura *et al.*, 2002) were over-expressed in the ovary, indicating their germ cell regulation in the female ovary. Other germ cell maintenance genes such as *piwi*, *notch1*, *plzf*, *cxcr4*, *cxcl12*, *ipo4*, and *sycp3* were moderately over-expressed in testis like that of the transcriptome of Southern bluefin tuna (Bar *et al.*, 2016). The expression pattern of other genes/factors related to gonadal differentiation like *hsd20b2*, *lhcgr*, *fgfr1a2*, *tac3a*, *notch2*, *fshr*, *prlhr2a*, *kiss2*, *igf1ra*, *wt1*, *rspo1*, *ctnnbip1*, *tcf3a*, *msl1b*, *fem1b*, *smad3b*, and *atm* between testis and ovary were comparable to the transcriptome analysis of previous reports (Bar *et al.*, 2016; Hagihara *et al.*, 2014; Shi *et al.*, 2015; Wang *et al.*, 2017).

4.6 Expression analysis of sox family genes

Genes of the *sox* family are involved in the regulation of various developmental processes such as the germ layer formation, organ development, and cell type specification (Wegner, 1999). Several reports have shown the essentiality of *sox* family genes namely *sox3/5/9a/9b* in differentiation, growth, and development of gonads in teleost (Raghuveer and Senthilkumaran, 2010; Rajakumar and Senthilkumaran, 2014; Schartl *et al.*, 2018; Takehana *et al.*, 2014). However, the role of other genes belonging to the *sox* family is poorly understood. The abundant expression of *sox30* in testis and *sox19* in the ovary from expression profiling of the ten *sox* genes in the tissue distribution and reproductive phases, indicated for a detailed study of *sox30* and *sox19*, which is described in the following chapters (2 and 3).

5 CONCLUSION

Overall, analysis of carp gonadal transcriptome using NGS RNA-Seq technology identified diverse regulatory mechanisms/ pathways of sexual development and provided a valuable resource

for evaluating differential gene expression patterns. The dimorphic expression of sex-related genes offers additional insights into gonadal differentiation. In addition, results from this study warrant the analysis of sox30 and sox19 role in gonadal function.

6 REFERENCES

- 1) Amberg, J., Goforth, R., Sepulveda, M., 2013. Antagonists to the *Wnt* cascade exhibit sex specific expression in gonads of sexually mature shovelnose sturgeon. Sex. Dev. 7, 308–315.
- 2) Assis, R., Zhou, Q., Bachtrog, D., 2012. Sex-biased transcriptome evolution in Drosophila. Genome Biol. Evol. 4, 1189–1200.
- 3) Bar, I., Cummins, S., Elizur, A., 2016. Transcriptome analysis reveals differentially expressed genes associated with germ cell and gonad development in the Southern bluefin tuna (*Thunnus maccoyii*). BMC Genomics 17, 217.
- 4) Barney, M.L., Patil, J.G., Gunasekera, R.M., Carter, C.G., 2008. Distinct cytochrome P450 aromatase isoforms in the common carp (*Cyprinus carpio*): sexual dimorphism and onset of ontogenic expression. Gen. Comp. Endocrinol. 156, 499–508.
- 5) Baroiller, J.F., Guiguen, Y., Fostier, A., 1999. Endocrine and environmental aspects of sex differentiation in fish. Cell. Mol. Life Sci. 55, 910–931.
- 6) Baron, D., Guiguen, Y., 2003. Gene expression during gonadal sex differentiation in rainbow trout (*Orcorhynchus mykiss*): from candidate genes studies to high throughout genomic approach. Fish Physiol. Biochem. 28, 119–123.
- 7) Calduch-Giner, J.A., Bermejo-Nogales, A., Benedito-Palos, L., Estensoro, I., Ballester-Lozano, G., Sitja-Bobadilla, A., Perez-Sanchez, J., 2013. Deep sequencing for *de novo*

- construction of a marine fish (*Sparus aurata*) transcriptome database with a large coverage of protein-coding transcripts. BMC Genomics 14, 178.
- 8) Chang, Y.S., Hsu, C.C., Wang, S.C., Tsao, C.C., Huang, F.L., 1997. Molecular cloning, structural analysis, and expression of carp *ZP2* gene. Mol. Reprod. Dev. 46, 258–267.
- 9) Chen J.J., Xia X.H., Wang L.F., Jia Y.F., Nan P., Li L., Chang Z.J., 2015. Identification and comparison of gonadal transcripts of testis and ovary of adult common carp *Cyprinus carpio* using suppression subtractive hybridization. Theriogenology 83, 1416–1427.
- 10) Chen, S., Zhang, G., Shao, C., Huang, Q., Liu, G., Zhang, P., Song, W., An, N., Chalopin, D., Volff, J.N., Hong, Y., Li, Q., Sha, Z., Zhou, H., Xie, M., Yu, Q., Liu, Y., Xiang, H., Wang, N., Wu, K., Yang, C., Zhou, Q., Liao, X., Yang, L., Hu, Q., Zhang, J., Meng, L., Jin, L., Tian, Y., Lian, J., Yang, J., Miao, G., Liu, S., Liang, Z., Yan, F., Li, Y., Sun, B., Zhang, H., Zhang, J., Zhu, Y., Du, M., Zhao, Y., Schartl, M., Tang, Q., Wang, J., 2014. Whole-genome sequence of a flatfish provides insights into ZW sex chromosome evolution and adaptation to a benthic lifestyle. Nat. Genet. 46, 253–260.
- 11) Chu, S.-L., Weng, C.-F., Hsiao, C.-D., Hwang, P.-P., Chen, Y.-C., Ho, J.-M., Lee, S.-J., 2006. Profile analysis of expressed sequence tags derived from the ovary of tilapia, *Oreochromis mossambicus*. Aquaculture 251, 537–548.
- 12) Devlin, R.H., Nagahama, Y., 2002. Sex determination and sex differentiation in fish: an overview of genetic, physiological, and environmental influences. Aquaculture 208, 191–364.
- 13) Dipper, F.A., Pullin, R.S.V., 1979. Gonochorism and sex-inversion in British Labridae (*Pisces*). J. Zool. 187, 97–112.

- 14) Duester, G., 2008. Retinoic acid synthesis and signaling during early organogenesis. Cell 134, 921–931.
- 15) Duester, G., 2013. Retinoid signaling in control of progenitor cell differentiation during mouse development. Semin. Cell Dev. Biol. 24, 694–700.
- 16) Ellegren, H., Parsch, J., 2007. The evolution of sex-biased genes and sex-biased gene expression. Nat. Rev. Genet. 8, 689–698.
- 17) Hagihara, S., Yamashita, R., Yamamoto, S., Ishihara, M., Abe, T., Ijiri, S., Adachi, S., 2014. Identification of genes involved in gonadal sex differentiation and the dimorphic expression pattern in undifferentiated gonads of Russian sturgeon *Acipenser gueldenstaedtii* Brandt & Ratzeburg, 1833. J. Appl. Ichthyol. 30, 1557–1564.
- 18) Hattori, R.S., Murai, Y., Oura, M., Masuda, S., Majhi, S.K., Sakamoto, T., Fernandino, J.I., Somoza, G.M., Yokota, M., Strussmann, C.A., 2012. A Y-linked anti-Mullerian hormone duplication takes over a critical role in sex determination. Proc. Natl. Acad. Sci. USA 109, 2955–2959.
- 19) Hossain, A., Saunders, G.F., 2001. The human sex-determining gene *SRY* is a direct target of *WT1*. J. Biol. Chem. 276, 16817–16823.
- 20) Hu, M.C., Hsu, N.C., Pai, C.I., Wang, C.K., Chung, B., 2001. Functions of the upstream and proximal steroidogenic factor 1 (SF-1)-binding sites in the CYP11A1 promoter in basal transcription and hormonal response. Mol. Endocrinol. 15, 812–818.
- 21) Iwai, T., Yoshii, A., Yokota, T., Sakai, C., Hori, H., Kanamori, A., Yamashita, M., 2006. Structural components of the synaptonemal complex, SYCP1 and SYCP3, in the medaka fish *Oryzias latipes*. Exp. Cell Res. 312, 2528–2537.

- 22) Janzen, F.J., 1995. Experimental evidence for the evolutionary significance of temperature dependent sex determination. Evolution 864–873.
- 23) Ji, P., Liu, G., Xu, J., Wang, X., Li, J., Zhao, Z., Zhang, X., Zhang, Y., Xu, P., Sun, X., 2012. Characterization of common carp transcriptome: sequencing, *de novo* assembly, annotation and comparative genomics. PLoS One 7, e35152.
- 24) Ji, P., Zhang, Y., Li, C., Zhao, Z., Wang, J., 2012. High throughput mining and characterization of microsatellites from common carp genome. Int. J. Mol. Sci. 13, 9798–9807.
- 25) Jin, H., Won, M., Shin, E., Kim, H.M., Lee, K., Bae, J., 2016. EGR2 is a gonadotropin-induced survival factor that controls the expression of IER3 in ovarian granulosa cells. Biochem. Biophys. Res. Commun. 482, 877–882.
- 26) Kamiya, T., Kai, W., Tasumi, S., Oka, A., Matsunaga, T., Mizuno, N., Fujita, M., Suetake, H., Suzuki, S., Hosoya, S., 2012. A trans-species missense SNP in *Amhr2* is associated with sex determination in the tiger pufferfish, *Takifugu rubripes* (fugu). PLoS Genet. 8, e1002798.
- 27) Kobayashi, T., Kajiura-Kobayashi, H., Guan, G., Nagahama, Y., 2008. Sexual dimorphic expression of *DMRT1* and *Sox9a* during gonadal differentiation and hormone-induced sex reversal in the teleost fish Nile tilapia (*Oreochromis niloticus*). Dev. Dyn. 237, 297–306.
- 28) Kongchum, P., Palti, Y., Hallerman, E, M., Hulata, G., David, L., 2010. SNP discovery and development of genetic markers for mapping innate immune response genes in common carp (*Cyprinus carpio*). Fish Shellfish Immunol. 29, 356–361.

- 29) Koppel, J., Rehak, P., Baran, V., Vesela, J., Hlinka, D., Manceau, V., Sobel, A., 1999.
 Cellular and subcellular localization of stathmin during oocyte and preimplantation embryo development. Mol. Reprod. Dev. 53, 306–317.
- 30) Laldinsangi, C., Senthilkumaran, B., 2018. Identification, cloning and expression profile of *sycp3* during gonadal cycle and after siRNA silencing in catfish. Gene Rep. 10, 54–65.
- 31) Liu, J., Zhang, W., Sun, Y., Wang, Z., Zhang, Q., Wang, X., 2016. Molecular characterization and expression profiles of GATA6 in tongue sole (*Cynoglossus semilaevis*). Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 198, 19–26.
- 32) Liu, J.X., Xu, Q.H., Li, S., Yu, X., Liu, W., Ouyang, G., Zhang, T., Chen, L.L., 2017. Transcriptional factors Eaf1/2 inhibit endoderm and mesoderm formation via suppressing TGF-β signaling. Biochim. Biophys. Acta.1860, 1103–1116.
- 33) Lu, J., Luan, P., Zhang, X., Xue, S., Peng, L., Mahbooband, S., Sun, X., 2014. Gonadal transcriptomic analysis of yellow catfish (*Pelteobagrus fulvidraco*): identification of sexrelated genes and genetic markers. Physiol. Genomics 46, 798–807.
- 34) Luong, M.X., van der Meijden, C.M., Xing, D., Hesselton, R., Monuki, E.S., Jones, S.N., Lian, J.B., Stein, J.L., Stein, G.S., Neufeld, E.J., van Wijnen, A.J., 2002. Genetic ablation of the CDP/Cux protein C terminus results in hair cycle defects and reduced male fertility. Mol. Cell. Biol. 22, 1424–1437.
- 35) Matsuda, M., Nagahama, Y., Shinomiya, A., Sato, T., Matsuda, C., Kobayashi, T., Morrey, C.E., Shibata, N., Asakawa, S., Shimizu, N., 2002. *DMY* is a Y-specific DM-domain gene required for male development in the medaka fish. Nature 417, 559–563.
- 36) McGrath, S.A., Esquela, A.F., Lee, S.J., 1995. Oocyte-specific expression of growth/differentiation factor-9. Mol. Endocrinol. 9, 131–136.

- 37) Milla, S., Wang, N., Mandiki, S.N.M., Kestemont, P., 2009. Corticosteroids: Friends or foes of teleost fish reproduction?. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 153, 242–251.
- 38) Miura, C., Miura, T., Yamashita, M., 2002. PCNA protein expression during spermatogenesis of the Japanese eel (*Anguilla japonica*). Zoolog. Sci. 19, 87–91.
- 39) Moriya, Y., Itoh, M., Okuda, S., Yoshizawa, A.C., Kanehisa, M., 2007. KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res. 35, 182–185.
- 40) Morohashi, K., Honda, S., Inomata, Y., Handa, H., Omura, T., 1992. A common transacting factor, Ad4-binding protein, to the promoters of steroidogenic P-450s. J. Biol. Chem. 267, 17913–17919.
- 41) Myosho, T., Otake, H., Masuyama, H., Matsuda, M., Kuroki, Y., Fujiyama, A., Naruse, K., Hamaguchi, S., Sakaizumi, M., 2012. Tracing the emergence of a novel sex determining gene in medaka, *Oryzias luzonensis*. Genetics 191, 163–170.
- 42) Nagahama, Y., 2005. Molecular mechanisms of sex determination and gonadal sex differentiation in fish. Fish Physiol. Biochem. 31, 105–109.
- 43) Nakamoto, M., Fukasawa, M., Tanaka, S., Shimamori, K., Suzuki, A., Matsuda, M., Kobayashi, T., Nagahama, Y., Shibata, N., 2012. Expression of 3β-hydroxysteroid dehydrogenase (hsd3b), *StAR* and *ad4bp/sf-1* during gonadal development in medaka (*Oryzias latipes*). Gen. Comp. Endocrinol. 176, 222–230.
- 44) Nakamura, T., Takio, K., Eto, Y., Shibai, H., Titani, K., Sugino, H., 1990. Activin-binding protein from rat ovary is follistatin. Science 247, 836–838.

- 45) Nanda, I., Kondo, M., Hornung, U., Asakawa, S., Winkler, C., Shimizu, A., Shan, Z., Haaf, T., Shimizu, N., Shima, A., Schmid, M., Schartl, M., 2002. A duplicated copy of DMRT1 in the sex-determining region of the Y chromosome of the medaka, *Oryzias latipes*. Proc. Natl. Acad. Sci. USA 99, 11778–11783.
- 46) Nepveu, A., 2001. Role of the multifunctional CDP/Cut/Cux homeodomain transcription factor in regulating differentiation, cell growth and development. Gene 270, 1–15.
- 47) Ozaki, Y., Higuchi, M., Miura, C., Yamaguchi, S., Tozawa, Y., Miura, T., 2006. Roles of 11β-hydroxysteroid dehydrogenase in fish spermatogenesis. Endocrinology 147, 5139–5146.
- 48) Ozaki, Y., Saito, K., Shinya, M., Kawasaki, T., Sakai, N., 2011. Evaluation of *Sycp3*, *Plzf* and Cyclin B3 expression and suitability as spermatogonia and spermatocyte markers in zebrafish. Gene Expr. Patterns 11, 309–315.
- 49) Page, J., Viera, A., Parra, M.T., de la Fuente, R., Suja, J.A., Prieto, I., Barbero, J.L., Rufas, J.S., Berri'os, S., Fernandez-Donoso, R., 2006. Involvement of synaptonemal complex proteins in sex chromosome segregation during marsupial male meiosis. PLoS Genet. 2, e136.
- 50) Peng, W., Xu, J., Zhang, Y., Feng, J., Dong, C., Jiang, L., Feng, J., Chen, B., Gong, Y., Chen, L., Xu, P., 2016. An ultra-high-density linkage map and QTL mapping for sex and growth-related traits of common carp (*Cyprinus carpio*). Sci. Rep. 6:26693.
- 51) Ponza, P., Yocawibun, P., Sittikankaew, K., Hiransuchalert, R., Yamano, K., Klinbunga, S., 2011. Molecular cloning and expression analysis of the mitogen activating protein kinase 1 (MAPK1) gene and protein during ovarian development of the giant tiger shrimp *Penaeus monodon*. Mol. Reprod. Dev. 78, 347–360.

- 52) Prathibha, Y., Senthilkumaran, B., 2017. Expression of *wnt4/5* during reproductive cycle of catfish and *wnt5* promoter analysis. J. Endocrinol. 232, 1–13.
- 53) Queller, D.C., Strassman, J.E., Hughes, C.R., 1993. Microsatellites and kinship. Trends Ecol. Evol. 8, 285–288.
- 54) Radonić, A., Thulke, S., Mackay, I.M., Landt, O., Siegert, W., Nitsche, A., 2004. Guideline to reference gene selection for quantitative real-time PCR, Biochem. Biophys. Res. Commun. 313, 856–862.
- 55) Raghuveer, K., Senthilkumaran, B., 2009. Identification of multiple *dmrt1*s in catfish: localization, dimorphic expression pattern, changes during testicular cycle and after methyltestosterone treatment. J. Mol. Endocrinol. 42, 437–448.
- 56) Raghuveer, K., Senthilkumaran, B., 2010a. Isolation of *sox9* duplicates in catfish: localization, differential expression pattern during gonadal development and recrudescence, and hCG-induced up-regulation of *sox9* in testicular slices. Reproduction 140, 477–487.
- 57) Raghuveer, K., Senthilkumaran, B., 2010b. Cloning and differential expression pattern of *vasa* in the developing and recrudescing gonads of catfish, *Clarias gariepinus*. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 157, 79–85.
- 58) Raghuveer, K., Senthilkumaran, B., Sudhakumari, C.C., Sridevi, P., Rajakumar, A., Singh, R., Murugananthkumar, R., Majumdar, K.C., 2011. Dimorphic expression of various transcription factor and steroidogenic enzyme genes during gonadal ontogeny in the airbreathing catfish, *Clarias gariepinus*. Sex. Dev. 5, 213–223.

- 59) Rajakumar, A., Senthilkumaran, B., 2014. Expression analysis of *sox3* during testicular development, recrudescence, and after hCG induction in catfish, *Clarias batrachus*. Sex. Dev. 8, 376–386.
- 60) Rodríguez-Marí, A., Cañestro, C., BreMiller, R.A., Catchen, J.M., Yan, Y.L., Postlethwait, J.H., 2013. Retinoic acid metabolic genes, meiosis, and gonadal sex differentiation in zebrafish. PLoS One 8, e73951.
- 61) Routray, P., Verma, D.K., Sarkar, S.K., Sarangi, N., 2007. Recent advances in carp seed production and milt cryopreservation. Fish Physiol. Biochem. 33, 413–427.
- 62) Sandra, G.E., Norma, M.M., 2010. Sexual determination and differentiation in teleost fish. Rev. Fish Biol. Fish. 20, 101–121.
- 63) Schartl, M., Schories, S., Wakamatsu, Y., Nagao, Y., Hashimoto, H., Bertin, C., Mourot, B., Schmidt, C., Wilhelm, D., Centanin, L., Guiguen, Y., Herpin, A., 2018. *Sox5* is involved in germ-cell regulation and sex determination in medaka following co-option of nested transposable elements, BMC Biol. 16, 16.
- 64) Schartl, M., Wilde, B., Schlupp, I., Parzefall, J., 1995. Evolutionary origin of a parthenoform, the Amazon molly *Poecilia formosa*, on the basis of a molecular genealogy. Evolution 827–835.
- 65) Shi, J., Hong, Y., Sheng, J., Peng, K., Wang, J., 2015. *De novo* transcriptome sequencing to identify the sex-determination genes in *Hyriopsis schlegelii*. Biosci. Biotechnol. Biochem. 79, 1257–1265.
- 66) Small, C.M., Carney, G.E., Mo, Q., Vannucci, M., Jones, A, G., 2009. A microarray analysis of sex- and gonad-biased gene expression in the zebrafish: evidence for masculinization of the transcriptome. BMC Genomics 10, 579.

- 67) Sobel, A., Boutterin, M.C., Beretta, L., Chneiweiss, H., Doye, V., Peyro-Saint-Paul, H., 1989. Intracellular substrates for extracellular signaling. Characterization of a ubiquitous, neuron-enriched phosphoprotein (stathmin). J. Biol. Chem. 264, 3765–3772.
- 68) Strüssmann, C.A., Nakamura, M., 2002. Morphology, endocrinology, and environmental modulation of gonadal sex differentiation in teleost fishes. Fish Physiol. Biochem. 26, 13–29.
- 69) Takehana, Y., Matsuda, M., Myosho, T., Suster, M.L., Kawakami, K., Shin-I, T., Kohara, Y., Kuroki, Y., Toyoda, A., Fujiyama, A., Hamaguchi, S., Sakaizumi, M., Naruse, K., 2014. Co-option of *sox3* as the male-determining factor on the Y chromosome in the fish *Oryzias dancena*, Nat. Commun. 5, 4157.
- 70) Tao, W., Chen, J., Tan, D., Yang, J., Sun, L., Wei, J., Conte, M.A., Kocher, T.D., Wang, D., 2018. Transcriptome display during tilapia sex determination and differentiation as revealed by RNA-Seq analysis. BMC Genomics 19, 363.
- 71) Tao, W., Yuan, J., Zhou, L., Sun, L., Sun, Y., Yang, S., Li, M., Zeng, S., Huang, B., Wang,
 D., 2013. Characterization of gonadal transcriptomes from Nile tilapia (*Oreochromis niloticus*) reveals differentially expressed genes. PLoS One 8, e63604.
- 72) Tsuda, M., Sasaoka, Y., Kiso, M., Abe, K., Haraguchi, S., Kobayashi, S., Saga, Y., 2003. Conserved role of *nanos* proteins in germ cell development. Science 301, 1239–1241.
- 73) Tufarelli, C., Y. Fujiwara, D. C. Zappulla, and E. J. Neufeld., 1998. Hair defects and pup loss in mice with targeted deletion of the first cut repeat domain of the Cux/CDP homeoprotein gene. Dev. Biol. 200, 69–81.
- 74) Tung, J.J., Hansen, D.V., Ban, K.H., Loktev, A.V., Summers, M.K., Adler, J.R.3rd., Jackson, P.K., 2005. A role for the anaphase-promoting complex inhibitor Emi2/XErp1, a

- homolog of early mitotic inhibitor 1, in cytostatic factor arrest of *Xenopus* eggs. Proc. Natl. Acad. Sci. USA 102, 4318–4323.
- 75) Val, P., Lefrançois-Martinez, A.M., Veyssiere, G., Martinez, A., 2003. SF-1akeyplayer in the development and differentiation of steroidogenic tissues. Nucl. Recept. 1, 8.
- 76) Vanden Heuvel, G.B., Quaggin, S.E., Igarashi, P., 1996. A unique variant of a homeobox gene related to Drosophila cut is expressed in mouse testis. Biol. Reprod. 55, 731–739.
- 77) Vizziano, D., Randuineau, G., Baron, D., Cauty, C., Guiguen, Y., 2007. Characterization of early molecular sex differentiation in rainbow trout, Oncorhynchus mykiss. Dev. Dyn. 236, 2198–2206.
- 78) von Schalburg, K.R., McCarthy, S.P., Rise, M.L., Hutson, J.C., Davidson, W.S., Koop, B.F., 2006. Expression of morphogenic genes in mature ovarian and testicular tissues: potential stem-cell niche markers and patterning factors. Mol. Reprod. Dev. 73, 142–152.
- 79) Wang, D., Manali, D., Wang, T., Bhat, N., Hong, N., Li, Z., Wang, L., Yan, Y., Liu, R., Hong, Y., 2011. Identification of pluripotency genes in the fish medaka. Int. J. Biol. Sci. 7, 440–451.
- 80) Wang, D.S., Kobayashi, T., Senthilkumaran, B., Sakai, F., Sudhakumari, C.C., Suzuki, T., Yoshikuni, M., Matsuda, M., Morohashi, K., Nagahama, Y., 2002. Molecular cloning of DAX1 and SHP cDNAs and their expression patterns in the Nile tilapia, *Oreochromis niloticus*. Biochem. Biophys. Res. Commun. 297, 632–640.
- 81) Wang, D.S., Kobayashi, T., Zhou, L.Y., Paul-Prasanth, B., Ijiri, S., Sakai, F., Okubo, K., Morohashi, K., Nagahama, Y., 2007. *Foxl2* up-regulates aromatase gene transcription in a female-specific manner by binding to the promoter as well as interacting with ad4 binding protein/steroidogenic factor 1. Mol. Endocrinol. 21, 712–725.

- 82) Wang, F., Jia, Y., Wang, P., Yang, Q., Du, Q., Chang, Z., 2017. Identification and profiling of *Cyprinus carpio* microRNAs during ovary differentiation by deep sequencing. BMC Genomics 18, 333.
- 83) Warner, R.R., 1984. Mating behavior and hermaphroditism in coral reef fishes. Am. Sci. 72, 128–136.
- 84) Wegner, M., 1984. From head to toes: the multiple facets of SOX proteins, Nucleic Acids Res. 27, 1409–1420.
- 85) Wu, X., Wang, P., Brown, C.A., Zilinski, C.A., Matzuk, M.M., 2003. Zygote arrest 1 (Zar1) is an evolutionarily conserved gene expressed in vertebrate ovaries. Biol. Reprod. 69, 861–867.
- 86) Xu, J., Ji, P., Zhao, Z., Zhang, Y., Feng, J., Wang, J., Li, J., Zhang, X., Zhao, L., Liu, G., Xu, P., Sun, X., 2012. Genome-wide SNP discovery from transcriptome of four common carp strains. PLoS One 7, e48140.
- 87) Yano, A., Guyomard, R., Nicol, B., Jouanno, E., Quillet, E., Klopp, C., Cabau, C., Bouchez, O., Fostier, A., Guiguen, Y., 2012. An immune related gene evolved into the master sex-determining gene in rainbow trout, *Oncorhynchus mykiss*. Curr. Biol. 22, 1423–1428.
- 88) Yao, H.H.C., Matzuk, M.M., Jorgez, C.J., Menke, D.B., Page, D.C., Swain, A., Capel, B., 2004. Follistatin operates downstream of Wnt4 in mammalian ovary organogenesis. Dev. Dyn. 230, 210–215.
- 89) Yoshiura, Y., Senthilkumaran, B., Watanabe, M., Oba, Y., Kobayashi, T., Nagahama, Y., 2003. Synergistic expression of Ad4BP/SF-1 and cytochrome P-450 aromatase (ovarian

- type) in the ovary of Nile tilapia, *Oreochromis niloticus*, during vitellogenesis suggests transcriptional interaction. Biol. Reprod. 68, 1545–1553.
- 90) Yuan, J., Tao, W., Cheng, Y., Huang, B., Wang, D., 2014. Genome-wide identification, phylogeny, and gonadal expression of *fox* genes in Nile tilapia, *Oreochromis niloticus*. Fish Physiol. Biochem. 40, 1239–1252.
- 91) Zhang, K., Xu, J., Zhang, Z., Huang, Y., Ruan, Z., Chen, S., Zhu, F., You, X., Jia, C., Meng, Q., Gu, R., Lin, X., Xu, J., Xu, P., Zhang, Z., Shi, Q., 2019. A comparative transcriptomic study on developmental gonads provides novel insights into sex change in the protandrous black porgy (*Acanthopagrus schlegelii*). Genomics 111, 277–283.
- 92) Zhang, W., Liu, Y., Yu, H., Du, X., Zhang, Q., Wang, X., He, Y., 2016. Transcriptome analysis of the gonads of olive flounder (*Paralichthys olivaceus*). Fish Physiol. Biochem. 42, 1581–1594.

Chapter 2

Significance of sox30 along with sox9a/b in testicular steroidogenesis

ABSTRACT

Expression of transcription factors is crucial for the regulation of steroidogenesis and gonadal development in fish. Sox proteins regulate gene expression of various events related to vertebrate reproduction. This study reports the role of sox30 and its influence on sox9a/b in regulating testicular steroidogenesis of the carp, C. carpio. Tissue distribution showed predominant expression of sox30 in gonads, while gonadal ontogeny indicated significant dimorphic expression of sox30 from 120 dph. Higher sox30 transcripts during the spawning season, an elevation of sox30 after hCG induction, and 11-KT treatment authenticate gonadotropin dependency. Treatment of MDHT to juvenile carp for mono-sex induction, vis-à-vis elevated sox30 expression. Sox30 protein was detected abundantly in spermatocytes and spermatid/sperm of carp testis. Transient silencing of sox30 using siRNAs decreased sox9a/b expression, leading to downregulation of certain molecule/factor, transcription factor, germ/stem cell marker, and steroidogenesis-related enzyme genes. Serum T and 11-KT decreased significantly upon transient silencing of sox30, in vivo. Concomitantly, a reduction in testicular microsomal Hsd11b activity was observed. These results demonstrate the influence of sox30 as well as sox9a/b in the regulation of testicular steroidogenesis in carp.

1 INTRODUCTION

Steroidogenesis drives reproduction by promoting growth, differentiation, and maturation of a bipotential gonad into the testis or ovary and is regulated differently by multi-tiered modulation of promoter motif of transcription factors influencing steroidogenic enzyme genes to eventually govern enzyme activity (Rajakumar and Senthilkumaran, 2020). Transcription factors like ad4bp/sf-1, creb, foxl2, sox3 and wt-1 play a regulatory role in fish steroidogenesis. Further, the influence of transcription factors, sex steroids, steroidogenic enzymes, sex steroid receptors,

germ/stem cell markers, growth factors, and other molecules in the gonadogenesis of teleost has been reviewed (Devlin and Nagahama, 2002). SOX family of transcription factors are implicated in regulating many biological functions, including reproduction (Wegner, 1999). SOX proteins are specific to animals and constitute to HMG superfamily, encoding ~80 aa DNA-binding domain further classified into subgroups A-K (Zhang et al., 2018a). In fish, sox9 is a requisite for testis development with two forms identified in teleost like fugu, zebrafish, catfish, rice field eel, and the Japanese medaka (Raghuveer and Senthilkumaran, 2010). sox3 (Rajakumar and Senthilkumaran, 2014) regulates testicular development and recrudescence in catfish and initiates testicular differentiation (Takehana et al., 2014) in the Indian rice-fish. The involvement of sox5 in germ-cell regulation of medaka (Schartl et al., 2018) was evident. In mammals, evidence for the presence of SOX4, SOX5, SOX6, SOX7, SOX17, SOX20, and SOX22 in testis has been reported (Wegner, 1999). Whereas, in teleost having more (\sim 50) sox genes than other vertebrates (Zhang et al., 2018b), the involvement of other genes belonging to the sox family in gonadogenesis has seldom been reported. In this regard, the carp comprising more sox genes than other fish species (Zhang et al., 2018b) would be an appropriate model for investigation. The significance of sox9a/b in the testicular development of carp have been reported earlier (Du et al., 2007; Guo et al., 2010). A previous study on the transcriptome-based analysis from our laboratory demonstrated that sox genes of carp presented stage-specific and/or sex-dimorphic expression during gonadal development (Anitha et al., 2019). Among which, sox30 of subgroup H was predicted to have higher expression in testis warranting in-depth analysis. SOX30, primarily isolated from mouse and human (Osaki, 1999) was thought to be specific in mammals (Koopman et al., 2004), while later evidence documented its presence throughout the animal kingdom (Han et al., 2010). Recent reports (Yu et al., 2018; Wei et al., 2016) stated the absence of sox30 in zebrafish, spotted gar

(Lepisosteus oculatus), the Japanese medaka, tongue sole (Cynoglossus semilaevis), fugu, the Japanese flounder, and carp. Contending these, the present study is the first to provide evidence for the presence of sox30 in carp. SOX30 has been proven to be critical for mammalian and teleostean spermatogenesis (Han et al., 2010; Zhang et al., 2018a). However, its influence on the regulation of testicular steroidogenesis was never clarified. Early sexual maturation accompanied by seasonal spawning makes carp (Basavaraju et al., 2002) an ideal model to understand the role of sox30 during gonadogenesis. This work reports cloning, expression analysis, and localization of sox30 in comparison with sox9a/b in carp. Gonadotropin regulation on sox9a/b and sox30 was assessed during the natural spawning cycle, artificial induction, and also in mono-sex induced carp. The current report provides substantial evidence to denote sox30 as a novel regulator of carp testicular steroidogenesis by transient silencing.

2 MATERIALS AND METHODS

2.1 Fish sampling

Procuring and rearing of carps followed by sampling were done as described earlier in chapter 1. Initially, to clone sox9a/b and sox30, adult carp (~1-year, ~30–40 cm, ~400-700 g) testis was used. In carp, PGC divide rapidly from 28 to 63 dph and differentiate into oogonia and spermatogonia around 70 and 100 dph, respectively (Komen *et al.*, 1992). Different ages of carp, 0, 40, 80, 120, 160 and 200 dph (~40 mm–20 cm, ~0.2–300 g) were collected (n=5~10) for gonadal ontogeny studies. Total RNA was prepared from 0 (whole trunk), 40 (mesonephric gonadal complex), 80 to 200 dph (testis/ovary) samples. For localization analysis, tissues were fixed using 4% PFA-PBS (0.01M). Mono-sex induction was performed at KVAFSU and those carps were procured for experimentation.

2.2 Cloning of sox9a/b and sox30 from adult carp testis

Gene-specific primers were designed for sox30 with the sequence data available in NCBI's GEO (GSE112157), a transcriptome study conducted earlier in carp from our laboratory. Cloning of sox9a/b was done as detailed (Sudhakumari *et al.*, 2017) to compare their expression with sox30. Total RNA (TRI reagent, Sigma) isolation, followed by DNase I treatment and cDNA synthesis (OneScript® Plus cDNA Synthesis Kit, Applied Biological Materials Inc., BC, Canada) were carried out as described in the manufacturer's manual. PCR amplification with designed primers (Table 1) using Taq 2X master mix (New England Biolabs Inc., MA, US) was done under standard PCR conditions. No isoforms of sox30 were recognized as amplicons displayed a specific single explicit band. To verify the presence of paralogs of sox30 if any, primers (Table 1) were designed by aligning neighboring exons with a flanking variable intron in the conserved HMG domain. A single band was observed in the genomic DNA PCR indicating the absence of any paralogs. Following gel purification and ligation (pGEM®-T easy vector, Promega, WI, US), the positive clones were ascertained by DNA sequencing using the dideoxy method. Lasergene software (DNASTAR, WI, US) was employed in the sequence alignment.

Table 1. List of primers used in the study.

S. No.	Gene name/symbol	Forward primer (5'-3')	Reverse primer (5'-3')	Accession number
1	18s rRNA	GCTACCACATCCAAGGAAGGCAG2C	CGGCTGCTGGCACCAGACTTG	FJ710827.1
2	ad4bp/sf-1	CGGACCTGGAAGAGTTGT	GGTTCTCTTGGCATGCAG	GSE112157
3	amh	CCGTGATGAGCAAAGGACACC	CAAAGAGACAATGTTTGCAC	KU168255.1
4	ar	GATGGCAGGTTTGATGGAG	GAGATAATTCTGCTTCCCCTCAG	KU168254.1
5	cyp11	TCAACCAAGCGGACCACTGT	CACCTCCAGCCATCAGCTC	GSE112157
6	cyp17	GCAGCACTGTATCTCAGAAG	GGCACGCGTCAGCTCCGGTG	GSE112157
7	dax	CCAGATGTTGCAGGGCTGC	CCTCCATGTTGACAGCGCC	GSE112157
8	dmrt1	GCAGCCCAGGTGGCGTTA	CGTGCTGTCAGTGTGCCCTC	KF713504.1
9	fshr	CTGACTGTTCCCAGGTTTTTAATG	GCATGGCGTAAGTGATGGTG	MH726214.1
10	gata4	CAGAGACGACTCTCTGCTTCCAG	CCCCGTGGAGCTTCATGTAGAG	GSE112157
11	gnrh	GGTGGAAAGAGAAGCACTGGTG	GTTTTTAAACTCTTCCTCGTCTG	AY189960.1
12	gsdf	CTGTGTCGCCGTTC	CACTGCTCACGTAAATGATGC	GSE112157

13	hsd3b	GGCTTTTCTGTTCATGCCTG	CACGCGTCAGCTCCGGTGCC	GSE112157
14	hsd11b	ATCACAGGGTGCGACTCGGGTTTCGG G	CGGCTGAGTGATGTCCACCTGA	GSE112157
15	hsd17b	GACATCCTGGTGTGTAATGCAGG	CTGCCTGTGACCAGGATCCGT	GSE112157
16	hsd20b	GGGTGTGCCATGCTCTTC	CAGCCCTGACCCGTATGA	GSE112157
17	kiss2	GTGGAGCGGAGGCAGTTTG	CAGGAAAAGCATCATTGGCAGC	JQ715608.1
18	lhr	CCGCTGCAAACTGACCGTCC	GTATAGACAGATAGTTCGCCG	MH726213.1
19	pou5f3/oct4	CCGAAAACCCTCAGGATATGTAC	CACACACGTACTACATCTCTCCC	GSE112157
20	pdgf	GGGAAACTGGCGGATCGAG	GCGCACAAACTCACTTTCATAG	GSE112157
21	piwi	GGTAAAGATTGGGGAAAGAG	CTCCATCAAAGGTGTGTGC	JF505506.1
22	sox5	GGACAGCCTGGTGGAGAAAG	CTGCTGTTGTCGTGCAATC	GSE112157
23	sox6	CCGGGGAAGGAACAGCAAC	GTGCCTGCTCCTCATAATATG	GSE112157
24	sox9a	GGTGAACAACGGCCAGAG	GACTGGCCTGAGTGCTCG	GSE112157
25	sox9b	GAACGCCAGAGCGAGAG	GACCCTGGGACTGACCTG	AY956415.1
26	sox11	GCACCAAGTGGAATAAACACCTG	CTGATTTTCTTGCTGCTAGTCAC	GSE112157
27	sox13	GGCCAAAGACGAAAGACGG	GGCCGGGGTTTGTATTTGTAG	GSE112157
28	sox18	GATGCTGGGTCAATCCTGG	CGATGTGGCGAGTAGGCATC	KY860090.1
29	sox19 qPCR	GGCACAGGAGAACCCCAAAATG	CTTCATGAGGGCTTTGGTC	GSE112157
30	sox21	GGTAAGGTTCATGTTGAGCTTTG	CATTACTCAATGCTCGGGTATC	GSE112157
31	sox30 qPCR	CAGAGCAGTCTAAATTCTCCAGC	GGCTAGAAGAGCTTGAACATGG	MT193291
32	sox30 ORF	ATGGATAAACACCCCAAACTGAGA	CTAGTCTCCATAATGGAGGCAATAT	MT193291
33	sox30 genomic PCR	CTGAGCTTCACTCAGCCGCC	GCTTCTTCTGCTCTTCAGACAG	MT193291
34	srd5a1	CTATAAGATACCTAGAGGGGGC	GAGATACCACTTGTGGTGGG	GSE112157
35	star	GGAGCTCCCTTCTCAGCAG	CTGTCTTCTGTTCCAGCATC	GSE112157
36	sycp3	GCTGGAAAGATTTGGTGCGG	CTCCTGCTCCTCAGACTTC	MN447718.1
37	vasa	CCATGGTGATCGGGAGCA	GTTCCCACAGCGTCCGGT	AF479820.2
38	wt1	CCAGGAATCAGGGTTACGGCAC	GCCTGACTTCCTGTACAGCTG	GSE112157

2.3 Multiple sequence alignment and phylogenetic analysis

Following ClustalW alignment of cloned carp Sox30 and its vertebrate counterparts with aa sequences available in GenBank, the phylogenetic tree was constructed. Multiple sequence alignment was done by ClustalW2 (http://www.ebi.ac.uk/Tools/msa/clustalw2/) and displayed using Jalview 2.8. The phylogenetic tree was constructed and presented using PhyML (http://www.phylogeny.fr/simple_phylogeny.cgi). Bootstrapping with 1000 replicates delineates the integrity of every clade.

2.4 qPCR

Total RNA and cDNA from all samples were prepared as detailed earlier. Real-time primers (Table1) were designed and qPCR was done as described earlier in chapter 1. Relative expression of genes between control and treated groups was calculated using $2^{-\Delta\Delta Ct}$. Log copy number analysis was performed to analyze the differences in the concentration of sox9a/b and sox30 as explained by Mamta *et al.* (2014).

2.5 Polyclonal antibody generation for Sox30

For antibody generation, an antigenic peptide, MSHYEDLRQEAPVQNC was synthesized commercially using carp Sox30 aa sequence in conjugation with keyhole limpet hemocyanin carrier protein (Sigma). Six-weeks-old (n=2) Swiss albino male mice used for antibody generation were handled and maintained following the norms of IAEC (UH/IAEC/BSK/2018-I/28) and CPCSEA. During experimentation, mice were fed commercial food pellets, *ad libitum*. Pre-immune sera were collected by retro-orbital puncture before administration of the peptide dissolved using 0.01 M PBS. Primary (200 µg of antigenic peptide combined with Freund's complete adjuvant) and two (14 days apart) boosters (100 µg of antigenic peptide combined with Freund's incomplete adjuvant) were injected subcutaneously. Blood was collected for serum separation and then used for IHC and western blot as a Sox30 antibody source.

2.6 Western blot

Sox9 and Sox30 proteins were detected in carp testis upon western blotting with anti-SOX9 antibody (Santa Cruz Biotechnology, Texas, US) and carp anti-Sox30 polyclonal antibody as described by Gupta and Senthilkumaran (2020). SOX9 antibody rose against 22-62 aa near N-terminus of SOX9-human origin showed 81% and 90% homology with N-terminal region of carp Sox9a and Sox9b proteins, respectively (Fig. 1). In brief, the protein was prepared from adult carp

testis and intestine with RIPA (0.5% sodium deoxycholate, 150 mM NaCl, 50 mM Tris HCl [pH 8], 0.1% SDS, and 0.1% Triton X–100) buffer separately and quantified using Bradford's method. About 20 μg of protein run in 10% polyacrylamide gel was transferred to nitrocellulose membrane (Pall Life sciences, NY, US), incubated overnight with respective diluted antibody (1:1000 for Sox30; 1:100 for SOX9) and probed using HRP-conjugated goat anti-mouse antibody (1:5000; Bangalore Genei, Bengaluru, India) incubation at RT for 1 h. Specific bands were detected with a chemiluminescent reagent (G-Biosciences, MO, US). Anti-mouse α–tubulin monoclonal antibody was used as a reference control for both testis and intestine protein fractions. Image J (NIH) software was used for densitometry analysis.

Fig. 1. Multiple sequence alignment results of the SOX9-human N-terminal region showing 81% and 90% homology with the N-terminal region of carp Sox9a and Sox9b proteins, respectively.

2.7 IHC

Sox9 and Sox30 proteins were localized, as described in Laldinsangi and Senthilkumaran [26]. In brief, tissues were fixed using 4% PFA-PBS, embedded (optimum cutting temperature compound, Leica Microsystems) in cryomold (Tissue–Tek, AJ Alphen aan den Rijn, The Netherlands) and sectioned (Cryostat, Leica CM1850). Initially, the sections were blocked using 10% of goat serum (Bangalore Genei) and incubated at 4 °C either with SOX9 (1: 50) or Sox30 (1: 100) antibody or pre-adsorbed antibody along with respective excessive antigen (negative control) for overnight. The sections were probed using HRP-conjugated goat anti-mouse antibody (1:1000) at RT for 2 h, the next day. VECTASTAIN® Elite ABC (Vector Laboratories, CA, US) incubation was done

for 30 min before developing them with commercially available 3,3'-diaminobenzidine and H₂O₂ as substrate. After development, DPX was used to mount the sections. DM6 B upright microscope fitted with a camera (DFC 4500, Leica Microsystems, Germany) and Leica Application Suite X software was used to assess the sections. Pre-adsorbed antisera with an excess of commercially synthesized peptides (antigen) of Sox30 (MSHYEDLRQEAPVQNC) and Sox9 (CPSGSGSDTENTRPQE) were used as their respective negative controls for IHC.

2.8 *In vitro* culture of testicular slices

Testicular slice culture was performed as outlined by Raghuveer and Senthilkumaran (2010). Testis from carp in the late preparatory phase was dissected, sliced (McIIwain tissue chopper, Vibratome, Ted Pella Inc., CA, US) and cultured at 20-22 °C in a tissue culture plate with 2 ml of L15 culture medium, 10 mM HEPES and antibiotics (streptomycin, 0.1 mg/ml; penicillin, 100 IU/ml) supplementation. Testicular slices were treated using 100 IU/ml of hCG (Uni-Sankyo Pvt. Ltd., Hyderabad, India) or (control) physiological saline. At short intervals of 0, 3, 6, and 12 h, tissue was collected and washed using ice-cold PBS. Likewise, testicular slices were also treated with 100 ng/ml (dose tested with pilot experiments) of 11-KT (Sigma) to study its effect on sox9a/b and sox30 expression. 11-KT was initially dissolved using absolute ethanol, completely air-dried to remove any traces of alcohol, and reconstituted with the L15 medium for experimentation. Total RNA was isolated using TRI reagent followed by cDNA synthesis and quantification as described earlier.

2.9 In vivo induction by hCG

During the preparatory phase, laboratory acclimated adult male carp (n=5) weighing about 400–500 g was briefly anesthetized with MS222. The ventral portion of the carp was sterilized with alcohol, a single dosage of hCG (1000 IU/Kg body weight) was gradually injected into the testis

directly using a sterilized 1 ml syringe (Gupta and Senthilkumaran, 2020). For control fish, physiological saline was injected. Subsequently, fishes were kept in circulatory water for a few minutes at ambient temperature to regain from anesthetization. Testis was collected at intervals of 12 and 24 h from control and treated fish for expression analysis. Total RNA and cDNA from all samples were prepared as mentioned earlier.

2.10 Mono-sex induction

Mono-sex induction was performed at KVASFU by following established protocols (Basavaraju *et al.*, 2008; Wang *et al.*, 2008). In brief, 50 dph carp larvae were fed hormone incorporated diet for 50 days. Hormones, MDHT (Sigma) at 50 mg/Kg feed for masculinization, and E₂ (Sigma) at 150 mg/Kg feed for feminization were given to produce the mono-sex population. The feed required for the study was prepared as described (Guerrero and Shelton, 1974). The treatments were given regularly and, fish samples were collected at the end for analysis.

2.11 Culture of carp primary testicular cells (mixed)

Testicular mixed cell culture was prepared as described by Murugananthkumar and Senthilkumaran (2016). Adult male carp was anesthetized to dissect out testis, and disinfected, also severed into small portions in the L15 culture medium. Following, incubation with 0.005% DNase and 0.25% collagenase type I, the slices were pressed to obtain cell suspension, further filtered using a 40 mm cell strainer, and centrifuged at 100×g, to obtain pellet which was resuspended in DMEM. Almost 1×10⁶ cells were cultured separately in a 24-well plate comprising DMEM, antimycotic-antibiotic, 1×Glutamax, 10% fetal bovine serum and maintained for 24 h in 5% CO₂ at 30 °C. Cell viability was assessed with trypan blue staining.

2.12 In vitro treatment of sox30-siRNA in carp primary testicular culture

synthesized sox30 oligomer (antisense: 5'-Custom rGrCrCrUrUrUrGrArUrArGrArArArCrUrGrUrUrUrUrGrUrUrCrU-3'; sense: 5'rArArCrArArArCrArGrUrUrUrCrUrArUrCrArArArArGGC-3') siRNAs were commercially manufactured (Integrated DNA Technologies, Iowa, US). The siRNA for sox30 was designed spanning only a few base pairs of the HMG domain to ensure specificity. The siRNA in combination with branched PEI (Sigma) was dissolved using sterilized HEPES-NaCl (pH 7.4), as detailed by Höbel and Aigner (2010), and used in teleost (Gupta and Senthilkumaran, 2020; Laldinsangi and Senthilkumarn, 2018; Murugananthkumar and Senthilkumaran, 2016). The mixture was incubated at RT for 20 min for the formation of the siRNA-PEI complex. About, 1×10⁶ cells of carp testicular cell culture were maintained as earlier described. Before treatment, the culture medium was removed, followed by the addition of 100 µl OPTI-MEM® I (Thermo Fisher Scientific) solution. Concentrations of 0.25, 0.5, 1, 2.5, 5, 10, 20, and 50 ng/ml of antisense sox30-siRNA and 10 ng/ml of sense sox30-siRNA complexed with branched PEI were prepared. Aliquots of 25 µl containing antisense sox30-siRNA-PEI/ sense sox30-siRNA-PEI (negative control)/ only PEI (control) was added and the cells were incubated for 12 h. Following treatment, siRNA-PEI mixture, and OPTI-MEM® I was removed, replenished using fresh culture medium, and maintained for 24 h. Cells were rinsed with PBS and harvested by trypsinization (0.5% Trypsin-EDTA) for total RNA isolation using TRI reagent, followed by cDNA synthesis and relative expression analysis, as detailed earlier. Treatment was validated using MISSION® siRNA Fluorescent Universal Negative Control #1 (Sigma). The treated cells were captured using the IX81 Olympus microscope (Olympus Corporation) and assessed by Cell Sens dimension software.

2.13 In vivo treatment of sox30-siRNA in adult male carp

Specific approvals from the IAEC (UH/IAEC/SB/2019-I/04) and Institutional Bio-Safety Committee (IBSC No. BSK–N–15-July2019) were obtained for siRNA treatments. Gene silencing using siRNA was done (Höbel and Aigner, 2010) and used in teleost (Gupta and Senthilkumaran, 2020; Laldinsangi and Senthilkumaran, 2018; Murugananthkumar and Senthilkumaran, 2016). Adult male carp, in the pre-spawning phase, was anesthetized, and about 100 µl of 100 ng/ml of antisense *sox30*-siRNA-PEI complex dissolved in HEPES buffer was injected directly into the testis, and fish were kept in circulatory water for a few minutes at ambient temperature to regain from anesthetic effect. Similarly, in treatments with sense *sox30*-siRNA-PEI (negative control), only PEI and control groups were done. Four fish groups (control, only PEI, antisense *sox30*-siRNA-PEI, and sense *sox30*-siRNA-PEI) were kept in separate tanks of 50 L capacity, continuously aerated, and replenished with fresh water. At days 0, 2, 4, 6, and 8, fishes (n=5/group) were sacrificed to dissect out the testis for analysis. Total RNA from PEI, control, antisense *sox30*-siRNA-PEI, and sense *sox30*-siRNA-PEI treated samples was prepared and analyzed, as earlier. There was no mortality in any of the treatment groups throughout the experiment.

2.14 EIA of androgens

Serum samples were obtained from control and *sox30*-siRNA treated fish on day 4 post-treatment. Carp serum T and 11-KT levels were valued using Immunotag fish EIA kits (G-Biosciences) adopting the manufacturer's protocol. The sensitivity for T and 11-KT measurements is 6.92 and 0.28 pg/ml, respectively, and the assay was validated as described (Swapna *et al.*, 2006). Assays were performed for each independent sample (n=5) in triplicates with appropriate dilutions.

2.15 Estimation of Hsd11b enzyme activity in testis

Enzyme activity of Hsd11b was measured as explained by Rasheeda *et al.* (2010). In brief, microsomal fractions were prepared by homogenizing 100 mg of control and *sox30*-siRNA treated testicular tissue in 1 ml of 0.1 M KPO₄ buffer, followed by centrifugation and ultra-centrifugation at 9000×g for 20 min and 105000×g for 1 h, respectively at 4 °C. The microsomal pellet was rinsed once and dissolved with 500 μl of 0.1 M KPO₄ buffer, 20% (v/v) glycerol, and 0.1 mM EDTA. About 250 μg of testicular microsome, was added to 1 ml of assay medium comprising of 100 μM NAD⁺ and 2 nM 11-OHT incubated at 37 °C in a shaker water bath for 60 min. The reaction was interrupted by the addition of ice-cold diethyl ether. For extraction of steroids, diethyl ether was used, the organic layer was then dried under N₂ gas and dissolved with 100 μl of EIA buffer. All incubates were analyzed in triplicates. The quantity of 11-KT formed was estimated with Immunotag fish 11-KT-EIA kit, as detailed earlier. Heat-denatured microsome was employed as a negative control for assay validation.

2.16 Statistics

Densitometry analysis of images was performed using ImageJ software. All qPCR representations were denoted as mean ± Standard Error of the Mean (SEM) which qualified both normality and homogeneity tests. ANOVA, followed by posthoc tests were performed for statistical calculation with SigmaPlot 14.0 software (Systat Software Inc., Chicago, IL, US). For each test, P-value < 0.05 was treated to be statistically significant.

3 RESULTS

3.1 Cloning of sox9a/b and sox30

Upon cloning, partial cDNAs of sox9a (~147 bp), sox9b (~336 bp), and sox30 ORF (~1170 bp) encoding a putative protein of ~389 aa with a molecular weight of ~44 kDa, comprising HMG box

domain were obtained. The *sox30* ORF nucleotide and as sequence have been submitted to GenBank (MT193291).

3.2 Homology

The identity of carp Sox30 was compared with its vertebrate counterparts. Multiple sequence alignment revealed that carp, *C. carpio* Sox30 displayed much identity at the HMG box domain region (Fig. 1). Phylogenetic analysis showed that *C. carpio* Sox30 is closely related to *Plecoglossus altivelis* and formed a separate clade (Fig. 2).

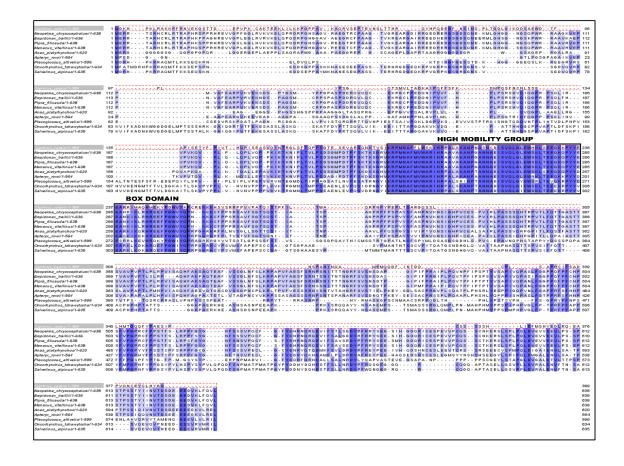


Fig. 1 Multiple sequence alignment of carp Sox30 with other vertebrate counterparts: *Anas platyrhynchos* (XP_005015498.2), *Apteryx rowi* (XP_025919212.1), *C. carpio* (MT193291), *Empidonax traillii* (XP_027741383.1), *Manacus vitellinus* (XP_017928916.1), *Neopelma chrysocephalum* (XP_027538170.1), *Oncorhynchus tshawytscha* (XP_024289861.1), *Pan*

troglodytes (NM001280287.1), Pipra filicauda (XP_027574476.1), Plecoglossus altivelis (AHK05944.1), Salvelinus alpinus (XP 023992871.1).

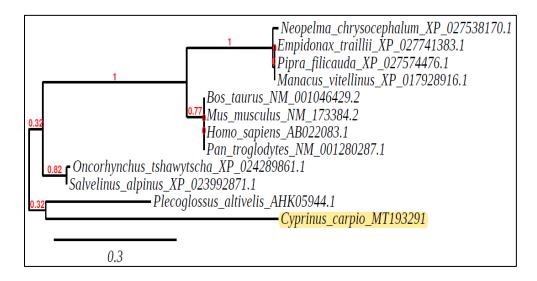


Fig. 2 Phylogenetic analysis of carp Sox30 with other vertebrates. The phylogenetic tree was generated using http://www.phylogeny.fr/simple_phylogeny.cgi. GenBank accession numbers of Sox30 sequences used are as follows: *Bos taurus* (NM_001046429.2), *Homo sapiens* (AB022083.1), *Mus musculus* (NM_173384.2), *Pan troglodytes* (NM_001280287.1). All other details are the same as Fig. 1.

3.3 Expression analysis of sox9a/b and sox30

Transcript copy number analysis was performed to compare the expression of sox9a/b and sox30. Tissue distribution analysis during the late preparatory phase of the reproductive cycle revealed that the expression of sox9a/b and sox30 was ubiquitous in the tissues (n=5) analyzed with negligible expression in the intestine. The expression of sox9a/b was high in the brain (P < 0.05) followed by the testis (Fig. 3A, B), while the predominant expression of sox30 was evident in the gonad of both female (P < 0.05) and male (P < 0.05) carp (Fig. 3C). Gonadal ontogeny showed a high expression of sox9a/b during 40 dph (P < 0.05), which later had varied expression in both female and male gonads through gonadal development till maturity (Fig.3D, E). On the other hand, sox30 displayed significant dimorphic expression (P < 0.05) between female and male gonads

from 120 dph onwards until adulthood (Fig. 3F). Analysis through the testicular reproductive cycle of carp displayed significant expression of sox9a/b at preparatory (P < 0.05), modest expression in pre-spawning and spawning, and minimal expression during resting (Fig. 3G, H). However, high levels of sox30 were observed during pre-spawning followed by spawning and preparatory in comparison with the resting phase (Fig. 3I).

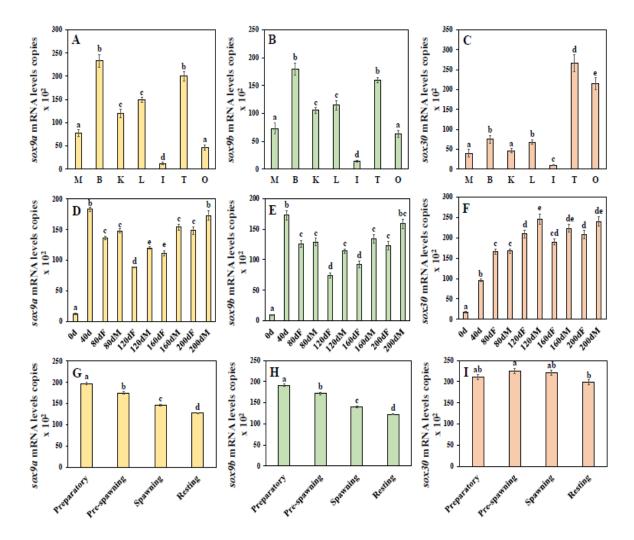


Fig. 3 Expression profiling of sox genes: Tissue distribution [sox9a (A), sox9b (B), sox30 (C)], gonadal ontogeny [sox9a (D), sox9b (E), sox30 (F)] and testicular reproductive phase [sox9a (G), sox9b (H), sox30 (I)] analysis using absolute quantification (copy number) in carp. Data (n=5) were expressed as mean \pm SEM (P < 0.05; One-way ANOVA followed by Tukey test). Means with different alphabets differ significantly while means with similar alphabets did not show any

significance. Abbreviations: M-muscle, B-brain, K-kidney, L-liver, I-intestine, T-testis, O-ovary, d-days post hatch, F- female, M-male.

3.4 Immunolocalization and Western blot of Sox9 and Sox30

Sox9 immunoreactivity was detected in the spermatogonia of carp testis (Fig. 4A, B) while the absence of immunoreactivity in the control (pre-adsorbed antibody) confirm the antibody specificity (Fig. 4C). Western blot presented a sharp band of Sox9 protein ~50 kDa (Fig. 4D) in testis, revealed to be highly specific by the absence of signal in the negative control (intestine). Sox30 antisera elicited immunoreactive signals in spermatocytes and spermatid/sperm (Fig. 4E-G), but not in spermatogonia of the testis. As expected, in control of the pre-adsorbed antibody with excessive Sox30 antigen, no positive signal was evident (Fig. 4H). Further, a positive band ~44 kDa (Fig. 4D) corresponding to Sox30 was observed in testis but not in the negative control (intestine) by western blot, validating antibody specificity. Neither Sox9 nor Sox30 immunoreactive signals were seen in the supporting cells of the testis.

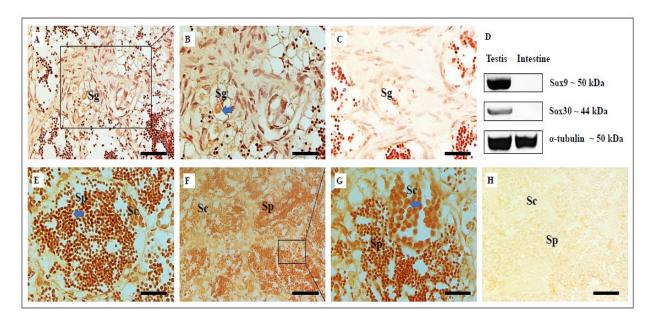


Fig. 4 Localization and western blot of Sox9 and Sox30 proteins in adult carp testis. Immunoreactivity of Sox9 (A, B) and Sox30 (E-G) in testis, whereas their respective negative controls (pre-adsorbed antibody with excess antigen) showed no signal (C, H). Western blot

analysis of Sox9 and Sox30 proteins displayed bands of ~50 kDa and ~44 kDa respectively, in testis while in the negative control (intestine) no bands were observed (D). Abbreviations: Sg: spermatogonia, Sc: spermatocytes, Sp: spermatid/sperm. The scale bar indicates A, E: 30 μm; B, C, G: 10 μm; F, H: 50 μm.

3.5 Effects of hCG and 11-KT

Induction with hCG at the preparatory phase of the carp testicular reproductive cycle enhanced the expression of sox9a/b and sox30. In both *in vivo* (Fig. 5A-C) and *in vitro* (Fig. 5D-F) treatments (n=5), prominent expression of sox9a/b and sox30 was observed after 12 h (P < 0.05) of induction. Progressive increase of expression was evident with time upon induction from 12 to 24 h. The influence of hCG on androgen induction in testis is well known. 11-KT being a potent androgen in fish [33], its effect on sox9a/b and sox30 expression was studied. *In vitro* study (Fig. 5G-I), showed a substantial elevation (P < 0.05) of sox9a/b and sox30 at 12 h in comparison with control.

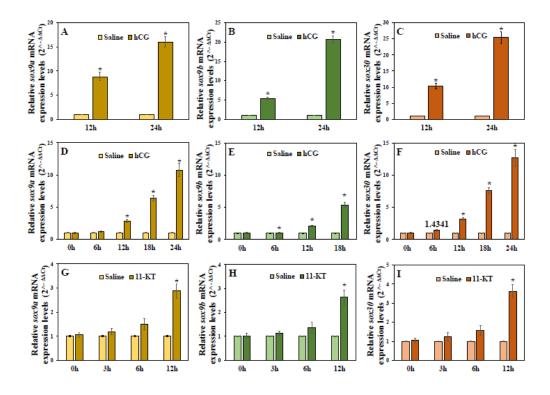


Fig. 5 Relative gene expression after hCG (1000 IU/Kg body weight) in vivo [sox9a (A), sox9b(B) and sox30(C)], hCG (100 IU/ml) in vitro in testicular slices [sox9a (D), sox9b(E) and

sox30(F)] and 11-KT (100 ng/ml) in vitro in testicular slices [sox9a (G), sox9b (H) and sox30 (I)] treatments at different time intervals compared with control (saline) in carp. Data (n=5) were expressed as mean ± SEM (* P < 0.05; One-way ANOVA followed by Dunnett's method).

Abbreviation: h-hour.

3.6 Effects of mono-sex induction by MDHT and E₂ treatments

The expression levels of sox9a/b and sox30 were compared in mono-sex-induced carp. MDHT treatment for 50 days increased the expression of sox9a/b and sox30 significantly (P < 0.05) in testis (Fig. 6A) during the gonadal development of carp. kiss2 and gnrh expression were determined in the brain while expression of fshr and fshr and fshr was determined in the gonads of mono-sex-induced carp.

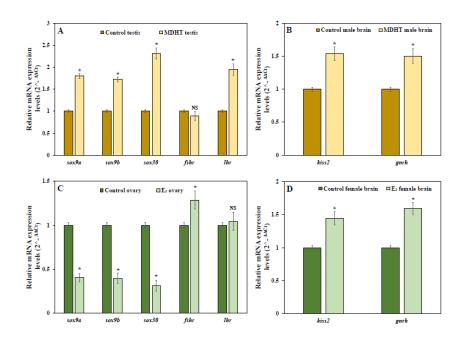


Fig. 6 Relative expression of genes (sox9a, sox9b, sox30, fshr, and lhr) in mono-sex-induced carp gonads (A, C). Relative expression of genes (kiss2 and gnrh) in mono-sex-induced carp brain (B, D). NS- not significant. Data (n=5) were expressed as mean \pm SEM (* P < 0.05; One-way ANOVA followed by Dunnett's method).

The expression of *lhr* was significantly (P < 0.05) high, while *fshr* expression was comparable to control in MDHT treated testis (Fig. 6A). The expression of *kiss2* and *gnrh* was elevated in the brain of MDHT (Fig. 6B) treated carp. E_2 treatment decreased the transcript levels of sox9a/b and sox30 in the ovary (Fig. 6C). *fshr* expression was significantly (P < 0.05) high, while *lhr* expression was comparable to control in E_2 treated ovary (Fig. 6C). The expression of *kiss2* and *gnrh* was elevated in the brain of E_2 (Fig. 6D) treated carp.

3.7 Silencing of sox30, in vitro

In carp testicular culture (n=5), PEI complexed with antisense sox30-siRNA significantly (P < 0.05) reduced sox30 expression compared to control and after sense sox30-siRNA treatments (Fig. 7A). Besides, the expression of sox30 post-siRNA treatment exhibited dosage-related downregulation. Expression of sox30 significantly (P < 0.05) declined to 88% after treatment with 10 ng/µl of sox30-siRNA in comparison with control, hence this dose was chosen for later on experiments. Transient silencing of sox30 displayed a significant reduction (P < 0.05) in the transcript levels of certain transcription factors (Fig. 7B), few germ/stem cell markers, and other factors (Fig. 7C) crucial for testicular function, and steroidogenesis-related genes (Fig. 7D). Relative mRNA levels of ad4bp/sf-1, gata4, wt1, sox5, sox9a/b, dmrt1, sycp3, vasa, pou5f3/oct4, gsdf, pdgf, amh, star, cyp11, cyp17, hsd3b, hsd17b, hsd20b, hsd11b, and srd5a1 showed a decline, while dax and piwi did not show any significant change and ar showed a significant up-regulation when compared to control. The uptake of siRNA was confirmed by fluorescent signals evident in carp primary testicular culture treated with control siRNA (Fig. 7E and F).

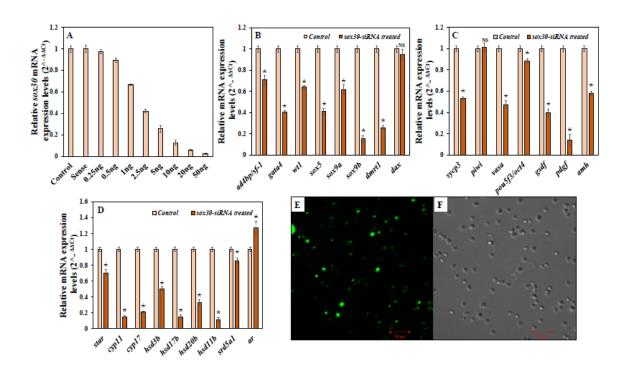


Fig. 7 Relative expression of (A) *sox30* 24 h after *in vitro* PEI mediated *sox30*-siRNA treatment (control, 10 ng/μl of sense *sox30*-siRNA and various doses of antisense *sox30*-siRNA) in carp testicular culture (mixed; n=5). Relative expression of (B) transcription factors, (C) germ/stem cell marker genes and other factors, and (D) steroidogenesis related genes between control and 10 ng/μl of antisense *sox30*-siRNA treated carp testicular culture after 24 h of treatment (* P < 0.05; One-way ANOVA followed by Dunnett's method). NS-not significant. Representative (E and F) confocal microscope images [E (fluorescent), F (phase-contrast)] 24 h after *in vitro* PEI mediated transfection of MISSION siRNA fluorescent universal negative control conjugated with 6-FAM on carp testicular culture (mixed).

3.8 Transient silencing of sox30, in vivo

Treatment of antisense sox30-siRNA-PEI complex significantly downregulated (P < 0.05) the expression of sox30 indicating that siRNA complexed with PEI was capable of silencing sox30 in carp testis (Fig. 8A). On the other hand, only PEI or sense sox30-siRNA-PEI complex treatments showed no effect in terms of sox30 expression. Expression of sox30 was quantified in testis on days 0, 2, 4, 6, and 8 post-treatment along with corresponding control at every time point (Fig.

8A). The antisense sox30-siRNA-PEI complex treatment decreased the expression of sox30 (P < 0.05) on days 2 and 4 post-treatment with 44 and 90% reduction, respectively. Further, sox30 expression decreased to 37% on day 6 and 10% on day 8 indicating that transcript levels might restore to normal as reported earlier (Laldinsangi and Senthilkumaran, 2018; Murugananthkumar and Senthilkumaran, 2016). The antisense sox30-siRNA-PEI sample on day 4 showed a 90% decrease in sox30 expression and hence that time-point was chosen as a treatment sample for later on experiments. Sox30 protein levels reduced similar to that of sox30 transcripts while there was no change in α-tubulin employed as a control (Fig. 8B). A substantial decrease in Sox9 protein levels was observed after siRNA treatment, as opposed to the control (Fig. 8B). The band intensity was measured using ImageJ software and normalized with α-tubulin (Fig. 9). There were no significant changes in the expression of sox11, sox13, sox18, sox19, and sox21 in the sox30-siRNA treated group (Fig. 10) demonstrating the specificity of the siRNA used in this study. Further, no significant phenotypic changes were observed in the histological images between control and siRNA injected testis (Fig. 11) proving the transient nature of the PEI siRNA treatment. Besides, it might be difficult to detect any change in the spermatogenesis process as the testis was at the late spermatogenesis stage. However, molecular changes similar to the in vitro treatment were observed upon in vivo transient silencing. The expression of transcription/other factors namely, ad4bp/sf-1, gata4, wt1, sox5, sox9a/b, dmrt1, gsdf, pdgf, amh (Fig. 8C), star and steroidogenic enzyme genes cyp11, cyp17, hsd3b, hsd11b, hsd17b, hsd20b, srd5a1 (Fig. 8D) showed a decline on day 4 post-sox30-siRNA treatment but the expression levels were comparable to that of control on day 8 post-sox30-siRNA treatment, further substantiating the transient nature of siRNA silencing. There was no significant change on day 4 and day 8 in the expression of dax, while ar expression showed a significant up-regulation on day 4, reverting to normal levels on day 8.

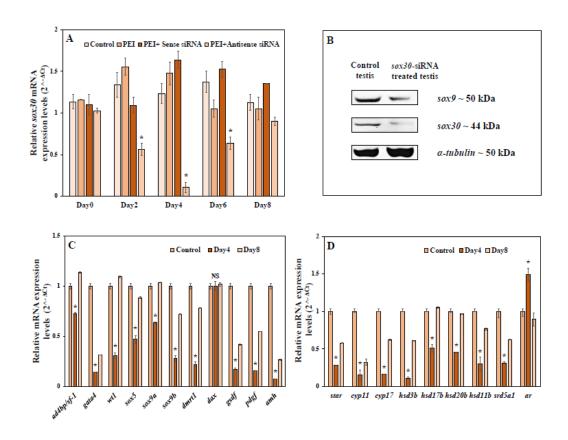


Fig. 8 Relative expression of *sox30* (A) post in *vivo* PEI mediated *sox30*-siRNA treatment in adult (n=5) carp (*, P < 0.05; One-way ANOVA followed by SNK test). (B) Western blot of Sox9 and Sox30 proteins on day 4 in control and *sox30*-siRNA treated carp testis. Relative expression of various (C) testis-related and (D) steroidogenesis-related genes/factors on day 4 in control and *sox30*-siRNA treated carp testis (* P < 0.05; Mann–Whitney test One-way ANOVA on ranks followed by SNK test). NS-not significant.

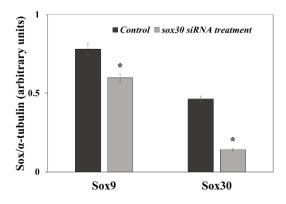
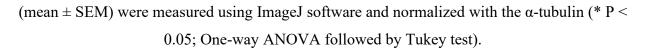



Fig. 9 Densitometry of western blot of Sox9 and Sox30 proteins on day 4 in control and *sox30*-siRNA treated carp testis. The protein band intensities from three independent experiments

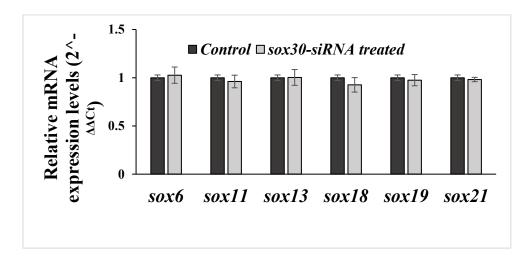


Fig. 10 Relative expression of *sox* genes on day 4 between control and *sox30*-siRNA treated carp testis. No significant difference was observed in any of the groups.

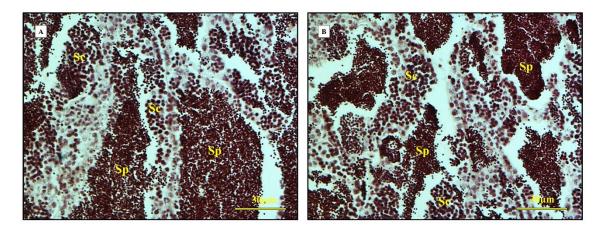


Fig. 11 Representative histological images of carp testis on day 4 (A) control and (B) *sox30*-siRNA treatment. Abbreviations: Sc: spermatocytes, Sp: spermatid/sperm.

Serum levels of T (Fig. 12A) and 11-KT (Fig. 12B) declined significantly (P < 0.05) on day 4 post sox30-siRNA treatment. Enzyme activity of Hsd11b significantly (P < 0.05) reduced on day 4 post sox30-siRNA treatment (Fig. 12C).

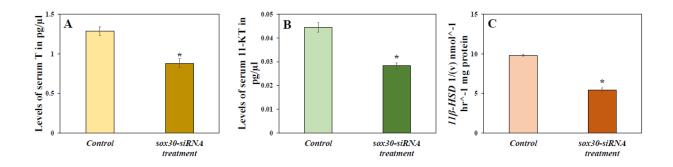


Fig. 12 Changes in the levels of serum (A) T and (B) 11-KT on day 4 in the control and sox30-siRNA treated carp. (C) Changes in enzyme activity of Hsd11b on day 4 in the control and sox30-siRNA treated carp testis. Data (n=5) were expressed as mean \pm SEM. (* P < 0.05; Student's t-test).

4 DISCUSSION

The presence of *sox30* in teleost (Han *et al.*, 2010) and its vital role in mammalian spermiogenesis (Zhang *et al.*, 2018a) have been well documented. However, the significance of *sox30* in testicular steroidogenesis remains unexplored in lower vertebrates including teleost. The current study reports the cloning of *sox30* from adult *C. carpio* testis, and cloning partial cDNAs of *sox9a/b*, whose roles have been earlier demonstrated in carp (Du *et al.*, 2007). Expression of *sox9a/b* and *sox30* during gonadal development, changes in distinctive phases of the testicular reproductive cycle, post-11-KT treatment, after hCG induction, in mono-sex-induced carp, and the repercussions of *sox30*-siRNA silencing, were highlighted to demonstrate their dominant role in testicular steroidogenesis vis-à-vis testis function.

4.1 Cloning, expression analysis, and localization

An earlier study from our laboratory employing a comparative transcriptomic strategy identified key genes involved in sex- differentiation, revealing the existence of *sox30* in carp (Anitha *et al.*, 2019). Using gene-specific primers, ORF of *sox30*, and partial cDNA fragments of *sox9a* and

sox9b were obtained in the current study. The expression of sox30 was elevated in the testis followed by the ovary in contrast to somatic tissues (Wei et al., 2016), while sox9a/b showed higher expression in the brain followed by the testis. Upon quantification, sox30 displayed predominantly higher expression in the testis in comparison to sox9a/b. A previous study (Han et al., 2010) in the Nile tilapia reported the expression of sox30 from 10 dph, earlier than the morphological gonadal differentiation period (about 25 dph). However, in this study, sox30 displayed significant dimorphic expression at 120 dph during the onset of testicular growth in carp (Komen et al., 1992). Further, expression of sox30 was high in mature testis as reported in mice (Feng et al., 2017) implicating its role in maturation as well. The present study quantified the expression of sox9a/b and sox30 at distinctive phases of the carp testicular reproductive cycle. Higher expression of sox9a/b was observed during preparatory and pre-spawning, marking their role during the initiation of spermatogenesis. sox30 expression was abundant in pre-spawning, characterized by the predominance of spermatogonia and spermatocytes and in the spawning phase, corresponding to spermiogenesis. This sign that in carp, the expression of sox30 was high during spermatogenesis and spawning/spermiation as observed in mice (Zhang et al., 2018a). Seasonal changes in sox30 expression may signify its role during testicular maturation. Sox9 was found in spermatogonia while Sox30 was localized in spermatocytes and spermatid/sperm as previously reported in the Nile tilapia (Han et al., 2010) and mice (Han et al., 2014).

4.2 Influence of gonadotropin

Steroidogenesis is strictly regulated by gonadotropins (Payne and Youngblood, 1995) and in fact, gonadotropins are well known to stimulate steroid synthesis in teleost gonads (Devlin and Nagahama, 2002). The influence of gonadotropin induction in carp has been testified (Yu *et al.*, 1986). There was a substantial increase in *sox9a/b* and *sox30* mRNA transcripts post-hCG

induction, validating the regulatory role of gonadotropin on *sox30* expression. LH-like hCG is proven to bind to LH receptors (Vischer *et al.*, 2003) expressed by Leydig cells to induce androgen synthesis and also to act upon Sertoli cells to regulate spermatogenesis (Skinner, 1991).

4.3 Effect of hormone treatment

It is known that hCG induces T and 11-KT production in fish (Wade and Van der Kraak, 1991). Having studied the leverage of gonadotropins on sox30, the influence of androgen on gene expression is yet another exhilarating area to study. The expression of sox9a/b and sox30 was found to be elevated after in vitro 11-KT treatment in carp testicular slices. In fish, treatment with sex steroids during the critical window of sexual differentiation can alter the developmental processes of gonads (Devlin and Nagahama, 2002). Reports suggest that 40-50 days of treatment in carp (Hulak et al., 2008) with different supplementations to feed can result in complete sexreversal. An all-male population of blue tilapia, O. aureus was produced with 17 αethynyltestosterone treatment (Guerrero, 1975). Exposure of methyltestosterone to catfish during gonadal differentiation resulted in the male population (Raghuveer & Senthilkumaran 2009). Expression of sox9a/b and sox30 was elevated after MDHT but not after E₂ treatment. In teleost, during sex-inversion/differentiation, gender-specific sexual differences are contingent on the sequential presence of brain and/or gonadal sex differences under the impact of gonadal factors to hormonal response (Senthilkumaran et al., 2015). Gonadotropin regulation during natural and artificial induction was observed. Further, to clarify the role of the brain-pituitary gonadal axis during mono-sex induction, expression levels of gonadotropin receptors were studied. Therefore, the expression of kiss2 and gnrh was determined in the brain, which showed their higher expression in both E₂ and MDHT treatments. However, the expression of fshr was higher in E₂ and lhr was higher in MDHT treated gonads. Our results were comparable to that of the previous reports (Cabas

et al., 2013) in gilthead seabream, Sparus aurata L. and (Hu et al., 2011) orange-spotted grouper Epinephelus coioides. In most gonochoristic teleost, lhr expression was high during the late stages of gonadal development, vital for spawning and spermiation (Levavi-Sivan et al., 2010). The current study showed the transcript levels of lhr was significantly high after MDHT treatment, suggesting the involvement of LH signaling in triggering mono-sex induction and subsequent testis development in carp.

4.4 Transient silencing of sox30

Most knockdown studies to investigate the significance of sox30 during gametogenesis were done in mammals however, this report is the first of its kind to show the transient silencing of sox30 in any lower vertebrate. To further elucidate the role of sox30 in gonadogenesis, the effect of PEI mediated transient silencing of the sox30 was studied. Previous reports delineated that synthetic siRNA induces gene silencing, concerning numerous developmental processes (Gupta and Senthilkumaran, 2020; Murugananthkumar and Senthilkumaran, 2016). Transient silencing using sox30-siRNA did not impact phenotypic changes in carp testis as reported earlier (Laldinsangi and Senthilkumaran, 2018). Delivery of sox30-siRNA resulted in decreased expression of the regulators of gonadogenesis, namely ad4bp/sf-1, gata4, and wt1 (Murugananthkumar and Senthilkumaran, 2016), demonstrating sox30 might affect the expression of these genes. In vertebrates, ad4bp/sf-1 is an important steroidogenic factor required for the basal expression of steroidogenic enzymes (Morohashi and Omura, 1996). An in vitro study by Sakai et al. (2008) reported that sox30 is a more effective regulator of ad4bp/sf-1 than sox9. Bai et al. (2008) reported a sox30 binding site in the promoter motif of ad4bp/sf-1 in mice. In mammals, it is well established that sox9 transactivates ad4bp/sf-1 gene expression (Shen and Ingraham, 2002) to achieve tissuespecific gene expression. Similarly, sox30 might regulate ad4bp/sf-1 expression in fish. Besides,

Chen et al. (2018) showed differential expression of gata2 in the SOX30 knockout mice line. In this study, transient silencing of sox30 resulted in the downregulation of transcription factors crucial for testicular development namely, dmrt1 (Raghuveer and Senthilkumaran, 2009), sox5 (Schartl et al., 2018), and sox9a/b (Raghuveer and Senthilkumaran, 2010). Zhang et al. (2018a) have reported evidence of the SOX30 binding site in DMRTA2 of mice. In the Nile tilapia, dmrt1 directly binds to a putative cis-regulatory element within the sox30 promoter (Tang et al., 2019). Feng et al. (2017) have shown the downregulation of SOX5 in SOX30 knock-out mice. Though there were no reports about the relationship between sox30 and sox9, the presence of sox30 DNA binding domain ACAAT (Osaki et al., 1999) in the sox9 promoter regions of Sebastes schlegelii (GenBank: KJ624401.1[unpublished]) warrants such a perspective. This report is the first to show the reduction of sox9a/b upon transient silencing of sox30 in carp, indicating either a direct or indirect regulatory loop among the sox genes. Gonadogenesis is influenced by several other factors such as amh (Rodríguez-Marí et al., 2005), gsdf (Shibata et al., 2010), PDGF (Gnessi et al., 1995). Gamete production by meiosis is dependent upon crucial germ cell governing genes like vasa, sycp3, and pou5f3/oct4 (Laldinsangi and Senthilkuamaran, 2018; Rodríguez-Marí et al. 2013). Silencing of sox30 also affected the expression of amh, gsdf, pdgf, vasa, pou5f3/oct4, and sycp3 in this study as observed in mice (Cheng et al., 2018; Zhang et al., 2018a). The production of testicular androgen is governed by steroidogenesis. In teleost, studies (Socorro et al., 2007; Wang and Orban, 2007) have reported the direct participation of 11-OHT and 11-KT in the differentiation and development of testis. Previous reports have shown the significance of hsd11b during testicular development and recrudescence in teleost (Rasheeda et al., 2010). In particular, sox3 has been proven as a transcriptional activator of the hsd11b gene by binding to two of its specific promoter motifs in catfish (Rajakumar and Senthilkumaran, 2016), suggesting that genes from the

sox family may regulate hsd11b expression, and hence testicular steroidogenesis, in teleost. Concomitantly, transient knockdown of sox30 resulted in decreased T, 11-KT, Hsd11b enzyme activity of and downregulation of star and steroidogenesis-related genes, srda51, hsd3b, hsd11b, hsd17b, and hsd20b. Supporting the above contention, Chen et al., (2018) have observed differential expression of HSD3B in SOX30 knockout mice. Further, transient knockdown of sox30 exhibited overexpression of ar, the nuclear receptor for 11-KT in teleost (Todo et al., 1999). Reports have suggested that ar overexpression could be a potential mechanism for hypersensitivity due to low androgen (Kawata et al., 2010).

$4.5 \quad sox9a/b \text{ vs } sox30$

The most interesting aspect of this study was attempting to signify the role of sox30 in comparison with sox9a/b. The dominance of sox30 over sox9a/b expression was observed in adult testis. Evidence of dominant expression of sox30 during spermatogenesis and especially in spermiogenesis and high expression of sox9a/b at the initial stages of spermatogenesis signifies their role in gamete maturation. Incidentally, the influence of gonadotropin, 11-KT, and mono-sex induction was similar in sox9a/b and sox30. Transient silencing of sox30 decreased sox9a/b levels hinting that sox30 may act as a regulating factor for sox9a/b, either directly or indirectly.

5 CONCLUSION

The current study reveals that sox30 transcripts are predominantly expressed in the testis in comparison to the ovary and might regulate testicular growth as well as maturation during the reproductive cycle. Overexpression of sox30 upon mono-sex induction indicates an important role during testicular development. Transient silencing of sox30 influenced steroidogenic enzyme, and other factor genes as well as sex steroid levels. Overall, the present study demonstrated the significance of sox30 in testicular steroidogenesis vis-à-vis testis function of carp by influencing

sox9a/b, either directly or indirectly, along with other male-related genes as evidenced by expression analysis and transient gene silencing.

6 REFERENCES

- 1) Anitha, A., Gupta, Y.R., Deepa, S., Ningappa, M., Rajanna, K.B., Senthilkumaran, B., 2019. Gonadal transcriptome analysis of the common carp, *Cyprinus carpio*: Identification of differentially expressed genes and SSRs. Gen. Comp. Endocrinol. 279, 67–77.
- 2) Bai, S., Fu, K., Yin, H., Cui, Y., Yue, Q., Li, W., Cheng, L., Tan, H., Liu, X., Guo, Y., Zhang, Y., Xie, J., He, W., Wang, Y., Feng, H., Xin, C., Zhang, J., Lin, M., Shen, B., Sun, Z., Guo, X., Zheng, K., Ye, L., 2018. *SOX30* initiates transcription of haploid genes during late meiosis and spermiogenesis in mouse testes. Development 145, dev164855.
- 3) Basavaraju, Y., Mair, G.C., Kumar, H.M.M., Kumar, S.P., Keshavappa, G.Y. Penman, D.J., 2002. An evaluation of triploidy as a potential solution to the problem of precocious sexual maturation in common carp, *Cyprinus carpio*, in Karnataka, India. Aquaculture 204 407–418.
- 4) Basavaraju, Y., Kumar, H.M.M., Kumar, S.P., Umesha, D., Srivastava, P.P., Penman, D.J., Mair, G.C., 2008. Production of genetically female common carp, *Cyprinus carpio*, through sex reversal and progeny testing. Asian Fish. Sci. 21, 355–368.
- 5) Cabas, I., Chaves-Pozo, E., García-Alcázar, A., Meseguer, J., Mulero, V., García-Ayala, A., 2013. The effect of 17α-ethynylestradiol on steroidogenesis and gonadal cytokine gene expression is related to the reproductive stage in marine hermaphrodite fish. Mar. Drugs. 11, 4973–4992.
- 6) Chen, Y., Zheng, Y., Gao, Y., Lin, Z., Yang, S., Wang, T., Wang, Q., Xie, N., Hua, R., Liu, M., Sha, J., Griswold, M.D., Li, J., Tang, F., Tong, M.-H., 2018. Single-cell RNA-seq

- uncovers dynamic processes and critical regulators in mouse spermatogenesis. Cell Res. 28, 879–896.
- Devlin, R.H., Nagahama, Y., 2002. Sex determination and sex differentiation in fish: an overview of genetic, physiological, and environmental influences. Aquaculture 208, 191– 364.
- 8) Du, Q-Y., Wang, F-Y., Hua, H-Y., Chang, Z-J., 2007. Cloning and study of adult-tissue-specific expression of *sox9* in *Cyprinus carpio*. J. Genet. 86, 85–91.
- 9) Feng, C.A., Spiller, C., Merriner, D.J., O'Bryan, M.K., Bowles, J., Koopman, P., 2017. SOX30 is required for male fertility in mice. Sci. Rep. 7, 17619.
- 10) Gnessi, L., Emidi, A., Jannini, E.A., Carosa, E., Maroder, M., Arizzi, M., Ulisse, S., Spera, G., 1995. Testicular development involves the spatiotemporal control of PDGFs and PDGF receptors gene expression and action. J. Cell Biol. 131, 1105–1121.
- 11) Guerrero, R.D., 1975. Use of androgens for the production of all-male *Tilapia aurea* (steindachner). Trans. Am. Fish. Soc. 104, 342–348.
- 12) Guerrero, R.D., Shelton, W.L., 1974. An aceto-carmine squash method for sexing juvenile fishes. Progress. Fish-culturist 36, 56–56.
- 13) Guo, X., Yan, Æ.J., Liu, Æ.S., Xiang, B., Liu, Æ.Y., 2010. Isolation and expression analyses of the *sox9a* gene in triploid crucian carp, Fish Physiol. Biochem. 36, 125–133.
- 14) Gupta, Y.R., Senthilkumaran, B., 2020. Common carp pentraxin gene: Evidence for its role in ovarian differentiation and growth, Gen. Comp. Endocrinol. 290, 113398.
- 15) Han, F., Dong, Y., Liu, W., Ma, X., Shi, R., Chen, H., Cui, Z., Ao, L., Zhang, H., Cao, J., Liu, J., 2014. Epigenetic regulation of *SOX30* is associated with testis development in mice. PLoS One 9, e97203.

- 16) Han, F., Wang, Z., Wu, F., Liu, Z., Huang, B., Wang, D., 2010. Characterization, phylogeny, alternative splicing and expression of *sox30* gene. BMC Mol. Biol. 11, 98.
- 17) Höbel, S., Aigner, A., 2010. Polyethylenimine (PEI)/siRNA-mediated gene knockdown *in vitro* and *in vivo*. Methods Mol. Biol. 623, 283–297.
- 18) Hu, X., Liu, X., Zhang, H., Zhang, Y., Li, S., Sang, Q., Wang, Q., Luo, W., Liu, Q., Lu, D., Meng, Z., Lin, H., 2011. Expression profiles of gonadotropins and their receptors during 17α-methyltestosterone implantation-induced sex change in the orange-spotted grouper (*Epinephelus coioides*), Mol. Reprod. Dev. 78, 376–390.
- 19) Hulak, M., Paroulek, M., Simek, P., Kocour, M., Gela, D., Rodina, M., Linhart, O., 2008.
 Water polluted by 17α-methyltestosterone provides successful male sex inversion of common carp (*Cyprinus carpioL*.) from gynogenetic offspring. J. Appl. Ichthyol. 24, 707–710.
- 20) Kawata, H., Ishikura, N., Watanabe, M., Nishimoto, A., Tsunenari, T., Aoki, Y., 2010.
 Prolonged treatment with bicalutamide induces androgen receptor overexpression and androgen hypersensitivity. Prostate 70, 745–754.
- 21) Komen, J., Yamashita, M., Nagahama, Y., 1992. Testicular development induced by a recessive mutation during gonadal differentiation of female common carp (*Cyprinus carpio, L.*). Dev. Growth Differ. 34, 535–544.
- 22) Koopman, P., Schepers, G., Brenner, S., Venkatesh, B., 2004. Origin and diversity of the *sox* transcription factor gene family: genome-wide analysis in *Fugu rubripes*. Gene 328, 177–186.
- 23) Laldinsangi, C., Senthilkumaran, B., 2018. Identification, cloning and expression profile of *sycp3* during gonadal cycle and after siRNA silencing in catfish. Gene Rep. 10, 54–65.

- 24) Levavi-Sivan, B., Bogerd, J., Mañanós, E., Gómez, A., Lareyre, J., 2010. Perspectives on fish gonadotropins and their receptors. Gen. Comp. Endocrinol. 165, 412–437.
- 25) Mamta, S.K., Raghuveer, K., Sudhakumari, C.C., Rajakumar, A., Basavaraju, Y., Senthilkumaran, B., 2014. Cloning and expression analysis of tyrosine hydroxylase and changes in catecholamine levels in brain during ontogeny and after sex steroid analogues exposure in the catfish, *Clarias batrachus*. Gen. Comp. Endocrinol. 197, 18–25.
- 26) Morohashi, K.I., Omura, T., 1996. Ad4BP/SF-1, a transcription factor essential for the transcription of steroidogenic cytochrome P450 genes and for the establishment of the reproductive function. FASEB J. 10, 1569–1577.
- 27) Murugananthkumar, R., Senthilkumaran, B., 2016. Expression analysis and localization of wt1, ad4bp/sf-1 and gata4 in the testis of catfish, Clarias batrachus: Impact of wt1-esiRNA silencing. Mol. Cell. Endocrinol. 431, 164–176.
- 28) Osaki, E., 1999. Identification of a novel *SRY*-related gene and its germ cell-specific expression. Nucleic Acids Res. 27, 2503–2510.
- 29) Payne, A.H., Youngblood, G.L., 1995. Regulation of expression of steroidogenic enzymes in Leydig cells. Biol. Reprod. 52, 217–225.
- 30) Radonić, A., Thulke, S., Mackay, I.M., Landt, O., Siegert, W., Nitsche, A., 2004. Guideline to reference gene selection for quantitative real-time PCR, Biochem. Biophys. Res. Commun. 313, 856–862.
- 31) Raghuveer, K., Senthilkumaran, B., 2009. Identification of multiple *dmrt1s* in catfish: localization, dimorphic expression pattern, changes during testicular cycle and after methyltestosterone treatment. J. Mol. Endocrinol. 42, 437–448.
- 32) Raghuveer, K., Senthilkumaran, B., 2010. Isolation of sox9 duplicates in catfish:

- localization, differential expression pattern during gonadal development and recrudescence, and hCG-induced up-regulation of *sox9* in testicular slices. Reproduction 140, 477–487.
- 33) Rajakumar, A., Senthilkumaran, B., 2014. Expression analysis of *sox3* during testicular development, recrudescence, and after hCG induction in catfish, *Clarias batrachus*. Sex. Dev. 8, 376–386.
- 34) Rajakumar, A., Senthilkumaran, B., 2016. *Sox3* binds to 11β-hydroxysteroid dehydrogenase gene promoter suggesting transcriptional interaction in catfish, J. Steroid Biochem. Mol. Biol. 158, 90–103.
- 35) Rajakumar, A., Senthilkumaran, B., 2020. Steroidogenesis and its regulation in teleost-a review, Fish Physiol. Biochem. 46, 803–818.
- 36) Rasheeda, M.K., Kagawa, H., Kirubagaran, R., Dutta-Gupta, A., Senthilkumaran, B., 2010. Cloning, expression and enzyme activity analysis of testicular 11β-hydroxysteroid dehydrogenase during seasonal cycle and after hCG induction in air-breathing catfish *Clarias gariepinus*. J. Steroid Biochem. Mol. Biol. 120, 1–10.
- 37) Rodríguez-Marí, A., Cañestro, C., BreMiller, R.A., Catchen, J.M., Yan, Y.L., Postlethwait, J.H., 2013. Retinoic acid metabolic genes, meiosis, and gonadal sex differentiation in zebrafish. PLoS One 8, e73951.
- 38) Rodríguez-Marí, A., Yan, Y.L., Bremiller, R.A., Wilson, C., Cañestro, C., Postlethwait, J.H., 2005. Characterization and expression pattern of zebrafish anti-Müllerian hormone (*amh*) relative to *sox9a*, *sox9b*, and *cyp19a1a*, during gonad development. Gene Expr. Patterns. 5, 655–667.
- 39) Routray, P., Verma, D.K., Sarkar, S.K., Sarangi, N., 2007. Recent advances in carp seed

- production and milt cryopreservation. Fish Physiol. Biochem. 33, 413–427.
- 40) Sakai, N., Terami, H., Suzuki, S., Haga, M., Nomoto, K., Tsuchida, N., Morohashi, K., Saito, N., Asada, M., Hashimoto, M., Harada, D., Asahara, H., Ishikawa, T., Shimada, F., Sakurada, K., 2008. Identification of NR5A1 (SF-1/AD4BP) gene expression modulators by large-scale gain and loss of function studies. J. Endocrinol. 198, 489–497.
- 41) Schartl, M., Schories, S., Wakamatsu, Y., Nagao, Y., Hashimoto, H., Bertin, C., Mourot, B., Schmidt, C., Wilhelm, D., Centanin, L., Guiguen, Y., Herpin, A., 2018. *Sox5* is involved in germ-cell regulation and sex determination in medaka following co-option of nested transposable elements. BMC Biol. 16, 16.
- 42) Senthilkumaran, B., Sudhakumari, C. -C., Mamta, S.K., Raghuveer, K., Swapna, I., Murugananthkumar, R., 2015. "Brain sex differentiation" in teleosts: Emerging concepts with potential biomarkers. Gen. Comp. Endocrinol. 220, 33–40.
- 43) Shen, J.H-C, Ingraham, H.A., 2002. Regulation of the orphan nuclear receptor steroidogenic factor 1 by SOX proteins. Mol. Endocrinol. 16, 529–540.
- 44) Shibata, Y., Paul-Prasanth, B., Suzuki, A., Usami, T., Nakamoto, M., Matsuda, M., Nagahama, Y., 2010. Expression of gonadal soma derived factor (GSDF) is spatially and temporally correlated with early testicular differentiation in medaka. Gene Expr. Patterns. 10, 283–289.
- 45) Skinner, M.K., 1991. Cell-cell interactions in the testis. Endocr. Rev. 12, 45–77.
- 46) Socorro, S., Martins, R.S., Deloffre, L., Mylonas, C.C., Canario, A., 2007. A cDNA for European sea bass (*Dicentrachus labrax*) 11β-hydroxylase: Gene expression during the thermosensitive period and gonadogenesis. Gen. Comp. Endocrinol. 150, 164–173.
- 47) Sudhakumari, C.C., Anitha, A., Murugananthkumar, R., Tiwari, D.K., Bhasker, D.,

- Senthilkumaran, B., Dutta-Gupta, A., 2017. Cloning, localization and differential expression of Neuropeptide-Y during early brain development and gonadal recrudescence in the catfish, *Clarias gariepinus*. Gen. Comp. Endocrinol. 251, 54–65.
- 48) Swapna, I., Rajasekhar, M., Supriya, A., Raghuveer, K., Sreenivasulu, G., Rasheeda, M.K., Majumdar, K.C., Kagawa, H., Tanaka, H., Dutta-Gupta, A., Senthilkumaran, B., 2006. Thiourea-induced thyroid hormone depletion impairs testicular recrudescence in the airbreathing catfish, *Clarias gariepinus*. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 144, 1–10.
- 49) Tang, Y., Li, X., Xiao, H., Li, M., Li, Y., Wang, D., Wei, L., 2019. Transcription of the *sox30* gene is positively regulated by *dmrt1* in Nile tilapia, Int. J. Mol. Sci. 20, 5487.
- 50) Takehana, Y., Matsuda, M., Myosho, T., Suster, M.L., Kawakami, K., Shin, I.T., Kohara, Y., Kuroki, Y., Toyoda, A., Fujiyama, A., Hamaguchi, S., Sakaizumi, M., Naruse, K., 2014. Co-option of Sox3 as the male-determining factor on the Y chromosome in the fish *Oryzias dancena*. Nat. Commun. 5, 4157.
- 51) Todo, T., Ikeuchi, T., Kobayashi, T., Nagahama, Y., 1999. Fish androgen receptor: cDNA cloning, steroid activation of transcription in transfected mammalian cells, and tissue mRNA levels, Biochem. Biophys. Res. Commun. 254, 378–383.
- 52) Vischer, H.F., Granneman, J.C.M., Noordam, M.J., Mosselman, S., Bogerd, J., 2003. Ligand selectivity of gonadotropin receptors. J. Biol. Chem. 278, 15505–15513.
- 53) Wade, M.G., Van Der Kraak, G., 1991. The control of testicular androgen production in the goldfish: Effects of activators of different intracellular signalling pathways. Gen. Comp. Endocrinol. 83, 337–344.
- 54) Wang, H-P., Gao, Z., Beres, B., Ottobre, J., Wallat, G., Tiu, L., Rapp, D., Bryant, P.O.,

- Yao, H., 2008. Effects of estradiol-17β on survival, growth performance, sex reversal and gonadal structure of bluegill sunfish *Lepomis macrochirus*. Aquaculture 285, 216–223.
- 55) Wang, X.G., Orban, L., 2007. Anti-Müllerian hormone and 11 β-hydroxylase show reciprocal expression to that of aromatase in the transforming gonad of zebrafish males, Dev. Dyn. 236, 1329–1338.
- 56) Wegner, M., 1999. From head to toes: the multiple facets of Sox proteins. Nucleic Acids Res. 27, 1409–1420.
- 57) Wei, L., Yang, C., Tao, W., Wang, D., 2016. Genome-wide identification and transcriptome-based expression profiling of the sox gene family in the Nile Tilapia (*Oreochromis niloticus*). Int. J. Mol. Sci. 17, 270.
- 58) Yu, H., Du, X., Li, X., Qu, J., Zhu, H., Zhang, Q., Wang, X., 2018. Genome-wide identification and transcriptome-based expression analysis of *sox* gene family in the Japanese flounder *Paralichthys olivaceus*. J. Oceanol. Limnol. 36, 1731–1745.
- 59) Yu, J.Y-L., Lin, T-M., 1986. Species variation of gonadotropic activity in an *in vitro* assay measuring androgen formation by carp (*Cyprinus carpio*) testis with special reference to bioassay of piscine gonadotropins. Gen. Comp. Endocrinol. 62, 428–436.
- 60) Zhang, D., Xie, D., Lin, X., Ma, L., Chen, J., Zhang, D., Wang, Y., Duo, S., Feng, Y., Zheng, C., Jiang, B., Ning, Y., Han, C., 2018a. The transcription factor SOX30 is a key regulator of mouse spermiogenesis. Development 145, dev164723.
- 61) Zhang, S., Chen, X., Wang, M., Zhang, W., Pan, J., Qin, Q., Zhong, L., Shao, J., Sun, M., Jiang, H., 2018b. Genome-wide identification, phylogeny and expressional profile of the sox gene family in channel catfish (*Ictalurus punctatus*). Comp. Biochem. Physiol. D Genomics Proteomics 28, 17–26.

Chapter 3

Understanding the role of *sox19* **in ovarian function**

ABSTRACT

In teleost, ovarian steroidogenesis governed by the neuroendocrine system is also regulated by several transcription factors of gonadal origin. Investigating the synchronized interactions between the transcriptional and the hormonal factors is vital to comprehend the mechanisms that lead to gonadal differentiation. This study signifies the role of sox19 in regulating ovarian steroidogenesis of carp, C. carpio. Tissue distribution displayed the predominant expression of sox19 in brain and ovary, and gonadal ontogeny showed overexpression of sox19 at 80 dph. Higher sox19 mRNA expression during the spawning phase, an elevation of sox19 post hCG induction substantiate gonadotropin dependency. E₂ treatment to 50 dph carp for inducing mono-sex, elevated sox19 expression substantially. Sox19 protein was observed in GC of follicular layer in carp ovary. Higher sox19 expression was detected in isolated GC and TC, in vitro. Transient gene silencing with sox19-siRNA caused downregulation of certain genes related to wnt-signaling, transcription factors, and steroidogenic genes related to ovary. Serum E_2 and 17α , 20β -DP reduced significantly post sox19 silencing, in vivo. Concomitantly, a decrease in aromatase activity was detected post sox19-siRNA treatment, in vivo. This study demonstrates the impact of sox19 in the regulation of carp ovarian growth and steroidogenesis.

1. INTRODUCTION

Fish gonadogenesis and steroidogenesis are highly synchronized processes, in which several transcription factors and hormones are involved. The developmental pathways leading to steroid synthesis in gonadal cells require a composite regulation of multiple genes (Swain and Lovell-Badge, 1999) intricated in the differentiation of steroid secreting cells. Transcription factors regulating the expression of steroidogenic enzymes are a great deal of interest. The most researched are those that regulate *cyp19* as it plays a decisive role in fish sex differentiation.

Members of the sox family of transcription factors play a variety of roles during various developmental processes (Uy et al., 2012). Extensive studies on sox family genes have been conducted in many teleost (Hett and Ludwig, 2005; Koopman et al., 2004; Galay-Burgos et al., 2004; Zhou et al., 2002). sox genes are sub grouped into A-K based on HMG box sequence homology (Bowles et al., 2000, Zhang et al., 2018). Group B1, comprising three genes in mammals (SOX1/2/3), also has an additional sox19, not represented at all in mammals (Schepers et al., 2002). Interestingly, sox19 was only found in the teleost genome such as half smooth tongue sole, fugu, pufferfish, the Nile tilapia, zebrafish, and carp (Koopman et al., 2004; Zhang et al., 2018). Reports suggest that sox19 combines certain features of sox2 and sox3 and could have evolved through an ancient fish-specific duplication of sox3 (Koopman et al., 2004). SOX proteins bind to the similar targets (Wegner, 1999). Precision in selection of target gene is thought to be executed via a combinatorial machinery involving communication with other cell-specific transcription factors along with spatio-temporal expressions (Kamachi et al., 1999, 2000; Wilson and Koopman, 2002). Strikingly, when HMG of SRY was substituted with either of SOX3/SOX9, SRY retained male determination ability in transgenic mice (Bergstrom et al., 2000) proving that SOX3, SOX9, and SRY target similar genes. In amphibians, sox3 was reported to play a significant role in ovarian differentiation by binding and activating cyp19a1a promoter (Oshima et al., 2009). Navarro-Martín et al. (2012) have proposed a possible role of sox19 in ovarian differentiation of the European sea bass. In light of the above, in this study the possibility that a fish specific, group B1 sox gene, such as sox19 was analyzed to understand its role, if any during ovarian steroidogenesis. For which, carp which follows a seasonal spawning cycle and attains early gonadal maturation was chosen instead of typical annual breeders. Expression profiling of sox19 in adult tissues, as well as in ovary during natural spawning cycle, after hCG induction, post monosex-induction, localization and analysis of sox19 regulation on ovarian steroidogenesis by transient gene silencing were performed to test impact of sox19 in teleost.

2. MATERIALS AND METHODS

2.1 Fish sampling

Procuring and rearing of carp were done as described earlier in the chapter 1. Sampling for tissue distribution, gonadal ontogeny, localization and mono-sex induction were followed as described in chapter 2.

2.2 Cloning of sox19 from adult carp ovary

Following the procedure described in chapter 2, primer designing (Table1) and cloning of *sox19* from adult carp ovary was performed.

Table 1. List of primers used in the study.

S. No.	Gene name/symbol	Forward primer (5'-3')	Reverse primer (5'-3')	Accession number
1	18s rRNA	GCTACCACATCCAAGGAAGGCAG2C	CGGCTGCTGGCACCAGACTTG	FJ710827.1
2	ad4bp/sf-1	CGGACCTGGAAGAGTTGT	GGTTCTCTTGGCATGCAG	GSE112157
3	era	GCCCACAAACTCTCACCCATG	CCAGTGCCTAAGATCTGC	AB334722.1
4	erß1	GGGTATGTTTTGGCCAGTTG	CTGCCGTATCATCAACAGGGAGC	GSE112157
5	erβ2	GCCCACAAACTCTCACCCATG	CCAGTGCCTAAGATCTGC	KU205262.1
6	ctnnb1	CAATCTGACTTGATGGAGC	GGTCTGCCACCTGCTCAG	GSE112157
7	cyp11	TCAACCAAGCGGACCACTGT	CACCTCCAGCCATCAGCTC	GSE112157
8	cyp17	GCAGCACTGTATCTCAGAAG	GGCACGCGTCAGCTCCGGTG	GSE112157
8	cyp19a1a	GGTCCTTGTTTCTTCCTGGG	CAAGATGAGAGTTTCCTCACC	DQ534411.1
9	fzd	CGCGCTGCCGAGGATGAGTA	GCTGCTTCACCTCCGCTATG	GSE112157
10	foxl2	GCGTCTCACGCTGTCCGG	GCCGGTAGTTGCCCTTCT	KP764768.3
11	fstl	GAGCAATGCAAGCCTCATAAG	CATAACACACAACTGGGCTGGC	GSE112157
13	hsd3b	GGCTTTTCTGTTCATGCCTG	CACGCGTCAGCTCCGGTGCC	GSE112157
15	hsd17b	GACATCCTGGTGTGTAATGCAGG	CTGCCTGTGACCAGGATCCGT	GSE112157
16	hsd20b	GGGTGTGCCATGCTCTTC	CAGCCCTGACCCGTATGA	GSE112157
21	rspo1	GAGACGAATAAGCACTGAAG	GTGTGCATTTGTTCATATCACG	GSE112157
22	sox5	GGACAGCCTGGTGGAGAAAG	CTGCTGTTGTCGTGCAATC	GSE112157
23	sox6	CCGGGGAAGGAACAGCAAC	GTGCCTGCTCCTCATAATATG	GSE112157
24	sox9a	GGTGAACAACGGCCAGAG	GACTGGCCTGAGTGCTCG	GSE112157
25	sox9b	GAACGCCAGAGCGAGAG	GACCCTGGGACTGACCTG	AY956415.1

26	sox11	GCACCAAGTGGAATAAACACCTG	CTGATTTTCTTGCTGCTAGTCAC	GSE112157
27	sox13	GGCCAAAGACGAAAGACGG	GGCCGGGGTTTGTATTTGTAG	GSE112157
28	sox18	GATGCTGGGTCAATCCTGG	CGATGTGGCGAGTAGGCATC	KY860090.1
29	sox19 qPCR	GGCACAGGAGAACCCCAAAATG	CTTCATGAGGGCTTTGGTC	GSE112157
32	sox19 ORF	ATGTACAGCATGATGGAG	TCAGATATGAGTGAGGGGAAC	GSE112157
33	sox21	GGTAAGGTTCATGTTGAGCTTTG	CATTACTCAATGCTCGGGTATC	GSE112157
34	sox30	CAGAGCAGTCTAAATTCTCCAGC	GGCTAGAAGAGCTTGAACATGG	MT193291
35	star	GGAGCTCCCTTCTCAGCAG	CTGTCTTCTGTTCCAGCATC	GSE112157
36	wnt4	TCCACCGACATGTGTGCATC	ATCATAATTTGTTAACAAAT	GSE112157
37	vtg	CCTTGTTGCAAACAATGTGG	GTGCCAACAGAAGGAAGAGC	AF414432.1

2.3 Multiple sequence alignment and phylogeny

Multiple sequence alignment and phylogenetic analysis of deduced *sox19* as with its counterparts was done as demonstrated in chapter 2.

2.4 qPCR

Total RNA isolation, reverse transcription, real-time primer design (Table 1) and qPCR were done as detailed in chapter 2.

2.5 Polyclonal antibody generation for Sox19

Following the procedure explained in chapter 2, using an antigenic peptide GSKTSCPPGGDSMDKC Sox19 antibody was generated.

2.6 Western blot

For validating anti-carp Sox19 antibody, western blot was done in ovary and muscle samples as mentioned in chapter 2.

2.7 IHC

IHC was employed to localize Sox19 in adult carp ovary following description of chapter 2.

2.8 In vitro hCG induction

The *in vitro* hCG induction was performed by following the procedure of Gupta and Senthilkumaran (2020). Ovaries from adult female carp during preparatory phase were dissected,

oocytes were collected and (triplicate) placed in oocyte incubation medium (Senthilkumaran and Joy, 2001) containing 100 IU/mL of hCG (Pubergen, Uni-Sankyo, Hyderabad, India) or control (fish physiological saline). The oocytes were taken during 0, 6, 12 and 24 h post hCG induction followed by total RNA isolation, cDNA synthesis and proceeded for qPCR analysis. During the course of the experiment, average death was about 8–10 % and from time to time by observing color changes the dead eggs were carefully removed using a sterile pipette.

2.9 In vivo hCG induction

During the preparatory phase hCG injection was given to adult female carp as detailed in chapter 2.

2.10 Mono-sex induction

Mono-sex induced samples were obtained as mentioned in chapter 2.

2.11 Aromatase assay

The aromatase activity in carp gonads was assayed shadowing Rasheeda *et al.* (2010). In brief, microsomes from gonads were obtained by homogenizing 2 g of tissue with 2 mL of 100 mM KPO₄ (pH 7.4) and clearing debris by centrifuging at 9000 × g at 4 °C for 20 min. Then, ultracentrifugation at 105,000 × g at 4 °C for 1 h (OptimaTM Max-XP Tabletop Ultracentrifuge, Beckman Coulter, USA) was done to obtain the microsomal pellet, which was rinsed and reintroduced in 500 µl of KPO₄/ 20% glycerol/ 0.1 mM EDTA (v/v). For measuring aromatase, 300 µg of microsomal protein along with 0.6 µM of 1β- [³H] androstenedione (Amersham) in 500 µL reaction constituting 10 U of glucose-6-phosphate dehydrogenase, 5 mM glucose-6-phosphate, 1 mM β-NADP+,1 mM EDTA and 100 mM KPO₄ was incubated for 1 h in a shaker incubator at 37 °C. To terminate the reaction, 10 % chilled trichloroacetic acid with 20 mg dextran-layered activated charcoal/ mL was added. Following centrifugation at 1000 × g at 4 °C for 10 min, the supernatant was added to 3 mL of cocktail-T (SRL Chemicals, Mumbai, India) contained in

scintillation vials to measure radioactivity (Wallac 1409-liquid scintillation counter, Pegasus Scientific Inc., USA). The experiment was done in triplicate for five different biological samples. The results were expressed as mean \pm standard error of the mean and the data was evaluated using One-way ANOVA followed by post hoc tests with P-value < 0.05 considered to be statistically significant.

2.12 Isolation of GC and TC from adult carp ovary

The isolation of GC and TC was performed as described (Benninghoff and Thomas, 2006) with some modifications (Paul et al., 2010). Adult carp ovaries were dissected and placed into ice-cold Idler's medium followed by frequent gentle pipetting to separate the mature oocytes. Adult female carps were dissected and ovaries placed in ice-cold Idler's medium (pH 7.4) comprising penicillin (100 IU/mL) and streptomycin (100 µg/mL). The experiment was performed at RT using sterile reagents and equipment in a HEPA-filtered laminar. Individual ovarian follicles were carefully separated using sterile forceps, kept in 50 mL conical tubes and then washed two times with two volumes of Idler's medium. To separate out the individual ovarian follicles gentle pipetting was done repeatedly during each wash. Subsequently, the follicles were digested by 0.1% collagenase type-I in Idler's medium for 30 min with constant moderate mixing on a rotatory shaker. After incubation, vigorous mixing accompanied by frequent pipetting was done several times to obtain the follicular cells from oocytes. Then, filtration using 100 µm nylon strainer was done to collect the disassociated follicular cells from other cells in the medium. Following centrifugation of the cell suspension at $500 \times g$ for 5 min, the resultant pellet was resuspended in 3 mL of DMEM. This cell suspension was layered on a single density Percoll layer (9 volume of Percoll to 1 volume of 8 % NaCl) diluted with 1 volume of DMEM and centrifuged at 2800 × g for 20 min. At the Percoll and media interface, a compact layer of GC and TC are formed, which were collected by aspiration

using a big gauge needle and syringe. The isolated cells were then washed with new medium, centrifuged for 5 min at $500 \times g$ to obtain the pellet and resuspended in 5 mL of fresh cell-culture medium. The cell density was noted using hemocytometer and the cell viability mostly above 90% was assessed by trypan blue staining method. Both the isolated GC and TC as well as other ovarian cells collected were immediately processed for total RNA isolation using TRI reagent followed by cDNA synthesis and quantification as described earlier. The aromatase assay and qPCR were performed for validation of GC and TC isolation.

2.13 In vitro treatment of sox19-siRNA in isolated GC and TC

The in vitro siRNA treatment was done as detailed by Gupta and Senthilkumaran (2020) with minor modifications. The isolated GC and TC were grown in cell-culture plates comprising 25 mL of M199 medium complemented with 0.25 % HEPES buffer solution, 10 % FBS, and antimycoticantibiotic, for 24 h at 37 °C in 5 % CO₂ incubator with 95 % water-saturated atmosphere. Custom synthesized oligomers of sox19 5-(sense: rGrGrArCrArArGrUrGrArArGrCrGrUrCrCrCrArUrGrAAT-3' antisense: 5rArUrUrCrArUrGrGrGrArCrGrCrUrUrCrArCrUrUrUrGrUrCrCrArU-3') siRNAs were produced commercially (Integrated DNA Technologies, Iowa, US). The sox19-siRNA was designed straddling limited base pairs from the HMG domain to warrant specificity. The siRNA combined with branched PEI (Sigma) was dissolved in sterilize HEPES-NaCl (pH 7.4) and incubated for 20 min at RT for siRNA-PEI complex formation, as mentioned by Höbel and Aigner (2010) and used in carp (Anitha and Senthilkumaran, 2020). About, 1×10^5 cells were placed in 24-well plates and maintained as mentioned. Before treatment, the culture medium was removed, followed by the addition of 100 µl OPTI-MEM® I (Thermo Fisher Scientific). Antisense sox19-siRNA (1, 5, 10, and 50 ng/mL) and sense sox19-siRNA (10 ng/mL) complexed with branched PEI were prepared.

Aliquot part 25 μL comprising only PEI (control)/ sense *sox19*-siRNA-PEI (negative control)/ antisense *sox19*-siRNA-PEI was added along 1 μl of LipofectamineTM 2000 transfection reagent and the cells were incubated for 12 h. After treatment, the siRNA-PEI-lipofectamine-OPTI-MEM® mixture was withdrawn and the cells were cultured for 24 h with fresh culture medium. Following PBS rinse the cells were collected by trypsinization (0.5 % Trypsin-EDTA) for total RNA isolation, cDNA synthesis and qPCR, as earlier. Fluorescent Universal Negative Control MISSION® siRNA #1 (Sigma) was employed for validation and the treated cells were observed under the IX81 Olympus microscope (Olympus Corporation) and evaluated with Cell Sens dimension software.

2.14 In vivo treatment of sox19-siRNA in adult female carp

To understand the specific role of sox19 in ovarian function, in vivo transient silencing of sox19 by ovary–targeted injection was performed in female carp as described earlier in chapter 2.

2.15 EIA

Four days post sox19-siRNA in vivo treatment, the serum was obtained from the treatment groups. Carp serum E_2 and 17α , 20β -DP levels were valued using EIA kits (Cayman, USA) implementing the producer's instructions. The sensitivity for E_2 and 17α , 20β -DP measurements was 20 pg/mL and 4 pg/mL, respectively. Anti- E_2 had 12 %, 10 % and 0.3 % cross-reactivity with estrone, estradiol-17-glucuronide and estriol, respectively. Anti- 17α , 20β -DP had minimal cross-reactivity of 0.004 % and 0.01 % with 17α , 20α -dihydroxy progesterone and 20β -hydroxyprogesterone, respectively. Assays were done for every sample (n=5) in triplicates with the proper dilutions, whenever required.

2.16 Statistics

ImageJ (NIH) software was employed for all densitometry analysis. SigmaPlot 14.0 (Systat Software Inc., Chicago, USA) was employed for all statistical analysis. qPCR results were indicated as mean \pm Standard Error of the Mean (SEM) after qualifying in normality and homogeneity tests. ANOVA, trailed by post hoc tests were performed for statistical assessment with P-value < 0.05 as statistically significant.

3. RESULTS

3.1 Cloning and sequence analysis

The *sox19* ORF of ~879 bp which encodes a putative protein of ~292 aa with a deduced ~32 kDa molecular weight was cloned from adult carp ovary. Sequence analysis exposed the existence of the HMG box domain. The homology of carp Sox19 was equated with its vertebrate counterparts. Multiple sequence alignment exhibited that carp, *C. carpio* Sox19 showed similarity at the HMG box domain region (Fig. 1).

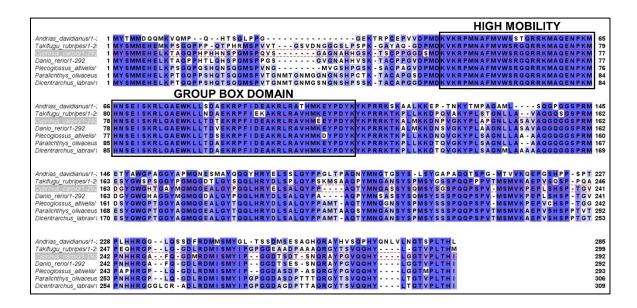


Fig. 1 Multiple sequence alignment of carp Sox19 with other vertebrate counterparts with GenBank accession numbers: *Paralichthys olivaceus* (KY924912.1), *Andrias davidianus*

(KJ623265.1), Takifugu rubripes (AY277954.1), Dicentrarchus labrax (JN251020.1), Plecoglossus altivelis (KF730866.1), Danio rerio (AB242332.1) using ClustalW2 (http://www.ebi.ac.uk/Tools/msa/clustalw2/) alignment.

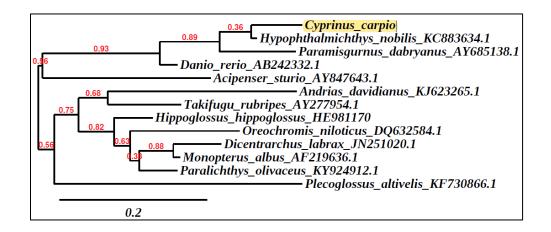


Fig. 2 Phylogenetic analysis of carp Sox19 with other vertebrates with GenBank accession numbers: *Acipenser sturio* (AY847643.1), *Oreochromis niloticus* (DQ632584.1), *Hippoglossus hippoglossus* (HE981170), *Monopterus albus* (AF219636.1), *Paramisgurnus dabryanus* (AY685138.1) using PhyML (http://www.phylogeny.fr/simple_phylogeny.cgi). All other details are the same as Fig. 1.

Phylogenetic analysis revealed that *C. carpio* Sox19 is more homologous with Sox19 of *Hypophthalmichthys nobilis* and Sox19 of *Paramisgurnus dabryanus* and formed a separate clade (Fig. 2).

3.2 Expression of *sox19*: tissue distribution, gonadal ontogeny, and ovarian reproductive phases

Tissue distribution showed abundant (P < 0.05) sox 19 expression in brain and ovary in comparison to other tissues analyzed with negligible expression in muscle (Fig. 3A). Varied levels of sox 19 mRNA were observed during gonadal ontogeny, with significantly higher expression (P < 0.05), around 80 dph (Fig. 3B), an important period in carp ovarian differentiation. qPCR analysis during

the ovarian reproductive phases showed significant (P < 0.05) high expression of sox19 in prespanning followed by spawning phase, with moderate expression in preparatory and a minimal expression in post spawning (Fig. 3C).

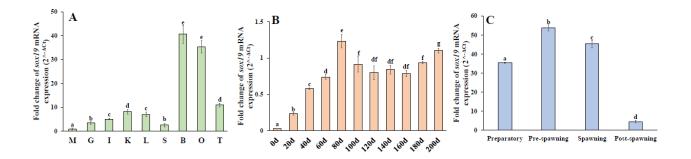


Fig. 3 Expression analysis of *sox19*: (A) Tissue distribution, (B) gonadal ontogeny and (C) ovarian reproductive phases in carp. Data (n=5) were expressed as mean ± SEM (P < 0.05; Oneway ANOVA followed by Tukey test). Means with different alphabets differ significantly while means with similar alphabets did not show any significance. Abbreviations: M-muscle, G-gill, I-intestine, K-kidney, L-liver, S-spleen, B-brain, O-ovary, T-testis, d-days post hatch. 0d (whole trunk), 20-60d (mesonephric gonadal complex), 80–200d (ovary) samples.

3.4 Western blot and IHC of Sox19

A positive band of *C. carpio* Sox19 ~32 kDa was observed in protein obtained from the ovary (Fig. 4A) while no signal was seen in the negative control (muscle). Immunolocalization revealed Sox19 protein signals in GC of the follicular layer in post vitellogenic oocytes (Fig. 4B), while immunoreactivity was not evident in the pre-adsorbed antibody control (Fig. 4C) with excess of Sox19 antigen, proving the specificity. Further, immunoreactivity was observed specifically in the GC of the follicular layer (Fig. 4D-F).

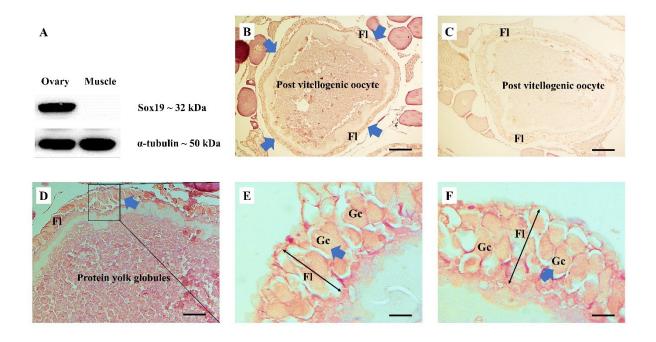


Fig. 4 Western blot and IHC of Sox19 protein in adult carp ovary. (A) Western blot analysis of Sox19 protein displayed band of ~32 kDa in ovary while in the negative control (muscle) no band was observed. Immunoreactivity of Sox19 (B) was seen in in the follicular layer of mature oocyte, whereas the negative control (pre-adsorbed antibody with excess Sox19 antigen) showed no signal (C). Sox19 was localized in granulosa cells of the follicular layer (D-F). Abbreviations: Fl: follicular layer, Gc: granulosa cells. The scale bar indicates B, C: 50 μm; D: 30 μm; E, F: 10 μm.

3.5 Effect of hCG on sox19 mRNA expression, in vitro and in vivo

Induction with hCG during the preparatory phase of the carp ovarian reproductive cycle modulated the expression of sox19. In both *in vitro* (Fig. 5A) and *in vivo* (Fig. 5B) treatments (n=5), significant (P < 0.05) increase in sox19 mRNA expression was observed after 12 h and maximum 24 h post hCG induction.

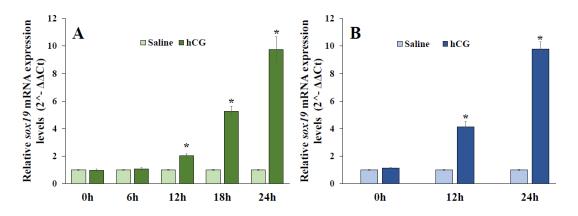


Fig. 5 Relative mRNA expression of *sox19* after hCG induction (A) *in vitro* (100 IU/ml) and (B) *in vivo* (1000 IU/Kg body weight) compared with control (saline) in adult carp ovary at different time intervals. Data (n=5) were expressed as mean ± SEM (* P < 0.05; One-way ANOVA followed by Dunnett's method). Abbreviation: h-hour.

3.6 Effect of mono-sex induction treatments

Aromatase activity was measured in the mono-sex-induced carp gonads. There was an increase in activity of aromatase in the ovary of E_2 treated carp (Fig. 6A) while there was a reduction in aromatase activity in the testis of MDHT treated carp (Fig. 6B). E_2 treatment increased the expression of sox19 significantly (P < 0.05) in ovary (Fig. 6C) during the gonadal development of carp.

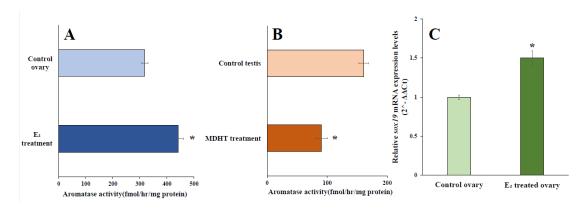


Fig. 6 (A) Assessment of aromatase activity in control and E₂ treated carp ovary. (B) Assessment of aromatase activity in control and MDHT treated carp testis. (C) Relative expression of *sox19*

mRNA in expression control and E_2 treated carp ovary. Data (n=5) were expressed as mean \pm SEM (* P < 0.05; One-way ANOVA followed by Dunnett's method).

3.7 Aromatase assay and expression analysis in isolated GC and TC

The GC and TC were isolated from the adult carp ovary. Aromatase activity was assessed to validate the isolated cell population. Elevated aromatase activity was evident in GC and TC enriched cell population in comparison to other cell (yolk granule, yolk vesicle, cortical alveoli, stroma cells, and cortical vesicle) population (Fig. 7A).

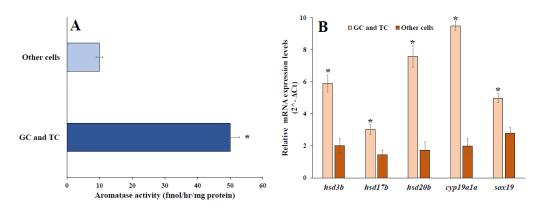


Fig. 7 (A) Assessment of aromatase activity in isolated GC and TC cells in comparison with other cell population. (B) Relative mRNA expression of genes (*hsd3b*, *hsd17b1*, *hsd20b*, *cyp19a1a*, and *sox19*) in isolated GC and TC enriched population compared to other cell population. Data (n=5) were expressed as mean ± SEM (* P < 0.05; One-way ANOVA followed by Tukey test).

In addition, qPCR analysis of follicular layer marker steroidogenic enzyme genes like *hsd3b*, *hsd20b*, *hsd17b1*, and *cyp19a1a* were estimated. In the GC and TC enriched cell population the expression levels of *hsd3b*, *hsd17b1*, *hsd20b*, *cyp19a1a*, and *sox19* were found to be upregulated (Fig. 7B).

3.8 Silencing of sox19, in vitro

The isolated GC and TC carp cells were cultured and subjected to *sox19*-siRNA (n=5) treatments. Fluorescent signals were evident in control siRNA validating siRNA uptake by cells (Fig. 8A).

The sox19 mRNA expression was similar in the control (only PEI) and sense sox19-siRNA treatment groups. However, in the antisense sox19-siRNA treatments, there was a significant (P < 0.05) dose-dependent reduction in the sox19 mRNA expression levels (Fig. 8B). The expression of sox19 reduced to about 87 % upon treatment with 10 ng/µl of sox19-siRNA as compared to control, hence this dose as well as sample was selected for further analysis. Treatment of isolated GC and TC cell culture with antisense sox19-siRNA significantly (P < 0.05) decreased the transcript levels of hsd3b, hsd17b, hsd20b, and cyp19a1a (Fig. 8C).

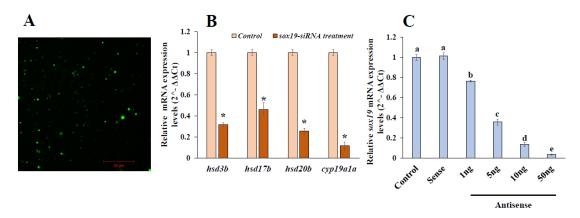


Fig. 8 (A) Representative fluorescent image 24 h after *in vitro* PEI mediated treatment of MISSION siRNA universal negative control conjugated with 6-FAM to check the efficiency in carp cell culture. (B) Relative *sox19* mRNA expression 24 h after *in vitro* PEI mediated *sox19*-siRNA treatment in carp GC and TC culture (n=5). (C) Relative expression of genes (*hsd3b*, *hsd17b*, *hsd20b*, and *cyp19a1a*) between control and 10 ng/μl of antisense *sox19*-siRNA groups in carp GC and TC culture after 24 h of treatment (* P < 0.05; One-way ANOVA followed by Dunnett's method).

3.9 Transient silencing of sox19, in vivo

In vivo treatment of antisense sox19-siRNA-PEI complex significantly reduced (P < 0.05) the expression of sox19 demonstrating transient gene silencing of sox19 in carp ovary (Fig. 9A). In contrast, PEI only or sense sox19-siRNA-PEI complex treatments showed no significant difference

in sox19 mRNA expression. Expression of sox19 was measured in ovary on days 0, 2, 4, 6, 8 and 10 post-siRNA treatment and compared with equivalent control during all time periods (Fig. 9A). In the antisense sox19-siRNA treatment group the expression of sox19 significantly (P < 0.05) reduced to 43, 90, 46, and 17% on days 2, 4, 6 and 8 respectively. There was no significant change in sox19 mRNA expression on day 10 proving that transcript levels might return to normal due to transient nature (Anitha and Senthilkumaran, 2020; Laldinsangi and Senthilkumaran, 2018; Murugananthkumar and Senthilkumaran, 2016).

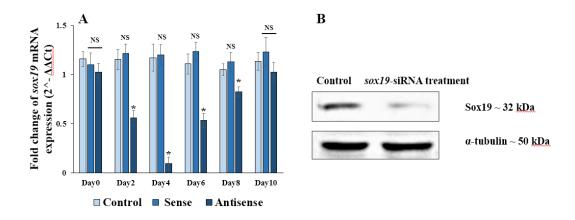


Fig. 9 (A) Relative *sox19* mRNA expression post in *vivo* PEI mediated *sox19*-siRNA treatment in adult (n=5) carp ovary (*, P < 0.05; One-way ANOVA followed by SNK test). (B) Western blot analysis of Sox19 protein on day 4 in control and *sox19*-siRNA treated carp ovary.

The antisense sox19-siRNA treatment on day 4 showed a 90 % decline in sox19 mRNA expression and henceforth, experiments were performed with this as treatment sample. Western blot analysis showed reduced Sox19 protein levels in sox19-siRNA treated ovary (Fig. 9B). The sox19-siRNA treatment did not affect the mRNA expression of sox5, sox6, sox9a, sox9b, sox11, sox13, sox18, sox21, and sox30 (Fig. 10A) claiming the specificity of siRNA designed. The transient nature of the PEI mediated siRNA treatment is reinforced with nonexistence of noticeable phenotypic

modifications by histological analysis in *sox19*-siRNA treated (Fig. 10B) and control ovary (Fig. 10C).

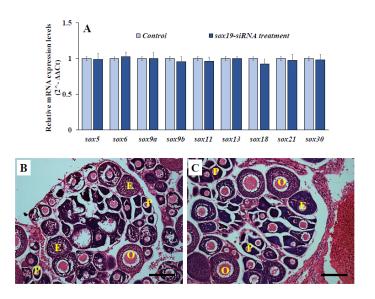


Fig. 10 (A) Relative expression of *sox* genes on day 4 between control and *sox19*-siRNA treated carp ovary. No significant difference was observed in any of the groups. Representative histological images of carp ovary on day 4 (B) control and (C) *sox19*-siRNA treatment.

Abbreviations: P: perinucleolus stage, O: oil droplet stage, E: early vitellogenic stage. The scale bar indicates C, D: 30 μm.

Nevertheless, siRNA treatment imparted molecular variations. There was a significant downregulation in transcript levels of ovary-related factors/genes namely, foxl2, vtg, fstl, ad4bp/sf-1, and genes related to wnt signalling like ctnnb1, rspo1, wnt4, and fzd (Fig. 11A), as well as steroidogenesis related genes such as star, cyp11, cyp17, hsd3b, hsd17b, hsd20b, cyp19a1a, and era, while era1 and era2 displayed a significant upregulation (Fig. 11B) on day 4 post-sox19-siRNA treatment. The transient nature of siRNA silencing was proven further with the mRNA transcript levels reverting to near normal on day 10 post-sox19-siRNA treatment (Fig. 11C).

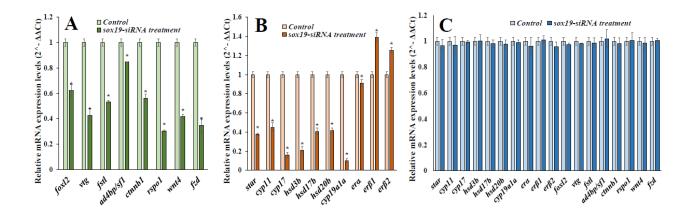


Fig. 11 Relative mRNA expression of (A) ovary-related, (B) steroidogenesis-related genes/factors on day 4 in control and *sox19*-siRNA treated carp ovary (* P < 0.05; Mann—Whitney test One-way ANOVA on ranks followed by SNK test). (C) Relative mRNA expression of ovary-related and steroidogenesis-related genes/factors on day 10 in control and *sox19*-siRNA treated carp ovary. No significant difference was observed in any of the groups.

Serum E_2 (Fig. 12A) and $17\alpha,20\beta$ -DP (Fig. 12B) levels decreased significantly (P < 0.05) on day 4 post sox19-siRNA treatment, with concomitant increase in serum T levels (Fig. 12C). Aromatase activity declined significantly (P < 0.05) on day 4 post sox19-siRNA treatment (Fig. 12D).

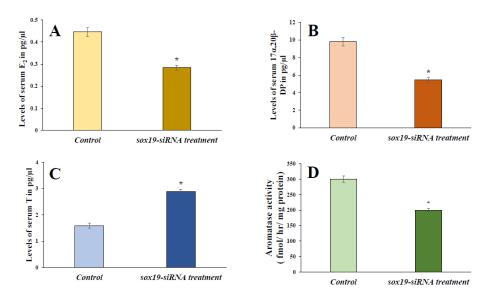


Fig. 12 Changes in the levels of serum (A) E_2 , (B) 17α , 20β -DP (C) T on day 4 in the control and sox19-siRNA treated carp. (D) Changes in aromatase activity on day 4 in the control and sox19-

siRNA treated carp ovary. Data (n=5) were expressed as mean \pm SEM. (* P < 0.05; Student's t-test).

4. DISCUSSION

The current study, reports the cloning of carp sox19, its expression during initial ovarian differentiation, variations in different phases of the ovarian reproductive cycle, post hCG induction and after E₂ treatment. This work is the first to elucidate the significance of sox19 in ovarian steroidogenesis in C. carpio by transient gene silencing. sox19 belongs to subgroup B1, comprising transcriptional activators and was initially reported in zebrafish to contain highly conserved motifs apart from the HMG (Vriz and Lovell-Badge, 1995). Most multigene families are discovered in mammals, and later found to consist more members in fish genomes (Wittbrodt et al., 1998), however sox19 is absent in mammals (Schepers et al., 2002) and specific to fish, evident in rice field eel (Liu and Zhou, 2001), fugu (Koopman et al., 2004), the European Atlantic sturgeon, A. sturio (Hett and Ludwig, 2005), the turbot, Scophthalmus maximus (Viñas et al., 2012), the European sea bass (Navarro-Martín et al., 2012), and carp (Zhang et al., 2018). Significance of sox19 during neurogenesis in turbot (Taboada et al., 2018) and embryogenesis in the large yellow croaker, Larimichthys crocea (Wan et al., 2019) and the Japanese flounder (Yu et al., 2018) have been reported. In the European sea bass, importance of sox19 in ovarian differentiation was suggested (Navarro-Martín et al., 2012). Hence, this study intended to explore the role of sox19 in ovarian function of carp. The ORF of sox19 was cloned using gene-specific primers based on the nucleotide sequences obtained from a previous study on gonadal transcriptome analysis of carp (Anitha et al., 2019). Tissue distribution in adult carp revealed higher expression of sox19 in brain and ovary comparable to the results obtained previously in the European sea bass (Navarro-Martín et al., 2012), the Chinese sturgeon (Yang et al., 2020), the Nile tilapia (Wei et al., 2016), channel catfish (Zhang et al., 2018) and the Japanese flounder (Yu et al., 2018). In teleost, the genes

expressed during the gonadal differentiation govern gonadal development and the associated mechanisms. Ovary related genes like cypa19a1a and foxl2 show abundant expression from 30-80 dph in yellow river carp (Jiang et al., 2020). The current study showed dominant sox19 expression from 80 dph onwards, the period of initial ovarian differentiation in carp (Komen et al., 1992). There was only a minimal expression of sox19 during the course of ovarian development in the Nile tilapia (Wei et al., 2016) and sox19 expression was evident after 150 dph the period of sex differentiation in the European sea bass (Navarro-Martín et al., 2012). Carp is a natural breeder following a seasonal spawning pattern (Basavaraju et al., 2002). The sox19 transcript levels were high during pre-spawning and spawning, the phases which are regulated by hormones (Martyniuk et al., 2009; Senthilkumaran et al., 2004). These results indicate the significance of sox19 in carp ovarian growth and development. It is well known that the brain-pituitary-gonad axis regulates gonadal growth and maturation by signaling a cascade of hormones and their receptors. During the spawning season, several factors/genes are differentially expressed under the regulation of gonadotropin (McLaren, 1988; Jørgensen et al., 2008; Raghuveer et al., 2011; Shi et al., 2013). In teleost, ovary differentiates, develops, follicular layer endures widespread differentiation and proliferation known as folliculogenesis, to attain final oocyte maturation (Senthilkumaran et al., 2004). The follicular layer comprising of an outer TC and inner GC is under the strict regulation of gonadotropin (Young and McNeilly, 2010) which by activating several transcription factors modulate ovarian growth and oocyte maturation by a shift in steroidogenesis (Senthilkumaran et al., 2004). Incidentally, in the current study Sox19 protein was detected in the GC of follicular layer, indicating that sox19 might play a role in ovarian steroidogenesis under the influence of gonadotropin. LH and hCG share same receptor (Vischer et al., 2003), the exogenic exposure of hCG might induce a steroidogenic shift promoting ovarian maturation in teleost (Kumar et al.,

2007). The vitality of hCG in carp ovarian steroidogenesis has been proven both in vitro and in vivo (Cao et al., 2014; Paul et al., 2010). The over expression of sox19 post hCG induction in both in vitro and in vivo correlates the regulation of sox19 expression by gonadotropin. Gonadotropin regulates estrogen in carp (Yaron, 1995). Having observed that gonadotropin controls sox19, further illustration on the impact of estrogen on gene expression was studied. E2, is the potent estrogen vital for ovarian differentiation and development in teleosts (Piferrer and Guiguen, 2008). Exogenous estrogen and pseudo-estrogens treatments stimulated sex reversal resulting in monosex population in several fishes (Chang and Lin, 1998; Kobayashi and Iwamatsu, 2005; Raghuveer et al., 2005; Yamamoto and Matsuda, 1963) including carp (Gimeno et al., 1998). Parenthetically, in the current study, higher expression of sox19 was observed post E₂ treatment, affirming the regulation of sox19 by both gonadotropin and estrogen, the major contributors of ovarian differentiation and development in teleost. Furthermore, Sox19 protein was localized in the GC of the follicular layer and sox19 mRNA transcript levels were high in the GC and TC enriched cell population. GC and TC cells are the most probable sites of steroid production in teleost (Nagahama, 1983). In order to know the specific function of sox19 in carp oogenesis, gene silencing using siRNA treatment was performed *in vitro*, in the isolated GC and TC cell culture. After treatment with sox19-siRNA, there was a down regulation in the transcripts of steroidogenic enzyme genes, namely hsd3b, hsd17b, hsd20b, and cyp19a1a an indicative of sox19 significance in carp steroidogenesis. In teleost, gonadotropins are well known to stimulate steroid synthesis (Devlin and Nagahama, 2002). Steroidogenic genes are essential for teleostean ovarian development and maturation (Raghuveer and Senthilkumaran, 2012; Rajakumar and Senthilkumaran, 2014; Rasheeda et al., 2010; Senthilkumaran et al., 2004; Senthilkumaran et al., 2009; Sreenivasulu and Senthilkumaran, 2009; Yamaguchi et al., 2007; Yoshiura et al., 2003).

Taken together, over expression of sox19 after hCG induction may imply the regulatory role of sox19 in ovarian steroidogenesis by influencing other factors that regulate ovarian development and maturation. To elucidate the role of sox19 in oogenesis, this is the first report to study the effects of PEI mediated transient silencing of sox19, in vivo. There was a significant downregulation of star and steroidogenic enzyme genes post sox19-siRNA treatment. star catalyzes the rate limiting step, transport of free cholesterol into mitochondria, the first step in steroidogenesis (Hanukoglu, 1992). The pivotal role of cyp19a1a in carp ovarian steroidogenesis and its regulation by transcription factors ad4bp/sfl and foxl2 is well demonstrated in teleost (Wang et al., 2007; Yoshiura et al., 2003). Parenthetically, sox19-siRNA treatment resulted in downregulation of these factors. Fstl, a paracrine factor regulates biosynthesis and release of pituitary gonadotropin, gonadal development, and ovulation cycle (Tao et al., 2018) and gonadotrophin regulation by activin/follistatin system is well-documented in carp (Fung et al., 2017). Vitellogenesis is the process of vtg assimilation and processing into yolk globule and vtg, a glycoprotein synthesized in the liver of females is estrogen dependent and increases during oocyte growth in carp (Solé et al., 2000). Hence, reduction of fstl and vtg by sox19-siRNA in carp could be correlated with the results obtained in hCG and E₂ treatment, indicating the significant role of sox19 in ovarian growth. The role of wnt signaling in gonadal differentiation and development was shown in teleost (Nicol and Guiguen, 2011; Wu et al., 2019). Wnt proteins bind to fzd receptors over cell surface leading to Wnt/β-catenin pathway activation, dependent on ctnnb1. The main components of the canonical Wnt signaling are wnt4 and rspo1. Wnt/ β-catenin signaling was suggested as a "pro-female" pathway regulating gonadal differentiation in zebrafish (Sreenivasan et al., 2014). In the Japanese medaka (Zhou et al., 2012) and the Nile tilapia (Wu et al., 2016) rspo1 is necessary to trigger ovarian development, playing a decisive role in the ovarian

differentiation. The role of wnt4 in ovarian function was shown in catfish (Prathibha and Senthilkumaran, 2017). The transient gene silencing of sox19 altered the transcript levels of ctnnb1, rspo1, wnt4, and fzd. In accordance to the results obtained in the current study, regulation of Wnt signaling by Sox proteins has been reported in *Xenopus* (Zorn et al., 1999). The hormonal mechanisms monitor oogonium proliferation and oocyte maturation involving gonadotropin, steroids, E₂ and 17α, 20β-DP along with growth factors in teleost (Lubzens et al., 2010). The decrease in E₂ and 17α,20β-DP post sox19-siRNA treatment could be related to the alteration in transcription factor, steroidogenesis related and wnt signaling genes modulating E_2 and 17α , 20β -DP. It has been shown that in carp, $er\beta$ s activate at minor concentrations of E₂ compared with $er\alpha$ (Katsu et al., 2013). Thus, the upregulation of $er\beta 1$ and $er\beta 2$, and downregulation of $er\alpha$ post sox19-siRNA treatment might be due to the reduction in E₂ levels. Gonadotropin and ad4bp/sf1 regulation of aromatase and cyp19a1a during oocyte development has been studied in teleost (Moulik et al., 2016; Wang et al., 2007; Yoshiura et al., 2003). Aromatase is crucial for E₂ synthesis during ovarian growth on the other hand, 17α , 20β -DP, the maturation-inducing steroid, is vital for final oocyte maturation in several teleost (Senthilkumaran et al., 2004; Senthilkumaran, 2011). Interestingly sry/sox binding sites were recognized in 5' contiguous region of cyp19a in goldfish (Tchoudakova et al., 2001) and tilapia (Chang et al., 2005) and in cyp19a promoter of the European sea bass (Galay-Burgos et al., 2006) and orange-spotted grouper (Zhang et al., 2008). In line with the downregulated cyp19a1a expression levels, a decrease in aromatase activity was observed after sox19-siRNA treatment, implying a role of sox19 in ovarian steroidogenesis.

5. CONCLUSION

This study reveals that sox19 is principally expressed in the brain and ovary, regulating ovarian growth besides maturation through the reproductive cycle of carp. The localization of Sox19 in GC, over expression of sox19 in GC and TC enriched cell population indicated an important role

in oogenesis. The expression of sox19 is dependent on both gonadotropin and E_2 . Present study is the first comprehensive report to implicate sox19 in ovarian steroidogenesis of carp by transient gene silencing. sox19 seems to influence ovary-related transcription factors/ genes, steroidogenic enzymes and sex steroids. Overall, the current study demonstrated the significance of sox19 in early ovarian differentiation, development, and maturation of carp with a role in steroidogenesis.

6. REFERENCES

- Anitha, A., Gupta, Y.R., Deepa, S., Ningappa, M., Rajanna, K.B., Senthilkumaran, B.,
 2019. Gonadal transcriptome analysis of the common carp, *Cyprinus carpio*: Identification of differentially expressed genes and SSRs. Gen. Comp. Endocrinol. 279, 67–77.
- 2) Anitha, A., Senthilkumaran, B., 2020. Role of *sox30* in regulating testicular steroidogenesis of common carp. J. Steroid Biochem. Mol. Biol. 204, 105769.
- 3) Basavaraju, Y., Mair, G.C., Kumar, H.M.M., Kumar, S.P., Keshavappa, G.Y. Penman, D.J., 2002. An evaluation of triploidy as a potential solution to the problem of precocious sexual maturation in common carp, *Cyprinus carpio*, in Karnataka, India. Aquaculture 204, 407–418.
- 4) Benninghoff, A. D., Thomas, P., 2006. Gonadotropin regulation of testosterone production by primary cultured theca and granulosa cells of Atlantic croaker: I. Novel role of CaMKs and interactions between calcium- and adenylyl cyclase-dependent pathways. Gen. Comp. Endocrinol. 147, 276–287.
- 5) Bergstrom, D.E., Young, M., Albrecht, K.H., Eicher, E.M., 2000. Related function of mouse SOX3, SOX9, and SRY HMG domains assayed by male sex determination. Genesis 28, 111–124.

- Bowles, J., Schepers, G., Koopman, P., 2000. Phylogeny of the SOX family of developmental transcription factors based on sequence and structural indicators. Dev. Biol. 227, 239–255.
- Cao, M., Chen, J., Peng, W., Wang, Y., Liao, L., Li, Y., Trudeau, V. L., Zhu, Z., Hu, W.,
 2014. Effects of growth hormone over-expression on reproduction in the common carp
 Cyprinus carpio L. Gen. Comp. Endocrinol. 195, 47–57.
- 8) Chang, C.F., Lin, B.Y., 1998. Estradiol-17b stimulates aromatase activity and reversible sex change in protandrous black porgy, *Acanthopagrus schlegeli*. J. Exp. Zool. 280, 165–173.
- 9) Chang, X., Kobayashi, T., Senthilkumaran, B., Kobayashi-Kajura, H., Sudhakumari, C.C., Nagahama, Y., 2005. Two types of aromatase with different encoding genes, tissue distribution and developmental expression in Nile tilapia (*Oreochromis niloticus*). Gen. Comp. Endocrinol. 141, 101–115.
- 10) Devlin, R.H., Nagahama, Y., 2002. Sex determination and sex differentiation in fish: an overview of genetic, physiological, and environmental influences. Aquaculture 208, 191–364.
- 11) Fung, R., Bai, J., Yuen, K., Wong, A., 2017. Activin/follistatin system in grass carp pituitary cells: Regulation by local release of growth hormone and luteinizing hormone and its functional role in growth hormone synthesis and secretion. PloS One 12, e0179789.
- 12) Galay-Burgos, M., Gealy, C., Navarro-Martín, L., Piferrer, F., Zanuy, S., Sweeney, G.E., 2006. Cloning of the promoter from the gonadal aromatase gene of the European sea bass and identification of single nucleotide polymorphisms. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 145, 47–53.

- 13) Galay-Burgos, M., Llewellyn, L., Mylonas, C.C., Canario, A.V., Zanuy, S., Sweeney, G.E.,2004. Analysis of the Sox gene family in the European sea bass (*Dicentrarchus labrax*).Comp. Biochem. Physiol. B Biochem. Mol. Biol. 137, 279–284.
- 14) Gimeno, S., Komen, H., Gerritsen, A.G.M., Bowmer, T., 1998. Feminisation of young males of the common carp, *Cyprinus carpio*, exposed to 4-tert-pentylphenol during sexual differentiation. Aquat. Toxicol. 43, 77–92.
- 15) Gupta, Y.R., Senthilkumaran, B., 2020. Common carp pentraxin gene: Evidence for its role in ovarian differentiation and growth, Gen. Comp. Endocrinol. 290, 113398.
- 16) Hanukoglu, I., 1992. Steroidogenic enzymes, structure, function, and role in regulation of steroid hormone biosynthesis. J. Steroid Biochem. Mol. Biol. 43, 779–804.
- 17) Hett, A. K., Ludwig, A., 2005. SRY-related (Sox) genes in the genome of European Atlantic sturgeon (*Acipenser sturio*). Genome 48, 181–186.
- 18) Höbel, S., Aigner, A., 2010. Polyethylenimine (PEI)/siRNA-mediated gene knockdown *in vitro* and *in vivo*. Methods Mol. Biol. 623, 283–297.
- 19) Jiang, M., Jia, S., Chen, J., Chen, K., Ma, W., Wu, X., Luo, H., Li, Y., Zhu, Z., Hu, W., 2020. Timing of gonadal development and dimorphic expression of sex-related genes in gonads during early sex differentiation in the Yellow River carp. Aquaculture 518, 734825.
- 20) Jørgensen, A., Morthorst, J.E., Andersen, O., Rasmussen, L.J., Bjerregaard, P., 2008.
 Expression profiles for six zebrafish genes during gonadal sex differentiation. Reprod.
 Biol. Endocrinol. 6, 25.
- 21) Kamachi, Y., Cheah, K.S., Kondoh, H., 1999. Mechanism of regulatory target selection by the SOX high-mobility-group domain proteins as revealed by comparison of SOX1/2/3 and SOX9. Mol. Cell. Biol. 19, 107–120.

- 22) Katsu, Y., Lange, A., Miyagawa, S., Urushitani, H., Tatarazako, N., Kawashima, Y., Tyler,
 C. R., Iguchi, T., 2013. Cloning, expression and functional characterization of carp, *Cyprinus carpio*, estrogen receptors and their differential activations by estrogens. J. Appl.
 Toxicol. 33, 41–49.
- 23) Kobayashi, H., Iwamatsu, T., 2005. Sex reversal in the medaka *Oryzias latipes* by brief exposure of early embryos to estradiol-17beta. Zoolog. Sci. 22, 1163–1167.
- 24) Komen, J., Yamashita, M., Nagahama, Y., 1992. Testicular development induced by a recessive mutation during gonadal differentiation of female common carp (*Cyprinus carpio, L.*). Dev. Growth Differ. 34, 535–544.
- 25) Koopman, P., Schepers, G., Brenner, S., Venkatesh, B., 2004. Origin and diversity of the *sox* transcription factor gene family: genome-wide analysis in *Fugu rubripes*. Gene 328, 177–186.
- 26) Kumar, A., Singh, A.K., Singh, I.J., Ram, R.N., 2007. Advancing gonadal development and maturity by ovaprim in *Labeo rohita* (Ham.). Indian J. Fish. 54, 85–92.
- 27) Laldinsangi, C., Senthilkumaran, B., 2018. Identification, cloning and expression profile of *sycp3* during gonadal cycle and after siRNA silencing in catfish. Gene Rep. 10, 54–65.
- 28) Liu, L., Zhou, R., 2001. Isolation of *sox11a*, *sox11b* and *sox19* genes from Rice field eel (*Monopterus albus*) using degenerate primers and nested PCR. Aquat. Sci. 63, 191–195.
- 29) Lubzens, E., Young, G., Bobe, J., Cerdà, J., 2010. Oogenesis in teleosts: how eggs are formed. Gen. Comp. Endocrinol. 1653, 367–389.
- 30) Martyniuk, C.J., Kroll, K.J., Porak, W.F., Steward, C., Grier, H.J., Denslow, N.D., 2009. Seasonal relationship between gonadotropin, growth hormone, and estrogen receptor

- mRNA expression in the pituitary gland of largemouth bass. Gen. Comp. Endocrinol. 163, 306–317.
- 31) McLaren, A., 1988. Somatic and germ cell sex in mammals. Philos. Trans. R. Soc. Lond. B, Biol. Sci. 322, 3–9.
- 32) Moulik, S.R., Pal, P., Majumder, S., Mallick, B., Gupta, S., Guha, P., Roy, S., Mukherjee, D., 2016. Gonadotropin and sf-1 regulation of cyp19a1a gene and aromatase activity during oocyte development in the rohu, *L. rohita*. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 196, 1–10.
- 33) Murugananthkumar, R., Senthilkumaran, B., 2016. Expression analysis and localization of wt1, ad4bp/sf-1 and gata4 in the testis of catfish, Clarias batrachus: Impact of wt1-esiRNA silencing. Mol. Cell. Endocrinol. 431, 164–176.
- 34) Nagahama, Y., 1983. The functional morphology of teleost gonads. In: Hoar, W.S., Randall, D.J., Donaldson, E.M., (Eds.). Fish Physiology. Volume IX Reproduction. Part A Endocrine Tissue and Hormones. Academic Press, New York. 223–275.
- 35) Navarro-Martín, L., Galay-Burgos, M., Piferrer, F., Sweeney, G., 2012. Characterisation and expression during sex differentiation of *sox19* from the sea bass *Dicentrarchus labrax*. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 163, 316–323.
- 36) Nicol, B., Guiguen, Y., 2011. Expression profiling of wnt signaling genes during gonadal differentiation and gametogenesis in rainbow trout. Sex. Dev. 5, 318–329.
- 37) Oshima, Y., Naruse, K., Nakamura, Y., Nakamura, M., 2009. Sox3: a transcription factor for Cyp19 expression in the frog *Rana rugosa*. Gene 15, 38–48.

- 38) Paul, S., Pramanick, K., Kundu, S., Kumar, D., Mukherjee, D., 2010. Regulation of ovarian steroidogenesis in vitro by IGF-I and insulin in common carp, *Cyprinus carpio*: stimulation of aromatase activity and P450arom gene expression. Mol. Cell. Endocrinol. 315, 95–103.
- 39) Piferrer, F., Guiguen, Y., 2008. Fish Gonadogenesis. Part II: Molecular Biology and Genomics of Sex Differentiation. Rev. Fish. Sci. Aquac. 16, 35–55.
- 40) Prathibha, Y., Senthilkumaran, B., 2017. Expression of *wnt4/5* during reproductive cycle of catfish and *wnt5* promoter analysis. J. Endocrinol. 232, 1–13.
- 41) Raghuveer, K., Rahul, G., Wang, D.S., Bogerd, J., Kirubagaran, R., Rasheeda, M.K., Sreenivasulu, G., Bhattacharya, N., Tarangini, S., Nagahama, Y., Senthilkumaran, B., 2005. Effect of methyl testosterone and ethynyl estradiol-induced sex differentiation on catfish, *Clarias gariepinus*: Expression profiles of Dmrt1, cytochrome P450aromatases and 3b-hydroxysteroid dehydrogenase. Fish Physiol. Biochem. 31, 143–147.
- 42) Raghuveer, K., Senthilkumaran, B., 2012. Cloning and expression of 3β-hydroxysteroid dehydrogenase during gonadal recrudescence and after hCG induction in the air-breathing catfish, *Clarias gariepinus*. Steroids 77, 1133–1140.
- 43) Raghuveer, K., Senthilkumaran, B., Sudhakumari, C.C., Sridevi, P., Rajakumar, A., Singh, R., Murugananthkumar, R., Majumdar, K.C., 2011. Dimorphic expression of various transcription factor and steroidogenic enzyme genes during gonadal ontogeny in the airbreathing catfish, *Clarias gariepinus*. Sex. Dev. 5, 213–223.
- 44) Rajakumar, A., Senthilkumaran, B., 2014. Molecular cloning and expression analysis of 17β-hydroxysteroid dehydrogenase 1 and 12 during gonadal development, recrudescence and after in vivo hCG induction in catfish, *Clarias batrachus*. Steroids 92, 81–89.

- 45) Rasheeda, M.K., Kagawa, H., Kirubagaran, R., Dutta-Gupta, A., Senthilkumaran, B., 2010. Cloning, expression and enzyme activity analysis of testicular 11β-hydroxysteroid dehydrogenase during seasonal cycle and after hCG induction in air-breathing catfish *Clarias gariepinus*. J. Steroid Biochem. Mol. Biol. 120, 1–10.
- 46) Schepers, G., Teasdale, R., Koopman, P., 2002. Twenty pairs of *SOX*: extent, homology and nomenclature of the mouse and human *SOX* transcription factor gene families. Dev. Cell 3, 167–170.
- 47) Senthilkumaran, B., 2011. Recent advances in meiotic maturation and ovulation, comparing mammals and pisces. Front. Biosci. (Landmark Ed) 16, 1898–1914.
- 48) Senthilkumaran, B., Joy, K.P., 2001. Periovulatory changes in catfish ovarian oestradiol—17beta, oestrogen—2—hydroxylase and catechol—O—methyltransferase during GnRH analogue—induced ovulation and in vitro induction of oocyte maturation by catecholoestrogens. J. Endocrinol. 168, 239–247.
- 49) Senthilkumaran, B., Sudhakumari, C.C., Wang, D.S., Sreenivasulu, G., Kobayashi, T., Kobayashi, H.K., Yoshikuni, M., Nagahama, Y., 2009. Novel 3β-hydroxysteroid dehydrogenases from gonads of the Nile tilapia, phylogenetic significance and expression during reproductive cycle. Mol. Cell. Endocrinol. 299, 146–152.
- 50) Senthilkumaran, B., Yoshikuni, M., Nagahama, Y., 2004. A shift in steroidogenesis occurring in ovarian follicles prior to oocyte maturation. Mol. Cell. Endocrinol. 215, 11–18.
- 51) Shi, K., He, F., Yuan, X., Zhao, Y., Deng, X., Hu, X., Li, N., 2013. Genome-scale gene expression characteristics define the follicular initiation and developmental rules during folliculogenesis. Mamm. Genome 24, 266–275.

- 52) Solé, M., Porte, C., Barceló, D., 2000. Vitellogenin induction and other biochemical responses in carp, *Cyprinus carpio*, after experimental injection with 17 alphaethynylestradiol. Arch. Environ. Contam. Toxicol. 38, 494–500.
- 53) Sreenivasan, R., Jiang, J., Wang, X., Bártfai, R., Kwan, H. Y., Christoffels, A., Orbán, L., 2014. Gonad differentiation in zebrafish is regulated by the canonical Wnt signaling pathway. Biol Reprod. 90, 45.
- 54) Sreenivasulu, G., Senthilkumaran, B., 2009. New evidences for the involvement of 20β-hydroxysteroid dehydrogenase in final oocyte maturation of air-breathing catfish. Gen. Comp. Endocrinol. 163, 259–269.
- 55) Swain, A., Lovell-Badge, R., 1999. Mammalian sex determination: a molecular drama. Genes Dev. 13, 755–767.
- 56) Taboada, X., Viñas, A., Adrio, F., 2018. Comparative expression patterns of *sox2* and *sox19* genes in the forebrain of developing and adult turbot (*Scophthalmus maximus*). J. Comp. Neurol. 526, 899–919.
- 57) Tao, M., Li, S., Song, C., Chen, J., Hu, H., Luo, M., Zhou, R., Liu, S., 2018. Elevated expression of follistatin gene in the pituitaries of allotriploid crucian carp. JWAS 49, 302–314.
- 58) Tchoudakova, A., Kishida, M., Wood, E., Callard, G.V., 2001. Promoter characteristics of two cyp19 genes differentially expressed in the brain and ovary of teleost fish. J. Steroid Biochem. Mol. Biol. 78, 427–439.
- 59) Uy, B.R., Simoes-Costa, M., Sauka-Spengler, T., Bronner, M.E., 2012. Expression of Sox family genes in early lamprey development. Int. J. Dev. Biol. 56, 377–383.

- 60) Viñas, A., Taboada, X., Vale, L., Robledo, D., Hermida, M., Vera, M., Martínez, P., 2012. Mapping of DNA sex-specific markers and genes related to sex differentiation in turbot (*Scophthalmus maximus*). Mar. Biotechnol. (NY) 14, 655–663.
- 61) Vischer, H.F., Granneman, J.C.M., Noordam, M.J., Mosselman, S., Bogerd, J., 2003. Ligand selectivity of gonadotropin receptors. J. Biol. Chem. 278, 15505–15513.
- 62) Vriz, S., Lovell-Badge, R. 1995. The zebrafish Zf-Sox 19 protein: a novel member of the Sox family which reveals highly conserved motifs outside of the DNA-binding domain. Gene 153, 275–276.
- 63) Wan, H., Han, K., Jiang, Y., Zou, P., Zhang, Z., Wang, Y., 2019. Genome-wide identification and expression profile of the *sox* gene family during embryo development in large yellow croaker, *Larimichthys crocea*. DNA Cell Biol. 38, 1100–1111.
- 64) Wang, D. S., Kobayashi, T., Zhou, L. Y., Paul-Prasanth, B., Ijiri, S., Sakai, F., Okubo, K., Morohashi, K., Nagahama, Y., 2007. Foxl2 up-regulates aromatase gene transcription in a female-specific manner by binding to the promoter as well as interacting with ad4 binding protein/steroidogenic factor 1. Mol Endocrinol. 21, 712–725.
- 65) Wegner, M., 1999. From head to toes: the multiple facets of SOX proteins. Nucleic Acids Res. 27, 1409–1420.
- 66) Wei, L., Yang, C., Tao, W., Wang, D., 2016. Genome-wide identification and transcriptome-based expression profiling of the sox gene family in the Nile Tilapia (*Oreochromis niloticus*). Int. J. Mol. Sci. 17, 270.
- 67) Wilson, M., Koopman, P., 2002. Matching SOX: partner proteins and cofactors of the SOX family of transcriptional regulators. Curr. Opin. Genet. Dev. 12, 441–446.
- 68) Wittbrodt, J., Meyer, A., Schartl, M., 1998. More genes in fish? Bioessays 20, 511–515.

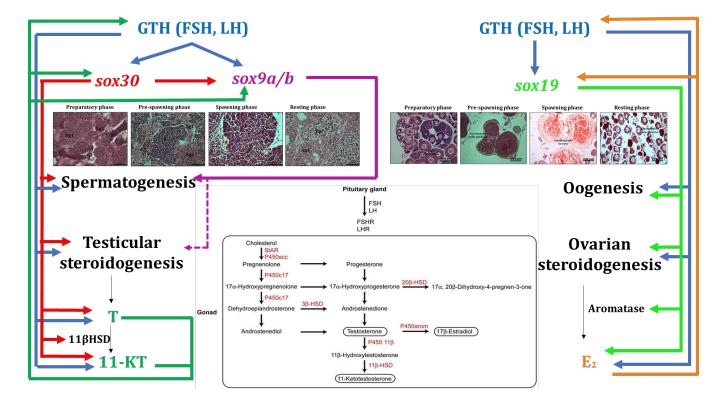
- 69) Wu, L., Li, Y., Xu, Y., Li, Y., Wang, L., Ma, X., Liu, H., Li, X., Zhou, L., 2019. Cloning and characterization of *wnt4a* gene in a natural triploid teleost, Qi river crucian carp (*Carassius auratus*). Gen Comp Endocrinol. 277, 104–111.
- 70) Wu, L., Yang, P., Luo, F., Wang, D., Zhou, L., 2016. R-spondin1 signaling pathway is required for both the ovarian and testicular development in a teleosts, Nile tilapia (*Oreochromis niloticus*). Gen. Comp. Endocrinol. 230–231, 177–185.
- 71) Yamaguchi, T., Yamaguchi, S., Hirai, T., Kitano, T., 2007. Follicle-stimulating hormone signaling and Foxl2 are involved in transcriptional regulation of aromatase gene during gonadal sex differentiation in Japanese flounder, *Paralichthys olivaceus*. Biochem. Biophys. Res. Commun. 359, 935–940.
- 72) Yamamoto, T.O., Matsuda, N., 1963. Effects of estradiol, stilbestrol and some alkyl-carbonyl androstanes upon sex differentiation in the medaka. *Orvzias latipes*. Gen. Comp. Endocrinol. 3, 101–110.
- 73) Yang, J., Hu, Y., Han, J., Xiao, K., Liu, X., Tan, C., Zeng, Q., Du, H., 2020. Genome-wide analysis of the Chinese sturgeon sox gene family: identification, characterisation and expression profiles of different tissues. J. Fish Biol. 96, 175–184.
- 74) Yaron, Z., 1995. Endocrine control of gametogenesis and spawning induction in the carp. Aquaculture 129, 49–73.
- 75) Yoshiura, Y., Senthilkumaran, B., Watanabe, M., Oba, Y., Kobayashi, T., Nagahama, Y., 2003. Synergistic expression of Ad4BP/SF-1 and cytochrome P-450 aromatase (ovarian type) in the ovary of Nile tilapia, *Oreochromis niloticus*, during vitellogenesis suggests transcriptional interaction. Biol. Reprod. 68, 1545–1553.

- 76) Young, J.M., McNeilly, A.S., 2010. Theca, the forgotten cell of the ovarian follicle. Reproduction 140, 489–504.
- 77) Yu, H., Du, X., Li, X., Qu, J., Zhu, H., Zhang, Q., Wang, X., 2018. Genome-wide identification and transcriptome-based expression analysis of *sox* gene family in the Japanese flounder *Paralichthys olivaceus*. J. Oceanol. Limnol. 36, 1731–1745.
- 78) Zhang, L., Lin, D., Zhang, Y., Ma, G., Zhang, W., 2008. A homologue of *sox11* predominantly expressed in the ovary of the orange-spotted grouper *Epinephelus coioides*. Comp Biochem Physiol B Biochem Mol Biol. 149, 345–353.
- 79) Zhang, S., Chen, X., Wang, M., Zhang, W., Pan, J., Qin, Q., Zhong, L., Shao, J., Sun, M., Jiang, H., 2018. Genome-wide identification, phylogeny and expressional profile of the *sox* gene family in channel catfish (*Ictalurus punctatus*). Comp. Biochem. Physiol. D Genomics Proteomics 28, 17–26.
- 80) Zhou, L., Charkraborty, T., Yu, X., Wu, L., Liu, G., Mohapatra, S., Wang, D., Nagahama, Y., 2012. R-spondins are involved in the ovarian differentiation in a teleost, medaka (*Oryzias latipes*). BMC Dev. Biol. 12, 36.
- 81) Zhou, R., Cheng, H., Zhang, Q., Guo, Y., Cooper, R.K., Tiersch, T.R., 2002. SRY-related genes in the genome of the rice field eel (*Monopterus albus*). Genet. Sel. Evol. 34, 129–137.
- 82) Zorn, A.M., Barish, G.D., Williams, B.O., Lavender, P., Klymkowsky, M.W., Varmus, H.E., 1999. Regulation of Wnt signaling by Sox proteins: XSox17 alpha/beta and XSox3 physically interact with beta-catenin. Mol. Cell. 4, 487–498.

Sex determination/differentiation followed by gonadal growth and development happen during ontogeny in sexually reproducing living organisms. In teleost, gonadal differentiation is under the influence of genetic factors, environmental conditions and sex steroids. The role of *sox* family genes in fish sex differentiation has not been well-characterized. Teleost, the largest group among vertebrates, is inclusive of carp reported to have more *sox* genes than other species. Carp gonadal differentiation is governed by both genetic and environmental factors.

In the present study, with the aim to identify several genes from the *sox* family of transcription factors, gonadal transcriptome analysis using RNA Seq was performed in carp. GO, COG, and KEGG were analyzed to identify various processes/ pathways regulating carp sexual development. Several DEG were identified and validated with qPCR. In addition, many SSR were obtained. Various genes (sex-differentiation, germ-cell maintenance, steroid synthesis, endocrine regulation) and pathways (steroid hormone biosynthesis, *wnt* signaling, oocyte meiosis) related to reproduction were analyzed. About ten genes representing each sub-group of *sox* (*soxB1-sox19*, *soxB2-sox21*; *soxC-sox11*; *soxD-sox5*, *sox6*, *sox13*; *soxE-sox9a*, *sox9b*; *soxF-sox18*; *soxH-sox30*) family were also identified from gonadal transcriptome. Expression profiling, namely tissue distribution and gonadal reproductive cycle analysis were carried out for the ten genes. The results indicated the significance of *sox19* and *sox30* in carp gonadal function, paving way for further studies.

From carp testis, sox30 ORF and sox9a/b partial cDNAs were cloned. Pre-dominant sox30 expression was seen in testis compared to ovary. sox9a/b exhibited significant high expression during 40 dph, while sox30 showed dimorphic expression at 120 dph during carp testicular differentiation. Testicular reproductive phase analysis, showed that during initial stages of spermatogenesis sox9a/b and during spermatogenesis and spermiogenesis sox30 were highly


expressed, indicating their role in testicular growth and maturation. Sox30 and Sox9 proteins were detected in spermatocytes/spermatids/sperm and spermatogonia of carp testis, respectively. The effect of 11-KT, gonadotropin, and mono-sex induction was equivalent in sox9a/b and sox30. Further, sox30 gene silencing modified transcription factors, steroidogenic genes, sex steroids, and other factors related to testicular development and function. Hsd11b enzyme activity decreased post sox30 silencing. The present study demonstrated the significance of sox30 in testicular steroidogenesis vis-à-vis testis function of carp by influencing sox9a/b, either directly or indirectly, along with other male-related genes as evidenced by expression analysis and transient gene silencing.

expression in ovary than in testis. sox19 mRNA expression was high during carp early ovarian differentiation, at 80 dph. Ovarian reproductive cycle analysis revealed significant sox19 expression during breeding season indicating its role in maturation. Mono-sex induction elevated sox19 mRNA expression, showing its importance in ovarian development. Sox19 protein was detected in follicular layer accompanied with high expression in isolated GC and TC, show a role in steroidogenesis. Transient sox19 silencing modulated steroidogenic enzymes, sex steroids, and other ovary-related factors/genes. Aromatase activity reduced post sox19 silencing. The importance of sox19 in ovarian differentiation, maturation, and function with a definite role in steroidogenesis was elucidated.

Overall, this thesis work identified ten genes belonging to *sox* family from carp gonadal transcriptome analysis. Expression profiling, warranted further study on *sox30* and *sox19*. Under the control of gonadotropin, *sox30* along with *sox9a/b* regulates spermatogenesis and testicular steroidogenesis by influencing T and 11-KT in carp males. In female carps, *sox19* governed by

gonadotropin and E₂ play a significant role in oogenesis and ovarian steroidogenesis. A figure depicting these findings was shown as a summary.

Figure: Schematic illustration of the significant findings from the research thesis.

Contents lists available at ScienceDirect

Journal of Steroid Biochemistry and Molecular Biology

journal homepage: www.elsevier.com/locate/jsbmb

Role of sox30 in regulating testicular steroidogenesis of common carp

Arumugam Anitha, Balasubramanian Senthilkumaran *

Department of Animal Biology, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500046, Telangana, India

ARTICLE INFO

Keywords: sox30 sox9 Steroidogenesis Testis siRNA Carp

ABSTRACT

Expression of transcription factors is crucial for the regulation of steroidogenesis and gonadal development in fish. SRY-related box (SOX) proteins regulate gene expression of various events related to vertebrate reproduction. This study reports the role of sox30 and its influence on sox9a/b in regulating testicular steroidogenesis of the common carp, *Cyprinus carpio*. Tissue distribution showed predominant expression of sox30 in gonads, while gonadal ontogeny indicated significant dimorphic expression of sox30 from 120 days post hatch. Higher sox30 transcripts during the spawning season, an elevation of sox30 after human chorionic gonadotropin induction, and 11-ketotestosterone (11-KT) treatment authenticate gonadotropin dependency. Treatment of 17α -methyl-di-hydroxy-testosterone to juvenile common carp for mono-sex induction, vis-à-vis elevated sox30 expression. Sox30 protein was detected abundantly in spermatocytes and spermatid/sperm of carp testis. Transient silencing of sox30 using small interfering RNAs decreased sox9a/b expression, lead to downregulation of certain molecule/factor, transcription factor, germ/stem cell marker, and steroidogenesis-related enzyme genes. Serum testosterone and 11-KT decreased significantly upon transient silencing of sox30, in vivo. Concomitantly, a reduction in testicular microsomal 11- β hydroxysteroid dehydrogenase activity was observed. These results demonstrate the influence of sox30 as well as sox9a/b in the regulation of testicular steroidogenesis in common carp.

1. Introduction

Steroidogenesis drives reproduction by promoting growth, differentiation, and maturation of a bipotential gonad into testis or ovary and is regulated differently by multi-tiered modulation of promoter motif of transcription factors influencing steroidogenic enzyme genes to eventually govern enzyme activity [1]. Transcription factors like *ad4bp/sf-1*,

creb, *foxl2*, *sox3* and *wt-1* play a regulatory role in fish steroidogenesis [1]. Further, the influence of transcription factors, sex-steroids, steroidogenic enzymes, sex-steroid receptors, germ/stem cell markers, growth factors, and other molecules in the gonadogenesis of teleost has been reviewed [2]. *SOX* family of transcription factors are implicated in regulating many biological functions, including reproduction [3]. SOX proteins are specific to animals and constitute to HMG superfamily,

Abbreviations: 11-KT, 11-ketotestosterone; 11-OHT, 11β-hydroxytestosterone; aa, amino acid; ad4bp/sf-1, adrenal 4 binding protein/steroidogenic factor-1; amh, anti-Mullerian, hormone; ar, androgen, receptor; CPCSEA, Committee for the Purpose of Control and Supervision on Experiments on Animals; creb, cAMP-responsive, element binding protein; Ct, cycle threshold; cyp11, cytochromeP450, family 11; cyp17, steroidogenic cytochrome P450 17-hydroxylase/lyase; cyp19a1, cytochromeP450, family 19, subfamily a, polypeptide 1; dax, dosage-sensitive sex-reversal, adrenal hypoplasia critical region, on chromosome X; DMEM, Dulbecco's modified Eagle's medium; dmrt1, double sex and mab-3 related transcription factor 1; dph, days post hatch; E₂, estradiol-17β; EIA, enzyme immunoassay; fshr, follicle-stimulating, hormone receptor; gata4, GATA, binding protein 4; gnrh, gonadotropin-releasing hormone; gsdf, gonadal, somatic cell-derived factor; hCG, human chorionic gonadotropin; HEPES, 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid; HMG, high mobility group; HRP, horse radish peroxidase; hsd3b, hydroxy- Δ-5-steroid dehydrogenase, 3β; hsd11b, hydroxysteroid 11-β dehydrogenase; hsd17b, hydroxysteroid, 17-β dehydrogenase; hsd20b, hydroxysteroid, 20-β dehydrogenase; IAEC, Institutional Animal Ethics Committee; IHC, immuno histo chemistry; kiss2, kisspeptin2; KVAFSU, Karnataka Veterinary Animal and Fisheries Sciences University; L15, Leibovitz-15; LH, luteinizing hormone; MDHT, 17α-methyl-di-hydroxy-testosterone; MS222, ethyl 3-aminobenzoate methanesulfonate; ORF, open reading frame; PBS, phosphate-buffered saline; pdgf, platelet-derived growth factor; PEI, polyethylenimine; PFA, paraformaldehyde; pou5f3/oct4, POU domain, class 5, transcription factor 3/octamer-binding transcription factor 4; qPCR, quantitative real time PCR; RT, room temperature; siRNA, small interfering RNA; sox, SRY-box; srd5a1, steroid5 α-reductase 1; SRY, sex-determining region Y; star, steroidogenic, acute regulatory protein; sycp3, synaptonemal complex pr

* Corresponding author.

E-mail address: bsksl@uohyd.ernet.in (B. Senthilkumaran).

encoding ~80 aa DNA-binding domain further classified into subgroups A-K [4]. In fish, sox9 is a requisite for testis development with two forms identified in teleost like fugu (Fugu rubripes), zebrafish (Danio rerio), catfish (Clarias gariepinus), rice field eel (Monopterus albus), and [5] the Japanese medaka (Oryzias latipes). sox3 [6] regulates testicular development and recrudescence in catfish (C. batrachus) and initiates testicular differentiation [7] in the Indian rice-fish (O. dancena). The involvement of sox5 in germ-cell regulation of medaka [8] was evident. In mammals, evidence for the presence of SOX4, SOX5, SOX6, SOX7, SOX17, SOX20, and SOX22 in testis has been reported [3]. Whereas, in teleost having more (~50) sox genes than other vertebrates [9], the involvement of other genes belonging to the sox family in gonadogenesis has seldom been reported. In this regard, the common carp (henceforth referred to as carp), Cyprinus carpio, comprising more sox genes than other fish species [9] would be an appropriate model for investigation. The significance of sox9a/b in testicular development of carp have been reported earlier [10,11]. A previous study on the transcriptome-based analysis from our laboratory demonstrated that sox genes of carp presented stage-specific and/or sex-dimorphic expression during gonadal development [12]. Among which, sox30 of subgroup H was predicted to have higher expression in testis warranting in-depth analysis. SOX30, primarily isolated from mouse and human [13] was thought to be specific in mammals [14], while later evidence documented its presence throughout animal kingdom [15]. Recent reports [16,17] stated the absence of sox30 in zebrafish, spotted gar (Lepisosteus oculatus), the Japanese medaka, tongue sole (Cynoglossus semilaevis), fugu, the Japanese flounder (Paralichthys olivaceus), and carp. Contending these, the present study is first to provide evidence for the presence of sox30 in carp. SOX30 has been proven to be critical for mammalian and teleostean spermatogenesis [4,15]. However, its influence on the regulation of testicular steroidogenesis was never clarified. Early sexual maturation accompanied by seasonal spawning makes carp [18] an ideal model to understand the role of sox30 during gonadogenesis. This work reports cloning, expression analysis and localization of sox30 in comparison with sox9a/b in carp. Gonadotropin regulation on sox9a/b and sox30 was assessed during natural spawning cycle, artificial induction and also in mono-sex induced carp. Current report provides substantial evidence to denote sox30 as a novel regulator of carp testicular steroidogenesis by transient silencing.

2. Materials and methods

2.1. Fish sampling

Carps used in the current study were procured from the aquaculture facility of KVAFSU, Bangalore, India, and acclimated in outdoor tanks (6 \times 4 \times 5[l \times b \times h] feet) with filtered tap water, under ambient photothermal conditions and fed commercial fish food pellet ad libitum. Initially, to clone sox9a/b and sox30, adult carp (~1-year, ~30–40 cm, \sim 400–700 g) testis was used. To perform tissue distribution analysis, various tissues from adult carp (n = 5), males (muscle, liver, testis, kidney, and brain) and females (ovary) were collected during the late preparatory phase of the reproductive cycle. In carp, primordial germ cells divide rapidly from 28 to 63 dph and differentiate into oogonia and spermatogonia around 70 and 100 dph, respectively [19]. Different ages of carp, 0, 40, 80, 120, 160 and 200 dph (~40 mm-20 cm, ~0.2-300 g) were collected (n = $5\sim10$) for gonadal ontogeny studies. Fish hatchlings collected for gonadal ontogeny were maintained at ambient temperature (23 \pm 3 °C) as described [20]. Total RNA was prepared from 0 (whole trunk), 40 (mesonephric gonadal complex), 80–200 dph (testis/ovary) samples. Carps follow a seasonal reproductive cycle in the Southern part of India, spawning biannually during monsoon and winter [21]. Gonads from adult male carp were collected (n = 5) during the seasonal reproductive cycle flanking preparatory, pre-spawning, spawning, and resting phases for quantifying gene expression. Following anesthetization with 100 mg/L of MS222 (Sigma, MO, US) in mild ice-cold water,

fishes were sacrificed, tissues were collected and kept at $-80\,^{\circ}\mathrm{C}$ until experimentation. For histology, tissues were fixed using Bouin's fixative (1:5:15, glacial acetic acid, formalin and saturated picric acid) at RT for $12-14\,\mathrm{h}$. For localization analysis, tissues were fixed using $4\,^{\circ}\mathrm{PFA}$ -PBS (0.01 M). Mono-sex induction was performed at KVAFSU and those carps were procured for experimentation. Fish sampling and experimentations were carried out by complying to the norms laid by IAEC, University of Hyderabad (CPCSEA, Inst. Reg. No. 151/1999 dt.22.07.1999).

2.2. Cloning of sox9a/b and sox30 from adult carp testis

Gene-specific primers were designed for sox30 with the sequence data available in NCBI's Gene Expression Omnibus (GSE112157), a transcriptome study conducted earlier in carp from our laboratory. Cloning of sox9a/b was done as detailed by Sudhakumari et al. [22] to compare their expression with sox30. Total RNA (TRI reagent, Sigma) isolation, followed by DNase I treatment and cDNA synthesis (One-Script® Plus cDNA Synthesis Kit, Applied Biological Materials Inc., BC, Canada) were carried out as described in the manufacturer's manual. PCR amplification with designed primers (Supplementary Table 1) using Tag 2X master mix (New England Biolabs Inc., MA, US) was done under standard PCR conditions. No isoforms of sox30 were recognized as amplicons displayed a specific single explicit band. To verify the presence of paralogs of sox30 if any, primers (Supplementary Table 1) were designed by aligning neighboring exons with a flanking variable intron in the conserved HMG domain. A single band was observed in the genomic DNA PCR indicating the absence of any paralogs. Following gel purification and ligation (pGEM®-T easy vector, Promega, WI, US), the positive clones were ascertained by DNA sequencing using the dideoxy method. Lasergene software (DNASTAR, WI, US) was employed in the sequence alignment.

2.3. Multiple sequence alignment and phylogenetic analysis

Following ClustalW alignment of cloned carp Sox30 and its vertebrate counterparts with aa sequences available in GenBank, the phylogenetic tree was constructed. Multiple sequence alignment was done by ClustalW2 (http://www.ebi.ac.uk/Tools/msa/clustalw2/) and displayed using Jalview 2.8. The phylogenetic tree was constructed and presented using PhyML (http://www.phylogeny.fr/simple_phylogeny.cgi). Bootstrapping with 1000 replicates delineates the integrity of every clade.

2.4. qPCR

Expression analysis was done by qPCR as described by Murugananthkumar and Senthilkumaran [23]. Total RNA and cDNA from all samples were prepared as detailed earlier. Each reaction was performed in triplicate for five distinct biological samples using gene-specific primers designed cautiously to prevent the amplification of genomic DNA with one of the primers straddling the exon-exon boundary. The gene-specific primers (Supplementary Table 1) were designed based on the sequences obtained from transcriptome analysis and NCBI GenBank database. The manufacturer's manual was shadowed for amplification (Power SYBRTM Green PCR Master Mix, Thermo Fisher Scientific, MA, US) in ABI Step One Plus real time PCR (Thermo Fisher Scientific). Ct value was estimated from the exponential phase of the PCR amplification and the gene expression was normalized using 18S rRNA (reference gene) to obtain ΔCt (Ct of target gene - Ct of endogenous control). From the preliminary experiments of this study, as per the validation done based on Radonić et al. [24], 18S rRNA (FJ710827.1) normalization was found to be efficient and constitutive with the lowest transcription range compared with other reference genes such as β -actin (M24113.1) and gapdh (JX244278.1). For estimating fold changes in gene expression, $2^{-\Delta Ct}$ was used. Relative expression of genes between control and

treated groups was calculated using $2^{-\Delta\Delta Ct}$. Log copy number analysis was performed to analyze the differences in the concentration of sox9a/b and sox30 as explained by Mamta et al. [25].

2.5. Polyclonal antibody generation for Sox30

For antibody generation, an antigenic peptide, MSHYEDLR-QEAPVQNC was synthesized commercially using carp Sox30 aa sequence in conjugation with keyhole limpet hemocyanin carrier protein (Sigma). Six-weeks-old (n = 2) Swiss albino male mice used for antibody generation were handled and maintained following the norms of IAEC (UH/IAEC/BSK/2018-I/28) and CPCSEA. During experimentation, mice were fed commercial food pellets, ad libitum. Pre-immune sera were collected by retro-orbital puncture before administration of the peptide dissolved using 0.01 M PBS. Primary (200 μg of antigenic peptide combined with Freund's complete adjuvant) and two (14 days apart) boosters (100 μg of antigenic peptide combined with Freund's incomplete adjuvant) were injected subcutaneously. Blood was collected for serum separation and then used for IHC and western blot as a Sox30 antibody source.

2.6. Western blot

Sox9 and Sox30 proteins were detected in carp testis upon western blotting with anti-SOX9 antibody (Santa Cruz Biotechnology, Texas, US) and carp anti-Sox30 polyclonal antibody as described by Gupta and Senthilkumaran [20]. SOX9 antibody rose against 22-62 aa near N-terminus of SOX9-human origin showed 81 % and 90 % homology with N-terminal region of carp Sox9a and Sox9b proteins, respectively (Supplementary Fig. 1). In brief, the protein was prepared from adult carp testis and intestine with RIPA (0.5 % sodium deoxycholate, 150 mM NaCl, 50 mM Tris HCl [pH 8], 0.1 % SDS, and 0.1 % Triton X-100) buffer separately and quantified using Bradford's method. About 20 μg of protein run in 10 % polyacrylamide gel was transferred to nitrocellulose membrane (Pall Life sciences, NY, US), incubated overnight with respective diluted antibody (1:1000 for Sox30; 1:100 for SOX9) and probed using HRP-conjugated goat anti-mouse antibody (1:5000; Bangalore Genei, Bengaluru, India) incubation at RT for 1 h. Specific bands were detected with a chemiluminescent reagent (G-Biosciences, MO, US). Anti-mouse α -tubulin monoclonal antibody was used as a reference control for both testis and intestine protein fractions. Image J (NIH)

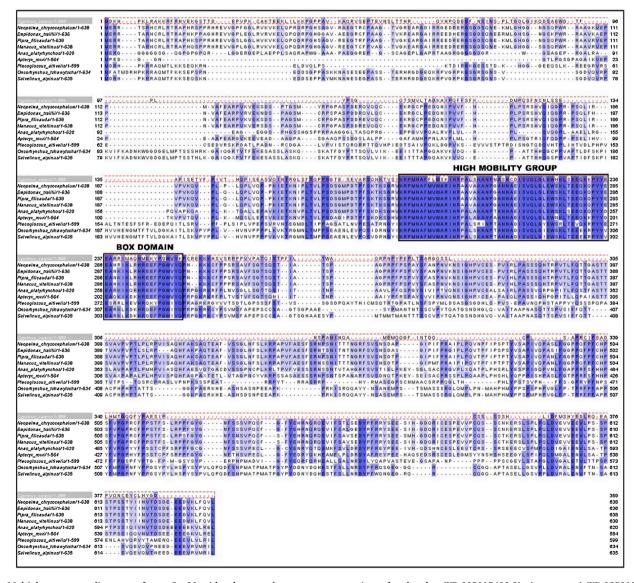


Fig. 1. Multiple sequence alignment of carp Sox30 with other vertebrate counterparts: Anas platyrhynchos (XP_005015498.2), Apteryx rowi (XP_025919212.1), Cyprinus carpio (MT193291), Empidonax traillii (XP_027741383.1), Manacus vitellinus (XP_017928916.1), Neopelma chrysocephalum (XP_027538170.1), Oncorhynchus tshawytscha (XP_024289861.1), Pan troglodytes (NM001280287.1), Pipra filicauda (XP_027574476.1), Plecoglossus altivelis (AHK05944.1), Salvelinus alpinus (XP_023992871.1).

software was used for densitometry analysis.

2.7. IHC

Sox9 and Sox30 proteins were localized, as described in Laldinsangi and Senthilkumaran [26]. In brief, tissues were fixed using 4 % PFA-PBS, embedded (optimum cutting temperature compound, Leica Microsystems) in cryomold (Tissue-Tek, AJ Alphen aan den Rijn, The Netherlands) and sectioned (Cryostat, Leica CM1850). Initially, the sections were blocked using 10 % of goat serum (Bangalore Genei) and incubated at 4 °C either with SOX9 (1: 50) or Sox30 (1: 100) antibody or pre-adsorbed antibody along with respective excessive antigen (negative control) for overnight. The sections were probed using HRP-conjugated goat anti-mouse antibody (1:1000) at RT for 2 h, the next day. VEC-TASTAIN® Elite ABC (Vector Laboratories, CA, US) incubation was done for 30 min before developing them with commercially available 3, 3'-diaminobenzidine and H₂O₂ as substrate. After developing, DPX was used to mount the sections. DM6 B upright microscope fitted with a camera (DFC 4500, Leica Microsystems, Germany) and Leica Application Suite X software was used to assess the sections. Pre-adsorbed antisera with an excess of commercially synthesized peptides (antigen) of Sox30 (MSHYEDLROEAPVONC) and Sox9 (CPSGSGSDTENTRPOE) were used as their respective negative controls for IHC.

2.8. In vitro culture of testicular slices

Testicular slice culture was performed as outlined by Raghuveer and Senthilkumaran [5]. Testis from carp in the late preparatory phase was dissected, sliced (McIIwain tissue chopper, Vibratome, Ted Pella Inc., CA, US) and cultured at 20-22 °C in a tissue culture plate with 2 mL of L15 culture medium, 10 mM HEPES and antibiotics (streptomycin, 0.1 mg/mL; penicillin, 100 IU/mL) supplementation. Testicular slices were treated using 100 IU/mL [20] of hCG (Uni-Sankyo Pvt. Ltd., Hyderabad, India) or (control) physiological saline. At short intervals of 0, 3, 6, and 12 h, tissue was collected and washed using ice-cold PBS. Likewise, testicular slices were also treated with 100 ng/mL (dose tested with pilot experiments) of 11-KT (Sigma) to study its effect on sox9a/b and sox30 expression. 11-KT was initially dissolved using absolute ethanol, completely air-dried to remove any traces of alcohol, and reconstituted with the L15 medium for experimentation. Total RNA was isolated using TRI reagent followed by cDNA synthesis and quantification as described earlier.

2.9. In vivo induction by hCG

During the preparatory phase, laboratory acclimated adult male carp (n = 5) weighing about 400–500 g was briefly anesthetized with MS222. The ventral portion of the carp was sterilized with alcohol, a single dosage of hCG (1000 IU/Kg body weight) was gradually injected into the testis directly using a sterilized 1 mL syringe [20]. For control fish, physiological saline was injected. Subsequently, fishes were kept in circulatory water for a few minutes at ambient temperature to regain from anesthetization. Testis was collected at intervals of 12 and 24 h from control and treated fish for expression analysis. Total RNA and cDNA from all samples were prepared as mentioned earlier.

2.10. Mono-sex induction

Mono-sex induction was performed at KVASFU by following established protocols [27,28]. In brief, 50 dph carp larvae were fed hormone incorporated diet for 50 days. Hormones, MDHT (Sigma) at 50 mg/Kg feed for masculinization, and E_2 (Sigma) at 150 mg/Kg feed for feminization were given to produce the mono-sex population. The feed required for the study was prepared as described [29]. The treatments were given regularly and, fish samples were collected at the end for analysis.

2.11. Culture of carp primary testicular cells (mixed)

Testicular mixed cell culture was prepared as described by Murugananthkumar and Senthilkumaran [23]. Adult male carp was anesthetized to dissect out testis, and disinfected, also severed into small portions in the L15 culture medium. Following, incubation with 0.005 % DNase and 0.25 % collagenase type I, the slices were pressed to obtain cell suspension, further filtered using a 40 mm cell strainer, and centrifuged at $100\times g$, to obtain pellet which was resuspended in DMEM. Almost 1×10^6 cells were cultured separately in 24-well plate comprising DMEM, antimycotic-antibiotic, $1\times$ Glutamax, 10% fetal bovine serum, and maintained for 24 h in 5% CO $_2$ at $30\,^{\circ}$ C. Cell viability was assessed with trypan blue staining.

2.12. In vitro treatment of sox30-siRNA in carp primary testicular culture

Custom synthesized sox30 oligomer (antisense: 5'-rGrCrCrUrUrUr-UrGrArUrArGrArArArCrUrGrUrUrUrUrGrUrUrCrU-3': sense: 5'- rAr-ArCrArArArArCrArGrUrUrUrCrUrArUrCrArArArArGGC-3') were commercially manufactured (Integrated DNA Technologies, Iowa, US). The siRNA for sox30 was designed spanning only a few base pairs of the HMG domain to ensure the specificity. The siRNA in combination with branched PEI (Sigma) was dissolved using sterilized HEPES-NaCl (pH 7.4), as detailed by Höbel and Aigner [30] and used in teleost [20,23,26]. The mixture was incubated at RT for 20 min for the formation of the siRNA-PEI complex. About, 1×10^6 cells of carp testicular cell culture were maintained as earlier described. Before treatment, the culture medium was removed, followed by the addition of 100 µL OPTI-MEM® I (Thermo Fisher Scientific) solution. Concentrations of 0.25, 0.5, 1, 2.5, 5, 10, 20, and 50 ng/mL of antisense sox30-siRNA and 10 ng/mL of sense sox30-siRNA complexed with branched PEI were prepared. Aliquots of 25 µL containing antisense sox30-siRNA-PEI/ sense sox30-siRNA-PEI (negative control)/ only PEI (control) was added and the cells were incubated for 12 h. Following treatment, siRNA-PEI mixture, and OPTI-MEM® I was removed, replenished using fresh culture medium, and maintained for 24 h. Cells were rinsed with PBS and harvested by trypsinization (0.5 % Trypsin-EDTA) for total RNA isolation using TRI reagent, followed by cDNA synthesis and relative expression analysis, as detailed earlier. Treatment was validated using MISSION® siRNA Fluorescent Universal Negative Control #1 (Sigma). The treated cells were captured using the IX81 Olympus microscope (Olympus Corporation) and assessed by Cell Sens dimension software.

2.13. In vivo treatment of sox30-siRNA in adult male carp

Specific approvals from the IAEC (UH/IAEC/SB/2019-I/04) and Institutional Bio-Safety Committee (IBSC No. BSK-N-15-July2019) were obtained for siRNA treatments. Gene silencing using siRNA was done [30] and used in teleost [20,23,26]. Adult male carp, in the pre-spawning phase, was anesthetized, and about 100 µL of 100 ng/mL of antisense sox30-siRNA-PEI complex dissolved in HEPES buffer was injected directly into the testis, and fish were kept in circulatory water for a few minutes at ambient temperature to regain from anesthetic effect. Similarly, treatments with sense sox30-siRNA-PEI (negative control), only PEI and control groups were done. Four fish groups (control, only PEI, antisense sox30-siRNA-PEI, and sense sox30-siRNA-PEI) were kept in separate tanks of 50 L capacity, continuously aerated and replenished with fresh water. At days 0, 2, 4, 6, and 8, fishes (n = 5/group) were sacrificed to dissect out the testis for analysis. Total RNA from PEI, control, antisense sox30-siRNA-PEI, and sense sox30-siRNA--PEI treated samples was prepared and analyzed, as earlier. There was no mortality in any of the treatment groups throughout the experiment.

2.14. EIA of androgens

Serum samples were obtained from control and sox30-siRNA treated

fish on day 4 post-treatment. Carp serum T and 11-KT levels were valued using Immunotag fish EIA kits (G-Biosciences) adopting the manufacturer's protocol. The sensitivity for T and 11-KT measurements is 6.92 and 0.28 pg/mL, respectively, and the assay was validated as described [31]. Assays were performed for each independent sample (n = 5) in triplicates with appropriate dilutions.

2.15. Estimation of Hsd11b enzyme activity in testis

Enzyme activity of Hsd11b was measured as explained by Rasheeda et al. [32]. In brief, microsomal fractions were prepared by homogenizing 100 mg of control and sox30-siRNA treated testicular tissue in 1 mL of 0.1 M KPO₄ buffer, followed by centrifugation and ultra-centrifugation at 9000 \times g for 20 min and 105,000 \times g for 1 h, respectively at 4 °C. The microsomal pellet was rinsed once and dissolved with 500 µL of 0.1 M KPO₄ buffer, 20 % (v/v) glycerol, and 0.1 mM EDTA. About 250 µg of testicular microsome, was added to 1 mL of assay medium comprising of 100 μM NAD $^+$ and 2 nM 11-OHT incubated at 37 °C in a shaker water bath for 60 min. The reaction was interrupted by the addition of ice-cold diethyl ether. For extraction of steroids, diethyl ether was used, the organic layer was then dried under N₂ gas and dissolved with 100 μL of EIA buffer. All incubates were analyzed in triplicates. The quantity of 11-KT formed was estimated with Immunotag fish 11-KT-EIA kit, as detailed earlier. Heat-denatured microsome was employed as a negative control for assay validation.

2.16. Statistics

Densitometry analysis of images was performed using ImageJ software. All qPCR data were denoted as mean \pm Standard Error of the Mean (SEM) which qualified both normality and homogeneity tests. ANOVA, followed by posthoc tests were performed for statistical calculation with SigmaPlot 14.0 software (Systat Software Inc., Chicago, IL, US). For each test, P-value <0.05 was treated to be statistically significant.

3. Results

3.1. Cloning of sox9a/b and sox30

Upon cloning, partial cDNAs of sox9a (\sim 147 bp), sox9b (\sim 336 bp), and sox30 ORF (\sim 1170 bp) encoding a putative protein of \sim 389 aa with a molecular weight of \sim 44 kDa, comprising HMG box domain were obtained. The sox30 ORF nucleotide and aa sequence have been submitted to GenBank (MT193291).

3.2. Homology

The identity of carp Sox30 was compared with its vertebrate counterparts. Multiple sequence alignment revealed that carp, *C. carpio* Sox30 displayed much identity at the HMG box domain region (Fig. 1).

Phylogenetic analysis showed that *C. carpio* Sox30 is closely related to *Plecoglossus altivelis* and formed a separate clade (Fig. 2).

3.3. Expression analysis of sox9a/b and sox30

Transcript copy number analysis was performed to compare the expression of sox9a/b and sox30. Tissue distribution analysis during the late preparatory phase of the reproductive cycle revealed that the expression of sox9a/b and sox30 was ubiquitous in the tissues (n = 5) analyzed with negligible expression in the intestine. The expression of sox9a/b was high in the brain (P < 0.05) followed by the testis (Fig. 3A, B), while the predominant expression of sox30 was evident in the gonad of both female (P < 0.05) and male (P < 0.05) carp (Fig. 3C). Gonadal ontogeny showed a high expression of sox9a/b during 40 dph (P < 0.05), which later had varied expression in both female and male gonads through gonadal development till maturity (Fig.3D, E). On the other hand, sox30 displayed significant dimorphic expression (P < 0.05) between female and male gonads from 120 dph onwards until adulthood (Fig. 3F). Analysis through the testicular reproductive cycle of carp displayed significant expression of sox9a/b at preparatory (P < 0.05), modest expression in pre-spawning and spawning, and minimal expression during resting (Fig. 3G, H). However, high levels of sox30 were observed during pre-spawning followed by spawning and preparatory in comparison with the resting phase (Fig. 3I).

3.4. Immunolocalization and Western blot of Sox9 and Sox30

Sox9 immunoreactivity was detected in the spermatogonia of carp testis (Fig. 4A, B) while the absence of immunoreactivity in the control (pre-adsorbed antibody) confirm the antibody specificity (Fig. 4C). Western blot presented a sharp band of Sox9 protein \sim 50 kDa (Fig. 4D) in testis, revealed to be highly specific by the absence of signal in the negative control (intestine). Sox30 antisera elicited immunoreactive signals in spermatocytes and spermatid/sperm (Fig. 4E–G), but not in spermatogonia of the testis. As expected, in control of the pre-absorbed antibody with excessive Sox30 antigen, no positive signal was evident (Fig. 4H). Further, a positive band \sim 44 kDa (Fig. 4D) corresponding to Sox30 was observed in testis but not in the negative control (intestine) by western blot, validating antibody specificity. Neither Sox9 nor Sox30 immunoreactive signals were seen in the supporting cells of the testis.

3.5. Effects of hCG and 11-KT

Induction with hCG at the preparatory phase of the carp testicular reproductive cycle enhanced the expression of sox9a/b and sox30. In both $in\ vivo\ (Fig.\ 5A-C)$ and $in\ vitro\ (Fig.\ 5D-F)$ treatments (n = 5), prominent expression of sox9a/b and sox30 was observed after 12 h (P < 0.05) of induction. Progressive increase of expression was evident with time upon induction from 12 to 24 h. The influence of hCG on androgen induction in testis is well known. 11-KT being a potent androgen in fish

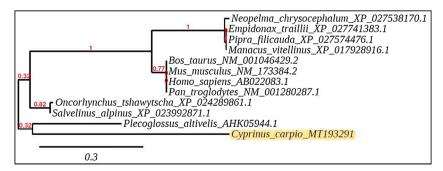


Fig. 2. Phylogenetic analysis of carp Sox30 with other vertebrates. The phylogenetic tree was generated using http://www.phylogeny.fr/simple_phylogeny.cgi. GenBank accession numbers of Sox30 sequences used are as follows: Bos taurus (NM_001046429.2), Homo sapiens (AB022083.1), Mus musculus (NM_173384.2), Pan troglodytes (NM_001280287.1). All other details are the same as Fig. 1.

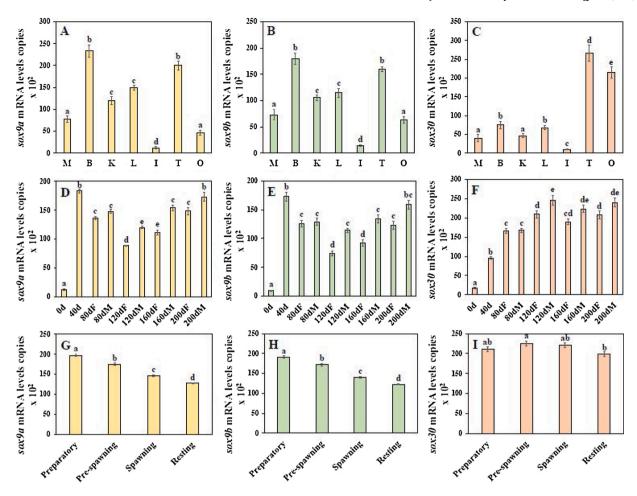


Fig. 3. Expression profiling of sox genes: Tissue distribution [sox9a (A), sox9b (B), sox30 (C)], gonadal ontogeny [sox9a (D), sox9b (E), sox30 (F)] and testicular reproductive phase [sox9a (G), sox9b (H), sox30 (I)] analysis using absolute quantification (copy number) in carp. Data (n = 5) were expressed as mean \pm SEM (P < 0.05; One-way ANOVA followed by Tukey test). Means with different alphabets differ significantly while means with similar alphabets did not show any significance. Abbreviations: M-muscle, B-brain, K-kidney, L-liver, I-intestine, T-testis, O-ovary, d-days post hatch, F- female, M-male.

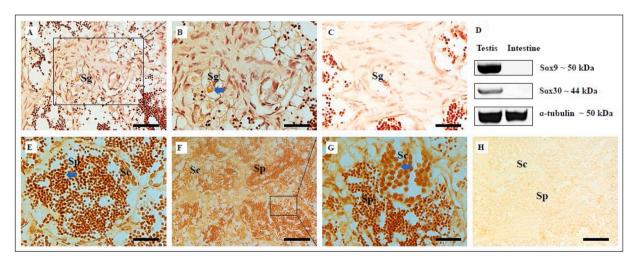


Fig. 4. Localization and western blot of Sox9 and Sox30 proteins in adult carp testis. Immunoreactivity of Sox9 (A, B) and Sox30 (E–G) in testis, whereas their respective negative controls (pre-adsorbed antibody with excess antigen) showed no signal (C, H). Western blot analysis of Sox9 and Sox30 proteins displayed band of ~50 kDa and ~44 kDa respectively, in testis while in the negative control (intestine) no bands were observed (D). Abbreviations: Sg: spermatogonia, Sc: spermatocytes, Sp: spermatid/sperm. The scale bar indicates A, E: 30 μm; B, C, G: 10 μm; F, H: 50 μm.

[33], its effect on sox9a/b and sox30 expression was studied. *In vitro* study (Fig. 5G–I), showed a substantial elevation (P < 0.05) of sox9a/b and sox30 at 12 h in comparison with control.

3.6. Effects of mono-sex induction by MDHT and E_2 treatments

The expression levels of sox9a/b and sox30 were compared in mono-

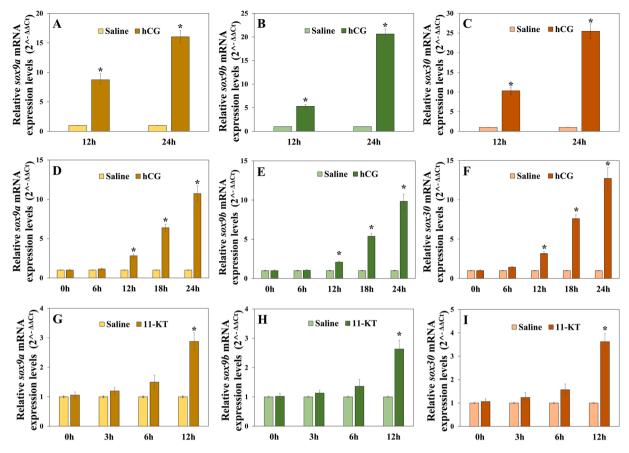


Fig. 5. Relative gene expression after hCG (1000 IU/Kg body weight) in vivo [sox9a (A), sox9b(B) and sox30(C)], hCG (100 IU/mL) in vitro in testicular slices [sox9a (D), sox9b(E) and sox30(F)] and 11-KT (100 ng/mL) in vitro in testicular slices [sox9a (G), sox9b (H) and sox30 (I)] treatments at different time intervals compared with control (saline) in carp. Data (n = 5) were expressed as mean \pm SEM (* P < 0.05; One-way ANOVA followed by Dunnett's method). Abbreviation: h-hour.

sex-induced carp. MDHT treatment for 50 days increased the expression of sox9a/b and sox30 significantly (P < 0.05) in testis (Fig. 6A) during the gonadal development of carp. kiss2 and gnrh expression were determined in the brain while expression of fshr and lhr was determined in the gonads of mono-sex-induced carp. The expression of lhr was significantly (P < 0.05) high, while fshr expression was comparable to control in MDHT treated testis (Fig. 6A). The expression of kiss2 and gnrh was elevated in the brain of MDHT (Fig. 6B) treated carp. E_2 treatment decreased the transcript levels of sox9a/b and sox30 in the ovary (Fig. 6C). fshr expression was significantly (P < 0.05) high, while lhr expression was comparable to control in E_2 treated ovary (Fig. 6C). The expression of kiss2 and gnrh was elevated in the brain of E_2 (Fig. 6D) treated carp.

3.7. Silencing of sox30, in vitro

In carp testicular culture (n = 5), PEI complexed with antisense sox30-siRNA significantly (P < 0.05) reduced sox30 expression compared to control and after sense sox30-siRNA treatments (Fig. 7A). Besides, the expression of sox30 post-siRNA treatment exhibited dosage-related downregulation. Expression of sox30 significantly (P < 0.05) declined to 88 % after treatment with 10 ng/ μ L of sox30-siRNA in comparison with control, hence this dose was chosen for later on experiments. Silencing of sox30 displayed a significant reduction (P < 0.05) in the transcript levels of certain transcription factors (Fig. 7B), few germ/stem cell markers and other factors (Fig. 7C) crucial for testicular function, and steroidogenesis-related genes (Fig. 7D). Relative mRNA levels of ad4bp/sf-1, gata4, wt1, sox5, sox9a/b, dmrt1, sycp3, vasa, pou5f3/oct4, gsdf, pdgf, amh, star, cyp11, cyp17, hsd3b, hsd17b, hsd20b, hsd11b, and srd5a1 showed a decline, while dax and piwi did not show

any significant change and *ar* showed a significant up-regulation when compared to control. The uptake of siRNA was confirmed by fluorescent signals evident in carp primary testicular culture treated with control siRNA (Fig. 7E and F).

3.8. Transient silencing of sox30, in vivo

Treatment of antisense sox30-siRNA-PEI complex significantly downregulated (P < 0.05) the expression of sox30 indicating that siRNA complexed with PEI was capable of silencing sox30 in carp testis (Fig. 8A). On the other hand, only PEI or sense sox30-siRNA-PEI complex treatments showed no effect in terms of sox30 expression. Expression of sox30 was quantified in testis on days 0, 2, 4, 6, and 8 post-treatment along with corresponding control at every time point (Fig. 8A). The antisense sox30-siRNA-PEI complex treatment decreased the expression of sox30 (P < 0.05) on days 2 and 4 post-treatment with 44 and 90 % reduction, respectively. Further, sox30 expression decreased to 37 % on day 6 and 10 % on day 8 indicating that transcript levels might restore to normal as reported earlier [23,26]. The antisense sox30-siRNA-PEI sample on day 4 showed a 90 % decrease in sox30 expression and hence that time-point was chosen as a treatment sample for later on experiments. Sox30 protein levels reduced similar to that of sox30 transcripts while there was no change in α -tubulin employed as a control (Fig. 8B). A substantial decrease in Sox9 protein levels was also observed after siRNA treatment, as opposed to the control (Fig. 8B). The band intensity was measured using ImageJ software and normalized with α -tubulin (Supplementary Fig. 2). There were no significant changes in the expression of sox11, sox13, sox18, and sox21 in the sox30- siRNA treated group (Supplementary Fig. 3) demonstrating the specificity of the siRNA used in this study. Further, no significant phenotypic changes were

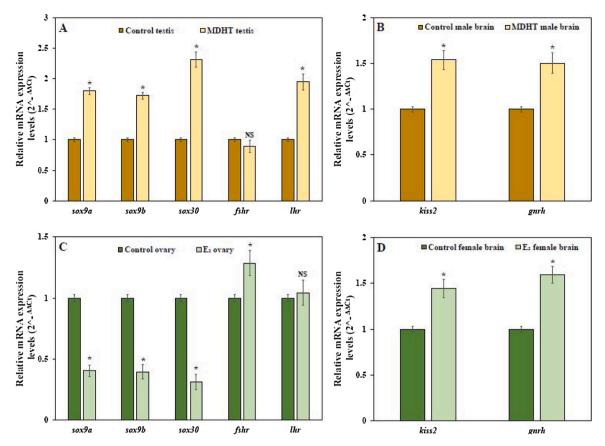


Fig. 6. Relative expression of genes (sox9a, sox9b, sox30, fshr, and lhr) in mono-sex-induced carp gonads (A, C). Relative expression of genes (kis2 and gnrh) in mono-sex-induced carp brain (B, D). NS- not significant. Data (n = 5) were expressed as mean \pm SEM (* P < 0.05; One-way ANOVA followed by Dunnett's method).

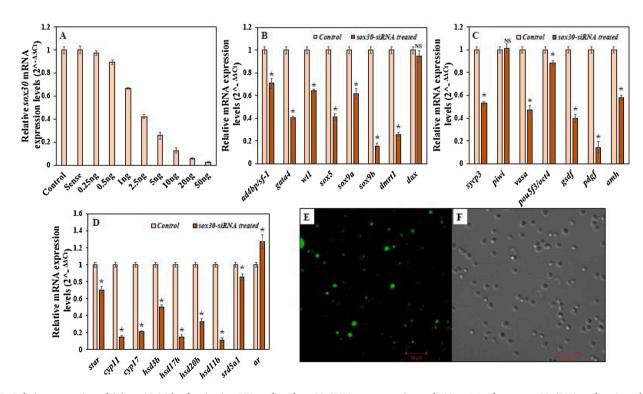


Fig. 7. Relative expression of (A) sox30 24 h after *in vitro* PEI mediated sox30-siRNA treatment (control, 10 ng/ μ L of sense sox30-siRNA and various doses of antisense sox30-siRNA) in carp testicular culture (mixed; n=5). Relative expression of (B) transcription factors, (C) germ/stem cell marker genes and other factors, and (D) steroidogenesis related genes between control and 10 ng/ μ L of antisense sox30-siRNA treated carp testicular culture after 24 h of treatment (*P < 0.05; Oneway ANOVA followed by Dunnett's method). NS-not significant. Representative (E and F) confocal microscope images [E (fluorescent), F (phase-contrast)] 24 h after *in vitro* PEI mediated transfection of MISSION siRNA fluorescent universal negative control conjugated with 6-FAM on carp testicular culture (mixed).

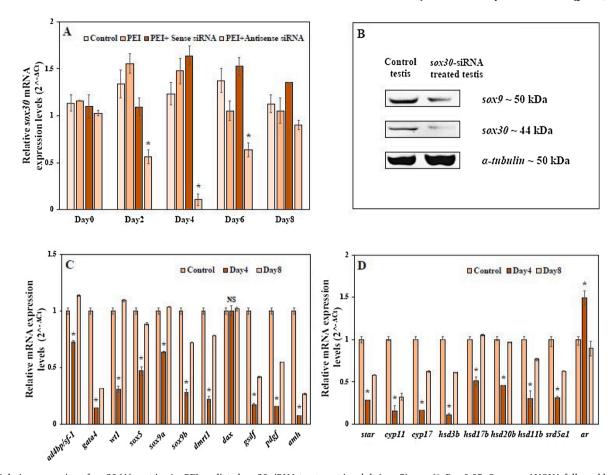


Fig. 8. Relative expression of sox30 (A) post in vivo PEI mediated sox30-siRNA treatment in adult (n = 5) carp (*, P < 0.05; One-way ANOVA followed by SNK test). (B) Western blot of Sox9 and Sox30 proteins on day 4 in control and sox30-siRNA treated carp testis. Relative expression of various (C) testis-related and (D) steroidogenesis-related genes/factors on day 4 in control and sox30-siRNA treated carp testis (*P < 0.05; Mann–Whitney test One-way ANOVA on ranks followed by SNK test). NS-not significant.

observed in the histological images between control and siRNA injected testis (Supplementary Fig. 4) proving the transient nature of the PEI siRNA treatment. Besides, it might be difficult to detect any change in the spermatogenesis process as the testis was at the late spermatogenesis stage. However, molecular changes similar to the *in vitro* treatment were observed upon *in vivo* transient silencing. The expression of transcription/other factors namely, *ad4bp/sf-1*, *gata4*, *wt1*, *sox5*, *sox9a/b*, *dmrt1*, *gsdf*, *pdgf*, *amh* (Fig. 8C), *star* and steroidogenic enzyme genes *cyp11*, *cyp17*, *hsd3b*, *hsd11b*, *hsd17b*, *hsd20b*, *srd5a1* (Fig. 8D) showed a decline on day 4 post-*sox30*-siRNA treatment but the expression levels were comparable to that of control on day 8 post-*sox30*-siRNA treatment, further substantiating the transient nature of siRNA silencing. There was no significant change on day 4 and day 8 in the expression of *dax*, while *ar* expression showed a significant up-regulation on day 4,

reverting to normal levels on day 8.

Serum levels of T (Fig. 9A) and 11-KT (Fig. 9B) declined significantly (P < 0.05) on day 4 post sox30-siRNA treatment. Enzyme activity of Hsd11b significantly (P < 0.05) reduced on day 4 post sox30-siRNA treatment (Fig. 9C).

4. Discussion

The presence of *sox30* in teleost [15] and its vital role in mammalian spermiogenesis [4] have been well documented. However, the significance of *sox30* in testicular steroidogenesis remains unexplored in lower vertebrates including teleost. The current study reports the cloning of *sox30* from adult *C. carpio* testis, and cloning partial cDNAs of *sox9a/b*, whose roles have been earlier demonstrated in carp [11]. Expression of

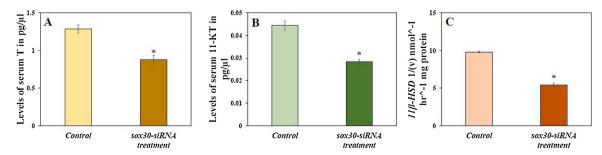


Fig. 9. Changes in the levels of serum (A) T and (B) 11-KT on day 4 in the control and sox30-siRNA treated carp. (C) Changes in enzyme activity of Hsd11b on day 4 in the control and sox30-siRNA treated carp testis. Data (n = 5) were expressed as mean \pm SEM. (* P < 0.05; Student's t-test).

sox9a/b and sox30 during gonadal development, changes in distinctive phases of the testicular reproductive cycle, post-11-KT treatment, after hCG induction, in mono-sex-induced carp, and the repercussions of sox30-siRNA silencing, were highlighted to demonstrate their dominant role in testicular steroidogenesis vis-à-vis testis function.

4.1. Cloning, expression analysis, and localization

An earlier study from our laboratory employing comparative transcriptomic strategy identified key genes involved in sex- differentiation, revealing the existence of sox30 in carp [12]. Using gene-specific primers, ORF of sox30, and partial cDNA fragments of sox9a and sox9b were obtained in the current study. The expression of sox30 was elevated in testis followed by the ovary in contrast to somatic tissues [17], while sox9a/b showed higher expression in the brain followed by the testis. Upon quantification, sox30 displayed predominantly higher expression in the testis in comparison to sox9a/b. A previous study [15] in the Nile tilapia (Oreochromis niloticus) reported the expression of sox30 from 10 dph, earlier than the morphological gonadal differentiation period (about 25 dph). However, in this study, sox30 displayed significant dimorphic expression at 120 dph during the onset of testicular growth in carp [19]. Further, expression of sox30 was high in mature testis as reported in mouse [34] implicating its role in maturation as well. The present study quantified the expression of sox9a/b and sox30 at distinctive phases of the carp testicular reproductive cycle. Higher expression of sox9a/b was observed during preparatory and pre-spawning, marking their role during the initiation of spermatogenesis. sox30 expression was abundant in pre-spawning, characterized by the predominance of spermatogonia and spermatocytes and in the spawning phase, corresponding to spermiogenesis. This sign that in carp, the expression of sox30 was high during spermatogenesis and spawning/spermiation as observed in mice [4]. Seasonal changes in sox30 expression may signify its role during testicular maturation. Sox9 was found in spermatogonia while Sox30 was localized in spermatocytes and spermatid/sperm as previously reported in the Nile tilapia [15] and mice [35].

4.2. Influence of gonadotropin

Steroidogenesis is strictly regulated by gonadotropins [36] and in fact, gonadotropins are well known to stimulate steroid synthesis in teleost gonads [2]. The influence of gonadotropin induction in carp has been testified [37]. There was a substantial increase in sox9a/b and sox30 mRNA transcripts post-hCG induction, validating the regulatory role of gonadotropin on sox30 expression. LH-like hCG is proven to bind to LH receptors [38], expressed by Leydig cells to induce androgen synthesis and also to act upon Sertoli cells to regulate spermatogenesis [39].

4.3. Effect of hormone treatment

It is known that hCG induces T and 11-KT production in fish [40]. Having analyzed the leverage of gonadotropins on sox30, the influence of androgen on gene expression is yet another exhilarating area to study. The expression of sox9a/b and sox30 was found to be elevated after in vitro 11-KT treatment in carp testicular slices. In fish, treatment with sex-steroids during the critical window of sexual differentiation can alter the developmental processes of gonads [2]. Reports suggest that 40–50 days of treatment in carp [41] with different supplementations to feed can result in complete sex-reversal. An all-male population of blue tilapia (Tilapia aurea) was produced with 17 α -ethynyltestosterone treatment [42]. Exposure of methyltestosterone to catfish during gonadal differentiation resulted in the male population [43]. Expression of sox9a/b and sox30 was elevated after MDHT but not after E2 treatment. In teleost, during sex-inversion/differentiation, gender-specific sexual differences are contingent on the sequential presence of brain

and/or gonadal sex differences under the impact of gonadal factors to hormonal response [44]. Gonadotropin regulation during natural and artificial induction was observed. Further, to clarify the role of the brain-pituitary gonadal axis during mono-sex induction, expression levels of gonadotropin receptors were studied. Therefore, the expression of kiss2 and gnrh was determined in the brain, which showed their higher expression in both E₂ and MDHT treatments. However, the expression of fshr was higher in E2 and lhr was higher in MDHT treated gonads. Our results were comparable to that of the previous reports [45] in gilthead seabream (Sparus aurata L.) and [46] orange-spotted grouper (Epinephelus coioides). In most gonochoristic teleost, lhr expression was high during late stages of gonadal development, vital for spawning and spermiation [47]. The current study showed the transcript levels of lhr was significantly high after MDHT treatment, suggesting the involvement of LH signaling in triggering mono-sex induction and subsequent testis development in carp.

4.4. Transient silencing of sox30

Most knockdown studies to investigate the significance of sox30 during gametogenesis were done in mammals however, this report is the first of its kind to show the transient silencing of sox30 mRNA in any lower vertebrate. To substantially elucidate the role of sox30 in gonadogenesis, the effect of PEI mediated transient silencing of the sox30 was studied in vivo and in vitro. Previous reports delineated that synthetic siRNA induces gene silencing, concerning numerous developmental processes [20,23]. Transient silencing using sox30-siRNA did not result in phenotypic changes in carp testis as reported earlier [26]. Delivery of sox30-siRNA resulted in decreased expression of the regulators of gonadogenesis, namely ad4bp/sf-1, gata4, and wt1 [23], demonstrating sox30 might affect the expression of these genes. In vertebrates, ad4bp/sf-1 is an important steroidogenic factor required for the basal expression of steroidogenic enzymes [48]. Bai et al. [49] reported a sox30 binding site in the promoter motif of ad4bp/sf-1 in mice. In mammals, it is well established that sox9 transactivates ad4bp/sf-1 gene expression [50] to achieve tissue-specific gene expression. Similarly, sox30 might regulate ad4bp/sf-1 expression in fish. Besides, Chen et al. [51] showed differential expression of gata2 in the SOX30 knockout mice line. In this study, transient silencing of sox30 resulted in the downregulation of transcription factors crucial for testicular development namely, dmrt1 [43], sox5 [8], and sox9a/b [5]. Zhang et al. [4] have reported evidence of the SOX30 binding site in DMRTA2 of mice. In the Nile tilapia, *dmrt1* directly binds to a putative cis-regulatory element within the sox30 promoter [52]. Feng et al. [34] have shown the downregulation of SOX5 in SOX30 knock out mice. Though there were no reports pertaining to relationship between sox30 and sox9, the presence of sox30 DNA binding domain ACAAT [13] in the sox9 promoter regions of Sebastes schlegelii (GenBank:KJ624401.1[unpublished]) warrants such a prospective. This report is the first to show the reduction of sox9a/b upon transient silencing of sox30 in carp, indicating either a direct or indirect regulatory loop among the sox genes. Gonadogenesis is influenced by several other factors such as amh [53], gsdf [54], and PDGF [55]. Gamete production by meiosis is dependent upon crucial germ cell governing genes like vasa, sycp3, and pou5f3/oct4 [26,56]. Silencing of sox30 also targeted to affect the expression of amh, gsdf, pdgf, vasa, pou5f3/oct4, and sycp3 in this study as observed in mice [4, 51]. The production of testicular androgen is governed by steroidogenesis. In line with this, Sakai et al. [57] reported that sox30 is an effective regulator of ad4bp/sf-1. In teleost, studies [58,59] have reported the direct participation of 11-OHT and 11-KT in the differentiation and development of testis. Previous reports have shown the significance of hsd11b during testicular development and recrudescence in teleost [32]. In particular, sox3 has been proven as a transcriptional activator of the hsd11b gene by binding to two of its specific promoter motifs in catfish [60], suggesting that genes from the sox family may regulate hsd11b expression, and hence testicular steroidogenesis, in

teleost. Concomitantly, transient knockdown of *sox30* resulted in decreased T, 11-KT, Hsd11b enzyme activity and downregulation of *star* and steroidogenesis-related genes, *srda51*, *hsd3b*, *hsd11b*, *hsd17b* and *hsd20b*. Supporting the above contention, Chen et al. [51] have observed differential expression of HSD3B in SOX30 knockout mice. Further, transient knockdown of *sox30* exhibited overexpression of *ar*, the nuclear receptor for 11-KT in teleost [33]. Another study in mice has suggested that *ar* overexpression could be a potential mechanism for hypersensitivity due to low androgen [61].

4.5. sox9a/b vs sox30

The most interesting aspect of this study was attempting to signify the role of sox30 in comparison with sox9a/b. The dominance of sox30 over sox9a/b expression was observed in adult testis. Evidence of dominant expression of sox30 during spermatogenesis and especially in spermiogenesis and high expression of sox9a/b at the initial stages of spermatogenesis signifies their role in gamete maturation. Incidentally, the influence of gonadotropin, 11-KT, and mono-sex induction was similar in sox9a/b and sox30. Transient silencing of sox30 decreased sox9a/b levels hinting that sox30 may act as a regulating factor for sox9a/b, either directly or indirectly.

5. Conclusion

The current study reveals that sox30 transcripts predominantly expressed in the testis in comparison to the ovary and might regulate testicular growth as well as maturation during the reproductive cycle. Overexpression of sox30 upon mono-sex induction indicates an important role during testicular development. Transient silencing of sox30 influenced steroidogenic enzyme, and other factor genes as well as sexsteroid levels. Overall, the present study demonstrated the significance of sox30 in testicular steroidogenesis vis-à-vis testis function of carp by influencing sox9a/b, either directly or indirectly, along with other malerelated genes as evidenced by expression analysis and transient gene silencing.

Funding

A grant-in-aid (Ref No. EMR/2017/000718 dated 28/09/2018) from the Science and Engineering Research Board, Department of Science and Technology, India to BS supported this work completely.

CRediT authorship contribution statement

Arumugam Anitha: Formal analysis, Writing - original draft, Writing - review & editing, Validation, Methodology, Data curation, Visualization. **Balasubramanian Senthilkumaran:** Formal analysis, Writing - review & editing, Conceptualization, Investigation, Supervision, Validation, Visualization, Funding acquisition, Resources, Project administration.

Declaration of Competing Interest

The authors declare that they have no conflicts of interest with the contents of this article.

Acknowledgements

Department of Science and Technology-FIST (Level II, Phase I) is acknowledged for various instrumentation support. AA is thankful to the Department of Biotechnology, India, for junior and senior research Department of Biotechnology fellowships. Dr. Manjappa Ningappa and his team are acknowledged for their technical help at KVAFSU.

Appendix A. Supplementary data

Supplementary material related to this article can be found, in the online version, at doi:https://doi.org/10.1016/j.jsbmb.2020.105769.

References

- A. Rajakumar, B. Senthilkumaran, Steroidogenesis and its regulation in teleost-a review, Fish Physiol. Biochem. 46 (2020) 803–818, https://doi.org/10.1007/ s10695-019-00752-0
- [2] R.H. Devlin, Y. Nagahama, Sex determination and sex differentiation in fish: an overview of genetic, physiological, and environmental influences, Aquaculture 208 (2002) 191–364, https://doi.org/10.1016/S0044-8486(02)00057-1.
- [3] M. Wegner, From head to toes: the multiple facets of SOX proteins, Nucleic Acids Res. 27 (1999) 1409–1420, https://doi.org/10.1093/nar/27.6.1409.
- [4] D. Zhang, D. Xie, X. Lin, L. Ma, J. Chen, D. Zhang, Y. Wang, S. Duo, Y. Feng, C. Zheng, B. Jiang, Y. Ning, C. Han, The transcription factor SOX30 is a key regulator of mouse spermiogenesis, Development 145 (2018) dev164723, https://doi.org/10.1242/dev.164723.
- [5] K. Raghuveer, B. Senthilkumaran, Isolation of sox9 duplicates in catfish: localization, differential expression pattern during gonadal development and recrudescence, and hCG-induced up-regulation of sox9 in testicular slices, Reproduction 140 (2010) 477–487, https://doi.org/10.1530/rep-10-0200.
- [6] A. Rajakumar, B. Senthilkumaran, Expression analysis of sox3 during testicular development, recrudescence, and after hCG induction in catfish, Clarias batrachus, Sex. Dev. 8 (2014) 376–386, https://doi.org/10.1159/000368864.
- [7] Y. Takehana, M. Matsuda, T. Myosho, M.L. Suster, K. Kawakami, T. Shin-I, Y. Kohara, Y. Kuroki, A. Toyoda, A. Fujiyama, S. Hamaguchi, M. Sakaizumi, K. Naruse, Co-option of sox3 as the male-determining factor on the Y chromosome in the fish *Oryzias dancena*, Nat. Commun. 5 (2014) 4157, https://doi.org/ 10.1038/ncomms5157.
- [8] M. Schartl, S. Schories, Y. Wakamatsu, Y. Nagao, H. Hashimoto, C. Bertin, B. Mourot, C. Schmidt, D. Wilhelm, L. Centanin, Y. Guiguen, A. Herpin, Sox5 is involved in germ-cell regulation and sex determination in medaka following cooption of nested transposable elements, BMC Biol. 16 (2018) 16, https://doi.org/ 10.1186/s12915-018-0485-8.
- [9] S. Zhang, X. Chen, M. Wang, W. Zhang, J. Pan, Q. Qin, Genome-wide identification, phylogeny and expressional profile of the sox gene family in channel catfish (*Ictalurus punctatus*), Comp. Biochem. Physiol. D 28 (2018) 17–26, https://doi.org/ 10.1016/j.cbd.2018.03.001.
- [10] X. Guo, Æ.J. Yan, Æ.S. Liu, B. Xiang, Æ.Y. Liu, Isolation and expression analyses of the sox9a gene in triploid crucian carp, Fish Physiol. Biochem. 36 (2010) 125–133, https://doi.org/10.1007/s10695-008-9209-2.
- [11] Q.-Y. Du, F.-Y. Wang, H.-Y. Hua, Z.-J. Chang, Cloning and study of adult-tissue-specific expression of sox9 in Cyprinus carpio, J. Genet. 86 (2007) 85–91, https://doi.org/10.1007/s12041-007-0013-z.
- [12] A. Anitha, Y.-R. Gupta, S. Deepa, M. Ningappa, K.B. Rajanna, B. Senthilkumaran, Gonadal transcriptome analysis of the common carp, *Cyprinus carpio*: identification of differentially expressed genes and SSRs, Gen. Comp. Endocrinol. 279 (2019) 67–77, https://doi.org/10.1016/j.ygcen.2018.12.004.
- [13] E. Osaki, Identification of a novel SRY-related gene and its germ cell-specific expression, Nucleic Acids Res. 27 (1999) 2503–2510, https://doi.org/10.1093/por/07.11.3502
- [14] P. Koopman, G. Schepers, S. Brenner, B. Venkatesh, Origin and diversity of the sox transcription factor gene family: genome-wide analysis in *Fugu rubripes*, Gene 328 (2004) 177–186, https://doi.org/10.1016/j.gene.2003.12.008.
- [15] F. Han, Z. Wang, F. Wu, Z. Liu, B. Huang, D. Wang, Characterization, phylogeny, alternative splicing and expression of sox30 gene, BMC Mol. Biol. 11 (2010) 98, https://doi.org/10.1186/1471-2199-11-98.
- [16] H. Yu, X. Du, X. Li, J. Qu, H. Zhu, Q. Zhang, X. Wang, Genome-wide identification and transcriptome-based expression analysis of sox gene family in the Japanese flounder *Paralichthys olivaceus*, Chin. J. Oceanol. Limnol. 36 (2018) 1731–1745, https://doi.org/10.1007/s00343-018-7216-4.
- [17] L. Wei, C. Yang, W. Tao, D. Wang, Genome-wide identification and transcriptome-based expression profiling of the sox gene family in the Nile Tilapia (*Oreochromis niloticus*), Int. J. Mol. Sci. 17 (2016) 270, https://doi.org/10.3390/ijms17030270.
- [18] Y. Basavaraju, G.C. Mair, H.M.M. Kumar, S.P. Kumar, G. Keshavappa, D.J. Penman, An evaluation of triploidy as a potential solution to the problem of precocious sexual maturation in common carp, *Cyprinus carpio*, in Karnataka, India, Aquaculture 204 (2002) 407–418, https://doi.org/10.1016/S0044-8486(01) 00827 4
- [19] J. Komen, M. Yamashita, Y. Nagahama, Testicular development induced by a recessive mutation during gonadal differentiation of female common carp (*Cyprinus carpio*, L.), Dev. Growth Differ. 34 (1992) 535–544, https://doi.org/ 10.1111/j.1440-169X.1992.00535.x.
- [20] Y.R. Gupta, B. Senthilkumaran, Common carp pentraxin gene: evidence for its role in ovarian differentiation and growth, Gen. Comp. Endocrinol. 290 (2020), 113398, https://doi.org/10.1016/j.ygcen.2020.113398.
- [21] P. Routray, D.K. Verma, S.K. Sarkar, N. Sarangi, Recent advances in carp seed production and milt cryopreservation, Fish Physiol. Biochem. 33 (2007) 413–427, https://doi.org/10.1007/s10695-007-9159-0.
- [22] C.-C. Sudhakumari, A. Anitha, R. Murugananthkumar, D.K. Tiwari, D. Bhasker, B. Senthilkumaran, A. Dutta-Gupta, Cloning, localization and differential expression of Neuropeptide-Y during early brain development and gonadal

- recrudescence in the catfish, Clarias gariepinus, Gen. Comp. Endocrinol. 251 (2017) 54-65, https://doi.org/10.1016/j.ygcen.2017.03.006.
- [23] R. Murugananthkumar, B. Senthilkumaran, Expression analysis and localization of wt1, ad4bp/sf-1 and gata4 in the testis of catfish, Clarias batrachus: impact of wt1esiRNA silencing, Mol. Cell. Endocrinol. 431 (2016) 164–176, https://doi.org/ 10.1016/j.mce.2016.05.006.
- [24] A. Radonić, S. Thulke, I.M. Mackay, O. Landt, W. Siegert, A. Nitsche, Guideline to reference gene selection for quantitative real-time PCR, Biochem. Biophys. Res. Commun. 313 (2004) 856–862, https://doi.org/10.1016/j.bbrc.2003.11.177.
- [25] S.K. Mamta, K. Raghuveer, C.-C. Sudhakumari, A. Rajakumar, Y. Basavaraju, B. Senthilkumaran, Cloning and expression analysis of tyrosine hydroxylase and changes in catecholamine levels in brain during ontogeny and after sex steroid analogues exposure in the catfish, *Clarias batrachus*, Gen. Comp. Endocrinol. 197 (2014) 18–25, https://doi.org/10.1016/j.ygcen.2013.11.022.
- [26] C. Laldinsangi, B. Senthilkumaran, Identification, cloning and expression profile of sycp3 during gonadal cycle and after siRNA silencing in catfish, Gene Rep. 10 (2018) 54–65, https://doi.org/10.1016/j.genrep.2017.10.009.
- [27] Y. Basavaraju, H.M.M. Kumar, S. Pradeep, D. Umesha, P.P. Srivastava, D. J. Penman, G.C. Mair, Production of genetically female common carp, Cyprinus carpio, through sex reversal and progeny testing, Asian Fish. Sci. 21 (2008) 255-269.
- [28] H.-P. Wang, Z. Gao, B. Beres, J. Ottobre, G. Wallat, L. Tiu, D. Rapp, P. O'Bryant, H. Yao, Effects of estradiol-17β on survival, growth performance, sex reversal and gonadal structure of bluegill sunfish *Lepomis macrochirus*, Aquaculture 285 (2008) 216–223, https://doi.org/10.1016/j.aquaculture.2008.08.041.
- [29] R.D. Guerrero, W.L. Shelton, An aceto-carmine squash method for sexing juvenile fishes, Progress. Fish-culturist 36 (1974) 56, https://doi.org/10.1577/1548-8659 (1974)36[56:aasmfs]2.0.co;2.
- [30] S. Höbel, A. Aigner, Polyethylenimine (PEI)/siRNA-mediated gene knockdown in vitro and in vivo, Methods Mol. Biol. 623 (2010) 283–297, https://doi.org/ 10.1007/978-1-60761-588-0-18.
- [31] I. Swapna, M. Rajasekhar, A. Supriya, K. Raghuveer, G. Sreenivasulu, M. K. Rasheeda, K.C. Majumdar, H. Kagawa, H. Tanaka, A. Dutta-Gupta, B. Senthilkumaran, Thiourea-induced thyroid hormone depletion impairs testicular recrudescence in the air-breathing catfish, *Clarias gariepinus*, Comp. Biochem. Physiol. A 144 (2006) 1–10, https://doi.org/10.1016/j.cbpa.2006.01.017.
- [32] M.K. Rasheeda, H. Kagawa, R. Kirubagaran, A. Dutta-Gupta, B. Senthilkumaran, Cloning, expression and enzyme activity analysis of testicular 11β-hydroxysteroid dehydrogenase during seasonal cycle and after hCG induction in air-breathing catfish Clarias gariepinus, J. Steroid Biochem. Mol. Biol. 120 (2010) 1–10, https:// doi.org/10.1016/j.jsbmb.2010.02.014.
- [33] T. Todo, T. Ikeuchi, T. Kobayashi, Y. Nagahama, Fish androgen receptor: cDNA cloning, steroid activation of transcription in transfected mammalian cells, and tissue mRNA levels, Biochem. Biophys. Res. Commun. 254 (1999) 378–383, https://doi.org/10.1006/bbrc.1998.9919.
- [34] C.-W.A. Feng, C. Spiller, D.J. Merriner, M.K. O'Bryan, J. Bowles, P. Koopman, SOX30 is required for male fertility in mice, Sci. Rep. 7 (2017), 17619, https://doi. org/10.1038/s41598-017-17854-5.
- [35] F. Han, Y. Dong, W. Liu, X. Ma, R. Shi, H. Chen, Z. Cui, L. Ao, H. Zhang, J. Cao, J. Liu, Epigenetic regulation of sox30 is associated with testis development in mice, PLoS One 9 (2014) e97203, https://doi.org/10.1371/journal.pone.0097203.
- [36] A.H. Payne, G.L. Youngblood, Regulation of expression of steroidogenic enzymes in leydig cells, Biol. Reprod. 52 (1995) 217–225, https://doi.org/10.1095/ biolreprod52,2,217.
- [37] J.Y.-L. Yu, T.-M. Lin, Species variation of gonadotropic activity in an *in vitro* assay measuring androgen formation by carp (*Cyprinus carpio*) testis with special reference to bioassay of piscine gonadotropins, Gen. Comp. Endocrinol. 62 (1986) 428–436, https://doi.org/10.1016/0016-6480(86)90053-5.
- [38] H.F. Vischer, J.C.M. Granneman, M.J. Noordam, S. Mosselman, J. Bogerd, Ligand selectivity of gonadotropin receptors, J. Biol. Chem. 278 (2003) 15505–15513, https://doi.org/10.1074/jbc.M300634200.
- [39] M.K. Skinner, Cell-cell interactions in the testis, Endocr. Rev. 12 (1991) 45–77, https://doi.org/10.1210/edrv-12-1-45.
- [40] M.G. Wade, G. Van Der Kraak, The control of testicular androgen production in the goldfish: effects of activators of different intracellular signalling pathways, Gen. Comp. Endocrinol. 83 (1991) 337–344, https://doi.org/10.1016/0016-6480(91) 90138.V
- [41] M. Hulak, M. Paroulek, P. Simek, M. Kocour, D. Gela, M. Rodina, O. Linhart, Water polluted by 17α-methyltestosterone provides successful male sex inversion of common carp (*Cyprinus carpio* L.) from gynogenetic offspring, J. Appl. Ichthyol. 24 (2008) 707–710, https://doi.org/10.1111/j.1439-0426.2008.01107.x.
- [42] R.D. Guerrero, Use of androgens for the production of all-male *Tilapia aurea* (Steindachner), Trans. Am. Fish. Soc. 104 (1975) 342–348, https://doi.org/10.1577/1548-8659(1975)104<342:uoaftp>2.0.co;2.
- [43] K. Raghuveer, B. Senthilkumaran, Identification of multiple dmrt1s in catfish: localization, dimorphic expression pattern, changes during testicular cycle and

- after methyltestosterone treatment, J. Mol. Endocrinol. 42 (2009) 437–448, https://doi.org/10.1677/jme-09-0011.
- [44] B. Senthilkumaran, C.-C. Sudhakumari, S.K. Mamta, K. Raghuveer, I. Swapna, R. Murugananthkumar, "Brain sex differentiation" in teleosts: emerging concepts with potential biomarkers, Gen. Comp. Endocrinol. 220 (2015) 33–40, https://doi. org/10.1016/j.ygcen.2015.06.003.
- [45] I. Cabas, E. Chaves-Pozo, A. García-Alcázar, J. Meseguer, V. Mulero, A. García-Ayala, The effect of 17α-ethynylestradiol on steroidogenesis and gonadal cytokine gene expression is related to the reproductive stage in marine hermaphrodite fish, Mar. Drugs 11 (2013) 4973–4992, https://doi.org/10.3390/md11124973.
- [46] X. Hu, X. Liu, H. Zhang, Y. Zhang, S. Li, Q. Sang, Q. Wang, W. Luo, Q. Liu, D. Lu, Z. Meng, H. Lin, Expression profiles of gonadotropins and their receptors during 17α-methyltestosterone implantation-induced sex change in the orange-spotted grouper (Epinephelus coioides), Mol. Reprod. Dev. 78 (2011) 376–390, https://doi.org/10.1002/mrd.21319.
- [47] B. Levavi-Sivan, J. Bogerd, E.L. Mañanós, A. Gómez, J.J. Lareyre, Perspectives on fish gonadotropins and their receptors, Gen. Comp. Endocrinol. 165 (2010) 412–437, https://doi.org/10.1016/j.ygcen.2009.07.019.
- [48] K. Morohashi, T. Omura, Ad4BP/SF-I, a transcription factor essential for the transcription of steroidogenic cytochrome P450 genes and for the establishment of the reproductive function, FASEB J. 10 (1996) 1569–1577, https://doi.org/ 10.1096/fasebj.10.14.9002548.
- [49] S. Bai, K. Fu, H. Yin, Y. Cui, Q. Yue, W. Li, L. Cheng, H. Tan, X. Liu, Y. Guo, Y. Zhang, J. Xie, W. He, Y. Wang, H. Feng, C. Xin, J. Zhang, M. Lin, B. Shen, Z. Sun, X. Guo, K. Zheng, L. Ye, SOX30 initiates transcription of haploid genes during late meiosis and spermiogenesis in mouse testes, Development 145 (2018) dev164855, https://doi.org/10.1242/dev.164855.
- [50] J.H.-C. Shen, H.A. Ingraham, Regulation of the orphan nuclear receptor steroidogenic factor 1 by SOX proteins, Mol. Endocrinol. 16 (2002) 529–540, https://doi.org/10.1210/mend.16.3.0782.
- [51] Y. Chen, Y. Zheng, Y. Gao, Z. Lin, S. Yang, T. Wang, Q. Wang, N. Xie, R. Hua, M. Liu, J. Sha, M.D. Griswold, J. Li, F. Tang, M.-H. Tong, Single-cell RNA-seq uncovers dynamic processes and critical regulators in mouse spermatogenesis, Cell Res. 28 (2018) 879–896, https://doi.org/10.1038/s41422-018-0074-y.
- [52] Y. Tang, X. Li, H. Xiao, M. Li, Y. Li, D. Wang, L. Wei, Transcription of the sox30 gene is positively regulated by dmrt1 in Nile Tilapia, Int. J. Mol. Sci. 20 (2019) 5487, https://doi.org/10.3390/ijms20215487.
- [53] A. Rodríguez-Marí, Y.-L. Yan, R.A. BreMiller, C. Wilson, C. Cañestro, J. H. Postlethwait, Characterization and expression pattern of zebrafish anti-Müllerian hormone (amh) relative to sox9a, sox9b, and cyp19a1a, during gonad development, Gene Expr. Patterns 5 (2005) 655–667, https://doi.org/10.1016/j.modgep.2005.02.008.
- [54] Y. Shibata, B. Paul-Prasanth, A. Suzuki, T. Usami, M. Nakamoto, M. Matsuda, Y. Nagahama, Expression of gonadal soma derived factor (GSDF) is spatially and temporally correlated with early testicular differentiation in medaka, Gene Expr. Patterns 10 (2010) 283–289, https://doi.org/10.1016/j.gep.2010.06.005.
- [55] L. Gnessi, A. Emidi, E.A. Jannini, E. Carosa, M. Maroder, M. Arizzi, S. Ulisse, G. Spera, Testicular development involves the spatiotemporal control of PDGFs and PDGF receptors gene expression and action, J. Cell Biol. 131 (1995) 1105–1121, https://doi.org/10.1083/jicb.131.4.1105
- [56] A. Rodríguez-Marí, C. Cañestro, R.A. BreMiller, J.M. Catchen, Y.-L. Yan, J. H. Postlethwait, Retinoic acid metabolic genes, meiosis, and gonadal sex differentiation in zebrafish, PLoS One 8 (2013) e73951, https://doi.org/10.1371/journal.pone.0073951.
- [57] N. Sakai, H. Terami, S. Suzuki, M. Haga, K. Nomoto, N. Tsuchida, K. Morohashi, N. Saito, M. Asada, M. Hashimoto, D. Harada, H. Asahara, T. Ishikawa, F. Shimada, K. Sakurada, Identification of NR5A1 (SF-1/AD4BP) gene expression modulators by large-scale gain and loss of function studies, J. Endocrinol. 198 (2008) 489–497, https://doi.org/10.1677/joe-08-0027.
- [58] S. Socorro, R.S. Martins, L. Deloffre, C.C. Mylonas, A.V.M. Canario, A cDNA for European sea bass (*Dicentrachus labrax*) 11β-hydroxylase: gene expression during the thermosensitive period and gonadogenesis, Gen. Comp. Endocrinol. 150 (2007) 164–173, https://doi.org/10.1016/j.ygcen.2006.07.018.
- [59] X.G. Wang, L. Orban, Anti-Müllerian hormone and 11 β-hydroxylase show reciprocal expression to that of aromatase in the transforming gonad of zebrafish males, Dev. Dyn. 236 (2007) 1329–1338, https://doi.org/10.1002/dvdy.21129.
- [60] A. Rajakumar, B. Senthilkumaran, Sox3 binds to 11β-hydroxysteroid dehydrogenase gene promoter suggesting transcriptional interaction in catfish, J. Steroid Biochem. Mol. Biol. 158 (2016) 90–103, https://doi.org/10.1016/j. isbmb.2016.01.003.
- [61] H. Kawata, N. Ishikura, M. Watanabe, A. Nishimoto, T. Tsunenari, Y. Aoki, Prolonged treatment with bicalutamide induces androgen receptor overexpression and androgen hypersensitivity, Prostate 70 (2010) 745–754, https://doi.org/ 10.1002/pros.21107.

ELSEVIER

Contents lists available at ScienceDirect

General and Comparative Endocrinology

journal homepage: www.elsevier.com/locate/ygcen

Gonadal transcriptome analysis of the common carp, *Cyprinus carpio*: Identification of differentially expressed genes and SSRs*

Arumugam Anitha^a, Yugantak-Raj Gupta^{a,1}, Seetharam Deepa^{a,1}, Manjappa Ningappa^b, Karani Boraiah Rajanna^c, Balasubramanian Senthilkumaran^{a,*}

- a Department of Animal Biology, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500046, Telangana, India
- ^b Fisheries Research and Information Center (KVAFSU), Hesaraghatta Lake Post, Hesaraghatta, Bengaluru 560 089, India
- c KVAFSU, 10th cross, Mayura street, Papanna layout, Hebbal outer ring road, Bengaluru 560 089, India

ARTICLE INFO

Keywords:
Carp
Differential gene expression
Gonad
Reproduction
Sex-differentiation
Transcriptome

ABSTRACT

Common carp (*Cyprinus carpio*) is a world-wide freshwater fish of eutrophic waters. *C. carpio*, have various reproductive traits, including early sexual maturity, that may make them excellent, large, realistic, aquaculture model species. In the present work, *de novo* assembly of gonadal (testicular and ovarian) transcriptomes from juvenile common carp was performed to identify genes involved in gonadal development. A total of 81,757 and 43,257 transcripts with average lengths of 769 and 856 bp, were obtained from the immature testicular and ovarian transcriptomes, respectively. About 84,367 unigenes were constructed after removing redundancy involving representation of transcripts in both gonadal transcriptomes. Gene ontology (39,171 unigenes), clusters of orthologous group's analysis (6651 unigenes) and Kyoto encyclopedia of genes, and genomes automatic annotation server analysis (4783 unigenes) were performed to identify potential genes along with their functions. Furthermore, 18,342 (testis) and 8693 (ovary) simple sequence repeats were identified. About 298 differentially expressed genes were identified, of which 171 and 127 genes were up-regulated in testis and ovary, respectively. Quantitative real-time reverse transcription PCR was performed to validate differential expression of selected genes in testis and ovary. Nearly 809 genes related to reproduction were identified, sex-wise expression pattern of genes related to steroid synthesis, endocrine regulation, germ cell maintenance and others

Abbreviations: ad4bp/sf-1, adrenal 4 binding protein/steroidogenic factor-1; amh, anti-Mullerian hormone; amhr2, anti-Mullerian hormone receptor type 2; amhy, Y chromosome-linked anti-Mullerian hormone; ar, androgen receptor; atm, Ataxia telanglectasia mutated; COG, clusters of orthologous groups; Ct, cycle threshold; ctnnbip1, catenin beta interacting protein 1; cux1, cut like homeobox 1; cux2a, cut like homeobox 2a; cyp11b1, cytochrome P450, family 11, subfamily b, polypeptide 1; cyp17, steroidogenic cytochrome P450 17-hydroxylase/lyase; cyp19a1, cytochrome P450, family 19, subfamily a, polypeptide 1; cxcl12, C-X-C motif chemokine ligand 12; cxcr4, C-X-C motif chemokine receptor 4; dax1, dosage-sensitive sex-reversal, adrenal hypoplasia critical region, on chromosome X, gene 1; DEG, differentially expressed genes; dmrt1, doublesex and mab-3 related transcription factor 1; DMY, Y-specific DM-domain; dph, days post hatch; egr2b, early growth response 2b; er, estrogen receptor; fam101b, family with sequence similarity 101, member B; fam192a, family with sequence similarity 192, member A; fam210b, family with sequence similarity 210, member B; fbox43, F-box only protein 43; fem1b, fem-1 homolog B; fgfr1a2, fibroblast growth factor receptor 1-A-like; foxk2, forkhead box k2; foxl2, forkhead box L2; FSH, follicle stimulating hormone; fshr, follicle stimulating hormone receptor; fstl3, follistatin-like 3 (secreted glycoprotein); fzd8, frizzled class receptor 8; gata4, GATA binding protein 4; gata6, GATA binding protein 6; gdf9, growth differentiation factor 9; GnRH, gonadotropin-releasing hormone; GO, gene ontology; gsdf, gonadal somatic cell-derived factor; hsd3b, hydroxy-delta-5-steroid dehydrogenase, 3 beta; hsd3b7, hydroxy-delta-5-steroid dehydrogenase, 3 beta- and steroid delta-isomerase 7 hsd11b1 hydroxysteroid 11-beta dehydrogenase 1; hsd11b2, hydroxysteroid 11- beta dehydrogenase 2; hsd17b2, hydroxysteroid 17- beta dehydrogenase 2; hsd20b2, hydroxysteroid 20- beta dehydrogenase 2; igf1ra, insulin-like growth factor 1a receptor; ipo4, importin 4; KASS, KEGG, automatic annotation server; KEGG, Kyoto encyclopedia of genes and genomes; kiss2, kisspeptin2; lhcgr, luteinizing hormone/choriogonadotropin receptor; mapk, mitogen-activated protein kinase; mis, Mullerian inhibiting substance; msl1b, male-specific lethal 1 homolog b; NGS, next generation sequencing; pcna, proliferating cell nuclear antigen; plzf, promyelocytic leukemia zinc finger; prlhr2a, prolactin releasing hormone receptor 2a; PPA, protein phosphatase 2A; pou5f1, POU class 5 homeobox 1; qRT-PCR, quantitative real time reverse transcription PCR; RA, retinoic acid; RAR-RXR, retinoic acid receptor/retinoid x receptor heterodimers; rspo1, R-spondin 1; sdY, sexually dimorphic on the Y chromosome; smad3b, SMAD family member 3b; sox9a, SRY-box 9a; SRY, sex-determining region Y; SSR, simple sequence repeat; StAR, steriodogenic acute regulatory protein; sycp1, synaptonemal complex protein 1; sycp3, synaptonemal complex protein 3; tac3a, tachykinin 3a; tcf3a, transcription factor 3a; TGF-β, transforming growth factor-beta; wnt, wingless-type MMTV integration site family; wt1, Wilms tumor 1; zar1, zygote arrest 1; zp2, zona pellucida sperm-binding protein 2

- * Corresponding author.

E-mail address: bsksl@uohyd.ernet.in (B. Senthilkumaran).

¹ These authors contributed equally.

factors related to gonadal differentiation was observed, and expression analysis of *nanos*, *ad4bp/sf-1*, and *gdf9* was performed. The present study identified certain important genes/factors involved in the gonadal development of *C. carpio* which may provide insights into the understanding of sex-differentiation and gonadal development processes.

1. Introduction

The common carp, Cyprinus carpio belonging to family Cyprinidae is native to western Asia and was translocated or introduced throughout the world. Certain native wild populations were considered vulnerable to extinction in 2008 by the International Union for Conservation of Nature. The common carp has become one of the most important food fishes with many strains and varieties in different parts of the world (Xu et al., 2012). There are abundant strains and local populations of common carp found in India, including many hybrid populations. The Indian common carp spawn in two peak breeding periods, from January to March and from July to August. Furthermore, at different stages, the gonads show discrete changes during the reproductive cycle. Due to its economic and ecological importance, different genetic and genomic studies were performed in the common carp (Ji et al., 2012; Kongchum et al., 2010). In spite of the reports being available on different aspects of reproduction and breeding (Routray et al., 2007), the molecular mechanisms underlying gonadal maturation and breeding of carp in tropical or subtropical climates has not been clearly understood. In comparison with the bisexual reproduction in higher vertebrates, teleosts have different approaches for sexual reproduction, like unisexuality (Schartl et al., 1995), hermaphroditism (Warner, 1984) and gonochorism (Dipper and Pullin, 1979). In addition, there are two mechanisms of sex-determination, genetic and environmentally regulated (Janzen, 1995). Teleost fishes are an excellent model for studying the evolution of sex chromosomes as they have a broad range of sexual developmental systems, with an absence of morphologically distinct genders in most species. A master set of sex-determination and gonadal phenotype-related genes have been identified in multiple fish species, including, amhy in Odontesthes hatcheri, amhr2 in Takifugu rubripes, dmrt1 in Cynoglossus semilaevis and Clarias gariepinus, DMY and dmrt1 in Oryzias latipes, gsdf in O. luzonensis, and sdY in Oncorhynchus mykiss (Chen et al., 2014; Hattori et al., 2012; Kamiya et al., 2012; Matsuda et al., 2002; Myosho et al., 2012; Nanda et al., 2002; Raghuveer and Senthilkumaran, 2009; Yano et al., 2012). Several conserved genes playing critical roles in sexual development of mammals were also analyzed in fish, including ad4bp/sf-1, dax1, foxl2, gata4, mis, sox3, sox9a, sox9b, StAR, wt1, cyp11b1, cyp17, cyp19a1, hsd3b, and hsd11b (Raghuveer et al., 2011; Sandra et al., 2010). These genes act together in a complex network to direct gonadal development. In addition, hormones and various biological pathways, such as estrogen signaling pathway, steroid hormone biosynthesis (Baroiller et al., 1999), TGF-β signaling pathway (Liu et al., 2017), and wnt signaling pathway (Amberg et al., 2013; Prathibha and Senthilkumaran, 2017) also play a vital role in the gonadal differentiation. Although much is known about the process of sex-differentiation in fish, the precise mechanisms of sexdifferentiation as well as those involved in primary sex-determination remain undefined in several teleosts (Devlin and Nagahama, 2002). Fish gonadal sex-differentiation shows varied strategies and physiological regulations compared to mammals (Baron and Guiguen, 2003). The differentiation of bi-potential gonad to either testis or ovary depends on the regulation of steroidogenic pathway. In lower vertebrates, sex-steroids (androgens and estrogens) play a critical role in gonadal differentiation (Devlin and Nagahama, 2002; Strüssmann and Nakamura, 2002). However, the mechanism of action of these steroids on gonad sex-differentiation is not well understood. Unlike sex-determining systems, the genes involved in gonadal differentiation appear to be relatively conserved. Nevertheless, studies on the functional connections of these genes to relevant pathways are minimal in fish.

Novel sex-related genes are required to elucidate the complex mechanisms of gonadal development in fishes. Over the last decade, NGS technologies have provided operative tools for high throughput sequencing, which has enhanced the efficacy and speed of gene discovery. Compared to whole genome sequencing, NGS via RNA-Seq affords a cost effective approach to retrieve transcriptome sequences and molecular markers that can reveal DEG associated with phenotypic traits and gender. DEG between testis and ovary gives a prospective information to recognize and understand the molecular basis of gonadal development and growth. Groups of gonadal development-related genes have been revealed by scrutiny of sex-biased transcriptomes in several species including, gilthead sea bream (Calduch-Giner et al., 2013), the Nile tilapia (Tao et al., 2013), the Japanese flounder (Zhang et al., 2016), the Russian sturgeon (Hagihara et al., 2014), Southern bluefin tuna (Bar et al., 2016), and yellow catfish (Lu et al., 2014). The transcriptome of common carp (Ji et al., 2012) has been sequenced and assembled employing NGS platforms, and differences between the ovary and testis transcriptomes of adult common carp from the China's yellow river have been explored using suppression subtractive hybridization (Chen et al., 2015). However, ideally such differences will be fully explored only by using a comprehensive set of transcriptomes from every tissue through each life stage across every major habitat (Ji et al., 2012). Furthermore, complete annotation and functional validation of the common carp genome or transcriptome have not been done with reference to gonadal stage and function. Hence, in this study, gonadal transcriptomes of juvenile common carp were sequenced to obtain a critical overview of genes potentially involved in gonadal growth and development. In addition, DEG and biological pathways were also identified by comparing testis and ovary transcriptomes. These data provide information on marker genes found expressed in gonads sexwise at specific reproductive stages, genes related to steroid synthesis, endocrine regulation, germ cell maintenance and others factors, which are crucial for acquiring valuable insights into mechanisms of gonadal differentiation in fish. The present study also identified a major group of reproduction-related genes, potential players in gonadal development and characterized SSRs to be employed for genetic improvement purposes. The large number of reproduction-related genes identified in this study also provide direction for future genetic and functional genomic research in common carp.

2. Materials and methods

2.1. Animals and sampling

Common carp used for this study were reared at the aquaculture facility of Karnataka Veterinary Animal and Fisheries Sciences University, Bangalore, India. Nearly 2,000 offsprings were raised in a 2000 m² pond and fed four times daily under standard feeding regime (3% feed/bodyweight ratio daily). The oxygen level was retained at 3 mg/L or above. Animals were procured and during acclimatization, fishes were maintained under natural photo-thermal conditions by feeding commercial carp food *ad libitum* and kept in 1 m³ tanks with filtered tap water, until experimentation. Fifteen juvenile carps, 110 to 130 dph were randomly selected and gonadal tissues were dissected out. A portion of the gonadal tissue was fixed in Bouin's fixative (15:5:1, saturated picric acid, formaldehyde and glacial acetic acid) for histological observation, and the remaining tissue was snap frozen in liquid nitrogen and stored at $-80\,^{\circ}\text{C}$ for RNA-Seq. To perform qRT-PCR various tissues from adult female (brain, kidney, liver, muscle, and

ovary) and adult male (brain, kidney, liver, muscle, and testis) fishes were collected, snap frozen in liquid nitrogen and stored at $-80\,^{\circ}$ C. Whenever required gonadal tissues (n = 3) were pooled to obtain one biological sample and necessary experimental sets were chosen according to the analysis. Fish sampling was performed following the general procedures and with the endorsement of the Institutional Animal Ethics Committee, University of Hyderabad (CPCSEA, Inst. Reg# No#151/1999 dt.22.07.1999).

2.2. Histology

The male and female gonads of juvenile common carp, 110 to 130 dph were fixed in Bouin's solution, dehydrated and embedded in paraplast (Sigma). Sections of $5\,\mu m$ were cut using a microtome (Leica, Wetzler, Germany), stained with hematoxylin-eosin and photomicrographs were taken using Olympus CX41 bright field light microscope (Olympus, Tokyo, Japan).

2.3. Total RNA isolation and cDNA library construction

The gonads of the juvenile common carp were staged by histology. Total RNA was prepared from immature gonad tissue (testis and ovary) samples of carp individually using TRI reagent (Merck, USA; Cat No. T9424). The concentration and integrity of RNA were examined with Ribogreen method using Agilent 2100 Bioanalyzer (Agilent Technologies, USA). RNA with RIN values > 7.0 were selected. Equal amounts of the high quality RNA from gonads were then pooled together for mRNA isolation, cDNA synthesis, and sequencing. Library preparation was performed following NEB Next Ultra RNA Library Prep Kit (New England Biolabs, USA; Cat No. E7530S) following the manufacturer's instructions. In brief, one µg of total RNA was used to isolate mRNA using NEB Next Poly (A) mRNA Magnetic Isolation Module which was time-dependently fragmented using RNA binding buffer provided in the kit. Then first strand cDNA was prepared using ProtoScript II Reverse Transcriptase, following which the second strand cDNA was synthesized, purified using AMPure XP Beads, end-repaired using NEBNext End Prep Enzyme Mix, and NEBNext Adaptor ligated using Blunt/TA Ligase. These adapter-ligated fragments were subjected to 12 cycles of enrichment and barcoding and the products were purified using Ampure XP beads.

2.4. Sequencing and assembly

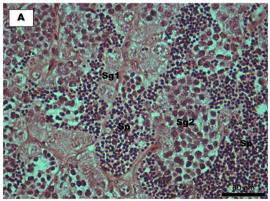
Sequencing was done using Illumina Next Seq 500 Sequencer with 75 PE chemistry. The paired-end reads obtained after massive parallel sequencing were subjected to several filters to obtain the potential reads that are specific to identify the transcripts. First, a quality check using FASTQC was performed. The low quality reads (mean

Phred_score < 20) were removed and the reads with adapter sequences were trimmed. If the length of the trimmed read was below 50 bp, then such reads were discarded. All processed reads were then assembled into transcripts without any reference (*de novo*) using Trinity software (trinityrnaseq20140413p1).

2.5. Functional annotation and ontology

The homology search was done for assembled transcripts' sequences against *T. rubripes*, *Danio rerio*, and (partially annotated) *C. carpio* protein sequences downloaded from UniProt database (http://www.uniprot.org/uniprot/). NCBI-blast2.2.29 was used for homology search between the sequences. BLASTX program was used to perform similarity searches. Gene annotation was assigned to the RNA-Seq transcripts based on the top BLAST hit. GO annotation analysis was then performed. The annotation results were categorized into biological process, cellular components, and molecular function. KEGG pathways were assigned to those assembled contigs using the online KAAS (http://www.genome.jp/tools/kaas). COG annotation for transcripts of testis and ovary were based on homology (https://www.ncbi.nlm.nih.gov/COG).

2.6. Identification of DEG


The reads for both gonadal tissues were separately aligned to the unigene sequences of C. carpio and read count profiles were generated. DESeq "R" package was used for differential gene expression. The package DESeq provide methods for testing for differential expression by use of the negative binomial distribution and a shrinkage estimator for the distribution's variance. The threshold for the P value was < = 0.05. DEG between male or female gonads were identified.

2.7. SSRs detection

SSRs were identified by mapping all clean reads to the assembled transcript reference using MIcroSAtellite identification tool (MISA, version 1.0, http://pgrc.ipkatersleben.de/misa/). The minimum repeat number used for every unit was ten for mononucleotide, six for dinucleotide, five for tri-, tetra-, penta- and hexa-nucleotide microsatellites.

2.8. Experimental validation by qRT-PCR

Few candidate DEG were validated by qRT-PCR to verify the expression profile obtained from the transcriptome data. Tissue distribution pattern of different transcripts was analyzed using SYBR Green detection method. For this, total RNA was extracted from different tissues (brain, kidney, liver, muscle, ovary, and testis) of adult common carp using TRI (Sigma) method. qRT-PCR was performed by following

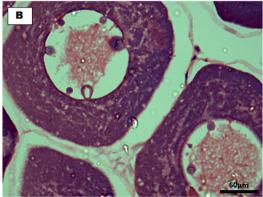


Fig. 1. Histology of gonads A-Immature testis showing Sg1: Primary spermatogonia, Sg2: Secondary spermatogonia, Sp: Sperms/spermatids; B-Immature ovary at perinucleolar-oil droplet stage (Scale: 60 μm).

the method described in Rajakumar and Senthilkumaran (2014). All reactions were performed in triplicate for 3 different samples using specific primers (Table S1). qRT-PCR amplification was carried using Power SYBR[™] Green PCR Master Mix (Thermo Fisher Scientific, USA; Cat No. 4367659) in an ABI Step One Plus real time PCR system (Thermo Fisher Scientific, USA) according to the manufacturer's protocol. The expression was normalized against 18SrRNA expression, used as an endogenous control, generating a Δ Ct value (Δ Ct = Target Ct – 18SrRNA Ct). Relative expression was then calculated according to equation $2^{\text{--}\Delta\text{Ct}}$.

3. Results

3.1. Histological observation

The maturation level of gonads were histologically determined. Upon observation the differentiating (110 to 130 dph) testis (Fig. 1A) showed presence of primary spermatogonia, secondary spermatogonia and spermatids/sperms indicating the progression from meiotic to spermiogenic phase of spermatogenesis. The juvenile ovary (110 to 130 dph) showed several nucleoli appearing at the periphery of nucleus indicating the perinucleolar stage (Fig. 1B) of primary oocyte growth.

3.2. Sequencing and reads assembly

A total of 17.06 and 14.87 million paired-end reads with 94.1% and 93.6% high quality bases (Phredscore > 20) were generated from high throughput sequencing of the immature testis and ovary cDNA libraries, respectively. The transcriptome sequences generated from this study have been deposited in NCBI's Gene Expression Omnibus (GEO) and are accessible through GEO Series accession number GSE112157 (https:// www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc = GSE112157). Nearly, 81.757 and 43.257 transcripts with average lengths of 769 and 856 bp. and N50 of 1364 and 1453 bp, were obtained after de novo assembly for testis and ovary, respectively (Table 1). From these, 84,367 unigenes were constructed after removing redundancy which was a representation of all testicular and ovarian transcriptomes. The total size of the transcriptome was 62.9 and 37 Mbp for testis and ovary, respectively. All transcripts longer than 201 bp were selected and nearly 18,472 and 12,574 transcripts longer than 1000 bp of testis and ovary, respectively were obtained. About, 62,231 unigenes (50%) showed significant hits compared to known proteins. Of these, only 39,171 unigenes could be fully annotated with the available GO data.

3.3. Unigene annotation

The unigenes with counterparts in public protein databases were annotated with GO, which offers a dynamically organized vocabulary and classified relationships to symbolise information regarding the categories of Biological process, Cellular component and Molecular function. Analysis of GO term distribution showed that 'regulation of transcription, DNA templated [GO: 0006355]', 'integral component of membrane [GO: 0016021]', and 'ATP binding [GO: 0005524]' were the most common annotation terms within the three GO categories, respectively. For Biological process, 'regulation of transcription' (1745 unigenes) and 'transcription' (1668 unigenes) were the predominant groups. Under Cellular component, 'integral component of membrane' (12,405 unigenes) represented the most abundant classification followed by 'nucleus' (6951 unigenes). Under Molecular function, 'ATP binding' (6821 unigenes) and 'zinc ion binding' (4686 unigenes) represented nearly half of the category (Fig. 2). To conduct further functional prediction and classification, all unigenes were compared with proteins from the COG database. In total, 6651 unigenes were classified into 26 categories (Fig. 3). The top three classifications are general function prediction only (1089 unigenes), signal transduction mechanisms (813 unigenes); and translation, ribosomal structure, and

biogenesis (760 unigenes). Following the most abundant three groups were posttranslational modification, protein turnover, chaperones (674 unigenes) and amino acid transport and metabolism (Table S2).

KAAS was used to perform pathway analysis for functional categorization. Enzyme Commission (EC) numbers were assigned (Table S3) with 3012 enzyme codes for 4782 unigenes. Pathways were categorized into 6 main groups (Table 2), metabolism (1440 unigenes), organismal systems (175 unigenes), environmental information processing (917 unigenes), genetic information processing (1511 unigenes), cellular processes (697 unigenes) and human diseases (42 unigenes). The majority of the mapped unigenes represented (Fig. 4) signal transduction (13.1%, 627 unigenes), followed by folding, sorting and degradation (11.7%, 563 unigenes) and translation (11.2%, 538 unigenes). KAAS annotation identified 96 genes related to reproduction, distributed in 7 pathways (Table 3). These genes covered the major processes of reproduction, including *wnt* signaling pathway, GnRH signaling pathway, steroid biosynthesis, oocyte meiosis, steroid hormone biosynthesis, neuroactive ligand-receptor and insulin signaling pathway (Table S3).

3.4. Identification of SSRs

A total of 18,342 and 8693 SSRs (Table S4) were finally obtained from testis and ovary, respectively. Within SSRs in the testis, the most abundant type of repeat motif was mono (10,938), di-nucleotide repeats (3748), followed by tri (2127), quadra- (194), penta- (6), and hexa-nucleotide (4) repeat units (Fig. 5). Within SSRs in the ovary, the most abundant types of repeat motif were mono (4805) and di-nucleotide repeats (1919), followed by tri- (1298), quadra- (87), penta- (13), and hexa-nucleotide (1) repeat units ((Fig. S1A)). The most abundant repeat motif in SSRs (Fig. S1B) was A/T (18,115), followed by AC/GT (3792), AG/CT (1603), AT/AT (1281) and ATC/ATG (787).

3.5. DEG

Differential expression between testis and ovary were analysed to identify the genes involved in sex-differentiation. Based on the applied criteria (twofold or greater change and p < = 0.05), there were 171 unigenes showing higher expression in testis than in ovary, and 127 unigenes showed higher expression in ovary than in testis. There was no significant difference in the expression of most unigenes between testis and ovary. In order to visualize comprehensive similarities and differences in gene expression between testis and ovary, a scatterplot was generated using R package and clear differences in gene expression between testis and ovary could be observed (Fig. S2). The DEG report has been uploaded in NCBI's GEO (GEO Series accession number GSE112157).

Table 1 Summary of *C. carpio* gonadal transcriptome.

Transcriptome Assembly	Testis	Ovary
Transcripts generated	43,257	81,757
Maximum transcript length	14,732 bp	14,333 bp
Minimum transcript length	201 bp	201 bp
Average transcript length	856 bp	769 bp
Total transcripts length	37 Mbp	62 Mbp
Transcripts > 200 bp	43,257	81,757
Transcripts > 500 bp	21,462	34,010
Transcripts > 1000 bp	12,574	18,472
Transcripts > 10 Kbp	2	3
N50 value	1453 bp	1364 bp
Number of reads used	1,38,84,178	1,01,99,309
Total number of reads	1,62,67,344	1,39,16,372
Percentage of reads used	85.35	73.29

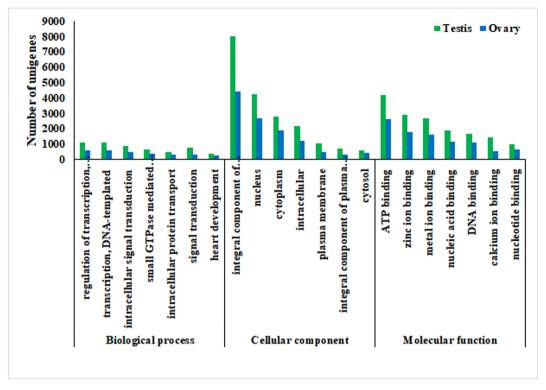


Fig. 2. GO analysis of the *C. carpio* testicular and ovarian transcriptomes of immature carp. The distribution of GO terms portrayed in the three categories: Biological process, cellular component and molecular function.

3.6. DEG validation in gonads

Twelve DEG such as amh, egr2b, dax1, dmrt1, fbox43, foxk2, fzd8, gata6, mapk, sox9a, wt1, and zp2 related to sex-differentiation, were chosen to verify the changes in their expression levels in gonads. Expression of amh, dax1, dmrt1, gata6, sox9a, and wt1 was higher in testis, whereas egr2b, fbox43, foxk2, fzd8, mapk, and zp2 were found to be elevated in ovary, (Fig. 6). These results reiterate the differential gene expression pattern observed in gonadal transcriptome analysis.

3.7. Identification of reproduction- related genes

Nearly, 809 genes related to reproduction were identified by literature supported searching (Table S5). The gonadal transcriptome data was used to profile the expression of several reproduction-related genes. Sex-steroid synthesis related genes such as StAR, hsd3b7, hsd17b, hsd20b2, cyp19a, and er showed higher expression levels in ovary than in testis. The exceptions are hsd11b, and ar which showed higher expression in testis (Fig. 7A). Genes involved in various gonadotropin pathway receptors such as lhcgr, fgfr1a2, tac3a, notch2 and fshr, prlhr2a, kiss2 were moderately over-expressed in the testis and ovary,

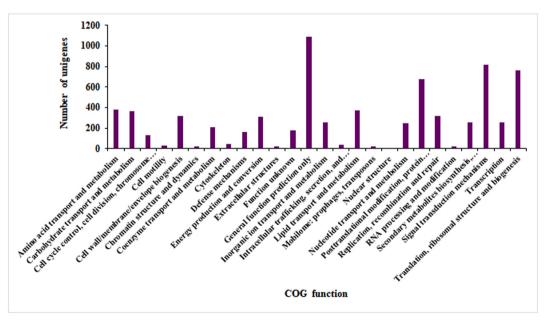


Fig. 3. COG classification of C. carpio testicular and ovarian transcriptomes of immature carp.

Table 2 KAAS mapping for gonadal transcriptome of *C. carpio.*

KAAS categories represented	Number of KO	Unique sequences
Metabolism		
 Amino acid metabolism 	104	140
 Biosynthesis of other secondary 	1	1
metabolites		
 Carbohydrate metabolism 	126	183
 Energy metabolism 	105	170
 Glycan biosynthesis and metabolism 	128	174
 Lipid metabolism 	145	217
 Metabolism 	119	180
 Metabolism of cofactors and vitamins 	76	109
 Metabolism of other amino acids 	16	47
 Metabolism of terpenoids and polyketides 	18	25
Nucleotide metabolism	123	188
 Xenobiotics biodegradation and 	5	6
metabolism		
Cellular Processes		
 Cell growth and death 	93	142
Cell motility	37	60
Cellular community	44	84
 Transport and catabolism 	226	411
Organismal Systems		
 Circulatory system 	22	30
 Development 	5	16
Endocrine system	40	67
 Immune system 	42	56
 Sensory system 	5	6
Human Diseases		
 Endocrine and metabolic diseases 	4	7
 Infectious diseases 	19	35
Genetic Information Processing		
 Folding, sorting and degradation 	327	563
 Replication and repair 	120	149
 Transcription 	143	261
 Translation 	339	538
Environmental Information Processing		
 Membrane transport 	19	22
 Signal transduction 	371	627
 Signaling molecules and interaction 	190	268
Total	3012	4782

Table 3Reproduction-related pathways identified in common carp gonadal transcriptome.

Description	Number of genes in the pathway
Wnt signaling pathway	47
Steroid biosynthesis	14
Oocyte meiosis	12
Insulin signaling pathway	10
Steroid hormone biosynthesis	8
GnRH signaling pathway	3
Neuroactive ligand-receptor interaction	2

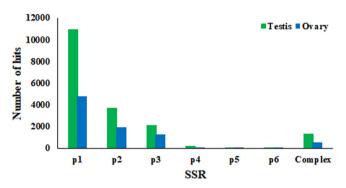


Fig. 5. Distribution of SSRs identified from common carp testis and ovary transcriptomes of immature carp.

respectively (Fig. 7B). Some of the genes involved in germ cell maintenance were highly expressed in ovary, namely *vasa*, *pou5f1*, *ipo4*, *pcna*, and *notch1* and other germ cell related genes like *sycp3*, *piwi*, *plzf*, *cxcr4*, and *cxcl12* showed higher expression in testis (Fig. 7C). Another set of genes that were found to be over-expressed in testicular tissue included various factors related to gonadal differentiation such as *igf1ra*, *wt1*, *rspo1*, *ctnnbip1*, *tcf3a*, *msl1b*, and *atm* while *fem1b* and *smad3b* showed higher expression in ovary (Fig. 7D).

Candidate genes with well-known functions, like *nanos*, germline gene, autosomal *ad4bp/sf-1* and ovary specific *gdf9*, were selected for tissue distribution analysis. Expression of *nanos* was high in brain and kidney followed by testis and ovary (Fig. 8) while *gdf9* was found to be high in ovary followed by brain, testis, kidney, muscle and liver (Fig. 8).

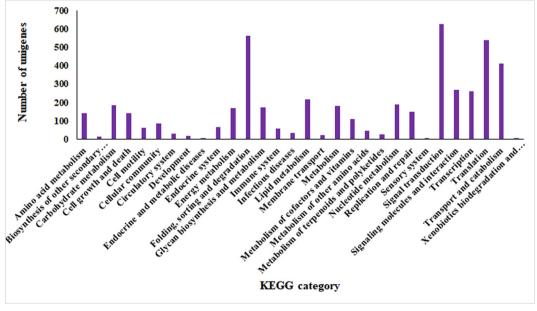


Fig. 4. KEGG categorization of C. carpio testicular and ovarian transcriptomes of immature carp.

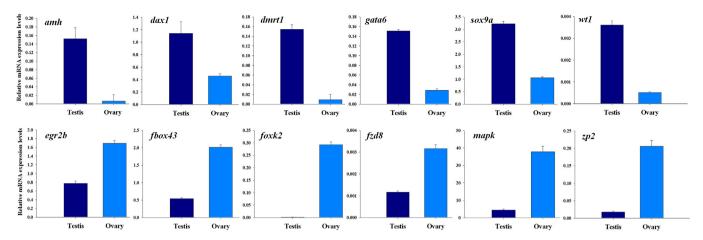


Fig. 6. Validation of immature *C. carpio* gonadal tissue transcriptome results by qRT-PCR using 12 selected DEG in testis and ovary. qRT-PCR fold changes are normalized by changes in 18SrRNA values (P < 0.05; ANOVA followed by Student–Newman–Keuls' test). All data from qRT-PCR studies were expressed as mean ± SEM.

Expression of *ad4bp/sf-1* was found to be high in testis, followed by kidney, brain, and ovary based on the qRT-PCR analysis (Fig. 8).

4. Discussion

With advancement of NGS technology, the information on DEG between testis and ovary is growing, and these genetic databases offer libraries facilitating the identification of corresponding genes in other fish species. Though the available gonadal transcriptomic data continues to increase, there is a need for novel sex-related genes to understand the convoluted process of gonadal development in fishes. To

gain insight into the molecular fundamentals of gonad development and growth, in this study, the gonadal transcriptome of *C. carpio* was obtained after *de novo* assembly of RNA-Seq data from developing testis and ovary of immature fish. Several new players showing dimorphic gene expression were identified. Candidate genes for sex-differentiation and development, showing differential gene expression, were further tested to validate our findings. Further, the major group of reproduction-related genes identified were similar with previous reports indicating that these genes are functional in fishes. The data obtained in this study adds to the transcriptomic profile available for the family Cyprinidae.

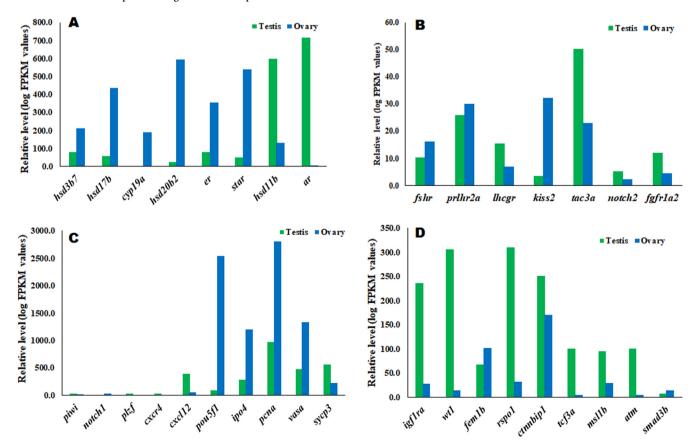


Fig. 7. Relative levels of transcripts of genes potentially involved in gonadal differentiation in juvenile common carp (A-steroid synthesis, B-endocrine regulation, C-germ cell maintenance, D-other factors).

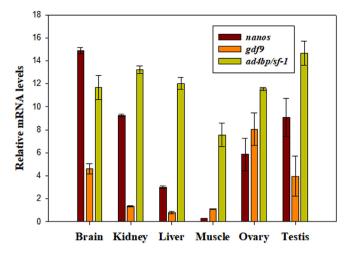


Fig. 8. Tissue distribution analysis of *nanos*, *gdf9* and *ad4bp/sf-1* in common carp. All other details are same as Fig. 6.

4.1. GO, COG, KEGG

One of the essential features of transcriptome analysis is to associate individual sequences and related expression information with biological functions. The juvenile stage is a transcriptionally active stage as the bipotential gonad differentiates into a specific and functionally active gonad, either testis or ovary. GO, COG and mapped unigenes were majorly involved in translational machinery, indicating that juveniles are at a crucial phase of gonadal development. The KAAS pathway analysis is based on sequence similarities and accommodates bi-directional best hit information, enabling it to attain a high degree of accuracy in comparison to a manually curated KEGG GENES database. Hence, KASS can facilitate research on the relationship between different genes obtained from the transcriptome (Moriya et al., 2007). Transcripts encoding enzymes or other proteins involved in reproductive pathways, for example, hsd3b, GnRH, serine/threonine-PP2A, corticosteroid hsd11b, sterol 14-demethylase, lanosterol synthase and many more were detected. Pathway analysis mapped some of the genes involved in the wnt signaling pathway, oocyte meiosis and steroid hormone biosynthesis, all of which play a pivotal role in sex-differentiation and gonadal development (Baroiller et al., 1999; Prathibha and Senthilkumaran, 2017). Recognizing these pathways permits the analysis of reproduction mechanisms in C. carpio, although most of the genes present in the putative KEGG pathways that were identified were not found in the present study.

4.2. SSRs

SSRs or microsatellites are polymorphic regions existing in genomic DNA consisting of 2 to 6 bp repeated core sequences (Queller et al., 1993) and important to perform research on evolution, molecular ecology, quantitative trait loci analysis, genetic diversity, gene mapping, population genetic analysis comparative genomics, and marker-assisted selective breeding. The SSRs identified in the current study, provide a valuable resource for molecular research in common carp.

4.3. DEG

Studies have suggested that the sex-biased genes, primarily or absolutely expressed in one sex, drive the phenotypic differences in males and females (Assis et al., 2012; Ellegren and Parsch 2007) and cause the phenotypic sexual dimorphism in zebrafish (Small et al., 2009). In juveniles, a group of genes are differentially expressed to fulfil the requirement of gonadal development. A total of 298 genes showed significant differences between the testicular and ovarian transcriptomes,

including 171 and 127 genes showing higher expression in testis and ovary, respectively. The higher number of testis versus ovary up-regulated genes found in the common carp was in accordance with the result obtained in Oreochromis niloticus (Tao et al., 2013). The histological observations depict (Fig. 1A) active stages of spermatogenesis in testis with evidence of the presence of spermatocytes and spermatids in the spermatogenic cysts, and the increase in mass of the testis during this time is largely due to materials synthesized locally coinciding with our transcriptome data showing more number of transcripts and DEG in testis. On the other hand, the ovary (Fig. 1B) was observed to be in late primary oocyte growth or early secondary growth prior to the onset of vitellogenesis. Possibly, at this stage the intense transcriptional activity in the oocyte subsides as it transits into the main phase of growth. which is due to acquisition of materials (such as neutral lipid precursors and yolk proteins) produced in other tissues due to which the number of transcripts and DEG may be lesser in ovary in comparison to testis. Overall, the difference of gene numbers between female and male might imply that male gonadal development may require a larger number of early expressing transcripts compared with females in teleosts, triggering an early testis upregulated gene expression pattern before any female pattern emerges. DEG were investigated exposing a number of genes that might be enriched in sex-related biological pathways. Among DEG, a few candidate genes like amh, dmrt1, sox9a, associated with testicular differentiation (Kamiya et al., 2012; Kobayashi et al., 2008; Nagahama 2005; Raghuveer and Senthilkumaran, 2009; Raghuveer and Senthilkumaran, 2010a), dax1 and gata6 involved in gonadogenesis (Liu et al., 2016; Wang et al., 2002), wt1 regulating SRY (Hossain and Saunders, 2001), zp2 and mapk playing roles in oocyte development (Chang et al., 1997; Ponza et al., 2011), foxk2 involved in gonadal development (Yuan et al., 2014), fbox43 having a role in oocyte meiosis (Tung et al., 2005), fzd8 receptor of wnt signaling (von Schalburg et al., 2006) and egr2b expressed in murine granulosa cells (Jin et al., 2016) were selected and their differential expression was validated by qRT-PCR to indicate their critical role in gonadal development. The previous study by Chen et al. (2015) also identified differential expression of wt1 and zp3 in testis and ovary of adult common carp using suppression subtractive hybridization. Thus, wt1 and zp2, zp3 show dimorphic expression from juvenile stage and is consistent up to adulthood.

4.4. Identification of new players from DEG

New players like cux1, dmrt2a, fam192a, fstl3, retinoic acid receptor RXR-beta-A, stathmin, sycp1 and zar1 also showed dimorphic gene expression pattern. CDP/Cut (CCAAT displacement protein) is a transcription factor involved in the regulation of cell growth and differentiation-related genes (Nepveu, 2001). Vanden Heuvel et al. (1996) reported that cux1 represents an example of a transcription factor that undergoes testis-specific alternative splicing during spermatogenesis. Previous studies have reported cux is required for reproductive functions and its genetic ablation resulted in reduced male fertility (Luong et al., 2002) and impaired lactation (Tufarelli et al., 1998) in mice. Dimorphic expression pattern of cux2a was observed, indicating its role in reproduction of fishes as well.

Gene expression of *dmrt1* is associated with the testicular development in many species (Raghuveer and Senthilkumaran, 2009). Differential expression pattern of *dmrt2a* was observed, coinciding with previous report by Peng et al. (2016) in which *dmrt2b* showed dimorphic expression pattern, suggesting these new players' *dmrt2a* and *dmrt2b* might potentially be associated with sex differentiation in common carp.

A recent transcriptomic study on developmental gonads in protandrous black porgy (Zhang et al., 2018) reported up-regulated expression of fam101b in ovary coinciding with fam192a and fam210b showing dimorphic expression in common carp, elucidating their importance in ovarian development.

Follistatin is a FSH-suppressing protein that is produced in the

pituitary and upon binding to *activin*, neutralizes the FSH stimulatory actions of *activin* (Nakamura et al., 1990). Follistatin, that encodes a TGF- β superfamily binding protein, inhibits formation of the XY-specific coelomic vessel in XX gonads, a feature normally associated with testis differentiation (Yao et al., 2004). Follistatin displayed early sexually dimorphic expression profile in rainbow trout (Vizziano et al., 2007). Incidentally, *fstl3* showed dimorphic expression pattern, revealing its crucial role in common carp gonadal differentiation.

RA is an active derivative of vitamin A that diffuses through tissues and binds to heterodimers of the nuclear receptors RAR-RXR, which recognize RA-response elements in DNA to control the expression of RA-target genes (Duester 2008). RA signaling stimulates differentiation of spermatogonial germ cells and induces meiosis in male but not female gonads (Duester 2013). RA receptor RXR-beta-A showed differential gene expression in juvenile carp coinciding with report of Rodríguez-Marí et al. (2013) in zebrafish suggesting that the continuous availability of retinoic acid to germ cells in bipotential gonads prohibits the sexually dimorphic onset of meiosis and is consistent with the initial development of meiotic oocytes in juvenile teleosts. Stathmin is a neuron-enriched gene mediating tubulin depolymerization (Sobel et al., 1989). Studies demonstrated that maternal stathmin accumulates in oocytes and is redistributed in pre-implantation embryos (Koppel et al., 1999). Chu et al. (2006) observed intense expression of stathmin in ovary of tilapia. Dimorphic expression pattern of stathmin observed in the present study indicates its functional significance in gonads of common carp.

Sycp3 is a meiosis-specific component of the synaptonemal complex, required for the synapsis of homologous chromosomes, and is a marker of meiosis in mammals (Page et al., 2006). Its importance in gametogenesis and fertility has been studied in a few teleost species such as medaka and zebrafish (Iwai et al., 2006; Ozaki et al., 2011). Laldinsangi and Senthilkumaran (2018) demonstrated that sycp3 have a potential role in the development and maintenance of testicular function in catfish. Dimorphic expression pattern of sycp1 revealed its crucial role during gonadal development of common carp as well.

Ovary-specific maternal factor, *zar1* plays an essential role during oocyte-to-embryo transition (Wu et al., 2003). Expression of *zar1* was identified in gonads of carp, coinciding with a recent transcriptome study in tilapia (Tao et al., 2018) that reported correlation of *zar1* with the expression of genes previously known to be involved in sex differentiation. Further investigations including functional analysis of these genes in female and male fishes are needed to substantiate our findings.

4.5. Genes related to reproduction

A large number of genes (809) related to reproduction have been identified by gonadal transcriptome analysis. Corticosteroids (hsd3b7, hsd17b, hsd11b) and their receptors (ar and er) play crucial role in the regulation of reproduction by acting as transcription factors in somatic cells of gonads (Milla et al., 2009). Steroid synthesis gene hsd3b7, expressed in Leydig cells and responsible for biosynthesis of steroids, mainly progesterone and testosterone, was moderately over-expressed in ovary. In addition, hsd17b, that regulate the concentration of biologically active androgens and estrogens and involved in synthesis of estradiol, was also over-expressed in ovary. Other steroid related genes like, the sterol transfer coding gene StAR, genes coding for er and cyp19a1 (Barney et al., 2008) which are responsible for estradiol-17β biosynthesis in females, followed similar expression pattern as reported in transcriptome analysis of the Russian sturgeon (Hagihara et al., 2014). On the other hand, hsd11b, an enzyme which converts gonad maturation inhibiting cortisol or corticosterone into inactive cortisone or 11-dihydrocorticosterone, respectively and gene coding for ar showed higher expression in testis, as that of the expression pattern in the Nile Tilapia gonadal trancriptome analysis (Tao et al., 2013). Key marker genes of germ cells namely, vasa, pou5f1 (Raghuveer and Senthilkumaran, 2010b; Wang et al., 2011) playing role in stem cell maintenance and regulation, and *pcna*, playing crucial role in meiosis (Miura et al., 2002) were over-expressed in the ovary, indicating their germ cell regulation in the female ovary. Other germ cell maintenance genes such as *piwi*, *notch1*, *plzf*, *cxcr4*, *cxcl12*, *ipo4*, and *sycp3* were moderately over-expressed in testis like that of the transcriptome of Southern bluefin tuna (Bar et al., 2016). The expression pattern of other genes/factors related to gonadal differentiation like *hsd20b2*, *lhcgr*, *fgfr1a2*, *tac3a*, *notch2*, *fshr*, *prlhr2a*, *kiss2*, *igf1ra*, *wt1*, *rspo1*, *ctnnbip1*, *tcf3a*, *msl1b*, *fem1b*, *smad3b*, and *atm* between testis and ovary were comparable to the transcriptome analysis of previous reports (Bar et al., 2016; Hagihara et al., 2014; Shi et al., 2015; Wang et al., 2017).

4.6. Expression analysis of candidate genes

Few candidate genes including nanos (germline), ad4bp/sf-1 (autosomal) and gdf9 (ovary specific) were selected for further expression analysis. The germline gene, nanos, is a RNA binding protein that plays significant roles in early development and, more precisely, in primordial germ cell development (Tsuda et al., 2003). Tissue distribution analysis revealed high expression of nanos in brain and kidney followed by testis and ovary, indicating a plausible role for this gene in various physiological processes including gonadal development. Incidentally, gdf9, belonging to the TGF-β superfamily was highly expressed in ovary followed by brain, testis, kidney, muscle, and liver, suggesting that it plays a role in ovarian development and differentiation (McGrath et al., 1995). The orphan nuclear receptor, ad4bp/sf-1 is an essential factor for mammalian sexual differentiation, endocrine organogenesis and steroidogenesis (Morohashi et al., 1992). In teleosts, ad4bp/sf-1 is critical for transcriptional regulation of cyp19a1a (Hu et al., 2001; Wang et al., 2007; Yoshiura et al., 2003) and other genes encoding steroidogenic enzymes (Nakamoto et al., 2012; Val et al., 2003). The qRT-PCR analysis revealed expression of ad4bp/sf-1 to be high in testis, followed by kidney, brain, and ovary evidencing the importance of ad4bp/sf-1 in testicular differentiation. Taken together, present study provides an array of marker genes to understand the molecular basis of sex-differentiation and gonadal development in teleosts.

5. Conclusion

Overall, analysis of common carp gonadal transcriptome using NGS RNA-Seq technology identified diverse regulatory mechanisms/ pathways of sexual development and provided a valuable resource for evaluating differential gene expression patterns. The dimorphic expression of sex-related genes offers additional insights into teleostean gonadal differentiation.

Conflicts of interest

The authors declare no conflict of interest. The authors alone are responsible for the content and writing of the paper.

Acknowledgements and Funding

A grant-in-aid (BT/PR/9034 – dated 28/08/2013) from the Department of Biotechnology (DBT), India to BS supported this work completely. Department of Science and Technology (DST)-FIST (Level II, Phase I) and DST-PURSE are also acknowledged for various instrumentation support to Department of Animal Biology, School of Life Sciences, University of Hyderabad. AA is thankful to the DBT India, for junior and senior research fellowships. YRG is thankful to the Council of Scientific and Industrial Research, India for junior and senior research fellowships. SD acknowledges Rajiv Gandhi National fellowship, University Grants Commission, India, for junior research fellowship. BS is a recipient of TATA innovation fellowship (BT/HRD/35/01/02/2013) from Department of Biotechnology, India which is acknowledged.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.ygcen.2018.12.004.

References

- Amberg, J., Goforth, R., Sepulveda, M., 2013. Antagonists to the *Wnt* cascade exhibit sex specific expression in gonads of sexually mature shovelnose sturgeon. Sex. Dev. 7, 308–315.
- Assis, R., Zhou, Q., Bachtrog, D., 2012. Sex-biased transcriptome evolution in Drosophila. Genome Biol. Evol. 4, 1189–1200.
- Bar, I., Cummins, S., Elizur, A., 2016. Transcriptome analysis reveals differentially expressed genes associated with germ cell and gonad development in the Southern bluefin tuna (*Thunnus maccoyii*). BMC Genomics 17, 217.
- Barney, M.L., Patil, J.G., Gunasekera, R.M., Carter, C.G., 2008. Distinct cytochrome P450 aromatase isoforms in the common carp (*Cyprinus carpio*): sexual dimorphism and onset of ontogenic expression. Gen. Comp. Endocrinol. 156, 499–508.
- Baroiller, J.F., Guiguen, Y., Fostier, A., 1999. Endocrine and environmental aspects of sex differentiation in fish. Cell. Mol. Life Sci. 55, 910–931.
- Baron, D., Guiguen, Y., 2003. Gene expression during gonadal sex differentiation in rainbow trout (*Orcorhynchus mykiss*): from candidate genes studies to high throughout genomic approach. Fish Physiol. Biochem. 28, 119–123.
- Calduch-Giner, J.A., Bermejo-Nogales, A., Benedito-Palos, L., Estensoro, I., Ballester-Lozano, G., Sitja-Bobadilla, A., Perez-Sanchez, J., 2013. Deep sequencing for de novo construction of a marine fish (Sparus aurata) transcriptome database with a large coverage of protein-coding transcripts. BMC Genomics 14, 178.
- Chang, Y.S., Hsu, C.C., Wang, S.C., Tsao, C.C., Huang, F.L., 1997. Molecular cloning, structural analysis, and expression of carp ZP2 gene. Mol. Reprod. Dev. 46, 258–267.
- Chen, J.J., Xia, X.H., Wang, L.F., Jia, Y.F., Nan, P., Li, L., Chang, Z.J., 2015. Identification and comparison of gonadal transcripts of testis and ovary of adult common carp *Cyprinus carpio* using suppression subtractive hybridization. Theriogenology 83, 1416–1427.
- Chen, S., Zhang, G., Shao, C., Huang, Q., Liu, G., Zhang, P., Song, W., An, N., Chalopin, D., Volff, J.N., Hong, Y., Li, Q., Sha, Z., Zhou, H., Xie, M., Yu, Q., Liu, Y., Xiang, H., Wang, N., Wu, K., Yang, C., Zhou, Q., Liao, X., Yang, L., Hu, Q., Zhang, J., Meng, L., Jin, L., Tian, Y., Lian, J., Yang, J., Miao, G., Liu, S., Liang, Z., Yan, F., Li, Y., Sun, B., Zhang, H., Zhang, J., Zhu, Y., Du, M., Zhao, Y., Schartl, M., Tang, Q., Wang, J., 2014. Whole-genome sequence of a flatfish provides insights into ZW sex chromosome evolution and adaptation to a benthic lifestyle. Nat. Genet. 46, 253–260.
- Chu, S.-L., Weng, C.-F., Hsiao, C.-D., Hwang, P.-P., Chen, Y.-C., Ho, J.-M., Lee, S.-J., 2006. Profile analysis of expressed sequence tags derived from the ovary of tilapia, *Oreochromis mossambicus*. Aquaculture 251, 537–548.
- Devlin, R.H., Nagahama, Y., 2002. Sex determination and sex differentiation in fish: an overview of genetic, physiological, and environmental influences. Aquaculture 208, 191–364.
- Dipper, F.A., Pullin, R.S.V., 1979. Gonochorism and sex-inversion in British Labridae (Pisces). J. Zool. 187, 97–112.
- Duester, G., 2008. Retinoic acid synthesis and signaling during early organogenesis. Cell 134, 921–931.
- Duester, G., 2013. Retinoid signaling in control of progenitor cell differentiation during mouse development. Semin. Cell Dev. Biol. 24, 694–700.
- Ellegren, H., Parsch, J., 2007. The evolution of sex-biased genes and sex-biased gene expression. Nat. Rev. Genet. 8, 689–698.
- Hagihara, S., Yamashita, R., Yamamoto, S., Ishihara, M., Abe, T., Ijiri, S., Adachi, S., 2014. Identification of genes involved in gonadal sex differentiation and the dimorphic expression pattern in undifferentiated gonads of Russian sturgeon Acipenser gueldenstaedtii Brandt & Ratzeburg, 1833. J. Appl. Ichthyol. 30, 1557–1564.
- Hattori, R.S., Murai, Y., Oura, M., Masuda, S., Majhi, S.K., Sakamoto, T., Fernandino, J.I., Somoza, G.M., Yokota, M., Strussmann, C.A., 2012. A Y-linked anti-Mullerian hormone duplication takes over a critical role in sex determination. Proc. Natl. Acad. Sci. USA 109, 2955–2959.
- Hossain, A., Saunders, G.F., 2001. The human sex-determining gene SRY is a direct target of WT1. J. Biol. Chem. 276, 16817–16823.
- Hu, M.C., Hsu, N.C., Pai, C.I., Wang, C.K., Chung, B., 2001. Functions of the upstream and proximal steroidogenic factor 1 (SF-1)-binding sites in the CYP11A1 promoter in basal transcription and hormonal response. Mol. Endocrinol. 15, 812–818.
- Iwai, T., Yoshii, A., Yokota, T., Sakai, C., Hori, H., Kanamori, A., Yamashita, M., 2006. Structural components of the synaptonemal complex, SYCP1 and SYCP3, in the medaka fish *Oryzias latipes*. Exp. Cell Res. 312, 2528–2537.
- Janzen, F.J., 1995. Experimental evidence for the evolutionary significance of temperature dependent sex determination. Evolution 864–873.
- Ji, P., Liu, G., Xu, J., Wang, X., Li, J., Zhao, Z., Zhang, X., Zhang, Y., Xu, P., Sun, X., 2012a. Characterization of common carp transcriptome: sequencing, de novo assembly, annotation and comparative genomics. PLoS One 7, e35152.
- Ji, P., Zhang, Y., Li, C., Zhao, Z., Wang, J., 2012b. High throughput mining and characterization of microsatellites from common carp genome. Int. J. Mol. Sci. 13, 9798–9807.
- Jin, H., Won, M., Shin, E., Kim, H.M., Lee, K., Bae, J., 2016. EGR2 is a gonadotropininduced survival factor that controls the expression of IER3 in ovarian granulosa cells. Biochem. Biophys. Res. Commun. 482, 877–882.
- Kamiya, T., Kai, W., Tasumi, S., Oka, A., Matsunaga, T., Mizuno, N., Fujita, M., Suetake, H., Suzuki, S., Hosoya, S., 2012. A trans-species missense SNP in Amhr2 is associated with sex determination in the tiger pufferfish, Takifugu rubripes (fugu). PLoS Genet. 8,

- e1002798
- Kobayashi, T., Kajiura-Kobayashi, H., Guan, G., Nagahama, Y., 2008. Sexual dimorphic expression of *DMRT1* and *Sox9a* during gonadal differentiation and hormone-induced sex reversal in the teleost fish Nile tilapia (*Oreochromis niloticus*). Dev. Dyn. 237, 297–306.
- Kongchum, P., Palti, Y., Hallerman, E.M., Hulata, G., David, L., 2010. SNP discovery and development of genetic markers for mapping innate immune response genes in common carp (*Cyprinus carpio*). Fish Shellfish Immunol. 29, 356–361.
- Koppel, J., Rehak, P., Baran, V., Vesela, J., Hlinka, D., Manceau, V., Sobel, A., 1999.
 Cellular and subcellular localization of stathmin during oocyte and preimplantation embryo development. Mol. Reprod. Dev. 53, 306–317.
- Laldinsangi, C., Senthilkumaran, B., 2018. Identification, cloning and expression profile of sycp3 during gonadal cycle and after siRNA silencing in catfish. Gene Rep. 10, 54–65
- Liu, J.X., Xu, Q.H., Li, S., Yu, X., Liu, W., Ouyang, G., Zhang, T., Chen, L.L., 2017. Transcriptional factors Eaf1/2 inhibit endoderm and mesoderm formation via suppressing TGF-β signaling. Biochim. Biophys. Acta. 1860, 1103–1116.
- Liu, J., Zhang, W., Sun, Y., Wang, Z., Zhang, Q., Wang, X., 2016. Molecular characterization and expression profiles of GATA6 in tongue sole (Cynoglossus semilaevis). Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 198, 19–26.
- Lu, J., Luan, P., Zhang, X., Xue, S., Peng, L., Mahbooband, S., Sun, X., 2014. Gonadal transcriptomic analysis of yellow catfish (*Pelteobagrus fulvidraco*): identification of sex-related genes and genetic markers. Physiol. Genomics 46, 798–807.
- Luong, M.X., van der Meijden, C.M., Xing, D., Hesselton, R., Monuki, E.S., Jones, S.N., Lian, J.B., Stein, J.L., Stein, G.S., Neufeld, E.J., van Wijnen, A.J., 2002. Genetic ablation of the CDP/Cux protein C terminus results in hair cycle defects and reduced male fertility. Mol. Cell. Biol. 22, 1424–1437.
- Matsuda, M., Nagahama, Y., Shinomiya, A., Sato, T., Matsuda, C., Kobayashi, T., Morrey, C.E., Shibata, N., Asakawa, S., Shimizu, N., 2002. *DMY* is a Y-specific DM-domain gene required for male development in the medaka fish. Nature 417, 559–563.
- McGrath, S.A., Esquela, A.F., Lee, S.J., 1995. Oocyte-specific expression of growth/differentiation factor-9. Mol. Endocrinol. 9, 131–136.
- Milla, S., Wang, N., Mandiki, S.N.M., Kestemont, P., 2009. Corticosteroids: Friends or foes of teleost fish reproduction?. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 153, 242–251.
- Miura, C., Miura, T., Yamashita, M., 2002. PCNA protein expression during spermatogenesis of the Japanese eel (*Anguilla japonica*). Zoolog. Sci. 19, 87–91.
- Moriya, Y., Itoh, M., Okuda, S., Yoshizawa, A.C., Kanehisa, M., 2007. KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res. 35, 182–185.
- Morohashi, K., Honda, S., Inomata, Y., Handa, H., Omura, T., 1992. A common transacting factor, Ad4-binding protein, to the promoters of steroidogenic P-450s. J. Biol. Chem. 267, 17913–17919.
- Myosho, T., Otake, H., Masuyama, H., Matsuda, M., Kuroki, Y., Fujiyama, A., Naruse, K., Hamaguchi, S., Sakaizumi, M., 2012. Tracing the emergence of a novel sex determining gene in medaka, *Oryzias luzonensis*. Genetics 191, 163–170.
- Nagahama, Y., 2005. Molecular mechanisms of sex determination and gonadal sex differentiation in fish. Fish Physiol. Biochem. 31, 105–109.
- Nakamoto, M., Fukasawa, M., Tanaka, S., Shimamori, K., Suzuki, A., Matsuda, M., Kobayashi, T., Nagahama, Y., Shibata, N., 2012. Expression of 3β-hydroxysteroid dehydrogenase (hsd3b), StAR and ad4bp/sf-1 during gonadal development in medaka (Oryzias latipes). Gen. Comp. Endocrinol. 176, 222–230.
- Nakamura, T., Takio, K., Eto, Y., Shibai, H., Titani, K., Sugino, H., 1990. Activin-binding protein from rat ovary is follistatin. Science 247, 836–838.
- Nanda, I., Kondo, M., Hornung, U., Asakawa, S., Winkler, C., Shimizu, A., Shan, Z., Haaf, T., Shimizu, N., Shima, A., Schmid, M., Schartl, M., 2002. A duplicated copy of DMRT1 in the sex-determining region of the Y chromosome of the medaka, *Oryzias latipes*. Proc. Natl. Acad. Sci. USA 99, 11778–11783.
- Nepveu, A., 2001. Role of the multifunctional CDP/Cut/Cux homeodomain transcription factor in regulating differentiation, cell growth and development. Gene 270, 1–15.
- Ozaki, Y., Saito, K., Shinya, M., Kawasaki, T., Sakai, N., 2011. Evaluation of *Sycp3*, *Plzf* and Cyclin B3 expression and suitability as spermatogonia and spermatocyte markers in zebrafish. Gene Expr. Patterns 11, 309–315.
- Page, J., Viera, A., Parra, M.T., de la Fuente, R., Suja, J.A., Prieto, I., Barbero, J.L., Rufas, J.S., Berri'os, S., Fernandez-Donoso, R., 2006. Involvement of synaptonemal complex proteins in sex chromosome segregation during marsupial male meiosis. PLoS Genet. 2, e136.
- Peng, W., Xu, J., Zhang, Y., Feng, J., Dong, C., Jiang, L., Feng, J., Chen, B., Gong, Y., Chen, L., Xu, P., 2016. An ultra-high density linkage map and QTL mapping for sex and growth-related traits of common carp (*Cyprinus carpio*). Sci. Rep. 6, 26693.
- Ponza, P., Yocawibun, P., Sittikankaew, K., Hiransuchalert, R., Yamano, K., Klinbunga, S., 2011. Molecular cloning and expression analysis of the mitogen activating protein kinase 1 (MAPK1) gene and protein during ovarian development of the giant tiger shrimp *Penaeus monodon*. Mol. Reprod. Dev. 78, 347–360.
- Prathibha, Y., Senthilkumaran, B., 2017. Expression of wnt4/5 during reproductive cycle of catfish and wnt5 promoter analysis. J. Endocrinol. 232, 1–13.
- Queller, D.C., Strassman, J.E., Hughes, C.R., 1993. Microsatellites and kinship. Trends Ecol. Evol. 8, 285–288.
- Raghuveer, K., Senthilkumaran, B., 2009. Identification of multiple dmrt1s in catfish: localization, dimorphic expression pattern, changes during testicular cycle and after methyltestosterone treatment. J. Mol. Endocrinol. 42, 437–448.
- Raghuveer, K., Senthilkumaran, B., 2010a. Isolation of sox9 duplicates in catfish: localization, differential expression pattern during gonadal development and recrudescence, and hCG-induced up-regulation of sox9 in testicular slices. Reproduction 140, 477–487
- Raghuveer, K., Senthilkumaran, B., 2010b. Cloning and differential expression pattern of

- vasa in the developing and recrudescing gonads of catfish, *Clarias gariepinus*. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 157, 79–85.
- Raghuveer, K., Senthilkumaran, B., Sudhakumari, C.C., Sridevi, P., Rajakumar, A., Singh, R., Murugananthkumar, R., Majumdar, K.C., 2011. Dimorphic expression of various transcription factor and steroidogenic enzyme genes during gonadal ontogeny in the air-breathing catfish, *Clarias gariepinus*. Sex. Dev. 5, 213–223.
- Rajakumar, A., Senthilkumaran, B., 2014. Expression analysis of sox3 during testicular development, recrudescence, and after hCG induction in catfish, Clarias batrachus. Sex. Dev. 8, 376–386.
- Rodríguez-Marí, A., Cañestro, C., BreMiller, R.A., Catchen, J.M., Yan, Y.L., Postlethwait, J.H., 2013. Retinoic acid metabolic genes, meiosis, and gonadal sex differentiation in zebrafish. PLoS One. 8, e73951.
- Routray, P., Verma, D.K., Sarkar, S.K., Sarangi, N., 2007. Recent advances in carp seed production and milt cryopreservation. Fish Physiol. Biochem. 33, 413–427.
- Sandra, G.E., Norma, M.M., 2010. Sexual determination and differentiation in teleost fish. Rev. Fish Biol. Fish. 20, 101–121.
- Schartl, M., Wilde, B., Schlupp, I., Parzefall, J., 1995. Evolutionary origin of a parthenoform, the Amazon molly *Poecilia formosa*, on the basis of a molecular genealogy. Evolution 827–835.
- Shi, J., Hong, Y., Sheng, J., Peng, K., Wang, J., 2015. *De novo* transcriptome sequencing to identify the sex-determination genes in *Hyriopsis schlegelii*. Biosci. Biotechnol. Biochem. 79, 1257–1265.
- Small, C.M., Carney, G.E., Mo, Q., Vannucci, M., Jones, A.G., 2009. A microarray analysis of sex- and gonad-biased gene expression in the zebrafish: evidence for masculinization of the transcriptome. BMC Genomics 10, 579.
- Sobel, A., Boutterin, M.C., Beretta, L., Chneiweiss, H., Doye, V., Peyro-Saint-Paul, H., 1989. Intracellular substrates for extracellular signaling. Characterization of a ubiquitous, neuron-enriched phosphoprotein (stathmin). J. Biol. Chem. 264, 3765–3772.
- Strüssmann, C.A., Nakamura, M., 2002. Morphology, endocrinology, and environmental modulation of gonadal sex differentiation in teleost fishes. Fish Physiol. Biochem. 26, 13–29.
- Tao, W., Chen, J., Tan, D., Yang, J., Sun, L., Wei, J., Conte, M.A., Kocher, T.D., Wang, D., 2018. Transcriptome display during tilapia sex determination and differentiation as revealed by RNA-Seq analysis. BMC Genomics 19, 363.
- Tao, W., Yuan, J., Zhou, L., Sun, L., Sun, Y., Yang, S., Li, M., Zeng, S., Huang, B., Wang, D., 2013. Characterization of gonadal transcriptomes from Nile tilapia (*Oreochromis niloticus*) reveals differentially expressed genes. PLoS One 8. e63604.
- Tsuda, M., Sasaoka, Y., Kiso, M., Abe, K., Haraguchi, S., Kobayashi, S., Saga, Y., 2003. Conserved role of *nanos* proteins in germ cell development. Science 301, 1239–1241.
- Tufarelli, C., Fujiwara, Y., Zappulla, D.C., Neufeld, E.J., 1998. Hair defects and pup loss in mice with targeted deletion of the first cut repeat domain of the Cux/CDP homeoprotein gene. Dev. Biol. 200, 69–81.
- Tung, J.J., Hansen, D.V., Ban, K.H., Loktev, A.V., Summers, M.K., Adler 3rd, J.R., Jackson, P.K., 2005. A role for the anaphase-promoting complex inhibitor Emi2/XErp1, a homolog of early mitotic inhibitor 1, in cytostatic factor arrest of *Xenopus* eggs. Proc. Natl. Acad. Sci. USA 102, 4318–4323.
- Val, P., Lefrançois-Martinez, A.M., Veyssiere, G., Martinez, A., 2003. SF-1akeyplayer in the development and differentiation of steroidogenic tissues. Nucl. Recept. 1, 8.
- Vanden Heuvel, G.B., Quaggin, S.E., Igarashi, P., 1996. A unique variant of a homeobox gene related to Drosophila cut is expressed in mouse testis. Biol. Reprod. 55, 731–739.

- Vizziano, D., Randuineau, G., Baron, D., Cauty, C., Guiguen, Y., 2007. Characterization of early molecular sex differentiation in rainbow trout, *Oncorhynchus mykiss*. Dev. Dyn. 236, 2198–2206.
- von Schalburg, K.R., McCarthy, S.P., Rise, M.L., Hutson, J.C., Davidson, W.S., Koop, B.F., 2006. Expression of morphogenic genes in mature ovarian and testicular tissues: potential stem-cell niche markers and patterning factors. Mol. Reprod. Dev. 73 (2007), 142–152.
- Wang, F., Jia, Y., Wang, P., Yang, Q., Du, Q., Chang, Z., 2017. Identification and profiling of *Cyprinus carpio* microRNAs during ovary differentiation by deep sequencing. BMC Genomics 18, 333.
- Wang, D.S., Kobayashi, T., Senthilkumaran, B., Sakai, F., Sudhakumari, C.C., Suzuki, T., Yoshikuni, M., Matsuda, M., Morohashi, K., Nagahama, Y., 2002. Molecular cloning of DAX1 and SHP cDNAs and their expression patterns in the Nile tilapia, *Oreochromis niloticus*. Biochem. Biophys. Res. Commun. 297, 632–640.
- Wang, D.S., Kobayashi, T., Zhou, L.Y., Paul-Prasanth, B., Ijiri, S., Sakai, F., Okubo, K., Morohashi, K., Nagahama, Y., 2007. Foxl2 up-regulates aromatase gene transcription in a female-specific manner by binding to the promoter as well as interacting with ad4 binding protein/steroidogenic factor 1. Mol. Endocrinol. 21, 712–725.
- Wang, D., Manali, D., Wang, T., Bhat, N., Hong, N., Li, Z., Wang, L., Yan, Y., Liu, R., Hong, Y., 2011. Identification of pluripotency genes in the fish medaka. Int. J. Biol. Sci. 7, 440–451.
- Warner, R.R., 1984. Mating behavior and hermaphroditism in coral reef fishes. Am. Sci. 72, 128–136.
- Wu, X., Wang, P., Brown, C.A., Zilinski, C.A., Matzuk, M.M., 2003. Zygote arrest 1 (Zar1) is an evolutionarily conserved gene expressed in vertebrate ovaries. Biol. Reprod. 69, 861–867.
- Xu, J., Ji, P., Zhao, Z., Zhang, Y., Feng, J., Wang, J., Li, J., Zhang, X., Zhao, L., Liu, G., Xu, P., Sun, X., 2012. Genome-wide SNP discovery from transcriptome of four common carp strains. PLoS One 7, e48140.
- Yano, A., Guyomard, R., Nicol, B., Jouanno, E., Quillet, E., Klopp, C., Cabau, C., Bouchez, O., Fostier, A., Guiguen, Y., 2012. An immune related gene evolved into the master sex-determining gene in rainbow trout, *Oncorhynchus mykiss*. Curr. Biol. 22, 1423–1428.
- Yao, H.H.C., Matzuk, M.M., Jorgez, C.J., Menke, D.B., Page, D.C., Swain, A., Capel, B., 2004. Follistatin operates downstream of Wnt4 in mammalian ovary organogenesis. Dev. Dyn. 230, 210–215.
- Yoshiura, Y., Senthilkumaran, B., Watanabe, M., Oba, Y., Kobayashi, T., Nagahama, Y., 2003. Synergistic expression of Ad4BP/SF-1 and cytochrome P-450 aromatase (ovarian type) in the ovary of Nile tilapia, *Oreochromis niloticus*, during vitellogenesis suggests transcriptional interaction. Biol. Reprod. 68, 1545–1553.
- Yuan, J., Tao, W., Cheng, Y., Huang, B., Wang, D., 2014. Genome-wide identification, phylogeny, and gonadal expression of fox genes in Nile tilapia, Oreochromis niloticus. Fish Physiol. Biochem. 40, 1239–1252.
- Zhang, W., Liu, Y., Yu, H., Du, X., Zhang, Q., Wang, X., He, Y., 2016. Transcriptome analysis of the gonads of olive flounder (*Paralichthys olivaceus*). Fish Physiol. Biochem. 42, 1581–1594.
- Zhang, K., Xu, J., Zhang, Z., Huang, Y., Ruan, Z., Chen, S., Zhu, F., You, X., Jia, C., Meng, Q., Gu, R., Lin, X., Xu, J., Xu, P., Zhang, Z., Shi, Q., 2018. A comparative transcriptomic study on developmental gonads provides novel insights into sex change in the protandrous black porgy (*Acanthopagrus schlegelii*). Genomics S0888–7543 (18), 30075–30082.

250 Humboldt

Unterstützt von / Supported by

CERTIFICATE

Alexander von Humboldt

Stiftung / Foundation

-: Organized by:-

Department of Zoology, RTM Nagpur University, Nagpur, India, 6-9 January, 2019

OF PARTICIPATION

This is to certify that Ms. Anitha Arumugam, Department of Animal Biology, University of Hyderabad, Hyderabad, India has delivered an oral presentation in the Humboldt Kolleg on Comparative Endocrinology and Physiology held from 7 to 9 January 2019 in Nagpur, Maharashtra, India.

Prof. Arun G. Jadhao

Convener/Organizing Secretary Humboldt Kolleg 2019 Prof. Iqbal Parwez

Vice-President

Affect

Prof. M.C. Subhash Peter Secretary

Secretary IASP

Indian Society of Comparative Endocrinology (ISCE)
International Association of Stress Physiologist (IASP)

6th International Conference on Molecular Signalling (ICMS-2018)

8 - 10 February, 2018

Certificate of Participation

This is to certify that Prof. / Dr. /Mr. / Ms ANITHA ARUMU GAM
has Chaired / Participated / Presented
Invited talk / Oral / Poster session of ICMS - 2018 held in School of Life Sciences, University of
Hyderabad, Hyderabad – 500 046, Telangana, India.

Prof. AS Raghavendra Convener **Dr. Subeer S. Majumdar**Co-Convener

International Symposium on Recent Advances in Comparative Endocrinology

November 29- December 1, 2017

Indian Society for Comparative Endocrinology

CERTIFICATE OF MERIT

This is to certify that

ANITHA ARUMUGAM

UNIVERSITY OF HYDERABAD, INDIA

has participated and presented a research paper in the International Symposium on

Recent Advances in Comparative Endocrinology held during November 29 - December 01, 2017 at Madras Christian College, Chennai, India.

Dr. Iqbal Parwez

Vice President - ISCE

Dr. R. Moses Inbarai

Organizing Secretary

ISRACE2017

Identification and expression analysis of sox family genes in common carp: sox30 and sox19 regulate gonadal function

by Anitha Arumugam

Submission date: 22-Dec-2020 12:19PM (UTC+0530)

Submission ID: 1480435842

File name: 15LAPH08 Anitha Arumugam thesis.pdf (4.4M)

Word count: 20394

Character count: 118028

Identification and expression analysis of sox family genes in common carp: sox30 and sox19 regulate gonadal function

ORIGINALITY REPORT

7%

65%

SIMILARITY INDEX

INTERNET SOURCES

PUBLICATIONS

STUDENT PAPERS

PRIMARY SOURCES

Anitha Arumugam, Senthilkumaran Balasubramanian. "Role of sox30 in regulating testicular steroidogenesis of common carp". The Journal of Steroid Biochemistry and Molecular This is to certify that it is Student's publication Munice. Biology, 2020

Publication

Arumugam Anitha, Yugantak-Raj Guptarof. B. Senthilkumaran, FNA, FASC, FNASC Seetharam Deepa, Manjappa Ningappa, Karaning of Hyd Hyderabad-500046, TS, INDIA

Boraiah Rajanna, Balasubramanian Senthilkumaran. "Gonadal transcriptome analysis of the common carp, Cyprinus carpio:

Identification of differentially expressed genes

and SSRs", General and Comparative
Endocrinology, 2019
This is to certify that its
Student's publication
B.Jet

Publication

Prof. B. Senthilkumaran, ENA, FASc, FNASc

Arumugam Anitha, Yugantak-Raj Gupta, Department of Animal Biology School of Life Sciences School of Life Sciences Seetharam Deepa, Manjappa Ningappa, HKaram 19046. TS. INDIAN Boraiah Rajanna Polocularian Polocu Boraiah Rajanna, Balasubramanian Senthilkumaran. "Gonadal transcriptome This is to certify the analysis of the common carp, Cyprinus carpio: philication

Prof. B. Senthilkumaran, FNA, FASc, FNASS. Jenthilkumaran, ENA, FASC, FNAS University of Hyderabad Hyderabad-500046. TS. INDIA

Identification of differentially expressed genes
and SSRs", General and Comparative
Endocrinology, 2018

Publication

Submitted to University of Hyderabad, Hyderabad

3%

Student Paper

Yugantak Raj Gupta, Balasubramanian Senthilkumaran. "Common carp pentraxin gene: Evidence for its role in ovarian differentiation and growth", General and Comparative Endocrinology, 2020

1%

Publication

Benninghoff, A.D.. "Gonadotropin regulation of testosterone production by primary cultured theca and granulosa cells of Atlantic croaker: I. Novel role of CaMKs and interactions between calcium- and adenylyl cyclase-dependent pathways", General and Comparative Endocrinology, 200607

<1%

Publication

7 mafiadoc.com
Internet Source

<1%

Arumugam Anitha, Balasubramanian Senthilkumaran. "Role of sox30 in regulating testicular steroidogenesis of common carp", The Journal of Steroid Biochemistry and Molecular

<1%

9	C. Laldinsangi, B. Senthilkumaran. "Expression profiling of c-kit and its impact after esiRNA silencing during gonadal development in catfish", General and Comparative Endocrinology, 2018 Publication	<1%
10	www.gsejournal.org Internet Source	<1%
11	scholarbank.nus.edu.sg Internet Source	<1%
12	G. Sreenivasulu, B. Senthilkumaran. "A role for cytochrome P450 17α-hydroxylase/c17-20 lyase during shift in steroidogenesis occurring in ovarian follicles prior to oocyte maturation", The Journal of Steroid Biochemistry and Molecular Biology, 2009 Publication	<1%
13	www.era.lib.ed.ac.uk Internet Source	<1%
14	www.tandfonline.com Internet Source	<1%
15	Swathi Tenugu, Akanksha Pranoty, Sajwan- Khatri Mamta, Balasubramanian Senthilkumaran. "Development and organisation	<1%

of gonadal steroidogenesis in bony fishes - A
review", Aquaculture and Fisheries, 2020

Publication

16	pesquisa.bvsalud.org Internet Source	<1%
17	Anbazhagan Rajakumar, Balasubramanian Senthilkumaran. "Sox3 binds to 11β-hydroxysteroid dehydrogenase gene promoter suggesting transcriptional interaction in catfish", The Journal of Steroid Biochemistry and Molecular Biology, 2016 Publication	<1%
18	"Prostate Cancer", Springer Science and Business Media LLC, 2019 Publication	<1%
19	joe.bioscientifica.com Internet Source	<1%
20	Devlin, R.H "Sex determination and sex differentiation in fish: an overview of genetic, physiological, and environmental influences", Aquaculture, 20020621 Publication	<1%
21	eprints.utas.edu.au Internet Source	<1%
22	Laia Navarro-Martín, Malyka Galay-Burgos, Francesc Piferrer, Glen Sweeney.	<1%

"Characterisation and expression during sex differentiation of Sox19 from the sea bass Dicentrarchus labrax", Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 2012

Sophie Vriz, Robin Lovell-Badge. "The zebrafish Zf-Sox 19 protein: a novel member of the Sox family which reveals highly conserved motifs outside of the DNA-binding domain", Gene, 1995

<1%

Publication

P. Sridevi, B. Senthilkumaran. "Cloning and differential expression of FOXL2 during ovarian development and recrudescence of the catfish, Clarias gariepinus", General and Comparative Endocrinology, 2011

<1%

Publication

C. Laldinsangi, B. Senthilkumaran.

"Identification, cloning and expression profile of sycp3 during gonadal cycle and after siRNA silencing in catfish", Gene Reports, 2018

Publication

<1%

Elizabeth K. Smith, José M. Guzmán, J. Adam Luckenbach. "Molecular cloning, characterization, and sexually dimorphic expression of five major sex differentiation-

<1%

related genes in a Scorpaeniform fish, sablefish (Anoplopoma fimbria)", Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 2013

Publication

Exclude quotes On Exclude matches < 14 words

Exclude bibliography On

ELSEVIER LICENSE TERMS AND CONDITIONS

Nov 18, 2020

This Agreement between Mrs. Anitha Arumugam ("You") and Elsevier ("Elsevier") consists of your license details and the terms and conditions provided by Elsevier and Copyright Clearance Center.

License Number 4951730945651

License date Nov 18, 2020

Licensed Content Publisher Elsevier

Licensed Content Publication

Aquaculture

Licensed Content Title

Sex determination and sex differentiation in fish: an overview of genetic, physiological, and environmental influences

Licensed Content Author

Robert H. Devlin, Yoshitaka Nagahama

Licensed Content Date

Jun 21, 2002

Licensed Content Volume

208

Licensed Content Issue

3-4

Licensed Content Pages

174

Start Page

191

End Page

364

Type of Use

reuse in a thesis/dissertation

Portion figures/tables/illustrations

Number of figures/tables /illustrations

1

Format both print and electronic

Are you the author of this Elsevier article?

No

Will you be translating? No

Title Identification and expression analysis of sox family genes in

common carp: sox30 and sox19 regulate gonadal function

Institution name University of Hyderabad

Expected presentation date Dec 2020

Portions Fig. 1

Mrs. Anitha Arumugam University of Hyderabad

Requestor Location

Hyderabad, 500046

India

Attn: Mrs. Anitha Arumugam

Publisher Tax ID GB 494 6272 12

Total 0.00 USD

Terms and Conditions

INTRODUCTION

1. The publisher for this copyrighted material is Elsevier. By clicking "accept" in connection with completing this licensing transaction, you agree that the following terms and conditions apply to this transaction (along with the Billing and Payment terms and conditions established by Copyright Clearance Center, Inc. ("CCC"), at the time that you opened your Rightslink account and that are available at any time at

http://myaccount.copyright.com).

GENERAL TERMS

- 2. Elsevier hereby grants you permission to reproduce the aforementioned material subject to the terms and conditions indicated.
- 3. Acknowledgement: If any part of the material to be used (for example, figures) has appeared in our publication with credit or acknowledgement to another source, permission must also be sought from that source. If such permission is not obtained then that material may not be included in your publication/copies. Suitable acknowledgement to the source must be made, either as a footnote or in a reference list at the end of your publication, as follows:

"Reprinted from Publication title, Vol /edition number, Author(s), Title of article / title of chapter, Pages No., Copyright (Year), with permission from Elsevier [OR APPLICABLE SOCIETY COPYRIGHT OWNER]." Also Lancet special credit - "Reprinted from The Lancet, Vol. number, Author(s), Title of article, Pages No., Copyright (Year), with permission from Elsevier."

- 4. Reproduction of this material is confined to the purpose and/or media for which permission is hereby given.
- 5. Altering/Modifying Material: Not Permitted. However figures and illustrations may be altered/adapted minimally to serve your work. Any other abbreviations, additions, deletions and/or any other alterations shall be made only with prior written authorization of Elsevier Ltd. (Please contact Elsevier's permissions helpdesk here). No modifications can be made to any Lancet figures/tables and they must be reproduced in full.
- 6. If the permission fee for the requested use of our material is waived in this instance, please be advised that your future requests for Elsevier materials may attract a fee.
- 7. Reservation of Rights: Publisher reserves all rights not specifically granted in the combination of (i) the license details provided by you and accepted in the course of this licensing transaction, (ii) these terms and conditions and (iii) CCC's Billing and Payment terms and conditions.
- 8. License Contingent Upon Payment: While you may exercise the rights licensed immediately upon issuance of the license at the end of the licensing process for the transaction, provided that you have disclosed complete and accurate details of your proposed use, no license is finally effective unless and until full payment is received from you (either by publisher or by CCC) as provided in CCC's Billing and Payment terms and conditions. If full payment is not received on a timely basis, then any license preliminarily granted shall be deemed automatically revoked and shall be void as if never granted. Further, in the event that you breach any of these terms and conditions or any of CCC's Billing and Payment terms and conditions, the license is automatically revoked and shall be void as if never granted. Use of materials as described in a revoked license, as well as any use of the materials beyond the scope of an unrevoked license, may constitute copyright infringement and publisher reserves the right to take any and all action to protect its copyright in the materials.
- 9. Warranties: Publisher makes no representations or warranties with respect to the licensed material.
- 10. Indemnity: You hereby indemnify and agree to hold harmless publisher and CCC, and their respective officers, directors, employees and agents, from and against any and all

claims arising out of your use of the licensed material other than as specifically authorized pursuant to this license.

- 11. No Transfer of License: This license is personal to you and may not be sublicensed, assigned, or transferred by you to any other person without publisher's written permission.
- 12. No Amendment Except in Writing: This license may not be amended except in a writing signed by both parties (or, in the case of publisher, by CCC on publisher's behalf).
- 13. Objection to Contrary Terms: Publisher hereby objects to any terms contained in any purchase order, acknowledgment, check endorsement or other writing prepared by you, which terms are inconsistent with these terms and conditions or CCC's Billing and Payment terms and conditions. These terms and conditions, together with CCC's Billing and Payment terms and conditions (which are incorporated herein), comprise the entire agreement between you and publisher (and CCC) concerning this licensing transaction. In the event of any conflict between your obligations established by these terms and conditions and those established by CCC's Billing and Payment terms and conditions, these terms and conditions shall control.
- 14. Revocation: Elsevier or Copyright Clearance Center may deny the permissions described in this License at their sole discretion, for any reason or no reason, with a full refund payable to you. Notice of such denial will be made using the contact information provided by you. Failure to receive such notice will not alter or invalidate the denial. In no event will Elsevier or Copyright Clearance Center be responsible or liable for any costs, expenses or damage incurred by you as a result of a denial of your permission request, other than a refund of the amount(s) paid by you to Elsevier and/or Copyright Clearance Center for denied permissions.

LIMITED LICENSE

The following terms and conditions apply only to specific license types:

- 15. **Translation**: This permission is granted for non-exclusive world **English** rights only unless your license was granted for translation rights. If you licensed translation rights you may only translate this content into the languages you requested. A professional translator must perform all translations and reproduce the content word for word preserving the integrity of the article.
- 16. **Posting licensed content on any Website**: The following terms and conditions apply as follows: Licensing material from an Elsevier journal: All content posted to the web site must maintain the copyright information line on the bottom of each image; A hyper-text must be included to the Homepage of the journal from which you are licensing at http://www.sciencedirect.com/science/journal/xxxxx or the Elsevier homepage for books at http://www.elsevier.com; Central Storage: This license does not include permission for a scanned version of the material to be stored in a central repository such as that provided by Heron/XanEdu.

Licensing material from an Elsevier book: A hyper-text link must be included to the Elsevier homepage at http://www.elsevier.com. All content posted to the web site must maintain the copyright information line on the bottom of each image.

Posting licensed content on Electronic reserve: In addition to the above the following clauses are applicable: The web site must be password-protected and made available only to bona fide students registered on a relevant course. This permission is granted for 1 year only. You may obtain a new license for future website posting.

17. **For journal authors:** the following clauses are applicable in addition to the above:

Preprints:

A preprint is an author's own write-up of research results and analysis, it has not been peer-reviewed, nor has it had any other value added to it by a publisher (such as formatting, copyright, technical enhancement etc.).

Authors can share their preprints anywhere at any time. Preprints should not be added to or enhanced in any way in order to appear more like, or to substitute for, the final versions of articles however authors can update their preprints on arXiv or RePEc with their Accepted Author Manuscript (see below).

If accepted for publication, we encourage authors to link from the preprint to their formal publication via its DOI. Millions of researchers have access to the formal publications on ScienceDirect, and so links will help users to find, access, cite and use the best available version. Please note that Cell Press, The Lancet and some society-owned have different preprint policies. Information on these policies is available on the journal homepage.

Accepted Author Manuscripts: An accepted author manuscript is the manuscript of an article that has been accepted for publication and which typically includes author-incorporated changes suggested during submission, peer review and editor-author communications.

Authors can share their accepted author manuscript:

- immediately
 - o via their non-commercial person homepage or blog
 - o by updating a preprint in arXiv or RePEc with the accepted manuscript
 - via their research institute or institutional repository for internal institutional uses or as part of an invitation-only research collaboration work-group
 - directly by providing copies to their students or to research collaborators for their personal use
 - o for private scholarly sharing as part of an invitation-only work group on commercial sites with which Elsevier has an agreement
- After the embargo period
 - o via non-commercial hosting platforms such as their institutional repository
 - o via commercial sites with which Elsevier has an agreement

In all cases accepted manuscripts should:

- link to the formal publication via its DOI
- bear a CC-BY-NC-ND license this is easy to do
- if aggregated with other manuscripts, for example in a repository or other site, be shared in alignment with our hosting policy not be added to or enhanced in any way to appear more like, or to substitute for, the published journal article.

Published journal article (JPA): A published journal article (PJA) is the definitive final record of published research that appears or will appear in the journal and embodies all value-adding publishing activities including peer review co-ordination, copy-editing, formatting, (if relevant) pagination and online enrichment.

Policies for sharing publishing journal articles differ for subscription and gold open access articles:

<u>Subscription Articles:</u> If you are an author, please share a link to your article rather than the full-text. Millions of researchers have access to the formal publications on ScienceDirect, and so links will help your users to find, access, cite, and use the best available version.

Theses and dissertations which contain embedded PJAs as part of the formal submission can be posted publicly by the awarding institution with DOI links back to the formal publications on ScienceDirect.

If you are affiliated with a library that subscribes to ScienceDirect you have additional private sharing rights for others' research accessed under that agreement. This includes use for classroom teaching and internal training at the institution (including use in course packs and courseware programs), and inclusion of the article for grant funding purposes.

<u>Gold Open Access Articles:</u> May be shared according to the author-selected end-user license and should contain a <u>CrossMark logo</u>, the end user license, and a DOI link to the formal publication on ScienceDirect.

Please refer to Elsevier's posting policy for further information.

- 18. **For book authors** the following clauses are applicable in addition to the above: Authors are permitted to place a brief summary of their work online only. You are not allowed to download and post the published electronic version of your chapter, nor may you scan the printed edition to create an electronic version. **Posting to a repository:** Authors are permitted to post a summary of their chapter only in their institution's repository.
- 19. **Thesis/Dissertation**: If your license is for use in a thesis/dissertation your thesis may be submitted to your institution in either print or electronic form. Should your thesis be published commercially, please reapply for permission. These requirements include permission for the Library and Archives of Canada to supply single copies, on demand, of the complete thesis and include permission for Proquest/UMI to supply single copies, on demand, of the complete thesis. Should your thesis be published commercially, please reapply for permission. Theses and dissertations which contain embedded PJAs as part of the formal submission can be posted publicly by the awarding institution with DOI links back to the formal publications on ScienceDirect.

Elsevier Open Access Terms and Conditions

You can publish open access with Elsevier in hundreds of open access journals or in nearly 2000 established subscription journals that support open access publishing. Permitted third party re-use of these open access articles is defined by the author's choice of Creative Commons user license. See our open access license policy for more information.

Terms & Conditions applicable to all Open Access articles published with Elsevier:

Any reuse of the article must not represent the author as endorsing the adaptation of the article nor should the article be modified in such a way as to damage the author's honour or reputation. If any changes have been made, such changes must be clearly indicated.

The author(s) must be appropriately credited and we ask that you include the end user license and a DOI link to the formal publication on ScienceDirect.

If any part of the material to be used (for example, figures) has appeared in our publication with credit or acknowledgement to another source it is the responsibility of the user to

ensure their reuse complies with the terms and conditions determined by the rights holder.

Additional Terms & Conditions applicable to each Creative Commons user license:

CC BY: The CC-BY license allows users to copy, to create extracts, abstracts and new works from the Article, to alter and revise the Article and to make commercial use of the Article (including reuse and/or resale of the Article by commercial entities), provided the user gives appropriate credit (with a link to the formal publication through the relevant DOI), provides a link to the license, indicates if changes were made and the licensor is not represented as endorsing the use made of the work. The full details of the license are available at http://creativecommons.org/licenses/by/4.0.

CC BY NC SA: The CC BY-NC-SA license allows users to copy, to create extracts, abstracts and new works from the Article, to alter and revise the Article, provided this is not done for commercial purposes, and that the user gives appropriate credit (with a link to the formal publication through the relevant DOI), provides a link to the license, indicates if changes were made and the licensor is not represented as endorsing the use made of the work. Further, any new works must be made available on the same conditions. The full details of the license are available at http://creativecommons.org/licenses/by-nc-sa/4.0.

CC BY NC ND: The CC BY-NC-ND license allows users to copy and distribute the Article, provided this is not done for commercial purposes and further does not permit distribution of the Article if it is changed or edited in any way, and provided the user gives appropriate credit (with a link to the formal publication through the relevant DOI), provides a link to the license, and that the licensor is not represented as endorsing the use made of the work. The full details of the license are available at http://creativecommons.org/licenses/by-nc-nd/4.0. Any commercial reuse of Open Access articles published with a CC BY NC SA or CC BY NC ND license requires permission from Elsevier and will be subject to a fee.

Commercial reuse includes:

- Associating advertising with the full text of the Article
- Charging fees for document delivery or access
- Article aggregation
- Systematic distribution via e-mail lists or share buttons

Posting or linking by commercial companies for use by customers of those companies.

20. Other Conditions:

v1.10

Questions? <u>customercare@copyright.com</u> or +1-855-239-3415 (toll free in the US) or +1-978-646-2777.

anitha arumugam <anitha@uohyd.ac.in>

Request permission for reuse of figure in thesis

3 messages

anitha arumugam <anitha@uohyd.ac.in>

To: aquameta@kitasato-u.ac.jp

Wed, Nov 18, 2020 at 11:53 AM

Prof. Dr. Shugo Watabe

Editor in Chief: Aqua-BioScience Monographs

Respected Sir,

I am Anitha Arumugam, Research Scholar working under the supervision of Prof.B.Senthilkumaran at Department of Animal Biology, School of Life Sciences, University of Hyderabad, India.

I would like to reuse Fig. 2 from "Oogenesis in Teleost Fish by Hirohiko Kagawa, Aqua-BioScience Monographs, Vol. 6, No. 4, pp. 99-127 (2013)" in my research thesis.

My humble request to you to kindly permit me for reuse of the above mentioned figure in my thesis. Please acknowledge the receipt of this mail.

Thank you.

Sincerely yours, Anitha Arumugam.

渡部 終五 <swatabe@kitasato-u.ac.jp>

Thu, Nov 26, 2020 at 4:27 AM

To: anitha arumugam <anitha@uohyd.ac.in> Cc: 多川道雄 <tagawa@terrapub.co.jp>

Dear Mr/Ms Anitha Arumugam,

Thank you for your interest in our monograph series. We and our publisher do not claim any copy right. So you can reuse our data freely, but please make clear citation from our series with author(s) in the monograph concerned.

Best regards,

Shugo Watabe Kitasato University School of Marine Bioscience Mimami-ku, Sagamihara, Kanagawa 252-0373, JAPAN Tel. +81-42-778-9094; Fax, +81-42-778-5010

e-mail, swatabe@kitasato-u.ac.jp

2020/11/18 15:23、anitha arumugam <anitha@uohyd.ac.in>のメール: [Quoted text hidden]

anitha arumugam <anitha@uohyd.ac.in>

To: 渡部 終五 <swatabe@kitasato-u.ac.jp>

Thu, Nov 26, 2020 at 9:51 AM

То

Prof. Dr. Shugo Watabe

Editor in Chief: Aqua-BioScience Monographs

Thank you for the quick response. I am very grateful to the Aqua-BioScience Monographs for allowing free reuse

1 of 2 13-Dec-20, 9:34 PM

of the requested figure in my research thesis. I assure you that credit will be given to the original source by citing the concerned author.
Thank you.
Sincerely yours,
Anitha A
[Quoted text hidden]

ELSEVIER LICENSE TERMS AND CONDITIONS

Nov 18, 2020

This Agreement between Mrs. Anitha Arumugam ("You") and Elsevier ("Elsevier") consists of your license details and the terms and conditions provided by Elsevier and Copyright Clearance Center.

License Number 4951750265962

License date Nov 18, 2020

Licensed Content

Publisher

Elsevier

Licensed Content

Publication

Molecular and Cellular Endocrinology

Licensed Content Title

A shift in steroidogenesis occurring in ovarian follicles prior to

oocyte maturation

Licensed Content Author

Balasubramanian Senthilkumaran, Michiyasu

Yoshikuni, Yoshitaka Nagahama

Licensed Content Date Feb 27, 2004

Licensed Content Volume 215

Licensed Content Issue 1-2

Licensed Content Pages 8

Start Page 11

End Page 18

reuse in a thesis/dissertation Type of Use

Portion figures/tables/illustrations

1

Number of figures/tables

/illustrations

both print and electronic **Format**

Are you the author of this

Elsevier article?

No

Will you be translating?

No

Identification and expression analysis of sox family genes in Title

common carp: sox30 and sox19 regulate gonadal function

Institution name University of Hyderabad

Expected presentation date Dec 2020

Portions Fig. 3

> Mrs. Anitha Arumugam University of Hyderabad

Requestor Location

Hyderabad, 500046

India

Attn: Mrs. Anitha Arumugam

Publisher Tax ID GB 494 6272 12

Total 0.00 USD

Terms and Conditions

INTRODUCTION

1. The publisher for this copyrighted material is Elsevier. By clicking "accept" in connection with completing this licensing transaction, you agree that the following terms

and conditions apply to this transaction (along with the Billing and Payment terms and conditions established by Copyright Clearance Center, Inc. ("CCC"), at the time that you opened your Rightslink account and that are available at any time at http://myaccount.copyright.com).

GENERAL TERMS

- 2. Elsevier hereby grants you permission to reproduce the aforementioned material subject to the terms and conditions indicated.
- 3. Acknowledgement: If any part of the material to be used (for example, figures) has appeared in our publication with credit or acknowledgement to another source, permission must also be sought from that source. If such permission is not obtained then that material may not be included in your publication/copies. Suitable acknowledgement to the source must be made, either as a footnote or in a reference list at the end of your publication, as follows:
- "Reprinted from Publication title, Vol /edition number, Author(s), Title of article / title of chapter, Pages No., Copyright (Year), with permission from Elsevier [OR APPLICABLE SOCIETY COPYRIGHT OWNER]." Also Lancet special credit "Reprinted from The Lancet, Vol. number, Author(s), Title of article, Pages No., Copyright (Year), with permission from Elsevier."
- 4. Reproduction of this material is confined to the purpose and/or media for which permission is hereby given.
- 5. Altering/Modifying Material: Not Permitted. However figures and illustrations may be altered/adapted minimally to serve your work. Any other abbreviations, additions, deletions and/or any other alterations shall be made only with prior written authorization of Elsevier Ltd. (Please contact Elsevier's permissions helpdesk here). No modifications can be made to any Lancet figures/tables and they must be reproduced in full.
- 6. If the permission fee for the requested use of our material is waived in this instance, please be advised that your future requests for Elsevier materials may attract a fee.
- 7. Reservation of Rights: Publisher reserves all rights not specifically granted in the combination of (i) the license details provided by you and accepted in the course of this licensing transaction, (ii) these terms and conditions and (iii) CCC's Billing and Payment terms and conditions.
- 8. License Contingent Upon Payment: While you may exercise the rights licensed immediately upon issuance of the license at the end of the licensing process for the transaction, provided that you have disclosed complete and accurate details of your proposed use, no license is finally effective unless and until full payment is received from you (either by publisher or by CCC) as provided in CCC's Billing and Payment terms and conditions. If full payment is not received on a timely basis, then any license preliminarily granted shall be deemed automatically revoked and shall be void as if never granted. Further, in the event that you breach any of these terms and conditions or any of CCC's Billing and Payment terms and conditions, the license is automatically revoked and shall be void as if never granted. Use of materials as described in a revoked license, as well as any use of the materials beyond the scope of an unrevoked license, may constitute copyright infringement and publisher reserves the right to take any and all action to protect its copyright in the materials.
- 9. Warranties: Publisher makes no representations or warranties with respect to the licensed material.

- 10. Indemnity: You hereby indemnify and agree to hold harmless publisher and CCC, and their respective officers, directors, employees and agents, from and against any and all claims arising out of your use of the licensed material other than as specifically authorized pursuant to this license.
- 11. No Transfer of License: This license is personal to you and may not be sublicensed, assigned, or transferred by you to any other person without publisher's written permission.
- 12. No Amendment Except in Writing: This license may not be amended except in a writing signed by both parties (or, in the case of publisher, by CCC on publisher's behalf).
- 13. Objection to Contrary Terms: Publisher hereby objects to any terms contained in any purchase order, acknowledgment, check endorsement or other writing prepared by you, which terms are inconsistent with these terms and conditions or CCC's Billing and Payment terms and conditions. These terms and conditions, together with CCC's Billing and Payment terms and conditions (which are incorporated herein), comprise the entire agreement between you and publisher (and CCC) concerning this licensing transaction. In the event of any conflict between your obligations established by these terms and conditions and those established by CCC's Billing and Payment terms and conditions, these terms and conditions shall control.
- 14. Revocation: Elsevier or Copyright Clearance Center may deny the permissions described in this License at their sole discretion, for any reason or no reason, with a full refund payable to you. Notice of such denial will be made using the contact information provided by you. Failure to receive such notice will not alter or invalidate the denial. In no event will Elsevier or Copyright Clearance Center be responsible or liable for any costs, expenses or damage incurred by you as a result of a denial of your permission request, other than a refund of the amount(s) paid by you to Elsevier and/or Copyright Clearance Center for denied permissions.

LIMITED LICENSE

The following terms and conditions apply only to specific license types:

- 15. **Translation**: This permission is granted for non-exclusive world **English** rights only unless your license was granted for translation rights. If you licensed translation rights you may only translate this content into the languages you requested. A professional translator must perform all translations and reproduce the content word for word preserving the integrity of the article.
- 16. **Posting licensed content on any Website**: The following terms and conditions apply as follows: Licensing material from an Elsevier journal: All content posted to the web site must maintain the copyright information line on the bottom of each image; A hyper-text must be included to the Homepage of the journal from which you are licensing at http://www.sciencedirect.com/science/journal/xxxxx or the Elsevier homepage for books at http://www.elsevier.com; Central Storage: This license does not include permission for a scanned version of the material to be stored in a central repository such as that provided by Heron/XanEdu.

Licensing material from an Elsevier book: A hyper-text link must be included to the Elsevier homepage at http://www.elsevier.com. All content posted to the web site must maintain the copyright information line on the bottom of each image.

Posting licensed content on Electronic reserve: In addition to the above the following

clauses are applicable: The web site must be password-protected and made available only to bona fide students registered on a relevant course. This permission is granted for 1 year only. You may obtain a new license for future website posting.

17. **For journal authors:** the following clauses are applicable in addition to the above:

Preprints:

A preprint is an author's own write-up of research results and analysis, it has not been peerreviewed, nor has it had any other value added to it by a publisher (such as formatting, copyright, technical enhancement etc.).

Authors can share their preprints anywhere at any time. Preprints should not be added to or enhanced in any way in order to appear more like, or to substitute for, the final versions of articles however authors can update their preprints on arXiv or RePEc with their Accepted Author Manuscript (see below).

If accepted for publication, we encourage authors to link from the preprint to their formal publication via its DOI. Millions of researchers have access to the formal publications on ScienceDirect, and so links will help users to find, access, cite and use the best available version. Please note that Cell Press, The Lancet and some society-owned have different preprint policies. Information on these policies is available on the journal homepage.

Accepted Author Manuscripts: An accepted author manuscript is the manuscript of an article that has been accepted for publication and which typically includes author-incorporated changes suggested during submission, peer review and editor-author communications.

Authors can share their accepted author manuscript:

- immediately
 - o via their non-commercial person homepage or blog
 - o by updating a preprint in arXiv or RePEc with the accepted manuscript
 - via their research institute or institutional repository for internal institutional uses or as part of an invitation-only research collaboration work-group
 - directly by providing copies to their students or to research collaborators for their personal use
 - o for private scholarly sharing as part of an invitation-only work group on commercial sites with which Elsevier has an agreement
- After the embargo period
 - via non-commercial hosting platforms such as their institutional repository
 - o via commercial sites with which Elsevier has an agreement

In all cases accepted manuscripts should:

- link to the formal publication via its DOI
- bear a CC-BY-NC-ND license this is easy to do
- if aggregated with other manuscripts, for example in a repository or other site, be shared in alignment with our hosting policy not be added to or enhanced in any way to appear more like, or to substitute for, the published journal article.

Published journal article (JPA): A published journal article (PJA) is the definitive final record of published research that appears or will appear in the journal and embodies all value-adding publishing activities including peer review co-ordination, copy-editing, formatting, (if relevant) pagination and online enrichment.

Policies for sharing publishing journal articles differ for subscription and gold open access articles:

<u>Subscription Articles:</u> If you are an author, please share a link to your article rather than the full-text. Millions of researchers have access to the formal publications on ScienceDirect, and so links will help your users to find, access, cite, and use the best available version.

Theses and dissertations which contain embedded PJAs as part of the formal submission can be posted publicly by the awarding institution with DOI links back to the formal publications on ScienceDirect.

If you are affiliated with a library that subscribes to ScienceDirect you have additional private sharing rights for others' research accessed under that agreement. This includes use for classroom teaching and internal training at the institution (including use in course packs and courseware programs), and inclusion of the article for grant funding purposes.

<u>Gold Open Access Articles:</u> May be shared according to the author-selected end-user license and should contain a <u>CrossMark logo</u>, the end user license, and a DOI link to the formal publication on ScienceDirect.

Please refer to Elsevier's posting policy for further information.

- 18. **For book authors** the following clauses are applicable in addition to the above: Authors are permitted to place a brief summary of their work online only. You are not allowed to download and post the published electronic version of your chapter, nor may you scan the printed edition to create an electronic version. **Posting to a repository:** Authors are permitted to post a summary of their chapter only in their institution's repository.
- 19. **Thesis/Dissertation**: If your license is for use in a thesis/dissertation your thesis may be submitted to your institution in either print or electronic form. Should your thesis be published commercially, please reapply for permission. These requirements include permission for the Library and Archives of Canada to supply single copies, on demand, of the complete thesis and include permission for Proquest/UMI to supply single copies, on demand, of the complete thesis. Should your thesis be published commercially, please reapply for permission. Theses and dissertations which contain embedded PJAs as part of the formal submission can be posted publicly by the awarding institution with DOI links back to the formal publications on ScienceDirect.

Elsevier Open Access Terms and Conditions

You can publish open access with Elsevier in hundreds of open access journals or in nearly 2000 established subscription journals that support open access publishing. Permitted third party re-use of these open access articles is defined by the author's choice of Creative Commons user license. See our open access license policy for more information.

Terms & Conditions applicable to all Open Access articles published with Elsevier:

Any reuse of the article must not represent the author as endorsing the adaptation of the article nor should the article be modified in such a way as to damage the author's honour or reputation. If any changes have been made, such changes must be clearly indicated.

The author(s) must be appropriately credited and we ask that you include the end user license and a DOI link to the formal publication on ScienceDirect.

If any part of the material to be used (for example, figures) has appeared in our publication with credit or acknowledgement to another source it is the responsibility of the user to ensure their reuse complies with the terms and conditions determined by the rights holder.

Additional Terms & Conditions applicable to each Creative Commons user license:

CC BY: The CC-BY license allows users to copy, to create extracts, abstracts and new works from the Article, to alter and revise the Article and to make commercial use of the Article (including reuse and/or resale of the Article by commercial entities), provided the user gives appropriate credit (with a link to the formal publication through the relevant DOI), provides a link to the license, indicates if changes were made and the licensor is not represented as endorsing the use made of the work. The full details of the license are available at http://creativecommons.org/licenses/by/4.0.

CC BY NC SA: The CC BY-NC-SA license allows users to copy, to create extracts, abstracts and new works from the Article, to alter and revise the Article, provided this is not done for commercial purposes, and that the user gives appropriate credit (with a link to the formal publication through the relevant DOI), provides a link to the license, indicates if changes were made and the licensor is not represented as endorsing the use made of the work. Further, any new works must be made available on the same conditions. The full details of the license are available at http://creativecommons.org/licenses/by-nc-sa/4.0.

CC BY NC ND: The CC BY-NC-ND license allows users to copy and distribute the Article, provided this is not done for commercial purposes and further does not permit distribution of the Article if it is changed or edited in any way, and provided the user gives appropriate credit (with a link to the formal publication through the relevant DOI), provides a link to the license, and that the licensor is not represented as endorsing the use made of the work. The full details of the license are available at http://creativecommons.org/licenses/by-nc-nd/4.0. Any commercial reuse of Open Access articles published with a CC BY NC SA or CC BY NC ND license requires permission from Elsevier and will be subject to a fee.

Commercial reuse includes:

- Associating advertising with the full text of the Article
- Charging fees for document delivery or access
- Article aggregation
- Systematic distribution via e-mail lists or share buttons

Posting or linking by commercial companies for use by customers of those companies.

20. Other Conditions:

v1.10

Questions? $\underline{\text{customercare}}@\underline{\text{copyright.com}}$ or +1-855-239-3415 (toll free in the US) or +1-978-646-2777.

ELSEVIER LICENSE TERMS AND CONDITIONS

Nov 18, 2020

This Agreement between Mrs. Anitha Arumugam ("You") and Elsevier ("Elsevier") consists of your license details and the terms and conditions provided by Elsevier and Copyright Clearance Center.

License Number 4951750505214

License date Nov 18, 2020

Licensed Content

Publisher

Elsevier

Licensed Content

Publication

General and Comparative Endocrinology

Licensed Content Title Spermatogenesis in fish

Rüdiger W. Schulz, Luiz Renato de França, Jean-Jacques

Licensed Content Author Lareyre, Florence LeGac, Helio Chiarini-Garcia, Rafael Henrique

Nobrega, Takeshi Miura

Licensed Content Date Feb 1, 2010

Licensed Content Volume 165

Licensed Content Issue 3

Licensed Content Pages 22

Start Page 390

End Page 411

Type of Use reuse in a thesis/dissertation

Portion figures/tables/illustrations

Number of figures/tables

/illustrations

1

Format both print and electronic

Are you the author of this

Elsevier article?

No

Will you be translating?

No

Title Identification and expression analysis of sox family genes in

common carp: sox30 and sox19 regulate gonadal function

Institution name University of Hyderabad

Expected presentation date Dec 2020

Portions Fig. 1B

Mrs. Anitha Arumugam

University of Hyderabad

Requestor Location

Hyderabad, 500046

India

Attn: Mrs. Anitha Arumugam

Publisher Tax ID GB 494 6272 12

Total 0.00 USD

Terms and Conditions

INTRODUCTION

1. The publisher for this copyrighted material is Elsevier. By clicking "accept" in connection with completing this licensing transaction, you agree that the following terms

and conditions apply to this transaction (along with the Billing and Payment terms and conditions established by Copyright Clearance Center, Inc. ("CCC"), at the time that you opened your Rightslink account and that are available at any time at http://myaccount.copyright.com).

GENERAL TERMS

- 2. Elsevier hereby grants you permission to reproduce the aforementioned material subject to the terms and conditions indicated.
- 3. Acknowledgement: If any part of the material to be used (for example, figures) has appeared in our publication with credit or acknowledgement to another source, permission must also be sought from that source. If such permission is not obtained then that material may not be included in your publication/copies. Suitable acknowledgement to the source must be made, either as a footnote or in a reference list at the end of your publication, as follows:

"Reprinted from Publication title, Vol /edition number, Author(s), Title of article / title of chapter, Pages No., Copyright (Year), with permission from Elsevier [OR APPLICABLE SOCIETY COPYRIGHT OWNER]." Also Lancet special credit - "Reprinted from The Lancet, Vol. number, Author(s), Title of article, Pages No., Copyright (Year), with permission from Elsevier."

- 4. Reproduction of this material is confined to the purpose and/or media for which permission is hereby given.
- 5. Altering/Modifying Material: Not Permitted. However figures and illustrations may be altered/adapted minimally to serve your work. Any other abbreviations, additions, deletions and/or any other alterations shall be made only with prior written authorization of Elsevier Ltd. (Please contact Elsevier's permissions helpdesk here). No modifications can be made to any Lancet figures/tables and they must be reproduced in full.
- 6. If the permission fee for the requested use of our material is waived in this instance, please be advised that your future requests for Elsevier materials may attract a fee.
- 7. Reservation of Rights: Publisher reserves all rights not specifically granted in the combination of (i) the license details provided by you and accepted in the course of this licensing transaction, (ii) these terms and conditions and (iii) CCC's Billing and Payment terms and conditions.
- 8. License Contingent Upon Payment: While you may exercise the rights licensed immediately upon issuance of the license at the end of the licensing process for the transaction, provided that you have disclosed complete and accurate details of your proposed use, no license is finally effective unless and until full payment is received from you (either by publisher or by CCC) as provided in CCC's Billing and Payment terms and conditions. If full payment is not received on a timely basis, then any license preliminarily granted shall be deemed automatically revoked and shall be void as if never granted. Further, in the event that you breach any of these terms and conditions or any of CCC's Billing and Payment terms and conditions, the license is automatically revoked and shall be void as if never granted. Use of materials as described in a revoked license, as well as any use of the materials beyond the scope of an unrevoked license, may constitute copyright infringement and publisher reserves the right to take any and all action to protect its copyright in the materials.
- 9. Warranties: Publisher makes no representations or warranties with respect to the licensed material.

- 10. Indemnity: You hereby indemnify and agree to hold harmless publisher and CCC, and their respective officers, directors, employees and agents, from and against any and all claims arising out of your use of the licensed material other than as specifically authorized pursuant to this license.
- 11. No Transfer of License: This license is personal to you and may not be sublicensed, assigned, or transferred by you to any other person without publisher's written permission.
- 12. No Amendment Except in Writing: This license may not be amended except in a writing signed by both parties (or, in the case of publisher, by CCC on publisher's behalf).
- 13. Objection to Contrary Terms: Publisher hereby objects to any terms contained in any purchase order, acknowledgment, check endorsement or other writing prepared by you, which terms are inconsistent with these terms and conditions or CCC's Billing and Payment terms and conditions. These terms and conditions, together with CCC's Billing and Payment terms and conditions (which are incorporated herein), comprise the entire agreement between you and publisher (and CCC) concerning this licensing transaction. In the event of any conflict between your obligations established by these terms and conditions and those established by CCC's Billing and Payment terms and conditions, these terms and conditions shall control.
- 14. Revocation: Elsevier or Copyright Clearance Center may deny the permissions described in this License at their sole discretion, for any reason or no reason, with a full refund payable to you. Notice of such denial will be made using the contact information provided by you. Failure to receive such notice will not alter or invalidate the denial. In no event will Elsevier or Copyright Clearance Center be responsible or liable for any costs, expenses or damage incurred by you as a result of a denial of your permission request, other than a refund of the amount(s) paid by you to Elsevier and/or Copyright Clearance Center for denied permissions.

LIMITED LICENSE

The following terms and conditions apply only to specific license types:

- 15. **Translation**: This permission is granted for non-exclusive world **English** rights only unless your license was granted for translation rights. If you licensed translation rights you may only translate this content into the languages you requested. A professional translator must perform all translations and reproduce the content word for word preserving the integrity of the article.
- 16. **Posting licensed content on any Website**: The following terms and conditions apply as follows: Licensing material from an Elsevier journal: All content posted to the web site must maintain the copyright information line on the bottom of each image; A hyper-text must be included to the Homepage of the journal from which you are licensing at http://www.sciencedirect.com/science/journal/xxxxx or the Elsevier homepage for books at http://www.elsevier.com; Central Storage: This license does not include permission for a scanned version of the material to be stored in a central repository such as that provided by Heron/XanEdu.

Licensing material from an Elsevier book: A hyper-text link must be included to the Elsevier homepage at http://www.elsevier.com. All content posted to the web site must maintain the copyright information line on the bottom of each image.

Posting licensed content on Electronic reserve: In addition to the above the following

clauses are applicable: The web site must be password-protected and made available only to bona fide students registered on a relevant course. This permission is granted for 1 year only. You may obtain a new license for future website posting.

17. **For journal authors:** the following clauses are applicable in addition to the above:

Preprints:

A preprint is an author's own write-up of research results and analysis, it has not been peerreviewed, nor has it had any other value added to it by a publisher (such as formatting, copyright, technical enhancement etc.).

Authors can share their preprints anywhere at any time. Preprints should not be added to or enhanced in any way in order to appear more like, or to substitute for, the final versions of articles however authors can update their preprints on arXiv or RePEc with their Accepted Author Manuscript (see below).

If accepted for publication, we encourage authors to link from the preprint to their formal publication via its DOI. Millions of researchers have access to the formal publications on ScienceDirect, and so links will help users to find, access, cite and use the best available version. Please note that Cell Press, The Lancet and some society-owned have different preprint policies. Information on these policies is available on the journal homepage.

Accepted Author Manuscripts: An accepted author manuscript is the manuscript of an article that has been accepted for publication and which typically includes author-incorporated changes suggested during submission, peer review and editor-author communications.

Authors can share their accepted author manuscript:

- immediately
 - o via their non-commercial person homepage or blog
 - o by updating a preprint in arXiv or RePEc with the accepted manuscript
 - via their research institute or institutional repository for internal institutional uses or as part of an invitation-only research collaboration work-group
 - directly by providing copies to their students or to research collaborators for their personal use
 - o for private scholarly sharing as part of an invitation-only work group on commercial sites with which Elsevier has an agreement
- After the embargo period
 - via non-commercial hosting platforms such as their institutional repository
 - o via commercial sites with which Elsevier has an agreement

In all cases accepted manuscripts should:

- link to the formal publication via its DOI
- bear a CC-BY-NC-ND license this is easy to do
- if aggregated with other manuscripts, for example in a repository or other site, be shared in alignment with our hosting policy not be added to or enhanced in any way to appear more like, or to substitute for, the published journal article.

Published journal article (JPA): A published journal article (PJA) is the definitive final record of published research that appears or will appear in the journal and embodies all value-adding publishing activities including peer review co-ordination, copy-editing, formatting, (if relevant) pagination and online enrichment.

Policies for sharing publishing journal articles differ for subscription and gold open access articles:

<u>Subscription Articles:</u> If you are an author, please share a link to your article rather than the full-text. Millions of researchers have access to the formal publications on ScienceDirect, and so links will help your users to find, access, cite, and use the best available version.

Theses and dissertations which contain embedded PJAs as part of the formal submission can be posted publicly by the awarding institution with DOI links back to the formal publications on ScienceDirect.

If you are affiliated with a library that subscribes to ScienceDirect you have additional private sharing rights for others' research accessed under that agreement. This includes use for classroom teaching and internal training at the institution (including use in course packs and courseware programs), and inclusion of the article for grant funding purposes.

<u>Gold Open Access Articles:</u> May be shared according to the author-selected end-user license and should contain a <u>CrossMark logo</u>, the end user license, and a DOI link to the formal publication on ScienceDirect.

Please refer to Elsevier's posting policy for further information.

- 18. **For book authors** the following clauses are applicable in addition to the above: Authors are permitted to place a brief summary of their work online only. You are not allowed to download and post the published electronic version of your chapter, nor may you scan the printed edition to create an electronic version. **Posting to a repository:** Authors are permitted to post a summary of their chapter only in their institution's repository.
- 19. **Thesis/Dissertation**: If your license is for use in a thesis/dissertation your thesis may be submitted to your institution in either print or electronic form. Should your thesis be published commercially, please reapply for permission. These requirements include permission for the Library and Archives of Canada to supply single copies, on demand, of the complete thesis and include permission for Proquest/UMI to supply single copies, on demand, of the complete thesis. Should your thesis be published commercially, please reapply for permission. Theses and dissertations which contain embedded PJAs as part of the formal submission can be posted publicly by the awarding institution with DOI links back to the formal publications on ScienceDirect.

Elsevier Open Access Terms and Conditions

You can publish open access with Elsevier in hundreds of open access journals or in nearly 2000 established subscription journals that support open access publishing. Permitted third party re-use of these open access articles is defined by the author's choice of Creative Commons user license. See our open access license policy for more information.

Terms & Conditions applicable to all Open Access articles published with Elsevier:

Any reuse of the article must not represent the author as endorsing the adaptation of the article nor should the article be modified in such a way as to damage the author's honour or reputation. If any changes have been made, such changes must be clearly indicated.

The author(s) must be appropriately credited and we ask that you include the end user license and a DOI link to the formal publication on ScienceDirect.

If any part of the material to be used (for example, figures) has appeared in our publication with credit or acknowledgement to another source it is the responsibility of the user to ensure their reuse complies with the terms and conditions determined by the rights holder.

Additional Terms & Conditions applicable to each Creative Commons user license:

CC BY: The CC-BY license allows users to copy, to create extracts, abstracts and new works from the Article, to alter and revise the Article and to make commercial use of the Article (including reuse and/or resale of the Article by commercial entities), provided the user gives appropriate credit (with a link to the formal publication through the relevant DOI), provides a link to the license, indicates if changes were made and the licensor is not represented as endorsing the use made of the work. The full details of the license are available at http://creativecommons.org/licenses/by/4.0.

CC BY NC SA: The CC BY-NC-SA license allows users to copy, to create extracts, abstracts and new works from the Article, to alter and revise the Article, provided this is not done for commercial purposes, and that the user gives appropriate credit (with a link to the formal publication through the relevant DOI), provides a link to the license, indicates if changes were made and the licensor is not represented as endorsing the use made of the work. Further, any new works must be made available on the same conditions. The full details of the license are available at http://creativecommons.org/licenses/by-nc-sa/4.0.

CC BY NC ND: The CC BY-NC-ND license allows users to copy and distribute the Article, provided this is not done for commercial purposes and further does not permit distribution of the Article if it is changed or edited in any way, and provided the user gives appropriate credit (with a link to the formal publication through the relevant DOI), provides a link to the license, and that the licensor is not represented as endorsing the use made of the work. The full details of the license are available at http://creativecommons.org/licenses/by-nc-nd/4.0. Any commercial reuse of Open Access articles published with a CC BY NC SA or CC BY NC ND license requires permission from Elsevier and will be subject to a fee.

Commercial reuse includes:

- Associating advertising with the full text of the Article
- Charging fees for document delivery or access
- Article aggregation
- Systematic distribution via e-mail lists or share buttons

Posting or linking by commercial companies for use by customers of those companies.

20. Other Conditions:

v1.10

Questions? $\underline{\text{customercare}}@\underline{\text{copyright.com}}$ or +1-855-239-3415 (toll free in the US) or +1-978-646-2777.

JOHN WILEY AND SONS LICENSE TERMS AND CONDITIONS

Nov 19, 2020

This Agreement between Mrs. Anitha Arumugam ("You") and John Wiley and Sons ("John Wiley and Sons") consists of your license details and the terms and conditions provided by John Wiley and Sons and Copyright Clearance Center.

License Number 4952400301604

License date Nov 19, 2020

Licensed Content Publisher

John Wiley and Sons

Licensed Content Publication

Environmental Toxicology and Chemistry

Licensed Content Title

Fish reproduction: An ecologically relevant indicator of endocrine

disruption

Licensed Content

Author

William H. Benson, Lisa D. Arcand Hoy

Licensed Content Date Oct 26, 2009

Licensed Content

Volume

17

Licensed Content Issue 1

Licensed Content Pages 9

Type of use Dissertation/Thesis

Requestor type University/Academic

Format Print and electronic

Portion Figure/table

Number of figures/tables

1

Will you be translating? No

Title Identification and expression analysis of sox family genes in

common carp: sox30 and sox19 regulate gonadal function

Institution name University of Hyderabad

Expected presentation

date

Dec 2020

Portions Fig. 1

Mrs. Anitha Arumugam University of Hyderabad

Requestor Location

Hyderabad, 500046

India

Attn: Mrs. Anitha Arumugam

Publisher Tax ID EU826007151

Total 0.00 USD

Terms and Conditions

TERMS AND CONDITIONS

This copyrighted material is owned by or exclusively licensed to John Wiley & Sons, Inc. or one of its group companies (each a"Wiley Company") or handled on behalf of a society with which a Wiley Company has exclusive publishing rights in relation to a particular work (collectively "WILEY"). By clicking "accept" in connection with completing this licensing transaction, you agree that the following terms and conditions apply to this transaction (along with the billing and payment terms and conditions established by the Copyright Clearance Center Inc., ("CCC's Billing and Payment terms and conditions"), at the time that

you opened your RightsLink account (these are available at any time at http://myaccount.copyright.com).

Terms and Conditions

- The materials you have requested permission to reproduce or reuse (the "Wiley Materials") are protected by copyright.
- You are hereby granted a personal, non-exclusive, non-sub licensable (on a standalone basis), non-transferable, worldwide, limited license to reproduce the Wiley Materials for the purpose specified in the licensing process. This license, and any CONTENT (PDF or image file) purchased as part of your order, is for a one-time use only and limited to any maximum distribution number specified in the license. The first instance of republication or reuse granted by this license must be completed within two years of the date of the grant of this license (although copies prepared before the end date may be distributed thereafter). The Wiley Materials shall not be used in any other manner or for any other purpose, beyond what is granted in the license. Permission is granted subject to an appropriate acknowledgement given to the author, title of the material/book/journal and the publisher. You shall also duplicate the copyright notice that appears in the Wiley publication in your use of the Wiley Material. Permission is also granted on the understanding that nowhere in the text is a previously published source acknowledged for all or part of this Wiley Material. Any third party content is expressly excluded from this permission.
- With respect to the Wiley Materials, all rights are reserved. Except as expressly granted by the terms of the license, no part of the Wiley Materials may be copied, modified, adapted (except for minor reformatting required by the new Publication), translated, reproduced, transferred or distributed, in any form or by any means, and no derivative works may be made based on the Wiley Materials without the prior permission of the respective copyright owner. For STM Signatory Publishers clearing permission under the terms of the STM Permissions Guidelines only, the terms of the license are extended to include subsequent editions and for editions in other languages, provided such editions are for the work as a whole in situ and does not involve the separate exploitation of the permitted figures or extracts, You may not alter, remove or suppress in any manner any copyright, trademark or other notices displayed by the Wiley Materials. You may not license, rent, sell, loan, lease, pledge, offer as security, transfer or assign the Wiley Materials on a stand-alone basis, or any of the rights granted to you hereunder to any other person.
- The Wiley Materials and all of the intellectual property rights therein shall at all times remain the exclusive property of John Wiley & Sons Inc, the Wiley Companies, or their respective licensors, and your interest therein is only that of having possession of and the right to reproduce the Wiley Materials pursuant to Section 2 herein during the continuance of this Agreement. You agree that you own no right, title or interest in or to the Wiley Materials or any of the intellectual property rights therein. You shall have no rights hereunder other than the license as provided for above in Section 2. No right, license or interest to any trademark, trade name, service mark or other branding ("Marks") of WILEY or its licensors is granted hereunder, and you agree that you shall not assert any such right, license or interest with respect thereto
- NEITHER WILEY NOR ITS LICENSORS MAKES ANY WARRANTY OR REPRESENTATION OF ANY KIND TO YOU OR ANY THIRD PARTY, EXPRESS, IMPLIED OR STATUTORY, WITH RESPECT TO THE MATERIALS OR THE ACCURACY OF ANY INFORMATION CONTAINED IN THE

MATERIALS, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTY OF MERCHANTABILITY, ACCURACY, SATISFACTORY QUALITY, FITNESS FOR A PARTICULAR PURPOSE, USABILITY, INTEGRATION OR NON-INFRINGEMENT AND ALL SUCH WARRANTIES ARE HEREBY EXCLUDED BY WILEY AND ITS LICENSORS AND WAIVED BY YOU.

- WILEY shall have the right to terminate this Agreement immediately upon breach of this Agreement by you.
- You shall indemnify, defend and hold harmless WILEY, its Licensors and their respective directors, officers, agents and employees, from and against any actual or threatened claims, demands, causes of action or proceedings arising from any breach of this Agreement by you.
- IN NO EVENT SHALL WILEY OR ITS LICENSORS BE LIABLE TO YOU OR ANY OTHER PARTY OR ANY OTHER PERSON OR ENTITY FOR ANY SPECIAL, CONSEQUENTIAL, INCIDENTAL, INDIRECT, EXEMPLARY OR PUNITIVE DAMAGES, HOWEVER CAUSED, ARISING OUT OF OR IN CONNECTION WITH THE DOWNLOADING, PROVISIONING, VIEWING OR USE OF THE MATERIALS REGARDLESS OF THE FORM OF ACTION, WHETHER FOR BREACH OF CONTRACT, BREACH OF WARRANTY, TORT, NEGLIGENCE, INFRINGEMENT OR OTHERWISE (INCLUDING, WITHOUT LIMITATION, DAMAGES BASED ON LOSS OF PROFITS, DATA, FILES, USE, BUSINESS OPPORTUNITY OR CLAIMS OF THIRD PARTIES), AND WHETHER OR NOT THE PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. THIS LIMITATION SHALL APPLY NOTWITHSTANDING ANY FAILURE OF ESSENTIAL PURPOSE OF ANY LIMITED REMEDY PROVIDED HEREIN.
- Should any provision of this Agreement be held by a court of competent jurisdiction to be illegal, invalid, or unenforceable, that provision shall be deemed amended to achieve as nearly as possible the same economic effect as the original provision, and the legality, validity and enforceability of the remaining provisions of this Agreement shall not be affected or impaired thereby.
- The failure of either party to enforce any term or condition of this Agreement shall not constitute a waiver of either party's right to enforce each and every term and condition of this Agreement. No breach under this agreement shall be deemed waived or excused by either party unless such waiver or consent is in writing signed by the party granting such waiver or consent. The waiver by or consent of a party to a breach of any provision of this Agreement shall not operate or be construed as a waiver of or consent to any other or subsequent breach by such other party.
- This Agreement may not be assigned (including by operation of law or otherwise) by you without WILEY's prior written consent.
- Any fee required for this permission shall be non-refundable after thirty (30) days from receipt by the CCC.
- These terms and conditions together with CCC's Billing and Payment terms and conditions (which are incorporated herein) form the entire agreement between you and WILEY concerning this licensing transaction and (in the absence of fraud) supersedes all prior agreements and representations of the parties, oral or written. This Agreement

may not be amended except in writing signed by both parties. This Agreement shall be binding upon and inure to the benefit of the parties' successors, legal representatives, and authorized assigns.

- In the event of any conflict between your obligations established by these terms and conditions and those established by CCC's Billing and Payment terms and conditions, these terms and conditions shall prevail.
- WILEY expressly reserves all rights not specifically granted in the combination of (i) the license details provided by you and accepted in the course of this licensing transaction, (ii) these terms and conditions and (iii) CCC's Billing and Payment terms and conditions.
- This Agreement will be void if the Type of Use, Format, Circulation, or Requestor Type was misrepresented during the licensing process.
- This Agreement shall be governed by and construed in accordance with the laws of the State of New York, USA, without regards to such state's conflict of law rules. Any legal action, suit or proceeding arising out of or relating to these Terms and Conditions or the breach thereof shall be instituted in a court of competent jurisdiction in New York County in the State of New York in the United States of America and each party hereby consents and submits to the personal jurisdiction of such court, waives any objection to venue in such court and consents to service of process by registered or certified mail, return receipt requested, at the last known address of such party.

WILEY OPEN ACCESS TERMS AND CONDITIONS

Wiley Publishes Open Access Articles in fully Open Access Journals and in Subscription journals offering Online Open. Although most of the fully Open Access journals publish open access articles under the terms of the Creative Commons Attribution (CC BY) License only, the subscription journals and a few of the Open Access Journals offer a choice of Creative Commons Licenses. The license type is clearly identified on the article.

The Creative Commons Attribution License

The <u>Creative Commons Attribution License (CC-BY)</u> allows users to copy, distribute and transmit an article, adapt the article and make commercial use of the article. The CC-BY license permits commercial and non-

Creative Commons Attribution Non-Commercial License

The <u>Creative Commons Attribution Non-Commercial (CC-BY-NC)License</u> permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.(see below)

Creative Commons Attribution-Non-Commercial-NoDerivs License

The <u>Creative Commons Attribution Non-Commercial-NoDerivs License</u> (CC-BY-NC-ND) permits use, distribution and reproduction in any medium, provided the original work is properly cited, is not used for commercial purposes and no modifications or adaptations are made. (see below)

Use by commercial "for-profit" organizations

Use of Wiley Open Access articles for commercial, promotional, or marketing purposes requires further explicit permission from Wiley and will be subject to a fee.

Further details can be found on Wiley Online Library http://olabout.wiley.com/WileyCDA/Section/id-410895.html

Other Terms and Conditions:

v1.10 Last updated September 2015

Questions? $\underline{\text{customercare}}@\underline{\text{copyright.com}}$ or +1-855-239-3415 (toll free in the US) or +1-978-646-2777.

anitha arumugam <anitha@uohyd.ac.in>

AW: Requested Karger Material

1 message

Rights and Permissions <permission@karger.com>
To: "anitha@uohyd.ac.in" <anitha@uohyd.ac.in>

Thu, Nov 19, 2020 at 5:34 PM

Dear Anitha Arumugam,

Thank you for your email. As to your request, I am pleased to inform you that permission is granted hereby to reprint your article

Todd E, V, Liu H, Muncaster S, Gemmell N, J: Bending Genders: The Biology of Natural Sex Change in Fish. Sex Dev 2016;10:223-241. doi: 10.1159/000449297

as a chapter in the printed and electronic version of your **thesis/doctoral dissertation**, provided that proper credit will be given to the original source and that S. Karger AG, Basel will be mentioned.

Please note that this is a non-exclusive permission, hence any further use, edition, translation or distribution, either in print or electronically, requires written permission again as this permission is valid for the above mentioned purpose only.

This permission applies only to copyrighted content that S. Karger AG owns, and not to copyrighted content from other sources. If any material in our work appears with credit to another source, you must also obtain permission from the original source cited in our work. All content reproduced from copyrighted material owned by S. Karger AG remains the sole and exclusive property of S. Karger AG. The right to grant permission to a third party is reserved solely by S. Karger AG.

Thank you for your understanding and cooperation.

Hopefully, I have been of assistance to you with the above.

Kind regards

Samuel Lei

Rights & Permission Manager

ePartner Manager

s.lei@karger.com

S. Karger AG · Allschwilerstrasse 10 · 4009 Basel · Switzerland +41 61 306 11 11 · karger.com

Follow us on Facebook · Twitter · LinkedIn

Von: permission@karger.com <permission@karger.com>
Gesendet: Donnerstag, 19. November 2020 10:16
An: Rights and Permissions <permission@karger.com>

Betreff: Requested Karger Material

Dear Customer

Thank you for your Requested Karger Material

The following details have been noted:

Delivery address:

First name: Anitha Family name: Arumugam I am a/an: student

Company/University/Institute: University of Hyderabad

Position: PhD student City: Hyderabad Zip/Postal code: 500046

Country: India

Mailto: anitha@uohyd.ac.in

Requested Karger Material:

DOI: 10.1159/000449297

Title: Bending Genders: The Biology of Natural Sex Change in Fish

Figure 4 and 5

2 of 3 19-Nov-20, 5:47 PM

Reuse:
PrintRun Research thesis
I would like to: reuse in a thesis/dissertation
Best regards,
Rights and Permissions permission@karger.com
S. Karger AG Medical and Scientific Publishers Allschwilerstrasse 10 4009 Basel Switzerland t +41 61 306 1111 f +41 61 306 1234 www.karger.com
Copyright © 2020 All Rights Reserved.
info@karger.com +41 61 306 11 11

Privacy Policy | Terms of Use | Imprint

