


Ph.D. Thesis

Ph.D THESIS

Lawsone as Synthon for the Discovery of

Lawsone as Synthon for the Discovery of **Organocatalytic Reactions** 





**SCHOOL OF CHEMISTRY UNIVERSITY OF HYDERABAD** INDIA

MD. ANIF PASHA

Feb

Md. Anif Pasha

# Lawsone as Synthon for the Discovery of Organocatalytic Reactions

A
Thesis
Submitted for the Degree of

Doctor of Philosophy

By

## MOHAMMED ANIF PASHA (15CHPH29)





SCHOOL OF CHEMISTRY UNIVERSITY OF HYDERABAD HYDERABAD-500 046, INDIA.

**FEBRUARY 2021** 

## Thesis **DEDICATED** to

## Parents RAZIYA-ALLAUDDIN

and

Sister **SHAHANAAZ** 

## **DECLARATION**

I hereby declare that the entire work embodied in this thesis entitled as "Lawsone as Synthon for the Discovery of Organocatalytic Reactions" is the result of investigations carried out by me in the School of Chemistry, University of Hyderabad, Hyderabad, under the guidance of Prof. Dhevalapally B. Ramachary and that it has not been submitted elsewhere for any degree or diploma. In keeping with the general practice, due acknowledgements have been made wherever the work described is based on the findings of other investigators. Any omission, which might have occurred by oversight or error, is regretted. I hereby agree that my thesis can be deposited in Shodhganga/INFLIBNET. This research work is free from Plagiarism and a report on plagiarism statistics from the University Librarian is enclosed.

University of Hyderabad

February 2021

Mohammed Anif Pasha

(Candidate)

Prof. Dhevalapally B. Ramachary

(Supervisor)

Prof. D.B. Ramachary
School of Chemistry
University of Hyderabad
Hyderabad - 500 046, India.



### Prof. Dhevalapally B. Ramachary

School of Chemistry University of Hyderabad Gachibowli, Hyderabad-500046, India Work: +91-40-23134816

Fax: +91-40-2301246

E-mail: ramsc@uohyd.ac.in

## **Certificate**

Certified that the work contained in the thesis entitled "Lawsone as Synthon for the Discovery of Organocatalytic Reactions" has been carried out by Mr. Mohammed Anif Pasha under my supervision and the same has not been submitted elsewhere for a degree.

This thesis is free from plagiarism and has not been submitted previously in part or in full to this or any other University or Institution for award of any degree or diploma.

#### Parts of the thesis have been:

#### A. Published in the following publication

- 1. D. B. Ramachary, Md. Anif Pasha, and G. Thirupathi, Angew. Chem. Int. Ed. 2017, 56, 12930
- 2. S. Peraka, Md. Anif Pasha, G. Thirupathi, and D. B. Ramachary, Chem. Eur. J. 2019, 25, 14086.
- 3. Md. Anif Pasha, A. V. Krishna, E. Ashok, D. B. Ramachary, J. Org. Chem. 2019, 84, 15399.
- 4. Md. Anif Pasha, S. Peraka and D. B. Ramachary (Manuscript under submission).

#### B. Work presented in the following conferences/seminars

- 1. ChemFest-2020
- 2. XV J-NOST-2019

Further the student has passed the following courses towards fulfilment of course work required for the Ph.D.

| S. No | Course No. | Title of the Course                                   | No. of Credits | Pass/Fail |
|-------|------------|-------------------------------------------------------|----------------|-----------|
| 1.    | CY801      | Research Proposal                                     | 3              | Pass      |
| 2.    | CY802      | Chemistry Pedagogy (CY502: Advanced Organic Synthesis | 3              | Pass      |
| 3.    | CY805      | Instrumental Methods A                                | 3              | Pass      |
| 4.    | CY573      | Stereoselective Organic Synthesis                     | 2              | Pass      |
| 5.    | CY580      | Natural Products and Medicinal Chemistry              | 2              | Pass      |

Prof. Dhevalapally B. Ramachary

(Supervisor) Prof. D.B. Ramachary

School of Chemistry University of Hyderabad Hyderabad - 500 046, India.

Kumala Gramphe Dean VIZIZUZI

(School of Chemistry)

School of Chemistry University of Hyderabad P.O. Central University Gachibowli, Hyderabad-500 046.

## **CONTENTS**

| $D_{I}$ | ECLARATION                                                            | i    |
|---------|-----------------------------------------------------------------------|------|
| CI      | ERTIFICATE                                                            | ii   |
| C(      | ONTENTS                                                               | iv   |
| A       | CKNOWLEDGEMENTS                                                       | v    |
| PΙ      | REFACE                                                                | viii |
| LI      | ST OF ABBREVIATIONS                                                   | xi   |
| L       | awsone as Synthon for the Discovery of Organocatalytic Reactions      |      |
| 1.      | Abstract                                                              | 1    |
| 2.      | Introduction                                                          | 2    |
| 3.      | Organocatalytic Reductive Propargylation: Scope and Applications      | 21   |
| 4.      | Organocatalytic Asymmetric Formal [3+2]-Cycloaddition as a            |      |
|         | Versatile Platform to Access Methanobenzo[7]annulenes                 | 62   |
| 5.      | Organocatalytic Formal Intramolecular [3+2]-Cycloaddition             |      |
|         | to Acquire Biologically Important Methanodibenzo[a,f]azulenes         |      |
|         | and Methanobenzo[f]azulenes                                           | 97   |
| 6.      | Direct Organocatalytic Asymmetric Synthesis of Biologically Important |      |
|         | Methanobenzo[f]azulenes                                               | 135  |
| 7.      | Experimental Section                                                  | 173  |
| 8.      | References                                                            | 372  |
| AI      | BOUT THE AUTHOR                                                       | xiii |

## ACKNOWLEDGEMENTS

Firstly, and foremost I would like to thank my supervisor **Prof. Dhevalapally B.**Ramachary, for his inspiring guidance and constant encouragement throughout the course of the present investigations. It has been a great privilege and honour to be associated with him.

I take this opportunity to thank Prof. K. C. Kumara Swamy, Dean, School of Chemistry for providing all the facilities needed for my research. I extend my sincere thanks to former Dean Prof. Anunay Samanta and all the faculty members of the School of Chemistry for their timely help and cooperation during my Ph. D. program.

It is a great privilege to express my heartfelt regards to all my teachers during the entire tenure of my educational career especially to Dr. Narasimha reddy garu, Dr. Ramachary garu, Dr. Ramachary garu, Dr. Ramu garu, Dr. Sailu garu, Dr. K. Anebouselvy garu and Dr. P. Raghavaiah garu for their support and encouragement.

I take this occasion to express my love to the people who are with me at any conditions like Ch. Naga rani, Santhosh, Karthik, Sandeep, Naim thulla, Prashanth, Priyanka, Parveen, Manjula, Rajini, Yasmeen, Roja rani, Vijaya, Radhika, Shebha samreen, Sandhya rani, Soumya, Nagaraju, Mahesh, Sathish, Rasood, Anil, Ramesh, Ganapathi, Thahaseen, Ramesh (Inter), Vijaya Pranatha, Kumara Swamy, Raju, and Mounika.

It gives me great pleasure to thank my well-wishers Dr. Shruthi K. S. (Big sister) and Dr. Sashikanth Reddy, Dr. Surendra Reddy during my Ph. D. program. I extend my sincere thanks to my well-wishers Dr. Sabitha garu and Dr. Ravi babu garu for staying and giving proper support when I feel low in life.

I am extremely thankful to my lab seniors and labmates Dr. P. Srinivasa Reddy, Dr. R. Madhavachary, P. Murali Krishna, Dr. A. Suresh, Dr. Mallikarjun Reddy, Dr. Sreekanth Reddy, Dr. P. Swamy, Dr. G. Thirupathi, Dr. Rehana, Prabhakar, Jagjeet,

Surendra reddy, Pritam, Akram, Gorachand, Ashok, Vamshi krishna, Rajya laxmi, Sravanthi, Sai lalitha, Jyothi and Mounika for their co-operation and discussions

I would like to express my special thanks to Dr. Sudhir, Dr. Anil, Dr. Surya Narayana, Dr. Junaid (while solving X-ray crystal data) for their helpful discussions throughout the course.

I would like to express my heartfelt thanks to Prof. G. Mehtha, Prof. Periasamy, Prof. R. Balamurugan and Prof. Y. Srinivasarao lab members for their generous help and useful discussions during Ph. D. program.

I am very grateful to all my friends and colleagues in School of Chemistry Prasad, Umamehesh, Chandrahas, Ramesh, Basha, Nagamaiah, Shanker, Rathode, Apurbe, Saddam, Tasneem, Dr. Shoukath, Dr. Majji Shanker, Dr. Radhika, Srinivas, Rajesh, Tabbasum, and Sneha (Little sister)

I acknowledge the extreme support provided by the technical and non-teaching staff of the School of Chemistry. Mrs. Vijayalaxmi, Satyanarayana, Thurabauddin, Durgesh Singh (for their help in recording NMR immediately whenever I am in need) Bhaskara Rao, Mrs. Asia Perwej, G. S. Maruthi (for helping me in doing HRMS experiments) V. M. Shetty, A. R. Shetty, Deelip, Venkatesh, Aleem (Late), Geetha, Anand, and Mahesh for their timely help and support.

National Single Crystal X-ray Facility, funded by DST (New Delhi) in School of Chemistry is highly acknowledged. I am thankful to IGM library for providing excellent books and journals. Financial assistance by CSIR (New Delhi) is gratefully acknowledged.

Finally, and most importantly, I would like to thank my mother Raziya Begum garu, father Allauddin (Late) garu, my sister Shahanaz, my brother Rabbani, and my brother-in-law Azarauddin for their support, encouragement and deserves great appreciation. It is also worth mentioning my dearest person Ruxana Begum for being mental support during the submission of my thesis. The unconditional love of my

vii

parents, my sister and their blessings (prayers) made me what I am today and I owe everything to them. Dedicating this thesis to them is a minor recognition for their relentless support and love.

Mohammed Anif Pasha

### **PREFACE**

Lawsone is an important class of structural motifs, which is widely found in numerous natural and synthetic compounds. Lawsone and its isomeric forms are common core structure in biologically and structurally important molecules. Lawsone is the main key ingredient of henna extracts, which is traditionally used as a coloring agent for skin, hair and nails over many decades. Lawsone was used as a synthon for the synthesis of various pharmaceutically and biologically important molecules, lawsone is also used as starting material in a variety of reactions like C/O-alkylation, C-alkylation via the Michael addition, dimerization reactions, free radical alkylation of lawsone, synthesis of C-alkylated derivatives of lawsone by the Hooker oxidation, natural product synthesis, naphthoquinone fused chromone synthesis, xanthene synthesis via O-quinone methide, and heterocyclic compounds synthesis. The present thesis entitled "Lawsone as Synthon for the Discovery of Organocatalytic **Reactions**" describes the utilization of lawsone for organocatalytic reactions to solve some of the problems in the synthetic organic chemistry, which are unsolved over decades and generate biologically, pharmaceutically active scaffolds from the small key intermediates. In all these sections, a brief introduction is provided to keep the present work in proper perspective, the compounds are sequentially numbered (bold), and references are marked sequentially as superscript and listed at the end of the thesis. All the Figures included in the thesis were obtained by DIRECT PHOTOCOPY OF THE ORIGINAL SPECTRA and in some of them, uninformative areas have been cut to save the space.

In continuation to the organocatalytic three-component reductive alkylation or reductive coupling reactions developed in our group, the first chapter illustrates an amine-catalyzed three-component reductive coupling protocol for the high-yielding, chemo- and regioselective propargylation on cyclic/acyclic CH-acid systems, which is an unsolved problem in synthetic organic chemistry over decades. It is an economical, efficient, catalytic, metal-free protocol where the variety of CH-acids and propargyl

aldehydes are employed as key ingredients under (S)-proline catalysis. Furthermore, these propargylated cyclic systems were transformed into functionally rich dihydropyrans and C-methylated propargylated cyclic systems, which are prolific synthons in natural products and medicinal chemistry.

In the second chapter, we developed the 5-(enolexo)-exo-trig cyclization to synthesize pharmaceutically and structurally important bicyclo[3,2,1]octanes particularly methanobenzo[7]annulenes in very good yields with excellent enantio-and diastereoselectivities. To synthesize these skeletons an efficient, green and sustainable protocol is required. Herein, we accomplished those using simple starting materials like lawsone, aldehydes, alkyl vinyl ketones and a catalytic amount of chiral thiourea catalyst. This protocol ensues an unprecedented organocatalytic [3+2] cycloaddition reaction from readily accessible 2-alkyl-3-hydroxynaphthalene-1,4-diones and alkyl vinyl ketones via 5-(enolexo)-exo-trig cyclization. Furthermore, these methonobeno[7]annulens are transformed into functionally rich trihydroxy methanobenzo[7]annulenes.

In continuation to the development of intermolecular 5-(enolexo)-exo-trig cyclization reactions, the third chapter demonstrates the organocatalytic formal intramolecular [3+2]-cycloaddition reaction to accomplish structurally complex methanodibenzo[a,f]azulenes and methanobenzo[f]azulens in good yields with excellent selectivities. The resultant molecules are basic skeletons of important antibiotics and highlight the value of this formal intramolecular [3+2]-cycloaddition as a key protocol. A variety of lawsones, dialdehydes, CH-acids/Wittig reagents are employed as starting materials under the secondary amine-catalysis/self-catalysis. Furthermore, these methonodibenzo[a,f]azulenes are transformed into functionally rich bio-inspired methanobenzo[a,f]azulenes.

In the fourth chapter, we demonstrated the asymmetric synthesis of structurally and biologically important methanobenzo[f]azulenes with high molecular complexity in good yields with excellent enatio- and diastereoselectivities. In this protocol variety of

lawsones, aliphatic dialdehydes and Wittig reagents are employed as key starting materials under the chiral quinine thiourea catalysis. Furthermore, these chiral methonobeno[f]azulenes are transformed into functionally rich bio-inspired chiral methanobenzo[f]azulenes.

## LIST OF ABBREVIATIONS

 $\begin{array}{ccc} Ac & acetyl \\ AcOH & acetic acid \\ Ac_2O & acetic anhydride \end{array}$ 

Anal. analysis
aq. aqueous
Ar aryl
Bn benzyl
Bp boiling point
br broad
Bu butyl

tBu or 'Bu tertiary-butyl n-BuLi n-butyl lithium calcd. calculated cat. catalytic cm centimeter

CS/H Claisen-Schmidt/Henry

CS/I Claisen-Schmidt/isomerisation

CSP chiral stationary phase

DABCO 1,4-Diazabicyclo[2.2.2]octane

dABq doublet of AB quartet

DBU 1,8-Diazabicyclo[5.4.0]undec-7-ene

DCE 1,2-dichloroethane DCM dichloromethane dd doublet of doublet

ddd doublet of doublet of doublet

DDQ 2,3-Dichloro-5,6-dicyano-1,4-benzoquinone

de diastereomeric excess

DEPT distortionless enhancement by polarization transfer

**DFT** density functional theory DIBAL-H diisobutylaluminium hydride **DMAP** dimethylaminopyridine **DMF** *N*,*N*-dimethylformamide **DMSO** dimethyl sulfoxide dr diastereomeric ratio doublet of triplet dt **EDG** electron donating group ee enantiomeric excess

eq. equation equiv. equivalent(s) Et ethyl

EtOH ethyl alcohol Et<sub>2</sub>O diethylether

EWG electron withdrawing group

Fg functional group

Fig. figure gram (s)

h hour (s) Hz hertz Hex hexyl

human immunodeficiency virus HIV highest occupied molecular orbital HOMO **HPLC** high-performance liquid chromatography

 $^{i}$ Pr isopropyl IR infrared

LiAlH<sub>4</sub> lithium aluminum hydride

literature lit. multiplet

*m*-CPBA *m*-chloro perbenzoic acid

M molarity Mp. melting point Me methyl

milligram (s) mg

metabotropic glutamate receptor 1 mGluR1

mL milliliter millimole mmol MW microwave

**NMR** nuclear magnetic resonance

*N*-methylpyrrolidine **NMP** 

OrgRC organocatalytic reductive coupling

**PCC** pyridinium chlorochromate **PET** positron emission tomography

Ph phenyl

parts per million ppm *p*-toluenesulfonic acid p-TSA

ру pyridine pr propyl quartet q RT

room temperature

singlet secondary sec triplet

**TBHP** tertiary-butyl hydroperoxide Potassium tertiarybutoxide *t*BuOK

triplet of doublet td

tert tertiary

**TFA** trifluoroacetic acid tetrahydrofuran THF

thin layer chromatography TLC

**TMS** trimethylsilyl toluenesulphonyl Ts UV ultraviolet

# Lawsone as Synthon for the Discovery of Organocatalytic Reactions

## 1.0 ABSTRACT

An amino acid-catalyzed three-component reductive coupling protocol has developed for the selective high-yielding synthesis of nearly fifty examples of propargylated cyclic/acyclic systems from the various propargyl aldehydes, cyclic/acyclic CH-acids, and Hantzsch ester at the ambient conditions. It is an economical, efficient, catalytic, metal-free protocol for the rapid gram-scale synthesis of propargylated cyclic/acyclic compounds, and many of these coupling compounds were purified by simple precipitation-filtration technique instead of column chromatography. Functionally rich propargylated cyclic-1,3-diketones were specifically transformed into dihydropyrans found in natural products and drugs through an annulative etherification reaction by using Lewis-acid (AgOTf) catalysis. Further, we developed the *C*-methylation reactions on propargylated cyclic-1,3-diketones, which are prolific synthons in natural products and medicinal chemistry.

In the second chapter, pharmaceutically and structurally important methanobenzo[7]annulenes were synthesized in excellent yields with excellent enantiodiastereoselectivities through an unprecedented competitive organocatalytic formal [3+2]-cycloaddition or domino Michael/5-(enolexo)-exo-trig cyclization from the readily available 2-alkyl-3-hydroxynaphthalene-1,4-diones and alkyl vinyl ketones.

In the third chapter, lawsones were transformed into functionally rich, unique carbon skeleton of methanodibenzo [a,f] azulenes and methanobenzo [f] azulenes in a

single- or two-pot operation by using five organocatalytic sequential reactions in very good yields with excellent selectivities. These resultant molecules are basic skeletons of important antibiotics and highlight the value of this formal intramolecular [3+2]-cycloaddition as a key protocol.

In the fourth chapter, we demonstrated the asymmetric synthesis of structurally and biologically important methanobenzo[f]azulenes with high molecular complexity in good yields with excellent enatio- and diastereoselectivities. In this protocol variety of lawsones, aliphatic dialdehydes and Wittig reagents are employed as key starting materials under the chiral quinine thiourea catalysis. Furthermore, these chiral methanobeno[f]azulenes are transformed into functionally rich bio-inspired chiral methanobenzo[f]azulenes.

## 2.0 INTRODUCTION

Figure 1: Selected natural compounds containing lawsone as core structure.

Quinones belong to a vital class of structural motifs, which are widely observed in several natural and synthetic compounds. Most of the natural and synthetic compounds with a quinone moiety are very important in several fields of chemistry, biochemistry and medicinal chemistry etc. Furthermore, synthetically or naturally available quinone moieties are possessing a hydroxyl group on quinone ring, namely lawsone and its isomeric forms found as a common core in biologically and structurally important molecules (Figure 1).<sup>[1]</sup>

Among several naphthoquinones, lawsone is the simplest form of naturally occurring naphthoquinone. Lawsone is also named as 2-hydroxy-1,4-naphthoquinone or hennotannic acid which is responsible for the red-dye pigment properties. The red-orange pigment (natural orange 6) is naturally obtained from the leaves of the henna plant. The red-dye pigmentation properties of henna are due to the chemical reaction of lawsone with keratin protein. Lawsone undergoes Michael addition reaction with the keratin protein in skin, hair, and nails, which results in a dark stain to the hair, skin and nails. The stronger interaction between lawsone and keratin protein resulted in the darker stain for skin, hair and nails and eventually, the darker stain sheds with the decreasing concentration of lawsone.

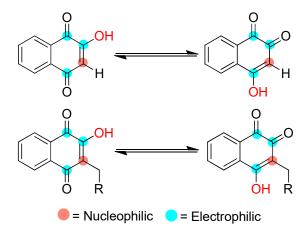



Figure 2: Reactivity pattern of lawsone.

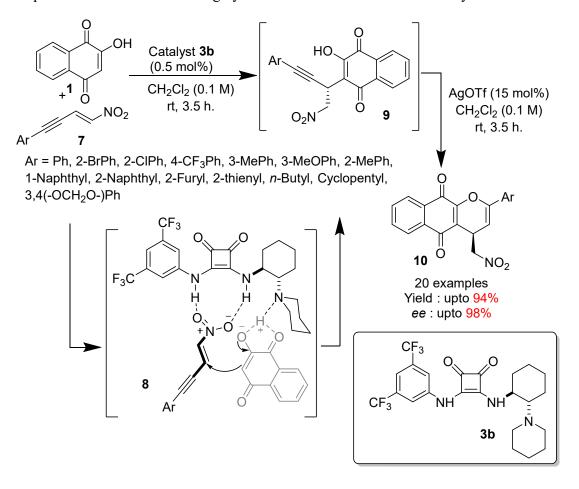
Henna extracts are used as a traditional coloring agent for skin, hair, and nails since early times of humanity. The henna extracts are also used in various platforms like pharmaceutical, cosmetic, cloth dyeing, acts as an antiaging additive to vulcanized natural rubber, oxidation of chlorinated compounds, corrosion inhibition for steel etc.

Since the beginning, researchers have been using lawsone as a starting material for the synthesis of various pharmaceutically and biologically important molecules. <sup>[1f]</sup> Generally, lawsone is functionally rich by having two carbonyl groups and one enolic hydroxyl group which makes lawsone so special among other substrates. Fascinatingly, lawsone acts as a nucleophile from an enolic position either as *O*-nucleophile or as *C*-nucleophile based on the reaction conditions applied, it also acts as an electrophile at carbonyl positions and this reactivity pattern is unaffected even if there is an alkyl/aryl substitution at the C-3 position (Figure 2). Due to this ambident nature of reactivity lawsone is widely used in synthetic organic chemistry.

In the last two decades, researchers are utilizing lawsone in many fields of chemistry such as synthetic, material, biological and pharmaceutical chemistry for the synthesis of important molecules which are of great importance to mankind. [1f] Particularly, lawsone is involved very much in chiral or achiral reactions like C/O-alkylation, C-alkylation via the Michael addition, dimerization, free radical alkylation of lawsone, C-alkylated derivatives of lawsone by the oxidation, natural product synthesis, naphthoquinone fused chromone synthesis, xanthenes synthesis via O-quinone methide, and heterocyclic compounds synthesis. [1f]

As our laboratory is working on the development of chemo-, regio-, enantio- and diastereoselective cycloaddition reactions for the one-pot synthesis of drug-like molecules through asymmetric organocatalysis, and in this thesis also reported the asymmetric reactions developed from the lawsone as starting material. To give the overview of lawsone reactivity, herein, we summarized the previous few selected

research work where lawsone is utilized as a starting material for the asymmetric organo-metal/organocatalyzed reactions.


## 2.1: Previous Asymmetric Reactions Developed from the Lawsone:

In 2016, Pericas and co-workers adopted the flow technique for the asymmetric 6 synthesis pyranonaphthoquinone through Michael addition hydroxynaphthoquinone 1 with nitroalkene 2 (Scheme 1).[2a] In this protocol, the authors prepared a column in which polystyrene-supported squaramide catalyst 3a was used. The solution of reactants and the solvents were passed through their respective channels which are connected to the polystyrene-supported squaramid catalyst 3a column. Herein, the reaction was performed with 4.5 mmol of nitroalkene 2, 1.1 equiv. of hydroxynaphthoquinone 1 and an optimal amount of catalyst 3a (3.2 µmol, 5 mol%) was used in DCM/THF (9:1) solvent system with 0.2 mL/min flow rate. Furthermore, the second oxa-Michael cyclization reaction was performed with the outstream collected in the prior transformation. It was directly used for the successive oxa-Michael cyclization reaction. Herein, saturated aq. NaHCO<sub>3</sub> solution was connected to the flow system and a 10 mL coil ( $\phi = 0.8$  mm, PTFE) as a reactor with a flow rate of 0.45 mL/min. Finally, high yields of pyranonaphthoquinone 6 with an excellent enantio- and diastereoselectivity were formed from the intermediate Michael adduct 5. Furthermore, the squaramide 3a initially interacts with nitroalkene 2 through two hydrogen bonds and the tertiary amine part of the catalyst activates the hydroxynaphthoquinone 1. Consequently, as depicted in the pre-transition state 4, lawsone 1 and nitroalkene 2 undergoes a Si, Si-facial attack and results in (2S,3R)intermediate 5. which further converted functionally into rich pyranonaphthoquinones 6 (Scheme 1).[2a]

**Scheme 1**: Pericas's protocol for the synthesis of chiral pyranonaphthoquinone 6 from the lawsone.

Successively, Enders and co-workers in 2016 reported the enantioselective synthesis of pyranonaphthoquinones **10**, using hydroxynaphthoquinones **1** and alkynenitroalkene **7** in the presence of chiral bifunctional tertiary squaramide **3b** and AgOTf catalysts (Scheme 2).<sup>[2b]</sup> Initially, the hydroxynaphthoquinone **1** was treated with alkyne-nitroalkene **7** in DCM (0.2 M) solvent under the influence of chiral

bifunctional tertiary amine squaramide catalyst **3b** (0.5 mol%) which furnishes the required Michael adduct **9** in high yield with excellent enantioselectivity.



**Scheme 2**: Enders protocol for the synthesis of pyranonaphthoquinones **10** from lawsone.

The formed Michael adduct **9** upon subsequent reaction with 15 mol% AgOTf in DCM undergoes hydroalkoxylation through the π-activation of the alkyne by silver metal and generates exclusively *6-endo-dig*-product **10**. In the catalytic cycle, chiral bifunctional tertiary amine catalyst **3b** synergistically interacts with alkyne-nitroalkene **7** by squaramide-*NH* through a double hydrogen bond and hydroxynaphthoquinone **1** interacts with tertiary amine part of the catalyst. Finally the favoured *Re,Re*-facial attack takes place to generate enantiomerically rich Michael adduct **9**. The alkyne

group of Michael adduct **9** interacts with the silver catalyst through electrophilic activation which facilitates the *6-endo-dig* cyclization, resulted in pyranonaphthoquinone **10** in high yields with excellent enantioselectivity (Scheme 2).

**Scheme** 3: Kesavan's approach for the synthesis of chiral spiro-oxindole naphthoquinones 14 from lawsone.

In 2016, Kesavan and co-workers elegantly explained an enantioselective organocatalytic synthesis of spiro-oxindole naphthoquinones 14 by reacting hydroxy naphthoquinone 1 with ketoester 11, through a sequence of Michael/hemiketalization

reactions using (S)-proline derived chiral bifunctional tertiary amine thiourea catalyst **3c** (Scheme 3).<sup>[2c]</sup> Herein, the authors performed a reaction with 1.0 equiv. of both hydroxyl naphthoquinone **1** and oxindole ketoester **11** in the presence of an optimal amount of chiral bifunctional tertiary amine thiourea catalyst **3c** in DCM solvent, results in the formation of a spiro-oxindole naphthoquinone hemiketal **13**, which further reacts with ammonium acetate to generate spiro-oxindole naphthoquinones **14** with excellent yields and enantioselectivity. Furthermore, as depicted in the *pre*-transition state **12**, oxindole ketoester **11** interacts with thiourea-NH through double hydrogen bond and hydroxynaphthoquinone **1** interacts with the tertiary amine part of the catalyst. Finally, the Re face of the oxindole ketoester **11** approaches the Re face of the hydroxyl naphthoquinone **1**. As a result of this approach, Re,Re-facial attack takes place to generate spiro-oxindole naphthoquinone **14** in excellent enantioselectivity (Scheme 3).<sup>[2c]</sup>

Similarly, Wang and co-workers in 2016 described the tandem enantioselective Michael/cyclization reaction between oxindole  $\alpha$ -ketoester 11 and hydroxynaphthoquinone 1 using modularly designed cinchona derived thiourea catalyst 3d to furnish spiro[oxindole-benzo[g]chromenedione] 13 in high yields with excellent enatio- and diastereoselectivity (Scheme 4). [2d] Herein, 1.2 equiv. of hydroxynaphthoquinone 1 is treated with 1.0 equiv. of oxindole  $\alpha$ -ketoester 11 in the presence of 5 mol% quinine thiourea catalyst 3d in DCM solvent for 12 h which furnishes spiro[oxindole-benzo[g]chromenedione] 13. Furthermore, as depicted in the pre-transition state 12' oxindole ketoester interacts with thiourea-NH through a double hydrogen bond and hydroxynaphthoquinone 1 interacts with the tertiary amine part of the catalyst. Finally, Re face of the oxindole  $\alpha$ -ketoester 11 approaches the Re face of the hydroxyl naphthoquinone 1. As a result of this approach Re, Re-facial attack takes place to generate spiro[oxindole-benzo[g]chromenedione] 13 with excellent enantioselectivity (Scheme 4). [2d]

**Scheme 4**: Wang's approach for the synthesis of chiral spiro-oxindole naphthoquinones 13 from lawsone.

In 2018, Otaka and co-workers elegantly disclosed the use of recyclable thiourea-based chiral tertiary amine catalyst **3e** (Scheme 5).<sup>[2e]</sup> Herein, the authors developed an asymmetric organocatalyst containing a hydrophobic anchor which contributes to the main characteristics of the recyclable catalyst. Furthermore, this recyclable chiral bifunctional tertiary amine catalyst **3e** is highly soluble in non-polar/less polar solvents and sparingly soluble in polar solvents which shows a comparable performance when compared with the parent catalyst. The authors examined the asymmetric Michael reactions with the prepared recyclable catalyst, the Michael reaction between nitrostyrene **15** and hydroxynaphthoquinone **1** in the presence of 10% of catalyst **3e** in toluene solvent, reaction performed well at 30 °C and delivers

the required Michael adduct 17 in good yields with excellent enantioselectivity. As represented in the *pre*-transition state 16, nitrostyrene 15 interacts with thiourea-*NH* through hydrogen bond and the tertiary amine of the catalyst activates the enolic hydroxyl group of hydroxynaphthoquinone 1. As a result of this synergistic activation *Re,Re*-facial attack takes place and that leads to high asymmetric induction in Michael adduct 17 (Scheme 5).<sup>[2e]</sup>

Scheme 5: Otaka's approach for Michael reactions using lawsone.

In 2018, Rawal and co-workers sophisticatedly explained the synthetic route for chiral Michael adduct **20** under the influence of thiosquaramide based chiral tertiary amine **3f** catalyst (Scheme 6).<sup>[2f]</sup> Herein, the authors developed a synthetic protocol for the tertiary amine thiosquaramide catalysts from dicyclopentyl dithiosquarate, their catalytic performance was demonstrated by several Michael/aza-Diels-Alder reactions.

Scheme 6: Rawal's approach of using lawsone for the conjugate addition reaction.

The conjugate addition reaction between hydroxynaphthoquinone **1** and  $\beta$ , $\gamma$ -unsaturated  $\alpha$ -keto ester **18** in the presence of thiosquaramide catalyst **3f** in DCM solvent for 1 h furnishes the conjugate addition product **20** in moderate yields with excellent enantioselectivity. Furthermore, as shown in the *pre*-transition state **19**, *Re*-face of the  $\beta$ , $\gamma$ -unsaturated  $\alpha$ -keto ester **18** approaches the *Si*-face of the hydroxynaphthoquinone **1**, which leads to the *Re*,*Si*-facial attack to furnish the conjugated products **20** with excellent facial selectivity (Scheme 6). [2f]

Ar AcO 
$$H$$
 Catalyst  $g$  (20 mol%)

 $C_6H_6$  (0.4 M)

 $C_6H_6$  (0.4 M)

 $C_6H_6$  (0.4 M)

 $C_9H_6$  (0.

**Scheme** 7: Tong's approach for atroposelective [4+2]-annulation reactions using lawsone.

In 2019, Tong and co-workers strikingly described the phosphine-catalyzed atroposelective [4+2]-cycloaddition reactions between hydroxynaphthoquinone 1 and  $\delta$ -acetoxy allenoates 21 with excellent yields and enantioselectivity (Scheme 7). [2g] Initially, the reaction was performed with commercially available

hydroxynaphthoquinone 1 and  $\delta$ -acetoxyallenoates 21 containing a phenyl group in the presence of PPh<sub>3</sub> catalyst in benzene solvent and the desired product 23 was obtained in moderate yield. After investigating different substituents and a variety of catalysts, the authors found that bromo-phenyl allenoates 21 and catalyst 3g showed satisfying results. Furthermore, as represented in the *pre*-transition state 22, the tertiary amine group of the catalyst interacts with hydroxynaphthoquinone 1 and the tertiary phosphine part of the catalyst interacts with allenoates 21, which leads to the formation of phosphonium diene. Interestingly, the reaction proceeds in a pseudo-intramolecular fashion and generates atroposelective products 23 in moderate to good yields and moderate to excellent enantioselectivity (Scheme 7). [2g]

Catalyst 3h (10 mol%)

THF (0.1 M)
rt, 4-6 h.

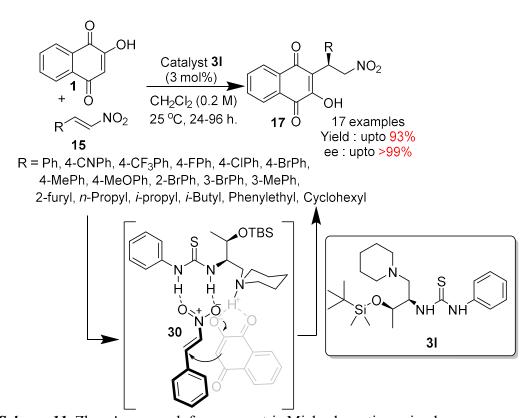
CF<sub>3</sub>

$$F_3$$
 $F_3$ 
 $F_4$ 
 $F_5$ 
 $F_$ 

Scheme 8: Zlotin's approach for asymmetric Michael reaction using lawsone.

Successively, Zlotin and co-workers in 2019 enlighteningly explained a correlation between the equilibrium ratios of tautomeric products furnished in the asymmetric organocatalytic Michael reaction of hydroxynaphthoquinone 1 with  $\beta$ , $\gamma$ -unsaturated  $\alpha$ -keto ester 18 (Scheme 8). Particularly, the Michael addition reaction between hydroxynaphthoquinone 1 and  $\beta$ , $\gamma$ -unsaturated  $\alpha$ -keto ester 18 in the presence of squaramide catalyst 3h in THF for 6 h furnishes the Michael addition product 20 which is in equilibrium with product 25. Particularly, the higher electron-withdrawing nature of hydroxynaphthoquinone, leads to increase in the nucleophilicity of hydroxyl group of hydroxynaphthoquinone 1 and also increase in the electrophilicity of the carbonyl group in the  $\beta$ , $\gamma$ -unsaturated  $\alpha$ -keto ester 18, which is the reason for the equilibrium between product 20 and 25. Furthermore, as shown in the *pre*-transition state 24, *Re*-face of the  $\beta$ , $\gamma$ -unsaturated  $\alpha$ -keto ester 18 approaches the *Si*-face of the hydroxynaphthoquinone 1, which leads to the *Re*,*Si*-facial attack to furnish the Michael products 20 and 25 with excellent facial selectivity (Scheme 8).

Similarly, Kupai and co-workers in 2019 reported the successful use of binaphthyl-cinchona based thiosquaramide 3i as a catalyst for asymmetric Michael addition reactions between hydroxynaphthoquinone 1 and  $\beta,\gamma$ -unsaturated  $\alpha$ -keto ester 18 to furnish enantiomerically pure product 20/25 using 1.0 mol% catalyst loading in DCM solvent (Scheme 9). Furthermore,  $\beta,\gamma$ -unsaturated  $\alpha$ -keto ester 18 interacts with squaramide-NH through double hydrogen bond and the tertiary amine part of the catalyst activates the hydroxynaphthoquinone 1. As a result of this substrate-catalyst interactions Si,Re-facial attacks take place to furnish enantiomerically pure product 20/25 (Scheme 9). [2i]


Scheme 9: Kupai's approach for asymmetric Michael addition reaction using lawsone.

Very recently Liu and co-workers successfully utilized the supra-molecular organocatalysis involving tertiary amine thiourea catalysis and iminium catalysis for asymmetric Michael addition and cyclization reactions (Scheme 10).<sup>[2k]</sup> In their work, 2-hydroxycinnamaldehyde **27** and hydroxynaphthoquinone **1** undergoes Michael

addition reaction in the presence of 20 mol% of each **3j** and **3k** in DCM at 0 °C furnishes Michael adduct, which on further treatment with BF<sub>3</sub>-Et<sub>2</sub>O in DCM results in benzo fused 2,8-dioxabicyclo[3.3.1]nonane **29/29**° with moderate yield and good enantioselectivity.

Scheme 10: Liu's approach of Michael addition/cyclization reactions using lawsone.

Furthermore, interaction of catalyst **3j** with 2-hydroxycinnamaldehyde **27** generates the iminium species meanwhile, tertiary amine interacts with hydroxynaphthoquinone **1** and the thiourea-*NH* part of the catalyst co-ordinate with iminium species with a double hydrogen bond. Finally *Re,Si*-facial attack takes place to generate enantiomerically pure product **29/29**° (Scheme 10). [2k]



Scheme 11: Zhang's approach for asymmetric Michael reaction using lawsone.

In 2020, Zhang and co-workers explained the enantioselective Michael addition reactions on hydroxynaphthoquinone **1** and  $\beta$ -nitrostyrene **15** under threonine-derived thiourea catalyst **31** (Scheme 11). Herein, the authors performed a series of reactions with a variety of substituents on the threonine-derived catalyst. Based on their detailed investigation on catalysts and solvents effects, it is found that 3.0 mol% catalyst **31** and 0.2 M toluene solvent are the optimal conditions for this Michael addition reaction. Furthermore,  $\beta$ -nitrostyrene **15** interacts with thiourea-*NH* through hydrogen bond and

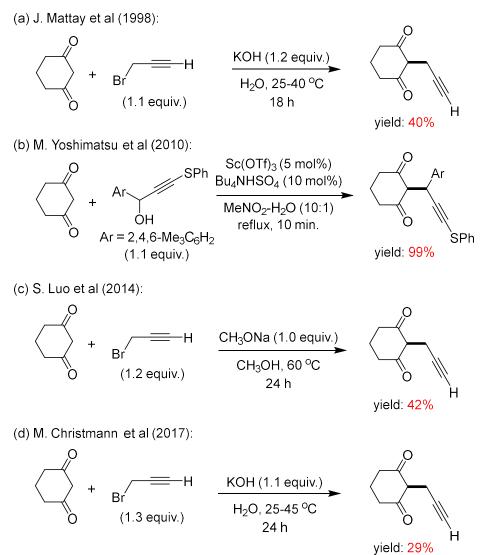
hydroxynaphthoquinone 1 interacts with tertiary amine part of the catalyst. Due to this orientation of the catalyst-substrate complex depicted in the *pre*-transition state 30, *Si,Re*-facial attack takes place to furnish Michael adducts with good enantioselectivity (Scheme 11). [2j]

Scheme 12: Li's approach of asymmetric Michael reactions using lawsone.

In 2020, Li and co-workers beautifully explained the use of calix[4] arene-tethered squaramide catalyst **3m** for asymmetric Michael addition reactions. Herein, the

authors developed calix[4] arene with the cavity of upper-rim functionality. The calix[4] arene squaramide catalyst 3m has a synergistic action with help of calix[4] arene cavity and the chiral catalytic part which induces asymmetric induction  $12).^{[21]}$ (Scheme Furthermore, asymmetric Michael reaction between hydroxynaphthoquinone 1 and ethyl (E)-2-oxo-4-phenylbut-3-enoate 18 in the presence of 2.5 mol% of 3m performed well in DCM solvent at 20 °C and that furnishes the product 25 in good yields with good to excellent enantioselectivity. Particularly, as shown in the *pre*-transition state 31 the  $\alpha$ -keto ester 18 interact with one of the squaramide-NH through double hydrogen bond and its benzene ring was held in proper orientation in the calix[4] arene cavity through  $\pi - \pi$  stacking interactions like host-guest interaction while hydroxynaphthoquinone gets activated by tertiary amine part of the catalyst. Finally, synergistic activation of calix[4] arene squaramide, facilitates the Si, Si-facial attack to deliver product 25 in excellent yields with excellent enantioselectivity (Scheme 12). [21]

# 3. Organocatalytic Reductive Propargylation: Scope and Applications


### 3.1 Introduction

Reaction engineering is all about constructing different bonds in a highly selective, efficient and greener mode, which is a key supporting technique for the synthesis of structurally important molecules including natural products, drugs and materials.<sup>[4]</sup> One such reaction is the chemoselective propargylation of cyclic 1,3-diones at C-2 position. Owing to its numerous potential applications in the synthesis of drugs and natural products, chemoselective C-propargylation drew the attention of many research groups.<sup>[5]</sup>

In the previous methods, the C-2 selective propargylation was performed using base in solvent with or without phase transfer catalyst, but it suffered competition with *O*-propargylation. It is evident from the literature that many researchers succeeded in double propargylation at C-2 position of cyclic 1,3-diones.<sup>[5]</sup> But, when it comes to mono propargylation at C-2 position, it has always ended up in low yields and sometimes even failed in introducing the functionally rich propargyl groups. As of today, there is no perfect high-yielding protocol for C-2 selective mono propargylation of cyclic 1,3-diones.

Earlier in 1998, Mattay *et al.* and later in 2017, Christmann *et al.* reported mono propargylation of 1,3-cyclohexanedione with propargyl bromide induced by KOH at 25-45 °C in water with longer reaction times and poor yields (40% and 29% respectively, Scheme 13a/d). In 2010, Yoshimatsu *et al.* reported a regioselective mono propargylation of 1,3-cyclohexanedione using sterically crowded 3-sulfanylpropargyl alcohol catalyzed by the scandium triflate in MeNO<sub>2</sub>-H<sub>2</sub>O (10:1) at

reflux conditions to furnish propargylated 1,3-diketone in good yields (Scheme 13b).<sup>[6b]</sup> Later, Luo *et al.* in 2014 reported the mono propargylation of 1,3-cyclohexanedione at C-2 position by using propargyl bromide, induced by sodium methoxide in methanol at 60 °C with longer reaction time and poor yield (42%, Scheme 13c).<sup>[6c]</sup> In these monopropargylation methods, either the process lacks favourable yield or was performed only on some special substrates (Scheme 13).<sup>[6]</sup>



Scheme 13: Previous Reports on the Selective C-Propargylation of Cyclic-1,3-diketones

(a) Cu-catalyzed asymmetric borylative cyclization of alkynes with ketones: S. J. Meek et al (2019)

O Me B(pin) and 
$$B(pin)$$
  $B(pin)$   $B(pin)$ 

(b) Iridium- or Rhodium-catalyzed arylative cyclization of alkynones: H. W. Lam et al (2017 and 2014)

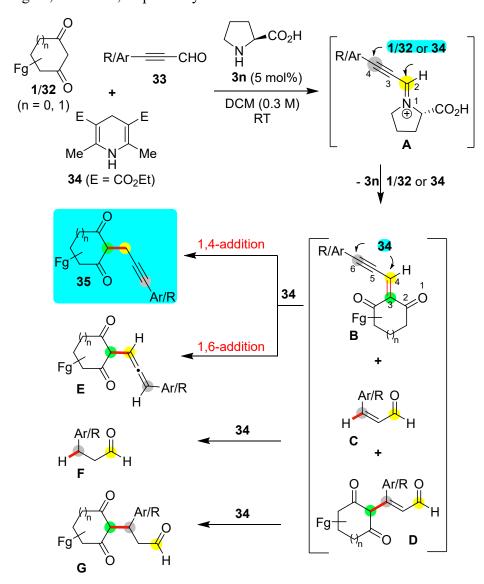
(c) Asymmetric synthesis of carbocyclic propellanes: M. Christmann et al (2017)

(d) Diastereoselective synthesis of a seco-taxane: J. Prunet et al (1999)

(e) Metal complexation in the synthesis of medium-ring acetylenic lactones: N. E. Schore et al (1992)

(f) A new synthesis of cyclopentenones, methyl jasmonate: G. Buchi et al (1971)

methyl jasmonate


**Scheme 14**: Selected Applications from 2-(Prop-2-yn-1-yl)cyclic-1,3-diones as Synthons

The significance of the chemoselective mono propargylation on cyclic 1,3-diketones is comprehensible from the few reports enlisted in Scheme 14.<sup>[7]</sup> In 2019, Meek *et al.* reported the asymmetric borylative cyclization of alkynes with ketones by using propargylated cyclic 1,3-diones as starting materials (Scheme 14a).<sup>[7a]</sup> For the stereoselective racemic synthesis of complex carbocyclic compounds by Lam *et al.* in 2017/2014 and asymmetric synthesis of carbocyclic propellanes by Christmann *et al.* in 2017, the propargylated cyclic 1,3-diones were used as the key staring materials (Scheme 14b-c).<sup>[7b-d]</sup>

Later in 1999, Prunet *et al.* synthesized interesting seco-taxane from 2-methyl-2-propargylcyclohexane-1,3-dione (Scheme 14d).<sup>[7e]</sup> In 1992, Schore *et al.* synthesized metal-complexation with macrocyclic lactones starting from 2-(hydroxybutynyl) derivatives of 1,3-cyclohexanedione (Scheme 14e).<sup>[7f]</sup> In 1971, Buchi *et al.* reported the synthesis of methyl jasmonate which is a valuable raw material in modern perfumery, starting from simple mono propargylated 1,3-cyclohexanedione (Scheme 14f).<sup>[7g]</sup> By considering the shortcomings of the available procedures for the chemoselective mono propargylation on cyclic-1,3-diketones and the importance of the requirement for an efficient method (Scheme 13), we decided to take up the challenge of developing a simple protocol through which one can access various cyclic 1,3-diones possessing different functionalized propargyl groups at C-2 position (Scheme 15).

Our reaction design as depicted in Scheme 15 suggests that amino acid **3n** would catalyze three-component reductive coupling between cyclic 1,3-diones **1**/**32**, propargyl aldehydes **33** and Hantzsch ester **34** at the ambient conditions in DCM. First, amino acid (S)-proline **3n** would selectively react with propargyl aldehydes **33** to generate the iminium ion **A** formation by 1,2-addition. Secondly, in situ generated iminium ion **A** intermediate may undergo reaction with both of the nucleophiles **1**/**32** or/and **34** through 1,2- or 1,4-additon. In situ reaction of iminium ion **A** with cyclic 1,3-diones **1**/**32** can produce the intermediates **B** and **D** through 1,2-addition (Knoevenagel condensation) and 1,4-addition (Michael addition), respectively (see Scheme 15).

In a similar manner, reaction of iminium ion **A** with **34** can produce olefin-aldehydes **C** through 1,4-additon. Thirdly, reduction or transfer hydrogenation of intermediates **B** with Hantzsch ester **34** could result in the formation of products **35** or/and **E** through 1,4-addition or 1,6-addition, respectively. In a similar manner, reduction or transfer hydrogenation of other intermediates **C** and **D** with **34** could produce the products **F** and **G** through 1,4-addition, respectively.



Scheme 15: Reaction Design for the Chemoselective C-Propargylation of CH-Acids

Possible formation of four products **35**, **E**, **F**, and **G** from the three-component coupling reaction under the amino acid-catalysis made more challenging to investigate the selective synthesis of designed products (Scheme 15).<sup>[8]</sup>

## 3.2 Results and Discussions

### 3.2.1 Reaction optimization:

Based on the many applications of lawsone derivatives in medicinal to material chemistry, [3] we decided to investigate the three-component reductive coupling reaction by choosing 2-hydroxynaphoquione 1a/32a, 3-phenylpropiolaldehydes 33a, and Hantzsch ester 34 as the substrates. Accordingly, when we treated 1a/32a with 33a under (S)-proline 3n catalysis, a Knoevenagel condensation product was formed, which upon further sequential treatment with Hantzsch ester 34 resulted in 96% of the reductive coupling product 35aa.

Accordingly, when we treated 1a/32a with 33a under (S)-proline 3n catalysis, a Knoevenagel condensation product was formed, which upon further sequential treatment with Hantzsch ester 34 resulted in 70% of the reductive coupling product 35aa (not mentioned in Table 1). Surprisingly, when we performed one-pot reaction of 1.0 equiv. of 1a/32a, 2.0 equiv. of 33a and 1.0 equiv. of 34 in the presence of 20 mol% of (S)-proline 3n in DCM at room temperature furnished the reductive coupling product 35aa in 96% yields within 10 minutes respectively (Table 1, entry 1), which opened a new window for the 'three-component reductive propargylation' (TCRP) reaction. Notably, we are not observed formation of other possible products Eaa, Faa, Gaa and 3,3'-(3-phenylprop-2-yne-1,1-diyl)bis(2-hydroxynaphthalene-1,4-dione) in the above reaction. We proceeded with further optimization, by reducing the catalyst loading to 15, 10 and 5 mol%, which resulted in 96%, 98% and 97% yield of 35aa with 15, 20 and 30 minutes of reaction times, respectively (Table 1, entries 2-4).

Table 1: Investigation of the Reductive Propargylation on Cyclic-1,3-dione 32a/b.[a]

| entry          | <b>3n</b> (mol %) | T (min) | yield <b>35aa</b> (%) <sup>b</sup> |
|----------------|-------------------|---------|------------------------------------|
| 1              | 20                | 10      | 96                                 |
| 2              | 15                | 15      | 96                                 |
| 3              | 10                | 20      | 98                                 |
| 4              | 5                 | 30      | 97                                 |
| 5 <sup>c</sup> | 5                 | 180     | 89                                 |

| entry                              | <b>3n</b> (mol %) | T (min) | yield <b>35bb</b> (%) <sup>b</sup> |
|------------------------------------|-------------------|---------|------------------------------------|
| 6                                  | 20                | 5       | 93                                 |
| 7                                  | 15                | 35      | 90                                 |
| 8                                  | 10                | 50      | 90                                 |
| 9                                  | 5                 | 60      | 93                                 |
| 10 <sup>c</sup><br>11 <sup>d</sup> | 5                 | 180     | 76                                 |
| 11 <sup>d</sup>                    | 5                 | 300     | 70                                 |

<sup>[a]</sup>Reactions were carried out in DCM (1.0 mL) with 2.0 equiv of **33a** (0.6 mmol) and 1.0 equiv of **34** (0.3 mmol) relative to the **1a/32a** (0.3 mmol) in the presence of x mol% of (S)-**3n**. <sup>[b]</sup> Yield refers to the column-purified product. <sup>[c]</sup> 1.5 equiv amount of **33a/33b** used. <sup>[d]</sup> 1.0 equiv amount of **33b** used.

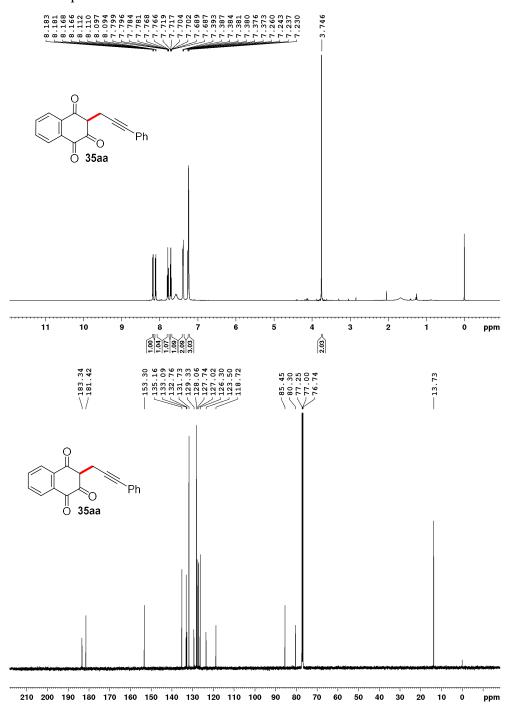
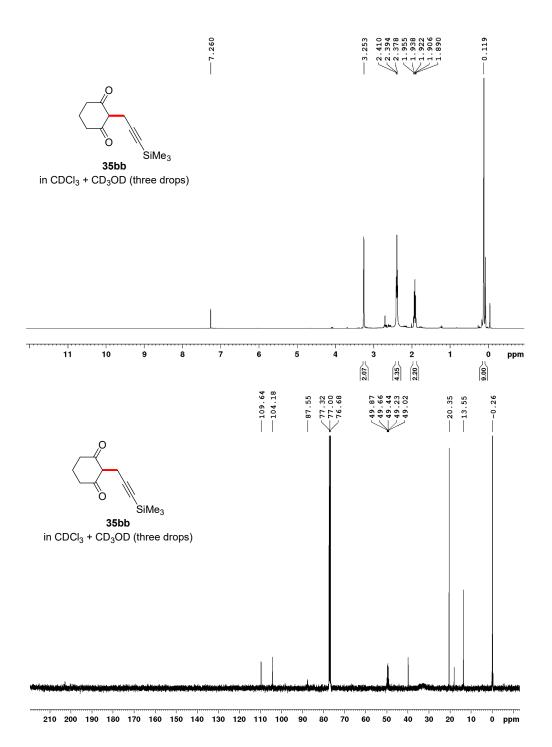
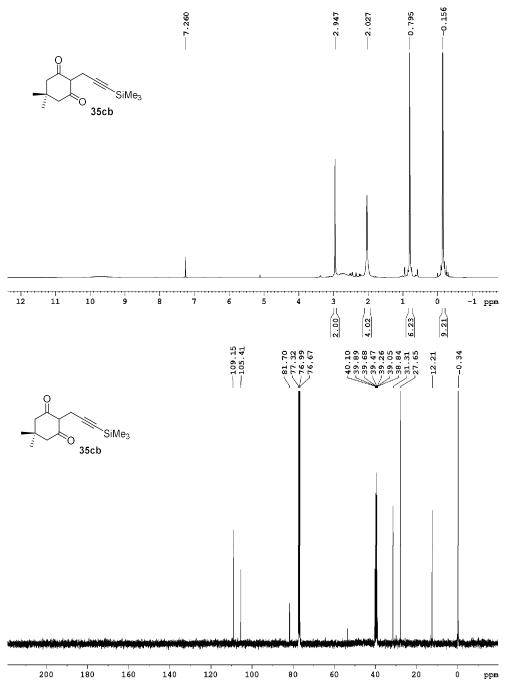




Figure 3: <sup>1</sup>H and <sup>13</sup>C spectra of the product **35aa**.



*Figure 4*: <sup>1</sup>H and <sup>13</sup>C spectra of the product **35bb**.

Though, there is no discernible effect of the catalyst loading on the reaction yield, it does have a visible effect on the reaction times which are inversely proportional to the catalyst loadings. As the reaction is satisfactorily facile in the presence of 5 mol% of catalyst 3n, we considered it to be the optimal catalyst loading. Next, we tried to minimize the equivalents of 33a (1.5 equiv. and 1.0 equiv.) which showed a negative impact on the reaction, with sluggish reaction times (180 min.) and yields 89%, which are comparatively low (Table 1, entries 5-6). Similarly, after understanding TCRP reactions on lawsone, we thought to simplify this three-component reductive coupling reaction by choosing 1,3-cyclohexanedione 32b, 3-(trimethylsilyl)propiolaldehyde 33b and Hantzsch ester 34 as the substrates and we observed the similar reactivity patterns as lawsone 1a/32a.


Same time TCRP reaction of **32a** (0.3 mmol), **33a** (0.6 mmol) and **34** (0.3 mmol) in DCM at 25 °C under the 5 mol% of piperidine-catalysis for 45 minutes furnished the **35aa** in 87% yield and under the 10 mol% of piperidine-catalysis for 30 minutes furnished the **35aa** in 81% yield, respectively (results not shown in Table 1) and these results are inferior to (*S*)-**3n** catalysis. Thus, the optimization process came to an end inferring entry 4 of Table 1 to be the best optimized condition.

### **3.2.2** Scope of TCRP reaction:

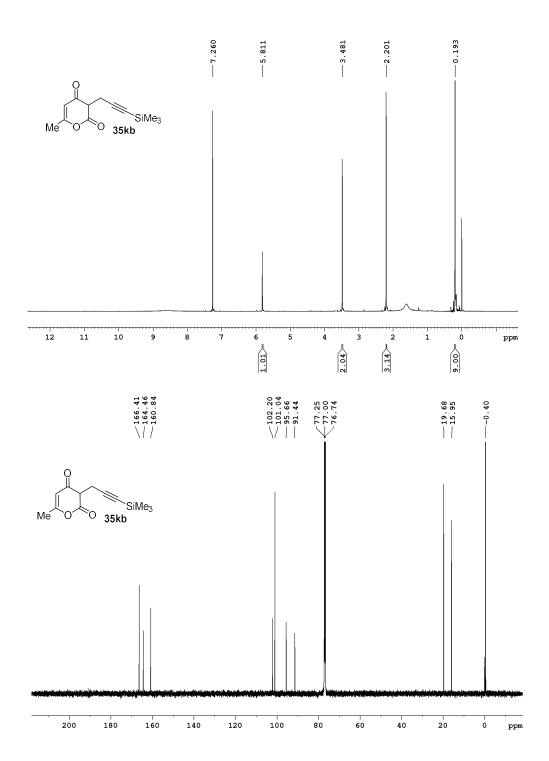

With optimized conditions in hand, we continued our studies of three-component reductive propargylation on various CH-acids or active methylene compounds in order to prove the strength and generality of the coupling reaction (Table 2). The 3-(trimethylsilyl)propiolaldehyde 33b reacted with various functionalized cyclic 1,3-diones 32a-q under the (S)-proline 3n catalysis in the presence of 34 to afford the corresponding reductive propargylation products 35ab-35mb with good to excellent yields (Table 2). Many of these coupling reactions completed within the range of 9 min. to 60 min. and few of the reactions took 2-3 h may be due to the solubility issues.

Table 2: Substrate scope of the proposed design.[a]

[a] Reactions were carried out in DCM (1.0 mL) with 2.0 equiv of **33a/33b** (0.6 mmol) and 1.0 equiv of **34** (0.3 mmol) relative to the **32a-q** (0.3 mmol) in the presence of 5 mol% of (S)-**3n** and yield refers to the column-purified product. [b] Reaction performed in DCE at 50 °C.



*Figure 5:* <sup>1</sup>H and <sup>13</sup>C spectra of the product **35cb**.



*Figure 6:* <sup>1</sup>H and <sup>13</sup>C spectra of the product **35kb**.

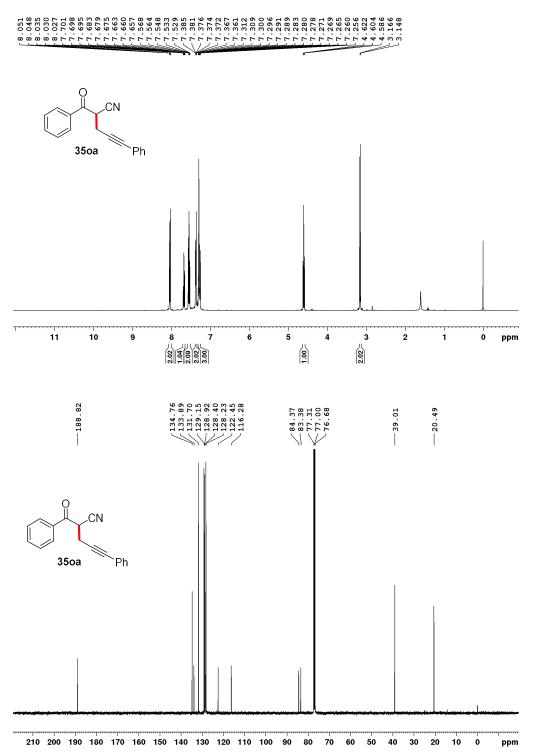



Figure 7: <sup>1</sup>H and <sup>13</sup>C spectra of the product **350a**.

These results are showing that the coupling reaction is compatible with a variety of functionalities including ring size on the cyclic 1,3-dione 32a-m substrates. The yield of the product 35kb is comparatively low and reaction conversion is not 99% even after longer reaction times, which may be due to low reactivity of CH-acid 32k as enolic double bond is in conjugation with internal double bond. To expand the CH-acids scope, we further carried out the coupling studies on different acyclic active methylene compounds (32n-32q) with 33a or 33b (Table 2). Surprisingly, reaction between malononitrile 32n, 33b and 34 under the 3n-catalysis didn't furnished the coupling product 35nb and even Knoevenagel product Bnb not formed may be due to the different electronic nature of substrates. Further when malononitrile 32n reacted with 3-phenylpropiolaldehyde 33a under the optimized condition, followed by treatment with 34 at the 25 °C for within 25 min. furnished the coupling product 35na in 97% yield (Table 2). In a similar manner, treatment of the active methylene compounds 320-32q with 33a and 34 under the 3n-catalysis in DCM at 25 °C for longer reaction times didn't furnished the expected coupling 350a-35qa products. But the coupling products 350a-35qa were furnished in good yields from the corresponding substrates of 320-32q with 33a and 34 under the 3n-catalysis in DCE at 50 °C for 3 h as shown Table 2. Temperature has become key factor to provide the reductive coupling 350a-35qa products in good yields may be due to the less acidity of acyclic compounds 320-q compared to cyclic 1,3-diones **32a-m** (Table 2).<sup>[9]</sup>

After successful understanding of the organocatalytic reductive propargylation of different CH-acids **32a-q** with **33a/33b**, we further shown interest to synthesize the library of 2-(3-aryl/alkylprop-2-yn-1-yl)cyclohexane-1,3-diones **35ba-bq** from the corresponding 3-aryl/alkylpropiolaldehydes **32a-q** and cyclohexane-1,3-dione **32b** (Table 3). Because there are numerous synthetic applications starting from the 2-(3-aryl/alkylprop-2-yn-1-yl)cyclohexane-1,3-diones **35ba-bq** (see Scheme 14).<sup>[5-7]</sup> The reported 2-(3-aryl/alkylprop-2-yn-1-yl)cyclohexane-1,3-diones **35ab-aq** were obtained in good to excellent yields through a coupling reaction of simple cyclohexane-1,3-dione **32b** with a variety of 3-aryl/alkylpropiolaldehydes (**33a-q**) containing halogen atoms,

electron withdrawing, electron donating, neutral, and heteroatom substituted aryl moieties as well as achiral alkyl groups (Table 3).

*Table 3*: Scope of Reductive C-Propargylation with Cyclohexane-1,3-dione and Various 3-Aryl/Alkylpropiolaldehydes.<sup>[a]</sup>

[a] Reactions were carried out in DCM (1.0 mL) with 2.0 equiv of **33a-q** (0.6 mmol) and 1.0 equiv of **34** (0.3 mmol) relative to the **32b** (0.3 mmol) in the presence of 5 mol% of (S)-**3n** and yield refers to the product obtained from simple precipitation-filtration technique.

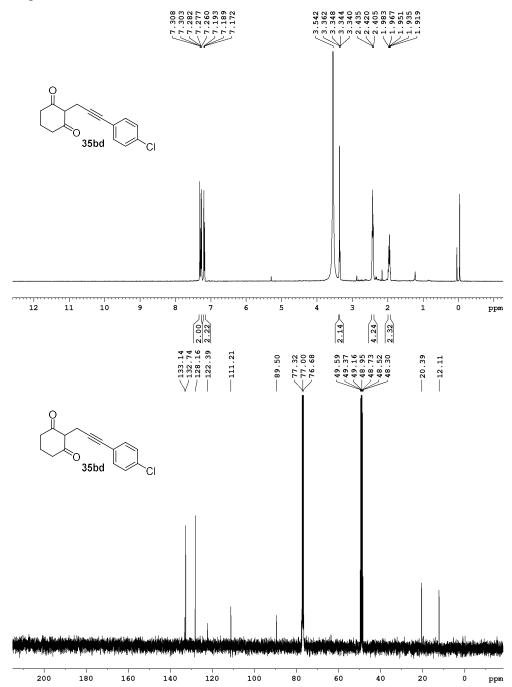
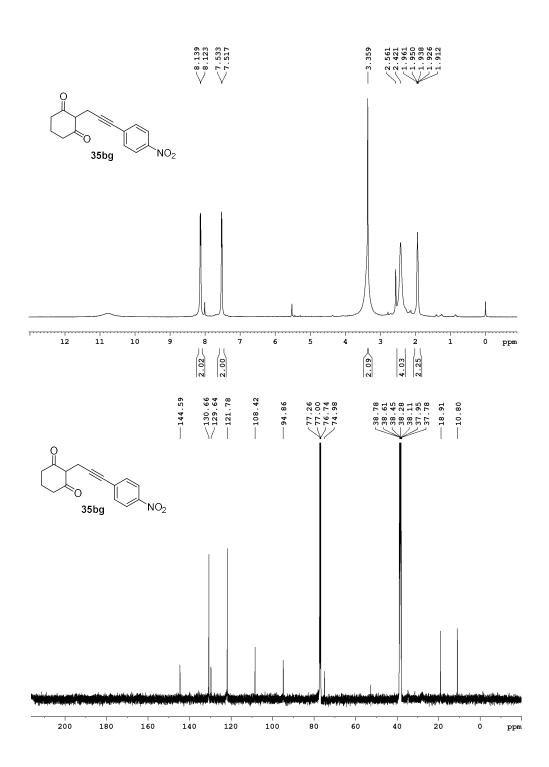




Figure 8: <sup>1</sup>H and <sup>13</sup>C spectra of the product **35bd**.



*Figure 9:* <sup>1</sup>H and <sup>13</sup>C spectra of the product **35bg**.

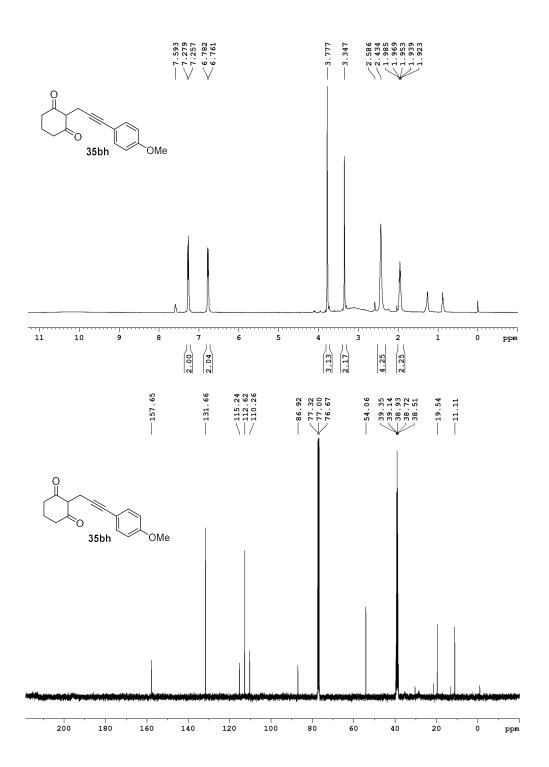



Figure 10: <sup>1</sup>H and <sup>13</sup>C spectra of the product 35bh.

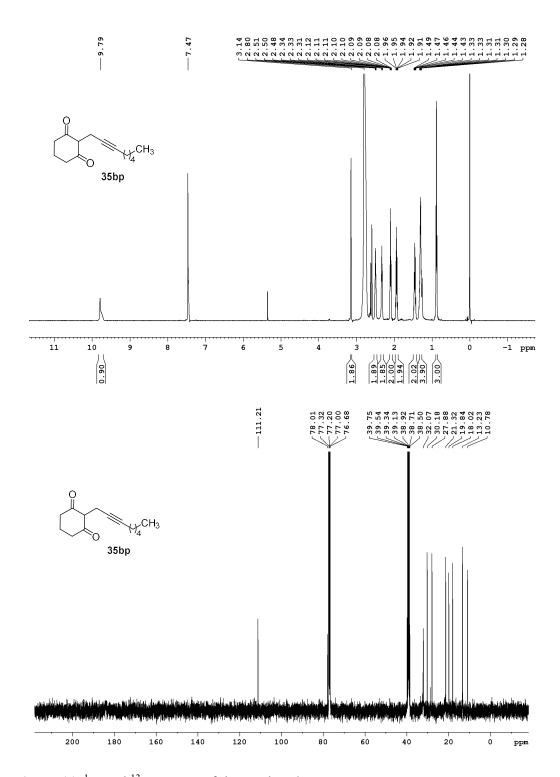



Figure 11: <sup>1</sup>H and <sup>13</sup>C spectra of the product **35bp**.

The organocatalytic three-component reductive coupling of 32b with 33a and 3 in DCM at 25 °C for 60 minutes followed by precipitation in cold 10% ethyl acetate in hexanes and quick filtration gave the analytically pure coupling product 2-(3-phenylprop-2-yn-1-yl)cyclohexane-1,3-dione 35ba in 85% yield without further column purification (Table 3). Strikingly, the coupling reaction of 32b with 4-halophenyl, 4-cyanophenyl, and 4-nitrophenyl substituted 3-arylpropiolaldehydes 33c-g and 34 under the catalysis of 3n in DCM at 25 °C for relatively longer reaction times (5.0-2.0 h) furnished the products 35bc-bg in 95-78% yields (Table 3). Surprisingly, the reductive coupling reaction of 3-arylpropiolaldehydes 33h-k containing 4-methoxyphenyl, 4-methylphenyl, 4-mbutylphenyl, and naphthalene-1-yl with 32b and 34 under the catalysis of 3n in DCM at 25 °C for shorter reaction times (60-20 min.) furnished the expected coupling products 35bh-bk in excellent yields (90%, 90%, 85% and 95%, respectively, Table 3).

In a similar manner, the coupling reaction of 3-heteroarylpropiolaldehydes **331-n** containing furan-2-yl, thiophen-2-yl, and *N*-Boc-indolyl-3-yl with **32b** and **34** under the catalysis of **3n** in DCM at 25 °C for 20 min. to 2.0 h furnished the coupling products **35bl-bn** in very good yields (90%, 88% and 86%, respectively, Table 3). Interestingly, the reductive coupling reaction of **32b** and **34** with the 3-alkylpropiolaldehydes **33o-q** containing *n*-butyl, *n*-pentyl, and *n*-hexyl under the catalysis of 4 at 25 °C for very short reaction times (30 min. to 15 min.) furnished the expected domino products **35bo-bq** in 85–92% yields (Table 3). All of these propargylated coupling products **35ba-bq** were isolated in pure form by using a unique and simple precipitation-filtration technique on reaction mixture avoiding tedious column chromatography.

After successful high-yielding synthesis of important library of 2-(3-aryl/alkylprop-2-yn-1-yl)cyclohexane-1,3-diones **35ba-bq** from the cyclohexane-1,3-dione **32b**, we further shown interest to investigate the similar library synthesis from cyclopentane-1,3-dione **32e** as corresponding synthon for reductive coupling reactions to show more applications (see Scheme 14).<sup>[2-4]</sup>.

*Table 4*: Scope of Reductive C-Propargylation with Cyclopentane-1,3-dione and Various 3-Aryl/Alkylpropiolaldehydes.<sup>[a]</sup>

<sup>[</sup>a] Reactions were carried out in DCM (1.0 mL) with 2.0 equiv of **33a-q** (0.6 mmol) and 1.0 equiv of **34** (0.3 mmol) relative to the **32e** (0.3 mmol) in the presence of 5 mol% of (S)-**3n** and yield refers to the product obtained from simple precipitation-filtration technique.

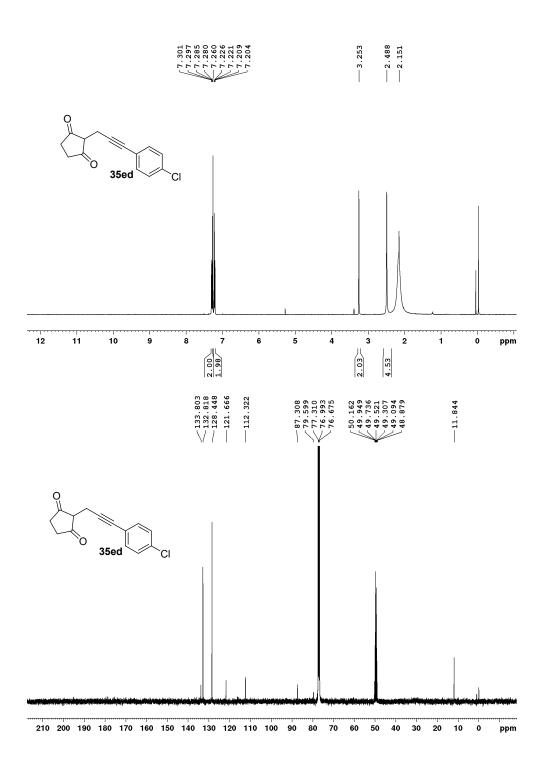



Figure 12: <sup>1</sup>H and <sup>13</sup>C spectra of the product **35ed**.

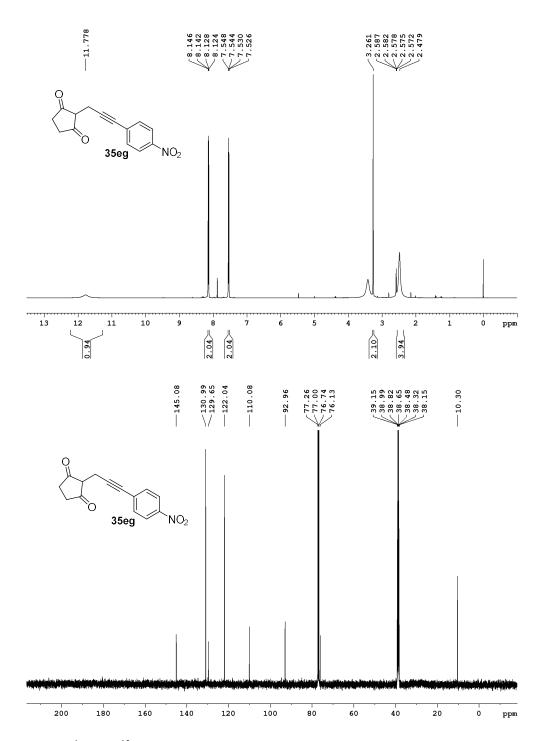



Figure 13: <sup>1</sup>H and <sup>13</sup>C spectra of the product 35eg.

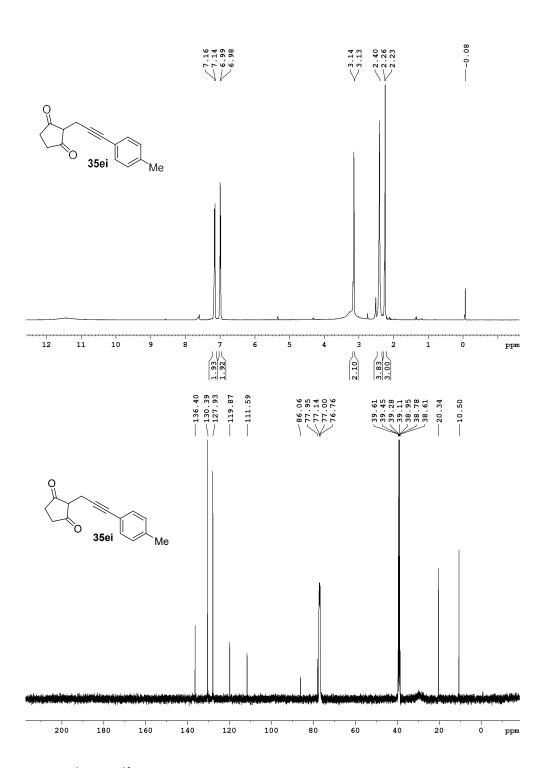



Figure 14: <sup>1</sup>H and <sup>13</sup>C spectra of the product 35ei.

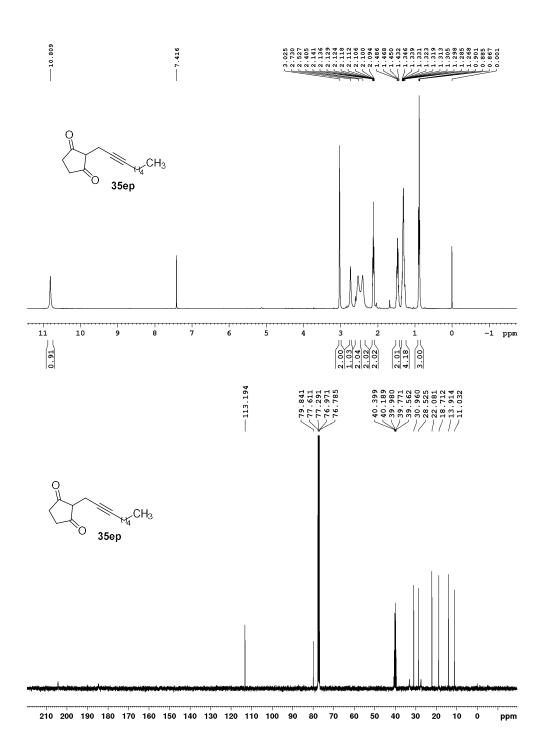
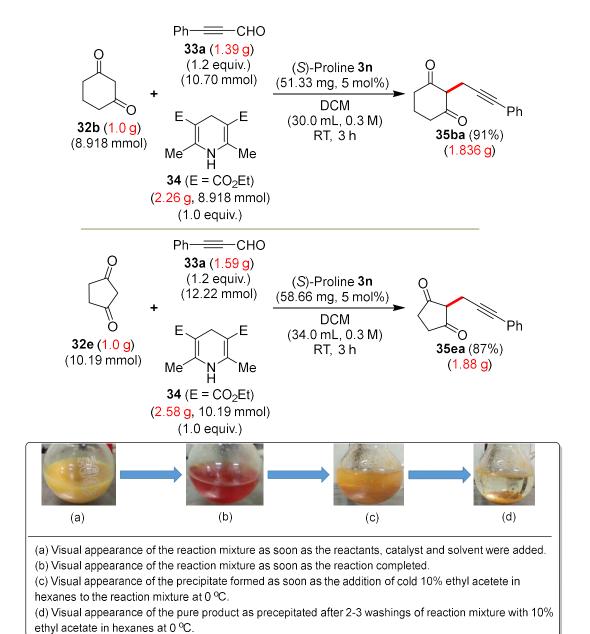




Figure 15: <sup>1</sup>H and <sup>13</sup>C spectra of the product 35ep.

In a similar manner, 2-(3-aryl/alkylprop-2-yn-1-yl)cyclopentane-1,3-diones 35eaeq were obtained in excellent yields and shorter reaction times through a reductive coupling reaction of cyclopentane-1,3-dione 32e with a variety of 3aryl/alkylpropiolaldehydes (33a-q) containing halogen atoms, electron withdrawing, electron donating, neutral, and heteroatom substituted aryl moieties as well as alkyl groups (Table 4). Exceptionally, amino acid 3n catalyzed three-component reductive coupling of cyclopentane-1,3-dione 32e with phenyl, 4-halophenyl, 4-cyanophenyl, 4nitrophenyl, 4-methoxyphenyl, 4-methylphenyl-, 4-methylphenyl-, naphthalene-1-yl, furan-2-yl, thiophen-2-yl, N-Boc-indolyl-3-yl, n-butyl, n-pentyl, and n-hexyl substituted 3-aryl/alkyl-propiolaldehydes 33a-q and Hantzsch ester 34 in DCM at 25 °C for 15 min. to 2.5 h furnished the coupling products 2-(3-aryl/alkylprop-2-yn-1yl)cyclopentane-1,3-diones **35ea-eq** in 80-96% yields as shown in Table 4. Formation of TCRP products 35bc-bg/35ec-eg took longer reaction times compared to other products 35 (see Tables 3-4), may be due to the shift in the direction of the polarization of double bond between electron-withdrawing group substituted aryls or 1,3dicarbonyls in the in situ generated Knoevenagel condensation intermediates Bbcbg/Bec-eg (see Scheme 15), which delayed transfer hydrogenation. Herein, all of these coupling products were purified by simple precipitation of reaction mixture in cold 10% ethyl acetate in hexanes and followed by quick filtration gave the analytically pure coupling products **35eb-eq** straightway, in very good yields (Table 4).

#### **3.2.3** *Gram-scale synthesis of TCRP products:*

In order to investigate the sustainability of the reductive coupling reaction in bulk scale, we planned grams scale reaction of cyclohexane-1,3-dione **32b** (1.0 g, 8.918 mmol) with reduced equivalents of 3-phenylpropiolaldehyde **33a** (1.39 g, 10.7 mmol, 1.2 equiv.) and Hantzsch ester **34** (2.26 g, 8.918 mmol) under the catalysis of (*S*)-proline **3n** (51.33 mg, 5 mol%) in DCM (30.0 mL, 0.3 M) at 25 °C for 3.0 h followed by precipitation-filtration technique furnished the coupling product **35ba** in 91% (1.836 g) yield (Scheme 16).



Scheme 16: Gram-Scale Synthesis of TCRP Products 35ba/35ea and Pictorial representation of Gram-Scale reaction.

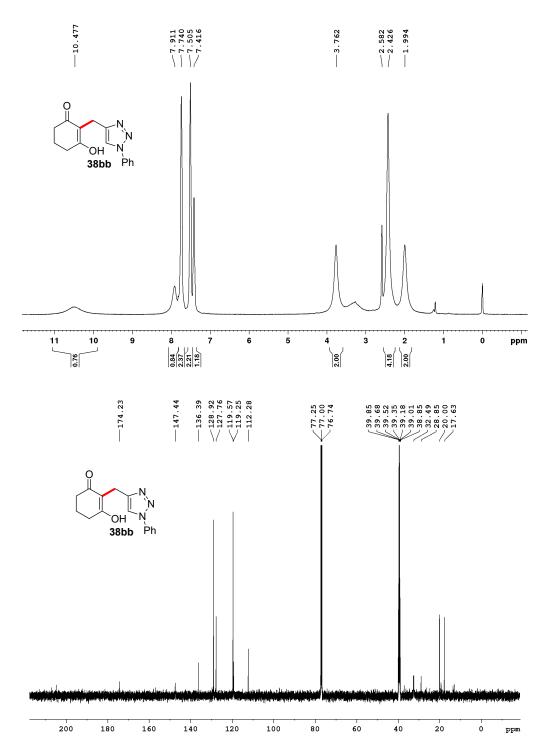
In a similar mode, reaction of cyclopentane-1,3-dione **32e** (1.0 g, 10.19 mmol) with **33a** (1.59 g, 12.22 mmol, 1.2 equiv.) and **34** (2.58 g, 10.19 mmol) under the catalysis of (S)-proline **3n** (58.66 mg, 5 mol%) in DCM (34.0 mL, 0.3 M) at 25 °C for 3.0 h followed by precipitation-filtration technique furnished the coupling product **35ea** in

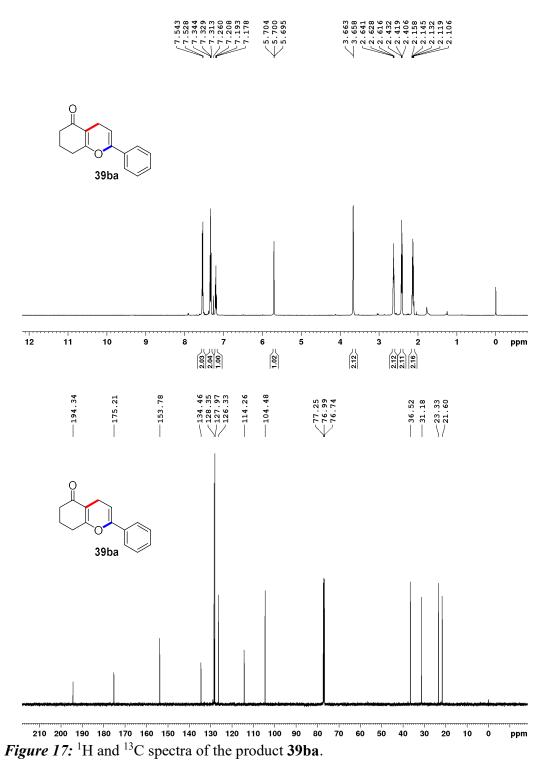
87% (1.88 g) yield (Scheme 16). This clearly proves the simplicity and significance of the metal-free coupling reaction for industrial applications.

# **3.2.4** Synthetic applications of TCRP products:

As discussed earlier, there are plentiful potential applications for the propargylated coupling products **35** and few of them are demonstrated herein. Deprotection of the TMS group on the propargylated compound **35bb** with tetra-*n*-butylammonium fluoride (TBAF) was performed in sequential one-pot manner starting from **32b**, **33b**, **34** and **3n** in DCM followed by next reaction in THF furnished the 2-(prop-2-yn-1-yl)cyclohexane-1,3-dione **36bb** in 98% yield containing the terminal alkyne, which is a versatile unit that can be used in different type of organic reactions (Scheme 17, Eq. 1). [6d]

*Scheme 17*: TMS-Deprotection, Click and Annulative Etherification Reactions on the Reductive Coupling Products **35**.





Figure 16: <sup>1</sup>H and <sup>13</sup>C spectra of the product **38bb**.

Copper-catalyzed azide—alkyne [3+2]-cycloaddition of **36bb** with PhN<sub>3</sub> **37** in water and *tert*-BuOH at 25 °C for 24 h furnished the click product **38bb** in 75% yield (Scheme 17, Eq. 2). It is a popular fact that 1,2,3-triazoles are biologically and medicinally important compounds and 1,2,3-triazoles containing cyclic-1,3-diketones will be interesting intermediates for medicinal to material chemistry. [10] Subsequently, we thought of executing an intramolecular cyclization of coupling products **35** under the Lewis acid-catalysis, as compounds **35** contain the requisite active functional groups. [11] First, we engineered the cyclization reaction of propargylated coupling compound **35ea** with 10 mol% of AgOTf in dry methanol at 25 °C for 5 h, which resulted in the annulative etherification product **39ea** in 75% yield with high selectivity (Scheme 17, Eq. 3). [11]

During the course of intramolecular cyclization, even though there is a chance for the formation of either substituted dihydrofuran or dihydropyran rings, but only substituted dihydropyran ring was formed exclusively. Observed high selectivity can be explained based on the stability of the carbocation formed during the course of reaction as shown in Scheme 17, Eq. 3. With annulative etherification protocol in hand, we further investigated the scope of this reaction by developing a library of functionally rich dihydropyrans **39** from the various coupling products **35** (Table 5). [12] Reaction of 2-(3-arylprop-2-yn-1-yl)cyclohexane-1,3-diones **35ba-bi** containing phenyl-, 4-bromophenyl, 4-cyanophenyl, 4-nitrophenyl, and 4-methylphenyl, under the catalysis of AgOTf in dry methanol at 25 °C for within 50 min. to 60 min. furnished the expected dihydropyrans **39ba-bi** in very good yields (85-76%) with high selectivity as shown in Table 5.

Table 5: Scope of Annulative Etherification Reaction.[a]

<sup>[</sup>a]Reactions were carried out in dry MeOH (1.0 mL) with 1.0 equiv of **35** (0.2 mmol) in the presence of 10 mol% of AgOTf and yield refers to the product obtained from column chromatography.



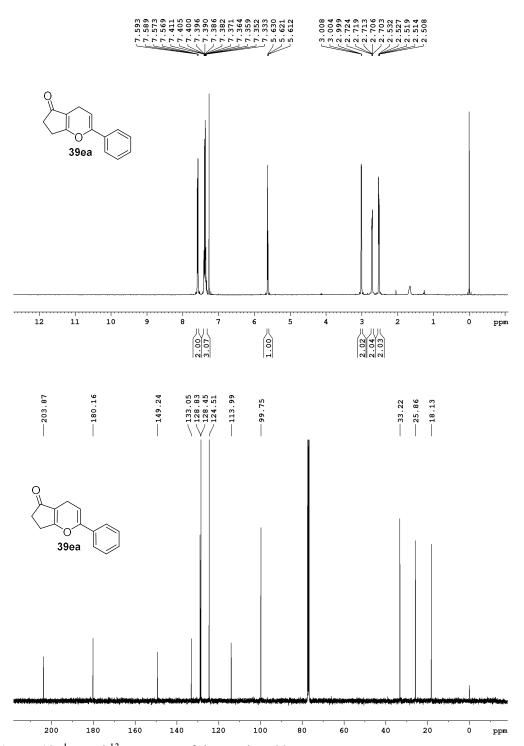



Figure 18: <sup>1</sup>H and <sup>13</sup>C spectra of the product **39ea**.

In a similar manner, cyclization reaction of 2-(3-aryl/alkylprop-2-yn-1-yl)cyclopentane-1,3-diones **35ea-eq** containing phenyl, 4-bromophenyl, 4-cyanophenyl, 4-nitrophenyl, 4-methoxyphenyl, 4-methylphenyl, and *n*-hexyl under the catalysis of 10 mol% AgOTf in dry methanol at 25 °C for longer reaction times (5 h to 12 h) furnished the expected dihydropyrans **39ea-eq** in good to excellent yields (85-69%) with high selectivity as shown in Table 5. Gratifyingly, the various substituents present on the propargylated products **35** seems not to have much effect on the Lewis acid-mediated annulative etherification reaction (Table 5).

In order to increase the versatility of the annulation reaction, we investigated few synthetic applications of annulation products 39. Delightfully, treatment of dihydropyrans 39ea or 39ba with 1.0 equiv. of K<sub>2</sub>CO<sub>3</sub> in dry methanol at room temperature for 1.5 h resulted in nucleophilic 1,4-addition of methanol followed by pyran ring opening to furnish the products 40ea or 40ba in excellent yields (92% and 76% respectively, Scheme 18, Eq. 4). On the other hand, epoxidation of 39ea with 1.2 equiv. of m CPBA in DCM at 25 °C for 1 h furnished the selective epoxide product 41ea in 71% yield (Scheme 18, Eq. 5). While oxidation of 39ea with 5.0 equiv. of 30% aqueous H<sub>2</sub>O<sub>2</sub> in the presence of 6.0 M aqueous NaOH in methanol at 50 °C for 12 h furnished the 4-oxo-4-phenylbutanoic acid 42ea in 50% yield through a sequence of epoxidation/epoxide ring opening with hydroxide/Baeyer-Villiger oxidation reactions (Scheme 18, Eq. 6). These reactions not only for diversifying of dihydropyrans 39, but gave strong support to the structural analysis of regioselective formation of 39 from Ag(I)-catalysis on 35 (see Table 5).

Scheme 18: Controlled Experiments on the Annulative Etherification Products 39.

Further, we shown interest to synthesize the 2-methyl-2-(3-aryl/alkylprop-2-yn-1-yl)cyclopentane-1,3-diones and 2-methyl-2-(3-aryl/alkylprop-2-yn-1-yl)cyclohexane-1,3-diones from the corresponding coupling products **35** through *C*-methylation, as these compounds are prolific starting materials in various organic transformations (see Scheme 14).<sup>[7]</sup> Same time, base-mediated selective *C*-methylation of the propargylated coupling products **35** with methyl iodide is a challenging task as *O*-methylation will be a dominating side reaction. Firstly, reaction of **35ea** or **35ba** with 3 equiv. of MeI in the presence of 1.1 equiv. of NaOH in acetonitrile at 60 °C for 10 h, furnished only *O*-methylation products **43ea** or **43ba** in 63% and 30% yield, respectively and surprisingly didn't find the *C*-methylation products (Scheme 19, Eq. 7). These results gave inspiration to study some more details about methylation reactions on **35** (Scheme 19). Reaction of **35ea** with 2.0 equiv. of propargyl bromide in the presence of 1.0 equiv. of

sodium bicarbonate in water at 80 °C for 48 h, furnished only *C*-propargyl product **44ea** in 31% yield (Scheme 19, Eq. 8), which gave insight to install methyl group on C-2 position of **35**.

Scheme 19: Methylation Reactions on the Reductive Coupling Products 35.

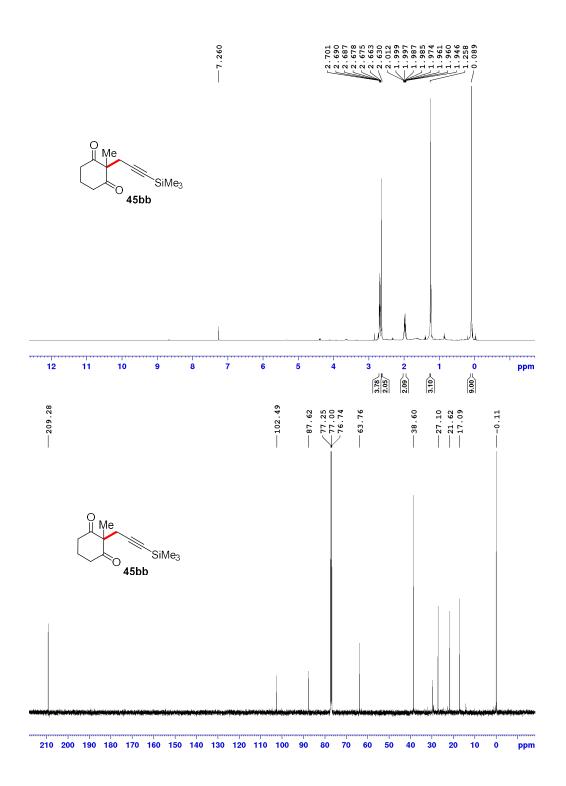



Figure 19: <sup>1</sup>H and <sup>13</sup>C spectra of the product **45bb**.

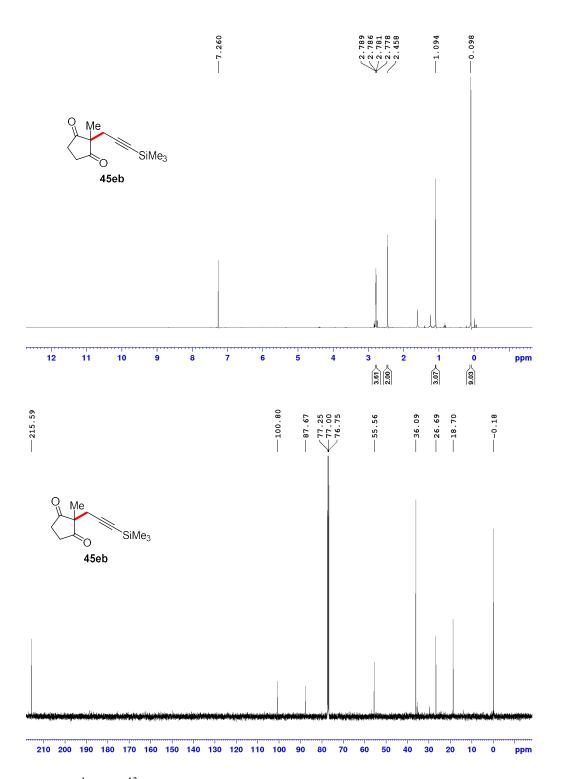



Figure 20: <sup>1</sup>H and <sup>13</sup>C spectra of the product **45eb**.

Strikingly, reaction of **35ea** or **35ba** with 3 equiv. of MeI in the presence of 1.0 equiv. of sodium bicarbonate in water at 80 °C for 36 h, furnished only C-methylation products 45ea or 45ba in moderate (40% and 34%) yields, respectively and we didn't find the O-methylation products (Scheme 19, Eq. 9). To improve yields and diversity of methylation reactions, we have tested next conditions on different substrates. Fortunately, reaction of 2-(3-(trimethylsilyl)prop-2-yn-1-yl)cyclohexane-1,3-diones 35bb, 35cb or 2-(3-(trimethylsilyl)prop-2-yn-1-yl)cyclopentane-1,3-dione 35eb with 3 equiv. of MeI in the presence of 1.2 equiv. of potassium carbonate in acetone at 60 °C for 4 h, furnished C-methylation products **45bb** in 76%, **45cb** in 87% and **45eb** in 40% yields, respectively and in last case we observed the O-methylation product 43eb in 60% yield (Scheme 19, Eq. 10). In a continuation, when we performed the methylation reaction of 35ba with 3 equiv. of MeI in the presence of 2.0 equiv. of potassium carbonate in methanol at 45 °C for 16 h, furnished domino C-methylation/TMSdeprotection product 46ba in 30% yield (Scheme 19, Eq. 11). Definitely these methylation reactions on reductive coupling products 35 will give inspiration for organic chemists to make useful library of 44-46 and use them as starting materials to investigate new annulation reactions.

*Figure 21*: X-ray crystal stucture of 2-(3-(4-methoxyphenyl)prop-2-yn-1-yl)cyclopentane-1,3-dione **35eh**.

The structure and relative stereochemistry of the reductive coupling **35** and their application products **36**, and **38-46** were established by IR, NMR, and mass analysis and also finally confirmed by correlation with the X-ray crystal structure of **35eh** (Figure 21).<sup>[13]</sup>

# 3.3 Conclusions

In summary, we effectively established a new synthetic methodology named 'organocatalytic three-component reductive propargylation' for the selective coupling of propargyl aldehydes with CH-acids or active methylene compounds under the 5 mol% of (S)-proline in presence of Hantzsch ester as hydrogen source. The metal-free reductive coupling method has wide substrate tolerance in generating the monopropargylated cyclic and acyclic products and which has lot more applications in total synthesis of natural products, drugs and designed materials. We have also shown applications of reductive coupling products 35 into synthesizing click 1,2,3-triazoles 38, functionally rich dihydropyrans 39, and methylation products 43-46, which act as excellent building blocks for many natural products and pharmaceuticals. Further, more applications toward this 'organocatalytic three-component reductive propargylation' is currently underway.

# 4. Organocatalytic Asymmetric Formal [3+2] Cycloaddition as a Versatile Platform to Access Methanobenzo[7]annulenes

# 4.1 Introduction

Bicyclo[3.2.1] octane unit is widely present in both natural and synthetic compounds which possess various biological activities (Figure 22). To date chiral bicyclo[3.2.1] octanes have been known to be prepared, using organocatalytic Michael—aldol, Michael—Henry, Michael-isomerization-Michael, and Michael—elimination—Michael cascades from simple  $\beta$ -keto esters or ketones with  $\alpha,\beta$ -unsaturated aldehydes or nitrostyrenes, respectively. Nevertheless, we still need newer high yielding catalytic methods for creating methanobenzo[7] annulenes containing multiple chiral centers, in a stereocontrolled fashion.

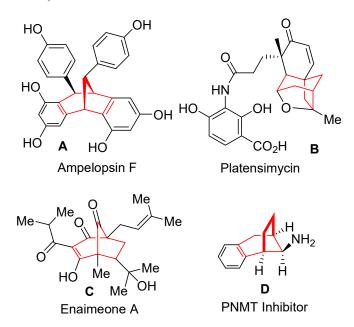



Figure 22: Medicinally important benzobicyclo[3.2.1] octanes.

We have developed here for the first time an economic metal-free approach for the high-yielding stereoselective synthesis of privileged bicyclo[3.2.1]octanes as substituted methanobenzo[7]annulenes in both achiral and chiral forms, through a novel organocatalytic formal [3+2]-cycloaddition [or] domino Michael/5-(enolexo)-exo-trig cyclization reactions of laboratory prepared 2-alkyl-3-hydroxynaphthalene-1,4-diones with commercially available alkyl vinyl ketones under catalytic and ambient conditions.

**Scheme 20**: Reaction layout for the methanobenzo[7]annulenes through domino Michael and 5-(*enolexo*)-*exo-trig* cyclizations or formal [3+2]-cycloadditions.

Hence, synthesis and investigation of synergistic nucleophilic and electrophilic nature of 2-alkyl-3-hydroxynaphthalene-1,4-diones **48** through organocatalysis presents an intriguing synthetic challenge to work on. Starting materials, 2-alkyl-3-hydroxynaphthalene-1,4-diones **48** could be prepared in good yields by using recently emerging organocatalytic three-component reductive alkylation (TCRA) or reductive coupling reaction. [8,18,19]

Surprisingly, there is no asymmetric transformation known utilizing 2-alkyl-3-hydroxynaphthalene-1,4-diones **48**<sup>[7]</sup> and herein, we used them as suitable starting materials along with alkyl vinyl ketones **49** for the designed asymmetric domino Michael and *5-(enolexo)-exo-trig* cyclizations or formal [3+2]-cycloadditions (Scheme 20).<sup>[20]</sup>

# 4.2 Results and Discussions

#### 4.2.1 Reaction optimization:

Building on this backdrop and also due to the ease with which TCRA products could be made efficiently, we surmised to utilize (S)-proline 3n would catalyze the TCRA reaction of Lawsone 1, aldehydes 47 and Hantzsch ester 34 to furnish the alkylation products 48 in very good yields (Scheme 20). Organocatalytic domino Michael-aldol reactions between the resulting 2-alkyl-3-hydroxynaphthalene-1,4-diones 48 with alkyl vinyl ketones 49 would yield the unexpected methanobenzo[7]annulenes 51 in a highly stereoselective and product specific manner over competition with five other ring closing cyclizations (Scheme 20).

To understand the designed domino reaction rate, catalyst/solvent effect, selectivity, and product distribution over other possible ring closing cyclizations, first we investigated the organocatalytic racemic 5-(enolexo)-exo-trig cyclization through domino Michael-aldol reactions between hydroxy-dione 48a and methyl vinyl ketone 49a under the catalysis of achiral amines/base Et<sub>3</sub>N (30), DMAP (3p), TBD (3q), KOtBu (3r), and DBU (3s (Table 6)). After thorough investigation, we found that

DMAP **3p** would catalyse the racemic domino reaction of **48a** with **49a** in toluene at 25 °C for 9 h to furnish the achiral methanobenzo[7]annulene **51aa** in 93% yield with 4:1 dr (Table 6).

Table 6: Investigation of the Proposed Racemic Reaction.[a]

|       | O Ph<br>+<br>48a O +           | O<br>CH <sub>3</sub>                          | Catalyst 3<br>(20 mol%)<br>Solvent (0.3 M)<br>RT | 0<br>0<br>51aa                          | ─Ph<br>7_O<br>CH <sub>3</sub>        |
|-------|--------------------------------|-----------------------------------------------|--------------------------------------------------|-----------------------------------------|--------------------------------------|
| Entry | Catalyst <b>3</b><br>[20 mol%] | Solvent<br>[0.3 M]                            | Time<br>[h]                                      | Yield [%] <sup>[b]</sup><br><b>51aa</b> | dr [%] <sup>[c]</sup><br><b>51aa</b> |
| 1     | Et <sub>3</sub> N <b>3o</b>    | DMSO                                          | 14                                               | 75                                      | 2.8:1                                |
| 2     | Et <sub>3</sub> N 3o           | DMF                                           | 18                                               | 78                                      | 2.9:1                                |
| 3     | Et <sub>3</sub> N <b>3o</b>    | THF                                           | 27                                               | 70                                      | 4.2:1                                |
| 4     | Et <sub>3</sub> N <b>3o</b>    | CHCl <sub>3</sub>                             | 16                                               | 78                                      | 5.3:1                                |
| 5     | Et <sub>3</sub> N 3o           | CH <sub>3</sub> CN                            | 21                                               | 60                                      | 5.5:1                                |
| 6     | Et <sub>3</sub> N <b>3o</b>    | DCM                                           | 16                                               | 80                                      | 4.2:1                                |
| 7     | Et <sub>3</sub> N 3o           | $C_6H_5CH_3$                                  | 15                                               | 90                                      | 5.3:1                                |
| 8     | DMAP <b>3p</b>                 | C <sub>6</sub> H <sub>5</sub> CH <sub>3</sub> | 9                                                | 93                                      | 4.0:1                                |
| 9     | TBD <b>3q</b>                  | $C_6H_5CH_3$                                  | 9                                                | 85                                      | 3.2:1                                |
| 10    | KO <sup>t</sup> Bu <b>3r</b>   | C <sub>6</sub> H <sub>5</sub> CH <sub>3</sub> | 10                                               | 80                                      | 1.4:1                                |
| 11    | DBU <b>3s</b>                  | $C_6H_5CH_3$                                  | 36                                               | _                                       | -                                    |
| 12    | AcOH <b>3t</b>                 | C <sub>6</sub> H <sub>5</sub> CH <sub>3</sub> | 72                                               | _                                       |                                      |

<sup>[a]</sup>Reactions were carried out in solvent (0.3 M) with 3.0 equiv. of **49a** relative to the **48a** (0.3 mmol) in the presence of 20 mol% of catalyst **3**. <sup>[b]</sup> Yield refers to the column-purified product. <sup>[c]</sup> dr determined by 1H NMR and CSP HPLC analysis.

Next, we focused to investigate the asymmetric induction in the designed domino reaction (Table 7). Stimulating investigative reports on the cinchona alkaloid catalysis, [21] by Deng and other research groups inspired us to utilize them in our present studies (Table 7). To start with, simple amino acid (S)-proline 3n was tested as the catalyst for the chiral version of the domino reaction of 48a with 49a in toluene at 25 °C for 20 h (Table 7, entry 1). Though the reaction progressed well to furnish the desired

product **51aa** in very good yield, the selectivity obtained was disappointingly poor. The same reaction with quinine **3u** as the catalyst at 25 °C for 36 h furnished the chiral product **51aa** in 90% yield with 34% *ee* and 5:1 dr (Table 7, entry 2). Quinidine **3v** catalysis also furnished the product **51aa** with little improvement (90% yield, 42% *ee* and 6:1 dr, entry 3). Surprisingly, the same reaction under the catalysis of *epi*-quinidine-NH<sub>2</sub> **3w** at 25 °C for 32 h furnished the product **51aa** in 80% yield with 0% *ee* and 2:1 dr (Table 7, entry 4).

After understanding the reactivity pattern of quinine/quinidine with 48a and 49a, we realized that the *tert*-amine of 3u-v is acting as base to induce the nucleophilic nature of 48a through hydrogen bonding, but the facial selectivity and electrophilicity of 49a are not induced much under the reaction conditions. To perform the synergistic activation of both the functional groups of 48a and 49a, we thought of using the primary amine-thiourea 57a, 57b or 57c as the catalyst to achieve high selectivity.

Interestingly, the domino reaction of **48a** and **49a** with 20 mol% of 9-epi-aminoquinidine-thiourea **57a** in toluene at 0-3 °C for 24 h furnished the chiral product (+)-**51aa** in 90% yield with 90% ee and 86:1 dr as expected (Table 7, entry 5). The same reaction in trifluorotoluene at 0-3 °C for longer time (72 h) furnished the chiral product (+)-**51aa** in reduced (75%) yield with increased (94%) ee and decreased (24:1) dr; but same reaction at 25 °C furnished (+)-**51aa** in 86% yield with 91% ee and 22:1 dr within 8 h (Table 7, entries 6-7). There is not much improvement in hexafluorobenzene as solvent compared to trifluorotoluene (entry 8). During subsequent optimization studies, we obtained the antipode (-)-**51aa** in 85-90% yield with high enantio- and diastereoselectivities (up to 97% ee and 99:1 dr) under the catalysis of 9-epi-aminoquinine-thiourea **57b** (15-30 mol%) in trifluorotoluene at 0-3 or 20 °C for 6-21 h (Table 7, entries 9-12).

Table 7: Investigation of the Proposed Asymmetric Reaction. [a]

| Entry               | Catalyst<br>[20 mol%] | Time<br>[h] | Yield [%] <sup>[b]</sup><br><b>51aa</b> | dr [%] <sup>[○]</sup><br><b>51aa</b> | ee [%] <sup>[ơ]</sup><br><b>51aa</b> |
|---------------------|-----------------------|-------------|-----------------------------------------|--------------------------------------|--------------------------------------|
| 1 <sup>[e]</sup>    | 3n                    | 20          | 90                                      | 1:1                                  | 7 [0]                                |
| 2 <sup>[e]</sup>    | 3u                    | 36          | 90                                      | 5:1                                  | 34 [23]                              |
| 3 <sup>[e]</sup>    | 3v                    | 36          | 90                                      | 6:1                                  | 42 [28]                              |
| 4 <sup>[e]</sup>    | 3w                    | 32          | 80                                      | 2:1                                  | 0 [0]                                |
| 5 <sup>[e, f]</sup> | 57a                   | 24          | 90                                      | 86:1                                 | 90 [85]                              |
| 6 <sup>[f]</sup>    | 57a                   | 72          | 75                                      | 24:1                                 | 94 [85]                              |
| 7                   | 57a                   | 8           | 86                                      | 22:1                                 | 91 [86]                              |
| 8 <sup>[f,g]</sup>  | 57a                   | 72          | 73                                      | 22:1                                 | 91 [94]                              |
| 9 <sup>[h]</sup>    | 57b                   | 6           | 90                                      | 61:1                                 | 95 [99]                              |
| 10 <sup>[f]</sup>   | 57c                   | 21          | 85                                      | 99:1                                 | 97 [99]                              |
| 11 <sup>[h,i]</sup> | 57b                   | 11          | 87                                      | 66:1                                 | 93 [99]                              |
| 12 <sup>[h,j]</sup> | 57b                   | 6           | 90                                      | 46:1                                 | 95 [99]                              |
| 13 <sup>[h]</sup>   | 57c                   | 7           | 80                                      | 9:1                                  | 94 [99]                              |

<sup>&</sup>lt;sup>[a]</sup> Reactions were carried out in solvent (0.3 M) with 3.0 equiv. of **49a** relative to the **48a** (0.3 mmol) in the presence of 20 mol% of catalyst **3/57**. <sup>[b]</sup> Yield refers to the column-purified product. <sup>[c]</sup> dr determined by <sup>1</sup>H NMR and CSP HPLC analysis. <sup>[d]</sup> ee determined by CSP HPLC analysis and values in paranthesis represent for minor diastereomer. <sup>[e]</sup> Toluene as the solvent. <sup>[f]</sup> T = 0-3 °C. <sup>[g]</sup>  $C_6F_6$  as the solvent. <sup>[h]</sup> T = 20

 $^{\circ}$ C.  $^{[i]}$  15 mol% of **57b** used.  $^{[j]}$  30 mol% of **57b** used. Note: Entries 5-8 represents the opposite enantiomers of compound **51aa** shown in Table.

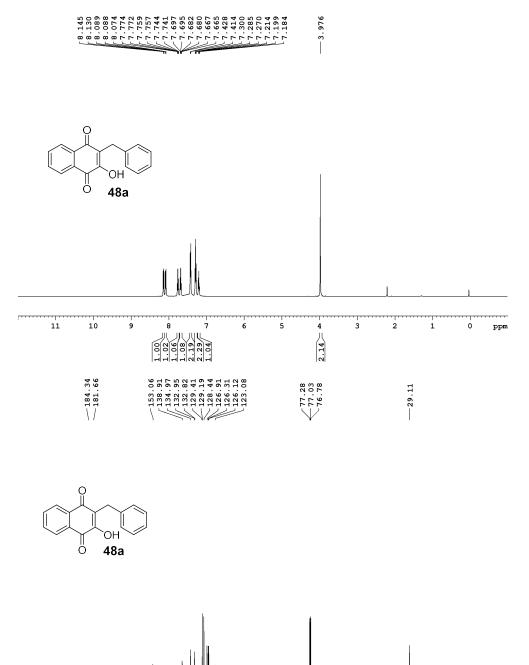
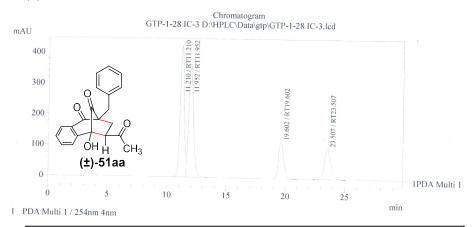
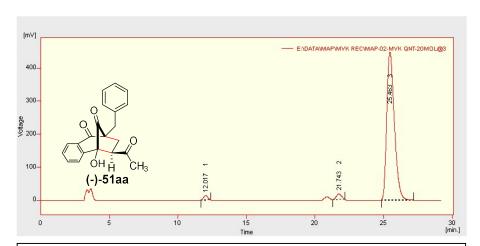




Figure 23: <sup>1</sup>H and <sup>13</sup>C spectra of the product 48a.



Figure 24: <sup>1</sup>H and <sup>13</sup>C spectra of the product 51aa.


#### Racemic (±)-51aa:



Chiralpak IC-3, Hexane/ i-PrOH = 90:10, Flow Rate 1.0 mL/Min, 254

| DA Ch1 2 | 254nm 4nm            |                  | PeakTab              | le               |                  |                  |
|----------|----------------------|------------------|----------------------|------------------|------------------|------------------|
| Peak#    | Name                 | Ret. Time        | Area                 | Height           | Area %           | Height %         |
|          | RT11.210<br>RT11.952 | 11.210<br>11.952 | 10008122<br>10298026 | 425364<br>369456 | 36.261<br>37.312 | 41.936<br>36.425 |
|          | RT19.602             | 19.602           | 3632593              | 119821           | 13.162           | 11.813           |
|          | RT23.507             | 23.507           | 3661138              | 99664            | 13.265           | 9.826            |
| Total    |                      |                  | 27599879             | 1014304          | 100.000          | 100.000          |

Chiral (-)-51aa (Major: 95% ee; Minor: >99% ee):



Chiralpak IC-3, Hexane/ *i*-PrOH = 90:10, Flow Rate 1.0 mL/Min, 254 nm

|   | Reten. Time<br>[min] | Area<br>[mV.s] | Height<br>[mV] | Area<br>[%] | Height<br>[%] | W05<br>[min] |
|---|----------------------|----------------|----------------|-------------|---------------|--------------|
| 1 | 12.017               | 293.544        | 13.634         | 1.6         | 2.9           | 0.36         |
| 2 | 21.743               | 439.534        | 16.351         | 2.4         | 3.4           | 0.45         |
| 3 | 25.463               | 17259.889      | 447.886        | 95.9        | 93.7          | 0.60         |
|   | Total                | 17992.966      | 477.872        | 100.0       | 100.0         |              |

Figure 25: HPLC spectra of the chiral product 51aa.

From these studies, the final optimized condition for the asymmetric domino Michael/5-(enolexo)-exo-trig cyclization between **48a** and **49a** was established to be **57b** catalysis in trifluorotoluene at 20 °C for 6 h and generated the chiral methanobenzo[7]annulene (–)-**51aa** in 90% yield with 95% *ee* and 61:1 dr (Table 7, entry 9). Not much improvement observed under the catalysis of 9-*epi*-aminodihydroquinine-thiourea **57c** compared to **57b** (Table 7, entry 13).

#### **4.2.2** Scope of asymmetric domino reactions:

Further, the scope of the 9-epi-aminoquinine-thiourea 57b catalysed domino Michael/5-(enolexo)-exo-trig cyclization was showcased by synthesising a library of functionalized chiral methanobenzo[7]annulenes 51ba-ua from the reaction between various 2-alkyl-3-hydroxynaphthalene-1,4-diones 48b-u and methyl vinyl ketone 49a (Table 9). Various hydroxy-diones **48b-u** used in this reaction were synthesized in very good yields by using organocatalytic TCRA or reductive coupling of Lawsone 1, aldehydes 47b-u and Hantzsch ester 34 as shown in Table 8. The domino reaction was capable of generating the chiral methanobenzo[7]annulenes 51ba-ua bearing a variety of functional groups such as neutral, electron-donating, electron-withdrawing, heteroatom substituted and halogenated, with excellent ee's (up to 99% ee) and dr's (up to 45:1 dr) in very good yields (Table 9). Thus for the first time, a variety of unchanged hydroxy-diones 48b-u were used as source of in situ generated chiral enolates and utilized as mild nucleophiles in a domino reaction in order to furnish the functionalized drug-like methanobenzo[7]annulenes 51ba-ua. Interestingly, the domino Michael/5-(enolexo)-exo-trig reaction of methyl vinyl ketone 49a with 4-halobenzyl, 4methylbenzyl, and 4-methoxybenzyl substituted hydroxy-diones 48b-f under the catalysis of 57b at 20 °C for 8-13 h furnished the chiral products (-)-51ba to (-)-51fa in 80-96% yields with 92-99% ee and 18:1-36:1 dr (Table 9, entries 1-5).

Table 8: Substrate scope of TCRA Reaction. [a]

| Entry             | Ar/R <b>47</b>                                                                   | <i>t</i> [h] | Yield <b>48</b> [%] <sup>[b]</sup> |
|-------------------|----------------------------------------------------------------------------------|--------------|------------------------------------|
| 1                 | <b>47a</b> : Ar = C <sub>6</sub> H <sub>5</sub>                                  | 12           | 90 ( <b>48a</b> )                  |
| 2                 | <b>47b</b> : Ar = 4-FC <sub>6</sub> H <sub>4</sub>                               | 12           | 80 ( <b>48b</b> )                  |
| 3                 | <b>47c</b> : Ar = $4$ -CIC <sub>6</sub> H <sub>4</sub>                           | 12           | 80 ( <b>48c</b> )                  |
| 4                 | <b>47d</b> : Ar = 4-BrC <sub>6</sub> H <sub>4</sub>                              | 11           | 70 <b>(48d)</b>                    |
| 5                 | <b>47e</b> : Ar = $4$ -CH <sub>3</sub> C <sub>6</sub> H <sub>4</sub>             | 14           | 75 ( <b>48e</b> )                  |
| 6                 | <b>47f</b> : Ar = 4-OMeC <sub>6</sub> H <sub>4</sub>                             | 13           | 50 ( <b>48f</b> )                  |
| 7                 | <b>47g</b> : Ar = $4$ -CF <sub>3</sub> C <sub>6</sub> H <sub>4</sub>             | 12           | 70 <b>(48g)</b>                    |
| 8                 | <b>47h</b> : Ar = 4-CNC <sub>6</sub> H <sub>4</sub>                              | 12           | 80 ( <b>48h</b> )                  |
| 9                 | <b>47i</b> : Ar = 2-FC <sub>6</sub> H <sub>4</sub>                               | 12           | 80 ( <b>48i</b> )                  |
| 10                | <b>47j</b> : Ar = 2-BrC $_6$ H $_4$                                              | 12           | 80 ( <b>48j</b> )                  |
| 11 <sup>[c]</sup> | <b>47k</b> : Ar = 2-CH <sub>3</sub> C <sub>6</sub> H <sub>4</sub>                | 17           | 60 ( <b>48k</b> )                  |
| 12                | <b>47I</b> : Ar = $2-N_3C_6H_4$                                                  | 12           | 75 ( <b>48I</b> )                  |
| 13 <sup>[c]</sup> | <b>47m</b> : Ar = 1-Naphthyl                                                     | 15           | 50 ( <b>48m</b> )                  |
| 14                | <b>47n</b> : Ar = 2-Furyl                                                        | 12           | 80 ( <b>48n</b> )                  |
| 15                | <b>47o</b> : Ar = 2-Thiophenyl                                                   | 12           | 80 <b>(48o)</b>                    |
| 16 <sup>[c]</sup> | <b>47p</b> : Ar = <i>N</i> -Boc-indole-3-yl                                      | 12           | 60 <b>(48p)</b>                    |
| 17                | <b>47q</b> : R = CH <sub>3</sub>                                                 | 12           | 80 ( <b>48q</b> )                  |
| 18                | <b>47r</b> : $R = CH_2CH_2CH_2CH_3$                                              | 13           | 85 ( <b>48r</b> )                  |
| 19                | <b>47s</b> : R = CH <sub>2</sub> CHMe <sub>2</sub>                               | 12           | 90 ( <b>48s</b> )                  |
| 20                | <b>47t</b> : R = CH <sub>2</sub> [CH <sub>2</sub> ] <sub>5</sub> CH <sub>3</sub> | 12           | 90 ( <b>48t</b> )                  |
| 21                | <b>47u</b> : R = CH <sub>2</sub> CH <sub>2</sub> Ph                              | 16           | 82 ( <b>48u</b> )                  |

<sup>[</sup>a]Reactions were carried out in DCM (0.3 M) with 2.0 equiv. of 47 and 1.1 equiv. of 34 relative to the 1 (0.3 mmol) in the presence of 20-mol% of (S)-proline 3n. [b] Yield refers to the column-purified product. [c] Reaction performed at 50 °C.

Likewise, the domino reaction of hydroxy-diones **48g-h** containing 4-(trifluoromethyl)benzyl and 4-cyanobenzyl with **49a** under the **57b** catalysis at 20 °C for 22 h furnished the expected chiral products (–)-**51ga** and (–)-**51ha** in good yields (70%, 65%) with high (93%, 95%) *ee* and moderate (11:1, 9:1) dr respectively (Table 9, entries 6-7). Further, the domino reaction of hydroxy-diones **48i-m** containing 2-fluorobenzyl, 2-bromobenzyl, 2-methylbenzyl, 2-azidobenzyl and naphthalen-1-ylmethyl with **49a** under the **57b** catalysis at 40 °C for 3-36 h furnished the chiral products (–)-**51ia** to (–)-**51ma** in good (70-75) yields and (82-90%) *ee*'s with moderate to poor (2.0:1 to 9:1) dr's. Notably, the same reactions didn't do well at 20 °C even for longer reaction times, except in the case of **48i**, may be due to the ortho-substitution effect (Table 9, entries 8-12).

Hetero-atom substituted hydroxy-diones **48n-p** too partook in the domino reaction with **49a** under the catalysis of **57b** at 20 °C for 5-9 h furnished the chiral products (–)-**51na** to (–)-**51pa** in 70-91% yields with 84-93% *ee* and 10:1-16:1 dr (Table 9, entries 13-15). Correspondingly, the hydroxy-diones **48q-u** containing five different alkyl groups also involved in the domino reaction with **49a** under the **57b** catalysis at 20 °C for 2-6 h to furnish the chiral products (–)-**51qa** to (–)-**51ua** in very good (90-99) yields and (90-96%) *ee*'s with good to excellent (12:1 to 45:1) dr's (Table 9, entries 16-20).

All these results put together point out conclusively that the strength of the hydrogen-bonding between the hydroxy-diones **48b-u** possessing 2-alkyl substitution and the catalyst 9-*epi*-aminoquinine-thiourea **57b** dictates the result of the reaction rate and selectivity. We established the structure of the domino products **51** by NMR analysis and absolute stereochemistry finally confirmed by X-ray structure analysis on (-)-**51da** and (-)-**51ea** (Figures 34).<sup>[22]</sup>

Table 9: 2-Alkyl-3-hydroxynaphthalene-1,4-dione scope.[a]

|                   |                                                                      | 51ba-ua      |                                    |                   |                       |  |  |
|-------------------|----------------------------------------------------------------------|--------------|------------------------------------|-------------------|-----------------------|--|--|
| Entry             | Ar/R <b>48</b>                                                       | <i>t</i> [h] | Yield <b>51</b> [%] <sup>[b]</sup> | dr <sup>[c]</sup> | ee [%] <sup>[d]</sup> |  |  |
| 1                 | <b>48b</b> : Ar = 4-FC <sub>6</sub> H <sub>4</sub>                   | 8            | 80 ( <b>51ba</b> )                 | 20:1              | 95 [99]               |  |  |
| 2                 | <b>48c</b> : Ar = 4-CIC <sub>6</sub> H <sub>4</sub>                  | 10           | 90 ( <b>51ca</b> )                 | 18:1              | 95 [99]               |  |  |
| 3                 | <b>48d</b> : Ar = 4-BrC <sub>6</sub> H <sub>4</sub>                  | 13           | 96 ( <b>51da</b> )                 | 36:1              | 96 [99]               |  |  |
| 4                 | <b>48e</b> : Ar = 4-CH <sub>3</sub> C <sub>6</sub> H <sub>4</sub>    | 11           | 88 ( <b>51ea</b> )                 | 22:1              | 99 [84]               |  |  |
| 5                 | <b>48f</b> : Ar = 4-OMeC <sub>6</sub> H <sub>4</sub>                 | 8            | 95 ( <b>51fa</b> )                 | 23:1              | 92 [99]               |  |  |
| 6                 | <b>48g</b> : Ar = 4-CF <sub>3</sub> C <sub>6</sub> H <sub>4</sub>    | 22           | 70 ( <b>51ga</b> )                 | 11:1              | 93 [89]               |  |  |
| 7                 | <b>48h</b> : Ar = 4-CNC <sub>6</sub> H <sub>4</sub>                  | 22           | 65 ( <b>51ha</b> )                 | 9:1               | 95 [95]               |  |  |
| 8                 | <b>48i</b> : Ar = 2-FC <sub>6</sub> H <sub>4</sub>                   | 3            | 75 ( <b>51ia</b> )                 | 9:1               | 90 [88]               |  |  |
| 9 <sup>[e]</sup>  | <b>48j</b> : Ar = 2-BrC <sub>6</sub> H <sub>4</sub>                  | 36           | 70 ( <b>51ja</b> )                 | 6:1               | 88 [98]               |  |  |
| 10 <sup>[e]</sup> | <b>48k</b> : Ar = $2$ -CH <sub>3</sub> C <sub>6</sub> H <sub>4</sub> | 15           | 75 ( <b>51ka</b> )                 | 5:1               | 82 [81]               |  |  |
| 11 <sup>[e]</sup> | <b>48I</b> : Ar = $2-N_3C_6H_4$                                      | 16           | 75 ( <b>51Ia</b> )                 | 2.7:1             | 90 [88]               |  |  |
| 12 <sup>[e]</sup> | <b>48m</b> : Ar = 1-Naphthyl                                         | 36           | 75 ( <b>51ma</b> )                 | 2.0:1             | 82 [86]               |  |  |
| 13                | <b>48n</b> : Ar = 2-Furyl                                            | 9            | 78 ( <b>51na</b> )                 | 11:1              | 93 [86]               |  |  |
| 14                | <b>48o</b> : Ar = 2-Thiophenyl                                       | 5            | 70 ( <b>51oa</b> )                 | 10:1              | 92 [81]               |  |  |
| 15                | <b>48p</b> : Ar = <i>N</i> -Boc-indole-3-yl                          | 8            | 91 ( <b>51pa</b> )                 | 16:1              | 84 [82]               |  |  |
| 16                | <b>48q</b> : R = CH <sub>3</sub>                                     | 2            | 90 ( <b>51qa</b> )                 | 28:1              | 96 [92]               |  |  |
| 17                | <b>48r</b> : $R = CH_2CH_2CH_2CH_3$                                  | 6            | 95 ( <b>51ra</b> )                 | 22:1              | 94 [99]               |  |  |
| 18                | <b>48s</b> : R = CH <sub>2</sub> CHMe <sub>2</sub>                   | 6            | 99 ( <b>51sa</b> )                 | 24:1              | 94 [84]               |  |  |
| 19                | <b>48t</b> : $R = CH_2[CH_2]_5CH_3$                                  | 6            | 95 ( <b>51ta</b> )                 | 12:1              | 95 [99]               |  |  |
| 20                | <b>48u</b> : R = CH <sub>2</sub> CH <sub>2</sub> Ph                  | 6            | 95 ( <b>51ua</b> )                 | 45:1              | 90 [99]               |  |  |

<sup>[</sup>a] Reactions were carried out in solvent (0.3 M) with 3.0 equiv. of **49a** relative to the **48b-u** (0.3 mmol) in the presence of 20-mol% of catalyst **57b**. [b] Yield refers to the column-purified product. [c] dr determined by <sup>1</sup>H NMR and CSP HPLC analysis. [d] ee

determined by CSP HPLC analysis and values in parenthesis represent for minor diaster eomer.  $^{\rm [e]}$  Reaction performed at 40  $^{\rm o}{\rm C}.$ 

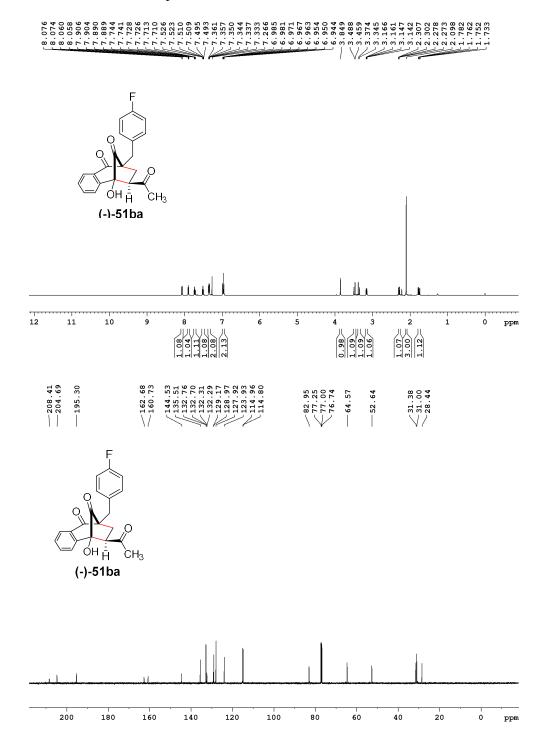



Figure 26: <sup>1</sup>H and <sup>13</sup>C spectra of the product 51ba.

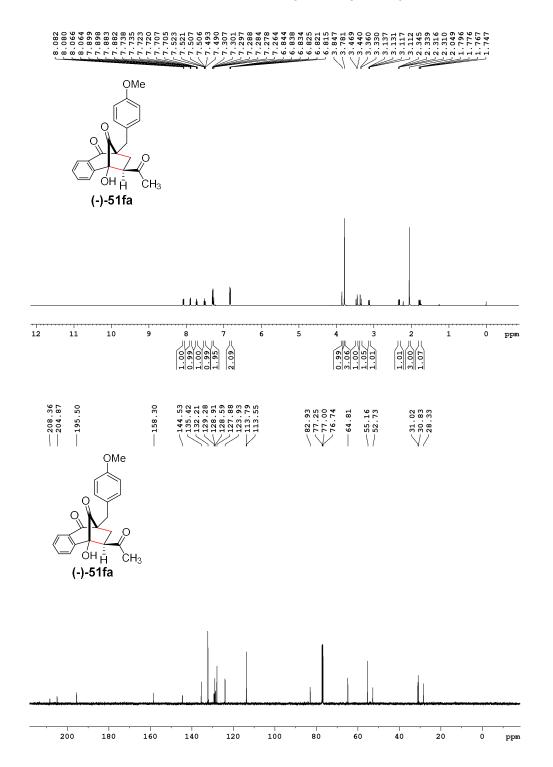



Figure 27: <sup>1</sup>H and <sup>13</sup>C spectra of the product **51fa**.

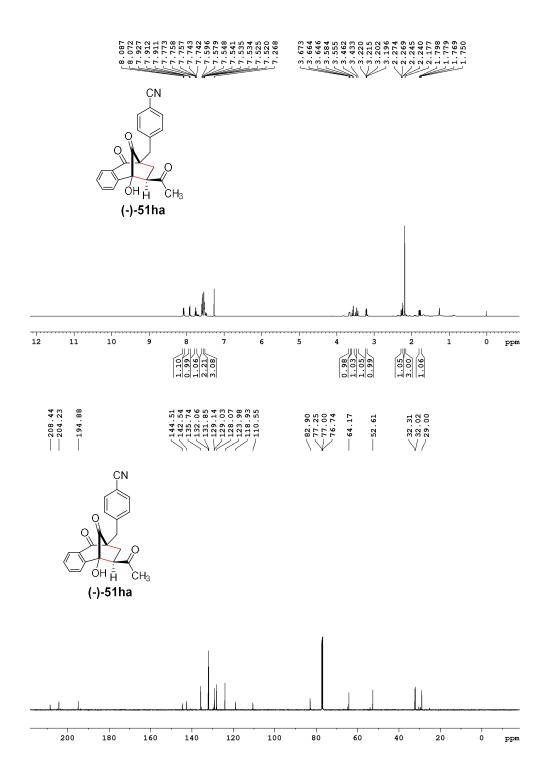



Figure 28: <sup>1</sup>H and <sup>13</sup>C spectra of the product 51ha.

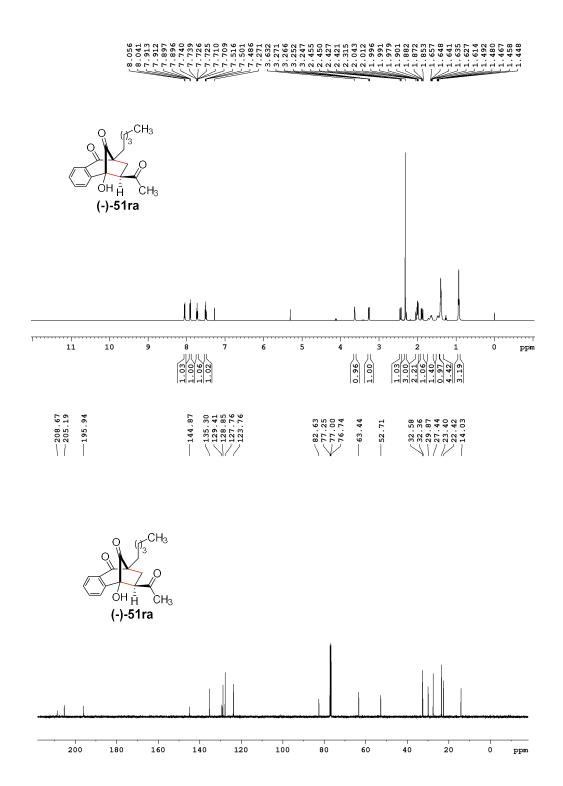
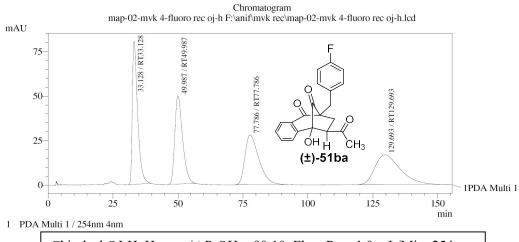
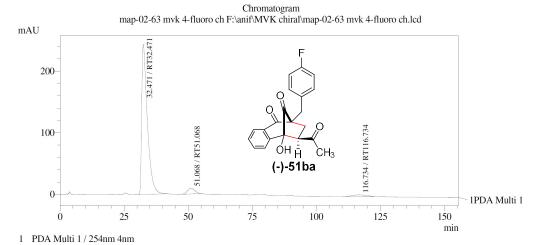




Figure 29: <sup>1</sup>H and <sup>13</sup>C spectra of the product 51ra.

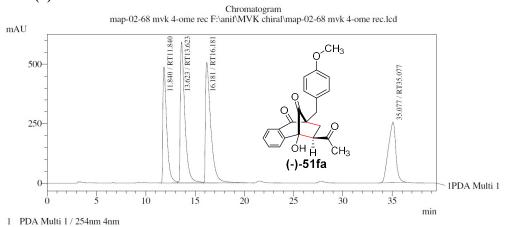

#### Racemic (±)-51ba:



Chiralcel OJ-H, Hexane/ i-PrOH = 90:10, Flow Rate 1.0 mL/Min, 254 nm

|         |           |           | PeakTable |        |         |          |
|---------|-----------|-----------|-----------|--------|---------|----------|
| PDA Ch1 | 254nm 4nm |           |           |        |         |          |
| Peak#   | Name      | Ret. Time | Area      | Height | Area %  | Height % |
| 1       | RT33.128  | 33.128    | 11327596  | 80251  | 26.104  | 45.992   |
| 2       | RT49.987  | 49.987    | 10336220  | 49635  | 23.819  | 28.446   |
| 3       | RT77.786  | 77.786    | 10437928  | 27934  | 24.054  | 16.009   |
| 4       | RT129.693 | 129.693   | 11292494  | 16671  | 26.023  | 9.554    |
| Tota    | d         |           | 43394237  | 174491 | 100.000 | 100,000  |

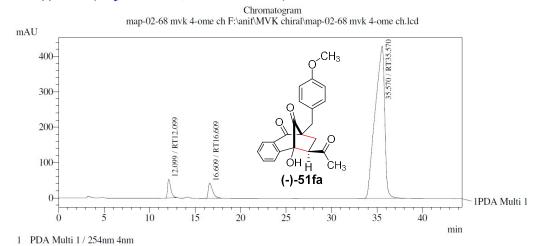
#### Chiral (-)-51ba (Major: 95% ee; Minor: >99% ee):




Chiralcel OJ-H, Hexane/ *i*-PrOH = 90:10, Flow Rate 1.0 mL/Min, 254 nm

|           |           |           | PeakTable |        |         |          |
|-----------|-----------|-----------|-----------|--------|---------|----------|
| PDA Ch1 2 | 254nm 4nm |           |           |        |         |          |
| Peak#     | Name      | Ret. Time | Area      | Height | Area %  | Height % |
| 1         | RT32.471  | 32.471    | 37099389  | 243176 | 92.777  | 95.321   |
| 2         | RT51.068  | 51.068    | 1887870   | 9281   | 4.721   | 3.638    |
| 3         | RT116.734 | 116.734   | 1000644   | 2656   | 2.502   | 1.041    |
| Total     |           |           | 39987903  | 255112 | 100.000 | 100.000  |

Figure 30: HPLC spectra of the chiral product 51ba.

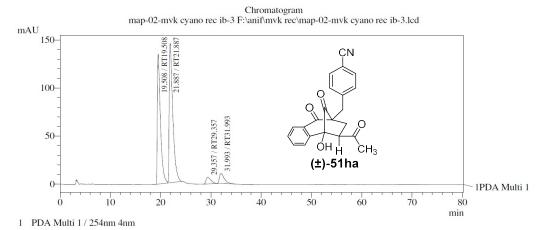

## Racemic (±)-51fa:



Chiralpak IB-3, Hexane/ *i*-PrOH = 90:10, Flow Rate 1.0 mL/Min, 254 nm

|           |           |           | PeakTable |         |         |          |
|-----------|-----------|-----------|-----------|---------|---------|----------|
| PDA Ch1 2 | 254nm 4nm |           |           |         |         |          |
| Peak#     | Name      | Ret. Time | Area      | Height  | Area %  | Height % |
| 1         | RT11.840  | 11.840    | 13374312  | 488155  | 20.667  | 26.505   |
| 2         | RT13.623  | 13.623    | 18917960  | 592001  | 29.234  | 32.143   |
| 3         | RT16.181  | 16.181    | 19007039  | 506948  | 29.371  | 27.525   |
| 4         | RT35.077  | 35.077    | 13413372  | 254642  | 20.728  | 13.826   |
| Tota      | 1         |           | 64712683  | 1841745 | 100.000 | 100.000  |

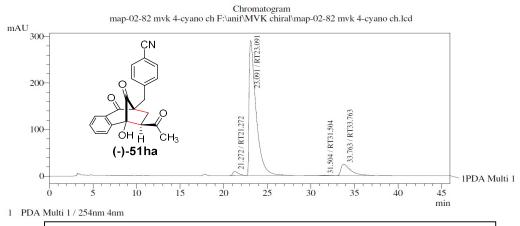
### Chiral (-)-51fa: (Major: 92% ee; Minor: >99% ee):




Chiralpak IB-3, Hexane/ *i*-PrOH = 90:10, Flow Rate 1.0 mL/Min, 254 nm

|           |           |           | PeakTable |        |         |          |
|-----------|-----------|-----------|-----------|--------|---------|----------|
| PDA Ch1 2 | 254nm 4nm |           |           |        |         |          |
| Peak#     | Name      | Ret. Time | Area      | Height | Area %  | Height % |
| 1         | RT12.099  | 12.099    | 1330721   | 52967  | 3.904   | 10.079   |
| 2         | RT16.609  | 16.609    | 1409689   | 42650  | 4.136   | 8.116    |
| 3         | RT35.570  | 35.570    | 31343344  | 429912 | 91.960  | 81.806   |
| Total     |           |           | 34083754  | 525529 | 100.000 | 100.000  |

Figure 31: HPLC spectra of the chiral product 51fa.

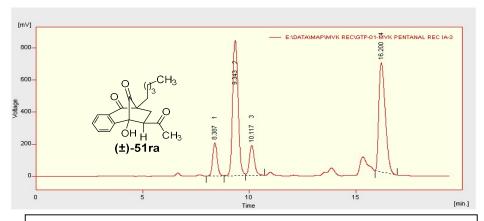

#### Racemic (±)-51ha:



Chiralpak IB-3, Hexane/ i-PrOH = 90:10, Flow Rate 1.0 mL/Min, 254 nm

|           |           |           | PeakTable |        |         |          |
|-----------|-----------|-----------|-----------|--------|---------|----------|
| PDA Ch1 2 | 254nm 4nm |           |           |        |         |          |
| Peak#     | Name      | Ret. Time | Area      | Height | Area %  | Height % |
| 1         | RT19.508  | 19.508    | 5811137   | 135151 | 41.057  | 45.366   |
| 2         | RT21.887  | 21.887    | 7149879   | 145082 | 50.515  | 48.700   |
| 3         | RT29.357  | 29.357    | 468545    | 7064   | 3.310   | 2.371    |
| 4         | RT31.993  | 31.993    | 724351    | 10616  | 5.118   | 3.563    |
| Total     |           |           | 14153912  | 297913 | 100,000 | 100,000  |

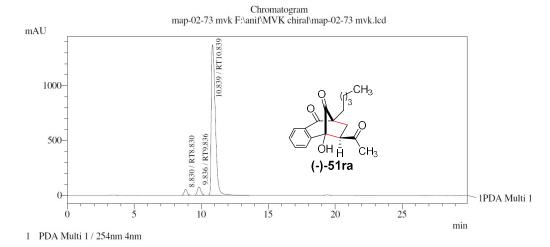
#### Chiral (-)-51ha: (Major: 95% ee; Minor: 95% ee):




| Chiralpak IB-3, Hexane/ $i$ -PrOH = 90:10, Flow Rate 1.0 mL/Min, 254 nm |
|-------------------------------------------------------------------------|
| Dook Toble                                                              |

| PDA Ch1 2 | 54nm 4nm |           |          |        |         |          |
|-----------|----------|-----------|----------|--------|---------|----------|
| Peak#     | Name     | Ret. Time | Area     | Height | Area %  | Height % |
| 1         | RT21.272 | 21.272    | 394492   | 9138   | 2.150   | 2.822    |
| 2         | RT23.091 | 23.091    | 16063164 | 289814 | 87.533  | 89.495   |
| 3         | RT31.504 | 31.504    | 41431    | 628    | 0.226   | 0.194    |
| 4         | RT33.763 | 33.763    | 1851841  | 24254  | 10.091  | 7.490    |
| Total     |          |           | 18350928 | 323834 | 100.000 | 100.000  |

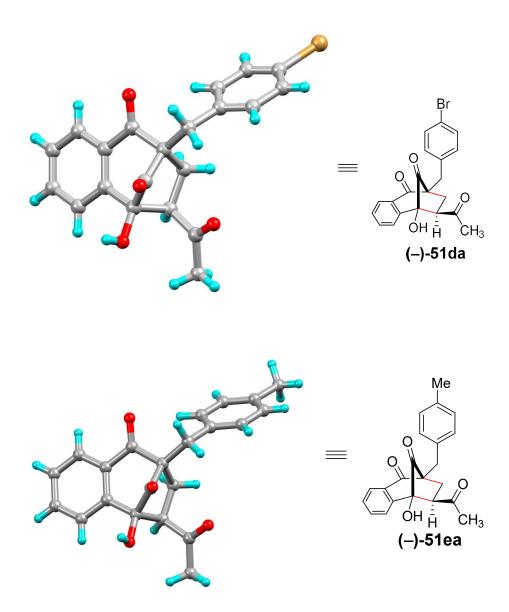
Figure 32: HPLC spectra of the chiral product 51ha.


#### Racemic (±)-51ra:



Chiralpak IA-3, Hexane/ i-PrOH = 90:10, Flow Rate 1.0 mL/Min, 254 nm

Result Table (Uncal - E.\DATA\WAP\WVK.REC\GTP-01-WVK.PENTANAL.REC.IA-3) Reten. Time Area [mV.s] Height Area [%] [mV] 204.855 843.188 [min] [min] 10.7 9.343 15313.539 42.7 43.9 0.29 10.117 3140.473 188.895 8.8 9.8 35.5 16.200 14407.330 682.067 40.2 0.34 1919.005 100.0 35879.802 100.0


Chiral (-)-51ra: (Major: 94% ee; Minor: >99% ee):



Chiralpak IA-3, Hexane/ i-PrOH = 90:10, Flow Rate 1.0 mL/Min, 254 nm

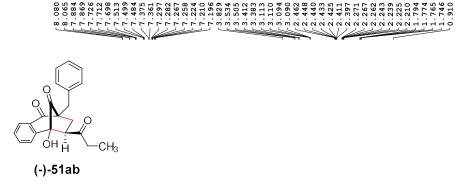
|           |           |           | PeakTable |         |         |          |
|-----------|-----------|-----------|-----------|---------|---------|----------|
| PDA Ch1 2 | 254nm 4nm |           |           |         |         |          |
| Peak#     | Name      | Ret. Time | Area      | Height  | Area %  | Height % |
| 1         | RT8.830   | 8.830     | 822650    | 54317   | 2.659   | 3.621    |
| 2         | RT9.836   | 9.836     | 1337347   | 75077   | 4.323   | 5.005    |
| 3         | RT10.839  | 10.839    | 28777392  | 1370538 | 93.018  | 91.373   |
| Total     |           |           | 30937389  | 1499932 | 100.000 | 100.000  |

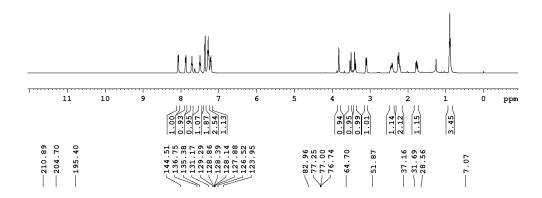
Figure 33: HPLC spectra of the chiral product 51ra.



*Figure 34*: Crystal structure of (6R,8R)-6-acetyl-8-(4-bromobenzyl)-5-hydroxy-7,8-dihydro-5H-5,8-methanobenzo[7]annulene-9,10(6*H*)-dione (**51da**) and (6*R*,8*R*)-6-acetyl-5-hydroxy-8-(4-methylbenzyl)-7,8-dihydro-5H-5,8-methanobenzo[7]annulene-9,10(6*H*)-dione (**51ea**).

Moreover, the scope of **57a** or **57b** catalyzed domino reaction was extended further by developing a library of optically pure methanobenzo[7]annulenes **51ab-ae** through the reaction of various 2-alkyl-3-hydroxynaphthalene-1,4-diones **48a-u** with different alkyl vinyl ketones **49b-e** (Table 10). Notably, the domino reaction of ethyl vinyl ketone **49b** with hydroxy-dione **48a** under the catalysis of **57a** or **57b** in trifluorotoluene at 0-3 or 20 °C for 72 h furnished the chiral product **51ab** in very poor conversions; but the same reaction at 40 °C for 13 h furnished the chiral product (+)-**51ab** in 80% yield with 74% *ee* and 90:1 dr and (-)-**51ab** in 80% yield with 76% *ee* and 25:1 dr respectively (Table 10, entries 1-2). Also, the same reaction under **57a** catalysis in toluene at 0-3 °C for 48 h furnished the chiral product (+)-**51ab** in 85% yield with 81% ee and 53:1 dr and under the **57b** catalysis in toluene at 0-3 °C for 72 h furnished (-)-**51ab** in 85% yield with 83% *ee* and 14:1 dr respectively (Table 10, entries 3-4).


In a similar manner, domino reaction of hydroxy-diones **48b-u** containing 4-fluorobenzyl, 4-chlorobenzyl, 4-methylbenzyl, 4-methoxybenzyl, ethyl, *n*-octyl and 3-phenylpropyl with ethyl vinyl ketone **49b** under the **57a** catalysis in toluene at 0-3 °C for 24-72 h furnished the chiral products (+)-**51bb** to (+)-**51ub** in good to excellent (65-90) yields, (64-97%) *ee*'s and (11:1 to 90:1) dr's (Table 10, entries 5-11). Interestingly, the same reactions under the **57a** catalysis in toluene at 0-3 °C furnished the opposite enantiomers of (-)-**51cb** to (-)-**51ub** in improved yields (65-95) and *ee*'s (77-98%) but with reduced (7:1 to 97:1) dr's (Table 10, entries 12-18). Reaction of hydroxy-dione **48a** with *n*-propyl vinyl ketone **49c** under the **57b** catalysis at 40 °C for 12 h furnished the chiral product (-)-**51ac** in 80% yield and 79% *ee* with 76:1 dr (Table 10, entry 19). Reaction of **48a** with benzyl vinyl ketone **49d** under the **57b** catalysis at 20 °C for 22 h furnished the chiral product (-)-**51ad** in 80% yield with 76% *ee* and 28:1 dr (Table 10, entry 20).


Table 10: Alkyl vinyl ketone scope.[a]

|                     |                                                                      |                |              | 51                                 |                   |                       |
|---------------------|----------------------------------------------------------------------|----------------|--------------|------------------------------------|-------------------|-----------------------|
| Entry               | Ar/R <b>48</b>                                                       | Cat. <b>57</b> | <i>t</i> [h] | Yield <b>51</b> [%] <sup>[b]</sup> | dr <sup>[c]</sup> | ee [%] <sup>[d]</sup> |
| 1 <sup>[e]</sup>    | <b>48a</b> : Ar = C <sub>6</sub> H <sub>5</sub>                      | 57a            | 13           | 80 ( <b>51ab</b> )                 | 90:1              | 74 [–]                |
| 2 <sup>[e]</sup>    | <b>48a</b> : Ar = C <sub>6</sub> H <sub>5</sub>                      | 57b            | 13           | 80 ( <b>51ab</b> )                 | 25:1              | 76 [99]               |
| 3                   | <b>48a</b> : Ar = C <sub>6</sub> H <sub>5</sub>                      | 57a            | 48           | 85 ( <b>51ab</b> )                 | 53:1              | 81 [89]               |
| 4                   | <b>48a</b> : Ar = $C_6H_5$                                           | 57b            | 72           | 85 ( <b>51ab</b> )                 | 14:1              | 83 [99]               |
| 5                   | <b>48b</b> : Ar = $4-FC_6H_4$                                        | 57a            | 48           | 65 ( <b>51bb</b> )                 | 90:1              | 97 [–]                |
| 6                   | <b>48c</b> : Ar = $4$ -CIC <sub>6</sub> H <sub>4</sub>               | 57a            | 48           | 75 ( <b>51cb</b> )                 | 90:1              | 73 [99]               |
| 7                   | <b>48e</b> : Ar = $4 - CH_3C_6H_4$                                   | 57a            | 72           | 65 ( <b>51eb</b> )                 | 16:1              | 74 [74]               |
| 8                   | <b>48f</b> : Ar = $4$ -OMeC <sub>6</sub> H <sub>4</sub>              | 57a            | 72           | 80 ( <b>51fb</b> )                 | 84:1              | 87 [38]               |
| 9                   | <b>48q</b> : R = CH <sub>3</sub>                                     | 57a            | 24           | 90 ( <b>51qb</b> )                 | 11:1              | 74 [90]               |
| 10                  | <b>48t</b> : $R = CH_2[CH_2]_5CH_3$                                  | 57a            | 48           | 90 ( <b>51tb</b> )                 | 89:1              | 79 [61]               |
| 11                  | <b>48u</b> : R = $CH_2CH_2Ph$                                        | 57a            | 48           | 90 ( <b>51ub</b> )                 | 22:1              | 64 [79]               |
| 12                  | <b>48c</b> : Ar = 4-CIC <sub>6</sub> H <sub>4</sub>                  | 57b            | 26           | 88 ( <b>51cb</b> )                 | 67:1              | 80 [99]               |
| 13                  | <b>48e</b> : Ar = $4$ -CH <sub>3</sub> C <sub>6</sub> H <sub>4</sub> | 57b            | 35           | 65 ( <b>51eb</b> )                 | 11:1              | 80 [87]               |
| 14                  | <b>48f</b> : Ar = 4-OMeC <sub>6</sub> H <sub>4</sub>                 | 57b            | 48           | 87 ( <b>51fb</b> )                 | 62:1              | 98 [99]               |
| 15                  | <b>48n</b> : Ar = 2-Furyl                                            | 57b            | 72           | 75 ( <b>51nb</b> )                 | 97:1              | 84 [99]               |
| 16                  | <b>48q</b> : R = CH <sub>3</sub>                                     | 57b            | 35           | 75 ( <b>51qb</b> )                 | 9:1               | 77 [74]               |
| 17                  | <b>48t</b> : $R = CH_2[CH_2]_5CH_3$                                  | 57b            | 24           | 95 <b>51tb</b> )                   | 10:1              | 86 [86]               |
| 18                  | <b>48u</b> : R = $CH_2CH_2Ph$                                        | 57b            | 26           | 92 ( <b>51ub</b> )                 | 7:1               | 84 [85]               |
| 19 <sup>[e,f]</sup> | <b>48a</b> : Ar = C <sub>6</sub> H <sub>5</sub>                      | 57b            | 12           | 80 <b>(51ac</b> )                  | 76:1              | 79 [96]               |
| 20 <sup>[g]</sup>   | <b>48a</b> : Ar = $C_6H_5$                                           | 57b            | 22           | 80 ( <b>51ad</b> )                 | 28:1              | 76 [87]               |
| 21 <sup>[g]</sup>   | <b>48a</b> : Ar = $C_6H_5$                                           | 57b            | 5.5          | 90 ( <b>51ae</b> )                 | 97:1              | 22 [99]               |

[a]Reactions were carried out in solvent (0.3 M) with 3.0 equiv. of **49b/c** relative to the **48** (0.3 mmol) in the presence of 20-mol% of catalyst **57a** or **57b**. [b] Yield refers to the column-purified product. [c] dr determined by <sup>1</sup>H NMR and CSP HPLC analysis. [d] ee determined by CSP HPLC analysis and values in paranthesis represent for minor

diastereomer. <sup>[e]</sup> Reaction performed in  $C_6H_5CF_3$  at 40 °C. <sup>[f]</sup> n-Propylvinylketone **49c** used. <sup>[g]</sup> Benzyl vinyl ketone **49d** or phenyl vinyl ketone **49e** used in  $C_6H_5CF_3$  at 20 °C. Note: Entries 1, 3, 5-11 represents the opposite enantiomers of compound **51** shown in Table.







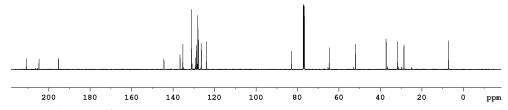



Figure 35: <sup>1</sup>H and <sup>13</sup>C spectra of the product 51ab.

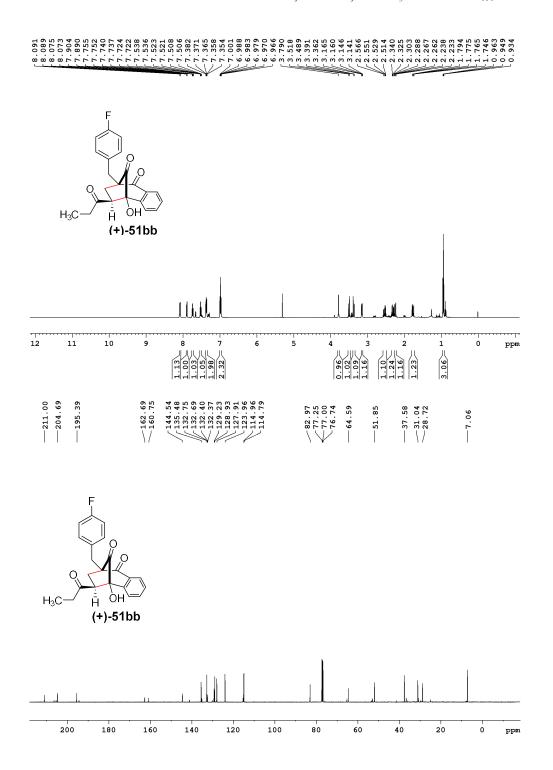
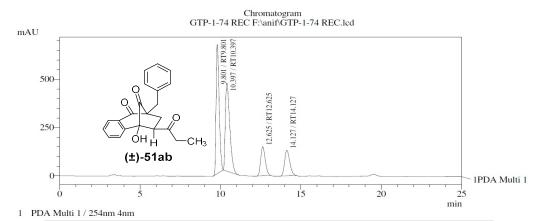
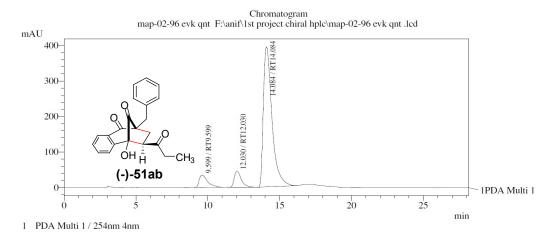




Figure 36: <sup>1</sup>H and <sup>13</sup>C spectra of the product **51bb**.

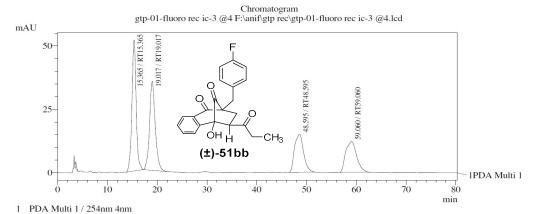

#### Racemic (±)-51ab:



Chiralpak IC-3, Hexane/ *i*-PrOH = 90:10, Flow Rate 1.0 mL/Min, 254 nm

|           |           |           | reak rable |         |         |          |
|-----------|-----------|-----------|------------|---------|---------|----------|
| PDA Ch1 2 | 254nm 4nm |           |            |         |         |          |
| Peak#     | Name      | Ret. Time | Area       | Height  | Area %  | Height % |
| 1         | RT9.801   | 9.801     | 8846198    | 668372  | 37.573  | 47.477   |
| 2         | RT10.397  | 10.397    | 8741029    | 455834  | 37.126  | 32.380   |
| 3         | RT12.625  | 12.625    | 2981955    | 150577  | 12.665  | 10.696   |
| 4         | RT14.127  | 14.127    | 2974973    | 132985  | 12.636  | 9.447    |
| Total     |           |           | 23544155   | 1407769 | 100.000 | 100.000  |

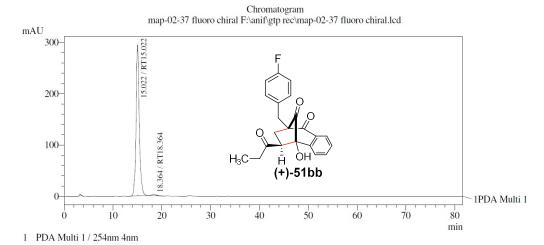
#### Chiral (-)-51ab: (Major: 83% ee; Minor: >99% ee):




Chiralpak IC-3, Hexane/ i-PrOH = 90:10, Flow Rate 1.0 mL/Min, 254 nm

| PD | A Ch1 2 | 254nm 4nm |           | PeakTable |        |         |          |
|----|---------|-----------|-----------|-----------|--------|---------|----------|
|    | Peak#   | Name      | Ret. Time | Area      | Height | Area %  | Height % |
|    | 1       | RT9.599   | 9.599     | 1429282   | 34954  | 7.383   | 7.383    |
|    | 2       | RT12.030  | 12.030    | 1528240   | 44609  | 7.895   | 9.422    |
|    | 3       | RT14.084  | 14.084    | 16400555  | 393880 | 84.722  | 83.195   |
|    | Total   |           |           | 19358077  | 473442 | 100.000 | 100.000  |

Figure 37: HPLC spectra of the chiral product 51ab.


#### Racemic (±)-51bb:



Chiralpak IC-3, Hexane/ i-PrOH = 95:05, Flow Rate 1.0 mL/Min, 254 nm

|           |           |           | I Cak I abic |        |         |          |
|-----------|-----------|-----------|--------------|--------|---------|----------|
| PDA Ch1 2 | 254nm 4nm |           |              |        |         |          |
| Peak#     | Name      | Ret. Time | Area         | Height | Area %  | Height % |
| 1         | RT15.365  | 15.365    | 3048375      | 51635  | 31.776  | 45.329   |
| 2         | RT19.017  | 19.017    | 2809030      | 35068  | 29.281  | 30.785   |
| 3         | RT48.595  | 48.595    | 1880500      | 15001  | 19.602  | 13.169   |
| 4         | RT59.060  | 59.060    | 1855391      | 12208  | 19.340  | 10.717   |
| Total     |           |           | 9593296      | 113911 | 100,000 | 100.000  |

# Chiral (+)-51bb: (Major: 97% ee):



Chiralpak IC-3, Hexane/ *i*-PrOH = 95:05, Flow Rate 1.0 mL/Min, 254 nm

|           |           |           | PeakTable |        |         |          |
|-----------|-----------|-----------|-----------|--------|---------|----------|
| PDA Ch1 2 | 254nm 4nm |           |           |        |         |          |
| Peak#     | Name      | Ret. Time | Area      | Height | Area %  | Height % |
| 1         | RT15.022  | 15.022    | 13400594  | 294601 | 98.668  | 99.012   |
| 2         | RT18.364  | 18.364    | 180972    | 2940   | 1.332   | 0.988    |
| Total     |           |           | 13581566  | 297541 | 100.000 | 100.000  |
|           |           |           |           |        |         |          |

Figure 38: HPLC spectra of the chiral product 51bb.

Surprisingly, domino reaction of **48a** with phenyl vinyl ketone **49e** under the **57b** catalysis in trifluorotoluene at 20 °C for 5.5 h furnished the expected product **51ae** in 90% yield with poor (22%) *ee* and high (97:1) dr (Table 10, entry 21). In similar conditions, we didn't observe the domino reaction between **48a** and 3-methylbut-3-en-2-one **49f** or ethyl acrylate **49g** for even for longer reaction times [results not shown in Table 10]. It is evident from the results that the size of the alkyl group on the enone **49** controls the reaction rate and selectivity.

## **4.2.3** *Synthetic applications of methanobenzo[f]azulenes:*

In line with synthetic applications, the generated triones **51** were utilized for the synthesis of hydroxy-rich chiral compounds **58** by simple reduction (Eq. 12). Straightforward NaBH<sub>4</sub> (1.0 equiv.) reduction of the chiral methanobenzo[7]annulene (–)-**51aa** in dry CH<sub>3</sub>OH at 0 °C for 2 h produced the trihydroxy compound (–)-**58aa** in 75% yield with 95% *ee* and 70:1 dr (Eq. 12).

#### 4.2.4 Controlled experiments

Basic nature of the catalyst **57** has strong influence on the stability and selectivity of the chiral products **51** (Eq. 13). Treatment of (+)-**51qa** with 20 mol% DMAP **3p** at 20 °C for 2 h resulted the product (+)-**51qa** with reduced dr and same *ee*; but treatment with one equivalent of KO*t*Bu **3r** at 20 °C for 1 h gave completely the starting materials **48q** and **49a** in 90% yield through retro-aldol/aldol and retro-aldol/retro-Michael reactions, respectively (Eq. 13). In a similar manner, reaction of (-)-**51aa** with 20 mol-% 9-*epi*-aminoquinine-thiourea **57b** at 20 °C for 12-24 h resulted the (-)-**51aa** with

reduced dr and almost same *ee*; which is strong supportive of stepwise mechanism rather than concerted in the designed domino reactions (Eq. 13).

## 4.2.5 Mechanistic insights:

Despite the fact that further studies are necessary for elucidating the mechanism of the stereoselective domino Michael/5-(enolexo)-exo-trig cyclization through 57a or 57b catalysis, most probably, the reaction might be proceeding in a stepwise fashion between the in situ generated 3-alkyl-1,4-dioxo-1,4-dihydronaphthalen-2-olate and alkyl vinyl ketones 49 (Figure 40). The experiential high stereoselectivity could be explained on account of X-ray crystal structure studies, through an allowed pre-transition state, where the Si-face of alkyl vinyl ketone 49 approaches the Re-face of the in situ generated 3-alkyl-1,4-dioxo-1,4-dihydronaphthalen-2-olate owing to the strong hydrogen-bonding, electrostatic attraction and less steric hindrance between the catalyst 57b and substrates 48/49 as shown in the TS-1. The model TS-2 having weak hydrogen-bonding interactions between the catalyst 57b and substrates 48/49 might explain the generation of the minor enantiomer (Figure 40)

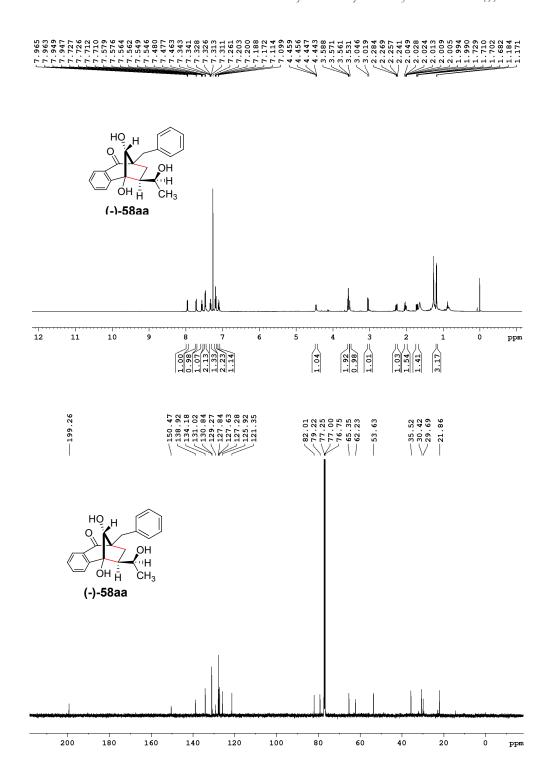
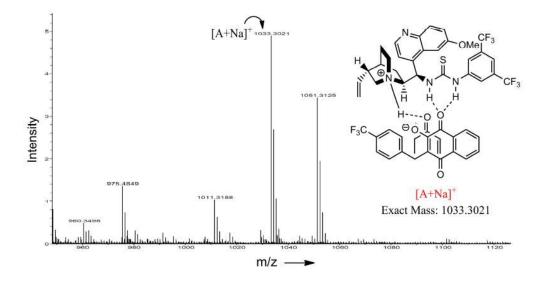
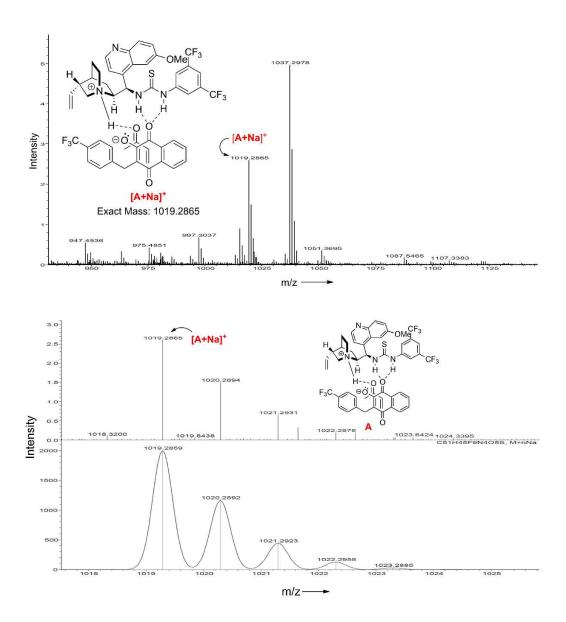




Figure 39: <sup>1</sup>H and <sup>13</sup>C spectra of the product **58aa**.


Figure 40: Proposed Reaction Mechanism.

We have also got strong support to our hypothesis of involving stable pre-transition state (*pre*-**TS-1**) through careful investigation of the domino reaction of **48g** with **49a** or **49b** under the **57b** catalysis using electrospray ionization with high resolution mass spectrometry (ESI-HRMS) technique, which enabled us to identify critical proposed *pre*-**TS-1** or Michael adduct-catalyst complex (Figure 41i&ii). The ESI-HRMS spectrum of an on-going reaction of **48g** with **49a** or **49b** (3 equiv.) in the presence of **57b** (20 mol-%) in the trifluorotoluene at 0-3 °C reveals the formation of the key catalytic intermediate *pre*-**TS-1**·Na+ (m/z 1019.2865) or *pre*-**TS-1**·Na+ (m/z 1033.3021) respectively. One of the important innovations in these reactions is that, out of the three carbonyls existed in the key Michael adduct intermediate (**50a**, Scheme 20), only C1-carbonyl group involved as the electrophile in the subsequent aldol reaction may be due to the consideration of length of the side chain *enolexo* and also structural/electronic nature of in situ generated naphthalene-1,2,4(3H)-trione. Even though, according to preliminary ab initio calculations, the charge on the C1 carbon is least (C4 = 0.397096; C2 = 0.406116; C1 = 0.349861).





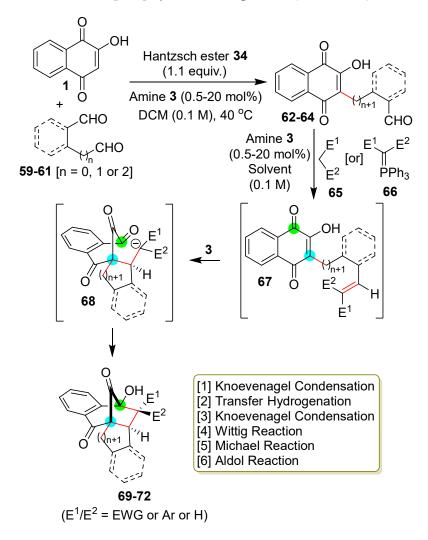
*Figure 41i*: The ESI-HRMS Spectrum and [a] observed [b] Stimulated isotopic pattern of an On-going Reaction of **48g** and **49b** (3 equiv.) in the Presence of **57b** (20 mol%).



*Figure 41ii*: The ESI-HRMS Spectrum and [a] observed [b] Stimulated isotopic pattern of an On-going Reaction of **48g** and **49a** (3 equiv.) in the Presence of **57b** (20 mol%).

## 4.3 Conclusions

In conclusion, for the first time, we have utilized the in situ generated chiral enolates from lab-made 2-alkyl-3-hydroxynaphthalene-1,4-diones by 9-epi-aminoquinine-thiourea catalysis, as suitable dipolarophiles for formal [3+2]-cycloaddition with alkyl vinyl ketones to furnish the highly functionalized chiral methanobenzo[7]annulenes as a single compound out of six in very good yields with high ee's/dr's. A library of methanobenzo[7]annulenes in both achiral and chiral forms were generated, which would be applicable in natural and pharmaceutical chemistry. Further work in this line of exploring the potential of novel modes available for the perfect pair of chiral amines with unmodified 2-alkyl-3-hydroxynaphthalene-1,4-diones is in progress.


# 5. Organocatalytic Formal Intramolecular [3+2] Cycloaddition to Acquire Biologically Important Methanodibenzo[a,f]azulenes and Methanobenzo[f]azulenes

## 5.1 Introduction

Recently, lawsone and its cognates have become building blocks for cosmetic, organic, medicinal and material chemistry.<sup>[1]</sup> Due to the natural availability and the ambident nature, lawsone has become favorable starting material for organic chemists to design new chemical reactions to construct pharmaceutically important natural and unnatural molecules.<sup>[15]</sup> For the last few years, we have been investigating the ambident nature of lawsones with activated olefins through the intermolecular organocatalytic formal [3+2]-cycloaddition and [2+2]-cycloaddition followed by rearrangement to furnish the methanobenzo[7]annulenes and benzannulated bicyclo[3.3.0]octanes, respectively.<sup>[8a]</sup> In continuation of our scrutiny to explore the chemical reactivity/ambident nature of lawsones with olefins, herein, we outlined to study the domino formal intramolecular [3+2]-cycloaddition between functionalized lawsones and *in-situ* generated activated Knoevenagel or Wittig olefins (Scheme 21).

In this unprecedented reaction, we are proposing that five domino reactions are sequentially going to be performed on lawsones 1 to make four C-C bonds, two C-H bonds and two rings in one- or two-pot manner (Scheme 21). First, organocatalytic chemoselective Knoevenagel condensation and transfer hydrogenation (reductive coupling) of lawsones 1 with di-aldehydes 59-61 and Hantzsch ester 34 generates the lawsone-aldehydes 62-64. Further organocatalytic treatment of lawsone-aldehydes 62-64 with active methylenes or alkylidene phosphoranes 65/66 through Knoevenagel or Wittig reaction would generate the regioselective lawsone-olefins 67, respectively.

Next, *in situ* reaction of lawsone-olefins **67** with organocatalyst **3** would generate the key intermediate **68** through diastereoselective intramolecular Michael reaction, which further undergoes chemoselective aldol reaction to furnish the functionalized, unique carbon skeleton of methanodibenzo[a,f]azulenes and methanobenzo[f]azulenes **69-72**, as a formal intramolecular [3+2]-cycloaddition product (Scheme 21).



Scheme 21: Reaction design for acyclic/cyclic systems insertion into lawsones.

Organocatalytic *in situ* generated Knoevenagel condensation products, olefins from carbonyls and active methylenes are exceptionally reactive due to their self-activation.<sup>[23]</sup> For the last two decades, many chemists have investigated the unique organocatalytic generation of Knoevenagel olefins as intermediates to initiate domino

reactions to synthesize complex molecules of diverse carbo- and heterocycles.<sup>[24]</sup> In particular, chemoselective synthesis of lawsone-olefins **67** through sequential domino Knoevenagel condensation-transfer hydrogenation-Knoevenagel condensation among lawsones **1**, di-aldehydes **59-61**, Hantzsch ester **34** and active methylenes **65/66** is highly challenging. Additionally, lawsone-olefins **67** has inspired us to further investigate the proposed intramolecular [3+2]-cyclizations through soft-catalysis (Scheme 21).

# 5.2 Results and Discussions

#### 5.2.1 Reaction optimization:

Preliminarily, to understand the designed domino reaction rate, catalyst/solvent effect, chemo-/diastereo-selectivity, and side reactions over the possible additions/cyclizations, first we investigated the proposed reaction among the simple substrates of lawsone 1, phthalaldehyde 59a, Hantzsch ester 34 and Meldrum's acid 65a under the catalysis of (S)-proline 3n in DCM at 40 °C for 10 h (Eq. 14). Surprisingly, the compound containing an unique carbon skeleton of methanodibenzo[a,f]azulene

(±)-69aa was obtained in 54% yield with 99:1 dr and 80% yield with 99:1 dr from sequential one-pot and two-pot manner, respectively (Eq. 14). Among these reaction sequences, 3n-catalyzed chemoselective reductive coupling of 1, 59a and 34 in DCM at 40 °C for 4 h furnished the lawsone-aldehyde 62a in 82% yield (Eq. 15).

Table 11: Investigation of the Proposed Domino Reaction.[a]

| Entry               | Solvent<br>[0.1 M]          | Catalyst <b>3</b><br>[mol%] | Time<br>[h] | Yield [%] <sup>[b]</sup><br><b>69aa</b> | dr [%] <sup>[c]</sup><br><b>69aa</b> |
|---------------------|-----------------------------|-----------------------------|-------------|-----------------------------------------|--------------------------------------|
| 1 <sup>[d]</sup>    | DCM                         | <b>3n</b> (20)              | 5.0         | 89                                      | 99:1                                 |
| 2 <sup>[e]</sup>    | DCM                         | <b>3n</b> (20)              | 6.0         | 84                                      | 99:1                                 |
| 3 <sup>[f]</sup>    | DCM                         | <b>3n</b> (20)              | 6.0         | 88                                      | 99:1                                 |
| 4                   | CHCl <sub>3</sub>           | <b>3n</b> (20)              | 5.0         | 95                                      | 99:1                                 |
| 5                   | CH₃CN                       | <b>3n</b> (20)              | 3.0         | 94                                      | 99:1                                 |
| 6                   | $\mathrm{CH_{3}C_{6}H_{5}}$ | <b>3n</b> (20)              | 5.0         | 26                                      | 99:1                                 |
| 7                   | EtOH                        | <b>3n</b> (20)              | 2.5         | 95                                      | 99:1                                 |
| 8                   | DMSO                        | <b>3n</b> (20)              | 0.5         | 88                                      | 99:1                                 |
| 9                   | $H_2O$                      | <b>3n</b> (20)              | 24          | 18                                      | 99:1                                 |
| 10 <sup>[e,g]</sup> | DCM                         | <b>3z</b> (10)              | 0.41        | 97                                      | 99:1                                 |
| 11 <sup>[e,h]</sup> | DCM                         | <b>3z</b> (10)              | 0.41        | 97                                      | 99:1                                 |

[a] Reactions were carried out in solvent (0.1 M) with 1.1 equiv. of **62a** relative to the **65a** (0.25 mmol) in the presence of catalyst **3**. [b] Yield refers to the column-purified product. [c] dr determined by <sup>1</sup>H NMR analysis of reaction mixture. [d] **62a** used in 1.05 equiv. [e] **62a** used in 1.0 equiv. [f] DCM used in 0.2 M. [g] T = 25 °C. [h] **65a** used in 1.1 equiv. with respect to **62a** (0.25 mmol, 1 equiv.). Note: **3z** = PhCH<sub>2</sub>NH<sub>2</sub>

Next, **3n** catalysed Knoevenagel-Michael-aldol reaction of **62a** with **65a** in DCM at 40 °C for 4 h furnished the domino product (±)-**69aa** in 98% yield with 99:1 dr (Table 11, entry 1). Based on our experience on reductive coupling, we further initiated optimization on latter sequence of three reactions to improve the rate by investigating the catalyst structure, solvent nature and temperature (Table 11). The (*S*)-proline **3n**-catalyzed Knoevenagel condensation-intramolecular Michael and aldol (KC/IM/IA) reaction of **62a** with **65a** in DCM has shown that outcome of domino product (±)-**69aa** yield and reaction time is controlled by the catalyst loading and temperature (Table 12, entries 1-3 and Table 11). In a similar manner, with other catalysts such as glycine **3x**, PhCO<sub>2</sub>H **3y**, Et<sub>3</sub>N **3o** and BnNH<sub>2</sub> **3z** too, the KC/IM/IA reaction proceeded to furnish the product **69aa** in poor to excellent yields, 3 to 97% yield with high selectivity of dr (99:1) in DCM at 40 °C under varying reaction times of 0.13 h to 96 h (Table 12, entries 4-7). This optimisation study clearly illustrated BnNH<sub>2</sub> **3z** as better catalyst.

Further, we thoroughly investigated the catalyst **3z** loading (20 mol% to 0.5 mol%) of the domino reaction of **62a** and **65a** in DCM at 25 °C by looking at the outcome of the domino product **69aa** yield, selectivity and reaction time as shown in Table 12, entries 8-13. Surprisingly, we were able to obtain high yield and selectivity by compromising the reaction time at lower loading of the catalyst **3z** (Table 12 and Table 11). Finally, 10 mol% of **3z** in DCM (0.1 M) at 25 °C for 0.41 h was approved as the optimized condition for the domino KC/IM/IA reaction of **62a** and **65a** to furnish the methanodibenzo[*a*, *f*]azulene **69aa** in 98% yield with 99:1 dr (Table 12, entry 9).

Table 12: Investigation of the Proposed Domino Reaction.[a]

|                   |                                                  |             | ~                                       |                                      |
|-------------------|--------------------------------------------------|-------------|-----------------------------------------|--------------------------------------|
| Entry             | Catalyst <b>3</b><br>[mol%]                      | Time<br>[h] | Yield [%] <sup>[b]</sup><br><b>69aa</b> | dr [%] <sup>[c]</sup><br><b>69aa</b> |
| 1                 | (S)-Proline <b>3n</b> (20)                       | 4.0         | 98                                      | 99:1                                 |
| 2                 | <b>3n</b> (10)                                   | 18          | 93                                      | 99:1                                 |
| 3 <sup>[d]</sup>  | <b>3n</b> (20)                                   | 6.0         | 88                                      | 99:1                                 |
| 4                 | Glycine <b>3x</b> (20)                           | 24          | <3                                      | _                                    |
| 5                 | PhCO <sub>2</sub> H <b>3y</b> (20)               | 96          | 23                                      | 99:1                                 |
| 6                 | Et <sub>3</sub> N <b>3o</b> (20)                 | 3.0         | 93                                      | 99:1                                 |
| 7                 | PhCH <sub>2</sub> NH <sub>2</sub> <b>3z</b> (20) | 0.13        | 97                                      | 99:1                                 |
| 8 <sup>[d]</sup>  | <b>3z</b> (20)                                   | 0.16        | 98                                      | 99:1                                 |
| 9 <sup>[d]</sup>  | <b>3z</b> (10)                                   | 0.41        | 98                                      | 99:1                                 |
| 10 <sup>[d]</sup> | <b>3z</b> (5.0)                                  | 1.0         | 98                                      | 99:1                                 |
| 11 <sup>[d]</sup> | <b>3z</b> (2.5)                                  | 2.5         | 98                                      | 99:1                                 |
| 12 <sup>[d]</sup> | <b>3z</b> (1.0)                                  | 12          | 98                                      | 99:1                                 |
| 13 <sup>[d]</sup> | <b>3z</b> (0.5)                                  | 24          | 88                                      | 99:1                                 |
| 14                | _                                                | 96          | 21                                      | 99:1                                 |

<sup>&</sup>lt;sup>[a]</sup> Reactions were carried out in DCM (0.1 M) with 1.1 equiv. of **62a** relative to the **65a** (0.25 mmol) in the presence of catalyst **3**. <sup>[b]</sup> Yield refers to the column-purified product. <sup>[c]</sup> dr determined by <sup>1</sup>H NMR analysis of reaction mixture. <sup>[d]</sup> T = 25 °C.

Figure 42: Medicinally important products containing methanobenzo[f]azulenes and methanoazulenes.

Sequential domino reaction is not only fascinating but also product-wise interesting, as the methanoazulenes, methanodibenzo[ $a_if$ ] azulenes, and methanobenzo[f] azulenes are the lead structural motifs found in the biologically active natural compounds (Figure 42). Although very few methods have been developed for the synthesis of racemic methanobenzo[f] azulenes, domino two-pot high-yielding methods for the construction of methanobenzo[f] azulenes with multiple functional groups and chiral centers are in high demand. Thus, stereoselective sequential two-pot modular approach for the direct synthesis of methanodibenzo[ $a_if$ ] azulenes, and methanobenzo[f] azulenes is further investigated.

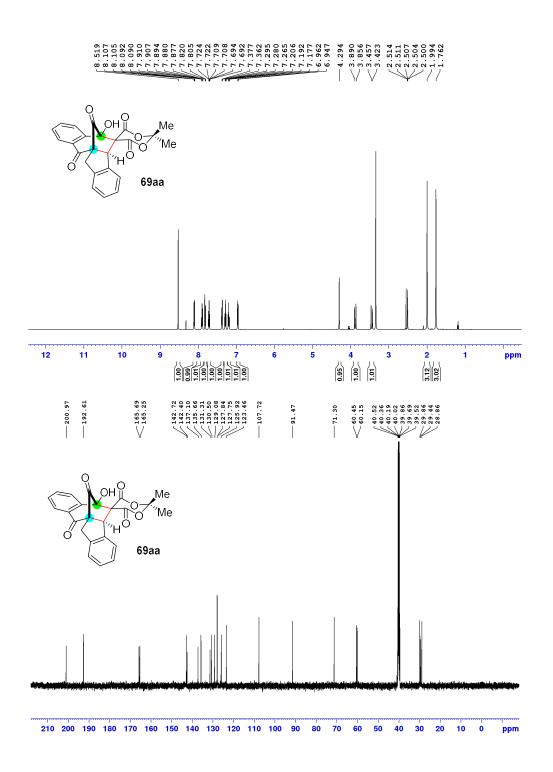



Figure 43: <sup>1</sup>H and <sup>13</sup>C spectra of the product 69aa.

## **5.2.2** Scope of domino KC/IM/IA reactions:

Later we focused to investigate the 3n-catalysed domino KC/IM/IA reaction by developing library of structurally unique, functionally rich methanodibenzo [a,f] azulenes 69ab-69au, benzo[b]indeno[1,2-m]xanthenetriones (epimethanetriyliminomethano)dibenzo[a,f]azulene-5-carbonitrile 69ak-69ao and 69ap through the domino reaction of various CH-acids or active methylenes 65b-v with lawsone-aldehyde 62a (Table 13). The reported methanodibenzo[a,f]azulenes 69ab-69af were obtained in 88-97% yields with 99:1 dr's from the domino reaction of CHacids containing spiro-Meldrum's acids 65b-c, chiral spiro-Meldrum's acid 65d, and Barbiturates **65e-f** with lawsone-aldehyde **62a** at 25 °C for 0.41 to 1.5 h (Table 13).

Strangely, the chiral domino product (-)-69ad was generated in 1:1 dr from 62a and (-)-65d may be due to the poor facial selectivity. Structurally challenging indoline containing spiro[methanodibenzo[a,f]azulenes] 69ag-69ai were furnished in 53-74% yields with 4:1 to 13:1 dr from the 3z-catalysed domino reaction of 62a with indolin-2-ones 65g-i in EtOH or CH<sub>3</sub>CN at 45-80 °C for 2.5-24 h (Table 13). The 3z-catalysed domino product 69aj was formed in 97% yield with 99:1 dr from the reaction between 62a and 1,3-indandione 65j within 0.41 h at 25 °C (Table 13). Peculiarly, the 3z-catalysed domino reaction of lawsone-aldehyde 62a with CH-acids of cyclopentane-1,3-dione 65k, cyclohexane-1,3-dione 65h, dimedone 65m, lawsone 1, and 4-hydroxy-6-methyl-2H-pyran-2-one 65o at 25 °C in DCM for 0.75 to 90 h furnished the unexpected benzo[b]indeno[1,2-m]xanthenetriones 69ak-69ao in excellent yields with 99:1 dr (Table 13). This unusual acetal formation over aldol reaction in the final domino reaction may be due to the more population of the enol tautomers than 1,3-diketones of the key intermediates 68ak-68ao (Table 13 and see Scheme 21).

Table 13: CH-acids scope of the proposed design. [a]

[a] Reactions were performed using **62a** (0.275 mmol, 1.1 equiv.), **65a-v** (0.25 mmol, 1 equiv.), and **3z** (10 mol%) in DCM (0.1 M) at 25 °C, and yield refers to the column-purified product. [b] dr was determined by <sup>1</sup>H NMR analysis of crude reaction mixture. [c] Reaction was performed in EtOH (0.1 M) at 80 °C. [d] Reaction was performed in CH<sub>3</sub>CN (0.1 M) at 45 °C. [e] The reaction was performed at 50 °C in a sealed tube. [f] Reaction was carried out using **62a** (1.0 equiv.) and **6** (1.2 equiv.).

Strikingly, the domino reaction of lawsone-aldehyde 62a with malononitrile 65p, or 2-cyanoacetamide 65q under the catalysis of BnNH<sub>2</sub> 3z in DCM or CH<sub>3</sub>CN at 25 °C or 45 °C for 0.75-36 h furnished the unexpected polycyclic domino product **69ap** as the single product in 85-89% yields with 99:1 dr through the formation of **69** followed by nitrile hydrolysis and aminal formation (Table 13). Surprisingly, the domino reaction of 2-(phenylsulfonyl)acetonitrile 65r, and 2-tosylacetonitrile 65s with 62a under the catalysis of BnNH<sub>2</sub> 3z in DCM at 50 °C in a sealed tube for longer reaction times (6 h and 24 h) furnished the expected domino products 69ak and 69ar in good yields (58%, 54%) with high (99:1) dr respectively (Table 13). In a similar manner, the domino reaction of ethyl 2-cyanoacetate 65t, benzyl 2-cyanoacetate 65u, and ethyl 2nitroacetate 65v with 62a under the catalysis of BnNH<sub>2</sub> 3z in DCM at 50 °C in a sealed tube for longer reaction times (10 to 15 h) furnished the domino products 69as to 69au in very good (78, 75, 89) yields with good to moderate (14:1 to 2:1) dr's, respectively (Table 13). Gram scale domino reaction of 62a and 65a under the 3z catalysis furnished the crystalline product **69aa** without compromising yield, rate and selectivity (Table 13). These results clearly suggest that the CH-acids 65a-v containing various electron withdrawing groups have sufficient control over the outcome of the domino KC/IM/IA reaction product structure, rate, selectivity and yields through steric and electronic factors.

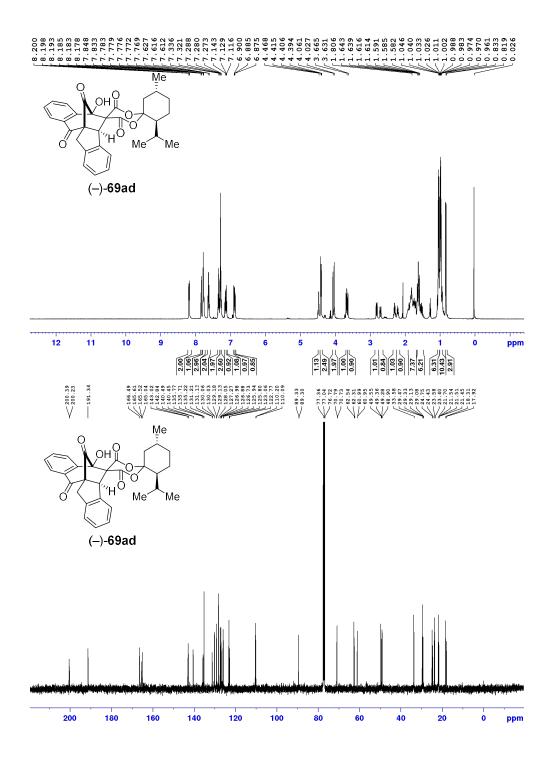



Figure 44: <sup>1</sup>H and <sup>13</sup>C spectra of the product **69ad**.

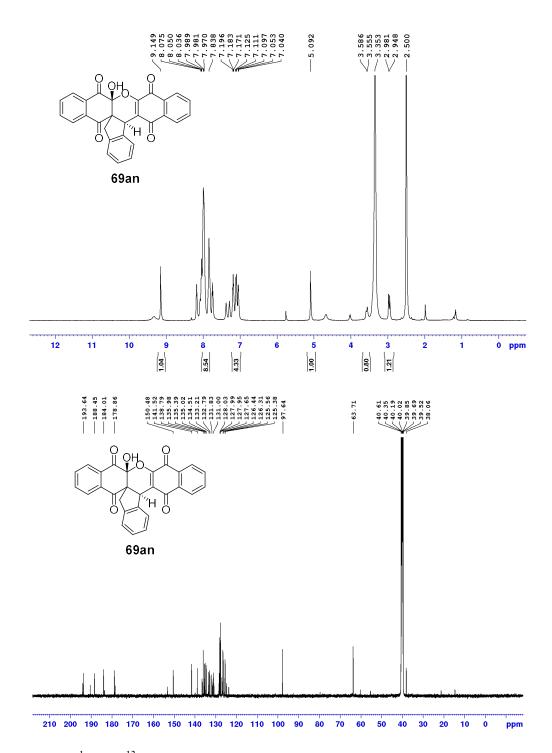



Figure 45: <sup>1</sup>H and <sup>13</sup>C spectra of the product 69an.

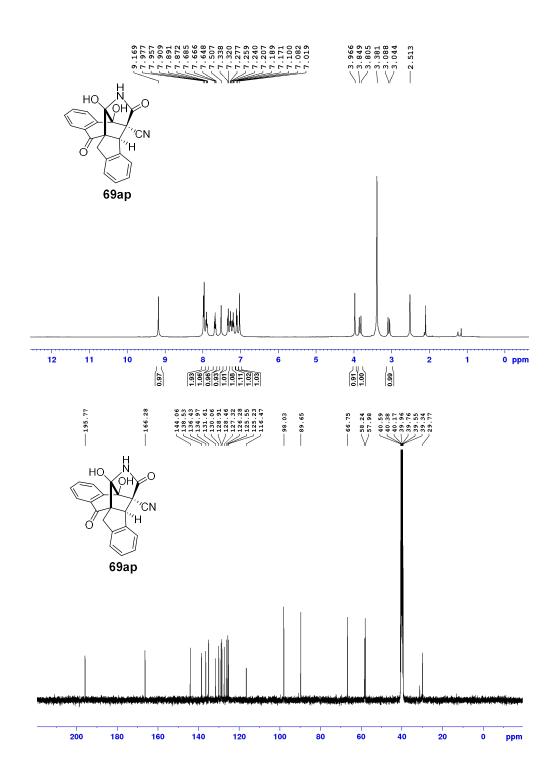
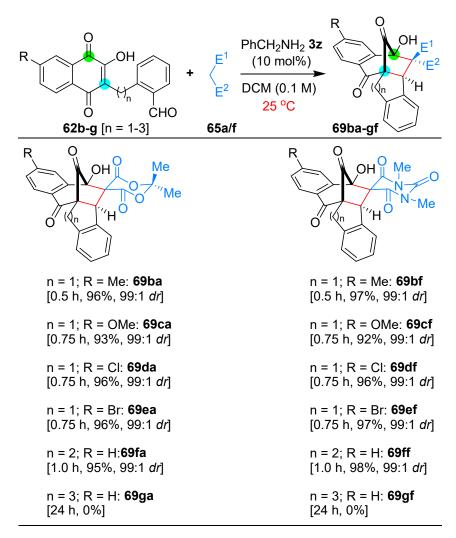



Figure 46: <sup>1</sup>H and <sup>13</sup>C spectra of the product 69ap.

We further explored the scope of the **3z** catalysed domino KC/IM/IA reaction by developing a library of functionally rich methanodibenzo[*a*,*f*]azulenes **69ba-fa**, **69bf-gf** through the reaction of various lawson-aldehydes **62b-g** with Meldrum's acid **65a** or Barbiturate **65f** (Table 15). Various lawsone aldehyde **62b-i**, **63a** and **64a** used in this reaction were synthesized in moderate to good yields by using organocatalytic TCRA or reductive coupling of Lawsone **1**, aldehydes **59-61** and Hantzsch ester **34** (Table 14). Notably, the domino reaction of **65a** with 6-methyl-lawsone-aldehyde **62b** under the **3z** catalysis in DCM at 25 °C for 0.5 h furnished the domino product **69ba** in 96% yield with 99:1 dr (Table 15). Similarly, the domino reaction of lawsone-aldehydes **62c-e** containing 6-methoxy, 6-chloro and 6-bromo groups with **65a** under the **3z** catalysis in DCM at 25 °C for 0.75 h furnished the domino products **69ca-ea** in 93%, 96% and 96% yields with 99:1 dr 's, respectively (Table 15).


To test the effect of length of the methylene side chain in lawsone-aldehydes 62 (n = 1 to 3) on the domino reaction, we performed the 3z catalysed domino KC/IM/IA reaction of 65a with two lawsone-aldehydes 62f-g (n = 2-3) in DCM at 25 °C for 1.0 to 24.0 h (Table 15). Product 69fa (n = 2) was furnished in 95% yield with 99:1 dr within 1.0 h; but there is no product formation of 69ga (n = 3) even after longer reaction times and at higher temperatures and only the corresponding olefin 67 was observed. Same trend was observed while performing the domino reaction of lawsone-aldehydes 62b-g with Barbiturate 65f and the results of the domino products 69bf-gf are presented in the Table 15. These results clearly highlight the importance of the domino KC/IM/IA reaction to construct functionally rich methanodibenzo[a,f]azulenes 69ba-gf.

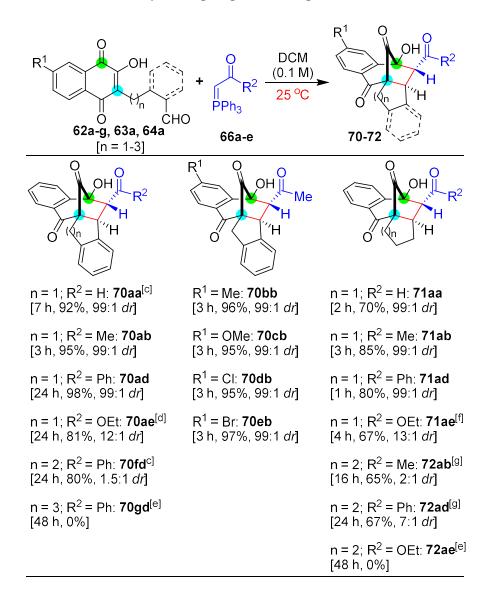
*Table 14*: Reaction Scope for Organocatalytic Chemoselective Reductive Coupling Reaction: Synthesis of Lawsone Derivatives.<sup>[a]</sup>

[a]Reactions were carried out in DCM (0.3 M) with 1.1 equiv. of **59-61** and 1.1 equiv. of **34** relative to the **1** (0.3 mmol) in the presence of 20 mol% of (*S*)-proline **3n** at 25 °C. [b] Yield refers to the column-purified product. [c] Reaction performed at 40 to 45 °C. [d] The aldehyde **59** was added drop wise over 3-5 h using dropping funnel under N<sub>2</sub>

atmosphere. [e] The aldehyde 60 was used in 3 equiv. with respect to 1. [f] The aldehyde 61 was used in 4 equiv. with respect to 1.

Table 15: Lawsone Derivatives Scope. [a]




[a]Reactions were performed using **62a** (0.275 mmol, 1.1 equiv.), **65a/f** (0.25 mmol, 1 equiv.), and **3z** (10 mol%) in DCM (0.1 M) at 25 °C, and yield refers to the column-purified product. [b] dr was determined by <sup>1</sup>H NMR analysis of crude reaction mixture.

To investigate the outcome of rate and diastereoselectivity in the designed domino reaction by using disubstituted olefins 67, we tested the domino W/IM/IA reaction of lawsone-aldehydes 62a-g, 63a and 64a with various alkylidene phosphoranes 66a-e

(Table 16). Surprisingly, the domino reaction of (triphenylphosphoranylidene)acetaldehyde 66a with lawsone-aldehyde 62a under the self-catalysis of Ph<sub>3</sub>PO in DCM at 50 °C for 7 h furnished the domino product **70aa** in 92% yield with 99:1 dr (Table 16). Delightedly, the domino W/IM/IA reaction of (acetylmethylene)triphenylphosphorane 66b and (benzoylmethylene)triphenylphosphorane 6d with lawsone-aldehyde 62a under the self-catalysis of Ph<sub>3</sub>PO in DCM at 25 °C for 3 or 24 h furnished the domino product **70ab** in 95% yield with 99:1 dr and **70ad** in 98% yield with 99:1 dr, respectively (Table 16). The domino W/IM/IA reaction of ethyl (triphenylphosphoranylidene)acetate 66e with lawsone-aldehyde 62a under the catalysis of DMAP 3p in toluene at 80 °C for 24 h furnished the domino product **70ae** in 81% yield with 12:1 dr; but there is no reaction at 25 °C and without **3p** (Table 16). We further performed the Ph<sub>3</sub>PO-catalysed domino W/IM/IA reaction of **66d** with two more lawsone-aldehydes **62f-g** (n = 2-3) in DCM at 50 °C for 24 to 48 h (Table 16). Product **70fd** (n = 2) was furnished in 80% yield with 1.5:1 dr; but there is no product formation of 70gd (n = 3) even after longer reaction times and at higher temperatures. Further, domino W/IM/IA reaction of 66b with 62be containing 6-methyl, 6-methoxy, 6-chloro and 6-bromo groups under the self-catalysis of Ph<sub>3</sub>PO in DCM at 25 °C for 3 h furnished the products **70bb** to **70eb** in 95-97% yields with 99:1 dr (Table 16).

Next, we planned to construct the functionally rich and biologically active methanobenzo[f]azulenes in good yields as it is basic skeleton of many antibiotics (see Figure 38). The domino W/IM/IA reaction of **66a** with 4-(3-hydroxy-1,4-dioxo-1,4-dihydronaphthalen-2-yl)butanal **63a** under the self-catalysis of Ph<sub>3</sub>PO in DCM at 25 °C for 2 h furnished the product **71aa** in 70% yield with 99:1 dr (Table 16).

Table 16: Lawsones and alkylidene-phosporanes Scope. [a]



[a] Reactions were performed using **62a-e**, **63a** and **64a** (0.25 mmol, 1.0 equiv.), and **66a-e** (0.3 mmol, 1.2 equiv.) in DCM (0.1 M) at 25 °C, and yield refers to the column-purified product. [b] dr was determined by <sup>1</sup>H NMR analysis of crude reaction mixture. [c] T = 50 °C. [d] The reaction was performed in toluene (0.1 M) in the presence of DMAP (**3p**) (30 mol%) at 80 °C. [e] Corresponding Wittig product **67** was isolated in quantitative yields. [f] The reaction was performed in toluene (0.1 M) in the presence of

DMAP (30 mol%) at 150 °C in a sealed tube.  $^{[g]}$  The reaction was performed at 150 °C in toluene (0.1 M) in a sealed tube.

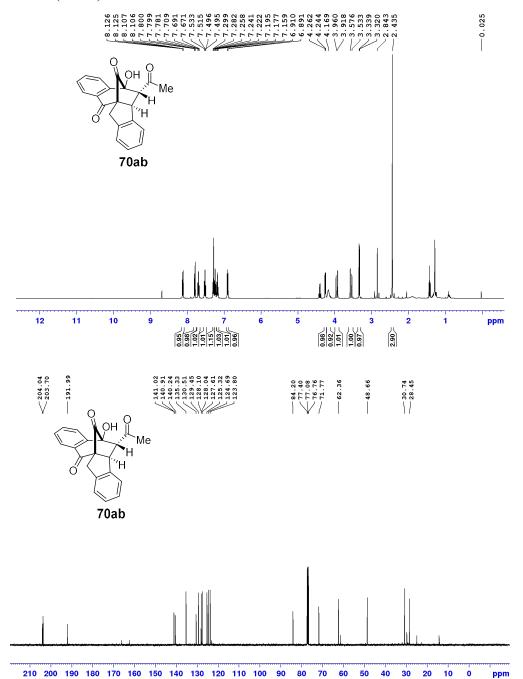



Figure 47: <sup>1</sup>H and <sup>13</sup>C spectra of the product **70ab**.

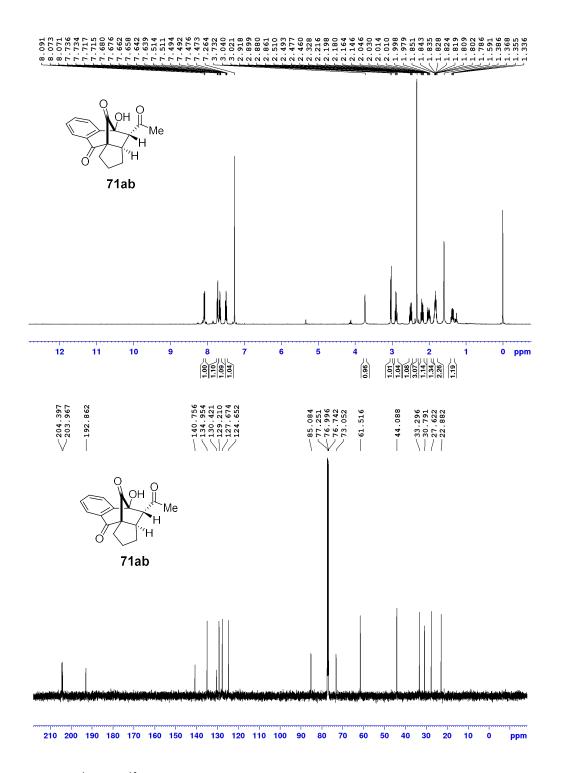



Figure 48: <sup>1</sup>H and <sup>13</sup>C spectra of the product 71ab.

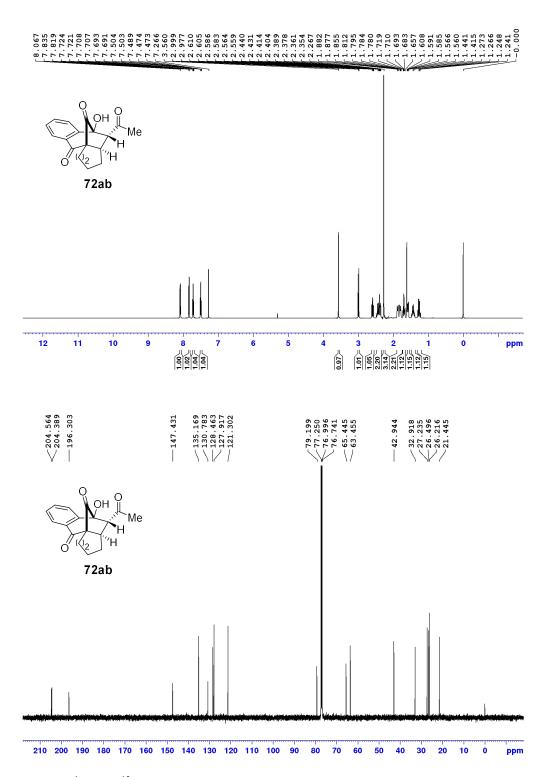
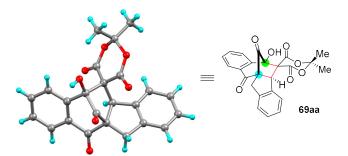




Figure 49: <sup>1</sup>H and <sup>13</sup>C spectra of the product 72ab.

In a similar manner, domino self-catalysed reaction of **63a** with other Wittig reagents of **66b** or **66d** in DCM at 25 °C for 3 or 1 h; and with **66e** under the DMAP **3p** catalysis in toluene at 150 °C in a sealed tube for 4 h furnished the corresponding domino products **71ab**, **71ad** and **71ae** in 85%, 80% and 67% yields with 99:1, 99:1 and 13:1 dr, respectively (Table 16). To our surprise, we didn't see the product formation from the reaction between 5-(3-hydroxy-1,4-dioxo-1,4-dihydronaphthalen-2-yl)pentanal **64a** and Wittig reagents **66a-e** in DCM at the ambient conditions. But, the domino W/IM/IA reaction of **64a** with **66b** or **66d** in toluene at 150 °C in a sealed tube for 16 or 24 h furnished the products **72ab** in 65% yield with 2:1 dr; and **72ad** in 67% yield with 7:1 dr, respectively (Table 16). There is no product formation of **72ae** after longer reaction times even at higher temperatures and only the corresponding olefin **67** was isolated. Some of the factors like, length of the side chain, nature/number of electron withdrawing groups, temperature and basic nature of catalyst **3p** have overall control on the outcome of the domino reaction rate/selectivity/yield as shown in Tables 15-16.

The structure and relative stereochemistry of the domino products **69-71** were established by IR, NMR, and mass analysis and also finally confirmed by correlation with the X-ray crystal structure of **69aa**, **69ai**, **69ar**, **69al**, **69ap** and **70ad** (Figures 50-55). These functionally rich methanobenzo[f]azulenes **71-72** will be useful intermediates for the synthesis of antibiotics and their analogues (Figure 42).



*Figure 50*: Crystal structure of  $(4bS^*,6S^*,11aR^*)$ -6-hydroxy-2',2'-dimethylspiro[6,11a-methanodibenzo[a,f]azulene-5,5'-[1,3]dioxane]-4',6',11,13(4bH,6H,12H)-tetraone (**69aa**).

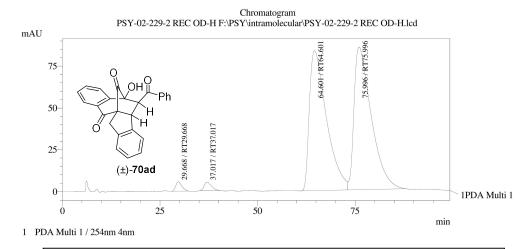
*Figure 51*: Crystal structure of  $(3'R^*,4bS^*,6S^*,11aR^*)-1'$ -acetyl-6-hydroxyspiro[6,11a-methanodibenzo[a,f]azulene-5,3'-indoline]-2',11,13(4bH,6H,12H)-trione (**69ai**).

**Figure** 52: Crystal structure of (4bR\*,9aR\*)-9a-hydroxy-7,8-dihydro-4bH-benzo[b]indeno[1,2-m]xanthene-5,10,15(6H,9aH,16H)-trione (69al).

*Figure 53*: Crystal structure of (4bS\*,5R\*,6S\*,11aS\*)-6,13-dihydroxy-11,15-dioxo-5,6,11,12-tetrahydro-4bH-6,11a,5-

(epimethanetriyliminomethano)dibenzo[a,f]azulene-5-carbonitrile (**69ap**).

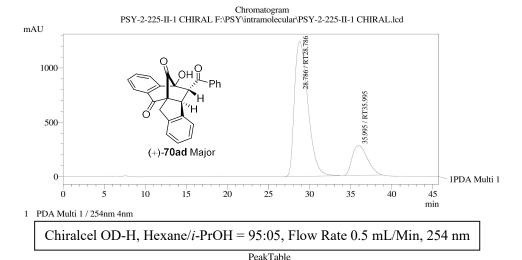
*Figure 54*: Crystal structure of  $(4bS^*,5S^*,6R^*,11aR^*)$ -6-hydroxy-11,13-dioxo-5-tosyl-5,6,11,12-tetrahydro-4bH-6,11a-methanodibenzo[a,f]azulene-5-carbonitrile (**69ar**).


*Figure 55*: Crystal structure of  $(4bS^*,5R^*,6R^*,11aR^*)$ -5-benzoyl-6-hydroxy-5,6-dihydro-4bH-6,11a-methanodibenzo[a,f]azulene-11,13(12H)-dione (**70ad**).

## **5.2.3** Investigation of asymmetric domino W/IM/IA reactions:

Scheme 22: Catalytic asymmetric synthesis of 70ad, 71ad [toluene used as solvent for (-)-71ad synthesis]

Further, we have shown interest to investigate the chiral induction of domino W/IM/IA in the presence of the chiral quinine thiourea catalyst **57b** (Scheme 22). Fashionably, domino reaction of **62a** and **66d** in the presence of 10 mol% of the quinine thiourea catalyst **57b** in DCM at 25 °C for 24 h furnished the product (+)-**70ad** in 94% yield with 1.1:1 dr and 60% (61%) *ee*. There is no improvement in dr/*ee*, when the same reaction performed in toluene might be due to the poor solubility of **62a**. The domino W/IM/IA reaction of **63a** and **66d** in the presence of 10 mol% of the quinine thiourea catalyst **57b** in toluene at 25 °C for 2.0 h furnished the product (-)-**71ad** in 80% yield with 1:1.5 dr and 87% (52%) *ee* (Scheme 22). In this reaction, **63a** has good solubility in toluene and these preliminary asymmetric results are inspiring to develop suitable organocatalysts to achieve high induction of *ee*/dr's. In continuation, we have tested 10 mol% of (*S*)-**3n** effect on the asymmetric synthesis of **70ad** from the W/IM/IA reaction of **62a** and **66d** in DCM at 25 °C for 20 h.


# Racemic (±)-70ad [Racemic product 70ad obtained from DMAP 3p mediated W/IM/IA reaction]:



Chiralcel OD-H, Hexane/i-PrOH = 95:05, Flow Rate 0.5 mL/Min, 254 nm

|           |           |           | PeakTable |        |         | _        |
|-----------|-----------|-----------|-----------|--------|---------|----------|
| PDA Ch1 2 | 254nm 4nm |           |           |        |         |          |
| Peak#     | Name      | Ret. Time | Area      | Height | Area %  | Height % |
| 1         | RT29.668  | 29.668    | 601167    | 5502   | 1.136   | 3.068    |
| 2         | RT37.017  | 37.017    | 658279    | 5114   | 1.244   | 2.852    |
| 3         | RT64.601  | 64.601    | 25511095  | 83543  | 48.220  | 46.588   |
| 4         | RT75.996  | 75.996    | 26135156  | 85164  | 49.400  | 47.492   |
| Total     |           |           | 52905698  | 179323 | 100.000 | 100.000  |

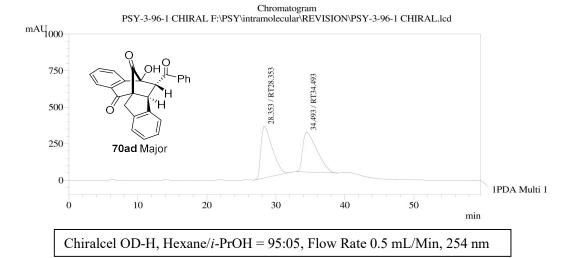

## Chiral (+)-70ad (Major: 60% ee):



|           |           |           | 1 can i abic |         |         |          |
|-----------|-----------|-----------|--------------|---------|---------|----------|
| PDA Ch1 2 | 254nm 4nm |           |              |         |         |          |
| Peak#     | Name      | Ret. Time | Area         | Height  | Area %  | Height % |
| 1         | RT28.786  | 28.786    | 141426113    | 1237420 | 80.225  | 82.098   |
| 2         | RT35.995  | 35.995    | 34860857     | 269831  | 19.775  | 17.902   |
| Total     |           |           | 176286971    | 1507251 | 100.000 | 100.000  |

Figure 56: HPLC spectra of the chiral product 70ad.

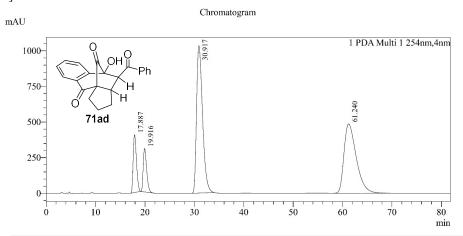
### Chiral (+)-70ad (Minor: 61% ee):




Chiralcel OD-H, Hexane/i-PrOH = 95:05, Flow Rate 0.5 mL/Min, 254 nm

PeakTable

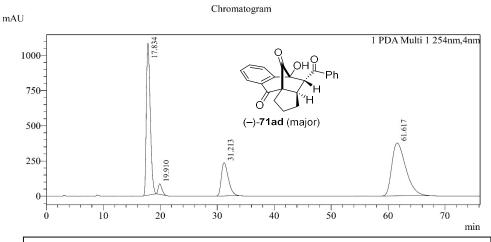
| PDA Ch1 254nm 4nm |          |           |          |        |         |          |  |
|-------------------|----------|-----------|----------|--------|---------|----------|--|
| Peak#             | Name     | Ret. Time | Area     | Height | Area %  | Height % |  |
| 1                 | RT63.941 | 63.941    | 43078354 | 141515 | 80.453  | 80.323   |  |
| 2                 | RT78.215 | 78.215    | 10466361 | 34667  | 19.547  | 19.677   |  |
| Total             |          |           | 53544715 | 176182 | 100.000 | 100.000  |  |


# Product-**70ad**[Major Isomer: 0% *ee* and 99:1 *dr* obtained from (*S*)-**3n** mediated W/IM/IA reaction]



|          |           |           | Peak I able |        |         |          |
|----------|-----------|-----------|-------------|--------|---------|----------|
| DA Ch1 2 | 254nm 4nm |           |             |        |         |          |
| Peak#    | Name      | Ret. Time | Area        | Height | Area %  | Height % |
| 1        | RT28.353  | 28.353    | 40356284    | 354165 | 50.852  | 56.505   |
| 2        | RT34.493  | 34.493    | 39003457    | 272624 | 49.148  | 43.495   |
| Total    |           |           | 79359741    | 626788 | 100.000 | 100.000  |

Figure 57: HPLC spectra of the chiral product 70ad.


Racemic (±)-71ad [Obtained from the quinine-thiourea/quinidine-thiourea (1:1)-catalysed W/IM/IA reaction]:



Chiralpak AD-H, Hexane/i-PrOH = 90:10, Flow Rate 1.0 mL/Min, 254 nm

|         |           | Peak      | lable     |         |         |         |
|---------|-----------|-----------|-----------|---------|---------|---------|
| PDA Ch1 | 254nm     |           |           |         |         |         |
| Peak#   | Name      | Ret. Time | Area      | Height  | Area%   | Height% |
| 1       | RT:17.887 | 17.887    | 18719342  | 405813  | 9.166   | 18.193  |
| 2       | RT:19.916 | 19.916    | 14883280  | 305244  | 7.288   | 13.684  |
| 3       | RT:30.917 | 30.917    | 86976354  | 1034058 | 42.588  | 46.357  |
| 4       | RT:61.240 | 61.240    | 83646637  | 485527  | 40.958  | 21.766  |
| Total   |           |           | 204225613 | 2230643 | 100.000 | 100.000 |

Chiral (-)-71ad (Minor Isomer: 87% ee and Major Isomer: 52% ee; 1:1.5 dr):



| Peak# | Name      | Ret. Time | Area      | Height  | Area%   | Height% |
|-------|-----------|-----------|-----------|---------|---------|---------|
| 1     | RT:17.834 | 17.834    | 51624065  | 1079443 | 37.075  | 61.103  |
| 2     | RT:19.910 | 19.910    | 3402497   | 75449   | 2.444   | 4.271   |
| 3     | RT:31.213 | 31.213    | 20097452  | 236300  | 14.433  | 13.376  |
| 4     | RT:61.617 | 61.617    | 64119070  | 375415  | 46.048  | 21.251  |
| Total |           |           | 139243084 | 1766607 | 100.000 | 100.000 |

Figure 58: HPLC spectra of the chiral product 71ad.

Surprisingly, we obtained product **70ad** in 89% yield with 99:1 dr and 0% *ee* (Scheme 23) and this observation might be similar for (S)-3n catalyzed KC/IM/IA reaction of **62a** and **65a** to furnish the racemic **69a** in high yields and dr (Table 12, entries 1-3).

**Scheme 23**: Catalytic asymmetric synthesis of **70ad** under (S)-**3n** catalysis.

#### **5.2.4** Synthetic applications of methanodibenzo[a,f]azulenes:

To test the reactivity pattern of **69-72** under simple conditions, we explored the utilization of **69aa** and **70ad** in the synthesis of bio-inspired compounds **73-74** *via* strategy of ring opening cyclisation (Scheme 24). Diastereoselective ring opening cyclisation of **69aa** with 3.0 equiv. of TMSN<sub>3</sub> under the catalysis of 20 mol% of AgOTf in toluene at 80 °C for 5 h furnished selectively oxazolidine inserted methanodibenzo[*a,f*]azulene **73aa** in 70% yield with 99:1 dr (Scheme 24 and Figure 59). [26]

Likewise, treatment of **70ad** with 1.5 equiv. of K<sub>2</sub>CO<sub>3</sub> in dry methanol at 25 °C for 1 h followed by reaction with 5.0 equiv. of Me<sub>2</sub>SO<sub>4</sub> in acetone under the presence of 5.0 equiv. of K<sub>2</sub>CO<sub>3</sub> at 60 °C for 24 h furnished the functionalised epoxybenzo[7]annulen-5-ol **74ad** in 65% yield with 99:1 dr (Scheme 24 and Figures 60-61 for 2D NMR structural analysis)

Scheme 24: Applications of methanodibenzo[a,f]azulenes 69aa-70ad.

*Figure* 59: Crystal structure of  $(4bS^*,4'R^*,6S^*,11aR^*)$ -6-hydroxyspiro[6,11a-methanodibenzo[a,f]azulene-5,4'-oxazolidine]-2',5',11,13(4bH,6H,12H)-tetraone (73aa).

.

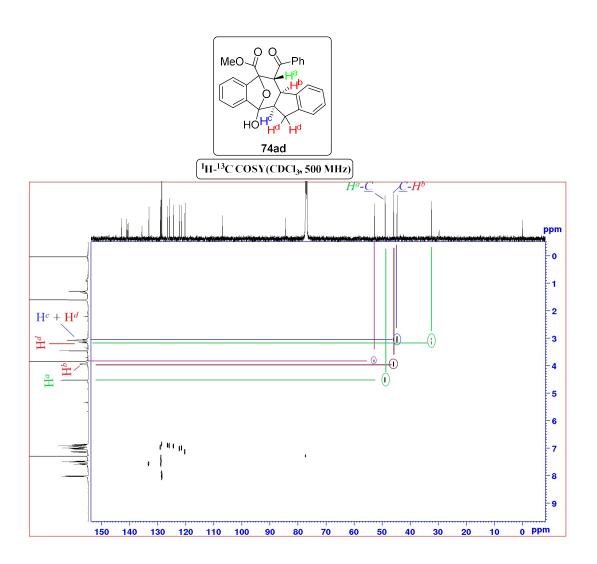



Figure 60: Hetero-COSY spectrum of compound 74ad (500 MHz, CDCl<sub>3</sub> at 25 °C).

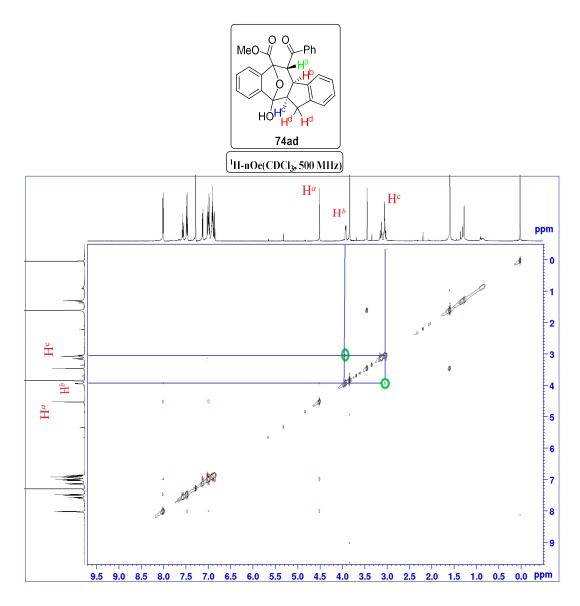



Figure 61: NOESY spectrum of compound 74ad (500 MHz, CDCl<sub>3</sub> at 25 °C).

## 5.2.5 Controlled experiments and Mechanistic insights:

Herein, we explained diastereoselectivity by analysing each and every reaction of domino reaction sequence with controlled experiments (Scheme 25 and Scheme 26). (S)-3n Catalysed reductive coupling of lawsones 1 with di-aldehydes 59-61 and 34 at ambient conditions furnished lawsone-aldehydes 62-63 in a highly chemoselective manner may be due to the differences in steric and electronic nature of two aldehydes.<sup>[8]</sup>

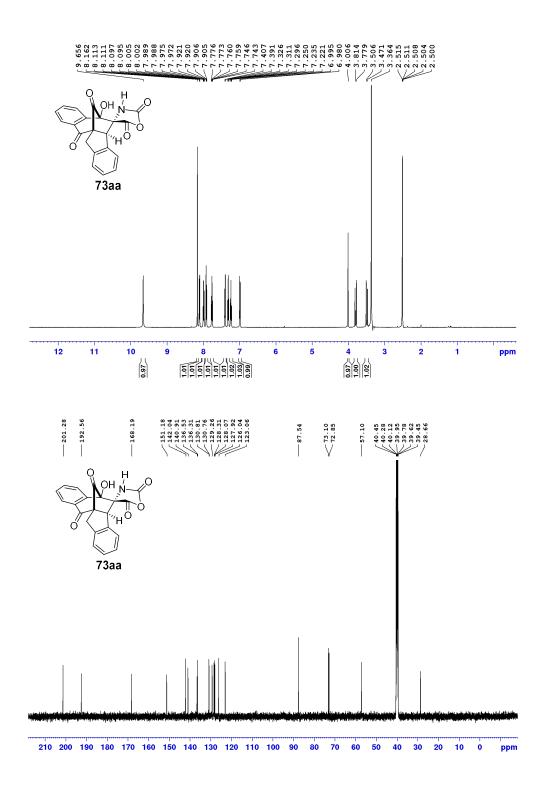



Figure 62: <sup>1</sup>H and <sup>13</sup>C spectra of the product 73aa.

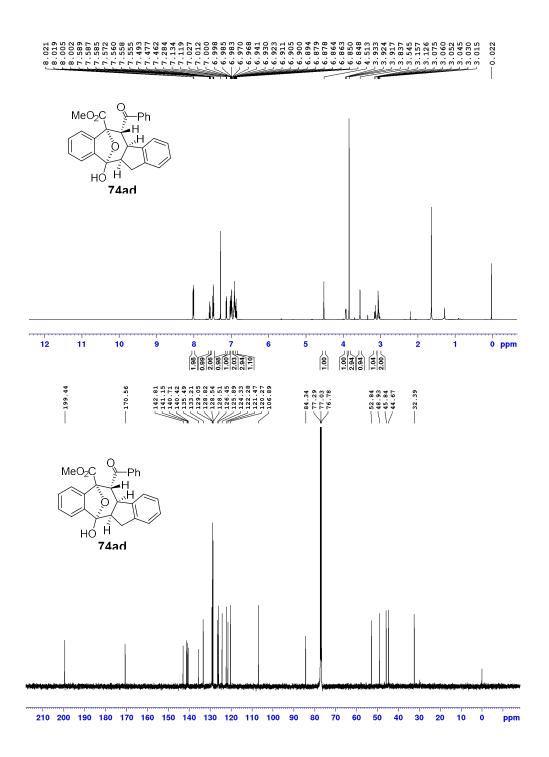
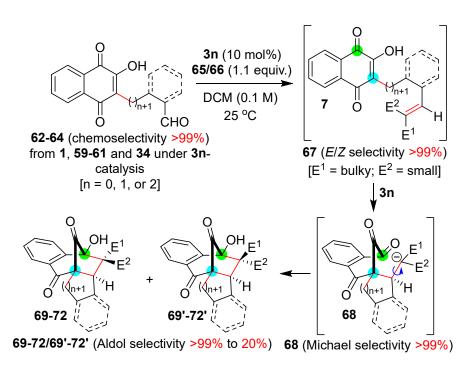




Figure 63: <sup>1</sup>H and <sup>13</sup>C spectra of the product 74ad.

Further treatment of **62a** with **66e** under the thermodynamic soft-catalysis of **3n** or Ph<sub>3</sub>PO furnished the lawsone-olefins **67ae** in a highly regioselective manner and rate of aldehyde-olefination reaction is induced by intramolecular hydrogen bonding with OH group of lawsone-aldehydes **62a** (Scheme 26). Furthermore, intramolecular Michael/intramolecular aldol reactions are did not performed on lawosne olefine **67ae**, under **3p** catalysis at room temperature. Surprizingly, same reaction when performed at 80 °C for 5h furnished the **70ae** in good yield with 15:1 dr (Scheme 26, Eq. 16 and 17). Similarly, **75a** on treatment with **66d** under quinine thiourea catalysis in toulene solvent at 25 °C for 12 h furnished **76ad** in 85% yield with exclusively one diastereomer over other possible isomers (Scheme 26, Eq. 18). Moreover, we did not obseverd expected products when reactions performed on **77a** with **66d** and **65v** under the influence of **57b**, **3z** catalyst at 25-75 °C and 50 °C for 12-24 h repectively (Scheme 26, Eq. 19 and 20). Finally, we observed no epimerization of **70ad** and **70'ad** on treatment with quinine thiourea **57b** in DCM solvent at room temperature for 48 h (Scheme 26, Eq. 21).



Scheme 25: Reaction mechanism.

Scheme 26: Controlled experiments.

In a formal intramolecular [3+2]-cycloaddition, the first reaction step is organocatalytic Michael, which is generating two stereocenters in a highly selective manner. Next intramolecular aldol reaction is also generating two stereocenters with selectivity varying from >99% to 20% (Scheme 25). Aldol reaction selectivity depends on the C-C bond rotation of side chain, which is controlled by the nature/size of electron withdrawing groups, temperature, and catalysts hydrogen bonding ability with carbonyls (Scheme 22 and 25).

# 5.3 Conclusions

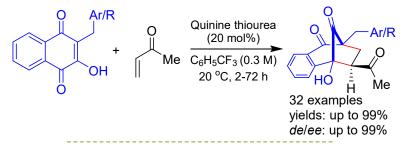
In summary, we have revealed an adaptable practical method for the two-pot domino achiral and chiral synthesis of an unique carbon skeleton of biologically important methanodibenzo [a, f] azulenes and methanobenzo [f] azulenes 69-72 from the readily available simple precursors through organocatalysis. The natural lawsones 1 were directly transformed into library of highly functionalized methanodibenzo [a, f] azulenes and methanobenzo [f] azulenes [69-72] through an unprecedented organocatalytic path of domino sequential combination of KC/TH, KC/IM/IA and W/IM/IA with high selectivity and yields. We also demonstrated the synthetic application of these compounds 69-72 in medicinal chemistry by synthesizing functionally rich compounds 73-74. We explained the observed high selectivity with controlled experiments in the reaction mechanism. Future investigations in our laboratory will continue to explore the scope of novel reactivity of lawsones

# 6. Direct Organocatalytic Asymmetric Synthesis of Biologically Important Methanobenzo[f]azulenes

## 6.1 Introduction

Undoubtedly, majority of pharmaceutically and biologically active natural products such as terpenes, lignans and alkaloids own bicyclo[3.2.1]octane scaffold as a key substructure in them. The bicyclo[3.2.1]octane acts as an inhibitor for the transport of dopamine and serotonin and also these are most frequently used in the synthesis of tricyclic sesquiterpenoids. Particularly benzobicyclo[3.2.1]oactanes, namely methanobenzo[7]annulenes and methanobenzo[f]azulenes are prominent medicinally active molecules like PNMT inhibitor, Merochlorin-A, Deschloro-Merochlorin-A and Ansalactum-C.<sup>[15]</sup>

Figure 64: Medicinally important benzobicyclo[3.2.1]octanes.


Similarly, in recent times *endo-*1 (AChE) and *endo-*2 (BChE) makes its way as potent cholinesterase inhibiter, as they control the acetyl/butyrylcholinesterase concentration in the synapsis. Due to this reason, these *endo-*1 (AChE) and *endo-*2 (BChE) are used as drug for treating neurodegenerative disorders (Figure 64).<sup>[15]</sup>

Over the decades the interest in the synthesis of benzobicyclo[3.2.1] octane is exponentially growing, due to their numerous applications in the biological, pharmaceutical arena and in the synthesis of functionally rich molecules which are greatly in need for the mankind. However, synthesis of functionalized methanobenzo[7] annulenes, methanobenzo[f] azulenes requires a tedious multi-step protocol under the influence of the metal/base catalyst at higher temperatures. The synthesis of optically pure benzobicyclo[3.2.1] octanes and their analogues methanobenzo[7] annulenes, methanobenzo[f] azulenes is still underexplored. Hence, the development of environmentally benign, single-step, one-pot stereoselective synthesis of methanobenzo[7] annulenes, methanobenzo[f] azulenes and their analogues is highly requisite.

Although, in 2017 our group reported environmentally benign, single-step one-pot protocol for the synthesis of optically pure benzobicyclo[3.2.1]octanes such as methanobenzo[7]annulenes in excellent yields with stereoselectivity, by treating 2-alkyl-3-hydroxynaphthalene-1,4-dione with  $\alpha$  or  $\beta$ -unsubstituted alkyl vinyl ketones under quinine thiourea catalysis in benzotriflouride solvent at room temperature (Scheme 27, entry i). To further explore the unprecedented *5-(enolexo)-exo-trig* cyclization, we performed tandem inter-molecular Michael/intra-molecular aldol reactions by treating a variety of  $\alpha$  or  $\beta$ -substituted vinyl ketones *viz*. 3-methylbut-3-en-2-one, (*E*)-pent-3-en-2-one, (*E*)-4-phenylbut-3-en-2-one, 2-cyclopentenone and 2-cyclohexenone with 2-benzyl-3-hydroxynaphthalene-1,4-dione in the presence of quinine thiourea catalyst. Unfortunately, none of these reactions performed well to furnish the expected multi-ring bicyclic products (Scheme 27, entry iia). We inspired by these captivating results and accepted the challenge for demonstrating the successful

protocol for  $\alpha$  or  $\beta$ -substituted alkyl vinyl ketones. To achieve our milestones, we assumed to perform the intra-molecular reaction by constructing a bridge between 2-alkyl lawsone and  $\alpha$  or  $\beta$ -substituted alkyl vinyl ketone.

#### (i) Previous design for accessing chiral methanobenzo[7]annulenes:



- (ii) Present design for accessing chiral methanobenzo[f]azulenes:
  - (a) Unsuccessful design through intermolecular cyclization:

O Ph O Quinine thiourea (20 mol%) No reaction 
$$R^2$$
  $R^2$   $R^2$   $R^2$   $R^3$   $R^2$   $R^3$   $R^4$   $R^4$ 

(b) New design through intramolecular cyclization:

OH OH Control R = alkyl or aryl Quinine thiourea (20 mol%) 
$$C_6H_5CH_3$$
 (0.3 M)  $C_6H_5CH_3$  (0.3 M)

**Scheme** 27: Literature and present design for accessing chiral methanobenzo[f]azulenes.

Stimulated, from our very recent work, where the 2-alkyl naphthoquinones are bridged with either substituted or unsubstituted alkyl vinyl ketones by Knoevenagel condensation of active CH-acid with lawsone aldehyde or a Wittig reaction with lawsone aldehyde.<sup>[8]</sup> To our delight, it is intriguing to explore the asymmetric version of the tandem Wittig/intra-molecular Michael/intra-molecular aldol reactions with cinchona based chiral bifunctional thiourea catalysts<sup>[21]</sup> (Scheme 27, entry iib).

### 6.2 Results and Discussions

### 6.2.1 Reaction optimization:

In this scenario, we first prepared the lawsone aldehyde by following standard procedure, where (S)-proline was chosen as a catalyst for TCRA reaction between lawsone, dialdehyde and the furnished Knoevenagel intermediate was reduced by Hantzsch ester to generate lawsone aldehyde products **63/64** in moderate yields (Table 17).<sup>[4]</sup>

Catalyst 57b
(10 mol%)

CH<sub>3</sub>C<sub>6</sub>H<sub>5</sub> (0.2 M)

RT, 2 h.

HO H
Me
(+)-71aa

yield: 80%
$$ee: 77.7\%$$
 $dr: > 20:1$ 

**Scheme 28**: Preliminary investigation of the proposed design.

Preliminarily, to comprehend the reactivity pattern, we performed a reaction between lawsone aldehyde **63a** and acetyl Wittig reagent **66b** in toluene solvent, surprisingly, the reaction is completely converted into methanobenzo[f]azulenes **71ab** in 2.5 h at room temperature. Herein, the tandem Wittig/intra-molecular Michael/intra-molecular aldol reactions are the spontaneous reactions, which occurs immediately after the Wittig product was formed (Scheme 28).

Table 17: Synthesis of lawsone aldehydes. [a]

| Entry | Product           | $R_1, R_2, R_3$        | Yield [%] <sup>[b]</sup> |
|-------|-------------------|------------------------|--------------------------|
| 1     | n = 1; <b>63b</b> | R <sub>1</sub> = OMe   | 5                        |
| '     | n = 2; <b>64b</b> | $R_2, R_3 = H$         | 10                       |
| 2     | n = 1; <b>63c</b> | R <sub>2</sub> = OMe   | 25                       |
| 2     | n = 2; <b>64c</b> | $R_1, R_3 = H$         | 29                       |
| 2     | n = 1; <b>1d</b>  | R <sub>3</sub> = OMe   | 19                       |
| 3     | n = 2; <b>8d</b>  | $R_1, R_2 = H$         | 27                       |
| 4     | n = 1; <b>63e</b> | $R_2$ , $R_3 = OMe$    | 10                       |
| 4     | n = 2; <b>64e</b> | $R_1 = H$              | 30                       |
| 5     | n = 1; <b>63f</b> | R <sub>3</sub> = Me    | 35                       |
| 5     | n = 2; <b>64f</b> | $R_1, R_2 = H$         | 41                       |
| 6     | n = 1; <b>63g</b> | $R_1, R_3 = Me$        | 27                       |
| 0     | n = 2; <b>64g</b> | $R_2 = H$              | 32                       |
| 7     | n = 1; <b>63h</b> | R <sub>2</sub> = NH-Ac | 11                       |
|       | n = 2; <b>64h</b> | $R_1, R_3 = H$         | 18                       |

[a] Reactions were carried out in solvent (0.2 M) with 2.0 equiv of **60-61** and 1.1 equiv of Hantzsch ester **34**, relative to lawsone **1** (0.2 mmol), in the presence of 20 mol% of the catalyst (S)-proline **3n**. [b] Yield refers to the column-purified product.

In order to accomplish the asymmetric induction in the designed tandem Wittig/intra-molecular Michael/intra-molecular aldol reactions, we treated lawsone aldehyde **63a** with acetyl Wittig **66b** under quinine thiourea **57b** catalysis for 2 h. Enlighteningly, the reaction performed well at room temperature and furnished (+)-**71ab** in 80% yield, 77.7% *ee* with at-most single diastereomer out of other possible three diastereomers (Scheme 28).

To perceive the solvent, catalyst, and temperature effects on asymmetric tandem reactions, we performed the reaction where lawsone aldehyde **63a** is treated with acetyl Wittig reagent **66b** under quinine thiourea **57b** catalysis in a variety of solvents like trifluoro toluene, benzene, dichloromethane and trichloroethane at room temperature for 1.5 to 2 h (Table 18, entries 2-5). In contrary to the preliminary results obtained, we found diminished enantioselectivity with almost sustained yields and dr ratios of (+)-**71ab**. Furthermore, lawsone aldehyde **63a** on treatment with acetyl Wittig reagent **66b** under a variety of thiourea and squaramide (**57a-f**) catalysis in toluene solvent at room temperature for 2 h resulted (+)-**71ab** in 70-87% yields, reduced *ee* (up to 60% *ee*) with single diastereomer (Table 18, entries 6-9). From these investigations, quinine thiourea catalyst **57b** was so far the best catalyst for tandem reactions.

Next, we performed the further optimization by fluctuating the catalyst loading *viz*. 5, 20, 25 and 30 mol% and the reactions completed in 180, 75, 45 and 45 min respectively. Interestingly, reactions furnished (+)-71ab in 80-85% yields, 64-90% *ee* with single diastereomer (Table 18, entries 10-13). Herein, the catalyst loading shows a visible effect on the asymmetric tandem reactions i.e., as of the catalyst loading increases the rate of the reaction was increased with improved facial selectivity. Similarly, we also performed the same reaction in the presence of quinidine thiourea 57a catalyst in toluene solvent for 2.5 h. Unpredictably, the reaction furnished (-)-71ab in 79% yield, 66% *ee* with single diastereomer (Table 18, entry 14). During these investigations, we also performed the same reaction at 0-5 °C for 5 h in toluene solvent, which furnishes the (+)-71ab in 86% yield, 90% *ee* with single diastereomer (Table 18, entry 15).

Moreover, the excessive catalyst loading for accomplishing better facial selectivity, forced us to recovery the catalyst and investigate the catalyst chiral activity. Initially, we performed the reaction by treating lawsone aldehyde **1a** with acetyl Wittig **2a** under the influence of 30 mol% quinine thiourea catalyst **3a** in toluene solvent for about 1.5 h at room temperature furnished the (+)-**4aa** in 84.5% yield, 90% *ee* with >20:1 dr (Eq. 22).

Table 18: Optimization of proposed reaction. [a]

57e = QDSQ; 57f = QDSQ-CH<sub>2</sub>-Ar

| '9ab Not observed 8 | <b>0ab</b> Not observed |
|---------------------|-------------------------|
|                     | oub Not obscrived       |

| Entry             | Catalyst<br>(x mol%)  | Solvent                                       | t [h] | Yield [%] <sup>[b]</sup> | d r <sup>[c]</sup><br><b>71</b> : <b>79</b> | ee [%] <sup>[d]</sup><br><b>71ab</b> |
|-------------------|-----------------------|-----------------------------------------------|-------|--------------------------|---------------------------------------------|--------------------------------------|
| 1                 | <b>57b</b> (10 mol%)  | CH <sub>3</sub> C <sub>6</sub> H <sub>5</sub> | 2     | 80                       | >20:1                                       | 78                                   |
| 2                 | <b>57b</b> (10 mol%)  | CF <sub>3</sub> C <sub>6</sub> H <sub>5</sub> | 1.5   | 77                       | >20:1                                       | 67                                   |
| 3                 | <b>57b</b> (10 mol%)  | C <sub>6</sub> H <sub>6</sub>                 | 1.5   | 73                       | >20:1                                       | 72                                   |
| 4                 | <b>57b</b> (10 mol%)  | DCM                                           | 1.5   | 80                       | >20:1                                       | 67                                   |
| 5                 | <b>57b</b> (10 mol%)  | TCE                                           | 1.5   | 78                       | >20:1                                       | 33                                   |
| 6                 | <b>57a</b> (10 mol%)  | CH <sub>3</sub> C <sub>6</sub> H <sub>5</sub> | 2     | 70                       | >20:1                                       | 60                                   |
| 7                 | <b>57d</b> (20 mol%)  | CH <sub>3</sub> C <sub>6</sub> H <sub>5</sub> | 2     | 86                       | >20:1                                       | 39                                   |
| 8                 | <b>57e</b> (20 mol%)  | CH <sub>3</sub> C <sub>6</sub> H <sub>5</sub> | 2     | 84                       | >20:1                                       | 26                                   |
| 9                 | <b>57f</b> (20 mol%)  | CH <sub>3</sub> C <sub>6</sub> H <sub>5</sub> | 2     | 87                       | >20:1                                       | 39                                   |
| 10                | <b>57b</b> (5.0 mol%) | CH <sub>3</sub> C <sub>6</sub> H <sub>5</sub> | 2     | 80                       | >20:1                                       | 64                                   |
| 11                | <b>57b</b> (20 mol%)  | CH <sub>3</sub> C <sub>6</sub> H <sub>5</sub> | 1.25  | 82                       | >20:1                                       | 86                                   |
| 12                | <b>57b</b> (25 mol%)  | CH <sub>3</sub> C <sub>6</sub> H <sub>5</sub> | 0.75  | 82                       | >20:1                                       | 87                                   |
| 13                | <b>57b</b> (30 mol%)  | CH <sub>3</sub> C <sub>6</sub> H <sub>5</sub> | 0.75  | 84                       | >20:1                                       | 90                                   |
| 14                | <b>57a</b> (30 mol%)  | $\mathrm{CH_{3}C_{6}H_{5}}$                   | 2.5   | 81                       | >20:1                                       | 66                                   |
| 15 <sup>[e]</sup> | <b>57b</b> (30 mol%)  | $\mathrm{CH_3C_6H_5}$                         | 5     | 86                       | >20:1                                       | 90                                   |

[a] Reactions were carried out in solvent (0.2 M) with 1.1 equiv of 63a relative to 66b (0.2 mmol), in the presence of x mol% of the catalyst 57. [b]Yield refers to the columnpurified product. [c]Determined by CSP HPLC analysis. [d]Determined by CSP HPLC analysis. [e]T= 0-5 °C. Note: Data in entries 6-9 and 14 represent the antipode for the enantiomer of the structure 71ab.

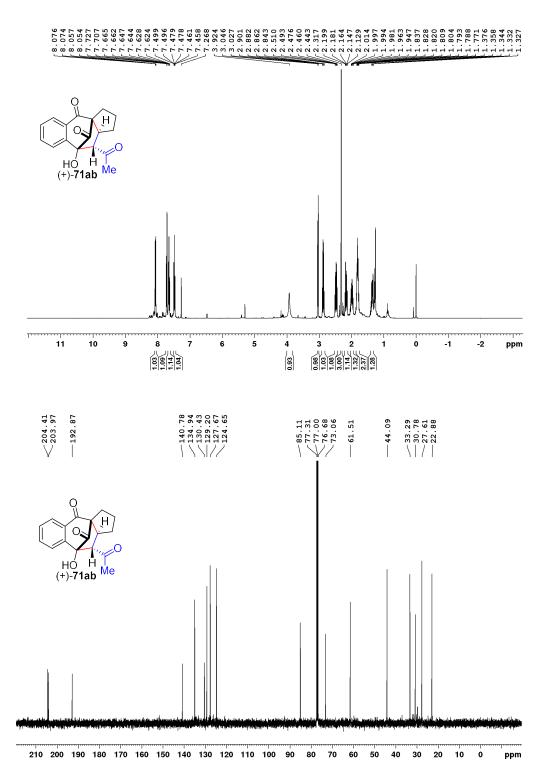
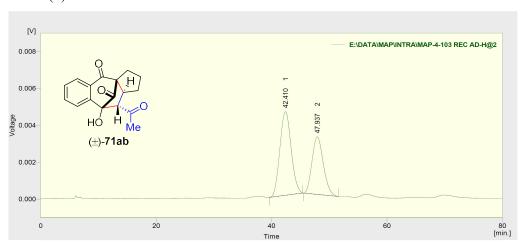
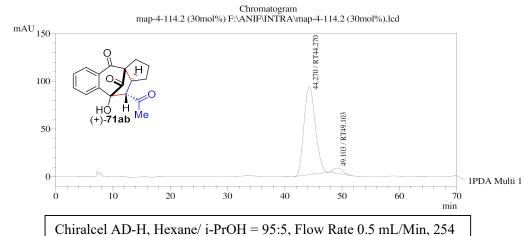




Figure 65: <sup>1</sup>H and <sup>13</sup>C spectra of the product 71ab.

#### Racemic (±)-71ab:




Chiralcel AD-H, Hexane/ i-PrOH = 95:5, Flow Rate 0.5 mL/Min, 254

Result Table (Uncal - E:\DATA\MAP\INTRA\MAP-4-103 REC AD-H@2)

|   | Reten. Time<br>[min] | Area<br>[mV.s] | Height<br>[mV] | Area<br>[%] | Height<br>[%] | W05<br>[min] |
|---|----------------------|----------------|----------------|-------------|---------------|--------------|
| 1 | 42.410               | 615.636        | 4.536          | 59.1        | 59.2          | 2.14         |
| 2 | 47.937               | 426.050        |                |             | 40.8          |              |
|   | Total                | 1041.686       | 7.661          | 100.0       | 100.0         |              |

#### Chiral (+)-71ab (Major: 90.0% ee):



PeakTable

|           |           |           | I Cak I abic |        |         |          |
|-----------|-----------|-----------|--------------|--------|---------|----------|
| PDA Ch1 2 | 254nm 4nm |           |              |        |         |          |
| Peak#     | Name      | Ret. Time | Area         | Height | Area %  | Height % |
| 1         | RT44.270  | 44.270    | 12737441     | 92015  | 95.017  | 94.131   |
| 2         | RT49.103  | 49.103    | 668011       | 5737   | 4.983   | 5.869    |
| Total     |           |           | 13405452     | 97752  | 100.000 | 100.000  |
|           |           |           |              |        |         |          |

Figure 66: HPLC spectra of the chiral product 71ab.

After isolating the product (+)-4aa we then recovered the catalyst and which was utilized for the next circle of tandem reaction by adjusting reactants to 30 mol% isolated catalyst without adding a fresh catalyst. Which furnishes (+)-4aa in 1.5 h with 83.4% yield, 82.2% ee and >20:1 dr. Likewise, we again recovered the catalyst from the reaction mixture and utilized for next circle of tandem reaction, which furnishes the (+)-4aa in maintained yields and dr ratio with much diminished enantioselectivity (62.9% ee (Eq. 22)).

#### **6.2.2** Scope of asymmetric tandem W/IM/IA reactions:

To study the substituent effect on the asymmetric tandem Wittig/intra-molecular Michael/intra-molecular aldol reactions, we synthesized a variety of methanobenzo[f]azulenes (+)-71bb-bd by reacting lawsone aldehydes 63b-h with Wittig reagents 66b-d under quinine thiourea 57b catalysis in toluene solvent at room temperature for 1-6 h (Table 19). Notably, reactions with 6-methoxy, 7-methoxy and 6,7-dimethoxy lawsone aldehydes performed smoothly at room temperature and furnished methanobenzo[f]azulenes (+)-71cb-eb in 77-90% yields, 59-85.6% ee with single diastereomer (Table 19, entries 2 - 4). Although 8-methoxy and 6-N-acetyl lawsone aldehydes furnished products (+)-71bb and (+)-71hb in 74-80% yield, 95->99% ee with single diastereomer (Table 19, entries 1 and 7).

Similarly, 6-methyl lawsone aldehyde furnished (+)-**71fb** in 83% yield, 85% *ee* with single diastereomer, whereas 6,8-dimethyl lawsone aldehyde resulted (+)-**71gb** in 87% yield, 96% *ee* with single diastereomer (Table 19, entries 5 and 6). The substitution at

C-8 carbon makes better facial discrimination by sterically hindering one of the faces, subsequently, Michael addition takes place from the sterically unhindered side.

Table 19: Substrate scope of the proposed design. [a]

<sup>[</sup>a] Reactions were carried out in solvent (0.2 M) with 1.1 equiv of **66b-d** relative to **63a-h** (0.2 mmol), in the presence of 30 mol% of the catalyst **57b**. [b] Yield refers to the

column-purified product. <sup>[c]</sup>Determined by CSP HPLC analysis. <sup>[d]</sup>Determined by CSP HPLC analysis and values in parentheses represent those for the minor diastereomer.

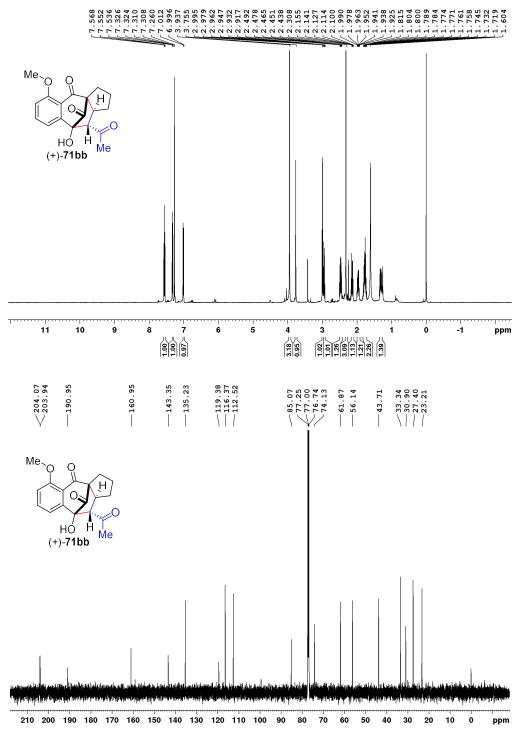



Figure 67: <sup>1</sup>H and <sup>13</sup>C spectra of the product 71bb.

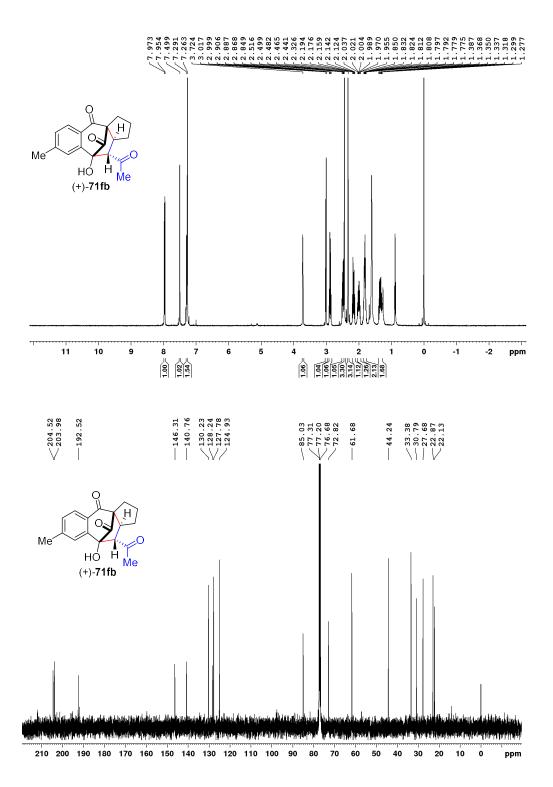



Figure 68: <sup>1</sup>H and <sup>13</sup>C spectra of the product 71fb.

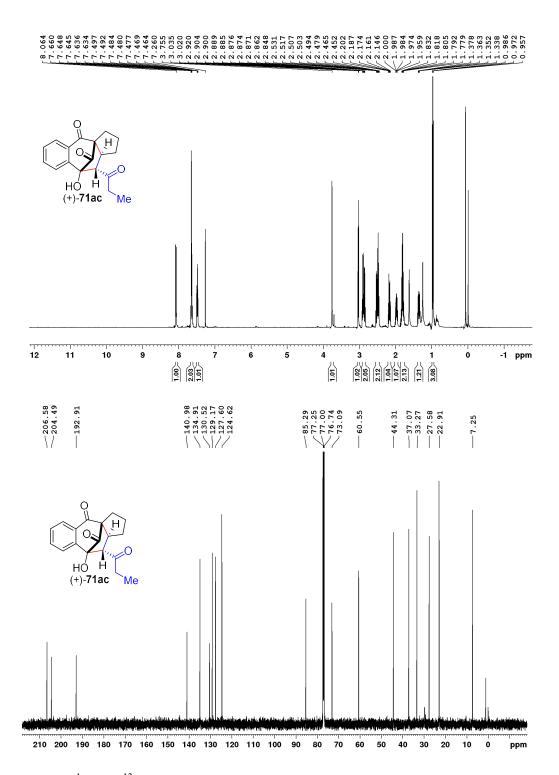



Figure 69: <sup>1</sup>H and <sup>13</sup>C spectra of the product 71ac.

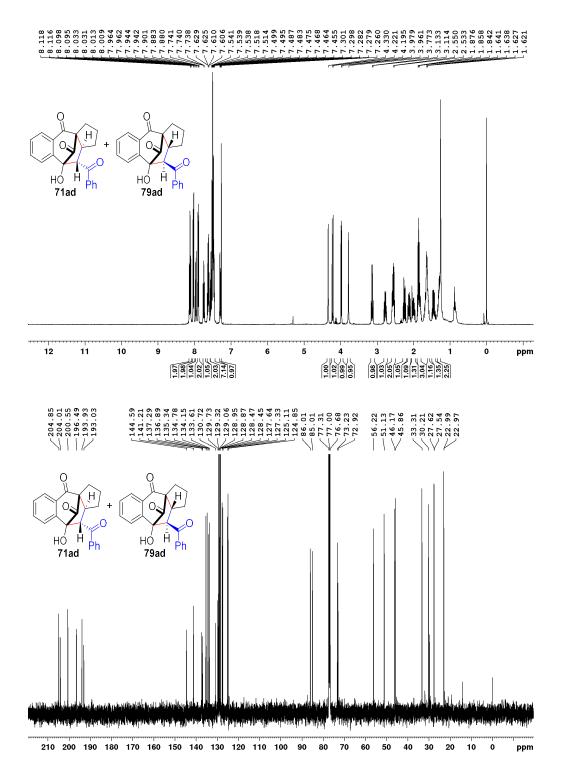
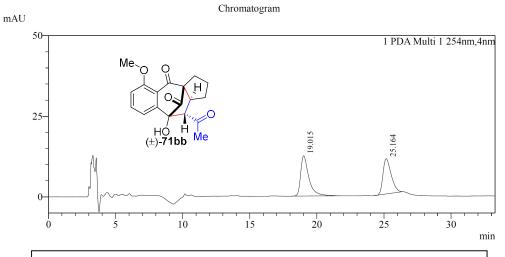




Figure 70: <sup>1</sup>H and <sup>13</sup>C spectra of the product 71ad and 79ad.

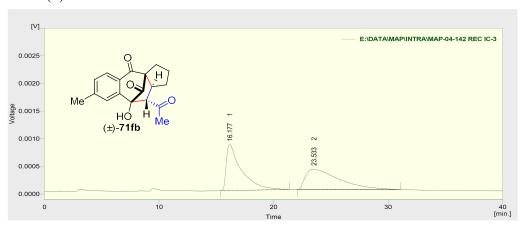
## Racemic (±)-71bb:



Chiralpak IB-3, Hexane/ i-PrOH = 90:10, Flow Rate 1.0 mL/Min, 254 nm

| PDA Chi | PDA Ch1 254nm |           |        |        |         |         |  |  |  |
|---------|---------------|-----------|--------|--------|---------|---------|--|--|--|
| Peak#   | Name          | Ret. Time | Area   | Height | Area%   | Height% |  |  |  |
| 1       | RT:19.015     | 19.015    | 532955 | 12486  | 53.367  | 53.355  |  |  |  |
| 2       | RT:25.164     | 25.164    | 465704 | 10916  | 46.633  | 46.645  |  |  |  |
| Total   |               |           | 998658 | 23402  | 100 000 | 100 000 |  |  |  |

Chiral (+)-71bb: (Major: 95.0% ee):

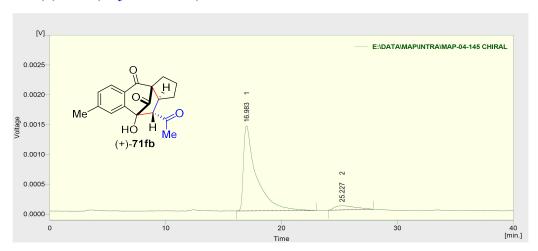

Me (+)-71bb 15 20 25 30 35

| PDA Ch1 254nm |           |           |         |        |         |         |  |  |
|---------------|-----------|-----------|---------|--------|---------|---------|--|--|
| Peak#         | Name      | Ret. Time | Area    | Height | Area%   | Height% |  |  |
| 1             | RT:19.021 | 19.021    | 243575  | 6655   | 2.472   | 3.422   |  |  |
| 2             | RT:24.746 | 24.746    | 9611066 | 187842 | 97.528  | 96.578  |  |  |
| Tota          | 1         |           | 9854641 | 194497 | 100.000 | 100.000 |  |  |

Figure 71: HPLC spectra of the chiral product 71bb.

min

#### Racemic ( $\pm$ )-71fb:



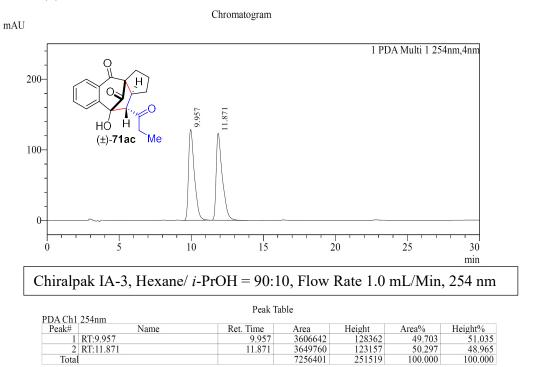

Chiralpak IC-3, Hexane/ i-PrOH = 90:10, Flow Rate 1.0 mL/Min, 254 nm

Result Table (Uncal - E:\DATA\MAP\INTRA\MAP-04-142 REC IC-3)

|   | Reten. Time<br>[min] | Area<br>[mV.s] | Height<br>[mV] | Area<br>[%] | Height<br>[%] | W05<br>[min] |
|---|----------------------|----------------|----------------|-------------|---------------|--------------|
| 1 | 16.177               | 76.315         |                | 50.2        | 69.0          | 1.20         |
| 2 | 23.533               |                | 0.373          |             | 31.0          | 3.07         |
|   | Total                | 152.128        |                | 100.0       |               |              |

Chiral (+)-71**fb**: (Major: 85.2% *ee*):




Chiralpak IC-3, Hexane/ i-PrOH = 90:10, Flow Rate 1.0 mL/Min, 254 nm

Result Table (Uncal - E:\DATA\MAP\INTRA\MAP-04-145 CHIRAL)

|   | Reten. Time<br>[min] | Area<br>[mV.s] | Height<br>[mV] | Area<br>[%] | Height<br>[%] | W05<br>[min] |
|---|----------------------|----------------|----------------|-------------|---------------|--------------|
| 1 | 16.983               | 110.784        | 1.429          | 92.6        | 95.2          | 0.92         |
| 2 | 25.227               | 8.896          | 0.072          | 7.4         | 4.8           |              |
|   | Total                | 119.680        | 1.501          | 100.0       | 100.0         |              |

Figure 72: HPLC spectra of the chiral product 71fb.

#### Racemic (±)-71ac:



Chiral (+)-71ac: (Major: 83.7% ee):

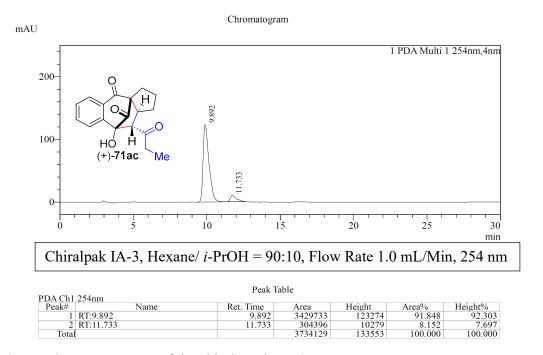
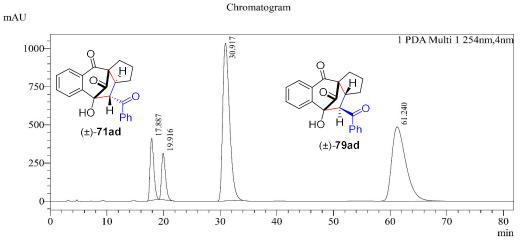
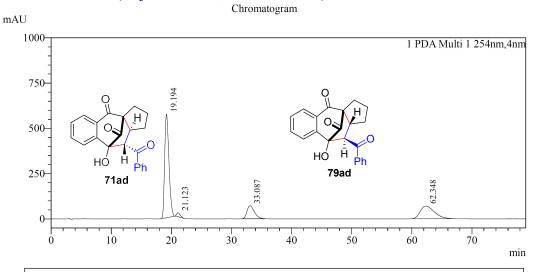




Figure 73: HPLC spectra of the chiral product 71ac.


#### Racemic ( $\pm$ )-71ad and ( $\pm$ )-79ad:



Chiralpak AD-H, Hexane/i-PrOH = 90:10, Flow Rate 1.0 mL/Min, 254 nm

| PDA Ch1 254nm |           |           |           |         |         |         |  |  |  |
|---------------|-----------|-----------|-----------|---------|---------|---------|--|--|--|
| Peak#         | Name      | Ret. Time | Area      | Height  | Area%   | Height% |  |  |  |
| 1             | RT:17.887 | 17.887    | 18719342  | 405813  | 9.166   | 18.193  |  |  |  |
| 2             | RT:19.916 | 19.916    | 14883280  | 305244  | 7.288   | 13.684  |  |  |  |
| 3             | RT:30.917 | 30.917    | 86976354  | 1034058 | 42.588  | 46.357  |  |  |  |
| 4             | RT:61.240 | 61.240    | 83646637  | 485527  | 40.958  | 21.766  |  |  |  |
| Total         |           |           | 204225613 | 2230643 | 100.000 | 100.000 |  |  |  |

Chiral **71ad** and **79ad**: (Major: 94.0% *ee*; Minor: 30.2% *ee*):



Chiralcel AD-H, Hexane/ *i*-PrOH = 90:10, Flow Rate 1.0 mL/Min, 254 nm

| DDA Chi | PDA Ch1 254nm |           |          |        |         |         |  |  |  |
|---------|---------------|-----------|----------|--------|---------|---------|--|--|--|
| Peak#   | Name          | Ret. Time | Area     | Height | Area%   | Height% |  |  |  |
| 1       | RT:19.194     | 19.194    | 28242613 | 571744 | 60.411  | 77.727  |  |  |  |
| 2       | RT:21.123     | 21.123    | 869757   | 21337  | 1.860   | 2.901   |  |  |  |
| 3       | RT:33.087     | 33.087    | 6155392  | 71988  | 13.166  | 9.786   |  |  |  |
| 4       | RT:62.348     | 62.348    | 11482730 | 70514  | 24.562  | 9.586   |  |  |  |
| Tota    |               |           | 46750492 | 735582 | 100.000 | 100.000 |  |  |  |

Figure 74: HPLC spectra of the chiral product 71ad and 79ad.

To further extend the scope of this tandem reactions, we performed reaction by treating different Wittig reagents **66c-d** with 4-(3-hydroxy-1,4-dioxo-1,4-dihydronaphthalen-2-yl)butanal **63a** under quinine thiourea **57b** catalysis. Herein, the reaction with **66c** performed well at room temperature and furnished (+)-**71ac** in 69% yield, 84% *ee* with single diastereomer in 6 h (Table 19, entry 8). However, **66d** furnished (-)-**71ad** in 81% yield, 1:1 dr with 94% major *ee* and 30% minor *ee* (Table 19, entry 9). The unfavourable interaction between the phenyl group and the catalyst-lawsone aldehyde complex, can be cited as the reason for poor diastereoselectivity in (-)-**71ad** (Table 19).

Under the same limelight, we also made a chiral library of optically pure methanodibenzo[f]azulenes relating to 5-(3-hydroxy-1,4-dioxo-1,4-dihydronaphthalen-2-yl)pentanal (64a-h). Herein, we treated 64a-h with 66b-d under 30 mol% of quinine thiourea 57b catalysis in toluene solvent for 16-43 h (Table 20). Strikingly, all the reactions performed smoothly at room temperature, furnished (+)-72ab-hb in 68-91% yields, up to 99% ee for major isomer and other isomer almost racemic, with moderate to good dr ratios. Namely, 8-methoxy, 6-methoxy, 7-N-acetyl and 6,8-dimethyl substituents show significant enhancement in dr ratios i.e., up to >20:1 (Table 20, entries 2, 4, 7, 8). Whereas 63a, 7-methoxy, 6,7-dimethoxy and 6-methyl substituents gave moderate dr ratios (Table 20, entries 1, 3, 5, 6). The better dr ratios have resulted from better facial discrimination by substituents in the pre-transition state. To further extend the substrate scope of this asymmetric tandem Wittig/intra-molecular Michael/intramolecular aldol reactions, we performed reaction between 5-(3-hydroxy-1,4-dioxo-1,4dihydronaphthalen-2-yl)pentanal 64a and Wittig reagents like 66b-d under 30 mol% 57b in toluene solvent. Surprisingly, reaction with 2c performed well at room temperature for 24 hr, furnished (+)-74ac in 70% yield, 1:1 dr with 98.5% major ee and 37.5% minor ee (Table 20, entry 9). Although 2d reaction did not performed well at room temperature and performed at 80 °C, furnished (-)-74ad in 81% yield, 74% ee for major isomer and almost racemic for minor isomer, with 3.5:1 dr ratio (Table 20, entry 10).

Table 20: Substrate scope of the proposed design. [a]

$$Fg \longrightarrow OH \longrightarrow Catalyst 57b \longrightarrow GH_{R^4} \longrightarrow CH_3C_6H_5 (0.2 \text{ M}) \longrightarrow Fg \longrightarrow HO \longrightarrow H_{R^4} \longrightarrow Fg \longrightarrow HO \longrightarrow HO \longrightarrow HO$$

$$Fg \longrightarrow HO \longrightarrow H_{R^4} \longrightarrow Fg \longrightarrow HO \longrightarrow HO \longrightarrow HO$$

$$Fg \longrightarrow HO \longrightarrow HO \longrightarrow HO$$

$$Fg \longrightarrow HO \longrightarrow HO \longrightarrow HO$$

$$Fg \longrightarrow HO$$

$$HO \longrightarrow HO$$

|                   |                         |       |       |                                      | 00 1101 00001100                   |                       |
|-------------------|-------------------------|-------|-------|--------------------------------------|------------------------------------|-----------------------|
| Entry             | Fg <b>8</b>             | R     | t [h] | Yield [%] <sup>[b]</sup>             | d r <sup>[c]</sup><br><b>72:82</b> | ee [%] <sup>[d]</sup> |
| 1                 | 64a = H                 | R= Me | 18    | 94 ((+)- <b>72ab/82ab</b> )          | 5:1                                | 99(00)                |
| 2                 | 64b = 8-OMe             | R= Me | 36    | 68 ((+)- <b>72bb/82bb</b> )          | >20:1                              | 99()                  |
| 3                 | 64c = 7-OMe             | R= Me | 20    | 92 ((+)- <b>72cb/82cb</b> )          | 5:1                                | 99(00)                |
| 4                 | 64d = 6-OMe             | R= Me | 16.7  | 88 ((+)- <b>72db/82db</b> )          | 9:1                                | 99(00)                |
| 5                 | <b>64e</b> = 6,7-di OMe | R= Me | 43    | 80 ((+)- <b>72eb/82eb</b> )          | 4:1                                | 99(00)                |
| 6                 | 64f = 6-Me              | R= Me | 18    | 77 ((+)- <b>72fb/82fb)</b>           | 6:1                                | 99(00)                |
| 7                 | <b>64g</b> = 6,8-di Me  | R= Me | 22    | 89 ((+)- <b>72</b> gb/ <b>82</b> gb) | 8:1                                | 98(15)                |
| 8                 | <b>64h</b> = 7-NHAc     | R= Me | 27    | 81 ((+)- <b>72hb/82hb</b> )          | >20:1                              | 96(24)                |
| 9                 | 64a = H                 | R= Et | 24    | 70 ((+)- <b>72</b> ab/ <b>82</b> ab) | 1:1                                | 98(37)                |
| 10 <sup>[e]</sup> | 64a = H                 | R= Ph | 6     | 79 ((-)- <b>72ab/82ab</b> )          | 3:1                                | 74(00)                |
| 11 <sup>[f]</sup> | 64a = H                 | R= Me | 24    | 87 ((-)- <b>72ab/82ab</b> )          | 3:1                                | 99(00)                |

<sup>[</sup>a] Reactions were carried out in solvent (0.2 M) with 1.1 equiv of **66b-d** relative to **64a-h** (0.2 mmol), in the presence of 30 mol% of the catalyst **57b**. [b] Yield refers to the column-purified product. [c] Refers to the column-purified product weight.

<sup>[d]</sup>Determined by CSP HPLC analysis and values in parentheses represent those for the minor diastereomer. <sup>[e]</sup> T = 80 °C. <sup>[f]</sup>T = catalyst **57a** used as catalyst.

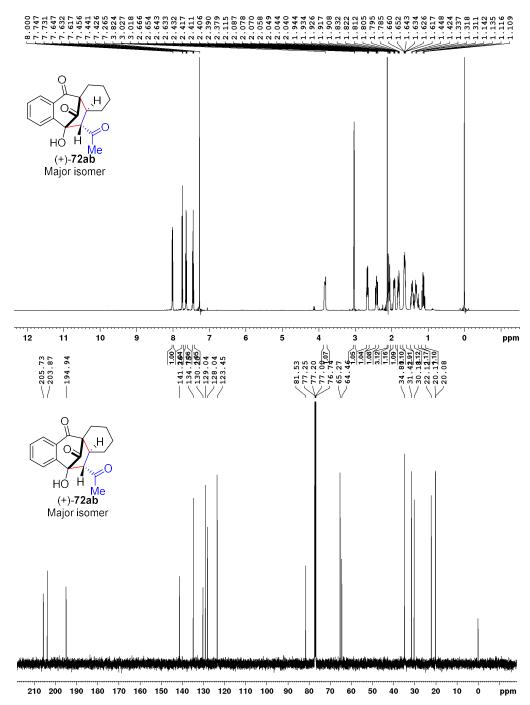



Figure 75: <sup>1</sup>H and <sup>13</sup>C spectra of the product **72ab**.

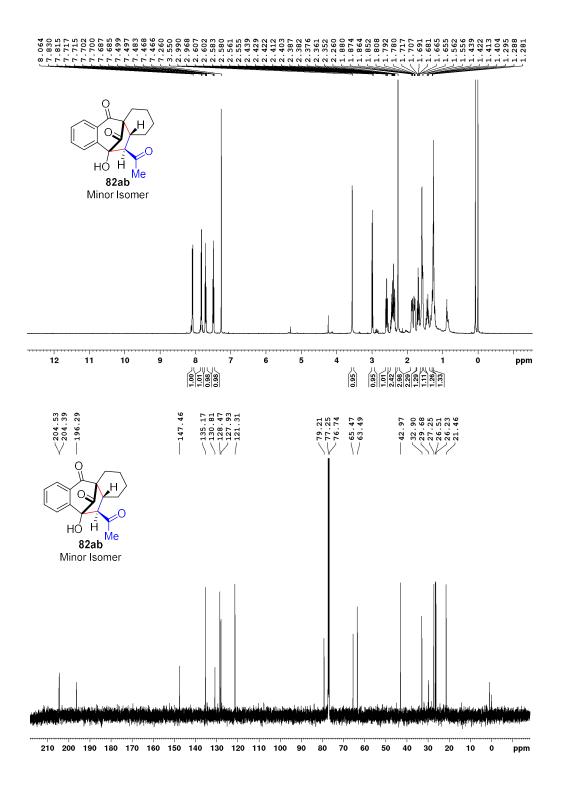



Figure 76: <sup>1</sup>H and <sup>13</sup>C spectra of the product 82ab.

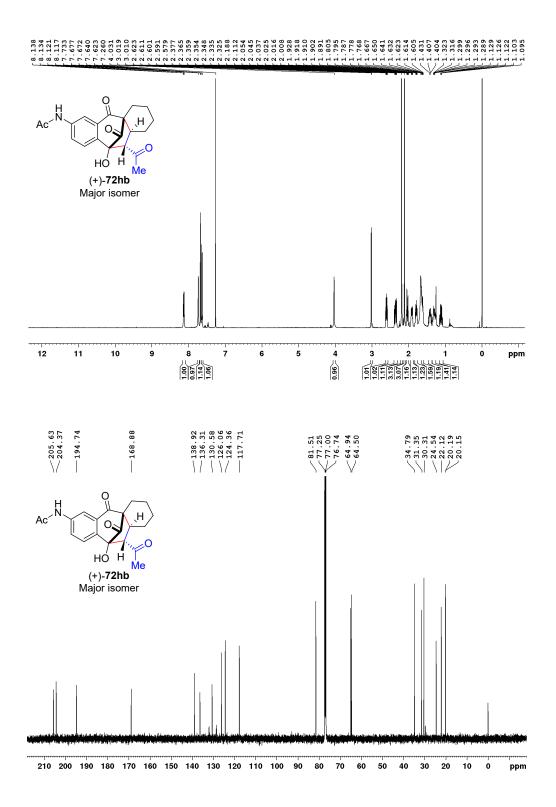



Figure 77: <sup>1</sup>H and <sup>13</sup>C spectra of the product **72hb**.

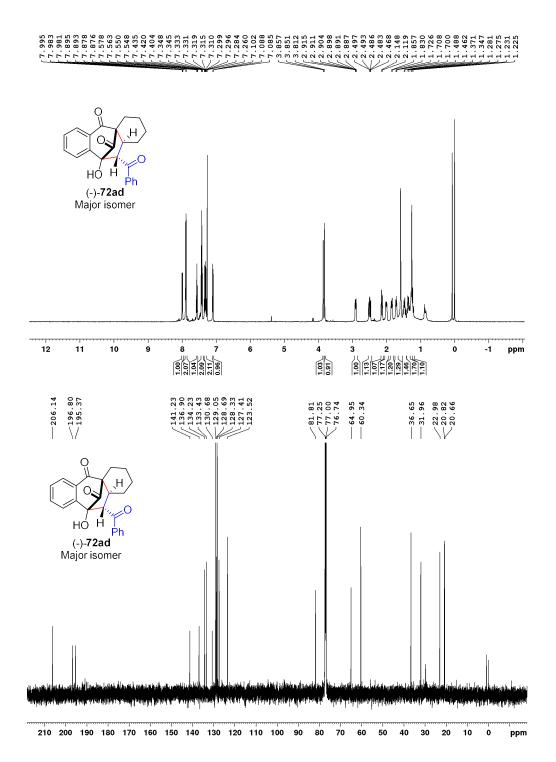



Figure 78: <sup>1</sup>H and <sup>13</sup>C spectra of the product 72ad.

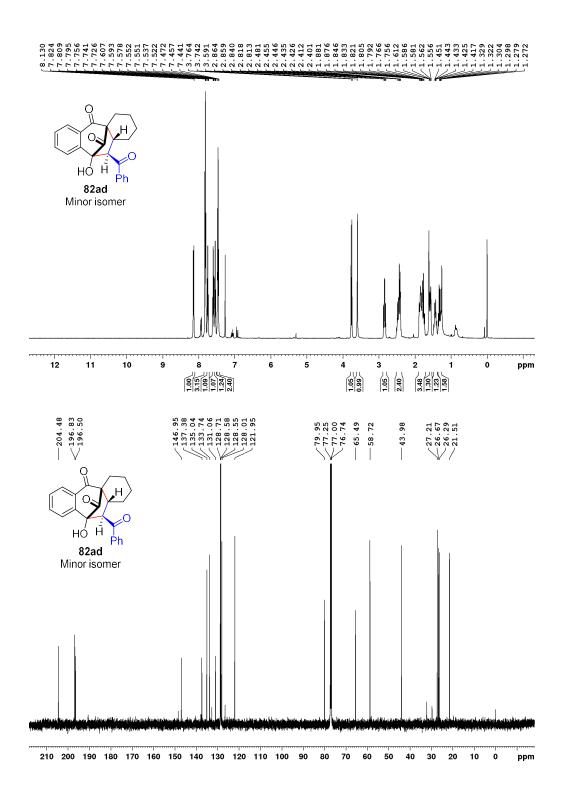
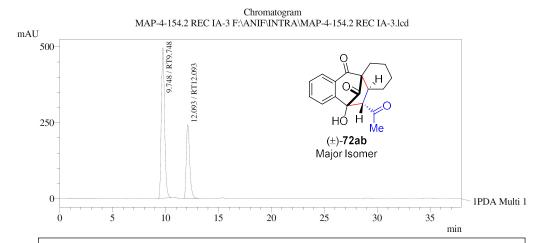
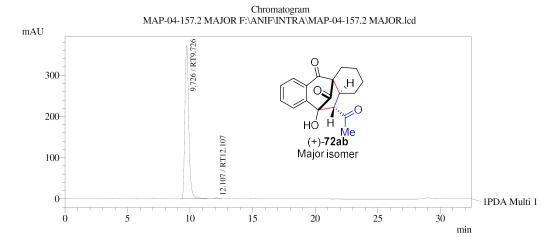




Figure 79: <sup>1</sup>H and <sup>13</sup>C spectra of the product 82ad.

## Racemic (±)-72ab Major:

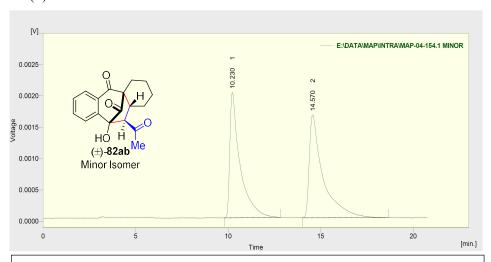



Chiralpak IA-3, Hexane/ i-PrOH = 90:10, Flow Rate 1.0 mL/Min, 254 nm

|   |            |        |          | reaktable |       |
|---|------------|--------|----------|-----------|-------|
| P | DA Ch1 254 | nm 4nm |          |           |       |
|   | Deal/#     | Name   | Ret Time | Δrea      | Heigh |

| Peak# | Name     | Ret. Time | Area     | Height | Area %  | Height % |
|-------|----------|-----------|----------|--------|---------|----------|
| 1     | RT9.748  | 9.748     | 10781195 | 495001 | 66.225  | 67.088   |
| 2     | RT12.093 | 12.093    | 5498329  | 242837 | 33.775  | 32.912   |
| Total |          |           | 16279524 | 737838 | 100.000 | 100.000  |

Chiral (+)-72ab: (Major: 98.9% ee):

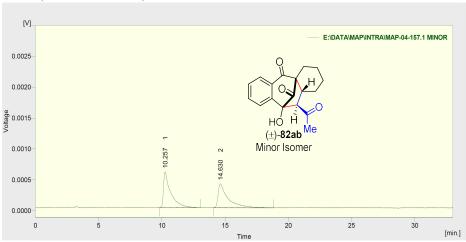



Chiralpak IA-3, Hexane/ *i*-PrOH = 90:10, Flow Rate 1.0 mL/Min, 254 nm

|           |           |           | PeakTable |        |         |          |
|-----------|-----------|-----------|-----------|--------|---------|----------|
| PDA Ch1 2 | 254nm 4nm |           |           |        |         |          |
| Peak#     | Name      | Ret. Time | Area      | Height | Area %  | Height % |
| 1         | RT9.726   | 9.726     | 8043090   | 372032 | 99.465  | 99.404   |
| 2         | RT12.107  | 12.107    | 43231     | 2232   | 0.535   | 0.596    |
| Total     |           |           | 8086321   | 374264 | 100.000 | 100.000  |
|           |           |           |           |        |         |          |

Figure 80: HPLC spectra of the chiral product 72ab.

#### Racemic (±)-82ab Minor:



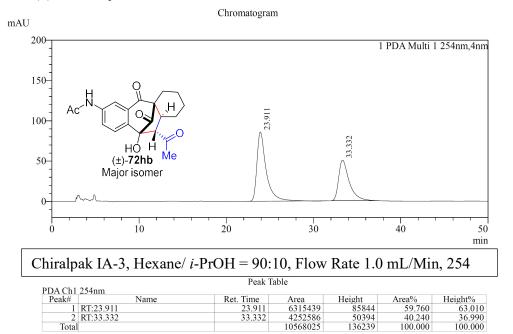

Chiralpak IC-3, Hexane/ i-PrOH = 90:10, Flow Rate 1.0 mL/Min, 254

Result Table (Uncal - E:\DATA\MAP\INTRA\MAP-04-154.1 MINOR)

| , |                      |                |                |             |               |              |  |  |
|---|----------------------|----------------|----------------|-------------|---------------|--------------|--|--|
|   | Reten. Time<br>[min] | Area<br>[mV.s] | Height<br>[mV] | Area<br>[%] | Height<br>[%] | W05<br>[min] |  |  |
| 1 | 10.230               |                |                |             | 54.9          | 0.49         |  |  |
| 2 | 14.570               | 85.036         | 1.644          | 52.5        | 45.1          | 0.63         |  |  |
|   | Total                | 162.018        |                |             | 100.0         |              |  |  |

Chiral **82ab**: (Minor: 00.0% ee):




Chiralpak IC-3, Hexane/ i-PrOH = 90:10, Flow Rate 1.0 mL/Min,

Result Table (Uncal - E:\DATA\MAP\INTRA\MAP-04-157.1 MINOR)

|   | Reten. Time [min] | Area<br>[mV.s] | Height<br>[mV] | Area<br>[%] | Height<br>[%] | W05<br>[min] |
|---|-------------------|----------------|----------------|-------------|---------------|--------------|
| 1 | 10.257            | 23.067         | 0.581          | 52.0        | 60.0          | 0.50         |
| 2 | 14.630            | 21.258         | 0.388          | 48.0        | 40.0          | 0.66         |
|   | Total             | 44.325         | 0.969          | 100.0       | 100.0         |              |

Figure 81: HPLC spectra of the chiral product 82ab.

#### Racemic (±)-72hb Major:



Chiral (+)-72hb: (Major: 96.4% ee):

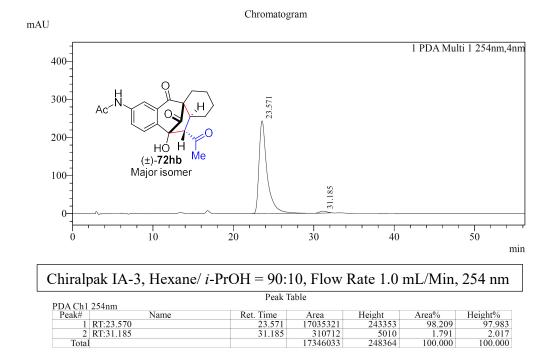
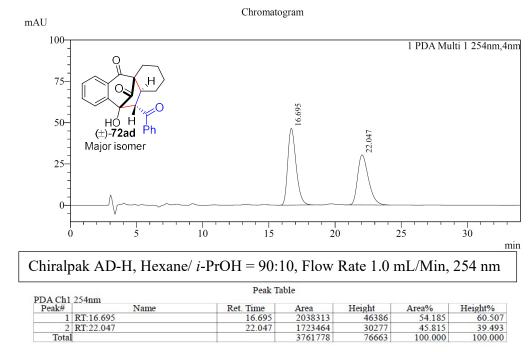




Figure 82: HPLC spectra of the chiral product 72hb.

#### Racemic (±)-72ad Major:



Chiral (-)-72ad: (Major: 74.1% ee):

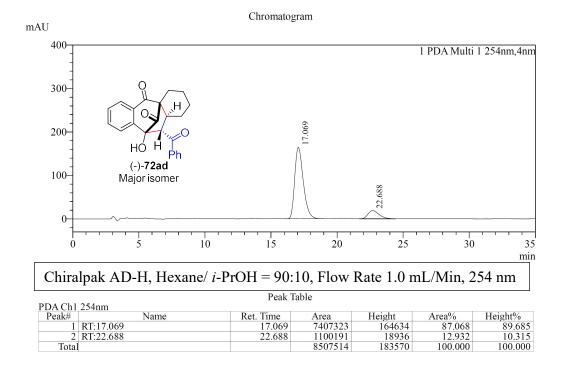
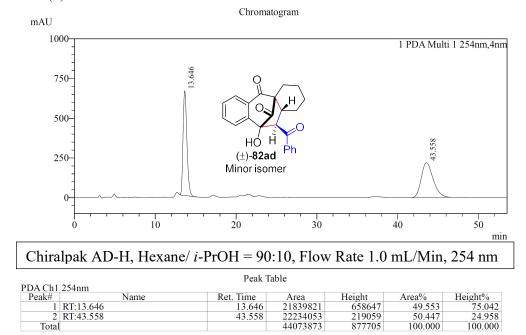
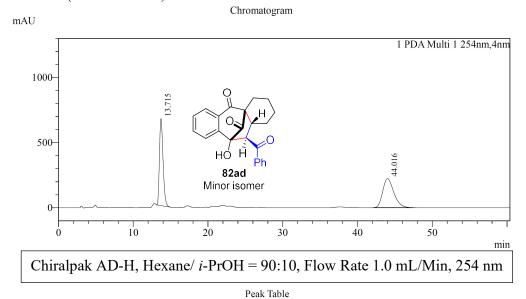




Figure 83: HPLC spectra of the chiral product 72ad.


100.000

100.000

#### Racemic (±)-82ad Minor:



#### Chiral **82ad**: (Minor: 0.0% ee):



| PDA Ch1 | 254nm     |           |          |        |         |         |
|---------|-----------|-----------|----------|--------|---------|---------|
| Peak#   | Name      | Ret. Time | Area     | Height | Area%   | Height% |
| 1       | RT:13.715 | 13.715    | 22356120 | 668029 | 49.201  | 74.987  |
| 2       | RT:44.016 | 44.016    | 23082586 | 222829 | 50.799  | 25.013  |
| Total   |           |           | 45438706 | 890858 | 100.000 | 100.000 |

Figure 84: HPLC spectra of the chiral product 82ad.

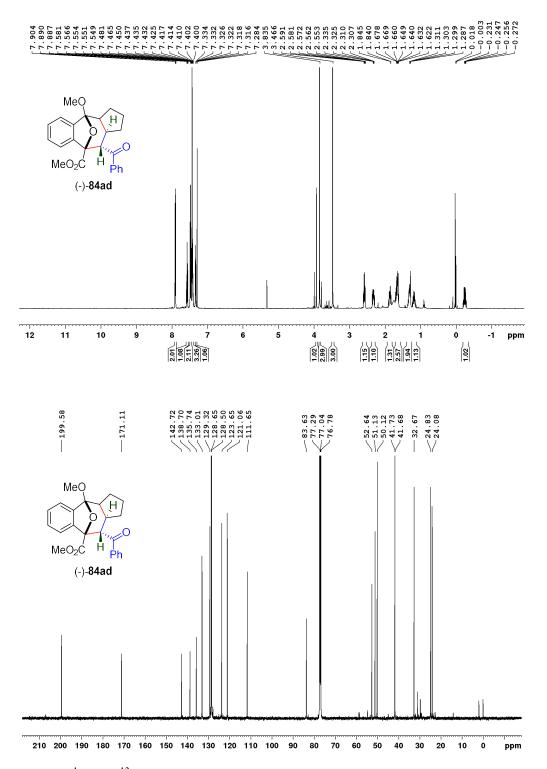
### 6.2.3 Synthetic applications of methanobenzo[f]azulenes:

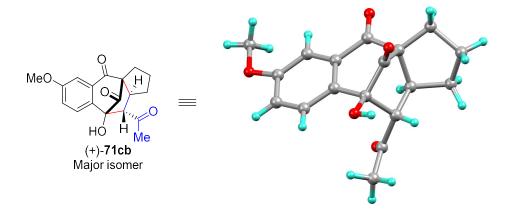
Besides, the scope of tandem asymmetric Wittig/intra-molecular Michael/intra-molecular aldol reactions, we converted the chiral (-)-71ad into (-)-84ad by treating with 1.5 equivalents of K<sub>2</sub>CO<sub>3</sub> in dry methanol at 25 °C for 1 h followed by the reaction with 5.0 equivalents of Me<sub>2</sub>SO<sub>4</sub> in acetone in the presence of 5.0 equivalents of K<sub>2</sub>CO<sub>3</sub> at 60 °C for 12 h gave the functionalized (-)-84ad in 40% yields, 94% *ee* with >99:1 dr (Scheme 29).

Scheme 29: Synthetic transformation of (-)-71ad into (-)-84ad.

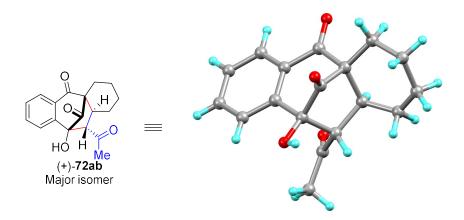
#### 6.2.4 Controlled experiments to study the poor dr ratios and their poor ee:

Herein, to explain the reasons for poor dr ratios and its *ee*, we conducted some controlled experiments. Initially, we treated chiral compounds (+)-71ab and (+)-72eb with chiral catalyst 57b in toluene solvent at room temperature for 2, 24 h respectively. Undeniably, no change in the *ee* was observed, which confirms that dr is not generating from epimerization of major (+)-71ab and (+)-72eb isomers (Scheme 30, Eq. 23). Furthermore, we protected the *OH*-group by treating 5-(3-hydroxy-1,4-dioxo-1,4-dihydronaphthalen-2-yl)pentanal 64a with dimethyl sulfate, in the presence of K<sub>2</sub>CO<sub>3</sub> in acetone for 4 h furnished in 85a. We treated 85a with 1.1 equiv of 66b under quinine thiourea 57b catalysis in toluene solvent for 3 h at room temperature resulted in only *trans*-85ab Wittig product in good yield (Scheme 30, Eq. 24).

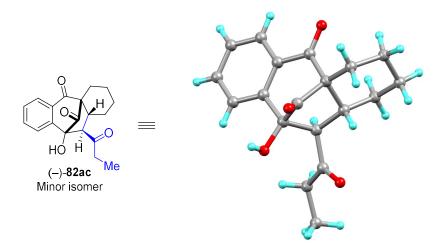




Figure 85: <sup>1</sup>H and <sup>13</sup>C spectra of the product 84ad.

Scheme 30: Controlled experiments.


Plausibly, as the only *trans* Wittig product formed in the reaction, therefore the dr generating from *trans*-85ab isomer but not from the *cis*-isomer. Next, we performed reaction between 5-(3-hydroxy-1,4-dioxo-1,4-dihydronaphthalen-2-yl)pentanal 64a and 66b in the absence of quinine thiourea 57b catalyst in toluene solvent at room temperature, after 3 h of the reaction the only isomer formed in the reaction was isolated as *trans*-86ab, which upon treatment with quinine thiourea 57b catalyst for 12 h resulted in (+)-73ab in >99% *ee* and 82ab in the almost racemic form (Scheme 30, Eq. 25).

Furthermore, We then recorded the HPLC of minor isomer in two intervals (at 6 h and 100% conversion of reaction), by performing reaction between 5-(3-hydroxy-1,4-dioxo-1,4-dihydronaphthalen-2-yl)pentanal **64a** and **66b** in the presence of quinine thiourea **57b** catalyst in toluene solvent at room temperature (Scheme 30, Eq. 26). Surprisingly, minor isomer shows the poor *ee* from the beginning of the reaction. From these investigations, the poor facial selectivity of the minor isomer is due to the no/fewer interactions between chiral thiourea and the *trans*-Wittig product (self-catalysed reaction). Herein, the self-catalysed reaction is also participating in the reaction along with the quinine thiourea catalysed reaction, which is comparably faster than the self-catalysed reaction. Therefore, the poor dr ratio is generating from the *trans*-isomer of the Wittig product with poor *ee* for the minor isomer.


We established the structure of the domino products by NMR analysis and absolute stereochemistry finally confirmed by X-ray structure analysis on (+)-71cd, (+)-72ab and 82ac (Figures 86-88).<sup>[29]</sup>



*Figure 86*: X-ray crystal structure of (3a*S*,9*S*,10*S*,10a*S*)-10-Acetyl-9-hydroxy-6-methoxy-1,2,3,9,10,10a-hexahydro-4H-3a,9-methanobenzo[*f*]azulene-4,11-dione (71cb)



*Figure* 87: X-ray crystal structure of (4aS,10S,11S,11aS)-11-Acetyl-10-hydroxy-1,3,4,10,11,11a-hexahydro-4a,10-methanodibenzo[a,d][7]annulene-5,12(2H)-dione (72ab)



*Figure 88*: X-ray crystal structure of (4aS,10S,11R,11aR)-10-hydroxy-11-propionyl-1,3,4,10,11,11a-hexahydro-4a,10-methanodibenzo[a,d][7]annulene-5,12(2H)-dione (82ac)

#### **6.2.5** *Mechanistic insights:*

Furthermore, the plausible mechanism of tandem Wittig/intra-molecular Michael/intra-molecular aldol reactions was hypothesised by analysing the controlled experiments, crystal data of (–)-71cd, (-)-72ab and 82ac. Herein, tertiary amine part of the catalyst interacts with the lawsone and the enone part interacts with the thiourea-*NH* through a double hydrogen bond. Finally, as depicted in the *pre-TS-1*, *Si,Si-facial* attack takes place to furnish the methanobenzo[f]azulenes in good yields with excellent enantio- and diastereoselectivity. Whereas the minor isomer with poor enantioselectivity generated from the no/fewer interactions of the catalyst with Wittig product in the *pre-TS-2* (Figure 89).

Figure 89: Reaction mechanism of the proposed design.

# 6.3 Conclusions

In conclusion, we developed a unique asymmetric tandem Wittig/intra-molecular Michael/intra-molecular aldol reactions protocol for the synthesis of pharmaceutically and biologically active methanobenzo[f]azulenes in excellent yields, good to excellent ee with moderate to excellent dr ratios. The lawsone aldehydes 63a-h/64a-h are treated with different Wittig reagents 2a-c under quinine thiourea 57b catalysis furnishes into a huge library of functionalized methanobenzo[f]azulenes 71-82 through the asymmetric organocatalytic tandem reactions. The methanobenzo[f]azulenes are transformed into structurally important compound (-)-84ad in moderate yield with excellent facial selectivity. The uncertainty in the dr ratios and poor ee for minor isomer is explained with help of controlled experiments.

# 7. Experimental Section

General Methods: The <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra were recorded at 400 MHz and 100 MHz, respectively. The chemical shifts are reported in ppm downfield to TMS ( $\delta$ = 0) for <sup>1</sup>H NMR and relative to the central CDCl<sub>3</sub> resonance ( $\delta$  = 77.0) for <sup>13</sup>C NMR. In the <sup>13</sup>C NMR spectra, the nature of the carbons (C, CH, CH<sub>2</sub> or CH<sub>3</sub>) was determined by recording the DEPT-135 experiment, and is given in parentheses. The coupling constants J are given in Hz. Column chromatography was performed using Acme's silica gel (particle size 0.063-0.200 mm). High-resolution mass spectra were recorded on micromass ESI-TOF MS. IR spectra were recorded on JASCO FT/IR-5300 and Thermo Nicolet FT/IR-5700. The X-ray diffraction measurements were carried out at 298 K on an automated Enraf-Nonious MACH 3 diffractometer using graphite monochromated, Mo-K $\alpha$  ( $\lambda = 0.71073$  Å) radiation with CAD4 software or the X-ray intensity data were measured at 298 K on a Bruker SMART APEX CCD area detector system equipped with a graphite monochromator and a Mo-Kα fine-focus sealed tube  $(\lambda = 0.71073 \text{ Å})$ . For thin-layer chromatography (TLC), silica gel plates Merck 60 F254 were used and compounds were visualized by irradiation with UV light and/or by treatment with a solution of p-anisaldehyde (23 mL), conc. H<sub>2</sub>SO<sub>4</sub> (35 mL), acetic acid (10 mL), and ethanol (900 mL) followed by heating.

**Materials:** All solvents and commercially available chemicals were used as received without further purification unless otherwise stated.

#### 1. Organocatalytic Reductive Propargylation: Scope and Applications:

# 1a. (S)-Proline Catalysed Cascade Three-Component Reductive Propargylation (TCRP) Reactions:

For Table 1 and 2: In an ordinary glass vial equipped with a magnetic stirring bar, to 2.0 equiv. of the 3-alkyl/arylpropiolaldehydes 33 (0.6 mmol), 1.0 equiv. of 1,3-diketones or active methylene compound 1/32 (0.3 mmol) and 1.0 equiv. of Hantzsch ester 34 (0.3 mmol, 76.0 mg) was added 1.0 mL of DCM (0.3 M), and then the catalyst (S)-proline 3n (0.015 mmol, 1.73 mg, 5 mol%) was added, the resulting reaction mixture was stirred at 25 °C for the time indicated in Tables 1 and 2. The crude reaction mixture was directly loaded onto a silica gel column chromatography without aqueous workup, and pure coupling products 35 were obtained in 70–98% yield (eluent: mixture of hexanes/ethyl acetate). For Table 3 and 4: Reaction was performed as similar to above method and pure coupling products 35 were obtained through precipitation-filtration technique instead of column-chromatography. The crude reaction mixture was precipitated with cold 10% ethyl acetate in hexanes and washed with 10% cold ethyl acetate/hexanes (3 x 10 mL) and analytically pure coupling products 35 was obtained in 78-99% yield.

#### General Observations during the Recording of NMR Samples:

- (1) Because of solubility problem of 2-propargyl-cycloalkane-1,3-diones **35** in CDCl<sub>3</sub>, we have used few drops of CD<sub>3</sub>OD or DMSO-d<sub>6</sub> for recording NMR spectra.
- (2) Due to the keto-enol and enol-enol tautomerism of 2-propargyl-cycloalkane-1,3-diones **35**, <sup>13</sup>C NMR resulted in the poor resolution of few carbons (2 x CH<sub>2</sub> and

- 2 x C=O) even after more than 2000 scans in the solvent system of CDCl<sub>3</sub> + CD<sub>3</sub>OD (few drops) or CDCl<sub>3</sub> + DMSO-d<sub>6</sub> (few drops).
- (3) In few compounds NMR spectra, even after addition of few drops of CD<sub>3</sub>OD or DMSO-d<sub>6</sub> spectra has shown minor tautomeric mixture of keto-isomer along with major enol-isomer.
- 3-(3-Phenylprop-2-yn-1-yl)naphthalene-1,2,4(3*H*)-trione (35aa): The title compound was prepared following procedure 1a, purified by column chromatography using EtOAc/hexanes (1/9), and isolated as a yellow solid. Mp.: 170-172 °C. Yield: 98% (84.76 mg). IR (Neat):  $v_{max}$  3336, 2920, 1640, 1587, 1373, 1347, 1271, 1227, 1046, 1025, 752, 730, 686 and 579 cm<sup>-1</sup>. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz):  $\delta$  8.17 (1H, dd, J = 7.6, 1.2 Hz), 8.10 (1H, td, J = 7.6, 1.2 Hz), 7.78 (1H, dt, J = 7.6, 1.2 Hz), 7.70 (1H, dt, J = 7.6, 1.2 Hz), 7.58 (1H, br s, OH), 7.39-7.37 (2H, m), 7.26-7.23 (3H, m), 3.75 (2H, s). <sup>13</sup>C NMR (CDCl<sub>3</sub>, DEPT-135):  $\delta$  183.3 (C, C = O), 181.4 (C, C = O), 153.3 (C, C = C OH), 135.2 (CH), 133.1 (CH), 132.7 (C), 131.7 (2 x CH), 129.3 (C), 128.0 (2 x CH), 127.7 (CH), 127.0 (CH), 126.3 (CH), 123.5 (C), 118.7 (C, C = C OH), 85.4 (C, acetylenic-C), 80.3 (C, acetylenic-C), 13.7 (CH<sub>2</sub>). HRMS (ESI-TOF) m/z:  $[M + H]^+$  Calcd for  $C_{19}H_{12}O_{3}H$  289.0865; Found 289.0866.
- 3-(3-(Trimethylsilyl)prop-2-yn-1-yl)naphthalene-1,2,4(3*H*)-trione (35ab): The title compound was prepared following procedure 1a, purified by column chromatography using EtOAc/hexanes (1/9), and isolated as a yellow solid.

  Mp.: 162-164 °C. Yield: 94% (80.19 mg). IR (Neat): v<sub>max</sub> 3365, 2957, 2176, 1644, 1588, 1372, 1343, 1272, 1225, 1047, 834, 761, 728, 672, 649

and 503 cm<sup>-1</sup>. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz):  $\delta$  8.15 (1H, dd, J = 8.0, 1.0 Hz), 8.07 (1H, dd, J = 8.0, 1.0 Hz), 7.78 (1H, dt, J = 7.5, 1.5 Hz), 7.70 (1H, dt, J = 7.5, 1.5 Hz), 7.55 (1H, br s, OH), 3.55 (2H, s), 0.11 (9H, s, Si(CH<sub>3</sub>)<sub>3</sub>). <sup>13</sup>C NMR (CDCl<sub>3</sub>, DEPT-135):  $\delta$  183.2 (C, C=O), 181.4 (C, C=O), 153.2 (C, C=C-OH), 135.1 (CH), 133.1 (CH), 132.7 (C), 129.3 (C), 127.0 (CH), 126.3 (CH), 118.4 (C, C=C-OH), 101.6 (C, acetylenic-C), 84.6 (C, acetylenic-C), 14.2 (CH<sub>2</sub>), 0.01 (3 x CH<sub>3</sub>, Si(CH<sub>3</sub>)<sub>3</sub>). HRMS (ESI-TOF) m/z: [M + Na]<sup>+</sup> Calcd for C<sub>16</sub>H<sub>16</sub>O<sub>3</sub>SiNa 307.0766; Found 307.0766.

2-(3-(Trimethylsilyl)prop-2-yn-1-yl)cyclohexane-1,3-dione (35bb): The title

compound was prepared following procedure **1a**, purified by column chromatography using EtOAc/hexanes (2/8), and isolated as an off-sibb sime<sub>3</sub> white solid. Mp.: 130-132 °C. Yield: 93% (62.04 mg). IR (Neat):  $v_{max}$  2958, 2642, 2172, 1661, 1631, 1556, 1411, 1383, 1266, 997, 841, 800, 759 and 642 cm<sup>-1</sup>. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz, 12.8:1 ratio, major enol isomer):  $\delta$  8.53 (1H, s, O-*H*), 3.32 (2H, s), 2.48 (2H, t, J = 6.0 Hz), 2.36 (2H, t, J = 6.5 Hz), 1.95 (2H, quintet, J = 6.5 Hz), 0.17 (9H, s, Si( $CH_3$ )<sub>3</sub>). <sup>13</sup>C NMR (CDCl<sub>3</sub>, DEPT-135, 6.25:1 ratio, major enol isomer):  $\delta$  197.0 (C, C=O), 173.5 (C, C=C-OH), 108.9 (C, C=C-OH), 104.5 (C, acetylenic-C), 103.7 (C, acetylenic-C), 36.4 (CH<sub>2</sub>), 29.4 (CH<sub>2</sub>), 20.4 (CH<sub>2</sub>), 14.0 (CH<sub>2</sub>), -0.3 (3 x CH<sub>3</sub>, Si( $CH_3$ )<sub>3</sub>). <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz, 12.8:1 ratio, minor diketo isomer):  $\delta$  3.70 (1H, t, J = 6.0 Hz, CH), 2.74 (2H, d, J = 6.0 Hz), 2.72-2.69 (1H, m), 2.65-2.59 (2H, m), 2.22-2.17 (1H, m), 1.83-1.76 (2H, m), 0.10 (9H, s, Si( $CH_3$ )<sub>3</sub>). <sup>13</sup>C NMR (CDCl<sub>3</sub>, DEPT-135, 6.25:1 ratio, minor diketo isomer):  $\delta$  202.4 (2 x C, C=O), 90.2 (C, acetylenic-C), 85.0 (C, acetylenic-C), 66.7 (CH), 39.9 (2 x CH<sub>2</sub>), 18.0 (CH<sub>2</sub>),

13.6 (CH<sub>2</sub>), 0.02 (3 x CH<sub>3</sub>, Si(*C*H<sub>3</sub>)<sub>3</sub>). <sup>1</sup>H NMR (CDCl<sub>3</sub>+CD<sub>3</sub>OD (three drops), 500 MHz, only major enol isomer):  $\delta$  3.25 (2H, br s), 2.39 (4H, t, J = 6.5 Hz), 1.92 (2H, quintet, J = 6.5 Hz), 0.12 (9H, s, Si(*CH*<sub>3</sub>)<sub>3</sub>). <sup>13</sup>C NMR (CDCl<sub>3</sub>+CD<sub>3</sub>OD (three drops), DEPT-135, only major enol isomer):  $\delta$  109.6 (C, *C*=C–OH), 104.2 (C, acetylenic-*C*), 87.5 (C, acetylenic-*C*, broad peak), 33.2 (2 x CH<sub>2</sub>, broad peak), 20.3 (CH<sub>2</sub>), 13.5 (CH<sub>2</sub>), -0.26 (3 x CH<sub>3</sub>, Si(*C*H<sub>3</sub>)<sub>3</sub>). HRMS (ESI-TOF) m/z: [M + H]<sup>+</sup> Calcd for C<sub>12</sub>H<sub>18</sub>O<sub>2</sub>SiH 223.1154; Found 223.1157.

#### 5,5-Dimethyl-2-(3-(trimethylsilyl)prop-2-yn-1-yl)cyclohexane-1,3-dione (35cb): 14a

The title compound was prepared following procedure 1a, purified by column chromatography using EtOAc/hexanes (1/9), 35cb siMe<sub>3</sub> and isolated as an off-white solid. Mp.: 131-132 °C. Yield: 96% (72.11 mg). IR (Neat): ν<sub>max</sub> 2957, 2922, 2854, 2178, 1551, 1332, 1306, 1249, 1201, 1149, 1042, 1015, 840, 757, 604 and 482 cm<sup>-1</sup>. <sup>1</sup>H NMR (CDCl<sub>3</sub>+DMSO-D<sub>6</sub> (three drops), 400 MHz): δ 2.95 (2H, br s), 2.03 (4H, br s), 0.79 (6H, s, 2 x C*H*<sub>3</sub>), -0.15 (9H, s, Si(C*H*<sub>3</sub>)<sub>3</sub>). <sup>13</sup>C NMR (CDCl<sub>3</sub>+DMSO-D<sub>6</sub> (three drops), DEPT-135) δ 109.1 (C, C=C-OH), 105.4 (C, acetylenic-*C*), 81.7 (C, acetylenic-*C*), 31.31 (C), 27.6 (2 x CH<sub>3</sub>), 12.2 (CH<sub>2</sub>), -0.34 (3 x CH<sub>3</sub>, Si(CH<sub>3</sub>)<sub>3</sub>). HRMS (ESI-TOF) *m/z*: [M + H]<sup>+</sup> Calcd for C<sub>14</sub>H<sub>22</sub>O<sub>2</sub>SiH 251.1467; Found 251.1467.

#### 5-Phenyl-2-(3-(trimethylsilyl)prop-2-yn-1-yl)cyclohexane-1,3-dione (35db): The

title compound was prepared following procedure 1a, purified by column chromatography using EtOAc/hexanes (1/9), and isolated as a yellow solid. Mp.: 143-145 °C. Yield: 35db SiMe<sub>3</sub>

89% (79.90 mg). IR (Neat):  $v_{max}$  2953, 2895, 2175, 1564, 1385, 1343, 1248, 1214, 1039, 1007, 842, 753, 695, 561 and 474 cm<sup>-1</sup>. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz):  $\delta$  8.53 (1H, s, O-*H*), 7.35 (2H, tt, J = 7.0, 1.5 Hz), 7.27 (1H, tt, J = 7.0, 1.5 Hz), 7.24 (2H, br d, J = 7.0 Hz), 3.45 (1H, dd, J = 20.0, 1.0 Hz), 3.37-3.32 (1H, m), 3.33 (1H, dd, J = 16.0, 1.0 Hz), 2.81-2.68 (3H, m), 2.67-2.57 (1H, m), 0.19 (9H, s, Si(C*H*<sub>3</sub>)<sub>3</sub>). <sup>13</sup>C NMR (CDCl<sub>3</sub>, DEPT-135):  $\delta$  195.9 (C, C=O), 172.4 (C, C=C-OH), 142.5 (C), 128.8 (2 x CH), 127.0 (CH), 126.6 (2 x CH), 108.5 (C, C=C-OH), 103.4 (C, acetylenic-C), 90.8 (C, acetylenic-C), 43.4 (CH<sub>2</sub>), 38.4 (CH), 36.9 (CH<sub>2</sub>), 14.3 (CH<sub>2</sub>), -0.3 (3 x CH<sub>3</sub>, Si(CH<sub>3</sub>)<sub>3</sub>). HRMS (ESI-TOF) m/z: [M + Na]<sup>+</sup> Calcd for C<sub>18</sub>H<sub>22</sub>O<sub>2</sub>SiNa 321.1287; Found 321.1287.

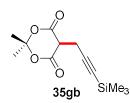
2-(3-(Trimethylsilyl)prop-2-yn-1-yl)cyclopentane-1,3-dione (35eb): The title

compound was prepared following procedure **1a**, purified by column chromatography using EtOAc/hexanes (4/6), and isolated as a white solid. Mp.: 154-156 °C. Yield: 93% (58.12 mg). IR (Neat): v<sub>max</sub> 2955,

209.0998.

2927, 2895, 2180, 1568, 1374, 1291, 1249, 1192, 1037, 1006, 993, 836, 755, 671 and 586 cm<sup>-1</sup>. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz):  $\delta$  3.14 (2H, s), 2.49 (4H, br s), 0.18 (9H, s, Si(C $H_3$ )<sub>3</sub>). <sup>13</sup>C NMR (CDCl<sub>3</sub>, DEPT-135):  $\delta$  110.3 (C, C=C-OH), 102.6 (C, acetylenic-C), 89.5 (C, acetylenic-C), 29.7 (2 x CH<sub>2</sub>, broad peak), 13.9 (CH<sub>2</sub>), -0.31 (3 x CH<sub>3</sub>, Si(CH<sub>3</sub>)<sub>3</sub>). HRMS (ESI-TOF) m/z: [M + H]<sup>+</sup> Calcd for C<sub>11</sub>H<sub>16</sub>O<sub>2</sub>SiH 209.0998; Found

**2-(3-(Trimethylsilyl)prop-2-yn-1-yl)-1***H***-indene-1,3(2***H***)-dione (35fb):** The title compound was prepared following procedure **1a**, purified by column chromatography using EtOAc/hexanes (1/9), and isolated as a semi solid. Yield: 80% (61.53 mg). IR


(Neat):  $\nu_{max}$  2960, 2178, 1747, 1710, 1600, 1348, 1329, 1249,

 $1027,\,840,\,757,\,698$  and  $638~\text{cm}^\text{-1}.\,^1\text{H NMR}$  (CDCl $_3,\,500~\text{MHz}$ ):

 $\delta$  8.01 (2H, dd, J = 6.0, 3.5 Hz), 7.86 (2H, dd, J = 6.0, 3.0 Hz),

3.09 (1H, t, J = 5.0 Hz), 2.94 (1H, d, J = 5.0 Hz), -0.18 (9H, s, Si(C $H_3$ )<sub>3</sub>). <sup>13</sup>C NMR (CDCl<sub>3</sub>, DEPT-135):  $\delta$  199.2 (2 x C, C=O), 143.1 (2 x C), 135.7 (2 x CH), 123.1 (2 x CH), 101.0 (C, acetylenic-C), 88.0 (C, acetylenic-C), 51.7 (CH), 17.9 (CH<sub>2</sub>), -0.5 (3 x CH<sub>3</sub>, Si(CH<sub>3</sub>)<sub>3</sub>). HRMS (ESI-TOF) m/z: [M + H]<sup>+</sup> Calcd for C<sub>15</sub>H<sub>16</sub>O<sub>2</sub>SiH 257.0998; Found 257.0999.

**2,2-Dimethyl-5-(3-(trimethylsilyl)prop-2-yn-1-yl)-1,3-dioxane-4,6-dione** (35gb): The title compound was prepared following procedure **1a**, purified by column chromatography using EtOAc/hexanes (1.4/8.6), and isolated as a white solid. Mp.: 72-



74 °C. Yield: 95% (72.49 mg). IR (Neat):  $\nu_{max}$  2960, 2180, 1747,

 $1384,\ 1342,\ 1291,\ 1249,\ 1199,\ 1073,\ 1013,\ 942,\ 838,\ 757\ and$ 

637 cm<sup>-1</sup>.  ${}^{1}$ H NMR (CDCl<sub>3</sub>, 500 MHz):  $\delta$  3.65 (1H, t, J = 5.0 Hz),

 $3.06 \text{ (2H, d, } J = 4.5 \text{ Hz)}, 1.80 \text{ (6H, s, 2 x C} H_3), 0.13 \text{ (9H, s, Si(C} H_3)_3).$ <sup>13</sup>C NMR (CDCl<sub>3</sub>,

DEPT-135): δ 164.2 (2 x C, O-C=O), 105.3 (C, O-C-O), 101.1 (C, acetylenic-C), 87.6

(C, acetylenic-C), 46.0 (CH), 28.7 (CH<sub>3</sub>), 27.2 (CH<sub>3</sub>), 18.1 (CH<sub>2</sub>), -0.16 (3 x CH<sub>3</sub>,

 $Si(CH_3)_3$ ). HRMS (ESI-TOF) m/z: [M + H]<sup>+</sup> Calcd for  $C_{12}H_{18}O_4SiH$  255.1053; Found

255.1055.

#### 3-(3-(Trimethylsilyl)prop-2-yn-1-yl)-1,5-dioxaspiro[5.5]undecane-2,4-dione

(35hb): The title compound was prepared following procedure 1a, purified by column

chromatography using EtOAc/hexanes (0.7/9.3), and isolated as a semi solid; Yield: 94% (83.03 mg). IR (Neat): v<sub>max</sub> 2958, SiMe<sub>3</sub> 2178, 1714, 1412, 1249, 1016, 840, 760, 700 and 640 cm<sup>-1</sup>. <sup>1</sup>H

NMR (CDCl<sub>3</sub>, 500 MHz):  $\delta$  3.66 (1H, t, J = 5.0 Hz), 3.04 (2H, d, J = 5.0 Hz), 1.98 (4H, t, J = 6.5 Hz), 1.77 (2H, quintet, J = 6.5 Hz), 1.70 (2H, quintet, J = 6.5 Hz), 1.50 (2H, quintet, J = 6.5 Hz), 0.11 (9H, s, Si(CH<sub>3</sub>)<sub>3</sub>). <sup>13</sup>C NMR (CDCl<sub>3</sub>, DEPT-135)  $\delta$  164.3 (2 x C, O-C=O), 106.2 (C, O-C-O), 101.2 (C, acetylenic-C), 87.6 (C, acetylenic-C), 46.3 (CH), 37.3 (CH<sub>2</sub>), 36.3 (CH<sub>2</sub>), 24.0 (CH<sub>2</sub>), 22.5 (CH<sub>2</sub>), 21.8 (CH<sub>2</sub>), 18.2 (CH<sub>2</sub>), -0.15 (3 x CH<sub>3</sub>, Si(CH<sub>3</sub>)<sub>3</sub>). HRMS (ESI-TOF) m/z: [M + H]<sup>+</sup> Calcd for C<sub>15</sub>H<sub>22</sub>O<sub>4</sub>SiH 295.1366; Found 295.1365.

#### 5-(3-(Trimethylsilyl)prop-2-vn-1-vl)pyrimidine-2,4,6(1*H*,3*H*,5*H*)-trione (35ib):

The title compound was prepared following procedure 1a, purified by column chromatography using EtOAc/hexanes (4/6), and isolated as an off-white solid. Mp.: 194-195 °C. Yield: 84%

(60.05 mg). IR (Neat):  $v_{max}$  3224, 2958, 2184, 1736, 1699, 1681, 1441, 1358, 1301, 1222, 1203, 982, 838, 758, 638, 565, 509, 468 and 415 cm<sup>-1</sup>. <sup>1</sup>H NMR (CDCl<sub>3</sub>+CD<sub>3</sub>OD, 500 MHz):  $\delta$  2.89 (2H, s), -0.023 (9H, s, Si(C*H*<sub>3</sub>)<sub>3</sub>). <sup>13</sup>C NMR (CDCl<sub>3</sub>+CD<sub>3</sub>OD, DEPT-135):  $\delta$  169.0 (2 x C, N–*C*=O), 150.3 (C, N–CO–N), 99.5 (C, acetylenic-*C*), 88.8 (C, acetylenic-*C*), 21.2 (CH<sub>2</sub>), -0.76 (3 x CH<sub>3</sub>, Si(*C*H<sub>3</sub>)<sub>3</sub>). HRMS (ESI-TOF) *m/z*: [M + H]<sup>+</sup> Calcd for C<sub>10</sub>H<sub>14</sub>N<sub>2</sub>O<sub>3</sub>SiH 239.0852; Found 239.0852.

#### 1,3-Dimethyl-5-(3-(trimethylsilyl)prop-2-yn-1-yl)pyrimidine-2,4,6(1*H*,3*H*,5*H*)-

trione (35jb): The title compound was prepared following procedure 1a, purified by

Me Column chromatography using EtOAc/hexanes (1.4/8.6), and isolated as a white semi solid. Yield: 87% (69.52 mg). IR (Neat):

SiMe<sub>3</sub> v<sub>max</sub> 2960, 2177, 1671, 1445, 1424, 1379, 1291, 1249, 1115,

1039, 838, 754, 701, 637, 559 and 462 cm<sup>-1</sup>. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz):  $\delta$  3.55 (1H, t, J = 4.4 Hz), 3.33 (6H, s, 2 x N-CH<sub>3</sub>), 3.03 (2H, d, J = 4.4 Hz), 0.07 (9H, s, Si(CH<sub>3</sub>)<sub>3</sub>). <sup>13</sup>C NMR (CDCl<sub>3</sub>, DEPT-135):  $\delta$  167.7 (2 x C, N-C=O), 151.5 (C, N-CO-N), 99.0 (C, acetylenic-C), 89.8 (C, acetylenic-C), 48.1 (CH), 28.4 (2 x CH<sub>3</sub>, 2 x N-CH<sub>3</sub>), 24.0 (CH<sub>2</sub>), -0.3 (3 x CH<sub>3</sub>, Si(CH<sub>3</sub>)<sub>3</sub>). HRMS (ESI-TOF) m/z: [M + H]<sup>+</sup> Calcd for C<sub>12</sub>H<sub>18</sub>N<sub>2</sub>O<sub>3</sub>SiH 267.1165; Found 267.1165.

#### 6-Methyl-3-(3-(trimethylsilyl)prop-2-yn-1-yl)-2H-pyran-2,4(3H)-dione (35kb):

The title compound was prepared following procedure 1a, purified by column

chromatography using EtOAc/hexanes (3/7), and isolated as a yellow solid. Mp.: 166-167 °C. Yield: 70% (49.63 mg). IR yellow solid. Wp.: 166-167 °C. Yield: 70% (49.63 mg). IR isolated as a yellow solid. Mp.: 166-167 °C. Yield: 70% (49.63 mg). IR isolated isolated in yellow solid. Mp.: 166-167 °C. Yield: 70% (49.63 mg). IR isolated isolated isolated isolated isolated isolated isolated isolated as a yellow solid. Mp.: 166-167 °C. Yield: 70% (49.63 mg). IR isolated isol

#### 6-Phenyl-3-(3-(trimethylsilyl)prop-2-vn-1-vl)dihydro-2*H*-pyran-2,4(3*H*)-dione

(35lb): The title compound was prepared following procedure 1a, purified by column

chromatography using EtOAc/hexanes (1.4/8.6), and isolated as a pale yellow semi solid; Yield: 80% (72.10 mg). IR (Neat):  $v_{max}$ SiMe<sub>3</sub>

2957, 2922, 2174, 1644, 1388, 1248, 1119, 1017, 840, 757 and 698 cm<sup>-1</sup>. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz, 2:1, major enol isomer): δ 8.73 (1H, br s), 7.43-7.34 (5H, m), 5.42 (1H, dd, J = 12.8, 4.0 Hz), 3.51 (1H, dd, J = 19.2, 1.6 Hz), 3.32 (1H, dd, J = 20.0, 1.6 Hz), 2.88 (1H, dd, J = 17.6, 4.0 Hz), 2.61 (1H, dd, J = 17.6, 4.0 Hz), 0.20 (9H, s, Si(CH<sub>3</sub>)<sub>3</sub>).  $^{13}$ C NMR (CDCl<sub>3</sub>, DEPT-135, 2:1, major enol isomer):  $\delta$  167.2 (C, C=C-OH), 166.7 (C, O-C=O), 138.0 (C), 128.9 (CH), 128.7 (2 x CH), 126.0 (2 x CH), 103.0 (C, C=C-OH), 102.8 (C, acetylenic-C), 97.4 (C, acetylenic-C), 76.4 (CH), 35.5 (CH<sub>2</sub>), 16.3 (CH<sub>2</sub>), -0.37 (3 x CH<sub>3</sub>, Si(CH<sub>3</sub>)<sub>3</sub>). <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz, 2:1, minor keto isomer):  $\delta$  7.43-734 (5H, m), 5.79 (1H, dd, J = 12.0, 2.8 Hz), 3.89 (1H, t, J= 5.6 Hz), 3.05-2.94 (2H, m), 2.91-2.77 (2H, m), 0.14 (9H, s,  $Si(CH_3)_3$ ). <sup>13</sup>C NMR (CDCl<sub>3</sub>, DEPT-135, 2:1, minor keto isomer):  $\delta$  198.4 (C, C=O), 166.8 (C, O-C=O), 136.2 (C), 129.3 (CH), 128.7 (2 x CH), 126.0 (2 x CH), 91.3 (C, acetylenic-C), 86.0 (C, acetylenic-C), 75.6 (CH), 56.6 (CH), 45.4 (CH<sub>2</sub>), 14.9 (CH<sub>2</sub>), -0.02 (3 x CH<sub>3</sub>, Si(CH<sub>3</sub>)<sub>3</sub>). <sup>1</sup>H NMR (CDCl<sub>3</sub>+CD<sub>3</sub>OD (few drops), 500 MHz, major enol isomer): δ 7.42-7.33 (5H, m), 5.40 (1H, dd, J = 12.5, 4.0 Hz), 3.32 (2H, ABq, J = 18.0 Hz), 2.86 (1H, dd, J = 17.0, 12.0 Hz), 2.65 (1H, dd, J = 17.0, 3.5 Hz), 0.15 (9H, s, Si(CH<sub>3</sub>)<sub>3</sub>). <sup>13</sup>C NMR (CDCl<sub>3</sub>+CD<sub>3</sub>OD (few drops), DEPT-135, major enol isomer): δ 167.9 (C, C=C-OH), 166.5 (C, O-C=O), 138.2 (C), 128.5 (2 x CH), 128.4 (CH), 125.8 (2 x CH), 103.9 (C,

*C*=C-OH), 98.9 (C, acetylenic-*C*), 85.2 (C, acetylenic-*C*), 76.2 (CH), 35.2 (CH<sub>2</sub>), 14.7 (CH<sub>2</sub>), -0.27 (3 x CH<sub>3</sub>, Si(*C*H<sub>3</sub>)<sub>3</sub>). HRMS (ESI-TOF) m/z: [M + Na]<sup>+</sup> Calcd for C<sub>17</sub>H<sub>20</sub>O<sub>3</sub>SiNa 323.1079; Found 323.1077.

**3-(3-(Trimethylsilyl)prop-2-yn-1-yl)furan-2,4(3***H***,5***H***)-dione (35mb): The title compound was prepared following procedure <b>1a**, purified by column chromatography

using EtOAc/hexanes (2/8), and isolated as a white semi solid. Yield: 95% (59.93 mg). IR (Neat): ν<sub>max</sub> 2958, 2182, 1723, 1647, 1402, 35mb SiMe<sub>3</sub> 1358, 1249, 1096, 1032, 1012, 838, 758, 701 and 644 cm<sup>-1</sup>. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz): δ 4.61 (2H, t, *J* = 1.6 Hz), 3.22 (2H, t, *J* = 1.6 Hz), 0.21 (9H, s, Si(*CH*<sub>3</sub>)<sub>3</sub>). <sup>13</sup>C NMR (CDCl<sub>3</sub>, DEPT-135): δ 172.6 (C, O-*C*=O), 101.4 (C, *C*=C-OH), 94.9 (C, acetylenic-*C*), 77.0 (C, acetylenic-*C*), 66.9 (CH<sub>2</sub>), 14.7 (CH<sub>2</sub>), -0.36 (3 x CH<sub>3</sub>, Si(*CH*<sub>3</sub>)<sub>3</sub>). HRMS (ESI-TOF) *m/z*: [M + H]<sup>+</sup> Calcd for C<sub>10</sub>H<sub>14</sub>O<sub>3</sub>SiH 211.0790; Found 211.0790.

2-(3-Phenylprop-2-yn-1-yl)malononitrile (35na): 9,14b-c The title compound was NC CN prepared following procedure 1a, purified by column chromatography using EtOAc/hexanes (0.8/9.2), and isolated as a pale yellow semi solid. Yield: 97% (52.44 mg). IR (Neat):  $v_{max}$  3035, 2918, 2260, 2242, 1598, 1490, 1442, 1337, 1070, 1032, 919, 755, 690 and 529 cm<sup>-1</sup>. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz): δ 7.47-7.45 (2H, m), 7.36-7.31 (3H, m), 3.99 (1H, t, J = 7.0 Hz), 3.18 (2H, d, J = 7.0 Hz). <sup>13</sup>C NMR (CDCl<sub>3</sub>, DEPT-135): δ 131.9 (2 x CH), 129.1 (CH), 128.4 (2 x CH), 121.5 (C), 111.5 (2 x C,  $C \equiv N$ ), 86.5 (C, acetylenic-C), 80.0 (C, acetylenic-C), 23.2

(CH), 22.9 (CH<sub>2</sub>). HRMS (ESI-TOF) m/z: [M + H]<sup>+</sup> Calcd for C<sub>12</sub>H<sub>8</sub>N<sub>2</sub>H 181.0766; Found 181.0767.

**2-Benzoyl-5-phenylpent-4-ynenitrile** (350a):<sup>[9]</sup> The title compound was prepared following procedure 1a, purified by column chromatography using EtOAc/hexanes

(0.5/9.5), and isolated as a pale yellow semi solid; Yield: 80% (62.23 mg). IR (Neat):  $v_{max}$  3061, 2924, 2853, 2245, 1695, 1596, 1490, 1336, 1268, 1222, 953, 757, 691 and 529 cm<sup>-1</sup>. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz):  $\delta$  8.04 (2H, td, J = 8.0, 1.6 Hz), 7.68 (1H, tt, J = 7.2, 1.2 Hz), 7.55 (2H, tt, J = 8.0, 1.6 Hz), 7.37 (2H, td, J = 6.5, 2.0 Hz), 7.31-7.26 (3H, m), 4.60 (1H, t, J = 7.2 Hz), 3.15 (2H, d, J = 7.2 Hz). <sup>13</sup>C NMR (CDCl<sub>3</sub>, DEPT-135)  $\delta$  188.8 (C, C=O), 134.8 (CH), 133.9 (C), 131.7 (2 x CH), 129.1 (2 x CH), 128.9 (2 x CH), 128.4 (CH), 128.2 (2 x CH), 122.4 (C), 116.3 (C, C=N), 84.4 (C, acetylenic-C), 83.4 (C, acetylenic-C), 39.0 (CH), 20.5 (CH<sub>2</sub>). HRMS (ESI-TOF) m/z: [M + H]<sup>+</sup> Calcd for C<sub>18</sub>H<sub>13</sub>NOH 260.1075; Found 260.1075.

**5-Phenyl-2-tosylpent-4-ynenitrile** (35pa):<sup>[9]</sup> The title compound was prepared following procedure 1a, purified by column chromatography using EtOAc/hexanes

(0.4/9.6), and isolated as a pale yellow semi solid. Yield: 73% (67.75 mg). IR (Neat): 
$$v_{max}$$
 3055, 2918, 2850, 2253, 1596, 1490, 1335, 1154, 1139, 1085, 906, 814, 727, 690, 659 and

587 cm<sup>-1</sup>. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz):  $\delta$  7.92 (2H, td, J = 8.5, 1.5 Hz), 7.40 (2H, td, J = 8.0, 1.5 Hz), 7.33 (2H, td, J = 6.5, 1.5 Hz), 7.30-7.25 (3H, m), 4.20 (1H, dd, J = 9.5, 5.0 Hz), 3.29 (1H, dd, J = 17.0, 5.0 Hz), 3.09 (1H, dd, J = 17.0, 9.5 Hz), 2.43 (3H, s,

Ar-C $H_3$ ). <sup>13</sup>C NMR (CDCl<sub>3</sub>, DEPT-135)  $\delta$  147.1 (C), 131.9 (C), 131.7 (2 x CH), 130.3 (2 x CH), 129.8 (2 x CH), 128.6 (CH), 128.2 (2 x CH), 121.6 (C), 113.2 (C,  $C \equiv N$ ), 85.2 (C, acetylenic-C), 80.6 (C, acetylenic-C), 56.4 (CH), 21.7 (CH<sub>3</sub>), 19.1 (CH<sub>2</sub>). HRMS (ESI-TOF) m/z: [M + H]<sup>+</sup> Calcd for C<sub>18</sub>H<sub>15</sub>NO<sub>2</sub>SH 310.0902; Found 310.0905.

**5-Phenyl-2-pivaloylpent-4-ynenitrile** (35qa):<sup>[9]</sup> The title compound was prepared following procedure 1a, purified by column chromatography using EtOAc/hexanes

Me CN Me Me Ph

(0.2/9.8), and isolated as a pale yellow semi solid; Yield: 75% (53.84 mg). IR (Neat):  $v_{max}$  2970, 2920, 2850, 2247, 2189, 1721,

<sup>35qa</sup> 1661, 1597, 1475, 1369, 1065, 907, 757, 729 and 690 cm<sup>-1</sup>. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz):  $\delta$  7.37 (2H, dd, J = 8.0, 2.5 Hz), 7.31-7.26 (3H, m), 4.11 (1H,

t, J = 7.5 Hz), 3.01 (2H, dABq, J = 17.0, 8.0 Hz), 1.28 (9H, s, 3 x C $H_3$ ). <sup>13</sup>C NMR

(CDCl<sub>3</sub>, DEPT-135)  $\delta$  203.7 (C, C=O), 131.6 (2 x CH), 128.4 (CH), 128.3 (2 x CH),

122.4 (C), 116.1 (C, C≡N), 83.8 (C, acetylenic-C), 83.78 (C, acetylenic-C), 45.5 (C),

36.3 (CH), 25.9 (3 x CH<sub>3</sub>), 20.8 (CH<sub>2</sub>). HRMS (ESI-TOF) *m/z*: [M + Na]<sup>+</sup> Calcd for

C<sub>16</sub>H<sub>17</sub>NONa 262.1208; Found 262.1208.

2-(3-Phenylprop-2-yn-1-yl)cyclohexane-1,3-dione (35ba): The title compound was

prepared following procedure 1a, purified by precipitating with cold EtOAc/hexanes (1/9), and isolated as a white solid. Mp.: 163-

165 °C. Yield: 85% (57.70 mg). IR (Neat): v<sub>max</sub> 2954, 2890, 1565,

35ba
1357, 1267, 1187, 1140, 1067, 1007, 907, 856, 748, 687, 544 and 491 cm<sup>-1</sup>. <sup>1</sup>H NMR
(CDCl<sub>3</sub>+DMSO-*d*<sub>6</sub>, 400 MHz): δ 7.29 (2H, br s), 7.16 (3H, br s), 3.34 (2H, s), 2.37-2.36
(4H, m), 1.89-1.88 (2H, m). <sup>13</sup>C NMR (CDCl<sub>3</sub>+DMSO-*d*<sub>6</sub>, DEPT-135): δ 131.4 (2 x

CH), 127.9 (2 x CH), 127.3 (CH), 123.7 (C), 111.3 (C, *C*=C–OH), 88.2 (C, acetylenic-*C*), 79.2 (C, acetylenic-*C*), 20.4 (CH<sub>2</sub>), 12.1 (CH<sub>2</sub>). HRMS (ESI-TOF) *m/z*: [M + Na]<sup>+</sup> Calcd for C<sub>15</sub>H<sub>14</sub>O<sub>2</sub>Na 249.0891; Found 249.0891.

2-(3-(4-Fluorophenyl)prop-2-yn-1-yl)cyclohexane-1,3-dione (35bc): The title compound was prepared following procedure 1a, purified by precipitating with cold

35bc F

EtOAc/hexanes (1/9), and isolated as a yellow solid. Mp.: 176-178 °C. Yield: 85% (62.28 mg). IR (Neat):  $\nu_{max}$  2958, 2904, 1561, 1504, 1384, 1353, 1271, 1215, 1187, 1140, 1070, 1008,

922, 832, 814, 545 and 491 cm<sup>-1</sup>. <sup>1</sup>H NMR (CDCl<sub>3</sub>+DMSO-D<sub>6</sub>, 400 MHz):  $\delta$  7.34 (2H, dd, J = 8.4, 5.2 Hz), 6.95 (2H, dd, J = 8.4, 5.2 Hz), 3.35 (4H, m), 2.47 (2H, m), 2.00 (2H, quintet, J = 6.4 Hz). <sup>13</sup>C NMR (CDCl<sub>3</sub>, DEPT-135)  $\delta$  161.5 (C, d, J = 246.0 Hz, C-F), 132.8 (2 x CH, d, J = 8.0 Hz), 119.9 (C, d, J = 4.0 Hz), 114.5 (2 x CH, d, J = 22.0 Hz), 111.1 (C, C=C-OH), 87.8 (C, acetylenic-C), 77.2 (C, acetylenic-C), 20.0 (CH<sub>2</sub>), 11.5 (CH<sub>2</sub>). HRMS (ESI-TOF) m/z: [M + H]<sup>+</sup> Calcd for C<sub>15</sub>H<sub>13</sub>FO<sub>2</sub>H 245.0978; Found 245.0979.

2-(3-(4-Chlorophenyl)prop-2-yn-1-yl)cyclohexane-1,3-dionee (35bd): The title compound was prepared following procedure 1a, purified by precipitating with cold

EtOAc/hexanes (1/9), and isolated as an off-white solid. Mp.:

184-186 °C. Yield: 95% (74.30 mg). IR (Neat):  $\nu_{max}$  3020,

2958, 2356, 1563, 1488, 1382, 1355, 1272, 1215, 1188, 1070,

1007, 751, 547 and 488 cm<sup>-1</sup>. <sup>1</sup>H NMR (CDCl<sub>3</sub> + DMSO- $d_6$ , 400 MHz):  $\delta$  7.29 (2H, dd, J = 10.4, 2.0 Hz), 7.18 (2H, dd, J = 8.4, 1.6 Hz), 3.36 (2H, s), 2.42 (4H, t, J = 6.0 Hz),

1.95 (2H, quintet, J = 6.4 Hz). <sup>13</sup>C NMR (CDCl<sub>3</sub>+DMSO- $d_6$ , DEPT-135)  $\delta$  133.1 (C), 132.7 (2 x CH), 128.1 (2 x CH), 122.4 (C), 111.2 (C, C=C-OH), 89.5 (C, acetylenic-C), 77.3 (C, acetylenic-C), 20.4 (CH<sub>2</sub>), 12.1 (CH<sub>2</sub>). HRMS (ESI-TOF) m/z: [M + H]<sup>+</sup> Calcd for C<sub>15</sub>H<sub>13</sub>ClO<sub>2</sub>H 261.0682; Found 261.0681.


2-(3-(4-Bromophenyl)prop-2-yn-1-yl)cyclohexane-1,3-dione (35be): The title

35be

compound was prepared following procedure **1a**, purified by precipitating with cold EtOAc/hexanes (1/9), and isolated as an off-white solid. Mp.: 166-168 °C. Yield: 90% (82.39 mg).

IR (Neat):  $v_{\text{max}}$  2951, 1563, 1354, 1272, 1217, 1187, 1101, 1007, 817, 546 and 483 cm<sup>-1</sup>. <sup>1</sup>H NMR (CDCl<sub>3</sub>+DMSO- $d_6$ , 500 MHz):  $\delta$  7.33 (2H, td, J = 6.5, 2.0 Hz), 7.19 (2H, td, J = 8.5, 1.5 Hz), 3.36 (2H, s), 2.46 (2H, br s), 2.35 (2H, br s), 1.95 (2H, quintet, J = 6.5 Hz). <sup>13</sup>C NMR (CDCl<sub>3</sub>+DMSO- $d_6$ , DEPT-135):  $\delta$  131.7 (2 x CH), 129.9 (2 x CH), 122.0 (C), 119.7 (C), 109.4 (C, C=C-OH), 90.0 (C, acetylenic-C), 75.4 (C, acetylenic-C), 19.3 (CH<sub>2</sub>), 10.9 (CH<sub>2</sub>). HRMS (ESI-TOF) m/z: [M + Na]<sup>+</sup> Calcd for C<sub>15</sub>H<sub>13</sub>BrO<sub>2</sub>Na 326.9997; Found 326.9997.

4-(3-(2,6-Dioxocyclohexyl)prop-1-yn-1-yl)benzonitrile (35bf): The title compound



was prepared following procedure **1a**, purified by precipitating with cold EtOAc/hexanes (1/9), and isolated as an off-white solid. Mp.: 179-181 °C. Yield: 95% (71.61 mg).

IR (Neat):  $v_{\text{max}}$  3432, 2362, 2341, 1716, 1599, 1509, 1462, 1286, 1220, 1095, 998 and 771 cm<sup>-1</sup>. <sup>1</sup>H NMR (CDCl<sub>3</sub>+DMSO- $d_6$ , 500 MHz):  $\delta$  10.70 (1H, br s, O-H), 7.60 (2H, br d, J = 7.5 Hz), 7.45 (2H, br d, J = 7.5 Hz), 3.35 (2H, s), 2.53 (2H, br s), 2.31 (2H, br

s), 1.94 (2H, quintet, J = 6.0 Hz). <sup>13</sup>C NMR (CDCl<sub>3</sub>+DMSO- $d_6$ , DEPT-135):  $\delta$  196.0 (C, C=O, br s), 172.7 (C, C=C-OH, br s), 131.6 (2 x CH), 131.4 (2 x CH), 128.8 (C), 117.9 (C), 109.83 (C, C=C-OH), 109.78 (C, C=N), 94.8 (C, acetylenic-C), 76.3 (C, acetylenic-C), 35.8 (CH<sub>2</sub>, br s), 28.8 (CH<sub>2</sub>, br s), 20.1 (CH<sub>2</sub>), 11.9 (CH<sub>2</sub>). HRMS (ESI-TOF) m/z: [M + H]<sup>+</sup> Calcd for C<sub>16</sub>H<sub>13</sub>NO<sub>2</sub>H 252.1025; Found 252.1025.

2-(3-(4-Nitrophenyl)prop-2-yn-1-yl)cyclohexane-1,3-dione (35bg): The title compound was prepared following procedure 1a, purified by precipitating with cold

EtOAc/hexanes (1/9), and isolated as an off-white solid. Mp.: 170-172 °C. Yield: 78% (63.47 mg). IR (Neat):  $v_{max}$  3019, NO<sub>2</sub> 1557, 1515, 1344, 1275, 1214, 1010, 858, 748, 668 and 486 cm<sup>-1</sup>. <sup>1</sup>H NMR (CDCl<sub>3</sub>+DMSO- $d_6$ , 500 MHz):  $\delta$  8.13 (2H, br d, J = 8.0 Hz), 7.52 (2H, br d, J = 8.0 Hz), 3.36 (2H, s), 2.42 (4H, br s), 1.94 (2H, br quintet, J = 6.0 Hz). <sup>13</sup>C NMR (CDCl<sub>3</sub>+DMSO- $d_6$ , DEPT-135):  $\delta$  144.6 (C), 130.6 (2 x CH), 129.6 (C), 121.8 (2 x CH), 108.4 (C, C=C-OH), 94.8 (C, acetylenic-C), 75.0 (C, acetylenic-C), 18.9 (CH<sub>2</sub>), 10.8 (CH<sub>2</sub>). HRMS (ESI-TOF) m/z: [M + H]<sup>+</sup> Calcd for C<sub>15</sub>H<sub>13</sub>NO<sub>4</sub>H 272.0923; Found 272.0923.

2-(3-(4-Methoxyphenyl)prop-2-yn-1-yl)cyclohexane-1,3-dione (35bh): The title

IR (Neat):  $v_{\text{max}}$  2950, 2634, 2360, 1604, 1562, 1358, 1268, 1244, 1188, 1027, 837, 558 and 501 cm<sup>-1</sup>. <sup>1</sup>H NMR (CDCl<sub>3</sub>+DMSO- $d_6$ , 400 MHz):  $\delta$  7.27 (2H, br d, J = 8.8 Hz),

6.77 (2H, br d, J = 8.4 Hz), 3.78 (3H, s, OC $H_3$ ), 3.35 (2H, s), 2.43 (4H, br s), 1.95 (2H, quintet, J = 6.4 Hz). <sup>13</sup>C NMR (CDCl<sub>3</sub>+DMSO- $d_6$ , DEPT-135):  $\delta$  157.6 (C, C-OMe), 131.6 (2 x CH), 115.2 (C), 112.6 (2 x CH), 110.2 (C, C=C-OH), 86.9 (C, acetylenic-C), 77.3 (C, acetylenic-C), 54.0 (CH<sub>3</sub>, OCH<sub>3</sub>), 19.5 (CH<sub>2</sub>), 11.1 (CH<sub>2</sub>). HRMS (ESI-TOF) m/z: [M + Na]<sup>+</sup> Calcd for C<sub>16</sub>H<sub>16</sub>O<sub>3</sub>Na 279.0997; Found 279.0997.

**2-(3-(p-Tolyl)prop-2-yn-1-yl)cyclohexane-1,3-dione (35bi)**: The title compound was prepared following procedure **1a**, purified by precipitating with cold EtOAc/hexanes

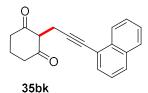
35bi

(1/9), and isolated as an off-white solid. Mp.: 176-178 °C. Yield: 90% (64.88 mg). IR (Neat):  $v_{max}$  3019, 1565, 1358, 1269, 1214, 1189, 1007, 815, 746, 668 and 489 cm<sup>-1</sup>. <sup>1</sup>H

NMR (CDCl<sub>3</sub>+DMSO- $d_6$ , 500 MHz):  $\delta$  10.31 (1H, br s, OH), 7.22 (2H, br d, J = 7.0 Hz), 7.04 (2H, br d, J = 7.0 Hz), 3.35 (2H, s), 2.44 (4H, br s), 2.30 (3H, s, Ar-C $H_3$ ), 1.96 (2H, br s). <sup>13</sup>C NMR (CDCl<sub>3</sub>+DMSO- $d_6$ , DEPT-135):  $\delta$  136.3 (C), 130.6 (2 x CH), 128.0 (2 x CH), 120.4 (C), 110.6 (C, C=C-OH), 88.0 (C, acetylenic-C), 77.0 (C, acetylenic-C), 20.5 (CH<sub>3</sub>), 19.8 (CH<sub>2</sub>), 11.5 (CH<sub>2</sub>). HRMS (ESI-TOF) m/z: [M + H]<sup>+</sup> Calcd for C<sub>16</sub>H<sub>16</sub>O<sub>2</sub>H 241.1229; Found 241.1229.

2-(3-(4-Butylphenyl)prop-2-yn-1-yl)cyclohexane-1,3-dione (35bj): The title compound was prepared following procedure 1a, purified by precipitating with cold

35bj CH<sub>3</sub>


EtOAc/hexanes (1/9), and isolated as an off-white solid.

Mp.: 134-136 °C. Yield: 85% (72.0 mg). IR (Neat): ν<sub>max</sub> 2952, 2929, 1567, 1365, 1267, 1189, 1067, 1009, 900, 822,

757, 596, 545 and 476 cm<sup>-1</sup>. <sup>1</sup>H NMR (CDCl<sub>3</sub>+DMSO- $d_6$ , 500 MHz):  $\delta$  7.10 (1H, d, J

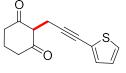
= 8.0 Hz), 7.07 (1H, d, J = 8.0 Hz), 6.89 (1H, d, J = 8.0 Hz), 6.86 (1H, d, J = 8.0 Hz), 3.24 (2H, s), 2.39 (2H, quintet, J = 7.5 Hz), 2.27 (4H, br s), 1.79 (2H, m), 1.43-1.34 (2H, m), 1.16 (2H, m), 0.74 (3H, t, J = 7.5 Hz). <sup>13</sup>C NMR (CDCl<sub>3</sub>+DMSO-d<sub>6</sub>, DEPT-135)  $\delta$  141.8 (C), 131.1 (2 x CH), 127.7 (2 x CH), 120.9 (C), 111.1 (C, C=C-OH), 88.1 (C, acetylenic-C), 78.2 (C, acetylenic-C), 35.0 (CH<sub>2</sub>), 33.0 (CH<sub>2</sub>), 21.8 (CH<sub>2</sub>), 20.2 (CH<sub>2</sub>), 13.5 (CH<sub>3</sub>), 12.0 (CH<sub>2</sub>). HRMS (ESI-TOF) m/z: [M + H]<sup>+</sup> Calcd for C<sub>19</sub>H<sub>22</sub>O<sub>2</sub>H 283.1698; Found 283.1697.

2-(3-(Naphthalen-1-yl)prop-2-yn-1-yl)cyclohexane-1,3-dione (35bk): The title compound was prepared following procedure 1a, purified by precipitating with cold



EtOAc/hexanes (1/9), and isolated as an off-white solid. Mp.: 176-178 °C. Yield: 95% (78.75 mg). IR (Neat):  $v_{max}$  3046, 2953, 2676, 1567, 1363, 1263, 1188, 1068, 1008, 794, 767, 561, 544

and 481 cm<sup>-1</sup>. <sup>1</sup>H NMR (CDCl<sub>3</sub>+DMSO- $d_6$ , 400 MHz):  $\delta$  10.22 (1H, s, OH), 8.33 (1H, dd, J = 8.4, 2.8 Hz), 7.79 (1H, dd, J = 8.0, 2.0 Hz), 7.73 (1H, dd, J = 8.0, 2.4 Hz), 7.56 (1H, dd, J = 6.8, 3.2 Hz), 7.54-7.42 (2H, m), 7.36 (1H, dt, J = 8.4, 4.0 Hz), 3.56 (2H, s), 2.57 (2H, br s), 2.39 (2H, br s), 1.98 (2H, m). <sup>13</sup>C NMR (CDCl<sub>3</sub>+DMSO- $d_6$ , DEPT-135)  $\delta$  196.8 (C, C=O), 172.6 (C, C=C-OH), 133.1 (C), 132.6 (C), 129.3 (CH), 127.6 (CH), 127.2 (CH), 126.1 (CH), 125.9 (CH), 125.7 (CH), 124.7 (CH), 121.5 (C), 111.1 (C, C=C-OH), 94.4 (C, acetylenic-C), 75.9 (C, acetylenic-C), 36.0 (CH<sub>2</sub>), 29.2 (CH<sub>2</sub>), 20.3 (CH<sub>2</sub>), 12.2 (CH<sub>2</sub>). HRMS (ESI-TOF) m/z: [M + H]<sup>+</sup> Calcd for C<sub>19</sub>H<sub>16</sub>O<sub>2</sub>H 277.1229; Found 277.1228.


2-(3-(Furan-2-yl)prop-2-yn-1-yl)cyclohexane-1,3-dione (35bl): The title compound

o w

was prepared following procedure 1a, purified by precipitating with cold EtOAc/hexanes (1/9), and isolated as an off-white solid.

35bl Mp.: 156-158 °C. Yield: 90% (58.38 mg). IR (Neat):  $v_{max}$  2949, 2367, 2330, 1570, 1362, 1267, 1187, 1066, 1007, 901, 733, 597, 545, 482 and 443 cm<sup>-1</sup>. <sup>1</sup>H NMR (CDCl<sub>3</sub>+DMSO- $d_6$ , 500 MHz):  $\delta$  10.34 (1H, br s, OH), 7.26 (1H, s), 6.40 (1H, d, J = 3.5 Hz), 6.29 (1H, d, J = 2.0 Hz), 3.37 (2H, s), 2.49 (2H, br s), 2.32 (2H, m), 1.92 (2H, quintet, J = 6.0 Hz). <sup>13</sup>C NMR (CDCl<sub>3</sub>+DMSO- $d_6$ , DEPT-135):  $\delta$  196.4 (C, C = O), 172.7 (C, C = C - OH), 141.7 (CH), 137.1 (C), 112.9 (CH), 110.0 (CH), 109.99 (C, C = C - OH), 93.3 (C, acetylenic-C), 67.9 (C, acetylenic-C), 35.7 (CH<sub>2</sub>), 28.9 (CH<sub>2</sub>), 19.9 (CH<sub>2</sub>), 11.7 (CH<sub>2</sub>). HRMS (ESI-TOF) m/z: [M + H]<sup>+</sup> Calcd for C<sub>13</sub>H<sub>12</sub>O<sub>3</sub>H 217.0865;

2-(3-(Thiophen-2-yl)prop-2-yn-1-yl)cyclohexane-1,3-dione (35bm): The title compound was prepared following procedure 1a, purified by precipitating with cold



35bm

Found 217.0865.

EtOAc/hexanes (1/9), and isolated as an off-white solid. Mp.: 146-

148 °C. Yield: 88% (61.32 mg). IR (Neat):  $\nu_{max}$  2949, 2660, 1567,

1363, 1266, 1186, 1140, 1066, 1008, 753, 698, 544 and 482 cm<sup>-1</sup>.

<sup>1</sup>H NMR (CDCl<sub>3</sub>+DMSO- $d_6$ , 500 MHz): δ 10.22 (1H, br s, OH), 7.13 (1H, dd, J = 5.5, 1.0 Hz), 7.07 (1H, dd, J = 3.5, 0.5 Hz), 6.90 (1H, dd, J = 5.0, 3.5 Hz), 3.41 (2H, s), 2.44 (4H, br s), 1.96 (2H, quintet, J = 6.5 Hz). <sup>13</sup>C NMR (CDCl<sub>3</sub>+DMSO- $d_6$ , DEPT-135): δ 130.4 (CH), 126.2 (CH), 125.1 (CH), 124.0 (C), 110.6 (C, C = C - OH), 93.2 (C,

acetylenic-C), 70.9 (C, acetylenic-C), 20.2 (CH<sub>2</sub>), 12.1 (CH<sub>2</sub>). HRMS (ESI-TOF) m/z: [M + H]<sup>+</sup> Calcd for C<sub>13</sub>H<sub>12</sub>O<sub>2</sub>SH 233.0636; Found 233.0632.

## tert-Butyl 3-(3-(2,6-dioxocyclohexyl)prop-1-yn-1-yl)-1H-indole-1-carboxylate

35bn Boc

(35bn): The title compound was prepared following procedure 1a, purified by precipitating with cold EtOAc/hexanes (1/9), and isolated as a semi-solid. Yield: 86% (94.28 mg). IR (Neat):

 $v_{\text{max}}$  2978, 1736, 1584, 1452, 1371, 1273, 1232, 1154, 1101, 1009 and 750 cm<sup>-1</sup>. <sup>1</sup>H NMR (CDCl<sub>3</sub>+DMSO- $d_6$ , 500 MHz):  $\delta$  9.99 (1H, br s, OH), 8.08 (1H, d, J = 7.0 Hz), 7.64 (2H, m), 7.31 (1H, dt, J = 7.0, 1.0 Hz), 7.24 (1H, dt, J = 7.5, 1.0 Hz), 3.49 (2H, s), 2.46 (4H, br s), 1.97 (2H, quintet, J = 6.5 Hz), 1.65 (9H, s, OC( $CH_3$ )<sub>3</sub>). <sup>13</sup>C NMR (CDCl<sub>3</sub>+DMSO- $d_6$ , DEPT-135)  $\delta$  148.8 (C, O-C=O), 134.2 (C), 130.7 (C), 127.7 (CH), 124.6 (CH), 122.6 (CH), 119.9 (CH), 114.7 (CH), 111.2 (C), 104.0 (C, C=C-OH), 92.4 (C, acetylenic-C), 83.7 (C, acetylenic-C), 69.9 (C), 27.9 (3 x CH<sub>3</sub>), 20.4 (CH<sub>2</sub>), 12.4 (CH<sub>2</sub>). HRMS (ESI-TOF) m/z: [M + Na]<sup>+</sup> Calcd for C<sub>22</sub>H<sub>23</sub>NO<sub>4</sub>Na 388.1525; Found 388.1528.

**2-(Hept-2-yn-1-yl)cyclohexane-1,3-dione (35bo)**: The title compound was prepared following procedure **1a**, purified by precipitating with cold EtOAc/hexanes (1/9), and isolated as a pale yellow semi solid. Yield: 85% (52.60 mg). IR

35bo

(Neat):  $\nu_{max}$  2958, 2932, 1709, 1455, 1403, 1238, 1190 and 757

cm<sup>-1</sup>.  ${}^{1}$ H NMR (CDCl<sub>3</sub>+DMSO- $d_{6}$ , 500 MHz):  $\delta$  9.48 (1H, s, OH),

3.00 (2H, br s), 2.33 (2H, br s), 2.18 (2H, br s), 1.97-1.93 (2H, m), 1.77 (2H, m), 1.30-1.25 (2H, m), 1.23-1.17 (2H, m), 0.73 (3H, t, *J* = 4.5 Hz). <sup>13</sup>C NMR (CDCl<sub>3</sub>+DMSO-

*d*<sub>6</sub>, DEPT-135) δ 196.9 (C, *C*=O), 172.2 (C, C=*C*-OH), 111.4 (C, *C*=C-OH), 79.2 (C, acetylenic-*C*), 78.0 (C, acetylenic-*C*), 36.1 (CH<sub>2</sub>), 30.7 (CH<sub>2</sub>), 29.1 (CH<sub>2</sub>), 21.5 (CH<sub>2</sub>), 20.3 (CH<sub>2</sub>), 18.2 (CH<sub>2</sub>), 13.2 (CH<sub>3</sub>), 11.5 (CH<sub>2</sub>). HRMS (ESI-TOF) *m/z*: [M + H]<sup>+</sup> Calcd for C<sub>13</sub>H<sub>18</sub>O<sub>2</sub>H 207.1385; Found 207.1384.

**2-(Oct-2-yn-1-yl)cyclohexane-1,3-dione (35bp)**: The title compound was prepared following procedure **1a**, purified by precipitating with cold EtOAc/hexanes (1/9), and

isolated as a pale yellow solid. Mp.: 105-107 °C. Yield: 92%  $^{\circ}$ CH<sub>3</sub> (60.80 mg). IR (Neat):  $^{\circ}$ V<sub>max</sub> 2928, 2855, 2609, 1570, 1365, 1268, 1191, 1070, 1010, 919, 546 and 483 cm<sup>-1</sup>. <sup>1</sup>H NMR (CDCl<sub>3</sub>+DMSO- $^{\circ}$ d<sub>6</sub>, 400 MHz):  $^{\circ}$ 8 9.79 (1H, br s, OH), 3.14 (2H, br s), 2.49 (2H, t,  $^{\circ}$ J = 4.8 Hz), 2.33 (2H, t,  $^{\circ}$ J = 4.8 Hz), 2.10 (2H, tt,  $^{\circ}$ J = 5.6, 2.0 Hz), 1.93 (2H, quintet,  $^{\circ}$ J = 5.2 Hz), 1.45 (2H, quintet,  $^{\circ}$ J = 5.6 Hz), 1.33-1.25 (4H, m), 0.88 (3H, t,  $^{\circ}$ J = 5.6 Hz). <sup>13</sup>C NMR (CDCl<sub>3</sub>+DMSO- $^{\circ}$ d<sub>6</sub>, DEPT-135)  $^{\circ}$ 8 111.2 (C,  $^{\circ}$ C=C-OH), 78.0 (C, acetylenic- $^{\circ}$ C), 77.2 (C, acetylenic- $^{\circ}$ C), 32.1 (CH<sub>2</sub>), 30.2 (CH<sub>2</sub>), 28.6 (CH<sub>2</sub>), 27.9 (CH<sub>2</sub>), 21.3 (CH<sub>2</sub>), 19.8 (CH<sub>2</sub>), 18.0 (CH<sub>2</sub>), 13.2 (CH<sub>3</sub>), 10.8 (CH<sub>2</sub>). HRMS (ESI-TOF)  $^{\circ}$ M/z: [M + Na]<sup>+</sup>

**2-(Non-2-yn-1-yl)cyclohexane-1,3-dione (35bq)**: The title compound was prepared following procedure **1a**, purified by precipitating with cold EtOAc/hexanes (1/9), and

Calcd for C<sub>14</sub>H<sub>20</sub>O<sub>2</sub>Na 243.1361; Found 243.1368.

isolated as a pale yellow semi solid. Mp.: 102-104 °C. Yield: 92% 
$$^{\text{CH}_3}$$
 (64.67 mg). IR (Neat):  $\nu_{\text{max}}$  2948, 2930, 2851, 1568, 1364, 1267, 1221, 1190, 1146, 1070, 1009, 910, 597, 545 and 484 cm<sup>-1</sup>.  $^{1}\text{H}$ 

NMR (CDCl<sub>3</sub>+DMSO-*d*<sub>6</sub>, 500 MHz): δ 9.55 (1H, s, OH), 2.95 (2H, m), 2.30 (2H, br s),

2.13 (2H, br s), 1.90 (2H, m), 1.74 (2H, m), 1.25 (2H, m), 1.15-1.05 (6H, m), 0.68 (3H, t, J = 7.0 Hz). <sup>13</sup>C NMR (CDCl<sub>3</sub>+DMSO- $d_6$ , DEPT-135):  $\delta$  197.0 (C, C = O), 172.0 (C, C=C-OH), 111.4 (C, C = C = OH), 78.8 (C, acetylenic-C), 78.0 (C, acetylenic-C), 36.0 (CH<sub>2</sub>), 30.8 (CH<sub>2</sub>), 29.0 (CH<sub>2</sub>), 28.5 (CH<sub>2</sub>), 28.0 (CH<sub>2</sub>), 22.0 (CH<sub>2</sub>), 20.2 (CH<sub>2</sub>), 18.4 (CH<sub>2</sub>), 13.6 (CH<sub>3</sub>), 11.3 (CH<sub>2</sub>). HRMS (ESI-TOF) m/z: [M + H]<sup>+</sup> Calcd for C<sub>15</sub>H<sub>22</sub>O<sub>2</sub>H 235.1698; Found 235.1697.

# 2-(3-Phenylprop-2-yn-1-yl)cyclopentane-1,3-dione (35ea): The title compound was

prepared following procedure **1a**, purified by precipitating with cold EtOAc/hexanes (1/9), and isolated as a yellow solid. Mp.: 159-**35ea** 160 °C. Yield: 95% (60.49 mg). IR (Neat): v<sub>max</sub> 2920, 2851, 2609,

1571, 1383, 1260, 1199, 1036, 757, 691, 664, 583 and 529 cm<sup>-1</sup>. <sup>1</sup>H NMR (CDCl<sub>3</sub>+DMSO- $d_6$ , 500 MHz):  $\delta$  11.09 (1H, br s, OH), 7.37 (2H, m), 7.25 (3H, m), 3.28 (2H, d, J = 5.5 Hz), 2.51 (4H, br s). <sup>13</sup>C NMR (CDCl<sub>3</sub>+DMSO- $d_6$ , DEPT-135):  $\delta$  130.9 (2 x CH), 127.5 (2 x CH), 126.9 (CH), 123.2 (C), 112.0 (C, C=C-OH), 87.1 (C, acetylenic-C), 78.3 (C, acetylenic-C), 10.9 (CH<sub>2</sub>). HRMS (ESI-TOF) m/z: [M + H]<sup>+</sup> Calcd for C<sub>14</sub>H<sub>12</sub>O<sub>2</sub>H 213.0916; Found 213.0915.

2-(3-(4-Fluorophenyl)prop-2-yn-1-yl)cyclopentane-1,3-dione (35ec): The title compound was prepared following procedure 1a, purified by precipitating with cold

and 412 cm<sup>-1</sup>. <sup>1</sup>H NMR (CDCl<sub>3</sub>+DMSO-d<sub>6</sub>, 500 MHz): δ 7.34-7.30 (2H, m), 6.93-6.89

(2H, m), 3.21 (2H, br s), 2.47 (4H, br s). <sup>13</sup>C NMR (CDCl<sub>3</sub>+DMSO- $d_6$ , DEPT-135):  $\delta$  162.2 (C, d, J = 246.2 Hz, C-F), 133.4 (2 x CH, d, J = 7.5 Hz), 119.2 (C, d, J = 3.75 Hz), 115.3 (2 x CH, d, J = 22.5 Hz), 112.4 (C, C=C-OH), 85.8 (C, acetylenic-C), 79.6 (C, acetylenic-C), 30.0 (2 x CH<sub>2</sub>, broad peak), 11.8 (CH<sub>2</sub>). HRMS (ESI-TOF) m/z: [M + H]<sup>+</sup> Calcd for C<sub>14</sub>H<sub>11</sub>FO<sub>2</sub>H 231.0821; Found 231.0821.

2-(3-(4-Chlorophenyl)prop-2-yn-1-yl)cyclopentane-1,3-dione (35ed): The title compound was prepared following procedure 1a, purified by precipitating with cold

35ed CI

EtOAc/hexanes (1/9), and isolated as an off-white solid. Mp.: 195-197 °C. Yield: 95% (70.30 mg). IR (Neat):  $v_{max}$  2361, 2337, 1561, 1488, 1371, 1302, 1264, 1193, 1086, 1035, 826,

670, 584, 547 and 525 cm<sup>-1</sup>. <sup>1</sup>H NMR (CDCl<sub>3</sub>+DMSO- $d_6$ , 400 MHz):  $\delta$  7.29 (2H, td, J = 6.8, 2.0 Hz), 7.21 (2H, td, J = 6.8, 2.0 Hz), 3.25 (2H, s), 2.49 (4H, s). <sup>13</sup>C NMR (CDCl<sub>3</sub>+DMSO- $d_6$ , DEPT-135):  $\delta$  133.8 (C), 132.8 (2 x CH), 128.4 (2 x CH), 121.7 (C), 112.3 (C, C=C-OH), 87.3 (C, acetylenic-C), 79.6 (C, acetylenic-C), 11.8 (CH<sub>2</sub>). HRMS (ESI-TOF) m/z: [M + H]<sup>+</sup> Calcd for C<sub>14</sub>H<sub>11</sub>ClO<sub>2</sub>H 247.0526; Found 247.0527.

2-(3-(4-Bromophenyl)prop-2-yn-1-yl)cyclopentane-1,3-dione (35ee): The title compound was prepared following procedure 1a, purified by precipitating with cold

EtOAc/hexanes (1/9), and isolated as an off-white solid. Mp.: 170-172 °C. Yield: 93% (81.22 mg). IR (Neat):  $v_{max}$  2361, 1600, 1553, 1412, 1371, 1262, 1195, 1069, 1033, 1009, 823,

669, 628 and 557 cm<sup>-1</sup>. <sup>1</sup>H NMR (CDCl<sub>3</sub>+DMSO- $d_6$ , 500 MHz):  $\delta$  7.43 (2H, d, J = 8.5 Hz), 7.26 (2H, d, J = 8.0 Hz), 3.22 (2H, s), 2.50 (4H, s). <sup>13</sup>C NMR (CDCl<sub>3</sub>+DMSO- $d_6$ ,

DEPT-135):  $\delta$  132.6 (2 x CH), 130.8 (2 x CH), 122.5 (C), 120.8 (C), 111.5 (C, C=C-OH), 88.9 (C, acetylenic-C), 77.5 (C, acetylenic-C), 10.9 (CH<sub>2</sub>). HRMS (ESI-TOF) m/z: [M + H]<sup>+</sup> Calcd for C<sub>14</sub>H<sub>11</sub>BrO<sub>2</sub>H 291.0021; Found 291.0021.

4-(3-(2,5-Dioxocyclopentyl)prop-1-yn-1-yl)benzonitrile (35ef): The title compound was prepared following procedure 1a, purified by precipitating with cold

35ef CN

189-191 °C. Yield: 95% (67.61 mg). IR (Neat): ν<sub>max</sub> 2881, 2596, 2225, 1577, 1385, 1265, 1197, 1036, 842, 773, 675, 601

EtOAc/hexanes (1/9), and isolated as an off-white solid. Mp.:

and 557 cm<sup>-1</sup>. <sup>1</sup>H NMR (CDCl<sub>3</sub>+DMSO- $d_6$ , 500 MHz):  $\delta$  11.81 (1H, br s, OH), 7.67-7.63 (2H, m), 7.52-7.49 (2H, m), 3.27 (2H, d, J = 8.0 Hz), 2.50 (4H, s). <sup>13</sup>C NMR (CDCl<sub>3</sub>+DMSO-D<sub>6</sub>, DEPT-135):  $\delta$  131.7 (2 x CH), 131.5 (2 x CH), 128.8 (C), 118.0 (C), 111.0 (C, C = N), 110.1 (C, C = C - OH), 92.7 (C, acetylenic-C), 77.2 (C, acetylenic-C), 11.1 (CH<sub>2</sub>). HRMS (ESI-TOF) m/z: [M + H]<sup>+</sup> Calcd for C<sub>15</sub>H<sub>11</sub>NO<sub>2</sub>H 238.0868; Found 238.0867.

2-(3-(4-Nitrophenyl)prop-2-yn-1-yl)cyclopentane-1,3-dione (35eg): The title compound was prepared following procedure 1a, purified by precipitating with cold

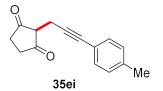
35eg NO<sub>2</sub>

EtOAc/hexanes (1/9), and isolated as an off-white solid. Mp.: 188-190 °C. Yield: 90% (69.45 mg). IR (Neat):  $v_{max}$  2602, 2360, 1577, 1513, 1379, 1340, 1264, 1195, 1035, 857, 823,

749, 669 and 588 cm<sup>-1</sup>. <sup>1</sup>H NMR (CDCl<sub>3</sub>+DMSO- $d_6$ , 500 MHz):  $\delta$  11.78 (1H, br s, OH), 8.13 (2H, td, J = 9.0, 2.0 Hz), 7.54 (2H, td, J = 9.0, 2.0 Hz), 3.26 (2H, s), 2.48 (4H, br s). <sup>13</sup>C NMR (CDCl<sub>3</sub>+DMSO- $d_6$ , DEPT-135):  $\delta$  145.1 (C), 131.0 (2 x CH), 129.6 (C),

122.0 (2 x CH), 110.1 (C, *C*=C–OH), 92.9 (C, acetylenic-*C*), 76.1 (C, acetylenic-*C*), 10.3 (CH<sub>2</sub>). HRMS (ESI-TOF) *m/z*: [M + H]<sup>+</sup> Calcd for C<sub>14</sub>H<sub>11</sub>NO<sub>4</sub>H 258.0766; Found 258.0760.

2-(3-(4-Methoxyphenyl)prop-2-yn-1-yl)cyclopentane-1,3-dione (35eh): The title compound was prepared following procedure 1a, purified by precipitating with cold


145-147 °C. Yield: 88% (63.96 mg). IR (Neat): ν<sub>max</sub> 2926,

EtOAc/hexanes (1/9), and isolated as an off-white solid. Mp.:

1605, 1566, 1509, 1369, 1289, 1246, 1195, 1173, 1033, 834,

756 and 577 cm<sup>-1</sup>. <sup>1</sup>H NMR (CDCl<sub>3</sub>+DMSO- $d_6$ , 500 MHz):  $\delta$  7.30 (2H, d, J = 7.0 Hz), 6.80 (2H, d, J = 7.0 Hz), 3.78 (3H, s, OC $H_3$ ), 3.24 (2H, s), 2.48 (4H, s). <sup>13</sup>C NMR (CDCl<sub>3</sub>+DMSO- $d_6$ , DEPT-135):  $\delta$  158.2 (C), 132.1 (2 x CH), 115.3 (C), 113.0 (2 x CH), 112.0 (C, C=C-OH), 85.3 (C, acetylenic-C), 78.0 (C, acetylenic-C), 54.5 (CH<sub>3</sub>, OCH<sub>3</sub>), 10.7 (CH<sub>2</sub>). HRMS (ESI-TOF) m/z: [M + H]<sup>+</sup> Calcd for C<sub>15</sub>H<sub>14</sub>O<sub>3</sub>H 243.1021; Found 243.1024.

**2-(3-(***p***-Tolyl)prop-2-yn-1-yl)cyclopentane-1,3-dione (35ei)**: The title compound was prepared following procedure **1a**, purified by precipitating with cold EtOAc/hexanes



(1/9), and isolated as an off-white solid. Mp.: 172-174 °C.

Yield: 95% (64.48 mg). IR (Neat):  $v_{max}$  2922, 2664, 1572,

1509, 1382, 1263, 1195, 1036 and 817  $cm^{-1}$ . <sup>1</sup>H NMR

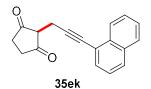
(CDCl<sub>3</sub>+DMSO- $d_6$ , 500 MHz):  $\delta$  7.15 (2H, d, J = 7.5 Hz), 6.98 (2H, d, J = 8.0 Hz), 3.13 (2H, s), 2.40 (4H, s), 2.23 (3H, s, Ar-CH<sub>3</sub>). <sup>13</sup>C NMR (CDCl<sub>3</sub>+DMSO- $d_6$ , DEPT-135):

 $\delta$  136.4 (C), 130.4 (2 x CH), 127.9 (2 x CH), 119.9 (C), 111.6 (C, C=C-OH), 86.0 (C,

acetylenic-C), 77.9 (C, acetylenic-C), 20.3 (CH<sub>3</sub>, Ar-CH<sub>3</sub>), 10.5 (CH<sub>2</sub>). HRMS (ESI-TOF) m/z: [M + H]<sup>+</sup> Calcd for C<sub>15</sub>H<sub>14</sub>O<sub>2</sub>H 227.1072; Found 227.1073.

2-(3-(4-Butylphenyl)prop-2-yn-1-yl)cyclopentane-1,3-dione (35ej): The title compound was prepared following procedure 1a, purified by precipitating with cold

35ej Me


Mp.: 153-154 °C. Yield: 96% (77.28 mg). IR (Neat):  $\nu_{max}$ 

EtOAc/hexanes (1/9), and isolated as an off-white solid.

2958, 2923, 2856, 1571, 1420, 1384, 1259, 1198, 1037, 819,

659, 582 and 539 cm<sup>-1</sup>. <sup>1</sup>H NMR (CDCl<sub>3</sub>+DMSO- $d_6$ , 500 MHz):  $\delta$  7.35-7.27 (2H, m), 7.11-7.05 (2H, m), 3.28 (2H, s), 2.65-2.50 (2H, m), 2.49 (4H, br s), 1.65-1.50 (2H, m), 1.40-1.20 (2H, m), 0.89 (3H, t, J = 6.0 Hz). <sup>13</sup>C NMR (CDCl<sub>3</sub>+DMSO- $d_6$ , DEPT-135):  $\delta$  142.5 (C), 131.3 (2 x CH), 128.1 (2 x CH), 120.5 (C), 112.5 (C, C=C-OH), 86.0 (C, acetylenic-C), 80.2 (C, acetylenic-C), 35.3 (CH<sub>2</sub>), 33.2 (CH<sub>2</sub>), 30.2 (2 x CH<sub>2</sub>, broad peak), 22.1 (CH<sub>2</sub>), 13.7 (CH<sub>3</sub>), 11.8 (CH<sub>2</sub>). HRMS (ESI-TOF) m/z: [M + H]<sup>+</sup> Calcd for C<sub>18</sub>H<sub>20</sub>O<sub>2</sub>H 269.1542; Found 269.1542.

2-(3-(Naphthalen-1-yl)prop-2-yn-1-yl)cyclopentane-1,3-dione (35ek): The title compound was prepared following procedure 1a, purified by precipitating with cold



EtOAc/hexanes (1/9), and isolated as a yellow solid. Mp.: 138-139 °C. Yield: 95% (74.75 mg). IR (Neat):  $v_{max}$  3052, 2921, 2359, 2339, 1547, 1428, 1365, 1292, 1263, 1195, 1028, 797,

771, 654, 631, 564, 483 and 433 cm<sup>-1</sup>. <sup>1</sup>H NMR (CDCl<sub>3</sub>+DMSO- $d_6$ , 500 MHz):  $\delta$  11.47 (1H, br s, OH), 8.35 (1H, br d, J = 8.0 Hz), 7.80 (1H, br d, J = 8.0 Hz), 7.75 (1H, br d, J = 8.0 Hz), 7.58 (1H, br dd, J = 7.0, 1.0 Hz), 7.53 (1H, dt, J = 7.0, 1.0 Hz), 7.49-7.46

(1H, m), 7.36 (1H, dd, J = 8.0, 7.0 Hz), 3.43 (2H, s), 2.52 (4H, br s). <sup>13</sup>C NMR (CDCl<sub>3</sub>+DMSO-d<sub>6</sub>, DEPT-135): δ 133.0 (C), 132.5 (C), 129.4 (CH), 127.6 (CH), 127.4 (CH), 126.0 (CH), 125.9 (CH), 125.7 (CH), 124.7 (CH), 121.1 (C), 112.2 (C, C=C-OH), 92.3 (C, acetylenic-C), 76.7 (C, acetylenic-C), 11.4 (CH<sub>2</sub>). HRMS (ESI-TOF) m/z: [M + H]<sup>+</sup> Calcd for C<sub>18</sub>H<sub>14</sub>O<sub>2</sub>H 263.1072; Found 263.1072.

2-(3-(Furan-2-yl)prop-2-yn-1-yl)cyclopentane-1,3-dione (35el): The title compound was prepared following procedure 1a, purified by precipitating with cold

EtOAc/hexanes (1/9), and isolated as a yellow solid. Mp.: 119-120 35el

°C. Yield: 95% (57.63 mg). IR (Neat): v<sub>max</sub> 2925, 2553, 2107, 1544,

1448, 1358, 1259, 1195, 1035, 974, 818, 741, 662, 586 and 452 cm<sup>-</sup>

<sup>1</sup>. <sup>1</sup>H NMR (CDCl<sub>3</sub>+DMSO- $d_6$ , 500 MHz):  $\delta$  11.51 (1H, br s, OH), 7.31 (1H, d, J = 1.0 Hz), 6.45 (1H, d, J = 3.0 Hz), 6.34 (1H, dd, J = 3.0, 2.0 Hz), 3.28 (2H, s), 2.49 (4H, br s). <sup>13</sup>C NMR (CDCl<sub>3</sub>+DMSO-d<sub>6</sub>, DEPT-135): δ 142.3 (CH), 137.3 (C), 113.7 (CH), 111.8 (C, C=C-OH), 110.4 (CH), 91.7 (C, acetylenic-C), 69.4 (C, acetylenic-C), 11.4 (CH<sub>2</sub>). HRMS (ESI-TOF) m/z:  $[M + H]^+$  Calcd for  $C_{12}H_{10}O_3H$  203.0708; Found

2-(3-(Thiophen-2-yl)prop-2-yn-1-yl)cyclopentane-1,3-dione (35em): compound was prepared following procedure 1a, purified by precipitating with cold

35em

203.0708.

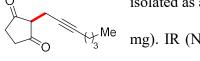
EtOAc/hexanes (1/9), and isolated as a yellow solid. Mp.: 170-172

°C. Yield: 92% (60.24 mg). IR (Neat):  $v_{\text{max}}$  1571, 1421, 1395, 1368,

1292, 1196, 1032, 904, 716, 698 and 584 cm<sup>-1</sup>. <sup>1</sup>H NMR

 $(CDCl_3+DMSO-d_6, 500 MHz): \delta 7.15 (1H, d, J = 5.0 Hz), 7.07 (1H, d, J = 3.5 Hz), 6.90$ 

(1H, dd, J = 5.5, 4.0 Hz), 3.26 (2H, s), 2.47 (4H, s). <sup>13</sup>C NMR (CDCl<sub>3</sub>+DMSO- $d_6$ , DEPT-135):  $\delta$  130.5 (CH), 126.1 (CH), 125.3 (CH), 123.5 (C), 111.6 (C, C=C-OH), 91.3 (C, acetylenic-C), 71.6 (C, acetylenic-C), 11.2 (CH<sub>2</sub>). HRMS (ESI-TOF) m/z: [M + H]<sup>+</sup> Calcd for C<sub>12</sub>H<sub>10</sub>O<sub>2</sub>SH 219.0480; Found 219.0482.


 $\textbf{\textit{tert}}\textbf{-}\textbf{Butyl} \qquad \textbf{\textit{3-}(3-(2,5-dioxocyclopentyl)prop-1-yn-1-yl)-1} \textbf{\textit{H-}indole-1-carboxylate}$ 

(35en): The title compound was prepared following procedure 1a, purified by

precipitating with cold EtOAc/hexanes (1/9), and isolated as an off white semi-solid. Yield: 85% (89.60 mg). IR (Neat):  $v_{max}$  35en Boc 2924, 1733, 1573, 1451, 1366, 1258, 1230, 1150, 1098, 1029,

746, 665 and 578 cm<sup>-1</sup>. <sup>1</sup>H NMR (CDCl<sub>3</sub>+DMSO- $d_6$ , 500 MHz):  $\delta$  11.36 (1H, br s, OH), 8.08 (1H, br d, J = 7.5 Hz), 7.65 (2H, dd, J = 6.0, 3.5 Hz), 7.32 (1H, tt, J = 8.0, 2.5 Hz), 7.25 (1H, tt, J = 7.5, 2.0 Hz), 3.34 (2H, s), 2.51 (4H, br s), 1.66 (9H, s, OC(C $H_3$ )<sub>3</sub>). <sup>13</sup>C NMR (CDCl<sub>3</sub>+DMSO- $d_6$ , DEPT-135):  $\delta$  148.5 (C, O-C=O), 134.0 (C), 130.3 (C), 127.6 (CH), 124.4 (CH), 122.5 (CH), 119.7 (CH), 114.5 (CH), 112.2 (C, C=C-OH), 103.5 (C), 90.6 (C, acetylenic-C), 83.6 (C, O-C(CH<sub>3</sub>)<sub>3</sub>), 70.2 (C, acetylenic-C), 27.6 (3 x CH<sub>3</sub>, OC(CH<sub>3</sub>)<sub>3</sub>), 11.4 (CH<sub>2</sub>). HRMS (ESI-TOF) m/z: [M + H]<sup>+</sup> Calcd for C<sub>2</sub>1H<sub>2</sub>1NO<sub>4</sub>H 352.1549; Found 352.1548.

**2-(Hept-2-yn-1-yl)cyclopentane-1,3-dione (35eo)**: The title compound was prepared following procedure **1a**, purified by precipitating with cold EtOAc/hexanes (1/9), and



35eo

isolated as an off-white solid. Mp.: 112-114 °C. Yield: 80% (46.14 mg). IR (Neat):  $\nu_{max}$  2961, 2929, 2859, 2349, 1534, 1351, 1299, 1259, 1198, 1033, 825, 658, 631, 564 and 470 cm<sup>-1</sup>. <sup>1</sup>H NMR

(CDCl<sub>3</sub>+DMSO- $d_6$ , 500 MHz):  $\delta$  10.65 (1H, br s, OH), 2.85 (2H, br s), 2.37 (2H, br s), 2.23 (2H, br s), 1.98-1.94 (2H, m), 1.28 (2H, m), 1.20 (2H, m), 0.72 (3H, t, J = 7.5 Hz). <sup>13</sup>C NMR (CDCl<sub>3</sub>+DMSO- $d_6$ , DEPT-135):  $\delta$  204.0 (C, C=O, br s), 184.3 (C, C=C-OH, br s), 112.9 (C, C=C-OH), 79.3 (C, acetylenic-C), 76.5 (C, acetylenic-C), 32.7 (CH<sub>2</sub>, br s), 30.6 (CH<sub>2</sub>), 27.1 (CH<sub>2</sub>, br s), 21.5 (CH<sub>2</sub>), 18.1 (CH<sub>2</sub>), 13.2 (CH<sub>3</sub>), 10.7 (CH<sub>2</sub>). HRMS (ESI-TOF) m/z: [M + H]<sup>+</sup> Calcd for C<sub>12</sub>H<sub>16</sub>O<sub>2</sub>H 193.1229; Found 193.1229.

**2-(Oct-2-yn-1-yl)cyclopentane-1,3-dione (35ep)**: The title compound was prepared following procedure **1a**, purified by precipitating with cold EtOAc/hexanes (1/9), and

35ep

isolated as an off-white solid. Mp.: 100-102 °C. Yield: 90% (55.69 mg). IR (Neat): v<sub>max</sub> 2931, 2869, 2416, 1532, 1443, 1353, 1031,

1261, 1200, 1140, 827, 660 and 475 cm<sup>-1</sup>. <sup>1</sup>H NMR

 $(CDCl_3+DMSO-d_6, 400 MHz): \delta 10.81 (1H, br s, OH), 3.02 (2H, s), 2.53 (2H, br s),$ 

2.40 (2H, br s), 2.12 (2H, tt, J = 7.2, 2.4 Hz), 1.47 (2H, quintet, J = 7.2 Hz), 1.34-1.27

(4H, m), 0.88 (3H, t, J = 7.6 Hz). <sup>13</sup>C NMR (CDCl<sub>3</sub>+DMSO- $d_6$ , DEPT-135):  $\delta$  113.2

(C, C=C-OH), 79.8 (C, acetylenic-C), 76.8 (C, acetylenic-C), 31.0 (CH<sub>2</sub>), 28.5 (CH<sub>2</sub>),

22.1 (CH<sub>2</sub>), 18.7 (CH<sub>2</sub>), 13.9 (CH<sub>3</sub>), 11.0 (CH<sub>2</sub>). HRMS (ESI-TOF) m/z: [M + Na]<sup>+</sup>

2-(Non-2-yn-1-yl)cyclopentane-1,3-dione (35eq): The title compound was prepared

Calcd for C<sub>13</sub>H<sub>18</sub>O<sub>2</sub>Na 229.1204; Found 229.1208.

following procedure 1a, purified by precipitating with cold

EtOAc/hexanes (1/9), and isolated as an off-white solid. Mp.: 114-

115 °C. Yield: 95% (62.78 mg). IR (Neat): ν<sub>max</sub> 2958, 2929, 2852,

1542, 1431, 1351, 1301, 1260, 1198, 1035, 827, 658, 564 and 476 cm<sup>-1</sup>. <sup>1</sup>H NMR

(CDCl<sub>3</sub>+DMSO- $d_6$ , 500 MHz):  $\delta$  10.84 (1H, br s, OH), 2.71 (2H, s), 2.17 (4H, br s), 1.82 (2H, tt, J = 7.0, 2.4 Hz), 1.17 (2H, quintet, J = 7.0 Hz), 1.07-0.95 (6H, m), 0.60 (3H, t, J = 7.0 Hz). <sup>13</sup>C NMR (CDCl<sub>3</sub>+DMSO- $d_6$ , DEPT-135):  $\delta$  112.7 (C, C=C-OH), 78.5 (C, acetylenic-C), 76.4 (C, acetylenic-C), 30.6 (CH<sub>2</sub>), 28.2 (CH<sub>2</sub>), 27.8 (CH<sub>2</sub>), 21.8 (CH<sub>2</sub>), 18.1 (CH<sub>2</sub>), 13.4 (CH<sub>3</sub>), 10.2 (CH<sub>2</sub>); HRMS (ESI-TOF) m/z: [M + H]<sup>+</sup> Calcd for C<sub>14</sub>H<sub>20</sub>O<sub>2</sub>H 221.1542; Found 221.1544.

**1b.** General Procedure for the Trimethylsilyl Deprotection of Coupling Products **35:** In an ordinary glass vial equipped with a magnetic stirring bar, to 1.5 equiv. of TBAF (0.45 mmol, 117.66 mg) and 1.0 equiv. of coupling product **35bb** (0.3 mmol, 66.71 mg) was added 1.0 mL of THF (0.3 M) and the reaction mixture was stirred at room temperature for 2 h. The crude reaction was quenched with aqueous NH<sub>4</sub>Cl solution, and the aqueous layer was extracted with ethyl acetate (3 x 10 mL). The combined organic layers were dried (Na<sub>2</sub>SO<sub>4</sub>), filtered, and concentrated. Pure product **36bb** (98%, 44.15 mg) were obtained by column chromatography (silica gel, mixture of hexanes/ethyl acetate).

**2-(Prop-2-yn-1-yl)cyclohexane-1,3-dione** (36bb): [6dd] The title compound was prepared following procedure **1b**, purified by column chromatography using EtOAc/hexanes (1.5/8.5), and isolated as a pale yellow solid. Yield: 98% (44.14 mg). IR (Neat):  $v_{max}$  3303, 2956, 2923, 2853, 2629, 2115, 1568, 1365, 1267, 1218, 1188, 1139, 1066, 1010, 919, 749, 647, 611 and 557 cm<sup>-1</sup>. <sup>1</sup>H NMR (DMSO- $d_6$ , 500 MHz):  $\delta$  10.84 (1H, br s, O-H), 2.96 (2H, d, J = 2.5 Hz), 2.45 (1H, t, J = 2.5 Hz), 2.33 (4H, br s), 1.82 (2H, quintet, J = 6.5 Hz). <sup>13</sup>C

NMR (DMSO- $d_6$ , DEPT-135)  $\delta$  110.1 (C, C=C-OH), 83.7 (C, acetylenic-C), 68.2 (CH, acetylenic-CH), 20.4 (CH<sub>2</sub>), 11.0 (CH<sub>2</sub>). HRMS (ESI-TOF) m/z: [M + H]<sup>+</sup> Calcd for C<sub>9</sub>H<sub>10</sub>O<sub>2</sub>H 151.0759; Found 151.0759.

1,3-dione 36bb: In an ordinary glass vial equipped with a magnetic stirring bar, 1.0 equiv. of 2-(prop-2-yn-1-yl)cyclohexane-1,3-dione 36bb (0.3 mmol, 45.05 mg) and 1.0 equiv. of phenyl azide 37 (0.3 mmol, 35.74 mg) was added to 0.2 equiv. of 1.0 M aqueous sodium ascorbate (0.06 mmol, 11.89 mg, 60.01 μL), 0.4 equiv. of copper sulfate pentahydrate (0.12 mmol, 29.96 mg) in 1.0 mL of water and *tertiary*-butanol solvent (1:1 mixture, 0.3 M), then the reaction mixture was stirred at room temperature for 24 h. The crude reaction mixture was quenched with aqueous NH<sub>4</sub>Cl solution, and the aqueous layer was extracted with ethyl acetate (3 x 10 mL). The combined organic layers were dried (Na<sub>2</sub>SO<sub>4</sub>), filtered, and concentrated. Pure click product 38bb (75%, 60.59 mg) were obtained by column chromatography (silica gel, mixture of hexanes/ethyl acetate).

3-Hydroxy-2-((1-phenyl-1*H*-1,2,3-triazol-4-yl)methyl)cyclohex-2-enone (38bb):

The title compound was prepared following procedure 1c, purified by column chromatography using EtOAc/hexanes (3/7), and isolated as a semisolid. Yield: 75% (60.59 mg). IR (Neat): ν<sub>max</sub> 3404, 3138, 2949, 2089, 1604, 1500, 1385, 1363, 1275, 1227, 1184, 1138, 1062, 1016, 990, 805, 757, 684, 583 and 513 cm<sup>-1</sup>. <sup>1</sup>H NMR (CDCl<sub>3</sub>+DMSO-*d*<sub>6</sub>, 500 MHz): δ 10.48 (1H, br

s, O-H), 7.91 (1H, br s), 7.74 (2H, br s), 7.50 (2H, br s), 7.41 (1H, br s), 3.76 (2H, br s),

2.43 (4H, br s), 1.99 (2H, br s). <sup>13</sup>C NMR (CDCl<sub>3</sub>+DMSO-*d*<sub>6</sub>, DEPT-135) δ 174.2 (C, C=*C*-OH), 147.4 (C), 136.4 (C), 128.9 (2 x CH), 127.8 (CH), 119.6 (2 x CH), 119.2 (CH), 112.3 (C, *C*=C-OH), 32.5 (2 x CH<sub>2</sub>), 20.0 (CH<sub>2</sub>), 17.6 (CH<sub>2</sub>). HRMS (ESI-TOF) *m/z*: [M + H]<sup>+</sup> Calcd for C<sub>15</sub>H<sub>15</sub>N<sub>3</sub>O<sub>2</sub>H 270.1243; Found 270.1243.

**1d.** General Procedure for the Annulative Etherification of 2-(3-Arylprop-2-yn-1-yl)cyclic-1,3-diones 35: In an ordinary glass vial equipped with a magnetic stirring bar, 0.1 equiv. of silver triflate (0.02 mmol, 5.14 mg, 10 mol%) was added to 1.0 equiv. of propargyl cyclic-1,3-diones 35 (0.2 mmol) in 1.0 mL of dry methanol (0.2 M) solvent and the reaction mixture was stirred at room temperature for 1-12 h. The crude reaction mixture was quenched with aqueous NH<sub>4</sub>Cl solution, and the aqueous layer was extracted with ethyl acetate (3 x 10 mL). The combined organic layers were dried (Na<sub>2</sub>SO<sub>4</sub>), filtered, and concentrated. Pure products 39 were obtained by column chromatography (silica gel, mixture of hexanes/ethyl acetate).

**2-Phenyl-4,6,7,8-tetrahydro-5***H***-chromen-5-one (39ba)**: The title compound was prepared following procedure **1d**, purified by column chromatography using EtOAc/hexanes (2/8), and isolated as a semi-solid. Yield: 85% (38.46 mg). IR (Neat):  $v_{\text{max}}$  2952, 1718, 1678, 1646, 1523, 1455, 1320, 1214, 1124, 1006, 967, 900, 752, 722 and 701 cm<sup>-1</sup>. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz):  $\delta$  7.53 (2H, br d, J = 7.5 Hz), 7.33 (2H, br t, J = 7.5 Hz), 7.19 (1H,

br t, J = 7.5 Hz), 5.70 (1H, t, J = 2.5 Hz), 3.66 (2H, d, J = 2.5 Hz), 2.63 (2H, tt, J = 8.5, 2.0 Hz), 2.42 (2H, t, J = 7.0 Hz), 2.13 (2H, quintet, J = 6.5 Hz). <sup>13</sup>C NMR (CDCl<sub>3</sub>, DEPT-135):  $\delta$  194.3 (C, C = O), 175.2 (C, C = C - O), 153.8 (C, C = C - O), 134.5 (C), 128.3

(2 x CH), 128.0 (2 x CH), 126.3 (CH), 114.3 (C, *C*=C–O), 104.5 (CH), 36.5 (CH<sub>2</sub>), 31.2 (CH<sub>2</sub>), 23.3 (CH<sub>2</sub>), 21.6 (CH<sub>2</sub>). HRMS (ESI-TOF) *m/z*: [M-H]<sup>+</sup> Calcd for C<sub>15</sub>H<sub>13</sub>O<sub>2</sub> 225.0915; Found 225.0915.

2-(4-Bromophenyl)-4,6,7,8-tetrahydro-5*H*-chromen-5-one (39be): The title

39be Br

compound was prepared following procedure 1d, purified by column chromatography using EtOAc/hexanes (2/8), and isolated as an off-white semi-solid. Yield: 85% (51.88 mg). IR (Neat):  $v_{max}$  3274, 2948, 1645, 1487, 1401, 1224, 1179, 1071,

992, 897, 857 and 586 cm<sup>-1</sup>. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz):  $\delta$  7.44 (2H, br td, J = 9.0, 2.0 Hz), 7.40 (2H, br td, J = 8.8, 2.0 Hz), 5.64 (1H, t, J = 2.5 Hz), 3.64 (2H, br dd, J = 4.4, 2.5 Hz), 2.64 (2H, tt, J = 6.5, 2.5 Hz), 2.43 (2H, t, J = 7.0 Hz), 2.15 (2H, quintet, J = 6.5 Hz). <sup>13</sup>C NMR (CDCl<sub>3</sub>, DEPT-135):  $\delta$  194.4 (C, C=O), 175.0 (C, C=C-O), 154.4 (C, C=C-O), 133.4 (C), 131.4 (2 x CH), 129.5 (2 x CH), 120.0 (C), 114.3 (C, C=C-O), 103.4 (CH), 36.5 (CH<sub>2</sub>), 31.3 (CH<sub>2</sub>), 23.3 (CH<sub>2</sub>), 21.6 (CH<sub>2</sub>). HRMS (ESI-TOF) m/z: [M + Na]<sup>+</sup> Calcd for C<sub>15</sub>H<sub>13</sub>BrO<sub>2</sub>Na 326.9997; Found 326.9997.

**4-(5-Oxo-5,6,7,8-tetrahydro-4***H***-chromen-2-yl)benzonitrile** (39bf): The title compound was prepared following procedure 1d, purified by column chromatography

using EtOAc/hexanes (2/8), and isolated as a white semi-solid.

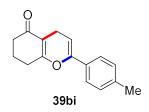
Yield: 82% (41.21 mg). IR (Neat): v<sub>max</sub> 3428, 2922, 2851, 2229,

CN 1714, 1651, 1522, 1457, 1408, 1264, 1216, 1124, 1005, 731 and

39bf
703 cm<sup>-1</sup>. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz):  $\delta$  7.63-7.58 (4H, m), 5.73 (1H, t, J = 2.8 Hz),
3.71 (2H, td, J = 2.4, 2.4 Hz), 2.67 (2H, tt, J = 8.8, 2.4 Hz), 2.45 (2H, t, J = 6.8 Hz),

2.17 (2H, quintet, J = 6.4 Hz). <sup>13</sup>C NMR (CDCl<sub>3</sub>, DEPT-135):  $\delta$  194.3 (C, C = O), 174.7 (C, C = C - O), 157.0 (C, C = C - O), 139.1 (C), 132.2 (2 x CH), 128.3 (2 x CH), 119.2 (C), 114.5 (C, C = C - O), 109.2 (C, C = N), 103.8 (CH), 36.5 (CH<sub>2</sub>), 31.8 (CH<sub>2</sub>), 23.3 (CH<sub>2</sub>), 21.6 (CH<sub>2</sub>). HRMS (ESI-TOF) m/z: [M + H]<sup>+</sup> Calcd for C<sub>16</sub>H<sub>13</sub>NO<sub>2</sub>H 252.1026; Found 252.1026.

2-(4-Nitrophenyl)-4,6,7,8-tetrahydro-5*H*-chromen-5-one (39bg): The title compound was prepared following procedure 1d, purified by column chromatography


using EtOAc/hexanes (2/8), and isolated as a yellow semi-solid.

Yield: 83% (45.03 mg). IR (Neat): v<sub>max</sub> 2955, 1686, 1642, 1590,

NO<sub>2</sub> 1503, 1398, 1329, 1212, 1106, 1050, 987, 896, 867, 845, 775,

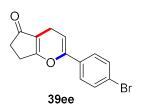
691 and 582 cm<sup>-1</sup>. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz):  $\delta$  8.17 (2H, br d, J = 9.0 Hz), 7.66 (2H, br d, J = 9.0 Hz), 5.79 (1H, t, J = 2.5 Hz), 3.72 (2H, br d, J = 2.0 Hz), 2.69 (2H, tt, J = 6.5, 2.0 Hz), 2.45 (2H, t, J = 7.0 Hz), 2.17 (2H, quintet, J = 6.5 Hz). <sup>13</sup>C NMR (CDCl<sub>3</sub>, DEPT-135):  $\delta$  194.2 (C, C=O), 174.6 (C, C=C-O), 157.7 (C, C=C-O), 145.5 (C), 141.2 (C), 128.2 (2 x CH), 123.8 (2 x CH), 114.6 (C, C=C-O), 102.8 (CH), 36.5 (CH<sub>2</sub>), 31.9 (CH<sub>2</sub>), 23.3 (CH<sub>2</sub>), 21.6 (CH<sub>2</sub>). HRMS (ESI-TOF) m/z: [M + Na]<sup>+</sup> Calcd for C<sub>15</sub>H<sub>13</sub>NO<sub>4</sub>Na 294.0742; Found 294.0746.

2-(p-Tolyl)-4,6,7,8-tetrahydro-5H-chromen-5-one (39bi): The title compound was



prepared following procedure **1d**, purified by column chromatography using EtOAc/hexanes (2/8), and isolated as an off-white semi-solid. Yield: 76% (36.52 mg). IR (Neat):  $v_{max}$  3250, 2947, 1631, 1512, 1453, 1403, 1229, 1179, 1086, 991,

897, 860, 728 and 601 cm<sup>-1</sup>. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz):  $\delta$  7.43 (2H, br d, J = 8.4 Hz), 7.14 (2H, br d, J = 8.0 Hz), 5.68 (1H, t, J = 2.4 Hz), 3.65 (2H, br d, J = 2.0 Hz), 2.64 (2H, tt, J = 6.4, 2.4 Hz), 2.42 (2H, t, J = 7.2 Hz), 2.34 (3H, s, Ar-CH<sub>3</sub>), 2.14 (2H, quintet, J = 6.8 Hz). <sup>13</sup>C NMR (CDCl<sub>3</sub>, DEPT-135):  $\delta$  194.4 (C, C = O), 175.3 (C, C=C – O), 153.1 (C, C=C – O), 136.1 (C), 131.6 (C), 129.1 (2 x CH), 127.9 (2 x CH), 114.3 (C, C = C – O), 104.4 (CH), 36.5 (CH<sub>2</sub>), 31.1 (CH<sub>2</sub>), 23.4 (CH<sub>2</sub>), 21.6 (CH<sub>2</sub>), 21.2 (CH<sub>3</sub>). HRMS (ESI-TOF) m/z: [M + Na]<sup>+</sup> Calcd for C<sub>16</sub>H<sub>16</sub>O<sub>2</sub>Na 263.1048; Found 263.1048.


**2-Phenyl-6,7-dihydrocyclopenta**[b]pyran-5(4H)-one (39ea): The title compound was prepared following procedure 1d, purified by column chromatography using

O Ph 39ea

EtOAc/hexanes (2/8), and isolated as a white semi-solid. Yield: 75% (31.83 mg). IR (Neat):  $v_{max}$  3073, 2917, 2845, 1705, 1672, 1627, 1495,

1436, 1339, 1298, 1276, 1230, 1111, 1019, 994, 951, 810, 756, 700, 688, 645 and 623 cm<sup>-1</sup>. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz):  $\delta$  7.58 (2H, dd, J = 8.0, 1.6 Hz), 7.41-7.35 (3H, m), 5.62 (1H, t, J = 3.6 Hz), 3.00-2.99 (2H, m), 2.72-2.70 (2H, m), 2.53-2.51 (2H, m). <sup>13</sup>C NMR (CDCl<sub>3</sub>, DEPT-135):  $\delta$  203.9 (C, C=O), 180.2 (C, C=C-O), 149.2 (C, C=C-O), 133.0 (C), 128.8 (CH), 128.4 (2 x CH), 124.5 (2 x CH), 114.0 (C, C=C-O), 99.7 (CH), 33.2 (CH<sub>2</sub>), 25.9 (CH<sub>2</sub>), 18.1 (CH<sub>2</sub>). HRMS (ESI-TOF) m/z: [M + H]<sup>+</sup> Calcd for C<sub>14</sub>H<sub>12</sub>O<sub>2</sub>H 213.0916; Found 213.0915.

2-(4-Bromophenyl)-6,7-dihydrocyclopenta[b]pyran-5(4H)-one (39ee): The title



compound was prepared following procedure **1d**, purified by column chromatography using EtOAc/hexanes (1.5/8.5), and isolated as a white semi-solid. Yield: 84% (48.91 mg). IR (Neat):

 $ν_{\text{max}}$  2843, 1702, 1671, 1629, 1586, 1389, 1286, 1263, 1233, 1108, 994, 847, 828, 787 and 661 cm<sup>-1</sup>. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz): δ 7.51 (2H, br d, J = 8.4 Hz), 7.44 (2H, br d, J = 8.8 Hz), 5.63 (1H, t, J = 3.6 Hz), 2.98 (2H, d, J = 2.0 Hz), 2.71-2.70 (2H, m), 2.53-2.51 (2H, m). <sup>13</sup>C NMR (CDCl<sub>3</sub>, DEPT-135): δ 203.7 (C, C = O), 179.9 (C, C = C - O), 148.4 (C, C = C - O), 131.9 (C), 131.6 (2 x CH), 126.0 (2 x CH), 122.9 (C), 114.0 (C, C = C - O), 100.3 (CH), 33.2 (CH<sub>2</sub>), 25.8 (CH<sub>2</sub>), 18.1 (CH<sub>2</sub>). HRMS (ESI-TOF) m/z: [M + H]<sup>+</sup> Calcd for C<sub>14</sub>H<sub>11</sub>BrO<sub>2</sub>H 291.0021; Found 291.0021.

**4-(5-Oxo-4,5,6,7-tetrahydrocyclopenta**[b]pyran-2-yl)benzonitrile (39ef): The title compound was prepared following procedure 1d, purified by column chromatography

39ef CN

using EtOAc/hexanes (2/8), and isolated as a white semi-solid.

Yield: 72% (34.16 mg). IR (Neat):  $v_{max}$  2922, 2852, 2360, 2340, 2225, 1704, 1675, 1630, 1443, 1399, 1309, 1274, 1239, 1113,

1003, 846, 798, 677 and 625 cm<sup>-1</sup>. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz):  $\delta$  7.69-7.68 (4H, m), 5.80 (1H, t, J = 3.5 Hz), 3.05-3.04 (2H, m), 2.74-2.72 (2H, m), 2.55-2.53 (2H, m). <sup>13</sup>C NMR (CDCl<sub>3</sub>, DEPT-135):  $\delta$  203.6 (C, C = O), 179.5 (C, C = C - O), 147.7 (C, C = C - O), 137.0 (C), 132.3 (2 x CH), 124.9 (2 x CH), 118.5 (C), 113.9 (C, C = C - O), 112.3 (C, C = N), 103.2 (CH), 33.3 (CH<sub>2</sub>), 25.8 (CH<sub>2</sub>), 18.3 (CH<sub>2</sub>). HRMS (ESI-TOF) m/z: [M + H]<sup>+</sup> Calcd for C<sub>15</sub>H<sub>11</sub>NO<sub>2</sub>H 238.0868; Found 238.0868.

**2-(4-Nitrophenyl)-6,7-dihydrocyclopenta**[b]pyran-5(4H)-one (39eg): The title compound was prepared following procedure 1d, purified by column chromatography

using EtOAc/hexanes (1.5/4), and isolated as a white semisolid. Yield: 69% (35.50 mg). IR (Neat):  $v_{max}$  2838, 1701, 1672, solid. Yield: 69% (35.50 mg). IR (Neat):  $v_{max}$  2838, 1701, 1672, 1512, 1398, 1341, 1239, 1109, 1002, 862, 848, 751, 708 and 691 cm<sup>-1</sup>. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz):  $\delta$  8.25 (2H, br d, J = 9.0 Hz), 7.75 (2H, br d, J = 9.0 Hz), 5.86 (1H, t, J = 4.0 Hz), 3.06-3.058 (2H, m), 2.76-2.74 (2H, m), 2.56-2.54 (2H, m). <sup>13</sup>C NMR (CDCl<sub>3</sub>, DEPT-135):  $\delta$  203.4 (C, C=O), 179.4 (C, C=C-O), 147.8 (C,

 $104.0 \text{ (CH)}, 33.3 \text{ (CH}_2), 25.8 \text{ (CH}_2), 18.4 \text{ (CH}_2). HRMS (ESI-TOF)} \ \text{m/z}: [M+H]^+ \text{ Calcd}$  for  $\text{C}_{14}\text{H}_{11}\text{NO}_4\text{H}\ 258.0766}$ ; Found 258.0766.

C=C-O), 147.6 (C), 138.8 (C), 125.1 (2 x CH), 123.8 (2 x CH), 113.9 (C, C=C-O),

**2-(4-Methoxyphenyl)-6,7-dihydrocyclopenta**[*b*]**pyran-5(4***H***)-one (39eh): The title compound was prepared following procedure 1d, purified by column chromatography** 

using EtOAc/hexanes (2/8), and isolated as a white semi-solid. Yield: 80% (38.76 mg). IR (Neat):  $v_{max}$  2839, 2360, 1704, 1671, OMe 1608, 1513, 1399, 1242, 1178, 1114, 1027, 997, 837 and 685 cm<sup>-1</sup>. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz):  $\delta$  7.51 (2H, br d, J = 8.8 Hz), 6.91 (2H, br d, J = 8.8 Hz), 5.48 (1H, t, J = 3.6 Hz), 3.83 (3H, s, OCH<sub>3</sub>), 2.98 (2H, br s), 2.70-2.69 (2H, m), 2.52-2.50 (2H, m). <sup>13</sup>C NMR (CDCl<sub>3</sub>, DEPT-135):  $\delta$  203.9 (C, C=O), 180.2 (C, C=C-O), 160.0 (C, C=C-O), 149.0 (C), 125.9 (2 x CH), 125.7 (C), 114.0 (C, C=C-O), 113.8 (2 x CH), 97.8 (CH), 55.3 (CH<sub>3</sub>), 33.2 (CH<sub>2</sub>), 25.9 (CH<sub>2</sub>), 18.0 (CH<sub>2</sub>). HRMS (ESI-TOF) m/z: [M + H]<sup>+</sup> Calcd for C<sub>15</sub>H<sub>14</sub>O<sub>3</sub>H 243.1021; Found 243.1019.

2-(p-Tolyl)-6,7-dihydrocyclopenta[b]pyran-5(4H)-one (39ei): The title compound was prepared following procedure 1d, purified by column chromatography using

EtOAc/hexanes (1.5/8), and isolated as a white semi-solid. Yield: 81% (36.65 mg). IR (Neat):  $v_{max}$  2923, 1726, 1667, 1441, 1400, 1270, 1240, 1113, 1068, 1000, 954 and 812 cm<sup>-1</sup>. <sup>1</sup>H NMR

(CDCl<sub>3</sub>, 500 MHz):  $\delta$  7.47 (2H, br d, J = 8.0 Hz), 7.19 (2H, br d, J = 8.0 Hz), 5.56 (1H, t, J = 4.0 Hz), 2.99-2.98 (2H, m), 2.71-2.69 (2H, m), 2.52-2.50 (2H, m), 2.37 (3H, s, Ar-CH<sub>3</sub>). <sup>13</sup>C NMR (CDCl<sub>3</sub>, DEPT-135):  $\delta$  204.0 (C, C=O), 180.3 (C, C=C-O), 149.2 (C, C=C-O), 138.8 (C), 130.2 (C), 129.1 (2 x CH), 124.4 (2 x CH), 114.0 (C, C=C-O), 98.8 (CH), 33.2 (CH<sub>2</sub>), 25.9 (CH<sub>2</sub>), 21.2 (CH<sub>3</sub>, OCH<sub>3</sub>), 18.0 (CH<sub>2</sub>). HRMS (ESI-TOF) m/z: [M + H]<sup>+</sup> Calcd for C<sub>15</sub>H<sub>14</sub>O<sub>2</sub>H 227.1072; Found 227.1073.

**2-Hexyl-6,7-dihydrocyclopenta**[*b*]**pyran-5(4***H***)-one (39eq): The title compound was prepared following procedure 1d, purified by column chromatography using EtOAc/hexanes (1/9), and isolated as a white semi-solid. Yield: 85% (37.45 mg). IR (Neat): v\_{max} 2926, 2854, 1729, 1691, 1636, 1400, 1276, 1167, 985, 966, 874, 702 and 651 cm<sup>-1</sup>. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz): \delta 4.80 (1H, t, J = 3.5 Hz), 2.77 (2H, br s), 2.58-2.56 (2H, m), 2.45-2.43 (2H, m), 2.12 (2H, t, J = 7.5 Hz), 1.49 (2H, quintet, J = 6.8 Hz), 1.35-1.25 (6H, m), 0.88 (3H, t, J = 7.0 Hz). <sup>13</sup>C NMR (CDCl<sub>3</sub>, DEPT-135): \delta 204.2 (C, C=O), 180.6 (C, C=C-O), 151.8 (C, C=C-O), 114.0 (C, C=C-O), 98.2 (CH), 33.1 (CH<sub>2</sub>), 32.7 (CH<sub>2</sub>), 31.5 (CH<sub>2</sub>), 28.6 (CH<sub>2</sub>), 26.4 (CH<sub>2</sub>), 25.8 (CH<sub>2</sub>), 22.5 (CH<sub>2</sub>), 17.6 (CH<sub>2</sub>), 14.0 (CH<sub>3</sub>). HRMS (ESI-TOF) m/z: [M + H]<sup>+</sup> Calcd for C<sub>14</sub>H<sub>20</sub>O<sub>2</sub>H 221.1541; Found 221.1543.** 

**1e.** General Procedure for the Ring Opening of 4*H*-Pyran Derivatives 39: In an ordinary glass vial equipped with a magnetic stirring bar, 1.0 equiv. of potassium carbonate (0.2 mmol, 27.64 mg) was added to 1.0 equiv. of 4*H*-pyran derivative **39** (0.2 mmol) in 1.0 mL of dry methanol (0.2 M) solvent and the reaction mixture was stirred at room temperature for 1.5 h. The crude reaction mixture was quenched with aqueous NH<sub>4</sub>Cl solution, and the aqueous layer was extracted with ethyl acetate (3 x 10 mL). The combined organic layers were dried (Na<sub>2</sub>SO<sub>4</sub>), filtered, and concentrated. Pure products **40** were obtained by column chromatography (silica gel, mixture of hexanes/ethyl acetate).

3-Methoxy-2-(3-oxo-3-phenylpropyl)cyclohex-2-en-1-one (40ba): The title compound was prepared following procedure 1e, purified by column chromatography using EtOAc/hexanes (3/7), and isolated as a semi-solid. Yield: 76% (39.26 mg). IR (Neat): ν<sub>max</sub> 2948, 1713, 1606, 1455, 1366, 1243, 1166, 1116, 1080, 1038, 969, 735 and 700 cm<sup>-1</sup>. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz): δ 7.31-7.28 (2H, m), 7.23-7.20 (3H, m), 3.71 (2H, s), 3.66 (3H, s, OCH<sub>3</sub>), 3.39 (2H, s), 2.52 (2H, t, *J* = 6.5 Hz), 2.35 (2H, t, *J* = 6.5 Hz), 1.99 (2H, quintet, *J* = 6.0 Hz). <sup>13</sup>C NMR (CDCl<sub>3</sub>, DEPT-135): δ 206.1 (C, *C*=O), 197.3 (C, *C*=O), 173.7

(C, C=C-O), 134.7 (C), 129.4 (2 x CH), 128.3 (2 x CH), 126.6 (CH), 113.2 (C, C=C-O),

55.2 (CH<sub>3</sub>), 49.3 (CH<sub>2</sub>), 36.0 (CH<sub>2</sub>), 35.7 (CH<sub>2</sub>), 24.5 (CH<sub>2</sub>), 20.5 (CH<sub>2</sub>). HRMS (ESI-

TOF) m/z:  $[M + Na]^+$  Calcd for  $C_{16}H_{18}O_3Na$  281.1154; Found 281.1154.

**3-Methoxy-2-(3-oxo-3-phenylpropyl)cyclopent-2-en-1-one** (40ea): The title compound was prepared following procedure 1e, purified by column chromatography

OMe 40ea using EtOAc/hexanes (3/7), and isolated as a semi-solid. Yield: 92% (44.94 mg). IR (Neat):  $v_{max}$  2950, 1680, 1621, 1449, 1410, 1361, 1271, 1205, 1177, 1092, 997, 743, 692 and 635 cm<sup>-1</sup>; <sup>1</sup>H

NMR (CDCl<sub>3</sub>, 500 MHz):  $\delta$  7.93 (2H, br d, J = 7.5 Hz), 7.51 (1H, br t, J = 7.5 Hz), 7.42 (2H, br t, J = 7.5 Hz), 3.90 (3H, s, OCH<sub>3</sub>), 3.12 (2H, t, J = 8.0 Hz), 2.64-2.62 (2H, m), 2.54 (2H, t, J = 7.5 Hz), 2.43-2.41 (2H, m). <sup>13</sup>C NMR (CDCl<sub>3</sub>, DEPT-135):  $\delta$  204.7 (C, C=O), 199.8 (C, C=O), 184.9 (C, C=CO), 136.9 (C), 132.8 (CH), 128.4 (2 x CH), 128.0 (2 x CH), 119.0 (C, C=CO), 56.4 (CH<sub>3</sub>), 36.2 (CH<sub>2</sub>), 33.4 (CH<sub>2</sub>), 24.5 (CH<sub>2</sub>), 16.4 (CH<sub>2</sub>). HRMS (ESI-TOF) m/z: [M + Na]<sup>+</sup> Calcd for C<sub>15</sub>H<sub>16</sub>O<sub>3</sub>Na 267.0997; Found 267.0996.

1f. General Procedure for the Epoxidation of 4*H*-Pyran Derivative 39ea: In an ordinary glass vial equipped with a magnetic stirring bar, 1.2 equiv. of *m*-CPBA (0.24 mmol, 41.42 mg) was added to 1.0 equiv. of 4*H*-pyran derivative 39ea (0.2 mmol, 42.45 mg) in 1.0 mL of dry DCM (0.2 M) solvent and the reaction mixture was stirred at room temperature for 1.0 h. The crude reaction mixture was quenched with aqueous NH<sub>4</sub>Cl solution, and the aqueous layer was extracted with ethyl acetate (3 x 10 mL). The combined organic layers were dried (Na<sub>2</sub>SO<sub>4</sub>), filtered, and concentrated. Pure product 41ea (71%, 32.41 mg) were obtained by column chromatography (silica gel, mixture of hexanes/ethyl acetate).

### 1a-Phenyl-3,4,6,6a-tetrahydrocyclopenta[b]oxireno[2,3-e]pyran-5(1aH)-one

(41ea): The title compound was prepared following procedure 1f, purified by column chromatography using EtOAc/hexanes (1.5/8.5), and isolated as a white semi-solid.

Yield: 71% (32.41 mg). IR (Neat):  $v_{max}$  2924, 1703, 1647, 1427, 1397, 1279, 1232, 1198, 1111, 1039, 1022, 978, 936, 908, 757, 699, 647 and 610 cm<sup>-1</sup>. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz):  $\delta$  7.55-7.52 (2H, m), 7.45-7.43 (3H, m), 3.49 (1H, dd, J = 2.8, 1.2 Hz), 2.95 (1H, br d, J = 18.4 Hz), 2.78-2.68 (2H, m), 2.65-2.63 (1H, m), 2.52-2.49 (2H, m). <sup>13</sup>C NMR (CDCl<sub>3</sub>, DEPT-135):  $\delta$  203.7 (C, C = O), 179.0 (C, C = C = O), 133.9 (C), 129.6 (CH), 128.6 (2 x CH), 125.8 (2 x CH), 111.9 (C, C = C = O), 85.3 (C, O = C = O), 59.9 (CH), 33.5 (CH<sub>2</sub>), 26.1 (CH<sub>2</sub>), 19.9 (CH<sub>2</sub>). HRMS (ESI-TOF) m/z: [M + H]<sup>+</sup> Calcd for C<sub>14</sub>H<sub>12</sub>O<sub>3</sub>H 229.0865; Found 229.0865.

**1g.** General Procedure for the Fragmentation of 4*H*-Pyran Derivative 39ea: In an ordinary glass vial equipped with a magnetic stirring bar, 5.0 equiv. of 30% aqueous H<sub>2</sub>O<sub>2</sub> (1.0 mmol, 34.01 mg, 30.64 μL) and 1.0 equiv. of 6.0 M aqueous NaOH (0.2 mmol, 8.0 mg, 33.33 μL) were added to 1.0 equiv. of 4*H*-pyran derivative **39ea** (0.2 mmol, 42.45 mg) in 1.0 mL of methanol (0.2 M) solvent and the reaction mixture was stirred at 50 °C (oil bath) for 12 h. The crude reaction mixture was quenched with aqueous NH<sub>4</sub>Cl solution, and the aqueous layer was extracted with ethyl acetate (3 x 10 mL). The combined organic layers were dried (Na<sub>2</sub>SO<sub>4</sub>), filtered, and concentrated. Pure product **42ea** (50%, 17.82 mg) were obtained by column chromatography (silica gel, mixture of hexanes/ethyl acetate).

**4-Oxo-4-phenylbutanoic acid (42ea)**:<sup>[14d]</sup> The title compound was prepared following procedure **1g**, purified by column chromatography using EtOAc/hexanes (2/8), and isolated as a semi-solid. Yield: 50% (17.82 mg). IR (Neat):  $v_{max}$  3028, 2923, 2680, 1712, OH 1679, 1595, 1433, 1400, 1299, 1260, 1236, 1172, 990, 963, 945, 762 and 689 cm<sup>-1</sup>. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz):  $\delta$  7.98 (2H, d, J = 7.5 Hz), 7.58 (1H, t, J = 7.5 Hz), 7.47 (2H, t, J = 7.5 Hz), 3.32 (2H, t, J = 6.5 Hz), 2.82 (2H, t, J = 6.5 Hz). <sup>13</sup>C NMR (CDCl<sub>3</sub>, DEPT-135):  $\delta$  197.8 (C, C=O), 178.3 (C, HO-C=O), 136.4 (C), 133.3 (CH), 128.6 (2 x CH), 128.0 (2 x CH), 33.1 (CH<sub>2</sub>), 27.9 (CH<sub>2</sub>). HRMS (ESI-TOF) m/z: [M + H]<sup>+</sup> Calcd for C<sub>10</sub>H<sub>10</sub>O<sub>3</sub>H 179.0708; Found 179.0708.

**1h.** General Procedure for the *O*-Methylation of TCRP Products 35: In an ordinary glass vial equipped with a magnetic stirring bar, 1.1 equiv. of NaOH (0.22 mmol, 8.8 mg), 3.0 equiv. of methyl iodide (0.6 mmol, 37.35 μL) were added to 1.0 equiv. of 1,3-cyclic diketone propragyl derivative **35** (0.2 mmol) in 1.0 mL of CH<sub>3</sub>CN (0.2 M) solvent and the reaction mixture was stirred at 60 °C (oil bath) for 10 h. The crude reaction mixture was quenched with aqueous NH<sub>4</sub>Cl solution, and the aqueous layer was extracted with ethyl acetate (3 x 10 mL). The combined organic layers were dried (Na<sub>2</sub>SO<sub>4</sub>), filtered, and concentrated. Pure products **43** were obtained by column chromatography (silica gel, mixture of hexanes/ethyl acetate).

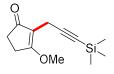
### 1i. General Procedure for the C-Alkylation Reaction of TCRP Products 45:

**Method 1:** In an ordinary glass vial equipped with a magnetic stirring bar, 1.0 equiv. of NaHCO<sub>3</sub> (0.2 mmol, 16.8 mg), 2.0 equiv. of propargyl bromide (80 wt.% in toluene, 0.4

mmol, 35.64 μL) were added to 1.0 equiv. of 1,3-cyclic diketone propragyl derivative 35 (0.2 mmol) in 1.0 mL of water (0.2 M) and the reaction mixture was stirred at 80 °C (oil bath) for 48 h. The crude reaction mixture was quenched with aqueous NH<sub>4</sub>Cl solution, and the aqueous layer was extracted with ethyl acetate (3 x 10 mL). The combined organic layers were dried (Na<sub>2</sub>SO<sub>4</sub>), filtered, and concentrated. Pure products 44 were obtained by column chromatography (silica gel, mixture of hexanes/ethyl acetate).

Method 2: In an ordinary glass vial equipped with a magnetic stirring bar, 1.0 equiv. of NaHCO<sub>3</sub> (0.2 mmol, 16.8 mg), 3.0 equiv. of methyl iodide (0.6 mmol, 37.35 μL) were added to 1.0 equiv. of 1,3-cyclic diketone propragyl derivative **35** (0.2 mmol) in 1.0 mL of water (0.2 M) and the reaction mixture was stirred at 80 °C (oil bath) for 36 h. The crude reaction mixture was quenched with aqueous NH<sub>4</sub>Cl solution, and the aqueous layer was extracted with ethyl acetate (3 x 10 mL). The combined organic layers were dried (Na<sub>2</sub>SO<sub>4</sub>), filtered, and concentrated. Pure products **45** were obtained by column chromatography (silica gel, mixture of hexanes/ethyl acetate).

Method 3: In an ordinary glass vial equipped with a magnetic stirring bar, 1.2 equiv. of K<sub>2</sub>CO<sub>3</sub> (0.24 mmol, 33.17 mg), 3.0 equiv. of methyl iodide (0.6 mmol, 37.35 μL) were added to 1.0 equiv. of 1,3-cyclic diketone propragyl derivative 35 (0.2 mmol) in 1.0 mL of acetone (0.2 M) solvent and the reaction mixture was stirred at 60 °C (oil bath) for 4 h. The crude reaction mixture was quenched with aqueous NH<sub>4</sub>Cl solution, and the aqueous layer was extracted with ethyl acetate (3 x 10 mL). The combined organic


layers were dried (Na<sub>2</sub>SO<sub>4</sub>), filtered, and concentrated. Pure products 45 were obtained by column chromatography (silica gel, mixture of hexanes/ethyl acetate).

3-Methoxy-2-(3-phenylprop-2-yn-1-yl)cyclohex-2-en-1-one (43ba): The title

OMe 43ba

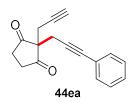
compound was prepared following procedure 1h, purified by column chromatography using EtOAc/hexanes (3/7), and isolated as a white semi solid. Yield: 30% (14.42 mg). IR (Neat):  $v_{max}$ 2924, 2852, 1720, 1645, 1612, 1489, 1459, 1421, 1367, 1243, 1189, 1167, 1105, 1081, 1040, 960, 918, 758 and 693 cm<sup>-1</sup>. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz): δ 7.38-7.36 (2H, m), 7.23-7.22 (3H, m), 3.89 (3H, s, OC $H_3$ ), 3.40 (2H, s), 2.62 (2H, t, J = 6.0 Hz), 2.41 (2H, t, J = 6.5 Hz), 2.03 (2H, quintet, J = 6.5 Hz). <sup>13</sup>C NMR (CDCl<sub>3</sub>, DEPT-135):  $\delta$  196.6 (C, C=O), 172.8 (C, C=C-OMe), 131.7 (2 x CH), 128.0 (2 x CH), 127.2 (CH), 124.4 (C), 115.3 (C, C=C-O), 89.0 (C, acetylenic-C), 78.2 (C, acetylenic-C), 55.4 (CH<sub>3</sub>), 36.1  $(CH_2)$ , 25.0  $(CH_2)$ , 20.6  $(CH_2)$ , 12.5  $(CH_2)$ . HRMS (ESI-TOF) m/z:  $[M + H]^+$  Calcd for

3-Methoxy-2-(3-(trimethylsilyl)prop-2-yn-1-yl)cyclopent-2-enone (43eb): The title



43eb

C<sub>16</sub>H<sub>16</sub>O<sub>2</sub>H 241.1228; Found 241.1229.


compound was prepared following procedure 1i (Method-3), purified by column chromatography using EtOAc/hexanes (3/7), and isolated as a yellow liquid. Yield: 60% (26.67 mg). IR (Neat):  $v_{max}$  2925, 2173, 1691, 1622, 1461, 1356, 1250, 1209, 1091, 1052, 1002, 960, 839, 759, 644, 616 and 593 cm<sup>-1</sup>. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz): δ 4.01 (3H, s, OCH<sub>3</sub>), 3.08 (2H, s), 2.67-2.65 (2H, m), 2.45 (2H, m), 0.11 (9H, s). <sup>13</sup>C NMR (CDCl<sub>3</sub>, DEPT-135): δ 203.1 (C, C=O), 185.2 (C, C=C-O), 115.1 (C, C=C-O), 103.4 (C, acetylenic-C), 83.4 (C, acetylenic-*C*), 56.8 (CH<sub>3</sub>, O*C*H<sub>3</sub>), 33.2 (CH<sub>2</sub>), 24.9 (CH<sub>2</sub>), 12.3 (CH<sub>2</sub>), 0.04 (3 x CH<sub>3</sub>). HRMS (ESI-TOF) *m/z*: [M + H]<sup>+</sup> Calcd for C<sub>12</sub>H<sub>18</sub>O<sub>2</sub>SiH 223.1154; Found 223.1156.

**3-Methoxy-2-(3-phenylprop-2-yn-1-yl)cyclopent-2-en-1-one** (43ea): The title

OMe 43ea compound was prepared following procedure **1h**, purified by column chromatography using EtOAc/hexanes (3/7), and isolated as a white semi solid. Yield: 63% (28.51 mg). IR (Neat):  $v_{max}$  2922,

2854, 1689, 1628, 1489, 1461, 1412, 1361, 1262, 1087, 962, 759, 694 and 611 cm<sup>-1</sup>. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz): δ 7.39-7.37 (2H, m), 7.25-7.23 (3H, m), 4.04 (3H, s, OC*H*<sub>3</sub>), 3.28 (2H, s), 2.69-2.68 (2H, m), 2.50-2.48 (2H, m). <sup>13</sup>C NMR (CDCl<sub>3</sub>, DEPT-135): δ 203.3 (C, *C*=O), 185.3 (C, C=*C*-O), 131.6 (2 x CH), 128.0 (2 x CH), 127.5 (CH), 123.9 (C), 115.5 (C, *C*=C-O), 86.8 (C, acetylenic-*C*), 79.4 (C, acetylenic-*C*), 56.8 (CH<sub>3</sub>), 33.3 (CH<sub>2</sub>), 24.9 (CH<sub>2</sub>), 11.8 (CH<sub>2</sub>). HRMS (ESI-TOF) *m/z*: [M + H]<sup>+</sup> Calcd for C<sub>15</sub>H<sub>14</sub>O<sub>2</sub>H 227.1072; Found 227.1076.

**2-(3-Phenylprop-2-yn-1-yl)-2-(prop-2-yn-1-yl)cyclopentane-1,3-dione (44ea)**: The title compound was prepared following procedure **1i** (Method-1), purified by column chromatography using EtOAc/hexanes (1/9), and isolated as a white semi solid. Yield:



31% (15.52 mg). IR (Neat):  $v_{max}$  3287, 2922, 1728, 1490, 1423, 1344, 1196, 1030, 991, 758, 691 and 652 cm<sup>-1</sup>. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz):  $\delta$  7.33-7.31 (2H, m), 7.30-7.26 (3H, m), 2.86 (4H,

dABq, J = 17.6, 4.0 Hz), 2.68 (2H, s), 2.52 (2H, d, J = 2.8 Hz), 2.01 (1H, t, J = 2.8 Hz). <sup>13</sup>C NMR (CDCl<sub>3</sub>, DEPT-135):  $\delta$  214.3 (2 x C, C = O), 131.6 (2 x CH), 128.5 (CH), 128.3 (2 x CH), 122.2 (C), 83.3 (C, acetylenic-C), 82.9 (C, acetylenic-C), 78.1 (C, acetylenic-*C*), 71.2 (CH, acetylenic-*C*H), 58.2 (C), 37.1 (2 x CH<sub>2</sub>), 24.9 (CH<sub>2</sub>), 23.2 (CH<sub>2</sub>). HRMS (ESI-TOF) *m/z*: [M + Na]<sup>+</sup> Calcd for C<sub>17</sub>H<sub>14</sub>O<sub>2</sub>Na 273.0891; Found 273.0892.

## 2-Methyl-2-(3-(trimethylsilyl)prop-2-yn-1-yl)cyclohexane-1,3-dione (45bb): The

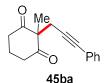
SiMe<sub>3</sub>

title compound was prepared following procedure 1i (Method-3), purified by column chromatography using EtOAc/hexanes (2/8), and isolated as a pale-yellow liquid. Yield: 76% (35.93 mg). IR

(Neat):  $v_{\text{max}}$  2958, 2924, 2176, 1729, 1698, 1455, 1414, 1371, 1317, 1249, 1030, 841, 760, 699, 643 and 582 cm<sup>-1</sup>. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz):  $\delta$  2.75-2.65 (4H, m), 2.63 (2H, s), 2.01-1.95 (2H, m), 1.26 (3H, s, C*H*<sub>3</sub>), 0.01 (9H, s). <sup>13</sup>C NMR (CDCl<sub>3</sub>, DEPT-135):  $\delta$  209.3 (2 x C, *C*=O), 102.5 (C, acetylenic-*C*), 87.6 (C, acetylenic-*C*), 63.8 (C), 38.6 (2 x CH<sub>2</sub>), 27.1 (CH<sub>2</sub>), 21.6 (CH<sub>3</sub>), 17.1 (CH<sub>2</sub>), -0.11 (3 x CH<sub>3</sub>). HRMS (ESI-TOF) m/z: [M + H]<sup>+</sup> Calcd for C<sub>13</sub>H<sub>20</sub>O<sub>2</sub>SiH 237.1311; Found 237.1312.

#### 2,5,5-Trimethyl-2-(3-(trimethylsilyl)prop-2-yn-1-yl)cyclohexane-1,3-dione (45cb):

The title compound was prepared following procedure **1i** (Method-3), purified by column chromatography using EtOAc/hexanes (2/8), and isolated as a pale-yellow liquid. Yield: 87% (46.01 mg). IR (Neat): v<sub>max</sub> 2956, 2176, 1727, 1696, 1456, 1408, 1373, 1327, 1249, 1052, 842, 760 and 656 cm<sup>-1</sup>. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz): δ 2.64 (4H, br s), 2.61 (2H, s), 1.28 (3H, s, C*H*<sub>3</sub>), 1.03 (3H, s, C*H*<sub>3</sub>), 1.02 (3H, s, C*H*<sub>3</sub>), 0.09 (9H, s, Si(C*H*<sub>3</sub>)<sub>3</sub>). <sup>13</sup>C NMR (CDCl<sub>3</sub>, DEPT-135) δ 208.8 (2 x C, C=O), 102.7 (C, acetylenic-*C*), 87.9 (C, acetylenic-*C*), 62.9 (C), 52.1 (2 x CH<sub>2</sub>), 30.4 (C), 29.3 (CH<sub>3</sub>), 28.1 (CH<sub>3</sub>), 26.7 (CH<sub>2</sub>), 22.1 (CH<sub>3</sub>), -0.14 (3 x


CH<sub>3</sub>, Si(CH<sub>3</sub>)<sub>3</sub>). HRMS (ESI-TOF) m/z: [M + Na]<sup>+</sup> Calcd for C<sub>15</sub>H<sub>24</sub>O<sub>2</sub>SiNa 287.1443; Found 287.1443.

#### 2-Methyl-2-(3-(trimethylsilyl)prop-2-yn-1-yl)cyclopentane-1,3-dione (45eb):[5b]

Me 45eb The title compound was prepared following procedure 1i (Method-3), purified by column chromatography using EtOAc/hexanes (3/7), and isolated as a pale yellow liquid. Yield: 40% (17.79 mg).

IR (Neat):  $v_{\text{max}}$  2959, 2176, 1728, 1452, 1417, 1372, 1315, 1250, 1073, 1044, 1021, 843, 761 and 643 cm<sup>-1</sup>. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz): δ 2.78 (4H, m), 2.44 (2H, br s), 1.10 (3H, s), 0.01 (9H, s). <sup>13</sup>C NMR (CDCl<sub>3</sub>, DEPT-135): δ 215.6 (2 x C, C=O), 100.8 (C, acetylenic-C), 87.7 (C, acetylenic-C), 55.6 (C), 36.1 (2 x CH<sub>2</sub>), 26.7 (CH<sub>2</sub>), 18.7 (CH<sub>3</sub>), -0.2 (3 x CH<sub>3</sub>); HRMS (ESI-TOF) m/z: [M + H]<sup>+</sup> Calcd for C<sub>12</sub>H<sub>18</sub>O<sub>2</sub>SiH 223.1154; Found 223.1153.

2-Methyl-2-(3-phenylprop-2-vn-1-yl)cyclohexane-1,3-dione (45ba):<sup>[5a]</sup> The title compound was prepared following procedure 1i (Method-2), purified by column chromatography using EtOAc/hexanes (1.5/8.5), and isolated as a white semi solid.



Yield: 34% (16.34 mg). IR (Neat):  $v_{max}$  2923, 2853, 1728, 1696, 1597, 1489, 1455, 1416, 1371, 1317, 1216, 1130, 1024, 913, 757 and 692 cm<sup>-1</sup>. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz): δ 7.34-7.32 (2H, m), 7.27-7.25 (3H, m), 2.86 (2H, s), 2.73 (4H, dt, J = 6.5, 2.5 Hz), 2.0 (2H, quintet, J = 6.5 Hz), 1.35 (3H, s). <sup>13</sup>C NMR (CDCl<sub>3</sub>, DEPT-135): δ 209.2 (2 x C, C=O), 131.6 (2 x CH), 128.2 (2 x CH), 128.0 (CH), 123.1 (C), 85.6 (C, acetylenic-C), 83.0 (C, acetylenic-C), 64.0 (C), 38.5 (2 x CH<sub>2</sub>), 26.5 (CH<sub>2</sub>), 21.7 (CH<sub>3</sub>), 17.3 (CH<sub>2</sub>). HRMS (ESI-TOF) m/z: [M + H]<sup>+</sup> Calcd for C<sub>16</sub>H<sub>16</sub>O<sub>2</sub>H 241.1229; Found 241.1232.

2-Methyl-2-(3-phenylprop-2-yn-1-yl)cyclopentane-1,3-dione (45ea):<sup>[5a]</sup> The title compound was prepared following procedure 1i (Method-2), purified by column

whit 45ea 1724

chromatography using EtOAc/hexanes (1/9), and isolated as a white semi solid. Yield: 40% (18.10 mg). IR (Neat):  $\nu_{max}$  2926, 1725, 1490, 1450, 1416, 1372, 1318, 1227, 1070, 991, 758 and 692

cm<sup>-1</sup>. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz): δ 7.33-7.31 (2H, m), 7.30-7.26 (3H, m), 2.84 (4H, s), 2.70 (2H, s), 1.18 (3H, s, C*H*<sub>3</sub>). <sup>13</sup>C NMR (CDCl<sub>3</sub>, DEPT-135): δ 215.5 (2 x C, *C*=O), 131.6 (2 x CH), 128.3 (2 x CH), 128.3 (CH), 122.5 (C), 84.0 (C, acetylenic-*C*), 82.9 (C, acetylenic-*C*), 55.4 (C), 35.9 (2 x CH<sub>2</sub>), 25.9 (CH<sub>2</sub>), 18.9 (CH<sub>3</sub>). HRMS (ESI-TOF) *m/z*: [M + Na]<sup>+</sup> Calcd for C<sub>15</sub>H<sub>14</sub>O<sub>2</sub>Na 249.0891; Found 249.0892.

**1j.** General Procedure for the Domino *C*-Methylation Followed by Trimethylsilyl Deprotection of TCRP Product 35cb: In an ordinary glass vial equipped with a magnetic stirring bar, 2.0 equiv. of K<sub>2</sub>CO<sub>3</sub> (0.4 mmol, 55.28 mg), 5.0 equiv. of methyl iodide (1.0 mmol, 141.94 mg, 62.25 μL) were added to 1.0 equiv. of TCRP compound **35cb** (0.2 mmol, 50.08 mg) in 1.0 mL of methanol (0.2 M) solvent and the reaction mixture was stirred at 45 °C (oil bath) for 16 h. The crude reaction mixture was quenched with aqueous NH<sub>4</sub>Cl solution, and the aqueous layer was extracted with ethyl acetate (3 x 10 mL). The combined organic layers were dried (Na<sub>2</sub>SO<sub>4</sub>), filtered, and concentrated. Pure domino product **46cb** (30%, 11.53 mg) was obtained by column chromatography (silica gel, mixture of hexanes/ethyl acetate).

2,5,5-Trimethyl-2-(prop-2-yn-1-yl)cyclohexane-1,3-dione (46cb):<sup>[7a]</sup> The title compound was prepared following procedure 1i, purified by column chromatography

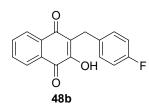
using EtOAc/hexanes (2/8), and isolated as a pale yellow liquid. Yield: 30% (11.53 mg). IR (Neat):  $v_{\text{max}}$  3280, 2955, 2360, 1728, 1695, 1455, 1373, 1326, 1094, 1058, 958 and 634 cm<sup>-1</sup>. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz):  $\delta$  2.71 (2H, d, J = 14.8 Hz), 2.63 (2H, d, J = 2.4 Hz), 2.55 (2H, d, J = 14.8 Hz), 1.97 (1H, t, J = 2.4 Hz), 1.34 (3H, s,  $CH_3$ ), 1.07 (3H, s,  $CH_3$ ), 0.99 (3H, s,

CH<sub>3</sub>). <sup>13</sup>C NMR (CDCl<sub>3</sub>, DEPT-135) δ 208.3 (2 x C, C=O), 80.5 (C, acetylenic-C), 70.8 (CH, acetylenic-CH), 63.2 (C), 51.4 (2 x CH<sub>2</sub>), 30.6 (C), 29.6 (CH<sub>3</sub>), 27.4 (CH<sub>3</sub>), 23.9 (CH<sub>2</sub>), 22.7 (CH<sub>3</sub>). HRMS (ESI-TOF) *m/z*: [M + Na]<sup>+</sup> Calcd for C<sub>12</sub>H<sub>16</sub>O<sub>2</sub>Na 215.1048;

Found 215.1048.

2.Organocatalytic Asymmetric Formal [3+2]-Cycloaddition as a Versatile Platform to Methanobenzo[7]annulenes:

**2a.** *L*-Proline Catalyzed Cascade Three-Component Reductive Alkylation (TCRA) Reactions with 2-Hydroxy-1,4-naphthoquinone: In an ordinary glass vial equipped with a magnetic stirring bar, to 0.6 mmol of the aldehyde **47**, 0.3 mmol of 2-hydroxy-1,4-naphthoquinone **1** and 0.33 mmol of Hantzsch ester **34** was added 1.0 mL of DCM, and then the catalyst *L*-proline **3n** (0.06 mmol) was added, and the reaction mixture was stirred at room temparature for 12-17 h. The crude reaction mixture was directly loaded onto a silica gel column with or without aqueous workup, and pure cascade products **48a–u** were obtained in 50-90% yield (silica gel, mixture of hexane/ethyl acetate).


### 2-Benzyl-3-hydroxy-[1,4]naphthoquinone (48a): Prepared following the procedure

2a and purified by column chromatography using EtOAc/hexane and isolated as a

yellow solid; Yield: 90%; Mp.: 174-175 °C; IR (Neat):  $v_{\text{max}}$  3344, 1639, 1587, 1453, 1376, 1278, 1216, 1076, 1024, 942, 761, 730 and 699 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz):  $\delta$  8.13 (1H, d, J = 7.5

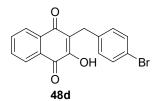
Hz), 8.07 (1H, d, J = 7.5 Hz), 7.75 (1H, dt, J = 7.5, 1.0 Hz), 7.68 (1H, dt, J = 7.5, 1.0 Hz), 7.42 (2H, d, J = 7.0 Hz), 7.28 (2H, t, J = 7.5 Hz), 7.20 (1H, t, J = 7.5 Hz), 3.97 (2H, s); <sup>13</sup>C NMR (CDCl<sub>3</sub>, DEPT-135)  $\delta$  184.3 (C, C=O), 181.6 (C, C=O), 153.0 (C), 138.9 (C), 134.9 (CH), 132.9 (CH), 132.8 (C), 129.4 (C), 129.2 (2 x CH), 128.4 (2 x CH), 126.9 (CH), 126.3 (CH), 126.1 (CH), 123.0 (C), 29.1 (CH<sub>2</sub>); HRMS m/z 287.0686 (M + Na<sup>+</sup>), calcd for C<sub>17</sub>H<sub>12</sub>O<sub>3</sub>Na 287.0684.

# 2-(4-Fluorobenzyl)-3-hydroxynaphthalene-1,4-dione (48b): Prepared following the



procedure **2a** and purified by column chromatography using EtOAc/hexane and isolated as a yellow solid; Yield: 80%; Mp.: 176-178 °C; IR (Neat):  $\nu_{max}$  3328, 1660, 1634, 1593, 1371, 1350, 1278, 1221, 823 and 730 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500

MHz):  $\delta$  8.11 (1H, dd, J = 7.5, 1.0 Hz), 8.07 (1H, dd, J = 7.5, 1.0 Hz), 7.75 (1H, dt, J = 7.5, 1.5 Hz), 7.68 (1H, dt, J = 7.5 1.0 Hz), 7.42 (1H, s), 7.35 (2H, m), 6.94 (2H, tt, J = 9.5, 3.0 Hz), 3.90 (2H, s); <sup>13</sup>C NMR (CDCl<sub>3</sub>, DEPT-135)  $\delta$  184.3 (C, C=O), 181.6 (C, C=O), 161.5 (C, d, J = 242.5 Hz, C-F), 152.9 (C), 135.0 (CH), 134.5 (C, d, J = 3.75 Hz), 133.0 (CH), 132.7 (C), 130.6 (2 x CH, d, J = 7.5 Hz), 129.3 (C), 126.9 (CH), 126.1


(CH), 122.8 (C), 115.1 (2 x CH, d, J = 20.0 Hz), 28.3 (CH<sub>2</sub>); HRMS m/z 305.0586 (M + Na<sup>+</sup>), calcd for C<sub>17</sub>H<sub>11</sub>FO<sub>3</sub>Na 305.0590.

# 2-(4-Chlorobenzyl)-3-hydroxynaphthalene-1,4-dione (48c): Prepared following the

O O O 48c procedure **2a** and purified by column chromatography using EtOAc/hexane and isolated as a yellow solid; Yield: 80%; Mp.: 163-165 °C; IR (KBr): v<sub>max</sub> 3380, 2357, 2331, 1665, 1634, 1587, 1494, 1365, 1272, 1226, 1092, 1040, 792, 653

and 560 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz):  $\delta$  8.10 (1H, dd, J = 8.0, 1.0 Hz), 8.05 (1H, dd, J = 7.5, 1.0 Hz), 7.74 (1H, dt, J = 7.5, 1.5 Hz), 7.66 (1H, dt, J = 7.5 1.0 Hz), 7.31 (2H, td, J = 8.5, 1.5 Hz), 7.20 (2H, td, J = 8.5, 1.5 Hz), 3.89 (2H, s); <sup>13</sup>C NMR (CDCl<sub>3</sub>, DEPT-135)  $\delta$  184.2 (C, C=O), 181.5 (C, C=O), 153.0 (C), 137.3 (C), 135.0 (CH), 133.0 (CH), 132.6 (C), 132.1 (C), 130.5 (2 x CH), 129.3 (C), 128.4 (2 x CH), 126.9 (CH), 126.2 (CH), 122.5 (C), 28.4 (CH<sub>2</sub>); HRMS m/z 321.0294 (M + Na<sup>+</sup>), calcd for C<sub>17</sub>H<sub>11</sub>ClO<sub>3</sub>Na 321.0294.

### 2-(4-Bromobenzyl)-3-hydroxynaphthalene-1,4-dione (48d): Prepared following the



procedure 2a and purified by column chromatography using EtOAc/hexane and isolated as a yellow solid; Yield: 70%; Mp.: 166-168 °C; IR (Neat):  $\nu_{max}$  3375, 2356, 2339, 1671,

1632, 1594, 1484, 1369, 1271, 1227 and 783 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz):  $\delta$  8.11 (1H, dd, J = 7.5, 1.0 Hz), 8.07 (1H, dd, J = 7.5, 1.0 Hz), 7.75 (1H, dt, J = 7.5, 1.0 Hz), 7.68 (1H, dt, J = 7.5, 1.0 Hz), 7.37 (2H, br d, J = 8.5 Hz), 7.27 (2H, br d, J = 8.5 Hz),

3.88 (2H, s); <sup>13</sup>C NMR (CDCl<sub>3</sub>, DEPT-135) δ 184.2 (C, C=O), 181.5 (C, C=O), 153.1 (C), 137.9 (C), 135.1 (CH), 133.1 (CH), 132.7 (C), 131.4 (2 x CH), 130.9 (2 x CH), 129.3 (C), 126.9 (CH), 126.2 (CH), 122.4 (C), 120.2 (C), 28.5 (CH<sub>2</sub>); HRMS m/z 364.9786 (M + Na<sup>+</sup>), calcd for C<sub>17</sub>H<sub>11</sub>BrO<sub>3</sub>Na 364.9789.

### 2-Hydroxy-3-(4-methylbenzyl)naphthalene-1,4-dione (48e): Prepared following the

procedure **2a** and purified by column chromatography using EtOAc/hexane and isolated as a yellow solid; Yield: 75%; Mp.: 162-164 °C; IR (Neat):  $v_{max}$  3359, 2925, 1655, 1587, 1505, 1458, 1355, 1210, 1035, 952, 808, 756, 725 and 653 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz):  $\delta$  8.10 (1H, dd, J = 8.0, 1.5 Hz), 8.04 (1H, dd, J = 8.0, 1.5 Hz), 7.73 (1H, dt, J = 7.5, 1.0 Hz), 7.65 (1H, dt, J = 7.5, 1.5 Hz), 7.43 (1H, s), 7.27 (2H, br d, J = 8.0 Hz), 7.06 (2H, br d, J = 8.0 Hz), 3.90 (2H, s), 2.28 (3H, s); <sup>13</sup>C NMR (CDCl<sub>3</sub>, DEPT-135)  $\delta$  184.4 (C, C=O), 181.7 (C, C=O), 152.9 (C), 135.8 (2 x C), 134.9 (CH), 132.9 (CH), 132.8 (C), 129.4 (C), 129.1 (2 x CH), 129.0 (2 x CH), 126.9 (CH), 126.0 (CH), 123.3 (C), 28.6 (CH<sub>2</sub>), 20.9 (CH<sub>3</sub>); HRMS m/z 301.0838 (M + Na<sup>+</sup>), calcd for C<sub>18</sub>H<sub>14</sub>O<sub>3</sub>Na 301.0841.

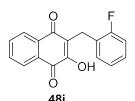
2-Hydroxy-3-(4-methoxybenzyl)naphthalene-1,4-dione (48f): Prepared following the procedure 2a and purified by column chromatography using EtOAc/hexane and

cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz):  $\delta$  8.10 (1H, dd, J = 7.5, 1.0 Hz), 8.04 (1H, dd, J = 7.5, 1.0 Hz), 7.72 (1H, dt, J = 7.5, 1.0 Hz), 7.65 (1H, dt, J = 7.5, 1.0 Hz), 7.31 (2H, br d, J = 8.5 Hz), 6.79 (2H, td, J = 9.5, 2.0 Hz), 3.88 (2H, s), 3.74 (3H, s); <sup>13</sup>C NMR (CDCl<sub>3</sub>, DEPT-135)  $\delta$  184.4 (C, C=O), 181.7 (C, C=O), 158.1 (C), 152.8 (C), 134.9 (CH), 132.9 (CH), 132.7 (C), 130.9 (C), 130.1 (2 x CH), 129.4 (C), 126.8 (CH), 126.0 (CH), 123.3 (C), 113.8 (2 x CH), 55.2 (CH<sub>3</sub>), 28.1 (CH<sub>2</sub>); HRMS m/z 317.0791 (M + Na<sup>+</sup>), calcd for C<sub>18</sub>H<sub>14</sub>O<sub>4</sub>Na 317.0790.

# 2-Hydroxy-3-(4-(trifluoromethyl)benzyl)naphthalene-1,4-dione (48g): Prepared

O OH CF<sub>3</sub> following the procedure 2a and purified by column chromatography using EtOAc/hexane and isolated as a yellow solid; Yield: 70%; Mp.: 188-190 °C; IR (Neat):  $v_{max}$  3364, 1676, 1627, 1589, 1369, 1331, 1282, 1227,

1156, 1106, 1063, 1002 and 942 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz):  $\delta$  8.12 (1H, dd, J = 7.5, 1.0 Hz), 8.08 (1H, dd, J = 7.5, 1.0 Hz), 7.76 (1H, dt, J = 7.5, 1.5 Hz), 7.69 (1H, dt, J = 7.5, 1.5 Hz), 7.50 (4H, m), 3.99 (2H, s); <sup>13</sup>C NMR (CDCl<sub>3</sub>, 100 Mz, DEPT-135)  $\delta$  184.2 (C, C=O), 181.4 (C, C=O), 153.2 (C), 142.9 (C), 135.1 (CH), 133.1 (CH), 132.7 (C), 129.4 (2 x CH), 129.3 (C), 128.6 (C, q, J = 32.0 Hz), 126.9 (CH), 126.2 (CH), 125.3 (2 x CH, q, J = 4.0 Hz), 124.2 (C, q, J = 270.0 Hz, C F<sub>3</sub>), 122.0 (C), 29.0 (CH<sub>2</sub>); HRMS m/z 355.0556 (M + Na<sup>+</sup>), calcd for C<sub>18</sub>H<sub>11</sub>F<sub>3</sub>O<sub>3</sub>Na 355.0558.


# 4-((3-Hydroxy-1,4-dioxo-1,4-dihydronaphthalen-2-yl)methyl)benzonitrile (48h):

O OH CN

Prepared following the procedure 2a and purified by column chromatography using EtOAc/hexane and isolated as a yellow solid; Yield: 80%; Mp.: 185-186 °C; IR (KBr):  $\nu_{max}$  3349,

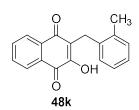
2915, 2223, 1639, 1587, 1371, 1350, 1272, 1221, 1019, 926, 725 and 668 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz):  $\delta$  8.12 (1H, dd, J = 7.5, 1.0 Hz), 8.09 (1H, dd, J = 7.5, 1.0 Hz), 7.77 (1H, dt, J = 7.5, 1.0 Hz), 7.70 (1H, dt, J = 7.5, 1.5 Hz), 7.55 (2H, br d, J = 6.5 Hz), 7.49 (2H, br d, J = 8.5 Hz), 3.99 (2H, s); <sup>13</sup>C NMR (CDCl<sub>3</sub>, DEPT-135)  $\delta$  184.1 (C, C=O), 181.3 (C, C=O), 153.3 (C), 144.4 (C), 135.2 (CH), 133.2 (CH), 132.5 (C), 132.2 (2 x CH), 129.9 (2 x CH), 129.3 (C), 126.9 (CH), 126.3 (CH), 121.4 (C), 118.9 (C), 110.2 (C), 29.3 (CH<sub>2</sub>); HRMS m/z 312.0637 (M + Na<sup>+</sup>), calcd for C<sub>18</sub>H<sub>11</sub>NO<sub>3</sub>Na 312.0637.

### 2-(2-Fluorobenzyl)-3-hydroxynaphthalene-1,4-dione (48i): Prepared following the



procedure 2a and purified by column chromatography using EtOAc/hexane and isolated as a yellow solid; Yield: 80%; Mp.: 158-160 °C; IR (KBr):  $v_{max}$  3380, 1639, 1582, 1448, 1355, 1278,

1221, 1019, 725 and 653 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz):  $\delta$  8.14 (1H, dd, J= 7.6, 0.8 Hz), 8.10 (1H, dd, J= 7.6, 1.2 Hz), 7.78 (1H, dt, J= 7.6, 1.6 Hz), 7.70 (1H, dt, J= 7.6, 1.6 Hz), 7.50 (1H, s), 7.32-7.28 (1H, m), 7.21-7.15 (1H, m), 7.05-7.01 (2H, m), 4.02 (2H, s); <sup>13</sup>C NMR (CDCl<sub>3</sub>, DEPT-135)  $\delta$  184.2 (C, C=O), 181.5 (C, C=O), 160.9 (C, d, J= 244.0 Hz, C-F), 153.6 (C), 135.1 (CH), 133.0 (CH), 132.8 (C), 130.8 (CH, d, J= 5.0 Hz), 129.3 (C), 128.0 (CH, d, J= 8.0 Hz), 127.0 (CH), 126.2 (CH), 125.4 (C, d, J=


16.0 Hz), 123.9 (CH, d, J = 3.0 Hz), 121.5 (C), 115.3 (CH, d, J = 22.0 Hz), 22.1 (CH<sub>2</sub>, d, J = 4.0 Hz); HRMS m/z 305.0585 (M + Na<sup>+</sup>), calcd for C<sub>17</sub>H<sub>11</sub>FO<sub>3</sub>Na 305.0590.

#### 2-(2-Bromobenzyl)-3-hydroxynaphthalene-1,4-dione (48j): Prepared following the

O Br OH OH procedure 2a and purified by column chromatography using EtOAc/hexane and isolated as a yellow solid; Yield: 80%; Mp.: 162-164 °C; IR (KBr):  $\nu_{max}$  3380, 1639, 1577, 1360, 1272, 1221,

1019, 823 and 730 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz):  $\delta$  8.14-8.11 (2H, m), 7.78 (1H, dt, J = 7.5, 1.5 Hz), 7.71 (1H, dt, J = 7.6, 1.5 Hz), 7.56 (1H, dd, J = 8.0, 1.0 Hz), 7.46 (1H, s), 7.17 (1H, dt, J = 7.5, 2.0 Hz), 7.14 (1H, dt, J = 7.5, 2.0 Hz), 7.05 (1H, dt, J = 7.0, 2.0 Hz), 4.09 (2H, s); <sup>13</sup>C NMR (CDCl<sub>3</sub>, DEPT-135)  $\delta$  184.2 (C, C=O), 181.4 (C, C=O), 153.9 (C), 137.8 (C), 135.1 (CH), 133.0 (CH), 132.8 (C), 132.8 (CH), 129.6 (CH), 129.4 (C), 127.8 (CH), 127.3 (CH), 127.1 (CH), 126.2 (CH), 124.6 (C), 121.4 (C), 29.6 (CH<sub>2</sub>); HRMS m/z 364.9789 (M+Na<sup>+</sup>), calcd for C<sub>17</sub>H<sub>11</sub>BrO<sub>3</sub>Na 364.9789.

### 2-Hydroxy-3-(2-methylbenzyl)naphthalene-1,4-dione (48k): Prepared following



the procedure 2a and purified by column chromatography using EtOAc/hexane and isolated as a yellow solid; Yield: 60%; Mp.: 168-170 °C; IR (Neat):  $v_{max}$  3369, 1639, 1587, 1371, 1350, 1272, 1231, 1040, 957 and 730 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz):  $\delta$ 

8.11 (1H, dd, J = 7.5, 1.0 Hz), 8.09 (1H, dd, J = 7.5, 1.0 Hz), 7.75 (1H, dt, J = 7.5, 1.5 Hz), 7.68 (1H, dt, J = 7.5, 1.5 Hz), 7.17-7.14 (2H, m), 7.12-7.04 (2H, m), 3.94 (2H, s), 2.47 (3H, s);  $^{13}$ C NMR (CDCl<sub>3</sub>, DEPT-135)  $\delta$  184.4 (C, C=O), 181.5 (C, C=O), 153.6

(C), 136.8 (C), 136.4 (C), 135.0 (CH), 132.9 (CH), 132.9 (C), 130.2 (CH), 129.4 (C), 128.6 (CH), 126.9 (CH), 126.3 (CH), 126.1 (CH), 125.8 (CH), 122.7 (C), 26.2 (CH<sub>2</sub>), 19.9 (CH<sub>3</sub>); HRMS m/z 279.1022 (M + H<sup>+</sup>), calcd for C<sub>18</sub>H<sub>15</sub>O<sub>3</sub> 279.1022.

# 2-(2-Azidobenzyl)-3-hydroxynaphthalene-1,4-dione (48l): Prepared following the

O N<sub>3</sub>
OH 0
48I

procedure **2a** and purified by column chromatography using EtOAc/hexane and isolated as a yellow solid; Yield: 75%; Mp.: 142-144 °C; IR (KBr):  $v_{max}$  3333, 2104, 1634, 1582, 1484, 1376, 1267, 1221, 1040, 761 and 735 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500

MHz):  $\delta$  8.13 (1H, dd, J = 7.5, 1.0 Hz), 8.12 (1H, dd, J = 7.5, 1.0 Hz), 7.78 (1H, dt, J = 7.5, 1.5 Hz), 7.71 (1H, dt, J = 7.5, 1.5 Hz), 7.49 (1H, s), 7.26 (1H, dt, J = 7.5, 1.0 Hz), 7.20-7.15 (2H, m), 7.03 (1H, dt, J = 7.5, 1.0 Hz), 3.94 (2H, s);  $^{13}$ C NMR (CDCl<sub>3</sub>, DEPT-135)  $\delta$  184.2 (C, C=O), 181.4 (C, C=O), 153.8 (C), 138.1 (C), 135.0 (CH), 133.0 (CH), 132.8 (C), 130.1 (CH), 129.9 (C), 129.4 (C), 127.7 (CH), 127.0 (CH), 126.2 (CH), 124.7 (CH), 122.0 (C), 118.1 (CH), 24.2 (CH<sub>2</sub>); HRMS m/z 328.0698 (M+Na<sup>+</sup>), calcd for C<sub>17</sub>H<sub>11</sub>N<sub>3</sub>O<sub>3</sub>Na 328.0698.

**2-Hydroxy-3-(naphthalen-1-ylmethyl)naphthalene-1,4-dione (48m)**: Prepared following the procedure **2a** and purified by column chromatography using EtOAc/hexane and isolated as a yellow solid; Yield: 50%; Mp.: 167-170 °C; IR (Neat):

 $ν_{\text{max}}$  3359, 3049, 1665, 1644, 1587, 1365, 1340, 1267, 1226, 1045, 1014, 947, 787 and 725 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz): δ 8.32 (1H, d, J = 8.4 Hz), 8.09 (1H, dd, J = 7.6, 0.8 Hz),

8.03 (1H, d, J = 7.2 Hz), 7.81 (1H, d, J = 8.0 Hz), 7.72-7.68 (2H, m), 7.62 (1H, br t, J = 7.6 Hz), 7.52 (1H, dt, J = 6.8, 1.2 Hz), 7.46-7.43 (2H, m), 7.34 (1H, t, J = 8.0 Hz), 4.39 (2H, s); <sup>13</sup>C NMR (CDCl<sub>3</sub>, DEPT-135)  $\delta$  184.4 (C, C=O), 181.4 (C, C=O), 153.9 (C), 134.9 (CH), 134.4 (C), 133.8 (C), 132.9 (C), 132.9 (CH), 132.1 (C), 129.4 (C), 128.6 (CH), 127.0 (CH), 126.9 (CH), 126.7 (CH), 126.1 (CH), 125.9 (CH), 125.4 (CH), 124.0 (CH), 122.3 (C), 26.2 (CH<sub>2</sub>); HRMS m/z 337.0891 (M + Na<sup>+</sup>), calcd for C<sub>21</sub>H<sub>14</sub>O<sub>3</sub>Na 337.0841.

2-(Furan-2-ylmethyl)-3-hydroxynaphthalene-1,4-dione (48n): Prepared following the procedure 2a and purified by column chromatography using EtOAc/hexane and

isolated as a yellow solid; Yield: 80%; Mp.: 151-153 °C; IR (Neat):  $\nu_{max}$  3333, 1639, 1587, 1371, 1350, 1272, 1210, 1071, 942, 808 and 725 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz):  $\delta$  8.14 (1H,

dd, J = 8.0, 1.2 Hz), 8.08 (1H, dd, J = 8.0, 1.2 Hz), 7.76 (1H, dt, J = 7.6, 1.2 Hz), 7.69 (1H, dt, J = 7.6 1.2 Hz), 7.28 (1H, dd, J = 2.0, 0.8 Hz), 6.27 (1H, dd, J = 3.2, 2.5 Hz), 6.12 (1H, dd, J = 3.2, 0.8 Hz), 3.99 (2H, s);  $^{13}$ C NMR (CDCl<sub>3</sub>, DEPT-135)  $\delta$  183.9 (C, C=O), 181.5 (C, C=O), 153.4 (C), 151.6 (C), 141.3 (CH), 135.1 (CH), 133.0 (CH), 132.7 (C), 129.3 (C), 126.9 (CH), 126.2 (CH), 119.6 (C), 110.3 (CH), 106.4 (CH), 21.9 (CH<sub>2</sub>); HRMS m/z 277.0477 (M + Na<sup>+</sup>), calcd for C<sub>15</sub>H<sub>10</sub>O<sub>4</sub>Na 277.0477.

**2-Hydroxy-3-(thiophen-2-ylmethyl)naphthalene-1,4-dione (480)**: Prepared following the procedure **2a** and purified by column chromatography using EtOAc/hexane and isolated as a yellow solid; Yield: 80%; Mp.: 154-156 °C; IR (Neat):  $v_{max}$  3333, 2357, 1639, 1598, 1371, 1340, 480 1272, 1257, 1216, 1112, 1045, 931 and 730 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz):  $\delta$  8.13 (1H, dd, J = 8.0, 1.0 Hz), 8.06 (1H, dd, J = 7.5, 1.0 Hz), 7.75 (1H, dt, J = 7.5, 1.0 Hz), 7.67 (1H, dt, J = 7.5 1.5 Hz), 7.51 (1H, s), 7.10 (1H, dd, J = 5.5, 1.5 Hz), 6.97 (1H, dd, J = 3.5, 1.0 Hz), 6.88 (1H, dd, J = 5.5, 3.5 Hz), 4.13 (2H, s);

5.5, 1.5 Hz), 6.97 (1H, dd, J = 3.5, 1.0 Hz), 6.88 (1H, dd, J = 5.5, 3.5 Hz), 4.13 (2H, s); <sup>13</sup>C NMR (CDCl<sub>3</sub>, DEPT-135)  $\delta$  183.9 (C, C=O), 181.6 (C, C=O), 152.8 (C), 140.4 (C), 135.0 (CH), 133.0 (CH), 132.7 (C), 129.4 (C), 126.9 (CH), 126.7 (CH), 126.1 (CH), 125.9 (CH), 124.0 (CH), 121.9 (C), 23.2 (CH<sub>2</sub>); HRMS m/z 293.0248 (M + Na<sup>+</sup>), calcd for C<sub>15</sub>H<sub>10</sub>O<sub>3</sub>SNa 293.0248.

# tert-Butyl 3-((3-hydroxy-1,4-dioxo-1,4-dihydronaphthalen-2-yl)methyl)-1H-

O OH OH Boc 48p indole-1-carboxylate (48p): Prepared following the procedure 2a and purified by column chromatography using EtOAc/hexane and isolated as a yellow solid; Yield: 60%; Mp.: 101-102 °C; IR (Neat):  $v_{max}$  3375, 2977, 2920, 1727,

1660, 1587, 1448, 1360, 1303, 1272, 1221, 1159, 1076, 1019, 942, 854 and 725 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz):  $\delta$  8.11 (1H, dd, J = 7.6, 0.8 Hz), 8.04 (1H, dd, J = 7.6, 0.8 Hz), 8.10-8.00 (1H, m), 7.77 (1H, br d, J = 7.6 Hz), 7.72 (1H, dt, J = 7.6, 1.2 Hz), 7.64 (1H, dt, J = 7.6, 1.2 Hz), 7.52 (1H, s), 7.29-7.20 (2H, m), 3.99 (2H, s), 1.64 (9H, s); <sup>13</sup>C NMR (CDCl<sub>3</sub>, DEPT-135)  $\delta$  184.2 (C, C=O), 181.4 (C, C=O), 153.0 (C), 149.8 (C),

135.2 (C), 134.9 (CH), 132.9 (CH), 132.7 (C), 130.3 (C), 129.3 (C), 126.9 (CH), 126.1 (CH), 124.3 (CH), 124.2 (CH), 122.4 (CH), 121.8 (C), 119.4 (CH), 117.3 (C), 115.0 (CH), 83.4 (C), 28.1 (3 x CH<sub>3</sub>), 18.6 (CH<sub>2</sub>); HRMS m/z 426.1315 (M + Na<sup>+</sup>), calcd for C<sub>24</sub>H<sub>21</sub>NO<sub>5</sub>Na 426.1317.

### 2-Ethyl-3-hydroxynaphthalene-1,4-dione (48q): Prepared following the procedure 2a

and purified by column chromatography using EtOAc/hexane and isolated as a yellow solid; Yield: 80%; Mp.: 138-139 °C; IR (KBr): 0 48q

 $v_{max}$  3354, 2972, 2920, 2858, 1639, 1587, 1448, 1376, 1350, 1247, 1097, 968, 864 and 725 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz): δ 8.11 (1H,

br d, J = 8.0 Hz), 8.06 (1H, br d, J = 8.0 Hz), 7.74 (1H, dt, J = 7.5, 1.0 Hz), 7.67 (1H, dt, J = 7.5, 1.0 Hz)dt, J = 8.0, 1.0 Hz), 7.41 (1H, s), 2.62 (2H, q, J = 7.5 Hz), 1.15 (3H, t, J = 8.0 Hz); <sup>13</sup>C NMR (CDCl<sub>3</sub>, DEPT-135) δ 184.5 (C, C=O), 181.5 (C, C=O), 152.7 (C), 134.7 (CH), 132.9 (C), 132.8 (CH), 129.4 (C), 126.7 (CH), 126.0 (CH), 125.9 (C), 16.7 (CH<sub>2</sub>), 12.6 (CH<sub>3</sub>); HRMS m/z 203.0700 (M + H<sup>+</sup>), calcd for  $C_{12}H_{11}O_3$  203.0708.

#### 2-Hydroxy-3-pentylnaphthalene-1,4-dione (48r): Prepared following the procedure

485r

2a and purified by column chromatography using EtOAc/hexane and isolated as a yellow solid; Yield: 85%; Mp.: 98-99 °C; IR (KBr):  $v_{\text{max}}$  3416, 3344, 2951, 2920, 2853, 1655, 1644, 1593, 1463, 1381, 1210, 1112, 1014, 937, 864, 797, 735, 689 and 575

cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz):  $\delta$  8.11 (1H, d, J = 6.7 Hz), 8.06 (1H, d, J = 7.5 Hz), 7.74 (1H, dt, J = 8.0, 1.0 Hz), 7.67 (1H, dt, J = 7.5, 1.0 Hz), 7.39 (1H, s), 2.59 (2H, t, J = 7.5, 1.0 Hz), 7.39 (1H, s), 2.59 (2H, t, J = 7.5, 1.0 Hz), 7.39 (1H, s), 2.59 (2H, t, J = 7.5, 1.0 Hz), 7.39 (1H, s), 2.59 (2H, t, J = 7.5, 1.0 Hz), 7.39 (1H, s), 2.59 (2H, t, J = 7.5, 1.0 Hz), 7.39 (1H, s), 2.59 (2H, t, J = 7.5, 1.0 Hz), 7.39 (1H, s), 2.59 (2H, t, J = 7.5, 1.0 Hz), 7.39 (1H, s), 2.59 (2H, t, J = 7.5, 1.0 Hz), 7.39 (1H, s), 2.59 (2H, t, J = 7.5, 1.0 Hz), 7.39 (1H, s), 2.59 (2H, t, J = 7.5, 1.0 Hz), 7.39 (1H, s), 2.59 (2H, t, J = 7.5, 1.0 Hz), 7.39 (1H, s), 2.59 (2H, t, J = 7.5, 1.0 Hz), 7.39 (1H, s), 2.59 (2H, t, J = 7.5, 1.0 Hz), 7.39 (1H, s), 2.59 (2H, t, J = 7.5, 1.0 Hz), 7.39 (1H, s), 2.59 (2H, t, J = 7.5, 1.0 Hz), 7.39 (1H, s), 2.59 (2H, t, J = 7.5, 1.0 Hz), 7.39 (1H, s), 2.59 (2H, t, J = 7.5, 1.0 Hz), 7.39 (1H, s), 2.59 (2H, t, J = 7.5, 1.0 Hz), 7.39 (1H, s), 2.59 (2H, t, J = 7.5, 1.0 Hz), 7.39 (1H, s), 2.59 (2H, t, J = 7.5, 1.0 Hz), 7.39 (1H, s), 2.59 (2H, t, J = 7.5, 1.0 Hz), 7.39 (1H, s), 2.59 (2H, t, J = 7.5, 1.0 Hz), 7.39 (1H, s), 7.39 = 7.5 Hz), 1.57-1.51 (2H, m), 1.39-1.31 (4H, m), 0.90 (3H, t, J = 7.5 Hz); <sup>13</sup>C NMR (CDCl<sub>3</sub>, DEPT-135)  $\delta$  184.6 (C, C=O), 181.4 (C, C=O), 153.0 (C), 134.7 (CH), 132.9 (C), 132.8 (CH), 129.4 (C), 126.7 (CH), 126.0 (CH), 124.8 (C), 31.8 (CH<sub>2</sub>), 27.9 (CH<sub>2</sub>), 23.3 (CH<sub>2</sub>), 22.4 (CH<sub>2</sub>), 13.9 (CH<sub>3</sub>); HRMS m/z 267.0995 (M + Na<sup>+</sup>), calcd for C<sub>15</sub>H<sub>16</sub>O<sub>3</sub>Na 267.0997.

2-Hydroxy-3-isopentylnaphthalene-1,4-dione (48s): Prepared following the

procedure 
$$2a$$
 and purified by column chromatography using EtOAc/hexane and isolated as a yellow solid; Yield: 90%; Mp.: 101-102 °C; IR (Neat):  $\nu_{max}$  3359, 2951, 1639, 1593, 1453, 1376, 48s

1350, 1278, 1221, 1112, 725 and 658 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz):  $\delta$  8.11 (1H, dd, J = 7.6, 0.4 Hz), 8.07 (1H, dd, J = 7.6, 0.4 Hz), 7.74 (1H, dt, J = 7.6, 1.2 Hz), 7.67 (1H, dt, J = 7.6, 1.2 Hz), 7.34 (1H, d, J = 1.6 Hz), 2.62-2.58 (2H, m), 1.62 (1H, septet, J = 6.8 Hz), 1.44-1.38 (2H, m), 0.97 (6H, d, J = 6.8 Hz, 2 x CH<sub>3</sub>); <sup>13</sup>C NMR (CDCl<sub>3</sub>, DEPT-135)  $\delta$  184.6 (C, C=O), 181.4 (C, C=O), 152.9 (C), 134.8 (CH), 132.9 (C), 132.8 (CH), 129.4 (C), 126.7 (CH), 126.0 (CH), 125.1 (C), 37.2 (CH<sub>2</sub>), 28.3 (CH), 22.4 (2 x CH<sub>3</sub>), 21.4 (CH<sub>2</sub>); HRMS m/z 267.0993 (M + Na<sup>+</sup>), calcd for C<sub>15</sub>H<sub>16</sub>O<sub>3</sub>Na 267.0997.

## 2-Hydroxy-3-octylnaphthalene-1,4-dione (48t): Prepared following the procedure 2a



NMR (CDCl<sub>3</sub>, 400 MHz):  $\delta$  8.11 (1H, d, J = 7.6 Hz), 8.07 (1H, d, J = 7.6 Hz), 7.75 (1H, t, J = 7.6 Hz), 7.67 (1H, t, J = 7.6 Hz), 7.34 (1H, br s), 2.59 (2H, t, J = 8.0 Hz), 1.53 (2H, quintet, J = 8.0 Hz), 1.37-1.26 (10H, m), 0.86 (3H, t, J = 6.4 Hz); <sup>13</sup>C NMR (CDCl<sub>3</sub>, DEPT-135)  $\delta$  184.7 (C, C=O), 181.4 (C, C=O), 153.0 (C), 134.8 (CH), 132.9 (C), 132.8 (CH), 129.4 (C), 126.7 (CH), 126.0 (CH), 124.8 (C), 31.8 (CH<sub>2</sub>), 29.8 (CH<sub>2</sub>), 29.4 (CH<sub>2</sub>), 29.2 (CH<sub>2</sub>), 28.3 (CH<sub>2</sub>), 23.4 (CH<sub>2</sub>), 22.6 (CH<sub>2</sub>), 14.1 (CH<sub>3</sub>); HRMS m/z 309.1467 (M + Na<sup>+</sup>), calcd for C<sub>18</sub>H<sub>22</sub>O<sub>3</sub>Na 309.1467.

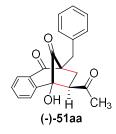
#### 2-Hydroxy-3-(3-phenylpropyl)naphthalene-1,4-dione (48u): Prepared following the

O EtO
OH 12748u 126

procedure **2a** and purified by column chromatography using EtOAc/hexane and isolated as a yellow solid; Yield: 82%; Mp.: 127-128°C; IR (Neat):  $\nu_{max}$  3354, 1639, 1582, 1371, 1340, 1262, 1221, 1050, 973, and 720 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500

MHz):  $\delta$  8.11 (1H, dd, J = 7.5, 1.0 Hz), 8.06 (1H, dd, J = 7.5, 1.0 Hz), 7.74 (1H, dt, J = 7.5, 1.0 Hz), 7.66 (1H, dt, J = 7.5, 1.5 Hz), 7.35 (1H, s), 7.26-7.23 (2H, m), 7.21-7.14 (2H, m), 7.15-7.12 (1H, m), 2.71 (2H, t, J = 8.0 Hz), 2.67 (2H, t, J = 8.0 Hz), 1.89 (2H, quintet, J = 8.0 Hz); <sup>13</sup>C NMR (CDCl<sub>3</sub>, DEPT-135)  $\delta$  184.6 (C, C=O), 181.3 (C, C=O), 153.1 (C), 142.1 (C), 134.8 (CH), 132.9 (C), 132.8 (CH), 129.4 (C), 128.3 (2 x CH), 128.2 (2 x CH), 126.8 (CH), 126.0 (CH), 125.7 (CH), 124.2 (C), 36.0 (CH<sub>2</sub>), 29.6 (CH<sub>2</sub>), 23.3 (CH<sub>2</sub>); HRMS m/z 293.1178 (M + H<sup>+</sup>), calcd for C<sub>19</sub>H<sub>17</sub>O<sub>3</sub> 293.1178.

2b. Preparation of Racemic Methanobenzo[7]annulenes 51 under the 4-Dimethylaminopyridine catalysis: In an ordinary glass vial equipped with a magnetic stirring bar, to 0.3 mmol of 2-hydroxy-1,4-naphthoquinone derivative **48** and 0.9 mmol of alkyl vinyl ketone **47** with a catalytic amount of 4-dimethylaminopyridine **3p** in 1.0 mL of toluene solvent and the reaction mixture was stirred at room temparature for 9-12 h. The crude reaction mixture was worked up with aqueous NH<sub>4</sub>Cl solution, and the aqueous layer was extracted with ethyl acetate (3 x 10 mL). The combined organic layers were dried (Na<sub>2</sub>SO<sub>4</sub>), filtered, and concentrated. Pure products **51** were obtained by column chromatography (silica gel, mixture of hexane/ethyl acetate).


2c. Preparation of Racemic Methanobenzo[7]annulenes 51 under the 1:1 mixture of 57a and 57b: In an ordinary glass vial equipped with a magnetic stirring bar, to 0.3 mmol of 2-hydroxy-1,4-naphthoquinone derivative 48 and 0.9 mmol of alkyl vinyl ketone 49 with a catalytic amount of 1:1 mixture of 57a and 57b in 1.0 mL of toluene solvent and the reaction mixture was stirred at room temparature for 6-12 h. The crude reaction mixture was worked up with aqueous NH<sub>4</sub>Cl solution, and the aqueous layer was extracted with ethyl acetate (3 x 10 mL). The combined organic layers were dried (Na<sub>2</sub>SO<sub>4</sub>), filtered, and concentrated. Pure products 51 were obtained by column chromatography (silica gel, mixture of hexane/ethyl acetate).

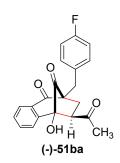
**2d.** Preparation of Asymmetric Methanobenzo[7]annulenes 51aa-51ua under the Chiral Quinine Thiourea 57b catalysis: In an ordinary glass vial equipped with a magnetic stirring bar, to Q-NH-thiourea 57b (0.06 mmol) and C<sub>6</sub>H<sub>5</sub>CF<sub>3</sub> (1.0 mL) was added and stirred at 20 °C for 5 minutes then 0.3 mmol of 2-hydroxy-1,4-naphthoquinone derivative **48a-u** and 0.9 mmol of methyl vinyl ketone **49a** was added, and the reaction mixture was stirred at 20 °C for 2-36 h. The crude reaction mixture was

worked up with aqueous NH<sub>4</sub>Cl solution, and the aqueous layer was extracted with ethyl acetate (3 x 10 mL). The combined organic layers were dried (Na<sub>2</sub>SO<sub>4</sub>), filtered, and concentrated. Pure chiral products **51aa-51ua** were obtained by column chromatography (silica gel, mixture of hexane/ethyl acetate).

### (5S,6R,8R)-6-Acetyl-8-benzyl-5-hydroxy-7,8-dihydro-5H-5,8-

methanobenzo[7]annulene-9,10(6H)-dione ((-)-51aa): Prepared by following the procedure 2d and purified by column chromatography using EtOAc/hexane and isolated

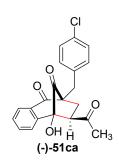



as colourless oily liquid; Yield: 90%; The enantiomeric excess (*ee*) was determined by chiral stationary phase HPLC using a Daicel Chiralpak IC-3 column (hexane/2-propanol = 90:10, flow rate 1.0 mL/min,  $\lambda = 254$  nm),  $t_R = 25.46$  min (major),  $t_R = 21.74$  min

(minor) [For major isomer];  $t_R = 12.01$  min (major),  $t_R = 11.2$  min (minor) [For minor isomer];  $[\alpha]_D^{25} = -4.9^\circ$  [c = 0.76, CHCl<sub>3</sub>, 95% ee and 61:1 dr]; IR (Neat):  $v_{max}$  3447, 3028, 2915, 2853, 1768, 1691, 1598, 1453, 1355, 1278, 1169, 1055, 942 and 709 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz, major isomer):  $\delta$  8.08 (1H, dd, J = 8.0, 0.5 Hz), 7.88 (1H, dd, J = 8.0, 0.5 Hz), 7.72 (1H, dt, J = 8.0, 1.0 Hz), 7.51 (1H, dt, J = 8.0, 1.0 Hz), 7.36 (2H, br d, J = 7.5 Hz), 7.29 (2H, br t, J = 7.5 Hz), 7.22 (1H, tt, J = 7.5, 2.0 Hz), 3.82 (1H, s), 3.50 (1H, d, J = 14.5 Hz), 3.41 (1H, d, J = 14.5 Hz), 3.11 (1H, dd, J = 10.0, 2.5 Hz), 2.31 (1H, dd, J = 14.5, 2.5 Hz), 2.01 (3H, s), 1.78 (1H, dd, J = 14.5, 10.0 Hz); <sup>13</sup>C NMR (CDCl<sub>3</sub>, DEPT-135, major isomer):  $\delta$  208.3 (C, C = 0), 204.7 (C, C = 0), 195.4 (C, C = 0), 144.5 (C), 136.7 (C), 135.5 (CH), 131.3 (2 x CH), 129.3 (C), 129.0 (CH), 128.2 (2 x CH), 127.9 (CH), 126.7 (CH), 124.0 (CH), 83.0 (C), 64.7 (C), 52.7 (CH), 31.7

 $(CH_2)$ , 31.0  $(CH_3)$ , 28.3  $(CH_2)$ ; HRMS m/z 357.1104  $(M + Na^+)$ , calcd for  $C_{21}H_{18}O_4Na$  357.1103.

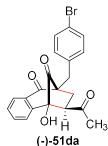
### (5S,6R,8R)-6-Acetyl-8-(4-fluorobenzyl)-5-hydroxy-7,8-dihydro-5H-5,8-


methanobenzo[7]annulene-9,10(6H)-dione ((-)-51ba): Prepared by following the procedure 2d and purified by column chromatography using EtOAc/hexane and isolated



as colourless oily liquid; Yield: 80%; The enantiomeric excess (*ee*) was determined by chiral stationary phase HPLC using a Daicel Chiralcel OJ-H column (hexane/2-propanol = 90:10, flow rate 1.0 mL/min,  $\lambda = 254$  nm),  $t_R = 32.47$  min (major),  $t_R = 116.73$  min (minor) [For major isomer],  $t_R = 51.06$  min (major),  $t_R = 77.78$  min

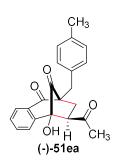
(minor) [For minor isomer];  $[\alpha]_D^{25} = -14.6^\circ$  (c = 0.92, CHCl<sub>3</sub>, 95% ee and 20:1 dr); IR (Neat):  $v_{max}$  3458, 3069, 3006, 2928, 1771, 1689, 1599, 1510, 1360, 1331, 1280, 1223, 1162, 931, 849, 783, 736, 669 and 589 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz, major isomer)  $\delta$  8.07 (1H, dd, J = 8.0, 1.0 Hz), 7.90 (1H, dd, J = 8.0, 1.0 Hz), 7.73 (1H, dt, J = 8.0, 1.5 Hz), 7.50 (1H, dt, J = 8.0, 1.5 Hz), 7.36-7.33 (2H, m), 6.97 (2H, tt, J = 9.5, 2.0 Hz), 3.85 (1H, s), 3.47 (1H, d, J = 14.5 Hz), 3.35 (1H, d, J = 14.5 Hz), 3.15 (1H, dd, J = 9.5, 2.5 Hz), 2.29 (1H, dd, J = 14.5, 2.5 Hz), 2.10 (3H, s), 1.76 (1H, dd, J = 15.0, 10.0 Hz), <sup>13</sup>C NMR (CDCl<sub>3</sub>, DEPT-135, major isomer)  $\delta$  208.4 (C, C=O), 204.7 (C, C=O), 195.3 (C, C=O), 161.7 (C, d, J = 243.7 Hz, C-F), 144.5 (C), 135.5 (CH), 132.7 (2 x CH, d, J = 7.5 Hz), 132.3 (C, d, J = 2.5 Hz), 129.2 (C), 129.0 (CH), 127.9 (CH), 123.9 (CH), 114.9 (2 x CH, d, J = 20.0 Hz), 82.9 (C), 64.6 (C), 52.6 (CH), 31.4 (CH<sub>3</sub>), 31.0 (CH<sub>2</sub>), 28.4 (CH<sub>2</sub>), HRMS m/z 375.1011 (M + Na<sup>+</sup>), calcd for C<sub>21</sub>H<sub>17</sub>FO<sub>4</sub>Na 375.1009.


### (5S,6R,8R)-6-Acetyl-8-(4-chlorobenzyl)-5-hydroxy-7,8-dihydro-5H-5,8-



methanobenzo[7]annulene-9,10(6H)-dione ((-)-51ca): Prepared by following the procedure 2d and purified by column chromatography using EtOAc/hexane and isolated as oily liquid; Yield: 90%; The enantiomeric excess (ee) was determined by chiral stationary phase HPLC using a Daicel Chiralpak IA-3 column

(hexane/2-propanol = 95:05, flow rate 1.0 mL/min,  $\lambda$  = 254 nm),  $t_R$  = 28.07 min (major),  $t_R$  = 27.01 min (minor) [For major isomer],  $t_R$  = 23.31 min (major),  $t_R$  = 52.9 min (minor) [For minor isomer];  $[\alpha]_D^{25}$  = -5.6° (c = 1.25, CHCl<sub>3</sub>, 95% ee and 18:1 dr); IR (Neat):  $v_{max}$  3459, 3068, 2926, 1770, 1690, 1597, 1491, 1453, 1359, 1330, 1280, 1168, 1090, 1069, 977, 932, 845, 779 and 734 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz, major isomer):  $\delta$  8.08 (1H, br d, J = 8.0 Hz), 7.90 (1H, br d, J = 7.5 Hz), 7.74 (1H, br t, J = 7.5 Hz), 7.52 (1H, br t, J = 7.5 Hz), 7.33 (2H, d, J = 8.0 Hz), 7.26 (2H, m), 3.72 (1H, s), 3.50 (1H, d, J = 14.5 Hz), 3.36 (1H, d, J = 14.5 Hz), 3.16 (1H, dd, J = 9.5, 2.5 Hz), 2.28 (1H, dd, J = 14.5, 2.5 Hz), 2.12 (3H, s), 1.76 (1H, dd, J = 14.5, 10.0 Hz); <sup>13</sup>C NMR (CDCl<sub>3</sub>, DEPT-135, major isomer):  $\delta$  208.4 (C, C=O), 204.5 (C, C=O), 195.2 (C, C=O), 144.5 (C), 135.6 (CH), 135.2 (C), 132.6 (2 x CH), 132.5 (C), 129.2 (C), 129.0 (CH), 128.3 (2 x CH), 128.0 (CH), 123.9 (CH), 82.9 (C), 64.4 (C), 52.6 (CH), 31.6 (CH<sub>3</sub>), 31.3 (CH<sub>2</sub>), 28.6 (CH<sub>2</sub>); HRMS m/z 391.0713 (M + Na<sup>+</sup>), calcd for C<sub>21</sub>H<sub>17</sub>ClO<sub>4</sub>Na 391.0713.

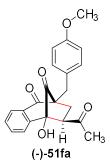

# (5S,6R,8R)-6-Acetyl-8-(4-bromobenzyl)-5-hydroxy-7,8-dihydro-5H-5,8-



methanobenzo[7]annulene-9,10(6H)-dione ((-)-51da): Prepared by following the procedure 2d and purified by column chromatography using EtOAc/hexane and isolated as colourless oily; Yield: 96%; The enantiomeric excess (ee) was determined by chiral stationary phase HPLC using a Daicel Chiralcel OJ-H

column (hexane/2-propanol = 90:10, flow rate 1.0 mL/min,  $\lambda$  = 254 nm),  $t_R$  = 25.1 min (major),  $t_R$  = 90.96 min (minor) [For major isomer],  $t_R$  = 29.56 min (major),  $t_R$  = 58.85 min (minor) [For minor isomer];  $[\alpha]p^{25}$  = -4.2° (c = 1.51, CHCl<sub>3</sub>, 96% ee and 36:1 dr); IR (Neat):  $v_{max}$  3396, 3070, 1769, 1690, 1596, 1486, 1450, 1359, 1068, 854, 779 and 728 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz, major isomer)  $\delta$  8.06 (1H, dd, J = 8.0, 1.0 Hz), 7.90 (1H, dd, J = 8.0, 0.5 Hz), 7.73 (1H, dt, J = 8.0, 1.5 Hz), 7.50 (1H, dt, J = 8.0, 1.5 Hz), 7.38 (2H, td, J = 8.0, 1.5 Hz), 7.26 (2H, td, J = 9.5, 2.5 Hz), 3.88 (1H, s), 3.46 (1H, d, J = 14.5 Hz), 3.31 (1H, d, J = 15.0 Hz), 3.16 (1H, dd, J = 9.5, 2.5 Hz), 2.27 (1H, dd, J = 14.5, 2.5 Hz), 2.12 (3H, s), 1.74 (1H, dd, J = 14.5, 9.5 Hz), <sup>13</sup>C NMR (CDCl<sub>3</sub>, DEPT-135, major isomer)  $\delta$  208.5 (C, C=O), 204.5 (C, C=O), 195.2 (C, C=O), 144.5 (C), 135.7 (C), 135.5 (CH), 132.9 (2 x CH), 131.1 (2 x CH), 129.1 (C), 129.0 (CH), 128.0 (CH), 124.0 (CH), 120.6 (C), 82.9 (C), 64.3 (C), 52.6 (CH), 31.5 (CH<sub>3</sub>), 31.3 (CH<sub>2</sub>), 28.6 (CH<sub>2</sub>); HRMS m/z 435.0208 (M + Na<sup>+</sup>), calcd for C<sub>21</sub>H<sub>17</sub>BrO<sub>4</sub>Na 435.0208.

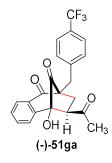
### (5S,6R,8R)-6-Acetyl-5-hydroxy-8-(4-methylbenzyl)-7,8-dihydro-5H-5,8-




methanobenzo[7]annulene-9,10(6*H*)-dione ((-)-51ea): Prepared by following the procedure 2d and purified by column chromatography using EtOAc/hexane and isolated as colourless oily liquid; Yield: 88%; The enantiomeric excess (*ee*) was determined by chiral stationary phase HPLC using a Daicel Chiralpak IB-3 column

(hexane/2-propanol = 95:05, flow rate 1.0 mL/min,  $\lambda$  = 254 nm),  $t_R$  = 34.74 min (major),  $t_R$  = 15.66 min (minor) [For major isomer],  $t_R$  = 22.61 min (major),  $t_R$  = 18.99 min (minor) [For minor isomer];  $[\alpha]_D^{25}$  = -4.5° (c = 1.15, CHCl<sub>3</sub>, 99% ee and 22:1 dr); IR (Neat):  $v_{max}$  3457, 3059, 3006, 2956, 2922, 1769, 1691, 1597, 1514, 1453, 1359, 1329, 1168, 1069, 931, 781 and 734 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz, major isomer)  $\delta$  8.08 (1H, dd, J = 8.0, 1.0 Hz), 7.89 (1H, br d, J = 7.5 Hz), 7.72 (1H, dt, J = 7.5, 1.5 Hz), 7.51 (1H, dt, J = 7.5, 1.0 Hz), 7.26 (2H, d, J = 8.0 Hz), 7.10 (2H, d, J = 8.0 Hz), 3.82 (1H, br d, J = 1.5 Hz), 3.47 (1H, d, J = 14.5 Hz), 3.37 (1H, d, J = 14.5 Hz), 3.11 (1H, dd, J = 10.0, 2.5 Hz), 2.33 (1H, dd, J = 14.5, 2.5 Hz), 2.31 (3H, s), 2.03 (3H, s), 1.78 (1H, dd, J = 14.5, 10.0 Hz); <sup>13</sup>C NMR (CDCl<sub>3</sub>, DEPT-135, major isomer)  $\delta$  208.3 (C, C=O), 204.8 (C, C=O), 195.4 (C, C=O), 144.5 (C), 136.1 (C), 135.4 (CH), 133.5 (C), 131.1 (2 x CH), 129.3 (C), 128.9 (CH), 128.9 (2 x CH), 127.9 (CH), 123.9 (CH), 82.9 (C), 64.7 (C), 52.7 (CH), 31.3 (CH<sub>2</sub>), 30.9 (CH<sub>3</sub>), 28.3 (CH<sub>2</sub>), 21.0 (CH<sub>3</sub>); HRMS m/z 371.1259 (M + Na<sup>+</sup>), calcd for C<sub>22</sub>H<sub>20</sub>O<sub>4</sub>Na 371.1259.

# (5S,6R,8R)-6-Acetyl-5-hydroxy-8-(4-methoxybenzyl)-7,8-dihydro-5H-5,8-

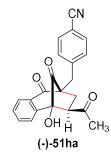

methanobenzo[7]annulene- 9,10(6H)-dione ((-)-51fa): Prepared by following the



procedure **2d** and purified by column chromatography using EtOAc/hexane and isolated as colourless oily liquid; Yield: 95%; The enantiomeric excess (*ee*) was determined by chiral stationary phase HPLC using a Daicel Chiralpak IB-3 column (hexane/2-propanol = 90:10, flow rate 1.0 mL/min,  $\lambda$  = 254 nm),  $t_R$  = 35.57

min (major),  $t_R = 12.09$  min (minor) [For major isomer],  $t_R = 16.60$  min (major),  $t_R = 13.62$  min (minor) [For minor isomer];  $[\alpha]_D^{25} = -3.3^\circ$  (c = 1.38, CHCl<sub>3</sub>, 92% ee and 23:1 dr); IR (Neat):  $v_{max}$  3445, 3070, 3002, 2952, 2837, 1769, 1691, 1598, 1512, 1454, 1359, 1250, 1178, 1069, 1034, 932, 844, 782 and 733 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz, major isomer)  $\delta$  8.07 (1H, dd, J = 8.0, 1.0 Hz), 7.89 (1H, dd, J = 8.0, 0.5 Hz), 7.72 (1H, dt, J = 7.5, 1.5 Hz), 7.50 (1H, dt, J = 8.0, 1.5 Hz), 7.29 (2H, td, J = 9.5, 3.0 Hz), 6.83 (2H, td, J = 9.5, 2.0 Hz), 3.85 (1H, s), 3.78 (3H, s), 3.45 (1H, d, J = 14.5 Hz), 3.34 (1H, d, J = 15.0 Hz), 3.12 (1H, dd, J = 10.0, 3.0 Hz), 2.33 (1H, dd, J = 14.5, 3.0 Hz), 2.05 (3H, s), 1.77 (1H, dd, J = 14.5, 10.0 Hz); <sup>13</sup>C NMR (CDCl<sub>3</sub>, DEPT-135, major isomer)  $\delta$  208.3 (C, C = O), 204.9 (C, C = O), 195.5 (C, C = O), 158.3 (C), 144.5 (C), 135.4 (CH), 132.2 (2 x CH), 129.2 (C), 128.9 (CH), 128.6 (C), 127.8 (CH), 123.9 (CH), 113.5 (2 x CH), 82.9 (C), 64.8 (C), 55.1 (CH), 52.7 (CH<sub>3</sub>), 31.0 (CH<sub>3</sub>), 30.8 (CH<sub>2</sub>), 28.3 (CH<sub>2</sub>); HRMS m/z 387.1211 (M + Na<sup>+</sup>), calcd for C<sub>22</sub>H<sub>20</sub>O<sub>5</sub>Na 387.1208.

(5S,6R,8R)-6-Acetyl-5-hydroxy-8-(4-(trifluoromethyl)benzyl)-7,8-dihydro-5H-5,8-methanobenzo[7]annulene-9,10(6H)-dione ((-)-51ga): Prepared by following the




procedure **2d** and purified by column chromatography using EtOAc/hexane and isolated as colourless oily liquid; Yield: 70%; The enantiomeric excess (*ee*) was determined by chiral stationary phase HPLC using a Daicel Chiralpak IA-3 column (hexane/2-propanol = 90:10, flow rate 1.0 mL/min,  $\lambda$  = 254 nm),  $t_R$  = 14.30

min (major),  $t_R = 12.37$  min (minor) [For major isomer],  $t_R = 10.78$  min (major),  $t_R = 21.06$  min (minor) [For minor isomer]; [ $\alpha$ ] $_0^{25} = -5.4^\circ$  (c = 0.98, CHCl<sub>3</sub>, 93% ee and 11:1 dr); IR (Neat):  $\nu_{max}$  3450, 2930, 1770, 1692, 1598, 1420, 1360, 1326, 1281, 1165, 1117, 1067, 1020, 979, 934, 854 and 723 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz, major isomer)  $\delta$  8.08 (1H, br d, J = 8.0 Hz), 7.91 (1H, br dd, J = 8.0, 1.0 Hz), 7.74 (1H, dt, J = 8.0, 1.0 Hz), 7.56-7.51 (5H, m), 3.73 (1H, br d, J = 3.0 Hz), 3.59 (1H, d, J = 14.0 Hz), 3.44 (1H, d, J = 14.0 Hz), 3.18 (1H, dd, J = 9.5, 2.5 Hz), 2.26 (1H, dd, J = 14.5, 2.5 Hz), 2.13 (3H, s), 1.77 (1H, dd, J = 16.0, 9.5 Hz); <sup>13</sup>C NMR (CDCl<sub>3</sub>, DEPT-135, major isomer)  $\delta$  208.4 (C, C = 0), 204.4 (C, C = 0), 195.1 (C, C = 0), 144.5 (C), 141.0 (C), 135.6 (CH), 131.6 (2 x CH), 129.1 (C), 129.1 (CH), 128.9 (C, q, J = 32.5 Hz), 128.0 (CH), 125.0 (2 x CH, q, J = 3.75 Hz), 124.3 (C, q, J = 271.25 Hz,  $CF_3$ ), 124.0 (CH), 82.9 (C), 64.3 (C), 52.6 (CH), 31.8 (CH<sub>2</sub>), 31.7 (CH<sub>3</sub>), 28.9 (CH<sub>2</sub>), HRMS m/z 425.0981 (M + Na<sup>+</sup>), calcd for C<sub>22</sub>H<sub>17</sub>F<sub>3</sub>O<sub>4</sub>Na 425.0977.

4-(((5S,6R,8R)-6-Acetyl-5-hydroxy-9,10-dioxo-6,7,8,9-tetrahydro-5H-5,8-methanobenzo[7]annulen-8-yl)methyl)benzonitrile ((-)-51ha): Prepared by

following the procedure **2d** and purified by column chromatography using EtOAc/hexane and isolated as pale yellow oily liquid; Yield: 65%; The enantiomeric

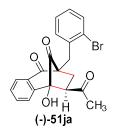


excess (*ee*) was determined by chiral stationary phase HPLC using a Daicel Chiralpak IB-3 column (hexane/2-propanol = 90:10, flow rate 1.0 mL/min,  $\lambda$  = 254 nm),  $t_R$  = 23.09 min (major),  $t_R$  = 21.27 min (minor) [For major isomer],  $t_R$  = 33.76 min (major),  $t_R$  = 31.50 min (minor) [For minor isomer];  $[\alpha]_D^{25}$  = -3.5° (c = 0.87, CHCl<sub>3</sub>, 95% *ee* 

and 9:1 dr); IR (Neat):  $v_{max}$  3441, 3066, 2926, 2853, 2228, 1770, 1691, 1599, 1505, 1453, 1360, 1330, 1280, 1169, 1069, 933, 853 and 734 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz, major isomer)  $\delta$  8.08 (1H, br d, J = 7.5 Hz), 7.92 (1H, br d, J = 7.5 Hz), 7.76 (1H, br t, J = 7.5 Hz), 7.58 (2H, br d, J = 7.5 Hz), 7.56-7.50 (3H, m), 3.67-3.64 (1H, m), 3.56 (1H, d, J = 14.5 Hz), 3.44 (1H, d, J = 14.5 Hz), 3.20 (1H, dd, J = 9.5, 3.0 Hz), 2.25 (1H, dd, J = 14.5, 2.5 Hz), 2.17 (3H, s), 1.77 (1H, dd, J = 14.5, 9.5 Hz), <sup>13</sup>C NMR (CDCl<sub>3</sub>, DEPT-135, major isomer)  $\delta$  208.4 (C, C=O), 204.2 (C, C=O), 194.9 (C, C=O), 144.5 (C), 142.5 (C), 135.7 (CH), 132.0 (2 x CH), 131.8 (2 x CH), 129.1 (CH), 129.0 (C), 128.1 (CH), 124.0 (CH), 118.9 (C), 110.5 (C), 82.9 (C), 64.2 (C), 52.6 (CH), 32.3 (CH<sub>2</sub>), 32.0 (CH<sub>3</sub>), 29.0 (CH<sub>2</sub>); HRMS m/z 382.1058 (M + Na<sup>+</sup>), calcd for C<sub>22</sub>H<sub>17</sub>NO<sub>4</sub>Na 382.1055.

### (5S,6R,8R)-6-Acetyl-8-(2-fluorobenzyl)-5-hydroxy-7,8-dihydro-5H-5,8-

(-)-51ia


following the procedure 2d and purified by column chromatography using EtOAc/hexane and isolated as oil; Yield: 75%; The enantiomeric excess (ee) was determined by chiral stationary phase HPLC using a Daicel Chiralpak IB-3 column (hexane/2-propanol = 95:05, flow rate 1.0 mL/min,  $\lambda = 254$  nm),  $t_R = 30.11$  min (major),  $t_R = 14.69$  min (minor) [For major isomer],  $t_R = 17.63 \text{ min (major)}$ ,  $t_R = 16.26 \text{ min (minor)}$  [For minor isomer];  $\lceil \alpha \rceil_D^{25} = -8.9^\circ$  (c = 0.97, CHCl<sub>3</sub>, 90% ee and 9:1 dr); IR (Neat):  $v_{\text{max}}$  3450, 3067, 2929, 2853, 1770, 1691, 1597, 1492, 1454, 1360, 1329, 1280, 1232, 1171, 1066, 929, 761, and 734 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz, major isomer)  $\delta$  8.09 (1H, br d, J = 8.0 Hz), 7.89 (1H, br d, J = 8.0 Hz), 7.73 (1H, br t, J = 8.0 Hz), 7.52 (2H, br t, J = 8.0 Hz) Hz), 7.24-7.22 (1H, m), 7.11 (1H, br t, J = 7.5 Hz), 7.02 (1H, br t, J = 9.0 Hz), 3.75 (1H, br s), 3.68 (1H, br d, J = 14.5 Hz), 3.35 (1H, br d, J = 15.0 Hz), 3.13 (1H, dd, J = 10.0, 3.0 Hz), 2.30 (1H, dd, J = 14.5, 2.5 Hz), 2.05 (3H, s), 1.92 (1H, br dd, J = 15.5, 10 Hz); <sup>13</sup>C NMR (CDCl<sub>3</sub>, DEPT-135, major isomer) δ 208.1 (C, C=O), 204.5 (C, C=O), 194.8 (C, C=O), 161.5 (C, d, J = 242.5 Hz, C-F), 144.6 (C), 135.5 (CH), 133.7 (CH, d, J = 3.75 Hz), 129.1 (C), 128.9 (CH), 128.6 (CH, d, J = 8.75 Hz), 128.0 (CH), 124.0 (CH, d)d, J = 3.75 Hz), 123.9 (CH), 123.5 (C, d, J = 13.75 Hz), 114.9 (CH, d, J = 22.5 Hz),

82.8 (C), 64.5 (C), 52.7 (CH), 31.0 (CH<sub>3</sub>), 28.4 (CH<sub>2</sub>), 24.2 (CH<sub>2</sub>, d, J = 3.75 Hz),

HRMS m/z 375.1010 (M + Na<sup>+</sup>), calcd for  $C_{21}H_{17}FO_4Na$  375.1009.

methanobenzo[7]annulene-9,10(6H)-dione ((-)-51ia): Prepared

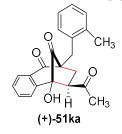
#### (5S,6R,8R)-6-Acetyl-8-(2-bromobenzyl)-5-hydroxy-7,8-dihydro-5H-5,8-



following the procedure 2d and purified by column chromatography using EtOAc/hexane and isolated as colourless oily liquid; Yield: 70%; The enantiomeric excess (ee) was determined by chiral stationary phase HPLC using a Daicel Chiralpak IC-3 column (hexane/2-propanol = 90:10, flow rate 1.0 mL/min,  $\lambda = 254$  nm),  $t_R = 20.18$  min (major),  $t_R = 17.60$  min (minor) [For major isomer],  $t_R = 8.64$  min (major),  $t_R = 17.12$  min (minor) [For minor isomer];  $\lceil \alpha \rceil_D^{25} = -23.8^{\circ}$  (c = 0.82, CHCl<sub>3</sub>, 88% ee and 6:1 dr); IR (Neat):  $v_{max}$  3463, 3066, 2926, 2854, 1769, 1692, 1597, 1470, 1360, 1279, 1203, 1169, 1062, 1024, 975, 929, 760 and 734 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz, major isomer)  $\delta$  8.10 (1H, dd, J =8.0, 1.0 Hz), 7.89 (1H, dd, J = 7.5, 0.5 Hz), 7.75-7.70 (1H, m), 7.56-7.47 (3H, m), 7.28 (1H, dt, J = 7.5, 1.5 Hz), 7.11 (1H, dt, J = 7.5, 1.5 Hz), 3.94 (1H, d, J = 14.5 Hz), 3.86(1H, s), 3.53 (1H, d, J = 15.0 Hz), 3.11 (1H, dd, J = 10.0, 2.5 Hz), 2.23-2.20 (1H, m), 2.01 (3H, s), 2.00-1.95 (1H, m); minor isomer:  $\delta$  8.10 (1H, dd, J = 8.0, 1.0 Hz), 7.75-7.70 (1H, m), 7.66 (1H, dt, J = 7.5, 1.5 Hz), 7.56-7.47 (3H, m), 7.30-7.23 (1H, m), 7.10 (1H, dt, J = 7.5, 1.5 Hz), 3.94 (1H, d, J = 14.5 Hz), 3.86 (1H, s), 3.53 (1H, d, J = 15.0)Hz), 3.17 (1H, dd, J = 10.0, 8.0 Hz), 2.34 (1H, dd, J = 10.0, 8.0 Hz), 2.21 (3H, s), 1.91-1.86 (1H, m); <sup>13</sup>C NMR (CDCl<sub>3</sub>, DEPT-135, major isomer) δ 208.1 (C, C=O), 204.6

(C, C=O), 194.4 (C, C=O), 144.5 (C), 136.5 (C), 135.5 (CH), 133.4 (CH), 132.5 (CH),

129.2 (C), 128.9 (CH), 128.5 (CH), 128.1 (CH), 127.5 (CH), 126.4 (C), 123.9 (CH),


82.6 (C), 64.8 (C), 52.6 (CH), 30.9 (CH<sub>3</sub>), 30.5 (CH<sub>2</sub>), 27.9 (CH<sub>2</sub>); minor isomer: δ

methanobenzo[7]annulene-9,10(6H)-dione ((-)-51ja): Prepared by

205.0 (C, *C*=O), 203.7 (C, *C*=O), 193.6 (C, *C*=O), 140.8 (C), 136.9 (C), 135.2 (CH), 132.8 (CH), 132.5 (CH), 129.9 (C), 128.9 (CH), 128.4 (CH), 128.2 (CH), 127.7 (CH), 126.7 (C), 124.0 (CH), 82.7 (C), 65.0 (C), 54.0 (CH), 30.4 (CH<sub>3</sub>), 30.3 (CH<sub>2</sub>), 24.9 (CH<sub>2</sub>); HRMS m/z 435.0209 (M + Na<sup>+</sup>), calcd for C<sub>21</sub>H<sub>17</sub>BrO<sub>4</sub>Na 435.0208.

# (5S,6R,8R)-6-Acetyl-5-hydroxy-8-(2-methylbenzyl)-7,8-dihydro-5H-5,8-

methanobenzo[7]annulene-9,10(6H)-dione ((+)-51ka): Prepared by following the



procedure 2d and purified by column chromatography using EtOAc/hexane and isolated as colourless oily liquid; Yield: 75%; The enantiomeric excess (ee) was determined by chiral stationary phase HPLC using a Daicel Chiralpak IC-3 column (hexane/2-

propanol = 90:10, flow rate 1.0 mL/min,  $\lambda$  = 254 nm),  $t_R$  = 22.67 min (major),  $t_R$  = 14.23 min (minor) [For major isomer],  $t_R$  = 7.79 min (major),  $t_R$  = 9.94 min (minor) [For minor isomer];  $[\alpha]_D^{25}$  = +8.1° (c = 0.49, CHCl<sub>3</sub>, 82% ee and 5:1 dr); IR (Neat):  $v_{max}$  3459, 3067, 2923, 1768, 1690, 1597, 1454, 1361, 1279, 1234, 1167, 1056, 931, 765 and 742 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz, major isomer)  $\delta$  8.11 (1H, br d, J = 8.0, Hz), 7.90 (1H, br d, J = 7.5 Hz), 7.75-7.70 (1H, m), 7.51 (1H, br t, J = 7.5 Hz), 7.34-7.33 (1H, m), 7.18-7.11 (3H, m), 3.82 (1H, br s), 3.73 (1H, d, J = 15.0 Hz), 3.43 (1H, d, J = 15.5 Hz), 3.13-3.09 (1H, m), 2.32 (3H, s), 2.20 (3H, s), 2.09 (1H, dd, J = 14.5, 3.0 Hz), 1.85-1.76 (1H, m), minor isomer: 8.11 (1H, br d, J = 8.0 Hz), 7.75-7.70 (1H, m), 7.66 (1H, br t, J = 8.0 Hz), 7.51 (1H, t, J = 7.5 Hz), 7.27-7.25 (1H, m), 7.18-7.11 (3H, m), 3.80 (1H, m), 3.72 (1H, d, J = 15.0 Hz), 3.43 (1H, d, J = 15.5 Hz), 3.13-3.09 (1H, m), 2.36 (3H, s), 2.30-2.27 (1H, m), 2.01 (3H, s), 1.85-1.76 (1H, m); <sup>13</sup>C NMR (CDCl<sub>3</sub>, DEPT-135, major

isomer) δ 208.2 (C, *C*=O), 204.8 (C, *C*=O), 195.2 (C, *C*=O), 140.9 (C), 137.6 (C), 135.6 (C), 135.5 (CH), 131.4 (CH), 130.4 (CH), 129.9 (C), 129.3 (CH), 128.2 (CH), 126.8 (CH), 126.3 (CH), 124.0 (CH), 82.7 (C), 65.4 (C), 54.2 (CH), 31.0 (CH<sub>3</sub>), 28.3 (CH<sub>2</sub>), 26.6 (CH<sub>2</sub>), 20.2 (CH<sub>3</sub>); minor isomer: δ 205.4 (C, *C*=O), 203.8 (C, *C*=O), 194.1 (C, *C*=O), 144.6 (C), 137.4 (C), 135.5 (C), 135.2 (CH), 130.7 (CH), 130.1 (CH), 129.1 (C), 128.9 (CH), 128.1 (CH), 126.7 (CH), 126.1 (CH), 123.9 (CH), 82.6 (C), 64.7 (C), 52.7 (CH), 30.4 (CH<sub>3</sub>), 26.9 (CH<sub>2</sub>), 24.5 (CH<sub>2</sub>), 20.2 (CH<sub>3</sub>); HRMS m/z 371.1258 (M + Na<sup>+</sup>), calcd for C<sub>22</sub>H<sub>20</sub>O<sub>4</sub>Na 371.1259.

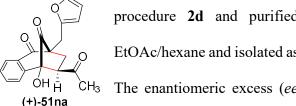
# (5S,6R,8R)-6-Acetyl-8-(2-azidobenzyl)-5-hydroxy-7,8-dihydro-5H-5,8-



methanobenzo[7]annulene-9,10(6*H*)-dione ((+)-51la): Prepared by following the procedure 2d and purified by column chromatography using EtOAc/hexane and isolated as colourless oily liquid; Yield: 75%; The enantiomeric excess (*ee*) was determined by chiral

stationary phase HPLC using a Daicel Chiralpak IA-3 column (hexane/2-propanol = 90:10, flow rate 1.0 mL/min,  $\lambda = 254$  nm),  $t_R = 11.61$  min (major),  $t_R = 13.12$  min (minor) [For major isomer],  $t_R = 9.68$  min (major),  $t_R = 24.17$  min (minor) [For minor isomer];  $[\alpha]_D^{25} = +3.5^\circ$  (c = 0.72, CHCl<sub>3</sub>, 90% *ee* and 2.7:1 *dr*); IR (Neat):  $v_{max}$  3465, 3065, 2924, 2123, 1769, 1691, 1597, 1491, 1452, 1360, 1282, 1168, 1058, 930 and 753 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz, major isomer)  $\delta$  8.08 (1H, br d, J = 8.0 Hz), 7.88 (1H, br d, J = 8.0 Hz), 7.72 (1H, br t, J = 8.0 Hz), 7.53-7.45 (2H, m), 7.32-7.27 (1H, m), 7.15-7.06 (2H, m), 3.80 (1H, s), 3.69 (1H, d, J = 14.5 Hz), 3.29 (1H, d, J = 15.5 Hz), 3.18-3.10 (1H, m), 2.25-2.20 (1H, m), 2.04 (3H, s), 1.92-1.87 (1H, m); minor isomer:  $\delta$ 

8.08 (1H, br d, J = 8.0 Hz), 7.74-7.69 (1H, m), 7.65 (1H, dt, J = 7.5, 1.0 Hz), 7.53-7.45 (2H, m), 7.32-7.27 (1H, m), 7.15-7.06 (2H, m), 3.90 (1H, s), 3.69 (1H, d, J = 14.5 Hz), 3.27 (1H, d, J = 15.5 Hz), 3.18-3.10 (1H, m), 2.34-2.29 (1H, m), 2.22 (3H, s), 1.92-1.87 (1H, m);  $^{13}$ C NMR (CDCl<sub>3</sub>, DEPT-135, major isomer)  $\delta$  208.0 (C, C=O), 204.7 (C, C=O), 194.8 (C, C=O), 144.7 (C), 139.3 (C), 135.5 (CH), 133.4 (CH), 129.0 (C), 128.9 (CH), 128.3 (CH), 128.2 (C), 128.0 (CH), 124.8 (CH), 123.8 (CH), 117.7 (CH), 82.7 (C), 64.7 (C), 52.8 (CH), 31.0 (CH<sub>3</sub>), 28.2 (CH<sub>2</sub>), 25.4 (CH<sub>2</sub>); minor isomer:  $\delta$  205.2 (C, C=O), 203.8 (C, C=O), 194.0 (C, C=O), 140.8 (C), 139.1 (C), 135.1 (CH), 132.8 (CH), 129.9 (C), 129.2 (CH), 128.4 (C), 128.3 (CH), 128.1 (CH), 124.8 (CH), 123.9 (CH), 117.9 (CH), 82.68 (C), 65.0 (C), 54.0 (CH), 30.4 (CH<sub>3</sub>), 25.7 (CH<sub>2</sub>), 24.9 (CH<sub>2</sub>); HRMS m/z 398.1118 (M + Na<sup>+</sup>), calcd for C<sub>21</sub>H<sub>17</sub>N<sub>3</sub>O<sub>4</sub>Na 398.1117.

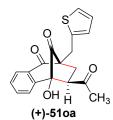

#### (5S,6R,8R)-6-acetyl-5-hydroxy-8-(naphthalen-1-ylmethyl)-7,8-dihydro-5H-5,8-

methanobenzo[7] annulene-9,10(6*H*)-dione ((-)-51ma): Prepared by following the procedure 2d and purified by column chromatography using EtOAc/hexane and isolated as colourless oily liquid; Yield: 75%; The enantiomeric excess (*ee*) was determined by chiral stationary phase HPLC using a Daicel Chiralpak IC-3 column (hexane/2-propanol = 95:05, flow rate 1.0 mL/min,  $\lambda$  = 254 nm),  $t_R$  = 88.22 min (major),  $t_R$  = 31.46 min (minor) [For major isomer],  $t_R$  = 14.52 min (major),  $t_R$  = 16.66 min (minor) [For minor isomer]; [ $\alpha$ ]<sub>D</sub><sup>25</sup> = -25.3° (c = 0.52, CHCl<sub>3</sub>, 82% *ee* and 2.0:1 *dr*); IR (Neat):  $v_{max}$  3450, 3059, 2927, 2853, 1767, 1690, 1597, 1508, 1453, 1361, 1279, 1168, 1062, 926, 781, 734 and 667 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz, major isomer)  $\delta$  8.18-

8.12 (2H, m), 7.90-7.84 (2H, m), 7.78-7.64 (3H, m), 7.57-7.41 (4H, m), 4.30 (1H, d, J) = 15.5 Hz), 3.83 (1H, d, J = 15.0 Hz), 3.02-2.97 (1H, m), 1.98 (1H, dd, J = 15.0, 3.0 Hz), 1.83 (3H, s), 1.75 (1H, dd, J = 14.5, 10.0 Hz); minor isomer:  $\delta$  8.18-8.12 (1H, m), 8.08 (1H, d, J = 8.5 Hz), 7.90-7.84 (1H, m), 7.78-7.64 (3H, m), 7.57-7.41 (5H, m), 4.33(1H, d, J = 15.5 Hz), 3.77 (1H, d, J = 15.0 Hz), 3.02-2.97 (1H, m), 2.25 (1H, dd, J = 15.0 Hz)15.0, 8.0 Hz), 2.12 (3H, s), 1.67 (1H, dd, J = 14.5, 10.0 Hz); <sup>13</sup>C NMR (CDCl<sub>3</sub>, DEPT-135, major isomer) δ 208.0 (C, C=O), 204.8 (C, C=O), 195.2 (C, C=O), 144.6 (C), 135.5 (CH), 133.6 (C), 133.3 (C), 133.0 (C), 129.6 (CH), 129.0 (C), 128.9 (CH), 128.8 (CH), 128.1 (CH), 127.4 (CH), 126.1 (CH), 125.6 (CH), 125.4 (CH), 124.1 (CH), 123.9 (CH), 82.7 (C), 64.9 (C), 52.6 (CH), 30.8 (CH<sub>3</sub>), 28.5 (CH<sub>2</sub>), 25.9 (CH<sub>2</sub>); minor isomer: δ 205.4 (C, C=O), 203.7 (C, C=O), 194.2 (C, C=O), 140.9 (C), 135.2 (CH), 133.7 (C), 133.3 (C), 133.3 (C), 129.9 (C), 129.3 (CH), 129.0 (CH), 128.8 (CH), 128.3 (CH), 127.6 (CH), 126.4 (CH), 125.6 (CH), 125.5 (CH), 124.0 (CH), 123.9 (CH), 82.6 (C), 65.5 (C), 54.2 (CH), 30.3 (CH<sub>3</sub>), 26.2 (CH<sub>2</sub>), 25.1 (CH<sub>2</sub>); HRMS m/z 407.1262 (M + Na<sup>+</sup>), calcd for  $C_{25}H_{20}O_4Na$  407.1259.

### (5S,6R,8R)-6-Acetyl-8-(furan-2-ylmethyl)-5-hydroxy-7,8-dihydro-5H-5,8-

methanobenzo[7]annulene-9,10(6H)-dione ((+)-51na): Prepared by following the

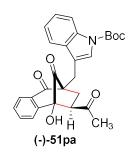



procedure 2d and purified by column chromatography using EtOAc/hexane and isolated as pale yellowish oily liquid; Yield: 78%; The enantiomeric excess (ee) was determined by chiral stationary

phase HPLC using a Daicel Chiralpak IA-3 column (hexane/2-propanol = 90:10, flow rate 1.0 mL/min,  $\lambda = 254$  nm),  $t_R = 16.66$  min (major),  $t_R = 15.76$  min (minor) [For major isomer],  $t_R = 12.09$  min (major),  $t_R = 28.59$  min (minor) [For minor isomer];  $[\alpha]_D^{25} = +32.9^\circ$  (c = 0.89, CHCl<sub>3</sub>, 93% ee and 11:1 dr); IR (Neat):  $v_{max}$  3455, 3069, 2927, 1770, 1692, 1597, 1504, 1453, 1421, 1360, 1332, 1281, 1170, 1072, 937, 783 and 736 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz, major isomer)  $\delta$  8.07 (1H, dd, J = 8.0, 1.0 Hz), 7.91 (1H, br d, J = 8.0 Hz), 7.73 (1H, dt, J = 7.5, 1.0 Hz), 7.51 (1H, dt, J = 7.5, 1.0 Hz), 7.33 (1H, d, J = 1.0 Hz), 6.33 (1H, dd, J = 3.5, 2.0 Hz), 6.25 (1H, d, J = 3.0 Hz), 3.81 (1H, s), 3.50 (1H, dd, J = 16.0 Hz), 3.39 (1H, d, J = 15.5 Hz), 3.16 (1H, dd, J = 10.0, 3.0 Hz), 2.44 (1H, dd, J = 15.0, 3.0 Hz), 2.16 (3H, s), 1.95 (1H, dd, J = 14.5, 10.0 Hz); <sup>13</sup>C NMR (CDCl<sub>3</sub>, DEPT-135, major isomer)  $\delta$  208.2 (C, C = O), 203.7 (C, C = O), 194.6 (C, C = O), 151.0 (C), 144.6 (C), 141.5 (CH), 135.5 (CH), 129.1 (C), 129.0 (CH), 127.9 (CH), 124.0 (CH), 110.5 (CH), 109.1 (CH), 82.7 (C), 63.6 (C), 52.6 (CH), 31.2 (CH<sub>3</sub>), 29.0 (CH<sub>2</sub>), 25.0 (CH<sub>2</sub>); HRMS m/z 347.0901 (M + Na<sup>+</sup>), calcd for C<sub>19</sub>H<sub>16</sub>O<sub>5</sub>Na 347.0895.

# (5S,6R,8R)-6-Acetyl-5-hydroxy-8-(thiophen-2-ylmethyl)-7,8-dihydro-5H-5,8-

methanobenzo[7] annulene-9,10(6H)-dione ((+)-510a): Prepared by following the



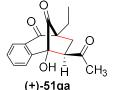

procedure **2d** and purified by column chromatography using EtOAc/hexane and isolated as pale yellowish oily liquid; Yield: 70%; The enantiomeric excess (*ee*) was determined by chiral stationary phase HPLC using a Daicel Chiralpak IA-3 column

(hexane/2-propanol = 90:10, flow rate 1.0 mL/min,  $\lambda$  = 254 nm),  $t_R$  = 18.71 min (major),  $t_R$  = 17.05 min (minor) [For major isomer],  $t_R$  = 12.30 min (major),  $t_R$  = 60.67 min (minor) [For minor isomer];  $[\alpha]_D^{25}$  = +1.7° (c = 0.82, CHCl<sub>3</sub>, 92% ee and 10:1 dr); IR (Neat):  $v_{max}$  3462, 3106, 3068, 2947, 2915, 1771, 1693, 1597, 1452, 1424, 1360, 1330,

1281, 1173, 1073, 936, 782, 733, 699 and 529 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz, major isomer)  $\delta$  8.08 (1H, br d, J = 7.5 Hz), 7.91 (1H, br d, J = 7.5 Hz), 7.74 (1H, br t, J = 7.5 Hz), 7.52 (1H, br t, J = 7.5 Hz), 7.17 (1H, br d, J = 5.5 Hz), 6.98 (1H, br d, J = 3.0 Hz), 6.94 (1H, m), 3.86 (1H, br s), 3.69 (1H, d, J = 15.5 Hz), 3.53 (1H, dd, J = 15.5, 1.5 Hz), 3.16 (1H, dd, J = 9.5, 2.5 Hz), 2.41 (1H, dd, J = 14.5, 2.5 Hz), 2.15 (3H, s), 1.83 (1H, br dd, J = 14.5, 10.0 Hz); <sup>13</sup>C NMR (CDCl<sub>3</sub>, DEPT-135, major isomer)  $\delta$  208.5 (C, C = O), 204.1 (C, C = O), 195.1 (C, C = O), 144.6 (C), 138.2 (C), 135.5 (CH), 129.2 (C), 129.0 (CH), 128.5 (CH), 127.9 (CH), 126.7 (CH), 125.0 (CH), 124.0 (CH), 82.9 (C), 64.4 (C), 52.6 (CH), 31.3 (CH<sub>3</sub>), 28.6 (CH<sub>2</sub>), 26.6 (CH<sub>2</sub>); HRMS m/z 363.0667 (M + Na<sup>+</sup>), calcd for C<sub>19</sub>H<sub>16</sub>O<sub>4</sub>SNa 363.0667.

# tert-Butyl 3-(((5S,6R,8R)-6-Acetyl-5-hydroxy-9,10-dioxo-6,7,8,9-tetrahydro-5H-5,8-methanobenzo[7]annulen-8-yl)methyl)-1H-indole-1-carboxylate ((-)-51pa):



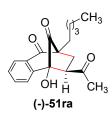

Prepared by following the procedure **2d** and purified by column chromatography using EtOAc/hexane and isolated as colourless oily liquid; Yield: 91%; The enantiomeric excess (*ee*) was determined by chiral stationary phase HPLC using a Daicel Chiralpak IC-3 column (hexane/2-propanol = 90:10, flow rate 1.0

mL/min,  $\lambda = 254$  nm),  $t_R = 53.61$  min (major),  $t_R = 21.06$  min (minor) [For major isomer],  $t_R = 12.12$  min (major),  $t_R = 10.73$  min (minor) [For minor isomer];  $[\alpha]_D^{25} = -26.9^\circ$  (c = 0.92, CHCl<sub>3</sub>, 84% *ee* and 16:1 *dr*); IR (Neat):  $v_{max}$  3451, 3066, 2979, 2933, 1770, 1727, 1692, 1598, 1453, 1369, 1310, 1257, 1157, 1087, 1016, 936, 856 and 745 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz, major isomer)  $\delta$  8.09 (1H, dd, J = 8.0, 1.0 Hz), 7.90

(1H, dd, J = 8.0, 1.0 Hz), 7.72 (1H, dt, J = 7.5, 1.5 Hz), 7.68 (1H, br dd, J = 6.5, 1.5 Hz), 7.64 (1H, br s), 7.50 (1H, dt, J = 8.0, 1.0 Hz), 7.31-7.24 (3H, m), 3.84 (1H, s), 3.59 (1H, dd, J = 15.5, 0.5 Hz), 3.38 (1H, br d, J = 15.0 Hz), 3.13 (1H, dd, J = 9.5, 2.5 Hz), 2.36 (1H, dd, J = 14.5, 2.5 Hz), 2.10 (3H, s), 1.81 (1H, dd, J = 15.0, 10.0 Hz), 1.67 (9H, s); <sup>13</sup>C NMR (CDCl<sub>3</sub>, DEPT-135, major isomer)  $\delta$  208.5 (C, C = O), 204.6 (C, C = O), 195.2 (C, C = O), 149.7 (C, O-C = O), 144.4 (C), 135.4 (CH), 134.9 (C), 131.8 (C), 129.3 (C), 128.9 (CH), 127.9 (CH), 126.1 (CH), 124.1 (CH), 123.9 (CH), 122.5 (CH), 119.1 (CH), 115.1 (C), 115.1 (CH), 83.5 (C), 82.9 (C), 64.3 (C), 52.5 (CH), 31.5 (CH<sub>3</sub>), 29.2 (CH<sub>2</sub>), 28.2 (3 x CH<sub>3</sub>), 20.7 (CH<sub>2</sub>); HRMS m/z 496.1736 (M + Na<sup>+</sup>), calcd for C<sub>28</sub>H<sub>27</sub>NO<sub>6</sub>Na 496.1736.

### (5S,6R,8S)-6-Acetyl-8-ethyl-5-hydroxy-7,8-dihydro-5H-5,8-

methanobenzo[7]annulene-9,10(6H)-dione ((+)-51qa): Prepared by following the

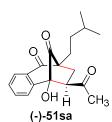



procedure **2d** and purified by column chromatography using EtOAc/hexane and isolated as colourless oily liquid; Yield: 90%;

The enantiomeric excess (*ee*) was determined by chiral stationary phase HPLC using a Daicel Chiralpak IA-3 column (hexane/2-propanol = 90:10, flow rate 1.0 mL/min,  $\lambda = 254$  nm),  $t_R = 12.22$  min (major),  $t_R = 9.68$  min (minor) [For major isomer],  $t_R = 10.28$  min (major),  $t_R = 14.59$  min (minor) [For minor isomer];  $[\alpha]_D^{25} = +2.6^\circ$  (c = 0.31, CHCl<sub>3</sub>, 96% *ee* and 28:1 *dr*); IR (Neat):  $v_{max}$  3458, 3067, 2971, 2942, 1763, 1689, 1597, 1456, 1360, 1332, 1258, 1176, 1060, 966, 917, 889, 786 and 725 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz, major isomer)  $\delta$  8.05 (1H, dd, J = 7.5, 1.0 Hz), 7.90 (1H, br d, J = 7.5 Hz), 7.72 (1H, dt, J = 7.5, 1.0 Hz), 7.50 (1H, dt, J = 7.5, 1.0 Hz), 3.64

(1H, s), 3.26 (1H, dd, J = 9.5, 2.5 Hz), 2.43 (1H, dd, J = 14.5, 3.0 Hz), 2.31 (3H, s), 2.07 (2H, q, J = 7.5 Hz), 1.84 (1H, dd, J = 15.0, 9.5 Hz), 1.13 (3H, t, J = 7.5 Hz); <sup>13</sup>C NMR (CDCl<sub>3</sub>, DEPT-135, major isomer)  $\delta$  208.7 (C, C=O), 205.1 (C, C=O), 195.9 (C, C=O), 144.9 (C), 135.3 (CH), 129.4 (C), 128.8 (CH), 127.7 (CH), 123.8 (CH), 82.7 (C), 63.7 (C), 52.6 (CH), 32.3 (CH<sub>3</sub>), 29.4 (CH<sub>2</sub>), 20.3 (CH<sub>2</sub>), 8.4 (CH<sub>3</sub>); HRMS m/z 295.0946 (M + Na<sup>+</sup>), calcd for C<sub>16</sub>H<sub>16</sub>O<sub>4</sub>Na 295.0946.

### (5S,6R,8S)-6-Acetyl-5-hydroxy-8-pentyl-7,8-dihydro-5H-5,8-




methanobenzo[7]annulene-9,10(6H)-dione ((-)-51ra): Prepared by following the procedure 2d and purified by column chromatography using EtOAc/hexane and isolated as colourless oily liquid; Yield: 95%; The enantiomeric excess (ee) was

determined by chiral stationary phase HPLC using a Daicel Chiralpak IA-3 column (hexane/2-propanol = 90:10, flow rate 1.0 mL/min,  $\lambda$  = 254 nm),  $t_R$  = 10.83 min (major),  $t_R$  = 08.83 min (minor) [For major isomer],  $t_R$  = 9.83 min (major),  $t_R$  = x.xx min (minor) [For minor isomer]; [ $\alpha$ ] $_D$ <sup>25</sup> = -3.3° (c = 0.86, CHCl<sub>3</sub>, 94% ee and 22:1 dr); IR (Neat):  $v_{max}$  3457, 2955, 2869, 1766, 1692, 1598, 1454, 1359, 1331, 1280, 1257, 1201, 1175, 1063, 957, 913, 782, 723 and 581 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz, major isomer)  $\delta$  8.04 (1H, br d, J = 7.5 Hz), 7.90 (1H, dd, J = 8.0, 0.5 Hz), 7.72 (1H, dt, J = 8.0, 0.5 Hz), 7.50 (1H, br t, J = 7.5 Hz), 3.63 (1H, br s), 3.26 (1H, dd, J = 9.5, 2.5 Hz), 2.43 (1H, dd, J = 14.5, 3.0 Hz), 2.31 (3H, s), 2.04-1.98 (2H, m), 1.93 (1H, dd, J = 14.5, 9.5 Hz), 1.66-1.61 (1H, m), 1.49-1.44 (1H, m), 1.41-1.38 (4H, m), 0.92 (3H, t, J = 7.0 Hz); <sup>13</sup>C NMR (CDCl<sub>3</sub>, DEPT-135, major isomer)  $\delta$  208.7 (C, C=O), 205.2 (C, C=O), 195.9 (C, C=O), 195.9 (C, C=O), 205.2 (C, C=O), 205.

144.9 (C), 135.3 (CH), 129.4 (C), 128.8 (CH), 127.7 (CH), 123.7 (CH), 82.6 (C), 63.4 (C), 52.7 (CH), 32.5 (CH<sub>2</sub>), 32.3 (CH<sub>3</sub>), 29.9 (CH<sub>2</sub>), 27.4 (CH<sub>2</sub>), 23.4 (CH<sub>2</sub>), 22.4 (CH<sub>2</sub>), 14.1 (CH<sub>3</sub>); HRMS m/z 337.1418 (M + Na<sup>+</sup>), calcd for  $C_{19}H_{22}O_4Na$  337.1416.

# (5S,6R,8S)-6-Acetyl-5-hydroxy-8-isopentyl-7,8-dihydro-5H-5,8-

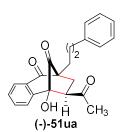


following the procedure 2d and purified by column chromatography using EtOAc/hexane and isolated as colourless oily liquid; Yield: 99%; The enantiomeric excess (ee) was determined by chiral stationary phase HPLC using a Daicel Chiralpak IA-3 column (hexane/2-propanol = 90:10, flow rate 1.0 mL/min,  $\lambda$  = 254 nm),  $t_R$  = 10.61 min (major),  $t_R = 8.153 \text{ min (minor)}$  [For major isomer],  $t_R = 8.92 \text{ min (major)}$ ,  $t_R = 16.39 \text{ min (minor)}$ [For minor isomer];  $[\alpha]_D^{25} = -1.7^\circ$  (c = 1.33, CHCl<sub>3</sub>, 94% ee and 24:1 dr); IR (Neat):  $v_{\text{max}}$  3434, 3069, 2953, 2868, 1761, 1706, 1597, 1453, 1362, 1329, 1258, 1199, 1066, 943, 783 and 723 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz, major isomer)  $\delta$  8.04 (1H, dd, J =7.5, 1.0 Hz), 7.90 (1H, br d, J = 7.5 Hz), 7.72 (1H, dt, J = 7.5, 1.0 Hz), 7.45 (1H, dt, J = 7.5, 1.0 = 7.5, 1.0 Hz), 3.67 (1H, s), 3.26 (1H, dd, J = 9.5, 2.5 Hz), 2.42 (1H, dd, J = 14.5, 3.0Hz), 2.31 (3H, s), 2.01 (2H, quintet, J = 6.0 Hz), 1.87 (1H, dd, J = 14.5, 9.5 Hz), 1.64 (1H, quintet, J = 7.0 Hz), 1.56-1.50 (1H, m), 1.40-1.32 (1H, m), 0.97 (6H, d, J = 6.5 Hz, 2 x CH<sub>3</sub>); <sup>13</sup>C NMR (CDCl<sub>3</sub>, DEPT-135, major isomer) δ 208.7 (C, C=O), 205.2 (C, C=O), 196.0 (C, C=O), 144.8 (C), 135.3 (CH), 129.4 (C), 128.8 (CH), 127.7 (CH), 123.7

(CH), 82.6 (C), 63.4 (C), 52.7 (CH), 32.5 (CH<sub>2</sub>), 32.3 (CH<sub>3</sub>), 29.8 (CH<sub>2</sub>), 28.8 (CH),

methanobenzo[7]annulene-9,10(6H)-dione ((-)-51sa): Prepared

25.4 (CH<sub>2</sub>), 22.5 (CH<sub>3</sub>), 22.4 (CH<sub>3</sub>); HRMS m/z 337.1416 (M + Na<sup>+</sup>), calcd for  $C_{19}H_{22}O_4Na$  337.1416.


### (5S,6R,8S)-6-Acetyl-5-hydroxy-8-octyl-7,8-dihydro-5H-5,8-

OH H CH<sub>3</sub>

methanobenzo[7]annulene-9,10(6H)-dione ((-)-51ta): Prepared by following the procedure 2d and purified by column chromatography using EtOAc/hexane and isolated as colourless oily liquid; Yield: 95%; The enantiomeric excess (ee) was determined by chiral

stationary phase HPLC using a Daicel Chiralpak IA-3 column (hexane/2-propanol = 90:10, flow rate 1.0 mL/min,  $\lambda = 254$  nm),  $t_R = 9.80$  min (major),  $t_R = 8.39$  min (minor) [For major isomer],  $t_R = 10.85$  min (major),  $t_R = 22.33$  min (minor) [For minor isomer];  $[\alpha]_D^{25} = -4.4^\circ$  (c = 1.0, CHCl<sub>3</sub>, 95% *ee* and 12:1 *dr*); IR (Neat):  $v_{max}$  3438, 2946, 2924, 2854, 1767, 1691, 1597, 1454, 1359, 1331, 1279, 1253, 1173, 1081, 926, 781, 722 and 666 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz, major isomer)  $\delta$  8.04 (1H, br d, J = 8.0 Hz), 7.90 (1H, br d, J = 8.0 Hz), 7.72 (1H, br t, J = 7.5 Hz), 7.49 (1H, br t, J = 7.5 Hz), 3.61 (1H, br s), 3.25 (1H, dd, J = 9.0, 2.5 Hz), 2.44 (1H, dd, J = 15.0, 2.5 Hz), 2.31 (3H, s), 2.03-1.98 (2H, m), 1.87 (1H, dd, J = 14.5, 9.5 Hz), 1.70-1.60 (1H, m), 1.50-1.29 (11H, m), 0.89 (3H, t, J = 7.0 Hz); <sup>13</sup>C NMR (CDCl<sub>3</sub>, DEPT-135, major isomer)  $\delta$  208.6 (C, C = 0), 205.2 (C, C = 0), 195.9 (C, C = 0), 144.9 (C), 135.3 (CH), 129.4 (C), 128.9 (CH), 127.7 (CH), 123.7 (CH), 82.6 (C), 63.4 (C), 52.7 (CH), 32.3 (CH<sub>3</sub>), 31.9 (CH<sub>2</sub>), 30.4 (CH<sub>2</sub>), 29.9 (CH<sub>2</sub>), 29.4 (CH<sub>2</sub>), 29.3 (CH<sub>2</sub>), 27.5 (CH<sub>2</sub>), 23.8 (CH<sub>2</sub>), 22.6 (CH<sub>2</sub>), 14.1 (CH<sub>3</sub>); HRMS m/z 379.1888 (M + Na<sup>+</sup>), calcd for C<sub>22</sub>H<sub>28</sub>O<sub>4</sub>Na 379.1885.

# (5S,6R,8S)-6-acetyl-5-hydroxy-8-(3-phenylpropyl)-7,8-dihydro-5H-5,8-



methanobenzo[7]annulene-9,10(6H)-dione ((-)-51ua): Prepared by following the procedure 2d and purified by column chromatography using EtOAc/hexane and isolated as colourless oily liquid; Yield: 95%; The enantiomeric excess (ee) was

determined by chiral stationary phase HPLC using a Daicel Chiralpak IA-3 column (hexane/2-propanol = 90:10, flow rate 1.0 mL/min,  $\lambda$  = 254 nm),  $t_R$  = 17.21 min (major),  $t_R$  = 21.07 min (minor) [For major isomer],  $t_R$  = 15.23 min (major),  $t_R$  = 13.78 min (minor) [For minor isomer];  $[\alpha]_D^{25}$  = -3.2° (c = 1.04, CHCl<sub>3</sub>, 90% ee and 45:1 dr); IR (Neat):  $v_{max}$  3453, 3064, 3025, 2950, 2855, 1768, 1689, 1598, 1453, 1359, 1331, 1258, 1203, 1173, 1081, 964, 920, 732, and 700 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz, major isomer)  $\delta$  8.05 (1H, dd, J = 8.0, 2.0 Hz), 7.91 (1H, br d, J = 8.0 Hz), 7.73 (1H, dt, J = 7.5, 1.5 Hz), 7.51 (1H, dt, J = 7.5, 1.0 Hz), 7.32-7.27 (4H, m), 7.21-7.18 (1H, m), 3.66 (1H, br s), 3.26 (1H, dd, J = 9.5, 2.5 Hz), 2.77 (2H, m), 2.42 (1H, dd, J = 14.5, 3.0 Hz), 2.32 (3H, s), 2.10-2.00 (3H, m), 1.90-1.84 (2H, m); <sup>13</sup>C NMR (CDCl<sub>3</sub>, DEPT-135, major isomer)  $\delta$  208.7 (C, C=O), 205.0 (C, C=O), 195.7 (C, C=O), 144.8 (C), 142.1 (C), 135.3 (CH), 129.3 (C), 128.8 (CH), 128.4 (2 x CH), 128.2 (2 x CH), 127.7 (CH), 125.6 (CH), 123.7 (CH), 82.6 (C), 63.3 (C), 52.6 (CH), 36.5 (CH<sub>2</sub>), 32.4 (CH<sub>3</sub>), 29.9 (CH<sub>2</sub>), 27.3 (CH<sub>2</sub>), 25.4 (CH<sub>2</sub>); HRMS m/z 385.1415 (M + Na<sup>+</sup>), calcd for C<sub>23</sub>H<sub>22</sub>O<sub>4</sub>Na 385.1416.

2e. Preparation of Asymmetric Methanobenzo[7]annulenes 8ab-8ub under the Chiral Quinidine Thiourea 57a or Chiral Quinine Thiourea 57b catalysis: In an ordinary glass vial equipped with a magnetic stirring bar, to QD-NH-thiourea 57a or Q-

NH-thiourea **57b** (0.06 mmol) and C<sub>6</sub>H<sub>5</sub>CH<sub>3</sub> (1.0 mL) was added and stirred at 0-3 °C for 5 minutes then 0.3 mmol of 2-hydroxy-1,4-naphthoquinone derivative **48a-u** and 0.9 mmol of ethyl vinyl ketone **49b** was added, and the reaction mixture was stirred at 0-3 °C for 24-72 h. The crude reaction mixture was worked up with aqueous NH<sub>4</sub>Cl solution, and the aqueous layer was extracted with ethyl acetate (3 x 10 mL). The combined organic layers were dried (Na<sub>2</sub>SO<sub>4</sub>), filtered, and concentrated. Pure chiral products **51ab-51ub** were obtained by column chromatography (silica gel, mixture of hexane/ethyl acetate).

# 8-Benzyl-5-hydroxy-6-propionyl-7,8-dihydro-5*H*-5,8-methanobenzo[7]annulene-9,10(6*H*)-dione:

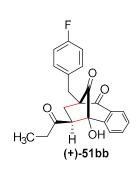
(-)-51ab: Prepared by following the procedure 2e (57b-catalysis) and purified by

(5S,6R,8R) (-)-51ab

column chromatography using EtOAc/hexane and isolated as colourless oily liquid; Yield: 85%; The enantiomeric excess (*ee*) was determined by chiral stationary phase HPLC using a Daicel Chiralpak IC-3 column (hexane/2-propanol = 90:10, flow rate 1.0 mL/min,  $\lambda$  = 254 nm),  $t_R$  = 14.08 min (major),  $t_R$  = 12.03

min (minor) [For major isomer];  $t_R = 9.59$  min (major),  $t_R = 10.39$  min (minor) [For minor isomer];  $[\alpha]_D^{25} = -9.9^{\circ}$  [c = 0.52, CHCl<sub>3</sub>, 83% ee and 14:1 dr];

(+)-51ab: Prepared by following the procedure 2e (57a-catalysis) and purified by column chromatography using EtOAc/hexane and isolated as colourless oily liquid; Yield: 85%; The enantiomeric excess (ee) was determined by chiral stationary phase

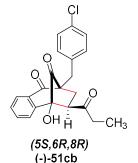

HPLC using a Daicel Chiralpak IC-3 column (hexane/2-propanol = 90:10, flow rate 1.0 mL/min,  $\lambda = 254$  nm),  $t_R = 12.53$  min (major),  $t_R = 14.17$  min (minor) [For major

H<sub>3</sub>C H OH

isomer];  $t_R = 10.58 \text{ min (major)}$ ,  $t_R = 9.91 \text{ min (minor)}$  [For minor isomer];  $[\alpha]_D^{25} = +3.0^{\circ}$  [c = 0.4, CHCl<sub>3</sub>, 81% ee and 53:1 dr]; IR (Neat):  $v_{\text{max}}$  3462, 3059, 3023, 2977, 2936, 1768, 1691, 1603,

(5*R*,6*S*,8*S*) (+)-51ab (1494, 1453, 1355, 1278, 1236, 1112, 1071, 1035, 926 and 699 (+)-51ab (m<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz, major isomer)  $\delta$  8.07 (1H, d, J = 7.5 Hz), 7.87 (1H, d, J = 7.5 Hz), 7.71 (1H, t, J = 7.0 Hz), 7.50 (1H, t, J = 7.0 Hz), 7.36 (2H, d, J = 7.0 Hz), 7.28 (2H, t, J = 7.0 Hz), 7.21 (1H, t, J = 7.0 Hz), 3.83 (1H, s), 3.52 (1H, d, J = 14.5 Hz), 3.39 (1H, d, J = 14.5 Hz), 3.10 (1H, dd, J = 10.0, 2.0 Hz), 2.46-2.39 (1H, m), 2.27-2.21 (2H, m), 1.77 (1H, dd, J = 14.5, 10.0 Hz), 0.89 (3H, t, J = 7.5 Hz); <sup>13</sup>C NMR (CDCl<sub>3</sub>, DEPT-135, major isomer)  $\delta$  210.9 (C, C=O), 204.7 (C, C=O), 195.4 (C, C=O), 144.5 (C), 136.7 (C), 135.4 (CH), 131.2 (2 x CH), 129.3 (C), 128.8 (CH), 128.1 (2 x CH), 127.8 (CH), 126.5 (CH), 123.9 (CH), 82.9 (C), 64.7 (C), 51.9 (CH), 37.1 (CH<sub>2</sub>), 31.7 (CH<sub>2</sub>), 28.5 (CH<sub>2</sub>), 7.1 (CH<sub>3</sub>); HRMS m/z 371.1259 (M + Na<sup>+</sup>), calcd for

### (5S,6R,8R)-8-(4-Fluorobenzyl)-5-hydroxy-6-propionyl-7,8-dihydro-5H-5,8-

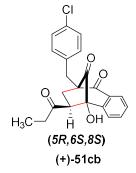



C<sub>22</sub>H<sub>20</sub>O<sub>4</sub>Na 371.1259.

methanobenzo[7]annulene-9,10(6H)-dione (51bb): Prepared by following the procedure 2e (57a-catalysis) and purified by column chromatography using EtOAc/hexane and isolated as colourless oily liquid; Yield: 65%; The enantiomeric excess (ee) was determined by chiral stationary phase HPLC using a Daicel

Chiralpak IC-3 column (hexane/2-propanol = 95:05, flow rate 1.0 mL/min,  $\lambda$  = 254 nm),  $t_R$  = 15.02 min (major),  $t_R$  = 18.36 min (minor) [For major isomer]; [ $\alpha$ ]p<sup>25</sup> = +8.0° (c = 0.64, CHCl<sub>3</sub>, 97% *ee* and 90:1 dr); IR (Neat):  $v_{max}$  3426, 3075, 2977, 2930, 1763, 1691, 1598, 1510, 1458, 1221, 1164, 1112, 1081, 931, 854 and 720 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz, major)  $\delta$  8.08 (1H, dd, J = 8.0, 1.0 Hz), 7.89 (1H, br d, J = 7.0 Hz), 7.73 (1H, dt, J = 7.5, 1.5 Hz), 7.52 (1H, dt, J = 7.5, 1.0 Hz), 7.38-7.35 (2H, m), 7.00-6.96 (2H, m), 3.79 (1H, s), 3.50 (1H, br d, J = 14.5 Hz), 3.37 (1H, br d, J = 14.5 Hz), 3.15 (1H, dd, J = 9.5, 2.5 Hz), 2.54 (1H, qd, J = 18.5, 7.5 Hz), 2.31 (1H, qd, J = 18.5, 7.5 Hz), 2.25 (1H, dd, J = 14.5, 2.5 Hz), 1.77 (1H, dd, J = 14.5, 9.5 Hz), 0.95 (3H, t, J = 7.5 Hz); <sup>13</sup>C NMR (CDCl<sub>3</sub>, DEPT-135, major)  $\delta$  211.0 (C, C=O), 204.7 (C, C=O), 195.4 (C, C=O), 161.7 (C, d, J = 242.5 Hz, C-F), 144.5 (C), 135.4 (CH), 132.7 (2 x CH, d, J = 7.5 Hz), 132.3 (C, d, J = 3.75 Hz), 129.2 (C), 128.9 (CH), 127.9 (CH), 123.9 (CH), 114.8 (2 x CH, d, J = 21.2 Hz), 82.97 (C), 64.6 (C), 51.8 (CH), 37.6 (CH<sub>2</sub>), 31.0 (CH<sub>2</sub>), 28.7 (CH<sub>2</sub>), 7.0 (CH<sub>3</sub>); HRMS m/z 389.1165 (M + Na<sup>+</sup>), calcd for C<sub>22</sub>H<sub>19</sub>FO<sub>4</sub>Na 389.1165.

### 8-(4-Chlorobenzyl)-5-hydroxy-6-propionyl-7,8-dihydro-5*H*-5,8-methanobenzo[7]




annulene-9,10(6H)-dione: (-)-51cb: Prepared by following the procedure 2e (57a-catalysis) and purified by column chromatography using EtOAc/hexane and isolated as colourless oily liquid; Yield: 88%; The enantiomeric excess (ee) was determined by chiral stationary phase HPLC using a Daicel

Chiralpak IB-3 column (hexane/2-propanol = 95:5, flow rate 0.5 mL/min,  $\lambda$  = 254 nm),  $t_R$  = 24.40 min (major),  $t_R$  = 20.57 min (minor) [For major isomer];  $t_R$  = 31.73 min

(major),  $t_R = 28.97$  min (minor) [For minor isomer];  $[\alpha]_D^{25} = -10.3^{\circ}$  [c = 1.3, CHCl<sub>3</sub>, 80% ee and 67:1 dr];

(+)-51cb: Prepared by following the procedure 2e (2j-catalysis) and purified by column chromatography using EtOAc/hexane and isolated as colourless oily liquid; Yield: 75%;



The enantiomeric excess (*ee*) was determined by chiral stationary phase HPLC using a Daicel Chiralpak IB-3 column (hexane/2-propanol = 95:5, flow rate 0.5 mL/min,  $\lambda$  = 254 nm),  $t_R$  = 20.15 min (major),  $t_R$  = 24.13 min (minor) [For major isomer];  $t_R$  = 29.17 min (major),  $t_R$  = 31.47 min (minor) [For minor isomer];

[ $\alpha$ ] $_{D}^{25}$  = +7.0° [c = 0.33, CHCl<sub>3</sub>, 73% ee and 90:1 dr]; IR (Neat):  $v_{max}$  3457, 3070, 2924, 2853, 1770, 1691, 1597, 1491, 1455, 1359, 1281, 1112, 1090, 1035, 930, 854, 787 and 718 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz, major)  $\delta$  8.06 (1H, dd, J = 7.5, 0.5 Hz), 7.88 (1H, d, J = 7.5 Hz), 7.72 (1H, dt, J = 7.5, 1.0 Hz), 7.51 (1H, dt, J = 7.5, 1.0 Hz), 7.33 (2H, td, J = 8.5, 1.0 Hz), 7.25 (2H, td, J = 8.5, 1.0 Hz), 3.49 (1H, d, J = 14.5 Hz), 3.34 (1H, d, J = 14.5 Hz), 3.14 (1H, dd, J = 9.5, 2.5 Hz), 2.54 (1H, qd, J = 18.5, 7.5 Hz), 2.30 (1H, qd, J = 18.5, 7.5 Hz), 2.22 (1H, dd, J = 14.5, 2.5 Hz), 1.75 (1H, dd, J = 14.5, 9.5 Hz), 0.95 (3H, t, J = 7.5 Hz); <sup>13</sup>C NMR (CDCl<sub>3</sub>, DEPT-135, major)  $\delta$  211.0 (C, C=O), 204.5 (C, C=O), 195.3 (C, C=O), 144.5 (C), 135.5 (CH), 135.3 (C), 132.6 (2 x CH), 132.5 (C), 129.2 (C), 128.9 (CH), 128.2 (2 x CH), 127.9 (CH), 123.9 (CH), 82.9 (C), 64.4 (C), 51.8 (CH), 37.7 (CH<sub>2</sub>), 31.3 (CH<sub>2</sub>), 28.9 (CH<sub>2</sub>), 7.0 (CH<sub>3</sub>); HRMS m/z 405.0871 (M + Na<sup>+</sup>), calcd for C<sub>22</sub>H<sub>19</sub>ClO<sub>4</sub>Na 405.0870.

# 5-Hydroxy-8-(4-methylbenzyl)-6-propionyl-7,8-dihydro-5H-5,8-

methanobenzo[7]annulene-9,10(6H) -dione: (-)-51eb: Prepared by following the

(5S,6R,8R) (-)-51eb

procedure **2e** (**57b**-catalysis) and purified by column chromatography using EtOAc/hexane and isolated as colourless oily liquid; Yield: 65%; The enantiomeric excess (*ee*) was determined by chiral stationary phase HPLC using a Daicel

Chiralpak IC-3 column (hexane/2-propanol = 95:05, flow rate 1.0 mL/min,  $\lambda$  = 254 nm),  $t_R$  = 28.94 min (major),  $t_R$  = 25.16 min (minor), [For major isomer],  $t_R$  = 18.21 min (major),  $t_R$  = 20.69 min (minor), [For minor isomer]; [ $\alpha$ ] $_D^{25}$  = -3.7° (c = 0.74, CHCl<sub>3</sub>, 80% ee and 11:1 dr)

(+)-51eb: Prepare d by following the procedure 2e (57a-catalysis) and purified by column chromatography using EtOAc/hexane and isolated as colourless oily liquid;



Yield: 65%; The enantiomeric excess (*ee*) was determined by chiral stationary phase HPLC using a Daicel Chiralpak IC-3 column (hexane/2-propanol = 95:05, flow rate 1.0 mL/min,  $\lambda$  = 254 nm),  $t_R$  = 23.83 min (major),  $t_R$  = 28.57 min (minor) [For major isomer];  $t_R$  = 20.53 min (major),  $t_R$  = 18.19 min (minor)

[For minor isomer];  $[\alpha]_D^{25} = +6.6^\circ$  (c = 0.78, CHCl<sub>3</sub>, 74% ee and 16:1 dr); IR (Neat):  $v_{max}$  3465, 3065, 2977, 2924, 1769, 1690, 1597, 1514, 1454, 1359, 1321, 1281, 1233, 1154, 1113, 1038, 928, 779, 737 and 717 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz, major)  $\delta$  8.06 (1H, br d, J = 7.5 Hz), 7.87 (1H, br d, J = 8.0 Hz), 7.70 (1H, br t, J = 8.0 Hz), 7.49 (1H, br t, J = 7.5 Hz), 7.25 (2H, d, J = 8.0 Hz), 7.08 (1H, d, J = 8.0 Hz), 3.82 (1H, s),

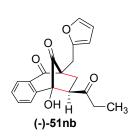
3.47 (1H, d, J = 14.5 Hz), 3.35 (1H, d, J = 14.5 Hz), 3.09 (1H, dd, J = 9.5, 2.0 Hz), 2.46-2.38 (1H, m), 2.30 (3H, s), 2.28-2.21 (2H, m), 1.76 (1H, dd, J = 14.5, 10.0 Hz), 0.90 (3H, t, J = 7.5 Hz); <sup>13</sup>C NMR (CDCl<sub>3</sub>, DEPT-135, major)  $\delta$  210.9 (C, C=O), 204.8 (C, C=O), 195.5 (C, C=O), 144.5 (C), 136.0 (C), 135.3

(CH), 133.6 (C), 131.0 (2 x CH), 129.3 (C), 128.8 (2 x CH), 128.8 (CH), 127.8 (CH), 123.9 (CH), 82.97 (C), 64.7 (C), 51.9 (CH), 37.1 (CH<sub>2</sub>), 31.2 (CH<sub>2</sub>), 28.6 (CH<sub>2</sub>), 20.9 (CH<sub>3</sub>), 7.0 (CH<sub>3</sub>); HRMS m/z 385.1420 (M + Na<sup>+</sup>), calcd for C<sub>23</sub>H<sub>22</sub>O<sub>4</sub>Na 385.1416.

# 5-Hydroxy-8-(4-methoxybenzyl)-6-propionyl-7,8-dihydro-5H-5,8-

methanobenzo[7]annulene-9,10 (6*H*)-dione: (-)-51fb: Prepared by following the procedure 2e (57b-catalysis) and purified by column chromatography using EtOAc/hexane and isolated as colourles oily liquid; Yield: 87%; The enantiomeric excess (*ee*) was determined by chiral stationary phase HPLC using a Daicel Chiralpak IB-3 column (hexane/2-propanol = 90:10, flow rate 1.0 mL/min,  $\lambda$  = 254 nm),  $t_R$  = 10.14 min (major),  $t_R$  = 8.06 min (minor) [For major isomer],  $t_R$  = 11.76 min (major), [For minor isomer];  $[\alpha]_D^{25}$  = -2.6° (c = 1.43, CHCl<sub>3</sub>, 98% *ee* and 62:1 *dr*);

(+)-51fb: Prepared by following the procedure 2e (57a-catalysis) and purified by column chromatography using EtOAc/hexane and isolated as colourles oily liquid; Yield: 80%; The enantiomeric excess (*ee*) was determined by chiral stationary phase HPLC using a Daicel Chiralpak IB-3 column (hexane/2-propanol = 90:10, flow rate 1.0 mL/min,  $\lambda = 254$  nm),  $t_R = 7.89$  min (major),  $t_R = 10.39$  min (minor) [For major isomer];


 $t_{\rm R} = 9.84 \, \text{min}$  (major),  $t_{\rm R} = 11.67 \, \text{min}$  (minor) [For minor isomer];  $[\alpha]_{\rm D}^{25} = +4.5^{\circ}$  (c =0.38, CHCl<sub>3</sub>, 87% ee and 84:1 dr); IR (KBr): v<sub>max</sub> 3446, 2936, 1769, 1690, 1598, 1512,

(5S,6R,8R) (-)-51fb

1454, 1359, 1251, 1180, 1113, 1035, 932, 800, 740 and 714 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz, major)  $\delta$  8.08 (1H, dd, J = 8.0, 1.2 Hz), 7.88 (1H, br d, J = 8.0, Hz), 7.72 (1H, dt, J = 7.6, 1.2 Hz), 7.51 (1H, dt, J = 7.6, 1.2 Hz), 7.30 (2H, br td, J = 8.4, 1.2 Hz), 6.82 (2H, br td, J = 8.4, 1.2 Hz), 3.78 (3H, s), 3.72 (1H, s), 3.47

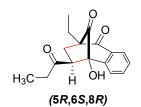
(1H, d, J = 14.8 Hz), 3.36 (1H, d, J = 14.8 Hz), 3.11 (1H, dd, J = 10.0, 2.8 Hz), 2.45(1H, qd, J = 18.5, 7.5 Hz), 2.31-2.21 (2H, m), 1.77 (1H, dd, J = 14.8, 10.0 Hz), 0.92 (3H, t, J = 7.2 Hz); <sup>13</sup>C NMR (CDCl<sub>3</sub>, DEPT-135, major)  $\delta$  211.0 (C, C=O), 204.8 (C, C=O), 195.6 (C, C=O), 158.3 (C), 144.5 (C), 135.4 (CH), 132.2 (2 x CH), 129.3 (C), 128.9 (CH), 128.7 (C), 127.9 (CH), 124.0 (CH), 113.5 (2 x CH), 82.9 (C), 64.8 (C), 55.2 (CH), 51.9 (CH<sub>3</sub>), 37.2 (CH<sub>2</sub>), 30.8 (CH<sub>2</sub>), 28.6 (CH<sub>2</sub>), 7.10 (CH<sub>3</sub>); HRMS m/z  $401.1365 \text{ (M + Na}^{+})$ , calcd for  $C_{23}H_{22}O_5Na 401.1365$ .

### (5S,6R,8R)-8-(Furan-2-vlmethyl)-5-hydroxy-6-propionyl-7,8-dihydro-5H-5,8-



methanobenzo[7] annulene-9,10(6H)-dione ((-)-51nb): Prepared by following the procedure 2e (57b-catalysis) and purified by column chromatography using EtOAc/hexane and isolated as pale yellowish oily liquid; Yield: 75%; The enantiomeric excess (ee) was determined by chiral stationary phase HPLC using a Daicel Chiralcel OJ-H column (hexane/2-propanol = 90:10, flow rate 1.0 mL/min,  $\lambda$  = 254 nm),  $t_R = 29.97 \text{ min (major)}$ ,  $t_R = 74.15 \text{ min (minor)}$  [For major isomer],  $t_R = 23.07$ 

min (major),  $t_R = 54.23$  min (minor) [For minor isomer];  $[\alpha]_D^{25} = -5.6^\circ$  (c = 0.13, CHCl<sub>3</sub>, 84% *ee* and 97:1 *dr*); IR (Neat):  $v_{max}$  3468, 2977, 2930, 2853, 1768, 1686, 1603, 1453, 1360, 1283, 1117, 1076, 1009, 937 and 740 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz, major)  $\delta$  8.07 (1H, d, J = 7.5 Hz), 7.89 (1H, d, J = 8.0, Hz), 7.73 (1H, t, J = 8.0 Hz), 7.51 (1H, t, J = 7.5 Hz), 7.32 (1H, d, J = 1.0 Hz), 6.32 (1H, t, J = 2.5 Hz), 6.25 (1H, d, J = 3.0 Hz), 3.75 (1H, s), 3.52 (1H, d, J = 16.0 Hz), 3.37 (1H, d, J = 16.0 Hz), 3.15 (1H, dd, J = 9.5, 2.5 Hz), 2.56 (1H, qd, J = 18.5, 7.5 Hz), 2.41-2.38 (1H, m), 2.37-2.32 (1H, m), 1.94 (1H, dd, J = 15.0, 10.0 Hz), 1.00 (3H, t, J = 7.5 Hz); <sup>13</sup>C NMR (CDCl<sub>3</sub>, DEPT-135, major)  $\delta$  210.97 (C, C = 0), 203.8 (C, C = 0), 194.7 (C, C = 0), 151.1 (C), 144.6 (C), 141.5 (CH), 135.5 (CH), 129.2 (C), 128.9 (CH), 127.9 (CH), 124.0 (CH), 110.5 (CH), 109.0 (CH), 82.8 (C), 63.7 (C), 51.8 (CH), 37.5 (CH<sub>2</sub>), 29.7 (CH<sub>2</sub>), 25.1 (CH<sub>2</sub>), 7.2 (CH<sub>3</sub>); HRMS m/z 361.1052 (M + Na<sup>+</sup>), calcd for C<sub>20</sub>H<sub>18</sub>O<sub>5</sub>Na 361.1052.


# 6-Acetyl-8-ethyl-5-hydroxy-7,8-dihydro-5*H*-5,8-methanobenzo[7]annulene-9,10(6*H*)-dione:

(-)-51qb: Prepared by following the procedure 2e (57b-catalysis) and purified by column chromatography using EtOAc/hexane and isolated as colourless oily liquid; Yield: 75%; The enantiomeric excess (ee) was determined by chiral stationary phase HPLC using a Daicel (5S,6R,8S) (-)-51qb Chiralpak IA-3 column (hexane/2-propanol = 95:05, flow rate

0.5 mL/min,  $\lambda = 254$  nm),  $t_R = 32.53$  min (major),  $t_R = 26.84$  min (minor) [For major

isomer],  $t_R = 35.01 \text{ min (major)}$ ,  $t_R = 54.62 \text{ min (minor)}$  [For minor isomer];  $[\alpha]_D^{25} = -1.3^{\circ}$  (c = 0.49, CHCl<sub>3</sub>, 77% ee and 9:1 dr);

(+)-51qb: Prepared by following the procedure 2e (57a-catalysis) and purified by



column chromatography using EtOAc/hexane and isolated as colourless oily liquid; Yield: 90%; The enantiomeric excess (ee) was determined by chiral stationary phase HPLC using a Daicel Chiralpak IA-3 column (hexane/2-propanol = 95:05, flow rate 0.5

mL/min,  $\lambda = 254$  nm),  $t_R = 25.14$  min (major),  $t_R = 31.23$  min (minor) [For major isomer],  $t_R = 48.91$  min (major),  $t_R = 33.06$  min (minor) [For minor isomer];  $[\alpha]_D^{25} = +4.6^{\circ}$  (c = 0.99, CHCl<sub>3</sub>, 74% ee and 11:1 dr);

IR (Neat):  $v_{\text{max}}$  3442, 3065, 2974, 2940, 2879, 1764, 1688, 1598, 1456, 1360, 1247, 1201, 1113, 1031, 939, 917, 892, 784 and 717 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz, major)  $\delta$  8.00 (1H, dd, J = 7.6, 0.8 Hz), 7.86 (1H, br d, J = 7.2 Hz), 7.68 (1H, dt, J = 7.2, 1.2 Hz), 7.46 (1H, dt, J = 7.2, 1.2 Hz), 3.68 (1H, s), 3.21 (1H, dd, J = 9.6, 2.8 Hz), 2.74 (1H, qd, J = 18.5, 7.5 Hz), 2.45 (1H, qd, J = 18.5, 7.5 Hz), 2.38 (1H, dd, J = 14.4, 2.8 Hz), 2.03 (2H, q, J = 7.2 Hz), 1.82 (1H, dd, J = 14.4, 9.6 Hz), 1.11 (3H, t, J = 7.6 Hz), 1.04 (3H, t, J = 7.2 Hz); <sup>13</sup>C NMR (CDCl<sub>3</sub>, DEPT-135, major)  $\delta$  211.7 (C, C=O), 205.2 (C, C=O), 196.0 (C, C=O), 144.9 (C), 135.2 (CH), 129.3 (C), 128.7 (CH), 127.6 (CH), 123.7 (CH), 82.8 (C), 63.7 (C), 51.7 (CH), 38.5 (CH<sub>2</sub>), 29.4 (CH<sub>2</sub>), 20.2 (CH<sub>2</sub>), 8.4 (CH<sub>3</sub>), 7.0 (CH<sub>3</sub>); HRMS m/z 309.1103 (M + Na<sup>+</sup>), calcd for C<sub>17</sub>H<sub>18</sub>O<sub>4</sub>Na 309.1103.

# 5-Hydroxy-8-octyl-6-propionyl-7,8-dihydro-5*H*-5,8-methanobenzo[7]annulene-9,10(6*H*)-dione:

(-)-51tb: Prepared by following the procedure 2e (2k-catalysis) and purified by

OH  $\frac{\dot{c}}{\dot{H}}$  CH<sub>3</sub> (5S,6R,8S) (-)-51tb

column chromatography using EtOAc/hexane and isolated as colourless oily liquid; Yield: 95%; The enantiomeric excess (ee) was determined by chiral stationary phase HPLC using a Daicel Chiralpak IA-3 column (hexane/2-propanol = 95:05, flow rate 1.0

mL/min,  $\lambda = 254$  nm),  $t_R = 11.63$  min (major),  $t_R = 10.56$  min (minor) [For major isomer],  $t_R = 13.67$  min (major),  $t_R = 25.35$  min (minor) [For minor isomer];  $[\alpha]_D^{25} = -7.9^{\circ}$  (c = 1.43, CHCl<sub>3</sub>, 86% ee and 10:1 dr);

(+)-51tb: Prepared by following the procedure 2e (57a-catalysis) and purified by column chromatography using EtOAc/hexane and isolated as colourless oily liquid;



(+)-51tb

Yield: 90%; The enantiomeric excess (*ee*) was determined by chiral stationary phase HPLC using a Daicel Chiralpak IA-3 column (hexane/2-propanol = 95:05, flow rate 1.0 mL/min,  $\lambda$  = 254 nm),  $t_R$  = 10.23 min (major),  $t_R$  = 11.49 min (minor) [For

major isomer];  $t_R = 24.83$  min (major),  $t_R = 13.62$  min (minor) [For minor isomer];  $[\alpha]_D^{25} = -13.3^\circ$  (c = 1.48, CHCl<sub>3</sub>, 79% ee and 89:1 dr); IR (Neat):  $v_{max}$  3462, 2925, 2848, 1763, 1686, 1603, 1453, 1355, 1200, 1112, 1081, 1040, 911, 782 and 725 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz, major)  $\delta$  8.04 (1H, d, J = 8.0 Hz), 7.89 (1H, d, J = 8.0 Hz), 7.71 (1H, t, J = 7.5 Hz), 7.49 (1H, t, J = 7.5 Hz), 3.61 (1H, s), 3.24 (1H, dd, J = 9.5, 2.5

Hz), 2.76 (1H, qd, J = 18.5, 7.5 Hz), 2.47 (1H, qd, J = 18.5, 7.5 Hz), 2.42 (1H, dd, J = 14.5, 2.5 Hz), 2.01-1.99 (2H, m), 1.87 (1H, dd, J = 14.0, 9.5 Hz), 1.70-1.60 (1H, m), 1.50-1.26 (11H, m), 1.08 (3H, t, J = 7.0 Hz), 0.89 (3H, t, J = 7.0 Hz); <sup>13</sup>C NMR (CDCl<sub>3</sub>, DEPT-135, major)  $\delta$  211.4 (C, C = O), 205.2 (C, C = O), 196.0 (C, C = O), 144.9 (C), 135.2 (CH), 129.4 (C), 128.8 (CH), 127.7 (CH), 123.7 (CH), 82.7 (C), 63.5 (C), 51.9 (CH), 38.5 (CH<sub>2</sub>), 31.8 (CH<sub>2</sub>), 30.4 (CH<sub>2</sub>), 30.0 (CH<sub>2</sub>), 29.3 (CH<sub>2</sub>), 29.3 (CH<sub>2</sub>), 27.5 (CH<sub>2</sub>), 23.7 (CH<sub>2</sub>), 22.6 (CH<sub>2</sub>), 14.1 (CH<sub>3</sub>), 7.1 (CH<sub>3</sub>); HRMS m/z 393.2042 (M + Na<sup>+</sup>), calcd for C<sub>23</sub>H<sub>30</sub>O<sub>4</sub>Na 393.2042.

# 5-Hydroxy-8-(3-phenylpropyl)-6-propionyl-7,8-dihydro-5H-5,8-methanobenzo[7]annulene-9,10(6H)-dione

(-)-51ub: Prepared by following the procedure 2e (57b-catalysis) and purified by column chromatography using EtOAc/hexane and isolated as colourless oily liquid;

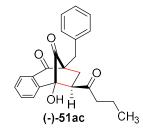
OH H CH<sub>3</sub>
(5S, 6R, 8S)
(-)-51ub

yield: 92%; The enantiomeric excess (*ee*) was determined by chiral stationary phase HPLC using a Daicel Chiralpak IA-3 column (hexane/2-propanol = 90:10, flow rate 1.0 mL/min,  $\lambda$  = 254 nm),  $t_R$  = 13.36 min (major),  $t_R$  = 12.26 min (minor), [For

major isomer],  $t_R = 18.00$  min (major),  $t_R = 28.91$  min (minor) [For minor isomer];  $[\alpha]_D^{25} = -5.17^{\circ}$  (c = 1.18, CHCl<sub>3</sub>, 84% *ee* and dr = 7:1);

(+)-51ub: Prepared by following the procedure 2e (57a-catalysis) and purified by column chromatography using EtOAc/hexane and isolated as colourless oily liquid; yield: 90%; The enantiomeric excess (ee) was determined by chiral stationary phase

HPLC using a Daicel Chiralpak IA-3 column (hexane/2-propanol = 90:10, flow rate 1.0 mL/min,  $\lambda = 254$  nm),  $t_R = 11.43$  min (major),  $t_R = 12.69$  min (minor) [For major


(+)-51ub

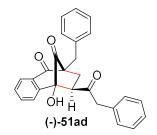
isomer],  $t_R = 24.72$  min (major),  $t_R = 15.90$  min (minor) [For minor isomer];  $[\alpha]_D^{25} = +7.11^\circ$  (c = 1.38, CHCl<sub>3</sub>, 64% *ee* and dr = 22:1); IR (Neat):  $\nu_{\text{max}}$  3437, 2936, 1763, 1686, 1598, 1453, 1355, 1288, 1200, 1112, 1081, 1019, 921 and 751 cm<sup>-1</sup>; <sup>1</sup>H NMR

(CDCl<sub>3</sub>, 400 MHz, major)  $\delta$  8.00 (1H, dd, J = 8.0, 1.2 Hz), 7.86 (1H, br d, J = 8.0 Hz), 7.67 (1H, dt, J = 7.6, 1.2 Hz), 7.46 (1H, dt, J = 7.6, 1.2 Hz), 7.29-7.23 (4H, m), 7.18-7.14 (1H, m), 3.68 (1H, s), 3.19 (1H, dd, J = 9.2, 2.8 Hz), 2.77-2.69 (3H, m), 2.43 (1H, qd, J = 18.5, 7.5 Hz), 2.35 (1H, dd, J = 14.5, 2.5 Hz), 2.07-1.98 (3H, m), 1.85-1.78 (2H, m), 1.05 (3H, t, J = 7.2 Hz); <sup>13</sup>C NMR (CDCl<sub>3</sub>, DEPT-135, major)  $\delta$  211.6 (C, C=O), 205.2 (C, C=O), 195.7 (C, C=O), 144.8 (C), 142.0 (C), 135.3 (CH), 129.2 (C), 128.8 (CH), 128.4 (2 x CH), 128.2 (2 x CH), 127.6 (CH), 125.6 (CH), 123.7 (CH), 82.8 (C), 63.3 (C), 51.7 (CH), 38.5 (CH<sub>2</sub>), 36.5 (CH<sub>2</sub>), 30.1 (CH<sub>2</sub>), 27.2 (CH<sub>2</sub>), 25.3 (CH<sub>2</sub>), 7.0 (CH<sub>3</sub>); HRMS m/z 399.1572 (M + Na<sup>+</sup>), calcd for C<sub>24</sub>H<sub>24</sub>O<sub>4</sub>Na 399.1572.

### (5S,6R,8R)-8-benzyl-6-butyryl-5-hydroxy-7,8-dihydro-5H-5,8-

methanobenzo[7]annulene-9,10(6H)-dione ((-)-51ac): Prepared by following the



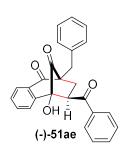

procedure **2d** and purified by column chromatography using EtOAc/hexane and isolated as colourless oily liquid; Yield: 80%; The enantiomeric excess (*ee*) was determined by chiral stationary phase HPLC using a Daicel Chiralpak IC-3 column

(hexane/2-propanol = 95:05, flow rate 0.5 mL/min,  $\lambda$  = 254 nm),  $t_R$  = 41.53 min (major),

 $t_{\rm R} = 37.05 \, \text{min} \, (\text{minor}) \, [\text{For major isomer}]; \, t_{\rm R} = 23.62 \, \text{min} \, (\text{major}), \, t_{\rm R} = 28.51 \, \text{min} \, (\text{minor}) \, [\text{For minor isomer}]; \, [\alpha]_{\rm D}^{25} = -11.4^{\circ} \, [c = 0.79, \, \text{CHCl}_3, \, 79\% \, \text{ee} \, \text{and} \, 76:1 \, \text{dr}]; \, [\text{R} \, (\text{Neat}): \, v_{\text{max}} \, 3431, \, 3065, \, 3028, \, 2961, \, 2930, \, 1763, \, 1691, \, 1598, \, 1494, \, 1458, \, 1376, \, 1329, \, 1278, \, 1086, \, 1040, \, 983, \, 931, \, 766 \, \text{and} \, 694 \, \text{cm}^{-1}; \, ^{1}\text{H} \, \text{NMR} \, (\text{CDCl}_3, \, 500 \, \text{MHz}, \, \text{major}) \, \delta \, 8.08 \, (1\text{H}, \, \text{dd}, \, J = 8.0, \, 1.5 \, \text{Hz}), \, 7.88 \, (1\text{H}, \, \text{dd}, \, J = 7.5, \, 0.5 \, \text{Hz}), \, 7.72 \, (1\text{H}, \, \text{dt}, \, J = 7.5, \, 1.0 \, \text{Hz}), \, 7.50 \, (1\text{H}, \, \text{dt}, \, J = 8.0, \, 1.0 \, \text{Hz}), \, 7.37-7.36 \, (2\text{H}, \, \text{m}), \, 7.31-7.27 \, (2\text{H}, \, \text{m}), \, 7.23-7.19 \, (1\text{H}, \, \text{m}), \, 3.81 \, (1\text{H}, \, \text{s}), \, 3.52 \, (1\text{H}, \, \text{d}, \, J = 14.5 \, \text{Hz}), \, 3.41 \, (1\text{H}, \, \text{d}, \, J = 14.5 \, \text{Hz}), \, 3.08 \, (1\text{H}, \, \text{dd}, \, J = 10.0, \, 2.5 \, \text{Hz}), \, 2.40-2.34 \, (1\text{H}, \, \text{m}), \, 2.25-2.15 \, (2\text{H}, \, \text{m}), \, 1.78 \, (1\text{H}, \, \text{dd}, \, J = 15.0, \, 10.0 \, \text{Hz}), \, 1.49-1.35 \, (2\text{H}, \, \text{m}), \, 0.78 \, (3\text{H}, \, \text{t}, \, J = 7.5 \, \text{Hz}); \, ^{13}\text{C} \, \text{NMR} \, (\text{CDCl}_3, \, \text{DEPT-135}, \, \text{major}) \, \delta \, 210.4 \, (\text{C}, \, \text{C=O}), \, 204.7 \, (\text{C}, \, \text{C=O}), \, 195.4 \, (\text{C}, \, \text{C=O}), \, 144.5 \, (\text{C}), \, 136.7 \, (\text{C}), \, 135.4 \, (\text{CH}), \, 131.2 \, (2 \, \text{x} \, \text{CH}), \, 129.2 \, (\text{C}), \, 128.9 \, (\text{CH}), \, 128.2 \, (2 \, \text{x} \, \text{CH}), \, 127.9 \, (\text{CH}), \, 126.6 \, (\text{CH}), \, 124.0 \, (\text{CH}), \, 83.0 \, (\text{C}), \, 64.7 \, (\text{C}), \, 51.9 \, (\text{CH}), \, 45.7 \, (\text{CH}_2), \, 31.7 \, (\text{CH}_2), \, 28.5 \, (\text{CH}_2), \, 16.3 \, (\text{CH}_2), \, 13.4 \, (\text{CH}_3); \, \text{HRMS} \, \text{m/z} \, 385.1416 \, (\text{M} + \text{Na}^+), \, \text{calcd for C}_{23} \, \text{H}_{22} \, \text{Q4Na} \, 385.1416 \, .$ 

# (5S,6R,8R)-8-Benzyl-5-hydroxy-6-(2-phenylacetyl)-7,8-dihydro-5H-5,8-

methanobenzo[7] annulene-9,10(6H)-dione ((-)-51ad): Prepared by following the



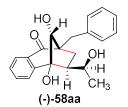

procedure **2d** and purified by column chromatography using EtOAc/hexane and isolated as colourless oily liquid; Yield: 80%; The enantiomeric excess (*ee*) was determined by chiral stationary phase HPLC using a Daicel Chiralpak IC-3 column

(hexane/2-propanol = 90:10, flow rate 1.0 mL/min,  $\lambda$  = 254 nm),  $t_R$  = 18.06 min (major),  $t_R$  = 15.13 min (minor) [For major isomer];  $t_R$  = 8.88 min (major),  $t_R$  = 12.59 min (minor) [For minor isomer];  $[\alpha]_D^{25}$  = -2.2° [c = 1.4, CHCl<sub>3</sub>, 76% ee and dr = 28:1]; IR (KBr):

 $v_{\text{max}}$  3434, 2922, 2849, 1769, 1690, 1597, 1454, 1281, 1157, 1088, 933, 758 and 701 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz, major isomer) δ 8.07 (1H, dd, J = 8.0, 1.0 Hz), 7.88 (1H, dd, J = 8.0, 0.5 Hz), 7.72 (1H, dt, J = 7.5, 1.0 Hz), 7.51 (1H, dt, J = 7.5, 1.0 Hz), 7.36 (2H, br d, J = 7.5 Hz), 7.31-7.27 (4H, m), 7.25-7.23 (2H, m), 7.00 (2H, br d, J = 6.5 Hz), 3.71 (1H, br s), 3.69 (1H, d, J = 16.0 Hz), 3.60 (1H, d, J = 16.0 Hz), 3.51 (1H, d, J = 14.5 Hz), 3.40 (1H, d, J = 14.5 Hz), 3.20 (1H, dd, J = 10.0, 2.5 Hz), 2.24 (1H, dd, J = 15.0, 3.0 Hz), 1.66 (1H, dd, J = 14.5, 9.5 Hz); <sup>13</sup>C NMR (CDCl<sub>3</sub>, DEPT-135, major isomer) δ 207.7 (C, C=O), 204.5 (C, C=O), 195.3 (C, C=O), 144.4 (C), 136.7 (C), 135.4 (CH), 132.7 (C), 131.2 (2 x CH), 129.6 (2 x CH), 129.3 (C), 128.9 (CH), 128.7 (2 x CH), 128.2 (2 x CH), 127.9 (CH), 127.2 (CH), 126.6 (CH), 124.0 (CH), 83.0 (C), 64.7 (C), 51.13 (CH), 51.03 (CH<sub>2</sub>), 31.7 (CH<sub>2</sub>), 28.7 (CH<sub>2</sub>); HRMS m/z 433.1416 (M + Na<sup>+</sup>), calcd for C<sub>27</sub>H<sub>22</sub>O<sub>4</sub>Na 433.1416.

### (5S,6R,8R)-6-Benzoyl-8-benzyl-5-hydroxy-7,8-dihydro-5H-5,8-




methanobenzo[7]annulene-9,10(6*H*)-dione ((-)-51ae): Prepared by following the procedure 2d and purified by column chromatography using EtOAc/hexane and isolated as colourless oily liquid; Yield: 90%; The enantiomeric excess (*ee*) was determined by chiral stationary phase HPLC using a Daicel

Chiralpak IA-3 column (hexane/2-propanol = 95:05, flow rate 1.0 mL/min,  $\lambda$  = 254 nm),  $t_R$  = 53.12 min (major),  $t_R$  = 28.86 min (minor) [For major isomer];  $t_R$  = 24.79 min (major),  $t_R$  = 106.66 min (minor) [For minor isomer]; 22.5% *ee* and dr = 97:1; IR (KBr):  $v_{max}$  3425, 2964, 2923, 2852, 1786, 1663, 1597, 1461, 1383, 1344, 1243, 1168, 1041,

929, 750, 706 and 597 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz, major isomer)  $\delta$  8.14 (1H, d, J = 8.0 Hz), 7.98 (1H, d, J = 8.0 Hz), 7.77 (1H, dt, J = 8.0, 1.0 Hz), 7.72 (2H, d, J = 7.5 Hz), 7.57 (1H, t, J = 6.5 Hz), 7.55 (1H, t, J = 6.5 Hz), 7.42 (2H, t, J = 8.0 Hz), 7.36 (2H, d, J = 7.5 Hz), 7.24 (2H, t, J = 7.5 Hz), 7.19 (1H, t, J = 7.5 Hz), 4.12 (1H, s), 3.95 (1H, dd, J = 10.0, 2.5 Hz), 3.53 (1H, d, J = 14.5 Hz), 3.48 (1H, d, J = 14.5 Hz), 2.36 (1H, dd, J = 15.0, 2.5 Hz), 1.97 (1H, dd, J = 15.0, 10.5 Hz); <sup>13</sup>C NMR (CDCl<sub>3</sub>, DEPT-135, major isomer)  $\delta$  204.5 (C, C=O), 200.1 (C, C=O), 195.3 (C, C=O), 144.2 (C), 136.5 (C), 135.7 (C), 135.4 (CH), 133.7 (CH), 131.0 (2 x CH), 129.4 (C), 128.8 (CH), 128.5 (2 x CH), 128.3 (2 x CH), 128.0 (2 x CH), 127.8 (CH), 126.3 (CH), 124.2 (CH), 83.2 (C), 64.8 (C), 47.6 (CH), 31.7 (CH<sub>2</sub>), 29.5 (CH<sub>2</sub>); HRMS m/z 419.1259 (M + Na<sup>+</sup>), calcd for C<sub>26</sub>H<sub>21</sub>O<sub>4</sub>Na 419.1259.

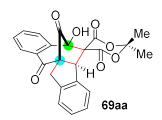
2f. General Procedure for the Reduction of Methanobenzo[7]annulenes 51: In a 10 mL round-bottom flask equipped with a magnetic stirring bar, compound (–)-51aa (0.15 mmol) was dissolved in dry MeOH (1.0 mL) and then cooled to ice temperature, followed by addition of NaBH<sub>4</sub> (5.67 mg, 0.15 mmol) under a nitrogen atmosphere. The reaction mixture was stirred at the same temperature for 2.0 h. The crude reaction mixture was worked up with aqueous NH<sub>4</sub>Cl solution, and the aqueous layer was extracted with ethyl acetate (3 × 10 mL). The combined organic layers were dried (Na<sub>2</sub>SO<sub>4</sub>), filtered, and concentrated. Pure product (-)-58aa was obtained by column chromatography (silica gel, mixture of hexane/ethyl acetate).

# (6S,8S,10R)-8-benzyl-5,10-dihydroxy-6-((S)-1-hydroxyethyl)-7,8-dihydro-5H-5,8-methanobenzo [7]annulen-9(6H)-one ((-)-58aa): Prepared by following the procedure



**2f** and purified by column chromatography using EtOAc/hexane and isolated as colourless oily liquid; Yield: 75%;  $[\alpha]_D^{25} = -33.8^\circ$  [c = 0.28, CHCl<sub>3</sub>, 95% *ee* and 70:1 *dr*]; IR (Neat):  $v_{max}$  3380, 2961,

2915, 2848, 1680, 1598, 1453, 1283, 1226, 1081, 916 and 859 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz, major)  $\delta$  7.95 (1H, dd, J = 8.0, 1.0 Hz), 7.72 (1H, dd, J = 8.0, 1.0 Hz), 7.56 (1H, dt, J = 7.5, 1.5 Hz), 7.47 (2H, dd, J = 7.5, 1.5 Hz), 7.32 (1H, dt, J = 7.5, 1.0 Hz), 7.19 (2H, tt, J = 7.5, 1.5 Hz), 7.10 (1H, tt, J = 7.5, 1.5 Hz), 4.45 (1H, dq, J = 6.5, 2.0 Hz), 3.58-3.53 (2H, m), 3.03 (1H, d, J = 13.5 Hz), 2.26 (1H, dd, J = 14.0, 8.0 Hz), 2.01 (1H, m), 1.70 (1H, dd, J = 14.0, 10.0 Hz), 1.17 (3H, d, J = 6.5 Hz); <sup>13</sup>C NMR (CDCl<sub>3</sub>, DEPT-135, major)  $\delta$  199.2 (C, C=O), 150.5 (C), 138.9 (C), 134.2 (CH), 131.0 (2 x CH), 129.3 (C), 127.8 (2 x CH), 127.6 (CH), 127.3 (CH), 125.9 (CH), 121.3 (CH), 82.0 (C), 79.2 (CH), 65.3 (CH), 62.2 (C), 53.6 (CH), 35.5 (CH<sub>2</sub>), 30.4 (CH<sub>2</sub>), 21.8 (CH<sub>3</sub>); HRMS m/z 361.1414 (M + Na<sup>+</sup>), calcd for C<sub>21</sub>H<sub>22</sub>O<sub>4</sub>Na 361.1416.


**2g:** General Procedure for the Reaction of Methanobenzo[7]annulene 8qa with Potassium *tert*-butoxide: In a 10 mL round-bottom flask equipped with a magnetic stirring bar, compound (+)-51qa (0.28 mmol) was dissolved in C<sub>6</sub>H<sub>5</sub>CF<sub>3</sub> (0.93 mL) and then cooled to 20 °C, followed by addition of potassium *tert*-butoxide (31.41 mg, 0.28 mmol) under a nitrogen atmosphere. The reaction mixture was stirred at the same temperature for 1.0 h. The crude reaction mixture was worked up with aqueous NH<sub>4</sub>Cl solution, and the aqueous layer was extracted with ethyl acetate (3 × 10 mL). The

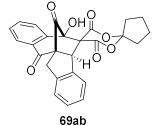
combined organic layers were dried (Na<sub>2</sub>SO<sub>4</sub>), filtered, and concentrated. Pure product **48q** was obtained by column chromatography (silica gel, mixture of hexane/ethyl acetate).

- 3. Organocatalytic Formal Intramolecular [3+2]-Cycloaddition to Acquire Biologically Important Methanodibenzo[a,f]azulenes and Methanobenzo[f]azulenes
- **3a.** Sequential One-pot Synthesis of 69 from Phthalaldehyde (59), 2-Hydroxy-1,4-naphthoquinone (1) and Meldrum's acid (65): To a 25 mL of round bottom flask equipped with a magnetic stirring bar were added 0.1 mmol of catalyst **3n**, 0.55 mmol of phthalaldehyde **59** and 5.0 mL of anhydrous DCM. Then, 0.55 mmol of Hantzsch ester **34** and 0.5 mmol of 2-hydroxy-1,4-naphthoquinone **1** were added sequentially to a well stirred solution and the resulting mixture was allowed to stir for 6 h at 40 °C. Next, 0.55 mmol of Meldrum's acid **65** was added to the above mixture and the stirring was further continued for 4 h at same temperature. The pure domino product **69** was obtained in 54% yield after the purification.
- **3b.** Procedure for the Gram Scale Synthesis of 69aa: To a 100 mL round bottom flask equipped with a magnetic stirring bar were added 3.0 mmol of 62a, 3.15 mmol of 65a and 30 mL of anhydrous DCM. Then, 0.3 mmol of freshly distilled benzyl amine 3z was added and the resulting mixture was allowed to stir at 25 °C for 45 min. Next, the crude reaction mixture was directly loaded onto a silica gel packed column without

aqueous workup to give pure **69aa** after column chromatography using 100% CHCl<sub>3</sub> to 5% ethyl acetate in CHCl<sub>3</sub> as an eluent.

# (4b'S\*,6'S\*,11a'R\*)-6'-Hydroxy-2,2-dimethyl-4b',12'-dihydrospiro[[1,3]dioxane-




tetraone (69aa): The compound was prepared following procedure 3a, purified by column chromatography using

5,5'-[6,11a]methanodibenzo[a,f]azulene]-4,6,11',13'(6'H)-

EtOAc/CHCl<sub>3</sub> (0:10 to 0.2:9.8), and isolated as a white solid.

Yield: 98% (102.5 mg). Mp: 230-232 °C. [α]<sub>D</sub><sup>25</sup> = 0.0° (c = 0.068, acetone, 99:1 dr). IR (Neat):  $\nu_{\text{max}}$  3373, 2926, 2850, 2504, 1781, 1756, 1694, 1598, 1454, 1395, 1338, 1293, 1245, 1198, 1117, 1065, 1023, 954, 923, 906, 889, 752, and 737 cm<sup>-1</sup>. <sup>1</sup>H NMR (DMSO- $d_6$ , 500 MHz): δ8.52 (1H, s, OH), 8.10 (1H, dd, J = 7.5, 1.0 Hz), 7.89 (1H, dt, J = 8.0, 1.5 Hz), 7.81 (1H, br d, J = 7.5 Hz), 7.71 (1H, dt, J = 7.5, 1.0 Hz), 7.37 (1H, br d, J = 7.5 Hz), 7.28 (1H, br t, J = 7.5 Hz), 7.19 (1H, br t, J = 7.5 Hz), 6.95 (1H, br d, J = 7.5 Hz), 4.29 (1H, s), 3.87 (1H, d, J = 17.0 Hz), 3.44 (1H, d, J = 17.0 Hz), 1.99 (3H, s), 1.76 (3H, s). <sup>13</sup>C NMR (DMSO- $d_6$ , DEPT-135) δ201.0 (C, C=O), 192.6 (C, C=O), 165.7 (C, O-C=O), 165.2 (C, O-C=O), 142.7 (C), 142.4 (C), 137.1 (C), 135.7 (CH), 131.3 (C), 130.5 (CH), 129.1 (CH), 127.8 (2 x CH), 127.7 (CH), 125.9 (CH), 123.5 (CH), 107.7 (C, O-C-O), 91.5 (C, C-OH), 71.3 (C), 60.4 (C), 60.1 (CH), 29.9 (CH<sub>3</sub>), 29.4 (CH<sub>2</sub>), 28.9 (CH<sub>3</sub>). HRMS (ESI-TOF) m/z: [M+Na]<sup>+</sup> Calcd for C<sub>2</sub>4H<sub>18</sub>O<sub>7</sub>Na 441.0950; Found 441.0951.

### (4b"S\*,6"S\*,11a"R\*)-6"-Hydroxy-4b",12"-dihydrodispiro[cyclopentane-1,2'-[1,3]dioxane-5',5"-[6,11a]methanodibenzo[a,f]azulene]-4',6',11",13"(6"H)-



tetraone (69ab): The compound was prepared following procedure 3a, purified by column chromatography using EtOAc/CHCl<sub>3</sub> (0:10 to 0.2:9.8), and isolated as a white solid. Yield: 89% (98.9 mg). Mp: 250-252 °C. IR (Neat):  $\nu_{\text{max}}$  3293,

1780, 1726, 1704, 1600, 1453, 1343, 1293, 1248, 1154, 1111, 1076, 1046, 1023, 993, 972, 926, 847, 779, and 751 cm<sup>-1</sup>. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz):  $\delta$  8.16 (1H, d, J = 8.0 Hz), 7.79 (1H, d, J = 7.5 Hz), 7.74 (1H, t, J = 7.5 Hz), 7.60 (1H, t, J = 8.0 Hz), 7.31 (1H, d, J = 7.5 Hz), 7.25 (1H, t, J = 7.5 Hz), 7.14 (1H, t, J = 7.5 Hz), 6.84 (1H, d, J = 7.5 Hz), 4.39 (1H, s), 4.33 (1H, br s, OH), 4.02 (1H, d, J = 17.0 Hz), 3.62 (1H, d, J = 17.0 Hz), 2.45 (1H, quint, J = 7.5 Hz), 2.36 (1H, quint, J = 7.0 Hz), 2.21 (2H, m), 1.96-1.90 (2H, m), 1.86 (2H, m). <sup>13</sup>C NMR (CDCl<sub>3</sub>, DEPT-135)  $\delta$ 200.3 (C, C=O), 191.3 (C, C=O), 166.0 (C, O-C=O), 165.2 (C, O-C=O), 142.7 (C), 140.3 (C), 136.0 (C), 135.3 (CH), 131.2 (C), 130.1 (CH), 129.0 (CH), 128.1 (CH), 127.4 (CH), 126.6 (CH), 125.8 (CH), 122.6 (CH), 116.1 (C, O-C-O), 89.8 (C, C-OH), 70.9 (C), 61.6 (CH), 61.1 (C), 40.9 (CH<sub>2</sub>), 39.3 (CH<sub>2</sub>), 29.0 (CH<sub>2</sub>), 23.8 (CH<sub>2</sub>), 22.3 (CH<sub>2</sub>). HRMS (ESI-TOF) m/z: [M + H]<sup>+</sup>Calcd for C<sub>26</sub>H<sub>20</sub>O<sub>7</sub>H 445.1287; Found 445.1287.

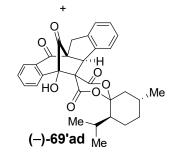
(4b"S\*,6"S\*,11a"R\*)-6"-Hydroxy-4b",12"-dihydrodispiro[cyclohexane-1,2'-[1,3]dioxane-5',5"-[6,11a]methanodibenzo[a,f]azulene]-4',6',11",13"(6"H)-tetraone (69ac): The compound was prepared following procedure 3a, purified by column chromatography using EtOAc/CHCl<sub>3</sub> (0:10 to 0.2:9.8), and isolated as a white

solid. Yield: 88% (100.9 mg). Mp: 252-254 °C. IR (Neat):  $\nu_{\text{max}}$  3362, 2940, 1778, 1726,

OH OH

69ac

1689, 1597, 1455, 1367, 1326, 1293, 1263, 1209, 1152, 1109, 1081, 1065, 1043, 1020, 986, 952, 924, 911, 846, 774, and 756 cm<sup>-1</sup>. <sup>1</sup>H NMR (DMSO- $d_6$ , 400 MHz):  $\delta$  8.51 (1H, s, OH), 8.09 (1H, dd, J = 7.6, 0.8 Hz), 7.90 (1H, dt, J = 7.2,

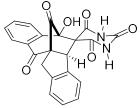

1.2 Hz), 7.79 (1H, br d, J = 7.6 Hz), 7.71 (1H, dt, J = 7.6, 0.8 Hz), 7.37 (1H, br d, J = 7.6 Hz), 7.28 (1H, br t, J = 7.6 Hz), 7.19 (1H, br t, J = 7.2 Hz), 6.95 (1H, br d, J = 7.6 Hz), 4.29 (1H, s), 3.86 (1H, d, J = 17.2 Hz), 3.43 (1H, d, J = 17.2 Hz), 2.28 (2H, br s), 1.99-1.90 (2H, m), 1.63 (4H, br s), 1.45 (2H, br s).  $^{13}$ C NMR (DMSO- $d_6$ , DEPT-135)  $\delta$  201.0 (C, C = 0), 192.6 (C, C = 0), 165.7 (C, O-C = 0), 165.2 (C, O-C = 0), 142.7 (C), 142.4 (C), 137.1 (C), 135.7 (CH), 131.3 (C), 130.5 (CH), 129.1 (CH), 127.8 (2 x CH), 127.8 (CH), 125.9 (CH), 123.5 (CH), 107.8 (C, O-C = 0), 91.3 (C, C = 0 = 0), 71.3 (C), 60.9 (C), 60.2 (CH), 38.7 (CH<sub>2</sub>), 37.1 (CH<sub>2</sub>), 29.4 (CH<sub>2</sub>), 23.7 (CH<sub>2</sub>), 22.5 (CH<sub>2</sub>), 22.2 (CH<sub>2</sub>). HRMS (ESI-TOF) m/z: [M + Na]<sup>+</sup> Calcd for C<sub>27</sub>H<sub>22</sub>O<sub>7</sub>Na 481.1263; Found 481.1259.

(1*S*\*,2*S*\*,4b''*S*\*,5*R*\*,5'*S*\*,6''*S*\*,11a''*R*\*)-6''-Hydroxy-2-isopropyl-5-methyl-4b'',12''-dihydrodispiro[cyclohexane-1,2'-[1,3]dioxane-5',5''-

[6,11a]methanodibenzo[a,f]azulene]-4',6',11'',13''(6''H)-tetraone [(-)-69ad and (-)-69'ad]: The compound was prepared following procedure 3a, purified by column chromatography using EtOAc/CHCl<sub>3</sub> (0:10 to 0.2:9.8), and isolated as a white solid. Yield: 95% (122.2 mg). Mp: 158-160 °C. [ $\alpha$ ]<sub>D</sub><sup>25</sup> = -45.94  $^{\square}$  (c = 0.10, CHCl<sub>3</sub>, 1:1 dr). IR (Neat):  $\nu_{\text{max}}$  3345, 2952, 1779, 1759, 1718, 1696, 1597, 1455, 1371, 1290, 1251, 1210, 1170, 1146, 1108, 1078, 1017, 971, 949, 925, 912, 887, 848, 797, and 757 cm<sup>-1</sup>.

<sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz, 1:1 dr): δ 8.19 (2H, dd, J = 7.5, 3.0 Hz), 7.84 (1H, d, J = 7.5 Hz), 7.78-7.77 (3H, m), 7.64-7.60 (2H, m), 7.35 (2H, t, J = 7.0 Hz), 7.30-7.26 (2H, m), 7.14 (1H, t, J = 7.5 Hz), 7.12 (1H, t, J = 7.5 Hz), 6.89 (1H, d, J = 7.5 Hz), 6.87 (1H,

(-)-69ad

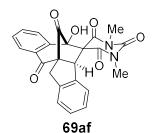



d, J = 7.5 Hz), 4.47 (1H, br s, OH), 4.41 (1H, s), 4.40 (1H, br s, OH), 4.39 (1H, s), 4.04 (2H, br d, J = 18.0 Hz), 3.67 (1H, d, J = 17.0 Hz), 3.65 (1H, d, J = 17.0 Hz), 2.81 (1H, br d, J = 13.0 Hz), 2.70 (1H, br d, J = 13.5 Hz), 2.29 (1H, m), 2.21 (1H, m), 1.91-1.67 (7H, m), 1.64-1.50 (7H, m), 1.06-1.03 (6H, m), 1.01-0.96 (9H, m), 0.83 (3H, d, J = 7.0 Hz). <sup>13</sup>C NMR (CDCl<sub>3</sub>, DEPT-135, 1:1 dr)  $\delta$  200.4 (C, C = O), 200.2 (C, C = O), 191.3 (2 x C, C = O), 166.5 (C, O-1)

C=O), 165.6 (C, O-C=O), 165.5 (C, O-C=O), 165.0 (C, O-C=O), 143.0 (C), 142.8 (C), 140.5 (C), 140.4 (C), 135.8 (C), 135.7 (C), 135.2 (2 x CH), 131.2 (C), 131.1 (C), 130.06 (CH), 130.03 (CH), 129.2 (CH), 129.1 (CH), 128.0 (2 x CH), 127.3 (CH), 127.0 (CH), 126.9 (CH), 126.7 (CH), 125.9 (CH), 125.8 (CH), 123.1 (CH), 122.8 (CH), 110.2 (C, O-C-O), 110.1 (C, O-C-O), 89.3 (C, C-OH), 89.3 (C, C-OH), 70.8 (C), 70.7 (C), 62.5 (CH), 62.3 (CH), 60.99 (C), 60.95 (C), 49.5 (CH), 49.4 (CH), 49.3 (CH<sub>2</sub>), 48.9 (CH<sub>2</sub>), 33.6 (2 x CH<sub>2</sub>), 29.5 (CH), 29.3 (CH), 29.1 (CH<sub>2</sub>), 29.08 (CH<sub>2</sub>), 24.7 (CH), 24.4 (CH), 23.6 (CH<sub>3</sub>), 23.4 (CH<sub>3</sub>), 21.7 (CH<sub>3</sub>), 21.54 (CH<sub>2</sub>), 21.51 (CH<sub>3</sub>), 21.4 (CH<sub>2</sub>), 18.3 (CH<sub>3</sub>), 17.9 (CH<sub>3</sub>). HRMS (ESI-TOF) *m/z*: [M + Na]<sup>+</sup> Calcd for C<sub>31</sub>H<sub>30</sub>O<sub>7</sub>Na 537.1889; Found 537.1882.

#### (4b'S\*,6'S\*,11a'R\*)-6'-Hvdroxy-4b',12'-dihvdro-2H-spiro[pyrimidine-5,5'-

#### [6,11a]methanodibenzo[*a,f*]azulene]-2,4,6,11',13'(1*H*,3*H*,6'*H*)-pentaone (69ae):

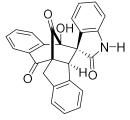



69ae

The compound was prepared following procedure 3a, purified by column chromatography using DCM, and isolated as a white solid. Yield: 97% (97.6 mg). Mp: 231-233 °C. IR (Neat):  $\nu_{\text{max}}$  3628, 3523, 3409, 3196, 3094, 2853, 1778, 1727, 1694,

1455, 1419, 1351, 1294, 1244, 1197, 1075, 972, 920, 859, 815, 785, 762, 714, and 683 cm<sup>-1</sup>. <sup>1</sup>H NMR (DMSO- $d_6$ , 500 MHz):  $\delta$  11.81 (1H, s, NH), 11.63 (1H, s, NH), 8.16 (1H, s, OH), 8.07 (1H, d, J = 7.5 Hz), 7.84 (1H, t, J = 7.5 Hz), 7.72 (1H, d, J = 7.5 Hz), 7.67 (1H, t, J = 7.5 Hz), 7.34 (1H, d, J = 7.5 Hz), 7.22 (1H, t, J = 7.5 Hz), 7.12 (1H, t, J = 7.5 Hz) = 7.5 Hz), 6.94 (1H, d, J = 7.5 Hz), 4.27 (1H, br s), 3.86 (1H, d, J = 17.0 Hz), 3.33 (1H, d, J = 17.0 Hz). <sup>13</sup>C NMR (DMSO- $d_6$ , DEPT-135)  $\delta$  201.6 (C, C=O), 193.2 (C, C=O), 169.1 (C, O=C-NH), 168.3 (C, O=C-NH), 150.4 (C, O=C-NH), 142.9 (C), 142.7 (C), 138.0 (C), 135.4 (CH), 131.4 (C), 130.2 (CH), 128.4 (CH), 127.6 (3 x CH), 125.6 (CH), 123.3 (CH), 92.5 (C, C-OH), 71.4 (C), 61.6 (C), 55.9 (CH), 29.4 (CH<sub>2</sub>). HRMS (ESI-TOF) m/z: [M + Na]<sup>+</sup> Calcd for C<sub>22</sub>H<sub>14</sub>N<sub>2</sub>O<sub>6</sub>Na 425.0750; Found 425.0751.

### (4b'S\*,6'S\*,11a'R\*)-6'-Hydroxy-1,3-dimethyl-4b',12'-dihydro-2Hspiro[pyrimidine-5,5'-[6,11a]methanodibenzo[a,f]azulene]-




2,4,6,11',13'(1H,3H,6'H)-pentaone (69af): The compound was prepared following procedure 3a, purified by column chromatography using CHCl<sub>3</sub>, and isolated as a white solid. Yield: 96% (103.3 mg). Mp: 227-229 °C. IR (Neat):  $v_{\text{max}}$  3355,

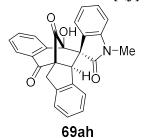
1769, 1678, 1530, 1434, 1417, 1375, 1329, 1295, 1250, 1223, 1202, 1178, 1130, 1065, 1047, 1015, 981, 958, 936, 907, 751, 717, 683, and 649 cm<sup>-1</sup>. <sup>1</sup>H NMR (DMSO- $d_6$ , 400 MHz):  $\delta$ 8.24 (1H, s, OH), 8.09 (1H, br d, J = 8.0 Hz), 7.85 (1H, br t, J = 7.6 Hz), 7.68 (1H, t, J = 7.6 Hz), 7.67 (1H, d, J = 7.6 Hz), 7.34 (1H, d, J = 7.6 Hz), 7.22 (1H, br t, J = 7.6 Hz), 7.13-7.06 (2H, m), 4.43 (1H, s), 3.90 (1H, d, J = 17.2 Hz), 3.47 (1H, d, J = 17.2 Hz), 3.20 (3H, s), 3.00 (3H, s). <sup>13</sup>C NMR (DMSO- $d_6$ , DEPT-135)  $\delta$  201.6 (C, C = O), 193.0 (C, C = O), 167.3 (C, O = C - N), 166.7 (C, O = C - N), 151.4 (C, O = C - N), 142.6 (C), 142.3 (C), 138.0 (C), 135.8 (CH), 131.4 (C), 130.4 (CH), 128.4 (CH), 127.6 (CH), 127.3 (CH), 127.2 (CH), 125.4 (CH), 123.9 (CH), 92.8 (C, C - OH), 71.2 (C), 62.7 (C), 55.7 (CH), 29.7 (CH<sub>3</sub>), 29.2 (CH<sub>2</sub>), 28.5 (CH<sub>3</sub>). HRMS (ESI-TOF) m/z: [M + Na] + Calcd for C<sub>24</sub>H<sub>18</sub>N<sub>2</sub>O<sub>6</sub>Na 453.1063; Found 453.1063.

### $(3'S^*,4bS^*,6S^*,11aR^*)-6-Hydroxyspiro[6,11a-methanodibenzo[\textit{a,f}] azulene-5,3'-1,2''$

indoline]-2',11,13(4bH,6H,12H)-trione (69ag): The compound was prepared



69ag


following procedure 3a, purified by column chromatography using EtOAc/hexanes (3:7 to 4:6), and isolated as a white solid. Yield: 56% (57 mg). Mp: 250-252°C. IR (Neat):  $\nu_{\text{max}}$  3338, 3221, 3066, 1767, 1691, 1619, 1594, 1487, 1471, 1438, 1341, 1298,

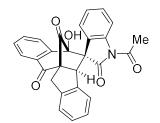
1250, 1229, 1181, 1154, 1117, 1101, 1083, 1064, 1005, 962, 926, 909, 868, 746, 691, and 674 cm<sup>-1</sup>. <sup>1</sup>H NMR (DMSO- $d_6$ , 400 MHz, 13:1 dr, major isomer):  $\delta$  10.64 (1H, s, NH), 8.09 (1H, d, J = 7.6 Hz), 7.84 (1H, t, J = 7.6 Hz), 7.77 (1H, d, J = 7.2 Hz), 7.66 (1H, t, J = 7.6 Hz), 7.34 (1H, d, J = 7.6 Hz), 7.11 (1H, t, J = 7.6 Hz), 7.07 (1H, s, OH), 7.07 (1H, t, J = 7.6 Hz), 6.84 (1H, d, J = 8.0 Hz), 6.83 (1H, t, J = 7.6 Hz), 6.56 (1H, t, J

= 7.6 Hz), 6.21 (1H, d, J = 7.6 Hz), 5.98 (1H, d, J = 7.2 Hz), 4.04 (1H, s), 3.94 (1H, d, J = 17.2 Hz), 3.59 (1H, d, J = 17.2 Hz). <sup>13</sup>C NMR (DMSO-d6, DEPT-135, 13:1 dr, major isomer)  $\delta$  205.1 (C, C=O), 193.0 (C, C=O), 176.2 (C, O=C-N), 143.9 (C), 142.8 (C), 141.4 (C), 137.9 (C), 135.1 (CH), 130.9 (C), 129.5 (CH), 128.5 (CH), 128.4 (2 x CH), 127.3 (CH), 127.1 (CH), 126.6 (C), 125.5 (CH), 124.7 (CH), 124.6 (CH), 121.3 (CH), 109.9 (CH), 89.2 (C, C-OH), 71.2 (C), 57.9 (C), 57.8 (CH), 28.6 (CH<sub>2</sub>). HRMS (ESI-TOF) m/z: [M + H]<sup>+</sup> Calcd for C<sub>26</sub>H<sub>17</sub>NO<sub>4</sub>H 408.1236; Found 408.1235.

#### $(3'S^*,4bS^*,6S^*,11aR^*)-6-Hydroxy-1'-methylspiro[6,11a-methylspiro]$

#### methanodibenzo[a,f] azulene-5,3'-indoline]-2',11,13(4bH,6H,12H)-trione (69ah):




The compound was prepared following procedure 3a, purified by column chromatography using EtOAc/hexanes (2:8 to 3:7), and isolated as a white solid. Yield: 53% (55.8 mg). Mp: 256-258 °C. IR (Neat):  $\nu_{\text{max}}$  3330, 2920, 2850, 1766, 1684, 1609,

1597, 1494, 1468, 1374, 1352, 1300, 1266, 1251, 1233, 1199, 1097, 1054, 1001, 960, 941, 909, 745, and 685 cm<sup>-1</sup>. <sup>1</sup>H NMR (DMSO- $d_6$ , 400 MHz, 10:1 dr, major isomer):  $\delta$  8.11 (1H, dd, J = 7.6, 0.8 Hz), 7.85 (1H, dt, J = 7.6, 1.2 Hz), 7.73 (1H, d, J = 7.6 Hz), 7.67 (1H, dt, J = 8.0, 0.8 Hz), 7.34 (1H, d, J = 7.6 Hz), 7.16 (1H, dt, J = 7.6, 0.8 Hz), 7.12 (1H, br s, OH), 7.10 (1H, t, J = 7.6 Hz), 7.02 (1H, d, J = 8.0 Hz), 6.80 (1H, t, J = 7.6 Hz), 6.64 (1H, dt, J = 7.6, 0.4 Hz), 6.18 (1H, d, J = 7.6 Hz), 6.03 (1H, d, J = 7.6 Hz), 4.06 (1H, s), 3.94 (1H, d, J = 17.2 Hz), 3.60 (1H, d, J = 17.2 Hz), 3.20 (3H, s). <sup>13</sup>C NMR (DMSO- $d_6$ , DEPT-135, 10:1 dr, major isomer)  $\delta$ 205.0 (C, C = O), 192.9 (C, C = O), 174.4 (C, N-C = O), 144.3 (C), 143.9 (C), 141.4 (C), 137.7 (C), 135.1 (CH), 130.9 (C), 129.6

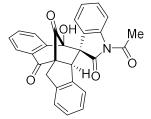
(CH), 128.6 (CH), 128.4 (2 x CH), 127.2 (CH), 127.1 (CH), 125.9 (C), 125.4 (CH), 124.9 (CH), 124.3 (CH), 121.9 (CH), 108.9 (CH), 89.1 (C, *C*-OH), 71.3 (C), 58.0 (CH), 57.6 (C), 28.6 (CH<sub>2</sub>), 27.1 (CH<sub>3</sub>). HRMS (ESI-TOF) *m/z*: [M + NH<sub>4</sub>]<sup>+</sup> Calcd for C<sub>27</sub>H<sub>19</sub>NO<sub>4</sub>NH<sub>4</sub> 439.1658; Found 439.1659.

#### (3'S\*,4bS\*,6S\*,11aR\*)-1'-Acetyl-6-hydroxyspiro[6,11a-

#### methanodibenzo[a,f] azulene-5,3'-indoline]-2',11,13(4bH,6H,12H)-trione (69ai-



**69ai**-major

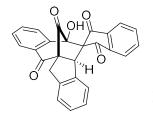

**major diastereomer):** The compound was prepared following procedure **3a**, purified by column chromatography using CHCl<sub>3</sub>/hexanes (8:2 to 10:0), and isolated as a white solid. Yield: 59.2% (66.5 mg). Mp: 216-218 °C; IR (Neat):  $\nu_{\text{max}}$ 

3493, 1761, 1704, 1685, 1599, 1459, 1414, 1368, 1339, 1309, 1283, 1256, 1193, 1168, 1119, 1100, 1073, 1054, 1038, 1005, 967, 924, 910, 896, 871, 847, 809, 782, 755, 728, 701, 677, and 638 cm<sup>-1</sup>. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz, 4:1 dr, major isomer):  $\delta$  8.30 (1H, d, J = 8.5 Hz), 8.27 (1H, d, J = 8.0 Hz), 7.81-7.77 (2H, m), 7.67 (1H, dt, J = 7.5, 1.5 Hz), 7.33 (1H, d, J = 8.0 Hz), 7.26 (1H, d, J = 8.0 Hz), 7.16 (1H, t, J = 7.5 Hz), 6.84 (1H, t, J = 7.0 Hz), 6.82 (1H, t, J = 7.0 Hz), 6.16 (1H, d, J = 7.5 Hz), 6.04 (1H, d, J = 7.5 Hz), 4.39 (1H, s), 4.16 (1H, d, J = 17.0 Hz), 3.76 (1H, d, J = 17.0 Hz), 3.30 (1H, s, OH), 2.62 (3H, s). <sup>13</sup>C NMR (CDCl<sub>3</sub>, DEPT-135, 4:1 dr, major isomer)  $\delta$  203.7 (C, C=O), 191.3 (C, C=O), 175.8 (C, O=C-N), 170.4 (C, O=C-N), 141.6 (C), 140.8 (C), 140.3 (C), 136.2 (C), 135.2 (CH), 130.9 (C), 129.7 (CH), 129.4 (CH), 128.5 (CH), 127.8 (CH), 126.9 (CH), 126.4 (CH), 125.3 (CH), 125.2 (CH), 124.7 (CH), 124.1 (CH), 123.7 (C), 116.6 (CH), 88.7 (C, C-OH), 70.6 (C), 58.9 (C), 58.0 (CH), 28.3 (CH<sub>2</sub>), 26.7 (CH<sub>3</sub>).

HRMS (ESI-TOF) m/z: [M + NH<sub>4</sub>]<sup>+</sup> Calcd for C<sub>28</sub>H<sub>19</sub>NO<sub>5</sub>NH<sub>4</sub> 467.1607; Found 467.1607.

#### (3'R\*,4bS\*,6S\*,11aR\*)-1'-Acetyl-6-hydroxyspiro[6,11a-

#### methanodibenzo[a,f] azulene-5,3'-indoline]-2',11,13(4bH,6H,12H)-trione (69ai-




**69ai**-minor

minor diastereomer): The compound was prepared following procedure 3a, purified by column chromatography using CHCl<sub>3</sub>/hexanes (8:2 to 10:0), and isolated as a white solid. Yield: 14.8% (16.6 mg). Mp: 198-200 °C. IR (Neat):

 $\nu_{\text{max}}$  3460, 2980, 1772, 1751, 1718, 1678, 1646, 1459, 1366, 1340, 1300, 1269, 1213, 1170, 1039, 1015, 956, 914, 752, 724, 694, 670, 640, and 596 cm<sup>-1</sup>. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz, 4:1 dr, minor isomer):  $\delta$  8.34 (1H, d, J = 8.0 Hz), 8.31 (1H, dd, J = 8.0, 1.5 Hz), 7.78 (1H, dt, J = 7.5, 1.5 Hz), 7.72 (1H, dt, J = 7.5, 1.0 Hz), 7.64 (1H, dd, J = 7.5, 1.5 Hz), 7.41 (1H, dt, J = 8.0, 1.0 Hz), 7.37 (1H, d, J = 7.5 Hz), 7.25 (1H, t, J = 7.5 Hz), 7.03 (1H, dt, J = 8.0, 1.0 Hz), 7.02 (1H, dt, J = 7.5, 1.0 Hz), 6.40 (1H, d, J = 7.5 Hz), 5.83 (1H, dd, J = 7.5, 1.0 Hz), 4.79 (1H, d, J = 17.5 Hz), 4.03 (1H, s), 3.83 (1H, br s, O*H*), 3.76 (1H, d, J = 17.5 Hz), 2.34 (3H, s). <sup>13</sup>C NMR (CDCl<sub>3</sub>, DEPT-135, 4:1 dr, minor isomer)  $\delta$  202.6 (C, C=O), 192.1 (C, C=O), 175.7 (C, N-C=O), 170.4 (C, N-C=O), 142.5 (C), 141.3 (C), 140.6 (C), 136.7 (C), 135.0 (CH), 130.9 (C), 130.1 (CH), 129.8 (CH), 128.8 (CH), 128.1 (CH), 127.9 (CH), 127.3 (CH), 125.9 (C), 125.8 (CH), 125.0 (CH), 124.1 (CH), 122.4 (CH), 116.7 (CH), 88.4 (C, C-OH), 72.0 (C), 61.0 (CH), 60.0 (C), 28.8 (CH<sub>2</sub>), 26.4 (CH<sub>3</sub>). HRMS (ESI-TOF) m/z: [M + Na]<sup>+</sup> Calcd for C<sub>28</sub>H<sub>19</sub>NO<sub>5</sub>Na 472.1161; Found 472.1156.

#### (4b'S\*,6'S\*,11a'R\*)-6'-Hydroxy-4b',12'-dihydrospiro[indene-2,5'-



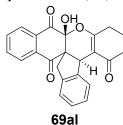
69aj

[6,11a]methanodibenzo[a,f]azulene]-1,3,11',13'(6'H)-tetraone (69aj): The compound was prepared following procedure 3a, purified by column chromatography using CHCl<sub>3</sub>/hexanes (8:2 to 10:0), and isolated as a white solid.

Yield: 97% (101.9 mg). Mp: 246-248 °C. IR (Neat):  $\nu_{\text{max}}$  3422, 2919, 1780, 1700, 1686, 1593, 1453, 1302, 1257, 1230, 1204, 1179, 1156, 1075, 1006, 977, 946, 773, 751, 726, 685, and 638 cm<sup>-1</sup>. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz): δ 8.23 (1H, d, J = 8.0 Hz), 8.05 (1H, d, J = 7.5 Hz), 7.92 (1H, dt, J = 7.0, 1.0 Hz), 7.89 (1H, t, J = 7.0 Hz), 7.85 (1H, d, J = 7.0 Hz), 7.76 (1H, t, J = 7.5 Hz), 7.71 (1H, d, J = 7.0 Hz), 7.64 (1H, t, J = 7.5 Hz), 7.34 (1H, d, J = 7.5 Hz), 7.20 (1H, t, J = 7.5 Hz), 6.90 (1H, t, J = 7.5 Hz), 6.27 (1H, d, J = 7.5 Hz), 4.19 (1H, s), 4.07 (1H, d, J = 17.0 Hz), 3.84 (1H, br s, O*H*), 3.74 (1H, d, J = 17.0 Hz). <sup>13</sup>C NMR (CDCl<sub>3</sub>, DEPT-135) δ201.6 (C, C=O), 197.7 (C, C=O), 197.5 (C, C=O), 191.8 (C, C=O), 143.0 (C), 142.9 (C), 142.3 (C), 140.7 (C), 136.4 (CH), 136.2 (C), 136.1 (CH), 135.0 (CH), 130.9 (C), 129.7 (CH), 128.5 (CH), 127.9 (CH), 127.0 (CH), 126.8 (CH), 125.8 (CH), 123.6 (CH), 123.4 (CH), 123.0 (CH), 88.6 (C, C-OH), 71.2 (C), 62.5 (C), 56.5 (CH), 28.6 (CH<sub>2</sub>). HRMS (ESI-TOF) m/z: [M + NH<sub>4</sub>]<sup>+</sup> Calcd for C<sub>27</sub>H<sub>16</sub>O<sub>5</sub>NH<sub>4</sub> 438.1341; Found 438.1341.

#### (4bR\*,8aR\*)-8a-Hydroxy-4b,6,7,15-tetrahydro-5H,14H-

benzo[g]cyclopenta[b]indeno[1,2-d]chromene-5,9,14(8aH)-trione (69ak): The compound was prepared following procedure 3a, purified by column chromatography using MeOH/CHCl<sub>3</sub> (0:10 to 0.2:9.8), and isolated as a white solid. Yield: 98% (91.2)


mg). Mp: 224-226 °C. IR (Neat):  $\nu_{\text{max}}$  2961, 2924, 2850, 1697, 1670, 1603, 1439, 1378, 1258, 1194, 1097, 1057, 1014, 988, 958, 943, 883, 792, 757, 737, 705, and 683 cm<sup>-1</sup>.

0 OH H 0 <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz):  $\delta$ 8.29 (1H, dd, J = 7.5, 1.0 Hz), 8.24 (1H, dd, J = 7.5, 1.0 Hz), 7.95 (1H, dt, J = 7.5, 1.5 Hz), 7.91 (1H, dt, J = 7.5, 1.0 Hz), 7.69 (1H, d, J = 7.5 Hz), 7.24 (1H, br t, J = 7.5 Hz), 7.19 (1H, br t, J = 7.5 Hz), 7.06 (1H, br d, J = 7.5 Hz), 5.27

69ak Hz), 7.19 (1H, br t, J = 7.5 Hz), 7.06 (1H, br d, J = 7.5 Hz), 5.27 (1H, br s, OH), 5.21 (1H, s), 3.27 (1H, d, J = 16.0 Hz), 3.10 (1H, d, J = 16.0 Hz), 2.56-2.50 (4H, m). <sup>13</sup>C NMR (CDCl<sub>3</sub>, DEPT-135)  $\delta$ 203.7 (C, C=O), 193.5 (C, C=O), 190.3 (C, C=O), 180.6 (C, C=C-O), 141.9 (C), 138.1 (C), 136.4 (CH), 135.0 (CH), 134.7 (C), 130.5 (C), 128.4 (CH), 128.0 (CH), 127.6 (CH), 127.3 (CH), 124.8 (CH), 123.2 (CH), 117.5 (C), 98.1 (C, O-C-OH), 61.5 (C), 40.4 (CH), 33.6 (CH<sub>2</sub>), 29.7 (CH<sub>2</sub>), 26.8 (CH<sub>2</sub>). HRMS (ESI-TOF) m/z: [M + H]<sup>+</sup> Calcd for C<sub>23</sub>H<sub>16</sub>O<sub>5</sub>H 373.1076; Found 373.1077.

#### (4bR\*,9aR\*)-9a-Hydroxy-4b,7,8,16-tetrahydro-15H-benzo[b]indeno[1,2-

m|xanthene-5,10, 15(6H,9aH)-trione (69al): The compound was prepared following



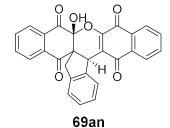
procedure 3a, purified by column chromatography using EtOAc/hexanes (1.5:8.5 to 4:6), and isolated as a white solid. Yield: 98% (94.7 mg). Mp: 126-128 °C. IR (Neat):  $\nu_{max}$  3028, 2799, 1702, 1622, 1586, 1425, 1372, 1255, 1207, 1184, 1102,

1083, 1024, 1002, 964, 886, 860, 787, 768, 757, 739, and 690 cm<sup>-1</sup>. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz):  $\delta$ 8.24 (1H, dd, J = 7.2, 1.6 Hz), 8.19 (1H, dd, J = 7.2, 1.6 Hz), 7.89 (1H, dt, J = 7.2, 1.6 Hz), 7.85 (1H, dt, J = 7.2, 1.6 Hz), 7.36-7.34 (1H, m), 7.18-7.13 (2H, m), 7.05-7.03 (1H, m), 5.25 (1H, s), 5.07 (1H, br s, OH), 3.28 (1H, d, J = 16.0 Hz), 3.06

(1H, d, J= 16.0 Hz), 2.56-2.45 (2H, m), 2.43-2.27 (2H, m), 2.03-1.93 (2H, m). <sup>13</sup>C NMR (CDCl<sub>3</sub>, DEPT-135)  $\delta$  198.1 (C, C=O), 193.7 (C, C=O), 190.9 (C, C=O), 168.1 (C, C=C-O), 142.8 (C), 138.6 (C), 136.1 (CH), 134.8 (CH), 134.6 (C), 130.6 (C), 128.2 (CH), 127.8 (CH), 127.2 (CH), 126.9 (CH), 124.9 (CH), 123.0 (CH), 114.0 (C), 95.9 (C, O-C-OH), 61.1 (C), 40.4 (CH), 39.8 (CH<sub>2</sub>), 37.1 (CH<sub>2</sub>), 28.4 (CH<sub>2</sub>), 20.4 (CH<sub>2</sub>). HRMS (ESI-TOF) m/z: [M + H]<sup>+</sup> Calcd for C<sub>24</sub>H<sub>18</sub>O<sub>5</sub>H 387.1232; Found 387.1236.

#### (4bR\*,9aR\*)-9a-Hydroxy-7,7-dimethyl-4b,7,8,16-tetrahydro-15H-

benzo[b]indeno[1,2-m]xanthene-5,10,15(6H,9aH)-trione (69am): The compound


OH Me Me Me

was prepared following procedure **3a**, purified by column chromatography using EtOAc/hexanes (1.5:8.5 to 4:6), and isolated as a white solid. Yield: 96% (99.5 mg). Mp: 232-236 °C. IR (Neat):  $\nu_{max}$  3225, 2951, 2926, 1709, 1696, 1613,

1475, 1370, 1263, 1214, 1147, 1094, 1078, 1062, 1011, 975, 954, 897, 883, 790, 777, 735, 705, and 631 cm<sup>-1</sup>. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz):  $\delta$ 8.24 (1H, dd, J = 7.2, 1.6 Hz), 8.19 (1H, dd, J = 7.2, 1.6 Hz), 7.90 (1H, dt, J = 7.2, 1.6 Hz), 7.86 (1H, dt, J = 7.2, 1.6 Hz), 7.34-7.33 (1H, m), 7.19-7.13 (2H, m), 7.04-7.02 (1H, m), 5.30 (1H, s), 4.97 (1H, br s, O*H*), 3.25 (1H, d, J = 15.6 Hz), 3.03 (1H, d, J = 15.6 Hz), 2.46 (1H, d, J = 15.6 Hz), 2.32 (2H, br d, J = 17.2 Hz), 2.11 (1H, td, J = 17.6, 1.6 Hz), 1.06 (3H, s), 0.99 (3H, s). <sup>13</sup>C NMR (CDCl<sub>3</sub>, DEPT-135)  $\delta$ 198.0 (C, C=O), 193.6 (C, C=O), 190.9 (C, C=O), 166.4 (C, C=C-O), 142.9 (C), 138.4 (C), 136.2 (CH), 134.8 (C), 134.7 (CH), 130.5 (C), 128.2 (CH), 127.8 (CH), 127.3 (CH), 126.9 (CH), 124.8 (CH), 123.0 (CH), 112.8 (C), 95.9 (C, O-C-OH), 61.1 (C), 51.2 (CH<sub>2</sub>), 42.2 (CH<sub>2</sub>), 39.9 (CH<sub>2</sub>), 32.4 (C), 29.1 (CH<sub>3</sub>),

27.1 (CH<sub>3</sub>). HRMS (ESI-TOF) m/z: [M + H]<sup>+</sup> Calcd for C<sub>26</sub>H<sub>22</sub>O<sub>5</sub>H 415.1545; Found 415.1547.

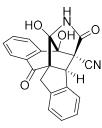
#### (11aR\*,18bR\*)-11a-Hydroxy-5,18b-dihydro-6H-dibenzo[b,i]indeno[2,1-



**I]**xanthene-6,11,13,18(11a*H*)-tetraone (69an): The compound was prepared following procedure 3a, purified by column chromatography using EtOAc/CHCl<sub>3</sub> (0.1:9.9 to 0.4:9.6), and isolated as a white solid. Yield: 95% (106.5

mg). Mp: 248-250 °C. IR (Neat):  $\nu_{\text{max}}$  3439, 1706, 1677, 1655, 1623, 1586, 1480, 1366, 1331, 1302, 1277, 1257, 1236, 1187, 1148, 1126, 1085, 1070, 1013, 968, 907, 798, 783, 745, 721, 698, 666, 648, 619, 606, and 552 cm<sup>-1</sup>. <sup>1</sup>H NMR (DMSO- $d_6$ , 500 MHz): δ 9.15 (1H, s, OH), 8.18-7.74 (8H, m), 7.20-7.04 (4H, m), 5.09 (1H, s), 3.57 (1H, d, J = 16.0 Hz), 2.96 (1H, d, J = 16.0 Hz). <sup>13</sup>C NMR (DMSO- $d_6$ , DEPT-135) δ193.6 (C, C = O), 188.4 (C, C = O), 184.0 (C, C = O), 178.9 (C, C = O), 150.5 (C, C = C-O), 141.5 (C), 138.8 (C), 136.0 (CH), 135.4 (CH), 135.0 (CH), 134.5 (CH), 133.2 (C), 132.8 (C), 131.8 (C), 131.0 (C), 128.0 (CH), 127.99 (CH), 127.95 (CH), 127.6 (2 x CH), 126.4 (CH), 126.3 (CH), 125.6 (C), 125.4 (CH), 97.6 (C, C - OH), 63.7 (C), 40.0 (CH), 38.1 (CH<sub>2</sub>). HRMS (ESI-TOF) m/z: [M + H]<sup>+</sup> Calcd for C<sub>28</sub>H<sub>16</sub>O<sub>6</sub>H 449.1025; Found 449.1025.

#### $(4bS^*,9aR^*)$ -9a-Hydroxy-7-methyl-4b,16-dihydro-5H,15H-benzo[g]indeno[1,2-


69ao

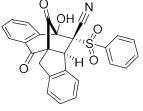
d|pyrano[4,3-b|chromene-5,10,15(9aH)-trione (69ao):

The compound was prepared following procedure **3a**, purified by column chromatography using EtOAc/hexanes (3:7 to 4:6), and isolated as a white solid. Yield: 98% (98

mg). Mp: 208-212 °C. IR (Neat):  $\nu_{\text{max}}$  3339, 3061, 1697, 1654, 1636, 1590, 1480, 1435, 1385, 1339, 1265, 1226, 1148, 1099, 1077, 1028, 995, 960, 925, 887, 808, 790, 740, 703, 677, 636, and 613 cm<sup>-1</sup>. <sup>1</sup>H NMR (DMSO- $d_6$ , 500 MHz): δ8.16 (1H, s, OH), 8.15 (1H, dd, J = 6.5, 2.0 Hz), 7.99-7.95 (2H, m), 7.85 (1H, d, J = 7.5 Hz), 7.21-7.06 (3H, m), 7.03 (1H, d, J = 7.5 Hz), 6.28 (1H, s), 4.75 (1H, s), 3.24 (1H, d, J = 17.0 Hz), 2.93 (1H, d, J = 17.0 Hz), 2.17 (3H, s). <sup>13</sup>C NMR (DMSO- $d_6$ , DEPT-135) δ193.5 (C, C=O), 188.5 (C, C=O), 162.8 (C, O-C=O), 162.0 (C, C=C-O), 160.4 (C, C=C-O), 142.6 (C), 138.0 (C), 136.0 (CH), 135.3 (CH), 133.2 (C), 132.6 (C), 128.2 (CH), 127.99 (CH), 127.88 (CH), 127.3 (CH), 126.7 (CH), 125.1 (CH), 102.6 (C), 100.7 (CH), 97.4 (C, O-C-OH), 63.5 (C), 39.2 (CH), 38.0 (CH<sub>2</sub>), 19.6 (CH<sub>3</sub>). HRMS (ESI-TOF) m/z: [M + H]<sup>+</sup> Calcd for C<sub>24</sub>H<sub>16</sub>O<sub>6</sub>H 401.1025; Found 401.1025.

## (4bS\*,5R\*,6S\*,11aS\*)-6,13-Dihydroxy-11,15-dioxo-4b,6,11,12-tetrahydro-5*H*-6,11a,5-(epimethanetriyliminomethano)dibenzo[*a*,*f*]azulene-5-carbonitrile (69ap):




69ap

The compound was prepared following procedure 3a, purified by column chromatography using MeOH/CHCl<sub>3</sub> (0:10 to 0.5:9.5), and isolated as a white solid. Yield: 89% (79.7 mg, from 65p), and 85% (76 mg, from 65q). Mp: 184-186 °C. IR (Neat):  $\nu_{max}$  3357, 3260,

2926, 2261, 1723, 1687, 1599, 1456, 1394, 1350, 1300, 1257, 1238, 1176, 1145, 1102, 1078, 1017, 953, 935, 911, 835, 800, 761, 747, 719, 689, 666, and 605 cm<sup>-1</sup>. <sup>1</sup>H NMR (DMSO- $d_6$ , 400 MHz):  $\delta$ 9.17 (1H, s, OH), 7.97 (2H, d, J = 8.0 Hz), 7.89 (1H, t, J = 7.6 Hz), 7.67 (1H, t, J = 7.6 Hz), 7.51 (1H, s, OH), 7.33 (1H, d, J = 7.2 Hz), 7.26 (1H, t, J = 7.2 Hz), 7.19 (1H, t, J = 7.2 Hz), 7.09 (1H, d, J = 7.2 Hz), 7.02 (1H, s, NH), 3.97 (1H, s), 3.83 (1H, d, J = 17.6 Hz), 3.07 (1H, d, J = 17.6 Hz). <sup>13</sup>C NMR (DMSO- $d_6$ , DEPT-135)  $\delta$  195.8 (C, C=O), 166.3 (C, HN-C=O), 144.1 (C), 138.5 (C), 136.4 (C), 135.0 (CH), 131.6 (C), 130.1 (CH), 128.9 (CH), 128.5 (CH), 127.3 (CH), 126.3 (CH), 125.5 (CH), 125.2 (CH), 116.5 (C), 98.0 (C, HN-C-OH), 89.6 (C, C-OH), 66.7 (C), 58.2 (CH), 58.0 (C), 29.8 (CH<sub>2</sub>). HRMS (ESI-TOF) m/z: [M + H]<sup>+</sup> Calcd for C<sub>21</sub>H<sub>14</sub>N<sub>2</sub>O<sub>4</sub>H 359.1032; Found 359.1032.

#### (4bS\*,5S\*,6R\*,11aR\*)-6-Hydroxy-11,13-dioxo-5-(phenylsulfonyl)-4b,6,11,12-

tetrahydro-5*H*-6,11a-methanodibenzo[*a,f*]azulene-5-carbonitrile (69aq): The



69aq

compound was prepared following procedure 3a, purified by column chromatography using CHCl<sub>3</sub>/hexanes (8:2 to 10:0), and isolated as a white solid. Yield: 58% (66 mg). Mp: 199-201 °C. IR (Neat):  $\nu_{\text{max}}$  3361, 2923, 2852, 2252, 2256, 1775,

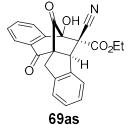
1695, 1599, 1456, 1438, 1333, 1310, 1293, 1252, 1208, 1149, 1078, 1054, 1028, 997, 974, 927, 909, 847, 812, 773, 752, 715, 685, 666, 610, and 584 cm<sup>-1</sup>. <sup>1</sup>H NMR (DMSO- $d_6$ , 500 MHz):  $\delta$  8.38 (1H, s, OH), 8.13 (1H, dd, J = 7.5, 0.5 Hz), 8.04 (2H, d, J = 8.5 Hz), 8.00 (2H, br t, J = 8.0 Hz), 7.93 (1H, d, J = 8.0 Hz), 7.83 (2H, t, J = 8.0 Hz), 7.77 (1H, dt, J = 7.5, 0.5 Hz), 7.42 (1H, d, J = 8.0 Hz), 7.34 (1H, t, J = 7.5 Hz), 7.18 (1H, t,

#### (4bS\*,5S\*,6R\*,11aR\*)-6-Hydroxy-11,13-dioxo-5-tosyl-4b,6,11,12-tetrahydro-5H-

6,11a-methanodibenzo[a,f]azulene-5-carbonitrile (69ar): The compound was

OH NO Me

69ar


prepared following procedure 3a, purified by column chromatography using EtOAc/hexanes (1.5:8.5 to 3:7), and isolated as a white solid. Yield: 54% (63.4 mg). Mp: 188-190 °C. IR (Neat):  $\nu_{\text{max}}$  3474, 2961, 1778, 1695,

1592, 1454, 1325, 1290, 1256, 1225, 1146, 1079, 1012, 960, 932, 909, 878, 844, 801, 763, 739, 702, 661, 648, and 573 cm<sup>-1</sup>. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz):  $\delta$  8.25 (1H, dd, J = 7.5, 1.0 Hz), 7.96 (1H, dd, J = 8.0, 0.5 Hz), 7.94 (2H, d, J = 8.5 Hz), 7.89 (1H, dt, J = 7.5, 1.0 Hz), 7.71 (1H, dt, J = 7.5, 1.0 Hz), 7.51 (2H, d, J = 8.0 Hz), 7.34 (2H, d, J = 4.0 Hz), 7.19 (1H, m), 6.85 (1H, d, J = 8.0 Hz), 4.59 (1H, s), 4.18 (1H, br s, OH), 4.06 (1H, d, J = 17.0 Hz), 3.66 (1H, d, J = 17.0 Hz), 2.57 (3H, s). <sup>13</sup>C NMR (CDCl<sub>3</sub>, DEPT-135)  $\delta$  198.2 (C, C=O), 189.8 (C, C=O), 147.5 (C), 141.5 (C), 137.3 (C), 135.6 (CH), 134.1 (C), 132.6 (C), 131.1 (2 x CH), 130.8 (C), 130.7 (CH), 130.1 (2 x CH), 129.6 (CH), 128.2 (CH), 127.8 (2 x CH), 126.6 (CH), 125.4 (CH), 112.7 (C), 86.5 (C, C-OH), 74.0

(C), 70.3 (C), 54.4 (CH), 28.5 (CH<sub>2</sub>), 21.9 (CH<sub>3</sub>). HRMS (ESI-TOF) *m/z*: [M + H]<sup>+</sup> Calcd for C<sub>27</sub>H<sub>19</sub>NO<sub>5</sub>SH 470.1062; Found 470.1063.

#### Ethyl $(4bS^*,5S^*,6S^*,11aR^*)$ -5-cyano-6-hydroxy-11,13-dioxo-5,6,11,12-

#### tetrahydro-4bH-6,11a-methanodibenzo[a,f]azulene-5-

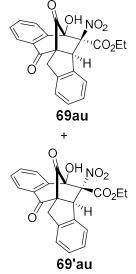


carboxylate (69as): The compound was prepared following procedure 3a, purified by column chromatography using EtOAc/CHCl<sub>3</sub> (0:10 to 0.2:9.8), and isolated as a white solid. Yield: 78% (75.5 mg). Mp: 194-196 °C. IR (Neat):  $\nu_{\text{max}}$  3382,

1787, 1738, 1701, 1595, 1464, 1371, 1330, 1292, 1233, 1182, 1131, 1101, 1084, 1064, 1042, 1018, 983, 948, 926, 876, 852, 783, 765, 756, 711, 676, and 645 cm<sup>-1</sup>. <sup>1</sup>H NMR (DMSO- $d_6$ , 500 MHz, 14:1 dr, major isomer):  $\delta$  8.29 (1H, s, OH), 8.09 (1H, d, J = 7.5 Hz), 8.05 (1H, d, J = 8.0 Hz), 8.00 (1H, t, J = 7.5 Hz), 7.77 (1H, t, J = 7.5 Hz), 7.39 (1H, d, J = 7.5 Hz), 7.31 (1H, t, J = 7.5 Hz), 7.23 (1H, t, J = 7.5 Hz), 7.03 (1H, d, J = 7.5 Hz), 4.53 (1H, s), 3.85 (1H, d, J = 17.5 Hz), 3.83-3.65 (2H, br m, OC $H_2$ CH<sub>3</sub>), 3.40 (1H, d, J = 17.5 Hz), 0.75 (3H, br s, OCH<sub>2</sub>CH<sub>3</sub>). <sup>13</sup>C NMR (DMSO- $d_6$ , DEPT-135, 14:1 dr, major isomer)  $\delta$  200.5 (C, C=O), 192.1 (C, C=O), 164.5 (C, O-C=O), 142.4 (C), 142.0 (C), 136.8 (C), 136.0 (CH), 131.0 (C), 130.97 (CH), 129.2 (CH), 128.1 (CH), 127.7 (CH), 127.5 (CH), 125.8 (CH), 123.9 (CH), 117.0 (C, CN), 89.3 (C, C-OH), 71.8 (2 x C), 63.4 (CH<sub>2</sub>, OCH<sub>2</sub>CH<sub>3</sub>), 56.8 (CH), 29.5 (CH<sub>2</sub>), 13.4 (CH<sub>3</sub>, OCH<sub>2</sub>CH<sub>3</sub>). HRMS (ESI-TOF) m/z: [M + NH<sub>4</sub>]<sup>+</sup> Calcd for C<sub>23</sub>H<sub>17</sub>NO<sub>5</sub>NH<sub>4</sub> 405.1450 Found 405.1450.

Benzyl  $(4bS^*,5S^*,6S^*,11aR^*)$ -5-cyano-6-hydroxy-11,13-dioxo-5,6,11,12-

tetrahydro-4bH-6,11a-methanodibenzo[a,f]azulene-5-carboxylate (69at): The




compound was prepared following procedure 3a, purified by column chromatography using EtOAc/CHCl<sub>3</sub> (0:10 to 0.5:9.5), and isolated as a white solid. Yield: 75% (84.3 mg). Mp: 182-184 °C. IR (Neat):  $\nu_{\text{max}}$  3408, 3065, 2927, 1779, 1727, 1701,

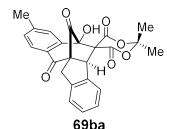
1599, 1483, 1456, 1433, 1371, 1325, 1292, 1245, 1205, 1158, 1124, 1085, 1064, 1044, 1014, 986, 917, 903, 883, 829, 789, 752, 712, 697, 675, 643, and 591 cm<sup>-1</sup>. <sup>1</sup>H NMR (DMSO- $d_6$ , 400 MHz, 7:1 dr, major isomer):  $\delta$  8.37 (1H, s, OH), 8.09 (1H, d, J = 8.0 Hz), 8.05 (1H, d, J = 8.0 Hz), 8.00 (1H, t, J = 8.0 Hz), 7.77 (1H, t, J = 7.2 Hz), 7.46-7.39 (1H, m), 7.35 (3H, br s), 7.29-7.26 (2H, m), 7.19-7.15 (1H, m), 7.09 (1H, br s), 6.99 (1H, d, J = 7.2 Hz), 4.85 (1H, d, J = 12.0 Hz), 4.55 (1H, s), 3.79 (1H, d, J = 17.6 Hz), 3.34 (1H, d, J = 12.0 Hz), 3.26 (1H, d, J = 17.6 Hz). <sup>13</sup>C NMR (CDCl<sub>3</sub> + Acetone- $d_6$ , DEPT-135, 7:1 dr, major isomer)  $\delta$  198.9 (C, C=O), 191.2 (C, C=O), 163.8 (C, O-C=O), 142.1 (C), 141.1 (C), 135.22 (CH), 135.20 (C), 133.3 (C), 130.3 (C), 130.0 (CH), 128.7 (CH), 128.25 (2 x CH), 128.22 (CH), 128.0 (2 x CH), 127.5 (CH), 126.9 (CH), 126.8 (CH), 125.9 (CH), 123.1 (CH), 116.0 (C, CN), 88.4 (C, C-OH), 71.1 (C), 68.4 (CH<sub>2</sub>), 57.9 (CH), 56.9 (C), 28.6 (CH<sub>2</sub>). HRMS (ESI-TOF) m/z: [M + Na]<sup>+</sup> Calcd for C<sub>28</sub>H<sub>19</sub>NO<sub>5</sub>Na 472.1161; Found 472.1158.

Ethyl  $(4bS^*,5S^*,6S^*,11aR^*)$ -6-hydroxy-5-nitro-11,13-dioxo-5,6,11,12-tetrahydro-4bH-6,11a-methanodibenzo[a,f]azulene-5-carboxylate (69au) and Ethyl  $(4bS^*,5R^*,6S^*,11aR^*)$ -6-hydroxy-5-nitro-11,13-dioxo-5,6,11,12-tetrahydro-4bH-

**6,11a-methanodibenzo**[*a,f*]azulene-5-carboxylate (69'au): The compound was prepared following procedure 3a, purified by column chromatography using



EtOAc/hexanes (1:9 to 2:8), and isolated as a white solid. Yield: 89% (90.6 mg). Mp: 202-205 °C. IR (Neat):  $\nu_{\text{max}}$  3448, 2953, 2553, 1779, 1755, 1702, 1596, 1558, 1487, 1455, 1438, 1391, 1349, 1312, 1286, 1232, 1208, 1165, 1094, 1004, 967, 924, 889, 856, 820, 786, 750, 715, 691, 641, 582, and 552 cm<sup>-1</sup>. <sup>1</sup>H NMR (DMSO- $d_6$ , 500 MHz, 2:1 dr):  $\delta$  8.21 (1H, s, OH), 8.11 (1H, s, OH), 8.06 (2H, d, J = 7.5 Hz), 7.99 (2H, br d, J = 7.0 Hz), 7.94 (1H, d, J = 8.5 Hz), 7.91 (1H, d, J = 7.5 Hz), 7.73 (1H, d, J = 7.5


Hz), 7.70 (1H, d, J = 7.5 Hz), 7.41 (2H, t, J = 7.5 Hz), 7.35 (1H, d, J = 7.5 Hz), 7.32 (1H, d, J = 8.5 Hz), 7.26 (1H, t, J = 7.5 Hz), 7.21 (1H, t, J = 7.5 Hz), 7.15 (1H, d, J = 7.5 Hz), 7.08 (1H, d, J = 7.5 Hz), 4.90 (1H, s), 4.76 (1H, s), 4.28 (2H, q, J = 7.0 Hz, OC $H_2$ CH<sub>3</sub>), 3.89 (2H, d, J = 17.5 Hz), 3.82-3.77 (1H, m, OC $H_2$ CH<sub>3</sub>), 3.62 (1H, br s, OC $H_2$ CH<sub>3</sub>), 3.50 (1H, d, J = 17.0 Hz), 3.49 (1H, d, J = 17.5 Hz), 1.27 (3H, t, J = 7.0 Hz, OC $H_2$ CH<sub>3</sub>), 0.64 (3H, br s, OC $H_2$ CH<sub>3</sub>). <sup>13</sup>C NMR (DMSO- $d_6$ , DEPT-135, 2:1 dr)  $\delta$  201.1 (C, C = O), 199.5 (C, C = O), 191.7 (C, C = O), 191.6 (C, C = O), 163.1 (C, O-C = O), 163.0 (C, O-C = O), 142.5 (C), 142.4 (C), 140.4 (C), 139.6 (C), 136.6 (C), 136.2 (C), 135.8 (CH), 135.7 (CH), 131.1 (CH), 130.9 (2 x CH), 129.6 (CH), 129.3 (CH), 128.8 (CH), 128.6 (CH), 128.1 (CH), 127.9 (CH), 127.8 (CH), 125.9 (CH), 125.8 (CH), 124.4 (CH), 124.1 (CH), 100.7 (C), 99.4 (C), 89.1 (C, C = OH), 89.0 (C, C = OH), 73.1 (C), 71.3 (C), 63.9 (CH<sub>2</sub>), 63.7 (CH<sub>2</sub>), 56.1 (CH), 55.9 (CH), 28.4 (CH<sub>2</sub>), 29.2 (CH<sub>2</sub>), 14.0 (CH<sub>3</sub>),

13.1 (CH<sub>3</sub>). HRMS (ESI-TOF) m/z: [M + NH<sub>4</sub>]<sup>+</sup> Calcd for C<sub>22</sub>H<sub>17</sub>NO<sub>7</sub>NH<sub>4</sub> 425.1349; Found 425.1348.

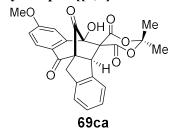
**3c.** General Procedures for the Synthesis of Products 69: To an ordinary glass vial equipped with a magnetic stirring bar were added 0.25 mmol of 65, 0.275 mmol of 62 and 2.5 mL of anhydrous DCM. Then, 0.025 mmol of freshly distilled benzyl amine 3z was added and the resulting mixture was allowed to stir at 25 °C or higher temperatures, until complete consumption of 65 (monitored by TLC). Next, the crude reaction mixture was directly loaded onto a silica gel packed column without aqueous workup to give pure products 69 after column chromatography (eluent: DCM or CHCl<sub>3</sub> or mixture of hexanes/ethyl acetate or hexanes/CHCl<sub>3</sub>, hexanes/DCM, or MeOH/CHCl<sub>3</sub> or ethyl acetate/CHCl<sub>3</sub>).

#### (4b'S\*,6'S\*,11a'R\*)-6'-Hydroxy-2,2,8'-trimethyl-4b',12'-

#### dihydrospiro[[1,3]dioxane-5,5'-[6,11a]methanodibenzo[a,f]azulene]-



**4,6,11',13'(6'H)-tetraone (69ba):** The compound was prepared following procedure **3c**, purified by column chromatography using DCM/hexanes (5:5 to 10:0), and isolated as a white solid. Yield: 96% (103.8 mg). Mp: 260-


262 °C. IR (Neat):  $\nu_{\text{max}}$  3388, 2926, 1779, 1762, 1718, 1688, 1605, 1444, 1385, 1338, 1288, 1238,1200, 1146, 1118, 1059, 1024, 978, 944, 916, 853, 807, 764, 739, 719, 678, and 622 cm<sup>-1</sup>. <sup>1</sup>H NMR (DMSO- $d_6$ , 400 MHz):  $\delta$  8.49 (1H, s, OH), 7.99 (1H, d, J = 7.6 Hz), 7.60 (1H, s), 7.52 (1H, dd, J = 7.6, 0.8 Hz), 7.36 (1H, d, J = 7.6 Hz), 7.27 (1H, t, J

= 7.6 Hz), 7.19 (1H, t, J = 7.2 Hz), 6.95 (1H, d, J = 7.6 Hz), 4.26 (1H, s), 3.85 (1H, d, J = 17.2 Hz), 3.46 (1H, d, J = 17.2 Hz), 2.49 (3H, s), 1.99 (3H, s), 1.76 (3H, s). <sup>13</sup>C NMR (DMSO- $d_6$ , DEPT-135)  $\delta$  201.0 (C, C=O), 192.2 (C, C=O), 165.7 (C, O-C=O), 165.3 (C, O-C=O), 146.5 (C), 142.7 (C), 142.5 (C), 137.1 (C), 131.3 (CH), 129.14 (C), 129.07 (CH), 127.9 (CH), 127.8 (2 x CH), 125.9 (CH), 123.4 (CH), 107.7 (C, O-C-O), 91.4 (C, C-OH), 71.0 (C), 60.4 (CH), 60.3 (C), 29.9 (CH<sub>3</sub>), 29.4 (CH<sub>2</sub>), 28.8 (CH<sub>3</sub>), 22.2 (CH<sub>3</sub>). HRMS (ESI-TOF) m/z: [M + Na]<sup>+</sup> Calcd for C<sub>25</sub>H<sub>20</sub>O<sub>7</sub>Na 455.1107; Found 455.1108.

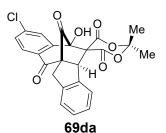
#### (4b'S\*,6'S\*,11a'R\*)-6'-Hydroxy-8'-methoxy-2,2-dimethyl-4b',12'-

#### dihydrospiro[[1,3]di

#### oxane-5,5'-[6,11a]methanodibenzo[a,f]azulene]-



**4,6,11',13'(6'H)-tetraone (69ca):** The compound was prepared following procedure **3c**, purified by column chromatography using CHCl<sub>3</sub>, and isolated as a white solid. Yield: 93% (104.2 mg). Mp: 175-177 °C. IR

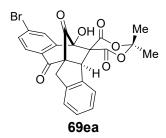

(Neat):  $\nu_{\text{max}}$  3398, 2923, 2852, 1785, 1765, 1731, 1684, 1599, 1482, 1456, 1461, 1386, 1331, 1289, 1249, 1220, 1201, 1115, 1064, 1023, 984, 962, 935, 910, 873, 852, 831, 810, 773, 759, 733, 716, 688, 656, 637, 604, and 561 cm<sup>-1</sup>. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz):  $\delta$ 7.72 (1H, d, J = 9.0 Hz), 7.64 (1H, d, J = 2.5 Hz), 7.35 (1H, d, J = 8.0 Hz), 7.31 (1H, dd, J = 9.0, 3.0 Hz), 7.29 (1H, t, J = 7.5 Hz), 7.18 (1H, t, J = 7.5 Hz), 6.88 (1H, d, J = 7.5 Hz), 4.37 (1H, s), 4.25 (1H, s, OH), 4.06 (1H, d, J = 17.0 Hz), 3.93 (1H, s), 3.66 (1H, d, J = 17.0 Hz), 2.03 (3H, s), 1.80 (3H, s). <sup>13</sup>C NMR (CDCl<sub>3</sub>, DEPT-135)  $\delta$  199.9 (C, C = O), 191.2 (C, C = O), 165.7 (C, O-C = O), 165.0 (C, O-C = O), 160.9 (C), 142.8 (C), 136.0 (C), 132.6 (C), 132.4 (C), 129.1 (CH), 128.0 (CH), 127.3 (CH), 125.9 (CH), 123.1

(CH), 122.6 (CH), 110.4 (CH), 107.1 (C, O-*C*-O), 89.6 (C, *C*-OH), 70.7 (C), 61.9 (CH), 60.5 (C), 55.8 (CH<sub>3</sub>), 30.0 (CH<sub>3</sub>), 29.1 (CH<sub>2</sub>), 28.9 (CH<sub>3</sub>). HRMS (ESI-TOF) *m/z*: [M + NH<sub>4</sub>]<sup>+</sup> Calcd for C<sub>25</sub>H<sub>20</sub>O<sub>8</sub>NH<sub>4</sub> 466.1502; Found 466.1502.

#### (4b'S\*,6'S\*,11a'R\*)-8'-Chloro-6'-hydroxy-2,2-dimethyl-4b',12'-

#### dihydrospiro[[1,3]dioxane-5,5'-[6,11a]methanodibenzo[a,f]azulene]-

#### 4,6,11',13'(6'H)-tetraone (69da): The compound was prepared following procedure

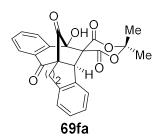



**3c**, purified by column chromatography using EtOAc/hexanes (2:8), and isolated as a white solid. Yield: 96% (108.7 mg). Mp: 167-169 °C. IR (Neat):  $\nu_{\text{max}}$  3371, 2929, 1783, 1759, 1717, 1690, 1590, 1446, 1398, 1381,

1341, 1289, 1246, 1226, 1199, 1162, 1104, 1063, 1023, 978, 942, 912, 854, 837, 805, 763, 738, 673, and 631 cm<sup>-1</sup>. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz):  $\delta$  8.12 (1H, d, J = 8.0 Hz), 7.78 (1H, d, J = 1.5 Hz), 7.58 (1H, dd, J = 8.5, 2.0 Hz), 7.33 (1H, d, J = 7.5 Hz), 7.28 (1H, t, J = 7.5 Hz), 7.17 (1H, t, J = 7.5 Hz), 6.87 (1H, d, J = 7.5 Hz), 4.36 (1H, s), 4.28 (1H, br s, O*H*), 4.03 (1H, d, J = 17.0 Hz), 3.65 (1H, d, J = 17.0 Hz), 2.02 (3H, s), 1.80 (3H, s). <sup>13</sup>C NMR (CDCl<sub>3</sub>, DEPT-135)  $\delta$  199.4 (C, C=O), 190.0 (C, C=O), 165.7 (C, O-C=O), 164.7 (C, O-C=O), 142.7 (C), 142.1 (C), 142.0, (C), 135.6 (C), 130.6 (CH), 129.6 (C), 129.4 (CH), 129.2 (CH), 127.4 (CH), 127.0 (CH), 125.9 (CH), 122.6 (CH), 107.2 (C, O-C-O), 89.0 (C, C-OH), 70.8 (C), 61.9 (CH), 60.6 (C), 30.1 (CH<sub>3</sub>), 29.1 (CH<sub>2</sub>), 28.8 (CH<sub>3</sub>). HRMS (ESI-TOF) m/z: [M + Na]<sup>+</sup> Calcd for C<sub>24</sub>H<sub>17</sub>ClO<sub>7</sub>Na 475.0561; Found 475.0562.

#### (4b'S\*,6'S\*,11a'R\*)-8'-Bromo-6'-hydroxy-2,2-dimethyl-4b',12'-

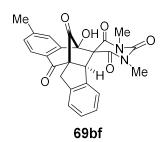
#### dihydrospiro[[1,3]dioxane-5,5'-




[6,11a]methanodibenzo[a,f]azulene]-4,6,11',13'(6'H)-tetraone (69ea): The compound was prepared following procedure 3c, purified by column chromatography using DCM/hexanes (5:5 to 10:0), and isolated as a white solid.

Yield: 96% (119.3 mg). Mp: 250-252 °C. IR (Neat):  $\nu_{\text{max}}$  2998, 2850, 1781, 1730, 1696, 1582, 1484, 1458, 1398, 1324, 1290, 1248, 1204,1158, 1119, 1099, 1058, 1042, 1020, 986, 648, 928, 912, 852, 824, 802, 768, 739, 715, 672, and 633 cm<sup>-1</sup>. <sup>1</sup>H NMR (DMSO- $d_6$ , 500 MHz): δ 8.73 (1H, s, OH), 8.00 (1H, d, J = 8.0 Hz), 7.93 (1H, dd, J = 8.0, 2.0 Hz), 7.89 (1H, d, J = 2.0 Hz), 7.36 (1H, d, J = 7.5 Hz), 7.28 (1H, t, J = 7.5 Hz), 7.19 (1H, t, J = 7.5 Hz), 6.96 (1H, d, J = 7.5 Hz), 4.33 (1H, s), 3.84 (1H, d, J = 17.5 Hz), 3.41 (1H, d, J = 17.5 Hz), 1.98 (3H, s), 1.76 (3H, s). <sup>13</sup>C NMR (DMSO- $d_6$ , DEPT-135) δ 200.3 (C, C=O), 191.5 (C, C=O), 165.8 (C, O-C=O), 165.1 (C, O-C=O), 144.3 (C), 142.6 (C), 136.9 (C), 133.8 (CH), 130.5 (C), 130.4 (CH), 129.8 (CH), 129.7 (C), 129.2 (CH), 127.9 (CH), 125.9 (CH), 123.6 (CH), 107.9 (C, O-C-O), 90.9 (C, C-OH), 71.4 (C), 60.3 (C), 60.2 (CH), 30.0 (CH<sub>3</sub>), 29.4 (CH<sub>2</sub>), 28.6 (CH<sub>3</sub>). HRMS (ESI-TOF) m/z: [M + Na]<sup>+</sup> Calcd for C<sub>24</sub>H<sub>17</sub>BrO<sub>7</sub>Na 519.0055; Found 519.0055.

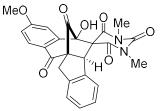
### $(6a'S^*, 12'S^*, 13a'S^*) - 12' - Hydroxy - 2, 2 - dimethyl - 5', 13a' - dihydro - 6'H - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' - 12' -$


#### spiro[[1,3]dioxane-5,13'-[6a,12]methanobenzo[4,5]cyclohepta[1,2-a]naphthalene]-



**4,6,7',14'(12'H)-tetraone (69fa):** The compound was prepared following procedure **3c**, purified by column chromatography using DCM/hexanes (5:5 to 10:0), and isolated as a white solid. Yield: 95% (102.7 mg). Mp: 254-256

°C. IR (Neat):  $\nu_{\text{max}}$  3499, 2937, 1768, 1729, 1696, 1597, 1496, 1455, 1386, 1327, 1283, 1196, 1120, 1080, 1048, 1027, 1000, 980, 945, 923, 903, 833, 774, 746, 703, 671, 651, and 628 cm<sup>-1</sup>. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz):  $\delta$  8.19 (1H, d, J = 7.5 Hz), 7.81-7.76 (2H, m), 7.63 (1H, dt, J = 7.5, 2.0 Hz), 7.19 (2H, d, J = 4.0 Hz), 7.11-7.08 (1H, m), 6.84 (1H, d, J = 7.5 Hz), 4.25 (1H, br s, O*H*), 4.25 (1H, s), 3.10 (1H, dt, J = 14.5, 4.0 Hz), 2.76 (1H, td, J = 15.0, 4.0 Hz), 2.65 (1H, td, J = 14.0, 4.0 Hz), 2.46 (1H, dt, J = 14.0, 4.5 Hz), 1.95 (3H, s), 1.61 (3H, s). <sup>13</sup>C NMR (CDCl<sub>3</sub>, DEPT-135)  $\delta$  201.2 (C, C=O), 193.1 (C, C=O), 166.1 (C, O-C=O), 165.1 (C, O-C=O), 140.3 (C), 139.7 (C), 135.4 (CH), 130.8 (C), 130.4 (C), 130.0 (CH), 129.6 (CH), 128.2 (CH), 128.1 (CH), 127.0 (CH), 126.4 (CH), 125.9 (CH), 106.9 (C, O-C-O), 87.7 (C, C-OH), 63.7 (C), 63.2 (C), 50.7 (CH), 29.8 (CH<sub>3</sub>), 28.9 (CH<sub>3</sub>), 25.6 (CH<sub>2</sub>), 20.1 (CH<sub>2</sub>). HRMS (ESI-TOF) m/z: [M + Na]+ Calcd for C<sub>25</sub>H<sub>20</sub>O<sub>7</sub>Na 455.1107; Found 455.1108.


## (4b'S\*,6'S\*,11a'R\*)-6'-Hydroxy-1,3,8'-trimethyl-4b',12'-dihydro-2*H*-spiro[pyrimidine-5,5'-[6,11a]methanodibenzo[*a,f*]azulene]-



**2,4,6,11',13'(1***H***,3***H***,6'***H***)-pentaone (69bf): The compound was prepared following procedure 3c, purified by column chromatography using DCM/hexanes (5:5 to 10:0), and isolated as a white solid. Yield: 97% (107.8 mg). Mp: 246-248 °C. IR (Neat): \nu\_{\text{max}} 3412, 2921, 2852, 1778, 1747, 1685,** 

1660, 1600, 1449, 1423, 1373, 1293, 1253, 1199, 1169, 1126, 1062, 1042, 989, 944, 912, 863, 843, 426, 747, 715, 671, and 619 cm<sup>-1</sup>. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz):  $\delta$  8.08 (1H, d, J = 8.0 Hz), 7.67 (1H, s), 7.41 (1H, d, J = 8.0 Hz), 7.34 (1H, d, J = 7.6 Hz), 7.25 (1H, t, J = 7.6 Hz), 7.09 (1H, t, J = 7.6 Hz), 6.69 (1H, d, J = 7.6 Hz), 4.52 (1H, s), 4.16 (1H, br s, O*H*), 4.07 (1H, d, J = 17.2 Hz), 3.65 (1H, d, J = 17.2 Hz), 3.38 (3H, s), 3.10 (3H, s), 2.51 (3H, s). <sup>13</sup>C NMR (CDCl<sub>3</sub>, DEPT-135)  $\delta$ 200.9 (C, C=O), 191.2 (C, C=O), 167.2 (C, N-C=O), 166.7 (C, N-C=O), 150.8 (C, N-C=O), 146.6 (C), 143.1 (C), 140.3 (C), 136.7 (C), 131.0 (CH), 129.2 (C), 128.6 (CH), 128.1 (CH), 127.0 (CH), 126.5 (CH), 125.8 (CH), 122.2 (CH), 91.3 (C, C-OH), 70.9 (C), 62.9 (C), 58.2 (CH), 29.7 (CH<sub>2</sub>), 29.5 (CH<sub>3</sub>), 28.4 (CH<sub>3</sub>), 22.2 (CH<sub>3</sub>). HRMS (ESI-TOF) m/z: [M + Na]<sup>+</sup> Calcd for C<sub>25</sub>H<sub>20</sub>N<sub>2</sub>O<sub>6</sub>Na 467.1219; Found 467.1218.

## (4b'S\*,6'S\*,11a'R\*)-6'-Hydroxy-8'-methoxy-1,3-dimethyl-4b',12'-dihydro-2*H*-spiro[pyr imidine-5,5'-[6,11a]methanodibenzo[*a,f*]azulene]-2,4,6,11',13'(1*H*,



69cf

**3H,6'H)-pentaone** (**69cf**): The compound was prepared following procedure **3c**, purified by column chromatography using CHCl<sub>3</sub>, and isolated as a white solid. Yield: 92% (105.9 mg). Mp: 250-252 °C. IR (Neat):  $\nu_{\text{max}}$ 

3451, 2922, 2851, 1770, 1748, 1667, 1601, 1486, 1422, 1377, 1330, 1280, 1250, 1213, 1129, 1101, 1065, 1044, 1020, 986, 951, 932, 875, 849, 830, 818, 798, 778, 752, 651, 636, and 608 cm<sup>-1</sup>. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz):  $\delta$ 7.63 (1H, d, J = 2.5 Hz), 7.56 (1H, d, J = 9.0 Hz), 7.35 (1H, d, J = 7.5 Hz), 7.28 (1H, dd, J = 8.5, 2.5 Hz), 7.26 (1H, t, J = 7.5 Hz), 7.09 (1H, t, J = 7.5 Hz), 6.69 (1H, d, J = 7.5 Hz), 4.50 (1H, s), 4.08 (1H, d, J = 17.0 Hz), 3.97 (1H, s), 3.92 (3H, s), 3.67 (1H, d, J = 17.0 Hz), 3.38 (3H, s), 3.11 (3H, s). <sup>13</sup>C NMR (CDCl<sub>3</sub>, DEPT-135)  $\delta$  200.4 (C, C=O), 191.4 (C, C=O), 167.3 (C, N-C=O), 166.7 (C, N-C=O), 160.9 (C, N-C=O), 150.8 (C), 143.0 (C), 136.6 (C), 132.9 (C), 132.3 (C), 128.6 (CH), 127.5 (CH), 127.1 (CH), 125.8 (CH), 123.0 (CH), 122.2 (CH), 110.3 (CH), 91.3 (C, C-OH), 71.0 (C), 62.7 (C), 58.3 (CH), 55.7 (CH<sub>3</sub>), 29.5 (CH<sub>3</sub>), 29.2 (CH<sub>2</sub>), 28.4 (CH<sub>3</sub>). HRMS (ESI-TOF) m/z: [M + H]<sup>+</sup> Calcd for C<sub>25</sub>H<sub>20</sub>N<sub>2</sub>O<sub>7</sub>H 461.1349; Found 461.1349.

#### (4b'S\*,6'S\*,11a'R\*)-8'-Chloro-6'-hydroxy-1,3-dimethyl-4b',12'-dihydro-2H-

CI OH Me N Me N Me

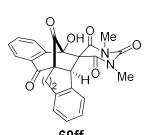
spiro[pyrim

idine-5,5'-

[6,11a]methanodibenzo[a,f]azulene]-2,4,6,11',13'(1H,3H,6'H)-pentaone (69df): The compound was prepared following procedure 3c, purified by column chromatography

using DCM, and isolated as a white solid. Yield: 96% (111.6 mg). Mp: 204-208 °C. IR (Neat):  $\nu_{\text{max}}$  3414, 2925, 1777, 1748, 1673, 1588, 1426, 1422, 1375, 1290, 1277, 1159, 1131, 1102, 1066, 1041, 991, 941, 915, 873, 844, 807, 751, and 656 cm<sup>-1</sup>. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz):  $\delta$ 8.12 (1H, d, J = 8.5 Hz), 7.66 (1H, d, J = 2.0 Hz), 7.57 (1H, dd, J = 8.5, 2.0 Hz), 7.33 (1H, d, J = 7.5 Hz), 7.25 (1H, t, J = 7.5 Hz), 7.09 (1H, t, J = 7.5 Hz), 6.67 (1H, d, J = 7.5 Hz), 4.48 (1H, s), 4.15 (1H, br s, O*H*), 4.05 (1H, d, J = 17.0 Hz), 3.65 (1H, d, J = 17.0 Hz), 3.38 (3H, s), 3.08 (3H, s). <sup>13</sup>C NMR (CDCl<sub>3</sub>, DEPT-135)  $\delta$ 200.0 (C, C = O), 190.3 (C, C = O), 167.1 (C, N-C = O), 166.6 (C, N-C = O), 150.5 (C, N-C = O), 142.9 (C), 142.2 (C), 141.9 (C), 136.3 (C), 130.5 (CH), 129.8 (C), 129.4 (CH), 128.8 (CH), 127.2 (CH), 126.6 (CH), 125.9 (CH), 122.2 (CH), 90.8 (C, C - OH), 71.1 (C), 62.7 (C), 58.4 (CH), 29.6 (CH<sub>3</sub>), 29.1 (CH<sub>2</sub>), 28.5 (CH<sub>3</sub>). HRMS (ESI-TOF) m/z: [M + Na]<sup>+</sup> Calcd for C<sub>24</sub>H<sub>17</sub>ClN<sub>2</sub>O<sub>6</sub>Na 487.0673; Found 487.0673.

(4b'S\*,6'S\*,11a'R\*)-8'-Bromo-6'-hydroxy-1,3-dimethyl-4b',12'-dihydro-2*H*-spiro[pyrimi dine-5,5'-[6,11a]methanodibenzo[*a,f*]azulene]-2,4,6,11',13'(1*H*,3*H*,6'*H*)-pentaone (69ef): The compound was prepared following procedure 3c, purified by column chromatography using DCM/hexanes (5:5 to 10:0), and isolated as a white


solid. Yield: 97% (123.5 mg). Mp: 228-230 °C. IR (Neat):  $\nu_{\text{max}}$  3382, 3026, 2919, 2850, 1781, 1748, 1675, 1581, 1421, 1374, 1290, 1234, 1160, 1130, 1096, 1066, 1039, 1018,

Br O OH Me O Me N Me

69ef

977, 951, 915, 841, 793, 749, 673, and 654 cm<sup>-1</sup>. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz):  $\delta$  8.06 (1H, d, J = 8.0 Hz), 7.86 (1H, d, J = 2.0 Hz), 7.76 (1H, dd, J = 8.0, 2.0 Hz), 7.36 (1H, d, J = 7.5 Hz), 7.27 (1H, t, J = 7.5 Hz), 7.11 (1H, t, J = 7.5 Hz), 6.69

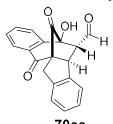
# (6a'S\*,12'S\*,13a'S\*)-12'-Hydroxy-1,3-dimethyl-5',13a'-dihydro-2*H*,6'*H*-spiro[pyrimidine-5,13'-[6a,12]methanobenzo[4,5]cyclohepta[1,2-a]naphthalene]-



**2,4,6,7', 14'(1***H***,3***H***,12'***H***)-pentaone (69ff):** The compound was prepared following procedure **3c**, purified by column chromatography using EtOAc/hexanes (2:8), and isolated as a white solid. Yield: 98% (108.9 mg). Mp: 234-238 °C. IR

(Neat):  $\nu_{\text{max}}$  3396, 1776, 1747, 1670, 1595, 1443, 1420, 1373, 1292, 1258, 1206, 1160, 1124, 1079, 1034, 987, 949, 898, 839, 800, 764, 746, 698, 663, 643, 603, and 569 cm<sup>-1</sup>. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz):  $\delta$ 8.15 (1H, dd, J= 8.0, 1.0 Hz), 7.72 (1H, dt, J= 8.0, 1.5 

#### 3d. General Procedures for the Synthesis of Products 67 and 70-72:


Method 1: To an ordinary glass vial equipped with a magnetic stirring bar were added 0.25 mmol of 62-64 and 2.5 mL of anhydrous DCM. Then, 0.3 mmol of 66 was added and the resulting mixture was allowed to stir at 25 °C or higher temperatures, until complete consumption of 62-64 (monitored by TLC). Next, the crude reaction mixture was directly loaded onto a silica gel packed column without aqueous workup to give pure products 67, 70aa-eb, 71aa-ad and 72ab-ad after column chromatography (eluent: DCM or CHCl<sub>3</sub> or mixture of hexanes/ethyl acetate or hexanes/CHCl<sub>3</sub>).

Method 2: To a 15 mL of sealed tube equipped with a magnetic stirring bar were added 0.25 mmol of 62-64 and 2.5 mL of anhydrous toluene. Then, 0.3 mmol of 66e and 0.075 mmol of DMAP 3p were added sequentially and the resulting mixture was allowed to

stir at 80 °C or 150 °C, until complete consumption of **62-64** (monitored by TLC). Next, the crude reaction mixture was directly loaded onto a silica gel packed column without aqueous workup to give pure products **70ae** and **72ae** after column chromatography (eluent: CHCl<sub>3</sub> or mixture of ethyl acetate/CHCl<sub>3</sub>).

Method 3: To an ordinary glass vial equipped with a magnetic stirring bar were added 0.025 mmol of quinine-thiourea 57b, 0.3 mmol of 66d and anhydrous DCM (0.1 M) or toluene (0.3 M). Then, 0.25 mmol of 62a or 63a was added and the resulting mixture was allowed to stir at RT until complete consumption of 62-63 (monitored by TLC). Next, the crude reaction mixture was directly loaded onto a silica gel packed column without aqueous workup to give pure products (+)-70ad and (-)-71ad after column chromatography (eluent: CHCl<sub>3</sub> or mixture of CHCl<sub>3</sub>/hexanes or mixture of ethyl acetate/hexanes).

(4bS\*,5R\*,6R\*,11aR\*)-6-Hydroxy-11,13-dioxo-4b,6,11,12-tetrahydro-5H-6,11a-methanodi benzo[a,f]azulene-5-carbaldehyde (70aa): The compound was prepared

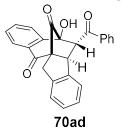


following procedure 3d, purified by column chromatography using CHCl<sub>3</sub>, and isolated as a semi-solid. Yield: 92% (73.2 mg). IR (Neat):  $\nu_{\text{max}}$  3422, 3068, 2924, 1769, 1718, 1685, 1596, 1482, 1455, 1435, 1306, 1249, 1183, 1154, 1086, 1060, 1008, 974, 907,

781, 728, and 648 cm<sup>-1</sup>. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz):  $\delta$  9.90 (1H, s, CHO), 8.12 (1H, br d, J = 8.0 Hz), 7.91 (1H, br d, J = 8.0 Hz), 7.72 (1H, br t, J = 7.5 Hz), 7.53 (1H, br t, J = 7.5 Hz), 7.29 (1H, br d, J = 8.0 Hz), 7.25 (1H, br t, J = 7.5 Hz), 7.20 (1H, br t, J = 7.5 Hz), 7.01 (1H, br d, J = 7.5 Hz), 4.25 (1H, br s, OH), 4.07 (1H, d, J = 7.0 Hz), 3.92

(1H, d, J = 17.0 Hz), 3.54 (1H, d, J = 17.0 Hz), 3.23 (1H, d, J = 7.0 Hz). <sup>13</sup>C NMR (CDCl<sub>3</sub>, DEPT-135)  $\delta$  203.0 (C, C=O), 198.4 (CH, H-C=O), 191.9 (C, C=O), 141.0 (C), 140.9 (C), 139.7 (C), 135.5 (CH), 130.3 (C), 129.7 (CH), 128.31 (CH), 128.28 (CH), 127.8 (CH), 125.3 (CH), 125.1 (CH), 124.1 (CH), 83.7 (C, C-OH), 72.2 (C), 61.3 (CH), 48.1 (CH), 28.4 (CH<sub>2</sub>). HRMS (ESI-TOF) m/z: [M + H]<sup>+</sup> Calcd for C<sub>20</sub>H<sub>14</sub>O<sub>4</sub>H 319.0970; Found 319.0970.

#### (4bS\*,5R\*,6R\*,11aR\*)-5-Acetyl-6-hydroxy-4b,5,6,12-tetrahydro-11H-6,11a-

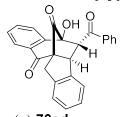



methanodi benzo[*a,f*]azulene-11,13-dione (70ab): The compound was prepared following procedure 3d, purified by column chromatography using CHCl<sub>3</sub>, and isolated as a semi-solid. Yield: 95%

(78.9 mg). IR (Neat):  $\nu_{\text{max}}$  3483, 3307, 3070, 2921, 1764, 1693, 1676, 1596, 1480, 1455, 1431, 1358, 1296, 1249, 1226, 1209, 1177, 1087, 1054, 1009, 982, 964, 916, 797, 769, 752, 729, 710, 686, and 652 cm<sup>-1</sup>. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz):  $\delta$ 8.12 (1H, dd, J = 7.6, 0.4 Hz), 7.79 (1H, br d, J = 7.6 Hz), 7.69 (1H, br t, J = 7.6 Hz), 7.51 (1H, br t, J = 7.6 Hz), 7.29 (1H, d, J = 7.2 Hz), 7.24 (1H, t, J = 7.2 Hz), 7.18 (1H, t, J = 7.2 Hz), 6.90 (1H, d, J = 7.2 Hz), 4.25 (1H, d, J = 7.2 Hz), 4.17 (1H, br s, O*H*), 3.94 (1H, d, J = 16.8 Hz), 3.55 (1H, d, J = 16.8 Hz), 3.33 (1H, d, J = 7.2 Hz), 2.43 (3H, s). <sup>13</sup>C NMR (CDCl<sub>3</sub>, DEPT-135)  $\delta$ 204.0 (C, C=O), 203.7 (C, C=O), 192.0 (C, C=O), 141.0 (C), 140.9 (C), 140.2 (C), 135.3 (CH), 130.5 (C), 129.4 (CH), 128.1 (CH), 128.0 (CH), 127.6 (CH), 125.3 (CH), 124.7 (CH), 123.8 (CH), 84.2 (C, C-OH), 71.8 (C), 62.4 (CH), 48.7 (CH), 30.7 (CH<sub>3</sub>), 28.4(CH<sub>2</sub>). HRMS (ESI-TOF) m/z: [M + Na]<sup>+</sup> Calcd for C<sub>21</sub>H<sub>16</sub>O<sub>4</sub>Na 355.0946; Found 355.0946.

#### (4bS\*,5R\*,6R\*,11aR\*)-5-Benzoyl-6-hydroxy-4b,5,6,12-tetrahydro-11H-6,11a-

methanodi benzo[a,f]azulene-11,13-dione (70ad): The compound was prepared



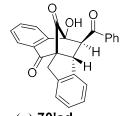

following procedure 3d, purified by column chromatography using CHCl<sub>3</sub>/hexanes (8:2), and isolated as a white solid. Yield: 98% (96.6 mg). Mp: 218-220 °C. IR (Neat):  $\nu_{\text{max}}$  3506, 2926, 1762, 1673, 1596, 1477, 1452, 1425, 1310, 1252, 1216, 1149,

1085, 1050, 998, 977, 914, 895, 804,786, 767, 754, 716, 687, 663, 638, and 620 cm<sup>-1</sup>. 
<sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz):  $\delta$ 8.17 (1H, dd, J = 7.5, 1.0 Hz), 8.08 (2H, dd, J = 7.5, 1.0 Hz), 7.68 (1H, t, J = 7.5 Hz), 7.58-7.50 (4H, m), 7.35-7.32 (2H, m), 7.28 (1H, t, J = 7.5 Hz), 7.15 (1H, t, J = 7.5 Hz), 6.86 (1H, d, J = 7.5 Hz), 4.51 (1H, d, J = 7.0 Hz), 4.32 (1H, d, J = 7.0 Hz), 4.03 (1H, d, J = 17.0 Hz), 3.93 (1H, br s, OH), 3.64 (1H, d, J = 17.0 Hz). <sup>13</sup>C NMR (CDCl<sub>3</sub>, DEPT-135)  $\delta$ 204.2 (C, C=O), 196.5 (C, C=O), 192.1 (C, C=O), 141.3 (C), 141.1 (C), 140.4 (C), 137.1 (C), 135.2 (CH), 133.9 (CH), 130.7 (C), 129.6 (2 x CH), 129.3 (CH), 128.6 (2 x CH), 128.1 (CH), 127.7 (CH), 127.6 (CH), 125.4 (CH), 125.1 (CH), 123.8 (CH), 85.2 (C, C-OH), 72.0 (C), 57.0 (CH), 50.5 (CH), 28.7 (CH<sub>2</sub>). HRMS (ESI-TOF) m/z: [M + H]<sup>+</sup> Calcd for C<sub>2</sub>6H<sub>18</sub>O<sub>4</sub>H 395.1283; Found 395.1283.

#### (4bS,5R,6R,11aR)-5-Benzoyl-6-hydroxy-4b,5,6,12-tetrahydro-11H-6,11a-

methanodibenzo [a,f] azulene-11,13-dione [(+)-70ad major diastereomer]: The




(+)-**70ad** major diastereomer

compound was prepared following procedure **3d**, purified by column chromatography using CHCl<sub>3</sub>/hexanes (8:2 to 10:0), and isolated as a white solid. Yield: 49% (48.3 mg). Mp: 151-153 °C. The enantiomeric excess (*ee*) was determined by

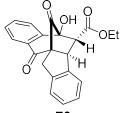
chiral stationary phase HPLC using a Daicel Chiralcel OD-H column (hexane/2-propanol = 95:05, flow rate 0.5 mL/min,  $\lambda$  = 254 nm),  $t_R$  = 28.786 min (major),  $t_R$  = 35.99 min (minor). [ $\alpha$ ] $_D^{25}$  = +28.92° (c = 0.08, CHCl<sub>3</sub>, 60% ee). IR (Neat):  $\nu_{max}$  3506, 2926, 1762, 1673, 1596, 1477, 1452, 1425, 1310, 1252, 1216, 1149, 1085, 1050, 998, 977, 914, 895, 804,786, 767, 754, 716, 687, 663, 638, and 620 cm<sup>-1</sup>. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz):  $\delta$ 8.15 (1H, dd, J = 7.5, 1.0 Hz), 8.06 (2H, dd, J = 8.5, 1.0 Hz), 7.66 (1H, t, J = 7.5 Hz), 7.57-7.48 (4H, m), 7.33-7.30 (2H, m), 7.24 (1H, t, J = 7.5 Hz), 7.13 (1H, t, J = 7.5 Hz), 6.83 (1H, d, J = 7.0 Hz), 4.50 (1H, d, J = 6.5 Hz), 4.29 (1H, d, J = 6.5 Hz), 4.01 (1H, d, J = 17.0 Hz), 3.79 (1H, br s, OH), 3.63 (1H, d, J = 17.0 Hz). <sup>13</sup>C NMR (CDCl<sub>3</sub>, DEPT-135)  $\delta$  204.1 (C, C=O), 196.4 (C, C=O), 192.1 (C, C=O), 141.3 (C), 140.4 (C), 137.1 (C), 135.2 (CH), 133.9 (CH), 130.7 (C), 129.5 (2 x CH), 129.3 (CH), 128.6 (2 x CH), 128.1 (CH), 127.7 (CH), 127.6 (CH), 125.4 (CH), 125.1 (CH), 123.8 (CH), 85.1 (C, C-OH), 72.0 (C), 57.1 (CH), 50.5 (CH), 28.7 (CH<sub>2</sub>). HRMS (ESI-TOF) m/z: [M + H] $^+$  Calcd for C<sub>2</sub>6H<sub>18</sub>O<sub>4</sub>H 395.1283; Found 395.1283.

#### (4bR,5S,6R,11aR)-5-Benzoyl-6-hydroxy-4b,5,6,12-tetrahydro-11H-6,11a-

methanodibenzo [a,f]azulene-11,13-dione [(+)-70'ad minor diastereomer]: The



(+)-**70'ad** minor diastereomer


compound was prepared following procedure **3d**, purified by column chromatography using CHCl<sub>3</sub>/hexanes (8:2 to 10:0), and isolated as a white solid. Yield: 45% (44.4 mg), Mp: 189-191 °C. The enantiomeric excess (*ee*) was determined by chiral

stationary phase HPLC using a Daicel Chiralcel OD-H column (hexane/2-propanol = 95:05, flow rate 0.5 mL/min,  $\lambda$  = 254 nm),  $t_R$  = 63.94 min (major),  $t_R$  = 78.21 min

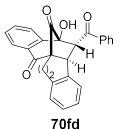
(minor).  $[\Box]_D^{25} = \Box 64.95^{\Box}$  (c = 0.097, CHCl<sub>3</sub>, 61% ee). IR (Neat):  $\nu_{\text{max}}$  3481, 3064, 2925, 1764, 1688, 1663, 1596, 1482, 1450, 1432, 1360, 1302, 1272, 1228, 1100, 1082, 1063, 1044, 1009, 957, 894, 850, 795, 755, 727, 714, 685, 640, 627, 609, and 592 cm<sup>-1</sup>.  $^{1}$ H NMR (CDCl<sub>3</sub>, 500 MHz):  $\delta$  8.16 (1H, d, J = 7.5 Hz), 8.08 (1H, d, J = 8.0 Hz), 7.84 (2H, d, J = 7.5 Hz), 7.81 (1H, t, J = 7.5 Hz), 7.63 (1H, t, J = 7.5 Hz), 7.56 (1H, t, J = 7.5 Hz), 7.50 (2H, t, J = 8.0 Hz), 7.31 (1H, d, J = 7.5 Hz), 7.16 (1H, t, J = 7.5 Hz), 6.86 (1H, t, J = 7.5 Hz), 6.50 (1H, d, J = 8.0 Hz), 4.73 (1H, d, J = 9.0 Hz), 4.11 (1H, d, J = 9.0 Hz), 4.02 (1H, d, J = 17.0 Hz), 3.70 (1H, d, J = 17.0 Hz) 3.69 (1H, br s, OH);  $^{13}$ C NMR (CDCl<sub>3</sub>, DEPT-135)  $\delta$  203.5 (C, C = O), 199.9 (C, C = O), 192.8 (C, C = O), 144.3 (C), 142.7 (C), 138.5 (C), 137.4 (C), 135.4 (CH), 133.8 (CH), 130.4 (C), 129.2 (CH), 128.9 (2 x CH), 128.4 (2 x CH), 128.1 (CH), 127.8 (CH), 126.5 (CH), 125.7 (CH), 125.4 (CH), 123.8 (CH), 86.3 (C, C = O), 71.4 (C), 53.4 (CH), 51.6 (CH), 28.8 (CH<sub>2</sub>). HRMS (ESI-TOF) m/z:  $[M + H]^+$  Calcd for C<sub>26</sub>H<sub>18</sub>O<sub>4</sub>H 395.1283; Found 395.1283.

### Ethyl $(4bS^*,5R^*,6R^*,11aR^*)$ -6-hydroxy-11,13-dioxo-4b,6,11,12-tetrahydro-5*H*-

**6,11a-metha nodibenzo**[a,f]azulene-5-carboxylate (70ae): The compound was



70ae

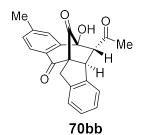

prepared following procedure 3d, purified by column chromatography using EtOAc/CHCl<sub>3</sub> (0:10 to 0.2:9.8), and isolated as a white solid. Yield: 81% (73.4 mg). Mp: 132-134 °C. IR (Neat):  $\nu_{\text{max}}$  3472, 2925, 2850, 1761, 1722, 1693, 1598, 1485,

1454, 1429, 1372, 1355, 1303, 1252, 1192, 1089, 1066, 1054, 1003, 965, 924, 900, 852, 799, 783, 751, 728, 687, and 659 cm<sup>-1</sup>. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz, 12:1 dr, major isomer):  $\delta$  8.12 (1H, d, J = 7.5 Hz), 7.87 (1H, d, J = 7.5 Hz), 7.71 (1H, dt, J = 7.5, 1.0

Hz), 7.53 (1H, dt, J = 7.5, 1.0 Hz), 7.29 (1H, d, J = 7.5 Hz), 7.25 (1H, t, J = 7.5 Hz), 7.20 (1H, t, J = 7.5 Hz), 7.12 (1H, d, J = 7.5 Hz), 4.20-4.13 (2H, m), 4.12 (1H, d, J = 7.5 Hz), 3.94 (1H, d, J = 17.0 Hz), 3.81 (1H, br s, OH), 3.57 (1H, d, J = 17.0 Hz), 3.25 (1H, d, J = 7.5 Hz), 1.23 (3H, t, J = 7.5 Hz). <sup>13</sup>C NMR (CDCl<sub>3</sub>, DEPT-135, 12:1 dr, major isomer)  $\delta$ 203.2 (C, C = 0), 192.2 (C, C = 0), 169.9 (C, O-C = 0), 141.6 (C), 141.1 (C), 140.0 (C), 135.0 (CH), 130.4 (C), 129.4 (CH), 128.3 (CH), 127.75 (CH), 127.68 (CH), 126.0 (CH), 125.3 (CH), 124.1 (CH), 83.8 (C, C = 0), 72.1 (C), 61.9 (CH<sub>2</sub>), 55.4 (CH), 50.8 (CH), 28.5 (CH<sub>2</sub>), 14.3 (CH<sub>3</sub>). HRMS (ESI-TOF) m/z: [M + NH<sub>4</sub>]<sup>+</sup> Calcd for C<sub>22</sub>H<sub>18</sub>O<sub>5</sub>NH<sub>4</sub> 380.1498; Found 380.1498.

#### (6aS\*,12R\*,13R\*,13aS\*)-13-Benzoyl-12-hydroxy-5,12,13,13a-tetrahydro-6a,12-

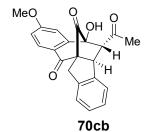
#### methanobenzo[4,5]cyclohepta[1,2-a]naphthalene-7,14(6H)-




**dione (70fd):** The compound was prepared following procedure **3d**, purified by column chromatography using EtOAc/hexanes (2:8 to 3:7), and isolated as a white solid. Yield: 80% (81.7 mg). Mp: 228-

230 °C. IR (Neat):  $\nu_{\text{max}}$  3463, 2918, 2849, 1765, 1677, 1595, 1491, 1449, 1352, 1296, 1250, 1215, 1084, 1002, 975, 938, 909, 894, 747, 687, 659, 622, and 564 cm<sup>-1</sup>. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz, 1.5:1 dr, major isomer):  $\delta$  8.17 (1H, dd, J = 7.5, 1.0 Hz), 8.01 (2H, dd, J = 8.5, 1.0 Hz), 7.64 (1H, tt, J = 7.5, 1.0 Hz), 7.59 (1H, dt, J = 7.5, 1.5 Hz), 7.54-7.49 (3H, m), 7.33 (1H, dd, J = 7.5, 1.0 Hz), 7.18 (1H, d, J = 7.0 Hz), 7.12 (1H, t, J = 7.5 Hz), 7.01 (1H, t, J = 7.5 Hz), 6.50 (1H, d, J = 7.5 Hz), 4.30 (1H, d, J = 8.5 Hz), 4.18 (1H, d, J = 8.5 Hz), 3.71 (1H, s, OH), 2.91-2.81 (2H, m), 2.54 (1H, td, J = 13.5, 4.0 Hz), 2.48-2.42 (1H, m). <sup>13</sup>C NMR (CDCl<sub>3</sub>, DEPT-135, 1.5:1 dr, major isomer)  $\delta$  205.6 (C,

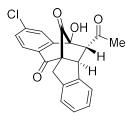
C=O), 196.9 (C, C=O), 194.2 (C, C=O), 141.2 (C), 137.3 (C), 136.6 (C), 135.7 (C), 135.2 (CH), 133.8 (CH), 130.3 (C), 129.5 (2 x CH), 129.3 (CH), 129.0 (CH), 128.5 (2 x CH), 127.8 (CH), 127.5 (CH), 127.1 (CH), 126.8 (CH), 124.9 (CH), 84.0 (C, C-OH), 64.6 (C), 59.2 (CH), 40.0 (CH), 26.4 (CH<sub>2</sub>), 20.5 (CH<sub>2</sub>). HRMS (ESI-TOF) *m/z*: [M + H]<sup>+</sup> Calcd for C<sub>27</sub>H<sub>20</sub>O<sub>4</sub>H 409.1440; Found 409.1440.


## (4bS\*,5R\*,6R\*,11aR\*)-5-Acetyl-6-hydroxy-8-methyl-4b,5,6,12-tetrahydro-11*H*-6,11a-methanodibenzo[a,f]azulene-11,13-dione (70bb): The compound was prepared



following procedure **3d**, purified by column chromatography using EtOAc/hexanes (2:8), and isolated as a white solid. Yield: 96% (83.1 mg). Mp: 178-180 °C. IR (Neat):  $\nu_{\text{max}}$  3483, 2924, 1759, 1704, 1685, 1601, 1482, 1458, 1433, 1357, 1311, 1252,

1212, 1181, 1165, 1140, 1103, 1052, 994, 918, 892, 838, 785, 762, 750, 727, 711, 666, and 576 cm<sup>-1</sup>. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz):  $\delta$  8.02 (1H, d, J = 8.0 Hz), 7.58 (1H, s), 7.32 (1H, d, J = 8.0 Hz), 7.30 (1H, d, J = 9.2 Hz), 7.24 (1H, t, J = 7.6 Hz), 7.18 (1H, t, J = 7.6 Hz), 6.91 (1H, d, J = 7.6 Hz), 4.26 (1H, d, J = 7.2 Hz), 3.95 (1H, d, J = 17.2 Hz), 3.90 (1H, br s, O*H*), 3.55 (1H, d, J = 17.2 Hz), 3.32 (1H, d, J = 7.2 Hz), 2.48 (3H, s), 2.45 (3H, s). <sup>13</sup>C NMR (CDCl<sub>3</sub>, DEPT-135)  $\delta$  203.9 (C, C = O), 203.8 (C, C = O), 191.5 (C, C = O), 146.7 (C), 141.1 (C), 140.8 (C), 140.3 (C), 130.4 (CH), 128.2 (C), 128.1 (CH), 128.0 (CH), 127.5 (CH), 125.3 (CH), 124.9 (CH), 123.7 (CH), 84.0 (C, C - OH), 71.4 (C), 62.4 (CH), 48.7 (CH), 30.7 (CH<sub>3</sub>), 28.4 (CH<sub>2</sub>), 22.2 (CH<sub>3</sub>). HRMS (ESI-TOF) m/z: [M + H]<sup>+</sup> Calcd for C<sub>22</sub>H<sub>18</sub>O<sub>4</sub>H 347.1283; Found 347.1286.


#### (4bS\*,5R\*,6R\*,11aR\*)-5-Acetyl-6-hydroxy-8-methoxy-4b,5,6,12-tetrahydro-11H-

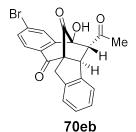


**6,11a-methanodibenzo**[*a,f*]azulene-11,13-dione (70cb): The compound was prepared following procedure 3d, purified by column chromatography using EtOAc/hexanes (2:8), and isolated as a white solid. Yield: 95% (86 mg). Mp: 184-186 °C.

IR (Neat):  $\nu_{\text{max}}$  3487, 2922, 2850, 1762, 1684, 1598, 1570, 1483, 1458, 1430, 1360, 1323, 1276, 1252, 1165, 1100, 1052, 1002, 892, 864, 832, 813, 790, 751, 729, and 662 cm<sup>-1</sup>. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz):  $\delta$ 7.69 (1H, d, J = 8.8 Hz), 7.58 (1H, d, J = 2.8 Hz), 7.30 (1H, d, J = 7.6 Hz), 7.27-7.23 (2H, m), 7.19 (1H, t, J = 7.2 Hz), 6.91 (1H, d, J = 7.2 Hz), 4.26 (1H, d, J = 7.2 Hz), 3.96 (1H, d, J = 17.2 Hz), 3.89 (3H, s), 3.84 (1H, br s, O*H*), 3.57 (1H, d, J = 17.2 Hz), 3.30 (1H, d, J = 6.8 Hz), 2.44 (3H, s). <sup>13</sup>C NMR (CDCl<sub>3</sub>, DEPT-135)  $\delta$  204.1 (C, C=O), 203.5 (C, C=O), 191.8 (C, C=O), 160.4 (C), 141.1 (C), 140.3 (C), 133.1 (C), 131.9 (C), 128.1 (CH), 127.6 (CH), 126.0 (CH), 125.3 (CH), 123.8 (CH), 123.3 (CH), 110.3 (CH), 83.9 (C, C-OH), 71.6 (C), 62.3 (CH), 55.7 (CH<sub>3</sub>), 48.9 (CH), 30.7 (CH<sub>3</sub>), 28.5 (CH<sub>2</sub>). HRMS (ESI-TOF) m/z: [M + H]<sup>+</sup> Calcd for C<sub>22</sub>H<sub>18</sub>O<sub>5</sub>H 363.1232; Found 363.1233.

#### (4bS\*,5R\*,6R\*,11aR\*)-5-Acetyl-8-chloro-6-hydroxy-4b,5,6,12-tetrahydro-11H-




70db

**6,11a-methanodibenzo**[a,f] azulene-11,13-dione (70db): The compound was prepared following procedure 3d, purified by column chromatography using CHCl<sub>3</sub>, and isolated as a white solid. Yield: 95% (87 mg). Mp: 154-158 °C. IR (Neat):  $\nu_{\text{max}}$ 

 $3446,\,3015,\,2922,\,2852,\,1767,\,1690,\,1587,\,1481,\,1458,\,1435,\,1402,\,1361,\,1308,\,1290,$ 

1252, 1155, 1100, 1048, 994, 974, 909, 890, 851, 809, 789, 752, 712, and 661 cm<sup>-1</sup>. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz):  $\delta$ 8.05 (1H, d, J = 8.5 Hz), 7.75 (1H, d, J = 2.0 Hz), 7.48 (1H, dd, J = 8.5, 2.0 Hz), 7.28 (1H, d, J = 7.5 Hz), 7.23 (1H, t, J = 7.5 Hz), 7.17 (1H, t, J = 7.5 Hz), 6.89 (1H, d, J = 7.5 Hz), 4.25 (1H, d, J = 7.5 Hz), 3.92 (1H, d, J = 17.0 Hz), 3.90 (1H, br s, O*H*), 3.55 (1H, d, J = 17.0 Hz), 3.32 (1H, d, J = 7.5 Hz), 2.44 (3H, s). <sup>13</sup>C NMR (CDCl<sub>3</sub>, DEPT-135)  $\delta$  203.7 (C, C=O), 202.9 (C, C=O), 190.6 (C, C=O), 142.5 (C), 142.1 (C), 140.9 (C), 139.9 (C), 130.0 (CH), 129.5 (CH), 128.9 (C), 128.2 (CH), 127.7 (CH), 125.4 (CH), 125.0 (CH), 123.7 (CH), 83.9 (C, C-OH), 71.7 (C), 62.4 (CH), 48.7 (CH), 30.9 (CH<sub>3</sub>), 28.4 (CH<sub>2</sub>). HRMS (ESI-TOF) m/z: [M + NH<sub>4</sub>]<sup>+</sup> Calcd for C<sub>21</sub>H<sub>15</sub>ClO<sub>4</sub>NH<sub>4</sub> 384.1003; Found 384.1001.

## (4bS\*,5R\*,6R\*,11aR\*)-5-Acetyl-8-bromo-6-hydroxy-4b,5,6,12-tetrahydro-11*H*-6,11a-methanodibenzo[*a*,*f*]azulene-11,13-dione (70eb): The compound was prepared



following procedure **3d**, purified by column chromatography using EtOAc/hexanes (2:8), and isolated as a white solid. Yield: 97% (99.7 mg). Mp: 160-162 °C. IR (Neat):  $\nu_{\text{max}}$  3431, 2918, 2849, 1756, 1713, 1693, 1581, 1485, 1459, 1437, 1359, 1300,

1277, 1246, 1212, 1197, 1155, 1097, 1072, 1047, 1004, 979, 919, 887, 864, 842, 802, 788, 751, 711, 680, 657, and 635 cm<sup>-1</sup>. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz):  $\delta$ 7.98 (1H, d, J = 8.5 Hz), 7.93 (1H, d, J = 1.5 Hz), 7.66 (1H, dd, J = 8.0, 2.0 Hz), 7.29 (1H, d, J = 7.5 Hz), 7.24 (1H, t, J = 7.5 Hz), 7.18 (1H, t, J = 7.5 Hz), 6.89 (1H, d, J = 7.5 Hz), 4.27 (1H, d, J = 7.0 Hz), 3.93 (1H, d, J = 17.0 Hz), 3.81 (1H, s, OH), 3.56 (1H, d, J = 17.0 Hz), 3.32 (1H, d, J = 7.0 Hz), 2.45 (3H, s). <sup>13</sup>C NMR (CDCl<sub>3</sub>, DEPT-135)  $\delta$ 203.6 (C,

C=O), 202.9 (C, C=O), 190.8 (C, C=O), 142.4 (C), 140.9 (C), 139.9 (C), 133.0 (CH), 130.9 (C), 129.4 (CH), 129.3 (C), 128.2 (CH), 128.0 (CH), 127.7 (CH), 125.4 (CH), 123.8 (CH), 83.8 (C, C-OH), 71.7 (C), 62.4 (CH), 48.7 (CH), 30.8 (CH<sub>3</sub>), 28.4 (CH<sub>2</sub>). HRMS (ESI-TOF) *m/z*: [M + H]<sup>+</sup> Calcd for C<sub>21</sub>H<sub>15</sub>BrO<sub>4</sub>H 411.0232; Found 411.0233.

# (3aR\*,9R\*,10R\*,10aR\*)-9-Hydroxy-4,11-dioxo-2,3,4,9,10,10a-hexahydro-1*H*-3a,9-methanobenzo[*f*]azulene-10-carbaldehyde (71aa): The compound was prepared

OH OH H

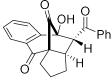
following procedure **3d**, purified by column chromatography using EtOAc/hexanes (1:9), and isolated as a semi-solid. Yield: 70%

71aa (47.3 mg). IR (Neat):  $\nu_{\text{max}}$  3433, 2957, 2868, 1769, 1722, 1688, 1598, 1453, 1384, 1299, 1259, 1184,1047, 1016, 961, 909, 773, 731, and 681 cm<sup>-1</sup>. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz):  $\delta$  9.70 (1H, d, J = 0.8 Hz, CHO), 8.10 (1H, dd, J = 8.0, 0.8 Hz), 7.84 (1H, dd, J = 8.0, 0.8 Hz), 7.70 (1H, dt, J = 7.6, 1.2 Hz), 7.52 (1H, dt, J = 7.6, 1.2 Hz), 3.74 (1H, br s, OH), 2.95 (1H, dd, J = 7.6, 0.8 Hz), 2.74 (1H, q, J = 7.6 Hz), 2.50 (1H, td, J = 13.6, 6.8 Hz), 2.20 (1H, td, J = 13.6, 7.2 Hz), 2.11-2.02 (1H, m), 1.89-1.81 (2H, m), 1.50-1.40 (1H, m). <sup>13</sup>C NMR (CDCl<sub>3</sub>, DEPT-135)  $\delta$  203.6 (C, C=O), 198.4 (CH, CHO), 192.7 (C, C=O), 140.7 (C), 135.2 (CH), 130.3 (C), 129.5 (CH), 128.0 (CH), 125.2 (CH), 84.7 (C, C-OH), 73.5 (C), 60.6 (CH), 43.5 (CH), 33.4 (CH<sub>2</sub>), 27.6 (CH<sub>2</sub>), 22.9 (CH<sub>2</sub>). HRMS (ESI-TOF) m/z: [M + H]<sup>+</sup> Calcd for C<sub>16</sub>H<sub>14</sub>O<sub>4</sub>H 271.0970; Found 271.0970.

### $(3aR^*,9R^*,10R^*,10aR^*)-10$ -Acetyl-9-hydroxy-1,2,3,9,10,10a-hexahydro-4H-3a,9-

methano benzo[f]azulene-4,11-dione (71ab): The compound was prepared following

OH Me


procedure **3d**, purified by column chromatography using EtOAc/hexanes (1:9 to 1.5:8.5), and isolated as a semi-solid.

71ab Yield: 85% (60.4 mg). IR (Neat):  $v_{\text{max}}$  3428, 2968, 2921, 2851,

1762, 1692, 1619, 1595, 1450, 1363, 1336, 1299, 1269, 1188, 1161, 1117, 1075, 1042, 1019, 1001, 974, 953, 901, 885, 850, 798,776, 724, 680, 648, 631, 604, 580, and 560 cm<sup>-1</sup>. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz):  $\delta$ 8.08 (1H, dd, J = 10.0, 1.0 Hz), 7.72 (1H, dd, J = 9.5, 1.0 Hz), 7.66 (1H, dt, J = 9.0, 2.0 Hz), 7.49 (1H, dt, J = 9.5, 1.5 Hz), 3.73 (1H, s, O*H*), 3.03 (1H, d, J = 9.5 Hz), 2.89 (1H, q, J = 9.5 Hz), 2.49 (1H, td, J = 16.5, 8.5 Hz), 2.33 (3H, s), 2.18 (1H, td, J = 17.0, 9.0 Hz), 2.04-1.96 (1H, m), 1.86-1.79 (2H, m), 1.40-1.32 (1H, m). <sup>13</sup>C NMR (CDCl<sub>3</sub>, DEPT-135)  $\delta$ 204.4 (C, C=O), 204.0 (C, C=O), 192.9 (C, C=O), 140.8 (C), 134.9 (CH), 130.4 (C), 129.2 (CH), 127.7 (CH), 124.6 (CH), 85.1 (C, C-OH), 73.0 (C), 61.5 (CH), 44.1 (CH), 33.3 (CH<sub>2</sub>), 30.8 (CH<sub>3</sub>), 27.6 (CH<sub>2</sub>), 22.9 (CH<sub>2</sub>). HRMS (ESI-TOF) m/z: [M - H]<sup>-</sup> Calcd for C<sub>17</sub>H<sub>15</sub>O<sub>4</sub> 283.0970; Found 283.0973.

### (3aR\*,9R\*,10R\*,10aR\*)-10-Benzoyl-9-hydroxy-2,3,10,10a-tetrahydro-1H-3a,9-

methanobenzo[f]azulene-4,11(9H)-dione (71ad): The compound was prepared



following procedure **3d**, purified by column chromatography using EtOAc/hexanes (1:9), and isolated as a semi-solid. Yield:

**71ad** 80% (69.3 mg). IR (Neat):  $v_{\text{max}}$  3413, 3067, 2959, 2871, 2846,

1762, 1687, 1666, 1595, 1445, 1367, 1301, 1270, 1218, 1182, 1151, 1085, 1042, 1017, 989, 962, 910, 887, 845, 796, 765, 732, 684, and 620 cm<sup>-1</sup>. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz):

 $\delta 8.10$  (1H, dd, J = 7.5, 1.0 Hz), 8.02 (2H, d, J = 7.5 Hz), 7.62 (1H, t, J = 7.5 Hz), 7.53-7.45 (4H, m), 7.28 (1H, dd, J = 8.0, 1.0 Hz), 3.97 (1H, d, J = 7.5 Hz), 3.83 (1H, s, O*H*), 3.12 (1H, q, J = 7.5 Hz), 2.54 (1H, td, J = 13.5, 7.0 Hz), 2.23 (1H, td, J = 14.0, 7.0 Hz), 2.03-1.96 (1H, m), 1.85 (2H, quint, J = 6.5 Hz), 1.47-1.41 (1H, m). <sup>13</sup>C NMR (CDCl<sub>3</sub>, DEPT-135)  $\delta$  204.9 (C, C = O), 196.5 (C, C = O), 193.0 (C, C = O), 141.2 (C), 137.3 (C), 134.8 (CH), 133.6 (CH), 130.7 (C), 129.3 (2 x CH), 129.1 (CH), 128.5 (2 x CH), 127.3 (CH), 125.1 (CH), 86.0 (C, C = O), 73.2 (C), 56.1 (CH), 45.8 (CH), 33.3 (CH<sub>2</sub>), 27.5 (CH<sub>2</sub>), 23.0 (CH<sub>2</sub>). HRMS (ESI-TOF) m/z: [M + Na]<sup>+</sup> Calcd for C<sub>22</sub>H<sub>18</sub>O<sub>4</sub>Na 369.1103; Found 369.1103.

(3aR,9R,10R,10aR)-10-Benzoyl-9-hydroxy-2,3,10,10a-tetrahydro-1*H*-3a,9-methanobenzo[f]azulene-4,11(9H)-dione [(-)-71ad] and (3aR,9R,10S,10aS)-10-

(-)-71ad (Minor) (Major) Benzoyl-9-hydroxy-2,3,10,10a-tetrahydro-

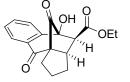
1 H- 3a, 9-methan obenzo [f] azulene-

**4,11(9H)-dione [(-)-71'ad]:** The compound was prepared following procedure **3d**,

purified by column chromatography using EtOAc/hexanes (1:9), and isolated as a semi-solid. Yield: 80% (69.3 mg). The enantiomeric excess (*ee*) was determined by chiral stationary phase HPLC using a Daicel Chiralpak AD-H column (hexane/2-propanol = 90:10, flow rate 1.0 mL/min,  $\lambda = 254$  nm),  $t_R = 17.887$  min (major),  $t_R = 19.916$  min (minor) [For minor isomer (-)-71ad],  $t_R = 30.917$  min (minor),  $t_R = 61.24$  min (major) [For major isomer (-)-71'ad]. [ $\alpha$ ]<sub>D</sub><sup>25</sup> = -39.02° (c = 0.264, CHCl<sub>3</sub>, 87% *ee*; 52% *ee* and 1:1.5 *dr*). IR (Neat):  $\nu_{\text{max}}$  3413, 3067, 2959, 2871, 2846, 1762, 1687, 1666, 1595, 1445,

1367, 1301, 1270, 1218, 1182, 1151, 1085, 1042, 1017, 989, 962, 910, 887, 845, 796, 765, 732, 684, and 620 cm<sup>-1</sup>. For major isomer (71'ad):  ${}^{1}$ H NMR (CDCl<sub>3</sub>, 500 MHz):  $\delta$ 8.14 (1H, dd, J = 8.0, 1.5 Hz), 7.97 (1H, dd, J = 7.5, 0.5 Hz), 7.91 (2H, dd, J = 8.0, 1.0 Hz), 7.76 (1H, dt, J = 7.5, 1.5 Hz), 7.63 (1H, tt, J = 7.5, 1.5 Hz), 7.56 (1H, dt, J = 7.5, 1.0 Hz), 7.51-7.45 (2H, m), 4.37 (1H, s), 4.23 (1H, d, J = 10.5 Hz), 2.79 (1H, br q, J = 10.5 Hz), 7.51-7.45 (2H, m), 4.37 (1H, s), 4.23 (1H, d, J = 10.5 Hz), 2.79 (1H, br q, J = 10.5 Hz), 7.51-7.45 (2H, m), 4.37 (1H, s), 4.23 (1H, d, J = 10.5 Hz), 2.79 (1H, br q, J = 10.5 Hz), 7.51-7.45 (2H, m), 4.37 (1H, s), 4.23 (1H, d, J = 10.5 Hz), 2.79 (1H, br q, J = 10.5 Hz), 7.51-7.45 (2H, m), 4.37 (1H, s), 4.23 (1H, d, J = 10.5 Hz), 2.79 (1H, br q, J = 10.5 Hz), 7.51-7.45 (2H, m), 7.51-7.45 (2H, m), 4.37 (1H, s), 4.23 (1H, d, J = 10.5 Hz), 2.79 (1H, br q, J = 10.5 Hz), 7.51-7.45 (2H, m), 7.51-7.45 8.5 Hz), 2.60-2.53 (1H, m), 2.16-2.01 (1H, m), 1.90-1.83 (1H, m), 1.71-1.60 (2H, m), 1.34-1.27 (1H, m).  $^{13}$ C NMR (CDCl<sub>3</sub>, DEPT-135):  $\delta$  204.0 (C, C=O), 200.6 (C, C=O), 193.9 (C, C=O), 144.5 (C), 136.7 (C), 135.3 (CH), 134.2 (CH), 129.6 (C), 128.9 (2 x CH), 128.8 (CH), 128.4 (2 x CH), 127.6 (CH), 124.8 (CH), 85.0 (C, C-OH), 72.8 (C), 51.0 (CH), 46.1 (CH), 30.2 (CH<sub>2</sub>), 27.6 (CH<sub>2</sub>), 22.9 (CH<sub>2</sub>). For minor isomer (**71ad**): <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz):  $\delta$  8.12 (1H, dd, J = 8.0, 1.5 Hz), 8.04 (2H, dd, J = 8.0, 1.0 Hz), 7.63 (1H, tt, J = 7.5, 1.5 Hz), 7.53-7.46 (4H, m), 7.31 (1H, dd, J = 7.5, 1.0 Hz), 4.00 (1H, d, J = 7.0 Hz), 3.91 (1H, s), 3.14 (1H, q, J = 7.5 Hz), 2.60-2.53 (1H, m), 2.26(1H, td, J = 13.5, 7.0 Hz), 2.03-1.98 (1H, m), 1.90-1.80 (2H, m), 1.50-1.43 (1H, m).NMR (CDCl<sub>3</sub>, DEPT-135): δ204.8 (C, C=O), 196.5 (C, C=O), 193.1 (C, C=O), 141.2 (C), 137.2 (C), 134.8 (CH), 133.6 (CH), 130.7 (C), 129.3 (2 x CH), 129.0 (CH), 128.4 (2 x CH), 127.3 (CH), 125.1 (CH), 86.0 (C, C-OH), 73.2 (C), 56.1 (CH), 45.8 (CH), 33.2 (CH<sub>2</sub>), 27.5 (CH<sub>2</sub>), 22.9 (CH<sub>2</sub>). HRMS (ESI-TOF) m/z: [M + Na]<sup>+</sup> Calcd for C<sub>22</sub>H<sub>18</sub>O<sub>4</sub>Na 369.1103; Found 369.1103.

## Ethyl $(3aR^*,9R^*,10R^*,10aR^*)$ -9-hydroxy-4,11-dioxo-2,3,4,9,10,10a-hexahydro-1*H*-3a,9-methanobenzo[*f*]azulene-10-carboxylate (71ae major diastereomer): The


OH OEt

**71ae** major diastereomer

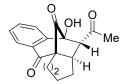
compound was prepared following procedure **3d**, purified by column chromatography using EtOAc/hexanes (1:9 to 1.5:8.5), and isolated as a semi-solid. Yield: 62.2% (49 mg). IR (Neat):  $\nu_{\text{max}}$  3447, 2958, 2869, 1975, 1769, 1730, 1688, 1598, 1453,

1374, 1259, 1206, 1090, 1045, 1022, 992, 942, 889, 794, and 728 cm<sup>-1</sup>. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz):  $\delta$ 8.09 (1H, dd, J = 8.0, 1.0 Hz), 7.80 (1H, d, J = 8.0 Hz), 7.67 (1H, dt, J = 7.5, 1.0 Hz), 7.51 (1H, dt, J = 7.5, 1.0 Hz), 4.08-4.02 (2H, m), 3.70 (1H, s, O*H*), 2.93 (1H, d, J = 7.5 Hz), 2.76 (1H, q, J = 7.5 Hz), 2.50 (1H, td, J = 13.5, 7.0 Hz), 2.19 (1H, td, J = 13.5, 7.0 Hz), 2.12-2.04 (1H, m), 1.86-1.80 (2H, m), 1.52-1.45 (1H, m), 1.17 (3H, t, J = 7.0 Hz). <sup>13</sup>C NMR (CDCl<sub>3</sub>, DEPT-135)  $\delta$  203.9 (C, C=O), 193.1 (C, C=O), 169.8 (C, C=O), 141.4 (C), 134.7 (CH), 130.5 (C), 129.1 (CH), 127.4 (CH), 125.7 (CH), 84.8 (C, C-OH), 73.3 (C), 61.5 (CH<sub>2</sub>), 54.8 (CH), 46.4 (CH), 33.5 (CH<sub>2</sub>), 27.4 (CH<sub>2</sub>), 23.0 (CH<sub>2</sub>), 14.2 (CH<sub>3</sub>). HRMS (ESI-TOF) m/z: [M + H]<sup>+</sup> Calcd for C<sub>18</sub>H<sub>18</sub>O<sub>5</sub>H 315.1232; Found 315.1232.

Ethyl  $(3aR^*,9R^*,10S^*,10aS^*)$ -9-hydroxy-4,11-dioxo-2,3,4,9,10,10a-hexahydro-1*H*-3a,9-methanobenzo[f]azulene-10-carboxylate (71'ae minor diastereomer): The



compound was prepared following procedure **3d**, purified by column chromatography using EtOAc/hexanes (1:9 to 1.5:8.5),


71'ae and isolated as a semi-solid. Yield: 4.8% (3.8 mg). IR (Neat): minor diastereomer

 $\nu_{\text{max}}$  3447, 2958, 2869, 1975, 1769, 1730, 1688, 1598, 1453, 1374, 1259, 1206, 1090,

1045, 1022, 992, 942, 889, 794, and 728 cm<sup>-1</sup>. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz):  $\delta$ 8.07 (1H, dd, J = 8.0, 1.2 Hz), 7.93 (1H, dd, J = 8.0, 0.4 Hz), 7.72 (1H, dt, J = 7.6, 1.6 Hz), 7.51 (1H, dt, J = 8.0, 1.2 Hz), 4.29-4.16 (2H, m), 3.98 (1H, s, OH), 3.21 (1H, d, J = 10.4 Hz), 2.65-2.50 (2H, m), 2.17-2.09 (1H, m), 1.92-1.85 (2H, m), 1.80-1.71 (1H, m), 1.49-1.39 (1H, m), 1.30 (3H, t, J = 7.2 Hz). <sup>13</sup>C NMR (CDCl<sub>3</sub>, DEPT-135)  $\delta$  204.0 (C, C=O), 193.8 (C, C=O), 171.2 (C, O-C=O), 144.0 (C), 135.3 (CH), 129.8 (C), 129.0 (CH), 127.5 (CH), 124.9 (CH), 84.6 (C, C-OH), 72.4 (C), 61.4 (CH<sub>2</sub>), 51.2 (CH), 45.5 (CH), 29.8 (CH<sub>2</sub>), 27.6 (CH<sub>2</sub>), 23.4 (CH<sub>2</sub>), 14.2 (CH<sub>3</sub>). HRMS (ESI-TOF) m/z: [M + H]<sup>+</sup> Calcd for C<sub>18</sub>H<sub>18</sub>O<sub>5</sub>H 315.1232; Found 315.1233.

(4aS\*,10R\*,11R\*,11aR\*)-11-Acetyl-10-hydroxy-1,3,4,10,11,11a-hexahydro-4a,10-

methano dibenzo[a,d][7]annulene-5,12(2H)-dione (72ab): The compound was



72ab

prepared following procedure **3d**, purified by column chromatography using EtOAc/hexanes (1:9), and isolated as a semi-solid. Yield: 65% (48.48 mg). IR (Neat):  $\nu_{\text{max}}$  3451, 2931,

2858, 1765, 1713, 1680, 1597, 1454, 1357, 1329, 1301, 1277, 1231, 1172, 1085, 1038, 971, 915, 781, and 735 cm<sup>-1</sup>. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz):  $\delta$ 8.07 (1H, d, J = 7.5 Hz), 7.83 (1H, d, J = 8.0 Hz), 7.70 (1H, dt, J = 8.0, 1.0 Hz), 7.49 (1H, dt, J = 8.0, 0.5 Hz), 3.56 (1H, s, O*H*), 2.99 (1H, d, J = 11.0 Hz), 2.58 (1H, dt, J = 12.0, 2.5 Hz), 2.48-2.35 (2H, m), 2.27 (3H, s), 1.88-1.78 (2H, m), 1.69 (1H, dt, J = 13.5, 5.5 Hz), 1.57 (1H, dd, J = 12.5, 3.0 Hz), 1.48-1.38 (1H, m), 1.26 (1H, dq, J = 12.5, 3.5 Hz). <sup>13</sup>C NMR (CDCl<sub>3</sub>, DEPT-135)  $\delta$ 204.6 (C, C=O), 204.4 (C, C=O), 196.3 (C, C=O), 147.4 (C), 135.2 (CH), 130.8 (C), 128.5 (CH), 127.9 (CH), 121.3 (CH), 79.2 (C, C-OH), 65.4 (C), 63.4 (CH),

42.9 (CH<sub>2</sub>), 32.9 (CH<sub>3</sub>), 27.2 (CH<sub>2</sub>), 26.5 (CH<sub>2</sub>), 26.2 (CH<sub>2</sub>), 21.4 (CH<sub>2</sub>). HRMS (ESITOF) *m/z*: [M + Na]<sup>+</sup> Calcd for C<sub>18</sub>H<sub>18</sub>O<sub>4</sub>Na 321.1103; Found 321.1103.

#### (4aS\*,10R\*,11R\*,11aR\*)-11-Benzoyl-10-hydroxy-1,3,4,10,11,11a-hexahydro-

#### 4a,10-methanodibenzo[a,d][7]annulene-5,12(2H)-dione

OH OH Ph

(72ad): The compound was prepared following procedure 3d, purified by column chromatography using EtOAc/hexanes (1:9),

and isolated as a semi-solid. Yield: 67% (60.4 mg). IR (Neat):  $\nu_{\text{max}}$  3443, 3067, 2925, 2855, 1763, 1683, 1597, 1449, 1379, 1283, 1235, 1203, 1002, 767, 732, 690, 636, and 580 cm<sup>-1</sup>. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz):  $\delta$ 7.99 (1H, dd, J = 8.0, 2.0 Hz), 7.89 (2H, dd, J = 8.0, 1.0 Hz), 7.56 (1H, tt, J = 7.5, 1.0 Hz), 7.42 (2H, t, J = 7.5 Hz), 7.33 (1H, dd, J = 8.0, 1.5 Hz), 7.29 (1H, dd, J = 8.0, 1.0 Hz), 7.09 (1H, dd, J = 7.0, 1.5 Hz), 3.86 (1H, s), 3.85 (1H, s), 2.92-2.88 (1H, m), 2.52-2.45 (1H, m), 2.13 (1H, td, J = 14.5, 3.5 Hz), 2.02-1.98 (1H, m), 1.84 (1H, td, J = 13.5, 4.0 Hz), 1.71 (1H, td, J = 13.0, 4.0 Hz), 1.51-1.41(1H, m), 1.40-1.31 (1H, m), 1.27-1.20 (1H, m). <sup>13</sup>C NMR (CDCl<sub>3</sub>, DEPT-135)  $\delta$  206.1 (C, C=O), 196.8 (C, C=O), 195.3 (C, C=O), 141.2 (C), 136.9 (C), 134.2 (CH), 133.4 (CH), 130.7 (C), 129.0 (2 x CH), 128.7 (CH), 128.3 (2 x CH), 127.4 (CH), 123.5 (CH), 81.8 (C, C-OH), 64.9 (C), 60.3 (CH), 36.6 (CH), 31.9 (CH<sub>2</sub>), 22.9 (CH<sub>2</sub>), 20.8 (CH<sub>2</sub>), 20.6 (CH<sub>2</sub>). HRMS (ESI-TOF) m/z: [M + H]<sup>+</sup> Calcd for C<sub>23</sub>H<sub>20</sub>O<sub>4</sub>H 361.1440; Found 361.1440.

**3e.** General Procedures for Synthetic Transformation of Products 69aa: To an ordinary glass vial equipped with a magnetic stirring bar were added 0.2 mmol of 69aa

and 2 mL of toluene. Then, 0.6 mmol of trimethylsilyl azide (TMSN<sub>3</sub>) and 0.04 mmol of silver trifluoromethanesulfonate (AgOTf) were added and the resulting mixture was allowed to stir at 80 °C. After complete consumption of 69aa, as monitored by TLC, the reaction was quenched with water, extracted with ethyl acetate and dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>. The solvent was removed under reduced pressure and dried. The resulting solid components were dissolved in CHCl<sub>3</sub> and filtered through a filter paper to get pure 73aa as a white solid.

#### (4b'S\*,6'S\*,11a'R\*)-6'-Hydroxy-4b',12'-dihydrospiro[oxazolidine-4,5'-

OH NO

[6,11a]methanodi benzo[a,f]azulene]-2,5,11',13'(6'H)-tetraone (73aa): The compound was prepared following procedure 3e and obtained as a white solid. Yield: 70% (52.5 mg).

**73aa** Mp: 250-252 °C. IR (Neat):  $\nu_{\text{max}}$  3326, 2924, 2851, 2360, 2340,

1849, 1774, 1697, 1594, 1482, 1455, 1441, 1339, 1286, 1240, 1222, 1201, 1160, 1087, 1046, 997, 933, 814, 770, 750, 728, 698, 650, and 560 cm<sup>-1</sup>. <sup>1</sup>H NMR (DMSO-D<sub>6</sub>, 500 MHz):  $\delta$  9.65 (1H, s, N*H*), 8.16 (1H, s, O*H*), 8.10 (1H, dd, J = 8.0, 1.0 Hz), 7.99 (1H, dt, J = 8.0, 1.5 Hz), 7.91 (1H, dd, J = 7.5, 0.5 Hz), 7.76 (1H, dt, J = 8.0, 1.5 Hz), 7.40 (1H, d, J = 8.0 Hz), 7.31 (1H, t, J = 7.5 Hz), 7.23 (1H, t, J = 7.5 Hz), 6.99 (1H, d, J = 7.5 Hz), 4.01 (1H, s), 3.80 (1H, d, J = 17.5 Hz), 3.49 (1H, d, J = 17.5 Hz). <sup>13</sup>C NMR (DMSO-D<sub>6</sub>, DEPT-135)  $\delta$  201.3 (C, C=O), 192.6 (C, C=O), 168.2 (C, O-C=O), 151.2 (C, HN-C=O), 142.0 (C), 140.9 (C), 136.5 (C), 136.3 (CH), 130.81 (C), 130.76 (CH),

129.3 (CH), 128.3 (CH), 128.1 (CH), 127.9 (CH), 126.0 (CH), 123.1 (CH), 87.5 (C, C-OH), 73.1 (C), 72.8 (C), 57.1 (CH), 28.7 (CH<sub>2</sub>). HRMS (ESI-TOF) m/z: [M + H]<sup>+</sup> Calcd for  $C_{21}H_{17}NO_5H$  364.1185; Found 364.1185.; and  $[M + Na]^+$  Calcd for  $C_{21}H_{17}NO_5Na$ 386.1004; Found 386.1002.  $[M = M-CO_2 + MeOH]$ .

3f. General Procedures for Synthetic Transformation of Products 70ad: To a 25 mL of round bottom flask equipped with a magnetic stirring bar were added 0.2 mmol of **70ad** and 2 mL of methanol. Then, 0.4 mmol of K<sub>2</sub>CO<sub>3</sub> was added in two portions with 0.5 h time intervals and the resulting mixture was allowed to stir at RT. After complete consumption of **70ad**, as monitored by TLC, methanol was removed by rotary evaporation. To this crude reaction mixture was added acetone (0.1 M), dimethyl sulfate (5 equiv.) and K<sub>2</sub>CO<sub>3</sub> (5 equiv.) and the resulting mixture was allowed to stir at 60 °C for 24 h. Next, the reaction mixture was allowed to cool to RT and then the solvent was removed by rotary evaporation. The resulting product mixture was partitioned between aqueous and ethyl acetate layers and the organic layer was dried over anhydrous Na<sub>2</sub>SO<sub>4</sub> and concentrated under reduced pressure. The pure product 74ad was obtained after column chromatography purification using ethyl acetate/hexanes as an eluent system.

Methyl (4bS\*,5R\*,6R\*,11S\*,11aS\*)-5-benzoyl-11-hydroxy-4b,11,11a,12-

tetrahydro-6,11-epoxydibenzo[a,f]azulene-6(5H)-carboxylate 74ad

(74ad): The compound was prepared following procedure 3f, purified by column chromatography using EtOAc/hexanes (3:7 to 4:6), and isolated as a white solid. Yield: 65% (55.4 mg). Mp:

174-176 °C. IR (Neat):  $v_{\text{max}}$  3451, 2927, 2843, 2360, 1731, 1687, 1596, 1438, 1361,

1311, 1274, 1219, 1201, 1172, 1153, 1122, 1079, 1033, 964, 931, 905, 879, 852, 832, 809, 791, 753, 723, 687, 645, 617, and 572 cm<sup>-1</sup>. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz):  $\delta$  8.01 (2H, dd, J = 8.5, 1.5 Hz), 7.57 (1H, tt, J = 7.5, 1.0 Hz), 7.48 (2H, t, J = 7.5 Hz), 7.13 (1H, d, J = 7.5 Hz), 7.02 (1H, d, J = 7.5 Hz), 6.98 (2H, dt, J = 7.5, 1.0 Hz), 6.94-6.89 (3H, m), 6.86 (1H, dt, J = 7.5, 0.5 Hz), 4.51 (1H, s), 3.92 (1H, m), 3.84 (3H, s), 3.54 (1H, s, OH), 3.14 (1H, br d, J = 15.5 Hz), 3.07-3.01 (2H, m). <sup>13</sup>C NMR (CDCl<sub>3</sub>, DEPT-135)  $\delta$  199.4 (C, C=O), 170.6 (C, O-C=O), 142.8 (C), 141.1 (C), 140.7 (C), 140.4 (C), 135.5 (C), 133.2 (CH), 129.0 (CH), 128.8 (2 x CH), 128.54 (CH), 128.51 (2 x CH), 126.4 (CH), 125.9 (CH), 124.3 (CH), 122.3 (CH), 121.5 (CH), 120.3 (CH), 106.9 (C, O-C-OH), 84.3 (C, C-O), 52.8 (CH<sub>3</sub>), 48.9 (CH), 45.8 (CH), 44.7 (CH), 32.4 (CH<sub>2</sub>). HRMS (ESI-TOF) m/z: [M + Na]<sup>+</sup> Calcd for C<sub>27</sub>H<sub>22</sub>O<sub>5</sub>Na 449.1365; Found 449.1368.

#### Ethyl (E)-3-(2-((3-hydroxy-1,4-dioxo-1,4-dihydronaphthalen-2-

yl)methyl)phenyl)acrylate (67ae): The compound was prepared following procedure

**3d**, purified by column chromatography using EtOAc/hexanes (1:9 to 2:8), and isolated as a yellow solid.

Yield: 95% (86 mg). Mp: 120-123 °C. IR (Neat):  $\nu_{\text{max}}$  3341,

3067, 2917, 2849, 1772, 1708, 1638, 1588, 1482, 1459, 1427, 1355, 1309, 1276, 1262, 1235, 1155, 1090, 1048, 1029, 977, 957, 856, 838, 798, 760, 727, 669, and 605 cm<sup>-1</sup>. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz):  $\delta$ 8.39 (1H, d, J = 16.0 Hz), 8.08 (2H, dt, J = 9.0, 1.0 Hz), 7.83 (1H, br s, OH), 7.73 (1H, dt, J = 7.5, 1.0 Hz), 7.66 (1H, dt, J = 7.5, 1.5 Hz), 7.54 (1H, d, J = 7.0 Hz), 7.37 (1H, d, J = 7.0 Hz), 7.27 (1H, dt, J = 7.5, 1.0 Hz), 7.21 (1H, t, J = 7.0 Hz), 6.35 (1H, d, J = 16.0 Hz), 4.28 (2H, q, J = 7.0 Hz), 4.09 (2H, s), 1.36 (3H, t, J = 7.0 Hz). <sup>13</sup>C NMR (CDCl<sub>3</sub>, DEPT-135)  $\delta$  184.2 (C, C=O), 181.3 (C, C=O), 167.0 (C, O-C=O), 153.5 (C, C-OH), 142.9 (CH), 138.1 (C), 135.0 (CH), 133.7 (C), 133.0 (CH), 132.8 (C), 130.3 (CH), 129.9 (CH), 129.4 (C), 126.9 (CH), 126.8 (CH), 126.7 (CH), 126.2 (CH), 122.1 (C), 119.9 (CH), 60.5 (CH<sub>2</sub>), 26.5 (CH<sub>2</sub>), 14.3 (CH<sub>3</sub>). HRMS (ESI-TOF) m/z: [M + Na]<sup>+</sup> Calcd for C<sub>22</sub>H<sub>18</sub>O<sub>5</sub>Na 385.1052; Found 385.1057.

#### Ethyl (E)-6-(3-hydroxy-1,4-dioxo-1,4-dihydronaphthalen-2-yl)hex-2-enoate

OH OEt

(67'ae): The compound was prepared following procedure 3d, purified by column chromatography using EtOAc/hexanes (1.5:8.5 to 2:8), and isolated as a yellow solid. Yield: 70% (67

67'ae (1.5:8.5 to 2:8), and isolated as a yellow solid. Yield: 70% (67 mg). Mp: 73-75 °C. IR (Neat):  $v_{\text{max}}$  3267, 2933, 1713, 1650, 1591, 1525, 1474, 1369, 1275, 1216, 1177, 1135, 1037 and 726 cm<sup>-1</sup>. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz):  $\delta$  8.10 (1H, d, J = 7.6 Hz), 8.06 (1H, d, J = 7.6 Hz), 7.74 (1H, tt, J = 7.6, 1.2 Hz), 7.66 (1H, tt, J = 7.6 Hz), 7.43 (1H, br s, OH), 6.97 (1H, td, J = 13.6, 6.8 Hz), 5.83 (1H, td, J = 13.6, 0.8 Hz), 4.15 (2H, q, J = 6.8 Hz), 2.63 (2H, t, J = 7.6 Hz), 2.27 (2H, q, J = 8.0 Hz), 1.72 (2H, quint, J = 7.6 Hz), 1.26 (3H, t, J = 7.2 Hz). <sup>13</sup>C NMR (CDCl<sub>3</sub>, DEPT-135)  $\delta$  184.5 (C, C=O), 181.3 (C, C=O), 166.6 (C, O-C=O), 153.2 (C, C-OH), 148.5 (CH), 134.9 (CH), 132.91 (CH), 132.8 (C), 129.4 (C), 126.8 (CH), 126.1 (CH), 123.7 (C), 121.6 (CH), 60.1 (CH<sub>2</sub>), 32.1 (CH<sub>2</sub>), 26.4 (CH<sub>2</sub>), 22.8 (CH<sub>2</sub>), 14.2 (CH<sub>3</sub>). HRMS (ESI-TOF) m/z: [M - H] Calcd for C<sub>18</sub>H<sub>17</sub>O<sub>5</sub> 313.1076; Found 313.1074.

#### Ethyl (E)-7-(3-hydroxy-1,4-dioxo-1,4-dihydronaphthalen-2-yl)hept-2-enoate

(67"ae): The compound was prepared following procedure

3d, purified by column chromatography using EtOAc/hexanes

(1.5:8.5 to 2:8), and isolated as a yellow solid. Yield: 82% (67

mg). Mp: 78-80 °C. IR (Neat):  $\nu_{\text{max}}$  3336, 2927, 2855, 1701, 1642, 1589, 1460, 1369, 1347, 1323, 1265, 1208, 1185, 1132, 1099, 1074, 1036, 976, 943, 841, 796, 728, 689, and 574 cm<sup>-1</sup>. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz): δ8.12 (1H, d, J = 7.6 Hz), 8.09 (1H, d, J = 7.6 Hz), 7.76 (1H, t, J = 7.6 Hz), 7.69 (1H, t, J = 7.6 Hz), 7.45 (1H, br s, OH), 6.96 (1H, td, J = 15.6, 7.2 Hz), 5.82 (1H, d, J = 15.6 Hz), 4.18 (2H, q, J = 7.2 Hz), 2.62 (2H, t, J = 6.4 Hz), 2.25 (2H, q, J = 6.4 Hz), 1.63-1.55 (4H, m), 1.28 (3H, t, J = 7.2 Hz). <sup>13</sup>C NMR (CDCl<sub>3</sub>, DEPT-135) δ184.7 (C, C=O), 181.4 (C, C=O), 166.7 (C, O-C=O), 153.2 (C, C-OH), 149.0 (CH), 134.9 (CH), 132.91 (CH), 132.88 (C), 129.4 (C), 126.8 (CH), 126.1 (CH), 124.1 (C), 121.4 (CH), 60.1 (CH<sub>2</sub>), 32.0 (CH<sub>2</sub>), 28.0 (CH<sub>2</sub>), 27.7 (CH<sub>2</sub>), 23.0 (CH<sub>2</sub>), 14.3 (CH<sub>3</sub>). HRMS (ESI-TOF) m/z: [M + Na]<sup>+</sup> Calcd for C<sub>19</sub>H<sub>20</sub>O<sub>5</sub>Na 351.1208; Found 351.1203.

# 3g. Organocatalytic Reductive Coupling of Dialdehydes 59-61 with 2-Hydroxy-1,4-naphthoquinone Derivatives 1:

Method 1: To a 10 mL of round bottom flask equipped with a magnetic stirring bar were added 0.06 mmol of catalyst 3n, 0.33 mmol of dialdehydes 59-61 and 1.0 mL of anhydrous DCM. Then, 0.33 mmol of Hantzsch ester 34 and 0.3 mmol of 2-hydroxy-1,4-naphthoquinone derivatives 1 were added sequentially to a well stirred solution and

the resulting mixture was allowed to stir for few hours. The solvent was removed under reduced pressure, the solid reaction mixture was dissolved in hexanes and the solvent was decanted and dried. Then, the solid product mixture was redissolved in 5-10% CHCl<sub>3</sub>/hexanes mixtures and the solvent was decanted and dried. This process was repeated for 3-4 times to give the products **62-64** with >80% purity. Further purification was carried out by passing the compound through short silica gel column using CHCl<sub>3</sub> as an eluent. The pure coupling products **62a-e** and **63a-64a** were obtained in 35-82% yields.

Method 2: To a 10 mL of round bottom flask equipped with a magnetic stirring bar were added 0.06 mmol of catalyst 3n, 0.33 mmol of Hantzsch ester 34, 0.3 mmol of 2-hydroxy-1,4-naphthoquinone 1 and 0.5 mL of anhydrous DCM. The resulting mixture was stirred for some time, then the dialdehyde 59b or 59c (dissolved in 0.5 mL of DCM) was added dropwise over 3-4 hours at constant speed from dropping funnel under N<sub>2</sub> atmosphere, and stirring was continued for few more hours. The pure coupling products 62f and 62g were obtained in 44% and 31% yields.

#### 2-((3-Hydroxy-1,4-dioxo-1,4-dihydronaphthalen-2-yl)methyl)benzaldehyde (62a):

The compound was prepared following procedure 3g, and obtained as a pale yellow solid. Mp: 176-178 °C. Yield: 82% 62a (72.0 mg). IR (Neat):  $\nu_{\text{max}}$  3100, 2161, 1978, 1673, 1642, 1594, 1455, 1411, 1361, 1342, 1303, 1270, 1212, 1181, 1154, 1090, 1048, 1037, 1016, 968, 952, 930, 855, 825, 791, 765, 736, 723, 693, 637, and 604 cm<sup>-1</sup>. <sup>1</sup>H NMR (DMSO- $d_6$ , 400 MHz):  $\delta$  10.54 (1H, s, CHO), 7.99 (1H, dd, J = 7.2, 1.2 Hz), 7.94 (1H, dd, J = 7.2,

1.2 Hz), 7.82 (1H, d, J = 6.8 Hz), 7.80-7.75 (2H, m), 7.51 (1H, dt, J = 7.6, 1.6 Hz), 7.38 (1H, t, J = 7.6 Hz), 7.34 (1H, d, J = 8.0 Hz), 2.51 (2H, s). <sup>13</sup>C NMR (DMSO- $d_6$ , DEPT-135)  $\delta$  193.7 (HC, H-C=O), 184.5 (C, C=O), 181.6 (C, C=O), 157.6 (C, C-OH), 142.4 (C), 134.9 (CH), 134.3 (CH), 134.0 (C), 133.5 (CH), 132.5 (C), 130.7 (C), 130.5 (CH), 130.3 (CH), 126.9 (CH), 126.23 (CH), 126.16 (CH), 121.7 (C), 25.1 (CH<sub>2</sub>). HRMS (ESI-TOF) m/z: [M + H]<sup>+</sup> Calcd for C<sub>18</sub>H<sub>12</sub>O<sub>4</sub>H 293.0814; Found 293.0812.

#### 2-((3-Hydroxy-6-methyl-1,4-dioxo-1,4-dihydronaphthalen-2-

Me OH CHO

yl)methyl)benzaldehyde (62b): The compound was prepared following procedure 3g and obtained as a yellow solid. Mp: 196-198 °C. Yield: 82% (75.3 mg). IR (Neat):

 $\nu_{\text{max}}$  3342, 1688, 1638, 1596, 1450, 1347, 1312, 1274, 1228, 1209, 1163, 1089, 1048, 995, 946, 873, 854, 820, 799, 758, 744, 676, and 631 cm<sup>-1</sup>. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400MHz):  $\delta$  10.60 (1H, s, CHO), 8.01 (1H, d, J = 7.6 Hz), 7.89 (1H, br s), 7.87 (1H, dd, J = 7.6, 1.6 Hz), 7.62 (1H, s, OH), 7.56 (1H, qd, J = 8.0, 0.8 Hz), 7.48 (1H, dt, J = 7.6, 1.6 Hz), 7.42 (1H, d, J = 6.8 Hz), 7.37 (1H, dt, J = 7.6, 1.2 Hz), 4.41 (2H, s), 2.49 (3H, s). <sup>13</sup>C NMR (CDCl<sub>3</sub>, DEPT-135):  $\delta$  192.9 (HC, H-C=O), 184.3 (C, C=O), 181.6 (C, C=O), 153.5 (C, C-OH), 144.2 (C), 141.1 (C), 135.8 (CH), 134.0 (C), 133.8 (CH), 130.8 (CH), 130.7 (CH), 130.4 (C), 129.3 (C), 127.2 (CH), 126.9 (CH), 126.7 (CH), 121.7 (C), 24.9 (CH<sub>2</sub>), 21.6 (CH<sub>3</sub>). HRMS (ESI-TOF) m/z: [M + H]<sup>+</sup> Calcd for C<sub>19</sub>H<sub>14</sub>O<sub>4</sub>H 307.0970; Found 307.0966.

#### 2-((3-Hydroxy-6-methoxy-1,4-dioxo-1,4-dihydronaphthalen-2-

**yl)methyl)benzaldehyde (62c):** The compound was prepared following procedure **3g**, and obtained as a yellow solid. Mp: 157-159 °C. Yield: 69% (66.7 mg). IR (Neat):  $\nu_{\text{max}}$  3321, 2918, 2849, 1688, 1638, 1576, 1492, 1448, 1433, 1376, 1338, 1288, 1242, 1198,

1102, 1047, 1020, 972, 913, 865, 848, 828, 790, 749, 726, 691, and 615 cm<sup>-1</sup>. <sup>1</sup>H NMR (DMSO- $d_6$ , 500MHz):  $\delta$ 11.37 (1H, s, OH), 10.53 (1H, s, CHO), 7.94 (1H, d, J = 8.5 Hz),

7.82 (1H, dd, J = 7.5, 1.5 Hz), 7.51 (1H, dt, J = 7.5, 1.5 Hz), 7.38 (1H, t, J = 7.5 Hz), 7.36 (1H, d, J = 2.5 Hz), 7.31 (1H, d, J = 7.5 Hz), 7.26 (1H, dd, J = 8.5, 2.5 Hz), 4.24 (2H, s), 3.90 (3H, s). <sup>13</sup>C NMR (DMSO- $d_6$ , DEPT-135):  $\delta$  193.6 (HC, H-C=O), 184.5 (C, C=O), 180.1 (C, C=O), 164.7 (C), 157.0 (C, C-OH), 142.3 (C), 134.7 (C), 134.3 (CH), 134.0 (C), 130.5 (CH), 130.3 (CH), 129.0 (CH), 127.0 (CH), 123.7 (C), 121.5 (C), 119.2 (CH), 110.7 (CH), 56.4 (CH<sub>3</sub>), 25.0 (CH<sub>2</sub>). HRMS (ESI-TOF) m/z: [M + Na]<sup>+</sup> Calcd for C<sub>19</sub>H<sub>14</sub>O<sub>5</sub>Na 345.0739; Found 345.0739.

#### 2-((6-Chloro-3-hydroxy-1,4-dioxo-1,4-dihydronaphthalen-2-

yl)methyl)benzaldehyde (62d): The compound was prepared following procedure 3g and obtained as a yellowish orange solid. Mp: 195-197 °C. Yield: 57% (55.9)

mg). IR (Neat):  $\nu_{\text{max}}$  2977, 2929, 1714, 1590, 1546, 1440, 1366, 1284, 1253, 1220, 1103, 1042, 1022, 982, 866, 770, and 697 cm<sup>-1</sup>. <sup>1</sup>H NMR (DMSO- $d_6$ , 500 MHz):  $\delta$ 11.59 (1H, br s, OH), 10.50 (1H, s, CHO), 7.92 (1H, d, J = 8.0 Hz), 7.91 (1H, s), 7.84 (1H, dd, J = 8.0, 2.5 Hz), 7.82 (1H, dd, J = 8.0, 1.5 Hz), 7.50 (1H, dt, J = 7.5, 1.0 Hz), 7.38 (1H, t, J

= 7.5 Hz), 7.32 (1H, d, J = 7.5 Hz), 4.25 (2H, s). <sup>13</sup>C NMR (DMSO- $d_6$ , DEPT-135)  $\delta$  193.6 (HC, H-C=O), 183.9 (C, C=O), 180.3 (C, C=O), 157.0 (C, C-OH), 141.9 (C), 138.7 (C), 134.5 (CH), 134.3 (CH), 134.0 (C), 132.3 (C), 130.9 (C), 130.7 (CH), 130.3 (CH), 128.4 (CH), 127.0 (CH), 125.6 (CH), 122.1 (C), 25.1 (CH<sub>2</sub>). HRMS (ESI-TOF) m/z: [M + Na]<sup>+</sup> Calcd for C<sub>18</sub>H<sub>11</sub>ClO<sub>4</sub>Na 349.0244; Found 349.0244.

#### 2-((6-Bromo-3-hydroxy-1,4-dioxo-1,4-dihydronaphthalen-2-

Prepared following procedure **3g** and obtained as a brown solid. Mp: 186-188 °C. Yield: 56% (62.3 mg). IR (Neat): ν<sub>max</sub> 2921, 1673, 1634, 1594, 1578, 1450, 1409, 1342, 1296, 1247, 1202, 1153, 1090, 1065, 1045, 1031, 952, 938, 906, 864, 828, 794, 759, 745, 684, 657, and 635 cm<sup>-1</sup>. <sup>1</sup>H NMR (DMSO-*d*<sub>6</sub>, 400 MHz): δ11.61 (1H, br s, O*H*), 10.50 (1H, s, C*H*O), 8.07 (1H, d, *J* = 2.0 Hz), 8.01 (1H, dd, *J* = 8.4, 2.0 Hz), 7.85 (1H, d, *J* = 8.0 Hz), 7.83 (1H, dd, *J* = 7.6, 0.8 Hz), 7.51 (1H, dt, *J* = 7.6, 1.2 Hz), 7.39 (1H, t, *J* = 7.6 Hz), 7.32 (1H, d, *J* = 7.6 Hz), 4.26 (2H, s). <sup>13</sup>C NMR (DMSO-*d*<sub>6</sub>, DEPT-135) δ193.7 (H*C*, H-C=O), 184.1 (C, C=O), 180.3 (C, C=O), 157.0 (C, *C*-OH), 141.9 (C), 137.5 (CH), 134.3 (CH), 134.0 (C), 132.3 (C), 131.2 (C), 130.8 (CH), 130.3 (CH), 128.5 (2 x CH), 127.5 (C), 127.0 (CH), 122.0 (C), 25.1 (CH<sub>2</sub>). HRMS (ESI-TOF) *m/z*: [M + Na]<sup>+</sup> Calcd for C<sub>18</sub>H<sub>11</sub>BrO<sub>4</sub>Na 392.9738; Found 392.9733.

#### 2-(2-(3-Hydroxy-1,4-dioxo-1,4-dihydronaphthalen-2-yl)ethyl)benzaldehyde

OH CHO

(62f): The compound was prepared following **procedure 3g**, and obtained as a yellow solid. Mp: 152-154 °C. Yield: 44% (40.4 mg). IR (Neat):  $\nu_{\text{max}}$  3228, 2922, 2852, 1691, 1665,

1633, 1592, 1461, 1358, 1273, 1258, 1215, 1183, 1091, 1052, 860, 752, and 694 cm<sup>-1</sup>. 
<sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz):  $\delta$  10.45 (1H, s, CHO), 8.15 (1H, dd, J= 7.5, 1.0 Hz), 8.11 (1H, dd, J= 7.5, 1.0 Hz), 7.88 (1H, dd, J= 7.5, 1.0 Hz), 7.79 (1H, dt, J= 7.5, 1.5 Hz), 7.72 (1H, dt, J= 7.5, 1.5 Hz), 7.52 (1H, dt, J= 7.5, 1.5 Hz), 7.42 (1H, s), 7.40 (1H, dt, J= 7.5, 1.0 Hz), 7.36 (1H, d, J= 7.5 Hz), 3.31-3.28 (2H, m), 2.98-2.95 (2H, m). 
<sup>13</sup>C NMR (CDCl<sub>3</sub>, DEPT-135)  $\delta$  192.5 (HC, H-C=O), 184.5 (C, C=O), 181.2 (C, C=O), 153.5 (C, C-OH), 144.1 (C), 135.0 (CH), 133.93 (CH), 133.90 (C), 133.0 (CH), 132.8 (C), 131.2 (CH), 131.1 (CH), 129.4 (C), 126.9 (CH), 126.8 (CH), 126.2 (CH), 122.8 (C), 30.7 (CH<sub>2</sub>), 25.8 (CH<sub>2</sub>). HRMS (ESI-TOF) m/z: [M + Na]<sup>+</sup> Calcd for C<sub>19</sub>H<sub>14</sub>O<sub>4</sub>Na 329.0790; Found 329.0790.

#### 2-(3-(3-Hydroxy-1,4-dioxo-1,4-dihydronaphthalen-2-yl)propyl)benzaldehyde

OH CHC

(62g): The compound was prepared following **procedure** 3g, and obtained as a yellow solid. Mp: 94-98 °C. Yield: 31% (29.8 mg). IR (Neat):  $\nu_{\text{max}}$  3351, 2923, 2854, 1691,

1642, 1594, 1458, 1368, 1345, 1272, 1210, 1158, 1097, 1059, 1000, 946, 908, 794, 755, 723, and 649 cm<sup>-1</sup>. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz):  $\delta$  10.27 (1H, s, CHO), 8.11 (1H, d, J = 7.2 Hz), 8.07 (1H, d, J = 7.6 Hz), 7.81 (1H, d, J = 7.6 Hz), 7.75 (1H, dt, J = 7.2, 0.8 Hz), 7.68 (1H, dt, J = 7.2, 0.8 Hz), 7.55 (1H, br s, OH), 7.49 (1H, dt, J = 7.6, 1.2 Hz),

7.34 (1H, t, J = 7.6 Hz), 7.32 (1H, d, J = 7.6 Hz), 3.14 (2H, t, J = 7.6 Hz), 2.73 (2H, t, J = 7.6 Hz), 1.90 (2H, quint, J = 7.6 Hz); <sup>13</sup>C NMR (CDCl<sub>3</sub>, DEPT-135)  $\delta$  192.4 (HC, H-C=O), 184.6 (C, C=O), 181.3 (C, C=O), 153.2 (C, C-OH), 144.9 (C), 134.9 (CH), 133.8 (CH), 133.6 (C), 132.9 (CH), 132.9 (C), 131.8 (CH), 130.9 (CH), 129.4 (C), 126.8 (CH), 126.6 (CH), 126.1 (CH), 123.8 (C), 32.5 (CH<sub>2</sub>), 30.3 (CH<sub>2</sub>), 23.3 (CH<sub>2</sub>). HRMS (ESITOF) m/z: [M + H]<sup>+</sup> Calcd for C<sub>20</sub>H<sub>16</sub>O<sub>4</sub>H 321.1127; Found 321.1127.

#### 4-(3-Hydroxy-1,4-dioxo-1,4-dihydronaphthalen-2-yl)butanal (63a): The

ОН СНО

compound was prepared following **procedure 3g**, purified by the column chromatography using EtOAc/hexane (1:9 to 1.5:8.5), and isolated as a yellow solid. Mp: 183-190 °C. Yield: 35% (25.6 mg).

63a isolated as a yellow solid. Mp: 183-190 °C. Yield: 35% (25.6 mg). IR (Neat):  $\nu_{\text{max}}$  3110, 2958, 2862, 1726, 1671, 1644, 1590, 1363, 1344, 1262, 1210, 1187, 1088, 1012, 949, 788, 720, 689, 665, and 566 cm<sup>-1</sup>. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz):  $\delta$ 9.79 (1H, t, J = 1.5 Hz), 8.12 (1H, dd, J = 7.5, 1.0 Hz), 8.09 (1H, dd, J = 7.5, 1.0 Hz), 7.77 (1H, dt, J = 7.5, 1.0 Hz), 7.70 (1H, dt, J = 7.5, 1.0 Hz), 7.42 (1H, s), 2.67 (2H, t, J = 8.0 Hz), 2.52 (2H, dt, J = 7.5, 1.5 Hz), 1.92 (2H, quint, J = 7.5 Hz). <sup>13</sup>C NMR (CDCl<sub>3</sub>, DEPT-135)  $\delta$ 202.1 (HC, H-C=O), 184.5 (C, C=O), 181.2 (C, C=O), 153.4 (C, C-OH), 135.0 (CH), 133.0 (CH), 132.8 (C), 129.4 (C), 126.8 (CH), 126.2 (CH), 123.2 (C), 43.4 (CH<sub>2</sub>), 22.5 (CH<sub>2</sub>), 20.6 (CH<sub>2</sub>). HRMS (ESI-TOF) m/z: [M + H]<sup>+</sup> Calcd for C<sub>14</sub>H<sub>12</sub>O<sub>4</sub>H 245.0814; Found 245.0815.

5-(3-Hydroxy-1,4-dioxo-1,4-dihydronaphthalen-2-yl)pentanal (63a): The

OH CHO compound was prepared following **procedure 3g**, purified by column chromatography using EtOAc/hexane (1:9 to 1.5:8.5), and isolated as a yellow solid. Mp: 190-192 °C. Yield: 40% (31

and isolated as a yellow solid. Mp: 190-192 °C. Yield: 40% (31 mg). IR (Neat):  $\nu_{\text{max}}$  3073, 2934, 2853, 2755, 1701, 1671, 1641, 1590, 1364, 1342, 1275, 1245, 1206, 1182, 1094, 997, 942, 898, 794, 723, 691, and 563 cm<sup>-1</sup>. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz):  $\delta$ 9.76 (1H, t, J = 2.0 Hz), 8.09 (1H, dd, J = 7.5, 1.5 Hz), 8.06 (1H, dd, J = 7.5, 1.5 Hz), 7.74 (1H, dt, J = 7.5, 1.5 Hz), 7.67 (1H, dt, J = 7.5, 1.0 Hz), 7.41 (1H, s, OH), 2.62 (2H, t, J = 7.5 Hz), 2.48 (2H, dt, J = 7.0, 1.5 Hz), 1.71 (2H, quint, J = 7.0 Hz), 1.59 (2H, quint, J = 7.0 Hz). <sup>13</sup>C NMR (CDCl<sub>3</sub>, DEPT-135)  $\delta$ 202.5 (HC, H-C=O), 184.6 (C, C=O), 181.3 (C, C=O), 153.2 (C, C-OH), 134.9 (CH), 132.9 (CH), 132.9 (C), 129.4 (C), 126.8 (CH), 126.1 (CH), 123.8 (C), 43.6 (CH<sub>2</sub>), 27.6 (CH<sub>2</sub>), 22.9 (CH<sub>2</sub>), 21.9 (CH<sub>2</sub>). HRMS (ESI-TOF) m/z: [M + H]<sup>+</sup> Calcd for C<sub>15</sub>H<sub>14</sub>O<sub>4</sub>H 259.0970; Found 259.0970.

**3h.** General Procedures for Synthetic Transformation of 62-63: To a 10 mL round bottom flask equipped with a magnetic stirring bar were added 1.0 mmol of 62-63, 5.0 mmol of CH<sub>3</sub>I and 2 mL of acetone. Then, 2.0 mmol of K<sub>2</sub>CO<sub>3</sub> was added and the resulting mixture was allowed to stir at 60 °C for 24 h. Next, the crude reaction mixture was directly loaded onto a dry silica gel packed column without aqueous workup to give pure 75-77 in good yields after column chromatography using ethyl acetate/hexane as an eluent.

#### 4-(3-Methoxy-1,4-dioxo-1,4-dihydronaphthalen-2-yl)butanal (75a): The compound

O OMe CHO was prepared following procedure **3h**, purified by the column chromatography using EtOAc/hexane (1:9 to 1.5:8.5), and isolated as a yellow liquid. Yield: 76% (196.3 mg), IP (Next): yellow liquid.

75a isolated as a yellow liquid. Yield: 76% (196.3 mg). IR (Neat):  $\nu_{\text{max}}$  2919, 2849, 1721, 1669, 1651, 1595, 1449, 1391, 1336, 1305, 1263, 1216, 1170, 1088, 1042, 964, 917, 797, 726, and 469 cm<sup>-1</sup>. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz): δ9.79 (1H, t, J = 1.6 Hz, CHO), 8.08-8.02 (2H, m), 7.73-7.67 (2H, m), 4.16 (3H, s, OCH<sub>3</sub>), 2.64 (2H, t, J = 7.6 Hz), 2.50 (2H, dt, J = 7.2, 1.6 Hz), 1.85 (2H, quint, J = 7.6 Hz). <sup>13</sup>C NMR (CDCl<sub>3</sub>, DEPT-135): δ 202.1 (HC, H-C=O), 185.2 (C, C=O), 181.4 (C, C=O), 158.0 (C, C-OMe), 134.0 (C), 133.8 (CH), 133.3 (CH), 131.9 (C), 131.5 (C), 126.2 (CH), 126.1 (CH), 61.3 (CH<sub>3</sub>), 43.4 (CH<sub>2</sub>), 22.9 (CH<sub>2</sub>), 21.1 (CH<sub>2</sub>). HRMS (ESI-TOF) m/z: [M + K]<sup>+</sup> Calcd for C<sub>15</sub>H<sub>14</sub>O<sub>4</sub>K 297.0529; Found 297.0524.

#### 2-((3-Methoxy-1,4-dioxo-1,4-dihydronaphthalen-2-yl)methyl)benzaldehyde

O OMe O CHO

(77a): The compound was prepared following procedure 3h, purified by the column chromatoghraphy using EtOAc/hexane (1.5:8.5 to 2.0:8.0), and obtained as a yellow solid. Mp: 98-100

°C. Yield: 82% (251 mg). IR (Neat):  $\nu_{\text{max}}$  2955, 1674, 1634, 1592, 1572, 1480, 1450, 1402, 1331, 1261, 1222, 1169, 1086, 1062, 999, 980, 951, 914, 842, 824, 810, 787, 762, 745, 719, 694, 658, 637, and 599 cm<sup>-1</sup>. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz):  $\delta$  10.52 (1H, s, CHO), 8.08-8.03 (2H, m), 7.86 (1H, dd, J = 7.6, 1.6 Hz), 7.73-7.68 (2H, m), 7.46 (1H, dt, J = 7.6, 1.6 Hz), 7.35 (1H, br t, J = 7.6 Hz), 7.30 (1H, br d, J = 7.6 Hz), 4.41 (2H, s), 4.07 (3H, s, OCH<sub>3</sub>). <sup>13</sup>C NMR (CDCl<sub>3</sub>, DEPT-135):  $\delta$  192.5 (HC, H-C=O), 184.9 (C,

C=O), 181.5 (C, C=O), 158.0 (C, C-OMe), 141.3 (C), 134.0 (CH), 133.9 (C), 133.7 (CH), 133.4 (CH), 132.3 (C), 131.7 (C), 131.5 (C), 131.0 (CH), 130.3 (CH), 126.8 (CH), 126.4 (CH), 126.2 (CH), 61.2 (CH<sub>3</sub>), 25.2 (CH<sub>2</sub>). HRMS (ESI-TOF) *m/z*: [M + H]<sup>+</sup> Calcd for C<sub>19</sub>H<sub>14</sub>O<sub>4</sub>H 307.0970; Found 307.0972.

**3i.** General Procedures for Synthetic Transformation of Products 75ad: To an ordinary glass vial equipped with a magnetic stirring bar were added 0.025 mmol of quinine-thiourea **57b**, 0.3 mmol of **66d** and anhydrous toluene (0.1 M). Then, 0.25 mmol of **75a** was added and the resulting mixture was allowed to stir at RT for 12 h. Next, the crude reaction mixture was directly loaded onto a dry silica gel packed column without aqueous workup to give **76ad** in 85% yield after column chromatography (eluent: ethyl acetate/hexane).

#### (E)-2-Methoxy-3-(6-oxo-6-phenylhex-4-en-1-yl)naphthalene-1,4-dione (76ad): The

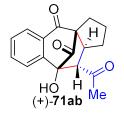
compound was prepared following procedure **3i**, purified by the column chromatography using EtOAc/hexane (1:9), and isolated as a yellow semi-solid. Yield: 85% (76.5 mg).

IR (Neat):  $\nu_{\text{max}}$  2933, 2852, 1668, 1649, 1614, 1447, 1335, 1298, 1262, 1215, 967, 917, 725 and 694 cm<sup>-1</sup>. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz):  $\delta$  8.07-8.04 (2H, m), 7.94-7.93 (2H, m), 7.70-7.68 (2H, m), 7.55 (1H, tt, J = 7.5, 1.5 Hz), 7.46 (2H, tt, J = 8.0, 1.5 Hz), 7.08 (1H, td, J = 15.5, 6.5 Hz, olefinic-H), 6.94 (1H, td, J = 15.5, 1.5 Hz, olefinic-H), 4.15 (3H, s, OCH<sub>3</sub>), 2.67 (2H, t, J = 8.0 Hz), 2.43-2.38 (2H, m), 1.75 (2H, quint, J = 7.5 Hz). <sup>13</sup>C NMR (CDCl<sub>3</sub>, DEPT-135):  $\delta$  190.8 (C, C=O), 185.3 (C, C=O), 181.4 (C, C=O),

157.9 (C, *C*-OMe), 149.0 (CH), 137.9 (C), 134.6 (C), 133.8 (CH), 133.2 (CH), 132.6 (CH), 131.9 (C), 131.6 (C), 128.54 (2 x CH), 128.47 (2 x CH), 126.2 (2 x CH), 126.1 (CH), 61.2 (CH<sub>3</sub>), 32.7 (CH<sub>2</sub>), 27.1 (CH<sub>2</sub>), 23.3 (CH<sub>2</sub>). HRMS (ESI-TOF) *m/z*: [M + H]<sup>+</sup> Calcd for C<sub>23</sub>H<sub>20</sub>O<sub>4</sub>H 361.1440; Found 361.1437.

# 4. Direct Organocatalytic Asymmetric Synthesis of Biologically Important Methanobenzo[f]azulenes

**4a.** General Procedures for Asymmetric Synthesis of (+)-4aa-ac /(+)-9aa-ac: To an ordinary glass vial equipped with a magnetic stirring bar were added 0.06 mmol of quinine-thiourea **57b**, 0.2 mmol of **63a-h** or **64a-h** and anhydrous Toluene (0.2 M). Then, 0.22 mmol of **66b-d** was added and the resulting mixture was allowed to stir at RT until complete consumption of **63/64** (monitored by TLC). Next, the crude reaction mixture was directly loaded onto a dry silica gel packed column without aqueous workup to give pure products **(+)-4aa-ac** and **(+)-9aa-ac** after column chromatography (eluent: mixture of ethyl acetate/hexanes).


#### 4b. General Procedures for Racemic Synthesis of 71aa-ac/72aa-ac:

**Methode 1:** To an ordinary glass vial equipped with a magnetic stirring bar were added 0.2 mmol of **63a-h** and anhydrous toluene (0.2 M). Then, 0.22 mmol of **66b-d** was added and the resulting mixture was allowed to stir at RT until complete consumption of **63a-h** (monitored by TLC). Next, the crude reaction mixture was directly loaded onto

a silica gel packed column without aqueous workup to give pure products (±)-71aa-ac after column chromatography (eluent: mixture of ethyl acetate/hexanes).

Methode 2: To an ordinary glass vial equipped with a magnetic stirring bar were added 0.01 mmol of 1:1 ratio of quinine thiourea and quinidine thiourea, 0.2 mmol of 64a-h and anhydrous Toluene (0.2 M). Then, 0.22 mmol of 66b-d was added and the resulting mixture was allowed to stir at RT until complete consumption of 64a-h (monitored by TLC). Next, the crude reaction mixture was directly loaded onto a silica gel packed column without aqueous workup to give pure products (±)-72aa-ac after column chromatography (eluent: mixture of ethyl acetate/hexanes).

#### (3aS,9S,10S,10aS)-10-Acetyl-9-hydroxy-1,2,3,9,10,10a-hexahydro-4H-3a,9-

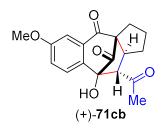


methanobenzo[f]azulene-4,11-dione ((+)-71ab): The compound was prepared following procedure 4a, purified by column chromatography using EtOAc/hexanes (1:9 to 1.5:8.5), and isolated as a semi-solid. Yield: 84% (47.7mg). The enantiomeric excess (ee)

was determined by chiral stationary phase HPLC using a Daicel Chiralpak AD-H column (hexane/2-propanol = 95:05, flow rate 0.5 mL/min,  $\lambda$  = 254 nm),  $t_R$  = 44.27 min (major),  $t_R$  = 49.10 min (minor). [ $\alpha$ ]<sub>D</sub><sup>25</sup> = +116.5° (c = 0.27, CHCl<sub>3</sub>, 90.0% *ee* and >20:1 *dr*). IR (Neat):  $\nu_{\text{max}}$  3428, 2968, 2921, 2851, 1762, 1692, 1619, 1595, 1450, 1363, 1336, 1299, 1269, 1188, 1161, 1117, 1075, 1042, 1019, 1001, 974, 953, 901, 885, 850, 798,776, 724, 680, 648, 631, 604, 580, and 560 cm<sup>-1</sup>. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz):  $\delta$  8.06 (1H, dd, J = 7.6, 0.8 Hz), 7.72 (1H, d, J = 8.0 Hz), 7.64 (1H, dt, J = 9.0, 1.2 Hz), 7.48 (1H, dt, J = 8.0, 1.2 Hz), 3.92 (1H, s, O*H*), 3.03 (1H, d, J = 7.6 Hz), 2.87 (1H, q, J

= 7.6 Hz), 2.47 (1H, quintate, J = 6.8 Hz), 2.32 (3H, s), 2.20-2.13 (1H, m), 2.01-1.95 (1H, m), 1.84-1.77 (2H, m), 1.37-1.33 (1H, m). <sup>13</sup>C{<sup>1</sup>H} NMR (125 MHz, CDCl<sub>3</sub>, DEPT-135):  $\delta$ 204.4 (C, C=O), 203.9 (C, C=O), 192.9 (C, C=O), 140.8 (C), 134.9 (CH), 130.4 (C), 129.2 (CH), 127.7 (CH), 124.6 (CH), 85.1 (C, C-OH), 73.0 (C), 61.5 (CH), 44.1 (CH), 33.3 (CH<sub>2</sub>), 30.8 (CH<sub>3</sub>), 27.6 (CH<sub>2</sub>), 22.9 (CH<sub>2</sub>). HRMS (ESI-TOF) m/z: [M + H]<sup>+</sup> Calcd for C<sub>17</sub>H<sub>18</sub>O<sub>3</sub>H 271.1334; Found 271.1335.

#### (3aS,9S,10S,10aS)-10-Acetyl-9-hydroxy-5-methoxy-1,2,3,9,10,10a-hexahydro-4H-

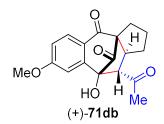

190.9 (C, C=O), 160.9 (C), 143.3 (C), 135.2 (CH), 119.4 (C), 116.4 (CH), 112.5 (CH),

Me (+)-71bb

3a,9-methanobenzo[f]azulene-4,11-dione ((+)-71bb): The compound was prepared following procedure 4a, purified by column chromatography using EtOAc/hexanes (1:9 to 2:8), and isolated as a semi-solid. Yield: 73.8% (46.4 mg). The enantiomeric excess (ee) was determined by chiral stationary phase HPLC using a Daicel Chiralpak IB-3 column (hexane/2-propanol = 90:10, flow rate 1.0 mL/min,  $\lambda$  = 254 nm),  $t_R = 24.74$  min (major),  $t_R = 19.02$  min (minor).  $[\alpha]_D^{26} = +34.9^\circ$  (c = 0.04, CHCl<sub>3</sub>, 95.0% ee and >20:1 dr). IR (Neat):  $\nu_{\text{max}}$  3409, 3018, 2939, 2872, 1768, 1712, 1684, 1589, 1468, 1437, 1278, 1249, 1214, 1177, 1058, 1025, 751, 725, 696 and 542 cm<sup>-1</sup>. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz):  $\delta$ 7.55 (1H, t, J = 8.0 Hz), 7.32 (1H, dd, J = 8.0, 1.0 Hz), 7.00 (1H, d, J = 8.0 Hz), 3.94 (3H, s), 3.75 (1H, s, OH), 2.99 (1H, d, J = 8.0 Hz), 2.94 (1H, q, J = 7.5 Hz), 2.46 (1H, td, J = 13.5, 7.0 Hz), 2.31 (3H, s), 2.13 (1H, td, J = 13.5, 7.0 Hz)14.0, 7.0 Hz), 1.99-1.92 (1H, m), 1.81-1.72 (2H, m), 1.31 (1H, sextet, J = 7.0 Hz).  $^{13}$ C{ $^{1}$ H} NMR (125 MHz, CDCl<sub>3</sub>, DEPT-135):  $\delta$  204.1 (C, C=O), 203.9 (C, C=O),

85.1 (C, *C*-OH), 74.1 (C), 61.9 (CH), 56.1 (CH<sub>3</sub>), 43.7 (CH), 33.3 (CH<sub>2</sub>), 30.9 (CH<sub>3</sub>), 27.4 (CH<sub>2</sub>), 23.2 (CH<sub>2</sub>). HRMS (ESI-TOF) *m/z*: [M + H]<sup>+</sup> Calcd for C<sub>18</sub>H<sub>18</sub>O<sub>5</sub>H 315.1232; Found 315.1234.

(3aS,9S,10S,10aS)-10-Acetyl-9-hydroxy-6-methoxy-1,2,3,9,10,10a-hexahydro-4H-3a,9-methanobenzo[f]azulene-4,11-dione ((+)-71cb): The compound was prepared

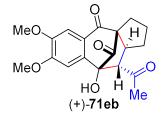



following procedure **4a**, purified by column chromatography using EtOAc/hexanes (1:9 to 2:8), and isolated as a semisolid. Yield: 90.6% (57.0 mg). The enantiomeric excess (*ee*) was determined by chiral stationary phase HPLC using a

Daicel Chiralpak IC-3 column (hexane/2-propanol = 95:05, flow rate 0.5 mL/min,  $\lambda$  = 254 nm),  $t_R$  = 66.83 min (major),  $t_R$  = 58.07 min (minor). [ $\alpha$ ] $_0^{28}$  = +16.7° (c = 0.03, CHCl<sub>3</sub>, 80.2% *ee* and >20:1 *dr*). IR (Neat):  $\nu_{\text{max}}$  3440, 2956, 2868, 1766, 1687, 1604, 1486, 1329, 1279, 1239, 1195, 1165, 1026, 954, 827, 731 and 571 cm<sup>-1</sup>. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz):  $\delta$ 7.61 (1H, d, J = 8.5 Hz), 7.52 (1H, d, J = 3.0 Hz), 7.19 (1H, dd, J = 8.5, 2.5 Hz), 3.85 (3H, s), 3.71 (1H, s, O*H*), 2.99 (1H, d, J = 7.5 Hz), 2.86 (1H, q, J = 7.5 Hz), 2.48 (1H, quintet, J = 6.5 Hz), 2.32 (3H, s), 2.17 (1H, td, J = 13.5, 7.0 Hz), 1.99 (1H, sextet, J = 6.0 Hz), 1.81 (2H, sextet, J = 6.0 Hz), 1.35 (1H, sextet, J = 7.0 Hz).  $^{13}$ C{ $^{1}$ H} NMR (125 MHz, CDCl<sub>3</sub>, DEPT-135):  $\delta$  204.2 (C, C=O), 204.1 (C, C=O), 192.8 (C, C=O), 160.2 (C), 133.0 (C), 131.8 (C), 125.9 (CH), 122.8 (CH), 110.0 (CH), 84.9 (C, C-OH), 72.9 (C), 61.4 (CH), 55.6 (CH<sub>3</sub>), 44.3 (CH), 33.2 (CH<sub>2</sub>), 30.7 (CH<sub>3</sub>), 27.6 (CH<sub>2</sub>), 22.9 (CH<sub>2</sub>). HRMS (ESI-TOF) m/z: [M + H] $^{+}$  Calcd for C<sub>18</sub>H<sub>18</sub>O<sub>5</sub>H 315.1232; Found 315.1232.

## (3aS, 9S, 10S, 10aS) - 10-Acetyl-9-hydroxy-7-methoxy-1,2,3,9,10,10a-hexahydro-4H-

**3a,9-methanobenzo**[f]azulene-4,11-dione ((+)-71db): The compound was prepared




following procedure **4a**, purified by column chromatography using EtOAc/hexanes (1:9 to 2.0:8.0), and isolated as a semisolid. Yield: 76.7% (48.2 mg). The enantiomeric excess (*ee*) was determined by chiral stationary phase HPLC using a

Daicel Chiralpak IC-3 column (hexane/2-propanol = 90:10, flow rate 1.0 mL/min,  $\lambda$  = 254 nm),  $t_R$  = 28.16 min (major),  $t_R$  = 33.55 min (minor). [ $\alpha$ ] $_0^{28}$  = +64.0° (c = 0.06, CHCl<sub>3</sub>, 85.6% *ee* and >20:1 *dr*). IR (Neat):  $\nu_{\text{max}}$  3418, 3021, 2939, 2867, 1765, 1709, 1679, 1597, 1488, 1442, 1321, 1262, 1229, 1024, 889, 753 and 667 cm<sup>-1</sup>. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz):  $\delta$ 8.02 (1H, d, J = 8.5 Hz), 7.15 (1H, d, J = 2.0 Hz), 6.96 (1H, dd, J = 8.5, 2.5 Hz), 3.88 (3H, s), 3.77 (1H, s, O*H*), 3.01 (1H, d, J = 7.5 Hz), 2.88 (1H, q, J = 8.0 Hz), 2.48 (1H, td, J = 13.5, 7.0 Hz), 2.32 (3H, s), 2.14 (1H, td, J = 14.0, 7.0 Hz), 1.99 (1H, sextet, J = 6.5 Hz), 1.83-1.78 (2H, m), 1.32 (1H, sextet, J = 7.5 Hz). <sup>13</sup>C{<sup>1</sup>H} NMR (125 MHz, CDCl<sub>3</sub>, DEPT-135):  $\delta$  204.3 (C, C=O), 203.8 (C, C=O), 191.4 (C, C=O), 164.9 (C), 143.3 (C), 130.1 (CH), 123.8 (C), 115.1 (CH), 109.3 (CH), 85.1 (C, C=OH), 72.5 (C), 61.8 (CH), 55.7 (CH<sub>3</sub>), 44.4 (CH), 33.5 (CH<sub>2</sub>), 30.7 (CH<sub>3</sub>), 27.7 (CH<sub>2</sub>), 22.8 (CH<sub>2</sub>). HRMS (ESI-TOF) m/z: [M + H]<sup>+</sup> Calcd for C<sub>18</sub>H<sub>18</sub>O<sub>5</sub>H 315.1232; Found 315.1235.

### 

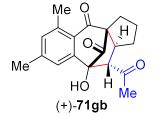
4H-3a,9-methanobenzo[f]azulene-4,11-dione ((+)-71eb): The compound was



prepared following procedure **4a**, purified by column chromatography using EtOAc/hexanes (1:9 to 2.0:8.0), and isolated as a semi-solid. Yield: 84.2% (58.0 mg). The enantiomeric excess (*ee*) was determined by chiral stationary

phase HPLC using a Daicel Chiralpak IA-3 column (hexane/2-propanol = 95:05, flow rate 0.5 mL/min,  $\lambda$  = 254 nm),  $t_R$  = 99.04 min (major),  $t_R$  = 87.15 min (minor). [ $\alpha$ ] $\sigma^{28}$  = +37.5° (c = 0.03, CHCl<sub>3</sub>, 59.0% ee and >20:1 dr). IR (Neat):  $v_{max}$  3418, 3019, 2957, 1765, 1708, 1677, 1595, 1507, 1360, 1279, 1215, 1024, 883, 751 and 672 cm<sup>-1</sup>. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz):  $\delta$ 7.48 (1H, s), 7.11 (1H, s), 3.95 (3H, s), 3.92 (3H, s), 3.83 (1H, s, OH), 2.99 (1H, d, J = 7.0 Hz), 2.83 (1H, q, J = 7.5 Hz), 2.48 (1H, quintet, J = 6.5 Hz), 2.32 (3H, s), 2.14 (1H, td, J = 14.5, 7.5 Hz), 2.03-1.96 (1H, m), 1.83-1.78 (2H, m), 1.33 (1H, sextet, J = 7.5 Hz).  $^{13}$ C{ $^{1}$ H} NMR (125 MHz, CDCl<sub>3</sub>, DEPT-135):  $\delta$  203.9 (C, C = O), 203.7 (C, C = O), 191.7 (C, C = O), 154.7 (C), 149.7 (C), 135.4 (C), 123.9 (C), 108.6 (CH), 106.1 (CH), 84.9 (C, C - OH), 72.5 (C), 61.6 (CH), 56.3 (CH<sub>3</sub>), 56.1 (CH<sub>3</sub>), 44.7 (CH), 33.3 (CH<sub>2</sub>), 30.7 (CH<sub>3</sub>), 27.7 (CH<sub>2</sub>), 22.9 (CH<sub>2</sub>). HRMS (ESI-TOF) m/z: [M + H] $^+$  Calcd for C<sub>19</sub>H<sub>20</sub>O<sub>6</sub>H 345.1338; Found 345.1334.

(3aS,9S,10S,10aS)-10-Acetyl-9-hydroxy-7-methyl-1,2,3,9,10,10a-hexahydro-4H-3a,9-methanobenzo[f]azulene-4,11-dione ((+)-71fb): The compound was prepared following procedure 4a, purified by column chromatography using EtOAc/hexanes (1:9 to 2.0:8.0), and isolated as a semi-solid. Yield: 83.2% (49.6 mg). The enantiomeric


excess (*ee*) was determined by chiral stationary phase HPLC using a Daicel Chiralpak IC-3 column (hexane/2-propanol = 90:10, flow rate 1.0 mL/min,  $\lambda$  = 254 nm),  $t_R$  = 16.98

min (major),  $t_R = 25.22$  min (minor). [ $\alpha$ ]<sub>D</sub><sup>28</sup> = +71.6° (c = 0.07, CHCl<sub>3</sub>, 85.2% *ee* and >20:1 *dr*). IR (Neat):  $\nu$ <sub>max</sub> 3428, 2924, 2853, 1764, 1715, 1685, 1604, 1447, 1365, 1275, 1260, 1204, 1038, 908, 749 and 542 cm<sup>-1</sup>. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz):  $\delta$ 

7.96 (1H, d, J = 7.6 Hz), 7.50 (1H, s), 7.28 (1H, d, J = 7.6 Hz), 3.72 (1H, s, OH), 3.01 (1H, d, J = 7.2 Hz), 2.88 (1H, q, J = 7.6 Hz), 2.48 (1H, quintet, J = 6.8 Hz), 2.44 (3H, s), 2.32 (3H, s), 2.16 (1H, td, J = 13.6, 7.2 Hz), 1.99 (1H, sextet, J = 6.4 Hz), 1.85-1.77 (2H, m), 1.39-1.28 (1H, m).  $^{13}$ C{ $^{1}$ H} NMR (100 MHz, CDCl<sub>3</sub>, DEPT-135):  $\delta$ 204.5 (C, C=O), 203.9 (C, C=O), 192.5 (C, C=O), 146.3 (C), 140.7 (C), 130.2 (CH), 128.2 (C), 127.8 (CH), 124.9 (CH), 85.0 (C, C-OH), 72.8 (C), 61.7 (CH), 44.2 (CH), 33.4 (CH<sub>2</sub>), 30.8 (CH<sub>3</sub>), 27.7 (CH<sub>2</sub>), 22.9 (CH<sub>2</sub>), 22.1 (CH<sub>2</sub>). HRMS (ESI-TOF) m/z: [M + Na]<sup>+</sup> Calcd for C<sub>18</sub>H<sub>18</sub>O<sub>4</sub>Na 321.1103; Found 321.1104.

### (3aS,9S,10S,10aS)-10-Acetyl-9-hydroxy-5,7-dimethyl-1,2,3,9,10,10a-hexahydro-

4H-3a,9-methanobenzo[f]azulene-4,11-dione ((+)-71gb): The compound was prepared following procedure 4a, purified by column chromatography using



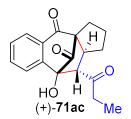
EtOAc/hexanes (1:9 to 2.0:8.0), and isolated as a semi-solid. Yield: 87.2% (54.5 mg). The enantiomeric excess (ee) was determined by chiral stationary phase HPLC using a Daicel

Chiralpak IA-3 column (hexane/2-propanol = 90:10, flow rate 1.0 mL/min,  $\lambda$  = 254 nm),  $t_R$  = 7.11 min (major),  $t_R$  = 7.98 min (minor).  $[\alpha]_D^{26}$  = +52.9° (c = 0.05, CHCl<sub>3</sub>, 96.6%

ee and >20:1 dr). IR (Neat):  $\nu_{\text{max}}$  3424, 2961, 2925, 2866, 1765, 1712, 1680, 1602, 1445, 1362, 1305, 1258, 1240, 1191, 1037, 869 and 771 cm<sup>-1</sup>. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz): δ 7.39 (1H, s), 7.07 (1H, s), 3.71 (1H, s, OH), 2.98 (1H, d, J = 8.0 Hz), 2.88 (1H, q, J = 7.5 Hz), 2.65 (3H, s), 2.44 (1H, quintet, J = 7.0 Hz), 2.37 (3H, s), 2.32 (3H, s), 2.16 (1H, sextet, J = 7.0 Hz), 1.97 (1H, sextet, J = 6.5 Hz), 1.84-1.72 (2H, m) 1.59-1.29 (1H, m). <sup>13</sup>C { <sup>1</sup>H } NMR (125 MHz, CDCl<sub>3</sub>, DEPT-135): δ 204.5 (C, C=O), 204.2 (C, C=O), 193.6 (C, C=O), 144.3 (C), 142.5 (C), 142.3 (C), 134.0 (CH), 126.4 (C), 122.9 (CH), 85.1 (C, C-OH), 73.6 (C), 61.8 (CH), 43.8 (CH), 33.3 (CH<sub>2</sub>), 30.8 (CH<sub>3</sub>), 27.4 (CH<sub>2</sub>), 23.2 (CH<sub>2</sub>), 22.8 (CH<sub>3</sub>), 21.8 (CH<sub>3</sub>). HRMS (ESI-TOF) m/z: [M + H]<sup>+</sup> Calcd for C<sub>19</sub>H<sub>20</sub>O<sub>4</sub>H 313.1440; Found 313.1445.

### N-((3aS,9S,10S,10aS)-10-Acetyl-9-hydroxy-4,11-dioxo-2,3,4,9,10,10a-hexahydro-10-hydroxy-4,11-dioxo-2,3,4,9,10,10a-hexahydro-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hydroxy-10-hyd

1H-3a,9-methanobenzo[f]azulen-6-yl)acetamide ((+)-71hb): The compound was

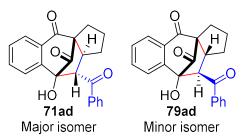

prepared following procedure **4a**, purified by column chromatography using EtOAc/hexanes (1:9 to 2.0:8.0), and isolated as a semi-solid. Yield: 62% (42.3 mg). The enantiomeric excess (*ee*) was determined by chiral stationary

phase HPLC using a Daicel Chiralpak IA-3 column (hexane/2-propanol = 90:10, flow rate 1.0 mL/min,  $\lambda$  = 254 nm),  $t_R$  = 26.24 min (major),  $t_R$  = xx.xx min (minor). [ $\alpha$ ]<sub>D</sub><sup>28</sup> = +22.7° (c = 0.15, CHCl<sub>3</sub>, >99% ee and >20:1 dr). IR (Neat):  $\nu_{max}$  3339, 2954, 2925, 2854, 1767, 1686,1590, 1536, 1485, 1368, 1313, 1260, 1167, 1042, 909, 749 and 541 cm<sup>-1</sup>. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz):  $\delta$ 8.20 (1H, dd, J = 8.5, 2.0 Hz), 7.78 (1H, d, J = 2.0 Hz), 7.66 (1H, d, J = 8.5 Hz), 7.46 (1H, s), 3.77 (1H, s, OH), 3.02 (1H, d, J = 7.5 Hz),

2.88 (1H, q, J = 7.5 Hz), 2.46 (1H, quintate, J = 6.5 Hz), 2.33 (3H, s), 2.19 (3H, s), 2.18-2.14 (1H, m), 2.04-1.97 (1H, m), 1.85-1.77 (2H, m), 1.39-1.34 (1H, m).  $^{13}$ C { $^{1}$ H}NMR (100 MHz, CDCl<sub>3</sub>, DEPT-135):  $\delta$  204.2 (C, C=O), 204.1 (C, C=O), 192.5 (C, C=O), 168.5 (C, N-C=O), 139.0 (C), 135.8 (C), 130.97 (C), 126.1 (CH), 125.7 (CH), 117.3 (CH), 84.97 (C, C-OH), 73.0 (C), 61.4 (CH), 44.1 (CH), 33.3 (CH<sub>2</sub>), 30.9 (CH<sub>3</sub>), 27.6 (CH<sub>2</sub>), 24.6 (CH<sub>3</sub>), 22.9 (CH<sub>2</sub>). HRMS (ESI-TOF) m/z: [M + H]<sup>+</sup> Calcd for C<sub>19</sub>H<sub>19</sub>NO<sub>5</sub>H 342.1341; Found 342.1339.

#### (3aS,9S,10S,10aS)-9-hydroxy-10-propionyl-1,2,3,9,10,10a-hexahydro-4H-3a,9-

methanobenzo[f]azulene-4,11-dione ((+)-71ac): The compound was prepared

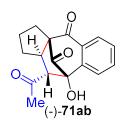



following procedure **4a**, purified by column chromatography using EtOAc/hexanes (1:9 to 2:8), and isolated as a semi-solid. Yield: 69.0% (41.2 mg). The enantiomeric excess (*ee*) was determined by chiral stationary phase HPLC using a Daicel

Chiralpak IA-3 column (hexane/2-propanol = 90:10, flow rate 1.0 mL/min,  $\lambda$  = 254 nm),  $t_R$  = 9.89 min (major),  $t_R$  = 11.73 min (minor). [ $\alpha$ ] $_D^{25}$  = +45.3° (c = 0.10, CHCl $_3$ , 83.7% ee and >20:1 dr). IR (Neat):  $v_{max}$  3445, 2961, 2935, 2865, 1767, 1715, 1688, 1598, 1454, 1407, 1374, 1283, 1258, 1183, 1116, 1028, 984, 800, 765, 743 and 524 cm $^{-1}$ . <sup>1</sup>H NMR (CDCl $_3$ , 500 MHz):  $\delta$  8.07 (1H, d, J = 7.5 Hz), 7.66-7.62 (2H, m), 7.49-7.46 (1H, m), 3.75 (1H, s), 3.03 (1H, d, J = 7.5 Hz), 2.92-2.86 (2H, m), 2.52 (1H, q, J = 7.5 Hz), 2.48 (1H, quintet, J = 6.5 Hz), 2.17 (1H, td, J = 13.0, 7.5 Hz), 1.98 (1H, sextet, J = 6.0 Hz), 1.81 (2H, q, J = 7.0 Hz), 1.36 (1H, sextet, J = 7.0 Hz), 0.97 (3H, t, J = 7.0 Hz). <sup>13</sup>C { <sup>1</sup>H } NMR (125 MHz, CDCl $_3$ , DEPT-135):  $\delta$  206.6 (C, C = 0), 204.5 (C, C = 0), 192.9 (C,

*C*=O), 140.9 (C), 134.9 (CH), 130.5 (C), 129.2 (CH), 127.6 (CH), 124.6 (CH), 85.3 (C, *C*-OH), 73.1 (C), 60.5 (CH), 44.3 (CH), 37.1 (CH<sub>2</sub>), 33.3 (CH<sub>2</sub>), 27.6 (CH<sub>2</sub>), 22.9 (CH<sub>2</sub>), 7.2 (CH<sub>3</sub>). HRMS (ESI-TOF) *m/z*: [M + H]<sup>+</sup> Calcd for C<sub>18</sub>H<sub>18</sub>O<sub>4</sub>H 299.1283; Found 299.1280.

#### (3aS,9S,10S,10aS)-10-Benzoyl-9-hydroxy-1,2,3,9,10,10a-hexahydro-4H-3a,9-




methanobenzo[f]azulene-4,11-dione (71ad) and (3aS,9S,10R,10aR)-10-Benzoyl-9hydroxy-1,2,3,9,10,10a-hexahydro-4H-3a,9methanobenzo[f]azulene-4,11-dione (79ad):

The compound was prepared following procedure **4a**, purified by column chromatography using EtOAc/hexanes (1:9 to 2:8), and isolated as a semi-solid. Yield: 81.3% (56.3 mg). The enantiomeric excess (*ee*) was determined by chiral stationary phase HPLC using a Daicel Chiralcel AD-H column (hexane/2-propanol = 90:10, flow rate 1.0 mL/min,  $\lambda$  = 254 nm),  $t_R$  = 19.19 min (major),  $t_R$  = 21.23 min (minor) [For major isomer],  $t_R$  = 62.34 min (major),  $t_R$  = 33.08 min (minor) [For minor isomer]. [ $\alpha$ ] $_D^{25}$  = -12.8° (c = 0.22, CHCl<sub>3</sub>, 94.02% *ee* and 1.65:1 *dr*). IR (Neat):  $\nu_{max}$  3441, 3067, 2959, 2871, 2846, 1762, 1687, 1666, 1595, 1445, 1367, 1301, 1270, 1218, 1182, 1151, 1085, 1042, 1017, 989, 962, 910, 887, 845, 796, 765, 732, 684, and 620 cm<sup>-1</sup>. Isomer-1 <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz):  $\delta$ 8.12 (1H, dd, J = 8.0, 1.2 Hz), 8.03-8.01 (2H, m), 7.95 (1H, dd, J = 8.0, 0.8 Hz), 7.90-7.88 (2H, m), 7.64-7.59 (1H, m), 7.56-7.44 (3H, m), 4.33 (1H, s), 4.21 (1H, d, J = 13.0 Hz), 2.80-2.74 (1H, m), 2.58-2.51 (1H, m), 2.15-2.08 (1H, m), 1.89-1.81 (1H, m), 1.64-1.57 (1H, m), 1.34-1.28 (2H, m).  $^{13}$ C $_T^{11}$ H NMR (100 MHz,

CDCl<sub>3</sub>, DEPT-135):  $\delta$  204.0 (C, C=O), 200.5 (C, C=O), 193.9 (C, C=O), 144.6 (C), 136.9 (C), 135.3 (CH), 134.1 (CH), 129.7 (C), 128.9 (2xCH), 128.9 (CH), 128.4 (2xCH), 127.6 (CH), 124.8 (CH), 85.0 (C, C-OH), 72.9 (C), 51.3 (CH), 46.2 (CH), 30.2 (CH<sub>2</sub>), 27.6 (CH<sub>2</sub>), 22.99 (CH<sub>2</sub>). Isomer-2 <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz):  $\delta$ 8.12 (1H, dd, J= 8.0, 1.2 Hz), 8.03-8.01 (1H, m), 7.74 (1H, dt, J= 7.6, 1.6 Hz), 7.64-7.59 (1H, m), 7.56-7.44 (4H, m), 7.30-7.28 (1H, m), 3.97 (1H, d, J= 7.2 Hz), 3.77 (1H, s), 3.12 (1H, q, J= 7.6 Hz), 2.58-2.51 (1H, m), 2.24 (1H, td, J= 14.0, 7.2 Hz) 2.02-1.96 (1H, m), 1.89-1.81 (2H, m), 1.49-1.39 (1H, m). <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>, DEPT-135):  $\delta$ 204.8 (C, C=O), 196.5 (C, C=O), 193.0 (C, C=O), 141.2 (C), 137.3 (C), 134.8 (CH), 133.6 (CH), 130.7 (C), 129.3 (2xCH), 129.0 (CH), 128.4 (2xCH), 127.3 (CH), 125.1 (CH), 86.0 (C, C-OH), 73.2 (C), 56.2 (CH), 45.8 (CH), 33.3 (CH<sub>2</sub>), 27.5 (CH<sub>2</sub>), 22.97 (CH<sub>2</sub>). HRMS (ESI-TOF) m/z: [M + Na]<sup>+</sup> Calcd for C<sub>22</sub>H<sub>18</sub>O<sub>4</sub>Na 369.1103; Found 369.1103.

#### (3aR,9R,10R,10aR)-10-Acetyl-9-hydroxy-1,2,3,9,10,10a-hexahydro-4H-3a,9-



methanobenzo[f]azulene-4,11-dione ((-)-71ab): The compound was prepared following procedure 4a, purified by column chromatography using EtOAc/hexanes (1:9 to 1.5:8.5), and isolated as a semi-solid. Yield: 79% (45.0 mg). The enantiomeric excess

(*ee*) was determined by chiral stationary phase HPLC using a Daicel Chiralpak AD-H column (hexane/2-propanol = 95:05, flow rate 0.5 mL/min,  $\lambda$  = 254 nm),  $t_R$  = 48.25 min (major),  $t_R$  = 43.21 min (minor). [ $\alpha$ ]<sub>D</sub><sup>25</sup> = -62.2° (c = 0.27, CHCl<sub>3</sub>, 66.6% *ee* and >20:1 *dr*). IR (Neat):  $\nu_{\text{max}}$  3428, 2968, 2921, 2851, 1762, 1692, 1619, 1595, 1450, 1363, 1336,

1299, 1269, 1188, 1161, 1117, 1075, 1042, 1019, 1001, 974, 953, 901, 885, 850, 798,776, 724, 680, 648, 631, 604, 580, and 560 cm<sup>-1</sup>. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz):  $\delta$  8.07 (1H, dd, J = 7.5, 1.0 Hz), 7.72 (1H, dd, J = 7.5, 1.0 Hz), 7.65 (1H, dt, J = 7.5, 1.5 Hz), 7.48 (1H, dt, J = 7.5, 1.0 Hz), 3.79 (1H, s, O*H*), 3.03 (1H, d, J = 7.5 Hz), 2.88 (1H, q, J = 8.0 Hz), 2.48 (1H, quintate, J = 6.5 Hz), 2.32 (3H, s), 2.17 (1H, td, J = 14.0, 7.0 Hz), 2.03-1.96 (1H, m), 1.86-1.77 (2H, m), 1.39-1.32 (1H, m). <sup>13</sup>C{<sup>1</sup>H} NMR (125 MHz, CDCl<sub>3</sub>, DEPT-135):  $\delta$  204.4 (C, C = O), 203.9 (C, C = O), 192.8 (C, C = O), 140.7 (C), 134.99 (CH), 130.4 (C), 129.2 (CH), 127.7 (CH), 124.6 (CH), 85.0 (C, C - OH), 73.0 (C), 61.5 (CH), 44.1 (CH), 33.3 (CH<sub>2</sub>), 30.8 (CH<sub>3</sub>), 27.6 (CH<sub>2</sub>), 22.9 (CH<sub>2</sub>). HRMS (ESI-TOF) m/z: [M + H]<sup>+</sup> Calcd for C<sub>17</sub>H<sub>18</sub>O<sub>3</sub>H 271.1334; Found 271.1335.

#### ((4aS,10S,11S,11aS)-11-Acetyl-10-hydroxy-1,3,4,10,11,11a-hexahydro-4a,10-

## HO H Me (+)-72ab Major isomer

#### methano dibenzo[a,d][7]annulene-5,12(2H)-dione ((+)-72ab):

The compound was prepared following procedure **4a**, purified by column chromatography using EtOAc/hexanes (1:9), and isolated as a semi-solid. Yield: 78.7% (47.0 mg). The enantiomeric excess (*ee*) was determined by chiral stationary phase HPLC using a Daicel

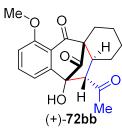
Chiralpak IA-3 column (hexane/2-propanol = 90:10, flow rate 1.0 mL/min,  $\lambda$  = 254 nm),  $t_R$  = 9.72 min (major),  $t_R$  = 12.10 min (minor). [ $\alpha$ ] $_D^{25}$  = +96.4° (c = 0.05, CHCl<sub>3</sub>, 99.0% ee and 5:1 dr). IR (Neat):  $\nu_{\text{max}}$  3455, 2930, 2856, 1765, 1712, 1679, 1596, 1453, 1357, 1329, 1300, 1276, 1231, 1172, 1085, 1037, 971, 953, 782, and 735 cm<sup>-1</sup>. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz):  $\delta$  8.01 (1H, d, J = 8.0 Hz), 7.74 (1H, d, J = 8.0 Hz), 7.63 (1H, t, J = 7.5 Hz), 7.44 (1H, t, J = 7.5 Hz), 3.82 (1H, s), 3.02 (1H, d, J = 4.5 Hz), 2.65 (1H, td,

J= 11.5, 5.0 Hz), 2.44-2.38 (1H, m), 2.11 (3H, s), 2.06 (1H, td, J= 14.5, 4.5 Hz), 1.94-1.90 (1H, m), 1.81 (1H, td, J = 13.5, 5.0 Hz), 1.66-1.62 (2H, m), 1.48-1.42 (1H, m), 1.37-1.28 (1H, m), 1.12 (1H, dq, J = 12.0, 4.0 Hz). <sup>13</sup>C {<sup>1</sup>H} NMR (125 MHz, CDCl<sub>3</sub>, DEPT-135): δ205.7 (C, C=O), 203.9 (C, C=O), 194.9 (C, C=O), 141.2 (C), 134.7 (CH), 130.2 (C), 129.0 (CH), 128.0 (CH), 123.4 (CH), 81.5 (C, C-OH), 65.3 (CH), 64.4 (C), 34.8 (CH), 31.4 (CH<sub>2</sub>), 30.2 (CH<sub>3</sub>), 22.1 (CH<sub>2</sub>), 20.2 (CH<sub>2</sub>), 20.1 (CH<sub>2</sub>). HRMS (ESI-TOF) m/z: [M + Na]<sup>+</sup> Calcd for C<sub>18</sub>H<sub>18</sub>O<sub>4</sub>Na 321.1103; Found 321.1103.

#### (4aS,10S,11R,11aR)-11-acetyl-10-hydroxy-1,3,4,10,11,11a-hexahydro-4a,10-

methanodibenzo[a,d][7]annulene-5,12(2H)-dione (82ab): The compound was




prepared following procedure **4a**, purified by column chromatography using EtOAc/hexanes (1:9), and isolated as a semi-solid. Yield: 15.4% (9.2 mg). The enantiomeric excess (*ee*) was determined by chiral stationary phase HPLC using a Daicel

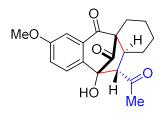
Chiralpak IC-3 column (hexane/2-propanol = 90:10, flow rate 1.0 mL/min,  $\lambda$  = 254 nm),  $t_R$  = 10.25 min (major),  $t_R$  = 14.63 min (minor). IR (Neat):  $v_{\text{max}}$  3455, 2930, 2856, 1765, 1712, 1679, 1596, 1453, 1357, 1329, 1300, 1276, 1231, 1172, 1085, 1037, 971, 953, 782, and 735 cm<sup>-1</sup>. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz):  $\delta$  8.07 (1H, d, J = 8.0 Hz), 7.82 (1H, d, J = 7.5 Hz), 7.70 (1H, dt, J = 7.5, 1.0 Hz), 7.48 (1H, dt, J = 8.0, 1.0 Hz), 3.55 (1H, s), 2.98 (1H, d, J = 11.0 Hz), 2.61-2.55 (1H, m), 2.47-2.35 (2H, m), 2.26 (3H, s), 1.88-1.78 (2H, m), 1.72-1.65 (1H, m), 1.56-1.55 (1H, m), 1.42(1H, tq, J = 13.0, 4.5 Hz), 1.29-1.28 (1H, m). <sup>13</sup>C{<sup>1</sup>H} NMR (125 MHz, CDCl<sub>3</sub>, DEPT-135):  $\delta$  204.5 (C, C=O), 204.4 (C, C=O), 196.3 (C, C=O), 147.4 (C), 135.2 (CH), 130.8 (C), 128.5 (CH), 127.9 (CH),

121.3 (CH), 79.2 (C, *C*-OH), 65.5 (C), 63.5 (CH), 42.9 (CH), 32.9 (CH<sub>3</sub>), 27.2 (CH<sub>2</sub>), 26.5 (CH<sub>2</sub>), 26.2 (CH<sub>2</sub>), 21.4 (CH<sub>2</sub>). HRMS (ESI-TOF) *m/z*: [M + H]<sup>+</sup> Calcd for C<sub>18</sub>H<sub>18</sub>O<sub>4</sub>H 299.1283; Found 299.1283.

## (4aS, 10S, 11S, 11aS) - 11 - Acetyl - 10 - hydroxy - 6 - methoxy - 1, 3, 4, 10, 11, 11a - hexahydro-drown - 1, 11a - hexahydro-

4a,10-methanodibenzo[a,d][7]annulene-5,12(2H)-dione ((+)-72bb): The compound




Major isomer

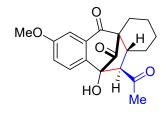
was prepared following procedure **4a**, purified by column chromatography using EtOAc/hexanes (2:8), and isolated as a semi-solid. Yield: 68.4% (45.0mg). The enantiomeric excess (*ee*) was determined by chiral stationary phase HPLC using a Daicel

Chiralpak IA-3 column (hexane/2-propanol = 90:10, flow rate 1.0 mL/min,  $\lambda$  = 254 nm),  $t_R$  = 21.11 min (major),  $t_R$  = xx.xx min (minor). [ $\alpha$ ] $\sigma^{25}$  = +16.7° (c = 0.15, CHCl<sub>3</sub>, >99% ee and >20:1 dr). IR (Neat):  $\nu_{\text{max}}$  3417, 2926, 2855, 1763, 1708, 1678, 1589, 1469, 1434, 1360, 1279, 1214, 1183, 1047, 1014, 914, 799, 730 and 522 cm<sup>-1</sup>. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz):  $\delta$  7.54 (1H, t, J = 8.0 Hz), 7.35 (1H, dd, J = 8.0, 1.0 Hz), 6.96 (1H, d, J = 8.5 Hz), 3.91 (3H, s), 3.72 (1H, s), 2.99 (1H, d, J = 4.0 Hz), 2.70-2.66 (1H, m), 2.42-2.36 (1H, m), 2.10 (3H, s), 2.02 (1H, td, J = 14.0, 3.5 Hz), 1.92-1.87 (1H, m), 1.81-1.75 (1H, m), 1.64-1.61 (1H, m), 1.45-1.35 (1H, m), 1.34-1.30 (1H, m), 1.11-1.03 (1H, m). <sup>13</sup>C { <sup>1</sup>H } NMR (125 MHz, CDCl<sub>3</sub>, DEPT-135):  $\delta$  205.5 (C, C=O), 203.9 (C, C=O), 193.2 (C, C=O), 160.6 (C), 143.7 (C), 135.0 (CH), 118.9 (C), 115.2 (CH), 112.3 (CH), 81.5 (C, C-OH), 65.4 (C), 65.3 (CH), 56.1 (CH<sub>3</sub>), 35.4 (CH), 31.5 (CH<sub>2</sub>), 30.3 (CH<sub>3</sub>), 22.3 (CH<sub>2</sub>), 20.4 (CH<sub>2</sub>), 20.3 (CH<sub>2</sub>). HRMS (ESI-TOF) m/z: [M + H]<sup>+</sup> Calcd for C<sub>19</sub>H<sub>20</sub>O<sub>5</sub>H 329.1389; Found 329.1384.

#### (4aS,10S,11S,11aS)-11-Acetyl-10-hydroxy-7-methoxy-1,3,4,10,11,11a-hexahydro-

4a,10-methanodibenzo[a,d][7]annulene-5,12(2H)-dione ((+)-72cb): The compound




(+)-**72cb** Major isomer

was prepared following procedure **4a**, purified by column chromatography using EtOAc/hexanes (1:9), and isolated as a semi-solid. Yield: 77.0% (50.6 mg). The enantiomeric excess (*ee*) was determined by chiral stationary phase HPLC

using a Daicel Chiralpak IC-3 column (hexane/2-propanol = 90:10, flow rate 1.0 mL/min,  $\lambda$  = 254 nm),  $t_R$  = 14.62 min (major),  $t_R$  = 11.4 min (minor). [ $\alpha$ ] $_0^{25}$  = +192.70 (c = 0.22, CHCl $_3$ , 99.1% ee and 5:1 dr). IR (Neat):  $\nu_{max}$  3443, 2936, 2860, 1760, 1709, 1683, 1603, 1487, 1423, 1359, 1329, 1277, 1245, 1180, 1032, 1014, 874, 841, 758, and 574 cm $^{-1}$ . <sup>1</sup>H NMR (CDCl $_3$ , 500 MHz):  $\delta$ 7.60 (1H, d, J = 8.5 Hz), 7.42 (1H, d, J = 2.5 Hz), 7.15 (1H, dd, J = 8.5, 2.5 Hz), 3.88 (1H, s), 3.82 (3H, s), 2.99 (1H, d, J = 4.5 Hz), 2.61 (1H, quintet, J = 5.5 Hz), 2.41-2.35 (1H, m), 2.10 (3H, s), 2.04 (1H, td, J = 14.5, 4.5 Hz), 1.90 (1H, qd, J = 13.0, 4.0 Hz), 1.82-1.75 (1H, m), 1.64-1.59 (1H, m), 1.45-1.36 (1H, m), 1.35-1.26 (1H, m), 1.10 (1H, dq, J = 12.0, 4.0 Hz). <sup>13</sup>C { $^{1}$ H} NMR (125 MHz, CDCl $_3$ , DEPT-135):  $\delta$  205.6 (C, C=O), 204.1 (C, C=O), 194.9 (C, C=O), 160.0 (C), 133.6 (C), 131.5 (C), 124.8 (CH), 122.7 (CH), 110.1 (CH), 81.3 (C, C-OH), 65.1 (CH), 64.3 (C), 55.5 (CH $_3$ ), 34.8 (CH), 31.3 (CH $_2$ ), 30.1 (CH $_3$ ), 22.1 (CH $_2$ ), 20.1 (2xCH $_2$ ). HRMS (ESI-TOF) m/z: [M + H] $^+$  Calcd for C1 $_9$ H $_{20}$ O $_5$ H 329.1389; Found 329.1385.

(4aS,10S,11R,11aR)-11-acetyl-10-hydroxy-7-methoxy-1,3,4,10,11,11a-hexahydro-4a,10-methanodibenzo[a,d][7]annulene-5,12(2H)-dione (82cb): The compound was

prepared following procedure 4a, purified by column chromatography using



**82cb** Minor isomer

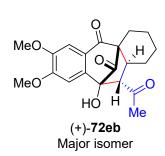
EtOAc/hexanes (1:9), and isolated as a semi-solid. Yield: 15.2% (10.0 mg). The enantiomeric excess (*ee*) was determined by chiral stationary phase HPLC using a Daicel Chiralpak IC-3 column (hexane/2-propanol = 90:10, flow rate 1.0 mL/min,  $\lambda$  = 254 nm),  $t_R$  = 11.59 min (major),  $t_R$  = 18.17

min (minor). IR (Neat):  $\nu_{\text{max}}$  3443, 2936, 2860, 1760, 1709, 1683, 1603, 1487, 1423, 1359, 1329, 1277, 1245, 1180, 1032, 1014, 874, 841, 758, and 574 cm<sup>-1</sup>. H NMR (CDCl<sub>3</sub>, 500 MHz):  $\delta$ 7.72 (1H, d, J = 8.5 Hz), 7.53 (1H, d, J = 3.0 Hz), 7.25 (1H, dd, J = 8.5, 3.0 Hz), 3.87 (3H, s), 3.51 (1H, s), 2.94 (1H, d, J = 11.0 Hz), 2.55 (1H, dt, J = 11.0, 3.0 Hz), 2.47-2.39 (1H, m), 2.38-2.33 (1H, s), 2.25 (3H, s), 1.88-1.78 (2H, m), 1.71-1.63 (1H, m), 1.56-1.55 (2H, m), 1.42 (1H, tq, J = 13.0, 4.5 Hz), 1.24 (1H, dq, J = 12.5, 3.5 Hz).  $^{13}$ C { $^{1}$ H} NMR (125 MHz, CDCl<sub>3</sub>, DEPT-135):  $\delta$ 204.9 (C, C=O), 204.1 (C, C=O), 196.2 (C, C=O), 159.9 (C), 140.2 (C), 132.0 (C), 123.1 (CH), 122.9 (CH), 110.1 (CH), 79.1 (C, C-OH), 65.4 (C), 63.6 (CH), 55.7 (CH<sub>3</sub>), 43.0 (CH), 33.0 (CH<sub>3</sub>), 27.3 (CH<sub>2</sub>), 26.6 (CH<sub>2</sub>), 26.3 (CH<sub>2</sub>), 21.5 (CH<sub>2</sub>). HRMS (ESI-TOF) m/z: [M + H]<sup>+</sup> Calcd for C<sub>19</sub>H<sub>20</sub>O<sub>5</sub>H 329.1389; Found 329.1389.

(4aS,10S,11S,11aS)-11-Acetyl-10-hydroxy-8-methoxy-1,3,4,10,11,11a-hexahydro-4a,10-methanodibenzo[a,d][7]annulene-5,12(2H)-dione ((+)-72db): The compound was prepared following procedure 4a, purified by column chromatography using EtOAc/hexanes (1:9), and isolated as a semi-solid. Yield: 88.3% (50.0+5.4 mg). The

enantiomeric excess (ee) was determined by chiral stationary phase HPLC using a

MeO HO H Me

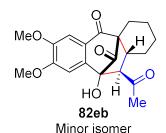

(+)-72db

Major isomer

Daicel Chiralpak IA-3 column (hexane/2-propanol = 90:10, flow rate 1.0 mL/min,  $\lambda$  = 254 nm),  $t_R$  = 15.46 min (major),  $t_R$  = 24.62 min (minor) [For major isomer],  $t_R$  = 13.36 min (major),  $t_R$  = 15.12 min (minor) [For minor isomer]. [ $\alpha$ ]<sub>D</sub><sup>25</sup> = +16.2° (c = 0.08, CHCl<sub>3</sub>, 98.9% ee and 9:1 dr). IR (Neat):  $\nu$ <sub>max</sub>

3419, 2925, 2855, 1761, 1710, 1677, 1596, 1488, 1443, 1359, 1326, 1274, 1234, 1182, 1103, 1017, 756, and 573 cm<sup>-1</sup>. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz):  $\delta$ 7.96 (1H, d, J = 9.0 Hz), 7.16 (1H, d, J = 3.0 Hz), 6.91 (1H, dd, J = 9.0, 2.5 Hz), 3.87 (3H, s), 3.84 (1H, s), 2.99 (1H, d, J = 5.0 Hz), 2.64 (1H, quintet, J = 5.5 Hz), 2.43-2.37 (1H, m), 2.14 (3H, s), 2.04 (1H, td, J = 14.5, 4.5 Hz), 1.94-1.89 (1H, m), 1.83-1.76 (1H, m), 1.64-1.59 (1H, m), 1.45-1.35 (1H, m), 1.34-1.25 (1H, m), 1.09 (1H, dq, J = 12.0, 4.0 Hz). <sup>13</sup>C{<sup>1</sup>H} NMR (125 MHz, CDCl<sub>3</sub>, DEPT-135):  $\delta$  205.6 (C, C=O), 203.8 (C, C=O), 193.3 (C, C=O), 164.9 (C), 143.8 (C), 130.5 (CH), 123.5 (C), 115.0 (CH), 108.1 (CH), 81.6 (C, C-OH), 65.4 (CH), 63.9 (C), 55.7 (CH<sub>3</sub>), 34.9 (CH), 31.6 (CH<sub>2</sub>), 30.2 (CH<sub>3</sub>), 22.2 (CH<sub>2</sub>), 20.3 (CH<sub>2</sub>), 20.1 (CH<sub>2</sub>). HRMS (ESI-TOF) m/z: [M + H]<sup>+</sup> Calcd for C<sub>19</sub>H<sub>20</sub>O<sub>5</sub>H 329.1389; Found 329.1384.

#### (4aS,10S,11S,11aS)-11-Acetyl-10-hydroxy-7,8-dimethoxy-1,3,4,10,11,11a-



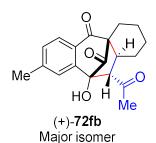

#### hexahydro-4a,10-methanodibenzo[a,d][7]annulene-

**5,12(2***H***)-dione ((+)-72eb):** The compound was prepared following procedure **4a**, purified by column chromatography using EtOAc/hexanes (1:9), and isolated as a semi-solid.

Yield: 64.7% (46.4 mg). The enantiomeric excess (*ee*) was determined by chiral stationary phase HPLC using a Daicel Chiralpak IA-3 column (hexane/2-propanol = 90:10, flow rate 1.0 mL/min,  $\lambda = 254$  nm),  $t_R = 24.45$  min (major),  $t_R = xx.xx$  min (minor). [α]<sub>D</sub><sup>25</sup> = +53.0° (c = 0.13, CHCl<sub>3</sub>, >99% *ee* and 4.0:1 *dr*). IR (Neat):  $\nu_{max}$  3434, 2937, 2861, 2359, 2256, 1761, 1710, 1673, 1593, 1506, 1463, 1363, 1281, 1208, 1180, 1114, 1014, 910, 730 and 649 cm<sup>-1</sup>. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz):  $\delta$  7.44 (1H, s), 7.15 (1H, s), 3.97 (3H, s), 3.91 (3H, s), 3.88 (1H, s), 2.99 (1H, d, J = 4.0 Hz), 2.62 (1H, quintet, J = 5.5 Hz), 2.45-2.39 (1H, m), 2.15 (3H, s), 2.05 (1H, td, J = 15.5, 4.0 Hz), 1.95-1.91 (1H, m), 1.84-1.78 (1H, m), 1.65-1.61 (1H, m), 1.46-1.27 (2H, m), 1.10 (1H, dq, J = 12.5, 4.0 Hz). <sup>13</sup>C{<sup>1</sup>H} NMR (125 MHz, CDCl<sub>3</sub>, DEPT-135):  $\delta$ 205.0 (C, C = 0), 203.7 (C, C = 0), 193.6 (C, C = 0), 154.7 (C), 149.6 (C), 136.1 (C), 123.6 (C), 108.99 (CH), 105.1 (CH), 81.3 (C, C = 0), 65.5 (CH), 64.0 (C), 56.4 (CH<sub>3</sub>), 56.1 (CH<sub>3</sub>), 35.0 (CH), 31.6 (CH<sub>2</sub>), 30.2 (CH<sub>3</sub>), 22.2 (CH<sub>2</sub>), 20.3 (CH<sub>2</sub>), 20.2 (CH<sub>2</sub>). HRMS (ESI-TOF) m/z: [M + H]<sup>+</sup> Calcd for C<sub>20</sub>H<sub>22</sub>O<sub>6</sub>H 359.1495; Found 359.1491.

#### (4aS,10S,11R,11aR)-11-Acetyl-10-hydroxy-7,8-dimethoxy-1,3,4,10,11,11a-




hexahydro-4a,10-methanodibenzo[a,d][7]annulene-

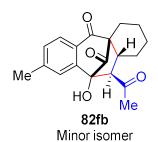
**5,12(2H)-dione (82eb):** The compound was prepared following procedure **4a**, purified by column chromatography using EtOAc/hexanes (1:9), and isolated as a semi-solid.

Yield: 15.3% (11.0 mg). The enantiomeric excess (*ee*) was determined by chiral stationary phase HPLC using a Daicel Chiralpak IA-3 column (hexane/2-propanol = 90:10, flow rate 1.0 mL/min,  $\lambda$  = 254 nm),  $t_R$  = 12.65 min (major),  $t_R$  = 15.57 min

(minor). IR (Neat):  $\nu_{\text{max}}$  3434, 2937, 2861, 2359, 2256, 1761, 1710, 1673, 1593, 1506, 1463, 1363, 1281, 1208, 1180, 1114, 1014, 910, 730 and 649 cm<sup>-1</sup>. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz):  $\delta$ 7.51 (1H, s), 7.23 (1H, s), 4.03 (3H, s), 3.94 (3H, s), 3.65 (1H, s), 2.95 (1H, d, J = 10.5 Hz), 2.50 (1H, dt, J = 12.5, 2.5 Hz), 2.43 (1H, td, J = 13.5, 5.0 Hz), 2.39-2.35 (1H, m), 2.26 (3H, s), 1.88-1.77 (2H, m), 1.66 (2H, dt, J = 12.5, 4.5 Hz), 1.41 (1H, tq, J = 13.0, 4.5 Hz), 1.31-1.27 (1H, m). <sup>13</sup>C { <sup>1</sup>H } NMR (125 MHz, CDCl<sub>3</sub>, DEPT-135):  $\delta$ 205.4 (C, C=O), 203.5 (C, C=O), 194.6 (C, C=O), 155.1 (C), 149.3 (C), 142.4 (C), 124.0 (C), 108.9 (CH), 103.0 (CH), 79.2 (C, C-OH), 65.0 (C), 63.6 (CH), 56.5 (CH<sub>3</sub>), 56.2 (CH<sub>3</sub>), 43.4 (CH), 33.0 (CH<sub>3</sub>), 27.4 (CH<sub>2</sub>), 26.6 (CH<sub>2</sub>), 26.3 (CH<sub>2</sub>), 21.5 (CH<sub>2</sub>). HRMS (ESI-TOF) m/z: [M + H]<sup>+</sup> Calcd for C<sub>20</sub>H<sub>22</sub>O<sub>6</sub>H 359.1495; Found 359.1499.

#### (4aS,10S,11S,11aS)-11-Acetyl-10-hydroxy-8-methyl-1,3,4,10,11,11a-hexahydro-




#### 4a,10-methanodibenzo[a,d][7]annulene-5,12(2H)-dione

((+)-72fb): The compound was prepared following procedure 4a, purified by column chromatography using EtOAc/hexanes (1:9), and isolated as a semi-solid. Yield: 65.8% (41.1 mg). The enantiomeric excess (ee) was determined by chiral stationary

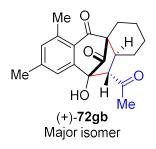
phase HPLC using a Daicel Chiralpak IA-3 column (hexane/2-propanol = 90:10, flow rate 1.0 mL/min,  $\lambda$  = 254 nm),  $t_R$  = 9.99 min (major),  $t_R$  = 14.10 min (minor). [ $\alpha$ ] $_D^{25}$  = +275.5° (c = 0.20, CHCl<sub>3</sub>, 98.8% ee and 6:1 dr). IR (Neat):  $\nu_{max}$  3442, 2925, 2855, 2341, 2360, 1760, 1708, 1680, 1602, 1448, 1360, 1281, 1256, 1231, 1179, 1007, 910, 732, 443 and 411 cm<sup>-1</sup>. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz):  $\delta$ 7.89 (1H, dd, J = 7.5, 1.5 Hz), 7.52

(1H, s), 7.23 (1H, d, J = 8.0 Hz), 3.82 (1H, s), 3.01 (1H, dd, J = 4.5, 2.0 Hz), 2.66-2.62 (1H, m), 2.43 (3H, s), 2.41-2.37 (1H, m), 3.13 (3H, s), 2.08-2.03 (1H, m), 1.93-1.90 (1H, m), 1.82-1.78 (1H, m), 1.67-1.58 (1H, m), 1.46-1.38 (1H, m), 1.35-1.29 (1H, m), 1.11 (1H, q, J = 13.0 Hz). <sup>13</sup>C{<sup>1</sup>H} NMR (125 MHz, CDCl<sub>3</sub>, DEPT-135):  $\delta$  205.9 (C, C=O), 203.9 (C, C=O), 194.5 (C, C=O), 146.1 (C), 141.3 (C), 130.0 (CH), 128.1 (CH), 127.9 (C), 123.7 (CH), 81.5 (C, C-OH), 65.3 (CH), 64.2 (C), 34.8 (CH), 31.5 (CH<sub>2</sub>), 30.2 (CH<sub>3</sub>), 22.1 (CH<sub>2</sub>), 22.1 (CH<sub>2</sub>), 20.2 (CH<sub>2</sub>), 20.0 (CH<sub>2</sub>). HRMS (ESI-TOF) m/z: [M + H]<sup>+</sup> Calcd for C<sub>19</sub>H<sub>20</sub>O<sub>4</sub>H 313.1440; Found 313.1446.

#### (4aS,10S,11R,11aR)-11-acetyl-10-hydroxy-8-methyl-1,3,4,10,11,11a-hexahydro-



#### 4a,10-methanodibenzo[a,d][7]annulene-5,12(2H)-dione


(82fb): The compound was prepared following procedure 4a, purified by column chromatography using EtOAc/hexanes (1:9), and isolated as a semi-solid. Yield: 11.2% (7.0 mg). The enantiomeric excess (*ee*) was determined by chiral stationary

phase HPLC using a Daicel Chiralpak IA-3 column (hexane/2-propanol = 90:10, flow rate 1.0 mL/min,  $\lambda$  = 254 nm),  $t_R$  = 10.42 min (major),  $t_R$  = 9.36 min (minor). IR (Neat):  $\nu_{\text{max}}$  3442, 2925, 2855, 2341, 2360, 1760, 1708, 1680, 1602, 1448, 1360, 1281, 1256, 1231, 1179, 1007, 910, 732, 443 and 411 cm<sup>-1</sup>. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz) :  $\delta$  7.96 (1H, d, J = 8.0 Hz), 7.60 (1H, br s), 7.28-7.26 (1H, m), 3.54 (1H, s), 2.96 (1H, d, J = 10.8 Hz), 2.58-2.53 (1H, m), 2.48 (3H, s), 2.42 (1H, td J = 13.2, 4.8 Hz), 2.38-2.33 (1H, m), 2.26 (3H, s), 1.88-1.75 (2H, m), 1.71-1.62 (1H, m), 1.56 (1H, qd, J = 12.4, 3.2 Hz), 1.41 (1H, qt, J = 13.2, 4.4 Hz), 1.30-1.23 (1H, m). <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>,

DEPT-135): δ204.7 (C, C=O), 204.5 (C, C=O), 195.8 (C, C=O), 147.4 (C), 146.7 (C), 129.4 (CH), 128.6 (C), 128.0 (CH), 121.5 (CH), 79.2 (C, C-OH), 65.2 (C), 63.4 (CH), 43.1 (CH), 32.9 (CH<sub>3</sub>), 27.2 (CH<sub>2</sub>), 26.5 (CH<sub>2</sub>), 26.2 (CH<sub>2</sub>), 22.1 (CH<sub>3</sub>), 21.5 (CH<sub>2</sub>). HRMS (ESI-TOF) *m/z*: [M + H]<sup>+</sup> Calcd for C<sub>19</sub>H<sub>20</sub>O<sub>4</sub>H 313.1440; Found 313.1445.

#### (4aS,10S,11S,11aS)-11-Acetyl-10-hydroxy-6,8-dimethyl-1,3,4,10,11,11a-

#### hexahydro-4a,10-methanodibenzo[a,d][7]annulene-5,12(2H)-dione ((+)-72gb): The



compound was prepared following procedure **4a**, purified by column chromatography using EtOAc/hexanes (1:9), and isolated as a semi-solid. Yield: 80.4% (52.5 mg). The enantiomeric excess (*ee*) was determined by chiral stationary phase HPLC using a Daicel Chiralpak IA-3 column (hexane/2-

propanol = 90:10, flow rate 1.0 mL/min,  $\lambda$  = 254 nm),  $t_R$  = 6.89 min (major),  $t_R$  = 8.30 min (minor). [ $\alpha$ ] $_D^{25}$  = +6.6° (c = 0.07, CHCl<sub>3</sub>, 98.3% ee and 8:1 dr). IR (Neat):  $\nu_{max}$  3460, 3021, 2928, 1759, 1711, 1679, 1602, 1445, 1359, 1215, 1008, 909, 753 and 672 cm<sup>-1</sup>. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz):  $\delta$ 7.41 (1H, s), 7.01 (1H, s), 3.84 (1H, s), 2.99 (1H, d, J = 4.0 Hz), 2.66-2.61 (1H, m), 2.58 (3H, s), 2.39-2.32 (4H, m), 2.07 (3H, s), 2.01 (1H, td, J = 14.0, 4.0 Hz), 1.89 (1H, qd, J = 13.0, 3.5 Hz), 1.77 (1H, td, J = 13.5, 5.0 Hz), 1.62 (1H, td, J = 13.0, 4.0 Hz), 1.43-1.27 (2H, m), 1.07 (1H, dq, J = 12.0, 3.5 Hz.  $^{13}$ C{ $^{1}$ H} NMR (125 MHz, CDCl<sub>3</sub>, DEPT-135):  $\delta$  206.1 (C, C=O), 204.2 (C, C=O), 195.8 (C, C=O), 144.1 (C), 142.6 (C), 142.6 (C), 133.8 (CH), 126.2 (C), 121.7 (CH), 81.7 (C, C-OH), 65.4 (CH), 65.2 (C), 35.3 (CH), 31.7 (CH<sub>2</sub>), 30.2 (CH<sub>3</sub>), 22.8 (CH<sub>3</sub>),

22.5 (CH<sub>2</sub>), 21.8 (CH<sub>3</sub>), 20.6 (CH<sub>2</sub>), 20.5 (CH<sub>2</sub>). HRMS (ESI-TOF) m/z: [M + H]<sup>+</sup> Calcd for C<sub>20</sub>H<sub>22</sub>O<sub>4</sub>H 327.1596; Found 327.1591.

#### (4aS,10S,11R,11aR)-11-Acetyl-10-hydroxy-6,8-dimethyl-1,3,4,10,11,11a-

#### hexahydro-4a,10-methanodibenzo[a,d][7]annulene-5,12(2H)-dioneand (82gb): The



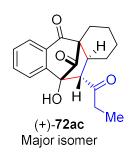
compound was prepared following procedure **4a**, purified by column chromatography using EtOAc/hexanes (1:9), and isolated as a semi-solid. Yield: 10.0% (6.5 mg). The enantiomeric excess (*ee*) was determined by chiral stationary

phase HPLC using a Daicel Chiralpak IA-3 column (hexane/2-propanol = 90:10, flow rate 1.0 mL/min,  $\lambda$  = 254 nm),  $t_R$  = 6.79 min (major),  $t_R$  = 7.58 min (minor). IR (Neat):  $v_{\text{max}}$  3460, 3021, 2928, 1759, 1711, 1679, 1602, 1445, 1359, 1215, 1008, 909, 753 and 672 cm<sup>-1</sup>. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz):  $\delta$ 7.51 (1H, s), 7.07 (1H, s), 3.48 (1H, s), 2.97 (1H, d, J = 11.0 Hz), 2.65 (3H, s), 2.51 (1H, dt, J = 12.0, 3.0 Hz), 2.43 (3H, s), 2.30 (1H, br dd, J = 14.0, 3.5 Hz), 2.25 (3H, s), 1.88-1.84 (1H, m), 1.79-1.74 (1H, m), 1.66 (1H, dt, J = 13.5, 5.5 Hz), 1.54-1.53 (1H, m), 1.41 (1H, td, J = 13.0, 4.5 Hz), 1.30 (2H, dq, J = 12.5, 3.5 Hz). <sup>13</sup>C{<sup>1</sup>H} NMR (125 MHz, CDCl<sub>3</sub>, DEPT-135):  $\delta$ 204.7 (C, C=O), 204.7 (C, C=O), 197.4 (C, C=O), 148.6 (C), 144.7 (C), 142.7 (C), 133.3 (CH), 126.8 (C), 119.5 (CH), 79.1 (C, C-OH), 65.1 (C), 63.3 (CH), 42.9 (CH), 32.9 (CH<sub>3</sub>), 26.6 (CH<sub>2</sub>), 26.5 (CH<sub>2</sub>), 26.1 (CH<sub>2</sub>), 22.9 (CH<sub>3</sub>), 21.9 (CH<sub>3</sub>), 21.5 (CH<sub>2</sub>). HRMS (ESI-TOF) m/z: [M + H]<sup>+</sup> Calcd for C<sub>20</sub>H<sub>22</sub>O<sub>4</sub>H 327.1596; Found 327.1595.

N-((4aS,10S,11S,11aS)-11-Acetyl-10-hydroxy-5,12-dioxo-1,2,3,4,5,10,11,11a-octahydro-4a,10-methanodibenzo[a,d][7]annulen-7-yl)acetamide ((+)-72hb): The

compound was prepared following procedure 4a, purified by column chromatography

Ac N H Me


(+)-72hb

Major isomer

using EtOAc/hexanes (1:9), and isolated as a semi-solid. Yield: 81.2% (57.7 mg). The enantiomeric excess (ee) was determined by chiral stationary phase HPLC using a Daicel Chiralpak IA-3 column (hexane/2-propanol = 90:10, flow

rate 1.0 mL/min,  $\lambda = 254$  nm),  $t_R = 23.57$  min (major),  $t_R = 31.18$  min (minor).  $[\alpha]_D^{25} = +89.6^{\circ}$  (c = 0.09, CHCl<sub>3</sub>, 96.4% ee and >20:1 dr). IR (Neat):  $v_{\text{max}}$  3346, 2933, 2859, 1763, 1683, 1591, 1537, 1487, 1413, 1368, 1324, 1297, 1260, 910, 731 and 573 cm<sup>-1</sup>. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz):  $\delta$  8.13 (1H, dd, J = 8.5, 2.0 Hz), 7.73 (1H, s), 7.67 (1H, d, J = 2.5 Hz), 7.63 (1H, d, J = 8.5 Hz), 4.03 (1H, s), 3.01 (1H, d, J = 4.5 Hz), 2.60 (1H, quintet, J = 6.0 Hz), 2.38-2.32 (1H, m), 2.19 (3H, s), 2.11 (3H, s), 2.03 (1H, td, J = 14.5, 4.5 Hz), 1.91 (1H, qd, J = 13.0, 5.0 Hz), 1.81-1.77 (1H, m), 1.65-1.59 (1H, m), 1.45-1.38 (1H, m), 1.34-1.26 (1H, m), 1.12 (1H, dq, J = 12.0, 4.0 Hz).  $^{13}$ C{ $^{1}$ H} NMR (125 MHz, CDCl<sub>3</sub>, DEPT-135):  $\delta$  205.6 (C, C=O), 204.4 (C, C=O), 194.7 (C, C=O), 168.9 (C, N-C=O), 138.9 (C), 136.3 (C), 130.6 (C), 126.0 (CH), 124.3 (CH), 117.7 (CH), 81.5 (C, C-OH), 64.9 (CH), 64.5 (C), 34.8 (CH), 31.3 (CH<sub>2</sub>), 30.3 (CH<sub>3</sub>), 24.5 (CH<sub>3</sub>), 22.1 (CH<sub>2</sub>), 20.2 (CH<sub>2</sub>), 20.1 (CH<sub>2</sub>). HRMS (ESI-TOF) m/z: [M + H]<sup>+</sup> Calcd for C<sub>20</sub>H<sub>21</sub>NO<sub>5</sub>H 356.1498; Found 356.1494.

## (4aS,10S,11S,11aS)-10-Hydroxy-11-propionyl-1,3,4,10,11,11a-hexahydro-4a,10-methanodibenzo[a,d][7]annulene-5,12(2H)-dione ((+)-72ac): The compound was




prepared following procedure **4a**, purified by column chromatography using EtOAc/hexanes (1:9 to 2:8), and isolated as a semi-solid. Yield: 34.9% (21.8 mg). The enantiomeric excess (*ee*) was determined by chiral stationary phase HPLC using a Daicel Chiralpak IA-3 column (hexane/2-propanol = 90:10, flow

rate 1.0 mL/min,  $\lambda = 254$  nm),  $t_R = 9.87$  min (major),  $t_R = 12.64$  min (minor).  $[\alpha]_D^{25} = +2.8^{\circ}$  (c = 0.07, CHCl<sub>3</sub>, 98.5% ee and 1:1 dr). IR (Neat):  $\nu_{\text{max}}$  3445, 2927, 2854, 1761, 1711, 1683, 1597, 1455, 1283, 1259, ,1226, 1079, 963, 766, 718 and 493 cm<sup>-1</sup>. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz):  $\delta$  8.00 (1H, dd, J = 7.6, 0.8 Hz), 7.68 (1H, dd, J = 8.0, 0.8), 7.61 (1H, dt, J = 7.2, 1.6 Hz), 7.43 (1H, dt, J = 7.6, 1.2 Hz), 3.78 (1H, s), 3.02 (1H, d, J = 4.4 Hz), 2.69-2.59 (2H, m), 2.45-2.31 (2H, m), 2.06 (1H, td, J = 14.4, 4.0 Hz), 1.95-1.88 (1H, m), 1.84-1.77 (1H, m), 1.66-1.60 (2H, m), 1.47-1.39 (1H, m), 1.14 (1H, dq, J = 11.6, 3.6 Hz), 0.76 (3H, t, J = 7.2 Hz). <sup>13</sup>C {<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>, DEPT-135):  $\delta$  206.7 (C, C = 0), 205.8 (C, C = 0), 195.0 (C, C = 0), 141.4 (C), 134.7 (CH), 130.4 (C), 130.4 (CH), 128.9 (CH), 123.2 (CH), 81.7 (C, C = 0), 64.5 (C), 64.1 (CH), 36.4 (CH<sub>2</sub>), 35.0 (CH), 31.4 (CH<sub>2</sub>), 22.2 (CH<sub>2</sub>), 20.2 (CH<sub>2</sub>), 20.1 (CH<sub>2</sub>), 7.1 (CH<sub>3</sub>). HRMS (ESITOF) m/z: [M + H]<sup>+</sup> Calcd for C<sub>19</sub>H<sub>20</sub>O<sub>4</sub>H 313.1440; Found 313.1436.

(4aS,10S,11R,11aR)-10-hydroxy-11-propionyl-1,3,4,10,11,11a-hexahydro-4a,10-methanodibenzo[a,d][7]annulene-5,12(2H)-dione (82ac): The compound was prepared following procedure 4a, purified by column chromatography using

EtOAc/hexanes (1:9 to 2:8), and isolated as a semi-solid. Yield: 34.9% (21.8 mg). The



enantiomeric excess (*ee*) was determined by chiral stationary phase HPLC using a Daicel Chiralpak IA-3 column (hexane/2-propanol = 95:5, flow rate 0.5 mL/min,  $\lambda$  = 254 nm),  $t_R$  = 28.00 min (major),  $t_R$  = 30.71 min (minor). IR (Neat):  $v_{\text{max}}$  3445, 2927, 2854, 1761, 1711, 1683, 1597, 1455, 1283, 1259, ,1226, 1079, 963, 766, 718 and 493

cm<sup>-1</sup>. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz):  $\delta$  8.06 (1H, dd, J = 8.0, 1.2 Hz), 7.80 (1H, dd, J = 8.0, 0.8), 7.69 (1H, dt, J = 7.6, 1.6 Hz), 7.47 (1H, dt, J = 8.0, 1.2 Hz), 3.53 (1H, s), 2.98 (1H, d, J = 10.8 Hz), 2.70-2.60 (2H, m), 2.44-2.29 (2H, m), 1.87-1.73 (2H, m), 1.69 (1H, dt, J = 4.8 Hz), 1.56-1.52 (1H, m), 1.47-1.35 (1H, m), 1.30-1.20 (2H, m), 1.08 (3H, t, J = 7.2 Hz). <sup>13</sup>C { <sup>1</sup>H } NMR (100 MHz, CDCl<sub>3</sub>, DEPT-135):  $\delta$  207.5 (C, C=O), 204.4 (C, C=O), 196.3 (C, C=O), 147.4 (C), 135.1 (CH), 130.8 (C), 128.4 (CH), 127.9 (CH), 121.4 (CH), 79.5 (C, C-OH), 65.5 (C), 62.6 (CH), 43.2 (CH), 39.3 (CH<sub>2</sub>), 27.2 (CH<sub>2</sub>), 26.5 (CH<sub>2</sub>), 26.2 (CH<sub>2</sub>), 21.4 (CH<sub>2</sub>), 7.3 (CH<sub>3</sub>). HRMS (ESI-TOF) m/z: [M + H]<sup>+</sup> Calcd for C<sub>19</sub>H<sub>20</sub>O<sub>4</sub>H 313.1440; Found 313.1437.

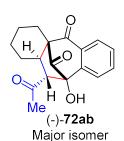
## (4aS,10S,11S,11aS)-11-Benzoyl-10-hydroxy-1,3,4,10,11,11a-hexahydro-4a,10-methanodibenzo[a,d][7]annulene-5,12(2H)-dione ((-)-72ad): The compound was prepared following procedure 4a, purified by column chromatography using



EtOAc/hexanes (1:9), and isolated as a semi-solid. Yield: 62.4% (45 mg). The enantiomeric excess (*ee*) was determined by chiral stationary phase HPLC using a Daicel Chiralcel AD-H column (hexane/2-propanol = 90:10, flow rate 1.0 mL/min,  $\lambda$  = 254 nm),

 $t_R = 17.06 \text{ min (major)}, t_R = 22.68 \text{ min (minor)}. [\alpha]_D^{25} = -3.9^{\circ} (c = 0.08, \text{CHCl}_3, 74.1\%)$ ee and 3.5:1 dr). IR (Neat):  $v_{\text{max}}$  3432, 3064, 2926, 2854, 1761, 1680, 1596, 1448, 1281, 1258, 1232, 1089, 1002, 798, 765, 733, 688, 475 and 413 cm<sup>-1</sup>. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz):  $\delta$ 7.99 (1H, dd, J = 7.5, 1.2 Hz), 7.89-7.87 (2H, m), 7.58-7.55 (1H, m), 7.42 (2H, t J = 7.5 Hz), 7.35-7.28 (2H, m), 7.10-7.08 (1H, m), 3.85 (1H, d, J = 3.0 Hz), 3.81 (1H, s), 2.92-2.88 (1H, m), 2.52-2.46 (1H, m), 2.13 (1H, td, J = 14.0, 3.0 Hz), 2.02-1.99 (1H, m), 1.86-1.82 (1H, m), 1.73-1.69 (1H, m), 1.52-1.43 (1H, m), 1.39-1.31 (1H, m), 1.23-1.20 (1H, m). <sup>13</sup>C { <sup>1</sup>H } NMR (125 MHz, CDCl<sub>3</sub>, DEPT-135):  $\delta$  206.1 (C, C=O), 196.8 (C, C=O), 195.4 (C, C=O), 141.2 (C), 136.9 (C), 134.2 (CH), 133.4 (CH), 130.7 (C), 129.0 (2xCH), 128.7 (CH), 128.3 (2xCH), 127.4 (CH), 123.5 (CH), 81.8 (C, C-OH), 64.9 (C), 60.3 (CH), 36.6 (CH), 31.9 (CH<sub>2</sub>), 22.9 (CH<sub>2</sub>), 20.8 (CH<sub>2</sub>), 20.6 (CH<sub>2</sub>). HRMS (ESI-TOF) m/z:  $[M + H]^+$  Calcd for C<sub>23</sub>H<sub>20</sub>O<sub>4</sub>H 361.1440; Found 361.1440

#### (4aS,10S,11R,11aR)-11-Benzoyl-10-hydroxy-1,3,4,10,11,11a-hexahydro-4a,10-




methanodibenzo[a,d][7]annulene-5,12(2H)-dione (82ad): The compound was prepared following procedure 4a, purified by column chromatography using EtOAc/hexanes (1:9), and isolated as a semisolid. Yield: 17.2% (12.4 mg). The enantiomeric excess (ee) was determined by chiral stationary phase HPLC using a Daicel

Chiralcel AD-H column (hexane/2-propanol = 90:10, flow rate 1.0 mL/min,  $\lambda$  = 254 nm),  $t_R$  = 44.01 min (major),  $t_R$  = 13.71 min (minor). IR (Neat):  $v_{\text{max}}$  3432, 3064, 2926, 2854, 1761, 1680, 1596, 1448, 1281, 1258, 1232, 1089, 1002, 798, 765, 730, 688, 475 and 413 cm<sup>-1</sup>. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz):  $\delta$ 8.13 (1H, d, J = 7.5 Hz), 7.81 (3H, t, J =

7.5 Hz), 7.74 (1H, t, J = 7.5 Hz), 7.59 (1H, t, J = 7.0 Hz), 7.54 (1H, t, J = 7.5 Hz), 7.46 (2H, t, J = 7.5 Hz), 3.75 (1H, d, J = 11.0 Hz), 3.59 (1H, s), 2.84 (1H, dt, J = 12.0, 2.5 Hz), 2.51-2.38 (2H, m), 1.88-1.73 (3H, m), 1.57 (1H, dd, J = 12.0, 2.5 Hz), 1.43 (1H, tq, J = 13.5, 4.5 Hz), 1.31 (1H, dq, J = 12.0, 3.0 Hz).  $^{13}$ C{ $^{1}$ H} NMR (125 MHz, CDCl<sub>3</sub>, DEPT-135):  $\delta$ 204.5 (C, C=O), 196.8 (C, C=O), 196.5 (C, C=O), 146.9 (C), 137.4 (C), 135.0 (CH), 133.7 (CH), 131.0 (C), 128.7 (2xCH), 128.6 (CH), 128.5 (2xCH), 128.0 (CH), 121.9 (CH), 79.9 (C, C-OH), 65.5 (C), 58.7 (CH), 43.9 (CH), 27.2 (CH<sub>2</sub>), 26.7 (CH<sub>2</sub>), 26.3 (CH<sub>2</sub>), 21.5 (CH<sub>2</sub>). HRMS (ESI-TOF) m/z: [M + H]<sup>+</sup> Calcd for C<sub>23</sub>H<sub>20</sub>O<sub>4</sub>H 361.1440; Found 361.1440

#### ((4aR,10R,11R,11aR)-11-Acetyl-10-hydroxy-1,3,4,10,11,11a-hexahydro-4a,10-




methano dibenzo [a,d] [7] annulene-5,12(2H)-dione ((-)-72ab):

The compound was prepared following procedure 4a, purified by column chromatography using EtOAc/hexanes (1:9), and isolated as a semi-solid. Yield: 65.3% (39 mg). The enantiomeric excess (ee) was determined by chiral stationary phase HPLC using a Daicel

Chiralpak IA-3 column (hexane/2-propanol = 90:10, flow rate 1.0 mL/min,  $\lambda$  = 254 nm),  $t_R$  = 12.49 min (major),  $t_R$  = xx.xx min (minor). [ $\alpha$ ] $_D^{25}$  = -135.17° (c = 0.05, CHCl<sub>3</sub>, 99.0% ee and 3:1 dr). IR (Neat):  $\nu_{max}$  3455, 2930, 2856, 1765, 1712, 1679, 1596, 1453, 1357, 1329, 1300, 1276, 1231, 1172, 1085, 1037, 971, 953, 782, and 735 cm<sup>-1</sup>. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz):  $\delta$ 8.00 (1H, dd, J = 8.0, 1.0 Hz), 7.73 (1H, d, J = 7.0 Hz), 7.63 (1H, dt, J = 7.5, 1.5 Hz), 7.44 (1H, dt, J = 7.5, 1.0 Hz), 3.79 (1H, s), 3.02 (1H, d, J = 4.5 Hz), 2.65 (1H, quintate, J = 5.5 Hz), 2.44-2.37 (1H, m), 2.11 (3H, s), 2.06 (1H, td, J = 14.5,

4.5 Hz), 1.92 (1H, qd, J = 13.0, 4.0 Hz), 1.84-1.77 (1H, m), 1.66-1.61 (1H, m), 1.47-1.38 (1H, m), 1.36-1.28 (1H, m), 1.12 (1H, dq, J = 12.0, 4.0 Hz). <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>, DEPT-135):  $\delta$  205.7 (C, C = O), 203.9 (C, C = O), 194.9 (C, C = O), 141.2 (C), 134.8 (CH), 130.2 (C), 129.0 (CH), 128.0 (CH), 123.4 (CH), 81.5 (C, C = O), 65.3 (CH), 64.4 (C), 34.8 (CH), 31.4 (CH<sub>2</sub>), 30.2 (CH<sub>3</sub>), 22.1 (CH<sub>2</sub>), 20.2 (CH<sub>2</sub>), 20.1 (CH<sub>2</sub>). HRMS (ESI-TOF) m/z: [M + Na]<sup>+</sup> Calcd for C<sub>18</sub>H<sub>18</sub>O<sub>4</sub>Na 321.1103; Found 321.1103.

methanodibenzo[a,d][7]annulene-5,12(2H)-dione (82ab): The compound was



prepared following procedure **4a**, purified by column chromatography using EtOAc/hexanes (1:9), and isolated as a semi-solid. Yield: 21.8% (13.0 mg). The enantiomeric excess (*ee*) was determined by chiral stationary phase HPLC using a Daicel

Chiralpak IC-3 column (hexane/2-propanol = 90:10, flow rate 1.0 mL/min,  $\lambda$  = 254 nm),  $t_R$  = 14.47 min (major),  $t_R$  = 9.81 min (minor). IR (Neat):  $v_{\text{max}}$  3455, 2930, 2856, 1765, 1712, 1679, 1596, 1453, 1357, 1329, 1300, 1276, 1231, 1172, 1085, 1037, 971, 953, 782, and 735 cm<sup>-1</sup>. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz):  $\delta$  8.06 (1H, d, J = 7.5 Hz), 7.82 (1H, d, J = 7.5 Hz), 7.70 (1H, t, J = 7.5 Hz), 7.48 (1H, t, J = 7.5 Hz), 3.58 (1H, s), 2.98 (1H, d, J = 10.5 Hz), 2.58 (1H, dt, J = 12.5, 2.5 Hz), 2.47-2.34 (2H, m), 2.26 (3H, s), 1.87-1.77 (2H, m), 1.71-1.64 (1H, m), 1.58-1.55 (1H, m), 1.41 (1H, tq, J = 7.5, 4.5 Hz), 1.25 (1H, dq, J = 12.0, 3.0 Hz). <sup>13</sup>C{<sup>1</sup>H} NMR (125 MHz, CDCl<sub>3</sub>, DEPT-135):  $\delta$  204.6 (C, C = O), 204.4 (C, C = O), 196.3 (C, C = O), 147.4 (C), 135.2 (CH), 130.8 (C), 128.5 (CH), 127.9 (CH), 121.3 (CH), 79.2 (C, C = OH), 65.4 (C), 63.4 (CH), 42.9 (CH), 32.9 (CH<sub>3</sub>),

27.2 (CH<sub>2</sub>), 26.5 (CH<sub>2</sub>), 26.2 (CH<sub>2</sub>), 21.5 (CH<sub>2</sub>). HRMS (ESI-TOF) m/z: [M + Na]<sup>+</sup> Calcd for C<sub>18</sub>H<sub>18</sub>O<sub>4</sub>Na 321.1103; Found 321.1103.

#### 4c. General Procedures for Synthetic Transformation of Product 71ad into 84ad:

To a 25 mL of round bottom flask equipped with a magnetic stirring bar were added 0.2 mmol of 71ad and 2 mL of methanol. Then, 0.4 mmol of K<sub>2</sub>CO<sub>3</sub> was added in two portions with 0.5 h time intervals and the resulting mixture was allowed to stir at RT. After complete consumption of **71ad**, as monitored by TLC, methanol was removed by rotary evaporation. To this crude reaction mixture was added acetone (0.1 M), dimethyl sulfate (5 equiv.) and K<sub>2</sub>CO<sub>3</sub> (5 equiv.) and the resulting mixture was allowed to stir at 60 °C for 12 h. Next, the reaction mixture was allowed to cool to RT and then the solvent was removed by rotary evaporation. The resulting product mixture was partitioned between aqueous and ethyl acetate layers and the organic layer was dried over anhydrous Na<sub>2</sub>SO<sub>4</sub> and concentrated under reduced pressure. The pure product (-)-84ad was obtained after column chromatography purification using ethyl acetate/hexanes as an eluent system.

#### Methyl (3aR,4S,9R,10S,10aR)-10-benzoyl-4-methoxy-2,3,3a,4,10,10a-hexahydro-

4,9-epoxybenzo[f]azulene-9(1H)-carboxylate MeO + Prepared by following the procedure 4c and purified by column chromatography using EtOAc/hexane and isolated as white semisolid; Yield: 40% (31.4 mg). IR (Neat): v<sub>max</sub> 2947, 2872, 1767, (-)-84ad

1728, 1685, 1447, 1311, 1236, 1212, 1171, 1111, 1020, 1006, 939, 754, 733 and 689

((-)-84ad):

cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz):  $\delta$  7.90 (2H, dd, J = 8.0, 1.0 Hz), 7.56 (1H, tt, J = 7.5, 1.0 Hz), 7.46 (2H, t, J = 8.0 Hz), 7.44-7.40 (3H, m), 7.33-7.31 (1H, m), 3.83 (3H, s), 3.46 (3H, s), 2.58-2.55 (1H, m), 2.33-2.31 (1H, m), 1.89-1.82 (1H, m), 1.69-1.60 (2H, m), 1.34-1.29 (2H, m), 1.21-1.13 (1H, m), -0.21 to -0.29 (1H, m). <sup>13</sup>C { <sup>1</sup>H} NMR (125 MHz, CDCl<sub>3</sub>, DEPT-135):  $\delta$  199.6 (C, C=O), 171.1 (C, C=O), 142.7 (C), 138.7 (C), 135.7 (C), 133.0 (CH), 129.3 (CH), 128.6 (2xCH), 128.5 (3xCH), 123.6 (CH), 121.0 (CH), 111.6 (C, O-C-OH), 83.6 (C, C-O), 52.6 (CH), 51.1 (CH), 50.1 (CH), 41.73 (CH<sub>3</sub>), 41.68 (CH<sub>3</sub>), 32.7 (CH<sub>2</sub>), 24.8 (CH<sub>2</sub>), 24.1 (CH<sub>2</sub>). HRMS (ESI-TOF) m/z: [M + H]<sup>+</sup> Calcd for C<sub>24</sub>H<sub>24</sub>O<sub>5</sub>H 393.1702; Found 393.1703.

## 4d. Organocatalytic Reductive Coupling of Dialdehydes with 2-Hydroxy-1,4-naphthoquinone Derivatives:

To a 25 mL of round bottom flask equipped with a magnetic stirring bar were added 0.6 mmol of (S)-proline, 6.0 mmol of dialdehydes and 10.0 mL of anhydrous DCM. Then, 3.3 mmol of Hantzsch ester and 3.0 mmol of 2-hydroxy-1,4-naphthoquinone derivatives were added sequentially to a well stirred solution and the resulting mixture was allowed to stir for overnight. The solvent was removed under reduced pressure, the solid reaction mixture was dissolved in hexanes and the solvent was decanted and dried. Then, the solid product mixture was redissolved in 5-10% CHCl<sub>3</sub>/hexanes mixtures and the solvent was decanted and dried. This process was repeated for 3-4 times to give the product with 80% purity. Further purification was carried out by passing the compound through short silica gel column using CHCl<sub>3</sub> as an eluent. The pure coupling products 63a-h and 64a-h were obtained upto 41% yields.

#### 4-(3-hydroxy-8-methoxy-1,4-dioxo-1,4-dihydronaphthalen-2-yl)butanal (63b):

The compound was prepared following procedure 4d, OMe O purified by the column chromatography using EtOAc/hexane (2:8 to 2.5:7.5), and isolated as a yellow semi-ЮH 63b || solid. Yield: 10.0% (82.3 mg). IR (Neat):  $\nu_{\text{max}}$  3306, 2925, 2853, 1717, 1642, 1585, 1472, 1442, 1377, 1345, 1264, 1183, 1071, 1017, 908, 732 and 703 cm<sup>-1</sup>. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz):  $\delta$  9.77 (1H, t, J = 1.5 Hz), 7.76 (1H, dd, J = 7.5, 1.0 Hz), 7.63 (1H, t, J = 7.5 Hz), 7.34 (1H, d, J = 8.0 Hz), 7.19 (1H, s), 4.00 (3H, s), 2.63 (2H, t, J = 7.0 Hz) Hz), 2.49 (2H, dt, J = 7.5, 1.5 Hz), 1.89 (2H, quin, J = 7.5 Hz). <sup>13</sup>C{<sup>1</sup>H} NMR (125) MHz, CDCl<sub>3</sub>, DEPT-135):  $\delta$  202.4 (HC, H-C=O), 184.3 (C, C=O), 181.5 (C, C=O), 159.7 (C, C-OH), 151.6 (C), 134.1 (CH), 131.6 (C), 124.7 (C), 119.8 (C), 119.5 (CH), 119.1 (CH), 56.5 (CH<sub>3</sub>), 43.5 (CH<sub>2</sub>), 22.7 (CH<sub>2</sub>), 20.7 (CH<sub>2</sub>). HRMS (ESI-TOF) *m/z*:  $[M + H]^+$  Calcd for C<sub>15</sub>H<sub>14</sub>O<sub>5</sub>H 275.0919; Found 275.0915.

#### 4-(3-hydroxy-7-methoxy-1,4-dioxo-1,4-dihydronaphthalen-2-yl)butanal (63c): The

compound was prepared following procedure **4d**, purified by column chromatography using EtOAc/hexane (1.5:8.5 to 2:8), and isolated as a yellow solid. Mp: 130-135 °C. Yield: 26.8% (220.5 mg). IR (Neat):  $\nu_{\text{max}}$  3334, 2937, 2360, 1721, 1637, 1581, 1492, 1435, 1378, 1336, 1293, 1244, 1198, 1083, 1013, 985, 912, 843, 765, 748, 682, 619 and 597 cm<sup>-1</sup>. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz):  $\delta$ 9.79 (1H, br s), 8.03 (1H, d, J = 8.5 Hz), 7.58 (1H, d, J = 2.5 Hz), 7.50 (1H, br s), 7.13 (1H, dd, J = 8.5, 2.0 Hz), 3.96 (3H, s), 2.64 (2H, t, J = 7.5 Hz), 2.50 (2H, t, J = 7.5 Hz), 1.91 (2H,

quintet, J = 7.5 Hz). <sup>13</sup>C{<sup>1</sup>H} NMR (125 MHz, CDCl<sub>3</sub>, DEPT-135):  $\delta$  202.1 (HC, H-C=O), 184.5 (C, C=O), 179.9 (C, C=O), 165.3 (C, C-OH), 153.7 (C), 135.4 (C), 128.8 (CH), 122.6 (C), 122.3 (C), 119.1 (CH), 111.0 (CH), 56.0 (CH<sub>3</sub>), 43.4 (CH<sub>2</sub>), 22.5 (CH<sub>2</sub>), 20.6 (CH<sub>2</sub>). HRMS (ESI-TOF) m/z: [M + H]<sup>+</sup> Calcd for C<sub>15</sub>H<sub>14</sub>O<sub>5</sub>H 275.0919; Found 275.0914.

#### 4-(3-hydroxy-6-methoxy-1,4-dioxo-1,4-dihydronaphthalen-2-yl)butanal (63d):

The compound was prepared following procedure 4d, purified by column chromatography using MeO EtOAc/hexane 1.5:8.5 to 2:8), and isolated as a yellow solid. Mp: 85-87 °C. Yield: 27.0% (222.1 mg). IR (Neat):  $\nu_{\text{max}}$  3337, 2939, 2843, 2719, 1717, 1668, 1640, 1593, 1493, 1454, 1437, 1364, 1350, 1326, 1278, 1233, 1200, 1172, 1085, 1020, 895, 881, 849, 751, 735 and 691 cm<sup>-1</sup>. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz):  $\delta$ 9.79 (1H, br s), 8.05 (1H, d, J = 9.0 Hz), 7.52 (1H, d, J = 2.5 Hz), 7.29 (1H, br s), 7.21 (1H, dd, J = 8.5, 2.0 Hz), 3.94 (3H, s), 2.64 (2H, t, J = 7.5 Hz), 2.51 (2H, t, J = 7.5 Hz), 1.91 (2H, quintet, J = 7.5 Hz). <sup>13</sup>C{<sup>1</sup>H} NMR (125 MHz, CDCl<sub>3</sub>, DEPT-135):  $\delta$ 202.2 (HC, H-C=O), 183.9 (C, C=O), 181.4 (C, C=O), 163.4 (C, C-OH), 153.1 (C), 131.1 (C), 129.1 (CH), 126.1 (C), 122.9 (C), 120.9 (CH), 109.9 (CH), 55.9 (CH<sub>3</sub>), 43.4 (CH<sub>2</sub>), 22.5 (CH<sub>2</sub>), 20.7 (CH<sub>2</sub>). HRMS (ESI-TOF) m/z: [M + H]<sup>+</sup> Calcd for C<sub>15</sub>H<sub>14</sub>O<sub>5</sub>H 275.0919; Found 275.0913.

#### 4-(3-hydroxy-6,7-dimethoxy-1,4-dioxo-1,4-dihydronaphthalen-2-yl)butanal (63e):

MeO OH OH

The compound was prepared following procedure **4d**, purified by column chromatography using EtOAc/hexane (3:7 to 4:6), and isolated as a yellow

semi-solid. Yield: 16.3% (148.8 mg). IR (Neat):  $\nu_{\text{max}}$  3263, 2948, 2926, 2843, 1713, 1655, 1642, 1577, 1505, 1458, 1339, 1301, 1280, 1264, 1202, 1180, 1120, 1092, 1016, 970, 887, 778, 752, 679, 638, 498, 450 and 422 cm<sup>-1</sup>. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz):  $\delta$  9.78 (1H, t, J = 1.6 Hz), 7.54 (1H, s), 7.47 (1H, s), 7.39 (1H, br s), 4.02 (3H, s), 4.00 (3H, s), 2.61 (2H, t, J = 7.6 Hz), 2.49 (2H, dt, J = 7.2, 1.6 Hz), 1.89 (2H, quintet, J = 7.6 Hz). <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>, DEPT-135):  $\delta$  202.3 (HC, H-C=O), 184.3 (C, C=O), 180.5 (C, C=O), 154.4 (C, C-OH), 153.2 (C), 152.6 (C), 128.0 (C), 123.4 (C), 121.8 (C), 108.7 (CH), 107.6 (CH), 56.5 (CH<sub>3</sub>), 56.5 (CH<sub>3</sub>), 43.4 (CH<sub>2</sub>), 22.4 (CH<sub>2</sub>), 20.7 (CH<sub>2</sub>). HRMS (ESI-TOF) m/z: [M + H]<sup>+</sup> Calcd for C<sub>16</sub>H<sub>16</sub>O<sub>6</sub>H 305.1025; Found 305.1019.

**4-(3-hydroxy-6-methyl-1,4-dioxo-1,4-dihydronaphthalen-2-yl)butanal (63f):** The compound was prepared following procedure **4d**, purified by the column

chromatography using EtOAc/hexane (1:9 to 1.5:8.5), and isolated as a yellow solid. Yield: 35.5% (275.0 mg).

IR (Neat):  $v_{\text{max}}$  3166, 2923, 2852, 1718, 1701, 1640,

1599, 1437, 1346, 1276, 1230, 1183, 1162, 1085, 1032, 934, 847, 743, 692, 567 and 452 cm<sup>-1</sup>. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz):  $\delta$  9.79 (1H, t, J = 1.5 Hz), 7.99 (1H, d, J = 8.0 Hz), 7.86 (1H, s), 7.55 (1H, dd, J = 8.0, 0.5 Hz), 7.48 (1H, br s), 2.65 (2H, t, J = 7.5

Hz), 2.52 (2H, dt, J = 7.5, 1.5 Hz), 2.48 (3H, s), 1.91 (2H, quintet, J = 7.5 Hz). <sup>13</sup>C{<sup>1</sup>H} NMR (125 MHz, CDCl<sub>3</sub>, DEPT-135):  $\delta$  202.4 (HC, H-C=O), 184.6 (C, C=O), 181.5 (C, C=O), 153.3 (C, C-OH), 144.0 (C), 135.6 (CH), 130.5 (C), 129.3 (C), 126.9 (CH), 126.6 (CH), 122.9 (C), 43.4 (CH<sub>2</sub>), 22.5 (CH<sub>2</sub>), 21.6 (CH<sub>3</sub>), 20.7 (CH<sub>2</sub>). HRMS (ESITOF) m/z: [M + H]<sup>+</sup> Calcd for C<sub>15</sub>H<sub>14</sub>O<sub>4</sub>H 259.0970; Found 259.0974.

#### 4-(3-hydroxy-6,8-dimethyl-1,4-dioxo-1,4-dihydronaphthalen-2-yl)butanal (63g):

The compound was prepared following procedure 4d, purified by the column

Chromatography using EtOAc/hexane (1:9 to 1.5:8.5), and isolated as a yellow semi-solid. Yield: 30.0% (245.0 mg). IR (Neat): 
$$\nu_{\text{max}}$$
 3354, 3053, 2967, 2927, 1719,

1661, 1643, 1601, 1371, 1341, 1290, 1264, 1190, 1105, 871, 733 and 702 cm<sup>-1</sup>. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz):  $\delta$  9.79 (1H, t, J = 2.0 Hz), 7.83 (1H, s), 7.34 (1H, s), 7.24 (1H, s), 2.71 (3H, s), 2.63 (2H, t, J = 7.5 Hz), 2.51 (2H, dt, J = 7.5, 1.0 Hz), 2.43 (3H, s), 1.89 (2H, quintet, J = 7.5 Hz). <sup>13</sup>C{<sup>1</sup>H} NMR (125 MHz, CDCl<sub>3</sub>, DEPT-135):  $\delta$  202.3 (HC, H-C=O), 186.6 (C, C=O), 181.9 (C, C=O), 152.0 (C, C-OH), 142.8 (C), 141.7 (C), 139.9 (CH), 130.7 (C), 127.7 (C), 125.7 (CH), 123.9 (C), 43.5 (CH<sub>2</sub>), 22.9 (CH<sub>2</sub>), 22.7 (CH<sub>3</sub>), 21.3 (CH<sub>2</sub>), 20.8 (CH<sub>3</sub>). HRMS (ESI-TOF) m/z: [M + H]<sup>+</sup> Calcd for C<sub>16</sub>H<sub>16</sub>O<sub>4</sub>H 273.1127; Found 273.1122.

#### N-(6-hydroxy-5,8-dioxo-7-(4-oxobutyl)-5,8-dihydronaphthalen-2-yl)acetamide

(63h): The compound was prepared following procedure 4d, purified by column chromatography using EtOAc/hexane (1:9 to 1.5:8.5), and isolated as

a yellow semi-solid. Yield: 11.0% (100 mg). IR (Neat):  $\nu_{\text{max}}$  3342, 2919, 2856, 1690, 1650, 1633, 1582, 1535, 1424, 1329, 1251, 1079, 1016, 802, 748, 623 and 539 cm<sup>-1</sup>. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz):  $\delta$ 9.78 (1H, t, J = 1.5 Hz), 8.26 (1H, d, J = 9.0 Hz), 8.07 (1H, d, J = 8.5 Hz), 7.84 (1H, d, J = 2.0 Hz), 7.55 (1H, s), 7.44 (1H, s), 2.64 (2H, t, J = 7.5 Hz), 2.50 (2H, dt, J = 7.5, 1.5 Hz), 2.26 (3H, s), 1.90 (2H, quintet, J = 7.5 Hz). <sup>13</sup>C { <sup>1</sup>H } NMR (125 MHz, CDCl<sub>3</sub>, DEPT-135):  $\delta$  202.2 (HC, H-C=O), 184.0 (C, C=O), 179.8 (C, C=O), 168.5 (C, N-C=O), 153.7 (C, C-OH), 144.0 (C), 134.2 (C), 128.4 (CH), 124.8 (C), 122.7 (C), 122.7 (CH), 116.6 (CH), 43.4 (CH<sub>2</sub>), 24.9 (CH<sub>3</sub>), 22.5 (CH<sub>2</sub>), 20.6 (CH<sub>2</sub>). HRMS (ESI-TOF) m/z: [M - H]<sup>+</sup> Calcd for C<sub>16</sub>H<sub>15</sub>NO<sub>5</sub>H 302.1028; Found 300.0804.

#### 5-(3-hydroxy-8-methoxy-1,4-dioxo-1,4-dihydronaphthalen-2-yl)pentanal (64b):

The compound was prepared following procedure 4d, purified by column

oMe O chromatography using EtOAc/hexane (1:9 to 1.5:8.5), and isolated as a yellow semi-solid. Yield: 9.8% (84.8 mg). IR (Neat): 
$$\nu_{\text{max}}$$
 2950, 2726, 2253, 1719, 1458, 1442,

1401, 1389, 1098, 1021, 907, 725, 647 and 517 cm<sup>-1</sup>. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz):  $\delta$  9.76 (1H, t, J = 2.0 Hz), 7.76 (1H, d, J = 6.5 Hz), 7.62 (1H, t, J = 8.0 Hz), 7.33 (1H, d, J = 8.5 Hz), 7.10 (1H, s), 4.00 (3H, s), 2.60 (2H, t, J = 7.5 Hz), 2.47 (2H, dt, J = 7.5, 1.5 Hz), 1.71 (2H, quintet, J = 7.0 Hz), 1.59 (2H, quintet, J = 8.0 Hz). <sup>13</sup>C{<sup>1</sup>H} NMR (125 MHz, CDCl<sub>3</sub>, DEPT-135):  $\delta$  202.6 (HC, H-C=O), 184.4 (C, C=O), 181.6 (C, C=O), 159.7 (C, C-OH), 151.4 (C), 134.0 (CH), 131.6 (C), 125.3 (C), 119.8 (C), 119.5 (CH), 119.0 (CH), 56.5 (CH<sub>3</sub>), 43.6 (CH<sub>3</sub>), 27.7 (CH<sub>2</sub>), 23.1 (CH<sub>2</sub>), 22.0 (CH<sub>2</sub>). HRMS (ESITOF) m/z: [M + H]<sup>+</sup> Calcd for C<sub>16</sub>H<sub>16</sub>O<sub>5</sub>H 289.1076; Found 289.1073.

#### 5-(3-hydroxy-7-methoxy-1,4-dioxo-1,4-dihydronaphthalen-2-yl)pentanal (64c):

The compound was prepared following procedure **4d**, purified by column chromatography using EtOAc/hexane (1:9 to 1.5:8.5), and isolated as a

yellow solid. Mp: 102-125 °C. Yield: 29.0% (250.8 mg). IR (Neat):  $\nu_{\text{max}}$  3340, 2961, 2934, 2843, 2359, 2331, 1719, 1639, 1582, 1433, 1343, 1242, 1090, 966, 767, 750, 685 and 599 cm<sup>-1</sup>. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz):  $\delta$  9.76 (1H, t, J = 1.5 Hz), 8.01 (1H, d, J = 8.5 Hz), 7.57 (1H, d, J = 2.5 Hz), 7.12 (1H, dd, J = 8.5, 3.0 Hz), 3.95 (3H, s), 2.60 (2H, t, J = 7.5 Hz), 2.48 (2H, dt, J = 7.0, 1.5 Hz), 1.71 (2H, quintet, J = 7.0 Hz), 1.59 (2H, quintet, J = 6.5 Hz). <sup>13</sup>C{<sup>1</sup>H} NMR (125 MHz, CDCl<sub>3</sub>, DEPT-135):  $\delta$  202.6 (HC, H-C=O), 184.6 (C, C=O), 180.0 (C, C=O), 165.2 (C, C-OH), 153.5 (C), 135.4 (C), 128.8 (CH), 122.9 (C), 122.6 (C), 119.0 (CH), 110.9 (CH), 55.9 (CH<sub>3</sub>), 43.6 (CH<sub>2</sub>), 27.6 (CH<sub>2</sub>), 22.8 (CH<sub>2</sub>), 21.9 (CH<sub>2</sub>). HRMS (ESI-TOF) m/z: [M + H]<sup>+</sup> Calcd for C<sub>16</sub>H<sub>16</sub>O<sub>5</sub>H 289.1076; Found 289.1071.

#### 5-(3-hydroxy-6-methoxy-1,4-dioxo-1,4-dihydronaphthalen-2-yl)pentanal (64d):

MeO 64d OH

The compound was prepared following procedure **4d**, purified by column chromatography using EtOAc/hexane (1:9 to 1.5:8.5), and isolated as a

yellow solid. Mp: 105-107 °C. Yield: 26.3% (227.4 mg). IR (Neat):  $\nu_{\text{max}}$  3231, 2933, 2836, 2747, 2359, 1709, 1664, 1643, 1590, 1493, 1458, 1362, 1330, 1279, 1231, 1192, 1167, 1099, 1025, 933, 848, 752, 689, 523, 459 and 429 cm<sup>-1</sup>. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz):  $\delta$ 9.77 (1H, t, J = 1.6 Hz), 8.04 (1H, d, J = 8.8 Hz), 7.51 (1H, d, J = 2.4 Hz), 7.20

(1H, dd, J = 8.4, 2.8 Hz), 3.94 (3H, s), 2.62 (2H, t, J = 7.2 Hz), 2.49 (2H, dt, J = 7.2, 1.6 Hz), 1.72 (2H, quintet, J = 6.8 Hz), 1.60 (2H, quintet, J = 6.8 Hz). <sup>13</sup>C {<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>, DEPT-135):  $\delta$  202.6 (HC, H-C=O), 184.0 (C, C=O), 181.5 (C, C=O), 163.3 (C, C-OH), 152.9 (C), 131.1 (C), 129.0 (CH), 126.2 (C), 123.6 (C), 120.7 (CH), 109.8 (CH), 55.8 (CH<sub>3</sub>), 43.6 (CH<sub>2</sub>), 27.6 (CH<sub>2</sub>), 22.8 (CH<sub>2</sub>), 21.9 (CH<sub>2</sub>). HRMS (ESI-TOF) m/z: [M + H]<sup>+</sup> Calcd for C<sub>16</sub>H<sub>16</sub>O<sub>5</sub>H 289.1076; Found 289.1070.

#### 5-(3-hydroxy-6,7-dimethoxy-1,4-dioxo-1,4-dihydronaphthalen-2-yl)pentanal

MeO

OH

OH

Using EtOAc/hexane (3:7 to 4:6), and isolated as a yellow solid. Mp: 184-190 °C. Yield: 30.0% (286.5 mg). IR (Neat): ν<sub>max</sub> 3315, 2925, 2853, 1710, 1650, 1579, 1508, 1461, 1334, 1269, 1218, 1201, 1122, 1096, 1021, 983, 888, 778 and 749 cm<sup>-1</sup>. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz): δ 9.77 (1H, s), 7.54 (1H, s), 7.47 (1H, s), 7.37 (1H, br s), 4.03 (3H, s), 4.01 (3H, s), 2.59 (2H, t, *J* = 7.5 Hz), 2.50 (2H, t, *J* = 7.0 Hz), 1.71 (2H, quintet, *J* = 7.6 Hz), 1.59 (2H, quintet, *J* = 7.0 Hz). <sup>13</sup>C{<sup>1</sup>H} NMR (125 MHz, CDCl<sub>3</sub>, DEPT-135): δ 202.6 (HC, H-*C*=O), 184.4 (C, *C*=O), 180.5 (C, *C*=O), 154.3 (C, *C*-OH), 153.0 (C), 152.5 (C), 128.0 (C), 123.4 (C), 122.4 (C), 108.6 (CH), 107.6 (CH), 56.5 (CH<sub>3</sub>), 56.4 (CH<sub>3</sub>), 43.6 (CH<sub>2</sub>), 27.6 (CH<sub>2</sub>), 22.7 (CH<sub>2</sub>), 21.8 (CH<sub>2</sub>). HRMS (ESI-TOF) *m/z*: [M + H]<sup>+</sup> Calcd for C<sub>17</sub>H<sub>18</sub>O<sub>6</sub>H 319.1182; Found 319.1176.

5-(3-hydroxy-6-methyl-1,4-dioxo-1,4-dihydronaphthalen-2-yl)pentanal (64f): The compound was prepared following procedure 4d, purified by column chromatography

using EtOAc/hexane (1:9 to 2:8), and isolated as a yellow solid. Mp: 88-90°C. Yield: 41.0% (335.0mg). IR (Neat):  $\nu_{\text{max}}$  3107, 2948, 2850, 1704, 1669, 1642, 1598, 1342,

1273, 1243, 1188, 1159, 1093, 908, 745, 691 and 454 cm<sup>-1</sup>. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz):  $\delta$ 9.78 (1H, br t, J = 1.4 Hz), 8.00-7.97 (1H, m), 7.86 (1H, s),

7.53 (1H, br d, J = 7.0 Hz), 7.45 (1H, br, s), 2.62 (2H, t, J = 6.8 Hz), 2.52-2.48 (2H, m), 2.48 (3H, s), 1.72 (2H, quintet, J = 7.2 Hz), 1.61 (2H, quintet, J = 7.6 Hz).  $^{13}$ C{ $^{1}$ H} NMR (100 MHz, CDCl<sub>3</sub>, DEPT-135):  $\delta$  202.6 (HC, H-C=O), 184.6 (C, C=O), 181.6 (C, C=O), 153.1 (C, C-OH), 143.9 (C), 135.5 (CH), 130.6 (C), 129.3 (C), 126.9 (CH), 126.5 (CH), 123.6 (C), 43.6 (CH<sub>2</sub>), 27.6 (CH<sub>2</sub>), 22.8 (CH<sub>2</sub>), 21.9 (CH<sub>2</sub>), 21.6 (CH<sub>3</sub>). HRMS (ESI-TOF) m/z: [M + H]<sup>+</sup> Calcd for C<sub>16</sub>H<sub>16</sub>O<sub>4</sub>H 273.1127; Found 273.1129.

#### 5-(3-hydroxy-6,8-dimethyl-1,4-dioxo-1,4-dihydronaphthalen-2-yl)pentanal (64g):

The compound was prepared following procedure 4d, purified by column

chromatography using EtOAc/hexane (3:7 to 4:6), and isolated as a yellow semi-solid. Yield: 32.0% (275.0 mg). IR (Neat):  $\nu_{\text{max}}$  3230, 2932, 2834,

2359, 2334, 1709, 1664, 1642, 1590, 1493, 1458, 1362,1330, 1279, 1231, 1192, 1167, 1099, 1025, 933, 848, 752, 689, 523, 460 and 430 cm<sup>-1</sup>. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz):  $\delta$  9.76 (1H, t, J = 1.5 Hz), 7.81 (1H, s), 7.32 (1H, s), 7.18 (1H, s), 2.69 (3H, s), 2.59 (2H, t, J = 7.5 Hz), 2.48 (2H, dt, J = 7.5, 1.5 Hz), 2.41 (3H, s), 1.71 (2H, quintet, J = 7.5 Hz), 1.57 (2H, quintet, J = 8.0 Hz). <sup>13</sup>C { <sup>1</sup>H } NMR (125 MHz, CDCl<sub>3</sub>, DEPT-135):  $\delta$  202.5 (HC, H-C=O), 186.7 (C, C=O), 181.9 (C, C=O), 151.8 (C, C-OH), 142.7 (C), 141.6

(C), 139.8 (CH), 130.7 (C), 127.8 (C), 125.6 (CH), 124.6 (C), 43.6 (CH<sub>2</sub>), 27.7 (CH<sub>2</sub>), 23.0 (CH<sub>2</sub>), 22.9 (CH<sub>3</sub>), 22.0 (CH<sub>2</sub>), 21.3 (CH<sub>3</sub>). HRMS (ESI-TOF) *m/z*: [M + H]<sup>+</sup> Calcd for C<sub>17</sub>H<sub>18</sub>O<sub>4</sub>H 287.1283; Found 287.1279.

#### N-(6-hydroxy-5,8-dioxo-7-(5-oxopentyl)-5,8-dihydronaphthalen-2-yl)acetamide

(64h): The compound was prepared following procedure 4d, purified by column

chromatography using EtOAc/hexane (5:5), and isolated as a yellow semi-solid. Yield: 18.0% (170.3 mg). IR (Neat):  $\nu_{\text{max}}$  3336, 2939, 2869,

2157, 2033, 2012, 1718, 1683, 1666, 1586, 1537, 1421, 1369, 1335, 1263, 1129, 731, 702 and 452 cm<sup>-1</sup>. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 500 MHz): aldehyde:  $\delta$  9.66 (1H, t, J = 1.5 Hz), 8.17 (1H, br d, J = 8.5 Hz), 7.90 (1H, dd, J = 8.5, 3.0 Hz), 7.74 (1H, dd, J = 5.0, 2.0 Hz), 2.48 (2H, quintet, J = 7.5 Hz), 2.11 (3H, s), 1.58-1.54 (1H, m), 1.54-1.52 (1H, m), 1.51-1.48 (2H, m), 1.46-1.41 (2H, m). hemiacetal:  $\delta$  8.17 (1H, br d, J = 8.5 Hz), 7.90 (1H, dd, J = 8.5, 3.0 Hz), 7.74 (1H, dd, J = 5.0, 2.0 Hz), 4.41 (1H, t, J = 5.5 Hz), 2.48 (2H, quintet, J = 7.5 Hz), 2.41 (2H, dt, J = 7.0, 1.5 Hz), 2.11 (3H, s), 1.62 (2H, quintet, J = 7.5 Hz), 1.36 (2H, quintet, J = 7.0 Hz). <sup>13</sup>C{<sup>1</sup>H} NMR (125 MHz, CDCl<sub>3</sub>, DEPT-135) aldehyde:  $\delta$  203.4 (HC, H-C=O), 185.2 (C, C=O), 179.9 (C, C=O), 170.2 (C, C=O), 154.8 (C), 144.7 (C), 133.7 (C), 127.9 (CH), 124.7 (C), 123.9 (C), 122.5 (CH), 116.3 (CH), 43.4 (CH<sub>2</sub>), 27.7 (CH<sub>2</sub>), 24.4 (CH<sub>2</sub>), 23.8 (CH<sub>3</sub>), 22.5 (CH<sub>2</sub>). hemiacetal:  $\delta$  185.1 (C, C=O), 179.9 (C, C=O), 170.2 (C, C=O), 179.9 (C, C=O), 179.9 (C, C=O), 170.2 (C, C=O), 179.9 (C, C=O), 179.9 (C, C=O), 170.2 (C, C=O), 179.9 (C, C=O), 179.9 (C, C=O), 170.2 (C, C=O), 170.9 (CH), 186.6 (CH), 36.3 (CH<sub>2</sub>), 27.3 (CH<sub>2</sub>),

23.8 (CH<sub>3</sub>), 22.8 (CH<sub>2</sub>), 21.7 (CH<sub>2</sub>). HRMS (ESI-TOF) m/z: [M + H]<sup>+</sup> Calcd for  $C_{17}H_{17}NO_5H$  316.1185; Found 316.1182.

#### 8. REFERENCES

- [1] a) A. C. Dweck, *Int. J. Cosmet. Sci.* 2002, 24, 287-302; b) E. Porez-Sacau, R. G. D'az-PeÇte, A. EstHvez-Braun, A. G. Ravelo, J. M. Garc'a-Castellano, L. Pardo, M. Campillo, *J. Med. Chem.* 2007, 50, 696–706; c) R. Pradhan, P. Dandawate, A. Vyas, S. Padhye, B. Biersack, R. Schobert, A. Ahmad, F. H. Sarkar, *Curr. Drug Targets* 2012, 13, 1777–1798; d) H. R. Nasiri, M. G. Madej, R. Panisch, M. Lafontaine, J. W. Bats, C. R. D. Lancaster, H. Schwalbe, *J. Med. Chem.* 2013, 56, 9530–9541; e) D. K. Singh, S. Luqman, A. K. Mathur, *Ind. Crops Prod.* 2015, 65, 269–286; f) A. K. Jordao, M. D. Vargas, A. C. Pinto, F. de C. da Silva, V. F. Ferreira, *RSC Adv.* 2015, 5, 67909-67943 and references cited therein.
- [2] For synthetic application on lawsone see: a) L. O. Planes, C. R. Escrich, M. A. Pericas, Catal. Sci. Technol. 2016, 6, 4686–4689; b) U. Kaya, P. Chauhan, D. Hack, K. Deckers, R. Puttreddy, K. Rissanenb, D. Enders, Chem. Commun. 2016, 52, 1669-1672; c) V. P. R. Gajulapalli, K. Lokesh, M. Vishwanath, V. Kesavan, RSC Adv. 2016, 6, 12180-12184; d) S. J. Yin, S. Y. Zhang, J. Q. Zhang, B. B. Sun, W. T. Fan, B. Wu, X. W. Wang, RSC Adv. 2016, 6, 84248-84254; e) T. Jichu, T. Inokuma, K. Aihara, T. Kohiki, K. Nishida, A. Shigenaga, K. Yamada, A. Otaka, ChemCatChem. 2018, 10, 3402-3405; f) M. Rombola, V. H. Rawal, Org. Lett. 2018, 20, 514-517; g) X. Chen, D. Gao, D. Wang, T. Xu, W. Liu, P. Tian, X. Tong, Angew. Chem. Int. Ed. 2019, 58, 15334-15338; Angew. Chem. 2019, 131, 15478-15482; h) R. S. Tukhvatshin, A. S. Kucherenko, Y. V. Nelyubina, S. G. Zlotin, J. Org. Chem. 2019, 84, 13824-13831; i) S. Nagy, G. Dargo. P. Kisszekelyi, Z. Feher, A. Simon, J. Barabas, T. Holtzl, B. Matravolgyi, L. Karpati, L. Drahos, P. HuszthY, J. Kupai, New J. Chem. 2019, 43, 5948-5959; j) Z. Zhenga, J. Linb, Y. Suna, S. Zhang, Tet. Lett. 2020, 61 151382-1511385; k) X. Q. Zhang, X. J. Lv, J. P. Pei, R. Tan, Y. K. Liu, Org. Chem. Front. 2020, 7, 292-297; l) K. Yanga, Z. Maa, H. X. Tonga, X. Q. Suna, X. Y. Hua, Z. Y. Li, Chin. Chem. Lett. 2020, 31, 3259-3262.
- [3] For synthetic application on lawsone see: a) G. Zhang, Y. Wang, W. Zhang, X. Xu, A. Zhong, D. Xu, *Eur. J. Org. Chem.* **2011**, 2142–2147; b) I. Abraham, R. Joshi,

- P. Pardasani, R.T. Pardasani, *J. Braz. Chem. Soc.* **2011**, *22*, 385-421; c) X. Lu, A. Altharawi, J. Gut, P. J. Rosenthal, T. E. Long, *ACS Med. Chem. Lett.* **2012**, *3*, 1029–1033; d) B. Hosamani, M. F. Ribeiro, E. N. da Silva Júnior, I. N. N. Namboothiri, *Org. Biomol. Chem.* **2016**, *14*, 6913-6931 and references cited therein.
- [4] a) J. B. Stephen, H. S. Sharon, *Science* **2003**, *301*, 1196-1202; b) S. Mukherjee, J. W. Yang, S. Hoffmann, B. List, *Chem. Rev.* **2007**, *107*, 5471-5569; c) A. Erkkila, I. Majander, P. Pihko, *Org. Biomol. Chem.* **2011**, *9*, 1277-1300; d) Ding, C. -H.; Hou, X. -L. *Chem. Rev.* **2011**, *111*, 1914-1937; e) D. B. Ramachary, Y. V. Reddy, *Eur. J. Org. Chem.* **2012**, *5*, 865-887; f) Souillart, L.; N. Cramer, *Chem. Rev.* **2015**, *115*, 9410-9464; g) Anebouselvy, K.; Shruthi, K. S.; Ramachary, D. B. *Eur. J. Org. Chem.* **2017**, *2017*, 5460-5483; h) Ambler, B. R.; Woo, S. K.; Krische, M. J. *ChemCatChem* **2019**, *11*, 324-332.
- [5] a) L. N. Chavan, K. K. Gollapelli, R. Chegondi, A. B. Pawar, *Org. Lett.* **2017**, *19*, 2186-2189; b) C. Clarke, C. A. Incerti-Pradillos, H. W. Lam, *J. Am. Chem. Soc.* **2016**, *138*, 8068-8071; c) K. K. Gollapelli, S. Kallepu, N. Govindappa, J. B. Nanubolu, R. Chegondi, *Chem. Sci.* **2016**, *7*, 4748-4753; d) S. Kallepu, K. K. Gollapelli, J. B. Nanubolu, R. Chegondi, *Chem. Commun.* **2015**, *51*, 16840-16843 and references cited therein.
- [6] a) M. Fagnoni, P. Schmoldt, T. Kirschberg, J. Mattay, *Tetrahedron* **1998**, *54*, 6427-6444; b) K. Ohta, T. Kobayashi, G. Tanabe, O. Muraoka, M. Yoshimatsu, *Chem. Pharm. Bull.* **2010**, *58*, 1180; c) S. Luo, C. Xu, L. Zhang, *Faming Zhuanli Shenqing* **2014**, CN 103553931 A, CODEN: CNXXEV, CAN 160:326598 (in Chinese: 16 pp); d) L. M. Schneider, V. M. Schmiedel, T. Pecchioli, D. Lentz, C. Merten, M. Christmann, *Org. Lett.* **2017**, *19*, 2310-2313.
- [7] a) G. Buchi, B. Egger, J. Org. Chem. 1971, 36, 2021-2023; b) S. D. Najdi, M. M. Olmstead, N. E. Schore, J. Organomet. Chem. 1992, 431, 335-358; c) D. Bourgeois, J. Y. Lallemand, A. Pancrazi, J. Prunet, Synlett 1999, 10, 1555-1558; d) B. M. Partridge, J. S. Gonzalez, H. W. Lam, Angew. Chem. Int. Ed. 2014, 53, 6523-6527; Angew. Chem. 2014, 126, 6641-6645; e) B. M. Partridge, M. Callingham, W. Lewis, H. W. Lam, Angew. Chem. Int. Ed. 2017, 56, 7227-7232; Angew. Chem.

- **2017**, *129*, 7333-7338; f) L. M. Schneider, V. M. Schmiedel, T. Pecchioli, D. Lentz, C. Merten, M. Christmann, *Org. Lett.* **2017**, *19*, 2310-2313; g) J. M. Zanghi, S. Liu, S. J. Meek, *Org. Lett.* **2019**, *21*, 5172-5177.
- [8] For original papers on the development of organocatalytic reductive coupling reaction, see: a) A. S. Kumar, G. Thirupathi, G. S. Reddy, D. B. Ramachary, *Chem. Eur. J.* **2019**, *25*, 1177-1183; b) S. Peraka, A. Hussain, D. B. Ramachary, *J. Org. Chem.* **2018**, *83*, 9795-9817; c) D. B. Ramachary, S. Jain, *Org. Biomol. Chem.* **2011**, *9*, 1277-1300; d) D. B. Ramachary, M. Kishor, *Org. Biomol. Chem.* **2010**, *8*, 2859–2867; e) D. B. Ramachary, Y. V. Reddy, *J. Org. Chem.* **2010**, *75*, 74-85; f) D. B. Ramachary, M. Kishor, Y. V. Reddy, *Eur. J. Org. Chem.* **2008**, 975-993; g) D. B. Ramachary, M. Kishor, *J. Org. Chem.* **2007**, *72*, 5056-5068; h) D. B. Ramachary, M. Kishor, G. Babul Reddy, *Org. Biomol. Chem.* **2006**, *4*, 1641-1646 and references cited therein.
- [9] During the preparation of this manuscript, paper appeared on propargylation of malononitrile and 3-oxo-3-arylpropanenitriles, see: T.-T. Kao, B.-K. Peng, M.-C. Liang, C.-J. Lee, I-C. Chen, K.-S. Shia, Y.-K. Wu, *J. Org. Chem.* **2018**, *83*, 14688-14697.
- [10] a) V. V. Rostovtsev, L. G. Green, V. V. Fokin, K. B. Sharpless, *Angew. Chem. Int. Ed.* **2002**, *41*, 2596-2599; *Angew. Chem.* **2002**, *114*, 2708-2711; b) N. J. Agard, J. A. Preschner, C. R. Bertozzi, *J. Am. Chem. Soc.* **2004**, *126*, 15046-15047; c) D. B. Ramachary, K. Ramakumar, V. V. Narayana, *Chem. Eur. J.* **2008**, *14*, 9143-9147; d) D. B. Ramachary, A. B. Shashank, S. Karthik, *Angew. Chem. Int. Ed.* **2014**, *53*, 10420-10424; *Angew. Chem.* **2014**, *126*, 10588-10592; e) W. Li, J. Wang, *Angew. Chem. Int. Ed.* **2014**, *53*, 14186-14190; *Angew. Chem.* **2014**, *126*, 14410-14414; f) J. Thomas, J. John, N. Parekh, W. Dehaen, *Angew. Chem. Int. Ed.* **2014**, *53*, 10155-10159; *Angew. Chem.* **2014**, *126*, 10319-10323; g) K. Anebouselvy, D. B. Ramachary, *Click Reactions in Organic Synthesis*, **2016**, 99–140 (DOI: 10.1002/9783527694174.ch4) and references cited therein.
- [11] a) T. Kusakabe, Y. Kawai, R. Shen, T. Mochida, K. Kato, *Org. Biomol. Chem.* **2012**, *10*, 3192-3194; b) S. Yaragorla, A. Pareek, R. Dada, *Tetrahedron Lett.* **2017**,

- 58, 4642-4647; c) S. S. Thorat, P. Kataria, R. Kontham, *Org. Lett.* **2018**, *20*, 872-875.
- [12] For dihydropyran as a structural motif found in many bioactive natural products and drugs, see: a) K. C. Nicolaou, J. A. Pfefferkorn, A. J. Roecker, G.-Q. Cao, S. Barluenga, H. J. Mitchell, *J. Am. Chem. Soc.* **2000**, *122*, 9939–9953; b) A. Mahadevan, C. Siegel, B. R. Martin, M. E. Abood, I. Beletskaya, R. K. Razdan, *J. Med. Chem.* **2000**, *43*, 3778-3785; c) D. A. Horton, G. T. Bourne, M. L. Smythe, *Chem. Rev.* **2003**, *103*, 893-930; d) S. Robert, C. Bertolla, B. Masereel, J. M. Dogné, L. Pochet, *J. Med. Chem.* **2008**, *51*, 3077-3080; e) R. Pratap, V. J. Ram, *Chem. Rev.* **2014**, *114*, 10476-10526.
- [13] CCDC-1945750 (**35eh**) contains the supplementary crystallographic data for this paper. This data can be obtained free of charge from The Cambridge Crystallographic Data Centre.
- [14] a) O. I. Yurchenko, N. V. Gritsai, T. N. Dybova, N. V. Komarov, 1- Russ. J. Org. Chem. 1998, 34, 1205; b) D. Monge, K. L. Jensen, P. T. Franke, L. Lykke, K. A. Jørgensen, Chem. Eur. J. 2010, 16, 9478-9484; c) D. Worgull, G. Dickmeiss, K. L. Jensen, P. T. Franke, N. Holub, K. A. Jørgensen, Chem. Eur. J. 2011, 16, 4075-4081; d) P.-F. Dai, J.-P. Qu, Y.-B. Kang, Org. Lett. 2019, 21, 1393-1396.
- [15] For medicinally important benzobicyclo[3.2.1]octanes see: a) M. Rueping, E. Sugiono, E. Merino, *Angew. Chem. Int. Ed.* **2008**, *47*, 3046–3049; *Angew. Chem.* **2008**, *120*, 3089–3092; b) W.-M. Zhou, H. Liu, D.-M. Du, *Org. Lett.* **2008**, *10*, 2817–2820; c) X. Lu, A. Altharawi, J. Gut, P. J. Rosenthal, T. E. Long, *ACS Med. Chem. Lett.* **2012**, *3*, 1029–1033; d) G. Sakoulas, S.-J. Nam, S. Loesgen, W. Fenical, P. R. Jensen, V. Nizet, M. Hensler, *PLoS ONE* **2012**, *7*, e29439; e) L. Kaysser, P. Bernhardt, S.-J. Nam, S. Loesgen, J. Graham Ruby, P. Skewes-Cox, P. R. Jensen, W. Fenical, B. S. Moore, *J. Am. Chem. Soc.* **2012**, *134*, 11988–11991; f) M. Presset, Y. Coquerel, J. Rodriguez, *Chem. Rev.* **2013**, *113*, 525–595; g) R. Teufel, L. Kaysser, M. T. Villaume, S. Diethelm, M. K. Carbullido, P. S. Baran, B. S. Moore, *Angew. Chem. Int. Ed.* **2014**, *53*, 11019–11022; *Angew. Chem.* **2014**, *126*, 11199–11202; h) R. Meier, S. Strych, D. Trauner, *Org. Lett.* **2014**, *16*, 2634–2637; i) D. K.

Nair, R. F. S. Menna-Barreto, E. N. da Silva Jfflnior, S. M. Mobin, I. N. N. Namboothiri, *Chem. Commun.* **2014**, *50*, 6973–6976; j) S. Kallepu, K. K. Gollapelli, J. B. Nanubolu, R. Chegondi, *Chem. Commun.* **2015**, *51*, 16840-16843; k) R. Promontorio, J. A. Richard, C. M. Marson, *RSC Adv.* **2016**, *6*, 114412-114424; l) S. Um, D. -H. Bach, B. Shin, C. H. Ahn, S. H. Kim, H. S. Bang, K. B. Oh, S. K. Lee, J. Shin, D. C. Oh, *Org. Lett.* **2016**, *18*, 5792–5795; m) B. Ljpez-P8rez, H. P. Pepper, R. Ma, B. J. Fawcett, A. D. Pehere, Q. Wei, Z. Ji, S. W. Polyak, H. Dai, F. Song, A. D. Abell, L. Zhang, J. H. George, *ChemMedChem* **2017**, *12*, 1969–1976; n) Z. D. Miles, S. Diethelm, H. P. Pepper, D. M. Huang, J. H. George, B. S. Moore, *Nat. Chem.* **2017**, *9*, 1235–1242; o) C. T. Walsh, B. S. Moore, *Angew. Chem. Int. Ed.* **2019**, *58*, 6846–6879; *Angew. Chem.* **2019**, *131*, 6918–6952; p) I. Sagud, I. Skoric, D. Vuk, A. Ratkovic, F. Burcul, *Turk. J. Chem.* **2019**, *43*, 1170 – 1182; q) T. Cadez, A. Grgcevic, R. Ahmetovic, D. Baric, N. M. Hrvat. Z. Kovarik, I. Skoric, *Molecules* **2020**, *25*, 4872.

[16] For the synthesis of bicyclo[3.2.1]octanes see: a) H. Sasai, T. Suzuki, S. Arai, T. Arai, M. Shibasaki, J. Am. Chem. Soc. 1992, 114, 4418-4420; b) N. Itagaki, M. Kimura, T. Sugahara, Y. Iwabuchi, Org. Lett. 2005, 7, 4185-4188; c) C. L. Cao, X. -L. Sun, Y. B. Kang, Y. Tang, Org. Lett. 2007, 9, 4151-4154; d) M. Movassaghi, B. Chen, Angew. Chem. Int. Ed. 2007, 46, 565-568; Angew. Chem. 2007, 119, 571–574; e) L. Bernardi, J. López-Cantarero, B. Niess, K. A. Jørgensen, J. Am. Chem. Soc. 2007, 129, 5772-5778; f) M. Rueping, A. Kuenkel, F. Tato, J. W. Bats, Angew. Chem. Int. Ed. 2009, 48, 3699-3702; Angew. Chem. 2009, 121, 3754–3757; g) C. -L. Cao, Y. -Y. Zhou, J. Zhou, X. -L. Sun, Y. Tang, Y. -X. Li, G. -Y. Li, J. Sun, Chem. Eur. J. 2009, 15, 11384-11389.

[17] For the synthesis of methanobenzo[7]annulenes see: a) G. L. Grunewald, K. M. Markovich, D. J. Sall, *J. Med. Chem.* 1987, 30, 2191-2208; b) T. A. Engler, M. A. Letavic, R. Iyengar, K. O. LaTessa, J. P. Reddy, *J. Org. Chem.* 1999, 64, 2391–2405; c) K. C. Nicolaou, D. L. F. Gray, *J. Am. Chem. Soc.* 2004, 126, 607-612; d) C. G. Bashore, M. G. Vetelino, M. C. Wirtz, P. R. Brooks, H. N. Frost, R. E. McDermott, D. C. Whritenour, J. A. Ragan, J. L. Rutherford, T. W. Makowski, S. J. Brenek, J. W. Coe, *Org. Lett.* 2006, 8, 5947-5950.

- [18] For the applications of TCRA see: a) K. Hiroya, Y. Ichihashi, A. Furutono, K. Inamoto, T. Sakamoto, T. Doi, *J. Org. Chem.* **2009**, *74*, 6623-6630; b) L. Miao, H. Shu, A. R. Noble, S. P. Fournet, E. D. Stevens, M. L. Trudell, *Arkivoc* **2010**, *4*, 6-14; c K. Hiroya, Y. Ichihashi, Y. Suwa, T. Ikai, K. Inamoto, T. Doi, *Tetrahedron Lett.* **2010**, *51*, 3728-3731; d) P. K. Amancha, H. –J. Liu, T. W. Ly, K. –S. Shia, *Eur. J. Org. Chem.* **2010**, 3473-3480; e) K. Hiroya, Y. Suwa, Y. Ichihashi, K. Inamoto, T. Doi, *J. Org. Chem.* **2011**, *76*, 4522-4532; f) E. Elamparuthi, C. Fellay, M. Neuburger, K. Gademann, *Angew. Chem. Int. Ed.* **2012**, *51*, 4071-4073; *Angew. Chem.* **2012**, *124*, 4147–4149.
- [19] For the applications of TCRA see: a) C. Ballatore, J. H. Soper, F. Piscitelli, M. James, L. Huang, O. Atasoylu, D. M. Huryn, J. Q. Trojanowski, V. M. –Y. Lee, K. R. Brunden, A. B. Smith III, *J. Med. Chem.* 2011, 54, 6969-6983; b) J. Tummatorn, G. B. Dudley, *Org. Lett.* 2011, 13, 1572-1575; c) L. Li, W. K. S. Chua, *Tetrahedron Lett.* 2011, 52, 1392-1394; d) Y. –C. Wong, C. –T. Tseng, T. –T. Kao, Y. –C. Yeh, K. –S. Shia, *Org. Lett.* 2012, 14, 6024-6027; e) N. D. Ide, J. A. Ragan, G. Bellavance, S. J. Brenek, E. M. Cordi, G. O. Jensen, K. N. Jones, D. LaFrance, K. R. Leeman, L. J. Letendre, D. Place, C. L. Stanchina, G. W. Sluggett, H. Strohmeyer, *Org. Process Res. Dev.* 2014, 18, 45-56; f) E. E. Kim, E. O. Onyango, L. Fu, G. W. Gribble, *Tetrahedron Lett.* 2015, 56, 6707–6710; g) E. E. Kim, E. O. Onyango, J. R. Pace, T. M. Abbot, L. Fu, G. W. Gribble, *Tetrahedron Lett.* 2016, 57, 864–867.
- [20] For Michael based domino reactions, see: a) D. B. Ramachary, P. S. Reddy, M. S. Prasad, *Eur. J. Org. Chem.* **2014**, 3076–3081 and references cited therein; For *enolexo* cyclizations, see: b) J. E. Baldwin, M. J. Lusch, *Tetrahedron* **1982**, *38*, 2939-2941; c) C. Pidathala, L. Hoang, N. Vignola, B. List, *Angew. Chem. Int. Ed.* **2003**, *42*, 2785–2788; *Angew. Chem.* **2003**, *115*, 2891–2894; d) D. Enders, O. Niemeier, L. Straver, *Synlett* **2006**, 3399–3402; e) M. K. Georgieva, F. J. S. Duarte, M. V. B. Queirós, A. G. Santos, *J. Org. Chem.* **2012**, *77*, 5569–5576.
- [21] For the application of cinchona alkaloids in asymmetric organocatalysis, see: a) P. McDaid, Y. Chen, L. Deng, *Angew. Chem. Int. Ed.* **2002**, *41*, 338-340; *Angew. Chem.* **2002**, *114*, 348-350; b) C. Christensen, K. Juhl, R. G. Hazell, K. A. Jørgensen,

J. Org. Chem. 2002, 67, 4875-4881; c) S.-K. Tian, Y. Chen, J. Hang, L. Tang, P. Mcdaid, L. Deng, Acc. Chem. Res. 2004, 37, 621-631; d) S. Saaby, M. Bella, K. A. Jørgensen, J. Am. Chem. Soc. 2004, 126, 8120-8121; e) H. Li, Y. Wang, L. Tang, L. Deng, J. Am. Chem. Soc. 2004, 126, 9906-9907; f) H. Li, Y. Wang, L. Tang, F. Wu, X. Liu, C. Guo, B. M. Foxman, L. Deng, Angew. Chem. Int. Ed., 2005, 44, 105-108; Angew. Chem. 2005, 117, 107–110; g) H. Li, J. Song, X. Liu, L. Deng, J. Am. Chem. Soc., 2005, 127, 8948-8949; h) S. H. McCooey, S. J. Connon, Angew. Chem. Int. Ed. 2005, 44, 6367-6370; Angew. Chem. 2005, 117, 6525-6528; i) X. Liu, H. Li, L. Deng, Org. Lett. 2005, 7, 167-169; j) H. Li, Y.-Q. Wang, L. Deng, Org. Lett. 2006, 8, 4063-4065; k) S. Brandes, M. Bella, A. Kjærsgaard, K. A. Jørgensen, Angew. Chem. Int. Ed. 2006, 45, 1147-1151; Angew. Chem. 2006, 118, 1165-1169; 1) S. Brandes, B. Niess, M. Bella, A. Prieto, J. Overgaard, K. A. Jørgensen, Chem. Eur. J. 2006, 12, 6039-6052; m) H. Li, B. Wang, L. Deng, J. Am. Chem. Soc. 2006, 128, 732-733; n) Y. Wang, X. Liu, L. Deng, J. Am. Chem. Soc. **2006**, 128, 3928-3930; o) F. Wu, H. Li, R. Hong, L. Deng, Angew. Chem. Int. Ed. 2006, 45, 947-950; Angew. Chem. 2006, 118, 961–964; p) J. Wang, H. Li, L. Zu, W. Wang, Org. Lett. 2006, 8, 1391-1394; q) F. Wu, R. Hong, J. Khan, X. Liu, L. Deng, Angew. Chem. Int. Ed. **2006**, 45, 4301-4305; Angew. Chem. **2006**, 118, 4407–4411; r) T. Mandal, S. Samanta, C.-G. Zhao, *Org. Lett.* **2007**, *9*, 943-945; s) S. J. Connon, *Chem. Commun.* **2008**, 2499-2510; t) D. B. Ramachary, R. Sakthidevi, K. S. Shruthi, *Chem. Eur. J.* 2012, 18, 8008-8012; u) D. B. Ramachary, R. Madhavachary, M. S. Prasad, Org. Biomol. Chem. 2012, 10, 5825-5829; v) D. B. Ramachary, Ch. Venkaiah, P. M. Krishna, Chem. Commun. 2012, 48, 2252-2254; w) D. B. Ramachary, Ch. Venkaiah, R. Madhavachary, Org. Lett. 2013, 15, 3042–3045; x) D. B. Ramachary, K. S. Shruthi, Org. Biomol. Chem. 2014, 12, 4300-4304.

- [22] CCDC-1555167 [(-)-**51da**] and CCDC-1555168 [(-)-**51ea**] contains the supplementary crystallographic data for this paper.
- [23] a) D. B. Ramachary, N. S. Chowdari, C. F. Barbas III, Angew. Chem. Int. Ed.
  2003, 42, 4233–4237; Angew. Chem. 2003, 115, 4365–4369; b) D. B. Ramachary,
  C. F. Barbas III, Chem. Eur. J. 2004, 10, 5323–5331; c) B. List, Angew. Chem. Int.
  Ed. 2010, 49, 1730–1734; Angew. Chem. 2010, 122, 1774–1779.

- [24] a) L. F. Tietze, U. Beifuss in Comprehensive Organic Synthesis Vol. 2 (Ed.: B. M. Trost), Pergamon, Oxford, UK, 1991, pp. 341–394; b) L. F. Tietze, S. Brand, T. Pfeiffer, J. Antel, K. Harms, G. M. Sheldrick, J. Am. Chem. Soc. 1987, 109, 921–923; c) L. F. Tietze, H. Geissler, J. Fennen, T. Brumby, S. Brand, G. Schulz, J. Org. Chem. 1994, 59, 182–191; d) L. F. Tietze, C. Schenke, Angew. Chem. Int. Ed. Engl. 1995, 34, 1731–1733; Angew. Chem. 1995, 107, 1901–1903; e) L. F. Tietze, Chem. Rev. 1996, 96, 115–136; f) D. Enders, C. Grondal, M. R. M. Hettl, Angew. Chem. Int. Ed. 2007, 46, 1570–1581; Angew. Chem. 2007, 119, 1590–1601; g) Y. Hayashi, M. Toyoshima, H. Gotoh, H. Ishikawa, Org. Lett. 2009, 11, 45–48; h) Ł. Albrecht, B. Richter, C. Vila, H. Krawczyk, K. A. Jørgensen, Chem. Eur. J. 2009, 15, 3093–3102; i) A. Lee, A. Michrowska, S. Sulzer-Mosse, B. List, Angew. Chem. Int. Ed. 2011, 50, 1707–1710; Angew. Chem. 2011, 123, 1745–1748; j) D. B. Ramachary, S. Jain, Org. Biomol. Chem. 2011, 9, 1277–1300; k) D. B. Ramachary, Y. V. Reddy, Eur. J. Org. Chem. 2012, 2012, 865–887; l) L. G. Voskressensky, A. A. Festa, A. V. Varlamov, Tetrahedron 2014, 70, 551–572.
- [25] For the synthesis of methanobenzo[f]azulenes see: a) Z. Wang, J. Ren, Z. Wang, Org. Lett. 2013, 15, 5682–5685; b) H. P. Pepper, J. H. George, Angew. Chem. Int. Ed. 2013, 52, 12170–12173; Angew. Chem. 2013, 125, 12392–12395; c) S. Diethelm, R. Teufel, L. Kaysser, B. S. Moore, Angew. Chem. Int. Ed. 2014, 53, 11023–11026; Angew. Chem. 2014, 126, 11203–11206; d) M. Brandst-tter, M. Freis, N. Huwyler, E. M. Carreira, Angew. Chem. Int. Ed. 2019, 58, 2490–2494; Angew. Chem. 2019, 131, 2512–2516; e) B. Jiang, B.-X. Xiao, Q. Ouyang, H.-P. Liang, W. Du, Y.-C. Chen, Org. Lett. 2019, 21, 3310–3313.
- [26] CCDC 1910178 (**69aa**), 1910179 (**69ai**), 1910181 (**69ar**), 1910182 (**69al**), 1910180 (**69ap**), 1910183 (**70ad**) and 1910184 (**73aa**) contain the supplementary crystallographic data for this paper. These data are provided free of charge by The Cambridge Crystallographic Data Centre.
- [27] For racemic synthesis of Benzocyclo[3.2.1]octane see: a) H. Morrison, K. Muthuramu, D. Severance, *J. Org. Chem.* **1986**, *51*, 4681-4687; b) Y. Taskesenligil, M. balci, *Tetrahedron* **1995**, *51*, 7993-7998; c) F. Tumer, Y. Taskesenligil, M. Balci,

J. Org. Chem. 2001, 66, 3806-3810; d) I. Kikas, O. Horvath, I. Skoric, Tet. Let. 2011, 52, 6255-6259; e) D. Vuk, Z. Marinic, I. Skorica, Croat. Chem. Acta 2014, 87, 465-473; f) I. Sagud, S. Bozic, Z. Marinic, M. S. Kulyk, Beilstein J. Org. Chem. 2014, 10, 2222-2229; g) J. Sakata, Y. Ando, K. Ohmori, K. Suzuki, Org. Lett. 2015, 17, 3746-3749; h) X. Su, Y. Sun, J. Yao, H. Chen, C. Chen, Chem. Commun. 2016, 52, 4537-4540; i) D. Vuk, I. Skoric, V. Milasinovic, K. Molcanov, Z. Marinic, Beilstein J. Org. Chem. 2020, 16, 1092-1099.

[28] a) Z. Yuan, Y. Zeng, Z. Feng, Z. Guan, A. Lin, H. Yao, Nat. Commun. **2020**, 11, 2544-2552.

[29] CCDC 2056687 [(+)-71cd], 2056686 [(+)-72ad] and 2056785 [82ac] contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre.

#### ABOUT THE AUTHOR



June 2015 onwards.

The author, **Mr. Mohammed Anif Pasha** was born on 5<sup>th</sup> February 1991 in Mallampally, Telangana. After his initial schooling in Mallampally, he obtained his B.Sc. degree in 2011 from Lal Bahadur College, affiliated to Kakatiya University, Warangal and he obtained his M.Sc. degree with Organic Chemistry in 2013 from Telangana University, Nizamabad. He continued as a research scholar in the School of Chemistry, University of Hyderabad for the Ph. D. programme from

#### LIST OF PUBLICATIONS

- Organocatalytic Asymmetric Formal [3+2]-Cycloaddition as a Versatile Platform to Methanobenzo[7]annulenes. D. B. Ramachary, Md. Anif Pasha, and G. Thirupathi, Angew. Chem. Int. Ed. 2017, 56, 12930.
- Organocatalytic Formal Intramolecular [3+2]-Cycloaddition to Acquire Biologically Important Methanodibenzo[a,f]azulenes and Methanobenzo[f]azulenes. S. Peraka, Md. Anif Pasha, G. Thirupathi, and D. B. Ramachary, Chem. Eur. J. 2019, 25, 14086.
- Organocatalytic Reductive Propargylation: Scope and Applications. Md. Anif Pasha,
   A. V. Krishna, E. Ashok, D. B. Ramachary, J. Org. Chem. 2019, 84, 15399.
- 4. Direct Organocatalytic Asymmetric Synthesis of Biologically Important Methanobenzo[f]azulenes. **Md.** Anif Pasha, S. Peraka and D. B. Ramachary (*Manuscript under preparation*).

#### POSTERS AND PRESENTATIONS

- Poster presentation: "ChemFest -2020" (17<sup>th</sup> Annual In-House Symposium), School of Chemistry, University of Hyderabad. February 27 28<sup>th</sup>, 2020
   Organizers: University of Hyderabad, Hyderabad.
- Oral presentation: "ChemFest -2020" (17<sup>th</sup> Annual In-House Symposium), School of Chemistry, University of Hyderabad. February 27-28<sup>th</sup>, 2020
   Organizers: University of Hyderabad, Hyderabad.
- 3. **Oral presentation:** "XV J-NOST (J National Organic Symposium Trust) Conference" Department of Chemistry, University of Delhi, Delhi, India. October 18-21<sup>st</sup> 2019.

Organizers: NOST, India,

4. **Participated:** "21st IUPAC International Conference on Organic Synthesis (ICOS-21)". December 11-16th 2016.

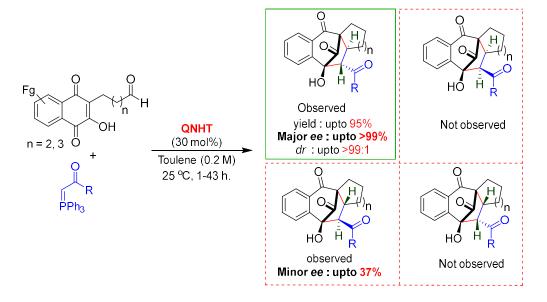
Organizers: IIT-Bombay, Mumbai, India

## 1. Organocatalytic Asymmetric Formal [3+2]-Cycloaddition as a Versatile Platform to Methanobenzo[7]annulenes.

Angew. Chem. Int. Ed. 2017, 56, 12930-12934.

#### 2. Organocatalytic Reductive Propargylation: Scope and Applications

Ar/R 
$$\longrightarrow$$
 H  $\bigcirc$  CO<sub>2</sub>H  $\bigcirc$  Ar/R  $\bigcirc$  S0 examples up to 98% yield  $\bigcirc$  Chemoselective C-Propargylation  $\bigcirc$  Ar/R  $\bigcirc$ 


J. Org. Chem. 2019, 84, 15399-15416.

3. Organocatalytic Formal Intramolecular [3+2]-Cycloaddition to Acquire Biologically Important Methanodibenzo [a,f] azulenes and Methanobenzo [f] azulenes.

Fg O CHO 
$$\frac{BnNH_2}{(10 \text{ mol}\%)}$$
 $E^1$   $E^1$   $E^2$   $\frac{25 \text{ °C}}{0.41-24 \text{ h}}$ 
 $E^1$   $E^2$   $\frac{E^2}{(0r)}$   $\frac{25 \text{ °C}}{PPh_3}$   $\frac{E^1}{(0r)}$   $\frac{E^2}{PPh_3}$   $\frac{E^2}{(0r)}$   $\frac{E^2}{PPh_3}$   $\frac{E^2}{PPh_3}$   $\frac{E^2}{(0r)}$   $\frac{E^2}{PPh_3}$   $\frac{E^2}{PPh_3}$ 

Chem. Eur. J. 2019, 25, 14036-14041.

## 4. Direct Organocatalytic Asymmetric Synthesis of Biologically Important Methanobenzo[f]azulenes



(Manuscript under submission)

# Lawsone as Synthon for the Discovery of Organocatalytic Reactions

by Mohammed Anif Pasha

Submission date: 09-Feb-2021 12:51PM (UTC+0530)

**Submission ID: 1505268112** 

File name: Anif\_Thesis.pdf (10.96M)

Word count: 18095 Character count: 94037

## Lawsone as Synthon for the Discovery of Organocatalytic Reactions

ORIGINALITY REPORT

48% SIMILARITY INDEX

9%

49%

PUBLICATIONS

2%

STUDENT PAPERS

PRIMARY SOURCES

Mohammed Anif Pasha, A. Vamshi Krishna, Etikala Ashok, Dhevalapally B. Ramachary. "Organocatalytic Reductive Propargylation: Scope and Applications", The Journal of Organic Chemistry, 2019

INTERNET SOURCES

Publication

Publication

20%

Prof. D.B. Ramachary
School of Chemistry
School of Hyderabad
University of Hyderabad
Hyderabad - 500 046, India.

Swamy Peraka, Mohammed Anif Pasha,
Guguloth Thirupathi, Dhevalapally B.
Ramachary. "Organocatalytic Formal
Intramolecular [3+2]-Cycloaddition to Acquire
Biologically Important Methanodibenzo[
]azulenes and Methanobenzo[]azulenes ",
Chemistry – A European Journal, 2019

13%

Prof. D.B. Ramuchary
School of Chemistry
University of Hyderabad
Hyderabad - 500 046, India.

Dhevalapally B. Ramachary, Mohammed Anif Pasha, Guguloth Thirupathi. "Organocatalytic Asymmetric Formal [3+2] Cycloaddition as a Versatile Platform to Access Methanobenzo[7]annulenes", Angewandte Chemie International Edition, 2017

10%

Prof. D.B. Ramachary School of Chemistry School of Hyderabad University of Hyderabad Hyderabad - 500 046, India. Dhevalapally Ramachary, Suresh Kumar A.,
Thirupathi Guguloth, Surendra Reddy G..
"Stereoselective Insertion of Benzynes into
Lawsones: Synthesis of Biologically Important
Benzannulated Bicyclo[3.3.0]octanes",
Chemistry - A European Journal, 2018
Publication

1%

Prof. D.B. Ramachary School of Chemistry University of Hyderabad Hyderabad - 500 046, India.

Dhevalapally B. Ramachary, P. Srinivasa
Reddy, Jagjeet Gujral. "Construction of 2Thiabicyclo[3.3.1]nonanes by Organocatalytic
Asymmetric Formal [3+3] Cycloaddition",
European Journal of Organic Chemistry, 2018 Profession

1%

Prof. B. Ramacya. School of Chemistry
School of Chemistry
University of Hyderabad
Hyderabad - 500 046, India.

pubs.rsc.org

<1%

D. B. Ramachary, Chintalapudi Venkaiah, R. Madhavachary. "Asymmetric Synthesis of Druglike Six-Membered Spirooxindoles through an Amino Enyne Catalysis", Organic Letters, 2013

<1%

Publication

8 link.springer.com

<1%

9 www.omicsonline.org

<1%

| 10 | www.organic-reaction.com Internet Source                                                                                                                                                        | <1% |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 11 | T. Prabhakar Reddy, A. Vamshi Krishna, Dhevalapally B. Ramachary. "Catalytic [3 + 3]- Cycloaddition for Regioselective Preparation of Tricyclic Oxadiazines", Organic Letters, 2018 Publication | <1% |
| 12 | silo.pub<br>Internet Source                                                                                                                                                                     | <1% |
| 13 | dr.ntu.edu.sg Internet Source                                                                                                                                                                   | <1% |
| 14 | Jordão, Alessandro K., Maria D. Vargas, Angelo C. Pinto, Fernando de C. da Silva, and Vitor F. Ferreira. "Lawsone in organic synthesis", RSC Advances, 2015.                                    | <1% |
| 15 | "Catalytic Asymmetric Conjugate Reactions",<br>Wiley, 2010                                                                                                                                      | <1% |
| 16 | dokodoc.com<br>Internet Source                                                                                                                                                                  | <1% |
| 17 | Submitted to Institute of Technology, Nirma University Student Paper                                                                                                                            | <1% |
| 18 | Ramachary, Dhevalapally B., Rajasekar                                                                                                                                                           |     |

|    | Sakthidevi, and Kodambahalli S. Shruthi. "Asymmetric Supramolecular Catalysis: A Bio-Inspired Tool for the High Asymmetric Induction in the Enamine-Based Michael Reactions", Chemistry - A European Journal, 2012. Publication  | <1% |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 19 | "Asymmetric Catalysis from a Chinese<br>Perspective", Springer Science and Business<br>Media LLC, 2011<br>Publication                                                                                                            | <1% |
| 20 | "Rhodium Catalysis in Organic Synthesis",<br>Wiley, 2019                                                                                                                                                                         | <1% |
| 21 | opencommons.uconn.edu<br>Internet Source                                                                                                                                                                                         | <1% |
| 22 | epub.uni-regensburg.de Internet Source                                                                                                                                                                                           | <1% |
| 23 | onlinelibrary.wiley.com Internet Source                                                                                                                                                                                          | <1% |
| 24 | www.reachouthyderabad.com Internet Source                                                                                                                                                                                        | <1% |
| 25 | Ramachary, Dhevalapally B., and Mamillapalli Kishor. "Direct amino acid-catalyzed cascade biomimetic reductive alkylations: application to the asymmetric synthesis of Hajosâ€"Parrish ketone analogues", Organic & Biomolecular | <1% |

## Chemistry, 2008. Publication

|    | Publication                                                                                                                                                                                                                                                                                                                                                    |     |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 26 | www.imedpub.com Internet Source                                                                                                                                                                                                                                                                                                                                | <1% |
| 27 | core.ac.uk<br>Internet Source                                                                                                                                                                                                                                                                                                                                  | <1% |
| 28 | www.thieme-connect.com Internet Source                                                                                                                                                                                                                                                                                                                         | <1% |
| 29 | Bagher Eftekhari-Sis, Maryam Zirak. "α-Imino Esters in Organic Synthesis: Recent Advances", Chemical Reviews, 2017                                                                                                                                                                                                                                             | <1% |
| 30 | Swamy Peraka, Akram Hussain, Dhevalapally B. Ramachary. "Modular Access to Chiral 2,3- Dihydrofurans and 3,4-Dihydro-2 -pyrans by Stereospecific Activation of Formylcyclopropanes through Combination of Organocatalytic Reductive Coupling and Lewis- Acid-Catalyzed Annulative Ring-Opening Reactions ", The Journal of Organic Chemistry, 2018 Publication | <1% |
| 31 | www.mysciencework.com Internet Source                                                                                                                                                                                                                                                                                                                          | <1% |
| 32 | "Enantioselective Organocatalysis", Wiley, 2007                                                                                                                                                                                                                                                                                                                | <1% |
|    |                                                                                                                                                                                                                                                                                                                                                                |     |