ON THE TAUTOLOGICAL ALGEBRA OF THE MODULI
SPACE OF SEMISTABLE BUNDLES OVER CURVE

A thesis submitted during 2020 to the
University of Hyderabad

In partial fulfillment of the award of
a Ph.D. degree in
School of Mathematics and Statistics

by
Arijit Mukherjee

Department of Mathematics
School of Mathematics and Statistics

UNIVERSITY OF HYDERABAD
P.O - Central University, Gachibowli
Hyderabad - 500 046

Telangana
India






CERTIFICATE

This is to certify that the thesis entitled “On the tautological algebra of
the moduli space of semistable bundles over curve” by Arijit Mukherjee
bearing Reg. No. 15MMPPQ1 in partial fulfillment of the requirements for the
award of Doctor of Philosophy in Mathematics is a bonafide work carried out
by him under my supervision and guidance.

The thesis has not been submitted previously in part or in full to this or any

other University or Institution for the award of any degree or diploma.

Parts of this thesis have been:

A. published in the following publications :

Arijit Mukherjee, Indian J. Pure Appl. Math., 51(4) , 2020. (in press)
(Chapter 4)

B. presented in following conferences :
1. International Conference on Analysis, Algebra, Combinatorics and their

Applications (ICAACA - 2020), 20-22 January, Jadavpur University, Kolkata.

2. International Conference on Advances in Physical ,Chemical and Mathe-
matical Sciences (ICAPCM - 2020), 13-16 February, RTMNU (Nagpur Univer-
sity), Nagpur.



Further, the student has passed the following courses towards fulfillment of

course work requirement for Ph.D.

Sr. No. Course code Name of the course Credits Grade
1 MMB801 Advanced Analysis 5 AT
2 MM802 Advanced Algebra 5 BT
3 MM810 Algebraic Geometry - 11 5 At
4 MM830  Research Methodology and Ethics 4 At

P

Dr. Archana S. Morye

Thesis Supervisor:

Dr. ARCHANA s. MORYE
Assistant Professor
Scho_ol qf Mathematics & Statistics
University of Hyderabad
HYDERABAD-500 046. T.S.

XA

Prof. R. Radha
Sea-areaet / DEAN

. ot SiR GifEe gmé?
thematics 2 _
FEEE SChO%nafaWOf e /eUniversity of Hyueiabad

$=r@E/Hyderabad-500 046 Al T.8.

Dean of the school:

re
1

HCs

DATE: October 28,2020 .







DECLARATION

I, Arijit Mukherjee, hereby declare that this thesis entitled “On the tau-
tological algebra of the moduli space of semistable bundles over curve”
submitted by me under the guidance and supervision of Dr. Archana S. Morye
is a bonafide research work. I also declare that it has not been submitted previ-
ously in part or in full to this University or any other University or Institution

for the award of any degree or diploma.

_A'_f_*lei Mukheriee
Thesis Author: Arijit Mukherjee
(Reg. No. 15SMMPPOT)

Date: 29.L0.20






ACKNOWLEDGEMENTS

Undertaking this Ph.D. is a journey, which would not have been possible without
direct and indirect involvement of many people. My sincere apology to those

whom I forget to acknowledge.

At first I would like to express my deepest gratitude to my advisor Dr. Archana
S. Morye for the continuous help, advise, unparalleled support and encourage-
ments. The completion of this thesis would not have been possible without her
constant guidance and support. She is always there for me for which I am deeply
indebted to her. I extend my gratitude to her for allowing to visit IMSc, Chennai

for my research work during my Ph.D.

I can not begin to express my thanks to Dr. Tathagata Sengupta, who was my
supervisor before shifting to HBCSE, TIFR, Mumbai. I have had the opportunity
to spend a couple of years under his guidance. He always encouraged me to learn
a lot of things and not to be confined. Though I miss his presence, nevertheless

he is always only a phone call away.

[ am extremely grateful to Prof. Jaya. N. Iyer for suggesting and helping me
in my research problems. I am deeply indebted to her for her generous help and
valuable suggestions. I can never forget the way she supported and nurtured me.
I extend my sincere gratitude to her for arranging my several visits to IMSc which

was very beneficial to me.

[ am very thankful to my doctoral committee members, Dr. S. [langovan and
Dr. M. S. Datt, for their minute suggestions and continuous assessment. It was
a real pleasure to attend a few courses taught by Prof. V. Kannan, Prof. R. Tan-
don and Prof. S. Kumaresan. I extend my sincere gratitude to Prof. V. Kannan,
Dr. S. llangovan and Dr. Suman Kumar for always being there whenever I ap-
proached them for seeking suggestions. I would like to thank Prof. R. Radha,
present dean of our school. I fondly recall the assistance I have received from
my fellow research scholars, faculties and other members of our department and
thank them all.

A major bonus of studying at University of Hyderabad is its charismatic cam-
pus. A countless memories of vagabond roaming amidst the jungles, meandering

through the meadows and climbing the rocks will be eternal.

[ am indebted to Kallol and Chandan as they made me feel at home when



I came to the university for the very first time to attend my Ph.D interview. I
fondly recall the countless moments I spent with Apurba, Bappa, Sudipta da,
Kuntal and Debika. Without these people my university life would not have
been the same. My everyday locus intersected the most with the loci of these
five persons - these bonds are that special. I like to thank Kaushik, Kohinoor
da, Nivedita and Sugata da for their selfless support through thick and thin. I
must not miss the opportunity to thank Sritam, Sazzad da, Suman da, Raja da,
Rudra da, Suchana, Soutrick, Pabitra and Joydev for making my university days
colourful. I want to thank all my friends, juniors and seniors of the university for

their cheerful company.

I am deeply indebted to the professors of my alma mater St. Xavier’s College
(Kolkata) and Ballygunge Science College (Calcutta University) for encouraging
me to pursue higher studies in Mathematics. Special thanks to Dr. Rabiul Islam
(St. Xavier’s College, Kolkata) for his invaluable insights into various branches of
Mathematics. 1 gratefully acknowledge all my teachers from my childhood days

who kept me motivated throughout to follow my dream.

I would like to recognize the assistance I have received from Chandra da and
Suratno da academically during my stay at IMSc. Many of my friends from IMSc
and IIT, Madras had made my days over there joyful and hence I thank them all.

I gratefully acknowledge UGC and ‘Complex and Algebraic geometry’ DAE-

project for providing me financial support.

Finally and most importantly, I like to thank my parents, dadu, dida and
thakuma for their sympathetic ear and unconditional support throughout. I miss
my late grandfather Mr. Benukar Mukherjee who would have been very glad and
proud for me like always. He always believed in my ability irrespective of the
circumstances and his belief in me has made this journey possible. I can not

express in words the importance of these persons in my life, literally.







ABSTRACT

This thesis consists of five chapters.

In Chapter 1, some basic algebraic geometry like Riemann-Roch theorem,
Serre duality, Jacobian variety, symmetric product etc. that are relevant for our
purpose have been discussed. We mainly recall Hodge structure, mixed Hodge
structure, Chow groups, operational Chow groups and cycle class map in Chapter
2. Chapter 3 deals with the moduli spaces in general followed by the moduli spaces

of stable and semistable vector bundles over curve.

In Chapter 4, the relations amongst the cohomology classes of the Brill-
Noether subvarieties of the moduli space of semistable bundles over an elliptic
curve have been found. We obtain results similar to the Poincaré relation on a

Jacobian variety.

Chapter 5 is devoted to similar problems as in chapter 4, but for genus greater
than one case. Here we determine the tautological algebra, the algebra generated
by the cohomology classes of the Brill-Noether loci in the rational cohomology of
the moduli space M (2, d) of semistable bundles of rank 2 and degree d. We show
that when C' is a general smooth projective curve of genus g > 2, d = 2g — 2, the
tautological algebra of M¢(2,2g — 2) (respectively SU-(2, L), deg L = 2g — 2)
is generated by the divisor classes (respectively the class of the Theta divisor ©).
Here by SU-(2, L) we mean the moduli space of semistable bundles over C' of
rank 2 and fixed determinant L with deg L = 2¢g — 2. Also we prove some results

about the non-emptiness of the loci.






SYNOPSIS

1 INTRODUCTION

In the nineteenth century, an abstract group was considered to be a subset of the
general linear group GL, for some n € N, which is closed under multiplication
and inversion. In the modern language, this is a representation of a group G on
a n-dimensional vector space. In the twentieth century, to classify or to under-
stand groups, their representations were studied. The analogous transformation
occurred in algebraic geometry during that time. Prior to that, algebraic curve
simply meant the zero set of an irreducible polynomial in two variables. In the
twentieth century, the notion of abstract curves changed and studying the classi-
fication of curves meant that one has to describe the moduli space M, (of fixed
genus ¢g). Like the representation of groups, one can see how an algebraic curve
can be embedded in the projective space P", for some r € N. Brill-Noether theory
is broadly related to the determinantal loci associated to the embeddings.

A study of the Brill-Noether loci was first carried out on the Jacobian of curves
by Fulton, Lazarsfeld, Griffiths and Harris. They contributed in answering the
natural questions on these loci, namely non-emptiness, irreducibility, dimension,
cohomological relations and understanding the singular loci. One can refer to
[Fu-La] and [Gf-Hr 1] to look into their work in this direction.

On the moduli space of higher rank semistable vector bundles of fixed degree
on a smooth curve, C. S. Seshadri, N. Sundaram (cf. [Su]) and M. Teixidor i
Bigas (cf. [Bg 1]) initiated a similar study of the Brill-Noether loci, answered
some of the interesting questions, and posed further questions. Notable results
were obtained in [Bg 1], [Bg 2|, [Br-Gz-Ne], [Me 1] and [Me 2]. More recent de-
velopments on non-emptiness of the Brill-Noether loci can be found in [La-Ne-St],
[La-Ne-Pr|, [La-Ne 1], [La-Ne 2] and [La-Ne 3]. A compilation of the questions
can be found in [Ne 2].

In this thesis we look at the questions of finding cohomological relations
amongst the Brill-Noether loci for a general curve. On the Jacobian J(C') of
a smooth projective curve C', this is classical and is known as Poincaré formula,

whereas the cohomological relations on the moduli space J;(C') of degree d line
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bundles on a general curve C' are called Castelnuovo’s formula (or Porteous’ for-
mula). Our aim in this thesis is to investigate similar cohomological relations
on the higher rank moduli spaces of semistable vector bundles with fixed degree
on a general smooth projective curve. The results are obtained in the rank two

situation and when the degree is 2g — 2, g being the genus of the curve.

We now outline our proposed thesis. The thesis consists of five chapters.
In the first chapter, some basic algebraic geometry like Riemann-Roch theorem,
Serre duality etc. that are relevant for our purpose have been discussed. We
mainly recall Hodge structure, mixed Hodge structure, Chow groups, operational
Chow groups and cycle class map in the second chapter. The third chapter deals
with the moduli spaces in general followed by the moduli spaces of vector bundles
over curve. We also thoroughly go through the definition and some properties of
the Brill-Noether subvarieties in this chapter which finally narrow down towards
our work. In the fourth chapter, the relations amongst the cohomology classes of
the Brill-Noether subvarieties of the moduli space of semistable bundles over an
elliptic curve have been found. We obtain results similar to Poincaré formula on a
Jacobian variety. The fifth chapter is devoted to similar problems as in chapter 4,
but for genus greater than one case. Here we determine the tautological algebra,
the algebra generated by the cohomology classes of the Brill-Noether loci in the
rational cohomology of the moduli space M¢(2,d) of semistable bundles of rank
2 and degree d. We show that when C' is a general smooth projective curve of
genus g > 2, d = 2g — 2, the tautological algebra of M¢(2,2g — 2) (respectively
SUc(2,L), deg L = 2g — 2) is generated by the divisor classes (respectively the
class of the Theta divisor ©). Here by SU-(2, L) we mean the moduli space of
semistable bundles over C' of rank 2 and fixed determinant L with deg L = 2g—2.

Also we prove some results about the non-emptiness of the loci.

The summary of this thesis work is given in Section 2, 3 and 4. In Section 2, we
recall Poincaré formula on the Jacobian variety J(C') and Castelnuovo’s formula
on J4(C') and discuss how these are related to the line of our work. Section 3 is
about a brief discussion on our first work (cf. [Mk]). Section 4 is based on our
second work which has already been communicated (cf. [Ga-Iy-Mk]).

In following sections we take C' to be a smooth projective curve of genus g
over complex numbers. We denote the moduli space of S-equivalence classes of
semistable bundles of rank r and degree d over C' by M¢(r,d). By SUc(r, L) we

denote the moduli space of S-equivalence classes of semistable bundles of rank r
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and fixed determinant L of degree d over C.

2 POINCARE FORMULA ON THE JACOBIAN VARIETY J(C) AND
CASTELNUOVO’S FORMULA ON J;(C)

In this section we recall Poincaré’s formula on the Jacobian variety J(C') and
Castelnuovo’s formula on J4(C). We reinterpret these formulas and show that
our problems in Section 3 and 4 arise quite naturally from them.

Let us denote the d-fold product of the curve C with itself by C*¢. Here,

S4(C), the d-th symmetric product of C, can be understood as the quotient space
C><d
od
the elements of Sd(C) are unordered d-tuple x1 + x5 + - - - + x4 of points of C'.

of C*4 under the action of the permutation group o of d symbols. Therefore

Let us denote by O(D) the line bundle corresponding to a divisor D on C.
Consider the classical Abel-Jacobi map @4: S4(C) — J4(C), defined as follows:

Oq: Sd(C) — Jqa(CO)

(1)
Tyt xo+ -t axg— O+ a9+ 4 x4).

Here x1+x9+- - -+x4 is also thought as a degree d effective divisor on C' and hence
O(xy + x93 + -+ + 24) makes sense. The image of S%(C) under the map ¢4 are
subvarieties of J;(C) and are denoted by WY for all 1 < d < g. The subvariety
W9 parametrizes degree d line bundles over C' having atleast one independent
global section as this is the image of effective divisors of degree d.

If we want to compare the cohomology classes [W?] for all 1 < d < g, it is
not possible to do so at this stage as they sit inside different J;(C') with varying
d. Thus, to compare their cohomology classes, it is natural to think those as
subvarieties of one fixed variety. This can be obtained as follows. Let us choose
a point p € C and fix it. Consider the map ®O(—dp): J4(C) — J(C) defined
as L + L ® O(—dp). Then the map u: S4(C) — J(C) is defined as u =
®O(—dp) o pgq where @, is as in (1). Now define Wy, for all d, 1 < d < g, called
the Brill-Noether subvarieties of J(C), as Wy := u(S%(C)).

Let © be the Theta divisor in J(C'), the translate of the divisor W), of
Jy—1(C) via the map ®O(—(g — 1)p): J4—1(C) — J(C). Let [W,] be the coho-
mology class of W, and [©] be the cohomology class of © in H*(J(C),Q). The
classical Poincaré’s formula expresses the cohomological classes of Wy, in terms
of the Theta divisor on J(C) (cf. [Ab-Cr-Gf-Hr, p. 25]). In H*(J(C),Q), for all
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d, 1 <d< g, we have
1

(9—d)!
The subvariety W9 of J;(C) which parametrizes degree d line bundles over C

[Wa] = (O]~ (2)

having atleast one independent global section can be further stratified by varying

the number of global sections. Define W7 := {L € Jy4(C) | R°(L) > r + 1}. Then
in Jy(C), 1 <d < g, we have the following stratification:

Ju(CYDWID--. DWW, D---

Thus it is natural to compare the cohomology classes of these varieties in the
cohomology ring H*(J;(C), Q). Let us define the Brill-Noether number, denoted
by p,as p:=g—(r+1)(g—d+r). When C is general, the Néron-Severi group of
Ja(C) is generated by a translate of the © divisor in J(C). We denote this class
as 05. We then have the following formula, known as Castelnuovo’s formula, very

much similar to (2) (cf. [Gf-Hr 1]). For a general curve C,

r

wil =11 oA g 3)

s lg—d+r+a)

Poincaré’s formula as in (2) can be interpreted as follows. Consider the subal-
gebra of H*(J(C'), Q) a priori generated by the cohomology classes Wy, 1 < d < g.
Then this subalgebra is generated by [©] only. Similarly, (3) depicts that the
subalgebra of H*(J4(C),Q), a priori generated by the cohomology classes W} for
varying r, is actually generated by 6; only. We consider similar problem in the
cohomology ring of the moduli space of semistable bundles over an elliptic curve

in Section 3 and over curve of genus greater than equal to two in Section 4.

3 TAUTOLOGICAL ALGEBRA OF THE MODULI SPACE OF SEMISTABLE
BUNDLES OVER AN ELLIPTIC CURVE

In this section, we describe the algebra generated by the cohomology classes of
certain Brill-Noether subvarieties of the moduli space of semistable bundles over
a curve C of genus 1, that is, over an elliptic curve. L. Tu proved that the Brill-
Noether loci are trivial for positive degree vector bundles (either empty or the
whole moduli space), and for line bundles of degree 0 (either empty or singleton)
(cf. [Tu, Lemma 17 & p. 13 below Lemma 17]). Therefore, we consider the Brill-




Noether loci when the degree of a vector bundle is zero and the rank is more than
one. Let L be a line bundle of degree 0 and let ¢ be any non-negative integer.
The following two definitions of the Brill-Noether loci are again due to [Tu, p. 4
& 5]. For a vector bundle F' over C, we denote the S-equivalence class of F' by
f. Then the Brill-Noether loci in SUc(r, L) are defined as follows:

vaL(EI) = {f € SUc(r,L)| h°(F) > i+1 for some F € f}.

We denote the cohomology class of W) (3) in H*(SUc(r, L),Z) by [W}(3)].
This class is also called a tautological class and algebra generated by these classes
(W) (3)] for varying i is called tautological algebra of H*(SUc(r,L),Z). We
consider the analogous situation in the moduli space M¢(r,0). The Brill-Noether

loci in M (r,0) are defined as follows:
Wio(3) == {f € Mc(r,0)|h°(F) > i+ 1 for some F € f}.

We define tautological class and tautological algebra of H*(Mc(r,0),Z) similarly.
In [Mk], we prove the main theorems on the relations amongst the tautological
classes in H*(SU¢(r, L), Z) and in H*(Mc(r,0),Z). We show the following:

Theorem 0.0.1 Let r be any positive integer and let L be a degree 0 line bundle
over C' of genus 1. Then W,?L(EI) is a divisor inside SUc(r, L). Moreover, in
H*(SUc(r,L),Z), we have

(W L)) = W, (D,

for all 0 <i < r —2 and the tautological algebra of SU:(r, L) is Z[(]/{C"), where
¢ is the cohomology class of W (3) in H*(SUc(r, L), Z).

Moreover the determinant morphism det: M¢(r,0) — J(C') is a projective bun-
dle (cf. [Tu, p. 12]) and we use projective bundle formula to obtain the structure
of the tautological algebra of the cohomology ring of M(r,0). In particular, we

prove the following:
Theorem 0.0.2 The tautological algebra of Mc(r,0) is

H*(C) @ ZIE]/(€7)-
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Here & is the cohomology class of the divisor W (3) on Mc(r,0) in the coho-
mology ring H*(Mc(r,0),7Z).

4 TAUTOLOGICAL ALGEBRA OF THE MODULI SPACE OF SEMISTABLE
BUNDLES OF RANK TWO ON A GENERAL CURVE OF GENUS GREATER THAN
ONE

In this section, we discuss the outline of a joint work with C. Gangopadhyay and
J. N. N Iyer. We consider the tautological algebra of the (rational) cohomology
ring of the moduli space of semistable bundles over curve of genus greater than
one. From now onwards, we are under rank 2 and degree 2g — 2 case. Let P
be a Prym variety associated to a spectral curve : C — C. We first prove

the following theorem using [Bi, Corollary 5.3] as there exists an isogeny from
J(C) x P to J(O).

Theorem 0.0.3 The cohomology class of a Brill-Noether locus on the Jacobian
J(C ) of a general 2-sheeted spectral curve T: C — C can be expressed as a Sum
of the powers of the divisor classes. In particular, the tautological algebra is

generated by the divisor classes.

The key idea is to relate the Brill-Noether loci on the moduli space with the
Brill-Noether loci on the Jacobian variety of a general spectral curve. We utilise
the rational map obtained in [Be-Na-Ra] from the Jacobian of a general spectral
curve C' to the moduli space M¢(2,2(g — 1)). Explicitly we get the following
rational map:

Tt Jagn)(C) ——» Mc(2,2(g — 1)). (4)

We use a finite regular dominant morphism corresponding to (4) and Theorem
0.0.3 to prove the following theorem (cf. [Ga-Iy-Mk]):

Theorem 0.0.4 Suppose C is a general smooth projective curve of genus g,
and g > 2. The cohomology class of a Brill-Noether locus on the moduli space

Mc(2,2(g — 1)) can be expressed as a polynomial on the divisor classes.

Similarly, in the moduli space SU¢(2, L) with deg L = 2(g — 1), we obtain the

following corollary:




Vil

P

Corollary 0.0.5 1. The cohomology class of a Brill-Noether locus W;’QL(gfl) mn
the moduli space SUc(2, L) is expressible in terms of a power of the class

of the Theta divisor, with rational coefficients.

2. If the Brill-Noether number is non-negative, then the cohomology classes

are non-trivial and imply the non-emptiness of the corresponding loci.

It is likely that the Hodge conjecture holds for the Jacobian of a higher degree
general spectral curve (cf. [Ar]| for unramified coverings). The proofs employed
in Theorem 0.0.4 will then be applicable also for higher rank moduli spaces. The
proofs raise further questions whether a Castelnuovo type formula holds or not

on the moduli space, for a general curve C.
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Conventions and Notations

We denote by C (respectively R) the field of complex numbers (respectively real
numbers). The ring of integers is denoted by Z and a set of non-negative integers
is denoted by N.

Given a complex number z, by Im(z) we denote its imaginary part. A fixed
square root of —1 is denoted by 2. For a morphism f, we denote its image by
Im(f). Given a space M, the identity morphism of M is denoted by Id,; or
simply by Id whenever no confusion is likely to occur.

Let R be a commutative ring with unity. By Spec(R) we denote the spectrum
of the ring R consisting of all prime ideals of R equipped with the structure of
a locally ringed space. Given any two positive integers m and n, the set of all
m X n matrices with entries from the ring R is denoted by M,,«,(R). The same
is denoted by M,,(R) whenever m = n. The subgroups of M,,(R) consisting of all
invertible matrices is denoted by GL,(R). By Id,, we denote the identity element
of M,,(R). By PGL,(R) we denote the quotient %. As the spaces GL,(R)
and PGL, (R) occur frequently, we use the notations GL,, and PGL,, respectively
whenever there is no confusion.

All the varieties are taken over C. The singular locus of a variety X is denoted
by Sing X. We set the notation dim X to denote the dimension of a variety X.
By C' we denote a smooth projective curve of genus g. We denote an elliptic curve
by E to differentiate it from higher genus curves, whenever needed. For a vector
bundle V' over a space M, its rank and degree are denoted by rank V' and deg V'
respectively. For a non-negative integer n, by A"V we denote the n-th exterior
power of the vector bundle V.

If C is a (locally small) category, and if X and Y are objects in C, then the
set of morphisms from X into Y is denoted by Hom(X,Y). If X =Y, then the
same set is denoted by End(X). By Ext'(X,Y) we denote the collection of all
extensions of Y by X.

We preserve the notation limA; to denote the direct limit of A;’s, where 7
—
iel
varies over an directed indexing set I.






Introduction

In this thesis we study two problems on the tautological algebra, that is, the alge-
bra generated by cohomology classes of Brill-Noether loci inside the cohomology
ring of moduli space of semistable bundles over curve. The first problem is re-
garding the complete description of the tautological algebra over elliptic curve.
The other problem concerns about a similar description in rank 2 case over curve

having genus greater than equals to 2.

The thesis consists of five chapters. The first three chapters are devoted to
a detailed study of the topics in algebraic geometry that are relevant for our
purpose and hopefully reflects our attempt to make this thesis self-content as far
as possible.

In the Chapter 1, some basic algebraic geometry like Riemann-Roch theorem,
Serre duality, Jacobian variety, symmetric product etc. that are relevant for our
purpose have been discussed. We mainly recall Hodge structure, mixed Hodge
structure, Chow groups, operational Chow groups and cycle class map in Chapter
2. Chapter 3 deals with the moduli spaces in general followed by the moduli spaces

of stable and semistable vector bundles over curve.

Tautological algebra of the moduli space of semistable bundles over an

elliptic curve

In Chapter 4, we describe the algebra generated by the cohomology classes of
certain Brill-Noether subvarieties of the moduli space of semistable bundles over
a curve C of genus 1, that is, over an elliptic curve. L. Tu proved that the Brill-
Noether loci are trivial for positive degree vector bundles (either empty or the
whole moduli space), and for line bundles of degree 0 (either empty or singleton)
(cf. [Tu, Lemma 17 & p. 13 below Lemma 17]). Therefore, we consider the Brill-
Noether loci when degree of a vector bundle is 0 and the rank is more than 1. Let

L be a line bundle of degree 0 and let ¢ be any non-negative integer. L. Tu de-

3



4 Introduction

fined Brill-Noether loci W}, (3) and W (3) in the moduli spaces SU¢(r, L) and
M (r,0) respectively (cf. [Tu, p. 4 & 5]). We denote the cohomology class of
W} (3) in H*(SUc(r, L), Z) by [W}(3)]. This class is also called a tautological
class and algebra generated by these classes [er (3] for varying i is called tauto-
logical algebra of H*(SUc(r, L), 7). We define tautological class and tautological
algebra of H*(Mc(r,0),7Z) similarly. In Subsection 4.3.2, we prove the main
theorems on the relations amongst the tautological classes in H*(SU¢(r, L), Z)
and in H*(Mc(r,0),Z). We show that the Brill-Noether subvariety W), (3) is
a divisor inside SU(r, L). Moreover, in H*(SUc(r, L),Z) we obtain Poincaré
like relations W} (3)] = W2, (3)]*! for all 0 < ¢ < 7 — 2. Moreover, denot-
ing the cohomology class of W, (3) in H*(SUc(r, L), Z) by ¢, we show that the
tautological algebra of SU¢(r, L) is Z[(]/{C").

Furthermore as the determinant morphism det: Mg(r,0) — J(C) is a pro-
jective bundle (cf. [Tu, p. 12]), we use projective bundle formula to obtain the

structure of the tautological algebra of the cohomology ring of M¢(r,0).

Tautological algebra of the moduli space of semistable bundles of rank

two on a general curve of genus greater than one

In Chapter 5, we consider the tautological algebra of the (rational) cohomology
ring of the moduli space of semistable bundles over curve of genus greater than
one. In that sense, this problem is a natural successor of the problem described in
previous chapter. In this chapter, we are under rank 2 and degree d = 2¢g —2 case.
We use [Bi, Corollary 5.3] to prove that the cohomology class of a Brill-Noether
locus on the Jacobian J (5) of a general 2-sheeted spectral curve 7: C — C can
be expressed as a sum of the powers of the divisor classes. In particular, the

tautological algebra is generated by the divisor classes.

The key idea is to relate the Brill-Noether loci on the moduli space with
the Brill-Noether loci on the Jacobian variety of a general spectral curve. We
utilise the rational map obtained in [Be-Na-Ra] from the Jacobian of a general
spectral curve C' to the moduli space Mc(2,2(g — 1)). We use a finite regular
dominant morphism corresponding to this rational map and in Section 5.5 we
show that when C'is a general smooth projective curve of genus g > 2 then the
cohomology class of a Brill-Noether locus on the moduli space M¢(2,2(g — 1))

can be expressed as a polynomial on the divisor classes.

Similarly, in the moduli space SU¢(2, L) with deg L = 2(g — 1), we obtain
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that the cohomology class of a Brill-Noether locus W;”;(gfl) in the moduli space
SUc(2, L) is expressible in terms of a power of the class of the Theta divisor,
with rational coefficients. Moreover, we show that if the Brill-Noether number
is non-negative, then the cohomology classes are non-trivial and imply the non-
emptiness of the corresponding loci. The proofs employed in these results will
then also be applicable for higher rank moduli spaces. The proofs raise further
questions whether a Castelnuovo type formula holds on the moduli space or not,
for a general curve C.

A more detailed introduction to the thesis, including precise definitions, results

and statements of the theorems, is given in the synopsis (p. i).







Chapter 1
Preliminaries

In this chapter, we go through a few basics of algebraic geometry that are relevant
for our purpose.

We thoroughly discuss about the sheaf cohomology, relations between vector
bundles and locally free sheaves and that between line bundles and divisors. The
Riemann-Roch theorem, Serre duality have been discussed in case of curves. We
also deal with abelian variety in general and Jacobian variety of a curve. In
the process we raise the question whether all abelian varieties can be realised
as Jacobian varieties or not. We answer this question affirmatively in case of
an elliptic curve and mention that we get negative answer in general. We also
spend some time on the symmetric product of curve and Abel-Jacobi map, both

analytically and algebraically.

1.1 Sheaves and Cohomology

In this section, we quickly go through a few examples of sheaves. Followed by that,
sheaf cohomology is described as derived functor cohomology and then compared

with Cech cohomology as well.

1.1.1 Sheaves

Let M be a complex manifold. Then we define the sheaves O, O*, M, M* QP ,
Z by,

e O(U) := the additive group of holomorphic functions on U,

7
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e O*(U) := the multiplicative group of non-zero holomorphic functions on U,

e M(U) := the additive group of meromorphic functions on U,

M*(U) := the multiplicative group of meromorphic functions on U that are

not identically zero,
e OP(U) := the group of holomorphic p-forms on U,
e Z(U) := the group of locally constant Z-valued functions on U,

where U is an open subset of M. Sometimes in these notations of sheaves, M
is used in the subscript especially when we need to emphasize about the base
space involved. For example, often we use the notations Oy, and O3, instead of
O and O* respectively. Also the notation Oy, help us to differentiate the sheaf
of additive group of holomorphic functions on M from the notation O which we
use to relate a line bundle of a given divisor (cf. Section 1.3).

For a variety X, the ring of its regular functions is denoted by k[X]. Alterna-
tively k[X] is also denoted by Ox(X). Here Ox is a sheaf, called the structure
sheaf of X and by Ox(U) we mean the ring of regular functions on an open
subset U of X.

Let us define skyscraper sheaf of x € X, denoted by C,, as follows:

C if U;
(Cx(U)::{ nxreU;

0 otherwise.

Remark 1.1.1 For a given sheaf F over a topological space X, we denote the
stalk of F at a point z € X by F,. By support Supp F of a sheaf F we mean
the set {x € X | F, # 0}. Therefore, Supp C, = {z}.

Now consider the following map on C — {0} :

exp: O — O

f— g2/

It can then be noted that when M is a complex manifold, the following se-

quence

O* ——0 (1.1)
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is an exact sequence of sheaves and is known as exponential exact sequence. We
will again come across this while defining the Chern class of a line bundle.

It is easy to observe that any sheaf can be naturally restricted to an open
subset to obtain a new sheaf. We denote by F|y the restriction sheaf of F to the

open subset U of X and is defined as follows:
Flo(V) = F V),

where V' C U is any open subset. The restriction sheaf Ox|y of the structure

sheaf of a variety X is often simply denoted by Oy.

Definition 1.1.2 A sheaf F on a topological space X is said to be a locally free
sheaf of finite rank n if for any x € X, there exists an open neighbourhood U of
X such that

Flo = Og",

as Ox modules.

Remark 1.1.3 From now onwards, by a locally free sheaf we mean a locally free

sheaf of finite rank. A locally free sheaf of rank 1 is called an invertible sheaf.

1.1.2 The sheaf cohomology as a derived functor coho-

mology and Cech cohomology

The motivation for studying cohomology theory can be described in many ways.
One of the ways arises from the observation that the global section functor is only
left exact. Let us describe this precisely.

Let us denote by I'(X, F) the set F(X) of all global sections of the sheaf F
over X. So, I'(X, ) is a functor from the category of sheaves to the category of
abelian groups, known as a global section functor and this covariant functor is
not exact in general. In this context, let us give an example.

Let Op1(n) denote the standard twisting sheaf over P*. Consider the following

exact sequence:

(ev[l;o] »€V[0:1] )

O —— O]pl (—2) o Opl C[I:O} EB (C[Ozl] —— 0 (12)

Here -xox1: Op1(—2) — Op1 denotes the multiplication map by the monomial
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ror1. By evpg: Op — Cpiyg and evp.q): Opr — Co.q) we denote the evaluation
maps at the point [1 : 0] and [0 : 1] respectively. We have T'(P', Op:1(—2)) = 0
as the invertible sheaf Opi(—2) has negative degree and I'(P!, Op1) = C as the
only global holomorphic maps from the projective line P! to C are constants.

Applying global section functor to (1.2), we obtain the following:
0——T(P!, Op1(-2)) —=T(P!,Op) —=Ca® C. (1.3)
Therefore the map I'(P', Op1) to C @ C in (1.3) is the standard map

C—-CopC

2z (z,2),

which is not surjective. As a result, we loose exactness while passing from (1.2)
to (1.3).

Remark 1.1.4 When X is an affine variety, the global section functor is exact.
One can refer to [Ha, Chapter III, Theorem 3.5], [Gr 1] and [Gr 2] for more

general results.

Let us denote the category of sheaves of Ox modules by Mod(X) and category
of abelian groups by Ab. By [Ha, Chapter III, Proposition 2.2|, we note that
Mod(X) has enough injectives. Recall that we already noted that the global
section functor I'(X,-) from the category Mod(X) to the category .Ab is only
left exact. The cohomology functors, denoted by H'(X,-), is defined as the right
derived functors of I'(X,-). For any F € Mod(X), the groups H'(X,F) are
called the cohomology groups of F. Thus the cohomology of sheaves is defined as

a derived functor cohomology.

Remark 1.1.5 1. By [Ha, Chapter III, Theorem 1.1A], it can be noted that
['(X,F) = H°X,F). This also justifies the reason behind two notations

of the collection of all global sections of a sheaf as in Remark 1.2.3.

2. Given a short exact sequence of sheaves

0 & F g 0,

we obtain the following long exact sequence at the cohomology level as
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follows:
0—>H0(X,€)—>H0(X,.F)—>H0(X,Q)—>H1(X,S)—>---

This phenomenon is an intrinsic property of right derived functor (cf. [Ha,

Chapter III, Theorem 1.1A]) and is of utmost importance for our purpose.

Let us denote the i-th Cech cohomology group of F with respect to the covering
U by H{(U,F). The i-th Cech cohomology group of F , denoted by H*(X, F), is

then defined as follows:

H(X,F):= lim H(U,F).
u

Moreover, at level one, we have the following isomorphism between Cech coho-

mology and the sheaf cohomology for any abelian sheaf F on X (cf. [Ha, p. 223]):

HY(X,F)= HY(X,F).

Remark 1.1.6 1. If we choose X to be a Noetherian and separated scheme,
the cover U to be affine and the sheaf F to be quasi coherent, we have the
equality of two cohomology theories (cf. [Ha, Chapter ITI, p. 225]). That is
to say, a large number of spaces are there for which these two cohomology

theories coincide.

2. Let M be a differentiable manifold. Let us denote the singular cohomology
and de Rham cohomology with coefficients from the constant sheaf R by
Hy, (M,R) and H}p(M,R) respectively. Denoting Hjp(M,R) @ C by

H} p(M), we have the following isomorphisms (cf. [GI-Hr 2, p. 43 & p. 44]):

H*

sing

(M,R) = Hj (M) = H (M,R).

This allows us to use these cohomology theories interchangeably.
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1.2 Locally free sheaves and vector bundles

In this section we recall the notion of holomorphic vector bundle. Also the con-
nection between locally free sheaves and vector bundles has been discussed.

Let M be a given differentiable manifold and £ a C'*° complex vector bundle
over M. Let m: . — M be the usual projection map. For every xy € M, there

exists an open set U,, in M, we have the diffeomorphisms
Puuy T (Ugy) = Uy x C™. (1.4)
The C-vector spaces E, := 7~ '{x} are called fibers of E over .

Remark 1.2.1 1. The diffeomorphisms ¢y, as in (1.4) are called a trivial-
isations of E over U. It is easily noted from (1.4) that for any two such

trivialisations ¢y and ¢y, the map

:UNV — GL,(C
guv ( ) (1.5)

2 = (ou © Py {ayxen
is C'*°. The maps gyy are called transition functions for E corresponding

to ¢y and @y .

2. The transition functions clearly satisfy the following two properties, known

as cocycle conditions:

(a) guv(z) - gvu(z) =1d, foral z€e UNV.

(b) guv(z) - gyw(z) - gwu(z) =1d, forallz e UNV NW,

Definition 1.2.2 Let £ — M be a C* complex vector bundle and U be an
open set of M. A section over U is a C*™° map s: U — F such that for all x € U,

s(z) € E,. A section over M is called a global section.

Remark 1.2.3 The space of global sections of a vector bundle E over M is
denoted by TI'(M, E) or by H°(M, E). In short, we use the notations I'(E') and
H°(E) instead of I'(M, E) and H°(M, E) respectively, when the underlying space
involved is clear from the context. Also, sometimes the notation I'(M) is used

for the same, if there is no confusion regarding the bundle involved. So, for an
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open subset U of M, the space of all sections over U is denoted by I'(U). Then

following this notation, I' can be interpreted as a sheaf.

Clearly, the definitions of vector bundles and sections suggest that these can
be defined in many other categories by taking the morphisms involved in these
definitions suitable for that particular category. Throughout we are going to work
on holomorphic category and so let’s just precisely define vector bundles in this

category.

Definition 1.2.4 A complex vector bundle 7: £ — M over a complex manifold
M is said to be a holomorphic vector bundle if E gets equipped with the structure
of a complex manifold such that for any x € M, there exists a open set U, in M

with x € U, and a trivialization
P, : T (Uygy) = Uy x C"

that is a biholomorphic map.

So transition functions, sections etc. involved with any such holomorphic vector
bundle are holomorphic maps. From now onwards, by vector bundles we would
mean a holomorphic vector bundle and everything related should be considered
in holomorphic category only unless otherwise specified.

Let X be a smooth projective variety over C. It can be noted that I" is sheaf
of modules over the sheaf of rings Ox. Indeed, for any open subset U of X for

which there exists a trivialization, we have:

NU)—a Y U)=UxC"
Tt (ZL‘, fl(x)v LRI fn(x))a
fi: U — C being regular functions. That is to say, on sufficiently smaller open

set U,
r(U) = 0%,

So, I' is a locally free sheaf of Ox modules. In fact, the converse is also true. In

this regard, let’s state the following theorem.

Theorem 1.2.5 [Sh, Theorem 6.2] Let Vectx(n) denote the set of all vector bun-

dles over X of rank n modulo bundle isomorphism. Also, by Locx(n) let us denote
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the set of all locally free sheaves of rank n over X upto sheaf isomorphism. Then

we have the following one-one correspondence between Vectx(n) and Locx(n):

Vectx(n) — Locx(n)
B T(B).

1.3 Line bundles and divisors

In the preceding section we observed that upto isomorphism vector bundles and
locally free sheaves of same rank can be identified. Therefore there is a one-one
correspondence between invertible sheaves over X and line bundles on X upto
isomorphism. In this section, we go through sheaf theoretic interpretation of line
bundles and divisors and connection between them.

Let m: L - X be a holomorphic line bundle, that is a rank 1 vector bundle
over X. Let {U,, pa} be a set of trivializations. Corresponding to these trivial-
izations, we have transition functions gy, v, : Us NUs — GL1(C) = C* as defined
in (1.5) of Remark 1.2.1, but in the category of holomorphic line bundles. Let us
denote gy,u, simply by g.s. They satisfy the following cocycle conditions as in
Remark 1.2.1:

9ap(x) - gpa(z) =1d; = 1 for all x € U, N Up,

(1.6)
908() - 93y(2) - gya(z) =1d; = 1for allz € U, NUg N U,

Moreover, these transition functions {g.s € O*(U,NUg)} defines the line bundle
L uniquely.

This naturally leads us to a sheaf-theoretic description of line bundle. For a
given line bundle L — X, its transition functions {g.s € O*(U, N Us)} can be
regarded as the representation of a Cech 1-cochain on X having coefficients from
the sheaf O*. Moreover, (1.6) depicts that {gas} is in fact a Cech cocycle.

For the given line bundle L — X and the same open cover {U,}, we can

define another set of trivializations {¢,} as follows:

wa - fa@oou

where f, is any non-zero holomorphic function for all a. Corresponding to these

newly given trivializations {1, }, we have a new set of transition functions {h.s}
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as well and they are related to the old ones through the following relations:

hos = 12 g, (1.7
fs

Therefore we can conclude similarly that {h.s} is a Cech cocycle. Something
more can be said in context of relating the Cech cocycles {gns} and {h,s}. That
is to say, the cocycles {gn5} and {h.s} give same line bundle if and only if
{Gap - h;é} is a Cech coboundary. Hence H'(X, ©*) is the set of all line bundles
on X (cf. [We, Lemma 4.4]). Also for given two line bundles L; and L, with
{945} and {g25} respectively, {g}s - 925} and {géﬂfl} give the bundles L; ® Lo
and L} respectively. As a result, H'(X, O*) naturally gets equipped with a group
structure and is called the Picard group of X, denoted by Pic(X).

Definition 1.3.1 By an analytic hypersurface we mean an analytic subvariety
V of X of codimension 1 in X, that is around any of its point, V is given by a

single holomorphic function.

Definition 1.3.2 By a diwisor D on X, we mean a locally finite formal linear

combination of irreducible analytic hypersurfaces V; of X of the form D = )" a;V;.

Remark 1.3.3 1. From now on, we simply call an analytic hypersurface by

hypersurface.

2. The sum in the expression D = ) a,;V; of Definition 1.3.2 is finite whenever
compactness of X is assumed. In that case, by degree of a divisor we simply

mean the integer > . a;.

3. The set of all divisors on X is naturally an additive group and is denoted
by Div(X). On compact X, Div(X) can therefore be interpreted as free
abelian group generated by codimension 1 irreducible subvarieties of X.
Moreover when X is a curve, that is of dimension 1, a divisor D on X looks

like D =" | a;p; for some closed points p; of X.

4. A divisor D = > a;V; is said to be effective if a; > 0 for all i. We use the

notation D > 0 for such a divisor.

Let us go through the notion of order of a holomorphic function at a point of a

hypersurface. Suppose V is an irreducible hypersurface of X. Let f be a local
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defining function for V' near a point x € X. For any other holomorphic function g
that is defined near x, by the order of g along V' at x we mean the largest integer
a such that the equation g = f* - h is satisfied in the local ring Ox,. A priori
this definition is very much dependent on the point z, but [G{-Hr 2, Proposition,
p. 10] says that it is not so. Thus, the integer a can now be called the order of g
along V' and is denoted by ordy (g).

This definition leads us to the sheaf theoretic description of divisors. A global

M*
O*

meromorphic functions f, that are not identically zero on U, with ;—‘; € 0% (UyN

section f of the quotient sheaf can be given by an open cover {U,} and

Us) so that for any hypersurface V' of X,

ordy (f,) = ordy (fs).

Then the divisor D = ), ordy(f,) - V can be associated to the given global

section f. Here for each such V', a’s are chosen with the property V N U, # 0.

M-
o

converse is also true. Let D = ), a;V; be a divisor on X. a open cover {U,} of

Thus given a global section f of the sheaf we obtain a divisor. In fact, the

X can be so chosen that in each U,, every V; appearing in D locally given by the
functions g;, € O(Uy). Then f, =[], gii € M*(U,) gives us a global section of

/(\9" As a result, we obtain the following identification:
Div(X) = H° (X, 2% . (1.8)

Remark 1.3.4 Any element of H° (X , /(\9/‘) is often called Cartier divisor. On

the other hand, any element of Div(X) is called Weil divisor. Then (1.8) suggests

that those two types of apparently different divisors are same in our case. It can

be noted that they are not same in general. For more details about the conditions
on X under which these two notions coincide, one can refer to [Ha, Chapter II,

Proposition 6.11].

Now we are in a stage to relate Div(X) and Pic(X). Let D be a divisor on X.

Let {fa} be the local defining functions over some open cover {U,} of X. Then

on U, NUg, the functions g, defined by g, 1= o are holomorphic and non-zero.

I8
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Moreover they satisfy cocycle conditions, that is on U, N Ug N U, we have:

gaﬂ'gﬁv'gmzf—ﬂ'f—'f—zl-
o [

The unique line bundle given by these transition functions {g.s} is called the
associated line bundle of D and is denoted by O(D). This definition, though a
priori depends upon the chosen local defining equation of D, is actually indepen-

dent of local data and hence makes sense.

We now go through the reverse construction. Recall that, we have defined
ordy (f) is defined for a holomorphic function f on X. This definition can be
extended to meromorphic functions as well. Let [ be a meromorphic function on
X, locally expressed as ¥, quotient of two holomorphic maps. For an irreducible

hypersurface V' of M, we define:
ordy (1) = ordy (g) — ordy (h). (1.9)
We denote the divisor of a meromorphic function | by (1) and define by

(1) => ordy(l)-V. (1.10)

Without loss of generality, if we assume that the g and h are relatively prime in
the local expression of [, then Definition 1.10 can be checked to be well defined.
Given a line bundle L and for any meromorphic section s of L, we have (cf.
[Gf-Hr 2, p. 136]):

L=0((s)), (1.11)

(s) being defined similarly as (1.10). Thus we have the following maps:

¢: Div(X) — Pic(X)

D — O(D). (112)

This is the first instance of Abel-Jacobi map. We discuss this map in details in

Section 1.6 and 1.7. Also for any global meromorphic section s of L which is not
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identically zero, we have:

x: Pic(X) — Div(X)

L+ (s). (L13)

Then (1.11) basically says that oy = Id. We immediately ask whether yop = Id
holds or not. Unfortunately, it doesn’t hold. That is to say the map ¢ has a non-
trivial kernel. Let us find out the details about this kernel.

Suppose D be a divisor on X given by a meromorphic function f on X, that

is, D = (f). Then any open cover {U,} of X and f, := f|y, can be considered as

fa
Is

functions gives us the trivial line bundle O(D). Conversely, if O(D) is the trivial
line bundle with local data {f,}, then there exists h, € O*(U,) satisfying

a local data for D and we therefore have £2 = 1. As a result, these as transition

fa ha
—_— ga f— _—
fs ’ 7 hy

Then f defined by f := foh! = fghgl is a global meromorphic function on X

with divisor D. In short, we have the following proposition.

Proposition 1.3.5 The line bundle O(D), associated to a divisor D on X, is

trivial if and only if D = (f) for some meromorphic function f.

Thus Proposition 1.3.5 leads us to the notion of linear equivalence of divisors very

naturally.

Definition 1.3.6 Two divisors Dy and D, on X are said to be linearly equivalent,
denoted by Dy ~ Ds, if for some f € M*(X), Dy = Dy + (f).

Remark 1.3.7 1. Definition 1.3.6 says, two divisors D; and Dy on X are
linearly equivalent if O(D;) = O(D), that is, if they lie in the same fiber
of the map ¢: Div(X) — Pic(X) as defined in (1.12).

2. The map ¢: Div(X) — Pic(X) as defined in (1.12) is a group homomor-

phism as we have the following;:
O(Dl + DQ) - O(Dl) ® O(Dg),

for any two divisors Dy and Dy on X.
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3. Let PDiv(X) denote the subgroup of Div(X) consisting of all principal divi-
sors, that is, divisors of meromorphic functions. Then Ker(yp) = PDiv(X).
That is to say, ¢ is the inverse of y when we go modulo PDiv(X). As a

result,
Div(X)

P = D). (1.14)

So, we now can summarize by stating the following proposition (cf. [Sh, Theorem
6.3]).

Proposition 1.3.8 The group of divisors on X upto linear equivalence is same

as the group of line bundles over X upto isomorphism.

This allows us to swap the notions of divisors, line bundles and invertible
sheaves on X interchangeably. By this correspondence, we can immediately define
the degree of a line bundle over a compact Riemann surface X as the order of any
associated divisor. Therefore degree of a line bundle makes sense As degree of a
principal divisor is zero (cf. [Ha, Chapter II, Corollary 6.10]), any two linearly
equivalent divisors have same degree. As a result, the notion of degree of a line
bundle is well defined. Moreover, by (1.14), we can conclude that two isomorphic
line bundles have same degree as well. That is to say, though by definition degree
can be thought of as a homomorphism deg: Div(X) — Z, it actually descends
down to P?Di?\E()i()) and Pic(X) as well.

Denoting by Div?(X) C Div(X) and Pic?(X) C Pic(X) the set of all degree d

divisors and the set of all degree d line bundles (upto isomorphism) respectively,

we have the following stratifications:

Div(X) = ] Div*(X),
dez
Pic(X) = | Pic*(X).
ez
We come across this stratifications in in Section 1.6 and 1.7 and reconsider the
maps as in (1.12) and (1.13) by restricting them to these stratifications. Also we
prove that Pic’(C) is isomorphic to the Jacobian variety J(C) of a curve C (cf.
Theorem 1.6.8). Therefore we are going to use these two notations interchange-
ably. Extending this notation, we also use the notation J;(C) instead of Pic?(C)

in coming sections.
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Let’s now find out that what extra property a line bundle must posses when
it corresponds to an effective divisor. For any global meromorphic section s
of L which is not identically zero, the divisor (s) is effective if s is actually a
holomorphic section. Therefore, L is a line bundle associated to an effective
divisor if and only if L has a non-trivial global holomorphic section, that is,
HY(X, L) #0.

Given a divisor D on X, let £(D) be defined as follows:

L(D) :={f] f is meromorphic function on X and D + (f) > 0}.

Then L£(D) can be identified with a known space as follows. Let us define |D| C
Div(M) as the set of all effective divisors that are linearly equivalent to D. By |L|
we mean | D] for a line bundle L over X with L = O(D). Assume that D = (sy)
for some global meromorphic function sq of the line bundle O(D). Then for an

arbitrary global holomorphic section s of O(D), we have

S

(2)+p=e)-G+D20

S0

That is to say, = € L(D) and (s) € [D[. Conversely, given any f € L(D),
(f-s0)=(f)+ (s0) = (f)+ D >0 and hence f - sq is a global section of O(D).

This leads us to the following natural identification:
L(D) = H'(X,0(D)). (1.15)

This identification therefore relates the space £(D) with the line bundle O(D).
Moreover we relate both of them with |D|. It can be readily observed that given
any Dy € |D|, there exists f € L(D) satisfying

Dy =D+ ().

. Also as divisors of two meromorphic functions differing by a non-zero scalar

multiple are the same, we have:
|D| =P(L(D)). (1.16)

We now have the following definition which is very useful for our purpose.
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Definition 1.3.9 A linear system on X is a family of effective divisors corre-
sponding to a linear subspace V of P(H°(X,O(D))). Moreover, it is called a
complete linear system if V =P(H°(X, O(D))).

Remark 1.3.10 By (1.15) and (1.16) we can conclude that, given any divisor D

on X, |D| is a complete linear system.

We have described both Pic(X) and Div(X) sheaf theoretically. So it is nat-
ural to think whether the maps as in (1.12) and (1.13) also have an analogous
sheaf-theoretic description or not. We end this section by answering this affirma-
tively.

Consider the following short exact sequence of sheaves on X:

i M

0—=OF —o M*
M o

0. (1.17)

We then have the following exact sequence at cohomology level corresponding to
(L.17):

HO(X, M) =L 1O (X, M5) 2 HY(X, 07). (1.18)

It can be checked that the map j, and the connecting homomorphism ¢ are given

as follows once we identify Div(X) as H° (X, 25) and Pic(X) as H'(X, 0*):

jot HO(X, M) — HO (X, 24
f= (),

1 HY (X, 40 - HY(X,0%)
D — O(D).

So the exactness of (1.18) simply depicts the isomorphism as in (1.14) in a sheaf

theoretic approach.

1.4 Riemann-Roch theorem and Serre duality

for curve

The Riemann-Roch theorem and Serre duality are one of the most significant

results in algebraic geometry. Initially Riemann proved an inequality, called Rie-
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mann’s Inequality, in the year 1957. Then it got its present form after a work of
Roch, a student of Riemann, in the year 1965. Then it was proved for Riemann
surfaces. Later the result was proved for algebraic varieties. In this section we

state the theorem over curve. We also state the Serre duality on the way.

Let X be a smooth projective curve over complex numbers and let E be
a vector bundle over X. By abuse of notation, we denote the locally free sheaf
corresponding to the vector bundle E again by E. Let us denote the dimension of
the C-vector space H (X, E) by h(X, E). The Euler characteristic of E, denoted
by x(FE), is defined as x(E) := h°(X, F) — h}(X, E).

Let us define a sheaf on X and genus of X as the dimension of the space of
global sections of that sheaf followed by that. By sheaf of differentials Q1x we
mean the sheaf dual to the locally free sheaf Tx associated to the tangent bundle
of X. As X is smooth the rank of the sheaf Ty, also called as tangent sheaf,
is same as the dimension of X. Also, Qx is a locally free sheaf of dimension n
(cf. [Ha, Chapter II, Theorem 8.15]). By canonical sheaf we mean the sheaf
A"Qx, where n is the dimension of the variety X. The canonical sheaf is denoted
by wy. Let H°(X,wx) be the C-vector space of global sections of the canonical
sheaf of X, then geometric genus of X, denoted by gyeo, is defined as the complex

dimension of H°(X,wx). That is to say, we define:
Ggeo = W' (X, wx).

When X is a curve, geometric genus is same as genus and is simply denoted by

g. So, in this case, we have (cf. [Ha, Chapter IV, Proposition 1.1]):
9 = Ggeo = hO(X; WX)' (119)

Let us denote APQx by Q% or simply by ?, when no confusion is likely to occur.
It can be noted that 2P also can be thought of as the sheaf of holomorphic p-forms

as mentioned in Subsection 1.1.1.

Also by [Ha, Chapter II, Theorem 8.15],
wx = /\IQX = Q}(

The line bundle associated to the invertible sheaf wyx is called canonical line
bundle and is denoted by Kx.
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Serre duality theorem was first proved by Serre. He proved it for abstract
algebraic geometry (cf. [Se 1]) and for a locally free sheaf on a compact complex
manifold (cf. [Se 2]) followed by that. Let us now state Serre duality theorem
without proof (cf. [Ha, Chapter III, Corollary 7.7]).

Theorem 1.4.1 Let X be a smooth projective curve X over complexr numbers
and & s a locally free sheaf over X. Then the following isomorphism of C-vector

spaces holds:

HY(X,&* @wy) 2 H(X,E)".
Hence, the equality h°(X,E* @ wx) = h'(X, E) holds.

Finally we state the Riemann-Roch theorem for line bundles.

Theorem 1.4.2 Let X be a smooth projective curve over complex numbers of

genus g. Assume L be an invertible sheaf on X of degree d. Then
(X, L) - (X, L Rwx)=d+1—g.

Remark 1.4.3 1. Taking £ to be the canonical sheaf wyx in Theorem 1.4.2

we have the following equation:
RO(X,wx) — hY(X,wh @wy) = h*(X,wx) — h'(X,0x) =d+1—g.

As a result, we have d = 2g — 2. So, degree of the canonical sheaf over the

curve X of genus g is 29 — 2.

2. When g = 1, we immediately get that degree of wy is 0. Also from (1.19),
we have h%(X,wyx) = g = 1. Therefore, wy = Oy, that is, in case of elliptic
curve canonical line bundle Kx corresponding to the canonical sheaf wy

becomes trivial.

We end this section by stating Riemann-Roch theorem for any locally free
sheaf on X. This can be proved by induction on the rank of the locally free sheaf
involved, considering Theorem 1.4.2 as a base case for induction.

For a vector bundle E over X of rank n, the determinant line bundle det E' of
E is defined to be the line bundle A"E. The degree of the bundle F is denoted
by deg E and is defined as the degree of det E, that is, deg F := deg det E.

By degree of a locally free sheaf we mean the degree of the corresponding vector
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bundle. Then the Riemann-Roch theorem for any locally free sheaf on X can be

stated as follows.

Corollary 1.4.4 Let X be a smooth projective curve of genus g over complex

numbers. Assume £ be a locally free sheaf on X of rank n and degree d. Then

X(€) = d+n(l—g).

1.5 Projective bundle formula

In this part we mainly recall projective bundle formula for a projective bundle
associated to a given vector bundle over any compact oriented C'*° manifold.
In the process we recall the definition of the Chern class of a line bundle and
cohomology class of a variety and some relations between them as well.

Let M be a compact manifold over C of dimension m. Recall that Oy, and O3,
be the sheaf of holomorphic functions and non-vanishing holomorphic functions
on M respectively. Also recall the exponential exact sequence as in (1.1) given

as follows:

0 Z Oy —2- 0%, 0.

Corresponding to this short exact sequence we have a long exact sequence at co-

homology level and therefore the following boundary homomorphism 4 as follows.

HY(M,03,) —° H*(M,Z) . (1.20)

We now have the following definitions once we identify Pic(M) with H'(M, O3%,)
(cf. Section 1.3).

Definition 1.5.1 Let L € Pic(M). Then the first Chern class of the line bundle
L, denoted by ¢ (L), is defined as

ci(L) :=8(L) € H*(M,Z).
So the map in (1.20) is also denoted by

HY(M,0%,) —= H*(M,7Z) . (1.21)
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Definition 1.5.2 The image of the homomorphism as in (1.21), a subgroup of
H?(M,Z), is called Néron-Severi group of M and is denoted by NS(M).

Definition 1.5.3 Let Z be a smooth subvariety of M of codimension p. Then
the cohomology class of Z, denoted by [Z], is an element of H?**(X,Z) and is
defined as

where i,: H*(Z,Z) — H**?"(M,Z) is pushforward map associated to the embed-
ding i: Z — M.

Remark 1.5.4 1. When Z is not smooth then its cohomology class defined
through a resolution of Z. In this case, let Z® be the smooth locus of Z.
Then by a theorem of Hironaka (cf. [Hi]), there exists a smooth variety
Z and a morphism f: Z — Z such that fly—rzsy: f7HZ°) — Z® is an
isomorphism. Consider the morphism ¢ o f: Z — X. Then the cohomology
class of Z, denoted again by [Z], is defined as

(7] := (io f).1 € H?(X, 7).

Moreover, this is well-defined as it is independent of the choice of a resolu-
tion of Z (cf. [Be 2]).

2. Whenever we talk about [Z] as an element of H?P(X,Q), we actually mean
its image via the natural map H?(X,Z) — H?(X,Q), irrespective of

smoothness of Z.

Now let D be a divisor on M and L = O(D) be the corresponding line bundle.
Then D being a Z-linear combination of codimension 1 subvarieties of M, [D] €
H?*(M,Z) by Definition 1.5.3. Also ¢;(L) is an element of H*(M,Z) by Definition
1.5.1 and (1.20). As L is the line bundle corresponding to the divisor D, it is
natural to ask whether there is any relation between the cohomology class [D]

and the Chern class ¢;(L). In that regard we have the following Proposition.

Proposition 1.5.5 [Gf-Hr 2, Proposition, p. 141] Let D be any divisor on M.
Then in H*(M,Z) we have the following equality,

[D] = a1 (O(D)).
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Let V' — M be any vector bundle of rank n over M. Then one can construct
an associated projective bundle whose fiber are projective space of the fiber of
the bundle V. This bundle, denoted by P(V'), is of rank n—1. Let 7: P(V) — M
be the usual projection map. Then at cohomology level we have the following

pullback map denoted by 7*.
7 H"(M,Z) — H*(P(V),Z). (1.22)

Then by (1.22), H*(P(V'),Z) can be thought of as H*(M,Z) algebra. Following

theorem depicts this with some more details.

Theorem 1.5.6 [Gf-Hr 2, Proposition, p. 606] For any complex vector bundle
V' of rank n over a compact oriented C* manifold M, H*(P(V)) is generated as
an H*(M) algebra by the Chern class n = ¢1(T) satisfying the following equation,

"=V 4+ (1) (V) =0,

T — P(V) being the tautological line bundle.

1.6 Abelian variety and Jacobian

In this section we recall the definitions and a few basic properties of an abelian
variety and Jacobian variety. Then we discuss that study of a Jacobian variety
is not at all very far away from studying an abelian variety.

By a lattice in a g-dimensional complex vector space V', one means a discrete
subgroup A of V' of rank 2g, that is, a free abelian group of maximal rank. The
quotient % is called a complex torus. For notational simplicity, we denote such
a complex torus by X. As quotienting by a discrete subgroup does not change
the local structure, the complex torus X is a complex manifold of dimension g.
Moreover, it is compact as A is a discrete subgroup of V' of maximal rank.

Let us recall the notion of a period matrix associated to a complex torus. Let
e1,€z,...,6e4 be abasisof V. Let Aj, Aa, ..., Ay be a set of generators of A. Then

Aj can be written in terms of e;, 1 < j < g, for all 1 < ¢ < 2g as follows.

g
/\i:Z)\jiej, Aji € Cforalll <j<gand1l <i<2g.
j=1
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The coefficients of these 2g many equations determine a matrix which we denote
by II.

)\1,1 >\1,2 s )\1,29
A A RS

m= |7 (1.23)
)‘gyl >‘g,2 T )‘9,29

This g x 2¢g matrix II with complex entries is called a period matriz of the complex
torus X. Clearly period matrix of any complex torus is not unique as its definition
is based upon the choice of some bases. But definitely it determines a complex
torus. It is natural to ask the following. Given any matrix in Myy9,(C) whether
one can determine that it is a period matrix of some complex torus or not. In

this regard, we have the following proposition.

Proposition 1.6.1 Let II be the complex conjugate matriz of a given matriz
IT € Myy2y(C) and P € May(C) be the matriz (7). Then non-singularity of P

implies that 11 is a period matriz of a complex torus and vice versa.

Proof.See [La-Bk, Proposition 1.1.2]. Indeed, P € My, (C) is non-singular if and
only if the columns of the matrix II are independent over R if and only if if the

columns of the matrix II span a lattice. O

Remark 1.6.2 The columns II; := (/\1,1- Agi = Agyi )t of the matrix II are called
periods, for all 1 < ¢ < 2¢g. Proposition 1.6.1 says that a criteria for a given
matrix II € Mx2,(C) to be a period matrix of some complex torus X is that the
the free abelian group A defined as A := {329, n,II;|n; € Z} spanned by the

periods needs to be of maximal rank 2g. Moreover, in that case we have X = %.

Let us now interpret the first Chern class of a holomorphic line bundle on a
complex torus X in terms of real valued alternating forms and hermitian form
on V. Combining [La-Bk, Proposition 2.1.6] and[La-Bk, Lemma 2.1.7] one can
conclude that the Néron-Severi group NS(X) can be identified with the group of
all hermitian forms H : V x V — C satisfying Im(H (A, A)) C Z as well as with
the group of all real valued alternating 2-forms F : V x V' — R with E(A,A) CZ
and E(w,w) = E(v,w) v,w € V.

We are now in a stage to define abelian variety. A line bundle L over a
complex torus X is called a positive definite line bundle or simply a positive

line bundle if the first Chern class ¢;(L) is a positive definite hermitian form. A
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complex torus that admits a positive line bundle is called an abelian variety. Such
choice of a positive line bundle on an abelian variety is called a polarisation. So
abelian varieties are also called polarised abelian variety. We have the following
proposition due to Riemann which basically says that a complex torus is an
abelian variety if and only if there exists a period matrix which looks simpler.

More precisely,

Proposition 1.6.3 /Gf-Hr 2, Riemann Relations, p. 306] A complex torus

X = % is an abelian variety if and only if there exists bases ey, eq,..., e, of V
and A, A, ..., Aoy of A, called simplectic or canonical bases, such that the period

matriz 11 takes the form (D z). Here Z is symmetric and Im(Z) is positive
definite and the matriz D € M,(Z) is given by

D= ) (1.24)

with §; > 0 for all 1 < i < g and 6;|0;41 for all 1 <i<g-—1.

Also, the matrix of Im(c; (L)) takes the form

Im(e; (L)) = (5 §).

with respect to the canonical bases as in Proposition 1.6.3 and D is the ma-
trix defined in (1.24). The integers §; are called the elementary divisors of the
polarisation L. Moreover, L is called a principal polarisation if §; = 1 for all
1<1<g.

As any line bundle on the g-dimensional complex vector space V' is trivial, any
line bundle L over % can be thought of a quotient of the trivial line bundle 7*(L)
where 7 : V — % is the usual quotient map. Therefore when L — % is positive,
one can realise global sections of L as entire functions on V satisfying some
functional equations. Following proposition depicts that the elementary divisors

of the polarisation L determines the size of the space of its global sections.

Proposition 1.6.4 [Gf-Hr 2, Theorem, p. 317] Let L — ¥ be a polarisation and

01,...,04 be the corresponding elementary divisors. Then
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1. hO(L) = T2, 6.

2. HY(L™) is base point free for n > 2 and gives an embedding of % in some
PN forn > 3.

Remark 1.6.5 Second assertion of the Proposition 1.6.4 is part of a character-
isation of an abelian variety due to Lefschetz (cf. [Le 1] and [Le 2]) which says
that for a complex torus being an abelian variety is same as being an algebraic

variety.

Let C' be a smooth projective curve of genus g over complex numbers. Then
one can naturally associate to C' an (principally polarised) abelian variety called
the Jacobian variety J(C'). The study of abelian variety originated from the
analysis of Jacobian variety though a Jacobian variety is a special case of an
abelian variety. Now we recall the construction and a few properties of a Jacobian
variety and discuss that Jacobian varieties are best known examples of abelian
varieties.

Let HY(C,Q') be the complex vector space of holomorphic 1-forms on C
and H,(C,Z) be the first homology group of topological 1-cycles with integer
coefficients. As C'is of genus g, H°(C, Q') is of complex dimension g and H,(C,Z)
is a free abelian group of rank 2¢g. The following proposition says that the 1-cycles
of Hi(C,Z) can actually be thought as linear forms on the space H°(C, Q).

Proposition 1.6.6 The following canonical map

H,\(C,Z) — H°(C, QY

N (w . /Aw) | (1.25)

18 1njective.

Proof.See [La-Bk, Lemma 11.1.1]. Indeed, decomposing H},5(C)* into the holo-
morphic part H(C,Q')* and the antiholomorphic part HO(C,Q')* according to
Hodge decomposition we get that the map in (1.25) is the composition of following

natural maps:

H,(C,7Z) — H,(C,C) = Hy,(C)* = H*(C,0)* @ HY(C, Q) — H°(C, Q)"
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Then the proof follows from the fact that image of any element of Hi(C,Z) in

H},(C)* is invariant under complex conjugation. O

As H,(C,Z) = 7%, let us choose 2g canonical generators of H,(C,Z), say,
A1, A2, ..., Agg such that

BN Aj) = Ngpi - Agsj) = 0and #(\; - N\yy;) = 0y for all 1 < 4,5 < g,

where #(); - \;) denotes the intersection number of the cycles \; and \;. Also as
HY(C, Q') = C9, we choose a basis wy,wy, . ..,w, of H*(C, Q). Now consider the
following matrix IT € My4,(C):

f)\l w1 f>\2 wr e f>\2g Wi
me | e b s (1.26)
f)\l Wy f,\2 Wg - fAzg Wy

As the map in (1.25) is injective by Proposition 1.6.6, by abuse of notation we
denote the image (w — [, w) of A € Hy(C,Z) also by A. So A, thought as a linear
form on H°(C,Q'), is then defined as follows:

A: HY(C,QY) —

C
wt—)/w.
A

Therefore A is completely known if its value on a basis is known, that is, if the
values [ \ Wi, J W2, / , wy are known. In fact, these values are coordinates of A
with respect to the basis wj, w3, ..., w; of H°(C,QY)*, dual of the chosen basis of
H°(C,0QY), as the following equality holds:

-5 ()

Therefore by Proposition 1.6.6, columns of the matrix = as in (1.26) span the
lattice A = {327 n;\; | n; € Z}, which in fact is the lattice H,(C,Z). By Propo-
sition 1.6.1, the matrix 7 as in (1.26) is therefore a period matrix of an abelian

variety known as the Jacobian variety of C and is denoted by J(C). Clearly the
HO(C,Ql)*

L) of dimension equal to genus

Jacobian variety J(C') is the complex torus
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g of the curve C' and is therefore an algebraic variety by Remark 1.6.5.

Remark 1.6.7 By construction, the Jacobian J(P!) of the projective line P! is
trivial as genus of P! is zero. So to exclude triviality, we will work on genus

greater than zero case.

One can choose normalised basis 1,72, . .., Y24 of Hi(C,Z) so that

(v 3) =" (Vgri - Ygrs) = 0,
(% Ygrs) = Oy (1.27)

#(’Yg+i . ’}/j) = _5ij for all 1 < Z,j < qg.

By intersection matriz of this chosen basis of H,(C,Z), one means the matrix P €
My, (Z) whose (i,j)-th element is the intersection number #(v; - ;). Therefore,

from the relations as in (1.27), we obtain:

0 -Id
P = 7. (1.28)
Id, 0

Moreover, one can choose a basis 71, 7a, . . ., 7, of H°(C, Q')* such that the follow-
ing holds:
/ n=85 1<ij<g. (1.29)
i

But something more happens. Together with the chosen normalised basis of
H,(C,Z) they form a symplectic basis, that is, the period matrix II of J(C) as

defined in (1.26) takes a simpler form as in Proposition 1.6.3:
P = (Idg Z> . (1.30)

It can be checked that there exists a divisor on J(C') known as Theta divisor,
denoted by ©, such that O(0) is a canonical polarisation on J(C') (cf. [La-Bk,
Proposition 11.1.2]). As Im(¢;(O(0))) = P~ where P is the intersection matrix
as in (1.28), O(O) is then a principal polarisation on J(C'). Sometimes we denote
by (J(C'),©) the principally polarised Jacobian variety of C'.

Recall the exponential exact sequence as in (1.1) for the curve C:

exp

0 7 Oc¢

Oy 0. (1.31)
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Then corresponding to (1.31) we have the following long exact sequence:

H(C,00) —2» H(C,0%) —— HY(C,7Z)

/ (1.32)

HY(C,0¢) — HYC,05) —— H2(C, 7).

As C' is a compact and connected Riemann surface, only global holomorphic
maps are constants, that is, H°(C, O¢) = C. Also H°(C, O¢)* = C* and therefore
the exponential map exp: H*(C,Oc) — H°(C,0f) as in (1.32) is surjective.
From exactness of (1.32), the map H°(C,0}) — H'(C,Z) is therefore the zero
map and hence the map H'(C,Z) — H'(C,O¢) is injective. So we obtain the

following exact sequence from (1.32):

HY(C,0¢)

H(C.Z) H'(C,0) =~ H*(C,Z), (1.33)

As mentioned in the Section 1.3, the Picard group Pic(C') of all isomorphism
classes of line bundles on C' can be identified with the group H'(C, OF,). Therefore
Pic’(C), the subgroup of Pic(C') consisting of line bundles with vanishing Chern
class, is nothing but Ker(d) and therefore is isomorphic to H;ﬁfc%) Now by Serre
duality, H'(C,O¢) = H°(C,Q')* and by Poincaré duality, H'(C,Z) = H,(C,Z).

Therefore we have the following interesting isomorphism:

H'(C,0¢) ., H(C, Q")

PicO(C)g HI(C,Z) > HI(C,Z)

~ J(C). (1.34)

Hence, the Jacobian variety can also be interpreted as the space parametrising
all isomorphism classes of line bundles with vanishing Chern classes, that is,
degree zero line bundles on C. For any degree zero line bundle L, the dual bundle
L* is also of degree zero and L ® L* = O¢. As a result, J(C) is immediately
endowed with a group structure, the group operation being the tensor product of
line bundles and O¢ being the identity element of J(C').

This alternative description of the Jacobian variety J(C') can be used to com-
pute its dimension in an alternative manner. As the trivial line bundle O¢ has
only one independent global section,that is h°(C, O¢) = 1, by Riemann-Roch the-
orem we have h'(C,O¢) = g. It can be proved that the tangent space of J(C') at
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the point O¢ is canonically isomorphic to H'(C, O¢) (cf. [Mi, Proposition 2.1]).
Now as J(C') is smooth in our context, it readily follows that dim J(C) = g.
Now we discuss the importance of the Jacobian variety J(C) from the point
of view of the curve C itself. For that, let’s start with a map from the curve C'
to its Jacobian J(C') which is defined very naturally once a base point xy of the

curve C is fixed.

HO(C, QY
u: C— J(CO) = —H((é’ Z;
SN (1.35)
T — <w »—>/ w) (mod Hy(C,Z)).
xo
Let us once again choose a basis wi,ws,...,w, of H(C,Q'). Consider the

following map from C' to J(C') which we again denote by u. While defining this
we use the fact that H°(C, Q)* = C9.

C—JC _¢
O = =
x x w (1.36)
x> (/ wl,/ wz,...,/ wg) (mod Hy(C,Z)).
To To z0
Note that the coordinates of the linear map w > f; w are f;f) wy, ;2 Woy e ey f;i) Wy

with respect to the dual basis of the chosen basis of H°(C,Q!), as mentioned
earlier. Therefore two apparently different maps defined as in (1.35) and (1.36)
basically are the same, the first one is coordinate free approach whether the other
is not. Here, f;o w for any w € H(C, Q') means fvw for a fixed path 7 from zg
to x. So we need to check that the definitions are independent of the chosen path
7. Let us choose another path A from xy to . Then as (=~ — \) is an element
of H1(C,Z), therefore the difference [ w— [,w = [ wis an element of H;(C,Z).
Here we again identify H;(C,Z) with its image using Proposition 1.6.6. So the
map u: C' — J(C) is well defined and is known as Abel-Jacobi map.

Recall that by Div"(C') we denote the set of divisors of degree n on C. Then
one can extend the domain of definition of the map u to Div"(C) linearly as

follows:

u: Div"(C) — J(C)

Z n;x; > Z nu(z;). (1.37)
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For n = 0, the map is more interesting. In this case, the Abel-Jacobi map is
canonical, that is, it becomes independent of the chosen base point on the curve

C. We therefore write down the definition for n = 0 case separately.

u: Div'(C) = J(O)

Z(pi —qi) <w > Z/q w) (mod H,(C,Z)).

7

(1.38)

It can be checked that this definition is well defined as this is independent of the
representation of a degree zero divisor. This is in fact a group homomorphism.
Moreover the following theorem, known as Abel’s theorem (cf. [Gf-Hr 2, p. 235]),

says that this is an isomorphism.

Theorem 1.6.8 Let PDiv’(C) denote the subgroup of Div’(C) consisting of de-
gree zero principal divisors. Then the map u: Div’(C) — J(C) as in (1.38) fits

into the following exact sequence:

0 — PDiv’(C) — Div’(C) = J(O) 0.

Hence Pic’(C) is isomorphic to the Jacobian variety J(C').

Proof.See [La-Bk, Theorem 11.1.3]. Indeed, by Abel’s theorem kernel of the map
u is the subgroup PDiv?(C) of Div’(C). Surjectivity of the map u follows from
Jacobi Inversion theorem (cf. [Gf-Hr 2, p. 235]). O

Remark 1.6.9 1. Theisomorphism between Pic’(C) and J(C) as in Theorem
1.6.8 has already been discussed in (1.34).

2. It can be noted that restricting the map ¢: Div(C) — Pic(C) as in (1.12)
to Div’(C), we obtained in Proposition 1.3.5 that the kernel is nothing but

PDiv’(C). This is same as Abel’s theorem once we have Theorem 1.6.8.

We have defined the classical Abel-Jacobi map analytically. Let us define it
algebraically now. Choosing a divisor D,, of degree n on C', we define:
u: Div*(C) — J(C)
D~ O(D - D,).
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As a particular case, if we choose D,, = nxg, then the map becomes:

u: Div*(C) — J(C)

(1.39)
D — O(D — nxy).

We get the following map u: C' — J(C) by restricting the map u: Div'(C) —
J(C) as in (1.39) to the curve C as C' can be thought of as a subset of Div'(C).

u: C— J(O)

x = Oz — x9). (140)

It can be easily verified that the map u defined in (1.40), (1.35) and (1.36) are
the same and we denote this map also by u,, whenever the base point xy needs to
be specified. The first one is algebraic approach where as the last two definitions

are analytical in nature.

Theorem 1.6.10 The map

u: C— J(CO)

z— O(x — zp)

is an embedding, when genus g of the curve C' is greater than or equal to one.

Proof.See [La-Bk, Proposition 11.1.4 & Corollary 11.1.5]. Indeed, for g > 1, the
projectivized differential of the map is nothing but the canonical map ¢,,.: C —

P9~ which is injective at every point of C' as wc¢ is base point free. U

Remark 1.6.11 1. For ¢ = 0, J(C) = 0 by Remark 1.6.7 and hence of di-
mension zero where as the dimension of the curve is one, so the map (1.40)

can’t be an embedding. So Theorem 1.6.10 does not hold for g = 0 case.

2. For g > 2, dimJ(C) = g > 2 > 1 = dimC. Therefore, the map u as
in (1.40) can’t be an isomorphism. This embedding of the curve C in its

Jacobian variety J(C') can be an isomorphism only for g = 1 case.

Let us now discuss another importance of the Abel-Jacobi map u,, as in
(1.40) which in turn will help us to define a Poincaré bundle over the curve C.
To discuss that let us start with a very natural question. We have seen that the

Jacobian variety J(C') parametrizes all degree zero line bundles on C', a smooth
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projective variety of genus g and of dimension one. Now one may consider the
Jacobian variety of J(C') itself, that is, the space parametrizing all degree zero
line bundles on the variety which in turn parametrizes all degree zero line bundles
on C. Clearly this can be repeated infinitely many times. At this point one can
ask whether this process, which a priori seems to be never ending, terminates or
not. To answer this question we need to go through the concept of dual complex
torus of a given torus.

Given a complex torus X of dimension g, one can define another complex
torus X , known as dual complex torus associated to X, of same dimension. This
torus X parametrizes all degree zero line bundles on X (cf. [La-Bk, Proposition
2.4.1]). This description of X gives rise to a line bundle on X X X known as
Poincaré bundle for X. We recall this definition.

Definition 1.6.12 By a Poincaré bundle for X we mean a holomorphic line
bundle P on X x X which is isomorphic to L when gets restricted to X x {L}
for all L € J(X) and is trivial when gets restricted to {0} x X.

Taking X = J(C'), we have

—

J(C) =2 Pic®(J(C)). (1.41)

Let u%: Pic’(J(C)) — Pic’(C) be the pullback of the Abel-Jacobi map u,: C' —
J(C') with respect to base point z € C' as defined in (1.40). The pullback is also
a restriction map as u, is an embedding by Theorem 1.6.10 for ¢ > 1. For g = 0,
Pic’(C) and Pic’(J(C)) both are trivial by Remark 1.6.7. Altogether by [La-Bk,

Lemma 11.3.1], we have the following isomorphism:

*

Pic’(J(C)) — Pic’(C) . (1.42)

Therefore by (1.41) and (1.42) we can conclude that the process mentioned in the
previous question, which seems to be never ending apparently, gets terminated
at a very early stage.

Taking X = J(C') in Definition 1.6.12, we get a Poincaré bundle for J(C').
Then the isomorphism as in (1.42) allows us to construct a Poincaré bundle for
the curve C' itself.
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Definition 1.6.13 By a Poincaré bundle of degree n for C' normalised with re-
spect to x € C' we mean a holomorphic line bundle P on C' x Pic"(C') which
is isomorphic to L when gets restricted to C' x {L} for all L € Pic"(C) and is
trivial when gets restricted to {z} x Pic"(C).

Following proposition assures the existence of such a Poincaré bundle over C.

Proposition 1.6.14 [La-Bk, Proposition 11.3.2] There exists a Poincaré bundle
of degree n for C' for all n € Z uniquely determined by the base point x € C.

Remark 1.6.15 We will need this Poincaré bundle for ' in a more general set
up to provide variety structure on some special subsets in the space parametrizing
semistable bundles of fixed rank and degree over C'. See, for example, Subsection

5.2.2 for more details.

It can be noted that if two compact Riemann surfaces are isomorphic, then
so is their Jacobians. In fact, converse is also true and popularly known as
Torelli’s Theorem (cf. [La-Bk, Theorem 11.1.7]). This emphasises the fact that
the Jacobian variety of a curve is intrinsically related to that curve.

We end this section by mentioning the importance of a Jacobian variety from
the viewpoint of an abelian variety. Let us start with a different but useful
interpretation of Torelli’s Theorem. Let us denote the moduli space of smooth
projective curves of genus g by M,. By .A; we denote the moduli space of all
(principally polarised) abelian variety of dimension g. Consider the following

map:

J: My — Al

C s J(O). (143)

Note that, Torelli’s theorem says that the map as in (1.43) is injective. The
image J(M,) is therefore a 3g — 3 dimensional subvariety of .A;. At this point,
one can naturally ask a question: Is the map in (1.43) surjective for any ¢g? In
other words, given any principally polarised abelian variety A of dimension g,
does there exist a smooth projective curve C' of genus g such that J(C) = A?
The answer is negative in general for g > 4.

Though Jacobian varieties do not exhaust abelian varieties, possibly the next

best thing happens. For a given curve C' Jacobian variety is the abelian variety
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nearest to the curve C' in some sense. That is to say, given a morphism from the
curve C' to an abelian variety X, it factors through J(C') upto a translation of X
(cf. [La-Bk, Universal Property of the Jacobian 11.4.1]).

1.7 Symmetric product and Abel-Jacobi map

In this section we discuss briefly on symmetric product of curve and Abel-Jacobi
map. Throughout this section we take C' to be a projective curve of genus g
over complex numbers. Then we apply results from this section in the context of

elliptic curve later on.
d

Let us denote C' x C x - x C by C*¢. Here, S%(C), the d-th symmetric

product of C' can be understood as the quotient space (’;—Zd of C*? under the

action of the permutation group o¢ of d symbols and p; + ps + -+ + pg can
be thought as [(p1,p2,--- ,pa4)], the image of (p1,p2,---,p¢) under o action,
that is, in [(p1,pe,- - ,pa)] order of p;’s doesn’t matter. Therefore the notation
p1+p2+- - +pg instead of [(p1, pa, - - - , pa)] makes more sense. Here p;+ps+---+pg
can also be thought as a degree d effective divisor on C' and S%(C) is nothing but

the set of all degree d effective divisors on C'. So for d > 0, we have:
S4(C) = Divi(C).
Consider the classical Abel-Jacobi map pq: S4(C) — J4(C), defined as follows:

wq: SUC) = J4(O)

(1.44)
T+ T+t xg— Oxy + 29+ -+ - + 249).

This map is also called as Abel-Jacobi map. In fact, in a way this map is defined
more naturally as we don’t need to fix any base point on the curve unlike (1.39).
This map can also be thought of as the restriction of the map ¢: Div(C) — Pic(C)
as in (1.12) to Div*(C).

Consider the following morphism.

ba: C4 = 54O

(1.45)
(p1,p2,+ spa) = D1+ D2+ -+ pa
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This is clearly a quotient map. Moreover, S%(C') gets the structure of a topological
space and also of a complex manifold from C*¢ via the map 14 as in (1.45). In
fact, for a given coordinate chart on an open set of C*?, one can get a coordinate
chart on the image of that open set using elementary symmetric functions and
the map 94 (cf. [Gf-Hr 2, p. 236]). By Chow’s theorem, S(C) therefore gets the
structure of an algebraic variety as well.

Let us now discuss about the smoothness of the variety S¢(C). Let Quot%
denote the Quot scheme parametrizing all torsion quotients of F having degree d
(cf. Subsection 3.3.2 for more details). Following theorem is about the smoothness
of the Quot scheme Quot”TC.

Theorem 1.7.1 Let C' be a non-singular projective curve and let n be any non-

negative integer. Then Quot%8 1 a smooth projective scheme.

Proof.See [Hb, Theorem 4.3.3, p. 47]. In fact let (F,q) € Quotg, . Then we have

the following exact sequence.

0 — Ker(q) oL, - F 0.

where F is supported on a zero dimensional subscheme of C' and Ker(q) is locally

free of rank r. We also have the following equality.
Ext'(Ker(q), F) = H'(C, (Ker(q))" ® F).

But again (Ker(q))* ® F being supported on a zero dimensional subscheme of
C, H'(C, (Ker(q))* ® F) = 0. Hence Ext'(Ker(q), F) = 0. Hence the theorem
follows. O

Let P be a polynomial with rational coefficients and let Hilbg, which will be
mostly denoted by Hilb”, be the Hilbert scheme parametrizing subschemes of C
having Hilbert polynomial P. Let d be any given non-negative integer. Then

considering d as a constant polynomial, we have the following isomorphism.
Quot$,, = Hilb? = 54(0). (1.46)

Hence by Theorem 1.7.1 and (1.46), S%(C) is a smooth algebraic variety. Alter-
natively, it can be proved using fundamental theorem on symmetric functions (cf.

[Mi, Proposition 3.2]). Interestingly something more is true. For a non-singular
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variety S, S%(S) is smooth only if S is of dimension one, that is a curve (cf. [Mi,
Remark 3.3]).

We now count the dimension of the smooth variety S4(C). let us recall the
map 94 as in (1.45). As o¢ acts on C*9 by permuting the coordinates, for any
p1+pe+ -+ py € S9C) we have,

Vi (it 4 pa) = {(@1, -, 24) € CF4 p(x;) = p; for all 4, and for all p € 07} .

Therefore cardinality of any fiber is d! and hence 14 is a finite morphism of degree
d!. Therefore dimension of S¢(C') is d as dimension of C*? is so. Also as dimension
of Quotg, is r - n, dimension of S4(C) can be calculated from (1.46) as well (cf.
[Bi-Si]).

We have the following commutative diagram which consists of some natural

subvarieties and depicts the scenario we are under quite nicely.

9 §9(C) T J,(C)
inclusion inclusion ~ | ®O(—p)
O o (O) e 4 (C)
inclusion inclusion ~|®0(—p)
Cxlom2) ML ge () P (0
inclusion inclusion ~ | ®0(—p)
inclusion inclusion ~| ®0(-p)

C A (o) ey Y ()

The maps pq: S4C) — J4(C), for all d with 1 < d < g, are birational morphisms.
Moreover, the image of S%(C) under the map ¢, are subvarieties of Jz(C') and
are denoted by WY for all 1 < d < g. The subvariety W9 parametrizes degree d
line bundles over C' having atleast one independent global section as this is the
image of effective divisors of degree d.

If we want to compare the cohomology classes [IW9]’s, it is not possible to do so
at this stage as W’s sit inside different J;(C)’s. So, to compare their cohomology
classes it is natural to think them as subvarieties of one fixed variety. This can be

obtained as follows. Let us consider the point p € C' which we have chosen and
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fixed already. Consider the classical Abel-Jacobi map map ¢4: S (C) — J4(CO)
as defined in (1.44). Also consider the map ®O(—dp): J4(C) — J(C) defined as

follows.
®RO(—dp): J4(C) — J(C)
L — L®O(—dp).

Then the map u: S¢(C) — J(C) is defined as u = ®O(—dp) o 4 which is same
as the map defined in (1.39).
®0(—dp)

S4(C) - s Jy(O) s J(O)

14 txg—— Oxy 4+ -+ xg) —— Oz + -+ + x4 — dp).
Now define Wy, for all d, 1 < d < g, called the Brill-Noether subvarieties of
J(C), as follows:
Wy = u(S40)). (1.47)

Let © be the Theta divisor in .J(C), the translate of the divisor W7, of J,_1(C)
via the map ®O(—(g — 1)p): J,-1(C) — J(C). Let [W,] be the cohomology
class of Wy and [©] be the cohomology class of © in H*(J(C), Q). The classical
Poincaré relation then expresses the cohomological classes of W, in terms of the
Theta divisor on J(C).

Lemma 1.7.2 [Ab-Cr-Gf-Hr, chapter 1, §5, p-25] In H*(J(C),Q), we have

[Wa] = (O] (1.48)

foralld, 1 <d<yg.

This Lemma 1.7.2 can be interpreted as follows. Consider the subalgebra of
H*(J(C),Z) a priori generated by the cohomology classes Wy, 1 < d < g. Then
this subalgebra is generated by [©] only. Moreover, the relation (1.48) holds. We
consider similar problem in the cohomology ring of the moduli space of semistable
bundles over elliptic curve.

Now we have the following theorem due to Abel by which one can describe the

fiber of the Abel-Jacobi map explicitly.
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Theorem 1.7.3 Two effective divisors D and Dy of degree d on C' are linearly
equivalent if and only if pqa(D) = wq(D1).

Proof.See [Ab-Cr-Gf-Hr, p. 18]. Also, follows from Proposition 1.3.5 and re-
stricting the map ¢: Div(C') — Pic(C) as in (1.12) to Div¥(C). O

We observe that S%(C) can thought of as collection of all effective divisors
s4(C)

, where ¢ ~/

on C of degree d. The variety Pic?(C) can be interpreted as
is the linear equivalence of divisors. For any D € S%(C), let us denote its linear
equivalence class in Pic?(C) by [D]. Then Theorem 1.7.3 can be restated as
follows. “Only if” part says that the Abel-Jacobi map factors through Pic?(C),

that is we have the following commutative diagram,

Pic?(0)

SU(C) . (@
Ta(C

)

where [ ]: S4(C) — Pic?(C) is given by D ~ [D] and [p4]: Pic*(C) — J4(O) is
defined by [D] — p4(D). Moreover ”if” part of Theorem 1.7.3 depicts that the
map [pg]: Pict(C) — J4(C) is injective.

Remark 1.7.4 By Theorem 1.7.3, fiber of the map ¢, over any line bundle
L € J4(C) is the complete linear system |D| of a divisor D on C with O(D) = L.
Now if d > 0, then by Serre duality 2'(C,O(D)) = 0 and by Riemann-Roch
theorem h°(C,O(D)) = d. Therefore each fiber of the map ¢4: S (C) — J4(C)
is isomorphic to P! if d > 0.

1.8 Elliptic curve

Let us begin this section with a question which we have raised already : Is the
map in (1.43) surjective? We have mentioned that answer to this question is
negative in general for ¢ > 4. We now look at this map for ¢ = 1 case and
investigate its surjectivity for this special case. Towards that let us introduce the

definition of elliptic curve and a few of its properties.

Definition 1.8.1 A smooth projective curve of genus 1 over complex numbers

is called an elliptic curve (over C).
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For a smooth projective curve C of genus g, we define degree of the curve to be
the degree d of its defining polynomial. Then using Riemann-Hurwitz formula
genus of the curve can be given in terms of its degree as follows (cf. [Gf-Hr 2,

p. 220]). .
e

This is called degree genus formula for a smooth plane curve. As an elliptic curve

g= (1.49)

is smooth by definition, using (1.49) it can be defined alternatively as follows.

Definition 1.8.2 A smooth cubic projective curve is called an elliptic curve.

So an elliptic curve can be thought of as projective plane curve given by a cubic
polynomial. We denote an elliptic curve by E. For any smooth projective curve
C' over complex numbers, for all integer d, J(C') = J4(C), where the isomorphism
can be naturally obtained by tensoring with a line bundle of appropriate degree.
But for an elliptic curve F, something more happens to be true. Towards that,

we have the following proposition.

Proposition 1.8.3 The Picard variety J,(E) can be identified with E.

Proof.Consider the map

E — Ji(F)

1.50
p— O(p). (150

We want to verify that two distinct points p; and ps of E are not linearly equiv-
alent, that is, O(p1) 2 O(p2). By Riemann-Roch theorem we have:

R(E,0(p)) — h*(E,wp @ O(p)") =1+1— 1.

As by (2) of Remark 1.4.3 wg is trivial, deg O(p)" = —1 and hence h°(E,wg ®
O(p)*) = 0. Therefore, h°(E,O(p)) = 1. Hence by (1.15), (1.16) and Definition
1.3.9, we observe that only effective divisor linearly equivalent to p is p itself. As
a result the map as in (1.50) is injective.

Now let L be a degree one line bundle over E and s be any non-zero section

of L. Let (s) be the divisor corresponding to the section s. Then the map

JiI(E) = E
L+ (s)
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is the inverse of the map in (1.50) (cf. §1.3). Hence J;(F) = E. O

Proposition 1.8.4 For an elliptic curve E, its Jacobian variety J(E) is isomor-
phic to the curve E itself.

Proof.Let C' be any smooth projective curve over complex numbers and xy € C

be a chosen point. Let us define the following map:

Ji(C) — J(C)

Clearly this is an isomorphism. Therefore the proposition now follows from
Proposition 1.8.3. 0

Remark 1.8.5 In Remark 1.6.11, we observed that the map u as in (1.40) can
only be an isomorphism when the curve C' is of genus one. Proposition 1.8.4

answers that possibility affirmatively.

Let us end this section by answering the question we have mentioned in the
beginning of this section. Let us denote the set containing all non-isomorphic one
dimensional complex torus by .7;. Then Uniformization Theorem (cf. [Di-Sh,
§1.4]) says that the inclusion map i: M; — 7 is actually an isomorphism.
Moreover it factors through the map J: M; — A} defined by C' +— J(C) as in

(1.43). We therefore have the following commutative diagram.

Ml\ | /A%
A
Therefore the map
J: M1 — A%
C— J(O)

is surjective and hence an isomorphism.




Chapter 2

On the cycle class map and
Hodge structure - smooth and

non-smooth cases

In this chapter we discuss the Hodge decomposition of a complex submanifold
sitting inside a projective space. We thoroughly go through few properties of the
Hodge decomposition like functoriality, Hodge symmetry etc. that are compatible
with the corresponding properties of the cohomology ring. After that the Chow
groups and the cycle class map have been defined for smooth cases. Then we
come across one of the seven “Millennium Problems” of Clay Mathematics Insti-
tute (CMI), Cambridge, namely, the Hodge conjecture. It was first formulated by
Hodge in 1941 and is now known as the Integral Hodge conjecture. Then Atiyah
and Hirzebruch proved that integral Hodge conjecture can’t hold (cf. [At-Hz]).
We mention another example by Kollar in this context. The Hodge conjecture
then gets modified and it asserts that Hodge cycles are (rational linear) com-
binations of some geometric pieces called algebraic cycles for some particularly
nice spaces. One can refer to [Hg 1] and [Hg 2| for details regarding the Hodge

conjecture.

Finally we give an instance where the Hodge conjecture holds, namely, for a
general polarised Jacobian variety and go through mixed Hodge structure, oper-
ational Chow groups and the cycle class map on the singular varieties followed
by that.

45
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2.1 Hodge decomposition

Let X be a complex manifold of dimension n. Then by definition we can cover X
with open sets U such that there exists an open set A of C™ satisfying following
isomorphism:

(21,29, .., 2n): U = A,

Here z;’s are called complex coordinates for X on U. Moreover we can pass
from one coordinate to the another via holomorphic functions. Writing z, =
T + Wi, (T1,...,Tn,Y1,--.,Yn) are real coordinates of X on U, treating X as
a real manifold of dimension 2n. Hence every differential form on U can be
expressed in terms of these coordinates, that is to say, with respect to dx; and
dyy for all 1 < k < n. Let us define dz; and dz;, as follows:

de = dmk + Zdyk, (2 1)
dZ_k = dxk — Zdyk. .

Then the differential forms can be expressed in terms of dz, and dz, for all 1 <
k <mn. If a form on X can be expressed as a sum of the terms like a(zy, zx)dz;, A
dzi, A+ -ANdzi, N\dz;, Ndzj, \- - - AdZ;, in any system of coordinates, then we say that
the form is of type (p,q). Here 1 <43 <--- <i,<nmand 1 <j; <---<j, <n.
Let HER(X, C), or simply H™(X,C) when no confusion is likely to occur, be the
m-th de Rahm cohomology group of X consisting of closed m-forms modulo the
exact ones. By H?9(X), or simply by HP? when the space involved is clear from
the context, we denote the subspace of HPT4(X,C) consisting of closed (p + q)-
forms of type (p,q). Let us assume that X is a complex submanifold of some
projective space, then for any non-negative integer r, the space H"(X, C) can be
decomposed as follows:

Hodge decomposition:

H'(X,C)= €p H". (2.2)

pg=r

Remark 2.1.1 This result does not need the projectivity of X, it uses some
coarser condition instead. That is to say, it uses existence of a Kéahler metric.

Any projective space carries such metric and moreover restriction of that to any
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complex submanifold is again a Kahler metric. So the decomposition holds in
that case also. For the proof of the Hodge decomposition for a complex Kéhler

manifold, one can refer to [Gf-Hr 2, p. 116].

Let us now recall a few properties of the de Rahm cohomology groups. Let M
and N be two oriented, complex manifolds of dimension m and n respectively.

Then we have the following:

1. The de Rahm cohomology H*(M,Z) is a graded, skew-commutative ring
and as an abelian group it is finitely generated. We denote the product

operation of this ring by ‘-’

2. When p < 0 or p > m, H?(M,Z) = 0. Moreover, H*(M,Z) = Z -1 and

H™(M,Z) = 7Z via the canonical isomorphism [,

3. Let f: M — N be a smooth map. We denote the associated pull back
morphism by f*: H*(N,Z) — H*(M,Z) and push forward morphism by
fo: H*(M,Z) — H*(N,Z). Then

(a) The morphism f* is a morphism of graded rings, that is, f*(H"(N,Z))
C H"(M,Z).

(b) The morphism f, is a group homomorphism and not a ring homo-

morphism in general. Also, degree of this morphism is n — m and so
F.(HP(M, Z)) C HY="(N, Z).

(c) For all « € H*(M,Z) and § € H*(N,Z), f(a- f*B) = fua - B.
(d) For all « € H™(M,Z), [ feo= [, .

4. Poincaré duality:

The following bilinear form is non-degenerate :
HP(M,Z) ® H™ (M, Z) —— H™(M,Z) ¥~ 7.

We now list down some properties of the Hodge decomposition that are nicely
compatible with the properties given above. Let us assume that X and Y be
two projective varieties of dimension m and n respectively. We need the variety
structure here for existence of the Hodge decomposition as in (2.2). We now have

the following:
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. The equalities H°(X,C) = H* and H?*"(X,C) = H™™ hold. Further-

more, the operation ‘-’ of H*(X,C) gets restricted as follows:

HPLO « P22 _y Hp1+p2#11+q2‘

. Let f: X — Y be a morphism between two projective varieties. Then we

have:

fHHP(Y)) € H(X),

(2.3)
FL(HPA(X)) C HPtn-matnom(y).
. Poincaré duality gets restricted to the following perfect pairing:
HP4 x Hmpm—1 s fymm =, [1?m(X C) —C. (2.4)

. For any r;, H"(X, C) is equipped with a natural involution corresponding to

the conjugation of differential forms, that is, dz; and dzj ,defined in (2.1),

get interchanged under this involution. Hence we have the following.

Hodge symmetry:

HPY = Hap,

We use aforementioned properties heavily to prove the following proposition.

Proposition 2.1.2 Let X be a complex projective manifold of dimension n and

Z be an irreducible, codimension p subvariety. Then the cohomology class [Z] in
H?(X,Z) is of type (p,p).

Proof.See [Be 2, Proposition 3.3]. Indeed, we are now in the situation of Defi-

nition 1.5.3 and Remark 1.5.4. Let us quickly recall the notations. Let Z be a
resolution of Z and f oi: Z — X be the map as defined in Remark 1.5.4. So,
whenever Z is smooth, we have Z = Z and f oi =i. For any o € H>"2 (X 7),

we have:

[Z] - o =i,1 - a (By Definition 1.5.3) 2.5)
= i.i"a. (By property 3(c) of de Rahm cohomology) .
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Therefore we obtain:

/X 7] o= /X ivi*a (By (2.5))

(2.6)
= /~ i*a. (By property 3(d) of de Rahm cohomology)

Z
As (2.4) holds, it is enough to show that [Z] -« = 0 hold for all o in H"~*"~%(X)
with a being different from b and a + b = 2p. Without loss of generality, assume

that @ > p. So, n —b > n —p and as a result H"~*"*(Z) = 0. As by (2.3)
a€H" " X) = ita € H" " (Z),

we have i*a = 0. Therefore, we are done by (2.6). O

2.2 The cycle class map on smooth varieties and

the Hodge (p,p)-conjecture

Let X be a smooth projective variety over complex numbers. Let ZP(X) be
the free abelian group generated by the codimension p subvarieties of X. The
elements of ZP(X) are called algebraic cycles of codimension p.

Let us now recall the notion of rational equivalence. A codimension p algebraic
cycle Z is said to be rationally equivalent to 0, denoted by Z ~ 0, if there exists
a finite number of codimension p — 1 subvarieties V; of X and non-zero elements

r; of the field of rational functions of V; satisfying
Z =Y (r).

Here (r;) denote the divisor of the rational function r; as defined in (1.10). As
(r~1) = —(r) for any non-zero element of the field of rational functions, the
collection of all codimension p algebraic cycles rationally equivalent to 0 is a
subgroup of the group Z?(X) and is denoted by Rat?(X). Rational equivalence
can be alternatively interpreted in a more geometric way. Informally, two cycles
Zy and Z; in Z*(X) are rationally equivalent if there is a rationally parametrized
family of cycles interpolating between them, that is, Z, and Z; are obtained as
restrictions of a cycle on P! x X to the fibers {tq} x X and {t;} x X for two
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distinct points ¢y and ¢; of P! (cf. [Fu, §1.6]).
Let CHP(X) be the p-th graded piece of the Chow group CH*(X). Here
CHP(X) is defined as

CH?(X) := Z"(X)/Rat’(X).

Moreover the Chow group C'H*(X) can be given the structure of a ring with
intersection of cycles as the product operation (cf. [Fu, §8.3]). The ring is then
called the Chow ring of X.

Remark 2.2.1 1. It can be noted that Div(X) = Z'(X). Furthermore we
have, CH'(X) = Pic(X), that is, the notion of rational equivalence gen-
eralises the notion of linear equivalence of divisors as defined in Definition
1.3.6.

2. Defining A,(X) := CH" ?(X), n being the dimension of the variety X, we
get the group A,(X) = @,4,(X) graded by dimension instead of codimen-
sion. This group does not have a ring structure in general. But for smooth
X, A, (X) = CH*(X) and hence A.(X) is a ring too.

Consider the cycle class map defined as follows.

cl: CHP(X) — H*(X,7Z)

ARSVAl 27)

where Z is an irreducible subvariety of codimension p in X and extend it linearly
to the whole of CH?(X). The image of this map is denoted by H*(X,Z),, and
the elements in H?*'(X,Z),, are called integral algebraic classes. Let us consider
the natural inclusion i: H?*’(X,Z) — H?’(X,C). Then Proposition 2.1.2 can be
restated as follows:

H> (X, Z)y C i~ (H"?). (2.8)

The Hodge conjecture initially meant that converse of (2.8) holds. Now this is

known as the integral Hodge conjecture which is as follows :

H? (X, Z)ay = i " (HPP).
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Remark 2.2.2 Let i: H*(X,Z) — H?*(X,C) be the inclusion map. Then
i~'(HP?) is often denoted by HP? N H*?(X,Z).

Many mathematicians observed that the integral Hodge conjecture doesn’t hold.
In [At-Hz], Atiyah and Hirzebruch proved that there are some torsion elements
that can’t be represented as algebraic classes. Here is an example due to Kollar.
Let us take a general hypersurface X of P* having degree p*, p being a prime
greater than 5. Let h be the class of a hyperplane section of X generating
H?*(X,7Z). Let [ be the Poincaré dual of h that generates H*(X,Z). Then [ is
not algebraic as any algebraic class is a multiple of p - [ (cf. [Be 2, Proposition
4.3 & Corollary 4.4]).

As the integral Hodge conjecture failed to be true, people started looking at
analogous result in rational cases. Let CH*(X) ® Q be denoted by CH*(X)g
and jo: H*(X,Q) — H*(X,C) be the obvious map. Then the subspace of the
Hodge classes of H**(X,Q), denoted by H?fodge(X), is defined as:

Hifoiqe(X) 1= H?(X,Q) N jg ' (HP(X). (2.9)

Consider the cycle class map cl: CHP(X)g — H*(X,Q) defined similarly as
in (2.7). The image of this map is denoted by H*(X,Q),, and the elements
in H?(X, Q) are called rational algebraic classes. The Hodge (p, p)-conjecture
asserts the following:

Hodge conjecture:
H2p(X7 Q)alg = HIQfodge(X)

that is, any rational algebraic class is a Hodge class and vice versa.

For p = 1, Hodge (p,p)-conjecture is true even in integral case. This was
proved by Lefschetz and is known as Lefschetz theorem on (1,1) classes. Lef-
schetz proved this using a tool introduced by Poincaré called normal functions
(cf. [Le 3]). Here we state the theorem and give an outline of the proof using a

modern approach.

Theorem 2.2.3 Let X C P" be a complex submanifold. Then given any v €
HY'N H*(X,Z), there exists a diwisor D on X such that v = [D].

Proof.See [Gf-Hr 2, p. 163]. Indeed, recall the exponential exact sequence as in
(1.1)

erp

0 7 —~ 0Oy

01, —0.
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Then in corresponding cohomology sequence we obtain:
HY(X,0%) -2~ H*(X,Z) —2> H*(X, Ox) — H2.

Here ¢ is as defined in (1.21) and the isomorphism H?*(X,Ox) = H%? follows
from [Gf-Hr 2, Dolbeault Theorem, p. 45]. It can be checked that the map
iv: HX(X,Z) — H%? actually factors through H?*(X,C), that is, we have the

following commutative diagram:

H?*(X,Z)—— H*(X,C) —=- H>0 @ HY! ¢ HO2

\/

Here 7%2? denotes the usual projection. Theorem now follows from Proposition
1.5.5. O

Remark 2.2.4 The Hodge (p, p)-conjecture is trivially true for p = 0. Propo-
sition 2.2.3 can be proved to be true for rational case and hence Hodge (p,p)-

conjecture is true for p = 1 too.

Surjectivity is very intrinsically related to a whole lot of conjectures. The
Hodge conjecture is no different. Proposition 2.1.2 depicts the fact that Hodge

conjecture can be stated in a more refined way as follows:
Hitogge(X) © H? (X, Q)aiy.
That is to say the cycle class map
cl: CHY(X)q = Hifygye(X)

is surjective. The Hodge conjecture is one of the seven millennium problems
of Clay Mathematics Institute of Cambridge. It was formulated by Hodge in
1941 (cf. [Hg 1]). Many more conjectures can be interpreted as surjectivity
of certain maps. Let us just mention one more instance. Poincaré formulated
a conjecture in 1904 known as the Poincaré conjecture. It is a theorem now
as it was proved in November, 2002 by Perelman. Poincaré asked if the three

dimensional sphere is characterized as the unique simply connected closed three
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manifold upto homeomorphism. Let S® denote the three sphere. Let us denote
the set of all simply connected closed three manifolds by M?. Let ‘~’ denote the

homeomorphism of topological spaces. Then obviously the following map

3
sy -2

is injective. Moreover, the Poincaré conjecture asserts that the map is surjective

too.

2.3 The Hodge conjecture for a general Jaco-
bian

Let X be an abelian variety. The subring of Hz,, . (X) generated by Hp,z..(X)

and Hy,g,.(X) is denoted by D*(X). The cycle classes in D*(X) are all algebraic

by Remark 2.2.4. Let DP(X) be the p-th graded piece of D*(X). In particular,
the Hodge (p, p)-conjecture is true if

DP(X) = lepodge(X)'

Mattuck proved that Hodge conjecture is true for a general polarised abelian
variety (cf. [Ma]). Tate proved the Hodge conjecture for self product of an elliptic
curve (cf. [Ta] and [Gr 3, §3]) and Murasaki did some explicit computations for
the same (cf. [Mr]). Then using degeneration technique one can prove that Hodge
conjecture holds for a general polarised Jacobian variety with Theta divisor © as

a polarisation.

Theorem 2.3.1 For a general polarised Jacobian (J(C),0O) of dimension g
H?fodge(‘](c)) = Dp(J<C)) = @

forallp=20,---g.

Proof.See [La-Bk, Theorem 17.5.1; p. 561]. O
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2.4 Pure and mixed Hodge structure

In this section we recall the notion of pure and mixed Hodge structures. We
have already discussed pure Hodge structure without mentioning explicitly. Let’s
begin with that.

Let us take a complex manifold X of dimension m sitting inside some pro-
jective space. Then recall that the space H"(X,C) has a decomposition, called

Hodge decomposition, as follows (cf. 2.1):

Furthermore this decomposition satisfies the condition HP4 = H4P known as
Hodge symmetry. Such a direct sum decomposition of H"(X,C) is known as a
pure Hodge structure of weight r. The space H"(X,C) has a finite decreasing
filtration by the subspaces FPH" (X, C), with p € Z, defined as follows:

FpHT(X, C) — @ Hi,r—i,

i>p

that is, an element of FPH"(X,C) has atleast p many dz’s when expressed in
terms of local coordinates. This filtration is known as Hodge filtration. Moreover
the subspaces HP? can be recovered from these new subspaces as we have the

following equality:
HP = FPH"(X,C)N FeH" (X, C).

We now briefly recall the notion of mixed Hodge structure. This was intro-
duced by P. Deligne around 1970 as a generalisation of pure Hodge structure
which is applicable for singular and non-complete varieties as well. We then have
the notion of an additional filtration, finite and increasing, known as weight fil-
tration which is trivial over a smooth compact variety over complex numbers.
One can refer to [De 1], [De 2], [Ca-Ze-Gf-Tg, Chapter 3] and [Du].

Let’s be more precise. Assume that X is a complex projective variety possibly

singular. A mized Hodge structure on H"(X,7Z) consists of the following data:
1. a Hodge filtration F? of H"(X, C),

2. a finite increasing filtration W; of H" (X, Q) called weight filtration,
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such that the i-th associated graded quotient gr)V H"(X,Q) of H"(X,Q) with
respect to the weight filtration, defined as gr!¥ H™(X,Q) := WMEl’ along with

the filtration induced by the given Hodge filtration on its complexification is

a pure Hodge structure of weight ¢, for all ¢ € Z. Here, the complexification

grl" H'(X,Q) @ C of gr]" H"(X, Q) is given by €= and the filtration induced

by FP on this is denoted by FP(grV H"(X,Q) ® C) and is defined as

FPAOW, ®@C)+ Wi ®C

P ec) = TIEEO

Remark 2.4.1 1. Both pure and mixed Hodge structure can be defined in
a more general set up. In this context, one can refer to [Ca-Ze-Gf-Tg,
Definition 3.1.1, 3.1.2, 3.2.11 & 3.2.15]. Then their existence can be proved
in our situations (cf. [Ca-Ze-Gf-Tg, Chapter 3, §3.1 & §3.4]).

2. We use the i-th associated graded quotient gr!” H"(X,Q) of H"(X,Q) to

define cycle class map for singular varieties in the next section.

2.5 The cycle class map on the singular varieties

Let X be any scheme of finite type over C. Fulton defined the operational Chow
groups A*(X) for any scheme X (cf. [Fu, Chapter 17, §17.3]). These are the
same as the Chow groups when X is smooth.

An element of the operational Chow group AP(X) is a collection of homo-
morphisms Ay (X') — Ap_,(X'), for all X’ — X, compatible with proper push-
forward, flat pullback and intersections. Here X’ is a fiber product X xx Y
with respect to the morphism Id: X — X and a given map Y — X. The map
X' — X is the usual projection map which fits into the commutative diagram of
fiber product. So an element of AP(X) can be thought of as a special bivariant

class (cf. [Fu, Definition 17.1]). Moreover we have the following:

1. There is a product, such that A*(X) = @,AP(X) is an associative, graded
ring with 1.

2. For any f: Y — X the pullback

£ AP(X) — AP(Y)
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is a ring homomorphism. This is functorial in f.

3. There is a projection formula:
f(fFBNa) =8N fa)

4. The Chern classes of vector bundles are defined in this theory.

5. Bloch, Gille, and Soulé (cf. [BI-Gi-Sl]) defined the cycle class maps, which

we again denote by cl, on the rational operational Chow group of X:
cl: AY(X)g — grif H*(X,Q). (2.10)

(cf. [To, §8, p. 22 ] also).

In particular, if Y is a smooth projective variety and f: Y — X is a generically

finite morphism, then there are pushforward and pullback maps:
fo: CHP(Y) — AP(X), f*: AP(X) — CHP(Y).

Lemma 2.5.1 Consider a smooth projective variety Y, and f: Y — X is gener-

ically finite and flat. There is a commutative diagram:

AP (X)g—L—~CH(Y)q

. ’

gr¥ H*(X,Q) — H*(Y,Q)

fcoh

Furthermore, fr, is injective.

Proof.The second assertion on injectivity of f*, follows from [Pe-Sb, Chapter
5, Corollary 5.42]. Suppose W C Y is a codimension p closed subvariety. By
definition, [W] corresponds to a class in A?(X) and f*[W] € CH?(Y) is the same
as the class [IW]. The commutativity follows from the functoriality of the cycle
class maps. O

We will utilise this map to define the cohomology classes of the Brill-Noether
loci on the singular moduli space M¢(2,2g—2), in the graded pieces of its singular

cohomology group (cf. Theorem 5.5.7).




Chapter 3
On the moduli spaces

In mathematics, among many other interesting problems classification of objects
in a given category is one. The concept of moduli spaces arise in order to deal
this problem in algebraic geometry. Though moduli problems use many fancy
techniques, the basics of these problems are naturally embedded in all branches
of mathematics. For example, consider the problem of classifying all finite dimen-
sional vector space over a given field k£ upto vector space isomorphism. As upto
isomorphism there is only one vector space of dimension n for all non-negative
integer n, the space N U {0} can be considered as a space classifying all finite
dimensional k-vector spaces. The set of natural numbers N can be thought as
the space parametrizing all non-zero finite dimensional k-vector spaces. But the
same set can also be interpreted as the space classifying all cyclic groups of finite
order. So by classifying problem one means a collection of objects A, an equiva-
lence relation ‘~” on A. By solving this problem one means to describe é, the set
of equivalence classes of A under the given equivalence relation ‘~’. To do so, one
usually find some discrete invariant. For example, dimension of a vector space
and order of a group served as the discrete invariants in the problems discussed
above.

Let us go through a few more examples of classifying spaces which are more
relevant for our purpose. Any elliptic curve serves as a classifying space. To be
more specific, a point on an elliptic curve E represents the isomorphism class of a
degree zero line bundle on E (cf. Proposition 1.8.4). This classification problem
can be immediately seen as a particular case of a more general moduli problem,
namely the problem of classifying all degree zero line bundles upto isomorphism

on a smooth, projective curve C' over complex numbers. We have discussed that

57
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the g-dimensional variety J(C'), known as the Jacobian variety, parametrizes all
non-isomorphic degree zero line bundles on the curve C' of genus g (cf. Theorem
1.6.8). Let A be the set of all effective divisors of a fixed degree d on a given
curve C'. Suppose ‘~1’ be taken as equality of two such divisors and ‘~5y’ be taken
as linear equivalence. Then % is nothing but the d-th symmetric product S¢(C)
whereas - is nothing but Pic?(C) (cf. Section 1.7).

~2

3.1 Fine and coarse moduli spaces

In this chapter our main target is to go through the problem of classifying all
stable bundles over C' upto isomorphism and all semistable bundles over C' upto
S-equivalence. For that let us explain what we mean by a moduli problem more
rigorously and two types of moduli spaces, namely fine and coarse moduli space,
followed by that.

Let us recall the notion of functor of points. For that we introduce the fol-
lowing notations. By Sch we denote the category of schemes of finite type over a
given field k. In this section by a scheme we refer to a scheme of finite type over
the field k. We denote the category of sets by Set. we then have the following

definition.

Definition 3.1.1 For a scheme X, the contravariant functor Hom(—, X): Sch —
Set, denoted by hyx, is called functor of points of the scheme X.

The functor Hom(—, X)) is defined naturally. Given a scheme Y, it sends to the
set Hom(Y, X). Note that, here we are assuming that our chosen categories are
locally small categories and therefore the definition of functor of points makes

sense. Also, given a morphism f: Y — Z of schemes, the functor hy sends it to

hx(f) defined as follows:

g—gof.

Remark 3.1.2 1. Any morphism f: X — Y of schemes gives rise to a natural
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transformation hy of functors hx and hy defined as follows:

hfZ: hx(Z) — hy(Z)

g fog.

2. The category of contravariant functors from any category C are called
presheaves on C and is denoted by Psh(C). Using this notation we sum-

marize what we have discussed as follows: There exists a functor h: C —
Psh(C) defined as

h: C — Psh(C)
X — hy [At object level], (3.1)
(f: X =Y)— (hf: hx — hy) [At morphism level].

Let us now state a very important lemma in category theory which is very useful

in our context too.

Proposition 3.1.3 [Ho, Yoneda lemma, Lemma 2.4] Let C be any given cate-
gory. Suppose that C' be an object in C and F be an object in Psh(C). Then there
is a one to one correspondence between the set of all natural transformations from
he to F and F(C) given by,

(772 hc — F) — nc(Idc)

Definition 3.1.4 Let C and D be two categories and F': C — D be a functor
between them. Then the functor F' is said to be fully faithful if the morphism
Fxy:Hom(X,Y) — Hom(F(X), F(Y)) induced by F' is bijective for all objects
X, Y in the category C.

Corollary 3.1.5 The functor h: C — Psh(C) as in (3.1), known as Yoneda em-
bedding, is fully faithful.

Proof.See [Ho, Corollary 2.5]. Indeed, let C,C; be two arbitrary objects of the
category C. To show that the functor h: C — Psh(C) is fully faithful, we need to
show that the morphism he o, : Hom(C, Cy) — Hom(he, he,) is bijective. That
follows immediately from Proposition 3.1.3 by taking F' = h¢,. U
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This leads to the following definition which is very much crucial to define

certain kind of moduli spaces.

Definition 3.1.6 A presheaf F' in Psh(C) is said to be representable if it lies in
the image of the Yoneda emdedding, that is, if there exists an object C' in C and
a natural isomorphism between the functors F' and he. We also say that the

scheme C' represents the functor F.

We already have discussed a few examples of moduli spaces without defining it
precisely. Now we are in position to do so and towards that we have the following

definitions.

Definition 3.1.7 By a naive moduli problem in algebraic geometry one means a
collection A of objects in algebraic geometry together with an equivalence relation

‘~"on A. A naive moduli problem is denoted by (A, ~).

The next most important concept is the concept of a family of objects of A
parametrized by a variety S. Precise definition of family is very intrinsically re-
lated to a given problem. One needs to mould the definition of a family depending
on context to obtain best possible results. Intuitively, such a family F should
consist of a collection of objects F; of A for each s € S, which vary in such a way
that somehow reflects the structure of the variety S. Moreover, we demand these
families to satisfy some natural conditions which should remain valid irrespective
of which context we are under. These conditions are precisely incorporated in

the following definition.

Definition 3.1.8 Let (A, ~) be a naive moduli problem. Then an ezstended
moduli problem is given by sets Ag of families over S for all schemes S, an
equivalence relation ‘~g’ on Ag and pull back morphisms f*: Ag — A for any

morphism f: T — S of schemes satisfying following functorial properties:
1. (ASpec(k)a NSpec(k)) = (.A, N)7

2. 1d*(F) = F for any family F over S and for the identity morphism Id: S —
S,

3. Fr~gG= f*F)~r f*(G) for any morphism f: T — S,

4. (go f)(F) ~r f*g*(F) for any given morphisms of schemes f: T — S,
g: S — R and any family F over the scheme R.
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Here given a family F over S, by F, we mean pull back s*(F) over the point
s: Spec(k) — S.

Definition 3.1.8 in turn leads to the following definition.

Definition 3.1.9 An extended moduli problem defines a presheaf functor called
moduli functor corresponding to the moduli problem, denoted by M, is defined
by

M: Sch — Set

{families over S}

S —

[At object level], (3.2)
~s

(f: T—8)— f*: M(S) = M(T) [At morphism level].

We now can define the best possible example of a moduli space known as the fine

moduli space.

Definition 3.1.10 Let M be a moduli functor as in (3.2). A scheme M is said

to be a fine moduli space if it represents M.

Let us unwind Definition 3.1.10 a bit to understand the reasons for calling it best
possible example of a moduli space. A priori it is not clear how the scheme M is
related to the given (naive) moduli problem (A, ~). Definition 3.1.10 says that
there exists a natural transformation , say 1 between the moduli functor M and

the functor hjy;. Therefore we have the following bijections 7ng for any scheme S:

{families over S}

ns : Mg 1=

<> {morphisms S — M} := hy(95). (3.3)
~s

In particular, taking S = Spec(k) in (3.3), we have:

MSpec(k)

MSpec(k) ~ hM<SpeC(k)) (34)
L Il
{familieisver(sp%(k)} nsp;c(k) {morphisms Spec(k) — M}

Therefore by (1) of Definition 3.1.8 and (3.4) we can conclude that the set 2 is
in bijection with the k-points of the scheme M representing the moduli functor

M.
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Let us go through another important property possessed only by fine moduli
spaces. Again consider (3.3) for S = M.
_ {families over M}

v : My = <> {morphisms M — M} := hy(M). (3.5)
~M

Immediately, we have a family U upto equivalence over M corresponding to the
morphism Idy: M — M, that is U := 1;;(Idy;) € M. Consider an arbitrary
family F upto equivalence over a scheme S corresponding to a morphism f: S —

M. Consider the following diagram:

{FY—— M(S) === hy(S) =——{f: § = M} (3.6)

IIj l ll

{/(U)y——= M(S) = hu(S) =——{Idp o f: § = M}

Diagram (3.6) depicts the fact that both the families F and f*(U) over the scheme

S correspond to the same morphism f: .S — M. Therefore from (3.5) we have:

F ~sg f*(u)a

that is, any family over any scheme can be obtained upto equivalence by pulling
back the family U, called the universal family.

So the situation is nice in all possible sense in case of a fine moduli space and
hence such moduli spaces are very rare. So it is natural to obtain a weaker notion

of such moduli space.

Definition 3.1.11 Given a moduli functor M, a coarse moduli space is defined
to be a scheme M along with a natural transformation n: M — h,, satisfying

following properties:
L. Nspectk) : M(Spec(k)) = har(Spec(k)) is bijective,

2. Given any scheme N and any natural transformation pu: M — hy, there
exists a unique morphism of schemes satisfying the following commutative
diagram:

M —"= hay

N

hn
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Here hy is as defined in Remark 3.1.2.

Remark 3.1.12 1. It can be easily checked that both fine and coarse moduli

spaces are unique upto unique isomorphism, if at all exists.

2. Though the notion of a coarse moduli space is weaker than that of a fine
moduli space, still it is nearest to the moduli functor in the sense of (2) in
Definition 3.1.11.

3.2 Stable and Semistable bundles

In this section, we recall some definitions and a few properties of semistable
bundles over a smooth projective curve C' over C of any genus.

Recall that given a vector bundle V' over a smooth projective curve C, the
degree deg V of V is defined to be the degree of the determinant line bundle
det V. Now one can associate a rational number to the given bundle V. This
rational number, denoted by py or p in short if the bundle involved is clear from
the context, called the slope of V and is defined by

_degV
Hv = rank V'~

Definition 3.2.1 A vector bundle V' over C' is called semistable if for any non-
zero proper subbundle W,
pw <y (3.7)

The bundle V is called stable if the inequality in (3.7) is strict.

Example 3.2.2 1. Any line bundle over a curve is stable and hence semistable.

2. The bundle O(1)®? over P! is semistable but not stable. It can be noted
that the slope po(1) of the subbundle O(1) is 1 which is equal to the slope
poye2 of the bundle O(1)%2.

3. The bundle O(1) ® O(—1) over P! is of slope 0 whereas the subbundle O(1)
has slope 1. Hence the bundle O(1) & O(—1) is not even semistable.

Given any rational number g, let us denote the category of semistable bundles

of slope p by SSc(p) or simply by SS(u) if the underlying curve is understood.
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Consider the following exact sequence of vector bundles
0=V = Vo= V3 —0. (3.8)

Assume that puy, = uy, = p(say). Since degree and rank of vector bundles are

additive, we have

_ deg Vs

Hve = ank Vs

deg Vi +deg V3
rank V] 4+ rank V;
rank Vi - uy, +rank Vs - uy,
rank V; + rank V;

rank Vi - p+rank V3o p

rank V; +rank V3 B

Further we assume that the bundles V; and V3 are semistable. Let F5 be a
subbundle of V5. Let F} := F, NV} and F3 be the image of F, in V3 under the
map Vo2 — V3 as in the exact sequence (3.8). Then the vector bundles F; and
F3 are subsheaves of V; and V3 respectively. We can get a subbundle F, of V;
with pr < pp < p and a subbundle Fy of V3 with pry < pp, < pas Viand V3
are semistable bundles. Moreover, F;, for 1 < i < 3, satisfy the following exact
sequence:

0— F — Fy, — F3 — 0.

Therefore pp, < p and hence V; is semistable. We can conclude that if V3 and
V3 are semistable of slope pu, then so is V5. In particular, direct sum of two
semistable bundles of slope u is again so. Therefore, a priori SSc(u) is only an

additive category.

For any Vi, Vs € SSe(u) and for any non-zero map 7: Vi — Va5, we have the
inequality

= vy < Pm(n) < pyy = e

Therefore pim(ry = p and Im(7) is a subbundle of V5. Hence 7 is of constant rank
and Ker(m), Coker(r) are vector bundles. Let E be a subbundle of Ker(7). So E
is a subbundle of V} too and pug < uy, = p as V; is semistable. Hence Ker(7) is
semistable of slope p. We also claim that Coker(7) is semistable of slope p. If not,

then Coker(m) has a non-zero locally free quotient bundle F' with pur < p. This
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F' is also a quotient bundle of V5, of slope strictly less than p. Dually, we get a
subbundle of V5 with slope strictly greater than u contradicting the semistability
of V5. Hence the claim follows.

Therefore, for any Vi, Vs € SSe(i) and for any non-zero map 7: Vi — Vs,
Ker(m) and Coker(m) are also members of SSc(p). Hence SSe(i) is an abelian
category. Therefore we have the notion of Jordan-Holder filtration in this cate-
gory.

Every semistable bundle V' of slope p has a Jordan-Holder filtration,

O=Wo CWy---CW, =V,

Wi
Wi—1

1,---,t. First of all, the integer ¢ is independent of the filtration and is called

where the successive quotients are stable bundles of slope p for all ¢« =
the length of the filtration. Moreover, for two such filtration of V| the successive
quotients are uniquely determined up to a permutation, and so the associated

graded bundle

is well defined.

Definition 3.2.3 Two semistable bundles V' and V; are said to be S-equivalent,
written as ‘V ~ Vi, if Gr(V) = Gr(11).

Definition 3.2.4 A semistable bundle is called a polystable bundle if it is a direct

sum of stable bundles.

Remark 3.2.5 From Definition 3.2.3, it is obvious that S-equivalence class of a
semistable bundle contains exactly one polystable bundle upto isomorphism. In

particular for a semistable bundle V', we have V' ~ Gr(V).

Now we look into a few more type of bundles over curve and relations between
them. Let V' be a vector bundle over a curve C'. Recall that by End(V') we denote
the collection of all morphisms from the vector bundle V' to itself. We recall that
a bundle V is called simple if End(V) = C. Assume that V; and V5 be two
stable vector bundle of same slope. Then any non-zero morphism between them
is an isomorphism (cf. [Ne 1, Lemma 5.3]). Let V' be a stable vector bundle and

h:V — V be a morphism. Then looking at an arbitrary fiber V, of V over x, the




66 §3.2. Stable and Semistable bundles

linear map h, —A-Idy, : V, = V, is zero for any eigenvalue A of h,, the restriction
of the morphism A to the fiber V. Therefore the morphism h — X - Idy is not an
isomorphism and hence equals to 0. So h = A-Idy and End(V') = C, that is, the
bundle V is simple.

Consider a decomposable bundle V' with a decomposition V' = V; & V5. Then
two different homotheties on two summands V; and V5 give rise to a non-trivial
endomorphism of the bundle V. Hence the bundle V' is not simple. Contraposi-

tively, we can conclude that any simple bundle is indecomposable.

In short, we have the following implications:

Stable = Simple = Indecomposable. (3.9)

By Definition 3.2.1, it is obvious that any stable bundle is semistable. Con-
verse is also true when the rank and the degree of the bundle are coprime. It is
a well-known fact. We still provide a proof for the sake of continuity. Let V be a
semistable bundle of rank n and degree d with ged(n,d) = 1. Let W be a proper

non-zero subbundle of V. Then
1 <rank W < rank V. (3.10)

As V' is semistable, we have:

Therefore from (3.10) and (3.11) we get,
deg W < deg V. (3.12)

Now if equality occurs in (3.11), then deg W and rank W both have to be integer
mulltiples of deg V' and rank V' respectively as ged(n, d) = 1. But that contradicts
(3.10) and (3.12). Therefore we have strict inequality in (3.11) and hence V is
stable.

This can summarised by the following implications:
Stable = Semistable, (3.13)

Semistable = Stable, if rank and degree are coprime. (3.14)




§3.3. Moduli space of stable and semistable bundles over curve 67

These implications as in (3.9), (3.13) and (3.14) combine together in case of

elliptic curve as we will see later.

3.3 Moduli space of stable and semistable bun-

dles over curve

In this section we go through the construction of the moduli space of stable and
semistable bundles of rank n and degree d over curve. We recall different types of
quotients under the action of an affine algebraic group on a scheme and discuss
Quot scheme followed by that. Finally we outline the construction of the moduli

spaces we are interested in through the PGLy action over a Quot scheme.

3.3.1 Quotients and moduli spaces

Let G be an affine algebraic group and X be a scheme upon which G acts via an
action ‘-’. Then G has a natural induced action on the k-algebra O(X) of regular

functions on X, which we again denote by ‘-’ by abuse of notation, is given by

G x O(X) = O(X)
(9. f) = g+ f, where (3.15)
(g- (@)= flg~'a).

By O(X)Y we denote the subalgebra of O(X) consisting of invariant functions

under the action as in (3.15) and is therefore given by
OX) :={fcOX)|g.f=fforalgeG}.

For any open subset U of X, Ox(U)% is similarly defined as the subalgebra of
Ox(U) consisting of all G-invariant functions.

Following these notations let us now define three types of quotients which are
very much essential for constructing the moduli space of stable and semistable

bundles over curve.

Definition 3.3.1 A G-invariant morphism of schemes ¢: X — Y is said to be
a categorical quotient for the G-action on X if it is universal, that is, given any

other G-invariant morphism 7: X — Z, there exist a unique morphism 6: Y — Z
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which fits into following commutative diagram:

®p

X /-

N

Definition 3.3.2 A morphism of schemes p: X — Y issaid to be a good quotient

for the G-action on X if the following are satisfied.

1.

The morphism ¢ is G-invariant.

. The morphism ¢ is onto.

. For any open subset U of Y, the morphism Oy (U) — Ox(p~'(U)) is an

isomorphism onto Ox (¢~ 1(U))Y.

. The image (W) is closed in Y for every G-invariant closed subset W of X.

. For any disjoint G-invariant closed subsets W; and Wy of X, o(W;) N

e(Ws) = 0.

. The morphism ¢ is affine, that is, o~ }(U) is affine for every affine open

subset U of Y.
We denote this by X//G.

If moreover, preimage ¢~ 'y of any point y € Y is a single orbit, then the
morphism p: X — Y is said to be a geometric quotient for the G-action on
X. We denote this by X/G.

Remark 3.3.3 1. Definition 3.3.2 immediately implies that any geometric

quotient is a good quotient.

. As (2) holds in Definition 3.3.2, (4) and (5) together can be stated as follows:

For any disjoint G-invariant closed subsets W; and W; of X, the closures
of o(W;) and ¢(Ws) are disjoint.

. Any good quotient is a categorical quotient (cf. [Ho, Proposition 3.30]) and

therefore we have the following chain of implications:

Geometric quotient == Good quotient == Categorical quotient.




§3.3. Moduli space of stable and semistable bundles over curve 69

Given a moduli problem, a family F over a scheme S'is said to have local universal
property if for any family G over a scheme T and for any k-point ¢t € T, there
exists a neighbourhood U; of t in T" and a morphism f: U, — S satisfying

g|Ut ~U f*(f)

It can be noted that local universality doesn’t demand the uniqueness of the
morphism f: U, — S. The following proposition relates the three quotients just

defined with moduli space.

Proposition 3.3.4 [Ho, Proposition 3.35] Given a moduli problem M, let F a
family over a scheme S satisfying local universal property. Assume that there is
an algebraic group G acting on S such that any two k-points s and t lie in the
same G-orbit if and only if Fs ~ F;. Then a categorical quotient of the G-action
on S is a coarse moduli space if and only if preimage of every k-point under the

quotient is a single orbit.

3.3.2 Towards Quot Scheme

One of the major pathological behaviours of a moduli problem is unbounded-
ness, which is essentially the non-existence of any family F over a scheme S
parametrizing all objects in that moduli problem. To make the moduli problem
of semistable bundles of rank n and degree d over a curve bounded, we need to
impose few more conditions. We come to that shortly.

Let us now recall the definition of global generation of a sheaf.

Definition 3.3.5 Let F be a given sheaf over a space X. Then F is said to be
generated by its global sections if the evaluation map ev is surjective, that is, we

have the following:
HY(X,F)® Ox == F —=0.

Let us now go through the notion of a generically generated bundle. Let X be a
non-singular projective curve. As every torsion free module over a regular local
ring of dimension 1 is free, every torsion free sheaf over X is locally free. Let
F be a vector bundle and F be the corresponding sheaf of sections. Consider a
subsheaf G of F. Denoting the inverse image in F of the torsion subsheaf of /G

by Gi, we have G, is torsion free and hence locally free as well. Let us denote
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the vector bundle corresponding to the sheaf G; by G;. Now as F/G; is locally
free, the bundle homomorphism G7 — F' corresponding to the inclusion G; C F
is injective. As a result, G; can be treated as a subbundle of F' and is called

generically generated by G. From the construction described above, we have:

rank G; = rank G,
deg G > deg G.

The following proposition provides some extra conditions on semistable bundles

of higher degrees.

Proposition 3.3.6 Let F be a locally free sheaf of rank n and degree d over X .
Assume d > n(2g —1). If the associated vector bundle F' to F is semistable, then
the following conditions hold:

1. HY(X, F) =0,
2. F 1is generated by global sections.

Proof.

1. If not, then by Serre duality, there exists a homomorphism 0 # f: F — Kx.
Let G be a subbundle of F' generically generated by Ker(f). Then G is of
rank n — 1 and degree d; such that d; > deg Ker(f) > deg F — deg K.
By semistability of F', we have:

d— (29 —2) <
n—1 -

w(@) < u(F) =2

Hence we have d < n(2g — 2), contradicting the hypothesis.

2. Let us denote the fiber of the bundle F' at the point z € X by F,. Then
F, can be regarded as a torsion sheaf having support {z}. Let us denote
by F(—x) the sheaf O(—z) ® F. Then we have the following short exact
sequence:

0— F(—z) F F, 0. (3.16)

We need to show that the map H°(F) — HY(F,) is surjective. For that it
is enough to show that H'(F(—z)) = 0 following the long exact sequence
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at cohomology level corresponding to (3.16). That follows from part (1) as

deg F(—x) =deg O(—2) ® F =d —n > n(2g — 2).

O

Remark 3.3.7 1. For now, if we assume the existence of the moduli space of
semistable bundles of rank n and degree d over a curve C', then denoting it

by Mc(n,d) we have the following isomorphism:

Me(n, d) . Meo(n,d+ ne). (3.17)

oY

Here L is a line bundle of degree e. Hence (3.17) makes sense as tensoring
by a line bundle preserves both stability and semistability. Therefore the
condition on the degree of the sheaf F in Proposition 3.3.6 can be imposed

without loss of any generality.

2. Properties (1) and (2) are essential for the boundedness of the family of
semistable bundles of rank n and degree d over a curve. In fact, a strictly
larger family of vector bundles of rank n and degree d is bounded, namely,

the family satisfying properties (1) and (2) of Proposition 3.3.6.

Proposition 3.3.6 naturally leads to another example of a fine moduli space,
known as Quot scheme, which in turn is very much essential to construct the
moduli space of our concern.

Let F be a locally free sheaf of rank n and degree d over a curve C' of genus

g satisfying
1. HY(X,F) =0,
2. The natural evaluation map ev: H*(X,F) ® Ox — F is surjective.

Then by Riemann-Roch theorem we have:
X(F)=d+n(l-g)=hr"(X,F)—r'(X,F)=0"X,F).

Let N := d + mn + n(l — g), then evaluation map satisfies the following exact
sequence:
N @ Ox —> F——0. (3.18)
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Surjective morphisms as in (3.18) from a fixed coherent sheaf are parametrized

by a scheme called Quot scheme. We recall the definition of this Quot Scheme.
Let F be a given coherent sheaf on C. Consider the moduli problem of

classifying quotients of F having rank r and degree d. For that, we consider

surjective morphism between sheaves
[+ F—>g
up to the following equivalence relation
(f: F=>G)~ (fi: F > G1) & Ker(f) = Ker(fy),

or equivalently by five lemma, if there exists a sheaf isomorphism n: G — G; such

that the following diagram commutes

F—71 g

J )

F Gi

J1

where G and G; have rank r and degree d. The scheme that parametrizes all
quotients of F of rank r and degree d upto the above equivalence is known as
Quot Scheme and is denoted by Quotg’:d.

Let QuotdjT denote the Quot scheme parametrizing all the torsion quotients of

F having degree d. Therefore we have

Quotdf = Quot?r’d.

Let us recall the notion of a polynomial, called Hilbert polynomial, of a given

coherent sheaf.

Definition 3.3.8 Let X be projective curve equipped with an ample invertible
sheaf £ and & be a coherent sheaf over X. The Hilbert polynomial of £ with
respect to L is a polynomial P(E, L) € Q[t] such that for sufficiently large [ € N,

PE LD =xERL) =h"(X,E@ L) —h(X,E® LY.

Remark 3.3.9 1. As by Serre’s vanishing theorem, higher cohomology group
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HY(X, & ® L£%") vanishes for sufficiently large [ (cf. [Ha, Chapter III, The-

orem 5.2]), therefore we have:

P&, L)1) =R (X, E® LY.

2. We simply denote P(&,L,1) by P(l) when the sheaf and the line bundle

involved is clear from the context.

Let G be any quotient of F having rank r and degree d. Then G has the Hilbert
polynomial P(t) with respect to a degree 1 line bundle O(1) which is given by,

Pt)=rt+d+r-(1—yg). (3.19)

As the curve C is given beforehand, its genus ¢ is fixed and therefore P(t) is
dependent on 7 and d only. Hence the polynomial P(t) as in (3.19) is denoted by
[r,d]. Let Quoti or Quot[}’d] denote the Quot scheme parametrizing the quotients

of F having Hilbert polynomial P(t) = [r,d], then we have
Quot;(t) = Quot[;’d] = Quot;’d.
Moreover, for r = 0 we have,

Quot[]g’d] = Quot?c’d = Quot%. (3.20)

Remark 3.3.10 The above equalities in (3.20) give an interpretation of Quotd]E
in two apparently different ways. One can think of d as an integer and then the
Quot scheme QuotfT can be interpreted as the scheme parametrizing all the tor-
sion quotients of F having degree d. Also considering d as the constant Hilbert
polynomial, Quotdf can be interpreted as the scheme parametrizing all the quo-
tients of F having constant Hilbert polynomial d. Both are essentially the same.
This is not at all surprising as the degree of the Hilbert polynomial of a sheaf
G equals dim Supp G. Here the sheaf G being a torsion sheaf is supported on
finitely many closed points and hence degree of the Hilbert polynomial of G is
zero. Therefore it is a constant polynomial and from (3.19) we get that this is

exactly equal to d.




74 §3.3. Moduli space of stable and semistable bundles over curve

The following theorem is about the smoothness of a Quot scheme in case of
constant Hilbert polynomial. We have discussed the proof of this theorem already

in Section 1.7. We mention the statement again for the sake of continuity.

Theorem 3.3.11 Let C' be a non-singular projective curve and let n be any non-

negative integer. Then Quot%6 18 a smooth projective scheme.

Proof.See Theorem 1.7.1. O

3.3.3 Moduli space construction: Stable and semistable
bundles

Fix a line bundle O(1) of degree 1 over C. Choose an m >> 0 such that any
semistable vector bundle E over C' of rank n and degree d is m-reqular, that is,
HY(C,E(m —1i)) =0 for all i > 0.

In particular, we have (cf. [Hu-Ln, Chapter 1, §1.7, Lemma 1.7.2]):

1. K1(C, E(m)) = 0.
2. l°(C,E(m)) =d+mn+n(1—g)=: N.
3. The natural map H°(C, E(m)) ® O — E(m) is surjective.

Let us denote the Quot Scheme Quotgfﬁm" simply by Q. Let
Ofvo = F

be the universal quotient.

Note that the group scheme GLy acts on Q in the following manner:

Let T be an algebraic scheme over C.

Let ¢ € GLy(T) be an automorphism OY, . % O . Let [ON, , — Fr] €
Q(T).

Then, define

g'[ong - FT] = [ngT i> OgXT - FT]

It is clear that this action in fact factors through an action of the group scheme
PGLy.




§3.3. Moduli space of stable and semistable bundles over curve 75

We now have the main theorem of this chapter about the spaces parametrizing

stable and semistable bundles over a curve X.

Proposition 3.3.12 Let C' be any smooth irreducible projective curve over com-
plex numbers. Then there exists a coarse moduli space M (n,d), also denoted
by M?*(n,d), for stable bundles of rank n and degree d. Moreover, the natural
compactification of M?®(n,d) is the moduli space Mc(n,d) of semistable bundles
of rank n and degree d, also denoted by M(n,d) and is in fact a projective variety.

Proof.See [Ne 1, Chapter 5, §4] or [Hu-Ln, §4.3]. Let us give a brief outline of
the proof. Let R C Q be the open subset such that for all x € R,

1. Fleoxz is a semistable bundle,
2. HY(C,ON) — H°(C, F|cxz) is an isomorphism.

It is immediate that R is PGLy-equivariant. Then, for d > r(2¢g—1), we construct
Mc(n,d) as the following good quotient:

Mc(n,d) :=R//PGLy.
and we have the quotient map
w: R — Mc(n,d). (3.21)

Let R® C 'R be subset such that for all z € R?,
1. F|oxe is a stable bundle,
2. H(C,ON) — H(C, F|oxz) is an isomorphism.

Restricting p as in (3.21) to R*, we obtain the geometric quotient

MRS : Rs — Msc(n,d),

that is,
M (n,d) :==R°//PGLYy.

Moreover, R® parametrizes a family of stable vector bundles over C' of rank n
and degree d having local universal property. Also two k-points of R? lie in the

same orbit if and only if the vector bundles parametrized by these points are
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isomorphic. Therefore M (n,d) is a coarse moduli space by Proposition 3.3.4.
For d < r(2g — 1), this holds too as tensoring by a line bundle of fixed degree is

an isomorphism and does not affect semistability or stability. 0

Remark 3.3.13 Putting n = 1 and d = 0 in Proposition 3.3.12, we immediately

get that the Jacobian variety J(X) is a coarse moduli space.

We end this chapter by mentioning the importance of S-equivalence in the fol-

lowing proposition.

Proposition 3.3.14 Two semistable bundle F' and F determine the same point
of the moduli space M(n,d) if and only if Gr(F) = Gr(F)). Hence the space
M(n,d) can also be interpreted as the moduli space of polystable bundles of rank

n and degree d.

Proof.See [Ne 1, Complement 5.8.1]. Indeed, the first part follows from the fact
that the orbit of Gr(F') is contained in the closure of the orbit of the semistable
bundle F' of rank n and degree d. The second part follows from Definition 3.2.3

and Remark 3.2.5. O




Chapter 4

Brill-Noether loci and
tautological algebra of semistable

bundles over elliptic curve

The moduli space of semistable bundles over an elliptic curve is identified with
the symmetric product of the curve itself. On the other hand, the corresponding
fixed determinant moduli space is isomorphic to projective space. Both these
facts are well known due to Tu (cf. [Tu]). Moreover, the Brill-Noether loci
inside these moduli spaces are thoroughly described (cf. [Tu, Section 4]). In
this chapter, we study the algebra generated by the cohomology classes of Brill-
Noether subvarieties and relations between them. Our problem is motivated by
Poincaré relation on a Jacobian variety of a smooth projective curve of genus g
over complex numbers.

Atiyah (cf. [At]) classified the indecomposable bundles over an elliptic curve
completely. In Section 4.1 we recall indecomposable bundles over an elliptic
curve and the moduli space of rank n degree d semistable bundles followed by
that. Given a fixed line bundle L over an elliptic curve, we also describe the
moduli space of semistable bundles of rank n and degree d whose determinant
is L. In Section 4.2 we discuss Brill-Noether subvarieties inside the moduli of
semistable bundles and show that in degree 0 we get an interesting stratification
of those special subvarieties. Finally in Section 4.3 we define the tautological
algebra as the algebra generated by some Brill-Noether loci and find the relations
amongst the cohomology classes of Brill-Noether subvarieties of the moduli space

of semistable bundles over an elliptic curve. We obtain results similar to the

7
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Poincaré relation on a Jacobian variety.

4.1 Structure of moduli space of semistable bun-

dles over elliptic curve

In this section we first describe the indecomposable bundles over elliptic curve,
given by Atiyah in [At]. Then we go through the structure of an arbitrary
semistable bundle of rank n and degree d modulo S-equivalence. We describe the
moduli space of semistable bundles over elliptic curve followed by that. Finally,
we explain the corresponding fixed determinant moduli space as a consequence
of that. Results and proofs in this section are mainly taken from [Tu] and [At].
Let us now recall that by E we denote an elliptic curve, that is, a smooth
projective curve over complex numbers of genus 1 (cf. Section 1.8). Throughout
this chapter we use this notation for an elliptic curve to differentiate it from other

higher genus curve C'.

4.1.1 Indecomposable bundles on elliptic curve

Here we discuss indecomposable bundles over elliptic curve completely which in
turn will be required to describe the moduli space of semistable bundles over
elliptic curves. We recall that indecomposable bundles are the bundles which can
not be written as direct sum of two proper subbundles. The set of isomorphism
classes of indecomposable bundles of rank n and degree d is denoted by Indg(n, d).

Atiyah described Indg(n, d) completely. In the process he constructed F,,, the
unique line bundle in Indg(n,0) with ['(E, F},) # 0. The construction of F,, and

a few properties are listed below as these are very important for our work.

Theorem 4.1.1 [At, Theorem 5] For any n > 1, there exists a degree 0 vector
bundle F,, € Indg(n,0), unique upto isomorphism. Also Fy is chosen to be the
trivial line bundle O and F,, is defined inductively such that they satisfy the

following exact sequence:
00— F,— F,_1 —0.

Moreover, h°(F,) = 1.
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Remark 4.1.2 1. By Theorem 4.1.1, F} and F; satisfy the following exact
sequence:
0— O — Fy,— F, — 0.

As Fy = Og, F, therefore satisfies
0—Op — F, - 0O —0.

Hence F3 =2 I, where I, is the trivial bundle of rank 2.

2. These indecomposable bundles of type rank n and degree 0 provide a plenty
of examples of the fact that two isomorphic bundles may have different
number of independent global sections. For example, Fy = I, but h°(F,) =
1# 2= hoI).

For all n,d € Z, n > 0, Atiyah defined some special indecomposable bundles of
rank n and degree d such that any indecomposable bundles can be written in

terms of those canonical bundles. In this regard we have the following theorem.

Theorem 4.1.3 [At, Theorem 7 and 10] Considering the elliptic curve E as an
abelian variety with the chosen base point p € E as the zero element, we have the

following.

1. Given any n,d € Z, n > 0, there exists a bundle Fo)(n,d) of rank n and
degree d, such that any element F' of Indg(n,d) is of the form

F = Foy(n,d) @ L,

where L s a line bundle of degree 0.

2. Let M be a degree 0 line bundle over E and ny; = #nd)' Then

Fop(n,d) ® L = Fog(n,d) @ M < (L® M~ )™ = Op.

3. det Fo(p)<n, d) = O(p)d.
4. F@@)(TL, 0) = Fn.

The bundle Fp()(n,d) as in Theorem 4.1.3 are often called canonical inde-

composable bundle.
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Definition 4.1.4 A line bundle L of degree zero is called an n-torsion point of
J(E) if L®" = Og. By Tor, we denote the subgroup of J(F) of all n- torsion

points.

The following proposition follows directly from Theorem 4.1.3.

Proposition 4.1.5 Consider the following map from the Jacobian of E to the

moduli space Indg(n,d).

¢: J(E) = Indg(n,d)
L — Fo(p)(’n, d) X L.

Then the following holds.
1. ¢ is onto.
2. Fiber of ¢ is isomorphic to Tory, .

3. Indg(n,d) = ZEL

~ Torp,

Now we can describe Indg(n, d) modulo the following proposition.

Proposition 4.1.6 The Jacobian variety J(E) of E is isomorphic to %E)l
Proof.Consider the map
®@ny: J(E) — J(E)
L L™,
Then the following exact sequence
0 — Tor,,, J(E) 2 J(E) —=0
gives the required isomorphism. O

Theorem 4.1.7 The moduli space Indg(n,d) can be identified with the curve E.

Proof.See [At, Theorem 7]. Indeed, as J(E) = E by Proposition 1.8.4, this
follows from Proposition 4.1.5 and 4.1.6. U
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4.1.2 Semistable bundles over an elliptic curve

In this section we describe the structure of the moduli space of semistable bundles
over an elliptic curve. Following proposition asserts that in case of elliptic curve,
stability of a bundle implies semistability which factors through indecomposabil-
ity. Also all the notions of stability, semistability, indecomposability and being

simple coincide when rank and degree of a bundle are relatively prime.

Proposition 4.1.8 Any indecomposable bundle on an elliptic curve is semistable.

Moreover, it is stable if and only if its degree and rank are coprime.

Proof.See [Tu, Appendix A]. Indeed by Theorem 4.1.3, any indecomposable bun-
dle F' of rank n and degree d over F can be written as a product of a canonical
indecomposable bundle Fp(,(n, d) and a line bundle of degree zero. Then by [Tu,
Lemma 29] , the bundle Fy)(n, d) is semistable. Therefore F' is also semistable
as tensor product by a line bundle does not effect the semistability. Rest follows
from the discussion before (3.13). O

Therefore we obtain the following diagram of some implications part of which
we got earlier in (3.9), (3.13) and (3.14).

Stable =——= Simple =——=- Indecomposable

ged (rank,deg)=1 %one

Semistable

The following theorem describes the structure of an arbitrary semistable bun-

dle over elliptic curve in terms of canonical indecomposable bundles.

Theorem 4.1.9 Let n > 1,d be any two integer. Let n = hn; and d = hd,,
where ny and dy are coprime. Then, any semistable bundle over E of rank n and

degree d is S-equivalent to a bundle of the form

h
Fo)(n1,di) ® @ Li, (4.1)

=1

L; being degree zero line bundles, determined upto multiplication by an element
of Tor,, of J(E).
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Proof.See [Tu, Theorem 16]. Indeed, let F' be any semistable bundle over £ and
O=WoCWy---CW,=F

be a Jordan-Holder filtration of F'. Then denoting Wle by F;foralli=1,--- ,t;

by Remark 3.2.5, we have
t
F~EPF. (4.2)
i=1

Also for all 7, we have,
no
HE, = UFp = 1 = d_1
Now as all F;’s are stable, by Proposition 4.1.8, we get that F;’s are of rank n,
and degree d;. Now equating rank and degree in (4.2), we get that there are h

many terms in the that equation, that is (4.2) can be rewritten as

h
F~@PF. (4.3)
=1

As stable bundles are indecomposable, by Theorem 4.1.3 and (4.3) we obtain

h
F ~ Fog(ni,d) @ @ Li,

=1

L; being degree zero line bundles, determined upto multiplication by an element
of Tor,, of J(E). O

Using Theorem 4.1.9, we can get the structure of Mg(n, d), the moduli space
of S-equivalence classes of semistable bundles over elliptic curve E which we

discuss in the next section.

4.1.3 Moduli space of semistable bundles on elliptic curve

In this section we give the structure of Mg(n,d). In the process we describe
SUE(n, L), the moduli space of S-equivalence classes of semistable bundles of

rank n and fixed determinant L of degree d over E. This is due to [Tu].

Theorem 4.1.10 Let n > 1,d be any two integer and h = ged(n,d). Then the
moduli space Mg(n,d) is isomorphic to S"(E).
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Proof.See [Tu, Theorem 16]. Indeed, let n = hn; and d = hd,. By (4.1)
an arbitrary element F' of Mg(n,d) is S-equivalent to Fog(ni,di) ® D L.
Observe that as L; is a bundle of rank 1 and degree 0 and O(p) is a bundle of
rank 1 and degree 1, L] ® O(p) is a bundle of rank 1 and degree 1. Therefore
S LM @ O(p) € SMJy(E). Consider the map

f: Mg(n,d) — S"(J(E))

h h
Fog(ni,d) @ @ Li— Y L @ O(p).
=1 =1

This map is an isomorphism. Therefore, the theorem follows from Proposition
1.8.3. D

Remark 4.1.11 Previously, we have observed the importance of S-equivalence
in Proposition 3.3.14. Now, Theorem 4.1.10 depicts the reason for considering
the moduli space Mg(n,d) as the collection of all semistable bundles of rank n

and degree d over Y modulo the S-equivalence instead of that collection only.

Now fixed determinant moduli space SUg(n, L) can be described immediately

modulo the following proposition.

Proposition 4.1.12 Let n > 1,d be any two integer and h = ged(n,d). Then
the Abel-Jacobi map pp: S"(E) — Ju(E) can be identified with the determinant
map det: Mg(n,d) — Ji(E).

Proof.See [Tu, Theorem 2]. Indeed, using part (3) of Theorem 4.1.3 and by

Theorem 4.1.10 we get the following commutative diagram.

Mpg(n,d) —= Sh(E) (4.4)
detj l%’h
Ja(E) = Jn(E)
Hence the proposition follows. 0

Theorem 4.1.13 Let n > 1,d be any two integer and h = ged(n,d). Let L
be a line bundle of degree d over E. Then the fixed determinant moduli space
SUg(n, L) is isomorphic to Ph=1.
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Proof.See [Tu, Theorem 3|. Indeed, the fiber of the map det: Mg(n,d) —
Ja(E) over L € Jy(FE) is nothing but SUg(n, L). Theorem now follows from the

commutative diagram 4.4 in Proposition 4.1.12 and Remark 1.7.4. U

4.2 Brill-Noether loci over elliptic curve

In this section, we discuss about some special subvarieties of the moduli space
of semistable bundles over elliptic curve called Brill-Noether subvarieties. These
subvarieties came into picture while studying semistable bundles over any curve
whose space of global sections is varying. Here we work over elliptic curve. This
section is also taken from [Tu], where he described all possible Brill-Noether
subvarieties in a systematic manner.

We begin with two definitions.

Definition 4.2.1 A vector bundle F' over F is said to be special if h*(F) # 0.

Otherwise it is said to be a non-special bundle.

It is easy to observe that for non-special bundles, h°(E) is fixed by Riemann-
Roch theorem. Therefore, we are concerned about special bundles. Broadly,
Brill-Noether subvarieties lie inside the locus of special bundles and possess a

given number of independent global sections.

4.2.1 Bundles with positive degree

Here we work inside semistable bundles over elliptic curves of positive degree.

Lemma 4.2.2 Any semistable bundle F of positive degree over E is non-special,
that s, h'(F) = 0.

Proof.See [Tu, Lemma 17, p. 13]. Indeed, let F' be a semistable vector bundle
of degree d > 0 and Kg be the canonical line bundle over E. Then K = Og by
Remark 1.4.3. By Serre duality we have

RYF) = h®(Kg ® F*) = h°(F*).

As F* is also a semistable bundle and of negative degree, h’(F*) = 0. Therefore,
h*(F) = 0. Moreover by Riemann-Roch theorem, h°(F) = d. O
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Remark 4.2.3 A consequence of Lemma 4.2.2 is that the map

h’: Mg(n,d) — Z, U {0}
f = B(F)

is well defined for d > 0, and is the constant function d.

Definition 4.2.4 Let d > 0 and ¢ > 0 be any two integer. The Brill-Noether
loci are defined by

va=A{f€Mgn,d)|h°(F)>i+1}.
This definition is well defined by Remark 4.2.3.
The following lemma is a direct consequence of Lemma 4.2.2 (cf. [Tu, p. 13]).
Lemma 4.2.5 Let d > 0. Then

o]0 if 1<d <7
Wnd: . .
’ Mpg(n,d) ifd>i+1.

Therefore Brill-Noether loci inside M g(n, d) are not of much interest when d > 0.

4.2.2 Degree zero bundles

For degree 0 line bundles over E we have the following result.

Lemma 4.2.6 The Brill-Noether loci for d =0, r =1 are

o [0 s
M) {og) dfi=o.

Proof.See [Tu, p. 13]. As h%(L) = 0 or 1 for a line bundle L of degree zero over
E and moreover h°(L) = 1 if and only if L = Op. O
Therefore in this case also stratifications of Brill-Noether subvarieties is noth-

ing non-trivial. So, only case remains to check is for bundles of rank n and degree
dwithn>2and d =0.

Remark 4.2.7 Unlike d > 0 (cf. Remark 4.2.3), h’: Mg(n,0) — Z, U {0} is
not well defined when d = 0. For example, let Fy be the Atiyah’s indecomposable
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bundle of rank 2 and I, be the trivial bundle of rank 2. Then Fy = I, but
hO(Fy) =1 # 2 = h%(1;). See Remark 4.1.2 for more details.

In this case, because of Remark 4.2.7, two types of Brill-Noether loci are
defined inside SUE(n, L) and Mg(n,0). We denote by f the S-equivalence class

of a semistable bundle F over E.

Definition 4.2.8 Let n > 2 be any integer. The Brill-Noether loci in Mg(n,0)
are denoted by W}, (V) and W}, ,(3), and are defined as

WZ,O(V) = {f GME(TL,O)WO(F) >4+ 1 forall Fe f},
W) o(3) == {f € Mg(n,0)|h°(F) >i+1 for some F € f}.

Similarly we also need to define two types of Brill-Noether loci inside the

moduli space SUE(n, L), where L is line bundle over E of degree 0.

Definition 4.2.9 Let n > 2 be any integer. Let L be a line bundle over E of
degree 0. Then, the Brill-Noether loci in SUg(n, L) are denoted by W}, (V) and
W 1.(3), and are defined as

Wi (V)= {f € SUp(n,L)|h°(F) >i+1forall Fe f},
W) (3) = {feSUg(n,L)|h°(F) >i+1forsome F € f}.

We have,
2L (V) =W, (V) NSUE(n, L) and W, [ (3) = W} ,(3) NSUE(n, L).

We now describe the Brill-Noether loci just defined. For that we require the
following propositions. Let SS°(F) denote the collection of all semistable bundles
over E of degree 0 and F' € SSY(FE). Then we define

F:={F €SS"E)|F~F}.

Then we have:

Proposition 4.2.10 Consider the map

1O: SS°(E) — Z* U {0}
F— hO(F).
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Then for any F, F is either contained in (h°)~*(0) or h°~(Z") depending on
whether h°(F) = 0 or not. Moreover, for any F with h°(F) # 0, there ewists
F' e FNhO N (Z") satisfying hO(F') = 1.

Proof.See [Tu, Lemma 18]. Indeed, the indecomposable bundle F,, as in Theorem
4.1.1 plays an important role in the proof. For proving the first part, we need the
fact that all Jordan-Hélder factors of F;, are isomorphic to the trivial line bundle.

To prove the second part, we need h°(F},) = 1. O

Proposition 4.2.11 Let F be a semistable bundle of degree 0 over E. Then
most number of independent global sections are possessed by the direct sum of

line bundles among all the elements of F.

Proof.See [Tu, Lemma 19]. Indeed, firstly we decompose F' into its indecompos-
able factors and collect the factors having global sections together. That is, we
write

FER,® - F, ®H,

with h°(H) = 0. Then clearly h°(F) = t. If Y.'_ k; = n, then by (4.1) and

following the same argument as in (1) of 4.1.2 we can write

FrI,®) L (4.5)

where L; are some non-trivial line bundles over £. From that we obtain

K (In @ ZLj> — k> B(F).

Moreover if F' ~ F' then by transitivity of S-equivalence and by (4.5) we have
F' ~ I,®Y" L; and therefore k > h°(F") as before. Hence the proposition follows.
O

Finally we end this section by describing the structure of the Brill-Noether

loci.

Theorem 4.2.12 [Tu, Theorem 4 and 5] Let n > 2 be any integer and L be
a degree zero line bundle over E. Then the structure of the Brill-Noether Loci
W} (V) and W (V) as in Definition 4.2.8 and 4.2.9 are given by

i ~ 0 if 1<
Wial¥) = { S"YE) ifi=0.
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0 if 1 <7;

Won(v) = { P2 ifi=0.

Remark 4.2.13 We have observed that inside the moduli space of semistable
bundles of rank n and degree d with d > 0 or (n,d) = (1,0), Brill-Noether loci do
not produce any non-trivial stratification. Now Theorem 4.2.12 says that among
two types of Brill-Noether loci in the moduli space of semistable bundles of rank

n and degree d with d = 0 and n > 2, the first type again fails to do so.

So let us move to the last possible case in search of some non-trivial stratification
of Brill-Noether loci and hence an interesting algebra generated by cohomology

classes of them.

Theorem 4.2.14 Let n > 2 be any integer and L be a degree zero line bundle
over E. Then the structure of the Brill-Noether Loci W}, (3) and W}, 1(3) as in
Definition 4.2.8 and 4.2.9 are given by

I

Sn—i—l (E) 7

W o(3)
' P 2(E).

nz(3)

2

Proof.See [Tu, Theorem 4 and 5]. Indeed, note that W} ,(3) € Mg(n,0) =
S™(FE) by Theorem 4.1.10. Moreover by Proposition 4.2.11, f € Wé,o(ﬂ) if and
only if i +1 terms in ) L, as in (4.5) are copies of trivial line bundles and the re-
maining n—i—1 terms are any degree 0 line bundles. Hence W}, ;(3) = S""~'(E).
Now we have the following commutative diagram which is the restriction of the

commutative diagram (4.4) to the Brill-Noether loci.

(a3

W;o(3) St HE) (4.6)
J(E) ——— Jy i1 (E)

Therefore by Remark 1.7.4,
1@ 2P

Hence the theorem. O

Theorem 4.2.14 demonstrates that finally we obtain some interesting stratifi-
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cations consisting of Brill-Noether subvarieties in M g(n, 0) and SUg(n, L), where

n > 2 and L is a line bundle of degree 0 over E.

4.3 Tautological algebra and main theorems

The classical Poincaré formula opened up a whole new direction of problems in
algebraic geometry. Later on, many mathematicians have worked on the problems
of finding similar formula in many different contexts. In [Co], A. Collino proved
that Poincaré formula holds in Jacobian of a hyperelliptic curve under algebraic
equivalence. In 2003, P. E. Newstead proposed a project called the Brill-Noether
project in his web page (cf. [Ne 2]) and suggested for similar problems in more
general context. He mentioned that to deal with the detailed geometry of the
Brill-Noether loci, one can study their classes in the cohomology ring of the
moduli space. We work in similar kind of problem in the moduli space SUg(n, L)
and prove that Poincaré like formula holds over there.

In this section we define tautological algebra and tautological classes in our
situation and explain the reason for choosing the name tautological algebra. Fi-

nally we close this chapter after proving the main theorems.

4.3.1 Why the name tautological algebra

Mathematicians like R. Vakil, C. Faber, R. Pandharipande, A. Pixton, T. Graber
and many others have used the terminology Tautological Algebra. By tautological
algebra they meant a subalgebra of either cohomology ring or Chow ring of some
moduli space generated by classes of some naturally defined subvarieties. In [Mo],
Morita studied the tautological algebra of M,, the moduli space of smooth pro-
jective curves of genus g, generated by some tautological classes inside the Chow
ring of M, defined by Mumford (cf. [Mu 2]). As Brill-Noether subvarieties are
very natural by definition, it is quite natural to refer the subalgebra generated by
their cohomology classes as tautological algebra. In [Be 1], by (rational) tauto-
logical ring Beauville meant the smallest subring stable under pullback maps and
pushforward maps (®n)* and (®n), respectively, induced by @n: J(X) — J(X),
closed under Pontryagin product of the rational Chow ring of J(X) and contains
classes of W;, 1 < i < g as in (1.47). Here X denotes a connected, smooth,

projective curve of genus g over C. As we are concerned for Brill-Noether subva-
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rieties inside moduli space of semistable bundles over elliptic curve, we define the
algebra generated by their cohomology classes as tautological algebra and then

prove our main theorems.

4.3.2 Main theorems

Now we define tautological algebra properly in our context and then prove our
main theorems regarding the structure of those algebras and a few relations in

those algebras.

Definition 4.3.1 The cohomology classes [W. ,(3)] € H*(Mg(n,0),Z) are called
the tautological classes. The subalgebra of H*(Mg(n,0),Z) generated by these
tautological classes is called the tautological subalgebra of H*(Mg(n,0),7Z).

Definition 4.3.2 Let L be a degree zero line bundle over E. Then the cohomol-
ogy classes (W} ;(3)] € H*(SUg(n, L), Z) are called the tautological classes. The
subalgebra of H*(SUg(n, L), Z) generated by these tautological classes is called
the tautological subalgebra of H*(SUg(n, L), 7).

Following theorem shows that the tautological class ¢ = [W} (3)] is the
generator of the tautological subalgebra of H*(SUg(n, L), 7).

Theorem 4.3.3 Let r be any positive integer and let L be a degree 0 line bun-
dle over E. Then W) (3) is a divisor inside SUg(n,L). Furthermore, in
H*(SUg(n,L),7Z), we have

(W] = [Wo (],

for all 0 <i <n—2 and the tautological algebra of SUE(n, L) is Z[C]/((™), where
¢ is the cohomology class of W) (3) in H*(SUg(n, L), Z).

Proof.We have the following stratification inside SUg(n, L) by Theorem 4.1.13
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and 4.2.14.
SUg(n,L) = P!
Ul Ul
UNCIES O
Ul Ul
W3 = P
Ul Ul
Ul Ul
waiE) = P
Ul Ul

wot@ = Po= {4}

So, W) (3) is a subvariety of SUg(n, L) of codimension 1 and hence a divisor.
We can calculate relations between [P’]’s as follows. Inside P"~! we have the

following stratification:
{} g]P)l QPZ g ... Q]P)n_Q Q]P)n—l.

Then we have:

B Z[¢]

H*(P" 7)) = )’ (4.7)
where ( is the cohomology class of P2 that is, ( = [P" 2] = ¢;(O(1)) by Propo-
sition 1.5.5, ¢;(O(1)) being the first Chern class of O(1) over P"~'. Moreover in
H*(P"1,Z), we have:

Pk = ¢ (143)
Therefore, by (4.7) and Theorem 4.1.13 we get:

Z[¢]
(¢

Furthermore in H*(SUg(n, L),Z), we get the following equality by (4.8) and
Theorem 4.2.14 :

H*(SUg(n, L), Z) =

Wi (3] = [B"72) = [0 = ¢ = [P = (W ()]
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Hence the theorem follows. U

The next theorem is about some relations between the generators of the tauto-
logical subalgebra of H*(SUg(n, L),Z) and H*(Mg(n,0),Z). Consider the map
(cf. [Bg-Tu, p. 338] and [Do-Tu, p. 348]):

m: J(E) x SUg(n,L) - Mg(n,d)

(ILF)—1®F (49)

This map as in (4.9) suggests that the structure of the cohomology subalgebra
generated by [W} (3)]’s is similar to the algebra generated by [W}: ;(3)]’s with
coefficients lying in H*(J(E)). We make this precise in the next theorem. The
theorem says that tautological algebra of Mpg(n,0) is generated by the cohomol-
ogy class of the Brill-Noether subvariety W} ((3) as H*(E)-algebra.

Theorem 4.3.4 The tautological algebra of Mg(n,0) is

H*(E) @ ZIE]/(€").

Here & is the cohomology class in H*(Mg(n,0),Z) of the divisor W) (3) on
ME(H,O)

Proof.We have the following stratification inside Mg(n,0) by Theorem 4.1.10

and 4.2.14.
Mp(n,0) = S"(E)

Ul Ul
Wpo(3) = S"H(E)
Ul Ul
Wao(3) = S"72(E)
Ul Ul
ul Ul

Wgﬁg?(a) ~ SYE) = E

So, W (3) is a subvariety of Mg(n,0) of codimension 1 and hence a divisor. By
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Proposition 4.1.12 and by Remark 1.7.4, the determinant morphism
Mg(n,0) = J(E)

is a projective bundle IP’"}(_EI) — J(E).

Hence, by projective bundle formula as in Theorem 1.5.6,
H*(Mg(n,0),Z) = H*(J(E)) ® Z[¢]/(€"). (4.10)

Here ¢ is the first Chern class of O(1) on szé).
Therefore, by Proposition 1.8.4 and by (4.10) we get,

H*(Mg(n,0),Z) = H*(E) @ Z[g]/{")-
However, by (4.6), we have the equality of the cohomology classes:
(Wrio(3)] =€,

for all 0 <7 < n — 2. This gives the assertion.
O

Remark 4.3.5 The cycle class map as defined in (2.7) is an isomorphism in case
of only two curves, namely A' and P!. The same is true for P" for n > 1 as well.
This happens because of vanishing of all odd dimensional cohomologies (cf. [Fu,
Example 19.1.11]). So, using [Ei-Hr, Theorem 2.1] very much similar results can
be obtained in the Chow ring CH*(SUg(n, L)) and hence in CH*(Mg(n,0)) like
we obtained in Theorem 4.3.3 and 4.3.4.
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Chapter 5

Brill-Noether loci and
tautological algebra for higher

genus curve

In this chapter, we deal with a similar problem as in the previous chapter. We
consider the tautological algebra of the (rational) cohomology ring of the moduli
space of semistable bundles over a curve of genus g greater than one. We deal
with the case when rank is 2 and degree is 2g — 2. We obtain relations in the
tautological algebra of H*(M(2,2(9 — 1)),Q) as well as H*(SUc(2, L),Q), L
being a line bundle of degree 2g — 2 over C.

A study of the Brill-Noether loci was first carried out on the Jacobian of curves
by Fulton, Lazarsfeld, Griffiths and Harris. They contributed in answering the
natural questions on these loci, namely non-emptiness, irreducibility, dimension,
cohomological relations and understanding the singular loci. One can refer to
[Fu-La] and [Gf-Hr 1] to look into their work in this direction.

On the moduli space of higher rank semistable vector bundles of fixed de-
gree on a smooth curve, N. Sundaram (cf. [Su]) and M. Teixidor i Bigas (cf.
[Bg 1]) initiated a similar study of the Brill-Noether loci, answered some of the
interesting questions, and posed further questions. Notable results were obtained
in [Bg 1], [Bg 2], [Br-Gz-Ne], [Me 1] and [Me 2]. More recent developments on
non-emptiness of the Brill-Noether loci can be found in [La-Ne-St], [La-Ne-Pr],
[La-Ne 1], [La-Ne 2] and [La-Ne 3]. We mention a few of those in this chapter
that are relevant for our problem.

In this problem, the key idea is to relate the Brill-Noether loci on the moduli

95
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space M(2,2(g — 1)) with the Brill-Noether loci on the Jacobian variety of a
general spectral curve. We utilise a finite regular dominant morphism correspond-
ing to the rational map obtained in [Be-Na-Ra] from the Jacobian of a general
spectral curve C' to the moduli space M (2,2(g—1)). The constructions used to
prove the main results may give an insight for studying similar problems in other

moduli spaces as well.

5.1 Spectral curves and Moduli Spaces

In this section we recall the construction of spectral curve from [Be-Na-Ra| as

this is very much essential for our purpose.

5.1.1 Spectral curve

Let C' be a smooth projective curve of genus g > 2 defined over complex numbers.
Let L be a line bundle on C and s = (s;) be sections of L* for k = 1,2, ,n.
Let m: P(O & L*) — C be the natural projection map and O(1) be the relatively
ample bundle. Then 7,(O(1)) is naturally isomorphic to O@ L* and therefore has
a canonical section. This provides a section of O(1) denoted by y. By projection

formula we have:
(T LRON) 2 Len(01) 2L (0OaLl)=LoO0.

Therefore 7. (7*L ® O(1)) also has a canonical section and we denote the corre-

sponding section of 7*L @ O(1) by z. Consider the section
" 4 (s )yx" Tt - (T sy (5.1)

of 7 L" ® O(n). Zero scheme of this section is a subscheme of P(O & L*) and is
called a spectral curve of the given curve C' and is denoted by C, or C in short.
Let m: C' — C be the restriction of the natural projection m: P(O & L*) — C. It
can be checked that 7: C' — C is finite and its fiber over any point ¢ € C'is a

subscheme of P! given by

2"+ ayya" 4 any” = 0,
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where (x,y) is a homogeneous coordinate system and a; is the value of s; at c.
Let § be the genus of C. As m,(O) X O G L' @& - & L~V we have the
following relation between genus g of the spectral curve C and genus g of C using

Riemann-Roch theorem.

1-5= (@, 0) = X(C,m(0) = Y x(C 1) = ~(deg 1) "=V i1 -
Hence we have: )
g=(deg L) - % +n(g—1)+1. (5.2)

Moreover if we take the line bundle L to be of degree 2g — 2, say the canonical
line bundle K for example, then from (5.2) the genus g of the corresponding

spectral curve C is given by:

g=n%*(g—1)+1=dimMc(n,d). (5.3)

5.1.2 Spectral curve and moduli space of semistable bun-
dles

Here we relate the spectral curve C with the moduli space of semistable bundles

of fixed rank and degree over C. Consider the following theorem.

Theorem 5.1.1 [Be-Na-Ra, Proposition 3.6, Remark 3.1, 3.5 & 3.8, p. 172-
174] Let C be any curve and L any line bundle on C. Let (s) = ((s;)) € I'(L) &
L(L*)@---®T(L") be so chosen such that the corresponding spectral curve C, is
integral, smooth and non-empty. Then there is a bijective correspondence between
isomorphism classes of line bundles on 5’8 and isomorphism classes of pairs (E, )
where E is a vector bundle of rank n and ¢: E — L ® E a homomorphism with

characteristic coefficients s;.

Let n be any positive integer. Then following the construction of spectral
curve, by Theorem 5.1.1 we get a smooth, irreducible curve C and an n-sheeted
branched covering 7: C' — C such that a general £ € M (n,d) is the direct

image 7.l of a l € Js(C). The relation between ¢ and d can be calculated as

follows (cf. [Bg-Tu, p. 332]). By the Leray spectral sequence we have:

H(C,1) = H'(C,m.l) (5.4)
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for all 2. Hence we have:
X(C, 1) = x(C, 1) = x(C, E).
So by Riemann-Roch theorem we get,

X(57l) = X(Cv E)
=0—(g—1)=d—n(g—1)
=i=d+(g—1)—n(g—1).

Therefore by (5.3) we get the following relation between 6(= deg [) and d(=
deg E).
§=d+ (n*—n)(g—1). (5.5)

As direct image of a line bundle is not necessarily semistable, the map

e J5(C) ==+ Mc(n,d)

is only a rational map. Let us denote by J** the semistable locus of Js(C') defined
as:

J5 = {z e J5(C) | ml € Mo(n,d)} .

Then J** is a Zariski open subset of Js(C') and the map
ot JJ* = Me(n,d) (5.6)

is a regular dominant map (cf. [Be-Na-Ra, Theorem 1, p. 169]). Moreover, the

following theorem shows that the map 7, is a finite map.

Theorem 5.1.2 [Be-Na-Ra, Remark 5.4, p. 177] The map 7. J** — Mc(n,d),

as in (5.6), is of degree 22973 . 35975 ... p(2n=Dig=1),

5.1.3 Prym variety associated to a spectral curve

In this section we consider the moduli space M¢(2,d). For a general E €
Mc(2,d), we get a spectral curve 7: C — C where the map 7 is a 2-sheeted

branched covering. Let n be the number of branch points. Then by Riemann-
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Hurwitz formula we get (cf. [Gf-Hr 2, p. 219)):

g:g+29—1. (5.7)

Also we have from (5.3):
g =49 — 3. (5.8)

Therefore from (5.7) and (5.8) we get,
n=49g—4#0as g>2,

that is, m: C — C is ramified with 4g — 4 branch points. Now we have the
following lemma.

Lemma 5.1.3 [Mu 1, Lemma, p. 332] The map ©*: J(C) — J(C) is injective.

Consider the following Norm map, denoted by Nm(r), associated to the map
m:C = C.

Nm(m): J(C) — J(CO)

Identity component of Ker(Nm(7)) is defined to be the Prym variety associated
to the covering 7: C' — C. But in our context the definition of Prym variety can

be further improved. For that consider the following lemma.

Lemma 5.1.4 [Ka, Lemma 1.1, p. 337] The following conditions are equivalent.

1. The map ©*: J(C) — J(C) is injective.
2. Ker(Nm(7)) is connected.

So by Lemma 5.1.3 and 5.1.4, Prym variety associated to the covering 7 : C—
C' is nothing but Ker(Nm(7)). Moreover we have, J(C) = J(C) + P, where P
is the Prym variety associated to the covering 7: C' — C. But this sum is not a
direct sum as cardinality of J(C) N P is a non-zero finite number. Let H be the

kernel of the map

J(C)x P — J(C) = J(C) + P
(x,y) — z+y.




100 §5.2. Tautological algebra generated by the Brill-Noether loci on Jq(C')

Then we have:

Theorem 5.1.5 [Mu 1, Corollary 1, p. 332] The Jacobian J(C') is isomorphic
to %, where P is a Prym variety and P£ is a finite group. In other words,
there exists an isogeny from J(C) x P to J(C).

5.2 Tautological algebra generated by the Brill-
Noether loci on J,;(C)

In this section, we investigate the cohomology algebra generated by Brill-Noether
subvarieties of J(C') and J4(C). This problem is motivated by the classical

Poincaré formula on J(C').

5.2.1 Brill-Noether loci on J(C) and J4(C)

In this subsection we recall the Poincaré formula on J(C') once again for sake of
completeness.

Let us fix a point P € C. Recall the classical Abel-Jacobi map u: S%(C) —»
J(C) as defined in Section 1.7.

Recall that W9, for all d, 1 < d < g, called Brill-Noether subvarieties of J(C'),
was defined as follows:

WO = u(S9(C)).

Let © := u(S971(C)). The classical Poincaré relation determines the relations
between the cohomological classes of W on J(C) (cf. [Ab-Cr-Gf-Hr, Chapter 1,

§5, p. 25)):

(W] = [0~ € H*(J(C), Q).

(g —9)!
5.2.2 Brill-Noether loci in J;(C)

For a fixed d, we recall the Brill-Noether loci W, which are defined to be certain
natural closed subschemes of .J;(C') and discuss some of its properties relevant to

us.

Definition 5.2.1 As a set, for r > 0, we define

Wi ={L € Jy(C)|h*(L) > r+1} C Jy(O).
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It is clear from semicontinuity theorem (cf. [Ha, Chapter III, Theorem 12.8]) that
W7 is closed. In fact, W] has a natural scheme structure as determinantal loci
(cf. [Ab-Cr-Gf-Hr, §4, Chapter II, p. 83]) of certain morphisms of vector bundles
over J;(C). We define these morphisms as follows:

Let us fix a Poincaré bundle £ over C' x J4(C). It can be noted that existence
of such a Poincaré bundle assured by Proposition 1.6.14. Let E be an effective
divisor on C' with

deg F=m>29g—d—1.

Let ' := E x Jy4(C). Then, over C' x J4(C) we have the exact sequence:

0— L — L(T) = L()|r — 0. (5.9)

Let v be the projection from C x J4(C) — J4(C). Now, applying the functor
v, to the morphism £(I") — L(I')|r as in (5.9), we get a morphism

7= 0 (L) = v (L(D)]p)-

Note that, by the choice of the degree of E and Grauert’s theorem (cf. [Ha,
Chapter I1II, Corollary 12.9]), we get that both v,(£(I")) and v.(L(T")|r) are vector
bundles of rank d + m — g + 1 and m respectively.

Definition 5.2.2 The Brill-Noether loci W} is defined to the (m+d — g —r)-th

determinantal loci associated to the morphism .

To see that Definition 5.2.2 indeed agrees with Definition 5.2.1, in the sense
that the set theoretic support of 5.2.2 is exactly 5.2.1, we refer to [Ab-Cr-Gf-Hr,
Lemma 3.1, p. 178].

From general properties of determinantal loci, we have the following lemma:

Lemma 5.2.3 [Ab-Cr-Gf-Hr, Lemma 3.5, p. 181] Suppose r > d—g. Then every

component of Wy has dimension greater or equal to the Brill-Noether number
p=g—(r+1)(g—d+r)

Remark 5.2.4 Note that if r < d — g — 1, then by Riemann-Roch theorem

W7 = Ju(C). So, from here onwards, we will assume that r > d — g.
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In general, the above inequality can be strict (cf. [Ab-Cr-Gf-Hr, Theorem 5.1,
p. 191]). Even, in the case when equality holds, W] can have more than one
components (cf. [Ab-Cr-Gf-Hr, Chapter V, p. 208]).

We recall the following theorem due to Griffith and Harris.

Theorem 5.2.5 [Gf-Hr 1, Main Theorem, p. 235] Let C' be a smooth projective
curve of genus g and let p be the Brill-Noether number. Then

(a) Aim Wj > p.

(b) For a general curve C,

dim W, = p.
Furthermore,
: a!
= 097°. 5.10
Wil g}(g—d—i-r—l—a)! d (5.10)

The formula as in (5.10) is called the Castelnuovo formula. Regarding the

irreducibility, we have:

Theorem 5.2.6 [Iu-La, Corollary 2.4, p. 280] If C is general and p > 0, then

W is irreducible.

Now, recall that in the case when C'is general, by Theorem 2.3.1 we have that
the Néron-Severi group NS(J;(C)) of J4(C) is generated by a translate of the ©
divisor in J(C'). We denote this class as 6. In particular, this implies that the

class of W} can be written in terms of powers of 6,.

5.2.3 Tautological algebra generated by the Brill-Noether

~

loci in J(C)

In this section we investigate the subalgebra of H*(J(C),Q) generated by the
Brill-Noether loci on J (CN') Towards this, we consider the case when we have a
ramified double cover : C' — C.

Let R} denote the moduli space of ramified two sheeted covering of a con-
nected smooth projective curves of genus g with fixed ramification r. Then we

have the following theorem.
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Theorem 5.2.7 [Bi, Corollary 5.3, p. 634] The Néron-Severi group of the Ja-
cobian of a general element of Ry is generated by two elements; the two elements
are obtained from the decomposition (up to isogeny) of the Jacobian of a covering
curve (cf. Theorem 5.1.5). Furthermore, the Néron-Severi group generates the
algebra of Hodge cycles (of positive degree) on the Jacobian of the general double

cover.

Note that even if C'is general, C may not be general. However, in our situa-
tion, we will check that the above theorem still holds.

Theorem 5.2.8 The cohomology class of a Brill -Noether locus on a Jacobian
J(é) of a general 2-sheeted spectral curve : C — C can be erpressed as a sum
of powers of divisor classes. In particular the tautological algebra is generated by

the divisor classes.

Proof We only need to check that Theorem 5.2.7 can be applied to the Jacobian
of a general spectral curve. Fix a degree d > 0. Denote S, ; the moduli space of

tuples
{(C,L,s=(s0,51)},

where C' is a curve of genus g, L is a line bundle on C of degree d, and sy €
H°(C,L), s; € H°(C,L?). This moduli space can be interpreted as the moduli
space of spectral curves, as in § 5.1. There is a dominant rational map (on the

component where (s = 0))
0 r
S5 = Ry = M,

Here r is the ramification type corresponding to a general section s equivalently
the zeroes of the equation (5.1) (cf. [Ba-Ci-Ve| also, for a similar moduli space).

The maps are given by
(C,L,s) = (C,L,B(s)) = C,

where B is the branch divisor of the spectral curve Cy — C, such that L?> = O(B).

Since J(Cs) depends only the ramification type B and L, Theorem 5.2.7 can be

applied to the Jacobian of a general spectral curve. O
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5.3 Brill-Noether loci on M¢(n,d)

To define the Brill-Noether loci for Mg (n,d), we start with a more general set
up. Let S be an algebraic scheme over C. Let £ be a vector bundle over C' x S
such that for all s € S, & = £|oxs is a vector bundle of rank n and degree d

over C.

Just as in 5.2.1, we have the following definition of Brill-Noether loci as a

closed set.

Definition 5.3.1 We define Brill-Noether loci W§ . associated to pair (5,&) to
be the set
Wie={seS|h(C, &) >r+1}.

By [Hu-Ln, Lemma 1.7.6, p. 28], since the family £ is a bounded family, we can
choose a divisor D in C of sufficiently high degree such that H'(C,&(D)) =
0 for all s € S. For notational convenience, we continue to denote the pullback

of D to C' x S by D. Then, over C' x S we have the exact sequence:
0—&—=E&D)—EWD)|p—0.

Let v: C' x S — S be the projection.

Then, we have the morphism
frv.(E(D)) = v (E(D)|p)-

Now for any s € S we have h'(C,E(D),) = h'(C, (D)) = 0. By Riemann-

Roch theorem we get

hO(C,E(D),) =d +n deg D +n(1 — g),
h*(C.(E(D)|p)s) = deg D.

Hence, by [Ha, Chapter III, Theorem 12.11], we get that both v,(£(D)) and

v.(E(D)|p) are vector bundles and for any s € S, we have isomorphisms:

v (E(D))

* HO(Cag’CXS(D))a
v:(€(D)Ip)

(5.11)
H"(C,€|cxs(D)Ip)

e L

s
s
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Using Riemann-Roch theorem, we get that

rank v, (E(D)) =d 4+ n deg D + n(1 — g),
rank v,(E(D)|p) =n deg D.

Definition 5.3.2 We define Wg . to be the (d+n deg D +n(1—g)— (r+1))-th

determinantal loci associated to the morphism f.

Remark 5.3.3 To see that the set-theoretic support of 5.3.2 is indeed 5.3.1, note

that we have the following commutative diagram:

v (E(D))]s —1 0. (E(D)[p)]s

lg lg

0 —— H(C.E) —— H°(C,E,(D)) —— H(C,&(D)|p)

Hence,
rank fls <d+mndeg D+n(l—g)—(r+1) < h%C,&) >r+1.
From this, it follows that definition 5.3.2 agrees with definition 5.3.1.

Lemma 5.3.4 If Wi, # 0, then, codimension of each component of W§e <
(r+1)(r+1—d+n(g—1)).

Proof.This follows from [Ab-Cr-Gf-Hr, §4, Chapter II, p. 83]. O

Lemma 5.3.5 Let Sy,5; be two algebraic schemes over C and let £ be a bundle
on C' x Sy such that for all s € Sy, & is a vector bundle of rank n and degree d.
If g: S1 — Sy be a morphism, then

—1 r _ r
9 Ws,e = Ws, taoxgye-

ProofLet v;: C x S; — S; and vy: C x Sy — Sy be the projections. Let
G :=1Ideg x g: C xS — C x S;. Then we have the following commutative
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diagram:
CxS —%5 x5S,

81%52

This induces the following commutative diagram:

97 (02)+(E(D)) —— g"(v2).(E(D)|p)

|

(0).G*(E(D)) —— (v1).G"(E(D)]p)

By (5.11), we get that the vertical arrows in the above diagram are isomorphisms.

Now, the lemma follows from general properties of determinantal loci. 0

Now suppose C' be a smooth projective curve of genus g and 7: C—>Chea
finite morphism. Let £ be a vector bundle over C x S such that &, is of rank n
and degree d for all s € S. Since the map 7 x Id: C xS — C xS is a finite flat

morphism, we get that (7 x Id).€ is a vector bundle over C' x S and in fact,
(7 x 1d),€), = m.(E,) for all s € S.
We will denote this bundle (7 x Id).€ by €. Note that rank of £’ is
n' :=n(deg ) for all s € S,
and degree of & is

d :=d+n(1—-79)—n(deg m)(1—g).

Then we have the following lemma:

Lemma 5.3.6 The following equality of Brill-Noether loci holds:

roo_ r
Wse=Wse
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Proof.We have the commutative diagram:
Cx8 ™% 0oxs
S
Fix D a divisor on C such that h!'(£/(D)) =0 for all s € S. Then
W'(C,E(x" D)) = W' (C, m,(Ei(n" D))) = h'(C, E/(D)) = 0.

Therefore we can use the divisor 7* D for the construction of Wgyg.

Let us consider the morphism

f:E(r*D) — (E(r* D))

T*D-

Then W ¢ is defined to be the (d+n deg 7*D+n(1—g)—(r+1))-th determinantal
loci of the morphism v, f. Now v = vo(m x1d). It follows from projection formula
that (7 x Id).f is nothing but the morphism

g'(D) = &'(D)lp,

and therefore, Wg, is the (d' +n' deg D +n'(1 — g) — (r + 1))-th determinantal
loci of v, (m x Id).f = v.f. It can be checked easily that

d+n"degD+n'(1—g)—(r+1)=d+ndegn*D+n(l—7)—(r+1).

0
Next, we will define Brill-Noether Loci for M¢(n,d). Note that if (n,d) = 1,

we have a universal bundle over C' x M¢(n,d) and hence, we can apply the
previous construction to get the notion of Brill-Noether loci in this case. However,

in general we don’t have a universal bundle.

Recall the construction of the moduli space of semistable bundles of fixed rank

and degree over C' (cf. Subsection 3.3.3 for more details).

Let R C Q be the open subset such that for all z € R, F|ox, is a semistable
bundle and H°(C, ON) — H°(C, F|cxe) is an isomorphism. It is immediate that
R is PGLy-equivariant. Then, we define
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Me(n,d) == R//PGLy.

and we have the quotient map
R — Mc(n,d).

Let us denote F|coxr by F'. Then, over C' x R, F'(—m) is a vector bundle
satisfying (A). Hence, we have the closed subscheme Wy, Frem) &R

Next, we will show that sz,f/(_m) is GLy-equivariant (and consequently,
PGLy-equivariant).

Let g: T — W’]g,]—"(—m) be a T-valued point of W’IE,]—"(—m)' Let ngT — Fr be
the pullback of the universal quotient under q.

By Lemma 5.3.5, we get that WﬁFT(_m) = q_1W7§’f,(_m) =T.

Let g € GLN(T). Then, by definition, the quotient corresponding to g.q: T —
R is given by

OgXT i> ngT — Fr.

Again, by Lemma 5.3.5,
(g-Q)ilwfz,}'/(fm) =W rm =T

In other words, we get that g.q: T — R factors through Wr Fr—m)*

Hence, the closed subscheme W7, F(—m) is GLy-equivariant.

Definition 5.3.7 We define Brill-Noether loci V/[/Zd(C) to be the scheme theo-

retic image of Wp, ~, (—m) under the morphism .

Notation 5.3.8 We will denote T//I/Zd(C) by I//V\gd when there is no chance of

confusion.
Remark 5.3.9 Note that since the morphism
1R — ./\/lc(n, d)

is a good quotient and Wx z,_,,, is PGLy-equivariant, we get that p(Wx, f,(_m))
is a closed subset of Mc(n,d). Hence, as sets Wy ; = w(Wg z_,,)). That is to

say, denoting the strong equivalence class of a semistable bundle £ over C by e
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as before, we get
I;V:L’Td = {e € Mc(n,d)|there exists E € e such that h°(C, E) >r+1}. (5.12)

Recall that M (n,d), the moduli space of stable bundles on C' of rank n and
degree d, is an open subset of M¢(n, d).

Definition 5.3.10 We define Brill-Noether loci W} ; of Mg(n,d) to be the

closed subscheme
= W N ME(n,d) € M(n,d).

Remark 5.3.11 Let R®* C R be the set of all x € R such that F'|c«, is stable.
Let F" := F'|cxrs. Let pus: R® — M%(n, d) be the restriction of 4 to R®. Then,

Wi, 4 1s the scheme-theoretic image of W, 7., under the map .

Now, using the fact that ps: R® — M (n,d) is a principal PGLy-bundle (cf.
[Hu-Ln, Corollary 4.3.5, p. 91]), and Lemma 5.3.4 we have that

Lemma 5.3.12 If W, # 0, then dimension of each component of W , is at
least
n(g—D+1—(r+1)(r+1—d+nlg—1)).

Definition 5.3.13 We define
prai=n(g=D)+1=(r+)r+1-d+nlg—1)
to be the expected dimension of Wy ;.

Remark 5.3.14 The above lemma is not true in the case of I//V::Td. It may have

components whose dimensions are less than p;, ; (cf.[Br-Gz-Ne, §7] for example).

Lemma 5.3.15 Let S be an algebraic scheme and & be a vector bundle over C'x.S
such that for all s € S, & is stable of rank n and degree d. If f: S — Mg(n,d)
15 the induced map, then

—1 roo__ T
f Wn,d - WS,S‘

Proof . First we show that the statement is true in the case when S = R? and

E = F'(—m). As we saw earlier, W7, Fr(—my 18 & PGLy-equivariant subscheme

m)
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and since R® — M (n,d) is a principal PGLy-bundle, Wxe 21 —m) descends to
a closed subscheme Z in M (n,d), i.e.

M;lz = W;és’]://(

Since Wy ;= pts(Wie zn (), it is clear that Z = Wy ;. Hence

-1 roo_ T
He Wn,d = W'R,,]:”(

T

Now let (S,€) be as in the hypothesis. Since F”(—m) is a locally universal
family, for any x € S there exists U, C R which is open and a map ¢g: U, — R?®
such that

(Id x g)* F"(=m) = Elexu,

By Lemma 5.3.5 we have

9 Wh riemy = Whe N Us.
Since ps o g = fly,, we have

(flo,) " Wy g =WgeNU,.

The lemma now follows from this. O

Now we are going to recall a few properties like non-emptiness and irreducibil-
ity of Brill-Noether loci in the moduli spaces Mg (n,d) and Mc(n,d). These
properties are quite different in higher rank cases in comparison with rank one

case, as we’ll see below.

Let us now fix different notations of Brill-Noether subvarieties in different
spaces to avoid confusion as we deal with all the spaces together after some point.
For a given scheme and for a given sheaf £ over C'x S, we denote the Brill-Noether
loci by Wg ¢ as in Definition 5.3.1 or in Definition 5.3.2. We also denote this by
W& when the sheaf involved is clear from the context. In M¢(n,d) the Brill-

Noether locus is denoted by I/T/Td as in (5.12). The same is denoted by W ,

n

in M%(n,d) as in Definition 5.3.10. Inside J,(C), that is inside M¢(1,d), the
Brill-Noether locus WY ; is denoted by Wy as in Definition 5.2.1 or in Definition

5.2.2. Inside J4(C') the same is denoted by W7 (C').
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5.3.1 Brill-Noether Loci in rank one case

The following properties of Brill-Noether loci in rank one case is already men-
tioned in §6. We recall those results in a bit more detail for the sake of complete-

ness.

Theorem 5.3.16 [Gz-Bg, Theorem 3.3, 8.4 € 3.5, p. 6] Let d > 1, r > 0. Then

1. pf 4> 1= Wj is connected for any curve C' and irreducible on the generic

curve C'.
2. Let C' be a generic curve. Then

(a) piq4 < 0= W is empty.

(b) pi4 = 0 = Wy is non-empty, reduced , of pure dimension pj, and
Sing W} = Wt

5.3.2 Brill-Noether loci in higher rank case

Now we assume n > 2 and 0 < d < n, that is u(EF) < 1 for any £ € M (n,d)
or £ € Mcg(n,d). Then we have the following result due to Brambila-Paz,
Grzegorczyk and Newstead (cf. [Br-Gz-Ne]).

Theorem 5.3.17 Letn>2 and 0 < d <n. Then

1. W} is non-empty if and only ifd > 0, n < d+(n—r—1)g and (n,d,r+1) #

(n,n,n).

2. W, 4 is non-empty = Wy, is irreducible, of dimension p;, ;, and Sing W ; =
Wrzl
n,a °

3. Wy 4 is non-empty if and only if either d =0 andr+1 <n ord >0 and
n<d+(n-—r—1)g.

—_—

4. W, is non-empty = W, is irreducible.

This result was later extended by Mercat (cf. [Me 1] and [Me 2]) for u(F) < 2.
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5.3.3 Brill-Noether loci for large number of sections

Let us denote p), ; as in Definition 5.3.13 by p(n,d,r,g). Then we have the

following theorem.

Theorem 5.3.18 [Bg 1, Theorem 1, p. 386] Let d = mn+dy, r+1 = tn+ry with
0<r,<nand0 <dy <n. Also let C be a generic curve. Then W;,d 18 non-
empty and has a component of right dimension, namely minimum of p(n,d,r, g)
and n*(g — 1) + 1, if the following hold.

1. p(I,m—1,t,g—1) >0 if r; > d;.

2. p(L,m,t,g—1)>0if0#r <d;.

3. pl,m—1,t—1,g—1)>01ifr, =0.
The above result is also true for I/T/Td if either dy # 0 or the number p is strictly

positive in (1), (2) or (3).

Remark 5.3.19 When the Brill-Noether loci have a large number of sections,
that is, r+1 > n, the conditions of the above theorem are probably close to being

the best possible for existence of a component of right dimension.

5.4 Cohomology class of the Brill-Noether locus

Consider the semistable locus R of the Quot scheme, together with the classifying
morphism as in (3.21):
R — Mc(n,d).

By [Dr-Na], R is a smooth variety. Furthermore, the quotient map p is a flat
morphism. Recall that the Brill-Noether locus is defined as (cf. Definition 5.3.7)

Wi o= 1rWr z(—m)-

and it corresponds to a cohomology class

(W) e Digry H*(Mc(n,d),Q).
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To see this, consider the cycle class map into the cohomology:
CH'(R) — H*(R,Z).

Since we do not know if the Brill-Noether locus is of pure dimension, we will

use the cycle class map on the Chow ring:
CH*(R) = ©:;H*(R,Z).

The Chow class
(Wr] € CH*(R) = @,CH(R)

defines the Brill-Noether cohomology class
[Wi] € ®:H*(R,Z).

Since R is an open variety, there is a weight filtration on the rational coho-
mology and we obtain a cycle class in @;gry H*(R,Q).
Recall the cycle class map from (2.10), on the operational Chow ring, for any

projective variety X:
cl: A(X)g — gry, H*(X, Q).

Since M¢(2,2(g — 1)) is a singular variety, we will consider A*(Mc(r,d))
instead of Chow groups.

Furthermore, due to universal property of the Brill-Noether locus on R, the

Chow class [W}] € CH*(R) defines a class:
(Widl € A*(Mc(n, d))e.
In particular, we have the following lemma.

Lemma 5.4.1 The Brill-Noether class [W}] is non-zero if and only if [I//I/Zd] is

non-zero, in Chow cohomology (respectively in weighted graded cohomology ring).

Proof.The quotient map p is a flat morphism. Hence there is a pullback map:

A" (Me(r,d)) — CH*(R)
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and compatible with the cycle class map (cf. Lemma 2.5.1):

A*(Me(n, d))g & CH*(R)q

.| ’

©igryl H*(Mc(n, d), Q) ®igry, H* (R, Q).

*
Heon
r

Since the subvariety W) . is the quotient of the G L,-invariant subvariety W

n

under p, the pullback u‘l(ﬁ/zd) is the same as Wj. Hence the lemma is clear.
0

5.5 Main theorems, when the rank is two

We want to give some relations amongst the Brill-Noether loci in M (2,d). In
our context we fix degree d to be 2(g — 1).

In this case, Sundaram proved that WE;(;U is a divisor in M¢(2,2(g—1)) (cf.
[Su]). We give some relations between the cohomology classes of the Brill-Noether
loci in terms of cohomology class of WE;(_;I)‘

Since the moduli spaces M(2,2(g—1)) and SU(2, L) are singular varieties,
recall from §2.5, that the cohomology classes are taken in the graded piece for
the weight filtration on the singular cohomology group H*(Mc(2,2(g — 1)), Q)
(respectively H*(SU-(2, L), Q)).

Consider the map m,: J* C J4(g,1)(é) — Mc(2,2(9 — 1)) as in (5.6). Note
that as we have taken d = 2(g—1), therefore it follows from (5.5) that 6 = 4(g—1).

Also from (5.3), we have

d=4(g-1)={4(9g—-1)+1}—-1=9g—- 1

Hence we have the Theta divisor © := Wy, )(C) in Jy,-1)(C). Following theo-

rem says that the Theta divisor of C' intersects both J* and its complement in

J4(g_1)(0).

Theorem 5.5.1 [Be-Na-Ra, Proposition 5.1, p. 176] The Theta divisor of the

moduli space J4(g_1)(5), denoted by ©, does not lie inside the complement of J*°
in J4(g,1)(6). More precisely,

1. For any point | € Jyy-1)(C) — O, m,.(l) is semistable.
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2. There is a point & € © such that m.(§) is semistable.

—_—

Moreover we have that pullback of the divisor Wy, ;) of Mc(2,2(g — 1)) is
the restriction of © to J*°.

Theorem 5.5.2 Let us denote the restriction of © to J*° by ©

Jss. Then

‘1(W202(g 1) = Ol

Proof.See [Bg-Tu, Lemma 6, p. 335]. Also follows directly from the fact that
HO(C, 1) = H(C, m,l). O
We now revisit Theorem 5.3.18 in this context. Then the following theorem
gives some sufficient conditions for the Brill-Noether loci in M (2,2(9 — 1)) to
be non-empty. For the rest of the section, we will assume that any one of these

conditions holds.

Theorem 5.5.3 Letr +1 =tn+ry with0 <7y <n. Then W;;d 1S non-empty
and has a component of right dimension, namely minimum of p(2,2(g — 1),r,g)
and 4(g — 1) + 1, if the following hold.

1. p(1,g—2,t,g—1) >0 if r;y > 0.
2. p(1,g—1,t,g—1) >0 ifr <O.
3. p(l,g—2,t—1,9g—1)>0ifr; =0.

Proof.Follows directly from Theorem 5.3.18. U
Now we want to check whether Theorem 5.5.1 and 5.5.2 hold for other Brill-

Noether subvarieties of higher codimension. By (5.4), we have

JSS .

_1(W2TQ (9— 1)) Wl(g—l)(é)

A priori, it is not clear whether Wi g—l)(é) lies inside the complement of J** or

—_——

Jss COllld

not, that is even if W3 5,1y is non-empty, its inverse image Wﬁf(g_l)(é)
be empty when r > 0. (This question will be treated in the next subsection).
However for our purpose, it will suffice to consider a scheme S to give relations
between Brill-Noether subvarieties of M (2,2(g — 1)).

We can construct a scheme S with the following properties.

1. S is a smooth projective variety.
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2. There exists a birational morphism ¢: S — J4(g_1)(6’) and a generically
finite morphism ¢: S — M¢(2,2(g — 1)).

3. There is a morphism ¢: S — Q such that ¥ = pogq.
4. The morphism ¢: = !(J*) — J** is an isomorphism.

5. The following diagram is commutative.

(5.13)

Moreover this diagram is commutative whenever the domains of the involved
rational maps are chosen properly. In particular, we have the following

commutative diagram.

J* Mo(2,2(9 = 1))

Then we have the following diagram.

CxS mx1d CxS S
Idxwl Idxwl ‘w
C x Jyg-1y(C) = = = = == C x Mc(2,2(g — 1)) Me(2,2(g — 1))

Let us denote by J* the following set.
J%:&GJMEmJew@@gw—mg.

Define Sy := ¢ !(J*). Then we have the following lemma:

—_— ~

Lemma 5.5.4 ¢ (W5,, 1)) NSo = ¢~ (W, 1, (C)) N So.
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Proof.If P is a Poincaré bundle over C' x J4(g_1)(5), then the morphism Sy —
Mc(2,2(g — 1)) is induced by the family (7 x Id).((Id X ¢)*P)|cxs,- Now by

Lemma 5.3.6 we get that

Wg,(ldx«p)*? NSy = Wg,(rrxld)*((ldxw)’ﬂ?) N Sp.
The Lemma 5.3.15 then implies
W3 (ex1a). ((dxgyp) N S0 = ¢_1W§72(g_1),
and Lemma 5.3.5 implies
Wg,(IdXAp)*’P N S() = QO_IWZ(g—l) (O) N S().
Hence we get

T W) NS0 = ¢ (Wiy_1)(C)) N So.

Hence we obtain the following:

Lemma 5.5.5 We have the equality of the closures

—_~—— ~

¢_1(W£2(g_1)) NSy = Sp_l(WAf(g_U(O)) M So
of a component of Brill-Noether loci on S. In particular, of the corresponding
cohomology classes in H*(S,7Z).

Denote this component Wg, in S.

5.5.1 Poincaré type relations on moduli spaces

Assume that C' is a general smooth projective curve and C = Cisa general

smooth spectral curve, which is a double ramified covering of C'. We denote
gri H*(X, Q) = @igry; H(X, Q).

the associated graded ring (for the weight filtration) of the even degree cohomol-
ogy of the singular moduli spaces X = M(2,2(g — 1)) and SU(2, L), where
L € Jg(gfl)(C), (Cf §25)
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We start with the following lemma.

Lemma 5.5.6 The divisor classes on Jyy—1)(C) descend to the moduli space
Mc(2,2(g — 1)) via the above diagram (5.13).

Proof.Recall from [Be-Na-Ra, Proposition 5.7] a commutative diagram:

PrxJga(0) Jag-1)(C)

| -

SUC(2) % J,1(C) —= Mc(2,2(g — 1)).

Here P’ is the Prym variety associate to the covering C' — C' and SUc(2) is a
fixed determinant (of degree 2(¢g — 1)) moduli space. Furthermore, it is shown
that the indiscrepancy loci of the dominant rational map 7, has codimension
at least two and the same is true when restricted to P’. The proof of loc.cit.
implies that the polarisations on P’ and J,_;(C) descend on the moduli space
Mc(2,2(g — 1)). By functoriality, via the diagram (5.13), the divisor classes
descend on M¢(2,2(g — 1)). O

We now show the following.

Theorem 5.5.7 The cohomology class of a Brill-Noether locus on the moduli
space Mc(2,2(g — 1)) can be expressed as a polynomial on divisor classes. In
particular, the tautological algebra generated by the Brill-Noether loci is generated

by the divisor classes.

Proof.Recall the morphisms

Q: S — J4(g_1)(0)

and

P S — Mce(2,2(9—1)).

Now ¢ is a birational morphism and let £ C S be the exceptional loci, and
1 is a generically finite morphism. Hence, we have the following equalities of

cohomology rings:

H*(5,Q) = H*(Jyg-1)(C), Q) © H*(E, Q),
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and an inclusion of rings (cf. Lemma 2.5.1):
¢:oh: gTZVH*(MC(Qa 2(9 - 1)7@) — H*(Sa Q)

By Theorem 5.2.8, the cohomology class of the Brill-Noether loci W{d((j) C
J4(g_1)(6’) is a polynomial expression on the divisor classes in H *(J4(g_1)(5)).
This implies that in H*(S,Q), the pullback of the cohomology class [W{d(a)] is
the cohomology class of the Brill-Noether loci W§ C S and it is a polynomial

expression on the pullback of the divisor classes on Jy,—1)(C).

Recall that S was constructed such that ¢: S — Q and ¢ = u o g, wherever
1 is defined.

Denote S’ := ¢ *(R). Since p is flat and R is a smooth variety there are

pullback maps on the Chow cohomologies:
A (Me(2,2(g — D)) S cHY(R) S CHA(S).

By Lemma 5.4.1,

qw [WQT,Z(Q*D

| =a"[Wr] = [Wgl. (5.14)
Since R C Q is an open subvariety of Q, using the localization sequence
CH*(S) — CH*(S") — 0,

we deduce that [W{] — [WE,].

The above Chow cohomology diagram is compatible, via cycle class maps,

with the weighted graded cohomology rings:
grl H*(Mc(2,2(9 - 1)),Q) % gri H'(R,Q) % gr) H*(S,Q)
together with a restriction
* 3 W o=/
H*(S,Q) — gr, H* (5", Q).

Here ¢ is a surjection. In particular, [Wg] — [W{], in cohomology. Furthermore,
by (5.14), we deduce that

e~ —

¢:oh [W£2(971)]

— W3 (5.15)
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By Lemma 5.5.5, Lemma 5.5.6 we know that the divisor classes descend, and
(5.15) imply that the cohomology class of the Brill-Noether locus in the graded
cohomology gr! H*(Mc(2,2(g — 1)), Q) is expressible as a polynomial on the
divisor classes. 0

Consider the determinant morphism
det: Mc(Q, 2(g - 1)) — Jg(g,l)(C).

The inverse image det™'(£) is the moduli space SU(2, L), for a line bundle £
on C' of degree 2(g — 1). Denote the Brill-Noether loci

—_—

7,L L .
W272(9—1) = W 2(g—1) NSUc(2, L).

)

P

Corollary 5.5.8 1. The cohomology class of a Brill-Noether locus Wg’zc(g_l) m
the moduli space SU(2, L) is expressible in terms of a power of the class
of the Theta divisor, with rational coefficients. In particular the tautological

algebra is generated by the class of the Theta divisor ©.

2. If the Brill-Noether number is non-negative, then the cohomology classes

are non-trivial and imply the non-emptiness of the corresponding loci.
Proof.

1. Consider the inclusion:
J: SU2, L) — Mc(2,2(g — 1)).
The pullback map on the cohomology ring
75 gr H (Me(2,2(9 = 1),Q) — gri" H*(SUc(2, £),Q)

is a ring homomorphism. By Theorem 5.5.7, the cohomology class of
the Brill-Noether loci is a polynomial expression on the divisor classes on
SU(2,2(g—1)). The Picard group of SU:(2,2(g —1)) is generated by the

Theta divisor ©. This gives the relation, for any irreducible component:

—_——

Wyinen) = [0 € grlV H*(SUc(2,£),Q),
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for some o € Q and ¢(r) is the codimension of an irreducible component of
Brill-Noether loci.

2. Using Theorem 5.2.5 a), we obtain that the dimension of every compo-
nent of the Brill-Noether loci on J4(g_1)(5) is at least the expected dimen-
sion. This implies that the corresponding cohomology class is non-zero in
H*(J4(g_1)(5’),Z). In turn, the same is true for the pullback class on S,
which further descends as a non-zero class on M¢(2,2(g — 1)) (see proof
of Theorem 5.5.7). This implies the non-emptiness of the Brill-Noether loci

on the moduli spaces, whenever the expected dimension is non-negative.

O

Let us end this chapter with the following remark.

Remark 5.5.9 It is likely that the Hodge conjecture holds for the Jacobian of
a higher degree general spectral curve (cf. [Ar] for unramified coverings). The
proofs employed in Theorem 5.5.7 will then be applicable also for higher rank
moduli spaces. The proofs raise further questions whether a Castelnuovo type

formula holds or not on the moduli space, for a general curve C'.
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Conclusion

A few days back I was going through the celebrated thesis of Piper Harron (cf.

[Hr]). The conclusion of her thesis goes as follows:

“You're still here? Oh, | guess [ should tell you math papers generaHy don’t

have what you or [ might call a “conclusion”. They just sort of stop.

So, yeah, you can, um, go Now. But, cheers!

. . ) 7
Serlously, 1t s over.

After going through her thesis a bit, I would like to believe that she was being
sarcastic while writing the mentioned conclusion. Hence I am going to conclude
by mentioning very briefly about what we have tried to investigate in our thesis
and what are the problems that can be studied along the same line.

We have investigated the tautological algebra, the algebra generated by the
cohomology classes of the Brill-Noether subvarieties, inside the cohomology ring
of the moduli space of semistable bundles over curves. In our first work, the
relations amongst the cohomology classes of the Brill-Noether subvarieties of the

moduli space of semistable bundles over an elliptic curve have been found (cf.

123
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Chapter 4). We have obtained results similar to Poincaré’s formula on a Jacobian
variety. In our second work (cf. Chapter 5), we have showed that when C is a
general smooth projective curve of genus g > 2, d = 2g — 2, the tautological
algebra of M¢(2,2g — 2) (respectively SU¢(2, L), deg L = 2g — 2) is generated
by the divisor classes (respectively the class of the Theta divisor ©). Also we
have proved some results about the non-emptiness of the loci.

Let us first quickly justify the two different scenario we are under for the two
mentioned work. In our first work, we have obtained the main results (cf. Theo-
rem 4.3.3 & 4.3.4) for degree 0 bundles having rank greater than 1. Apparently,
this might lead to the fact that we have looked over rest of the cases. But we
actually have not missed those cases as then the stratifications of Brill-Noether
subvarieties are trivial, which is clear from Lemma 4.2.5 and Lemma 4.2.6. In
the second problem, we have worked under rank 2 and degree 2g — 2 case. In
this thesis we have considered Theta divisor on the moduli space J,_1(C). Now
it can be noted that for any L € J,_;(C), x(L) = 0. In fact, this is a necessary
criteria to define Theta divisor without “twist” (cf. [Bg-Tu, Section 2.3]). To do
so in the moduli space M¢(n, d), we need to take d = n(g—1). As the first main
result (cf. Theorem 5.2.8) of our second work was obtained in rank 2 case, we
had no choice but to work on M¢(2,2¢g — 2).

We now mention a key difference in the approach of the two work we have
dealt with in this thesis. Following the techniques of the second problem (cf.
proof of part 1 of Corollary 5.5.8), it is quite clear that if we can obtain the
tautological algebra of M¢(n,d) first, then the same can be easily obtained for
the corresponding fixed determinant moduli space. But we have investigated the
problem other way round for the first work, that is in genus one case. That we
were forced to do only because we were unable to obtain the tautological algebra
of the semistable moduli M¢(n,0) directly in that case.

It can be easily noted that problems similar to what we have dealt with can
be considered in some other suitable moduli spaces as well because of the basic
nature of the problem. For example, the problem can be studied in the moduli
space M¢(n,d), where (n,d) # (2,29 — 2), for any curve C' with genus greater
than equal to 2. The investigation of similar algebra over some particular Quot
scheme is presently under way. As the results obtained so far are not convincing

enough, we abstain from including them in the thesis.
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