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ABSTRACT

This thesis consists of five chapters.

In Chapter 1, some basic algebraic geometry like Riemann-Roch theorem,

Serre duality, Jacobian variety, symmetric product etc. that are relevant for our

purpose have been discussed. We mainly recall Hodge structure, mixed Hodge

structure, Chow groups, operational Chow groups and cycle class map in Chapter

2. Chapter 3 deals with the moduli spaces in general followed by the moduli spaces

of stable and semistable vector bundles over curve.

In Chapter 4, the relations amongst the cohomology classes of the Brill-

Noether subvarieties of the moduli space of semistable bundles over an elliptic

curve have been found. We obtain results similar to the Poincaré relation on a

Jacobian variety.

Chapter 5 is devoted to similar problems as in chapter 4, but for genus greater

than one case. Here we determine the tautological algebra, the algebra generated

by the cohomology classes of the Brill-Noether loci in the rational cohomology of

the moduli spaceMC(2, d) of semistable bundles of rank 2 and degree d. We show

that when C is a general smooth projective curve of genus g ≥ 2, d = 2g− 2, the

tautological algebra of MC(2, 2g − 2) (respectively SUC(2, L), deg L = 2g − 2)

is generated by the divisor classes (respectively the class of the Theta divisor Θ).

Here by SUC(2, L) we mean the moduli space of semistable bundles over C of

rank 2 and fixed determinant L with deg L = 2g− 2. Also we prove some results

about the non-emptiness of the loci.





SYNOPSIS

1 Introduction

In the nineteenth century, an abstract group was considered to be a subset of the

general linear group GLn for some n ∈ N, which is closed under multiplication

and inversion. In the modern language, this is a representation of a group G on

a n-dimensional vector space. In the twentieth century, to classify or to under-

stand groups, their representations were studied. The analogous transformation

occurred in algebraic geometry during that time. Prior to that, algebraic curve

simply meant the zero set of an irreducible polynomial in two variables. In the

twentieth century, the notion of abstract curves changed and studying the classi-

fication of curves meant that one has to describe the moduli space Mg (of fixed

genus g). Like the representation of groups, one can see how an algebraic curve

can be embedded in the projective space Pr, for some r ∈ N. Brill-Noether theory

is broadly related to the determinantal loci associated to the embeddings.

A study of the Brill-Noether loci was first carried out on the Jacobian of curves

by Fulton, Lazarsfeld, Griffiths and Harris. They contributed in answering the

natural questions on these loci, namely non-emptiness, irreducibility, dimension,

cohomological relations and understanding the singular loci. One can refer to

[Fu-La] and [Gf-Hr 1] to look into their work in this direction.

On the moduli space of higher rank semistable vector bundles of fixed degree

on a smooth curve, C. S. Seshadri, N. Sundaram (cf. [Su]) and M. Teixidor i

Bigas (cf. [Bg 1]) initiated a similar study of the Brill-Noether loci, answered

some of the interesting questions, and posed further questions. Notable results

were obtained in [Bg 1], [Bg 2], [Br-Gz-Ne], [Me 1] and [Me 2]. More recent de-

velopments on non-emptiness of the Brill-Noether loci can be found in [La-Ne-St],

[La-Ne-Pr], [La-Ne 1], [La-Ne 2] and [La-Ne 3]. A compilation of the questions

can be found in [Ne 2].

In this thesis we look at the questions of finding cohomological relations

amongst the Brill-Noether loci for a general curve. On the Jacobian J(C) of

a smooth projective curve C, this is classical and is known as Poincaré formula,

whereas the cohomological relations on the moduli space Jd(C) of degree d line

i
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bundles on a general curve C are called Castelnuovo’s formula (or Porteous’ for-

mula). Our aim in this thesis is to investigate similar cohomological relations

on the higher rank moduli spaces of semistable vector bundles with fixed degree

on a general smooth projective curve. The results are obtained in the rank two

situation and when the degree is 2g − 2, g being the genus of the curve.

We now outline our proposed thesis. The thesis consists of five chapters.

In the first chapter, some basic algebraic geometry like Riemann-Roch theorem,

Serre duality etc. that are relevant for our purpose have been discussed. We

mainly recall Hodge structure, mixed Hodge structure, Chow groups, operational

Chow groups and cycle class map in the second chapter. The third chapter deals

with the moduli spaces in general followed by the moduli spaces of vector bundles

over curve. We also thoroughly go through the definition and some properties of

the Brill-Noether subvarieties in this chapter which finally narrow down towards

our work. In the fourth chapter, the relations amongst the cohomology classes of

the Brill-Noether subvarieties of the moduli space of semistable bundles over an

elliptic curve have been found. We obtain results similar to Poincaré formula on a

Jacobian variety. The fifth chapter is devoted to similar problems as in chapter 4,

but for genus greater than one case. Here we determine the tautological algebra,

the algebra generated by the cohomology classes of the Brill-Noether loci in the

rational cohomology of the moduli spaceMC(2, d) of semistable bundles of rank

2 and degree d. We show that when C is a general smooth projective curve of

genus g ≥ 2, d = 2g − 2, the tautological algebra of MC(2, 2g − 2) (respectively

SUC(2, L), deg L = 2g − 2) is generated by the divisor classes (respectively the

class of the Theta divisor Θ). Here by SUC(2, L) we mean the moduli space of

semistable bundles over C of rank 2 and fixed determinant L with deg L = 2g−2.

Also we prove some results about the non-emptiness of the loci.

The summary of this thesis work is given in Section 2, 3 and 4. In Section 2, we

recall Poincaré formula on the Jacobian variety J(C) and Castelnuovo’s formula

on Jd(C) and discuss how these are related to the line of our work. Section 3 is

about a brief discussion on our first work (cf. [Mk]). Section 4 is based on our

second work which has already been communicated (cf. [Ga-Iy-Mk]).

In following sections we take C to be a smooth projective curve of genus g

over complex numbers. We denote the moduli space of S-equivalence classes of

semistable bundles of rank r and degree d over C byMC(r, d). By SUC(r, L) we

denote the moduli space of S-equivalence classes of semistable bundles of rank r
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and fixed determinant L of degree d over C.

2 Poincaré formula on the Jacobian variety J(C) and

Castelnuovo’s formula on Jd(C)

In this section we recall Poincaré’s formula on the Jacobian variety J(C) and

Castelnuovo’s formula on Jd(C). We reinterpret these formulas and show that

our problems in Section 3 and 4 arise quite naturally from them.

Let us denote the d-fold product of the curve C with itself by C×d. Here,

Sd(C), the d-th symmetric product of C, can be understood as the quotient space
C×d

σd
of C×d under the action of the permutation group σd of d symbols. Therefore

the elements of Sd(C) are unordered d-tuple x1 + x2 + · · ·+ xd of points of C.

Let us denote by O(D) the line bundle corresponding to a divisor D on C.

Consider the classical Abel-Jacobi map ϕd : Sd(C)→ Jd(C), defined as follows:

ϕd : Sd(C)→ Jd(C)

x1 + x2 + · · ·+ xd 7→ O(x1 + x2 + · · ·+ xd).
(1)

Here x1+x2+· · ·+xd is also thought as a degree d effective divisor on C and hence

O(x1 + x2 + · · · + xd) makes sense. The image of Sd(C) under the map ϕd are

subvarieties of Jd(C) and are denoted by W 0
d for all 1 ≤ d ≤ g. The subvariety

W 0
d parametrizes degree d line bundles over C having atleast one independent

global section as this is the image of effective divisors of degree d.

If we want to compare the cohomology classes [W 0
d ] for all 1 ≤ d ≤ g, it is

not possible to do so at this stage as they sit inside different Jd(C) with varying

d. Thus, to compare their cohomology classes, it is natural to think those as

subvarieties of one fixed variety. This can be obtained as follows. Let us choose

a point p ∈ C and fix it. Consider the map ⊗O(−dp) : Jd(C) → J(C) defined

as L 7→ L ⊗ O(−dp). Then the map u : Sd(C) −→ J(C) is defined as u =

⊗O(−dp) ◦ ϕd where ϕd is as in (1). Now define Wd, for all d, 1 ≤ d ≤ g, called

the Brill-Noether subvarieties of J(C), as Wd := u(Sd(C)).

Let Θ be the Theta divisor in J(C), the translate of the divisor W 0
g−1 of

Jg−1(C) via the map ⊗O(−(g − 1)p) : Jg−1(C) → J(C). Let [Wd] be the coho-

mology class of Wd and [Θ] be the cohomology class of Θ in H∗(J(C),Q). The

classical Poincaré’s formula expresses the cohomological classes of Wd, in terms

of the Theta divisor on J(C) (cf. [Ab-Cr-Gf-Hr, p. 25]). In H∗(J(C),Q), for all
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d, 1 ≤ d ≤ g, we have

[Wd] =
1

(g − d)!
· [Θ]g−d. (2)

The subvariety W 0
d of Jd(C) which parametrizes degree d line bundles over C

having atleast one independent global section can be further stratified by varying

the number of global sections. Define W r
d := {L ∈ Jd(C) | h0(L) ≥ r + 1}. Then

in Jd(C), 1 ≤ d ≤ g, we have the following stratification:

Jd(C) ⊇ W 0
d ⊇ · · · ⊇ W r

d ⊇ · · · .

Thus it is natural to compare the cohomology classes of these varieties in the

cohomology ring H∗(Jd(C),Q). Let us define the Brill-Noether number, denoted

by ρ, as ρ := g− (r+ 1)(g−d+ r). When C is general, the Néron-Severi group of

Jd(C) is generated by a translate of the Θ divisor in J(C). We denote this class

as θd. We then have the following formula, known as Castelnuovo’s formula, very

much similar to (2) (cf. [Gf-Hr 1]). For a general curve C,

[W r
d ] =

r∏
α=0

α!

(g − d+ r + α)!
· θg−ρd . (3)

Poincaré’s formula as in (2) can be interpreted as follows. Consider the subal-

gebra of H∗(J(C),Q) a priori generated by the cohomology classes Wd, 1 ≤ d ≤ g.

Then this subalgebra is generated by [Θ] only. Similarly, (3) depicts that the

subalgebra of H∗(Jd(C),Q), a priori generated by the cohomology classes W r
d for

varying r, is actually generated by θd only. We consider similar problem in the

cohomology ring of the moduli space of semistable bundles over an elliptic curve

in Section 3 and over curve of genus greater than equal to two in Section 4.

3 Tautological algebra of the moduli space of semistable

bundles over an elliptic curve

In this section, we describe the algebra generated by the cohomology classes of

certain Brill-Noether subvarieties of the moduli space of semistable bundles over

a curve C of genus 1, that is, over an elliptic curve. L. Tu proved that the Brill-

Noether loci are trivial for positive degree vector bundles (either empty or the

whole moduli space), and for line bundles of degree 0 (either empty or singleton)

(cf. [Tu, Lemma 17 & p. 13 below Lemma 17]). Therefore, we consider the Brill-
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Noether loci when the degree of a vector bundle is zero and the rank is more than

one. Let L be a line bundle of degree 0 and let i be any non-negative integer.

The following two definitions of the Brill-Noether loci are again due to [Tu, p. 4

& 5]. For a vector bundle F over C, we denote the S-equivalence class of F by

f . Then the Brill-Noether loci in SUC(r, L) are defined as follows:

W i
r,L(∃) :=

{
f ∈ SUC(r, L) |h0(F ) ≥ i+ 1 for some F ∈ f

}
.

We denote the cohomology class of W i
r,L(∃) in H∗(SUC(r, L),Z) by [W i

r,L(∃)].
This class is also called a tautological class and algebra generated by these classes

[W i
r,L(∃)] for varying i is called tautological algebra of H∗(SUC(r, L),Z). We

consider the analogous situation in the moduli spaceMC(r, 0). The Brill-Noether

loci in MC(r, 0) are defined as follows:

W i
r,0(∃) :=

{
f ∈MC(r, 0) |h0(F ) ≥ i+ 1 for some F ∈ f

}
.

We define tautological class and tautological algebra of H∗(MC(r, 0),Z) similarly.

In [Mk], we prove the main theorems on the relations amongst the tautological

classes in H∗(SUC(r, L),Z) and in H∗(MC(r, 0),Z). We show the following:

Theorem 0.0.1 Let r be any positive integer and let L be a degree 0 line bundle

over C of genus 1. Then W 0
r,L(∃) is a divisor inside SUC(r, L). Moreover, in

H∗(SUC(r, L),Z), we have

[W i
r,L(∃)] = [W 0

r,L(∃)]i+1,

for all 0 ≤ i ≤ r− 2 and the tautological algebra of SUC(r, L) is Z[ζ]/〈ζr〉, where

ζ is the cohomology class of W 0
r,L(∃) in H∗(SUC(r, L),Z).

Moreover the determinant morphism det : MC(r, 0)→ J(C) is a projective bun-

dle (cf. [Tu, p. 12]) and we use projective bundle formula to obtain the structure

of the tautological algebra of the cohomology ring ofMC(r, 0). In particular, we

prove the following:

Theorem 0.0.2 The tautological algebra of MC(r, 0) is

H∗(C)⊗ Z[ξ]/〈ξr〉.
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Here ξ is the cohomology class of the divisor W 0
r,0(∃) on MC(r, 0) in the coho-

mology ring H∗(MC(r, 0),Z).

4 Tautological algebra of the moduli space of semistable

bundles of rank two on a general curve of genus greater than

one

In this section, we discuss the outline of a joint work with C. Gangopadhyay and

J. N. N Iyer. We consider the tautological algebra of the (rational) cohomology

ring of the moduli space of semistable bundles over curve of genus greater than

one. From now onwards, we are under rank 2 and degree 2g − 2 case. Let P

be a Prym variety associated to a spectral curve π : C̃ → C. We first prove

the following theorem using [Bi, Corollary 5.3] as there exists an isogeny from

J(C)× P to J(C̃).

Theorem 0.0.3 The cohomology class of a Brill-Noether locus on the Jacobian

J(C̃) of a general 2-sheeted spectral curve π : C̃ → C can be expressed as a sum

of the powers of the divisor classes. In particular, the tautological algebra is

generated by the divisor classes.

The key idea is to relate the Brill-Noether loci on the moduli space with the

Brill-Noether loci on the Jacobian variety of a general spectral curve. We utilise

the rational map obtained in [Be-Na-Ra] from the Jacobian of a general spectral

curve C̃ to the moduli space MC(2, 2(g − 1)). Explicitly we get the following

rational map:

π∗ : J4(g−1)(C̃) 99KMC(2, 2(g − 1)). (4)

We use a finite regular dominant morphism corresponding to (4) and Theorem

0.0.3 to prove the following theorem (cf. [Ga-Iy-Mk]):

Theorem 0.0.4 Suppose C is a general smooth projective curve of genus g,

and g ≥ 2. The cohomology class of a Brill-Noether locus on the moduli space

MC(2, 2(g − 1)) can be expressed as a polynomial on the divisor classes.

Similarly, in the moduli space SUC(2, L) with deg L = 2(g − 1), we obtain the

following corollary:
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Corollary 0.0.5 1. The cohomology class of a Brill-Noether locus W̃ r,L
2,2(g−1) in

the moduli space SUC(2, L) is expressible in terms of a power of the class

of the Theta divisor, with rational coefficients.

2. If the Brill-Noether number is non-negative, then the cohomology classes

are non-trivial and imply the non-emptiness of the corresponding loci.

It is likely that the Hodge conjecture holds for the Jacobian of a higher degree

general spectral curve (cf. [Ar] for unramified coverings). The proofs employed

in Theorem 0.0.4 will then be applicable also for higher rank moduli spaces. The

proofs raise further questions whether a Castelnuovo type formula holds or not

on the moduli space, for a general curve C.
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Conventions and Notations

We denote by C (respectively R) the field of complex numbers (respectively real

numbers). The ring of integers is denoted by Z and a set of non-negative integers

is denoted by N.

Given a complex number z, by Im(z) we denote its imaginary part. A fixed

square root of −1 is denoted by ı. For a morphism f , we denote its image by

Im(f). Given a space M , the identity morphism of M is denoted by IdM or

simply by Id whenever no confusion is likely to occur.

Let R be a commutative ring with unity. By Spec(R) we denote the spectrum

of the ring R consisting of all prime ideals of R equipped with the structure of

a locally ringed space. Given any two positive integers m and n, the set of all

m× n matrices with entries from the ring R is denoted by Mm×n(R). The same

is denoted by Mn(R) whenever m = n. The subgroups of Mn(R) consisting of all

invertible matrices is denoted by GLn(R). By Idn we denote the identity element

of Mn(R). By PGLn(R) we denote the quotient GLn(R)
{λ·Idn |λ∈R} . As the spaces GLn(R)

and PGLn(R) occur frequently, we use the notations GLn and PGLn respectively

whenever there is no confusion.

All the varieties are taken over C. The singular locus of a variety X is denoted

by Sing X. We set the notation dim X to denote the dimension of a variety X.

By C we denote a smooth projective curve of genus g. We denote an elliptic curve

by E to differentiate it from higher genus curves, whenever needed. For a vector

bundle V over a space M , its rank and degree are denoted by rank V and deg V

respectively. For a non-negative integer n, by ∧nV we denote the n-th exterior

power of the vector bundle V .

If C is a (locally small) category, and if X and Y are objects in C, then the

set of morphisms from X into Y is denoted by Hom(X, Y ). If X = Y , then the

same set is denoted by End(X). By Ext1(X, Y ) we denote the collection of all

extensions of Y by X.

We preserve the notation lim
−→
i∈I

Ai to denote the direct limit of Ai’s, where i

varies over an directed indexing set I.





Introduction

In this thesis we study two problems on the tautological algebra, that is, the alge-

bra generated by cohomology classes of Brill-Noether loci inside the cohomology

ring of moduli space of semistable bundles over curve. The first problem is re-

garding the complete description of the tautological algebra over elliptic curve.

The other problem concerns about a similar description in rank 2 case over curve

having genus greater than equals to 2.

The thesis consists of five chapters. The first three chapters are devoted to

a detailed study of the topics in algebraic geometry that are relevant for our

purpose and hopefully reflects our attempt to make this thesis self-content as far

as possible.

In the Chapter 1, some basic algebraic geometry like Riemann-Roch theorem,

Serre duality, Jacobian variety, symmetric product etc. that are relevant for our

purpose have been discussed. We mainly recall Hodge structure, mixed Hodge

structure, Chow groups, operational Chow groups and cycle class map in Chapter

2. Chapter 3 deals with the moduli spaces in general followed by the moduli spaces

of stable and semistable vector bundles over curve.

Tautological algebra of the moduli space of semistable bundles over an

elliptic curve

In Chapter 4, we describe the algebra generated by the cohomology classes of

certain Brill-Noether subvarieties of the moduli space of semistable bundles over

a curve C of genus 1, that is, over an elliptic curve. L. Tu proved that the Brill-

Noether loci are trivial for positive degree vector bundles (either empty or the

whole moduli space), and for line bundles of degree 0 (either empty or singleton)

(cf. [Tu, Lemma 17 & p. 13 below Lemma 17]). Therefore, we consider the Brill-

Noether loci when degree of a vector bundle is 0 and the rank is more than 1. Let

L be a line bundle of degree 0 and let i be any non-negative integer. L. Tu de-

3



4 Introduction

fined Brill-Noether loci W i
r,L(∃) and W i

r,0(∃) in the moduli spaces SUC(r, L) and

MC(r, 0) respectively (cf. [Tu, p. 4 & 5]). We denote the cohomology class of

W i
r,L(∃) in H∗(SUC(r, L),Z) by [W i

r,L(∃)]. This class is also called a tautological

class and algebra generated by these classes [W i
r,L(∃)] for varying i is called tauto-

logical algebra of H∗(SUC(r, L),Z). We define tautological class and tautological

algebra of H∗(MC(r, 0),Z) similarly. In Subsection 4.3.2, we prove the main

theorems on the relations amongst the tautological classes in H∗(SUC(r, L),Z)

and in H∗(MC(r, 0),Z). We show that the Brill-Noether subvariety W 0
r,L(∃) is

a divisor inside SUC(r, L). Moreover, in H∗(SUC(r, L),Z) we obtain Poincaré

like relations [W i
r,L(∃)] = [W 0

r,L(∃)]i+1 for all 0 ≤ i ≤ r − 2. Moreover, denot-

ing the cohomology class of W 0
r,L(∃) in H∗(SUC(r, L),Z) by ζ, we show that the

tautological algebra of SUC(r, L) is Z[ζ]/〈ζr〉.

Furthermore as the determinant morphism det : MC(r, 0) → J(C) is a pro-

jective bundle (cf. [Tu, p. 12]), we use projective bundle formula to obtain the

structure of the tautological algebra of the cohomology ring of MC(r, 0).

Tautological algebra of the moduli space of semistable bundles of rank

two on a general curve of genus greater than one

In Chapter 5, we consider the tautological algebra of the (rational) cohomology

ring of the moduli space of semistable bundles over curve of genus greater than

one. In that sense, this problem is a natural successor of the problem described in

previous chapter. In this chapter, we are under rank 2 and degree d = 2g−2 case.

We use [Bi, Corollary 5.3] to prove that the cohomology class of a Brill-Noether

locus on the Jacobian J(C̃) of a general 2-sheeted spectral curve π : C̃ → C can

be expressed as a sum of the powers of the divisor classes. In particular, the

tautological algebra is generated by the divisor classes.

The key idea is to relate the Brill-Noether loci on the moduli space with

the Brill-Noether loci on the Jacobian variety of a general spectral curve. We

utilise the rational map obtained in [Be-Na-Ra] from the Jacobian of a general

spectral curve C̃ to the moduli space MC(2, 2(g − 1)). We use a finite regular

dominant morphism corresponding to this rational map and in Section 5.5 we

show that when C is a general smooth projective curve of genus g ≥ 2 then the

cohomology class of a Brill-Noether locus on the moduli space MC(2, 2(g − 1))

can be expressed as a polynomial on the divisor classes.

Similarly, in the moduli space SUC(2, L) with deg L = 2(g − 1), we obtain
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that the cohomology class of a Brill-Noether locus W̃ r,L
2,2(g−1) in the moduli space

SUC(2, L) is expressible in terms of a power of the class of the Theta divisor,

with rational coefficients. Moreover, we show that if the Brill-Noether number

is non-negative, then the cohomology classes are non-trivial and imply the non-

emptiness of the corresponding loci. The proofs employed in these results will

then also be applicable for higher rank moduli spaces. The proofs raise further

questions whether a Castelnuovo type formula holds on the moduli space or not,

for a general curve C.

A more detailed introduction to the thesis, including precise definitions, results

and statements of the theorems, is given in the synopsis (p. i).





Chapter 1

Preliminaries

In this chapter, we go through a few basics of algebraic geometry that are relevant

for our purpose.

We thoroughly discuss about the sheaf cohomology, relations between vector

bundles and locally free sheaves and that between line bundles and divisors. The

Riemann-Roch theorem, Serre duality have been discussed in case of curves. We

also deal with abelian variety in general and Jacobian variety of a curve. In

the process we raise the question whether all abelian varieties can be realised

as Jacobian varieties or not. We answer this question affirmatively in case of

an elliptic curve and mention that we get negative answer in general. We also

spend some time on the symmetric product of curve and Abel-Jacobi map, both

analytically and algebraically.

1.1 Sheaves and Cohomology

In this section, we quickly go through a few examples of sheaves. Followed by that,

sheaf cohomology is described as derived functor cohomology and then compared

with Čech cohomology as well.

1.1.1 Sheaves

Let M be a complex manifold. Then we define the sheaves O, O∗, M, M∗, Ωp ,

Z by,

� O(U) := the additive group of holomorphic functions on U ,

7



8 §1.1. Sheaves and Cohomology

� O∗(U) := the multiplicative group of non-zero holomorphic functions on U ,

� M(U) := the additive group of meromorphic functions on U ,

� M∗(U) := the multiplicative group of meromorphic functions on U that are

not identically zero,

� Ωp(U) := the group of holomorphic p-forms on U ,

� Z(U) := the group of locally constant Z-valued functions on U ,

where U is an open subset of M . Sometimes in these notations of sheaves, M

is used in the subscript especially when we need to emphasize about the base

space involved. For example, often we use the notations OM and O∗M instead of

O and O∗ respectively. Also the notation OM help us to differentiate the sheaf

of additive group of holomorphic functions on M from the notation O which we

use to relate a line bundle of a given divisor (cf. Section 1.3).

For a variety X, the ring of its regular functions is denoted by k[X]. Alterna-

tively k[X] is also denoted by OX(X). Here OX is a sheaf, called the structure

sheaf of X and by OX(U) we mean the ring of regular functions on an open

subset U of X.

Let us define skyscraper sheaf of x ∈ X, denoted by Cx, as follows:

Cx(U) :=

{
C if x ∈ U ;

0 otherwise.

Remark 1.1.1 For a given sheaf F over a topological space X, we denote the

stalk of F at a point x ∈ X by Fx. By support Supp F of a sheaf F we mean

the set {x ∈ X | Fx 6= 0}. Therefore, Supp Cx = {x}.

Now consider the following map on C− {0} :

exp: O → O∗

f 7→ e2πıf .

It can then be noted that when M is a complex manifold, the following se-

quence

0 // Z i // O exp // O∗ // 0 (1.1)



§1.1. Sheaves and Cohomology 9

is an exact sequence of sheaves and is known as exponential exact sequence. We

will again come across this while defining the Chern class of a line bundle.

It is easy to observe that any sheaf can be naturally restricted to an open

subset to obtain a new sheaf. We denote by F|U the restriction sheaf of F to the

open subset U of X and is defined as follows:

F|U(V ) := F(V ),

where V ⊆ U is any open subset. The restriction sheaf OX |U of the structure

sheaf of a variety X is often simply denoted by OU .

Definition 1.1.2 A sheaf F on a topological space X is said to be a locally free

sheaf of finite rank n if for any x ∈ X, there exists an open neighbourhood U of

X such that

F|U ∼= O⊕nU ,

as OX modules.

Remark 1.1.3 From now onwards, by a locally free sheaf we mean a locally free

sheaf of finite rank. A locally free sheaf of rank 1 is called an invertible sheaf.

1.1.2 The sheaf cohomology as a derived functor coho-

mology and Čech cohomology

The motivation for studying cohomology theory can be described in many ways.

One of the ways arises from the observation that the global section functor is only

left exact. Let us describe this precisely.

Let us denote by Γ(X,F) the set F(X) of all global sections of the sheaf F
over X. So, Γ(X, ·) is a functor from the category of sheaves to the category of

abelian groups, known as a global section functor and this covariant functor is

not exact in general. In this context, let us give an example.

Let OP1(n) denote the standard twisting sheaf over P1. Consider the following

exact sequence:

0 // OP1(−2)
·x0x1 // OP1

(ev[1:0],ev[0:1]) // C[1:0] ⊕ C[0:1]
// 0. (1.2)

Here ·x0x1 : OP1(−2) → OP1 denotes the multiplication map by the monomial
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x0x1. By ev[1:0] : OP1 → C[1:0] and ev[0:1] : OP1 → C[0:1] we denote the evaluation

maps at the point [1 : 0] and [0 : 1] respectively. We have Γ(P1,OP1(−2)) = 0

as the invertible sheaf OP1(−2) has negative degree and Γ(P1,OP1) = C as the

only global holomorphic maps from the projective line P1 to C are constants.

Applying global section functor to (1.2), we obtain the following:

0 // Γ(P1,OP1(−2)) // Γ(P1,OP1) // C⊕ C. (1.3)

Therefore the map Γ(P1,OP1) to C⊕ C in (1.3) is the standard map

C→ C⊕ C

z 7→ (z, z),

which is not surjective. As a result, we loose exactness while passing from (1.2)

to (1.3).

Remark 1.1.4 When X is an affine variety, the global section functor is exact.

One can refer to [Ha, Chapter III, Theorem 3.5], [Gr 1] and [Gr 2] for more

general results.

Let us denote the category of sheaves ofOX modules byMod(X) and category

of abelian groups by Ab. By [Ha, Chapter III, Proposition 2.2], we note that

Mod(X) has enough injectives. Recall that we already noted that the global

section functor Γ(X, ·) from the category Mod(X) to the category Ab is only

left exact. The cohomology functors, denoted by H i(X, ·), is defined as the right

derived functors of Γ(X, ·). For any F ∈ Mod(X), the groups H i(X,F) are

called the cohomology groups of F . Thus the cohomology of sheaves is defined as

a derived functor cohomology.

Remark 1.1.5 1. By [Ha, Chapter III, Theorem 1.1A], it can be noted that

Γ(X,F) = H0(X,F). This also justifies the reason behind two notations

of the collection of all global sections of a sheaf as in Remark 1.2.3.

2. Given a short exact sequence of sheaves

0 // E // F // G // 0,

we obtain the following long exact sequence at the cohomology level as
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follows:

0 // H0(X, E) // H0(X,F) // H0(X,G) // H1(X, E) // · · ·

This phenomenon is an intrinsic property of right derived functor (cf. [Ha,

Chapter III, Theorem 1.1A]) and is of utmost importance for our purpose.

Let us denote the i-th Čech cohomology group of F with respect to the covering

U by Ȟ i(U ,F). The i-th Čech cohomology group of F , denoted by Ȟ i(X,F), is

then defined as follows:

Ȟ i(X,F) := lim
−→
U

Ȟ i(U ,F).

Moreover, at level one, we have the following isomorphism between Čech coho-

mology and the sheaf cohomology for any abelian sheaf F on X (cf. [Ha, p. 223]):

Ȟ1(X,F) ∼= H1(X,F).

Remark 1.1.6 1. If we choose X to be a Noetherian and separated scheme,

the cover U to be affine and the sheaf F to be quasi coherent, we have the

equality of two cohomology theories (cf. [Ha, Chapter III, p. 225]). That is

to say, a large number of spaces are there for which these two cohomology

theories coincide.

2. Let M be a differentiable manifold. Let us denote the singular cohomology

and de Rham cohomology with coefficients from the constant sheaf R by

H∗sing(M,R) and H∗DR(M,R) respectively. Denoting H∗DR(M,R) ⊗ C by

H∗DR(M), we have the following isomorphisms (cf. [Gf-Hr 2, p. 43 & p. 44]):

H∗sing(M,R) ∼= H∗DR(M) ∼= Ȟ i(M,R).

This allows us to use these cohomology theories interchangeably.
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1.2 Locally free sheaves and vector bundles

In this section we recall the notion of holomorphic vector bundle. Also the con-

nection between locally free sheaves and vector bundles has been discussed.

Let M be a given differentiable manifold and E a C∞ complex vector bundle

over M . Let π : E → M be the usual projection map. For every x0 ∈ M , there

exists an open set Ux0 in M , we have the diffeomorphisms

ϕUx0 : π−1(Ux0)→ Ux0 × Cn. (1.4)

The C-vector spaces Ex := π−1{x} are called fibers of E over x.

Remark 1.2.1 1. The diffeomorphisms ϕUx0 as in (1.4) are called a trivial-

isations of E over U . It is easily noted from (1.4) that for any two such

trivialisations ϕU and ϕV , the map

gUV : U ∩ V → GLn(C)

x 7→ (ϕU ◦ ϕ−1
V )|{x}×Cn

(1.5)

is C∞. The maps gUV are called transition functions for E corresponding

to ϕU and ϕV .

2. The transition functions clearly satisfy the following two properties, known

as cocycle conditions :

(a) gUV (x) · gV U(x) = Idn for all x ∈ U ∩ V .

(b) gUV (x) · gVW (x) · gWU(x) = Idn for all x ∈ U ∩ V ∩W .

Definition 1.2.2 Let E → M be a C∞ complex vector bundle and U be an

open set of M . A section over U is a C∞ map s : U → E such that for all x ∈ U ,

s(x) ∈ Ex. A section over M is called a global section.

Remark 1.2.3 The space of global sections of a vector bundle E over M is

denoted by Γ(M,E) or by H0(M,E). In short, we use the notations Γ(E) and

H0(E) instead of Γ(M,E) and H0(M,E) respectively, when the underlying space

involved is clear from the context. Also, sometimes the notation Γ(M) is used

for the same, if there is no confusion regarding the bundle involved. So, for an
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open subset U of M , the space of all sections over U is denoted by Γ(U). Then

following this notation, Γ can be interpreted as a sheaf.

Clearly, the definitions of vector bundles and sections suggest that these can

be defined in many other categories by taking the morphisms involved in these

definitions suitable for that particular category. Throughout we are going to work

on holomorphic category and so let’s just precisely define vector bundles in this

category.

Definition 1.2.4 A complex vector bundle π : E →M over a complex manifold

M is said to be a holomorphic vector bundle if E gets equipped with the structure

of a complex manifold such that for any x ∈M , there exists a open set Ux in M

with x ∈ Ux and a trivialization

ϕUx0 : π−1(Ux0)→ Ux0 × Cn

that is a biholomorphic map.

So transition functions, sections etc. involved with any such holomorphic vector

bundle are holomorphic maps. From now onwards, by vector bundles we would

mean a holomorphic vector bundle and everything related should be considered

in holomorphic category only unless otherwise specified.

Let X be a smooth projective variety over C. It can be noted that Γ is sheaf

of modules over the sheaf of rings OX . Indeed, for any open subset U of X for

which there exists a trivialization, we have:

Γ(U)→ π−1(U) ∼= U × Cn

x 7→ (x, f1(x), . . . , fn(x)),

fi : U → C being regular functions. That is to say, on sufficiently smaller open

set U ,

Γ(U) ∼= O⊕nX .

So, Γ is a locally free sheaf of OX modules. In fact, the converse is also true. In

this regard, let’s state the following theorem.

Theorem 1.2.5 [Sh, Theorem 6.2] Let V ectX(n) denote the set of all vector bun-

dles over X of rank n modulo bundle isomorphism. Also, by LocX(n) let us denote
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the set of all locally free sheaves of rank n over X upto sheaf isomorphism. Then

we have the following one-one correspondence between V ectX(n) and LocX(n):

V ectX(n)→ LocX(n)

E 7→ Γ(E).

1.3 Line bundles and divisors

In the preceding section we observed that upto isomorphism vector bundles and

locally free sheaves of same rank can be identified. Therefore there is a one-one

correspondence between invertible sheaves over X and line bundles on X upto

isomorphism. In this section, we go through sheaf theoretic interpretation of line

bundles and divisors and connection between them.

Let π : L → X be a holomorphic line bundle, that is a rank 1 vector bundle

over X. Let {Uα, ϕα} be a set of trivializations. Corresponding to these trivial-

izations, we have transition functions gUαUβ : Uα ∩Uβ → GL1(C) = C∗ as defined

in (1.5) of Remark 1.2.1, but in the category of holomorphic line bundles. Let us

denote gUαUβ simply by gαβ. They satisfy the following cocycle conditions as in

Remark 1.2.1:

gαβ(x) · gβα(x) = Id1 = 1 for all x ∈ Uα ∩ Uβ,

gαβ(x) · gβγ(x) · gγα(x) = Id1 = 1 for all x ∈ Uα ∩ Uβ ∩ Uγ.
(1.6)

Moreover, these transition functions {gαβ ∈ O∗(Uα ∩Uβ)} defines the line bundle

L uniquely.

This naturally leads us to a sheaf-theoretic description of line bundle. For a

given line bundle L → X, its transition functions {gαβ ∈ O∗(Uα ∩ Uβ)} can be

regarded as the representation of a Čech 1-cochain on X having coefficients from

the sheaf O∗. Moreover, (1.6) depicts that {gαβ} is in fact a Čech cocycle.

For the given line bundle L → X and the same open cover {Uα}, we can

define another set of trivializations {ψα} as follows:

ψα = fαϕα,

where fα is any non-zero holomorphic function for all α. Corresponding to these

newly given trivializations {ψα}, we have a new set of transition functions {hαβ}
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as well and they are related to the old ones through the following relations:

hαβ =
fα
fβ
· gαβ. (1.7)

Therefore we can conclude similarly that {hαβ} is a Čech cocycle. Something

more can be said in context of relating the Čech cocycles {gαβ} and {hαβ}. That

is to say, the cocycles {gαβ} and {hαβ} give same line bundle if and only if

{gαβ · h−1
αβ} is a Čech coboundary. Hence H1(X,O∗) is the set of all line bundles

on X (cf. [We, Lemma 4.4]). Also for given two line bundles L1 and L2 with

{g1
αβ} and {g2

αβ} respectively, {g1
αβ · g2

αβ} and {g1
αβ
−1} give the bundles L1 ⊗ L2

and L∗1 respectively. As a result, H1(X,O∗) naturally gets equipped with a group

structure and is called the Picard group of X, denoted by Pic(X).

Definition 1.3.1 By an analytic hypersurface we mean an analytic subvariety

V of X of codimension 1 in X, that is around any of its point, V is given by a

single holomorphic function.

Definition 1.3.2 By a divisor D on X, we mean a locally finite formal linear

combination of irreducible analytic hypersurfaces Vi of X of the form D =
∑
aiVi.

Remark 1.3.3 1. From now on, we simply call an analytic hypersurface by

hypersurface.

2. The sum in the expression D =
∑
aiVi of Definition 1.3.2 is finite whenever

compactness of X is assumed. In that case, by degree of a divisor we simply

mean the integer
∑

i ai.

3. The set of all divisors on X is naturally an additive group and is denoted

by Div(X). On compact X, Div(X) can therefore be interpreted as free

abelian group generated by codimension 1 irreducible subvarieties of X.

Moreover when X is a curve, that is of dimension 1, a divisor D on X looks

like D =
∑n

i=1 aipi for some closed points pi of X.

4. A divisor D =
∑
aiVi is said to be effective if ai ≥ 0 for all i. We use the

notation D ≥ 0 for such a divisor.

Let us go through the notion of order of a holomorphic function at a point of a

hypersurface. Suppose V is an irreducible hypersurface of X. Let f be a local
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defining function for V near a point x ∈ X. For any other holomorphic function g

that is defined near x, by the order of g along V at x we mean the largest integer

a such that the equation g = fa · h is satisfied in the local ring OX,x. A priori

this definition is very much dependent on the point x, but [Gf-Hr 2, Proposition,

p. 10] says that it is not so. Thus, the integer a can now be called the order of g

along V and is denoted by ordV (g).

This definition leads us to the sheaf theoretic description of divisors. A global

section f of the quotient sheaf M
∗

O∗ can be given by an open cover {Uα} and

meromorphic functions fα that are not identically zero on Uα with fα
fβ
∈ O∗(Uα ∩

Uβ) so that for any hypersurface V of X,

ordV (fα) = ordV (fβ).

Then the divisor D =
∑

V ordV (fα) · V can be associated to the given global

section f . Here for each such V , α’s are chosen with the property V ∩ Uα 6= ∅.
Thus given a global section f of the sheaf M

∗

O∗ , we obtain a divisor. In fact, the

converse is also true. Let D =
∑

Vi
aiVi be a divisor on X. a open cover {Uα} of

X can be so chosen that in each Uα, every Vi appearing in D locally given by the

functions giα ∈ O(Uα). Then fα =
∏

i g
ai
iα ∈ M∗(Uα) gives us a global section of

M∗
O∗ . As a result, we obtain the following identification:

Div(X) = H0
(
X, M

∗

O∗
)
. (1.8)

Remark 1.3.4 Any element of H0
(
X, M

∗

O∗
)

is often called Cartier divisor. On

the other hand, any element of Div(X) is called Weil divisor. Then (1.8) suggests

that those two types of apparently different divisors are same in our case. It can

be noted that they are not same in general. For more details about the conditions

on X under which these two notions coincide, one can refer to [Ha, Chapter II,

Proposition 6.11].

Now we are in a stage to relate Div(X) and Pic(X). Let D be a divisor on X.

Let {fα} be the local defining functions over some open cover {Uα} of X. Then

on Uα∩Uβ, the functions gαβ defined by gαβ := fα
fβ

are holomorphic and non-zero.
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Moreover they satisfy cocycle conditions, that is on Uα ∩ Uβ ∩ Uγ, we have:

gαβ · gβγ · gγα =
fα
fβ
· fβ
fγ
· fγ
fα

= 1.

The unique line bundle given by these transition functions {gαβ} is called the

associated line bundle of D and is denoted by O(D). This definition, though a

priori depends upon the chosen local defining equation of D, is actually indepen-

dent of local data and hence makes sense.

We now go through the reverse construction. Recall that, we have defined

ordV (f) is defined for a holomorphic function f on X. This definition can be

extended to meromorphic functions as well. Let l be a meromorphic function on

X, locally expressed as g
h
, quotient of two holomorphic maps. For an irreducible

hypersurface V of M , we define:

ordV (l) = ordV (g)− ordV (h). (1.9)

We denote the divisor of a meromorphic function l by (l) and define by

(l) =
∑
V

ordV (l) · V. (1.10)

Without loss of generality, if we assume that the g and h are relatively prime in

the local expression of l, then Definition 1.10 can be checked to be well defined.

Given a line bundle L and for any meromorphic section s of L, we have (cf.

[Gf-Hr 2, p. 136]):

L = O((s)), (1.11)

(s) being defined similarly as (1.10). Thus we have the following maps:

ϕ : Div(X)→ Pic(X)

D 7→ O(D).
(1.12)

This is the first instance of Abel-Jacobi map. We discuss this map in details in

Section 1.6 and 1.7. Also for any global meromorphic section s of L which is not
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identically zero, we have:

χ : Pic(X)→ Div(X)

L 7→ (s).
(1.13)

Then (1.11) basically says that ϕ◦χ = Id. We immediately ask whether χ◦ϕ = Id

holds or not. Unfortunately, it doesn’t hold. That is to say the map ϕ has a non-

trivial kernel. Let us find out the details about this kernel.

Suppose D be a divisor on X given by a meromorphic function f on X, that

is, D = (f). Then any open cover {Uα} of X and fα := f |Uα can be considered as

a local data for D and we therefore have fα
fβ

= 1. As a result, these as transition

functions gives us the trivial line bundle O(D). Conversely, if O(D) is the trivial

line bundle with local data {fα}, then there exists hα ∈ O∗(Uα) satisfying

fα
fβ

= gαβ =
hα
hβ
.

Then f defined by f := fαh
−1
α = fβh

−1
β is a global meromorphic function on X

with divisor D. In short, we have the following proposition.

Proposition 1.3.5 The line bundle O(D), associated to a divisor D on X, is

trivial if and only if D = (f) for some meromorphic function f .

Thus Proposition 1.3.5 leads us to the notion of linear equivalence of divisors very

naturally.

Definition 1.3.6 Two divisors D1 and D2 on X are said to be linearly equivalent,

denoted by D1 ∼ D2, if for some f ∈M∗(X), D1 = D2 + (f).

Remark 1.3.7 1. Definition 1.3.6 says, two divisors D1 and D2 on X are

linearly equivalent if O(D1) = O(D1), that is, if they lie in the same fiber

of the map ϕ : Div(X)→ Pic(X) as defined in (1.12).

2. The map ϕ : Div(X) → Pic(X) as defined in (1.12) is a group homomor-

phism as we have the following:

O(D1 +D2) = O(D1)⊗O(D2),

for any two divisors D1 and D2 on X.
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3. Let PDiv(X) denote the subgroup of Div(X) consisting of all principal divi-

sors, that is, divisors of meromorphic functions. Then Ker(ϕ) = PDiv(X).

That is to say, ϕ is the inverse of χ when we go modulo PDiv(X). As a

result,
Div(X)

PDiv(X)
∼= Pic(X). (1.14)

So, we now can summarize by stating the following proposition (cf. [Sh, Theorem

6.3]).

Proposition 1.3.8 The group of divisors on X upto linear equivalence is same

as the group of line bundles over X upto isomorphism.

This allows us to swap the notions of divisors, line bundles and invertible

sheaves on X interchangeably. By this correspondence, we can immediately define

the degree of a line bundle over a compact Riemann surface X as the order of any

associated divisor. Therefore degree of a line bundle makes sense As degree of a

principal divisor is zero (cf. [Ha, Chapter II, Corollary 6.10]), any two linearly

equivalent divisors have same degree. As a result, the notion of degree of a line

bundle is well defined. Moreover, by (1.14), we can conclude that two isomorphic

line bundles have same degree as well. That is to say, though by definition degree

can be thought of as a homomorphism deg : Div(X) → Z, it actually descends

down to Div(X)
PDiv(X)

and Pic(X) as well.

Denoting by Divd(X) ⊆ Div(X) and Picd(X) ⊆ Pic(X) the set of all degree d

divisors and the set of all degree d line bundles (upto isomorphism) respectively,

we have the following stratifications:

Div(X) =
⋃
d∈Z

Divd(X),

Pic(X) =
⋃
d∈Z

Picd(X).

We come across this stratifications in in Section 1.6 and 1.7 and reconsider the

maps as in (1.12) and (1.13) by restricting them to these stratifications. Also we

prove that Pic0(C) is isomorphic to the Jacobian variety J(C) of a curve C (cf.

Theorem 1.6.8). Therefore we are going to use these two notations interchange-

ably. Extending this notation, we also use the notation Jd(C) instead of Picd(C)

in coming sections.
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Let’s now find out that what extra property a line bundle must posses when

it corresponds to an effective divisor. For any global meromorphic section s

of L which is not identically zero, the divisor (s) is effective if s is actually a

holomorphic section. Therefore, L is a line bundle associated to an effective

divisor if and only if L has a non-trivial global holomorphic section, that is,

H0(X,L) 6= 0.

Given a divisor D on X, let L(D) be defined as follows:

L(D) := {f | f is meromorphic function on X and D + (f) ≥ 0} .

Then L(D) can be identified with a known space as follows. Let us define |D| ⊆
Div(M) as the set of all effective divisors that are linearly equivalent to D. By |L|
we mean |D| for a line bundle L over X with L = O(D). Assume that D = (s0)

for some global meromorphic function s0 of the line bundle O(D). Then for an

arbitrary global holomorphic section s of O(D), we have(
s

s0

)
+D = (s)− (s0) +D ≥ 0.

That is to say, s
s0
∈ L(D) and (s) ∈ |D|. Conversely, given any f ∈ L(D),

(f · s0) = (f) + (s0) = (f) + D ≥ 0 and hence f · s0 is a global section of O(D).

This leads us to the following natural identification:

L(D) ∼= H0(X,O(D)). (1.15)

This identification therefore relates the space L(D) with the line bundle O(D).

Moreover we relate both of them with |D|. It can be readily observed that given

any D1 ∈ |D|, there exists f ∈ L(D) satisfying

D1 = D + (f).

. Also as divisors of two meromorphic functions differing by a non-zero scalar

multiple are the same, we have:

|D| = P(L(D)). (1.16)

We now have the following definition which is very useful for our purpose.
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Definition 1.3.9 A linear system on X is a family of effective divisors corre-

sponding to a linear subspace V of P(H0(X,O(D))). Moreover, it is called a

complete linear system if V = P(H0(X,O(D))).

Remark 1.3.10 By (1.15) and (1.16) we can conclude that, given any divisor D

on X, |D| is a complete linear system.

We have described both Pic(X) and Div(X) sheaf theoretically. So it is nat-

ural to think whether the maps as in (1.12) and (1.13) also have an analogous

sheaf-theoretic description or not. We end this section by answering this affirma-

tively.

Consider the following short exact sequence of sheaves on X:

0 // O∗ i //M∗ j //M
∗

O∗
// 0. (1.17)

We then have the following exact sequence at cohomology level corresponding to

(1.17):

H0(X,M∗)
j∗ // H0

(
X, M

∗

O∗
) δ // H1(X,O∗). (1.18)

It can be checked that the map j∗ and the connecting homomorphism δ are given

as follows once we identify Div(X) as H0
(
X, M

∗

O∗
)

and Pic(X) as H1(X,O∗):

j∗ : H0(X,M∗)→ H0
(
X, M

∗

O∗
)

f 7→ (f),

δ : H0
(
X, M

∗

O∗
)
→ H1(X,O∗)

D 7→ O(D).

So the exactness of (1.18) simply depicts the isomorphism as in (1.14) in a sheaf

theoretic approach.

1.4 Riemann-Roch theorem and Serre duality

for curve

The Riemann-Roch theorem and Serre duality are one of the most significant

results in algebraic geometry. Initially Riemann proved an inequality, called Rie-
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mann’s Inequality, in the year 1957. Then it got its present form after a work of

Roch, a student of Riemann, in the year 1965. Then it was proved for Riemann

surfaces. Later the result was proved for algebraic varieties. In this section we

state the theorem over curve. We also state the Serre duality on the way.

Let X be a smooth projective curve over complex numbers and let E be

a vector bundle over X. By abuse of notation, we denote the locally free sheaf

corresponding to the vector bundle E again by E. Let us denote the dimension of

the C-vector space H i(X,E) by hi(X,E). The Euler characteristic of E, denoted

by χ(E), is defined as χ(E) := h0(X,E)− h1(X,E).

Let us define a sheaf on X and genus of X as the dimension of the space of

global sections of that sheaf followed by that. By sheaf of differentials ΩX we

mean the sheaf dual to the locally free sheaf TX associated to the tangent bundle

of X. As X is smooth the rank of the sheaf TX , also called as tangent sheaf,

is same as the dimension of X. Also, ΩX is a locally free sheaf of dimension n

(cf. [Ha, Chapter II, Theorem 8.15]). By canonical sheaf we mean the sheaf

∧nΩX , where n is the dimension of the variety X. The canonical sheaf is denoted

by ωX . Let H0(X,ωX) be the C-vector space of global sections of the canonical

sheaf of X, then geometric genus of X, denoted by ggeo, is defined as the complex

dimension of H0(X,ωX). That is to say, we define:

ggeo := h0(X,ωX).

When X is a curve, geometric genus is same as genus and is simply denoted by

g. So, in this case, we have (cf. [Ha, Chapter IV, Proposition 1.1]):

g = ggeo = h0(X,ωX). (1.19)

Let us denote ∧pΩX by Ωp
X or simply by Ωp, when no confusion is likely to occur.

It can be noted that Ωp also can be thought of as the sheaf of holomorphic p-forms

as mentioned in Subsection 1.1.1.

Also by [Ha, Chapter II, Theorem 8.15],

ωX = ∧1ΩX = Ω1
X .

The line bundle associated to the invertible sheaf ωX is called canonical line

bundle and is denoted by KX .
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Serre duality theorem was first proved by Serre. He proved it for abstract

algebraic geometry (cf. [Se 1]) and for a locally free sheaf on a compact complex

manifold (cf. [Se 2]) followed by that. Let us now state Serre duality theorem

without proof (cf. [Ha, Chapter III, Corollary 7.7]).

Theorem 1.4.1 Let X be a smooth projective curve X over complex numbers

and E is a locally free sheaf over X. Then the following isomorphism of C-vector

spaces holds:

H0(X, E∗ ⊗ ωX) ∼= H1(X, E)∗.

Hence, the equality h0(X, E∗ ⊗ ωX) = h1(X, E) holds.

Finally we state the Riemann-Roch theorem for line bundles.

Theorem 1.4.2 Let X be a smooth projective curve over complex numbers of

genus g. Assume L be an invertible sheaf on X of degree d. Then

h0(X,L)− h0(X,L∗ ⊗ ωX) = d+ 1− g.

Remark 1.4.3 1. Taking L to be the canonical sheaf ωX in Theorem 1.4.2,

we have the following equation:

h0(X,ωX)− h0(X,ω∗X ⊗ ωX) = h0(X,ωX)− h1(X,OX) = d+ 1− g.

As a result, we have d = 2g − 2. So, degree of the canonical sheaf over the

curve X of genus g is 2g − 2.

2. When g = 1, we immediately get that degree of ωX is 0. Also from (1.19),

we have h0(X,ωX) = g = 1. Therefore, ωX ∼= OX , that is, in case of elliptic

curve canonical line bundle KX corresponding to the canonical sheaf ωX

becomes trivial.

We end this section by stating Riemann-Roch theorem for any locally free

sheaf on X. This can be proved by induction on the rank of the locally free sheaf

involved, considering Theorem 1.4.2 as a base case for induction.

For a vector bundle E over X of rank n, the determinant line bundle detE of

E is defined to be the line bundle ∧nE. The degree of the bundle E is denoted

by deg E and is defined as the degree of detE, that is, deg E := deg detE.

By degree of a locally free sheaf we mean the degree of the corresponding vector
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bundle. Then the Riemann-Roch theorem for any locally free sheaf on X can be

stated as follows.

Corollary 1.4.4 Let X be a smooth projective curve of genus g over complex

numbers. Assume E be a locally free sheaf on X of rank n and degree d. Then

χ(E) = d+ n(1− g).

1.5 Projective bundle formula

In this part we mainly recall projective bundle formula for a projective bundle

associated to a given vector bundle over any compact oriented C∞ manifold.

In the process we recall the definition of the Chern class of a line bundle and

cohomology class of a variety and some relations between them as well.

Let M be a compact manifold over C of dimension m. Recall thatOM andO∗M
be the sheaf of holomorphic functions and non-vanishing holomorphic functions

on M respectively. Also recall the exponential exact sequence as in (1.1) given

as follows:

0 // Z // OM
exp // O∗M // 0.

Corresponding to this short exact sequence we have a long exact sequence at co-

homology level and therefore the following boundary homomorphism δ as follows.

H1(M,O∗M) δ // H2(M,Z) . (1.20)

We now have the following definitions once we identify Pic(M) with H1(M,O∗M)

(cf. Section 1.3).

Definition 1.5.1 Let L ∈ Pic(M). Then the first Chern class of the line bundle

L, denoted by c1(L), is defined as

c1(L) := δ(L) ∈ H2(M,Z).

So the map in (1.20) is also denoted by

H1(M,O∗M)
c1 // H2(M,Z) . (1.21)
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Definition 1.5.2 The image of the homomorphism as in (1.21), a subgroup of

H2(M,Z), is called Néron-Severi group of M and is denoted by NS(M).

Definition 1.5.3 Let Z be a smooth subvariety of M of codimension p. Then

the cohomology class of Z, denoted by [Z], is an element of H2p(X,Z) and is

defined as

[Z] := i∗1,

where i∗ : H
∗(Z,Z)→ H∗+2p(M,Z) is pushforward map associated to the embed-

ding i : Z ↪→M .

Remark 1.5.4 1. When Z is not smooth then its cohomology class defined

through a resolution of Z. In this case, let Zs be the smooth locus of Z.

Then by a theorem of Hironaka (cf. [Hi]), there exists a smooth variety

Z̃ and a morphism f : Z̃ → Z such that f |f−1(Zs) : f−1(Zs) → Zs is an

isomorphism. Consider the morphism i ◦ f : Z̃ → X. Then the cohomology

class of Z, denoted again by [Z], is defined as

[Z] := (i ◦ f)∗1 ∈ H2p(X,Z).

Moreover, this is well-defined as it is independent of the choice of a resolu-

tion of Z (cf. [Be 2]).

2. Whenever we talk about [Z] as an element of H2p(X,Q), we actually mean

its image via the natural map H2p(X,Z) → H2p(X,Q), irrespective of

smoothness of Z.

Now let D be a divisor on M and L = O(D) be the corresponding line bundle.

Then D being a Z-linear combination of codimension 1 subvarieties of M , [D] ∈
H2(M,Z) by Definition 1.5.3. Also c1(L) is an element of H2(M,Z) by Definition

1.5.1 and (1.20). As L is the line bundle corresponding to the divisor D, it is

natural to ask whether there is any relation between the cohomology class [D]

and the Chern class c1(L). In that regard we have the following Proposition.

Proposition 1.5.5 [Gf-Hr 2, Proposition, p. 141] Let D be any divisor on M .

Then in H2(M,Z) we have the following equality,

[D] = c1(O(D)).
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Let V →M be any vector bundle of rank n over M . Then one can construct

an associated projective bundle whose fiber are projective space of the fiber of

the bundle V . This bundle, denoted by P(V ), is of rank n−1. Let π : P(V )→M

be the usual projection map. Then at cohomology level we have the following

pullback map denoted by π∗.

π∗ : H∗(M,Z)→ H∗(P(V ),Z). (1.22)

Then by (1.22), H∗(P(V ),Z) can be thought of as H∗(M,Z) algebra. Following

theorem depicts this with some more details.

Theorem 1.5.6 [Gf-Hr 2, Proposition, p. 606] For any complex vector bundle

V of rank n over a compact oriented C∞ manifold M , H∗(P(V )) is generated as

an H∗(M) algebra by the Chern class η = c1(T ) satisfying the following equation,

ηn − c1(V )ηn−1 + · · ·+ (−1)ncn(V ) = 0,

T → P(V ) being the tautological line bundle.

1.6 Abelian variety and Jacobian

In this section we recall the definitions and a few basic properties of an abelian

variety and Jacobian variety. Then we discuss that study of a Jacobian variety

is not at all very far away from studying an abelian variety.

By a lattice in a g-dimensional complex vector space V , one means a discrete

subgroup Λ of V of rank 2g, that is, a free abelian group of maximal rank. The

quotient V
Λ

is called a complex torus. For notational simplicity, we denote such

a complex torus by X. As quotienting by a discrete subgroup does not change

the local structure, the complex torus X is a complex manifold of dimension g.

Moreover, it is compact as Λ is a discrete subgroup of V of maximal rank.

Let us recall the notion of a period matrix associated to a complex torus. Let

e1, e2, . . . , eg be a basis of V . Let λ1, λ2, . . . , λ2g be a set of generators of Λ. Then

λj can be written in terms of ej, 1 ≤ j ≤ g, for all 1 ≤ i ≤ 2g as follows.

λi =

g∑
j=1

λjiej, λji ∈ C for all 1 ≤ j ≤ g and 1 ≤ i ≤ 2g.
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The coefficients of these 2g many equations determine a matrix which we denote

by Π.

Π =


λ1,1 λ1,2 · · · λ1,2g

λ2,1 λ2,2 · · · λ2,2g

...
...

. . .
...

λg,1 λg,2 · · · λg,2g

 (1.23)

This g×2g matrix Π with complex entries is called a period matrix of the complex

torus X. Clearly period matrix of any complex torus is not unique as its definition

is based upon the choice of some bases. But definitely it determines a complex

torus. It is natural to ask the following. Given any matrix in Mg×2g(C) whether

one can determine that it is a period matrix of some complex torus or not. In

this regard, we have the following proposition.

Proposition 1.6.1 Let Π be the complex conjugate matrix of a given matrix

Π ∈ Mg×2g(C) and P ∈ M2g(C) be the matrix
(

Π
Π

)
. Then non-singularity of P

implies that Π is a period matrix of a complex torus and vice versa.

Proof.See [La-Bk, Proposition 1.1.2]. Indeed, P ∈ M2g(C) is non-singular if and

only if the columns of the matrix Π are independent over R if and only if if the

columns of the matrix Π span a lattice. �

Remark 1.6.2 The columns Πi :=
(
λ1,i λ2,i ··· λg,i

)t
of the matrix Π are called

periods, for all 1 ≤ i ≤ 2g. Proposition 1.6.1 says that a criteria for a given

matrix Π ∈ Mg×2g(C) to be a period matrix of some complex torus X is that the

the free abelian group Λ defined as Λ := {
∑2g

i=1 niΠi |ni ∈ Z} spanned by the

periods needs to be of maximal rank 2g. Moreover, in that case we have X = Cg
Λ

.

Let us now interpret the first Chern class of a holomorphic line bundle on a

complex torus X in terms of real valued alternating forms and hermitian form

on V . Combining [La-Bk, Proposition 2.1.6] and[La-Bk, Lemma 2.1.7] one can

conclude that the Néron-Severi group NS(X) can be identified with the group of

all hermitian forms H : V × V → C satisfying Im(H(Λ,Λ)) ⊆ Z as well as with

the group of all real valued alternating 2-forms E : V ×V → R with E(Λ,Λ) ⊆ Z
and E(ıv, ıw) = E(v, w) v, w ∈ V .

We are now in a stage to define abelian variety. A line bundle L over a

complex torus X is called a positive definite line bundle or simply a positive

line bundle if the first Chern class c1(L) is a positive definite hermitian form. A
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complex torus that admits a positive line bundle is called an abelian variety. Such

choice of a positive line bundle on an abelian variety is called a polarisation. So

abelian varieties are also called polarised abelian variety. We have the following

proposition due to Riemann which basically says that a complex torus is an

abelian variety if and only if there exists a period matrix which looks simpler.

More precisely,

Proposition 1.6.3 [Gf-Hr 2, Riemann Relations, p. 306] A complex torus

X = V
Λ

is an abelian variety if and only if there exists bases e1, e2, . . . , eg of V

and λ1, λ2, . . . , λ2g of Λ, called simplectic or canonical bases, such that the period

matrix Π takes the form
(
D Z
)
. Here Z is symmetric and Im(Z) is positive

definite and the matrix D ∈ Mg(Z) is given by

D =


δ1

δ2

. . .

δg

 (1.24)

with δi > 0 for all 1 ≤ i ≤ g and δi|δi+1 for all 1 ≤ i ≤ g − 1.

Also, the matrix of Im(c1(L)) takes the form

Im(c1(L)) =
(

0 D
−D 0

)
,

with respect to the canonical bases as in Proposition 1.6.3 and D is the ma-

trix defined in (1.24). The integers δi are called the elementary divisors of the

polarisation L. Moreover, L is called a principal polarisation if δi = 1 for all

1 ≤ i ≤ g.

As any line bundle on the g-dimensional complex vector space V is trivial, any

line bundle L over V
Λ

can be thought of a quotient of the trivial line bundle π∗(L)

where π : V → V
Λ

is the usual quotient map. Therefore when L→ V
Λ

is positive,

one can realise global sections of L as entire functions on V satisfying some

functional equations. Following proposition depicts that the elementary divisors

of the polarisation L determines the size of the space of its global sections.

Proposition 1.6.4 [Gf-Hr 2, Theorem, p. 317] Let L→ V
Λ

be a polarisation and

δ1, . . . , δg be the corresponding elementary divisors. Then
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1. h0(L) =
∏g

i=1 δi.

2. H0(Ln) is base point free for n ≥ 2 and gives an embedding of V
Λ

in some

PN for n ≥ 3.

Remark 1.6.5 Second assertion of the Proposition 1.6.4 is part of a character-

isation of an abelian variety due to Lefschetz (cf. [Le 1] and [Le 2]) which says

that for a complex torus being an abelian variety is same as being an algebraic

variety.

Let C be a smooth projective curve of genus g over complex numbers. Then

one can naturally associate to C an (principally polarised) abelian variety called

the Jacobian variety J(C). The study of abelian variety originated from the

analysis of Jacobian variety though a Jacobian variety is a special case of an

abelian variety. Now we recall the construction and a few properties of a Jacobian

variety and discuss that Jacobian varieties are best known examples of abelian

varieties.

Let H0(C,Ω1) be the complex vector space of holomorphic 1-forms on C

and H1(C,Z) be the first homology group of topological 1-cycles with integer

coefficients. As C is of genus g, H0(C,Ω1) is of complex dimension g and H1(C,Z)

is a free abelian group of rank 2g. The following proposition says that the 1-cycles

of H1(C,Z) can actually be thought as linear forms on the space H0(C,Ω1).

Proposition 1.6.6 The following canonical map

H1(C,Z)→ H0(C,Ω1)∗

λ 7→
(
ω 7→

∫
λ

ω

)
.

(1.25)

is injective.

Proof.See [La-Bk, Lemma 11.1.1]. Indeed, decomposing H1
DR(C)∗ into the holo-

morphic part H0(C,Ω1)∗ and the antiholomorphic part H0(C,Ω1)∗ according to

Hodge decomposition we get that the map in (1.25) is the composition of following

natural maps:

H1(C,Z) ↪→ H1(C,C) = H1
DR(C)∗ = H0(C,Ω1)∗ ⊕H0(C,Ω1)∗ → H0(C,Ω1)∗.
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Then the proof follows from the fact that image of any element of H1(C,Z) in

H1
DR(C)∗ is invariant under complex conjugation. �

As H1(C,Z) ∼= Z2g, let us choose 2g canonical generators of H1(C,Z), say,

λ1, λ2, . . . , λ2g such that

#(λi · λj) =# (λg+i · λg+j) = 0 and #(λi · λg+j) = δij for all 1 ≤ i, j ≤ g,

where #(λi · λj) denotes the intersection number of the cycles λi and λj. Also as

H0(C,Ω1) ∼= Cg, we choose a basis ω1, ω2, . . . , ωg of H0(C,Ω1). Now consider the

following matrix Π ∈ Mg×2g(C):

Π =


∫
λ1
ω1

∫
λ2
ω1 · · ·

∫
λ2g

ω1∫
λ1
ω2

∫
λ2
ω2 · · ·

∫
λ2g

ω2

...
...

. . .
...∫

λ1
ωg

∫
λ2
ωg · · ·

∫
λ2g

ωg

 (1.26)

As the map in (1.25) is injective by Proposition 1.6.6, by abuse of notation we

denote the image (ω 7→
∫
λ
ω) of λ ∈ H1(C,Z) also by λ. So λ, thought as a linear

form on H0(C,Ω1), is then defined as follows:

λ : H0(C,Ω1)→ C

ω 7→
∫
λ

ω.

Therefore λ is completely known if its value on a basis is known, that is, if the

values
∫
λ
ω1,
∫
λ
ω2, . . . ,

∫
λ
ωg are known. In fact, these values are coordinates of λ

with respect to the basis ω∗1, ω
∗
2, . . . , ω

∗
g of H0(C,Ω1)∗, dual of the chosen basis of

H0(C,Ω1), as the following equality holds:

λ =

∫
λ

=

g∑
j=1

(∫
λ

ωi

)
ω∗j .

Therefore by Proposition 1.6.6, columns of the matrix π as in (1.26) span the

lattice Λ = {
∑2g

i=1 niλi |ni ∈ Z}, which in fact is the lattice H1(C,Z). By Propo-

sition 1.6.1, the matrix π as in (1.26) is therefore a period matrix of an abelian

variety known as the Jacobian variety of C and is denoted by J(C). Clearly the

Jacobian variety J(C) is the complex torus H0(C,Ω1)∗

H1(C,Z)
of dimension equal to genus
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g of the curve C and is therefore an algebraic variety by Remark 1.6.5.

Remark 1.6.7 By construction, the Jacobian J(P1) of the projective line P1 is

trivial as genus of P1 is zero. So to exclude triviality, we will work on genus

greater than zero case.

One can choose normalised basis γ1, γ2, . . . , γ2g of H1(C,Z) so that

#(γi · γj) =# (γg+i · γg+j) = 0,

#(γi · γg+j) = δij,

#(γg+i · γj) = −δij for all 1 ≤ i, j ≤ g.

(1.27)

By intersection matrix of this chosen basis of H1(C,Z), one means the matrix P ∈
M2g(Z) whose (i, j)-th element is the intersection number #(γj · γi). Therefore,

from the relations as in (1.27), we obtain:

P =

(
0 −Idg

Idg 0

)
. (1.28)

Moreover, one can choose a basis τ1, τ2, . . . , τg of H0(C,Ω1)∗ such that the follow-

ing holds: ∫
γi

τj = δij, 1 ≤ i, j ≤ g. (1.29)

But something more happens. Together with the chosen normalised basis of

H1(C,Z) they form a symplectic basis, that is, the period matrix Π of J(C) as

defined in (1.26) takes a simpler form as in Proposition 1.6.3:

P =
(

Idg Z
)
. (1.30)

It can be checked that there exists a divisor on J(C) known as Theta divisor,

denoted by Θ, such that O(Θ) is a canonical polarisation on J(C) (cf. [La-Bk,

Proposition 11.1.2]). As Im(c1(O(Θ))) = P−1 where P is the intersection matrix

as in (1.28), O(Θ) is then a principal polarisation on J(C). Sometimes we denote

by (J(C),Θ) the principally polarised Jacobian variety of C.

Recall the exponential exact sequence as in (1.1) for the curve C:

0 // Z // OC
exp // O∗C // 0. (1.31)
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Then corresponding to (1.31) we have the following long exact sequence:

H0(C,OC) H0(C,O∗C) H1(C,Z)

H1(C,OC) H1(C,O∗C) H2(C,Z).

exp

δ

(1.32)

As C is a compact and connected Riemann surface, only global holomorphic

maps are constants, that is, H0(C,OC) ∼= C. AlsoH0(C,OC)∗ ∼= C∗ and therefore

the exponential map exp: H0(C,OC) → H0(C,O∗C) as in (1.32) is surjective.

From exactness of (1.32), the map H0(C,O∗C) → H1(C,Z) is therefore the zero

map and hence the map H1(C,Z) → H1(C,OC) is injective. So we obtain the

following exact sequence from (1.32):

0 // H
1(C,OC)

H1(C,Z)
// H1(C,O∗C) δ // H2(C,Z). (1.33)

As mentioned in the Section 1.3, the Picard group Pic(C) of all isomorphism

classes of line bundles on C can be identified with the groupH1(C,O∗C). Therefore

Pic0(C), the subgroup of Pic(C) consisting of line bundles with vanishing Chern

class, is nothing but Ker(δ) and therefore is isomorphic to H1(C,OC)
H1(C,Z)

. Now by Serre

duality, H1(C,OC) ∼= H0(C,Ω1)∗ and by Poincaré duality, H1(C,Z) ∼= H1(C,Z).

Therefore we have the following interesting isomorphism:

Pic0(C) ∼=
H1(C,OC)

H1(C,Z)
∼=
H0(C,Ω1)∗

H1(C,Z)
∼= J(C). (1.34)

Hence, the Jacobian variety can also be interpreted as the space parametrising

all isomorphism classes of line bundles with vanishing Chern classes, that is,

degree zero line bundles on C. For any degree zero line bundle L, the dual bundle

L∗ is also of degree zero and L ⊗ L∗ ∼= OC . As a result, J(C) is immediately

endowed with a group structure, the group operation being the tensor product of

line bundles and OC being the identity element of J(C).

This alternative description of the Jacobian variety J(C) can be used to com-

pute its dimension in an alternative manner. As the trivial line bundle OC has

only one independent global section,that is h0(C,OC) = 1, by Riemann-Roch the-

orem we have h1(C,OC) = g. It can be proved that the tangent space of J(C) at
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the point OC is canonically isomorphic to H1(C,OC) (cf. [Mi, Proposition 2.1]).

Now as J(C) is smooth in our context, it readily follows that dim J(C) = g.

Now we discuss the importance of the Jacobian variety J(C) from the point

of view of the curve C itself. For that, let’s start with a map from the curve C

to its Jacobian J(C) which is defined very naturally once a base point x0 of the

curve C is fixed.

u : C → J(C) ∼=
H0(C,Ω1)∗

H1(C,Z)

x 7→
(
ω 7→

∫ x

x0

ω

)
(mod H1(C,Z)).

(1.35)

Let us once again choose a basis ω1, ω2, . . . , ωg of H0(C,Ω1). Consider the

following map from C to J(C) which we again denote by u. While defining this

we use the fact that H0(C,Ω1)∗ ∼= Cg.

u : C → J(C) ∼=
Cg

H1(C,Z)

x 7→
(∫ x

x0

ω1,

∫ x

x0

ω2, . . . ,

∫ x

x0

ωg

)
(mod H1(C,Z)).

(1.36)

Note that the coordinates of the linear map ω 7→
∫ x
x0
ω are

∫ x
x0
ω1,
∫ x
x0
ω2, . . . ,

∫ x
x0
ωg

with respect to the dual basis of the chosen basis of H0(C,Ω1), as mentioned

earlier. Therefore two apparently different maps defined as in (1.35) and (1.36)

basically are the same, the first one is coordinate free approach whether the other

is not. Here,
∫ x
x0
ω for any ω ∈ H0(C,Ω1) means

∫
γ
ω for a fixed path γ from x0

to x. So we need to check that the definitions are independent of the chosen path

γ. Let us choose another path λ from x0 to x. Then as η(= γ − λ) is an element

of H1(C,Z), therefore the difference
∫
γ
ω−

∫
λ
ω =

∫
η
ω is an element of H1(C,Z).

Here we again identify H1(C,Z) with its image using Proposition 1.6.6. So the

map u : C → J(C) is well defined and is known as Abel-Jacobi map.

Recall that by Divn(C) we denote the set of divisors of degree n on C. Then

one can extend the domain of definition of the map u to Divn(C) linearly as

follows:

u : Divn(C)→ J(C)∑
i

nixi 7→
∑
i

niu(xi).
(1.37)
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For n = 0, the map is more interesting. In this case, the Abel-Jacobi map is

canonical, that is, it becomes independent of the chosen base point on the curve

C. We therefore write down the definition for n = 0 case separately.

u : Div0(C)→ J(C)∑
i

(pi − qi) 7→

(
ω 7→

∑
i

∫ qi

pi

ω

)
(mod H1(C,Z)).

(1.38)

It can be checked that this definition is well defined as this is independent of the

representation of a degree zero divisor. This is in fact a group homomorphism.

Moreover the following theorem, known as Abel’s theorem (cf. [Gf-Hr 2, p. 235]),

says that this is an isomorphism.

Theorem 1.6.8 Let PDiv0(C) denote the subgroup of Div0(C) consisting of de-

gree zero principal divisors. Then the map u : Div0(C) → J(C) as in (1.38) fits

into the following exact sequence:

0 // PDiv0(C) // Div0(C) u // J(C) // 0 .

Hence Pic0(C) is isomorphic to the Jacobian variety J(C).

Proof.See [La-Bk, Theorem 11.1.3]. Indeed, by Abel’s theorem kernel of the map

u is the subgroup PDiv0(C) of Div0(C). Surjectivity of the map u follows from

Jacobi Inversion theorem (cf. [Gf-Hr 2, p. 235]). �

Remark 1.6.9 1. The isomorphism between Pic0(C) and J(C) as in Theorem

1.6.8 has already been discussed in (1.34).

2. It can be noted that restricting the map ϕ : Div(C) → Pic(C) as in (1.12)

to Div0(C), we obtained in Proposition 1.3.5 that the kernel is nothing but

PDiv0(C). This is same as Abel’s theorem once we have Theorem 1.6.8.

We have defined the classical Abel-Jacobi map analytically. Let us define it

algebraically now. Choosing a divisor Dn of degree n on C, we define:

u : Divn(C)→ J(C)

D 7→ O(D −Dn).
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As a particular case, if we choose Dn = nx0, then the map becomes:

u : Divn(C)→ J(C)

D 7→ O(D − nx0).
(1.39)

We get the following map u : C → J(C) by restricting the map u : Div1(C) →
J(C) as in (1.39) to the curve C as C can be thought of as a subset of Div1(C).

u : C → J(C)

x 7→ O(x− x0).
(1.40)

It can be easily verified that the map u defined in (1.40), (1.35) and (1.36) are

the same and we denote this map also by ux0 whenever the base point x0 needs to

be specified. The first one is algebraic approach where as the last two definitions

are analytical in nature.

Theorem 1.6.10 The map

u : C → J(C)

x 7→ O(x− x0)

is an embedding, when genus g of the curve C is greater than or equal to one.

Proof.See [La-Bk, Proposition 11.1.4 & Corollary 11.1.5]. Indeed, for g ≥ 1, the

projectivized differential of the map is nothing but the canonical map ϕωC : C →
Pg−1 which is injective at every point of C as ωC is base point free. �

Remark 1.6.11 1. For g = 0, J(C) = 0 by Remark 1.6.7 and hence of di-

mension zero where as the dimension of the curve is one, so the map (1.40)

can’t be an embedding. So Theorem 1.6.10 does not hold for g = 0 case.

2. For g ≥ 2, dim J(C) = g ≥ 2 > 1 = dimC. Therefore, the map u as

in (1.40) can’t be an isomorphism. This embedding of the curve C in its

Jacobian variety J(C) can be an isomorphism only for g = 1 case.

Let us now discuss another importance of the Abel-Jacobi map ux0 as in

(1.40) which in turn will help us to define a Poincaré bundle over the curve C.

To discuss that let us start with a very natural question. We have seen that the

Jacobian variety J(C) parametrizes all degree zero line bundles on C, a smooth
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projective variety of genus g and of dimension one. Now one may consider the

Jacobian variety of J(C) itself, that is, the space parametrizing all degree zero

line bundles on the variety which in turn parametrizes all degree zero line bundles

on C. Clearly this can be repeated infinitely many times. At this point one can

ask whether this process, which a priori seems to be never ending, terminates or

not. To answer this question we need to go through the concept of dual complex

torus of a given torus.

Given a complex torus X of dimension g, one can define another complex

torus X̂, known as dual complex torus associated to X, of same dimension. This

torus X̂ parametrizes all degree zero line bundles on X (cf. [La-Bk, Proposition

2.4.1]). This description of X̂ gives rise to a line bundle on X × X̂ known as

Poincaré bundle for X. We recall this definition.

Definition 1.6.12 By a Poincaré bundle for X we mean a holomorphic line

bundle P on X × X̂ which is isomorphic to L when gets restricted to X × {L}
for all L ∈ J(X) and is trivial when gets restricted to {0} × X̂.

Taking X = J(C), we have

Ĵ(C) ∼= Pic0(J(C)). (1.41)

Let u∗x : Pic0(J(C))→ Pic0(C) be the pullback of the Abel-Jacobi map ux : C →
J(C) with respect to base point x ∈ C as defined in (1.40). The pullback is also

a restriction map as ux is an embedding by Theorem 1.6.10 for g ≥ 1. For g = 0,

Pic0(C) and Pic0(J(C)) both are trivial by Remark 1.6.7. Altogether by [La-Bk,

Lemma 11.3.1], we have the following isomorphism:

Pic0(J(C))
u∗x
∼=
// Pic0(C) . (1.42)

Therefore by (1.41) and (1.42) we can conclude that the process mentioned in the

previous question, which seems to be never ending apparently, gets terminated

at a very early stage.

Taking X = J(C) in Definition 1.6.12, we get a Poincaré bundle for J(C).

Then the isomorphism as in (1.42) allows us to construct a Poincaré bundle for

the curve C itself.
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Definition 1.6.13 By a Poincaré bundle of degree n for C normalised with re-

spect to x ∈ C we mean a holomorphic line bundle PnC on C × Picn(C) which

is isomorphic to L when gets restricted to C × {L} for all L ∈ Picn(C) and is

trivial when gets restricted to {x} × Picn(C).

Following proposition assures the existence of such a Poincaré bundle over C.

Proposition 1.6.14 [La-Bk, Proposition 11.3.2] There exists a Poincaré bundle

of degree n for C for all n ∈ Z uniquely determined by the base point x ∈ C.

Remark 1.6.15 We will need this Poincaré bundle for C in a more general set

up to provide variety structure on some special subsets in the space parametrizing

semistable bundles of fixed rank and degree over C. See, for example, Subsection

5.2.2 for more details.

It can be noted that if two compact Riemann surfaces are isomorphic, then

so is their Jacobians. In fact, converse is also true and popularly known as

Torelli’s Theorem (cf. [La-Bk, Theorem 11.1.7]). This emphasises the fact that

the Jacobian variety of a curve is intrinsically related to that curve.

We end this section by mentioning the importance of a Jacobian variety from

the viewpoint of an abelian variety. Let us start with a different but useful

interpretation of Torelli’s Theorem. Let us denote the moduli space of smooth

projective curves of genus g by Mg. By A1
g we denote the moduli space of all

(principally polarised) abelian variety of dimension g. Consider the following

map:

J : Mg → A1
g

C 7→ J(C).
(1.43)

Note that, Torelli’s theorem says that the map as in (1.43) is injective. The

image J(Mg) is therefore a 3g − 3 dimensional subvariety of A1
g. At this point,

one can naturally ask a question: Is the map in (1.43) surjective for any g? In

other words, given any principally polarised abelian variety A of dimension g,

does there exist a smooth projective curve C of genus g such that J(C) ∼= A?

The answer is negative in general for g ≥ 4.

Though Jacobian varieties do not exhaust abelian varieties, possibly the next

best thing happens. For a given curve C Jacobian variety is the abelian variety
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nearest to the curve C in some sense. That is to say, given a morphism from the

curve C to an abelian variety X, it factors through J(C) upto a translation of X

(cf. [La-Bk, Universal Property of the Jacobian 11.4.1]).

1.7 Symmetric product and Abel-Jacobi map

In this section we discuss briefly on symmetric product of curve and Abel-Jacobi

map. Throughout this section we take C to be a projective curve of genus g

over complex numbers. Then we apply results from this section in the context of

elliptic curve later on.

Let us denote

d︷ ︸︸ ︷
C × C × · · · × C by C×d. Here, Sd(C), the d-th symmetric

product of C can be understood as the quotient space C×d

σd
of C×d under the

action of the permutation group σd of d symbols and p1 + p2 + · · · + pd can

be thought as [(p1, p2, · · · , pd)], the image of (p1, p2, · · · , pd) under σd action,

that is, in [(p1, p2, · · · , pd)] order of pi’s doesn’t matter. Therefore the notation

p1+p2+· · ·+pd instead of [(p1, p2, · · · , pd)] makes more sense. Here p1+p2+· · ·+pd
can also be thought as a degree d effective divisor on C and Sd(C) is nothing but

the set of all degree d effective divisors on C. So for d ≥ 0, we have:

Sd(C) = Divd(C).

Consider the classical Abel-Jacobi map ϕd : Sd(C)→ Jd(C), defined as follows:

ϕd : Sd(C)→ Jd(C)

x1 + x2 + · · ·+ xd 7→ O(x1 + x2 + · · ·+ xd).
(1.44)

This map is also called as Abel-Jacobi map. In fact, in a way this map is defined

more naturally as we don’t need to fix any base point on the curve unlike (1.39).

This map can also be thought of as the restriction of the map ϕ : Div(C)→ Pic(C)

as in (1.12) to Divd(C).

Consider the following morphism.

ψd : C×d → Sd(C)

(p1, p2, · · · , pd) 7→ p1 + p2 + · · ·+ pd.
(1.45)
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This is clearly a quotient map. Moreover, Sd(C) gets the structure of a topological

space and also of a complex manifold from C×d via the map ψd as in (1.45). In

fact, for a given coordinate chart on an open set of C×d, one can get a coordinate

chart on the image of that open set using elementary symmetric functions and

the map ψd (cf. [Gf-Hr 2, p. 236]). By Chow’s theorem, Sd(C) therefore gets the

structure of an algebraic variety as well.

Let us now discuss about the smoothness of the variety Sd(C). Let QuotdF

denote the Quot scheme parametrizing all torsion quotients of F having degree d

(cf. Subsection 3.3.2 for more details). Following theorem is about the smoothness

of the Quot scheme QuotnOrC .

Theorem 1.7.1 Let C be a non-singular projective curve and let n be any non-

negative integer. Then QuotnOrC is a smooth projective scheme.

Proof.See [Hb, Theorem 4.3.3, p. 47]. In fact let (F , q) ∈ QuotnOrC . Then we have

the following exact sequence.

0 // Ker(q) // OrC
q // F // 0 .

where F is supported on a zero dimensional subscheme of C and Ker(q) is locally

free of rank r. We also have the following equality.

Ext1(Ker(q),F) = H1(C, (Ker(q))∗ ⊗F).

But again (Ker(q))∗ ⊗ F being supported on a zero dimensional subscheme of

C, H1(C, (Ker(q))∗ ⊗ F) = 0. Hence Ext1(Ker(q),F) = 0. Hence the theorem

follows. �

Let P be a polynomial with rational coefficients and let HilbPC , which will be

mostly denoted by HilbP , be the Hilbert scheme parametrizing subschemes of C

having Hilbert polynomial P . Let d be any given non-negative integer. Then

considering d as a constant polynomial, we have the following isomorphism.

QuotdOC
∼= Hilbd ∼= Sd(C). (1.46)

Hence by Theorem 1.7.1 and (1.46), Sd(C) is a smooth algebraic variety. Alter-

natively, it can be proved using fundamental theorem on symmetric functions (cf.

[Mi, Proposition 3.2]). Interestingly something more is true. For a non-singular
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variety S, Sd(S) is smooth only if S is of dimension one, that is a curve (cf. [Mi,

Remark 3.3]).

We now count the dimension of the smooth variety Sd(C). let us recall the

map ψd as in (1.45). As σd acts on C×g by permuting the coordinates, for any

p1 + p2 + · · ·+ pg ∈ Sg(C) we have,

ψ−1
d (p1 + · · ·+pd) =

{
(x1, · · · , xd) ∈ C×d | ρ(xi) = pi for all i, and for all ρ ∈ σd

}
.

Therefore cardinality of any fiber is d! and hence ψd is a finite morphism of degree

d!. Therefore dimension of Sd(C) is d as dimension of C×d is so. Also as dimension

of QuotnOrC is r · n, dimension of Sd(C) can be calculated from (1.46) as well (cf.

[Bi-Si]).

We have the following commutative diagram which consists of some natural

subvarieties and depicts the scenario we are under quite nicely.

C×g
ψg // Sg(C)

ϕg // Jg(C)

' ⊗O(−p)
��

C×(g−1)

inclusion

OO

ψg−1 // Sg−1(C)

inclusion

OO

ϕg−1 // Jg−1(C)

' ⊗O(−p)
��

C×(g−2)

inclusion

OO

ψg−2 // Sg−2(C)

inclusion

OO

ϕg−2 // Jg−2(C)

' ⊗O(−p)��
...

inclusion

OO

...

inclusion

OO

...

' ⊗O(−p)
��

C

inclusion

OO

ψ1

'
// S1(C)

inclusion

OO

ϕ1 // J1(C)

The maps ϕd : Sd(C)→ Jd(C), for all d with 1 ≤ d ≤ g, are birational morphisms.

Moreover, the image of Sd(C) under the map ϕd are subvarieties of Jd(C) and

are denoted by W 0
d for all 1 ≤ d ≤ g. The subvariety W 0

d parametrizes degree d

line bundles over C having atleast one independent global section as this is the

image of effective divisors of degree d.

If we want to compare the cohomology classes [W 0
d ]’s, it is not possible to do so

at this stage as W 0
d ’s sit inside different Jd(C)’s. So, to compare their cohomology

classes it is natural to think them as subvarieties of one fixed variety. This can be

obtained as follows. Let us consider the point p ∈ C which we have chosen and
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fixed already. Consider the classical Abel-Jacobi map map ϕd : Sd(C) → Jd(C)

as defined in (1.44). Also consider the map ⊗O(−dp) : Jd(C)→ J(C) defined as

follows.

⊗O(−dp) : Jd(C)→ J(C)

L 7→ L⊗O(−dp).

Then the map u : Sd(C) −→ J(C) is defined as u = ⊗O(−dp) ◦ϕd which is same

as the map defined in (1.39).

Sd(C) Jd(C) J(C)

x1 + · · ·+ xd O(x1 + · · ·+ xd) O(x1 + · · ·+ xd − dp).

ϕd ⊗O(−dp)

Now define Wd, for all d, 1 ≤ d ≤ g, called the Brill-Noether subvarieties of

J(C), as follows:

Wd := u(Sd(C)). (1.47)

Let Θ be the Theta divisor in J(C), the translate of the divisor W 0
g−1 of Jg−1(C)

via the map ⊗O(−(g − 1)p) : Jg−1(C) → J(C). Let [Wd] be the cohomology

class of Wd and [Θ] be the cohomology class of Θ in H∗(J(C),Q). The classical

Poincaré relation then expresses the cohomological classes of Wd, in terms of the

Theta divisor on J(C).

Lemma 1.7.2 [Ab-Cr-Gf-Hr, chapter 1, §5, p-25] In H∗(J(C),Q), we have

[Wd] =
1

(g − d)!
· [Θ]g−d (1.48)

for all d, 1 ≤ d ≤ g.

This Lemma 1.7.2 can be interpreted as follows. Consider the subalgebra of

H∗(J(C),Z) a priori generated by the cohomology classes Wd, 1 ≤ d ≤ g. Then

this subalgebra is generated by [Θ] only. Moreover, the relation (1.48) holds. We

consider similar problem in the cohomology ring of the moduli space of semistable

bundles over elliptic curve.

Now we have the following theorem due to Abel by which one can describe the

fiber of the Abel-Jacobi map explicitly.
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Theorem 1.7.3 Two effective divisors D and D1 of degree d on C are linearly

equivalent if and only if ϕd(D) = ϕd(D1).

Proof.See [Ab-Cr-Gf-Hr, p. 18]. Also, follows from Proposition 1.3.5 and re-

stricting the map ϕ : Div(C)→ Pic(C) as in (1.12) to Divd(C). �

We observe that Sd(C) can thought of as collection of all effective divisors

on C of degree d. The variety Picd(C) can be interpreted as Sd(C)
∼ , where ‘ ∼′

is the linear equivalence of divisors. For any D ∈ Sd(C), let us denote its linear

equivalence class in Picd(C) by [D]. Then Theorem 1.7.3 can be restated as

follows. “Only if” part says that the Abel-Jacobi map factors through Picd(C),

that is we have the following commutative diagram,

Sd(C)

ϕd $$

[ ] // Picd(C)

[ϕd]zz
Jd(C)

where [ ] : Sd(C) → Picd(C) is given by D 7→ [D] and [ϕd] : Picd(C) → Jd(C) is

defined by [D] 7→ ϕd(D). Moreover ”if” part of Theorem 1.7.3 depicts that the

map [ϕd] : Picd(C)→ Jd(C) is injective.

Remark 1.7.4 By Theorem 1.7.3, fiber of the map ϕd over any line bundle

L ∈ Jd(C) is the complete linear system |D| of a divisor D on C with O(D) = L.

Now if d > 0, then by Serre duality h1(C,O(D)) = 0 and by Riemann-Roch

theorem h0(C,O(D)) = d. Therefore each fiber of the map ϕd : Sd(C) → Jd(C)

is isomorphic to Pd−1 if d > 0.

1.8 Elliptic curve

Let us begin this section with a question which we have raised already : Is the

map in (1.43) surjective? We have mentioned that answer to this question is

negative in general for g ≥ 4. We now look at this map for g = 1 case and

investigate its surjectivity for this special case. Towards that let us introduce the

definition of elliptic curve and a few of its properties.

Definition 1.8.1 A smooth projective curve of genus 1 over complex numbers

is called an elliptic curve (over C).
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For a smooth projective curve C of genus g, we define degree of the curve to be

the degree d of its defining polynomial. Then using Riemann-Hurwitz formula

genus of the curve can be given in terms of its degree as follows (cf. [Gf-Hr 2,

p. 220]).

g =
d(d− 1)

2
. (1.49)

This is called degree genus formula for a smooth plane curve. As an elliptic curve

is smooth by definition, using (1.49) it can be defined alternatively as follows.

Definition 1.8.2 A smooth cubic projective curve is called an elliptic curve.

So an elliptic curve can be thought of as projective plane curve given by a cubic

polynomial. We denote an elliptic curve by E. For any smooth projective curve

C over complex numbers, for all integer d, J(C) ∼= Jd(C), where the isomorphism

can be naturally obtained by tensoring with a line bundle of appropriate degree.

But for an elliptic curve E, something more happens to be true. Towards that,

we have the following proposition.

Proposition 1.8.3 The Picard variety J1(E) can be identified with E.

Proof.Consider the map

E → J1(E)

p 7→ O(p).
(1.50)

We want to verify that two distinct points p1 and p2 of E are not linearly equiv-

alent, that is, O(p1) � O(p2). By Riemann-Roch theorem we have:

h0(E,O(p))− h0(E,ωE ⊗O(p)∗) = 1 + 1− 1.

As by (2) of Remark 1.4.3 ωE is trivial, deg O(p)∗ = −1 and hence h0(E,ωE ⊗
O(p)∗) = 0. Therefore, h0(E,O(p)) = 1. Hence by (1.15), (1.16) and Definition

1.3.9, we observe that only effective divisor linearly equivalent to p is p itself. As

a result the map as in (1.50) is injective.

Now let L be a degree one line bundle over E and s be any non-zero section

of L. Let (s) be the divisor corresponding to the section s. Then the map

J1(E)→ E

L 7→ (s)
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is the inverse of the map in (1.50) (cf. §1.3). Hence J1(E) ∼= E. �

Proposition 1.8.4 For an elliptic curve E, its Jacobian variety J(E) is isomor-

phic to the curve E itself.

Proof.Let C be any smooth projective curve over complex numbers and x0 ∈ C
be a chosen point. Let us define the following map:

J1(C)→ J(C)

L 7→ L⊗O(−x0).

Clearly this is an isomorphism. Therefore the proposition now follows from

Proposition 1.8.3. �

Remark 1.8.5 In Remark 1.6.11, we observed that the map u as in (1.40) can

only be an isomorphism when the curve C is of genus one. Proposition 1.8.4

answers that possibility affirmatively.

Let us end this section by answering the question we have mentioned in the

beginning of this section. Let us denote the set containing all non-isomorphic one

dimensional complex torus by T1. Then Uniformization Theorem (cf. [Di-Sh,

§1.4]) says that the inclusion map i : M1 ↪→ T1 is actually an isomorphism.

Moreover it factors through the map J : M1 → A1
1 defined by C 7→ J(C) as in

(1.43). We therefore have the following commutative diagram.

M1
J //� t

i
&&

A1
1kK

xx
T1

Therefore the map

J : M1 → A1
1

C 7→ J(C)

is surjective and hence an isomorphism.



Chapter 2

On the cycle class map and

Hodge structure - smooth and

non-smooth cases

In this chapter we discuss the Hodge decomposition of a complex submanifold

sitting inside a projective space. We thoroughly go through few properties of the

Hodge decomposition like functoriality, Hodge symmetry etc. that are compatible

with the corresponding properties of the cohomology ring. After that the Chow

groups and the cycle class map have been defined for smooth cases. Then we

come across one of the seven “Millennium Problems” of Clay Mathematics Insti-

tute (CMI), Cambridge, namely, the Hodge conjecture. It was first formulated by

Hodge in 1941 and is now known as the Integral Hodge conjecture. Then Atiyah

and Hirzebruch proved that integral Hodge conjecture can’t hold (cf. [At-Hz]).

We mention another example by Kollár in this context. The Hodge conjecture

then gets modified and it asserts that Hodge cycles are (rational linear) com-

binations of some geometric pieces called algebraic cycles for some particularly

nice spaces. One can refer to [Hg 1] and [Hg 2] for details regarding the Hodge

conjecture.

Finally we give an instance where the Hodge conjecture holds, namely, for a

general polarised Jacobian variety and go through mixed Hodge structure, oper-

ational Chow groups and the cycle class map on the singular varieties followed

by that.

45
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2.1 Hodge decomposition

Let X be a complex manifold of dimension n. Then by definition we can cover X

with open sets U such that there exists an open set ∆ of Cn satisfying following

isomorphism:

(z1, z2, . . . , zn) : U → ∆.

Here zi’s are called complex coordinates for X on U . Moreover we can pass

from one coordinate to the another via holomorphic functions. Writing zk =

xk + ıyk, (x1, . . . , xn, y1, . . . , yn) are real coordinates of X on U , treating X as

a real manifold of dimension 2n. Hence every differential form on U can be

expressed in terms of these coordinates, that is to say, with respect to dxk and

dyk for all 1 ≤ k ≤ n. Let us define dzk and dz̄k as follows:

dzk = dxk + ıdyk,

dz̄k = dxk − ıdyk.
(2.1)

Then the differential forms can be expressed in terms of dzk and dz̄k for all 1 ≤
k ≤ n. If a form on X can be expressed as a sum of the terms like a(zk, z̄k)dzi1 ∧
dzi2∧· · ·∧dzip∧dz̄j1∧dz̄j2∧· · ·∧dz̄jq in any system of coordinates, then we say that

the form is of type (p, q). Here 1 ≤ i1 < · · · < ip ≤ n and 1 ≤ j1 < · · · < jq ≤ n.

Let Hm
DR(X,C), or simply Hm(X,C) when no confusion is likely to occur, be the

m-th de Rahm cohomology group of X consisting of closed m-forms modulo the

exact ones. By Hp,q(X), or simply by Hp,q when the space involved is clear from

the context, we denote the subspace of Hp+q(X,C) consisting of closed (p + q)-

forms of type (p, q). Let us assume that X is a complex submanifold of some

projective space, then for any non-negative integer r, the space Hr(X,C) can be

decomposed as follows:

Hodge decomposition:

Hr(X,C) =
⊕
p+q=r

Hp,q. (2.2)

Remark 2.1.1 This result does not need the projectivity of X, it uses some

coarser condition instead. That is to say, it uses existence of a Kähler metric.

Any projective space carries such metric and moreover restriction of that to any
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complex submanifold is again a Kähler metric. So the decomposition holds in

that case also. For the proof of the Hodge decomposition for a complex Kähler

manifold, one can refer to [Gf-Hr 2, p. 116].

Let us now recall a few properties of the de Rahm cohomology groups. Let M

and N be two oriented, complex manifolds of dimension m and n respectively.

Then we have the following:

1. The de Rahm cohomology H∗(M,Z) is a graded, skew-commutative ring

and as an abelian group it is finitely generated. We denote the product

operation of this ring by ‘·’.

2. When p < 0 or p > m, Hp(M,Z) = 0. Moreover, H0(M,Z) = Z · 1 and

Hm(M,Z) ∼= Z via the canonical isomorphism
∫
M

.

3. Let f : M → N be a smooth map. We denote the associated pull back

morphism by f ∗ : H∗(N,Z) → H∗(M,Z) and push forward morphism by

f∗ : H
∗(M,Z)→ H∗(N,Z). Then

(a) The morphism f ∗ is a morphism of graded rings, that is, f ∗(Hr(N,Z))

⊆ Hr(M,Z).

(b) The morphism f∗ is a group homomorphism and not a ring homo-

morphism in general. Also, degree of this morphism is n −m and so

f∗(H
p(M,Z)) ⊆ Hp+n−m(N,Z).

(c) For all α ∈ H∗(M,Z) and β ∈ H∗(N,Z), f∗(α · f ∗β) = f∗α · β.

(d) For all α ∈ Hm(M,Z),
∫
N
f∗α =

∫
M
α.

4. Poincaré duality:

The following bilinear form is non-degenerate :

Hp(M,Z)⊗Hm−p(M,Z) · // Hm(M,Z)

∫
M // Z.

We now list down some properties of the Hodge decomposition that are nicely

compatible with the properties given above. Let us assume that X and Y be

two projective varieties of dimension m and n respectively. We need the variety

structure here for existence of the Hodge decomposition as in (2.2). We now have

the following:
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1. The equalities H0(X,C) = H0,0 and H2m(X,C) = Hm,m hold. Further-

more, the operation ‘·’ of H∗(X,C) gets restricted as follows:

Hp1,q1 ×Hp2,q2 → Hp1+p2,q1+q2 .

2. Let f : X → Y be a morphism between two projective varieties. Then we

have:

f ∗(Hp,q(Y )) ⊆ Hp,q(X),

f∗(H
p,q(X)) ⊆ Hp+n−m,q+n−m(Y ).

(2.3)

3. Poincaré duality gets restricted to the following perfect pairing:

Hp,q ×Hm−p,m−q // Hm,m
∼= // H2m(X,C)

∼= // C. (2.4)

4. For any r, Hr(X,C) is equipped with a natural involution corresponding to

the conjugation of differential forms, that is, dzk and dz̄k ,defined in (2.1),

get interchanged under this involution. Hence we have the following.

Hodge symmetry:

Hp,q = Hq,p.

We use aforementioned properties heavily to prove the following proposition.

Proposition 2.1.2 Let X be a complex projective manifold of dimension n and

Z be an irreducible, codimension p subvariety. Then the cohomology class [Z] in

H2p(X,Z) is of type (p, p).

Proof.See [Be 2, Proposition 3.3]. Indeed, we are now in the situation of Defi-

nition 1.5.3 and Remark 1.5.4. Let us quickly recall the notations. Let Z̃ be a

resolution of Z and f ◦ i : Z̃ → X be the map as defined in Remark 1.5.4. So,

whenever Z is smooth, we have Z̃ = Z and f ◦ i = i. For any α ∈ H2n−2p(X,Z),

we have:

[Z] · α = i∗1 · α (By Definition 1.5.3)

= i∗i
∗α. (By property 3(c) of de Rahm cohomology)

(2.5)
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Therefore we obtain:∫
X

[Z] · α =

∫
X

i∗i
∗α (By (2.5))

=

∫
Z̃

i∗α. (By property 3(d) of de Rahm cohomology)

(2.6)

As (2.4) holds, it is enough to show that [Z] ·α = 0 hold for all α in Hn−a,n−b(X)

with a being different from b and a+ b = 2p. Without loss of generality, assume

that a > p. So, n− b > n− p and as a result Hn−a,n−b(Z̃) = 0. As by (2.3)

α ∈ Hn−a,n−b(X)⇒ i∗α ∈ Hn−a,n−b(Z̃),

we have i∗α = 0. Therefore, we are done by (2.6). �

2.2 The cycle class map on smooth varieties and

the Hodge (p,p)-conjecture

Let X be a smooth projective variety over complex numbers. Let Z p(X) be

the free abelian group generated by the codimension p subvarieties of X. The

elements of Z p(X) are called algebraic cycles of codimension p.

Let us now recall the notion of rational equivalence. A codimension p algebraic

cycle Z is said to be rationally equivalent to 0, denoted by Z ∼ 0, if there exists

a finite number of codimension p− 1 subvarieties Vi of X and non-zero elements

ri of the field of rational functions of Vi satisfying

Z =
∑
i

(ri).

Here (ri) denote the divisor of the rational function ri as defined in (1.10). As

(r−1) = −(r) for any non-zero element of the field of rational functions, the

collection of all codimension p algebraic cycles rationally equivalent to 0 is a

subgroup of the group Z p(X) and is denoted by Ratp(X). Rational equivalence

can be alternatively interpreted in a more geometric way. Informally, two cycles

Z0 and Z1 in Zk(X) are rationally equivalent if there is a rationally parametrized

family of cycles interpolating between them, that is, Z0 and Z1 are obtained as

restrictions of a cycle on P1 × X to the fibers {t0} × X and {t1} × X for two
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distinct points t0 and t1 of P1 (cf. [Fu, §1.6]).

Let CHp(X) be the p-th graded piece of the Chow group CH∗(X). Here

CHp(X) is defined as

CHp(X) := Z p(X)/Ratp(X).

Moreover the Chow group CH∗(X) can be given the structure of a ring with

intersection of cycles as the product operation (cf. [Fu, §8.3]). The ring is then

called the Chow ring of X.

Remark 2.2.1 1. It can be noted that Div(X) = Z1(X). Furthermore we

have, CH1(X) = Pic(X), that is, the notion of rational equivalence gen-

eralises the notion of linear equivalence of divisors as defined in Definition

1.3.6.

2. Defining Ap(X) := CHn−p(X), n being the dimension of the variety X, we

get the group A∗(X) = ⊕pAp(X) graded by dimension instead of codimen-

sion. This group does not have a ring structure in general. But for smooth

X, A∗(X) ∼= CH∗(X) and hence A∗(X) is a ring too.

Consider the cycle class map defined as follows.

cl : CHp(X)→ H2p(X,Z)

Z 7→ [Z],
(2.7)

where Z is an irreducible subvariety of codimension p in X and extend it linearly

to the whole of CHp(X). The image of this map is denoted by H2p(X,Z)alg and

the elements in H2p(X,Z)alg are called integral algebraic classes. Let us consider

the natural inclusion i : H2p(X,Z)→ H2p(X,C). Then Proposition 2.1.2 can be

restated as follows:

H2p(X,Z)alg ⊆ i−1(Hp,p). (2.8)

The Hodge conjecture initially meant that converse of (2.8) holds. Now this is

known as the integral Hodge conjecture which is as follows :

H2p(X,Z)alg = i−1(Hp,p).
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Remark 2.2.2 Let i : H2p(X,Z) → H2p(X,C) be the inclusion map. Then

i−1(Hp,p) is often denoted by Hp,p ∩H2p(X,Z).

Many mathematicians observed that the integral Hodge conjecture doesn’t hold.

In [At-Hz], Atiyah and Hirzebruch proved that there are some torsion elements

that can’t be represented as algebraic classes. Here is an example due to Kollár.

Let us take a general hypersurface X of P4 having degree p3, p being a prime

greater than 5. Let h be the class of a hyperplane section of X generating

H2(X,Z). Let l be the Poincaré dual of h that generates H4(X,Z). Then l is

not algebraic as any algebraic class is a multiple of p · l (cf. [Be 2, Proposition

4.3 & Corollary 4.4]).

As the integral Hodge conjecture failed to be true, people started looking at

analogous result in rational cases. Let CH∗(X) ⊗ Q be denoted by CH∗(X)Q

and jQ : H2p(X,Q)→ H2p(X,C) be the obvious map. Then the subspace of the

Hodge classes of H2p(X,Q), denoted by H2p
Hodge(X), is defined as:

H2p
Hodge(X) := H2p(X,Q) ∩ j−1

Q (Hp,p(X)). (2.9)

Consider the cycle class map cl : CHp(X)Q → H2p(X,Q) defined similarly as

in (2.7). The image of this map is denoted by H2p(X,Q)alg and the elements

in H2p(X,Q)alg are called rational algebraic classes. The Hodge (p, p)-conjecture

asserts the following:

Hodge conjecture:

H2p(X,Q)alg = H2p
Hodge(X)

that is, any rational algebraic class is a Hodge class and vice versa.

For p = 1, Hodge (p, p)-conjecture is true even in integral case. This was

proved by Lefschetz and is known as Lefschetz theorem on (1 , 1 ) classes . Lef-

schetz proved this using a tool introduced by Poincaré called normal functions

(cf. [Le 3]). Here we state the theorem and give an outline of the proof using a

modern approach.

Theorem 2.2.3 Let X ⊆ Pn be a complex submanifold. Then given any γ ∈
H1,1 ∩H2(X,Z), there exists a divisor D on X such that γ = [D].

Proof.See [Gf-Hr 2, p. 163]. Indeed, recall the exponential exact sequence as in

(1.1)

0 // Z i // OM
exp // O∗M // 0.
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Then in corresponding cohomology sequence we obtain:

H1(X,O∗X)
c1 // H2(X,Z)

i∗ // H2(X,OX)
∼= // H0,2.

Here c1 is as defined in (1.21) and the isomorphism H2(X,OX) ∼= H0,2 follows

from [Gf-Hr 2, Dolbeault Theorem, p. 45]. It can be checked that the map

i∗ : H
2(X,Z) → H0,2 actually factors through H2(X,C), that is, we have the

following commutative diagram:

H2(X,Z) //

i∗ ''

H2(X,C)
∼= // H2,0 ⊕H1,1 ⊕H0,2

π0,2

uu
H0,2

Here π0,2 denotes the usual projection. Theorem now follows from Proposition

1.5.5. �

Remark 2.2.4 The Hodge (p, p)-conjecture is trivially true for p = 0. Propo-

sition 2.2.3 can be proved to be true for rational case and hence Hodge (p, p)-

conjecture is true for p = 1 too.

Surjectivity is very intrinsically related to a whole lot of conjectures. The

Hodge conjecture is no different. Proposition 2.1.2 depicts the fact that Hodge

conjecture can be stated in a more refined way as follows:

H2p
Hodge(X) ⊆ H2p(X,Q)alg.

That is to say the cycle class map

cl : CHp(X)Q → H2p
Hodge(X)

is surjective. The Hodge conjecture is one of the seven millennium problems

of Clay Mathematics Institute of Cambridge. It was formulated by Hodge in

1941 (cf. [Hg 1]). Many more conjectures can be interpreted as surjectivity

of certain maps. Let us just mention one more instance. Poincaré formulated

a conjecture in 1904 known as the Poincaré conjecture. It is a theorem now

as it was proved in November, 2002 by Perelman. Poincaré asked if the three

dimensional sphere is characterized as the unique simply connected closed three
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manifold upto homeomorphism. Let S3 denote the three sphere. Let us denote

the set of all simply connected closed three manifolds by M3. Let ‘∼’ denote the

homeomorphism of topological spaces. Then obviously the following map

{
S3
}
→ M3

∼

is injective. Moreover, the Poincaré conjecture asserts that the map is surjective

too.

2.3 The Hodge conjecture for a general Jaco-

bian

Let X be an abelian variety. The subring of H2∗
Hodge(X) generated by H0

Hodge(X)

and H2
Hodge(X) is denoted by D∗(X). The cycle classes in D∗(X) are all algebraic

by Remark 2.2.4. Let Dp(X) be the p-th graded piece of D∗(X). In particular,

the Hodge (p, p)-conjecture is true if

Dp(X) = H2p
Hodge(X).

Mattuck proved that Hodge conjecture is true for a general polarised abelian

variety (cf. [Ma]). Tate proved the Hodge conjecture for self product of an elliptic

curve (cf. [Ta] and [Gr 3, §3]) and Murasaki did some explicit computations for

the same (cf. [Mr]). Then using degeneration technique one can prove that Hodge

conjecture holds for a general polarised Jacobian variety with Theta divisor Θ as

a polarisation.

Theorem 2.3.1 For a general polarised Jacobian (J(C),Θ) of dimension g

H2p
Hodge(J(C)) = Dp(J(C)) ∼= Q

for all p = 0, · · · , g.

Proof.See [La-Bk, Theorem 17.5.1; p. 561]. �
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2.4 Pure and mixed Hodge structure

In this section we recall the notion of pure and mixed Hodge structures. We

have already discussed pure Hodge structure without mentioning explicitly. Let’s

begin with that.

Let us take a complex manifold X of dimension m sitting inside some pro-

jective space. Then recall that the space Hr(X,C) has a decomposition, called

Hodge decomposition, as follows (cf. 2.1):

Hr(X,C) =
⊕
p+q=r

Hp,q.

Furthermore this decomposition satisfies the condition Hp,q = Hq,p, known as

Hodge symmetry. Such a direct sum decomposition of Hr(X,C) is known as a

pure Hodge structure of weight r. The space Hr(X,C) has a finite decreasing

filtration by the subspaces F pHr(X,C), with p ∈ Z, defined as follows:

F pHr(X,C) :=
⊕
i≥p

H i,r−i,

that is, an element of F pHr(X,C) has atleast p many dz’s when expressed in

terms of local coordinates. This filtration is known as Hodge filtration. Moreover

the subspaces Hp,q can be recovered from these new subspaces as we have the

following equality:

Hp,q = F pHr(X,C) ∩ F qHr(X,C).

We now briefly recall the notion of mixed Hodge structure. This was intro-

duced by P. Deligne around 1970 as a generalisation of pure Hodge structure

which is applicable for singular and non-complete varieties as well. We then have

the notion of an additional filtration, finite and increasing, known as weight fil-

tration which is trivial over a smooth compact variety over complex numbers.

One can refer to [De 1], [De 2], [Ca-Ze-Gf-Tg, Chapter 3] and [Du].

Let’s be more precise. Assume that X is a complex projective variety possibly

singular. A mixed Hodge structure on Hr(X,Z) consists of the following data:

1. a Hodge filtration F p of Hr(X,C),

2. a finite increasing filtration Wj of Hr(X,Q) called weight filtration,
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such that the i-th associated graded quotient grWi H
r(X,Q) of Hr(X,Q) with

respect to the weight filtration, defined as grWi H
r(X,Q) := Wi

Wi−1
, along with

the filtration induced by the given Hodge filtration on its complexification is

a pure Hodge structure of weight i, for all i ∈ Z. Here, the complexification

grWi H
r(X,Q)⊗C of grWi H

r(X,Q) is given by Wi⊗C
Wi−1⊗C and the filtration induced

by F p on this is denoted by F p(grWi H
r(X,Q)⊗ C) and is defined as

F p(grWi H
r(X,Q)⊗ C) :=

(F p ∩Wi ⊗ C) +Wi−1 ⊗ C
Wi−1 ⊗ C

.

Remark 2.4.1 1. Both pure and mixed Hodge structure can be defined in

a more general set up. In this context, one can refer to [Ca-Ze-Gf-Tg,

Definition 3.1.1, 3.1.2, 3.2.11 & 3.2.15]. Then their existence can be proved

in our situations (cf. [Ca-Ze-Gf-Tg, Chapter 3, §3.1 & §3.4]).

2. We use the i-th associated graded quotient grWi H
r(X,Q) of Hr(X,Q) to

define cycle class map for singular varieties in the next section.

2.5 The cycle class map on the singular varieties

Let X be any scheme of finite type over C. Fulton defined the operational Chow

groups A∗(X) for any scheme X (cf. [Fu, Chapter 17, §17.3]). These are the

same as the Chow groups when X is smooth.

An element of the operational Chow group Ap(X) is a collection of homo-

morphisms Ak(X
′) → Ak−p(X

′), for all X ′ → X, compatible with proper push-

forward, flat pullback and intersections. Here X ′ is a fiber product X ×X Y

with respect to the morphism Id: X → X and a given map Y → X. The map

X ′ → X is the usual projection map which fits into the commutative diagram of

fiber product. So an element of Ap(X) can be thought of as a special bivariant

class (cf. [Fu, Definition 17.1]). Moreover we have the following:

1. There is a product, such that A∗(X) = ⊕pAp(X) is an associative, graded

ring with 1.

2. For any f : Y → X, the pullback

f ∗ : Ap(X)→ Ap(Y )
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is a ring homomorphism. This is functorial in f .

3. There is a projection formula:

f∗(f
∗β ∩ α) = β ∩ f∗(α).

4. The Chern classes of vector bundles are defined in this theory.

5. Bloch, Gille, and Soulé (cf. [Bl-Gi-Sl]) defined the cycle class maps, which

we again denote by cl, on the rational operational Chow group of X:

cl : Ai(X)Q → grW2iH
2i(X,Q). (2.10)

(cf. [To, §8, p. 22 ] also).

In particular, if Y is a smooth projective variety and f : Y → X is a generically

finite morphism, then there are pushforward and pullback maps:

f∗ : CH
p(Y )→ Ap(X), f ∗ : Ap(X)→ CHp(Y ).

Lemma 2.5.1 Consider a smooth projective variety Y , and f : Y → X is gener-

ically finite and flat. There is a commutative diagram:

Ap(X)Q

cl
��

f∗ // CHp(Y )Q

cl
��

grW2pH
2p(X,Q)

f∗coh

// H2p(Y,Q)

Furthermore, f ∗coh is injective.

Proof.The second assertion on injectivity of f ∗coh follows from [Pe-Sb, Chapter

5, Corollary 5.42]. Suppose W ⊂ Y is a codimension p closed subvariety. By

definition, [W ] corresponds to a class in Ap(X) and f ∗[W ] ∈ CHp(Y ) is the same

as the class [W ]. The commutativity follows from the functoriality of the cycle

class maps. �

We will utilise this map to define the cohomology classes of the Brill-Noether

loci on the singular moduli spaceMC(2, 2g−2), in the graded pieces of its singular

cohomology group (cf. Theorem 5.5.7).



Chapter 3

On the moduli spaces

In mathematics, among many other interesting problems classification of objects

in a given category is one. The concept of moduli spaces arise in order to deal

this problem in algebraic geometry. Though moduli problems use many fancy

techniques, the basics of these problems are naturally embedded in all branches

of mathematics. For example, consider the problem of classifying all finite dimen-

sional vector space over a given field k upto vector space isomorphism. As upto

isomorphism there is only one vector space of dimension n for all non-negative

integer n, the space N ∪ {0} can be considered as a space classifying all finite

dimensional k-vector spaces. The set of natural numbers N can be thought as

the space parametrizing all non-zero finite dimensional k-vector spaces. But the

same set can also be interpreted as the space classifying all cyclic groups of finite

order. So by classifying problem one means a collection of objects A, an equiva-

lence relation ‘∼’ on A. By solving this problem one means to describe A∼ , the set

of equivalence classes of A under the given equivalence relation ‘∼’. To do so, one

usually find some discrete invariant. For example, dimension of a vector space

and order of a group served as the discrete invariants in the problems discussed

above.

Let us go through a few more examples of classifying spaces which are more

relevant for our purpose. Any elliptic curve serves as a classifying space. To be

more specific, a point on an elliptic curve E represents the isomorphism class of a

degree zero line bundle on E (cf. Proposition 1.8.4). This classification problem

can be immediately seen as a particular case of a more general moduli problem,

namely the problem of classifying all degree zero line bundles upto isomorphism

on a smooth, projective curve C over complex numbers. We have discussed that

57
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the g-dimensional variety J(C), known as the Jacobian variety, parametrizes all

non-isomorphic degree zero line bundles on the curve C of genus g (cf. Theorem

1.6.8). Let A be the set of all effective divisors of a fixed degree d on a given

curve C. Suppose ‘∼1’ be taken as equality of two such divisors and ‘∼2’ be taken

as linear equivalence. Then A
∼1

is nothing but the d-th symmetric product Sd(C)

whereas A
∼2

is nothing but Picd(C) (cf. Section 1.7).

3.1 Fine and coarse moduli spaces

In this chapter our main target is to go through the problem of classifying all

stable bundles over C upto isomorphism and all semistable bundles over C upto

S-equivalence. For that let us explain what we mean by a moduli problem more

rigorously and two types of moduli spaces, namely fine and coarse moduli space,

followed by that.

Let us recall the notion of functor of points. For that we introduce the fol-

lowing notations. By Sch we denote the category of schemes of finite type over a

given field k. In this section by a scheme we refer to a scheme of finite type over

the field k. We denote the category of sets by Set. we then have the following

definition.

Definition 3.1.1 For a scheme X, the contravariant functor Hom(−, X) : Sch→
Set, denoted by hX , is called functor of points of the scheme X.

The functor Hom(−, X) is defined naturally. Given a scheme Y , it sends to the

set Hom(Y,X). Note that, here we are assuming that our chosen categories are

locally small categories and therefore the definition of functor of points makes

sense. Also, given a morphism f : Y → Z of schemes, the functor hX sends it to

hX(f) defined as follows:

hX(f) : hX(Z)→ hX(Y )

g 7→ g ◦ f.

Remark 3.1.2 1. Any morphism f : X → Y of schemes gives rise to a natural
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transformation hf of functors hX and hY defined as follows:

hfZ : hX(Z)→ hY (Z)

g 7→ f ◦ g.

2. The category of contravariant functors from any category C are called

presheaves on C and is denoted by Psh(C). Using this notation we sum-

marize what we have discussed as follows: There exists a functor h : C →
Psh(C) defined as

h : C → Psh(C)

X 7→ hX [At object level],

(f : X → Y ) 7→ (hf : hX → hY ) [At morphism level].

(3.1)

Let us now state a very important lemma in category theory which is very useful

in our context too.

Proposition 3.1.3 [Ho, Yoneda lemma, Lemma 2.4] Let C be any given cate-

gory. Suppose that C be an object in C and F be an object in Psh(C). Then there

is a one to one correspondence between the set of all natural transformations from

hC to F and F (C) given by,

(η : hC → F ) 7→ ηC(IdC).

Definition 3.1.4 Let C and D be two categories and F : C → D be a functor

between them. Then the functor F is said to be fully faithful if the morphism

FX,Y : Hom(X, Y )→ Hom(F (X), F (Y )) induced by F is bijective for all objects

X, Y in the category C.

Corollary 3.1.5 The functor h : C → Psh(C) as in (3.1), known as Yoneda em-

bedding, is fully faithful.

Proof.See [Ho, Corollary 2.5]. Indeed, let C,C1 be two arbitrary objects of the

category C. To show that the functor h : C → Psh(C) is fully faithful, we need to

show that the morphism hC,C1 : Hom(C,C1) → Hom(hC , hC1) is bijective. That

follows immediately from Proposition 3.1.3 by taking F = hC1 . �
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This leads to the following definition which is very much crucial to define

certain kind of moduli spaces.

Definition 3.1.6 A presheaf F in Psh(C) is said to be representable if it lies in

the image of the Yoneda emdedding, that is, if there exists an object C in C and

a natural isomorphism between the functors F and hC . We also say that the

scheme C represents the functor F .

We already have discussed a few examples of moduli spaces without defining it

precisely. Now we are in position to do so and towards that we have the following

definitions.

Definition 3.1.7 By a naive moduli problem in algebraic geometry one means a

collectionA of objects in algebraic geometry together with an equivalence relation

‘∼’ on A. A naive moduli problem is denoted by (A,∼).

The next most important concept is the concept of a family of objects of A
parametrized by a variety S. Precise definition of family is very intrinsically re-

lated to a given problem. One needs to mould the definition of a family depending

on context to obtain best possible results. Intuitively, such a family F should

consist of a collection of objects Fs of A for each s ∈ S, which vary in such a way

that somehow reflects the structure of the variety S. Moreover, we demand these

families to satisfy some natural conditions which should remain valid irrespective

of which context we are under. These conditions are precisely incorporated in

the following definition.

Definition 3.1.8 Let (A,∼) be a naive moduli problem. Then an extended

moduli problem is given by sets AS of families over S for all schemes S, an

equivalence relation ‘∼S’ on AS and pull back morphisms f ∗ : AS → AT for any

morphism f : T → S of schemes satisfying following functorial properties:

1. (ASpec(k),∼Spec(k)) = (A,∼),

2. Id∗(F) = F for any family F over S and for the identity morphism Id: S →
S,

3. F ∼S G ⇒ f ∗(F) ∼T f ∗(G) for any morphism f : T → S,

4. (g ◦ f)∗(F) ∼T f ∗g∗(F) for any given morphisms of schemes f : T → S,

g : S → R and any family F over the scheme R.
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Here given a family F over S, by Fs we mean pull back s∗(F) over the point

s : Spec(k)→ S.

Definition 3.1.8 in turn leads to the following definition.

Definition 3.1.9 An extended moduli problem defines a presheaf functor called

moduli functor corresponding to the moduli problem, denoted by M, is defined

by

M : Sch→ Set

S 7→ {families over S}
∼S

[At object level],

(f : T → S) 7→ f ∗ : M(S)→M(T ) [At morphism level].

(3.2)

We now can define the best possible example of a moduli space known as the fine

moduli space.

Definition 3.1.10 Let M be a moduli functor as in (3.2). A scheme M is said

to be a fine moduli space if it represents M.

Let us unwind Definition 3.1.10 a bit to understand the reasons for calling it best

possible example of a moduli space. A priori it is not clear how the scheme M is

related to the given (naive) moduli problem (A,∼). Definition 3.1.10 says that

there exists a natural transformation , say η between the moduli functorM and

the functor hM . Therefore we have the following bijections ηS for any scheme S:

ηS :MS :=
{families over S}

∼S
↔ {morphisms S →M} := hM(S). (3.3)

In particular, taking S = Spec(k) in (3.3), we have:

MSpec(k)

||
��

ηSpec(k)

∼=
// hM(Spec(k))

||
��

{families over Spec(k)}
∼Spec(k)

ηSpec(k)

∼=
// {morphisms Spec(k)→M}

(3.4)

Therefore by (1) of Definition 3.1.8 and (3.4) we can conclude that the set A∼ is

in bijection with the k-points of the scheme M representing the moduli functor

M.
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Let us go through another important property possessed only by fine moduli

spaces. Again consider (3.3) for S = M .

ηM :MM :=
{families over M}

∼M
↔ {morphisms M →M} := hM(M). (3.5)

Immediately, we have a family U upto equivalence over M corresponding to the

morphism IdM : M → M , that is U := η−1
M (IdM) ∈ M. Consider an arbitrary

family F upto equivalence over a scheme S corresponding to a morphism f : S →
M . Consider the following diagram:

{F} � � //M(S)
ηS //

||
��

hM(S)

||
��

{f : S →M}? _oo

||
��

{f ∗(U)} � � //M(S) ηS
// hM(S) {IdM ◦ f : S →M}? _oo

(3.6)

Diagram (3.6) depicts the fact that both the families F and f ∗(U) over the scheme

S correspond to the same morphism f : S →M . Therefore from (3.5) we have:

F ∼S f ∗(U),

that is, any family over any scheme can be obtained upto equivalence by pulling

back the family U , called the universal family.

So the situation is nice in all possible sense in case of a fine moduli space and

hence such moduli spaces are very rare. So it is natural to obtain a weaker notion

of such moduli space.

Definition 3.1.11 Given a moduli functor M, a coarse moduli space is defined

to be a scheme M along with a natural transformation η : M → hM satisfying

following properties:

1. ηSpec(k) : M(Spec(k))→ hM(Spec(k)) is bijective,

2. Given any scheme N and any natural transformation µ : M → hN , there

exists a unique morphism of schemes satisfying the following commutative

diagram:

M

µ !!

η // hM

hf
��
hN
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Here hf is as defined in Remark 3.1.2.

Remark 3.1.12 1. It can be easily checked that both fine and coarse moduli

spaces are unique upto unique isomorphism, if at all exists.

2. Though the notion of a coarse moduli space is weaker than that of a fine

moduli space, still it is nearest to the moduli functor in the sense of (2) in

Definition 3.1.11.

3.2 Stable and Semistable bundles

In this section, we recall some definitions and a few properties of semistable

bundles over a smooth projective curve C over C of any genus.

Recall that given a vector bundle V over a smooth projective curve C, the

degree deg V of V is defined to be the degree of the determinant line bundle

detV . Now one can associate a rational number to the given bundle V . This

rational number, denoted by µV or µ in short if the bundle involved is clear from

the context, called the slope of V and is defined by

µV :=
deg V

rank V
.

Definition 3.2.1 A vector bundle V over C is called semistable if for any non-

zero proper subbundle W ,

µW ≤ µV . (3.7)

The bundle V is called stable if the inequality in (3.7) is strict.

Example 3.2.2 1. Any line bundle over a curve is stable and hence semistable.

2. The bundle O(1)⊕2 over P1 is semistable but not stable. It can be noted

that the slope µO(1) of the subbundle O(1) is 1 which is equal to the slope

µO(1)⊕2 of the bundle O(1)⊕2.

3. The bundle O(1)⊕O(−1) over P1 is of slope 0 whereas the subbundle O(1)

has slope 1. Hence the bundle O(1)⊕O(−1) is not even semistable.

Given any rational number µ, let us denote the category of semistable bundles

of slope µ by SSC(µ) or simply by SS(µ) if the underlying curve is understood.
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Consider the following exact sequence of vector bundles

0→ V1 → V2 → V3 → 0. (3.8)

Assume that µV1 = µV3 = µ(say). Since degree and rank of vector bundles are

additive, we have

µV2 =
deg V2

rank V2

=
deg V1 + deg V3

rank V1 + rank V3

=
rank V1 · µV1 + rank V3 · µV3

rank V1 + rank V3

=
rank V1 · µ+ rank V3 · µ

rank V1 + rank V3

= µ.

Further we assume that the bundles V1 and V3 are semistable. Let F2 be a

subbundle of V2. Let F1 := F2 ∩ V1 and F3 be the image of F2 in V3 under the

map V2 → V3 as in the exact sequence (3.8). Then the vector bundles F1 and

F3 are subsheaves of V1 and V3 respectively. We can get a subbundle F̃1 of V1

with µF1 ≤ µF̃1
≤ µ and a subbundle F̃3 of V3 with µF3 ≤ µF̃3

≤ µ as V1 and V3

are semistable bundles. Moreover, Fi, for 1 ≤ i ≤ 3, satisfy the following exact

sequence:

0→ F1 → F2 → F3 → 0.

Therefore µF2 ≤ µ and hence V2 is semistable. We can conclude that if V1 and

V3 are semistable of slope µ, then so is V2. In particular, direct sum of two

semistable bundles of slope µ is again so. Therefore, a priori SSC(µ) is only an

additive category.

For any V1, V2 ∈ SSC(µ) and for any non-zero map π : V1 → V2, we have the

inequality

µ = µV1 ≤ µIm(π) ≤ µV2 = µ.

Therefore µIm(π) = µ and Im(π) is a subbundle of V2. Hence π is of constant rank

and Ker(π), Coker(π) are vector bundles. Let E be a subbundle of Ker(π). So E

is a subbundle of V1 too and µE ≤ µV1 = µ as V1 is semistable. Hence Ker(π) is

semistable of slope µ. We also claim that Coker(π) is semistable of slope µ. If not,

then Coker(π) has a non-zero locally free quotient bundle F with µF < µ. This
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F is also a quotient bundle of V2 of slope strictly less than µ. Dually, we get a

subbundle of V2 with slope strictly greater than µ contradicting the semistability

of V2. Hence the claim follows.

Therefore, for any V1, V2 ∈ SSC(µ) and for any non-zero map π : V1 → V2,

Ker(π) and Coker(π) are also members of SSC(µ). Hence SSC(µ) is an abelian

category. Therefore we have the notion of Jordan-Hölder filtration in this cate-

gory.

Every semistable bundle V of slope µ has a Jordan-Hölder filtration,

0 = W0 ⊆ W1 · · · ⊆ Wt = V,

where the successive quotients Wi

Wi−1
are stable bundles of slope µ for all i =

1, · · · , t. First of all, the integer t is independent of the filtration and is called

the length of the filtration. Moreover, for two such filtration of V , the successive

quotients are uniquely determined up to a permutation, and so the associated

graded bundle

Gr(V ) :=
t⊕
i=1

Wi

Wi−1

is well defined.

Definition 3.2.3 Two semistable bundles V and V1 are said to be S-equivalent,

written as ‘V ∼ V1’, if Gr(V ) ∼= Gr(V1).

Definition 3.2.4 A semistable bundle is called a polystable bundle if it is a direct

sum of stable bundles.

Remark 3.2.5 From Definition 3.2.3, it is obvious that S-equivalence class of a

semistable bundle contains exactly one polystable bundle upto isomorphism. In

particular for a semistable bundle V , we have V ∼ Gr(V ).

Now we look into a few more type of bundles over curve and relations between

them. Let V be a vector bundle over a curve C. Recall that by End(V ) we denote

the collection of all morphisms from the vector bundle V to itself. We recall that

a bundle V is called simple if End(V ) ∼= C. Assume that V1 and V2 be two

stable vector bundle of same slope. Then any non-zero morphism between them

is an isomorphism (cf. [Ne 1, Lemma 5.3]). Let V be a stable vector bundle and

h : V → V be a morphism. Then looking at an arbitrary fiber Vx of V over x, the
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linear map hx−λ · IdVx : Vx → Vx is zero for any eigenvalue λ of hx, the restriction

of the morphism h to the fiber Vx. Therefore the morphism h− λ · IdV is not an

isomorphism and hence equals to 0. So h = λ · IdV and End(V ) ∼= C, that is, the

bundle V is simple.

Consider a decomposable bundle V with a decomposition V = V1⊕ V2. Then

two different homotheties on two summands V1 and V2 give rise to a non-trivial

endomorphism of the bundle V . Hence the bundle V is not simple. Contraposi-

tively, we can conclude that any simple bundle is indecomposable.

In short, we have the following implications:

Stable =⇒ Simple =⇒ Indecomposable. (3.9)

By Definition 3.2.1, it is obvious that any stable bundle is semistable. Con-

verse is also true when the rank and the degree of the bundle are coprime. It is

a well-known fact. We still provide a proof for the sake of continuity. Let V be a

semistable bundle of rank n and degree d with gcd(n, d) = 1. Let W be a proper

non-zero subbundle of V . Then

1 ≤ rank W < rank V. (3.10)

As V is semistable, we have:

µW ≤ µV . (3.11)

Therefore from (3.10) and (3.11) we get,

deg W < deg V. (3.12)

Now if equality occurs in (3.11), then deg W and rank W both have to be integer

mulltiples of deg V and rank V respectively as gcd(n, d) = 1. But that contradicts

(3.10) and (3.12). Therefore we have strict inequality in (3.11) and hence V is

stable.

This can summarised by the following implications:

Stable =⇒ Semistable, (3.13)

Semistable =⇒ Stable, if rank and degree are coprime. (3.14)
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These implications as in (3.9), (3.13) and (3.14) combine together in case of

elliptic curve as we will see later.

3.3 Moduli space of stable and semistable bun-

dles over curve

In this section we go through the construction of the moduli space of stable and

semistable bundles of rank n and degree d over curve. We recall different types of

quotients under the action of an affine algebraic group on a scheme and discuss

Quot scheme followed by that. Finally we outline the construction of the moduli

spaces we are interested in through the PGLN action over a Quot scheme.

3.3.1 Quotients and moduli spaces

Let G be an affine algebraic group and X be a scheme upon which G acts via an

action ‘·’. Then G has a natural induced action on the k-algebra O(X) of regular

functions on X, which we again denote by ‘·’ by abuse of notation, is given by

G×O(X)→ O(X)

(g, f) 7→ g · f, where

(g · f)(x) := f(g−1x).

(3.15)

By O(X)G we denote the subalgebra of O(X) consisting of invariant functions

under the action as in (3.15) and is therefore given by

O(X)G := {f ∈ O(X) | g.f = f for all g ∈ G} .

For any open subset U of X, OX(U)G is similarly defined as the subalgebra of

OX(U) consisting of all G-invariant functions.

Following these notations let us now define three types of quotients which are

very much essential for constructing the moduli space of stable and semistable

bundles over curve.

Definition 3.3.1 A G-invariant morphism of schemes ϕ : X → Y is said to be

a categorical quotient for the G-action on X if it is universal, that is, given any

other G-invariant morphism π : X → Z, there exist a unique morphism θ : Y → Z
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which fits into following commutative diagram:

X
ϕ //

π
  

Y

! θ
��
Z

Definition 3.3.2 A morphism of schemes ϕ : X → Y is said to be a good quotient

for the G-action on X if the following are satisfied.

1. The morphism ϕ is G-invariant.

2. The morphism ϕ is onto.

3. For any open subset U of Y , the morphism OY (U) → OX(ϕ−1(U)) is an

isomorphism onto OX(ϕ−1(U))G.

4. The image ϕ(W ) is closed in Y for every G-invariant closed subset W of X.

5. For any disjoint G-invariant closed subsets W1 and W2 of X, ϕ(W1) ∩
ϕ(W2) = ∅ .

6. The morphism ϕ is affine, that is, ϕ−1(U) is affine for every affine open

subset U of Y .

We denote this by X//G.

If moreover, preimage ϕ−1y of any point y ∈ Y is a single orbit, then the

morphism ϕ : X → Y is said to be a geometric quotient for the G-action on

X. We denote this by X/G.

Remark 3.3.3 1. Definition 3.3.2 immediately implies that any geometric

quotient is a good quotient.

2. As (2) holds in Definition 3.3.2, (4) and (5) together can be stated as follows:

For any disjoint G-invariant closed subsets W1 and W2 of X, the closures

of ϕ(W1) and ϕ(W2) are disjoint.

3. Any good quotient is a categorical quotient (cf. [Ho, Proposition 3.30]) and

therefore we have the following chain of implications:

Geometric quotient +3 Good quotient +3 Categorical quotient.
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Given a moduli problem, a family F over a scheme S is said to have local universal

property if for any family G over a scheme T and for any k-point t ∈ T , there

exists a neighbourhood Ut of t in T and a morphism f : Ut → S satisfying

G|Ut ∼Ut f ∗(F).

It can be noted that local universality doesn’t demand the uniqueness of the

morphism f : Ut → S. The following proposition relates the three quotients just

defined with moduli space.

Proposition 3.3.4 [Ho, Proposition 3.35] Given a moduli problem M, let F a

family over a scheme S satisfying local universal property. Assume that there is

an algebraic group G acting on S such that any two k-points s and t lie in the

same G-orbit if and only if Fs ∼ Ft. Then a categorical quotient of the G-action

on S is a coarse moduli space if and only if preimage of every k-point under the

quotient is a single orbit.

3.3.2 Towards Quot Scheme

One of the major pathological behaviours of a moduli problem is unbounded-

ness, which is essentially the non-existence of any family F over a scheme S

parametrizing all objects in that moduli problem. To make the moduli problem

of semistable bundles of rank n and degree d over a curve bounded, we need to

impose few more conditions. We come to that shortly.

Let us now recall the definition of global generation of a sheaf.

Definition 3.3.5 Let F be a given sheaf over a space X. Then F is said to be

generated by its global sections if the evaluation map ev is surjective, that is, we

have the following:

H0(X,F)⊗OX ev // F // 0.

Let us now go through the notion of a generically generated bundle. Let X be a

non-singular projective curve. As every torsion free module over a regular local

ring of dimension 1 is free, every torsion free sheaf over X is locally free. Let

F be a vector bundle and F be the corresponding sheaf of sections. Consider a

subsheaf G of F . Denoting the inverse image in F of the torsion subsheaf of F/G
by G1, we have G1 is torsion free and hence locally free as well. Let us denote
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the vector bundle corresponding to the sheaf G1 by G1. Now as F/G1 is locally

free, the bundle homomorphism G1 → F corresponding to the inclusion G1 ⊆ F
is injective. As a result, G1 can be treated as a subbundle of F and is called

generically generated by G. From the construction described above, we have:

rank G1 = rank G,

deg G1 ≥ deg G.

The following proposition provides some extra conditions on semistable bundles

of higher degrees.

Proposition 3.3.6 Let F be a locally free sheaf of rank n and degree d over X.

Assume d > n(2g− 1). If the associated vector bundle F to F is semistable, then

the following conditions hold:

1. H1(X,F) = 0,

2. F is generated by global sections.

Proof.

1. If not, then by Serre duality, there exists a homomorphism 0 6= f : F → KX .

Let G be a subbundle of F generically generated by Ker(f). Then G is of

rank n − 1 and degree d1 such that d1 ≥ deg Ker(f) ≥ deg F − deg KX .

By semistability of F , we have:

d− (2g − 2)

n− 1
≤ µ(G) ≤ µ(F ) =

d

n
.

Hence we have d ≤ n(2g − 2), contradicting the hypothesis.

2. Let us denote the fiber of the bundle F at the point x ∈ X by Fx. Then

Fx can be regarded as a torsion sheaf having support {x}. Let us denote

by F(−x) the sheaf O(−x) ⊗ F . Then we have the following short exact

sequence:

0 // F(−x) // F // Fx // 0. (3.16)

We need to show that the map H0(F)→ H0(Fx) is surjective. For that it

is enough to show that H1(F(−x)) = 0 following the long exact sequence
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at cohomology level corresponding to (3.16). That follows from part (1) as

deg F(−x) = deg O(−x)⊗F = d− n > n(2g − 2).

�

Remark 3.3.7 1. For now, if we assume the existence of the moduli space of

semistable bundles of rank n and degree d over a curve C, then denoting it

by MC(n, d) we have the following isomorphism:

MC(n, d)
⊗L
∼=

//MC(n, d+ ne). (3.17)

Here L is a line bundle of degree e. Hence (3.17) makes sense as tensoring

by a line bundle preserves both stability and semistability. Therefore the

condition on the degree of the sheaf F in Proposition 3.3.6 can be imposed

without loss of any generality.

2. Properties (1) and (2) are essential for the boundedness of the family of

semistable bundles of rank n and degree d over a curve. In fact, a strictly

larger family of vector bundles of rank n and degree d is bounded, namely,

the family satisfying properties (1) and (2) of Proposition 3.3.6.

Proposition 3.3.6 naturally leads to another example of a fine moduli space,

known as Quot scheme, which in turn is very much essential to construct the

moduli space of our concern.

Let F be a locally free sheaf of rank n and degree d over a curve C of genus

g satisfying

1. H1(X,F) = 0,

2. The natural evaluation map ev : H0(X,F)⊗OX → F is surjective.

Then by Riemann-Roch theorem we have:

χ(F) = d+ n(1− g) = h0(X,F)− h1(X,F) = h0(X,F).

Let N := d + mn + n(1 − g), then evaluation map satisfies the following exact

sequence:

kN ⊗OX ev // F // 0. (3.18)
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Surjective morphisms as in (3.18) from a fixed coherent sheaf are parametrized

by a scheme called Quot scheme. We recall the definition of this Quot Scheme.

Let F be a given coherent sheaf on C. Consider the moduli problem of

classifying quotients of F having rank r and degree d. For that, we consider

surjective morphism between sheaves

f : F � G

up to the following equivalence relation

(f : F � G) ∼ (f1 : F � G1)⇔ Ker(f) = Ker(f1),

or equivalently by five lemma, if there exists a sheaf isomorphism η : G → G1 such

that the following diagram commutes

F
Id
��

f // G
η

��
F f1 // G1

where G and G1 have rank r and degree d. The scheme that parametrizes all

quotients of F of rank r and degree d upto the above equivalence is known as

Quot Scheme and is denoted by Quotr,dF .

Let QuotdF denote the Quot scheme parametrizing all the torsion quotients of

F having degree d. Therefore we have

QuotdF = Quot0,d
F .

Let us recall the notion of a polynomial, called Hilbert polynomial, of a given

coherent sheaf.

Definition 3.3.8 Let X be projective curve equipped with an ample invertible

sheaf L and E be a coherent sheaf over X. The Hilbert polynomial of E with

respect to L is a polynomial P (E ,L) ∈ Q[t] such that for sufficiently large l ∈ N,

P (E ,L, l) = χ(E ⊗ L⊗l) = h0(X, E ⊗ L⊗l)− h1(X, E ⊗ L⊗l).

Remark 3.3.9 1. As by Serre’s vanishing theorem, higher cohomology group
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H1(X, E ⊗ L⊗l) vanishes for sufficiently large l (cf. [Ha, Chapter III, The-

orem 5.2]), therefore we have:

P (E ,L, l) = h0(X, E ⊗ L⊗l).

2. We simply denote P (E ,L, l) by P (l) when the sheaf and the line bundle

involved is clear from the context.

Let G be any quotient of F having rank r and degree d. Then G has the Hilbert

polynomial P (t) with respect to a degree 1 line bundle O(1) which is given by,

P (t) = rt+ d+ r · (1− g). (3.19)

As the curve C is given beforehand, its genus g is fixed and therefore P (t) is

dependent on r and d only. Hence the polynomial P (t) as in (3.19) is denoted by

[r, d]. Let QuotPF or Quot
[r,d]
F denote the Quot scheme parametrizing the quotients

of F having Hilbert polynomial P (t) = [r, d], then we have

Quot
P (t)
F = Quot

[r,d]
F = Quotr,dF .

Moreover, for r = 0 we have,

Quot
[0,d]
F = Quot0,d

F = QuotdF . (3.20)

Remark 3.3.10 The above equalities in (3.20) give an interpretation of QuotdF

in two apparently different ways. One can think of d as an integer and then the

Quot scheme QuotdF can be interpreted as the scheme parametrizing all the tor-

sion quotients of F having degree d. Also considering d as the constant Hilbert

polynomial, QuotdF can be interpreted as the scheme parametrizing all the quo-

tients of F having constant Hilbert polynomial d. Both are essentially the same.

This is not at all surprising as the degree of the Hilbert polynomial of a sheaf

G equals dim Supp G. Here the sheaf G being a torsion sheaf is supported on

finitely many closed points and hence degree of the Hilbert polynomial of G is

zero. Therefore it is a constant polynomial and from (3.19) we get that this is

exactly equal to d.
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The following theorem is about the smoothness of a Quot scheme in case of

constant Hilbert polynomial. We have discussed the proof of this theorem already

in Section 1.7. We mention the statement again for the sake of continuity.

Theorem 3.3.11 Let C be a non-singular projective curve and let n be any non-

negative integer. Then QuotnOrC is a smooth projective scheme.

Proof.See Theorem 1.7.1. �

3.3.3 Moduli space construction: Stable and semistable

bundles

Fix a line bundle O(1) of degree 1 over C. Choose an m >> 0 such that any

semistable vector bundle E over C of rank n and degree d is m-regular, that is,

H i(C,E(m− i)) = 0 for all i > 0.

In particular, we have (cf. [Hu-Ln, Chapter 1, §1.7, Lemma 1.7.2]):

1. h1(C,E(m)) = 0.

2. h0(C,E(m)) = d+mn+ n(1− g) =: N.

3. The natural map H0(C,E(m))⊗O → E(m) is surjective.

Let us denote the Quot Scheme Quotn,d+mn
ON simply by Q. Let

ONC×Q → F

be the universal quotient.

Note that the group scheme GLN acts on Q in the following manner:

Let T be an algebraic scheme over C.

Let g ∈ GLN(T ) be an automorphism ONC×T
g−→ ONC×T . Let [ONC×T → FT ] ∈

Q(T ).

Then, define

g.[ONC×T → FT ] := [ONC×T
g−→ ONC×T → FT ]

It is clear that this action in fact factors through an action of the group scheme

PGLN .
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We now have the main theorem of this chapter about the spaces parametrizing

stable and semistable bundles over a curve X.

Proposition 3.3.12 Let C be any smooth irreducible projective curve over com-

plex numbers. Then there exists a coarse moduli space Ms
C(n, d), also denoted

by Ms(n, d), for stable bundles of rank n and degree d. Moreover, the natural

compactification of Ms(n, d) is the moduli space MC(n, d) of semistable bundles

of rank n and degree d, also denoted byM(n, d) and is in fact a projective variety.

Proof.See [Ne 1, Chapter 5, §4] or [Hu-Ln, §4.3]. Let us give a brief outline of

the proof. Let R ⊆ Q be the open subset such that for all x ∈ R,

1. F|C×x is a semistable bundle,

2. H0(C,ON)→ H0(C,F|C×x) is an isomorphism.

It is immediate thatR is PGLN -equivariant. Then, for d > r(2g−1), we construct

MC(n, d) as the following good quotient:

MC(n, d) := R//PGLN .

and we have the quotient map

µ : R →MC(n, d). (3.21)

Let Rs ⊆ R be subset such that for all x ∈ Rs,

1. F|C×x is a stable bundle,

2. H0(C,ON)→ H0(C,F|C×x) is an isomorphism.

Restricting µ as in (3.21) to Rs, we obtain the geometric quotient

µ|Rs : Rs →Ms
C(n, d),

that is,

Ms
C(n, d) := Rs//PGLN .

Moreover, Rs parametrizes a family of stable vector bundles over C of rank n

and degree d having local universal property. Also two k-points of Rs lie in the

same orbit if and only if the vector bundles parametrized by these points are
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isomorphic. Therefore Ms
C(n, d) is a coarse moduli space by Proposition 3.3.4.

For d ≤ r(2g − 1), this holds too as tensoring by a line bundle of fixed degree is

an isomorphism and does not affect semistability or stability. �

Remark 3.3.13 Putting n = 1 and d = 0 in Proposition 3.3.12, we immediately

get that the Jacobian variety J(X) is a coarse moduli space.

We end this chapter by mentioning the importance of S-equivalence in the fol-

lowing proposition.

Proposition 3.3.14 Two semistable bundle F and F1 determine the same point

of the moduli space M(n, d) if and only if Gr(F ) ∼= Gr(F1). Hence the space

M(n, d) can also be interpreted as the moduli space of polystable bundles of rank

n and degree d.

Proof.See [Ne 1, Complement 5.8.1]. Indeed, the first part follows from the fact

that the orbit of Gr(F ) is contained in the closure of the orbit of the semistable

bundle F of rank n and degree d. The second part follows from Definition 3.2.3

and Remark 3.2.5. �



Chapter 4

Brill-Noether loci and

tautological algebra of semistable

bundles over elliptic curve

The moduli space of semistable bundles over an elliptic curve is identified with

the symmetric product of the curve itself. On the other hand, the corresponding

fixed determinant moduli space is isomorphic to projective space. Both these

facts are well known due to Tu (cf. [Tu]). Moreover, the Brill-Noether loci

inside these moduli spaces are thoroughly described (cf. [Tu, Section 4]). In

this chapter, we study the algebra generated by the cohomology classes of Brill-

Noether subvarieties and relations between them. Our problem is motivated by

Poincaré relation on a Jacobian variety of a smooth projective curve of genus g

over complex numbers.

Atiyah (cf. [At]) classified the indecomposable bundles over an elliptic curve

completely. In Section 4.1 we recall indecomposable bundles over an elliptic

curve and the moduli space of rank n degree d semistable bundles followed by

that. Given a fixed line bundle L over an elliptic curve, we also describe the

moduli space of semistable bundles of rank n and degree d whose determinant

is L. In Section 4.2 we discuss Brill-Noether subvarieties inside the moduli of

semistable bundles and show that in degree 0 we get an interesting stratification

of those special subvarieties. Finally in Section 4.3 we define the tautological

algebra as the algebra generated by some Brill-Noether loci and find the relations

amongst the cohomology classes of Brill-Noether subvarieties of the moduli space

of semistable bundles over an elliptic curve. We obtain results similar to the

77
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Poincaré relation on a Jacobian variety.

4.1 Structure of moduli space of semistable bun-

dles over elliptic curve

In this section we first describe the indecomposable bundles over elliptic curve,

given by Atiyah in [At]. Then we go through the structure of an arbitrary

semistable bundle of rank n and degree d modulo S-equivalence. We describe the

moduli space of semistable bundles over elliptic curve followed by that. Finally,

we explain the corresponding fixed determinant moduli space as a consequence

of that. Results and proofs in this section are mainly taken from [Tu] and [At].

Let us now recall that by E we denote an elliptic curve, that is, a smooth

projective curve over complex numbers of genus 1 (cf. Section 1.8). Throughout

this chapter we use this notation for an elliptic curve to differentiate it from other

higher genus curve C.

4.1.1 Indecomposable bundles on elliptic curve

Here we discuss indecomposable bundles over elliptic curve completely which in

turn will be required to describe the moduli space of semistable bundles over

elliptic curves. We recall that indecomposable bundles are the bundles which can

not be written as direct sum of two proper subbundles. The set of isomorphism

classes of indecomposable bundles of rank n and degree d is denoted by IndE(n, d).

Atiyah described IndE(n, d) completely. In the process he constructed Fn, the

unique line bundle in IndE(n, 0) with Γ(E,Fn) 6= 0. The construction of Fn and

a few properties are listed below as these are very important for our work.

Theorem 4.1.1 [At, Theorem 5] For any n ≥ 1, there exists a degree 0 vector

bundle Fn ∈ IndE(n, 0), unique upto isomorphism. Also F1 is chosen to be the

trivial line bundle OE and Fn is defined inductively such that they satisfy the

following exact sequence:

0→ OE → Fn → Fn−1 → 0.

Moreover, h0(Fn) = 1.
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Remark 4.1.2 1. By Theorem 4.1.1, F1 and F2 satisfy the following exact

sequence:

0→ OE → F2 → F1 → 0.

As F1
∼= OE, F2 therefore satisfies

0→ OE → F2 → OE → 0.

Hence F2
∼= I2, where I2 is the trivial bundle of rank 2.

2. These indecomposable bundles of type rank n and degree 0 provide a plenty

of examples of the fact that two isomorphic bundles may have different

number of independent global sections. For example, F2
∼= I2, but h0(F2) =

1 6= 2 = h0(I2).

For all n, d ∈ Z, n > 0, Atiyah defined some special indecomposable bundles of

rank n and degree d such that any indecomposable bundles can be written in

terms of those canonical bundles. In this regard we have the following theorem.

Theorem 4.1.3 [At, Theorem 7 and 10] Considering the elliptic curve E as an

abelian variety with the chosen base point p ∈ E as the zero element, we have the

following.

1. Given any n, d ∈ Z, n > 0, there exists a bundle FO(p)(n, d) of rank n and

degree d, such that any element F of IndE(n, d) is of the form

F ∼= FO(p)(n, d)⊗ L,

where L is a line bundle of degree 0.

2. Let M be a degree 0 line bundle over E and n1 = n
gcd(n,d)

. Then

FO(p)(n, d)⊗ L ∼= FO(p)(n, d)⊗M ⇐⇒ (L⊗M−1)n1 = OE.

3. detFO(p)(n, d) = O(p)d.

4. FO(p)(n, 0) ∼= Fn.

The bundle FO(p)(n, d) as in Theorem 4.1.3 are often called canonical inde-

composable bundle.
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Definition 4.1.4 A line bundle L of degree zero is called an n-torsion point of

J(E) if L⊗n = OE. By Torn we denote the subgroup of J(E) of all n- torsion

points.

The following proposition follows directly from Theorem 4.1.3.

Proposition 4.1.5 Consider the following map from the Jacobian of E to the

moduli space IndE(n, d).

ϕ : J(E)→ IndE(n, d)

L 7→ FO(p)(n, d)⊗ L.

Then the following holds.

1. ϕ is onto.

2. Fiber of ϕ is isomorphic to Torn1.

3. IndE(n, d) ∼= J(E)
Torn1

.

Now we can describe IndE(n, d) modulo the following proposition.

Proposition 4.1.6 The Jacobian variety J(E) of E is isomorphic to J(E)
Torn1

.

Proof.Consider the map

⊗n1 : J(E)→ J(E)

L 7→ L⊗n1 .

Then the following exact sequence

0 // Torn1
// J(E)

⊗n1 // J(E) // 0

gives the required isomorphism. �

Theorem 4.1.7 The moduli space IndE(n, d) can be identified with the curve E.

Proof.See [At, Theorem 7]. Indeed, as J(E) ∼= E by Proposition 1.8.4, this

follows from Proposition 4.1.5 and 4.1.6. �
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4.1.2 Semistable bundles over an elliptic curve

In this section we describe the structure of the moduli space of semistable bundles

over an elliptic curve. Following proposition asserts that in case of elliptic curve,

stability of a bundle implies semistability which factors through indecomposabil-

ity. Also all the notions of stability, semistability, indecomposability and being

simple coincide when rank and degree of a bundle are relatively prime.

Proposition 4.1.8 Any indecomposable bundle on an elliptic curve is semistable.

Moreover, it is stable if and only if its degree and rank are coprime.

Proof.See [Tu, Appendix A]. Indeed by Theorem 4.1.3, any indecomposable bun-

dle F of rank n and degree d over E can be written as a product of a canonical

indecomposable bundle FO(p)(n, d) and a line bundle of degree zero. Then by [Tu,

Lemma 29] , the bundle FO(p)(n, d) is semistable. Therefore F is also semistable

as tensor product by a line bundle does not effect the semistability. Rest follows

from the discussion before (3.13). �

Therefore we obtain the following diagram of some implications part of which

we got earlier in (3.9), (3.13) and (3.14).

Stable Simple Indecomposable

Semistable

in genus onegcd (rank,deg)=1

The following theorem describes the structure of an arbitrary semistable bun-

dle over elliptic curve in terms of canonical indecomposable bundles.

Theorem 4.1.9 Let n ≥ 1, d be any two integer. Let n = hn1 and d = hd1,

where n1 and d1 are coprime. Then, any semistable bundle over E of rank n and

degree d is S-equivalent to a bundle of the form

FO(p)(n1, d1)⊗
h⊕
i=1

Li, (4.1)

Li being degree zero line bundles, determined upto multiplication by an element

of Torn1 of J(E).
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Proof.See [Tu, Theorem 16]. Indeed, let F be any semistable bundle over E and

0 = W0 ⊆ W1 · · · ⊆ Wt = F

be a Jordan-Hölder filtration of F . Then denoting Wi

Wi−1
by Fi for all i = 1, · · · , t;

by Remark 3.2.5, we have

F ∼
t⊕
i=1

Fi. (4.2)

Also for all i, we have,

µFi = µF =
n

d
=
n1

d1

.

Now as all Fi’s are stable, by Proposition 4.1.8, we get that Fi’s are of rank n1

and degree d1. Now equating rank and degree in (4.2), we get that there are h

many terms in the that equation, that is (4.2) can be rewritten as

F ∼
h⊕
i=1

Fi. (4.3)

As stable bundles are indecomposable, by Theorem 4.1.3 and (4.3) we obtain

F ∼ FO(p)(n1, d1)⊗
h⊕
i=1

Li,

Li being degree zero line bundles, determined upto multiplication by an element

of Torn1 of J(E). �

Using Theorem 4.1.9, we can get the structure ofME(n, d), the moduli space

of S-equivalence classes of semistable bundles over elliptic curve E which we

discuss in the next section.

4.1.3 Moduli space of semistable bundles on elliptic curve

In this section we give the structure of ME(n, d). In the process we describe

SUE(n, L), the moduli space of S-equivalence classes of semistable bundles of

rank n and fixed determinant L of degree d over E. This is due to [Tu].

Theorem 4.1.10 Let n ≥ 1, d be any two integer and h = gcd(n, d). Then the

moduli space ME(n, d) is isomorphic to Sh(E).
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Proof.See [Tu, Theorem 16]. Indeed, let n = hn1 and d = hd1. By (4.1)

an arbitrary element F of ME(n, d) is S-equivalent to FO(p)(n1, d1) ⊗
⊕h

i=1 Li.

Observe that as Li is a bundle of rank 1 and degree 0 and O(p) is a bundle of

rank 1 and degree 1, Ln1
i ⊗ O(p) is a bundle of rank 1 and degree 1. Therefore∑h

i=1 L
n1
i ⊗O(p) ∈ ShJ1(E). Consider the map

f : ME(n, d)→ Sh(J1(E))

FO(p)(n1, d1)⊗
h⊕
i=1

Li 7→
h∑
i=1

Ln1
i ⊗O(p).

This map is an isomorphism. Therefore, the theorem follows from Proposition

1.8.3. �

Remark 4.1.11 Previously, we have observed the importance of S-equivalence

in Proposition 3.3.14. Now, Theorem 4.1.10 depicts the reason for considering

the moduli space ME(n, d) as the collection of all semistable bundles of rank n

and degree d over E modulo the S-equivalence instead of that collection only.

Now fixed determinant moduli space SUE(n, L) can be described immediately

modulo the following proposition.

Proposition 4.1.12 Let n ≥ 1, d be any two integer and h = gcd(n, d). Then

the Abel-Jacobi map ϕh : Sh(E) → Jh(E) can be identified with the determinant

map det : ME(n, d)→ Jd(E).

Proof.See [Tu, Theorem 2]. Indeed, using part (3) of Theorem 4.1.3 and by

Theorem 4.1.10 we get the following commutative diagram.

ME(n, d)
∼= //

det
��

Sh(E)

ϕh
��

Jd(E) ∼=
// Jh(E)

(4.4)

Hence the proposition follows. �

Theorem 4.1.13 Let n ≥ 1, d be any two integer and h = gcd(n, d). Let L

be a line bundle of degree d over E. Then the fixed determinant moduli space

SUE(n, L) is isomorphic to Ph−1.
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Proof.See [Tu, Theorem 3]. Indeed, the fiber of the map det : ME(n, d) →
Jd(E) over L ∈ Jd(E) is nothing but SUE(n, L). Theorem now follows from the

commutative diagram 4.4 in Proposition 4.1.12 and Remark 1.7.4. �

4.2 Brill-Noether loci over elliptic curve

In this section, we discuss about some special subvarieties of the moduli space

of semistable bundles over elliptic curve called Brill-Noether subvarieties. These

subvarieties came into picture while studying semistable bundles over any curve

whose space of global sections is varying. Here we work over elliptic curve. This

section is also taken from [Tu], where he described all possible Brill-Noether

subvarieties in a systematic manner.

We begin with two definitions.

Definition 4.2.1 A vector bundle F over E is said to be special if h1(F ) 6= 0.

Otherwise it is said to be a non-special bundle.

It is easy to observe that for non-special bundles, h0(E) is fixed by Riemann-

Roch theorem. Therefore, we are concerned about special bundles. Broadly,

Brill-Noether subvarieties lie inside the locus of special bundles and possess a

given number of independent global sections.

4.2.1 Bundles with positive degree

Here we work inside semistable bundles over elliptic curves of positive degree.

Lemma 4.2.2 Any semistable bundle F of positive degree over E is non-special,

that is, h1(F ) = 0.

Proof.See [Tu, Lemma 17, p. 13]. Indeed, let F be a semistable vector bundle

of degree d > 0 and KE be the canonical line bundle over E. Then KE
∼= OE by

Remark 1.4.3. By Serre duality we have

h1(F ) = h0(KE ⊗ F ∗) = h0(F ∗).

As F ∗ is also a semistable bundle and of negative degree, h0(F ∗) = 0. Therefore,

h1(F ) = 0. Moreover by Riemann-Roch theorem, h0(F ) = d. �
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Remark 4.2.3 A consequence of Lemma 4.2.2 is that the map

h0 : ME(n, d) −→ Z+ ∪ {0}

f 7→ h0(F )

is well defined for d > 0, and is the constant function d.

Definition 4.2.4 Let d > 0 and i ≥ 0 be any two integer. The Brill-Noether

loci are defined by

W i
n,d :=

{
f ∈ME(n, d) |h0(F ) ≥ i+ 1

}
.

This definition is well defined by Remark 4.2.3.

The following lemma is a direct consequence of Lemma 4.2.2 (cf. [Tu, p. 13]).

Lemma 4.2.5 Let d > 0. Then

W i
n,d
∼=

{
∅ if 1 ≤ d ≤ i;

ME(n, d) if d ≥ i+ 1.

Therefore Brill-Noether loci insideME(n, d) are not of much interest when d > 0.

4.2.2 Degree zero bundles

For degree 0 line bundles over E we have the following result.

Lemma 4.2.6 The Brill-Noether loci for d = 0, r = 1 are

W i
1,0
∼=

{
∅ if 1 ≤ i;

{OE} if i = 0.

Proof.See [Tu, p. 13]. As h0(L) = 0 or 1 for a line bundle L of degree zero over

E and moreover h0(L) = 1 if and only if L ∼= OE. �

Therefore in this case also stratifications of Brill-Noether subvarieties is noth-

ing non-trivial. So, only case remains to check is for bundles of rank n and degree

d with n ≥ 2 and d = 0.

Remark 4.2.7 Unlike d > 0 (cf. Remark 4.2.3), h0 : ME(n, 0) −→ Z+ ∪ {0} is

not well defined when d = 0. For example, let F2 be the Atiyah’s indecomposable
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bundle of rank 2 and I2 be the trivial bundle of rank 2. Then F2
∼= I2, but

h0(F2) = 1 6= 2 = h0(I2). See Remark 4.1.2 for more details.

In this case, because of Remark 4.2.7, two types of Brill-Noether loci are

defined inside SUE(n, L) andME(n, 0). We denote by f the S-equivalence class

of a semistable bundle F over E.

Definition 4.2.8 Let n ≥ 2 be any integer. The Brill-Noether loci in ME(n, 0)

are denoted by W i
n,0(∀) and W i

n,0(∃), and are defined as

W i
n,0(∀) :=

{
f ∈ME(n, 0) |h0(F ) ≥ i+ 1 for all F ∈ f

}
,

W i
n,0(∃) :=

{
f ∈ME(n, 0) |h0(F ) ≥ i+ 1 for some F ∈ f

}
.

Similarly we also need to define two types of Brill-Noether loci inside the

moduli space SUE(n, L), where L is line bundle over E of degree 0.

Definition 4.2.9 Let n ≥ 2 be any integer. Let L be a line bundle over E of

degree 0. Then, the Brill-Noether loci in SUE(n, L) are denoted by W i
n,L(∀) and

W i
n,L(∃), and are defined as

W i
n,L(∀) :=

{
f ∈ SUE(n, L) |h0(F ) ≥ i+ 1 for all F ∈ f

}
,

W i
n,L(∃) :=

{
f ∈ SUE(n, L) |h0(F ) ≥ i+ 1 for some F ∈ f

}
.

We have,

W i
n,L(∀) = W i

n,0(∀) ∩ SUE(n, L) and W i
n,L(∃) = W i

n,0(∃) ∩ SUE(n, L).

We now describe the Brill-Noether loci just defined. For that we require the

following propositions. Let SS0(E) denote the collection of all semistable bundles

over E of degree 0 and F ∈ SS0(E). Then we define

F̃ :=
{
F ′ ∈ SS0(E) |F ∼ F ′

}
.

Then we have:

Proposition 4.2.10 Consider the map

h0 : SS0(E)→ Z+ ∪ {0}

F 7→ h0(F ).
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Then for any F , F̃ is either contained in (h0)−1(0) or h0−1
(Z+) depending on

whether h0(F ) = 0 or not. Moreover, for any F with h0(F ) 6= 0, there exists

F ′ ∈ F̃ ∩ h0−1
(Z+) satisfying h0(F ′) = 1.

Proof.See [Tu, Lemma 18]. Indeed, the indecomposable bundle Fn as in Theorem

4.1.1 plays an important role in the proof. For proving the first part, we need the

fact that all Jordan-Hölder factors of Fn are isomorphic to the trivial line bundle.

To prove the second part, we need h0(Fn) = 1. �

Proposition 4.2.11 Let F be a semistable bundle of degree 0 over E. Then

most number of independent global sections are possessed by the direct sum of

line bundles among all the elements of F̃ .

Proof.See [Tu, Lemma 19]. Indeed, firstly we decompose F into its indecompos-

able factors and collect the factors having global sections together. That is, we

write

F ∼= Fk1 ⊕ · · ·Fkt ⊕H,

with h0(H) = 0. Then clearly h0(F ) = t. If
∑t

i=1 ki = n, then by (4.1) and

following the same argument as in (1) of 4.1.2 we can write

F ∼ In ⊕
∑

Lj, (4.5)

where Lj are some non-trivial line bundles over E. From that we obtain

h0
(
In ⊕

∑
Lj

)
= k ≥ h0(F ).

Moreover if F ′ ∼ F , then by transitivity of S-equivalence and by (4.5) we have

F ′ ∼ In⊕
∑
Lj and therefore k ≥ h0(F ′) as before. Hence the proposition follows.

�

Finally we end this section by describing the structure of the Brill-Noether

loci.

Theorem 4.2.12 [Tu, Theorem 4 and 5] Let n ≥ 2 be any integer and L be

a degree zero line bundle over E. Then the structure of the Brill-Noether Loci

W i
n,0(∀) and W i

n,L(∀) as in Definition 4.2.8 and 4.2.9 are given by

W i
n,0(∀) ∼=

{
∅ if 1 ≤ i;

Sn−1(E) if i = 0.
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W i
n,L(∀) ∼=

{
∅ if 1 ≤ i;

Pn−2 if i = 0.

Remark 4.2.13 We have observed that inside the moduli space of semistable

bundles of rank n and degree d with d > 0 or (n, d) = (1, 0), Brill-Noether loci do

not produce any non-trivial stratification. Now Theorem 4.2.12 says that among

two types of Brill-Noether loci in the moduli space of semistable bundles of rank

n and degree d with d = 0 and n ≥ 2, the first type again fails to do so.

So let us move to the last possible case in search of some non-trivial stratification

of Brill-Noether loci and hence an interesting algebra generated by cohomology

classes of them.

Theorem 4.2.14 Let n ≥ 2 be any integer and L be a degree zero line bundle

over E. Then the structure of the Brill-Noether Loci W i
n,0(∃) and W i

n,L(∃) as in

Definition 4.2.8 and 4.2.9 are given by

W i
n,0(∃) ∼= Sn−i−1(E),

W i
n,L(∃) ∼= Pn−i−2(E).

Proof.See [Tu, Theorem 4 and 5]. Indeed, note that W i
n,0(∃) ⊆ ME(n, 0) ∼=

Sn(E) by Theorem 4.1.10. Moreover by Proposition 4.2.11, f ∈ W i
n,0(∃) if and

only if i+ 1 terms in
∑
Lj as in (4.5) are copies of trivial line bundles and the re-

maining n−i−1 terms are any degree 0 line bundles. Hence W i
n,0(∃) ∼= Sn−i−1(E).

Now we have the following commutative diagram which is the restriction of the

commutative diagram (4.4) to the Brill-Noether loci.

W i
n,0(∃)

∼= //

det
��

Sn−i−1(E)

ϕn−i−1

��
J(E) ∼=

// Jn−i−1(E)

(4.6)

Therefore by Remark 1.7.4,

W i
n,L(∃) ∼= Pn−i−2.

Hence the theorem. �

Theorem 4.2.14 demonstrates that finally we obtain some interesting stratifi-
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cations consisting of Brill-Noether subvarieties inME(n, 0) and SUE(n, L), where

n ≥ 2 and L is a line bundle of degree 0 over E.

4.3 Tautological algebra and main theorems

The classical Poincaré formula opened up a whole new direction of problems in

algebraic geometry. Later on, many mathematicians have worked on the problems

of finding similar formula in many different contexts. In [Co], A. Collino proved

that Poincaré formula holds in Jacobian of a hyperelliptic curve under algebraic

equivalence. In 2003, P. E. Newstead proposed a project called the Brill-Noether

project in his web page (cf. [Ne 2]) and suggested for similar problems in more

general context. He mentioned that to deal with the detailed geometry of the

Brill-Noether loci, one can study their classes in the cohomology ring of the

moduli space. We work in similar kind of problem in the moduli space SUE(n, L)

and prove that Poincaré like formula holds over there.

In this section we define tautological algebra and tautological classes in our

situation and explain the reason for choosing the name tautological algebra. Fi-

nally we close this chapter after proving the main theorems.

4.3.1 Why the name tautological algebra

Mathematicians like R. Vakil, C. Faber, R. Pandharipande, A. Pixton, T. Graber

and many others have used the terminology Tautological Algebra. By tautological

algebra they meant a subalgebra of either cohomology ring or Chow ring of some

moduli space generated by classes of some naturally defined subvarieties. In [Mo],

Morita studied the tautological algebra of Mg, the moduli space of smooth pro-

jective curves of genus g, generated by some tautological classes inside the Chow

ring of Mg defined by Mumford (cf. [Mu 2]). As Brill-Noether subvarieties are

very natural by definition, it is quite natural to refer the subalgebra generated by

their cohomology classes as tautological algebra. In [Be 1], by (rational) tauto-

logical ring Beauville meant the smallest subring stable under pullback maps and

pushforward maps (⊗n)∗ and (⊗n)∗ respectively, induced by ⊗n : J(X)→ J(X),

closed under Pontryagin product of the rational Chow ring of J(X) and contains

classes of Wi, 1 ≤ i ≤ g as in (1.47). Here X denotes a connected, smooth,

projective curve of genus g over C. As we are concerned for Brill-Noether subva-
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rieties inside moduli space of semistable bundles over elliptic curve, we define the

algebra generated by their cohomology classes as tautological algebra and then

prove our main theorems.

4.3.2 Main theorems

Now we define tautological algebra properly in our context and then prove our

main theorems regarding the structure of those algebras and a few relations in

those algebras.

Definition 4.3.1 The cohomology classes [W i
n,0(∃)] ∈ H∗(ME(n, 0),Z) are called

the tautological classes. The subalgebra of H∗(ME(n, 0),Z) generated by these

tautological classes is called the tautological subalgebra of H∗(ME(n, 0),Z).

Definition 4.3.2 Let L be a degree zero line bundle over E. Then the cohomol-

ogy classes [W i
n,L(∃)] ∈ H∗(SUE(n, L),Z) are called the tautological classes. The

subalgebra of H∗(SUE(n, L),Z) generated by these tautological classes is called

the tautological subalgebra of H∗(SUE(n, L),Z).

Following theorem shows that the tautological class ζ := [W 0
n,L(∃)] is the

generator of the tautological subalgebra of H∗(SUE(n, L),Z).

Theorem 4.3.3 Let r be any positive integer and let L be a degree 0 line bun-

dle over E. Then W 0
n,L(∃) is a divisor inside SUE(n, L). Furthermore, in

H∗(SUE(n, L),Z), we have

[W i
n,L(∃)] = [W 0

n,L(∃)]i+1,

for all 0 ≤ i ≤ n−2 and the tautological algebra of SUE(n, L) is Z[ζ]/〈ζn〉, where

ζ is the cohomology class of W 0
n,L(∃) in H∗(SUE(n, L),Z).

Proof.We have the following stratification inside SUE(n, L) by Theorem 4.1.13
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and 4.2.14.
SUE(n, L) ∼= Pn−1

⊆ ⊆

W 0
n,L(∃) ∼= Pn−2

⊆ ⊆

W 1
n,L(∃) ∼= Pn−3

⊆ ⊆

· ·
· ·
· ·

⊆ ⊆
W n−3
n,L (∃) ∼= P1

⊆ ⊆
W n−2
n,L (∃) ∼= P0 ∼= {·}

So, W 0
n,L(∃) is a subvariety of SUE(n, L) of codimension 1 and hence a divisor.

We can calculate relations between [Pi]’s as follows. Inside Pn−1 we have the

following stratification:

{·} ⊆ P1 ⊆ P2 ⊆ · · · ⊆ Pn−2 ⊆ Pn−1.

Then we have:

H∗(Pn−1,Z) =
Z[ζ]

〈ζn〉
, (4.7)

where ζ is the cohomology class of Pn−2, that is, ζ = [Pn−2] = c1(O(1)) by Propo-

sition 1.5.5, c1(O(1)) being the first Chern class of O(1) over Pn−1. Moreover in

H∗(Pn−1,Z), we have:

[Pn−1−k] = ζk. (4.8)

Therefore, by (4.7) and Theorem 4.1.13 we get:

H∗(SUE(n, L),Z) =
Z[ζ]

〈ζn〉
.

Furthermore in H∗(SUE(n, L),Z), we get the following equality by (4.8) and

Theorem 4.2.14 :

[W i
n,L(∃)] = [Pn−i−2] = [Pn−1−(i+1)] = ζ i+1 = [Pn−2]i+1 = [W 0

n,L(∃)]i+1.
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Hence the theorem follows. �

The next theorem is about some relations between the generators of the tauto-

logical subalgebra of H∗(SUE(n, L),Z) and H∗(ME(n, 0),Z). Consider the map

(cf. [Bg-Tu, p. 338] and [Do-Tu, p. 348]):

π : J(E)× SUE(n, L)→ME(n, d)

(l, F ) 7→ l ⊗ F.
(4.9)

This map as in (4.9) suggests that the structure of the cohomology subalgebra

generated by [W i
n,0(∃)]’s is similar to the algebra generated by [W i

n,L(∃)]’s with

coefficients lying in H∗(J(E)). We make this precise in the next theorem. The

theorem says that tautological algebra ofME(n, 0) is generated by the cohomol-

ogy class of the Brill-Noether subvariety W 0
n,0(∃) as H∗(E)-algebra.

Theorem 4.3.4 The tautological algebra of ME(n, 0) is

H∗(E)⊗ Z[ξ]/〈ξn〉.

Here ξ is the cohomology class in H∗(ME(n, 0),Z) of the divisor W 0
n,0(∃) on

ME(n, 0).

Proof.We have the following stratification inside ME(n, 0) by Theorem 4.1.10

and 4.2.14.
ME(n, 0) ∼= Sn(E)

⊆ ⊆

W 0
n,0(∃) ∼= Sn−1(E)

⊆ ⊆

W 1
n,0(∃) ∼= Sn−2(E)

⊆ ⊆

· ·
· ·
· ·

⊆ ⊆

W n−2
n,0 (∃) ∼= S1(E) ∼= E

So, W 0
n,0(∃) is a subvariety ofME(n, 0) of codimension 1 and hence a divisor. By
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Proposition 4.1.12 and by Remark 1.7.4, the determinant morphism

ME(n, 0)→ J(E)

is a projective bundle Pn−1
J(E) → J(E).

Hence, by projective bundle formula as in Theorem 1.5.6,

H∗(ME(n, 0),Z) = H∗(J(E))⊗ Z[ξ]/〈ξn〉. (4.10)

Here ξ is the first Chern class of O(1) on Pn−1
J(E).

Therefore, by Proposition 1.8.4 and by (4.10) we get,

H∗(ME(n, 0),Z) = H∗(E)⊗ Z[ξ]/〈ξn〉.

However, by (4.6), we have the equality of the cohomology classes:

[W i
n,0(∃)] = ξi+1,

for all 0 ≤ i ≤ n− 2. This gives the assertion.

�

Remark 4.3.5 The cycle class map as defined in (2.7) is an isomorphism in case

of only two curves, namely A1 and P1. The same is true for Pn for n > 1 as well.

This happens because of vanishing of all odd dimensional cohomologies (cf. [Fu,

Example 19.1.11]). So, using [Ei-Hr, Theorem 2.1] very much similar results can

be obtained in the Chow ring CH∗(SUE(n, L)) and hence in CH∗(ME(n, 0)) like

we obtained in Theorem 4.3.3 and 4.3.4.
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Chapter 5

Brill-Noether loci and

tautological algebra for higher

genus curve

In this chapter, we deal with a similar problem as in the previous chapter. We

consider the tautological algebra of the (rational) cohomology ring of the moduli

space of semistable bundles over a curve of genus g greater than one. We deal

with the case when rank is 2 and degree is 2g − 2. We obtain relations in the

tautological algebra of H∗(MC(2, 2(g − 1)),Q) as well as H∗(SUC(2, L),Q), L

being a line bundle of degree 2g − 2 over C.

A study of the Brill-Noether loci was first carried out on the Jacobian of curves

by Fulton, Lazarsfeld, Griffiths and Harris. They contributed in answering the

natural questions on these loci, namely non-emptiness, irreducibility, dimension,

cohomological relations and understanding the singular loci. One can refer to

[Fu-La] and [Gf-Hr 1] to look into their work in this direction.

On the moduli space of higher rank semistable vector bundles of fixed de-

gree on a smooth curve, N. Sundaram (cf. [Su]) and M. Teixidor i Bigas (cf.

[Bg 1]) initiated a similar study of the Brill-Noether loci, answered some of the

interesting questions, and posed further questions. Notable results were obtained

in [Bg 1], [Bg 2], [Br-Gz-Ne], [Me 1] and [Me 2]. More recent developments on

non-emptiness of the Brill-Noether loci can be found in [La-Ne-St], [La-Ne-Pr],

[La-Ne 1], [La-Ne 2] and [La-Ne 3]. We mention a few of those in this chapter

that are relevant for our problem.

In this problem, the key idea is to relate the Brill-Noether loci on the moduli

95
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space MC(2, 2(g − 1)) with the Brill-Noether loci on the Jacobian variety of a

general spectral curve. We utilise a finite regular dominant morphism correspond-

ing to the rational map obtained in [Be-Na-Ra] from the Jacobian of a general

spectral curve C̃ to the moduli spaceMC(2, 2(g−1)). The constructions used to

prove the main results may give an insight for studying similar problems in other

moduli spaces as well.

5.1 Spectral curves and Moduli Spaces

In this section we recall the construction of spectral curve from [Be-Na-Ra] as

this is very much essential for our purpose.

5.1.1 Spectral curve

Let C be a smooth projective curve of genus g ≥ 2 defined over complex numbers.

Let L be a line bundle on C and s = (sk) be sections of Lk for k = 1, 2, · · · , n.

Let π : P(O⊕L∗)→ C be the natural projection map and O(1) be the relatively

ample bundle. Then π∗(O(1)) is naturally isomorphic to O⊕L∗ and therefore has

a canonical section. This provides a section of O(1) denoted by y. By projection

formula we have:

π∗(π
∗L⊗O(1)) ∼= L⊗ π∗(O(1)) ∼= L⊗ (O ⊕ L∗) = L⊕O.

Therefore π∗(π
∗L ⊗O(1)) also has a canonical section and we denote the corre-

sponding section of π∗L⊗O(1) by x. Consider the section

xn + (π∗s1)yxn−1 + · · ·+ (π∗sn)yn (5.1)

of π∗Ln ⊗O(n). Zero scheme of this section is a subscheme of P(O ⊕ L∗) and is

called a spectral curve of the given curve C and is denoted by C̃s or C̃ in short.

Let π : C̃ → C be the restriction of the natural projection π : P(O⊕L∗)→ C. It

can be checked that π : C̃ → C is finite and its fiber over any point c ∈ C is a

subscheme of P1 given by

xn + a1yx
n−1 + · · ·+ any

n = 0,
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where (x, y) is a homogeneous coordinate system and ai is the value of si at c.

Let g̃ be the genus of C̃. As π∗(O) ∼= O ⊕ L−1 ⊕ · · · ⊕ L−(n−1), we have the

following relation between genus g̃ of the spectral curve C̃ and genus g of C using

Riemann-Roch theorem.

1− g̃ = χ(C̃,O) = χ(C, π∗(O)) =
n−1∑
i=0

χ(C,L−i) = −(deg L) · n(n− 1)

2
+n(1−g).

Hence we have:

g̃ = (deg L) · n(n− 1)

2
+ n(g − 1) + 1. (5.2)

Moreover if we take the line bundle L to be of degree 2g − 2, say the canonical

line bundle KC for example, then from (5.2) the genus g̃ of the corresponding

spectral curve C̃ is given by:

g̃ = n2(g − 1) + 1 = dimMC(n, d). (5.3)

5.1.2 Spectral curve and moduli space of semistable bun-

dles

Here we relate the spectral curve C̃ with the moduli space of semistable bundles

of fixed rank and degree over C. Consider the following theorem.

Theorem 5.1.1 [Be-Na-Ra, Proposition 3.6, Remark 3.1, 3.5 & 3.8, p. 172-

174] Let C be any curve and L any line bundle on C. Let (s) = ((si)) ∈ Γ(L)⊕
Γ(L2)⊕ · · · ⊕Γ(Ln) be so chosen such that the corresponding spectral curve C̃s is

integral, smooth and non-empty. Then there is a bijective correspondence between

isomorphism classes of line bundles on C̃s and isomorphism classes of pairs (E,ϕ)

where E is a vector bundle of rank n and ϕ : E → L⊗ E a homomorphism with

characteristic coefficients si.

Let n be any positive integer. Then following the construction of spectral

curve, by Theorem 5.1.1 we get a smooth, irreducible curve C̃ and an n-sheeted

branched covering π : C̃ → C such that a general E ∈ MC(n, d) is the direct

image π∗l of a l ∈ Jδ(C̃). The relation between δ and d can be calculated as

follows (cf. [Bg-Tu, p. 332]). By the Leray spectral sequence we have:

H i(C̃, l) = H i(C, π∗l) (5.4)
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for all i. Hence we have:

χ(C̃, l) = χ(C, π∗l) = χ(C,E).

So by Riemann-Roch theorem we get,

χ(C̃, l) = χ(C,E)

⇒δ − (g̃ − 1) = d− n(g − 1)

⇒δ = d+ (g̃ − 1)− n(g − 1).

Therefore by (5.3) we get the following relation between δ(= deg l) and d(=

deg E).

δ = d+ (n2 − n)(g − 1). (5.5)

As direct image of a line bundle is not necessarily semistable, the map

π∗ : Jδ(C̃) 99KMC(n, d)

is only a rational map. Let us denote by Jss the semistable locus of Jδ(C̃) defined

as:

Jss :=
{
l ∈ Jδ(C̃) |π∗l ∈MC(n, d)

}
.

Then Jss is a Zariski open subset of Jδ(C̃) and the map

π∗ : J
ss →MC(n, d) (5.6)

is a regular dominant map (cf. [Be-Na-Ra, Theorem 1, p. 169]). Moreover, the

following theorem shows that the map π∗ is a finite map.

Theorem 5.1.2 [Be-Na-Ra, Remark 5.4, p. 177] The map π∗ : J
ss →MC(n, d),

as in (5.6), is of degree 23g−3 · 35g−5 · · ·n(2n−1)(g−1).

5.1.3 Prym variety associated to a spectral curve

In this section we consider the moduli space MC(2, d). For a general E ∈
MC(2, d), we get a spectral curve π : C̃ → C where the map π is a 2-sheeted

branched covering. Let n be the number of branch points. Then by Riemann-
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Hurwitz formula we get (cf. [Gf-Hr 2, p. 219]):

g̃ =
n

2
+ 2g − 1. (5.7)

Also we have from (5.3):

g̃ = 4g − 3. (5.8)

Therefore from (5.7) and (5.8) we get,

n = 4g − 4 6= 0 as g ≥ 2,

that is, π : C̃ → C is ramified with 4g − 4 branch points. Now we have the

following lemma.

Lemma 5.1.3 [Mu 1, Lemma, p. 332] The map π∗ : J(C)→ J(C̃) is injective.

Consider the following Norm map, denoted by Nm(π), associated to the map

π : C̃ → C.

Nm(π) : J(C̃)→ J(C)
m∑
i=1

nix̃i 7→
m∑
i=1

niπ(x̃i).

Identity component of Ker(Nm(π)) is defined to be the Prym variety associated

to the covering π : C̃ → C. But in our context the definition of Prym variety can

be further improved. For that consider the following lemma.

Lemma 5.1.4 [Ka, Lemma 1.1, p. 337] The following conditions are equivalent.

1. The map π∗ : J(C)→ J(C̃) is injective.

2. Ker(Nm(π)) is connected.

So by Lemma 5.1.3 and 5.1.4, Prym variety associated to the covering π : C̃ →
C is nothing but Ker(Nm(π)). Moreover we have, J(C̃) ∼= J(C) + P , where P

is the Prym variety associated to the covering π : C̃ → C. But this sum is not a

direct sum as cardinality of J(C) ∩ P is a non-zero finite number. Let H be the

kernel of the map

J(C)× P → J(C̃) ∼= J(C) + P

(x, y) 7→ x+ y.
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Then we have:

Theorem 5.1.5 [Mu 1, Corollary 1, p. 332] The Jacobian J(C̃) is isomorphic

to J(C)⊕P
H

, where P is a Prym variety and H is a finite group. In other words,

there exists an isogeny from J(C)× P to J(C̃).

5.2 Tautological algebra generated by the Brill-

Noether loci on Jd(C)

In this section, we investigate the cohomology algebra generated by Brill-Noether

subvarieties of J(C) and Jd(C). This problem is motivated by the classical

Poincaré formula on J(C).

5.2.1 Brill-Noether loci on J(C) and Jd(C)

In this subsection we recall the Poincaré formula on J(C) once again for sake of

completeness.

Let us fix a point P ∈ C. Recall the classical Abel-Jacobi map u : Sd(C) −→
J(C) as defined in Section 1.7.

Recall that W 0
d , for all d, 1 ≤ d ≤ g, called Brill-Noether subvarieties of J(C),

was defined as follows:

W 0
d := u(Sd(C)).

Let Θ := u(Sg−1(C)). The classical Poincaré relation determines the relations

between the cohomological classes of W 0
i on J(C) (cf. [Ab-Cr-Gf-Hr, Chapter 1,

§5, p. 25]):

[W 0
i ] =

1

(g − i)!
[Θ]g−i ∈ H∗(J(C),Q).

5.2.2 Brill-Noether loci in Jd(C)

For a fixed d, we recall the Brill-Noether loci W r
d , which are defined to be certain

natural closed subschemes of Jd(C) and discuss some of its properties relevant to

us.

Definition 5.2.1 As a set, for r ≥ 0, we define

W r
d :=

{
L ∈ Jd(C) |h0(L) ≥ r + 1

}
⊆ Jd(C).
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It is clear from semicontinuity theorem (cf. [Ha, Chapter III, Theorem 12.8]) that

W r
d is closed. In fact, W r

d has a natural scheme structure as determinantal loci

(cf. [Ab-Cr-Gf-Hr, §4, Chapter II, p. 83]) of certain morphisms of vector bundles

over Jd(C). We define these morphisms as follows:

Let us fix a Poincaré bundle L over C×Jd(C). It can be noted that existence

of such a Poincaré bundle assured by Proposition 1.6.14. Let E be an effective

divisor on C with

deg E = m ≥ 2g − d− 1.

Let Γ := E × Jd(C). Then, over C × Jd(C) we have the exact sequence:

0→ L → L(Γ)→ L(Γ)|Γ → 0. (5.9)

Let v be the projection from C × Jd(C)→ Jd(C). Now, applying the functor

v∗ to the morphism L(Γ)→ L(Γ)|Γ as in (5.9), we get a morphism

γ := v∗(L(Γ))→ v∗(L(Γ)|Γ).

Note that, by the choice of the degree of E and Grauert’s theorem (cf. [Ha,

Chapter III, Corollary 12.9]), we get that both v∗(L(Γ)) and v∗(L(Γ)|Γ) are vector

bundles of rank d+m− g + 1 and m respectively.

Definition 5.2.2 The Brill-Noether loci W r
d is defined to the (m+ d− g− r)-th

determinantal loci associated to the morphism γ.

To see that Definition 5.2.2 indeed agrees with Definition 5.2.1, in the sense

that the set theoretic support of 5.2.2 is exactly 5.2.1, we refer to [Ab-Cr-Gf-Hr,

Lemma 3.1, p. 178].

From general properties of determinantal loci, we have the following lemma:

Lemma 5.2.3 [Ab-Cr-Gf-Hr, Lemma 3.3, p. 181] Suppose r ≥ d−g. Then every

component of W r
d has dimension greater or equal to the Brill-Noether number

ρ := g − (r + 1)(g − d+ r).

Remark 5.2.4 Note that if r ≤ d − g − 1, then by Riemann-Roch theorem

W r
d = Jd(C). So, from here onwards, we will assume that r ≥ d− g.
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In general, the above inequality can be strict (cf. [Ab-Cr-Gf-Hr, Theorem 5.1,

p. 191]). Even, in the case when equality holds, W r
d can have more than one

components (cf. [Ab-Cr-Gf-Hr, Chapter V, p. 208]).

We recall the following theorem due to Griffith and Harris.

Theorem 5.2.5 [Gf-Hr 1, Main Theorem, p. 235] Let C be a smooth projective

curve of genus g and let ρ be the Brill-Noether number. Then

(a) dimW r
d ≥ ρ.

(b) For a general curve C,

dimW r
d = ρ.

Furthermore,

[W r
d ] =

r∏
α=0

α!

(g − d+ r + α)!
.θg−ρd . (5.10)

The formula as in (5.10) is called the Castelnuovo formula. Regarding the

irreducibility, we have:

Theorem 5.2.6 [Fu-La, Corollary 2.4, p. 280] If C is general and ρ > 0, then

W r
d is irreducible.

Now, recall that in the case when C is general, by Theorem 2.3.1 we have that

the Néron-Severi group NS(Jd(C)) of Jd(C) is generated by a translate of the Θ

divisor in J(C). We denote this class as θd. In particular, this implies that the

class of W r
d can be written in terms of powers of θd.

5.2.3 Tautological algebra generated by the Brill-Noether

loci in J(C̃)

In this section we investigate the subalgebra of H∗(J(C̃),Q) generated by the

Brill-Noether loci on J(C̃). Towards this, we consider the case when we have a

ramified double cover π : C̃ → C.

Let Rr
g denote the moduli space of ramified two sheeted covering of a con-

nected smooth projective curves of genus g with fixed ramification r. Then we

have the following theorem.
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Theorem 5.2.7 [Bi, Corollary 5.3, p. 634] The Néron-Severi group of the Ja-

cobian of a general element of Rr
g is generated by two elements; the two elements

are obtained from the decomposition (up to isogeny) of the Jacobian of a covering

curve (cf. Theorem 5.1.5). Furthermore, the Néron-Severi group generates the

algebra of Hodge cycles (of positive degree) on the Jacobian of the general double

cover.

Note that even if C is general, C̃ may not be general. However, in our situa-

tion, we will check that the above theorem still holds.

Theorem 5.2.8 The cohomology class of a Brill -Noether locus on a Jacobian

J(C̃) of a general 2-sheeted spectral curve π : C̃ → C can be expressed as a sum

of powers of divisor classes. In particular the tautological algebra is generated by

the divisor classes.

Proof.We only need to check that Theorem 5.2.7 can be applied to the Jacobian

of a general spectral curve. Fix a degree d > 0. Denote Sg,s the moduli space of

tuples

{(C,L, s = (s0, s1)} ,

where C is a curve of genus g, L is a line bundle on C of degree d, and s0 ∈
H0(C,L), s1 ∈ H0(C,L2). This moduli space can be interpreted as the moduli

space of spectral curves, as in § 5.1. There is a dominant rational map (on the

component where (s0 = 0))

S0
g,s → Rr

g →Mg.

Here r is the ramification type corresponding to a general section s equivalently

the zeroes of the equation (5.1) (cf. [Ba-Ci-Ve] also, for a similar moduli space).

The maps are given by

(C,L, s) 7→ (C,L,B(s)) 7→ C,

where B is the branch divisor of the spectral curve C̃s → C, such that L2 = O(B).

Since J(C̃s) depends only the ramification type B and L, Theorem 5.2.7 can be

applied to the Jacobian of a general spectral curve. �
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5.3 Brill-Noether loci on MC(n, d)

To define the Brill-Noether loci for MC(n, d), we start with a more general set

up. Let S be an algebraic scheme over C. Let E be a vector bundle over C × S
such that for all s ∈ S, Es := E|C×s is a vector bundle of rank n and degree d

over C.

Just as in 5.2.1, we have the following definition of Brill-Noether loci as a

closed set.

Definition 5.3.1 We define Brill-Noether loci W r
S,E associated to pair (S, E) to

be the set

W r
S,E :=

{
s ∈ S |h0(C, Es) ≥ r + 1

}
.

By [Hu-Ln, Lemma 1.7.6, p. 28], since the family E is a bounded family, we can

choose a divisor D in C of sufficiently high degree such that H1(C, Es(D)) =

0 for all s ∈ S. For notational convenience, we continue to denote the pullback

of D to C × S by D. Then, over C × S we have the exact sequence:

0→ E → E(D)→ E(D)|D → 0.

Let v : C × S → S be the projection.

Then, we have the morphism

f : v∗(E(D))→ v∗(E(D)|D).

Now for any s ∈ S we have h1(C, E(D)s) = h1(C, Es(D)) = 0. By Riemann-

Roch theorem we get

h0(C, E(D)s) =d+ n deg D + n(1− g),

h0(C, (E(D)|D)s) = deg D.

Hence, by [Ha, Chapter III, Theorem 12.11], we get that both v∗(E(D)) and

v∗(E(D)|D) are vector bundles and for any s ∈ S, we have isomorphisms:

v∗(E(D))|s
∼=−→H0(C, E|C×s(D)),

v∗(E(D)|D)|s
∼=−→H0(C, E|C×s(D)|D)

(5.11)
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Using Riemann-Roch theorem, we get that

rank v∗(E(D)) =d+ n deg D + n(1− g),

rank v∗(E(D)|D) =n deg D.

Definition 5.3.2 We define W r
S,E to be the (d+n deg D+n(1− g)− (r+ 1))-th

determinantal loci associated to the morphism f .

Remark 5.3.3 To see that the set-theoretic support of 5.3.2 is indeed 5.3.1, note

that we have the following commutative diagram:

v∗(E(D))|s v∗(E(D)|D)|s

0 H0(C, Es) H0(C, Es(D)) H0(C, Es(D)|D)

f |s

∼= ∼=

Hence,

rank f |s ≤ d+ n deg D + n(1− g)− (r + 1)⇐⇒ h0(C, Es) ≥ r + 1.

From this, it follows that definition 5.3.2 agrees with definition 5.3.1.

Lemma 5.3.4 If W r
S,E 6= ∅, then, codimension of each component of W r

S,E ≤
(r + 1)(r + 1− d+ n(g − 1)).

Proof.This follows from [Ab-Cr-Gf-Hr, §4, Chapter II, p. 83]. �

Lemma 5.3.5 Let S1, S2 be two algebraic schemes over C and let E be a bundle

on C × S2 such that for all s ∈ S2, Es is a vector bundle of rank n and degree d.

If g : S1 → S2 be a morphism, then

g−1W r
S2,E = W r

S1,(IdC×g)∗E .

Proof.Let v1 : C × S1 → S1 and v2 : C × S2 → S2 be the projections. Let

G := IdC × g : C × S1 → C × S2. Then we have the following commutative
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diagram:

C × S1 C × S2

S1 S2

G

v1 v2

g

This induces the following commutative diagram:

g∗(v2)∗(E(D)) g∗(v2)∗(E(D)|D)

(v1)∗G
∗(E(D)) (v1)∗G

∗(E(D)|D)

By (5.11), we get that the vertical arrows in the above diagram are isomorphisms.

Now, the lemma follows from general properties of determinantal loci. �

Now suppose C̃ be a smooth projective curve of genus g̃ and π : C̃ → C be a

finite morphism. Let E be a vector bundle over C̃ × S such that Es is of rank n

and degree d for all s ∈ S. Since the map π × Id : C̃ × S → C × S is a finite flat

morphism, we get that (π × Id)∗E is a vector bundle over C × S and in fact,

((π × Id)∗E)s = π∗(Es) for all s ∈ S.

We will denote this bundle (π × Id)∗E by E ′. Note that rank of E ′ is

n′ := n(deg π) for all s ∈ S,

and degree of E ′s is

d′ := d+ n(1− g̃)− n(deg π)(1− g).

Then we have the following lemma:

Lemma 5.3.6 The following equality of Brill-Noether loci holds:

W r
S,E = W r

S,E ′

.



§5.3. Brill-Noether loci onMC(n, d) 107

Proof.We have the commutative diagram:

C̃ × S C × S

S

π×Id

ṽ
v

Fix D a divisor on C such that h1(E ′s(D)) = 0 for all s ∈ S. Then

h1(C̃, Es(π∗D)) = h1(C, π∗(Es(π∗D))) = h1(C, E ′s(D)) = 0.

Therefore we can use the divisor π∗D for the construction of W r
S,E .

Let us consider the morphism

f : E(π∗D)→ (E(π∗D))|π∗D.

Then W r
S,E is defined to be the (d+n deg π∗D+n(1−g̃)−(r+1))-th determinantal

loci of the morphism ṽ∗f . Now ṽ = v◦(π×Id). It follows from projection formula

that (π × Id)∗f is nothing but the morphism

E ′(D)→ E ′(D)|D,

and therefore, W r
S,E ′ is the (d′ + n′ deg D+ n′(1− g)− (r+ 1))-th determinantal

loci of v∗(π × Id)∗f = ṽ∗f . It can be checked easily that

d′ + n′ deg D + n′(1− g)− (r + 1) = d+ n deg π∗D + n(1− g̃)− (r + 1).

�

Next, we will define Brill-Noether Loci for MC(n, d). Note that if (n, d) = 1,

we have a universal bundle over C × MC(n, d) and hence, we can apply the

previous construction to get the notion of Brill-Noether loci in this case. However,

in general we don’t have a universal bundle.

Recall the construction of the moduli space of semistable bundles of fixed rank

and degree over C (cf. Subsection 3.3.3 for more details).

Let R ⊆ Q be the open subset such that for all x ∈ R, F|C×x is a semistable

bundle and H0(C,ON)→ H0(C,F|C×x) is an isomorphism. It is immediate that

R is PGLN -equivariant. Then, we define
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MC(n, d) := R//PGLN .

and we have the quotient map

µ : R →MC(n, d).

Let us denote F|C×R by F ′. Then, over C × R, F ′(−m) is a vector bundle

satisfying (A). Hence, we have the closed subscheme W r
R,F ′(−m) ⊆ R.

Next, we will show that W r
R,F ′(−m) is GLN -equivariant (and consequently,

PGLN -equivariant).

Let q : T → W r
R,F ′(−m) be a T -valued point of W r

R,F ′(−m). Let ONC×T → FT be

the pullback of the universal quotient under q.

By Lemma 5.3.5, we get that W r
T,FT (−m) = q−1W r

R,F ′(−m) = T .

Let g ∈ GLN(T ). Then, by definition, the quotient corresponding to g.q : T →
R is given by

ONC×T
g−→ ONC×T → FT .

Again, by Lemma 5.3.5,

(g.q)−1W r
R,F ′(−m) = W r

T,FT (−m) = T.

In other words, we get that g.q : T → R factors through W r
R,F ′(−m).

Hence, the closed subscheme W r
R,F ′(−m) is GLN -equivariant.

Definition 5.3.7 We define Brill-Noether loci W̃ r
n,d(C) to be the scheme theo-

retic image of W r
R,F ′(−m) under the morphism µ.

Notation 5.3.8 We will denote W̃ r
n,d(C) by W̃ r

n,d when there is no chance of

confusion.

Remark 5.3.9 Note that since the morphism

µ : R →MC(n, d)

is a good quotient and W r
R,F ′(−m) is PGLN -equivariant, we get that µ(W r

R,F ′(−m))

is a closed subset of MC(n, d). Hence, as sets W̃ r
n,d = µ(W r

R,F ′(−m)). That is to

say, denoting the strong equivalence class of a semistable bundle E over C by e
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as before, we get

W̃ r
n,d =

{
e ∈MC(n, d) | there exists E ∈ e such that h0(C,E) ≥ r + 1

}
. (5.12)

Recall that Ms
C(n, d), the moduli space of stable bundles on C of rank n and

degree d, is an open subset of MC(n, d).

Definition 5.3.10 We define Brill-Noether loci W r
n,d of Ms

C(n, d) to be the

closed subscheme

W r
n,d := W̃ r

n,d ∩M
s
C(n, d) ⊂Ms

C(n, d).

Remark 5.3.11 Let Rs ⊆ R be the set of all x ∈ R such that F ′|C×x is stable.

Let F ′′ := F ′|C×Rs . Let µs : Rs →Ms
C(n, d) be the restriction of µ to Rs. Then,

W r
n,d is the scheme-theoretic image of W r

Rs,F ′′(−m) under the map µs.

Now, using the fact that µs : Rs →Ms
C(n, d) is a principal PGLN -bundle (cf.

[Hu-Ln, Corollary 4.3.5, p. 91]), and Lemma 5.3.4 we have that

Lemma 5.3.12 If W r
n,d 6= ∅, then dimension of each component of W r

n,d is at

least

n2(g − 1) + 1− (r + 1)(r + 1− d+ n(g − 1)).

Definition 5.3.13 We define

ρrn,d := n2(g − 1) + 1− (r + 1)(r + 1− d+ n(g − 1))

to be the expected dimension of W r
n,d.

Remark 5.3.14 The above lemma is not true in the case of W̃ r
n,d. It may have

components whose dimensions are less than ρrn,d (cf.[Br-Gz-Ne, §7] for example).

Lemma 5.3.15 Let S be an algebraic scheme and E be a vector bundle over C×S
such that for all s ∈ S, Es is stable of rank n and degree d. If f : S →Ms

C(n, d)

is the induced map, then

f−1W r
n,d = W r

S,E .

Proof.First we show that the statement is true in the case when S = Rs and

E = F ′′(−m). As we saw earlier, W r
Rs,F ′′(−m) is a PGLN -equivariant subscheme
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and since Rs → Ms
C(n, d) is a principal PGLN -bundle, W r

Rs,F ′′(−m) descends to

a closed subscheme Z in Ms
C(n, d), i.e.

µ−1
s Z = W r

Rs,F ′′(−m).

Since W r
n,d = µs(W

r
Rs,F ′′(−m)), it is clear that Z = W r

n,d. Hence

µ−1
s W r

n,d = W r
R,F ′′(−m).

Now let (S, E) be as in the hypothesis. Since F ′′(−m) is a locally universal

family, for any x ∈ S there exists Ux ⊂ R which is open and a map g : Ux → Rs

such that

(Id× g)∗F ′′(−m) = E|C×Ux .

By Lemma 5.3.5 we have

g−1W r
R,F ′′(−m) = W r

S,E ∩ Ux.

Since µs ◦ g = f |Ux , we have

(f |Ux)−1W r
n,d = W r

S,E ∩ Ux.

The lemma now follows from this. �

Now we are going to recall a few properties like non-emptiness and irreducibil-

ity of Brill-Noether loci in the moduli spaces Ms
C(n, d) and MC(n, d). These

properties are quite different in higher rank cases in comparison with rank one

case, as we’ll see below.

Let us now fix different notations of Brill-Noether subvarieties in different

spaces to avoid confusion as we deal with all the spaces together after some point.

For a given scheme and for a given sheaf E over C×S, we denote the Brill-Noether

loci by W r
S,E as in Definition 5.3.1 or in Definition 5.3.2. We also denote this by

W r
S when the sheaf involved is clear from the context. In MC(n, d) the Brill-

Noether locus is denoted by W̃ r
n,d as in (5.12). The same is denoted by W r

n,d

in Ms
C(n, d) as in Definition 5.3.10. Inside Jd(C), that is inside MC(1, d), the

Brill-Noether locus W r
1,d is denoted by W r

d as in Definition 5.2.1 or in Definition

5.2.2. Inside Jd(C̃) the same is denoted by W r
d (C̃).
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5.3.1 Brill-Noether Loci in rank one case

The following properties of Brill-Noether loci in rank one case is already men-

tioned in §6. We recall those results in a bit more detail for the sake of complete-

ness.

Theorem 5.3.16 [Gz-Bg, Theorem 3.3, 3.4 & 3.5, p. 6] Let d ≥ 1, r ≥ 0. Then

1. ρr1,d ≥ 1⇒ W r
d is connected for any curve C and irreducible on the generic

curve C.

2. Let C be a generic curve. Then

(a) ρr1,d < 0⇒ W r
d is empty.

(b) ρr1,d ≥ 0 ⇒ W r
d is non-empty, reduced , of pure dimension ρr1,d and

Sing W r
d = W r+1

d .

5.3.2 Brill-Noether loci in higher rank case

Now we assume n ≥ 2 and 0 ≤ d ≤ n, that is µ(E) ≤ 1 for any E ∈ Ms
C(n, d)

or E ∈ MC(n, d). Then we have the following result due to Brambila-Paz,

Grzegorczyk and Newstead (cf. [Br-Gz-Ne]).

Theorem 5.3.17 Let n ≥ 2 and 0 ≤ d ≤ n. Then

1. W r
n,d is non-empty if and only if d > 0, n ≤ d+(n−r−1)g and (n, d, r+1) 6=

(n, n, n).

2. W r
n,d is non-empty⇒ W r

n,d is irreducible, of dimension ρrn,d and Sing W r
n,d =

W r+1
n,d .

3. W̃ r
n,d is non-empty if and only if either d = 0 and r + 1 ≤ n or d > 0 and

n ≤ d+ (n− r − 1)g.

4. W̃ r
n,d is non-empty ⇒ W̃ r

n,d is irreducible.

This result was later extended by Mercat (cf. [Me 1] and [Me 2]) for µ(E) < 2.
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5.3.3 Brill-Noether loci for large number of sections

Let us denote ρrn,d as in Definition 5.3.13 by ρ(n, d, r, g). Then we have the

following theorem.

Theorem 5.3.18 [Bg 1, Theorem 1, p. 386] Let d = mn+d1, r+1 = tn+r1 with

0 ≤ r1 < n and 0 ≤ d1 < n. Also let C be a generic curve. Then W r
n,d is non-

empty and has a component of right dimension, namely minimum of ρ(n, d, r, g)

and n2(g − 1) + 1, if the following hold.

1. ρ(1,m− 1, t, g − 1) ≥ 0 if r1 > d1.

2. ρ(1,m, t, g − 1) ≥ 0 if 0 6= r1 ≤ d1.

3. ρ(1,m− 1, t− 1, g − 1) ≥ 0 if r1 = 0.

The above result is also true for W̃ r
n,d if either d1 6= 0 or the number ρ is strictly

positive in (1), (2) or (3).

Remark 5.3.19 When the Brill-Noether loci have a large number of sections,

that is, r+1 > n, the conditions of the above theorem are probably close to being

the best possible for existence of a component of right dimension.

5.4 Cohomology class of the Brill-Noether locus

Consider the semistable locusR of the Quot scheme, together with the classifying

morphism as in (3.21):

µ : R →MC(n, d).

By [Dr-Na], R is a smooth variety. Furthermore, the quotient map µ is a flat

morphism. Recall that the Brill-Noether locus is defined as (cf. Definition 5.3.7)

W̃ r
n,d = µ(W r

R,F ′(−m)).

and it corresponds to a cohomology class

[W̃ r
n,d] ∈ ⊕igr

W
2iH

2i(MC(n, d),Q).
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To see this, consider the cycle class map into the cohomology:

CH i(R)→ H2i(R,Z).

Since we do not know if the Brill-Noether locus is of pure dimension, we will

use the cycle class map on the Chow ring:

CH∗(R)→ ⊕iH2i(R,Z).

The Chow class

[W r
R] ∈ CH∗(R) = ⊕iCH i(R)

defines the Brill-Noether cohomology class

[W r
R] ∈ ⊕iH2i(R,Z).

Since R is an open variety, there is a weight filtration on the rational coho-

mology and we obtain a cycle class in ⊕igrW2iH2i(R,Q).

Recall the cycle class map from (2.10), on the operational Chow ring, for any

projective variety X:

cl : Ai(X)Q → grW2iH
2i(X,Q).

Since MC(2, 2(g − 1)) is a singular variety, we will consider A∗(MC(r, d))

instead of Chow groups.

Furthermore, due to universal property of the Brill-Noether locus on R, the

Chow class [W r
R] ∈ CH∗(R) defines a class:

[W̃ r
n,d] ∈ A

∗(MC(n, d))Q.

In particular, we have the following lemma.

Lemma 5.4.1 The Brill-Noether class [W r
R] is non-zero if and only if [W̃ r

n,d] is

non-zero, in Chow cohomology (respectively in weighted graded cohomology ring).

Proof.The quotient map µ is a flat morphism. Hence there is a pullback map:

A∗(MC(r, d))→ CH∗(R)
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and compatible with the cycle class map (cf. Lemma 2.5.1):

A∗(MC(n, d))Q

cl
��

µ∗ // CH∗(R)Q

cl
��

⊕igrW2iH2i(MC(n, d),Q)
µ∗coh

// ⊕igrW2iH2i(R,Q).

Since the subvariety W̃ r
n,d is the quotient of the GLn-invariant subvariety W r

R

under µ, the pullback µ−1(W̃ r
n,d) is the same as W r

R. Hence the lemma is clear.

�

5.5 Main theorems, when the rank is two

We want to give some relations amongst the Brill-Noether loci in MC(2, d). In

our context we fix degree d to be 2(g − 1).

In this case, Sundaram proved that W̃ 0
2,2(g−1) is a divisor inMC(2, 2(g−1)) (cf.

[Su]). We give some relations between the cohomology classes of the Brill-Noether

loci in terms of cohomology class of W̃ 0
2,2(g−1).

Since the moduli spacesMC(2, 2(g−1)) and SUC(2,L) are singular varieties,

recall from §2.5, that the cohomology classes are taken in the graded piece for

the weight filtration on the singular cohomology group H∗(MC(2, 2(g − 1)),Q)

(respectively H∗(SUC(2,L),Q)).

Consider the map π∗ : J
ss ⊆ J4(g−1)(C̃) →MC(2, 2(g − 1)) as in (5.6). Note

that as we have taken d = 2(g−1), therefore it follows from (5.5) that δ = 4(g−1).

Also from (5.3), we have

δ = 4(g − 1) = {4(g − 1) + 1} − 1 = g̃ − 1.

Hence we have the Theta divisor Θ := W 0
4(g−1)(C̃) in J4(g−1)(C̃). Following theo-

rem says that the Theta divisor of C̃ intersects both Jss and its complement in

J4(g−1)(C̃).

Theorem 5.5.1 [Be-Na-Ra, Proposition 5.1, p. 176] The Theta divisor of the

moduli space J4(g−1)(C̃), denoted by Θ, does not lie inside the complement of Jss

in J4(g−1)(C̃). More precisely,

1. For any point l ∈ J4(g−1)(C̃)−Θ, π∗(l) is semistable.
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2. There is a point ξ ∈ Θ such that π∗(ξ) is semistable.

Moreover we have that pullback of the divisor W̃ 0
2,2(g−1) ofMC(2, 2(g − 1)) is

the restriction of Θ to Jss.

Theorem 5.5.2 Let us denote the restriction of Θ to Jss by Θ|Jss. Then

π−1
∗ (W̃ 0

2,2(g−1)) = Θ|Jss .

Proof.See [Bg-Tu, Lemma 6, p. 335]. Also follows directly from the fact that

H0(C̃, l) = H0(C, π∗l). �

We now revisit Theorem 5.3.18 in this context. Then the following theorem

gives some sufficient conditions for the Brill-Noether loci in MC(2, 2(g − 1)) to

be non-empty. For the rest of the section, we will assume that any one of these

conditions holds.

Theorem 5.5.3 Let r + 1 = tn + r1 with 0 ≤ r1 < n. Then W̃ r
n,d is non-empty

and has a component of right dimension, namely minimum of ρ(2, 2(g − 1), r, g)

and 4(g − 1) + 1, if the following hold.

1. ρ(1, g − 2, t, g − 1) > 0 if r1 > 0.

2. ρ(1, g − 1, t, g − 1) > 0 if r1 < 0.

3. ρ(1, g − 2, t− 1, g − 1) > 0 if r1 = 0.

Proof.Follows directly from Theorem 5.3.18. �

Now we want to check whether Theorem 5.5.1 and 5.5.2 hold for other Brill-

Noether subvarieties of higher codimension. By (5.4), we have

π−1
∗ (W̃ r

2,2(g−1)) = W r
4(g−1)(C̃)|Jss .

A priori, it is not clear whether W r
4(g−1)(C̃) lies inside the complement of Jss or

not, that is even if W̃ r
2,2(g−1) is non-empty, its inverse image W r

4(g−1)(C̃)|Jss could

be empty when r > 0. (This question will be treated in the next subsection).

However for our purpose, it will suffice to consider a scheme S to give relations

between Brill-Noether subvarieties of MC(2, 2(g − 1)).

We can construct a scheme S with the following properties.

1. S is a smooth projective variety.
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2. There exists a birational morphism ϕ : S → J4(g−1)(C̃) and a generically

finite morphism ψ : S →MC(2, 2(g − 1)).

3. There is a morphism q : S → Q such that ψ = µ ◦ q.

4. The morphism ϕ : ϕ−1(Jss)→ Jss is an isomorphism.

5. The following diagram is commutative.

S
ϕ

zz

ψ

&&
J4(g−1)(C̃) π∗

//MC(2, 2(g − 1))

(5.13)

Moreover this diagram is commutative whenever the domains of the involved

rational maps are chosen properly. In particular, we have the following

commutative diagram.

ϕ−1(Jss)
ϕ

∼=zz

ψ

((
Jss π∗

//MC(2, 2(g − 1))

Then we have the following diagram.

C̃ × S

Id×ϕ
��

π×Id // C × S

Id×ψ
��

// S

ψ

��
C̃ × J4(g−1)(C̃)

π×π∗
// C ×MC(2, 2(g − 1)) //MC(2, 2(g − 1))

Let us denote by Js the following set.

Js :=
{
l ∈ Jδ(C̃) |π∗l ∈Ms

C(2, 2(g − 1))
}
.

Define S0 := ϕ−1(Js). Then we have the following lemma:

Lemma 5.5.4 ψ−1(W̃ r
2,2(g−1)) ∩ S0 = ϕ−1(W r

4(g−1)(C̃)) ∩ S0.
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Proof.If P is a Poincaré bundle over C̃ × J4(g−1)(C̃), then the morphism S0 →
MC(2, 2(g − 1)) is induced by the family (π × Id)∗((Id × ϕ)∗P)|C×S0 . Now by

Lemma 5.3.6 we get that

W r
S,(Id×ϕ)∗P ∩ S0 = W r

S,(π×Id)∗((Id×ϕ)∗P) ∩ S0.

The Lemma 5.3.15 then implies

W r
S,(π×Id)∗((Id×ϕ)∗P) ∩ S0 = ψ−1W̃ r

2,2(g−1),

and Lemma 5.3.5 implies

W r
S,(Id×ϕ)∗P ∩ S0 = ϕ−1W r

4(g−1)(C̃) ∩ S0.

Hence we get

ψ−1(W̃ r
2,2(g−1)) ∩ S0 = ϕ−1(W r

4(g−1)(C̃)) ∩ S0.

�

Hence we obtain the following:

Lemma 5.5.5 We have the equality of the closures

ψ−1(W̃ r
2,2(g−1)) ∩ S0 = ϕ−1(W r

4(g−1)(C̃)) ∩ S0

of a component of Brill-Noether loci on S. In particular, of the corresponding

cohomology classes in H∗(S,Z).

Denote this component Wr
S, in S.

5.5.1 Poincaré type relations on moduli spaces

Assume that C is a general smooth projective curve and C̃ → C is a general

smooth spectral curve, which is a double ramified covering of C. We denote

grW∗ H
∗(X,Q) = ⊕igrW2iH2i(X,Q).

the associated graded ring (for the weight filtration) of the even degree cohomol-

ogy of the singular moduli spaces X = MC(2, 2(g − 1)) and SUC(2,L), where

L ∈ J2(g−1)(C), (cf. §2.5).
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We start with the following lemma.

Lemma 5.5.6 The divisor classes on J4(g−1)(C̃) descend to the moduli space

MC(2, 2(g − 1)) via the above diagram (5.13).

Proof.Recall from [Be-Na-Ra, Proposition 5.7] a commutative diagram:

P ′ × Jg−1(C) //

��

J4(g−1)(C̃)

π∗

��
SUC(2)× Jg−1(C) //MC(2, 2(g − 1)).

Here P ′ is the Prym variety associate to the covering C̃ → C and SUC(2) is a

fixed determinant (of degree 2(g − 1)) moduli space. Furthermore, it is shown

that the indiscrepancy loci of the dominant rational map π∗ has codimension

at least two and the same is true when restricted to P ′. The proof of loc.cit.

implies that the polarisations on P ′ and Jg−1(C) descend on the moduli space

MC(2, 2(g − 1)). By functoriality, via the diagram (5.13), the divisor classes

descend on MC(2, 2(g − 1)). �

We now show the following.

Theorem 5.5.7 The cohomology class of a Brill-Noether locus on the moduli

space MC(2, 2(g − 1)) can be expressed as a polynomial on divisor classes. In

particular, the tautological algebra generated by the Brill-Noether loci is generated

by the divisor classes.

Proof.Recall the morphisms

ϕ : S → J4(g−1)(C̃)

and

ψ : S →MC(2, 2(g − 1)).

Now ϕ is a birational morphism and let E ⊂ S be the exceptional loci, and

ψ is a generically finite morphism. Hence, we have the following equalities of

cohomology rings:

H∗(S,Q) = H∗(J4(g−1)(C̃),Q)⊕H∗(E,Q),
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and an inclusion of rings (cf. Lemma 2.5.1):

ψ∗coh : grW∗ H
∗(MC(2, 2(g − 1),Q) ↪→ H∗(S,Q).

By Theorem 5.2.8, the cohomology class of the Brill-Noether loci W r
1,d(C̃) ⊂

J4(g−1)(C̃) is a polynomial expression on the divisor classes in H∗(J4(g−1)(C̃)).

This implies that in H∗(S,Q), the pullback of the cohomology class [W r
1,d(C̃)] is

the cohomology class of the Brill-Noether loci W r
S ⊂ S and it is a polynomial

expression on the pullback of the divisor classes on J4(g−1)(C̃).

Recall that S was constructed such that q : S → Q and ψ = µ ◦ q, wherever

µ is defined.

Denote S ′ := q−1(R). Since µ is flat and R is a smooth variety there are

pullback maps on the Chow cohomologies:

A∗(MC(2, 2(g − 1)))
µ∗→ CH∗(R)

q∗→ CH∗(S ′).

By Lemma 5.4.1,

q∗µ∗[W̃ r
2,2(g−1)] = q∗[W r

R] = [W r
S′ ]. (5.14)

Since R ⊂ Q is an open subvariety of Q, using the localization sequence

CH∗(S)→ CH∗(S ′)→ 0,

we deduce that [W r
S ] 7→ [W r

S′ ].

The above Chow cohomology diagram is compatible, via cycle class maps,

with the weighted graded cohomology rings:

grW∗ H
∗(MC(2, 2(g − 1)),Q)

µ∗→ grW∗ H
∗(R,Q)

q∗→ grW∗ H
∗(S ′,Q)

together with a restriction

H∗(S,Q)
t→ grW∗ H

∗(S ′,Q).

Here t is a surjection. In particular, [W r
S ] 7→ [W r

S′ ], in cohomology. Furthermore,

by (5.14), we deduce that

ψ∗coh[W̃
r
2,2(g−1)] = [W r

S ]. (5.15)
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By Lemma 5.5.5, Lemma 5.5.6 we know that the divisor classes descend, and

(5.15) imply that the cohomology class of the Brill-Noether locus in the graded

cohomology grW∗ H
∗(MC(2, 2(g − 1)),Q) is expressible as a polynomial on the

divisor classes. �

Consider the determinant morphism

det : MC(2, 2(g − 1))→ J2(g−1)(C).

The inverse image det−1(L) is the moduli space SUC(2,L), for a line bundle L
on C of degree 2(g − 1). Denote the Brill-Noether loci

W̃ r,L
2,2(g−1) := W̃ r

2,2(g−1) ∩ SUC(2,L).

Corollary 5.5.8 1. The cohomology class of a Brill-Noether locus W̃ r,L
2,2(g−1) in

the moduli space SUC(2,L) is expressible in terms of a power of the class

of the Theta divisor, with rational coefficients. In particular the tautological

algebra is generated by the class of the Theta divisor Θ.

2. If the Brill-Noether number is non-negative, then the cohomology classes

are non-trivial and imply the non-emptiness of the corresponding loci.

Proof.

1. Consider the inclusion:

j : SUC(2,L) ↪→MC(2, 2(g − 1)).

The pullback map on the cohomology ring

j∗ : grW∗ H
∗(MC(2, 2(g − 1),Q)→ grW∗ H

∗(SUC(2,L),Q)

is a ring homomorphism. By Theorem 5.5.7, the cohomology class of

the Brill-Noether loci is a polynomial expression on the divisor classes on

SUC(2, 2(g− 1)). The Picard group of SUC(2, 2(g− 1)) is generated by the

Theta divisor Θ. This gives the relation, for any irreducible component:

[W̃ r,L
2,2(g−1)] = α.[Θ]t(r) ∈ grW∗ H

∗(SUC(2,L),Q),
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for some α ∈ Q and t(r) is the codimension of an irreducible component of

Brill-Noether loci.

2. Using Theorem 5.2.5 a), we obtain that the dimension of every compo-

nent of the Brill-Noether loci on J4(g−1)(C̃) is at least the expected dimen-

sion. This implies that the corresponding cohomology class is non-zero in

H∗(J4(g−1)(C̃),Z). In turn, the same is true for the pullback class on S,

which further descends as a non-zero class on MC(2, 2(g − 1)) (see proof

of Theorem 5.5.7). This implies the non-emptiness of the Brill-Noether loci

on the moduli spaces, whenever the expected dimension is non-negative.

�

Let us end this chapter with the following remark.

Remark 5.5.9 It is likely that the Hodge conjecture holds for the Jacobian of

a higher degree general spectral curve (cf. [Ar] for unramified coverings). The

proofs employed in Theorem 5.5.7 will then be applicable also for higher rank

moduli spaces. The proofs raise further questions whether a Castelnuovo type

formula holds or not on the moduli space, for a general curve C.
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Conclusion

A few days back I was going through the celebrated thesis of Piper Harron (cf.

[Hr]). The conclusion of her thesis goes as follows:

“You’re still here? Oh, I guess I should tell you math papers generally don’t
have what you or I might call a “conclusion”. They just sort of stop.

So, yeah, you can, um, go now. But, cheers!

Seriously, it’s over.”

After going through her thesis a bit, I would like to believe that she was being

sarcastic while writing the mentioned conclusion. Hence I am going to conclude

by mentioning very briefly about what we have tried to investigate in our thesis

and what are the problems that can be studied along the same line.

We have investigated the tautological algebra, the algebra generated by the

cohomology classes of the Brill-Noether subvarieties, inside the cohomology ring

of the moduli space of semistable bundles over curves. In our first work, the

relations amongst the cohomology classes of the Brill-Noether subvarieties of the

moduli space of semistable bundles over an elliptic curve have been found (cf.

123
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Chapter 4). We have obtained results similar to Poincaré’s formula on a Jacobian

variety. In our second work (cf. Chapter 5), we have showed that when C is a

general smooth projective curve of genus g ≥ 2, d = 2g − 2, the tautological

algebra of MC(2, 2g − 2) (respectively SUC(2, L), deg L = 2g − 2) is generated

by the divisor classes (respectively the class of the Theta divisor Θ). Also we

have proved some results about the non-emptiness of the loci.

Let us first quickly justify the two different scenario we are under for the two

mentioned work. In our first work, we have obtained the main results (cf. Theo-

rem 4.3.3 & 4.3.4) for degree 0 bundles having rank greater than 1. Apparently,

this might lead to the fact that we have looked over rest of the cases. But we

actually have not missed those cases as then the stratifications of Brill-Noether

subvarieties are trivial, which is clear from Lemma 4.2.5 and Lemma 4.2.6. In

the second problem, we have worked under rank 2 and degree 2g − 2 case. In

this thesis we have considered Theta divisor on the moduli space Jg−1(C). Now

it can be noted that for any L ∈ Jg−1(C), χ(L) = 0. In fact, this is a necessary

criteria to define Theta divisor without “twist” (cf. [Bg-Tu, Section 2.3]). To do

so in the moduli spaceMC(n, d), we need to take d = n(g−1). As the first main

result (cf. Theorem 5.2.8) of our second work was obtained in rank 2 case, we

had no choice but to work on MC(2, 2g − 2).

We now mention a key difference in the approach of the two work we have

dealt with in this thesis. Following the techniques of the second problem (cf.

proof of part 1 of Corollary 5.5.8), it is quite clear that if we can obtain the

tautological algebra of MC(n, d) first, then the same can be easily obtained for

the corresponding fixed determinant moduli space. But we have investigated the

problem other way round for the first work, that is in genus one case. That we

were forced to do only because we were unable to obtain the tautological algebra

of the semistable moduli MC(n, 0) directly in that case.

It can be easily noted that problems similar to what we have dealt with can

be considered in some other suitable moduli spaces as well because of the basic

nature of the problem. For example, the problem can be studied in the moduli

space MC(n, d), where (n, d) 6= (2, 2g − 2), for any curve C with genus greater

than equal to 2. The investigation of similar algebra over some particular Quot

scheme is presently under way. As the results obtained so far are not convincing

enough, we abstain from including them in the thesis.
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