Transcriptional and Post-transcriptional Regulation of Organophosphate Degradation (opd) Gene in Sphingobium fuliginis ATCC 27551

Thesis submitted for the degree of Doctor of Philosophy

in

Animal Biology

By

N. APARNA

(15LAPH01)

Supervisor

Prof. S. Dayananda

Department of Animal Biology School of Life Sciences University of Hyderabad Hyderabad –500046 INDIA 2020

University of Hyderabad
(A Central University established in 1974 by an act of parliament) HYDERABAD – 500 046, INDIA

CERTIFICATE

This is to certify that this thesis entitled "Transcriptional and Post-transcriptional Regulation of Organophosphate Degradation (opd) Gene in Sphingobium fuliginis ATCC 27551" submitted by Ms. N. Aparna, bearing registration number 15LAPH01 in partial fulfilment of the requirements for award of Doctor of Philosophy in the Department of Animal Biology, School of Life Sciences is a bonafide work carried out by her, under my supervision and guidance.

This thesis is free from plagiarism and has not been submitted previously in part or in full to this or any other University or Institution for award of any degree or diploma.

Publications

- 1. J. Biol. Chem. 291, 7774-85 (2016); DOI 10.1074/jbc.M116.715110
- 2. Rev Environ Health. 31, 57-61 (2016); DOI 10.1515/reveh-2015-0042
- 3. J. Biol. Chem. 290, 29920-30 (2015); DOI 10.1074/jbc.M115.661249

International conference

Poster presentation in 59th annual conference of Association of Microbiologists of India (9th-12th December, 2018)

Further, the student has passed the following courses towards fulfillment of coursework requirement for Ph.D.

S. No.	Course Code	Name	Credits	Pass/Fail	
1	AS 801	Seminar	1	Pass	
2	AS 802	Research Ethics & Management	2	Pass	
3	AS 803	Biostatistics	2	Pass	
4 5	AS 804	Analytical Techniques	3	Pass	
5	AS 805	Lab Work	4	Pass	1
Dept. of A School of University	DAYANANDA animal Biology. Life Sciences of Hyderabad d-500 046, T.S.	Head of the Department अध्यक्ष / HEAD जंतु जैविकी विभा Department of Anima	ग	School of	school EAN Wife Sciences of Hyderabad ad - 500 046.

University of Hyderabad (A Central University established in 1974 by an act of parliament) HYDERABAD – 500 046, INDIA

DECLARATION

This is to declare that the work embodied in this thesis entitled "Transcriptional and Post-transcriptional Regulation of Organophosphate Degradation (opd) Gene in Sphingobium fuliginis ATCC 27551" has been carried out by me under the supervision of Prof. S. Dayananda, Department of Animal Biology, School of Life Sciences. The work presented in this thesis is a bonafide research work and has not been submitted for any degree or diploma in any other University or Institute. A report on plagiarism statistics from the University Librarian is enclosed.

N. Aparna (15LAPH01)

Prof. S. Dayananda (Research supervisor)

Prof. S. DAYANANDA Dept. of Animal Biology. School of Life Sciences University of Hyderabad Hyderabad-500 046. T.S.

Date: 24.12.2020

Acknowledgements

I would like to express my deep gratitude to my supervisor, **Prof. Dayananda Siddavattam**, for suggesting me this area of research, his close guidance, timely suggestions, constant help and support.

I thank my doctoral committee members Prof. Aparna Dutta Gupta (late), Prof. Appa Rao Podile and Prof. Manjula Sritharan for their constant guidance and encouragement.

I thank the current and former Deans, School of Life Sciences, Prof. S. Dayananda, Prof. K.V.A Ramaiah, Prof. Reddanna, and Prof. A.S Raghavendra, for providing all the facilities in the school.

I thank Prof. Anita Jagota, Head, Dept. of Animal Biology, and former Head's Prof. Jagan Pongubala, and Prof. B. Senthil kumaran for allowing me to use the Department facilities.

This work would have not been possible without the help of Dr. Arati Ramesh, Reader-F, NCBS for allowing me to work in her lab and for her valuable suggestions.

I thank Anaganjali for helping me in all my RNA related experiments.

I am thankful to Prof. Kota Arun Kumar and Ms. Dipti Singh for guiding and helping me in the qRT-PCR experiments.

I specially thank Dr. Manjula Reddy, Principal Scientist, CCMB for providing Keio collection strains.

I thank the help and suggestions of all the faculty members in the School of Life Science, and for allowing me to use their laboratory facilities at different stages of my work.

I am thankful to my labmates Dr. Emmanuel Paul, Dr. Devi prasanna, Dr. Swetha, Dr. Sunil, Dr. Ashok and Dr. Venkateshwar Reddy, Dr. Devyani, Dr. Ramurthy. Dr. Harshitha, Dr. Hari, Ms. Annapoorni Laxman Sagar, Ms. Ganeshwari Dhurve, Mr. Akbar Pasha, Mr. Jay Prakash, Ms. Sandhya, for the help and enjoyable company.

I thank Dr. Bindu Madhav Reddy and Ms. Navya for assisting in preparing the plagiarism report.

The financial support provided by BBL Fellowship, DST-SERB-CII (Prime Minister's Fellowship), and is greatly acknowledged.

I thank DBT, ICMR, UGC, UPE-II, UGC-SAP and DBT-CREBB, Aurobindo pharma, for providing financial support to lab and for the infrastructural facility of the school.

Thanks to the non-teaching staff Mr. Rajendra, Mr. Upendra, Mr. Mallesh and Mr. Krishna, Mr. Jagan, Mr. Srinu, Mr. Nikhil, Mr. Sravan and Mr. Praveen for their technical help.

I am extremely grateful to my parents Sri. Devanand, Smt. Gowri Sankari, my husband Mr. Shankar and to all my family members for their love, and constant support during my endeavours.

I thank Almighty for filling my life with such wonderful people around and also for giving me the patience needed to endure every difficulty encountered.

Table of contents

1. Introduction	1-16
1.1. Bacterial phosphotriesterases (PTE)	2
1.2. Organophosphorus Acid Anhydrolase (OPAA)	2
1.3. Methyl parathion hydrolase (MPH)	2
1.4. Organophosphorus Hydrolase (OPH)	3
1.5. Structural comparison of MPH with OPH	
1.6. OPH is a lipoprotein	6
1.7. OPH is part of membrane associated multi-protein complex	6
1.8. TonB dependent Transport system-iron acquisition	7
1.9. Regulation of iron uptake	8
1.10. Transcriptional regulation	9
1.11. Iron starvation sigma factors (σ^{19})	9
1.12. Post transcriptional regulation	10
1.13. Iron Responsive Elements and Iron Regulatory Proteins	11
1.14. Iron and catabolism of aromatic compounds	13
1.15. Linkage between <i>opd</i> genes and genes coding aromatic	
Compound metabolism	14
1.16a. Hypothesis	17
1.16b. Objectives	19
2. General Materials and Methods	20-39
2.1. Growth Media	26
2.1.1. Luria-Bertani (LB) medium	26
2.1.2. Minimal Salts medium for <i>E. coli</i>	26
2.1.3. Minimal Salts medium for <i>Sphingobium fuliginis</i> ATCC27551	27
2.2. Preparation of iron free media and solutions	27
2.3. Preparation of Antibiotic & Chemical stock solutions	27
2.4. DNA manipulation	29
2.4.1 Preparation of solutions and buffers	29
2.4.2. Solutions for plasmid isolation	29
2.4.3. Isolation of plasmid DNA	30

2.4.4. Purification of plasmids using QIAgen Mini preparation kit method3	1
2.4.5. DNA Quantification	31
2.4.6. Agarose gel electrophoresis	31
2.4.7. Polymerase Chain Reaction (PCR)	2
2.4.8. Molecular Cloning	32
2.5. Gene transfer methods	3
2.6. Protein Methods	34
2.7. Enzyme assays and preparation of reagents3	7
3. Influence of iron on expression of <i>opd</i> gene in <i>Sphingobium fuliginis</i>	
ATCC 27551(Chapter I)40-5	9
3.1. Objective specific methodology4	ŀO
3.4.1. <i>In silico</i> studies	ŀ1
3.4.2. Growth and expression analysis of OPH under differential iro	n
concentration4	1
3.4.3. Absolute quantification of <i>opd</i> transcripts4	4
3.4.4. Rapid Amplification of cDNA Ends (RACE)4	4
3.4.5. Construction of transcriptional fusions4	ŀ5
3.5 Results4	6
3.5.1. Transcriptional regulation of <i>opd</i> gene4	:6
3.5.2. The <i>opd</i> gene exists as a part of iron regulon4	ŀ6
3.5.3. Determination of transcription start site (TSS) of <i>opd</i> 4	8
3.5.5. Functional validation of <i>opd</i> promoter4	ֈ9
3.5.6. Post-transcriptional regulation of <i>opd</i> gene5	60
3.6. Discussion	51
4. Role of predicted fur-box motif in regulation of opd gene expression	n
(Chapter II)60-8	3
4.1. Objective specific methodology	52
4.4.1. Amplification of <i>fur</i> -box motif containing DNA6	3
4.4.2. Cloning of <i>fur</i> gene6	3
4.4.3. Expression of Fur ^{C6xHis} 6	
4.4.4. Affinity Purification of Fur ^{C6xHis} 6	4

4.4.5. Electrophoretic Mobility Shift Assay (EMSA)	65
4.4.6. Generation <i>fur</i> null mutant of <i>E. coli</i> MG1655 AM001	65
4.4.7. Construction of transcriptional fusions	66
4.4.8. Expression of <i>opd</i> gene under <i>fur</i> negative background	67
4.5.1. Results	67
4.5.2. Cloning of <i>s_f</i> Fur in a high copy vector	67
4.5.3. Expression of <i>Sf</i> Fur ^{C6XHis}	68
4.5.4. Affinity purification of Fur ^{C6xHis}	69
4.5.5. Interactions between <i>opd</i> promoter and <i>sy</i> Fur ^{C6XHis}	70
4.5.6A. Influence of Fur on the regulation of <i>opd</i> gene	71
4.5.6B. Generation of <i>fur</i> negative <i>E. coli</i> strain	72
4.5.6C. Expression of <i>opd</i> gene in <i>fur</i> negative background	73
4.6. Discussion	74
5. Characterization of IRE-like element identified at the 5' region	n of <i>opd</i>
_	
mRNA and elucidation of its role in translational inhibition of op-	d mRNA
mRNA and elucidation of its role in translational inhibition of op (Chapter III)	
	.85-111
(Chapter III)	86
(Chapter III)	86 87
(Chapter III) 5.1. Objective specific methodology 5.4.1. In vitro transcription (IVT)	86 87 90
(Chapter III) 5.1. Objective specific methodology 5.4.1. In vitro transcription (IVT) 5.4.2. In-line Probing Assay	
(Chapter III) 5.1. Objective specific methodology 5.4.1. In vitro transcription (IVT) 5.4.2. In-line Probing Assay 5.4.3. Expression of opd gene and its variants	
(Chapter III) 5.1. Objective specific methodology 5.4.1. In vitro transcription (IVT) 5.4.2. In-line Probing Assay 5.4.3. Expression of opd gene and its variants 5.4.4. Cloning of aconitase (acn) coding gene	
(Chapter III) 5.1. Objective specific methodology 5.4.1. In vitro transcription (IVT) 5.4.2. In-line Probing Assay 5.4.3. Expression of opd gene and its variants 5.4.4. Cloning of aconitase (acn) coding gene 5.4.5. Expression of Acn ^{C6xHis}	
(Chapter III) 5.1. Objective specific methodology 5.4.1. In vitro transcription (IVT) 5.4.2. In-line Probing Assay 5.4.3. Expression of opd gene and its variants 5.4.4. Cloning of aconitase (acn) coding gene 5.4.5. Expression of Acn ^{C6xHis} 5.4.6. Affinity Purification of Acn ^{C6xHis}	
(Chapter III) 5.1. Objective specific methodology 5.4.1. In vitro transcription (IVT) 5.4.2. In-line Probing Assay 5.4.3. Expression of opd gene and its variants 5.4.4. Cloning of aconitase (acn) coding gene 5.4.5. Expression of Acn ^{C6xHis} 5.4.6. Affinity Purification of Acn ^{C6xHis} 5.4.7. Aconitase Activity	
(Chapter III) 5.1. Objective specific methodology 5.4.1. In vitro transcription (IVT) 5.4.2. In-line Probing Assay 5.4.3. Expression of opd gene and its variants 5.4.4. Cloning of aconitase (acn) coding gene 5.4.5. Expression of Acn ^{C6xHis} 5.4.6. Affinity Purification of Acn ^{C6xHis} 5.4.7. Aconitase Activity 5.4.8. EMSA	
(Chapter III) 5.1. Objective specific methodology 5.4.1. In vitro transcription (IVT) 5.4.2. In-line Probing Assay 5.4.3. Expression of opd gene and its variants 5.4.4. Cloning of aconitase (acn) coding gene 5.4.5. Expression of Acn ^{C6xHis} 5.4.6. Affinity Purification of Acn ^{C6xHis} 5.4.7. Aconitase Activity 5.4.8. EMSA 5.5. Results	
(Chapter III) 5.1. Objective specific methodology 5.4.1. In vitro transcription (IVT) 5.4.2. In-line Probing Assay 5.4.3. Expression of opd gene and its variants 5.4.4. Cloning of aconitase (acn) coding gene 5.4.5. Expression of Acn ^{C6xHis} 5.4.6. Affinity Purification of Acn ^{C6xHis} 5.4.7. Aconitase Activity 5.4.8. EMSA 5.5. Results 5.5.1. Characterization of IRE ^{opd}	
(Chapter III) 5.1. Objective specific methodology	
(Chapter III) 5.1. Objective specific methodology	

5.5.6. Interactions between <i>IRE</i> ^{opd} and <i>Sf</i> Acn ^{C6xHis} IRP	102
5.6 Discussion	104
6. Elucidation of $\it opd$ element encoded small RNA-IRE interactions a	and their
influence on opd gene expression (Chapter IV)	.112-145
6.1. Objective specific methodology	113
6.4.1. Prediction of non-coding RNA	117
6.4.2. Detection of sRNA by northern blot analysis	117
6.4.3. Prediction of putative promoter of sRNA coding gene, <i>crpR54</i>	118
6.4.4. Construction of transcriptional fusions	118
6.4.5. Construction of translational fusion	119
6.4.6. Prediction of complementary base pairing between sRNA, CrpR54	
and IREopd	119
6.4.7. Cloning of <i>crpR54</i> in a high copy vector	119
6.4.8. Generation <i>lacZ</i> null mutant of <i>E. coli</i> NiCo (DE3)	120
6.4.9. Genetic Screen to validate sRNA and IREopd interactions	120
6.4.10. Generation of <i>opd</i> variants	121
6.4.10a. Cloning of full length ORF of opd gene (with IRE) in a	
low copy, expression vector	121
6.4.10b. Cloning of <i>opd</i> variant <i>opd'</i> in a low copy, expression vector	121
6.4.11. The effect of sRNA on expression of opd	122
6.4.12. Relative quantification of <i>opd</i> transcripts	122
6.4.13. Generation of <i>hfq</i> null mutant of <i>E. coli</i> NiCo21(DE3)	122
6.4.15. Construction of expression plasmid encoding sfHfq	
and sRNA, CrpR54	124
6.4.16. Role of Hfq in <i>CrpR54–IRE</i> ^{opd} interactions	124
6.4.17. Influence of carbon source on expression of OPH	125
6.5. Results	125
6.5.2. Promoter validation	128
6.5.3. Analysis <i>CrpR54</i> and <i>IRE</i> ^{opd} interactions	129
6.5.4. Cloning of <i>CrpR54</i> in a high copy vector	129
6.5.5. Construction <i>opd-lacZ</i> translational fusion	130

6.5.6. Generation of <i>lacZ</i> negative <i>E. coli</i> NiCo21(DE3) strain	131
6.5.7. Generation of genetic screen	132
6.5.8. Expression of OPH from <i>opd</i> and <i>opd'</i> genes	134
6.5.9. Influence of <i>CrpR54</i> on expression of OPH	135
6.5.10. Role of Hfq in <i>CrpR54</i> and <i>IRE</i> ^{opd} interactions	136
6.5.11. Confirmation of <i>hfq</i> null mutant <i>E. coli</i> NiCo21(DE3)	137
6.5.12. Analysis of Hfq dependent interactions of sRNA- opd mRNA	138
6.5.13. Influence of Carbon source on OPH expression	139
6.6. Discussion	142
Conclusion	146
References	150-167
Publications	
Anti-plagiarism certificate	

List of Tables

Table 1 A Antibiotics	21
Table 1 B Chemicals	21
Table 1 C Restriction enzymes and DNA modifying enzymes	25
Table 3.1 Primers used in chapter I	41
Table 3.2 Strains used in chapter I	42
Table 3.3 Plasmids used in chapter I	42
Table.3.6 List of bacterial IREs retrieved from Rfam database	57
Table 4.1 Primers used in chapter II	62
Table 4.2 Strains used in chapter II	62
Table 4.3 Plasmids used in chapter II	63
Table.4.6.1 List of few Fur and iron-regulated genes in <i>E.coli</i> K-12	80
Table 5.1 Primers used in chapter III	86
Table 5.2 Strains used in chapter III	87
Table 5.3 Plasmids used in chapter III	87
Table.5.4.1.A Composition of KB buffer	88
Table.5.4.1.B Standard IVT reaction	88
Table.5.4.1.C Dephosphorylation reaction of RNA	89
Table.5.4.1.D 5'end labeling reaction of dephosphorylated RNA	90
Table.5.4.2.A Standard reaction conditions of In-line probing assay.	90
Table 6.1 Primers used in chapter III	113
Table 6.2 Strains used in chapter III	116
Table 6.3 Plasmids used in chapter III	116

List of Figures

Fig.1 The crystal structure of MPH depicting the binuclear zinc center3
Fig.2 Three dimensional structure of organophosphate hydrolase isolated from
Brevundimonas diminuta5
Fig.3 Structural comparison between MPH and OPH5
Fig.4 Prediction of Lipo-box in the signal peptide of OPH6
Fig.5 Purification of OPH complex7
Fig.6 TonB dependent transport system8
Fig.7 Schematic diagram showing gene repression mediated by Ferric uptake
regulator9
Fig.8 Mechanism of signal transduction followed by sigma factors in response to
iron10
Fig.9 Different known and potential regulatory outcomes brought about by sRNA
base pairing with mRNAs11
Fig. 10 Schematic diagram showing the structure of an IRE motif12
Fig.11 Moonlighting function of aconitase-IRP13
Fig.12 Linkage between integrative mobilizable element (IME) borne <i>opd</i> gene
and genes coding enzymes involved in aromatic compound metabolism in
Sphinogobium fuliginis ATCC 2755115
Fig.13 The link between plasmid (pCMS1) borne opd gene and genes coding
enzymes involved in aromatic compound metabolism in Sphingopyxis wildii16
Fig.3.5.1 Prediction of the <i>fur</i> -box motif and promoter elements of <i>opd</i> gene46
Fig.3.5.2 <i>S. fuliginis</i> growth under iron sufficient and limiting conditions47
Fig.3.5.3 Influence of iron on the expression of OPH48
Fig.3.5.4 Detection of 5' RACE product, the sequence of RACE product49
Fig.3.5.5 Construction strategy of <i>opd-lacZ</i> fusions50
Fig.3.5.5.a Activity of the <i>opd</i> gene promoter51
Fig.3.5.6 Structure of IRE-like element identified in <i>opd</i> mRNA52
Fig.3.6.1 Comparison of <i>fur</i> -box motif of <i>opd</i> gene with the consensus <i>fur</i> -box
motif

Fig.3.6.2 Consensus structure of IRE based on the IREs of known ferritin and
transferrin receptor mRNAs55
Fig.3.6.3 Secondary structures of transferrin receptor and ferritin IREs56
Fig.3.6.4 Predicted secondary structures of 14 bacterial IREs from
Rfam56
Fig.3.6.5 Predicted secondary structure of IRE-like element (<i>IREopd</i>) along with
the 5'UTR region of <i>opd</i> mRNA57
Fig. 3.6.6 The mapping of sequences of loop region59
Fig.3.6.7 Comparison of the 3' Bulge region of IREs59
Fig.4.5.2A Construction of pNS468
4.5.2B Construction of pNS568
4.5.3 Expression of Fur ^{C6xHis} 69
Fig.4.5.4 Affinity purification of <i>sy</i> Fur ^{C6XHis} 70
Fig.4.5.5 EMSA-South western blotting71
Fig.4.5.6A Similarities between <i>E. coli</i> and <i>S. fuliginis</i> Fur sequences72
Fig.4.5.6B Generation of <i>E. coli</i> NS00173
Fig.4.5.6C Construction of transcriptional fusions with and without <i>opdfur</i> -box74
Fig. 4.6.1 Models depicting <i>fur</i> -box consensus sequence
Fig.4.6.2 Comparison of <i>opd</i> ^{fur-box} with the <i>Ecfur</i> -box77
Fig.4.6.3 Alignment of <i>opdfur</i> -box with <i>fur</i> -box motifs identified in the well-defined
iron response genes
Fig. 4.6.4 Domain organization of Fur80
Fig. 4.6.5 The Fur amino acid sequence alignment between <i>S. fuliginis</i> , <i>E. coli</i> and
P. aeruginosa82
Fig.4.6.6 Alignment of <i>fur</i> -box motifs83
Fig.5.5.a Diagrammatic representation of template and primers used to amplify
<i>ire-1</i> and <i>ire-2</i> 94
Fig.5.5.b Steps followed during <i>In vitro</i> transcription and 5'end labeling reactions
of ire-1 and ire-295
Fig.5.5.1 Validation of IRE-like element found in the 5' coding region of <i>opd</i>
mRNA96

Fig5.5.2A <i>In vitro</i> validated structure of <i>IRE</i> ^{opd}	97
Fig.5.5.3 Functional role of IRE on <i>opd</i> expression	98
Fig.5.5.3.a IRE dependent translational repression of OPH	99
Fig.5.5.4 Construction of pNS10	100
5.5.4.a Expression of Acn ^{C6xHis}	100
Fig.5.5.4.b. Affinity purification of SfAcn ^{C6xHis}	101
Fig.5.5.5. Aconitase activity	102
Fig.5.5.6. EMSA to show IRE ^{opd} -SfAcn ^{C6xHis} interactions	104
Fig.5.6.1. Comparison of ferritin and transferrin IREs	106
Fig.5.6.2. Structural interactions between IRE-IRP	108
Fig.5.6.3. IRP/IRE regulatory system in ferritin and transferrin receptor	
genes	109
Fig. 5.6.4. Alignment of rabbit, B. subtilis, S. fuliginis, E. coli Acn	
sequences	111
Fig.6.5.1.a. The base pairing interactions between <i>CrpR54</i> and	
IRE ^{opd}	126
Fig.6.5.1.b. Structure of sRNA coding gene	127
Fig.6.5.2. Role of CRP on expression of sRNA	129
Fig.6.5.4. Construction of pNS13	130
Fig.6.5.5. Construction of pNS14	131
Fig.6.5.6. Generation of <i>E. coli</i> NS003	132
Fig.6.5.7. Two plasmid assay	134
Fig.6.5.7a. Formation of sRNA-mRNA hybrid	134
Fig.6.5.8. Construction of pNS15	135
Fig.6.5.9. <i>CrpR54</i> dependent post-transcriptional regulation of <i>opd</i> gene	
expression	136
Fig.6.5.10. Alignment of SfHfq with EcHfq	137
Fig.6.5.11. Generation of <i>E. coli</i> NS002	138
Fig.6.5.12a The Hfq dependent interactions of sRNA-opd mRNA	139
Fig.6.5.13.a Schematic representation of <i>S. fuliginis</i> used for growth and	
expression studies of OPH	140

Fig.6.5.13. Growth curve of <i>S. fuliginis</i> grown in alternative carbon
sources140
Fig.6.5.14 Influence of carbon source on OPH expression141
Fig. 6.6.1 Comparison of CRP binding of <i>E. coli</i> with <i>S. fuliginis</i> 143
Fig.6.6.2 Reactions catalyzed by intradiol and extradiol
dioxygenases144
Fig.6.6.3 Classification of non-haem iron oxygenases that catalyze aromatic ring
oxygenations145
Fig. 7.1 Proposed model to understand the link between OPH dependent
enhancement in iron uptake and carbon catabolism in S. fuliginis149

Abbreviations

OPH : Organophosphorous Hydrolase

Opd : organophosphate degrading gene

IRE : Iron Response Element

IRP : Iron Regulatory Protein

ATCC : American Type Culture Collection

IME : Integrative Mobilizable Element

Fur : Ferric uptake regulator

Acn : Aconitase

S.f : Sphingobium fuliginis

 ^{0}C : degree Celsius

h : hour

ml : millilitre

gm : gram

dNTP : deoxynucleoside triphosphate

Fe-Ent : Ferric-enterobactin

IPTG : Isopropyl β -D-1-thiogalactopyranoside

Kb : Kilobase

kDa : kilo Dalton

 μM : Micro molar

M : Molar

PCR : Polymerase Chain Reaction

PMF : Proton Motive Force

PTE : Phosphotriesterase

RT : Room temperature

SfTonBDT : Sphingobium fuliginis TonB dependent Transport

System

TonBDT : TonB dependent transport system

Tat : Twin Arginine Translocase

TBDT : TonB dependent transporter

Introduction

1.1. Bacterial phosphotriesterases (PTE):

Phosphotriesterases (PTEs) are metallo-enzymes that hydrolyze the third ester bond of Organophosphate (OP) insecticides and nerve agents. They exist in all forms of life including bacteria, insects and mammals (Zhang et al., 2019). The PTEs found in bacteria are classified into three distinct structural groups viz Organophosphorus acid anhydrolase (OPAA), Methyl parathion hydrolase (MPH) and Organophosphorus hydrolase (OPH), (Singh, 2009; Parthasarathy, 2017).

1.2. Organophosphorus Acid Anhydrolase (OPAA):

Organophosphorous Acid Anhydrolase (OPAA) is an OP-degrading enzyme. Originally, OPAAs were isolated from *Alteromonas* (Cheng et al., 1993; Cheng et al., 1999). Although, the OPAAs hydrolyze OP compounds with high catalytic efficiency, the physiological substrates for OPAAs are not OP compounds. The OPAAs are dipeptidases and hydrolyze peptide linkage of dipeptides having proline at their C-terminal position (Cheng et al., 1993). OPAAs are therefore renamed as prolidases and their ability to degrade OPs is due to structural similarity between OPs and dipeptides (Stepankova et al., 2013; Weaver et al., 2014). After identification of physiological substrates, the OPAAs are no more treated as part of PTEs. However, the physiological substrates for other two PTEs (MPH and OPH) are unknown. They are assumed to have evolved in response to the detrimental effects of organophosphorous residues accumulated in agricultural soils due to repeated and indiscriminate use as insecticides (Singh et al., 2014).

1.3. Methyl parathion hydrolase (MPH):

Methyl Parathion Hydrolase is found in various phylogenetically distinct bacteria, and is found to be active against several organophosphates, but it has a narrow substrate range when compared to OPH. MPH was isolated from *Plesiomonas* sp. M6 (Zhongli et al., 2001), *Pseudomonas* sp. WBC-3 (Dong et al.,

2005), *Pseudomonas* sp. A3 (Zhongli et al., 2001), the soil bacteria collected from different regions of China. Among these isolates, MPH purified from Pseudomonas strain is well characterized (Zhongli et al., 2001). MPH exists as a dimer in which each subunit has a mixed-hybrid, binuclear zinc center (Fig.1). It hydrolyzes a wide range of organophosphorous compounds like methyl parathion, DDVP, chlorpyrifos, malathion, fenitrothion (Yang et al., 2008). MPH has significant arylesterase and lactonase activities (Baier & Tokuriki, 2014). MPH possesses promiscuous esterase/lipase, lactonase, and phosphodiesterase activity in addition to its native phosphotriesterase activity (Baier & Tokuriki, 2014). Methyl parathion is an ideal substrate for MPH purified from *Pseudomonas* sp. WBC-3 (Dong et al., 2005). It can degrade chlorpyrifos, ethyl parathion, and sumithion (Chu et al., 2003). The MPH coding methyl parathion degrading (mpd) genes have been isolated only from the bacterial strains isolated from agricultural soils of China. Their homologues are not found outside Chinese soils suggesting influence of local environmental factors behind the *mpd* evolution (Singh, 2009).

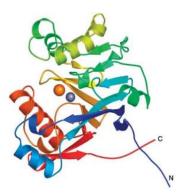


Fig.1: The crystal structure of MPH depicting the binuclear zinc center (Dong et al., 2005)

1.4. Organophosphorus Hydrolase (OPH):

Organophosphate hydrolase (OPH) hydrolyzes the compounds that are structurally related to parathion. They have a broad substrate specificity, temperature range, pH optima and high stability (Brown, 1980; Donarski et al., 1989; Dumas et al., 1989). OPH exhibits activity against organophosphates like parathion, methyl parathion and fenusulfothion and organophosphate chemical warfare agents like sarin, soman with high catalytic efficiency (Singh, 2009). It

can catalyze the cleavage of P-O bonds, P-F and P-S bonds with distinct efficiencies (Singh & Walker, 2006). OPH is encoded by organophosphate degradation (opd) gene frequently associated with mobile genetic elements like transposons and self-transmissible plasmids (Pandeeti et al., 2011). Initially OPH was characterized and purified from *Flavobacterium* sp. ATCC 27551, a soil microorganism isolated from the paddy fields of Philippines (Sethunathan & Yoshida, 1973). This soil isolate has recently been reclassified using polyphasic taxonomic tools as *Sphingobium fuliginis* ATCC27551 (Kawahara et al., 2010). Subsequently, their presence was noticed in most of the soil bacteria isolated from agricultural soils collected from different continents.

OPH is a 39kDa metalloprotein and contains a homodimeric $(\beta/\alpha)_8$ barrel fold (Fig.2). The active site of the native OPH contains two zinc ions per monomer, with direct interactions with four histidine residues and one aspartate (Omburo et al., 1992; Benning et al., 1994). Additionally, these metal ions are linked by a water molecule and a carbamoylated lysine residue (Vanhooke et al., 1996). Though Zn²⁺ ions serve as natural cofactors, they can be replaced with Co²⁺, Cd²⁺, Ni²⁺, or Mn²⁺ without compromising on catalytic properties of the enzyme (Omburo et al., 1992). The OPH producing bacteria that share either weak or no taxonomic relationship have been isolated from soil samples collected from diverse geographical regions (Sethunathan & Yoshida, 1973; Serdar et al., 1982; Somara & Siddavattam, 1995; Horne et al., 2002). Many of them use these OP compounds as source of carbon and phosphate (Singh & Walker, 2006). Out of all OP degrading bacterial strains *Flavobacterium* sp. (ATCC 27551) (Sethunathan & Yoshida, 1973; Brown, 1980), isolated from the rice fields of IRRI and Pseudomonas diminuta (Serdar et al., 1982), isolated from sewage samples collected from USA were used as model systems to study genetics and biochemistry of OP degradation. Genome sequences are available for both of them and the genome based classification has re-designated both of them as Sphingobium fuliginis ATCC27551 and Sphingopyxis wildii (Kawahara et al., 2010; Parthasarathy et al., 2016; Azam et al., 2019).

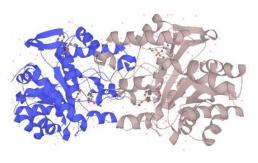
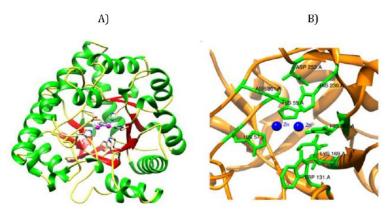



Fig.2: Three dimensional structure of organophosphate hydrolase isolated from *Brevundimonas diminuta* (Benning et al., 2001).

1.5. Structural comparison of MPH with OPH:

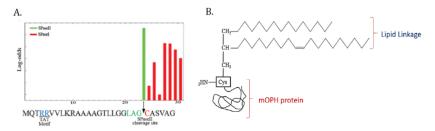

Both MPH and OPH hydrolyze identical substrates despite having no structural similarity between these two enzymes. Supporting their unique catalytic properties, these two structurally dissimilar enzymes share similar structure of active site (Dong et al., 2005). Both contain a similar bi-nuclear zinc center. The two metal ions found at active site are separated by a distance of 3.4 A° and are coordinated through the side chains of four histidine residues (His55, His57, His201 and His230) and Asp301. The metal ions are bridged via a carbamylate group form Lys169 and a nucleophile hydroxide ion (Benning et al., 2001) (Fig.3). This type of functional convergence from structurally independent enzymes is considered as symbol of convergent molecular evolution (Tawfik, 2006).

Fig.3: Structural comparison between MPH and OPH. Panel A shows the crystal structure of OPH. Panel B shows the co-ordination environment provided by four histidine residues (His55, His57, His201, and His230), Asp301 and two zinc ions at the active site of OPH (Benning et al., 1994, 2001).

1.6. OPH is a lipoprotein:

OPH is a membrane associated protein. It contains a signal peptide which is 29 amino acids in length (Mulbry & Karns, 1989a, 1989b; Gorla et al., 2009). It also contains a Twin Arginine Transport (Tat) motif with a consensus sequence of MQTRRVVLK (Gorla et al., 2009). The Tat pathway translocates fully folded and active proteins across the bacterial inner membrane (Sargent, 1998; Weiner et al., 1998). Generally the TAT motif is found in extracellular or membrane associated proteins with large cofactors or membrane proteins that are found to be part of multi-protein complexes (Berks, 1996; Berks et al., 2005). In contrast to the established notion, our laboratory discovered existence of fully conserved Tat motif (TRRVVLK) in the signal sequence of OPH. The twin arginines are required for the membrane targeting of OPH (Gorla et al., 2009). Interestingly, the signal peptide of the OPH also contains a well conserved lipo-box motif along with an invariant cysteine (Fig.4). This amino acid residue is linked to a diacyl glycerol moiety, through which OPH anchors to the inner membrane facing periplasmic space (Parthasarathy et al., 2016; Parthasarathy et al., 2017).

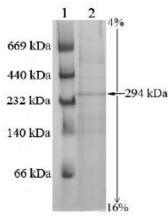


Fig.4: Prediction of Lipo-box in the signal peptide of OPH. Panel A shows bioinformatic analysis of the OPH signal peptide. The predicted SPase (Signal Peptidase) II cleavage site (green bar), lipo-box (green font), and the invariant cysteine residue (red font) found at the junction of the SPaseII cleavage site are shown. Potential SPaseI cleavage sites are indicated with red bars. The twin arginine motif of the Tat signal peptide is underlined. Panel B shows mature form of OPH is linked to diacylglycerol (Parthasarathy et al., 2016).

1.7. OPH is part of membrane associated multi-protein complex:

Existence of Tat motif in the signal peptide of metallo-enzyme like OPH is rather an unusual phenomenon. While investigating further, our laboratory has purified membrane associated OPH and determined its native molecular mass (Fig.5) Both BN-PAGE and gel filtration chromatography have shown that molecular mass of affinity purified membrane associated OPH is 294 kDa.

However, the SDS-PAGE profile revealed existence of several proteins in affinity purified OPH revealing that it is a part of multi-protein complex (Parthasarathy et al., 2016). Further studies have revealed that the co-purified proteins along with OPH were components of outer membrane transport system, otherwise known as <u>TonB Dependent Transport</u> (TonBDT) system. The outer membrane localized TonB dependent transporter (TBDT), the inner membrane associated <u>Proton Motive Force</u> (PMF) components, ExbB/ExbD and energy transducer, TonB were found to be associated with OPH (Gudla et al., 2019).

Fig.5: Purification of OPH complex. Analysis performed by a BN-PAGE (4%-16% acrylamide). Lane 1 shows molecular size markers. IMAC purified OPH complex is shown in Lane 2.

1.8. TonB dependent transport system-iron acquisition:

Iron acts as a cofactor for innumerable proteins involved in many intricate cellular processes (Miethke & Marahiel, 2007). The expression of bacterial iron acquisition systems is stringently regulated in response to iron, being increased under iron limitation (Litwin & Calderwood, 1993). So as to adapt to iron deprivation, many bacteria have evolved several sophisticated strategies to scavenge iron from the environment. The most common strategy is the synthesis and secretion of siderophores which are low-molecular weight molecules that bind iron with high affinity in the extracellular milieu and reenter cells using specific membrane transporters (Schaible & Kaufmann, 2004; Tanabe et al., 2005; Hider & Kong, 2010; Kurth et al., 2016; Lin et al., 2017). Siderophores are classified into different classes, such as catecholate, phenolate, carboxylate, hydroxamate, and mixed-ligand type (Hider & Kong, 2010). Certain bacteria do not have genetic makeup to synthesize siderophores but can uptake

heterologous ferric siderophores which are produced by other microbial species (Venturi et al., 1995).

Gram negative bacteria rely on multiple mechanisms to scavenge iron, which is needed for their growth (Posey, 2000). One intricate mechanism is by the synthesis of TBDTs. In addition to ferric-siderophores a number of other nutrients like vitamin B12, nickel chelates, and carbohydrates are transported by TBDTs (Schauer et al., 2008). TBDTs show high affinity and specificity towards siderophores. The energy required for their transport is provided by ExbB/ExbD and TonB (Wiener, 2005; Ferguson & Deisenhofer, 2004; Postle, 2007). As iron uptake is vital for most bacteria, expression of TBDTs is tightly regulated in a variety of ways that include metal dependent regulators, σ /anti- σ factors, small RNAs and riboswitches (Noinaj et al., 2010).

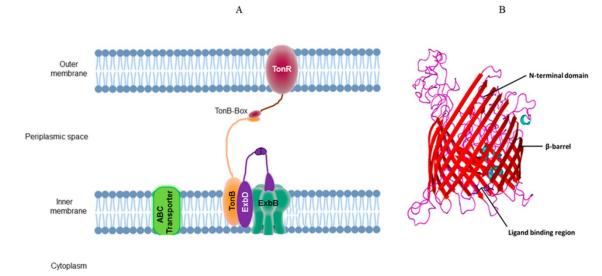
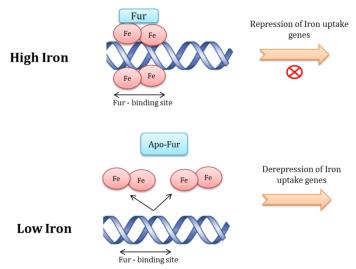


Fig.6: TonB dependent transport system. Panel A shows a schematic diagram of TonB dependent transport system. Panel B shows typical structural features of a TonB dependent outer membrane Transporter (TBDT) (Gudla et al., 2019). The 22β barrel structure, N-terminal plug domain and ligand binding domain are indicated with arrows (Samantarrai et al., 2020).


1.9. Regulation of iron uptake:

Although, iron is an essential micro-nutrient its limitation affects the cellular metabolism and its excess induces toxic effects in the cells (Winterbourn, 1995; Kehrer, 2000). Therefore, the concentration of intracellular iron needs to be strictly regulated. Bacteria follow exceptionally fine regulatory mechanisms to maintain iron homeostasis. They include both transcriptional and post

transcriptional regulation mechanisms.

1.10. Transcriptional regulation:

The regulation of iron metabolism in bacteria is typically responsive to iron availability. In many bacteria this regulation is mediated by ferric-uptake regulator (Fur). In *E. coli*, Fur protein controls the iron-dependent expression of more than 90 genes (Hantke K, 2000; Hantke, 2001). It represses transcription of iron uptake genes, upon interaction with Fe²⁺ ions and causes de-repression in its absence (Andrews et al., 2003). The binding of metal ions to Fur increases its affinity for its DNA binding site by atleast ~100-fold (Helmann, 2014). Approximately 1µM free iron is sufficient to activate DNA binding *in vitro* (Ma et al., 2012). The Fur protein is made up of a C-terminal domain (which binds to the Fe²⁺to mediate the dimerization of Fur protein) and an N-terminal (DNA-binding) domain (Coy & Neilands, 1991; Stojiljkovic & Hantke, 1995). The Fe²⁺Fur complex binds at the promoter regions of Fur-repressed genes (Bagg & Neilands, 1985; Escolar et al., 1998).

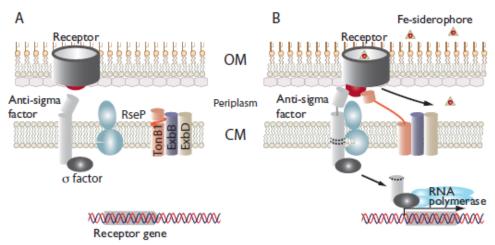


Fig.7: Schematic diagram showing gene repression mediated by Ferric uptake regulator (Coy & Neilands, 1991; Andrews et al., 2003)

1.11. Iron starvation sigma factors (σ^{19}):

In addition to the Fur dependent repression and activation, the transcription of iron responsive genes is driven by a RNA polymerase ($\beta\beta'\alpha2\omega$) containing a special sigma factor, σ^{19} also known as ECF sigma factor (extra cytoplasmic

sigma factor) (Helmann, 2002; Paget & Helmann, 2003). The σ^{19} is sequestered from cytoplasm by an anti-sigma factor associated with inner membrane (Visca et al., 2002). The membrane associated anti- σ factor interacts with outer membrane located TBDT only when it binds to siderophore-iron complex (Fig.8). Such interactions stimulate phosphorylation of anti- σ factor and the phosphorylated anti- σ factor does not bind to σ^{19} thus facilitating its release into cytoplasm. Once available in the cytoplasm the σ^{19} associates with core polymerase and directs transcription from iron responsive genes (Koebnik, 2005; Llamas et al., 2014).

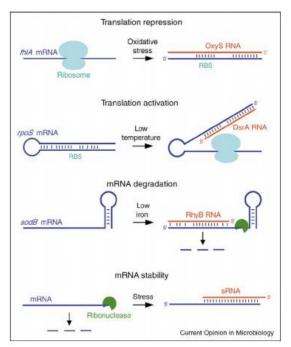


Fig.8: Mechanism of signal transduction followed by sigma factors in response to iron. Panel A shows inactive state the anti-sigma factor and the sequestered membrane associated ECF sigma factor. Panel B shows release of ECF sigma factor from membrane in the presence of ferric-siderophore. The TonB interacts with the outer membrane transporter, TBDT-ferric-siderophore and transduces signal to the anti-sigma factor. The transduced signal activates protease system which cleavages the trans-membrane domain of the anti-sigma factor. The ECF sigma factor bound to anti-sigma factor is released into the cytoplasm to activate iron responsive genes. OM, outer membrane; CM, cytoplasmic membrane (Llamas et al., 2014)

1.12. Post transcriptional regulation:

A quintessential way adapted by the bacteria to survive in various environmental conditions is by primary alteration of their gene expression, which is usually achieved by a complex interplay of molecular mechanisms (Fröhlich et al., 2018). Certain bacteria employ sRNAs to fine-tune their gene expression at the post-transcriptional level. They usually act by direct base-pairing interactions with their cognate mRNAs, which occasionally requires Hfq binding. Upon base-pairing between sRNA and target mRNAs, the translation and/or stability of

these target transcripts are affected. This leads to either repression or derepression of gene expression (Waters & Storz, 2009). The post-transcriptional regulation of certain iron responsive genes occurs by the sRNA RyhB. The RyhB is a 90nt RNA molecule which down-regulates a set of iron- responsive genes. Under iron limiting condition, this sRNA is negatively regulated by Fur (Masse & Gottesman, 2002). The RyhB represses the mRNA of genes that are positively regulated by Fur (Escolar et al., 1999; Hantke, 2001).

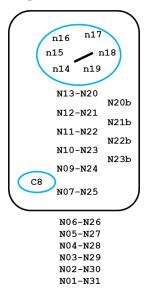


Fig.9: Different known and potential regulatory outcomes brought about by sRNA base pairing with mRNAs. sRNAs (red) can repress or activate translation by blocking or promoting ribosome binding to mRNAs (blue). sRNAs also can destabilize or possibly stabilize mRNAs by increasing or decreasing accessibility to ribonucleases (Storz et al., 2004).

1.13. Iron Responsive Elements and Iron Regulatory Proteins:

Iron-responsive elements (IREs) are conserved cis-regulatory mRNA motifs which are usually of 25-30nt in length (Theil & Eisenstein, 2000). They are located in the UTRs of mRNAs that code for proteins involved in iron metabolism. The canonical hairpin loop of an Iron response element is typically composed of a 6nt apical loop (5'-CAGWGH-3'; where W stands for Adenine or Uracil and H stands for Adenine, Cytosine or Uracil). It also consists of a stem region with five paired nucleotides and a small asymmetrical bulge (in the 5' strand) with an unpaired 'C' residue on the the stem. The stem region of an iron

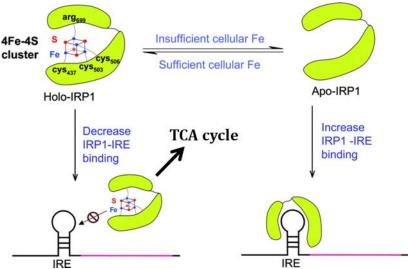

response element forms base pairs of medium stability, and folds into a α -helix distorted by the presence an unpaired C8 nt (in the 5' bulge region). The base pairs found in IRE can follow either Watson-Crick or wobble pairing (U.G or G.U). The apical loop and the pseudo-triloop are separated by a conserved base pair (C14:G18) followed by an unpaired nt (N19, Fig.10). The C14:G18 base pair and the unpaired nt do not make contact with IRP, suggesting that the bridge C14:G18 serves only a structural function for IRP recognition. The pseudo-triloop and the C8 nucleotide make multiple contacts with IRP (Walden et al., 2006).

Fig. 10: Schematic diagram showing the structure of an IRE motif. The rectangular region indicates the IRE core region. The C-bulge (C8) and 6 nucleotide apical loop are shown within a blue circle. The presence of possible 3' bulge nucleotides are represented as N20b, N21b, N22b and N23b (Ricky S. Joshi, 2012).

IRPs (Iron regulatory proteins) recognize and interact with IREs exclusively found in mRNAs coded by certain iron response genes (Khan et al., 2017; Zhou & Tan, 2017). Aconitases are a classic example of IRPs. They are moon-lighting proteins which contain 4Fe-4S cluster for the enzymatic activity and they catalyze the inter-conversion of citrate to isocitrate in TCA cycle (Volz, 2008; Castro et al., 2019). They are bi-functional proteins that function as IRE-Binding Proteins (IRE-BP) and regulate iron metabolism and function as isoform of and enzyme catalyzing an important reaction in TCA cycle (Volz, 2008; Mande, 2011). IRPs bind to IRE located in the un-translated region (UTR) and relieve translational inhibition from the target mRNA. However, when intracellular iron

is sufficient for various cellular activities, the IRP aconitase regains its enzyme activity and functions as TCA cycle enzyme (Fig.11). The IRE and IRP mediate post-transcriptional regulation control the expression of a number of iron responsive genes. IRPs recognize iron concentration and regulate the expression of iron responsive genes, in order to optimize cellular iron availability.

Fig.11: Moonlighting function of aconitase-IRP. The mRNA binding activity of aconitase is regulated by the presence of an [4Fe-4S] cluster, the cofactor required for aconitase activity when cellular iron levels are high; the [4Fe-4S] cluster is present in aconitase and abrogates IRP binding. Under iron-depleted conditions the [4Fe-4S] cluster is absent, and the apo-aconitase functions as IRP (E. S. Hanson. & E. A. Leibold, 1999).

1.14. Iron and catabolism of aromatic compounds:

Iron availability is an essential criterion in the oxidative breakdown of aromatic hydrocarbon compounds. This kind of degradation by microorganisms occurs through several steps of oxidation, that are catalyzed by oxygenases (Haddock, 2010; Fuchs et al., 2011). Oxygenases are grouped into monooxygenases and dioxygenases. The monooxygenases aid in the incorporation of an O2 atom from oxygen molecule into the product while reducing the second atom into H2O using e- from an external donor. While the dioxygenases incorporate both O2 atoms into the substrate (Wang et al., 2017). Degradation of aromatic compounds by dioxygenases involves ring-opening step. Most of these oxygenases (shown in Table.1) contain iron as a cofactor for the activation of oxygen (Coulter & Ballou, 1999; Dinkla et al., 2001). Iron-dependent dioxygenases can use either heme or non heme cofactors in their active site

(Ohlendorf et al., 1988). These enzymatic reactions activate certain pathways that facilitate the bacteria to use organic molecules as carbon and energy sources for their survival (Wang et al., 2017). As the availability of iron is of paramount importance in the oxidative degradation of hydrocarbons, the kinetics of this degradation might possibly be affected by iron limitation. Growth of *P. putida* on toluene is compromised under iron limiting conditions as degradation pathway involving toluene monoxygenase is affected (Dinkla et al., 2001). In support of the iron dependent activities of enzymes involved in carbon metabolism, a strong connection exists between carbon metabolism and iron uptake. Crp is a global transcriptional regulator which is involved in the metabolism of carbon. It regulates the transcription of *fur* gene which codes for the Fur protein (Lorenzo et al., 1988). Different metabolic pathways in the cells are coordinated by the functional interactions existing between these regulons (Gutierrez-Rios, 2003). Many iron responsive genes are subjected to dual control by Catabolite repressor protein (Crp) and Ferric uptake regulator (Fur). Crp regulation of Fur-controlled genes and Fur regulation of Crp-controlled genes allows the integration of signals for iron and carbon sufficiency (Zhang et al., 2005). However, the signals coordinating iron and carbon metabolism are assumed to be intricate and most of them remain to be identified.

1.15. Linkage between *opd* genes and genes coding aromatic compound metabolism:

Our lab has determined complete genome sequence of *S. wildii* and *S. fuliginis* ATCC 27551 (Parthasarathy et al., 2016; Azam et al., 2019). The 5Mb genome sequence of *S. fuliginis* ATCC 27551 with a GC content of 64.4% is distributed between two chromosomes and four indigenous plasmids (Azam et al., 2019). Out of the four plasmids, designated as pSF1, pSF2, pSF3, and pSF4, only two (pSF1 and pSF2) are self-transmissible and contain the complete genetic repertoire for a T4SS. The other two plasmids (pSF3 and pSF4) are mobilizable and both showed the presence of an *oriT* and relaxase-encoding sequences. The sequence of plasmid pSF3 coincided with the previously determined sequence of pPDL2 and included an *opd* gene encoding

organophosphate hydrolase as a part of the mobile element (Azam et al., 2019; Pandeeti et al., 2012). Both of the sequences of pPDL2 and pSF3 showed exact synteny, except in the region spanning 12,680–18,619bp. This region showed the existence of 5,939bp duplication in the sequence of pSF3. This duplication was seen near the *opd* element. In this region, the *opd* and *mfhA* genes are flanked by IS21 and a duplicated Tn3. Plasmid pSF3 also contains a functional integration module that can integrate at an attachment (attB) site such as those typically found in integrative mobilizable elements. These two unique structural features of plasmid pSF3 strongly suggest it's involvement in the lateral transfer of the opd gene among soil bacteria (Pandeeti et al., 2012; Azam et al., 2019). The sequence of pSF3 contains other structural genes that code for dioxygenases involved in degradation of aromatic compounds like protocatechuate (Pandeeti et al., 2012). A ring cleavage dioxygenase (protocatechuate 4, 5- dioxygenase) encoded by ligBA and other genes involved in aromatic compound degradation exists as part of mobile element along with a transporter involved in transport of aromatic compounds (Fig.12).

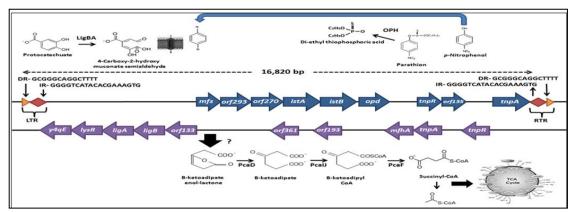
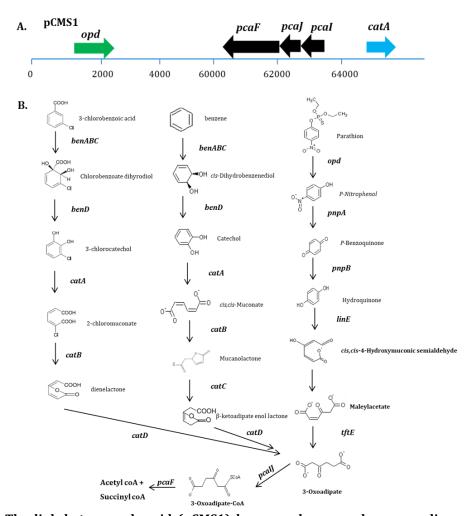



Fig.12. Linkage between integrative mobilizable element (IME) borne *opd* gene and genes coding enzymes involved in aromatic compound metabolism in *Sphinogobium fuliginis* ATCC 27551. The map indicates existence of genes involved in aromatic compound degradation as part of *opd* element. The Tn3-specific terminal repeats found upstream and downstream of transposable element Tn3 and y4qE are shown with arrows (Pandeeti et al., 2012).

Similarly, the complete genome sequence of *Sphingopyxis wildii* has indicated the presence of a single chromosome with a size of 4.15 Mb and two indigenous plasmids represented, pCMS1 (65,908bp) and pCMS2 (30,654bp). The self-transmissible plasmid pCMS1 contains aromatic oxygenases and ring

cleavage dioxygenases adjacent to the *opd* gene coding OPH (Fig.13). In addition to oxygenases the mobile elements contain genes coding β -ketoadipate pathway involved in complete mineralization of aromatic compounds (Parthasarathy et al., 2016).

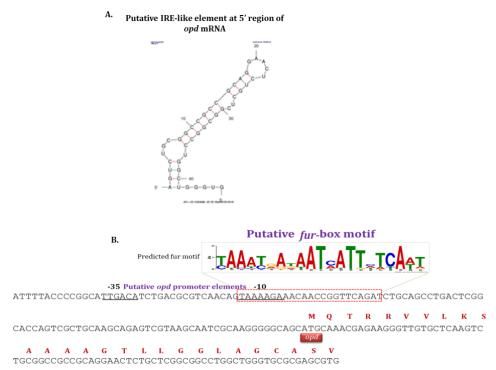


Fig.13. The link between plasmid (pCMS1) borne *opd* gene and genes coding enzymes involved in aromatic compound metabolism in *Sphingopyxis wildii*. Panel A shows the location of *opd* and genes involved in aromatic compound degradation in pCMS1. Panel B shows the degradation pathways.

1.16a. Hypothesis:

The OPH is a constitutively expressed enzyme. Available literature shows no regulation on expression of *opd* gene. However, our lab has accidentally noticed a sudden increase in expression of OPH when truncated *opd* gene coding mature form of OPH was cloned in *E. coli* expression vector (Siddavattam et al., 2006). This observation has just indicated existence of some regulatory switch at the 5' region of *opd* mRNA. We could not explain the reasons as there was no physiological reason behind the increased expression of OPH. This increase in expression was noticed only when the gene's promoter and signal peptide coding region was removed.

Our recent studies started unraveling the physiological role of OPH. As described in earlier sections of the introduction our lab has shown existence of OPH as part of Ton-complex, a primary component in TonBDT system, involved in transport of nutrients across outer membrane (Gudla et al., 2019). Since TonBDT is known to transport of Fe-Ent (ferric-enterobactin) our lab has tested to know if Fe-Ent serves as substrate for OPH. Our recent work showed interactions between OPH and Fe-Ent and suggested a role for OPH in transport of Fe-Ent (Parapatla et al., 2020). In the light of these results, we have revisited the 5' region of opd mRNA and tried to find a link between removal of signal peptide coding region of *opd* gene and its increased expression. Interestingly a sequence that showed very significant similarity to the well characterized IRE was identified in the region of opd mRNA that specifies signal peptide of OPH (Fig.14, panel A). Further examination of opd promoter region indicated presence of a fur-box motif suggesting that opd gene is part of iron-responsive gene (Fig.14, panel B). The proposed hypothesis is critically examined by following the below mentioned well-defined objectives, and our experimental results described in this thesis suggest, opd as an iron responsive gene.

Fig. 14: Panel A shows the structure of IRE-like element identified at the 5' region of *opd* mRNA. The *fur*-box motif found overlapping *opd* gene promoter is shown in panel B.

1.16b. Objectives:

- ➤ Influence of iron on expression of *opd* gene in *Sphingobium fuliginis* ATCC 27551.
- ➤ Role of predicted *fur*-box motif in regulation of *opd* gene expression.
- ➤ Characterization of IRE-like element identified at the 5' region of *opd* mRNA and elucidation of its role in translational inhibition of *opd* mRNA.
- ➤ Elucidation of *opd* element encoded small RNA-IRE interactions and their influence on *opd* gene expression.

General Materials & Methods

Table 1 A. Antibiotics

Name of the Antibiotic	Name of the supplier
Ampicillin sodium salt	HIMEDIA
Chloramphenicol	HIMEDIA
Gentamycin	HIMEDIA
Kanamycin Sulfate	HIMEDIA
PolymyxinB	HIMEDIA
Streptomycin	HIMEDIA
Tetracycline hydrochloride	HIMEDIA

Table 1 B. Chemicals

Name of the Chemical	Name of the Supplier
Absolute alcohol	SRL
Acetic Acid (Glacial)	SRL
Acetone	SRL
Acetonitrile	SRL
Acrylamide	Sigma-Aldrich
Agar agar	HIMEDIA
Agarose	SeaKem
Ammonium chloride	SRL
Ammonium persulphate	GE Healthcare Lifesciences
Ammonium nitrate	SRL

Bovine serum albumin	HIMEDIA
β-mercaptoethanol	Sigma-Aldrich
Bromophenol blue	SRL
Butanol	SRL
Calcium chloride	SRL
Calcium nitrate	SRL
Chloroform	SRL
Ches (N-cyclohexyl-2-aminoethanesulfonic	SRL
acid)	
Coomassie Brilliant Blue G-250	HIMEDIA
Coomassie Brilliant Blue R-250	HIMEDIA
Cobalt chloride	SRL
Dipotassium hydrogen phosphate	Sigma-Aldrich
2, 2'-Dipyridyl	Sigma-Aldrich
Diammonium hydrogen phosphate	Sigma-Aldrich
Dimethyl sulfoxide (DMSO)	Sigma-Aldrich
Ethylenediaminetetraacetic acid (EDTA)	SRL
Ethidium bromide	HIMEDIA
Ferrous sulphate	Sigma-Aldrich
Ficoll	SRL
Glucose	HIMEDIA
Glycerol	SRL
Glycine	SRL
Glycogen	Sigma-Aldrich
Hydrochloric acid	SRL
L-Arginine	SRL

Iso-amyl alcohol	Fischer Scientific
Iso-propyl alcohol	Fischer Scientific
Isopropyl thiogalactopyranoside (IPTG)	G-biosciences
Lithium Chloride	SRL
Methyl parathion	Sigma-Aldrich
Magnesium sulphate	SRL
Magnesium chloride	SRL
Manganese sulphate	SRL
Methanol	SRL
NADP (Nicotinamide Adenine Dinucleotide	Sigma-Aldrich
Phosphate)	
Nickle Chloride	SRL
N,N'-Methylene bis acrylamide	GE Healthcare Lifesciences
N,N'-Dimethyl formamide	Sigma-Aldrich
Peptone	HIMEDIA
Phenol (water saturated)	SRL
Phosphoric acid	Merck
Ponceau	Sigma-Aldrich
ONPG (O-nitrophenyl-β-D-	Sigma-Aldrich
galactopyranoside)	
Phenol Saturated	SRL
PIPES (piperazine-N,N'-bis(2-ethanesulfonic acid)	HIMEDIA
Potassium chloride	Qualigens

Potassium hydroxide	SRL
Potassium dihydrogen ortho phosphate	Merck
PMSF	GE Healthcare Life sciences
Protease inhibitor cocktail	Sigma-Aldrich
Skimmed milk powder	HIMEDIA
Sodium acetate	HIMEDIA
Sodium carbonate	HIMEDIA
Sodium citrate	SRL
Sodium chloride	SRL
Sodium dodecyl sulfate	SRL
Sodium hydrogen orthophosphate	SRL
Sodium hydroxide	SRL
Sucrose	SRL
RNase A	Thermo Fisher Scientific
Tetra ethyl methylene diamine (TEMED)	Sigma-Aldrich
Tris-base	SRL
Triton X-100	Sigma-Aldrich
Trizol	Sigma-Aldrich
Tryptone	HIMEDIA
Tween 20	AMRESCO
X-gal	SRL
Xylene cyanol	SRL
Yeast extract	HIMEDIA

 Table 1 C. Restriction enzymes and DNA modifying enzymes

Name of the Enzyme	Name of the Supplier
BamHI	Thermo Fisher Scientific
BglII	Thermo Fisher Scientific
EcoRI	Thermo Fisher Scientific
HindIII	Thermo Fisher Scientific
KpnI	Thermo Fisher Scientific
Ndel	Thermo Fisher Scientific
NotI	Thermo Fisher Scientific
PstI	Thermo Fisher Scientific
SacI	Thermo Fisher Scientific
Sall	Thermo Fisher Scientific
SmaI	Thermo Fisher Scientific
XhoI	Thermo Fisher Scientific
Alkaline Phosphatase	Thermo Fisher Scientific
T4 DNA Ligase	Thermo Fisher Scientific
Pfu DNA polymerase	Thermo Fisher Scientific
Phusion® High-Fidelity DNA	New England Biolabs
polymerase	
Polynucleotide kinase	Thermo Fisher Scientific
T1 RNase	Thermo Fisher Scientific
Taq DNA polymerase	Thermo Fisher Scientific

T4 RNA polymerase	Thermo Fisher Scientific
Calf Intestinal Phophatase	Thermo Fisher Scientific
Emerald Amp Max PCR master mix	Takara Bio
DNase-I	Thermo Fisher Scientific
RNase A	Thermo Fisher Scientific
1kb DNA Ladder	Thermo Fisher Scientific
20bp DNA ladder	Takara Bio
Unstained Protein Ladder, 10-200kDa	Thermo Fisher Scientific

2.1. Growth Media

The following growth media were prepared and used for the propagation of bacteria. The media were stringently autoclaved at 15 psi for 20min. For preparation of solid media, 2g of agar was added to 100ml of broth and sterilized. Whenever required appropriate concentrations of antibiotic and chemical stocks were added after cooling the medium to 50° - 60° C.

2.1.1. Luria-Bertani (LB) medium

To prepare Luria-Bertani (LB) medium, peptone (10g), yeast extract (5g) and NaCl (10g) were dissolved in 1000ml of deionised H_2O . The contents of media were thoroughly mixed before adjusting the pH to 7.0 with 5 N NaOH and sterilized as described above.

2.1.2. Minimal Salts medium for *E. coli*

Minimal media for the growth of *E. coli* was prepared by dissolving 1.2g of KH_2PO_4 , 4.8g of K_2HPO_4 in 1000ml of deionised H_2O . This medium was autoclaved at 15psi for 20 min. After sterilization, filter sterilized stock solutions of 10% $MgSO_4.7H_2O$, 20% $CaNO_3.4H_2O$, 1% $FeSO_4$ and 50% glucose were added to the above solution to obtain concentration of 0.2g $MgSO_4.7H_2O$ (2ml from stock), 0.04g $CaNO_3.4H_2O$ (200 μ l from stock) 0.001g $FeSO_4$ (1ml from stock 1% $FeSO_4$) and 2ml of 50% glucose to 1000ml of above solution to get complete minimal salts medium.

2.1.3. Minimal Salts medium for Sphingobium fuliginis ATCC27551

Minimal Salts medium for *Sphingobium fuliginis* was prepared by dissolving 0.5g of $(NH_4)_2HPO_4$ and 0.1g of K_2HPO_4 in 1000ml of deionised H_2O . This medium was autoclaved at 15psi for 20 min. After sterilization the solution was cooled to room temperature and stock solutions of 50% glucose, 1% FeSO₄.7H₂O, 1% $Ca(NO_3)_2$, 20% MgSO₄.7H₂O were added in such way, so as to obtain a final concentration of 0.1% glucose, 0.001% FeSO₄.7H₂O, 0.001% $Ca(NO_3)_2$, 0.01% MgSO₄.7H₂O to 1000ml of above solution to get complete minimal salts medium.

2.2. Preparation of iron free media and solutions

Minimal salts media and component solutions were made iron free by passing through chelex 100 resin (Bio-Rad).

2.2.1. Preparation of high iron solution

Ferrous sulphate (1%) was made by dissolving of 1g of FeSO₄.7H₂O in 100ml of deionised, iron free H₂O. The stock solution was sterilized and 100 μ l of the above stock solution was added to 100ml of culture medium to give a final concentration of 10 μ g Fe/ml.

2.2.2. Preparation of low iron solution

A stock solution of $2\mu g$ Fe/ml was prepared by adding $20\mu l$ of 1% FeSO₄ stock solution in 20ml of deionised iron free H_2O . The stock solution was sterilized and 1ml of the stock solution was added to 100ml of culture medium to give a final concentration of $0.02\mu g$ Fe/ml.

2.2.3. Preparation of iron free glassware

The glassware was initially soaked in 2% methanolic KOH for 24hr and rinsed for 3 to 4 times with deionised H_2O and then subsequently soaked in 6N HCl for 24hr and washed with deionised H_2O . Then the iron free glassware was sterilized by autoclaving at 15psi for 20 min.

2.3. Preparation of Antibiotic & Chemical stock solutions

Ampicillin: The stock solution of ampicillin was prepared by dissolving 1g of ampicillin in 10ml of sterile deionised H_2O and filtered through $0.2\mu M$ syringe filter. This stock solution was stored at $-20^{\circ}C$. Whenever required, $10\mu l$ of stock solution was added to 10ml of medium to get a final concentration of $100\mu g/ml$

of ampicillin in the medium.

Chloramphenicol: The stock solution of chloramphenicol was prepared by dissolving 300mg of chloramphenicol in 10ml of 70% ethanol (v/v) and filtered through $0.2\mu M$ syringe filter. This stock solution was stored at $-20^{\circ}C$. Whenever required, $10\mu l$ of stock solution was added to 10ml of medium to get a final concentration of $30\mu g/ml$ of chloramphenicol in the medium.

Gentamycin: The stock solution of gentamycin was prepared by dissolving 200mg of gentamycin sulfate in 10ml of sterile deionised H_2O and filtered through $0.2\mu M$ syringe filter. The stock solution was stored at $-20^{\circ}C$. Whenever required, $10\mu l$ of gentamycin stock solution was added to 10ml of medium to get a final concentration of $20\mu g/ml$ of gentamycin in the medium.

Kanamycin: The stock solution of kanamycin was prepared by dissolving 300mg of kanamycin sulfate in 10ml of sterile deionised H_2O and filtered through $0.2\mu M$ syringe filter. The stock solution was stored at $-20^{\circ}C$. Whenever required, $10\mu l$ of kanamycin stock solution was added to 10ml of medium to get a final concentration of $30\mu g/ml$ of kanamycin in the medium.

Polymyxin B: The stock solution of polymyxin B was prepared by dissolving 100mg of polymyxin B in 10ml of sterile deionised H_2O and filtered through 0.2 μ M syringe filter. The stock solution was stored at -20 $^{\circ}$ C. Whenever required, 10 μ l of polymyxin B stock solution was added to 10ml of medium to get a final concentration of 10μ g/ml of polymyxin B in the medium.

Streptomycin: The stock solution of streptomycin was prepared by dissolving 200mg of streptomycin in 10ml of sterile deionised H_2O and filtered through $0.2\mu M$ syringe filter. The stock solution was stored at -20°C. Whenever required, $10\mu l$ of streptomycin stock solution was added to 10ml of medium to get a final concentration of $20\mu g/ml$ of streptomycin in the medium.

Tetracycline: The stock solution of tetracycline was prepared by dissolving 200mg of tetracycline in 10ml of 70% ethanol (v/v) and filtered through $0.2\mu M$ syringe filter. This stock solution was stored at -20°C. Whenever required, $10\mu l$ of stock solution was added to 10ml of medium to get a final concentration of $20\mu g/ml$ of tetracycline in the medium.

IPTG: The stock solution (1M) was prepared by dissolving 238mg of IPTG in 1ml of sterile deionised H_2O and stored at -20°C. Whenever required, $10\mu l$ of the stock solution was added to 10ml of medium to get a final concentration of 1mM. **X-Gal:** The stock solution of X-gal (4%) was prepared by dissolving 40mg of X-

X-Gal: The stock solution of X-gal (4%) was prepared by dissolving 40mg of X-gal in 1ml of N, N'-dimethylformamide. Whenever required, 10μl of stock solution was added to 10ml of medium.

2.4. DNA manipulation:

2.4.1 Preparation of solutions and buffers

2.4.1a. TAE buffer

A stock solution of 50x TAE (Tris-Acetate- EDTA) buffer was prepared by mixing 242gm of Tris base, 100ml of 0.5M EDTA (pH 8.0) and 57.1 ml of glacial acetic acid to 900ml of deionised H_2O , after complete dissolution of the contents the solution was made up to 1000ml with deionised H_2O . Whenever required, appropriate volume of 50x TAE was diluted to obtain 1x TAE.

2.4.1.b. 6x Gel loading buffer

Bromophenol blue (12.5mg), 12.5mg of xylene cyanol FF and 7.5gm of Ficoll (Type 400; Pharmacia) were dissolved in 75ml of deionised H_2O and finally made up to 100ml and stored at RT.

2.4.1.c. Ethidium bromide

The stock solution of ethidium bromide (100mg) was mixed with 10ml of deionised H_2O , in an amber glass bottle. This solution was further diluted to get a stock concentration of 1mg/ml. While preparing agarose gel 5µl of stock solution was added to 100ml of gel solution to get a final concentration of $0.05\mu g/ml$.

2.4.2. Solutions for plasmid isolation

2.4.2.a. Solution I: To prepare solution I comprised of 250mM glucose (10ml), 0.2M Tris pH 8.0 (6.25ml), 1 ml 0.5M EDTA (1ml) were dissolved in 25ml sterile deionised H_2O and finally the volume was made upto 50ml with sterile deionised H_2O . This solution was autoclaved for 20 min at 15psi on liquid cycle and stored at $4^{\circ}C$. Whenever required stock solution of DNase free RNase A was added at a final concentration of $100\mu g/ml$.

2.4.2.b. Solution II: Equal volumes of 0.4N NaOH and 2% SDS solutions were

freshly mixed and used as Solution II.

- **2.4.2.c. Solution III (3M sodium acetate pH 4.8):** To prepare Solution III, 24.61g of CH_3COONa was dissolved in 80ml of sterile deionised H_2O and its pH was adjusted to 4.8 with glacial acetic acid. Then the volume was made upto 100ml and stored at 4^0C .
- **2.4.2.d. Phenol chloroform solution:** Phenol chloroform was made by mixing equal volumes of water saturated phenol and chloroform.
- **2.4.2.e. Chloroform: Isoamyl alcohol solution:** Chloroform (96ml) and Isoamyl alcohol (4ml) were mixed and stored in amber colour bottle at 4°C.
- **2.4.2.f. TE buffer:** Working solution of TE buffer was prepared by adding 5ml of 0.2M Tris-Cl, 0.2 ml of 0.5M EDTA to 80ml of deionised H_2O and finally upto 100ml. This solution was autoclaved and stored at $4^{\circ}C$.

2.4.3. Isolation of plasmid DNA

Plasmid isolation was done by alkaline lysis method following standard procedures (Birnboim & Doly, 1979). A single colony containing desired plasmid was inoculated into 3ml LB medium substituted with required antibiotic and was incubated for 12h at 37°C with shaking. Bacterial cells were harvested from a 1ml of overnight culture by centrifuging the culture at 13,000 rpm for 1 minute. The pellet was then resuspended in 100µl of TEGL by vortexing it vigorously. This was mixed with 200µl of solution-II (freshly prepared) (equal volume of 1% SDS, 0.2N NaOH) and incubated on ice for 4 to 5 min before adding 150µl of icecold solution-III (3M CH₃COONa, pH 4.8). The contents were then thoroughly mixed by inverting the tube. Then tube was kept on ice for 3-5 min. The contents were centrifuged at 13,000 rpm for 10 min. The supernatant was then transferred into a fresh eppendorf tube and extracted with equal volumes of phenol chloroform and later with chloroform: isoamyl alcohol (24:1). The clear aqueous phase was again transferred to a fresh eppendorf tube and the plasmid DNA was precipitated by adding 1/10th volumes of 3M CH₃COONa, pH 4.8 and 2 volumes of ethanol and tubes were incubated at -80°C for 20 min. The plasmid was collected by centrifugation at 13000rpm for 20 min. The traces of salts in the plasmid were removed by washing with cold 70% ethanol. The plasmid was

further dried and redissolved in 30µl of TE.

2.4.4. Purification of plasmids using QIAgen Mini preparation kit method

Plasmid DNA was purified using QIAgen mini preparation kit. The overnight culture obtained from growing a single bacterial colony carrying plasmid, was centrifuged at 13000 rpm for 1min and the supernatant was discarded. The pellet was resuspended in 250µl of buffer P1 and was lysed by adding 250µl of buffer P2 prior to mixing the tubes by inverting them 4-6 times. After lysis of the cells the contents were neutralized by adding 350µl of buffer N3 prior to mixing of the contents by inverting immediately. Then tubes were centrifuged for 10 min to pellet down the debris. After centrifugation the supernatant was transferred into a QiAprep column placed in a collecting tube. The supernatant was allowed to pass through the column for 1 min by centrifuging at 13000 rpm. The column by adding 50µl buffer EB, followed by brief centrifugation at 13000 rpm. The plasmid DNA was stored at -20°C until further use.

2.4.5. DNA Quantification

The quantification of nucleic acids was done spectrophotometrically by using a Nano Drop ND-1000 system. About $1\mu l$ of sample were pipetted on the sample pedestal and the absorbance peak of nucleic acid in the sample was measured at 260nm. Protein contamination in the sample was estimated by measuring the 260/280 ratio of approximately 1.8 considered as pure for DNA. In addition, the nucleic acid purity can be further determined by measuring the ratio of absorbance at 260 nm/230 nm, which typically results in values between 1.8 to 2.2 for nucleic acid samples without contaminants.

2.4.6. Agarose gel electrophoresis

A slab of 0.8% agarose was prepared by adding 0.8 g of agarose in 100ml of 1XTAE and boiling for 3 min. This molten agarose was allowed to cool to approximately 45°C, and 0.5ug/ml of etbr was added. This whole mixture was poured into the casting unit along with 1mm thickness comb, and allowed to solidify. The solidified gel is then then kept in electrophoresis tank and filled with 1X tank-buffer { 300ml} keeping the wells towards anode side. DNA

samples were carefully loaded into the wells and were separated by performing electrophoresis applying constant voltage (100V). The molecular size markers were mixed with loading dye (1Kb ladder) and loaded adjacent to the wells used to load DNA samples and the size of unknown DNA was measured based on electrophoretic mobility.

2.4.7. Polymerase Chain Reaction (PCR)

PCR amplification reactions were carried out in a $25\mu l$ reaction volume contained 2.5mM MgCl₂, dNTP mix containing $200\mu M$ each of dATP, dCTP, dGTP and dTTP mix , 10 picomoles of each forward primer (FP) and reverse primer (RP), 1.0U of pfu DNA polymerase, 10-20ng of plasmid or 40-80ng of genomic or plasmid DNA was used as template. Amplifications were carried out in the thermal cycler (Bio-Rad) by adjusting the PCR programme as per the amplicon size and annealing temperature of the primers. Amplicons were analyzed on an 0.8-1.0% agarose gel.

2.4.8. Molecular Cloning

2.4.8.a. Restriction Digestion

Restriction digestion was carried out with the required restriction endonuclease (1.0U) in a volume of 20 μ l along with 2 μ l of 1X reaction buffer and 1.0 μ g DNA. In general, the reaction mixture was incubated for 2-3h at 37 $^{\circ}$ C according to the manufacturer's instructions.

2.4.8.b. Gel extraction

After separation of DNA fragments generated either by restriction digestion, or by PCR amplification; agarose gel piece containing desired DNA fragment was carefully excised and placed in a clean sterile eppendorf tube. The DNA from the gel piece was carefully extracted by using GeneJET gel extraction kit (Thermo scientific) following manufacturer's protocols. Briefly, gel piece containing DNA fragment was excised using a sterile scalpel and weight of the gel piece was measured by placing it in a clean Eppendorf tube. The gel slice was then mixed with one volume (v/w) of volume of binding buffer and the mixture was incubated at $50\text{-}60^{\circ}\text{C}$ for 10 min with intermittent mixing of the microfuge tube by inversion. After dissolution of the gel piece the tube was vortexed briefly

before loading loading the contents onto the column. The solubilized gel mixture (800µl) was transferred on to GeneJET purification column and centrifuged at 13000 rpm for 1 min. To the same column, 700µl of wash buffer was added and centrifuged at 13000 rpm for 1 min. The column was then placed in a clean microfuge tube and $50\mu l$ of elution buffer was added to the column and centrifuged at 13000 rpm for 1 min. The eluted DNA was stored at -20°C until further use.

2.4.8.c. Dephosphorylation of vector

The digested vector DNA used in ligation was dephosphorylated with FastAP Thermosensitive Alkaline Phosphatase (Thermo scientific) to prevent self-ligation. Dephosphorylation reaction was performed in a $20\mu l$ reaction mix containing $1\mu g$ of vector and 1X buffer supplied by the manufacturer. The reaction was initiated by adding 1.0U of alkaline phosphatase. The contents were incubated at $37^{\circ}C$ for 10 min before inactivating the alkaline phosphatase by heating the reaction mixture at $80^{\circ}C$ for 20 min. The dephosphorylated vector was then stored at $-20^{\circ}C$ until further use.

2.4.8.d. DNA Ligation

The gel extracted vector and insert DNA were subjected to ligation by using T4 DNA ligase (Thermo scientific) and incubated at 22°C for at least 12hr according to the manufacturer's instructions. About 100ng of total DNA with a molar ratio (vector: insert) of 1:3 was used in ligation reaction. The following equation was used to calculate the appropriate amounts of DNA.

$$mass_{insert}[ng] = \frac{mass_{vector}[ng] \times size_{insert}[bp]}{size_{vector}[bp]} \times 3$$

2.5. Gene transfer methods

2.5.1. Transformation

The competent cells were initially thawed by placing them on ice. The ligation mixture/plasmid of interest was added and incubated on ice for 30 min. After 30 min, the cells were subjected to heat shock at 42° C for exactly 1 min 30 sec and immediately chilled on ice for 2 min. Further, 750μ l of LB broth was added and

incubated at 37° C for 45 min. The cells were collected by centrifugation and resuspended in 70μ l of LB broth and plated on required selective LB media. When needed 2% X-gal and 1mM IPTG was added along with required antibiotic. The plates were then incubated at 37° C for more than 12h for colonies to appear.

2.5.2. Electroporation

Cells were harvested from mid log phase cultures and made electro-competent by washing and incubating them on 10% ice cold glycerol. About 1 to 2µg of DNA was added to 100µl of electro-competent cells. The suspension was mixed by flicking the tube. The cells/DNA mixture was placed in a pre-chilled cuvette, between the electrodes and a pulse of 2.5 kV was applied for 4-5 sec using Genepulser (Bio-Rad, USA). Following the pulse, immediately 1 ml of autoclaved SOC medium [tryptone (2%), yeast extract (0.5%), NaCl (1mM), KCl (2.5mM), MgCl₂ (1mM), MgSO₄ (10mM), glucose (20mM)] was added to the cells. The cells mixed in the broth were taken in a 1.5ml tube and incubated at 37°C for 1 hour with constant shaking. After the incubation period, the cells were diluted appropriately in SOC medium and plated on LB agar plates containing appropriate antibiotics.

2.6. Protein Methods:

2.6.1. Solutions for SDS-PAGE

2.6.1.a. Acrylamide mix Solution: Acrylamide stock solution (30%) was prepared by mixing 30g of acrylamide and 0.8g of N, N'- methylene-bisacrylamide in 70ml of deionised H_2O . After the contents were dissolved completely the volume of the solution was made up to 100ml and stored at $4^{\circ}C$.

2.6.1.b. Resolving gel buffer: Tris base (181.71gm) was dissolved in 800ml of deionised H_2O and pH was adjusted to 8.8 by adding 30ml of conc. HCl. Then the volume was made up to 1000ml with deionised H_2O . The contents were autoclaved and allowed to cool to room temperature. SDS was added to the buffer to a final concentration of 0.3% by mixing adequate amounts of SDS stock solution. The prepared resolving buffer was then stored at room temperature until further use. When required the stock was used to get a final concentration of 390mM Tris-HCl, pH 8.8.

- **2.6.1.c. Stacking gel buffer:** Tris base (121.14g) was dissolved in 800ml of deionised H_2O and the pH was adjusted to 6.8 by adding 42ml of conc. HCl and finally the volume of the buffer was made up to 1000ml with deionised H_2O . This solution was autoclaved and allowed to cool to room temperature. SDS (0.4%) was used in preparation of stacking buffer. The prepared resolving buffer was then stored at room temperature until further use. When required the stock was used to get a final concentration of 130mM Tris-HCl, pH 6.8.
- **2.6.1.d. 2x SDS gel loading buffer:** Stock solution of 2x SDS loading buffer was prepared by mixing 1ml of 1M Tris-Cl pH 6.8, 2g SDS, 10mg of bromophenol blue and 10ml of glycerol in 25ml of deionised H_2O and kept at $45^{\circ}C$ for 10 min for complete solubilization of SDS. To this reagent 0.699ml of β -mercaptoethanol was added and finally made up to 50ml with deionised H_2O . The loading dye was then distributed in 10ml aliquots and stored at $-20^{\circ}C$. While running protein samples on SDS-PAGE, equal volume of this buffer was added to the protein sample, the contents were then boiled for 5ml min before loading on to the gel.
- **2.6.1.c. Staining solution:** 0.25g of coomassie brilliant blue (R-250) was dissolved in 50ml of methanol. To this solution 15ml of acetic acid was added and finally made up to 100ml using deionised H₂O.
- **2.6.1.e. Destaining solution:** Methanol (30ml) is mixed with 10ml of glacial acetic acid before making up the volume to 100ml using deionised H₂O. The destained gels were stored in 7% acetic acid solution.

2.6.2. Solutions for Protein Estimation:

- **2.6.2.a. Standard BSA:** Stock solution (10 mg/ml) of BSA (Bovine serum albumin) was prepared by dissolving 10 mg of BSA in 0.17 M NaCl. This solution was stored at -20° C.
- **2.6.2.b. Bradford's reagent:** Bradford's reagent was prepared by dissolving 10mg of coomassie brilliant blue G-250 in 50ml of 95% ethanol and adding 10ml of 85% (w/v) *ortho*phosphoric acid was added. After complete solubilization of the dye the solution was made up to 100ml with deionised H₂O. Finally, the reagent was filtered and stored in an amber bottle at 4°C until further use. While preparing standard graph appropriate amounts of BSA stock solution was added

to various tubes containing 1 ml of Bradford's reagent to get a final concentration of BSA in the range of 2, 4, 6, 8, $10\mu g$. The contents were then adjusted to 1.1ml by adding adequate amounts of deionised H_2O before storing the tubes in dark for 10 min. After completion of incubation period the OD of the reaction mix was measured at 595nm and the readings were used to prepare a standard graph was prepared by taking concentration of BSA on X-axis and OD values on Y-axis. The protein concentration in the unknown sample was measured by treating the sample in a similar manner and comparing its OD values with that the values obtained for BSA standards.

2.6.3. Solutions for Western Blotting:

- **2.6.3.a.** Towbin buffer (protein transfer buffer): Tris-base (3.03g) and glycine (14.4g) was dissolved in 500ml of deionised H_2O . After dissolution of the contents 200ml of CH_3OH was added and volume was made up to 1000ml with deionised H_2O .
- **2.6.3.b. TBS-T Buffer:** Tris-HCl: 1M, pH 7.6 (20ml), sodium chloride (8g) and Tween-20 (1ml) were added and volume was made up to 1000ml with deionised H_2O .
- **2.6.3.c. Blocking Reagent:** The solution of skimmed milk powder (10%) was prepared in TBS-T buffer and was used for blocking the PVDF membrane.
- **2.6.3.d. Membrane stripping solution:** Membrane stripping solution was prepared by dissolving 1.5g of glycine, 0.1g of SDS and 1ml of tween 20 in 100ml of deionised H₂O. The pH of this solution was adjusted to 2.2 with 6N HCl.

2.6.3.e. Primary antibody solution:

Primary antibody solution (2μ l) of either anti-His mouse antibody (Amersham Biosciences) or Anti-OPH antibody was added to 10 ml of blocking reagent to get a titre of 1:5000 and used for probing the proteins transferred onto PVDF membranes.

2.6.3.f. Secondary antibody solution:

The secondary antibody solution of anti-mouse goat antibody (2μ l) conjugated with HRP was added to 10 ml of blocking reagent to get a titre of 1:5000 and used as secondary antibody solution.

2.6.3.g. Ponceau S reagent: Ponceau salt (100mg) was dissolved in 100ml of 5% acetic acid.

2.6.3.h. Semi-Dry Western Blotting

After protein samples were separated by SDS-PAGE, the gel was soaked in Towbin buffer for 5 min. Meanwhile, PVDF membrane (Amersham Hybond-ECL, GE healthcare) was soaked in methanol for 10 min. Two layers of pre-soaked filter paper (in towbin) were placed on the positive electrode of the transfer apparatus and the transfer membrane and the gel were sandwiched between two additional layers of filter paper on top. The transfer membrane was facing the negative electrode at the bottom of the transfer apparatus, while the gel was placed on top. The apparatus was assembled according to the instructions by the manufacturer and the transfer was performed at 18V for 40 min in the transfer apparatus. After transfer of the proteins, the membrane was blocked in 10% skimmed milk suspension in TBST at room temperature for an hour, or at 4°C overnight, with shaking at 60 rpm. After blocking, the membrane was incubated with primary antibody solution using an appropriate dilution for 1h at room temperature with gentle shaking. The membrane was washed with TBST for 10 min and, if appropriate, incubated with the secondary antibody at the correct dilution for 1h with shaking. The membrane was finally washed three to five times with TBST.

2.6.4. Protein Precipitation:

The protein sample was mixed with two times the sample volume of methanol, one sample volume of chloroform and three times the sample volume of deionised H_2O . The precipitated sample was centrifuged at 13000 rpm for 5 min and the upper layer was discarded. It was washed with three sample volumes of methanol and centrifuged at 13000 rpm for 5 min. The supernatant was carefully removed and the pellet was air dried. The pellet obtained was finally resuspended in 2x Laemmli buffer or any other buffer of choice.

2.7. Enzyme assays and preparation of reagents:

2.7.1. Reagents for β-galactosidase assay

Z buffer: The Z-buffer (pH 7.0) was prepared by dissolving 40mM Na₂HPO₄,

60mM NaH₂PO₄, 10mM KCl, 1mM MgSO₄ and 50mM β -mercaptoethanol. This solution was stored at 4°C until further use.

ONPG (ortho-Nitrophenyl β-galactoside) substrate solution: About 400mg of ONPG was dissolved in 100ml of phosphate buffer prepared by dissolving $Na_2HPO_4.7H_2O$ (1.61g) and $NaH_2PO_4.H_2O$ (0.55g) in 90ml deionised H_2O (pH 7.0). This solution was then transferred to an amber bottle and stored at $4^{\circ}C$ until further use.

Stop solution: Sodium carbonate (1M) was prepared by dissolving 12.4g of sodium carbonate in 100ml of deionised H₂O.

2.7.2. β-galactosidase activity assay:

This assay was performed by the protocol described by (Miller, 1972). About 500µl of culture was taken from a 10ml culture and cells were harvested by centrifuging at 6000rpm for 10min. Then supernatant was discarded and the pellet was resuspended in same volume of chilled Z-buffer. The harvested cells were then permeabilized by adding 100µl of choloroform, 50µl of 0.1% SDS and mix the cells by vortex and kept at 28°C for 5 min. After incubating at 28°C, the volume of the reaction mixture was made up to 1ml using Z-buffer. In order to initiate the reaction 0.2ml of ONPG (4mg/ml) was added to the cell suspension. The samples were incubated at 28°C until the faint yellow color is developed. The reaction was stopped by adding 0.5ml of 1M sodium carbonate solution. The time length of incubation was recorded. The reaction mixture was then centrifuged at 13000rpm for 1min and 1ml of clear supernatant was taken to check the absorbance at 420nm and 550nm. The β-galactosidase activity was measured by monitoring the yellow color (due to the release of orthonitrophenol) from substrate ONPG. The β-galactosidase activity was calculated by using the below given formula and the specific activity was represented as Miller units.

Miller Units = $\frac{1000x [(0D420-1.75x0D550)]}{TxVx0D600}$

Where,

T = time gap between addition of ONPG and addition of sodium carbonate

solution in min

V = volume of the culture added to the reaction mixture

 $A600 = OD_{600}$ (of the culture)

 $A420 = OD_{420}$ (of the reaction mixture)

2.7.3. Reagents for Methyl parathion activity assay

CHES buffer: CHES buffer (200mM) was prepared by adding 4.15g of CHES to 80ml deionised H_2O at pH 9.0. The solution was made up to 100ml with deionised H_2O .

Substrate solution: Methyl parathion stock (0.1M) was prepared by dissolving 26.3mg methyl parathion in 1ml of methanol. This solution was stored at 4° C until further use. Whenever required, $200\mu M$ of the solution was used from the substrate stock.

Assay Buffer: The activity assay buffer contains 20mM CHES, pH 9.0 and $50\mu M$ CoCl₂.

2.7.4. Parathion Hydrolase Activity Assay:

The Reaction mixture contained methyl parathion (200 μ M) in 20mM CHES buffer (pH 9.0) (1ml). The reaction mix was incubated at 37°C for 30 min. An increase in the absorbance at 410nm was determined, due to formation of *p*-nitrophenol (Chaudhry et al., 1988). The concentration of *p*-nitrophenol formed was determined using the extinction coefficient of PNP (17500/M/cm).

Specific activity = μ M/mg of protein/min

Chapter-9

Background:

As stated in introduction, OPH exists as a membrane associated multiprotein complex in Sphingobium fuliginis ATCC 27551. It's associated proteins are the components of outer membrane transport system, also known as TonB dependent transport (TonBDT) system. TonBDT system comprises of an outer membrane transporter (TonR), and inner membrane localized energy transducer TonB, and proton motif pump components (ExbB/ExbD). The OPH physically interacts with ExbB/ExbD and TonB (Gudla et al., 2019). The outer membrane transport system plays a key role in acquisition of various nutrients, including ferric enterobactin (Fe-Ent). The OPH interacts with ferric enterobactin by binding to an unique site located distinctly away from the active site (Parapatla et al., 2020). Work done in our lab has recently demonstrated involvement of OPH in accelerating iron uptake. The *S. fuliginis* TonBDT system (SfTonBDT) reconstituted in E. coli has shown OPH dependent increase in iron uptake (Parapatla et al., 2020). Based on these observations the sequence of the opd gene, coding OPH, is carefully examined to identify cis-elements that respond to intracellular iron concentration. Experiments described in the first chapter are performed to identify regulatory elements such as fur-box and Iron Response Element (IRE) in the sequence of opd gene and opd mRNA.

3.1. Objective specific methodology:

Table 3.1: Primers used in this study

Primer	Sequence (5'-3')	Explanation
Name		
5' RACE Outer FP	GCTGATGGCGATGAATGAACACTG	Adapter specific outer forward primer used while performing 5' RACE.
NS1 RP	ATAGGACCGCGCACGGTATTGATCC	opd specific outer reverse primer used while performing 5'RACE.
5' RACE	CGCGGATCCGAACACTGCGTTTGCTGGC	Adapter specific inner
Inner FP	TTTGATG	forward primer used while
		performing 5' RACE.
NS2 RP	TTTGCATGCTGCCCCTT	opd specific inner reverse

		nested primer used while performing 5'RACE.
NS3 FP	AATTCGCATTGACATCTGACGCGTCAAC AGTAAAAGACTGCA	Forward (FP)/ Reverse primers (RP) to generate
NS3 RP	GTCTTTTACTGTTGACGCGTCAGATGTC AATGCG	core <i>opd</i> promoter.
NS4 FP	AATTCTAAAAGAAACAACCGGTTCACTG CA	Forward (FP)/ Reverse primers (RP) used to
NS4 RP	GTGAACCGGTTGTTTCTTTTAG	generate partial <i>opd</i> promoter.
NS5 RP	CCGTAATGGGATAGGTCACGTTGG	lacZ specific Reverse primer used for sequencing of promoter fusions
NS6 FP	AACGAGAAGGGTTGTGCTCAAGTC	Forward primer used to perform real time PCR to quantify the transcripts of opd
NS6 RP	TGTGCTCGTGAGTCAGTGTGAAA	Reverse primer used to perform real time PCR to quantify the transcripts of opd
NS 7 FP	ACGGACGCTAATACCGGATGA	Forward primer used to perform real time PCR to quantify the transcripts of 16s rRNA
NS 7 RP	GTACTGTCATTATCATCCCGGG	Reverse primer used to perform real time PCR to quantify the transcripts of 16s rRNA

Table 3.2: Strains used in this study

Strain Name	Genotype or Phenotype	Reference
E. coli DH5α	λsupE44, ΔlacU169 (Δ80 lacZΔM15) hsdR17 recA1 endA1 gyrA96 thi1 relA1	(Hanahan, 1983)
Sphingobium fuliginis ATCC 27551	Wild type strain, Sm ^r , PmB ^r , opd+	(Kawahara et al., 2010; Sethunathan & Yoshida, 1973)

Table 3.3: Plasmids used in this study

Plasmid Name	Construct description	Reference
pTZ57R/T	Amp ^r , TA vector used for cloning of PCR products	Thermo Scientific
pMP220	Tet ^r , promoter probe vector	(Spaink et al., 1987)

pNS1	Amp ^r , generated by cloning 5' RACE	This study
	product	
pNS2	Tet ^r , generated by cloning full	This study
	length promoter region of opd as	
	EcoRI-PstI fragment in pMP220	
pNS3	Tet ^r , generated by cloning partial	This study
	promoter region of opd as EcoRI-	
	PstI fragment in pMP220	

3.4.1. *In silico* studies:

The potential promoter and regulatory motifs present upstream of opd were predicted by using Bprom (Solovyev Victor and Salamov Asaf, 2010) and MEME Suite (http://meme-suite.org/tools/meme) respectively. While predicting opd promoter, 500 bps upstream sequence of opd gene starting from the translation start site was submitted to the webserver. The tool predicts promoter elements based on the conserved promoter motifs. To identify the presence of sequence motifs that serve as binding sites to any iron regulatory transcriptional factors, the entire opd gene along with its predicted promoter was given as input to **MEME** Suite. Further analysis was done to identify regulatory sequences/structures found in mRNA by using Mfold (http://www.mfold.org/) (Zuker, 2003) and SIREs (http://ccbg.imppc.org/sires/) (Campillos et al., 2010).

3.4.2. Growth and expression analysis of OPH under differential iron concentration:

The expression of OPH was analyzed under varying iron concentrations. Prior to performing the expression studies all the glassware and the minimal media used for growth was made iron free by following procedures described in general methods section. The culture of *S. fuliginis* was inoculated in LB broth with polymixin B ($10\mu g/ml$) and incubated in a shaker at 30° C. The cells at $0D_{600}$ of 0.5-0.6 were harvested and sub-cultured in minimal media containing sufficient iron ($10\mu g$ Fe/ml) to facilitate acclimatization. The cells were harvested and reinoculated in iron sufficient and limiting ($0.02\mu g$ Fe/ml) media at an Optical density of 0.05. The cell growth was analyzed for 72h (Fig 3.5.2). Equal number

of cells was taken from both conditions and OPH protein expression was analyzed by carrying out western blot using anti-OPH antibodies.

3.4.3. Absolute quantification of *opd* transcripts

The quantification of *opd* specific transcripts was done by performing qPCR. The cultures of S. fuliginis were grown as described above under iron sufficient and limiting conditions. The total RNA was isolated from equal number of cells and the isolated RNA was used to synthesize cDNA. Eppendorf qPCR machine operating with Realplex 2.2 software was used to perform qPCR using 30 ng cDNA template, 0.25 µM primers, and Brilliant SYBR Green reagents (Biorad). To quantify the expression levels of opd gene the amplicon (~150bp) was cloned into pTZ57R/T vector. In a similar way 16S rRNA gene was also cloned, which served as an internal control. Using the constructs as template, a 10 fold dilution series was made resulting in a set of standards containing 10^2 - 10^7 copies of the target gene. The standards and test samples were assayed in the same run. A standard curve was constructed, with the logarithm of the initial copy number of the standards plotted along the X-axis and their respective CT values plotted along the Y-axis. Data were normalized to 16s rRNA and analysed by absolute quantification by comparing the CT value of the test sample to a standard curve. Finally, the copy number of opd in test sample was obtained by interpolating its CT value against the standard curve.

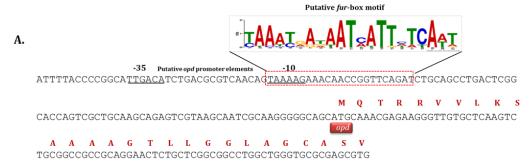
3.4.4. Rapid Amplification of cDNA Ends (RACE):

The RACE experiments were performed using the FirstChoice® RLM-RACE Kit (Ambion Life technologies) to validate a predicted promoter and to determine transcription start site of *opd* gene. The RNA was extracted from *S. fuliginis* cells grown to an OD of 1 in LB following the trizol method of RNA isolation described elsewhere in the thesis. The total RNA was isolated and its integrity was checked by analyzing it on agarose gel. Then it was treated with DNase I to obtain RNA free from DNA. The purity of RNA was confirmed by performing PCR reaction using *opd* specific primers. After confirming that the isolated RNA is free from

DNA contamination, it was used to perform 5' RACE experiment. Initially, 10µg of DNase treated RNA was dephosphorylated by with 1.0U of Calf Intestinal Phosphatase (CIP) for 1 h at 37°C. The reaction was terminated and the RNA was extracted using acid phenol: chloroform (3:1) and then with chloroform. Later it was precipitated using cold isopropanol and 70% ethanol. The pure RNA obtained was resuspended in nuclease-free water. Subsequently, it was treated with Tobacco Acid Pyrophosphatase (TAP) and incubated at 37°C for 1h. Then a 45-mer RNA adapter was ligated to the 5' end by adding T4 RNA ligase to the TAP treated RNA and incubated for 1 h at 37°C. The adapter-ligated RNA was then reverse transcribed before incubating at 42°C for 1 h. The cDNA thus synthesized was subsequently used to amplify the 5' end of opd transcript by performing an outer 5' RLM-RACE PCR (which uses adapter-specific outer forward primer and gene-specific outer reverse primer). Then a Nested PCR was performed by using inner 5' RLM-RACE PCR (which uses adapter-specific inner forward primer and gene-specific inner reverse primer). The amplicon obtained was cloned in pTZ57R/T vector and the recombinant plasmid was designated as pNS1. This plasmid was subjected to sequencing using adapter-specific primer to establish the transcription start point of opd.

	Stage	Reps	Temp	Time
Initial denaturation	1	1	94°C	3 min
Amplification	2	35	94°C	30 sec
			60°C	30 sec
			72°C	30 sec
Final Extension	3	1	72°C	7 min

3.4.5. Construction of transcriptional fusions:


The transcriptional fusions of *opd* with a *lacZ* reporter, were constructed by cloning promoter elements of *opd* in pMP220 (promoter test vector). The complementary oligos containing full length (NS3FP/NS3RP) and partial (NS4FP/NS4RP) promoter regions were annealed independently. These set of self-complementary oligos appended with *EcoRI* and *PstI* were annealed, then ligated with pMP220 digested with the similar enzymes. Post-ligation, the transformants obtained after transformation of the ligation mixture into *E. coli*

DH5 α were selected on LB plates supplemented with required amounts of the tetracycline and X-gal. The recombinant colonies were screened for the presence of insert by performing sequencing reaction using NS5RP. The resulting *opd-lacZ* fusions containing full length promoter and partial promoter were designated as pNS2 and pNS3 respectively.

3.5 Results:

3.5.1. Transcriptional regulation of *opd* gene:

The *in silico* studies performed using Bprom tool have predicted the presence of promoter hexameric sequences at -10 (TAAAAG) and -35 (TTGACA) regions. These promoter hexamers have shown resemblance with the consensus *E. coli* promoter sequences. Interestingly the MEME Suite has detected the existence of a putative *fur*-box motif, overlapping the predicted -10 hexameric sequence of *opd* promoter (Fig. 3.5.1, panel A).

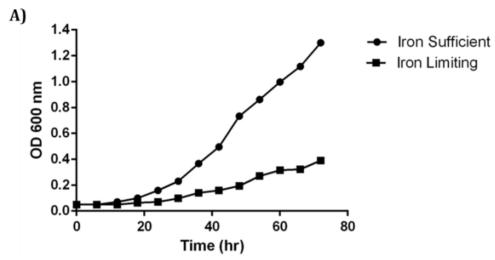
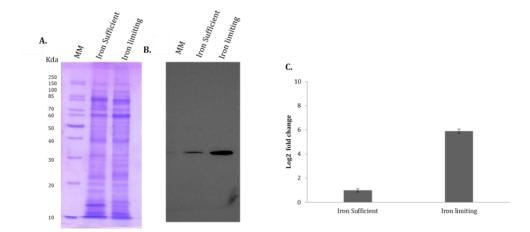
Fig.3.5.1. Prediction of the *fur***-box motif and promoter elements of** *opd* **gene.** The putative promoter elements are underlined. The putative *fur*-box motif overlapping the -10 promoter hexamer is highlighted in a dotted red box.

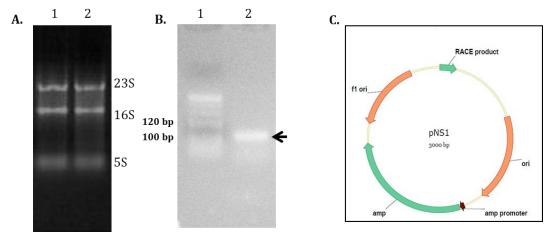
3.5.2. The *opd* gene exists as a part of iron regulon:

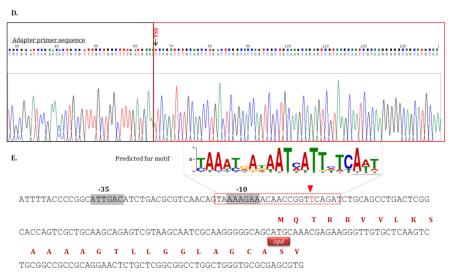
After gaining insights through *in silico* studies further experiments were conducted to assess if *opd* existed as a part of iron regulon. Initially *S. fuliginis* cells were grown under iron limiting and iron sufficient conditions. As shown in Fig.3.5.2 the cells have grown slowly under iron limiting condition. This is rather expected growth phenotype and this type of growth pattern is commonly seen in all most all bacteria when grown under iron limiting conditions.

The culture grown under these two physiological conditions were then

harvested and the levels of OPH expression determined by performing western blot. The protein profile found in cells grown under iron limiting and iron sufficient conditions are shown in Fig.3.5.3 panel A. There exists no visual difference in protein profile of the cells grown under these two physiological conditions. However, the western performed using anti-OPH antibodies has shown at least two-fold increase in expression of OPH under iron limiting condition, suggesting that expression of OPH is induced under iron limiting condition (Fig.3.5.3, panel B). Further experiments were conducted to assess whether the enhanced OPH production is due to increased transcription of opd gene. An absolute quantitative real-time PCR was performed to quantify opd specific transcripts in cells grown under iron sufficient and iron limiting conditions. Interestingly a three-fold increase in opd specific transcript was found in cells grown under iron limiting conditions when compared to the cells grown under iron sufficient conditions suggesting that there is an increased transcription of opd gene in cells grown under iron limiting condition (Fig.3.5.3, panel C).


Fig.3.5.2. S. fuliginis growth under iron sufficient and limiting conditions


Fig.3.5.3. Influence of iron on the expression of OPH. Panel A indicates 12.5% SDS-PAGE profile of soluble proteins extracted from the cell grown in iron sufficient (lane 2) and limiting conditions (lane 3). The molecular size markers are loaded in lane 1. The corresponding western blot probed with anti-OPH antibodies is shown in panel B. Increase in expression of OPH in cells grown under iron limiting condition (lane 2) is seen as an increase in the intensity of OPH specific signal. The quantitative real-time PCR profile is shown in panel C. Increase (three-fold) in *opd* specific transcript is seen in cells grown under iron limiting conditions.

3.5.3. Determination of transcription start site (TSS) of opd:

The *in silico* studies have indicated existence of a promoter motif upstream of *opd*. The functional status of this predicted promoter was validated by performing both in vitro and in vivo studies. Initially, the 5' RACE was performed to determine exact TSS of opd gene. The transcriptional start site analysis was carried out as described in methods section described in this chapter. A-100 bp amplicon was obtained from a PCR with the adapter-specific forward and opd specific inner reverse primer (Fig. 3.5.4, panel B). This amplicon was then cloned and the resulting recombinant plasmid, pNS1 was subjected to sequencing using adapter specific primer. The sequence of RACE specific amplicon is shown in Fig.3.5.4, panel D. The sequence when read from 5' to 3' direction clearly shows sequence of the adapter primer ligated to the opd mRNA. The adapter specific sequence was then followed by opd gene sequence and it started with 'T' suggesting that the transcription from opd gene is initiated from the T residue. Interestingly, the promoter hexamers predicted using in silico tools were exactly -10 and -35 base pairs upstream of the TSS suggesting that both in silico and in vitro studies are in total agreement in identifying the promoter motif of opd gene.

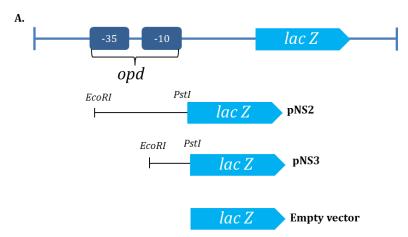
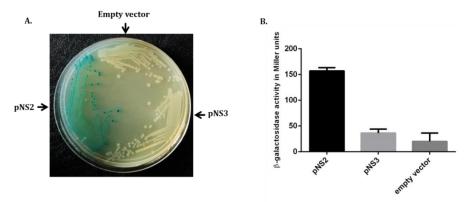
Fig.3.5.4. Detection of 5' RACE product. Panel A indicates 1% formaldehyde showing the integrity of the isolated RNA from *S. fuliginis* cells. Panel B. Agarose gel (2.5%) showing the amplicon obtained after performing nested PCR reaction. The 113bp amplicon is shown with a black arrow. Panel C shows the plasmid pNS1 map indicating the cloning of RACE product in vector pTZ57R/T.

The sequence of RACE product. Panel D indicates the sequence chromatogram of the RACE product. The adapter specific sequence and sequence corresponding to *opd* gene are indicated with black and red colored boxes. The TSS of *opd* gene is indicated by an inverted black arrow. Panel E shows the *opd* gene sequence showing TSS (shown with an inverted red triangle) and promoter and putative *fur*-box motif. The sequence shown with grey shade indicates -10, -35 hexamers of the promoter. The predicted *fur*-box motif is shown in red dotted box.

3.5.5. Functional validation of opd promoter:

The promoter motif mapped following the determination of transcription start site was validated by performing *in vivo* studies. The *opd-lacZ* fusions were constructed by including both -35 and -10 promoter hexamers. The resulting plasmid pNS2 contains the core promoter of *opd* gene fused to promoter-less

lacZ gene of pMP220 (promoter test vector). Another opd-lacZ fusion, pSN3 was generated by fusing partial promoter (only -10 hexamer) of opd gene to lacZ. The construction strategies followed while generating opd-lacZ fusions are shown in Fig.3.5.5. The sequence of the opd-lacZ fusions were determined to assess proper cloning of opd promoters in promoter test vector. After ascertaining proper construction of promoter fusions, the plasmids pSN2 and pSN3, were transformed independently into the *E. coli* DH5α cells along with vector pMP220. These cells were then used to assay promoter activity by measuring the β-galactosidase. Initially the cells containing promoter fusions were plated on X-gal containing LB plates along with control culture having empty vector. As shown in Fig.3.5.5.a, panel A only cultures having full length promoter-lacZ fusion (pNS2) turned into blue color. The cells containing empty vector or containing opd-lacZ fusion generated by cloning only -10 hexamer remained pale in color suggesting lack of *lacZ* activation in these cells. Further quantification of β -galactosidase activity in these cells reconfirmed the results obtained through qualitative assays. As shown in Fig.3.5.5.a, panel B, 157 units of β-galactosidase activity were found in cells containing pNS2 as against to 36 units obtained in cells harbouring pNS3. These results indicate that the promoter element determined through 5' RACE is functional.

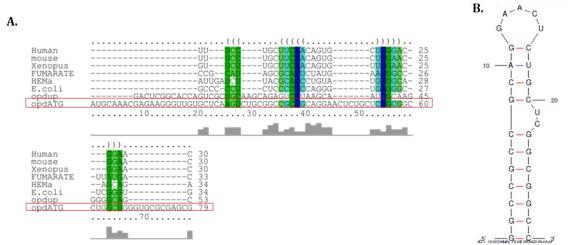

Fig.3.5.5. Construction strategy of opd-lacZ fusions

Fig.3.5.5.a. Activity of the *opd* **gene promoter.** Panel A indicates qualitative β-galactosidase activity assay. Panel B shows the histograms indicating β-galactosidase activity as Miller units in *E. coli* DH5 α cells transformed with pNS2, pNS3 and empty vector, pMP220.

3.5.6. Post-transcriptional regulation of *opd* gene:

Further investigation was carried out using Mfold and SIREs web server to identify the presence of regulatory elements that contributes for the posttranscriptional regulation of opd gene. Interestingly, a structural element that matches with the structure of Iron Response Element was identified in the 5' coding region of opd mRNA (Fig.3.5.6). An IRE molecule comprises of a single stem-loop and a bulge region (Walden et al., 2006). IREs have been identified in a variety of prokaryotes and eukaryotes, but their validations have been limited to eukaryotic (ferritin and transferrin receptor) mRNA (Walden et al., 2012). As a similar structure was identified in opd gene, attempts were made to elucidate base-pairing interaction among the predicted IREs by using dot-bracket notation (Mattei et al., 2014). This was performed with the aid of RNA secondary prediction web structure server (https://rna.urmc.rochester.edu/RNAstructureWeb/). Fig.3.5.1B, shows base pairing interaction of the stem-loop region of opd IRE, in which symbol '.' codes for an unpaired base and symbol '()' for an open base pair. This clearly shows the conservation of stem-loop structured IREs, in various mRNAs coding for proteins involved in iron metabolism.

Fig.3.5.6. Structure of IRE-like element identified in *opd* **mRNA**. Panel A indicates structural comparison of IRE elements identified in prokaryotic and eukaryotic m RNAs. The *opd* mRNA which forms similar IRE-like secondary structure is highlighted in red box. The IRE-like structure formed at the 5' coding region of *opd* mRNA is shown in panel B.

3.6. Discussion:

Iron is indispensable for cell growth and survival for most bacteria. Organisms respond to environmental cues such as iron availability, by regulating the expression of many gene clusters as an iron stimulon, with the help of various transcriptional regulators (Baichoo & Helmann, 2002). Ferric uptake regulator (Fur), is one of the best characterized master regulator of iron-dependent gene expression (Hantke, 2001; Quatrini et al., 2005). Fur is a DNA binding protein that interacts with consensus motif known as a fur-box. It utilizes Fe^{2+} as a corepressor and blocks the target gene transcription (Bagg & Neilands, 1987).

In addition to Fe²⁺, DNA binding by Fur can be activated by other divalent metal ions *in vitro* (Bagg & Neilands, 1987; de Lorenzo et al., 1987; Ochsner et al., 1995; Mills & Marletta, 2005; Gao et al., 2008). The *fur*-box motifs are typically located in proximity of the -10 and/or -35 σ_{70} promoter elements of target genes (Escolar et al., 1999). It consists of a 19-bp inverted repeat consensus sequence (5' GATAATGATAATCATTATC 3') in *E. coli* (de Lorenzo et al., 1987). Fur protein typically binds to the target DNA that has recognizable sequence similarity to the consensus of *E. coli fur*-box motif. The Fur interacts with consensus of three hexameric repeats 5'-NAT(A/T)AT-3' regardless of

orientation and number (de Lorenzo et al., 1987; Escolar et al., 1999; Cornelis et al., 2009). Usually, *fur*-boxes have a high content of adenine and thymine bases (Berg et al., 2020).

Various bacteria show a varying range of 50 to 80% sequence identity with the consensus sequence (Baichoo & Helmann, 2002; Sebastian et al., 2002; Thompson et al., 2002; Ahmad et al., 2009; Pedersen et al., 2010). Canonical *fur*box motifs have been identified in various genera such as *Legionella pneumoniae* (Hickey & Cianciotto, 1994), *Campylobacter jejuni* (Chan et al., 1995), *Pseudomonas aeruginosa* (Ochsner & Vasil, 1996), *N. gonorrhoeae* (Desai et al., 1996), *V. anguillarum* (Chai et al., 1998), *V. cholerae* (Watnick et al., 1998) and *Y. pestis* (Fetherston et al., 1999). Incomplete target *fur*-box consensus has also been identified in certain microbes (Friedman & O'Brian, 2003; Wexler et al., 2003).

A *fur*-box motif was identified, overlapping the -10 hexameric sequence and TSS of *opd* gene. The putative *fur*-box was rich in A/T bases (~ 65%). The sequence similarity between *fur*-box motif of *opd* gene was compared with the consensus *fur*-box motif found in other bacterial genes involved in regulation of iron uptake. There exists 50% identity and 82 % similarity between consensus *fur*-box motif and the predicted *fur*-box motif identified in *opd* gene (Fig. 3.6.1).

```
S.f_fur TAAAAGAAACAACCGGTTCAGAT
E.coli_fur GATAATGATAATCATTATC----
*:** .*:.*:*
```

Fig.3.6.1. Comparison of fur-box motif of opd gene with the consensus fur-box motif.

In most Gram-negative bacteria, including *E. coli*, Fur acts as transcriptional regulator and modulates the transcription of iron uptake genes to control cytoplasmic levels of iron (Seo et al., 2014). Fur in coordination with a novel sigma factor, otherwise known as Extra-cytoplasmic factor (ECF) modulates the transcriptional regulation of genes required for uptake of iron. Genes encoding iron starvation sigma factor are expressed constitutively along with its cognate anti sigma factor (Cornelis et al., 2009). Under iron sufficient condition they exist in inactive state. The membrane associated anti-sigma

factor sequesters the ECF sigma factor and takes it to the membrane, preventing binding of ECF sigma factor to the promoters of Fur regulated genes. When the anti-sigma factor receives an activation signal, the proteolysis mediated by RseP/MucP cleaves the trans-membrane domain of the anti-sigma factor and facilitates its release into cytoplasm. Thus activated form of ECF sigma factor interacts with core RNA polymerase and binds to the genes responsible for theuptake of iron, as Fur protein is no longer capable of binding to the Fur box in the absence of iron (Llamas et al., 2014). Under iron-sufficient conditions, the Fe²⁺-Fur (holo-Fur) protein is active and hence can bind to *fur*-box motif, blocking access to ECF-RNA polymerase (RNAP) complex to DNA causing repression of its cognate genes but under iron deplete conditions, Fur (Apo-Fur) protein is inactive and loses the ability to bind the *fur*-box motif, exposing the promoters of gene involved in iron uptake causing de-repression of iron responsive genes (Calderwood & Mekalanos, 1988).

The experimental results described in this chapter show the presence of a *fur*-box motif overlapping the promoter region of *opd* gene. Further, the enhanced expression of OPH is apparent in *S. fuliginis* cells grown under iron limiting condition (Fig.3.5.3). Supporting this observation, the qPCR data has clearly shown existence of three fold increase in *opd* specific transcripts in cells grown under iron limiting condition. The de-repression of *opd* gene expression is very clear from the data generated through western blot and qPCR experiments. Existence of *fur*-box motif overlapping -10 promoter region if seen together with elevated transcription *opd* gene and expression of OPH clearly suggests existence of Fur mediated regulation in *opd* gene expression. Further experiments are therefore planned to elucidate the role of Fur protein in regulation of *opd* gene expression.

In eukaryotes and certain prokaryotes, iron homeostasis is mostly mediated by post-transcriptional gene control mechanisms (Martínez-Pastor et al., 2013). This kind of regulation is caused by certain stem-loop RNA structures which are approximately ~30 nucleotides long known as Iron-Response Elements (IREs) (Rouault, 2006; Muckenthaler et al., 2008). They are located either in the

5' or 3' untranslated regions of the mRNA. In an iron dependent manner, IREs interact with Iron Regulatory Proteins (IRPs). They regulate iron responsive genes by either activation or repression of the IRE containing mRNAs. The classical examples of eukaryotic mRNA containing IREs are ferritin and transferrin receptors (Walden et al., 2006). The cellular iron status determines the recognition and binding of IRPs to IREs. Under low iron levels, IRPs bind to IREs, but under iron excess conditions, no interaction is observed. The binding position of IRE on the transcript determines the fate of IRP-bound mRNA (Martínez-Pastor et al., 2013). The bacterial IREs have been less characterized till date yet there are few examples of IREs identified in bacteria, which have the conserved structural motif. The interactions between IRE and IRP are in the picomolar range and are strong and selective (Walden et al., 2006). The identified eukaryotic IREs contain a conserved sequence of 5'- CAGUGX -3' in their loop region, where X can be either an Adenine, Cytosine or Uracil but never a Guanine residue (Addess et al., 1997). In eukaryotic IREs sequence of loop region and the bulge 'C' are critical for the interaction of IRE/IRP. Deletion or substitution of any base in the loop region, significantly reduces its interaction with the IRP (Jaffrey et al., 1993; Walden et al., 2012).

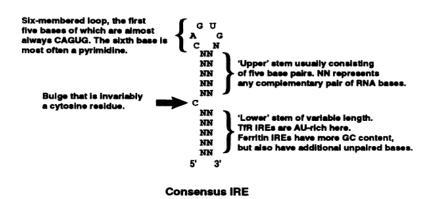
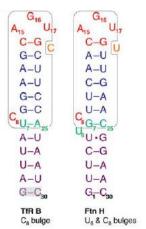



Fig.3.6.2. Consensus structure of IRE based on the IREs of known ferritin and transferrin receptor mRNAs (Jaffrey et al., 1993)

Fig.3.6.3. Secondary structures of transferrin receptor and ferritin IREs (Walden et al., 2012)

As stated earlier the bacterial IREs are not so well characterized. Therefore, an attempt was made to gain an in-depth view on bacterial IREs. The sequences and structures of 14 bacterial IREs found in Rfam database (http://rfam.xfam.org/family/RF02253#tabview=tab4) were procured and compared with the predicted IRE found in *opd* mRNA. Mapping of different bacterial IRE with *opd* mRNA, gave an idea of the sequence conservation in the critical loop region. Nearly in 12 out of 14 bacterial IREs have a 5' bulge and 6 out of 14 IREs have a 3' bulge, although nucleotide in the bulge was not necessarily a 'C'. The secondary structure of *opd* mRNA showed that the stem-loop remained unaltered even in the presence of its 5'UTR. The literature suggests that the 'C', which is present in the bulge region of IREs, is in-dispensable for the binding of IRP.

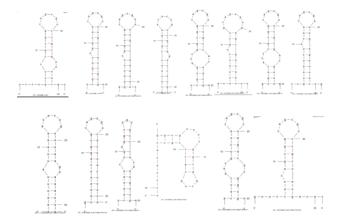
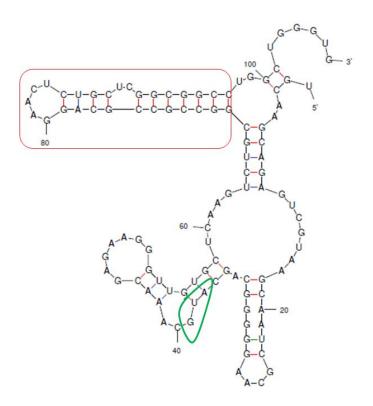



Fig.3.6.4. Predicted secondary structures of 14 bacterial IREs from Rfam

Fig.3.6.5. Predicted secondary structure of IRE-like element (*IRE*^{opd}**) along with the 5'UTR region of** *opd* **mRNA.** The *opd* start codon and IRE-like element are indicated in green and red colored boxes respectively.

Table.3.6. List of bacterial IREs retrieved from Rfam database.

G 11	G C.1		
S.No.	Sequence of the	Organism	Name of the gene
	loop region (5'- 3')		controlled
1	ACACUG	Shewanella violacea DSS12	glutaryl-CoA
			dehydrogenase
			greatly an egential e
		Anhanizamanan flag gayaa	noly(A) nolymores
		Aphanizomenon flos-aquae	poly(A) polymerase
		LD13	
2	CAGUGU	Arthrobacter aurescens TC1	putative ABC
			transporter, ATP-
			binding protein
			01
		Haematospirillum jordaniae	DNA helicase II
		Tracmatospirmam jordamae	Bivii neneuse ii
		Lagianalla an LagA	Transpagge IS66
		Legionella sp. LegA	Transposase IS66
			family protein
		Bacillus sp. FJAT-27986	lipid hydroperoxide
			peroxidase
			-
		Saccharothrix sp. NRRL B-	Hypothetical protein
		16348	
		10310	

3	GCAGUGUG	Marinobacterium sp. ST58-	Hypothetical protein			
4	AGU	Rufibacter sp.DG15C	peptidase S66			
5	GCAG	Faecalibacterium prausnitzii	Holliday junction			
		SL3/3	DNA helicase subunit			
			RuvA			
6	CAGCGC	Natronomonas pharaonis	Sec-independent			
		DSM 2160	protein translocase			
			protein (TatC)			
		Desulfovibrio sp. 6_1_46AFAA	hypothetical protein			
7	CAGCGU	Lysobacter sp. Root96	hemolysin III			
8	CAGUGA	Candidatus Izimaplasma sp.	Peptidyl-prolyl cis-			
		HR1	trans isomerase B			
9	GAACU	Sphingobium fuliginis	Organophosphate			
		ATCC27551	hydrolase			

After performing initial analysis on the structure of bacterial IREs, the sequence of loop region of *opd* IRE (5' GAACU 3') was manually compared with the IREs found in 14 different bacteria. Interestingly, four bases out of five bases found in the loop region of *opd* IRE are conserved. The first base in the loop region of bacterial IREs is majorly a purine (R). It is 'G' in *opd* IRE. The second base had an equal propensity of being 'A' or 'C'; the *opd* IRE has 'A'. The third base of bacterial IREs is always a purine (R); the *opd* IRE has 'A'. The fourth base was pyrimidine majority of bacterial IREs (Y); the *opd* IRE has 'C'. Finally the fifth base in majority of bacterial IREs is a Pyrimidine (Y); interestingly, the *opd* has 'U' at this position (Fig. 3.6.6). Further the bulge region of *opd* IRE was mapped against seven IREs having a 3'bulge. This comparison suggested that the first base in bulge region is usually a purine in all bacterial IREs, however, in *opd* IRE it is 'U'. There exists an equal propensity of 'C' or 'A' conservation in the second position of bulge region. The *opd* IRE has 'C' residue at similar position (Fig. 3.6.7).

```
Loop region

1) A C A C U G - -

2) C A G U G U - -

3) G C A G U G U G

4) - - A G U - - -

5) G C A G - - -

6) C A G C G C - -

7) C A G C G U - -

8) C A G C G A - -

9) G A A C U - - - opd
```

Fig. 3.6.6. The mapping of sequences of loop region as mentioned in table 3.6

```
Bulge region

1) G A A A A

2) G G A G

3) C A C U

4) G A C G

5) A G A A

6) A C A A

7) C A C G

8) C U C G - opd
```

Fig.3.6.7. Comparison of the 3' Bulge region of IREs. The two nucleotides in 3' bulge are indicated by bold characters

The data generated in the first chapter has clearly shown i) existence of *fur*-box motif overlapping the -10 region of the *opd* promoter motif, ii) shows iron dependent transcriptional regulation and finally iii) an IRE-like element that shares structural similarity to both prokaryotic and eukaryotic IREs. Further experiments were designed to elucidate the role of *fur*-box motif and IRE-like element in regulating the expression of *opd* gene. Details of experimental design and the inferences drawn from the results are described in subsequent chapters.

Chapter-99

Background:

The objective of work described in the current chapter is to understand the functional status of predicted iron-responsive cis-regulatory elements identified in *opd* gene. In bacteria, gene regulation occurs in various levels. The initiation of gene transcription is regulated by transcriptional factors, usually transcriptional regulator proteins which modulate promoter activities. These proteins affect the expression of their cognate genes by binding to the promoter region of the genes and affecting transcription either positively or negatively. This subsequently alters abundance of their mRNAs and proteins. Besides transcriptional regulation, post-transcriptional regulation occurs through mechanisms, such as mRNA processing, regulation using riboswitches, or by antisense and small regulatory RNA (DebRoy, 2014). This kind of regulation (either transcriptional or post-transcriptional) occurs in an iron dependent manner in some bacteria and many eukaryotes.

Iron is essential as well as detrimental to cells, majorly due to production of ROS. Thus, the influx of iron into the cell and its intracellular processing is compactly regulated. This kind of regulation is carried out by the iron-dependent transcriptional regulator Fur (Ferric Uptake Regulator), in many bacteria. Fur coordinates with the concentration of intracellular Fe²⁺ and with the expression of genes involved in its metabolism (Mey et al., 2005). This effect is brought about by the cue of cytoplasmic ferrous ion concentration. The Fur protein binds to the DNA motif, otherwise known as *fur*-box identified overlapping promoter elements of iron responsive genes in an iron-dependent manner and regulates expression of iron responsive genes. The results described in previous chapter gave a prima facie evidence of the existence of opd as a part of iron regulon (Fig. 3.5.3). Further, a putative *fur*-box motif was identified in the promoter region of opd gene. These two observations, if seen together with the induction of opd gene expression under iron limiting conditions, indicate involvement of Ferric Uptake Regulator (Fur) in regulation of *opd* gene expression. The experiments described in this chapter unravel the role Fur protein in regulation of *opd* gene expression.

4.1. Objective specific methodology:

Table 4.1: Primers used in this study

Primer	Sequence (5'-3')	Explanation
Name	Jequence (J-J)	Explanation
NS8FP	AAAGAATTCCCAACTGGTACACTCTTAC	Forward and reverse
NS8RP	AAA <u>TCTAGA</u> CTCTGCTTGCAGCGACTGGT	primers used to amplify fur-box motif from Sphingobium fuliginis. The EcoRI and XbaI sites, appended to the primers facilitate cloning of opd promoter region in promoter test vector, pMP220.
NS9FP	AAA <u>CATATG</u> AACCGCAAGATCGACGTCG	Forward primer used to amplify fur gene from Sphingobium fuliginis. The NdeI site appended to facilitate cloning of fur gene in pET23b vector is underlined.
NS9RP	AAA <u>CTCGAG</u> GCTCTTGCGGTCGAGCGCGA	Reverse primer used to amplify fur gene from Sphingobium fuliginis. The XhoI site appended to facilitate cloning of fur gene in pET23b vector is underlined.
NS10 FP	TACCTGTACAATGTCCCG	Primers used to amplify
NS10RP	AGTGTACGCGTACTGGATTA	fur region in <i>E. coli</i> MG1655 AM001

Table 4.2: Strains used in this study

Strain Name	Genotype or Phenotype	Reference			
E. coli DH5α	λsupE44, ΔlacU169 (Δ80	(Hanahan, 1983)			
	lacZ∆M15) hsdR17 recA1				
	endA1 gyrA96 thi1 relA1				
Sphingobium fuliginis ATCC	Wild type strain,	(Kawahara et al.,			
27551	Sm ^r , PmB ^r , opd+	2010;			
		Sethunathan &			
		Yoshida, 1973)			
E. coli Bl21-DE3	F-ompT gal dcm lon hsdSb(rb-mb-	(Studier & Moffatt,			
) $\lambda(DE3$ [lacI lacUV5-T7p07 ind1	1986)			
	$sam7 nin5]) [malB+]K-12(\lambda S)$				

E.coli NiCo (DE3)	BL21(DE3) glmS _{6Ala} slyD-CBD	(Robichon et al.,
	can-CBD arnA-CBD	2011)
<i>E. coli</i> BW25113 Δ <i>fur</i> ::kan	Δ (araD-araB)567,	(Baba et al., 2006;
	ΔlacZ4787(::rrnB-3), F- λ-, rph-	Datsenko &
	1, Δ(rhaD-rhaB)568, hsdR514	Wanner, 2000)
E. coli K-12MG1655 AM001	MG1655 with <i>lacZ</i> deletion	(Madikonda et al.,
		2020)
E. coli NS001	Km ^r . <i>E. coli</i> MG1655Δ <i>lac</i>	This study
	derivative. Generated by	
	deleting <i>fur</i> gene.	

Table 4.3: Plasmids used in this study

Table 4.5. Hasinius useu in this study								
Plasmid Name	Construct description	Reference						
pET23b	Amp ^r . The T7 promoter driven expression vector. Facilitates expression of cloned genes with C-terminal 6xHis-tag.	Novagen						
pMP220	Tet ^r , promoter probe vector	(Spaink et al., 1987)						
pNS4	Amp ^r , plasmid generated by cloning <i>fur</i> gene of <i>Shingobium fuliginis</i> in vector pTZ57R/T.	This study						
pNS5	Amp ^r , Expression plasmid generated by cloning <i>fur</i> gene of <i>Shingobium</i> <i>fuliginis</i> in pET23b as <i>Nde</i> I and <i>Xho</i> I fragment. Codes Fur ^{C6xHis.}	This study						
pNS6	Tet ^r , generated by cloning full length promoter region of <i>opd</i> along with the putative <i>fur</i> -box motif as <i>EcoRI-Xbal</i> fragment in pMP220	This study						

4.4.1. Amplification of *fur*-box motif containing DNA:

The amplification of *opd* gene with *fur*-box motif *opd* was performed by PCR using primer set NS8FP/ NS8RP. The obtained PCR amplicon was gel excised and purified by method described elsewhere in thesis.

4.4.2. Cloning of *fur* gene:

The *fur* gene of *S. fuliginis* was amplified from the genomic DNA with NS9FP/ NS9RP having *Nde*I and *Xho*I restriction sites. The obtained amplicon was gel extracted and ligated to the easy cloning vector pTZ57R/T. Post-ligation, the

transformants obtained after transformation of the ligation mixture into DH5 α were selected on LB plates supplemented with appropriate amounts of ampicillin, IPTG, X-gal. The recombinant plasmids isolated from transformants were sub-cultured and screened for the existence of insert by digesting the recombinant plasmid with *NdeI* and *XhoI*. Thus the plasmid obtained was designated as pNS4.

The *fur* gene from pNS4 was excised by digesting the plasmid with *NdeI - XhoI* and the excised *fur* fragment was then ligated to pET23b digested with similar enzymes. Post-ligation, the transformants obtained after transformation of the ligation mixture into DH5 α were selected on LB plates having appropriate amounts of ampicillin. The plasmids isolated from transformants were subcultured and screened for the existence of insert and thus obtained recombinant plasmid was named as pNS5, which codes for Fur protein with a C-terminal Histag (Fur^{C6xHis}).

4.4.3. Expression of Fur^{C6xHis}:

Following successful generation of the recombinant expression plasmid coding for Fur^{C6xHis}, the plasmid pNS5, was transformed into BL21-DE3 cells to check for the expression of Fur protein. The *E. coli* Bl21-DE3 (pNS5) was cultured till mid-logarithmic phase at 37°C and the Fur^{C6xHis} expression was induced by supplementing 1.0mM IPTG. Cultures were subsequently incubated for 3h before analyzing the cultures to detect the expression of Fur^{C6xHis} as soluble cytoplasmic protein. Following incubation, 1ml cells were lysed by sonication with amplitude 30%, temperature 4°C, 30 sec on and off sonic cycles. The lysate was subjected to centrifugation for 5 minutes at 13,000 rpm to get rid of debris. Clear lysate obtained was suspended in appropriate volumes of 2X loading dye and the samples were boiled and analyzed on SDS-PAGE (15%) to detect Fur^{C6xHis} by performing western blot using antibodies against His-epitope.

4.4.4. Affinity Purification of Fur^{C6xHis}:

The cell pellet obtained from 1000ml culture, after 3h induction using

1.0mM IPTG was resuspended in 10ml of 20mM Tris-HCl (pH7.8) and 300mM NaCl. After thorough resuspension of the pellet, 1mM PMSF along with 50µg lysozyme were added and this mixture was kept for lysis and vortexed at room temperature for 1h. The partially lysed cells were subjected to sonication and the cell lysate was centrifugation at 4°C as described above. The cell-free lysate obtained was applied to the activated Ni-NTA column, pre-equilibrated with Tris-HCl (20mM, pH7.8), NaCl (300mM) and imidazole (20mM). After passing the soluble cell lysate fraction through the column matrix, column was washed with 10 CVs of 20mM Tris-HCl (pH7.8), 300mM NaCl and 50mM imidazole and eluted with different concentrations (50mM, 100mM, 200mM, 300mM, 400mM) of imidazole. The elutions were analyzed on SDS-PAGE (15%) to check the purity of the Fur^{C6xHis} protein.

4.4.5. Electrophoretic Mobility Shift Assay (EMSA):

South-western blotting

The *fur*-box motif and Fur interactions were tested by performing a DNA-protein EMSA. The promoter region of *opd* including the *fur*-box motif was amplified and purified as discussed in 4.4.1. This served as the DNA component of EMSA. The typical EMSA reaction contained 0.5pmol of DNA with increasing concentration (12-32pmol) of purified Fur^{C6xHis} protein, with or without 1mM MnSo₄ and 2,2'-dipyridyl in binding buffer (20mM Tris (pH 7.5), 5mM DTT, 50mM MgCl₂, 200mM KCl, 0.5% tween20) (Fujita et al., 2020). The reaction mix was then incubated for 30min at 20°C along with a control reaction prepared by omitting Fur protein. Following incubation, the reaction mixtures were separated on 8% non-denaturing PAGE. The resolved DNA-Fur^{C6xHis} complexes were transferred onto PVDF membrane and incubated with anti-His antibody (HRP conjugated) at RT for 1 hour. After incubation blot was developed to detect the His-tagged Fur protein in the DNA-Fur^{C6xHis} complexes.

4.4.6. Generation fur null mutant of E. coli MG1655 AM001:

Initially the *E. coli* BW25113 Δ*fur*::kan was obtained (generous gift from Dr.

Manjula Reddy, CCMB, Hyderabad) and used to generate *fur* null mutant of *E. coli* MG1655AM001 strain by following P1 Transduction method (Thomason et al., 2007).

Transduction

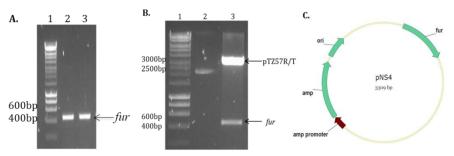
- a) Phage P1 lysate preparation: In order to create *fur* null mutant of *E. coli*, 2.0 ml of overnight culture of donor Δfur ::kan from *E. coli* BW25113 strain having a mutation in *fur* gene was mixed with 0.2ml of P1 phage and incubated at 37°C without shaking to facilitate phage adsorption. About 10ml of LB broth and sterile CaCl₂ (5mM) was added to this infection mixture prior to its incubation with shaking at 37°C for 4 to 6 h or till the complete lysis of cells. After observing the cell lysis, 0.2ml of chloroform was added to the phage lysate to stop further growth of cells. This preparation was subjected to centrifugation for 10 minutes at 6000 rpm to separate cellular debris. The obtained supernatant containing transducing particles was stored at 4°C until further use.
- **b) Phage infection:** To the 2ml of overnight culture of *E. coli* MG1655 AM001 cells, 5mM CaCl₂ and 0.2ml of phage preparation was added. After addition of phage lysate, the cells were incubated at 37°C for about 15 min to allow phage adsorption. Unadsorbed phage particles were removed by centrifugation for 10 minutes at 6000 rpm. Further 5ml of LB broth containing 10mM sodium citrate was added to the infected *E. coli* cells and allowed to incubate for 45min at 37°C. Finally, they were harvested and resuspended in 0.2ml of LB broth and plated on LB agar plates containing 10mM sodium citrate and 50μg/ml of kanamycin. The mutation in *fur* gene was verified by PCR amplification with NS10FP/NS10RP which were designed 100bp upstream and downstream of the *fur* gene of *E. coli*. Thus obtained strain named as *E. coli* NS001, is resistant to kanamycin.

4.4.7. Construction of transcriptional fusions:

The transcriptional fusion of *opd* were generated using *lac*Z as a reporter gene The fusion, containing *fur*-box motif along with the core promoter elements of *opd* was generated by cloning it in pMP220 (promoter test vector). This region was initially PCR amplified using primer set NS8FP and NS8RP appended with

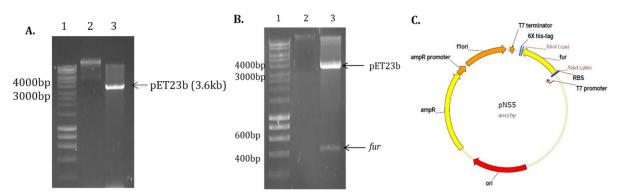
*EcoR*I and *XbaI*. The amplicon obtained was digested with respective restriction enzymes and ligated to pMP220 digested with the similar enzymes. Post-ligation the transformants obtained after transformation of the ligation mixture into E. coli DH5α were selected on LB plates supplemented with appropriate amounts of tetracycline and X-gal. The colonies obtained were screened using restriction digestion. The resulting opd-lacZ fusion including fur-box motif was designated as pNS5.

4.4.8. Expression of *opd* gene under *fur* negative background:


The transcriptional fusions, pNS2 and pNS5 were independently transformed into *fur* positive *E. coli* MG1655 AM001 and *fur* negative E. *coli* NS001 cells. The transformants were subjected to β -galactosidase activity assay to assess the expression of *lacZ* gene of the transcriptional fusions.

4.5.1. Results:

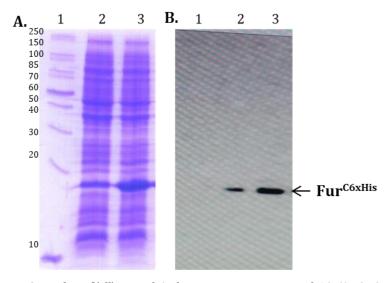
Gene regulatory mechanisms involve certain DNA motifs that serve as targets for transcription factors (Hutchins et al., 2013). Transcription factors interact with distinctive response elements at the promoter elements of certain genes, and affect their expression (Lee & Young, 2013). This kind of interactions can be detected by using EMSA (Garner & Revzin, 1986; Carey, 1991; Fried & Garner, 1998;). Therefore this mobility shift was exploited to elucidate the interactions between *fur*-box motif and *sy*Fur^{C6XHis}.


4.5.2. Cloning of *sf*Fur in a high copy vector:

The interactions between *fur*-box containing *opd* promoter region and *sy*Fur ^{C6XHis} were demonstrated by performing south-western blots. Initially *fur* gene from *S. fuliginis* was amplified using primer set NS9FP/NS9RP. The 423bp amplicon was checked on a 0.8% agarose gel and the excised fragment was purified before ligating it to pTZ57R/T vector. The resulting recombinant plasmid was named as pNS4 (Fig.4.5.2A panel A).

Fig.4.5.2A. Construction of pNS4. Panel A shows 0.8% agarose gel used to separate *fur* gene. Molecular size markers are loaded in lane 1. The amplified *fur* gene is loaded in lanes 2 and 3. Panel B shows image of agarose gel (0.8%) indicating the molecular marker (lane 1) undigested pNS4 (Lane 2) and pNS4 digested with *Ndel* and *Xhol*. The band corresponding to the vector and insert containing *fur* gene are shown with arrows (lane 3). Panel B shows map of pNS4.

Before proceeding to the further experiments, the *fur* gene of *S. fuliginis* was sequenced to ascertain that no mutations were inserted while amplifying the gene from the chromosomal DNA. The mutation free *fur* gene was then released from pNS4 as *Ndel/XhoI* fragment and ligated to the expression vector pET23b. The resulting recombinant plasmid was named as pNS5 (Fig.4.5.2B).

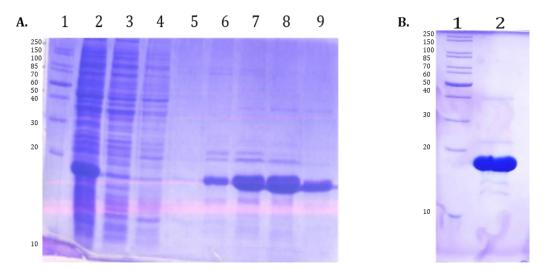


4.5.2B. Construction of pNS5. Panel A shows image of 0.8% agarose gel indicating molecular marker in lane 1, undigested pET23b vector in lane 2 and pET23b digested with *NdeI/XhoI* in lane 3.Panel B shows image of 0.8% agarose gel indicating molecular marker (lane 1), undigested pNS5 (lane 2) and pNS5 digested with *NdeI/XhoI*. The band corresponding to the vector and insert containing *fur* gene are shown with arrows (lane 3). Panel B shows map of pNS5.

4.5.3. Expression of StFur^{C6XHis}:

The *E. coli* BL21 (pNS5) culture was grown to mid-logarithmic phase to induce expression of *sf*Fur^{C6XHis} following procedures explained in methodology section. Proteins obtained from the harvested cells of 1 ml culture were analyzed on 12.5 % SDS-PAGE to identify expression of *sf*Fur^{C6XHis}. As seen in Fig.4.5.3, a thick protein band (approximately 16kDa) was found only in proteins extracted from induced cultures (lane 3, Fig.4.5.3). Such band was weak in uninduced

cultures indicating over expression of *Sf*Fur^{C6XHis} in BL21 cells. The western blots performed by using anti-His antibodies confirmed that the thick protein band found in induced cultures is *Sf*Fur^{C6XHis} (Fig.4.5.3, panel B, lane 3).



4.5.3. Expression of Fur^{C6xHis}. Panel A shows coomassie stained 12.5% SDS-PAGE to analyze the expression of Fur^{C6xHis}. Lane 1 shows the molecular marker, lane 2 shows protein uninduced whole cell lysate, lane 3 shows 3h induced protein. Panel B shows a corresponding western blot probed with anti-His antibodies to detect the expression of Fur^{C6xHis}.

4.5.4. Affinity purification of Fur^{C6xHis}:

Once the expression of sfFur^{C6xHis} was standardized, the protein purification was performed using Ni-NTA matrix as described in the methodology section. The clear lysate containing sfFur^{C6XHis} was obtained by inducing the expression of sfFur^{C6XHis} in 1000 ml of BL21 (pNS5) cells. The clear lysate was passed through a 1.5cmx14cm Ni-NTA column at a flow rate of 1ml/minute. After passing the clear lysate through column it was washed extensively and the sfFur^{C6XHis} adsorbed to the column was eluted by passing elution buffer (20mMTris and 300mM NaCl) containing various concentrations of imidazole. Each fraction was then analyzed on 12.5 % SDS-PAGE and the purity of sfFur^{C6XHis} was ascertained. As shown in Fig.4.5.4, elution of sfFur^{C6XHis} started with 100 mM imidazole and elution was continued till the imidazole concentration increased to 400 mM. The pure sfFur^{C6XHis} was obtained when eluted using 300mM imidazole (Fig.4.5.4 Lane 8). The fractions obtained with 300 mM imidazole were pooled and the concentration of pure sfFur^{C6XHis} was

determined and stored at -30°C until further use.

Fig.4.5.4. Affinity purification of *sy***Fur**^{C6XHis}: The coomassie stained 15% SDS-PAGE (15%) showing the various stages of *sy***Fur**^{C6XHis} purification. Lane 1 shows the molecular marker, lane 2 shows soluble protein fraction containing *sy***Fur**^{C6XHis}, lane 3 indicates flow-through fraction, lane 4 shows wash fraction, lanes 5 to 9 corresponds to fractions obtained when eluted using 50mM, 100mM, 200mM, 300mM, 400mM. Panel B indicates the pure *sy***Fur**^{C6XHis}.

4.5.5. Interactions between opd promoter and sfFur^{C6XHis}:

There exists significant similarity between opd fur-box (opdfur-box) and consensus *fur*-box motif identified overlapping the promoter motifs of various iron responsive genes. Therefore, initial attempts were made to perform *in vitro* assays to assess the interactions between opdfur-box and sfFur^{C6XHis}. As described previously, the opdfur-box was amplified and SfFur^{C6XHis} was overexpressed and purified. These two components were used to assess interactions in a metal dependent manner. South-western blots, developed by antibodies against His epitope were used to monitor the mobility shift of SfFur^{C6XHis} when bound to opd^{fur-box}. The opd^{fur-box} concentration was kept constant (0.5pm), and incubated with increasing concentrations of SfFur^{C6XHis} in the presence of metal ion. A clear shift was observed when the incubation mixture was analyzed on an 8% nondenaturing PAGE indicating the formation of opdfur-box-sfFur^{C6XHis}. The concentration of opdfur-box -sfFurC6XHis complex increased with an increase of SfFur^{C6XHis} indicating the formation of concentration dependent opd^{fur-box}-StFur^{C6XHis} complexes in the reaction mixture. Formation of such complexes got abrogated in the absence of metal ions. This experiment gave clear in vitro

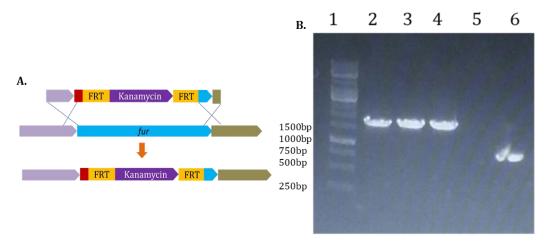
evidence on the existence of specific interactions between $opd^{fur\text{-}box}$ and s_f Fur^{C6XHis}. Inclusion of metal chelators in reaction mix caused dissociation of the $opd^{fur\text{-}box}$ - s_f Fur^{C6XHis} complex (Fig 4.5.5, Lane 9) suggesting the interactions between $opd^{fur\text{-}box}$ and s_f Fur^{C6XHis} are dependent on metal ions.

8% non-denaturing PAGE 12pm 32pm opd fur-box_ss Fur^C6XHis sf Fur^C6XHis 1 2 3 4 5 6 7 8 9

Lane	1	2	3	4	5	6	7	8	9
opd ^{fur-box} (0.5 pm)	+	+	+	+	+	+	Empty	+	+
_{Sf} Fur ^{C6XHis} (pm)	12	16	20	24	28	32		-	32
Mnso4 (1mM)	+	+	+	+	+	+		+	-
DIP (100μM)	-	-	-	-	-	-		-	+

Fig.4.5.5. EMSA. South-western blotting in which 8% native PAGE was used to analyze the mobility shift, observed due to formation of $opd^{fur\text{-}box}$ - s_f Fur^{C6XHis} complex. The free s_f Fur^{C6XHis} and $opd^{fur\text{-}box}$ - s_f Fur^{C6XHis} complex formed in a metal ion dependent manner are shown with red arrows.

4.5.6A. Influence of Fur on the regulation of opd gene:


The EMSA experiments helped in gaining clear *in vitro* evidence on $opd^{fur\text{-box}}$ and sfFur C6XHis interactions. In order to gain supporting evidence, *in vivo* experiments were performed using E. coli as model system. The amino acid sequence of EcFur shows 70% similarity with the SfFur (Fig.4.5.6A). Since there is such a high degree of conservation, E. coli was used as a model system to evaluate the role of Fur protein on regulation of opd gene.

E.coli S.f	MTDNNTALKKAGLKVTLPRLKILEVLQEPDNI MNRKIDVEALCHEKGLRITEQRRVIAQVLSDA-TI *:: :: **:: * * ::**:: .	DHPDVEELHRRSAAIDPGISIATVYR	57 59
E.coli S.f	VLNQFDDAGIVTRHNFEGGKSVFELTQQHHHDHL: TVRLFEEAGILDRHDFGDGRARYEAAPESHHDHL: *::***: **: : * :: *****	IDVETGNVIEFVDPELEQLQKQIAEK	117 119
E.coli S.f	HGIRLTNHSLYLYGHCAEGDCREDEHAHEGK LGFRLVDHRMELYGVALDRKS *:**: *** : :	148 140	

Fig. 4.5.6A. Similarities between *E. coli* and *S. fuliginis* Fur sequences.

4.5.6B. Generation of fur negative E. coli strain:

Since considerable homology exists between Fur proteins of *E. coli* and *S. fuliginis* we have exploited available genetic tools to delete *fur* gene from *E. coli* and to perform *opd* expression studies in *fur* positive and negative background. A *fur* null mutant was generated in *E. coli* MG1655 AM001strain by transducing it with phage P1 particle propagated using *E. coli* BW25113 Δfur ::kan strain in which *fur* gene is replaced with kanamycin cassette (Methodology 4.4.6). The kanamycin resistant colonies were taken and colony PCR was performed using primer set NS10FP/NS10RP to detect replacement of *fur* with kanamycin cassette. As seen in Fig.4.5.6B, panel B in all kanamycin resistant colonies an amplicon with a size of 1.5 Kb got amplified rather 500 bp amplicon seen in *fur* positive *E. coli* MG1655 AM001strain. The resulting strain is designated as *E. coli* NS001 and stored at -80°C as a glycerol stock. When necessary *E. coli* NS001 was sub-cultured and used for *opd* expression studies.

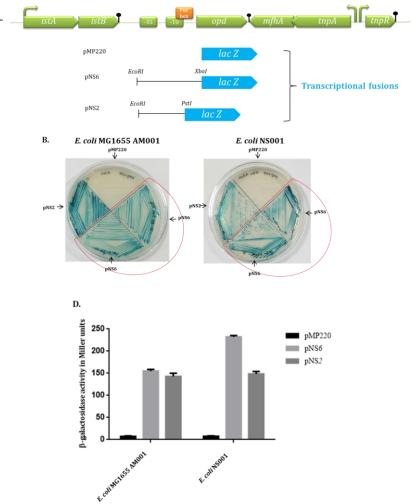


Fig.4.5.6B. Generation of *E. coli* **NS001.** The schematic representation of strategy used to delete *fur* gene from *E. coli* MG1655 AM001 strain is shown in panel A. Panel B shows replacement of *fur* gene with kanamycin cassette. Lane 1 of 0.8% agarose gel represents molecular weight marker. Lane 2 represents amplicon generated when PCR was performed using primer set NS10FP/NS10 RP and *fur* negative *E. coli* BW25113 Δ *fur*::kan. Lanes 3 and 4 show amplicon size generated in a similar PCR reaction using kanamycin resistant colonies of *E. coli* NS001. No template (negative) control is shown in lane 5. The lane 6 represents amplicon obtained in a PCR reaction having wild type *E. coli* MG1655 AM001 (positive control) colony.

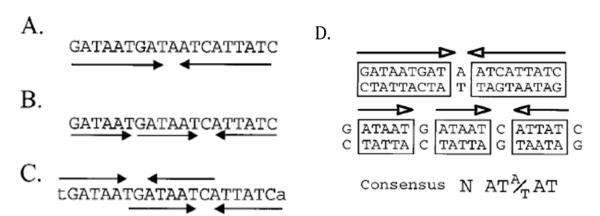
4.5.6C. Expression of *opd* gene in *fur* negative background:

The fur negative E. coli NS001 cells were used to assess Fur dependency on opd gene expression. While elucidating Fur role on opd gene expression two transcriptional fusions were generated as explained in methodology section. One of them pNS2 contains only core promoter and the other one pNS6 contains core promoter along with the *fur*-box motif (*opdfur*-box). The *E. coli*, *fur* positive cells as well as E. coli NS001 cells, having fur negative background were transformed independently with pNS2 and pNS6 and the LacZ activity was measured. In E. coli MG1655 AM001 (pNS2), the Fur independent de-repression was clearly seen (Fig. 4.5.6C-panel B, sector IV) as EcFur cannot interact with opd-lacZ fusion as pNS2 is constructed by omitting opdfur-box. However, the Fur dependent repression was evident in *E. coli* MG1655 AM001 (pNS6), due to interaction of E_c Fur with the *opdfur*-box found in pNS6 (Fig. 4.5.6C, Panel B sector II and III). However, this repression was not seen in E. coli NS001 (pNS6) cells as there exists no indigenous Fur (EcFur) protein in NS001 strain (Figure 4.5.6C, Panel C, sector-II and III). There was no Fur influence on LacZ activity in E. coli cells having pNS2 indicating lack of Fur interaction with opd promoter in the absence

of *opdfur*-box motif (Fig. 4. 5. 6C, panel C, sector 4).

Fig.4.5.6C. Construction of transcriptional fusions with and without *opdfur-box*. Panel A indicates extent of *opd* promoter taken while constructing *opd-lacZ* fusion. Inclusion of *opdfur-box* is clearly seen only in pNS6. Panel B indicate quantitative assays showing influence of Fur protein on LacZ activity. Sector-I shows *E. coli* MG1655 AM001 (pMP220). Sector II & III corresponds to *E. coli* MG1655 AM001 (pNS6). Sector-IV shows *E. coli* MG1655 AM001 (pNS2). Panel C. *E. coli* NS001 (pMP220), Sector II & III show *E. coli* NS001 (pNS6). Sector IV shows *E. coli* NS001 (pNS2). Panel D shows the quantitative *lacZ* activity measured in miller units.

4.6 Discussion:


Bacteria are always prone to dynamic environments in which nutrient attainability may increase or decrease substantially. They respond to these variations by altering their gene expression thus, express various enzymes on the basis of the source of carbon and other nutrients available to them (Jacob & Monod, 1961; Lawrence, 2002). In bacteria, both transcription and translation are integrated in space and time and are tightly regulated. This kind of regulation is critical for the survival of bacteria (McGary & Nudler, 2013).

The modulation of iron uptake and its usage are crucial for the bacterial growth and to avoid iron toxicity. In certain bacteria, this regulation relies on the master regulator, Fur (Ferric uptake regulator) (Mey et al., 2005). Fur stringently modulates the expression of genes involved in iron homeostasis (Tanui et al., 2017). Fur, was initally identified in *E. coli*. It is a global transcriptional regulator involved in iron metabolism (Hantke, 2001). Bacteria having high genomic Guanine and Cytosine content, utilise the diphtheria toxin repressor (DtxR) to regulate homeostasis of iron (Andrews et al., 2003; Giedroc & Arunkumar, 2007).

The *E. coli* Fur exists as a paradigm for the expanding family of metalloregulatory proteins. Homologs of Fur are identified in certain bacteria such as Zur (regulator for uptake of zinc) and PerR (peroxide repressor), Manganese uptake regulator Mur (regulator for uptake of manganese) (Hantke, 1981, 1984; Bsat et al., 1998; Gaballa & Helmann, 1998; Escolar et al., 1999; Menscher et al., 2012). These proteins inclusive of Fur need a bound divalent metal ion for DNA binding, *in vivo* and all these proteins exist in mutually exclusive regulons (Helmann, 1998) . The *E. coli* Fur protein is encoded by the chromosomally located *fur* gene (approx. 500bp long). It is a homo-dimeric protein made up of 17kDa monomers (Bagg & Neilands, 1987; Saito et al., 1991).

The Fur mediated repression is caused when the Fur protein recognizes a 19-bp inverted repeat *fur*-box iron-box known as or (GATAATGATAATCATTATC). It was previously proposed that 19-bp (9-1-9) inverted repeat depicts the binding site of a one Fur dimer (de Lorenzo et al., 1987). In E. coli, two Fur dimers recognize the 19-bp Fur box and interact with major grooves of the DNA, on the opposite faces through a helix-turn-helix-HTH binding motif. An alignment of fur-motif of E. coli and B. subtilis revealed existence of a distinctly conserved, 15-bp (7-1-7) repeat existing twice within this 19-bp consensus. This 19-bp box can be interpreted as head-to-head-to-tail repeat of the GATAAT (hexamer) (Baichoo & Helmann, 2002). These simple hexameric repeats demonstrate a strong binding to Fur. The symmetric AT-AT core within the hexamer could possibly bind with Fur dimer (Escolar et al., 1998,

1999).

Fig. 4.6.1. Models depicting *fur***-box consensus sequence.** (A) The Classical *fur*-box motif with 19-bp inverted repeat sequence, originally envisioned to bind a single Fur dimer is shown in panel A. An alternative view proposing repeated arrays of three or more copies of the hexamer GATAAT (Lucía Escolar et al., 1998, 1999) in *fur*-box motif is shown in panel B. The *fur*-box with three GATAAT motifs in a head-to-head-to- tail (6-6-1-6) array is shown in panel C. The 19-bp *fur*-box with two overlapping heptamer inverted repeats [(7-1-7)₂] that together define a 21-bp sequence (Baichoo & Helmann, 2002) is shown in D.

The standard interpretation shown in Fig. 4.6.1 panel D is a palindrome composed of two 9-base pair inverted repeats. It can also be conceived the as an array of three repeats of 6-base pairs (one inverted and two direct) of the sequence "NATA/TAT". The binding sites of Fur, can be assembled by merging several repeats in distinctive orientations (Escolar et al., 1999).

The consensus of fur-box motif of $E.\ coli$ when compared with that of $S.\ fuliginis$ revealed quite interesting observations (Fig.4.6.2). The order of Adenine and Thymine base pairs in the fur-box seems to permit many variations. Sequences recognized by Fur appear to be thoroughly degenerate. In the absence of precise sequence specificity, the base pair substitutions are allowed without loss of functionality (Deng et al., 2015). In agreement of this proposition the $opd^{fur\text{-box}}$ failed to share similarity throughout the typical consensus fur-box. The $opd^{fur\text{-box}}$ did not have the typical 5'-GATAAT-3' conserved hexamer in 7-1-7 consensus fur-box-motif. Instead it contained 5'-TAAAAGA-3' in the first 7 bases of the conserved fur-box contained 5' ACAACCG 3' (Fig. 4.6.3).

Fig.4.6.2. Comparison of $opd^{fur ext{-}box}$ with the $E_cfur ext{-}box$: The consensus sequence logo, prepared by using MEME Suite in shown. The height of individual letters within a stack of letters represents the relative frequency of that letter at a given position. The overall height of the stack represents the degree of conservation at that position.

There exist considerable deviations in the *opdfur-box* motif. A comparative analysis was done by comparing *fur-box* motifs identified among various well defined iron responsive genes. The aligned sequences (Fig.4.6.3), disclosed the conservation of a 15-bp core region (7-1-7 repeat) instead of the classic 19-bp repeat. Escolar et al., 1998 showed the 19-bp inverted repeat, which can be viewed as three GATAAT hexamers in a head-to-head-to tail (6-6-1-6) orientation as shown in Fig.4.6.1 panel A. The 7-1-7 heptamer motif is closely linked to the proposed hexameric motif (Baichoo & Helmann, 2002).

7-1-7 consensus sites																					
TGATAAT-ATTATCA																					
TGATAAT-ATTATCA (L) TGATAAT-ATTATCA (R)																					
dhbABCKF	ATTGAT	A	Α	т	G	A	Т	A	A	т	С	A	Т	Т	A	Т	С	A	А	T	AGATTG
ydbN	ATTGAT	A	А	т	G	A	т	Т	A	т	С	A	А	T	A	т	С	G	Т	т	TGATTG
ykuN1	GTTGAC	A	A	т	G	A	Α	A	A	т	С	A	т	т	A	т	С	A	Т	т	TAAAGT
ykuN2	TATGAT	A	Т	т	G	A	Α	A	A	T	С	A	т	T	A	т	С	A	А	С	TAATGG
yuiI	GTTGAT	A	G	т	G	A	Α	A	A	T	С	A	T	т	A	т	С	A	Т	A	CATTGC
fhuB/D	GATGAA	A	A	А	G	A	G	A	A	T	С	A	T	T	A	т	С	A	Т	С	TGTGAT
yoaJ	TCTTAT	A	A	т	G	A	т	A	A	T	G	A	т	T	С	т	С	A	Т	T	TGAAGT
yclN	TATGTA	A	A	т	G	A	T	A	A	T	G	A	T	A	A	т	С	A	Α	T	TACTAT
yxeB	TTATTA	A	Τ	т	G	A	т	A	A	т	G	A	т	А	A	т	С	A	Т	т	ACTAAT
yfmC	GTTACA	Т	G	т	G	A	т	A	A	т	G	A	т	T	С	т	С	A	Т	T	ACTAAA
yfiY (GATCT A	A	Α	т	G	A	T	A	A	T	G	A	Α	T	Τ	T	С	A	А	т	ATTGGG
ywbL	TTATAC	A	Α	т	G	A	T	A	A	T	С	A	т	T	Τ	T	С	A	А	T	TATAGG
ybbB j	ATTTTT	A	Т	т	G	A	Α	A	A	T	G	A	т	т	A	T	С	A	А	T	TGAAAG
yfhC	TTATGA	A	A	т	G	A	Т	A	A	т	С	A	т	т	Т	T	С	A	А	т	TGCATA
yusV1	AAACTA	A	Т	т	G	A	А	A	A	т	G	A	т	т	Т	т	С	A	А	А	GTCAGT
yfiZ 5	TTTGTT	Т	Т	т	G	A	G	A	A	T	А	A	т	С	С	т	С	A	А	т	TAGGGA
feuABC ybbA	ATTCCA	A	Т	т	G	A	т	A	A	т	А	G	т	т	A	т	С	A	А	T	TGAACA
yhfQ	AAAATT	G	G	Т	G	A	т	A	A	T	G	A	т	T	С	T	С	A	Т	T	CCGTGT
ywjA	AGTATA	A	Т	т	G	A	G	A	A	Α	Т	A	т	т	A	т	С	A	G	T	TATTTA
opd	GTCAAC	A	. G	Т	A	A	. A	A	G	A	Α	A	С	А	A	С	С	G	G	Т	TCAGAT

Fig.4.6.3. Alignment of $opd^{fur\text{-box}}$ with fur-box motifs identified in the well-defined iron response genes.

When many operator sequences were aligned to inspect the structure of *fur*-box motifs, they showed at least one overlapping 7-1-7 motif with a six-base offset (either to the left or to the right of the sequence (Fig.4.6.3). As seen in Fig.4.6.3, only in the first six operators five out of seven residues of the conserved heptamer residues are matched in the left overlapping motif, and as a corollary, the central base of the 7-1-7 motif shown in the alignment is a C, corresponding to the conserved C in the left overlapping 7-1-7 motif. Similarly, the *yxeB* and *yfmC* operators appear to have right overlapping motifs and have

the expected central G residue in the aligned 7-1-7 motif. However, one-half of the aligned operator sites do not have obvious overlapping heptamer repeats (less than four of six matches with the additional flanking bases) and may represent sites that have only one 7-1-7 motif. For these sites there is little apparent conservation of the central base in the 7-1-7 motif. Although they are less conserved, all the operator regions interact with as little as nano Molar concentrations of Fur (Baichoo & Helmann, 2002).

When $opd^{fur\text{-}box}$ was inspected for the presence of 7-1-7 symmetric dyad conservation (dark green dotted box in Fig. 4.6.3) interestingly, we found a match of 11 bases out of 15 base core region. The left overlap showed 5 matches (second base was 'A' instead of conserved 'G'; sixth base was 'G' instead of conserved 'A'). The right overlap showed 5 matches (second and fifth bases were 'C' instead of conserved 'T', and the seventh base was 'G' instead of conserved 'A'. The purine mismatches are highlighted in dark red while pyrimidine mismatches are highlighted in dark blue. The perfect matches are presented in bold font and rest of the mismatched bases are represented in normal font and rarely present in aligned sequences. Despite of these differences he $s_{J}Fur$ interacted with the $opd^{fur\text{-}box}$ and $s_{J}Fur$. The formation of opd^{furbox} - $s_{J}Fur$ complex is dependent on metal ions (Fig. 4.5.5), indicating clearly that the $opd^{fur\text{-}box}$ serves as target to the $s_{J}Fur$ repressor.

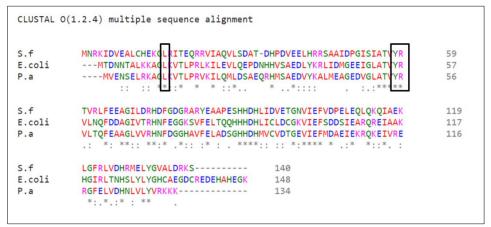
After analyzing $opd^{fur\text{-box}}$ further analysis has also been done to analyze the structural features of the sfFur proteins. The EcFur is a dimeric protein and contains two metal-binding sites per subunit. It can bind to chemically related metal ions $in\ vitro\ (Co^{2+}\ and\ Mn^{2+}\ etc.,)$ (Bagg & Neilands, 1987). The binding of metal ions enhances the affinity of Fur protein for its DNA-binding, several fold (Smith et al., 1996). The Fur protein is activated in the following order $Zn^{2+}\gg Co^{2+}>Fe^{2+}>Mn^{2+}$ (Mills & Marletta, 2005). Each Fur subunit has, C-terminal dimerization domain and an N-terminal DNA binding domain (Coy & Neilands, 1991; Deng et al., 2015).

Fig. 4.6.4. Domain organization of Fur. Representation of the N-terminal DBD (cyan), hinge (green) and C-terminal DD (magenta) (Deng et al., 2015)

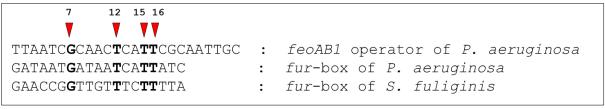
Dimerization Domain is rich in Histidine residues, and is implicated to bind the Fe^{2+} ions to cause dimerization, whereas the DNA Binding Domain ineracts with *fur*-box (Holm et al., 1994; Coy & Neilands, 1991; Stojiljkovic & Hantke, 1995). The physiological function of Fur is to repress the iron acquisition genes under iron sufficiency but the genes with 'non-iron' functions (Table 4.6.1.) such as flagella chemotaxis, methionine biosynthesis etc., are also repressed by Fur.

Gene	Function	Reference				
acnA	Aconitase, [Fe-S] protein	(M. J. Gruer & Guest, 1994)				
Bfd	Release of iron from Bfr	(Quail et al., 1996)				
Bfr	Iron storage	(Masse & Gottesman, 2002)				
Cir	Ferric dihydroxybenzoate uptake	(Litwin & Calderwood, 1993)				
cyoA	Terminal respiratory oxidase subunit	(Stojiljkovic et al., 1994)				
entABC DEF	Enterobactin biosynthesis	(Litwin & Calderwood, 1993)				
entS	Export of enterobactin	(Furrer et al., 2002)				
fecABC DE	Ferric dicitrate transport	(Litwin & Calderwood, 1993)				
fepA	Ferri-enterobactin transport	(Litwin & Calderwood, 1993)				
flbB	Motility	(Stojiljkovic et al., 1994)				
purr	Purine regulon regulation	(Stojiljkovic et al., 1994)				
ryhB	Small regulatory RNA	(Masse & Gottesman, 2002)				
sdhCDA B	TCA cycle	(Park & Gunsalus, 1995)				
tonB	Siderophore and vitamin B12 transport	(Litwin & Calderwood, 1993)				
fumA	Aerobic fumarase, [Fe-S] protein	(Park & Gunsalus, 1995)				
fumB	Anaerobic fumarase, [Fe-S] protein	(Tseng, 2006)				
nrdHIEF	Deoxyribonucleotide reductase 2	(Vassinova & Kozyrev, 2000)				
nohB	Phage function	(Vassinova & Kozyrev, 2000)				
gpmA	Glycolysis	(Vassinova & Kozyrev, 2000)				

Table.4.6.1. List of few Fur and iron-regulated genes in *E.coli* **K-12** (Stojiljkovic et al., 1994; Park & Gunsalus, 1995; Touati, 1988; Vassinova & Kozyrev, 2000; Tanui et al., 2017).


According to (Deng et al., 2015), in *P. aeruginosa*, binding of the metal ion to Fur induces conformational changes in the DNA Binding Domain. Each holo-Fur monomer consists of two metal binding sites. The site 1 links DNA Binding Domain and Dimerzation Domain. It contains a Mn²⁺ ion that is hexacoordinated by H33 and H81 from the DNA Binding Domain and H88, H90 and E1010 from the Dimerzation Domain. Mn²⁺ is also hexacoordinated by H87, D89, E108, H125 and Q111 in site 2. The site 1 is adequate for *in vitro* binding of Fur-DNA, site 2 is unessential for binding of DNA but binding activity substantially reduced upon its disruption.

Further structural studies of Fur from P. aeruginosa demonstrated DNA recognition with either base read out or shape read out mechanisms (Deng et al., 2015). In DNA-protein interactions, when a protein recognizes distinctive chemical structures of DNA bases it is termed as 'base readout'. 'Shape readout' is when the protein recognizes a sequence dependent DNA shape (Rohs et al., 2010). The amino acids of Fur from P. aeruginosa (Lysine 15, Tyrosine 56, and Arginine 57) recognize DNA using various unique modes of interaction. The first mode being base readout, in which the phenyl ring of Tyrosine56 forms vander waals interactions with one or two consecutive Thymine bases in the major groove, such as the -CH3 groups of Thymine15 and Thymine16 of feoAB1 operator or Thymine12 of fur-box. The loss of Thymine nts impaired the interactions between DNA and Fur, indicating that 'Thymine' is crucial for direct contact with Fur. The base readout mode is another mechanism followed in which, Arginine57 gets inserted into the major groove, forming bidentate hydrogen bonds between its guanidium group and 06 and N7 atoms of conserved 'Guanine' (G7) of the feoAB1 operator or G10 of fur-box. Arginine57 also forms a hydrogen bond with Thymine15 of P. aeruginosa fur-box. The DNA binding ability was severly disrupted when Arginine57 was mutated and in the next recognition mode i.e., in shape readout, Lysine15 of the L1 loop gets inserted into the minor groove with certain interactions with DNA. These interactions are not base specific (Slattery et al., 2014; Deng et al., 2015). Further structural analysis proved that Lysine15 recognizes DNA using minor-groove


shape read out (Deng et al., 2015).

Under iron sufficient conditions, Fur acts as Holo-Fur, binds ferrous iron (Fe²⁺) and dimerizes. The resulting dimeric complex interacts with the *fur* motif, located within the promoter regions of Fur-regulated genes. This enhances extreme conformational changes and confers DNA-binding capacity which occludes the interaction with RNA polymerase thus represses transcription. This interaction results in transcriptional repression of genes involved in iron acquisition and storage (Crosa, 1997). Under iron limiting conditions, Fur acts as Apo-Fur and remains as a monomer. This form has low propensity to bind DNA, thus leading to de-repression of its cognate genes *in vivo* (Coy & Neilands, 1991; Escolar et al., 1998; Lee & Helmann, 2007).

The *sy*Fur is a 16kDa protein, which showed 70% similarity in amino acid sequence with *Ec*Fur. The amino acids lys15, Tyr56, Arg57 are conserved in *Sy*Fur, similar to *E. coli* and *P. aeruginosa* (Fig.4.6.5). As described by (Deng et al., 2015), the recognition of *fur* motif DNA by lys15, could probably occur through a shape read out mechanism. The residues Tyr56 and Arg57 follow a base read out mechanism and have the propensity to interact with T15, T16 and G7 residues, which are the supposed recognition elements essential for direct contact with Fur (Fig.4.6.6). The shape read out mechanism, rather than sequence specific recognition, serves as an important feature of the Fur proteins. This property of shape recognition rather than sequence recognition, confers a global regulatory function to Fur.

Fig.4.6.5.The Fur amino acid sequence alignment between *S. fuliginis, E. coli* and *P. aeruginosa*. The black boxes indicate the conserved amino acid residues of Lys15, Tyr56 and Arg57 which interact with *fur*-box motif.

Fig.4.6.6. Alignment of *fur***-box motifs.** The red arrows indicate conserved residues of G7, T12, T15, T16 of *fur*-box motif that directly interact with Fur protein.

In addition to these structural similarities between *opdfur*-box and *Sf*Fur protein with the well characterized *fur*-boxes and Fur proteins, the *in vitro* evidence generated through EMSA (Fig.4.5.5) and *in vivo* evidence gathered by using *opd-lacZ* fusions (Fig. 4.5.6C) provide undisputable evidence to show that *opd* gene is part of Fur regulon and provides experimental evidence for induction of *opd* gene expression under iron limiting conditions (see first chapter results).

Chapter-999

Background:

The preceding chapters are dedicated to describe transcriptional regulation of organophosphate degradation gene. As described in the first chapter an IRE element is identified at the 5' end of opd mRNA (IREopd). The in silico studies described in the first chapter have indicated structural similarities between IREopd and IREs identified in mRNAs coding proteins involved in iron metabolism. The current chapter is devoted to elucidate structure and function of IRE^{opd}. The regulation of cellular iron metabolism by IREs is a type of wellstudied translational control system in eukaryotic organisms. IRE along with riboswitches exist as a part of structural RNA molecules in the UTRs. They play an important role in translational control (Hubert et al., 1996; Nudler, 2004; Winkler, 2005). IREs are approximately 30nt long, single stem-loop forming sequences. They are involved in regulation at the level of translational initiation or at the mRNA stabilization. They are found in several mRNAs of divalent metal transporter, ferroportin, mitochondrial aconitase, erythroid aminolevulinic acid synthase, transferrin receptor, ferritin (Piccinelli & Samuelsson, 2007). The IREs are extensively studied and characterized in eukaryotes but only a few prokaryotic IREs are known till date (Harrell et al., 1991; Alen & Sonenshein, 1999; Erlitzki et al., 2002; Banerjee et al., 2007; Fitzgerald & Semler, 2009). They exist either at 5'UTR or at 3'UTR. Depending on the location of their existence and also on the iron status of the cell, they interact with certain proteins termed as Iron Regulatory Proteins (IRPs) or Iron Response Element Binding Proteins (IRE-BP) and either enhance or inhibit the translation of their cognate mRNAs in vivo. Usually aconitases act as IRPs. Interestingly, the IRE-like element was neither found in the 5' or 3'UTR of opd mRNA, rather it was predicted in the 5' coding region. This unusual location has led us to investigate the structure of this IRE-like element and its interactions with aconitase from *S. fuliginis* as the IRP.

5.1. Objective specific methodology:

Table 5.1: Primers used in this study

Table 5.1: P	rimers used in this study	
NS11 FP	TAATACGACTCACTATAGGG	Forward primer appended with T7 promoter sequence, used to amplify IREopd coding DNA and non-IRE coding DNA to be used as templates to generate RNA molecules with and without IRE through in vitro transcription
NS11 RP	GCAATCGCAAGGGGGCAG	Reverse primer used to amplify non-IRE coding DNA.
NS12 RP	GCTCGGCGGCCTGGCTG	Reverse primer used to amplify <i>IRE</i> ^{opd} coding DNA.
NS13 FP	GCAAGGGGCC <u>CATATG</u> CAAACGAGA AGGG	Forward primer used to amplify ORF of <i>opd</i> gene with IRE. The <i>Nde</i> I site appended to facilitate cloning in pET23b is underlined.
NS14 FP	GGGTGCGCGAGCGTG <u>CATATG</u> TCGA TCGGCACAGGC	Forward primer used to amplify opd gene without IRE $(opd^{\Delta IRE})$. The Nde I site appended to facilitate cloning in pET23b is underlined.
NS13 RP	GGATCCAGATG <u>CTCGAG</u> TGACGCCC GC	Reverse primer used to amplify both <i>opd</i> and <i>opd</i> ^{ΔIRE} genes. The <i>XhoI</i> site appended to facilitate cloning is underlined.
NS15 FP	AAACATATGACCGCCATCGGACAGG ACACT	Forward primer used to amplify aconitase from S. fuliginis. The NdeI site appended to facilitate cloning in pET23b is underlined.
NS15 RP	AAACTCGAGGGCGGCGAGCTTGCGC AGCACAT	Reverse primer used to amplify aconitase from S. fuliginis. The Xhol site appended to facilitate cloning in pET23b is underlined.

Table 5.2: Strains used in this study

E. coli DH5α	λsupE44, ΔlacU169 (Δ80 lacZΔM15) hsdR17 recA1 endA1 gyrA96 thi1 relA1	(Hanahan, 1983)
Sphingobium fuliginis ATCC 27551	Wild type strain, Sm ^r , PmB ^r , opd+	(Kawahara et al., 2010; Sethunathan & Yoshida, 1973)
E.coli NiCo (DE3)	BL21(DE3) glmS _{6Ala} slyD-CBD can- CBD arnA-CBD	(Robichon et al., 2011)

Table 5.3: Plasmids used in this study

Tuble 5.512	riasinius useu iii tiiis stuuy	Ī		
pET23b	Amp ^r . The T7 promoter driven expression vector. Facilitates expression of cloned genes with C-terminal 6xHis-tag.	Novagen		
pMP220	Tet ^r , promoter probe vector	(Spaink et al., 1987)		
pPHYS	pPHYS Amp ^r , Expression plasmid generated by cloning full length ORF of <i>opd</i> gene including IRE in pET23b as <i>Ndel</i> and <i>Xhol</i> fragment. Codes OPH ^{C6xHis} .			
pPHNS				
primo	truncated <i>opd</i> without IRE ($opd^{\Delta IRE}$ - deletion of 86bp from translational start site) in pET23b as <i>NdeI</i> and <i>XhoI</i> fragment. Codes N29 Δ OPH ^{C6xHis} (OPH lacking first 29 amino acids representing signal peptide).	(Pandey et al., 2009)		
pPHIR	Amp ^r , Expression plasmid generated by cloning opd variant, opd' having non-complementary	(Pandey et al.,		
	2009)			
pNS10				
	aconitase gene of S. fuliginis in pET23b as NdeI			
	and <i>Xho</i> I fragment. Codes Aconitase ^{C6xHis} .			

5.4.1. *In vitro* transcription (IVT):

The T7 polymerase based IVT requires a pure linear DNA template having a T7 promoter, rNTPs, T7 RNA polymerase. *In vitro* transcription (IVT) assays have been developed and widely used for to study the molecular mechanisms involved in transcription (Yang & Ma, 2016). The IVT was performed using a 46bp *IRE*^{opd} coding DNA, designated as *ire-1* and a 35bp non-IRE forming control-DNA,

designated as *ire-2*, through-out the study.

The amplification of *ire-1* and *ire-2* was performed by PCR using primer set NS11 FP/NS12RP and NS11FP/NS11RP respectively. The obtained PCR amplicon was gel excised and purified by following method described elsewhere in thesis. The IVT reaction was performed using the purified *ire-1* and *ire-2* to generate *ire-1* and *ire-2* to RNAs, *in vitro*. The Keift and Batey (KB) buffer was used to perform IVT (Furukawa et al., 2015).

KB Buffer component	Final concentration	
HEPES (pH 7.5)	80mM	
DTT	40mM	
Mgcl_2	24mM	
Spermidine	2mM	

Table.5.4.1.A. Composition of KB buffer

The procedure used to perform IVT is shown in the table 5.4.1.B. Briefly, The *in vitro* transcription of RNA was facilitated by the usage of T7 RNA polymerase, for 2.5 hours at 37° C. Quenching of the reactions were done by using equal volume 8 M urea containing dye. RNA was subjected to an 8% urea-PAGE and visualized by UV-shadowing using F_{254} from Merck Millipore. The RNA was extracted from the gel via passive elution, precipitated using 3M CH₃COONa (pH 5.2) and then with ice cold C_2H_5OH (70%). Quantification of the purified RNA was done by measuring absorbance at 260 nm.

Component	Volume	
DNA template	1-1.5 μg	
10X KB	2.5 μl	
25mM NTP	2.5 μl	
T7 polymerase (1.0 U)	1 μl	
Nuclease Free Water	upto 25 μl	
(NFW)		

Table.5.4.1.B Standard IVT reaction

The pure RNA obtained after IVT was subjected to dephosphorylation using 1U of calf Intestinal Phosphatase (CIP), to facilitate subsequent endlabeling of the RNA. The Table. 5.4.1.C. shows the standard reaction condition of RNA dephosphorylation. The RNA was incubated with CIP for 15 minutes at 50° C and heat inactivated at 95° C for 2.5 minutes. The CIP treated RNA was subjected to treatment with phenol: chloroform: isoamyl alcohol (1µl of 20mg/ml glycogen-RNA grade procured from Invitrogen) and subsequently precipitated with 3M CH₃COONa (pH 5.2) and then with ice cold C₂H₅OH (70%). The purified RNA was quantified using nanodrop by measuring the absorbance at 260nm.

Component	Volume	
RNA template	5-10 pmol	
10X CIP buffer	2 μl	
CIP (1.0 U)	2 μl	
Nuclease Free Water	upto 20 μl	
(NFW)		

Table.5.4.1.C Dephosphorylation reaction of RNA

The dephosphorylated RNA was then subjected to T4 Polynucleotide Kinase (PNK) treatment with radiolabeled γP^{32} isotope and incubated for 30 minutes at 37°C. Standard labeling reaction is shown in Table 5.4.1.D. The labeling reaction was quenched by adding equal volume of 8M urea dye and the RNA was subjected to a 8% urea PAGE. The labeled RNA on gel was visualized using autoradiography. The RNA of interest was excised and extracted using passive elution, precipitated using 3M sodium actetate pH 5.2 and then with 70% ice cold ethanol. The purified RNA was resuspended in NFW and 1 μ l of resuspended oligo was subjected to scintillation counter and the counts were measured.

Component	Volume	
RNA	20 pmol	
5X PNK buffer	4 μl	
PNK (1.0 U)	2 μl	
*\gamma P^{32}	5 μl	
Nuclease Free Water	upto 20 μl	
(NFW)		

Table.5.4.1.D. 5'end labeling reaction of dephosphorylated RNA

5.4.2. In-line Probing Assay:

In-line probing assay relies on the cleavage of RNA based on its structure (Regulski & Breaker, 2008). The In-line probing reaction has four lanes viz. a No reaction lane, RNaseT1 lane, OH lane, In-line lane and the buffer compositions and reaction conditions are as shown in Table.5.4.2A.

	No	RNaseT1	OH ladder	In-line
	Reaction	ladder		
Buffer	-	T1 buffer	0.5 M Na ₂ CO ₃	100 mM Tris-
Composition			(pH 9.0 at	HCl (pH 8.3 at
			23°C) and 10	20°C), 40 mM
			mM EDTA	MgCl ₂ , and 200
				mM KCl
Reaction	-	Incubated for	Incubated for	Incubated for
conditions		20min at	5min at 95°C	48hr at RT
		50°C		

Table.5.4.2.A. Standard reaction conditions of In-line probing assay

The non-IRE forming RNA as well as IRE^{opd} containing RNA, which was previously end-labeled was taken at $25kcpm/\mu l$. This was subjected to reaction conditions, independently as mentioned in Table.5.4.2.A. The reactions were quenched by adding equal volume of loading 8M urea dye and the RNA was subjected to a 10% urea PAGE.

5.4.3. Expression of *opd* gene and its variants:

Following successful generation of the recombinant expression plasmids coding for OPH^{C6xHis}, N29ΔOPH^{C6xHis} and OPH^{C6xHis}; the plasmids pPHYS, pPHNS and pPHIR were independently transformed into *E. coli* NiCo (DE3) cells and the expression of OPH was assessed by following procedures elaborated in methodology section. *E. coli* NiCo (DE3) cells having plasmids pPHYS, pPHNS and pPHIR were cultured till mid logarithmic phase at 37°C and the OPH expression was induced by supplemeting 1.0mM IPTG. Cultures were subsequently incubated for 3h before analyzing the cultures to detect the expression of OPH as soluble cytoplasmic protein. Following incubation, 1ml cells were lysed by sonication with amplitude 30%, temperature 4°C, 30 sec on and off sonic cycles. The lysate was centrifuged for 5 minutes at 13,000 rpm to get rid of debris. Clear lysate obtained was suspended in appropriate volumes of 2X loading dye and the samples were boiled and analyzed on SDS-PAGE (12.5%) to detect OPH^{C6xHis} by performing western blot using antibodies against His-epitope.

5.4.4. Cloning of aconitase (*acn*) coding gene:

The *aconitase* (*acn*) gene of *S. fuliginis* was amplified from the genomic DNA usingNS15FP/NS15RP having with *NdeI* and *XhoI* restriction sites. The PCR based amplicon was gel extracted and ligated to the expression vector pET23b. The transformants obtained after transformation of the ligation mixture into DH5 α were selected on LB plates supplemented with appropriate amounts of ampicillin. The recombinant plasmid isolated from transformants were subcultured and screened for the existence of insert by digesting the recombinant plasmid with the same enzymes. Thus obtained plasmid was designated, pNS10 which codes for Aconitase protein with a C-terminal His-tag (Acn^{C6xHis}).

5.4.5. Expression of Acn^{C6xHis}:

Following successful generation of the recombinant expression plasmid coding for Acn^{C6xHis}, the plasmid pNS10, was transformed into *E. coli* NiCo (DE3) cells to check for the expression of Aconitase protein. The *E. coli* NiCo (pNS10) was

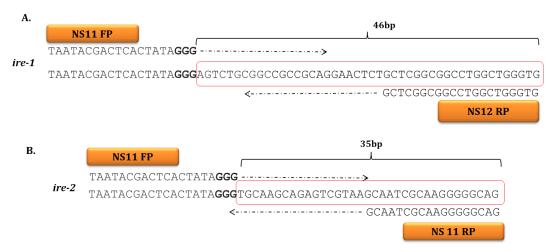
cultured till mid-logartmic phase at 37°C and the Acn^{C6xHis} was induced by supplanting with 1.0mM IPTG. Cultures were subsequently incubated for 3h before analyzing the cultures to detect the expression of Acn^{C6xHis} as soluble cytoplasmic protein. Following incubation, 1ml cells were lysed by sonication with amplitude 30%, temperature 4°C, 30 sec on and off sonic cycles. The lysate was subjected to centrifugation for 5 minutes at 13,000 rpm to get rid of debris. The clear lysate obtained was suspended in appropriate volumes of 2X loading dye and the samples were boiled and analyzed on SDS-PAGE (10%) to detect Acn^{C6xHis} by performing western blot using antibodies against His-epitope.

5.4.6. Affinity Purification of Acn^{C6xHis}:

The cell pellet obtained from 2000ml culture, after 1.5h induction using 1.0mM IPTG was resuspended in 10ml of 20mM Tris-HCl (pH7.8). Once after thorough re-suspension of the pellet, 1mM PMSF along with 50µg lysozyme were added and this mixture was kept for lysis and vortexed at room temperature for 1h. The partially lysed cells were subjected to sonication and centrifugation at 4°C as described above. The clear cell lysate obtained was applied to the activated Ni-NTA column, pre-equilibrated with Tris-HCl (20mM, pH7.8), NaCl (500mM) and imidazole (20mM). After passing the soluble cell lysate fraction through the column matrix, column was washed with 10 CVs of Tris-HCl (20mM, pH7.8), NaCl (500mM) and imidazole (50mM) and eluted with different concentrations of imidazole. The elutions were examined on 10% SDS-PAGE, to monitor the purity of the Aconitase^{C6xHis} protein.

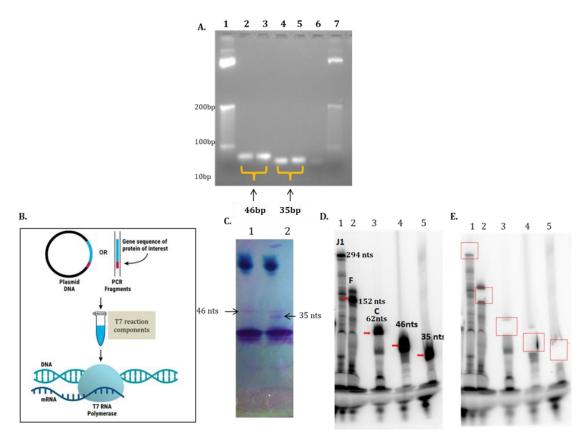
5.4.7. Aconitase Activity:

Aconitase activity was assayed with isocitrate as substrate (Murari et al., 2015). The enzyme was reconstituted with ferrous ions to fill in the iron-sulfur clusters, so as to ensure the enzyme activity. The Fe-S cluster reconstitution of *sf*Aconitase was performed chemically by incubating the protein in buffer containing 50mM Tris/HCl pH8.0 with ferrous ammonium sulphate hexahydrate (0.5mM), sodium sulfide (0.5mM) in the presence of dithiothreitol (5mM), for


60min at RT (Selezneva et al., 2013). The apoenzyme was prepared by incubating with the protein with 0.5mM EDTA for 15min at 20° C to chelate iron present in the form of iron-sulphur clusters. The activity was monitored by incubating 50µg of pure protein with 1mM isocitrate in a buffer containing 50mM Tris/HCl, pH7.5, and 5mM MnCl₂. The conversion of isocitrate into *cis*-aconitate was measured as an increase in absorbance at 240nm.

5.4.8. EMSA:

The interactions between *IREopd* and IRP were determined by performing Electrophoretic Mobility Shift Assay (EMSA). While performing EMSA, *in vitro* transcribed RNA containing *IREopd* was incubated with purified aconitase protein. A typical EMSA reaction contained 20cps RNA with increasing concentrations (0.3-30μM) of purified Aconitase^{C6xHis} protein, with or without 0.5mM EDTA and FeSo₄ in binding [Tris/HCl (10mM, pH 7.8), DTT (2mM), KCl (50mM), glycerol (10%)] buffer. The reaction mix was then incubated for 30min at 20°C along with a control reaction prepared by omitting IRP. Following incubation, the reaction mixtures were separated via electrophoresis on 5% non-denaturing PAGE. The resolved RNA-protein complexes were visualized using autoradiography.


5.5. Results:

The pure RNA molecule is an essential requirement while performing molecular characterization experiments, especially while analyzing the *in vivo* structure of RNAs (Artsimovitch & Henkin, 2009). The pure RNA molecules required for structural determination are obtained by performing IVT experiments. The IVT requires a linear fragment of PCR amplified DNA with a T7 promoter. In this study two such PCR products were generated. One of them is *ire-1* and it contains T7 promoter region followed by *opd* gene coding IRE region (vide methods section). The second fragment (*ire-2*) generated is a control DNA with T7 promoter. The DNA region that followed T7 promoter is the DNA region not specifying the IRE. The sequence details of *ire-1* and *ire-2* DNA molecules are given in Fig.5.5.a.

Fig.5.5.a. Diagrammatic representation of template and primers used to amplify *ire-1* and *ire-2*. Panel A corresponds to the 46bp, *IRE*^{opd} coding *ire-1* DNA. Panel B corresponds to the 35bp, non-IRE coding *ire-2* DNA. In both panels, three 'G' residues are indicated in bold and the DNA to be *in vitro* transcribed is highlighted in a red box.

In an attempt to validate existence of IRE^{opd} IVT was performed by using ire-1 and ire-2 as DNA template. After terminating the IVT reaction, the transcribed RNAs were analyzed on an 8% Urea-PAGE. The gel was placed on a serene wrap and the transcribed RNA was visualized by using UV-shadowing. Indicating successful transcription a 46nt IRE^{opd} and 35nt long control RNAs were noticed in IVT reactions performed using ire-1 and ire-2 as templates (Fig.5.5.b panel C). These RNA molecules were end radiolabelled using * γ P³²ATP. After this 5' end labeling of RNA, they were analyzed on a 8% urea PAGE. Labeled RNA was visualized using autoradiography (Fig.5.5.b panel D). The gel pieces containing radiolabelled RNA were excised and subjected to passive elution. After elution, the gel was subjected to autoradiography to confirm the precise excision of radiolabelled RNA (Fig.5.5.b panel E).

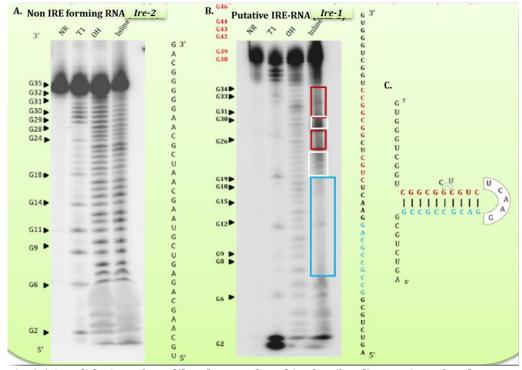


Fig.5.5.b. Steps followed during *In vitro* transcription and 5'end labeling reactions of *ire-1* and *ire-2*. Panel A shows 3% agarose gel used to separate *ire-1* and *ire-2* DNA. Molecular size markers are loaded in lane 1 and 7. The amplified *ire-1* and *ire-2* are loaded in lanes 2, 3 and lanes 4, 5, 6 respectively. Panel B shows steps involved in T7 dependent *in vitro* transcription. Panel C corresponds to 8% denaturing PAGE used to separate the transcripts formed after IVT reaction by using UV-shadowing. The arrow marks indicate *ire-1* RNA in lane 1 and *ire-2* RNA in lane 2. Panel D shows 8% denaturing PAGE used to separate the 5' end labeled RNA. Size controls are shown in lanes 1-3. Lanes 4 and 5 show radiolabelled RNA. Panel E shows the post-excision gel image corresponding to panel D. The red boxed regions are highlighted to indicate proper excision of radiolabelled RNA

5.5.1. Characterization of *IRE*^{opd}:

In-line probing assay was done to elucidate the structure of *IRE*^{opd} found at the 5' end of *opd* mRNA. The *in vitro* transcribed and radiolabelled RNA was subjected to in-line assay. This assay has four reaction lanes, among which NR corresponds to no reaction lane and it contains only radiolabelled RNA along with loading dye. Treatment of RNA with T1 RNase, generates a ladder as it cleaves the phosphodiester bond succeeding each 'G' residue and this reaction is shown in lane indicated as T1 ladder. In control reaction where *ire-2* is included there are thirteen G residues. Corresponding to that number of G residues we found 13 bands, suggesting that T1 RNase treatment worked as expected (Fig. 5.5.1, Panel A, lane T1). Similarly, in 46 nt long *IRE*^{opd} there are nineteen G residues and

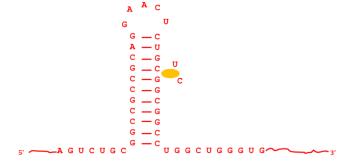

hence 19 bands were identified (Fig. 5.5.1, Panel B, lane T1). In OH reaction, the RNA is subjected to partial hydrolysis and hence a ladder is generated in both control and *IREopd* mRNAs. In the In-line assay hydrolysis of RNA is based on structure. The base paired regions found in RNA are protected from hydrolysis while looped regions are susceptible. As shown in Fig.5.5.1, Panel A there exists no difference between OH and in-line lanes in the reaction mix containing *ire-2* suggesting that there exists no secondary structure in the *ire-2* (Fig.5.5.1, Panel A, lanes OH and in-line). However, in the in-line reaction performed including *IREopd* there are no bands in the ladder corresponding to C11 to G17 and C20 to C23. However, intense bands were seen from U24 to G28; C18 and U19 suggesting existence of a loop in this region. Based on in-line probing analysis the secondary structure found in *ire-1* is validated (Fig.5.5.1, Panel C) and is compared with the structure of *IREopd* predicted using *in silico* tools.

Fig.5.5.1. Validation of IRE-like element found in the 5' coding region of *opd* mRNA. Panel A and B show a 10% Urea-PAGE gel to perform the structural analysis of *ire-2* (control RNA) and IRE^{opd} (*ire-1*) respectively. NR lane indicates the RNA loaded without any reaction condition. The T1 reaction lane indicates RNA, which was loaded after incubation with T1 RNase for 20min at 50° C to analyse the 'G' residues. The alkaline hydrolysis (OH) lane indicates the ladder formed when the RNA was incubated with buffer for 5min at 95° C. The in-line lane indicates reaction mixture of RNA loaded after incubation at room temperature for 48hr. The structured regions of the In-line reaction lane of IRE^{opd} are indicated in red and blue boxes and the un-structured region is indicated by white box. Panel C shows the validated structure of IRE^{opd}

5.5.2. Cloning of *opd* gene variants in high copy vector:

This structural analysis validated the predicted IRE-like element and determined its structure as a simple stem-loop with a pseudo loop in its left arm (Fig.5.5.2.A). After establishing the structure its influence on translation of opd mRNA was elucidated by constructing expression plasmids pPHYS and pPHNS. In pPHYS the ORF of opd gene was fused to transcriptional signals of an expression vector. The second expression plasmid pPHNS contains truncated opd gene, $opd^{\Delta IRE}$ in which the sequence specifying IRE-like structure in opd mRNA is eliminated and fused to the transcriptional signals of the vector. These two constructs code opd mRNAs with (pPHYS) and without (pPHNS) IRE^{opd} . Since transcriptional signals are identical in these two constructs if there exists any difference in the levels of OPH expression it should to be due to influence of IRE^{opd} on translation of opd mRNA.

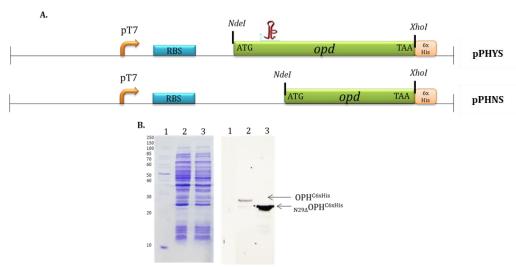
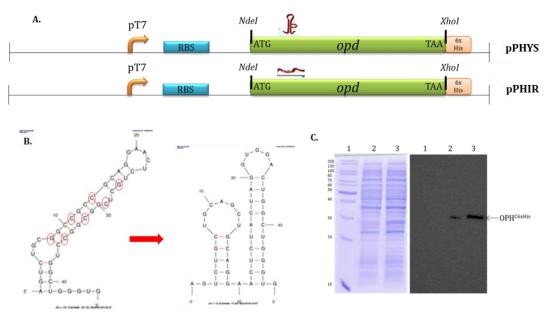


Fig5.5.2.A. *In vitro* **validated structure of** *IRE*^{opd}. The IRE-like element consists of a single stemloop region with a pseudo loop present on its left arm.


Thirdly, full length *opd* ORF with mutations in IRE region, designated as *opd'* was constructed by introducing non-complimentary mutations. Since the predicted IRE is in coding region, the non-complementary mutations are introduced at every third base of each codon. Primary aim of generating *opd'* is to have *opd* ORF coding wild type OPH without IRE structure in *opd* mRNA. This *opd'* bearing such non-complementary mutations did not alter the primary protein sequence but remarkably disrupted the secondary structure of *opd* mRNA. *opd'* was PCR amplified with NS13FP/ NS13RP having *Nde*I and *Xho*I restriction sites.

5.5.3. Analysis of the functional role of *IRE*^{opd} on *opd* gene expression:

The expression plasmids pPHYS and pPHNS were independently transformed in $E.\ coli$ NiCo (DE3) cells and the quantity of OPH coded by these two expression plasmids was estimated by assessing the signal intensity of OPHC6XHis and N29 Δ OPHC6XHis. A significant increase in OPH expression was seen in cells having expression plasmid pPHNS constructed using $opd^{\Delta IRE}$ (Fig.5.5.3, panel B, lane 3) when compared to OPH encoded pPHYS, constructed using full length ORF of opd gene (Fig.5.5.3, Panel B, lane 2). This clearly indicated a repressive role of IRE on the expression of OPH. OPH expression in $E.\ coli$ NiCo (pPHIR) was also assessed to know if the reduced expression of OPH is due to existence of IRE in opd mRNA. As stated before, the pPHIR was generated by cloning opd' in pET23b vector. In opd' the IRE-like structure is totally lost (Fig.5.5.3.a, Panel B) due to introduction of non-complementary bases at the third codon. Interestingly, the levels of OPH encoded by pPHIR significantly increased, suggesting existence of IRE dependent translational repression on expression of OPH (Fig.5.5.3.a, Panel C).

Fig.5.5.3. Functional role of IRE on *opd* **expression.** Panel A shows diagrammatic representation of the extent of *opd* region used to construct pPHYS and pPHNS. Panel B shows the coomassie stained, 12.5% SDS-PAGE and its corresponding western blot probed with anti-His antibodies. Lane 1 shows the molecular marker, lanes 2 and 3 show expression of OPH C6XHis and $_{N29\Delta}OPH^{C6XHis}$ respectively.

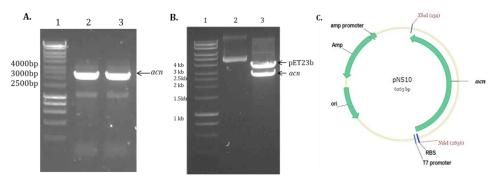
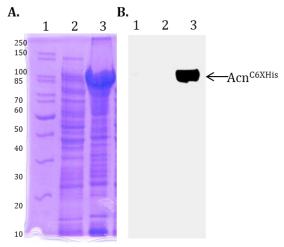


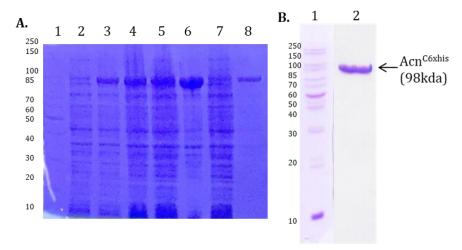
Fig.5.5.3.a. IRE dependent translational repression of OPH. Panel A shows diagrammatic representation of the extent of *opd* region used to construct pPHYS and pPHIR. The loss of *IRE*^{opd} caused by introduction of non-complementary mutations at every third base of the codon is shown in a circle is shown in panel B. Panel C shows the coomassie stained, 12.5% SDS-PAGE and corresponding western blot probed with anti-His antibodies. Lane 1 shows the molecular marker, lane 2 and 3 show levels of *opd* and *opd'* coded OPH^{C6XHis}

5.5.4. Expression and purification of *Sf***Aconitase**:


IRE dependent translational regulation is mediated through IRE and IRP interactions. The IRP is apo-aconitase. Under iron limiting conditions the apo-aconitase interacts with IRE and influences the mRNA stability and translation efficiency (Cairo & Recalcati, 2007). Since *IREopd* has considerable structural similarity with the well characterized IREs, an attempt is made to see if *IREopd* interacts with apo-aconitase by performing RNA-protein EMSA.

Initially expression studies of *sf*Aconitase (*sf*Acn) were carried out in *E. coli* and affinity purification of *sf*Acn was done by following strategies shown in Fig.5.5.4.b. The *sfacn* gene was cloned in expression vector pET23b as an *Ndel* and *Xhol* fragment and expression of *sf*Acn was induced as described in materials and methods section (Fig.5.5.4).

Fig.5.5.4. Construction of pNS10. Panel A shows 0.8% agarose gel used to analyze *sfacn*. Molecular size markers are loaded in lane 1. The amplified *sfacn* is loaded in lanes 2 and 3. Panel B shows image of agarose gel (0.8%) indicating the molecular marker (lane 1) undigested pNS10 (Lane 2) and pNS10 digested with *Ndel* and *Xhol*. The band corresponding to the vector and insert containing *sfacn* gene are shown with arrows (lane 3). Panel C shows map of pNS10


As seen in Fig.5.5.4.a, a thick protein band (approximately 98kda) was observed and was found only in proteins extracted from induced cultures (lane 3, Fig.5.5.4.a). Such band was absent in uninduced cultures indicating over expression of s_fAcn^{C6XHis} in $E.\ coli$ NiCo (DE3) cells. The western blots performed by using anti-His antibodies confirmed that the thick protein band found induced cultures is s_fAcn^{C6XHis} (Fig. 5.5.4.a lane 3).

5.5.4.a. Expression of Acn^{C6xHis}. Panel A shows coomassie stained 10% SDS-PAGE to analyze the expression of Acn^{C6xHis}. Lane 1 shows the molecular marker, lane 2 shows protein uninduced whole cell lysate, lane 3 shows 1.5h induced protein. Panel B shows a corresponding western blot probed with anti-His antibodies to detect the expression of Acn^{C6xHis} .

Once the expression of $SfAcn^{C6xHis}$ was standardized, the protein purification was performed using Ni-NTA matrix as described in the methodology section. The clear lysate containing $SfAcn^{C6xHis}$ was obtained by inducing the expression of $SfAcn^{C6xHis}$ in 2000 ml of $E.\ coli$ NiCo (DE3) (pNS10)

cells. The clear lysate was passed through a 1.5cmx14cm Ni-NTA column at a flow rate of 1ml/minute. After passing the clear lysate through column it was washed extensively and the *sf*Acn^{C6xHis} adsorbed to the column was eluted by passing elution buffer (20mMTris/HCl and 500mM NaCl) containing 200mM imidazole. Elution fraction was then analyzed on 10% SDS-PAGE and the purity of *sf*Acn^{C6xHis} was ascertained (Fig.5.5.4.b, lane 8). The fractions obtained with 200mM imidazole were pooled and the concentration of pure *sf*Acn^{C6xHis} was determined and stored at -30°C until further use.

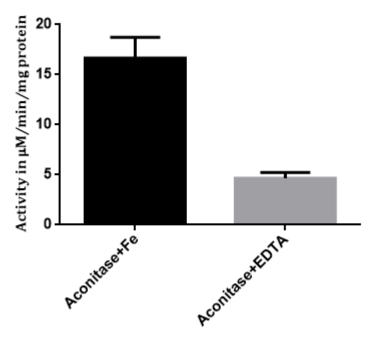


Fig.5.5.4.b. Affinity purification of s_f Acn^{C6xHis}: Panel A shows coomassie stained 10% SDS-PAGE showing the various stages of s_f Acn^{C6xHis} purification. Lane 1 shows the molecular marker, lane 2 shows proteins extracted from uninduced cultures, lane 3 indicates whole cell lysate fraction obtained from induced cultures, lanes 4 & 5 show pellet soluble protein fractions from induced cultures. The clear lysate used as input is shown in lane 6. The proteins found in flow-through fraction is shown in lane 7, lane 8 corresponds to elution fraction, obtained when eluted using 200mM imidazole. Panel B indicates the pure s_f Acn^{C6xHis}.

5.5.5. Aconitase activity assay:

Aconitase or aconitate hydratase is an iron-sulfur cluster (4Fe-4S) containing protein which catalyzes the reversible isomerization of citrate to isocitrate via *cis*-aconitate (Trujillo et al., 2010). It is the second enzyme involved in krebs cycle of eukaryotic respiration (Ciccarone et al., 2018). The activity of aconitase is due to the presence of intact iron-sulfur clusters within the enzyme. The enzyme activity is reduced when these clusters are disrupted (Theil, 2015). Aconitases act as moon lighting enzymes in response to iron status in the cell (Marcos et al., 2014). Under iron

sufficient conditions, when the iron-sulfur clusters are filled in, they act in conversion of citrate to isocitrate while under iron limiting conditions, the iron-sulfur clusters are disturbed, then they act as RNA binding proteins (IRP), bind to their cognate IRE molecules and function by modulating their expression (Harrell et al., 1991; Erlitzki et al., 2002; Mande, 2011). The aconitase activity was measured before proceeding to elucidate the RNA binding activity of s_f Acn. This experiment was performed by using $50\mu g$ of pure protein with or without EDTA and isocitrate was used as a substrate. This metal chelator was used to chelate the iron from Fe-S clusters found in aconitase. The protein was reconstituted with ferrous ammonium sulfate to re-establish the iron-sulfur clusters. The absorption at 240nm was measured to detect the formation of cisaconitate and the activity was indicated as $\mu M/min/mg$ of protein. As shown Fig. 5.5.5, aconitase activity was significantly lowered when the protein was treated with EDTA, clearly indicating the loss of intact iron-sulfur clusters of the protein.

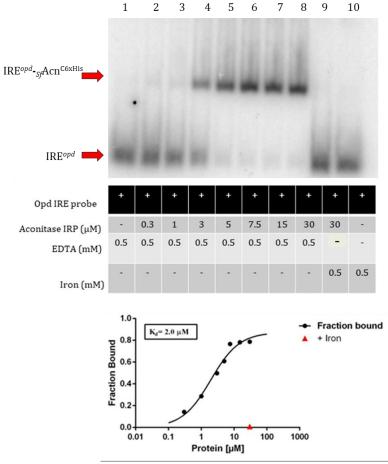


Fig.5.5.5. Aconitase activity: The aconitase activity determined for $50\mu g$ of aconitase (Fe) and apo-aconitase (EDTA).

5.5.6. Interactions between *IRE*^{opd} and _{Sf}Acn^{C6xHis} IRP:

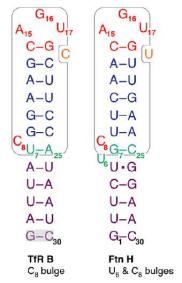
As described in the preceding chapters and sections a novel secondary structure

that shows similarity with well characterized IREs exists at the 5' coding region of opd mRNA. It shared structural similarity with a few well characterized IREs. This IRE-like element was structurally characterized and was proved to possess a simple stem-loop structure which is a well-defined characteristic feature of IREs. The IRE interacts with IRP under iron limiting conditions and posttranscriptionally regulates the expression of its cognate genes. Usually, aconitases serve as IRPs. Once the structure of IREopd was determined, initial attempts were made to perform in vitro assays to assess the interactions between IREopd and SfAcnC6xHis. As described previously, the IREopd was generated through IVT and SfAcn^{C6xHis} was overexpressed and purified. Further experiments were conducted to assess metal dependent interaction between these two components. EMSA experiments were conducted to detect mobility shifts due to formation of IREopd-SfAcnC6xHis complexes. During EMSA experiments the IREopd concentration was kept constant (20cps), and incubated with increasing concentrations of SfAcnC6xHis in the absence of metal ion. A clear shift in electrophoretic mobility was observed in the mobility of IREopd when it is incubated with SfAcn^{C6xHis} indicating the formation of IRE^{opd}- SfAcn^{C6xHis} complex. The concentration of IREopd-SfAcnC6xHis complex increased with an increase of SfAcn^{C6xHis} indicating the formation of concentration dependent IRE^{opd}-SfAcn^{C6xHis} complexes in the reaction mixture. Formation of such complexes got abrogated in the presence of metal ions (Fig.5.5.6, lane 9). This experiment gave a clear in vitro evidence on the interactions existing between IREopd/SfAcnC6xHis. Including the metal chelators in reaction mixture enhanced association of the IRE^{opd}-_{Sf}Acn^{C6xHis} complex (Lanes 2-8, Fig.5.5.6) suggesting that the interactions between *IREopd*-*Sf*Acn^{C6xHis} are dependent on metal ions.

Fig.5.5.6. EMSA to show IRE^{opd} - $_{Sf}$ Acn C6xHis **interactions.** Panel A shows the shift in the mobility of radiolabeled IRE^{opd} caused due to binding of $_{Sf}$ Acn to IRE^{opd} (indicated by dark red arrows) in the absence of metal ions. Panel B depicts binding constant determined for $_{Sf}$ Acn and IRE interactions.

5.6 Discussion:

Cellular iron metabolism is stringently regulated all living organisms (Hentze & Kuhn, 1996; Crosa, 1997; Selezneva et al., 2013). Iron regulatory proteins (IRPs) play a central role in this iron mediated post-transcriptional regulation where they modulate expression of other proteins involved in maintaining iron homeostasis. They possess Fe–S clusters (Beinert, 1997; Bian & Cowan, 1999; Kiley & Beinert, 2003). IRPs control translation process by interacting with IREs often identified either at 5' or 3' un-translated regions of the mRNAs (Selezneva et al., 2013). The IRPs do not have an RNA binding domain but they recognize and interact with several IREs with affinities ranging upto picomolar concentrations (Volz, 2008). The secondary structure of IREs contain two separate regions that play a crucial role in recognition of IRPs: an


apical loop and a mid-stem bulge (Walden et al., 2006, 2012).

In eukaryotes, an important reaction of iron deprivation is the non-enzymatic activity of iron responsive proteins (Hentze & Kuhn, 1996; Rouault & Klausner, 1996). Aconitase (Acn) is the second enzyme of citric acid cycle and contains 4Fe-S cluster, that stereo-specifically converts citric acid to isocitric acid via *cis*-aconitate (Ciccarone et al., 2018). Under conditions of iron starvation the protein loses its Fe-S clusters. The apo-aconitase thus formed binds IREs found in mRNAs. Interactions between IRE-IRP either shield the mRNAs against degradation or repress their translation (Ma et al., 2012; Zhou & Tan, 2017). The rabbit IRE feritin is located at the 5' un-translated of its mRNA. The translation of this ferritin mRNA is inhibited when this is bound by a apo-Acn (Aziz & Munro, 1987). Contrarily, rabbit IRE transferrin is located at the 3' un-translated region of its mRNA. Interaction of IRP at this region, enhances the stability of the mRNA (Owen & Kühn, 1987; Casey et al., 1988). In both circumastances, interaction occurs under iron depletion (Constable et al., 1992).

This exceptional enzymatic or regulating behaviour of IRP (aconitase) is elucidated in certain bacteria (Gardner, 1997; Gardner et al., 1997; Wilson et al., 1998; Alen & Sonenshein, 1999; Tang & Guest, 1999; Serio et al., 2006; Banerjee et al., 2007). Aconitase from bacteria, are classified into two types. AcnA is identical to eukaryotic aconitases and is expressed under stress. AcnB functions majorly as a TCA enzyme (Gruer et al., 1997; Williams et al., 2002). Both AcnA and AcnB interact with unique sequences in the 3' un-translated regions of *acnA* and *acnB* mRNAs in 4Fe-4S free forms (Tang & Guest, 1999). Hence, the inactive aconitases moderate a post-transcriptional autoregulatory switch.

The _{Bs}Acn and _{Mtb}Acn interact with IRE-like elements, similarly as in eukaroytes (Alen & Sonenshein, 1999; Banerjee et al., 2007). The _{Bs}Acn is required in modulating genes coding for major respiratory oxidases, iron uptake system and also in sporulation (Alen & Sonenshein, 1999; Serio et al., 2006). Much information on *M. tuberculosis* Acns is not available, the available literature indicates existence of roles in iron homeostasis for the _{Mtb}Acn (Banerjee et al., 2007).

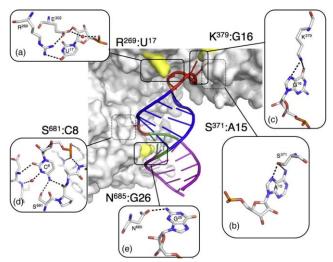

The five conserved nucleotides CAGUG found in the apical loop region of each IRE sequence forms the terminal pseudo-triloop, with the AGU triplet at the apex (Selezneva et al., 2013). The other main structural characteristic is the conserved C8 hinge in the middle of the stem. This hinge region is capable of forming several interactions when bound to IRP. The Cytosine at position 1 forms a base pair with Guanine at position 5 (Addess et al., 1997; McCallum & Pardi, 2003). This base pairing interaction is assumed to enhance IRP binding to IRE (Addess et al., 1997; Henderson et al., 1994). Most IREs have a conserved C residue, five bases upstream of the CAGUGN sequence, creating a bulge in the hairpin, whereas others, present in ferritin mRNAs, instead have a conserved bulge/loop UGC/C. In the UGC/C-type IRE the G and C are paired (Gdaniec et al., 1998), and the results of *in vitro* selection experiments indicated that this base pair favours high-affinity binding by IRPs (Butt et al., 1996). IRE stems forms an A-helix with a small distortion due to the conserved, unpaired C or the internal loop bulge (Gdaniec et al., 1998). The helix between the UGC/C distortion and the apical loop seems significant since it contributes to protein binding (Leibold et al., 1990).

Fig.5.6.1. Comparison of ferritin and transferrin IREs. (A) Secondary structures of transferrin receptor 1 B and ferritin H IREs. The GC base pair at the bottom of the TfR B IRE (grey box) was introduced for stability. The outlined regions have the same three-dimensional structures (Walden et al., 2012).

IRP is a bi-functional protein. In one mode of operation, IRP binds to

stem-loop of iron-responsive element (IRE) in mRNAs encoding proteins of iron metabolism to control their rate of translation. In its other mode, IRP functions as cytoplasmic aconitase to correlate iron availability with the energy and oxidative stress status of the cell. The highly specific binding between IRE and IRP occurs through two separate binding interfaces that contribute to strong RNA:protein interactions. Approximately two dozen hydrogen bonds are identified in the crystal structure of the IRP:ferritin IRE complex but only five amino acids make base-specific contacts and these putative bonds are sequence specific. Though these hydrogen bonds do not constitute the strongest interactions between protein and RNA, they are responsible for binding specificity (Morozova et al., 2006). The five amino acid residues of IRP - Arg269, Ser371, Lys379, Ser681, and Asn685 have been identified to strongly interact with IRE (Selezneva et al., 2013). In a mutagenesis study, each of the five basespecific amino acids was changed to alter binding at each site. Analysis of IRE binding affinity and translational repression activity of the resulting IRP mutants showed that four of the five contact points contribute uniquely to the overall binding affinity of the IRP:IRE interaction, while one site was found to be unimportant. The stronger-than-expected effect on binding affinity of mutations at Lys379 and Ser681, residues that make contact with the conserved nucleotides G16 and C8, respectively, identified them as particularly critical for providing specificity and stability to IRP:IRE complex formation. Arg269, Ser371, Lys379, and Ser681-significantly impaired interaction of IRP with ferritin IRE, confirming the importance of these bonds for IRP:IRE recognition. The basespecific RNA-binding residues are not part of the aconitase active site but their substitutions can affect the aconitase activity of holo-IRP, positively or negatively (Selezneva et al., 2013).

Fig.5.6.2. Structural interactions between IRE-IRP. The five IRP1 residues that form base-specific hydrogen bonds to the IRE RNA in the IRP1:IRE complexes. The IRE (cartoon) is shown as bound to the IRP protein (solvent-accessible surface). The amino acids Arg269, Lys379, and Asn685 are visible (yellow), while Ser371 and Ser681 are hidden from view. Details of the five base-specific contacts are shown by insets. Note that these residues are different from the four aconitase active-site arginines (Arg536, Arg541, Arg699, and Arg780) previously studied based on homology modeling (Hirling et al., 1994; Philpott et al., 1994; Butt et al., 1996; Selezneva et al., 2013).

Ferritin and transferrin receptor mRNA are two classical examples of eukaryotic IREs. The mechanism of interactions between these IREs and their cognate IRPs are extensively elucidated. Ferritin mRNAs, encoding the subunits of a large iron storage protein, contain a regulatory sequence in the 5' noncoding region that is conserved among all vertebrates (Theil, 1990). The conserved mRNA sequence, IRE, is a 28-nucleotide hairpin loop, which is required for selfregulation of ferritin synthesis by iron; IRE flanking sequences form a 9- to 17base-paired stem near the cap (Wang et al., 1990; Wang et al., 1991). Increased cellular iron acts as the regulatory signal, increasing ferritin synthesis and iron storage by recruiting ferritin mRNA for polyribosomes, while decreasing transferrin receptor synthesis and iron uptake by degrading the receptor mRNA (Zahringer et al., 1976; Casey et al., 1988; Müllner & Kühn, 1988; Koeller et al., 1989). Concerted regulation of the mRNA for the two metabolically related proteins uses the same RNA-protein interactions (Owen & Kühn, 1987; Aziz & Munro, 1987; Casey et al., 1988; Caughman et al., 1988; Koeller et al., 1989; Theil, 1990). Opposite effects of iron on translation of ferritin mRNA and destabilization of the transferrin receptor mRNA coincide with the different locations of the IRE, in either the 5' noncoding region (ferritin mRNA) or the 3' noncoding region (transferrin receptor mRNA) (Harrell et al., 1991).

Fig.5.6.3. IRP/IRE regulatory system in ferritin and transferrin receptor genes. In the case of ferritin mRNA, when iron is depleted, IRP binds *IREferritin* present at its 5'UTR and represses the translation. Under iron excess condition, *IREferritin* cannot bind IRP hence enhances translation. On the other hand, in the case of transferrin mRNA, when iron is depleted, IRP binds *IREtransferrin* present at its 3'UTR and enhances the stability of transferrin mRNA. Under iron excess condition, *IREtransferrin* cannot bind IRP hence causes endonucleolytic cleavage of transferrin receptor mRNAs.

Based on available literature, an attempt was made to understand interactions between IRE^{opd} and S_f Acn. As discussed previously, the location of opd IRE is unique. It is identified in the coding region of opd mRNA. The location of IRE did not influence interactions between IRE^{opd} and S_f Acn IRE. The IRE^{opd} interacts with IRP with a similar binding affinity (at picomolar concentration) as a conventional IRE.

Before proceeding to understand the structural aspects pertaining to the binding of IRE^{opd} and IRP, attempts were made to compare the s_f Acn sequence with four Acn paralogs Viz. E. coli (acnA, acnB); B. subtilis, M. tuberculosis and rabbit. The s_f Acn showed 64% and 25% homology with e_c acnA and e_c acnB respectively; 55% similarity with e_s Acn and e_s Acn and 52% with e_s Acn. The alignment of e_s Acn with the structurally characterized Acns of rabbit (eukaryotic), e_s ach e_s ach (prokaryotic) helped to gain insights on e_s ach interactions. Interestingly, the amino acids that facilitate interactions between IRE and IRPs were conserved in e_s Acn. In fact, there exists absolute

conservation at positions of R269, and S681 and at position R379 instead of arginine lysine (K379) is identified. If the charge conservation is seen both of them have basic side chains, at this position. Interestingly, the other amino acid residues showing minimum hydrogen bond distances during IRE-IRP interactions (Walden et al., 2012) are also found to be conserved in *Sf*Acn. They are H207, R269, N298, E302, T438, N439, N535, R536, P682, G684, S708, G710, R728, R780 and D781.

The structural similarities between *IREopd* and *Sf*Acn, if seem together with EMSA results generated in this study, clearly indicate a role for OPH in iron metabolism (Fig.5.5.6). However, how the IREopd and SfAcn interactions relieve *IREopd* mediated translational repression is difficult to explain with available data. The *IRE*^{opd} dependent translational repression of opd mRNA is clear as the relief of translational inhibition is clearly seen in expression constructs made using $opd^{\Delta IRE}$ and opd' (Fig.5.5.3 and Fig.5.5.3.a). In opd' the IRE structure is destabilized and the OPHC6XHis encoded by opd' has also gone up. The enhanced OPH translation encoded by mRNA transcribed from opd' gene could be due to destabilization of the stem loop structure of IRE, which is rather masking the translational initiation site (Fig.5.5.3.a; Fig.6.5.7a). It is not clear from the data presented in this chapter if such destabilization of IRE is possible due to sfIRP-*IRE*^{opd} interactions. Further experiments were conducted to understand the role of IRE mediated translational inhibition of *opd* gene expression and described in fourth chapter.

```
CLUSTAL O(1.2.4) multiple sequence alignment
 rabbit IRP
                                           MSNPFAY-----LAEPLDPAQPGKKFFNLNKL---DYSRYGRLPFSIRVLLEAAVRNC
 b.sub_aco
sfaconitase
                                           MANEQKTAAKDVFQARKTFTTNGKTYHYYSLKALEDSGIGKVSKLPYSIKVLLESVLRQV
----MTAIGQDTLGTRDTLKVGGKDIAYYSLKKA-AAKLGDVSRLPFSMKVLLENLLRFE
                                           -----MSSTLREASKOTLQAKDKTYHYYSLPLA-AKSLGDITRLPKSLKVLLENLLRNQ
e.coli
                                           DKFLVKKEDIENILNWNVT-OHMNIEVPFKPARVILODFTGVPSVVDFAAMRDAVKKLGG
rabbit IRP
b.sub_aco
sfaconitase
e.coli
                                           DGFVIKKEHVENLAKWGTA-ELKDIDVPFKPSRVILQDFTGVPAVVDLASLRKAMAAVGG
DGVTVTTDDIQAIVDWQNDKGKAEREIQYRPARVLMQDFTGVPCVVDLAAMRDAMTALGA
                                           DGNSVTEEDIHALAGMLKN-AHADRETAYRPARVLMQDFTGVPAVVDLAAMREAVKRLGG
                                                                                                                                                                                                            112
rabbit_IRP
b.sub_aco
sfaconitase
e.coli
                                           DPEKINPICPVDLVIDHSIOVDENRRADSLOKNODLEFERNRERFEFLKWGSKAFRNMRI
                                           DPELIPPLEYULYJONSJUVOPINSKOJOSLIGNINGLEFERNIKEREFILKOSJAKHNINYA

DDILIPPETPULYJONSJUVOKAGTEDALAVNIOLEFERNIKERYYFLSMAKKAFNINYA

DAGKINPQVPVHLYZDHSVIVORFGOTEKAFEGNVELEYQRIMERYOFLKWGKGAFSRFVA

DTAKVNPLSPYDLYZDHSVIVORFGODEAFEENVRLEHERNHERYYFLKWGKQAFSRFSV
                                           IPPGSGIIHQVNLEYLARVVFDQ-----DGYYYPDSLVGTDSHITMIDGLGVLGWGVGGI
VPPATGIVHQVNLEFLASVVHAI-EEDGELVTYPDTLVGTDSHITMINGIGVLGWGVGGI
VPPATGICHQVNLEHIAQAVMSSEGPDGVTVAYPDTLVGTDSHITMINGLGVLGWGVGGI
VPPGTGICHQVNLEYLGKAVMSE-LQDGEWIAYPDTLVGTDSHITMINGLGVLGWGVGGI
rabbit_IRP
b.sub_aco
sfaconitase
e.coli
                                           EAEAWHLGQPISMVLPQVIGYRLMGKPHPLVTSTDIVLTITKHLRQVGVVGKPVEFFGLG
EAEAGHLGQPSYFPVPEVIGAKLVGKLPNGTTATDLALKVTQVLREKGVVGKFVEFFGPG
EAEAAHLGQPVSMLIPEVVGFRTGELKEGVTATDLVLTCTQMLRARGVVGRPEFFGPG
EAEAAHLGQPVSMLIPEVVGFRTGKLKGREGITATDLVLTCTQMLRKHGVVGKPVEFYGGG
rabbit_IRP
b.sub_aco
sfaconitase
e.coli
                                            VAQLSIADRATIANICPEYGATATFFPVDEVSIKYLVQTGRDESKVKQIRKYLQAVGMFR
IAELPLADRATIANIANEKVGATCGFFPVDEEALMYLRLTGRDEHIDVVEAYCRSNGLFY
LATLSLADRATLANIANEKYGATCGFFGIDDKTLDYMRLTGRTEENIALVEAYAKEQGFWI
  rabbit_IRP
  b.sub_aco
sfaconitase
e.coli
                                            LDSLPLADRATIANSPEYGATCGFFPIDAVTLDYMRLSGRSEDQVELVEKYAKAQGMWR
                                           b.sub_aco
sfaconitase
e.coli
                                           b.sub_aco
sfaconitase
e.coli
  rabbit_IRP
b.sub_aco
sfaconitase
e.coli
                                           KPYVKTSLSPGSGVVTYYLRESGVMPYLSOLGEDVVGYGCMTCIGNSGPLPEPVVEAITO
                                             PNYVKTSLAPGSKVVTGYLVNSGLLPYMKELGFNLVGYGCTTCIGNSGPLSPEIEEAVAK
KPWVKTSLAPGSQVVTDYLEKAGLQSHLDAVGFNLVGYGCTTCIGNSGPLAEPISKAINE
                                           OPWYKASIAPOSKYVSDYLAKAKITPYLDELGFNLVGYGCTTCIGNSGPLPDPIETAIKK
                                                                                                                                                                                                        521
                                           GDLVAVGVLSENRNFEGRVHPNTRANYLASPPLVIAYAIAGTIRIDFEKEPLGTNAKGQQ
  rabbit IRP
  b.sub_aco
sfaconitase
                                            NDLLITSVLSÉNRNFEGRIHPLVKGNYLASPPLVVAYALAGTVNINLKTDPIGVGKDGQN
NGLVAAAVISÉNRNFEGRVSPDVRANFLASPPLVVAYALKGTVVEDFITTPIGTGKDGQQ
  e.coli
                                           SDLTVGAVLSGNRNFEGRIHPLVKTNWLASPPLVVAYALAGNMNINLASEPIGHDRKGDI
                                                                                                                                                                                                        581
rabbit_IRP
(MAGN_N-BDI.aC_UKA)FNDIMPTREEIQAVERQYVIPGMFTEVYQXIETVNASNMALAAPSOKLYLNNPKSTYI
(MAGN_N-BDI.aC_UKA)FNDIMPSMDEINALVKQTVTPELFRKEYETVFDONKRNNEIETTDEALYKKONOSTYI
sfaconitase
e.coli

**VELDIMPTRDEVASTMAGCVROZNFQARTANVYKSOHNQAIDVTGSOTYSARAGSTYV
VVLKDIXMPTNDEVASTMAGCVROZNFQARTANVYKSOHNQAIDVTGSOTYSARAGSTYV
VVLKDIXMPSAQEIARAVE-QVSTEMFRKEYAEVFEGTAENKGINVTRSOTYGMQEDSTYI
                                                                                                                                                                                                        640
640
Sub-IRP STANDAY LINLGOSVITOHIS PAGNIANS PAGNIANS
                                              rabbit_IRP
b.sub_aco
sfaconitase
     e.coli
                                              GHPLIVLAGKEYGSGS$RDWAAKGPFLLGIKAVLAESYERIHRSNLVGMGVIPLEYLPGE
    rabbit_IRP
     b.sub_aco
sfaconitase
                                              KTGLVVLAGKDYGMGSSRDWAAKGTNLLGIRTVIAESFERIHRSNLVFMGVLPLQFKQGE
GTPLVVIGGKEYGTGSSRDWAAKGTNLLGVRAVIVESFERIHRSNLVGMGVLPLQFKDGQ
    e.coli
                                              QTPLAVIAGKEYGSGSSRDWAAKGPRLLGIRVVIAESFERIHRSNLIGMGILPLEFPQGV
                                              NADSLGLTGRERYTIIIPENLTPRMHVQVKLDT----GKTFQAVIRFDTDVELTYLHNGG
    rabbit_IRP
     b.sub_aco
sfaconitase
                                               NADTLGLTGKEVIEVDVDETVRPRDLVTVRAINEDGNVTTFEAVVRFDSEVEIDYYRHGG
                                               NKDTFGLTGDETFTIQNVAGLKPRQDVEVIVKRADGSTFTFTALCRIDTVNELDYFLNGG
   e.coli
                                              TRKTLGLTGEEKIDIGDLQNLQPGATVPVTLTRADGSQEVVPCRCRIDTATELTYYQNDG
    rabbit IRP
    b.sub_aco
sfaconitase
                                              ILQMVLREKMKQS 909
ILQYVLRKLAA-- 889
    e.coli
                                              ILHYVIRNMLK-- 891
**: ::*:
```

Fig.5.6.4. Alignment of rabbit, *B. subtilis, S. fuliginis, E. coli* **Acn sequences.** The amino acid residues essential for IRE interaction with IRP are highlighted in a red box.

Chapter-90

Background:

In the preceding chapters of the thesis, we have described the experiments performed to gather evidence on transcriptional regulation of opd gene. The third chapter of the thesis is devoted to describe experiments performed to prove existence of IRE element in opd mRNA. The current chapter describes experiments conducted to elucidate the role of IRE in post-transcriptional regulation of opd gene. The secondary structures of mRNA, like IRE elements or pseudoknots serve as targets either to regulatory proteins such as IRE and regulatory small RNAs. Depending on the physiological cues they interact with the mRNA secondary structures and regulate the gene expression by either inhibiting or activating the process of translation (Jagodnik et al., 2017; Leppek et al., 2018). Although, the physiological significance was unclear, in the third chapter the interactions between IRE^{opd} –SFACn (IRP) interactions were demonstrated. This chapter describes identification of a small regulatory RNA in the intergenic region of opd and istB genes, and its role on expression of opd gene by establishing direct interactions with IRE^{opd} .

6.1. Objective specific methodology:

Table 6.1: Primers used in this study

NS16 P	TTGTCGAGGCGGTGCTTTCATCTGCTGTGCT G	Oligonucleotide complementary to sRNA, <i>CrpR54</i> used as probe while performing northern blot analysis.
NS17	<u>AATTC</u> CTGCTGTGCTGAACGGCCTTCCGCTA	Forward (FP)/
FP	CGCT <u>CTGCA</u>	Reverse primers
NS17	<u>G</u> AGCGTAGCGGAAGGCCGTTCAGCACAGCAG	(RP) used to
RP	<u>G</u>	generate the core
		promoter of <i>crpR54</i> -
		gene encoding sRNA,
		CrpR54. The EcoRI
		and <i>PstI</i> sites
		appended to
		facilitate cloning in
		pMP220 are
		underlined.

NS18	AATTCCCTGATCAGAAAACCCCTCATCTGCT	Forward (FP)/	
FP	GTGCTGAACGGCCTTCCGCTACGCTCTGCA	Reverse primers	
NS18	GAGCGTAGCGGAAGGCCGTTCAGCACAGCAG	(RP) used to	
RP	ATGAGGGGTTTTCTGATCAGGG	generate the	
IXI		promoter of <i>crpR54</i> -	
		gene encoding sRNA,	
		<i>CrpR54</i> along with	
		<i>crp</i> binding motif.	
		The <i>EcoR</i> I and <i>PstI</i>	
		sites appended to	
		facilitate cloning in	
		pMP220 are	
		underlined.	
NS19	TCTAGAAGACCGTTCAGCACAGCAGATGAAA	Complementary	
FP	GCACCGCCTCGACAAGAGGCTTTTTGTTCAA	oligos used to anneal	
	TCCAAAGCTT	while obtaining	
NS19	<u>AAGCTT</u> TGGATTGAACAAAAAGCCTCTTGTC	sRNA gene, crpR54 of	
RP	GAGGCGGTGCTTTCATCTGCTGTGCTGAACG	S. fuliginis. The Xbal	
	GTCT <u>TCTAGA</u>	and <i>HindIII</i> sites	
		appended to	
		facilitate cloning in	
		pET23b are	
		underlined.	
NS20	AAA <u>GAATTC</u> CCAACTGGTACACTCTTAC	Forward primer	
FP		(FP)/ Reverse	
NS20	AAAGGATCCCACCCAGCCAGGCCGCCGAG	primers (RP) used to	
RP		amplify <i>IRE</i> ^{opd} along	
		with the core	
		promoter of opd	
		gene. The <i>EcoRI</i> and	
		BamHI sites,	
		appended to the	
		primers facilitate	
		cloning of <i>opd</i> gene	
		promoter in the	
		translational fusion	
NC21	GCCAGAATTCAGGGAGACCACAACGGTTTCA	vector, pRS552.	
NS21 FP	CT	Forward (FP) /	
rr		reverse (RP) primers used to amplify full	
NS21	GCCAGGATCCCAAAAAACCCCTCAAGACCC	length ORFs opd and	
RP	3331 <u>33711 333</u> 111111111111111111111111111111	opd' genes from	
131		expression plasmids	
		pPHYS/pPHIR. The	
		EcoRI/ BamHI sites	
		appended to	
		facilitate cloning of	
		racintate cioning of	

		opd gene and its variant opd' in low copy expression vector pMMB206 are underlined.
NS22	AAA <u>CATATG</u> GCCGACAAAGTGAACAAC	Forward primer
FP NS22	AAACTCGAGATCCTCGCCCTCACCCTC	(FP)/ reverse primer (RP) used to amplify
RP		hfq from S. fuliginis.
		The NdeI/XhoI sites
		appended to
		facilitate cloning in pET23b are
		underlined.
NS23	TAGCTCACTCATTAGGCACC	Forward and reverse
FP		primers used to
NS23	ATATGGAAACCGTCGATATT	amplify <i>lacZ</i> region
RP		from the genomic DNA of <i>E.coli</i>
		NiCo21(DE3)
NS24	AGGCTGAATGTGTACAATTGAGACG	Forward (FP) and
FP		reverse primers (RP)
		used to amplify <i>hfq</i>
NS24	ACAGGATCGCTGGCTCCC	region from the
RP		genomic DNA of
NS25	AAAAGGCTTTAATACGACTCACTATAGG	E.coli NiCo21(DE3) Forward primer
FP	AAAAGGCII TAATACGACTCACTATAGG	used to amplify the
		$s_f h f q$ gene from
		pNS16 which carries
		_{Sf} hfq as an NdeI/XhoI
		fragment cloned in
		pET23b (along with
		the T7 promoter)
		using vector specific primer. The <i>HindIII</i>
		site appended to
		facilitate cloning in
		pET23b- crpR54
		(pNS13) is
		underlined

Table 6.2: Strains used in this study

E. coli DH5α	λsupE44, ΔlacU169 (Δ80	(Hanahan, 1983)
E. COII DII SU		(Hallallall, 1903)
	lacZ∆M15) hsdR17 recA1 endA1	
	gyrA96 thi1 relA1	
Sphingobium	Wild type strain,	(Kawahara et al., 2010;
fuliginis ATCC	Sm ^r , PmB ^r , <i>opd+</i>	Sethunathan &
27551		Yoshida, 1973)
<i>E.coli</i> NiCo	$BL21(DE3)$ $glmS_{6Ala}$ $slyD-CBD$	(Robichon et al., 2011)
(DE3)	can-CBD arnA-CBD	
E. coli BW25113	Δ(araD-araB)567,	(Baba et al., 2006;
Δ <i>hfq</i> ::kan	ΔlacZ4787(::rrnB-3), F- λ-, rph-	Datsenko & Wanner,
	1, Δ(rhaD-rhaB)568, hsdR514,	2000)
	Δ <i>hfq</i> ::kan	
E. coli BW25113	Δ (araD-araB)567,	(Baba et al., 2006;
Δ <i>lacZ</i> ::kan	Δ lacZ4787(::rrnB-3), F- λ -, rph-	Datsenko & Wanner,
	1, Δ(rhaD-rhaB)568, hsdR514,	2000)
	Δ <i>lacZ</i> ::kan	
E. coli NS002	Km ^r . E. coli NiCo (DE3)	This study
	derivative. Generated by	
	deleting <i>hfq</i> gene.	
E. coli NS003	Km ^r . <i>E. coli</i> NiCo (DE3)	This study
	derivative. Generated by	
	deleting <i>lacZ</i> gene.	
E. coli K-12	MG1655 with <i>lacZ</i> deletion	(Madikonda et al.,
MG1655 AM001		2020)
		-

Table 6.3: Plasmids used in this study

pET23b	Amp ^r . The T7 promoter driven expression vector. Facilitates expression of cloned genes with C-terminal 6xHis-tag.	Novagen
pMP220	Tet ^r , promoter probe vector	(Spaink et al., 1987)
pRS552	Amp ^r , Km ^r . translational fusion vector with <i>lacZ</i> reporter gene.	(Simons et al., 1987)
pMMB206	Cm ^r , low copy, broad host range, mobilizable expression vector. Facilitates expression of cloned genes from an IPTG inducible <i>tac</i> promoter.	(Morales et al., 1991)
pNS11	Tet ^r , <i>crpR54-lacZ</i> transcriptional fusion. Generated by cloning promoter of <i>crpR54</i> gene as <i>EcoRI-PstI</i> fragment in pMP220.	This study
pNS12	Tet ^r , <i>lacZ</i> transcriptional fusion. Generated by cloning promoter of <i>crpR54</i> gene along with the CRP binding motif, as <i>EcoRI- PstI</i> fragment in pMP220.	This study

	Ţ	
pNS13	Amp ^r , plasmid generated by cloning <i>crpR54</i> gene of <i>S. fuliginis</i> in pET23b as <i>XbaI</i> and <i>HindIII</i> fragment. Codes sRNA, <i>CrpR54</i> .	This study
pNS14	Amp ^r , Km ^r , <i>opd</i> -lacZ translational fusion. Generated by cloning the promoter of <i>opd</i> gene along with <i>IRE</i> ^{opd} coding sequence in pRS552 as <i>EcoR</i> I and <i>BamHI</i> fragment.	This study
pSM5	Cm ^r , Low copy expression plasmid. Generated by ligating full length ORF of <i>opd</i> gene in pMMB206 as <i>EcoRI</i> and <i>BamHI</i> fragment. Codes OPH ^{C6xHis} .	(Siddavatta m et al., 2003)
pNS15	Cm ^r , low copy expression plasmid. Generated by ligating full length ORF of <i>opd'</i> gene in pMMB206 as <i>EcoRI</i> and <i>BamHI</i> fragment. Codes OPH ^{C6xHis} .	This study
pNS16	Amp ^r , Expression plasmid. Generated by cloning <i>hfq</i> gene of <i>S. fuliginis</i> in pET23b as <i>Nde</i> I and <i>Xho</i> I fragment. Codes Hfq ^{C6xHis} .	This study
pNS17	Amp ^r , expression plasmid. Generated by cloning <i>sfhfq</i> gene amplified from pNS16 along with T7 promoter as a <i>HindIII-XhoI</i> fragment in pET23b-crpR54 (pNS13). Codes Hfq ^{C6xHis} and sRNA, <i>CrpR54</i> .	This study

6.4.1. Prediction of non-coding RNA:

The presence of any non-coding RNAs in the indigenous plasmid (pPDL2) of *S. fuliginis* was predicted by using sRNAscanner webserver (http://cluster.physics.iisc.ernet.in/sRNAscanner/) (Sridhar et al., 2010). The analysis of non-coding RNA was done by giving the plasmid sequence of pPDL2 to the sRNAscanner.

6.4.2. Detection of sRNA by northern blot analysis:

In order to validate the expression of predicted non-coding sRNA, northern blot analysis was performed using total RNA isolated from *S. fuliginis* cultures grown to early log, log and stationary phases in LB medium. The methodology of RNA isolation is described elsewhere in the thesis. The RNA isolated from *E. coli*, in a similar manner served as a negative control. The RNA was analyzed on a 7M urea-PAGE. Prior to electrophoresis, the wells of the gel were flushed with 1X TBE buffer and was subjected to a pre-run for 45 min at

room temperature. The RNA samples were prepared by mixing 30µg of RNA with appropriate amount of loading dye having 7M urea. Subsequently, the samples were resolved on a 15% urea-PAGE. Following electrophoresis, RNA was transferred onto a NC membrane using Transblot transfer (BioRad) unit for 1h at 18 V. After successful transfer, the RNA was immobilized onto the membrane by UV crosslinking using the Stratagene crosslinker for 2 min at 1200 KJ. The UV cross linked membrane was subjected to pre-hybridization by soaking the membrane in 40 ml of PerfectHyb Plus hybridization buffer (Sigma-Aldrich) for 3h at 65°C. Following pre-hybridization, the radiolabelled probe complementary to sRNA was added and incubated at 40°C for 16-20h with constant rotation. Subsequently, the blot was washed thrice with 2X SSC buffer at an interval of 5 min and was exposed to a phosphor imaging screen to visualize the sRNA specific signal.

6.4.3. Prediction of putative promoter of sRNA coding gene, *crpR54*:

The potential promoter of the gene encoding sRNA and regulatory motifs present upstream of sRNA coding region were predicted by using the online tool Bprom (Solovyev Victor and Salamov Asaf, 2010) and MEME Suite (http://meme-suite.org/tools/meme) respectively. While predicting sRNA promoter, 100 bps upstream sequence of sRNA gene, was submitted to the webserver. This tool predicts promoter elements based on the conserved promoter motifs. To identify the presence of sequence motifs that serve as binding sites to any carbon responsive regulatory proteins, the gene encoding sRNA along with its predicted promoter was given as input to MEME Suite.

6.4.4. Construction of transcriptional fusions:

The *crpR54 -lac*Z fusions were constructed by cloning the promoter elements of sRNA coding gene, *crpR54* in pMP220 (promoter test vector). The complementary oligos NS17FP/NS17RP were annealed to generate the promoter region of *crpR54*, whereas the complementary oligos NS18FP/NS18RP were annealed to get the DNA with the promoter of *crpR54* along with CRP binding

motif. These set of self-complimentary oligos appended with EcoRI and PstI were annealed before ligating to pMP220 digested with the similar enzymes. After ligation, the transformants obtained after transformation of the ligation mixture into DH5 α were selected on LB agar plates supplemented with appropriate amounts of of tetracycline and X-gal and couple of recombinant colonies with blue colour were sent sequencing using NS5RP. The resulting lacZ fusions were designated as pNS11 and pNS12.

6.4.5. Construction of translational fusion:

The *opd-lac*Z translational fusion was generated by translationally fusing *opd* gene promoter along with the DNA region coding *IREopd* to the promoter less *lacZ* gene of pRS552. This region was amplified with NS20FP/NS20RP with *EcoRI* and *BamHI* restriction sites. Amplicon of 227bp was analyzed on a 0.8% agarose gel and then subjected to purification by gel extraction using methods mentioned earlier in the thesis. The purified amplicon was ligated to pRS552 digested with similar enzymes. After ligation, the transformants obtained after transformation of the ligation mixture were selected on LB agar plates supplemented with appropriate amounts of ampicillin and X-gal. The resulting *lacZ* translational fusion was designated as pNS14.

6.4.6. Prediction of complementary base pairing between sRNA, *CrpR54* and *IRE*^{opd}:

Once the sRNA expression was confirmed using northern blotting, further attempts were made to analyze interactions between sRNA and *IRE*^{opd} using Bielefeld Bioinformatics Server-BiBiServ (https://bibiserv.cebitec.uni-bielefeld.de/).

6.4.7. Cloning of *crpR54* in a high copy vector:

The gene coding for sRNA was generated. By annealating self-complementary NS19FP/NS19RP oligos appended with *XbaI* and *HindIII* sites. The annealed oligos were ligated to similarly digested pET23b vector. The transformants obtained after transformation of the ligation mixture into DH5 α

were selected on LB plates supplemented with appropriate amounts of ampicillin. The recombinant plasmids isolated from transformants were subcultured and screened for the existence of insert by isolating recombinant plasmid and digestion with *Xbal* and *HindIII* enzymes. The cloned gene was verified by sequencing using vector specific primer. The resulting plasmid was designated as pNS13.

6.4.8. Generation *lacZ* null mutant of *E. coli* NiCo (DE3):

Initially the *E. coli* BW25113 Δ*lacZ*::kan was obtained (generous gift from Dr. Manjula Reddy, CCMB, Hyderabad) and used to generate *lacZ* null mutant of *E. coli* NiCo21(DE3) strain by following P1 Transduction method (Thomason et al., 2007).

Transduction

- a) Phage P1 lysate preparation: In order to create lacZ null mutant of $E.\ coli$ NiCo21(DE3), 2.0 ml of overnight culture of donor $E.\ coli$ BW25113 strain having $\Delta lacZ$::kan was mixed with 0.2ml of P1 phage and incubated at 37°C without shaking to facilitate phage adsorption. About 10ml of LB broth and sterile CaCl₂ (5mM) was added to this infection mixture prior to its incubation with shaking at 37°C for 4 to 6 h or till the complete lysis of cells. After observing the cell lysis, 0.2ml of chloroform was added to the phage lysate to avoid further growth of the cells. This preparation was subjected to centrifugation for 10 min at 6000 rpm to remove cellular debris. The obtained supernatant containing transducing particles was stored at 4° C until further use.
- **b) Phage infection:** To the 2ml of overnight culture of *E. coli* NiCo21(DE3) cells, 5mM CaCl₂ and 0.2ml of phage preparation was added. After addition of phage lysate, the cells were incubated at 37° C for about 15 min to allow phage adsorption. Unadsorbed phage particles were separated by centrifugation for 10 min at 6000 rpm. Further 5ml of LB broth containing 10mM sodium citrate was added to the infected *E. coli* cells and allowed to incubate for 45min at 37° C. Finally the harvested cells were resuspended in 0.2ml of LB broth, plated on LB agar plates containing 10mM sodium citrate and 50μ g/ml of kanamycin. Finally

the mutation in *lacZ* gene was confirmed by performing PCR amplification by using primer set NS23FP/NS23RP which were designed taking DNA region 100bp upstream and downstream of the *lacZ* from *E. coli*. Thus obtained strain named as *E. coli* NS003, was resistant to kanamycin.

6.4.9. Genetic Screen to validate sRNA and *IRE*^{opd} interactions:

The genetic screen was developed by using two compatible plasmids. One of them was pNS13, which codes for sRNA, *CrpR54*. The other plasmid was *opd-lacZ* translational fusion, pNS14 (The *opd* gene promoter along with the DNA region coding *IREopd* is fused with promoter less *lacZ* gene). In order to validate the interactions of sRNA and *IREopd*, *E. coli* NS003 (pNS13) was transformed with pNS14. Then the *E. coli* NS003 (pNS13+pNS14) cells were plated on X-gal containing LB plates, in the presence and absence of IPTG. If *CrpR54* interacts with *IREopd* upon induction of its expression the *E. coli* NS003 cells containing pNS14 should show *lac* positive phenotype on an X-gal plate. The *E. coli* NS003 (pNS13) and *E. coli* NS003 (pNS14) cells served as controls and remain *lac* negative both in presence and absence of IPTG.

6.4.10. Generation of *opd* variants:

6.4.10a. Cloning of full length ORF of *opd* gene (with IRE) in a low copy, expression vector

The plasmid pPHYS400 (Pandey et al., 2009) was used as a template to amplify full length ORF of *opd* gene (with IRE) using NS21FP/NS21RP primer set appended with *EcoRI* and *BamHI*. The amplicon was gel extracted and ligated to pMMB206 digested with similar enzymes. The transformants obtained after transformation of the ligation mixture into DH5 α were selected on LB agar plates supplemented with appropriate amounts of chloramphenicol, IPTG and X-gal. The recombinant plasmids isolated from transformants were sub-cultured and screened for the existence of insert by isolating recombinant plasmid followed by digesion using *EcoRI* and *BamHI*. Resulting plasmid was designated as pSM5 and codes for OPH^{C6xHis} (Siddavattam et al., 2003).

6.4.10b. Cloning of opd variant opd' in a low copy, expression vector

The plasmid pPHIR400 (Pandey et al., 2009) was used to amplify opd' having non-complementary mutations at the third base of IRE^{opd} coding region using NS21FP/NS21RP primer set appended with EcoRI and BamHI. The amplicon was gel extracted and ligated to pMMB206 digested with similar enzymes. The transformants obtained after transformation of the ligation mixture into DH5 α were selected on LB agar plates supplemented with appropriate amounts of Chloramphenicol, IPTG and X-gal. The plasmids obtained from transformants were sub-cultured and screened for the existence of insert by isolating recombinant plasmid and digestion with EcoRI and BamHI. The plasmid thus obtained, was designated as pNS15 and codes for wild type OPHC6xHis as mutations were introduced at the third base of the codon.

6.4.11. The effect of sRNA on expression of opd:

Following successful generation of the low copy, expression plasmids (pSM5 and pNS15) coding for OPHC6xHis, they were independently transformed into *E. coli* NiCo cells. The expression of OPHC6XHis was assessed by cotransforming *E. coli* NiCo (pSM5) and (pNS15) cells with pNS13 coding sRNA, *CrpR54*. The *E. coli* NiCo (pSM5+pNS13) and *E. coli* NiCo (pNS15+pNS13) cells were cultured till mid exponential phase at 37°C and the expression of OPH and sRNA, CrpR54 were induced for 1h after adding 1.0mM IPTG. Following incubation, 1ml cells were lysed by sonication with 30% amplitude, 4°C temperature, 30 sec on and off sonic cycles. The cellular lysate was centrifuged at 13,000 rpm for 5 min to remove the debris. Clear lysate obtained was suspended in appropriate volumes of 2X loading dye and the samples were boiled and analyzed on an SDS-PAGE (12.5%) and a corresponding western blot was carried out with the aid of anti-His antibodies.

6.4.12. Relative quantification of *opd* transcripts:

The expression levels of *opd* were quantified using RNA extracted from *E. coli* NiCo (pSM5 + pNS13) and *E. coli* NiCo (pNS15 + pNS13). The cultures were

grown in LB medium and induced with IPTG, as described above. The total RNA was isolated from these cultures and the relative quantification was performed following the procedures mentioned elsewhere in the thesis. The primer sets NS6FP/NS6RP and NS7FP/NS7RP were used to quantify the expression levels of *opd* and *16S*rRNA respectively. The relative expression of *opd* with respect to *16S*rRNA coding gene was calculated using $2^{-\Delta Ct}$ method (Livak & Schmittgen, 2001).

6.4.13. Generation of *hfq* null mutant of *E. coli* NiCo21(DE3):

Initially the *E. coli* BW25113 Δhfq ::kan was obtained (generous gift from Dr. Manjula Reddy, CCMB, Hyderabad) and used to generate hfq null mutant of *E. coli* NiCo21(DE3) strain by following P1 Transduction method (Thomason et al., 2007).

Transduction

a) Phage P1 lysate preparation: The hfq null mutant of E.~coli NiCo21(DE3) was created following P1 transduction method described in earlier section except that Δhfq ::kan mutant of E.~coli BW25113 strain was used as donor.

6.4.14. Analysis of Hfq dependent interactions of sRNA, CrpR54 and IREopd:

The interaction between sRNA, CrpR54 and IRE^{opd} was analyzed in both hfq positive and negative backgrounds. The expression plasmid, pSM5 (full length ORF of opd gene) and pNS13 (which codes for sRNA, CrpR54) were cotransformed into hfq positive $E.\ coli$ NiCo21(DE3) cells and hfq negative $E.\ coli$ NS002 cells. The expression of OPH and sRNA, CrpR54 were induced by addition of 1.0mM IPTG. They were grown at 37° C for 1h after induction. Cells were harvested from 1 ml of induced cultures were mixed with appropriate amounts of 2X loading dye before boiling the contents for 5 min in a boiling water bath. The contents were then briefly spun at a maximum speed in microfuge and 10μ l of clear soluble fraction was analyzed on a 12.5% SDS-PAGE. The corresponding western blot was performed using antibodies aginst His epitope, to analyze the positive/negative influence of Hfq on interactions between CrpR54 and OPH.

6.4.15. Construction of expression plasmid encoding *sf*Hfq and sRNA, *CrpR54*:

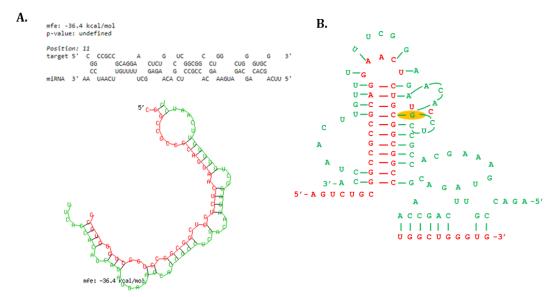
An expression plasmid is generated to co-express crpR54 ans s_f Hfq This strategy involves two steps. The initial step is cloning of s_f hfq gene in high copy expression plasmid, pET23b. In this, hfq gene was amplified from S. fuliginis using NS22FP and NS22RP appended with Ndel and Xhol respectively. The amplified fragment was gel extracted and purified following the procedure described in methodology section. The purified DNA fragment was ligated to similarly digested pET23b vector. After ligation, the ligation mixture was transformed into E. coli DH5 α cells and the transformants were selected on LB agar plates substituted with appropriate amounts of ampicillin. The recombinant plasmids isolated from transformants were sub-cultured and screened for the existence of insert by isolating recombinant plasmid and digestion with Ndel /Xhol enzymes. The plasmid obtained was designated pNS16 and codes for s_f Hfq C6xHis .

In the subsequent step, the sRNA, CrpR54 coding plasmid (pNS13) was used to sub-clone s_fhfq gene. The s_fhfq gene, cloned as an Ndel and Xhol fragment in pNS16 was taken as a template to amplify s_fhfq along with the T7 promoter using NS25FP appended with HindIII and NS22 RP appended with Xhol. The amplified fragment was gel extracted and purified following the procedure described in methodology section. The purified DNA fragment was ligated to similarly digested pNS13 vector. After ligation, the mixture was transformed into $E.\ coli$ DH5 α cells and the transformants were selected on LB agar plates substituted with appropriate amounts of ampicillin. The recombinant plasmids isolated from transformants were sub-cultured and screened for the existence of insert by isolating recombinant plasmid and digestion with HindIII and XhoI. The plasmid thus obtained was designated as pNS17 and codes for s_fHfq^{C6xHis} and sRNA, CrpR54.

6.4.16. Role of Hfq in CrpR54-IREopd interactions:

The Hfq role on sRNA, CrpR54 and IREopd interactions were determined by

transforming the *E. coli* NS002 (pSM5+pNS13) cells with pNS17. The expression of sRNA, *CrpR54*, Hfq and OPH were induced as described in methods section. The *E. coli* NS002 (pSM5+pNS13) and *E. coli* NiCo21(pSM5+pNS13) served as control. The cell growth was allowed till mid log phase and expression of sRNA, *CrpR54*, OPH and Hfq were induced as described in materials and methods section. The expression levels of OPH were monitored by western blot against His epitope.


6.4.17. Influence of carbon source on expression of OPH:

Initially, the cells of *S. fuliginis* were grown in rich LB medium, till the OD₆₀₀ of the culture is reached to 0.60. Then the cells were harvested and reinoculated in Minimal salts medium (OD₆₀₀ of 0.20) having either glucose, or protocatechuate or 3,4-dihydroxybenzoic acid and grown till 0.5 OD (in cells grown in glucose), 0.45 OD (in cells grown in protocatechuic acid or 3,4-dihydroxybenzoic acid). Subsequently, the cells (1ml) from each subset were harvested by spinning at 6000 rpm for 10min at 4° C. The proteins extracted from cell pellet were used to analyze on SDS-PAGE and to perform western blot using anti-OPH antibodies. The cultures grown under similar conditions were used to extract total RNA and subsequently to quantify *opd* mRNA by performing qPCR as described elsewhere in the thesis. The relative expression of *opd* was calculated using $2^{-\Delta Ct}$ method. The *16S* rRNA served as internal control (Livak & Schmittgen, 2001).

6.5. Results:

Here the main objective is to identify regulatory RNA that influences the translation of *opd* gene in *S. fuliginis*. The regulatory small RNAs are two types, cis-encoded sRNAs and trans-encoded sRNAs. Since *opd* gene is found as part of plasmid pPDL2 borne integrative mobilizable element the sequence of pPDL2 was used as input to the sRNAscanner webserver (http://cluster.physics.iisc.ernet.in/sRNAscanner/). Interestingly, a 54nt non-coding RNA coding gene was found in this intergenic region found between *opd* and *istB*

gene of IS-element *IS21*. The RNA hybrid prediction webserver (bibiserve) has shown a potential base pairing with an mfe of -36.4kcal/mol. There existed potential base pairing of sRNA with IRE^{opd} , initiated at left arm of the stem and has gone upto the right arm of stem through the loop region of IRE^{opd} (Fig 6.5.1.a) Such extensive complementarity between the predicted sRNA and one of the arms of the stem region of IRE^{opd} suggested a regulatory role for sRNA in expression of opd gene.

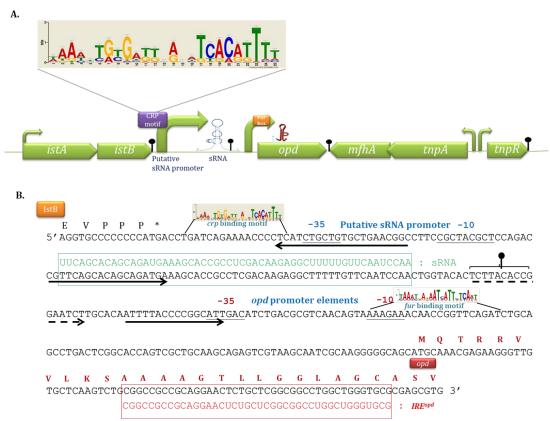
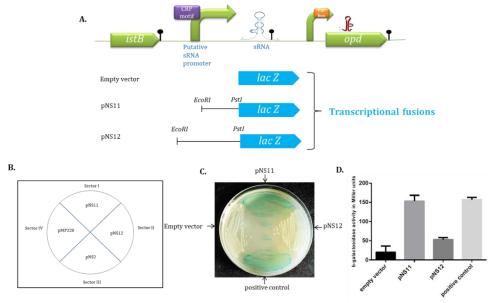


Fig.6.5.1.a. The base pairing interactions between CrpR54 and IRE^{opd} . Panel A indicates the predicted interactions between sRNA and IRE^{opd} with a minimum free energy of -36.4kcal/mol. The complementary base pairing is clearly shown in the panel B. In both the panels red font corresponds to mRNA of IRE^{opd} and green font corresponds to sRNA. Pseudo loop of IRE^{opd} is indicated by dark yellow color in panel B.

Before going into the details of its regulatory role a detailed analysis was done on the promoter element and regulatory elements of sRNA coding gene. The putative promoter region was initially mapped using Bprom (Solovyev Victor and Salamov Asaf, 2010). As indicated in Fig. 6.5.1.b, the sRNA coding sequence starts from 'T' and ends at 'A' (Fig. 6.5.1b, panel B). The promoter region overlaps the inverted repeat sequence found at the terminus of IS element IS21. The promoter hexamers of gene encoding sRNA were identified to be 'GCTACG' as the -10 box and 'CTGCTG' as the -35 box. The predicted promoter region is identified within the right IR (inverted repeat) sequence of IS element of IS21. The left arm of inverted repeat overlapped the -35 hexameric sequence

of the promoter of sRNA coding gene (Fig. 6.5.1.a).

Once the promoter was mapped using *in silico* tool, further analysis was made to identify regulatory region, if any (overlapping promoter region). About 150 bp, found upstream of the putative TSS was given as input to RegRNA (http://regrna.mbc.nctu.edu.tw/html/prediction.html), a regulatory motif finder, which predicts regulatory motifs in the vicinity of promoter sequence. A sequence motif that shows strong similarity to the *crp* binding motif was identified overlapping the predicted promoter motif of sRNA coding gene. This observation gave a preliminary indication on its role in carbon catabolism (Fig.6.5.1.b).


Fig.6.5.1.b. Structure of sRNA coding gene: Panel A shows genetic map of the DNA region containing *opd* and sRNA coding genes. Panel B shows the nucleotide sequence of the intergenic region found between *istB* and *opd* genes. The gene coding for sRNA is shown in green color box. The putative promoter elements are underlined and indicated as -10 and -35 in blue font. The sequence of *crp* binding motif overlapping the -35 sequence is highlighted. The inverted repeat sequence of IS-element IS21 is indicated with dark arrows. The predicted Rho-independent terminator sequence is indicated by dotted lines. The experimentally validated promoter element of *opd* gene is underlined and indicated with red color font.

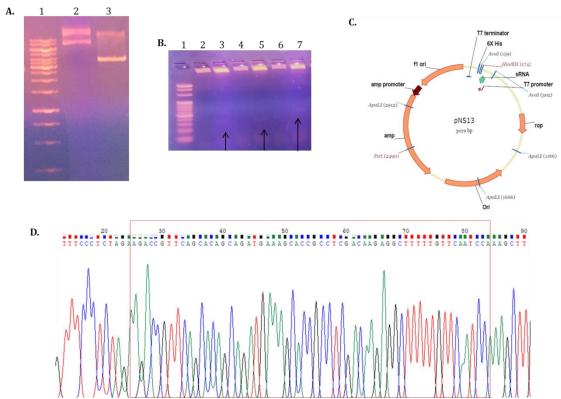
6.5.2. Promoter validation:

The functional status of *in silico* predicted promoter and *crp* binding motif was elucidated by performing *in vivo* studies. Initially two transcriptional fusions were generated as described in methodology section of this chapter. One of them pNS11 contained only core promoter sequence fused to the promoter less *lacZ* gene of promoter test vector pMP220. In the second plasmid, pNS12, core promoter along with the *crp* binding motif was fused to the *lacZ* gene (Fig.6.5.2, panel A). Both the plasmids were independently transformed in E. coli MG1655 AM001. The E. coli AM001 (pNS11) cells and E. coli AM001 (pNS12) cells were then used to measure promoter activity by performing qualitative and quantitative β-galactosidase assay. In qualitative assays performed to determine promoter activity of sRNA coding gene the E. coli AM001 (pNS11) containing sRNA promoter-lacZ fusion was plated on LB, X-gal plate (sector I) along with E. coli AM001 (pNS12) containing sRNA promoter+crp binding motif-lacZ fusion (sector II); E. coli AM001 empty vector (pMP220) cells (sector IV) and E. coli AM001 (pNS2), containing opd promoter lacZ fusion was used as positive control (sector III). As seen in Fig 6.5.2, panel C, E. coli AM001 (pNS11) (sector I) showed intense blue color which indicated that the promoter element predicted using in silico tools was functional. Interestingly, LacZ activity was drastically reduced in E. coli AM001 (pNS12) (sector II), similar to E. coli AM001 empty vector (pMP220) control (sector IV).

In cells containing promoter test vector pMP220 (sector IV) there exists no promoter and hence appearance of pale colored colonies is expected. However, in sector containing $E.\ coli$ AM001 (pNS12) appearance of pale colored colonies indicates existence of regulatory role for the predicted crp-binding motif overlapping sRNA gene promoter. The $E.\ coli$ Crp protein must have bound to the crp motif sequence repressing the expression of lacZ gene. Similar trend was seen in quantitative assays (Fig.6.5.2, panel D). About 150 Miller units of β -galactosidase activity was obtained with $E.\ coli$ AM001 (pNS11) cells, whereas the activity with $E.\ coli$ AM001 (pNS12) cells were marginal (50 Miller units) and was close to the activity observed with control cultures of $E.\ coli$ AM001

(pMP220). The data obtained here clearly show repressive role of *crp*-motif in expression of sRNA coding gene. While validating this observation further experiments were conducted. The Crp is known to regulate carbon catabolism. It represses the genes or operons involved in alternate carbon catabolism. Further the Crp responsive genes show growth dependent expression (Guebel & Torres, 2018). In early growth phase, where there exists no nutrient limitation the Crp responsive genes are repressed (Li et al., 2002). However, in stationary phase they are de-repressed. If the sRNA coding gene has role in carbon catabolism it should show growth phase dependent expression. As hypothesized the sRNA showed less expression in early growth phase and its expression reached to maximum during stationary phase suggesting a role for this sRNA coding gene in carbon catabolic regulation hence the gene coding sRNA is designated as *crpR54*.

Fig.6.5.2. Role of CRP on expression of sRNA. Panel A shows extent of promoter region fused while generating crpR54-lacZ fusions, pNS11 and pNS12. Panel B indicates a representative LB plate showing sectors used in qualitative β-galactosidase activity assay. Panel C shows the qualitative β-galactosidase activity assay of *E. coli* AM001 obtained in *E. coli* AM001 cells transformed with pNS11 (sector I), pNS12 (sector II), pNS2 (opd-lacZ fusion positive control) (sector III) and empty vector, pMP220 (sector IV). Results of quantitative β-galactosidase activities obtained in these cells are shown in panel D.


6.5.3. Analysis *CrpR54* and *IRE*^{opd} interactions:

The predicted interactions between *CrpR54* and *IRE*^{opd} suggest influence of sRNA, *CrpR54* on expression of *opd* gene. In order to validate these interactions a two-plasmid assay was developed. One of the plasmid codes *CrpR54* from an IPTG

inducible promoter. The second compatible plasmid codes for a full length OPH^{C6XHis} from a *tac* promoter. Expression of full length OPH in presence and absence of sRNA *CrpR54* indicates its influence on expression of *opd* gene.

6.5.4. Cloning of *CrpR54* in a high copy vector:

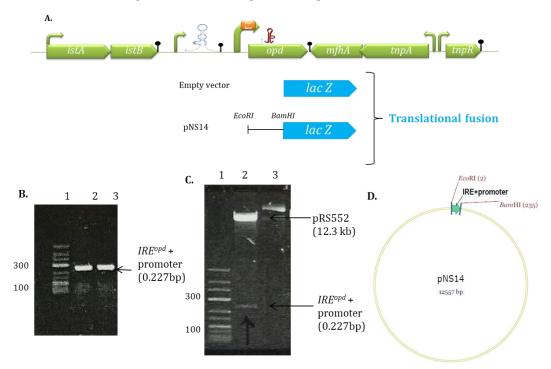

The gene encoding sRNA, *crpR54* along with its putative transcriptional start site was generated by annealing self-complementary primer set NS19FP/NS19RP, appended with *XbaI* and *HindIII* restriction sites. The 60bp product was ligated to pET23b vector digested with the same enzymes. Thus obtained plasmid was named as pNS13 (Fig.6.5.4, panel C). Before proceeding to the further experiments the cloned *crpR54* gene of *S. fuliginis* was sequenced to ascertain that no mutations were inserted while cloning (Fig.6.5.4, panel D).

Fig.6.5.4. Construction of pNS13. The pNS13 digested with *Xbal* and *HindIII* is shown in panel 3. Molecular size markers are loaded in lane 1. The undigested pNS13 is loaded in lanes 2 and 4. The pNS13 digested with *Xbal* and *HindIII* is loaded in lanes 3 and 5. The arrow marks show the release of insert containing *crpR54*. Lanes 5 and 6 indicate undigested and digested pET23b vector, used as a positive control for digestion. Panel C shows plasmid map of pNS13. Panel D shows the sequence of pNS13 using vector specific primer. The red box indicates the sequence of *CrpR54*.

6.5.5. Construction *opd-lacZ* translational fusion:

The promoter region of *opd* gene along with IRE^{opd} was subjected to PCR using NS20FP/NS20RP attached with EcoRI/BamHI respectively. The amplicon obtained was digested with the above mentioned enzymes. Then ligated to pRS552 digested with the similar enzymes. The cloning strategy followed fuses opd gene along with IRE^{opd} specifying region coding the first 29 N-terminal amino acids of OPH in frame of lacZ gene specifying the β -galactosidase. The resulting lacZ fusion including IRE^{opd} was designated as pNS14.

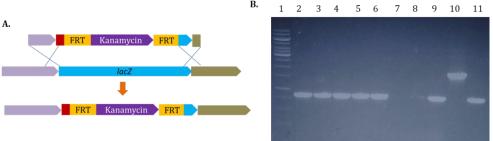


Fig.6.5.5. Construction of pNS14. Panel A shows the extent of opd region used to generate opd-lacZ fusion pNS14. Panel B shows 0.8% agarose gel used to analyze the amplicon of opd gene promoter along with the region specifying IRE^{opd} . Molecular size markers are loaded in lane 1. Lanes 2 and 3 show the amplicon containing desired opd promoter region. Panel C shows the digestion profile of pNS14. Molecular size markers are loaded in lane 1. The pNS14 digested with EcoRI/BamHI is loaded and the bands corresponding to the vector and insert containing IRE^{opd} are shown with arrows (lane 2). Undigested pNS14 is loaded in lane 3. Panel D shows plasmid map of pNS14.

6.5.6. Generation of *lacZ* negative *E. coli* NiCo21(DE3) strain:

Plasmid pNS13 codes sRNA CrpR54 from a T7 promoter, whereas the pNS14 codes fusion protein N29OPH-LacZ from the native opd gene promoter. In order to monitor CrpR54 influence on expression of N29OPH-LacZ, a lacZ null mutant of $E.\ coli\ NiCo21(DE3)$ strain is required. Therefore the lacZ negative

derivative of *E. coli* NiCo21(DE3), *E. coli* NS003 was generated by transducing *E. coli* NiCo21(DE3) with phage P1 particle propagated using *E. coli* BW25113 $\Delta lacZ$::kan strain in which lacZ gene is replaced with kanamycin cassette. The kanamycin resistant colonies were taken and colony PCR was performed using primer set NS23FP/NS23RP to detect replacement of lacZ with kanamycin cassette. As seen in Fig.6.5.6, panel B in all kanamycin resistant colonies an amplicon with a size of 1.5 Kb got amplified rather 500 bp amplicon seen in lacZ positive *E. coli* NiCo21(DE3) strain (Fig.6.5.6, panel B). The resulting strain was designated as *E. coli* NS003 and stored at -80°C as a glycerol stock. When necessary *E. coli* NS003 was sub-cultured and used for analyzing expression of opd translational fusion.

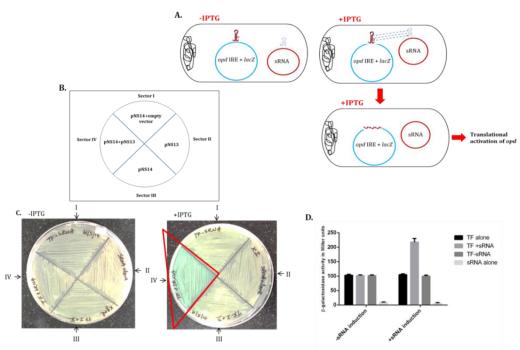
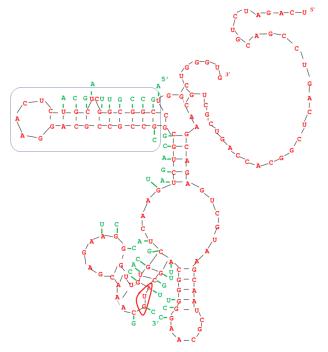


Fig.6.5.6. Generation of *E. coli* **NS003.** The strategy used to delete *lacZ* gene from *E. coli* NiCo21(DE3) strain is shown in panel A. Agarose gel (0.8%) indicating amplification of *lacZ* gene from NiCo21(DE3) is shown in panel B. Lane 1 represents molecular weight marker. Lane 2-6, 8, 9 and 11 represent amplicons generated from wild type *E. coli* NiCo21(DE3) cells. Lanes 10 shows amplicon size generated in a similar PCR reaction using *E. coli* NS003. No template (negative) control is shown in lane 7.


6.5.7. Generation of genetic screen:

A genetic screen was developed using $E.\ coli$ NS003, plasmid pNS13 coding CrpR54 and translation fusion pNS14 coding fusion protein $_{N29}OPH$ -LacZ. In the translational fusion the 5' region of opd gene along with IRE^{opd} is fused in frame of the lacZ gene and hence codes for $_{N29}OPH$ -LacZ fusion protein. Expression levels of $_{N29}OPH$ -LacZ can be monitored by measuring LacZ activity. The $E.\ coli$ NS003 (pNS13) was co-transformed either with pNS14 or with pMP220, promoter probe vector. The LacZ activity was measured qualitatively and quantitatively after inducing the expression of sRNA, CrpR54 with 1mM IPTG. The blue color phenotype of the colonies was observed on an X-gal plate only when $_{N29}OPH$ -lacZ fusion protein was expressed from plasmid pNS14. Since

the 5' region of *opd* gene along with *IRE*^{opd} was fused to the *lacZ* gene, levels of βgalactosidase activity will be minimal as the *IRE*^{opd} masks translational initiation site (Fig.6.5.7a) of the opd-lacZ chimeric mRNA. However, if sRNA, CrpR54 disrupts IREopd and exposes translational initiation site, the LacZ activity goes up as IREopd disruption leads to the enhanced production of N29OPH-LacZ protein. As expected in plates made without IPTG the expression of sRNA, CrpR54 is negligible and hence there will be no disruption to the IREopd. Therefore, expression levels of N29OPH-LacZ will be low, yielding low levels of βgalactosidase activity. In accordance with the proposed hypothesis there was negligible amounts of blue color in *E. coli* NS003 (pNS13+pNS14) cells (Fig.6.5.7. panel C, sector IV). They appeared pale in color as seen in control cultures of *E*. coli NS003 (pNS14+pET23b) cells (sector I), E. coli NS003 (pNS13) cells (sector II) and E. coli NS003 (pNS14) cells (sector III). In a similar assay done in presence of IPTG, a clear blue color was seen in *E. coli* NS003 (pNS13+pNS14) indicating enhanced expression of N29OPH-LacZ chimeric protein in presence of sRNA, Crp54 (sector IV). Such activity was not seen in control cultures. The quantitative assays clearly indicated an increased β-galactosidase activity only in E. coli NS003 (pNS13+pNS14) cells.

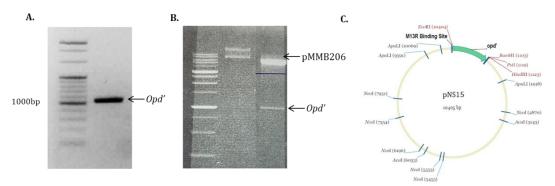
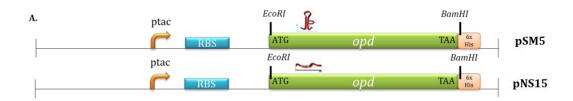
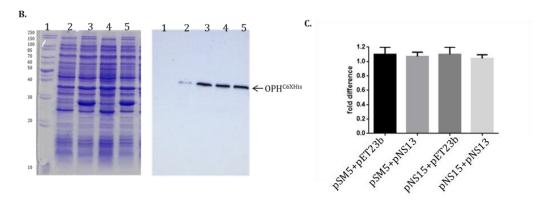

Fig.6.5.7. Two plasmid assay. Panel A shows functional details of genetic screen. Panel B indicates a representative LB+X-gal plate used for the two plasmid assay. Panel C shows either uninduced or induced *E. coli* NS003 (pNS14+pET23b) cells in sector I, *E. coli* NS003 (pNS13) cells in sector II, *E. coli* NS003 (pNS14) cells in sector IV. The red triangle is indicative of enhanced LacZ activity in *E. coli* NS003 (pNS14+pNS13) cells under IPTG induction. The values of quantitative assays from similar cultures are shown in panel D

Fig.6.5.7a. Formation of sRNA-mRNA hybrid. The sRNA base pairs with the opd mRNA region and occludes the translation initiation site and also interacts by direct base pairing with the left arm of IRE^{opd} . The red font indicates transcript of opd mRNA (starting from TSS till IRE region) and green font indicates sRNA and its base pairing. The translation initiation site is highlighted in a red triangle. The blue box highlights IRE^{opd} .

6.5.8. Expression of OPH from opd and opd' genes:

The earlier work from our laboratory had explained generation of *opd'* gene (Pandey et al., 2009). In *opd'* the *IRE*^{opd} structure is disrupted. While validating the influence of *IRE*^{opd} on expression of OPH a low copy, expression plasmid pNS15 was generated by cloning the *opd'* in low copy number expression vector pMMB206. The full length ORF of *opd'* gene along with the upstream sequence including RBS was amplified from a previously constructed high copy, expression plasmid pPHIR by using NS21FP/NS21RP, appended with *EcoRI* and *BamHI* sites. The plasmid map of pNS15 is shown in (Fig.6.5.8, Panel C). The plasmid pSM5 constructed by cloning the ORF of *opd* gene was used as an expression plasmid coding OPH from a wild type *opd* gene having intact *IRE*^{opd} (Siddavattam et al., 2003). Both the constructs code for OPH^{C6xHis}.




Fig.6.5.8. Construction of pNS15. Panel A shows 0.8% agarose gel used to analyse the amplicon of *opd'* (with non-complementary mutations introduced in third base of every codon in *IRE*^{opd} region). Molecular size markers are loaded in lane 1. Lanes 2 shows the amplicon of *opd* indicated by an arrow. Panel B shows the digestion profile of pNS16. Molecular size markers are loaded in lane 1. Undigested pNS15 is loaded in lane 2. The pNS15 digested with *EcoRI/BamHI* is loaded and the bands corresponding to the vector and insert are shown with arrows (lane 3). Panel C shows plasmid map of pNS15.

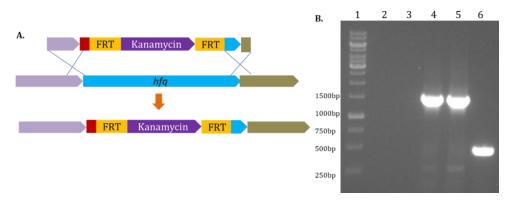
6.5.9. Influence of *CrpR54* on expression of OPH:

The genetic screen gave clear indication on positive influence of CrpR54 on N29OPH-LacZ expression. Therefore, further experiments were conducted to validate influence of CrpR54 on the expression of OPH. Previous studies from our laboratory have generated a low copy expression vector pSM5 which codes OPH from IPTG inducible tac promoter. In this study, a similar expression plasmid

was generated using similar vector backbone by cloning opd variant opd' in which IREopd was disrupted. These two expression plasmids are compatible to the pNS13, which codes *CrpR54* from a T7 promoter. *E. coli* NiCo cells were then independently transformed with plasmids pSM5 and pNS15. These cells were cotransformed with crpR54 encoding pNS13. These E. coli NiCo (DE3) cells with appropriate controls were induced with 1mM IPTG and incubated for 1hr. The expression levels of OPH from these cultures were analyzed by performing western blots using anti-OPH antibodies. A considerable elevation of OPH expression was observed in cells having expression plasmid pSM5 and CrpR54 encoding pNS13 (Fig.6.5.9, panel B, lane 3) when compared to the levels of OPH coded by pSM5 in the absence of pNS13 (Fig.6.5.9, panel B, lane 2). As shown in third chapter the opd' (in which IRE-like structure is disrupted) encoded mRNA was shown to enhance OPH expression in cultures having expression plasmid coding OPH from opd' gene (Page No. 99, Fig.5.5.3.a). Interestingly the sRNA, CrpR54 influence on expression of OPH was not seen in cultures expressing OPH from opd' gene, probably due to its lack of interactions with CrpR54. The influence of IREopd on translational repression of opd' mRNA was not seen as mutations introduced in opd' gene disrupted IREopd structure (Fig.6.5.9, panel B, lane 4 and 5). If these observations are seen along with reporter assays performed involving genetic screen, a clear inference can be drawn on a CrpR54 dependent post-transcriptional regulation in opd expression. Supporting this proposition, no difference in the quantities of opd specific mRNA was seen in all these cultures, suggesting that the *CrpR54* dependent increase in OPH expression was due to increased translational efficiency (Fig. 6.5.9, panel C).

Fig.6.5.9. *CrpR54* **dependent post-transcriptional regulation of** *opd* **gene expression.** Panel A shows the extent of *opd* region used to construct pSM5 and pNS15. Panel B shows the coomassie stained, 12.5% SDS-PAGE and its corresponding western blot probed with anti-His antibodies, showing the expression of OPH^{C6XHis}. Lane 1 shows the molecular marker, lane 2 indicates expression of OPH^{C6XHis} from *E. coli* NiCo(pSM5+pET23b) cells. Lane 3 shows *E. coli* NiCo (pSM5+pNS13) cells. Lane 4 shows *E. coli* NiCo (pNS15+pET23b) cells. Lane 5 shows *E. coli* NiCo (pNS15+pNS13) cells. Panel C indicates relative quantification of *opd* transcripts in total RNA isolated from the cultures isolated from the cells grown under similar conditions.

6.5.10. Role of Hfq in *CrpR54* and *IRE*^{opd} interactions:


Hfq is an RNA chaperone which facilitates formation of sRNA-mRNA hybrid. The results described in earlier sections clearly show existence of interactions between IRE^{opd} and CrpR54. It is not known if Hfq is required for IRE^{opd} -CrpR54 interactions. Therefore, the influence of Hfq on CrpR54 and IRE^{opd} interactions is studied in $E.\ coli$ as there exist significant (55%) similarities between E_C Hfq and E_C Hfq (Fig.6.5.10).

```
CLUSTAL O(1.2.4) multiple sequence alignment
                                 MADKVNNLQDIFLNSLRKSKTPVTMFLVKGVKLQGIITWFDNFSVLLRRDGQSQLVYKHA
fig 6666666.225841.peg.1539
                                 -MAKGQSLQDPFLNALRRERVPVSIYLVNGIKLQGQIESFDQFVILLK-NTVSQMVYKHA
ENA AAA97068 AAA97068.1
                                           * ***:**:.:.**:::**:*:
fig|6666666.225841.peg.1539
                                 ISTVMPAOSMDLTELRKASDGNGKSKLLOEIF----LSAVRKSGSPVTMFLVNGVMLOGE
                                                                                                116
                                 ISTVVPSRPVSHHSNNA---GGGTSSNYHHGSSAONTSAOODSEETE-----
ENA | AAA97068 | AAA97068.1
                                 ****: : : :
                                                     * * *
fig|6666666.225841.peg.1539
                                 IAAFDLFCMLLERDGMVQLVYKHAISTVQPLHALDLTGEGEGED
                                                                                160
ENA | AAA97068 | AAA97068.1
```

Fig.6.5.10. Alignment of *sf*Hfq with *Ec*Hfq.

6.5.11. Confirmation of *hfq* null mutant *E. coli* NiCo21(DE3):

Initially hfq null mutant was generated in $E.\ coli$ NiCo21(DE3) strain by transducing it with phage P1 particle propagated using $E.\ coli$ BW25113 Δhfq ::kan strain in which hfq gene is replaced with kanamycin cassette. The kanamycin resistant colonies were taken and colony PCR was performed using primer set NS24FP/NS24RP to detect replacement of hfq with kanamycin cassette. As seen in Fig.6.5.11, panel B in all kanamycin resistant colonies an amplicon with a size of 1.5 Kb got amplified rather 500 bp amplicon seen in hfq positive $E.\ coli$ NiCo21(DE3) strain. The resulting strain is designated as $E.\ coli$ NS002 and stored at -80°C as a glycerol stock. When necessary $E.\ coli$ NS002 was sub-cultured and used for opd expression studies.

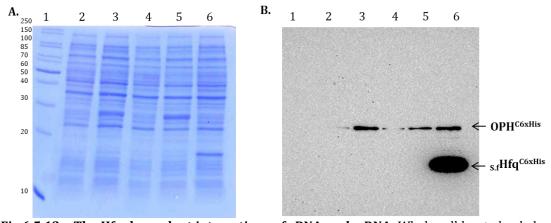


Fig.6.5.11. Generation of *E. coli* **NS002.** Strategy followed to delete hfq gene from *E. coli* NiCo21(DE3) strain is shown in panel A. Panel B shows 0.8% agarose gel to analyse the amplicon generated when PCR was performed using primer set NS24FP/NS24RP. Lane 1 shows molecular weight marker. Lane 2 represents no template control PCR reaction. Lane 3 indicates negative control. Lane 4 shows *E. coli* BW25113 $\Delta lacZ$::kan. Lane 5 shows amplicon size generated in a similar PCR reaction using kanamycin resistant colonies of *E.coli* NS002. The lane 6 represents amplicon obtained in a PCR reaction having wild type *E. coli* NiCo21(DE3) having intact hfq gene.

6.5.12. Analysis of Hfq dependent interactions of sRNA-opd mRNA:

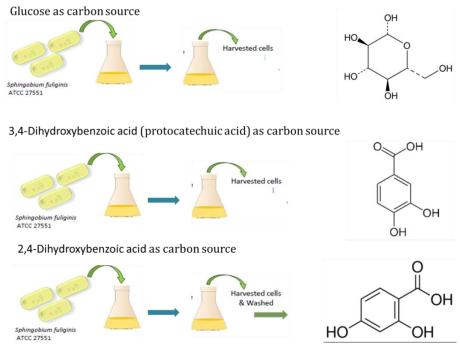
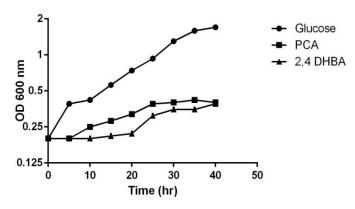
After successful deletion of *hfq* gene we have co-expressed both OPH and *CrpR54* in *E. coli* NS002 by transforming pSM5 and pNS13 in both Hfq (*E. coli* NiCo) positive and negative *E. coli* NS002 cells. The expression levels of OPH were examined by performing western blots against His epitope. Fig.6.5.12.a, panel B, lane 3, shows that the OPH expression got enhanced in Hfq positive

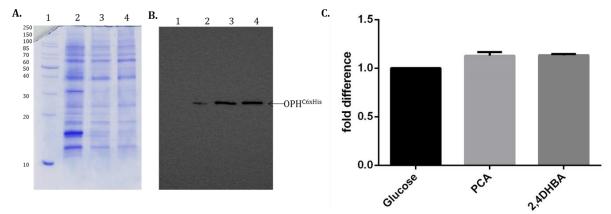
back ground and its expression got drastically reduced in *E. coli* NS002 (pSM5+pNS13) cells generated by deleting *hfq* gene. When *E. coli* NS002 (pSM5) cells were complemented by transforming pNS17 encoding both sRNA, *CrpR45* and Hfq from a T7 promoter the expression levels of OPH were increased and its level of expression was comparable to OPH expression obtained in *hfq* positive cells (Fig.6.5.12a, panel B, lane 6). These results clearly indicate requirement of Hfq to facilitate interactions between sRNA and *IRE*^{opd}.

Fig.6.5.12a. The Hfq dependent interactions of sRNA-opd mRNA: Whole cell lysate loaded on a 12.5% SDS-PAGE after induction with 1mM IPTG is shown in panel A. Lane 1 corresponds to molecular marker. Lane 2 indicates expression of OPH in *E. coli* NiCo (pSM5+pET23b) cells. Lane 3 shows *E. coli* NiCo (pSM5+pNS13) cells. Lane 4 indicates *E. coli* NS002 (pSM5+pET23b cells. Lane 5 shows *E. coli* NS002 (pSM5+pNS13) cells. Lane 6 shows *E. coli* NS002 (pSM5+pNS17). Panel B shows its corresponding western blot probed with anti-His antibodies to detect the expression of OPH^{C6XHis}.

6.5.13. Influence of Carbon source on OPH expression:

S. fuliginis utilizes several aromatic carbon compounds as a unique source of carbon. Utilization of aromatic compounds requires unique catabolic pathways, where ring cleaving oxygenases play a critical role. These monooxygenases and dioxygenases require non-heme iron as cofactor (Fig.6.6.3). Previous studies from our lab have shown involvement of OPH in outer membrane transport, especially in transport of Ferric-enterobactin (Parapatla et al., 2020). Since growth on aromatic compounds necessitates increased iron influx, further studies were conducted to test influence of carbon source on OPH expression. The *S. fuliginis* cells were grown using 3,4-Dihydrobenzoic acid (protocatechuic acid) and 2,4-Dihydrobenzoic acid as carbon source (Fig. 6.5.13.b) and the proteins extracted were subjected to SDS-PAGE (Fig.6.5.14, panel A).

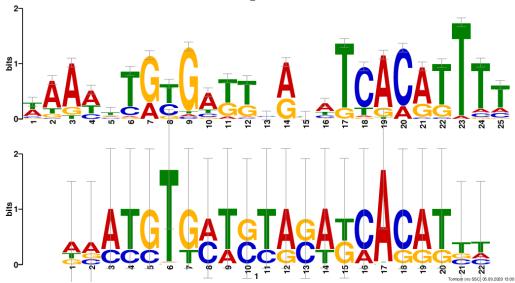




Fig.6.5.13.a. Schematic representation of *S. fuliginis* used for growth and expression studies of OPH.

. Initially growth of the bacteria was assessed for atleast 40h. The growth was optimum when glucose was used as carbon source. Cells reached to OD_{600} of 0.5 within 20 hours of incubation. However, the same cultures grown in alternative carbon sources reached an OD_{600} of 0.45 at the end of 40h (Fig. 6.5.13.b).

Fig.6.5.13.b. Growth curve of *S. fuliginis* grown in alternative carbon sources. *S. fuliginis* was inoculated at initial OD_{600} of 0.20 and growth was monitored for every 5h time period. The cells grown in glucose reached an OD_{600} of approximately 1.90 at the end of 40 hr. The cells grown in protocatechuic acid and 2,4 dihydroxybenzoic acid reached an OD_{600} of 0.45.

Cells were harvested from (1 ml cultures, OD₆₀₀) the cultures were used to isolate proteins and thus isolated proteins were analyzed on 12.5% SDS-PAGE. The OPH expression was quantified based on the intensity of the signal. Interestingly, in cells grown in less preferred carbon sources such as protocatechuic acid and 2,4 dihydroxybenzoic acid, the OPH signal intensity has significantly gone up. OPH expression in these cultures appeared to be doubled (Fig.6.5.14, panel B, lanes 3 and 4) when compared to the OPH specific signal intensity found in proteins isolated from glucose grown cultures (Fig.6.5.14, panel B, lane 2). Subsequently, relative quantification of opd transcripts was carried out by using the RNA isolated from the same set of cells grown using alternative carbon sources. The total RNA from each set of cells (1ml) was isolated and subjected to quantitative Real-time PCR and the data was normalized by 16SrRNA transcripts. The data clearly showed that the opd specific transcripts were identical in the cells grown in either glucose or any other alternative carbon source (Fig.6.5.14, Panel C). The increase in expression of OPH despite having similar opd transcripts indicated the sRNA, CrpR54 dependent activation of opd mRNA translation by destabilizing IREopd. Since CrpR54 expression is induced only under carbon limiting condition, the increased expression of CrpR54 appears to have relieved IREopd mediated translational repression of opd mRNA.


Fig.6.5.14. Influence of carbon source on OPH expression. Panel A shows a coomassie stained, 12.5% SDS-PAGE used for analysis of proteins extracted from cultures grown using glucose (lane 2), protocatechuic acid (Lane 3), 2,4 DHBA (lane 4). The corresponding western blot performed using anti-OPH antibodies is shown in panel B. Panel C shows the relative quantification of *opd* transcripts under similar conditions of growth.

6.6. Discussion:

The metabolism of iron is stringently regulated in all organisms (Hentze & Kuhn, 1996; Crosa, 1997). A huge number of RNA regulators identified as sRNAs are elucidated in a large variety of bacteria (Storz et al., 2011). The promoter elements regulating sRNA expression are sensitive for any specific cellular stress hence might serve as reporters of conditions encountered by a cell (Mutalik et al., 2009). The vital post-transcriptional regulators of bacterial gene expression are sRNAs. They usually control the gene expression by base pairing to target mRNAs, which might lead to either enhanced or inhibition of translation and/or change in mRNA stability (McQuail et al., 2019). A few classes of sRNAs utilize sequence-specific RNA–RNA interactions to regulate mRNA expression (Masse & Gottesman, 2002).

The current chapter shows existence of a similar non-coding RNA in the intergenic region of opd and istB of IS-element, IS21. Interestingly this sRNA showed potent complementarity with IREopd. The sRNA showed maximum base pairing on the left arm of IRE stem region and partial base pairing with the loop region as well as the right stem region. Out of 29 base forming IRE, 19 bases interact with the sRNA, CrpR54 (Fig.6.5.1a). The influence of CrpR54 on the expression of OPH was assessed using genetic screen (Fig.6.5.7). Further, in vivo experiments performed in the presence of *CrpR54* demonstrated a considerable increase of OPH expression, despite containing equal amounts of opd transcripts, indicating a role for *CrpR54* is in relieving the post-transcriptional regulation of opd expression (Fig.6.5.9). In Gram-negative bacteria, the RNA binding protein Hfq is usually required for the function and/or stability of this family of sRNAs (Storz et al., 2011). In *E. coli*, the RNA-binding protein Hfq is generally required to mediate sRNA-mRNA hybrid formation. In this role, Hfg acts as a RNA chaperone to facilitate base pair formation and stabilizes the sRNA against degradation (Desnoyers & Masse, 2012; Peer & Margalit, 2014). The experiments described in the chapter gave clear indication regarding the requirement of Hfq for formation of IREopd and CrpR54, duplex. In summary, the role of CrpR54 is evident in relieving translational inhibition on opd mRNA in association with Hfq protein.

Interestingly, the expression of this sRNA, *CrpR54* is critical for expressing OPH. The *crpR54* appears to be under the influence of carbon catabolite repressor protein (Crp). The Crp is known to de-repress genes/operons involved in alternate carbon catabolism to facilitate survival of cells using less preferred carbon sources. The Crp protein shows dual regulation when bound to cAMP and *crp*-binding motif by either activating or repressing the transcription of genes. Some genes are subject to both positive and negative regulation by the cAMP-Crp complex due to the presence of multiple promoters (Irani et al., 1989). The functional interactions between these regulons are believed to coordinate the activities of the different metabolons so that the supply of one type of nutrient matches the supply of other essential types of nutrients (Gutierrez-Rios, 2003). The consensus of *crp* binding motif of *E. coli* was compared with that of *S. fuliginis*. The *E. coli* Crp has a consensus of 5'-AAATGTGATCTAGATCACATTT-3'.

Fig.6.6.1. Comparison of CRP binding of *E. coli* **with** *S. fuliginis*. The consensus sequence logo, prepared by using MEME Suite in shown. The height of individual letters within a stack of letters represents the relative frequency of that letter at a given position. The overall height of the stack represents the degree of conservation at that position.

The presence of *crp* binding motif in the promoter region of *crpR54* and loss of promoter activity in *crpR54-lacZ* fusion constructed by including the *crp*-binding motif are clearly indicative of its repressive role on expression of *crpR54* gene (Fig 6.5.2).

Spingomonads play crucial role in the detoxification of polycyclic aromatic hydrocarbons 1992; St. Martin, 1997). The (Cerniglia, family Sphingomonadaceae contains several strains competent to degrade particular compounds such as polycyclic aromatic hydrocarbons and lignin-derived aromatic compounds (Sohn et al., 2004; Copley et al., 2012; Chai et al., 2016; Kamimura et al., 2017). Metabolism of aromatic compounds requires novel oxygenases and transporters to facilitate their transport and conversion into TCA cycle intermediates. The ring-cleavage enzymes, aromatic-ring hydroxylating oxygenases etc., which are required for microbial degradation of aromatic compounds, require iron for their activity (Ladino-Orjuela et al., 2016; Mallinson et al., 2018; Peng et al., 1998; Sugimoto et al., 1999, 2014; Yoshikata et al., 2014).

Fig.6.6.2. Reactions catalyzed by intradiol and extradiol dioxygenases (Wang et al., 2017)

Usually, the transition metal-containing oxygenases use iron as a cofactor for activation of oxygen. After this sort of activation, the O_2 atoms are transferred to the substrate. Oxygenases are divided into dioxygenases and monooxygenases based on the number of O_2 atoms incorporated into the substrate. The "pure" dioxygenation reactions are catalyzed by certain classes of iron-dependent dioxygenases such as intradiol dioxygenases, Rieske dioxygenases and extradiol dioxygenases (Wang et al., 2017).

Class	Electron source	Examples	No. of Iron atoms	
I. Catechol dioxygenases				
Intradiol	Substrate	Catechol 1,2-dioxygenase	2	
\$ - t	> >	Protocatechuate dioxygenase	48	
Extradiol	Substrate	Catechol 2,3-dioxygenase	16	
九二大	сно ок-	2,3-D hydroxybiphenyl 1,2- dioxygenase	16	
HO OH HO III. Mononuclear Fe(II) dioxygenases (Rieske oxygenases)				
	NADH	Benzene 1,2-dioxygenase	12	
De NACH	\	Toluene 1,2-dioxygenase	12	
Fector C	<u></u>	Phthalate 3,4-dioxygenase	2	
III. Fe(II)-pterin-dependent oxygens:	ses			
Other aromatic hydroxylases	Tetrahydropterin	Benzoate 4-hydroxylase	2	
0p 00p 00p 00p 00p 00p 00p 00p 00p 00p		Mandelate 4-hydroxylase	2	
Amino acid hydroxylases	Tetrahydropterin	Tyrosine hydroxylases	2	
		Phenylalanine hydroxylase	2	
		Tryptophan hydroxylase	2	
IV. Dinuclear iron mono-oxygenases				
9	NADH	Toluene 2-mono-oxygenase	2	
A convor		Toluene 3-mono-oxygenase	2 2	
	7	Toluene 4-mono-oxygenase	2	
	OH.	Xylene mono-oxygenase		
		Phenol mono-oxygenase	2	

Fig.6.6.3. Classification of non-haem iron oxygenases that catalyze aromatic ring oxygenations (Coulter & Ballou, 1999)

The levels of OPH has gone up when cells of *S. fuliginis* were grown in aromatic compounds such as protocatechuic acid and 2,4-dihydrobenzoic acid. The increased expression of OPH appears to be due to concomitant rise in the levels of *CrpR54* due to its de-repression under carbon limiting conditions. Why is OPH expression increased when cells are grown in aromatic compounds? What role it plays in aromatic compound metabolism? The activities of OPH need to be examined to formulate a viable hypothesis. The OPH, in addition to its triesterase activity, plays a role in outer membrane transport system (Parapatla et al., 2020). This unique transport mechanism is needed for transport of aromatic compounds across energy deprived outer membrane. Further the assimilation of aromatic compounds requires more iron as both dioxygenases and monoxygenases depend on iron cofactor for activity. Enhanced expression of OPH in cells grown in aromatic compounds seems to satisfy both of these requirements. Further studies are required to prove this potential hypothesis.

Conclusion

The work described in the thesis provides conclusive evidences on iron dependent regulation of OPH expression. Previous studies from our lab have deciphered molecular mechanisms involved in membrane targeting of OPH along with components of outer membrane transport, ExbB/ExbD, TonB and TonR. Research work done by the other colleagues in the lab have successfully shown OPH involvement in transport of ferric-enterobactin (Fe-Ent). Proteins/enzymes involved in iron metabolism/transport are encoded by genes regulated by a transcription factor, Fur. Based on the intracellular concentration of iron, Fur either activates or represses iron responsive genes. Fur binds to ferrous ions to become an active repressor. This interacts with *fur* motif identified, overlapping promoter regions of genes responsive to iron and represses their expression. Under iron limiting conditions or in the absence of iron, Fur remains inactive and loses its ability to bind to *fur*-box motif, causing de-repression of iron responsive genes.

Previous work done in your lab has convincingly shown role of OPH in iron acquisition. The outer membrane transport system reconstituted in *E. coli* by including OPH showed dramatic increase in iron transport suggesting a convincing role for OPH in iron uptake. If OPH is truly involved in iron transport, the *opd* gene coding OPH should be part of iron regulon. Therefore, as a first step *in silico* studies were performed to identify typical regulatory motifs associated with well characterized iron response genes. The results described in the first chapter revealed existence of *fur*-box motif overlapping the -10 hexameric region of *opd* promoter. In support of this observation, under iron limiting conditions the *opd* gene is de-repressed. Almost double the quantity of OPH was found when *S. fuliginis* was grown under iron limiting conditions when compared to iron sufficient conditions. Enhanced expression of OPH was due to increased transcription of *opd* gene. The *opd* specific mRNA concentration was found two-fold higher in cells grown under iron limiting conditions.

The most interesting finding of this thesis is the identification of IRE in coding region of *opd* mRNA. The *IRE*^{opd} shared structural homology to both prokaryotic and eukaryotic IREs. In *E. coli*, the expression plasmids constructed

by deleting IRE^{opd} region enhanced OPH expression, suggesting a repressive role for IRE^{opd} . Similar increase was seen in OPH cells having expression plasmid generated by cloning opd' in which the structure of IRE^{opd} was disrupted by introducing non-complementary mutations in the stem region. These two studies have proved conclusively on the repressive role of IRE^{opd} on translation of opd mRNA. The IRE^{opd} successfully interacted with iron response protein (IRP), s_f Acn as well as with a small RNA encoded by a gene located within the opd element. This mobile element coded sRNA, CrpR54 appears to be under carbon catabolite repressor protein (Crp). The CrpR54 repressed under carbon limiting condition interacted with IRE^{opd} and relieved the translation inhibition of opd mRNA. These extensive studies described in the thesis show the role of iron on expression of opd gene in Sphingobium fuliginis ATCC27551.

Sphingobium fuliginis survives on a variety of aromatic compounds. Metabolism of aromatic compounds requires more influx of iron as the oxygenases involved in conversion of aromatics to aliphatic acids require iron cofactor. Growth of aromatic compounds creates carbon limiting conditions. If sRNA, CrpR54 expression is induced when cells are grown using aromatic compounds, the induced CrpR54 is expected to relieve translation inhibition on opd mRNA causing increased OPH. As proposed the OPH expression has gone up in cells grown on aromatic compounds, suggesting that the increased OPH contributes for the increased iron influx, to generate intracellular iron pool required to produce active dioxygenases, involved in aromatic carbon catabolism.

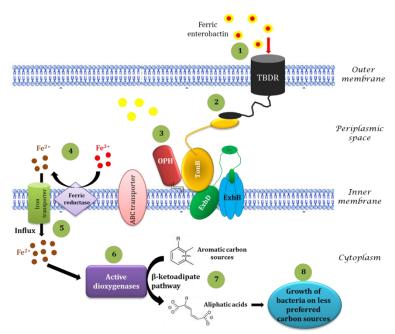


Fig. 7.1. Proposed model to understand the link between OPH dependent enhancement in iron uptake and carbon catabolism in *S. fuliginis*. Step 1 indicates the influx of ferricenterobactin into the periplasmic space in iron limiting conditions. Step 2 shows the signal transduction between TonB dependent transporter (TBDR) and TonB. Step 3 indicates interactions between OPH and Ton-components ExbB/ExbD and TonB. Step 4 shows the reduction of ferric iron to ferrous form on the outer face of inner membrane, mediated by ferric reductase. Step 5 shows the influx of ferrous ions into the cytoplasm and activation of the dioxygenases (step 6). Step 7 shows the conversion of aromatic carbon compounds to their respective aliphatic acids via β -ketoadipate pathway (step 8).

References

- Addess, K. J., Basilion, J. P., Klausner, R. D., Rouault, T. A., & Pardi, A. (1997). Structure and dynamics of the iron responsive element RNA: implications for binding of the RNA by iron regulatory binding proteins. *Journal of Molecular Biology*, 274(1), 72–83. https://doi.org/10.1006/jmbi.1997.1377
- Ahmad, R., Hjerde, E., Hansen, G. Å., Haugen, P., & Willassen, N.-P. (2009). Prediction and Experimental Testing of Ferric Uptake Regulator Regulons in Vibrios. *Journal of Molecular Microbiology and Biotechnology*, *16*(3–4), 159–168. https://doi.org/10.1159/000128322
- Alen, C., & Sonenshein, A. L. (1999). Bacillus subtilis aconitase is an RNA-binding protein. *Proceedings of the National Academy of Sciences*, 96(18), 10412–10417. https://doi.org/10.1073/pnas.96.18.10412
- Andrews, S. C., Robinson, A. K., & Rodríguez-Quiñones, F. (2003). Bacterial iron homeostasis. *FEMS Microbiology Reviews*, 27(2–3), 215–237. https://doi.org/10.1016/S0168-6445(03)00055-X
- Artsimovitch, I., & Henkin, T. M. (2009). In vitro approaches to analysis of transcription termination. *Methods*, 47(1), 37–43. https://doi.org/10.1016/j.ymeth.2008.10.006
- Azam, S., Parthasarathy, S., Singh, C., Kumar, S., & Siddavattam, D. (2019). Genome Organization and Adaptive Potential of Archetypal Organophosphate Degrading Sphingobium fuliginis ATCC 27551. *Genome Biology and Evolution*, 11(9), 2557–2562. https://doi.org/10.1093/gbe/evz189
- Aziz, N., & Munro, H. N. (1987). Iron regulates ferritin mRNA translation through a segment of its 5' untranslated region. *Proceedings of the National Academy of Sciences*, 84(23), 8478–8482. https://doi.org/10.1073/pnas.84.23.8478
- Baba, T., Ara, T., Hasegawa, M., Takai, Y., Okumura, Y., Baba, M., Datsenko, K. A., Tomita, M., Wanner, B. L., & Mori, H. (2006). Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. *Molecular Systems Biology*, 2(1). https://doi.org/10.1038/msb4100050
- Bagg, A, & Neilands, J. B. (1985). Mapping of a mutation affecting regulation of iron uptake systems in Escherichia coli K-12. *Journal of Bacteriology*, *161*(1), 450–453. https://doi.org/10.1128/JB.161.1.450-453.1985
- Bagg, Anne, & Neilands, J. B. (1987). Ferric uptake regulation protein acts as a repressor, employing iron(II) as a cofactor to bind the operator of an iron transport operon in Escherichia coli. *Biochemistry*, 26(17), 5471–5477. https://doi.org/10.1021/bi00391a039
- Baichoo, N., & Helmann, J. D. (2002). Recognition of DNA by Fur: a Reinterpretation of the Fur Box Consensus Sequence. *Journal of Bacteriology*, *184*(21), 5826–5832. https://doi.org/10.1128/JB.184.21.5826-5832.2002
- Baier, F., & Tokuriki, N. (2014). Connectivity between Catalytic Landscapes of the Metallo-β-Lactamase Superfamily. *Journal of Molecular Biology*, 426(13), 2442–2456. https://doi.org/10.1016/j.jmb.2014.04.013
- Banerjee, S., Nandyala, A. K., Raviprasad, P., Ahmed, N., & Hasnain, S. E. (2007). Iron-Dependent RNA-Binding Activity of Mycobacterium tuberculosis Aconitase. *Journal of Bacteriology*, *189*(11), 4046–4052. https://doi.org/10.1128/JB.00026-07
- Beinert, H. (1997). Iron-Sulfur Clusters: Nature's Modular, Multipurpose Structures. *Science*, 277(5326), 653–659. https://doi.org/10.1126/science.277.5326.653
- Benning, M. M., Kuo, J. M., Raushel, F. M., & Holden, H. M. (1994). Three-Dimensional Structure of Phosphotriesterase: An Enzyme Capable of Detoxifying Organophosphate Nerve Agents. *Biochemistry*, *33*(50), 15001–15007. https://doi.org/10.1021/bi00254a008
- Benning, M. M., Shim, H., Raushel, F. M., & Holden, H. M. (2001). High Resolution X-ray Structures of Different Metal-Substituted Forms of Phosphotriesterase from Pseudomonas diminuta †, ‡. *Biochemistry*, 40(9), 2712–2722.

- https://doi.org/10.1021/bi002661e
- Berg, K., Pedersen, H. L., & Leiros, I. (2020). Biochemical characterization of ferric uptake regulator (Fur) from Aliivibrio salmonicida. Mapping the DNA sequence specificity through binding studies and structural modelling. *BioMetals*, *33*(4–5), 169–185. https://doi.org/10.1007/s10534-020-00240-6
- Berks, B. C. (1996). A common export pathway for proteins binding complex redox cofactors? *Molecular Microbiology*, 22(3), 393–404. https://doi.org/10.1046/j.1365-2958.1996.00114.x
- Berks, B. C., Palmer, T., & Sargent, F. (2005). Protein targeting by the bacterial twin-arginine translocation (Tat) pathway. *Current Opinion in Microbiology*, 8(2), 174–181. https://doi.org/10.1016/j.mib.2005.02.010
- Bian, S., & Cowan, J. A. (1999). Protein-bound iron–sulfur centers. Form, function, and assembly. *Coordination Chemistry Reviews*, *190–192*, 1049–1066. https://doi.org/10.1016/S0010-8545(99)00157-5
- Birnboim, H. C., & Doly, J. (1979). A rapid alkaline extraction procedure for screening recombinant plasmid DNA. *Nucleic Acids Research*, 7(6), 1513–1523. https://doi.org/10.1093/nar/7.6.1513
- Brown, K. A. (1980). Phosphotriesterases of flavobacterium sp. *Soil Biology and Biochemistry*, 12(2), 105–112. https://doi.org/10.1016/0038-0717(80)90044-9
- Bsat, N., Herbig, A., Casillas-Martinez, L., Setlow, P., & Helmann, J. D. (1998). Bacillus subtilis contains multiple Fur homologues: identification of the iron uptake (Fur) and peroxide regulon (PerR) repressors. *Molecular Microbiology*, 29(1), 189–198. https://doi.org/10.1046/j.1365-2958.1998.00921.x
- Butt, J., Kim, H. Y., Basilion, J. P., Cohen, S., Iwai, K., Philpott, C. C., Altschul, S., Klausner, R. D., & Rouault, T. A. (1996). Differences in the RNA binding sites of iron regulatory proteins and potential target diversity. *Proceedings of the National Academy of Sciences*, *93*(9), 4345–4349. https://doi.org/10.1073/pnas.93.9.4345
- Cairo, G., & Recalcati, S. (2007). Iron-regulatory proteins: molecular biology and pathophysiological implications. *Expert Reviews in Molecular Medicine*, *9*(33), 1–13. https://doi.org/10.1017/S1462399407000531
- Calderwood, S. B., & Mekalanos, J. J. (1988). Confirmation of the Fur operator site by insertion of a synthetic oligonucleotide into an operon fusion plasmid. *Journal of Bacteriology*, 170(2), 1015–1017. https://doi.org/10.1128/JB.170.2.1015-1017.1988
- Campillos, M., Cases, I., Hentze, M. W., & Sanchez, M. (2010). SIREs: searching for iron-responsive elements. *Nucleic Acids Research*, *38*(Web Server), W360–W367. https://doi.org/10.1093/nar/gkq371
- Carey, J. (1991). [8] Gel retardation (pp. 103–117). https://doi.org/10.1016/0076-6879(91)08010-F
- Casey, J., Hentze, M., Koeller, D., Caughman, S., Rouault, T., Klausner, R., & Harford, J. (1988). Iron-responsive elements: regulatory RNA sequences that control mRNA levels and translation. *Science*, 240(4854), 924–928. https://doi.org/10.1126/science.2452485
- Castro, L., Tórtora, V., Mansilla, S., & Radi, R. (2019). Aconitases: Non-redox Iron–Sulfur Proteins Sensitive to Reactive Species. *Accounts of Chemical Research*, *52*(9), 2609–2619. https://doi.org/10.1021/acs.accounts.9b00150
- Caughman, S. W., Hentze, M. W., Rouault, T. A., Harford, J. B., & Klausner, R. D. (1988). The iron-responsive element is the single element responsible for iron-dependent translational regulation of ferritin biosynthesis. Evidence for function as the binding site for a translational repressor. *The Journal of Biological Chemistry*, 263(35), 19048–19052. http://www.ncbi.nlm.nih.gov/pubmed/3198610
- Cerniglia, C. E. (1992). Biodegradation of polycyclic aromatic hydrocarbons. *Biodegradation*, *3*(2–3), 351–368. https://doi.org/10.1007/BF00129093
- Chai, B., Tsoi, T. V., Iwai, S., Liu, C., Fish, J. A., Gu, C., Johnson, T. A., Zylstra, G., Teppen,

- B. J., Li, H., Hashsham, S. A., Boyd, S. A., Cole, J. R., & Tiedje, J. M. (2016). Sphingomonas wittichii Strain RW1 Genome-Wide Gene Expression Shifts in Response to Dioxins and Clay. *PLOS ONE*, *11*(6), e0157008. https://doi.org/10.1371/journal.pone.0157008
- Chai, S., Welch, T. J., & Crosa, J. H. (1998). Characterization of the Interaction between Fur and the Iron Transport Promoter of the Virulence Plasmid in Vibrio anguillarum. *Journal of Biological Chemistry*, 273(50), 33841–33847. https://doi.org/10.1074/jbc.273.50.33841
- Chan, V. L., Louie, H., & Bingham, H. L. (1995). Cloning and transcription regulation of the ferric uptake regulatory gene of Campylobacter jejuni TGH9011. *Gene*, 164(1), 25–31. https://doi.org/10.1016/0378-1119(95)00477-N
- Chaudhry, G. R., Ali, A. N., & Wheeler, W. B. (1988). Isolation of a methyl parathion-degrading Pseudomonas sp. that possesses DNA homologous to the opd gene from a Flavobacterium sp. *Applied and Environmental Microbiology*, *54*(2), 288–293. https://doi.org/10.1128/AEM.54.2.288-293.1988
- Cheng, T. C., Harvey, S. P., & Stroup, A. N. (1993). Purification and Properties of a Highly Active Organophosphorus Acid Anhydrolase from Alteromonas undina. *Applied and Environmental Microbiology*, *59*(9), 3138–3140. https://doi.org/10.1128/AEM.59.9.3138-3140.1993
- Cheng, T., DeFrank, J. J., & Rastogi, V. K. (1999). Alteromonas prolidase for organophosphorus G-agent decontamination. *Chemico-Biological Interactions*, 119–120, 455–462. https://doi.org/10.1016/S0009-2797(99)00058-7
- Chu, X., Zhang, X., Chen, Y., Liu, H., & Song, D. (2003). [Study on the properties of methyl parathion hydrolase from Pseudomonas sp. WBC-3]. *Wei Sheng Wu Xue Bao* = *Acta Microbiologica Sinica*, 43(4), 453–459. http://www.ncbi.nlm.nih.gov/pubmed/16276919
- Ciccarone, F., Di Leo, L., & Ciriolo, M. R. (2018). Aberrations of the TCA Cycle in Cancer. In *Reference Module in Biomedical Sciences*. Elsevier. https://doi.org/10.1016/B978-0-12-801238-3.65066-3
- Constable, A., Quick, S., Gray, N. K., & Hentze, M. W. (1992). Modulation of the RNA-binding activity of a regulatory protein by iron in vitro: switching between enzymatic and genetic function? *Proceedings of the National Academy of Sciences*, 89(10), 4554–4558. https://doi.org/10.1073/pnas.89.10.4554
- Copley, S. D., Rokicki, J., Turner, P., Daligault, H., Nolan, M., & Land, M. (2012). The Whole Genome Sequence of Sphingobium chlorophenolicum L-1: Insights into the Evolution of the Pentachlorophenol Degradation Pathway. *Genome Biology and Evolution*, *4*(2), 184–198. https://doi.org/10.1093/gbe/evr137
- Cornelis, P., Matthijs, S., & Van Oeffelen, L. (2009). Iron uptake regulation in Pseudomonas aeruginosa. *BioMetals*, 22(1), 15–22. https://doi.org/10.1007/s10534-008-9193-0
- Coulter, E. D., & Ballou, D. P. (1999). Non-haem iron-containing oxygenases involved in the microbial biodegradation of aromatic hydrocarbons. *Essays in Biochemistry*, *34*, 31–49. https://doi.org/10.1042/bse0340031
- Coy, M., & Neilands, J. B. (1991). Structural dynamics and functional domains of the Fur protein. *Biochemistry*, 30(33), 8201–8210. https://doi.org/10.1021/bi00247a016
- Crosa, J. H. (1997). Signal transduction and transcriptional and posttranscriptional control of iron-regulated genes in bacteria. *Microbiology and Molecular Biology Reviews : MMBR*, 61(3), 319–336. http://www.ncbi.nlm.nih.gov/pubmed/9293185
- Datsenko, K. A., & Wanner, B. L. (2000). One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. *Proceedings of the National Academy of Sciences*, 97(12), 6640–6645. https://doi.org/10.1073/pnas.120163297
- de Lorenzo, V., Wee, S., Herrero, M., & Neilands, J. B. (1987). Operator sequences of the aerobactin operon of plasmid ColV-K30 binding the ferric uptake regulation (fur) repressor. *Journal of Bacteriology*, 169(6), 2624–2630.

- https://doi.org/10.1128/JB.169.6.2624-2630.1987
- Deng, Z., Wang, Q., Liu, Z., Zhang, M., Machado, A. C. D., Chiu, T.-P., Feng, C., Zhang, Q., Yu, L., Qi, L., Zheng, J., Wang, X., Huo, X., Qi, X., Li, X., Wu, W., Rohs, R., Li, Y., & Chen, Z. (2015). Mechanistic insights into metal ion activation and operator recognition by the ferric uptake regulator. *Nature Communications*, 6(1), 7642. https://doi.org/10.1038/ncomms8642
- Desai, P. J., Angerer, A., & Genco, C. A. (1996). Analysis of Fur binding to operator sequences within the Neisseria gonorrhoeae fbpA promoter. *Journal of Bacteriology*, *178*(16), 5020–5023. https://doi.org/10.1128/JB.178.16.5020-5023.1996
- Desnoyers, G., & Masse, E. (2012). Noncanonical repression of translation initiation through small RNA recruitment of the RNA chaperone Hfq. *Genes & Development*, 26(7), 726–739. https://doi.org/10.1101/gad.182493.111
- Dinkla, I. J. T., Gabor, E. M., & Janssen, D. B. (2001). Effects of Iron Limitation on the Degradation of Toluene by Pseudomonas Strains Carrying the TOL (pWWO) Plasmid. *Applied and Environmental Microbiology*, 67(8), 3406–3412. https://doi.org/10.1128/AEM.67.8.3406-3412.2001
- Donarski, W. J., Dumas, D. P., Heitmeyer, D. P., Lewis, V. E., & Raushel, F. M. (1989). Structure-activity relationships in the hydrolysis of substrates by the phosphotriesterase from Pseudomonas diminuta. *Biochemistry*, 28(11), 4650–4655. https://doi.org/10.1021/bi00437a021
- Dong, Y.-J., Bartlam, M., Sun, L., Zhou, Y.-F., Zhang, Z.-P., Zhang, C.-G., Rao, Z., & Zhang, X.-E. (2005). Crystal Structure of Methyl Parathion Hydrolase from Pseudomonas sp. WBC-3. *Journal of Molecular Biology*, *353*(3), 655–663. https://doi.org/10.1016/j.jmb.2005.08.057
- Dumas, D. P., Caldwell, S. R., Wild, J. R., & Raushel, F. M. (1989). Purification and properties of the phosphotriesterase from Pseudomonas diminuta. *The Journal of Biological Chemistry*, 264(33), 19659–19665. http://www.ncbi.nlm.nih.gov/pubmed/2555328
- Erlitzki, R., Long, J. C., & Theil, E. C. (2002). Multiple, Conserved Iron-responsive Elements in the 3'-Untranslated Region of Transferrin Receptor mRNA Enhance Binding of Iron Regulatory Protein 2. *Journal of Biological Chemistry*, 277(45), 42579–42587. https://doi.org/10.1074/jbc.M207918200
- Ernst, J. F., Bennett, R. L., & Rothfield, L. I. (1978). Constitutive expression of the iron-enterochelin and ferrichrome uptake systems in a mutant strain of Salmonella typhimurium. *Journal of Bacteriology*, *135*(3), 928–934. https://doi.org/10.1128/JB.135.3.928-934.1978
- Escolar, Lucía, Lorenzo, V. de, & Pérez-Martíín, J. (1997). Metalloregulation in vitro of the aerobactin promoter of Escherichia coli by the Fur (ferric uptake regulation) protein. *Molecular Microbiology*, 26(4), 799–808. https://doi.org/10.1046/j.1365-2958.1997.6211987.x
- Escolar, Lucía, Pérez-Martín, J., & de Lorenzo, V. (1998). Coordinated Repression In Vitro of the DivergentfepA-fes Promoters of Escherichia coli by the Iron Uptake Regulation (Fur) Protein. *Journal of Bacteriology*, *180*(9), 2579–2582. https://doi.org/10.1128/JB.180.9.2579-2582.1998
- Escolar, Lucía, Pérez-Martín, J., & de Lorenzo, V. (1999). Opening the Iron Box: Transcriptional Metalloregulation by the Fur Protein. *Journal of Bacteriology*, *181*(20), 6223–6229. https://doi.org/10.1128/JB.181.20.6223-6229.1999
- Ferguson, A. D., & Deisenhofer, J. (2004). Metal Import through Microbial Membranes. *Cell*, *116*(1), 15–24. https://doi.org/10.1016/S0092-8674(03)01030-4
- Fetherston, J. D., Bertolino, V. J., & Perry, R. D. (1999). YbtP and YbtQ: two ABC transporters required for iron uptake in Yersinia pestis. *Molecular Microbiology*, 32(2), 289–299. https://doi.org/10.1046/j.1365-2958.1999.01348.x

- Fitzgerald, K. D., & Semler, B. L. (2009). Bridging IRES elements in mRNAs to the eukaryotic translation apparatus. *Biochimica et Biophysica Acta (BBA) Gene Regulatory Mechanisms*, 1789(9–10), 518–528. https://doi.org/10.1016/j.bbagrm.2009.07.004
- Fried, M. G. (1989). Measurement of protein-DNA interaction parameters by electrophoresis mobility shift assay. *Electrophoresis*, *10*(5–6), 366–376. https://doi.org/10.1002/elps.1150100515
- Fried, M. G., & Garner, M. M. (1998). The Electrophoretic Mobility Shift Assay (EMSA) for Detection and Analysis of Protein-DNA Interactions. In *Nucleic Acid Electrophoresis* (pp. 239–271). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-58924-9 10
- Friedman, Y. E., & O'Brian, M. R. (2003). A Novel DNA-binding Site for the Ferric Uptake Regulator (Fur) Protein from Bradyrhizobium japonicum. *Journal of Biological Chemistry*, 278(40), 38395–38401. https://doi.org/10.1074/jbc.M306710200
- Fröhlich, K. S., Förstner, K. U., & Gitai, Z. (2018). Post-transcriptional gene regulation by an Hfq-independent small RNA in Caulobacter crescentus. *Nucleic Acids Research*. https://doi.org/10.1093/nar/gky765
- Fuchs, G., Boll, M., & Heider, J. (2011). Microbial degradation of aromatic compounds—from one strategy to four. *Nature Reviews Microbiology*, *9*(11), 803–816. https://doi.org/10.1038/nrmicro2652
- Fujita, M., Sakumoto, T., Tanatani, K., Yu, H., Mori, K., Kamimura, N., & Masai, E. (2020). Iron acquisition system of Sphingobium sp. strain SYK-6, a degrader of lignin-derived aromatic compounds. *Scientific Reports*, 10(1), 12177. https://doi.org/10.1038/s41598-020-68984-2
- Furrer, J. L., Sanders, D. N., Hook-Barnard, I. G., & McIntosh, M. A. (2002). Export of the siderophore enterobactin in Escherichia coli: involvement of a 43 kDa membrane exporter. *Molecular Microbiology*, *44*(5), 1225–1234. https://doi.org/10.1046/j.1365-2958.2002.02885.x
- Furukawa, K., Ramesh, A., Zhou, Z., Weinberg, Z., Vallery, T., Winkler, W. C., & Breaker, R. R. (2015). Bacterial Riboswitches Cooperatively Bind Ni 2+ or Co 2+ Ions and Control Expression of Heavy Metal Transporters. *Molecular Cell*, *57*(6), 1088–1098. https://doi.org/10.1016/j.molcel.2015.02.009
- Gaballa, A., & Helmann, J. D. (1998). Identification of a zinc-specific metalloregulatory protein, Zur, controlling zinc transport operons in Bacillus subtilis. *Journal of Bacteriology*, *180*(22), 5815–5821. https://doi.org/10.1128/JB.180.22.5815-5821.1998
- Gao, H., Zhou, D., Li, Y., Guo, Z., Han, Y., Song, Y., Zhai, J., Du, Z., Wang, X., Lu, J., & Yang, R. (2008). The Iron-Responsive Fur Regulon in Yersinia pestis. *Journal of Bacteriology*, 190(8), 3063–3075. https://doi.org/10.1128/JB.01910-07
- Gardner, P. R. (1997). Superoxide-Driven Aconitase FE-S Center Cycling. *Bioscience Reports*, 17(1), 33–42. https://doi.org/10.1023/A:1027383100936
- Gardner, P. R., Costantino, G., Szabó, C., & Salzman, A. L. (1997). Nitric Oxide Sensitivity of the Aconitases. *Journal of Biological Chemistry*, 272(40), 25071–25076. https://doi.org/10.1074/jbc.272.40.25071
- Garner, M. M., & Revzin, A. (1986). The use of gel electrophoresis to detect and study nucleic acid—protein interactions. *Trends in Biochemical Sciences*, *11*(10), 395–396. https://doi.org/10.1016/0968-0004(86)90149-0
- Gdaniec, Z., Sierzputowska-Gracz, H., & Theil, E. C. (1998). Iron Regulatory Element and Internal Loop/Bulge Structure for Ferritin mRNA Studied by Cobalt(III) Hexammine Binding, Molecular Modeling, and NMR Spectroscopy †. *Biochemistry*, *37*(6), 1505–1512. https://doi.org/10.1021/bi9719814
- Giedroc, D. P., & Arunkumar, A. I. (2007). Metal sensor proteins: nature's metalloregulated allosteric switches. *Dalton Transactions*, 29, 3107. https://doi.org/10.1039/b706769k

- Gorla, P., Pandey, J. P., Parthasarathy, S., Merrick, M., & Siddavattam, D. (2009). Organophosphate Hydrolase in Brevundimonas diminuta Is Targeted to the Periplasmic Face of the Inner Membrane by the Twin Arginine Translocation Pathway. *Journal of Bacteriology*, 191(20), 6292–6299. https://doi.org/10.1128/JB.00824-09
- Gruer, M. J., & Guest, J. R. (1994). Two genetically-distinct and differentially-regulated aconitases (AcnA and AcnB) in Escherichia coli. *Microbiology*, *140*(10), 2531–2541. https://doi.org/10.1099/00221287-140-10-2531
- Gruer, Megan J., Artymiuk, P. J., & Guest, J. R. (1997). The aconitase family: three structural variations on a common theme. *Trends in Biochemical Sciences*, 22(1), 3–6. https://doi.org/10.1016/S0968-0004(96)10069-4
- Gudla, R., Konduru, G. V., Nagarajaram, H. A., & Siddavattam, D. (2019). Organophosphate hydrolase interacts with Ton components and is targeted to the membrane only in the presence of the ExbB/ExbD complex. *FEBS Letters*, *593*(6), 581–593. https://doi.org/10.1002/1873-3468.13345
- Guebel, D. V., & Torres, N. V. (2018). Influence of Glucose Availability and CRP Acetylation on the Genome-Wide Transcriptional Response of Escherichia coli: Assessment by an Optimized Factorial Microarray Analysis. *Frontiers in Microbiology*, 9. https://doi.org/10.3389/fmicb.2018.00941
- Gutierrez-Rios, R. M. (2003). Regulatory Network of Escherichia coli: Consistency Between Literature Knowledge and Microarray Profiles. *Genome Research*, *13*(11), 2435–2443. https://doi.org/10.1101/gr.1387003
- Haddock, J. D. (2010). Aerobic Degradation of Aromatic Hydrocarbons: Enzyme Structures and Catalytic Mechanisms. In *Handbook of Hydrocarbon and Lipid Microbiology* (pp. 1057–1069). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-77587-4_74
- Hanahan, D. (1983). Studies on transformation of Escherichia coli with plasmids. *Journal of Molecular Biology*, 166(4), 557–580. https://doi.org/10.1016/S0022-2836(83)80284-8
- Hantke, K. (1981). Regulation of ferric iron transport in Escherichia coli K12: Isolation of a constitutive mutant. *Molecular and General Genetics MGG*, 182(2), 288–292. https://doi.org/10.1007/BF00269672
- Hantke, K. (1984). Cloning of the repressor protein gene of iron-regulated systems in Escherichia coli K12. *Molecular and General Genetics MGG*, 197(2), 337–341. https://doi.org/10.1007/BF00330982
- Hantke, K. (2001). Iron and metal regulation in bacteria. *Current Opinion in Microbiology*, 4(2), 172–177. https://doi.org/10.1016/S1369-5274(00)00184-3
- Hantke K, B. V. (2000). The art of keeping low and high iron concentrations in balance. In: Storz G, Hengge-Aronis R. eds. Bacterial stress responses. Washington, D.C.: ASM Press
- Harrell, C. M., McKenzie, A. R., Patino, M. M., Walden, W. E., & Theil, E. C. (1991).
 Ferritin mRNA: interactions of iron regulatory element with translational regulator protein P-90 and the effect on base-paired flanking regions. *Proceedings of the National Academy of Sciences*, 88(10), 4166–4170. https://doi.org/10.1073/pnas.88.10.4166
- Helmann, J. D. (1998). Metal Cation Regulation in Gram-Positive Bacteria. In *Metal Ions in Gene Regulation* (pp. 45–76). Springer US. https://doi.org/10.1007/978-1-4615-5993-1-3
- Helmann, J. D. (2002). The extracytoplasmic function (ECF) sigma factors. *Advances in Microbial Physiology*, 46, 47–110. https://doi.org/10.1016/s0065-2911(02)46002-x
- Helmann, J. D. (2014). Specificity of Metal Sensing: Iron and Manganese Homeostasis in Bacillus subtilis. *Journal of Biological Chemistry*, 289(41), 28112–28120. https://doi.org/10.1074/jbc.R114.587071
- Henderson, B. R., Menotti, E., Bonnard, C., & Kühn, L. C. (1994). Optimal sequence and structure of iron-responsive elements. Selection of RNA stem-loops with high affinity for iron regulatory factor. *The Journal of Biological Chemistry*, 269(26), 17481–17489.

- http://www.ncbi.nlm.nih.gov/pubmed/8021254
- Hentze, M. W., & Kuhn, L. C. (1996). Molecular control of vertebrate iron metabolism: mRNA-based regulatory circuits operated by iron, nitric oxide, and oxidative stress. *Proceedings of the National Academy of Sciences*, *93*(16), 8175–8182. https://doi.org/10.1073/pnas.93.16.8175
- Hickey, E. K., & Cianciotto, N. P. (1994). Cloning and sequencing of the Legionella pneumophila fur gene. *Gene*, *143*(1), 117–121. https://doi.org/10.1016/0378-1119(94)90615-7
- Hider, R. C., & Kong, X. (2010). Chemistry and biology of siderophores. *Natural Product Reports*, 27(5), 637. https://doi.org/10.1039/b906679a
- Hirling, H., Henderson, B. R., & Kühn, L. C. (1994). Mutational analysis of the [4Fe-4S]-cluster converting iron regulatory factor from its RNA-binding form to cytoplasmic aconitase. *The EMBO Journal*, *13*(2), 453–461. http://www.ncbi.nlm.nih.gov/pubmed/7508861
- Holm, L., Sander, C., Rüterjans, H., Schnarr, M., Fogh, R., Boelens, R., & Kaptein, R. (1994). LexA repressor and iron uptake regulator from Escherichia coli: new members of the CAP-like DNA binding domain superfamily. "Protein Engineering, Design and Selection," 7(12), 1449–1453. https://doi.org/10.1093/protein/7.12.1449
- Horne, I., Sutherland, T. D., Harcourt, R. L., Russell, R. J., & Oakeshott, J. G. (2002). Identification of an opd (Organophosphate Degradation) Gene in an Agrobacterium Isolate. *Applied and Environmental Microbiology*, *68*(7), 3371–3376. https://doi.org/10.1128/AEM.68.7.3371-3376.2002
- Hubert, N., Walczak, R., Sturchler, C., Myslinski, E., Schuster, C., Westhof, E., Carbon, P., & Krol, A. (1996). RNAs mediating cotranslational insertion of selenocysteine in eukaryotic selenoproteins. *Biochimie*, 78(7), 590–596. https://doi.org/10.1016/S0300-9084(96)80005-8
- Hutchins, A. P., Diez, D., Takahashi, Y., Ahmad, S., Jauch, R., Tremblay, M. L., & Miranda-Saavedra, D. (2013). Distinct transcriptional regulatory modules underlie STAT3's cell type-independent and cell type-specific functions. *Nucleic Acids Research*, 41(4), 2155–2170. https://doi.org/10.1093/nar/gks1300
- Irani, M., Musso, R., & Adhya, S. (1989). Cyclic-AMP-dependent switch in initiation of transcription from the two promoters of the Escherichia coli gal operon: identification and assay of 5'-triphosphate ends of mRNA by GTP:RNA guanyltransferase. *Journal of Bacteriology*, 171(3), 1623–1630. https://doi.org/10.1128/JB.171.3.1623-1630.1989
- Jacob, F., & Monod, J. (1961). On the Regulation of Gene Activity. *Cold Spring Harbor Symposia on Quantitative Biology*, 26, 193–211. https://doi.org/10.1101/SQB.1961.026.01.024
- Jaffrey, S. R., Haile, D. J., Klausner, R. D., & Harford, J. B. (1993). The interaction between the iron-responsive element binding protein and its cognate RNA is highly dependent upon both RNA sequence and structure. *Nucleic Acids Research*, *21*(19), 4627–4631. https://doi.org/10.1093/nar/21.19.4627
- Jagodnik, J., Chiaruttini, C., & Guillier, M. (2017). Stem-Loop Structures within mRNA Coding Sequences Activate Translation Initiation and Mediate Control by Small Regulatory RNAs. *Molecular Cell*, 68(1), 158-170.e3. https://doi.org/10.1016/j.molcel.2017.08.015
- Kamimura, N., Takahashi, K., Mori, K., Araki, T., Fujita, M., Higuchi, Y., & Masai, E. (2017). Bacterial catabolism of lignin-derived aromatics: New findings in a recent decade: Update on bacterial lignin catabolism. *Environmental Microbiology Reports*, *9*(6), 679–705. https://doi.org/10.1111/1758-2229.12597
- Kawahara, K., Tanaka, A., Yoon, J., & Yokota, A. (2010). Reclassification of a parathione-degrading Flavobacterium sp. ATCC 27551 as Sphingobium fuliginis. *The Journal of General and Applied Microbiology*, 56(3), 249–255.

- https://doi.org/10.2323/jgam.56.249
- Kehrer, J. P. (2000). The Haber–Weiss reaction and mechanisms of toxicity. *Toxicology*, *149*(1), 43–50. https://doi.org/10.1016/S0300-483X(00)00231-6
- Khan, M. A., Walden, W. E., Theil, E. C., & Goss, D. J. (2017). Thermodynamic and Kinetic Analyses of Iron Response Element (IRE)-mRNA Binding to Iron Regulatory Protein, IRP1. *Scientific Reports*, 7(1), 8532. https://doi.org/10.1038/s41598-017-09093-5
- Kiley, P. J., & Beinert, H. (2003). The role of Fe–S proteins in sensing and regulation in bacteria. *Current Opinion in Microbiology*, *6*(2), 181–185. https://doi.org/10.1016/S1369-5274(03)00039-0
- Koebnik, R. (2005). TonB-dependent trans-envelope signalling: the exception or the rule? *Trends in Microbiology*, *13*(8), 343–347. https://doi.org/10.1016/j.tim.2005.06.005
- Koeller, D. M., Casey, J. L., Hentze, M. W., Gerhardt, E. M., Chan, L. N., Klausner, R. D., & Harford, J. B. (1989). A cytosolic protein binds to structural elements within the iron regulatory region of the transferrin receptor mRNA. *Proceedings of the National Academy of Sciences*, 86(10), 3574–3578. https://doi.org/10.1073/pnas.86.10.3574
- Kurth, C., Kage, H., & Nett, M. (2016). Siderophores as molecular tools in medical and environmental applications. *Organic & Biomolecular Chemistry*, *14*(35), 8212–8227. https://doi.org/10.1039/C6OB01400C
- Ladino-Orjuela, G., Gomes, E., da Silva, R., Salt, C., & Parsons, J. R. (2016). *Metabolic Pathways for Degradation of Aromatic Hydrocarbons by Bacteria* (pp. 105–121). https://doi.org/10.1007/978-3-319-23573-8_5
- Lawrence, J. G. (2002). Shared Strategies in Gene Organization among Prokaryotes and Eukaryotes. *Cell*, 110(4), 407–413. https://doi.org/10.1016/S0092-8674(02)00900-5
- Lee, J.-W., & Helmann, J. D. (2007). Functional specialization within the Fur family of metalloregulators. *BioMetals*, 20(3–4), 485–499. https://doi.org/10.1007/s10534-006-9070-7
- Lee, T. I., & Young, R. A. (2013). Transcriptional Regulation and Its Misregulation in Disease. *Cell*, 152(6), 1237–1251. https://doi.org/10.1016/j.cell.2013.02.014
- Leibold, E. A., Laudano, A., & Yu, Y. (1990). Structural requirements of iron-responsive elements for binding of the protein involved in both transferrin receptor and ferritin mRNA post-transcriptional regulation. *Nucleic Acids Research*, *18*(7), 1819–1824. https://doi.org/10.1093/nar/18.7.1819
- Leibold, E. S. H. & E. A. (1999). Regulation of the Iron Regulatory Proteins by Reactive Nitrogen and Oxygen Species. *Gene Expr.*
- Leppek, K., Das, R., & Barna, M. (2018). Functional 5' UTR mRNA structures in eukaryotic translation regulation and how to find them. *Nature Reviews Molecular Cell Biology*, 19(3), 158–174. https://doi.org/10.1038/nrm.2017.103
- Li, C. C., Merrell, D. S., Camilli, A., & Kaper, J. B. (2002). ToxR interferes with CRP-dependent transcriptional activation of ompT in Vibrio cholerae. *Molecular Microbiology*, 43(6), 1577–1589. https://doi.org/10.1046/j.1365-2958.2002.02845.x
- Lin, J., Zhang, W., Cheng, J., Yang, X., Zhu, K., Wang, Y., Wei, G., Qian, P.-Y., Luo, Z.-Q., & Shen, X. (2017). A Pseudomonas T6SS effector recruits PQS-containing outer membrane vesicles for iron acquisition. *Nature Communications*, 8(1), 14888. https://doi.org/10.1038/ncomms14888
- Litwin, C. M., & Calderwood, S. B. (1993). Role of iron in regulation of virulence genes. *Clinical Microbiology Reviews*, 6(2), 137–149. https://doi.org/10.1128/CMR.6.2.137
- Livak, K. J., & Schmittgen, T. D. (2001). Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the $2-\Delta\Delta$ CT Method. *Methods*, 25(4), 402–408. https://doi.org/10.1006/meth.2001.1262
- Llamas, M. A., Imperi, F., Visca, P., & Lamont, I. L. (2014). Cell-surface signaling in Pseudomonas: stress responses, iron transport, and pathogenicity. *FEMS Microbiology Reviews*, *38*(4), 569–597. https://doi.org/10.1111/1574-6976.12078

- LORENZO, V., HERRERO, M., GIOVANNINI, F., & NEILANDS, J. B. (1988). Fur (ferric uptake regulation) protein and CAP (catabolite-activator protein) modulate transcription of fur gene in Escherichia coli. *European Journal of Biochemistry*, *173*(3), 537–546. https://doi.org/10.1111/j.1432-1033.1988.tb14032.x
- Ma, J., Haldar, S., Khan, M. A., Sharma, S. D., Merrick, W. C., Theil, E. C., & Goss, D. J. (2012). Fe2+ binds iron responsive element-RNA, selectively changing protein-binding affinities and regulating mRNA repression and activation. *Proceedings of the National Academy of Sciences*, 109(22), 8417–8422. https://doi.org/10.1073/pnas.1120045109
- Ma, Z., Faulkner, M. J., & Helmann, J. D. (2012). Origins of specificity and cross-talk in metal ion sensing by Bacillus subtilis Fur. *Molecular Microbiology*, 86(5), 1144–1155. https://doi.org/10.1111/mmi.12049
- Madikonda, A. K., Shaikh, A., Khanra, S., Yakkala, H., Yellaboina, S., Lin-Chao, S., & Siddavattam, D. (2020). Metabolic remodeling in Escherichia coli MG 1655. A prophage e14-encoded small RNA, co293, post-transcriptionally regulates transcription factors HcaR and FadR. *The FEBS Journal*, 287(21), 4767–4782. https://doi.org/10.1111/febs.15247
- Mallinson, S. J. B., Machovina, M. M., Silveira, R. L., Garcia-Borràs, M., Gallup, N., Johnson, C. W., Allen, M. D., Skaf, M. S., Crowley, M. F., Neidle, E. L., Houk, K. N., Beckham, G. T., DuBois, J. L., & McGeehan, J. E. (2018). A promiscuous cytochrome P450 aromatic O-demethylase for lignin bioconversion. *Nature Communications*, 9(1), 2487. https://doi.org/10.1038/s41467-018-04878-2
- Mande, C. M. S. K. and S. C. (2011). *Protein chaperones and non-protein substrates: on substrate promiscuity of GroEL*. https://www.jstor.org/stable/24077768
- Martínez-Pastor, M., Llanos, R., Romero, A., & Puig, S. (2013). Post-Transcriptional Regulation of Iron Homeostasis in Saccharomyces cerevisiae. *International Journal of Molecular Sciences*, *14*(8), 15785–15809. https://doi.org/10.3390/ijms140815785
- Masse, E., & Gottesman, S. (2002). A small RNA regulates the expression of genes involved in iron metabolism in Escherichia coli. *Proceedings of the National Academy of Sciences*, 99(7), 4620–4625. https://doi.org/10.1073/pnas.032066599
- Mattei, E., Ausiello, G., Ferrè, F., & Helmer-Citterich, M. (2014). A novel approach to represent and compare RNA secondary structures. *Nucleic Acids Research*, 42(10), 6146–6157. https://doi.org/10.1093/nar/gku283
- McCallum, S. A., & Pardi, A. (2003). Refined Solution Structure of the Iron-responsive Element RNA Using Residual Dipolar Couplings. *Journal of Molecular Biology*, *326*(4), 1037–1050. https://doi.org/10.1016/S0022-2836(02)01431-6
- McGary, K., & Nudler, E. (2013). RNA polymerase and the ribosome: the close relationship. *Current Opinion in Microbiology*, *16*(2), 112–117. https://doi.org/10.1016/j.mib.2013.01.010
- McQuail, J., Switzer, A., & Wigneshweraraj, R. (2019). Post-transcriptional regulation of gene expression in Escherichia coli experiencing sustained nitrogen starvation. *Access Microbiology*, *I*(1A). https://doi.org/10.1099/acmi.ac2019.po0500
- Menscher, E. A., Caswell, C. C., Anderson, E. S., & Roop, R. M. (2012). Mur Regulates the Gene Encoding the Manganese Transporter MntH in Brucella abortus 2308. *Journal of Bacteriology*, 194(3), 561–566. https://doi.org/10.1128/JB.05296-11
- Mey, A. R., Wyckoff, E. E., Kanukurthy, V., Fisher, C. R., & Payne, S. M. (2005). Iron and Fur Regulation in Vibrio cholerae and the Role of Fur in Virulence. *Infection and Immunity*, 73(12), 8167–8178. https://doi.org/10.1128/IAI.73.12.8167-8178.2005
- Miethke, M., & Marahiel, M. A. (2007). Siderophore-Based Iron Acquisition and Pathogen Control. *Microbiology and Molecular Biology Reviews*, 71(3), 413–451. https://doi.org/10.1128/MMBR.00012-07
- Miller, J. H. (1972). Experiments in molecular genetics.
- Mills, S. A., & Marletta, M. A. (2005). Metal Binding Characteristics and Role of Iron

- Oxidation in the Ferric Uptake Regulator from Escherichia coli †. *Biochemistry*, 44(41), 13553–13559. https://doi.org/10.1021/bi0507579
- Morales, V. M., Bäckman, A., & Bagdasarian, M. (1991). A series of wide-host-range low-copy-number vectors that allow direct screening for recombinants. *Gene*, *97*(1), 39–47. https://doi.org/10.1016/0378-1119(91)90007-X
- Morozova, N., Allers, J., Myers, J., & Shamoo, Y. (2006). Protein-RNA interactions: exploring binding patterns with a three-dimensional superposition analysis of high resolution structures. *Bioinformatics*, 22(22), 2746–2752. https://doi.org/10.1093/bioinformatics/btl470
- Muckenthaler, M. U., Galy, B., & Hentze, M. W. (2008). Systemic Iron Homeostasis and the Iron-Responsive Element/Iron-Regulatory Protein (IRE/IRP) Regulatory Network. *Annual Review of Nutrition*, 28(1), 197–213. https://doi.org/10.1146/annurev.nutr.28.061807.155521
- Mulbry, W. W., & Karns, J. S. (1989a). Parathion hydrolase specified by the Flavobacterium opd gene: relationship between the gene and protein. *Journal of Bacteriology*, *171*(12), 6740–6746. https://doi.org/10.1128/JB.171.12.6740-6746.1989
- Mulbry, W. W., & Karns, J. S. (1989b). Purification and characterization of three parathion hydrolases from gram-negative bacterial strains. *Applied and Environmental Microbiology*, 55(2), 289–293. https://doi.org/10.1128/AEM.55.2.289-293.1989
- Müllner, E. W., & Kühn, L. C. (1988). A stem-loop in the 3' untranslated region mediates iron-dependent regulation of transferrin receptor mRNA stability in the cytoplasm. *Cell*, 53(5), 815–825. https://doi.org/10.1016/0092-8674(88)90098-0
- Murari, A., Thiriveedi, V. R., Mohammad, F., Vengaldas, V., Gorla, M., Tammineni, P., Krishnamoorthy, T., & Sepuri, N. B. V. (2015). Human mitochondrial MIA40 (CHCHD4) is a component of the Fe–S cluster export machinery. *Biochemical Journal*, 471(2), 231–241. https://doi.org/10.1042/BJ20150012
- Mutalik, V. K., Nonaka, G., Ades, S. E., Rhodius, V. A., & Gross, C. A. (2009). Promoter Strength Properties of the Complete Sigma E Regulon of Escherichia coli and Salmonella enterica. *Journal of Bacteriology*, *191*(23), 7279–7287. https://doi.org/10.1128/JB.01047-09
- Neilands, J. B. (1993). Siderophores. *Archives of Biochemistry and Biophysics*, 302(1), 1–3. https://doi.org/10.1006/abbi.1993.1172
- Noinaj, N., Guillier, M., Barnard, T. J., & Buchanan, S. K. (2010). TonB-Dependent Transporters: Regulation, Structure, and Function. *Annual Review of Microbiology*, 64(1), 43–60. https://doi.org/10.1146/annurev.micro.112408.134247
- Nudler, E. (2004). The riboswitch control of bacterial metabolism. *Trends in Biochemical Sciences*, 29(1), 11–17. https://doi.org/10.1016/j.tibs.2003.11.004
- Ochsner, U. A., Vasil, A. I., & Vasil, M. L. (1995). Role of the ferric uptake regulator of Pseudomonas aeruginosa in the regulation of siderophores and exotoxin A expression: purification and activity on iron-regulated promoters. *Journal of Bacteriology*, 177(24), 7194–7201. https://doi.org/10.1128/JB.177.24.7194-7201.1995
- Ochsner, U. A., & Vasil, M. L. (1996). Gene repression by the ferric uptake regulator in Pseudomonas aeruginosa: cycle selection of iron-regulated genes. *Proceedings of the National Academy of Sciences*, *93*(9), 4409–4414. https://doi.org/10.1073/pnas.93.9.4409
- Ohlendorf, D. H., Lipscomb, J. D., & Weber, P. C. (1988). Structure and assembly of protocatechuate 3,4-dioxygenase. *Nature*, *336*(6197), 403–405. https://doi.org/10.1038/336403a0
- Omburo, G. A., Kuo, J. M., Mullins, L. S., & Raushel, F. M. (1992). Characterization of the zinc binding site of bacterial phosphotriesterase. *The Journal of Biological Chemistry*, 267(19), 13278–13283. http://www.ncbi.nlm.nih.gov/pubmed/1320014
- Owen, D., & Kühn, L. C. (1987). Noncoding 3' sequences of the transferrin receptor gene are

- required for mRNA regulation by iron. *The EMBO Journal*, *6*(5), 1287–1293. https://doi.org/10.1002/j.1460-2075.1987.tb02366.x
- Paget, M. S. B., & Helmann, J. D. (2003). The sigma 70 family of sigma factors. *Genome Biology*, 4(1), 203. https://doi.org/10.1186/gb-2003-4-1-203
- Pandeeti, E. V. P., Chakka, D., Pandey, J. P., & Siddavattam, D. (2011). Indigenous organophosphate-degrading (opd) plasmid pCMS1 of Brevundimonas diminuta is self-transmissible and plays a key role in horizontal mobility of the opd gene. *Plasmid*, 65(3), 226–231. https://doi.org/10.1016/j.plasmid.2011.02.003
- Pandeeti, E. V. P., Longkumer, T., Chakka, D., Muthyala, V. R., Parthasarathy, S., Madugundu, A. K., Ghanta, S., Medipally, S. R., Pantula, S. C., Yekkala, H., & Siddavattam, D. (2012). Multiple Mechanisms Contribute to Lateral Transfer of an Organophosphate Degradation (opd) Island in Sphingobium fuliginis ATCC 27551. *G3: Genes/Genomes/Genetics*, 2(12), 1541–1554. https://doi.org/10.1534/g3.112.004051
- Pandey, J. P., Gorla, P., Manavathi, B., & Siddavattam, D. (2009). mRNA secondary structure modulates the translation of organophosphate hydrolase (OPH) in E. coli. *Molecular Biology Reports*, *36*(3), 449–454. https://doi.org/10.1007/s11033-007-9200-5
- Parapatla, H., Gudla, R., Konduru, G. V., Devadasu, E. R., Nagarajaram, H. A., Sritharan, M., Subramanyam, R., & Siddavattam, D. (2020). Organophosphate hydrolase interacts with ferric-enterobactin and promotes iron uptake in association with TonB dependent transport system. *Biochemical Journal*. https://doi.org/10.1042/BCJ20200299
- Park, S. J., & Gunsalus, R. P. (1995). Oxygen, iron, carbon, and superoxide control of the fumarase fumA and fumC genes of Escherichia coli: role of the arcA, fnr, and soxR gene products. *Journal of Bacteriology*, *177*(21), 6255–6262. https://doi.org/10.1128/JB.177.21.6255-6262.1995
- Parthasarathy, S., Azam, S., Lakshman Sagar, A., Narasimha Rao, V., Gudla, R., Paraptla, H., Yakkala, H., Ghanta Vemuri, S., & Siddavattam, D. (2016). Genome-guided insights reveal organophosphate-degrading Brevundimonas diminuta as Sphingopyxis wildii and define its versatile metabolic capabilities and environmental adaptations. *Genome Biology and Evolution*, evw275. https://doi.org/10.1093/gbe/evw275
- Parthasarathy, S., Parapatla, H., Nandavaram, A., Palmer, T., & Siddavattam, D. (2016). Organophosphate Hydrolase Is a Lipoprotein and Interacts with P i -specific Transport System to Facilitate Growth of Brevundimonas diminuta Using OP Insecticide as Source of Phosphate. *Journal of Biological Chemistry*, 291(14), 7774–7785. https://doi.org/10.1074/jbc.M116.715110
- Parthasarathy, S., Parapatla, H., & Siddavattam, D. (2017). Topological analysis of the lipoprotein organophosphate hydrolase from Sphingopyxis wildii reveals a periplasmic localisation. *FEMS Microbiology Letters*, *364*(19). https://doi.org/10.1093/femsle/fnx187
- Parthasarathy Sunil, G. R. and S. D. (2017). Evolution of Phosphotriesterases (PTEs): How Bacteria Can Acquire New Degradative Functions? *Proc Indian Natn Sci Acad*, 83(4), 865–875.
- Pedersen, H. L., Ahmad, R., Riise, E. K., Leiros, H.-K. S., Hauglid, S., Espelid, S., Brandsdal, B. O., Leiros, I., Willassen, N.-P., & Haugen, P. (2010). Experimental and computational characterization of the ferric uptake regulator from Aliivibrio salmonicida (Vibrio salmonicida). *The Journal of Microbiology*, 48(2), 174–183. https://doi.org/10.1007/s12275-010-9199-5
- Peer, A., & Margalit, H. (2014). Evolutionary patterns of Escherichia coli small RNAs and their regulatory interactions. *RNA*, 20(7), 994–1003. https://doi.org/10.1261/rna.043133.113
- Peng, X., Egashira, T., Hanashiro, K., Masai, E., Nishikawa, S., Katayama, Y., Kimbara, K., & Fukuda, M. (1998). Cloning of a Sphingomonas paucimobilis SYK-6 Gene Encoding

- a Novel Oxygenase That Cleaves Lignin-Related Biphenyl and Characterization of the Enzyme. *Applied and Environmental Microbiology*, *64*(7), 2520–2527. https://doi.org/10.1128/AEM.64.7.2520-2527.1998
- Philpott, C. C., Klausner, R. D., & Rouault, T. A. (1994). The bifunctional iron-responsive element binding protein/cytosolic aconitase: the role of active-site residues in ligand binding and regulation. *Proceedings of the National Academy of Sciences*, *91*(15), 7321–7325. https://doi.org/10.1073/pnas.91.15.7321
- Piccinelli, P., & Samuelsson, T. (2007). Evolution of the iron-responsive element. *RNA*, 13(7), 952–966. https://doi.org/10.1261/rna.464807
- Posey, J. E. (2000). Lack of a Role for Iron in the Lyme Disease Pathogen. *Science*, 288(5471), 1651–1653. https://doi.org/10.1126/science.288.5471.1651
- Postle, K. (2007). *TonB System, In Vivo Assays and Characterization* (pp. 245–269). https://doi.org/10.1016/S0076-6879(06)22012-3
- Quail, M. A., Jordan, P., Grogan, J. M., Butt, J. N., Lutz, M., Thomson, A. J., Andrews, S. C., & Guest, J. R. (1996). Spectroscopic and Voltammetric Characterisation of the Bacterioferritin-Associated Ferredoxin of Escherichia coli. *Biochemical and Biophysical Research Communications*, 229(2), 635–642. https://doi.org/10.1006/bbrc.1996.1856
- Quatrini, R., Lefimil, C., Holmes, D. S., & Jedlicki, E. (2005). The ferric iron uptake regulator (Fur) from the extreme acidophile Acidithiobacillus ferrooxidans. *Microbiology*, 151(6), 2005–2015. https://doi.org/10.1099/mic.0.27581-0
- Regulski, E. E., & Breaker, R. R. (2008). *In-Line Probing Analysis of Riboswitches* (pp. 53–67). https://doi.org/10.1007/978-1-59745-033-1_4
- Ricky S. Joshi, E. M. and M. S. (2012). *Cellular Iron Metabolism The IRP/IRE Regulatory Network*.
- Robichon, C., Luo, J., Causey, T. B., Benner, J. S., & Samuelson, J. C. (2011). Engineering Escherichia coli BL21(DE3) Derivative Strains To Minimize E. coli Protein Contamination after Purification by Immobilized Metal Affinity Chromatography. *Applied and Environmental Microbiology*, 77(13), 4634–4646. https://doi.org/10.1128/AEM.00119-11
- Rohs, R., Jin, X., West, S. M., Joshi, R., Honig, B., & Mann, R. S. (2010). Origins of Specificity in Protein-DNA Recognition. *Annual Review of Biochemistry*, 79(1), 233–269. https://doi.org/10.1146/annurev-biochem-060408-091030
- Rouault, T A, & Klausner, R. D. (1996). Iron-sulfur clusters as biosensors of oxidants and iron. *Trends in Biochemical Sciences*, *21*(5), 174–177. http://www.ncbi.nlm.nih.gov/pubmed/8871401
- Rouault, Tracey A. (2006). The role of iron regulatory proteins in mammalian iron homeostasis and disease. *Nature Chemical Biology*, 2(8), 406–414. https://doi.org/10.1038/nchembio807
- SAITO, T., WORMALD, M. R., & WILLIAMS, R. J. P. (1991). Some structural features of the iron-uptake regulation protein. *European Journal of Biochemistry*, *197*(1), 29–38. https://doi.org/10.1111/j.1432-1033.1991.tb15878.x
- Samantarrai, D., Lakshman Sagar, A., Gudla, R., & Siddavattam, D. (2020). TonB-Dependent Transporters in Sphingomonads: Unraveling Their Distribution and Function in Environmental Adaptation. *Microorganisms*, 8(3), 359. https://doi.org/10.3390/microorganisms8030359
- Sargent, F. (1998). Overlapping functions of components of a bacterial Sec-independent protein export pathway. *The EMBO Journal*, *17*(13), 3640–3650. https://doi.org/10.1093/emboj/17.13.3640
- Schaible, U. E., & Kaufmann, S. H. E. (2004). Iron and microbial infection. *Nature Reviews Microbiology*, 2(12), 946–953. https://doi.org/10.1038/nrmicro1046
- Schauer, K., Rodionov, D. A., & de Reuse, H. (2008). New substrates for TonB-dependent transport: do we only see the 'tip of the iceberg'? *Trends in Biochemical Sciences*,

- 33(7), 330–338. https://doi.org/10.1016/j.tibs.2008.04.012
- Sebastian, S., Agarwal, S., Murphy, J. R., & Genco, C. A. (2002). The Gonococcal Fur Regulon: Identification of Additional Genes Involved in Major Catabolic, Recombination, and Secretory Pathways. *Journal of Bacteriology*, *184*(14), 3965–3974. https://doi.org/10.1128/JB.184.14.3965-3974.2002
- Selezneva, A. I., Walden, W. E., & Volz, K. W. (2013). Nucleotide-Specific Recognition of Iron-Responsive Elements by Iron Regulatory Protein 1. *Journal of Molecular Biology*, 425(18), 3301–3310. https://doi.org/10.1016/j.jmb.2013.06.023
- Seo, S. W., Kim, D., Latif, H., O'Brien, E. J., Szubin, R., & Palsson, B. O. (2014). Deciphering Fur transcriptional regulatory network highlights its complex role beyond iron metabolism in Escherichia coli. *Nature Communications*, *5*(1), 4910. https://doi.org/10.1038/ncomms5910
- Serdar, C. M., Gibson, D. T., Munnecke, D. M., & Lancaster, J. H. (1982). Plasmid Involvement in Parathion Hydrolysis by Pseudomonas diminuta. *Applied and Environmental Microbiology*, 44(1), 246–249. https://doi.org/10.1128/AEM.44.1.246-249.1982
- Serio, A. W., Pechter, K. B., & Sonenshein, A. L. (2006). Bacillus subtilis Aconitase Is Required for Efficient Late-Sporulation Gene Expression. *Journal of Bacteriology*, *188*(17), 6396–6405. https://doi.org/10.1128/JB.00249-06
- Sethunathan, N., & Yoshida, T. (1973). A Flavobacterium sp. that degrades diazinon and parathion. *Canadian Journal of Microbiology*, *19*(7), 873–875. https://doi.org/10.1139/m73-138
- Siddavattam, D., Khajamohiddin, S., Manavathi, B., Pakala, S. B., & Merrick, M. (2003). Transposon-Like Organization of the Plasmid-Borne Organophosphate Degradation (opd) Gene Cluster Found in Flavobacterium sp. *Applied and Environmental Microbiology*, 69(5), 2533–2539. https://doi.org/10.1128/AEM.69.5.2533-2539.2003
- Siddavattam, D., Raju, E. R., Paul, P. V. E., & Merrick, M. (2006). Overexpression of parathion hydrolase in Escherichia coli stimulates the synthesis of outer membrane porin OmpF. *Pesticide Biochemistry and Physiology*, 86(3), 146–150. https://doi.org/10.1016/j.pestbp.2006.02.007
- Simons, R. W., Houman, F., & Kleckner, N. (1987). Improved single and multicopy lac-based cloning vectors for protein and operon fusions. *Gene*, *53*(1), 85–96. https://doi.org/10.1016/0378-1119(87)90095-3
- Singh, B. K. (2009). Organophosphorus-degrading bacteria: ecology and industrial applications. *Nature Reviews Microbiology*, 7(2), 156–164. https://doi.org/10.1038/nrmicro2050
- Singh, B. K., & Walker, A. (2006). Microbial degradation of organophosphorus compounds. *FEMS Microbiology Reviews*, *30*(3), 428–471. https://doi.org/10.1111/j.1574-6976.2006.00018.x
- Singh, B., Kaur, J., & Singh, K. (2014). Microbial degradation of an organophosphate pesticide, malathion. *Critical Reviews in Microbiology*, 40(2), 146–154. https://doi.org/10.3109/1040841X.2013.763222
- Slattery, M., Zhou, T., Yang, L., Dantas Machado, A. C., Gordân, R., & Rohs, R. (2014). Absence of a simple code: how transcription factors read the genome. *Trends in Biochemical Sciences*, *39*(9), 381–399. https://doi.org/10.1016/j.tibs.2014.07.002
- Smith, A., Hooper, N. I., Shipulina, N., & Morgan, W. T. (1996). Heme binding by a bacterial repressor protein, the gene product of the ferric uptake regulation (fur) gene of Escherichia coli. *Journal of Protein Chemistry*, *15*(6), 575–583. https://doi.org/10.1007/BF01908539
- Sohn, J. H., Kwon, K. K., Kang, J.-H., Jung, H.-B., & Kim, S.-J. (2004). Novosphingobium pentaromativorans sp. nov., a high-molecular-mass polycyclic aromatic hydrocarbon-degrading bacterium isolated from estuarine sediment. *International Journal of*

- *Systematic and Evolutionary Microbiology*, *54*(5), 1483–1487. https://doi.org/10.1099/ijs.0.02945-0
- Solovyev Victor and Salamov Asaf. (2010). Automatic Annotation Of Microbial Genomes And Metagenomic Sequences. In *In: Metagenomics and its Applications in Agriculture*.
- Somara, S., & Siddavattam, D. (1995). Plasmid mediated organophosphate pesticide degradation by Flavobacterium balustinum. *Biochemistry and Molecular Biology International*, *36*(3), 627–631. http://www.ncbi.nlm.nih.gov/pubmed/7549962
- Spaink, H. P., Okker, R. J. H., Wijffelman, C. A., Pees, E., & Lugtenberg, B. J. J. (1987). Promoters in the nodulation region of the Rhizobium leguminosarum Sym plasmid pRL1JI. *Plant Molecular Biology*, *9*(1), 27–39. https://doi.org/10.1007/BF00017984
- Sridhar, J., Narmada, S. R., Sabarinathan, R., Ou, H.-Y., Deng, Z., Sekar, K., Rafi, Z. A., & Rajakumar, K. (2010). sRNAscanner: A Computational Tool for Intergenic Small RNA Detection in Bacterial Genomes. *PLoS ONE*, 5(8), e11970. https://doi.org/10.1371/journal.pone.0011970
- Sruti DebRoy, Peng Gao, Danielle A. Garsin, Barret R. Harvey, Veronica Kos, Ingolf F. Nes, and M. S. (2014). *Transcriptional and Post Transcriptional Control of Enterococcal Gene Regulation*. https://www.ncbi.nlm.nih.gov/books/NBK190422/
- St. Martin, E. J. (1997). Microbial transformation and degradation of toxic organic chemicals Lily Y. Young and Carl E. Cerniglia, Wiley-Liss Inc., New York, NY, (1995), 654 pages, [ISBN No.: 0–471–52109–4], U.S. List Price: \$99.95. *Environmental Progress*, 16(2), A7–A7. https://doi.org/10.1002/ep.3300160204
- Stepankova, A., Dušková, J., Skálová, T., Hašek, J., Koval', T., Østergaard, L. H., & Dohnálek, J. (2013). Organophosphorus acid anhydrolase from Alteromonas macleodii: structural study and functional relationship to prolidases. *Acta Crystallographica Section F Structural Biology and Crystallization Communications*, 69(4), 346–354. https://doi.org/10.1107/S1744309113002674
- Stojiljkovic, I., Bäumler, A. J., & Hantke, K. (1994). Fur Regulon in Gram-negative Bacteria. *Journal of Molecular Biology*, 236(2), 531–545. https://doi.org/10.1006/jmbi.1994.1163
- Stojiljkovic, I., & Hantke, K. (1995). Functional domains of the Escherichia coli ferric uptake regulator protein (Fur). *Molecular and General Genetics MGG*, 247(2), 199–205. https://doi.org/10.1007/BF00705650
- Storz, G., Opdyke, J. A., & Zhang, A. (2004). Controlling mRNA stability and translation with small, noncoding RNAs. *Current Opinion in Microbiology*, 7(2), 140–144. https://doi.org/10.1016/j.mib.2004.02.015
- Storz, G., Vogel, J., & Wassarman, K. M. (2011). Regulation by Small RNAs in Bacteria: Expanding Frontiers. *Molecular Cell*, 43(6), 880–891. https://doi.org/10.1016/j.molcel.2011.08.022
- Studier, F. W., & Moffatt, B. A. (1986). Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. *Journal of Molecular Biology*, *189*(1), 113–130. https://doi.org/10.1016/0022-2836(86)90385-2
- Sugimoto, K., Senda, M., Kasai, D., Fukuda, M., Masai, E., & Senda, T. (2014). Molecular Mechanism of Strict Substrate Specificity of an Extradiol Dioxygenase, DesB, Derived from Sphingobium sp. SYK-6. *PLoS ONE*, *9*(3), e92249. https://doi.org/10.1371/journal.pone.0092249
- Sugimoto, K., Senda, T., Aoshima, H., Masai, E., Fukuda, M., & Mitsui, Y. (1999). Crystal structure of an aromatic ring opening dioxygenase LigAB, a protocatechuate 4,5-dioxygenase, under aerobic conditions. *Structure*, 7(8), 953–965. https://doi.org/10.1016/S0969-2126(99)80122-1
- Tanabe, T., Naka, A., Aso, H., Nakao, H., Narimatsu, S., Inoue, Y., Ono, T., & Yamamoto, S. (2005). A Novel Aerobactin Utilization Cluster in Vibrio vulnificus with a Gene Involved in the Transcription Regulation of the iutA Homologue. *Microbiology and Immunology*, 49(9), 823–834. https://doi.org/10.1111/j.1348-0421.2005.tb03671.x

- Tang, Y., & Guest, J. R. (1999). Direct evidence for mRNA binding and post-transcriptional regulation by Escherichia coli aconitases. *Microbiology*, *145*(11), 3069–3079. https://doi.org/10.1099/00221287-145-11-3069
- Tanui, C. K., Shyntum, D. Y., Priem, S. L., Theron, J., & Moleleki, L. N. (2017). Influence of the ferric uptake regulator (Fur) protein on pathogenicity in Pectobacterium carotovorum subsp. brasiliense. *PLOS ONE*, *12*(5), e0177647. https://doi.org/10.1371/journal.pone.0177647
- Tawfik, D. S. (2006). BIOCHEMISTRY: Loop Grafting and the Origins of Enzyme Species. *Science*, *311*(5760), 475–476. https://doi.org/10.1126/science.1123883
- Theil, E.C. (1990). Regulation of ferritin and transferrin receptor mRNAs. *The Journal of Biological Chemistry*, 265(9), 4771–4774. http://www.ncbi.nlm.nih.gov/pubmed/2156853
- Theil, Elizabeth C. (2015). IRE mRNA riboregulators use metabolic iron (Fe 2+) to control mRNA activity and iron chemistry in animals. *Metallomics*, 7(1), 15–24. https://doi.org/10.1039/C4MT00136B
- Thomason, L. C., Costantino, N., & Court, D. L. (2007). E. coli Genome Manipulation by P1 Transduction. In *Current Protocols in Molecular Biology* (pp. 1.17.1-1.17.8). John Wiley & Sons, Inc. https://doi.org/10.1002/0471142727.mb0117s79
- Thompson, D. K., Beliaev, A. S., Giometti, C. S., Tollaksen, S. L., Khare, T., Lies, D. P., Nealson, K. H., Lim, H., Yates, J., Brandt, C. C., Tiedje, J. M., & Zhou, J. (2002).
 Transcriptional and Proteomic Analysis of a Ferric Uptake Regulator (Fur) Mutant of Shewanella oneidensis: Possible Involvement of Fur in Energy Metabolism,
 Transcriptional Regulation, and Oxidative Stress. *Applied and Environmental Microbiology*, 68(2), 881–892. https://doi.org/10.1128/AEM.68.2.881-892.2002
- Touati, D. (1988). Transcriptional and posttranscriptional regulation of manganese superoxide dismutase biosynthesis in Escherichia coli, studied with operon and protein fusions. *Journal of Bacteriology*, *170*(6), 2511–2520. https://doi.org/10.1128/JB.170.6.2511-2520.1988
- Trujillo, M., Alvarez, B., Souza, J. M., Romero, N., Castro, L., Thomson, L., & Radi, R. (2010). Mechanisms and Biological Consequences of Peroxynitrite-Dependent Protein Oxidation and Nitration. In *Nitric Oxide* (pp. 61–102). Elsevier. https://doi.org/10.1016/B978-0-12-373866-0.00003-4
- Tseng, C.-P. (2006). Regulation of fumarase (fumB) gene expression in Escherichia coli in response to oxygen, iron and heme availability: role of the arcA, fur, and hemA gene products. *FEMS Microbiology Letters*, *157*(1), 67–72. https://doi.org/10.1111/j.1574-6968.1997.tb12754.x
- Vanhooke, J. L., Benning, M. M., Raushel, F. M., & Holden, H. M. (1996). Three-Dimensional Structure of the Zinc-Containing Phosphotriesterase with the Bound Substrate Analog Diethyl 4-Methylbenzylphosphonate †, ‡. *Biochemistry*, *35*(19), 6020–6025. https://doi.org/10.1021/bi9603251
- Vassinova, N., & Kozyrev, D. (2000). A method for direct cloning of Fur-regulated genes: identification of seven new Fur-regulated loci in Escherichia coli. *Microbiology*, *146*(12), 3171–3182. https://doi.org/10.1099/00221287-146-12-3171
- Venturi, V., Weisbeek, P., & Koster, M. (1995). Gene regulation of siderophore-mediated iron acquisition in Pseudomonas: not only the Fur repressor. *Molecular Microbiology*, 17(4), 603–610. https://doi.org/10.1111/j.1365-2958.1995.mmi_17040603.x
- Visca, P., Leoni, L., Wilson, M. J., & Lamont, I. L. (2002). Iron transport and regulation, cell signalling and genomics: lessons from Escherichia coli and Pseudomonas. *Molecular Microbiology*, 45(5), 1177–1190. https://doi.org/10.1046/j.1365-2958.2002.03088.x
- Volz, K. (2008). The functional duality of iron regulatory protein 1. *Current Opinion in Structural Biology*, *18*(1), 106–111. https://doi.org/10.1016/j.sbi.2007.12.010
- Walczak, R., Westhof, E., Carbon, P., & Krol, A. (1996). A novel RNA structural motif in the

- selenocysteine insertion element of eukaryotic selenoprotein mRNAs. RNA (New York, N.Y.), 2(4), 367–379. http://www.ncbi.nlm.nih.gov/pubmed/8634917
- Walden, W. E., Selezneva, A. I., Dupuy, J., Volbeda, A., Fontecilla-Camps, J. C., Theil, E. C., & Volz, K. (2006). Structure of Dual Function Iron Regulatory Protein 1 Complexed with Ferritin IRE-RNA. *Science*, 314(5807), 1903–1908. https://doi.org/10.1126/science.1133116
- Walden, W. E., Selezneva, A., & Volz, K. (2012). Accommodating variety in iron-responsive elements: Crystal structure of transferrin receptor 1 B IRE bound to iron regulatory protein 1. *FEBS Letters*, 586(1), 32–35. https://doi.org/10.1016/j.febslet.2011.11.018
- Wang, Y.-H., Sczekan, S. R., & Theil, E. C. (1990). Structure of the 5' untranslated regulatory region of ferritin mRNA studied in solution. *Nucleic Acids Research*, *18*(15), 4463–4468. https://doi.org/10.1093/nar/18.15.4463
- Wang, Y., Li, J., & Liu, A. (2017). Oxygen activation by mononuclear nonheme iron dioxygenases involved in the degradation of aromatics. *JBIC Journal of Biological Inorganic Chemistry*, 22(2–3), 395–405. https://doi.org/10.1007/s00775-017-1436-5
- Wang, Yuh-Hwa, Lin, P.-N., Sczekan, S. R., McKenzie, R. A., & Theil, E. C. (1991). Ferritin mRNA probed, near the iron regulatory region, with protein and chemical (1,10-phenanthroline-Cu) nucleases A possible role for base-paired flanking regions. *Biology of Metals*, 4(1), 56–61. https://doi.org/10.1007/BF01135558
- Waters, L. S., & Storz, G. (2009). Regulatory RNAs in Bacteria. *Cell*, *136*(4), 615–628. https://doi.org/10.1016/j.cell.2009.01.043
- Watnick, P. I., Butterton, J. R., & Calderwood, S. B. (1998). The interaction of the Vibrio cholerae transcription factors, Fur and IrgB, with the overlapping promoters of two virulence genes, irgA and irgB. *Gene*, 209(1–2), 65–70. https://doi.org/10.1016/S0378-1119(98)00018-3
- Weaver, J., Watts, T., Li, P., & Rye, H. S. (2014). Structural Basis of Substrate Selectivity of E. coli Prolidase. *PLoS ONE*, 9(10), e111531. https://doi.org/10.1371/journal.pone.0111531
- Weiner, J. H., Bilous, P. T., Shaw, G. M., Lubitz, S. P., Frost, L., Thomas, G. H., Cole, J. A., & Turner, R. J. (1998). A Novel and Ubiquitous System for Membrane Targeting and Secretion of Cofactor-Containing Proteins. *Cell*, *93*(1), 93–101. https://doi.org/10.1016/S0092-8674(00)81149-6
- Wexler, M., Todd, J. D., Kolade, O., Bellini, D., Hemmings, A. M., Sawers, G., & Johnston, A. W. B. (2003). Fur is not the global regulator of iron uptake genes in Rhizobium leguminosarum. *Microbiology*, *149*(5), 1357–1365. https://doi.org/10.1099/mic.0.26130-0
- WIENER, M. (2005). TonB-dependent outer membrane transport: going for Baroque? *Current Opinion in Structural Biology*, *15*(4), 394–400. https://doi.org/10.1016/j.sbi.2005.07.001
- Williams, C. H., Stillman, T. J., Barynin, V. V., Sedelnikova, S. E., Tang, Y., Green, J., Guest, J. R., & Artymiuk, P. J. (2002). E. coli aconitase B structure reveals a HEAT-like domain with implications for protein–protein recognition. *Nature Structural Biology*, 9(6), 447–452. https://doi.org/10.1038/nsb801
- Wilson, T. J. G., Bertrand, N., Tang, J.-L., Feng, J.-X., Pan, M.-Q., Barber, C. E., Dow, J. M., & Daniels, M. J. (1998). The rpfA gene of Xanthomonas campestris pathovar campestris, which is involved in the regulation of pathogenicity factor production, encodes an aconitase. *Molecular Microbiology*, 28(5), 961–970. https://doi.org/10.1046/j.1365-2958.1998.00852.x
- Winkler, W. C. (2005). Riboswitches and the role of noncoding RNAs in bacterial metabolic control. *Current Opinion in Chemical Biology*, *9*(6), 594–602. https://doi.org/10.1016/j.cbpa.2005.09.016
- Winterbourn, C. C. (1995). Toxicity of iron and hydrogen peroxide: the Fenton reaction.

- Toxicology Letters, 82–83, 969–974. https://doi.org/10.1016/0378-4274(95)03532-X
- Yang, W., Zhou, Y.-F., Dai, H.-P., Bi, L.-J., Zhang, Z.-P., Zhang, X.-H., Leng, Y., & Zhang, X.-E. (2008). Application of methyl parathion hydrolase (MPH) as a labeling enzyme. *Analytical and Bioanalytical Chemistry*, *390*(8), 2133–2140. https://doi.org/10.1007/s00216-008-1987-y
- Yang, X., & Ma, C. (2016). In Vitro Transcription Assays and Their Application in Drug Discovery. *Journal of Visualized Experiments*, 115. https://doi.org/10.3791/54256
- Yoshikata, T., Suzuki, K., Kamimura, N., Namiki, M., Hishiyama, S., Araki, T., Kasai, D., Otsuka, Y., Nakamura, M., Fukuda, M., Katayama, Y., & Masai, E. (2014). Three-Component O -Demethylase System Essential for Catabolism of a Lignin-Derived Biphenyl Compound in Sphingobium sp. Strain SYK-6. *Applied and Environmental Microbiology*, 80(23), 7142–7153. https://doi.org/10.1128/AEM.02236-14
- Zahringer, J., Baliga, B. S., & Munro, H. N. (1976). Novel mechanism for translational control in regulation of ferritin synthesis by iron. *Proceedings of the National Academy of Sciences*, 73(3), 857–861. https://doi.org/10.1073/pnas.73.3.857
- Zhang, L., Wang, H., Liu, X., Zhou, W., & Rao, Z. (2019). The crystal structure of the phosphotriesterase from M. tuberculosis, another member of phosphotriesterase-like lactonase family. *Biochemical and Biophysical Research Communications*, *510*(2), 224–229. https://doi.org/10.1016/j.bbrc.2019.01.069
- Zhongli, C., Shunpeng, L., & Guoping, F. (2001). Isolation of Methyl Parathion-Degrading Strain M6 and Cloning of the Methyl Parathion Hydrolase Gene. *Applied and Environmental Microbiology*, 67(10), 4922–4925. https://doi.org/10.1128/AEM.67.10.4922-4925.2001
- Zhou, Z. D., & Tan, E.-K. (2017). Iron regulatory protein (IRP)-iron responsive element (IRE) signaling pathway in human neurodegenerative diseases. *Molecular Neurodegeneration*, 12(1), 75. https://doi.org/10.1186/s13024-017-0218-4
- Zuker, M. (2003). Mfold web server for nucleic acid folding and hybridization prediction. *Nucleic Acids Research*, *31*(13), 3406–3415. https://doi.org/10.1093/nar/gkg595

CrossMark

The Organophosphate Degradation (opd) Island-borne Esterase-induced Metabolic Diversion in Escherichia coli and Its Influence on p-Nitrophenol Degradation*

Received for publication, May 2, 2015, and in revised form, September 24, 2015 Published, JBC Papers in Press, October 9, 2015, DOI 10.1074/jbc.M115.661249

Deviprasanna Chakka¹, Ramurthy Gudla¹, Ashok Kumar Madikonda¹, Emmanuel Vijay Paul Pandeeti, Sunil Parthasarathy, Aparna Nandavaram, and Dayananda Siddavattam²

From the Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad 500 046, India

Background: Because of the mobile nature of the opd island, identical opd and orf306 sequences are found among soil bacteria.

Results: In E. coli, Orf306 suppresses glycolysis and the TCA cycle and promotes up-regulation of alternate carbon catabolic

Conclusion: The up-regulated hca and mhp operons contribute to PNP-dependent growth of E. coli. Significance: Together with opd, orf306 contributes to the complete mineralization of OP residues.

In previous studies of the organophosphate degradation gene cluster, we showed that expression of an open reading frame (orf306) present within the cluster in Escherichia coli allowed growth on p-nitrophenol (PNP) as sole carbon source. We have now shown that expression of orf306 in E. coli causes a dramatic up-regulation in genes coding for alternative carbon catabolism. The propionate, glyoxylate, and methylcitrate cycle pathwayspecific enzymes are up-regulated along with hca (phenylpropionate) and mhp (hydroxyphenylpropionate) degradation operons. These hca and mhp operons play a key role in degradation of PNP, enabling E. coli to grow using it as sole carbon source. Supporting growth experiments, PNP degradation products entered central metabolic pathways and were incorporated into the carbon backbone. The protein and RNA samples isolated from E. coli (pSDP10) cells grown in 14C-labeled PNP indicated incorporation of 14C carbon, suggesting Orf306-dependent assimilation of PNP in E. coli cells.

Bacterial phosphotriesterases (PTEs)3 are a group of structurally unrelated enzymes that cleave the triester linkage found in both organophosphate (OP) insecticides and OP nerve agents (1). Because of their broad substrate range and high catalytic efficiency, they have been exploited for detection and decontamination of OP compounds (2). The PTEs have been

classified into three main groups: (i) the organophosphate hydrolases (OPHs), (ii) methyl parathion hydrolases (MPHs), and (iii) organophosphate acid anhydrases. Among the PTEs, only the organophosphate acid anhydrases have known physiological substrates: they have been shown to be dipeptidases that cleave dipeptides with a prolyl residue at the carboxyl terminus and hence are described as prolidases (3). The OP hydrolyzing activity of prolidases is considered to be an ancillary activity due to the structural similarity of OP compounds to their usual substrates (3).

The physiological substrates for OPH and MPH enzymes are unknown. These enzymes are believed to have evolved in soil bacteria to counter the toxic effects of OP insecticide residues released into agricultural soils (4, 5). Bacterial OPH enzymes, besides showing high structural similarities with the quorumquenching lactonases, possess weak lactonase activity (6, 7). Consequently the quorum-quenching lactonases are considered to be the possible progenitors of the bacterial OPH enzymes (7). Unlike the OPH enzymes, the MPHs have no structural similarity with quorum-quenching lactonases but instead are highly similar to β -lactamases (8). The structurally diverse PTEs are therefore assumed to have evolved independently in response to OP residues accumulated in agricultural soils (9, 10).

The genetics of organophosphate degradation has attracted considerable attention among soil microbiologists. Both the OPH-encoding organophosphate degradation (opd) genes and the MPH-encoding methyl parathion degradation (mpd) genes have been shown to be part of mobile genetic elements (11-13). The lateral transfer of opd and mpd genes is evidenced by the existence of identical opd and mpd genes among taxonomically unrelated soil bacteria (14, 15). Even dissimilar indigenous plasmids found in bacteria collected from diverse geographical regions contained identical opd gene clusters (14). There are four indigenous plasmids in OP-degrading Sphingohium fuliginis ATCC 27551. Of these four plasmids, the opd containing pPDL2 has been shown to be a mobilizable plasmid within which the opd region has unique organizational features (11).

¹ These authors contributed equally to this work.

^{*} This work was supported by Indian Council of Medical Research and Council for Scientific and Industrial Research (CSIR) research fellowships (to D. C., R. G., and A. K. M.). The authors declare that they have no conflicts of interest with the contents of this article.

² To whom correspondence should be addressed: Dept. of Animal Biology, School of Life Sciences, University of Hyderabad, Prof. C. R. Rao Rd., Gachibowli, Hyderabad 500 046, India. Tel.: 91-40-23134578; Fax: 91-40-23010120/145; E-mail: sdsl@uohyd.ernet.in.

The abbreviations used are: PTE, phosphotriesterase; PNP, p-nitrophenol; OP, organophosphate; orf306, open reading frame 306; OPH, organophosphate hydrolase; MPH, methyl parathion hydrolase; opd, organophosphate degradation gene; mpd, methyl parathion degradation gene; TCA, tricarboxylic acid; IPTG, isopropyl 1-thio-β-o-galactopyranoside; qPCR, quantitative PCR; PP, phenylpropionate; HPP, hydroxyphenylpropionate; Tn, transposon; IS, insertion element.

Organophosphate Hydrolase Is a Lipoprotein and Interacts with P_i-specific Transport System to Facilitate Growth of Brevundimonas diminuta Using OP Insecticide as Source of Phosphate*

Received for publication, January 11, 2016, and in revised form, February 7, 2016 Published, JBC Papers in Press, February 9, 2016, DOI 10.1074/jbc.M116.715110

Sunil Parthasarathy^{‡1}, Hari Parapatla[‡], Aparna Nandavaram[‡], Tracy Palmer[§], and Dayananda Siddavattam^{‡2}
From the [‡]Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500 046, India and the [§]Division of Molecular Microbiology, College of Life Sciences, University of Dundee, United Kingdom

Organophosphate hydrolase (OPH), encoded by the organophosphate degradation (opd) island, hydrolyzes the triester bond found in a variety of organophosphate insecticides and nerve agents. OPH is targeted to the inner membrane of Brevundimonas diminuta in a pre-folded conformation by the twin arginine transport (Tat) pathway. The OPH signal peptide contains an invariant cysteine residue at the junction of the signal peptidase (Spase) cleavage site along with a well conserved lipobex motif. Treatment of cells producing native OPH with the signal peptidase II inhibitor globomycin resulted in accumulation of most of the pre-OPH in the cytoplasm with negligible processed OPH detected in the membrane. Substitution of the conserved lipobox cysteine to serine resulted in release of OPH into the periplasm, confirming that OPH is a lipoprotein. Analysis of purified OPH revealed that it was modified with the fatty acids palmitate and stearate. Membrane-bound OPH was shown to interact with the outer membrane efflux protein TolC and with PstS, the periplasmic component of the ABC transporter complex (PstSACB) involved in phosphate transport. Interaction of OPH with PstS appears to facilitate transport of Pi generated from organophosphates due to the combined action of OPH and periplasmically located phosphatases. Consistent with this model, opd null mutants of B. diminuta failed to grow using the organophosphate insecticide methyl parathion as sole source of phosphate.

Membrane-associated organophosphate hydrolase (OPH)³ hydrolyzes the triester bond found in a variety of organophosphate insecticides and nerve agents (1, 2). The 39-kDa monomer requires Zn^+ ions as cofactor (3). OPH is encoded by the opd (organophosphate degrading) gene found on dissimilar plasmids and the opd gene has recently been shown to be a part of an integrative mobilizable element (IME) (4). Due to the mobile nature of the opd island, identical opd genes are found among bacterial strains isolated from different geographical regions (4, 5). Although its physiological substrate is unknown, OPH hydrolyzes paraoxon at a rate approaching the diffusion limit ($k_{\rm cat}/K_m$ 10^8 ${\rm M}^{-1}$ s $^{-1}$) (6). Considering its catalytic efficiency and broad substrate range, it has been assumed that OPH has evolved to degrade organophosphate (OP) insecticides accumulated in agricultural soils (7). Structural analysis shows that OPH contains a TIM barrel-fold as seen in most of the members of amidohydrolase superfamily proteins (8).

OPH associates with cell membranes and membrane-associated OPH has been purified from a number of sources (3, 9-13). Analysis of the amino acid sequences of OPH proteins indicates that all of them contain a predicted signal peptide harboring a well defined twin-arginine (Tat) motif. Twin-arginine signal peptides serve to target proteins to the twin-arginine protein transport (Tat) pathway, which translocates folded proteins across the bacterial cytoplasmic membrane (14). Proteinase K treatment confirmed that OPH is exported to the periplasmic side of the inner membrane in Brevundimonas diminuta and dependence on the Tat pathway was demonstrated because substitution of the invariant arginine residues of the Tat signal peptide affected both processing and localization of OPH (15). However, the mechanism by which OPH is anchored to the inner membrane and the physiological role of OPH are currently unclear. In this report we demonstrate that OPH is a lipoprotein and that it plays an essential role in the acquisition of phosphate from OP insecticides.

Experimental Procedures

Media, Strains, and Plasmids—Strains and plasmids used in the present work are shown in Table 1. Primers used for PCR amplification and site-directed mutagenesis are listed in Table 2. B. diminuta cultures were grown either in LB medium or in HEPES minimal medium. HEPES minimal medium was pre-

Supported by a Shantha Biotechnics Junior Research Fellowship (JRF) and Commonwealth Split-Site Fellowships, British Council, UK.

³ The abbreviations used are: OPH, organophosphate hydrolase; OP, organophosphate insecticides; Tat, Twin arginine transport; SPase, signal pepti-

dase;DDM,n-dodecyl β -D-maltoside;Tricine,N-[2-hydroxy-1,1-bis(hydroxy-methyl)ethyl]glycine; IMAC, immobilized-metal affinity chromatography; BN-PAGE, blue native-PAGE.

^{*} This work was supported in part by the Department of Biotechnology, Govt. of India (to D. S. Laboratory). Department of Animal Biology was supported by the DST-FIST (Department of Science and Technology–Fund for Improvement of S&T Infrastructure), and the School of Life Sciences, University of Hyderabad is supported by DBT-CREBB/BUILDER (Department of Biotechnology–Centre for Research and Education in Biology and Biotechnology/Boost to University Interdisciplinary Life Science Departments for Education and Research). The authors declare that they have no conflicts of interest with the contents of this article.

²To whom correspondence should be addressed: Dept. of Animal Biology, School of Life Sciences, University of Hyderabad, Prof. C. R. Rao Rd., Gachibowli, Hyderabad 500 046, India. Tel.: 91-40-23134578; Fax: 91-40-23010120/145; E-mail: sdsl@uohyd.ernet.in.

Aparna Nandavaram, Annapoorni Lakshman Sagar, Ashok Kumar Madikonda and Dayananda Siddavattam*

Proteomics of *Sphingobium indicum* B90A for a deeper understanding of hexachlorocyclohexane (HCH) bioremediation

DOI 10.1515/reveh-2015-0042 Received October 13, 2015; accepted October 13, 2015; previously published online March 8, 2016

Abstract: Genome wide expression profiling of *Sphingobium indicum* B90A revealed induction of *lin* genes, *linA* and *linB*, involved in dechlorination of hexachlorocyclohexane (HCH), in the presence of all four isomers of HCH. Supporting proteomics data, the qPCR and promoter assay showed upregulation of *linA* transcription in the presence of HCH isomers. Analysis of the upstream region of the *linA* gene revealed the existence of the GntR binding site overlapping the -10 hexamer of the putative promoter motif. As GntR is a known transcription repressor its dissociation from the *linA* promoter is expected to induce *lin* genes in the presence of HCH isomers. Comparison of *in situ* and in-culture proteomics indicated expression *lin* genes at the dumpsite, an indication for the *in situ* HCH degradation.

Keywords: biodegradation; bioremediation; hexachlorocyclohexane (HCH); *lin* genes; proteomics.

Introduction

Hexachlorocyclohexane (HCH), an organochlorine compound, has extensively been used as an insecticide to control important agricultural pests. The commercial formulation of HCH primarily consists of α , β , γ , δ isomers of which the γ isomer (lindane) has potent insecticidal activity. One ton purification of lindane from technical HCH produces 10 tons of HCH muck consisting of α , β , γ and δ HCH. During the past 60 years around 60,000 tons of

lindane has been used worldwide, leading to the formation of 4–7 million tons of HCH muck that is scattered in different places around the globe. Regardless of the stereochemistry, stability and persistence of HCH isomers they have been shown to cause adverse effects to the environment and human health (1). Considering its influence on environment and human health it has been declared as one of the key global pollutants.

The persistence of HCH isomers in the environment is chiefly due to the absence of microbes that can degrade/ use them as sole source of carbon. A number of attempts have been made to evaluate microbial degradation of HCH. However, very few reports are available on microbial degradation of HCH both under aerobic and anaerobic conditions. Detailed investigations revealed the existence of upper and lower degradation pathway enzymes in HCH degrading Sphingobium japonicum UT26S (2) and Sphingobium indicum B90A (3). The upper pathway enzymes, primarily the dehalogenases, contribute to the dehalogenation of HCH. The lower pathway enzymes, the dioxygenases, convert the dehalogenated HCH into the tricarboxylic acid cycle intermediates. HCH dehydrochlorinase (LinA), haloalkane dehalogenase (LinB) and dehydrogenase (LinC/LinX) are upper pathway enzymes. The reductive dechlorinase (LinD), ring cleavage oxygenase (LinE), maleylacetate reductase (LinF), an acyl-CoA transferase (LinG, H), a thiolase (LinJ) contribute to the lower degradation pathway. The HCH degrading (lin) genes are organized as clusters. Along with linI and linR, the genes that code for regulatory proteins, the linK, linL, linM and linN coding for a putative ABC-type transporter form a cluster that resembles a genomic island (3). The existence of transposase and recombinase coding genes flanking the lin cluster suggests extensive recombination and horizontal transfer of lin genes among soil bacteria.

The meta-genome sequence extracted from the soil samples collected from the dumpsite revealed the coexistence of several HCH degraders and non-degraders (4). Interestingly, most of the *Sphingomonads* found enriched at the HCH dumpsites, have shown existence

Aparna Nandavaram, Annapoorni Lakshman Sagar and Ashok Kumar Madikonda: Department of Animal Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, India

^{*}Corresponding author: Dayananda Siddavattam, Department of Animal Biology, School of Life Sciences, Room No- S40, University of Hyderabad, Hyderabad, Telangana 500046, India, E-mail: siddavattam@gmail.com

Transcriptional and Posttranscriptional Regulation of Organophosphate Degradation (opd) Gene in Sphingobium fuliginis ATCC 27551

by N. Aparna

Submission date: 22-Dec-2020 04:15PM (UTC+0530)

Submission ID: 1480483584

File name: THESIS_22_12_2020_for_plagairism_check.pdf (1.04M)

Word count: 27316

Character count: 143952

Transcriptional and Post-transcriptional Regulation of Organophosphate Degradation (opd) Gene in Sphingobium fuliginis ATCC 27551

_	nophosphate Degradation (nis ATCC 27551	opd) Gene in S	pningobium
	LITY REPORT		
-	4% 6% RITY INDEX INTERNET SOURCES	5% PUBLICATIONS	9% STUDENT PAPERS
PRIMARY	SOURCES		
1	Submitted to University of Hyderabad Student Paper	f Hyderabad,	8%
2	baadalsg.inflibnet.ac.in Internet Source		1%
3	jb.asm.org Internet Source		<1%
4	Zengqin Deng, Qing War Zhang et al. "Mechanistic activation and operator r uptake regulator", Nature 2015 Publication	c insights into recognition by t	netal ion he ferric
5	hypothes.is Internet Source		<1%
6	krishikosh.egranth.ac.in		<1%

59th Annual Conference of Association of Microbiologists of India (AMI-2018)

&

International Symposium on Host-Pathogen Interactions

This is to certify that

Aparna Nandavaram

has presented oral/poster/participated in the AMI 2018 conference organized from 9th - 12th December 2018 by School of Life Sciences, University of Hyderabad, Hyderabad, Telangana - 500046, India.

Prof. Appa Rao Podile
President

Prof. Pratyoosh Shukla General Secretary

Prof. Ch. Venkata Ramana

Organizing Secretary