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ABSTRACT

In  the  last  few  decades,  the  Northeast-India  one  of  the  rich  biodiversity  hotspot,  has

encountered  various  changes  in  terms  of  climatic-vegetation  related  issues  due  to  anthropogenic

activities  and  other  various  possible  reasons.  Annual  cycle,  seasonal  climatology  and  trends,  and

extreme month for summer monsoon season and winter monsoon season during the historical period

(1970 to 2005) have been studied. For this, precipitation, maximum and minimum temperature data

sets collected from the observed climate data from the India Meteorological Department (1° × 1°),

Aphrodite  and  CRU-reanalysis  (both  0.5°  ×  0.5°),  and  five  regional-climate-model  simulations

(LMDZ, MPI, GFDL, CNRM and ACCESS) data from AR5/CORDEX-South-Asia (0.5° × 0.5°) are

used. The models are able to capture the annual cycle and seasonal area-averaged trends qualitatively

though a large spread and differences in the locations are found across the models in spatial distribution

of various climatologies of all the climatic variables used. No significant trend in precipitation over the

region is found while significant trends are observed in the area-averaged minimum temperature during

winter  season.  The  heaviest  extreme  seasonal  rainfall  captured  by  models  is  underestimated  as

compared to observation data. The ENSO does not have any signficant impact or association with the

climate over the region during the two seasons. 

The Last Millennium (LM) particularly, Medieval Climate Anomaly period (MCA): 935 CE to

1034 CE & Little Ice Age (LIA): 1735 CE to 1834 CE collected from the PMIP3/CMIP5 models

CCSM4, MRI-CGCM3, MPI-ESM-P, available at 288 x 192 x L26 1, 320 x 160 x L48, and 196 x 98 x

L47  discretization  have  been  studied.  In  addition  to  this,  a  higher  resolution  outputs  from  the

ECHAM5, an atmospheric general circulation model (AGCM) at T106 (~1.125°  x 1.125°) horizontal

resolution from the Max Planck Institute for Meteorology, Germany for the period of 30 years (MCA:

935 CE to 965 CE and LIA: 1735 CE to 1765 CE) are also used. The simulations from the models do



not show any changes over the region during these two periods. The ENSO indices show weak and

statistically insignificant during these two periods

In  the  future  projections  (2011  to  2060)  study  from  the  CORDEX-South-Asia  model,  a

decreasing  insignificant  trend  is  projected  in  seasonal  precipitation  while  an  increasing  trend  is

observed for both seasonal maximum and mimum temperature during the future projections over the

region. The change in extreme rainfall is not clear in the future projections while the frequency of

extreme monthly maximum and minimum temperature are projected to increase. The results show the

uncertainty  exists  in  the  CORDEX-South-Asia  model  projections  over  the  region  in  spite  of  the

relatively high resolution.

 To understand whether vegetation changes are associated with climate change, three seasons,

namely the wet season (June–October), winter (November–February) and dry season (March–May) are

evaluated using the vegetation patterns (Deciduous Broad Leaf  forest, Evergreen Broad Leaf forest,

Evergreen Needle Leaf forest,  Mixed Forest,  Shrubland, and  Grassland) to the current day climate

observations over the region. For this study, I use the Normalized Difference Vegetation Index (NDVI)

datasets  (500  m  resolution),  for  the  2000-2017  period,  from  the  Moderate  Resolution  Imaging

Spectroradiometer on board the MODIS-Terra satellite against rainfall (0.25° x 0.25°) maximum and

minimum  temperature  datasets  (1°  x  1°)  from  the  India  Meteorological  Department,  Normalized

Difference Wetness Index (NDWI) (500 m resolution) from MODIS and aridity data  (5 km x 5 km)

from TerraClimate. The field-sample data on vegetation types collected from land use land cover map

of 2005 are also used. 

Interannual and inter-seasonal variations in the anomalies of the area-averaged NDVI for all the

vegetation  are  seen  in  all  the  seasons  which  can  be  attributed  to  variation  in  rainfall  distribution.



Two/three  years  lagged dependency,  or  even a  one  year  lag  of  the  NDVI anomaly  to  the  rainfall

anomaly within each season are found but insiginificantly. Evergreen Broad Leaf forest and Deciduous

Broad Leaf forests are particularly seen to be affected drastically while the Evergreen Needle Leaf

forest, which does not get affected much is also found to be fluctuated, by making this study a first of

its kind in delivering the message of the prevailing situation in the region. The NDVI anomalies of

winter season show a greater magnitude in declining towards negative anomalies than the other two

seasons (wet and dry season) indicating the impact of sharp decline of summer monsoon rainfall on

winter  season NDVI. The NDVI anomaly responses are  seen to  be more strongly associated with

rainfall in all seasons indicating the limiting factor for the growth of the vegetation types. However,

during  the  summer  monsoon  and  pre-monsoon  season,  the  moisture  availability  from the  NDWI,

aridity  due  to  the  fluctuations  of  maximum and  minimum temperature  are  also  seen  indicating  a

combine effect of temperature and rainfall. Negative anomailes in NDVI during drought years are more

prominently seen. The correlation, lag correlation, and regression analyses calculated between NDVI

and the rest of the parameters are statistically weak and insignificant for all the vegetation studied. The

maximum NDVI values, both area-averaged and spatially, show that the winter season has the highest

NDVI values due to cumulative contribution of summer monsoon rainfall and winter monsoon rainfall

while dry season being the lowest due to moisture deficit. Thus, the study provides the first report of

evident stress in the different vegetation types associated with climate change, though the magnitude

varies with the season.
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CHAPTER-1

INTRODUCTION

The chapter briefly explains and discusses the general findings on the climate change signatures in the

Indian summer monsoon rainfall and its variability, with a focus on those in north-eastern India (NER),

the study area. It also briefly provides a review of the importance of climate to the vegetation in the

NER region and the consequences due to its variation in the climate. At the end of the chapter, based on

the research gaps elucidated, I introduce the objectives of this thesis.

1.1 General Introduction on monsoon and its variability and change

Impacts of warming due to anthropogenic emissions from the pre-industrial period (from 1870s) to the

present period, which exacerbated in the last 4-5 decades are stated to persist for centuries to millennia

thereby causing a long-term change in the climate system as reported by the Intergovernmental Panel

on Climate Change (IPCC, 2013 and Working Group III, 2018). Human influence has been detected in

the warming of the atmosphere and oceans according to the WG1 report of the IPCC 2013. Rainfall and

temperature are the two key elements of climate that are commonly used as indicators of global climate

(Pai et al., 2014). The anthropogenic climate change manifested as changing temperatures and rainfall,

is likely to pose a serious risk to ecosystems, economy, water shortages, increased in heat-induced

mortality to extreme events, and widespread health impacts to human society according to the WG3

(Working Group III) report of the IPCC, 2019. Both rainfall and temperature are major components of
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the terrestrial hydrological cycle (Pai et al., 2014) and changes in its pattern would directly influence

the water resources of the concerned region (Jain et al., 2013).

The climate of the Indian subcontinent is dominated by the monsoons which are pronounced seasonal

reversals of winds and transitions from drier to wetter regimes (Rao, 1976; Pant and Rupa Kumar

1997). The southwesterly winds, during the summer, pick up moisture from the northern Indian Ocean

and drop on the landmass providing the summer monsoon rainfall. The Indian sub-continent, home to

more than 1.3 billion people, receives about 70%-75% of its annual rainfall (Figure 1) during June-

September months (henceforth JJAS) and is known as the Indian summer monsoon season (Pant and

Kumar, 1997). 

Figure 1. The area-averaged climatological monthly rainfall over the Indian region as a percentage of

annual rainfall (Source data: C. T. Tejavath). 
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The mean area-averaged Indian summer monsoon rainfall (ISMR) over the last 100 years is about 890

mm (Pattanaik, Chapter 2, Meteorological Monographs, 2012). During the Northeast winter monsoon

season, the winds blow from the northeast regions of the Asian continent and travel towards the Indian

Ocean  (Singhvi  and  Krishnan,  2014).  The  monsoon  system  operates  via  connections  between

atmosphere, land, and ocean systems, through fluxes of heat, moisture, and momentum between them

(Pant, 2003). The El Niño–Southern Oscillation (ENSO), among others, is the most prominent of the

drivers of Indian climate variability (Sikka, 1980; Keshavamurty, 1982; Mohanty et al., 2020). A recent

review provides details of this association and earlier references (Ashok et al., 2019).

As  per  the  Fifth  Assessment  Reports  of  the  (IPCC  2013),  an  increase  in  global  mean  surface

temperature over a range from 1.1 °C to 2.6 °C is projected in response to increasing emissions, as

simulated by the Coupled model  intercomparison project  phase 5 (CMIP5).  As per  the report,  the

Indian subcontinent will be adversely affected by rising temperature and substantial changes in summer

rainfall. Indeed, the Indian landmass has been warming up for the last 4-5 decades (Revadekar et al.,

2012  and  Kothawale  et  al.,  2012).  The  Indian  summer  monsoon  is  also  seeing  signatures  of  a

weakening trend in central states such as Chhattisgarh (e.g. Krishnan et al., 2016). General circulation

models  of  the  CMIP5  vintage  fail  to  simulate  the  mild  weakening  trend  in  the  observed  rainfall

(Jourdain et  al.,  2013).  Fortunately,  several  downscaled regional  climate model  simulations,  which

downscaled the CMIP5 seem to capture the weakening trend in the Indian summer monsoon rainfall

(ISMR).  An example  is  the  Laboratoire  de  Météorologie  Dynamique  (LMDZ)  model  simulations,

under the aegis of The Coordinated Regional Downscaling Experiment (CORDEX) South Asia at high

resolution (Krishnan et al., 2016). The regional climate models, by virtue of their higher resolution

compared to the General Circulation Model (GCM) outputs under the CMIP5, have been increasingly

used to  examine patterns  of  climatic  variables.  These  can be expected  to  represent  the climate as
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realistic as possible building the confidence to address the future projections under different climate

scenarios (Pattnayak et al., 2017). 

Precipitation and temperature over the Indian landmass exhibit a considerable variation both spatially

as well as temporally (Pattnayak et  al.,  2017). The spatial  variability of rainfall in Northeast India

(NER), our study area, during the monsoon season is highly complex and could be due to the larger

influence of the monsoon trough, westerly systems, and significant interaction between convection and

basic flow due to varied physiography of the region (Mohapatra et al., 2011). The main sources of

moisture for the summer monsoon rains over the NER are claimed to be from the Indian Ocean and the

northern Bay of Bengal (Breitenbach et al., 2010). The summer monsoon rainfall in the NER shows a

weak association with the area-averaged Indian summer monsoon, and even shows a weak negative

correlation with summer monsoon over the central and north-western parts of India (Parthasarathy et

al., 1984). Sparse observations, and rapid changes in the topography that affect the weather and climate

substantially,  pose  a  potential  challenge  in  documenting  the  mean  climate,  let  alone  the  climate

variability and change over NER.

1.2 Northeast India, and its climate

Northeast India (NER ≈ 89.5  E to 98.5  E and 21.5  N to 29.5  N; Figure 2), a prominent region of⁰ ⁰ ⁰ ⁰

India,  covers  a  geographical  area  of  262,230 km²,  and home to  a  population  of  about  45  million

(Ministry of Home Affairs, Government of India). Out of this total geographical area, 28.3% has an

elevation of more than 1200 m, 17.9% between 600 m and 1200 m and about 10.8% between 300 m

and  600  m  above  mean  sea  level  (Laskar  et  al.,  2014).  Around  82%  of  the  total  population  is

characterized  by  a  largely  rural  population  with  low  population  density,  a  large  percentage  of

indigenous tribal communities (34-91%), and a large area under forests (60%) (Ravindranath et al.,
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2011). The entire region is a part of Indo-Burma and Himalayan hotspots, 2 of 25 such hotspots in the

world (Jain et al., 2013). The region is located at the confluence of the Indo-Malayan, Indo-Chinese,

and biogeographical realms (Tripathi et al., 2016). It shares international borders with Myanmar, China,

Bhutan,  and  Bangladesh  (Chakravarty  et  al.,  2012).  The  region  comprises  seven states,  popularly

known as seven sisters, namely, Arunachal Pradesh, Assam, Meghalaya, Mizoram, Manipur, Nagaland,

and Tripura (Sikkim is  not included in the study area).  The region has complex terrain,  excessive

sloping land with  rolling  topography,  different  altitudinal  patterns,  unique  ethnicity  (Laskar  et  al.,

2014).

Figure 2: Study area (Northeast India, bounded by black box)

5



As the region have varied physiological features and altitudinal differences (Laskar et al., 2014), it is

characterized  by  diverse  climate  regimes  (Ravindranath  et  al.,  2011)  with  predominantly  humid

subtropical with hot, humid summers, severe monsoons, and mild winters (Laskar et al., 2014). It has

an area-averaged seasonal rainfall of 152 cm (Parthasarathy et al., 1995). The orographic dominance

leads to enhanced convection making rainfall distribution more complex over the region (Mohapatra et

al., 2011). Cherrapunji, a town in the NER, with the highest rainfall of ~12,000 mm in the world has

been recently overtaken by a neighboring town, Mawsynram which is 80 km away (Jain et al., 2013).

The Northeast India summer monsoon rainfall (NERSMR) simulations indicate a decreasing summer

monsoon rainfall  unlike rainfall received in mainland India (Dash et al.,  2012 and Krishnan et al.,

2016). The region is highly dependent on the summer monsoon rainfall and over 60% of the crop area

is  under rainfed agriculture,  and so is  in areas highly vulnerable to climate variability and climate

change (Ravindranath et al., 2011). The mean temperature varies from 5° C to 30° C and the mean

relative humidity remains between 70% and 85% for the most part of the year (Jain et al., 2013).

The NER is also endemic to many flora and fauna making it one of the richest providing habitats with

diverse biota and a high level of endemism (Chakraborty et al., 2012 and Tripathi et al., 2016). The

region has a great range of ecological habitats due to tremendous climatic, edaphic, and altitudinal

variations (Tripathi et al., 2016). The vegetation ranges from alpine to subtropical and tropical wet

evergreen, semi-evergreen, and moist deciduous (Saikia, 2009 and Dash, et al., 2015). According to the

Forest  Survey of  India (FSI),  2017 the  north-eastern  states  of  India account  for  one-fourth of  the

country’s forest cover and there is a net decline of 630 km2 in forest cover compared with the previous

assessment. While FSI, 2019 reported a decrease in the forest cover in 2019 in all the Northeastern

states, except for Assam and Tripura. They reported that the forest cover in Arunachal Pradesh has

decreased by 276.22 sq km, Meghalaya by 27.21 sq km, Nagaland by 2.60 sq km, Manipur by 499.10
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sq km, Mizoram by 180.49 sq km while Assam has increased by 221.51 sq km and Tripura by 0.41 sq

km.  Due  to  poor  infrastructure,  lack  of  provisions  supplied  and  other  necessary  livelihood

requirements, the region has no basic government facilities, as a result of which the resources of the

forests are exploited (Tripathi et al., 2016).

Vegetation is a vital component of the terrestrial ecosystem. It forms a green blanket on the earth (Roy

et al.,  2015b) with great variability over time and space (Sarmah et al.,  2018). It characterizes the

landscape both functionally as well as structurally (Roy et al., 2015b). It not only plays an important

role in regulating biodiversity but also contributes to the variation of terrestrial net carbon uptake on

Earth (Li et al., 2016). In addition to this, it is an essential element of the land surface system linking

soil, water, air, and other environmental components which provides valuable information about the

phenological change, crop status, land degradation, and most importantly global warming (Liu et al.,

2015).

Global warming in recent decades has induced shifts in vegetation, causing a potential reduction in

biodiversity and eventually alteration of ecosystems (Li et al., 2016). The productivity of vegetation

ecosystems around the world has been greatly influenced by climate change. Changes in vegetation

patterns in the mountain ecosystems are considered as one of the important and most noticeable forms

of biodiversity affected by climate change (Li et al., 2016). Any changes in the vegetation density are

associated with the annual and seasonal dynamics of the climatic variables of the respective region

(Revadekar,  Tiwari,  & Kumar,  2012).  The climate variability  mainly reflected in  precipitation and

temperature  is  a  major  driver  of  vegetation  dynamics.  The  relative  impact  of  these  two  climatic

variables on vegetation growth varies with time (Liu et al., 2015). Warming reduces the vegetation

growth because moisture deficit due to increased evapotranspiration may offset the positive effect of
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temperature on vegetation growth (Liu et al., 2015). Any distinct regional and local patterns of climate,

say, changing rapidly due to topography, also uniquely influence the growth of the vegetation. Thus, the

study of phenology i.e. life cycle of the plant provides an excellent quantity in evaluating the impact of

climate change on vegetation.  These periodic events (life  cycle)  of plants are  initiated by climatic

variations and climate change, in addition to other environmental factors (Chandola et al., 2010). The

vegetation plays a vital role in water conservation as trees and other vegetation reduce the runoff and

also increase percolation of water into the soil thereby improving the water regime in the area (Forest

Survey of India, 2019).

Remote sensing is an important method for gathering information through mapping, measuring, and

understanding changes in vegetation over spatial and temporal scales (Bhandari et al., 2012). Remote

sensing-based satellite data has been very useful in studying the vegetation dynamics as it helps in

identifying direct factors such as climate variability, human land-use management, and indirect factors

such as climate change, CO2 fertilization, nitrogen deposition, and recovery from natural disturbances

(Chen et al., 2019). The spectral signature of the vegetation of an area differs to changes in growth,

phenological stage,  and health of the vegetation and this  information is  useful in the study of the

seasonal and inter-year changes associated with the vegetation cover over a given region (Hasan et al.,

2011 and Nischitha et al., 2014). The measure of the vegetation cover and biomass could be evaluated

by using a vegetation index, an indicator used for primary productivity and crop yield. It has been used

for various purposes such as for detecting vegetation dynamics, agricultural production (Milesi et al.,

2010), and long-term land use land cover variations (Reed et al., 1994; Revadekar et al., 2012 and

Nischitha  et  al.,  2014)  for  modeling  terrestrial  ecosystems on the  global,  continental  and regional

scales. As the human-induced and climate changes taking place, the study of time series of satellite data
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is valuable because they provide a monitoring system with repeatable vegetation index measurements

(Jong et al., 2012).

1.3 Literature Review

1.3.1 Recent Climate change over India, with focus on north-eastern India

1.3.1.1 Climate change over India

The daily  rainfall  data  set  from 1951 to  2000 (Goswami et  al.,  2006).  They found a rising trend

significantly  in  the  frequency and also,  the  magnitude  of  extreme rain  events.  They also  found a

decreasing trend significantly in the frequency of moderate events over central India. While Goswami

et al., (2006) claimed that seasonal mean rainfall over the region does not show a significant trend,

subsequent studies show a significant decreasing trend in summer monsoon rainfall over states such as

Chattisgarh  in  central  India  e.g.  (Guhathakurta  and  Rajeevan,  2008;  Rajendran  et  al.,  2013  and

Krishnan  et  al.,  2016,  etc). The  temperature  time  series  over  North  and  South  India  during  dry

(November to May) season and wet (June to October) season for the period 1901–2007 (Kothawale et

al., 2012). They found that the temperature shows a significant increasing trend over the regions. An

increase in  surface temperatures  across  various  regions  of  India  during the  recent  3–4 decades  as

compared  to  the  earlier  period  is  also  seen  (Revadekar  et  al.,  2012).  They  also  found  that  the

temperature during the winter season is expected to be prominent. The number of cold events is found

to decrease by more than 75% while hot events increases are seen in around 70% of stations.

As far as climate projections are concerned, the general circulation models under the CMIP have a

limited capability. For example, the variability of mean summer monsoon rainfall have been carried out

in Indian and Australian monsoon using simulations from multi model mean summer monsoon rainfall
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from 59 models using CMIP3 and CMIP5 simulations (Jourdain et al., 2013). The study in Indian and

Australian monsoon shows that the observational uncertainty and model spread exists over the Indian

region. They have also stated that the CMIP5 model performs better in reproducing the mean ISMR

than the CMIP3 models. The CMIP3 and CMIP5 models have shown challenges in simulating the

teleconnections and trends of the Indian summer monsoon rainfall owing to poor resolution, inadequate

simulation of ENSO annual cycle, and consequent poor replication of monsoon-ENSO association, and

importantly, spread in the observation-based gridded rainfall and temperature datasets (Jourdain et al.

2013 and Collins et al., 2013). The problem is more acute in reanalysis (also see Prakash et al., 2014).

The decreasing  Indian  summer  monsoon rainfall  trend during  the  past  decades  (Guhathakurta  and

Rajeevan, 2008; Rajendran et al., 2013 and Krishnan et al., 2016, etc.) is not reproduced by the CMIP5

models, which is a serious limitation of the GCMs at coarse resolution in capturing the south Asian

climate change in the recent decades (Roxy et al., 2015 and Krishnan et al., 2016).

As per a recent report by the Ministry of Earth Sciences (Krishnan et al., 2020), the summer monsoon

rainfall  has declined by 6% over India during the recent decades.  An increase in the variability of

summer monsoon rainfall  and mean rainfall  is  projected by the end of the 21st century.  It  is  also

reported that the average temperature in India has risen by around 0.7°C during the recent decade. The

temperature is projected to be rising by 4.4°C over India under the RCP8.5 scenario. Further details

about the trends in the climate of India during the recent 4-5 decades, and the projections, can be

availed from a recent report by the Ministry of Earth Sciences (Krishnan et al., 2020).

1.3.1.2 Recent climate variability and change over northeast India

The NER has a much larger seasonal summer monsoon mean rainfall (June to September) of around

152 cm than the rest of all India average which has about 86.5 cm ( Parthasarathy et al.,1995). The
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region as mentioned above receives the highest seasonal rainfall in India during the summer monsoon

season. The temporal trends of precipitation and temperature from 1970 to 2099 over the NER using

stations data sets have been studied where they have found out that the precipitation decreases while

the temperature (maximum and minimum) increases in some portions of the region (Dash et al., 2015).

The climate statistics evaluated by them show that the study varies from place to place due to sparse

observational  data  sets  and  computational  methods  applied  to  the  respective  area  over  which  the

rainfall is averaged. Daily rainfall data from 15 stations for the period 1975 to 2006 in the NER studied

by Goswami et al., 2010 found that the extreme rainfall events in NER decrease in the last few decades.

This suggests an opposite pattern to the increase in the extreme rainfall events over central India. The

difference is the topography of the region and its distance from Central  India.  The climate change

vulnerability profiles of the NER at the district level for water, forest, and agriculture sectors for the

current and future projections have been studied (Ravindranath et al., 2011). The study revealed that

there is a significant decreasing trend in observed rainfall and increasing temperature in various places

in the region. The region is seen affecting by climate change which may lead to droughts in the future

due to a decrease in rainfall and an increase in temperature (Mondal et al., 2014).

1.3.2  Climate  change  studies  based  on  the  future  projections,  and  climate  during  Last

Millennium

While future climate projections cannot be verified, the simulations of the past climate, particularly that

in the last millennium (LM), may be compared with the available paleo-observations, sparse as they

are.

Analysis of Paleoclimate Modelling Intercomparison Project 3 (PMIP3) outputs by Tejavath et al., 19

(T19) shows a higher number of El Niños relative to La Niñas during the Medieval Climate Anomaly
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(MCA), and vice-versa during the Little Ice Age (LIA). Notwithstanding that, the simulated Indian

summer  monsoon  climate  was  relatively  warm  and  wet  (cold  and  dry)  during  the  MCA (LIA).

According to T19, changes in divergence/convergence patterns in the Indian monsoon region due to

multi-centennial east-west shifts in the Walker circulation over the tropical Indo-pacific, result in a

reduction of the ENSO impacts on the ISMR. The evolution of climate during the LM in the NER has

been subject to local topography, among other factors (Mehrotra et al.,  2014). They emphasize the

spatial-diversity in the climate evolution in the NER during the MCA and LIA. Even a 1 ~2  difference⁰ ⁰

seems to matter owing to the topography. For example, some of these palynological studies suggest

warmer and humid conditions during MCA and moderately humid LIA in the field sampled locations of

the NER (Chauhan and Mandaokar, 2006; Bhattacharyya et al., 2007; Nautiyal and Chauhan, 2009;

Basumatary and Bera,  2010 and Tripathi et  al.,  2017 ). In contrast,  a weakening of the Southwest

Monsoon since 900 BP in lower Assam (Dixit and Bera, 2012), and a generally cold-dry to a cold-moist

oscillation of climate in the highland state of Sikkim, concurrent with the global LIA and MCA signals

(Sharma and Chauhan, 1999) have been suggested. Further north between 27  N-28  N, warm and⁰ ⁰

moist conditions from 2500 BP till today are indicated (Sharma and Chauhan, 2001; Bhattacharyya et

al.,  2007).  Besides,  an analysis  of  a  sedimentary section from Arunachal  Pradesh in  the  northeast

Himalaya indicates a stable climatic condition from 1200 BP to the present (Agrawal et al., 2012). A

speleothem record from the Wah-Shikar cave record (Gupta et al.,  2019) indicates a relatively wet

condition during MCA and mixed conditions and even mega-floods during the LIA. These studies

suggest that the climate across NER throughout the LM may have been uniform, unlike other Indian

regions.

Coming to future projections analysis, multi-model and multi-scenario precipitation and temperature

projections for India based on CMIP5 for the period 1860 to 2099 and found that the CMIP5 ensemble
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means the climate is closer to observed climate than any other individual model (Chaturvedi et al.,

2012). They have also observed that mean warming in India between RCP6 and RCP8.5 is likely to be

in the range of 1.7 °C to 2°C by 2030s and 3.3 °C to 4.8 °C by 2080s. They have also projected an

increase of all India precipitation from 4 to 5% by 2030s and from 6 to 14% by 2080s. The present-day

climatic  conditions  over the NER using the India Meteorological  Department (IMD) and Regional

Climate Model version 3 (Dash et al., 2012). They found wet bias over major parts of the region in the

model precipitation. Warm nights in the summer months was found to be more frequent than the warm

days. They also simulated a rise in the annual mean temperature in the future years. They are the only

ones who have studied the climate variability over the region using model data based on downscaling

CMIP3 datasets. They have found that the models overestimate rainfall data during the current period.

The CMIP3 models projected an increase in the annual mean temperature.

1.3.3 Vegetation change studies based on remote sensing tools

The following is a brief review of the recent research on changes in the vegetation and its dynamics

mainly in the NER, based on remote sensing studies.  I  also briefly  discuss such studies for other

regions, but relevant for my work reported in the thesis.

The time series of vegetation greenness data from satellites using Normalized Difference Vegetation

Index (NDVI) satellite data between 1982 and 2008 have been examined globally (Jong et al., 2012).

They  have  found  both  abrupt  and  gradual  changes  in  large  parts  of  the  world  with  net  greening

detecting in all biomes, most notably in croplands and least notably in needle leaf forests. However,

they have reported that  15% of the global land area,  trends were found to have changed between

browning and greening. They stated that such trends at large temporal extents may not be significant
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and are  often  highly  uncertain.  Vegetation  dynamics  over  South  Asia  using  Advanced Very  High-

Resolution Radiometer (AVHRR) Normalized Difference Vegetation Index (NDVI) have been studied

(Sarmah et al., 2018). They stated that various vegetation indices show diverse trend patterns over the

same area where discrepancies occurred in tropical and subtropical areas during the summer monsoon

season. From the recent satellite data for the period 2000 to 2017, China and India show a greening

pattern  that  overlaps  with  croplands  worldwide  (Chen  et  al.,  2019).  The  greening  trend  in  China

accounts for 42% from forests, 32% from croplands while in India, 82% from croplands and 4.4% from

forests.

The vegetation in India using NDVI data from the Global Inventory Modeling and Mapping Studies

(GIMMS) dataset obtained from the Advanced Very High-Resolution Radiometer (AVHRR) instrument

onboard the  National Oceanic and Atmospheric Administration (NOAA) satellite between 1982 and

2003 have been studied (Jeyaseelan et al., 2007). They found positive anomaly trends in vegetation

change in most parts of the Indian region. The Spatio-temporal variability has been examined in some

parts  of  India  including Northeast  India  using  data  sets  from the  Advanced Very  High-Resolution

Radiometer (AVHRR) for the period 1981–2000, and Moderate Resolution Imaging Spectroradiometer

(MODIS)  Aqua data  that  was available  for  the  2000–2010 period  (Revadekar  et  al.,  2012).  Their

analysis shows that precipitation has a positive influence on the variability of vegetation. They have

also found year to year variations in NDVI depending on the performance of the monsoon. A new

vegetation type map of India has been prepared using satellite remote sensing where shifting cultivation

was identified as the primary cause of deforestation in northeast India and seemed to be one of the

major causes of forest conversion (Roy et al., 2015a). They have stated that due to practicing shifting

cultivation by the people living in or near the forest,  it continues to have a constant impact on the

neighboring forests.
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The fractional vegetation cover analysis in Northeast India using IRS WiFS NDVI has been studied for

the period 1998 to 2000 during which they have found a decrease in fractional vegetation cover and

increase  in  some other  areas  due  to  abandoned shifting  cultivation  (Lele  et  al.,  2005).  The forest

fragmentation in Northeast India has been carried out using landscape matrices where they have found

that the forest has been severely fragmented and the loss could be attributed to shifting cultivation,

firewood, and fodder collection (Lele et al., 2008). The vegetation cover in NER using NDVI from

NOAA/AVHRR and GIMMS data sets against  rainfall  and temperature from the Climate Research

Unit’s CR TS 2.1 data sets for 34 study sites for the period 1982 to 2002 where a decrease in the

vegetation cover was found stating the causal factors to be climate change, shifting cultivation and

rapid deforestation (Saikia,  2009).  They have also reported a weak linear  relationship between the

growing season and, one- and two-month lags respectively, to rainfall and temperature over the region.

Seasonal greenness over different forest types of India using MODIS time series NDVI data for the

period 2001 to 2014 where 80% of the total negative changes in seasonal greenness are found in the

core forest areas (Chakraborty et al., 2018). They also indicated that most of the changes are of high to

medium category signifying the vulnerability of the Indian forest. The impact of climate change on

Indian forests is based on climate projections of the Regional Climate Model of the Hadley Centre

(HadRM3) and the dynamic global vegetation model IBIS for A2 and B2 scenarios (Chaturvedi et al.,

2011). They presented a vulnerability index where northern and central parts of Western Ghats, parts of

central India, upper Himalayas show most vulnerable to projected climate change while Northeastern

forests show more resilient.
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1.4 Research Gaps

The  study  primarily  focuses  on  climate  change  during  historical,  future  projections,  the  last

millennium, and its impact on the vegetation over the region. The main reasons for conducting this

study are as follows:

Firstly, the region, Northeast-India, as mentioned above has been affected drastically due to a decrease

in  rainfall  and  temperature.  Despite  having  changes  due  to  climate  change,  there  is  a  lack  of

understanding of the interannual climate variability and teleconnections over the region. Only Dash et

al  2012 have studied the recent  and projected future climate change based on model  studies.  This

indicates a very limited field sample of future projections over the region making it uncertain in terms

of climate study.  Therefore,  there is  a  need for  assessing the recent  climate change using modern

multiple datasets including many new available projections. Not only this, there is a need to compare

the current climate with paleoclimate to generate better future scenarios.

Importantly, availability of multiple observational rainfall datasets such as the gridded IMD rainfall

datasets as well as the Asian Precipitation Highly Resolved Observational Data Integration Towards

Evaluation of water resource (APHRODITE) rainfall datasets is an opportunity to intercompare the

results,  have  a  measure  of  uncertainty,  and  also  explore  whether  model  projections  fall  in  the

uncertainty range from observations (e.g. Jourdain et al., 2013). It is also important to compare the

signals from the gridded rainfall datasets vis a vis those from the station observations which is available

from 1951 to 2014. Furthermore, the availability of relatively high-resolution CORDEX south Asia

projections from multiple models help us to study the NER climate variability and future projections

and add to the state of the art knowledge in this regard.
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Secondly,  the  vegetation  is  associated  with  the  annual  and  seasonal  variations  of  the  climate

(Revadekar, Tiwari, & Kumar, 2012). Therefore, any changes in the local climate of the region could be

a  critical  factor  to  the  ecosystem  thereby  affecting  the  water  balance  in  the  soil  moisture.  This

eventually affects the growth and distribution of vegetation. The response of vegetation to the changing

environment  or  climate  change  is  not  yet  well  established  over  the  region  due  to  sparse  datasets

available. Therefore, using high-resolution satellite-based datasets, the impact of climate change on the

vegetation profile for the region can be understood.

Based on the above, and gaps that exist as seen in this sub-section as well as others that were seen from

the literature survey, I have defined the following objectives that I address in this thesis.

1.5 Objectives of the Thesis

The main goal of this work is to examine climate change and its impact in North East India. To attain

the goal, the main objectives considered in this study are as follows:

1). To explore the current climate and its variability in Northeast India, using observations and

CORDEX-SA historical simulations.

2). To study the past climate and future climate scenarios in light of observation data sets.

3). To examine the vegetation pattern in response to the current climate profile over the region.

1.6 Significance of the Study

Given the uncertainty that arises and with limited sampling available over the region, the study would

be an opportunity in addressing the future climate at a higher resolution in light of the observation data

available. Not only the current and future climate, but a paleo-research study would also be useful in

attributing the studies as climate change is unprecedented. Past climate analysis may provide analogs
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that may help us understand the current climate change and future projections better. For example,

paleo simulation analysis would help in determining whether the changes between the two climate

phenomena i.e. summer monsoon rainfall and ENSO are over long periods(e.g. Tejavath et al., 2019;

2020). As the region has the highest density of biodiversity, analysis of climate variability in the past

over the region will be interesting. In this context, a brief analysis during the last millennium (LM) and

future projections scenarios have been evaluated over the region to make a qualitative evaluation of

whether the NER climate has changed over the last millennium, just as over the rest of India. This has

obvious implications for juxtaposing the future changes of NER with that over other regions of India,

say, the core monsoon region. Having said that, the region given its importance, studying its climate

variability across the past through the future will be interesting.

Any changes in the phenological events of plants indicate variations be it climate or the condition of

the plants and their environment (Reed at al., 1994). The spatial pattern of vegetation trends and their

drivers vary significantly in different regions and seasons due to interannual variability (Sarmah et al.,

2018).  Therefore,  such a study over the concerned region where the conventional observations are

limited could provide linkages between climate cycles and trends in vegetative cover. The interaction

between the climate variability and vegetation dynamics needs to be better understood as the monsoon

has a great influence on it over the region and the annual trend alone cannot explain in detail  the

growth patterns. Proper and detailed monitoring is needed to assess whether the changes are taking

place  or  not,  and  also  for  the  development  of  the  concerned  ecosystem  and  human  resource

development.

Because of the above reasons, the study focuses on climate change and its responses to the vegetation

at periodic level over the NER.
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1.7 Outline of the thesis

This thesis is structured into four chapters:

In chapter 1, the general concept of climate change, a brief introduction of ISMR and its variability are

discussed. A brief introduction on vegetation profile, its contribution and importance in the concerned

region,  its  responses  to  changing  climate,  and  the  consequences  have  been  discussed.  These  are

followed by the objectives of the study, scope, and literature review. A detailed study area in terms of

its topography, climate, and vegetation has also been discussed in this section.

Chapter 2 provides a detailed description of the data sets used, methodology applied and the respective

tools used in this work.

Chapter 3 presents the results and discussion of the current climate observations and their variability

over  the  region.  The  climate  variation  during  the  future  projection  scenarios  and  for  the  Last

Millennium are also presented here.  These are followed by the responses of vegetation patterns to

current climate observations over the region.

Finally, chapter 4 summarizes the main conclusions of the study followed by future scopes.

The next chapter presents various data sets used and the methodology applied in the study.
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CHAPTER-2

MATERIALS AND METHODOLOGY

This  chapter  illustrates  the  datasets  used  and  the  methodology  applied  in  the  thesis.  The  detailed

description of the datasets and how they are applied in the study are explained here. This is followed by

a detailed description of the software and tools used.

2.1 Data sets

In this  study, I have used various in situ observations-derived gridded datasets, reanalysis  datasets,

outputs from various climate change simulations, remote sensing-based datasets, interpolated datasets,

and field datasets were used.

2.1.1 Observations (and reanalysis) based datasets

The gridded rainfall and temperature data set, based on the in-situ observations from the IMD has been

widely used for the climate change study over India due to its  better  accuracy in representing the

magnitude  and  spatial  variability.  This  has  been  demonstrated  in  an  intercomparison  of  various

observation-based gridded rainfall datasets, for example (Prakash et al., 2014). Therefore, this rainfall

(Rajeevan et al., 2005), for the period 1970 to 2005 at 1° × 1° resolution, maximum and minimum

temperature (Srivastava et al., 2009) datasets have been used as observation data. As can be seen from

the relevant references,  these gridded rainfall  datasets  have been generated by interpolating station
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measurements from 1803 stations by the interpolation method proposed by Shepard (1968). Before

carrying  out  the  interpolation  analysis,  standard  quality  controls  were  also made (Rajeevan et  al.,

2005).  395  station  data  which  are  maintained  and  under  controlled  qualitatively  by  applying  the

interpolation method of Shepard's angular distance weighing algorithm (Sivastava et al.,  2009) was

used to develop the gridded maximum and minimum temperature.

Historical observation data sets mentioned above have been collected only till 2005 to match with the

CORDEX South Asia historical simulations we have used (discussed in the next section), which are

available  up  to  2005.  The  span  of  data  helps  us  to  validate  the  CORDEX-  South  Asia  datasets.

However,  for  some other  analysis  to  document  recent  variations  in  the  climate  and  relevance  for

vegetation in the northeast, as required, I have also utilized, the gridded rainfall dataset of 0.25° × 0.25°

resolution collected from the IMD prepared from 6995 rain gauge stations in India for the period from

2000 to 2017 (Pai et al., 2014). The maximum and minimum temperature data mentioned above have

also been used for the period 2000 to 2017. All these rainfall, maximum and minimum temperature data

sets  are  available  at

http://www.imdpune.gov.in/Clim_Pred_LRF_New/Grided_Data_Download.htmlfbclid=IwAR3Z_ZfZk

vwjaXAAFPRSDHc4TUywjddFZYMNIJIP78vVjFR-PK1iQDVksn8. As the observations in the NER

are very sparse, it could lead to uncertainties. Therefore, in addition to the IMD rainfall datasets, the

Asian  Precipitation  Highly  Resolved  Observational  Data  Integration  Towards  Evaluation  of  water

resource (Aphrodite) precipitation data (Yatagai et al., 2012) for the period 1970 to 2005, available at

0.5° × 0.5° resolution, have been used for comparison of deductions from the IMD rainfall datasets,

and also have a qualitative view of uncertainty associated with the gridded observational datasets over

north-eastern India. The Aphrodite data are based on a dense network of rain-gauge data from Asia,

including the Himalayas, South and Southeast Asia, and mountainous areas in the Middle East (Yatagai
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et  al.,  2012).  The  Aphrodite  data  are  available

at https://climatedataguide.ucar.edu/climate-data/aphrodite-asian-precipitation-highly-resolved-

observational-data-integration-towards.

The mean temperature data from Climatic Research Unit (CRU) TS v. 4.00 of 0.5° × 0.5° resolution for

the period 1970 to 2005 were used in addition to the IMD temperature observations to account for the

uncertainty. Monthly observations of station data sets collected globally were used for developing these

datasets (Harris et al., 2014). The monthly datasets were developed by interpolating the land surface

global stations (anomalies) datasets (excluding Antarctica) combined with the existing climatology into

0.5° x 0.5° resolutions for the period 1961 to 1990. (Harris et al., 2014). The data product is available at

(http://www.cru.uea.ac.uk/     and http://badc.nerc.ac.uk/data/cru/).

The HadISST datasets for the period 1970 to 2005 have been used in teleconnection analysis. As per

Rayner et al., 2003, the concentration of sea ice was combined with SST datasets (global monthly data)

for  the  period  1871  till  the  present  to  develop  these  datasets.  The  dataset  is  available  at

https://www.metoffice.gov.uk/hadobs/hadisst/data/download.html.

2.1.2 Model datasets

Climate Model data for the historical period and future projections

The climate model data outputs of rainfall, maximum and minimum temperature from the LMDZ, MPI,

ACCESS, GFDL, and CNRM models, available at the horizontal resolution of 0.5° x 0.5° under the

aegis of the CORDEX South-Asia (Sabin et al., 2013) were used. These are dynamically-downscaled

datasets based on CMIP5 climate projections. I have used these datasets for the ‘historical period’, i.e.

from 1970 to 2005. I have analyzed various simulated climate statistics of the NER for the historical
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period and compared them with those from the observations to ascertain that the models can simulate

the current day climate reasonably. This gives some confidence, and a justifiable rationale, in accepting

outcomes from any analysis of the future climate projections.

I  have  also  used  the  future  projections  from 2011 to  2060 under  the  RCP4.5.  These  datasets  are

generated by the Centre for Climate Change Research, Indian Institute of Tropical Meteorology, Pune

and  the  details  of  the  above  given  five  models  are  available  at

http://cccr.tropmet.res.in/workshop/oct2012/presentations/R%20Krishnan_CCCR_CORDEXSA.pdf,

http://cccr.tropmet.res.in/workshop/oct2012/presentations/JSanjay_CORDEX-SAsia_RCM_data.pdf,

and  http://cordex.dmi.dk/joomla/images/CORDEX/cordex_archive_specifications_120126.pdf.  The

historical runs of these models are forced by observed natural and anthropogenic composition while the

future projections are forced by Representative Concentration Pathways (RCP) 4.5 (Taylor et al., 2012

and Dufresne et al., 2013).

Climate model data for the Last Millennium

The climate model data for the study of the Last Millennium (LM) particularly, Medieval Climate

Anomaly period (MCA): 935 CE to 1034 CE & Little Ice Age (LIA): 1735 CE to 1834 CE, were

collected from the PMIP3/CMIP5 models CCSM4, MRI-CGCM3, MPI-ESM-P, available at 288 x 192

x L26 1, 320 x 160 x L48, and 196 x 98 x L47 discretization. The PMIP3 is an initiative endorsed by

the World Climate Research Programme (WRCP); JSC/CLIVAR working group on coupled models

and the International Geosphere and Biosphere Programme (IGBP; PAGES) (Braconnot et al., 2012).

These datasets are available at  https://cera-www.dkrz.de/WDCC/ui/cerasearch/. The reason why these

three models were selected was because of the relatively higher resolution than other PMIP3 models

that is potentially important given the complex topography changes and land surface changes across the
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NER. The last millennium variations in the summer monsoon climate over the Indian region simulated

by these three models also match with a majority of nine models and match with findings from several

proxy-observational studies (Tejavath et  al.,  2017; 2019). In addition to these three models,  higher

resolution outputs from the ECHAM5, an atmospheric general circulation model (AGCM) at T106

(~1.125° x 1.125°) horizontal resolution for the period of 30 years (MCA: 935 CE to 965 CE and LIA:

1735 CE to 1765 CE) were also used. These simulations were carried out at the Max Planck Institute

for  Meteorology  (MPIM)  Germany  (Roeckner  et  al.,  2003).  The  datasets  are  available

at https://refubium.fu-berlin.de/handle/fub188/6348?show=full  .   This dataset from the AGCM has been

analyzed in tandem with the aforementioned outputs from the coupled models to explore the relevance

of the tropical coupled oceanic processes, or the lack thereof, for the NER climate during the last

millennium.

2.1.3 Remote sensing-based observation data

The satellite remote sensing data have been used in various studies due to its convenience and high

efficiency providing a truly synoptic view of the earth (Revadekar, Tiwari, & Kumar, 2012 and Roy et

al., 2015b). Therefore, to study the impact of climate change over the NER, in this study, few satellite

datasets were used. The datasets are followed as:

NDVI data

The Normalized Difference Vegetation Index (NDVI) (Didan, 2015) data product, MOD13A1 (version

6), of 36 spectral channels collected from MODIS instrument onboard Terra satellite for the period

2000 to 2017 were used. The data product is a 16-day composite of resolution 500 m. The NDVI is

computed from the surface reflectance (bidirectional) which has been corrected atmospherically with

other masked datasets such as heavy aerosols, water, and cloud shadows. The NDVI data is available at

24

https://refubium.fu-berlin.de/handle/fub188/6348?show=full


https://search.earthdata.nasa.gov/. The MODIS-derived NDVI data have been demonstrated to be of

high fidelity and are more sensitive to chlorophyll  concentration and other variations such as land

cover,  seasonal  vegetation,  and  biophysical  parameters  (Huete  et  al.,  2002)  and  less  sensitive  to

conditions  such  as  atmospheric  vapor  as  the  MODIS  has  narrower  bands  in  the  red  and  NIR

wavelengths (Chang et al., 2014). It is the ration of the red and near-infrared (NIR) bands of a sensor

(Rouse et., 1973) and is represented as follows:

NDVI = NIR – RED/NIR + RED Equation 1

where, NIR is the near-infrared reflectance at 0.77-0.86 μm and RED is the visible reflectance at 0.62-

0.68 μm.

NDWI data

The  Normalized  Difference  Water  Index  (NDWI),  a  surface  spectral  reflectance  (product  name:

MOD09A1, version 6) measured at ground level derived from the MODIS of 8-day composite, L3 at

500 m resolution were used (Vermote, 2015). The data are derived from the MODIS channels of band

2(Near-Infrared) and band 6(Short-wave-infrared). These estimate the leaf water content at the canopy

level (Gao, 1996). The variations caused by the leaf's internal structure and its dry matter content are

eliminated by the combination of these two bands. By doing so, the accuracy is improved, in retrieving

the water content of vegetation (Ceccato et al., 2001). It has been refined for internal snow, cloud, and

cloud  shadow  detection  algorithms.  The  data  are  available  at  https://earthdata.nasa.gov/.  The

calculation of the index is explained below in the methodology section.
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2.1.4 Reanalysis Aridity data

Aridity data (5 km x 5 km) derived from TERRAClimate (Abatzoglou, J.T. et al., 2018) collected from

the National Center for Atmospheric Research (NCAR) for the period 2000 to 2017 were used. These

are  monthly  surface  water  balance  interpolated  datasets.  To prepare  these  datasets,  high-resolution

spatial data of WorldClim climatological normals are combined. Water balance model incorporating

temperature, precipitation, evapotranspiration, and interpolated soil water capacity extracted from the

plant was used for the preparation of this data. The spatiotemporal aspects of TerraClimate have been

validated using annual  precipitation,  temperature,  evaporation from station data,  and annual  runoff

from streamflow gauges. Important inputs in studying the hydrological and ecological issues at global

scales where high spatial resolution climatic water balance data are needed can be achieved by these

datasets  (Abatzoglou,  J.T.  et  al.,  2018).  The  data  is  available

at https://climatedataguide.ucar.edu/climate-data/terraclimate-global-high-resolution-gridded-

temperature-precipitation-and-other-water.

2.1.5 Field sample data (Land-use-and-land-cover map (LULC))

The LULC map for the year 2005 generated during the project of the Development of Decadal (1985–

1995–2005) Land Use and Land Cover Database for India using multi-spectral  and multi-temporal

satellite  data  of  medium resolution  (Roy  et  al.,  2015a)  was  used.  The  accuracy  of  the  map  was

determined using pre-determined field sample points collected for the characterization project of the

Indian Space Research Organization (ISRO) and the Department of Biotechnology (DBT) (Roy et al.,

2015a). Six vegetation classes collected from the LULC map given below were studied for NER.

26

https://climatedataguide.ucar.edu/climate-data/terraclimate-global-high-resolution-gridded-temperature-precipitation-and-other-water
https://climatedataguide.ucar.edu/climate-data/terraclimate-global-high-resolution-gridded-temperature-precipitation-and-other-water


DBF Deciduous Broad Leaf Forest

EBF Evergreen Broad Leaf Forest

ENF Evergreen Needle Leaf Forest

MF Mixed Forest

SL Shrub Land

GL Grassland

Table 1: Types of vegetation classes used in the study.

2.2 Methodology

2.2.1 Evaluation of the current climate and its variability

In this study, the current climate (1970 to 2005; also referred to as historical period to match with

model output terminology), and its variability over the NER were evaluated using the observation data

of rainfall, maximum and minimum temperature derived from the IMD, other observation-based data

including  Aphrodite  data,  the  reanalysis  data  from  the  CRU  and  the  CORDEX-SA  historical

simulations.

Model validation

For better accuracy in statistical analysis, the region bounded by the latitudes from 25.5° N through

28.5° N, and longitudes from 92.5° E through 94.5° E are referred to as the NER in the study. The

validation of the downscaled historical simulation outputs is done by comparing the climatology of all

the models with observed rainfall,  maximum, and minimum temperature patterns.  To facilitate  the

validation, the observed datasets are refield sampled into 0.5° resolutions using a bilinear interpolation

method. By doing this, the future climate change in the NER could be assessed taking into account

uncertainty associated with intermodel variability.

27



Then the interannual variability and seasonal variability of rainfall and temperature have been assessed

during the summer monsoon season (JJAS) and winter monsoon season (DJF). This is followed by the

statistical analysis presented in the later statistical section.

2.2.2 Evaluation of the past climate especially the last millennium period and future projections

scenarios

Last Millennium

Given the importance of summer monsoon rainfall in NER, my analysis of this paleoclimate study

pertains  only  to  the  identical  season.  Before  analyzing  the  above  past  climate  simulations,  the

simulations for the current period 1961 to 1990, broadly compatible with the ‘historical period’ have

been validated against the corresponding observed rainfall data from the IMD. This period has been

selected as the rainfall data from the ECHAM5 model is available for this period. Then the seasonal

climatology of  simulated  rainfall  between the  MCA and the LIA period over  the NER have been

analyzed. The remaining analysis is presented in the statistical section.

Future projections

The future climate change over the region has been evaluated from the simulated CORDEX SA model

outputs of rainfall, maximum and minimum temperature data sets over JJAS and DJF seasons for the

period 2011 to 2060. Likewise, current climate study, interannual and seasonal variations are analyzed

for this period. In addition to this, to have an estimation of the future climate change in NER, the

historical climatology of each parameter was subtracted from the corresponding future climatology. For
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example, say "C hist" as the historical climatology and "C RCP" as the future climatology, then let ΔC

= C RCP − C hist.

2.2.3 Impact of climate change on the vegetation pattern

I have carried out a two pronged-analysis, one, at field sample points in the NER, as elaborated below,

and another, considering the whole domain of the NER. In other words, various datasets have been

analyzed at field sample points in the NER, identified based on the distribution of six vegetation classes

from the LULC map namely, Deciduous Broad Leaf Forest, Evergreen Broad Leaf Forest, Evergreen

Needle Leaf Forest, Mixed Forest, Shrub Land, and Grassland, as well as for the entire NER region.

The extracted NDVI data collected from the MODIS of all the vegetation classes were analyzed by

using the observed data sets of rainfall, maximum and minimum temperature from the IMD, along with

NDWI and aridity data sets from 2000 to 2017.

2.2.3.1 Field sample points

Area-averaged anomalies of NDVI

The fortnightly normalized difference vegetation index (NDVI) data (HDF format) were downloaded

from  the  National  Aeronautics  and  Space  Administration  (NASA)'s  Earth  Science  Data  Systems

(ESDS) program (https://earthdata.nasa.gov/) from 2000 to 2017. The Hierarchical Data Format (HDF)

format was converted into Geotiff using HDF-EOS to GeoTIFF Conversion Tool (HEG) software. The

GeoTIFF files were then imported into .img format in Earth Resources Data Analysis System (ERDAS)

imagine. All the raster files in .img were layers-stacked in ERDAS. The study area of the NER has

been subset from the stacked raster files using a shapefile of NER. The subset raster file was projected

to World Geodetic System (WGS) 84 zone 44, a reference coordinate system used to define the exact
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positions of the study area. Then the processed datasets were multiplied by a scale factor of 0.0001 to

achieve the actual NDVI data value as the raw NDVI data is not in the normal NDVI range. The subset

fortnight  NDVI data  were area-averaged into  three  seasons namely,  wet  (June  to  October),  winter

(November to February), and dry (March to May). Using field sample point locations based on the land

use land cover categories (LULC map of 2005), the NDVI of six vegetation classes (Table 1) were

extracted  in  R  software.  The  anomalies  of  NDVI  for  each  vegetation  class  were  calculated  by

subtracting  the  mean NDVI of  each year  from the  long-term average  NDVI for  all  three  seasons

respectively.

Area-averaged anomalies of NDWI

The Normalized Difference Water Index (NDWI) data and datasets of surface reflectance 2 and surface

reflectance 6 were also downloaded from the same data source (https://earthdata.nasa.gov/). The data

followed the same pre-processing methods used for NDVI up to scale factor multiplication. After this,

the NDWI was computed using the near-infrared: (NIR – MODIS surface reflectance band 2) and the

shortwave infrared: (SWIR – MODIS surface reflectance band 6) (Gao, 1996) in the model maker in

ERDAS following the formula (NIR-SWIR/NIR+SWIR). The study area was subset from the NDWI

data using the Northeast shapefile. Then the subset NDWI data were averaged into the same three

seasons and six vegetation  classes  were extracted  using  field  sample points  from the  LULC map.

Anomalies of NDWI were calculated following the same methods used in NDVI.

Area-averaged anomalies of aridity

Aridity data derived from monthly TerraClimate was downloaded in NetCDF format from the National

Center for Atmospheric Research (NCAR). The data were converted into raster and .img format for

further processing in ERDAS. Then subsetting the study area, averaging into three seasons, extraction
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of vegetation classes,  and finally,  anomaly calculation was done following the same methods used

above.

Area-averaged anomalies of observed data

The rainfall data of 0.25° × 0.25° resolution (Pai et al., 2014) and, maximum and minimum temperature

of 1° × 1° resolution (Srivastava et al., 2009) for the period 2000 to 2017 collected from the IMD were

first detrended using Climate Data Operator (CDO) tool to remove the probable distortion caused and

to  see  the  local  impact  more  accurately.  Then  the  detrended  rainfall,  maximum,  and  minimum

temperature  datasets  were  area-averaged into  three  seasons namely,  wet  (June to  October),  winter

(November to February), and dry (March to May). Using ArcGIS, the Network Common Data Form

(NetCDF) format of these datasets were converted into raster and .img format for further processing of

the data. After conversion, the field sample points of the six vegetation classes from these datasets were

extracted.  Likewise,  the  NDVI  anomalies,  the  anomalies  of  rainfall,  the  maximum and  minimum

temperature for all three seasons of the six vegetation classes were calculated.

The NDVI anomalies calculated using the field sample points were evaluated against the corresponding

rainfall,  maximum, minimum temperature, aridity, and NDWI anomalies for the three seasons from

2000 to  2017 to understand the  temporal  patterns  and also the  association  of  the  NDVI with  the

corresponding parameters.

2.2.3.2 Entire Northeast region

The entire grids points of NDVI in raster format for each season were converted into .csv format to

acquire the numerical value using ArcGIS and excel sheet. Then all the values were averaged for each

season and calculated anomalies (same methods used above were applied) for the entire region of the
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three seasons. Similarly, anomalies of rainfall in the NetCDF format of the entire region have been

calculated using the Grid Analysis and Display System (Grads) tool. Then the NDVI anomalies were

evaluated against the rainfall anomalies for all three seasons from 2000 to 2017.

In addition to the above analysis, for more transparency and also to support the studies carried out, the

following analyses have been carried out to find out which season has the highest to lowest NDVI. For

this, the maximum value of NDVI for all three seasons from 2001 to 2017 were collected from the

raster file of NDVI using ArcGIS. The period (2001 to 2017) was made similar for all three seasons to

make it easier in figuring out the season. Then the values were plotted in an excel sheet with the help of

a trend line. Furthermore, the values of NDVI in raster format from 2001 to 2017 for all the three

seasons were also plotted spatially using ArcGIS. This was done to see the variability taking place on

yearly basis.

2.2.4 Statistical analysis

Current climate variability

A linear trend analysis was applied on the area-averaged rainfall and that of the temperature over the

NER for the period 1970 to 2005 by using the Least square linear fit (Jhajhariaa and Singh, 2011; Jain

and Kumar, 2012 and Dubey and Krishnakumar, 2014) on the observed and simulated rainfall and

temperature datasets. Then the significance test of the linear trend has been evaluated by using the

Student t-test and Mann Kendall (M-K) trend test at 0.05% significance level. The M-K test is a non-

parametric test for identifying the trend in time series data and extensively used in climate studies for

verifying spatial variation and temporal deviation of any climatic series (Kumar et al., 2010; Jain and

Kumar, 2012; Jain et al., 2013; Laskar et al., 2014 and Chinchorkar et al., 2015). This statistical method
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is used to test the null hypothesis that the trend is insignificant, and its significance is evaluated based

on the Z value. The null hypothesis is rejected at α level of significance in a two-sided test if the

computed value of |Z | > Z α/2. Any increasing trend is denoted by a very high and positive value of S

while the decreasing trend is denoted by a low and negative value of S (Laskar et al., 2014).

M-K statistics for a series, say x (x1, x2, x3, x4, ..............., xn) follows as:

Equation (2)

where the value of sgn (xi – xj) is computed as follows:

Equation (3)

and variance of M-K test statistics is computed

 Equation          (4)

 

where “n” is the number of data points, “k” is the number of tied groups and “tk” is the number of data

points in kth tied group. Then the Z statistics test (standard normal deviation) is computed as follows:

          Equation            (5)
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The observed and simulated rainfall, maximum and minimum temperature datasets, and the HadISST

datasets  for  the  historical  period  (1970  to  2005)  have  been  used  to  decipher  the  teleconnections

between the summer monsoon climate in the NER and ENSO. The well-known Nino 3.4 index is used

to represent the ENSO activity. This index is obtained by area-averaging the SST anomalies over the

region  (5°  N–5°  S  and  120°  W–170°  W).  Then  a  linear  correlation  method  known  as  Pearson

correlation was applied  to  check the association  of  the ENSO events  with the  NER climate.  This

method measures the statistical association or relationship between two variables. The value ranges

from -1 to +1, with -1 indicating a negative correlation and +1, a positive correlation between the two

variables. A negative correlation indicates that if one variable increases, the other decreases, and vice

versa,  while a positive correlation indicates that both variables decrease or increase together.  Then

statistical significance test is computed using a two-tailed Student t-test where the p-value is compared

to the significance level of 0.05. If the p-value is less than or equal to the significance level then the test

is statistically significant, and if more then it is statistically insignificant.

Extremes  of  rainfall,  maximum  and  minimum  temperature  datasets  from  both  the  observed  and

simulated historical datasets have been estimated using the histogram method.

Last Millennium

Teleconnections between the indices (NINO3 and NINO3.4), and the simulated datasets were evaluated

by area-averaging the sea surface temperature (SST) anomalies over the 5° S to 5° N and 150° W to

90° W (NINO3) and 5° S to 5° N and 170° W to 120° W (NINO3.4) to represent the ENSO variability.

Using two-tailed Student's  t-tests,  statistical  significance tests have been calculated for correlations

performed for  teleconnection.  The Student’s  t-tests  are  also performed on the  difference  of  means

calculated between the MCA and the LIA period.
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Future projections

The Least square linear fit was also applied on the area-averaged rainfall and temperature for the period

2011 to 20160. The significance test was done using the Student’s t-test and M-K test.

Variability of vegetation patterns

Means and standard deviations of field sample points of all the six vegetation classes for all three

seasons were calculated for NDVI and rainfall from 2000 to 2017 to find out the variation and also, the

association between them over the region. To see the relationship more precisely between the NDVI

pattern and the rest of the parameters used, the correlation coefficient, multiple regression, and lag

correlation were computed at the 0.05% significance level.

2.3 Software used

In this study, the gridded observation datasets, and climate model datasets have been analyzed using

tools such as GrADS (version 2.2.1), Climate Data Operators of version 1.9.6. For the analysis of

satellite  datasets,  software  such  as  ERDAS  Imagine  (version  9.1),  ArcGIS  (version  10.2),  HEG

software (version 2.12), and R software (version 3.1.1) were used for pre-processing, extraction, etc.

GrADS: It is a freely available interactive desktop tool commonly used for easy access, manipulation,

and visualization of earth science data. This tool handles both gridded data as well as station data. It

supports many data formats such as binary, NetCDF, GRIB, HDF & BUFR for station data.

CDO: It is a freely available software used for fast processing climate and forecast model data. This

software  operates  arithmetic  functions,  statistical,  data  selection,  subsampling  tools,  and  spatial
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interpolation. It supports file formats such as NetCDF, GRIB, SERVICE, EXTRA, and IEG, etc. More

than 600 operators are available in CDO.

HEG: It is  a  tool  developed for  the conversion of HDF-EOS formatted granules  of Geographical

Information System (GIS) compatible formats particularly GeoTIFF. This tool reformats HDF-EOS

Swath & Grid data to the HDF-EOS grid, GeoTIFF, or a generic format. The tool is available as a

down-loadable tar file.

ERDAS Imagine: It is an image processing remote sensing software used to process geospatial, other

imagery, raster as well as vector data. It allows us to prepare, display, and enhance digital images. This

tool runs on the windows operating system used to study many satellite imageries and other advanced

remote sensing data sets.

ArcGIS: It is  a  geographic  information  system software  used  for  creating  maps,  editing  datasets,

compiling geographic data and information in a database.

R software: It is a free language software used for statistical computing and graphics under the terms

of  the  Free  Software  Foundation's  GNU General  Public  License  in  source  code  form.  It  runs  on

Windows, UNIX platforms & MacOS.
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Softwares Links

GrADS http://cola.gmu.edu/grads/

CDO https://code.mpimet.mpg.de/projects/cdo/

HEG https://hdfeos.org/software/heg.php

ERDAS https://www.hexagongeospatial.com/products/power-portfolio/erdas-imagine/

erdas-imagine-remote-sensing-software-package

ArcGIS https://www.esri.com/en-us/arcgis/products/arcgis-desktop/overview

R https://www.r-project.org/

Table 2: Source of softwares used.
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CHAPTER – 3

RESULTS AND DISCUSSIONS

This  chapter presents the analysis  carried out for the study and the findings from the results.  The

chapter is divided into three sub-sections based on the objectives of the study. Sub-section 3.1 discusses

the observed mean seasonal rainfall and temperatures over the NER for the historical period (1970-

2005), along with those from the CORDEX-SA historical simulations. Secondly, my last millennium

analysis and the future projections study have been presented in sub-section 3.2 and the impact of

climate change on the vegetation pattern during the current period in sub-section 3.3.

3.1 The climate variability during the historical period

based on observations and corresponding climate models

3.1.1 Climatology for JJAS historical simulation from 1970 to 2005

Figure 3.1.1 is an effort to validate the simulated JJAS climatology of precipitation (RF-JJAS) from

1970 to 2005 with the IMD observations and the Aphrodite data. We find from the spatial distribution

of the observed climatological RF-JJAS that it varies from 9 to 22 mm, Aphrodite data ranges from 3 to
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13 mm, and model data range from 3 to 18 mm. However, the corresponding Aphrodite distribution and

those from all models except the LMDZ show rainfall increasing from north to southwest. In LMDZ

climatology, the RF-JJAS increases towards the southeast. Notwithstanding such discrepancy in the

gradients, the range of climatological RF-JJAS across the observational datasets and models is not

much different.

Figure  3.1.1:  Spatial  distributions  of  JJAS  climatology  of  precipitation  (mm)  during  1970–2005
(historical) for (i) IMD, (ii) APHRODITE data, and climate model data from Cordex South Asia: (iii)
LMDZ, (iv) MPI, (v) GFDL, (vi) CNRM and (vii) ACCESS over North East Region.
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The observed climatological TMax-JJAS varies from 30.6 °C to 32 °C in figure 3.1.2. Its maximum

occurs approximately in the central  north-east  and increases from west to east.  The climatological

TMax-JJAS across the NER from the CRU reanalysis ranges from 19 °C to 20.5 °C and decreases in

the center. The CRU data and each model exhibit a relatively broad range of climatologies across the

NER compared to  the  observed data.  The simulated  climatology of  the  (TMax-JJAS )  by various

models is lower with different spatial distribution than the observations. The simulated climatological

values vary from 12 °C to 29 °C across the region in models. The LMDZ model shows an increasing

TMax-JJAS from the northwest towards the south, with the maximum values occur in the center. The

rest of the models show a rising TMax-JJAS from the northwest towards the southeast.

40



Figure 3.1.2: Spatial distributions of JJAS climatology of maximum temperature (°C) during 1970–
2005 (historical) for (i) IMD, (ii) CRU data, and climate model data from Cordex South Asia: (iii)
LMDZ, (iv) MPI, (v) GFDL, (vi) CNRM and (vii) ACCESS over North East Region.
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Figure 3.1.3: Spatial distributions of JJAS climatology of minimum temperature (°C) during 1970–
2005 (historical) for (i) IMD, (ii) CRU data, for climate model data from Cordex South Asia: (iii)
LMDZ, (iv) MPI, (v) GFDL, (vi) CNRM and (vii) ACCESS over North East Region.

The models also underestimate simulated climatological minimum temperature in JJAS (TMin-JJAS)

relative to the CRU reanalysis (Figure 3.1.3). The simulated range is 3 °C~22 °C vis-a-vis the observed

range of 28°C~32 °C in observed data varies from 19 °C to 20.2 °C from the CRU reanalysis datasets.
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Figure  3.1.4:  Spatial  distributions  of  DJF  climatology  of  precipitation  (mm)  during  1970–2005
(historical) for (i) IMD, (ii) APHRODITE data, and climate model data from Cordex South Asia: (iii)
LMDZ, (iv) MPI, (v) GFDL, (vi) CNRM and (vii) ACCESS over North East Region.

Figure 3.1.4 shows the DJF climatology of precipitation (RF-DJF ) for the period 1970–2005, derived

from the IMD, Aphrodite, and model datasets. The magnitude of the RF-DJF across the NER ranges

between 0.6 and 1.6 mm, with Aphrodite datasets ranging from 0.2 to 0.8 mm and the models, ranging

from 0.5 to 3.8 mm, also capturing the relatively low seasonal climatological rainfall during the DJF

season (Figure 3.1.4) as compared to the JJAS season (Figure 3.1.1).
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Figure 3.1.5: Spatial distributions of DJF climatology of maximum temperature (°C) during 1970–2005
(historical) for (i) IMD, (ii) CRU data, and climate model data from Cordex South Asia: (iii) LMDZ,
(iv) MPI, (v) GFDL, (vi) CNRM and (vii) ACCESS over North East Region.

The DJF climatology of maximum temperature (TMax-DJF ) in IMD observations varies from 23.4 °C

to 24.4 °C (Figure 3.1.5) and increases from the south to north of the NER. The CRU data ranges from

19  °C  to  21.2  °C,  with  a  decrease  in  TMax-DJF  in  the  center.  The  models  underestimate  the

climatological TMax-DJF in the NER, with the simulated TMax-DJF ranging from 1 °C to 15 °C.
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Figure 3.1.6: Spatial distributions of DJF climatology of minimum temperature (°C) during 1970–2005
(historical) for (i) IMD, (ii) CRU data, and climate model data from Cordex South Asia: (iii) LMDZ,
(iv) MPI, (v) GFDL, (vi) CNRM and (vii) ACCESS over North East Region.

The simulated winter  climatological minimum temperatures  (TMin-DJF ) in Figure 3.1.6 exhibit  a

range of values from 10.4 °C to 11 °C, which are relatively nearer to that from the IMD datasets, with

CRU data having higher (TMin-DJF ).
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                                                                    Mean climatology (mm)

Precipitation Maximum Temperature Minimum Temperature

JJAS DJF JJAS DJF JJAS DJF

IMD 12.5 0.8 IMD 31.6 24.0 24.1 10.9

APHRODITE 8.7 0.6 CRU 19.6 19.7 19.6 19.7

LMDZ 6.1 2.7 LMDZ 24.6 10.5 17.7 1.6

MPI 7.1 1.2 MPI 17.5 3.2 8.1 -7.1

GFDL 7.0 1.3 GFDL 17.5 2.6 8.2 -7.5

CNRM 6.9 1.3 CNRM 17.7 2.9 8.4 -7.4

ACCESS 7.2 1.1 ACCESS 17.4 3.3 8.1 -6.9

Table 3: Mean climatological value for precipitation (mm), maximum and minimum temperature (°C)
for  observations  (IMD  &  Aphrodite),  and  climate  model  data  (LMDZ,  MPI,  GFDL,  CNRM  &
ACCESS for the period 1970–2005.

Table  3  shows  differences  in  the  climatological  means  between  observed  data  sets  and  simulated

rainfall and maximum and minimum temperature from 1970 to 2005. In support of the above spatial

climatological analysis, the models show a lower means than the observations datasets.

3.1.7 Seasonal mean cycle for historical simulation from 1970 to 2005

Figure 3.1.7(a) shows the mean seasonal cycle of precipitation for 1970 to 2005 from the two observed

datasets and each model. All the datasets show a seasonal evolution similar to observations, with the

simulated precipitation from most of the models peaking in July. However, the simulated precipitation

from the LMDZ peaks in August and is much less than that from the IMD or Aphrodite datasets. To

sum up, the models seem to capture the observed seasonal cycle of mean precipitation qualitatively for

the study region.
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The simulated mean seasonal  cycles  of  the maximum and minimum temperatures  in  the NER are

qualitatively similar to observations (Figure 3.7.1 b and c), though the simulated magnitudes are much

lower than those from the observations.

Figure 3.1.7: (a) Seasonal cycle (mean) of precipitation (mm) from IMD, Aphrodite, and Cordex-SA
model (LMDZ, MPI, GFDL, CNRM, and ACCESS) for the period 1970 to 2005. (b) same as in (a)
except for CRU Reanalysis and maximum temperature data (°C). (c) same as (b) but for minimum
temperature.
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3.1.8. Spatial plot of trend analysis JJAS for historical data from 1970 to 2005

Figure 3.1.8: Spatial distribution of trends of precipitation for JJAS season for observations (i) IMD
and (ii) Aphrodite and, for models (iii) LMDZ, (iv) MPI, (v) GFDL, (vi) CNRM, and (vii) ACCESS for
the period 1970 to 2005 over the NER.

In Figure 3.1.8, the RF-JJAS season trends for the period 1970 to 2005 from each precipitation dataset

are plotted. The IMD data shows a rising trend from the rest of the datasets. While the RF-JJAS from

the IMD exhibits an increasing trend of about 0.5 mm/year in the western NER and a decreasing trend
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of about 0.6 mm/year in the eastern portion of the NER, the APHRODITE datasets indicate a weaker

but increasing trend in a larger portion of the NER. All models qualitatively reproduce the increasing

trend in the rainfall over western NER, though with weaker magnitudes. The MPI and GFDL models

and  the  ACCESS  model  somewhat  weakly  simulate  a  negative  trend  in  pockets,  not  seen  in

observations.

Figure  3.1.9:  Spatial  distribution  of  trends  of  maximum  temperature  (°C)  for  JJAS  season  for
observations (i) IMD and (ii) CRU and, for models (iii) LMDZ, (iv) MPI, (v) GFDL, (vi) CNRM and
(vii) ACCESS for the period 1970 to 2005 over the NER.
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A trend analysis of TMax-JJAS maximum temperature from 1970 to 2005 is plotted in Figure 3.1.9

where the IMD data shows a positive trend 0.015 °C/year increasing towards the south. The CRU data,

on the other hand, shows a higher magnitude of the trend than the IMD and an increasing trend towards

the center. Models other than the MPI and ACCESS models show a positive trend.

Figure  3.1.10:  Spatial  distribution  of  trends  of  minimum  temperature  (°C)  for  JJAS  season  for
observations (i) IMD and (ii) CRU and, for models (iii) LMDZ, (iv) MPI, (v) GFDL, (vi) CNRM and
(vii) ACCESS for the period 1970 to 2005 over the NER.
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A trend of 0.02 °C/year in the TMin-JJAS is shown from the IMD datasets (Figure 3.1.10), increasing

towards the west from the east. On the contrary, the CRU datasets show an increasing trend towards the

center. The LMDZ model shows a higher magnitude of the trend than the rest of the datasets, with an

increasing trend of 0.05 °C/year. The MPI, GFDL, and CNRM models are more or less similar to a

lower positive trend in the central portion. The ACCESS model shows an increasing trend towards the

north.
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3.1.11. Spatial plot of trend analysis DJF for historical data from 1970 to 2005

Figure 3.1.11: Spatial distribution of trends of precipitation (mm) for DJF season for observations (i)
IMD and (ii)  Aphrodite  and,  for  models  (iii)  LMDZ,  (iv)  MPI,  (v)  GFDL,  (vi)  CNRM and (vii)
ACCESS for the period 1970 to 2005 over the NER.

Figure 3.1.11 shows the trends in the observed and simulated RF-DJF in the NER for the period 1970

to 2005. All the datasets show a similar increasing trend in most of the region. The IMD data shows an

increasing trend of 0.01 mm/year towards the southwest of the area and a decreasing trend of 0.4

mm/year towards the northeastern. The Aphrodite data shows a positive trend in most of the regions.

The rest of the models, except for the LMDZ, shows a similar positive trend.

52



Figure  3.1.12:  Spatial  distribution  of  trends  of  maximum  temperature  (°C)  for  DJF  season  for
observations (i) IMD and (ii) CRU and, for models (iii) LMDZ, (iv) MPI, (v) GFDL, (vi) CNRM and
(vii) ACCESS for the period 1970 to 2005 over the NER.

The IMD datasets show an increasing trend in the TMax-DJF from the northwest towards the southeast,

with respective values of 0.03 °C/year and 0.06 °C/year (Figure 3.1.12). CRU datasets show a higher

trend than the IMD datasets. Only the LMDZ model shows a very high positive trend of 0.06 °C/year

increasing towards the north. GFDL and CNRM models show an increasing trend towards the east

while decreasing at the central east. The MPI model shows an increasing trend in the central portion

while the ACCESS model shows a decreasing trend in the central portion. All the datasets show a

positive trend.
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Figure  3.1.13:  Spatial  distribution  of  trends  of  minimum  temperature  (°C)  for  JJAS  season  for
observations (i) IMD and (ii) CRU and, for models (iii) LMDZ, (iv) MPI, (v) GFDL, (vi) CNRM and
(vii) ACCESS for the period 1970 to 2005 over the NER.

Figure 3.1.13 shows the trend analysis of TMin-DJF minimum temperature, from which it is clear that

the IMD datasets show an increasing trend of 0.04 °C/year towards the west while CRU data shows a

higher  trend as  compared to  the IMD data.  The LMDZ model  also shows a higher  trend of  0.07

°C/year,  which increases towards the north and south but decreases in the center.  The CNRM and

ACCESS models show an increasing trend towards the central east and a decreasing trend at the west,
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opposite to that in the MPI model. The ACCESS model shows an increasing trend in the central-east

and decreases in the west.

From the above discussion, it's clear that the IMD and Aphrodite datasets agree as far as the location of

highest  and  lowest  trends  in  the  rainfall,  particularly  during  the  summer  monsoon,  is  concerned.

However, the same cannot be said about the agreement between the IMD datasets and CRU datasets

about  the spatial  distribution of temperature trends.  This is  not  so surprising,  given that  the CRU

datasets are not observational datasets but model forecasts constrained by the observations. We also

note that the models are not up to simulate the spatial distribution of the trends well. The NER region is

well known for its high convective rainfall associated with complex orography, which is challenging to

simulate. The interpolation and calibration algorithms potentially contribute to uncertainty. However,

suppose the historical simulations from various models can at least replicate the area-averaged trends in

the NER climate parameters.  In  that  case,  we can then have qualitative confidence in  their  future

projections. In the next section, we precisely explore this aspect.

3.1.14.  Area-averaged trend analysis  from the observations and models  for the  1970 to  2005

period

This section discusses results from the analysis of the area-averaged trends in rainfall and temperature

in  the  NER region.  The  significance  of  these  tests  was  evaluated  using  both  Mann-Kendall  and

Student's t-test. We find that the IMD and Aphrodite datasets show increasing and decreasing trends,

which are not statistically significant (not shown as all the results show insignificant). Insignificant

decreasing or  no trend in  the summer monsoon precipitation of NER, as seen from some stations

observations in the NER has been also reported by Jain et al., 2013; Laskar et al., 2014 and Dash et al.,

2015. All the model simulations also simulate only insignificant trends.
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Further, both IMD and Aphrodite datasets only show a decreasing but statistically insignificant trend in

the area-averaged rainfall during the DJF (RF- DJF ) season in the NER. The area-averaged trends in

the corresponding RF-DJF from various CORDEX models are also seen to be insignificant, though the

GFDL and CNRM models show an increasing trend.

Though the nature of trends in the rainfall is insignificant in all the data sets, it indicates a decline in the

rainfall over NER, in tandem with such a signal in the summer monsoon rainfall in the rest of India

(Krishnan et al., 2016). On longer time scales, the warmer tropical ocean, especially the central-eastern

Pacific and the western Indian Ocean, are suggested to play a role in weakening the monsoon (Roxy et

al., 2015)

Data used

     Mann-Kendall test                 Student t-test

        Nature of the trend
Z value & 

  α value

Statistic

value (S)

    p-Value   t-Value Trend

value

                                                                             JJAS

LMDZ 4.19 > 1.96 308 0.00 < 0.05 5.53 > 2 1.14 Increasing trend & significant

GFDL 2.39 > 1.96 176 0.01 < 0.05 2.92 > 2 1.07                     - do -

ACCESS 2.86 > 1.96 210 0.01 < 0.05 2.61 > 2 1.25                     - do -

                                                                               DJF

LMDZ 3.79 > 1.96 290 0.01 < 0.05 4.52 > 2 2.35                     - do -

CNRM 2.33 > 1.96 178 0.05 = 0.05 2.02 > 2 1.22                     - do -

ACCESS 2.22 > 1.96 170 0.02 < 0.05 2.39 > 2 1.28                     - do -

Table 4: Significance tests using Mann-Kendall and Student t-test for maximum temperature data from
the IMD, NCEP, and climate model data for JJAS and DJF season for 1970–2005.

Only the significant results are shown in Table 4. The time series of the area-averaged JJAS maximum

temperature and that for the DJF season, from the IMD datasets from 1970 to 2005 show increasing but

statistically insignificant trends. Growing population accompanied by massive urbanization, changes in

56



land  use,  enormous  highway development,  increases  in  deforestation,  biomass  burning,  fossil  fuel

consumption, and increasing atmospheric concentrations of greenhouse gases are suspected to be the

cause of the temperature changes (Kothyari and Singh, 1996; Jhajhariaa and Singh, 2011). Notably, the

CRU  datasets  for  both  the  seasons  show  an  insignificant  increasing  trend.  Also,  all  the  models

successfully  reproduce  the  observed  increasing  trends  in  the  area-averaged  seasonal  maximum

temperatures, through most of the simulated trends are statistically significant.

Data used

     Mann-Kendall test                 Student t-test

        Nature of the trend
Z value & 

  α value

Statistic

value (S)

    p-Value   t-Value Trend

value

                                                                             JJAS

IMD 3.26 > 1.96 240 0.00 < 0.05 4.48  > 2 0.63 Increasing trend & significant

LMDZ 4.79 > 1.96 352 0.00 < 0.05 7.92  > 2 1.32                     - do -

MPI 2.48 > 1.96 182 0.03 < 0.05 2.92  > 2 0.61                     - do -

GFDL 2.04 > 1.96 150 0.03 < 0.05 2.23  > 2 0.66                     - do -

ACCESS 3.19 > 1.96 234 0.02 < 0.05 2.45  > 2 0.85                     - do -

                                                                               DJF

IMD 3.92 > 1.96 300 0.00 < 0.05 4.59  > 2 1.19                     - do -

LMDZ 4.15 > 1.96 318 0.00 < 0.05 5.42  > 2 2.97                     - do -

MPI 3.22 > 1.96 246 0.00 < 0.05 3.24  > 2 1.59                     - do -

GFDL 2.17 > 1.96 166 0.05 = 0.05 2.99  > 2 0.75                     - do -

CNRM 2.30 > 1.96 176 0.03 < 0.05 2.33  > 2 1.11                     - do -

ACCESS 3.16 > 1.96 242 0.00 < 0.05 3.70  > 2 1.62                     - do -

Table 5: Significance tests using Mann-Kendall and Student t-test for minimum temperature data from
the IMD and climate model data during JJAS and DJF seasons for the period 1970–2005.

Importantly,  we  find  statistically  significant  increasing  trends  in  the  area-averaged  minimum

temperature over the NER during both summer and winter seasons over the period 1970 to 2005 (Table
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5). It is intriguing that only the minimum temperature shows a statistically significant increasing trend,

while the rainfall trends, though decreasing, are not significant.

From all  these  results,  we can  summarize  that  the  downscaled  CORDEX South-Asia  datasets  are

successful in capturing the area-averaged seasonal cycles of rainfall and temperature observed during

1970–2005, and are also capable of capturing the corresponding trends, at least qualitatively. However,

the climatological spatial distribution and the local long term trends are not well captured and are also

subject to the uncertainties in the observations. Being an orographic region, the uncertainty between

datasets is largest in North East India (Kulkarni et al., 2013 and Prakash et al., 2014).
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3.1.15. Teleconnections of the historical data (1970–2005) with ENSO

               Nino3.4              JJAS               DJF

                                                      Precipitation

IMD -0.08 -0.19

APHRODITE -0.11 0.03

LMDZ -0.09 -0.36

MPI -0.21 -0.41

GFDL 0.13 0.13

CNRM -0.04 -0.09

ACCESS 0.03 -0.12

                                                  Mean Temperature

CRU -0.08 0.2

                                                Maximum Temperature

IMD 0.04 -0.04

LMDZ 0.19 0.09

MPI 0.05 0.15

GFDL -0.06 -0.04

CNRM 0.18 0.27

ACCESS 0.25 0.19

                                               Minimum Temperature

IMD -0.04 -0.07

LMDZ 0.16 0.01

MPI -0.01 0.12

GFDL 0.15 0.27

CNRM 0.05 0.28

ACCESS 0.13 0.33

Table 6: Teleconnections between ENSO index (Nino3.4) with precipitation, maximum temperature
and minimum temperature for JJAS and DJF for the period 1970 to 2005.

Table 6 shows the teleconnections results ENSO, which is represented by the well-known NINO3.4

index,  with  precipitation,  maximum  and  minimum  temperature  parameters  from  all  relevant  the

datasets used in this study from the IMD, Aphrodite, CRU, and all the model's datasets for historical

59



period from 1970 to 2005. The results of this study suggest that the ENSOs do not have any statistically

significant impacts on the NER precipitation and temperature, be it summer or winter, for the period.

NINO3 (figure not shown) has also been analyzed where it also shows no significant impacts. 

3.1.16. Extremes analysis for JJAS season for the period 1970 to 2005

Figure 3.1.16: Histogram plots for JJAS precipitation (mm) of historical period (1970–2005): IMD,
Aphrodite and CORDEX models ((LMDZ, MPI, GFDL, CNRM and ACCESS).

In Figure 3.1.16, histograms of observed and simulated JJAS monthly mean rainfall over the NER for

the historical period from 1970 to 2005 are presented. While there are four heaviest rainfall monsoon

seasons with rainfall of 23 mm/day in NER as per the IMD datasets, the APHRODITE datasets indicate
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(Fig. 3.1.16) five heaviest rainfall months with rainfall amounting to 15 mm/day. Except for the LMDZ

model,  all  other  models  simulate  the  heaviest  seasonal  rainfall  of  15  mm/day.  Only  two  models

simulate at least four such extreme rainfall months (Fig. 3.1.16); The LMDZ model simulates only one

heaviest rainfall month, with the magnitude of the rainfall amounting to 11 mm/day.

The extreme events of JJAS maximum temperature for the historical period from 1970 to 2005 are

shown the  Figures  3.1.17.  The observation  data  from IMD recorded thirty-nine  highest  maximum

temperature months with 34°C/day. The CRU and all the models record somewhat lower maximum

temperature than the observation data, ranging from 22°C to 28 °C.

Figures 3.1.18 show the minimum temperature for JJAS season for the historical period (1970–2005).

The observation data and CRU datasets record a minimum monthly temperature of 27 °C/day. The

minimum temperature in all the models is underestimated, with a range of 12 °C to 21 °C across the

models.
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Figure 3.1.17: Histogram plots for JJAS maximum temperature (°C) of historical period (1970–2005):
IMD, CRU and CORDEX models (LMDZ, MPI, GFDL, CNRM and ACCESS).
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Figure 3.1.18: Histogram plots for JJAS minimum temperature (°C) of historical period (1970–2005):
IMD, CRU and CORDEX models (LMDZ, MPI, GFDL, CNRM and ACCESS).
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3.1.19. Extremes analysis for DJF season for the period 1970 to 2005

Figure 3.1.19: Histogram plots for DJF precipitation (mm) of historical period (1970–2005): IMD,
CRU and CORDEX models (LMDZ, MPI, GFDL, CNRM and ACCESS).
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Histograms of observed and simulated DJF monthly mean rainfall  over the NER for the historical

period from 1970 to 2005 are presented in Figure 3.1.19. The number of heaviest winter monsoon

rainfall months is relatively low as corresponding to the summer monsoon season, as can be seen from

both IMD and Aphrodite datasets. The models in general also qualitatively reproduce the difference.

However, the heaviest rainfall simulated by the LMDZ model of 7 mm/day in the simulated historical

period is noticeably high as compared to the 4.5 mm/day.

Figure 3.1.20: Histogram plots for DJF maximum temperature (°C) of the historical period (1970–
2005): IMD, CRU, and CORDEX models (LMDZ, MPI, GFDL, CNRM, and ACCESS).
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In Figure 3.1.20,  the extreme months of maximum temperature for DJF season are shown for the

historical  period  (1970–2005).  IMD  records  show  30  months  of  the  highest  monthly  maximum

temperature  of  30  °C/day during  the  historical  period.  The CRU records  show the  monthly  mean

highest  temperature  of  27  °C/day  and  all  the  models  show  a  highly  underestimated  maximum

temperature ranging from 9 °C to 15 °C.

Figure 3.1.21: Histogram plots for DJF minimum temperature (°C) of the historical period (1970–
2005): IMD, CRU, and CORDEX models (LMDZ, MPI, GFDL, CNRM, and ACCESS).
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In the case of the DJF season, for the historical period (1970–2005),  the observation data  records

minimum temperatures of 16 °C/day and CRU being 26 °C/day. However, all the models underestimate

the minimum temperature, with a range from 6 °C to -2 °C.

3.2 The climate variability during the last millennium and

future projections

Past-climate  simulations  provide  valuable  information  in  complementing  findings  from  proxy

observations, and hopefully reconcile with some of these paleo-observations, thereby leading to a more

cohesive conclusion. They help in deciphering potential background dynamical mechanisms. With this

aim,  we  analyze  outputs  from multiple  coupled-model  simulations  under  the  PMIP3  protocol.  In

addition to this, the summer monsoon rainfall plays a major role in the region, and considering the

importance of the NER, the study of the past climate during the summer monsoon season would be

useful in projecting the future climate. Then we analyze the results from the five downscaled future

scenarios,  namely,  the RCP4.5 simulations  (LMDZ, MPI,  GFDL, CNRM, and ACCESS) available

from 2011 through 2060, to decipher the projected climate change in the northeast.

3.2.1. Simulated seasonal rainfall and circulation across NER during the MCA and LIA

The simulated area-averaged monthly mean rainfall over NER for the present-day period from the three

CGCMs and the ECHAM AGCM (Figure 3.2.1) suggests that the evolution of the rainfall's simulated

seasonal cycle conforms well to the observations. In general, the magnitude of the simulated monthly

area-averaged rainfall is comparable to that from the observations, though the one simulated by the

MRI model is smaller than in the observations, particularly for May and June. The magnitude of the
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ECHAM5  simulation  for  the  JJAS  season  is  realistic,  suggesting  that  tropical  ocean-atmosphere

coupling may not be a major driver of the NER climate. Notably, the summer monsoon rainfall from

the  ECHAM  peaks  later  in  the  year  relative  to  the  observations  and  other  models.  The  highest

magnitude of area-averaged NEISMR is simulated by the ECHAM AGCM in both regimes, closely

followed by the MPI model (Figure 3.2.1b). We should, however, be mindful of the relatively short

span of the ECHAM5 simulations. All the further analysis will only involve the PMIP3 models.

The  simulated  normalized  summer  monsoon  rainfall  area-averaged  over  the  central/core-monsoon

region (74.5 E to 86.5 E and 16.5 N to 26.5 N, following Goswami et al., 2006; henceforth, CMR)⁰ ⁰ ⁰ ⁰

from the MCA to LIA is presented in Figure 3.2.1c, with actual climatological values in Figure 3.2.2a.

The simulated CMR decreases by 6% to 11%, from MCA to LIA (Figure 3.2.1c). The simulated rainfall

difference between the MCA and LIA by the CCSM4 and MPI models (Figure 3.2.2a) is statistically

significant  at  90% confidence  level,  and  for  the  MRI,  significant  at  85% confidence  level.  This

conforms to the results from nine PMIP3 models by Tejavath et al., (2017, 2019), which show that the

summer monsoon rainfall over India decreased from the MCA to LIA, in agreement with several proxy

studies (e.g., Yadava et al., 2005; Sinha et al., 2007; Dixit and Tandon, 2016). The difference from the

ECHAM model is not statistically significant.

68



Figure 3.2.1: (a) Annual cycle of observed area-averaged NER rainfall (mm/day) for the period 1961 to 1990,
and those from the historical simulations of three PMIP3 models of CCSM4, MRI, MPI, and that of ECHAM5
model (b) area-averaged climatological NER precipitation during JJAS season for MCA period (defined as 935
CE to 1034 CE for PMIP3 models, and 935 CE to 964 CE for ECHAM5) & LIA (1735 CE to 1834 CE for
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PMIP3  models,  and  1735  CE  to  1764  CE  for  ECHAM5)  (c)  simulated  normalized  area-averaged  JJAS
precipitation over core monsoon region for the aforementioned 100 years of MCA by the PMIP3 models, and
those from 100 years of LIA, and (d) same as Figure 1c but for northeastern India. The normalization of the
rainfall has been done by dividing the simulated climatological rainfall of MCA or LIA by the average of the 100
years of MCA & 100 years of LIA.

Figure 3.2.2 (a) Area-averaged climatological JJAS precipitation over Central India for 100 years of
MCA and LIA simulated by the PMIP3 models. (b) Area-averaged climatological JJAS precipitation
over northeastern India for the 1961-1990 period simulated by the ECHAM model and three PMIP3
models. Error bars are also shown.
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The corresponding normalized area-averaged NEISMR for the MCA and LIA from each PMIP3 model

is presented in Figure 3.2.1d. Contrary to the CMR, a difference (to be sure, only about 2%) between

the  simulated  summer  NEISMR  between  the  MCA  and  LIA across  all  models  is  statistically

insignificant. It is also to be noted that the simulated area-averaged mean seasonal rainfall over NER

for the present-day period from each model is not significantly different from the rainfall during the

MCA or the LIA (Figure 3.2.2b), indicating that NER-region has been insensitive to centennial changes

in the forcing. The response of the models is unequivocal. 

The interannual standard deviation of the NEISMR for the present day, as seen from the IMD rainfall

datasets, is higher than that for the CMR (Table 7). This is also well-simulated, though the simulated

standard  deviations  are  weaker  than  the  observations.  Interestingly,  unlike  the  mean  rainfall,  the

standard deviations of the NEISMR show relatively higher inter-epochal variations as compared to

those for the CMR. 

                                                                   Standard Deviation (mm.day-1)

                                    NEISMR                                   ISMR

1961 to 1990 LIA MCA 1961 to 1990 LIA MCA

IMD 1.87 0.96

ECHAM5 1.48 1.04 1.4 0.84 0.72 0.86

MRI 1.08 0.82 0.76 0.78 0.68 0.68

MPI 1.91 1.19 1.29 0.86 0.69 0.67

CCSM4 1.51 1.04 0.99 0.83 1.13 0.88

Table 7:  A comparison of standard deviation values (mm/day) between Northeastern India summer
monsoon rainfall (NEISMR) and Indian summer monsoon rainfall (ISMR) for the present day period
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(1961 to 1990), Little Ice Age (LIA) and Medieval Climate Anomaly (MCA) for observation data
(India Meteorological Department, IMD), and model data sets (ECHAM5, MRI, MPI & CCSM4).

3.2.3. TEJ changes and impacts on the ISMR

All the three models simulate the tropical easterly Jet stream (TEJ) over Peninsular India, associated

with the Tibetan High (Figures 3.2.3 c,  f  & i),  qualitatively similar  to  is  present-day observations

(Figure not shown).  The simulations point  to a  stronger  TEJ during the MCA relative to  the LIA

(Figures 3.2.3 c, f & i), which is normally associated with a high summer monsoon rainfall over the

central-Indian region.

The  analysis  of  the  PMIP3  simulations  by  T19  suggests  that  a  centennial  westward  shift  of  the

overturning Walker Circulation in the tropical Indo-pacific could be a potential reason for the relatively

high  ISMR during  the  MCA.  This,  however,  does  not  preclude  any  other  large  scale  circulation

changes, which may manifest an increase in the ISMR during the MCA.

Tropical dynamics suggest that the presence of the entrance of TEJ over the BoB facilitates strong

convection over BoB and neighboring coastal regions of India. Briefly, the TEJ originates over the

Western  Pacific  and  BoB.  Quasi-geostrophic  dynamics  (Hoskins  and  Wang  (2006,  section  9.5.2)

suggest that the westward intensification of easterlies in the TEJ over the BoB and adjoining Indian

region  results  in  an  ageostrophic  convergence  and  upward  motion  at  the  mid-troposphere,  and

consequently,  enhanced  rainfall.  We  find  an  increase  in  the  simulated  500  hPa  relative  vorticity

(Figures 3.2.4a-3.2.4h) on the central east coast of India, particularly near to the Head BoB and/or over

the neighboring Indian region. There, we see a higher summer monsoon rainfall during MCA (Figures

3.2.3 c, f & i). The difference in relative vorticity over NER looks high in Figure 3.2.4c. But it is just
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due to its high climatological magnitude (e.g., Figures 3.2.4a & 3.2.4b). The differences in the area-

averaged 500 hPa vorticity (Figure 3.2.5) confirm that the simulated circulation changes are relatively

weak over the NER relative to CMR in all models, considerably so in two. This suggests that the

strengthened TEJ during the MCA is important for the enhanced rainfall over the CMR during the

MCA.
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Figure  3.2.3:  Panels  a,  d,  &  g  show  climatological  precipitation  (mm.day-1)  and  100  hPa  wind
circulation (m.s-1)  during  JJAS season during MCA as  simulated  by three PMIP3 climate  models.
Panels b, e & h: same as panels a, d & g but for the LIA period (1735 CE to 1834 CE). Panels c, f & i
show the climatological differences between MCA & LIA for the models. Northeastern Indian region is
marked by a black box.
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Figure 3.2.4: Same as Figure 3.2.3, but with simulated climatological 500 hPa relative vorticity (X 10 -5

S-1) instead of 100 hPa circulation. Note that rainfall (a, b, d, e, g & h), and rainfall differences in

panels c, f & i is repeated from Figure 3.2.3, for convenience in interpreting relative vorticity changes. 
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Figure 3.2.5: Area-averaged differences in simulated mean JJAS 500 hPa vorticity (MCA and LIA) for

the three PMIP3 models.

This  change in  simulated  TEJ during the MCA, however,  does  not  affect  NEISMR. This  may be

because the NER is farther from a moisture source such as the Head BoB region, relative to, say, the

east coast peninsular India.  Indeed, the simulated mid-level moisture flux convergence change into

NER between MCA and LIA (not shown), unlike that in the east coastal Indian region and/or around

the Head BoB, is small.

3.2.6 Association between the ENSO and NEISMR

Just  as  the  present-day observations  (Soraisam et  al.,  2018),  the  simulated  rainfall  over  NEISMR

during both MCA and LIA is insignificantly correlated at 95% confidence level with the NINO3.4

index (area-averaged sea surface anomalies over 5  N to 5  S and 170  W to 120  W; Figure 3.2.6). We⁰ ⁰ ⁰ ⁰

have also ascertained that the correlations do not turn significant even if we use the NINO3 index
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(area-averaged sea surface anomalies over 5  S to 5  N and 150  W to 90  W), which reflects the⁰ ⁰ ⁰ ⁰

activities of both canonical and Modoki ENSOs (Ashok et al., 2007; Weng et al., 2007).

Figure  3.2.6:  Spatial  distribution  of  anomaly  correlations  between  the  NINO3.4  index  and  local

precipitation during JJAS season for the LIA (top panels) and MWA (bottom panels) simulated by the

three PMIP3 models. 
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3.2.7.  Seasonal  mean  cycle  for  simulated  future  precipitation,  maximum  and  minimum

temperature data for the period 2011 to 2060

Figure 3.2.7: (a). Seasonal mean cycle of precipitation data (mm) from Cordex South Asia model data
(LMDZ, MPI,  GFDL, CNRM and ACCESS) for the period 2011 to 2060. (b) & (c) same but for
maximum and minimum temperature (°C).
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The individual  model  RCP4.5 projections  of  the  seasonal  cycle  of  precipitation  for  2011 to  2060

(Figure 3.2.7a) indicate an evolution similar to the corresponding historical cycle. However, a majority

of models indicate a slight decrease or no change in the magnitude of the summer monsoon rainfall,

except the projection from the CNRM showing a moderate increase in July precipitation. Based on

these results and an analysis of the spatial distribution of the simulated precipitation (to be discussed in

the next paragraph), we can sum up that the models project a slight or no decrease in the rainfall over

the NER in the future.

The simulated seasonal cycles of maximum and minimum temperature from the RCP4.5 shows an

unchanged evolution. Still, models also project a substantial increase in the maximum and minimum

temperatures (Fig. 3.2.7b & c) relative to the corresponding historical simulations, indicating a rise in

the temperature in the future over the NER.

3.2.8. Simulated JJAS future climatology (RCP4.5) from 2011 to 2060

The simulated JJAS climatology of precipitation (RF-JJAS) from the RCP4.5 projections for the 2011–

2060 period is presented in Figure 3.2.8, and the excess or deficit as compared to the corresponding

historical simulations is shown in Fig. 1a. We find from Figs. 3.2.8 and 3.2.9 that the future projection

of  RF-JJAS  from  each  CORDEX  South-Asia  model  is  not  significantly  different  from  the

corresponding historical simulations (Figure 3.1.1), except for a weak decrease seen in simulations of a

model or two. The RF-JJAS of the LMDZ model spatially ranges between 5~11 mm while in the rest of

the models,3~19 mm.
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Figure 3.2.8: Spatial  distributions  of  JJAS climatology of  precipitation (mm) during 2011 to 2060
(future projections) for the climate model  data from Cordex South Asia:  (i)  LMDZ, (ii)  MPI,  (iii)
GFDL, (iv) CNRM and (v) ACCESS over North East Region.
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Figure 3.2.9: Climatology difference for precipitation (mm) between current and future period for JJAS
for model data, namely, (i) LMDZ, (ii) MPI, (iii) GFDL, (iv) CNRM and (v) ACCESS.

81



Figure 3.2.10: Spatial distributions of JJAS climatology of maximum temperature (°C) during 2011 -
2060 (future projections) for climate model data from Cordex South Asia: (i) LMDZ, (ii) MPI, (iii)
GFDL, (iv) CNRM and (v) ACCESS over North East Region.

Notably, (the spatial distribution of TMax-JJAS and TMin-JJAS ) in all the models in Figs. 3.2.10 and

3.2.12 show an increasing magnitude and are also warmer than the corresponding historical simulations

(also match with Fig. 3.2.11 and 3.2.13) across the NER. The respective minimum temperature ranges

are, 13 °C~30 °C and 5 °C~23 °C.
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Figure  3.2.11:  Climatology  difference  for  maximum temperature  (°C)  between  current  and  future
period  for  JJAS  for  model  data,  namely,  (i)  LMDZ,  (ii)  MPI,  (iii)  GFDL,  (iv)  CNRM,  and  (v)
ACCESS.
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Figure 3.2.12: Spatial distributions of JJAS climatology of minimum temperature (°C) during 2011 -
2060 (future projections) for climate model data from Cordex South Asia: (i) LMDZ, (ii) MPI, (iii)
GFDL, (iv) CNRM and (v) ACCESS over North East Region.
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Figure 3.2.13: Climatology difference for minimum temperature (°C) between current and future period
for JJAS for model data, namely, (i) LMDZ, (ii) MPI, (iii) GFDL, (iv) CNRM and (v) ACCESS.
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3.2.14: Simulated DJF future climatology (RCP4.5) from 2011 to 2060

Figure  3.2.14:  Spatial  distributions  of  DJF climatology of  precipitation  (mm)  during  2011 -  2060
(future projections) for climate model data from Cordex South Asia: (i) LMDZ, (ii) MPI, (iii) GFDL,
(iv) CNRM and (v) ACCESS over North East Region.

The simulated climatological DJF precipitation (RF-DJF) does not show much change in the future

projection (Figure 3.2.14), with values ranging from 0.6 to 3.2 mm. This is also seen in Fig. 3.2.15,

though all the models are not simulating the same result. The range of RF-DJF is seen declining in the

future projection.
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Figure 3.2.15: Climatology difference for precipitation (mm) between current and future period for DJF
for model data, namely, (i) LMDZ, (ii) MPI, (iii) GFDL, (iv) CNRM and (v) ACCESS.
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Figure 3.2.16: Spatial distributions of DJF climatology of maximum temperature (°C) during 2011 -
2060 (future projections) for climate model data from Cordex South Asia: (i) LMDZ, (ii) MPI, (iii)
GFDL, (iv) CNRM and (v) ACCESS over North East Region.
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Figure  3.2.17:  Climatology  difference  for  maximum temperature  (°C)  between  current  and  future
period for DJF for model data, namely, (i) LMDZ, (ii) MPI, (iii) GFDL, (iv) CNRM and (v) ACCESS.
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All the models also project an increased TMax-DJF (Figs. 3.2.16 and 3.2.17), with the values varying

from 2 °C to 17 °C. Spatial distributions of TMax-DJF from the analyzed in all CORDEX South-Asia

projections, the models are similar to those from the historical simulations.

Figure 3.2.18: Spatial distributions of DJF climatology of minimum temperature (°C) during 2011 -
2060 (future projections) for climate model data from Cordex South Asia: (i) LMDZ, (ii) MPI, (iii)
GFDL, (iv) CNRM and (v) ACCESS over North East Region.
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Figure 3.2.19:Climatology difference for minimum temperature (°C) between current and future period
for DJF for model data, namely, (i) LMDZ, (ii) MPI, (iii) GFDL, (iv) CNRM and (v) ACCESS.
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The projected minimum temperatures for DJF season (Figs. 3.2.18 and 3.2.19) also increases than the

corresponding historical simulations. The future projected DJF climatology in the NER range from -10

°C to 8 °C.

3.2.20. Area-averaged Trends in projected climate in the NER for the period of 2011 to 2060

Data used
     Mann-Kendall test                 Student t-test

        Nature of the trendZ value & 
  α value

Statistic
value (S)

    p-Value   t-Value Trend
value

                                                                             JJAS

LMDZ 3.17 > 1.96 379 0.00 < 0.05 3.10 > 2 0.67 Increasing trend & significant

CNRM 1.97 > 1.96 235 0.04 < 0.05 2.07 > 2 1.08                     - do -

Table 8: Significance tests using Mann-Kendall and Student t-test for precipitation data for JJAS season
from the climate model data for the period 2011–2060.

Table 8 shows that the JJAS precipitation signals for the 2011 to 2060 period as simulated in the

LMDZ and CNRM models show a significantly increasing trend. The ACCESS model projects  an

increasing but statistically insignificant trend in summer precipitation during the above period. On the

other hand, the MPI and GFDL models show an insignificant decreasing trend. The projected DJF

precipitation in all the models except the ACCESS model shows an insignificantly decreasing trend.

The ACCESS model simulates a weak increasing trend. Only the significant results are shown in the

table.
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Data used
     Mann-Kendall test                 Student t-test

        Nature of the trendZ value & 
  α value

Statistic
value (S)

    p-Value   t-Value Trend
value

                                                                             JJAS

LMDZ 5.73 > 1.96 685 0.00 < 0.05 7.01 > 2 1.4 Increasing trend & significant

MPI 3.29 > 1.96 393 0.00 < 0.05 4.24 > 2 1.13                     - do -

GFDL 6.25 > 1.96 747 0.00 < 0.05 8.84 > 2 2.86                     - do -

ACCESS 3.81 > 1.96 455 0.00 < 0.05 4.07 > 2 1.07                     - do -

                                                                               DJF

LMDZ 4.47 > 1.96 551 0.00 < 0.05 5.24 > 2 1.96                     - do -

MPI 3.63 > 1.96 447 0.00 < 0.05 4.27 > 2 2.71                     - do -

GFDL 4.41 > 1.96 543 0.00 < 0.05 4.84 > 2 3.01                     - do -

CNRM 3.27 > 1.96 403 0.00 < 0.05 7.19 > 2 1.89                     - do -

Table  9:  Significance tests  using Mann-Kendall  and Student  t-test  for  maximum temperature  data  from the
climate model data for the period 2011–2060.

Data used
     Mann-Kendall test                 Student t-test

        Nature of the trendZ value & 
  α value

Statistic
value (S)

    p-Value   t-Value Trend
value

                                                                             JJAS

LMDZ 7.25 > 1.96 867 0.00 < 0.05 11.78 > 2 1.66 Increasing trend & significant

MPI 3.89 > 1.96 465 0.00 < 0.05  4.27  > 2 0.95                     - do -

GFDL 6.92 > 1.96 827 0.00 < 0.05 10.44 > 2 2.6                     - do -

CNRM 2.68 > 1.96 321 0.01 < 0.05  2.87  > 2 0.71                     - do -

ACCESS 5.08 > 1.96 607 0.00 < 0.05  6.20  > 2 1.45                     - do -

                                                                               DJF

LMDZ 5.03 > 1.96 619 0.00 < 0.05  6.47 > 2 2.61                     - do -

MPI 4.96 > 1.96 611 0.00 < 0.05  5.23 > 2 1.94                     - do -

GFDL 4.64 > 1.96 571 0.00 < 0.05  6.07 > 2 2.38                     - do -

CNRM 5.71 > 1.96 703 0.00 < 0.05  7.19 > 2 1.89                     - do -

ACCESS 2.89 > 1.96 357 0.00 < 0.05  3.08 > 2 1.15                      - do -

Table 10: Significance tests using Mann-Kendall and Student t-test for minimum temperature data from the
climate model data for the period 2011–2060.
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Interestingly, four out of five future simulations project a statistically significant increasing trend in

summer maximum temperature (Table 9), while all of the projects a statistically significant increasing

trend  in  minimum temperatures  (Table  10).  The  significant  increasing  trend in  the  maximum and

minimum trend is  also projected for  the DJF season (Tables  9 & 10).  Thus,  is  clear  although the

projected models do not show quantitatively similar results, qualitatively there is a good agreement,

particularly  for  the  temperature.  That  is,  as  per  the  RCP4.5  simulations,  the  DJF  precipitation  is

expected to further decline while both maximum and minimum temperatures are likely to increase

further rapidly. However, there is considerable inter-model uncertainty in the future summer monsoon

rainfall in the NER.

3.2.21. Extremes analysis for JJAS season for 2011 to 2060

In Figure 3.2.21, histograms of simulated JJAS monthly mean rainfall over the NER for the simulated

future  projections  from 2011 to  2060 are  presented.  The frequency of  the  heaviest  monthly-mean

rainfall months in general increases in the simulated future projections for 2011–60, except in those

from the GFDL which fall from 15 to 13. Further, it is also to be noted that the magnitude of the

heaviest monthly rainfall decreases (increases) in two (one) models by about 2 mm/day (4 mm/day).

Importantly, it shows that the total number of ‘low rainfall’ months (arbitrarily defined as rainfall < 7

mm/day) have increased quite substantially, with the range of increase being 34%–42%.
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Figure 3.2.21: Histogram plots for JJAS precipitation (mm) of future period (2011 to 2060): CORDEX
models ((LMDZ, MPI, GFDL, CNRM and ACCESS).
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Figure 3.2.22: Histogram plots for DJF precipitation (mm) of future period (2011 to 2060): CORDEX
models ((LMDZ, MPI, GFDL, CNRM and ACCESS).
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Histograms of simulated DJF monthly mean rainfall over the NER for the simulated future projections

from 2011 to 2060 are presented in Figure 3.2.22. In future projections, the frequency of simulated

heavy rainfall months increases in all the model projections except GFDL and CNRM.

Figure 3.2.23: Histogram plots for JJAS maximum temperature (°C) of future period (2011 to 2060):
CORDEX models (LMDZ, MPI, GFDL, CNRM and ACCESS).

97



The extreme events of JJAS maximum temperature for future projections from 2011 to 2060 are shown

the  Figure  3.2.23.  The simulated  highest  maximum monthly  temperature  in  the  future  projections

relatively increases and ranges between 24 °C to 32 °C with LMDZ.

Figure 3.2.24: Histogram plots for DJF maximum temperature (°C) of future period (2011 to 2060):
CORDEX models (LMDZ, MPI, GFDL, CNRM and ACCESS).
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In Figure 3.2.24, the extreme months of maximum temperature for DJF season are shown for future

projections  (2011–2060).  Even  though  the  highest  maximum  temperature  increases  in  the  future

projections, the maximum number of events with the highest frequency decreases.

Figure  3.2.25:  Histogram plots  for  JJAS minimum temperature (°C) of  the  future period (2011 to
2060): CORDEX models (LMDZ, MPI, GFDL, CNRM, and ACCESS).
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Figure 3.2.25 shows the histogram of minimum temperature for JJAS season for future projections

(2011–2060). The simulated frequency of highest minimum temperature in the three future projections

increases,  only  models  (LMDZ  and  GFDL)  project  a  decreasing  number  of  highest  minimum

temperature events.

Figure 3.2.26: Histogram plots for DJF minimum temperature (°C) of future period (2011 to 2060):
CORDEX models (LMDZ, MPI, GFDL, CNRM and ACCESS).
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In  the  case  of  the  DJF  season  for  minimum  temperature  (2011  to  2060),  the  highest  minimum

temperature in the future projections increases as compared to the corresponding historical simulations.

3.3 Climate change impact on vegetation profile in the

NER India

The vegetation profile of the NER is particularly important in terms of its ecology and biodiversity. In

this  context,  understanding the relevance of factors such as rainfall,  NDWI, aridity,  maximum and

minimum temperature over the NER to the local NDVI, which provides a good representation of the

vegetation  profile,  is  important.  The  sub-section  examines  if  there  is  any covariation  in  the  local

climate and vegetation in the recent  17 years in the background of anthropogenic climate change.

Accordingly, trends of the anomalies derived for the wet, winter, and dry three seasons in the NER are

explained below. Also, the maximum NDVI values both temporally and spatially have been assessed to

figure out the dependency of the NDVI on the climatic parameters for the region.

3.3.1 Area-averaged trends of anomalies based on vegetation types

In the following few paragraphs, the trends of extracted field sample points of Deciduous Broad Leaf

Forest (DBF), Evergreen Broad Leaf Forest (EBF), Evergreen Needle Leaf Forest (ENF), Mixed Forest

(MF), Shrubland (SL), and Grassland (GL) for the NER have been assessed. For this, the extracted

field  sample  point’s  area-averaged  anomalies  of  NDVI,  rainfall,  aridity,  NDWI,  maximum  and

minimum temperature for wet (June to October), winter (November to February), and dry (March to

May) seasons for the period 2000 to 2017 for the NER have been evaluated and presented.
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DECIDUOUS BROAD LEAF FOREST

Figure 3.3.1.1: Anomalies of area-averaged trends of NDVI, rainfall & aridity for (a) wet season, (b)
winter season & (c) dry season; maximum temperature, minimum temperature & NDWI for (d) wet
season, (e) winter season & (f) dry season for Deciduous Broad Leaf Forest for the period 2000 to 2017
in the NER.
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During the summer monsoon (wet) season (Figs. 3.3.1.1a and 3.3.1.1d), the area-averaged anomaly of

DBF  shows  affected  by  the  distribution  of  rainfall,  aridity,  NDWI,  maximum,  and  minimum

temperature depending on their intensity. Interestingly, depending on how the rainfall and moisture

evolve over 2-3 years, we also see the signature of strong abundance as well as a deficit in rainfall and

moisture reflected in the NDVI up to 2-3 years.  However,  a  straight dependence of the NDVI on

rainfall and moisture of previous years is not seen every year. This is natural because of the interannual

variability as well as the impact of the previous season's rainfall and moisture because of interannual

fluctuations of maximum and minimum temperature (figure 3.3.1.1d) with time lag which eventually

influence the NDVI. For instance, the sharp decline of NDVI anomalies towards 2004 is likely because

of the cumulative effect of a sharp decline in rainfall in 2002 (figure 3.3.1.1a) and a slight reduction in

NDWI (Figure 3.3.1.1d) in 2004, thereby reducing the moisture needed for the growth. In addition to

this,  a decrease in rainfall  and aridity (Figure 3.3.1.1c) along with the reduction in NDWI (Figure

3.3.1.1f)  due  to  higher  temperature  in  2004  during  the  pre-monsoon  (dry)  season  may  have  also

reduced the available soil moisture, thereby moving the NDVI in the monsoon (wet) season towards

negative anomalies in 2004. This is followed by higher NDVI in 2006 of monsoon (wet) season due to

the contribution of high rainfall and aridity of 2006 during pre-monsoon (dry) season (Figure 3.3.1.1c).

Then the  moisture stress  because  of  the reduction  of  aridity  and rainfall  seen  in  2009 due  to  the

extremely high maximum and minimum temperature in 2008 and 2009 (figure 3.3.1.1d) exacerbate the

NDVI reduction in 2010. From 2010 onwards, the NDVI follows the pattern of rainfall and NDWI till

the end of the period.

During the winter season (figure 3.3.1.1b); the NDVI, rainfall,  and aridity anomalies show a sharp

decline towards the end of the period compared to the other two seasons (monsoon and pre-monsoon).

The sharp decline in the magnitude of the NDVI during this winter season indicates the cumulative
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effects  of  decreasing  summer  monsoon  rainfall  (wet)  as  well  as  the  winter  monsoon  rainfall.  To

corroborate this, we can see that the summer monsoon rainfall is decreasing towards the end of the

period in figure 3.3.1.1a. Also, the sharp decline in the summer monsoon rainfall in 2009, 2011, and

2013 are seen affecting the decrease of NDVI of the same year of winter monsoon season while the

increasing  peak  summer  monsoon  rainfall  in  2003,  2006,  and  2010  are  seen  contributing  to  the

increasing NDVI of the same year of the winter monsoon season. In previous years rainfall and aridity

dependency on the NDVI can be seen in some of the years too during this season. The fluctuations of

NDWI  (figure  3.3.1.1e)  throughout  the  year  are  found  to  have  reflected  on  the  decreasing  and

increasing anomalies of NDVI of the corresponding years. To a great extent maximum, and minimum

temperature fluctuations during this season have affected the NDWI variations which are reflected in

the NDVI variations.

The pre-monsoon (dry) season in figure 3.3.1.1c indicates that the rainfall and aridity of the same year

affect more to the NDVI than the previous year's rainfall and aridity. The maximum and minimum

temperature fluctuations are seen clearly during this season in figure 3.3.1.1f affecting the moisture

availability shown by the interannual variations of NDWI (Figure 3.3.1.1c) thereby ultimately affecting

the NDVI. Apart from the winter monsoon season, the pre-monsoon (dry) and summer monsoon (wet)

season depicts that the variation in NDVI is more related to the changing temperature which leads to

moisture alteration thereby changing the NDVI.
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EVERGREEN BROAD LEAF FOREST

Figure 3.3.1.2:  Anomalies of area-averaged trends of NDVI, rainfall & aridity for (a) wet season, (b)
winter season & (c) dry season; maximum temperature, minimum temperature & NDWI for (d) wet
season, (e) winter season & (f) dry season for Evergreen Broad Leaf Forest for the period 2000 to 2017
in the NER.
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The dependence of the evolution of EBF on the climatic parameters in various seasons seen in figure

3.3.1.2 is like that of DBF shown in previous figure 3.3.1.1 for all the seasons. The summer monsoon

(wet) season shows the time-lagged dependency of NDVI on rainfall and aridity (figure 3.3.1.2a) while

NDWI shows the dependency of NDVI within the same years due to the changes in temperature in

figure 3.3.1.2d. The previous years' maximum and minimum temperature are seen affecting the rainfall

of the next year impacting the NDVI in this season. The winter monsoon season (figure 3.3.1.2b) of

this vegetation type shows a similar drastic variation in the NDVI. Some of the years depict that the

rainfall in previous years affects the NDVI of the following years. In the case of aridity, a similar year-

to-year dependency is found but also depicts a two to three years lagged association with the NDVI.

The NDWI (figure 3.3.1.2e) during this winter season indicates the same evolution seen in the summer

monsoon season probably due to the fluctuations seen in temperature. Even in the pre-monsoon (dry)

season, the EBF shows variations up to great extent. The aridity and rainfall in figure 3.3.1.2c and

NDWI in figure 3.3.1.2f during this season show that the NDVI is affected by these parameters within

the same years. The maximum and minimum temperature during this pre-monsoon (dry) season also

shows a great  impact  on the NDWI (figure 3.3.1.2f)  and aridity  (figure 3.3.1.2c).  Rather  than the

rainfall from the previous winter monsoon season, the moisture seems to play an important role during

this pre-monsoon (dry) season which can be found from the aridity and NDWI variations due to the

fluctuations in temperature.
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EVERGREEN NEEDLE LEAF FOREST

Figure 3.3.1.3:  Anomalies of area-averaged trends of NDVI, rainfall & aridity for (a) wet season, (b)
winter season & (c) dry season; maximum temperature, minimum temperature & NDWI for (d) wet
season, (e) winter season & (f) dry season for Evergreen Needle Leaf Forest for the period 2000 to
2017 in the NER.
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The ENF that does not get affected much by the changing climatic variations is found to be drastically

affected in all three seasons (Figure 3.3.1.3) over the region. During summer monsoon (wet), winter

monsoon, and pre-monsoon (dry) seasons, the moisture fluctuations were seen in aridity and NDWI

due to extreme variations in maximum and minimum temperature are seen. This eventually affects the

NDVI  due  to  the  variations  in  moisture  needed  for  the  growth  of  the  vegetation.  The  impact  of

temperature variations on the rainfall  is  also found to a great extent thereby impacting the NDVI.

Previous seasons as well  as the interannual dependency of NDVI on these climatic parameters are

reflected for this vegetation too in all the seasons.

MIXED FOREST

The MF during all the seasons in figure 3.3.1.4 shows that the NDVI exhibits variations though the

forest is of mixed forests. During summer monsoon (wet) and pre-monsoon (dry) seasons, maximum

and minimum temperature greatly affects the moisture seen in aridity and NDWI thereby affecting the

NDVI. The similar  dependency of the evolution found in the previous vegetations on the climatic

parameters  is  also  seen  here.  Seasonal,  as  well  as  interannual  dependency,  are  also  found in  this

vegetation. As for the winter monsoon season (figure 3.3.1.4b), the NDVI exhibits a decreasing trend

towards the end of the period. Rainfall seems to affect more on the NDVI during this winter monsoon

season throughout the period except for few years where the moisture from aridity and NDWI are seen

impacting more on the NDVI.
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Figure 3.3.1.4:  Anomalies of area-averaged trends of NDVI, rainfall & aridity for (a) wet season, (b)
winter season & (c) dry season; maximum temperature, minimum temperature & NDWI for (d) wet
season, (e) winter season & (f) dry season for Mixed Forest for the period 2000 to 2017 in the NER.
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SHRUB LANDS

In figure 3.3.1.5 (a & c), similar patterns of NDVI dependency seen above are also observed on this

vegetation type.  In  previous  years,  as  well  as  two to  three  years,  the lagged dependency of  these

parameters on the NDVI is  also seen here.  Effects of maximum and minimum temperature on the

aridity and NDWI which ultimately affects the NDVI are seen more prominently during the summer

monsoon  (wet)  and  pre-monsoon  (dry)  seasons.  While  during  the  winter  monsoon  season  (figure

3.3.1.5b), NDVI seems to be more affected due to rainfall variations. However, in addition to rainfall,

in few years, aridity (figure 3.3.1.5b) and NDWI (figure 3.3.1.5e) show time-lagged dependency on the

NDVI during the winter monsoon season.

GRASSLAND

During the summer monsoon (wet)  season in figure 3.3.1.6 (a  & d),  the maximum and minimum

temperature in previous years is seen affecting the NDWI, aridity, and rainfall in the next year. This

eventually reflects on the NDVI of this season with time lag dependency. The NDVI during the winter

monsoon  season  (figure  3.3.1.6b  & e)  seems  to  be  affected  by  rainfall  of  previous  years  at  the

beginning of the period while the rest shows more dependency on the aridity and NDWI which could

be due to the fluctuations of the temperature seen in figure 3.3.1.6e. The effect of summer monsoon

rainfall is also seen on the NDVI of the winter monsoon season in some of the years. During the pre-

monsoon (dry) season (figure 3.3.1.6c & f), impacts of the previous season and interannual variations

of  the  climatic  parameters  are  seen  on  the  NDVI  of  this  season.  The  maximum  and  minimum

temperature during this season fluctuates more clearly which leads to the variations in the moisture

seen in aridity and NDWI, also to rainfall affecting the NDVI.
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Figure 3.3.1.5:  Anomalies of area-averaged trends of NDVI, rainfall & aridity for (a) wet season, (b)
winter season & (c) dry season; maximum temperature, minimum temperature & NDWI for (d) wet
season, (e) winter season & (f) dry season for Shrub Land for the period 2000 to 2017 in the NER.
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Figure 3.3.1.6:  Anomalies of area-averaged trends of NDVI, rainfall & aridity for (a) wet season, (b)
winter season & (c) dry season; maximum temperature, minimum temperature & NDWI for (d) wet
season, (e) winter season & (f) dry season for Grassland for the period 2000 to 2017 in the NER.
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From the above analysis, we can see that the six vegetation types studied exhibit interannual and inter-

seasonal  anomalies  fluctuations,  though the magnitudes saw are different  in  all  three seasons.  The

winter season shows the greatest magnitude of the decreasing values of NDVI and other parameters

than those of summer monsoon (wet) and pre-monsoon (dry) seasons. The weakening of NDVI in the

winter  season  indicates  the  importance  of  summer  monsoon  rainfall  as  the  decrease  in  summer

monsoon rainfall leads to a decrease in the density of the vegetation cover in the NER. This is probably

due to lower rainfall received during the summer monsoon season which supplies moisture water to

winter season NDVI (Revadekar et al., 2012). Dry season shows the lowest magnitude comparatively

than the other two seasons. Maximum and minimum temperature fluctuations are seen affecting the

moisture availability seen in aridity and NDWI which ultimately affects NDVI during the summer

monsoon and pre-monsoon seasons while rainfall affects more during the winter monsoon season. Both

rainfall and temperature together seem to play roles in the NDVI variation over the NER. The positive

and negative anomalies of NDVI correspond well with the negative and positive anomalies of rainfall

which is also seen in another region studied by Wang et al., 2001 and Revadekar et al., 2012. The

fluctuations  of  NDVI seen in  all  the  three  seasons  of  course  reflect  the  seasonal  variation  of  the

growing season (Yu, Zhuang, & Hou, 2005). One important aspect of this study is that the Evergreen

Needle Leaf forest which does not get affected much by rainfall also shows interannual and inter-

seasonal fluctuations. Different vegetation types respond differently depending upon the nature of the

rainfall, moisture, and temperature. A sustained negative and positive trend in the anomalies of NDVI

in the NER along with the decrease and increase in the rainfall anomalies along with other necessary

parameters have not been discussed so far. This study is the first of its kind to deliver the message of

this prevailing situation in NER.
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Any changes in summer monsoon rainfall led to water stress, changes in phenology, and decreased

biomass,  with  a  subsequent  reduction  in  the  NDVI  (Zeppel,  Wilks,  &  Lewis,  2014)  not  only

concurrently, but also in the next season through 2-3 years. The fluctuations seen in the NDVI anomaly

in all types of vegetation types indicate increasing stress in the vegetation which is a matter of serious

concern.  The negative trends in the NDVI agree with the analysis  done by Chakraborty,  Seshasai,

Reddy, & Dadhwal (2018) which shows a significant negative trend in the wet and semi-evergreen

forest, deciduous, subtropical broad-leaved forest in Arunachal Pradesh, Meghalaya, Sikkim, Manipur,

Nagaland, and Mizoram. In addition to this, the forests in the lower ranges of Eastern Himalayas are

vulnerable  due  to  shifting  cultivation  and  forest  fires  (Chakraborty,  Seshasai,  Sudhakar  Reddy,  &

Dadhwal, 2018), which can be said to have added to the severity of the negative impact on vegetation

over  the  region.  The evergreen forest  and deciduous forest  are  said to  be  facing  a  higher  rate  of

transformation over the NER due to shifting cultivation, land use, and land cover, and deforestation

(Chakraborty, 2009). These two forests are also seen as drastically affected in the study due to the

variation in the rainfall and temperature patterns. In a study by Lele, Joshi, & Agarwal (2005), the

vegetation cover of a coniferous broadleaf, sub-tropical evergreen forest, semi-evergreen forest, and

moist mixed deciduous forest were found degraded. Jeyaseelan, Roy, & Young (2007) also showed that

the decline in NDVI is related to lower rainfall received over India. In the study done by Parida et al.,

(2008), different vegetation types showed different responses to the temperature which is also found in

my study. All these indicate that rainfall and temperature as the limiting factor for the growth of the

vegetation types over  broad regions covering India and China.  Besides these parameters analyzed,

moisture  stress  during  droughts  period  occurred  during  2005-06,  2009,  2010-11,  2013  (Assam,

Manipur, Mizoram, Tripura, and Arunachal Pradesh) appear to be an additional factor responsible for

the increase of negative anomalies of NDVI which are observed. Negative anomalies in NDVI during

drought years are more prominently seen. This is because during the drought periods, the soil water
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supply dries out, and foliage begins to shed, affecting the ability to mobilize (Feldpausch et al., 2016),

and hence NDVI is reduced.

3.3.2 Trends of long-term rainfall anomalies for all the seasons

Figure 3.3.2: Trends of area-averaged anomalies of rainfall for (a) wet, (b) winter and (c) dry seasons
for the period 1971 to 2017 ver Northeast India.
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In figure 3.3.2, long-term rainfall anomalies for all three seasons have been analyzed for the period

1970 to 2017 over NER. Regardless of the seasons, the rainfall trend has been decreasing significantly

at a 95% confidence level from 1970 till 2017. It indicates the recent decreasing tendency in the rainfall

over NER, which could be a major factor for the decline in the NDVI values. Reduction in rainfall

since  the  year  2000  is  also  seen  in  the  Amazon  forest  region,  which  resulted  in  the  significant

diminishing  of  vegetation  greenness  including  tropical  evergreen  forest  and  subtropical  grasslands

across large parts of the region (Hilkera et al., 2014). The weakening tendency in the rainfall in the

NER has a potentially serious and unfavorable implication for the local vegetation. This will be subject

to long-term cumulative water stress and leading to disastrous on the vegetation of the region.

3.3.3 Evaluation of NDVI and rainfall for the entire region of Northeast India

The entire region for Northeast India has also been evaluated using the NDVI and rainfall data from

2000 to 2017. Unlike the previous assessment, which was based on field sample points, this section

evaluates  the  entire  grid  points  of  the  region.  The area-averaged anomalies  for  entire  grid  points,

maximum NDVI values both temporal and spatial have been assessed. This would give some hints

whether only the selected locations or the entire region have changed or not.

In figure 3.3.3.1, the entire region of NER from 2000 to 2017 period shows that the trends of the NDVI

and rainfall anomalies increases in all three seasons indicating higher greenery. The discrepancy from

the earlier field sample point analysis can be explained by the fact that the current analysis of averaging

over the whole region leads to consideration of plantations outside recorded forest areas, regeneration

of  the  forest,  conservation  measures,  expansion  of  croplands,  intensive  irrigation,  urban  greening,

agricultural practices, etc (e.g. Liu et al 2015 and Chen at al., 2019). Thus, human interventions seem to
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alleviate the vegetation stress over a broad region. This is important information for policymakers as

well. The relative contributions of each of these factors need to be ascertained through some dynamical

modeling experiments.

 

Figure  3.3.3.1:Anomalies  of  area-averaged  NDVI  and  rainfall  for  entire  Northeast  region  for  wet
season (June to October), winter season (November to February) and dry season (March to May) from
2000 to 2017.
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Figure 3.3.3.2: Maximum NDVI values collected from MODIS-Terra for wet season (June to October),
winter  season  (November  to  February)  and  dry  season  (March  to  May)  from 2001 to  2017 over
Northeast India.

In  figure  3.3.3.2,  the  time  series  of  maximum  NDVI  values  for  summer  monsoon  (wet),  winter

monsoon, and pre-monsoon (dry) seasons from 2001 to 2017 have been analyzed. The winter season

shows the highest maximum NDVI values followed by the wet season and dry season. This figure

supports the previous analysis based on the area-averaged anomalies where winter monsoon season

depicts the greatest magnitude comparatively to the other two seasons. The winter monsoon season
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shows the highest NDVI value due to the cumulative contribution of summer monsoon rainfall and

winter  monsoon  rainfall.  The  greenness  reaches  its  maximum during  the  winter  monsoon  season

because of adequate sunlight, the sky remains clear as the cloud disappears once the summer monsoon

receded, which is needed for photosynthesis supported by water and nutrient charged soils (Nischitha et

al., 2014). These are followed by wet season and dry season with the latter showing the least NDVI

value. The maximum NDVI values for Deciduous Broad Leaf, Evergreen Broad Leaf, and Evergreen

Needle Leaf forests are also analyzed (figure not shown) where the maximum values of NDVI for these

three vegetation types show decreasing trends from 2001 towards 2018.

More clarity is also seen in the spatial distribution of NDVI (figure 3.3.3.3) of the entire region where

the winter season shows the greenest (highest NDVI value) of all while during the summer monsoon

(wet) and pre-monsoon (dry) season. The NDVI is a bit scattered and declines with dry season being

the least NDVI value. The moisture deficit due to increased evapotranspiration during the dry season is

associated with vegetation growth (Liu et al., 2015). The maximum values of NDVI in this figure also

indicate that the winter  season depicts  a distinct  interannual change as compared to the other two

seasons.  The year  2018 (figure not shown) also shows the variation of NDVI in the entire  region

indicating changes in the latest current period. However, in all three seasons, the changes seen are not

static, as year-to-year variation in the same region shows fluctuations in NDVI throughout the period.

This fluctuation of NDVI indicates that the increase and decrease of rainfall plays an important role in

controlling the vegetation growth over the region.
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Figure 3.3.3.3:  Spatial distribution of maximum NDVI values for wet, winter and dry seasons from
2001 to 2017 for Northeast India.

Nevertheless, my analysis-be selected field sample points or entire region-shows that the association of

these climatic parameters such as rainfall, moisture availability from the aridity and NDWI, maximum

and  minimum  temperature  affects  the  distribution  of  NDVI.  Summer  monsoon  and  pre-monsoon

season indicate that the temperature directly affects the moisture and rainfall leading to the variation in

all the vegetation types studied. While the winter monsoon season shows dependency more on rainfall.

Both rainfall and temperature’s combine effect are seen in all the vegetation. All the vegetation types
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are found sensitive more or less equally to all  the changing climatic parameters given its  time-lag

effect,  interannual and seasonal effect.  However,  rainfall  indicates control on the vegetation as the

moisture retains from it and the surrounding atmosphere due to temperature fluctuations eventually

affects the vegetation over the region.

3.3.4 Means and standard deviations for NDVI and rainfall over the NER

Figure 3.3.4: Means and standard deviations of NDVI and rainfall for wet, winter and dry seasons for
the period of 2000 to 2017 over Northeast India.

121



In figure 3.3.4, the means and standard deviations of NDVI, rainfall,  the maximum and minimum

temperature for the period 2000 to 2017 have been computed. Statistically, at a 95% confidence level,

the winter season mean NDVI is significantly different from the summer monsoon (wet) season mean

NDVI for DBF, EBF, and ENF while the rest of the vegetation types are found insignificant. The winter

season mean NDVI is also significantly different from the pre-monsoon (dry) season mean NDVI for

DBF  and  EBF  only.  Summer  monsoon  (wet)  and  pre-monsoon  (dry)  season  mean  NDVI  are

statistically insignificant.

The summer monsoon (wet) season mean rainfall is significantly different from the mean rainfall of the

winter monsoon and pre-monsoon (dry) season for all the vegetation types while the winter monsoon

means  rainfall  and  pre-monsoon  (dry)  season  mean  rainfall  is  statistically  insignificant  at  95%

confidence level.

The mean maximum temperature of summer monsoon (wet) season is significantly different from the

mean maximum temperature of winter monsoon season for all the vegetation types at a 95% confidence

level. It also shows significantly different from pre-monsoon (dry) season mean maximum temperature

for ENF, MF, and GL. The mean maximum temperature of the winter monsoon season is significantly

different from the mean maximum temperature of the pre-monsoon (dry) season for MF and SL. As for

the mean minimum temperature of summer monsoon (wet) season, it is significantly different from the

mean minimum temperature of winter monsoon season for all the other vegetation types except for

DBF. The rest of the seasons (minimum temperature) show insignificant at 95% confidence level.
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In figure 3.3.4, though the rainfall is high during the summer monsoon season, NDVI shows lower

during this season because of the higher temperature seen during the same season that leads to low

moisture needed for the growth of the vegetation. The NDVI is high during the winter monsoon season

though the rainfall is low as the temperature during this season is lower, also the summer monsoon

season rainfall, as mentioned in the above analysis, contributes to the increasing NDVI of the winter

monsoon season. This analysis indicates that DBF, EBF, and ENF are affected drastically while the rest

of the vegetation types have also shown variation due to changes in rainfall and temperature. This result

also matches with the above analysis  carried out for field sample area-averaged points. Lastly,  the

correlation,  lag  correlation,  and  regression  analyses  calculated  between  NDVI  and  the  rest  of  the

parameters are statistically weak and insignificant for all the vegetation studied.
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CHAPTER – 4

SUMMARY AND CONCLUSIONS

This chapter provides a summary, conclusions of the important findings and addresses the important

recommendations of the future work.

4.1 Summary

As per the special report of the policymakers, IPCC 2018 reported that the impacts of warming due to

anthropogenic  emissions  from the  pre-industrial  period  (from 1870s)  to  the  present  period,  which

exacerbated in the last 4-5 decades are stated to persist for centuries to millennia thereby causing a

long-term change in the climate system. Due to rising climate change, a developing country like India

where agriculture is still rainfed is the main source of income and could be severely affected (Kumar et

al., 2006). The Indian summer monsoon rainfall (ISMR) plays a vital role in the Indian sub-continent,

home to more than 1 billion people, as the region receives 70% to 80% of its annual rainfall with mean

area-averaged ISMR about 890 mm over the last 100 years. In India, the characteristics of the summer

monsoon rainfall and its variability differ from region to region within the nation. The spatial pattern of

its dominant mode of variability shows a dipolar structure (Parthsarathy et al., 1996); the signal in

Northeast India (NER) is found in an out-of-phase relation with the rest of India (Fig. 6.5, Pant and

Kumar, 1997). The NER (≈ 89.50 E to 98.50 E and 21.50 N to 29.50 N) is one of India's highest raining
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regions, with an area-averaged seasonal rainfall of 152 cm (Parthasarathy et al., 1995). Moreover, the

NER is endemic to many flora and fauna, making it one of the world's richest in terms of biological

values (Chakraborty et al., 2012).

Nevertheless,  uncertainties  across  various  observational  datasets  and in  high-resolution  projections

arise due to limited field samples of future climate projections for NER. The NER, being a complex

orographic region in Himalayan mountain ranges, experiences changes in rainfall over short distances,

and therefore complicated to model (Prakash et al., 2014). Due to being a neglected region in terms of

climate observations and model studies, there is a need to address these issues properly. The high-

resolution CORDEX South-Asia (LMDZ, MPI, ACCESS, GFDL & CNRM) models of 0.5° x 0.5°

horizontal resolution, which are downscaled versions of the CMIP5 projections allow us to study the

future climate change in the NER at higher resolution, taking into account uncertainty associated with

inter-model  variability  and those in  observations.  Along with  these,  several  observation-based and

reanalyzed datasets are also used in the study. It will also be useful to ascertain at least qualitatively,

using available model simulations, whether the climate in the NER has changed in tandem with that

elsewhere in India in the last millennium when many regions in the world experience as warm as in the

first half of the twentieth century (IPCC, 2013).

Further, any change in local climate is a potentially critical factor in assessing the responses of the

ecosystem to climate change at the regional scale. The regional and local patterns of climate control the

growth of the vegetation, due to the seasonal and annual dynamics of the climatic variables of the

respective  region (Revadekar  et  al.,  2012).  The inconsistency in  the  precipitation  and temperature

influences  the  water  balance,  causing  changes  in  the  soil  moisture,  which  affects  the  growth  and

distribution of plants (Revadekar et al., 2012 & Nischitha et al., 2014). The NER, one of the global
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biodiversity  hotspots,  is  under  the  threats  of  deforestation  (Saikia,  2009)  and  traditional  shifting

cultivation (Roy & Joshi, 2002), the population explosion, encroachments, illicit felling, lopping for

fuelwood and fodder, removal of forest cover for litter, forest fires, land use and land cover change

from agriculture, etc. (Lele & Joshi, 2009; Ravindranath et al., 2011 & Roy et al., 2015b). Therefore, an

analysis  of  Normalized  Difference  Vegetation  Index  (NDVI)  fortnightly  data  of  500  m resolution

derived from Moderate Resolution Imaging Spectroradiometer (MODIS) instruments onboard the Terra

(EOS AM) satellite (Didan, 2015) can provide information on Spatio-temporal patterns in linkages

among phenological and climate cycles of vegetation and trends in vegetative cover. There is a need to

improve our understanding of the climatic variability implications for the seasonal vegetation dynamics

in this region.

4.2 Conclusions

4.2.1 Conclusions in the context of current climate variability in the NER.

The climate variability studied during the current period from 1970 to 2005 reveals the following

findings:

1. The area-averaged monthly means of rainfall and temperature observations during the 1970 to 2005

period have been well-captured by historical simulations of CORDEX South Asia models.

2.  The  area-averaged  summer  monsoon  rainfall  and  winter  monsoon  rainfall  show  a  weak  and

statistically insignificant decreasing trend as seen from both the observations and model data sets.
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3. Importantly, there is uncertainty across various observational and model datasets as differences are

noted  in  the  locations  of  highest  and  lowest  climatological  rainfall  &  temperatures  across  the

observation and models in climatological spatial distribution, pointing at uncertainties.

4.  The ENSO events  do not  have any significant  impact  on the climate of  the  NER, during both

summer monsoon and winter monsoon season.

5. As for extreme events over the NER, the heaviest seasonal rainfall of 15 mm/day captured by the

models is underestimated compared to the observed value of 23 mm/day.

4.2.2 Conclusions in the context of last millennium climate variability in the NER

The climate variability studied during the Last Millennium (Medieval Climate Anomaly period: 935

CE to 1034 CE & Little Ice Age: 1735 CE to 1834 CE) reveals the following findings:

1. Unlike the rest of India, the NEISMR differences over NEI from the MCA to LIA are as low as 2%

and also small compared to present-day conditions. The model simulations show that the NER summer

monsoon rainfall  is  insensitive towards changes in  the forcing during the last  millennium, and on

centennial timescale, decoupled from the response of the rest of India.

2. All the simulations indicate a strengthening of the tropical easterly jet (TEJ) at 100 hPa during the

MCA relative  to  the  LIA.  This  results  in  anomalous  convergence  over  the  North  BoB,  and  an

enhancement of monsoonal rainfall along with the CMR.

3. The analysis also shows that ENSO, in all periods, hardly has an impact on the NEISMR. Also, the

mechanisms that potentially play a role in the warm and wet MCA, and cold and dry LIA over the
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major  Indian  regions  -the  multi-centennial  tropical  Indo-pacific  Walker  circulation  that  affects  the

ENSO impacts on India (T19), and changes associated with the TEJ- do not seem to influence the

NEISMR, at least in our PMIP3 results. That is why it’s almost constant magnitude from MCA through

the LIA.

4.2.3 Conclusions in the context of future climate projections in the NER

The climate variability studied during the future period 2011 to 2060 from the CORDEX South Asia

models reveals the following findings:

1. The RCP4.5 projections for the 2011 to 2060 period future indicate a possible insignificant decline in

summer monsoon and winter monsoon rainfall in the NER.

2.  The  future  projections  simulate  a  significant  increasing  trend  in  the  maximum  &  minimum

temperatures for the same period.

3. Considerable inter-model uncertainty is seen in future projections of summer monsoon rainfall over

the NER.

4.2.4 Conclusions in the context of climate change impact on vegetation profile for the current

period in the NER

The  responses  of  vegetation  patterns  (Deciduous  Broad Leaf  forest,  Evergreen Broad  Leaf  forest,

Evergreen Needle Leaf forest,  Mixed Forest,  Shrubland, and Grassland) to the current day climate

observations from 2000 to 2017 over the NER reveals the following findings:

1. Interannual and inter-seasonal variations in the anomalies of the area-averaged gridded NDVI field

sample  points  (LULC points)  in  all  the  vegetation  types  are  observed  which  can  be  attributed  to
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variation  in  rainfall,  aridity,  NDWI,  maximum and  minimum temperature  distribution  during  wet,

winter, and dry season.

2. There are two/three years lagged dependency, or even a one year lag of the NDVI anomaly to the

rainfall anomaly within each season. The rainfall anomaly in the previous year seems to affect the

NDVI anomaly in the following years i.e. an increase or decrease in rainfall anomaly in the previous

year is well-matched with a similar increase or decrease in NDVI anomaly in the following years.

3.  The NDVI anomalies of winter season show a greater magnitude in declining towards negative

anomalies than the other two seasons (wet and dry season). The weakening of NDVI anomaly during

the winter season indicates the importance of summer monsoon rainfall, whose reduction reduces the

density of vegetation over the NER. A decline in the summer monsoon rainfall leads to water stress,

phenology changes, and a decreased biomass response with a subsequent reduction in the NDVI.

4. The NDVI anomaly responses are seen to be more strongly associated with rainfall in all seasons.

However, during the summer monsoon and pre-monsoon season, the moisture availability from the

NDWI, aridity due to the fluctuations of maximum and minimum temperature are also seen.

5. Evergreen Broad Leaf forest and Deciduous Broad Leaf forests are particularly seen to be affected

drastically by rainfall fluctuations, indicating a major control of rainfall in the tropical forest.

6. Evergreen Needle Leaf forest, which does not get affected much by negative rainfall anomaly, is

seen to be affected by interannual and inter-seasonal rainfall fluctuations, making this study a first of its

kind in delivering the message of the prevailing situation in NER.

129



7. The NDVI and rainfall anomalies for entire Northeast India show an increasing trend in all three

seasons indicating higher greenery which could be due to plantations outside recorded forest areas,

regeneration of the forest, conservation measures, expansion of croplands, intensive irrigation, urban

greening, agricultural practices, etc (Liu et al 2015 and Chen at al., 2019).

8. The time series of maximum NDVI values reaches its maximum during the winter monsoon season

than the other two seasons because of adequate sunlight, the sky remains clear as the cloud disappears

once  the  summer  monsoon  receded,  which  is  needed  for  photosynthesis  supported  by  water  and

nutrient charged soils (Nischitha et al., 2014).

9. The spatial distribution of maximum NDVI value for the entire region shows the greenest (highest

NDVI value) during the winter season while during the wet and dry season, the NDVI is a bit scattered

and decline with dry season being the least NDVI value. Year-to-year variations over the same region

are seen throughout  the period.  This  fluctuation of  NDVI throughout  the period indicates  that  the

increase and decrease of rainfall plays an important role in controlling the vegetation growth over the

region.

4.3 Scope for further research

This research provides useful insights into climate change and its impacts in Northeast India, a region

known for its complexity and ecological importance. The present study opens the scope for further

research in the area mention below:

1.  A higher  density  of  observations  and higher  resolution  climate  models  are  suggested  for  better

estimation and understanding of climate change in NER.
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2. An intense and more comprehensive study is suggested to examine in more detail to determine if the

changes are due to climate change, or can be due to direct human interventions.

3.  As  can  be  understood  from the  present  study,  setting  up  a  denser  network  of  meteorological

observations will be also critical.
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A B S T R A C T

The Northeast-India has undergone many changes in climatic-vegetation related issues in the last few decades
due to increased human activities. However, lack of observations makes it difficult to ascertain the climate
change. The study involves the mean, seasonal cycle, trend and extreme-month analysis for summer-monsoon
and winter seasons of observed climate data from Indian Meteorological Department (1° × 1°) and Aphrodite &
CRU-reanalysis (both 0.5° × 0.5°), and five regional-climate-model simulations (LMDZ, MPI, GFDL, CNRM and
ACCESS) data from AR5/CORDEX-South-Asia (0.5° × 0.5°). Long-term (1970–2005) observed, minimum and
maximum monthly temperature and precipitation, and the corresponding CORDEX-South-Asia data for historical
(1970–2005) and future-projections of RCP4.5 (2011–2060) have been analyzed for long-term trends. A large
spread is found across the models in spatial distributions of various mean maximum/minimum climate statistics,
though models capture a similar trend in the corresponding area-averaged seasonal cycles qualitatively. Our
observational analysis broadly suggests that there is no significant trend in rainfall. Significant trends are ob-
served in the area-averaged minimum temperature during winter. All the CORDEX-South-Asia simulations for
the future project either a decreasing insignificant trend in seasonal precipitation, but increasing trend for both
seasonal maximum and minimum temperature over the northeast India. The frequency of extreme monthly
maximum and minimum temperature are projected to increase. It is not clear from future projections how the
extreme rainfall months during JJAS may change. The results show the uncertainty exists in the CORDEX-South-
Asia model projections over the region in spite of the relatively high resolution.

1. Introduction

The WG1 (Working Group I) report of the IPCC (2013) states that
global warming occurring since 1950's is unequivocal and un-
precedented over decades to millennia, and that human influence has
been detected in the warming of the atmosphere and oceans. CMIP5
(Coupled model intercomparison project phase 5) models simulation
have also projected an increase in global mean surface temperature
over a range from 1.1 °C to 2.6 °C (IPCC, 2013), which seems to be
qualitatively realistic as seen from the consistently increasing global
temperatures.

Anthropogenic climate change manifested in changing temperature
and precipitation, and is likely to pose serious risk to human society,
economy and ecosystems, such as loss of agriculture, water shortages
and widespread health impacts as well as increased in heat-induced
mortality to extreme events, etc. (Kumar et al., 2006; Kumar et al.,
2011; Ravindranath et al., 2011; Jain et al., 2012; Choudhury et al.,
2012 and Sharmila et al., 2015). The effects of climate change are

expected to be greatest in the developing countries which rely on pri-
mary production as a major source of income (Kumar et al., 2006).
According to the Fourth and Fifth Assessment Reports of the Inter-
governmental Panel on Climate Change (IPCC, 2007 and 2013), the
Indian subcontinent will be adversely affected by enhanced variability
of climate, rising temperature and substantial changes summer rainfall
in some parts and thereby water stress by the 2020s.

Several studies from the CMIP3 and CMIP5 simulations (Kumar
et al., 2006; Chaturvedi et al., 2012; Kumar et al., 2013; Dufresne et al.,
2013 and Jourdain et al., 2013, etc.) and several studies based on the
downscaled projections (Kumar et al., 2011; Dash et al., 2012; Kumar
et al., 2013 and Krishnan et al., 2016) project an increasing trend in the
atmospheric temperature over India associated with increased anthro-
pogenic activities. This conjecture also matches with the results from
observational studies such as those by Kothawale et al. (2012) and
Kothawale and Kumar (2005) and Revadekar et al. (2012) which show
an increase of surface temperatures across various regions of India
during the recent 3–4 decades as compared to the earlier period.
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Notwithstanding this, the CMIP3 models as well as those from the
CMIP5 (Collins et al., 2013; Dufresne et al., 2013; Jourdain et al., 2013;
Saha et al., 2014 and Sharmila et al., 2015) have challenges in simu-
lating the teleconnections and trends of the Indian summer monsoon
rainfall, which is seasonally phaselocked to the June–September
months (henceforth JJAS), correctly. Though the CMIP5 models show
better skills in reproducing the mean Indian summer monsoon rainfall
(Jourdain et al., 2013 and Shashikanth et al., 2013), the amplitude of
interannual variability and seasonal cycle reasonably close to the ob-
servations data as compared to the best CMIP3 models (Jourdain et al.,
2013). The decreasing Indian summer monsoon rainfall trend during
the past decades (Guhathakurta and Rajeevan, 2008; Rajendran et al.,
2013 and Krishnan et al., 2016, etc.) is not reproduced by the CMIP5
models, which is a serious limitation of the GCMs at coarse resolution in
capturing the south Asian climate change in the recent decades
(Krishnan et al., 2016 and Roxy et al., 2015).

Fortunately, dynamical downscaling of the historical simulations by
various regional climate models (Dash and Hunt, 2007; Dash et al.,
2012, Dash et al., 2015) or using high resolution GCMs in the Indian
region (Krishnan et al., 2016) have been successful in capturing the
decreasing Indian Summer Monsoon Rainfall trend (ISMR), which is
essentially area-averaged June–September rainfall over a major
homogeneous rainfall region of India (northeast India not included).
Therefore, the corresponding future projection of a weakening ISMR
trend by the high resolution models (e.g. Dash et al., 2015; Krishnan
et al., 2016) may have some reliability in a qualitative sense. Some of
these studies are sort of a first but sure step in understanding the re-
lative contribution of various climate change drivers such as green-
house gases, aerosols, and land surface processes (Kothawale et al.,
2012; Krishnan et al., 2016 and Roxy et al., 2015). Having said that, if
sub-regional level in India is concerned, uncertainties exist in some
climate statistics across various observational datasets, and high re-
solution projections as well (Kumar et al., 2013).

The northeast India (NEI) is a prominent portion of India, covering a
geographic area of 26.2 mha, and home to a population of about 45
million (Ministry of Home Affairs, Government of India). In India, the
characteristics of the summer monsoon rainfall and its variability differ
from region to region within the nation (Mooley and Parthasarathy,
1983a, 1983b). An empirical orthogonal analysis by Parthasarathy
et al. (1996) of long term summer monsoon rainfall records for the
1871–1990 from 306 stations widely-distributed stations in India shows
a dipolar structure of the gravest mode, wherein the signal in the
northeast India is seen in an out of phase relation with the rest of India
(see Fig. 6.5, Pant and Kumar, 1997). The NEI is also endemic to many
flora and fauna making it one of the richest in the world in terms of
biological values (Chakraborty et al., 2012). It has a subtropical climate
with wide variation in weather and climate, and is characterized by
large rural population (82%), low population density, large percentage
of indigenous tribal communities (34–91%) and large area under forests
(60%) (Ravindranath et al., 2011). The NEI is highly dependent on the
south west monsoon and over 60% of the crop area is under rain-fed
agriculture (Ravindranath et al., 2011). However, the climate statistics
vary from study to study owing to the rather sparse observations and
computational methods that depend on the area over which the rainfall
is averaged, and the method of averaging. For example, Parthasarathy
et al. (1996) compute the summer monsoon rainfall over the homo-
geneous Northeast Indian region to be 142 cm. Nonetheless, it is clear
that the region receives a high seasonal rainfall during JJAS.

Dash et al. (2015) analyzed temporal trends in rainfall from nine
stations in the NEI on monthly, seasonal and annual scales for
1961–2010. Several other studies that analyze station data from
about 7 sub-divisions (Jain et al., 2012), 9 stations (Laskar et al.,
2014) and 2 sub-divisions (Mondal et al., 2014) in NEI over the
period of 1913–2012, or part of this period, also support this finding
of Dash et al. (2015).

On the temperature front, (Jain et al., 2012; Laskar et al., 2014;

Mondal et al., 2014, and Wagholikar et al., 2014) have analyzed either
the temperature recorded at a few station in the NEI or the homo-
genized regional temperature records for the 1871–2008, or a portion
of that period. These studies suggest an increasing trend in the max-
imum and/or minimum temperature in some portions of the NEI.
Mondal et al. (2014) states that the NEI region is clearly seen affecting
by climate change which may lead to droughts in the future due to
decrease in rainfall and increase in temperature. Arora et al. (2005)
evaluated the temperature trends based on 125 stations in NEI which
showed a falling trend in annual mean minimum temperature as most
of the stations are located in the foothills of the Himalayas. Climate
change vulnerability profiles have been developed at the district level
in NEI for agriculture, water and forest sectors for the current and
projected future climates where the majority of the districts are sub-
jected to climate induced vulnerability currently and in the near future
(Ravindranath et al., 2011). These studies, in general hint, show a
significant rise in the observed temperature, and a decreasing tendency
in rainfall in various places in the northeast India.

As far as the model studies are concerned, so far, only Dash et al.
(2012) have studied the recent and projected future changes in pre-
cipitation and temperature of the NEI by downscaling CMIP3 datasets
using RegCM3, for the periods 1971 to 2005, and 2011 to 2100. Dash
et al. (2012) also record an overestimation of simulated rainfall by the
CMIP3 for 1971–2005, and project an increase in the annual mean
temperature by about 0.64 °C from 2011 to 2040, and also an increase
in annual mean precipitation by about 0.09 mm/day in the near future
and by 0.48 mm/day at the end of the century in NEI. Having said this,
it indicates the very limited sample of future climate projections for the
northeast Indian climate, which means that there would be a significant
uncertainty. The differences in datasets add to the uncertainty asso-
ciated with the inter-model differences when one tries to validate a
climate model simulation, particularly the climate change projections
(Jourdain et al., 2013 and Collins et al., 2013). This applies acutely for
the NEI (Prakash et al., 2014), where the impact of climate change on
NEI is explored lesser both in terms of observational analysis as well as
from the modeling perspective (Laskar et al., 2014).

Fortunately, of late, several climate centers have dynamically
downscaled various CORDEX South-Asia based on CMIP5 projections
for the Indian region. The downscaled simulations-four regional climate
models, namely MPI, GFDL, CNRM, ACCESS and a high resolution suite
of future climate projections by the LMDZ model (Sabin et al., 2013) are
available from the cccr.tropmet.res.in under the aegis of the Co-
ordinated Regional Downscaling Experiment, SOUTH ASIA (CORDEX).
This gives us an opportunity to address the future climate change in the
NEI at a higher resolution, while also taking into account any un-
certainty associated with inter-model variability. In addition, we have
high resolution gridded rainfall and temperature datasets, derived from
the observed IMD datasets among other things, which will be useful to
validate the CORDEX South-Asia outputs.

The rest of the current paper is organized as follows. In the next
section, we present the study area, various model datasets, and ob-
served and Aphrodite, and reanalyzed climate datasets used, along with
a description of our methodology. In the Section 3, we present the re-
sults from our analysis, and in the Section 4, our concluding summary
and remarks.

2. Datasets and methodology

No study has been done using CORDEX South-Asia output on future
scenarios on NEI. Thus the assessment of rainfall and temperature
change in the last few decades, and its future projection are very im-
portant. These will provide an insight for the present and possible fu-
ture condition to the planners for climate change adaptation. Taking
this note into account, with the help of these five regional climate
model data a proper assessment of future trends would help in setting
up uncertainties of future for risk management and vulnerability
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assessment. Knowledge of spatial and temporal variability of climate
parameters is very much useful for overall development of the region
and for future planning, which can be attained from this work.

2.1. Model datasets & observational datasets used

In this study, we use the gridded datasets of rainfall (Rajeevan et al.,
2005) and temperature (Rajeevan et al., 2008, 2008) derived from the
observations the India Meteorological Department (IMD) for the period
1970 to 2005, available at 1° × 1° resolution for temperature and also
for precipitation at 1° × 1° resolution. We also use the Asian Pre-
cipitation Highly-Resolved Observational Data Integration Towards
Evaluation of water resource (Aphrodite) precipitation data with
0.5° × 0.5° resolution from 1970 to 2005 for comparison (Yatagai
et al., 2012). For convenience, we refer to these interpolated datasets as
‘observations’. Further, as the observations in the NEI are sparse, we
also analyze the reanalyzed mean temperature data collected from CRU
TS v. 4.00 (0.5° × 0.5° resolution) from 1970 to 2005 (Harris et al.,
2014), in addition to the observed temperature datasets from the IMD,
in order to have a sense of uncertainty across these two datasets.

In order to estimate the future climate change in the NEI, we also use
the high resolution climate model simulation outputs from AR5/CORDEX
SOUTH ASIA (See A.1 for details) for the period 1970 to 2005 and 2011 to
2060 at 0.5° × 0.5° resolution. Model-simulated data including maximum
and minimum temperature, and precipitation were obtained from the five
RCMs1 that participated in the CORDEX SOUTH ASIA: LMDZ, MPI, GFDL,
CNRM and ACCESS. Details on these five model data can be procured from
the CCCR, IITM and from the given links, http://cccr.tropmet.res.in/
workshop/oct2012/presentations/R%20Krishnan_CCCR_CORDEXSA.pdf
http://cccr.tropmet.res.in/workshop/oct2012/presentations/JSanjay_
CORDEX-SAsia_RCM_data.pdf http://cordex.dmi.dk/joomla/images/
CORDEX/cordex_archive_specifications_120126.pdf Gridded data sets for
SST from 1970 to 2005 is collected from HadSST, Met office to see the
teleconnections between the precipitation and maximum and minimum
temperature datasets with Nino 3.4.

As known, the CORDEX South Asia based on CMIP5 historical runs,
forced by observed natural and anthropogenic atmospheric composi-
tion, cover the period from 1950 to 2005, whereas the projections from
2011 to 2060 used in the study are forced by Representative
Concentration Pathways (RCP) i.e. RCP4.5. As mentioned earlier, we
use the downscaled historical simulations of the CORDEX South Asia
models for the period 1970–2005 for the NEI, and regional simulations
obtained by downscaling RCP4.5 future scenario of the CORDEX South
Asia, are used. The CMIP5 historical simulations covers few hundred
centuries long pre-industrial and industrial period (from the mid-
nineteenth century to near present) control simulations (Taylor et al.,
2012 and Dufresne et al., 2013). The CMIP5 RCP4.5 simulations have
both natural and anthropogenic forcing, where in the representative
concentration pathways have been and were designed to have a top of
the atmosphere radiation at 4.5 Wm-2 at the end of 2100 and CO2

concentration stabilizes at 543 ppmv in 2150. Global CO2 concentration
is directly prescribed in the simulations from 1886 to 2095 for com-
puting radiative budget (Krishnan et al., 2016).

2.2. Model validation

In this paper, the region bounded by the latitudes from 25.5° N
through 28.5° N, and longitudes from 92.5° E through 94.5° E is referred
to as the northeast India (NEI) for the purpose of statistical analysis
such as the area-averaging, etc. The downscaled historical simulations
are validated by comparing the mean model climatology with observed

precipitation and temperature patterns. To facilitate this, the observed
datasets are resampled into 0.5° resolutions using a bilinear interpola-
tion method. We explore the interannual variability and climate change
of the seasonal rainfall and temperature during the two important
seasons in the NEI, namely, the monsoon season (JJAS) and the winter
season (DJF).

To have an estimate of the future climate change in any climatic
parameter C, we subtract the simulated (LMDZ, MPI, GFDL, CNRM and
ACCESS) historical climatology of the parameter (precipitation and
maximum and minimum temperature), say ‘Chist’, from the corre-
sponding climatology from the RCP4.5 simulations, say ‘CRCP’ i.e., Δ
C = CRCP − Chist.

In this study, we apply a linear trend analysis, by the method of
Least square linear fit (Jhajhariaa and Singh, 2011; Jain and Kumar,
2012 and Dubey and Krishnakumar, 2014), on the simulated and ob-
served data of temperature and precipitation, as necessary. The statis-
tical significance of the identified trend is evaluated using the Mann
Kendall (M-K) trend test and Student t-test. The M-K test is a non-
parametric test for identifying trend in time series data, and extensively
used in climate studies in checking spatial variation and temporal de-
viation of any climatic series (Kumar et al., 2010; Jain and Kumar,
2012; Jain et al., 2012; Laskar et al., 2014 and Chinchorkar et al.,
2015). This statistics is used to test the null hypothesis such that no
trend exists. The presence of a statistically significant trend is evaluated
using the Z value. If the computed value of |Z| > Zα/2, the null hy-
pothesis (H0) is rejected at α level of significance in a two-sided test. A
very high positive value of S indicates increasing trend and a very low
negative value of S indicates decreasing trend (Laskar et al., 2014). In
this study, the M-K test is run at 5% level of significance on time series
data. Further details of the M-K test are available in the A.2. Further,
the observed and simulated teleconnections with the ENSO have been
estimated by using the well-known Nino3.4 index to represent the
ENSO activity. The Nino 3.4 index is obtained by area-averaging, the
SST anomalies over the 5° N–5° S and 120° W–170° W. We use linear
correlation analysis to establish any association of the ENSO events
with the NEI climate. Last but not the least, extremes of precipitation
and, maximum and minimum temperature of both historical and future
projections have been estimated with the help of histogram.

3. Results and discussion

In this section, we study the observed seasonal rainfall and tem-
perature climatologies in the NEI for the 1970–2005 period and the
respective long term linear trends therein. We also evaluate the fidelity
of the downscaled historical simulations using the observational results.
Then we analyze the results from the five downscaled future scenarios,
namely, the RCP4.5 simulations (LMDZ, MPI, GFDL, CNRM and
ACCESS) available for the period of 2011–2060, in order to decipher
the projected climate change in the northeast. The teleconnections of
precipitation and, maximum and minimum temperature with the ENSO
index known as Nino 3.4 are also studied. And extremes of JJAS and
DJF for precipitation, maximum and minimum temperature for both
historical and future projections are analyzed in the last part.

3.1. Climatology for JJAS historical simulation from 1970 to 2005

Fig. 1(a) is an effort to validate the simulated, JJAS climatology of
precipitation (RF-JJAS) for the period of 1970–2005 with that from the
IMD observations and the Aphrodite data. We find from spatial dis-
tribution of the observed climatological RF-JJAS that it varies from 9 to
22 mm, Aphrodite data ranges from 3 to 13 mm and model data range
from 3 to 18 mm. However, as it can be seen that the corresponding
climatological RF-JJAS distribution from the Aphrodite datasets as well
as those from all models except the LMDZ model show the magnitude of
the climatological rainfall increasing from the north towards the south
west, and in LMDZ climatology, the RF-JJAS increases towards the south

1 Note that the LMDZ is an atmospheric general circulation model, but with a 0.5°
resolution in the Indian region. However, for simplicity, we refer to that as a regional
model.
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east. Notwithstanding such discrepancy in the gradients, the range of
climatological RF-JJAS across the observational datasets as well as
models is not much different.

The observed climatological TMax-JJAS varies from 30.6 °C to 32 °C
(Fig. S1, it can be found in supplementary figures and please note that
all the figures with S denote the supplementary figures); the maximum
TMax-JJAS occurs approximately in the central north-east, and increases
from the west to the east. The spatial distribution of the climatological
TMax-JJAS across the NEI from the CRU reanalysis, ranging from 19 °C to
20.5 °C, decreases in the centre. The CRU data and each model exhibit a
relatively broad range of climatologies (TMax-JJAS) across the NEI as
compared to the observed data, so the ranges are shown made differ-
ently as appropriate. The simulated climatology of the (TMax-JJAS) by
various models is lower with different spatial distribution than the
observations, with the simulated climatological values varying from
12 °C to 29 °C across the region in models. The LMDZ model shows an
increasing TMax-JJAS from northwest towards the south with the max-
imum values occur in the centre. The rest of the models show an in-
creasing TMax-JJAS from northwest towards the south east.

The models also underestimate the climatology of minimum tem-
perature in JJAS (TMin-JJAS) as compared to the CRU reanalysis (Fig.
S2), with a simulated range of 3 °C to 22 °C as against the corresponding
values of 28 °C to 32 °C in observed data varies from 19 °C to 20.2 °C
from the CRU reanalysis datasets.

3.2. Climatology for DJF historical simulation from 1970 to 2005

Fig. S3 shows the DJF climatology of precipitation (RF-DJF) for the
period 1970–2005, derived from the IMD, Aphrodite and model data-
sets. The magnitude of the RF-DJF across the NEI ranges between 0.6
and 1.6 mm, with Aphrodite datasets ranging from 0.2 to 0.8 mm and
the models, ranging from 0.5 to 3.8 mm, also capturing the relatively
low seasonal climatological rainfall during the DJF season (Fig. S3) as
compared to the JJAS season (Fig. 1a).

The DJF climatology of maximum temperature (TMax-DJF) in IMD
observations varies from 23.4 °C to 24.4 °C (Fig. S4), and increases from
the south to north of the NEI. The CRU data ranges from 19 °C to
21.2 °C, with a decrease TMax-DJF in the centre. The models under-
estimate the climatological TMax-DJF in the NEI with the simulated TMax-

DJF ranging from 1 °C to 15 °C.
The simulated winter climatological minimum temperatures (TMin-

DJF) in Fig. S5 exhibit a range of values from 10.4 °C to 11 °C, which are
relatively nearer to that from the IMD datasets, with CRU data having
higher (TMin-DJF).

Table 1 shows the difference in the climatological means of ob-
served data sets from those of the simulated rainfall and, maximum and
minimum temperature from 1970 to 2005. In support to the above
spatial climatological analysis, the models show a lower means than the
observations datasets.

3.3. Seasonal mean cycle for historical simulation from 1970 to 2005

In Fig. 2(a), mean seasonal cycle of precipitation for the 1970 to
2005 from the two observed datasets are shown, along with those from
each model. All the datasets show a seasonal evolution similar to ob-
servations, with the simulated precipitation from most of the models
peaking in July. However, the simulated precipitation from the LMDZ,
peaks in the month of August, and the simulated magnitude is in gen-
eral much less than that from the IMD or Aphrodite datasets. To sum
up, the models seem to capture the observed seasonal cycle of mean of
precipitation qualitatively for the study region.

The simulated mean seasonal cycles of the maximum and minimum
temperatures in the NEI are also qualitatively similar to observations

Fig. 1. (a) Spatial distributions of JJAS climatology of precipitation (mm) during 1970–2005 (historical) for (i) IMD, (ii) APHRODITE data, and climate model data from Cordex South
Asia: (iii) LMDZ, (iv) MPI, (v) GFDL, (vi) CNRM and (vii) ACCESS over North East Region.

Table 1
Mean climatological value for observation and model data (1970–2005).

Mean climatology

Precipitation Maximum temperature Minimum
temperature

JJAS DJF JJAS DJF JJAS DJF

IMD 12.5 0.8 IMD 31.6 24.0 24.1 10.9
APHRODITE 8.7 0.6 CRU 19.6 19.7 19.6 19.7
LMDZ 6.1 2.7 LMDZ 24.6 10.5 17.7 1.6
MPI 7.1 1.2 MPI 17.5 3.2 8.1 −7.1
GFDL 7.0 1.3 GFDL 17.5 2.6 8.2 −7.5
CNRM 6.9 1.3 CNRM 17.7 2.9 8.4 −7.4
ACCESS 7.2 1.1 ACCESS 17.4 3.3 8.1 −6.9
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(Fig. 2b and c); though the simulated magnitudes are much lower than
those from the observations.

3.4. Spatial plot of trend analysis JJAS for historical data from 1970 to
2005

In Fig. S6, the trend in the RF-JJAS season for the period 1970 to
2005 from each precipitation dataset used is plotted. The IMD data
shows a rising trend from the rest of the datasets. While the RF-JJAS
from the IMD exhibits an increasing trend of about 0.5 mm/year in the
western NEI and decreasing trend of about 0.6 mm/year in the eastern
portion of the NEI, the APHRODITE datasets indicate a weaker but
increasing trend in a larger portion of the NEI. All models, in general,
qualitatively reproduce the increasing trend in the western NEI,
through with weaker magnitudes. The MPI and GFDL models and the
ACCESS model somewhat weakly, simulate a negative trend in pockets,
which is not seen in observations.

A trend analysis of TMax-JJAS maximum temperature from 1970 to

2005 is plotted in Fig. (S7) where the IMD data shows a positive trend
0.015 °C/year increasing towards the south. The CRU data, on the other
hand, shows higher magnitude of trend than the IMD and an increasing
trend towards the centre. Models other than the MPI and ACCESS
models show a positive trend.

A trend of 0.02 °C/year in the TMin-JJAS is shown from the IMD da-
tasets (Fig. S8), increasing towards the west from the east. On the
contrary, the CRU datasets show an increasing trend towards the centre.
The LMDZ model shows a higher magnitude of trend than the rest of the
datasets, with an increasing trend of 0.05 °C/year. The MPI, GFDL and
CNRM models are more or less similar with a lower positive trend in the
central portion. The ACCESS model shows an increasing trend towards
the north.

3.5. Spatial plot of trend analysis DJF for historical data from 1970 to
2005

Fig. (S9) shows the trends in the observed and simulated RF-DJF in

Maximum Temperature (1970 – 2005) 

Fig. 2. (a). Seasonal mean cycle of precipitation data (mm) from IMD (observed data), Aphrodite, and Cordex South Asia model data (LMDZ, MPI, GFDL, CNRM and ACCESS) for the
period 1970 to 2005.
(b). Seasonal mean cycle of maximum temperature data (°C) from IMD (observed data), CRU Reanalysis and Cordex South Asia model data (LMDZ, MPI, GFDL, CNRM and ACCESS) for
the period 1970 to 2005.
(c). Seasonal mean cycle of minimum temperature data (°C) from IMD (observed data), CRU reanalysis and Cordex South Asia model data (LMDZ, MPI, GFDL, CNRM and ACCESS) for the
period 1970 to 2005.
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the NEI for the period 1970 to 2005 where all the datasets show a si-
milar increasing trend in most of the region. The IMD data shows an
increasing trend of 0.01 mm/year towards the southwest of the region,
and a decreasing trend of 0.4 mm/year towards the north eastern. The
Aphrodite data shows a positive trend in most of the regions. Rest of the
models except for the LMDZ shows a similar positive trend.

The IMD datasets show an increasing trend in the TMax-DJF from
northwest towards the south east; with respective values of 0.03 °C/
year and 0.06 °C/year (Fig. S10). CRU datasets shows a higher trend
than the IMD datasets. Only the LMDZ model shows a very high positive
trend of 0.06 °C/year increasing towards the north. GFDL and CNRM
models show an increasing positive trend towards the east while de-
creasing at central east. MPI model shows an increasing trend in the
central portion while the ACCESS model shows a decreasing trend in
the central portion. All the datasets show a positive trend.

Fig. (S11) shows the trend analysis of TMin-DJF minimum tempera-
ture, from which it is clear that the IMD datasets show an increasing
trend of 0.04 °C/year towards the west while CRU data shows a higher
trend as compare to the IMD data. Here also, the LMDZ model shows a
higher magnitude of trend of 0.07 °C/year increasing towards the north
and south while decreasing in the centre. The CNRM and ACCESS
models show an increasing trend towards the central east and de-
creasing trend at the west, opposite to that in the MPI model. The
ACCESS model shows an increasing trend in the central east and de-
creases at the west.

From the above discussion, is it clear that there is some agreement
between the IMD and Aphrodite datasets as far as the location of
highest and lowest trends in the rainfall, particularly during summer
monsoon is concerned. However, the same cannot be told about the
agreement between the IMD datasets and CRU datasets in relation to
the spatial distribution of the trends in temperature. This is not so
surprising given that the CRU datasets are not observational datasets,
but model forecasts constrained by the observations. We also note that
the models are not up to simulating the spatial distribution of the trends
well. As the region is well known for its high convective rainfall asso-
ciated with complex orography along with relatively high mountains
and rainfall processes of the monsoon system, the interpolation and
calibration algorithms could contribute to the uncertainty. However, if
the historical simulations from various models can at least replicate the
area-averaged trends in the climate parameters over the NEI, we can
have a qualitative confidence in their future projections. In the next
section, we precisely explore this aspect.

3.6. Area-averaged trend analysis from the observations and models for the
1970 to 2005 period

In this section, we report results from the analysis of the area-
averaged trends in rainfall and temperature in the NEI region. The
significance of these tests was evaluated using both Mann-Kendall and
Student's t-test. We find that the IMD and Aphrodite datasets show,
respectively, increasing and decreasing trends, which are however, not

statistically significant (not shown as all the results show insignificant).
Insignificant decreasing or no trend in the summer monsoon pre-
cipitation of NEI, as seen from some stations observations in the NEI has
been also reported by Jain et al., 2012; Laskar et al., 2014 and Dash
et al., 2015. All the model simulations also simulate only insignificant
trends.

Further, both IMD and Aphrodite datasets only show a decreasing
but statistically insignificant trend in the area averaged rainfall during
the DJF (RF-DJF) season in the NEI. The area-averaged trends in the
corresponding RF-DJF from various CORDEX models are also seen to be
insignificant, though the GFDL and CNRM models show an increasing
trend.

Though the nature of trends in the rainfall is insignificant in all the
data sets, it indicates a decline in the rainfall over NEI, in tandem with
such a signal in the summer monsoon rainfall in rest of India (Krishnan
et al., 2016). On longer time scales, the warmer tropical ocean, espe-
cially the central eastern Pacific and the western Indian Ocean are
suggested to play a role in weakening the monsoon (Roxy et al., 2015).

Only the significant results are shown in the Table 2. The time series
of the area-averaged JJAS maximum temperature and that for the DJF
season, from the IMD datasets for the period of 1970 to 2005 show an
increasing but statistically insignificant trends. Growing population
accompanied by massive urbanization, changes in land use, enormous
highway development, increases in deforestation, biomass burning,
fossil fuel consumption and increasing atmospheric concentrations of
greenhouse gases are suspected to be the cause of the changes in tem-
perature (Kothyari and Singh, 1996; Jhajhariaa and Singh, 2011).

Notably, the CRU datasets for both the seasons show an insignificant
increasing trend and also, all the models successfully reproduce the
observed increasing trends in the area-averaged seasonal maximum
temperatures, through most of the simulated trends are statistically
significant.

Importantly, we find statistically significant increasing trends in the
area-averaged minimum temperature over the NEI during both summer
and winter seasons over the period 1970 to 2005 (Table 3). It is intri-
guing that only the minimum temperature shows a statistically sig-
nificant increasing trend, while the rainfall trends, though decreasing,
are not significant.

From all these results, we can summarize that the downscaled
CORDEX South-Asia datasets are successful in capturing the area-
averaged seasonal cycles of rainfall and temperature observed during
1970–2005, and are also capable of capturing the corresponding trends,
at least qualitatively. However, the climatological spatial distribution
and the local long term trends are not well captured, and are also
subject to the uncertainties in the observations. Being an orographic
region, uncertainty between datasets is largest in North East India
(Kulkarni et al., 2013 and Prakash et al., 2014).

3.7. Teleconnections of the historical data (1970–2005) with Nino 3.4

Table S1 shows the teleconnections results ENSO, which is

Table 2
Significance tests using Mann-Kendall and Student t-test for maximum temperature data from the IMD, NCEP and climate model data for the period 1970–2005.

Data used Mann-Kendall test Student t-test Nature of the trend

Z value & α value Statistic value (S) p-Value t-Value Trend value

JJAS
LMDZ 4.19 > 1.96 308 0.00 < 0.05 5.53 > 2 1.14 Increasing trend & significant
GFDL 2.39 > 1.96 176 0.01 < 0.05 2.92 > 2 1.07 Increasing trend & significant
ACCESS 2.86 > 1.96 210 0.01 < 0.05 2.61 > 2 1.25 Increasing trend & significant

DJF
LMDZ 3.79 > 1.96 290 0.00 < 0.05 4.52 > 2 2.35 Increasing trend & significant
CNRM 2.33 > 1.96 178 0.05 = 0.05 2.02 > 2 1.22 Increasing trend & significant
ACCESS 2.22 > 1.96 170 0.02 < 0.05 2.39 > 2 1.28 Increasing trend & significant

B. Soraisam et al. Global and Planetary Change 160 (2018) 96–108

101



represented by the well-known NINO3.4 index, with precipitation,
maximum and minimum temperature parameters from all relevant the
datasets used in this study from the IMD, Aphrodite, CRU and all the
models datasets for historical period from 1970 to 2005. The results of
this study suggest that the ENSOs do not have any statistically sig-
nificant impacts on the NEI precipitation and temperature, be it
summer or winter, for the period.

3.8. Seasonal mean cycle for simulated future precipitation, maximum and
minimum temperature data for the period 2011 to 2060

The individual model RCP4.5 projections of the seasonal cycle of
precipitation for the 2011 to 2060 (Fig. 3a) indicate an evolution si-
milar to the corresponding historical cycle. A majority of models,
however, indicate a slight decrease or no change in the magnitude of
the summer monsoon rainfall, except the projection from the CNRM
showing a moderate increase in July precipitation. Based on these re-
sults as well as an analysis of the spatial distribution of the simulated
precipitation (to be discussed in the next paragraph), we can sum up
that the models project slight or no decrease in the rainfall over the NEI
in future.

The simulated seasonal cycles of maximum and minimum tem-
perature from the RCP4.5 shows an unchanged evolution, but models
also project a substantially increased in the maximum and minimum
temperatures (Fig. 3b & c) relative to the corresponding historical si-
mulations which indicates a rise in the temperature in the future over
the NEI.

3.9. Simulated JJAS future climatology (RCP4.5) from 2011 to 2060

The simulated JJAS climatology of precipitation (RF-JJAS) from the
RCP4.5 projections for the 2011–2060 is presented in Fig. (S12), and
the excess or deficit as compared to the corresponding historical si-
mulations of is shown in Fig. 1a. We find from Figs. S12 and 4a that the
future projection of RF-JJAS from each CORDEX South-Asia model is not
significantly different from the corresponding historical simulations
(Fig. 1a), except for a weak decrease seen in simulations of a model or
two. The RF-JJAS of LMDZ model spatially ranges from 5 to 11 mm
while in the rest of the models varies from 3 to 19 mm.

Notably, (the spatial distribution of TMax-JJAS and TMin-JJAS) in all the
models in Fig. S13 and S14 show an increasing magnitude and are also
warmer than the corresponding historical simulations (also match with
Fig. 4b and c) across the NEI as compared to the respective historical
simulation, with the temperature values ranging from 13 °C to 30 °C
and 5 °C to 23 °C for minimum temperature.

3.10. Simulated DJF future climatology (RCP4.5) from 2011 to 2060

The DJF climatology of precipitation (RF-DJF) in all the models does
not show much change in the future projection (Fig. S15), with values
ranging from 0.6 to 3.2 mm, which is also seen in Fig. 5a, though all the
models are not simulating the same result, the range of RF-DJF is seen
declining in the future projection.

All the models also project an increased TMax-DJF (Figs. S16 and 5b),
with the values varying from 2 °C to 17 °C. Spatial distributions of TMax-

DJF from the analyzed in all CORDEX South-Asia projections, the models
are similar to those from the historical simulations (Fig. S4).

The projected minimum temperatures for DJF season (Figs. S17 and
5c) also increases than the corresponding historical simulations (Fig.
S5). The future projected DJF climatology in the NEI range from e10 °C
to 8 °C.

3.11. Area-averaged Trends in projected climate in the NEI for the period of
2011 to 2060

Table 4 shows that the JJAS precipitation signals for the 2011 to
2060 period as simulated in the LMDZ and CNRM models show a sig-
nificantly increasing trend. The ACCESS model projects an increasing
but statistically insignificant trend in summer precipitation during the
above period. On the other hand, the MPI and GFDL models show an
insignificant decreasing trend. The projected DJF precipitation in all the
models except the ACCESS model shows an insignificantly decreasing
trend. The ACCESS model simulates a weak increasing trend. Only the
significant results are shown in the table.

Interestingly, four out of five future simulations project a statisti-
cally significant increasing trend in summer maximum temperature
(Table 5), while all of them project a statistically significant increasing
trend in minimum temperatures (Table 6).

The significant increasing trend in the maximum and minimum
trend is also projected for the DJF season (Tables 5 & 6). Thus, is clearly
despite the fact that, the projected models do not show quantitatively
similar results, qualitatively there is a good agreement, particularly for
the temperature. That is, as per the RCP4.5 simulations, the DJF pre-
cipitation is expected to further decline while both maximum and
minimum temperature are likely to increasing further rapidly. How-
ever, there is considerable inter-model uncertainty in the future
summer monsoon rainfall in the NEI.

3.12. Extremes analysis for JJAS and DJF seasons for historical and future
projections for precipitation, maximum temperature and minimum
temperature

In the Fig. 6a & b, histograms of observed and simulated JJAS

Table 3
Significance tests using Mann-Kendall and Student t-test for minimum temperature data from the IMD and climate model data for the period 1970–2005.

Data used Mann-Kendall test Student t-test Nature of the trend

Z value & α value Statistic value (S) p-Value t-Value Trend value

JJAS
IMD 3.26 > 1.96 240 0.00 < 0.05 4.48 > 2 0.63 Increasing trend & significant
LMDZ 4.79 > 1.96 352 0.00 < 0.05 7.92 > 2 1.32 Increasing trend & significant
MPI 2.48 > 1.96 182 0.03 < 0.05 2.92 > 2 0.61 Increasing trend & significant
GFDL 2.04 > 1.96 150 0.03 < 0.05 2.23 > 2 0.66 Increasing trend & significant
ACCESS 3.19 > 1.96 234 0.02 < 0.05 2.45 > 2 0.85 Increasing trend & significant

DJF
IMD 3.92 > 1.96 300 0.00 < 0.05 4.59 > 2 1.19 Increasing trend & significant
LMDZ 4.15 > 1.96 318 0.00 < 0.05 5.42 > 2 2.97 Increasing trend & significant
MPI 3.22 > 1.96 246 0.00 < 0.05 3.24 > 2 1.59 Increasing trend & significant
GFDL 2.17 > 1.96 166 0.05 = 0.05 2.99 < 2 0.75 Increasing trend & significant
CNRM 2.30 > 1.96 176 0.03 < 0.05 2.33 > 2 1.11 Increasing trend & significant
ACCESS 3.16 > 1.96 242 0.00 < 0.05 3.70 > 2 1.62 Increasing trend & significant
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monthly mean rainfall over the NEI for the historical period from 1970
to 2005, and simulated future projections from 2011 to 2060 are pre-
sented. While there are four heaviest rainfall monsoon seasons with
rainfall of 23 mm/day in NEI as per the IMD datasets, the APHRODITE
datasets indicate (Fig. 6a) five heaviest rainfall months with rainfall
amounting to 15 mm/day. Except the LMDZ model, all other models
simulate the heaviest seasonal rainfall of 15 mm/day, and only two
models simulate at least four such extreme rainfall months (Fig. 6a);
The LMDZ model simulates only one heaviest rainfall month, with the
magnitude of the rainfall amounting to 11 mm/day.

The frequency of the heaviest monthly-mean rainfall months in
general increases in the simulated future projections for 2011–60, ex-
cept in those from the GFDL which fall from 15 to 13 (Fig. 6b). Further,
it is also to be noted that the magnitude of the heaviest monthly rainfall
decreases (increases) in two (one) models by about 2 mm/day (4 mm/
day). Importantly, Fig. 6a and b show that the total number of ‘low
rainfall’ months (arbitrarily defined as rainfall < 7 mm/day) have
increased quite substantially, with the range of increase being
34%–42%. It is, however, to be noted that the frequencies of simulated
low rainfall event months for the historical period are heavily over-
estimated as compared to those from the corresponding IMD frequency.

Histograms of observed and simulated DJF monthly mean rainfall
over the NEI for the historical period from 1970 to 2005, and simulated
future projections from 2011 to 2060 are presented in the Figs. S18 &
S19. The number of heaviest winter monsoon rainfall months is

relatively low as corresponding to the summer monsoon season, as can
be seen from both IMD and Aphrodite datasets (Fig. 6a & 6b). The
models in general also qualitatively reproduce the difference. However,
the heaviest rainfall simulated by the in LMDZ model of 7 mm/day in
simulated historical period is noticeably high as compared to the
4.5 mm/day. In future projections, the frequency of simulated heavy
rainfall months increases in all the model projections except GFDL and
CNRM.

The extreme events of JJAS maximum temperature for the historical
period from 1970 to 2005 and for future projections from 2011 to 2060
are shown the Figs. S20 & S21. The observation data from IMD recorded
39 highest maximum temperature months with 34 °C/day. The CRU
and all the models record somewhat lower maximum temperature than
the observation data, ranging from 22 °C to 28 °C (Fig. S20). The si-
mulated highest maximum monthly temperature in the future projec-
tions relatively increases, and ranges between 24 °C to 32 °C with LMDZ
(Fig. S21).

In the Figs. S22 & S23, the extreme months of maximum tempera-
ture for DJF season are shown for historical period (1970–2005) and
future projections (2011–2060). IMD records show 30 months of the
highest monthly maximum temperature of 30 °C/day during the his-
torical period. The CRU records show monthly mean highest tempera-
ture 27 °C/day and all the models show a highly underestimated max-
imum temperature ranging from 9 °C to 15 °C. Even though the highest
maximum temperature increases in the future projections, the

Fig. 3. (a). Seasonal mean cycle of precipitation data (mm) from Cordex South Asia model data (LMDZ, MPI, GFDL, CNRM and ACCESS) for the period 2011 to 2060.
(b). Seasonal mean cycle of maximum temperature data (°C) from Cordex South Asia model data (LMDZ, MPI, GFDL, CNRM and ACCESS) for the period 2011 to 2060.
(c). Seasonal mean cycle of minimum temperature data (°C) from Cordex South Asia model data (LMDZ, MPI, GFDL, CNRM and ACCESS) for the period 2011 to 2060.
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maximum number of events with highest frequency decreases.
Figs. S24 & S25 show the minimum temperature for JJAS season for

historical period (1970–2005) and future projections (2011–2060). The
observation data and CRU datasets record a minimum monthly tem-
perature of 27 °C/day. The minimum temperature in all the models is
underestimated, with a range of 12 °C to 21 °C across the models. While
the simulated frequency of highest minimum temperature in the three
future projections increases, only models (LMDZ and GFDL) project a
decreasing number of highest minimum temperature events.

In the case of the DJF season, for the historical period (1970–2005),
the observation data records minimum temperatures of 16 °C/day and
CRU being 26 °C/day. However all the models underestimate the
minimum temperature, with a range from 6 °C to e2 °C. The highest
minimum temperature in the future projections increases as compared
to the corresponding historical simulations.

4. Conclusions

This work studies the climate trends in the northeast India (NEI)
using observations during 1970–2005, a period for which five high
resolution (50 km) climate simulations, known as historical simula-
tions, are available under the aegis of CORDEX South Asia. The ob-
servation datasets we use are gridded data of rainfall and, maximum
and minimum temperature from IMD at 1° × 1° resolution (Rajeevan
et al., 2005, 2008, 2008), and Aphrodite datasets at 0.5° × 0.5° re-
solution (Yatagai et al., 2012), along with mean temperature from CRU
TS v. 4.00 (0.5° × 0.5° resolution) from 1970 to 2005. Further, using
the historical and future climate change projections of the CORDEX
South Asia, we estimate the possible future climate change under the
RCP4.5 conditions, which is designed to reflect a scenario of moderate
anthropogenic emissions from 2011 to 2060. These five regional cli-
mate model dataset are generated by the LMDZ, MPI, GFDL, CNRM and
ACCESS models.

We find that the seasonal cycle of rainfall and temperature of the
NEI are in conformation with that over the rest of the Indian region.
There is a reasonable agreement in the area-averaged seasonal cycle
and climatology of the rainfall in NEI between the IMD and Aphrodite
datasets. However, we find that there are differences in the locations of
highest and lowest climatological rainfall and temperatures, maximum
trend region, etc. during the summer monsoon. Such a mismatch of
location is also seen in the models. Such a discrepancy across the ob-
servations/reanalysis and model datasets is seen in the spatial dis-
tribution of the maximum and minimum temperatures also. Therefore,
one needs to be mindful of this limitation while using these observa-
tions and model results in local climate change adaptation planning.

Interestingly, there is a reasonable synergy across the observations
and models when the climate signals are area-averaged over the NEI.
We find a weak and statistically insignificant decreasing trend in the
area-averaged summer monsoon rainfall in the NEI. The IMD observa-
tions also show an increasing minimum temperature trend of 0.63 °C
and 1.19 °C in 36 years that is statistically significant for both the
summer and winter seasons respectively. While the maximum tem-
peratures have also been increasing, the trend is not statistically sig-
nificant. The area-averaged trends, particularly in the summer mon-
soon, are in general agreement with those reported in various earlier
studies that are based on a few selected stations (Jain et al., 2012;
Laskar et al., 2014 and Dash et al., 2015).

Importantly, the area-averaged rainfall and temperatures from the
historical simulations also qualitatively reproduce the observed trends,
though they overestimate the statistical significance in some instances.
This tells us that we can have some confidence in the area-averaged
trends in future climate change projections for the NEI. The future
projections suggest that there will be a significant increasing trend in
the minimum temperature (ranging from 0.71 °C/50 years to 2.6 °C/
50 years for summer and 1.15 °C/50 years to 2.61 °C/50 years for
winter season) and maximum temperature (0.33 °C/50 years to

a

c

b

Fig. 4. (a). Climatology difference for precipitation (mm) between current and future
period for JJAS for model data, namely, (i) LMDZ, (ii) MPI, (iii) GFDL, (iv) CNRM and (v)
ACCESS.
(b). Climatology difference for maximum temperature (°C) between current and future
period for JJAS for model data Cordex South Asia: (i) LMDZ, (ii) MPI, (iii) CNRM, (iv)
ACCESS and (v) GFDL. Separate color bar has been plotted because of the large difference
in the range of climatology in GFDL model.
(c). Climatology difference for minimum temperature (°C) between current and future
period for JJAS for model data Cordex South Asia: (i) LMDZ, (ii) MPI, (iii) CNRM, (iv)
GFDL and (v) ACCESS.
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Fig. 5. (a). Climatology difference for precipitation (mm) be-
tween current and future period for JJAS for model data
Cordex South Asia: (i) LMDZ, (ii) MPI, (iii) GFDL, (iv) CNRM
and (v) ACCESS.
(b). Climatology difference for maximum temperature (°C)
between current and future period for DJF for model data
Cordex South Asia: (i) LMDZ, (ii) MPI, (iii) CNRM, (iv) GFDL
and (v) ACCESS. Separate color bar has been plotted because
of the large difference in the range of climatology in ACCESS
model.
(c). Climatology difference for minimum temperature (°C)
between current and future period for DJF for model data
Cordex South Asia: (i) LMDZ, (ii) MPI, (iii) CNRM, (iv) GFDL
and (v) ACCESS.
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2.86 °C/50 years for summer & 0.87 °C/50 years to 3.01 °C/50 years for
winter season), and a possible decreasing but statistically insignificant
trend in summer and winter rainfall in the NEI for the 2011–2060
period. In summary, notwithstanding the uncertainties, when the NEI is
taken as a whole, as the models qualitatively capture the historical
trend, we can conjecture, that the future projections of decrease in
rainfall and increase in temperature may be expected to be realized,
though quantifying the same would be difficult. We also find that the
ENSO events do not have any significant impact on the climate of the
NEI, and, we may not expect any perceivable impact of ENSOs.

Extreme monthly means for precipitation and maximum and
minimum temperature for historical and future projections have also
been studied over NEI for both JJAS and DJF seasons. The simulated
models underestimate the extreme mean monthly values. Overall the
extreme monthly means of maximum and minimum temperature in-
crease in the future projections. The frequency of simulated the heaviest
rainfall months during JJAS increase in the simulated future projections
for 2011–60 from four out of five models as compared to the historical
period. Having said that, the magnitude of the heaviest monthly rainfall
moderately decreases in future projections in two models. Importantly,
total number of ‘low rainfall’ months (arbitrarily defined as rain-
fall < 7 mm/day) has increased quite substantially, with the range of

increase being 34%–42%. All this suggest that the CORDEX models are
not definitive about any increase of extreme rainfall months over
northeast India during summer monsoon season.

As the region is well known for its high convective rainfall asso-
ciated with complex orography along with relatively high mountains
and rainfall processes of the monsoon system, the interpolation and
calibration algorithms could contribute to the uncertainty. To improve
the uncertainties in the climatological datasets pertaining to the in NEI,
a higher density of observations would be critical to address various
sub-regional climate change/variability issues with confidence.
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Table 4
Significance tests using Mann-Kendall and Student t-test for precipitation data from the climate model data for the period 2011–2060.

Mann-Kendall test Student t-test

Data used Z value & α value Statistic value (S) p-Value t-Value Trend value Nature of the trend

LMDZ 3.17 > 1.96 379 0.00 < 0.05 3.10 > 2 0.67 Increasing trend & significant
CNRM 1.97 > 1.96 235 0.04 < 0.05 2.07 > 2 1.08 Increasing trend & significant

Table 5
Significance tests using Mann-Kendall and Student t-test for maximum temperature data from the climate model data for the period 2011–2060.

Data used Mann-Kendall test Student t-test Nature of the trend

Z value & α value Statistic value (S) p-Value t-Value Trend value

JJAS
LMDZ 5.73 > 1.96 685 0.00 < 0.05 7.01 > 2 1.4 Increasing trend & significant
MPI 3.29 > 1.96 393 0.00 < 0.05 4.24 > 2 1.13 Increasing trend & significant
GFDL 6.25 > 1.96 747 0.00 < 0.05 8.84 > 2 2.86 Increasing trend & significant
ACCESS 3.81 > 1.96 455 0.00 < 0.05 4.07 > 2 1.07 Increasing trend & significant

DJF
LMDZ 4.47 > 1.96 551 0.00 < 0.05 5.24 > 2 1.96 Increasing trend & significant
MPI 3.63 > 1.96 447 0.00 < 0.05 4.27 > 2 2.71 Increasing trend & significant
GFDL 4.41 > 1.96 543 0.00 < 0.05 4.84 > 2 3.01 Increasing trend & significant
CNRM 3.27 > 1.96 403 0.00 < 0.05 7.19 > 2 1.89 Increasing trend & significant

Table 6
Significance tests using Mann-Kendall and Student t-test for minimum temperature data from the climate model data for the period 2011–2060.

Data used Mann-Kendall test Student t-test Nature of the trend

Z value & α value Statistic value (S) p-Value t-Value Trend value

JJAS
LMDZ 7.25 > 1.96 867 0.00 < 0.05 11.78 > 2 1.66 Increasing trend & significant
MPI 3.89 > 1.96 465 0.00 < 0.05 4.27 > 2 0.95 Increasing trend & significant
GFDL 6.92 > 1.96 827 0.00 < 0.05 10.44 > 2 2.6 Increasing trend & significant
CNRM 2.68 > 1.96 321 0.01 > 0.05 2.87 > 2 0.71 Increasing trend & significant
ACCESS 5.08 > 1.96 607 0.00 < 0.05 6.20 > 2 1.45 Increasing trend & significant

DJF
LMDZ 5.03 > 1.96 619 0.00 < 0.05 6.47 > 2 2.61 Increasing trend & significant
MPI 4.96 > 1.96 611 0.00 < 0.05 5.23 > 2 1.94 Increasing trend & significant
GFDL 4.64 > 1.96 571 0.00 < 0.05 6.07 > 2 2.38 Increasing trend & significant
CNRM 5.71 > 1.96 703 0.00 < 0.05 7.19 > 2 1.89 Increasing trend & significant
ACCESS 2.89 > 1.96 357 0.00 < 0.05 3.08 > 2 1.15 Increasing trend & significant
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Appendix 1

The driving simulations of the LMDZ, MPI, GFDL, CNRM and
ACCESS are performed within the framework of CMIP5. To downscale
the CMIP5 (Coupled Model Intercomparison Project Phase 5) scenarios,
the World Climate Research Program (WCRP) initiated a coordinated
effort known as CORDEX, which provides an ensemble of high resolu-
tion regional climate projections for all the major continental regions of
the world. Currently CORDEX involves> 20 RCM groups around the
world and provides a quality-controlled data set of downscaled in-
formation for historical past and 21st century projections (Taylor et al.,
2012). The CORDEX outputs are used for input or adaptation work, and

also for IPCC Fifth Assessment Report (Giorgi et al., 2009). CORDEX
focus on the emission scenarios known as RCP4.5 and RCP8.5 which
represent a mid and a high level emission scenario, also roughly cor-
responding to the IPCC SRES emission scenarios B1 and A1B, respec-
tively (Giorgi et al., 2009). These high resolution regional climate
models are selected because these models provide an opportunity to
dynamically downscale global model simulations to superimpose the
regional detail of specific regions and moreover global climate model
suffers from errors due to inadequate representation as well as its ex-
pensiveness (Krishna Kumar et al., 2011 and Kumar et al., 2006).

Fig. 6. (a). Histogram plots for JJAS precipitation (mm) of historical period (1970–2005): IMD, Aphrodite along with CORDEX models ((LMDZ, MPI, GFDL, CNRM and ACCESS).
(b). Histogram plots for JJAS precipitation (mm) of future projections (2011–2060) of CORDEX models ((LMDZ, MPI, GFDL, CNRM and ACCESS).
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Supplementary data

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.gloplacha.2017.11.010.
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