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ABSTRACT

In the last few decades, the Northeast-India one of the rich biodiversity hotspot, has
encountered various changes in terms of climatic-vegetation related issues due to anthropogenic
activities and other various possible reasons. Annual cycle, seasonal climatology and trends, and
extreme month for summer monsoon season and winter monsoon season during the historical period
(1970 to 2005) have been studied. For this, precipitation, maximum and minimum temperature data
sets collected from the observed climate data from the India Meteorological Department (1° x 1°),
Aphrodite and CRU-reanalysis (both 0.5° x 0.5°), and five regional-climate-model simulations
(LMDZ, MPI, GFDL, CNRM and ACCESS) data from AR5/CORDEX-South-Asia (0.5° x 0.5°) are
used. The models are able to capture the annual cycle and seasonal area-averaged trends qualitatively
though a large spread and differences in the locations are found across the models in spatial distribution
of various climatologies of all the climatic variables used. No significant trend in precipitation over the
region is found while significant trends are observed in the area-averaged minimum temperature during
winter season. The heaviest extreme seasonal rainfall captured by models is underestimated as
compared to observation data. The ENSO does not have any signficant impact or association with the

climate over the region during the two seasons.

The Last Millennium (LM) particularly, Medieval Climate Anomaly period (MCA): 935 CE to
1034 CE & Little Ice Age (LIA): 1735 CE to 1834 CE collected from the PMIP3/CMIP5 models
CCSM4, MRI-CGCM3, MPI-ESM-P, available at 288 x 192 x L.26 1, 320 x 160 x L48, and 196 x 98 x
L47 discretization have been studied. In addition to this, a higher resolution outputs from the
ECHAMS5, an atmospheric general circulation model (AGCM) at T106 (~1.125° x 1.125°) horizontal
resolution from the Max Planck Institute for Meteorology, Germany for the period of 30 years (MCA:

935 CE to 965 CE and LIA: 1735 CE to 1765 CE) are also used. The simulations from the models do



not show any changes over the region during these two periods. The ENSO indices show weak and

statistically insignificant during these two periods

In the future projections (2011 to 2060) study from the CORDEX-South-Asia model, a
decreasing insignificant trend is projected in seasonal precipitation while an increasing trend is
observed for both seasonal maximum and mimum temperature during the future projections over the
region. The change in extreme rainfall is not clear in the future projections while the frequency of
extreme monthly maximum and minimum temperature are projected to increase. The results show the
uncertainty exists in the CORDEX-South-Asia model projections over the region in spite of the

relatively high resolution.

To understand whether vegetation changes are associated with climate change, three seasons,
namely the wet season (June—October), winter (November—February) and dry season (March—May) are
evaluated using the vegetation patterns (Deciduous Broad Leaf forest, Evergreen Broad Leaf forest,
Evergreen Needle Leaf forest, Mixed Forest, Shrubland, and Grassland) to the current day climate
observations over the region. For this study, I use the Normalized Difference Vegetation Index (NDVI)
datasets (500 m resolution), for the 2000-2017 period, from the Moderate Resolution Imaging
Spectroradiometer on board the MODIS-Terra satellite against rainfall (0.25° x 0.25°) maximum and
minimum temperature datasets (1° x 1°) from the India Meteorological Department, Normalized
Difference Wetness Index (NDWI) (500 m resolution) from MODIS and aridity data (5 km x 5 km)
from TerraClimate. The field-sample data on vegetation types collected from land use land cover map

of 2005 are also used.

Interannual and inter-seasonal variations in the anomalies of the area-averaged NDVI for all the

vegetation are seen in all the seasons which can be attributed to variation in rainfall distribution.



Two/three years lagged dependency, or even a one year lag of the NDVI anomaly to the rainfall
anomaly within each season are found but insiginificantly. Evergreen Broad Leaf forest and Deciduous
Broad Leaf forests are particularly seen to be affected drastically while the Evergreen Needle Leaf
forest, which does not get affected much is also found to be fluctuated, by making this study a first of
its kind in delivering the message of the prevailing situation in the region. The NDVI anomalies of
winter season show a greater magnitude in declining towards negative anomalies than the other two
seasons (wet and dry season) indicating the impact of sharp decline of summer monsoon rainfall on
winter season NDVI. The NDVI anomaly responses are seen to be more strongly associated with
rainfall in all seasons indicating the limiting factor for the growth of the vegetation types. However,
during the summer monsoon and pre-monsoon season, the moisture availability from the NDWI,
aridity due to the fluctuations of maximum and minimum temperature are also seen indicating a
combine effect of temperature and rainfall. Negative anomailes in NDVI during drought years are more
prominently seen. The correlation, lag correlation, and regression analyses calculated between NDVI
and the rest of the parameters are statistically weak and insignificant for all the vegetation studied. The
maximum NDVI values, both area-averaged and spatially, show that the winter season has the highest
NDVI values due to cumulative contribution of summer monsoon rainfall and winter monsoon rainfall
while dry season being the lowest due to moisture deficit. Thus, the study provides the first report of
evident stress in the different vegetation types associated with climate change, though the magnitude

varies with the season.
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CHAPTER-1

INTRODUCTION

The chapter briefly explains and discusses the general findings on the climate change signatures in the
Indian summer monsoon rainfall and its variability, with a focus on those in north-eastern India (NER),
the study area. It also briefly provides a review of the importance of climate to the vegetation in the
NER region and the consequences due to its variation in the climate. At the end of the chapter, based on

the research gaps elucidated, I introduce the objectives of this thesis.

1.1 General Introduction on monsoon and its variability and change

Impacts of warming due to anthropogenic emissions from the pre-industrial period (from 1870s) to the
present period, which exacerbated in the last 4-5 decades are stated to persist for centuries to millennia
thereby causing a long-term change in the climate system as reported by the Intergovernmental Panel
on Climate Change (IPCC, 2013 and Working Group III, 2018). Human influence has been detected in
the warming of the atmosphere and oceans according to the WG1 report of the IPCC 2013. Rainfall and
temperature are the two key elements of climate that are commonly used as indicators of global climate
(Pai et al., 2014). The anthropogenic climate change manifested as changing temperatures and rainfall,
is likely to pose a serious risk to ecosystems, economy, water shortages, increased in heat-induced
mortality to extreme events, and widespread health impacts to human society according to the WG3

(Working Group III) report of the IPCC, 2019. Both rainfall and temperature are major components of



the terrestrial hydrological cycle (Pai et al., 2014) and changes in its pattern would directly influence

the water resources of the concerned region (Jain et al., 2013).

The climate of the Indian subcontinent is dominated by the monsoons which are pronounced seasonal
reversals of winds and transitions from drier to wetter regimes (Rao, 1976; Pant and Rupa Kumar
1997). The southwesterly winds, during the summer, pick up moisture from the northern Indian Ocean
and drop on the landmass providing the summer monsoon rainfall. The Indian sub-continent, home to
more than 1.3 billion people, receives about 70%-75% of its annual rainfall (Figure 1) during June-
September months (henceforth JJAS) and is known as the Indian summer monsoon season (Pant and

Kumar, 1997).
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Figure 1. The area-averaged climatological monthly rainfall over the Indian region as a percentage of

annual rainfall (Source data: C. T. Tejavath).



The mean area-averaged Indian summer monsoon rainfall (ISMR) over the last 100 years is about 890
mm (Pattanaik, Chapter 2, Meteorological Monographs, 2012). During the Northeast winter monsoon
season, the winds blow from the northeast regions of the Asian continent and travel towards the Indian
Ocean (Singhvi and Krishnan, 2014). The monsoon system operates via connections between
atmosphere, land, and ocean systems, through fluxes of heat, moisture, and momentum between them
(Pant, 2003). The El Nifio-Southern Oscillation (ENSO), among others, is the most prominent of the
drivers of Indian climate variability (Sikka, 1980; Keshavamurty, 1982; Mohanty et al., 2020). A recent

review provides details of this association and earlier references (Ashok et al., 2019).

As per the Fifth Assessment Reports of the (IPCC 2013), an increase in global mean surface
temperature over a range from 1.1 °C to 2.6 °C is projected in response to increasing emissions, as
simulated by the Coupled model intercomparison project phase 5 (CMIP5). As per the report, the
Indian subcontinent will be adversely affected by rising temperature and substantial changes in summer
rainfall. Indeed, the Indian landmass has been warming up for the last 4-5 decades (Revadekar et al.,
2012 and Kothawale et al., 2012). The Indian summer monsoon is also seeing signatures of a
weakening trend in central states such as Chhattisgarh (e.g. Krishnan et al., 2016). General circulation
models of the CMIP5 vintage fail to simulate the mild weakening trend in the observed rainfall
(Jourdain et al., 2013). Fortunately, several downscaled regional climate model simulations, which
downscaled the CMIP5 seem to capture the weakening trend in the Indian summer monsoon rainfall
(ISMR). An example is the Laboratoire de Météorologie Dynamique (LMDZ) model simulations,
under the aegis of The Coordinated Regional Downscaling Experiment (CORDEX) South Asia at high
resolution (Krishnan et al., 2016). The regional climate models, by virtue of their higher resolution
compared to the General Circulation Model (GCM) outputs under the CMIP5, have been increasingly

used to examine patterns of climatic variables. These can be expected to represent the climate as
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realistic as possible building the confidence to address the future projections under different climate

scenarios (Pattnayak et al., 2017).

Precipitation and temperature over the Indian landmass exhibit a considerable variation both spatially
as well as temporally (Pattnayak et al., 2017). The spatial variability of rainfall in Northeast India
(NER), our study area, during the monsoon season is highly complex and could be due to the larger
influence of the monsoon trough, westerly systems, and significant interaction between convection and
basic flow due to varied physiography of the region (Mohapatra et al., 2011). The main sources of
moisture for the summer monsoon rains over the NER are claimed to be from the Indian Ocean and the
northern Bay of Bengal (Breitenbach et al., 2010). The summer monsoon rainfall in the NER shows a
weak association with the area-averaged Indian summer monsoon, and even shows a weak negative
correlation with summer monsoon over the central and north-western parts of India (Parthasarathy et
al., 1984). Sparse observations, and rapid changes in the topography that affect the weather and climate
substantially, pose a potential challenge in documenting the mean climate, let alone the climate

variability and change over NER.

1.2 Northeast India, and its climate

Northeast India (NER ~ 89.5° E to 98.5° E and 21.5° N to 29.5° N; Figure 2), a prominent region of
India, covers a geographical area of 262,230 km?, and home to a population of about 45 million
(Ministry of Home Affairs, Government of India). Out of this total geographical area, 28.3% has an
elevation of more than 1200 m, 17.9% between 600 m and 1200 m and about 10.8% between 300 m
and 600 m above mean sea level (Laskar et al., 2014). Around 82% of the total population is
characterized by a largely rural population with low population density, a large percentage of

indigenous tribal communities (34-91%), and a large area under forests (60%) (Ravindranath et al.,
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2011). The entire region is a part of Indo-Burma and Himalayan hotspots, 2 of 25 such hotspots in the
world (Jain et al., 2013). The region is located at the confluence of the Indo-Malayan, Indo-Chinese,
and biogeographical realms (Tripathi et al., 2016). It shares international borders with Myanmar, China,
Bhutan, and Bangladesh (Chakravarty et al.,, 2012). The region comprises seven states, popularly
known as seven sisters, namely, Arunachal Pradesh, Assam, Meghalaya, Mizoram, Manipur, Nagaland,
and Tripura (Sikkim is not included in the study area). The region has complex terrain, excessive

sloping land with rolling topography, different altitudinal patterns, unique ethnicity (Laskar et al.,

2014).
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Figure 2: Study area (Northeast India, bounded by black box)



As the region have varied physiological features and altitudinal differences (Laskar et al., 2014), it is
characterized by diverse climate regimes (Ravindranath et al., 2011) with predominantly humid
subtropical with hot, humid summers, severe monsoons, and mild winters (Laskar et al., 2014). It has
an area-averaged seasonal rainfall of 152 cm (Parthasarathy et al., 1995). The orographic dominance
leads to enhanced convection making rainfall distribution more complex over the region (Mohapatra et
al., 2011). Cherrapunji, a town in the NER, with the highest rainfall of ~12,000 mm in the world has
been recently overtaken by a neighboring town, Mawsynram which is 80 km away (Jain et al., 2013).
The Northeast India summer monsoon rainfall (NERSMR) simulations indicate a decreasing summer
monsoon rainfall unlike rainfall received in mainland India (Dash et al., 2012 and Krishnan et al.,
2016). The region is highly dependent on the summer monsoon rainfall and over 60% of the crop area
is under rainfed agriculture, and so is in areas highly vulnerable to climate variability and climate
change (Ravindranath et al., 2011). The mean temperature varies from 5° C to 30° C and the mean

relative humidity remains between 70% and 85% for the most part of the year (Jain et al., 2013).

The NER is also endemic to many flora and fauna making it one of the richest providing habitats with
diverse biota and a high level of endemism (Chakraborty et al., 2012 and Tripathi et al., 2016). The
region has a great range of ecological habitats due to tremendous climatic, edaphic, and altitudinal
variations (Tripathi et al., 2016). The vegetation ranges from alpine to subtropical and tropical wet
evergreen, semi-evergreen, and moist deciduous (Saikia, 2009 and Dash, et al., 2015). According to the
Forest Survey of India (FSI), 2017 the north-eastern states of India account for one-fourth of the
country’s forest cover and there is a net decline of 630 km2 in forest cover compared with the previous
assessment. While FSI, 2019 reported a decrease in the forest cover in 2019 in all the Northeastern
states, except for Assam and Tripura. They reported that the forest cover in Arunachal Pradesh has

decreased by 276.22 sq km, Meghalaya by 27.21 sq km, Nagaland by 2.60 sq km, Manipur by 499.10

6



sq km, Mizoram by 180.49 sq km while Assam has increased by 221.51 sq km and Tripura by 0.41 sq
km. Due to poor infrastructure, lack of provisions supplied and other necessary livelihood
requirements, the region has no basic government facilities, as a result of which the resources of the

forests are exploited (Tripathi et al., 2016).

Vegetation is a vital component of the terrestrial ecosystem. It forms a green blanket on the earth (Roy
et al.,, 2015b) with great variability over time and space (Sarmah et al., 2018). It characterizes the
landscape both functionally as well as structurally (Roy et al., 2015b). It not only plays an important
role in regulating biodiversity but also contributes to the variation of terrestrial net carbon uptake on
Earth (Li et al., 2016). In addition to this, it is an essential element of the land surface system linking
soil, water, air, and other environmental components which provides valuable information about the
phenological change, crop status, land degradation, and most importantly global warming (Liu et al.,

2015).

Global warming in recent decades has induced shifts in vegetation, causing a potential reduction in
biodiversity and eventually alteration of ecosystems (Li et al., 2016). The productivity of vegetation
ecosystems around the world has been greatly influenced by climate change. Changes in vegetation
patterns in the mountain ecosystems are considered as one of the important and most noticeable forms
of biodiversity affected by climate change (Li et al., 2016). Any changes in the vegetation density are
associated with the annual and seasonal dynamics of the climatic variables of the respective region
(Revadekar, Tiwari, & Kumar, 2012). The climate variability mainly reflected in precipitation and
temperature is a major driver of vegetation dynamics. The relative impact of these two climatic
variables on vegetation growth varies with time (Liu et al., 2015). Warming reduces the vegetation

growth because moisture deficit due to increased evapotranspiration may offset the positive effect of
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temperature on vegetation growth (Liu et al., 2015). Any distinct regional and local patterns of climate,
say, changing rapidly due to topography, also uniquely influence the growth of the vegetation. Thus, the
study of phenology i.e. life cycle of the plant provides an excellent quantity in evaluating the impact of
climate change on vegetation. These periodic events (life cycle) of plants are initiated by climatic
variations and climate change, in addition to other environmental factors (Chandola et al., 2010). The
vegetation plays a vital role in water conservation as trees and other vegetation reduce the runoff and
also increase percolation of water into the soil thereby improving the water regime in the area (Forest

Survey of India, 2019).

Remote sensing is an important method for gathering information through mapping, measuring, and
understanding changes in vegetation over spatial and temporal scales (Bhandari et al., 2012). Remote
sensing-based satellite data has been very useful in studying the vegetation dynamics as it helps in
identifying direct factors such as climate variability, human land-use management, and indirect factors
such as climate change, CO?2 fertilization, nitrogen deposition, and recovery from natural disturbances
(Chen et al., 2019). The spectral signature of the vegetation of an area differs to changes in growth,
phenological stage, and health of the vegetation and this information is useful in the study of the
seasonal and inter-year changes associated with the vegetation cover over a given region (Hasan et al.,
2011 and Nischitha et al., 2014). The measure of the vegetation cover and biomass could be evaluated
by using a vegetation index, an indicator used for primary productivity and crop yield. It has been used
for various purposes such as for detecting vegetation dynamics, agricultural production (Milesi et al.,
2010), and long-term land use land cover variations (Reed et al., 1994; Revadekar et al., 2012 and
Nischitha et al., 2014) for modeling terrestrial ecosystems on the global, continental and regional

scales. As the human-induced and climate changes taking place, the study of time series of satellite data



is valuable because they provide a monitoring system with repeatable vegetation index measurements

(Jong et al., 2012).

1.3 Literature Review

1.3.1 Recent Climate change over India, with focus on north-eastern India

1.3.1.1 Climate change over India

The daily rainfall data set from 1951 to 2000 (Goswami et al., 2006). They found a rising trend
significantly in the frequency and also, the magnitude of extreme rain events. They also found a
decreasing trend significantly in the frequency of moderate events over central India. While Goswami
et al., (2006) claimed that seasonal mean rainfall over the region does not show a significant trend,
subsequent studies show a significant decreasing trend in summer monsoon rainfall over states such as
Chattisgarh in central India e.g. (Guhathakurta and Rajeevan, 2008; Rajendran et al., 2013 and
Krishnan et al., 2016, etc). The temperature time series over North and South India during dry
(November to May) season and wet (June to October) season for the period 1901-2007 (Kothawale et
al., 2012). They found that the temperature shows a significant increasing trend over the regions. An
increase in surface temperatures across various regions of India during the recent 3—4 decades as
compared to the earlier period is also seen (Revadekar et al., 2012). They also found that the
temperature during the winter season is expected to be prominent. The number of cold events is found

to decrease by more than 75% while hot events increases are seen in around 70% of stations.

As far as climate projections are concerned, the general circulation models under the CMIP have a
limited capability. For example, the variability of mean summer monsoon rainfall have been carried out

in Indian and Australian monsoon using simulations from multi model mean summer monsoon rainfall
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from 59 models using CMIP3 and CMIP5 simulations (Jourdain et al., 2013). The study in Indian and
Australian monsoon shows that the observational uncertainty and model spread exists over the Indian
region. They have also stated that the CMIP5 model performs better in reproducing the mean ISMR
than the CMIP3 models. The CMIP3 and CMIP5 models have shown challenges in simulating the
teleconnections and trends of the Indian summer monsoon rainfall owing to poor resolution, inadequate
simulation of ENSO annual cycle, and consequent poor replication of monsoon-ENSO association, and
importantly, spread in the observation-based gridded rainfall and temperature datasets (Jourdain et al.
2013 and Collins et al., 2013). The problem is more acute in reanalysis (also see Prakash et al., 2014).
The decreasing Indian summer monsoon rainfall trend during the past decades (Guhathakurta and
Rajeevan, 2008; Rajendran et al., 2013 and Krishnan et al., 2016, etc.) is not reproduced by the CMIP5
models, which is a serious limitation of the GCMs at coarse resolution in capturing the south Asian

climate change in the recent decades (Roxy et al., 2015 and Krishnan et al., 2016).

As per a recent report by the Ministry of Earth Sciences (Krishnan et al., 2020), the summer monsoon
rainfall has declined by 6% over India during the recent decades. An increase in the variability of
summer monsoon rainfall and mean rainfall is projected by the end of the 21st century. It is also
reported that the average temperature in India has risen by around 0.7°C during the recent decade. The
temperature is projected to be rising by 4.4°C over India under the RCP8.5 scenario. Further details
about the trends in the climate of India during the recent 4-5 decades, and the projections, can be

availed from a recent report by the Ministry of Earth Sciences (Krishnan et al., 2020).

1.3.1.2 Recent climate variability and change over northeast India
The NER has a much larger seasonal summer monsoon mean rainfall (June to September) of around

152 cm than the rest of all India average which has about 86.5 cm ( Parthasarathy et al.,1995). The
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region as mentioned above receives the highest seasonal rainfall in India during the summer monsoon
season. The temporal trends of precipitation and temperature from 1970 to 2099 over the NER using
stations data sets have been studied where they have found out that the precipitation decreases while
the temperature (maximum and minimum) increases in some portions of the region (Dash et al., 2015).
The climate statistics evaluated by them show that the study varies from place to place due to sparse
observational data sets and computational methods applied to the respective area over which the
rainfall is averaged. Daily rainfall data from 15 stations for the period 1975 to 2006 in the NER studied
by Goswami et al., 2010 found that the extreme rainfall events in NER decrease in the last few decades.
This suggests an opposite pattern to the increase in the extreme rainfall events over central India. The
difference is the topography of the region and its distance from Central India. The climate change
vulnerability profiles of the NER at the district level for water, forest, and agriculture sectors for the
current and future projections have been studied (Ravindranath et al., 2011). The study revealed that
there is a significant decreasing trend in observed rainfall and increasing temperature in various places
in the region. The region is seen affecting by climate change which may lead to droughts in the future

due to a decrease in rainfall and an increase in temperature (Mondal et al., 2014).

1.3.2 Climate change studies based on the future projections, and climate during Last
Millennium

While future climate projections cannot be verified, the simulations of the past climate, particularly that
in the last millennium (LM), may be compared with the available paleo-observations, sparse as they

dare.

Analysis of Paleoclimate Modelling Intercomparison Project 3 (PMIP3) outputs by Tejavath et al., 19

(T19) shows a higher number of El Nifios relative to La Nifias during the Medieval Climate Anomaly
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(MCA), and vice-versa during the Little Ice Age (LIA). Notwithstanding that, the simulated Indian
summer monsoon climate was relatively warm and wet (cold and dry) during the MCA (LIA).
According to T19, changes in divergence/convergence patterns in the Indian monsoon region due to
multi-centennial east-west shifts in the Walker circulation over the tropical Indo-pacific, result in a
reduction of the ENSO impacts on the ISMR. The evolution of climate during the LM in the NER has
been subject to local topography, among other factors (Mehrotra et al., 2014). They emphasize the
spatial-diversity in the climate evolution in the NER during the MCA and LIA. Even a 1°~20 difference
seems to matter owing to the topography. For example, some of these palynological studies suggest
warmer and humid conditions during MCA and moderately humid LIA in the field sampled locations of
the NER (Chauhan and Mandaokar, 2006; Bhattacharyya et al., 2007; Nautiyal and Chauhan, 2009;
Basumatary and Bera, 2010 and Tripathi et al., 2017 ). In contrast, a weakening of the Southwest
Monsoon since 900 BP in lower Assam (Dixit and Bera, 2012), and a generally cold-dry to a cold-moist
oscillation of climate in the highland state of Sikkim, concurrent with the global LIA and MCA signals
(Sharma and Chauhan, 1999) have been suggested. Further north between 27° N-28° N, warm and
moist conditions from 2500 BP till today are indicated (Sharma and Chauhan, 2001; Bhattacharyya et
al., 2007). Besides, an analysis of a sedimentary section from Arunachal Pradesh in the northeast
Himalaya indicates a stable climatic condition from 1200 BP to the present (Agrawal et al., 2012). A
speleothem record from the Wah-Shikar cave record (Gupta et al., 2019) indicates a relatively wet
condition during MCA and mixed conditions and even mega-floods during the LIA. These studies
suggest that the climate across NER throughout the LM may have been uniform, unlike other Indian

regions.

Coming to future projections analysis, multi-model and multi-scenario precipitation and temperature

projections for India based on CMIP5 for the period 1860 to 2099 and found that the CMIP5 ensemble
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means the climate is closer to observed climate than any other individual model (Chaturvedi et al.,
2012). They have also observed that mean warming in India between RCP6 and RCP8.5 is likely to be
in the range of 1.7 °C to 2°C by 2030s and 3.3 °C to 4.8 °C by 2080s. They have also projected an
increase of all India precipitation from 4 to 5% by 2030s and from 6 to 14% by 2080s. The present-day
climatic conditions over the NER using the India Meteorological Department (IMD) and Regional
Climate Model version 3 (Dash et al., 2012). They found wet bias over major parts of the region in the
model precipitation. Warm nights in the summer months was found to be more frequent than the warm
days. They also simulated a rise in the annual mean temperature in the future years. They are the only
ones who have studied the climate variability over the region using model data based on downscaling
CMIP3 datasets. They have found that the models overestimate rainfall data during the current period.

The CMIP3 models projected an increase in the annual mean temperature.

1.3.3 Vegetation change studies based on remote sensing tools

The following is a brief review of the recent research on changes in the vegetation and its dynamics
mainly in the NER, based on remote sensing studies. I also briefly discuss such studies for other

regions, but relevant for my work reported in the thesis.

The time series of vegetation greenness data from satellites using Normalized Difference Vegetation
Index (NDVI) satellite data between 1982 and 2008 have been examined globally (Jong et al., 2012).
They have found both abrupt and gradual changes in large parts of the world with net greening
detecting in all biomes, most notably in croplands and least notably in needle leaf forests. However,
they have reported that 15% of the global land area, trends were found to have changed between

browning and greening. They stated that such trends at large temporal extents may not be significant
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and are often highly uncertain. Vegetation dynamics over South Asia using Advanced Very High-
Resolution Radiometer (AVHRR) Normalized Difference Vegetation Index (NDVI) have been studied
(Sarmah et al., 2018). They stated that various vegetation indices show diverse trend patterns over the
same area where discrepancies occurred in tropical and subtropical areas during the summer monsoon
season. From the recent satellite data for the period 2000 to 2017, China and India show a greening
pattern that overlaps with croplands worldwide (Chen et al., 2019). The greening trend in China
accounts for 42% from forests, 32% from croplands while in India, 82% from croplands and 4.4% from

forests.

The vegetation in India using NDVI data from the Global Inventory Modeling and Mapping Studies
(GIMMS) dataset obtained from the Advanced Very High-Resolution Radiometer (AVHRR) instrument
onboard the National Oceanic and Atmospheric Administration (NOAA) satellite between 1982 and
2003 have been studied (Jeyaseelan et al., 2007). They found positive anomaly trends in vegetation
change in most parts of the Indian region. The Spatio-temporal variability has been examined in some
parts of India including Northeast India using data sets from the Advanced Very High-Resolution
Radiometer (AVHRR) for the period 1981-2000, and Moderate Resolution Imaging Spectroradiometer
(MODIS) Aqua data that was available for the 2000-2010 period (Revadekar et al., 2012). Their
analysis shows that precipitation has a positive influence on the variability of vegetation. They have
also found year to year variations in NDVI depending on the performance of the monsoon. A new
vegetation type map of India has been prepared using satellite remote sensing where shifting cultivation
was identified as the primary cause of deforestation in northeast India and seemed to be one of the
major causes of forest conversion (Roy et al., 2015a). They have stated that due to practicing shifting
cultivation by the people living in or near the forest, it continues to have a constant impact on the

neighboring forests.
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The fractional vegetation cover analysis in Northeast India using IRS WiFS NDVI has been studied for
the period 1998 to 2000 during which they have found a decrease in fractional vegetation cover and
increase in some other areas due to abandoned shifting cultivation (Lele et al., 2005). The forest
fragmentation in Northeast India has been carried out using landscape matrices where they have found
that the forest has been severely fragmented and the loss could be attributed to shifting cultivation,
firewood, and fodder collection (Lele et al., 2008). The vegetation cover in NER using NDVI from
NOAA/AVHRR and GIMMS data sets against rainfall and temperature from the Climate Research
Unit’s CR TS 2.1 data sets for 34 study sites for the period 1982 to 2002 where a decrease in the
vegetation cover was found stating the causal factors to be climate change, shifting cultivation and
rapid deforestation (Saikia, 2009). They have also reported a weak linear relationship between the
growing season and, one- and two-month lags respectively, to rainfall and temperature over the region.
Seasonal greenness over different forest types of India using MODIS time series NDVI data for the
period 2001 to 2014 where 80% of the total negative changes in seasonal greenness are found in the
core forest areas (Chakraborty et al., 2018). They also indicated that most of the changes are of high to
medium category signifying the vulnerability of the Indian forest. The impact of climate change on
Indian forests is based on climate projections of the Regional Climate Model of the Hadley Centre
(HadRM3) and the dynamic global vegetation model IBIS for A2 and B2 scenarios (Chaturvedi et al.,
2011). They presented a vulnerability index where northern and central parts of Western Ghats, parts of
central India, upper Himalayas show most vulnerable to projected climate change while Northeastern

forests show more resilient.
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1.4 Research Gaps
The study primarily focuses on climate change during historical, future projections, the last
millennium, and its impact on the vegetation over the region. The main reasons for conducting this

study are as follows:

Firstly, the region, Northeast-India, as mentioned above has been affected drastically due to a decrease
in rainfall and temperature. Despite having changes due to climate change, there is a lack of
understanding of the interannual climate variability and teleconnections over the region. Only Dash et
al 2012 have studied the recent and projected future climate change based on model studies. This
indicates a very limited field sample of future projections over the region making it uncertain in terms
of climate study. Therefore, there is a need for assessing the recent climate change using modern
multiple datasets including many new available projections. Not only this, there is a need to compare

the current climate with paleoclimate to generate better future scenarios.

Importantly, availability of multiple observational rainfall datasets such as the gridded IMD rainfall
datasets as well as the Asian Precipitation Highly Resolved Observational Data Integration Towards
Evaluation of water resource (APHRODITE) rainfall datasets is an opportunity to intercompare the
results, have a measure of uncertainty, and also explore whether model projections fall in the
uncertainty range from observations (e.g. Jourdain et al., 2013). It is also important to compare the
signals from the gridded rainfall datasets vis a vis those from the station observations which is available
from 1951 to 2014. Furthermore, the availability of relatively high-resolution CORDEX south Asia
projections from multiple models help us to study the NER climate variability and future projections

and add to the state of the art knowledge in this regard.
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Secondly, the vegetation is associated with the annual and seasonal variations of the climate
(Revadekar, Tiwari, & Kumar, 2012). Therefore, any changes in the local climate of the region could be
a critical factor to the ecosystem thereby affecting the water balance in the soil moisture. This
eventually affects the growth and distribution of vegetation. The response of vegetation to the changing
environment or climate change is not yet well established over the region due to sparse datasets
available. Therefore, using high-resolution satellite-based datasets, the impact of climate change on the

vegetation profile for the region can be understood.

Based on the above, and gaps that exist as seen in this sub-section as well as others that were seen from

the literature survey, I have defined the following objectives that I address in this thesis.

1.5 Objectives of the Thesis

The main goal of this work is to examine climate change and its impact in North East India. To attain
the goal, the main objectives considered in this study are as follows:

1). To explore the current climate and its variability in Northeast India, using observations and
CORDEX-SA historical simulations.

2). To study the past climate and future climate scenarios in light of observation data sets.

3). To examine the vegetation pattern in response to the current climate profile over the region.

1.6 Significance of the Study

Given the uncertainty that arises and with limited sampling available over the region, the study would
be an opportunity in addressing the future climate at a higher resolution in light of the observation data
available. Not only the current and future climate, but a paleo-research study would also be useful in

attributing the studies as climate change is unprecedented. Past climate analysis may provide analogs

17



that may help us understand the current climate change and future projections better. For example,
paleo simulation analysis would help in determining whether the changes between the two climate
phenomena i.e. summer monsoon rainfall and ENSO are over long periods(e.g. Tejavath et al., 2019;
2020). As the region has the highest density of biodiversity, analysis of climate variability in the past
over the region will be interesting. In this context, a brief analysis during the last millennium (LM) and
future projections scenarios have been evaluated over the region to make a qualitative evaluation of
whether the NER climate has changed over the last millennium, just as over the rest of India. This has
obvious implications for juxtaposing the future changes of NER with that over other regions of India,
say, the core monsoon region. Having said that, the region given its importance, studying its climate

variability across the past through the future will be interesting.

Any changes in the phenological events of plants indicate variations be it climate or the condition of
the plants and their environment (Reed at al., 1994). The spatial pattern of vegetation trends and their
drivers vary significantly in different regions and seasons due to interannual variability (Sarmah et al.,
2018). Therefore, such a study over the concerned region where the conventional observations are
limited could provide linkages between climate cycles and trends in vegetative cover. The interaction
between the climate variability and vegetation dynamics needs to be better understood as the monsoon
has a great influence on it over the region and the annual trend alone cannot explain in detail the
growth patterns. Proper and detailed monitoring is needed to assess whether the changes are taking
place or not, and also for the development of the concerned ecosystem and human resource

development.

Because of the above reasons, the study focuses on climate change and its responses to the vegetation

at periodic level over the NER.
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1.7 Outline of the thesis

This thesis is structured into four chapters:

In chapter 1, the general concept of climate change, a brief introduction of ISMR and its variability are
discussed. A brief introduction on vegetation profile, its contribution and importance in the concerned
region, its responses to changing climate, and the consequences have been discussed. These are
followed by the objectives of the study, scope, and literature review. A detailed study area in terms of

its topography, climate, and vegetation has also been discussed in this section.

Chapter 2 provides a detailed description of the data sets used, methodology applied and the respective

tools used in this work.

Chapter 3 presents the results and discussion of the current climate observations and their variability

over the region. The climate variation during the future projection scenarios and for the Last

Millennium are also presented here. These are followed by the responses of vegetation patterns to

current climate observations over the region.

Finally, chapter 4 summarizes the main conclusions of the study followed by future scopes.

The next chapter presents various data sets used and the methodology applied in the study.
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CHAPTER-2

MATERIALS AND METHODOLOGY

This chapter illustrates the datasets used and the methodology applied in the thesis. The detailed
description of the datasets and how they are applied in the study are explained here. This is followed by

a detailed description of the software and tools used.

2.1 Data sets
In this study, I have used various in situ observations-derived gridded datasets, reanalysis datasets,
outputs from various climate change simulations, remote sensing-based datasets, interpolated datasets,

and field datasets were used.

2.1.1 Observations (and reanalysis) based datasets

The gridded rainfall and temperature data set, based on the in-situ observations from the IMD has been
widely used for the climate change study over India due to its better accuracy in representing the
magnitude and spatial variability. This has been demonstrated in an intercomparison of various
observation-based gridded rainfall datasets, for example (Prakash et al., 2014). Therefore, this rainfall
(Rajeevan et al., 2005), for the period 1970 to 2005 at 1° x 1° resolution, maximum and minimum
temperature (Srivastava et al., 2009) datasets have been used as observation data. As can be seen from

the relevant references, these gridded rainfall datasets have been generated by interpolating station
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measurements from 1803 stations by the interpolation method proposed by Shepard (1968). Before
carrying out the interpolation analysis, standard quality controls were also made (Rajeevan et al.,
2005). 395 station data which are maintained and under controlled qualitatively by applying the
interpolation method of Shepard's angular distance weighing algorithm (Sivastava et al., 2009) was

used to develop the gridded maximum and minimum temperature.

Historical observation data sets mentioned above have been collected only till 2005 to match with the
CORDEX South Asia historical simulations we have used (discussed in the next section), which are
available up to 2005. The span of data helps us to validate the CORDEX- South Asia datasets.
However, for some other analysis to document recent variations in the climate and relevance for
vegetation in the northeast, as required, I have also utilized, the gridded rainfall dataset of 0.25° x 0.25°
resolution collected from the IMD prepared from 6995 rain gauge stations in India for the period from
2000 to 2017 (Pai et al., 2014). The maximum and minimum temperature data mentioned above have
also been used for the period 2000 to 2017. All these rainfall, maximum and minimum temperature data
sets are available at

http://www.imdpune.gov.in/Clim Pred LRF New/Grided Data Download.htmlfbclid=IwAR3Z ZfZk

vwjaXAAFPRSDHc4ATUywiddFZYMNIJIP78vViFR-PK1iQDVksn8. As the observations in the NER

are very sparse, it could lead to uncertainties. Therefore, in addition to the IMD rainfall datasets, the
Asian Precipitation Highly Resolved Observational Data Integration Towards Evaluation of water
resource (Aphrodite) precipitation data (Yatagai et al., 2012) for the period 1970 to 2005, available at
0.5° x 0.5° resolution, have been used for comparison of deductions from the IMD rainfall datasets,
and also have a qualitative view of uncertainty associated with the gridded observational datasets over
north-eastern India. The Aphrodite data are based on a dense network of rain-gauge data from Asia,

including the Himalayas, South and Southeast Asia, and mountainous areas in the Middle East (Yatagai
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et al., 2012). The Aphrodite data are available

at https://climatedataguide.ucar.edu/climate-data/aphrodite-asian-precipitation-highly-resolved-

observational-data-integration-towards.

The mean temperature data from Climatic Research Unit (CRU) TS v. 4.00 of 0.5° x 0.5° resolution for
the period 1970 to 2005 were used in addition to the IMD temperature observations to account for the
uncertainty. Monthly observations of station data sets collected globally were used for developing these
datasets (Harris et al., 2014). The monthly datasets were developed by interpolating the land surface
global stations (anomalies) datasets (excluding Antarctica) combined with the existing climatology into
0.5° x 0.5° resolutions for the period 1961 to 1990. (Harris et al., 2014). The data product is available at

(http://www.cru.uea.ac.uk/ and http://badc.nerc.ac.uk/data/cru/).

The HadISST datasets for the period 1970 to 2005 have been used in teleconnection analysis. As per
Rayner et al., 2003, the concentration of sea ice was combined with SST datasets (global monthly data)
for the period 1871 till the present to develop these datasets. The dataset is available at

https://www.metoffice.gov.uk/hadobs/hadisst/data/download.html.

2.1.2 Model datasets

Climate Model data for the historical period and future projections

The climate model data outputs of rainfall, maximum and minimum temperature from the LMDZ, MPI,
ACCESS, GFDL, and CNRM models, available at the horizontal resolution of 0.5° x 0.5° under the
aegis of the CORDEX South-Asia (Sabin et al., 2013) were used. These are dynamically-downscaled
datasets based on CMIP5 climate projections. I have used these datasets for the ‘historical period’, i.e.

from 1970 to 2005. I have analyzed various simulated climate statistics of the NER for the historical
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period and compared them with those from the observations to ascertain that the models can simulate
the current day climate reasonably. This gives some confidence, and a justifiable rationale, in accepting

outcomes from any analysis of the future climate projections.

I have also used the future projections from 2011 to 2060 under the RCP4.5. These datasets are
generated by the Centre for Climate Change Research, Indian Institute of Tropical Meteorology, Pune
and the details of the above given  five  models are available at

http://cccr.tropmet.res.in/workshop/oct2012/presentations/R%20Krishnan CCCR _CORDEXSA.pdf,

http://cccr.tropmet.res.in/workshop/oct2012/presentations/JSanjay CORDEX-SAsia RCM data.pdf,

and http://cordex.dmi.dk/joomla/images/CORDEX/cordex archive specifications 120126.pdf. The

historical runs of these models are forced by observed natural and anthropogenic composition while the
future projections are forced by Representative Concentration Pathways (RCP) 4.5 (Taylor et al., 2012

and Dufresne et al., 2013).

Climate model data for the Last Millennium

The climate model data for the study of the Last Millennium (LM) particularly, Medieval Climate
Anomaly period (MCA): 935 CE to 1034 CE & Little Ice Age (LIA): 1735 CE to 1834 CE, were
collected from the PMIP3/CMIP5 models CCSM4, MRI-CGCM3, MPI-ESM-P, available at 288 x 192
x L26 1, 320 x 160 x L48, and 196 x 98 x L47 discretization. The PMIP3 is an initiative endorsed by
the World Climate Research Programme (WRCP); JSC/CLIVAR working group on coupled models
and the International Geosphere and Biosphere Programme (IGBP; PAGES) (Braconnot et al., 2012).

These datasets are available at https://cera-www.dkrz.de/WDCC/ui/cerasearch/. The reason why these

three models were selected was because of the relatively higher resolution than other PMIP3 models

that is potentially important given the complex topography changes and land surface changes across the
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NER. The last millennium variations in the summer monsoon climate over the Indian region simulated
by these three models also match with a majority of nine models and match with findings from several
proxy-observational studies (Tejavath et al., 2017; 2019). In addition to these three models, higher
resolution outputs from the ECHAMS, an atmospheric general circulation model (AGCM) at T106
(~1.125° x 1.125°) horizontal resolution for the period of 30 years (MCA: 935 CE to 965 CE and LIA:
1735 CE to 1765 CE) were also used. These simulations were carried out at the Max Planck Institute
for Meteorology (MPIM) Germany (Roeckner et al., 2003). The datasets are available

at https://refubium.fu-berlin.de/handle/fub188/6348?show=full. This dataset from the AGCM has been

analyzed in tandem with the aforementioned outputs from the coupled models to explore the relevance
of the tropical coupled oceanic processes, or the lack thereof, for the NER climate during the last

millennium.

2.1.3 Remote sensing-based observation data

The satellite remote sensing data have been used in various studies due to its convenience and high
efficiency providing a truly synoptic view of the earth (Revadekar, Tiwari, & Kumar, 2012 and Roy et
al., 2015b). Therefore, to study the impact of climate change over the NER, in this study, few satellite

datasets were used. The datasets are followed as:

NDVI data

The Normalized Difference Vegetation Index (NDVI) (Didan, 2015) data product, MOD13A1 (version
6), of 36 spectral channels collected from MODIS instrument onboard Terra satellite for the period
2000 to 2017 were used. The data product is a 16-day composite of resolution 500 m. The NDVT is
computed from the surface reflectance (bidirectional) which has been corrected atmospherically with

other masked datasets such as heavy aerosols, water, and cloud shadows. The NDVI data is available at
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https://search.earthdata.nasa.gov/. The MODIS-derived NDVI data have been demonstrated to be of
high fidelity and are more sensitive to chlorophyll concentration and other variations such as land
cover, seasonal vegetation, and biophysical parameters (Huete et al., 2002) and less sensitive to
conditions such as atmospheric vapor as the MODIS has narrower bands in the red and NIR
wavelengths (Chang et al., 2014). It is the ration of the red and near-infrared (NIR) bands of a sensor

(Rouse et., 1973) and is represented as follows:

NDVI = NIR — RED/NIR + RED Equation 1
where, NIR is the near-infrared reflectance at 0.77-0.86 pm and RED is the visible reflectance at 0.62-

0.68 pm.

NDWI data

The Normalized Difference Water Index (NDWI), a surface spectral reflectance (product name:
MODO09A1, version 6) measured at ground level derived from the MODIS of 8-day composite, L3 at
500 m resolution were used (Vermote, 2015). The data are derived from the MODIS channels of band
2(Near-Infrared) and band 6(Short-wave-infrared). These estimate the leaf water content at the canopy
level (Gao, 1996). The variations caused by the leaf's internal structure and its dry matter content are
eliminated by the combination of these two bands. By doing so, the accuracy is improved, in retrieving
the water content of vegetation (Ceccato et al., 2001). It has been refined for internal snow, cloud, and
cloud shadow detection algorithms. The data are available at https:/earthdata.nasa.gov/. The

calculation of the index is explained below in the methodology section.
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2.1.4 Reanalysis Aridity data

Aridity data (5 km x 5 km) derived from TERRAClimate (Abatzoglou, J.T. et al., 2018) collected from
the National Center for Atmospheric Research (NCAR) for the period 2000 to 2017 were used. These
are monthly surface water balance interpolated datasets. To prepare these datasets, high-resolution
spatial data of WorldClim climatological normals are combined. Water balance model incorporating
temperature, precipitation, evapotranspiration, and interpolated soil water capacity extracted from the
plant was used for the preparation of this data. The spatiotemporal aspects of TerraClimate have been
validated using annual precipitation, temperature, evaporation from station data, and annual runoff
from streamflow gauges. Important inputs in studying the hydrological and ecological issues at global
scales where high spatial resolution climatic water balance data are needed can be achieved by these
datasets (Abatzoglou, J.T. et al., 2018). The data is available

at https://climatedataguide.ucar.edu/climate-data/terraclimate-global-high-resolution-gridded-

temperature-precipitation-and-other-water.

2.1.5 Field sample data (Land-use-and-land-cover map (LULC))

The LULC map for the year 2005 generated during the project of the Development of Decadal (1985—
1995-2005) Land Use and Land Cover Database for India using multi-spectral and multi-temporal
satellite data of medium resolution (Roy et al., 2015a) was used. The accuracy of the map was
determined using pre-determined field sample points collected for the characterization project of the
Indian Space Research Organization (ISRO) and the Department of Biotechnology (DBT) (Roy et al.,

2015a). Six vegetation classes collected from the LULC map given below were studied for NER.
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DBF Deciduous Broad Leaf Forest
EBF Evergreen Broad Leaf Forest

ENF Evergreen Needle Leaf Forest
MF Mixed Forest

SL Shrub Land

GL Grassland

Table 1: Types of vegetation classes used in the study.

2.2 Methodology

2.2.1 Evaluation of the current climate and its variability

In this study, the current climate (1970 to 2005; also referred to as historical period to match with
model output terminology), and its variability over the NER were evaluated using the observation data
of rainfall, maximum and minimum temperature derived from the IMD, other observation-based data
including Aphrodite data, the reanalysis data from the CRU and the CORDEX-SA historical

simulations.

Model validation

For better accuracy in statistical analysis, the region bounded by the latitudes from 25.5° N through
28.5° N, and longitudes from 92.5° E through 94.5° E are referred to as the NER in the study. The
validation of the downscaled historical simulation outputs is done by comparing the climatology of all
the models with observed rainfall, maximum, and minimum temperature patterns. To facilitate the
validation, the observed datasets are refield sampled into 0.5° resolutions using a bilinear interpolation
method. By doing this, the future climate change in the NER could be assessed taking into account

uncertainty associated with intermodel variability.
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Then the interannual variability and seasonal variability of rainfall and temperature have been assessed
during the summer monsoon season (JJAS) and winter monsoon season (DJF). This is followed by the

statistical analysis presented in the later statistical section.

2.2.2 Evaluation of the past climate especially the last millennium period and future projections

scenarios

Last Millennium

Given the importance of summer monsoon rainfall in NER, my analysis of this paleoclimate study
pertains only to the identical season. Before analyzing the above past climate simulations, the
simulations for the current period 1961 to 1990, broadly compatible with the ‘historical period’ have
been validated against the corresponding observed rainfall data from the IMD. This period has been
selected as the rainfall data from the ECHAMS5 model is available for this period. Then the seasonal
climatology of simulated rainfall between the MCA and the LIA period over the NER have been

analyzed. The remaining analysis is presented in the statistical section.

Future projections

The future climate change over the region has been evaluated from the simulated CORDEX SA model
outputs of rainfall, maximum and minimum temperature data sets over JJAS and DJF seasons for the
period 2011 to 2060. Likewise, current climate study, interannual and seasonal variations are analyzed
for this period. In addition to this, to have an estimation of the future climate change in NER, the

historical climatology of each parameter was subtracted from the corresponding future climatology. For
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example, say "C hist" as the historical climatology and "C RCP" as the future climatology, then let AC

= C RCP - C hist.

2.2.3 Impact of climate change on the vegetation pattern

I have carried out a two pronged-analysis, one, at field sample points in the NER, as elaborated below,
and another, considering the whole domain of the NER. In other words, various datasets have been
analyzed at field sample points in the NER, identified based on the distribution of six vegetation classes
from the LULC map namely, Deciduous Broad Leaf Forest, Evergreen Broad Leaf Forest, Evergreen
Needle Leaf Forest, Mixed Forest, Shrub Land, and Grassland, as well as for the entire NER region.
The extracted NDVI data collected from the MODIS of all the vegetation classes were analyzed by
using the observed data sets of rainfall, maximum and minimum temperature from the IMD, along with

NDWI and aridity data sets from 2000 to 2017.

2.2.3.1 Field sample points

Area-averaged anomalies of NDVI
The fortnightly normalized difference vegetation index (NDVI) data (HDF format) were downloaded
from the National Aeronautics and Space Administration (NASA)'s Earth Science Data Systems

(ESDS) program (https://earthdata.nasa.gov/) from 2000 to 2017. The Hierarchical Data Format (HDF)

format was converted into Geotiff using HDF-EOS to GeoTIFF Conversion Tool (HEG) software. The
GeoTIFF files were then imported into .img format in Earth Resources Data Analysis System (ERDAS)
imagine. All the raster files in .img were layers-stacked in ERDAS. The study area of the NER has
been subset from the stacked raster files using a shapefile of NER. The subset raster file was projected

to World Geodetic System (WGS) 84 zone 44, a reference coordinate system used to define the exact
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positions of the study area. Then the processed datasets were multiplied by a scale factor of 0.0001 to
achieve the actual NDVI data value as the raw NDVI data is not in the normal NDVI range. The subset
fortnight NDVI data were area-averaged into three seasons namely, wet (June to October), winter
(November to February), and dry (March to May). Using field sample point locations based on the land
use land cover categories (LULC map of 2005), the NDVI of six vegetation classes (Table 1) were
extracted in R software. The anomalies of NDVI for each vegetation class were calculated by
subtracting the mean NDVI of each year from the long-term average NDVI for all three seasons

respectively.

Area-averaged anomalies of NDWI

The Normalized Difference Water Index (NDWI) data and datasets of surface reflectance 2 and surface
reflectance 6 were also downloaded from the same data source (https://earthdata.nasa.gov/). The data
followed the same pre-processing methods used for NDVI up to scale factor multiplication. After this,
the NDWI was computed using the near-infrared: (NIR — MODIS surface reflectance band 2) and the
shortwave infrared: (SWIR — MODIS surface reflectance band 6) (Gao, 1996) in the model maker in
ERDAS following the formula (NIR-SWIR/NIR+SWIR). The study area was subset from the NDWI
data using the Northeast shapefile. Then the subset NDWI data were averaged into the same three
seasons and six vegetation classes were extracted using field sample points from the LULC map.

Anomalies of NDWI were calculated following the same methods used in NDVI.

Area-averaged anomalies of aridity
Aridity data derived from monthly TerraClimate was downloaded in NetCDF format from the National
Center for Atmospheric Research (NCAR). The data were converted into raster and .img format for

further processing in ERDAS. Then subsetting the study area, averaging into three seasons, extraction
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of vegetation classes, and finally, anomaly calculation was done following the same methods used

above.

Area-averaged anomalies of observed data

The rainfall data of 0.25° x 0.25° resolution (Pai et al., 2014) and, maximum and minimum temperature
of 1° x 1° resolution (Srivastava et al., 2009) for the period 2000 to 2017 collected from the IMD were
first detrended using Climate Data Operator (CDO) tool to remove the probable distortion caused and
to see the local impact more accurately. Then the detrended rainfall, maximum, and minimum
temperature datasets were area-averaged into three seasons namely, wet (June to October), winter
(November to February), and dry (March to May). Using ArcGIS, the Network Common Data Form
(NetCDF) format of these datasets were converted into raster and .img format for further processing of
the data. After conversion, the field sample points of the six vegetation classes from these datasets were
extracted. Likewise, the NDVI anomalies, the anomalies of rainfall, the maximum and minimum

temperature for all three seasons of the six vegetation classes were calculated.

The NDVI anomalies calculated using the field sample points were evaluated against the corresponding
rainfall, maximum, minimum temperature, aridity, and NDWI anomalies for the three seasons from
2000 to 2017 to understand the temporal patterns and also the association of the NDVI with the

corresponding parameters.

2.2.3.2 Entire Northeast region
The entire grids points of NDVT in raster format for each season were converted into .csv format to
acquire the numerical value using ArcGIS and excel sheet. Then all the values were averaged for each

season and calculated anomalies (same methods used above were applied) for the entire region of the
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three seasons. Similarly, anomalies of rainfall in the NetCDF format of the entire region have been
calculated using the Grid Analysis and Display System (Grads) tool. Then the NDVI anomalies were

evaluated against the rainfall anomalies for all three seasons from 2000 to 2017.

In addition to the above analysis, for more transparency and also to support the studies carried out, the
following analyses have been carried out to find out which season has the highest to lowest NDVI. For
this, the maximum value of NDVI for all three seasons from 2001 to 2017 were collected from the
raster file of NDVI using ArcGIS. The period (2001 to 2017) was made similar for all three seasons to
make it easier in figuring out the season. Then the values were plotted in an excel sheet with the help of
a trend line. Furthermore, the values of NDVI in raster format from 2001 to 2017 for all the three
seasons were also plotted spatially using ArcGIS. This was done to see the variability taking place on

yearly basis.

2.2.4 Statistical analysis

Current climate variability

A linear trend analysis was applied on the area-averaged rainfall and that of the temperature over the
NER for the period 1970 to 2005 by using the Least square linear fit (Jhajhariaa and Singh, 2011; Jain
and Kumar, 2012 and Dubey and Krishnakumar, 2014) on the observed and simulated rainfall and
temperature datasets. Then the significance test of the linear trend has been evaluated by using the
Student t-test and Mann Kendall (M-K) trend test at 0.05% significance level. The M-K test is a non-
parametric test for identifying the trend in time series data and extensively used in climate studies for
verifying spatial variation and temporal deviation of any climatic series (Kumar et al., 2010; Jain and

Kumar, 2012; Jain et al., 2013; Laskar et al., 2014 and Chinchorkar et al., 2015). This statistical method
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is used to test the null hypothesis that the trend is insignificant, and its significance is evaluated based
on the Z value. The null hypothesis is rejected at a level of significance in a two-sided test if the
computed value of |Z | > Z a/2. Any increasing trend is denoted by a very high and positive value of S

while the decreasing trend is denoted by a low and negative value of S (Laskar et al., 2014).

M-K statistics for a series, say X (X1, X2, X3, X4, veerveerruenns , Xn) follows as:
n—1 n
— - Equation 2
S —Z ngn(x[. X;) q (2)
i=1 =i+l

where the value of sgn (xi— x;) is computed as follows:

=1 ifxi—xi>0
sgn(x, —x,)4=0 ifxi—x=0 Equation 3)
=-1 ifxi—x<0

and variance of M-K test statistics is computed

n(n—1)(2n+5) - itk (6, —1)(2t, +1) Equation 4)
Var(S) = k=l

18

where “n” is the number of data points, “k” is the number of tied groups and “ty” is the number of data

points in kth tied group. Then the Z statistics test (standard normal deviation) is computed as follows:

- 5 ifS >0
1Nﬂr(S)

_ 5k 6 < 0 Equation (5)
,fﬁar(S)
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The observed and simulated rainfall, maximum and minimum temperature datasets, and the HadISST
datasets for the historical period (1970 to 2005) have been used to decipher the teleconnections
between the summer monsoon climate in the NER and ENSO. The well-known Nino 3.4 index is used
to represent the ENSO activity. This index is obtained by area-averaging the SST anomalies over the
region (5° N-5° S and 120° W-170° W). Then a linear correlation method known as Pearson
correlation was applied to check the association of the ENSO events with the NER climate. This
method measures the statistical association or relationship between two variables. The value ranges
from -1 to +1, with -1 indicating a negative correlation and +1, a positive correlation between the two
variables. A negative correlation indicates that if one variable increases, the other decreases, and vice
versa, while a positive correlation indicates that both variables decrease or increase together. Then
statistical significance test is computed using a two-tailed Student t-test where the p-value is compared
to the significance level of 0.05. If the p-value is less than or equal to the significance level then the test

is statistically significant, and if more then it is statistically insignificant.

Extremes of rainfall, maximum and minimum temperature datasets from both the observed and

simulated historical datasets have been estimated using the histogram method.

Last Millennium

Teleconnections between the indices (NINO3 and NINO3.4), and the simulated datasets were evaluated
by area-averaging the sea surface temperature (SST) anomalies over the 5° S to 5° N and 150° W to
90° W (NINO3) and 5° S to 5° N and 170° W to 120° W (NINO3.4) to represent the ENSO variability.
Using two-tailed Student's t-tests, statistical significance tests have been calculated for correlations
performed for teleconnection. The Student’s t-tests are also performed on the difference of means

calculated between the MCA and the LIA period.

34



Future projections

The Least square linear fit was also applied on the area-averaged rainfall and temperature for the period

2011 to 20160. The significance test was done using the Student’s t-test and M-K test.

Variability of vegetation patterns

Means and standard deviations of field sample points of all the six vegetation classes for all three
seasons were calculated for NDVI and rainfall from 2000 to 2017 to find out the variation and also, the
association between them over the region. To see the relationship more precisely between the NDVI
pattern and the rest of the parameters used, the correlation coefficient, multiple regression, and lag

correlation were computed at the 0.05% significance level.

2.3 Software used

In this study, the gridded observation datasets, and climate model datasets have been analyzed using
tools such as GrADS (version 2.2.1), Climate Data Operators of version 1.9.6. For the analysis of
satellite datasets, software such as ERDAS Imagine (version 9.1), ArcGIS (version 10.2), HEG

software (version 2.12), and R software (version 3.1.1) were used for pre-processing, extraction, etc.

GrADS: It is a freely available interactive desktop tool commonly used for easy access, manipulation,
and visualization of earth science data. This tool handles both gridded data as well as station data. It

supports many data formats such as binary, NetCDF, GRIB, HDF & BUFR for station data.

CDO: It is a freely available software used for fast processing climate and forecast model data. This

software operates arithmetic functions, statistical, data selection, subsampling tools, and spatial
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interpolation. It supports file formats such as NetCDF, GRIB, SERVICE, EXTRA, and IEG, etc. More

than 600 operators are available in CDO.

HEG: It is a tool developed for the conversion of HDF-EOS formatted granules of Geographical
Information System (GIS) compatible formats particularly GeoTIFF. This tool reformats HDF-EOS
Swath & Grid data to the HDF-EOS grid, GeoTIFF, or a generic format. The tool is available as a

down-loadable tar file.

ERDAS Imagine: It is an image processing remote sensing software used to process geospatial, other
imagery, raster as well as vector data. It allows us to prepare, display, and enhance digital images. This
tool runs on the windows operating system used to study many satellite imageries and other advanced

remote sensing data sets.

ArcGIS: It is a geographic information system software used for creating maps, editing datasets,

compiling geographic data and information in a database.

R software: It is a free language software used for statistical computing and graphics under the terms

of the Free Software Foundation's GNU General Public License in source code form. It runs on

Windows, UNIX platforms & MacOS.
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Softwares Links

GrADS http://cola.gmu.edu/grads/

CDO https://code.mpimet.mpg.de/projects/cdo/

HEG https://hdfeos.org/software/heg.php

ERDAS https://www.hexagongeospatial.com/products/power-portfolio/erdas-imagine/
erdas-imagine-remote-sensing-software-package

ArcGIS https://www.esri.com/en-us/arcgis/products/arcgis-desktop/overview

R https://www.r-project.org/
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Table 2: Source of softwares used.




CHAPTER -3

RESULTS AND DISCUSSIONS

This chapter presents the analysis carried out for the study and the findings from the results. The
chapter is divided into three sub-sections based on the objectives of the study. Sub-section 3.1 discusses
the observed mean seasonal rainfall and temperatures over the NER for the historical period (1970-
2005), along with those from the CORDEX-SA historical simulations. Secondly, my last millennium
analysis and the future projections study have been presented in sub-section 3.2 and the impact of

climate change on the vegetation pattern during the current period in sub-section 3.3.

3.1 The climate variability during the historical period

based on observations and corresponding climate models

3.1.1 Climatology for JJAS historical simulation from 1970 to 2005
Figure 3.1.1 is an effort to validate the simulated JJAS climatology of precipitation (RF-JJAS) from
1970 to 2005 with the IMD observations and the Aphrodite data. We find from the spatial distribution

of the observed climatological RF-JJAS that it varies from 9 to 22 mm, Aphrodite data ranges from 3 to
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13 mm, and model data range from 3 to 18 mm. However, the corresponding Aphrodite distribution and
those from all models except the LMDZ show rainfall increasing from north to southwest. In LMDZ
climatology, the RF-JJAS increases towards the southeast. Notwithstanding such discrepancy in the
gradients, the range of climatological RF-JJAS across the observational datasets and models is not

much different.

Climatology Precipitation JJAS (1970—2005)
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Figure 3.1.1: Spatial distributions of JJAS climatology of precipitation (mm) during 1970-2005
(historical) for (i) IMD, (ii) APHRODITE data, and climate model data from Cordex South Asia: (iii)
LMDZ, (iv) MPI, (v) GFDL, (vi) CNRM and (vii) ACCESS over North East Region.
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The observed climatological TMax-JJAS varies from 30.6 °C to 32 °C in figure 3.1.2. Its maximum
occurs approximately in the central north-east and increases from west to east. The climatological
TMax-JJAS across the NER from the CRU reanalysis ranges from 19 °C to 20.5 °C and decreases in
the center. The CRU data and each model exhibit a relatively broad range of climatologies across the
NER compared to the observed data. The simulated climatology of the (TMax-JJAS ) by various
models is lower with different spatial distribution than the observations. The simulated climatological
values vary from 12 °C to 29 °C across the region in models. The LMDZ model shows an increasing
TMax-JJAS from the northwest towards the south, with the maximum values occur in the center. The

rest of the models show a rising TMax-JJAS from the northwest towards the southeast.
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Climatology Maximum Temperature JJAS (1970 - 2005)
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Figure 3.1.2: Spatial distributions of JJAS climatology of maximum temperature (°C) during 1970-
2005 (historical) for (i) IMD, (ii) CRU data, and climate model data from Cordex South Asia: (iii)
LMDZ, (iv) MPI, (v) GFDL, (vi) CNRM and (vii) ACCESS over North East Region.
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Climatology Minimum Temperature JJAS (1970 - 2005)
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Figure 3.1.3: Spatial distributions of JJAS climatology of minimum temperature (°C) during 1970—
2005 (historical) for (i) IMD, (ii) CRU data, for climate model data from Cordex South Asia: (iii)
LMDZ, (iv) MPI, (v) GFDL, (vi) CNRM and (vii) ACCESS over North East Region.

The models also underestimate simulated climatological minimum temperature in JJAS (TMin-JJAS)

relative to the CRU reanalysis (Figure 3.1.3). The simulated range is 3 °C~22 °C vis-a-vis the observed

range of 28°C~32 °C in observed data varies from 19 °C to 20.2 °C from the CRU reanalysis datasets.
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Climatology Precipitation DJF (1970—2005)
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Figure 3.1.4: Spatial distributions of DJF climatology of precipitation (mm) during 1970-2005
(historical) for (i) IMD, (ii) APHRODITE data, and climate model data from Cordex South Asia: (iii)
LMDZ, (iv) MPI, (v) GFDL, (vi) CNRM and (vii) ACCESS over North East Region.

Figure 3.1.4 shows the DJF climatology of precipitation (RF-DJF ) for the period 1970-2005, derived
from the IMD, Aphrodite, and model datasets. The magnitude of the RF-DJF across the NER ranges
between 0.6 and 1.6 mm, with Aphrodite datasets ranging from 0.2 to 0.8 mm and the models, ranging

from 0.5 to 3.8 mm, also capturing the relatively low seasonal climatological rainfall during the DJF

season (Figure 3.1.4) as compared to the JJAS season (Figure 3.1.1).
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Climatology Maximum Temperature DJF (1970 - 2005)
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Figure 3.1.5: Spatial distributions of DJF climatology of maximum temperature (°C) during 1970-2005
(historical) for (i) IMD, (ii) CRU data, and climate model data from Cordex South Asia: (iii) LMDZ,
(iv) MPI, (v) GFDL, (vi) CNRM and (vii) ACCESS over North East Region.

The DJF climatology of maximum temperature (TMax-DJF ) in IMD observations varies from 23.4 °C

to 24.4 °C (Figure 3.1.5) and increases from the south to north of the NER. The CRU data ranges from

19 °C to 21.2 °C, with a decrease in TMax-DJF in the center. The models underestimate the

climatological TMax-DJF in the NER, with the simulated TMax-DJF ranging from 1 °C to 15 °C.
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Climatology Minimum Temperature DJF (1970 - 2005)
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Figure 3.1.6: Spatial distributions of DJF climatology of minimum temperature (°C) during 1970-2005
(historical) for (i) IMD, (ii) CRU data, and climate model data from Cordex South Asia: (iii) LMDZ,
(iv) MPI, (v) GFDL, (vi) CNRM and (vii) ACCESS over North East Region.

The simulated winter climatological minimum temperatures (TMin-DJF ) in Figure 3.1.6 exhibit a

range of values from 10.4 °C to 11 °C, which are relatively nearer to that from the IMD datasets, with

CRU data having higher (TMin-DJF ).
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Mean climatology (mm)

Precipitation Maximum Temperature | Minimum Temperature

JJIAS DJF JJIAS DJF JJAS DJF
IMD 12.5 0.8 IMD 31.6 24.0 24.1 10.9
APHRODITE 8.7 0.6 CRU 19.6 19.7 19.6 19.7
LMDZ 6.1 2.7 LMDZ |24.6 10.5 17.7 1.6
MPI 7.1 1.2 MPI 17.5 3.2 8.1 -7.1
GFDL 7.0 1.3 GFDL 17.5 2.6 8.2 -7.5
CNRM 6.9 1.3 CNRM |17.7 2.9 8.4 -7.4
ACCESS 7.2 1.1 ACCESS |17.4 3.3 8.1 -6.9

Table 3: Mean climatological value for precipitation (mm), maximum and minimum temperature (°C)
for observations (IMD & Aphrodite), and climate model data (LMDZ, MPI, GFDL, CNRM &
ACCESS for the period 1970-2005.

Table 3 shows differences in the climatological means between observed data sets and simulated

rainfall and maximum and minimum temperature from 1970 to 2005. In support of the above spatial

climatological analysis, the models show a lower means than the observations datasets.

3.1.7 Seasonal mean cycle for historical simulation from 1970 to 2005

Figure 3.1.7(a) shows the mean seasonal cycle of precipitation for 1970 to 2005 from the two observed
datasets and each model. All the datasets show a seasonal evolution similar to observations, with the
simulated precipitation from most of the models peaking in July. However, the simulated precipitation
from the LMDZ peaks in August and is much less than that from the IMD or Aphrodite datasets. To
sum up, the models seem to capture the observed seasonal cycle of mean precipitation qualitatively for

the study region.
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The simulated mean seasonal cycles of the maximum and minimum temperatures in the NER are
qualitatively similar to observations (Figure 3.7.1 b and c), though the simulated magnitudes are much

lower than those from the observations.
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Figure 3.1.7: (a) Seasonal cycle (mean) of precipitation (mm) from IMD, Aphrodite, and Cordex-SA
model (LMDZ, MPI, GFDL, CNRM, and ACCESS) for the period 1970 to 2005. (b) same as in (a)
except for CRU Reanalysis and maximum temperature data (°C). (c) same as (b) but for minimum
temperature.
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3.1.8. Spatial plot of trend analysis JJAS for historical data from 1970 to 2005

Trend Precipitation JJAS (1970—2005)
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Figure 3.1.8: Spatial distribution of trends of precipitation for JJAS season for observations (i) IMD
and (ii) Aphrodite and, for models (iii) LMDZ, (iv) MPI, (v) GFDL, (vi) CNRM, and (vii) ACCESS for
the period 1970 to 2005 over the NER.

In Figure 3.1.8, the RF-JJAS season trends for the period 1970 to 2005 from each precipitation dataset

are plotted. The IMD data shows a rising trend from the rest of the datasets. While the RF-JJAS from

the IMD exhibits an increasing trend of about 0.5 mm/year in the western NER and a decreasing trend

48



of about 0.6 mm/year in the eastern portion of the NER, the APHRODITE datasets indicate a weaker
but increasing trend in a larger portion of the NER. All models qualitatively reproduce the increasing
trend in the rainfall over western NER, though with weaker magnitudes. The MPI and GFDL models
and the ACCESS model somewhat weakly simulate a negative trend in pockets, not seen in

observations.

Trend Maximum Temperature JJAS (1970 - 2005)
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Figure 3.1.9: Spatial distribution of trends of maximum temperature (°C) for JJAS season for
observations (i) IMD and (ii) CRU and, for models (iii) LMDZ, (iv) MPI, (v) GFDL, (vi) CNRM and
(vii) ACCESS for the period 1970 to 2005 over the NER.
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A trend analysis of TMax-JJAS maximum temperature from 1970 to 2005 is plotted in Figure 3.1.9
where the IMD data shows a positive trend 0.015 °C/year increasing towards the south. The CRU data,
on the other hand, shows a higher magnitude of the trend than the IMD and an increasing trend towards

the center. Models other than the MPI and ACCESS models show a positive trend.

Trend Minimum Temperature JJAS (1970 - 2005)
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Figure 3.1.10: Spatial distribution of trends of minimum temperature (°C) for JJAS season for
observations (i) IMD and (ii) CRU and, for models (iii) LMDZ, (iv) MPI, (v) GFDL, (vi) CNRM and
(vii) ACCESS for the period 1970 to 2005 over the NER.
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A trend of 0.02 °C/year in the TMin-JJAS is shown from the IMD datasets (Figure 3.1.10), increasing
towards the west from the east. On the contrary, the CRU datasets show an increasing trend towards the
center. The LMDZ model shows a higher magnitude of the trend than the rest of the datasets, with an
increasing trend of 0.05 °C/year. The MPI, GFDL, and CNRM models are more or less similar to a
lower positive trend in the central portion. The ACCESS model shows an increasing trend towards the

north.
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3.1.11. Spatial plot of trend analysis DJF for historical data from 1970 to 2005
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Figure 3.1.11: Spatial distribution of trends of precipitation (mm) for DJF season for observations (i)
IMD and (ii) Aphrodite and, for models (iii) LMDZ, (iv) MPI, (v) GFDL, (vi) CNRM and (vii)

ACCESS for the period 1970 to 2005 over the NER.

Figure 3.1.11 shows the trends in the observed and simulated RF-DJF in the NER for the period 1970
to 2005. All the datasets show a similar increasing trend in most of the region. The IMD data shows an
increasing trend of 0.01 mm/year towards the southwest of the area and a decreasing trend of 0.4

mm/year towards the northeastern. The Aphrodite data shows a positive trend in most of the regions.

The rest of the models, except for the LMDZ, shows a similar positive trend.
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Trend Maximum Temperature DJF (1970 - 2005)
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Figure 3.1.12: Spatial distribution of trends of maximum temperature (°C) for DJF season for
observations (i) IMD and (ii) CRU and, for models (iii) LMDZ, (iv) MPI, (v) GFDL, (vi) CNRM and
(vii) ACCESS for the period 1970 to 2005 over the NER.

The IMD datasets show an increasing trend in the TMax-DJF from the northwest towards the southeast,
with respective values of 0.03 °C/year and 0.06 °C/year (Figure 3.1.12). CRU datasets show a higher
trend than the IMD datasets. Only the LMDZ model shows a very high positive trend of 0.06 °C/year
increasing towards the north. GFDL and CNRM models show an increasing trend towards the east
while decreasing at the central east. The MPI model shows an increasing trend in the central portion
while the ACCESS model shows a decreasing trend in the central portion. All the datasets show a

positive trend.
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Trend Minimum Temperature DJF (1970 - 2005)
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Figure 3.1.13: Spatial distribution of trends of minimum temperature (°C) for JJAS season for
observations (i) IMD and (ii) CRU and, for models (iii) LMDZ, (iv) MPI, (v) GFDL, (vi) CNRM and
(vii) ACCESS for the period 1970 to 2005 over the NER.

Figure 3.1.13 shows the trend analysis of TMin-DJF minimum temperature, from which it is clear that
the IMD datasets show an increasing trend of 0.04 °C/year towards the west while CRU data shows a
higher trend as compared to the IMD data. The LMDZ model also shows a higher trend of 0.07

°Cl/year, which increases towards the north and south but decreases in the center. The CNRM and

ACCESS models show an increasing trend towards the central east and a decreasing trend at the west,
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opposite to that in the MPI model. The ACCESS model shows an increasing trend in the central-east

and decreases in the west.

From the above discussion, it's clear that the IMD and Aphrodite datasets agree as far as the location of
highest and lowest trends in the rainfall, particularly during the summer monsoon, is concerned.
However, the same cannot be said about the agreement between the IMD datasets and CRU datasets
about the spatial distribution of temperature trends. This is not so surprising, given that the CRU
datasets are not observational datasets but model forecasts constrained by the observations. We also
note that the models are not up to simulate the spatial distribution of the trends well. The NER region is
well known for its high convective rainfall associated with complex orography, which is challenging to
simulate. The interpolation and calibration algorithms potentially contribute to uncertainty. However,
suppose the historical simulations from various models can at least replicate the area-averaged trends in
the NER climate parameters. In that case, we can then have qualitative confidence in their future

projections. In the next section, we precisely explore this aspect.

3.1.14. Area-averaged trend analysis from the observations and models for the 1970 to 2005
period

This section discusses results from the analysis of the area-averaged trends in rainfall and temperature
in the NER region. The significance of these tests was evaluated using both Mann-Kendall and
Student's t-test. We find that the IMD and Aphrodite datasets show increasing and decreasing trends,
which are not statistically significant (not shown as all the results show insignificant). Insignificant
decreasing or no trend in the summer monsoon precipitation of NER, as seen from some stations
observations in the NER has been also reported by Jain et al., 2013; Laskar et al., 2014 and Dash et al.,

2015. All the model simulations also simulate only insignificant trends.
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Further, both IMD and Aphrodite datasets only show a decreasing but statistically insignificant trend in
the area-averaged rainfall during the DJF (RF- DJF ) season in the NER. The area-averaged trends in
the corresponding RF-DJF from various CORDEX models are also seen to be insignificant, though the

GFDL and CNRM models show an increasing trend.

Though the nature of trends in the rainfall is insignificant in all the data sets, it indicates a decline in the
rainfall over NER, in tandem with such a signal in the summer monsoon rainfall in the rest of India
(Krishnan et al., 2016). On longer time scales, the warmer tropical ocean, especially the central-eastern

Pacific and the western Indian Ocean, are suggested to play a role in weakening the monsoon (Roxy et

al., 2015)
Mann-Kendall test Student t-test
Data used Z value & Statistic p-Value t-Value | Trend Nature of the trend
o value value (S) value

JJIAS
LMDZ 419>1.96 308 0.00<0.05 |5.53>2 |1.14 Increasing trend & significant
GFDL 2.39>1.96 |176 0.01<0.05 (292>2 |1.07 -do -
ACCESS [2.86>1.96 210 0.01<0.05 |2.61>2 |1.25 -do -

DJF

LMDZ 3.79>1.96 |290 0.01<0.05 |4.52>2 |2.35 -do -
CNRM 2.33>1.96 |178 0.05=0.05 [2.02>2 |1.22 -do -
ACCESS (2.22>1.96 |[170 0.02<0.05 (2.39>2 |1.28 -do -

Table 4: Significance tests using Mann-Kendall and Student t-test for maximum temperature data from
the IMD, NCEP, and climate model data for JJAS and DJF season for 1970-2005.

Only the significant results are shown in Table 4. The time series of the area-averaged JJAS maximum
temperature and that for the DJF season, from the IMD datasets from 1970 to 2005 show increasing but

statistically insignificant trends. Growing population accompanied by massive urbanization, changes in
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land use, enormous highway development, increases in deforestation, biomass burning, fossil fuel
consumption, and increasing atmospheric concentrations of greenhouse gases are suspected to be the
cause of the temperature changes (Kothyari and Singh, 1996; Jhajhariaa and Singh, 2011). Notably, the
CRU datasets for both the seasons show an insignificant increasing trend. Also, all the models

successfully reproduce the observed increasing trends in the area-averaged seasonal maximum

temperatures, through most of the simulated trends are statistically significant.

Mann-Kendall test Student t-test
Data used Z value & Statistic p-Value t-Value |Trend Nature of the trend
o value value (S) value

JJIAS
IMD 3.26>1.96 240 0.00<0.05 4.48 >2 |0.63 Increasing trend & significant
LMDZ 4.79>1.96 |352 0.00<0.05 |7.92 >2 |1.32 -do -
MPI 248>1.96 182 0.03<0.05 [2.92 >2 |0.61 -do -
GFDL 2.04>1.96 |150 0.03<0.05 |2.23 >2 |0.66 -do -
ACCESS |3.19>1.96 234 0.02<0.05 245 >2 |0.85 -do -

DJF

IMD 3.92>1.96 300 0.00<0.05 [4.59 >2 |1.19 -do -
LMDZ 415>1.96 |318 0.00<0.05 |542 >2 |2.97 -do -
MPI 3.22>1.96 246 0.00<0.05 [3.24 >2 |1.59 -do -
GFDL 2.17>1.96 |166 0.05=0.05 [2.99 >2 |0.75 -do -
CNRM 2.30>1.96 |176 0.03<0.05 |2.33 >2 |1.11 -do -
ACCESS [3.16>1.96 242 0.00<0.05 [3.70 >2 |1.62 -do -

Table 5: Significance tests using Mann-Kendall and Student t-test for minimum temperature data from
the IMD and climate model data during JJAS and DJF seasons for the period 1970-2005.

Importantly, we find statistically significant increasing trends in the area-averaged minimum

temperature over the NER during both summer and winter seasons over the period 1970 to 2005 (Table
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5). It is intriguing that only the minimum temperature shows a statistically significant increasing trend,

while the rainfall trends, though decreasing, are not significant.

From all these results, we can summarize that the downscaled CORDEX South-Asia datasets are
successful in capturing the area-averaged seasonal cycles of rainfall and temperature observed during
1970-2005, and are also capable of capturing the corresponding trends, at least qualitatively. However,
the climatological spatial distribution and the local long term trends are not well captured and are also

subject to the uncertainties in the observations. Being an orographic region, the uncertainty between

datasets is largest in North East India (Kulkarni et al., 2013 and Prakash et al., 2014).
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3.1.15. Teleconnections of the historical data (1970-2005) with ENSO

Nino3.4 JJAS DJF
Precipitation
IMD -0.08 -0.19
APHRODITE -0.11 0.03
LMDZ -0.09 -0.36
MPI -0.21 -0.41
GFDL 0.13 0.13
CNRM -0.04 -0.09
ACCESS 0.03 -0.12
Mean Temperature
CRU -0.08 0.2
Maximum Temperature
IMD 0.04 -0.04
LMDZ 0.19 0.09
MPI 0.05 0.15
GFDL -0.06 -0.04
CNRM 0.18 0.27
ACCESS 0.25 0.19
Minimum Temperature

IMD -0.04 -0.07
LMDZ 0.16 0.01
MPI -0.01 0.12
GFDL 0.15 0.27
CNRM 0.05 0.28
ACCESS 0.13 0.33

Table 6: Teleconnections between ENSO index (Nino3.4) with precipitation, maximum temperature

and minimum temperature for JJAS and DJF for the period 1970 to 2005.

Table 6 shows the teleconnections results ENSO, which is represented by the well-known NINO3.4
index, with precipitation, maximum and minimum temperature parameters from all relevant the

datasets used in this study from the IMD, Aphrodite, CRU, and all the model's datasets for historical
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period from 1970 to 2005. The results of this study suggest that the ENSOs do not have any statistically
significant impacts on the NER precipitation and temperature, be it summer or winter, for the period.

NINO3 (figure not shown) has also been analyzed where it also shows no significant impacts.

3.1.16. Extremes analysis for JJAS season for the period 1970 to 2005
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Figure 3.1.16: Histogram plots for JJAS precipitation (mm) of historical period (1970-2005): IMD,
Aphrodite and CORDEX models (LMDZ, MPI, GFDL, CNRM and ACCESS).

In Figure 3.1.16, histograms of observed and simulated JJAS monthly mean rainfall over the NER for
the historical period from 1970 to 2005 are presented. While there are four heaviest rainfall monsoon

seasons with rainfall of 23 mm/day in NER as per the IMD datasets, the APHRODITE datasets indicate

60



(Fig. 3.1.16) five heaviest rainfall months with rainfall amounting to 15 mm/day. Except for the LMDZ
model, all other models simulate the heaviest seasonal rainfall of 15 mm/day. Only two models
simulate at least four such extreme rainfall months (Fig. 3.1.16); The LMDZ model simulates only one

heaviest rainfall month, with the magnitude of the rainfall amounting to 11 mm/day.

The extreme events of JJAS maximum temperature for the historical period from 1970 to 2005 are
shown the Figures 3.1.17. The observation data from IMD recorded thirty-nine highest maximum
temperature months with 34°C/day. The CRU and all the models record somewhat lower maximum

temperature than the observation data, ranging from 22°C to 28 °C.

Figures 3.1.18 show the minimum temperature for JJAS season for the historical period (1970-2005).
The observation data and CRU datasets record a minimum monthly temperature of 27 °C/day. The
minimum temperature in all the models is underestimated, with a range of 12 °C to 21 °C across the

models.
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Figure 3.1.17: Histogram plots for JJAS maximum temperature (°C) of historical period (1970-2005):
IMD, CRU and CORDEX models (LMDZ, MPI, GFDL, CNRM and ACCESS).
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Figure 3.1.18: Histogram plots for JJAS minimum temperature (°C) of historical period (1970-2005):
IMD, CRU and CORDEX models (LMDZ, MPI, GFDL, CNRM and ACCESS).
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3.1.19. Extremes analysis for DJF season for the period 1970 to 2005
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Figure 3.1.19: Histogram plots for DJF precipitation (mm) of historical period (1970-2005): IMD,
CRU and CORDEX models (LMDZ, MPI, GFDL, CNRM and ACCESS).
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Histograms of observed and simulated DJF monthly mean rainfall over the NER for the historical
period from 1970 to 2005 are presented in Figure 3.1.19. The number of heaviest winter monsoon
rainfall months is relatively low as corresponding to the summer monsoon season, as can be seen from
both IMD and Aphrodite datasets. The models in general also qualitatively reproduce the difference.
However, the heaviest rainfall simulated by the LMDZ model of 7 mm/day in the simulated historical

period is noticeably high as compared to the 4.5 mm/day.
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Figure 3.1.20: Histogram plots for DJF maximum temperature (°C) of the historical period (1970—
2005): IMD, CRU, and CORDEX models (LMDZ, MPI, GFDL, CNRM, and ACCESS).
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In Figure 3.1.20, the extreme months of maximum temperature for DJF season are shown for the
historical period (1970-2005). IMD records show 30 months of the highest monthly maximum
temperature of 30 °C/day during the historical period. The CRU records show the monthly mean
highest temperature of 27 °C/day and all the models show a highly underestimated maximum

temperature ranging from 9 °C to 15 °C.
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Figure 3.1.21: Histogram plots for DJF minimum temperature (°C) of the historical period (1970-
2005): IMD, CRU, and CORDEX models (LMDZ, MPI, GFDL, CNRM, and ACCESS).
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In the case of the DJF season, for the historical period (1970-2005), the observation data records
minimum temperatures of 16 °C/day and CRU being 26 °C/day. However, all the models underestimate

the minimum temperature, with a range from 6 °C to -2 °C.

3.2 The climate variability during the last millennium and

future projections

Past-climate simulations provide valuable information in complementing findings from proxy
observations, and hopefully reconcile with some of these paleo-observations, thereby leading to a more
cohesive conclusion. They help in deciphering potential background dynamical mechanisms. With this
aim, we analyze outputs from multiple coupled-model simulations under the PMIP3 protocol. In
addition to this, the summer monsoon rainfall plays a major role in the region, and considering the
importance of the NER, the study of the past climate during the summer monsoon season would be
useful in projecting the future climate. Then we analyze the results from the five downscaled future
scenarios, namely, the RCP4.5 simulations (LMDZ, MPI, GFDL, CNRM, and ACCESS) available

from 2011 through 2060, to decipher the projected climate change in the northeast.

3.2.1. Simulated seasonal rainfall and circulation across NER during the MCA and LIA

The simulated area-averaged monthly mean rainfall over NER for the present-day period from the three
CGCMs and the ECHAM AGCM (Figure 3.2.1) suggests that the evolution of the rainfall's simulated
seasonal cycle conforms well to the observations. In general, the magnitude of the simulated monthly
area-averaged rainfall is comparable to that from the observations, though the one simulated by the

MRI model is smaller than in the observations, particularly for May and June. The magnitude of the
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ECHAMS simulation for the JJAS season is realistic, suggesting that tropical ocean-atmosphere
coupling may not be a major driver of the NER climate. Notably, the summer monsoon rainfall from
the ECHAM peaks later in the year relative to the observations and other models. The highest
magnitude of area-averaged NEISMR is simulated by the ECHAM AGCM in both regimes, closely
followed by the MPI model (Figure 3.2.1b). We should, however, be mindful of the relatively short

span of the ECHAMS simulations. All the further analysis will only involve the PMIP3 models.

The simulated normalized summer monsoon rainfall area-averaged over the central/core-monsoon
region (74.5°E to 86.5°E and 16.5°N to 26.5°N, following Goswami et al., 2006; henceforth, CMR)
from the MCA to LIA is presented in Figure 3.2.1c, with actual climatological values in Figure 3.2.2a.
The simulated CMR decreases by 6% to 11%, from MCA to LIA (Figure 3.2.1c). The simulated rainfall
difference between the MCA and LIA by the CCSM4 and MPI models (Figure 3.2.2a) is statistically
significant at 90% confidence level, and for the MRI, significant at 85% confidence level. This
conforms to the results from nine PMIP3 models by Tejavath et al., (2017, 2019), which show that the
summer monsoon rainfall over India decreased from the MCA to LIA, in agreement with several proxy
studies (e.g., Yadava et al., 2005; Sinha et al., 2007; Dixit and Tandon, 2016). The difference from the

ECHAM model is not statistically significant.
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Figure 3.2.1: (a) Annual cycle of observed area-averaged NER rainfall (mm/day) for the period 1961 to 1990,
and those from the historical simulations of three PMIP3 models of CCSM4, MRI, MPI, and that of ECHAMS5
model (b) area-averaged climatological NER precipitation during JJAS season for MCA period (defined as 935
CE to 1034 CE for PMIP3 models, and 935 CE to 964 CE for ECHAMS5) & LIA (1735 CE to 1834 CE for
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PMIP3 models, and 1735 CE to 1764 CE for ECHAMS5) (c) simulated normalized area-averaged JJAS
precipitation over core monsoon region for the aforementioned 100 years of MCA by the PMIP3 models, and
those from 100 years of LIA, and (d) same as Figure 1c but for northeastern India. The normalization of the
rainfall has been done by dividing the simulated climatological rainfall of MCA or LIA by the average of the 100
years of MCA & 100 years of LIA.
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Figure 3.2.2 (a) Area-averaged climatological JJAS precipitation over Central India for 100 years of
MCA and LIA simulated by the PMIP3 models. (b) Area-averaged climatological JJAS precipitation
over northeastern India for the 1961-1990 period simulated by the ECHAM model and three PMIP3
models. Error bars are also shown.
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The corresponding normalized area-averaged NEISMR for the MCA and LIA from each PMIP3 model
is presented in Figure 3.2.1d. Contrary to the CMR, a difference (to be sure, only about 2%) between
the simulated summer NEISMR between the MCA and LIA across all models is statistically
insignificant. It is also to be noted that the simulated area-averaged mean seasonal rainfall over NER
for the present-day period from each model is not significantly different from the rainfall during the
MCA or the LIA (Figure 3.2.2b), indicating that NER-region has been insensitive to centennial changes

in the forcing. The response of the models is unequivocal.

The interannual standard deviation of the NEISMR for the present day, as seen from the IMD rainfall
datasets, is higher than that for the CMR (Table 7). This is also well-simulated, though the simulated
standard deviations are weaker than the observations. Interestingly, unlike the mean rainfall, the

standard deviations of the NEISMR show relatively higher inter-epochal variations as compared to

those for the CMR.
Standard Deviation (mm.day™)
NEISMR ISMR
1961 to 1990 |LIA MCA 1961 to 1990 |LIA MCA
IMD 1.87 0.96
ECHAMS |1.48 1.04 14 0.84 0.72 0.86
MRI 1.08 0.82 0.76 0.78 0.68 0.68
MPI 1.91 1.19 1.29 0.86 0.69 0.67
CCSM4 1.51 1.04 0.99 0.83 1.13 0.88

Table 7: A comparison of standard deviation values (mm/day) between Northeastern India summer
monsoon rainfall (NEISMR) and Indian summer monsoon rainfall (ISMR) for the present day period
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(1961 to 1990), Little Ice Age (LIA) and Medieval Climate Anomaly (MCA) for observation data
(India Meteorological Department, IMD), and model data sets (ECHAMS5, MRI, MPI & CCSM4).

3.2.3. TEJ changes and impacts on the ISMR

All the three models simulate the tropical easterly Jet stream (TEJ) over Peninsular India, associated
with the Tibetan High (Figures 3.2.3 c, f & i), qualitatively similar to is present-day observations
(Figure not shown). The simulations point to a stronger TEJ during the MCA relative to the LIA
(Figures 3.2.3 c, f & i), which is normally associated with a high summer monsoon rainfall over the

central-Indian region.

The analysis of the PMIP3 simulations by T19 suggests that a centennial westward shift of the
overturning Walker Circulation in the tropical Indo-pacific could be a potential reason for the relatively
high ISMR during the MCA. This, however, does not preclude any other large scale circulation

changes, which may manifest an increase in the ISMR during the MCA.

Tropical dynamics suggest that the presence of the entrance of TEJ over the BoB facilitates strong
convection over BoB and neighboring coastal regions of India. Briefly, the TEJ originates over the
Western Pacific and BoB. Quasi-geostrophic dynamics (Hoskins and Wang (2006, section 9.5.2)
suggest that the westward intensification of easterlies in the TEJ over the BoB and adjoining Indian
region results in an ageostrophic convergence and upward motion at the mid-troposphere, and
consequently, enhanced rainfall. We find an increase in the simulated 500 hPa relative vorticity
(Figures 3.2.4a-3.2.4h) on the central east coast of India, particularly near to the Head BoB and/or over
the neighboring Indian region. There, we see a higher summer monsoon rainfall during MCA (Figures

3.2.3 ¢, f & i). The difference in relative vorticity over NER looks high in Figure 3.2.4c. But it is just
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due to its high climatological magnitude (e.g., Figures 3.2.4a & 3.2.4b). The differences in the area-
averaged 500 hPa vorticity (Figure 3.2.5) confirm that the simulated circulation changes are relatively
weak over the NER relative to CMR in all models, considerably so in two. This suggests that the
strengthened TEJ during the MCA is important for the enhanced rainfall over the CMR during the

MCA.
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Figure 3.2.3: Panels a, d, & g show climatological precipitation (mm.day"') and 100 hPa wind
circulation (m.s™) during JJAS season during MCA as simulated by three PMIP3 climate models.
Panels b, e & h: same as panels a, d & g but for the LIA period (1735 CE to 1834 CE). Panels c, f & i
show the climatological differences between MCA & LIA for the models. Northeastern Indian region is
marked by a black box.
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Figure 3.2.4: Same as Figure 3.2.3, but with simulated climatological 500 hPa relative vorticity (X 10~
S™) instead of 100 hPa circulation. Note that rainfall (a, b, d, e, g & h), and rainfall differences in

panels ¢, f & i is repeated from Figure 3.2.3, for convenience in interpreting relative vorticity changes.
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Figure 3.2.5: Area-averaged differences in simulated mean JJAS 500 hPa vorticity (MCA and LIA) for

the three PMIP3 models.

This change in simulated TEJ during the MCA, however, does not affect NEISMR. This may be
because the NER is farther from a moisture source such as the Head BoB region, relative to, say, the
east coast peninsular India. Indeed, the simulated mid-level moisture flux convergence change into
NER between MCA and LIA (not shown), unlike that in the east coastal Indian region and/or around

the Head BoB, is small.

3.2.6 Association between the ENSO and NEISMR

Just as the present-day observations (Soraisam et al., 2018), the simulated rainfall over NEISMR
during both MCA and LIA is insignificantly correlated at 95% confidence level with the NINO3.4
index (area-averaged sea surface anomalies over 5° N to 5° S and 170° W to 120° W; Figure 3.2.6). We

have also ascertained that the correlations do not turn significant even if we use the NINO3 index
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(area-averaged sea surface anomalies over 5° S to 5° N and 150° W to 90° W), which reflects the

activities of both canonical and Modoki ENSOs (Ashok et al., 2007; Weng et al., 2007).

CCSM4 MPI MRI 0.05%

4

35N

30N

25N

LIA

20N

15N

10N

35N

¥'€ ONIN

30N

25N

MWP

20N

15N

10N

70E 75E 80E 85E 90E 95E OE 75E 80E 85E 90E 95E 70E 75E 80E 85E 90E 95E

Figure 3.2.6: Spatial distribution of anomaly correlations between the NINO3.4 index and local
precipitation during JJAS season for the LIA (top panels) and MWA (bottom panels) simulated by the

three PMIP3 models.
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3.2.7. Seasonal mean cycle for simulated future precipitation, maximum and minimum

temperature data for the period 2011 to 2060
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Figure 3.2.7: (a). Seasonal mean cycle of precipitation data (mm) from Cordex South Asia model data
(LMDZ, MPI, GFDL, CNRM and ACCESS) for the period 2011 to 2060. (b) & (c) same but for
maximum and minimum temperature (°C).
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The individual model RCP4.5 projections of the seasonal cycle of precipitation for 2011 to 2060
(Figure 3.2.7a) indicate an evolution similar to the corresponding historical cycle. However, a majority
of models indicate a slight decrease or no change in the magnitude of the summer monsoon rainfall,
except the projection from the CNRM showing a moderate increase in July precipitation. Based on
these results and an analysis of the spatial distribution of the simulated precipitation (to be discussed in
the next paragraph), we can sum up that the models project a slight or no decrease in the rainfall over

the NER in the future.

The simulated seasonal cycles of maximum and minimum temperature from the RCP4.5 shows an
unchanged evolution. Still, models also project a substantial increase in the maximum and minimum
temperatures (Fig. 3.2.7b & c) relative to the corresponding historical simulations, indicating a rise in

the temperature in the future over the NER.

3.2.8. Simulated JJAS future climatology (RCP4.5) from 2011 to 2060

The simulated JJAS climatology of precipitation (RF-JJAS) from the RCP4.5 projections for the 2011—
2060 period is presented in Figure 3.2.8, and the excess or deficit as compared to the corresponding
historical simulations is shown in Fig. 1a. We find from Figs. 3.2.8 and 3.2.9 that the future projection
of RF-JJAS from each CORDEX South-Asia model is not significantly different from the
corresponding historical simulations (Figure 3.1.1), except for a weak decrease seen in simulations of a
model or two. The RF-JJAS of the LMDZ model spatially ranges between 5~11 mm while in the rest of

the models,3~19 mm.
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Figure 3.2.8: Spatial distributions of JJAS climatology of precipitation (mm) during 2011 to 2060
(future projections) for the climate model data from Cordex South Asia: (i) LMDZ, (ii) MPI, (iii)
GFDL, (iv) CNRM and (v) ACCESS over North East Region.
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Precipitation climatology difference between current and future period—JJAS
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Figure 3.2.9: Climatology difference for precipitation (mm) between current and future period for JJAS
for model data, namely, (i) LMDZ, (ii) MPI, (iii) GFDL, (iv) CNRM and (v) ACCESS.

81



(i) LMDZ

28N 4\ 524"

Climatology Maximum Temperature JJAS (2011 - 2060)

(iii) GFDL

27N -%/

26N — /

28N -
27N -
s 26N A

28N A

27N A

26N A

93E
(v) ACCESS
o 1 7>
o
\
o0
N7 5SS
93E 94E

Figure 3.2.10: Spatial distributions of JJAS climatology of maximum temperature (°C) during 2011 -
2060 (future projections) for climate model data from Cordex South Asia: (i) LMDZ, (ii) MPI, (iii)
GFDL, (iv) CNRM and (v) ACCESS over North East Region.

Notably, (the spatial distribution of TMax-JJAS and TMin-JJAS ) in all the models in Figs. 3.2.10 and
3.2.12 show an increasing magnitude and are also warmer than the corresponding historical simulations
(also match with Fig. 3.2.11 and 3.2.13) across the NER. The respective minimum temperature ranges

are, 13 °C~30 °C and 5 °C~23 °C.
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Figure 3.2.11: Climatology difference for maximum temperature (°C) between current and future
period for JJAS for model data, namely, (i) LMDZ, (ii) MPI, (iii) GFDL, (iv) CNRM, and (v)

ACCESS.
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Climatology Minimum Temperature JJAS (2011 - 2060)
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Figure 3.2.12: Spatial distributions of JJAS climatology of minimum temperature (°C) during 2011 -
2060 (future projections) for climate model data from Cordex South Asia: (i) LMDZ, (ii) MPI, (iii)

GFDL, (iv) CNRM and (v) ACCESS over North East Region.
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Figure 3.2.13: Climatology difference for minimum temperature (°C) between current and future period
for JJAS for model data, namely, (i) LMDZ, (ii) MP], (iii) GFDL, (iv) CNRM and (v) ACCESS.
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3.2.14: Simulated DJF future climatology (RCP4.5) from 2011 to 2060
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Figure 3.2.14: Spatial distributions of DJF climatology of precipitation (mm) during 2011 - 2060
(future projections) for climate model data from Cordex South Asia: (i) LMDZ, (ii) MPI, (iii) GFDL,
(iv) CNRM and (v) ACCESS over North East Region.

The simulated climatological DJF precipitation (RF-DJF) does not show much change in the future
projection (Figure 3.2.14), with values ranging from 0.6 to 3.2 mm. This is also seen in Fig. 3.2.15,
though all the models are not simulating the same result. The range of RF-DJF is seen declining in the

future projection.
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Figure 3.2.15: Climatology difference for precipitation (mm) between current and future period for DJF
for model data, namely, (i) LMDZ, (ii) MPI, (iii) GFDL, (iv) CNRM and (v) ACCESS.
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Climatology Maximum Temperature DJF (2011 - 2060)
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Figure 3.2.16: Spatial distributions of DJF climatology of maximum temperature (°C) during 2011 -
2060 (future projections) for climate model data from Cordex South Asia: (i) LMDZ, (ii) MPI, (iii)
GFDL, (iv) CNRM and (v) ACCESS over North East Region.
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Figure 3.2.17: Climatology difference for maximum temperature (°C) between current and future
period for DJF for model data, namely, (i) LMDZ, (ii) MPI, (iii) GFDL, (iv) CNRM and (v) ACCESS.
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All the models also project an increased TMax-DJF (Figs. 3.2.16 and 3.2.17), with the values varying
from 2 °C to 17 °C. Spatial distributions of TMax-DJF from the analyzed in all CORDEX South-Asia

projections, the models are similar to those from the historical simulations.
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Figure 3.2.18: Spatial distributions of DJF climatology of minimum temperature (°C) during 2011 -
2060 (future projections) for climate model data from Cordex South Asia: (i) LMDZ, (ii) MPI, (iii)
GFDL, (iv) CNRM and (v) ACCESS over North East Region.

90



Minimum Temperature climatology difference between
current and future period-DJF

LMDZ MPI
28N 28N

0.58
27N 27N

0.53
26N 26N

0.48

93E 94E
0.43
CNRM ACCESS

0.38

28N 28N

0.33

27N 27N

0.28

26N 26N

0.23

0.18

GFDL 0.13

2si 0.08

27N 0.03

26N

93E 94E

Figure 3.2.19:Climatology difference for minimum temperature (°C) between current and future period
for DJF for model data, namely, (i) LMDZ, (ii) MPI, (iii) GFDL, (iv) CNRM and (v) ACCESS.
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The projected minimum temperatures for DJF season (Figs. 3.2.18 and 3.2.19) also increases than the
corresponding historical simulations. The future projected DJF climatology in the NER range from -10

°Cto 8 °C.

3.2.20. Area-averaged Trends in projected climate in the NER for the period of 2011 to 2060

Mann-Kendall test Student t-test
Data used Z value & | Statistic p-Value t-Value | Trend Nature of the trend
o value value (S) value
JJAS
LMDZ 3.17>1.96 |379 0.00<0.05 [3.10>2 |0.67 |Increasing trend & significant
CNRM 1.97>1.96 |235 0.04<0.05 |2.07>2 |1.08 -do -

Table 8: Significance tests using Mann-Kendall and Student t-test for precipitation data for JJAS season
from the climate model data for the period 2011-2060.

Table 8 shows that the JJAS precipitation signals for the 2011 to 2060 period as simulated in the
LMDZ and CNRM models show a significantly increasing trend. The ACCESS model projects an
increasing but statistically insignificant trend in summer precipitation during the above period. On the
other hand, the MPI and GFDL models show an insignificant decreasing trend. The projected DJF
precipitation in all the models except the ACCESS model shows an insignificantly decreasing trend.
The ACCESS model simulates a weak increasing trend. Only the significant results are shown in the

table.
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Mann-Kendall test Student t-test
Data used Z value & Statistic p-Value t-Value |Trend Nature of the trend
o value value (S) value

JJAS
LMDZ 5.73>1.96 |685 0.00<0.05 |701>2 |14 Increasing trend & significant
MPI 3.29>196 |393 0.00<0.05 [4.24>2 |1.13 -do -
GFDL 6.25>1.96 |747 0.00<0.05 |8.84>2 |2.86 -do -
ACCESS |3.81>1.96 |455 0.00<0.05 |4.07>2 |1.07 -do -

DJF

LMDZ 4.47>196 |551 0.00<0.05 |524>2 |1.96 -do -
MPI 3.63>1.96 |447 0.00<0.05 |4.27>2 |2.71 -do -
GFDL 4.41>196 [543 0.00<0.05 |4.84>2 |3.01 -do -
CNRM 3.27>1.96 |403 0.00<0.05 |7.19>2 |1.89 -do -

Table 9: Significance tests using Mann-Kendall and Student t-test for maximum temperature data from the

climate model data for the period 2011-2060.

Mann-Kendall test

Student t-test

Data used Z value & Statistic p-Value t-Value | Trend Nature of the trend
o value value (S) value

JJAS
LMDZ 7.25>1.96 |867 0.00<0.05 |11.78>2 |1.66 Increasing trend & significant
MPI 3.89>1.96 465 0.00<0.05 | 4.27 >2 ]0.95 -do-
GFDL 6.92>1.96 827 0.00<0.05 [10.44>2 |2.6 -do -
CNRM 2.68>1.96 321 0.01<0.05 | 287 >2 |0.71 -do -
ACCESS |5.08>1.96 |607 0.00<0.05 | 6.20 >2 |1.45 -do-

DJF

LMDZ 5.03>1.96 619 0.00<0.05 | 6.47>2 |2.61 -do -
MPI 496>196 |611 0.00<0.05 | 523>2 |1.94 -do -
GFDL 4.64>1.96 571 0.00<0.05 | 6.07>2 |2.38 -do -
CNRM 571>1.96 703 0.00<0.05 | 719>2 |1.89 -do -
ACCESS |2.89>1.96 357 0.00<0.05 |3.08>2 |1.15 -do -

Table 10: Significance tests using Mann-Kendall and Student t-test for minimum temperature data from the

climate model data for the period 2011-2060.
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Interestingly, four out of five future simulations project a statistically significant increasing trend in
summer maximum temperature (Table 9), while all of the projects a statistically significant increasing
trend in minimum temperatures (Table 10). The significant increasing trend in the maximum and
minimum trend is also projected for the DJF season (Tables 9 & 10). Thus, is clear although the
projected models do not show quantitatively similar results, qualitatively there is a good agreement,
particularly for the temperature. That is, as per the RCP4.5 simulations, the DJF precipitation is
expected to further decline while both maximum and minimum temperatures are likely to increase
further rapidly. However, there is considerable inter-model uncertainty in the future summer monsoon

rainfall in the NER.

3.2.21. Extremes analysis for JJAS season for 2011 to 2060

In Figure 3.2.21, histograms of simulated JJAS monthly mean rainfall over the NER for the simulated
future projections from 2011 to 2060 are presented. The frequency of the heaviest monthly-mean
rainfall months in general increases in the simulated future projections for 2011-60, except in those
from the GFDL which fall from 15 to 13. Further, it is also to be noted that the magnitude of the
heaviest monthly rainfall decreases (increases) in two (one) models by about 2 mm/day (4 mm/day).
Importantly, it shows that the total number of ‘low rainfall’ months (arbitrarily defined as rainfall < 7

mm/day) have increased quite substantially, with the range of increase being 34%—42%.
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Figure 3.2.21: Histogram plots for JJAS precipitation (mm) of future period (2011 to 2060): CORDEX
models (LMDZ, MPI, GFDL, CNRM and ACCESS).
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Figure 3.2.22: Histogram plots for DJF precipitation (mm) of future period (2011 to 2060): CORDEX
models (LMDZ, MPI, GFDL, CNRM and ACCESS).
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Histograms of simulated DJF monthly mean rainfall over the NER for the simulated future projections
from 2011 to 2060 are presented in Figure 3.2.22. In future projections, the frequency of simulated

heavy rainfall months increases in all the model projections except GFDL and CNRM.
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Figure 3.2.23: Histogram plots for JJAS maximum temperature (°C) of future period (2011 to 2060):
CORDEX models (LMDZ, MPI, GFDL, CNRM and ACCESS).
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The extreme events of JJAS maximum temperature for future projections from 2011 to 2060 are shown
the Figure 3.2.23. The simulated highest maximum monthly temperature in the future projections

relatively increases and ranges between 24 °C to 32 °C with LMDZ.
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Figure 3.2.24: Histogram plots for DJF maximum temperature (°C) of future period (2011 to 2060):
CORDEX models (LMDZ, MPI, GFDL, CNRM and ACCESS).
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In Figure 3.2.24, the extreme months of maximum temperature for DJF season are shown for future
projections (2011-2060). Even though the highest maximum temperature increases in the future

projections, the maximum number of events with the highest frequency decreases.
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Figure 3.2.25: Histogram plots for JJAS minimum temperature (°C) of the future period (2011 to
2060): CORDEX models (LMDZ, MPI, GFDL, CNRM, and ACCESS).
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Figure 3.2.25 shows the histogram of minimum temperature for JJAS season for future projections
(2011-2060). The simulated frequency of highest minimum temperature in the three future projections
increases, only models (LMDZ and GFDL) project a decreasing number of highest minimum

temperature events.
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Figure 3.2.26: Histogram plots for DJF minimum temperature (°C) of future period (2011 to 2060):
CORDEX models (LMDZ, MPI, GFDL, CNRM and ACCESS).
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In the case of the DJF season for minimum temperature (2011 to 2060), the highest minimum

temperature in the future projections increases as compared to the corresponding historical simulations.

3.3 Climate change impact on vegetation profile in the

NER India

The vegetation profile of the NER is particularly important in terms of its ecology and biodiversity. In
this context, understanding the relevance of factors such as rainfall, NDWI, aridity, maximum and
minimum temperature over the NER to the local NDVI, which provides a good representation of the
vegetation profile, is important. The sub-section examines if there is any covariation in the local
climate and vegetation in the recent 17 years in the background of anthropogenic climate change.
Accordingly, trends of the anomalies derived for the wet, winter, and dry three seasons in the NER are
explained below. Also, the maximum NDVI values both temporally and spatially have been assessed to

figure out the dependency of the NDVI on the climatic parameters for the region.

3.3.1 Area-averaged trends of anomalies based on vegetation types

In the following few paragraphs, the trends of extracted field sample points of Deciduous Broad Leaf
Forest (DBF), Evergreen Broad Leaf Forest (EBF), Evergreen Needle Leaf Forest (ENF), Mixed Forest
(MF), Shrubland (SL), and Grassland (GL) for the NER have been assessed. For this, the extracted
field sample point’s area-averaged anomalies of NDVI, rainfall, aridity, NDWI, maximum and
minimum temperature for wet (June to October), winter (November to February), and dry (March to

May) seasons for the period 2000 to 2017 for the NER have been evaluated and presented.
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Figure 3.3.1.1: Anomalies of area-averaged trends of NDVI, rainfall & aridity for (a) wet season, (b)
winter season & (c) dry season; maximum temperature, minimum temperature & NDWTI for (d) wet

season, (e) winter season & (f) dry season for Deciduous Broad Leaf Forest for the period 2000 to 2017
in the NER.
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During the summer monsoon (wet) season (Figs. 3.3.1.1a and 3.3.1.1d), the area-averaged anomaly of
DBF shows affected by the distribution of rainfall, aridityy, NDWI, maximum, and minimum
temperature depending on their intensity. Interestingly, depending on how the rainfall and moisture
evolve over 2-3 years, we also see the signature of strong abundance as well as a deficit in rainfall and
moisture reflected in the NDVI up to 2-3 years. However, a straight dependence of the NDVI on
rainfall and moisture of previous years is not seen every year. This is natural because of the interannual
variability as well as the impact of the previous season's rainfall and moisture because of interannual
fluctuations of maximum and minimum temperature (figure 3.3.1.1d) with time lag which eventually
influence the NDVI. For instance, the sharp decline of NDVI anomalies towards 2004 is likely because
of the cumulative effect of a sharp decline in rainfall in 2002 (figure 3.3.1.1a) and a slight reduction in
NDWI (Figure 3.3.1.1d) in 2004, thereby reducing the moisture needed for the growth. In addition to
this, a decrease in rainfall and aridity (Figure 3.3.1.1c) along with the reduction in NDWTI (Figure
3.3.1.1f) due to higher temperature in 2004 during the pre-monsoon (dry) season may have also
reduced the available soil moisture, thereby moving the NDVI in the monsoon (wet) season towards
negative anomalies in 2004. This is followed by higher NDVI in 2006 of monsoon (wet) season due to
the contribution of high rainfall and aridity of 2006 during pre-monsoon (dry) season (Figure 3.3.1.1c).
Then the moisture stress because of the reduction of aridity and rainfall seen in 2009 due to the
extremely high maximum and minimum temperature in 2008 and 2009 (figure 3.3.1.1d) exacerbate the
NDVI reduction in 2010. From 2010 onwards, the NDVI follows the pattern of rainfall and NDWTI till

the end of the period.

During the winter season (figure 3.3.1.1b); the NDVI, rainfall, and aridity anomalies show a sharp
decline towards the end of the period compared to the other two seasons (monsoon and pre-monsoon).

The sharp decline in the magnitude of the NDVI during this winter season indicates the cumulative
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effects of decreasing summer monsoon rainfall (wet) as well as the winter monsoon rainfall. To
corroborate this, we can see that the summer monsoon rainfall is decreasing towards the end of the
period in figure 3.3.1.1a. Also, the sharp decline in the summer monsoon rainfall in 2009, 2011, and
2013 are seen affecting the decrease of NDVI of the same year of winter monsoon season while the
increasing peak summer monsoon rainfall in 2003, 2006, and 2010 are seen contributing to the
increasing NDVT of the same year of the winter monsoon season. In previous years rainfall and aridity
dependency on the NDVI can be seen in some of the years too during this season. The fluctuations of
NDWI (figure 3.3.1.1e) throughout the year are found to have reflected on the decreasing and
increasing anomalies of NDVI of the corresponding years. To a great extent maximum, and minimum
temperature fluctuations during this season have affected the NDWI variations which are reflected in

the NDVI variations.

The pre-monsoon (dry) season in figure 3.3.1.1c indicates that the rainfall and aridity of the same year
affect more to the NDVI than the previous year's rainfall and aridity. The maximum and minimum
temperature fluctuations are seen clearly during this season in figure 3.3.1.1f affecting the moisture
availability shown by the interannual variations of NDWI (Figure 3.3.1.1c) thereby ultimately affecting
the NDVI. Apart from the winter monsoon season, the pre-monsoon (dry) and summer monsoon (wet)
season depicts that the variation in NDVI is more related to the changing temperature which leads to

moisture alteration thereby changing the NDVI.
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Figure 3.3.1.2: Anomalies of area-averaged trends of NDVI, rainfall & aridity for (a) wet season, (b)
winter season & (c) dry season; maximum temperature, minimum temperature & NDWTI for (d) wet
season, (e) winter season & (f) dry season for Evergreen Broad Leaf Forest for the period 2000 to 2017
in the NER.
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The dependence of the evolution of EBF on the climatic parameters in various seasons seen in figure
3.3.1.2 is like that of DBF shown in previous figure 3.3.1.1 for all the seasons. The summer monsoon
(wet) season shows the time-lagged dependency of NDVI on rainfall and aridity (figure 3.3.1.2a) while
NDWI shows the dependency of NDVI within the same years due to the changes in temperature in
figure 3.3.1.2d. The previous years' maximum and minimum temperature are seen affecting the rainfall
of the next year impacting the NDVI in this season. The winter monsoon season (figure 3.3.1.2b) of
this vegetation type shows a similar drastic variation in the NDVI. Some of the years depict that the
rainfall in previous years affects the NDVI of the following years. In the case of aridity, a similar year-
to-year dependency is found but also depicts a two to three years lagged association with the NDVI.
The NDWI (figure 3.3.1.2e) during this winter season indicates the same evolution seen in the summer
monsoon season probably due to the fluctuations seen in temperature. Even in the pre-monsoon (dry)
season, the EBF shows variations up to great extent. The aridity and rainfall in figure 3.3.1.2c and
NDWI in figure 3.3.1.2f during this season show that the NDVI is affected by these parameters within
the same years. The maximum and minimum temperature during this pre-monsoon (dry) season also
shows a great impact on the NDWTI (figure 3.3.1.2f) and aridity (figure 3.3.1.2c). Rather than the
rainfall from the previous winter monsoon season, the moisture seems to play an important role during
this pre-monsoon (dry) season which can be found from the aridity and NDWI variations due to the

fluctuations in temperature.
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Figure 3.3.1.3: Anomalies of area-averaged trends of NDVI, rainfall & aridity for (a) wet season, (b)
winter season & (c) dry season; maximum temperature, minimum temperature & NDWTI for (d) wet

season, (e) winter season & (f) dry season for Evergreen Needle Leaf Forest for the period 2000 to
2017 in the NER.
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The ENF that does not get affected much by the changing climatic variations is found to be drastically
affected in all three seasons (Figure 3.3.1.3) over the region. During summer monsoon (wet), winter
monsoon, and pre-monsoon (dry) seasons, the moisture fluctuations were seen in aridity and NDWI
due to extreme variations in maximum and minimum temperature are seen. This eventually affects the
NDVI due to the variations in moisture needed for the growth of the vegetation. The impact of
temperature variations on the rainfall is also found to a great extent thereby impacting the NDVI.
Previous seasons as well as the interannual dependency of NDVI on these climatic parameters are

reflected for this vegetation too in all the seasons.

MIXED FOREST

The MF during all the seasons in figure 3.3.1.4 shows that the NDVI exhibits variations though the
forest is of mixed forests. During summer monsoon (wet) and pre-monsoon (dry) seasons, maximum
and minimum temperature greatly affects the moisture seen in aridity and NDWTI thereby affecting the
NDVI. The similar dependency of the evolution found in the previous vegetations on the climatic
parameters is also seen here. Seasonal, as well as interannual dependency, are also found in this
vegetation. As for the winter monsoon season (figure 3.3.1.4b), the NDVTI exhibits a decreasing trend
towards the end of the period. Rainfall seems to affect more on the NDVI during this winter monsoon
season throughout the period except for few years where the moisture from aridity and NDWI are seen

impacting more on the NDVI.
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Figure 3.3.1.4: Anomalies of area-averaged trends of NDVI, rainfall & aridity for (a) wet season, (b)
winter season & (c) dry season; maximum temperature, minimum temperature & NDWI for (d) wet
season, (e) winter season & (f) dry season for Mixed Forest for the period 2000 to 2017 in the NER.
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SHRUB LANDS

In figure 3.3.1.5 (a & c), similar patterns of NDVI dependency seen above are also observed on this
vegetation type. In previous years, as well as two to three years, the lagged dependency of these
parameters on the NDVI is also seen here. Effects of maximum and minimum temperature on the
aridity and NDWI which ultimately affects the NDVI are seen more prominently during the summer
monsoon (wet) and pre-monsoon (dry) seasons. While during the winter monsoon season (figure
3.3.1.5b), NDVI seems to be more affected due to rainfall variations. However, in addition to rainfall,
in few years, aridity (figure 3.3.1.5b) and NDWI (figure 3.3.1.5e) show time-lagged dependency on the

NDVI during the winter monsoon season.

GRASSI.AND

During the summer monsoon (wet) season in figure 3.3.1.6 (a & d), the maximum and minimum
temperature in previous years is seen affecting the NDWI, aridity, and rainfall in the next year. This
eventually reflects on the NDVT of this season with time lag dependency. The NDVI during the winter
monsoon season (figure 3.3.1.6b & e) seems to be affected by rainfall of previous years at the
beginning of the period while the rest shows more dependency on the aridity and NDWI which could
be due to the fluctuations of the temperature seen in figure 3.3.1.6e. The effect of summer monsoon
rainfall is also seen on the NDVI of the winter monsoon season in some of the years. During the pre-
monsoon (dry) season (figure 3.3.1.6c & f), impacts of the previous season and interannual variations
of the climatic parameters are seen on the NDVI of this season. The maximum and minimum
temperature during this season fluctuates more clearly which leads to the variations in the moisture

seen in aridity and NDWI, also to rainfall affecting the NDVI.

110



(a) Wet season (June to October)

2

b=

<

&

z

g

a

&~
\] 3\ > o & Q J X o
Q \ Q Q \) \ N N \
PSSPy

(b) Winter season (Nov to Feb)

Rainfall & Aridity

0.08
0.06
0.04
0.02

-0.02
-0.04
-0.06

Rainfall & Aridity

Shrub Land

-8 if
= Linear
()
=t aridity
—— Linear
(aridity)
== ndvi
—— Linear
(ndvi)

NDVI

== 1f
=~ Linear
()
== aridity
—— Linear
(aridity)
=== ndvi
=~ Linear
(ndvi)

é

—&=f
— Linear
(f)
e aridity
— Linear
(aridity)
e nlvi
— Linear

(ndvi)

NDVI

MaxT & MinT

MaxT & MinT

MaxT & MinT

Wet season (June to October)
0.4 0.04
03 0.02
0.2
g
0.1 I |w
0 -0.02
01 / \/ /1 004
-0.2
-0.06
-0.3
0.4 0,08
-0.5 -0.1
N Q X o
N ,@@/ FOSS @Q‘b S q’& S
Winter season (Nov to Feb)
0.4 0.06
0.2 o~ 0.04
= /) \
0 bl r ,../ 0.02
0
-0.2
-0.02
-0.4
-0.04
. 0,06
-08 -0.08
-1 -0.1
> & 4 @ g D 3
§ ¢ &F ¢ & @'\/ 'Q’IN \P"\/ '\33'\/
PSS
Dry season (March to May)
0.4 0.05
0.3 0.04
0.2 0.03
0.1 0.02
0 0.01
-0.1 0
-0.2 -0.01
-0.3 -0.02
-0.4 -0.03
-0.5 -0.04
-0.6 -0.05
I S TR S C Y
¥ P e Y g g

Shrub Land

== ndwi

— Linear
(ndwi)

=== maxt

Linear
(maxt)
mint

Linear
(mint)

NDWI

== ndwi
—— Linear
(ndwi)
=== maxt
~—— Linear
(maxt)
mint
Linear
(mint)

3
2

== ndwi
= Linear
(ndwi)
=== maxt
—— Linear
(maxt)
mint
Linear
(mint)

NDWI

Figure 3.3.1.5: Anomalies of area-averaged trends of NDVI, rainfall & aridity for (a) wet season, (b)
winter season & (c) dry season; maximum temperature, minimum temperature & NDWTI for (d) wet
season, (e) winter season & (f) dry season for Shrub Land for the period 2000 to 2017 in the NER.

111




(a) Wet season (June to October) i E (d Wet season (June to October) =
8 (1 < 06 002 ™ i
= iy s TR
g, e
(adndlly) 0.01 mint
=%= ndvi 3
E’\ —— Linear E 0.2 0.005 %r:::?)r
ﬁ (ndvi) g 0
4 & = y z
3 > % - \ AVN \ / 0005 B
3 01 2 Z .02 -0.01
=
= -0.015
K 0.4
-0.02
-0.6 -0.025
N > o D S D o
N (19@' & & & WQ\'J’ &

() et (e Winter season (Nov to Feb) o=
— {“rg)ear 1 0.02 :—;3::;
== aridity == maxt
—— Linear 0.5 / 0.01 — Linear

(aridity) (maxt)

E‘n e clvi 0 ’., ‘ 0 mint
=1 — Linear Li

5 - WM T
g .05 001

: g g :

3 2 B 002 2

;: g

4 15 -0.03

-2 -0.04
S > O N %) od A
QQ'Q Q’VQ QVQ & QQ"Q AP
RO
0} Dry season (March to May) R
(C) +rf. 06 0.02 —Lmeaf
= Linear (ndvl)
s B ﬂ " 0015 —nae
== aridity 04 —— Linear
S 0.01 (maxt)
0.1 wi mint
> ' (anc?uy) 0.2 0.005 Linear

3 o e 2 0 i ; i

; 05 7 ) S \X Voo 5

ki i B el R 001 B

g B g 04 -0.015

g -0.05 8 -0.02

) -0.025
-0.1 -0.8 -0.03
¥ @& H 4 & 8 9 9 4 ST ST (S R L R
d @ & & ¢ F &F &F & & P PP
§ AU S S P P P g F ¢ F e P
Grassland Grassland

Figure 3.3.1.6: Anomalies of area-averaged trends of NDVI, rainfall & aridity for (a) wet season, (b)
winter season & (c) dry season; maximum temperature, minimum temperature & NDWI for (d) wet
season, (e) winter season & (f) dry season for Grassland for the period 2000 to 2017 in the NER.
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From the above analysis, we can see that the six vegetation types studied exhibit interannual and inter-
seasonal anomalies fluctuations, though the magnitudes saw are different in all three seasons. The
winter season shows the greatest magnitude of the decreasing values of NDVI and other parameters
than those of summer monsoon (wet) and pre-monsoon (dry) seasons. The weakening of NDVI in the
winter season indicates the importance of summer monsoon rainfall as the decrease in summer
monsoon rainfall leads to a decrease in the density of the vegetation cover in the NER. This is probably
due to lower rainfall received during the summer monsoon season which supplies moisture water to
winter season NDVI (Revadekar et al., 2012). Dry season shows the lowest magnitude comparatively
than the other two seasons. Maximum and minimum temperature fluctuations are seen affecting the
moisture availability seen in aridity and NDWI which ultimately affects NDVI during the summer
monsoon and pre-monsoon seasons while rainfall affects more during the winter monsoon season. Both
rainfall and temperature together seem to play roles in the NDVI variation over the NER. The positive
and negative anomalies of NDVI correspond well with the negative and positive anomalies of rainfall
which is also seen in another region studied by Wang et al., 2001 and Revadekar et al., 2012. The
fluctuations of NDVI seen in all the three seasons of course reflect the seasonal variation of the
growing season (Yu, Zhuang, & Hou, 2005). One important aspect of this study is that the Evergreen
Needle Leaf forest which does not get affected much by rainfall also shows interannual and inter-
seasonal fluctuations. Different vegetation types respond differently depending upon the nature of the
rainfall, moisture, and temperature. A sustained negative and positive trend in the anomalies of NDVI
in the NER along with the decrease and increase in the rainfall anomalies along with other necessary
parameters have not been discussed so far. This study is the first of its kind to deliver the message of

this prevailing situation in NER.
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Any changes in summer monsoon rainfall led to water stress, changes in phenology, and decreased
biomass, with a subsequent reduction in the NDVI (Zeppel, Wilks, & Lewis, 2014) not only
concurrently, but also in the next season through 2-3 years. The fluctuations seen in the NDVI anomaly
in all types of vegetation types indicate increasing stress in the vegetation which is a matter of serious
concern. The negative trends in the NDVI agree with the analysis done by Chakraborty, Seshasai,
Reddy, & Dadhwal (2018) which shows a significant negative trend in the wet and semi-evergreen
forest, deciduous, subtropical broad-leaved forest in Arunachal Pradesh, Meghalaya, Sikkim, Manipur,
Nagaland, and Mizoram. In addition to this, the forests in the lower ranges of Eastern Himalayas are
vulnerable due to shifting cultivation and forest fires (Chakraborty, Seshasai, Sudhakar Reddy, &
Dadhwal, 2018), which can be said to have added to the severity of the negative impact on vegetation
over the region. The evergreen forest and deciduous forest are said to be facing a higher rate of
transformation over the NER due to shifting cultivation, land use, and land cover, and deforestation
(Chakraborty, 2009). These two forests are also seen as drastically affected in the study due to the
variation in the rainfall and temperature patterns. In a study by Lele, Joshi, & Agarwal (2005), the
vegetation cover of a coniferous broadleaf, sub-tropical evergreen forest, semi-evergreen forest, and
moist mixed deciduous forest were found degraded. Jeyaseelan, Roy, & Young (2007) also showed that
the decline in NDVI is related to lower rainfall received over India. In the study done by Parida et al.,
(2008), different vegetation types showed different responses to the temperature which is also found in
my study. All these indicate that rainfall and temperature as the limiting factor for the growth of the
vegetation types over broad regions covering India and China. Besides these parameters analyzed,
moisture stress during droughts period occurred during 2005-06, 2009, 2010-11, 2013 (Assam,
Manipur, Mizoram, Tripura, and Arunachal Pradesh) appear to be an additional factor responsible for
the increase of negative anomalies of NDVI which are observed. Negative anomalies in NDVI during

drought years are more prominently seen. This is because during the drought periods, the soil water
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supply dries out, and foliage begins to shed, affecting the ability to mobilize (Feldpausch et al., 2016),

and hence NDVI is reduced.

3.3.2 Trends of long-term rainfall anomalies for all the seasons
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Figure 3.3.2: Trends of area-averaged anomalies of rainfall for (a) wet, (b) winter and (c) dry seasons
for the period 1971 to 2017 ver Northeast India.
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In figure 3.3.2, long-term rainfall anomalies for all three seasons have been analyzed for the period
1970 to 2017 over NER. Regardless of the seasons, the rainfall trend has been decreasing significantly
at a 95% confidence level from 1970 till 2017. It indicates the recent decreasing tendency in the rainfall
over NER, which could be a major factor for the decline in the NDVI values. Reduction in rainfall
since the year 2000 is also seen in the Amazon forest region, which resulted in the significant
diminishing of vegetation greenness including tropical evergreen forest and subtropical grasslands
across large parts of the region (Hilkera et al., 2014). The weakening tendency in the rainfall in the
NER has a potentially serious and unfavorable implication for the local vegetation. This will be subject

to long-term cumulative water stress and leading to disastrous on the vegetation of the region.

3.3.3 Evaluation of NDVI and rainfall for the entire region of Northeast India

The entire region for Northeast India has also been evaluated using the NDVI and rainfall data from
2000 to 2017. Unlike the previous assessment, which was based on field sample points, this section
evaluates the entire grid points of the region. The area-averaged anomalies for entire grid points,
maximum NDVI values both temporal and spatial have been assessed. This would give some hints

whether only the selected locations or the entire region have changed or not.

In figure 3.3.3.1, the entire region of NER from 2000 to 2017 period shows that the trends of the NDVI
and rainfall anomalies increases in all three seasons indicating higher greenery. The discrepancy from
the earlier field sample point analysis can be explained by the fact that the current analysis of averaging
over the whole region leads to consideration of plantations outside recorded forest areas, regeneration
of the forest, conservation measures, expansion of croplands, intensive irrigation, urban greening,

agricultural practices, etc (e.g. Liu et al 2015 and Chen at al., 2019). Thus, human interventions seem to
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alleviate the vegetation stress over a broad region. This is important information for policymakers as
well. The relative contributions of each of these factors need to be ascertained through some dynamical

modeling experiments.
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Figure 3.3.3.1:Anomalies of area-averaged NDVI and rainfall for entire Northeast region for wet

season (June to October), winter season (November to February) and dry season (March to May) from
2000 to 2017.
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Figure 3.3.3.2: Maximum NDVI values collected from MODIS-Terra for wet season (June to October),
winter season (November to February) and dry season (March to May) from 2001 to 2017 over
Northeast India.

In figure 3.3.3.2, the time series of maximum NDVI values for summer monsoon (wet), winter
monsoon, and pre-monsoon (dry) seasons from 2001 to 2017 have been analyzed. The winter season
shows the highest maximum NDVI values followed by the wet season and dry season. This figure

supports the previous analysis based on the area-averaged anomalies where winter monsoon season

depicts the greatest magnitude comparatively to the other two seasons. The winter monsoon season
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shows the highest NDVI value due to the cumulative contribution of summer monsoon rainfall and
winter monsoon rainfall. The greenness reaches its maximum during the winter monsoon season
because of adequate sunlight, the sky remains clear as the cloud disappears once the summer monsoon
receded, which is needed for photosynthesis supported by water and nutrient charged soils (Nischitha et
al., 2014). These are followed by wet season and dry season with the latter showing the least NDVI
value. The maximum NDVI values for Deciduous Broad Leaf, Evergreen Broad Leaf, and Evergreen
Needle Leaf forests are also analyzed (figure not shown) where the maximum values of NDVI for these

three vegetation types show decreasing trends from 2001 towards 2018.

More clarity is also seen in the spatial distribution of NDVI (figure 3.3.3.3) of the entire region where
the winter season shows the greenest (highest NDVI value) of all while during the summer monsoon
(wet) and pre-monsoon (dry) season. The NDVI is a bit scattered and declines with dry season being
the least NDVI value. The moisture deficit due to increased evapotranspiration during the dry season is
associated with vegetation growth (Liu et al., 2015). The maximum values of NDVTI in this figure also
indicate that the winter season depicts a distinct interannual change as compared to the other two
seasons. The year 2018 (figure not shown) also shows the variation of NDVI in the entire region
indicating changes in the latest current period. However, in all three seasons, the changes seen are not
static, as year-to-year variation in the same region shows fluctuations in NDVI throughout the period.
This fluctuation of NDVI indicates that the increase and decrease of rainfall plays an important role in

controlling the vegetation growth over the region.
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Figure 3.3.3.3: Spatial distribution of maximum NDVI values for wet, winter and dry seasons from
2001 to 2017 for Northeast India.

Nevertheless, my analysis-be selected field sample points or entire region-shows that the association of
these climatic parameters such as rainfall, moisture availability from the aridity and NDWI, maximum
and minimum temperature affects the distribution of NDVI. Summer monsoon and pre-monsoon
season indicate that the temperature directly affects the moisture and rainfall leading to the variation in
all the vegetation types studied. While the winter monsoon season shows dependency more on rainfall.

Both rainfall and temperature’s combine effect are seen in all the vegetation. All the vegetation types
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are found sensitive more or less equally to all the changing climatic parameters given its time-lag
effect, interannual and seasonal effect. However, rainfall indicates control on the vegetation as the
moisture retains from it and the surrounding atmosphere due to temperature fluctuations eventually

affects the vegetation over the region.

3.3.4 Means and standard deviations for NDVI and rainfall over the NER
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Figure 3.3.4: Means and standard deviations of NDVTI and rainfall for wet, winter and dry seasons for
the period of 2000 to 2017 over Northeast India.
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In figure 3.3.4, the means and standard deviations of NDVI, rainfall, the maximum and minimum
temperature for the period 2000 to 2017 have been computed. Statistically, at a 95% confidence level,
the winter season mean NDVI is significantly different from the summer monsoon (wet) season mean
NDVI for DBF, EBF, and ENF while the rest of the vegetation types are found insignificant. The winter
season mean NDVI is also significantly different from the pre-monsoon (dry) season mean NDVT for
DBF and EBF only. Summer monsoon (wet) and pre-monsoon (dry) season mean NDVI are

statistically insignificant.

The summer monsoon (wet) season mean rainfall is significantly different from the mean rainfall of the
winter monsoon and pre-monsoon (dry) season for all the vegetation types while the winter monsoon
means rainfall and pre-monsoon (dry) season mean rainfall is statistically insignificant at 95%

confidence level.

The mean maximum temperature of summer monsoon (wet) season is significantly different from the
mean maximum temperature of winter monsoon season for all the vegetation types at a 95% confidence
level. It also shows significantly different from pre-monsoon (dry) season mean maximum temperature
for ENF, MF, and GL. The mean maximum temperature of the winter monsoon season is significantly
different from the mean maximum temperature of the pre-monsoon (dry) season for MF and SL. As for
the mean minimum temperature of summer monsoon (wet) season, it is significantly different from the
mean minimum temperature of winter monsoon season for all the other vegetation types except for

DBF. The rest of the seasons (minimum temperature) show insignificant at 95% confidence level.
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In figure 3.3.4, though the rainfall is high during the summer monsoon season, NDVI shows lower
during this season because of the higher temperature seen during the same season that leads to low
moisture needed for the growth of the vegetation. The NDVT is high during the winter monsoon season
though the rainfall is low as the temperature during this season is lower, also the summer monsoon
season rainfall, as mentioned in the above analysis, contributes to the increasing NDVI of the winter
monsoon season. This analysis indicates that DBF, EBF, and ENF are affected drastically while the rest
of the vegetation types have also shown variation due to changes in rainfall and temperature. This result
also matches with the above analysis carried out for field sample area-averaged points. Lastly, the
correlation, lag correlation, and regression analyses calculated between NDVI and the rest of the

parameters are statistically weak and insignificant for all the vegetation studied.
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CHAPTER -4

SUMMARY AND CONCLUSIONS

This chapter provides a summary, conclusions of the important findings and addresses the important

recommendations of the future work.

4.1 Summary

As per the special report of the policymakers, IPCC 2018 reported that the impacts of warming due to
anthropogenic emissions from the pre-industrial period (from 1870s) to the present period, which
exacerbated in the last 4-5 decades are stated to persist for centuries to millennia thereby causing a
long-term change in the climate system. Due to rising climate change, a developing country like India
where agriculture is still rainfed is the main source of income and could be severely affected (Kumar et
al., 2006). The Indian summer monsoon rainfall (ISMR) plays a vital role in the Indian sub-continent,
home to more than 1 billion people, as the region receives 70% to 80% of its annual rainfall with mean
area-averaged ISMR about 890 mm over the last 100 years. In India, the characteristics of the summer
monsoon rainfall and its variability differ from region to region within the nation. The spatial pattern of
its dominant mode of variability shows a dipolar structure (Parthsarathy et al., 1996); the signal in
Northeast India (NER) is found in an out-of-phase relation with the rest of India (Fig. 6.5, Pant and

Kumar, 1997). The NER (= 89.50 E to 98.50 E and 21.50 N to 29.50 N) is one of India's highest raining
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regions, with an area-averaged seasonal rainfall of 152 cm (Parthasarathy et al., 1995). Moreover, the
NER is endemic to many flora and fauna, making it one of the world's richest in terms of biological

values (Chakraborty et al., 2012).

Nevertheless, uncertainties across various observational datasets and in high-resolution projections
arise due to limited field samples of future climate projections for NER. The NER, being a complex
orographic region in Himalayan mountain ranges, experiences changes in rainfall over short distances,
and therefore complicated to model (Prakash et al., 2014). Due to being a neglected region in terms of
climate observations and model studies, there is a need to address these issues properly. The high-
resolution CORDEX South-Asia (LMDZ, MPI, ACCESS, GFDL & CNRM) models of 0.5° x 0.5°
horizontal resolution, which are downscaled versions of the CMIP5 projections allow us to study the
future climate change in the NER at higher resolution, taking into account uncertainty associated with
inter-model variability and those in observations. Along with these, several observation-based and
reanalyzed datasets are also used in the study. It will also be useful to ascertain at least qualitatively,
using available model simulations, whether the climate in the NER has changed in tandem with that
elsewhere in India in the last millennium when many regions in the world experience as warm as in the

first half of the twentieth century (IPCC, 2013).

Further, any change in local climate is a potentially critical factor in assessing the responses of the
ecosystem to climate change at the regional scale. The regional and local patterns of climate control the
growth of the vegetation, due to the seasonal and annual dynamics of the climatic variables of the
respective region (Revadekar et al.,, 2012). The inconsistency in the precipitation and temperature
influences the water balance, causing changes in the soil moisture, which affects the growth and

distribution of plants (Revadekar et al., 2012 & Nischitha et al., 2014). The NER, one of the global
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biodiversity hotspots, is under the threats of deforestation (Saikia, 2009) and traditional shifting
cultivation (Roy & Joshi, 2002), the population explosion, encroachments, illicit felling, lopping for
fuelwood and fodder, removal of forest cover for litter, forest fires, land use and land cover change
from agriculture, etc. (Lele & Joshi, 2009; Ravindranath et al., 2011 & Roy et al., 2015b). Therefore, an
analysis of Normalized Difference Vegetation Index (NDVI) fortnightly data of 500 m resolution
derived from Moderate Resolution Imaging Spectroradiometer (MODIS) instruments onboard the Terra
(EOS AM) satellite (Didan, 2015) can provide information on Spatio-temporal patterns in linkages
among phenological and climate cycles of vegetation and trends in vegetative cover. There is a need to
improve our understanding of the climatic variability implications for the seasonal vegetation dynamics

in this region.

4.2 Conclusions

4.2.1 Conclusions in the context of current climate variability in the NER.

The climate variability studied during the current period from 1970 to 2005 reveals the following
findings:

1. The area-averaged monthly means of rainfall and temperature observations during the 1970 to 2005

period have been well-captured by historical simulations of CORDEX South Asia models.

2. The area-averaged summer monsoon rainfall and winter monsoon rainfall show a weak and

statistically insignificant decreasing trend as seen from both the observations and model data sets.
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3. Importantly, there is uncertainty across various observational and model datasets as differences are
noted in the locations of highest and lowest climatological rainfall & temperatures across the

observation and models in climatological spatial distribution, pointing at uncertainties.

4. The ENSO events do not have any significant impact on the climate of the NER, during both

summer monsoon and winter monsoon season.

5. As for extreme events over the NER, the heaviest seasonal rainfall of 15 mm/day captured by the

models is underestimated compared to the observed value of 23 mm/day.

4.2.2 Conclusions in the context of last millennium climate variability in the NER
The climate variability studied during the Last Millennium (Medieval Climate Anomaly period: 935
CE to 1034 CE & Little Ice Age: 1735 CE to 1834 CE) reveals the following findings:
1. Unlike the rest of India, the NEISMR differences over NEI from the MCA to LIA are as low as 2%
and also small compared to present-day conditions. The model simulations show that the NER summer
monsoon rainfall is insensitive towards changes in the forcing during the last millennium, and on

centennial timescale, decoupled from the response of the rest of India.

2. All the simulations indicate a strengthening of the tropical easterly jet (TEJ) at 100 hPa during the
MCA relative to the LIA. This results in anomalous convergence over the North BoB, and an

enhancement of monsoonal rainfall along with the CMR.

3. The analysis also shows that ENSO, in all periods, hardly has an impact on the NEISMR. Also, the

mechanisms that potentially play a role in the warm and wet MCA, and cold and dry LIA over the
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major Indian regions -the multi-centennial tropical Indo-pacific Walker circulation that affects the
ENSO impacts on India (T19), and changes associated with the TEJ- do not seem to influence the
NEISMR, at least in our PMIP3 results. That is why it’s almost constant magnitude from MCA through

the LIA.

4.2.3 Conclusions in the context of future climate projections in the NER

The climate variability studied during the future period 2011 to 2060 from the CORDEX South Asia
models reveals the following findings:

1. The RCP4.5 projections for the 2011 to 2060 period future indicate a possible insignificant decline in

summer monsoon and winter monsoon rainfall in the NER.

2. The future projections simulate a significant increasing trend in the maximum & minimum

temperatures for the same period.

3. Considerable inter-model uncertainty is seen in future projections of summer monsoon rainfall over

the NER.

4.2.4 Conclusions in the context of climate change impact on vegetation profile for the current
period in the NER

The responses of vegetation patterns (Deciduous Broad Leaf forest, Evergreen Broad Leaf forest,
Evergreen Needle Leaf forest, Mixed Forest, Shrubland, and Grassland) to the current day climate
observations from 2000 to 2017 over the NER reveals the following findings:

1. Interannual and inter-seasonal variations in the anomalies of the area-averaged gridded NDVI field

sample points (LULC points) in all the vegetation types are observed which can be attributed to
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variation in rainfall, aridity, NDWI, maximum and minimum temperature distribution during wet,

winter, and dry season.

2. There are two/three years lagged dependency, or even a one year lag of the NDVI anomaly to the
rainfall anomaly within each season. The rainfall anomaly in the previous year seems to affect the
NDVI anomaly in the following years i.e. an increase or decrease in rainfall anomaly in the previous

year is well-matched with a similar increase or decrease in NDVI anomaly in the following years.

3. The NDVI anomalies of winter season show a greater magnitude in declining towards negative
anomalies than the other two seasons (wet and dry season). The weakening of NDVI anomaly during
the winter season indicates the importance of summer monsoon rainfall, whose reduction reduces the
density of vegetation over the NER. A decline in the summer monsoon rainfall leads to water stress,

phenology changes, and a decreased biomass response with a subsequent reduction in the NDVI.

4. The NDVI anomaly responses are seen to be more strongly associated with rainfall in all seasons.
However, during the summer monsoon and pre-monsoon season, the moisture availability from the

NDW], aridity due to the fluctuations of maximum and minimum temperature are also seen.

5. Evergreen Broad Leaf forest and Deciduous Broad Leaf forests are particularly seen to be affected

drastically by rainfall fluctuations, indicating a major control of rainfall in the tropical forest.

6. Evergreen Needle Leaf forest, which does not get affected much by negative rainfall anomaly, is
seen to be affected by interannual and inter-seasonal rainfall fluctuations, making this study a first of its

kind in delivering the message of the prevailing situation in NER.
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7. The NDVI and rainfall anomalies for entire Northeast India show an increasing trend in all three
seasons indicating higher greenery which could be due to plantations outside recorded forest areas,
regeneration of the forest, conservation measures, expansion of croplands, intensive irrigation, urban

greening, agricultural practices, etc (Liu et al 2015 and Chen at al., 2019).

8. The time series of maximum NDVT values reaches its maximum during the winter monsoon season
than the other two seasons because of adequate sunlight, the sky remains clear as the cloud disappears
once the summer monsoon receded, which is needed for photosynthesis supported by water and

nutrient charged soils (Nischitha et al., 2014).

9. The spatial distribution of maximum NDVT value for the entire region shows the greenest (highest
NDVI value) during the winter season while during the wet and dry season, the NDVT is a bit scattered
and decline with dry season being the least NDVI value. Year-to-year variations over the same region
are seen throughout the period. This fluctuation of NDVI throughout the period indicates that the
increase and decrease of rainfall plays an important role in controlling the vegetation growth over the

region.

4.3 Scope for further research

This research provides useful insights into climate change and its impacts in Northeast India, a region
known for its complexity and ecological importance. The present study opens the scope for further
research in the area mention below:

1. A higher density of observations and higher resolution climate models are suggested for better

estimation and understanding of climate change in NER.
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2. An intense and more comprehensive study is suggested to examine in more detail to determine if the
changes are due to climate change, or can be due to direct human interventions.
3. As can be understood from the present study, setting up a denser network of meteorological

observations will be also critical.
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ABSTRACT

The Northeast-India has undergone many changes in climatic-vegetation related issues in the last few decades
due to increased human activities. However, lack of observations makes it difficult to ascertain the climate
change. The study involves the mean, seasonal cycle, trend and extreme-month analysis for summer-monsoon
and winter seasons of observed climate data from Indian Meteorological Department (1° x 1°) and Aphrodite &
CRU-reanalysis (both 0.5° X 0.5°), and five regional-climate-model simulations (LMDZ, MPI, GFDL, CNRM and
ACCESS) data from AR5/CORDEX-South-Asia (0.5° x 0.5°). Long-term (1970-2005) observed, minimum and
maximum monthly temperature and precipitation, and the corresponding CORDEX-South-Asia data for historical
(1970-2005) and future-projections of RCP4.5 (2011-2060) have been analyzed for long-term trends. A large
spread is found across the models in spatial distributions of various mean maximum,/minimum climate statistics,
though models capture a similar trend in the corresponding area-averaged seasonal cycles qualitatively. Our
observational analysis broadly suggests that there is no significant trend in rainfall. Significant trends are ob-
served in the area-averaged minimum temperature during winter. All the CORDEX-South-Asia simulations for
the future project either a decreasing insignificant trend in seasonal precipitation, but increasing trend for both
seasonal maximum and minimum temperature over the northeast India. The frequency of extreme monthly
maximum and minimum temperature are projected to increase. It is not clear from future projections how the
extreme rainfall months during JJAS may change. The results show the uncertainty exists in the CORDEX-South-
Asia model projections over the region in spite of the relatively high resolution.

1. Introduction

expected to be greatest in the developing countries which rely on pri-
mary production as a major source of income (Kumar et al., 2006).

The WG1 (Working Group I) report of the IPCC (2013) states that
global warming occurring since 1950's is unequivocal and un-
precedented over decades to millennia, and that human influence has
been detected in the warming of the atmosphere and oceans. CMIP5
(Coupled model intercomparison project phase 5) models simulation
have also projected an increase in global mean surface temperature
over a range from 1.1 °C to 2.6 °C (IPCC, 2013), which seems to be
qualitatively realistic as seen from the consistently increasing global
temperatures.

Anthropogenic climate change manifested in changing temperature
and precipitation, and is likely to pose serious risk to human society,
economy and ecosystems, such as loss of agriculture, water shortages
and widespread health impacts as well as increased in heat-induced
mortality to extreme events, etc. (Kumar et al., 2006; Kumar et al.,
2011; Ravindranath et al., 2011; Jain et al., 2012; Choudhury et al.,
2012 and Sharmila et al., 2015). The effects of climate change are
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According to the Fourth and Fifth Assessment Reports of the Inter-
governmental Panel on Climate Change (IPCC, 2007 and 2013), the
Indian subcontinent will be adversely affected by enhanced variability
of climate, rising temperature and substantial changes summer rainfall
in some parts and thereby water stress by the 2020s.

Several studies from the CMIP3 and CMIP5 simulations (Kumar
et al., 2006; Chaturvedi et al., 2012; Kumar et al., 2013; Dufresne et al.,
2013 and Jourdain et al., 2013, etc.) and several studies based on the
downscaled projections (Kumar et al., 2011; Dash et al., 2012; Kumar
etal., 2013 and Krishnan et al., 2016) project an increasing trend in the
atmospheric temperature over India associated with increased anthro-
pogenic activities. This conjecture also matches with the results from
observational studies such as those by Kothawale et al. (2012) and
Kothawale and Kumar (2005) and Revadekar et al. (2012) which show
an increase of surface temperatures across various regions of India
during the recent 3-4 decades as compared to the earlier period.
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Notwithstanding this, the CMIP3 models as well as those from the
CMIP5 (Collins et al., 2013; Dufresne et al., 2013; Jourdain et al., 2013;
Saha et al., 2014 and Sharmila et al., 2015) have challenges in simu-
lating the teleconnections and trends of the Indian summer monsoon
rainfall, which is seasonally phaselocked to the June-September
months (henceforth JJAS), correctly. Though the CMIP5 models show
better skills in reproducing the mean Indian summer monsoon rainfall
(Jourdain et al., 2013 and Shashikanth et al., 2013), the amplitude of
interannual variability and seasonal cycle reasonably close to the ob-
servations data as compared to the best CMIP3 models (Jourdain et al.,
2013). The decreasing Indian summer monsoon rainfall trend during
the past decades (Guhathakurta and Rajeevan, 2008; Rajendran et al.,
2013 and Krishnan et al., 2016, etc.) is not reproduced by the CMIP5
models, which is a serious limitation of the GCMs at coarse resolution in
capturing the south Asian climate change in the recent decades
(Krishnan et al., 2016 and Roxy et al., 2015).

Fortunately, dynamical downscaling of the historical simulations by
various regional climate models (Dash and Hunt, 2007; Dash et al.,
2012, Dash et al., 2015) or using high resolution GCMs in the Indian
region (Krishnan et al., 2016) have been successful in capturing the
decreasing Indian Summer Monsoon Rainfall trend (ISMR), which is
essentially area-averaged June-September rainfall over a major
homogeneous rainfall region of India (northeast India not included).
Therefore, the corresponding future projection of a weakening ISMR
trend by the high resolution models (e.g. Dash et al., 2015; Krishnan
et al., 2016) may have some reliability in a qualitative sense. Some of
these studies are sort of a first but sure step in understanding the re-
lative contribution of various climate change drivers such as green-
house gases, aerosols, and land surface processes (Kothawale et al.,
2012; Krishnan et al., 2016 and Roxy et al., 2015). Having said that, if
sub-regional level in India is concerned, uncertainties exist in some
climate statistics across various observational datasets, and high re-
solution projections as well (Kumar et al., 2013).

The northeast India (NEI) is a prominent portion of India, covering a
geographic area of 26.2 mha, and home to a population of about 45
million (Ministry of Home Affairs, Government of India). In India, the
characteristics of the summer monsoon rainfall and its variability differ
from region to region within the nation (Mooley and Parthasarathy,
1983a, 1983b). An empirical orthogonal analysis by Parthasarathy
et al. (1996) of long term summer monsoon rainfall records for the
1871-1990 from 306 stations widely-distributed stations in India shows
a dipolar structure of the gravest mode, wherein the signal in the
northeast India is seen in an out of phase relation with the rest of India
(see Fig. 6.5, Pant and Kumar, 1997). The NEI is also endemic to many
flora and fauna making it one of the richest in the world in terms of
biological values (Chakraborty et al., 2012). It has a subtropical climate
with wide variation in weather and climate, and is characterized by
large rural population (82%), low population density, large percentage
of indigenous tribal communities (34-91%) and large area under forests
(60%) (Ravindranath et al., 2011). The NEI is highly dependent on the
south west monsoon and over 60% of the crop area is under rain-fed
agriculture (Ravindranath et al., 2011). However, the climate statistics
vary from study to study owing to the rather sparse observations and
computational methods that depend on the area over which the rainfall
is averaged, and the method of averaging. For example, Parthasarathy
et al. (1996) compute the summer monsoon rainfall over the homo-
geneous Northeast Indian region to be 142 cm. Nonetheless, it is clear
that the region receives a high seasonal rainfall during JJAS.

Dash et al. (2015) analyzed temporal trends in rainfall from nine
stations in the NEI on monthly, seasonal and annual scales for
1961-2010. Several other studies that analyze station data from
about 7 sub-divisions (Jain et al., 2012), 9 stations (Laskar et al.,
2014) and 2 sub-divisions (Mondal et al., 2014) in NEI over the
period of 1913-2012, or part of this period, also support this finding
of Dash et al. (2015).

On the temperature front, (Jain et al., 2012; Laskar et al., 2014;
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Mondal et al., 2014, and Wagholikar et al., 2014) have analyzed either
the temperature recorded at a few station in the NEI or the homo-
genized regional temperature records for the 1871-2008, or a portion
of that period. These studies suggest an increasing trend in the max-
imum and/or minimum temperature in some portions of the NEIL
Mondal et al. (2014) states that the NEI region is clearly seen affecting
by climate change which may lead to droughts in the future due to
decrease in rainfall and increase in temperature. Arora et al. (2005)
evaluated the temperature trends based on 125 stations in NEI which
showed a falling trend in annual mean minimum temperature as most
of the stations are located in the foothills of the Himalayas. Climate
change vulnerability profiles have been developed at the district level
in NEI for agriculture, water and forest sectors for the current and
projected future climates where the majority of the districts are sub-
jected to climate induced vulnerability currently and in the near future
(Ravindranath et al., 2011). These studies, in general hint, show a
significant rise in the observed temperature, and a decreasing tendency
in rainfall in various places in the northeast India.

As far as the model studies are concerned, so far, only Dash et al.
(2012) have studied the recent and projected future changes in pre-
cipitation and temperature of the NEI by downscaling CMIP3 datasets
using RegCM3, for the periods 1971 to 2005, and 2011 to 2100. Dash
et al. (2012) also record an overestimation of simulated rainfall by the
CMIP3 for 1971-2005, and project an increase in the annual mean
temperature by about 0.64 °C from 2011 to 2040, and also an increase
in annual mean precipitation by about 0.09 mm/day in the near future
and by 0.48 mm/day at the end of the century in NEI. Having said this,
it indicates the very limited sample of future climate projections for the
northeast Indian climate, which means that there would be a significant
uncertainty. The differences in datasets add to the uncertainty asso-
ciated with the inter-model differences when one tries to validate a
climate model simulation, particularly the climate change projections
(Jourdain et al., 2013 and Collins et al., 2013). This applies acutely for
the NEI (Prakash et al., 2014), where the impact of climate change on
NEI is explored lesser both in terms of observational analysis as well as
from the modeling perspective (Laskar et al., 2014).

Fortunately, of late, several climate centers have dynamically
downscaled various CORDEX South-Asia based on CMIP5 projections
for the Indian region. The downscaled simulations-four regional climate
models, namely MPI, GFDL, CNRM, ACCESS and a high resolution suite
of future climate projections by the LMDZ model (Sabin et al., 2013) are
available from the cccr.tropmet.res.in under the aegis of the Co-
ordinated Regional Downscaling Experiment, SOUTH ASIA (CORDEX).
This gives us an opportunity to address the future climate change in the
NEI at a higher resolution, while also taking into account any un-
certainty associated with inter-model variability. In addition, we have
high resolution gridded rainfall and temperature datasets, derived from
the observed IMD datasets among other things, which will be useful to
validate the CORDEX South-Asia outputs.

The rest of the current paper is organized as follows. In the next
section, we present the study area, various model datasets, and ob-
served and Aphrodite, and reanalyzed climate datasets used, along with
a description of our methodology. In the Section 3, we present the re-
sults from our analysis, and in the Section 4, our concluding summary
and remarks.

2. Datasets and methodology

No study has been done using CORDEX South-Asia output on future
scenarios on NEI. Thus the assessment of rainfall and temperature
change in the last few decades, and its future projection are very im-
portant. These will provide an insight for the present and possible fu-
ture condition to the planners for climate change adaptation. Taking
this note into account, with the help of these five regional climate
model data a proper assessment of future trends would help in setting
up uncertainties of future for risk management and vulnerability
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assessment. Knowledge of spatial and temporal variability of climate
parameters is very much useful for overall development of the region
and for future planning, which can be attained from this work.

2.1. Model datasets & observational datasets used

In this study, we use the gridded datasets of rainfall (Rajeevan et al.,
2005) and temperature (Rajeevan et al., 2008, 2008) derived from the
observations the India Meteorological Department (IMD) for the period
1970 to 2005, available at 1° x 1° resolution for temperature and also
for precipitation at 1° X 1° resolution. We also use the Asian Pre-
cipitation Highly-Resolved Observational Data Integration Towards
Evaluation of water resource (Aphrodite) precipitation data with
0.5° X 0.5° resolution from 1970 to 2005 for comparison (Yatagai
et al., 2012). For convenience, we refer to these interpolated datasets as
‘observations’. Further, as the observations in the NEI are sparse, we
also analyze the reanalyzed mean temperature data collected from CRU
TS v. 4.00 (0.5° X 0.5° resolution) from 1970 to 2005 (Harris et al.,
2014), in addition to the observed temperature datasets from the IMD,
in order to have a sense of uncertainty across these two datasets.

In order to estimate the future climate change in the NEI, we also use
the high resolution climate model simulation outputs from AR5/CORDEX
SOUTH ASIA (See A.1 for details) for the period 1970 to 2005 and 2011 to
2060 at 0.5° x 0.5° resolution. Model-simulated data including maximum
and minimum temperature, and precipitation were obtained from the five
RCMs' that participated in the CORDEX SOUTH ASIA: LMDZ, MPI, GFDL,
CNRM and ACCESS. Details on these five model data can be procured from
the CCCR, IITM and from the given links, http://cccr.tropmet.res.in/
workshop/oct2012/presentations/R%20Krishnan_CCCR_CORDEXSA.pdf
http://ccer.tropmet.res.in/workshop/oct2012/presentations/JSanjay_
CORDEX-SAsia_ RCM_data.pdf http://cordex.dmi.dk/joomla/images/
CORDEX/cordex_archive_specifications_120126.pdf Gridded data sets for
SST from 1970 to 2005 is collected from HadSST, Met office to see the
teleconnections between the precipitation and maximum and minimum
temperature datasets with Nino 3.4.

As known, the CORDEX South Asia based on CMIP5 historical runs,
forced by observed natural and anthropogenic atmospheric composi-
tion, cover the period from 1950 to 2005, whereas the projections from
2011 to 2060 used in the study are forced by Representative
Concentration Pathways (RCP) i.e. RCP4.5. As mentioned earlier, we
use the downscaled historical simulations of the CORDEX South Asia
models for the period 1970-2005 for the NEI, and regional simulations
obtained by downscaling RCP4.5 future scenario of the CORDEX South
Asia, are used. The CMIP5 historical simulations covers few hundred
centuries long pre-industrial and industrial period (from the mid-
nineteenth century to near present) control simulations (Taylor et al.,
2012 and Dufresne et al., 2013). The CMIP5 RCP4.5 simulations have
both natural and anthropogenic forcing, where in the representative
concentration pathways have been and were designed to have a top of
the atmosphere radiation at 4.5 Wm-2 at the end of 2100 and CO,
concentration stabilizes at 543 ppmv in 2150. Global CO, concentration
is directly prescribed in the simulations from 1886 to 2095 for com-
puting radiative budget (Krishnan et al., 2016).

2.2. Model validation

In this paper, the region bounded by the latitudes from 25.5° N
through 28.5° N, and longitudes from 92.5° E through 94.5° E is referred
to as the northeast India (NEI) for the purpose of statistical analysis
such as the area-averaging, etc. The downscaled historical simulations
are validated by comparing the mean model climatology with observed

! Note that the LMDZ is an atmospheric general circulation model, but with a 0.5°
resolution in the Indian region. However, for simplicity, we refer to that as a regional
model.
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precipitation and temperature patterns. To facilitate this, the observed
datasets are resampled into 0.5° resolutions using a bilinear interpola-
tion method. We explore the interannual variability and climate change
of the seasonal rainfall and temperature during the two important
seasons in the NEI, namely, the monsoon season (JJAS) and the winter
season (DJF).

To have an estimate of the future climate change in any climatic
parameter C, we subtract the simulated (LMDZ, MPI, GFDL, CNRM and
ACCESS) historical climatology of the parameter (precipitation and
maximum and minimum temperature), say ‘Cp;s, from the corre-
sponding climatology from the RCP4.5 simulations, say ‘Crcp’ i.e., A
C = Crep — Chist-

In this study, we apply a linear trend analysis, by the method of
Least square linear fit (Jhajhariaa and Singh, 2011; Jain and Kumar,
2012 and Dubey and Krishnakumar, 2014), on the simulated and ob-
served data of temperature and precipitation, as necessary. The statis-
tical significance of the identified trend is evaluated using the Mann
Kendall (M-K) trend test and Student t-test. The M-K test is a non-
parametric test for identifying trend in time series data, and extensively
used in climate studies in checking spatial variation and temporal de-
viation of any climatic series (Kumar et al., 2010; Jain and Kumar,
2012; Jain et al., 2012; Laskar et al., 2014 and Chinchorkar et al.,
2015). This statistics is used to test the null hypothesis such that no
trend exists. The presence of a statistically significant trend is evaluated
using the Z value. If the computed value of |Z| > Zg», the null hy-
pothesis (Hy) is rejected at a level of significance in a two-sided test. A
very high positive value of S indicates increasing trend and a very low
negative value of S indicates decreasing trend (Laskar et al., 2014). In
this study, the M-K test is run at 5% level of significance on time series
data. Further details of the M-K test are available in the A.2. Further,
the observed and simulated teleconnections with the ENSO have been
estimated by using the well-known Nino3.4 index to represent the
ENSO activity. The Nino 3.4 index is obtained by area-averaging, the
SST anomalies over the 5° N-5° S and 120° W-170° W. We use linear
correlation analysis to establish any association of the ENSO events
with the NEI climate. Last but not the least, extremes of precipitation
and, maximum and minimum temperature of both historical and future
projections have been estimated with the help of histogram.

3. Results and discussion

In this section, we study the observed seasonal rainfall and tem-
perature climatologies in the NEI for the 1970-2005 period and the
respective long term linear trends therein. We also evaluate the fidelity
of the downscaled historical simulations using the observational results.
Then we analyze the results from the five downscaled future scenarios,
namely, the RCP4.5 simulations (LMDZ, MPI, GFDL, CNRM and
ACCESS) available for the period of 2011-2060, in order to decipher
the projected climate change in the northeast. The teleconnections of
precipitation and, maximum and minimum temperature with the ENSO
index known as Nino 3.4 are also studied. And extremes of JJAS and
DJF for precipitation, maximum and minimum temperature for both
historical and future projections are analyzed in the last part.

3.1. Climatology for JJAS historical simulation from 1970 to 2005

Fig. 1(a) is an effort to validate the simulated, JJAS climatology of
precipitation (RF-jj55) for the period of 1970-2005 with that from the
IMD observations and the Aphrodite data. We find from spatial dis-
tribution of the observed climatological RF-j;s that it varies from 9 to
22 mm, Aphrodite data ranges from 3 to 13 mm and model data range
from 3 to 18 mm. However, as it can be seen that the corresponding
climatological RF-jjag distribution from the Aphrodite datasets as well
as those from all models except the LMDZ model show the magnitude of
the climatological rainfall increasing from the north towards the south
west, and in LMDZ climatology, the RF-j;,5 increases towards the south


http://cccr.tropmet.res.in/workshop/oct2012/presentations/R%20Krishnan_CCCR_CORDEXSA.pdf
http://cccr.tropmet.res.in/workshop/oct2012/presentations/R%20Krishnan_CCCR_CORDEXSA.pdf
http://cccr.tropmet.res.in/workshop/oct2012/presentations/JSanjay_CORDEX-SAsia_RCM_data.pdf
http://cccr.tropmet.res.in/workshop/oct2012/presentations/JSanjay_CORDEX-SAsia_RCM_data.pdf
http://cordex.dmi.dk/joomla/images/CORDEX/cordex_archive_specifications_120126.pdf
http://cordex.dmi.dk/joomla/images/CORDEX/cordex_archive_specifications_120126.pdf

B. Soraisam et al.

Global and Planetary Change 160 (2018) 96-108

\\ (0] |th (ii) APHRODITE &MDZ
28N - H3=iY % 28N he—Uu"t X 2aNn{ > >
| 1&. 27N ° (@ s\s_/C/;
27N -/1 0\ 1:;2_,/8——— 27N - Céi\_—f
26N - _—— o I
93E 94E 94E 93E 94E
(iv) MPI (v) GFDL gvi) CNRM
B
28N 28N 28N -
27N %4/4 27N b%,% 27N -%
%/’;13// —tsp Y %127 2%,
26N ﬁﬁﬁ?/)) ;> 2N %/AZ?} S 26"'//&?7))) 7
93E 94E 93E 94E 93E 94E
(vii) ACCESS
%5
28N
//
27N

26N

BN Bia——o=9
— %—//‘1 9 2

93E

94E

Fig. 1. (a) Spatial distributions of JJAS climatology of precipitation (mm) during 1970-2005 (historical) for (i) IMD, (ii) APHRODITE data, and climate model data from Cordex South
Asia: (iii) LMDZ, (iv) MPI, (v) GFDL, (vi) CNRM and (vii) ACCESS over North East Region.

east. Notwithstanding such discrepancy in the gradients, the range of
climatological RF-jjas across the observational datasets as well as
models is not much different.

The observed climatological Tyax.sas Varies from 30.6 °C to 32 °C
(Fig. S1, it can be found in supplementary figures and please note that
all the figures with S denote the supplementary figures); the maximum
Twmax-.Jjas Occurs approximately in the central north-east, and increases
from the west to the east. The spatial distribution of the climatological
Twmax-sias across the NEI from the CRU reanalysis, ranging from 19 °C to
20.5 °C, decreases in the centre. The CRU data and each model exhibit a
relatively broad range of climatologies (Tyax.jjas) across the NEI as
compared to the observed data, so the ranges are shown made differ-
ently as appropriate. The simulated climatology of the (Tyax.sjas) by
various models is lower with different spatial distribution than the
observations, with the simulated climatological values varying from
12 °C to 29 °C across the region in models. The LMDZ model shows an
increasing Twyax.gjas from northwest towards the south with the max-
imum values occur in the centre. The rest of the models show an in-
creasing Tyax.gyas from northwest towards the south east.

The models also underestimate the climatology of minimum tem-
perature in JJAS (TMin-JJAS) as compared to the CRU reanalysis (Fig.
$2), with a simulated range of 3 °C to 22 °C as against the corresponding
values of 28 °C to 32 °C in observed data varies from 19 °C to 20.2 °C
from the CRU reanalysis datasets.

3.2. Climatology for DJF historical simulation from 1970 to 2005

Fig. S3 shows the DJF climatology of precipitation (RF-p;g) for the
period 1970-2005, derived from the IMD, Aphrodite and model data-
sets. The magnitude of the RF-psr across the NEI ranges between 0.6
and 1.6 mm, with Aphrodite datasets ranging from 0.2 to 0.8 mm and
the models, ranging from 0.5 to 3.8 mm, also capturing the relatively
low seasonal climatological rainfall during the DJF season (Fig. S3) as
compared to the JJAS season (Fig. 1a).

The DJF climatology of maximum temperature (Tyax.pyr) in IMD
observations varies from 23.4 °C to 24.4 °C (Fig. S4), and increases from
the south to north of the NEI. The CRU data ranges from 19 °C to
21.2°C, with a decrease Tyax.psr in the centre. The models under-
estimate the climatological Tyjax pyr in the NEI with the simulated Typay.
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pur ranging from 1 °C to 15 °C.

The simulated winter climatological minimum temperatures (Tyg,.
por) in Fig. S5 exhibit a range of values from 10.4 °C to 11 °C, which are
relatively nearer to that from the IMD datasets, with CRU data having
higher (Tyin-psr)-

Table 1 shows the difference in the climatological means of ob-
served data sets from those of the simulated rainfall and, maximum and
minimum temperature from 1970 to 2005. In support to the above
spatial climatological analysis, the models show a lower means than the
observations datasets.

3.3. Seasonal mean cycle for historical simulation from 1970 to 2005

In Fig. 2(a), mean seasonal cycle of precipitation for the 1970 to
2005 from the two observed datasets are shown, along with those from
each model. All the datasets show a seasonal evolution similar to ob-
servations, with the simulated precipitation from most of the models
peaking in July. However, the simulated precipitation from the LMDZ,
peaks in the month of August, and the simulated magnitude is in gen-
eral much less than that from the IMD or Aphrodite datasets. To sum
up, the models seem to capture the observed seasonal cycle of mean of
precipitation qualitatively for the study region.

The simulated mean seasonal cycles of the maximum and minimum
temperatures in the NEI are also qualitatively similar to observations

Table 1
Mean climatological value for observation and model data (1970-2005).

Mean climatology

Precipitation Maximum temperature Minimum
temperature

JJIAS DJF JJAS DJF JJIAS DJF
IMD 12.5 0.8 IMD 31.6 24.0 24.1 10.9
APHRODITE 8.7 0.6 CRU 19.6 19.7 19.6 19.7
LMDZ 6.1 2.7 LMDZ 24.6 10.5 17.7 1.6
MPI 7.1 1.2 MPI 17.5 3.2 8.1 -71
GFDL 7.0 1.3 GFDL 17.5 2.6 8.2 -75
CNRM 6.9 1.3 CNRM 17.7 2.9 8.4 -7.4
ACCESS 7.2 1.1 ACCESS 17.4 3.3 8.1 -6.9
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Fig. 2. (a). Seasonal mean cycle of precipitation data (mm) from IMD (observed data), Aphrodite, and Cordex South Asia model data (LMDZ, MPI, GFDL, CNRM and ACCESS) for the

period 1970 to 2005.

(b). Seasonal mean cycle of maximum temperature data (°C) from IMD (observed data), CRU Reanalysis and Cordex South Asia model data (LMDZ, MPI, GFDL, CNRM and ACCESS) for

the period 1970 to 2005.

(c). Seasonal mean cycle of minimum temperature data (°C) from IMD (observed data), CRU reanalysis and Cordex South Asia model data (LMDZ, MPI, GFDL, CNRM and ACCESS) for the

period 1970 to 2005.

(Fig. 2b and c); though the simulated magnitudes are much lower than
those from the observations.

3.4. Spatial plot of trend analysis JJAS for historical data from 1970 to
2005

In Fig. S6, the trend in the RF-j;55 season for the period 1970 to
2005 from each precipitation dataset used is plotted. The IMD data
shows a rising trend from the rest of the datasets. While the RF-jj5
from the IMD exhibits an increasing trend of about 0.5 mm/year in the
western NEI and decreasing trend of about 0.6 mm/year in the eastern
portion of the NEI, the APHRODITE datasets indicate a weaker but
increasing trend in a larger portion of the NEI. All models, in general,
qualitatively reproduce the increasing trend in the western NEI,
through with weaker magnitudes. The MPI and GFDL models and the
ACCESS model somewhat weakly, simulate a negative trend in pockets,
which is not seen in observations.

A trend analysis of Typx.jyas maximum temperature from 1970 to
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2005 is plotted in Fig. (S7) where the IMD data shows a positive trend
0.015 °C/year increasing towards the south. The CRU data, on the other
hand, shows higher magnitude of trend than the IMD and an increasing
trend towards the centre. Models other than the MPI and ACCESS
models show a positive trend.

A trend of 0.02 °C/year in the Tyjin-jyas is shown from the IMD da-
tasets (Fig. S8), increasing towards the west from the east. On the
contrary, the CRU datasets show an increasing trend towards the centre.
The LMDZ model shows a higher magnitude of trend than the rest of the
datasets, with an increasing trend of 0.05 °C/year. The MPI, GFDL and
CNRM models are more or less similar with a lower positive trend in the
central portion. The ACCESS model shows an increasing trend towards
the north.

3.5. Spatial plot of trend analysis DJF for historical data from 1970 to
2005

Fig. (S9) shows the trends in the observed and simulated RF-p;g in
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Significance tests using Mann-Kendall and Student t-test for maximum temperature data from the IMD, NCEP and climate model data for the period 1970-2005.

Data used Mann-Kendall test Student t-test Nature of the trend

Z value & a value Statistic value (S) p-Value t-Value Trend value
JJAS
LMDZ 4.19 1.96 308 0.00 < 0.05 5.53 > 2 1.14 Increasing trend & significant
GFDL 2.39 1.96 176 0.01 < 0.05 292 > 2 1.07 Increasing trend & significant
ACCESS 2.86 1.96 210 0.01 < 0.05 261 > 2 1.25 Increasing trend & significant
DJF
LMDZ 3.79 1.96 290 0.00 < 0.05 452 > 2 2.35 Increasing trend & significant
CNRM 2.33 1.96 178 0.05 = 0.05 2.02 > 2 1.22 Increasing trend & significant
ACCESS 2.22 1.96 170 0.02 < 0.05 239 > 2 1.28 Increasing trend & significant

the NEI for the period 1970 to 2005 where all the datasets show a si-
milar increasing trend in most of the region. The IMD data shows an
increasing trend of 0.01 mm/year towards the southwest of the region,
and a decreasing trend of 0.4 mm/year towards the north eastern. The
Aphrodite data shows a positive trend in most of the regions. Rest of the
models except for the LMDZ shows a similar positive trend.

The IMD datasets show an increasing trend in the Tyy.psr from
northwest towards the south east; with respective values of 0.03 °C/
year and 0.06 °C/year (Fig. S10). CRU datasets shows a higher trend
than the IMD datasets. Only the LMDZ model shows a very high positive
trend of 0.06 °C/year increasing towards the north. GFDL and CNRM
models show an increasing positive trend towards the east while de-
creasing at central east. MPI model shows an increasing trend in the
central portion while the ACCESS model shows a decreasing trend in
the central portion. All the datasets show a positive trend.

Fig. (S11) shows the trend analysis of Ty, pjrp minimum tempera-
ture, from which it is clear that the IMD datasets show an increasing
trend of 0.04 °C/year towards the west while CRU data shows a higher
trend as compare to the IMD data. Here also, the LMDZ model shows a
higher magnitude of trend of 0.07 °C/year increasing towards the north
and south while decreasing in the centre. The CNRM and ACCESS
models show an increasing trend towards the central east and de-
creasing trend at the west, opposite to that in the MPI model. The
ACCESS model shows an increasing trend in the central east and de-
creases at the west.

From the above discussion, is it clear that there is some agreement
between the IMD and Aphrodite datasets as far as the location of
highest and lowest trends in the rainfall, particularly during summer
monsoon is concerned. However, the same cannot be told about the
agreement between the IMD datasets and CRU datasets in relation to
the spatial distribution of the trends in temperature. This is not so
surprising given that the CRU datasets are not observational datasets,
but model forecasts constrained by the observations. We also note that
the models are not up to simulating the spatial distribution of the trends
well. As the region is well known for its high convective rainfall asso-
ciated with complex orography along with relatively high mountains
and rainfall processes of the monsoon system, the interpolation and
calibration algorithms could contribute to the uncertainty. However, if
the historical simulations from various models can at least replicate the
area-averaged trends in the climate parameters over the NEI, we can
have a qualitative confidence in their future projections. In the next
section, we precisely explore this aspect.

3.6. Area-averaged trend analysis from the observations and models for the
1970 to 2005 period

In this section, we report results from the analysis of the area-
averaged trends in rainfall and temperature in the NEI region. The
significance of these tests was evaluated using both Mann-Kendall and
Student's t-test. We find that the IMD and Aphrodite datasets show,
respectively, increasing and decreasing trends, which are however, not

statistically significant (not shown as all the results show insignificant).
Insignificant decreasing or no trend in the summer monsoon pre-
cipitation of NEI, as seen from some stations observations in the NEI has
been also reported by Jain et al., 2012; Laskar et al., 2014 and Dash
et al., 2015. All the model simulations also simulate only insignificant
trends.

Further, both IMD and Aphrodite datasets only show a decreasing
but statistically insignificant trend in the area averaged rainfall during
the DJF (RF-p;p) season in the NEI. The area-averaged trends in the
corresponding RF-p;r from various CORDEX models are also seen to be
insignificant, though the GFDL and CNRM models show an increasing
trend.

Though the nature of trends in the rainfall is insignificant in all the
data sets, it indicates a decline in the rainfall over NEI, in tandem with
such a signal in the summer monsoon rainfall in rest of India (Krishnan
et al., 2016). On longer time scales, the warmer tropical ocean, espe-
cially the central eastern Pacific and the western Indian Ocean are
suggested to play a role in weakening the monsoon (Roxy et al., 2015).

Only the significant results are shown in the Table 2. The time series
of the area-averaged JJAS maximum temperature and that for the DJF
season, from the IMD datasets for the period of 1970 to 2005 show an
increasing but statistically insignificant trends. Growing population
accompanied by massive urbanization, changes in land use, enormous
highway development, increases in deforestation, biomass burning,
fossil fuel consumption and increasing atmospheric concentrations of
greenhouse gases are suspected to be the cause of the changes in tem-
perature (Kothyari and Singh, 1996; Jhajhariaa and Singh, 2011).

Notably, the CRU datasets for both the seasons show an insignificant
increasing trend and also, all the models successfully reproduce the
observed increasing trends in the area-averaged seasonal maximum
temperatures, through most of the simulated trends are statistically
significant.

Importantly, we find statistically significant increasing trends in the
area-averaged minimum temperature over the NEI during both summer
and winter seasons over the period 1970 to 2005 (Table 3). It is intri-
guing that only the minimum temperature shows a statistically sig-
nificant increasing trend, while the rainfall trends, though decreasing,
are not significant.

From all these results, we can summarize that the downscaled
CORDEX South-Asia datasets are successful in capturing the area-
averaged seasonal cycles of rainfall and temperature observed during
1970-2005, and are also capable of capturing the corresponding trends,
at least qualitatively. However, the climatological spatial distribution
and the local long term trends are not well captured, and are also
subject to the uncertainties in the observations. Being an orographic
region, uncertainty between datasets is largest in North East India
(Kulkarni et al., 2013 and Prakash et al., 2014).

3.7. Teleconnections of the historical data (1970-2005) with Nino 3.4

Table S1 shows the teleconnections results ENSO, which is
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Significance tests using Mann-Kendall and Student t-test for minimum temperature data from the IMD and climate model data for the period 1970-2005.

Data used Mann-Kendall test Student t-test Nature of the trend
Z value & a value Statistic value (S) p-Value t-Value Trend value

JJAS

IMD 3.26 > 1.96 240 0.00 < 0.05 4.48 > 2 0.63 Increasing trend & significant
LMDZ 4.79 > 1.96 352 0.00 < 0.05 7.92 > 2 1.32 Increasing trend & significant
MPI 2.48 > 1.96 182 0.03 < 0.05 292 > 2 0.61 Increasing trend & significant
GFDL 2.04 > 1.96 150 0.03 < 0.05 223 > 2 0.66 Increasing trend & significant
ACCESS 3.19 > 1.96 234 0.02 < 0.05 245 > 2 0.85 Increasing trend & significant
DJF

IMD 3.92 > 1.96 300 0.00 < 0.05 459 > 2 1.19 Increasing trend & significant
LMDZ 4.15 > 1.96 318 0.00 < 0.05 542 > 2 2.97 Increasing trend & significant
MPI 3.22 > 1.96 246 0.00 < 0.05 324 > 2 1.59 Increasing trend & significant
GFDL 2.17 > 1.96 166 0.05 = 0.05 299 < 2 0.75 Increasing trend & significant
CNRM 2.30 > 1.96 176 0.03 < 0.05 233 > 2 1.11 Increasing trend & significant
ACCESS 3.16 > 1.96 242 0.00 < 0.05 370 > 2 1.62 Increasing trend & significant

represented by the well-known NINO3.4 index, with precipitation,
maximum and minimum temperature parameters from all relevant the
datasets used in this study from the IMD, Aphrodite, CRU and all the
models datasets for historical period from 1970 to 2005. The results of
this study suggest that the ENSOs do not have any statistically sig-
nificant impacts on the NEI precipitation and temperature, be it
summer or winter, for the period.

3.8. Seasonal mean cycle for simulated future precipitation, maximum and
minimum temperature data for the period 2011 to 2060

The individual model RCP4.5 projections of the seasonal cycle of
precipitation for the 2011 to 2060 (Fig. 3a) indicate an evolution si-
milar to the corresponding historical cycle. A majority of models,
however, indicate a slight decrease or no change in the magnitude of
the summer monsoon rainfall, except the projection from the CNRM
showing a moderate increase in July precipitation. Based on these re-
sults as well as an analysis of the spatial distribution of the simulated
precipitation (to be discussed in the next paragraph), we can sum up
that the models project slight or no decrease in the rainfall over the NEI
in future.

The simulated seasonal cycles of maximum and minimum tem-
perature from the RCP4.5 shows an unchanged evolution, but models
also project a substantially increased in the maximum and minimum
temperatures (Fig. 3b & c) relative to the corresponding historical si-
mulations which indicates a rise in the temperature in the future over
the NEIL

3.9. Simulated JJAS future climatology (RCP4.5) from 2011 to 2060

The simulated JJAS climatology of precipitation (RF-;j5s) from the
RCP4.5 projections for the 2011-2060 is presented in Fig. (S12), and
the excess or deficit as compared to the corresponding historical si-
mulations of is shown in Fig. 1a. We find from Figs. S12 and 4a that the
future projection of RF-j;545 from each CORDEX South-Asia model is not
significantly different from the corresponding historical simulations
(Fig. 1a), except for a weak decrease seen in simulations of a model or
two. The RF-jjas of LMDZ model spatially ranges from 5 to 11 mm
while in the rest of the models varies from 3 to 19 mm.

Notably, (the spatial distribution of Tyax.ysas and Twmin-syas) in all the
models in Fig. S13 and S14 show an increasing magnitude and are also
warmer than the corresponding historical simulations (also match with
Fig. 4b and c) across the NEI as compared to the respective historical
simulation, with the temperature values ranging from 13 °C to 30 °C
and 5 °C to 23 °C for minimum temperature.
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3.10. Simulated DJF future climatology (RCP4.5) from 2011 to 2060

The DJF climatology of precipitation (RF-p;g) in all the models does
not show much change in the future projection (Fig. S15), with values
ranging from 0.6 to 3.2 mm, which is also seen in Fig. 5a, though all the
models are not simulating the same result, the range of RF-p; is seen
declining in the future projection.

All the models also project an increased Tyax.psr (Figs. S16 and 5b),
with the values varying from 2 °C to 17 °C. Spatial distributions of Tyjax.
pgr from the analyzed in all CORDEX South-Asia projections, the models
are similar to those from the historical simulations (Fig. S4).

The projected minimum temperatures for DJF season (Figs. S17 and
5c¢) also increases than the corresponding historical simulations (Fig.
S5). The future projected DJF climatology in the NEI range from —10 °C
to 8 °C.

3.11. Area-averaged Trends in projected climate in the NEI for the period of
2011 to 2060

Table 4 shows that the JJAS precipitation signals for the 2011 to
2060 period as simulated in the LMDZ and CNRM models show a sig-
nificantly increasing trend. The ACCESS model projects an increasing
but statistically insignificant trend in summer precipitation during the
above period. On the other hand, the MPI and GFDL models show an
insignificant decreasing trend. The projected DJF precipitation in all the
models except the ACCESS model shows an insignificantly decreasing
trend. The ACCESS model simulates a weak increasing trend. Only the
significant results are shown in the table.

Interestingly, four out of five future simulations project a statisti-
cally significant increasing trend in summer maximum temperature
(Table 5), while all of them project a statistically significant increasing
trend in minimum temperatures (Table 6).

The significant increasing trend in the maximum and minimum
trend is also projected for the DJF season (Tables 5 & 6). Thus, is clearly
despite the fact that, the projected models do not show quantitatively
similar results, qualitatively there is a good agreement, particularly for
the temperature. That is, as per the RCP4.5 simulations, the DJF pre-
cipitation is expected to further decline while both maximum and
minimum temperature are likely to increasing further rapidly. How-
ever, there is considerable inter-model uncertainty in the future
summer monsoon rainfall in the NEI.

3.12. Extremes analysis for JJAS and DJF seasons for historical and future
projections for precipitation, maximum temperature and minimum
temperature

In the Fig. 6a & b, histograms of observed and simulated JJAS
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Fig. 3. (a). Seasonal mean cycle of precipitation data (mm) from Cordex South Asia model data (LMDZ, MPI, GFDL, CNRM and ACCESS) for the period 2011 to 2060.
(b). Seasonal mean cycle of maximum temperature data (°C) from Cordex South Asia model data (LMDZ, MPI, GFDL, CNRM and ACCESS) for the period 2011 to 2060.
(c). Seasonal mean cycle of minimum temperature data (°C) from Cordex South Asia model data (LMDZ, MPI, GFDL, CNRM and ACCESS) for the period 2011 to 2060.

monthly mean rainfall over the NEI for the historical period from 1970
to 2005, and simulated future projections from 2011 to 2060 are pre-
sented. While there are four heaviest rainfall monsoon seasons with
rainfall of 23 mm/day in NEI as per the IMD datasets, the APHRODITE
datasets indicate (Fig. 6a) five heaviest rainfall months with rainfall
amounting to 15 mm/day. Except the LMDZ model, all other models
simulate the heaviest seasonal rainfall of 15 mm/day, and only two
models simulate at least four such extreme rainfall months (Fig. 6a);
The LMDZ model simulates only one heaviest rainfall month, with the
magnitude of the rainfall amounting to 11 mm/day.

The frequency of the heaviest monthly-mean rainfall months in
general increases in the simulated future projections for 2011-60, ex-
cept in those from the GFDL which fall from 15 to 13 (Fig. 6b). Further,
it is also to be noted that the magnitude of the heaviest monthly rainfall
decreases (increases) in two (one) models by about 2 mm/day (4 mm/
day). Importantly, Fig. 6a and b show that the total number of ‘low
rainfall’ months (arbitrarily defined as rainfall < 7 mm/day) have
increased quite substantially, with the range of increase being
34%—-42%. It is, however, to be noted that the frequencies of simulated
low rainfall event months for the historical period are heavily over-
estimated as compared to those from the corresponding IMD frequency.

Histograms of observed and simulated DJF monthly mean rainfall
over the NEI for the historical period from 1970 to 2005, and simulated
future projections from 2011 to 2060 are presented in the Figs. S18 &
S19. The number of heaviest winter monsoon rainfall months is
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relatively low as corresponding to the summer monsoon season, as can
be seen from both IMD and Aphrodite datasets (Fig. 6a & 6b). The
models in general also qualitatively reproduce the difference. However,
the heaviest rainfall simulated by the in LMDZ model of 7 mm/day in
simulated historical period is noticeably high as compared to the
4.5 mm/day. In future projections, the frequency of simulated heavy
rainfall months increases in all the model projections except GFDL and
CNRM.

The extreme events of JJAS maximum temperature for the historical
period from 1970 to 2005 and for future projections from 2011 to 2060
are shown the Figs. S20 & S21. The observation data from IMD recorded
39 highest maximum temperature months with 34 °C/day. The CRU
and all the models record somewhat lower maximum temperature than
the observation data, ranging from 22 °C to 28 °C (Fig. S20). The si-
mulated highest maximum monthly temperature in the future projec-
tions relatively increases, and ranges between 24 °C to 32 °C with LMDZ
(Fig. S21).

In the Figs. S22 & S23, the extreme months of maximum tempera-
ture for DJF season are shown for historical period (1970-2005) and
future projections (2011-2060). IMD records show 30 months of the
highest monthly maximum temperature of 30 °C/day during the his-
torical period. The CRU records show monthly mean highest tempera-
ture 27 °C/day and all the models show a highly underestimated max-
imum temperature ranging from 9 °C to 15 °C. Even though the highest
maximum temperature increases in the future projections, the
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Fig. 4. (a). Climatology difference for precipitation (mm) between current and future
period for JJAS for model data, namely, (i) LMDZ, (ii) MPI, (iii) GFDL, (iv) CNRM and (v)
ACCESS.

(b). Climatology difference for maximum temperature (°C) between current and future
period for JJAS for model data Cordex South Asia: (i) LMDZ, (ii) MPI, (iii) CNRM, (iv)
ACCESS and (v) GFDL. Separate color bar has been plotted because of the large difference
in the range of climatology in GFDL model.

(c). Climatology difference for minimum temperature (°C) between current and future
period for JJAS for model data Cordex South Asia: (i) LMDZ, (ii) MPI, (iii) CNRM, (iv)
GFDL and (v) ACCESS.
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maximum number of events with highest frequency decreases.

Figs. $24 & S25 show the minimum temperature for JJAS season for
historical period (1970-2005) and future projections (2011-2060). The
observation data and CRU datasets record a minimum monthly tem-
perature of 27 °C/day. The minimum temperature in all the models is
underestimated, with a range of 12 °C to 21 °C across the models. While
the simulated frequency of highest minimum temperature in the three
future projections increases, only models (LMDZ and GFDL) project a
decreasing number of highest minimum temperature events.

In the case of the DJF season, for the historical period (1970-2005),
the observation data records minimum temperatures of 16 °C/day and
CRU being 26 °C/day. However all the models underestimate the
minimum temperature, with a range from 6 °C to —2 °C. The highest
minimum temperature in the future projections increases as compared
to the corresponding historical simulations.

4. Conclusions

This work studies the climate trends in the northeast India (NEI)
using observations during 1970-2005, a period for which five high
resolution (50 km) climate simulations, known as historical simula-
tions, are available under the aegis of CORDEX South Asia. The ob-
servation datasets we use are gridded data of rainfall and, maximum
and minimum temperature from IMD at 1° X 1° resolution (Rajeevan
et al.,, 2005, 2008, 2008), and Aphrodite datasets at 0.5° X 0.5° re-
solution (Yatagai et al., 2012), along with mean temperature from CRU
TS v. 4.00 (0.5° x 0.5° resolution) from 1970 to 2005. Further, using
the historical and future climate change projections of the CORDEX
South Asia, we estimate the possible future climate change under the
RCP4.5 conditions, which is designed to reflect a scenario of moderate
anthropogenic emissions from 2011 to 2060. These five regional cli-
mate model dataset are generated by the LMDZ, MPI, GFDL, CNRM and
ACCESS models.

We find that the seasonal cycle of rainfall and temperature of the
NEI are in conformation with that over the rest of the Indian region.
There is a reasonable agreement in the area-averaged seasonal cycle
and climatology of the rainfall in NEI between the IMD and Aphrodite
datasets. However, we find that there are differences in the locations of
highest and lowest climatological rainfall and temperatures, maximum
trend region, etc. during the summer monsoon. Such a mismatch of
location is also seen in the models. Such a discrepancy across the ob-
servations/reanalysis and model datasets is seen in the spatial dis-
tribution of the maximum and minimum temperatures also. Therefore,
one needs to be mindful of this limitation while using these observa-
tions and model results in local climate change adaptation planning.

Interestingly, there is a reasonable synergy across the observations
and models when the climate signals are area-averaged over the NEIL
We find a weak and statistically insignificant decreasing trend in the
area-averaged summer monsoon rainfall in the NEI. The IMD observa-
tions also show an increasing minimum temperature trend of 0.63 °C
and 1.19 °C in 36 years that is statistically significant for both the
summer and winter seasons respectively. While the maximum tem-
peratures have also been increasing, the trend is not statistically sig-
nificant. The area-averaged trends, particularly in the summer mon-
soon, are in general agreement with those reported in various earlier
studies that are based on a few selected stations (Jain et al., 2012;
Laskar et al., 2014 and Dash et al., 2015).

Importantly, the area-averaged rainfall and temperatures from the
historical simulations also qualitatively reproduce the observed trends,
though they overestimate the statistical significance in some instances.
This tells us that we can have some confidence in the area-averaged
trends in future climate change projections for the NEI. The future
projections suggest that there will be a significant increasing trend in
the minimum temperature (ranging from 0.71 °C/50 years to 2.6 °C/
50 years for summer and 1.15°C/50 years to 2.61 °C/50 years for
winter season) and maximum temperature (0.33 °C/50 years to
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Fig. 5. (a). Climatology difference for precipitation (mm) be-
tween current and future period for JJAS for model data
Cordex South Asia: (i) LMDZ, (ii) MPI, (iii) GFDL, (iv) CNRM
and (v) ACCESS.

(b). Climatology difference for maximum temperature (°C)
between current and future period for DJF for model data
Cordex South Asia: (i) LMDZ, (ii) MPI, (iii) CNRM, (iv) GFDL
and (v) ACCESS. Separate color bar has been plotted because
of the large difference in the range of climatology in ACCESS
model.

(c). Climatology difference for minimum temperature (°C)
between current and future period for DJF for model data
Cordex South Asia: (i) LMDZ, (ii) MPI, (iii) CNRM, (iv) GFDL
and (v) ACCESS.
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Significance tests using Mann-Kendall and Student t-test for precipitation data from the climate model data for the period 2011-2060.

Mann-Kendall test

Student t-test

Data used Z value & a value Statistic value (S) p-Value t-Value Trend value Nature of the trend

LMDZ 3.17 > 1.96 379 0.00 < 0.05 310 > 2 0.67 Increasing trend & significant

CNRM 1.97 > 1.96 235 0.04 < 0.05 2.07 > 2 1.08 Increasing trend & significant
Table 5

Significance tests using Mann-Kendall and Student t-test for maximum temperature data from the climate model data for the period 2011-2060.

Data used Mann-Kendall test Student t-test Nature of the trend
Z value & a value Statistic value (S) p-Value t-Value Trend value

JJIAS

LMDZ 5.73 > 1.96 685 0.00 < 0.05 7.01 > 2 1.4 Increasing trend & significant

MPI 3.29 > 1.96 393 0.00 < 0.05 4.24 > 2 1.13 Increasing trend & significant

GFDL 6.25 > 1.96 747 0.00 < 0.05 884 > 2 2.86 Increasing trend & significant

ACCESS 3.81 > 1.96 455 0.00 < 0.05 4.07 > 2 1.07 Increasing trend & significant

DJF

LMDZ 4.47 > 1.96 551 0.00 < 0.05 524 > 2 1.96 Increasing trend & significant

MPI 3.63 > 1.96 447 0.00 < 0.05 4.27 > 2 2.71 Increasing trend & significant

GFDL 4.41 > 1.96 543 0.00 < 0.05 4.84 > 2 3.01 Increasing trend & significant

CNRM 3.27 > 1.96 403 0.00 < 0.05 7.19 > 2 1.89 Increasing trend & significant
Table 6

Significance tests using Mann-Kendall and Student t-test for minimum temperature data from the climate model data for the period 2011-2060.

Data used Mann-Kendall test Student t-test Nature of the trend
Z value & a value Statistic value (S) p-Value t-Value Trend value

JJIAS

LMDZ 7.25 > 1.96 867 0.00 < 0.05 11.78 > 2 1.66 Increasing trend & significant
MPI 3.89 > 1.96 465 0.00 < 0.05 4.27 > 2 0.95 Increasing trend & significant
GFDL 6.92 > 1.96 827 0.00 < 0.05 10.44 > 2 2.6 Increasing trend & significant
CNRM 2.68 > 1.96 321 0.01 > 0.05 2.87 > 2 0.71 Increasing trend & significant
ACCESS 5.08 > 1.96 607 0.00 < 0.05 6.20 > 2 1.45 Increasing trend & significant
DJF

LMDZ 5.03 > 1.96 619 0.00 < 0.05 6.47 > 2 2.61 Increasing trend & significant
MPI 4.96 > 1.96 611 0.00 < 0.05 523 > 2 1.94 Increasing trend & significant
GFDL 4.64 > 1.96 571 0.00 < 0.05 6.07 > 2 2.38 Increasing trend & significant
CNRM 571 > 1.96 703 0.00 < 0.05 7.19 > 2 1.89 Increasing trend & significant
ACCESS 2.89 > 1.96 357 0.00 < 0.05 3.08 > 2 1.15 Increasing trend & significant

2.86 °C/50 years for summer & 0.87 °C/50 years to 3.01 °C/50 years for
winter season), and a possible decreasing but statistically insignificant
trend in summer and winter rainfall in the NEI for the 2011-2060
period. In summary, notwithstanding the uncertainties, when the NEI is
taken as a whole, as the models qualitatively capture the historical
trend, we can conjecture, that the future projections of decrease in
rainfall and increase in temperature may be expected to be realized,
though quantifying the same would be difficult. We also find that the
ENSO events do not have any significant impact on the climate of the
NEL and, we may not expect any perceivable impact of ENSOs.
Extreme monthly means for precipitation and maximum and
minimum temperature for historical and future projections have also
been studied over NEI for both JJAS and DJF seasons. The simulated
models underestimate the extreme mean monthly values. Overall the
extreme monthly means of maximum and minimum temperature in-
crease in the future projections. The frequency of simulated the heaviest
rainfall months during JJAS increase in the simulated future projections
for 2011-60 from four out of five models as compared to the historical
period. Having said that, the magnitude of the heaviest monthly rainfall
moderately decreases in future projections in two models. Importantly,
total number of ‘low rainfall’ months (arbitrarily defined as rain-
fall < 7 mm/day) has increased quite substantially, with the range of
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increase being 34%-42%. All this suggest that the CORDEX models are
not definitive about any increase of extreme rainfall months over
northeast India during summer monsoon season.

As the region is well known for its high convective rainfall asso-
ciated with complex orography along with relatively high mountains
and rainfall processes of the monsoon system, the interpolation and
calibration algorithms could contribute to the uncertainty. To improve
the uncertainties in the climatological datasets pertaining to the in NEI,
a higher density of observations would be critical to address various
sub-regional climate change/variability issues with confidence.
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Fig. 6. (a). Histogram plots for JJAS precipitation (mm) of historical period (1970-2005): IMD, Aphrodite along with CORDEX models ((LMDZ, MPI, GFDL, CNRM and ACCESS).
(b). Histogram plots for JJAS precipitation (mm) of future projections (2011-2060) of CORDEX models ((LMDZ, MPI, GFDL, CNRM and ACCESS).

Appendix 1

The driving simulations of the LMDZ, MPI, GFDL, CNRM and
ACCESS are performed within the framework of CMIP5. To downscale
the CMIP5 (Coupled Model Intercomparison Project Phase 5) scenarios,
the World Climate Research Program (WCRP) initiated a coordinated
effort known as CORDEX, which provides an ensemble of high resolu-
tion regional climate projections for all the major continental regions of
the world. Currently CORDEX involves > 20 RCM groups around the
world and provides a quality-controlled data set of downscaled in-
formation for historical past and 21st century projections (Taylor et al.,
2012). The CORDEX outputs are used for input or adaptation work, and

also for IPCC Fifth Assessment Report (Giorgi et al., 2009). CORDEX
focus on the emission scenarios known as RCP4.5 and RCP8.5 which
represent a mid and a high level emission scenario, also roughly cor-
responding to the IPCC SRES emission scenarios B1 and A1B, respec-
tively (Giorgi et al.,, 2009). These high resolution regional climate
models are selected because these models provide an opportunity to
dynamically downscale global model simulations to superimpose the
regional detail of specific regions and moreover global climate model
suffers from errors due to inadequate representation as well as its ex-
pensiveness (Krishna Kumar et al., 2011 and Kumar et al., 2006).
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