Molecular insights of endospore like refractile bodies of Rhodobacter johrii JA192

Thesis submitted to the University of Hyderabad for the award of Doctor of Philosophy

By

Ashif Ali

(Regd No. 13LPPH04)

Department of Plant Sciences School of Life Sciences University of Hyderabad Hyderabad – 500 046, India

November 2020

UNIVERSITY OF HYDERABAD (A Central University established in 1974 by an Act of the Parliament) **HYDERABAD 500 046**

CERTIFICATE

This is to certify that Mr. ASHIF ALI has carried out the research work embodied in the present thesis under the supervision and guidance of Prof. Ch. Venkata Ramana for a full period prescribed under the Ph.D. ordinances of this University. We recommend his thesis entitled "Molecular insights of endospore like refractile bodies of Rhodobacter johrii JA192" for submission for the degree of Doctor of Philosophy of the University.

Department of Plant Sciences

HEAD Dept. of Plant Sciences School of Life Sciences University of Hyderabad Hyderabad 500 046 INDIA Prof. Ch. Venkata Ramana

(Research Supervisor)

rof. Ch. Venkata Ramana Ph.O Department of Plant Sciences School of Life Sciences University of Hyderabad, P.O. Central University, Hyderabad - 500 046, India

19/11/20Xx

Dean School of Life Sciences

DEAN

School of Life Sciences University of Hyderabad Hyderabad - 500 046.

UNIVERSITY OF HYDERABAD (A Central University established in 1974 by an Act of the Parliament) HYDERABAD 500 046

DECLARATION

I Ashif Ali, hereby declare that the work embodied in this thesis entitled "Molecular insights of endospore like refractile bodies of Rhodobacter johrii JA192" has been carried out by me under the supervision of Prof. Ch. Venkata Ramana, Department of Plant Sciences, School of Life Sciences. The work presented in this thesis is a bonafide research work and has not been submitted for any degree or diploma in any other University or Institute. A report on plagiarism statistics from the University Librarian is enclosed.

Prof. Ch. Venkata Ramana

(Research Supervisor)
Prof. Ch. Venkata Ramana Ph.D.
Department of Plant Sciences School of Life Sciences
University of Hyderabad, P.O. Central University,
Hyderabad - 500 046, India

Ashif Ali (Regd No. 13LPPH04)

UNIVERSITY OF HYDERABAD (A Central University established in 1974 by an Act of the Parliament) HYDERABAD 500 046

CERTIFICATE

This is to certify that the thesis entitled "Molecular insights of endospore like refractile bodies of Rhodobacter johrii JA192" is a record of bonafide work done by Mr. Ashif Ali bearing registration number 13LPPH04, a research scholar of Ph.D. programme in Department of Plant Sciences, School of Life Sciences, University of Hyderabad, under my guidance and supervision. This thesis is free from plagiarism and has not been submitted in any part or in full to this or any other University or institution for the award of any degree or diploma.

Parts of the thesis have been:

A. Published in the following journal:

Ali, Ashif, Kumar Gaurav, N. Senthilnathan, T. P. Radhakrishnan, Sasikala Ch, and Ch V. Ramana (2020) Sporotan" a new fluorescent stain for identifying cryptic spores of *Rhodobacter johrii*. *J Microbiol Methods* 177: 106019.

B. Presented in the following conferences:

- 1. Poster presentation title "Identification and In silico characterization of a putative spore cortex lytic enzyme (sleb) from Rhodobacter johrii, an endospore producing bacteria". Ashif Ali, Ch. Sasikala and Ch.V.Ramana. International Conference on Innovations in Pharma and Biopharma Industry (ICIPBI-2017), 20-22 December, Hyderabad, India.
- Poster presentation title "Genome Sequence of Rhodobacter johrii JA192".
 <u>Ashif Ali</u>, Ch. Sasikala and Ch.V.Ramana. The 8th international conference on photosynthesis and hydrogen energy research for sustainability-2017, 30 October-03 November, Hyderabad, India.

Further the student has passed the following courses toward the fulfillment of the coursework requirement for Ph.D. degree.

S.No.	Course code	Name	Credits	Pass/Fail
1.	PL801	Seminar 1	1	Pass
2.	PL802	Research ethics and management	2	Pass
3.	PL803	Biostatistics	2	Pass
4.	PL804	Analytical Techniques	3	Pass
5.	PL805	Lab Work	4	Pass

Supervisor

Prof. Ch.V. Ramana

Prof. Ch. Venkata Ramana Ph.D.
Department of Plant Sciences School of Life Sciences
University of Hyderabad, P.O. Central University,
Hyderabad - 500 046, India

HEAD 19/11/2020

Dept. of Plant Sciences

HEAD
Dept. of Plant Sciences
School of Life Sciences
University of Hyderabad
Hyderabad-500 046 INDIA

School of Life Sciences
DEAN

School of Life Sciences University of Hyderabad Hyderabad - 500 046.

Acknowledgements

With the grace of Almighty all praise as befits for the strength and the light that almighty bestowed me to finish this research.

I express my deepest gratitude and sincere regards to my supervisor Prof. Ch. Venkata Ramana for his constant & excellent guidance, paramount mentorship, and unwavering support that has helped me to overcome challenges during my work. I especially thank him for being open to new ideas and allowing one to pursue them. He was always a source of inspiration to me, I learned a lot from him both directly and indirectly which would definitely help me in the future. I consider it as a great opportunity to do my doctoral programme under his guidance and to learn from him research expertise.

I am thankful to Prof. Ch. Sasikala, JNTU for allowing me to work in her lab. I extend my sincere gratitude for the immense support and guidance in every scientific aspect and her help in nurturing my skills which helped in successful completion of this Ph. D. program.

I would like to thank Prof. Appa Rao Podile, Prof. S. Rajagopal and Dr. Irfan Ahmad Ghazi for their suggestion during my work, I also thank them for allowing me to use their lab facilities.

I acknowledge the present and former Heads of Dept. of Plant Sciences and Deans of the School of Life Sciences for their support in all possible ways and allowing me to use the general facilities of the school.

I would like to thank all my present and former lab members and JNTU lab members for their immense support in all possible ways and providing a friendly atmosphere.

I would like to acknowledge my seniors Dr. Vikas C., Kiran J., Dr. Arshad R., Dr. Santosh g., Dr. Venkat Rao, Dr. Ashok M., Annapurni for helping and giving their valuable time.

I would like to thank my friends Rutuparna J., Dr. Amitabh A., Dr. Dev G., Dr. sanjeev R., Dr. Naresh D., Dr. Md. Yasin B., Mir K. Chowdhary, Harish K. D., Razzak, other SLS friends and research scholars for their support and making life cheerful and memorable.

I am also thankful to my juniors Fatin R. K., Swapnil K., Laxman, Keertana T., Navaneetha G. T., Sultan K., Mukhtar for support.

I am thankful to the co-authors of my published work Gaurav K., Suresh G., Saílaja B., Senthílnathan N. for their support and efforts.

I also acknowledge the University of Hyderabad for providing me fellowship.

I also thank all the funding bodies (UGC-SAP, DBT-CREBB, DST-FIST, CSIR, UPE and PURSE) for their financial assistance to the Lab, Department and School.

The help and cooperation of the non-teaching staff in the School, Centre for Nanotechnology, CIL and Dept. of Plant Science is deeply acknowledged.

Here comes the day to heartfelt thank to my beloved parents, brothers, sister in law and nephew who gave me blessings, unconditional love, encouragement and support to pursue my dreams, without their cooperation I would not have come so far.

DEDICATED TO MY BELOVED PARENTS AND WELL-WISHERS

Contents

	CONTENTS	Page No.
bbreviati	ions, List of tables and figuresI-	VIII
1.	Introduction	1-22
1.1	Bacterial survival adaptations.	1
1	.1.1 Biofilm formation	1
1	.1.2 Viable but Non-culturable (VBNC) state	2
1	.1.3 Cyst formation	2
1	.1.4 Spore formation.	3
1.2	Bacterial sporulation	4
1.3	Firmicutes	5
1.4	Firmicute endospore structure	9
1.5	Sporulation in Actinobacteria	11
1.6	Other members.	12
1.7	Structure of bacterial cell wall peptidoglycan	15
1.8	Structure of spore cortex peptidoglycan	16
1.9	Autolysin enzymes (Peptidoglycan hydrolases) involved in bacterial developmen	t. 17
1.10	Germination specific lytic enzymes (GSLE)	19
1.11	SleB enzyme	20
1.12	Genome mining	20
1.13	About Rhodobacter johrii	21
1.14	Definition of the problem	21
1.15	Objectives of the study	22
2.	Materials and methods	23-39
2.1	Materials, chemical reagents and equipments	
2.1.1	Apparatus	23
2.1.2		23
2.1.3	•	23
2.1.4	Adjusting pH	23

2.1.5 Sterilization.

23

Contents

2.	2 Mic	erobiological methods	
2.	2.1	Growth media	24
2.	2.2	Growth and sporulation conditions.	24
2.	2.3	Spore isolation from <i>Rba. johrii</i>	24
2.	2.4	Phase contrast microscopy.	25
2.	2.5	Endospore staining.	25
2.	2.6	Nile red staining for PHA granules.	25
2.	2.7	FM 4-64 and Nile red dye counterstaining.	25
2.	2.8	FM 4-64 and DAPI dye staining.	26
2.	2.9	Chemical Inhibition of PHA granule synthesis and Nile red staining	26
2.	2.10	"Sporotan" dye staining of spores.	26
2.	2.11	Nile red staining of chloroform treated <i>Rba. johrii</i> culture	27
2.	2.12	Scanning electron microscopy (SEM).	27
2.	2.13	Transmission electron microscope (TEM sectioning)	27
2.3 Bio	oinfor	matical (in silico) methodology	
2	.3.1	Genome sequencing and assembly	28
2	.3.2	Annotation and analysis	28
2	.3.3	Genome characterization.	29
2	.3.4	Genome mining for endospore genes.	29
2	.3.5	Detection of Conserved Domain and multiple sequence alignment	29
2	.3.6	Protein 3D secondary structure model and its validation	30
2	.3.7	Superimposition and molecular docking	30
2.4 Pro	otein (characterization	
2	.4.1	Bacterial strain, growth conditions and plasmids	30
2	.4.2	Genomic DNA isolation.	31
2	.4.3	Polymerase chain reaction (PCR) amplification of sleR gene	31
2	.4.4	DNA agarose gel electrophoresis.	32
2	.4.5	Molecular gene cloning of truncated sleR	32

Contents

	2.4.6	Transformation into <i>E. coli</i> (DH5-α strain) for cloning	33
	2.4.7	Analysis of recombinant clones by PCR of colony and plasmid isolation	34
	2.4.8	Plasmid isolation of recombinant colonies.	34
	2.4.9	Double digestion.	34
	2.4.10	Transformation into <i>E.coli</i> Rosetta (DE3 strain) for expression	34
	2.4.11	Protein overexpression.	35
	2.4.12	Protein purification	35
	2.4.13	Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE)	35
	2.4.14	Western blotting	36
	2.4.15	Cell wall (peptidoglycan) and isolation of spore sacculi	37
	2.4.16	Enzyme activity assay	37
2.5 1	Real-ti	me quantitative polymerase chain reaction (qRT-PCR) analysis	
2.	.5.1	Growth of Rba. johrii and determination of growth phases	38
2.	.5.2	RNA isolation and cDNA synthesis.	38
2.	.5.3	Real-time quantitative polymerase chain reaction (qRT-PCR)	38
2.	.5.4	Staining and microscopy	39
3.	Resu	lts	10-83
	3.1 E	ndospore properties and other characterizations	
	3.1.	1 Morphological study	
		3.1.1.1 Confirmation of endospores of Rba. johrii	
		3.1.1.1.2 Endospore staining with DAPI and FM 4-64 flouresence dye4	40
		3.1.1.2 Confirmation of the endospores which are not mistaken as poly- β -	
		hydroxyalkanoate (PHA) granules	
		3.1.1.2.1 FM 4-64 and Nile Red staining	2
		3.1.1.2.2 Chloroform treatment to dissolve PHA granules	2
		3.1.1.2.3 Inhibition of PHA biosynthetic pathway	3
		3.1.1.3 Ultra structure of <i>Rha. johrii</i> culture and endospores	14

3.1.2 A	new bacterial spore specific fluorescent stain was used for <i>Rba. johrii</i> sp	ore
ide	entification.	
3.1.2.1 I	ncreasing the number of spores with new method4	5
3.1.2.2 I	solation of spores	46
3.1.2.3 "	Sporotan" staining the spores of Firmicute and non Firmicute members46)
3.1.3 Mi	crocolonies as indicators of spores of Rba. johrii4	18
3.1.4 En	dospores were also identified in <i>Rhodobacter alkalitolerans</i> JA91648	
3.2 Genomic inf	formation and mining for sporulation gene homologs in Rba. johrii	
3.2.1 Genon	ne characterization and comparison	
3.2.1.1	Genomic DNA Isolation.	50
3.2.1.2	Quantification of isolated DNA	50
3.2.1.3	Assembly and annotation	51
3.2.1.4	Genome characteristics.	51
3.2.1.5	Gene Ontology: GO term for predicted CDSs or Subsystem distribution	
	of genes	52
3.2.1.6	Circular genome map.	53
3.2.1.7	Analysis of secondary metabolite biosynthesis gene clusters	54
3.2.1.8	CRISPR-CAS system Analysis	55
3.2.1.9	CAZymes (Carbohydrate-Active Enzymes) Analysis	57
	nining of <i>Rba. johrii</i> for homologs of major key spore proteins according of canonical sporulation pathway	g to
3.2.2.1	Homologs of stage I (Starvation state)	57
3.2.2.2	Homologs of stage II (Onset of sporulation)	58
3.2.2.3	Homologs of stage III (Commitment to sporulation and engulfment)	58
3.2.2.4	Homologs of stage IV (Completion of engulfment and cortex synthesis)	59
3.2.2.5	Homologs of stage V-VI (Coat synthesis and spore maturation)	60
3.2.2.6	Homologs of stage VII (mother cell lysis and germination)	61
3.2.2.7	Homologs of major sporulation-specific sigma factors	62

3.3 In silico,	biochemical	and	functional	characterization	of a	putative	spore	cortex	lytic
enzyme j	protein (SleR	.)							

	In silico characterization of putative sporulation protein spore cortex lytic enzyme of Rba. johrii
3.	3.1.1 Characteristic of the Spore cortex lytic (sle) gene of Rba. johrii
3.	3.1.2 Sequence similarity, protein domain prediction and its conserved sequences.67
3.	3.1.3 3D secondary structure prediction and its validation
3.	3.1.4 In silico Structure comparison, similarities and catalytic residue
	Identification of SleR71
3.	3.1.5 Molecular docking
3.3.2	Biochemical (In vitro) characterization of putative SleR protein
3.	3.2.1 Molecular cloning of SleR
3.	3.2.2 Overexpression and purification of recombinant SleR of <i>Rba. johrii</i>
3.	3.2.3 Substrate specificity and enzyme activity of spore cortex lytic enzyme (SleR)80
3.4	In vivo expression profile of SleR protein in different growth phases and cell
	morphology & differentiation of <i>Rba. johrii</i> 82
4.	Discussion 84-98
5.	Summary 99-100
6.	References 101-115

List of Abbreviations

 $\begin{array}{lll} ^{\circ}C & Degree\ Celsius \\ \mu g & Microgram \\ \mu l & Micro\ litre \\ \mu M & Micro\ molar \\ \mathring{A} & Angstrom \end{array}$

ANI Average nucleotide identity

BLAST Basic Local Alignment Search Tool

BLASTn Nucleotide Basic Local Alignment Search Tool
BLASTp Protein Basic Local Alignment Search Tool

bp Base pair

BPGA Bacterial pan genome analysis

BSA Bovine serum albumin CDS Coding sequences

DAPI 4,6-diamidino-2-phenylindole

DMSO Dimethyl sulfoxide
DNA Deoxyribonucleic acid

DTT Dithiothreitol

EDTA Ethylene diamino tetra acetic acid

EMBL European molecular biology laboratory

g Gram

g.l⁻¹ Gram per liter

h Hour

IPTG Isopropyl-β-D-1 thiogalactopyranoside

KKelvinKilo basekDaKilo Dalton

L litre

lux luminous flux per unit area

M Molar
mg Milli gram
min Minute
ml Milli litre
mM Millimolar

NaCl Sodium chloride

NCBI National Centre for Biotechnology Information

nm Nano metre
nt Nucleotide
OD Optical density

Abbreviations

PBS Phosphate buffer saline PCR Polymerase chain reaction

PDB Protein Data bank

PMSF Phenylmethylsulfonyl fluoride

RAST Rapid annotations using subsystems technology

Rba. Rhodobacter
RNA Ribonucleic acid

Rpm Revolutions per minute RT Room temperature

s Seconds

SDS – PAGE Sodium dodecyl sulphate-polyacrylamide gel electrophoresis

sec Second

SEM Scanning electron microscope TBE Tris borate EDTA-buffer

TEM Transmission electron microscope

UV Ultraviolet

v/v Volume per volume w/v Weight per volume

	List of Tables	Pg. No.
Table 2.1	Composition of modified Biebl and Pfenning (1981) medium	. 24
Table 2.2	Primer characteristics	. 31
Table 2.3	Components of PCR reaction mixture	. 32
Table 2.4	Programme for PCR	. 32
Table 2.5	Ligation of digested sleR and pET SUMO vector	. 33
Table 2.6	Components for preparing sodium dodecyl sulphate polyacrylamide gel	. 36
Table 2.7	Primers used for qRT- PCR	. 39
Table 2.8	qRT-PCR programme conditions.	. 39
Table 3.2.1	Genomic DNA quantification.	. 50
Table 3.2.2	Genome information and characteristics of Rba. johrii	. 51
Table 3.2.3	Gene Ontology terms identified in each category	. 52
Table 3.2.4	Secondary metabolite biosynthetic gene cluster and genes from AntiSMASH	54
Table 3.2.5	Eleven CRISPR locus and their property.	. 56
Table 3.2.6	Major proteins participating in Starvation state – activation of Spo0A state in	ì
	B. subtilis and identification of their homolog proteins in Rba. johrii	. 58
Table 3.2.7	Major proteins participating in onset of sporulation in B. subtilis and	
	identification of their homolog proteins in Rba. johrii	58
Table 3.2.8	Major proteins participating in sporulation and engulfment (Stages II-III) in	
	B. subtilis and identification of their matching proteins in Rba. johrii	. 59
Table 3.2.9	Major proteins participating in completion of engulfment and cortex	
	synthesis in B. subtilis and identification of their matching proteins in Rba.	
	johrii	60
Table 3.2.10	Major proteins participating in coat synthesis and spore maturation in <i>B</i> .	
	subtilis and identification of their matching proteins in Rba. johrii	. 61
Table 3.2.11	Major proteins participating in Mother cell lysis (Stage VII) and Spore	
	germination and outgrowth in B. subtilis and identification of their matching	
	proteins in Rba. johrii	. 62
Table 3.2.12	Major RNA polymerase sigma factor participating in all the stages of	
	sporulation in B. subtilis and identification of their matching proteins in Rba.	
	johrii	. 63
Table 3.2.13	Other proteins participating in sporulation in B. subtilis and identification of	
	their matching proteins in <i>Rba. johrii</i>	. 64
Table 3.3.1	Characteristics of SleR protein of Rba. johrii analysed by SMART server	
	predicting domains, repeats, motifs and features	
Table 3.3.2	Conserved aromatic amino acid residues present in between α and β domains	
	between Rba. johrii and B. cereus	
Table 3.3.3	Conserved amino acids important for binding with muramic- δ -lactam in <i>Rba</i>	

	<i>johrii</i> compare with <i>B. anthracis</i>	73
Table 3.3.4	Interaction (Docking) monomers and polymeric substrates with different	
	amino acid residues of SleR protein	77
Table 4.1	Spore dyes and there drawbacks	88
	List of Figures Pg	g. No
Figure 1.1	Different dormant structures in bacteria A. EPS and Biofilm formation B. VBNC State C. Cyst, heterocyst D. Exospore	3
Figure 1.2	Stained endospores of Bacillus subtilis	4
Figure 1.3	Developmental cycles of Firmicute sporulation and germination. A vegetative cell in a stress signal starts dividing asymmetrically into two compartments, mother cell and forespore separates by septum later mother cell engulf the forespore then cortex and coat is formed around the spore including other material makes spore mature finally mother cell ruptures to free the spore, spores sense the favorable conditions for germination and enters into vegetative state. (Image adopted from McKenney <i>et al.</i> ,	
	2013)	9
Figure 1.4	Spore structure: Oc: outer coat, Ic: inner coat, Uc: undercoat, Cr: core, Cx: cortex, Ex: exosporium, Is: inter space, Hn: glycoprotein nap, Bl: basal	
Fig. 1. 5	layer, Adopted through (Waller <i>et al.</i> , 2004)	10
Figure 1.5	Sketch of a mature spore structure along with its components	10
Figure 1.6 Figure 1.7	Life cycles of Actinomycetes (Adopted from Barka <i>et al.</i> , 2016)	11
Figure 1.8	Dormant bodies of non firmicute bacteria (A) Coxiella burnetii (B) Serratia marcescens subsp. sakuensis (C) Myxococcus xanthus (D) Mycobacterium bovis, M. marinum	14
Figure 1.9	Dormancy of bacterial cells (A) Rhodobacter johrii JA192 (B) Rhodopseudomonas palustris RP2 (C) Serratia ureilytica Lr5/4	15
Figure 1.10	Bacterial cell wall structure consist of a backbone having repeated NAG and NAM sugar while NAM sugar has short peptides which is alternating dipeptide, tripeptide and tetrapeptide similarly a parallel backbone tripeptide forms a cross-lining of tripeptide tetrapeptide makes network of cell wall repeatedly attach to parallel backbones	16
Figure 1.11	Structure of spore cortex peptidoglycan its backbone consists of repeats of NAG, NAM, MAL with peptides side chains (Adopted from Popham <i>et.al.</i> ,	

	1996a)	17
Figure 1.12	Structure of a <i>B. subtilis</i> spore cortex peptidoglycan and the cleavage sites	
	with the specific type of enzymes are indicated by arrow (1)	
	Glucosaminidase (2) muramidases/lytic transglycosylase (3) amidase (4)	
	endopeptidase. (Adopted from Smith et al., 2000)	17
Figure 1.13	Bacterial cell wall peptidoglycan structures with its cleavage sites with	
	different type of enzymes (Adopted from Fernandes and São-José, 2018)	18
Figure 3.1	Cells of strain Rba. johrii A. Phase contrast image B. Scanning electron	40
	microscopy image	40
Figure 3.2	Phase contrast image of spores A) Spores in Rba. johrii culture B) refractile	
	bodies indicates spore with red arrow and black arrow represent vegetative	
	cell	41
Figure 3.3	Culture stained with malachite green and saffranin	41
Figure 3.4	Confocal images of sporulated culture (i) Phase contrast micrograph (ii) FM	
	4-64 stained fluorescent image (iii) overlay of DAPI & FM 4-64 (iv)	
	overlay of phase contrast micrograph, DAPI & FM 4-64	41
Figure 3.5	Confocal images of sporulated culture stained with Nile red and FM 4-64	
	flouresence dye	42
Figure 3.6	(A) Chloroform treatment confirm the refractile bodies as spores and not	
	PHA granules after staining with malachite green (B) Nile Red staining	
	showing no flouresence thus absence of PHA granules	43
Figure 3.7A	(A) PHA granules stained with nile red and no inhibitors in Rba. johrii	
C	culture initiated for Spores.	43
Figure 3.7B	(B) PHA granules stained with nile red and having inhibitors acrylic acid	
S	and pentenoic acid in <i>Rba. johrii</i> culture initiated for sporulation	44
Figure 3.8.1	TEM sectioning images of <i>Rba. johrii</i> (A) Sectioning of vegetative cells	
8	(V), vegetative cell with Poly-β-hydroxyalkanoate granules (PHA),	
	endospore like dormant structure (ES), and small intracytoplasmic	
	photosynthetic membrane within vegetative cell (ICM).	44
Figure 3.8.2	TEM sectioning images of <i>Rba. johrii</i> (B) Ultrafine sections of dormant	• •
1 18010 3.0.2	structure having core (CR), cortex (CX), inner thick membrane (IM), outer	
	membrane like outer coat (OM) and prosthecae structure (PS) (C) section of	
	spores when treated with Triton-X	45
Figure 3.9	(A) Natural endospores in old culture stained with malachite green (B)	
	Artificially induced spores stained with malachite green (C) Isolated pure	
	spores of <i>Rba. johrii</i>	45
Figure 3.10	Structure of sporotan dye "7, 7-Bis (n-hexylamino)-8, 8-dicyanoquino	
	dimethane"	46
Figure 3.11	Sporotan staining A. vegetative cells and spores of Rba. johrii stained with	
	"Sporotan" (A1, Fluorescence image; A2, Bright field image; A3, Overlay	
	image) B. Isolated spores of Rba. johrii stained with "Sporotan" (B1,	
	· · · · · · · · · · · · · · · · · · ·	

	Fluorescence image; B2,Overlay image; B3, Bright field image) C. Isolated spores of <i>B. subtilis</i> stained with "Sporotan" (C1, Fluorescence image; C2, Bright field image; C3, Overlay image) spores are shown in red arrow; White arrows show vegetative cells	47
Figure 3.12	Microscopic images for Microcolonies formation in <i>Rba. johrii</i> colony	48
Figure 3.13	Endospores identified in <i>Rba. alkalitolerans</i> JA916 (A) Schaeffer and fulton staining using malachite green and saffranin (B1) fluorescent staining with nile red (B2) Bright field microscopy, red circle indicate spores (B3) Merge image here white arrow represent Pha granule stained with nile red,	
	red circle is spores (C) Phase contrast image of spore germination (D) Phase	
	contrast image of refractile spores.	49
Figure 3.2.1	Isolated genomic DNA of <i>Rba. johrii</i> on agarose gel	50
Figure 3.2.2	Top 15 terms in biological function category from GO annotation	52
Figure 3.2.3	Top 15 terms in molecular function category from GO annotation	53
Figure 3.2.4	Top 15 terms in cellular component category from GO annotation	53
Figure 3.2.5	The rings from the inner to outer circle are GC skew, GC content, Drug	
	targets, transporters, virulence factors, antimicrobial resistance genes, Non	- .
F' 226	CDS, CDS rev., CDS for., contigs.	54
Figure 3.2.6	Secondary metabolite biosynthesis gene clusters	55
Figure 3.2.7	Comparative analysis of CRISPR-CAS Loci of <i>Rhodobacter</i> members	56
Figure 3.2.8	Mapping of homologs of endospore-formation genes in genome of <i>Rba</i> .	
	johrii. Blue colored circle represents the contigs, black circle shows GC	65
Figure 3.3.1	content, green circle shows GC Skew + and purple color shows GC Skew Promotor and gang properties of Slar from Pha inhaii. Promotor region	65
Tigure 3.3.1	Promoter and gene properties of <i>Sler</i> from <i>Rba. johrii</i> . Promoter region (grey region) consist of -10 box and -35 box (red region) transcription start site transcribes the 5' untranslated (5'UTR) region (Blue region at 5') from start codon (ATG) protein is coded till the stop codon (TGA) (Pink region)	
	after which is the 3' untranslated region (3'UTR) (Blue region at 3')	67
Figure 3.3.2	Detection of conserved domain using Simple Modular Architecture Research Tool (SMART), red part indicate the signal sequence, Box	
Fig. 3.3.3	represent hydrolase catalytic domain	68
	M13 (SLEB _{BC_M13}), B. cereus MLY1 (SLEB _{BC_MLY1}), B. anthracis	
	ATCC14578 (SLEB _{BA_14578}), B. anthracis Sterne (SLEB _{BA_sterne}), B.	
	anthracis Ames (SLEB _{BA_ames}). Conserved amino acids are shown in red	
	boxes, green asterisk mark represents the similar residues. The catalytic	
	residue Glu is highlighted with red star mark and another Glu with blue star	
	mark these alternate sequences are part of SleB specific EXRGE motif	
	shown in an orange box. Blue line donates the catalytic domain of the	

	proteins	69
Figure 3.3.4	(A) Model generated with help of RaptorX (B) Homology model of SleR constructed using SWISSMODEL α helices are in cyan colour, β- sheets	
	are in pink colour and other colors represent loops and turn	70
Figure 3.3.5	(A) Rba. johrii and Bacillus template models superimposed based on $C\alpha$. 0
118010 01010	position using PyMol where green indicates SleR and magenta indicates	
	SleB (B) Ramachandran plot analysis of SleR of <i>Rba. johrii</i>	71
Figure 3.3.6	Globular and 3D structure of SleR of <i>Rba. johrii</i> showing the conserved	/ 1
11guic 3.3.0	catalytic glutamate residue which is present in germination lytic	
	transglycosylase SleB at catalytic domain of <i>B. anthracis</i>	72
Figure 2 2 7	• • •	12
Figure 3.3.7	Superimposition of SleR (orange) of <i>Rba. johrii</i> and SleB (cyan) of <i>B.</i>	
	cereus backbones showing the side chains of structurally conserved	
	aromatic acid residues (Phe167, Phe209, Trp218, His231, Phe233) present in the catalytic graceve along with the catalytic residue (Cly128) and	
	in the catalytic groove along with the catalytic residue (Glu128) and	73
Eigura 2 2 9	conserved amino acids are written with the same colours	13
Figure 3.3.8	Superimposition of SleR (cyan) of <i>Rba. johrii</i> and SleB (green) of <i>B. anthracis</i> backbones showing the side chains of structurally conserved	
	-	
	residues (Tyr153, Gly164 replaced by same functional group amino acid	
	and Trp218, shown in red colour, these amino acid are responsible for	
	binding to muramic-δ-lactam (MAL) and residues (Glu132, Arg147,	
	Val148, Pro154 and Phe167) are present in exact same location in the groove in both proteins	74
Figure 3.3.9	Molecular docking of (A) trisachharide (NAM-NAG-NAM) (B) 1, 6-	/4
rigule 3.3.9	Anhydro-N- acetylmuramic acid (C) N- acetylmuramic acid (D) NAG-	
	NAM-(Pentapeptide) (E) Muramic lactam (F) N-Acetylglucosamine with	
	Sle protein of <i>Rba. johrii</i>	75
Figure 3.3.10	(A) PCR amplified product of 674 bp. of <i>SleR</i> gene without signal peptide	13
1 iguic 3.3.10	(B) Pet SUMO Plasmid digested with BamHI and XhoI restriction enzymes.	
	M-1Kb. Marker	78
Figure 3.3.11	Confirmation of positive clone by double digestion of <i>SleR</i> in pET SUMO	78
Figure 3.3.12	MALDI TOF MS-MS analysis of purified protein of His ₆ -SUMO-SleR ₂₄ .	70
118410 3.3.12	240. Matched peptides are shown in bold red.	79
Figure 3.3.13	SDS-PAGE of Soluble SleR here overexpressed protein His ₆ -SUMO-	, ,
118410 3.3.13	SleR ₂₄₋₂₄₀ showed by black arrow, M- protein marker; kDa, S- supernatant,	
	Lanes-1-6 - Ni affinity eluate increased at each lane 50 mM from 100 mM	
	to 350 mM imidazole	80
Figure 3.3.14	M- marker 1- DeSUMOylases cysteine protease digestion 2 - Ni - affinity	55
-6	eluate	80
Figure 3.3.15	Enzyme assay; cleavage of spore sacculli isolated from <i>B. subtilis</i> using	
<i>5</i>	SleR ₂₄₋₂₄₀ protein with spore sacculi is indicated in red line and blue line	
	<u>1</u>	

indicates control reaction in which substrate was untreated and loss of O.D	
was not observed	81
Enzyme assay done taking cell wall peptidoglycan with red line and control	
reaction with blue line here no protein was added	81
Growth curve of <i>Rba. johrii</i>	83
qRT-PCR results show the differential expression of SleR at different	
C I	
•	
and orange colour indicates presence of heat stress	83
Flow chart of putative pathway of spore initiation signaling cascade in <i>Rba</i> .	
johrii on the basis of identified homolog proteins of Rba. johrii. Green box	
shows the absence of Spo0B protein; Orange box for alternate	
phosphotransferase in Rba. johrii. Parenthesis values of amino acid given in	
identity/protein coverage in Rba. johrii when compared to Bacillus subtilis	
	92
	Enzyme assay done taking cell wall peptidoglycan with red line and control reaction with blue line here no protein was added

INTRODUCTION

1. Introduction

1.1 Bacterial survival adaptations

Microorganisms survive in natural habitats that are highly dynamic in physicochemical stressful environment like extreme temperatures (high temperatures [hot springs, thermal vent] and low temperature [Antarctica regions]), lack of nutrients, high salinity, toxic chemicals, unfavorable moisture content, alkaline and acidic conditions with limited resources for viability. The major question arise is "How do bacteria survive?" Bacteria has came up with several strategies which are developed through adaptive mechanisms. The adaptation mechanisms developed by bacteria are based on the molecular and cellular bases (Bleuven and Landry, 2016). The adaptive strategies developed as a response of bacteria for survival are as follows:

- Biofilm formation
- Viable But Non-culturable (VBNC) state
- Cyst formation
- Spore formation
 - (i) Exospores
 - (ii) Endospores

1.1.1 Biofilm formation

When bacterial communities surrounded by an extracellular matrix (ECM) are attached at surface is called biofilm (Monds and Toole, 2009) (Fig. 1.1A). In mixed or multispecies biofilm the microorganisms adhere to solid surface and makes a complex of multispecies embedded in extracellular polymeric substance (EPS) generated by microorganisms (Hall-Stoodley *et al.*, 2004). Extracellular polymeric substance is the formation of surface polysaccharides which involves compounds made of carbohydrate polymers (Flemming *et al.*, 2016). In biofilm

formation same genes are responsible which participates in chemotaxis, creating aggregation on surface. In biofilm formation, bacteria also become resistant and tolerant to antibiotics clinically (Wu *et al.*, 2015).

1.1.2 Viable But Non-culturable (VBNC) state

The cells at Viable But Non-culturable (VBNC) are non-dividing but metabolically active (Fig. 1.1B), viable and resuscitated when favorable conditions arrives as seen in many members of various bacterial phyla (Nowakowska and Oliver, 2013). It was reported in *Escherichia coli*, *Vibrio* spp. (*Vibrio cholerae*, *Vibrio vulnificus* and a few other species) (Xu *et al.*, 1982), *Campylobacter jejuni*, *Salmonella* spp., *Helicobacter pylori*, *Shigella* spp., *Enterobacter* Spp., *Listeria monocytogenes*, *Pseudomonas* spp., *Staphylococcus aureus* and *Mycobacterium tuberculosis*. Many of the bacterial pathogens show this survival strategy of dormancy.

1.1.3 Cyst formation

A thick walled dormant structures having capsular slime are cysts (Fig. 1.1C), which are lesser resistant comparably to endospore. In bacteria, cysts are formed by *Azotobacter* spp., *Rhodospirillium centenum* (Berleman and Bauer, 2004), *Myxobacteria, Clamydobacteria, Azotobacter* spp., methane users *Methylocystis parvus*, all *Methylococcus* and *Methylomonas* group and all types of *Methylobacter* (*M. chroococcum*, *M. capsulatus*, *M. bovis*, *M. vinelandii*) (Whittenbury *et al.*, 1970). Recently in *Serratia ureilytica* isolated an extreme thermophilic conditions is also shown to form cyst (Filipidou *et al.*, 2019). Cysts are resistant to ultraviolet radiation, gamma radiation, desiccation and sonic treatment however lesser to heat (Socolofsky and Wyss, 1962).

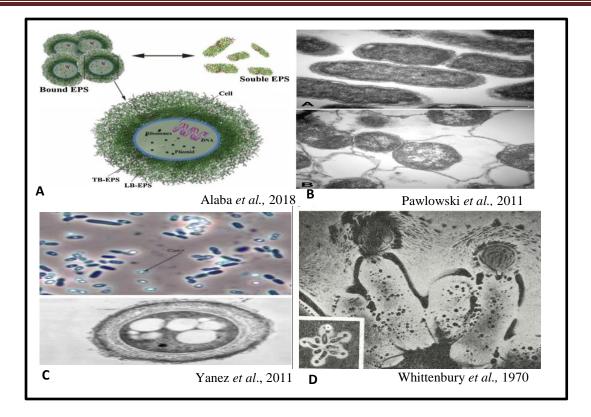
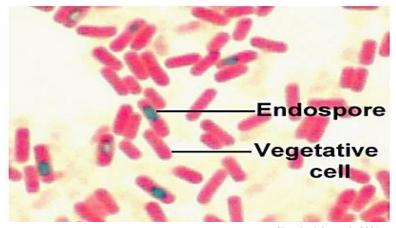


Figure 1.1 Different dormant structures in bacteria A. EPS and Biofilm formation B. VBNC State C. Cyst, heterocyst D. Exospores

1.1.4 Spore formation

A highly resistant, tough and dormant body made to face extreme conditions of disinfectants, intense heat and U.V radiation. Endospores first discovered by Cohn (Drews, 2000) in the firmicute *Bacillus subtilis*, then by Koch (Drews, 2000) in pathogen *Bacillus anthracis*. Spores are the most durable type of dormant bodies on earth which can remain viable for millions of year. Two types of spores are produced by bacteria; exospores and endospores.


(i) Exospores

Exospores are structures formed outside the vegetative cell by budding at one pole of cell and come out as a bud (Fig. 1.1D). Exospores are produced by methane-oxidizing bacteria from the genus *Methylosinus* belongs to Proteobacteria like *M. trichosporium* (Reed *et al.*, 1980; Reed and

Dugan, 1979). Genus *Streptomyces* and *Actinomyces* belonging to the *Actinobacteria* groups also produces exospores (Ryding *et al.*, 1998)

(ii) Endospores

When tough, dormant structures are formed within the vegetative cell it is called endospore (Fig. 1.2). Endospores are formed by firmicute members of *Bacillus* spp. and *Clostridium* spp. (Hutchinson *et al.*, 2016; Piggot and Hilbert, 2004) within the mother cell. The most resistant dormant bodies which is heat and U.V irradiation resistant.

Chamberlain et al., 2009

Figure 1.2 Stained endospores of Bacillus subtilis.

1.2 Bacterial sporulation

Formation of endospores has been extensively studied as compared to the other survival strategies listed above. Endospores are developed under unfavorable conditions which later germinate when favorable conditions resume. Over the recent past, many cases have been reported which showed the presence of endospores-like bodies or dormant bodies in bacteria from taxa other than Firmicutes members like *C. burnetii* (McCaul and Williams, 1981), *S. marcescens* (Ajithkumar *et al.*, 2003), *Myxococcus xanthus* (Kroos, 2007), few *Mycobacterium* spp. (Singh *et al.*, 2010; Ghosh *et al.*, 2009; Lamont *et al.*, 2012), *Rba. johrii* (Girija *et al.*, 2010),

R. palustris (Venkidusamy and Megharaj, 2016), Serratia ureilytica Lr5/4 (Filippidou et al., 2019).

1.3 Firmicutes

The process of sporogenesis has been greatly explored over the years and presently we have deep knowledge on the molecular machinery of sporogenesis of a few Firmicutes wherein *Bacillus subtilis* has been the favorite model organism (Hutchinson *et al.*, 2016; Piggot and Hilbert, 2004). *Bacillus subtilis* (similarly in *Clostridium* spp.) undergo sporulation which is a developmental program during environmental stress conditions. Sporulation starts with the asymmetrical cell division along with DNA replication and the two copies of genome distributed in both compartments. The smaller compartment is the forespore (Prespore) which develops into the mature spore surrounded by multilayers coat shell composed of many proteins that protects the genome of bacteria during harsh conditions and when the environment is favorable spore germinates and enters into vegetative cycle.

The series of development stages which leads to spore are as follows (Errington, 2003; Higgins and Dworkins, 2012; Setlow, 2007) (Fig. 1.3).

- 1. Vegetative state
- 2. Stage starvation-State- activation of Spo0A
- 3. Stage I-II- Onset of sporulation.
- 4. Stage II-III- Sporulation and engulfment.
- 5. Stage III-IV- Completion of engulfment and cortex synthesis.
- 6. Stage V-VI- Coat synthesis and spore maturation
- 7. Stage VII- Mother cell lysis.
- 8. Spore germination and outgrowth.

Vegetative state

In this binary fission occur in the bacteria leads to cell growth this occurs on the availability of nutrients. Cell division cycle progress along with the chromosomal replication, the sister cells are separated by cleavage of cell wall.

Stage starvation - State-activation of Spo0A

When bacteria are facing the stress condition mostly nutrient deficiency act as a molecular signal. This signal is transferred by sporulation-specific two component switches and multicomponent phosphorelay. Signal activates auto phosphorylation of histidine sensor kinases (KinA-KinE) leading to transfer of phosphoryl group through 30 extended phosphorelay to response regulator Spo0F and Spo0B a phosphotransferase which finally phosphorylates and activates master regulator transcription factor of sporulation Spo0A. The phosphorylated Spo0A (Spo0A~P) levels are increased and it binds to 0A boxes upstream of 120 genes are regulated. This stage requires the sigma factors σ^A and σ^H .

Stage I-II - Onset of sporulation

In this stage axial filamentation occurs and here cell has two chromosomes for mother cell and forespore. A condensed form of duplicated chromosomes is called axial filament spread between the two poles of cells. RacA protein helps in anchoring two chromosomes to poles. Spo0A~P along with the sigma factor σ^H activates onset of sporulation by inducing the transcription of genes promoting asymmetric cell division and chromosome elongation. *SpoIIA* operon expresses sporulation sigma factor σ^F and its regulators which are important for the forespore development through the cell division which is unequal by forming asymmetric septum, this happens due to the formation of two polar Z-rings with the help of FtsZ and SpoIIE

protein. SpoIIE plays two major roles first it interacts with FtsZ and the central Z-ring formation is shifted towards poles secondly it activates the pro- σ^F .

Stage II-III - Sporulation and engulfment.

Here asymmetric cell division is completed through the sigma factor σ^E and σ^F present in the mother cell and forespore respectively. Due to polar division, the 30% of one of the two chromosomes is present into the forespore and the remaining chromosome in the mother cell due to this genetic asymmetry, there is a compartment specific gene expression. The remaining 70% of the chromosome in mother cell is then shifted into the forespore with the help of DNA translocase SpoIIIE. When the σ^F activates in the forespore and σ^E in the mother cell which initiates the expression of first set of sporulation specific genes involving those of engulfment process.

Stage III-IV- Completion of engulfment and cortex synthesis.

The forespore is engulfed completely by engulfing membranes and separated by mother cell membrane. Engulfment completion releases forespore into cytoplasm of the mother cell. The forespore is now independent separate body with its own double membrane within mother cell. In Stage IV a thick layer of peptidoglycan is formed between two forespore membranes which forms the spore cortex and building of a thick proteinaceous coat surrounding the forespore. When σ^E in mother cell and σ^G in the forespore expressed these activate σ^K in the mother cell. The compartmentalized gene expression consists of regulatory cascades both in forespore and mother cell. The activation of σ^G and σ^K produces regulators GerE and SpoVT which fine tunes sporulation–specific genes leads to feed-forward loops. A newly discovered transcription modulating protein YlyA is a RNA polymerase-binding protein activates σ^G guided gene

transcription which involves in spore germination and further expression with σ^G and SpoVT. In this stage proteins involve in spore coat and cortex layers are highly synthesize.

Stage V-VI- Coat synthesis and spore maturation

The transcription of the proteins which are involved in the protection of DNA occurs in forespore. Mother cell produces large amount of dipicolinic acid which is transferred into the forespore. Coat proteins and cortex are synthesized in both the compartments which develop a cortex layer composed of thick peptidoglycan and several coat layers around the spore as a protective layer.

Stage VII- Mother Cell lysis

Detachment process occurs in this stage in which forespore is proceeds towards the middle of the cell from the pole, then after some time mother cell cytoplasmic membrane ruptures and succeeds to mother cell wall lysis with the help of CwlH and CwlC cell wall amidase. A released spore is an independent dormant body which is highly resistant to acids, heat, desiccation and other environmental stresses. CwlH and CwlC produces N-acetyl-muramoyl-L-alanine amidase cleaving the peptidoglycans of mother cell, these two hydrolases are transcribed by σ^K also control late gene expression of mother cell specific.

Spore germination and outgrowth

Spores respond to the surroundings on being in dormancy and metabolically inactive this results in spore germination at favorable condition. When the spore senses the trigger molecules like nutrients and peptidoglycan fragments it germinates by lysing the protective cortex and coat layers. Nutrient germinant binds to the germination (Ger) receptor of inner membrane of spore initiates the germination process. Also, the shredded peptidoglycan acts as a signal for germination sensed by Ser/Thr Kinase PrkC. The signal is passed to spore which is committed to

germination liberates the Ca⁺-DPA out of spore core and water remains rehydrated into core. The degradation of cortex followed by swelling of the core. Finally, the metabolic activity starts for outgrowth of a vegetative cell.

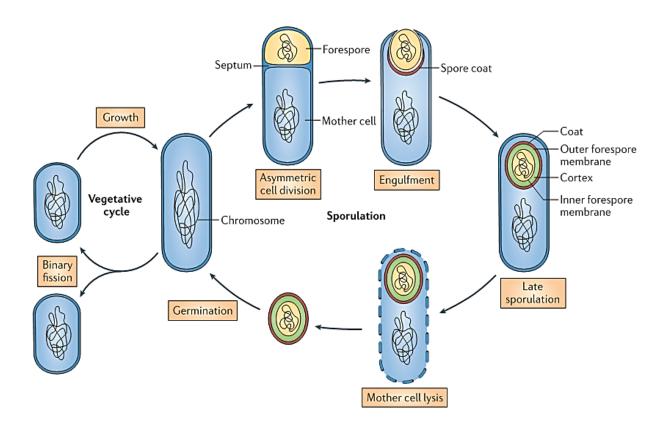


Figure 1.3 Developmental cycles of Firmicute sporulation and germination. A vegetative cell in a stress signal starts dividing asymmetrically into two compartments, mother cell and forespore separates by septum later mother cell engulf the forespore then cortex and coat is formed around the spore including other material makes spore mature finally mother cell ruptures to free the spore, spores sense the favorable conditions for germination and enters into vegetative state. (Image adopted from McKenney et al., 2013).

1.4 Firmicute endospore structure

The mature endospore is a complex structure consist of many layers (Fig. 1.4). Central core contains DNA enclosed within a spore inner membrane. Which is enclosed within the two layer made up of peptidoglycan known to be cortex. Three-layered coat composed of proteins

and peptides encloses the cortex. At last the coat is surrounded within a loose structure composed of glycoprotein called exosporium. These outer layers enclose a compartment with the gap.

The mother cell makes and install all the parts after the inner layer coat proteins, exosporium (Henriques and Moran, 2007) (Fig. 1.5). The spore becomes the resistant by desiccation and accretion of small acid soluble proteins (SASP) there role is to safeguard the DNA of spore and during germination as a source of amino acid. Resistance is provided by the dipicolinic acid incorporation in the cortex and helps in germination (Magge *et al.*, 2008).

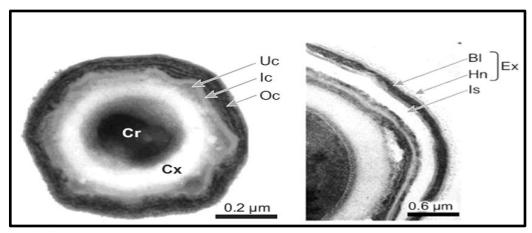


Figure 1.4 Spore structure: Oc: outer coat, Ic: inner coat, Uc: undercoat, Cr: core, Cx: cortex, Ex: exosporium, Is: inter space, Hn: glycoprotein nap, Bl: basal layer, Adopted through (Waller *et al.*, 2004).



Figure 1.5 Sketch of a mature spore structure along with its components.

1.5 Sporulation in Actinobacteria

The Gram positive Actinobacteria such as *Streptomyces*, *Actinomyces* and *Micromonospora* differentiates into the dormant exospores. The model system for exosporulation study is *Streptomyces*, in its life cycle it forms hypha, these hyphae under stress conditions divides into the compartments where spores are develops, matures, disperse and germinates (Fig. 1.6).

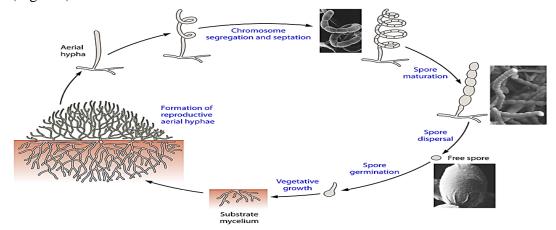


Figure 1.6 Life cycles of Actinomycetes (Adopted from Barka et al., 2016)

Streptomyces normally grows the branch hyphae and nutrient depletion conditions act as a signal for the differentiation leading to the exospores. Activation of sporulation specific regulon occurs through the release of repressor BldD-c-di-GMP complex (Bush *et al.*, 2015; Tschowri *et al.*, 2014). The aerial hyphae now cover with arodlet layer of amyloid fibrils (Wildermuth *et al.*, 1971) which is composed of rodlin and chaplin proteins (Claessen *et al.*, 2004). This sporogenic hyphae is dissected through the septa along with the distribution of chromosome into the prespore compartment (Ausmees *et al.*, 2007; Ditkowski *et al.*, 2013; Jakimowicz and van Wezel, 2012;). SsgA-like family proteins (SALP) regulate this process which is present only in Actinomycetes (Sigle *et al.*, 2015). SsgA is an important sporulation protein of *S. coelicolor* also the SsgB that regulates the FtsZ rings assembly in septation sites (Keijser *et al.*, 2003; Van Wezel *et al.*, 2000; Willemse *et al.*, 2011; Sevcikova and Kormanec,

2003). SsgD protein has function in developing spore wall (Noens *et al.*, 2005, 2007). Therefore the aerial hyphae turn into the mature spores. During maturation simultaneously DNA condensation and formation of gray pigment occurs in the *S. coelicolor* spore (Kelemen *et al.*, 1998). A thin rodlet layer of fibrous sheath is formed surrounding the wall of spore (Claessen *et al.*, 2002, 2003). Cell wall hydrolases SsgE and SsgF separate the spores which helps further in the dispersal (Traag and van Wezel, 2008; Haiser *et al.*, 2009) (Fig. 1.7).

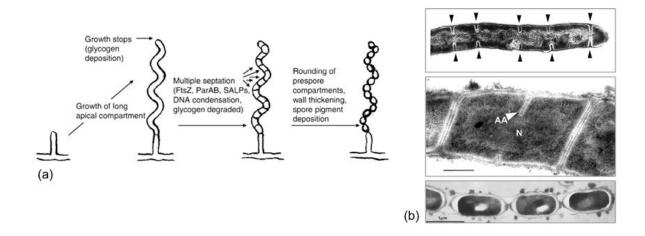


Figure 1.7 (a) Diagrammatic presentation of sporulation in the actinobacteria *S. coelicolor* (Adopted through Chater and Chandra, 2006) (b) Sporulation of *S. coelicolor*, sporulation septa grows to separate the spore. N: nucleoid; AA: Annulus in growing, (Adopted through Hardisson and Manzanal, 1976).

1.6 Other members

Many previous reports has shown dormancy in the bacteria not belonging to the firmicute groups, most of these bacteria are isolated from harsh adverse environment conditions, therefore these bacteria are habitats of that environment which is sometime unfavorable for survival, these bacteria might have develop survival strategy leading to formation of resistant, tough and dormant structures. These dormant bodies have some similarity with the spores of firmicutes but their structures are different at some points. We will discuss the dormancy reported till date other than Firmicute group.

- a) Coxiella burnetii is an intracellular bacterium an agent of Q fever, which produces endospores (McCaul and Williams, 1981) which can be seen at pole of the cell (Fig. 1.8A). Coxiella burnetii is reported to be resistant at high temperature 74°C, chemical and physical agents.
- b) Serratia marcescens subsp. sakuensis is gram negative bacterium isolated from the waste-water treatment tank. Under TEM analysis the endospore structure was observed (Fig. 1.8B) having similarity to that of *B. megaterium* endospore (Ajithkumar *et al.*, 2003). This bacterium can survive at high temperature of 75°C and high salt concentrations similar to spores.
- c) *Myxococcus xanthus* develops the fruiting bodies which differentiate into spherical myxospores which are found to be heat resistant (Fig. 1.8C). This type of sporulation is called fruiting body sporulation which is starvation—dependent sporulation (Licking *et al.*, 2000).
- d) *Mycobacterium* spp. forming dormant endospore like structure was reported by two different groups. *Mycobacterium avium* subsp. *paratuberculosis* old cultures showed dormant spore structures (Fig. 1.8D) they are resistant to lysozyme, proteinase K and heat (Lamont *et al.*, 2012). *Mycobacterium marinum* and *Mycobacterium bovis* also produce endospores (Fig.1.8D) (Singh *et al.*, 2010; Ghosh *et al.*, 2009) and appeared to be refractile bodies under phase contrast microscope (Fig. 1.8D). Therefore it is predicted due to formation of dormant bodies in the *Mycobacterium* spp. persists for long time in the host and resist for drugs.

- e) *Rhodobacter johrii* strain JA192 produce refractile endospore like structures which stained with malachite green (Fig. 1.9A). Spores are produced from the old culture or stressed cultures (Girija *et al.*, 2010)
- f) *Rhodopseudomonas palustris* strain RP2 colonies when kept for 4-5 weeks long period incubation at an anoxic chemosynthetic environment produces spores (Fig. 1.9B) (Venkidusamy and Megharaj, 2016).
- g) *Serratia ureilytica* Lr5/4 isolated from polyextreme environment geothermal spring its temperature exceeds ~54°C has shown refractile cyst like bodies (Fig. 1.9C) in old culture grown in solid media. The Lr5/4 culture has been withstanding a dry heat shock of 75°C (Filippidou *et al.*, 2019).

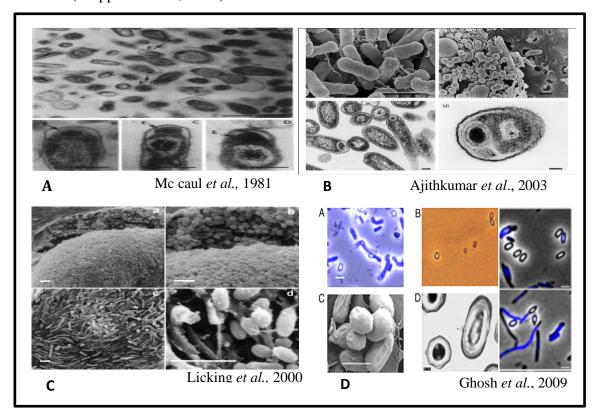
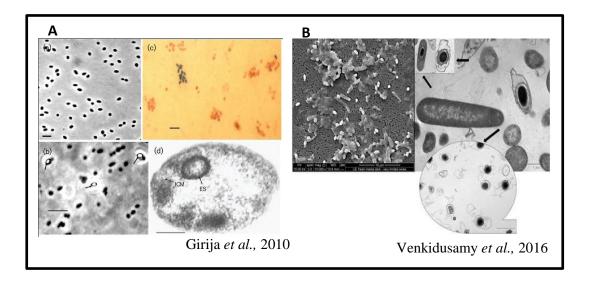



Figure 1.8 Dormant bodies of non firmicute bacteria (A) Coxiella burnetii (B) Serratia marcescens subsp. sakuensis (C) Myxococcus xanthus (D) Mycobacterium bovis, M. marinum.

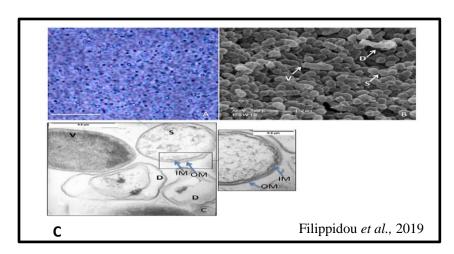


Figure 1.9 Dormancy of bacterial cells (A) *Rhodobacter johrii* JA192 (B) *Rhodopseudomonas palustris* RP2 (C) *Serratia ureilytica* Lr5/4

1.7 Structure of bacterial cell wall peptidoglycan

Bacterial cell wall is a cross linked polymer which surrounds the bacteria made up of peptidoglycan polymer, a repeat of N-Acetylglucosamine and N-Acetylmuramic acid (NAG and NAM) attached through β 1-4-glycosidic bond by transglycosylase. NAM has peptides stem out from it these peptides are di, tri and tetrapeptides. The parallel neighbor strands are cross-linked by DD-trans-peptidase (Fig. 1.10) (Rogers *et al.*, 1981).

Figure 1.10 Bacterial cell wall structure consist of a backbone having repeated NAG and NAM sugar while NAM sugar has short peptides which is alternating dipeptide, tripeptide and tetrapeptide similarly a parallel backbone tripeptide forms a cross-lining of tripeptide tetrapeptide makes network of cell wall repeatedly attach to parallel backbones.

1.8 Structure of spore cortex peptidoglycan

Spore cortex is responsible for dormancy of spore which maintains the dehydration of spore core which makes it heat resistance. The main event in germination of spores is the depolymerization of the cortex peptidoglycan by lytic enzymes (GSLE). Cortex peptidoglycan of spore consist of alternating N-acetylglucosamine and N-acetyl -muramic acid (NAG and NAM), where NAM residues has branch of either a tetra peptide L-Ala-D-glu-Dpm-D-Ala or L-Ala. Half of the muramic acid do not contain the side chains and modified into muramic lactam (MAL) (Fig. 1.11). This PG chain is cross- linked by tetra peptide side chain forming a peptide bond between the carboxy end of D-Ala and ε-amino end of Dpm (Popham *et al.*, 1996a) the peptidoglycan is cleaved by specific enzymes for specific bonds (Fig. 1.12). Spore peptidoglycan structure is conserved in all bacilli and clostridia. The peptide side chain of N-acetylmuramic acid (NAM) is removed with the help of cwlD-encoded muramoyl-L-Alanine amidase and modified into muramic-δ-lactam (Gilmore *et al.*, 2004).

Figure 1.11 Structure of spore cortex peptidoglycan its backbone consists of repeats of NAG, NAM, MAL, with peptides side chains. (Adopted from Popham *et. al.,* 1996a)

Figure 1.12 Structure of a *B. subtilis* spore cortex peptidoglycan and the cleavage sites with the specific type of enzymes are indicated by arrow (1) Glucosaminidase, (2) muramidases/lytic transglycosylase, (3) amidase, (4) endopeptidase. (Adopted from Smith *et al.*, 2000).

1.9 Autolysin Enzymes (Peptidoglycan hydrolases) involved in bacterial development

In bacteria, there are diverse groups of peptidoglycan hydrolase enzymes which cleaves the bond of the peptidoglycan polymers and its fragments (Shockman *et al.*, 1996). There are hydrolase which cleaves the bond between the cell walls creating pores essential for

incorporation of more PG material and new for expansion of cell wall during cell growth and development of the bacteria (Lee and Huang, 2013).

A cell wall is cleaved with these type of enzymes (Fig. 1.13) (i) Glucosaminidase (ii) Lytic transglycosylase (Lysozymes/ muramidase) (iii) Endopeptidase (iv) Amidases

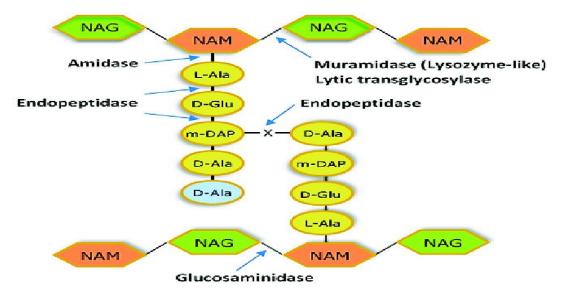


Figure 1.13 Bacterial cell wall peptidoglycan structures with its cleavage sites with different type of enzymes. (Adopted from Fernandes and São-José, 2018)

- (i) Glucosaminidase (Lysozymes) these enzymes cleave the β 1, 4 –glycosidic bond between GlcNAc and MurNAc. They have four classes Chalaropsis lysozyme, hen egg-white lysozyme (HEWL), goose egg-white lysozyme (GEWL), and bacteriophage T4 lysozyme (T4L).
- (ii) Lytic transglycosylase these enzymes hydrolase the β 1,4 –glycosidic bond between the NAG and NAM. In *E. coli* MltA, MltB(Slt35), MltC, MltD, MltE, MltF and Slt70 function is to recycle peptidoglycan during growth and all have the cleaving activity on the cell wall (peptidoglycan) sacculi like other glycosidase these are not hydrolases (Suvorov *et al.*, 2010).

- (iii) Endopeptidase these cleaves the amide bond between amino acid of alternate peptidoglycan. CwlO and LytE are reported from the *B. subtilis* (Hashimoto *et al.*, 2012). Spr, YebA and YdhO are reported from *E. coli* (Singh *et al.*, 2012) important for cell wall synthesis and its elongation.
- (iv) Amidase-N-Acetylmuramyl-L-Ala amidases are amidase which cleaves the amide bond between N-terminal L-alanine residue of peptide and MurNAc. There are four amidases in *E. coli*, AmiA, AmiB, AmiC and AmiD (Heidrich *et al.*, 2001).

The role of these autolysins in vegetative growth, peptidoglycan maturation through the polymerization of peptidoglycan building blocks during these events requires autolysins (Osipovitch *et al.*, 2015). Cell motility, separation and competence, cell-wall turnover, cell enlargement and protein, differentiation into spores and germination, digestion of asymmetric septum for prespore engulfment, maturation of cortex of spore, lysis of mother cell and germination. Germination specific lytic enzymes (GSLE) - These autolysins involve in spore germination like SleB and CwlJ in *B. subtilis* cleaves the spore cortex.

1.10 Germination specific lytic enzymes (GSLE)

GSLE are important enzymes in germination processes they actively recognize the MAL residue in the cortex peptidoglycan of spore and depolymerize the cortex, these enzymes do not cleave leaves the intact cell wall which lacks MAL residue of new emerging bacterial cell just beneath the cortex of spore (Popham *et al.*, 1996b). GSLE are lytic transglycosylase type enzymes these are two types (i) Spore cortex lytic enzymes (SCLEs), hydrolyze the PG cortex of the spore, (ii) Cortical fragment lytic enzymes (CFLEs), these enzymes cleaves the cortex after SCLE hydrolyzes during germination. These both enzymes present in the spore producing members of genera *Bacillus* and *Clostridium* Spp., *B. anthracis* has 3 SCLEs identified SleB,

CwlJ1, CwlJ2, one CFLE is SleL. GSLE allows full hydration and core expansion (Setlow, 2013). *B. subtilis* has three GSLE– CwlJ, SleB and YkvT of these SleB and CwlJ are well studied their double mutants has completely stopped the hydrolysis of cortex (Ishikawa *et al.*, 1998). *Clostridum difficile* and *C. perfringens* spore germination protein is SleC and SleM which are muramidases (Gutelius *et al.*, 2014). In *B. cereus* cortex lytic enzyme is SleL (YaaH) which shows glucosaminidase activity (Chen *et al.*, 2000).

1.11 SleB enzyme

SleB a lytic transglycosylase is well characterized protein, expressed during sporulation as an inactive form and then deposited on the spore outer cortex (Moriyama *et al.*, 1999). During germination the enzyme is activated and hydrolyses the peptidoglycan of cortex. SleB recognize the cortex- specific muramic δ lactam residue which provides the specificity determinant. Sleb crystal structure of its C-terminal domain has transglycosylase fold and its active site having a catalytic glutamate residue (Jing *et al.*, 2012).

1.12 Genome mining

It is the computational process requires bioinformatics tools; one can isolate the gene of interest of a genotype from a related genome. In gene bank database now thousands of bacterial complete genomes are submitted which are annotated and genes are identified and characterized experimentally. When any newly bacterial genome is sequenced, it's all the coding sequences (CDSs) is identified then these CDS can be compared to the CDS present already in the database. Therefore, many known CDS are present in the database such known genes can be used to identify their putative genes in the newly sequenced genome by sequence comparison (Ziemert *et al.*, 2016).

1.13 About Rhodobacter johrii

Rba. johrii is an endospore forming phototrophic proteobacterium, isolated from rhizosphere soil (Girija et al., 2010). Rba. johrii is a Gram stain negative, oval to rod-shaped, motile, phototrophic, purple non-sulfur bacterium. It is commonly found in flooded paddy soils and has role in nutrient cycle. It has bio fertilizer properties like nitrogenase activity, production of indole - 3 -acetic acid production, nitrogen fixation. Though a few morphological characters and differences in the structure of spore of Rba. johrii with respect to that of Bacillus and other Gram-stain-positive bacterial spores was studied but still an extensive and more elaborate study is to be done.

1.14 Definition of the problem

Many bacteria other than firmicute groups produce dormant structures when thrives in stressful environmental surroundings (McCaul and Williams, 1981; Ajithkumar *et al.*, 2003; Singh *et al.*, 2010; Ghosh *et al.*, 2009; Lamont *et al.*, 2012; Venkidusamy and Megharaj, 2016; Filippidou *et al.*, 2019). Our group has reported similar finding a non-firmicute, gram-stainnegative phototrophic, alphaproteobacterium, *Rba. johrii* which produces endospores like structures under certain conditions. The bacterium was isolated from a pasteurized soil of paddy rice fields in Andhra Pradesh in India (Girija *et al.*, 2010). As is the norm with rice cultivation, these fields undergo periods of flooding and drying and such seemingly "normal" environments may be viewed as "adverse" from the point of view of the micro biota living there (Liesack *et al.*, 2000). Therefore, microorganisms may have a reasonable motive for the formation of dormant structures to cope with survival challenges posed in such habitats. As this bacterium was isolated from the pasteurized soil (heated at 80°C for 30 min), therefore has been revive probably from the dormant bodies. The present work aims in understanding more about

endospores of *Rba. johrii* by examining the spore ultra-structure and molecular insights by identifying the genes involve in spore formation through genome sequencing and gene mining with the following objective:

1.15 Objective of the study

> To study the insights of endospores and molecular machinery of sporogenesis in Rba. johrii

The above objective will be achieved through the following scientific approach:

- Endospore like refractive bodies reproducibility & reconfirmation: Phenotypic study
- Genome sequencing and mining of genes involved in sporulation
- Characterization of at least one of the putative protein of spore

MATERIALS AND METHODS

2. Materials and methods

2.1 Materials, chemical reagents and equipment's

2.1.1 Apparatus

Apparatus required for the present experiments include culturing glass flask, beaker, measuring cylinders, test tubes, reagent bottles, screw cap tubes, screw cap bottles, plastic and glass petri dish, pipettes were used make of Borosil or Riviera or Duran or Anumbra brand.

2.1.2 Deionized water and Milli-Q water

Deionized water was used for media preparation and final rinsing of glassware after washing. Milli-Q water was used for molecular work, these were obtained from the water plant facility unit, school of life sciences, University of Hyderabad, which was further autoclaved and stock solutions were prepared.

2.1.3 Compounds and chemicals

The chemicals which were used in the current research work was from HIMEDIA, Invitrogen, Sigma, Qiagen, Thermofisher scientific, E-Merck.

2.1.4 Adjusting pH

pH meter (Digisun Electronics, DL-707) was used for adjusting the pH.

2.1.5 Sterilization

Growth media, Eppendorf tubes, glass equipments and apparatuses were sterilized through the autoclave for 15 min at 15 lbs pressure. Compounds which are heat sensitive are sterilized through Acrodisc syringe filters with Supor membrane (Hydrophilic polyethersulfone), sterile- pore size of $0.45~\mu m$ or $0.2~\mu m$ (PALL, Life Sciences).

2.2 Microbiological methods

2.2.1 Growth media

The Biebl and Pfenning, 1981 a mineral medium was modified and used for the growth of *Rba. johrii and R. benzoatilyticus*, all the components are given in table (Table 2.1).

Table 2.1 Composition of modified Biebl and Pfennig (1981) medium

Ingredients	g.l ⁻¹
KH ₂ PO ₄	0.5
MgSO ₄ .7H ₂ O	0.2
NaCl	0.4
NH ₄ Cl	0.4
CaCl ₂ .2H ₂ 0	0.05
Pyruvate	3.0
Yeast Extract	0.6
Fe-citrate solution (0.1% w/v)	5 ml
*Micronutrient solution (SL7)	1 ml

2.2.2 Growth and sporulation conditions

Rba. johrii was grown at 30°C on modified mineral medium (Biebl and Pfenning, 1981) in the screw capped tubes at 30°C incubation and 2400 lx light intensity. Rba. johrii was grown phototrophically (OD₆₆₀ nm= 0.8) till mid log which was inoculated to the Difco sporulation medium (DSM) (Nicholson and Setlow, 1990). After the growth comes till log phase keep at 80°C for 10-15 min and finally keep for 1-2 days at RT. Rba. johrii grown in agar plates of mineral medium incubated for 1-2 months and also the old culture in broth grown media were sources of endospore-like dormant structures. Samples are then observed for endospores.

2.2.3 Spore isolation from Rba. johrii

For isolation of spore from the *Rba. johrii* a modified protocol was used (Bosak *et al.*, 2008). Briefly, centrifuge the *Rba. johrii* culture at 6,000 rpm for 10 min. Wash the pellet with PBS (pH 7.8) buffer at least 2-3 times, then dissolve in 50 ml Tris EDTA buffer containing lysozyme 1.2 mg/ml and incubate for 1-2 h at 37°C shaker. Add 10 ml SDS and further incubate

at 37°C for 20-30 min then again wash it for 2-3 times. Dissolve the pellet in Milli-Q and store at 4 °C. The resulting yield of spores was found to be 90 % pure.

2.2.4 Phase contrast microscopy

Phase contrast microscope (Olympus-B201) was used to analyse the morphology of cell like cell shape, spore, granules and other intracellular or extracellular structures.

2.2.5 Endospore staining

Staining of induced cultures for spore-like structures was done using malachite green and safranin (Schaeffer and Fulton, 1933). Perform a bacterial smear of *Rba. johrii* culture heat the slide gently over the water bath for 5 min, stain with malachite green over the smear heat the slide gently for 5 min. Remove slide and wash the slide through running tap water, then add the safranin stain for 2-3 min. Again wash with water and dry the slide completely to visualize underneath light microscope (Olympus B201). Endospores will stain green. Parent cells will stain red.

2.2.6 Nile red staining for PHA granules

Staining of cells with Nile red (Sigma) 1% aqueous solution in DMSO (Ostle and Holt, 1982). *Rba. johrii* cells were heat fixed and few drops of Nile red was added on smear kept in water bath at 55°C for 10-15 min. Again wash the slides with running water, then add 8% acetic acid for 2 min followed by washing with water, air dry the slide and place a coverslip. Samples were observed under confocal microscope (ZEISS LSM900) at red excitation wavelengths (filter BP 450-500 nm).

2.2.7 FM 4-64 and Nile red dye counterstaining

The late stationary phase grown *Rba. johrii* culture was centrifuge for 10 min at 10,000 rpm for pelleting. Wash the pellet with Milli-Q and resuspend in 200 µl Milli-Q. Now add 10 µl

FM4-64 from stock of 5 µg/ml and add 5 µl. of Nile red from stock of 1 mg/ml. Incubate the cells in 30°C water bath around 30 min in dark. Again wash the slides with running water and air dry. Place the coverslip and visualize under confocal laser scanning microscopy (ZEISS LSM900).

2.2.8 FM 4-64 and DAPI dye staining

The *Rba. johrii* late stationary phase grown culture was stained with FM 4-64 and DAPI dye (Sigma Aldrich, Inc., USA). 100 μl culture was washed with autoclaved distilled water and pellet was resuspended in 200 μl of autoclaved Milli-Q water. 10 μl of FM 4-64 from a stock of 5 μg.ml⁻¹ was added to the suspension. 10 μl of DAPI from a stock of 30 mM in phosphate buffer saline (PBS) was added. Kept for incubation at RT for 30 min in dark. Wash the slides with autoclaved Milli-Q water and the cells were placed on a clean glass slide with coverslip for observation under a confocal laser scanning microscope (ZEISS LSM900).

2.2.9 Chemical inhibition of PHA granule synthesis and Nile red staining

Acrylic acid and 4-Pentenoic acid are the known potent inhibitors of PHA granules (Lee et al., 2001). These compounds are added at 5 mM concentration to the Rba. johrii cultures grown in modified Biebl and Pfennig's medium at 30°C at all growth phases. After treating culture with the inhibitors at each growth phase, the cultures were stained with the Nile red (Ostle and Holt, 1982) for PHA staining and observed under Leica TCS SP2 Laser scanning confocal microscope at the Excitation wavelength 450-500 nm.

2.2.10 "Sporotan" dye staining of spores

Purified spore from *Rba. johrii* culture and also late stationary phase culture having spores around 1 ml was pellet down by centrifugation (8,000 rpm at 4°C for 5 min). Wash and resuspend the pellet with the autoclaved PBS buffer (pH 7.8) for 3-4 times. Take 100 μl resuspended culture and add 6 μl of 4 mM solution of sporotan dye dissolved in DMSO for 10-

15 min at the room temperature (~30°C). After incubation again centrifuge (8,000 rpm at 4°C for 5 min) and wash 1-2 times in Milli-Q water and then resuspend in ~ 20 μl of Milli-Q water. Now make a smear of suspension on the microscopic glass slide and placed a coverslip over it, also seal it properly. Observe the slide under confocal laser scanning microscope model ZEISS LSM 900 for imaging at excitation wavelength of 405 nm and emission wavelength 410-480 nm.

2.2.11 Nile red staining of chloroform treated Rba. johrii culture

About 5 ml of the late stationary phase culture pellet was mixed with 3 ml of chloroform and kept for boiling for 10 min. After boiling the pellet stain with Nile red (Ostle and Holt, 1982). The slide was observed under confocal laser scanning microscope model ZEISS LSM 900 at the excitation wavelength 450-500 nm.

2.2.12 Scanning electron microscopy (SEM)

Rba. johrii cell pellet was fixed with 2.5% glutaraldehyde, then wash in 0.1M PBS 2-3 times. Again fix in 1% Osmium tetroxide and wash in 0.1M PBS for 2-3 times. Now dehydrate the pellet in ethanol (40%, 50%, 70%, 90% and 100% ethanol) and dried on cover slip. Cambridge stubs were used for mounting the cover slip and gold sputtering was done. The sample was observed under scanning electron microscope (JEOL JSM 5600).

2.2.13 Transmission electron microscope (TEM sectioning)

Sample preparation of thin section and TEM observation of *Rba. johrii* was outsourced to the RUSKA Lab, SVVU, Rajendranagar, Hyderabad. Briefly, the samples were fixed with the 2.5% glutaraldehyde in 0.05 M PBS (pH 7.2) at 4°C for 24 h. Again fix in 2% osmium tetroxide for 2 h with same PBS buffer. Samples were embedded into the spurr resin after dehydrating in different alcohol grade. The ultra-microtome was used for ultra-thin sectioning (50-70 nm) and semi thin sectioning (200-300 nm), these sections were stained with uranyl acetate and toludine

blue. The sections were again stained with 4% lead citrate. Grids were used for mounting both the sections. The grids were observed under TEM (Hitachi, H-7500)

2.3 Bioinformatical (in silico) methodology

2.3.1 Genome sequencing and assembly

DNA was extracted using the Quick-DNATM Universal Kit (ZYMO RESEARCH) with utmost care to prevent contamination. Genome sequencing was outsourced to SciGenom Labs Pvt., Ltd., India. Briefly, Covaris system was used for fragmentation of DNA creating the 300-350 bp mean size. Illumina TrueSeq procedure was followed for preparing the DNA shotgun library and Illumina Hiseq platform was used for sequencing. A total 2,959,826 reads were produced from the sequenced DNA library. Optimal K-value predicted was 19 from KmerGenie (Chikhi and Medvedev, 2014), with assembly size 45,19,038 bp. FastQCn (www. bioinformatics. babraham.ac.uk/projects/fastqc) checked the raw reads quality and FastX tool (//hannonlab.cshl. edu/fastx_toolkit) was used for trimming the raw reads. De novo assembly was performed using MaSuRCA (Zimin *et al.*, 2013), Velvet (Zerbino and Birney, 2008), Edena (Hernandez *et al.*, 2008), SOAPdenovo2 (Luo *et al.*, 2012), SPAdes (Bankevich *et al.*, 2012), ABySS (Simpson *et al.*, 2009). Integration of the contigs was done with the CISA (Lin and Liao, 2013).

2.3.2 Annotation and analysis

NCBI Prokaryotic Genome Automatic Annotation Pipeline (PGAAP) (Tatusova *et al.*, 2016) and RAST server (Aziz *et al.*, 2008) was used for annotations. tRNA and rRNA were predicted using RNAmmer (Lagesen *et al.*, 2007). GGDC web server (//ggdc.dsmz.de) was used for calculating DNA-DNA hybridization *in silico* and ANI calculator (//enveomics. ce.gatech.edu/ani) for calculating average nucleotide identity (ANI). Identification of species

was done with SpecI server. Circular map showing the spore homolog was drawn using CGView Server (Grant and Stothard, 2008).

2.3.3 Genome characterization

To understand more in the insights within the genus *Rhodobacter* Spp. we have employed various online servers as well as offline tools such as RAST (Aziz *et al.*, 2008), PATRIC (Wattam *et al.*, 2017), AntiSMASH (Blin *et al.*, 2019), dbCAN2 (Zhang *et al.*, 2018), CRISPR finder (Grissa *et al.*, 2007), KAAS (Moriya *et al.*, 2007), Pfam (El-Gebali *et al.*, 2019), TMHMM (//cbs.dtu.dk/services/TMHMM/), SignalP (Armenteros *et al.*, 2019), BPGA (Chaudhari *et al.*, 2016) and DNA Plotter (Carver *et al.*, 2009) for circular map visualization.

2.3.4 Genome mining for endospore genes

Non-redundant database of complete proteins of *Rba. johrii* and *Bacillus subtilis* subsp. *subtilis* 168 from NCBI database was downloaded. *Rba. johrii* complete protein orthologs were searched against *Bacillus subtilis* subsp. subtilis 168 genome (Accession No.NC000964) proteins using BLASTp tool using non-redundant protein database of NCBI with Blosum 45 Matrix and other default parameters.

2.3.5 Detection of Conserved Domain and multiple sequence alignment

Using Simple Modular Architecture Research Tool (SMART) (Schultz *et al.*, 1998) Full length protein and catalytic domain alignment was done with *B. cereus* strains, ATCC 14579 (NCBI Accession No. WP001249053), Q1 (WP001249040), M13 (ASK14870), MLY1 (WP100910207); *B. anthracis* strains, ATCC 14578 (WP001249045), Sterne (YP028821), Ames (AAP26584), and *B. subtilis* subsp. *spizizenii* strain TU-B-10 (WP014114227), Stercoris (WP014664430), strain 168 (WP004398523) using Clustal Omega (Madeira *et al.*, 2019) and rendered sequence similarity by ESPript 3.0 (Robert and Goue, 2014).

2.3.6 Protein 3D secondary structure model and its validation

The SWISS MODEL (Waterhouse *et al.*, 2018) and RaptorX server (Kallberg *et al.*, 2012) was used to generate structural model of the SleR. The model obtained from SWISS-MODEL was verified using PROCHECK (Laskowski *et al.*, 1993). Structural diagrams visualization is done by PyMOL. (/pymol.org/educational).

2.3.7 Superimposition and molecular docking

Protein model SleR were superimposed based on Cα position by PyMol Molecular graphics system with crystal structure of *B. cereus* ATCC 14579 SleB protein and crystal structure of SleB from *B. anthracis*. To find substrate interaction with SleR from *Rba. johrii*, molecular docking was performed with 3D coordinates of N-Acetylglucosamine, N-Acetylmuramic acid, NAG-NAM-(Pentapeptide), Muramic Lactam, 1,6-anhydromuropeptide (PDB no. 1QTE) (Van Asselt *et al.*, 1999), NAM-NAG-NAM (NAM and NAG alternating trisaccharide) (PDB no. 9LYZ) (Kelly *et al.*, 1979). These substrates were taken from crystal structures from protein data bank. AutoDock Vina (Trott and Olson, 2010) was used for the docking and PyRx for visualization (Dallakyan and Olson, 2015). Selected substrates were docked manually into the catalytic domain of the SleR of *Rba. johrii*. Grid box was generated around the protein with grid box size of center X=55.09, Y=45.61, Z=27.22 and dimension at X=33.31, Y=45.3, Z=38.01 and exhaustiveness 8 was calculated. Molecules having high docking score and preferable binding interactions were analyzed using Discovery Studio 2017 R2 Client and PyMOL graphics viewer.

2.4 Protein characterization

2.4.1 Bacterial strain, growth conditions and plasmids

Rhodobacter johrii strain JA192 (= DMS 18678 = JCM 14543 = MTCC 8172) was grown in a modified mineral medium (Lakshmi et al., 2011). B. subtilis FW2 was inoculated in

the nutrient media (Himedia M002) and incubated overnight at 37°C shaker for sporulation. *E. coli* DH5α and Rosetta (DE3) were grown using lurea broth media (Himedia M1245) at 37°C and the antibiotic used was kanamycin at 34 µg/ml concentration. The plasmid used for this study was pET SUMO vector. All cultures were maintained in aseptic conditions with sterility precautions to ensure absence of contamination.

2.4.2 Genomic DNA isolation

Rba. johrii genomic DNA was extracted using the Quick - DNATM Universal Kit (ZYMO RESEARCH) as guided by manual directions.

2.4.3 Polymerase chain reaction (PCR) amplification of SleR gene

For *sleR* gene amplification DNA was extracted from the *Rba. johrii* culture by kit method. Primer (Table 2.2) was design to amplify the *sleR* gene ORF lacking starting 23 codons, including codons 24-240 from *Rba. johrii* genomic DNA. The reaction mixture was set up by using Taq DNA Polymerase (Gene i PCR Master Mix) for PCR; it was prepared as follows (Table 2.3). The programme was set for the PCR amplification (Table 2.4). The amplified product was observed on 1% TBE agarose gel and visualize in Gel Doc (Alpha imager 1220).

Table 2.2: Primer characteristics

Primer	Sequence (5'-3')	T _m	GC%	Annealing temperature
Forward primer (BSCLFSUMOE)	ATATGGATCCGATGTGACGGTGAG C CAGTC	57°C	55.2	52.0°C
Reverse primer (HSCLRSUMOE)	TATAAAGCTTTCAGGAGCCGCCGG GCTG	55.1°C	55.5	50.0°C

Table 2.3: Components of PCR reaction mixture

S.No.	Component	Stock Concentration	Actual Volume used
1.	Nuclease free water		5.5 μl
2.	Master Mix	2X	12.5 μl
3.	Forward Primer	10 μΜ	1 μl
4.	Reverse Primer	10 μΜ	1 μl
5.	Template DNA (colony in MQ)		5 μl
	Total Volume		25 μl

Table 2.4: Programme for PCR

1 cycle	94°C for 5 min Initial denaturation	
	94°C for 1min	Denaturation
30 cycles	51°C for 1.5 min	Annealing
	72°C for 1 min	Extension
	72°C for 10 min	Final extension
	Hold at 4°C	

2.4.4 DNA agarose gel electrophoresis

Evaluation of quality of DNA was done by agarose gel electrophoresis using tris-borate EDTA buffer (TBE) at 10 Volt/cm in TBE buffer with ethidium bromide 0.01% (v/v). 6x sample buffer (50 mM EDTA, 30 % (v/v) glycerol, 10 Mm Tris-HCl pH 7.5, 0.28 μM xylencyanol, 0.44 μM bromophenol blue, 8.8 μM orange G) was added to samples to around 1.5 μl to 5 μl of DNA sample and mixed loaded onto the equilibrated TBE gel. Gel was electrophoresed at 50-100 V, visualized and photographed using alpha imager 1220 gel documentation system. DNA fragments were cut out from the gel and isolated with the help of kit (QIAquick Gel Extraction KiT

2.4.5 Molecular gene cloning of truncated sleR

PCR amplified product 674 bp of truncated sleR and pET SUMO expression vector was

digested with BamHI and HindIII restriction enzyme and purified (QIAquick PCR purification Kit; Qiagen). Ligation is done of PCR product and pET SUMO expression vector by using T4 DNA ligase (Invitrogen) (Table 2.5) followed by transformation into *E. coli* DH5α cells and successful cloned colony plasmid was confirmed by DNA sequencing of the SleR₂₄₋₂₄₀ fused with pET SUMO producing the plasmid pET-SUMO-SleR₂₄₋₂₄₀, which will encode an N-terminal His₆ - SUMO tagged with SleR truncated fusion protein.

Table 2.5 Ligation of digested sleR and pET SUMO vector

Components	Conc.	Final vol.
Ligase reaction buffer	5x	6 μl
PCR product	150 ng.	2.7 μl
pET SUMO vector	50 ng.	3 μl
T4DNA ligase	0.1 unit	1 μl
Nuclease free water		17.3μ1
	Total	30 μ1

Total final volume was 30 µl ligation reaction mixture was incubated at 22°C overnight.

2.4.6 Transformation into E. coli (DH5-α strain) for cloning

Partially thawed competent cells (DH5-α strain) 100 μl were kept on ice and ligation mix (20 μl.) was added. Incubate for 10-15 min on ice. Heat shock was given at 42°C around 55 s again place into ice around 2 min. Add around 850 μl of lurea broth, then incubate the eppendorf in 37°C incubation for 1 h at 150 rpm, then centrifuge at 6000 rpm for 10 min and discarded around 800 μl of supernatant, mix the pellet with left over supernatant properly through pipette, plates of luria agar with antibiotic kanamycin were prepared, spread the mix on plates and incubate at 37°C for overnight. Colonies appeared on plates containing recombinant clones after overnight incubation.

2.4.7 Analysis of recombinant clones by PCR of colony and plasmid isolation

From the overnight transformed plate some white colonies were picked and DNA was extracted (Englen and Kelley, 2000) and plasmid isolation was done by QIAGEN kit. The reaction mixture and reaction conditions are same as above described for *SleR* gene amplification.

2.4.8 Plasmid isolation of recombinant colonies

Colonies as appeared on agar plates containing Ampicillin was inoculated in to 10 ml luria broth culture, for its plasmid isolation by QIAprep kit. Plasmid isolated is analysed on 1% agarose gel on electrophoresis and run at 50 v after completion it is analysed by UV doc.

2.4.9 Double digestion

Plasmid isolated from positive colony was checked for the insert *sleR* gene by double digestion. Bam HI and Hind III restriction enzyme were used for double digestion. Take 1 µg of plasmid, add 10 x buffer, 1 µl each of Bam HI and Hind III enzyme make up the total volume 50 µl reaction with Milli-Q. Incubate at 37°C for 3 h. Check and visualize the reaction on 1.2 % agarose gel.

2.4.10 Transformation into E. coli Rosetta (DE3 strain) for expression

Partially thawed the competent cells *E. coli* Rosetta (DE3) 100 μl. on ice and add 20 μl. pET- SUMO- SleR₂₄₋₂₄₀ plasmid, incubate for 10-15 min on ice. Heat shock was given at 42°C around 55 s again place into ice around 2 min. Add around 850 μl of lurea broth, then incubate the eppendorf in 37°C incubation for 1 h at 150 rpm for 1 h centrifuge at 6000 rpm for 10 min and discarded around 800 μl of supernatant, mix pellet with left over supernatant properly through pipette, plates of luria agar with antibiotic kanamycin were prepared, spread the mix on

plates and incubate at 37°C for overnight. Colonies appeared on plates containing recombinant clones after overnight incubation.

2.4.11 Protein overexpression

His₆-SUMO-SLER₂₄₋₂₄₀ fusion protein was overexpressed into *E. coli* Rosetta (λ DE3) which was grown into 1 L LB medium with 34 µg/ml kanamycin at 37 °C till the OD reaches 0.6, at this point add 0.2 mM of IPTG was added in the culture and kept for incubation for 6 h at 37°C.

2.4.12 Protein purification

Cells were harvested by centrifuging for 10 min at 6,500 rpm, 4°C and dissolved in buffer A (Tris base (pH 8.0) 50 mM, NaCl 300 mM, imidazole 10 mM, PMSF 0.5 Mm) and cell disruption was done by sonication (35% amplitude, 10 min processing time, 20 s intervals) after that cell lysate was pelleted by centrifuging (7,000 rpm for 30 min at 4°C) and supernatant containing the fusion soluble homogenized protein with his tag was purified by metal affinity chromatography with the Ni-NTA resins, elution of proteins was done in buffer A containing 100 to 400 Mm imidazole gradient, fractions with eluted proteins were pooled together, electrophoresed through SDS-PAGE gels and the appropriate band was excised and sent for MALDI-TOF MS-MS sequencing, outsourced to Sandor Life Sciences, Hyderabad, India. The pooled fractions were dialyzed in buffer with SUMO protease without imidazole and passed again through Ni-NTA resins which have yield pure SLER₂₄₋₂₄₀ protein and Amicon filter device (Millipore) was used for concentrating the protein.

2.4.13 Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE)

Purity and expression of protein was checked on the SDS-PAGE (Schagger and von Jagow, 1987; Laemmli, 1970) at denaturing conditions. First the SDS gel was prepared of stalking and resolving gel according to the required components (Table 2.6) Take the samples of

purified protein or crude cell lysate add equal amount of 4X Laemmli buffer (Tris-Hcl (pH 6.8) 0.15 M, glycerol 20%, SDS 4%, bromophenolblue 0.02 %, β -mercaptoethanol 10%) then heat at 98°C for 6 min before loading on gel. Protein molecular weight was estimated with the electrophoresis in Bio-Rad chamber containing 1X running buffer (Tris 25mM, 0.1% (W/V) SDS, Glycine 190 mM) at 100-150 V. When the dye reaches at near the bottom of resolving gel electrophoresis is switched off and the gel is soaked in stain (10% acetic acid, 25% methanol, 0.25% coomassie brilliant blue R250) for 1 h and then kept in destain (10% acetic acid, 25% methanol) till the protein appear visually clear.

Table 2.6 Components for preparing sodium dodecyl sulphate polyacrylamide gel.

Components	Resolving gel (10 ml.)		Stacking gel (5 m	l.)
	Volume	Final conc.	Volume	Final conc.
Water	3 ml	-	2.9 ml	
1.5 M Tris Hcl	2.5 ml.	375Mm	-	-
(pH 8.8)				
10%(W/V) SDS	0.1ml.	0.1%	0.1ml.	0.1%
0.5 M Tris Hcl	-	-	1.25 ml.	125 mM
(pH 6.8)				
30% acrylamide /	4.3 ml.	12.9%	0.825 ml.	4.95%
bisacrylamide				
TEMED	6 μl.	0.06%	3.75 µl.	0.75%
10%(W/V) APS	80 μl.	0.08%	50 μl.	0.1%

2.4.14 Western blotting

Total protein of *E. coli* cell lysate was separated on 6-12% SDS-PAGE and transported to the nitrocellulose membrane. Incubate the blot to block with 5% BSA for 1-2 h at RT, then incubated with primary antibodies at 4°C. Anti-6-His antibody (Sigma-Aldrich Inc., USA) was used as primary antibody. Specific protein interacts primary antibodies which are detected through peroxidase coupled secondary antibodies. Wash the blots 2-3 times using TBS-T buffer after primary antibody treatment incubate for 1 h in secondary antibody. Again wash with the

same buffer and chemiluminescent solution ECL substrate was used for developing protein blot and Chemidoc system for visualization.

2.4.15 Cell wall (peptidoglycan) and isolation of spore sacculi

Vegetative cell wall (peptidoglycan) from *B. subtilis* (Sigma Aldrich, Inc., USA) was procure and used as substrate for enzyme assay. For spore cortex (peptidoglycan sacculi) it was isolated as follows, first the spores were isolated from *B. subtilis* FW2 as previously described (Bosak *et al.*, 2008) from which spore sacculi was isolated (Dowd *et al.*, 2008) with some changes. Briefly, the harvested spore pellet from 300 ml of *B. subtilis* FW2 was treated with 35 ml solution containing the 1% SDS, 50mM Tris Hcl (pH 7.5), 50 mM DTT. This was boiled for 20 min and washed with warm Milli-Q water till SDS was removed and centrifugation was done for 10 min at 10,000 rpm. Pellet was dissolved in 1ml of mixture having 20 mM MgSO₄, 100 mM tris Hcl (pH 7.5), 50 μg RNAse A, 10 μg DNase I and incubated for 2 h at 37°C. To this 100 μg trypsin (TRT PCK, Worthington) in 10 mM CaCl2 was added and incubated at 37°C overnight. The solution was boiled with 1% SDS and washed in Milli-Q water till SDS was removed and dissolved in Milli-Q water for analysis (stored at 4°C).

2.4.16 Enzyme activity assay

Spore sacculi were dissolved in 1 ml solution having 1 mM EDTA, 30 mM NaPO₄(pH 7) and 1mM DTT in a cuvette. Enzyme assay was done by observing the % OD₆₀₀ loss/min (Path length of 1 cm) initial OD₆₀₀ was kept 0.2 of sacculi in which protein SleR₂₄₋₂₄₀ from *Rba. johrii* was added at 20 nM concentrations and incubated at 25°C. The absorbance at 600 nm was recorded at each 5 min time interval after agitation for 40 min. Similarly for the substrate cell wall (peptidoglycan) enzyme assay was done with protein SleR₂₄₋₂₄₀. Enzyme assay was done in triplicates.

2.5 Real - time quantitative polymerase chain reaction (qRT-PCR) analysis

2.5.1 Growth of *Rba. johrii* and determination of growth phases

Rba. johrii was grown at 30°C on modified mineral medium, in the screw capped tubes in 30°C incubation and 2400lx light intensity. Growth phases were determined by growth curve. The growth of *Rba. johrii* was monitor with change in OD and colorimeter (Systronics model 112) at 660 nm (filter 8) was used for measuring the OD against the blank medium.

2.5.2 RNA isolation and cDNA synthesis

The *Rba. johrii* culture was pellet down by centrifuging (8,000 rpm for 5 min at 4°C) in each growth phases. 10 ml culture pellet was used for total RNA isolation through miRNeasy kit (Qiagen) as instructed. DNase I (Qiagen) treatment was given for the removal of DNA. cDNA was synthesis from 1 μg of RNA through Easy Script cDNA kit (Abm) in 10 μl reaction.

2.5.3 Real-time quantitative polymerase chain reaction (qRT-PCR) analysis

The obtained first strand cDNA was amplified using SYBR green FAST Qpcr Master Mix (Kappa Bio systems) in a 10 μ l reaction mixture with target RNA specific primers on StepOne Realtime PCR detection system (Applied Bio systems). Primer design and specificity was done through Geneious Primer 3 for qRT-PCR (Table 2.7). qRT-PCR programme conditions were optimize and used (Table 2.8). Melting curve examined the products specificity and each sample was tested in triplicate. The expression levels of the putative *sleR* gene was intended through standard curve method, Ct values for *sleR* gene was normalized to the Ct values obtained from the amplification of housekeeping gene 16S rRNA gene and relative quantification was done by comparative $\Delta\Delta$ Ct method (2^(- $\Delta\Delta$ Ct)).

Table 2.7 Primers used for qRT-PCR

Primer	Sequence
Forward primer SleR	5'GTA GAA GAG ATG CGC GCC GAT GG 3'
Reverse primer SleR	5'CGGGCAGTTCTCCTTCATGTTCGAC 3'
Forward primer 16S rRNA	5'GATCCTGGCTCAGAATGAACGCTGG 3'
Reverse primer 16S rRNA	5'TCAAACCAGCTATGGATCGTCGGC 3'

Table 2.8 qRT-PCR programme conditions

1 cycle	95°C for 10 min	Initial denaturation
	95°C for 15s	Denaturation
42 cycles	62°C for 30s	Annealing
	72°C for 30s	Extension
	72°C for 10 min	Final extension
	Hold at 4°C	

2.5.4 Staining and microscopy

Phase contrast microscope (Olympus-B201) was used to analyse the morphology of cell like cell shape, spore, granules and other extracellular structures at different growth phases parallely during the *sleR* gene expression study. Staining of cultures for spore structures was done using malachite green and safranin (Schaeffer and Fulton, 1933).

RESULTS

3. Results

3.1 Endospore properties of Rba. johrii and other characterizations

3.1.1 Morphological study

3.1.1.1 Confirmation of endospores of *Rba. johrii*

Cells of *Rba. johrii* are oval to rod shaped, having 1-1.5 µm width and 2.5-3µm length (Fig. 3.1A,B). Late stationary phase cells of photoheterotrophically grown cultures of *Rba. johrii* produce endospore like refractile bodies (Fig. 3.2A,B) which stained with malachite green (Fig. 3.3).

3.1.1.1.2 Endospore staining with DAPI and FM 4-64 flouresence dyes

The late stationary phase grown cells were stained with the dual dyes DAPI and FM4-64. All the vegetative cells were stained with DAPI and FM 4-64 dye, while the refractile bodies were stained only with the DAPI dye (Fig. 3.4) confirming that endospore like refractile bodies having the DNA and it is not an artifact.

3.1.1.2 Confirmation of the endospore like refractile bodies which are not mistaken to poly-β-hydroxyalkanoate (PHA) granules

Poly- β -hydroxyalkanoate (PHA) granules accumulate as a food reserve, which appears similar to the endospores under the microscope therefore it was necessary to confirm that the endospore like refractile bodies are not mistaken with the PHA granules.

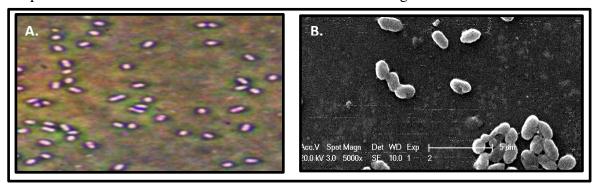


Figure 3.1 Cells of strain Rba. johrii A. Phase contrast image B. Scanning electron microscopy image.

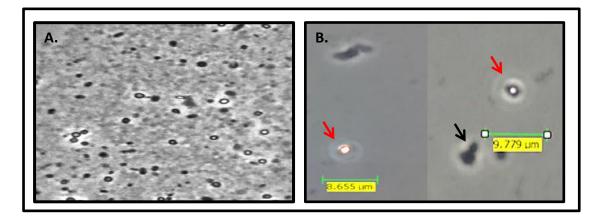


Figure 3.2 Phase contrast image of spores A. Spores in *Rba. johrii* culture B. refractile bodies indicates spore with red arrow and black arrow represent vegetative cell.

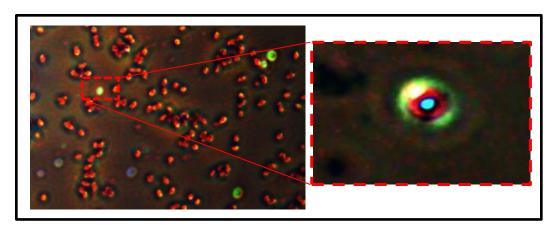


Figure 3.3 Culture stained with malachite green and saffranin.

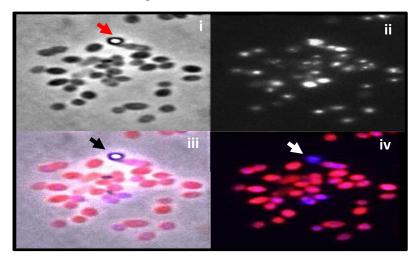


Figure 3.4 Confocal images of sporulated culture (i) Phase contrast micrograph (ii) FM 4-64 stained fluorescent image (iii) overlay of DAPI & FM 4-64 (iv) overlay of phase contrast micrograph, DAPI and FM 4-64.

3.1.1.2.1 FM 4-64 and Nile Red staining

To differentiate between the endospores and PHA granules of *Rba. johrii*, cells were stained with the dual dye FM 4-64 and Nile red. The highly refractile spore like bodies were not stained with the Nile red and PHA granules has red fluorescence (Fig. 3.5). Therefore, we conclude that the late stationary phase cells of *Rba. johrii* produces both the endospores and the PHA granules parallelly and using dual dyes these two bodies are clearly differentiated which confirms that the endospore is not mistaken with PHA granules.

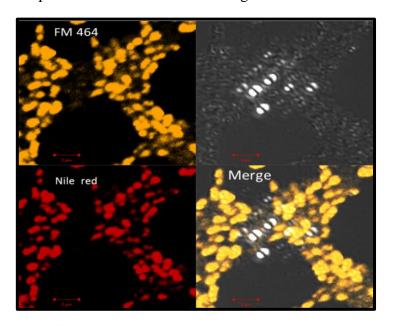


Figure 3.5 Confocal images of sporulated culture stained with Nile red and FM 4-64 flouresence dye.

3.1.1.2.2 Chloroform treatment to dissolve PHA granules

The phototrophically grown cells of *Rba. johrii* were treated with chloroform to dissolve PHA granules. The treated cells were stained with malachite green which showed the green stained spore bodies (Fig. 3.6A). To crosscheck whether still PHA granules are present in the cells after treatment, Nile red staining was done and no fluorescence was observed (Fig. 3.6B) indicating absence of PHA granules.

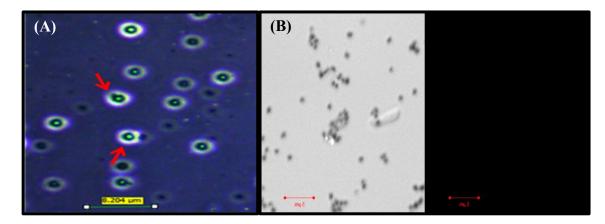


Figure 3.6 (A) Chloroform treatment confirm the refractile bodies as spores and not PHA granules after staining with malachite green (B) Nile Red staining showing no flouresence thus absence of PHA granules.

3.1.1.2.3 Inhibition of PHA biosynthetic pathway

To inhibit the PHA biosynthetic pathway the inhibitors acrylic acid and pentenoic acid were added at different growth phases. At mid log phase, 5 mM of acrylic acid or pentenoic acid was added separately and incubated the culture till late stationary phase. Cells stained with Nile red showed no flouresence (Fig. 3.7A) confirming the inhibition of PHA granules. The untreated cells of *Rba. johrii* culture taken as a positive control which has red fluorescence (Fig. 3.7B) shows presence of PHA granules.

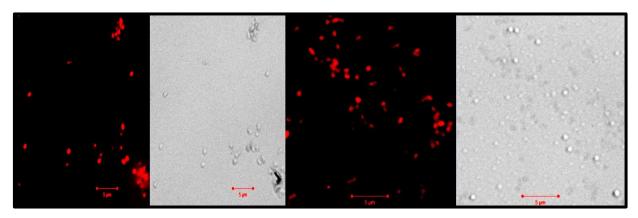


Figure 3.7 (A) PHA granules stained with Nile red and no inhibitors in *Rba. johrii* culture initiated for Spores.

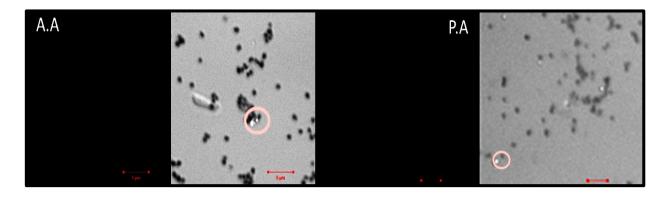


Figure 3.7 (B) PHA granules stained with Nile red and having inhibitors acrylic acid and pentenoic acid in *Rba. johrii* culture initiated for sporulation.

3.1.1.3 Ultra structure of *Rba. johrii* culture and endospores

Ultra-thin sections of *Rba. johrii* cells showed the vegetative cells (V), intracytoplasmic membrane (ICM) structures along with PHA granules (PHA) (Fig. 3.8.1). The ultrafine structure of the dormant spore sections had central core (CR) which was surrounded by two layers inner one is inner thick membrane (IM) and outer membrane like outer coat (OM) in between these two layers is cortex (CX) here inner coat cannot be seen in these dormant bodies and prosthecae like structure were present (Fig. 3.8.2). When the cells of *Rba. johrii* were treated with the Triton –X, the spores coat and other proteinaceous structures were deformed due to denaturation of the protein (Fig. 3.8.2C).

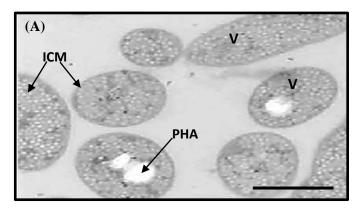


Figure 3.8.1 TEM sectioning images of *Rba. johrii*, (A)Sectioning of vegetative cells (V), vegetative cell with Poly-β-hydroxyalkanoate granules (PHA), endospore like dormant structure (ES), and small intracytoplasmic photosynthetic membrane within vegetative cell (ICM).

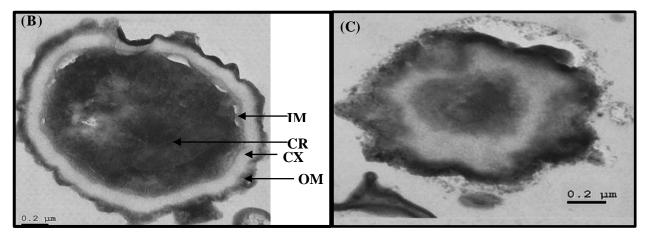


Figure 3.8.2 TEM sectioning images of *Rba. johrii* (B)Ultrafine sections of dormant structure having core (CR), cortex (CX), inner thick membrane (IM), outer membrane like outer coat (OM) and prosthecae structure (PS) (C) section of spores when treated with Triton-X.

3.1.2 A new bacterial spore specific fluorescent stain was used for *Rba. johrii* spore identification.

3.1.2.1 Increasing the number of spores with new method

The photoheterotrophically grown cultures of *Rba. johrii* in Biebl and Pfennig's medium normally develops around 35% of spores (Fig. 3.9A). Therefore, to increase the number of spores many different physical conditions along with the media were screened and finally a method and media was developed, which increased ~20 % yield in the sporulation (Fig. 3.9B).

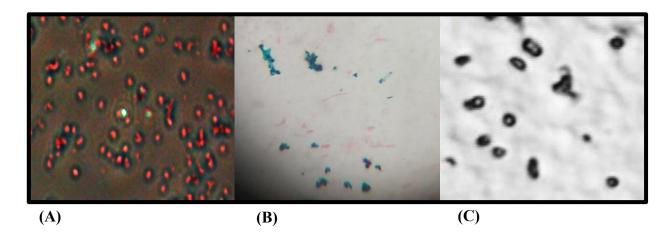


Figure 3.9 (A) Natural endospores in old culture stained with malachite green (B) Artificially induced spores stained with malachite green (C) Isolated pure spores of *Rba. johrii.*

3.1.2.2 Isolation of spores

A modified method was developed to isolate the spores from the *Rba. johrii* given in material and method, which yield the 90 % pure spores free of cell debris and other contaminants (Fig. 3.9C).

3.1.2.3 "Sporotan" staining the spores of firmicute and non-firmicute members

A chemical 7,7-(n-hexylamino)-8,8-dicyanoquinodimethane (Fig. 3.10) which was synthesize chemically was checked for staining the spores of *Rba. johrii*. The staining method developed was very simple, which stains the spores of *Rba. johrii* with the fluorescent dye. "Sporotan" was very specifically binding to the spores but not to the vegetative cells (Fig. 3.11A). Sporotan stains the isolated pure spores of the *Rba. johrii* (Fig. 3.11B). As well as the spores of *B. subtilis* was taken as a positive control (Fig. 3.11C).

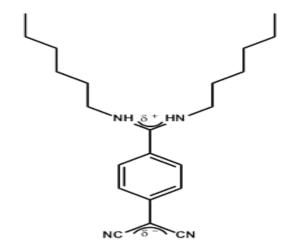


Figure 3.10 Structure of sporotan dye "7, 7-Bis (n-hexylamino)-8, 8-dicyanoquinodimethane".

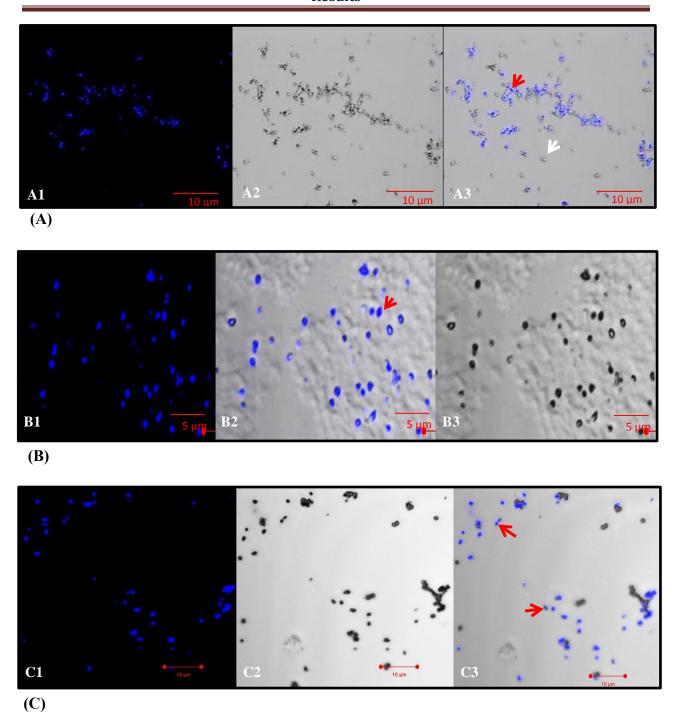


Figure 3.11 Sporotan staining (A) vegetative cells and spores of *Rba. johrii* stained with "Sporotan" (A1, Fluorescence image; A2, Bright field image; A3, Overlay image) (B) Isolated spores of *Rba. johrii* stained with "Sporotan" (B1, Fluorescence image; B2,;Overlay image B3, Bright field image) (C) Isolated spores of *B. subtilis* stained with "Sporotan" (C1, Fluorescence image; C2, Bright field image; C3, Overlay image) spores are shown in red arrow; White arrows show vegetative cells.

3.1.3 Microcolonies as indicators of spores of Rba. johrii

Three months old plates with colonies of *Rba. johrii* when observed under invert microscope. The parent colonies were almost dry and showed microcolonies (Fig. 3.12) which were very similar having colony morphology of *Rba. johrii*. Cells from the microcolonies were also stained with the malachite green (Fig. 3.12).

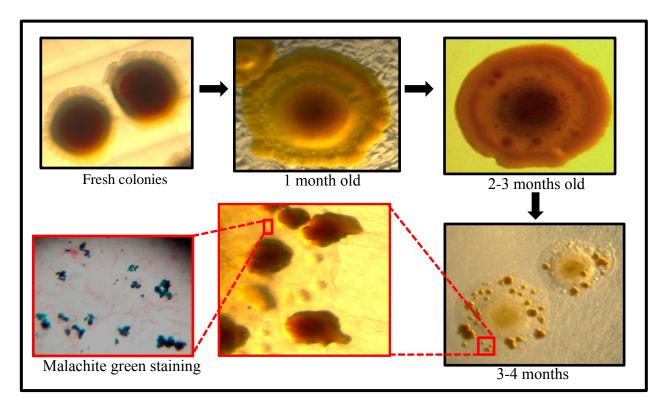


Figure 3.12 Microscopic images for microcolonies formation in Rba. johrii colonies.

3.1.4 Endospores were also identified in *Rhodobacter alkalitolerans* JA916

This strain is isolated from alkaline brown pond in adverse condition culture was grown at 30°C on modified mineral medium, in the screw capped tubes in 30°C incubation and 2400lx light intensity. 1 week old culture was checked for spores by phase contrast and malachite green and Nile blue staining (Fig. 3.13) microscopy suggest presence of endospore.

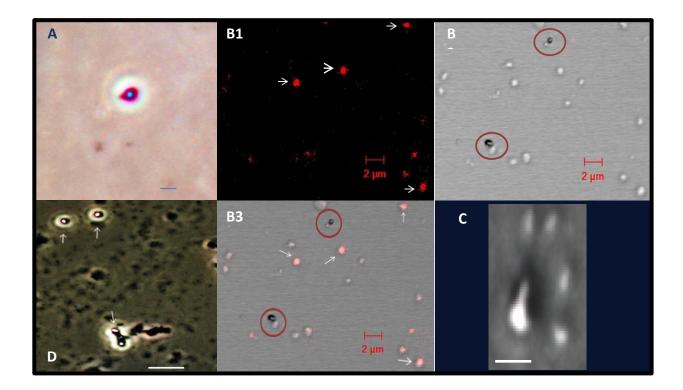


Figure 3.13 Endospores identified in *Rba. alkalitolerans* JA916 (A) Schaeffer and fulton staining using malachite green and saffranin (B1) Fluorescent staining with nile red (B2) Bright field microscopy, red circle indicate spores (B3) Merge image here white arrow represent Pha granule stained with nile red, red circle is spores (C) Phase contrast image of spore germination (D) Phase contrast image of refractile spores.

3.2 Genomic information and mining for sporulation gene homologs in *Rba*. *johrii*

The objective was to identify the homologs of sporulation genes from the genome of *Rba*. *johrii*. To address this question, the genome of *Rba*. *johrii* was sequenced and mined for the spore genes using *Bacillus subtilis* known spore genes as reference. In addition, the genome of *Rba*. *johrii* was characterized in detail and compared with the other valid species names of the genus *Rhodobacter*.

3.2.1 Genome characterization and comparison

3.2.1.1 Genomic DNA isolation

Rba. johrii genomic DNA was extracted using the kit. The quality of isolated DNA was checked on the Agarose gel, DNA was not sheared and intense band appeared on the gel (Fig. 3.2.1)

Figure 3.2.1 Isolated genomic DNA of Rba. johrii on agarose gel.

3.2.1.2 Quantification of isolated DNA

DNA concentration was 302 ng/ μ l when quantified. The purity of DNA was measured at $A_{260/280}$ Ratio to be 1.73 which is less than 1.8 therefore the DNA was pure and free of RNA contamination (Table 3.2.1).

Table 3.2.1 Genomic DNA quantification

Organism name	Qubit Conc.(ng/µl)	Nanodrop Conc.(ng/µl)	A _{260/280} Ratio
Rhodobacter johrii	200	302.3	1.73

3.2.1.3 Assembly and annotation

Sequencing was carried out and resulted in 2,959,826 raw reads. After de novo assembly, the CISA integrated and generated 257 contigs with total genome length of 4,512,111 base pair respectively.

3.2.1.4 Genome characteristics

Genome size of *Rba. johrii* was 4,512,111 bp with 69.1 mol% G+C content. Total numbers of genes were 4333, total CDS regions were 4269, protein encoding genes (PEG) were 4035, rRNA genes were 64, tRNA coding genes were 53, ncRNAs genes were 3 and pseudo genes were 234, hypothetical protein encoding genes were 1075 predicted in genome sequence of *Rba. johrii* (Table 3.2.2). The genomic DNA of *Rba. johrii* was pure as confirmed from the genome sequencing which had no contaminating sequences of other taxa. The scaffolds sequences of the draft assembly have been deposited at NCBI GenBank (Bio Project number "PRJNA323784") with accession number as MABH000000000.

Table 3.2.2 Genome information and characteristics of Rba. johrii.

Sequencing platform	Illumina HiSeq
Sequencing Depth	150.0x
Assembly Method	MaSuRCA v. 2.2.1; SPAdes v. 3.1.1
Contigs	257
Genome ID	445629.4
GenBank Accessions	MABH00000000
Genome Size	4,512,111 bp
G+C content	69.1 %
Genes (total)	4,333
CDS (total)	4,269
PEG (protein encoding gene)	4,035
RNA genes	64
TRNAs	53
NcRNAs	3
Pseudo Genes (total)	234
hypothetical protein encoding genes	1,075

3.2.1.5 Gene Ontology: GO term for predicted CDSs or subsystem distribution of genes

The coding gene sequences were categorized according to the function of genes which was categorized into three processes. Biological process involving 107 genes, molecular function involving 175 genes and cellular components involving 51 genes (Table 3.2.3). The number of genes involve in biological processes is divided further into the sub-system (Fig. 3.2.2) similar way the molecular function (Fig. 3.2.3) and cellular components (Fig. 3.2.4) were also divided.

Table 3.2.3 Gene Ontology terms identified in each category.

Category	Number of terms
Biological Processes	107
Molecular Functions	175
Cellular Components	51

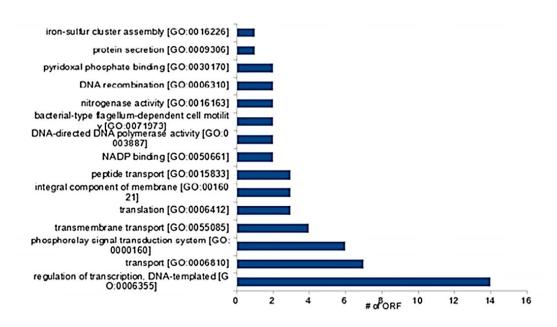


Figure 3.2.2 Top 15 terms in biological function category from GO annotation.

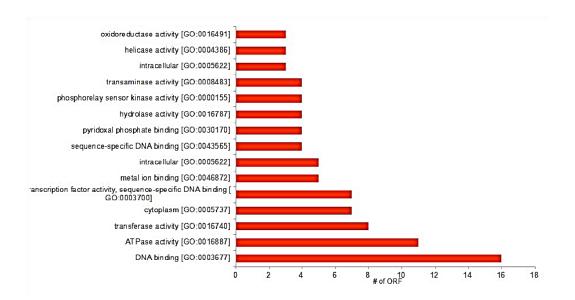


Figure 3.2.3 Top 15 terms in molecular function category from GO annotation.

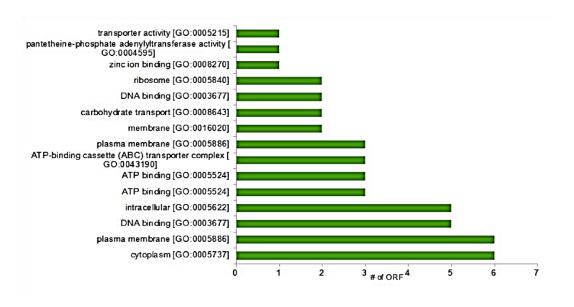


Figure 3.2.4 Top 15 terms in cellular component category from GO annotation.

3.2.1.6 Circular genome map

Rba. johrii genome sequence was represented in a circular form which showed GC skew, GC content, drug targets, transporters, virulence factors, antimicrobial resistance genes, Non CDS, CDS reverse., CDS forward, and contigs (Fig. 3.2.5).

3.2.1.7 Analysis of secondary metabolite biosynthesis gene clusters

Rba. johrii genome has diverse gene clusters for various secondary metabolites which includes terpene, hserlactone, and carotenoid producing gene clusters (Fig. 3.2.6). Secondary metabolite genes analysis is done by AntiSMASH (Table 3.2.4) showed involvement of total 84 genes.

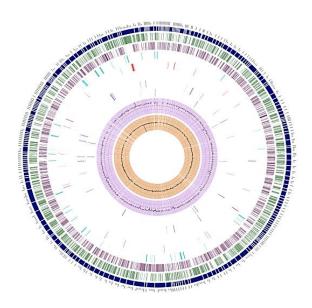


Figure 3.2.5 The rings from the inner to outer circle are, GC skew, GC content, Drug targets, transporters, virulence factors, antimicrobial resistance genes, Non CDS, CDS rev., CDS for., contigs.

Table 3.2.4 Secondary metabolite biosynthetic gene cluster and genes from AntiSMASH

Strain name	No. of	Clusters name	Total genes	Core	Additional
	clusters			biosynthetic	biosynthetic
				genes	genes
	C-1	Terpene	10	1	2
	C-2	Terpene	14	1	5
Rhodobacter johrii	C-3	Hserlactone	18	2	0
	C-4	Terpene	10	1	2
	C-5	Terpene	14	1	5
	C-6	Hserlactone	18	2	0
TOTAL	6		84	8	14

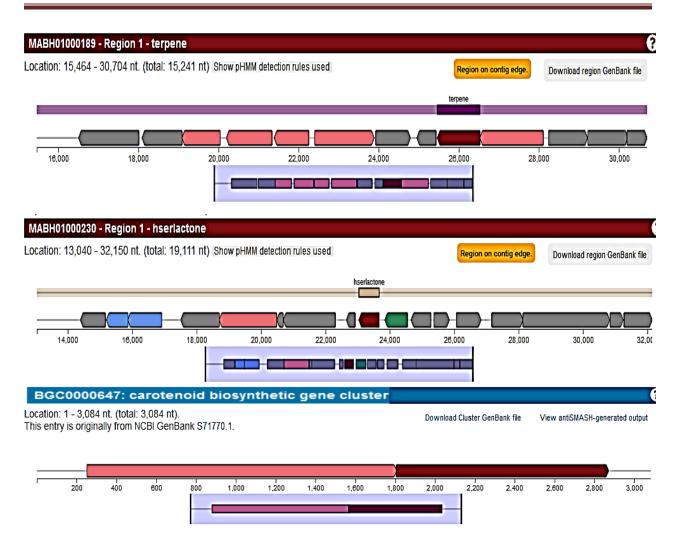


Figure 3.2.6 Secondary metabolite biosynthesis gene clusters.

3.2.1.8 CRISPR- CAS system analysis

CRISPR- CAS system is defense mechanism against invading bacteriophage DNA or plasmid DNA. A total 11 CRISPR loci were detected in *Rba. johrii* (Table 3.2.5). Comparative CRISPR-CAS loci analysis was done with all the Rhodobacter genus members present at the time of analysis, among them *Rba. johrii* was the organism having highest number of CRISPR-CAS loci (Fig. 3.2.7).

Table 3.2.5 Eleven CRISPR locus and their property

Crisper id	Crisper Length	DR consensus	DR length	No. of spacers
tmp_30	105	5CTGTCCGGCGCTGCCGCCGGGCAGGC3	26	1
tmp_35	129	5TGGCAGCCCCGCGCGGGGCGCCTCCCCTTGA CGATGCGTGC3	42	1
tmp_53	78	5GGTTTGTTTCGCGCGCGAAACAA3	23	1
tmp_63	106	5GCCGAGCGGGCCGGACCTCCCGA3	24	1
tmp_125	149	5CGTGGCCCGGGTGGAAGGTCCGGGGGCGTCG GTAAGGGGTGGGA3	45	1
tmp_136	105	5AGTGTCCGAAATCCGGACACGGC3	23	2
tmp_160	131	5CGTCGGACGATCCGCGCGTGCGACGTCAGGC CGGCCGC3	38	1
tmp_163	96	5GAGAGCAGGCGACCCTCACGCCTGCC3	26	1
tmp_191	86	5GTGCCGCCGCGCGTGAGAGGATCCG3	26	1
tmp_242	110	5GGGGAGATCGGGCGGCGGCCG3	28	1
tmp_248	203	5CAAGGCGCCACGCGCGCGGCAGCGGA3	27	3

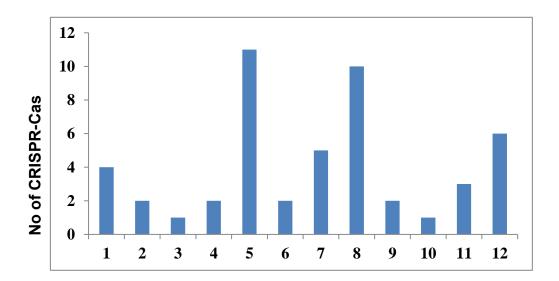


Figure 3.2.7 Comparative analysis of CRISPR-CAS Loci of *Rhodobacter* members.1- *Rhodobacter aestuarii*JA296, 2- *Rhodobacter azotoformans* KA25,3- *Rhodobacter blasticus* DSM2131, 4-*Rhodobacter capsulatus* ATCC 11166, 5- *Rhodobacter johrii* JA192, 6- *Rhodobacter maris*JA276, 7- *Rhodobacter megalophilus* JA194, 8- *Rhodobacter ovatus* JA234 9- *Rhodobacter sphaeroides* 2.4.1, 10- *Rhodobacter veldkampii* ATCC 35703, 11- *Rhodobacter vinaykumarii*JA123, 12- *Rhodobacter viridis* JA737

3.2.1.9 CAZymes (Carbohydrate-Active Enzymes) analysis

Here the protein families of glycosyltransferases, glycoside hydrolases, polysaccharide lyases, non-catalytic carbohydrate-binding module enzymes and carbohydrate esterases which take part in metabolism, synthesis were detected. *Rba. johrii* has 510 genes associated with the carbohydrate metabolism, which is the highest among the Rhodobacter members and gene clusters CGC34 and CGC35 are only present in *Rba. johrii* compare to other Rhodobacter spp.

3.2.2 Genome mining of *Rba. johrii* for homologs of major key spore proteins according to stage wise of canonical sporulation pathway

BLASTp analysis was performed to find the common spore proteins *Rba. johrii* and Firmicutes. *B. subtilis* subsp. *subtilis* 168 genome (Accession No. NC000964) as query was BLAST against the *Rba. johrii* complete proteins. Around one hundred major protein homologs were detected in *Rba. johrii*, while those sporulation proteins which also have functions in normal cell-functioning (other than spore-formation) were not considered for analysis. To find the similarities and differences in the sporulation cycle in both the system, we searched the protein homologs according to the stages of sporulation.

3.2.2.1 Homologs of stage I (Starvation state)

In the first stage of sporulation, the cell detects environmental stress which stimulates spore formation via signaling cascade involving σH , σA , KinA - KinE, Spo0F and Spo0B. Spo0A is a key protein which regulates many genes in sporulation. Except Spo0B, all the other protein homologs were detected in *Rba. johrii* with 28-68% amino acid identity and protein coverage of 21-92% (Table 3.2.6).

Table 3.2.6 Major proteins participating in Starvation state – activation of SpoOA state in *B. Subtilis* and identification of their homolog proteins in *Rba. johrii.*

B. subtilis protein	Rba. johrii protein	Accession no. of Rba. johrii protein	Identity (%)	Coverage (%)
Kin A	response regulator	WP084295807	34	39
Kin B	PAS domain-containing protein	WP069330358	28	57
Kin C	PAS domain - containing protein	WP069333518	29	52
Kin D	sensor histidine kinase	WP069331412	31	41
Kin E	response regulator	WP101327650	30	43
Spo0F	response regulator	WP002720740	33	92
Spo0A	response regulator transcription factor	WP069333547	36	43

3.2.2.2 Homologs of stage II (Onset of sporulation)

In this stage, the cell is asymmetrically divided by formation of septum. The proteins involved in this process are σ^H , σ^E , FtsZ, SpoIIE, Spo0A, RacA, SpoIIM, SpoIIP, and SpoIID. All of these protein homologs except RacA and SpoIIP are present in *Rba. johrii*. The identity of these protein homologs ranged from 19-51% with 17-95% protein coverage (Table 3.2.7).

Table 3.2.7 Major proteins participating in onset of sporulation in *B. subtilis* and identification of their homolog proteins in *Rba. johrii.*

B. subtilis	Rba. johrii protein	Accession no. of	Identity	Coverage
Protein		Rba. johrii protein	(%)	(%)
Spo0A	response regulator transcription factor	WP069333547	36	43
FtsZ	cell division protein FtsZ	WP069331225	51	83
SpoIIE	fused response regulator/phosphatase	WP108223412	24	17
SpoIID	DUF3035 domain-containing protein	WP069330774	33	17
SpoIIM	MlaE family lipid ABC transporter	WP069331900	29	29
	permease subunit			

3.2.2.3 Homologs of stage III (Commitment to sporulation and engulfment)

In this stage, the cell's genetic material is also partitioned and transported to the forespore with the help of key protein SpoIIIE. Other proteins involved in this stage of sporogenesis are

SpoIIID, SpoIIE, GerR, SpoIIQ, SpoIVFA, SpoIIAA, SpoIIAB, SpoIIGA, σΕ, σΕ, σΑ, σG SpoIIR, Gin, RsfA of these homologs SpoIIGA, SpoIIR SpoIIID, GerR and Gin are absent in *Rba. johrii*. The identity of protein homologs ranged between 22-50% with a protein coverage of 16-95% (Table 3.2.8).

3.2.2.4 Homologs of stage IV (Completion of engulfment and cortex synthesis)

The characteristic endospore within the cell is finally formed and visible in this stage. Many structural proteins that form the spore coat and cortex layer are produced. Key proteins in this stage are SpoVIF, SpoVT, GerE, GerR, SpoIVB, Gin, SpoIIQ-SpoIIIAH-G-K channel, SpoIIQ, RsfA, σG (spoIIIG, sigG), σK (spoIIIC, spoIVCB), SpoIIID, and SleB. Among these protein orthologs SpoVIF, SpoIIQ-SpoIIIAH channel and SpoVT were not detected in *Rba. johrii*. The identity of protein orthologs ranged between 31-41% having 11-72% protein coverage (Table 3.2.9).

Table 3.2.8 Major proteins participating in sporulation and engulfment (Stages II-III) in *B. subtilis* and identification of their matching proteins in *Rba. johrii.*

B. subtilis protein	Rba. johrii protein	Accession no. of <i>Rba. johrii</i> protein	Identity (%)	Coverage (%)
SpoIIQ	peptidoglycan DD-metallo endopeptidase family protein	WP069332504	35	35
SpoIIE	4-hydroxy-4-methyl-2- oxoglutarate aldolase	WP069331967	27	34
SpoIVFA	ABC transporter ATP-binding protein	WP069331875	27	28
Spo0A	response regulator transcription factor	WP069333547	36	43
SpoIIAA	STAS domain-containing protein	WP112330558	22	93
SpoIIAB	sensor histidine kinase	WP069332910	39	30
RsfA	hypothetical protein	WP069333566	50	16
spoIIIE	cell division protein FtsK	WP108223489	45	60

Table 3.2.9 Major proteins participating in completion of engulfment and cortex synthesis in *B. subtilis* and identification of their matching proteins in *Rba. johrii.*

B. subtilis protein	Rba. johrii protein	Accession no. of Rba. johrii protein	Identity (%)	Coverage (%)
GerE	DNA-binding response regulator	WP009562094	41	72
SpoIVB	Do family serine endopeptidase	WP069333596	31	11
SpoIIQ	peptidoglycan DD- metallo endopeptidase family protein	WP069332504	35	35
RsfA	hypothetical protein	WP069333566	50	16
SleB	cell wall hydrolase	WP069331589	33	43

3.2.2.5 Homologs of stage V-VI (Coat synthesis and spore maturation)

By this stage, there is development of cortex layer resulting in the formation of thick protective layers. Major proteins involved here are coat proteins CotB, CotW, CotQ, CotG, CotS, YlbD, YtxO, LipC, YeeK, CotU, CotD, YxeE, CotE, YhaX, SpoVM, SpoVA, SpoVID, YuzC, YaaH, YncD, YheD, CotO, CotM, YhjR, YknT, YsxE, CwlJ, YutH, Tgl, YisY, CotZ, YybI, CotT, CotA, CotP, YsnD, and OxdD. In *Rba. johrii* CotG, YeeK, YlbD, LipC, YxeE, CotU, CotD, CotE, SpoVM, SpoVID, YaaH, Yknt, YuzC and YsxE proteins were missing. The identity of other protein homologs ranged between 26-55% with 7-97% protein coverage (Table 3.2.10).

Table 3.2.10 Major proteins participating in coat synthesis and spore maturation in *B. subtilis* and identification of their matching proteins in *Rba. johrii*.

B. subtilis	Rba. johrii protein	Accession no. of	Identity	Coverage
protein		Rba. johrii	(%)	(%)
		protein		
CotB	Hypothetical protein	WP069333635	55	12
CotW	DUF1150 domain-containing	WP069333415	33	57
	protein			
CotQ	trimethylamine methyltransferase	WP069331896	29	7
CotS	endonuclease/exonuclease/phosphat	WP069331690	27	16
	ase family protein			
CotA	hypothetical protein	WP069332063	33	27
CotJC	hypothetical protein	WP069332008	63	23
CotO	AAA+ family ATPase	WP069331348	45	22
CotSA	hypothetical protein	WP069331767	24	57
CotM	hypothetical protein	WP146757676	30	33
CotZ	ATPase	WP069333252	39	24
SpoIVA	hypothetical protein	WP069331425	33	42
YncD	alanine racemase	WP069333085	29	97
YheD	DUF3576 domain-containing	WP069330480	29	42
	protein			
YhjR	phage major tail protein, TP901-1	WP009564481	36	20
	family			
YutH	hypothetical protein	WP084295997	26	82

3.2.2.6 Homologs of stage VII (mother cell lysis and germination)

In this final stage mother cell is lysed, spore is expelled and germinates during favorable conditions. Many proteins play a role in these stages including GerF, GerA family, GerB family, GerM, YpeB, GerC family, YtgP, GerK, NucB, GerD, SpoIIIC, SpoIVCA and SpoIVCB. From these many homologs GerF, YpeB, YtgP, GerB, GerC, GerM, GerD, GerK, SpoIVCA, SpoIIIC, NucB, PrkC and SpoIVCB are absent in *Rba. johrii* (Table 3.2.11).

Table 3.2.11 Major proteins participating in mother cell lysis (Stage VII) and spore germination and outgrowth in *B. subtilis* and identification of their matching proteins in *Rba. johrii.*

B. subtilis	Rba. johrii protein	Accession no. of	Identity	Coverage
protein		Rba. johrii	(%)	(%)
		protein		
GerA	DUF1049 domain-containing	WP069331564	33	61
	protein			
GerE	DNA-binding response	WP009562094	41	72
	regulator			
GerQ	NADH-quinone	WP002719664	35	24
	oxidoreductase subunit A			
GerPE	DUF1737 domain-containing	WP069332810	27	76
	protein			
GerPC	cell division protein ZapA	WP069332829	32	20
CwlH	murein L,D-transpeptidase	WP084295534	30	30
CwlC	N-acetylmuramoyl-L-alanine	WP069332500	34	30
	amidase			
SpoVAD	Hypothetical protein	WP069332049	27	68

3.2.2.7 Homologs of major sporulation-specific sigma factors

All major sporulation-specific sigma factors of *B. subtilis* i.e., σ^H , σ^A , σ^E , σ^F , σ^G , σ^K show similarity to RNA polymerase sigma factors, DNA binding proteins and other proteins of *Rba. johrii* (Table 3.2.12).

Table 3.2.12 Major RNA polymerase sigma factor participating in all the stages of sporulation in *B. subtilis* and identification of their matching proteins in *Rba. johrii.*

B. subtilis	Rba. johrii protein	Accession no. of	Identity	Coverage
protein		Rba. johrii protein	(%)	(%)
σ^{H}	helix-turn-helix domain-containing	WP069332496	33	21
	protein			
σ^{A}	sigma-70 family RNA polymerase	WP112330062	40	20
	sigma factor			
σ^{E}	RNA polymerase sigma factor RpoH	WP069332369	36	38
σ^{F}	RNA polymerase sigma factor RpoD	WP069332997	29	95
σ^{G}	paraquat-inducible protein A	WP002719611	31	23
$\sigma^{\mathbf{K}}$	RNA polymerase sigma factor RpoD	WP069332997	27	82

Other proteins involved in sporulation are shown in (Table 3.2.13) with identity range of 20-48% and coverage range of 11-82%. However, some of the spore proteins like Small Acid Soluble Proteins (SASPs) and DPA synthetase are absent in *Rba. johrii*. All these putative proteins showing important spore-related functions have been mapped onto a circular representation of *Rba. johrii* genome (Fig.3.2.8). From the pool of putative proteins of sporogenesis in *Rba. johrii* a Spore Cortex Lytic Enzyme (Sle) protein homolog has been characterized in this study from *Rba. johrii*.

Table 3.2.13 other proteins participating in sporulation in *B. subtilis* and identification of their matching proteins in *Rba. johrii.*

B. subtilis	Identity	Coverage	B. subtilis	Identity	Coverage
protein	(%)	(%)	protein	(%)	(%)
YtaF	36	21	PbpF	37	66
SkfB	26	82	SplB	20	44
Gdh	36	80	SpoVE	31	82
YdhD	28	43	OxdD	25	65
YfnH	28	28	SqhC	28	51
YhcV	26	31	CgeD	37	38
YhaL	30	11	CgeB	26	28
SpoVB	30	24	IonB	28	52
SpoVK	44	79	RefZ	25	36
SpoVAF	48	15	KatX	23	70
SpoVAD	27	68	ТерЈ	42	17
SpoVAB	33	37	SpoVG	44	25
SpoVAA	31	34	YisJ	33	16
Yqfc	34	35	AsnO	36	15
YtvI	33	23	SkiZ	24	59
IytH	30	19	RicF	23	38
SpoIID	33	17	YjqC	46	89
Pbpg	30	76	KbaA	31	22
HtrC	24	68	SpaC	30	17
CwlC	34	30	YkvP	20	49
CwlH	30	30	YkvT	35	45

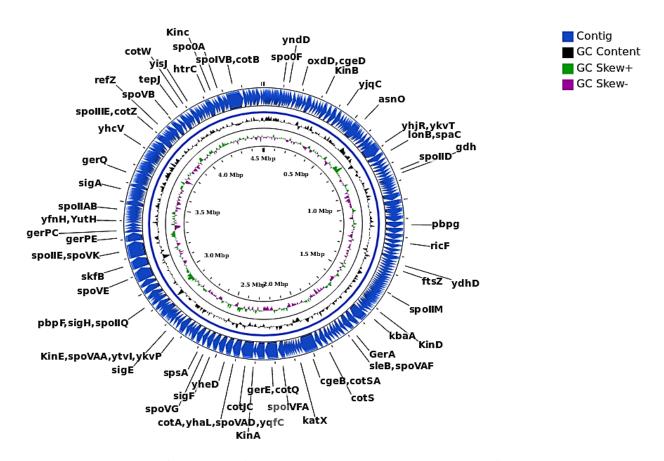


Figure 3.2.8 Mapping of homologs of endospore-formation genes in genome of *Rba. johrii.* Blue colored circle represents the contigs, black circle shows GC content, green circle shows GC Skew + and purple color shows GC Skew.

3.3 In silico, biochemical and functional characterization of a putative spore cortex lytic enzyme (SleR) protein of Rba. johrii

Identification of 87 major sporulation associated protein homologs of *B. subtilis* were identified in *Rba. johrii* (chapter 3.2 of thesis) with identities ranging from 19-68%. From this pool, a novel putative spore cortex lytic enzyme (Sle) protein was identified with protein identity of 28.4% to spore cortex lytic enzyme (Sleb) of *Bacillus subtilis* subsp. *subtilis*. Sleb is an important and well-characterized protein in spores of *B. subtilis* (Boland *et al.* 2000). This homolog was characterized in *Rba. johrii* using *in silico, in vitro* approaches and *in vivo* transcriptional profiling to find out its association with endospore like refractile bodies of *Rba. johrii*.

3.3.1 *In silico* characterization of putative sporulation protein spore cortex lytic enzyme of *Rba. johrii*

We have identified a protein annotated as cell wall hydrolase to be a putative spore cortex lytic enzyme (Sle) (Accession no. WP069331589) in *Rba. johrii* which is 240 amino acid in length. This protein is having 28.4% amino acid identity and 67% protein coverage to the *Bacillus subtilis* subsp. *subtilis* and 26.3% identity, 65% coverage with *B. cereus* ATCC 14579 spore cortex lytic enzyme (SleB) protein. BLAST analysis of full length Sle of *Rba. johrii* protein sequence with spore cortex-lytic enzyme (*Bacillus anthracis*) showed 27% sequence identity and 65% query cover and only of catalytic domain sequence showed 28% sequence identity and 82% query cover.

3.3.1.1. Characteristics of the spore cortex lytic (Sle) gene of Rba. johrii

The promoter region was identified for the putative *sle* gene of *Rba. johrii* (Fig. 3.3.1) which has -10 box (CGCAAAAAT) from 121 bp to 113 bp and -35 box (TGGACG) from 141 bp to 136 bp upstream of the start codon (ATG) of coding sequence having total length 723 bp of

the *sle* gene. 240 amino acid polypeptide is encoded by the *Sle* gene expected to have molecular weight of ~25,557 Da, which is highly basic having a theoretical pI of 9.82.

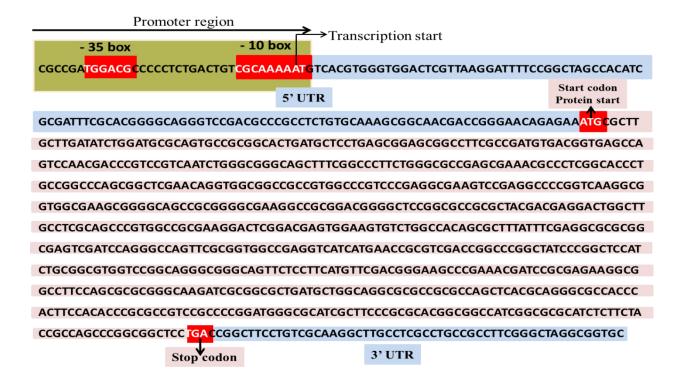


Figure 3.3.1 Promoter and gene properties of *Sler* from *Rba. johrii*. Promoter region (grey region) consist of -10 box and -35 box (red region) transcription start site transcribes the 5' untranslated (5'UTR) region (Blue region at 5') from start codon (ATG) protein is coded till the stop codon (TGA) (Pink region) after which is the 3' untranslated region (3'UTR) (Blue region at 3').

3.3.1.2. Sequence similarity, protein domain prediction and its conserved sequences

Protein characteristics and functional domains was done with the SMART search tool (Table 3.3.1) which had predicted signal peptide from 1 to 23 a.a and a conserved hydrolase 2 super family (Pfam 07486) domain from 131 to 234 a.a (Fig. 3.3.2). Multiple sequence alignment of full-length Sle protein of *Rba. johrii* with Sleb protein of *Bacillus* spp. showed the conserved domain of the catalytic site with divergence at other parts in the protein. The signature sequence motif <u>EXRGE</u> (Jing *et al.*, 2012) the alternate glutamate (E) was conserved at the

position Glu128 and Glu132, simultaneously the catalytic residue glutamate (Glu128) residue was also conserved in Sle of *Rba. johrii* (Fig. 3.3.3).

Table 3.3.1 Characteristics of SleR protein of *Rba. johrii* analysed by SMART server predicting domains, repeats, motifs and features.

Protein	Pfam	Pfam	Position	E-value:	GO function	Signal	Low	Homology
	Domain	domain	of			peptide	complexity	with
		accession	domain				region	known
								structure
								PDB
								domain
								ID
SleR	Hydrolase_2	PF07486	131 to	3e-25	hydrolase	1 to 23	Not present	4FET A,
			234 a.a	(HMMER3)	activity	a.a		4f55.1
					(GO:0016787)			

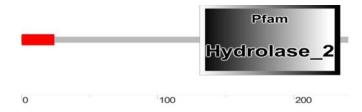


Figure 3.3.2 Detection of conserved domain using Simple Modular Architecture Research Tool (SMART), red part indicate the signal sequence, Box represent hydrolase catalytic domain.

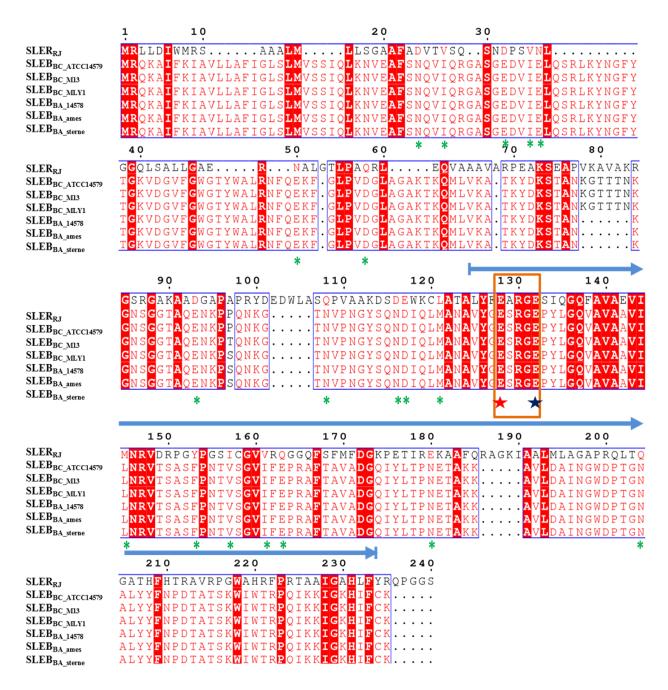


Figure 3.3.3 Multiple sequence alignment of full length SleR protein from *Rba. johrii* with SleB protein of *B. cereus* ATCC14579 (\$LEB_{BC_ATCC14579}), *B. cereus* M13 (\$LEB_{BC_M13}), *B. cereus* MLY1 (\$LEB_{BC_MLY1}), *B. anthracis* ATCC14578 (\$LEB_{BA_14578}), *B. anthracis* Sterne (\$LEB_{BA_sterne}), *B. anthracis* Ames (\$LEB_{BA_ames}). Conserved amino acids are shown in red boxes, green asterisk mark represents the similar residues. The catalytic residue Glu is highlighted with red star mark and another Glu with blue star mark these alternate sequences are part of SleB specific <u>EXRGE</u> motif shown in an orange box. Blue line donates the catalytic domain of the proteins.

3.3.1.3 3D secondary structure prediction and its validation

The full length secondary structure of Sle was predicted by using the RaptorX server (Fig. 3.3.4A) and SWISSMODEL server based on homology modeling the template used for modeling was taken from the germination-specific lytic transglycosylase SleB from *Bacillus cereus* ATCC 339 14579 (PDB ID - 4f55.1; Li *et al.*, 2012). Therefore according to this template the model drawn from 109 to 235 a.a, which include hydrolase domain. Structure has seven α -helices, three β -sheets, eleven loops and turns (Fig. 3.3.4B). Model drawn was validated using PROCHECK tool, proteins ramachandran plot indicating >99% residues in allowed region and only one residue amounting to ~1% was in disallowed region (Fig. 3.3.5B). Sle model of *Rba. johrii* and its template model was superimposed based on $C\alpha$ position using PyMol. The root mean square deviation (RMSD) for the superimposition of model and template was found to be 1.96, which is less than 2.0 hence model is validly accepted (Fig. 3.3.5A).

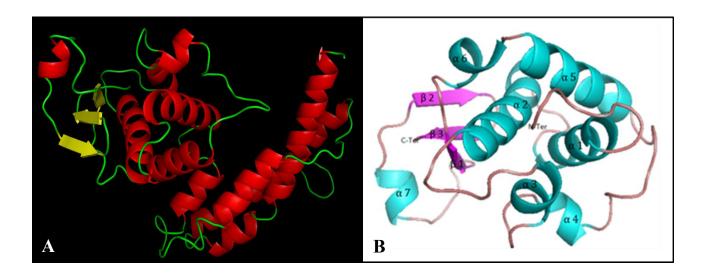


Figure 3.3.4 (A) Model generated with help of RaptorX (B) Homology model of SleR constructed using SWISSMODEL α helices are in cyan colour, β - sheets are in pink colour and other colors represent loops and turn.

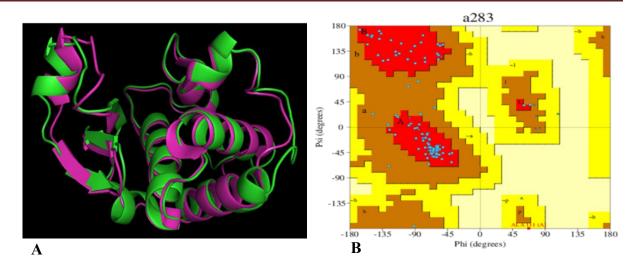


Figure 3.3.5 (A) *Rba. johrii* and *Bacillus* template models superimposed based on Cα position using PyMol where green indicates SIeR and magenta indicates SIeB (B) Ramachandran plot analysis of SIeR of *Rba. johrii*.

3.3.1.4 *In silico* structure comparison, similarities and catalytic residue identification of SleR

Globular and 3D structure of SleR of *Rba. johrii* showing the conserved catalytic glutamate residue exactly in the same location as present in the germination lytic transglycosylase SleB at catalytic domain of *B. anthracis* and the catalytic groove also appears similar (Fig. 3.3.6). Sle protein was superimposed to the Sleb protein crystal structures for comparison. First the template of SleB from *B. cereus* was used here the superimposition showed the catalytic residue glutamate at 128 position of Sle is conserved exactly in the groove between the α and β domains as in SleB of *B. cereus*. This groove is sorrounded by aromatic amino acid residues Phe167, Phe209, Trp218, His231, Phe233 conserved in all SleB (Table 3.3.2) (Fig. 3.3.7) type proteins. When the template of SleB from *B. anthracis* ATCC 14578 was used it was noted that the amino acid residues Tyr153, Gly164 are conserved but replaced by same functional group and Trp218 is conserved (Table 3.3.3; Fig. 3.3.8). Also the catalytic, signature, aromatic residues Arg147, Val148, Glu132, Pro154, Phe167 were conserved in the exact location around the catalytic groove.

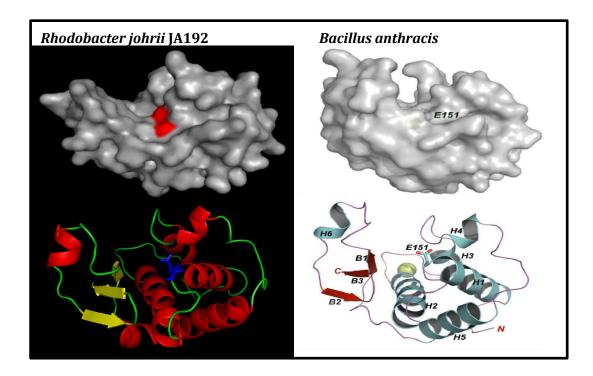


Figure 3.3.6 Globular and 3D structure of SleR of *Rba. johrii* showing the conserved catalytic glutamate residue which is present in catalytic domain of germination-specific lytic tansglycosylase SleB in *B. anthracis*.

Table 3.3.2 Conserved aromatic amino acid residues lined in groove between the α and β domains between *Rba. johrii* and *B. cereus.*

SleB (B. cereus) residues	Sle (Rba. johrii) residues	Status
Glutamic acid(E) 157	Glutamic acid(E) 128	Conserved catalytic residue
Tyrosine(Y) 232	Histidine(H) 208	Not conserved
Tyrosine(Y) 231	Threonine(T) 207	Not conserved
Phenylalanine(F) 233	Phenylalanine (F) 209	Conserved
Tryptophan(W) 242	Tryptophan(W) 218	Conserved
Phenylalanine(F)196	Phenylalanine(F) 167	Conserved
Histidine(H) 255	Histidine(H) 231	Conserved
Phenylalanine(F) 257	Phenylalanine(F) 233	Conserved

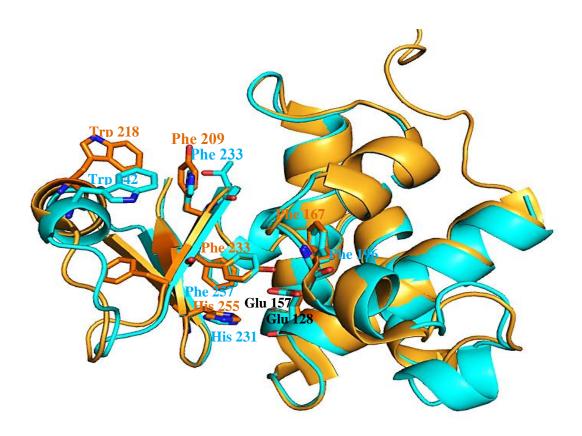
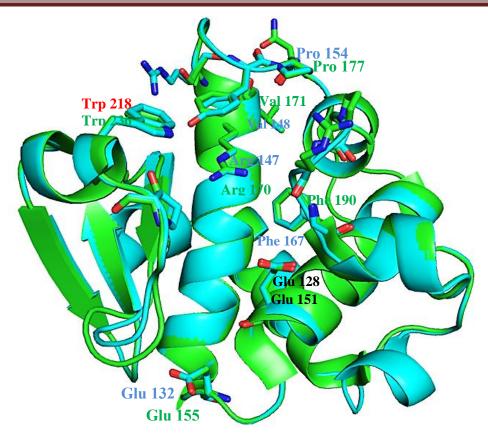
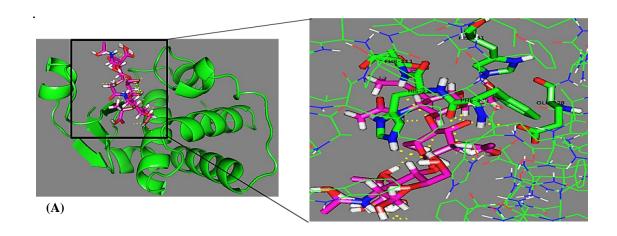


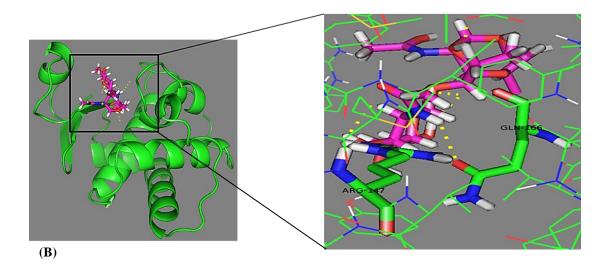
Figure 3.3.7 Superimposition of SIeR (orange) of *Rba. johrii* and SIeB (cyan) of *B. cereus* backbones showing the side chains of structurally conserved aromatic acid residues (Phe167, Phe209, Trp218, His231, Phe233) present in the catalytic groove along with the catalytic residue (Glu128) and conserved amino acids are written with the same colors.

Table 3.3.3 Conserved amino acids important for binding with muramic-ō-lactam in *Rba. johrii* compare with *B. anthracis.*

SleB(B. anthracis) residue	Sle(<i>Rba. johrii</i>) residue	Status
Glutamic acid(E) 151	Glutamic acid(E) 128	Conserved
Glutamic acid(E) 155	Glutamic acid(E) 132	Conserved
Tryptophan(W) 236	Tryptophan(W) 218	Conserved
Arginine(R) 170	Arginine(R) 147	Conserved
Valine(V) 171	Valine(V) 148	Conserved
Phenylalanine(F) 176	Tyrosine(Y) 153	Functional replacement
Proline (P) 177	Proline (P) 154	Conserved
Proline (P) 187	Glycine(G) 164	Functional replacement
Phenylalanine(F) 190	Phenylalanine(F) 167	Conserved




Figure 3.3.8 Superimposition of SIeR (cyan) of *Rba. johrii* and SIeB (green) of *B. anthracis* backbones showing the side chains of structurally conserved residues (Tyr153, Gly164replaced by same functional group amino acid and Trp218, shown in red colour, these amino acid are responsible for binding to muramic-ō-lactam (MAL)) and residues (Glu132, Arg147, Val148, Pro154, Phe167) are present in exact same location in the groove in both proteins.


3.3.1.5 Molecular docking

As the Sle protein is predicted to be a spore cortex lytic enzyme therefore its predicted substrate is peptidoglycan which is alternate N-Acetylglucosamine, N-Acetylmuramic acid and Muramic δ-Lactam, polymer. Therefore we have docked with the available peptidoglycans, to find out the binding amino acids and -N-Acetylmuramic acid, NAG-NAM-(Pentapeptide), muramic-δ-Lactam, NAM-NAG-NAM, (1,6-Anhydro-N-acetylmuramic acid) as substrate were used for docking studies. The interaction of these substrates with Sle protein in *Rba. johrii* showed their binding with Phe209, Arg147, Thr211, Gly128, Ser168, Gly166, Gly165, His231, His210 and Glu128 of the protein with their lowest binding energies (Table 3.3.4). All these residues are present in the predicted substrate binding groove and also near to Glu128 (Fig.

3.3.9). The *in silico* characterization of Sle protein of *Rba. johrii* showed properties similar to spore cortex lytic enzyme and since it is different from SleB protein commonly found in members of the phylum Firmicutes, we propose the name <u>Spore Cortex Lytic Enzyme of *Rba. johrii* (SleR) protein of *Rba. johrii*.</u>

Figure 3.3.9 Molecular docking of (A) trisachharide (NAM-NAG-NAM) (B) 1, 6- Anhydro-Nacetylmuramic acid (C) N- acetylmuramic acid (D) NAG-NAM-(Pentapeptide) (E)
Muramic lactam (F) N-Acetylglucosamine with Sle protein of *Rba. johrii*.

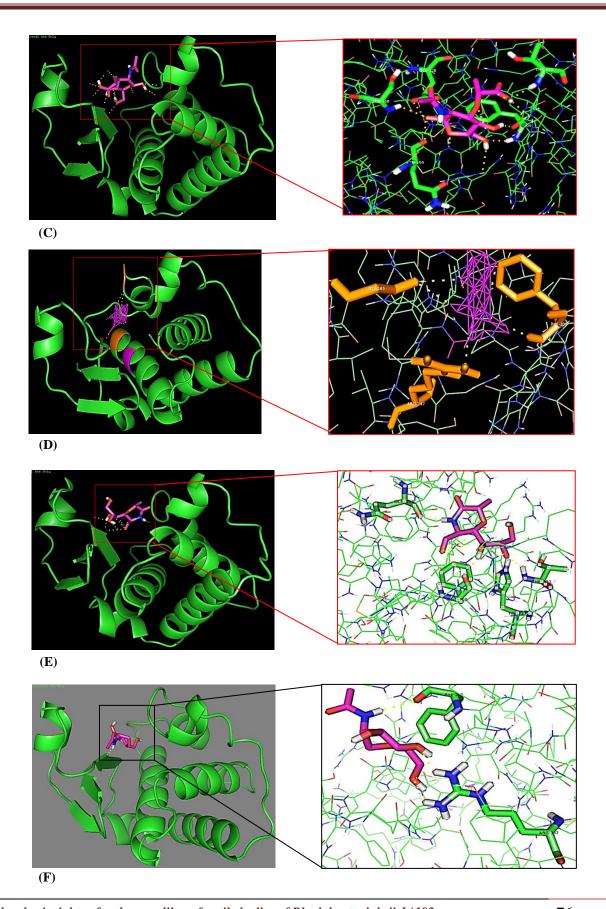


Table 3.3.4 Interaction (Docking) monomers and polymeric substrates with different amino acid residues of SIER protein.

Substrates	Amino acid residues biding with substrates	Binding energy (Kcal/mol)
N-Acetylglucosamine	Phe-209, Arg-147	-5.1
N-Acetylmuramic acid	Phe-209, Thr-211, Gly-128, Ser-168, Gly-166	-5.5
NAG-NAM-(Pentapeptide)	Phe-209, Arg-147, and Gly- 165	-6.4
Muramic lactam	Phe-209, Gly-166, Thr-211, His – 231	-5.3
NAM-NAG-NAM	Thr-211, His -210, His -231, Phe-209, Glu -128	-11.0
(1, 6- Anhydro-N-acetylmuramic acid)	Gly – 166, Arg – 147	-8.1

3.3.2 Biochemical (In vitro) characterization of putative SleR protein

3.3.2.1 Molecular cloning of SleR

A truncated 674 bp. *SleR* gene coding for 24-240 amino acid was amplified from *Rba*. *johrii* genomic DNA by using gene specific primers (Fig. 3.3.10A). Vector pET SUMO Plasmid was digested with BamHI and XhoI restriction enzymes (Fig. 3.3.10B) as well as *SleR* PCR amplified product. The amplicons were cloned into pET SUMO vector. After screening the positive clones through colony PCR, plasmid was isolated from one of the positive clone which was further confirmed through restriction digestion (Fig. 3.3.11). The orientation and sequence of open reading frame was also confirmed through DNA sequencing. The pET-SUMO-SleR₂₄. 240, construct was transformed into *E. coli* Rosetta (DE3) expression cells. Subsequent solubility analysis has shown that approximately 70% of the recombinant protein was obtained in the soluble fraction

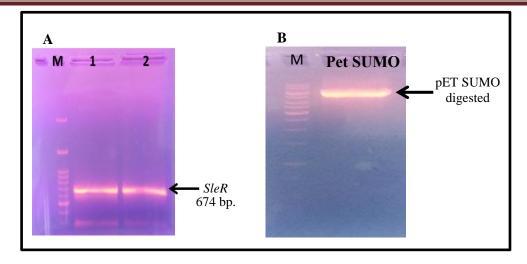


Figure 3.3.10 (A) PCR amplified product of 674 bp. of *SleR* gene without signal peptide (B) Pet SUMO Plasmid digested with BamHI and Xhol restriction enzymes. M-1Kb. Marker.

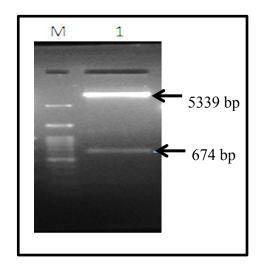


Figure 3.3.11 Confirmation of positive clone by double digestion of SIER in pET SUMO

3.3.2.2 Overexpression and purification of recombinant SleR of Rba. johrii

First 23 amino acid of N-terminal of SleR₂₄₋₂₄₀ protein, which is predicted to be a signal sequence was deleted and 24 to 240 amino acid containing C-terminal hydrolase domain within a construct pET-SUMO-SleR₂₄₋₂₄₀ vector was overexpressed as along with histidine and Small Ubiquitin-like modifier tag (His6–SUMO) at N-terminal was fused and overexpressed in *E. coli* Rosetta (DE3) (Fig. 3.3.12).

Overexpressed protein SleR₂₄₋₂₄₀ with N-terminal His6-SUMO tag remained in soluble form which was purified with Ni-NTA affinity followed by cation-exchange chromatography was confirmed through western blotting using antibodies against the His-6 tag and its sequence from MALDI-TOF MS- MS matches (Fig. 3.3.12) with the sequence of Sle protein of *Rba. johrii* and also checked in SDS gel (Fig. 3.3.13). The tag was removed by DeSUMOylases cysteine protease treatment and the SDS-PAGE shows the expected molecular mass of SleR (~24 KDa) after digestion of *Rba. johrii* (Fig. 3.3.14). The digested protein was further purified with cation-exchange chromatography resulting in a pure protein free from His6 –SUMO tag.

```
Query Start - End Observed Mr(expt) Mr(calc) ppm M Score
                                                                           Peptide
          - 59 1215.7808 1214.7735 1214.5819 158 0
<u>38</u>
                                                        K.VSDGSSEIFFK.I
                743.5571 742.5498 742.4450 141 1
                                                        K.TTPLRR.L
19
          -76
                981.6598 980.6525 980.5113 144 1
                                                        R.LMEAFAKR.Q + Oxidation (M)
     80
          -85 766.4635 765.4562 765.3327 161 0
                                                        K.EMDSLR.F + Oxidation (M)
80
     80
          - 92 1615.0028 1613.9955 1613.7872 129 1
                                                        K.EMDSLRFLYDGIR.I
          -92 883.6070 882.5997 882.4599 158 0 39
                                                        R.FLYDGIR.I
13
     86
      146 \ \ -155 \ \ 1040.7497 \ 1039.7424 \ 1039.5774 \ 159 \ \ \ 0
21
                                                        R.NALGTLPAQR.L
          - 169 2474.8220 2473.8147 2473.3765 177   1   71
                                                        R.NALGTLPAQRLEQVAAAVARPEAK.S
Query Start - End Observed Mr(expt) Mr(calc) ppm M Score
                                                                          Peptide
     156 - 169 1453.0488 1452.0415 1451.8096 160 0
                                                       R.LEQVAAAVARPEAK.S
      184 - 195 1081.7577 1080.7504 1080.5676 169 1
                                                       R.GAKAADGAPAPR.Y
      187
          -195 825.5500 824.5427 824.4140 156 0
                                                       K.AADGAPAPR.Y
      196 - 209 1593.0215 1592.0143 1591.7518 165 0
                                                       R.YDEDWLASQPVAAK.D
     196 - 215 2353.4363 2352.4291 2352.0546 159 1
                                                       R.YDEDWLASQPVAAKDSDEWK.C
      216 - 226 1314.8728 1313.8656 1313.6438 169 0
                                                       K.CLATALYFEAR.G
      227 - 243 1849 2403 1848 2330 1847 9200 169 0
                                                       R GESIOGOFAVAEVIMNR V
      227 - 243 1865.2500 1864.2427 1863.9149 176 0 121
                                                       R.GESIQGQFAVAEVIMNR.V + Oxidation (M)
                                                       R.GESIQGQFAVAEVIMNRVDRPGYPGSICGVVR.Q
148
     227 - 258 3478.2486 3477.2414 3476.7293 147 1
                                                        + Oxidation (M)
      244 - 258 1632.1079 1631.1007 1630.8250 169 0 61
                                                       R.VDRPGYPGSICGVVR.Q
111
      259 - 275 1961.2825 1960.2752 1959.9149 184 0 76
                                                       R.QGGQFSFMFDGKPETIR.E + Oxidation (M)
     259 - 277 2202.4270 2201.4198 2201.0575 165 1
                                                       R.QGGQFSFMFDGKPETIREK.A
      259
          - 277 2218.4400 2217.4328 2217.0525 172
                                                       R.QGGQFSFMFDGKPETIREK.A + Oxidation (M)
      286 - 296 1083.8156 1082.8083 1082.6270 167 0
                                                       K.IAALMLAGAPR.Q
      286 - 296 1099.8082 1098.8009 1098.6219 163 0
                                                       K.IAALMLAGAPR.Q + Oxidation (M)
          - 308 1396.9498 1395.9426 1395.7008 173 0
                                                       R.QLTQGATHFHTR.A
          -317 1049.7594 1048.7522 1048.5679 176 0 43
                                                       R.AVRPGWAHR.F
      309 - 320 1450.0494 1449.0421 1448.7902 174 1
                                                       R.AVRPGWAHRFPR.T
      321 - 331 1219.8679 1218.8606 1218.6509 172 0
                                                       R.TAAIGAHLFYR.Q
                                                       R.TAAIGAHLFYRQPGGS.-
      321 - 336 1646.1420 1645.1347 1644.8372 181 1
```

>WP_069331589.1 cell wall hydrolase [Rhodobacter johrii) (without signal peptide)

DVTVSQSNDPSVNLGGQLSALLGAERNALGTLPAQRLEQVAAAVARPEAKSEAPVKAVAKRGSRGAKAAD GAPAPRYDEDWLASQPVAAKDSDEWKCLATALYFEARGESIQGQFAVAEVIMNRVDRPGYPGSICGVVRQ GGQFSFMFDGKPETIREKAAFQRAGKIAALMLAGAPRQLTQGATHFHTRAVRPGWAHRFPRTAAIGAHLF YROPGGS

Figure 3.3.12 MALDI TOF MS-MS analysis of purified protein of His₆-SUMO-SleR₂₄₋₂₄₀. Matched peptides are shown in bold red.

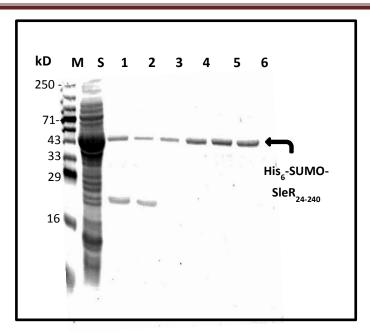


Figure 3.3.13 SDS-PAGE of Soluble SIeR here overexpressed protein His₆-SUMO- SIeR₂₄₋₂₄₀ showed by black arrow, M- protein marker; kDa, S- supernatant, Lanes - 1-6 - Ni affinity eluate increased at each lane 50 mM from 100 mM to 350 mM imidazole.

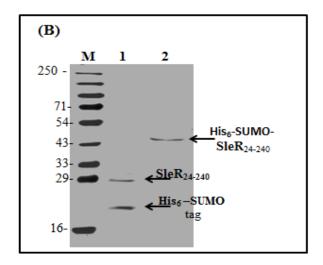


Figure 3.3.14 M- marker 1- DeSUMOylases cysteine protease digestion 2 - Ni - affinity eluate.

3.3.2.3 Substrate specificity and enzyme activity of spore cortex lytic enzyme (SleR)

Enzyme assay was done from purified $SleR_{24-240}$ protein with the spore sacculi isolated from *B. subtilis* FW2 was incubated with recombinant $SleR_{24-240}$ protein for 45 min here loss of 50% of substrate was observed at OD_{600} (Fig. 3.3.15). This shows that purified SleR cleaves *B*.

subtilis spore cortex. On the other hand OD loss was not observed when the vegetative cell wall (peptidoglycan) from *B. subtilis* was used as substrate for SleR₂₄₋₂₄₀ protein (Fig. 3.3.16).

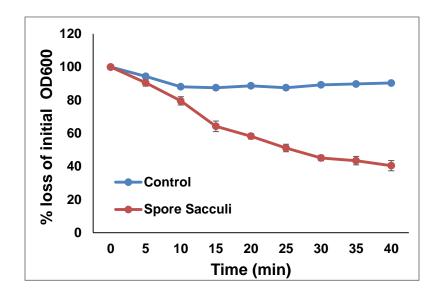


Figure 3.3.15 Enzyme assay, cleavage of spore sacculli isolated from *B. subtilis* using SleR₂₄₋₂₄₀ protein with spore sacculi is indicated in red line and blue line indicates control reaction in which substrate was untreated and loss of OD was not observed.

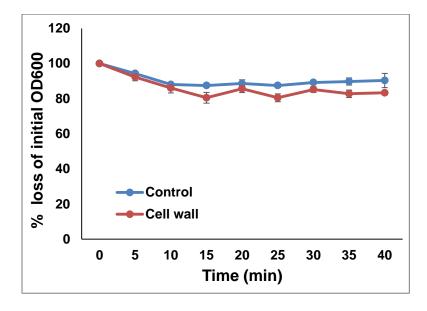


Figure 3.3.16 Enzyme assay done taking cell wall peptidoglycan with red line and control reaction with blue line here no protein was added.

3.4 *In vivo* expression profile of SleR protein in different growth phases and cell morphology & differentiation of *Rba. johrii*

To study the expression levels of SleR during growth of Rba. johrii, growth curve was determined (Fig. 3.4.1). RNA from the cells of different growth phases (lag, mid-log, stationary and decline) was isolated. The differential expression of SleR was studied by qRT-PCR at different growth phases of Rba. johrii. Sler gene was normalized to the 16S rRNA housekeeping gene and lag phase Sler expression was taken as a control. There was no significant difference in the expression of *Sler* till the stationary phase as compared to lag phase (Fig. 3.4.2). However, during late stationary phase the expression of Sler was increased drastically (~4.5-fold) and eventually reduced during late decline phase. Further, Sler expression levels under heat stress conditions at late stationary and late decline phases were also checked the compared with expression levels at late stationary and late decline phases under normal growth conditions (without heat stress). Only a marginal difference in the expression levels of *Sler* was observed under both the heat stress and normal growth condition (~0.5-fold). These results confirm that Sler is expressed when the culture produces endospore-like dormant structures during late stationary phase of *Rba. johrii* growth and on the other hand, rule out the possibility of its heat induced expression.

We examined the *Rba. johrii* culture development and differentiation during the different growth phases parallelly to correlate with *Sler* expression analysis. Cells were examined through the microscopy, Schaeffer and Fulton staining, at early growth phases lag to stationary phase any differentiation was not noted morphologically. As the expression of *Sler* started spiking in late stationary phase the cells were started differentiating into spore (Fig. 3.4.2). At late decline phase *Sler* expression decreased, here the cells has mature spore like refractile bodies.

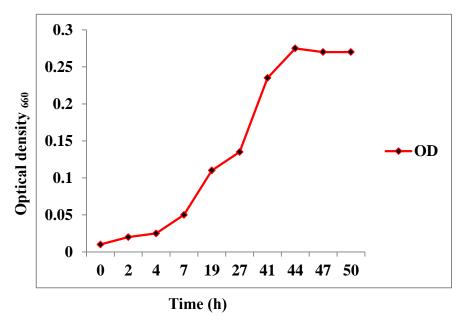


Figure 3.4.1 Growth curve of Rba. johrii

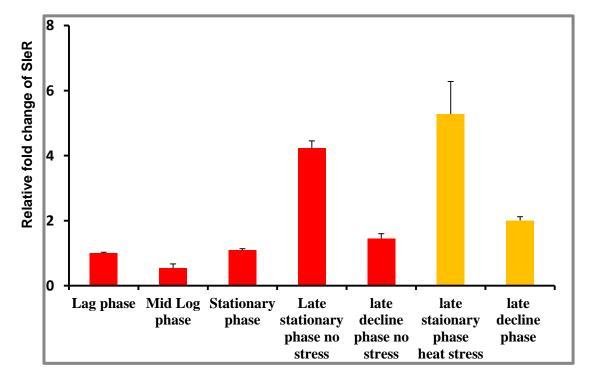


Figure 3.4.2 qRT-PCR results show the differential expression of SleR at different growth phases of *Rba. johrii.* Bars represent mean standard deviation of three independent experiments. Red colour indicates absence of any stress and orange colour indicates presence of heat stress.

PISCUSSION

4. Discussion

Favorable environmental conditions lead to the completion of bacterial vegetative cycle normally through the binary fission (Wang and Levin, 2009). Natural habitats are highly dynamic that face frequent fluctuations to physio-chemical and environmental conditions during the period of time (Woodward et al., 2016; Brooks et al., 2011). Microorganisms developed the responses due to adaptations under these unfavorable conditions using many survival strategies which either manifest as a modification of their lifestyle or transient escape routes (Brooks et al., 2011; Jones et al., 2010; Dworkin and Shah 2010; Spector and Kenyon 2012; Lebre et al., 2017). These include many mechanisms like viable but nonculturable (VBNC) state where cells become metabolically inactive in adverse conditions (Nowakowska et al., 2013; Xu et al., 1982). Cysts which are thick walled structures containing capsular slime reported in Azotobacter (Socolofsky and Wyss, 1962) and in Serratia ureilytica (Filippidou et al., 2019). Exospores are structures formed outside the cell in bacteria like Methylosinus spp. (Reed et al., 1980; Reed and Dugan 1979) also common among many filamentous Streptomyces and a few other members of Actinobacteria (Ryding et al., 1998). Endospores are tough dormant bodies found among the members of the phylum Firmicute, wherein Bacillus subtilis has been the model organism (Hutchinson et al. 2016; Piggot and Hilbert 2004). Dormancies like exospore, endospore and cyst are well known and studied extensively (Piggot and Hilbert 2004; Bobek et al., 2017).

There are reports for the existence of endospores among non-Firmicute members like in *M. xanthus* (Kaiser 2006; Kroos 2007) *C. burnetii* (McCaul and Williams, 1981), *S. marcescens* (Ajithkumar *et al.*, 2003) few *Mycobacterium* spp. (Singh *et al.*, 2010; Ghosh *et al.*, 2009; Lamont *et al.*, 2012), *Rhodopseudomonas palustris* (Venkidusamy and Megharaj, 2016). *Rba. johrii* produces endospore like refractive structures with some similarity and differences to the

Firmicute endospores (Girija *et al.*, 2010). However, these cases have always been met with skepticism as they challenge the well-accepted finding that endospores are confined to some Firmicutes members. For example, there have been consecutive studies which have found endospores in non-Firmicute *Mycobacterium* spp. (Singh *et al.*, 2010; Ghosh *et al.*, 2009) followed by failures to reproduce these results (Traag *et al.*, 2010) and again the demonstration of their presence (Lamont *et al.*, 2012). Recently, a study was unable to confirm the refractive bodies as endospores in *Rba. johrii* and *S. marcescens* based on microscopic and bioinformatic analysis and concluded the refractile bodies to be triacylglycerol granules and cellular debris of respective species (Beskrovnaya *et al.*, 2020).

Dormancy reported among the non-Firmicute members are not studied in depth along with aspects of molecular and genetic machinery therefore limiting our ability to perform the comparative study with that of canonical sporulation for further study of the non-Firmicute members. *Rba. johrii* was selected as a model organism in present study for the insights of endospores and molecular machinery of a non-firmicute sporogenesis. In this study, the endospore like refractive bodies are physiologically and structurally characterized. Comparative genome analysis helped in the identification of gene homologs related to sporulation and signature genes, the important genes identified was characterized and compared to understand its significance in possible sporulation in *Rba. johrii*.

Leads from morphological study

Rba. johrii, a photosynthetic proteobacterium that was isolated from a pasteurized soil produces endospore like structures having morphological similarities with the endospores including refractile structures and stained with malachite green (Girija *et al.*, 2010). Sometimes, it is noted that certain characters are lost in bacteria with time therefore, it was necessary to

reconfirm the endospore like refractive bodies of *Rba. johrii*. The refractive bodies of *Rba. johrii* showed characters of endospores like highly refractile bodies and stained with malachite green (Knaysi, 1948; Schaeffer and Fulton, 1933). DAPI binds to the DNA therefore dual stain was done with DAPI and FM 4-64 dye where the refractile bodies were stained with DAPI indicating that refractive body contains DNA and confirms that refractile body are not the artifact (Fig. 3.4), nor they are simple triacylglycerol granules as speculated from cryo-microscopic studies (Beskrovnaya *et al.*, 2020).

PHA granules are accumulated as food storage which appears refractile under phase contrast microscope therefore could be mistaken with the endospores (Chanasit et al., 2016). Therefore, to confirm that the refractive bodies of Rba. johrii are not mistaken with the PHA granules, we first stained the cells with Nile red which is lipophilic dye which binds specifically to the lipid inclusions like PHA granules (Spiekermann et al., 1999). Rba. johrii cells pursued the red fluorescence while the refractile cells don't possess (Fig. 3.5) clearly differentiates PHA granules with the spores. Further, the PHA granules were recovered and dissolve when treated with chloroform (Koller, 2020). Rba. johrii chloroform treated cells were stained with malachite green (Fig. 3.6), which further evidence that the refractive bodies are spores. Finally, we have used chemicals like acrylic acid and pentenoic acid to inhibit the PHA granule biosynthesis (Lee et al., 2001; Qi et al., 1998) and when supplemented to the mid log phase culture the PHA granules were found to be inhibited completely as observed in Nile red staining and spore like bodies were visible (Fig. 3.7A,B). The staining studies clearly indicates that Rba. johrii cells produces endospores like refractive bodies which are well distinguished from PHA granules. We have experimented with one more newly isolated species of the genus *Rhodobacter*; Rhodobacter alkalitolerans (Gandham et al., 2018) where such refractive bodies were observed and were stained with malachite green (Fig 3.13). This result probably explains the wide spread occurrence of such spore like refractive bodies among other anoxygenic phototrophic bacteria not only belonging to the genus *Rhodobacter* but also with the member of the genus *Rhodopseudomonas* (Venkidusamy and Megharaj, 2016).

The fine structure of spore like refractive body was not clear in the previous study (Girija *et al.*, 2010) which prompted us to look into an in-depth structure through transmission electron microscope (TEM). The ultra-thin sectioning of spore like refractive body reveals similarities as well as differences with that of *Bacillus* endospore. *Rba. johrii* spore like refractive body possess central core, cortex, additional inner membrane and an outer coat. The inner coat is absent in these bodies, there body outer part has protrude structures like prosthecae (Fig. 3.8.2) which are not seen in *Bacillus*. Spore culture when treated with the Triton-X, the structure was seen to be degraded due to denaturation (Fig. 3.8.2C) of spore coat and other proteinaceous structures, these results confirms that the coat of the spore like refractive body is made up of proteins.

As the current fluorescent staining procedures have certain disadvantages (Table 4.1), we have therefore used a rapid, easy method and chemical dye for staining spore like refractive bodies. The fluorescent spore specific dye has advantage in distinguishing the cryptic spores, as these were misidentified with PHA granules.

Table 4.1: Spore dyes and there drawbacks (Ali et al., 2020)

Reference	Fluorescent Dyes	Drawbacks
Karava et al., 2019	Flow cytometric and fluorescence activated cell sorting with nucleic acid fluorescent staining SYBR1,SYBR2 (Invitrogen TM)	Two different fluorescent dyes used which binds to nucleic acids
D'Incecco et al., 2018	Hoechst 34580	Binds to spores as well as vegetative cells
Probst et al., 2012	Propidium monoazide [PMA]	Stains DNA when spore is damaged or permeable (inactivated)
Xia et al., 2011	Thioflavin T(Th T)	Dye targets endogenous markers that is amyloid encapsulated in the spores; also stain vegetative cells
Schichnes et al., 2006	Acridine orange[AO]	Fluorescent stain for DNA
Tarnowski <i>et</i> al.,1991	4'-6'- diamino-2-phenylindole[DAPI]	Fluorescent stain for DNA
Bartholomew <i>et al.</i> , 1965	Auramine O	Binds to spores, vegetative cells, lipid granules; requires counter staining

While screening some of the zwitterionic diaminodicyanoquinodimethane (DADQ) derivatives for spore staining a chemically synthesized molecule 7,7-(*n*-hexylamino)-8,8-dicyanoquinodimethane (Fig. 3.10) was found to have specificity for the spores of bacteria (Senthilnathan *et al.*, 2020) which was termed as "Sporotan".

In our study, it was demonstrated for the first time, the significant use of this DADQ derivative to clearly specifically stains the spore like refractive bodies of *Rba. johrii*. The refractive bodies of *Rba. johrii* were positively stained, neither the vegetative cells nor the PHA

granules were stained with "sporotan" dye (Fig. 3.11A,B). As well as the old culture of *B. subtilis* having spores was stained with sporotan (Fig. 3.11C). The staining procedure was demonstrated to be simple, easy, selective, efficient and cost-effective. The application of stain and the method is to discover the endospores produced among the many bacteria of different phyla, which otherwise are mistaken as PHA granules and largely ignored by microbiologists.

Leads from genomic analysis

Many phenomena thought to be absent in microorganisms have been discovered or rediscovered relatively recently, demonstrating that the scope for such research remains vastly open for thorough investigation (Emerson *et al.*, 2008). Bacterial whole genome sequencing and genome mining (Ziemert *et al.*, 2016; Alanjary and Medema, 2018; Belknap *et al.*, 2020) has headed to the discovery of many novel genes also the clusters of pathways which could then be experimentally demonstrated (Cao *et al.*, 2017; Forde and O'Toole, 2013; Kan *et al.*, 2018). *Rba. johrii* genome sequencing and analysis was done to find out the genetic content for sporulation.

Genomic characterization of *Rba. johrii* revealed 1075 hypothetical protein encoding genes were predicted to be present in genome of which are not known for their functions (Table 3.2.2). The proteins involving in the synthesis, metabolism and recognition of complex carbohydrates were detected around 510 genes associated with the carbohydrate metabolism is the highest number of genes among the *Rhodobacter* members. Cazyme gene clusters CGC34 and CGC35 are only present in *Rba. johrii* compare to other *Rhodobacter*. Specialty genes found in *Rba. johrii* contain 74 human homolog proteins, antibiotic resistance genes, transporter and drug targets. Twenty-one unique protein families and 11 CRISPR locus were identified in *Rba. johrii*. These set of genes indicates *Rba. johrii* to be a highly metabolically versatile bacterium.

The members of the phylum Planctomycetes were earlier thought to have a proteinaceous cell wall without peptidoglycan (PG) (Fuerst and Sagulenko, 2011; Jogler et al., 2012). However, recent study based on bioinformatics BLAST analysis demonstrated the genome encodes the proteins essential for PG synthesis. The homologues protein were identified at the threshold of identity $\geq 20\%$ and coverage $\geq 40\%$. All the peptidoglycan biosynthesis proteins found has the lowest 23% and highest 49% identity. The biochemical analysis and electron microscopic study further definite the occurrence of PG among the members of the phylum Planctomycetes (Jeske et al., 2015). Likewise, in this study, based on identification of homologous proteins involve in sporulation of Rba. johrii. spore protein homologs were searched according to stage-wise for major proteins. Genome mining of Rba. johrii demonstrated the presence and absence of proteins related to sporulation with that of B. subtilis. We detected around one hundred proteins with sporulation properties. Out of which, the signature proteins for endosporulation are sigE, sigH, sig F, sig K, spo0A, spoIIAB, spoIIE, SpoIVB, sigG, spoIID, spoIIM, spoIVA, spoVB, spoVG, yqfc, ytvI, sleB, SpoIVB, spoVAD, spoIIG and dapG were uncovered with identities matched to B. subtilis sporulation protein ranging from 19-68%. These identified homologous proteins are likely to be involve in endospore like bodies formation of Rba. johrii. The similarity and coverage of proteins matched were not considerably high between these two bacteria. These are distantly related therefore at the time of evolution, the exact sequence similarities among these proteins are low while may conserve their major functions. Therefore, the sporulation pathway for Rba. johrii may be different but sharing some common stages and proteins with that of *B. subtilis*.

The presence of dipicolinic acid (DPA) and small acid soluble DNA-binding proteins (SASPs) in *Bacillus* spores provides resistance and longevity to the spores (Setlow, 2007). DPA

was absent in the *Streptomyces* spores (Janssen *et al.*, 1958) but some of the thermophilic *Actinomycetes* have DPA (Kalakoutskii *et al.*, 1969) similar to *Bacillus* spores (Huang *et al.*, 2007). DPA biosynthetic pathway and SASP homolog proteins are absent in *Streptomyces* spores (Ensign, 1978) in place of these, other nucleoid associated proteins incorporate into nucleoid structure and protect the spores (Chater, 2011). Likewise, in this study small acid soluble proteins (SASPs) and DPA synthesis pathway protein encoding genes are absent in *Rba. johrii* genome. The absence of DPA and SASP encoding genes in *Rba. johrii* indicates that there might be some other novel proteins with similar function like that observed in *Streptomyces* spores having alternate proteins with similar function.

Spo0A is a major regulator of sporulation which initiates the sporulation through a rely of signaling cascade proteins in *Bacillus* (Burbulys *et al.*, 1991). All these protein encoding genes were found to be conserved and Spo0B was absent in *Rba. johrii* genome. Spo0B protein could have been replaced by some other protein with similar function. On the basis of protein identified in starvation state-the putative signaling pathway for spore initiation in *Rba. johrii* was predicted (Fig. 4.1).

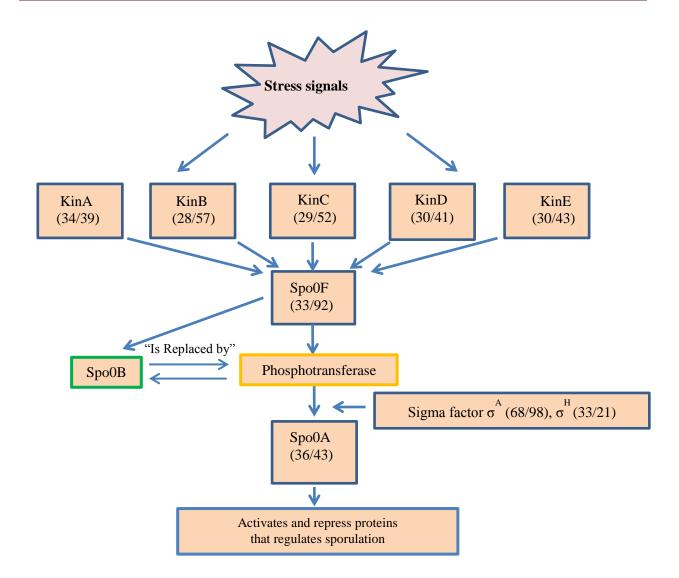


Figure 4.1 Flow chart of putative pathway of spore initiation signaling cascade in *Rba. johrii* on the basis of identified homolog proteins of *Rba. johrii*. Green box shows the absence of Spo0B protein; Orange box for alternate phosphotransferase in *Rba. johrii*. Parenthesis values of amino acid given in identity/protein coverage in *Rba. johrii* when compared to *Bacillus subtilis* subsp. *subtilis* 168.

In other sporulation stages, there were some gene coding proteins which are present and some are absent which are given in result part but on the whole, major proteins involved in sporulation of *B. subtilis* were also found in *Rba. johrii*. Over five hundreds of genes are responsible for endospore formation in *B. subtilis* (Shi *et al.*, 2020) out of which in a study around forty one sporulation gene homologs have been found in the *Rba. johrii* genome in that many involved in other roles like signalling, cell division and development (Beskrovnaya *et al.*,

2020). There other genes were unable to cover due to the cut off kept was identity 30% and coverage 60%, but in our study we were able to identify around hundreds of proteins (Table. 3.2.13) mostly are sporulation proteins and do not have functions in normal cell-functioning, along with low identity coverage ranging from 19% to 68%, although the identity is low but as in case of planctomycetes where the peptidoglycan biosynthesis proteins were found in genome having the low 23% - 49% identity were accepted also the biochemical analysis and electron microscopic study further definite the occurrence of PG among the members of the phylum Planctomycetes (Jeske *et al.*, 2015). This could be low in our case because *Rba. johrii* is distantly related to *B. subtilis*, therefore their exact sequence similarities are low with conservation of major functions among them.

Interestingly, out of thirty-six major coat proteins including outer and inner coat proteins of *B. subtilis*, only fourteen were matched in *Rba. johrii*. This result suggests that the endospore-like refractive structure of *Rba. johrii* might be having a different spore protein and coat composition, the triacylglycerides are the probable components of these (Beskrovnaya *et al.*, 2020). The ultra-thin sections of endospore-like refractive structures of *Rba. johrii* (Fig. 3.8) indicate absence of a multi-layered coat and an inner coat. Only one outer coat which is thick is present and the same is throw back in the genome mining here the homologs of most coat proteins are absent.

Leads from characterization of identified putative spore cortex lytic enzyme (SleR) protein (In vitro and In vivo)

As experimental analysis would help to understand whether these identified one hundred putative proteins also have similar properties to that of *B. subtilis* spore proteins. The identified SleR protein from *Rba. johrii* is a homolog of *B. subtilis* spore cortex lytic enzyme (SleB) was

characterized. The SleB protein of *B. subtilis* is well-characterized and validated protein of the endospore (Boland *et al.*, 2000; Li *et al.*, 2012). This protein in *Bacillus* is expressed during sporulation as an inactive form and localized on the cell outer cortex of spore. During germination the enzyme is activated and hydrolyses the peptidoglycan of the spore cortex (Moriyama *et al.*, 1999).

When the multiple sequence alignment of SleR was done with that of *Bacillus* spp. SleB protein the N-terminus has variation but the C-terminus having catalytic domain was highly conserved (Fig. 3.3.3). SleR protein has conserved hydrolase 2-super family (pfam07486) catalytic domain mostly found in SleB proteins of many *Bacillus* spp. (Jing *et al.*, 2012). Another domain which is Peptidoglycan (PG)-binding domain in N-terminal region was not conserved in SleR of *Rba. johrii*. The SleB protein of *B. subtilis* without the N- terminal region having the peptidoglycan (PG) binding domain was found to be functional therefore its absence does not have an impact on the function of the protein (Heffron *et al.*, 2011) therefore the N-terminal region does not have significant role for the protein function. Spore cortex lytic enzyme CwlJ in *Bacillus* spp., lacks the N-terminal peptidoglycan (PG)-binding domain and possess only C-terminal hydrolase sphere (Ishikawa *et al.*, 1998). Similarly, in the SleR protein of *Rba. johrii* the absence of peptidoglycan domain is found but C-terminal hydrolase domain is present therefore this protein may function like a SleB protein.

The SleR protein hydrolase catalytic domain multiple sequence alignment with other SleB *Bacillus* spp. has more conserved amino acid including the glutamate catalytic residue (Fig. 3.3.3). We have identified SleB specific <u>EXRGE</u> sequence motif which is having the two alternating glutamate residues (at 128 and 132 position) a signature sequence in SleB type proteins (Jing *et al.*, 2012). Secondary structure of SleR of *Rba. johrii* has the conserved

glutamate catalytic residue present in substrate binding groove similarly as in the germination – specific lytic transglycosylase (SleB) catalytic domain in *B. anthracis* (Fig. 3.3.6)

Superimposition of SleR from Rba. johrii and SleB from B. cereus showed that aromatic amino acid residues lined between the α and β domain groove (Fig. 3.3.7) is responsible for binding and cleavage of spore cortex peptidoglycan (Li et al., 2012). When superimposition of SleR from Rba. johrii and SleB from B. anthracis showed the three amino acids which are important for binding with muramic-δ-lactam (Jing et al., 2012) are also observed in Rba. johrii (Fig. 3.3.8). As well as showed the conserved amino acids are present around the catalytic binding groove and even the glutamate residue is located at exact position as reported in other SleB proteins (Li et al., 2010; Jing et al., 2012). The predicted substrates (peptidoglycan monomer and polymer) were docked with the identified SleR protein. Docking studies showed that as earlier reported in case of SleB protein where the amino acids present in the groove and the glutamate residue binds with the peptidoglycan (Li et al., 2010; Jing et al., 2012) similarly those conserved amino acid residues of SleR protein has also bind to the same peptidoglycan residues (Fig. 3.3.9). Overall in silico characterization confirms that identified putative SleR protein from Rba. johrii has the properties of a spore cortex lytic enzyme and therefore this protein named as spore cortex lytic enzyme from Rba. johrii as SleR.

The hydrolase enzyme assay for SleR protein was performed using spore cortex sacculi extracted from *B. subtilis* FW2 as substrate and loss in the OD indicates the cleavage of peptidoglycan at least from *B. subtilis* spore cortex (Fig. 3.3.15). It was difficult to extract the cortex from the endospore-like structure of *Rba. johrii* hence the *Bacillus* cortex was used for the enzyme assay. When the vegetative cell walls (peptidoglycan) from *Bacillus* used as substrate for SleR protein, there was no OD loss observed therefore does not cleave the normal cell wall (Fig.

3.3.16). The enzyme assay indicates the SleR involves in cleaving the cortex of spore, it was annotated to be a cell wall hydrolase which may have role in cell wall cleavage during cell growth in cell division (during log phase). *In silico* study and enzyme assay indicates its properties of spore cortex lysis enzyme like SleB, which is expressed in spore formation stage (during stationary phase). To clear this real time expression analysis was done of *sleR* in *Rba. johrii* during its growth phases (Fig. 3.4.2). The expression of *sleR* was negligible between lag to stationary phase, but there was drastic increment in late stationary phase. This result was correlated with the differentiation of the cells parallelly where it was observed when the *sleR* expression was less no spores were observed but when the expression was increased the spores were found to be present. This pattern indicates that SleR protein does not participate in the development phases like in the peptidoglycan remodeling for cell growth and division (seen during the log phase). This higher expression of SleR at late stationary phase is similar to SleB which is also higher at the endospore formation stages (Boland *et al.*, 2000; Moriyama *et al.*, 1999; Ishikawa *et al.*, 1998).

Expression study strongly suggests that SleR is associated with the endospore like refractive structure formation during late stages and not in cell division at early stages of growth phases therefore the SleR protein has no role in peptidoglycan remodeling. To find out the expression is due to stress, we have taken two culture one with heat stress and another with normally grown *Rba. johrii* expression in these two conditions, the heat stressed culture has considerably bit higher than normal one grown in late stationary phase, therefore this suggest that heat stress does not increase the expression of SleR rather the endospore like structure which is formed due to heat stress (Fig. 3.4.2). Also, in late decline phase, the expression levels fall down dramatically suggesting that SleR is probably expressed in endospore like dormant

structure cells of *Rba. johrii* that are present in late stationary phase. Once sporulation is completed, there is no longer a requirement for SleR which may be why its expression decreased after the late stationary phase.

All the results show the similar properties to SleB which suggest that SleR is spore cortex lytic protein associated with the Rba. johrii endospore like structures. All these evidences with genome mining, draws a model for endospore like refractive structure formation in which there is not much similarity and differences with that of Bacillus spp. In a proteobacterium, Myxococcus xanthus forms fruiting bodies (spore like structure), in which a protein CbgA likewise was identified on the basis of sequence similarity (57% similarity and 35% identity) to SpoVR protein of B. subtilis known to have a function of spore cortex formation (Beall and Moran, 1994). Identified protein CbgA when characterized in M. xanthus has similar role in the cortex formation (Tengra et al., 2006). Along with this some new genes related to fruiting body formation were identified by transcriptomic study one of the examples are a locus having 8 genes nfsA-H genes in M. xanthus (Muller et al., 2010). In this organism fruiting spore bodies formation mechanism has few homologs of B. subtilis and few new genes identified. Here we have demonstrated experimentally along with the similarity-based identification that SleR has spore cortex lytic properties further new genes yet to be discovered for sporulation in Rba. johrii. This study was restricted to only Rba. johrii only and other Rhodobacteraceae members remains to be screen.

Taken together from all our results, we have consistently found similar functional properties of SleR with that of SleB. Therefore, our findings suggest that SleR, likely to be a spore cortex lytic protein which may be associated with the endospore like refractive structures of *Rba. johrii*. This evidence along with the inputs of genome mining project a model for

formation of endospores in *Rba. johrii* which shows many, if not all similarities with the model for *Bacillus* spp. Whether such structures are found in other Rhodobacteraceae members remains to be addressed as this study was limited to *Rba. johrii* and a few other members of the genus *Rhodobacter*. It will be intriguing if similar approaches could be taken to investigate these members and look into the molecular evidences to provide clues that can add to the *Rba. johrii* model of forming endospore like dormant structures.

In summary, the entire analysis advances the knowledge through evidences for the presence of "endospores" in *Rba. johrii*. The evidences include the studies from the staining analysis, ultrastructure analysis, and identification of putative homologues of protein encoding genes involved in *Bacillus* sporogenesis and from the characterized the novel SleR protein. Further, the study supports our previous findings (Girija *et al.*, 2010) and has given leads into the sporulation of *Rba. johrii*. Therefore, a confined study based on ultra-microscopic and incomplete genome analysis concluding that "members of the phylum Proteobacteria do not produce endospores" (Beskrovnaya *et al.*, 2020) is rather an early assumption.

SUMMARY

5. Summary

The study was conducted with an aim to explore the insights of sporulation in a proteobacterium *Rba. johrii*. Spore like refractile bodies, malachite green, DAPI staining and TEM sectioning confirms the reproducibility of endospore like structure in *Rba. johrii*. The inhibition of PHA granules in *Rba. johrii* by acrylic acid and pentenoic acid clearly differentiated between PHA granules and spore like refractile bodies. The ultrafine structure of spore like refractile bodies showed similarity to *Bacillus* endospores with some distinction. A novel spore specific fluorescent stain "sporotan" was identified and staining method was developed to stain specifically the cryptic endospore like refractile bodies in *Rba. johrii*. The sporotan staining method is very selective, simple and efficient, which will help in the discovery of endospores produced by different members, also outside the phylum Firmicutes. The discovery of endospore like refractive structures in *Rhodobacter alkalitolerans* indicates the wide spread of these structures among other taxa of Rhodobacteraceae and probably among the phylum Proteobacteria.

One hundred protein homologs involved in *Bacillus subtilis* sporulation were identified in *Rba. johrii* genome including the signature proteins sigE, sigH, sig F, sig K, spo0A, spoIIAB, spoIIE, SpoIVB, sigG, spoIID, spoIIM, spoIVA, spoVB, spoVG, yqfc, ytvI, sleB, SpoIVB, spoVAD, spoIIG and dapG. The signaling cascade protein homologs which has role in triggering spore initiation were also found to be conserved in *Rba. johrii* which indicates that there might be a similar spore initiation mechanism. Some of the spore associated proteins like "Small Acid Soluble Proteins (SASPs)", Dipicolinate (DPA) synthetase were not found in *Rba. johrii*. Putative spore cortex lytic protein having 28.4% amino acid identity with 67% protein coverage contains Hydrolse_2 domain was identified in *Rba. johrii*. Predicted Sle structure has seven -α-

helix, three -β-sheets, eleven loops and turns. From the alignment and superimposition, the catalytic residue Glu128 and alternate second Glu132 is conserved in Sle of *Rba. johrii* which is common in of SleB- type enzymes. Catalytic groove is lined with aromatic residues Phe167, Phe209, Trp218, His231, Phe233 which is conserved in all SleB and this is responsible for binding and cleavage of spore cortex peptidoglycan and binding with substrates is confirmed by docking.

In vitro enzyme assay for purified SleR protein cleaves spore cortex peptidoglycan (sacculi) as substrate but do not cleave the cell wall peptidoglycan. Expression pattern of SleR protein was low till the stationary phase, significant increase was found in the late stationary phase this expression pattern can be correlated with the formation of spore like structure. The characterization of putative Sle protein of *Rba. johrii* showed properties similar to spore cortex lytic enzyme SleB therefore we propose the name SleR for this putative protein. This novel spore cortex lytic enzyme (SleR) was characterized *in silico*, *in vitro* and its differential expression pattern confirmed in *Rba. johrii*.

Overall the work represents a gateway to the study of endospore-like structure formation in a non-Firmicutes member like *Rba. johrii* belonging to the phylum Proteobacteria. This work is a valuable contribution which opens scope in understanding the sporulation strategies adapted among the members of the phylum Proteobacteria which is far different from the members of Firmicutes.

REFERENCES

6. References

- Ajithkumar, B., Ajithkumar, V.P., Iriye, R., Doi, Y., Sakai, T. (2003) Spore-forming *Serratia marcescens* subsp. *sakuensis* subsp. nov., isolated from a domestic wastewater treatment tank. *Int J Syst Evol Microbiol* 53: 253-258. doi: 10.1099/ijs.0.02158-0.
- Alanjary, M., and Medema, M.H. (2018) Mining bacterial genomes to reveal secret synergy. *J Biol Chem* 293: 19996-19997. doi: 10.1074/jbc.H118.006669.
- Ali, A., Gaurav, K., Senthilnathan, N., Radhakrishnan, T.P., Ch, S., Ramana, C.V. (2020) "Sporotan" a new fluorescent stain for identifying cryptic spores of *Rhodobacter johrii*. *J Microbiol Methods* 177: 106019. doi: 10.1016/j.mimet.2020.106019.
- Armenteros, J.J.A., Tsirigos, K.D., Sønderby, C.K., Petersen, T.N., Winther, O., Brunak, S., von Heijne, G., Nielsen, H. (2019) SignalP 5.0 improves signal peptide predictions using deep neural networks. *Nat Biotechnol* 37: 420-423. doi: 10.1038/s41587-019-0036-z.
- Ausmees, N., Wahlstedt, H., Bagchi, S., Elliot, M. A., Buttner, M. J., Flärdh, K. (2007) SmeA, a small membrane protein with multiple functions in *Streptomyces* sporulation including targeting of a SpoIIIE/FtsK-like protein to cell division septa. *Mol Microbiol* 65: 1458-1473. doi: 10.1111/j.1365-2958.2007.05877.x.
- Aziz, R.K., Bartels, D., Best, A.A., DeJongh, M., Disz, T., Edwards, R.A., Formsma, K., Gerdes, S., Glass, E.M., Kubal, M., Meyer, F. (2008) The RAST Server: rapid annotations using subsystems technology. *BMC Genomics* 9: 1-15. doi: 10.1186/1471-2164-9-75.
- Bankevich, A., Nurk, S., Antipov, D., Gurevich, A.A., Dvorkin, M., Kulikov, A.S., Lesin, V.M., Nikolenko, S.I., Pham, S., Prjibelski, A.D., Pyshkin, A.V. (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. *J Comput Biol* 19: 455-477. doi: 10.1089/cmb.2012.0021.
- Barka, E.A., Vatsa, P., Sanchez, L., Gaveau-Vaillant, N., Jacquard, C., Klenk, H.P., Clément, C., Ouhdouch, Y., van Wezel, G.P. (2016) Taxonomy, physiology, and natural products of Actinobacteria. *Microbiol Mol Biol Rev* 80: 1-43. doi: 10.1128/MMBR.00019-15.
- Bartholomew, J.W., Lechtman, M.D., Finkelstein, H. (1965) Differential spore and lipid staining at room temperature by use of fluorescent dye. *J Bacteriol* 90: 1146-1147. doi: 10.1128/JB.90.4.1146-1147.1965.
- Beall, B., Moran, C.P. (1994) Cloning and characterization of spoVR, a gene from *Bacillus subtilis* involved in spore cortex formation. *J Bacteriol* 176: 2003-2012. doi: 10.1128/jb. 176.7.2003-2012.1994.

- Belknap, K.C., Park, C.J., Barth, B.M., Andam, C.P. (2020) Genome mining of biosynthetic and chemotherapeutic gene clusters in *Streptomyces* bacteria. *Sci Rep* 10. doi: 10.1038/s41598-020-58904-9.
- Berleman, J. E., and Bauer, C. E. (2004) Characterization of cyst cell formation in the purple photosynthetic bacterium *Rhodospirillum centenum*. *Microbiology* 150: 383-390. doi: 10. 1099/mic.0.26846-0.
- Beskrovnaya, P., Fakih, D., Sexton, D.L., Xing, S., Golmohammadzadeh, M., Morneau, I., Bello, D.G., Nanci, A., Huan, T., Tocheva, E. (2020) No endospore formation confirmed in members of the phylum Proteobacteria. *bioRxiv*. doi:10.1101/2020.07.23.219022.
- Biebl H., and Pfenning N. (1981) Isolation of Members of the Family Rhodospirillaceae. In The Prokaryotes. Springer, Berlin, Heidelberg. 267-273. doi: 10.1007/978-3-662-13187-9_14.
- Bleuven, C., and Landry, C. R. (2016) Molecular and cellular bases of adaptation to a changing environment in microorganisms. *Proc Bio Sci* 283: 20161458. doi:10.1098/rspb.2016.1458.
- Blin, K., Shaw, S., Steinke, K., Villebro, R., Ziemert, N., Lee, S.Y., Medema, M.H., Weber, T. (2019) antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. *Nucleic Acids Res* 47: W81-W87. doi: 10.1093/nar/gkz310.
- Bobek, J., Šmídová, K., Čihák, M. (2017) A waking review: old and novel insights into the spore germination in *Streptomyces. Front Microbiol* 8: 2205. doi: 10.3389/fmicb.2017.02205.
- Boland, F.M., Atrih, A., Chirakkal, H., Foster, S.J., Moir, A. (2000) Complete spore-cortex hydrolysis during germination of *Bacillus subtilis* 168 requires SleB and YpeB. *Microbiology* 146: 57-64. doi: 10.1099/00221287-146-1-57.
- Bosak, T., Losick, R.M., Pearson, A. (2008) A polycyclic terpenoid that alleviates oxidative stress. *Proc Natl Acad Sci U S A* 105: 6725-6729. doi: 10.1073/pnas.0800199105.
- Brooks, A.N., Turkarslan, S., Beer, K.D., Yin Lo, F., Baliga, N.S. (2011) Adaptation of cells to new environments. *Wiley Interdiscip Rev Syst Biol Med* 3: 544-561. doi: 10.1002/wsbm. 136.
- Burbulys, D., Trach, K.A., Hoch, J.A. (1991) Initiation of sporulation in *B. subtilis* is controlled by a multicomponent phosphorelay. *Cell* 64: 545-552. doi: 10.1016/0092-8674(91)90238-t.
- Bush, M.J., Tschowri, N., Schlimpert, S., Flärdh, K., Buttner, M.J. (2015) c-di-GMP signalling and the regulation of developmental transitions in streptomycetes. *Nat Rev Microbiol* 13: 749-760. doi: 10.1038/nrmicro3546.

- Cao, Y., Fanning, S., Proos, S., Jordan, K., Srikumar, S. (2017) A review on the applications of next generation sequencing technologies as applied to food-related microbiome studies. *Front Microbiol* 8: 1829. doi: 10.3389/fmicb.2017.01829.
- Carver, T., Thomson, N., Bleasby, A., Berriman, M., Parkhill, J. (2009) DNAPlotter: circular and linear interactive genome visualization. *Bioinformatics* 25: 119-120. doi: 10.1093/bioinformatics/btn578.
- Chanasit, W., Hodgson, B., Sudesh, K., Umsakul, K. (2016) Efficient production of polyhydroxyalkanoates (PHAs) from *Pseudomonas mendocina* PSU using a biodiesel liquid waste (BLW) as the sole carbon source. *Biosci Biotechnol Biochem* 80: 1440-1450. doi: 10.1080/09168451.2016. 1158628.
- Chater, K.F., and Chandra, G., (2008) The use of the rare UUA codon to define "expression space" for genes involved in secondary metabolism, development and environmental adaptation in *Streptomyces*. *J Microbiol* 46: 1-11. doi: 10.1007/s12275-007-0233-1.
- Chater, K.F., Biro, S., Lee, K.J., Palmer, T., Schrempf, H. (2010) The complex extracellular biology of *Streptomyces. FEMS Microbiol Rev* 34: 171-198. doi: 10.1111/j.1574-6976.2009.00206.x.
- Chaudhari, N.M., Gupta, V.K., Dutta, C. (2016) BPGA-an ultra-fast pan-genome analysis pipeline. *Sci Rep* 6: 1-10. doi: 10.1038/srep24373.
- Chen, Y., Fukuoka, S., Makino, S. (2000) A novel spore peptidoglycan hydrolase of *Bacillus cereus*: biochemical characterization and nucleotide sequence of the corresponding gene, sleL. *J Bacteriol* 182: 1499-1506. doi: 10.1128/jb.182.6.1499-1506.2000.
- Chikhi, R., and Medvedev, P. (2014) Informed and automated k-mer size selection for genome assembly. *Bioinformatics* 30: 31-37. doi: 10.1093/bioinformatics/btt310.
- Claessen, D., Rink, R., de Jong, W., Siebring, J., de Vreugd, P., Boersma, F.H., Dijkhuizen, L., Wösten, H.A. (2003) A novel class of secreted hydrophobic proteins is involved in aerial hyphae formation in *Streptomyces coelicolor* by forming amyloid-like fibrils. *Genes Dev* 17: 1714-1726. doi: 10.1101/gad.264303.
- Claessen, D., Stokroos, I., Deelstra, H.J., Penninga, N.A., Bormann, C., Salas, J.A., Dijkhuizen, L., Wösten, H.A. (2004) The formation of the rodlet layer of streptomycetes is the result of the interplay between rodlins and chaplins. *Mol Microbiol* 53: 433-443. doi: 10.1111/j.1365-2958.2004.04143.x.
- Claessen, D., Wösten, H.A., Keulen, G.V., Faber, O.G., Alves, A.M., Meijer, W.G., Dijkhuizen, L. (2002) Two novel homologous proteins of *Streptomyces coelicolor* and *Streptomyces lividans* are involved in the formation of the rodlet layer and mediate attachment to a

- hydrophobic surface. *Mol Microbiol* 44: 1483-1492. doi: 10.1046/j.1365-2958.2002.02980.x.
- Dallakyan, S., and Olson, A.J. (2015) Small-molecule library screening by docking with PyRx. *Methods Mol Biol* 1263: 243-250. doi: 10.1007/978-1-4939-2269-7_19.
- D'Incecco, P., Ong, L., Gras, S., Pellegrino, L. (2018) A fluorescence in situ staining method for investigating spores and vegetative cells of clostridia by confocal laser scanning microscopy and structured illuminated microscopy. *Micron* 110: 1-9. doi.org: 10.1016/j. micron.2018.04.005.
- Ditkowski, B., Holmes, N., Rydzak, J., Donczew, M., Bezulska, M., Ginda, K., Kędzierski, P., Zakrzewska-Czerwińska, J., Kelemen, G.H., Jakimowicz, D. (2013) Dynamic interplay of ParA with the polarity protein, Scy, coordinates the growth with chromosome segregation in *Streptomyces coelicolor*. *Open Biol* 3: 130006. doi: 10.1098/rsob.130006.
- Dowd, M.M., Orsburn, B., Popham, D.L. (2008) Cortex peptidoglycan lytic activity in germinating *Bacillus anthracis* spores. *J Bacteriol* 190: 4541-4548. doi: 10.1128/JB.00249-08.
- Drews, G. (2000) The roots of microbiology and the influence of Ferdinand Cohn on microbiology of the 19th century. *FEMS Microbiol Rev* 24: 225-249. doi: 10.1111/j.1574-6976.2000.tb00540.x.
- Dworkin, J., and Shah, I.M. (2010) Exit from dormancy in microbial organisms. *Nat Rev Microbiol* 8: 890-896. doi: 10.1038/nrmicro2453.
- El-Gebali, S., Mistry, J., Bateman, A., Eddy, S.R., Luciani, A., Potter, S.C., Qureshi, M., Richardson, L.J., Salazar, G.A., Smart, A., Sonnhammer, E.L.L. (2019) The Pfam protein families database in 2019. *Nucleic Acids Res* 47: D427-D432. doi: 10.1093/nar/gky995.
- Emerson, D., Agulto, L., Liu, H., Liu, L. (2008) Identifying and characterizing bacteria in an era of genomics and proteomics. *BioScience* 58: 925-936. doi.org/10.1641/B581006.
- Englen, M.D., and Kelley, L.C. (2000) A rapid DNA isolation procedure for the identification of *Campylobacter jejuni* by the polymerase chain reaction. *Lett Appl Microbiol* 31: 421-426. doi: 10.1046/j.1365-2672.2000.00841.x.
- Ensign, J.C. (1978) Formation, properties, and germination of actinomycete spores. *Annu Rev Microbiol*. 32: 185-219. doi: 10.1146/annurev.mi.32.100178.001153.
- Errington, J. (2003) Regulation of endospore formation in *Bacillus subtilis*. *Nat Rev Microbiol* 1: 117-26. doi: 10.1038/nrmicro750.

- Fernandes, S., and São-José, C. (2018) Enzymes and mechanisms employed by tailed bacteriophages to breach the bacterial cell barriers. *Viruses* 10: 396. doi: 10.3390/v10080396.
- Filippidou, S., Junier, T., Wunderlin, T., Kooli, W.M., Palmieri, I., Al-Dourobi, A., Molina, V., Lienhard, R., Spangenberg, J.E., Johnson, S.L., Chain, P.S. (2019) Adaptive strategies in a poly-extreme environment: differentiation of vegetative cells in *Serratia ureilytica* and resistance to extreme conditions. *Front Microbiol* 10: 102. doi: 10.3389/fmicb.2019.00102.
- Flemming, H.C., Wingender, J., Szewzyk, U., Steinberg, P., Rice, S.A., Kjelleberg, S. (2016) Biofilms: an emergent form of bacterial life. *Nat Rev Microbiol* 14: 563-75. doi: 10.1038/nrmicro.2016.94.
- Forde, B.M., and O'Toole, P.W. (2013) Next-generation sequencing technologies and their impact on microbial genomics. *Brief Funct Genomics* 12: 440-453. doi: 10.1093/bfgp/els0 62.
- Fuerst, J.A., and Sagulenko, E. (2011) Beyond the bacterium: planctomycetes challenge our concepts of microbial structure and function. *Nat Rev Microbiol* 9: 403-413. doi: 10.1038/nrmicro2578.
- Gandham, S., Lodha, T., Chintalapati, S., Chintalapati, V.R. (2018) *Rhodobacter alkalitolerans* sp. nov., isolated from an alkaline brown pond. *Arch Microbiol* 200: 1487-1492. doi: 10. 1007/s00203-018-1561-8.
- Ghosh, J., Larsson, P., Singh, B. (2009) Sporulation in *Mycobacteria*. *Proc Nat Acad Sci* 106: 10781-10786. doi: 10.1073/pnas.0904104106.
- Gilmore, M.E., Bandyopadhyay, D., Dean, A.M., Linnstaedt, S.D., Popham, D.L. (2004) Production of muramic δ-lactam in *Bacillus subtilis* spore peptidoglycan. *J Bacteriol* 186: 80-89. doi: 10.1128/jb.186.1.80-89.2004.
- Girija, K.R., Sasikala, Ch., Ramana, Ch.V. (2010) *Rhodobacter johrii* sp. nov., an endospore producing cryptic species isolated from semi-arid tropical soils. *Int J Syst Evol Microbiol* 60: 2099-2107. doi: 10.1099/ijs.0.011718-0.
- Grant, J.R., and Stothard, P. (2008) The CGView Server: a comparative genomics tool for circular genomes. *Nucleic Acids Res* 36: W181-W184. doi: 10.1093/nar/gkn179.
- Grissa, I., Vergnaud, G., Pourcel, C. (2007) CRISPRFinder: a web tool to identify clustered regularly interspaced short palindromic repeats. *Nucleic Acids Res* 35: W52-W57. doi: 10.1093/nar/gkm360.

- Gutelius, D., Hokeness, K., Logan, S.M., Reid, C.W. (2014) Functional analysis of SleC from *Clostridium difficile*: an essential lytic transglycosylase involved in spore germination. *Microbiology* 160: 209-216. doi: 10.1099/mic.0.072454-0.
- Haiser, H.J., Yousef, M.R., Elliot, M.A. (2009) Cell wall hydrolases affect germination, vegetative growth, and sporulation in *Streptomyces coelicolor*. *J Bacteriol* 191: 6501-6512. doi: 10.1128/JB.00767-09.
- Hall-Stoodley, L., Costerton, J.W., Stoodley, P. (2004) Bacterial biofilms: from the natural environment to infectious diseases. *Nat Rev Microbio* 2: 95–108. doi:10.1038/nrmicro821.
- Hardisson, C., and Manzanal, M.B. (1976) Ultrastructural studies of sporulation in *Streptomyces*. *J Bacteriol* 127: 1443-1454. doi: 10.1128/JB.127.3.1443-1454.1976.
- Hashimoto, M., Ooiwa, S., Sekiguchi, J. (2012) Synthetic lethality of the lytE cwlO genotype in *Bacillus subtilis* is caused by lack of D, L-endopeptidase activity at the lateral cell wall. *J Bacteriol* 194: 796-803. doi: 10.1128/JB.05569-11.
- Heffron, J.D., Sherry, N., Popham, D.L. (2011) In vitro studies of peptidoglycan binding and hydrolysis by the *Bacillus anthracis* germination-specific lytic enzyme SleB. *J Bacteriol* 193: 125-131. doi: 10.1128/JB.00869-10.
- Heidrich, C., Templin, M.F., Ursinus, A., Merdanovic, M., Berger, J., Schwarz, H., De Pedro, M.A., Höltje, J.V. (2001) Involvement of N-acetylmuramyl-L-alanine amidases in cell separation and antibiotic-induced autolysis of *Escherichia coli*. *Mol Microbiol* 41: 167-178. doi: 10.1046/j. 1365-2958.2001.02499.x.
- Henriques, A.O., and Moran, Jr, C.P. (2007) Structure, assembly, and function of the spore surface layers. *Annu Rev Microbiol* 61: 555-88. doi: 10.1146/annurev.micro.61.080706. 093224
- Hernandez, D., François, P., Farinelli, L., Østerås, M., Schrenzel, J. (2008) De novo bacterial genome sequencing: millions of very short reads assembled on a desktop computer. *Genome Res* 18: 802-809. doi: 10.1101/gr.072033.107.
- Higgins, D., and Dworkin, J. (2012) Recent progress in *Bacillus subtilis* sporulation. *FEMS Microbiol Rev* 36: 131-48. doi: 10.1111/j.1574-6976.2011.00310.x.
- Huang, S.S., Chen, D., Pelczar, P.L., Vepachedu, V.R., Setlow, P., Li, Y.Q. (2007) Levels of Ca2+-dipicolinic acid in individual *Bacillus* spores determined using microfluidic Raman tweezers. *J Bacteriol* 189: 4681-4687. doi: 10.1128/JB.00282-07.
- Hutchison, E. A., Miller, D. A., Angert, E. R. (2016) Sporulation in bacteria: beyond the standard model. *Microbiol Spectr* 2: 87-102. doi: 10.1128/microbiolspec.TBS-0013-2012.

- Ishikawa, S., Yamane, K., Sekiguchi, J. (1998) Regulation and characterization of a newly deduced cell wall hydrolase gene (cwlJ) which affects germination of *Bacillus subtilis* spores. *J Bacteriol* 180: 1375-1380. doi: 10.1128/JB.180.6.1375-1380.1998.
- Jakimowicz, D., and van Wezel, G. P. (2012) Cell division and DNA segregation in *Streptomyces*: how to build a septum in the middle of nowhere? *Mol Microbiol* 85: 393-404. doi: 10.1111/j.1365-2958.2012.08107.x
- Janssen, F.W., Lund, A.J., Anderson, L.E. (1958) Colorimetric assay for dipicolinic acid in bacterial spores. *Science* 127: 26-27. doi: 10.1126/science.127.3288.26.
- Jeske, O., Schüler, M., Schumann, P., Schneider, A., Boedeker, C., Jogler, M., Bollschweiler, D., Rohde, M., Mayer, C., Engelhardt, H., Spring, S. (2015) Planctomycetes do possess a peptidoglycan cell wall. *Nat Commun* 6: 1-7. doi: 10.1038/ncomms8116.
- Jing, X., Robinson, H.R., Heffron, J.D., Popham, D.L., Schubot, F.D. (2012) The catalytic domain of the germination-specific lytic transglycosylase SleB from *Bacillus anthracis* displays a unique active site topology. *Proteins* 80: 2469-2475. doi: 10.1002/prot.24140.
- Jogler, C., Waldmann, J., Huang, X., Jogler, M., Glöckner, F.O., Mascher, T., Kolter, R. (2012) Identification of proteins likely to be involved in morphogenesis, cell division, and signal transduction in Planctomycetes by comparative genomics. *J Bacteriol* 194: 6419-6430. doi: 10.1128/JB.01325-12.
- Jones, S.E., Lennon, J.T. (2010) Dormancy contributes to the maintenance of microbial diversity. *Proc Natl Acad Sci U S A* 107: 5881-5886. doi: 10.1073/pnas.0912765107.
- Kalakoutskii, L.V., Agre, N.S., AslanJan, R.R. (1969) Thermoresistivity of spores in actinomycetes with reference to their dipicolinic acid, calcium and magnesium con-tent. *Dokl Akad Nauk SSSR.* 184: 1214-1216.
- Kan, B., Zhou, H., Du, P., Zhang, W., Lu, X., Qin, T., Xu, J. (2018) Transforming bacterial disease surveillance and investigation using whole-genome sequence to probe the trace. *Front Med* 12: 23-33. doi: 10.1007/s11684-017-0607-7.
- Karava, M., Bracharz, F., Kabisch, J. (2019) Quantification and isolation of *Bacillus subtilis* spores using cell sorting and automated gating. *PLoS One*. 14. doi: 10.1371/journal. pone.0219892
- Keijser, B. J., Noens, E. E., Kraal, B., Koerten, H. K., van Wezel, G. P. (2003) The *Streptomyces coelicolor* ssgB gene is required for early stages of sporulation. *FEMS Microbiol Lett* 225: 59-67. doi: 10.1016/S0378-1097(03)00481-6.

- Kelemen, G.H., Brian, P., Flärdh, K., Chamberlin, L., Chater, K.F., Buttner, M.J. (1998) Developmental regulation of transcription of whiE, a locus specifying the polyketide spore pigment in *Streptomyces coelicolor* A3 (2). *J Bacteriol* 180: 2515-2521.doi: 10.1128/JB. 180.9.2515-2521.1998.
- Kelly, J.A., Sielecki, A.R., Sykes, B.D., James, M.N., Phillips, D.C. (1979) X-ray crystallography of the binding of the bacterial cell wall trisaccharide NAM-NAG-NAM to lysozyme. *Nature* 282: 875-878. doi: 10.1038/282875a0.
- Knaysi, G. (1948) The endospore of bacteria. *Bacteriol Rev* 12: 19-77.
- Koller, M. (2020) Established and advanced approaches for recovery of microbial polyhydroxyalkanoate (PHA) biopolyesters from surrounding microbial biomass. *The EuroBio J* 4: 113-126. doi: 10.2478/ebtj-2020-0013.
- Kroos, L. (2007) The *Bacillus* and *Myxococcus* developmental networks and their transcriptional regulators. *Annu Rev Genet* 41: 13-39.doi: 10.1146/annurev.genet.41.110306.130400.
- Laemmli, U.K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. *Nature* 227: 680-685. doi: 10.1038/227680a0.
- Lagesen, K., Hallin, P., Rødland, E.A., Stærfeldt, H.H., Rognes, T., Ussery, D.W. (2007) RNAmmer: consistent and rapid annotation of ribosomal RNA genes. *Nucleic Acids Res* 35: 3100-3108. doi: 10.1093/nar/gkm160.
- Lakshmi, K.V.N.S., Sasikala, C., Takaichi, S., Ramana, C.V. (2011) *Phaeospirillum oryzae* sp. nov., a spheroplast-forming, phototrophic alphaproteobacterium from a paddy soil. *Int J Syst Evol Microbiol* 61: 1656-1661. doi: 10.1099/ijs.0.025544-0.
- Lamont, E.A., Bannantine, J.P., Armién, A. (2012) Identification and characterization of a spore-like morphotype in chronically starved *Mycobacterium avium* subsp. *paratuberculosis* cultures. *PLoS One* 7: e30648. doi: 10.1371/journal.pone.0030648.
- Laskowski, R.A., MacArthur, M.W., Moss, D.S., Thornton, J.M. (1993) PROCHECK: a program to check the stereochemical quality of protein structures. *J Appl Cryst* 26: 283-291. doi:10.1107/S0021889892009944.
- Lebre, P.H., De Maayer, P., Cowan, D.A. (2017) Xerotolerant bacteria: surviving through a dry spell. *Nat Rev Microbiol* 15: 285-296. doi: 10.1038/nrmicro.2017.16.
- Lee, H.J., Choi, M.H., Kim, T.U., Yoon, S.C. (2001) Accumulation of polyhydroxyalkanoic acid containing large amounts of unsaturated monomers in *Pseudomonas fluorescens* BM07 utilizing saccharides and its inhibition by 2-bromooctanoic acid. *Appl Environ Microbiol* 67: 4963-4974. doi: 10.1128/AEM.67.11.4963-4974.2001.

- Lee, T.K., and Huang, K.C. (2013) The role of hydrolases in bacterial cell-wall growth. *Curr Opin Microbiol* 16: 760-766. doi: 10.1016/j.mib.2013.08.005.
- Li, Y., Jin, K., Setlow, B., Setlow, P., Hao, B. (2012) Crystal structure of the catalytic domain of the *Bacillus cereus* SleB protein, important in cortex peptidoglycan degradation during spore germination. *J Bacteriol* 194: 4537-4545. doi: 10.1128/JB.00877-12.
- Licking, E., Gorski, L., Kaiser, D. (2000) A common step for changing cell shape in fruiting body and starvation-independent sporulation of *Myxococcus xanthus*. *J Bacteriol* 182: 3553-3558. doi: 10.1128/jb.182.12.3553-3558.2000.
- Liesack, W., Schnell, S., Revsbech, N.P. (2000) Microbiology of flooded rice paddies. *FEMS Microbiol Rev* 24: 625-645. doi: 10.1111/j.1574-6976.2000.tb00563.x.
- Lin, S.H. and Liao, Y.C. (2013) CISA: contig integrator for sequence assembly of bacterial genomes. *PLoS One* 8: e60843. doi: 10.1371/journal.pone.0060843.
- Luo, R., Liu, B., Xie, Y., Li, Z., Huang, W., Yuan, J., He, G., Chen, Y., Pan, Q., Liu, Y., Tang, J. (2012) SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. *Gigascience* 1: 2047-217X. doi: 10.1186/2047-217X-1-18.
- Madeira, F., Park, Y.M., Lee, J., Buso, N., Gur, T., Madhusoodanan, N., Basutkar, P., Tivey, A.R., Potter, S.C., Finn, R.D., Lopez, R. (2019) The EMBL-EBI search and sequence analysis tools APIs in 2019. *Nucleic Acids Res* 47: W636-W641. doi: 10.1093/nar/gkz268.
- Magge, A., Granger, A.C., Wahome, P.G., Setlow, B., Vepachedu, V.R., Loshon, C.A., Peng, L., Chen, D., Li, Y.Q., Setlow, P. (2008) Role of dipicolinic acid in the germination, stability, and viability of spores of *Bacillus subtilis. J Bacteriol* 190: 4798-4807. doi: 10.1128/JB.00477-08.
- McCaul, T. F., and Williams, J. C. (1981) Developmental cycle of *Coxiella burnetii*: structure and morphogenesis of vegetative and sporogenic differentiations. *J Bacteriol* 147: 1063-1076. doi: 10.1128/JB.147.3.1063-1076.1981.
- McKenney, P.T., Driks, A., Eichenberger, P. (2013) The *Bacillus subtilis* endospore: assembly and functions of the multilayered coat. *Nat Rev Microbiol* 11: 33-44. doi: 10.1038/nrmicro2921.
- Monds, R.D., and Toole, G.A.O. (2009) The developmental model of microbial biofilms: Ten years of a paradigm up for review. *Trends Microbiol* 17: 73–87. doi:10.1016/j.tim.2008. 11.001.

- Moriya, Y., Itoh, M., Okuda, S., Yoshizawa, A.C., Kanehisa, M. (2007) KAAS: an automatic genome annotation and pathway reconstruction server. *Nucleic Acids Res* 35: W182-W185. doi: 10.1093/nar/gkm321.
- Moriyama, R., Fukuoka, H., Miyata, S., Kudoh, S., Hattori, A., Kozuka, S., Yasuda, Y., Tochikubo, K., Makino, S. (1999) Expression of a germination-specific amidase, SleB, of bacilli in the forespore compartment of sporulating cells and its localization on the exterior side of the cortex in dormant spores. *J Bacteriol* 181: 2373-2378. doi: 10.1128/JB.181. 8. 2373-2378.1999.
- Müller, F.D., Treuner-Lange, A., Heider, J., Huntley, S.M., Higgs, P.I. (2010) Global transcriptome analysis of spore formation in *Myxococcus xanthus* reveals a locus necessary for cell differentiation. *BMC Genomics* 11: 264. doi: 10.1186/1471-2164-11-264.
- Nicholson WL, Setlow P. (1990) Sporulation, germination and outgrowth, *In* Harwood CR, Cutting SM. (ed), Molecular biological methods for *Bacillus*. *John Wiley and Sons*, *Chichester*, *United Kingdom*. 391–450.
- Noens, E.E., Mersinias, V., Traag, B.A., Smith, C.P., Koerten, H.K., van Wezel, G.P. (2005) SsgA-like proteins determine the fate of peptidoglycan during sporulation of *Streptomyces coelicolor*. *Mol Microbiol* 58: 929-944. doi: 10.1111/j.1365-2958.2005.04883.x.
- Noens, E.E., Mersinias, V., Willemse, J., Traag, B.A., Laing, E., Chater, K.F., Smith, C.P., Koerten, H.K., Van Wezel, G.P. (2007) Loss of the controlled localization of growth stage-specific cell-wall synthesis pleiotropically affects developmental gene expression in an ssgA mutant of *Streptomyces coelicolor*. *Mol Microbiol* 64: 1244-1259. doi: 10.1111/j.1365-2958.2007.05732.x.
- Nowakowska, J., and Oliver, J.D. (2013) Resistance to environmental stresses by *Vibrio vulnificus* in the viable but nonculturable state. *FEMS Microbiol Ecol* 84: 213-22. doi: 10. 1111/1574-6941.12052.
- Osipovitch, D.C., Therrien, S., Griswold, K.E. (2015) Discovery of novel *S. aureus* autolysins and molecular engineering to enhance bacteriolytic activity. *Appl Microbiol Biotechnol* 99: 6315-6326. doi: 10.1007/s00253-015-6443-2.
- Ostle, A.G., and Holt, J.G., (1982) Nile blue A as a fluorescent stain for poly-beta-hydroxybutyrate. *Appl Environ Microbiol* 44: 238-241. doi: 10.1128/AEM.44.1.238-241. 1982.
- Piggot, P. J., and Hilbert, D. W. (2004) Sporulation of *Bacillus subtilis*. *Curr Opin Microbiol* 7: 579-586. doi: 10.1016/j.mib.2004.10.001.

- Popham, D.L., Helin, J., Costello, C.E., Setlow, P. (1996a) Analysis of the peptidoglycan structure of *Bacillus subtilis* endospores. *J Bacteriol* 178: 6451-6458. doi: 10.1128/jb.178. 22.6451-6458.1996.
- Popham, D.L., Helin, J., Costello, C.E., Setlow, P. (1996b) Muramic lactam in peptidoglycan of *Bacillus subtilis* spores is required for spore outgrowth but not for spore dehydration or heat resistance. *Proc Natl Acad Sci U S A* 93: 15405-15410. doi: 10.1073/pnas.93.26. 15405.
- Probst, A., Mahnert, A., Weber, C., Haberer, K., Moissl-Eichinger, C. (2012) Detecting inactivated endospores in fluorescence microscopy using propidium monoazide. *Int J Astrobiol* 11: 117-123. doi.org/10.1017/S1473550411000425.
- Qi, Q., Steinbüchel, A., Rehm, B.H. (1998) Metabolic routing towards polyhydroxyalkanoic acid synthesis in recombinant *Escherichia coli* (fadR): inhibition of fatty acid β-oxidation by acrylic acid. *FEMS Microbiol Lett* 167: 89-94. doi: 10.1111/j.1574-6968.1998.tb13212.x.
- Reed, W. M., and Dugan, P. R. (1979) Study of developmental stages of *Methylosinus trichosporium* with the aid of fluorescent-antibody staining techniques. *Appl Environ Microbiol* 38: 1179-1183. doi:10.1128/AEM.38.6.1179-1183.1979.
- Reed, W. M., Titus, J. A., Dugan, P. R., Pfister, R. M. (1980) Structure of *Methylosinus trichosporium* exospores. *J Bacteriol* 141: 908-913. doi:10.1128/JB.141.2.908-913.1980.
- Robert, X., and Gouet, P. (2014) Deciphering key features in protein structures with the new ENDscript server. *Nucleic Acids Res* 42: W320-W324. doi: 10.1093/nar/gku316.
- Rogers H.J., Perkins H.R., Ward J.B. (1980) Biosynthesis of other bacterial wall components. In Microbial Cell Walls and Membranes. Springer, Dordrecht. 383-436. doi: 10.1007/978-94-011-6014-8_10.
- Ryding, N.J., Kelemen, G.H., Whatling, C.A., Flärdh, K., Buttner, M.J., Chater, K.F. (1998) A developmentally regulated gene encoding a repressor-like protein is essential for sporulation in *Streptomyces coelicolor* A3 (2). *Mol Microbiol* 29: 343-57. doi: 10.1046/j.1365-2958.1998.00939.x.
- Schaeffer, A.B., and Fulton, M.D. (1933) A simplified method of staining endospores. *Science* 77: 194. doi: 10.1126/science.77.1990.19.
- Schägger, H., Aquila, H., Von Jagow, G. (1988) Coomassie blue-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for direct visualization of polypeptides during electrophoresis. *Anal Biochem* 173: 201-205. doi: 10.1016/0003-2697(88)90179-0.

- Schichnes, D., Nemson, J.A., Ruzin, S. E. (2006) Flourescent staining method for bacterial endospores. *Microscope* 54: 91-93.
- Schultz, J., Milpetz, F., Bork, P., Ponting, C.P. (1998) SMART, a simple modular architecture research tool: identification of signaling domains. *Proc Natl Acad Sci U S A* 95: 5857-5864. doi: 10.1073/pnas.95.11.5857.
- Senthilnathan, N., Gaurav, K., Ramana, C.V., Radhakrishnan, T.P. (2020) Zwitterionic small molecule based fluorophores for efficient and selective imaging of bacterial endospores. *J Mater Chem B* 8: 4601-4608. doi: 10.1039/d0tb00470g.
- Setlow, P. (2007) I will survive: DNA protection in bacterial spores. *Trends Microbiol* 15: 172-180. doi: 10.1016/j.tim.2007.02.004.
- Setlow, P. (2013) Summer meeting 2013—when the sleepers wake: the germination of spores of *Bacillus* species. *J Appl Microbiol* 115: 1251-1268. doi: 10.1111/jam.12343.
- Sevcikova, B., and Kormanec, J. (2003) The ssgB gene, encoding a member of the regulon of stress-response sigma factor σ H, is essential for aerial mycelium septation in *Streptomyces coelicolor* A3 (2). *Arch Microbiol* 180: 380-384. doi: 10.1007/s00203-003-0603-y.
- Shi, L., Derouiche, A., Pandit, S., Rahimi, S., Kalantari, A., Futo, M., Ravikumar, V., Jers, C., Mokkapati, V.R., Vlahoviček, K., Mijakovic, I. (2020) Evolutionary analysis of the *Bacillus subtilis* genome reveals new genes involved in sporulation. *Mol Biol Evol* 37: 1667-1678. doi: 10.1093/molbev/msaa035.
- Shockman, G.D., Daneo-Moore, L., Kariyama, R., Massidda, O. (1996) Bacterial walls, peptidoglycan hydrolases, autolysins, and autolysis. *Microb Drug Resist* 2: 95-98. doi: 10.1089/mdr.1996.2.95.
- Sigle, S., Ladwig, N., Wohlleben, W., Muth, G. (2015) Synthesis of the spore envelope in the developmental life cycle of *Streptomyces coelicolor*. *Int J Med Microbiol* 305: 183-189. doi: 10.1016/j.ijmm.2014.12.014.
- Simpson, J.T., Wong, K., Jackman, S.D., Schein, J.E., Jones, S.J., Birol, I. (2009) ABySS: a parallel assembler for short read sequence data. *Genome Res* 19: 1117-1123 doi: 10.1101/gr.089532.108.
- Singh, B., Ghosh, J., Islam, N.M. (2010) Growth, cell division and sporulation in *Mycobacteria*. *Antonie Van Leeuwenhoek* 98: 165-177. doi: 10.1007/s10482-010-9446-0.
- Singh, S.K., SaiSree, L., Amrutha, R.N., Reddy, M. (2012) Three redundant murein endopeptidases catalyse an essential cleavage step in peptidoglycan synthesis of *Escherichia coli* K 12. *Mol Microbiol* 86: 1036-1051. doi: 10.1111/mmi.12058.

- Smith, T.J., Blackman, S.A., Foster, S.J. (2000) Autolysins of *Bacillus subtilis*: multiple enzymes with multiple functions. *Microbiology* 146: 249-262. doi: 10.1099/00221287-146-2-249.
- Socolofsky, M. D., and Wyss, O. (1962) Resistance of the *Azotobacter* cyst. *J Bacteriol* 84: 119-124. doi: 10.1128/jb.84.1.119-124.1962.
- Spector, M.P., and Kenyon, W.J. (2012) Resistance and survival strategies of *Salmonella enterica* to environmental stresses. *Food Res Int* 45: 455-481. doi: 10.1016/j.foodres.2011. 06.056.
- Spiekermann, P., Rehm, B.H., Kalscheuer, R., Baumeister, D., Steinbüchel, A. (1999) A sensitive, viable-colony staining method using Nile red for direct screening of bacteria that accumulate polyhydroxyalkanoic acids and other lipid storage compounds. *Arch Microbiol* 171: 73-80. doi: 10.1007/s002030050681.
- Suvorov, M., Lee, M., Hesek, D., Boggess, B., Mobashery, S. (2008) Lytic transglycosylase MltB of *Escherichia coli* and its role in recycling of peptidoglycan strands of bacterial cell wall. *J Am Chem Soc* 130: 11878-11879. doi: 10.1021/ja805482b.
- Tarnowski, B.I., Spinale, F.G., Nicholson, J.H. (1991) DAPI as a useful stain for nuclear quantitation. *Biotech Histochem* 66, 297-302.
- Tatusova, T., DiCuccio, M., Badretdin, A., Chetvernin, V., Nawrocki, E.P., Zaslavsky, L., Lomsadze, A., Pruitt, K.D., Borodovsky, M., Ostell, J. (2016) NCBI prokaryotic genome annotation pipeline. *Nucleic Acids Res* 44: 6614-6624. doi: 10.1093/nar/gkw569.
- Tengra, F.K., Dahl, J.L., Dutton, D., Caberoy, N.B., Coyne, L., Garza, A.G. (2006) CbgA, a protein involved in cortex formation and stress resistance in *Myxococcus xanthus* spores. *J Bacteriol* 188: 8299-8302. doi: 10.1128/JB.00578-06.
- Traag, B.A., and van Wezel, G.P. (2008) The SsgA-like proteins in actinomycetes: small proteins up to a big task. *Antonie Van Leeuwenhoek* 94: 85-97. doi: 10.1007/s10482-008-9225-3.
- Traag, B.A., Driks, A., Stragier, P., Bitter, W., Broussard, G., Hatfull, G., Chu, F., Adams, K.N., Ramakrishnan, L., Losick, R. (2010) Do mycobacteria produce endospores ?. *Proc Natl Acad Sci U S A* 107: 878-881. doi: 10.1073/pnas.0911299107.
- Trott, O., and Olson, A.J. (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. *J Comput Chem* 31: 455-461. doi: 10.1002/jcc.21334.
- Tschowri, N., Schumacher, M.A., Schlimpert, S., babu Chinnam, N., Findlay, K.C., Brennan, R.G., Buttner, M.J. (2014) Tetrameric c-di-GMP mediates effective transcription factor

- dimerization to control *Streptomyces* development. *Cell* 158: 1136-1147. doi: 10.1016/j.cell. 2014.07.022.
- van Asselt, E.J., Thunnissen, A.M.W., Dijkstra, B.W. (1999) High resolution crystal structures of the *Escherichia coli* lytic transglycosylase Slt70 and its complex with a peptidoglycan fragment. *J Mol Biol* 291: 877-898. doi: 10.1006/jmbi.1999.3013.
- van Wezel, G. P., van der Meulen, J., Kawamoto, S., Luiten, R. G., Koerten, H. K., Kraal, B. (2000) ssgA Is Essential for Sporulation of *Streptomyces coelicolor* A3 (2) and Affects Hyphal Development by Stimulating Septum Formation. *J Bacteriol* 182: 5653-5662. doi: 10.1128/jb. 182.20.5653-5662.2000.
- Venkidusamy, K., and Megharaj, M. (2016) A novel electrophototrophic bacterium *Rhodopseudomonas palustris* strain RP2, exhibits hydrocarbonoclastic potential in anaerobic environments. *Front Microbiol* 7: 1071. doi: 10.3389/fmicb.2016.01071.
- Waller, L.N., Fox, N., Fox, K.F., Fox, A., Price, R.L. (2004) Ruthenium red staining for ultrastructural visualization of a glycoprotein layer surrounding the spore of *Bacillus anthracis* and *Bacillus subtilis*. *J Microbiol Methods* 58: 23-30. doi: 10.1016/j.mimet.2004.02.012.
- Wang, J.D., Levin, P.A. (2009) Metabolism, cell growth and the bacterial cell cycle. *Nat Rev Microbiol* 7: 822-827. doi: 10.1038/nrmicro2202.
- Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., Heer, F.T., de Beer, T.A.P., Rempfer, C., Bordoli, L., Lepore, R. (2018) SWISS-MODEL: homology modelling of protein structures and complexes. *Nucleic Acids Res* 46: W296-W303. doi: 10.1093/nar/gky 427.
- Wattam, A.R., Davis, J.J., Assaf, R., Boisvert, S., Brettin, T., Bun, C., Conrad, N., Dietrich, E.M., Disz, T., Gabbard, J.L., Gerdes, S. (2017) Improvements to PATRIC, the all-bacterial bioinformatics database and analysis resource center. *Nucleic Acids Res* 45: D535-D542. doi: 10.1093/nar/gkw1017.
- Whittenbury, R., Davies, S. L., Davey, J. F. (1970) Exospores and cysts formed by methane-utilizing bacteria. *J Gen Microbiol* 61: 219-26. doi: 10.1099/00221287-61-2-219.
- Wildermuth, H., Wehrli, E., Horne, R.W. (1971) The surface structure of spores and aerial mycelium in *Streptomyces coelicolor*. *J Ultrastruct Res* 35: 168-180. doi: 10.1016/s0022-5320(71)80149-1.

- Willemse, J., Borst, J.W., de Waal, E., Bisseling, T., van Wezel, G.P.(2011) Positive control of cell division: FtsZ is recruited by SsgB during sporulation of *Streptomyces*. *Genes Dev* 25: 89-99. doi: 10.1101/gad.600211.
- Woodward, G., Bonada, N., Brown, L.E., Death, R.G., Durance, I., Gray, C., Hladyz, S., Ledger, M.E., Milner, A.M., Ormerod, S.J., Thompson, R.M. (2016) The effects of climatic fluctuations and extreme events on running water ecosystems. *Philos Trans R Soc Lond B Biol Sci* 371: 20150274. doi: 10.1098/rstb.2015.0274.
- Wu, H., Moser, C., Wang, H.Z., Høiby, N., Song, Z.J. (2015) Strategies for combating bacterial biofilm infections. *Int J Oral Sci* 7: 1-7. doi:10.1038/ijos.2014.65.
- Xia, B., Upadhyayula, S., Nuñez, V., Landsman. P., Lam, S., Malik, H., Gupta, S., Sarshar, M., Hu, J., Anvari, B., Jones, G., Vullev, VI. (2011) Amyloid histology stain for rapid bacterial endospore imaging. *J Clin Microbiol* 49: 2966-2975. doi: 10.1128/JCM.02285-10
- Xu, H. S., Roberts, N., Singleton, F. L., Attwell, R. W., Grimes, D. J., Colwell, R. R. (1982) Survival and viability of nonculturable *Escherichia coli* and *Vibrio cholerae* in the estuarine and marine environment. *Microb Ecol* 8: 313-23. doi: 10.1007/BF02010671.
- Zerbino, D.R., and Birney, E. (2008) Velvet: algorithms for de novo short read assembly using de Bruijn graphs. *Genome Res* 18: 821-829. doi: 10.1101/gr.074492.107.
- Zhang, H., Yohe, T., Huang, L., Entwistle, S., Wu, P., Yang, Z., Busk, P.K., Xu, Y., Yin, Y. (2018) dbCAN2: a meta server for automated carbohydrate-active enzyme annotation. *Nucleic Acids Res.* 46: W95-W101. doi: 10.1093/nar/gky418.
- Ziemert, N., Alanjary, M., Weber, T. (2016) The evolution of genome mining in microbes—a review. *Nat Prod Rep* 33: 988-1005. doi: 10.1039/c6np00025h.
- Zimin, A.V., Marçais, G., Puiu, D., Roberts, M., Salzberg, S.L., Yorke, J.A. (2013) The MaSuRCA genome assembler. *Bioinformatics* 29: 2669-2677. doi: 10.1093/bioinformatics/btt476.

PUBLICATIONS

7. Publications

- Ali, Ashif, Kumar Gaurav, N. Senthilnathan, T. P. Radhakrishnan, Sasikala Ch, and Ch
 V. Ramana (2020) "Sporotan" a new fluorescent stain for identifying cryptic spores of *Rhodobacter johrii. J Microbiol Methods* 177: 106019.
- 2. Suresh, G., B. Sailaja, A. Ashif, Bharti P. Dave, Ch Sasikala, and Ch V. Ramana. (2017) Description of *Rhodobacter azollae* sp. nov. and *Rhodobacter lacus* sp. nov. *Int J Syst Evol Microbiol* 67: 3289-3295.

Abstract and Conferences:

- 1. Poster presentation title "Identification and *In silico* characterization of a putative spore cortex lytic enzyme (sleb) from *Rhodobacter johrii*, an endospore producing bacteria". Ashif Ali, Ch. Sasikala and Ch.V.Ramana. International Conference on Innovations in Pharma and Biopharma Industry (ICIPBI-2017), 20-22 December, Hyderabad, India.
- 2. Poster presentation title "Genome Sequence of Rhodobacter johrii JA192". Ashif Ali, Ch. Sasikala and Ch.V.Ramana. The 8th international conference on photosynthesis and hydrogen energy research for sustainability- 2017, October 30-November 03, Hyderabad, India.

Contents lists available at ScienceDirect

Journal of Microbiological Methods

journal homepage: www.elsevier.com/locate/jmicmeth

"Sporotan" a new fluorescent stain for identifying cryptic spores of Rhodobacter johrii

Ashif Ali^a, Kumar Gaurav^a, Senthilnathan N.^b, Radhakrishnan T.P.^b, Sasikala Ch^c, Ramana Ch.V.^{a,*}

- ^a Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India
- ^b School of Chemistry, University of Hyderabad, Hyderabad 500046, Telangana, India
- ^c Centre for Environment, Institute of Science & Technology, JNT University Hyderabad, Hyderabad 500085, Telangana, India

ARTICLE INFO

ABSTRACT

Keywords: Endospores Fluorescent stain Proteobacterium Rhodobacter johrii We propose a new fluorescent stain "sporotan" and staining protocol which aid in the identification of cryptic endospores which are otherwise mistaken as poly- β -hydroxyalkanoate granules.

1. Introduction

A spore is the tough, dormant, non-reproductive structure usually formed when bacteria go through extreme adverse environmental conditions. This is a survival strategy that evolves among many bacteria which are human pathogens such as *Bacillus anthracis, Bacillus cereus, Bacillus thuringiensis, Clostridium botulinum, Clostridium tetani* (Bottone, 2010). However, spores are major contaminants in food processing industry (Heyndrickx, 2011). Spores are also advantageous for humans as potential probiotics (Elshaghabee et al., 2017) because they are heat, acid, bile salt and gastric juice resistant, which are generally used for their antimicrobial, anti-oxidant, immune-modulatory and pathogen exclusion properties (Shobharani et al., 2015; Ripert et al., 2016; Lefevre et al., 2015).

Bacteria produce spores either endogenously (endospores) or exogenously (exospores). It is widely believed that endospore producers are confined to the members of the phylum Firmicutes. Other endospore producers discovered include Rhodobacter johrii (Girija et al., 2010), Serratia marcescens subsp. sakuensis (Ajithkumar et al., 2003), Rhodopseudomonas palustris (Venkidusamy and Megharaj, 2016), Coxiella burnetii (McCaul and Williams, 1981) and Myxococcus xanthus (Kroos, 2007; Kaiser, 2006) belonging to the phylum Proteobacteria. Mycobacterium species like Mycobacterium marinum, Mycobacterium bovis BCG (Ghosh et al., 2009) and Mycobacterium avium subsp. paratuberculosis (MAP) (Lamont et al., 2012) belong to the phylum Actinobacteria, indicating clearly that the phenomenon of endospores is wide spread in bacteria and not confined to the members of the phylum Firmicutes, as

believed previously (Abecasis et al., 2013). On the other hand, exospore producing bacteria are wide spread among the members of the phylum Actinobacteria (Reed and Dugan, 1979; Reed et al., 1980) and a few members of Proteobacteria (Kimble-Long and Madigan, 2001; Wu et al., 2005). Detection of bacterial spores is an important part of medical science, as well as food, bio-fertilizers and pharma industry. Therefore, an easy, rapid method for their visualization and identification is required, as the existing spore staining methods have various drawbacks.

The classical methods for endospore staining are Gram stain and Schaeffer-Fulton method (Schaeffer and Fulton, 1933) which was modified from Dorner's method (Dorner, 1922) which is lengthy, tedious and hazardous. The recent method of "Flood to microliter" developed by Siguenza and coworkers (Siguenza et al., 2019) for bacterial endospore staining utilizes microliters of the dye, still flooding of dyes is practiced. There are a large number of fluorescence dyes also used for endospore staining, however, they all still have several drawbacks (Table.1). Some of these like 4-6-diamino-2- phenylindole [DAPI] and propidium monoazide [PMA] cause impairment of living cells and are only permeable in membrane-compromised dead cells; thus, they bind to both vegetative cells as well as dead spores. Acridine orange [AO], DAPI, PMA and flow cytometery fluorescent probes like, SYBR1, SYBR2 (Invitrogen™) are not specific for binding spore DNA (Schichnes et al., 2006; Tarnowski et al., 1991; Probst et al., 2012; Karava et al., 2019). Auromine 0, Thioflavin T [ThT] and Hoechst 34580 exhibit binding for both vegetative cells and spores (Bartholomew et al., 1965; Xia et al., 2011; D'Incecco et al., 2018). We propose a new fluorescent bacterial spore stain "Sporotan" which is chemically: 7,7-(n-hexylamino)-8,8-

E-mail address: chvrsl@uohyd.ernet.in (C.V. Ramana).

^{*} Corresponding author.

INTERNATIONAL
JOURNAL OF SYSTEMATIC
AND EVOLUTIONARY
MICROBIOLOGY

TAXONOMIC DESCRIPTION

MICROBIOLOGY SOCIETY

G et al., Int J Syst Evol Microbiol 2017;67:3289–3295 DOI 10.1099/ijsem.0.002107

Description of *Rhodobacter azollae* sp. nov. and *Rhodobacter lacus* sp. nov.

Suresh G, 1+ Sailaja B, 2+ Ashif A, 1 Bharti P. Dave, 3 Sasikala Ch. 2 and Ramana Ch.V. 1,*

Abstract

Three strains (JA826^T, JA912^T and JA913), which were yellowish brown colour, rod to oval shaped, Gram-stain-negative, motile, phototrophic bacteria with a vesicular architecture of intracytoplasmic membranes, were isolated from different pond samples. The DNA G+C content of the three strains was between 64.6 and 65.5 mol%. The highest 16S rRNA gene sequence similarity of all three strains was with the type strains of the genus *Rhodobacter sensu stricto* in the family *Rhodobacteraceae*. Strain JA826^T had highest sequence similarity with *Rhodobacter maris* JA276^T (98.5%), *Rhodobacter viridis* JA737^T (97.5%) and other members of the genus *Rhodobacter* (<97%). Strain JA912^T had highest sequence similarity with *Rhodobacter viridis* JA737^T (99.6%), *Rhodobacter sediminis* N1^T (99.3%), *Rhodobacter capsulatus* ATCC 11166^T (98.8%) and less than 97% similarity with other members of the genus *Rhodobacter*. The 16S rRNA gene sequence similarity between strains JA826^T and JA912^T was 96.9%. DNA–DNA hybridization showed that strains JA826^T and JA912^T (values among themselves and between the type strains of nearest members <44%) did not belong to any of the nearest species of the genus *Rhodobacter*. However, strains JA912^T and JA913 were closely related (DNA–DNA hybridization value >90%). The genomic distinction was also supported by differences in phenotypic and chemotaxonomic characteristics in order to propose strains JA826^T (=KCTC 15475^T=LMG 28748^T) as new species in the genus *Rhodobacter sensu stricto* with the names *Rhodobacter lacus* and *Rhodobacter azollae*, respectively.

The genus Rhodobacter (Rba), proposed by Imhoff et al. [1] upon reclassification of the species of the genus Rhodopseudomonas, accommodated a few species of purple nonsulfur anoxygenic phototrophic bacteria namely, Rhodobacter capsulatus (type species), Rhodobacter sphaeroides, Rhodobacter sulfidophilus and Rhodobacter adriaticus, with a vesicular architecture of intracytoplasmic membranes. However, Rba. sulfidophilus and Rba. adriaticus were subsequently reclassified as Rhodovulum sulfidophilum and Rhodovulum adriaticum, respectively [2]. At the time of writing, the genus Rhodobacter comprises 13 recognized species names: Rhodobacter aestuarii, Rhodobacter azotoformans, Rhodobacter blasticus, Rhodobacter capsulatus, Rhodobacter johrii, Rhodobacter maris, Rhodobacter megalophilus, Rhodobacter ovatus, Rhodobacter sphaeroides, Rhodobacter veldkampii, Rhodobacter vinaykumarii, Rhodobacter viridis and the recently described Rhodobacter sediminis [3]. The genus Rhodobacter in the family Rhodobacteraceae includes a very

heterogeneous assemblage of phototrophic bacteria with a large number of interspersing chemotrophic bacteria and their evolutionary relationships are not well established. According to the current taxonomy based on 16S rRNA gene sequence phylogenetic analysis, *Rhodobacter* species are grouped into five monophyletic clusters, each of which comprise one to seven species. Here, we propose to include the description of two new species of phototrophic bacteria affiliated to the genus *Rhodobacter sensu stricto*.

Strain JA826^T was isolated from a water sample of an industrially polluted fresh water lake near Hubbali, Karnataka, India (75° 20′ E, 15° 26′ N; sample pH 6.8). Strains JA912^T and JA913 were isolated from a fern, *Azolla filiculoides*, growing in a fresh water pond in Gujarat, India (GPS position: 72° 43′ E, 22° 47′ N; sample pH 6.0 and salinity 0.8%). Both samples were serially diluted (10-fold dilution) and pour plated by using the wax overlay method [4] and incubated at 30°C in the

Author affiliations: ¹Department of Plant Sciences, School of Life Sciences, University of Hyderabad, P.O.Central University, Hyderabad 500046, India; ²Bacterial Discovery Laboratory, Centre for Environment, Institute of Science and Technology, J. N. T. University Hyderabad, Kukatpally, Hyderabad-500085, India; ³Department of Life Sciences, M K Bhavnagar University, Bhavnagar, Gujarat 364002, India.

*Correspondence: Ramana Ch.V., cvr449@gmail.com

Keywords: Rhodobacter, sensu stricto, sp. nov.; anoxygenic phototrophic bacteria.

†These authors contributed equally to this work.

The GenBank/EMBL/DDBJ accession numbers for the 16S rRNA gene sequences of strains JA826^T, JA912^T, JA913 are LN835251, LN810641 and LN810642, respectively

Six supplementary figures and one supplementary table are available with the online Supplementary Material.

Molecular insights of endospore like refractive bodies of Rhodobacter Johri

by Ashif Ali

Submission date: 11-Nov-2020 10:08AM (UTC+0530)

Submission ID: 1442653052

File name: ashif_thesis.docx (136.8K)

Word count: 18518 Character count: 102233

Molecular insights of endospore like refractive bodies of Rhodobacter Johri

Kno	odobacter Johri	
ORIGI	NALITY REPORT	
4 SIMIL	% 2% 4% 0% STUDE S	ENT PAPERS
PRIMA	RY SOURCES CW LOW	9/11/20x+
1	Ashif Ali, Kumar Gaurav, N. Senthilnathan Radhakrishnan, Sasikala Ch, Ch.V. Ramana. ""Sporotan" a new fluorescent stain for identifying cryptic spores of Rhodobacter johrii" Journal of Microbiological Methods, 2020 Publication	
2	d-nb.info Internet Source	<1%
3	Jan Bobek, Klára Šmídová, Matouš Čihák. "A Waking Review: Old and Novel Insights into the Spore Germination in Streptomyces", Frontiers in Microbiology, 2017 Publication	<1%
4	Müller, Frank-Dietrich. "Analysis of the spore formation process in Myxococcus xanthus.", Philipps-Universität Marburg, 2009.	<1%
5	www.mext.go.jp Internet Source	<1%

6	epdf.pub Internet Source	<1%
7	"Endophytes: Crop Productivity and Protection", Springer Science and Business Media LLC, 2017 Publication	<1%
8	Submitted to Jawaharlal Nehru Technological University Student Paper	<1%
9	"Biotechnology Set", Wiley, 2001 Publication	<1%
10	Lucia M. Malone, Suzanne L. Warring, Simon A. Jackson, Carolin Warnecke, Paul P. Gardner, Laura F. Gumy, Peter C. Fineran. "A jumbo phage that forms a nucleus-like structure evades CRISPR—Cas DNA targeting but is vulnerable to type III RNA-based immunity", Nature Microbiology, 2019 Publication	<1%
11	academic.oup.com Internet Source	<1%
12	journals.plos.org Internet Source	<1%
13	hdl.handle.net Internet Source	<1%

14	krishikosh.egranth.ac.in Internet Source	<1%
15	J. van Heijenoort. "Peptidoglycan Hydrolases of Escherichia coli", Microbiology and Molecular Biology Reviews, 12/01/2011 Publication	<1%
16	"Genome Instability", Springer Science and Business Media LLC, 2018 Publication	<1%
17	Sara Porfírio, Russell W. Carlson, Parastoo Azadi. "Elucidating Peptidoglycan Structure: An Analytical Toolset", Trends in Microbiology, 2019	<1%
18	David L. Popham, Casey B. Bernhards. "Spore Peptidoglycan", American Society for Microbiology, 2016 Publication	<1%

Exclude matches

< 14 words

Exclude quotes

Exclude bibliography

On

On