Discovery of Novel Methods for the Synthesis of Carbon Branched Sugars from Glycals

A thesis submitted for the degree of **DOCTOR OF PHILOSOPHY**

 $\mathbf{B}\mathbf{y}$

Umamaheswara Rao. Boddu

To

School of Chemistry
University of Hyderabad
Hyderabad-500 046
India

December 2020

To My Mother, Father & Friends

Declaration

I hereby declare that this Thesis entitled "Discovery of Novel Methods for the Synthesis of Carbon Branched Sugars from Glycals" submitted by me under the guidance and supervision of Prof. P. Ramu Sridhar is a bonafide research work which is free of plagiarism. I also declare that it has not been submitted previously in part or in full to this University or any other University or Institution for the award of any degree or diploma. I hereby agree that my thesis can be deposited in Shodganga/INFLIBNET.

Hyderabad December, 2020 Umamaheswara Rao. B 14CHPH16

B. Gramahohvaladas

Prof. P. Ramu Sridhar

Professor

Office: 91-40-66794823 Fax: +91-40-23012460

E-mail:prssc@uohyd.ernet.in

School of Chemistry University of Hyderabad Prof. C. R. Rao Road Gachibowli Hyderabad-500046 India

Certificate

This is to certify that the thesis entitled "Discovery of Novel Methods for the Synthesis of Carbon Branched Sugars from Glycals" submitted by Mr. Umamaheswara Rao. Boddu bearing Regd. No 14CHPH16 in partial fulfilment of the requirements for the award of Doctor of Philosophy in Chemistry is a bonafide work carried out by him under my supervision and guidance.

The Thesis has not been submitted previously in part or in full to this or any other University or Institution for the award of any degree or diploma.

School of Chemistry

University of Hyderabad

Prof. Perali Ramu Sridhar

1 lamy Snidar

(Research supervisor)

Dr. P. Ramu Sridhar
Professor
School of Chemistry
University of Hyderabad
Hyderabad-500 046, India.

Acknowledgements

Firstly, I would like to thank my supervisor, Prof. P. Ramu Sridhar, for the all the freedom that he has given me to work in his laboratory. I truly owe him for all the time that he had spent in taking all the 2D-NMR's present in this thesis. I also thank him for his patience in listening to all the perspective retrosynthetic analysis and the methodologies that I take to him and improving them in the right direction. Importantly, without his invaluable input and support, some research directions that I had taken could be in vain.

I would like to thank the present dean Prof. A. Samantoo and former deans of school of chemistry for the facilities in the department. Special thanks to the doctoral committee members, Prof. R. Nagarajan and Prof. R. Balamurugan for their time during research proposal and signing the committee reports and I would like to extend my thanks to all the faculty members and nonteaching staff in the school of chemistry.

Most importantly, I would like to acknowledge the University Grants Commission (UGC) for the financial support given throughout my Ph.D tenure.

I have always enjoyed the company of colleagues in the laboratory. I thank Dr. G. Madhusudhan Reddy, Dr. Ramakrishna, Dr. Sudha Rani, Mr. Dinesh Kumar Reddy, Dr. Venkatesh, Ms. Durga Rani, Mr. Anjaneyulu, Mr. Intzar Ali, Mr. kurumurthy, Ms. Parvathi, Ms. Kamala Lakshmi, Mr. Sandeep, Ms. Drisya, Mr. Praveen, Mr. vamsi, Dr. Shankar, Dr. Raghu, Ms. Neeraja and Bhaanu and i would like to thank seniors Dr. Venu Kumar and Dr. Seshadri for their input to develop new methodologies in our lab and also thank to all the project students who had visited the laboratory in creating the healthy and competing atmosphere during the work.

Special thanks to all my friends from school, Intermediate, B.Sc. and M.Sc. for the affection they had showed and forgiving me for missing most of their marriage functions.

I would like to acknowledge the friends and colleagues from the school of chemistry, Dr. Pon. Satish Kumar, Dr. Naveen, Dr. Ranjani, Dr. Suman, Dr. S. Ramesh, Dr. Satish Kumar, Dr. Ramaraju, Dr. Ram Kumar, Irfan wazir, Latha, Bhuvana, Dinesh, sunny, Sai anand from RN lab, Dr. Prahakar, Dr. Surendra, Dr. Jagjeeth gujral, anif, pritam, gorachand, vamsi, Dr. Bharani, Dr. Srinivasa Reddy, Dr. Madhavachary, Dr. Muralikrishna, Dr. Sruthi from DBR lab, Chandrahas, Ramesh, Sayyad basha, Dr. Tamilarasan, mou mandal, rina, arun, Anjali, Tausif ali, Dr. T. Ganesh, Dr. K. Raveendra Babu, Dr. N. Naveen, Dr. S. Manoj, Dr. Ramana, Dr. Sakthivel from RB lab, Dr. Tamilarsi, Dr. Lingaih, Dr. Harathi from DB lab, Dr. Ramesh, Dr. Uday, Dr. Sagar, Dr. Mohan, Dr. Harish, Dr. Anand Rao, Dr. Satyanarayana, Dr. Obulreddy, Dr. Shanmugam, Dr. Venkanna, Dr. Edukondalu from MP lab, Mane Jyothi, Dr. Ajay, Dr. Narayana, Dr. Krishna, Dr. Ramudu, Dr. Radhika, Ravi, Vinod, Vinay from RC lab, Dr. Srinivas, Dr. Prasad, Dr. Leela, Sandeep, Kalyani, Shankar, Gattaiah, Sachin, Asif, Suraj from KCK lab, Dr. Kishore, Dr. Showkath, Dr. Bala, Dr. Sudhakar from GM lab, Dr. pratap Dr. Satheesh, Dr. Ramakrishna, Dr. Krishna, Dr. Suresh, Dr. Subhabrata mukopadhyay, Chandini, Tanmaya, Hema, Olivia basu, Olivia from SKD lab, Dr. Ramuyadav, Dr. Koushik Ghosh, Dr. Raja, Dr. Sanathan, Dr. Prabhakar, Dr. Majji Shankar, Dr. Ramesh, Dr. Rajendra mallick, Kallol Mukharjee, Prasad, Srinivas, Shubham Dutta, Manash, Dr. Arijit, Balaraju from AKS lab, Dr. Chandu, Dr. Ashok, Dr. Sudipta Seth, Dr. Sneha Paul, Tasnim, Apurba De, Saddam, Rajesh, Dr. Ramavath from AS lab, Dr. Durga Prasad, Dr. Lasya, Dr. Sudheer, Dr. Senthil, Shasi from TPR lab, Dr. Anil, Surya Narayana, Manish, Dr. Geetha, Dr. Sudalai, Dr. Suresh, Dr. Sudheer from AN lab, Dr. Prabhu, Dr. Ugandar, Dr. Amaleswari, Dr. Junaid ali, Navaneetha, Narasimha from VB lab, Dr. Praveen, Dr. Sanyasi Naidu, Dr. Srinivas, Dr. Anjana K. O, Dr. Srinivas, Venkateswar rao, Manzoor, Anju, Hemanth, Dr. Ramu from KMD lab, Dr. Kondareddy, Dr. Raju, Dr. Narasimha, Dr. Rambabu, Prasannatha, Nilanjan, Suchismitha, Harilal from TJ lab, Dr. Krishna Reddy, Arun, Jayakrushna, Jhansi Rani from SM lab, Nagamaiah, Dr. Vikranth, Obaiah, , Dr. Nanda Kishore, Dr. Satish, Dr. sathish, Samita sahoo, Sipra, Jhosna, Iswak, Dr. Rahul, Dr. Naren from PKP lab, Naresh, Laxman from LGP lab, Dr. Sabari, Ankit from SP lab, Dr. Sashikanth, Santhi, Ramesh from AKB lab, Dr. Pavan, Dr. Sudheer, Dr. Debarna, Ravindar, Sneha from MJS lab, Dr. Ravi, Dr. Abhishek, Rajesh, Tabassum, Arun, Sneha from YSR lab, Ravi from MB Lab for their cooperation and joyful moments during the study.

I owe my life to my amma (Subbamma) and naanna (penchalaiah) for all the love and care they had showed on me. Thanks for my mother, who still plays and fights with me and makes me happy whenever I am sad. Naanna, thanks for all the care and trust that you had showed. I love you both and thanks for the wonderful life and the personality that you shaped me into. Special thanks to my friends Dr. Balu and Dr. Sekhar for his motivation and support whenever I am disappointed and down in energy.

I would like extend the acknowledgements to other family members and relatives. Venkata subbaiah (babai), shailaja (pinni), Dr. Praveen IAS(brother), Pavithra (sister), Kishore (bava), Mani (brother), Santhi (sister), Penchalaiah (bhabai), Ramanamma (chinnamma), Yedukondalu (brother), Venkataramana (brother), Gundaiah (thathaiah), Venkata Subbaiah (Thathaiah), Kamakshamma (Ammamma), Masthanaiah (pedamavaiah), Ramanaiah (mavaiah), Kistaiah (china mavaiah), Mamatha, Uma, Parasuram, Shirdeesh, Ashok, Venkatasubbu, Srinu. N, Srinu. Y, Ravi. O, Anitha, Mamatha, Anusha, Purnamma, Mohan, Bhavitha, Pujitha, Karthik, KC Krishnaiah (bava), Yugandhar, K.C.Kumar, Prasad, for the love and affection. I would also extend my thanks to my friends and well-wishers, Pratap, Shiva veerabramham, G. Seenaiah, Sudheer. V, Amaullah, Syam, Srihari, Chittibabu, Dr. Babu anna, Mahesh, Dr. Chandhu, Dr. Umapathi, Dr. Shilpi paul, Kalesha, Dr. Suresh, Janardhan anna, Ramananna, Dr. Jaya Prakash, Dr. Jeevan, Nagaraju, U.V. Subbareddy, U. Sai for the help and care.

B. Uma Maheswara Rao

December, 2020

Publications

- Reddy, G. M.; Rao, B. U.; Sridhar, P. R., Stereoselective synthesis of 2-(β-C-Glycosyl) glycals: Access to Unusual β-C-Glycosides from 3-Deoxyglycals. *J. Org. chem.* 2016, 81, 2782-2793.
- Kutcherlapati, S. N. R.; Koyilapu, R.; Rao, B. U.; Data, D.; Perali, R. S.; Swamy, M. J.;
 Jana, T., Glycopolymer-Grafted Nanoparticles: Synthesis Using RAFT Polymerization and Binding Study with Lectin. *Macromolecules*, 2017, 50, 7309-7320.
- 3. Sridhar, P. R.; Rao, B. U.; Reddy, G. M., Synthesis of Carbon-Branched Sugars Involving an Unprecedented 1,5- or 1,6-Alkyl Transposition Reaction. *Eur. J. Org. Chem.* **2019**, 4752–4756.
- 4. Sridhar, P. R.; Rao, B. U., A concise and efficient approach to the stereoselective total synthesis of (+)-secosyrin 1 and (+)-syributin 1. *J. Indian Chem. Soc.* **2020**, *97*, 237-242.
- 5. **Rao, B. U.**; Drisya, C. S.; Sridhar, P. R., Stereoselective synthesis of 3-*C*-branched glycals involving [1,2] and [2,3] Wittig rearrangement. (*Manuscript Submitted*).
- 6. **Rao, B. U.**; Sridhar, P. R., Synthesis of cis- and trans-fused bicyclic Iridoid frame works from Glucal. (*Manuscript under preparation*).

Posters and Oral Presentations

- 1. Presented a poster of research work titled as "An Unprecedented 1,6 or 1,5 Alkyl Transposition of 3-deoxy glycals: Synthesis of Carbon Branched deoxylevoglucosans" in 8th International Collaborative & Cooperative Chemistry Symposium held at University of Hyderabad, Hyderabad in Dec-2017.
- 2. Presented a poster of research work titled as "An Unprecedented 1,6 or 1,5 Alkyl Transposition of 3-deoxy glycals: Synthesis of Carbon Branched deoxylevoglucosans" in CARBO-XXXIII International Carbohydrate Symposium held at Indian Institute of Science Education and Research, Kolkata in Dec-2018.
- 3. Orally presented the research work titled as "Novel Synthetic Transformations of 3-deoxy glycals" in Chemfest-2019 held at University of Hyderabad, Hyderabad in Feb-2019.
- 4. Orally presented the research work titled as "Synthesis of Carbon-Branched Sugars Involving an Unprecedented 1,5 or 1,6 Alkyl Transposition Reaction" in 15th Junior-National Organic Symposium Trust held at University of Delhi, Delhi in Oct-2019.

Course work

	Course.	Title	Credits	Pass/Fail
	No			
1	CY-502	Advanced Organic Synthesis	3	Pass
2	CY-801	Research Proposal	3	Pass
3	CY-805	Instrumental Methods A	3	Pass
4	CY-806	Instrumental Methods B	3	Pass

Abstract

Chapter-1

Introduction to Unusual Sugars: Simple Glycals, Carbon branched Glycals and Deoxy Glycals

This chapter mainly deals as the introduction to the thesis. It is mainly divided into two parts. In the first part of the chapter, a detailed description of the importance of unusual sugars in synthetic carbohydrate chemistry is presented. Appropriately, collective literature reports for the synthesis of simple glycals, 1-*C*-branched glycals, 2-*C*-branched glycals, 3-*C*-branched glycals, 4-*C*-branched glycals and deoxy glycals from the carbohydrate sources are presented in detail.

In the second part of the chapter, a detailed collection of literature reports available in the area of synthetic applications of simple glycals, 1-*C*-branched glycals, 2-*C*-branched glycals, 3-*C*-branched glycals, 4-*C*-branched glycals and deoxy glycals are covered. In the conclusion of the chapter, motivation for the research work carried out is encompassed.

Chapter-2

Synthesis of Carbon-Branched Sugars Involving an Unprecedented 1,5- or 1,6-Alkyl Transposition Reaction

This chapter mainly describes the discovery of a novel C-C bond formation method for the synthesis of 2-*C*- branched acetal derivatives by 1,5 or 1,6-alkyl migration by using *p*-methoxy benzyl (PMB) protected 3-deoxy glycals . The extension of the developed methodology in the synthesis of 2-*C*- branched acetal derivatives from the prenyl protected 3-deoxy glycals is also incorporated.

Chapter-3

Sythesis of Cis- and Trans-fused Bicyclic Iridoid Frame Works from Glucal

In this chapter, a concise approach to synthesize the *cis*- and *trans*-fused bicyclic frameworks of the monoterpenoid glycoiridoids is described. Starting from commerceally available 3,4,6-triacetyl-D-glucal, a highly stereoselective cyclopropanation reaction was used to construct bicycle. Later, a couple of transformations involving Wittig olefination and cyclopropane ring opening were established to commence the essential di-carboxylate moiety. The distinct 6-oxo-cyclopenta[c]pyran carboxylate motif was successfully forged *via* a latestage Dieckmann reaction.

Chapter-4

Stereo selective synthesis of 3-C-branched glycals involving [2,3] Wittig rearrangement

This chapter describes exclusively the synthesis of 3-C-branched glycals with retention of configuration from the α -O-glycoside derivatives via [2,3]-Wittig rearrangement. Using the same methodology, the stereo selective synthesis of 3-C-branched glycals from the corresponding β -O-glycoside derivatives via [2,3]-Wittig rearrangement are also incorporated. Influence of the protecting groups in this novel methodology for the synthesis of C-3 glycals is included.

Contents

Decla	ration	i
Certif	ficate	ii
Ackno	owledgements	iii-v
Public	cations	vi
Poster	rs and Oral presentations	vii
Cours	se work	vii
Abstr	act	viii-ix
Conte	ents	x-xi
Gloss	ary	xii-xiii
	luction to Unusual Sugars: Simple Glycals, Carbon Branched Glycals	Glycals and
1.1	Introduction	2-3
1.2	Diversity-Oriented Syntheses (DOS)	3-4
1.3	Unusual sugars	5-7
1.4	Glycals	7-8
1.5	Syntheses of simple glycals, carbon branched glycals and deoxy	y glycals
1.5	.1 Synthesis of simple glycals	8-9
1.5	.2 Synthesis of carbon branched glycals	9-28
1.5	.3 Synthesis of deoxy glycals	28-31
1.6	Synthetic applications of simple glycals, carbon branched glycals	ycals and deoxy
1.6	.1 Few synthetic applications of simple glycals	31-33
1.6	2.2 Few synthetic applications of carbon branched glycals	34-44
1.6	3.3 Few synthetic applications of deoxy glycals	45-46
1.7	Motivation for the work presented in this thesis	47
1.8	References.	47-56
•	esis of Carbon-Branched Sugars Involving an Unprecedented	1,5- or 1,6-
•	Transposition Reaction	50.50
2.1	Introduction	
2.3	Conclusions.	
2.3 2.4	Experimental Section	00
	.1 General Methods	66

2.4	.2 Experimental Procedures and Spectral Data	67-95				
2.5	References	95-96				
2.6	NMR Spectra	97-140				
Synth	Synthesis of Cis and Trans-fused Bicyclic irirdoid frame works from glucal					
3.1	Introduction	142-145				
3.2	Results and Discussion.	145-149				
3.3	Conclusions	149				
3.4	Experimental Section					
3.4	.1 General Methods	149-150				
3.4	.2 Experimental Procedures and Spectral Data	150-156				
3.5	References	156-158				
3.6	NMR Spectra	159-171				
	•	Wittig				
		177				
	•					
4.4	.2 Experimental Procedures and Spectral Data	178-199				
4.5	References					
4.6	NMR Spectra	201-242				
	2.5 2.6 Synth 3.1 3.2 3.3 3.4 3.4 3.5 3.6 Stereorearra 4.1 4.2 4.3 4.4 4.4 4.5	2.6 NMR Spectra. Synthesis of Cis and Trans-fused Bicyclic irirdoid frame works fr 3.1 Introduction. 3.2 Results and Discussion. 3.3 Conclusions. 3.4 Experimental Section 3.4.1 General Methods. 3.4.2 Experimental Procedures and Spectral Data. 3.5 References. 3.6 NMR Spectra. Stereoselective Synthesis of 3-C-branched glycals involving [2,3]-vrearrangement 4.1 Introduction. 4.2 Results and Discussion. 4.3 Conclusions. 4.4 Experimental Section 4.4.1 General Methods. 4.4.2 Experimental Procedures and Spectral Data. 4.5 References.				

Glossary

 $\begin{array}{ll} \alpha & & \text{alpha} \\ \mathring{A} & & \text{angstrom} \\ Ac & & \text{acetyl} \end{array}$

AcOH acetic acid

 $\begin{array}{ccc} \beta & & beta \\ Bn & & benzyl \\ br. & Broad \end{array}$

BTCEAD bis(2,2,2-trichloroethyl) azodicarboxylate

calcd. calculated

COSY correlation spectroscopy

☐ delta
d doublet

DCM dichloromethae

dd doublet of doublet

DIAD diisopropyl azodicarboxylate

DIPA diisopropylamine
DMF dimethylformamide
dt doublet of triplet

DMP Dess-Martin periodinane

DMSO dimethyl sulfoxide

EtOAc ethyl acetate

ESI electrospray ionization

eq/equiv. equivalent g gram(s) h/hr hour(s)

HRMS high resolution mass spectrometry

Hz hertz

Im imidazole IR infrared

J coupling constant in Hz (NMR)

m multiplet

MHz megahertz
mL milliliter
mmol millimolar
MeOH methanol

msmolecular sievesn-BuLin-butyl lithium

NOESY nuclear Overhauser effect spectroscopy

NMR nuclear magnetic resonance

Ph phenyl

PMBCl p-methoxybenzyl chloride PMBzCl p-methoxybenzoyl chloride

 $\begin{array}{ll} \text{ppm} & \text{parts per million} \\ \text{R}_{f} & \text{retardation factor} \end{array}$

ref reference

RT room temperature

s singlet

p-TsOH/PTSA *p*-toluenesulfonic acid

t triplet

TBAF tetra-*n*-butylammonium fluoride
TBSCl *tert*-butyldimethylsilyl chloride

THF tetrahydrofuran

TLC thin-layer chromatography
TMEDA tetramethylethylenediamine

TMSOTf trimethylsilyl trifluromethanesulfonate

Tol tolyl/p-methyl phenyl

TrCl trityl chloride
UV ultraviolet

Chapter-1

Introduction to Unusual Sugars: Simple Glycals, Carbon Branched Glycals and Deoxy Glycals

- 1.1 Introduction
- 1.2 Diversity-Oriented Syntheses (DOS)
- 1.3 Unusual Sugars
- 1.4 Glycals
- 1.5 Syntheses of simple glycals, carbon branched glycals and deoxy glycals
- 1.6 Synthetic applications of simple glycals, carbon branched glycals and deoxy glycals
- 1.7 Motivation for the work presented in the thesis
- 1.8 References

"Once a molecule is asymmetric, its extension proceeds also in an asymmetrical sense. This concept completely eliminates the difference between natural and artificial synthesis.

The advance of science has removed the last chemical hiding place for the once so highly esteemed vis vitalis."

-Emil Fischer

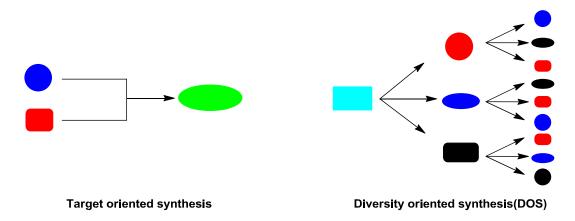
1.1 Introduction

Carbohydrates often serve biosynthetic precursors and structural elements required to sustain all living organisms. They are found to be the most abundant ubiquitous organic molecules in nature, some are playing important roles as energy supply and storage vehicles. They exist in simpler forms such as monosaccharides and disaccharides, or in more complex glycosides of type glycolipids, glycoproteins, peptidoglycans, proteoglycans, nucleic acids, poly and lipopolysaccharides. Many scientists in Organic chemistry considered that among the biomolecules (nucleic acids, carbohydrates, lipids, and proteins), the study of natural carbohydrates was very complex to handle due to availability of more chiral centers with a high abundance of hydrophilic functionalities, so it had been on track lately. In the recent past, this failure had been rectified exponentially by savvy their veiled precedence in chemical synthesis, with the mounting admiration for the function of carbohydrate compounds in disease, biological processes, human health, and their applications in the progress of medicinal targets.

Emil Fisher² (Figure 1.1) (1852-1990), the father of Carbohydrate chemistry and he was one

of the pioneering scientists from the area of organic chemistry in his time. In the carbohydrate chemistry, the first milestone was laid by this eminent scientist in the decade of the 1880s. Emil fisher had elucidated the stereochemistry of all simple carbohydrates with the less analytical facility of his research period, which had imparted the irrefutable proof for the Le Bel-Van't Hoff theory of stereoisomerism,³ of which He was the chemist received the 1902 Noble Prize as the first in organic chemistry and second ever awarded. The impact of this study had on the further development of

Figure 1.1 Emil Fischer


not only carbohydrate chemistry but also organic chemistry has been treated extensively.

Synthetic Carbohydrate chemistry is one of the fast-developing and most significant field in the area of organic-chemistry due to ample structural miscellany of carbohydrates and polygonal applications of them in glycobiology, microbiology, medicinal chemistry and biochemistry. Many scientists have been attracted by the embellishment of this area due to availability of the sugars with low price by their high abundance in nature, and their accessibility in enantiomeric pure forms with direct stereocenters. Also, sugars have been utilized as the starting materials for the synthesis of biologically active natural and synthetic molecules with the perception of expending them in the study of possible biological phenomena undergoing in the living organisms.

1.2 Diversity-Oriented Syntheses (DOS)

Historically, Diversity-oriented synthesis (DOS) (Figure 1.2) has focused on the generation of small-molecule gathering with the significant scaffold, stereochemical and appendage diversity rather than being directed to a single biological target.⁵ Recently, it has shifted to the production of small-molecule libraries with diverse biological activities. Recent years have witnessed significant achievements in the field, which help to validate the usefulness of DOS as a tool for the

discovery of novel, biologically interesting small molecules. It is currently not clear which properties and structural features of molecules are predictive of diverse performance in biological assays, and a better understanding of this relationship is critical for the development of performance-diverse small-molecule libraries for the discovery of novel probes for challenging targets. Here, diversity refers to the change in the attached groups, functional groups, stereochemistry, and molecular frameworks. Certainly, nature has been using the diversityoriented approach from the existence of life and carbohydrates are one of nature's best raw materials for the neat presentation of DOS. The number of organic molecules that one can synthesize is around 10⁶²-10²⁰⁰ but, nearly 10⁵¹ molecules are only present on earth. So, synthesizing every possible molecule is not imaginable and one cannot even come closer to it. So, one should be selective as there are many solutions available for a single biological problem (for example, reverse transcriptase inhibitors: zidovudine, abacavir, emtricitabine, lamivudine, tenofovir, etc...). For diversity-oriented synthesis to be a success, however, identification of substrates that can be derivatised and transformed into various novel scaffolds is essential. Owing to the presence of the ring oxygen among others and the different conformations they can adopt, glycals have shown great potential as suitable substrates in DOS and in a Chiron approach to the synthesis of natural products and their analogues.

Figure 1.2 Target oriented syntheses and diversity oriented syntheses.

1.3 Unusual sugars

Normal sugars whose are certain hydroxyl groups substituted by other atom or group called unusual sugars. These are mainly classified into three modifications (Figure 1.3),

- 1. Deoxygenation
- 2. Amino group substitution
- 3. Branch chain modification

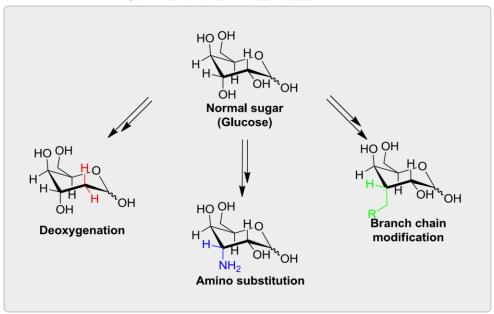


Figure 1.3 General modifications of normal sugars to unusual sugars.

Deoxysugars, aminosugars, and carbon branched sugars are very frequently seen in the secondary metabolites, which generated by microorganisms and plants, such as antibiotics, cardio glycosides, and anticancer agents, in cell signaling pathways, immune responses, like targets for antibodies, toxins, and defines mechanisms.⁶ These sugar residues play key roles in conferring to the optimal biological activity of many natural products. Their removal might result in the total loss of biological activity of the parent molecule. It is very difficult to estimate the activity relevance's of the unusual sugars as nature produces them in a complex manner⁷ and sometimes replacing the natural-sugars with unusual-sugars expose the biological contribution of

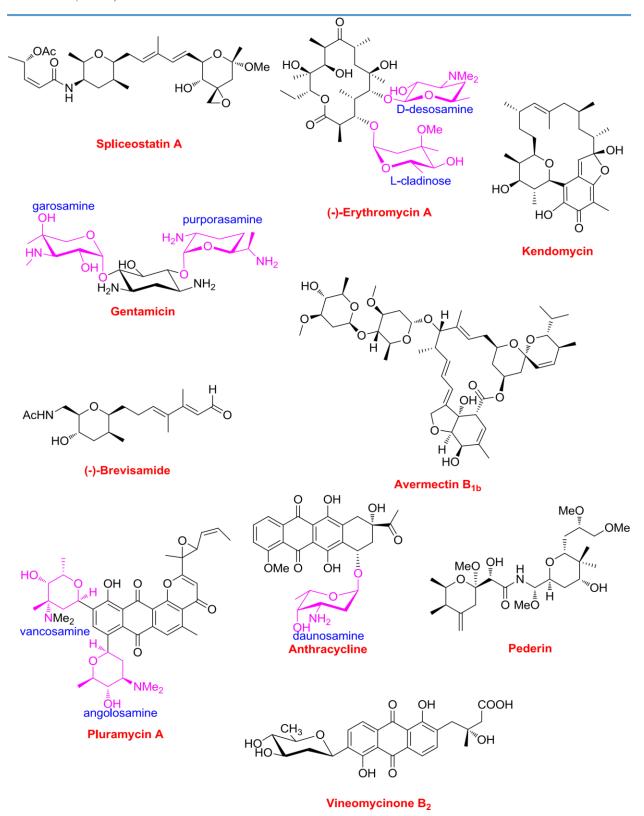


Figure 1.4 Biologically active natural compounds possessing unusual sugars.

before the parent molecule. Few natural substances provided by the living organisms which are majorly utilized in defense their mechanism, cell-cell interactions, as antibiotics, toxins, and antibodies are displayed in Figure 1.4. In all these compounds, an unusual sugar molecule/s is attached to the parent molecule which differs from the natural sugar molecule by at least one of the above-mentioned modifications. Synthesis of biologically active unusual-sugar skeletons and natural products by employing natural sugars is challenging and is the recent trend in synthetic sugar chemistry. Since the major part of the thesis is generalized on the syntheses and synthetic use of unusual sugars namely 3-*C*-branched glycals and 3deoxy glycals, a brief summary of simple glycals, carbon branched glycals and deoxy sugar glycals would be more appropriate and so, such emphasis is done in the remaining part of the introduction.

1.4 Glycals

1, 2-Unsaturated cyclic sugar derivatives are called as glycals (Figure 1.5). Glycal is a name created by mistake (as the molecule does not having an aldehyde functionality) to carbohydrate substrates, which possess a double bond between C1 and C2 positions of the furan or pyran moieties of the carbohydrate compound. While glycal is a general name, while specific derivatives originate from glucose are called as glucals, while those derived from galactose are called as galactals commonly. Many advantages of the unsaturated sugars like glycals have been explored due to ample increase in the varied synthesis and applications such as epoxidation, halogenation and also cyclopropanation reactions like simple olefins in organic synthesis. Moreover, Glycals are transformed into stereoselective and regioselective molecular scaffolds, which is due to the oxygen present in-ring as well as size and electronic of the substituents in glycals. Glycals were played an important role for the synthesis of different kinds of sugar derivatives like *O*-glycosides, *S*-glycosides, *N*-glycosides, *C*-glycosides, and biologically relevant natural products⁸ by employing as starting material.

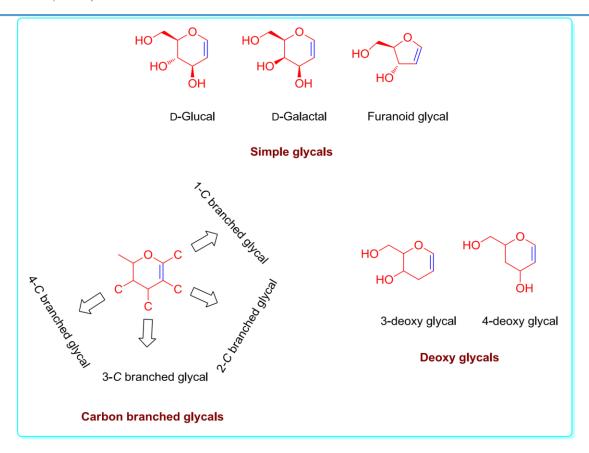


Figure 1.5 Examples of glycals.

45 Syntheses of simple glycals, carbon branched glycals and deoxy glycals

1.5.1 Syntheses of simple glycals

The first efficient synthesis of 3,4,6-tri-*O*-acetyl D-glucal **3** (trivial name glucal was anomalous due to the incorrect observation of aldehydic properties by Fehling's test) has been reported by Emil Fischer and Zach⁹ from D-glucose **1** via 2,3,4,6-tetra-*O*-acetyl glucopyranosyl bromide **2** (Scheme 1.1). It has been using as traditional method for the synthesis of glycals on bulk scale since 1913. This synthetic methodology is failed for the synthesis of furanoid glycals by performing under similar reaction conditions and a laborious workup to neutralize the acidic nature of the reaction. It is the major drawback of this methodology.

Scheme 1.1 Fischer-Zach method for the synthesis of glucal.

Over a century of time, several other methods have been developed by various research groups for the syntheses of glycals from all over the world. few of the most important methods include reductive elimination of phenyl thioglycosides, ¹⁰ Danishefsky's hetero Diels-Alder approach, ¹¹ from glycosyl sulfoxides, ¹² glycosyl sulfones, ¹³ by electrochemical approach, ¹⁴ ring closing metathesis, ¹⁵ via tungsten and molybdenum-promoted alkynol *endo*-cycloisomerization, ¹⁶ and transformation of glycosyl halides using reducing agents like sodium and potassium metal, ¹⁷ sodium naphthalide, ¹⁷ zinc/silver graphite, ¹⁸ aluminum amalgam, ¹⁹ samarium iodide, ²⁰ potassium graphite, ²¹ lithium/ammonia, ²² chromium(II), ²³ cobalt(II) ²⁴ and titanium(III). ²⁵

1.5.2 Syntheses of carbon branched glycals

1.5.2.1 Syntheses of 1-*C*-Branched glycals

K. C. Nicolaou²⁶ and J-M. Beau²⁷ had reported the first synthesis of *C*-1 carbon branched glycals from *C*-1 lithiated glycal species, which was formed by direct proton abstraction at anomeric position of glycals. Initially, *C*-1 lithiated glucal **5** was generated by treatment of TBS protected glucal **4** with *tert*-butyl lithium, followed by treatment with different electrophiles like

CH₃I, allyl iodide, CO₂ and DMF to produce the corresponding C-1 carbon branched glycals such as **6** (Scheme 1.2).

Scheme 1.2 Beau's syntheses of 1-*C*-branched glycals by lithiation.

Later, S. Hanessian²⁸ and coworkers had reported the synthesis of 1-*C*-branched glycals from fully protected glycals via *C*-1 tributylstannyl glycal. A tri TBS protected glucal **4** had treated with potassium *tert*-butoxide and BuLi, followed by reaction with tributyltin chloride to obtain *C*-1 tributylstannyl glucal **7**, then converted to benzyl protected *C*-1 tributylstannyl glucal **8**, which was transmetalated with butyllithium followed by treatment with various electrophiles to achieve 1-*C*-branched glucal of type **9** (Scheme 1.3). This synthetic methodology was applied to furanoid glycals²⁹ also and attempted with various electrophiles like alkyl halides,²⁶ aldehydes,²⁸ ketones³⁰ and quinones.³¹

Scheme 1.3 Hanessian's synthesis of 1-C-branched glycals by transmetalation.

The synthesis of lithiated alkenyl intermediates is straightforward and challenging³², the good results were not observed with 3,4,6-tri-O-benzyl- D-glucal **10**. To overcome these problems, Schmidt and coworkers had used the phenylsulfinyl group at the C-2 position by treating with phenylsulfinyl chloride and DBU, the resulted 2-phenylsulfinyl-D-glucal **11**³³ was treated with butyl lithium to achieve lithiated species^{33h} by inductive effects of sulfinyl group and followed by reaction with various aldehydic electrophiles to obtain α -hydroxy glucals of type **12**. Finally, phenylsulfinyl group was removed by using raney-nickel to produce α -hydroxy-1-C-branched glucals such as **13** and **9b** (Scheme 1.4).

Scheme 1.4 Schmidt's syntheses of 1-C-branched glucals from 2-phenylsulfinyl-D-glucal.

Due to the massive improvements in the C-H activation through Pd mediated coupling reactions, 1-C-branched glycals were synthesised by using the methodologies with palladium were noteworthy.

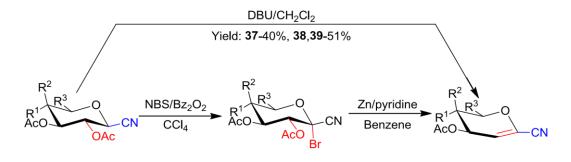
T Ishiyama and N Miyaura³⁴ had reported that Ir catalyzed vinylic C-H borylation by using Bis(pinacolato)diboron to produce the *C*-1-borylated glycals of type **16**, then which was transformed to *C*-glycosides such as **15** (Scheme 1.5c) by Pd mediated coupling reaction with allyl, benzyl and aryl halides. 1-*C*-pyranoid glycals of type **15** (Scheme 1.5a) were synthesized from *C*-1-stannyl glycals³⁵ such as **14** under Pd catalyzed coupling reaction (Stille cross-coupling reaction) with alkyl, allyl, benzyl, aryl, acyl halides and *O*-triflates. *C*-1-stannyl furanoid glycals were also utilized for the synthesis of 1-*C*-furanoid glycals³⁶ in good yield with Pd(OAc)₂. *C*-1-iodo glycals such as **17** are the next most exerted starting materials for the syntheses of 1-*C*-branched glycals. D. S. Tan³⁷ and coworkers had carried out the hydroboration of olefines by using 9-BBN, then

Scheme 1.5 palladium catalysed syntheses of 1-*C*-branched glucals.

treated them with iodo glycals under Suzuki-miyaura coupling reaction conditions (Scheme 1.5b). Martin and coworkers³⁸ had also employed the *C*-1-iodo glycals such as **17** to ring open the dimethoxy oxabenzonorbornadiene to produce the corresponding dihydro-naphthol derivatives such as **15**. Later, Werz³⁹ and co-workers have employed Sonogashira-Hagihara coupling reaction conditions to *C*-1-iodo glycals and alkynes to provide the *C*-1- carbon branched glycal derivatives of type **15** (Scheme 1.5b). K. C. Nicolaou⁴⁰ and coworkers had performed Electrophilic coupling reagents such as glycal phosphates of type **18** in Stille cross coupling to produce the *C*-1 glycals such as 15 (Scheme 1.5d).

Also ring closing metathesis has been applied for the synthesis of *C*-1 carbon branched glucals by Postema⁴¹. In this approach, initially, 3,4,6-tri-*O*-benzyl-D-glucal **10** was converted to anomeric mixture of lactol **20** through ozonolysis performed with ozone, followed by deesterification with sodium methoxide. Lactol **20** was transformed to hydroxy olefin **21** by Wittig olefination reaction, then the hydroxyl group was coupled with different kind of carboxylic acids like aliphatic, ⁴¹⁻⁴² sugar based mono^{15a, 15b, 43}, di⁴⁴ and tri⁴⁵ acids under DCC mediated reaction to obtain the esters such as **22**, which was treated with Takai reagent to provide the acyclic enol ethers of type **23**. Schrock catalyst (some methods also involved the use of Grubb's 2nd generation catalyst) was employed to the acyclic enol ethers **23** to obtain 1-*C* branched glucals which, include mono, di, tri and tetra saccharide derivatives of type **24** in moderated to good yield (Scheme 1.6).

Scheme 1.6 Postema RCM approach of the syntheses of 1-C-branched glucals.


Mootoo⁴⁶ and coworkers had employed the lactol **25** firstly into (diacetoxyiodo)benzene (DIAB)/I₂ (Suarez procedure) to obtain the acetate **26**, which on reaction with thiophenol/boron trifluoride etherate at low temperature, followed by basic hydrolysis produced the 1-thio-1,2-*O*-isopropylidine derivative **27**. The resulted hydroxyl group was esterified with various carboxylic acids (use of both glycone and aglycone carboxylic acids were reported) using DCC/DMAP. The acetate and enol ether system in a single molecule. Finally, the oxocarbenium ion was successfully

Scheme 1.7 Mootoo's approach for the synthesis of 1-*C*-branched glycals.

generated and performed the intramolecular oxocarbenium ion-alkene cyclization using MeOTf/2,6-di-*tert*-butyl-4-methylpyride (DTBMP) to obtain the required 1-*C*-branched glycals such as **30** (Scheme 1.7).

Somsak had reported the first Syntheses of 1-cyanoglycals by performing the reaction with 1-bromo-D-glycosylcyanides and zinc (Scheme 1.8).⁴⁷ 1-bromo-D-glycosylcyanides **34-36** were prepared from the corresponding acetylated sugar substrates **31-33** by employing *N*-bromosuccinimide (NBS) and benzoyl peroxide in nonpolar aprotic solvents like carbon tetrachloride, dichloromethane and benzene. The resulted 1-Bromo sugars were treated with zinc/pyridine to obtain the 1-cyanoglycals **37-39**. The observed overall yield was 60% in two steps. Later, they had attempted with DBU for the synthesis of 1-cyanoglycals from acetylated sugar derivatives **31-33** by direct elimination of the acetic acid (Scheme 1.8).⁴⁸ But this attempt was unsatisfied in terms of yield, they had reasoned that the poor yield was resulted due to applying the basic reaction conditions for direct elimination of the *O*-acetyl group. In other few reports, elimination strategies were applied for the synthesis of 1-*C*-branched glycal derivatives such as 2-deoxy-2, 3-dihydro-*N*-acetylneuraminic acid methyl ester **43**. Various reaction conditions like

DBU/PhH,⁴⁹ Flash vacuum pyrolysis,⁵⁰ PPh₃HBr/CH₃CN⁵¹ and dimethyl(methylthio)sulfonium triflate (DMTST)/DBU⁵² were utilized for the synthesis of 1-*C*-branched glycals such as **43** based on the leaving group present at the 2nd position of *N*-acetylneuraminic acid methyl ester derivatives **40-42** in good yield.

31: R¹=H, R²=OAc, R³=CH₂OAc 34: R¹=H, R²=OAc, R³=CH₂OAc, 80% 37: R¹=H, R²=OAc, R³=CH₂OAc, 75%

32: R¹=OAc, R²=H, R³=H

35: R¹=OAc, R²=H, R³=H, 70%

38: R¹=OAc, R²=H, R³=H, 51%

33: R1=H, R2=OAc, R3=H

36: R¹=H, R²=OAc, R³=H, 72%

39: R¹=H, R²=OAc, R³=H, 78%

41: X=OAc

42: X=SPh

X	Reaction conditions	Yield
CI	DBU, Benzene, rt	81%
OAc	Flash vacuum pyrolysis, 390-420 °C	93%
OAc	PPh ₃ HBr, CH ₃ CN	96%
SPh	DMTST, DBU, -20 °C	95%

Scheme 1.8 Syntheses of 1-*C*-branched glycals by base facilitated elimination.

Synthesis of 1-*C* branched pyranoid and furanoid glycals from the corresponding glycosyl chlorides using organolithium reagents was reported by Cristobal Lopez and co-workers.⁵³ The glycosyl chlorides such as **45** and **47** were obtained by employing oxalyl chloride or PPh₃/CCl₄ into protected acetals, the resulted glycosyl chlorides were further treated with organo lithium reagent to provide required 1-*C*-branched glycals **46** and **48** (Scheme 1.9). In this protocol, lithium reagent abstracts the proton from the anomeric carbon, which leads to form 1-chloroglycal by the elimination of the hydroxy group present at *C*-2. The nucleophilic part like alkyl/aryl group in organo lithium reagent attacks at anomeric position to provide the 1-*C*-branched glycals by the elimination of LiCl.

Scheme 1.9 Syntheses of 1-*C*-branched pyranoid/furanoid glycals from glycosyl chlorides.

Ireland-Claisen rearrangement is one of the best approaches for the syntheses of 1-*C*-branched glycals from allylic esters. 1-*C*-branched glycals **53-56** and **60-62** were synthesised from the allylic esters namely *exo*-glycals of type **49-52** and **57-59** by [3,3] sigmatropic rearrangement and it was reported by Langlois⁵⁴ and coworkers. In this protocol, KHMDS and Me₃SiCl were employed to generate the silyl-stabilized enolate at low temperature, further on refluxing to obtained 1-*C*-branched glycals and then immediately esterified using diazomethane (Scheme 1.10). They had observed better results with the glucose series than the galactose series.

Scheme 1.10 Ireland-Claisen rearrangement approach for Syntheses of 1-*C*-branched glycals.

Scheme 1.11 Syntheses of 1-*C*-branched glycals from *C*-1-alkynyl derivatives.

McDonald⁵⁵ and Pulley⁵⁶ had utilized C-1-alkynyl substrates as synthetic precursors for the syntheses of 1-C-branched glycals. the glycal such as **64** was synthesised by performing the reaction on 2-deoxy-D-glucanolactone **63** with 2-(trimethylsilyl)ethynyl magnesium bromide to generate cyclic lactol and dehydrated in one pot using POCl₃. In an alternative way, 3,4,6-tri-O-acetyl-D-glucal **3** was treated with bis(trimethylsilyl)acetylene in the presence of Lewis acid like SnCl₄ to produce the α , β -unsaturated sugar substrate **65**, which was on further deacetylation and protection of alcohols with benzyl group in the basic medium led to form the 1-C-branched glycals such as **66** by the migration of double bond (Scheme 1.11).

C-1-iodo glycals of type **67** are the most exploited substrates for the syntheses of C-1 carbon branched glycals. Recently, Ye and coworkers had developed direct regio-selective method for the synthesis of 1-C-branched hetero aryl glucal **68** from 1-iodo glucal **67** with indoles in the C-H activation strategy by using Pd(OAc)₂/CuI cocatalysed cross coupling reaction condition (Scheme 1.12a).⁵⁷ Also, this method has been applied to various heterocycle substrates like imidazoles,

Scheme 1.12 Palladium catalysed syntheses of 1-*C*-branched glucals.

thiazoles, benzimidazoles, benzothiazoles, and benzoxazoles. 1-Iodo glucal has been used again to employ in the reaction of N-phthalonyl alanine, Pd(OAc)₂ and Ag₂CO₃ to obtain *C*-1 glucal **69** (Scheme 1.12b).⁵⁸ Y-F Wu and X-S Ye⁵⁹ had performed the reaction of N-quinolyl benzamides with various 1-iodoglucal **67** via palladium mediated C–H functionalization to obtain 1-*C*-branched aryl glycals such as **70** in a straightforward and environmentally friendly (Scheme 1.12c).

Niu⁶⁰ and coworkers have synthesised the 1-C aryl glucal **72** under Ni-mediated Suzuki–Miyaura cross-coupling reaction conditions with readily available α -oxo-vinylsulfones **71**, which are electrophilic partners competently in this strategy (Scheme 1.13).

Scheme 1.13 Nickel catalysed syntheses of 1-*C*-branched aryl glucals.

1.5.2.2 Syntheses of 2-C-Branched glycals

The first synthesis of 2-*C*-branched glycals has been reported by Ramesh and Balasubramanian⁶¹ by using Vilsmeier-Haack reaction conditions by direct formylation. 2-*C*-formyl glycals are the most exerted substrates in the synthesis of sugar derivatives among the 2-*C*-branched glycals. it is

$$\begin{array}{c}
R^{3}R^{4} & \xrightarrow{\text{DMF, POCI}_{3}} \\
R^{2}R^{1} & \xrightarrow{\text{O}} \\
\end{array}$$

$$\begin{array}{c}
R^{3}R^{4} & \xrightarrow{\text{CHO}}$$

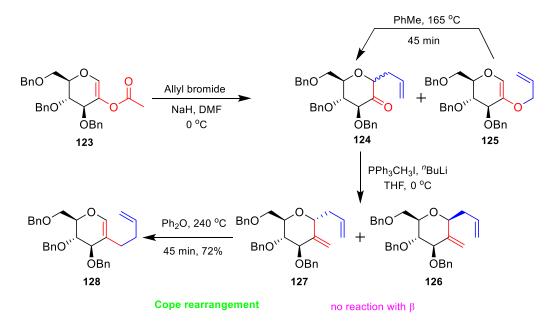
Entry	Glycal	R ¹	R ²	R ³	R ⁴	Product	Yield
1	73	OMe	OMe	Н	CH ₂ OMe	74	60%
2	10	OBn	OBn	Н	CH ₂ OBn	75	55%
3	76	OBn	Н	OBn	CH ₂ OBn	77	85%
4	78	OMe	Н	OMe	CH ₂ OMe	79	80%
5	80	OAllyl	OAllyl	Н	CH ₂ OAllyl	81	61%
6	82	OMe	Н	OMe	CH ₂ OTr	83	72%
7	84	OBn	Н	OBn	CH ₂ OTr	85	54%
8	86	OBn	OBn	Н	Н	87	44%
9	88	OBn	Н	OBn	Н	89	73%
10	90	OBn	Me	OBn	$CH_2C_6H_{13}$	91	93%
11	92	OBn	N_3	Н	CH ₂ OBn	93	44%
12	94	OBn	Н	N_3	CH ₂ OBn	95	71%
13	96	OMe	N_3	Н	CH ₂ OMe	97	42%
14	98	OBn	Н	OBn	CH ₃	99	50%
15	100	Н	OBn	Н	CH ₂ OBn	101	93%
16	102	Н	Н	OBn	CH ₂ OBn	103	86%
17	104	ОРМВ	ОРМВ	Н	CH ₂ OTr	105	63%
18	106	ОРМВ	Н	ОРМВ	CH ₂ OTr	107	64%
19	108	OAllyl	Н	OAllyl	CH ₂ OAllyl	109	77%
20	110	ОРМВ	ОРМВ	Н	CH ₂ OPMB	111	70%

 $Bn = benzyl, \ Tr = triphenylmethyl, \ PMB = p\text{-}methoxybenzyl$

Table 1.1 Syntheses of 1-*C*-formyl glycals by Vilsmeier-Haack reaction.

the easiest and widely used method out of all the methods⁶² available in the literature survey. They had attempted with various protecting groups with good yields (Table 1.1)⁶³. But in the case of TBS protected glycals, C_6 - formylated instead of at C_2 -position. Which is a drawback to this methodology.

The scope of palladium mediated coupling reactions is also extended to the syntheses of 2*C*-branched glycals. M. Hayashi⁶⁴ and coworkers had developed palladium mediated synthesis of 2-vinyl glucal **112** from 2-bromo glucal **113** and vinyltributylstannane/ethylene under Stille/Heck reaction conditions respectively. They found that the suitable condition for Stille coupling reaction with 2-bromo glucal and vinyltributylstannane for the synthesis of 2-vinyl glucal is the combination of bis(dibenzylideneacetone)Pd(0) (Pd(dba)₂) and tri(o-tolyl)phosphine (P(o-tol)₃) in CH₃CN by screening various conditions.


Scheme 1.14 Palladium catalysed vinylation of glycals to form 2-C-branched glycals.

Heck coupling reaction had also performed with the same catalytic condition by using ethelene and Diisopropylethylamine (DIPEA) base to achieve 2-*C*-branched sugar derivatives (Scheme 1.14) in good yield. In another report, Liu⁶⁵ and coworkers had performed the direct cross-coupling of activated alkenes with glycals for the synthesis of 2-*C*-branched glycals **114-120** I the presence of Pd(OAc)₂, Cu(OTf)₂ and oxygen gas (Scheme 1.14). Later, Davis⁶⁶ and

coworkers had reported the phosphine free Suzuki coupling reaction for the synthesis of 2-*C*-aryl glycals **122** from 2-iodo glycals **121** by using palladium complex and different aryl substituted boronic acids and microwave conditions (Scheme 1.15).

Scheme 1.15 Suzuki coupling of 2-iodo glycals to form 2-*C*-aryl glycals.

Jayaraman⁶⁷ and coworkers had developed the syntheses of 2-C-branched glycals from 2-hydroxy glycal ester such as **123** by using Cope rearrangement conditions. They were first treated 2-hydroxy glycal ester with allyl bromide and sodium hydride for C- allylation to produce the inseparable mixture of C-glycosides **124** and allyl vinyl ether **125**, later which was converted to C-glycoside **124** by applying Claisen rearrangement conditions. The mixture of α and β -

Scheme 1.16 Syntheses of 2-*C*-alkyl glycals from 2-hydroxy glycal ester.

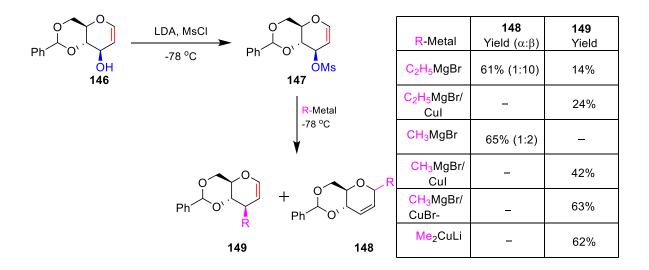
diastereomers were performed under Wittig olefination reaction conditions to obtain the C-2 methylene glycosides **126** and **127**, which were further performed under cope rearrangement conditions to obtained 2-C-branched glycals. But β -anomer **126** could not go forward by ring-flipping to initiate the reaction for the formation of 2-C-branched glycals such as **128** (Scheme 1.16).

Heathcock⁶⁸ and coworkers were reported the syntheses of tri benzyl protected 2-*C*-branched glucal **131** from tribenzyl glucal **10** via cyclopropane ring opening in regioselective fasion, stereoselective cyclo propanation of tri benzyl glucal was done by using Simmons-smith reaction conditions to provide cyclopropane diastereomers **129** as major. 2-*C*-methyl lactol **130** was obtained by treatment of mercury complex of sugar derivative with Bu₃SnH and AIBN, which formed by cyclopropane ring-opening of cyclopropane ring of the compound **129** by regio selectively using mercuric trifluoroacetate Hg(CF₃COO)₂ and water. Anomeric hydroxyl group was activated with mesyl group y treating with Ms₂O and Et₃N, followed by the elimination of mesylate by treatment of Et₃N to provide the 2-*C*-branched glycal **131** in 65% yield on overall (Scheme 1.17).

Scheme 1.17 Syntheses of 2-*C*-methyl glycals by Hg mediated ring opening of cyclopropane.

Schmidt⁶⁹ and coworkers had reported the synthesis of 2-C-branched glycals through β-lithiation of phenyl sulfoxide group, which is present at anomeric position. Phenyl sulfoxide sugar derivative **132** had performed the reaction with LDA at -80 °C for direct lithiation at C₂ position to form lithiated sugar derivative **133**, which is treated with different types of electrophiles like aldehydes and methyl chloroformate provided 2-C-branched glycals type **134-137**. Further treated with Raney Ni to remove phenylsulfoxide group to obtained 2-C-branched sugar derivatives such as **138-141** (Scheme 1.18). Later Hall et al⁷⁰ had reported the synthesis of 2-cyano glycals by treating with chlorosulphonyl isocyanate for direct cyanation at C₂ position with very poor yield.

Scheme 1.18 Syntheses of 2-*C*-branched glycals by direct lithiation of glycals.


1.5.2.3 Syntheses of 3-C-Branched glycals

Till today, 3-*C*-branched glycals are synthetically less explored, due to difficulty in the formation of carbon branch at the *C*-3 position in a stereoselective fashion.

The first synthesis of 3-*C*- branched glycals had reported from the sugar derived allyl vinyl ethers by [3,3]-sigma tropic rearrangement and it became as a traditional method for the synthesis of 3-*C*-branched glycals. G. Descotes⁷¹ and coworkers had achieved the allyl vinyl ether sugar derivative **144** from (4-oxopentyl)-D-glycoside **143** by photolysis, obtained by Ferrier rearrangement of D-glucal **3** with 5-hydroxy-2-pentanone, in very less yield. The allyl vinyl ether derivative in *p*-nitrobenzene on heating at 150-170 °C for obtaining 3-*C*-branched glycal derivative via [3,3]-sigma tropic rearrangement, in 50% yield. Later, Sinay⁷² had reported 3-*C*-branched glycals from the oxidation of 2-(phenylselenenyl) ethyl ether**142** by using sodium periodate, followed by the elimination of resulted selenoxide group on heating, obtained allyl vinyl ether**144**in good yield, performed allylic rearrangements under similar reaction conditions to obtained 3-*C*-branched sugar derivative**145** (Scheme 1.19). Balasubramanian⁷³ and coworkers had synthesized 3-*C*-aryl glycals by aromatic Claisen rearrangement in a stereoselective fashion under the same reaction conditions.

Scheme 1.19 Syntheses of 3-C-branched glycals using claisen rearrangement.

Mitsunobu⁷⁴ and coworkers were reported 1-*C* and 3-*C*-branched glycals in regio-selective fashion by using a Grignard reagent. The free hydroxyl group was activated with a mesyl group under basic mediation. The mesylate produced 3-*C*- branched glycal derivatives of type **149** in the presence of additives such as CuI/CuBr-S(CH₃)₂ or Gilman reagent, produced 1-*C*- branched glycals such as **148** in absence of additives. Regioselectivity of the carbon branch formation was explained based on Hard and soft acids and bases concept. *C*-3 position in **147** is softer than the *C*-1 position. So, organic cuprates are softer nucleophiles than the Grignard reagents, which attack the *C*-3 position than the *C*-1 position to produce 3-*C*-branched glycals **149** (Scheme 1.20).

Scheme 1.20 3-*C*-branched glycals by regioselective alkylation.

Similarly, P. Crotti⁷⁵ reported the synthesis of 3-*C*-branched furanoid glycals **152** and **153** from hydroxy mesylate **150**, by the direct addition of Grignard reagent to the intermediate epoxide **151** formed under basic reaction conditions through the isomerization and ring contraction of epoxide **151**. On the other hand, treating the epoxide **151** with (CH₃)₂CuLi or C₂H₅MgBr in presence of cuprous cyanide produced the 3-*C*-methyl glycals **154** and 3-*C*-ethyl glycal **155** in moderate yield (Scheme 1.21). Gallagher⁷⁶ and coworkers also had reported the syntheses of 3-

C-branched Sugar derivatives from glycals by treating with NCCH₂CH₂Cu(CN)ZnI in the presence of BF₃OEt₃ in good yield.

Scheme 1.21 Syntheses of 3-C-furanoid/pyranoid glycals by Grignard and Cuprate reagents.

Scheme 1.22 umpolung syntheses of 3-C-branched sugars with SmI₂.

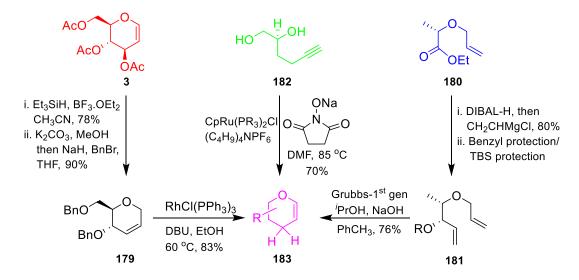
Later, Beau⁷⁷ and coworkers had treated allylic carbonated glycals **156-159** with cyclohexanone and samarium iodide to obtain the 3-*C*-glycals of type **160-163** by allylic radical intermediation. The carbon chain was formed from the less hindered side. One more synthesis of 3-*C*-branched glycals was discussed in the detail in the later chapter of this thesis. They are not shown here.

1.5.2.4 Syntheses of 4-C-Branched glycals

4-*C*-branched glycals were not synthesised by simple and direct methods, the reported methods are available in a multistep synthetic approach and very less in number.

Scheme 1.23 Syntheses of 4-*C*-branched sugar from levoglucosan.

Ley⁷⁸ and coworkers had synthesised the 4-C-branched glycal **169** from 1,6-andydro- β -D-glucose (levoglucosan) **164** in six steps. In this synthesis, key steps are epoxide ring opening with Methyl magnesium chloride and anhydro-bridge opening with Me₃SiI to produce 4-C-glycal such as **169** by employing DBU for the elimination of anomeric iodide (Scheme 1.23). Similarly, the other few methods⁷⁹ were also reported in multistep synthetic approach, these are not appropriate to describe in detail.


1.5.3 Syntheses of deoxy glycals

Fraser-Reid⁸⁰ had reported the first an obvious synthetic path for the syntheses of 3-deoxy glycals employing Lithium Aluminium-Hydride (LAH). Due to acetals stability towards LAH and the absence of acid catalyst, A single step reaction with the allylic acetals of type **170-175** reductive rearrangement has been reported to obtain vinyl ethers such as **176-178** employing LiAlH₄

(Scheme 1.24). The acetals **170-175** could be prepared easily from simple glycals by applying Ferrier rearrangement reaction conditions. These resulted β , γ -unsaturated systems were treated with LiAlH₄ in refluxing ether or dioxane to obtain the expected 3-deoxy glycals via generating pentacoordinate complex with LAH.

Scheme 1.24 LAH mediated Syntheses of 3-deoxy glycals.

The next significant approach towards 3-deoxy glycals is with transition metal-mediated isomerization or cyclization of unsaturated compounds. Van Boom⁸¹ had synthesised cyclic vinyl ethers **183** by the isomerization of allyl ether **179**, using Wilkinson's catalyst. This allyl ether **179** was prepared by employing glycal with triethyl silane in the presence of lewis acid (Scheme 1.25). Later, Schmidt⁸² had also reported the one pot synthesis of 3-deoxy glycals by ring closing-

Scheme 1.25 Syntheses of 3-deoxy glycals by RCM and isomerization.

metathesis (RCM)and isomerization⁸³ in sequence, treating Grubb's 1st generation catalyst. Firstly, the diene **181** was prepared from the ester compound **180** by a sequence of reactions, then RCM catalyst was employed to produce cyclic allyl ether intermediate. Once the reaction goes to end, due to using NaOH and propanol the Grubb's catalyst is further transformed to isomerization catalyst (in situ) to produce the required 3-deoxy glycal **183** (Scheme 1.25). Likewise, Trost⁸⁴ had reported dihydropyran such as **183** by probing the strategy of cyclo-isomerization of ynediol of type **182** using Ru catalyst (Scheme 1.23). The compound **182** was obtained by Barbier addition of propargyl bromide to (*R*)-glyceraldehyde using zinc in diastereo-selective manner.

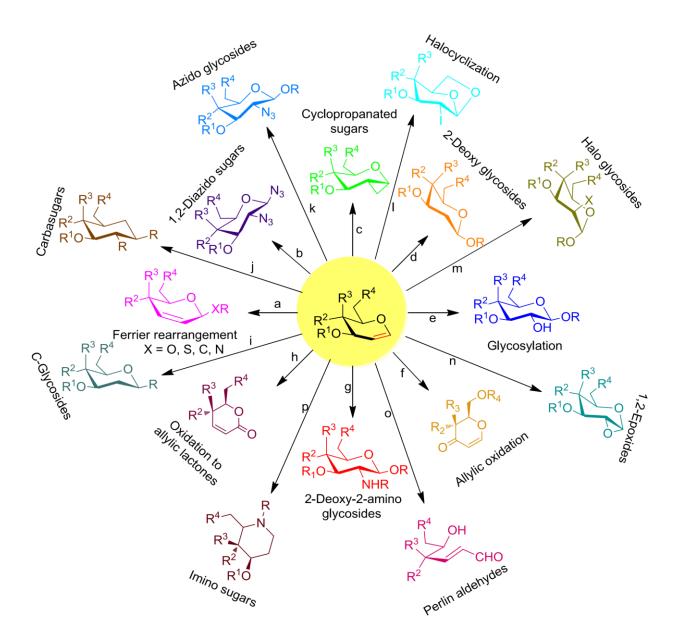
In 1988, Keinan⁸⁵ performed the deoxygenation of allylic-ester in regioselective manner by treating with Pd(0)/Ph₂SiH₂/ZnCl₂ system. But, the moderate yields only were observed. Later, B.Yin⁸⁶ and co-workers explored the same reaction with various reagents in order to enhance the yield. They were found successfully NiCl₂/NaBH₄/MeOH system as the better choice for the reductive cleavage of allylic esters in a regio-selective manner to achieve good yields. Sodium

Scheme 1.26 Syntheses of 3-deoxy glycals by regioselective deoxygenation of allylic esters.

borohydride with Nickel(II)chloride forms (Ni₂B)₂.H₃ as active species, which generates a π -allylnickel complex by releasing of AcOH, then the hydride ion attacks at *C*-3 position to produce the 3-deoxy glycal. 3-*O*-acetyl esters and 3-*O*-benzoyl esters of type **3**, **184-188** were examined in the same reaction conditions with different 4,6-*O*-protective groups such as acetyl (Ac), benzoyl

(Bz), benzyl (Bn), TBDPS and TBS to achieve 3-deoxy glycals of type **189-194** (Scheme 1.26), and all the 3-deoxy compounds were recorded to be achieved in good yield.

4-deoxy glycals were obtained by applying Barton-McCombie deoxygenation⁸⁷ reaction condition over glycals such as **195** with a free hydroxyl group at *C*-4 position. *C*-3 and *C*-6 hydroxyl groups could be protected with a stable *O*-protective group in the reaction condition. In this strategy, the free *C*-4 hydroxy group is transformed to thiocarbonyl/xanthate derivative, then it is further performed with Bu₃SnH and AIBN to provide glycals such as **196** (Scheme 1.27) in good yield.


Scheme 1.27 Barton-McCombie deoxygenation of Syntheses of 4-deoxy glycals.

1.6 Synthetic applications of simple glycals, carbon branched glycals and deoxy glycals

1.6.1 Few synthetic applications of simple glycals

Glycals are well known to be one of the excellent merchandises in synthetic sugar chemistry as they provide several synthetic applications (Scheme 1.28). Due to the presence of a double bond in glycals, various functional groups have been introduced in mono and disaccharides with good stereo and regioselectivity. The enol-ether possesses nucleophilic substitution and electrophilic addition reactions because of the intervention of endo-cyclic oxygen to generate products, which include synthesis of polysaccharides from the modified monosaccharide derivatives. Ferrier rearrangement ⁸⁸ is being used as one of the highly exerted reactions of glycals to produce 2,3-unsaturated glycosides using allylic rearrangement of nucleophilic substitution.

which was first reported by Ferrier. However, Emil Fischer⁸⁹ had investigated a similar kind of reaction with water as the nucleophile much before Ferrier reported. Ferrier had investigated with various nucleophiles like O, C, N, S-nucleophiles to generate the corresponding 2,3-unsaturated glycosides in good stereoselective⁹⁰ manner (Scheme 1.28a). Glycal derivatives have been explored as glycosyl donors to attain O-glycosides, which are generally found in living-organisms (Scheme 1.28e). 91 The stability of the C-Glycosides 92 in metabolic processing had drawn the attention of scientists to develop novel methodologies for C-Glycosides synthesis. Such Cglycosides also could be synthesized employing glycals (Scheme 1.28i). 2-Deoxy glycosides, 93 are a most important category of glycosides, which take place in several natural products, anticancer agents (doxorubicin), antibiotics (erythromycin), insecticides (avermectins) and antiparasite agents (amphotericin), have been mainly synthesized utilizing glycals as glycosyl donors in acidic condition (Scheme 1.28d). Haloglycosylation^{93a, 94} is one of the earliest methods among glycosylations reported by Lemieux, by employing glycals as glycosyl-donors to generate halo-glycosides (Scheme 1.28m). Various biologically active oligosaccharides, natural products (ciclamycin⁹¹, avermectins, etc.) have been synthesised by using halo glycosides. Danishefsky⁹⁵ has developed a systematic protocol for the synthesis of 1,2-Anhydro sugars (or 1,2-epoxy sugars) by oxidation of glycals using DMDO. Afterward, these glycals have been using as extraordinary glycosyl donors in the synthesis of different higher ordered general glycosides of glucose, mannose, and galactose(Scheme 1.28n). 91 2-Deoxy-2-amino glycosides are widely occur in living organisms as glycoproteins, glycolipids, many naturally occurring antibiotics and blood- group oligosaccharides and this type of amino sugars also could be simply produced through the nitrogen attacked to glycals (Scheme 1.28g, 1.28k). 91, 96 Glycals are also used to generate modified carbohydrate residues like 2-halo anhydro sugars⁹⁷ (Scheme 1.28*l*), 1,2-cyclopropanated sugars⁹⁸ (Scheme 1.28c), Perlin aldehydes⁹⁹ (Scheme 1.28o), allylic ketones¹⁰⁰ (Scheme 1.28f), 1,2diazido sugars¹⁰¹ (Scheme 1.28b), allylic lactones¹⁰² (Scheme 1.28h), imino sugars¹⁰³ (Scheme 1.28p), and carbasugars¹⁰⁴ (Scheme 1.28i), these are used for the syntheses of revised sugar molecules, natural products, their advanced intermediates, and secondary metabolites generated by the livingorganisms.

Scheme 1.28 Few synthetic applications of simple glycals in sugar chemistry.

1.6.2 Few synthetic applications of carbon branched glycals 1.6.2.1 Synthetic applications of 1-*C*-Branched glycals

Over the past three decades, *C*-glycosides are emerged to be main targets for methodologists and medicinal chemists due to the stability of *C*-glycosides to numerous glycosidase enzymes which usually cleave the corresponding counterparts, *O*-glycosides. ¹⁰⁵ In this case, 1-*C*-branched glycals are become as the finest materials for the syntheses of *C*-glycosides due to more retrosynthetic correlation of *C*-1 glycals with numerous biological targets and because of the availability of previously adorned carbon branch at the compatible position along with the enol-ether function for furthermore addition of needed functionalities to obtain the attached carbohydrate moiety. ¹⁰⁶ Thus, the 1-*C*-branched carbohydrates are converted to various significant carbohydrate skeletons, employing various synthetic transformations.

K. C. Nicolaou required 1,1-dialkyl glycosides of type **198** as an intermediate to obtain the natural product brevitoxin B.¹⁰⁷ He took the 1-*C*-branched glucal such as **197** (see Scheme 1.2 for syntheses) for the syntheses of tertiary anomeric centers in a stereospecific manner by Ferrier rearrangement employing AlMe₃-TiCl₄ system at low temperature in good yield (Scheme 1.29).²⁶ and also attempted with various nucleophiles for the stereospecific-synthesis of different 1,1-dialkyl glycosides such as **198** moderate to good yield.

i. TBAF, THF
$$\begin{pmatrix} \mathbf{6b} : \text{R=TBS} \\ \text{ii. Ac}_2\text{O/Py} \end{pmatrix}$$
 197: R=Ac

Scheme 1.29 Syntheses of 1,1-dialkylglucosides to synthesise brevitoxin B.

Similarly, Echavarren¹⁰⁸ had synthesized the same kind of 1,1-dialkyl glycosides by isomerization Claisen rearrangement-strategy e Pd catalysis. The functionalized-*C*-glycosides

were synthesized successfully by treating with various catalysts like PdCl₂, AuCl₃ and IrCl₃. Among them, Palladium (II) chloride was produced a good yield. Firstly, the secondary hydroxyl group in compound **199** (see Scheme 1.4 for syntheses) was protected by employing allyl bromide to achieve compound **200**, which further treated with PdCl₂ to generate the *C*-glycoside **201**.

Scheme 1.30 Claisen rearrangement of 1-*C*-branched sugars

initially, PdCl₂ has generated the allyl-vinyl ether by isomerization of 1,2-H migration, which further converted to α -ketones such as **201** by sustaining the claisen-rearrangement (Scheme 1.30).

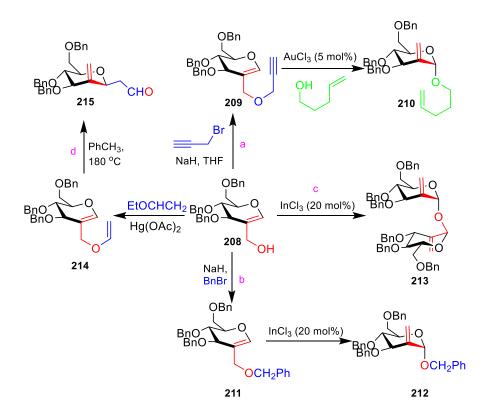
Leblanc¹⁰⁹ and coworkers had employed the 1-*C*-branched sugars of type **6a** (see Scheme 1.2 for syntheses) in the Hetero-Diels-Alder reaction to generate bicyclic-sugar derivatives such as **202**. These substrates were further used for the syntheses of 2-amino-*C*-glycoside-spiroketals, which are possessing the biologically importance. They have treated the 1-methyl glycal derivative such as **6a** with bis(2,2,2trichloroethyl)azodicarboxylate (BTCEAD) at 40W and 350nm to attain Diels-Alder product **202**, which was utilized later for the syntheses of amino sugars (Scheme 1.31).

Scheme 1.31 Diels-Alder reaction of 1-*C*-branched sugars.

The spiroketal structural skeletons are widely spread in several natural products, steroids, antibiotics, secondary metabolites and insect pheromones.¹¹⁰ These skeletons of spiroketal are

mainly synthesized using 1-*C*-branched sugar derivatives of type **203**. Quayle¹¹¹ and Sasaki¹¹² had employed camphorsulfonic acid (CSA) in the reaction of the sugar derivative **203** to attain spiroketal such as **204** in good yield (Scheme 1.32), the resulted spiroketals were further used for the syntheses of biologically important compounds such as milbemycins and avermectins.

Scheme 1.32 Syntheses of spiroketal from 1-*C*-branched sugar.


1-*C*-glycoside of type **205** was used in the synthesis of gambierol subunit **207**, which marine ladder toxin. Instead of using ferrier rearrangement, glucal derivative **205** (see Scheme 1.2 for syntheses) was treated with dimethyldioxirane(DMDO) to obtain the epoxide derivative, later which was opened with different nucleophiles which Grignard reagent based to attain the *C*-glycoside such as **206**. The intermediate **206** was utilized in the formal total syntheses of gambierol with different groups (Scheme 1.33). The other significant synthetic conversions of 1-*C*-branched glycals are functionalized *C*-glycosides, natural products and their intermediates including epoxidation, hydroboration, hydrogenation, azidoselenation, mercuration, dihydroxylation and electrophilic radical addition reaction.

Scheme 1.33 Syntheses of gambierol subunit from 1-*C*-branched sugars.

1.6.2.2 Synthetic applications of 2-C-Branched glycals

2-*C*- Formyl glycals and their oxidised/reduced substrates use for the synthetic applications⁶³ of 2-*C*-branched sugar derivatives preferably, due to no difficulty in their production. The 2-*C*-formyl glycal derivatives were involved in various transformations to synthesise *O*-glycosides, *C*-glycosides, amino sugars, bicyclic to polycyclic skeletons etc.

Balasubramanian et. al had reported the first synthesis of 2-*C*-methylene-*O*-glycosides from 2-*C*-acetoxymethyl glycals.¹²⁰ Later, various methods applied for the synthesis of 2-*C*-methylene-*O*-glycosides of types **210-212** by using the corresponding 2-*C*-formyl glycals of type **69**, upon reduction to the corresponding alcohol of type **208**, due to their importance in the synthesis of many natural and unnatural carbohydrate analogs.⁶³ Srinivas Hotha et. al had reported the alkynophilicity of AuCl₃ for synthesis of *O*-glycosides by using 2-*C*-propargyloxy- methyl glycals (Scheme 1.34a).¹²¹ Similarly, N.G Ramesh and coworkers were used InCl₃ for the

Scheme 1.34 Syntheses of 2-*C*-methylene-*O/C*-glycosides from 2-*C*-formyl glycals.

syntheses of 2-*C*-methylene-*O*-glycosides by 1,3-alkoxy migration (Scheme 1.34b),¹²² the intermolecular *O*-glycosylation reaction through the direct allylic substitution of nucleophile (Scheme 1.34c).¹²³ Later, the synthesis of 2-*C*-methylene-C-glycosides have been reported by our group by [3,3]-sigmatropic shift of the allyl vinyl ethers by using the 2-*C*-hydroxymethyl glycal of type **208** (Scheme 1.34d).¹²⁴

Ghosh and co-workers had extended the research in methodology by using InCl₃ and naphthol substrates to produce pyranonaphthopyrans such as **218** (Scheme 1.35),¹²⁵ after Balasubramanian report with BF₃.OEt₂, due to bezopyrans wide importance in natural products as the core structure. Later, Bhagavathy et. al had reported the synthesis of pyranopyran derivatives such as **219** by using phenolic derivatives and triflic acid in less time with good yield(Scheme 1.35).¹²⁶

Scheme 1.35 Syntheses of chiral pyranopyrans from 2-*C*-hydroxymethyl-glycal.

The wide range importance of azasugars as drugs and glycosidase inhibitors have been drawn the attention towards their synthesis. In this sinario, Vankar et. al had tried to obtain the trichloroacetamidates such as **221** by using 2-*C*-hydroxymethyl glycal derivative such as **220**. In this process interestingly, insitu aza-claisen rearrangement took place to obtain directly 2-*C*-methylene *N*-glycosides type **222** under the used same reaction condition for the synthesis of

trichloroacetamidates (Scheme 1.36). the same group of aza-sugars such as **223-226** had synthesised by using same methodology (Scheme 1.36). 127

Scheme 1.36 Syntheses of aza-sugars by using aza-Claisen rearrangement.

C-glycosyl amino acids have been synthesised using Diels-alder reaction. Lukacs¹²⁸ and coworkers had reported the first Diels-Alder carbocyclic adducts with 2-*C*-branched derivatives.

Scheme 1.37 Syntheses of *C*-glycosyl amino acids by Diels-Alder reaction.

Later, Y D Vakar and coworkers had applied the Diels-alder reaction condition with 2-C-vinylglycals to produce α and β -C-glycosyl amino acids of type **229** and **231** (Scheme 1.37), due to more advantages than the O-glycosides. These amino acid substrates are further transformed to the fully carbocyclic sugar hybrids such as **232** (Scheme 1.37). ¹²⁹ few more important synthetic applications of 2-C-branched sugar derivatives had found in the syntheses of GABA analogs, isoxazoline analogs, chiral benzimidazoles derivatives, , heterocyclic compounds and natural products. ⁶³

1.6.2.3 Synthetic applications of 3 and 4-C-Branched glycals

3-*C*-branched glycals are the less explored glycals due to the multistep protocols involved in their syntheses. Few straight synthetic applications of *C*-3 glycals were disclosed in detail from our research group. Our research group had reported few synthetic applications of 3-*C*-branched glycals, *cis* fused pehydrofuro[2,3,*b*]furanes of type **234** synthesized from 3-*C*-branched glycals such as **145**, aldehyde reduced to alcohol followed by ozonolysis and cyclization with CH₃COOH:MeOH, in good yield (Scheme 1.38). Also, *cis* fused pehydro-5-oxo-furo[2,3,*b*]-furanes such as **236** could be synthesised using *C*-3 glycals, 3-*C*-branched aldehyde **145**

Scheme 1.38 Synthesis of *cis*-fused perhydrofuro and 5-oxofuro[2, 3-b] furans from C-3 glycals.

converted to acid by Pinnick oxidation, which further converted to pehydro-5-oxo-furo[2,3,b] furanes **236** using ozonolysis followed by cyclization with a cat. p-TsOH in a moderate yield (Scheme 1.38). ¹³⁰

Our research group had again reported the one more synthetic application of *C*-3 glycals to the synthesis of 2,8-dioxabicyclo[3,3,1]nonane derivatives of type **239** and **240**. It was obtained by trapping of oxonium ion intermediate in intramolecularly by silyl vinyl ethers, which formed by treatment of TMOTf, in good yield (Scheme 1.39).¹³¹ On the other hand, bridged bicyclic acetals **240** were synthesized by treatment of TMSOTf to alcohols of 3-*C*-branched sugars, which were obtained by reduction of aldehyde such as **238** with a NaBH₄, in good yield (Scheme 1.39).¹³¹

Scheme 1.39 Synthesis of 2,8-dioxabicyclo[3,3,1]nonane system from *C*-3 glycals

By using this mathodology, the same research group had reported the total synthesis of Isoneosemburine **246** and neosemburine from allyl vinyl ether via a 3-C-branched glycal derivative. Allyl vinyl ether **241** were deacetylated, then oxidation and olefination by using DMP and Wittig reagent in sequence. Later converted to 3-*C*-aldehyde **244** by Claisen rearrangement reaction conditions. Finally, isoneosemburine **246** obtained from aldehyde **244** by NaBH₄ reduction and TMSOTf catalyzed Acetylysation, in a better yield (Scheme 1.40).¹³¹

Scheme 1.40 Synthesis of isoneosemburine from 3-*C*- branched glycal.

Scheme 1.41 Synthesis of Neosemburine from 3-*C*- branched glycal.

On the other hand, neosemburine was synthesised from δ -hydroxy ketone 27, through dynamic kinetic asymmetric transformation, Wittig olefination and TMSOTf catalytic acetalysation, which could be synthesised from 3-C-branched alcohol 5 by acetylation, acetalysation with methanol, selective TBS protection of 1° alcohol, oxidation of 2° alcohol to ketone and TBS deprotection with TBAF, in good yield (Scheme 1.41).¹³¹

Recently, Sridhar et al.¹³² reported a stereoselective synthesis of β -C-disaccharides of type **256** from the 3-C-branched and 3-deoxy glycals such as **255** by treatment of TMSOTf, in good to better yield (Scheme 1.42). The resulted β -C-disaccharides **257-259** converted into hemiketals of

Scheme 1.42 Synthesis and applications of β -*C*-disaccharides using *C*-3 glycals.

type **260-262** by ozonolysis and deformylation. β -C-disaccharide derived adjacent THP-THF ring systems such as **263-265** were obtained by treating with triethyl silane in the presence of BF₃.OEt₂. The natural product mucosine possesses the same framework (Scheme 1.42). Later, β -C-glycosyl furans **266** and **267** had been synthesised by using trifluoroacetic acid, and β -C-glycosides such as **268** had also been sythesised with NaBH₄ from the corresponding hemiacetals formed from β -C-disaccharides (Scheme 1.42).

Similarly, 4-*C*-branched glycals are also found as the intermediates in the syntheses of natural products and one such example is given below (Scheme 1.42).^{78, 79c, 133}

Scheme 1.42 4-*C*-branched glycal in the syntheses of natural products.

1.6.3 Few synthetic applications of deoxy glycals

Deoxy sugars are observed in several natural products usually in toxins called ladder toxins, because of their structure, generated majorly by marine organisms.¹³⁴ In this context, deoxy glycals are plenteous starting material in their syntheses.

Torst had proposed an iterative procedure for the syntheses of *trans*-fused polycyclic tetrahydro-pyrans by using 3-deoxy glycals to synthesis the ring skeletons of prymnesin and yossotoxin. Firstly, The 3-deoxy glucal **270** was transformed to propargylic alcohol such as **271**, then the stereochemistry at *C*-2 hydroxyl group was later inverted using a series of reagents PCC, DBU and LAH in sequence. Using Ruthenium catalysis, the propargyl glycoside **272** was transformed to the bicyclic-dihydropyran derivative **273**. They had successfully converted the compound **273** to tricyclic tetrahydropyaran derivative **274** (Scheme 1.43), which was utilized for the synthesis of biologically active molecules. Later days, Oguri had reported the same kind of tricyclic ether of type **275** by using samarium iodide catalyzed coupling reaction (Scheme 1.43).

Scheme 1.43 3-deoxy-glucal based iterative approach to polycyclic tetrahydropyrans.

2,3-dideoxy-*O*-glycosides are found in various glycosidase inhibitors as most vital *O*-glycosidic skeletons and 3-deoxy-glucals provide as the sugar platform to construct such *O*-glycosides.⁹¹ Trost and coworkers constructed narbosine **279** (Scheme 1.44) by employing ruthenium mediated

cyclo isomerization as an important step from the deoxy glycal **276**. Along with all these reports, 3-deoxy glycals provided as starting-materials in the synthesis of several natural products.

Scheme 1.44 Syntheses of O-glycoside from 3-deoxy-glucal.

Similarly, 4-deoxy-glycals also are utilized as starting material in the syntheses of various natural compounds. Such an example is the syntheses of centrolobine **281** by using 4-deoxy-glycal which shown below (Scheme 1.45).¹³⁸

Scheme 1.45 Syntheses of centrolobine from 4-deoxy-glucal.

1.7 Motivation for the work presented in the thesis

With these confined reports of literature accessible over the simple-glycals, Carbon-branched glycals, and deoxy glycals, we were attracted more towards the 3-*C*-branched-glycals because of they possess undermined status among the all-carbon branchedglycals. We strongly trusted the 3-*C*-branched skeleton can be used to obtain the significant skeletons possessing biological and medicinal applications or can be involved in the syntheses of natural products. In the next chapters of this thesis, we have reported the reasonable work to explore the synthesis of 3-*C*-branched glycals, their direct synthetic applications, and the synthetic application of deoxy glycals from the different sugars available.

1.8 References

- 1. (a) Levy, D. E.; Fugedi, P. *The Organic Chemistry of Sugars*. Taylor & Francis: CRC press, 2006; (b) Ernst, B.; Hart, G. W.; Sinay, P. *Carbohydrates in Chemistry and Biology*. Wiley: Weinheim, 2000; Vol. 1-4.
- (a) Lichtenthaler, F. W. Eur. J. Org. Chem. 2002, (24), 4095-4122; (b) Kunz, H. Angew. Chem. Int. Ed. 2002, 41 (23), 4439-4451; (c) Goodman, M.; Cai, W. B.; Smith, N. D. J. Pept. Sci. 2003, 9 (9), 594-603.
- (a) Lichtenthaler, F. W. Angew. Chem. Int. Ed. 1992, 31 (12), 1541-1556; (b) Lichtenthaler, F. W. Abstr. Pap. Am. Chem. S. 1992, 203, 69; (c) Lichtenthaler, F. W. Abstr. Pap. Am. Chem. S. 1991, 202, 11-Carb; (d) Roth, K.; Hoeft-Schleeh, S. Chem. unserer Zeit 2002, 36
 (6), 390-402.
- 4. Hollingsworth, R. I.; Wang, G. J. Chem. Rev. 2000, 100 (12), 4267-4282.
- 5. Spring, D. R. Org. Biomol. Chem. **2003**, 1 (22), 3867-3870.
- 6. WeymouthWilson, A. C. Natural Product Reports 1997, 14 (2), 99-110.
- 7. He, X. M. M.; Liu, H. W. Annu. Rev. Biochem **2002**, 71, 701-754.
- 8. Zhao, J. Z.; Wei, S. Q.; Ma, X. F.; Shao, H. W. Carbohydr. Res. **2010**, 345 (1), 168-171.

- 9. (a) Fischer, E.; Zach, K. *Sitzungsber. Preuss. Akad. Wiss* **1913**, 27, 311-317; (b) Roth, W.; Pigman, W. *Methods in Carbohydrate Chemistry*. Academic Press: New York, 1963; Vol. 2, p 408-409.
- 10. Boutureira, O.; Rodriguez, M. A.; Matheu, M. I.; Diaz, Y.; Castillon, S. *Org. Lett.* **2006**, 8 (4), 673-675.
- 11. Danishefsky, S. J.; Bilodeau, M. T. Angew. Chem. Int. Ed. 1996, 35 (13-14), 1380-1419.
- 12. Gomez, A. M.; Casillas, M.; Barrio, A.; Gawel, A.; Lopez, J. C. Eur. J. Org. Chem. **2008**, (23), 3933-3942.
- 13. Micskei, K.; Juhasz, Z.; Ratkovic, Z. R.; Somsak, L. *Tetrahedron Lett.* **2006**, *47* (34), 61176120.
- 14. Parrish, J. D.; Little, R. D. Tetrahedron Lett. 2001, 42 (42), 7371-7374.
- (a) Postema, M. H. D.; Calimente, D. *Tetrahedron Lett.* 1999, 40 (26), 4755-4759; (b)
 Postema, M. H. D.; Calimente, D.; Liu, L.; Behrmann, T. L. *J. Org. Chem.* 2000, 65 (19), 6061-6068; (c) Schmidt, B.; Wildemann, H. *Eur. J. Org. Chem.* 2000, (18), 3145-3163.
- 16. (a) McDonald, F. E. Chem. –Eur. J. 1999, 5 (11), 3103-3106; (b) McDonald, F. E.; Bowman, J. L. Tetrahedron Lett. 1996, 37 (27), 4675-4678; (c) McDonald, F. E.; Gleason, M. M. J. Am. Chem. Soc. 1996, 118 (28), 6648-6659; (d) McDonald, F. E.; Reddy, K. S.; Diaz, Y. J. Am. Chem. Soc. 2000, 122 (18), 4304-4309; (e) McDonald, F. E.; Zhu, H. Y. H.
 Tetrahedron 1997, 53 (32), 11061-11068.
- 17. Eitelman, S. J.; Hall, R. H.; Jordaan, A. J. Chem. Soc. PerkinTrans. 1 1978, 595-600.
- 18. Csuk, R.; Furstner, A.; Glanzer, B. I.; Weidmann, H. *J. Chem. Soc.*, *Chem. Commun.* **1986**, 1149-1150.
- 19. Jain, S.; Suryawanshi, S. N.; Bhakuni, D. S. *Indian J. Chem.*, Sect B **1987**, 26b, 866-867.
- 20. Depouilly, P.; Chenede, A.; Mallet, J. M.; Sinay, P. Bull. Soc. Chim. Fr. 1993, 130 (3), 256265.
- 21. Fürstner, A.; Weidmann, H. J. Carbohydr. Chem. 1988, 7, 773-783.
- 22. (a) Ireland, R. E.; Wilcox, C. S.; Thaisrivongs, S. J. Org. Chem. **1978**, 43, 786-787; (b) Ireland, R. E.; Thaisrivongs, S.; Vanier, N.; Wilcox, C. S. J. Org. Chem. **1980**, 45, 48-61.
- 23. (a) Kovacs, G.; Gyarmati, J.; Somsak, L.; Micskei, K. *Tetrahedron Lett.* **1996,** *37* (8), 12931296; (b) Kovacs, G.; Micskei, K.; Somsak, L. *Carbohydr. Res.* **2001,** *336* (3), 225-

- 228; (c) Kovacs, G.; Toth, K.; Dinya, Z.; Somsak, L.; Micskei, K. *Tetrahedron* **1999**, *55* (16), 5253-5264; (d) Pollon, J. H. P.; Llewellyn, G.; Williams, J. M. *Synthesis* **1989**, (10), 758-759.
- 24. Forbes, C. L.; Franck, R. W. J. Org. Chem. 1999, 64 (4), 1424-1425.
- (a) Hansen, T.; Daasbjerg, K.; Skrydstrup, T. *Tetrahedron Lett.* 2000, 41 (44), 8645-8649;
 (b) Spencer, R. P.; Schwartz, J. *Tetrahedron* 2000, 56 (15), 2103-2112.
- 26. Nicolaou, K. C.; Hwang, C. K.; Duggan, M. E. *J. Chem. Soc., Chem. Commun.* **1986,** (12), 25-6.
- 27. Lesimple, P.; Beau, J. M.; Jaurand, G.; Sinay, P. Tetrahedron Lett. 1986, 27 (51), 6201-4.
- 28. Hanessian, S.; Martin, M.; Desai, R. C. J. Chem. Soc., Chem. Commun. 1986, (12), 926-7.
- 29. (a) Parker, K. A.; Su, D. S. Abstr. Pap. Am. Chem. S. 1994, 208, 206-ORGN; (b) Parker, K. A.; Su, D. S. J. Org. Chem. 1996, 61 (6), 2191-2194.
- 30. Mochizuki, T.; Shiozaki, M. Chem. Lett. 1997, (8), 801-802.
- (a) Parker, K. A.; Coburn, C. A. *J. Am. Chem. Soc.* 1991, 113 (22), 8516-8518; (b) Parker, K. A.; Coburn, C. A.; Johnson, P. D.; Aristoff, P. *J. Org. Chem.* 1992, 57 (20), 5547-5550;
 (c) Parker, K. A.; Coburn, C. A.; Koh, Y. H. *J. Org. Chem.* 1995, 60 (9), 2938-2941; (d) Parker, K. A.; Koh, Y. H. *J. Am. Chem. Soc.* 1994, 116 (24), 11149-11150.
- 32. Friesen, R. W.; Sturino, C. F.; Daljeet, A. K.; Kolaczewska, A. J. Org. Chem. **1991**, 56 (5), 1944-1947.
- (a) Eisele, T.; Ishida, H.; Hummel, G.; Schmidt, R. R. *Liebigs. Ann.* 1995, (12), 2113-2121;
 (b) Frische, K.; Schmidt, R. R. *Liebigs Ann. Chem.* 1994, (3), 297-303; (c) Maier, S.; Preuss, R.; Schmidt, R. R. *Liebigs Ann. Chem.* 1990, (5), 483-489; (d) Preuss, R.; Schmidt, R. R. *Liebigs Ann. Chem.* 1989, (5), 429-434; (e) Schmidt, R. R.; Dietrich, H. *Angew. Chem. Int. Ed.* 1991, 30 (10), 1328-1329; (f) Schmidt, R. R.; Frische, K. *Bioorg. Med. Chem. Lett.* 1993, 3 (8), 1747-50; (g) Schmidt, R. R.; Preuss, R. *Tetrahedron Lett.* 1989, 30 (26), 3409-3412; (h) Schmidt, R. R.; Preuss, R.; Betz, R. *Tetrahedron Lett.* 1987, 28 (52), 6591-4.
- 34. Kikuchi, T.; Takagi, J.; Isou, H.; Ishiyama, T.; Miyaura, N. *Chem-Asian J.* **2008**, *3* (12), 2082-2090.
- 35. (a) Dubois, E.; Beau, J. M. *J Chem. Soc., Chem. Comm.* **1990,** (17), 1191-1192; (b) Dubois,

- E.; Beau, J. M. *Carbohydr. Res.* **1992**, 228 (1), 103-120; (c) Friesen, R. W.; Sturino, C. F. *J. Org. Chem.* **1990**, 55 (9), 2572-2574.
- 36. Zhang, H. C.; Brakta, M.; Daves, G. D. Tetrahedron Lett. 1993, 34 (10), 1571-1574.
- 37. Potuzak, J. S.; Tan, D. S. Tetrahedron Lett. 2004, 45 (8), 1797-1801.
- 38. (a) Chen, C. L.; Martin, S. F. *Org. Lett.* **2004**, *6* (20), 3581-3584; (b) Chen, C. L.; Martin, S. F. *J. Org. Chem.* **2006**, *71* (13), 4810-4817.
- (a) Koester, D. C.; Kriemen, E.; Werz, D. B. Angew. Chem., Int. Ed. 2013, 52 (10), 29852989; (b) Koester, D. C.; Leibeling, M.; Neufeld, R.; Werz, D. B. Org. Lett. 2010, 12 (17), 3934-3937; (c) Koester, D. C.; Werz, D. B. Beilstein. J. Org. Chem. 2012, 8, 675-682.
- 40. Nicolaou, K. C.; Shi, G. Q.; Gunzner, J. L.; Gartner, P.; Yang, Z. J. Am. Chem. Soc. **1997**, 119 (23), 5467-5468.
- 41. Calimente, D.; Postema, M. H. D. J. Org. Chem. **1999**, 64 (6), 1770-1771.
- 42. Postema, M. H. D.; Piper, J. L. Org. Lett. 2003, 5 (10), 1721-1723.
- 43. (a) Liu, L.; Postema, H. D. *J. Am. Chem. Soc.* 2001, 123 (35), 8602-8603; (b) Postema, M. H. D.; Piper, J. L.; Liu, L.; Shen, J.; Faust, M.; Andreana, P. *J. Org. Chem.* 2003, 68 (12), 4748-4754.
- 44. Postema, M. H. D.; Piper, J. L.; Komanduri, V.; Liu, L. Angew. Chem. Int. Ed. **2004**, 43 (22), 2915-2918.
- 45. Piper, J. L.; Postema, M. H. D. J. Org. Chem. **2004**, 69 (21), 7395-7398.
- 46. (a) Khan, N.; Cheng, X. H.; Mootoo, D. R. J. Am. Chem. Soc. 1999, 121 (20), 4918-4919;
 (b) Cheng, X. H.; Khan, N.; Mootoo, D. R. J. Org. Chem. 2000, 65 (8), 2544-2547; (c)
 Denton, R. W.; Tony, K. A.; Hernandez-Gay, J. J.; Canada, F. J.; Jimenez-Barbero, J.; Mootoo, D. R. Carbohydr. Res. 2007, 342 (12-13), 1624-1635; (d) Tony, K. A.; Denton, R. W.; Dilhas, A.; Jimenez-Barbero, J.; Mootoo, D. R. Org. Lett. 2007, 9 (8), 1441-1444.
- 47. Somsak, L.; Bajza, I.; Batta, G. Liebigs Ann. Chem. 1990, (12), 1265-1268.
- 48. (a) Mahmoud, S. H.; Somsak, L.; Farkas, I. *Carbohydr. Res.* **1994**, *254*, 91-104; (b) Buchanan, J. G.; Clelland, A. P. W.; Johnson, T.; Rennie, R. A. C.; Wightman, R. H. *J. Chem. Soc. Perk. T. 1.* **1992**, (20), 2593-2601.
- 49. Okamoto, K.; Kondo, T.; Goto, T. Bull. Chem. Soc. Jpn. 1987, 60, 631-636.

- 50. Horn, E. J.; Gervay-Hague, J. J. Org. Chem. 2009, 74 (11), 4357-4359.
- 51. Burkart, M. D.; Vincent, S. P.; Wong, C.-H. *Chem. Commun. (Cambridge)* **1999**, (16), 1525-1526.
- 52. Ikeda, K.; Konishi, K.; Sano, K.; Tanaka, K. Chemical & Pharmaceutical Bulletin 2000, 48 (1), 163-165.
- (a) Gomez, A. M.; Casillas, M.; Valverde, S.; Lopez, J. C. *Chem. Commun.* 1996, (20),
 2357-2358; (b) Gomez, A. M.; Pedregosa, A.; Casillas, M.; Uriel, C.; Lopez, J. C. *Eur. J. Org. Chem.* 2009, (21), 3579-3588.
- 54. Vidal, T.; Haudrechy, A.; Langlois, Y. Tetrahedron Lett. 1999, 40 (31), 5677-5680.
- 55. Mcdonald, F. E.; Zhu, H. Y. H.; Holmquist, C. R. J. Am. Chem. Soc. 1995, 117 (24), 66056606.
- 56. (a) Pulley, S. R.; Carey, J. P. *J. Org. Chem.* **1998**, *63* (15), 5275-5279; (b) Pulley, S. R.; Carey, J. P. *Abstr. Pap. Am. Chem. S.* **1997**, *214*, 306-ORGN.
- 57. Zhang, S.; Niu, Y. H.; Ye, X. S. Org. Lett. 2017, 19, 3608–3611.
- 58. Liu, Y.; Wang, Y.; Dai, W.; Huang, W.; Li, Y.; Liu, H. *Angew. Chem. Int. Ed.* **2020**, 59, 3491–3494.
- 59. Liu, M.; Niu, Y.; Wu, Y. F.; Ye, X. S. *Org. Lett.* **2016**, 18, 1836–1839.
- 60. Gong, L.; Sun, H. B.; Deng, L. F.; Zhang, X.; Liu, J.; Yang, S.; Niu, D. *J. Am. Chem. Soc.* **2019**, 141, 7680–7686.
- 61. Ramesh, N. G.; Balasubramanian, K. K. Tetrahedron Lett. 1991, 32 (31), 3875-8.
- 62. (a) Cristobal Lopez, J.; Lameignere, E.; Lukacs, G. J. Chem. Soc., Chem. Commun. 1988,
 - (8), 514-15; (b) Jung, M. E.; Choe, S. W. T. Tetrahedron Lett. 1993, 34 (39), 6247-6250;
 - (c) Lopez, J. C.; Lameignere, E.; Burnouf, C.; Laborde, M. D.; Ghini, A. A.; Olesker, A.; Lukacs, G. *Tetrahedron* **1993**, *49* (35), 7701-7722; (d) Choe, S. W. T.; Jung, M. E. *Carbohydr. Res.* **2000**, *329* (4), 731-744.
- 63. Ramesh, N. G. Eur. J. Org. Chem. **2014**, 2014 (4), 689-707.
- 64. Hayashi, M.; Tsukada, K.; Kawabata, H.; Lamberth, C. *Tetrahedron* **1999**, *55* (42), 1228712294.
- 65. (a) Bai, Y.-G.; Zeng, J.; Cai, S.-T.; Liu, X.-W. *Org. Lett.* **2011**, *13* (16), 4394-4397; (b) Gigant, N.; Baeckvall, J.-E. *Chem. Eur. J.* **2013**, *19* (33), 10799-10803.

- 66. Cobo, I.; Matheu, M. I.; Castillon, S.; Boutureira, O.; Davis, B. G. *Org. Lett.* **2012**, *14* (7), 1728-1731.
- 67. Daskhan, G. C.; Jayaraman, N. J. Org. Chem. 2012, 77 (5), 2185-2191.
- 68. Scott, R. W.; Heathcock, C. H. *Carbohydr. Res.* **1996,** 291, 205-208.
- 69. Schmidt, R. R.; Kast, J. Tetrahedron Lett. 1986, 27 (34), 4007-10.
- 70. Hall, R. H.; Jordaan, A. J. Chem. Soc., Perkin Trans. 1 1973, (10), 1059-62.
- 71. Cottier, L.; Remy, G.; Descotes, G. Synthesis **1979**, (9), 711-12.
- 72. Rollin, P.; Bencomo, V. V.; Sinay, P. Synthesis 1984, (2), 134-5.
- 73. (a) Balasubramanian, K. K.; Ramesh, N. G.; Pramanik, A.; Chandrasekhar, J. *J. Chem. Soc., Perkin Trans.* 2 **1994**, (7), 1399-401; (b) Lakshmi, R.; Balasubramanian, K. K. *ARKIVOC (Gainesville, FL, U. S.)* **2003**, (3), 140-145.
- 74. Mitsunobu, O.; Yoshida, M.; Takiya, M.; Kubo, K.; Maruyama, S.; Satoh, I.; Iwami, H. *Chem. Lett.* **1989**, (5), 809-12.
- 75. Di Bussolo, V.; Caselli, M.; Pineschi, M.; Crotti, P. Org. Lett. 2003, 5 (12), 2173-2176.
- 76. Thorn, S. N.; Gallagher, T. Synlett. **1996**, (9), 856-858.
- 77. Le, T. X.; Papin, C.; Doisneau, G.; Beau, J.-M. Angew. Chem. Int. Ed. 2014, 53 (24), 61846187.
- 78. Edwards, M. P.; Ley, S. V.; Lister, S. G.; Palmer, B. D. *J. Chem. Soc., Chem. Commun.* **1983,** (11), 630-3.
- 79. (a) Crimmins, M. T.; Katz, J. D.; McAtee, L. C.; Tabet, E. A.; Kirincich, S. J. *Org. Lett.* 2001, *3* (6), 949-952; (b) Crimmins, M. T.; Katz, J. D.; Washburn, D. G.; Allwein, S. P.; McAtee, L. F. *J. Am. Chem. Soc.* 2002, *124* (20), 5661-5663; (c) Edwards, M. P.; Ley, S. V.; Lister, S. G.; Palmer, B. D.; Williams, D. J. *J. Org. Chem.* 1984, *49* (19), 3503-16; (d) Evans, D. A.; Trotter, B. W.; Coleman, P. J.; Cote, B.; Dias, L. C.; Rajapakse, H. A.; Tyler, A. N. *Tetrahedron* 1999, *55* (29), 8671-8726.
- 80. (a) Fraser-Reid, B.; Radatus, B. *J. Am. Chem. Soc.* **1970**, *92* (22), 6661-3; (b) Fraser-Reid, B.; Tam, S. Y. K.; Radatus, B. *Can. J. Chem.* **1975**, *53* (13), 2005-16.
- 81. (a) Leeuwenburgh, M. A.; Overkleeft, H. S.; Van der Marel, G. A.; Van Boom, J. H. *Synlett.* **1997**, (11), 1263-1264; (b) Oguri, H.; Oomura, A.; Tanabe, S.; Hirama, M. *Tetrahedron Lett.* **2005**, *46* (13), 2179-2183.
- 82. Schmidt, B.; Biernat, A. Chem. Eur. J. **2008**, 14 (20), 6135-6141.

- 83. Sutton, A. E.; Seigal, B. A.; Finnegan, D. F.; Snapper, M. L. *J. Am. Chem. Soc.* **2002**, *124* (45), 13390-13391.
- 84. Trost, B. M.; Rhee, Y. H. *Org. Lett.* **2004,** *6* (23), 4311-4313.
- 85. Greenspoon, N.; Keinan, E. J. Org. Chem. **1988**, 53 (16), 3723-31.
- 86. Yin, B.-L.; Cai, C.-B.; Lai, J.-Q.; Zhang, Z.-R.; Huang, L.; Xu, L.-W.; Jiang, H.-F. *Adv. Synth. Catal.* **2011**, *353* (18), 3319-3324.
- 87. (a) Paquette, L. A.; Oplinger, J. A. *J. Org. Chem.* **1988**, *53* (13), 2953-9; (b) Grieco, P. A.; Speake, J. D. *Tetrahedron Lett.* **1998**, *39* (11), 1275-1278; (c) Alberch, L.; Cheng, G.; Seo, S.-K.; Li, X.; Boulineau, F. P.; Wei, A. *J. Org. Chem.* **2011**, *76* (8), 2532-2547.
- 88. (a) Ferrier, R. J. J. Chem. Soc. 1964, (Dec.), 5443-9; (b) Somsak, L. Chem. Rev. 2001, 101 (1), 81-135; (c) Fraser-Reid, B. Acc. Chem. Res. 1996, 29 (2), 57-66; (d) Ferrier, R. J.; Prasad, N. J. Chem. Soc. C 1969, (4), 570-5; (e) De Raadt, A.; Ferrier, R. J. Carbohydr. Res. 1991, 216, 93-107; (f) Ferrier, R. J.; Zubkov, O. A. Org. React. (N. Y.) 2003, 62, 569736.
- 89. Fischer, E. Ber. Dtsch. Chem. Ges. 1914, 47, 196-210.
- (a) Gomez, A. M.; Lobo, F.; Uriel, C.; Lopez, J. C. Eur. J. Org. Chem. 2013, 2013 (32), 7221-7262; (b) Ansari, A. A.; Lahiri, R.; Vankar, Y. D. ARKIVOC (Gainesville, FL, U. S.) 2013, (2), 316-362.
- 91. Danishefsky, S. J.; Bilodeau, M. T. Angew. Chem., Int. Ed. 1996, 35 (13/14), 1380-1419.
- 92. Du, Y.; Linhardt, R. J.; Vlahov, I. R. Tetrahedron 1998, 54 (34), 9913-9959.
- 93. (a) Lemieux, R. U.; Levine, S. Can. J. Chem. 1964, 42 (6), 1473-80; (b) Bowles, W. A.; Robins, R. K. J. Am. Chem. Soc. 1964, 86 (6), 1252-3; (c) Bolitt, V.; Mioskowski, C.; Lee, S. G.; Falck, J. R. J. Org. Chem. 1990, 55 (23), 5812-5813; (d) Jaurand, G.; Beau, J. M.; Sinay, P. J. Chem. Soc., Chem. Commun. 1981, (11), 572-3.
- 94. Lemieux, R. U.; Fraser-Reid, B. Can. J. Chem. 1965, 43 (5), 1458-73.
- 95. Halcomb, R. L.; Danishefsky, S. J. J. Am. Chem. Soc. 1989, 111 (17), 6661-6.
- 96. (a) Bongat, A. F. G.; Demchenko, A. V. *Carbohydr. Res.* 2007, 342 (3-4), 374-406; (b) Lemieux, R. U.; Nagabhushan, T. L. *Can. J. Chem.* 1968, 46 (3), 401-3; (c) Lemieux, R. U.; Ratcliffe, R. M. *Can. J. Chem.* 1979, 57 (10), 1244-51.
- 97. (a) Czernecki, S.; Leteux, C.; Veyrieres, A. *Tetrahedron Lett.* **1992**, *33* (2), 221-4; (b)

- Hesek, D.; Lee, M.; Zhang, W.; Noll, B. C.; Mobashery, S. J. Am. Chem. Soc. **2009**, *131* (14), 5187-5193; (c) Leteux, C.; Veyrieres, A.; Robert, F. Carbohydr. Res. **1993**, *242*, 11930; (d) Mereyala, H. B.; Venkataramanaiah, K. C. J. Chem. Res., Synop. **1991**, (8), 197; (e) O'Brien, C.; Polakova, M.; Pitt, N.; Tosin, M.; Murphy, P. V. Chem. Eur. J. **2007**, *13* (3), 902-909.
- 98. (a) Harvey, J. E.; Hewitt, R. J.; Moore, P. W.; Somarathne, K. K. *Pure Appl. Chem.* **2014**, 86 (9), 1377-1399; (b) Sridhar, P. R.; Kumar, P. V.; Seshadri, K.; Satyavathi, R. *Chem-Eur. J.* **2009**, 15 (31), 7526-7529; (c) Sridhar, P. R.; Seshadri, K.; Reddy, G. M. *Chem. Commun.* **2012**, 48 (5), 756-758; (d) Sridhar, P. R.; Venukumar, P. *Org. Lett.* **2012**, 14 (21), 5558-5561.
- 99. Reddy, L. V. R.; Kumar, V.; Sagar, R.; Shaw, A. K. Chem. Rev. (Washington, DC, U. S.) **2013**, 113 (5), 3605-3631.
- (a) Harders, J.; Garming, A.; Jung, A.; Kaiser, V.; Monenschein, H.; Ries, M.; Rose, L.; Schoning, K. U.; Weber, T.; Kirschning, A. *Liebigs Ann.* 1997, (10), 2125-2132; (b) Fetizon, M.; Duc, D. K.; Nguyen, D. T. *Tetrahedron Lett.* 1986, 27 (16), 1777-80; (c) Fujiwara, T.; Hayashi, M. *J. Org. Chem.* 2008, 73 (22), 9161-9163.
- 101. (a) Lin, H. An improved procedure for the conversion of alkenes and glycals to 1,2-diazides using Mn(OAc)3.2H2O in acetonitrile total syntheses of (-)-FR 901483, TAN 1251A, -B, C and -D. 2000; (b) Mironov, Y. V.; Sherman, A. A.; Nifantiev, N. E. *Tetrahedron Lett.* **2004**, *45* (49), 9107-9110.
- 102. (a) Chidambaram, N.; Satyanarayana, K.; Chandrasekaran, S. *Tetrahedron Lett.* 1989, 30 (18), 2429-32; (b) Lichtenthaler, F. W.; Roenninger, S.; Jarglis, P. *Liebigs Ann. Chem.* 1989, (12), 1153-61; (c) Sanchez-Sancho, F.; Valverde, S.; Herradon, B. *Tetrahedron: Asymmetry* 1996, 7 (11), 3209-3246; (d) Yadav, J. S.; Reddy, B. V. S.; Reddy, C. S. *Tetrahedron Lett.* 2004, 45 (23), 4583-4585.
- 103. (a) Dransfield, P. J.; Gore, P. M.; Shipman, M.; Slawin, A. M. Z. *Chem. Commun.* (*Cambridge, U. K.*) **2002,** (2), 150-151; (b) Squarcia, A.; Vivolo, F.; Weinig, H.-G.; Passacantilli, P.; Piancatelli, G. *Tetrahedron Lett.* **2002,** 43 (26), 4653-4655.
- 104. (a) Momose, T.; Setoguchi, M.; Fujita, T.; Tamura, H.; Chida, N. *Chem. Commun.* (*Cambridge*) **2000**, (22), 2237-2238; (b) Tanimoto, H.; Saito, R.; Chida, N. *Tetrahedron Lett.* **2008**, 49 (2), 358-362.

- 105. (a) Lai, E. C. K.; Morris, S. A.; Street, I. P.; Withers, S. G. *Biorg. Med. Chem.* 1996, *4* (11), 1929-1937; (b) Yu, J. H.; Hsieh, L. C.; Kochersperger, L.; Yonkovich, S.; Stephans, J. C.; Gallop, M. A.; Schultz, P. G. *Angew. Chem., Int. Ed.* 1994, *33* (3), 339-341.
- 106. Postema, M. H. D.; Piper, J. L.; Betts, R. L. Synlett. 2005, (9), 1345-1358.
- 107. Nicolaou, K. C.; Duggan, M. E.; Hwang, C. K.; Somers, P. K. *J. Chem. Soc., Chem. Commun.* **1985**, (19), 1359-62.
- 108. Nevado, C.; Echavarren, A. M. Tetrahedron 2004, 60 (43), 9735-9744.
- 109. Grondin, R.; Leblanc, Y.; Hoogsteen, K. Tetrahedron Lett. 1991, 32 (38), 5021-5024.
- 110. Perron, F.; Albizati, K. F. Chem. Rev. 1989, 89 (7), 1617-61.
- 111. Conway, J. C.; Urch, C. J.; Quayle, P.; Xu, J. Synlett. 2006, (5), 776-780.
- 112. Fuwa, H.; Sasaki, M. Org. Lett. 2008, 10 (12), 2549-2552.
- (a) Majumder, U.; Cox, J. M.; Johnson, H. W. B.; Rainier, J. D. *Chem. Eur. J.* **2006**, *12*(6), 1736-1746; (b) Majumder, U.; Cox, J. M.; Rainier, J. D. *Org. Lett.* **2003**, *5* (6), 913916.
- 114. Bearder, J. R.; Dewis, M. L.; Whiting, D. A. J. Chem. Soc., Perkin Trans. 1 1995, (3), 227-33.
- 115. Fuwa, H.; Naito, S.; Goto, T.; Sasaki, M. Angew. Chem. Int. Ed. 2008, 47 (25), 4737-9.
- 116. Liu, Y.; Gallagher, T. Org. Lett. **2004**, 6 (14), 2445-2448.
- 117. Mlynarski, J.; Banaszek, A. Carbohydr. Res. **1996**, 295, 69-75.
- 118. Augustin, L. A.; Fantini, J.; Mootoo, D. R. Bioorg. Med. Chem. 2006, 14 (4), 1182-1188.
- 119. Gyollai, V.; Schanzenbach, D.; Somsak, L.; Linker, T. *Chem. Commun. (Cambridge, U. K.)* **2002,** (12), 1294-1295.
- 120. Booma, C.; Balasubramanian, K. K. J. Chem. Soc., Chem. Comm. 1993, (18), 1394-1395.
- 121. Kashyap, S.; Vidadala, S. R.; Hotha, S. Tetrahedron Lett. 2007, 48 (51), 8960-8962.
- 122. Nagaraj, P.; Ramesh, N. G. Eur. J. Org. Chem. 2008, (27), 4607-4614.
- 123. Nagaraj, P.; Ramesh, N. G. *Tetrahedron* **2010**, *66* (3), 599-604.
- 124. Sridhar, P. R.; Sudharani, C. RSC Adv. 2012, 2 (23), 8596-8598.
- 125. (a) Ghosh, R.; Chakraborty, A.; Maiti, D. K.; Puranik, V. G. *Tetrahedron Lett.* **2005**, *46* (46), 8047-8051; (b) Ghosh, R.; Chakraborty, A.; Maiti, D. K.; Puranik, V. G. *Org. Lett.* **2006**, *8* (6), 1061-1064.

- 126. (a) Kumaran, E.; Santhi, M.; Balasubramanian, K. K.; Bhagavathy, S. *Carbohydr. Res.*2011, 346 (13), 1654-1661; (b) Santhi, M.; Balasubramanian, K. K.; Bhagavathy, S. *Carbohydr. Res.* 2009, 344 (4), 521-525.
- 127. (a) Gupta, P.; Vankar, Y. D. *Eur. J. Org. Chem.* **2009**, (12), 1925-1933; (b) Reddy, Y. S.; Kancharla, P. K.; Roy, R.; Vankar, Y. D. *Org. Biomol. Chem.* **2012**, *10* (14), 2760-2773.
- 128. Burnouf, C.; Lopez, J. C.; Colvoflores, F. G.; Laborde, M. D.; Olesker, A.; Lukacs, G. *J. Chem. Soc., Chem. Comm.* **1990,** (11), 823-825.
- 129. (a) Jayakanthan, K.; Vankar, Y. D. *Org. Lett.* **2005,** 7 (24), 5441-5444; (b) Jayakanthan, K.; Vankar, Y. D. *Tetrahedron Lett.* **2006,** 47 (49), 8667-8671.
- 130. Sridhar, P. R.; Reddy, G. M.; Seshadri, K. Eur. J. Org. Chem. 2012, 6228-6235.
- 131. Reddy, G. M.; Sridhar, P. R. Eur. J. Org. Chem. **2014**, 2014, 1496-1504.
- 132. Reddy, G. M.; Rao, B. U.; Sridhar, P. R. J. Org. Chem. 2016, 81, 2782-2793.
- (a) Evans, D. A.; Trotter, B. W.; Cote, B.; Coleman, P. J.; Dias, L. C.; Tyler, A. N. *Angew. Chem., Int. Ed.* 1998, 36 (24), 2744-2747; (b) Lagisetti, C.; Yermolina, M. V.; Sharma, L. K.; Palacios, G.; Prigaro, B. J.; Webb, T. R. *ACS Chem. Biol.* 2014, 9 (3), 643-648.
- 134. Yasumoto, T.; Murata, M. Chem. Rev. 1993, 93 (5), 1897-1909.
- 135. Trost, B. M.; Rhee, Y. H. Org. Lett. **2004**, 6 (23), 4311-4313.
- 136. Oguri, H.; Oomura, A.; Tanabe, S.; Hirama, M. *Tetrahedron Lett.* **2005**, *46* (13), 2179-2183. 133.
- 137. Trost, B. M.; Rhee, Y. H. J. Am. Chem. Soc. 2002, 124 (11), 2528-2533.
- 138. Zeng, J.; Tan, Y. J.; Ma, J.; Leow, M. L.; Tirtorahardjo, D.; Liu, X.-W. *Chem. Eur. J.* **2014**, 20 (2), 405-409.

Chapter-2

Synthesis of Carbon-Branched Sugars Involving an Unprecedented 1,5- or 1,6-Alkyl Trasposition Reaction

2.1 Introduction

2.4 Experimental section

2.2 Resultsand Discussions

2.5 References

2.3 Conclusions

2.1 Introduction

The structural reorganizational "shifts" in carbocation intermediates has received immense importance in the development of novel methodologies and innovative protocols for the total synthesis of several natural products. The study of such intermediates form the basis of fundamental and practical chemistry.² A couple of named reactions have been evolved based on the skeletal reorganization of this reactive species.³ In this context, the oxocarbenium ion rearrangement reactions in carbohydrate derivatives have been immensely studied for a long time.⁴ By virtue of the presence of the *endo*cyclic oxygen in these substrates stabilize the carbocation at the anomeric position by forming the oxocarbenium ion.⁵ Glycals, the 1,2unsaturated cyclic sugar derivatives, have been one of the primary sources for the generation of oxocarbenium ion, in the presence of an acid catalyst, to study various glycosylation reactions.⁶ Appropriately functionalized glycals undergo rearrangement reactions in the presence of a Lewis acid catalyst. Apart from the Ferrier type rearrangement of glycals, dimerization of glycals⁸ and Gin's⁹ hypervalent iodine mediated oxidative ring contraction of 6-deoxy-gulal are noteworthy. Recently, Steel et al. showed that 3,4,6-tri-O-benzyl D-glucal 1 in the presence of catalytic amount of acetyl perchlorate converts into a bicyclic acetal 3 through an unusual 1,7hydrogen shift. 10 While carrying out this transformation using 3-deoxy 4,6-di-O-benzyl glycal 2 we have observed a stereoselective dimerization reaction which led to the formation of 2-(β-C-glycosyl)-glycal **4**¹¹ (Scheme 2.1).

Scheme 2.1 Lewis acid catalysed 1,7-hydrogen shift and glycal dimerization reactions.

This typical reactivity of 3-deoxy glycals under Lewis acid conditions prompted us to investigate further on the fate of oxocarbenium ion generated using these scaffolds. Thus, herein we report an unusual 1,6 or 1,5 alkyl transposition reaction of 3-deoxy glycals providing carbon branched 1,6-anhydrosugar derivatives.

2.2 Results and Discussion

On To study the influence of the protecting groups in the *C*-disaccharide formation using 3-deoxy glycals, we have attempted to carry out the dimerization reaction of 3-deoxy 4,6-di-O-(p-methoxybenzyl) glucal **5**. However, to our surprise, glycal **5** upon treatment with TMSOTf (0.1 eq) at -78 °C in dichloromethane did not provided the expected dimer **7**. Instead, the major product was found to be the 1,6-anhydro 2-C-branched levoglucosan derivatives **6a** and **6b**. The structure and stereochemistry of the products were fully established by 1 H, 13 C, COSY and NOESY NMR experiments (Scheme 2). In the proton NMR spectra of **6a** the axial hydrogen at C2 position appeared as a multiplet at δ 2.19-2.27 whereas in compound **6b** the equatorial hydrogen at C2 appeared at δ 1.90. This is apparent due to the 1,3-diaxial interactions of the axial oxygen at C4 which deshield the C2 axial hydrogen to a lower δ value in **6a**. Similarly, the protons on the benzyl carbon at C2 in compound **6a** appeared δ 2.39 and δ 2.57 whereas in **6b** they have δ 2.87 and δ 2.94.

Scheme 2.2. An unprecedented 1,6-alkyl shift in 3-deoxy glucal derivative

This again provide the ample evidence for the assigned stereochemistry at the C2 position for compound **6a** and **6b** (Scheme 2).

However, in view of obtaining the crystal structure various methods to crystalize either compound **6a** or **6b** were unsuccessful. Then, we planned to synthesize derivatives of the compounds **6a** or **6b** expecting to get a crystal. Towards this, compound **6b** was subjected to the hydrogenolysis to get alcohol **8** which was esterified with 4-bromobenzoyl chloride and 4-nitrobenzoyl chloride1 to give the benzoate derivatives **9** and **10**, respectively (Scheme 3). To our fortune, compound **9** was found to be a solid and we were able to crystalize this using ethylacetae and hexane. The ORTEP diagram of ester **9** is provided in the figure 1.¹²

Scheme 2.3. Synthesis of the derivatives of compound **6b**.

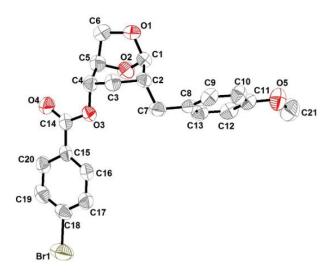
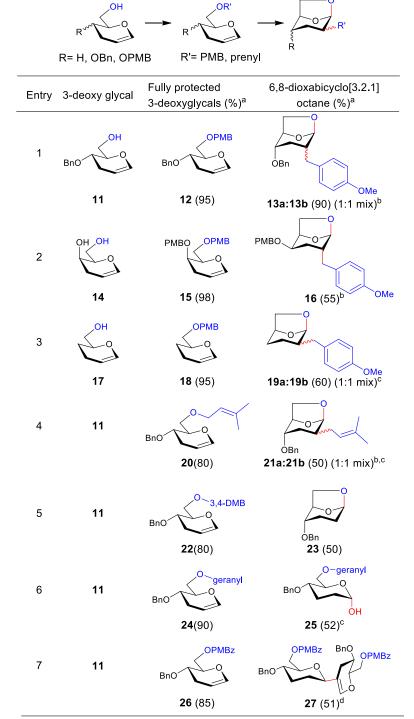



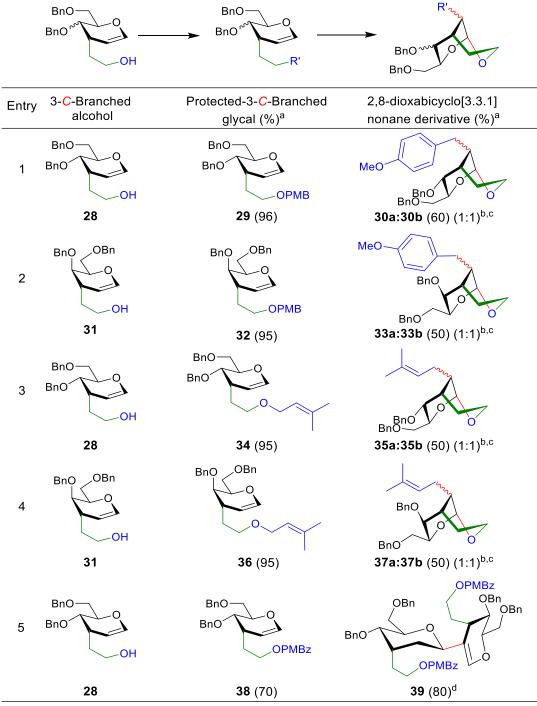
Figure 2.1. The ORTEP diagram of compound 9.12

The unprecedented formation of the C2-branched bicyclic acetals **6a** and **6b** and the importance of levoglucosan (1,6-anhydrosugar) derivatives in the total synthesis of natural products made us curious to study the generality of various orthogonally protected 3-deoxy glycal derivatives. Thus, 3-deoxy 4-O-benzyl 6-O-(p-methoxybenzyl) glucal 12^{13} was synthesized from 3-deoxy 4-O-benzyl glucal 11¹⁴ and subjected to TMSOTf (0.1 eq) at -78 °C. Interestingly, this reaction also provided the 2-C- branched levoglucosans 13a and 13b, as 1:1 mixture of diastereomers and no isolable amount of the corresponding $2-(\beta-C-glycosyl)-glycal$ derivative was observed. Application of the similar method on 3-deoxygalactal derivative 15, synthesized from 14, provided the corresponding 1,6-anhydro 2-(p-methoxybenzyl) 3-deoxy galactose derivative 16 as a single diastereomer in moderate yield (Table 1, entry 2). Interestingly, 6-O-(p-methoxybenzyl)-3,4-dideoxy glucal 18, obtained by the pmethoxybenzylation of 17,16 upon treating with TMSOTf provided a 1:1 diastereomeric mixture of 2-C-branched levoglucosan derivatives 19a and 19b via an unprecedented 1,6-migration of the p-methoxybenzyl (PMB) group. We assumed that the possible reason for the migration of the PMB group from C6-oxygen to the C2 might be due to its higher carbocation stabilization than the unsubstituted benzyl group.

Table 2.1. Synthesis of 2-C-branched levoglycosan derivatives by 1,6-alkyl transposition.

[a] Yield refers to pure and isolated products. [b] the major byproduct was found to be the corresponding 2-(4-alkyloxy)6,8-dioxabicyclo[3.2.1] octane derivative. [c] the diasteriomericratio was calculated based on the ¹H NMR spectra of crude product. [d] the stereochemistry at the anomeric position was assigned based on ¹H-¹H NOESY experiment.

Keeping this in mind, we further investigated the alkyl groups which could stabilize the carbocation. In this process, we have chosen to use the prenyl group in place of PMB. Thus, prenylation of glucal **11** provided the 3-deoxy 6-*O*-prenyl glucal derivative **20**, and it was


subjected to the acid catalyzed 1,6-migration reaction. To our delight, under the similar reaction conditions, prenyl group underwent the 1,6-migration and provided the 2-C-prenyl levoglucosan derivatives 21a and 21b in 50% yield. To evaluate the feasibility of dimethoxy substituted benzyl migration the C-6 position of the glycal 11 was alkylated with 3,4dimethoxy benzyl bromide to give compound 22 and subjected to catalytic TMSOTf at -78 °C. However, this reaction did not yield the expected 2-C-branched glycal. Instead, the reaction provided only the 2,3-dideoxy levoglucosan derivative 23. Later, a C-6 geranylated glycal 24 was synthesized and subjected to the migration reaction conditions. Surprisingly, it was found that the geranyl group was very stable under the reaction conditions and no reaction was observed at -78 °C. When the reaction mixture was allowed to 0 °C, hydration of the glycal was observed and the product 25 was isolated in 52% yield. These results suggest that only some typical carbocation stabilizing groups could be allowed to this novel unprecendented migration reaction. Further, to investigate the migratory aptitude of the p-methoxybenzoyl group, 3-deoxy 4-O-benzyl 6-O-benzoyl glucal **26** was synthesized by p-methoxybenzoylation of 11, and subjected to TMSOTf. However, the reaction provided the 2- $(\beta$ -C-glycosyl)-glycal derivative 27 as the only isolable product in 51% yield (Table 1, entry 7).

Based on the product formation, a possible mechanism is proposed for the formation of the 2-*C*-branched levoglucosan derivative. Accordingly, glycal **5** upon reaction with TMSOTf might form the corresponding oxo-carbenium ion intermediate **5a**. This oxocarbenium ion can further undergo deprotonation to give the 2-trimethylsilyl glycal derivative **5b** and triflic acid. On the other hand, intermediate **5a** can have the resonance structure **5c** by the participation of the lone pair of electrons present on the C6-oxygen which further will have the extended resonance structures **5d** and **5e**. Finally, regeneration of the catalyst, TMSOTf, by reaction of the triflate anion on to the trimethylsilyl group which could help in the formation of a new C-C bond between C2 and the *p*-methoxybenzyl carbon will lead to the formation of the 1,6-migrated products **6a** and **6b** (Figure 2).

Figure 2.2. Proposed mechanism for the 1,6-alkyl transposition reaction; synthesis of 2-*C*-branched levoglycosan derivatives.

Having synthesized, a series of 2-*C*-branched levoglycosan derivatives involving 1,6-transposition reaction, we focused our attention on incorporating the *p*-methoxy benzyl or prenyl group on another oxygen atom, apart from the C6 position. Thus, *p*-methoxy benzyl protected 3-deoxy 3-*C*-branched glycal **29** was synthesized from glycal **28**¹⁷ and subjected to TMSOTf mediated 1,6-transposition reaction. Interestingly, this reaction also proceeded smoothly and gave the expected 2,3-dideoxy carbon-branched bicyclic acetal **30** as a 1:1 mixture of diastereomers in 60% yield (Table 2, entry 1). Extending the methodology to other PMB protected 3-*C*-branched galactal derivative **32**, synthesized from **31**, also led to the formation of the 1,5-alkyl migrated carbon-branched bicyclic acetal **33** (table 2, entry 2). Further, we proceeded to investigate the generality of this 1,5- alkyl transposition reaction using prenyl protected 3-*C*-branched glycals. Thus, the hydroxyl group in 3-*C*-branched glycals **28** and **31** were treated with prenyl bromide in the presence of NaH in THF to obtain prenyl ether containing 3-*C*-branched glycals **34** and **36**. Subjecting these glycals to TMSOTf

Table 2. Synthesis of 2,3-dideoxy 2- and 3-*C*-branched bicyclic acetal derivatives by 1,5-alkyl transposition reaction.

[a] Yield refers to pure and isolated products. [b] the diasteriomeric ratio was calculated based on the ¹H NMR spectra of crude product. [c] the major byproduct was found to be the corresponding 4-(benzyloxy)-3-((benzyloxy)methyl)-2,8-dioxabicyclo[3.3.1]nona ne derivative. [d] the stereochemistry at the anomeric position was assigned based on ¹H-¹H NOESY experiment.

at -78 °C provided the 2-C-prenyl substituted 3-C-branched bicyclic acetals **35** and **37**, respectively, as a 1:1 mixture of diastereomers. However, 1,5-alkyl transposition of the p-

methoxybenzoyl group in glycal derivative 38 was again unsuccessful. Instead, this reaction provided the C-disaccharide 39 as a single diastereomer (table 2, entry 5).

2.3 Conclusions

In conclusion, we have reported an unprecedented 1,5- and 1,6-alkyl transposition reaction of 3-deoxy glycals. The methodology provides access to the synthesis of various 2-*C*-branched levoglycosan derivatives as well as 2,8-dioxabicyclo[3.3.1]nonane systems. To the best of knowledge, this is the first of its kind in the literature. The application of the developed methodology in the total synthesis of natural products and novel sugar derived scaffolds is in progress.

2.4 Experimental Section

2.4.1 General Methods

All the reactions were carried out under nitrogen or argon atmosphere and monitored by thin layer chromatography (TLC) using silica gel GF₂₅₄ plates with detection by charring with 5% (v/v) H₂SO₄ in methanol or by phosphomolybdic acid (PMA) stain or by ultra violet (UV) detection. All the chemicals were purchased from local suppliers and Sigma-Aldrich Chemicals Company. Solvents used in the reactions were distilled over dehydrated agents. Silica-gel (100-200 mesh) was used for column chromatography. 1 H, 13 C, DEPT, COSY, NOESY spectra were recorded on Bruker 400 MHz and 500 MHz spectrometer in CDCl₃. 1 H NMR chemical shifts were reported in ppm (δ) with TMS as internal standard (δ 0.00) and 13 C NMR were reported in chemical shifts with solvent reference (CDCl₃, δ 77.00). High resolution mass spectra (HRMS) were obtained in the ESI mode.

2.4.2 Experimental procedures and spectral data

2.1 (2R,3S)-3-((4-methoxybenzyl)oxy)-2-(((4-methoxybenzyl)oxy)methyl)-3,4-dihydro-2H-pyran (5)

A stirred solution of 3-deoxy D-glucal (1.7 g, 13.0 mmol) in anhydrous THF (20 mL) under inert atmosphere was cooled to 0 °C. NaH (60%, 1.56 g, 39.0 mmol) was added portion wise to the solution with stirring over a period of 20 min. After continuous stirring for further 1 h at 0 °C, p-methoxy benzyl chloride (5.12 g, 32.67 mmol), TBAI (cat) were added and stirring was continued for overnight at 25 °C. The reaction was quenched with slow addition of cold water and extracted with ethyl acetate. The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated under reduced pressure to obtain crude product. Purification of the crude product by column chromatography over silica gel using hexanes and ethyl acetate provided pure (2R,3S)-3-((4-methoxybenzyl)oxy)-2-(((4-methoxybenzyl)oxy)methyl)-3,4dihydro-2H-pyran **5** (4.94 g) in 98% yield. R_f: 0.8 (20% EtOAc/hexanes). $[\alpha]_D^{25}$ 70.2 (c 1.0, CHCl₃); IR (neat): 3070, 2992, 2910, 2863, 1653, 1612, 1513 cm⁻¹. ¹H NMR (500 MHz, **CDCl₃):** δ 7.30 (d, 2H, J = 8.5 Hz), 7.20 (d, 2H, J = 8.5 Hz), 6.89 (d, 2H, J = 8.5 Hz), 6.87 (d, 2H, J = 8.5 Hz), 6.38 (dt, 1H, J = 2.0 Hz, J = 6.0 Hz), 4.64-4.66 (m, 1H), 4.59 (d, 1H, J = 12.0Hz), 4.58 (d, 1H, J = 11.0 Hz), 4.53 (d, 1H, J = 11.5 Hz), 4.46 (d, 1H, J = 11.0 Hz), 3.88-3.91(m, 1H), 3.82 (s, 3H), 3.81 (s, 3H), 3.76-3.79 (m, 3H), 2.35-2.41 (m, 1H), 2.08 (ddt, 1H, J =2.5 Hz, J = 8.5 Hz, J = 16.5 Hz. ¹³C NMR (125 MHz, CDCl₃): δ 159.13, 159.11, 143.01, 130.21, 130.11, 129.41, 129.26, 113.68, 113.66, 97.58, 76.71,

73.08, 70.70, 70.03, 68.54, 55.17, 55.16, 26.52. **HRMS** (**ESI**) calcd for C₂₂H₂₆O₅+NH₄ 388.2124, found 388.2124.

2.2 (1R,2S,4S,5R)-4-(4-methoxybenzyl)-2-((4-methoxybenzyl)oxy)-6,8-dioxabicyclo[3. 2.1] octane(6a); (1R,2S,4R,5R)-4-(4-methoxybenzyl)-2-((4-methoxybenzyl)oxy)-6,8-dioxabicyclo [3.2.1]octane (6b)

A stirred solution of compound 5 (700 mg, 1.9 mmol) in dry dichloromethane (20 mL) under inert atmosphere was added 4 A MS and the suspension was cooled to -78 °C. TMSOTf (34 μL, 0.19 mmol) was added dropwise and continued stirring at the same temperature. After 15 min the reaction was quenched by the addition of Et₃N (~60 µL) and allowed it to come to room temperature. The reaction mixture was filtered through a small pad of Celite and the filter cake was washed with dichloromethane (20 mL). Evaporation of the solvent under reduced pressure follow by column chromatography of the obtained crude product provided the mixture of 2-Cbranced levoglucosan derivatives 6a and 6b (1:1) (666 mg) as a colorless gum in 95% yield. R_f: 0.75 (20% EtOAc/hexanes). **6a:** IR (neat): 2934, 2892, 2835, 1610, 1509 cm⁻¹. ¹**H NMR** (400 MHz, CDCl₃): δ 7.27 (d, 2H, J = 8.4 Hz), 7.08 (d, 2H, J = 8.8 Hz), 6.88 (d, 2H, J = 8.8Hz), 6.83 (d, 2H, J = 8.4 Hz), 5.26 (s, 1H), 4.56-4.58 (m, 1H), 4.50-4.54 (m, 2H), 3.82 (s, 3H), 3.81 (s, 3H), 3.77-3.79 (m, 1H), 3.71-3.73 (m, 1H), 3.35-3.36 (m, 1H), 2.57 (dd, 1H, J=8.0Hz, J = 13.6 Hz), 2.39 (dd, 1H, J = 6.8 Hz, J = 13.6 Hz), 2.19-2.27 (m, 1H), 1.74-1.79 (m, 1H), 1.44-1.49 (m, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 159.19, 157.90, 131.07, 130.23, 129.90, 129.22, 113.79, 113.75, 103.36, 74.58, 72.58, 70.07, 66.41, 55.25, 55.21, 39.12, 37.30, 27.64. **HRMS** (ESI) calcd for $C_{22}H_{26}O_5+Na^+$ 393.1672, found 393.1672. **6b:** $[\alpha]_D^{25}$ -50.4 (c 0.63, CHCl₃); IR (neat): 2956, 2920, 2853, 1608, 1510 cm⁻¹. ¹**H NMR (400 MHz, CDCl₃):** δ 7.33 (d, 2H, J = 8.8 Hz), 7.14 (d, 2H, J = 8.8 Hz), 6.91 (d, 2H, J = 8.8 Hz), 6.84 (d, 2H, J = 8.8 Hz),5.37 (s, 1H), 4.61-4.64 (m, 2H), 4.54 (d, 1H, J = 12.0 Hz), 3.83 (s, 3H), 3.80 (s, 3H), 3.75-3.79(m, 2H), 3.32-3.33 (m, 1H), 2.94 (dd, 1H, J = 7.2 Hz, J = 13.6 Hz), 2.87 (dd, 1H, J = 9.2 Hz, J = 14.0 Hz), 1.90 (dd, 1H, J = 7.6 Hz, J = 15.6 Hz), 1.78-1.84 (m, 1H), 1.67 (d, 1H, J = 14.8 Hz) Hz). ¹³C NMR (100 MHz, CDCl₃): δ 159.18, 157.84, 132.76, 130.46, 130.16, 129.05, 113.83, 113.74, 104.09, 75.33, 73.17, 70.12, 66.03, 55.28, 55.24, 40.48, 36.40, 23.17. HRMS (ESI) calcd for $C_{22}H_{26}O_5+Na^+$ 393.1672, found 393.1671.

2.3 (1*R*,2*S*,4*R*,5*R*)-4-(4-methoxybenzyl)-6,8-dioxabicyclo[3.2.1]octan-2-ol (8)

A stirred solution of compound **6b** (200 mg, 0.27 mmol) in dry methanol (10 mL) under inert atmosphere was added Pd/C (10 mol %) at RT. The reaction mixture was degasified followed by purged hydrogen gas and continued stirring at the same temperature under hydrogen atmosphere for 12 hrs. The reaction mixture was filtered through a small pad of Celite and the filter cake was washed with methanol (5 mL). Evaporation of the solvent under reduced pressure follow by column chromatography of the obtained crude product provided the pure (1R,2S,4R,5R)-4-(4-methoxybenzyl)-6,8-dioxabicyclo[3.2.1]octan-2-ol **8** (128 mg) in 95% yield. R_f: 0.35 (50% EtOAc/hexanes). IR (neat): 3407, 2926, 1652, 1610, 1582, 1510 cm⁻¹. ¹**H** NMR (400 MHz, CDCl₃): δ 7.15 (d, 2H, J = 4.4 Hz), 6.85 (d, 2H, J = 8.4 Hz), 5.36 (s, 1H), 4.53 (d, 1H, J = 1.8 Hz), 3.83 (m, 2H), 3.80 (s, 3H), 3.70 (s,1H), 2.91(dd, 1H, J = 7.2 Hz, J = 13.6 Hz), 2.79 (dd, 1H, J = 8.4 Hz, J = 13.6 Hz), 2.19 (bs, 1H), 1.88-1.98 (m, 2H), 1.59 (d, 1H, J = 13.2 Hz). ¹³C NMR (100 MHz, CDCl₃): δ 157.89, 132.01, 130.05, 113.79, 103.99, 77.65, 67.59, 65.95, 55.21, 40.34, 37.45, 26.67. HRMS (ESI) calcd for C₁₄H₁₈O₄+Na⁺ 273.1097, found 273.1092.

2.4 (1R,2S,4R,5R)-4-(4-methoxybenzyl)-6,8-dioxabicyclo[3.2.1]octan-2-yl 4-bromoben - zoate (9)

To a solution of 8 (60 mg, 0.24 mmol) in anhydrous tetrahydrofuran (1 mL) cooled at 0 °C were added N,N-diisopropylethylamine (100 µL, 0.574 mmol) and 4-(dimethylamino)pyridine (12 mg, 0.1 mmol) followed by p-bromobenzoyl chloride (94 mg, 0.48 mmol), and the resulting mixture was stirred at 60 °C for 6 h. The mixture was cooled to room temperature, ethyl acetate and water were added, and the organic phase was successively washed with 0.5 M aqueous hydrochloric acid solution and brine. The organic phase was dried over anhydrous Na₂SO₄, concentrated and the crude material was purified by column chromatography over silica gel using hexane and ethyl acetate provided pure (1R,2S,4R,5R)-4-(4-methoxybenzyl)-6,8dioxabicyclo[3.2.1]octan-2-yl 4-bromobenzoate 9 (99 mg) in 95% yield. R_{f.} 0.37 (20% EtOAc/hexane). IR (neat): 2949, 2894, 2830, 1712, 1610, 1588, 1510 cm⁻¹. ¹H NMR (400) **MHz, CDCl₃):** δ 8.04 (d, 2H, J = 8.5 Hz), 7.66 (d, 2H, J = 8.5 Hz), 7.06 (d, 2H, J = 8.5 Hz), 6.81 (d, 2H, J = 8.5 Hz), 5.42 (s, 1H), 4.98-4.99 (m, 1H), 4.71-4.73 (m, 1H), 3.96 (d, 1H, J =7.6 Hz), 3.84-3.88 (m, 1H), 3.78 (s, 3H), 3.01 (dd, 1H, J = 7.2 Hz, J = 13.6 Hz), 2.85 (dd, 1H, J = 8.4 Hz, J = 13.6 Hz, 2.14-2.21 (m, 1H), 1.95-2.01 (m, 1H), 1.73 (d, 1H, J = 15.6 Hz).NMR (100 MHz, CDCl₃): δ 165.29, 157.96, 131.90, 131.85, 131.17, 129.87, 129.02, 128.40, 113.89, 103.85, 74.95, 70.00, 65.98, 55.19, 40.01, 36.51, 24.26. **HRMS (ESI)** calcd for $C_{21}H_{21}BrO_5 + NH_4^+ 450.0911$, found 450.0910.

2.5 (1R,2S,4R,5R)-4-(4-methoxybenzyl)-6,8-dioxabicyclo[3.2.1]octan-2-yl 4-nitrobenz - oate (10)

To a solution of 8 (60 mg, 0.24 mmol) in anhydrous tetrahydrofuran (1 mL) cooled at 0 °C were added N,N-diisopropylethylamine (100 μL, 0.574 mmol) and 4-(dimethylamino) pyridine (12 mg, 0.1 mmol) followed by p-nitrobenzoyl chloride (94 mg, 0.48 mmol), and the resulting mixture was stirred at 60 °C for 6 h. The mixture was cooled to room temperature, ethyl acetate and water were added, and the organic phase was successively washed with 0.5 M aqueous hydrochloric acid solution and brine. The organic phase was dried over anhydrous Na₂SO₄, concentrated and the crude material was purified by column chromatography over silica gel using hexane and ethyl acetate provided pure (1R,2S,4R,5R)-4-(4-methoxybenzyl)-6,8dioxabicyclo[3.2.1]octan-2-yl 4-nitrobenzoate 10 (94 mg) in 98% yield. R_{f.} 0.4 (20% EtOAc/hexane). IR (neat): 2917, 2849, 1718, 1608, 1526, 1511 cm⁻¹. ¹H NMR (400 MHz, **CDCl₃):** δ 8.24-8.38 (m, 4H), 7.06 (d, 2H, J = 8.4 Hz), 6.81 (d, 2H, J = 12 Hz), 5.44 (s, 1H), 5.04(s, 1H), 4.75(d, 1H, J = 4.8 Hz), 3.99(d, 1H, J = 8.0 Hz), 3.89(d, 1H, J = 5.8 Hz), 3.78(s, 3H), 3.03 (dd, 1H, J = 7.5 Hz, J = 13.7 Hz), 2.85 (dd, 1H, J = 8.6 Hz, J = 13.7 Hz), 2.22 (dt, 1H, J = 6.0 Hz, J = 15.5 Hz), 2.01-2.06 (m,1H), 1.76 (d,1H, J = 16.1 Hz). ¹³C NMR (100) **MHz, CDCl₃):** δ 164.13, 158.00, 150.66, 135.44, 131.61, 130.75, 129.78, 123.69, 113.90, 103.79, 74.78, 70.81, 65.94, 55.17, 39.86, 36.56, 24.32. **HRMS** (**ESI**) calcd for $C_{21}H_{21}NO_7+Na^+$ 422.1210, found 422.1206.

2.6 (2*R*,3*S*)-3-(benzyloxy)-2-(((4-methoxybenzyl)oxy)methyl)-3,4-dihydro-2H-pyran (12)

A stirred solution of 3-deoxy-4-benzyl D-glucal 11 (0.507 g, 2.3 mmol) in anhydrous THF (10 mL) under inert atmosphere was cooled to 0 °C. NaH (60%, 0.14 g, 3.5 mmol) was added portion wise to the solution with stirring over a period of 20 min. After continuous stirring for further 1 h at 0 °C, p-methoxy benzyl chloride (0.47 g, 3 mmol), TBAI (cat) were added and stirring was continued for overnight at 25 °C. The reaction was quenched with slow addition of cold water and extracted with ethyl acetate. The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated under reduced pressure to obtain crude product. Purification of the crude product by column chromatography over silica gel using hexanes and ethyl acetate provided pure (2R,3S)-3-(benzyloxy)-2-(((4-methoxybenzyl)oxy)methyl)-3,4dihydro-2H-pyran 12 (0.78 g) in 95% yield. R_f: 0.5 (10% EtOAc/hexanes). $\left[\alpha\right]_{D}^{25}$ +44.3 (c 1.1, CH₂Cl₂); IR (neat): 3407, 3063, 3031, 2909, 2865, 1653, 1611, 1586, 1513 cm⁻¹. ¹**H NMR (500**) **MHz, CDCl₃):** δ 7.30 - 7.38 (m, 7H), 6.90 (d, 2H, J = 8.5 Hz), 6.40 (d, 1H, J = 6.0 Hz), 4.66-4.70 (m, 2H), 4.54-4.62 (m, 3H), 3.92-3.96 (m, 1H), 3.82 (s, 3H), 3.80-3.82 (m, 3H), 2.43 (dt, 1H, J = 5.5 Hz, J = 16.5 Hz), 2.12 (dd, 1H, J = 8.0 Hz, J = 16.5 Hz). ¹³C NMR (125 MHz, **CDCl₃):** δ 159.11, 143.01, 138.17, 130.12, 129.33, 128.24, 127.57, 127.54, 113.65, 97.47, 76.70, 73.05, 70.99, 70.44, 68.54, 55.11, 26.44. **HRMS** (**ESI**) calcd for $C_{21}H_{24}O_4 + NH_4^+$ 358.2013, found 358.2012.

2.7 (1R,2S,4S,5R)-2-(benzyloxy)-4-(4-methoxybenzyl)-6,8-dioxabicyclo[3.2.1]octane (13a); (1R,2S,4R,5R)-2-(benzyloxy)-4-(4-methoxybenzyl)-6,8-dioxabicyclo[3.2.1]octan e (13b)

OPMB TMSOTf,
$$CH_2CI_2$$
 OBn OMe OBn 13a = 1,2-cis 13b = 1,2-trans

A stirred solution of compound 12 (116 mg, 0.34 mmol) in dry dichloromethane (10 mL) under inert atmosphere was added 4 A MS and the suspension was cooled to -78 °C. TMSOTf (6.2 μL, 0.034 mmol) was added dropwise and continued stirring at the same temperature. After 15 min the reaction was quenched by the addition of Et₃N (~15 µL) and allowed it to come to room temperature. The reaction mixture was filtered through a small pad of Celite and the filter cake was washed with dichloromethane (10 mL). Evaporation of the solvent under reduced pressure follow by column chromatography of the obtained crude product provided the mixture of 2-C-branced levoglucosan derivatives **13a** and **13b** (1:1) (105 mg) as a colorless gum in 90% yield. R_f: 0.45 (10% EtOAc/hexane). **13a:** IR (neat): 2934, 2889, 1610, 1582, 1510 cm⁻¹. ¹H **NMR** (400 MHz, CDCl₃): δ 7.30 - 7.40 (m, 5H), 7.10 (d, 2H, J = 8.8 Hz), 6.85 (d, 2H, J = 8.8Hz), 5.28 (s, 1H), 4.58-4.65 (m, 3H), 3.81 (s, 3H), 3.72-3.79 (m, 2H), 3.38-3.39 (m, 1H), 2.59 (dd, 1H, J = 8.0 Hz, J = 13.6 Hz), 2.41 (dd, 1H, J = 7.6 Hz, J = 13.6 Hz), 2.22-2.30 (m, 1H), 1.78-1.84 (m, 1H), 1.44-1.51 (m, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 157.86, 138.16, 131.00, 129.85, 128.38, 127.63, 127.58, 113.72, 103.31, 74.50, 72.93, 70.38, 66.35, 55.17, 39.08, 37.24, 27.57. **HRMS** (**ESI**) calcd for $C_{21}H_{24}O_4 + NH_4^+$ 358.2013, found 358.2014. **13b:** $[\alpha]_D^{25}$ -26.72 $(c 0.3, CHCl_3)$; IR (neat): 2915, 2853, 1655, 1608, 1515 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 7.31 - 7.40 (m, 5H), 7.14 (d, 2H, J = 8.8 Hz), 6.84 (d, 2H, J = 8.8 Hz), 5.88 (s, 1H), 4.68 (d, 1H, J = 12.4 Hz), 4.64-4.66 (m, 1H), 4.62 (d, 1H, J = 12.4 Hz), 3.80 (s, 3H), 3.78-3.79 (m, 2H), 3.35 (m, 1H), 2.95 (dd, 1H, J = 6.8 Hz, J = 13.6 Hz), 2.88 (dd, 1H, J = 8.8 Hz, J = 14.0Hz), 1.88-1.94 (m, 1H), 1.79-1.86 (m, 1H), 1.67-1.71 (m, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 157.85, 138.41, 132.73, 130.17, 128.43, 127.61, 127.48, 113.75, 104.13, 75.22, 73.58, 70.50, 66.03, 55.25, 40.47, 36.41, 23.22. **HRMS** (**ESI**) calcd for C₂₁H₂₄O₄+Na⁺ 363.1567, found 363.1568.

2.8 (2R,3R)-3-((4-methoxybenzyl)oxy)-2-(((4-methoxybenzyl)oxy)methyl)-3,4-dihydro - 2H-pyran (15)

A stirred solution of 3-deoxy D-glucal **14** (0.85 g, 6.5 mmol) in anhydrous THF (10 mL) under inert atmosphere was cooled to 0 °C. NaH (60%, 0.78 g, 19.5 mmol) was added portion wise to the solution with stirring over a period of 20 min. After continuous stirring for further 1 h at 0 °C, p-methoxy benzyl chloride (2.56 g, 16.33 mmol), TBAI (cat) were added and stirring was continued for overnight at 25 °C. The reaction was quenched with slow addition of cold water and extracted with ethyl acetate. The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated under reduced pressure to obtain crude product. Purification of the crude product by column chromatography over silica gel using hexanes and ethyl acetate provided pure (2R,3R)-3-((4-methoxybenzyl)oxy)-2-(((4-methoxybenzyl)oxy)methyl)-3,4dihydro-2H-pyran **15** (2.47 g) in 98% yield. R_f: 0.65 (30% EtOAc/hexanes). $\left[\alpha\right]_{D}^{25}$ -1.44 (c 0.28, CHCl₃); IR (neat): 3009, 2909, 2863, 1651, 1611, 1511 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ 7.25 (d, 2H, J = 9.0 Hz), 7.24 (d, 2H, J = 8.5 Hz), 6.89 (d, 2H, J = 9.0 Hz), 6.88 (d, 2H, J = 9.0 Hz) 9.5 Hz), 6.41 (dt, 1H, J = 2.0 Hz, J = 6.5 Hz), 4.64-4.67 (m, 1H), 4.61 (d, 1H, J = 12.0 Hz), 4.51 (d, 1H, J = 11.5 Hz), 4.42 (d, 1H, J = 12.0 Hz), 4.41 (d, 1H, J = 11.5 Hz), 4.07-4.09 (m, 1H), 3.81-3.82 (m, 7H), 3.68 (dd, 1H, J = 7.0 Hz, J = 10.0 Hz), 3.58 (dd, 1H, J = 5.0 Hz, J = 10.0 Hz, 10.0 Hz), 2.16-2.22 (m, 1H), 2.09-2.14 (m, 1H). ¹³C NMR (125 MHz, CDCl₃): δ 159.23, 159.20, 142.93, 130.28, 130.16, 129.48, 129.42, 113.73, 97.81, 75.24, 73.05, 70.62, 69.38, 68.39, 55.23, 55.22, 24.20. **HRMS (ESI)** calcd for $C_{22}H_{26}O_5+NH_4^+$ 388.2118, found 388.2119.

 $2.9 \qquad (1R,2R,4R,5R)-4-(4-methoxybenzyl)-2-((4-methoxybenzyl)oxy)-6,8-dioxabicyclo \\ [3.2.1] octane (16)$

A stirred solution of compound 15 (100 mg, 0.27 mmol) in dry dichloromethane (10 mL) under inert atmosphere was added 4 A MS and the suspension was cooled to -78 °C. TMSOTf (5 μL, 0.027 mmol) was added dropwise and continued stirring at the same temperature. After 15 min the reaction was quenched by the addition of Et₃N (\sim 10 μ L) and allowed it to come to room temperature. The reaction mixture was filtered through a small pad of Celite and the filter cake was washed with dichloromethane (10 mL). Evaporation of the solvent under reduced pressure follow by column chromatography of the obtained crude product provided the pure (1R,2R,4R,5R)-4-(4-methoxybenzyl)-2-((4-methoxybenzyl)oxy)-6,8-dioxabicyclo[3.2.1]octa--ne **16** (55 mg) as a colorless gum in 55% yield. R_f: 0.6 (5% EtOAc/Toluene). $[\alpha]_D^{25}$ -0.144 (c 0.91, CHCl₃); IR (neat): 2947, 2893, 2832, 2361, 1610, 1583, 1517 cm⁻¹. ¹H NMR (500 MHz, **CDCl₃):** δ 7.23 (d, 2H, J = 8.5 Hz), 7.07 (d, 2H, J = 8.5 Hz), 6.89 (d, 2H, J = 9.0 Hz), 6.84 (d, 2H, J = 8.5 Hz), 4.51 (d, 1H, J = 11.5 Hz), 4.42-4.47 (m, 2H), 4.16 (d, 1H, J = 7.5 Hz), 3.83-3.84 (m, 1H), 3.82 (s, 3H), 3.80 (s, 3H), 3.71 (dd, 1H, J = 5.0 Hz, J = 7.0 Hz), 3.65-3.69 (m, 1H), 2.63 (dd, 1H, J = 7.0 Hz, J = 14.0 Hz), 2.40 (dd, 1H, J = 7.5 Hz, J = 13.5 Hz), 1.91-1.95 (m, 2H), 1.26-1.34 (m, 1H). ¹³C NMR (125 MHz, CDCl₃): δ 159.23, 157.92, 131.26, 130.24, 129.86, 129.15, 113.82, 113.76, 102.73, 73.58, 72.60, 70.33, 65.03, 55.24, 55.20, 42.99, 37.08, 29.61. **HRMS (ESI)** calcd for C₂₂H₂₆O₅+NH₄⁺ 388.2118, found 388.2118.

2.10 (*S*)-2-(((4-methoxybenzyl)oxy)methyl)-3,4-dihydro-2*H*-pyran (18)

A stirred solution of 3,4-dideoxy D-glucal 17 (0.07 g, 0.613 mmol) in anhydrous THF (5 mL) under inert atmosphere was cooled to 0 °C. NaH (60%, 0.098 g, 2.45 mmol) was added portion wise to the solution with stirring over a period of 20 min. After continuous stirring for further 1 h at 0 °C, p-methoxy benzyl chloride (0.288 g, 1.84 mmol), TBAI (cat) were added and stirring was continued for overnight at 25 °C. The reaction was quenched with slow addition of cold water and extracted with ethyl acetate. The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated under reduced pressure to obtain crude product. Purification of the crude product by column chromatography over silica gel using hexanes and ethyl acetate provided pure (S)-2-(((4-methoxybenzyl)oxy)methyl)-3,4-dihydro-2H-pyran 18 (0.137 g) in 95% yield. R_f: 0.6 (10% EtOAc/hexanes). ¹H NMR (500 MHz, CDCl₃): δ 7.29 (d, 2H, J = 8.5 Hz), 6.89 (d, 2H, J = 8.5 Hz), 6.41 (d, 1H, J = 6.5 Hz), 4.68-4.71 (m, 1H), 4.56 (d, 1H, J = 12.0 Hz), 4.51 (d, 1H, J = 12.0 Hz), 4.00-4.05 (m, 1H), 3.82 (s, 3H), 3.57 (dd, 1H, J = 12.0 Hz) 6.0 Hz, J = 10.0 Hz), 3.50 (dd, 1H, J = 4.5 Hz, J = 10.0 Hz), 2.07 - 2.10 (m, 1H), 1.96 - 2.00 (m, 1H)1H), 1.83-1.87 (m, 1H), 1.65-1.73 (m, 1H). ¹³C NMR (125 MHz, CDCl₃): δ 159.17, 143.54, 130.17, 129.28, 113.72, 100.37, 74.02, 73.00, 72.09, 55.17, 24.56, 19.29. **HRMS (ESI)** calcd for $C_{14}H_{18}O_3+Na^+$ 257.1148, found 257.1149.

2.11 (1*S*,5*R*)-4-(4-methoxybenzyl)-6,8-dioxabicyclo[3.2.1]octane (19a and 19b)

A stirred solution of compound **18** (70 mg, 0.298 mmol) in dry dichloromethane (10 mL) under inert atmosphere was added 4 A MS and the suspension was cooled to -78 °C. TMSOTf (5.4 μ L, 0.0298 mmol) was added dropwise and continued stirring at the same temperature. After 15 min the reaction was quenched by the addition of Et₃N (~10 μ L) and allowed it to come to room temperature. The reaction mixture was filtered through a small pad of Celite and the filter cake was washed with dichloromethane (5 mL). Evaporation of the solvent under

reduced pressure follow by column chromatography of the obtained crude product provided compounds **19a** and **19b** (42 mg) as an inseparable mixture of diastereomers in 1:1 ratio, as a colorless gum in 60% yield. R_f: 0.40 (10% EtOAc/hexanes); IR (neat): 2937, 2888, 1611, 1511 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ 7.05 - 7.10 (m, 4H), 6.81-6.83 (m, 4H), 5.25 (s, 1H), 5.22 (s, 1H), 4.49-4.52 (m, 2H), 3.92 (d, 1H, J = 6.5 Hz), 3.87 (d, 1H, J = 7.0 Hz), 3.74-3.79 (m, 8H), 2.78 (dd, 1H, J = 7.0 Hz, J = 13.5 Hz), 2.60 (dd, 1H, J = 8.5 Hz, J = 14.0 Hz), 2.56 (dd, 1H, J = 7.5 Hz, J = 13.5 Hz), 2.37 (dd, 1H, J = 8.0 Hz, J = 13.5 Hz), 2.04-2.10 (m, 1H), 1.80-1.93 (m, 4H), 1.53-1.58 (m, 1H), 1.48-1.52 (m, 1H), 1.42-1.47 (m, 1H), 1.35-1.40 (m, 2H). ¹³C NMR (125 MHz, CDCl₃): δ 157.92, 132.46, 131.64, 129.89, 129.86, 113.82, 113.77, 104.03, 103.65, 73.86, 73.31, 68.14, 67.27, 55.24, 42.73, 41.05, 37.76, 35.22, 28.50, 25.36, 22.67, 19.04. **HRMS** (ESI) calcd for C₁₄H₁₈O₃+Na⁺ 257.1148, found 257.1147.

2.12 (2R,3S)-3-(benzyloxy)-2-(((3-methylbut-2-en-1-yl)oxy)methyl)-3,4-dihydro-2H-pyran (20)

A stirred solution of 3-deoxy-4-benzyl D-glucal **11** (0.55 g, 2.5 mmol) in anhydrous THF (10 mL) under inert atmosphere was cooled to 0 °C. NaH (60%, 0.2 g, 5.0 mmol) was added portion wise to the solution with stirring over a period of 20 min. After continuous stirring for further 1 h at 0 °C, 3,3-dimethylallyl bromide (0.56 g, 3.7 mmol), TBAI (cat) were added and stirring was continued for overnight at 25 °C. The reaction was quenched with slow addition of cold water and extracted with ethyl acetate. The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated under reduced pressure to obtain crude product. Purification of the crude product by column chromatography over silica gel using hexanes and ethyl acetate provided pure (2*R*,3*S*)-3-(benzyloxy)-2-(((3-methylbut-2-en-1-yl)oxy)methyl)-3,4-dihydro-2H-pyran **20** (0.574 g) in 80% yield. R_f: 0.8 (20% EtOAc/hexanes). [α]²⁵ 75.86

(c 0.788, CHCl₃); IR (neat): 3063, 3023, 2919, 2860, 1742, 1654 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ 7.29 - 7.38 (m, 5H), 6.37(dt, 1H, J = 2.0 Hz, J = 6.0 Hz), 5.38-5.41 (m, 1H), 4.68 (d, 1H, J = 12.0 Hz), 4.62-4.67 (m, 1H), 4.59 (d, 1H, J = 11.5 Hz), 3.99-4.15 (m, 2H), 3.90 (ddd, 1H, J = 3.0 Hz, J = 5.5 Hz, J = 8.5 Hz), 3.75-3.80 (m, 2H), 3.73 (dd, 1H, J = 5.5 Hz, J = 10.5 Hz), 2.40 (dtd, 1H, J = 1.5 Hz, J = 5.5 Hz, J = 15.5 Hz), 2.11 (dtd, 1H, J = 2.5 Hz, J = 8.5 Hz, J = 16.5 Hz), 1.76 (s, 3H), 1.69 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 143.07, 138.22, 136.76, 128.31, 127.63, 127.60, 121.05, 97.47, 76.68, 71.06, 70.53, 68.64, 67.79, 26.52, 25.72, 17.97. HRMS (ESI) calcd for C₁₈H₂₄O₃+Na⁺ 311.1618, found 311.1618.

2.13 (1*R*,2*S*,5*R*)-2-(benzyloxy)-4-(3-methylbut-2-en-1-yl)-6,8-dioxabicyclo[3.2.1]octa--ne (21a and 21b)

A stirred solution of compound **20** (0.14 g, 0.0.48 mmol) in dry dichloromethane (10 mL) under inert atmosphere was added 4 A MS and the suspension was cooled to -78 °C. TMSOTf (8.8 μL, 0.048 mmol) was added dropwise and continued stirring at the same temperature. After 15 min the reaction was quenched by the addition of Et₃N (~20 μL) and allowed it to come to room temperature. The reaction mixture was filtered through a small pad of Celite and the filter cake was washed with dichloromethane (10 mL). Evaporation of the solvent under reduced pressure follow by column chromatography of the obtained crude product provided compounds **21a** and **21b** (70 mg) as an inseparable mixture of diastereomers in 1:1 ratio, as a colorless gum in 50% yield. R_f: 0.65 (20% EtOAc/hexanes). IR (neat): 3029, 2927, 2888 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ 7.28-7.40 (m, 12H), 5.38 (s, 1H), 5.32 (s, 1H), 5.07-5.13 (m, 2H), 4.57-4.68 (m, 5H), 3.75-3.79 (m, 2H), 3.68 (d, 1H, J = 7.5 Hz), 3.72-3.80 (m, 1H), 3.33-3.34 (m, 1H), 2.29-2.41 (m, 2H), 1.94-2.06 (m, 3H), 1.83-1.91 (m, 2H), 1.79 (dd, 1H, J = 7.0 Hz, J = 13.5 Hz), 1.73 (s, 3H), 1.71 (s, 3H), 1.65 (s, 3H), 1.62 (s, 3H), 1.37-1.44 (m, 2H). ¹³C NMR (125 MHz, CDCl₃): δ 138.44, 138.37, 133.34, 133.17, 128.43, 128.36, 127.66, 127.63, 127.52,

122.88, 121.25, 104.35, 103.88, 75.14, 74.53, 73.54, 73.25, 70.46, 70.36, 66.38, 65.97, 39.04, 37.97, 30.39, 30.02, 27.65, 25.80, 25.75, 23.87, 17.89, 17.79. **HRMS** (**ESI**) calcd for $C_{18}H_{24}O_{3}+Na^{+}$ 311.1618, found 311.1615.

2.14 (2R,3S)-3-(benzyloxy)-2-(((3,4-dimethoxybenzyl)oxy)methyl)-3,4-dihydro-2H-pyran (22)

A stirred solution of 3-deoxy-4-benzyl D-glucal 11 (0.57 g, 2.588 mmol) in anhydrous THF (10 mL) under inert atmosphere was cooled to 0 °C. NaH (60%, 0.207 g, 5.176 mmol) was added portion wise to the solution with stirring over a period of 20 m in. After continuous stirring for further 1 h at 0 °C, 3,4-dimethoxy benzyl bromide (0.897 g, 3.88 mmol), TBAI (cat) were added and stirring was continued for overnight at 25 °C. The reaction was quenched with slow addition of cold water and extracted with ethyl acetate. The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated under reduced pressure to obtain crude product. Purification of the crude product by column chromatography over silica gel using hexanes and ethyl acetate provided pure (2R,3S)-3-(benzyloxy)-2-(((3,4-dimethoxybenzyl)oxy)methyl)-3,4dihydro-2H-pyran **22** (0.767 g) in 80% yield. R_f: 0.45 (20% EtOAc/hexanes). $[\alpha]_D^{25}$ +72.13 (c1.0, CHCl₃); IR (neat): 2930, 2863, 1587, 1510 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ 7.32 -7.36 (m, 2H), 7.28 - 7.31 (m, 3H), 6.93 (d, 1H, J = 2.0 Hz), 6.90 (dd, 1H, J = 2.0 Hz, J = 8.0Hz), 6.82 (d, 1H, J = 8.0 Hz), 6.38 (dt, 1H, J = 2.0 Hz, J = 4.0 Hz), 4.64-4.67 (m, 2H), 4.52-4.04.59 (m, 3H), 3.91-3.94 (m, 1H), 3.88 (s, 3H), 3.87 (s, 3H), 3.75-3.82 (m, 3H), 2.37-2.43 (m, 1H). 2.08-2.14 (m, 1H). ¹³C NMR (125 MHz, CDCl₃): δ 148.98, 148.58, 143.02, 138.18, 130.68, 128.31, 127.62, 127.56, 120.35, 111.23, 110.90, 97.54, 76.77, 73.37, 71.04, 70.58, 68.76, 55.85, 55.76, 26.50. **HRMS (ESI)** calcd for C₂₂H₂₆O₅+Na⁺ 393.1672, found 393..1671.

2.15 (1*R*,2*S*,5*R*)-2-(benzyloxy)-6,8-dioxabicyclo[3.2.1] octane (23)

A stirred solution of compound **22** (125 mg, 0.34 mmol) in dry dichloromethane (10 mL) under inert atmosphere was added 4 A MS and the suspension was cooled to -78 °C. TMSOTf (6.1 μL, 0.034 mmol) was added dropwise and continued stirring at the same temperature. After 15 min the reaction was quenched by the addition of Et₃N (~15 μL) and allowed it to come to room temperature. The reaction mixture was filtered through a small pad of Celite and the filter cake was washed with dichloromethane (10 mL). Evaporation of the solvent under reduced pressure follow by column chromatography of the obtained crude product provided the pure (1*R*,2*S*,5*R*)-2-(benzyloxy)-6,8-dioxabicyclo[3.2.1]octane **23** (37 mg) as a colourless gum in 60% yield. R_f: 0.3 (20% EtOAc/hexanes). IR (neat): 3463, 3028, 2947, 2887, 1715 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 7.35 - 7.41 (m, 4H), 7.28-7.33 (m, 1H), 5.57 (s, 1H), 4.67 (d, 1H, J = 12.4 Hz), 4.63 (d, 1H, J = 12.4 Hz), 4.59-4.60 (m, 1H), 3.76-3.81 (m, 2H), 3.37 (d, 1H, J = 2.0 Hz), 1.92-2.02 (m, 1H), 1.78-1.91 (m, 2H), 1.56-1.61 (m, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 138.30, 128.41, 127.65, 127.61, 101.74, 74.84, 72.92, 70.43, 66.31, 27.95, 20.24. HRMS (ESI) calcd for C₁₃H₁₆O₃+Na⁺ 243.0992, found 243.0990.

2.16 (2R,3S)-3-(benzyloxy)-2-((((E)-3,7-dimethylocta-2,6-dien-1-yl)oxy)methyl)-3,4-dihydro-2H-pyran (24)

A stirred solution of 3-deoxy-4-benzyl D-glucal 11 (0.364 g, 1.652 mmol) in anhydrous THF (10 mL) under inert atmosphere was cooled to 0 °C. NaH (60%, 0.132 g, 3.3 mmol) was added portion wise to the solution with stirring over a period of 20 min. After continuous stirring for further 1 h at 0 °C, geranyl bromide (0.54 g, 2.5 mmol), TBAI (cat) were added and stirring was continued for overnight at 25 °C. The reaction was quenched with slow addition of cold water and extracted with ethyl acetate. The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated under reduced pressure to obtain crude product. Purification of the crude product by column chromatography over silica gel using hexanes and ethyl acetate provided pure (2R,3S)-3-(benzyloxy)-2-((((E)-3,7-dimethylocta-2,6-dien-1-yl)oxy)methyl)-3,4-dihydro-2*H*-pyran **24** (0.530 g) in 90% yield. R_f: 0.7 (10% EtOAc/hexanes). $[\alpha]_D^{25}$ 67.51 $(c 1.0, CHCl_3)$; IR (neat): 3420, 3028, 2920, 1719, 1654 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 7.35 (d, 4H, J = 3.2 Hz), 7.27-7.33(m, 1H), 6.36 (dt, 1H, J = 2.0 Hz, J = 6.0 Hz), 5.39 (td, 1H, J = 1.2 Hz, J = 6.8 Hz), 5.10 (tt, 1H, J = 1.2 Hz, J = 6.8 Hz), 4.68 (d, 1H, J = 11.6 Hz), 4.624.65 (m, 1H), 4.58 (d, 1H, J = 11.6 Hz), 4.04-4.13 (m, 2H), 3.88-3.92 (m, 1H), 3.70-3.79 (m, 3H), 2.35-2.42 (m, 1H), 2.07-2.14 (m, 3H), 2.02-2.06 (m, 2H), 1.68 (s, 3H), 1.67 (s, 3H), 1.60 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 143.08, 139.91, 138.23, 131.55, 128.32, 127.65, 127.62, 123.93, 120.81, 97.49, 76.68, 71.06, 70.52, 68.70, 67.90, 39.55, 26.53, 26.30, 25.63, 17.62, 16.42. **HRMS (ESI)** calcd for C₂₃H₃₂O₃+Na⁺ 379.2244, found 379.2243.

2.17 (2S,5S,6R)-5-(benzyloxy)-6-((((E)-3,7-dimethylocta-2,6-dien-1-yl)oxy)methyl) tetrahydro -2H-pyran-2-ol (25)

A stirred solution of compound **24** (0.1 g, 0.28 mmol) in dry dichloromethane (10 mL) under inert atmosphere was added 4 A MS and the suspension was cooled to -78 °C. TMSOTf (5.1 µL, 0.028 mmol) was added dropwise and continued stirring at the same temperature. After

15 min the reaction was quenched by the addition of Et_3N (~20 μL) and allowed it to come to room temperature. The reaction mixture was filtered through a small pad of Celite and the filter cake was washed with dichloromethane (10 mL). Evaporation of the solvent under reduced pressure follow by column chromatography of the obtained crude product provided (2R,3S,6R)-6-(benzyloxy)-2-((((E)-3,7-dimethylocta-2,6-dien-1-yl)oxy)methyl)tetrahydro-2H-pyran-3-ol **25** (56 mg) as a colourless gum in 52% yield. R_f : 0.4 (15% EtOAc/hexanes). ¹**H NMR (400 MHz, CDCl₃):** δ 7.35 (d, 4H, J = 4.2 Hz), 7.29-7.32(m, 1H), 5.37 (t, 1H, J = 6.4 Hz), 5.16 (s, 1H), 5.10 (t, 1H, J = 6.8 Hz), 4.65 (d, 1H, J = 11.2 Hz), 4.52 (d, 1H, J = 11.2 Hz), 4.00-4.12 (m, 2H), 3.69-3.75 (m, 2H), 3.53-3.61 (m, 2H), 2.08-2.13 (m, 2H), 2.01-2.05 (m, 3H), 1.75-1.89 (m, 3H), 1.69 (s, 3H), 1.66 (s, 3H), 1.61 (m, 3H). ¹³**C NMR (100 MHz, CDCl₃):** δ 139.50, 138.53, 131.57, 128.35, 127.76, 127.61, 124.04, 121.22, 91.79, 72.86, 71.85, 71.06, 68.90, 67.92, 39.61, 28.81, 26.39, 25.68, 23.89, 17.68, 16.46. **HRMS (ESI)** calcd for $C_{23}H_{34}O_4$ +Na⁺ 397.2349, found 397.2347.

2.18 ((2R,3S)-3-(benzyloxy)-3,4-dihydro-2H-pyran-2-yl)methyl 4-methoxy benzoate (26)

p-Methoxy benzoyl bromide,
$$Et_3N, CH_2Cl_2$$

$$0 °C, 1 hr$$

$$85\%$$
P-Methoxy benzoyl bromide, OPMBz

A stirred solution of 3-deoxy-4-benzyl D-glucal **11** (0.24 g, 1.1 mmol) in anhydrous DCM (20 mL) under inert atmosphere was cooled to 0 °C.Et₃N (0.456 mL, 3.3 mmol) was added drop wise to the solution with stirring over a period of 5 min. After continuous stirring for further 20 min at 0 °C, *p*-methoxy benzoyl chloride (0.28 g, 1.64 mmol) was added and stirring was continued for 1 h at 0 °C. The reaction was quenched with slow addition of cold water and extracted with ethyl acetate. The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated under reduced pressure to obtain crude product. Purification of the crude product by column chromatography over silica gel using hexanes and ethyl acetate provided pure ((2*R*,3*S*)-3-(benzyloxy)-3,4-dihydro-2*H*-pyran-2-yl)methyl 4-methoxy benzoate

26 (328 mg) in 85% yield. R_f: 0.3 (10% EtOAc/hexanes). [α]_D²⁵ 116.0 (c 1.0, CHCl₃); IR (neat): 3066, 2902, 1714, 1654, 1606, 1511 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 7.98 (d, 2H, J = 9.2 Hz), 7.24-7.35 (m, 5H), 6.92 (d, 2H, J = 9.2 Hz), 6.37 (d, 1H, J = 4.0 Hz), 4.55-4.73 (m, 5H), 4.05-4.09 (m, 1H), 3.88 (s, 3H), 3.80-3.85 (m, 1H), 2.46-2.53 (m, 1H), 2.13-2.21 (m, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 166.1, 163.4, 143.0, 137.7, 131.7, 128.4, 127.9, 127.8, 122.4, 113.5, 97.7, 75.4, 70.9, 70.0, 63.3, 55.4, 26.4. HRMS (ESI) calcd for C₂₁H₂₂O₅+H 355.1545, found 355.1547.

2.19 ((2R,3S)-3-(benzyloxy)-5-((2R,5S,6R)-5-(benzyloxy)-6-(((4-methoxy benzoyl)oxy) methyl)tetrahydro-2H-pyran-2-yl)-3,4-dihydro-2H-pyran-2-yl)methyl 4-methoxy ben zoate (27)

A stirred solution of compound **26** (100 mg, 0.28 mmol) in dry dichloromethane (10 mL) under inert atmosphere was added 4 A MS and the suspension was cooled to -78 °C. TMSOTf (5 μ L, 0.028 mmol) was added dropwise and continued stirring at the same temperature. After 15 min the reaction was quenched by the addition of Et₃N (~10 μ L) and allowed it to come to room temperature. The reaction mixture was filtered through a small pad of Celite and the filter cake was washed with dichloromethane (10 mL). Evaporation of the solvent under reduced pressure follow by column chromatography of the obtained crude product provided the pure ((2*R*,3*S*)-3-(benzyloxy)-5-((2*R*,5*S*,6*R*)-5-(benzyloxy)-6-(((4-methoxybenzoyl)oxy)methyl) tetrahydro-2*H*-pyran-2-yl)-3,4-dihydro-2*H*-pyran-2-yl)methyl 4-methoxy benzoate **27** (51 mg) as a colorless gum in 51% yield. R_f: 0.6 (30% EtOAc/hexanes). [α]_D²⁵ +78.50 (c 1.0, CHCl₃); IR (neat): 3015, 2934, 2854, 1709, 1673, 1605, 1510 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 8.02(d, 2H, J = 8.8 Hz), 7.96 (d, 2H, J = 8.8 Hz), 7.25-7.35 (m, 10H), 6.90-6.92 (m, 4H), 6.48

(s, 1H), 4.61-4.69 (m, 4H), 4.49 -4.57 (m, 3H), 4.46 (d, 1H, J = 11.6 Hz), 4.00-4.04 (m, 1H), 3.87 (s, 3H), 3.81-3.83 (m, 5H), 3.67-3.71 (m, 1H), 3.41-3.47 (m, 1H), 2.61 (dd, 1H, J = 6.0 Hz, J = 16.4 Hz), 2.41-2.42(m, 1H), 2.08-2.19 (m, 1H), 1.85-1.88 (m, 1H), 1.56-1.66 (m, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 166.14, 166.03, 163.31, 163.19, 139.70, 137.88, 137.55, 131.69, 131.59, 128.38, 128.36, 127.80, 127.72, 122.70, 122.26, 113.47, 110.65, 78.85, 77.15, 75.33, 73.09, 70.72, 70.54, 69.52, 64.28, 63.00, 55.35, 55.29, 29.03, 28.63, 26.75. HRMS (ESI) calcd for C₄₂H₄₄O₁₀+Na⁺ 731.2827, found 731.2832.

2.20 (2R,3S,4S)-3-(benzyloxy)-2-((benzyloxy)methyl)-4-(2-((4-methoxybenzyl) oxy) ethyl)-3,4-dihydro-2H-pyran (29)

A stirred solution of 3-deoxy-3-*C*-branched D-glucal **28** (0.26 g, 0.734 mmol) in anhydrous THF (10 mL) under inert atmosphere was cooled to 0 °C. NaH (60%, 44 mg, 1.1 mmol) was added portion wise to the solution with stirring over a period of 2 min. After continuous stirring for further 1 h at 0 °C, *p*-methoxy benzyl chloride (0.15 g, 0.95 mmol), TBAI (cat) were added and stirring was continued for overnight at 25 °C. The reaction was quenched with slow addition of cold water and extracted with ethyl acetate. The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated under reduced pressure to obtain crude product. Purification of the crude product by column chromatography over silica gel using hexanes and ethyl acetate provided pure (2*R*,3*S*,4*S*)-3-(benzyloxy)-2-((benzyloxy)methyl)-4-(2-((4-methoxybenzyl) oxy) ethyl)-3,4-dihydro-2*H*-pyran **29** (334 mg) in 96% yield. R_f: 0.3 (10% EtOAc/hexanes). [α]²⁵ 2.304 (*c* 1.0, CHCl₃); IR (neat): 3406, 3065, 3030, 2932, 2861, 1611, 1512 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ 7.26 - 7.36 (m, 12H), 6.89 (d, 2H, J = 9.0 Hz), 6.33 (dd, 1H, J = 1.0 Hz, J = 6.0 Hz), 4.68 (dd, 1H, J = 4.5 Hz, J = 6.0

Hz), 4.58-4.63 (m, 3H), 4.51 (d, 1H, J = 11.5 Hz), 4.44 (bs, 2H), 4.09-4.12 (m, 1H), 3.82 (s, 3H), 3.78-3.81 (m, 1H), 3.74-3.75 (m, 2H), 3.52-3.55 (m, 2H), 2.59-2.64 (m, 1H), 2.03-2.09 (m, 1H), 1.49-1.55 (m, 1H). ¹³C NMR (125 MHz, CDCl₃): δ 159.15, 142.13, 138.16, 138.10, 130.69, 129.17, 128.32, 127.79, 127.72, 127.62, 127.57, 113.77, 101.73, 73.56, 73.11, 73.00, 72.53, 71.14, 69.51, 67.65, 55.25, 30.94, 29.69. **HRMS** (ESI) calcd for C₃₀H₃₄O₅+H 475.2484, found 475.2482.

2.21 4-(benzyloxy)-3-((benzyloxy)methyl)-9-(4-methoxybenzyl)-2,8-dioxabicyclo[3.3.1] nonane (30a and 30b)

A stirred solution of compound **29** (110 mg, 0.23 mmol) in dry dichloromethane (10 mL) under inert atmosphere was added 4 A MS and the suspension was cooled to -78 °C. TMSOTf (4 μ L, 0.023 mmol) was added dropwise and continued stirring at the same temperature. After 15 min the reaction was quenched by the addition of Et₃N (~8 μ L) and allowed it to come to room temperature. The reaction mixture was filtered through a small pad of Celite and the filter cake was washed with dichloromethane (10 mL). Evaporation of the solvent under reduced pressure follow by column chromatography of the obtained crude product provided an inseparable diastereomeric mixture, 1:1 ratio, of bicyclic acetals **30a** and **30b** (66 mg) as a colorless gum. Yield 60%. R_f: 0.5 (10% EtOAc/Toluene). IR (neat): 3030, 2908, 2861, 2359, 1611, 1511 cm⁻¹. ¹H NMR (**400 MHz, CDCl₃**): δ 7.26 - 7.40 (m, 16H), 7.18-7.22 (m, 4H), 7.13 (d, 2H, J = 8.5 Hz), 7.04 (d, 2H, J = 8.5 Hz), 6.87 (d, 2H, J = 8.5 Hz), 6.84 (d, 2H, J = 8.5 Hz), 5.01 (s, 1H), 4.87 (s, 1H), 4.71 (d, 1H, J = 12.0 Hz), 4.63 (d, 1H, J = 12.0 Hz), 4.44-4.56 (m, 4H), 4.26-4.28 (m, 2H), 4.14-4.21 (m, 2H), 4.03-4.10 (m, 2H), 3.96 (dd, 1H, J = 8.5 Hz, J = 11.5 Hz), 3.82 (bs, 6H), 3.71-3.78 (m, 5H), 3.65 (dd, 1H, J = 2.0 Hz, J = 10.5

Hz), 3.55 (dd, 1H, J = 4.) Hz, J = 10.5 Hz), 2.95 (dd, 1H, J = 7.5 Hz, J = 14.0 Hz), 2.74-2.78 (m, 2H), 2.69 (dd, 1H, J = 8.5 Hz, J = 14.0 Hz), 2.12-2.31 (m, 5H), 1.90 (dd, 1H, J = 5.5 Hz, J = 14.5 Hz), 1.73-1.82(m, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 158.05, 158.00, 138.49, 138.26, 138.02, 137.91, 131.30, 129.87, 129.82, 128.35, 128.30, 128.28, 127.86, 127.84, 127.73, 127.68, 127.56, 127.48, 113.92, 113.89, 94.80, 93.75, 76.17, 73.38, 73.17, 70.72, 70.60, 70.26, 70.10, 61.98, 61.25, 55.27, 40.33, 40.06, 34.85, 34.10, 28.36, 26.79, 23.81, 18.22. HRMS (ESI) calcd for C₃₀H₃₄O₅+Na⁺ 497.2298, found 497.2297.

2.22 (2R,3R,4S)-3-(benzyloxy)-2-((benzyloxy)methyl)-4-(2-((4-methoxybenzyl) oxy) ethyl)-3,4-dihydro-2H-pyran (32)

A stirred solution of 3-deoxy-3-*C*-branched-D-galactal **31** (400 mg, 1.13 mmol) in anhydrous THF (10 mL) under inert atmosphere was cooled to 0 °C. NaH (60%, 70 mg, 1.7 mmol) was added portion wise to the solution with stirring over a period of 20 min. After continuous stirring for further 1 h at 0 °C, *p*-methoxy benzyl chloride (230 mg, 1.467 mmol), TBAI (cat) were added and stirring was continued for overnight at 25 °C. The reaction was quenched with slow addition of cold water and extracted with ethyl acetate. The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated under reduced pressure to obtain crude product. Purification of the crude product by column chromatography over silica gel using hexanes and ethyl acetate provided pure (2*R*,3*R*,4*S*)-3-(benzyloxy)-2-((benzyloxy)methyl)-4-(2-((4-methoxybenzyl)oxy) ethyl)-3,4-dihydro-2*H*-pyran **32** (509.5 mg) in 95% yield. R_f: 0.45 (10% EtOAc/hexanes). [α]²⁷ 27.557 (*c* 1.0, CHCl₃); IR (neat): 3054, 3030, 2912, 2863, 1722, 1648, 1611, 1512 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 7.28 - 7.39 (m, 12H), 6.91 (d, 2H, J = 8.4 Hz), 6.45 (d, 1H, J = 6.4 Hz), 4.72 (t, 1H, J = 5.2 Hz), 4.64 (d,

1H, J = 12.0 Hz), 4.59 (d, 1H, J = 12.4 Hz), 4.43-4.51 (m, 4H), 4.04 (t, 1H, J = 5.6 Hz), 3.82 (s, 3H), 3.78 (dd, 1H, J = 11.2 Hz), 3.60 (dd, 1H, J = 4.8 Hz, J = 10.0 Hz), 3.51-3.55 (m, 3H), 2.41-2.43 (m, 1H), 1.55-1.71(m, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 159.14, 142.51, 138.08, 138.00, 130.36, 129.25, 128.30, 128.27, 128.05, 127.77, 127.67, 127.59, 113.74, 102.50, 74.45, 73.41, 72.67, 72.62, 71.22, 69.25, 67.11, 55.19, 35.35, 31.25. HRMS (ESI) calcd for $C_{30}H_{34}O_5+Na^+$ 497.2298, found 497.2297.

2.23 (1S,3R,4R,5S,9R)-4-(benzyloxy)-3-((benzyloxy)methyl)-9-(4-methoxybenzyl)-2,8-dioxabi cyclo[3.3.1]nonane (33a) and (1S,3R,4R,5S,9S)-4-(benzyloxy)-3-((benzyloxy)methyl)-9-(4-methoxybenzyl)-2,8-dioxabicyclo[3.3.1]nonane (33b)

BnO OBn

TMSOTf,
$$CH_2CI_2$$

-78 °C, 15 min

50%

BnO

33a = 1,2-cis

33b = 1,2-trans

A stirred solution of compound **32** (104 mg, 0.22 mmol) in dry dichloromethane (10 mL) under inert atmosphere was added 4 A MS and the suspension was cooled to -78 °C. TMSOTf (4 μ L, 0.022 mmol) was added dropwise and continued stirring at the same temperature. After 15 min the reaction was quenched by the addition of Et₃N (~8 μ L) and allowed it to come to room temperature. The reaction mixture was filtered through a small pad of Celite and the filter cake was washed with dichloromethane (10 mL). Evaporation of the solvent under reduced pressure followed by column chromatography of the obtained crude product provided the 1:1 diastereomeric mixture of 2-*C*-branced bicyclic acetal derivatives **33a** and **33b** (52 mg) as a colorless gum in 50% yield. R_f: 0.4 (20% EtOAc/Hexane). **33a**: $[\alpha]_D^{25}$ -14.00 (*c* 0.1, CHCl₃); IR (neat): 3061, 3030, 2951, 2921, 2853, 1720, 1611, 1511 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ 7.28 - 7.34 (m, 8H), 7.16 (dd, 2H, J = 2.0 Hz, J = 5.5 Hz), 7.14 (d, 2H, J = 8.5 Hz), 6.85 (d, 2H, J = 8.5 Hz), 4.91 (s, 1H), 4.60 (d, 1H, J = 12.0 Hz), 4.56 (dt, 1H, J = 3.5 Hz, J = 6.0 Hz), 4.2 (d, 1H, J = 12.0 Hz), 4.38 (d, 1H, J = 11.5 Hz), 4.31 (d, 1H, J = 11.5 Hz), 4.20 (dt, 1H, J

= 6.5 Hz, J = 12.0 Hz), 4.04-4.09 (m, 1H), 3.81 (s, 3H), 3.72 (dd, 1H, J = 6.5 Hz, J = 9.5 Hz),3.61-3.64 (m, 2H), 2.86 (dd, 1H, J = 7.0 Hz, J = 14.0 Hz), 2.69 (dd, 1H, J = 10..0 Hz, J = 14.0Hz), 2.51-2.53 (m, 1H), 2.34-2.43 (m, 1H), 2.11-2.16 (m, 1H), 1.44 (dd, 1H, J = 6.5 Hz, J =14.5 Hz). ¹³C NMR (125 MHz, CDCl₃): δ 158.07, 138.24, 131.39, 129.78, 128.35, 128.25, 127.87, 127.65, 127.61, 127.55, 113.88, 94.78, 77.81, 74.17, 73.61, 71.51, 70.50, 61.48, 55.27, 34.95, 34.50, 28.08, 20.84. **HRMS (ESI)** calcd for $C_{30}H_{34}O_5+Na^+$ 497.2298, found 497.2302. **33b**: $[\alpha]_D^{25}$ -13.00 (c 0.5, CHCl₃); IR (neat): 2954, 2923, 2853, 1610, 1511 cm⁻¹. ¹**H NMR (500 MHz, CDCl₃):** δ 7.29 - 7.36 (m, 10H), 7.09 (d, 2H, J = 8.5 Hz), 6.79 (d, 2H, J = 8.5 Hz), 5.11 (bs, 1H), 4.66 (d, 1H, J = 12.0 Hz), 4.63 (d, 1H, J = 12.5 Hz), 4.58 (dt, 1H, J = 3.0 Hz, J = 6.0Hz), 4.53 (d, 1H, J = 12.0 Hz), 4.40 (d, 1H, J = 11.5 Hz), 3.95 (ddd, 1H, J = 3.5 Hz, J = 8.0Hz, J = 11.5 Hz), 3.73-3.83 (m, 6H), 3.32 (bs, 1H), 3.04 (dd, 1H, J = 8.5 Hz, J = 14.0 Hz), 2.95 (dd, 1H, J = 7.0 Hz, J = 14.0 Hz), 2.41 (bd, 1H, 10.0 Hz), 2.16 (t, 1H, J = 8.0 Hz), 2.01-2.08 (m, 1H), 1.67-1.73 (m, 1H). ¹³C NMR (125 MHz, CDCl₃): δ 157.83, 138.50, 138.29, 132.87, 130.11, 128.32, 128.30, 127.88, 127.56, 127.49, 113.67, 95.79, 78.86, 73.53, 72.15, 70.05, 67.83, 59.89, 55.25, 37.24, 35.22, 27.73, 27.29. **HRMS (ESI)** calcd for $C_{30}H_{34}O_5+Na^+$ 497.2298, found 497.2299.

$2.24 \qquad (2R,3S,4S)-3-(benzyloxy)-2-((benzyloxy)methyl)-4-(2-((3-methylbut-2-ene-1-yl)oxy)ethyl)-3,4-dihydro-2H-pyran (34)$

A stirred solution of 3-deoxy-3-*C*-branched-D-glucal **28** (252 mg, 0.71 mmol) in anhydrous THF (10 mL) under inert atmosphere was cooled to 0 °C. NaH (60%, 57 mg, 1.42 mmol) was added portion wise to the solution with stirring over a period of 20 min. After continuous stirring for further 1 h at 0 °C, 3,3-dimethyl allyl bromide (159 mg, 1.07 mmol),

TBAI (cat) were added and stirring was continued for overnight at 25 °C. The reaction was quenched with slow addition of cold water and extracted with ethyl acetate. The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated under reduced pressure to obtain crude product. Purification of the crude product by column chromatography over silica gel using hexanes and ethyl acetate provided pure (2R,3S,4S)-3-(benzyloxy)-2-((benzyloxy)methyl)-4-(2-((3-methylbut-2-ene-1-yl)oxy)ethyl)-3,4-dihydro-2*H*-pyran **34** (285 mg) in 95% yield. R_f: 0.45 (10% EtOAc/hexanes). [α]_D²⁵ 39.78 (c 1.82, CHCl₃); IR (neat): 3385, 3063, 3030, 2928, 2862, 1722, 1603 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 7.30 - 7.36 (m, 10H), 6.35 (dd, 1H, J = 1.2 Hz, J = 6.0 Hz), 5.35-5.39 (m, 1H), 4.72 (dd, 1H, J = 4.8 Hz, J = 6.0 Hz), 4.61-4.66 (m, 3H), 4.53 (d, 1H, J = 11.6 Hz), 4.10-4.14 (m, 1H), 3.96 (d, 2H, J = 6.8 Hz), 3.81 (dd, 1H, J = 5.6 Hz, J = 8.0 Hz), 3.74-3.75 (m, 2H), 3.49-3.53 (m, 2H), 2.58-2.63 (m, 1H), 1.99-2.08 (m, 1H), 1.77 (s, 3H), 1.69 (s, 3H), 1.47-1.56 (m, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 142.09, 138.06, 138.02, 136.66, 128.30, 127.77, 127.71, 127.61, 127.56, 121.24, 101.67, 73.51, 73.02, 72.91, 71.07, 69.42, 67.67, 67.22, 30.88, 29.61, 25.76, 17.99. HRMS (ESI) calcd for C₂₇H₃₄O₄+Na⁺ 445.2349, found 445.2361.

2.25 Diastereomeric mixture of (1S,3R,4S,5S)-4-(benzyloxy)-3-((benzyloxy)methyl)-9-(3-methylbut-2-en-1-yl)-2,8-dioxabicyclo[3.3.1]nonane (35a and 35b)

A stirred solution of compound **34** (150 mg, 0.35 mmol) in dry dichloromethane (10 mL) under inert atmosphere was added 4 A MS and the suspension was cooled to -78 $^{\circ}$ C. TMSOTf (6.4 μ L, 0.035 mmol) was added dropwise and continued stirring at the same temperature. After 15 min the reaction was quenched by the addition of Et₃N (~15 μ L) and allowed it to come to room temperature. The reaction mixture was filtered through a small pad

of Celite and the filter cake was washed with dichloromethane (10 mL). Evaporation of the solvent under reduced pressure follow by column chromatography of the obtained crude product provided an inseparable diastereomeric mixture of 35a and 35b (75 mg) as a colorless gum in 50% yield. R_f: 0.35 (10% EtOAc/hexanes).IR (neat): 3031, 2923, 1720, 1512 cm⁻¹. ¹H **NMR** (400 MHz, CDCl₃): δ 7.22 - 7.36 (m, 10H), 5.11 (t, 0.5H, 7.6 Hz), 5.06 (t, 0.5H, J = 6.8Hz), 5.00 (s, 0.5H), 4.88 (s, 0.5H), 4.67 (d, 0.5H, J = 12.0 Hz), 4.65 (d, 0.5H, J = 12.0 Hz), 4.58 (d, 0.5H, J = 11.2 Hz), 4.53 (d, 0.5H, J = 12.0 Hz), 4.51 (d, 0.5H, J = 12.0 Hz), 4.50 (d, 0.5H, J = 12.0 Hz), 4.33 (d, 0.5H, J = 11.2 Hz), 4.31 (d, 0.5H, J = 11.6 Hz), 4.27 (dd, 0.5H, 2.4 Hz, J = 6.0 Hz), 4.25 (dd, 0.5 H, J = 2.4 Hz, J = 4.0 Hz), 4.10 - 4.18 (m, 1 H), 4.06 (t, 0.5 H, 1 H)J = 6.8 Hz), 4.03 (t, 0.5H, J = 6.8 Hz), 3.89 – 3.95 (m, 1H), 3.79-3.87 (m, 1H), 3.65-3.76 (m, 1.5H), 3.58 (dd, 0.5H, J = 4.0 Hz, J = 10.6 Hz), 2.34-2.41 (m, 1H), 2.19-2.28 (m, 2H), 1.99-2.09 (m, 1H), 1.80-1.91 (m, 1H), 1.73 (s, 1.5H), 1.72 (s, 1.5H), 1.67 (s, 1.5H), 1.57 (s, 1.5H). ¹³C NMR (100 MHz, CDCl₃): δ 138.46, 138.33, 138.19, 138.04, 133.71, 128.38, 128.34, 128.30, 128.21, 127.85, 127.75, 127.54, 127.42, 121.41, 121.33, 95.03, 94.02, 76.27, 73.37, 72.78, 70.77, 70.69, 70.63, 70.44, 70.05, 61.92, 61.14, 38.58, 28.76, 28.12, 27.60, 27.49, 25.81, 23.73, 18.34, 17.90, 17.87. **HRMS (ESI)** calcd for $C_{27}H_{34}O_4+NH_4^+$ 440.2795, found 440.2799.

2.26 (2*R*,3*R*,4*S*)-3-(benzyloxy)-2-((benzyloxy)methyl)-4-(2-((3-methylbut-2-ene-1-yl)oxy) ethyl)-3,4-dihydro-2*H*-pyran (36)

A stirred solution of 3-deoxy-3-C-branched-D-galactal **31** (320 mg, 0.90 mmol) in anhydrous THF (10 mL) under inert atmosphere was cooled to 0 °C. NaH (60%, 73 mg, 1.80 mmol) was added portion wise to the solution with stirring over a period of 20 min. After

continuous stirring for further 1 h at 0 °C, 3,3-dimethyl allyl bromide (202 mg, 1.35 mmol), TBAI (cat) were added and stirring was continued for overnight at 25 °C. The reaction was quenched with slow addition of cold water and extracted with ethyl acetate. The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated under reduced pressure to obtain crude product. Purification of the crude product by column chromatography over silica gel using hexanes and ethyl acetate provided pure (2R,3R,4S)-3-(benzyloxy)-2-((benzyloxy)methyl)-4-(2-((3-methylbut-2-ene-1-yl)oxy)ethyl)-3,4-dihydro-2*H*-pyran **36** (363 mg) in 95% yield. R_f: 0.65 (20% EtOAc/hexanes). $[\alpha]_D^{25}$ 28.6 (c 0.622, CHCl₃); IR (neat): 3428, 3062, 3029, 2922, 2854, 1648 cm⁻¹. ¹**H NMR (400 MHz, CDCl₃):** δ 7.28 - 7.38 (m, 10H), 6.45 (d, 1H, J = 6.0 Hz), 5.35-5.39 (m, 1H), 4.73 (t, 1H, J = 5.2 Hz), 4.67 (d, 1H, J = 12.0 Hz), 4.58(d, 1H, J = 12.0 Hz), 4.48 (d, 1H, J = 12.4 Hz), 4.47 (d, 1H, J = 12.4 Hz), 4.01-4.04 (m, 1H), 3.97 (d, 2H, J = 6.8 Hz), 3.77 (dd, 1H, J = 7.2 Hz, J = 10.0 Hz), 3.59 (dd, 1H, J = 4.4 Hz, J =10.0 Hz), 3.54 (bs, 1H), 3.48 (t, 2H, J = 6.0 Hz), 2.40 (bs, 1H), 1.77 (s, 3H), 1.70 (s, 3H), 1.54-1.67 (m, 2H). ¹³C NMR (125 MHz, CDCl₃): δ 142.5, 138.1, 138.0, 136.8, 128.3, 128.1, 127.8, 127.7, 127.6, 121.1, 102.6, 74.5, 73.5, 72.7, 71.2, 69.3, 67.3, 67.2, 35.4, 31.2, 25.8, 18.0. **HRMS (ESI)** calcd for $C_{27}H_{34}O_4+Na^+$ 445.2349, found 445.2348.

2.27 (1S,3R,4R,5S,9R)-4-(benzyloxy)-3-((benzyloxy)methyl)-9-(3-methylbut-2-en-1-yl) -2,8-dioxabicyclo[3.3.1]nonane (37a) and (1S,3R,4R,5S,9S)-4-(benzyloxy)-3-((benzyloxy)methyl)-9-(3-methylbut-2-en-1-yl)-2,8-dioxabicyclo[3.3.1]nonane (37b)

BnO OBn

TMSOTf,
$$CH_2CI_2$$
 $-78 \, ^{\circ}C$, 15 min

50%

BnO

(1:1)

37a = 1,2-cis

37b = 1.2-trans

A stirred solution of compound **36** (120 mg, 0.28 mmol) in dry dichloromethane (10 mL) under inert atmosphere was added 4 A MS and the suspension was cooled to -78 °C. TMSOTf (5.2 µL, 0.028 mmol) was added dropwise and continued stirring at the same temperature. After

15 min the reaction was quenched by the addition of Et₃N (~12 µL) and allowed it to come to room temperature. The reaction mixture was filtered through a small pad of Celite and the filter cake was washed with dichloromethane (10 mL). Evaporation of the solvent under reduced pressure follow by column chromatography of the obtained crude product provided the mixture of 2-C-branched bicyclic acetal derivatives 37a and 37b (60 mg) as a colorless gum in 50% yield. R_f: 0.55 (20% EtOAc/hexanes). **37a**: $[\alpha]_D^{25}$ -3.00 (c 0.1, CHCl₃); IR (neat): 3087, 3063, 3029, 2953, 2922, 2854, 1510 cm⁻¹. ¹**H NMR (500 MHz, CDCl₃):** δ 7.29 - 7.35 (m, 10H), 5.10 (t, 1H, J = 6.5 Hz), 4.89 (s, 1H), 4.61 (d, 1H, J = 12.0 Hz), 4.60 (d, 1H, J = 12.0 Hz), 4.51-4.56(m, 2H), 4.47 (d, 1H, J = 12.0 Hz), 4.13-4.19 (m, 1H), 3.97-4.01 (m, 1H), 3.73 (dd, 1H, J = 6.5)Hz, J = 9.5 Hz), 3.62-3.65 (m, 2H), 2.22-2.32 (m, 4H), 2.10-2.16 (m, 1H), 1.72 (s, 3H), 1.66 (s, 3H). 1.44 (dd, 1H, J = 7.5 Hz, J = 14.5 Hz). ¹³C NMR (125 MHz, CDCl₃): δ 138.53, 138.30, 133.51, 128.35, 128.32, 127.87, 127.60, 127.58, 121.55, 94.85, 78.11, 73.85, 73.62, 71.71, 70.55, 61.40, 33.71, 29.06, 27.95, 25.77, 21.12, 17.87. **HRMS (ESI)** calcd for $C_{27}H_{34}O_4+Na^+$ 445.2349, found 445.2350. **37b:** $[\alpha]_D^{25}$ -11.00 (c 0.1, CHCl₃); IR (neat): 3087, 3062, 3029, 2922, 2854, 1510 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ 7.29 - 7.34 (m, 10H), 5.12-5.13 (m, 2H), 4.69 (d, 1H, J = 11.5 Hz), 4.60 (d, 1H, J = 12.0 Hz), 4.54 (td, 1H, J = 3.0 Hz, J = 6.0 Hz), 4.51 (d, 1H, J = 12.0 Hz), 4.40 (d, 1H, J = 12.0 Hz), 3.96 (ddd, 1H, J = 3.5 Hz, J = 8.0 Hz, J = 12.0 Hz, J = 12.0= 12.0 Hz), 3.82 (ddd, 1H, J = 6.5 Hz, J = 10.0 Hz, J = 12.0 Hz), 3.73-3.80 (m, 2H), 3.69 (dd, 1H, J = 6.5 Hz, J = 9.5 Hz), 3.30 (s, 1H), 2.56 (dt, 1H, J = 8.0 Hz, J = 15.0 Hz), 2.43 (d, 1H, J = 10.0 Hz), 2.34 (dt, 1H, J = 6.5 Hz, J = 14.5 Hz), 2.02-2.09 (m, 1H), 1.90 (t, 1H, J = 8.0Hz), 1.69 (s, 3H), 1.58 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ 138.69, 138.40, 133.10, 128.30, 128.22, 127.82, 127.51, 127.38, 127.36, 122.94, 96.11, 78.70, 73.48, 71.81, 70.09, 67.80, 59.86, 35.70, 28.70, 27.64, 27.19, 25.73, 17.93. **HRMS (ESI)** calcd for $C_{27}H_{34}O_4+Na^+$ 445.2349, found 445.2345.

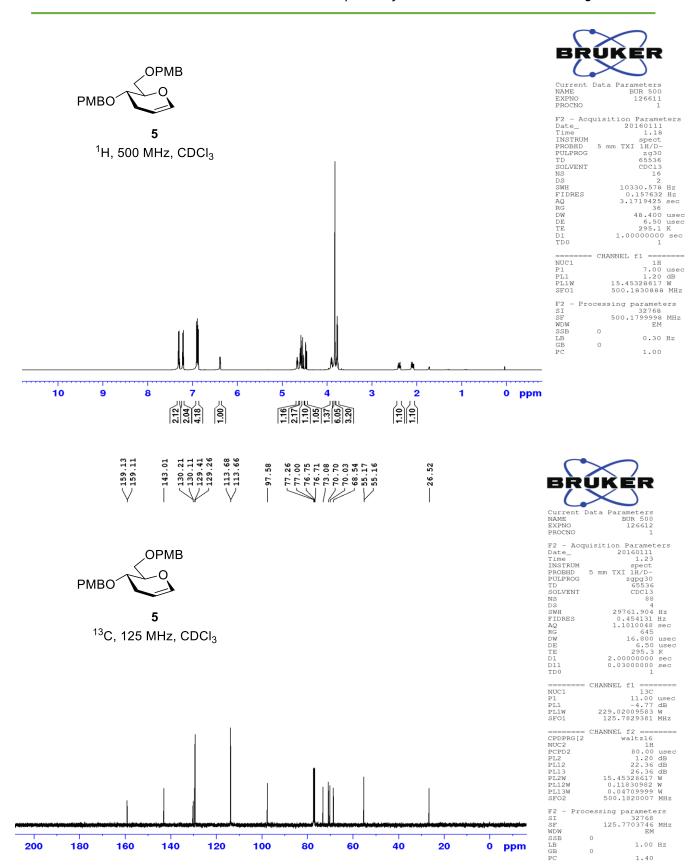
2.28 2-((2R,3S,4S)-3-(benzyloxy)-2-((benzyloxy)methyl)-3,4-dihydro-2H-pyran-4-yl) ethyl 4-methoxy benzoate (38)

$$\begin{array}{c} \text{BnO} \\ \text{BnO} \\ \text{OH} \end{array} \begin{array}{c} \text{p-Methoxy benzoyl} \\ \text{bromide, Et}_3\text{N,} \\ \text{CH}_2\text{Cl}_2 \\ \hline 0 \text{ °C, 1 hr} \\ 70\% \\ \end{array} \begin{array}{c} \text{BnO} \\ \text{OPMBz} \\ \end{array}$$

A stirred solution of 3-deoxy-3-C-branched D-glucal 28 (0.25 g, 0.7 mmol) in anhydrous DCM (15 mL) under inert atmosphere was cooled to 0 °C.Et₃N (0.293 mL, 2.1 mmol) was added drop wise to the solution with stirring over a period of 5 min. After continuous stirring for further 20 min at 0 °C, p-methoxy benzoyl chloride (0.18 g, 1.05 mmol) was added and stirring was continued for 1 h at 0 °C. The reaction was quenched with slow addition of cold water and extracted with ethyl acetate. The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated under reduced pressure to obtain crude product. Purification of the crude product by column chromatography over silica gel using hexanes and ethyl acetate provided the pure 3-C-branched glycal 38 (239 mg) in 70% yield. R_f: 0.7 (30% EtOAc/hexanes). $[\alpha]_D^{25}$ 99.30 (c 1.0, CHCl₃); IR (neat): 3013, 2923, 2864, 1707, 1649, 1605, 1510 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 8.02 (d, 2H, J = 8.8 Hz), 7.28-7.37 (m, 10H), 6.94 (d, 2H, J = 8.8 Hz), 6.39 (dd, 1H, J = 1.2 Hz, J = 6.0 Hz), 4.78 (dd, 1H, J = 0.8 Hz, J = 6.0Hz), 4.64 (d, 1H, J = 11.6 Hz), 4.62 (d, 1H, J = 5.2 Hz), 4.60 (d, 1H, J = 12.0 Hz), 4.56 (d, 1H, J = 11.6 Hz), 4.40-4.44 (m, 2H), 4.11-4.15 (m, 1H), 3.90 (dd, 1H, J = 5.6 Hz, J = 8.4 Hz), 3.88 (s, 3H), 3.79 (m, 2H), 2.59-2.66 (m, 1H), 2.19-2.28 (m, 1H), 1.66-1.75 (m, 1H). ¹³C NMR (100 **MHz, CDCl₃):** δ 166.23, 163.28, 142.61, 138.03, 137.83, 131.48, 128.35, 128.30, 127.80, 127.72, 127.68, 127.56, 122.71, 113.56, 101.08, 73.54, 72.94, 72.90, 71.39, 69.30, 62.71, 55.34, 30.22, 30.00. **HRMS (ESI)** calcd for $C_{30}H_{32}O_6+Na^+$ 511.2091, found 511.2095.

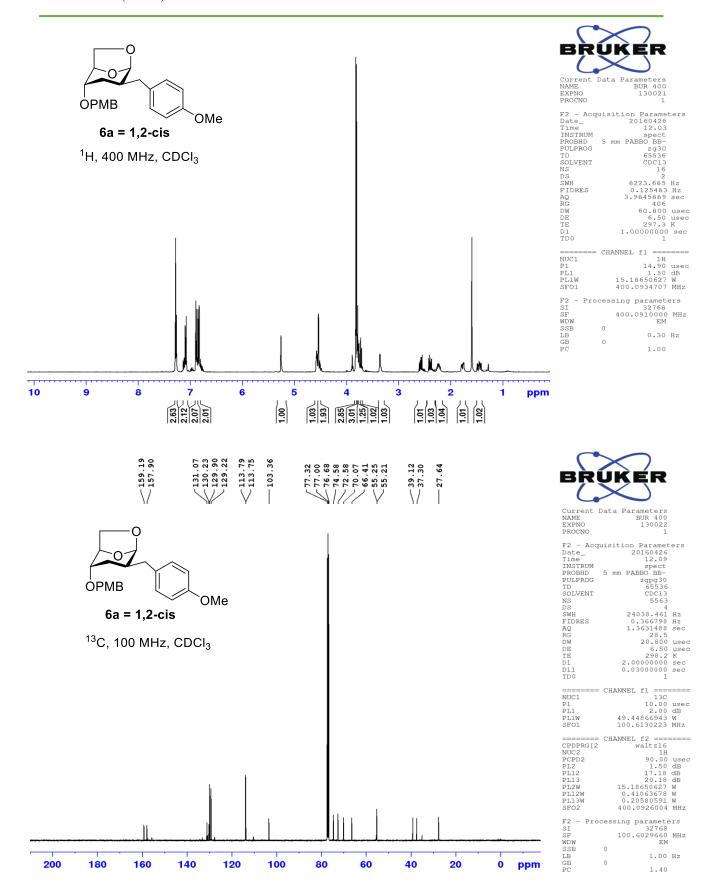
2.29 2-((2R,3S,4S)-3-(benzyloxy)-5-((2R,4S,5S,6R)-5-(benzyloxy)-6-((benzyloxy)meth yl)-4-((4-methoxybenzoyl)oxy)ethyl)tetrahydro-(2H-pyran-2-yl)-2-((benzyloxy)met -hyl)-3,4-dihydro-(2H-pyran-4-yl)ethyl 4-methoxybenzoate (39)

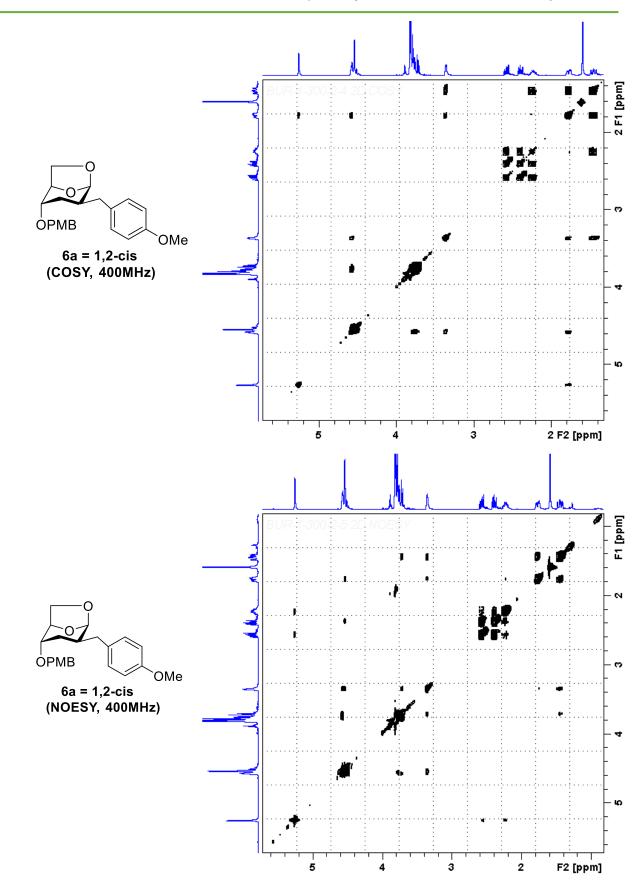
A stirred solution of compound 38 (150 mg, 0.31 mmol) in dry dichloromethane (10 mL) under inert atmosphere was added 4 A MS and the suspension was cooled to -78 °C. TMSOTf (5.6 µL, 0.031 mmol) was added dropwise and continued stirring at the same temperature. After 15 min the reaction was quenched by the addition of Et₃N (~11 µL) and allowed it to come to room temperature. The reaction mixture was filtered through a small pad of Celite and the filter cake was washed with dichloromethane (10 mL). Evaporation of the solvent under reduced pressure follow by column chromatography of the obtained crude product provided the pure 2-(β-C-glycosyl)-glycal 39 (120 mg) as a colorless gum in 80% yield. R_f: 0.45 (30% EtOAc/hexanes). $[\alpha]_D^{25}$ +61.30 (c 1.0, CHCl₃); IR (neat): 2955, 2923, 2854, 1708, 1605, 1510 cm⁻¹. ¹**H NMR** (**500 MHz, CDCl₃):** δ 7.98 (d, 2H, J = 9.0 Hz), 7.97 (d, 2H, J = 9.0 Hz), 7.23-7.35 (m, 20H), 6.92 (d, 2H, J = 9.0 Hz), 6.86 (d, 2H, J = 9.0 Hz),6.44, (s, 1H), 4.70 (d, 1H, J = 11.5 Hz), 4.62 (d, 1H, J = 12.0 Hz), 4.58 (d, 1H, J = 12.5 Hz), 4.57 (d, 1H, J = 12.0 Hz), 4.56 (d, 1H, J = 11.5 Hz), 4.49-4.53 (m, 3H), 4.43-4.48 (m, 2H), 4.34-4.38 (m, 2H), 4.14 (d, 1H, J = 9.5 Hz), 4.05-4.08 (m, 1H), 3.86 (s, 3H), 3.79-3.85 (m, 5H), 3.73 (dd, 1H, J = 4.5 Hz, J = 10.5 Hz), 3.60-3.69 (m, 3H), 3.56 (dd, 1H, J = 5.0 Hz, J9.5 Hz), 2.92 (q, 1H, J = 5.5 Hz), 2.43 (bs, 1H), 2.20 – 2.26 (m, 1H), 2.12-2.18 (m, 1H), 1.94-2.01 (m, 1H), 1.83-1.92 (m, 2H), 1.78-1.81 (m, 1H). ¹³C NMR (125 MHz, CDCl₃): δ 166.28, 166.15, 163.32, 163.20, 141.01, 138.58, 138.17, 138.10, 137.81, 131.50, 131.49, 128.36, 128.30, 128.19, 127.86, 127.71, 127.61, 127.56, 127.55, 127.32, 122.96, 122.67, 113.94, 113.61, 113.52,

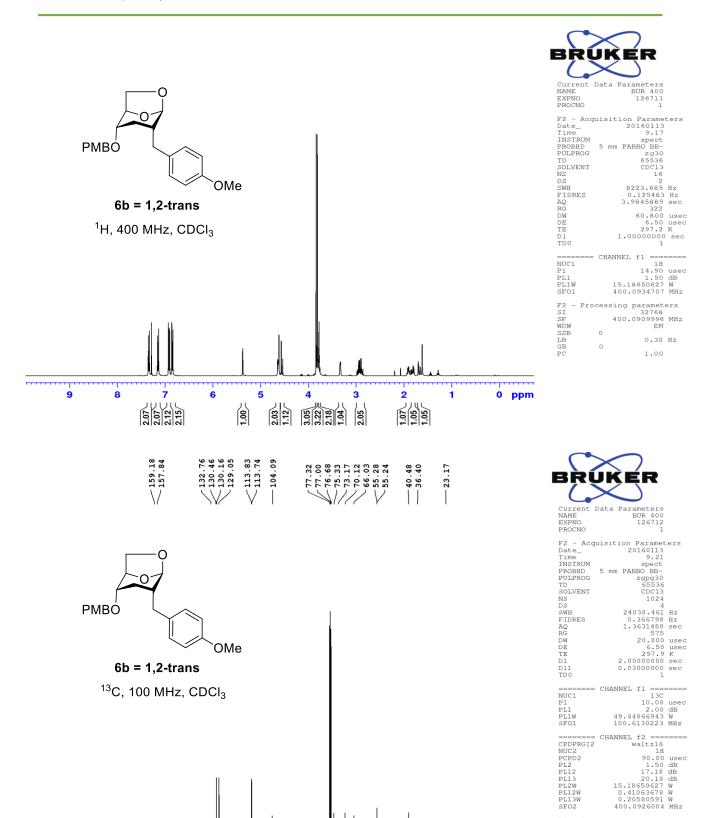

77.20, 75.49, 75.37, 73.64, 73.51, 73.34, 73.10, 71.63, 71.17, 70.76, 70.32, 69.54, 64.01, 63.58, 55.36, 55.33, 32.08, 31.48, 30.86, 29.83, 24.57 cm⁻¹ **HRMS** (**ESI**) calcd for C₆₀H₆₄O₁₂+Na⁺ 999.4290, found 999.429

2.5 References

- 1. Naredla, R. R.; Klumpp, D. A. Chem. Rev. 2003, 113, 6905–6948.
- 2. Olah, G. A. J. Am. Chem. Soc. 1972, 94, 808-820.
- 3. Carey, F. A.; Sundberg, R. J. Advanced Organic Chemistry Part B: Reactions and Synthesis 5th edition, Springer Science, New York, USA, **2008**, pp. 861-897.
- 4. Miljkovic, M. Conformations and Chemistry of Oxocarbenium Ion. In: Electrostatic and Stereoelectronic Effects in Carbohydrate Chemistry, Springer, Boston, MA, **2014**, pp. 87-115.
- 5. Vocadlo, D. J.; Davies, G. J. Curr. Opin. Chem. Biol. 2008, 12, 539-555.
- 6. Danishefsky, S. J.; Bilodeau, M. T.; *Angew. Chem. Int. Ed. Engl.* **1996**, 35, 1380–1419; *Angew. Chem.* **1996**, 108, 1482.
- 7. (a) Ferrier, R. J. *Top. Curr. Chem.* **2001**, 215, 153–175; (b) Gomez, A. M.; Lobo, F.; Uriel, C.; Lopez, J. C. *Eur. J. Org. Chem.* **2013**, 7221–7262; (c) Santhi, M.; Balasubramanian, K. K.; Bhagavathy, S. *Carbohydr. Res.* 2009, 344, 521-525; (d) Roy, R.; Rajasekaran, P.; Mallick, A.; Vankar, Y. D. *Eur. J. Org. Chem.* **2014**, 5564–5573; (e) Ansari, A. A.; Vankar, Y. D. J. Org. Chem. 2013, 78, 9383-9395; (f) Nagaraj, P.; Ramesh, N. G. *Tetrahedron* **2011**, 67, 9322-9328; (g) Nagaraj, P.; Ramesh, N. G. *Tetrahedron* **2010**, 66, 599-604.
- 8. (a) Ferrier, R. J.; Prasad, N. J. Chem. Soc., C 1969, 581-586; (b) Byerley, A. L. J.; Kenwright, A. M.; Steel, P. G. Tetrahedron Lett. 1996, 37, 9093-9096; (c) Franz, A. H.; Wei, Y.; Samoshin, V. V.; Gross, P. H. J. Org. Chem. 2002, 67, 7662-7669.
- 9. Engstrom, K. M.; Mendoza, M. R.; Navarro-Villalobos, M.; Gin, D. Y. *Angew. Chem. Int. Ed. Engl.* **2001**, 40, 1128–1130; *Angew. Chem.* **2001**, 113, 1162.
- 10. Byerley, A. L. J.; Kenwright, A. M.; Lehmann, C. W.; MacBride, J. A. H.; Steel, P. G. *J. Org. Chem.* **1998**, 63, 193–194.
- 11. Reddy, G. M.; Rao, B. U.; Sridhar, P. R. J. Org. Chem. 2016, 81, 2782–2793.
- 12. Crystal data for compound **8** (C₂₁H₂₁O₅Br), M.Wt = 433.29, orthorhombic, space group P 2₁2₁2₁ a = 6.3899 Å, b = 16.3327 Å, c = 19.0663 Å, V = 1989.84(15) Å³, Z = 4, Mo-K α radiation (λ = 0.71073), T = 297.68 K; R 1 = 0.0349, wR 2 = 0.0780 [I \geq 2 σ (I)]; R 1 = 0.0490, wR 2 = 0.0841 (all data). CCDC 1887125 (for **8**) contains the

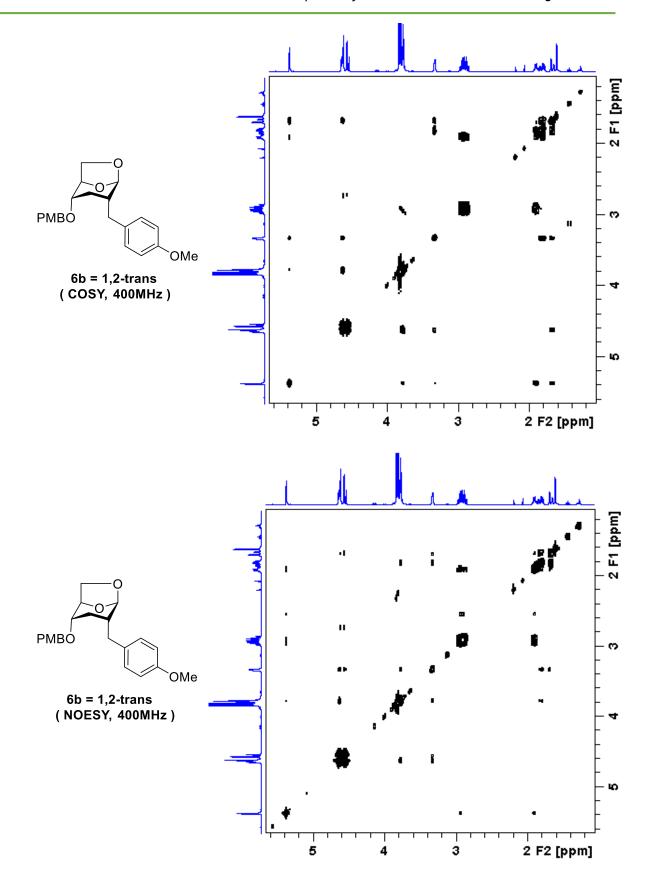

supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre.

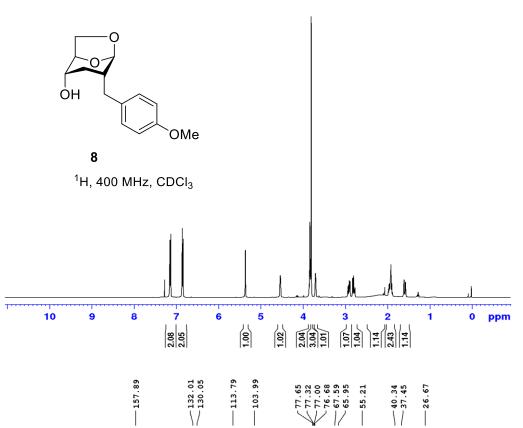

- 13. Nakamura, H.; Arata, K.; Wakamatsu, T.; Ban, Y.; Shibasaki, M. *Chem. Pharm. Bull.* **1990**, 38, 2435–2411.
- 14. Alberch, L.; Cheng, G.; Seo, S. K.; Li, X.; Boulineau, F. P.; Wei, A. *J. Org. Chem.* **2011**, 76, 2532–2547.
- 15. Trost, B. M.; Rhee, Y. H. Org. Lett. 2004, 6, 4311–4313.
- 16. Wang, B.; Xiong, D. C.; Ye, X. S. Org. Lett. **2015**, 17, 5698–5701.
- 17. Karageorgis, G.; Dow, M.; Aimon, A.; Warriner, S.; Nelson, A. *Angew. Chem. Int. Ed.* **2015**, 54, 13538–13544.
- 18. Intermediacy of **5d** is supported by mass spectroscopic data (see supporting information).
- 19. Reddy, G. M.; Sridhar, P. R. Eur. J. Org. Chem. 2014, 2014, 1496–1504.
- For the use of 2-C-branched sugars in total synthesis: (a) Sridhar, Y.; Srihari, P. Org. Biomol. Chem. 2014, 12, 2950–2959; (b) Ref. [7e]; (c) Sudharani, C.; Venukumar, P.; Sridhar, P. R. Eur. J. Org. Chem. 2014, 2014, 8085–8093; (d) Sridhar, P. R.; Seshadri, K. Tetrahedron 2012, 68, 3725–3728.



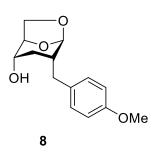
ppm

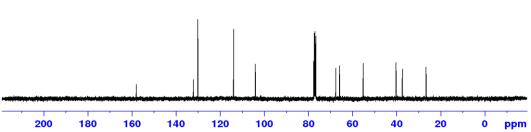
140



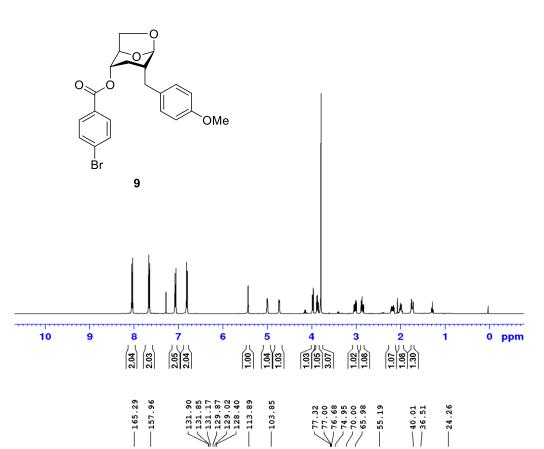


ppm

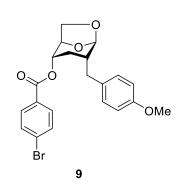

F2 - Processing parameters
SI 32768
SF 100.6029630 MHz
MDW EM
SSB 0 EM
GB 0 1.00 Hz
GB 1.40

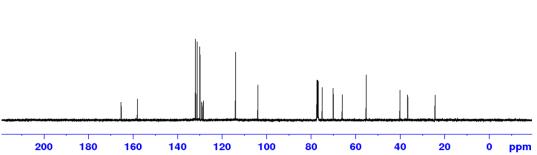


¹³C, 100 MHz, CDCl₃

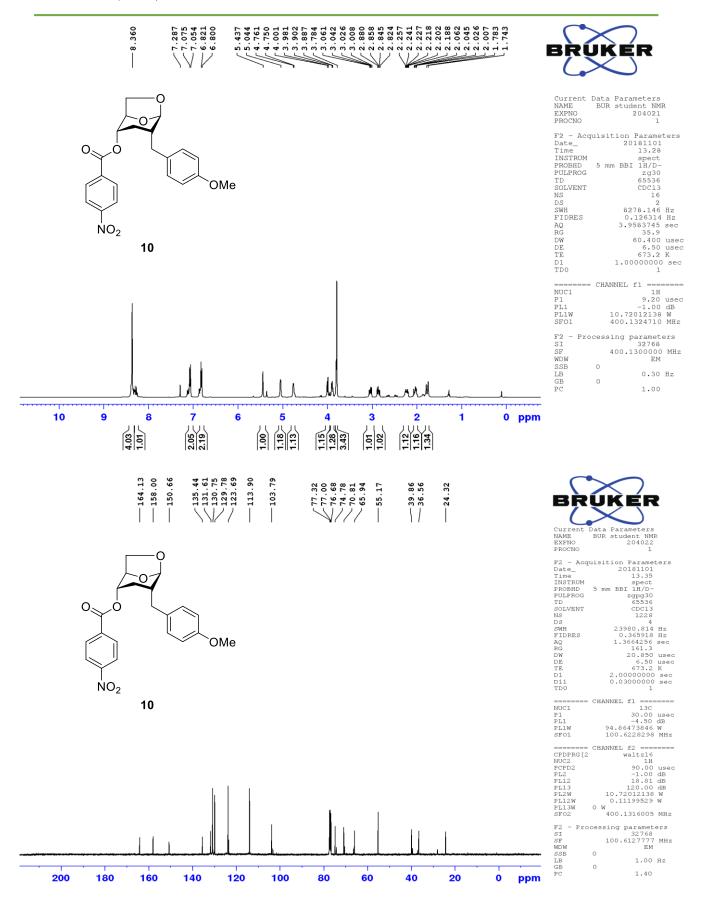


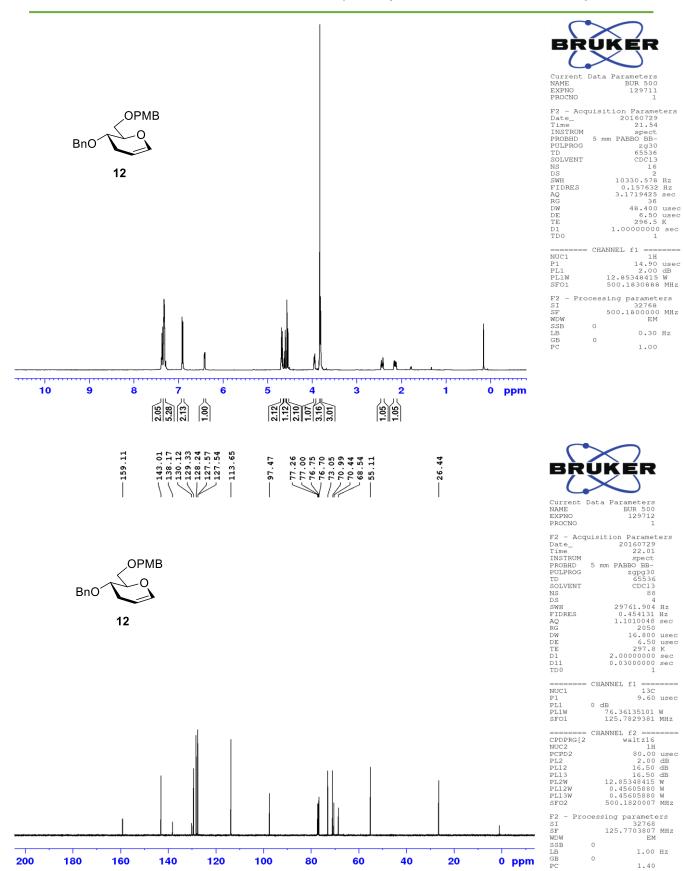
Current Data Parameters
NAME BUR 400
EXPNO 204112
PROCNO 1


CHANNEL fl ----NUC1 13C
Pl 30.00 usec
PL1 -4.50 dB
PL1W 94.86473846 W
SF01 100.6228298 MHz

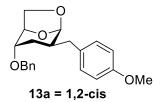

F2 - Processing parameters SI 32768 SF HOW EM EM SSB O LB GB O 1.00 Hz GB O 1.40

Current Data Parameters NAME BUR student NMR EXPNO 204711 PROCNO 1
F2 - Acquisition Parameters Date
SWH 8278.146 Hz FIDRES 0.126314 Hz AQ 3.9583745 sec RG 45.3 DW 60.400 use DE 6.50 use TE 673.2 K D1 1.00000000 sec TD0 1
CHANNEL fl
F2 - Processing parameters SI 32768 SF 400.1300022 MHz WDW EM SSB 0 LB 0.30 Hz
PC 1.00

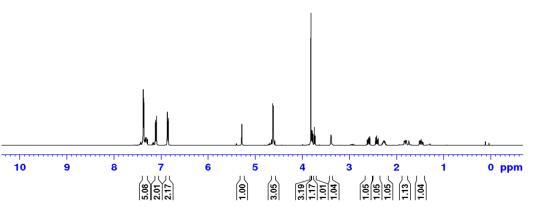

Current	Data	Parameters
NAME	BUR	student NMR
EXPNO		204712
PROCNO		1

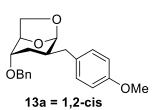

F2 - Acqu	iisit	ion	Par	amet	ers
Date_		20	181:	120	
Time			7.	.44	
INSTRUM			spe	ect	
PROBHD	5 mr	n BBI	1H,	/D-	
PULPROG			zgpo	g30	
TD			655	536	
SOLVENT			CDC	213	
NS			5	503	
DS				4	
SWH		239	80.8	814	Hz
FIDRES		0.	365	918	Hz
AQ		1.3	6642	256	sec
RG				181	
DW			20.8	350	used
DE			6.	.50	used
TE				3.2	
D1		2.00	1000	000	sec
D11		0.03	1000	000	sec
TD0				1	
	CHAN	INET.	f1 =		

NUC1	CHANNEL fl ====	
P1	30.00	
PL1 PL1W	-4.50 94.86473846	W
SF01	100.6228298	MHz


	CHANNEL f2 ====	
CPDPRG[2	waltz16	
NUC2	1H	
PCPD2	90.00	usec
PL2	-1.00	dB
PL12	18.81	dB
PL13	120.00	dB
PL2W	10.72012138	W
PL12W	0.11199529	W
PL13W	O W	
SFO2	400.1316005	MHz

E 2 -	Processing	g parameters
SI		32768
SF	100	.6127756 MH
WDW		EM
SSB	0	
LB		1.00 Hz
GB	0	
PC		1.40

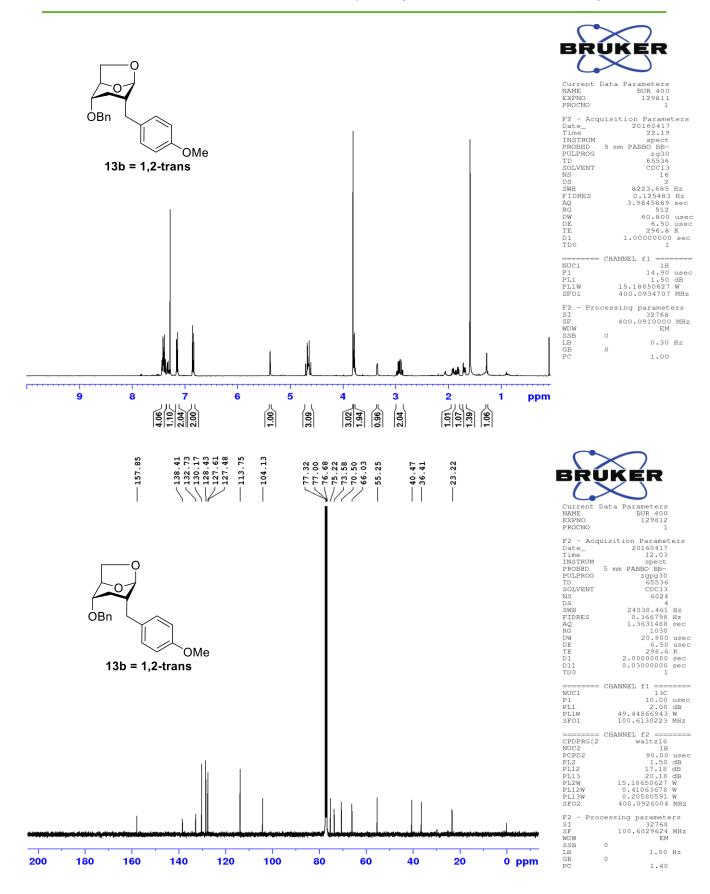


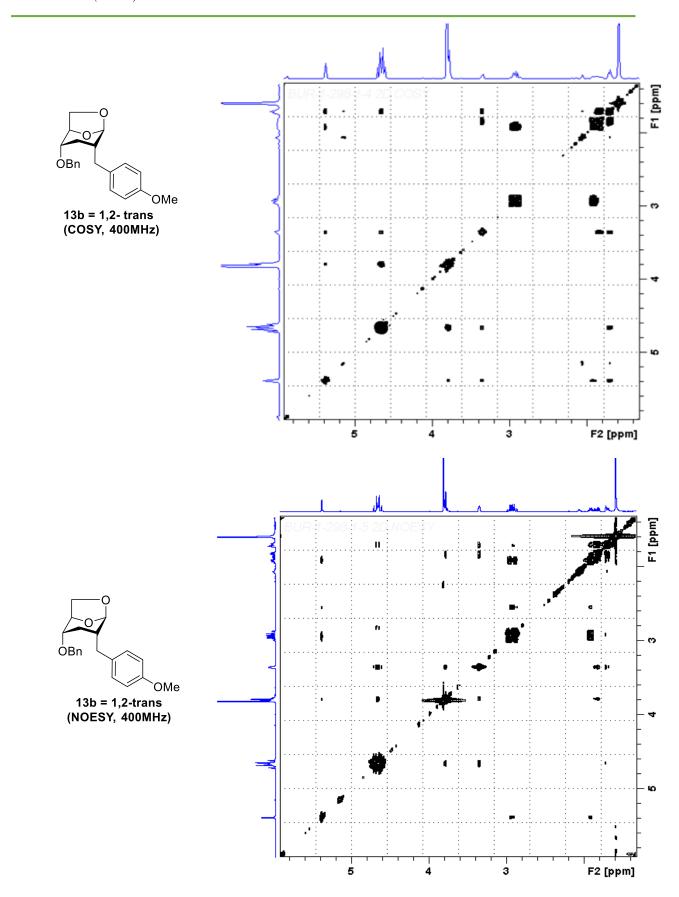

F2 - Acquisi	tion	Paramet	ters
Date_ 1		181231	
Time		8.13	
INSTRUM		spect	
PROBHD 5 m	m BBI	1H/D-	
PULPROG		zg30	
TD		65536	
SOLVENT		CDC13	
NS		16	
DS		2	
SWH	82	78.146	Ηz
FIDRES	0.	126314	Hz
AQ	3.9	583745	sec
RG		35.9	
DW		60.400	usec
DE		6.50	usec
TE		673.2	K
D1	1.00	000000	sec
TDO		1	

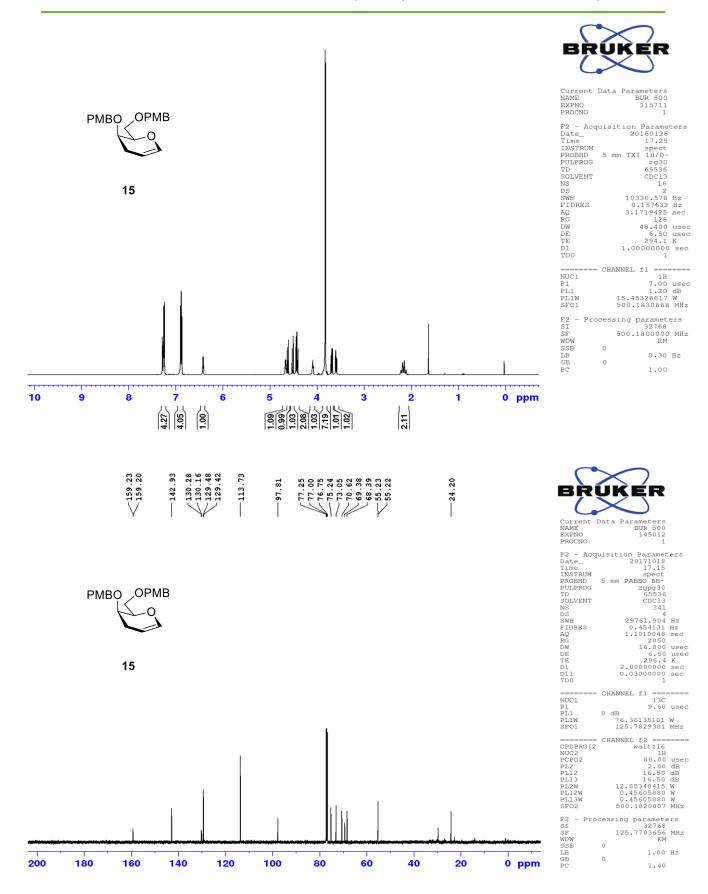
	CHANNEL f1	
NUC1	1H	
P1	9.20	usec
PL1	-1.00	dB
PL1W	10.72012138	W
SFO1	400.1324710	MHz

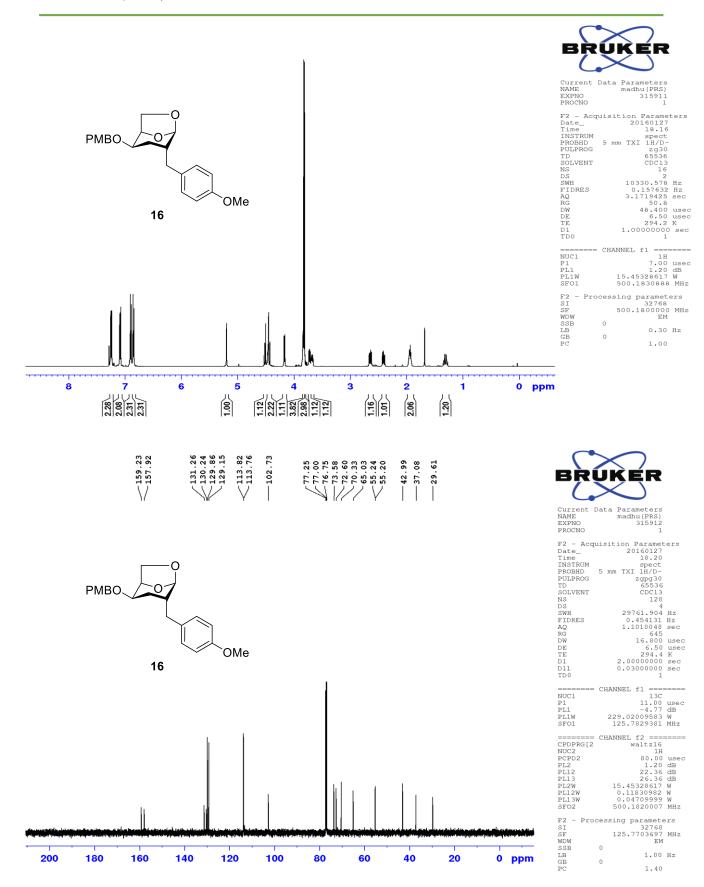
F Z -	riocessing	paramet	SIS
SI		32768	
SF	400	.1300000	M
WDW		EM	
SSB	0		
LB		0.30	Ηz
GB	0		
PC		1.00	

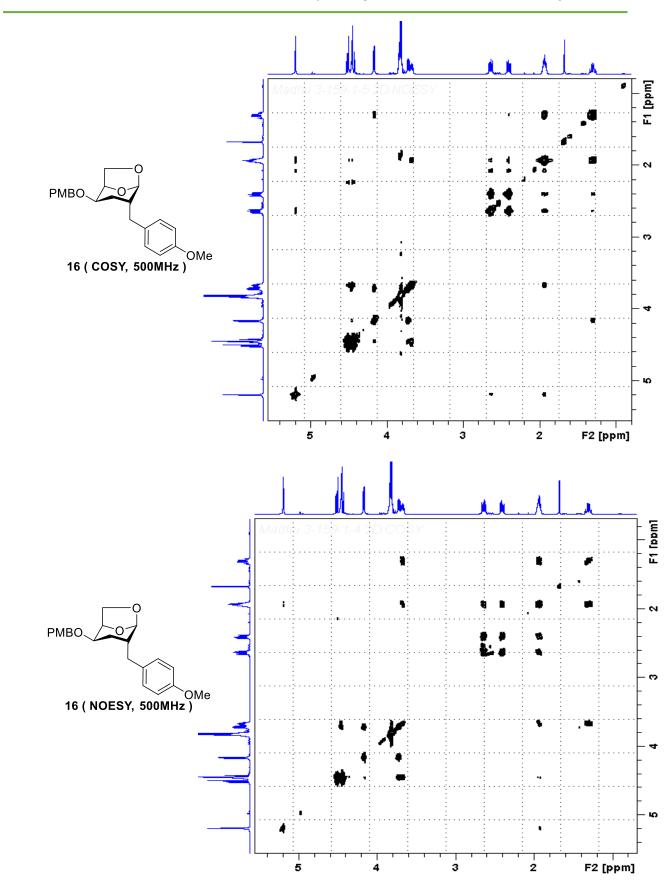
157.86	138.16 131.00 129.85 128.38 127.63 127.58	103.31	77.32 77.00 76.68 74.50 72.93 70.38 66.35	39.08 37.24	27.57
			VII//	\/	

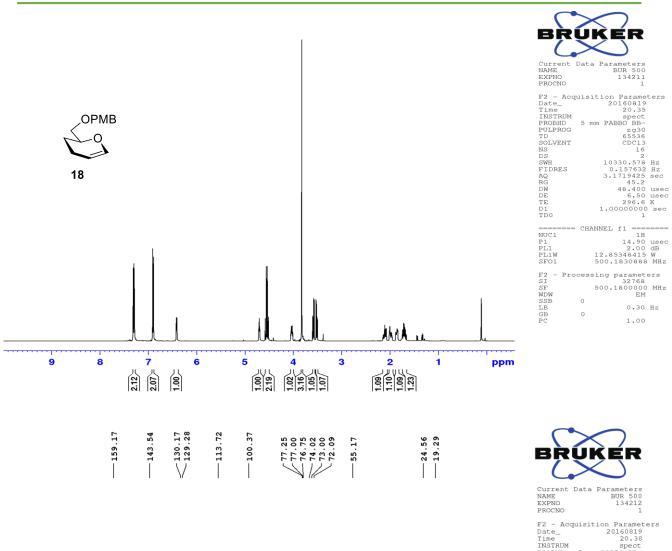

F2 - Acq	uı.	SILI	on .	Paramet	ers
Date_			20	181231	
Time				8.21	
INSTRUM				spect	
PROBHD	5	mm	BBI	1H/D-	
PULPROG				zgpg30	
TD				65536	
SOLVENT				CDC13	
NS				308	
DS				4	
SWH			239	80.814	Hz
FIDRES			0.	365918	Hz
AQ			1.3	664256	sec
RG				322.5	
DW				20.850	use
DE				6.50	use
TE				673.2	K
D1			2.00	000000	sec
D11		- (0.03	000000	sec

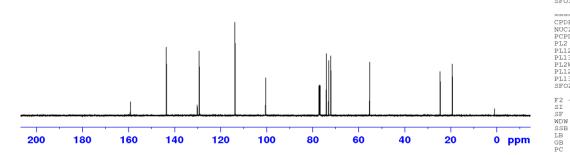

100	1	
NUC1 P1 PL1 PL1W SFO1	CHANNEL f1 ==== 13C 30.00 -4.50 94.86473846 100.6228298	dB W

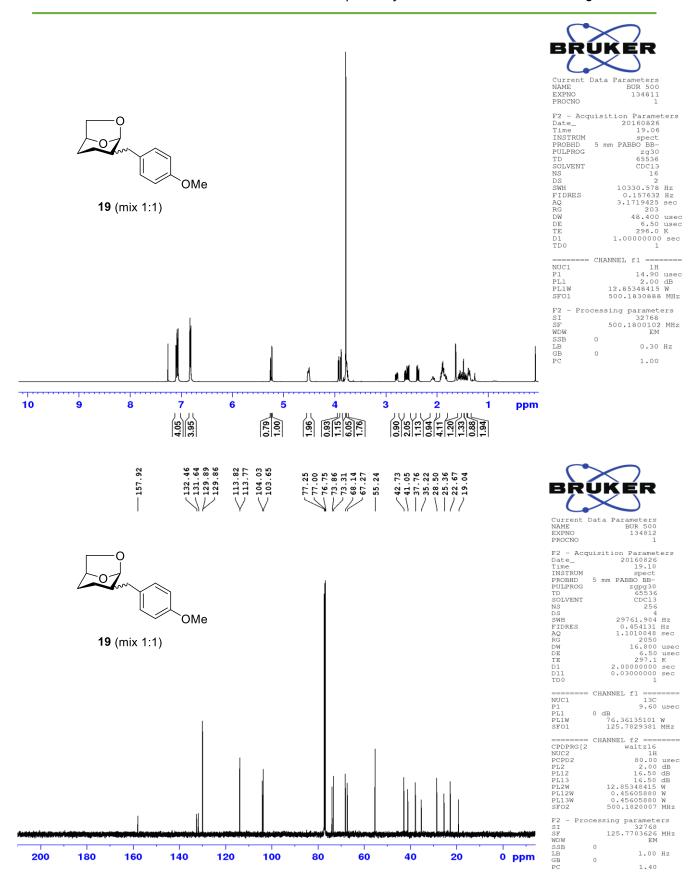

	CHANNEL f2 ====	
CPDPRG[2	waltz16	
NUC2	1H	
PCPD2	90.00	usec
PL2	-1.00	dB
PL12	18.81	dB
PL13	120.00	dB
PL2W	10.72012138	W
PL12W	0.11199529	W
PL13W	0 W	
SFO2	400.1316005	MHz
F-0		

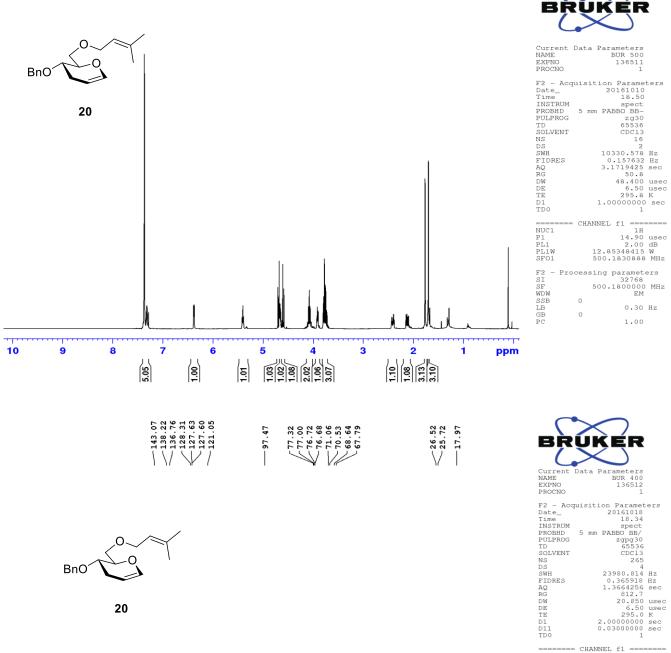

F2 -	Processing	paramete	ers
SI		32768	
SF	100	.6127789	MH:
WDW		EM	
SSB	0		
LB		1.00	Ηz
GB	0		
PC		1.40	

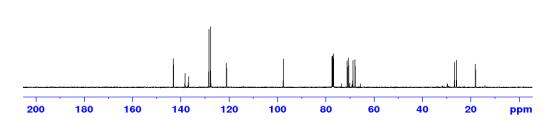

200	180	160	140	120	100	80	60	40	20	0 1	ppm



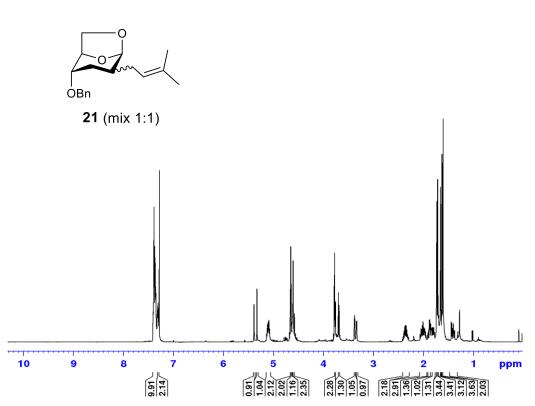


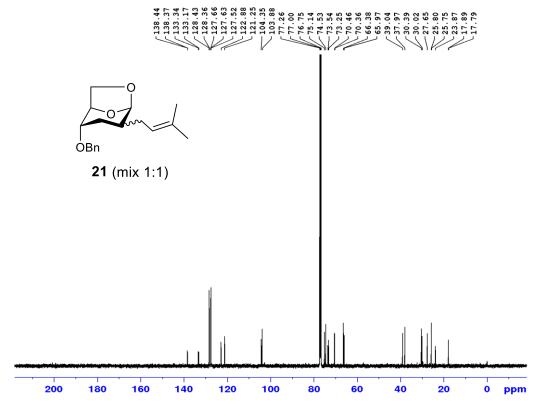



F2 - Acquate Time INSTRUM PROBHD PULPROG TD SOLVENT NS	20160819 20.38 20.38 spect 5 mm PABBO 209930 65536 CDC13	ers
DS SWH FIDRES AQ RG DW	4 29761.904 0.454131 1.1010044 2050 16.800	Hz sec usec
DE TE D1 D11 TD0	297.6 2.00000000 0.03000000 1	sec
NUC1 P1 PL1 PL1W SFO1	CHANNEL f1 13C 9.60 0 dB 76.36135101 125.7829381	usec W
CPDPRG[2 NUC2 PCPD2 PL12 PL13 PL2W PL12W PL12W PL13W SFO2	CHANNEL f2 === waltz16 HH 80.00 2.00 16.50 12.85348415 0.45605880 0.45605880 500.1820007	usec dB dB dB W W
F2 - Proc SI SF WDW SSB	cessing paramete 32768 125.7703719 EM	


0

1.00 Hz


1.40

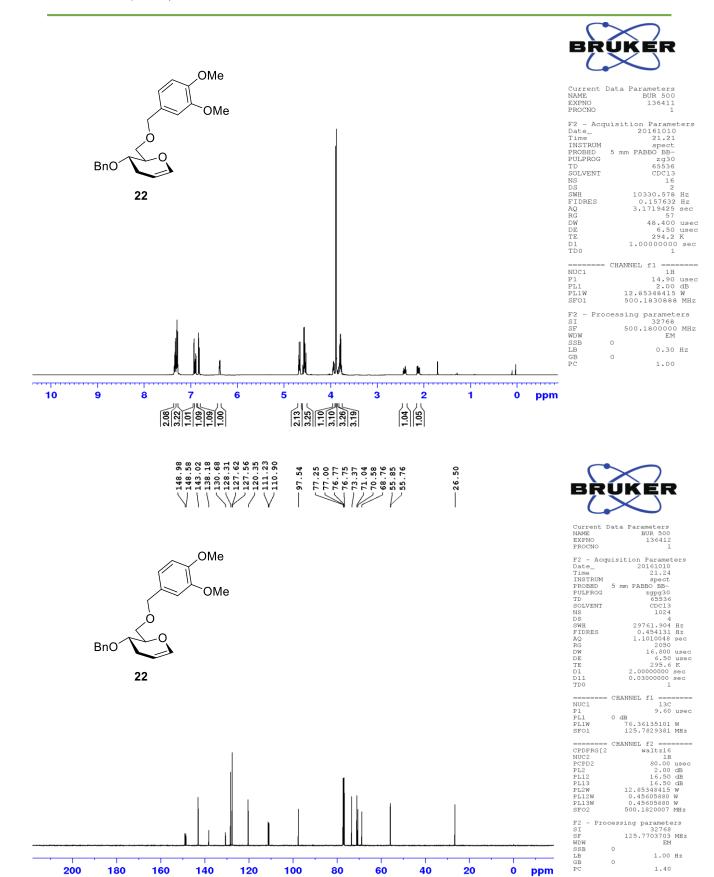


Current	Data	Parameters
NAME		BUR 500
EXPNO		136811
PROCNO		1

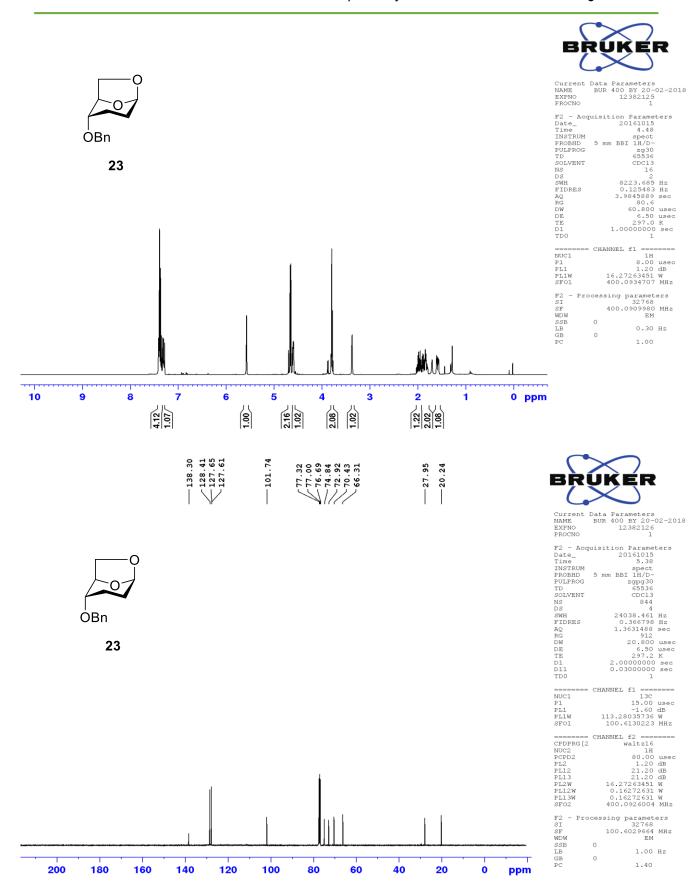
F2 - Acqu	11:	sit:	ion	Par	amet	ers
Date_			20	161	022	
Time				13	.27	
INSTRUM				sp	ect	
PROBHD	5	mm	PAB	BO	BB-	
PULPROG				Z	g30	
TD				65	536	
SOLVENT				CD	C13	
NS					16	
DS					2	
SWH			103	30.	578	Hz
FIDRES			0.	157	632	Ηz
AQ			3.1	719	425	sec
RG					256	
DW				48.	400	use
DE				6	.50	use
TE				29	5.9	K
D1		1	1.00	000	000	sec
TDO					1	

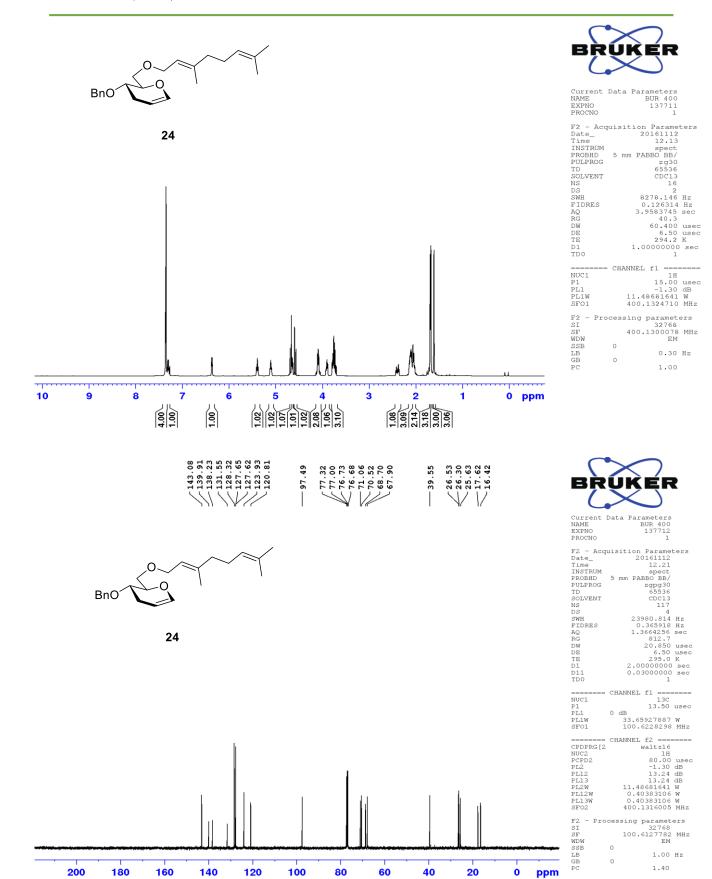
	CHANNEL f1 ====	
NUC1	1 H	
P1	14.90	usec
PL1	2.00	dB
PL1W	12.85348415	W
SF01	500.1830888	MHz

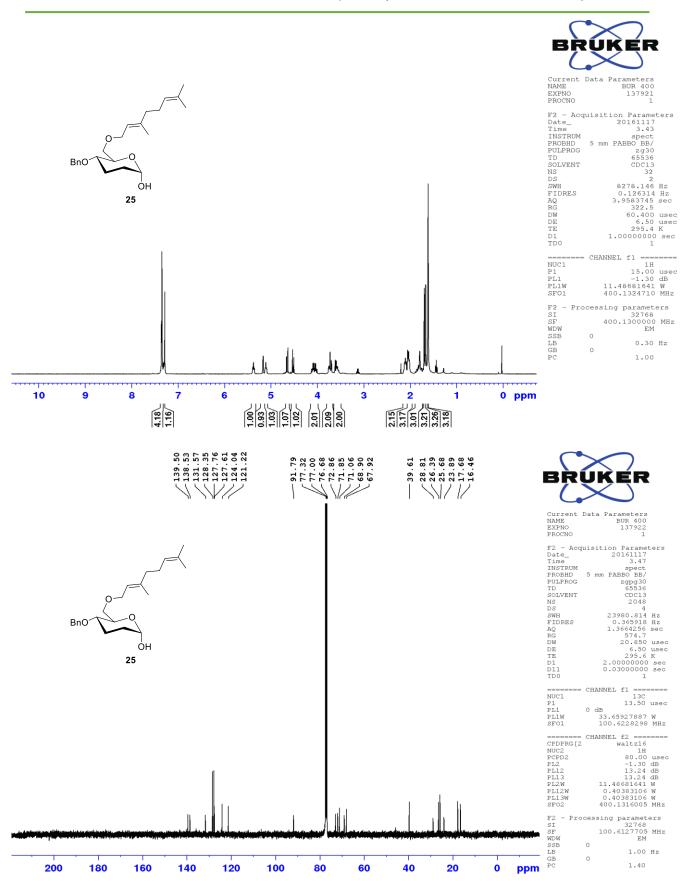
F2 -	Processin	ng parar	neters
SI		327	68
SF	50	0.1800	HM 000
WDW			EM
SSB	0		
LB		0.	30 Hz
GB	0		
DO		- 1	0.0

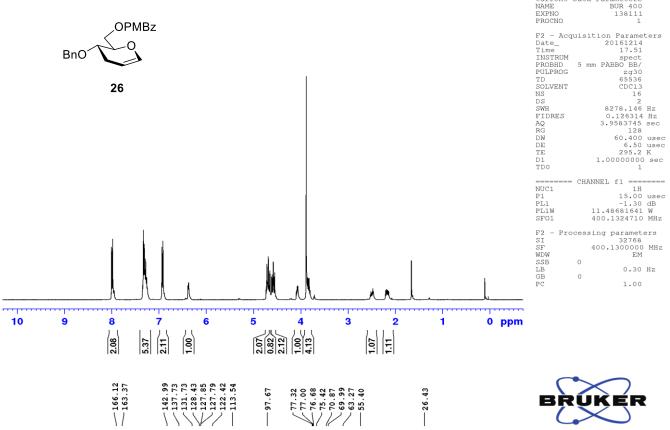

Current	Data	Parameters
NAME		BUR 500
EXPNO		136812
DDOGNO		-

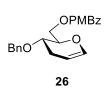
F2 - Acqu	isiti	on Par	ramet	ers
Date_		2016	1022	
Time		1	3.35	
INSTRUM		SI	pect	
PROBHD	5 mm	PABBO	BB-	
PULPROG		za	pq30	
TD			5536	
SOLVENT		C	DC13	
NS			2000	
DS			- 4	
SWH		29761	.904	Hz
FIDRES		0.45	4131	Hz
AO		1,101	0048	sec
RG			2050	
DW			.800	1150
DE			6.50	
TE			97.7	
D1		2.0000		
D11		2.0000		200

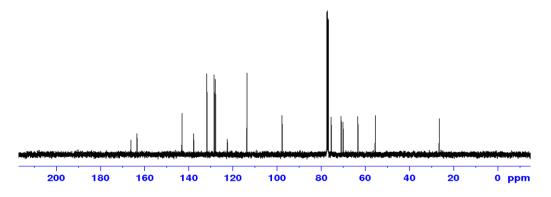

====== NUC1	CHANNEL fl ===================================
P1	9.60 usec
PL1	0 dB
PL1W	76.36135101 W

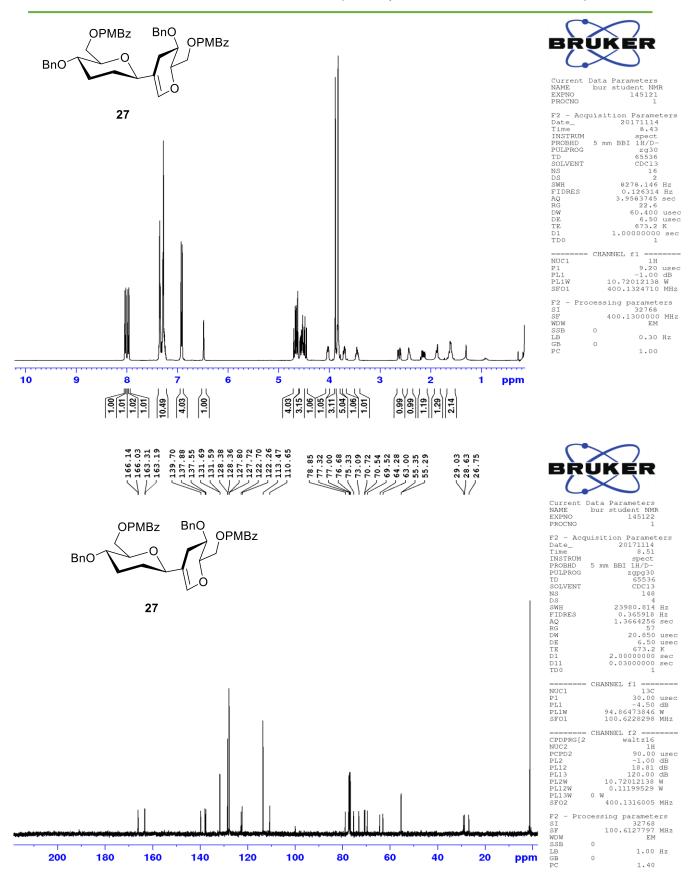

	CHANNEL IZ ====	
CPDPRG[2	waltz16	
NUC2	1H	
PCPD2	80.00	
PL2	2.00	dB
PL12	16.50	dB
PL13	16.50	
PL2W	12.85348415	W
PL12W	0.45605880	W
PL13W	0.45605880	W
SFO2	500.1820007	MHz

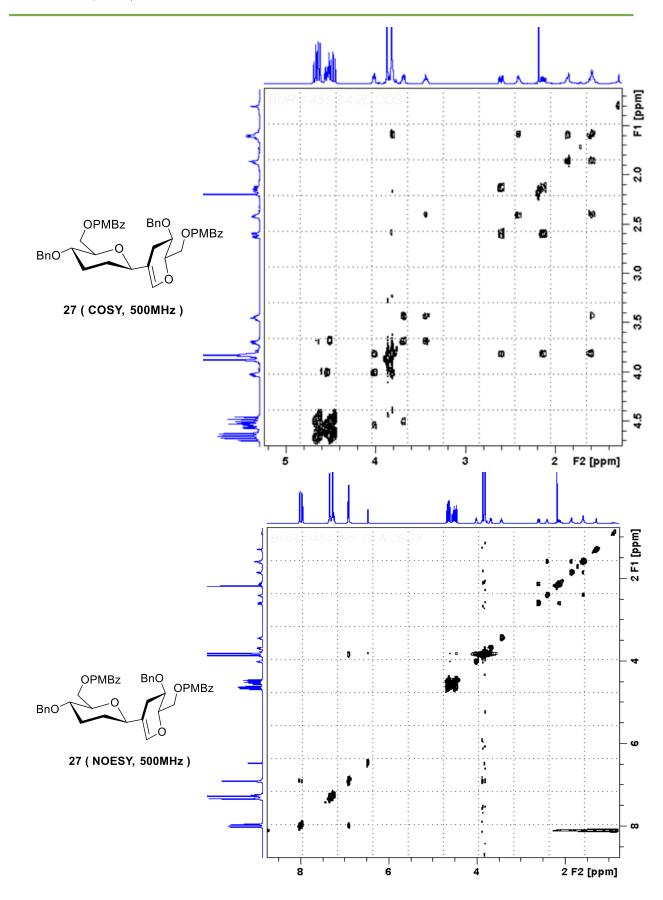

F2 -	Processing	paramete	rs
SI		32768	
SF	125	.7703624	MHz
WDW		EM	
SSB	0		
LB		1.00	Hz
GB	0		
		1 10	

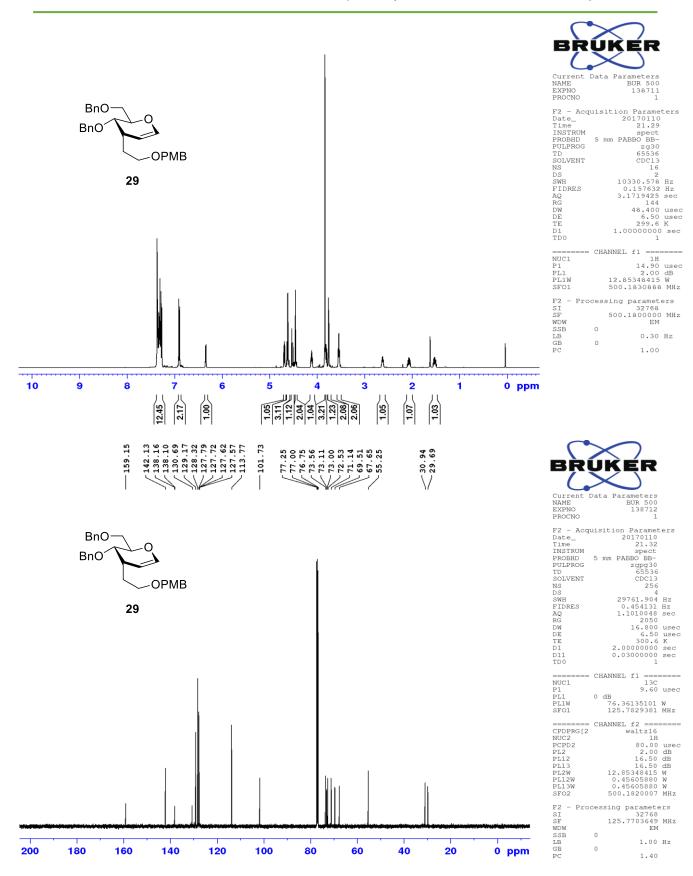

ppm

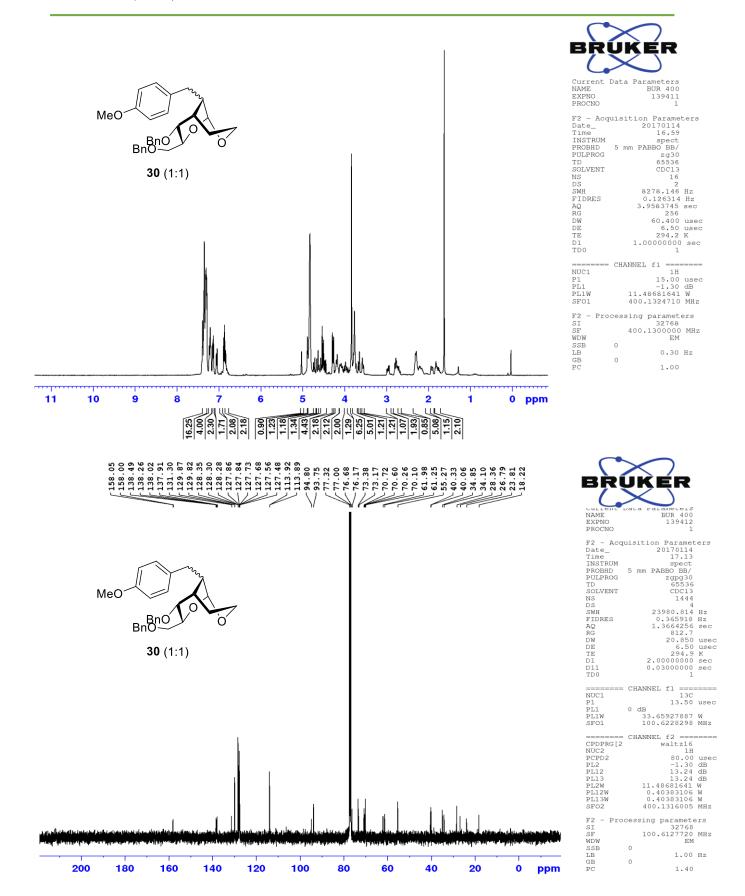


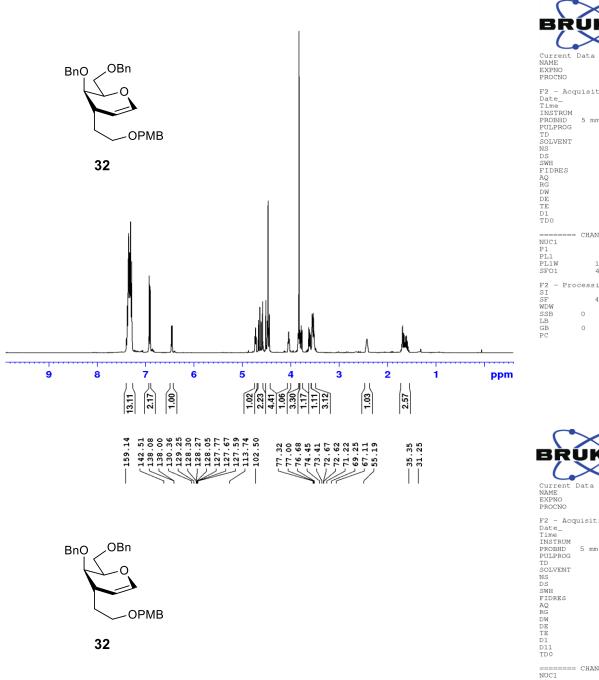











1.40

32768 100.6127785 MHz EM

1.00 Hz

1.40

SF WDW SSB LB GB PC

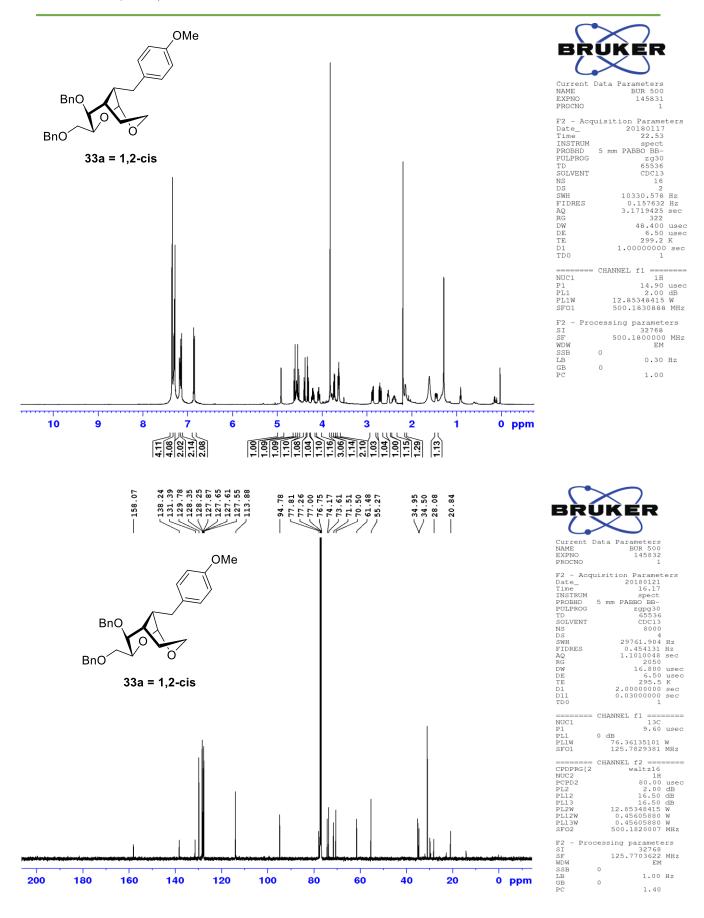
80

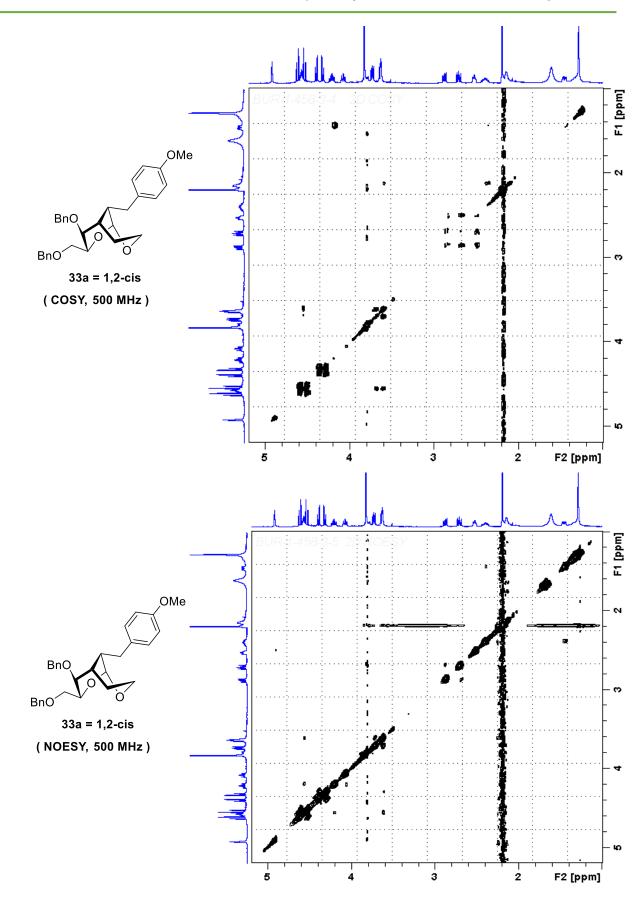
60

40

20

200


180


160

140

120

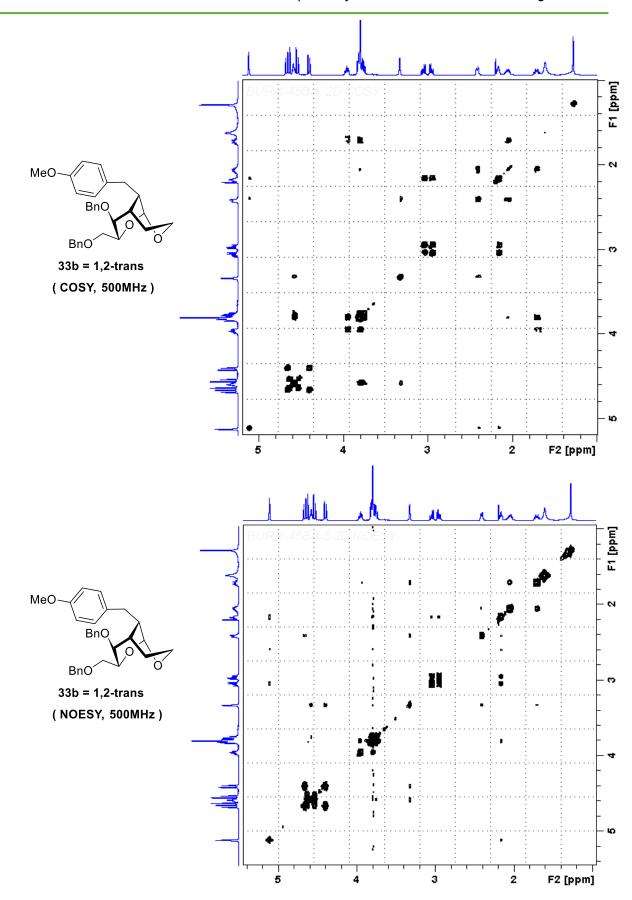
100

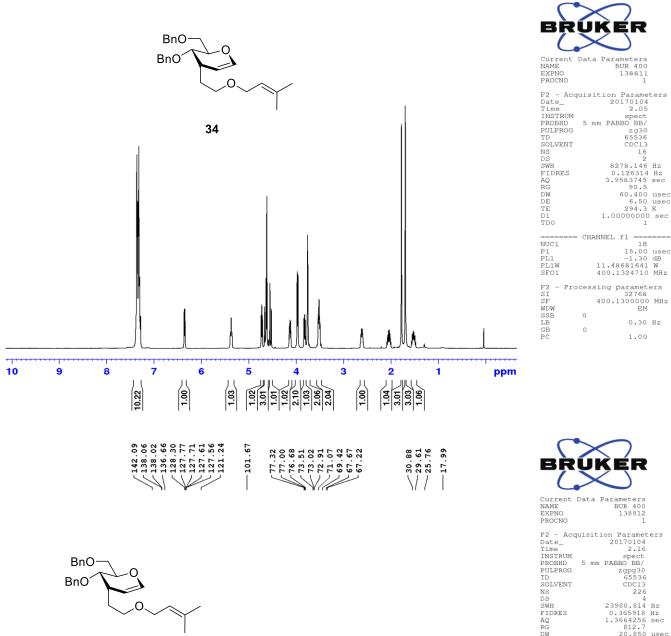
F2 - Acqu	11.5	siti			ramet 0122	ers
Date_			20			
Time				1 (5.10	
INSTRUM				SI	pect	
PROBHD	5	mm	PAB	BO	BB-	
PULPROG				2	:g30	
TD				65	5536	
SOLVENT				CI	C13	
NS					16	
DS					2	
SWH			103	30.	578	Hz
FIDRES			0.	15	7632	Hz
AQ			3.1	719	425	sec
RG					287	
DW				48.	400	used
DE				6	5.50	usec
TE				25	94.8	K
D1		1	.00	00	0000	sec
TDO					1	

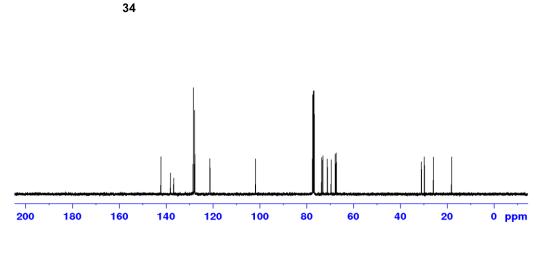
	CHANNEL	f1		
NUC1			1 H	
P1		14	.90	used
PL1		2	.00	dB
PL1W	12.8	5348	415	W
SF01	500.	1830	888	MHz

F2 -	Processing	parameters
SI		32768
SF	500	.1800000 MH
WDW		EM
SSB	0	
LB		0.30 Hz
GB	0	
PC		1.00

	MeO-	BnO 33b = 1	,2-trans	7	
		w.			
10	9	8	2.07	6	5 4 3 2 1 0 ppm 5 60:21:11:10:11:12:12:12:12:12:12:12:12:12:12:12:12:


Current	Data	Parameters
NAME		BUR 500
EXPNO		145842
PROCNO		1

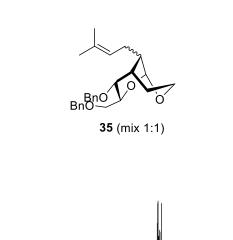

F2 - Acqu	ii:	siti	on Parame	ters
Date_			20180122	
Time			17.16	
INSTRUM			spect	
PROBHD	5	mm	PABBO BB-	
PULPROG			zgpg30	
TD			65536	
SOLVENT			CDC13	
NS			4400	
DS			4	
SWH			29761.904	Hz
FIDRES			0.454131	
AQ			1.1010048	sec
RG			2050	
DW			16.800	usec
DE			6.50	usec
TE			295.0	
D1		- 2	.00000000	


	CI	HANNEL	f1		
NUC1				13C	
P1			9	.60	usec
PL1	0	dB			
PL1W		76.36	5135	101	W
SF01		125.	782	9381	MHz

CPDPRG[2 NUC2 PCPD2 PL2	CHANNEL f2 ==== waltz16 1H 80.00 2.00	usec dB
PL12		dB
PL13	16.50	dB
PL2W	12.85348415	W
PL12W	0.45605880	W
PL13W	0.45605880	W
SFO2	500.1820007	MHz

F2	_	Processing	paramet	ers
SI			32768	
SF		125.	7703620	MHz
WDW			EM	
SSB		0		
LB			1.00	Ηz
GB		0		
DC.			1.40	

Parameters BUR 400 138811 1



NAME	BUR 400	
EXPNO	138812	
PROCNO	1	
F2 - 100	uisition Paramet	are
	20170104	CIS
Date_ Time	2,16	
INSTRUM	spect	
PROBHD	5 mm PABBO BB/	
PULPROG	zgpg30	
TD	65536	
SOLVENT	CDC13	
NS	226	
DS	4	
SWH	23980.814	Hz
FIDRES	0.365918	Hz
AQ.	1,3664256	sec
RG	812.7	
DW	20.850	usec
DE	6,50	
TE	295,1	
D1	2,00000000	
D11	0.03000000	
TDO	1	sec
100	1	
	GUANNET 61	

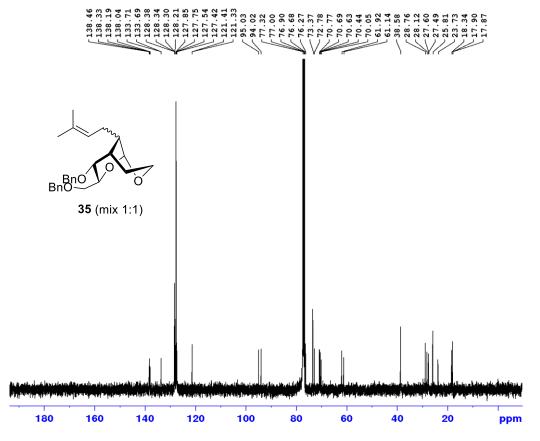
NUC1	CHANNEL f1 ==== 13C 13.50	usec
PL1 PL1W SFO1	0 dB 33.65927887 100.6228298	W MHz
	CHANNEL f2 ====	

	CHANNEL	f2	====	
CPDPRG[2	W	alt	z16	
NUC2			1H	
PCPD2		81	0.00	usec
PL2		-1	1.30	dB
PL12		13	3.24	dB
PL13		13	3.24	dB
PL2W	11.48	681	641	W
PL12W	0.40	383	3106	W
PL13W	0.40	383	3106	W
SFO2	400.1	1316	5005	MHz

F2 -	Processing	paramete	rs
SI		32768	
SF	100	.6127761	MH:
WDW		EM	
SSB	0		
LB		1.00	Ηz
GB	0		
DC.		1.40	

16.82

10

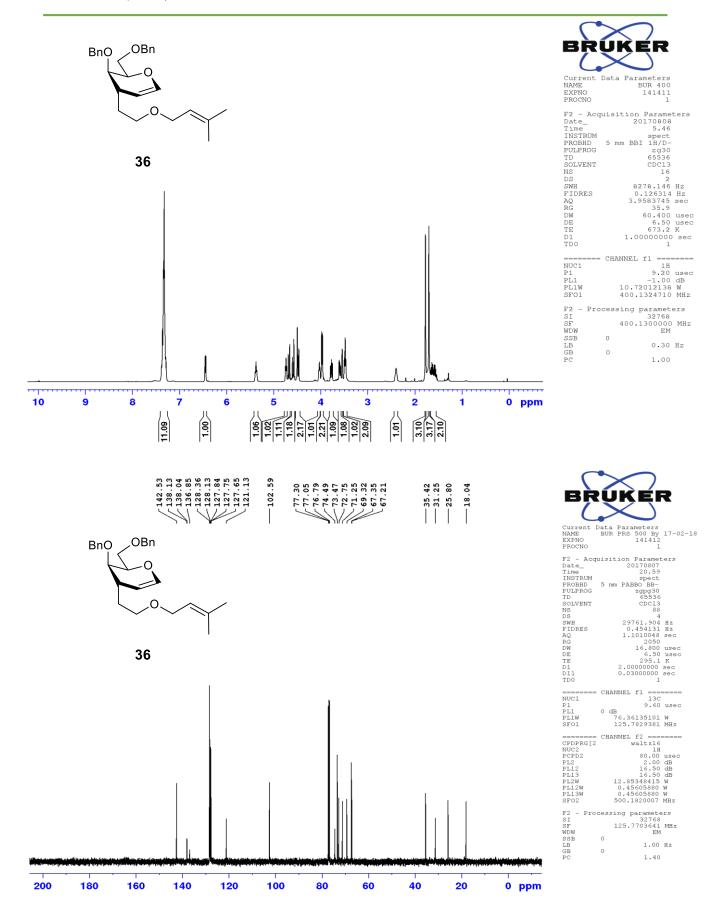

Current	Data	Parameters
NAME		BUR 400
EXPNO		139111
PROCNO		1

F2 - Acqu	11:	siti				cers
Date_			20		0109	
Time				1	7.23	
INSTRUM					pect	
PROBHD	5	mm	PAE	BO	BB/	
PULPROG				2	zq30	
TD				65	5536	
SOLVENT				CI	C13	
NS					33	
DS					2	
SWH			82	78.	146	Hz
FIDRES			0.	12	6314	Hz
AO			3.9	583	3745	sec
RG					256	
DW				60.	400	usec
DE					5.50	
TE				20	95.0	K
D1		1	1.00			sec
TDO		-		, , ,	1	500

	CHANNEL	f1		
NUC1			1 H	
P1		1.5	.00	use
PL1		-1	.30	dB
PL1W	11.4	868:	1641	W
SFO1	400.	132	4710	MHz

F2 -	Processing	parameters
SI		32768
SF	400.	.1300000 MH:
WDW		EM
SSB	0	
LB		0.30 Hz
GB	0	
DC		1 00

ppm



Date_		201/0109	
Time		17.01	
INSTRUM		spect	
PROBHD	5	mm PABBO BB/	
PULPROG		zgpg30	
TD		65536	
SOLVENT		CDC13	
NS		1519	
DS		4	
SWH		23980.814	Hz
FIDRES		0.365918	Hz
AQ		1.3664256	sec
RG		812.7	
DW		20.850	use
DE		6.50	use
TE		295.4	K
D1		2.00000000	sec
D11		0.03000000	sec
TD0		1	

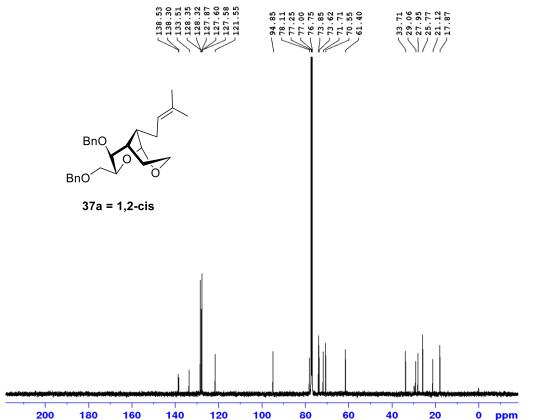
====== NUC1	CHANNEL f1 ====	
P1	13.50	usec
PL1 PL1W	0 dB 33.65927887	W
SFO1	100.6228298	MHz

	CHANNEL f2 ====	
CPDPRG[2	waltz16	
NUC2	1H	
PCPD2	80.00	usec
PL2	-1.30	dB
PL12	13.24	dB
PL13	13.24	dB
PL2W	11.48681641	W
PL12W	0.40383106	W
PL13W	0.40383106	W
SFO2	400.1316005	MHz

F2 -	Processing	paramete	ers
SF	100	.6127717	MH2
WDW SSB	0	EM	
LB GB	0	1.00	Ηz
PC		1,40	

BnO	
BnOOO	

37a = 1,2-cis


urrent IAME EXPNO PROCNO	Data		ameters BUR 500 145911 1	
2 - Acq	uisi		Paramete	21
ime			21.28	
NSTRUM			spect	
ROBHD	5 m	m PAI	BBO BB-	
ULPROG			zg30	
"D			65536	
COLVENT			CDC13	
IS			16	

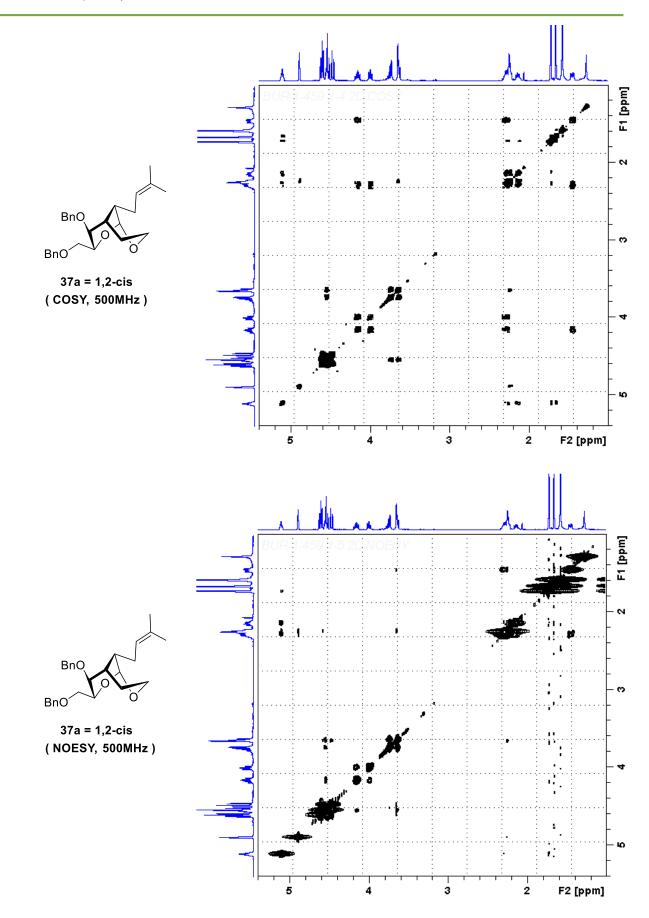
TD	65536
SOLVENT	CDC13
NS	16
DS	2
SWH	10330.578 Hz
FIDRES	0.157632 Hz
AQ	3.1719425 sec
RG	406
DW	48.400 used
DE	6.50 used
TE	298.1 K
D1	1.00000000 sec
TDO	1

	CHANNEL f1 ====	
NUC1	1H	
P1	14.90	usec
PL1	2.00	dB
PL1W	12.85348415	W
SFO1	500.1830888	MHz

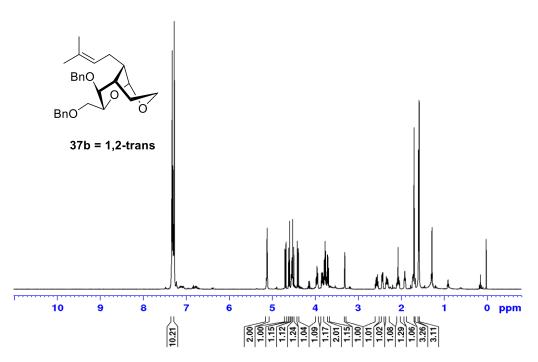
F2 -	Processing	parameters
SI		32768
SF	500.	.1800000 MH
WDW		EM
SSB	0	
LB		0.30 Hz
GB	0	
PC		1.00

						l		da_JUL			
10	9	8	70.34	6	2.09	بالراللا	3	3.02 3.02 3.04 1.14]	0	ppm

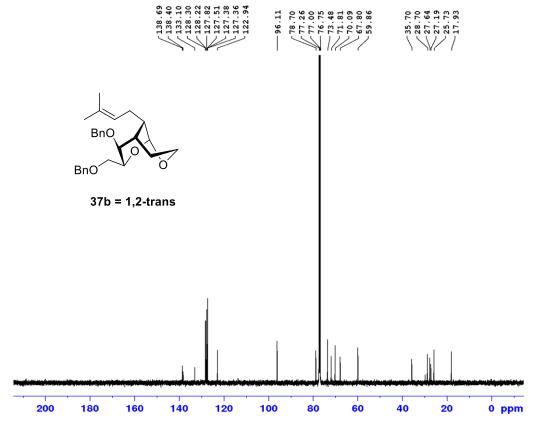
Current	Data	Parameters			
NAME		BUR 500			
EXPNO		145912			
PROCNO		1			


Time			21	.37	
INSTRUM			sp	ect	
PROBHD	5	mm	PABBO	BB-	
PULPROG			zgp	g30	
TD			65	536	
SOLVENT			CD	C13	
NS			10	000	
DS				4	
SWH			29761.	904	Hz
FIDRES			0.454	131	Ηz
AQ			1.1010	048	sec
RG			2	050	
DW			16.	800	usec
DE			6	.50	usec
TE			2.9	9.5	K
D1		2	.00000	0000	sec
D11		0	.03000	000	sec
TDO				1	

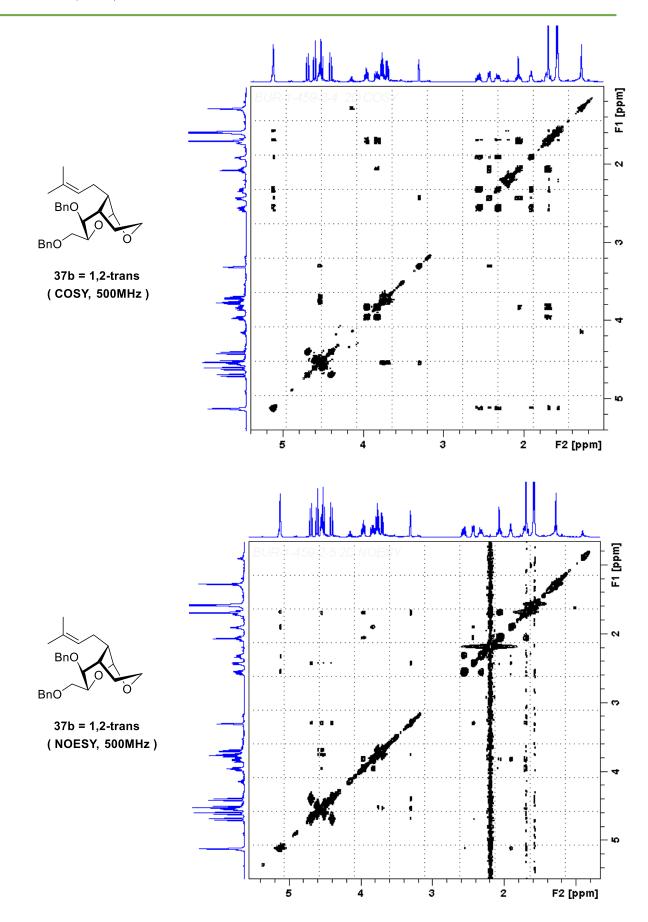
	CHANNEL fl ====	
NUC1	13C	
P1	9.60	usec
PL1	0 dB	
PL1W	76.36135101	W
SF01	125.7829381	MHz

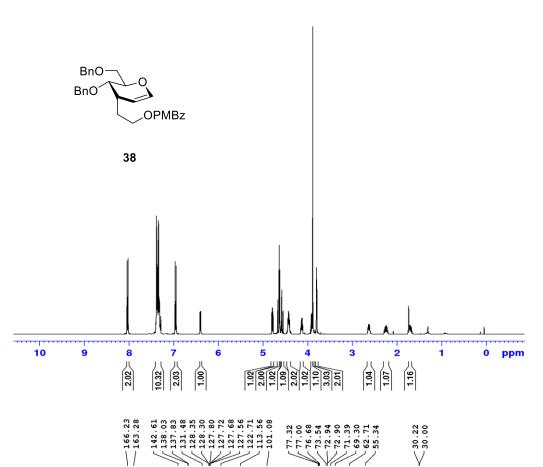

	CHANNEL f2 ====	
CPDPRG[2	waltz16	
NUC2	1H	
PCPD2	80.00	usec
PL2	2.00	dB
PL12	16.50	dB
PL13	16.50	dB
PL2W	12.85348415	W
PL12W	0.45605880	W
PL13W	0.45605880	W
SFO2	500.1820007	MHz

F2 -	Process	ing parameters	
SI		32768	
SF		125.7703602 MH	z
WDW		EM	
SSB	0		
LB		1.00 Hz	
GB	0		
PC		1.40	


ppm

Curre NAME EXPNO PROCNO		Paramet BUR 145		
F2 - I Date_ Time INSTR PROBHI PULPRO TD SOLVEI NS DS SWH	UM D 5 mi	sp m PABBO z 65	0117 0.12 ect BB- g30 536 C13 16 2	ters
FIDRE AQ RG DW DE TE	S	0.157 3.1719 48.	7632 425 362 400	Hz sec usec usec
D1 TD0		1.00000	1	sec
NUC1 P1 PL1	=== CHAN		1 H	usec
PL1W SFO1		12.85348 500.1830	415	W
F2 - I SI SF		ing para 32 500.1800	768	
WDW SSB	0		EM	
LB GB PC	0	_	.30	Hz

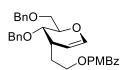

Current	Data	Para	amet	ers
NAME		E	BUR	500
EXPNO			145	922
PROCNO				1
F2 - Acc	quisit	ion	Par	amet

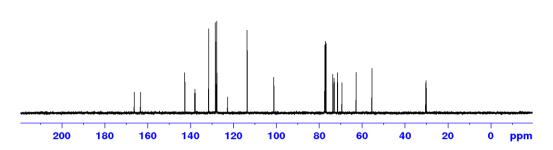

rz - Muqu	440	2161	.OII Fat.	T entire i	-era
Date_			20180	0117	
Time			2:	1.06	
INSTRUM			31	pect	
PROBHD	5	mm	PABBO	BB-	
PULPROG			zar	og30	
TD			6.5	5536	
SOLVENT			CI	DC13	
NS			3	3000	
DS				4	
SWH			29761	.904	Hz
FIDRES			0.45	4131	Hz
AQ			1.1010	048	sec
RG			- 2	2050	
DW			16.	.800	use
DE			(6.50	use
TE			30	01.0	K
D1		- 2	.0000	0000	sec
D11		C	.0300	0000	sec
TDO				1	

	CHANNEL f1	
NUC1	13C	
P1	9.60	usec
PL1	0 dB	
PL1W	76.36135101	W

CPDPRG[2 NUC2 PCPD2	CHANNEL f2 ==== waltz16 1H 80.00	
	waltz16	
PCPD2	80.00	usec
PL2	2.00	dB
PL12	16.50	dB
PL13	16.50	dB
PL2W	12.85348415	W
PL12W	0.45605880	W
PL13W	0.45605880	W
SFO2	500.1820007	MHz

F2 -	Processing	paramet	ers
SI		32768	
SF	125.	7703598	MHz
WDW		EM	
SSB	0		
LB		1.00	Ηz
GB	0		
PC		1.40	

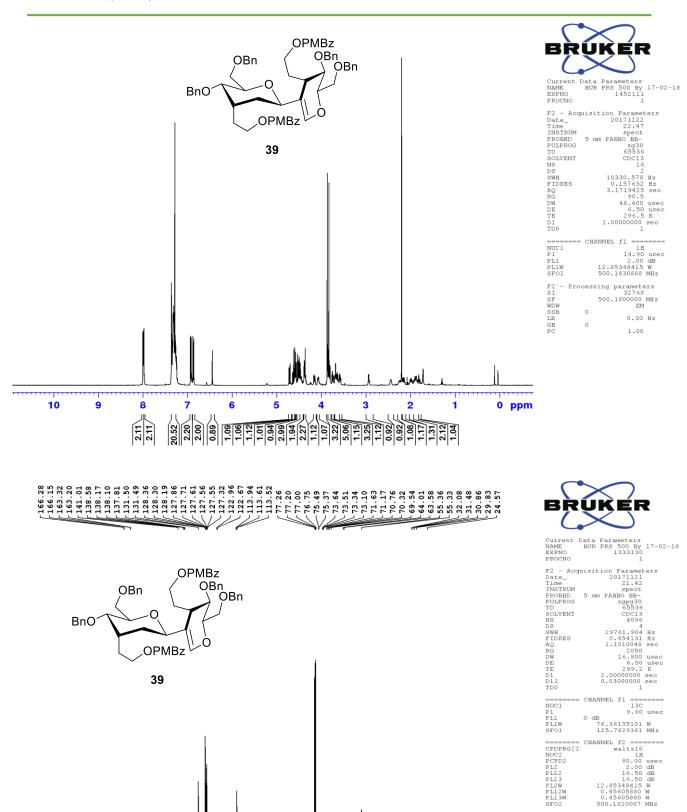



Current	Data	Par	ame	ters
NAME	BUR	400	BY	20-02-2018
EXPNO			139	9011
PROCNO				1

F2 - Acquis	ition Parameters
Date_	20180224
Time	5.53
INSTRUM	spect
PROBHD 5	mm PABBO BB-
PULPROG	zg30
TD	65536
SOLVENT	CDC13
NS	16
DS	2
SWH	8223.685 Hz
FIDRES	0.125483 Hz
AQ	3.9845889 sec
RG	57
DW	60.800 usec
DE	6.50 usec
TE	300.0 K
D1	1.00000000 sec
TD0	1

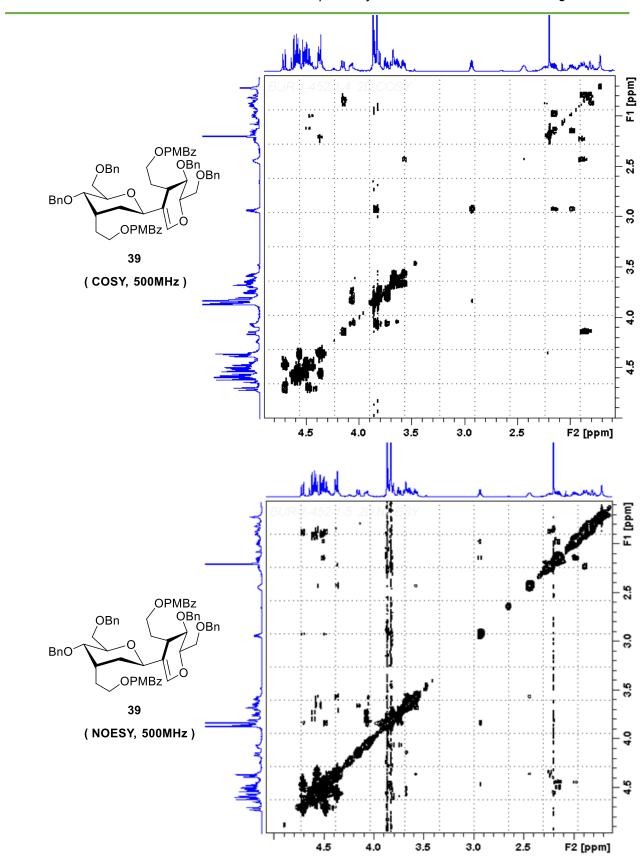
	CHANNEL fl
NUC1	1H
P1	14.90 usec
PL1	1.50 dB
PL1W	15.18650627 W

F2 -	Processing	paramet	ers
SI		32768	
SF	400.	0910000	MH:
WDW		EM	
SSB	0		
LB		0.30	Ηz
GB	0		

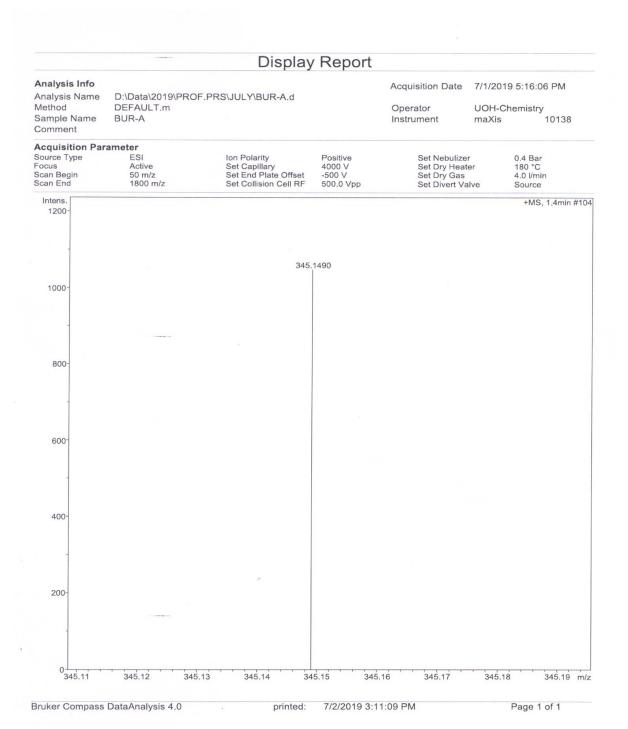

CHTTAME	DetLet	I et L	eune	CHTR
NAME	BUR	400	BY	20-02-2018
EXPNO			139	012
PROCNO				1

Date_ Time	isition Parameters 20180224 6.00
INSTRUM	spect
PROBHD 5	mm PABBO BB-
PULPROG	zgpg30
TD	65536
SOLVENT	CDC13
NS	80
DS	4
SWH	24038.461 Hz
FIDRES	0.366798 Hz
AQ	1.3631488 sec
RG	912
DW	20.800 usec
DE	6.50 usec
TE	300.0 K
D1	2.00000000 sec
D11	0.03000000 sec

	CHANNEL fl =		
NUC1	1	3C	
P1	10.	00	usec
PL1	2.	00	dB
PL1W	49.448669	43	W
SFO1	100.61302	23	MHz


	CHANNEL f2 ====	
CPDPRG[2	waltz16	
NUC2	1H	
PCPD2	90.00	usec
PL2	1.50	dB
PL12	17.18	dB
PL13	20.18	dB
PL2W	15.18650627	W
PL12W	0.41063678	W
PL13W	0.20580591	W
CEO2	400 0026004	MILL

F2 -	Processing	paramet	ers
SI		32768	
SF	100.	6029724	MHz
WDW		EM	
SSB	0		
LB		1.00	Ηz
GB	0		
PC		1.40	



ppm

F2 - Processing parameters
SI 32768
SF 125.7703678 MHz
WDW EM
SSB 0
LB 1.00 Hz
GB 0 1.40

HRMS of intermediate 5d

Chapter-3

Synthesis of Cis- and Trans-fused Bicyclic Iridoid Frame Works from Glucal

- 3.1 Introduction
- 3.2 Results and Discussions
- 3.3 Conclusions

- 3.4 Experimental section
- 3.5 References

3.1 Introduction

I ridoids are a class of monoterpenoids that made up of the cyclopentan[c]-pyran

system.^{1,2} Iridoids are the compounds, which widely exist in the plant kingdom, and have been extracted from numerous plant families (like Rubiaceae, Scrophulariaceae, Plantaginaceae, and Verbenaceae....etc). This kind of compounds are shown to exhibit a broad range of biological activities such as anticancer, antileishmanial, antiplasmodial, Hsp90 inhibition, DNA polymerase inhibition, and NF-κB mediated anti-inflammatory potency and divulged their therapeutic potentiality as drug candidates.³ Furthermore, some of the isolated cytotoxic iridoids would be very important in treating various cancers, namely, breast, ovarian, liver, lung, osteosarcoma, rectum/colon, leukemia, gastric cancer cell, and pancreatic cancer. Most of the patents claiming the biological evaluation of iridoids are reported as anticancer agents present only in vitro evaluation, especially on different cancer cell lines. A novel iridoid i (Figure 1) was isolated from Gardenia jasminoides, and which was shown strong in vitro anti-cancer effects towards the renal cancer cell line (RC-2).5 Another novel iridoid ii, Which was extracted from Swertia mussotii Franch and was acted as a good anti-cancer agent towards ovarian cancer (SKOV3).⁶ A new iridoid iii was isolated from Swertia mussotii Franch, which enhanced the cell viability of human umbilical vein endothelial cells injured by oxidized low-density lipoprotein (ox-LDL).⁷ The isolated new iridoid iv from the bark of Eucommia ulmoides was inherently increased the survival rate of myocardial cells of hydrogen peroxide stress injury. In cell culture, the effect of LDH is reduced considerably by iridoid iv.8

On the other hand, genipin-1-β-gentiobioside (**v**) has been revealed significant results for the treatment of acute influenza, hepatitis B, respiratory infection, Epstein Barr virus, Herpes zoster infection, pneumonia, viral myocarditis, retroviral, simplex keratitis, and bacterial infection diseases. Further, genipin ether B (**vi**) (isolated from *Gardenia jasminoides Ellis*.) was shown good results for the treatment of diabetes mellitus, Parkinson's disease, scleroderma, depression, periodontal disease, systemic lupus erythematosus, and asthma. Tetracyclic iridoids **vii–ix** were isolated from *Morinda lucida*. These three iridoids are

revealed strong anti-trypanosomal effects as well as good anti-cancer activity. ¹¹ Many chemists have been reporting over the isolation and synthesis of iridoids for many decades continuously, because of their numerous biological activities and therapeutic potentiality. ^{12,13,14}

Figure 3.1 Few natural products possessing cis-fused cyclopentan[c]-pyran unit.

Figure 3.2 Few natural products possessing trans-fused cyclopentan[c]-pyran unit.

Therapeutic applications of iridoids

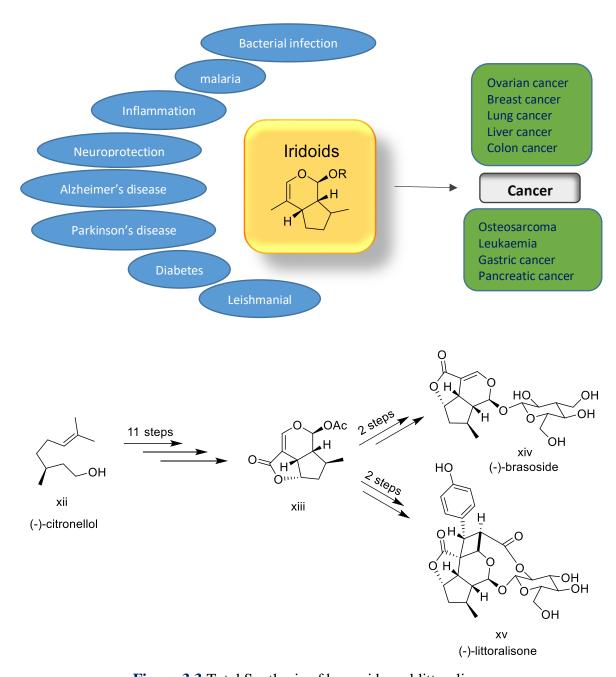


Figure 3.3 Total Synthesis of brasoside and littoralisone.

The total synthesis of brasoside **xiv** and littoralisone **xv** has been reported by MacMillan.¹⁵ These natural products were synthesised from citronellol **xii** in 13 steps via tricyclic lactone **xiii** (Figure 3.3). However, the synthesis of diverse iridoids have not yet been discovered, and they are still challenging targets for organic chemists. Interestingly, the above mentioned iridoids **i-ix** commonly possess a *cis* fused cyclopenta[c]pyran backbone, which consists of carbon atoms in different oxidation states. By noticing the importance of iridoids

with cis-fused cyclopentan[c]pyran backbone and their therapeutic potential,³ we envisioned a facile retrosynthetic route for the synthesis of cis-fused cyclopenta[c]pyran framework from the commercially available and inexpensive carbohydrate derived starting material, D-glucal. In addition, we also envisioned a stereoselective synthetic protocol for the construction of trans-fused cyclopentan[c]pyran skeleton, which is present in the core unit of the biologically active trans-fused iridoids namely, 7-O-acetyl-10-O-acetoxyloganin **x** and Methoxygaertneroside **xi** (figure 3.2). Very interestingly, to date, the synthesis of trans-fused iridoids has not yet been reported from the carbohydrate precursors. The only report in the literature found to synthesize the trans-fused iridoid framework was using the natural product limonene¹⁶.

3.2 Results and Discussion

In the initial retrosynthetic strategy, we planned to introduce the new C-C bond to construct the cyclopentane ring for *cis*-fused cyclopenta[c]pyran unit by Dieckmann condensation of pyran diester **4**, which could be obtained by deiodination of α -iodo ester derivative **4** as shown in figure 3.3. The synthesis of the sugar derived α -iodo ester **5** could be achieved by the stereoselective ring-opening of fused cyclopropane[b]pyran derivative **6** using

Figure 3.4 Retrosynthetic approach towards cis-fused cyclopentan[c]-pyran unit of iridoids.

N-iodo succinamide. The bicyclic sugar derivative **6** would be obtained by TBS protection of diol **7**, which could be systematically achieved by hydrogenation of conjugated ester **8**. The conjugated ester **8** was expected to be synthesized by Wittig olefination of known γ -keto ester derivative **9** (figure 3.4).

Our synthesis started off with the preparation of the common intermediate **9**, as indicated in Scheme 3.1. To introduce a keto function at the γ-position to the ester group of the cyclopropa[b]pyran unit, 3,4,6-tri-*O*-acetyl-D-glucal **1** was converted to fully protected glucal **10** via sequential reactions involving *Zemplén deacetylation* using NaOMe solution, region-selective protection of 3-OH and 6-OH with TBS, by employing TBSCl and Imidazole, and benzylation reaction.¹⁷ The differentially protected glucal **10** was transformed to 1,2-cyclopropane carboxylate derivative **11** by cyclopropanation of compound **10** with methyl diazoacetate (MDA) in the presence of Rh₂(OAc)₄ catalyst. Later, the cyclopropane derived sugar **11** was transformed to the desired intermediate **9** by applying known protocols.¹⁸

Scheme 3.1 Synthesis of cis-fused cyclopentan[c]-pyran unit of cytotoxic iridoids. Satisfyingly, Reaction of **9** under Wittig olefination reaction conditions¹⁹ (Trimethyl phosphono acetate, NaH) led to formation of α,β-unsaturated ester derivative **8** with 99% yield. Immediately, the resulted unsaturated ester **8** produced the saturated ester derivative **7** as an inseparable mixture *via* diastereoselective hydrogenation along with double deprotection of *O*-benzyl and *O-tert*-butyl dimethylsilyl groups under hydrogenation conditions (Pd/C, H₂). Afterward, to reduce the nucleophilicity of oxygen for convenience of further transformations, the hydroxyls in the obtained inseparable mixture **7** were protected with TBS groups using known protocol¹⁷ (TBSCl, Imidazole) to obtaine **6** as inseparable mixture. Subsequently, the electrophilic ring-opening of cyclopropane in the resulted di-*O*-TBS protected cyclopropan[b]pyran derivative **6** was commenced by subjecting it to *N*-iodo succinamide and methanol in dry dichloromethane solution, ²⁰ to produce the α-iodo ester derivative **5** in 35% yield over 3 steps. Later, deiodination of **5** using sodium dithionite (Na₂S₂O₄) produced the carbohydrate derived diester **4** with 90% yield. Finally, subjecting compound **4** to Dieckmann condensation reaction conditions (*t*-BuO⁻K⁺ in THF, RT)²¹ for cyclization via formation of

new C-C bond to produce the targeted cyclopenta[c]pyran skeleton 2 in 80% yield. The overall

yield of the targeted compound 2 was obtained as 12.9% over 13 steps.

Figure 3.5 Retrosynthetic approach towards trans-fused cyclopentan[c]-pyran unit of iridoid.

We next turned our attention towards a retro synthetic strategy of *trans*-fused cyclopetan[c]pyran 3 unit of trans-iridoids. As shown in figure 3.5. we envisaged that the *trans*-fused cyclopetan[c]pyran 3 could be constructed via new C-C bond formation of sugar derived diester 12, which would be obtained by deiodination of α -iodo ester derivative 13. The iodo sugar 13 could be diastereoselectively achieved via ring-opening of cyclopropane derivative 14, which was anticipated to be prepared by stereoselective cyclopropanation of 3-C-branched glucal 15.

The commercially available tri-acetyl glucal **1** was converted to the 3-*C*-branched aldehyde **16** involving a [3,3] sigmatropic Claisen rearrangement reaction that was reported previously from our research group (scheme 3.2).²²

Scheme 3.2 Synthesis of 3-*C*-branched glycal from 3,4,6-triacetyl-D-glucal.

The aldehyde group in 3-*C*-branched glycal **16** was transformed into the corresponding methyl ester **15** by pinnic-oxidation²³ followed by methylation²⁴ of the resulted carboxylic acid with diazomethane. Then, Rh₂(OAc)₄ catalyzed cyclopropanation of the resulted glucal **15** with methyl diazo acetate (MDA) produced the ester derived cyclopropane **14** in moderate yield.¹⁸ In the next reaction, the cyclopropane ring in **14** was subjected to electrophilic ring opening by using *N*-iodo succinamide (NIS) and methanol to provide α-iodo ester derivative **13** in 89% good yield.²⁰ Subsequently, the iodo group of **13** was removed by treatment with sodium dithionite and NaHCO₃ solution to afford diester compound **12** in 90% good yield. Finally, the resulted sugar-derived diester **12** was subjected to Dieckmann condensation reaction to obtain *trans*-fused bicyclic iridoid skeleton **3** with 78% yield.²¹ The overall yield of the targeted compound **3** was obtained as 22.9 % over 6 steps. The formation of fused bicyclic derivatives were confirmed by ¹H, ¹³C, and COSY spectral analysis.

Scheme 3.3 Synthesis of trans-fused bicyclic iridoid skeleton from 3-C-branched glucal.

3.3 Conclusions

In summary, we have successfully reported a stereoselective pathway for the synthesis of *cis*-and *trans*-fused bicyclic iridoid skeletons from the commercially inexpensive material 3,4,6-triacetyl-D-glucal. The successful synthesis involves the cyclopropanation, Wittig olefination, Dieckmann condensation and electrophilic ring opening of cyclopropane reactions as the key functional group transformation for the C-C bond formation reactions. We look forward to further developing the novel route for the total synthesis of biologically important iridoid natural products from this type of frameworks using the same pathway.

3.4 Experimental section

3.4.1 General Methods

All reactions were carried out under an inert atmosphere with dry solvents under anhydrous conditions unless otherwise mentioned. Dichloromethane, methanol, and benzene were intially dried and stored over molecular sieves (4 Å). TLC was run on silica gel 60 F254 (Merck) plates, and the spots were detected by staining with H₂SO₄ in methanol (5%, V/V) or

phosphomolybdic acid in ethanol (5%, W/V) and heating. Silica gel (100-200 mesh) was used as a stationary phase for column chromatography. NMR spectra were recorded at 25 °C on a Bruker Avance III 400 (400 MHz for 1 H and 100 MHz for 13 C) or 500 (500 MHz for 1 H and 125 MHz for 13 C) instrument in CDCl₃, using residual CHCl₃ (δ H = 7.26 ppm)as internal standard for 1 H, and CDCl₃ (δ C = 77.0 ppm) as internal standard for 13 C. Chemical shifts are given in δ (ppm) and coupling constants (J) in Hz. IR spectra were recorded with a JASCO FTIR-5300 instrument. High resolution mass spectra were recorded on Bruker maXis ESI-TOF spectrometer.

3.4.2 Experimental procedures and spectral data

2.1 General procedure for deiodination of α -iodo esters 5 and 13 : (for the preparation 4 and 12)

The iodo compound (0.124 mmol, 1eq) was dissolved in 1.24 mL of DMF and 1.24 mL of a solution of H₂O/NaHCO₃ (10 mol eq) was added followed by solid sodium dithionite (4 eq). The reaction was allowed to proceed under stirring for 5 hours at room temperature. Then, the reaction mixture was diluted with EtOAc (50 mL) and washed with water 4 times (50 mL each), followed by brine (50 mL). The organic layer was dried over anhydrous Na₂SO₄ and concentrated under reduced pressure to obtain crude product. Purification of the crude product by column chromatography over silica gel using hexanes and ethyl acetate provided pure di carboxylate sugar derivative in 90% yield.

2.2 General procedure for Dieckmann Cyclization of Diester :(for the synthesis of 2 and 3):

The diester (0.15 mmol, 1eq) was dissolved in dry THF (or dry Benzene) (15 mL), potassium *tert*-butoxide (1.5 mmol, 10 eq) was added under argon, and the solution was stirred at room temperature for 4 h, at which time TLC indicated the complete disappearance of starting material and the formation of a new product. The reaction mixture was diluted with diethyl ether (20 mL), and 5% hydrochloric acid was added until the aqueous layer remained acidic.

The organic fraction was collected, dried over anhydrous Na₂SO₄, and evaporated to yield as an amber oil (78%-80%).

2.3 methyl (1S,3R,4S,6R)-4-(benzyloxy)-3-(((tert-butyldimethylsilyl)oxy)methyl)-5-(2-methoxy-2-oxoethylidene)-2-oxabicyclo[4.1.0]heptane-7-carboxylate (8)

Yield: 99%, R_f: 0.45 (10% EtOAc/hexane). **8:** IR (neat): 2951, 2859, 1720, 1645, 1438 cm⁻¹. ¹**H NMR** (**500 MHz, CDCl₃**): δ 7.31-7.38 (m, 10H), 5.95 (s, 1H), 4.97 (d, 1H, J = 12.0 Hz), 4.66 (d, 1H, J = 12.0 Hz), 4.58 (d, 1H, J = 12.0 Hz), 4.43 (d, 1H, J = 12.0 Hz), 4.31 (dd, 1H, J = 2.5 Hz, J = 7.0 Hz), 4.06 (dd, 2H, J = 2.5 Hz, J = 7.0 Hz), 3.90 (s, 3H), 3.86-3.92 (m, 2H), 3.78 (s, 3H), 3.72 (s, 3H), 3.73-3.75 (m, 2H), 3.70 (s, 3H), 3.51-3.56 (m, 2H), 2.64 (dd, 1H, J = 2.5 Hz, J = 5.5 Hz), 2.51 (t, 1H, J = 6.0 Hz), 2.33 (dd, 1H, J = 2.0 Hz, J = 5.5 Hz), 1.68 (d, 1H, J = 2.5 Hz), 0.91 (s, 9H), 0.84 (s, 9H), 0.08 (s, 6H), 0.03 (s, 3H). 0.02 (s, 3H). ¹³C **NMR** (**125 MHz, CDCl₃**): δ 199.01, 171.28, 169.32, 165.96, 146.12, 137.23, 137.10, 128.53, 128.47, 128.03, 127.91, 127.88, 127.79, 121.99, 80.72, 76.95, 76.12, 75.50, 73.17, 70.44, 61.98, 61.60, 61.44, 59.04, 52.31, 52.00, 51.47, 35.05, 33.51, 30.45, 25.83, 25.69, 25.04, 18.40, 18.05, -5.53, -5.56, -5.75, -5.79. **HRMS** (**ESI**) calcd for C₂₅H₃₆O₇Si+Na⁺ 499.2123, found 499.2134.

 $2.4\ methyl\ (S)-2-((2R,3R,4S,5S,6R)-5-((tert-butyldimethylsilyl)oxy)-6-(hydroxymethyl)-2-methoxy-4-(2-methoxy-2-oxoethyl)tetrahydro-2H-pyran-3-yl)-2-iodoacetate\ (5)$

Yield: 85%, R_f: 0.5 (30% EtOAc/hexane). **8:** IR (neat): 3498, 2951, 2858, 1731, 1435, 1381, 1251 cm⁻¹. ¹**H NMR (500 MHz, CDCl₃):** δ 5.13 (s, 1H), 4.21 (d, 1H, J = 8.0 Hz), 3.91 (dd, 1H, J = 4.5 Hz, J = 10.0 Hz), 3.86 (t, 1H, J = 9.5 Hz), 3.79 (dd, 1H, J = 7.5 Hz, J = 10.0 Hz), 3.72 (s, 3H), 3.65 (s, 3H), 3.47-3.52 (m, 1H), 3.49 (s, 3H), 3.36-3.41 (m, 1H), 2.66 (dd, 1H, J = 3.5 Hz, J = 17.0 Hz), 2.40 (dd, 1H, J = 6.5 Hz, J = 17.0 Hz), 2.06-2.13 (m, 1H), 1.78 (t, 1H, J = 9.0 Hz), 0.89 (s, 9H), 0.09 (s, 6H). ¹³C NMR (125 MHz, CDCl₃): δ 172.63, 169.64, 103.48, 76.42, 72.20, 65.61, 56.72, 53.52, 51.43, 44.33, 43.97, 32.01, 25.75, 25.10, 18.12, -5.59. **HRMS** (ESI) calcd for C₁₉H₃₅O₈ISi+Na⁺ 569.1038, found 569.1046.


2.5 dimethyl 2,2'-((2R,3R,4S,5S,6R)-5-((tert-butyldimethylsilyl)oxy)-6-(hydroxymethyl) - 2-methoxytetrahydro-2*H*-pyran-3,4-diyl)diacetate (4)

Yield: 90%, R_f : 0.45 (30% EtOAc/hexane). **8:** IR (neat): 3495, 2951, 2880, 2857, 1733, 1436, 1360, 1251 cm⁻¹. ¹**H NMR (500 MHz, CDCl₃):** δ 4.33 (d, 1H, J = 8.0 Hz), 3.93 (dd, 1H, J = 4.5 Hz, J = 10.0 Hz), 3.78 (dd, 1H, J = 7.5 Hz, J = 10.0 Hz), 3.67 (s, 3H), 3.66 (s, 3H), 3.64 (d, 1H, J = 2.0 Hz), 3.47-3.51 (m, 1H), 3.44 (s, 3H), 3.35-3.40 (m, 1H), 2.55-2.61 (m, 2H), 2.52 (dd, 1H, J = 4.5 Hz, J = 16.0 Hz), 2.37 (dd, 1H, J = 6.5 Hz, J = 16.0 Hz), 1.96-2.02 (m, 1H), 1.88-1.94 (m, 1H), 0.90 (s, 9H), 0.11 (s, 3H), 0.10 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ 173.18, 172.46, 104.64, 75.90, 73.23, 66.01, 56.76, 51.67, 51.51, 41.97, 41.60, 33.72, 32.91, 25.78, 18.14, -5.59, -5.61. **HRMS (ESI)** calcd for $C_{19}H_{36}O_8Si+Na^+$ 443.2072, found 443.2075.

2.6 methyl (1R,3R,4S,4aS,7R,7aS)-4-((tert-butyldimethylsilyl)oxy)-3-(hydroxymethyl)-1-methoxy-6-oxooctahydrocyclopenta[c]pyran-7-carboxylate (2)

Yield: 80%, R_f: 0.43 (30% Acetone/hexane). **2:** IR (neat): 3494, 2950, 2931, 2886, 2857, 1758, 1725, 1438, 1399, 1254 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ 4.42 (d, 1H, J = 8.0 Hz), 4.00 (dd, 1H, J = 4.5 Hz, J = 10.0 Hz), 3.85 (dd, 1H, J = 7.5 Hz, J = 10.5 Hz), 3.81 (s, 3H), 3.65-3.69 (m, 1H), 3.51-3.55 (m, 1H), 3.48-3.51 (m, 1H), 3.50 (s, 3H), 3.13 (d, 1H, J = 12.5 Hz), 2.55 (dd, 1H, J = 7.0 Hz, J = 18.0 Hz), 2.45-2.50 (m, 1H), 2.19 (t, 1H, J = 18.0 Hz), 1.90-1.98 (m, 1H), 0.92 (s, 9H), 0.12 (s, 3H), 0.11 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ 207.64, 169.72, 104.91, 77.74, 74.17, 65.68, 59.62, 56.50, 52.75, 49.19, 42.21, 39.96, 25.85, 18.26, -5.51, -5.56. HRMS (ESI) calcd for C₁₈H₃₂O₇Si+Na⁺ 411.1810, found 411.1811.

2.7 methyl 2-((2R,3S,4S)-3-(benzyloxy)-2-((benzyloxy)methyl)-3,4-dihydro-2H-pyran-4-yl)acetate (15)

Yield: 93%, R_f: 0.5 (20% EtOAc/hexane). **15:** ¹**H NMR (400 MHz, CDCl₃):** δ 7.27-7.36 (m, 10H), 6.37 (dd, 1H, J = 0.8 Hz, J = 6.0 Hz), 4.72 (t, 1H, J = 1.2 Hz), 4.57-4.65 (m, 3H), 4.52 (d, 1H, J = 11.6 Hz), 3.99-4.03 (m, 1H), 3.91 (dd, 1H, J = 5.6 Hz, J = 8.8 Hz), 3.78 (d, 2H, J = 4.0 Hz), 3.57 (s, 3H), 3.05-3.11 (m, 1H), 2.64 (dd, 1H, J = 6.8 Hz, J = 16.0 Hz), 2.27 (dd, 1H, J = 7.2 Hz, J = 16.0 Hz). ¹³C NMR (100 MHz, CDCl₃): δ 173.04, 143.08, 137.92, 137.71, 128.34, 128.28, 127.77, 127.68, 127.62, 101.25, 73.57, 72.86, 72.65, 71.88, 69.05, 51.44, 36.19, 30.14. **HRMS (ESI)** calcd for C₂₃H₂₆O₅+H⁺ 383.1853, found 383.1850.

2.8 methyl (1*R*,3*R*,4*S*,5*S*,6*R*)-4-(benzyloxy)-3-((benzyloxy)methyl)-5-(2-methoxy-2-oxoethyl)-2-oxabicyclo[4.1.0]heptane-7-carboxylate (14)

Yield: 50%, R_f: 0.5 (30% EtOAc/hexane). **14:** IR (neat): 2951, 2850, 1738, 1493, 1435 cm⁻¹. ¹H NMR (500 MHz, CDCl₃ δ 7.24-7.37 (m, 10H), 4.56 (dd, 2H, J = 9.6 Hz, J = 13.6 Hz), 4.51 (d, 1H, J = 9.2 Hz), 4.44 (d, 1H, J = 9.6 Hz), 3.91 (dd, 1H, J = 1.2 Hz, J = 5.6 Hz), 3.84 (q, 1H, J = 4.0 Hz), 3.66 (s, 3H), 3.61 (s, 3H), 3.56 (t, 1H, J = 3.6 Hz), 3.49 (d, 2H, J = 3.6 Hz), 2.75 (dd, 1H, J = 5.2 Hz, J = 12.8 Hz), 2.59 (dd, 1H, J = 6.0 Hz, J = 12.8 Hz), 2.36-2.41 (m, 1H), 1.77 (dd, 1H, J = 1.2 Hz, J = 4.0 Hz), 1.64-1.67 (m,1H). ¹³C NMR (100 MHz, CDCl₃): δ 172.64, 171.88, 137.80, 137.63, 128.28, 128.24, 127.78, 127.66, 127.59, 76.32, 75.04, 73.47, 71.46, 70.08, 57.55, 51.66, 51.52, 34.54, 32.56, 28.21, 25.87. HRMS (ESI) calcd for $C_{26}H_{30}O_7+Na^+$ 477.1884, found 477.1881.

2.9 methyl (R)-2-((2S,3S,4S,5S,6R)-5-(benzyloxy)-6-((benzyloxy)methyl)-2-methoxy-4-(2-methoxy-2-oxoethyl)tetrahydro-2H-pyran-3-yl)-2-iodoacetate (13)

Yield: 89%, R_f: 0.55 (30% EtOAc/hexane). **13:** IR (neat): 2923, 2361, 1733, 1495, 1359, 1258 cm⁻¹. ¹**H NMR** (**400 MHz, CDCl₃**): δ 7.22-7.34 (m, 10H), 4.58-4.62 (m, 2H), 4.55 (d, 1H, J = 3.6 Hz) 4.50-4.53 (m, 2H), 4.34 (d, 1H, J = 11.2 Hz), 3.85 (ddd, 1H, J = 2.0 Hz, J = 4.4 Hz, J = 10.0 Hz), 3.76 (s, 3H), 3.64-3.71 (m, 2H), 3.59 (dd, 1H, J = 5.6 Hz, J = 15.6 Hz), 3.59 (s, 3H), 3.34 (s, 3H), 3.31-3.33 (m, 1H), 2.91 (dd, 1H, J = 6.4 Hz, J = 16.8 Hz), 2.79 (dd, 1H, J =

7.2 Hz, J = 16.8 Hz), 2.50 (d, 1H, J = 11.6 Hz). ¹³C NMR (100 MHz, CDCl₃): δ 173.69, 171.68, 138.05, 137.51, 128.31, 128.28, 127.98, 127.72, 127.70, 127.57, 97.25, 73.47, 71.12, 69.68, 69.24, 67.24, 55.37, 53.03, 51.52, 45.35, 35.63, 33.17, 23.50. HRMS (ESI) calcd for $C_{27}H_{33}O_8I + Na^+$ 635.1112, found 635.1114.

2.10 dimethyl 2,2'-((2S,3S,4S,5S,6R)-5-(benzyloxy)-6-((benzyloxy)methyl)-2-methoxy tetrahydro-2*H*-pyran-3,4-diyl)diacetate (12)

Yield: 90%, R_f: 0.5 (30% EtOAc/hexane). **12:** IR (neat): 2911, 1731, 1495, 1435 cm⁻¹. ¹**H NMR** (**500 MHz, CDCl₃**): δ 7.20-7.36 (m, 10H), 4.65 (d, 1H, J = 12.5 Hz), 4.56 (s, 1H), 4.54 (d, 1H, J = 7.5 Hz), 4.51 (d, 1H, J = 7.0 Hz), 4.32 (d, 1H, J = 11.0 Hz), 3.85-3.88 (m, 1H), 3.79 (dd, 1H, J = 5.0 Hz, J = 10.0 Hz), 3.70-3.76 (m, 2H), 3.71 (s, 3H), 3.54 (s, 3H), 3.36 (s, 3H), 2.82-2.88 (m, 1H), 2.68-2.75 (m, 2H), 2.65 (dd, 1H, J = 8.5 Hz, J = 15.5 Hz), 2.47 (dd, 1H, J = 6.0 Hz, J = 16.0 Hz), 2.42 (t, 1H, J = 7.0 Hz). ¹³**C NMR** (**125 MHz, CDCl₃**): δ 173.90, 172.32, 138.16, 137.76, 128.21, 128.14, 127.67, 127.58, 127.51, 127.43, 101.10, 73.42, 71.19, 70.81, 69.42, 66.98, 54.98, 51.64, 51.31, 39.27, 36.51, 35.10, 33.41. **HRMS** (**ESI**) calcd for $C_{27}H_{34}O_8 + NH_4^+$ 504.2592, found 504.2592.

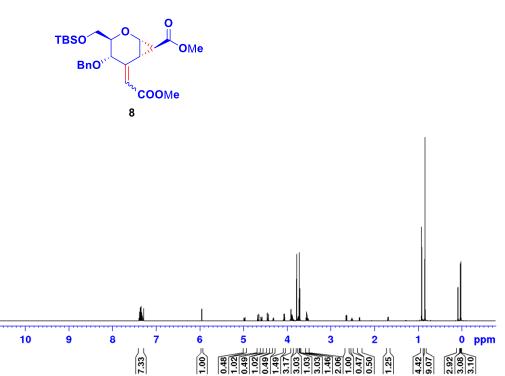
2.11 methyl (1S,3R,4S,4aS,7S,7aR)-4-(benzyloxy)-3-((benzyloxy)methyl)-1-methoxy-6-oxooctahydrocyclopenta[c]pyran-7-carboxylate (3)

Yield: 78%, R_f: 0.35 (30% EtOAc/hexane). **3:** IR (neat): 2911, 1758, 1731, 1494, 1435 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 7.28-7.39 (m, 8H), 7.21-7.24 (m, 2H), 4.70 (d, 1H, J = 7.6 Hz), 4.58 (d, 1H, J = 12.4 Hz), 4.47 (d, 1H, J = 12.4 Hz), 4.43 (d, 1H, J = 11.6 Hz), 4.35 (d, 1H, J = 11.6 Hz), 3.99-4.02 (m, 1H), 3.83-3.89 (m, 1H), 3.76 (s, 3H), 3.63 (dd, 1H, J = 3.2 Hz, J = 10.4 Hz), 3.53 (dd, 1H, J = 3.2 Hz, J = 10.8 Hz), 3.40 (s, 3H), 3.00 (d, 1H, J = 12.0 Hz), 2.78 (td, 1H, J = 7.2 Hz, J = 12.8 Hz), 2.54 (dd, 1H, J = 12.8 Hz, J = 17.6 Hz), 2.38 (dd, 1H, J = 7.2 Hz, J = 18.0 Hz), 2.13-2.16 (m, 1H). ¹³C NMR (125 MHz, CDCl₃): δ 208.71, 168.79, 137.83, 137.58, 128.44, 128.40, 127.96, 127.92, 127.87, 127.83, 127.79, 103.72, 73.27, 73.13, 72.97, 72.81, 69.89, 59.12, 55.42, 52.56, 42.97, 38.66, 36.93. HRMS (ESI) calcd for C₂₆H₃₀O₇+Na⁺ 477.1884, found 477.1887.

3.5 References

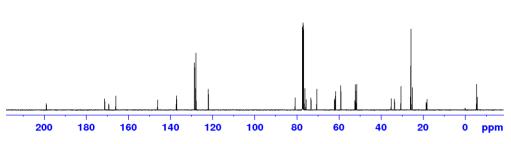
- 21. Sampaio-Santos, M. I.; Kaplan, M. A. C. Biosynthesis significance of iridoids in chemosystematics. *J. Braz. Chem. Soc.* **2010**, *12*, 144–153.
- (a) Franzyk, H. Fortschr. Chem. Org. Naturst. 2000, 79, 1–114. (b) El-Naggar, L. J.; Beal, J. L. J. Nat. Prod., 1980, 43, 649–707; (c) Boros, C. A.; Stermitz, F. R. J. Nat. Prod., 1990, 53, 1055–1147; (d) Dinda, B.; Debnath, S.; Harigaya, Y. Chem. Pharm. Bull., 2007, 55, 159–222; (e) Dinda, B.; Debnath, S.; Harigaya, Y. Chem. Pharm. Bull., 2007, 55, 689–728; (f) Tundis, R.; Loizzo, M. R.; Menichini, F.; Statti, G. A.; Menichini, F. Mini-Rev. Med. Chem., 2008, 8, 399; (g) Dinda, B.; Chowdhury, D. R.; Mohanta, B. C. Chem. Pharm. Bull., 2009, 57, 765–796.
- (a) Kim, T. K.; Park, K. S. *Cytokine*, 2015, 76, 368–374; (b) Garro, H. A.; García, C.; Martín, V. S.; Tonn, C. E.; Pungitore, C. R. *Bioorg. Med. Chem. Lett.*, 2015, 25, 914–918; (c) Guo, S.; Gao, Y.; Jin, Y.; Tian, X.; Cui, X. *Exp. Biol. Med.*, 2014, 239, 986–997; (d) Song, H.-H.; Shin, I.-S.; Woo, S. Y.; Lee, S. U.; Sung, M. H.; Ryu, H. W.; Kim, D.-Y.; Ahn, K.-S.; Lee, H.-K.; Lee, D. *J. Ethnopharmacol.*, 2015, 170, 20–27; (e) Fakhrudin, N.; Waltenberger, B.; Cabaravdic, M.; Atanasov, A.; Malainer, C.; Schachner, D.; Heiss, E.; Liu, R.; Noha, S.; Grzywacz, A. *Br. J. Pharmacol.*, 2014, 171, 1676–1686; (f) Piaz, F. D.; Vassallo, A.; Temraz, A.; Cotugno, R.; Belisario, M. A.; Bifulco, G.; Chini, M. G.; Pisano, C.; Tommasi, N. D.; Braca, A. *J. Med. Chem.*, 2013, 56, 1583–1595.
- 24. Hussain, H.; Green, I. R.; Saleem, M.; Raza, M. L.; Nazir, M. *Inventions*. **2019**, *4*, 29.

- 25. Wu, J. New iridoid, its preparation method and medical application thereof. CN105503892A; 20-04-2016.
- 26. Yao, T. A kind of new iridoid and its preparation method and medicinal use. CN105367536A; 02-03-2016.
- 27. Wu, J. Preparation of iridoid compound with endothelial cell protection effect. CN105503893A; 20-04-2016.
- 28. Li, G.; Chen, Y.; Zhang, Z.; Dong, J.; Zuo, M.; Zeng, L.; Zhang, J.; Wu, K. An iridoid compound and its manufacture method, preparations and application. CN105017354A; 04-11-2015.
- 29. Fan, X.; Chen, M. A novel pharmaceutical application of iridoid glycoside. CN104510747A; 15-04-2015.
- 30. Liu, K.; Zou, X.; Xu, H.; Lang, Y.; Fan, H. Method for preparation of iridoid genipin methyl ether and its medical application. CN102875518A; 16-01-2013.
- 31. Yamaoka, S.; Ohta, N.; Suzuki, M.; Shoyama, Y.; Morinaga, O.; Uto, T.; Tung, N.H.; Koram, K.A.; Bosompem, K.M.; Nyarko, A.K. Novel tetracyclic spirolactone iridoid compounds for treatment of trypanosomiasis. WO2015105198A1; 16-07-2015.
- 32. (a) El-Naggar, L. J.; Beal, J. L.; *J. Nat. Prod.*, **1980**, *43*, 649–707; (b) Boros, C. A.; Stermitz, F. R.; *J. Nat. Prod.*, **1990**, *53*, 1055–1147; (c) Dinda, B.; Debnath, S.; Harigaya, Y. *Chem. Pharm. Bull.*, **2007**, *55*, 159–222; (d) Dinda, B.; Debnath, S.; Harigaya, Y. *Chem. Pharm. Bull.*, **2007**, *55*, 689–728; (e) Tundis, R.; Loizzo, M. R.; Menichini, F.; Statti, G. A.; Menichini, F.; *Mini-Rev. Med. Chem.*, **2008**, *8*, 399; (f) Dinda, B.; Chowdhury, D. R.; Mohanta, B. C.; *Chem. Pharm. Bull.*, **2009**, *57*, 765–796.
- 33. (a) Chavez, D. E.; Jacobsen, E. N.; *Org. Lett.*, **2003**, *5*, 2563–2565; (b) Beckett, J. S.; Beckett, J. D.; Hofferberth, J. E.; *Org. Lett.*, **2010**, *12*, 1408–1411; (c) Fischman, C. J.; Adler, S.; Hofferberth, J. E. *J. Org. Chem.*, **2013**, *78*, 7318–7323; (d) Wu, S.; Zhang, Y.; Agarwal, J.; Mathieu, E.; Thorimbert, S.; Dechoux, L. *Tetrahedron*, **2015**, *71*, 7663–7669.
- 34. (a) Li, N.; Di, L.; Gao, W.-C.; Wang, K.-J.; Zu, L.-B.; *J. Nat. Prod.*, **2012**, *75*, 1723–1728; (b) Kim, K. H.; Park, Y. J.; Chung, K. H.; Yip, M. R.; Clardy, J.; Senger, D.; Cao, S. *J. Nat. Prod.*, **2015**, *78*, 320–324; (c) He, Y.; Peng, J.; Hamann, M. T.; West, L. M. *J. Nat. Prod.*, **2014**, *77*, 2138–2143. (d) Sim, J.; Yoon, I.; Yun, H.; An, H.; Suh, Y. G. *Org. Biomol. Chem.*, **2016**, *14*, 1244–1251.
- 35. Mangion, I. K.; MacMillan, D. W. C. J. Am. Chem. Soc. 2005, 127, 3696-3697.


- 36. Zimmermann, N.; Hilgraf, R.; Lehmann, L.; Ibarra, D.; Francke, W. *Beilstein J. Org. Chem.* **2012**, *8*, 1246–1255.
- 37. Kinzy, W.; Schmidt. R. R. Tetrahedron Letters, 1987, 28(18), 1981-1984,
- 38. Ganesh, V.; Kundu, T.; Chandrasekaran, S *Tetrahedron*, **2014**, 70 (40), 7268–7282.
- 39. Zhou, G.; Zorn, N.; Ting, P.; Aslanian, R.; Lin, M.; Cook, J.; Lachowicz, J.; Lin, A.; Smith, M.; Hwa, J.; Heek, M. V.; Walker, S. *ACS Medicinal Chemistry Letters*, **2014**, 5(5), 544-549.
- 40. Sridhar, P. R.; Ashalu, K. C.; Chandrasekaran, S. Org. Lett., 2004, 6(11), 1777-1779.
- 41. Primean, J. L.; Anderson, R. C.; Fraser-Reid. B. J. Am. Chem. Soc. 1983, 105, 5874-5879.
- 42. Reddy, G. M.; Sridhar, P. R. Eur. J. Org. Chem. 2014, 2014, 1496–1504.
- 43. Bal, P. S.; Childers, W. E.; Pinnick, H. W.; Tetrahedron, 1981, 37, 2091–2096.
- 44. Pechman, H. V. Chem. Ber. 1895, 28, 855-861.

F2 - Acquisition Parameters
Date_ 20200929
Time 13.57 h
INSTRUM
PROBHD 2119470_0291 (
PULPROG 2g30
TD 65536
SOLVENT CDC13
NS 16
DS 2
SWH 10000.000 Hz
FIDRES 0.305176 Hz
AQ 3.2767999 sec
RG 31.25
DW 50.000 usec
DE 6.50 usec
TE 294.8 K
D1 1.00000000 sec
TD0 1
SFO1 500.3720896 MHz
NUC1 1H
P1 10.00 usec
PLW1 23.23100090 Wee

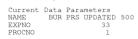
F2 - Processing parameters
SI 65536
SF 500.3690000 MHz
WDW EM
SSB 0
LB 0.30 Hz
GB 0
PC 1.00


137.25 137.10 128.55 128.4 128.0 127.9 127.8 127.8	7.777.25 7.67.25 7.
1/	

171.28

199.01

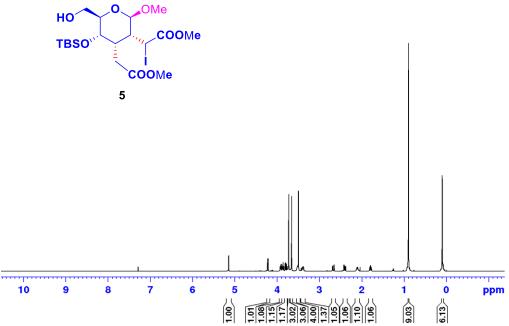
7146.12



Current Data Parameters NAME BUR ASCEND 500 EXPNO 191 PROCNO 1

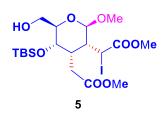
P2 - Acquisition Parameters
Date. 20200929
Time 15.29 h
INSTRUM spect
PROBHD Z119470_0291 (
PULPROG Z9p930
TD 65536
SOLVENT CDC13
NS 1560
DS 4
SWH 29761,904 Hz
FIDRES 0.908261 Hz
AQ 1.1010048 sec
RG 192.83
DW 16.800 usec
DE 6.50 usec
TE 295.5 K
D1 2.000000000 sec
D11 0.03000000 sec
D11 0.03000000 sec
D11 10.03000000 sec
D11 0.03000000 sec
D11 0.03000000 sec
D11 0.03000000 sec
D1 15F01 125.8304669 MHz
NUC1 13C
P1 10.00 usec
PLW1 115.01000214 W
SF02 500.3710015 MHz
NUC2 1H
CPDPRG[2 80.00 usec
PLW2 23.23100090 W
PLW12 0.36298999 W
PLW12 0.36298999 W
PLW13 0.18257999 W

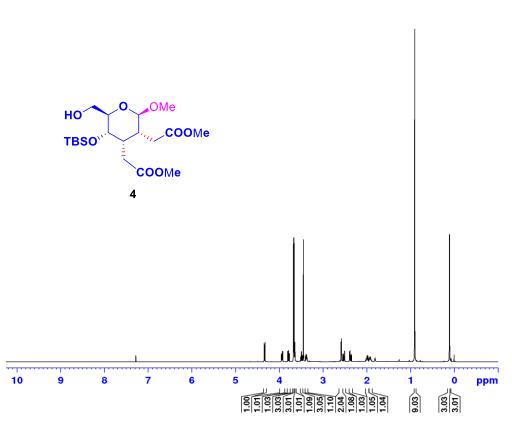
F2 - Processing parameters
SI 32768
SF 125.8178911 MHz
WDW EM
SSB 0
LB 1.00 Hz
GB 0
PC 1.40



	isition Paramet	ers
Date_	20201029	
Time	15.28	h
INSTRUM	spect	
PROBHD	Z109128_0042 (
PULPROG	zq30	
TD	65536	
SOLVENT	CDC13	
NS	16	
DS	2	
SWH	10000.000	H-
FIDRES	0.305176	
	3.2767999	
AQ		sec
RG	57	
DW	50.000	
DE	13.04	
TE	516.2	
D1	1.00000000	sec
TDO	1	
SF01	500.1830886	MHz
NUC1	1H	
P0	5.00	used
P1	15.00	use
PLW1	4.84679985	

F2 - Processing parameters
SI 65536
SF 500.1800000 MHz
WDW EM
SSB 0
LB 0.30 Hz
GB 0
PC 1.00




current	Data	rar		
NAME	BUR	PRS	UPDATED	500
EXPNO			35	
PROCNO			1	

	isition Parame	ters
Date_	20201102	
Time	11.18	n
INSTRUM	spect	
	Z109128_0042 (
PULPROG	zgpg30	
TD	65536	
SOLVENT	CDC13	
NS	64	
DS	4	
SWH	29761.904	
FIDRES	0.908261	
AQ	1.1010048	sec
RG	203	
DW	16.800	
DE	6.50	
TE	297.1	
D1	2.00000000	
D11	0.03000000	sec
TDO	1	
SFO1	125.7829381	MHZ
NUC1	13C	
P0	3.33	
P1	10.00	
PLW1	64.00399780	
SFO2	500.1820007	MHZ
NUC2	1H	
CPDPRG[2	waltz65	
PCPD2	80.00	
PLW2	4.84679985	
PLW12	0.17039999	
PLW13	0.08570800	W

NUC1				13C	
P0			3	.33	usec
P1			10	.00	usec
PLW1		64.0	00399	780	W
SFO2		500	.1820	007	MHz
NUC2				1 H	
CPDPF	RG [2		walt	z65	
PCPD2			80	.00	usec
PLW2		4.8	34679	985	W
PLW12		0.1	L7039	999	W
PLW13	3	0.0	08570	800	W
F2 -	Proces:	sing	para	met	ers
SI			32	768	
SF		125.	7703	686	MHz
WDW				EM	
SSB	0				
LB			1	.00	Hz
GB	0				
PC			1	.40	

		I	
II.			
200 180 160 14	10 120 100	80 60 40	20 0 ppm

Current	Data	Par		
NAME	BUR	PRS	UPDATED	500
EXPNO			36	
PROCNO			1	

Date_ Time INSTRUM	11sition Parameters 20201104 14.29 h spect 2109128_0042 (2330 65536 CDC13 16 2 10000.000 Hz 0.305176 Hz 3.2767999 sec
AQ	3.2767999 sec
RG	71.8
DW	50.000 use
DE	13.04 use
TE	297.0 K
D1 TD0	1.00000000 sec
SFO1	500.1830886 MHz
NUC1	1H
PO	5.00 use
P1	15.00 use
PLW1	4.84679985 W

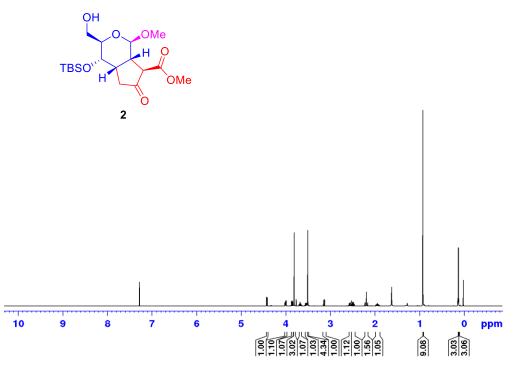

104.64 104.64

Current Data Parameters
NAME BUR PRS UPDATED 500
EXPNO 38
PROCNO 1

F2 - Acqu	isition Paramet	ters
Date_	20201104	
Time	15.01	h
INSTRUM	spect	
PROBHD	Z109128_0042 (
PULPROG	zgpg30	
TD	65536	
SOLVENT	CDC13	
NS	350	
DS	4	
SWH	29761.904	Hz
FIDRES	0.908261	Hz
AQ	1.1010048	sec
RG	203	
DW	16.800	
DE	6.50	
TE	297.8	
D1	2.00000000	
D11		sec
TDO	1	
SF01	125.7829381	MHz
NUC1	13C	
P0	3.33	
P1	10.00	
PLW1	64.00399780	
SFO2	500.1820007	MHz
NUC2	1H	
CPDPRG[2	waltz65	
PCPD2	80.00	
PLW2	4.84679985	
PLW12	0.17039999	
PLW13	0.08570800	W

PLW1	3	0.0	8570800	W
F2 -	Process	sing	paramete 32768	er:
SF WDW		125.	7703646 EM	MI
SSB LB	0		1.00	Н
GB PC	0		1.40	

						1				
200	180	160	140	120	100	80	60	40	20	0 ppm


180

160

140

120

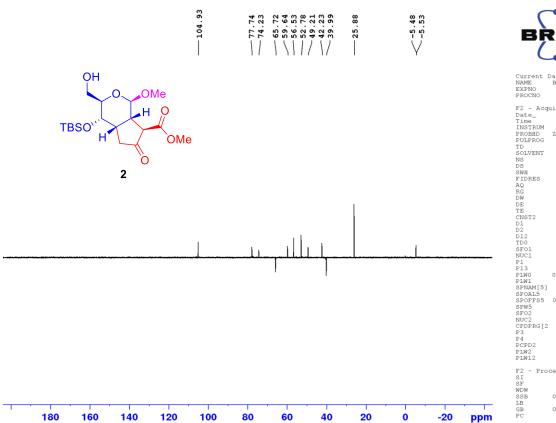
NAME	BUR	ASCEND		
EXPNO PROCNO			204	
			_	
F2 - Acqu Date	iisit	ion Pa: 2020:		ters
Time			9.00	h
INSTRUM			ect.	11
PROBHD	Z11			
PULPROG			:g30	
TD			5536	
SOLVENT		CI	C13	
NS			16	
DS			2	
SWH		10000	.000	Hz
FIDRES		0.30	5176	Hz
AQ		3.2767	999	sec
RG			5.6	
DW			000	
DE			5.50	
TE			96.9	
D1		1.0000		sec
TDO			1	
SF01		500.3720		MHz
NUC1			1 H	
P1			0.00	
PLW1	2	23.23100	0090	W
F2 - Proc	cess	ing para	amet	ers
SI		6.5	5536	
SF	į	500.3690	020	MHz
WDW			EM	
SSB	0			
LB		(.30	Ηz
CD	0			

1.00

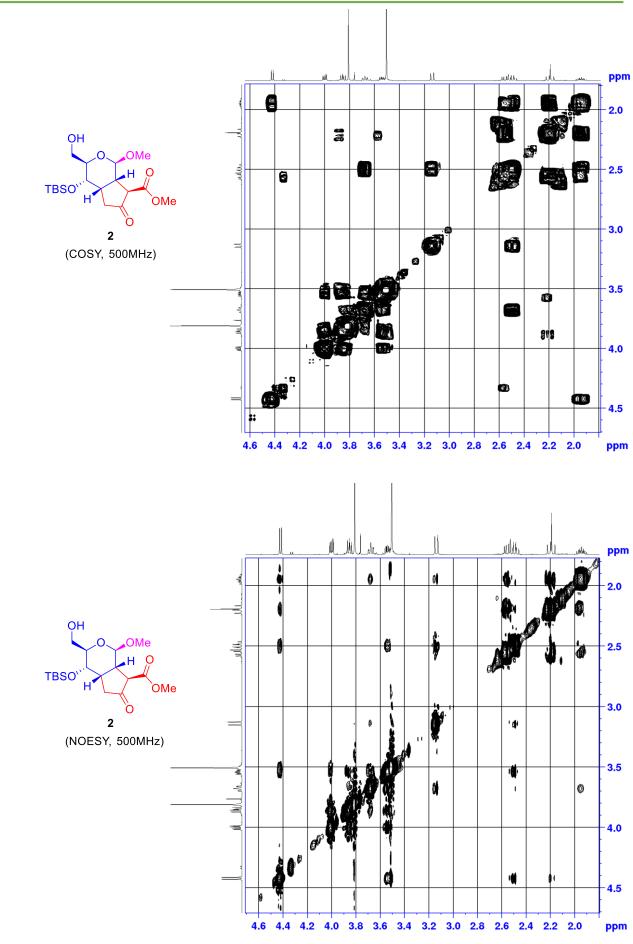
TBSO H OME				
		11.11	Ш	

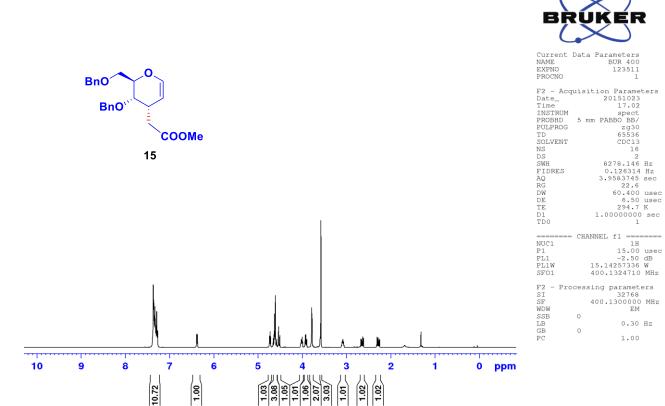
100

104.91

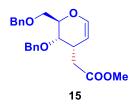


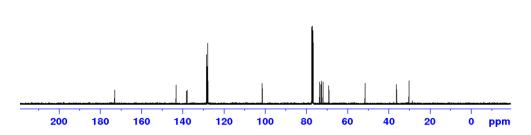
Current Data Parameters
NAME BUR ASCEND 500
EXPNO 201
PROCNO 1


	isition Paramet	ters
Date_	20201113	
Time	22.25	h
INSTRUM	spect	
PROBHD	Z119470_0291 (
PULPROG	zgpg30	
TD	65536	
SOLVENT	CDC13	
NS	5120	
DS	4	
SWH	29761.904	Hz
FIDRES	0.908261	Hz
AQ.	1.1010048	sec
RG	192.83	
DW	16.800	usec
DE	6.50	usec
TE	297.5	K
D1	2.00000000	sec
D11	0.03000000	sec
TDO	1	
SFO1	125.8304669	MHz
NUC1	13C	
P1	10.00	usec
PLW1	115.01000214	W
SFO2	500.3710015	MHz
NUC2	1 H	
CPDPRG[2	waltz16	
PCPD2	80.00	usec
PLW2	23.23100090	W
PLW12	0.36298999	W
PLW13	0.18257999	W


F2 -	Processing	paramet	ers
SI		32768	
SF	125	8178881	MHz
WDW		EM	
SSB	0		
LB		1.00	Ηz
GB	0		
PC		1.40	

0 ppm





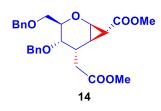
 Current Data Parameters

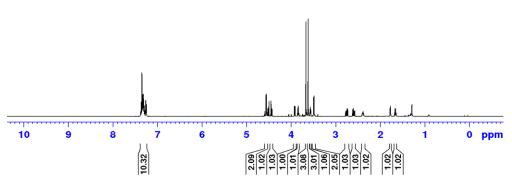
 NAME NAME EXPNO
 BUR 400

 EXPNO
 123512

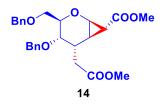
 PROCNO
 1
 23980.814 Hz 0.365918 Hz 1.3664256 sec 9195.2 20.850 usec 6.50 usec 294.9 K 2.00000000 sec 0.030000000 sec CHANNEL f1 ______ 13C 11.00 usec dB 33.65927887 W 100.6228298 MHz

CPDPRG[2 CPDPRO NUC2 PCPD2 PL2 PL12 PL13 PL2W PL12W PL12W PL13W SF02 F2 - Processing parameters SI 32768 SF HOW HOW EM SSB EM SGB 0 1.00 Hz GB 0 1.40



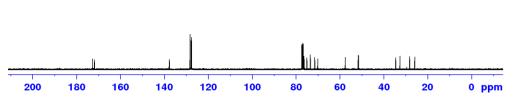

Current	Data	Parameters
NAME		BUR 500
EXPNO		123711
PROCNO		1

F2 - Acqu	11:	sit:	ion Parameters	
Date_			20151108	
Time			1.19	
INSTRUM			spect	
PROBHD	5	mm	PABBO BB-	
PULPROG			zg30	
TD			65536	
SOLVENT			CDC13	
NS			16	
DS			2	
SWH			10330.578 Hz	
FIDRES			0.157632 Hz	
AQ			3.1719425 sec	
RG			36	
DW			48.400 used	3
DE			6.50 used	3
TE			296.3 K	
D1			1.000000000 sec	
TDO			1	

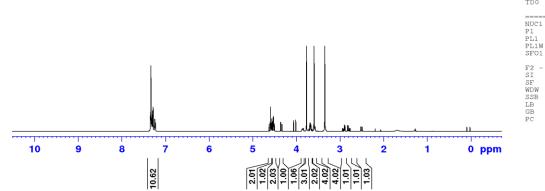

	CHANNEL	f1		
NUC1			1 H	
P1		14	.90	usec
PL1		2	.00	dB
PL1W	12.8	5348	415	W
SF01	500.	1830	888	MHz

F.5 -	Processing parameters
SI	32768
SF	500.1800000 MHz
WDW	EM
SSB	0
LB	0.30 Hz
GB	0
PC	1.00

7172.64


Current	Data	Parameters
NAME		BUR 400
EXPNO		123712
PROCNO		1

F2 - Acqu	isition Paramet	ers
Date_	20151028	
Time	12.49	
INSTRUM	spect	
PROBHD	5 mm PABBO BB/	
PULPROG	zgpg30	
TD	65536	
SOLVENT	CDC13	
NS	405	
DS	4	
SWH	23980.814	Hz
FIDRES	0.365918	Ηz
AQ	1.3664256	sec
RG	20642.5	
DW	20.850	usec
DE	6.50	usec
TE	295.3	K
D1	2.00000000	sec
D11	0.03000000	sec
TDO	1	


	CHANNEL	f1
NUC1		13C
P1		11.00 usec
PL1	0 dB	
PL1W		927887 W
SF01	100.6	228298 MHz

	CHANNEL f2 ====	
CPDPRG[2	waltz16	
NUC2	1H	
PCPD2	80.00	usec
PL2	-2.50	dB
PL12	12.04	dB
PL13	14.00	dB
PL2W	15.14257336	W
PL12W	0.53235298	W
PL13W	0.33899999	W
SFO2	400.1316005	MHz

	Processing	parameters
SI SF	100	32768 .6127836 MH
WDW SSB	0	EM
LB	Ü	1.00 Hz
GB PC	0	1.40
		1.40

PROCNO	1
F2 - Acquate Time INSTRUM PROBHD PULPROG TD SOLVENT NS DS SWH	13:11:01 Parameters 2015:1104 9.52 spect 5 mm PABBO BB- 2g30 655:36 CDC13 16 2 8223.685 Hz
FIDRES AQ	0.125483 Hz 3.9845889 sec
RĜ	128
DW	60.800 usec
DE	6.50 usec
TE	300.0 K
D1	1.00000000 sec
TDO	1
	CHANNEL f1
NUC1	1H
P1	14.90 usec
PL1	1.50 dB
PI-1W	15.18650627 W

PL1W					527	
SF01	4	00.	09	34	707	MHz
F2 -	Processi	.ng	pa	rar	nete	ers
SI				327	68	
SF	4	00.	09	10	000	MH2
WDW					EM	
SSB	0					
LB				0.	30	Ηz
GB	0					
PC				1.	0.0	

BnO	0	۰٬٬۷	OMe
BnO ^v			COOMe
	-	co	ОМе
	13		

BnO'

COOMe

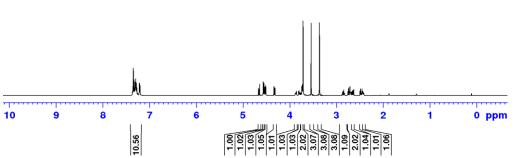
13

	_	
F2 - Acon	isition Paramet	ers
Date	20151104	
Time	10.02	
INSTRUM	spect	
PROBHD	5 mm PABBO BB-	
PULPROG	zqpq30	
TD	65536	
SOLVENT	CDC13	
NS	128	
DS	4	
SWH	24038.461	Ηz
FIDRES	0.366798	Hz
AO	1.3631488	sec
RG	28.5	
DW	20.800	usec
DE	6.50	usec
TE	300.0	K
D1	2.00000000	sec
D11	0.03000000	sec
TD0	1	
	CHANNEL f1 ====	
NUC1	13C	

NUCI	13C	
P1	10.00	usec
PL1	2.00	dB
PL1W	49.44866943	W
SFO1	100.6130223	MHz
	CHANNEL f2 ===	
CPDPRG[2	waltz16	
NUC2	1.H	
PCPD2	90.00	usec
PL2	1.50	dB
PL12	17.18	dB
PL13	20.18	dB
PL2W	15.18650627	M
PL12W	0.41063678	W

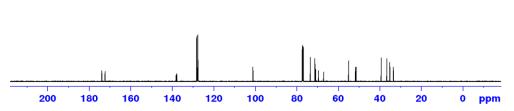
PL13V	I	0.3	20580591	W
SFO2		400	.0926004	MHz
F2 -	Process	ing	paramete	ers
SI			32768	
SF		100	.6029673	MHz
MDW			EM	
SSB	0			
LB			1.00	Hz
GB	0			
PC			1.40	

						1		ı III	ı II	ı		
--	--	--	--	--	--	---	--	-------	------	---	--	--



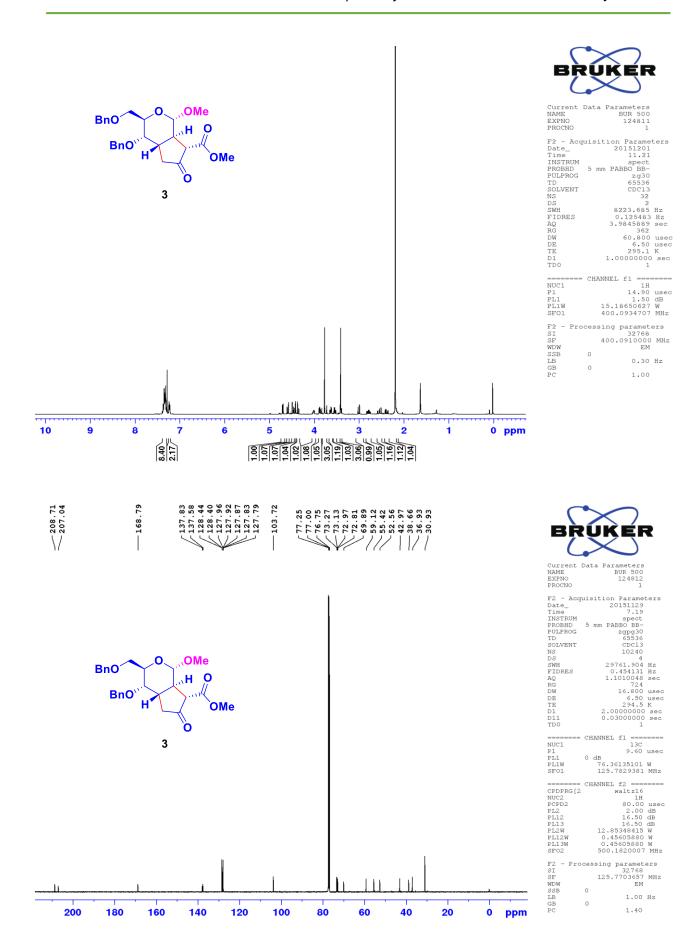

	 CHAN	NEL	f1			
NUC1				1 H		
P1			14	.90	usec	;
PL1			2	.00	dB	
PL1W	1	2.8	5348	415	W	
SF01	5	00.	1830	888	MHz	

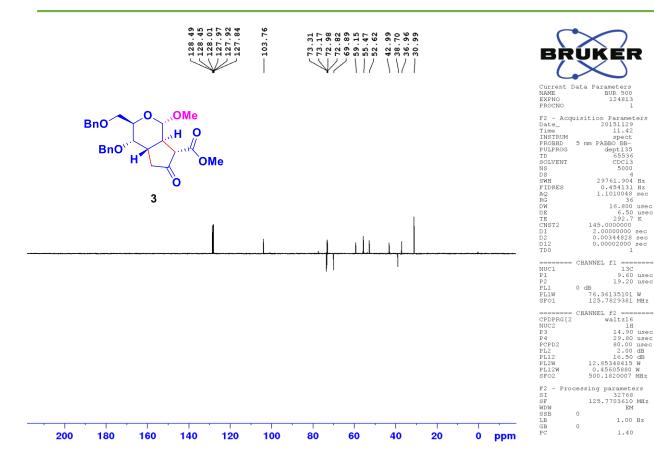
SF		500.1800000	MH
WDW		EM	
SSB	0		
LB		0.30	Hz
GB	0		
D.C		1 00	



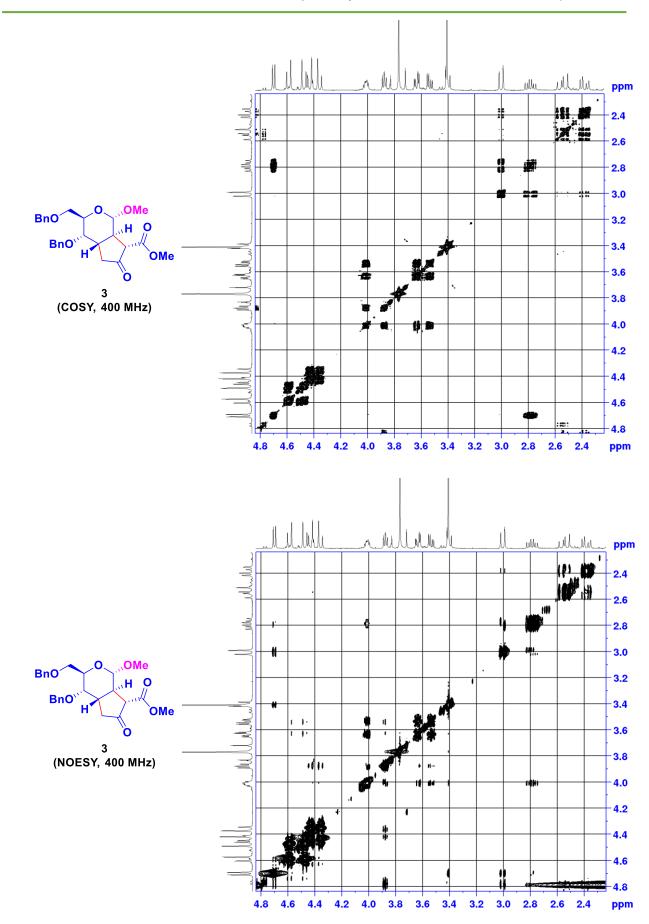
138.16 137.76 128.21 128.14 127.67 127.58 127.58	101.10	77.05 77.05 76.75 73.42 71.19 69.42 66.98 51.64 51.31 33.51 33.41

173.90




Current	Data	Parameters
NAME	BUR	2 (500MHz)
EXPNO		124212
DECCNO		1

F2 - Acqu	uis	siti	on P	arame	ters
Date			201	80802	
Time				17.51	
INSTRUM				spect	
PROBHD	5	mm	PABB	o BB-	
PULPROG			Z	gpg30	
TD				65536	
SOLVENT				CDC13	
NS				64	
DS				4	
SWH				1.904	
FIDRES				54131	
AQ			1.10	10048	sec
RG				2050	
DW			1	6.800	
DE					usec
TE				296.9	
D1				00000	
D11		C	.030	00000	sec
				- 1	


13C 9.60 used 0 dB 76.36135101 W 125.7829381 MHz CHANNEL f2 waltz16	
0 dB 76.36135101 W 125.7829381 MHz CHANNEL f2 waltz16	
76.36135101 W 125.7829381 MHz CHANNEL f2 waltz16	
125.7829381 MHz CHANNEL f2 waltz16	
CHANNEL f2 ======= waltz16	
waltz16	
waltz16	
1H	
80.00 used	:
2.00 dB	
16.50 dB	
16.50 dB	
12.85348415 W	
0.45605880 W	
0.45605880 W	
500.1820007 MHz	
	2.00 dB 16.50 dB 16.50 dB 12.85348415 W 0.45605880 W 0.45605880 W

F2 -	Processing	
SI		32768
SF	125.	.7703759 MH
WDW		EM
SSB	0	
LB		1.00 Hz
GB	0	
PC		1.40

19.20 use 0 dB 76.36135101 W 125.7829381 MHz

Chapter-4

Stereoselective synthesis of 3-C-branched glycals involving [2,3] Wittig rearrangement

4.1 Introduction

4.2 Results and Discussions

4.3 Conclusions

4.4 Experimental section

4.5 References

4.1 Introduction

T he rearrangement of α -ethereal carbanion, stabilised by phenyl or vinyl, to the corresponding alkoxide known as Wittig rearrangement is one the finest method for the stereoselective formation of C-C bond. Out of different variants of this classic sigmatropic rearrangement, the [1,2]- and [2,3]- were the most synthetically useful techniques. The mechanistic investigations revealed that the [1,2]-Wittig rearrangement involves a radical pair dissociation-recombination mechanism, whereas the [2,3]-Wittig rearrangement follows the Woodward-Hoffmann rule that proceeds through a concerted thermally allowed sigmatropic process. In many such type of rearrangements, depending on the structure and temperature it was observed that the [1,2]-shift competes with the [2,3]-shift in an appreciable extent. Despite these difficulties, [2,3]-Wittig rearrangement has been used as a key step in achieving the total synthesis of several natural products. Whereas, due the formation of various by-products in [1,2]-Wittig rearrangement, it was not very successful. In this context, the reports on the execution of Wittig rearrangement on a carbohydrate derived framework are very limited. Thus, in view of investigating the Witting rearrangement in carbohydrate derived scaffolds, the [1,2]- $^{1-3}$ or [2,3]- $^{4-9}$ Wittig rearrangement of carbohydrate acetals was studied to convert the Oglycosides into C-glycosides. On the other hand, few studies on the use of Wittig rearrangement of pyranose derived allyl propargyl ethers was revealed recently. 10

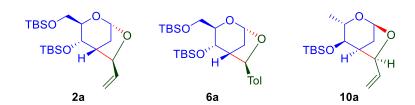
In continuation of our research towards the synthesis of carbon-branched sugars^{11–15} involving Claisen rearrangement¹⁶ we were prompted investigate the Wittig rearrangement on a carbohydrate frame work. We reasoned that the five membered cyclic transition state of [2,3]-sigma tropic rearrangement, when compared to the six-membered transition state in [3,3]-sigmatropic rearrangemet, will be more susceptible to the effects of stereochemical control by substituents. Moreover, Wittig rearrangement is frequently carried out at low temperature than the Claisen the rearrangement. These important characteristics of Wittig rearrangement prompted us to investigate Wittig rearrangement on a carbohydrate scaffold. Previously, a reaction of 3*H*-3,4-en-2-*O*-propargyl ether under Wittig reaction conditions [*n*-BuLi, THF, –78 °C, 1 h] has been reported by Isobe, Yu and their groups, and which was provided [2,3]-and

[1,2]- Wittig rearranged products with 4:1 ratio in 72% yield, respectively (figure 4.1, eq.1).¹⁷ And They could observe the no reaction with the terminal acetylenic 4α -ether under similar reaction conditions. By raising the temperature to -40 °C for 3.5 h, [2,3]-and [1,2]-Wittig rearranged products were obtained with 10:1ratio in 46% yield, respectively (figure 4.1, eq.2).

Figure 4.1 Wittig rearrangement of sugar derived 2α -and 4α -Propargyl ethers.

We envisaged that the acetal systems derived by Ferrier rearrangement of glycals could be excellent precursors to study. In general, these substrates would undergo either [1,2]-shift owing to the higher stability of the alkoxy radical which is further stabilised by the ring-allyl group to form the *C*-glycosides or [2,3]-shift to form the 3-*C*-branched glycals (scheme 4.1). However, both the rearrangement reaction are expected to provide retention of stereochemistry at the newly forming C-C bond.

Scheme 4.1 Synthesis of *C*-3-branched glycals from sugar derived acetals.


4.2 Results and Discussion

At the outset, we examined the rearrangement of D-glucal derived diene 1 under Wittig reaction conditions [n-BuLi (2-3 equiv), TMEDA, THF, -78 °C]. This reaction revealed that the rearrangement proceeded with complete transfer of stereochemistry from the anomeric position to the *C*-3 position to give [2,3]-wittig product 2 in 60% yield, as a single stereo isomer. Surprisingly, no [1,2]-Wittig rearrangement product was observed. However, under the similar reaction conditions, with proparglyl, benzyl, cinnamyl and tolyl acetals provided the *C*-3-branched glycals, via [2,3]-Wittig rearrangement, 3-6 as single diastereomers. Replacing the TBS protecting group

Table 4.1. Synthesis of 3-C-branched glycal derivatives via [2,3]-Wittig rearrangement.

with methyl provided compound **7** in good yield. A similar kind of products were observed even with D-galactal derived diene which upon rearrangement provided the 3-*C*-branched galactal derivatives **8a** and **8b**, in 1:1 ratio, Whereas the propargyl acetal provided the single diastereomer **9**. Interestingly, D-rahmnose derived allyl acetal also provided the corresponding 3-*C*- branched rhamnal **10** as single diastereomer with 66% yield.

Extending the methodology to pentopyranoses, D-arabinose derived allyl and benzyl acetals gave the 3-*C*-branched glycals **11a**, **11b** and **12a**, **12b**, respectively, in 1:1 ratio (Table 1). These results suggest Wittig precursors derived from Ferrier rarrangement of glycasl with appropriate *O*-nucleophiles undergo a stereoselective [2,3]-Wittig rearrangement. In addition, the substituents on the pyranose as well as the migrating alkyl group does influence the stereochemistry at the hydroxyl carbon. Finally, the 3-*C*-branched glycals **2**, **6** and **10** were cyclised to the corresponding bicyclic acetals catalysed by PTSA to obtain bridged bicycles **2a**, **6a** and **10a**, respectively (Figure 4.2). These compounds were used to assign the stereochemistry at the newly formed stereocenters. The exact stereochemistry was assigned by using 2D-COSY and 2D-NOESY NMR spectral analysis of **2a**, **6a** and **10a**. The stereochemistry of the formation of 3-*C*-branched glycals all the other compounds were confirmed by ¹H, ¹³C, COSY and NOESY spectral analysis along with few single crystal X-ray diffraction studies.

Figure 4.2 Wittig rearrangement of sugar derived 2α -and 4α -Propargyl ethers.

With these information in hand, we further investigated the influence of stereochemistry at the anomeric position. Thus, the β -O-glycoside 13 was synthesized and subjected to Wittig rearrangement conditions. Interestingly, 13 also underwent the [2,3]-Wittig rearrangement leading the formation of 3-C-branched glycals 14a and 14b (Table 4.2), however, as a 1:1 mixture of diastereomers. Applying the methodology to benzyl glycoside, derived from triacetyl glucal, provide the compound 15. The methodology was found to be equally applicable to other appropriate β -O-glycoside derivatives that was tested in the case of galactose, which led to the formation of 3-C-branched glycals 16 and 17 (Table 2). It is interesting to note that, incorporating a more bulky protecting group could increase the yield of the rearrangement product. Finally, we planned to investigate the p-methoxy benzylidene acetylated β -O-glycoside derivative under similar reaction conditions, which also produced the

3-*C*-branched glycal **18.** As all the above glycosides upon Wittig rearrangement provided exclusively the 3-*C*-branched glycals.

Table 4.2. Synthesis of 3-*C*-branched glycal derivatives from β -*O*-glycoside derivatives via [2,3]-Wittig rearrangement.

In view of assigning the stereochemistry at the newly formed stereo-centres, compound **16** was acetylated using acetic anhydride and pyridine and subjected to crystallization. To our fortunate, compound **16a**, formed the crystals in EtOAc/Hexane solvent system. Based on the single crystal X-ray diffraction studies of **16a** (Figure 4.3), 2D and 3D NMR spectral analysis, the stereochemistry of the 3-*C*-branched glycals as shown in table 4.2 were confirmed.

Figure 4.3 Crystal structure of 16a

4.3 Conclusions

In conclusion, exclusively 3-*C*-branched glycals have been synthesised with retention of configuration from the α -*O*-glycoside derivatives via [2,3]-Wittig rearrangement. Using the same methodology, 3-*C*-branched glycals are synthesised from the β -*O*-glycoside derivatives also via [2,3]-Wittig rearrangement with retention of configuration. Influence of the protecting groups has been observed to produce the yields in the [2,3]-Wittig rearrangement.

4.4 Experimental section

4.4.1 General Methods

All the reactions were carried out under nitrogen or argon atmosphere and monitored by thin layer chromatography (TLC) using silica gel GF₂₅₄ plates with detection by charring with 5% (v/v) H₂SO₄ in methanol or by phosphomolybdic acid (PMA) stain or by ultra violet (UV) detection. All the chemicals were purchased from local suppliers and Sigma-Aldrich Chemicals Company. Solvents used in the reactions were distilled over dehydrated agents. Silica-gel (100-200 mesh) was used for column chromatography. 1 H, 13 C, DEPT, COSY, NOESY spectra were recorded on Bruker 400 MHz and 500 MHz spectrometer in CDCl₃. 1 H NMR chemical shifts were reported in ppm (δ) with TMS as internal standard (δ 0.00) and 13 C NMR were reported in chemical shifts with solvent reference (CDCl₃, δ 77.00). High resolution mass spectra (HRMS) were obtained in the ESI mode. IR spectra were recorded with a JASCO FTIR-5300 instrument. High resolution mass spectra were recorded on Bruker maXis ESI-TOF spectrometer.

4.4.2 Experimental procedures and spectral data

2.1 General procedure for TBS Protection of alcohol: (for the synthesis of S2, S3, S4, S5, S6, S7, S8, S9, S10, S11, S12, 13, S15, S16, and S17)

To a stirred solution of alcohol (1eq) in anhydrous DMF (10 mL/gr) under inert atmosphere was added imidazole (3 eq) followed by TBSCl (3 eq) at RT and stirred for overnight at RT. The reaction was quenched with slow addition of cold water and extracted with diethyl ether and washed with aqueous cupric sulphate. The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated under reduced pressure to obtain crude

product. Purification of the crude product by column chromatography over silica gel using hexanes and ethyl acetate provided pure di TBS protected sugar derivative in 98% yield.

2.2 General procedure for Wittig Rearrangement reaction: (for the synthesis of 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17 and 18)

A solution of cyclic allyl ether (1eq) in anhydrous THF (5 mL/100 mg) under argon was cooled to -78 °C and 1 eq of TMEDA were added and stirred for 5 minutes. Then a solution of *n*-BuLi (5 eq) was added and stirred at -78 °C for 30 minutes. Then the temperature was allowed to rise to 0 °C over a period of 45 minutes. The reaction was quenched with water and the product was extracted with ethyl acetate, washed with brine solution. The solvent was removed in vacuum, purification by silica gel chromatography.

2.3 (S)-1-((2R,3S,4R)-3-((tert-butyldimethylsilyl)oxy)-2-(((tert-butyldimethylsilyl)oxy) methyl)-3,4-dihydro-2H-pyran-4-yl)prop-2-en-1-ol (2)

Yield: 50%, R_f: 0.45 (5% EtOAc/hexane). **2:** IR (neat): 2929, 2856, 2165, 1737, 1362, 1254, 1113 cm⁻¹. ¹**H NMR (400 MHz, CDCl₃):** δ 6.53 (dd, 1H, J = 1.6 Hz, J = 6.0 Hz), 5.85-5.93 (m, 1H), 5.32 (dt, 1H, J = 1.6 Hz, J = 17.2 Hz), 5.18 (dt, 1H, J = 1.6 Hz, J = 10.8 Hz), 4.56-4.60 (m, 1H), 4.51 (dd, 1H, J = 4.4 Hz, J = 6.0 Hz), 4.11-4.19 (m, 2H), 3.78 (t, 2H, J = 4.0 Hz), 2.34-2.38 (m, 1H), 2.24 (d, 1H, J = 6.8 Hz), 0.94 (s, 9H), 0.91 (s, 9H), 0.16 (s, 3H), 0.14 (s, 3H), 0.08 (s, 3H), 0.07 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 145.74, 139.99, 114.27, 93.80, 77.16, 69.34, 66.68, 62.25, 40.26, 25.92, 25.78, 18.41, 18.03, -4.41, -4.85, -5.18, -5.34 **HRMS (ESI)** calcd for C₂₁H₄₂O₄Si₂+H⁺ 415.2694, found 415.2693.

$2.4 \qquad \textit{tert-} \textbf{butyl} (((1S,3R,4S,5R,6S)-4-((\textit{tert-}\textbf{butyldimethylsilyl})\textbf{oxy})-6-\textbf{vinyl-}2,7-\textbf{dioxabi}\\ \textbf{cyclo} [3.2.1] \textbf{octan-}3-\textbf{yl}) \textbf{methoxy}) \textbf{dimethylsilane} \ (2a)$

Yield: 90%, R_f: 0.6 (5% EtOAc/hexane). **2a:** IR (neat): 2952, 2928, 2887, 2855, 1461, 1388, 1360, 1251 cm⁻¹. ¹**H NMR** (**500 MHz, CDCl₃**): δ 5.80 (ddd, 1H, J = 5.5 Hz, J = 10.5 Hz, J = 17.0 Hz), 5.42 (d, 1H, J = 3.0 Hz), 5.27 (dt, 1H, J = 1.5 Hz, J = 17.0 Hz), 5.13 (dt, 1H, J = 1.5 Hz, J = 10.5 Hz), 4.85 (d, 1H, J = 5.5 Hz), 3.89 (dd, 1H, J = 3.5 Hz, J = 8.5 Hz), 3.72-3.78 (m, 2H), 3.52 (dt, 1H, J = 2.0 Hz, J = 8.5 Hz), 2.28 (dd, 1H, J = 3.5 Hz, J = 5.5 Hz), 1.84 (ddd, 1H, J = 3.0 Hz, J = 5.5 Hz, J = 11.5 Hz), 1.58 (d, 1H, J = 11.5 Hz), 0.91 (s, 9H), 0.90 (s, 9H), 0.10 (s, 3H), 0.09 (s, 3H), 0.07 (s, 3H), 0.06 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ 137.78, 115.21, 98.91, 78.71, 76.19, 66.35, 61.89, 45.17, 33.68, 25.90, 25.66, 18.33, 17.84, -4.38, -4.98, -5.04, -5.43. **HRMS** (ESI) calcd for C₂₁H₄₂O₄Si₂+H⁺ 415.2694, found 415.2691.

2.5 *tert*-butyl(((2*R*,3*S*,6*S*)-3-((*tert*-butyldimethylsilyl)oxy)-6-(prop-2-yn-1-yloxy)-3,6-di hydro-2*H*-pyran-2-yl)methoxy)dimethylsilane (S3)

Yield: 98%, R_f: 0.55 (5% EtOAc/hexane). **3s:** IR (neat): 3311, 2952, 2928, 2892, 2856, 2359, 2339, 1738 cm⁻¹. ¹**H NMR (500 MHz, CDCl₃):** δ 5.88 (d, 1H, J = 10 Hz), 5.70 (dt, 1H, J = 2.5 Hz, J = 10.5 Hz), 5.16 (s, 1H), 4.31 (d, 2H, J = 2.5 Hz), 4.17 (dq, 1H, J = 1.5 Hz, J = 9.0 Hz), 3.87 (dd, 1H, J = 2.0 Hz, J = 11.0 Hz), 3.73 (dd, 1H, J = 6.0 Hz, J = 11.0 Hz), 3.66-3.70 (m, 1H), 2.43 (t, 1H, J = 2.5 Hz), 0.92 (s, 9H), 0.89 (s, 9H), 0.10 (s, 3H), 0.09 (s, 9H). ¹³**C NMR (125 MHz, CDCl₃):** δ 134.98, 124.94, 92.30, 79.49, 74.29, 72.82, 64.00, 62.51,

54.34, 25.90, 25.64, 18.38, 17.86, -4.31, -4.91, -5.17, -5.36 **HRMS (ESI)** calcd for $C_{21}H_{40}O_4Si_2+Na^+$ 435.2357, found 435.2356.

2.6 (*R*)-1-((2*R*,3*S*,4*R*)-3-((*tert*-butyldimethylsilyl)oxy)-2-(((*tert*-butyldimethylsilyl)oxy) methyl) -3,4-dihydro-2*H*-pyran-4-yl)prop-2-yn-1-ol (3)

Yield: 60%, R_f: 0.4 (5% EtOAc/hexane). **3:** IR (neat): 3309, 2953, 2928, 2856, 1972, 1648, 1469, 1389, 1360, 1254, 1105, 1023 cm⁻¹. ¹**H NMR (500 MHz, CDCl₃):** δ 6.59 (dd, 1H, J = 1.5 Hz, J = 6.0 Hz), 4.77 (dd, 1H, J = 5.0 Hz, J = 6.0 Hz), 4.74 (dt, 1H, J = 2.5 Hz, J = 9.0 Hz), 4.16 (dd, 1H, J = 5.5 Hz, J = 8.0 Hz), 4.07-4.10 (m, 1H), 3.78 (t, 2H, J = 3.5 Hz), 2.51-2.55 (m, 1H), 2.45 (d, 1H, J = 2.0 Hz), 2.13 (d, 1H, J = 9.0 Hz), 0.93 (s, 9H), 0.91 (s, 9H), 0.14 (s, 3H), 0.13 (s, 3H), 0.08 (s, 3H), 0.07(s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ 146.39, 93.67, 84.45, 76.99, 72.51, 65.59, 62.05, 59.87, 42.26, 25.91, 25.75, 18.42, 18.02, -4.48, -4.98, -5.14, -5.36 HRMS (ESI) calcd for C₂₁H₄₀O₄Si₂+H⁺ 413.2538, found 413.2538. **2.7** (((2*R*,3*S*,6*S*)-6-(benzyloxy)-2-(((tert-butyldimethylsilyl)oxy)methyl)-3,6-dihydro-2H-pyran -3-yl)oxy)(tert-butyl)dimethylsilane (S4)

Yield: 98%, R_f: 0.55 (5% EtOAc/hexane). **S4:** IR (neat): 2952, 2928, 2885, 2855, 2359, 2339, 1738 cm⁻¹. ¹**H NMR (500 MHz, CDCl₃):** δ 7.29-7.43 (m, 5H), 5.90 (d, 1H, J = 10.5 Hz), 5.75 (d, 1H, J = 10 Hz), 5.10 (s, 1H), 4.87 (d, J = 11.5 Hz), 4.62 (d, 1H, J = 12.0 Hz), 4.22-4.23 (m, 1H), 3.88 (d, 1H, J = 9.5 Hz), 3.78-3.83 (m, 2H), 0.97 (s, 9H), 0.95 (s, 9H), 0.14-0.15 (m, 12H). ¹³**C NMR (125 MHz, CDCl₃):** δ 138.07, 134.55, 128.30, 128.08, 127.54,

125.44, 93.31, 72.69, 69.65, 64.11, 62.68, 25.97, 25.68, 18.44, 17.89, -4.30, -4.88, -5.09, -5.29 **HRMS (ESI)** calcd for C₂₅H₄₄O₄Si₂+NH₄⁺ 482.3116, found 482.3116.

2.8 (R)-((2R,3S,4R)-3-((tert-butyldimethylsilyl)oxy)-2-(((tert-butyldimethylsilyl)oxy) methyl)-3,4-dihydro-2H-pyran-4-yl)(phenyl)methanol (4)

Yield: 55%, R_f: 0.45 (5% EtOAc/hexane). **4:** IR (neat): 2952, 2928, 2855, 1736 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ 7.27-7.39 (m, 5H), 6.50 (dd, 1H, J = 1.5 Hz, J = 6.0 Hz), 5.19 (dd, 1H, J = 1.5 Hz, J = 5.0 Hz), 4.38 (dd, 1H, J = 4.0 Hz, J = 6.5 Hz), 4.29 (t, 1H, J = 6.0 Hz), 4.18-4.21 (m, 1H), 3.75-3.83 (m, 2H), 2.85 (d, 1H, J = 5.5 Hz), 2.56-2.58 (m, 1H), 1.00 (s, 9H), 0.93 (s, 9H), 0.23 (s, 3H), 0.21 (s, 3H), 0.10 (s, 3H), 0.09 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ 145.26, 143.57, 128.18, 126.92, 125.58, 93.89, 77.30, 71.02, 67.32, 62.19, 42.02, 25.91, 25.85, 18.37, 18.07, -4.24, -4.71, -5.22, -5.34. HRMS (ESI) calcd for C₂₅H₄₄O₄Si₂+NH₄+ 482.3116, found 482.3116.

 $2.9\ tert\text{-butyl}(((2R,3S,6S)\text{-}3\text{-}((tert\text{-butyldimethylsilyl})\text{oxy})\text{-}6\text{-}(cinnamyloxy})\text{-}3\text{,}6\text{-}dihydro-\\2H\text{-pyran-}2\text{-}yl)methoxy)dimethylsilane} \ (S5)$

Yield: 98%, R_f: 0.65 (5% EtOAc/hexane). **S5:** IR (neat): 2952, 2927, 2887, 2855 cm⁻¹. ¹H **NMR (500 MHz, CDCl₃):** δ 7.32-7.42 (m, 4H), 7.25-7.28 (m, 1H), 6.66 (d, 1H, J = 10.5 Hz), 6.35 (dt, 1H, J = 6.0 Hz, J = 16.0 Hz), 5.90 (d, 1H, J = 10.0 Hz), 5.75 (dt, 1H, J = 2.5 Hz, J = 10.0 Hz), 5.10 (s, 1H), 4.48 (ddd, 1H, J = 1.5 Hz, J = 6.0 Hz, J = 13.0 Hz), 4.20-4.27 (m, 2H), 3.90-3.93 (m, 1H), 3.77-3.81 (m, 2H), 0.96 (s, 9H), 0.93 (s, 9H), 0.13-0.12 (m, 12H). ¹³C **NMR (125 MHz, CDCl₃):** δ 136.78, 134.61, 132.69, 128.48, 127.59, 126.47,

125.79, 125.46, 93.26, 72.68, 68.26, 64.14, 62.72, 25.97, 25.69, 18.44, 17.90, -4.28, -4.86, -5.09, -5.29. **HRMS (ESI)** calcd for C₂₇H₄₆O₄Si₂+NH₄⁺ 508.3273, found 508.3272.

2.10 (S,E)-1-((2R,3S,4R)-3-((tert-butyldimethylsilyl)oxy)-2-(((tert-butyldimethylsilyl)oxy)methyl)-3,4-dihydro-2H-pyran-4-yl)-3-phenylprop-2-en-1-ol (5)

Yield: 60%, R_f: 0.45 (5% EtOAc/hexane). **5:** IR (neat): 3438, 2952, 2928, 2856, 1736, 1649 cm⁻¹. ¹H NMR (**500 MHz, CDCl₃**): δ 7.40-7.42 (m, 2H), 7.31-7.35 (m, 3H), 6.68 (dd, 1H, J = 1.5 Hz, J = 16.0 Hz), 6.54 (dd, 1H, J = 1.5 Hz, J = 6.5 Hz), 6.24 (dd, 1H, J = 5.0 Hz, J = 15.5 Hz), 4.75 (bd, 1H, J = 4.5 Hz), 4.58 (dd, 1H, J = 4.0 Hz, J = 6.0 Hz), 4.23 (dd, 1H, J = 5.5 Hz, J = 6.5 Hz), 4.14-4.17 (m, 1H), 3.78-3.81 (m, 3H), 2.45-2.47 (m, 1H), 0.97 (s, 9H), 0.92 (s, 9H), 0.18 (s, 6H), 0.09 (s, 3H), 0.08 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ 145.62, 136.96, 131.45, 129.70, 128.54, 127.43, 126.42, 94.16, 77.33, 69.56, 66.91, 62.26, 40.57, 25.93, 25.83, 18.40, 18.07, -4.33, -4.76, -5.19, -5.32. HRMS (ESI) calcd for C₂₇H₄₆O₄Si₂+NH₄⁺ 508.3273, found 508.3275.

 $2.11\ \textit{tert-} \textbf{butyl}(((2R,3S,6S)-3-((\textit{tert-}\textbf{butyldimethylsilyl})\textbf{oxy})-6-((4-\textbf{methylbenzyl})\textbf{oxy})-3,6-((4-\textbf{methyl$

Yield: 98%, R_f: 0.65 (5% EtOAc/hexane). **S6:** IR (neat): 2952, 2927, 2885, 2855, 2359, 2339, 1516 cm⁻¹. ¹**H NMR (500 MHz, CDCl₃):** δ 7.31 (d, 2H, J = 8.0 Hz), 7.18 (d, 2H, J = 8.0 Hz), 5.88 (d, 1H, J = 10.0 Hz), 5.72 (dt, 1H, J = 2.5 Hz, J = 10.0 Hz), 5.07-5.08 (m, 1H), 4.82 (d, 1H, J = 11.5 Hz), 4.58 (d, 1H, J = 11.5 Hz), 4.21 (dd, 1H, J = 1.5 Hz, J = 8.5 Hz), 3.86-3.89 (m, 1H), 3.78-3.82 (m, 2H), 2.38 (s, 3H), 0.97 (s, 9H), 0.93 (s, 9H), 0.15 (s, 3H), 0.14 (s, 3H), 0.13 (s, 3H), 0.13 (s, 3H). ¹³**C NMR (125 MHz, CDCl₃):** δ 137.21, 135.01, 134.46, 128.98,

128.23, 125.55, 93.11, 72.66, 69.48, 64.14, 62.71, 25.98, 25.68, 21.14, 18.46, 17.89, -4.30, -4.87, -5.09, -5.29. **HRMS (ESI)** calcd for C₂₆H₄₆O₄Si₂+H⁺ 479.3007, found 479.3008.

2.12 (R)-((2R,3S,4R)-3-((tert-butyldimethylsilyl)oxy)-2-(((tert-butyldimethylsilyl)oxy) methyl)-3,4-dihydro-2H-pyran-4-yl)(p-tolyl)methanol (6)

Yield: 45%, R_f: 0.35 (5% EtOAc/hexane). **6:** IR (neat): 2952, 2927, 2855, 1736, 1649, 1513 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 7.25 (d, 2H, J = 8.0 Hz), 7.17 (d, 2H, J = 8.0 Hz), 6.49 (dd, 1H, J = 2.0 Hz, J = 16.0 Hz), 5.15 (d, 1H, J = 4.4 Hz), 4.39 (dd, 1H, J = 4.0 Hz, J = 6.4 Hz, H2), 4.25-4.28 (m, 1H), 4.17-4.21 (m, 1H), 3.73-3.82 (m, 2H), 2.80 (d, 1H, J = 5.2 Hz), 2.53-2.56 (m, 1H), 2.36 (s, 3H), 0.99 (s, 9H), 0.92 (s, 9H), 0.22 (s, 3H), 0.20 (s, 3H), 0.09 (s, 3H), 0.08 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 145.16, 140.61, 136.46, 128.86, 125.50, 94.04, 77.32, 70.89, 67.33, 62.22, 42.03, 25.91, 25.85, 21.04, 18.37, 18.07, -4.25, -4.71, -5.22, -5.34. HRMS (ESI) calcd for C₂₆H₄₆O₄Si₂+H⁺ 479.3007, found 479.3008.

$2.13\ tert\text{-butyl}(((1S,3R,4S,5R,6R)\text{-}4\text{-}((tert\text{-butyldimethylsilyl})\text{oxy})\text{-}6\text{-}(p\text{-tolyl})\text{-}2,7\text{-}dioxabi}$ cyclo[3.2.1]octan-3-yl)methoxy)dimethylsilane (6a)

Yield: 95%, R_f: 0.65 (5% EtOAc/hexane). **6a:** IR (neat): 2952, 2927, 2891, 2855, 2359, 2328, 1725, 1513 cm⁻¹. ¹**H NMR (500 MHz, CDCl₃):** δ 7.17 (s, 4H), 5.60 (d, 1H, J = 3.0 Hz), 5.48 (s, 1H), 3.95 (dd, 1H, J = 3.5 Hz, J = 8.5 Hz), 3.77-3.83 (m, 2H), 3.63 (dt, 1H, J = 1.5 Hz, J = 8.5 Hz), 2.41 (dd, 1H, J = 3.5 Hz, J = 5.0 Hz), 2.35 (s, 3H), 1.85 (ddd, 1H, J = 3.5 Hz, J =

5.5 Hz, J = 12.0 Hz), 1.54 (d, 1H, J = 11.5 Hz), 0.98 (s, 9H), 0.92 (s, 9H), 0.15 (s, 3H), 0.14 (s, 3H), 0.09 (s, 3H), 0.08 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ 139.43, 136.44, 128.86, 124.96, 99.30, 79.19, 76.44, 66.59, 61.81, 48.21, 33.12, 25.92, 25.78, 21.01, 18.36, 17.90, -4.12, -5.00, -5.10, -5.41. HRMS (ESI) calcd for C₂₆H₄₆O₄Si₂+H⁺ 479.3007, found 479.3008. 2.14 (2*R*,3*S*,6*S*)-6-(allyloxy)-3-methoxy-2-(methoxymethyl)-3,6-dihydro-2*H*-pyran (S7)

Yield: 99%, R_f: 0.25 (10% EtOAc/hexane). **S7:** IR (neat): 2934, 2892, 2835, 1647 cm⁻¹. ¹**H NMR (500 MHz, CDCl₃):** δ 6.07 (d, 1H, J = 10.5 Hz), 5.88-5.96 (m, 1H), 5.76-5.78 (m, 1H), 5.26-5.30 (m, 1H), 5.15-5.17 (m, 1H), 5.03 (bs, 1H), 4.24-4.28 (m, 1H), 4.03-4.07 (m, 1H), 3.88-3.90 (m, 1H), 3.83-3.86 (m, 1H), 3.59-3.65 (m, 2H), 3.42 (s, 3H), 3.39 (s, 3H). ¹³**C NMR (125 MHz, CDCl₃):** δ 134.41, 130.23, 126.50, 116.99, 93.79, 71.79, 71.52, 68.90, 68.73, 59.23, 56.36. **HRMS (ESI)** calcd for $C_{11}H_{18}O_4+Na^+$ 237.1097, found 237.1099.

$2.15 \ (S) - 1 - ((2R, 3S, 4R) - 3 - methoxy - 2 - (methoxymethyl) - 3, 4 - dihydro - 2H - pyran - 4 - yl)prop - 2 - en - 1 - ol \ (7)$

Yield: 72%, R_f: 0.25 (20% EtOAc/hexane). **7:** IR (neat): 3068, 2934, 2892, 2835, 1647 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ 6.48 (dd, 1H, J = 1.5 Hz, J = 6.0 Hz), 5.90 (ddd, 1H, J = 5.0 Hz, J = 10.5 Hz, J = 17.0 Hz), 5.33 (dt, 1H, J = 1.5 Hz, J = 17.0 Hz), 5.20 (dt, 1H, J = 1.5 Hz, J = 10.5 Hz), 4.63 (dd, 1H, J = 3.5 Hz, J = 6.0 Hz), 4.44 (bs, 1H), 4.37-4.40 (m, 1H), 3.64 (t, 1H, J = 4.0 Hz), 3.58-3.61 (m, 1H), 3.49-3.52 (m, 1H), 3.46 (s, 3H), 3.40 (s, 3H), 2.52 (bs, 1H), 2.44-2.47 (m, 1H). ¹³C NMR (125 MHz, CDCl₃): δ 144.48, 139.41,

114.98, 95.45, 75.75, 72.80, 71.51, 70.69, 59.32, 57.33, 37.59. **HRMS** (**ESI**) calcd for $C_{11}H_{18}O_4+Na^+$ 237.1097, found 237.1099.

2.16 (((2R,3R,6S)-6-(allyloxy)-2-(((tert-butyldimethylsilyl)oxy)methyl)-3,6-dihydro-2H-pyran-3-yl)oxy)(tert-butyl)dimethylsilane (S8)

Yield: 98%, R_f: 0.5 (5% EtOAc/hexane). **S8:** IR (neat): 2952, 2928, 2885, 2856 cm⁻¹. ¹**H NMR** (**500 MHz**, **CDCl₃**): δ 6.00-6.04 (m, 1H), 5.92-5.99 (m, 1H), 5.89 (dd, 1H, J = 3.0 Hz, J = 10.0 Hz), 5.29 (dq, 1H, J = 1.5 Hz, J = 17.5 Hz), 5.18 (dq, 1H, J = 1.5 Hz, J = 10.5 Hz), 5.08 (d, 1H, J = 2.5 Hz), 4.29 (tdd, 1H, J = 1.5 Hz, J = 5.5 Hz, J = 12.5 Hz), 4.07 (tdd, 1H, J = 1.5 Hz, J = 6.5 Hz, J = 13.0 Hz), 3.98-4.01 (m, 1H), 3.91 (dd, 1H, J = 2.5 Hz, J = 5.0 Hz), 3.83 (dd, 1H, J = 5.5 Hz, J = 10.5 Hz), 3.77 (dd, 1H, J = 7.0 Hz, J = 10.5 Hz), 0.92 (s, 9H), 0.90 (s, 9H), 0.10 (s, 3H), 0.09 (s, 6H), 0.08 (s, 3H). ¹³C **NMR** (125 **MHz**, **CDCl₃**): δ 134.55, 129.77, 127.79, 117.28, 93.21, 71.84, 68.42, 62.76, 62.00, 25.88, 25.80, 18.28, 18.16, -4.04, -4.73, -5.32, -5.42. **HRMS** (**ESI**) calcd for C₂₁H₄₂O₄Si₂+K⁺ 453.2253, found 453.2250. **2.17** (*R*)-1-((2*R*,3*R*,4*R*)-3-((*tert*-butyldimethylsilyl)oxy)-2-(((*tert*-butyldimethylsilyl)oxy) methyl)-3,4-dihydro-2*H*-pyran-4-yl)prop-2-en-1-ol (8a)

Yield: 35%, R_f: 0.4 (5% EtOAc/hexane). **8a:** IR (neat): 2953, 2928, 2885, 2856, 1647 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ 6.48 (dd, 1H, J = 1.5 Hz, J = 6.0 Hz), 5.87-5.93 (m, 1H), 5.30 (dt, 1H, J = 1.5 Hz, J = 17.0 Hz), 5.25 (dt, 1H, J = 1.5 Hz, J = 10.5 Hz), 4.56 (dd, 1H, J = 3.5 Hz, J = 6.0 Hz), 4.14-4.15 (m, 1H), 4.06 (dd, 1H, J = 3.5 Hz, J = 5.0 Hz), 3.95-3.98 (m, 1H), 3.78-3.80 (m, 2H), 2.15-2.18 (m, 1H), 1.64 (d, 1H, J = 7.0 Hz), 0.91 (s, 18H), 0.17 (s, 3H), 0.15 (s, 3H), 0.08 (s, 3H), 0.07 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ 144.90, 139.36, 115.50, 95.79, 77.32, 72.78, 66.03, 60.68, 43.61, 25.91, 25.75, 18.31, 17.95, -4.53, -4.72, -5.24, -5.36. HRMS (ESI) calcd for C₂₁H₄₂O₄Si₂+H⁺ 415.2694, found 415.2695.

 $2.18 \quad (S)-1-((2R,3R,4R)-3-((\textit{tert}-butyldimethylsilyl)oxy)-2-(((\textit{tert}-butyldimethylsilyl)oxy) \\ methyl)-3,4-dihydro-2H-pyran-4-yl)prop-2-en-1-ol (8b)$

Yield: 35%, R_f: 0.37 (5% EtOAc/hexane). **8b:** IR (neat): 2954, 2928, 2886, 2856, 2158, 2036, 1737, 1648 cm⁻¹. ¹**H NMR (500 MHz, CDCl₃):** δ 6.46 (dd, 1H, J = 1.5 Hz, J = 6.0 Hz), 5.87-5.94 (m, 1H), 5.31 (dt, 1H, J = 1.5 Hz, J = 17.5 Hz), 5.24 (dt, 1H, J = 1.0 Hz, J = 10.0 Hz), 4.52-4.55 (m, 1H), 4.15-4.16 (m, 1H), 3.98 (t, 1H, J = 6.5 Hz), 3.82-3.86 (m, 1H), 3.76-3.80 (m, 2H), 2.10-2.14 (m, 1H), 1.83 (s, 1H), 0.91 (s, 9H), 0.90 (s, 9H), 0.11 (s, 3H), 0.10 (s, 3H), 0.08 (s, 6H), ¹³C NMR (125 MHz, CDCl₃): δ 144.18, 138.31, 116.57, 97.82, 76.26, 75.20, 65.31, 61.76, 44.56, 25.91, 25.76, 18.32, 17.98, -4.51, -4.55, -5.23, -5.35. HRMS (ESI) calcd for C₂₁H₄₂O₄Si₂+H⁺ 415.2694, found415.2695.

2.19 *tert*-butyl (((2*R*,3*S*,6*S*)-3-((*tert*-butyldimethylsilyl)oxy)-6-(prop-2-yn-1-yloxy)-3,6-di hydro-2*H*-pyran-2-yl)methoxy)dimethylsilane (S9)

Yield: 97%, R_f: 0.55 (5% EtOAc/hexane). **S9:** IR (neat): 3310, 2953, 2928, 2886, 2856 cm⁻¹. ¹**H NMR (500 MHz, CDCl₃):** δ 6.05 (ddd, 1H, J = 1.0 Hz, J = 5.5 Hz J = 10.0 Hz), 5.89 (dd, 1H, J = 2.5 Hz, J = 10.0 Hz), 5.25 (d, 1H, J = 3.0 Hz), 4.31 (t, 2H, J = 2.0 Hz), 3.93-3.96 (m, 1H), 3.90-3.92 (m, 1H), 3.75-3.83 (m, 2H), 2.43 (t, 1H, J = 2.5 Hz), 0.91 (s, 9H),

0.89 (s, 9H), 0.09 (s, 6H), 0.08 (s, 6H). ¹³C NMR (125 MHz, CDCl₃): δ 130.18, 127.37, 92.16, 79.47, 74.33, 72.14, 62.66, 61.88, 53.98, 25.87, 25.78, 18.26, 18.15, -4.01, -4.72, -5.32, -5.42 HRMS (ESI) calcd for C₂₁H₄₀O₄Si₂+K⁺ 451.2097, found 451.2092.

2.20 (S)-1-((2R,3R,4R)-3-((tert-butyldimethylsilyl)oxy)-2-(((tert-butyldimethylsilyl)oxy) methyl)-3,4-dihydro-2H-pyran-4-yl)prop-2-yn-1-ol (5)

Yield: 60%, R_f: 0.45 (5% EtOAc/hexane). **9:** IR (neat): 3308, 2953, 2928, 2856, 1972, 1648 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 6.50 (dd, 1H, J = 1.6 Hz, J = 6.0 Hz), 4.72 (ddd, 1H, J = 0.8 Hz, J = 4.0 Hz, J = 6.0 Hz), 4.31-4.32 (m, 1H), 4.20 (t, 1H, J = 2.8 Hz), 3.88 (td, 1H, J = 2.4 H, J = 6.0 Hz), 3.81 (dd, 2H, J = 2.4 Hz, J = 6.0 Hz), 2.55 (d, 1H, J = 2.0 Hz), 2.29-2.33 (m, 1H), 2.02 (d, 1H, J = 3.2 Hz), 0.92 (s, 9H), 0.91 (s, 9H), 0.13 (s, 3H), 0.13 (s, 3H), 0.09 (s, 3H), 0.09(s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 144.60, 96.80, 82.63, 76.51, 74.74, 65.43, 64.42, 61.38, 44.60, 25.92, 25.73, 18.34, 17.95, -4.59, -4.62, -5.21, -5.33 HRMS (ESI) calcd for C₂₁H₄₀O₄Si₂+Na⁺ 435.2357, found 435.2357.

2.21 (((2S,3R,6R)-6-(allyloxy)-2-methyl-3,6-dihydro-2H-pyran-3-yl)oxy)(tert-butyl) dimethy-l silane (S10)

Yield: 98%, R_f: 0.65 (5% EtOAc/hexane). **S10:** IR (neat): 2953, 2929, 2857, 1728 cm⁻¹. ¹**H NMR (500 MHz, CDCl₃):** δ 5.90-5.98 (m, 1H), 5.84 (d, 1H, J = 10.0 Hz), 5.68 (dt, 1H, J = 2.5 Hz, J = 10.5 Hz), 5.30 (dq, 1H, J = 1.5 Hz, J = 17.5 Hz), 5.18 (dq, 1H, J = 1.5 Hz, J = 10.5 Hz), 4.96 (s, 1H), 4.25 (ddt, 1H, J = 1.5 Hz, J = 5.5 Hz, J = 13.0 Hz), 4.04 (ddt, 1H, J = 1.5 Hz, J = 6.5 Hz, J = 13.0 Hz), 3.87 (dq, 1H, J = 1.5 Hz, J = 9.0 Hz), 3.75-3.80 (m, 1H),

1.25 (d, 3H, J = 6.5 Hz), 0.90 (s, 9H), 0.09 (s, 3H), 0.08 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ 134.66, 134.61, 125.40, 116.96, 93.68, 70.15, 68.81, 67.66, 25.66, 18.10, 17.89, -4.27, -4.78. HRMS (ESI) calcd for $C_{15}H_{28}O_3Si+Na^+$ 307.1700, found 307.1692.

2.22 (R)-1-((2S,3R,4S)-3-((tert-butyldimethylsilyl)oxy)-2-methyl-3,4-dihydro-2H-pyran-4-yl) prop-2-en-1-ol (10)

Yield: 66%, R_f: 0.3 (5% EtOAc/hexane). **10:** IR (neat): 3445, 2953, 2929, 2857, 1728 cm⁻¹. **¹H NMR (400 MHz, CDCl₃):** δ 6.50 (dd, 1H, J = 1.6 Hz, J = 6.0 Hz), 5.89 (ddd, 1H, J = 4.8 Hz, J = 10.4 Hz, J = 17.2 Hz), 5.31 (dt, 1H, J = 1.6 Hz, J = 17.2 Hz), 5.18 (dt, 1H, J = 1.6 Hz, J = 10.8 Hz), 4.56-4.60 (m, 1H), 4.53 (dd, 1H, J = 4.0 Hz, J = 6.4 Hz), 4.18-4.25 (m, 1H), 3.79 (dd,1H, J = 5.6 Hz, J = 7.6 Hz), 2.35-2.38 (m, 1H), 2.18 (d, 1H, J = 6.0 Hz), 1.25 (d, 3H, J = 6.4 Hz) 0.94 (s, 9H), 0.14 (s, 3H), 0.13 (s, 3H). (100 MHz, CDCl₃): δ 145.61, 139.99, 114.22, 94.34, 72.94, 72.25, 69.27, 40.79, 25.75, 18.12, 18.00, -4.31, -4.75. **HRMS (ESI)** calcd for C₁₅H₂₈O₃Si+Na⁺ 307.1700, found 307.1690.

2.23 *tert*-butyldimethyl(((1*R*,3*S*,4*R*,5*S*,6*R*)-3-methyl-6-vinyl-2,7-dioxabicyclo[3.2.1] octan-4-yl)oxy)silane (10a)

Yield: 95%, R_f: 0.6 (5% EtOAc/hexane). **10a:** IR (neat): 2953, 2929, 2896, 2857, 1730 cm⁻¹. **¹H NMR (500 MHz, CDCl₃):** δ 5.79 (ddd, 1H, J = 5.5 Hz, J = 10.5 Hz, J = 16.0 Hz), 5.37 (t, 1H, J = 2.5 Hz), 5.26 (dt, 1H, J = 1.5 Hz, J = 17.0 Hz), 5.12 (dt, 1H, J = 1.5 Hz, J = 10.5 Hz), 4.83 (d, 1H, J = 5.0 Hz), 3.61-3.66 (m, 1H), 3.36 (dt, 1H, J = 2.5 Hz, J = 8.0 Hz), 2.25 (t,1H, J = 3.0 Hz), 1.87 (dq, 1H, J = 2.5 Hz, J = 12.0 Hz), 1.62 (d, 1H, J = 11.5 Hz), 1.22 (d, 3H, J = 6.5 Hz), 0.90 (s, 9H), 0.08 (s, 6H). **¹³C NMR (125 MHz, CDCl₃):** δ 137.57, 115.28, 98.69, 78.94, 73.77, 71.29, 45.36, 34.13, 25.61, 18.43, 17.81, -4.28, -4.82. **HRMS** (**ESI**) calcd for C₁₅H₂₈O₃Si+Na⁺ 307.1700, found 307.1691.

$2.24 \qquad (((3R,6S)-6-(allyloxy)-3,6-dihydro-2H-pyran-3-yl)oxy)(tert-butyl) dimethylsilane \\ (S11)$

Yield: 98%, R_f: 0.47 (5% EtOAc/hexane). **S11:** IR (neat): 2952, 2928, 2885, 2856 cm⁻¹. ¹**H NMR (500 MHz, CDCl₃):** δ 5.96-6.00 (m, 1H), 5.91-5.94 (m, 1H), 5.85 (ddd, 1H, J = 0.5 Hz, J = 3.0 Hz, J = 10.0 Hz), 5.29 (dq, 1H, J = 1.5 Hz, J = 17.0 Hz), 5.19 (dq, 1H, J = 1.5 Hz, J = 10.5 Hz), 5.04 (d, 1H, J = 2.5 Hz), 4.25 (ddt, 1H, J = 1.5 Hz, J = 5.0 Hz, J = 12.5 Hz), 4.04-4.10 (m, 2H), 3.98-4.00 (m, 1H), 3.68(dq, 1H, J = 1.5 Hz, J = 12.0 Hz), 0.91 (s, 9H), 0.10 (s, 6H). ¹³C **NMR (125 MHz, CDCl₃):** δ 134.33, 130.05, 127.66, 117.28, 92.90, 68.62, 65.30, 62.31, 25.82, 18.22, -4.54, -4.63. **HRMS (ESI)** calcd for C₁₄H₂₆O₃Si+Na⁺ 293.1543, found 293.1540.

2.25 (R)-1-((3R,4R)-3-((tert-butyldimethylsilyl)oxy)-3,4-dihydro-2H-pyran-4-yl)prop-2-en-1-ol (11a)

Yield: 40%, R_f: 0.25 (5% EtOAc/hexane). **11a:** IR (neat): 3451, 2926, 2854, 1740, 1641cm⁻¹. ¹**H NMR (500 MHz, CDCl₃):** δ 6.47 (dd, 1H, J = 2.5 Hz, J = 6.0 Hz), 5.91 (ddd, 1H, J = 4.0 Hz, J = 11.0 Hz, J = 17.5 Hz), 5.36 (dt, 1H, J = 1.5 Hz, J = 17.0 Hz), 5.25 (dt, 1H, J = 1.5 Hz, J = 10.5 Hz), 4.50 (dd, 1H, J = 2.5 Hz, J = 6.0 Hz), 4.36-4.39 (m, 1H), 4.06 (ddd, 1H, J = 4.5 Hz, J = 8.0 Hz, J = 12.0 Hz), 4.00 (dd, 1H, J = 4.0 Hz, J = 10.0 Hz), 3.61 (t, 1H, J = 10.0 Hz), 2.36-2.39 (m, 1H), 1.68 (d, 1H, J = 8.5 Hz), 0.92 (s, 9H), 0.15 (s, 3H), 0.13 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 146.36, 139.36, 114.83, 96.07, 70.43, 69.02, 65.37,

46.07, 25.73, 17.92, -4.28, -4.83. **HRMS (ESI)** calcd for $C_{14}H_{26}O_3Si+Na^+$ 293.1543, found 293.1540.

2.26 (S)-1-((3R,4R)-3-((tert-butyldimethylsilyl)oxy)-3,4-dihydro-2H-pyran-4-yl)prop-2-en-1-ol (11b)

Yield: 40%, R_f: 0.25 (5% EtOAc/hexane). **11b:** IR (neat): 3452, 3070, 2954, 2929, 2888, 2857, 1738, 1649 cm⁻¹. ¹**H NMR (500 MHz, CDCl₃):** δ 6.39 (dd, 1H, J = 2.0 Hz, J = 6.0 Hz), 5.83-5.90 (m, 1H), 5.30 (dt, 1H, J = 1.5 Hz, J = 17.5 Hz), 5.24 (dt, 1H, J = 1.0 Hz, J = 10.5 Hz), 4.61 (dd, 1H, J = 2.5 Hz, J = 6.0 Hz), 4.13 (t, 1H, J = 6.5 Hz), 3.90-3.96 (m, 2H), 3.62-3.67 (m, 1H), 2.35-2.38 (m, 2H), 0.91 (s, 9H), 0.13 (s, 3H), 0.12 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ 144.39, 137.90, 117.40, 98.33, 75.10, 68.47, 67.08, 45.78, 25.72, 17.90, -3.99, -4.67. **HRMS (ESI)** calcd for C₁₄H₂₆O₃Si+Na⁺ 293.1543, found 293.1540.

2.27 (((3R,6S)-6-(benzyloxy)-3,6-dihydro-2H-pyran-3-yl)oxy)(tert-butyl)dimethylsilane (S12)

Yield: 98%, R_f: 0.45 (5% EtOAc/hexane). **S12:** IR (neat): 2952, 2927, 2856 cm⁻¹. ¹**H NMR** (**400 MHz, CDCl₃**): δ 7.28-7.40 (m, 5H), 5.99-6.03 (m, 1H), 5.87-5.90 (m, 1H), 5.12 (d, 1H, J = 2.8 Hz), 4.82 (d, 1H J = 11.6 Hz), 4.60 (d, 1H, J = 12.0 Hz), 4.15 (dd, 1H, J = 3.2 Hz, J = 8.0 Hz), 4.00-4.02 (m, 1H), 3.72-3.76 (m, 1H), 0.93 (s, 9H), 0.13 (m, 3H), 0.12 (m, 3H). ¹³**C NMR (100 MHz, CDCl₃):** δ 137.82, 130.00, 128.37, 128.05, 127.69, 127.67, 92.80, 69.56, 65.34, 62.32, 25.86, 18.27, -4.51, -4.60. **HRMS (ESI)** calcd for C₁₈H₂₈O₃Si+K⁺ 359.1439, found 359.1439.

2.28 (R)-((3R,4R)-3-((tert-butyldimethylsilyl)oxy)-3,4-dihydro-2H-pyran-4-yl)(phenyl) methanol (12a)

Yield: 39%, R_f: 0.25 (5% EtOAc/hexane). **12a:** IR (neat): 3455, 3063, 3029, 2953, 2927, 2855, 1738, 1648 cm⁻¹. ¹**H NMR (500 MHz, CDCl₃):** δ 7.34-7.40 (m, 4H), 7.28-7.33 (m, 1H), 6.33 (dd, 1H, J = 2.0 Hz, J = 6.0 Hz), 4.54 (dd, 1H, J = 1.5 Hz, J = 8.5 Hz), 4.17 (dd, 1H, J = 3.0 Hz, J = 6.0 Hz), 4.12-4.15 (m, 1H), 3.99 (dd, 1H, J = 3.0 Hz, J = 10.5 Hz), 3.74-3.77 (m, 1H), 3.11 (d, 1H, J = 2.0 Hz), 2.51-2.54 (m, 1H), 0.94 (s, 9H), 0.16 (s, 3H), 0.14 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ 144.41, 141.67, 128.31, 127.85, 127.02, 98.43, 78.01, 68.50, 68.24, 46.75, 25.75, 17.95, -4.01, -4.76 HRMS (ESI) calcd for C₁₈H₂₈O₃Si+Na⁺ 343.1700, found 343.1705.

2.29 (S)-((3R,4R)-3-((tert-butyldimethylsilyl)oxy)-3,4-dihydro-2H-pyran-4-yl)(phenyl) methanol (12b)

Yield: 39%, R_f: 0.24 (5% EtOAc/hexane). **12b:** IR (neat): 3467, 2952, 2927, 2855, 1737, 1647 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ 7.35-7.41 (m, 4H), 7.28-7.31 (m, 1H), 6.46 (dd, 1H, J = 2.0 Hz, J = 6.0 Hz), 5.02 (dd, 1H, J = 2.5 Hz, J = 7.0 Hz), 4.40 (dd, 1H, J = 2.5 Hz, J = 6.0 Hz), 4.11-4.16 (m, 1H), 4.02 (dd, 1H, J = 4.0 Hz, J = 10.5 Hz), 3.63 (t, 1H, J = 10.0 Hz), 2.55-2.58 (m, 1H), 1.96 (d, 1H, J = 7.0 Hz), 0.96 (s, 9H), 0.18 (s, 3H), 0.15 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ 146.57, 142.90, 128.30, 127.13, 125.44, 95.67, 71.17, 68.99,

65.45, 48.46, 25.76, 17.98, -4.31, -4.92 **HRMS (ESI)** calcd for C₁₈H₂₈O₃Si+Na⁺ 343.1700, found 343.1701.

2.30 (R)-1-((2R,3S,4S)-3-((tert-butyldimethylsilyl)oxy)-2-(((tert-butyldimethylsilyl)oxy) methyl) -3,4-dihydro-2H-pyran-4-yl)prop-2-en-1-ol (14a)

Yield: 31%, R_f: 0.45 (5% EtOAc/hexane). **14a:** IR (neat): 3068, 2953, 2928, 2885, 2856, 2359, 2339, 1736, 1646 cm⁻¹. ¹**H NMR (400 MHz, CDCl₃):** δ 6.42 (dd, 1H, J = 2.0 Hz, J = 6.0 Hz), 5.88 (ddd, 1H, J = 6.8 Hz, J = 10.4 Hz, J = 17.2 Hz), 5.34 (dt, 1H, J = 1.2 Hz, J = 17.2 Hz), 5.27 (dt, 1H, J = 1.2 Hz, J = 10.2 Hz), 4.73 (dd, 1H, J = 2.4 Hz, J = 6.0 Hz), 4.42-4.45 (m, 1H), 3.84-3.92 (m, 2H), 3.79 (t, 1H, J = 8.0 Hz), 3.59 (dt, 1H, J = 3.2 Hz, J = 8.4 Hz), 2.52-2.56 (m, 1H), 1.66 (bs, 1H), 0.93 (s, 9H), 0.91 (s, 9H), 0.16 (s, 3H), 0.14 (s, 3H), 0.09 (s, 3H), 0.07 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ 143.96, 137.28, 117.73, 98.48, 79.20, 72.41, 65.72, 61.93, 46.98, 26.04, 25.91, 18.38, 18.32, -4.01, -4.03, -4.99, -5.35. **HRMS (ESI)** calcd for C₂₁H₄₂O₄Si₂+H⁺ 415.2694, found415.2693.

2.31 (S)-1-((2R,3S,4S)-3-((tert-butyldimethylsilyl)oxy)-2-(((tert-butyldimethylsilyl)oxy) methyl)-3,4-dihydro-2H-pyran-4-yl)prop-2-en-1-ol (14b)

Yield: 31%, R_f : 0.4 (5% EtOAc/hexane). **14b**: IR (neat): 3068, 2953, 2928, 2885, 2856, 2359, 2339, 1736, 1646 cm⁻¹. ¹**H NMR (500 MHz, CDCl₃):** δ 6.53 (dd, 1H, J = 2.0 Hz, J = 6.0 Hz), 5.89 (ddd, 1H, J = 4.0 Hz, J = 11.0 Hz, J = 17.5 Hz), 5.33 (dt, 1H, J = 1.5 Hz, J = 17.5 Hz), 5.24 (dt, 1H, J = 1.5 Hz, J = 11.0 Hz), 4.45-4.47 (m, 2H), 4.06 (t, 1H, J = 3.5 Hz), 3.86-3.94 (m, 2H), 3.59-3.62 (m, 1H), 2.35 (dq, 1H, J = 2.0 Hz, J = 8.0 Hz), 1.41 (d, 1H, J = 8.5

Hz), 0.92 (s, 9H), 0.91 (s, 9H), 0.18 (s, 3H), 0.17 (s, 3H), 0.09 (s, 3H), 0.08 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ 147.05, 139.90, 114.53, 95.28, 79.80, 68.71, 64.89, 62.31, 46.97, 26.02, 25.96, 18.48, 18.29, -4.14, -4.88, -4.94, -5.30. HRMS (ESI) calcd for C₂₁H₄₂O₄Si₂+H⁺ 415.2694, found415.2693.

2.32 (((2R,3S,6R)-6-(benzyloxy)-2-(((tert-butyldimethylsilyl)oxy)methyl)-3,6-dihydro-2H-pyran-3-yl)oxy)(tert-butyl)dimethylsilane (S15)

S15

Yield: 98%, R_f: 0.55(5% EtOAc/hexane). **S15:** IR (neat): 2957, 2929, 2881, 2856 cm⁻¹. ¹**H NMR (400 MHz, CDCl₃):** δ 7.29-7.41 (m, 5H), 5.93 (dq, 1H, J = 1.6 Hz, J = 10.0 Hz), 5.78 (dt, 1H, J = 1.6 Hz, J = 10 Hz), 5.24-5.26 (m, 1H), 4.88 (d, 1H, J = 11.6 Hz), 4.64 (d, 1H, J = 11.6 Hz), 4.31-4.34 (m, 1H), 3.82-3.92 (m, 2H), 3.61-3.65 (m, 1H), 0.96 (s, 9H), 0.94 (s, 9H), 0.14-0.15 (m, 12H). ¹³**C NMR (100 MHz, CDCl₃):** δ 137.73, 132.90, 128.33, 128.11, 127.65, 127.47, 95.45, 79.31, 69.02, 63.21, 62.77, 25.93, 25.78, 18.41, 18.02, -4.40, -4.82, -5.16, -5.26. **HRMS (ESI)** calcd for C₂₅H₄₄O₄Si₂+NH₄+ 482.3116, found 482.3116.

2.33 (*R*)-((2*R*,3*S*,4*S*)-3-((*tert*-butyldimethylsilyl)oxy)-2-(((*tert*-butyldimethylsilyl)oxy) methyl)-3,4-dihydro-2*H*-pyran-4-yl)(phenyl)methanol (15a)

Yield: 32%, R_f: 0.4 (5% Acetone/hexane). **15a:** IR (neat): 3531, 2926, 2855, 2020, 1732, 1652 cm⁻¹. ¹**H NMR (400 MHz, CDCl₃):** δ 7.35-7.41 (m, 4H), 7.27-7.31 (m, 1H), 6.50 (dd, 1H, J = 2.4 Hz, J = 6.0 Hz), 5.14 (dd, 1H, J = 1.6 Hz, J = 8.0 Hz), 4.26 (dd, 1H, J = 2.0 Hz, J = 6.0 Hz), 4.18-4.22 (m, 1H), 3.91-3.98 (m, 2H), 3.61-3.65 (m,1H), 2.63 (dq, 1H, J = 2.4 Hz, J = 8.4 Hz), 1.85 (d, 1H, J = 8.0 Hz), 1.0 (s, 9H), 0.95 (s, 9H), 0.26 (s, 3H), 0.24 (s, 3H),

0.12 (s, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 147.07, 143.24, 128.29, 126.91, 125.23, 95.13, 79.87, 69.67, 65.24, 49.45, 26.15, 25.99, 18.51, 18.33, -4.13, -4.75, -4.90, -5.27. **HRMS** (**ESI**) calcd for C₂₅H₄₄O₄Si₂+NH₄⁺ 482.3116, found 482.3114.

$2.34 \qquad (S)-((2R,3S,4S)-3-((\textit{tert}-butyldimethylsilyl)oxy)-2-(((\textit{tert}-butyldimethylsilyl)oxy) \\ methyl)-3,4-dihydro-2H-pyran-4-yl)(phenyl)methanol (15b)$

Yield: 51%, R_f: 0.4 (5% EtOAc/hexane). **15b:** IR (neat): 3532, 2953, 2927, 2855, 1736 cm⁻¹. ¹**H NMR (400 MHz, CDCl₃):** δ 7.29-7.39 (m, 5H), 6.28 (dd, 1H, J = 2.0 Hz, J = 6.4 Hz), 4.69 (dd, 1H, J = 2.4 Hz, J = 7.6 Hz), 4.36 (dd, 1H, J = 3.6 Hz, J = 6.4 Hz), 4.25-4.28 (m, 1H), 3.83-3.89 (m, 3H), 2.55-2.60 (m, 1H), 2.42 (d, 1H, J = 2.4 Hz), 0.95 (s, 9H), 0.91 (s, 9H), 0.21 (s, 3H), 0.20 (s, 3H), 0.09 (s, 3H), 0.05 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 143.02, 142.06, 128.22, 127.80, 127.02, 98.85, 79.02, 75.84, 66.78, 61.70, 47.20, 26.02, 25.86, 18.31, 18.28, -3.79, -3.92, -5.28, -5.34. HRMS (ESI) calcd for C₂₅H₄₄O₄Si₂+NH₄+ 482.3116, found 482.3116.

2.35 (2R,3R,6R)-6-(allyloxy)-2-((trityloxy)methyl)-3,6-dihydro-2H-pyran-3-ol (SS16)

Yield: 85%, R_f: 0.25 (20% EtOAc/hexane). **SS16:** IR (neat): 3430, 3056, 3020, 2926, 2871, 2359, 2342, 1961, 1711, 1644, 1596 cm⁻¹. ¹**H NMR (500 MHz, CDCl₃):** δ 7.48-7.52 (m, 6H), 7.24-7.34 (m, 9H), 6.15 (ddd, 1H, J = 1.5 Hz, J = 5.0 Hz, J = 10.0 Hz), 5.94-6.02 (m, 1H), 5.88 (d, 1H, J = 10.0 Hz), 5.33-5.37 (m, 1H), 5.23-5.25 (m, 1H), 5.17 (d, 1H, J = 1.0 Hz), 4.43 (ddt, 1H, J = 1.0 Hz, J = 5.0 Hz, J = 12.5 Hz), 4.21 (dd, 1H, J = 6.5 Hz, J = 13.0 Hz), 3.95 (bs, 1H), 3.83 (td, 1H, J = 2.0 Hz, J = 6.5 Hz), 3.51 (dd, 1H, J = 6.5 Hz, J = 10.0 Hz),

3.31 (dd, 1H, J = 5.5 Hz, J = 10.0 Hz), 1.87 (d, 1H, J = 5.5 Hz). ¹³C NMR (125 MHz, CDCl₃): δ 143.91, 134.10, 130.89, 130.87, 128.70, 127.82, 127.03, 117.60, 97.11, 86.73, 74.87, 69.14, 63.35, 62.89. **HRMS** (ESI) calcd for C₂₈H₂₈O₄+Na⁺ 451.1880, found 451.1883.

2.36 (((2R,3R,6R)-6-(allyloxy)-2-((trityloxy)methyl)-3,6-dihydro-2H-pyran-3-yl)oxy) (tert-butyl)dimethylsilane (S16)

Yield: 98%, R_f: 0.75 (20% EtOAc/hexane). **S16:** IR (neat): 3091, 3057, 2953, 2927, 2876, 2854, 1596 cm⁻¹. ¹**H NMR** (**400 MHz, CDCl₃**): δ 7.53-7.55 (m, 6H), 7.32-7.35 (m, 6H), 7.25-7.29 (m, 3H), 5.99-6.09 (m, 1H), 5.93-5.97 (m, 1H), 5.86 (d, 1H, J = 10.0 Hz), 5.36-5.40 (m, 1H), 5.26 (dd, 1H, J = 1.6 Hz, J = 10.4 Hz), 5.22 (s, 1H), 4.47-4.51 (m, 1H), 4.29-4.34 (m, 1H), 3.97 (bs, 1H), 3.86-3.89 (m, 1H), 3.59-3.64 (m, 1H), 3.13 (dd, 1H, J = 3.6 Hz, J = 6.0 Hz), 0.76 (s, 9H), -0.01 (s, 3H), -0.12 (s, 3H). ¹³C NMR (**100 MHz, CDCl₃**): δ 144.21, 134.51, 130.89, 129.95, 128.73, 127.72, 126.84, 117.40, 96.18, 86.57, 75.42, 68.46, 64.53, 63.63, 25.72, 17.99, -4.27, -4.93. **HRMS** (**ESI**) calcd for C₃₄H₄₂O₄Si+Na⁺ 565.2745, found 565.2750.

2.37 (R)-1-((2R,3R,4S)-3-((tert-butyldimethylsilyl)oxy)-2-((trityloxy)methyl)-3,4-di hydro-2H-pyran-4-yl)prop-2-en-1-ol (16)

Yield: 90%, R_f: 0.65 (20% EtOAc/hexane). **16:** IR (neat): 3554, 3060, 3023, 2950, 2928, 2886, 2855, 2359, 2339, 1646, 1596 cm⁻¹. ¹H NMR (**500 MHz, CDCl₃**): δ 7.48-7.50 (m, 6H), 7.31-7.34 (m, 6H), 7.25-7.28 (m, 3H), 6.62 (dd, 1H, J = 2.0 Hz, J = 6.0 Hz), 5.87 (ddd, 1H, J = 4.0 Hz, J = 11.0 Hz, J = 17.0 Hz), 5.39 (dt, 1H, J = 1.5 Hz, J = 17.0 Hz), 5.22 (dt, 1H, J = 1.5 Hz, J = 10.5 Hz), 4.67 (dt, 1H, J = 1.5 Hz, J = 6.0 Hz), 4.38-4.39 (m, 1H), 4.11

(d, 1H, J = 4.5 Hz), 3.99 (dd, 1H, J = 4.5 Hz, J = 7.5 Hz), 3.53 (dd, 1H, J = 7.5 Hz, J = 10.0 Hz), 3.06 (dd, 1H, J = 4.5 Hz, J = 10.0 Hz), 2.75 (s, 1H), 2.53-2.54 (m, 1H), 0.77 (s, 9H), 0.12 (s, 3H), -0.21 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ 145.65, 143.84, 138.63, 128.70, 127.82, 127.02, 114.89, 96.21, 86.96, 77.65, 71.18, 68.79, 64.46, 42.66, 25.75, 18.09, -3.86, -4.41. HRMS (ESI) calcd for C₃₄H₄₂O₄Si+Na⁺ 565.2745, found 565.2750.

2.38 (((2R,3R,6R)-6-(benzyloxy)-2-((trityloxy)methyl)-3,6-dihydro-2H-pyran-3-yl)oxy) (tert-butyl)dimethylsilane (S17)

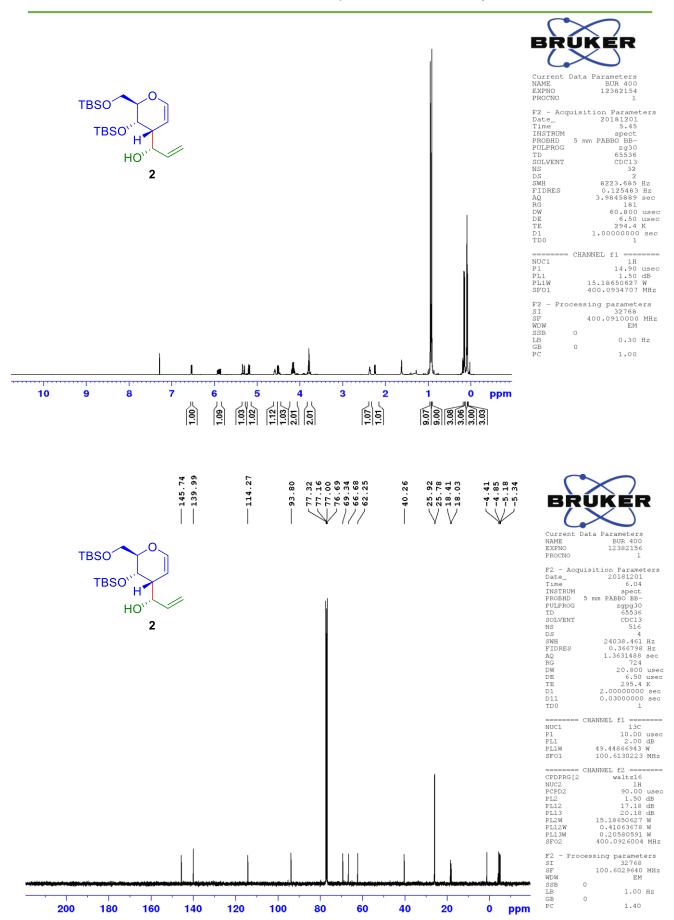
Yield: 97%, R_f: 0.75 (20% EtOAc/hexane). **S17:** IR (neat): 3084, 3058, 3030, 2951, 2927, 2883, 2855, 2359, 2339, 1738, 1596 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 7.54-7.56 (m, 6H), 7.31-7.337.47 (m, 11H), 7.24-7.29 (m, 3H), 5.94 (ddd, 1H, J = 1.2 Hz, J = 4.4 Hz, J = 10.0 Hz), 5.87 (d, 1H, J = 10.4 Hz), 5.20-5.21 (m, 1H), 4.99 (d, J = 12.0 Hz), 4.87 (d, 1H, J = 12.0 Hz), 3.96-3.98 (m, 1H), 3.85-3.89 (m, 1H), 3.64 (dd, 1H, J = 8.0 Hz, J = 10.4 Hz), 3.13 (dd, 1H, J = 3.2 Hz, J = 10.0 Hz), 0.76 (s, 9H), -0.01 (s, 3H), -0.12 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 144.23, 137.75, 130.88, 130.02, 128.75, 128.34, 128.29, 127.75, 127.64, 126.87, 95.63, 86.61, 75.49, 68.91, 64.64, 63.72, 25.74, 18.01, -4.23, -4.89. HRMS (ESI) calcd for C₃₈H₄₄O₄Si+Na⁺ 615.2901, found 615.2908.

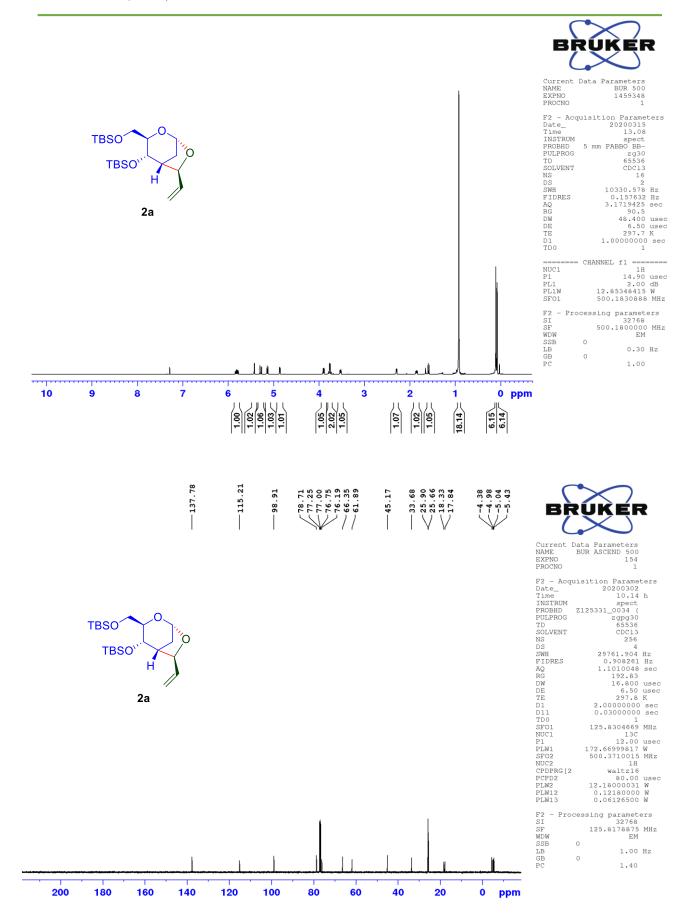
2.39 (S)-((2R,3R,4S)-3-((tert-butyldimethylsilyl)oxy)-2-((trityloxy)methyl)-3,4-dihydro-2H-pyran-4-yl)(phenyl)methanol (17)

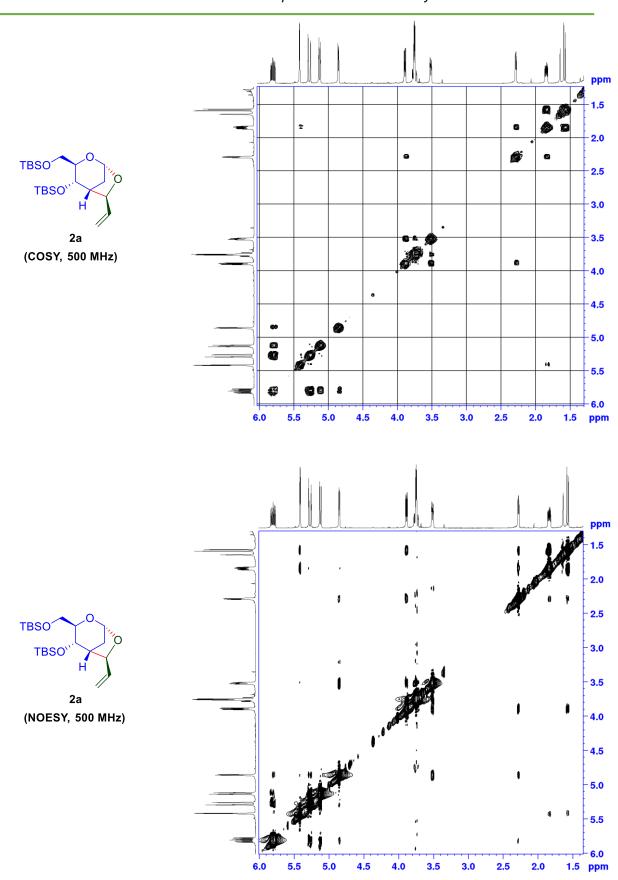
Yield: 80%, R_f: 0.7 (20% EtOAc/hexane). **17:** IR (neat): 3544, 3059, 3027, 2953, 2929, 2886, 2855, 2359, 2332, 1650, 1598 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ 7.48-7.50 (m, 6H), 7.25-7.41 (m, 14H), 6.61 (dd, 1H, J = 2.5 Hz, J = 6.5 Hz), 5.01 (s, 1H), 4.56 (dt, 1H, J = 1.5 Hz, J = 6.0 Hz), 4.25 (d, 1H, J = 4.0 Hz), 3.98 (dd, 1H, J = 4.5 Hz, J = 8.0 Hz), 3.55 (dd, 1H, J = 8.0 Hz, J = 10.0 Hz), 3.18 (s, 1H), 3.08 (dd, 1H, J = 4.0 Hz, J = 10.0 Hz), 2.75-2.76 (m, 1H), 0.80 (s, 9H), 0.17(s, 3H), -0.17 (s, 3H). ¹³C NMR (125 MHz, CDCl₃): δ 145.87, 143.85, 142.69, 128.72, 128.20, 127.91, 127.85, 127.05, 125.72, 95.67, 87.00, 77.66, 72.73, 69.54, 64.51, 45.03, 25.78, 18.12, -3.89, -4.35. HRMS (ESI) calcd for C₃₈H₄₄O₄Si+Na⁺ 615.2901, found 615.2908.

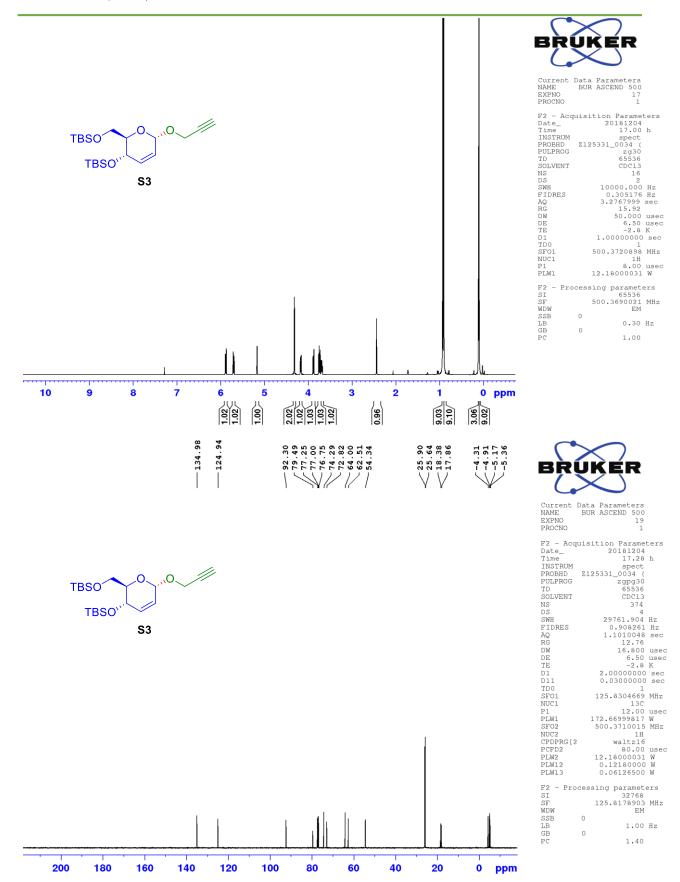
2.40 (4a*R*,6*R*,8a*S*)-6-(allyloxy)-2-(4-methoxyphenyl)-4,4a,6,8a-tetrahydropyrano[3,2-d][1,3]di oxine (S18)

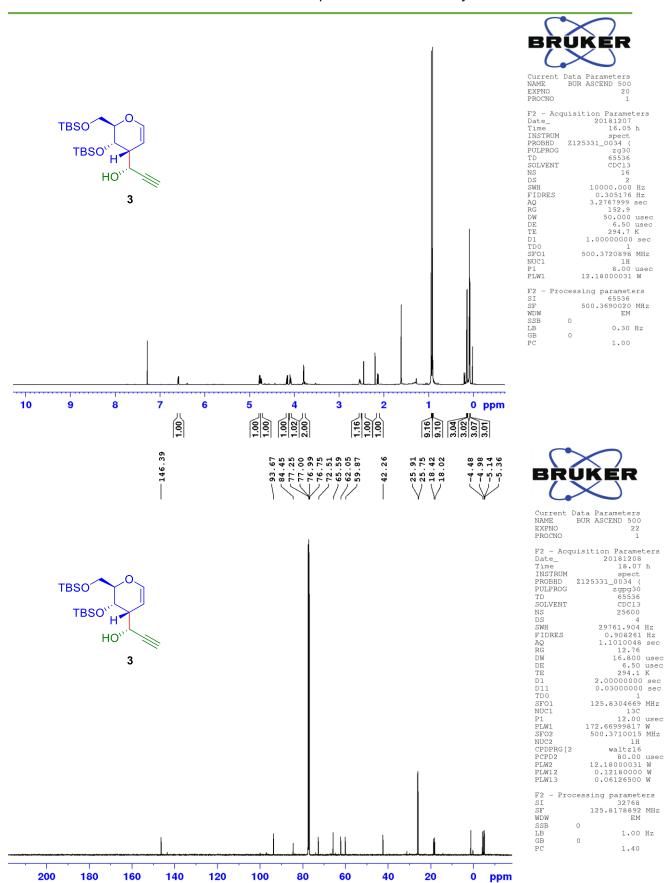
Yield: 62%, R_f: 0.6 (20% EtOAc/hexane). **S18:** IR (neat): 3006, 2954, 2872, 1615, 1589, 1515 cm⁻¹. ¹**H NMR (500 MHz, CDCl₃):** δ 7.44 (d, 1H, J = 8.5 Hz), 6.91 (d, 1H, J = 8.5 Hz), 6.16 (d, 1H, J = 10.5 Hz), 5.92-6.00 (m, 1H), 5.72 (d, 1H, J = 10.5 Hz), 5.58 (s, 1H), 5.40 (s, 1H), 5.33 (dd, 1H, J = 1.5 Hz, J = 17.0 Hz), 5.23 (d, 1H, J = 10.5 Hz), 3.81 (s, 3H), 3.74-3.79 (m, 1H). ¹³**C NMR (125 MHz, CDCl₃):** δ 160.19, 134.01, 131.46, 129.86, 128.21, 127.50, 117.50, 113.69, 102.04, 97.87, 74.98, 70.55, 69.04, 68.67, 55.28. **HRMS (ESI)** calcd for C₁₇H₂₀O₅+Na⁺ 327.1203, found 327.1201.

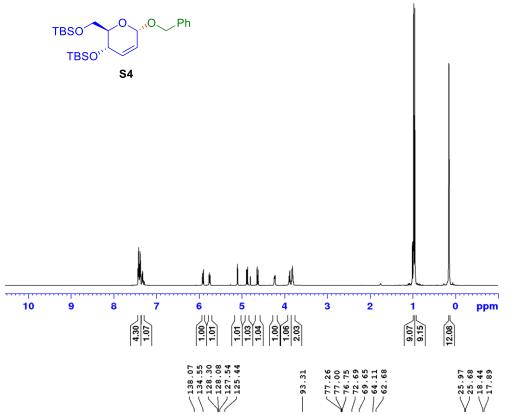

2.41 1-((4a*R*,8*S*,8a*S*)-2-(4-methoxyphenyl)-4,4a,8,8a-tetrahydropyrano[3,2-d][1,3]di oxin-8-yl) prop-2-en-1-ol (18)

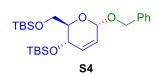

Yield: 58%, R_f: 0.5 (30% EtOAc/hexane). **18a** and **18b**: IR (neat): 3503, 3091, 3072, 3005, 2968, 2897, 2866, 1686, 1637, 1613, 1588, 1516 cm⁻¹. **18a**: ¹**H NMR (400 MHz, CDCl₃):** δ 7.42 (d, 2H, J = 8.4 Hz), 6.91 (d, 2H, J = 8.8 Hz), 6.39 (dd, 1H, J = 2.4 Hz, J = 6.0 Hz), 5.88 (ddd, 1H, J = 7.2 Hz, J = 10.0 Hz, J = 17.2 Hz), 5.60 (s, 1H), 5.31 (dt, 1H, J = 1.2 Hz, J17.2 Hz), 5.26 (dq, 1H, J = 0.8 Hz, J = 10.4 Hz), 4.69 (dd, 1H, J = 2.0 Hz, J = 6.0 Hz), 4.40 (dd, 1H, J = 4.0 Hz, J = 10.0 Hz), 4.22 (t, 1H, J = 6.8 Hz), 3.85-3.87 (m, 2H), 3.82 (s, 3H), 3.80-3.81 (m, 1H), 2.67-2.72 (m, 1H), 1.94 (bs, 1H). 13 C NMR (100 MHz, CDCl₃): δ 160.14, 143.96, 137.62, 129.46, 127.32, 117.62, 113.65, 101.39, 99.27, 77.98, 75.60, 68.70, 55.26, 42.57. **HRMS** (**ESI**) calcd for C₁₇H₂₀O₅+Na⁺ 327.1203, found 327.1201. **18b:** ¹**H NMR** (**400 MHz, CDCl₃):** δ 7.43 (d, 2H, J = 9.6 Hz), 6.93 (d, 2H, J = 11.7 Hz), 6.46 (dd, 1H, J = 2.4Hz, J = 6.0 Hz), 5.93 (ddd, 1H, J = 4.0 Hz, J = 10.8 Hz, J = 17.2 Hz), 5.60 (s, 1H), 5.38 (dt, 1H, J = 1.6 Hz, J = 17.2 Hz), 5.26 (t, 1H, J = 1.6 Hz), 4.62 (dd, 1H, J = 2.0 Hz, J = 6.0 Hz), 4.40 (dd, 1H, J = 4.0 Hz, J = 10.0 Hz), 4.01 (t, 1H, J = 9.2 Hz), 3.86-3.92 (m, 2H), 3.82 (s, 3H), 3.77-3.78 (m, 1H), 2.67-2.72 (m, 1H), 1.75 (bs, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 160.09, 145.47, 138.61, 129.74, 127.36, 115.20, 113.65, 101.44, 97.65, 75.23, 70.11, 69.14, 55.26, 42.42. **HRMS (ESI)** calcd for C₁₇H₂₀O₅+Na⁺ 327.1203, found 327.1201.

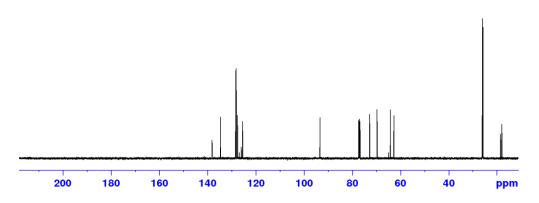

4.5 References


- 1. Tomooka, K.; Yamamoto, H.; Nakai, T. Angew. Chemie Int. Ed. 2000, 39 (24), 4500–4502
- 2. Grindley, T. B.; Wickramage, C. J. Carbohydr. Chem. 1988, 7 (3), 661–685.
- 3. Tomooka, K.; Yamamoto, H. J. Am. Chem. Soc. 1996, No. 9, 3317–3318.
- 4. Lay, L.; Meldal, M.; Nicotra, F.; Russo, G. Chem. Commun. 1997, 1469–1470.
- 5. Cipolla, L.; La Ferla, B.; Nicotra, F. Carbohydr. Polym. 1998, 37 (3), 291–298.
- 6. Bertrand, P.; Gesson, J. P.; Renoux, B.; Tranoy, I. *Tetrahedron Lett.* **1995**, *36* (23), 4073–4076.
- 7. Modica, E.; Compostella, F.; Colombo, D.; Franchini, L.; Cavallari, M.; Mori, L.; De Libero, G.; Panza, L.; Ronchetti, F. *Org. Lett.* **2006**, *8* (15), 3255–3258.
- 8. Patel, S. T.; Percy, J. M.; Wilkes, R. D. J. Org. Chem. **1996**, 61 (1), 166–173.

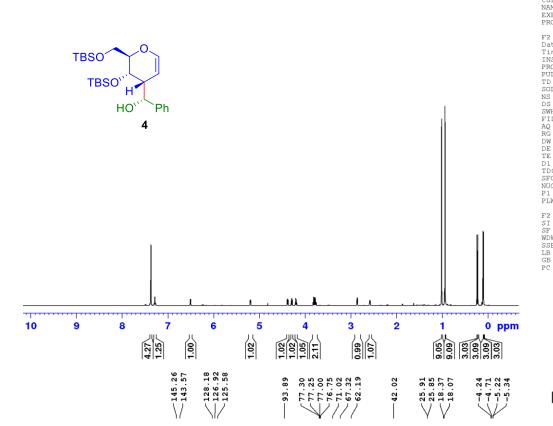

- 9. Eshelman, J. E.; Epps, J. L.; Kallmerten, J. *Tetrahedron Lett.* **1993**, *34* (5), 749–752.
- 10. Isobe, M.; Chang, W. C.; Tsou, P. K.; Ploysuk, C.; Yu, C. H. *J. Org. Chem.* **2015**, *80* (12), 6222–6237.
- 11. Sridhar, P. R.; Ashalu, K. C.; Chandrasekaran, S. Org. Lett. **2004**, 6 (11), 1777–1779.
- 12. Sridhar, P. R.; Kumar, P. V.; Seshadri, K.; Satyavathi, R. *Chem. A Eur. J.* **2009**, *15* (31), 7526–7529.
- 13. Sridhar, P. R.; Seshadri, K.; Reddy, G. M.; Chem. Commun. 2012, 48 (5), 756–758.
- 14. Ramakrishna, B.; Sudharani, C.; Sridhar, P. R. Isr. J. Chem. 2016, 56 (6–7), 558–565.
- 15. Ganesh, V.; Sridhar, P. R.; Chandrasekaran, S. *Isr. J. Chem.* **2016**, *56* (6–7), 417–430.
- 16. Reddy, G. M.; Sridhar, P. R. European J. Org. Chem. 2014, 2014 (7), 1496–1504.
- 17. Isobe, M.; Chang, W. C.; Tsou, P. K.; Ploysuk, C.; Yu, C. H. *J. Org. Chem.* **2015**, *80*, 6222–6237.







Commont I	Data Parameters	
NAME	BUR 2 (500MHz)	
EXPNO	205911	
PROCNO	1	
PROCNO	1	
F2 - Acqu	uisition Paramet	ers
Date_	20181204	
Time	17.38	
INSTRUM	spect	
PROBHD	5 mm PABBO BB-	
PULPROG	zg30	
TD	65536	
SOLVENT	CDC13	
NS	16	
DS	2	
SWH	10330.578	
FIDRES	0.157632	Hz
AO	3.1719425 8	sec
RG	20.2	
DW	48.400 1	
DE	6.50 ı	ıse
TE	295.1 H	ζ.
D1	1.00000000	
		360
TD0	1	
	CHANNEL f1 =====	
NUC1	1 H	
P1		
	14.90 t 2.00 d	ıse(
PL1	2.00 0	iB
PL1W	12.85348415 [Ñ
SFO1	500.1830888	MHe
DEGI	300.1030000	1-111.2
	cessing paramete:	rs
SI	32768	
SF	500.1800000	мнэ
WDW	EM	1.111.5
SSB	0	
LB	0.30 H	lz
GB	0	
PC		
FC	1.00	

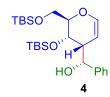


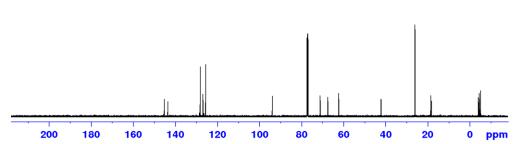
Current Data Parameters
NAME BUR 2 (500MHz)
EXPNO 1

F2 - Acquisition Parameters
Date_ 20181204
Time 17.40
INSTRUM spect
PROBHD 5 mm PABBO BBPULPROG 22pg30
TD 65536
SOLVENT CDC13
NS 22
DS 4
SWH0 2761904 Hz
FIDRES 0.454131 Hz
AQ 1.1010048 sec
RG 2050
DW 16.800 usec
DE 6.50 usec
TE 2296.0 K
D1 2.00000000 sec
D11 0.03000000 sec
D11 0.03000000 sec
D11 9.60 usec
PL1 2 9.60 usec
PL1 9.60 usec
PL1 9.60 usec
PL1 9.60 usec
PL1 10 dB 9.60 dB PL1 10 dB PL1 10

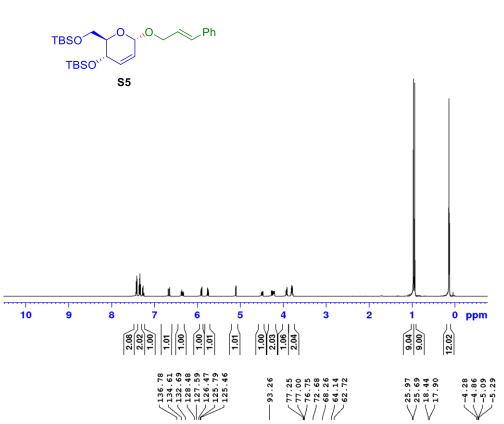
PL12W		0.4	4560	5880	M
PL13W		0.4	4560	5880	M
SFO2		500	.182	0007	MHz
F2 - Pro	cess	ing	par	amete	ers
SI			3	2768	
SF		125	.770	3710	MHz
MDM				EM	
SSB	0				
LB				1.00	Ηz
GB	0				
PC				1.40	

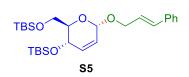
F2 -	Acquis	ition	Parame	ters
Date_		21	0200219	
Time			13.53	h
INSTR	RUM		spect	
PROBE		25331	0034 (
PULPE			za30	
TD			65536	
SOLVE	INT		CDC13	
NS			1.6	
DS			2	
SWH		10	000.000	Hz
FIDRE	ES	0	.305176	Hz
AO		3.2	2767999	sec
RĜ			31.25	
DW			50.000	usec
DE			6.50	usec
TE			298.8	K
D1		1.0	0000000	sec
TDO			1	
SF01		500.	3720898	MHz
NUC1			1 H	
P1			8.00	usec
PLW1		12.1	8000031	W
F2 -	Proces	sina	paramet	erg
SI	110000	J 1119	65536	010
SF		500.	3690000	MHz
WDW		000.	EM	
SSB	0		1311	
LB	0		0.30	Hz
an			0.00	

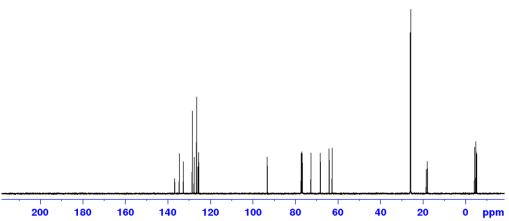

1.00

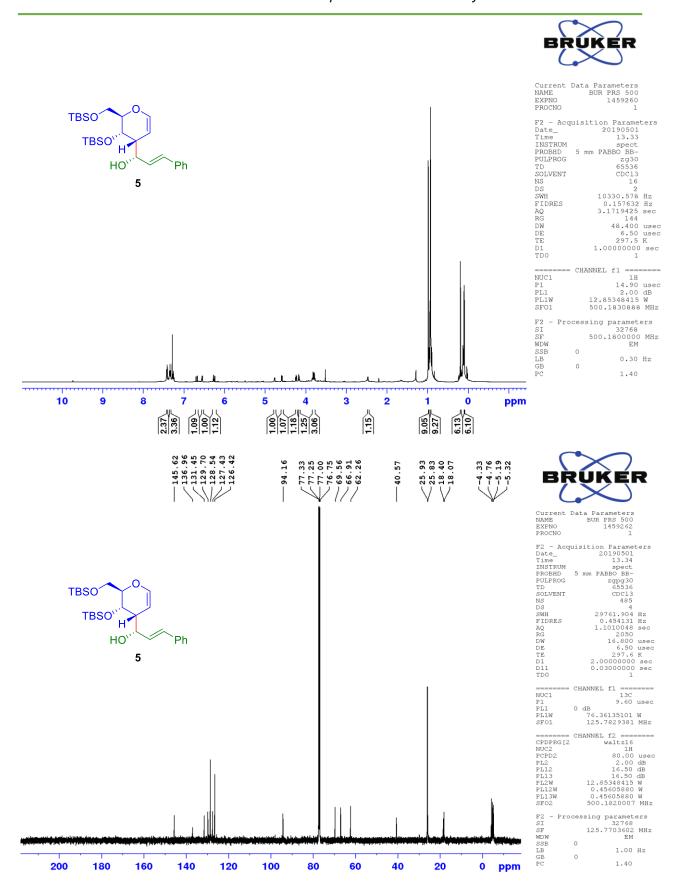


Current Data Parameters NAME BUR ASCEND 500 EXPNO 151 PROCNO 17


F2 - Acqu	isition Paramet	ters
Date_	20200219	
Time	14.06	h
INSTRUM	spect	
PROBHD	Z125331_0034 (
PULPROG	zgpg30	
TD	65536	
SOLVENT	CDC13	
NS	187	
DS	4	
SWH	29761.904	Hz
FIDRES	0.908261	Hz
AQ	1.1010048	sec
RG	192.83	
DW	16.800	
DE	6.50	
TE	298.8	K
D1	2.00000000	
D11	0.03000000	sec
TDO	1	
SF01	125.8304669	MHz
NUC1	13C	
P1	12.00	
PLW1	172.66999817	
SFO2	500.3710015	MHz
NUC2	1 H	
CPDPRG[2	waltz16	
PCPD2	80.00	
PLW2	12.18000031	
PLW12	0.12180000	
PLW13	0.06126500	W



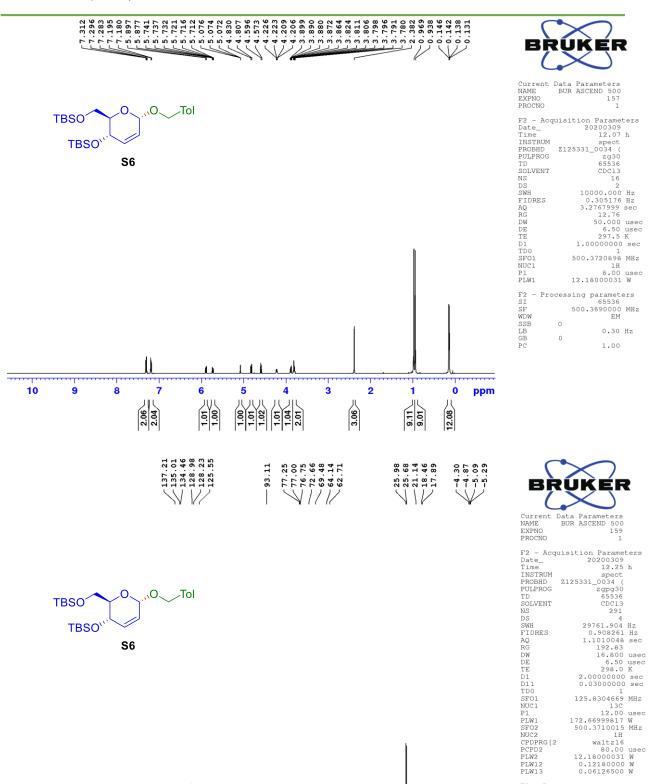




EXPNO	1459347	
PROCNO	1	
Date_ Time INSTRUM PROBHD PULPROG TD SOLVENT NS DS SWH FIDRES AQ	uisition Paramet 20200312 14.49 spect 5 mm PABBO BB- 2000300 65536 CCC13 145 4 29761.904 0.454131	Hz Hz
RG DW DE	2050 16.800 6.50	
TE	299.0	
D1 D11 TD0	2.00000000 0.03000000 1	
NUC1 P1 PL1 PL1W SFO1	CHANNEL f1 13C 9.60 0 dB 76.36135101 125.7829381	usec W

waltz16
1.H
80.00 us
2.00 dB
16.50 dB
16.50 dB
12.85348415 W
0.45605880 W
0.45605880 W
500.1820007 MH
ssing parameters

F2 -	Processing	paramet	ers
SI		32768	
SF	125.	7703660	MH:
MDM		EM	
SSB	0		
LB		1.00	Ηz
GB	0		
PC		1.40	


180

160

140

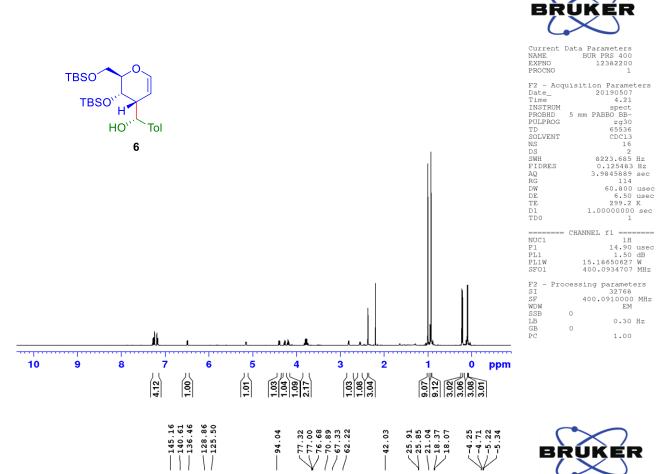
120

100

80

60

40


20

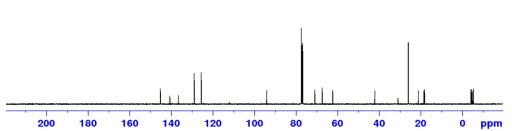
0 ppm

F2 - Processing parameters SI 32768 SF 125.8178928 MHz WDW EM

> 1.00 Hz 1.40

SSB LB GB PC

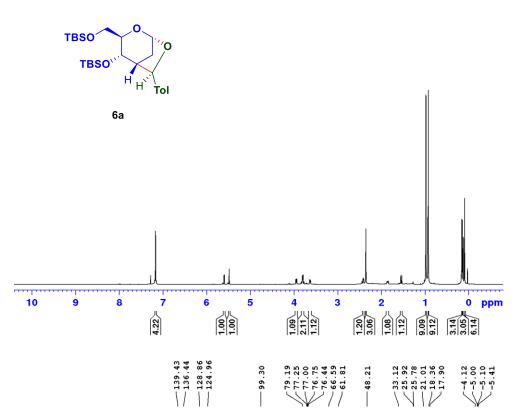

77.0

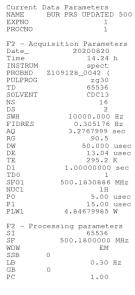

04

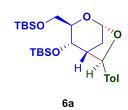
94.

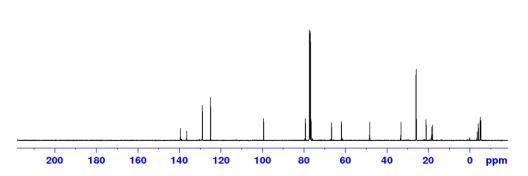
145. 140. 136. 128.

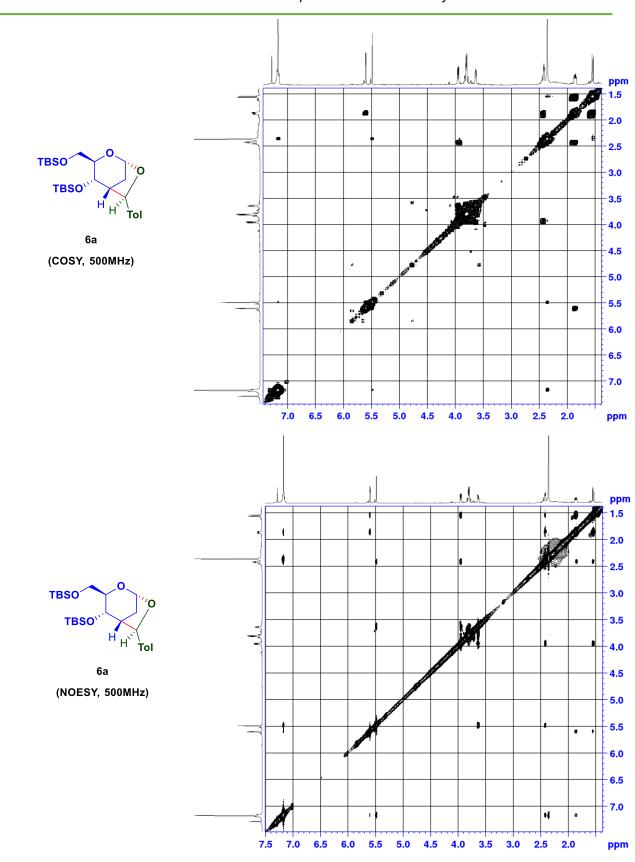
---42.03

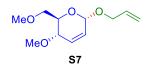

Current D NAME EXPNO PROCNO	Pata Parameters BUR PRS 400 12382202 1
Date_ Time INSTRUM	sistion Parameters 20190507 453 453 5 mm PABBO BB-20730 65536 CDC13 414 4 24038.461 Hz 0.366798 Hz 1.3631488 sec 2050 20.800 usec 6.50 usec 300.7 K 2.00000000 sec 0.03000000 sec 0.03000000 sec 1
	CHANNEL fl

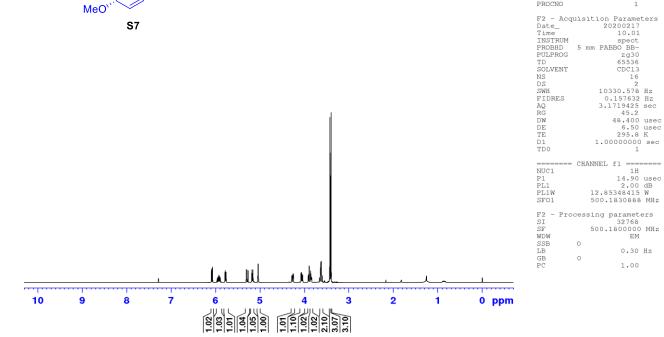

	CHANNEL	f1		
NUC1			13C	
P1		1	00.0	usec
PL1		- 2	00.5	dB
PL1W	49.4	4866	5943	M
SF01	100.0	6130	223	MHz
	CHANNEL			
CDDDDCCC		walt	16	


	CHANNEL IZ ====	
CPDPRG[2	waltz16	
NUC2	1H	
PCPD2	90.00	usec
PL2	1.50	dB
PL12	17.18	dB
PL13	20.18	
PL2W	15.18650627	M
PL12W	0.41063678	W
PL13W	0.20580591	M
SFO2	400.0926004	MHz


F2 -	Processing	paramete	rs
SI		32768	
SF	100	.6029635	MH:
WDW		EM	
SSB	0		
LB		1.00	Ηz
GB	0		
PC		1.40	





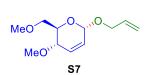


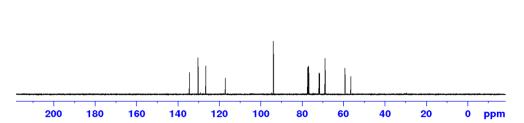
Current NAME EXPNO PROCNO			ameters UPDATE 2 1	D 500
F2 - Acq Date_ Time INSTRUM PROBHD PULPROG TD SOLVENT NS DS		2	Parame 0200820 16.13 spect 5_0042 zgpg30 65536 CDC13 2048) 3 h ((
SWH		20	761.904	
FIDRES			.90826	
AO			1010048	
RG		Τ.	203	
DW			16.800	
DE				usec
TE			295.7	
D1		2 0	000000	
D11			300000	
TDO		0.0	1	
SFO1		125	7829381	
NUC1			130	
PO				usec
P1				usec
PLW1		54.0	0399780	
SFO2			182000	
NUC2			1.H	
CPDPRG[2	2		waltz65	5
PCPD2			80.00	usec
PLW2		4.8	4679985	
PLW12		0.1	7039999	W
PLW13		0.0	8570800	W
F2 - Pro	cess	ing	paramet	
SF		125	7703637	
WDW		123.	EM	
SSB	0		E	
200	0			

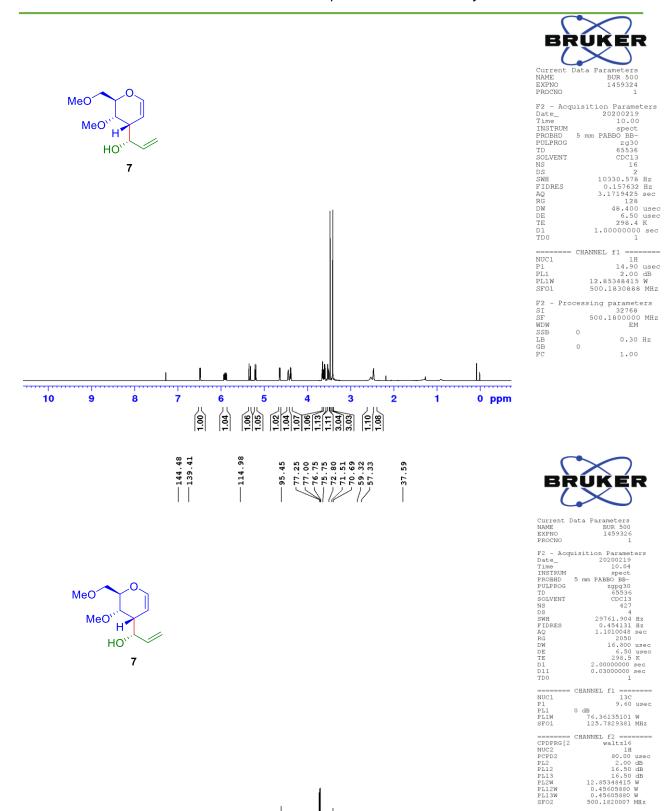
134.41 130.23 126.50 116.99

---- CHANNEL f1 -----

1H 14.90 usec 2.00 dB 12.85348415 W 500.1830888 MHz

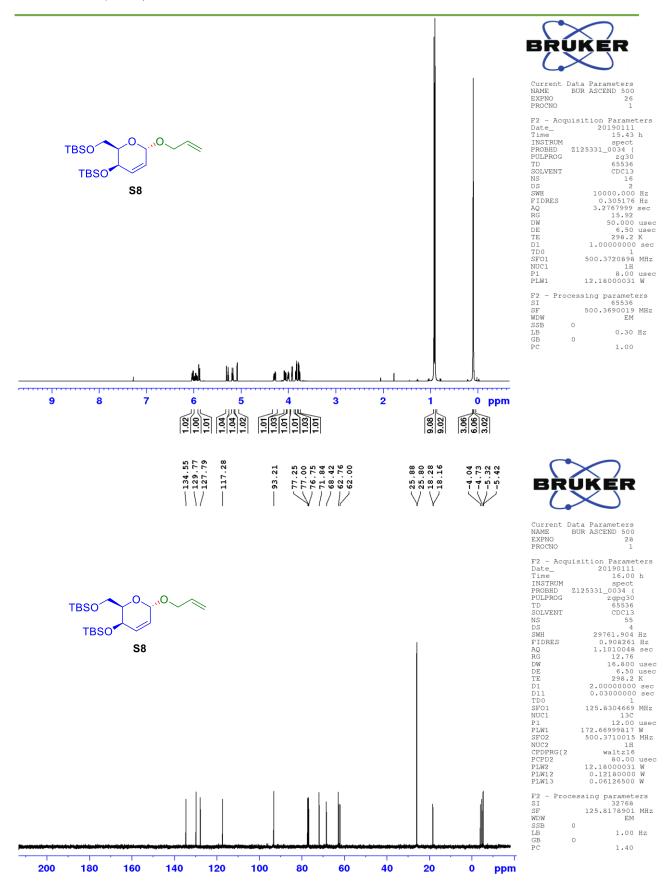

FROCKO 1

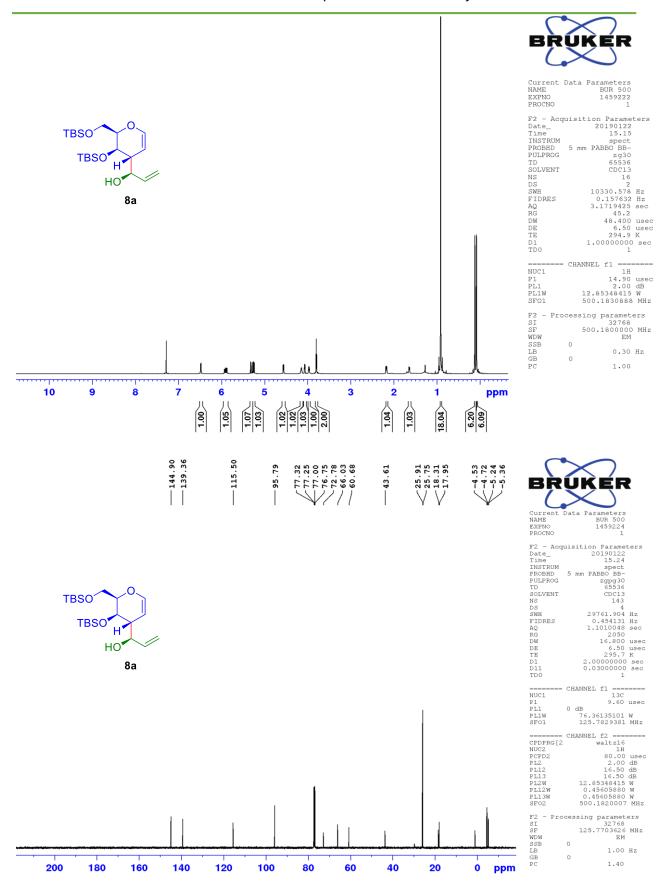

F2 - Acquisition Parameters
Date 20200217
Time 10.10
INSTRUM spect
PROBHD 5 mm PABBO BBPULPROG zgpg30
TD 65536
SOLVENT CDC13
NS 101
DS 4
SWH 29761.904 Hz
FIDRES 0.454131 Hz
AQ 1.1010048 sec
RG 2050
DW 16.800 usec
DE 6.50 usec
TE 297.4 K
D1 0.03000000 sec
D11 0.03000000 sec
D11 0.03000000 sec
D11 0.03000000 sec

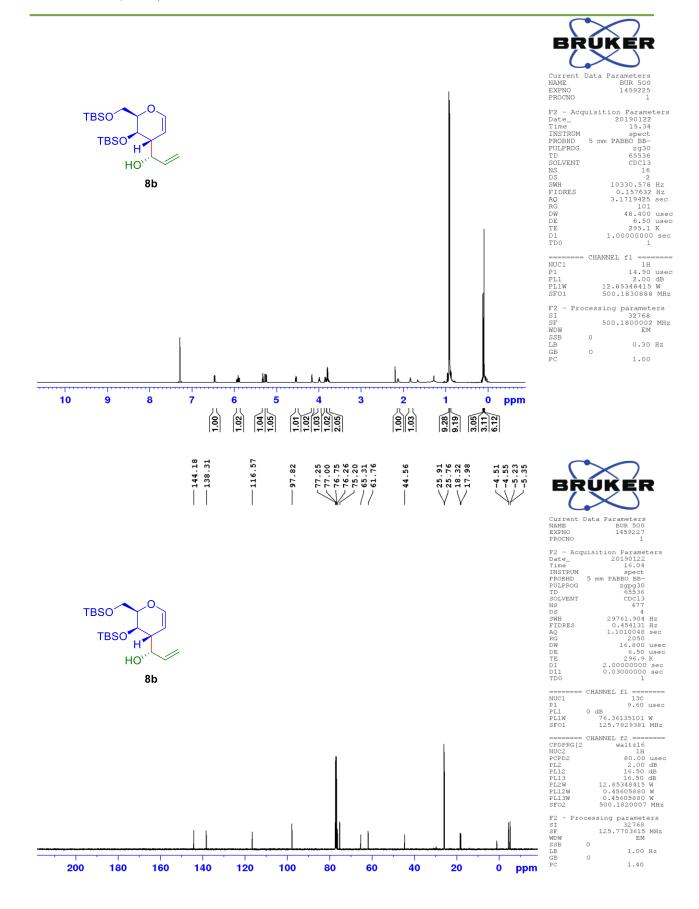

13C 9.60 usec NUC1 P1 PL1 PL1W SF01 76.36135101 W 125.7829381 MHz

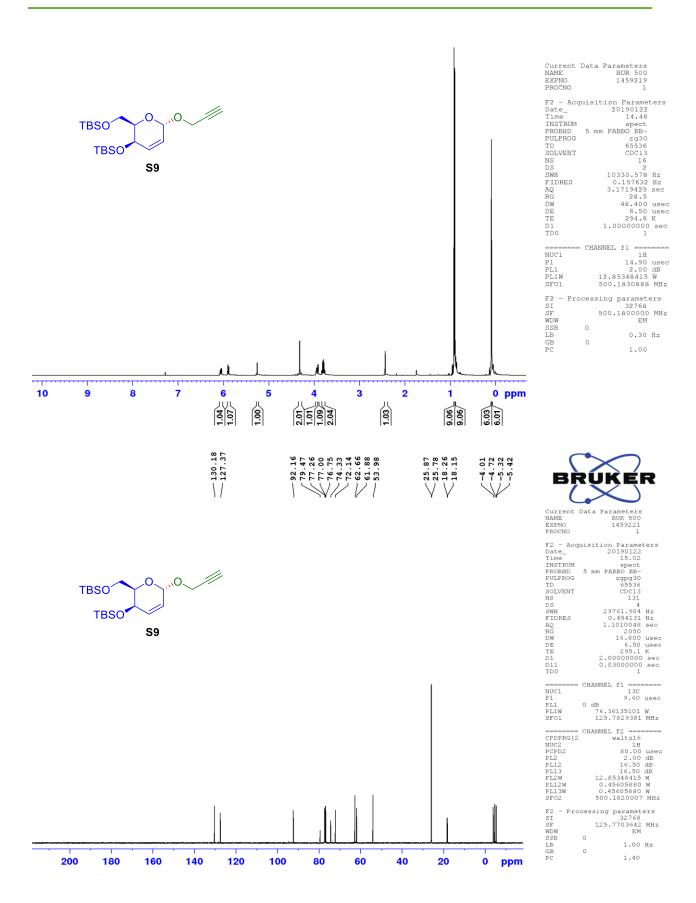
CHANNEL f2 -----CPOPRG[2 walt=16
NUC2 1H
PCPD2 80.00 usec
PL2 2.00 dB
PL12 16.50 dB
PL13 16.50 dB
PL2W 12.85348415 W
PL12W 0.45605880 W
PF113W 0.45605880 W
SF02 500.1820007 MHz

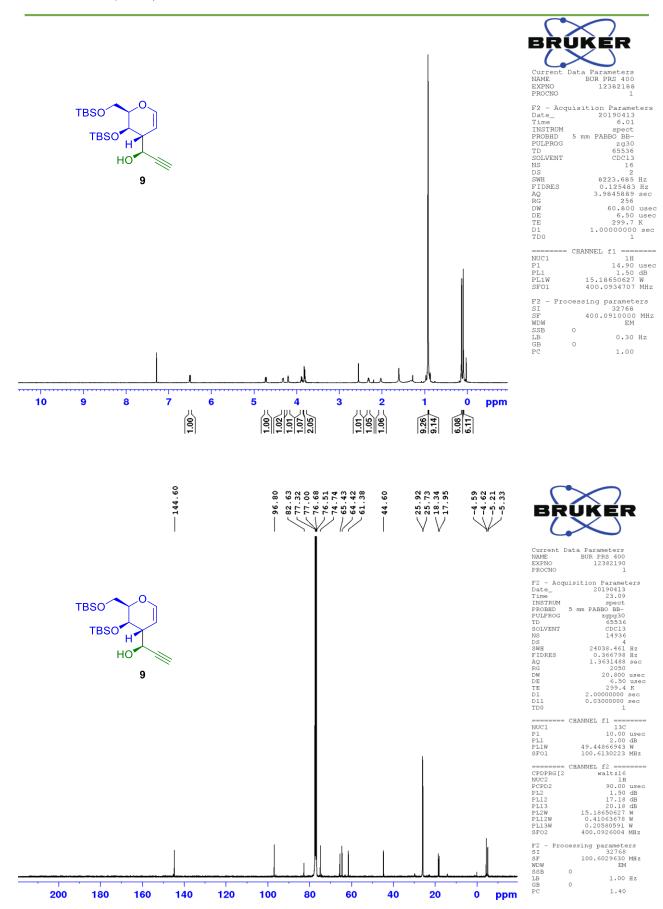
F2 - Processing parameters SI 32768 SF 125.7703688 MHz WDW EM SSB 0 LB 1.00 Hz GB 0 1.40

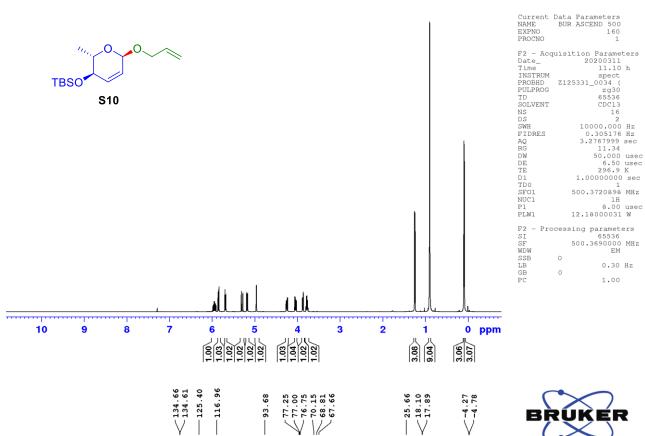


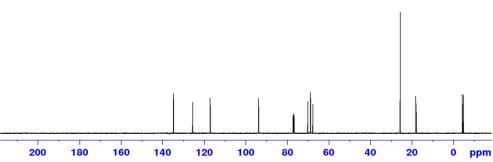




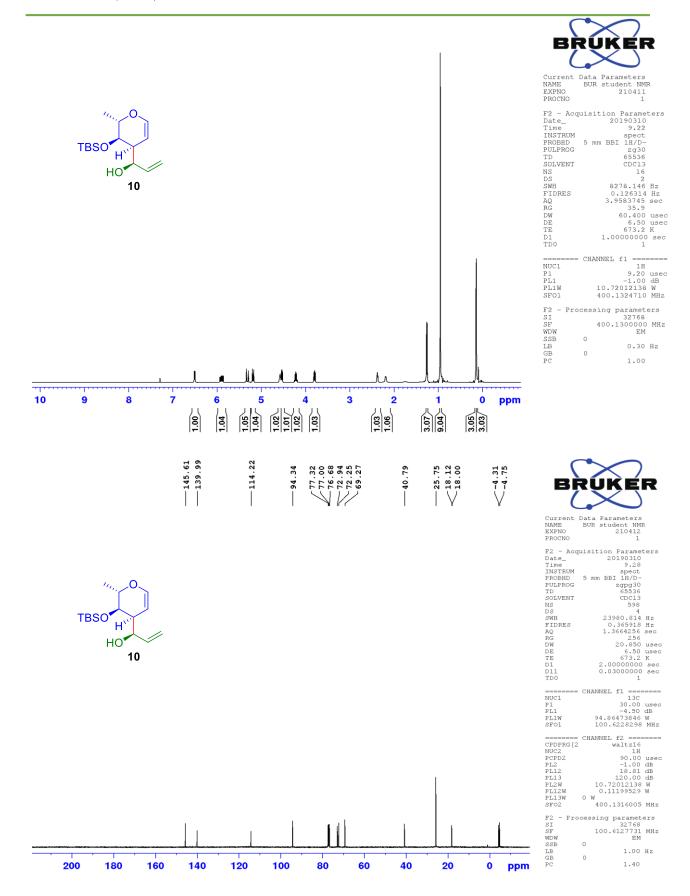

0 ppm

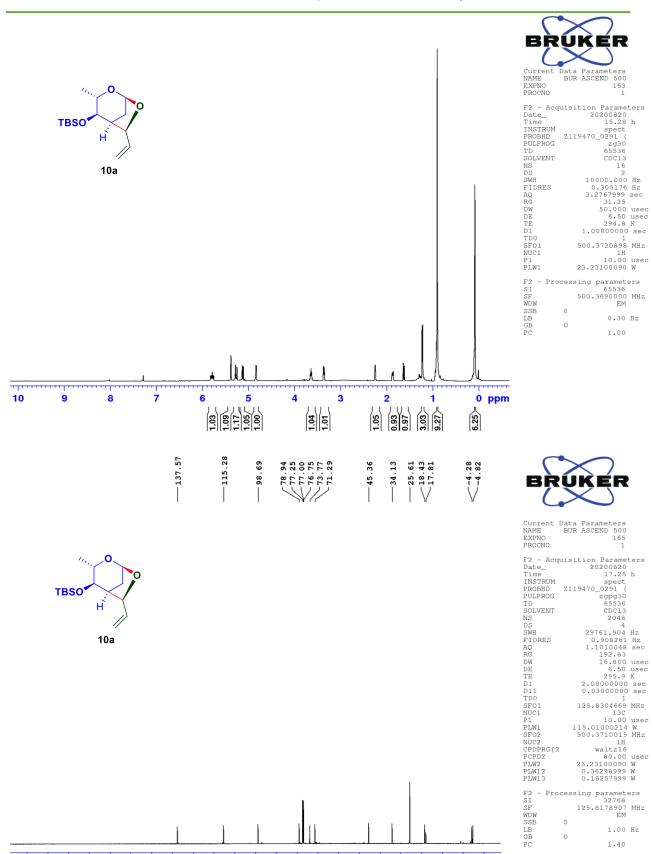

F2 - Processing parameters
SI 32768
SF 125.7703635 MHz
WDW EM
SSB 0
LB 1.00 Hz
GB 0 1.40



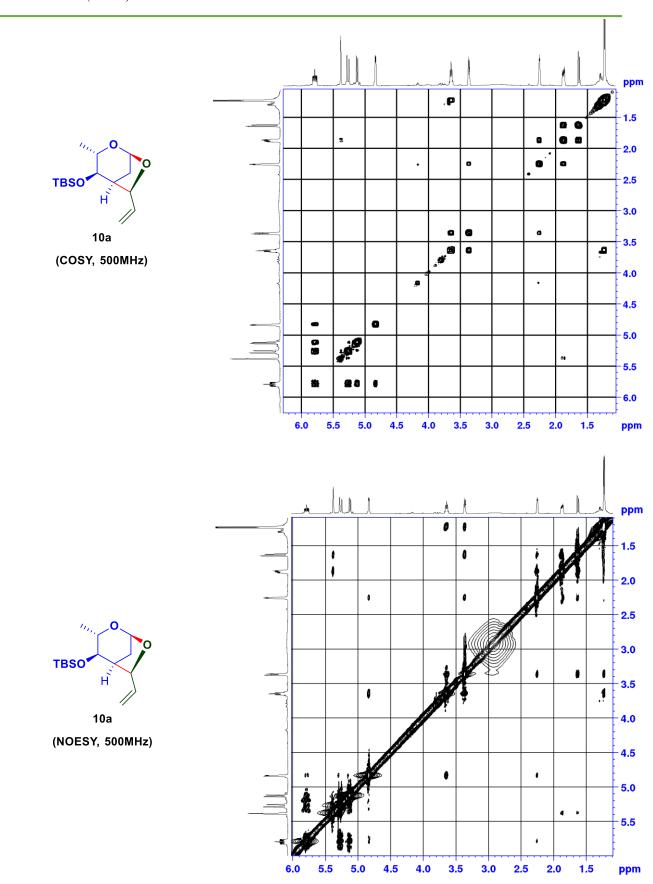


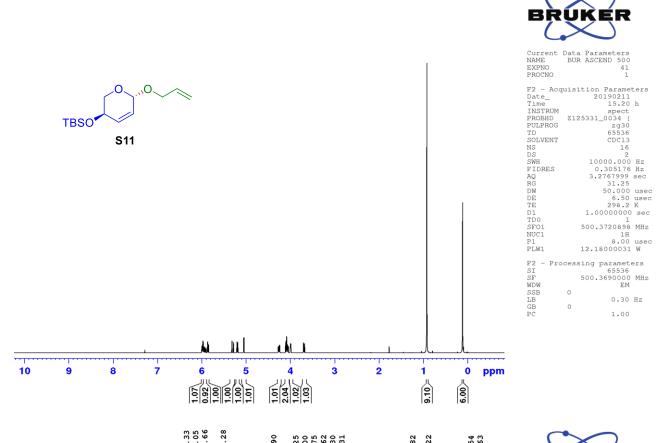
0.30 Hz 1.00

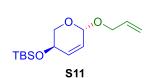

TBSO' **S10**

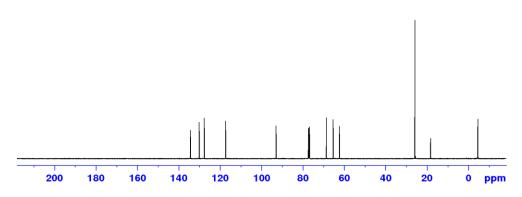


Current Data Parameters
NAME BUR ASCEND 500
EXPNO 162
PROCNO 1 EXPNO 162
PROCNO 1


F2 - Acquisition Parameters
Date_ 20200311
Time 11.25 h
INSTRUM spect
PROBBD 2125331_0034 (
PULPROG 37034 (
PULPROG 55536
SOLVENT CDC13
NS 129
DS 4
SWH 29761.904 Hz
FIDRES 0.908261 Hz
AQ 1.1010048 sec
RG 192.83
DW 16.800 usec
DE 6.50 usec
DE 6.50 usec
DE 6.50 usec
DE 6.50 usec
DE 10.0000000 sec
D1 0.03000000 sec
D1 1 0.03000000 sec
D1 1 2.00000000 sec
D1 1 12.00 usec
D1 1 12.00 usec
P1 1 12.00 usec 0.03000000 sec 1 125.8304669 MHz 12.00 usec 172.66999817 W 500.3710015 MHz 1 H waltz16 80.00 usec 12.18000031 W 0.12180000 W 0.06126500 W


F2 - Processing parameters
SI 32768
SF 125.8178904 MHz
WDW EM
SSB 0
LB 1.00 Hz
GB 0
PC 1.40 1.40





0 ppm

92.

134.

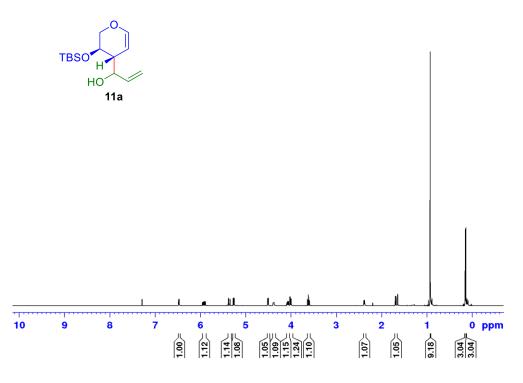
117.

25 00 75 62 30 31

77. 76. 68.(65.3

22 2

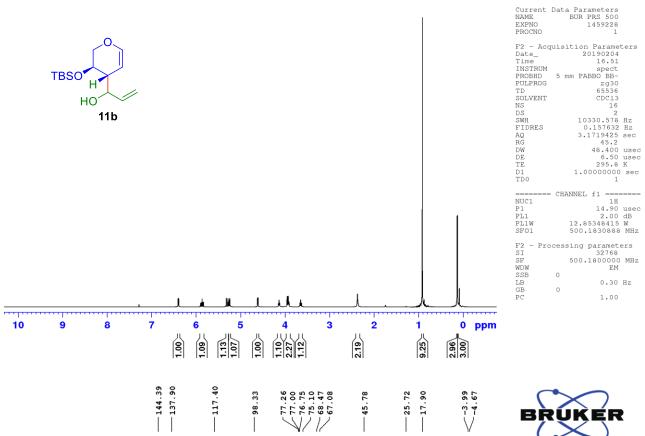
18.


25.

54

Current Data Parameters NAME BUR ASCEND 500 EXPNO 43 PROCNO 1 F2 - Acquisition Parameters
Date_ 20190211
Time 15.57 h
INSTRUM
PROBED 2125331_0034 (
PULPROG 229930
TD 65536
SOLVENT CDC13
NS 430
DS 440 NS
DS
SWH
FIDRES
AQ
RG
DW
DE
TTE
D1
TTD
D11
TD0
SF01
NUC1
P1
PLIM12
FCPD2FRG[2
PLM2
PLM12
PLM13 430 4 29761.904 Hz 0.998261 Hz 1.1010048 sec 192.83 16.800 usec 6.50 usec 298.1 K 2.00000000 sec 0.03000000 sec 1 125.8304669 MHz 13C 12.00 usec 172.66999817 W 500.3710015 MHz 1H waltz16 80.00 usec 12.18000031 W 0.12180000 W F2 - Processing parameters
SI 32768
SF 125.8178924 MHz
WDW EM
SSB 0
LB 1.00 Hz
GB 0
PC 1.40

F2 - Acquisition Parameters	Current [NAME EXPNO PROCNO	Data Parameters BUR PRS 500 1459234 1	
FIDRES 0.157632 Hz AQ 3.1719425 sec RG 144 DW 48.400 usec DE 6.50 usec TE 295.6 K D1 1.00000000 sec TD0 1	Date_ Time INSTRUM PROBHD PULPROG TD SOLVENT NS	20190206 17.24 spect 5 mm PABBO BB- zg30 65536 CDC13	ters
NUC1 1H P1 14.90 usec PL1 2.00 dB PL1W 12.85348415 W SF01 500.1830888 MHz F2 - Processing parameters SI 32768 SF 500.1800000 MHz WDW EM SSB 0 LB 0.30 Hz GB 0	SWH FIDRES AQ RG DW DE TE D1	0.157632 3.1719425 144 48.400 6.50 295.6	Hz sec usec usec K
SI 32768 SF 500.1800000 MHz WDW EM SSB 0 LB 0.30 Hz GB 0	NUC1 P1 PL1 PL1W	1H 14.90 2.00 12.85348415	usec dB W
	SI SF WDW SSB LB GB	32768 500.1800000 EM 0 0.30	MHz


TBSO H
HO
11a

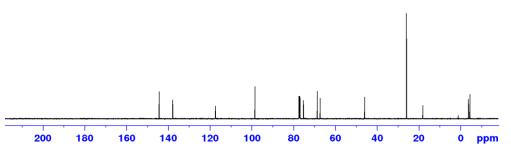
EXPNO	12382161
PROCNO	1
F2 - Acqu	isition Parameters
Date_	20190209
Time	6.20
INSTRUM	spect
PROBHD .	5 mm PABBO BB-
PULPROG	zgpg30
TD	65536
SOLVENT	CDC13
NS	543
DS	4
SWH	24038,461 Hz
FIDRES	0.366798 Hz
AQ	1.3631488 sec
RG	25.4
DW	20.800 usec
DE	6.50 usec
TE	297.6 K
D1	2.00000000 sec
D11	0.03000000 sec
TD0	1

									ı		
			Li	ı	1		.l.ı	ı			
200	180	160	140	120	100	80	60	40	20	0	ppm

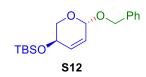
PCPDZ	90.00	usec
PL2	1.50	dB
PL12	17.18	dB
PL13	20.18	dB
PL2W	15.18650627	W
PL12W	0.41063678	W
PL13W	0.20580591	W
SFO2	400.0926004	MHz
F2 -	Processing paramete	ers
SI	32768	
SF	100.6029640	MHz
MDM	EM	
SSB	0	
LB	1.00	Hz
GB	0	

1.00

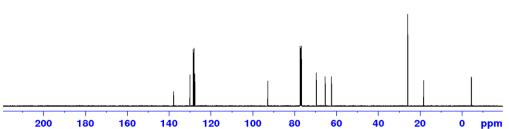
Current Data Parameters NAME BUR PRS 500 EXPNO 1459230 PROCNO 1 FROCNO 1


F2 - Acquisition Parameters
Date 17.06
INSTRUM pect
PROBHD 5 mm PABBO BBPULPROG 2gpq30
ID 65536
SOLVENT CDC13
NS 14
SWH 29761.904 Hz
FIDRES 0.454131 Hz
AQ 1.1010048 sec
RG 2050
DW 16.800 usec
DE 6.50 usec
TE 297.3 K
D1 0.03000000 sec

NUC1 P1 PL1 PL1W SF01 0 dB 76.36135101 W 125.7829381 MHz


CPDPRG[2 NUC2 PCPD2 PL2 PL12 PL13 PL2W PL12W PL13W SFO2

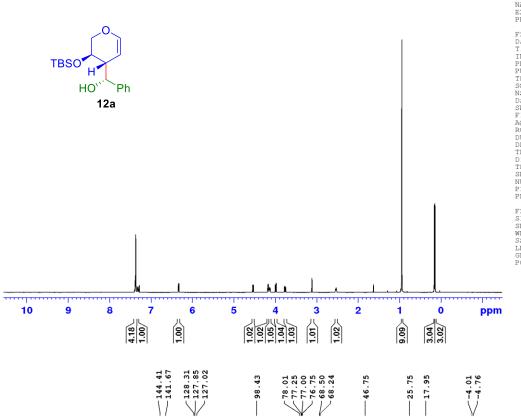

SI	32768	
SF	125.7703636	MH
WDW	EM	
SSB	0	
LB	1.00	Ηz
GB	0	
PC	1.40	



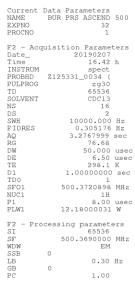
0.30 Hz

1.00

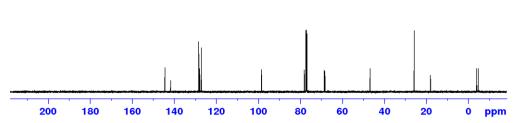
 Current Data Parameters


 NAME NAME EXPNO 12382187

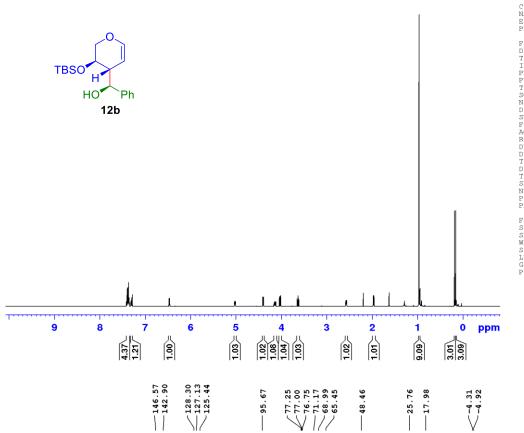
 PROCNO 1

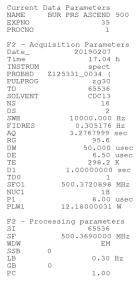

NUC1 P1 PL1 PL1W SF01

F2 - Processing parameters SI 32768
SF 100.6029680 MHz WDW EM SSB 0
LB 0 1.00 Hz GB 0 1.40



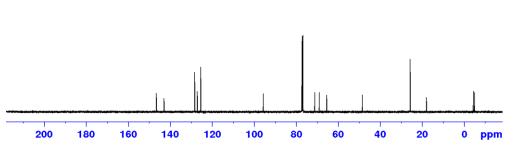
78.6 77.3 77.6 76.

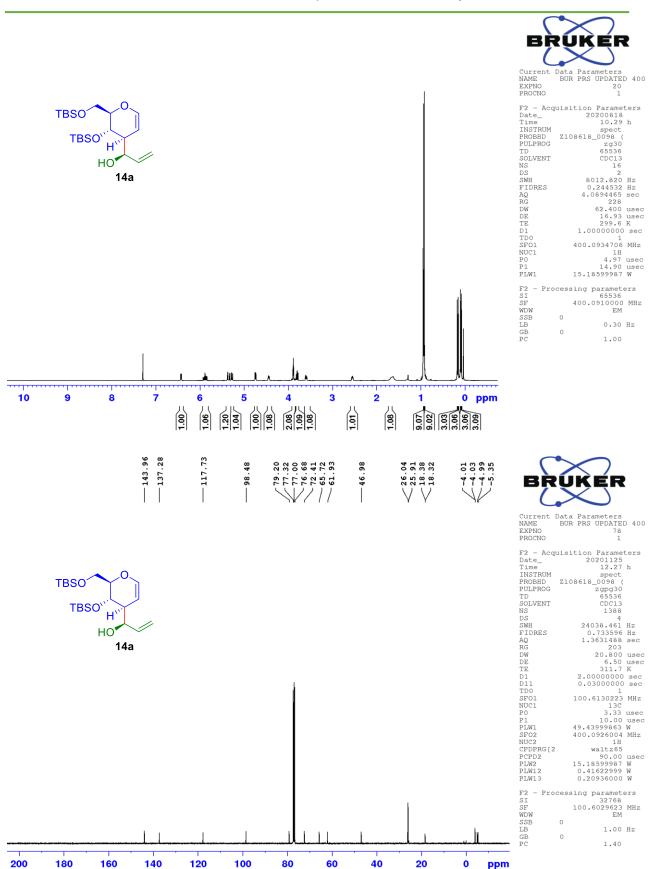


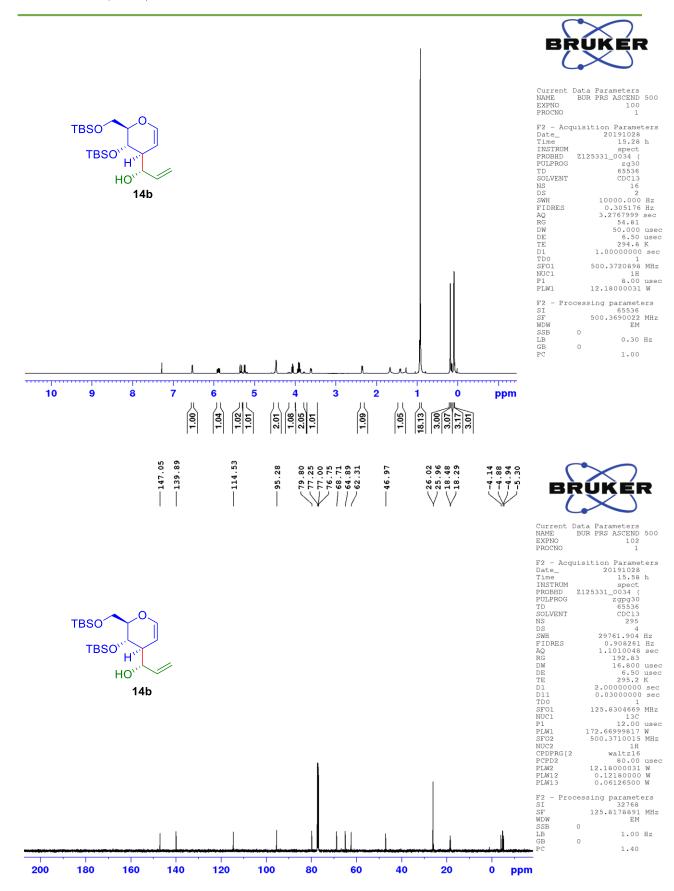


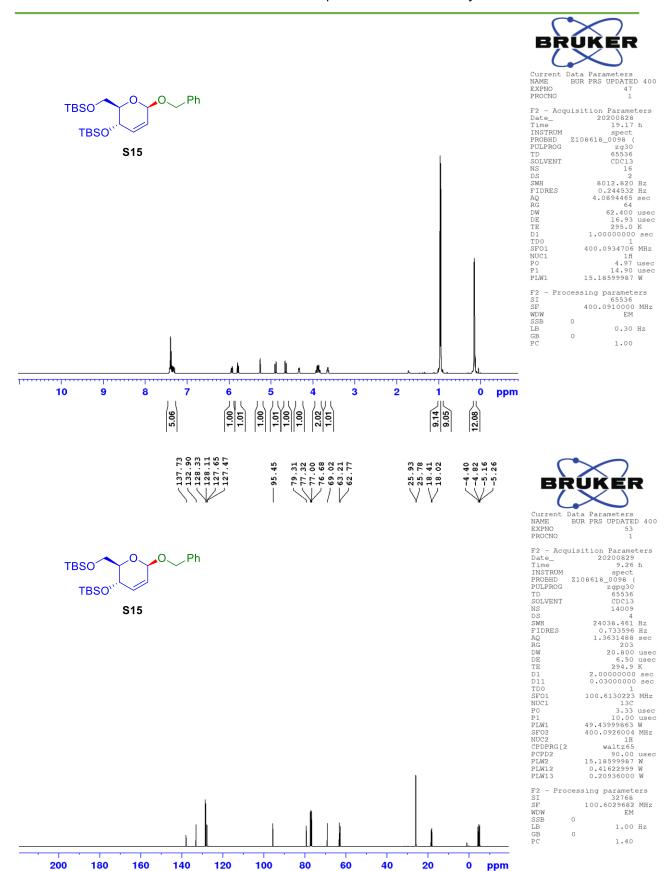
Current Data Parameters
NAME BUR PRS ASCEND 500
EXPNO 34
PROCNO 1 F2 - Acquisition Parameters
Date_ 20190207
Time 16.55 h
INSTRUM spect
PROBHD 2125331_0034 (
PULPROG 22pg30
TD 65536
SOLVENT CDC13
NS 180
DS 4 TD
SOLVENT
NS
DS
SWH
FIDRES
AQ
RG
DW
DE
TE
D1
TD0
SF01
NUC1
P1
PLW1
SF02
NUC2
CPDPRG[2
PCPD2
PLW2
PLW13 180 4
29761.904 Hz
0.908261 Hz
1.1010048 sec
192.83
16.800 usec
6.50 usec
298.1 K
2.000000000 sec
0.03000000 sec
1125.8304669 MHz
13C
12.00 usec
172.66999817 W
500.3710015 MHz
4801216
80.00 usec
12.18000031 W
0.12180000 W

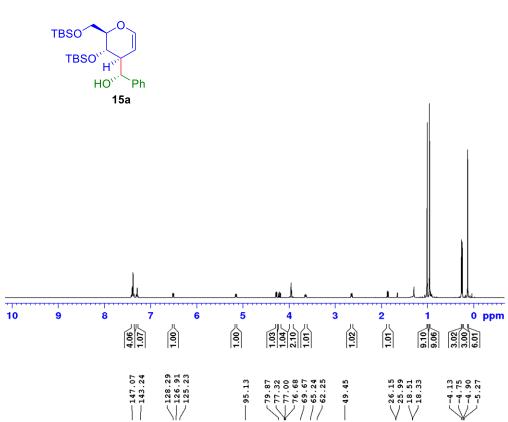
F2 - Processing parameters
SI 32768
SF 125.8178900 MHz
WDW EM
SSB 0
LB 1.00 Hz
GB 0
PC 1.40

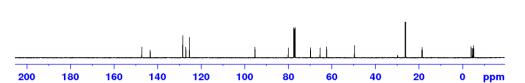


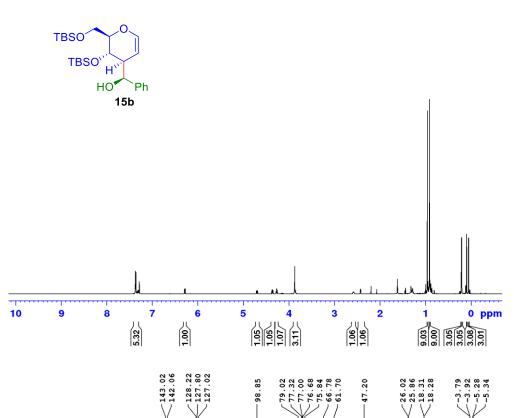


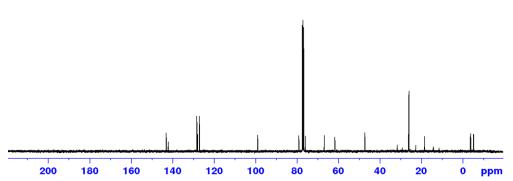


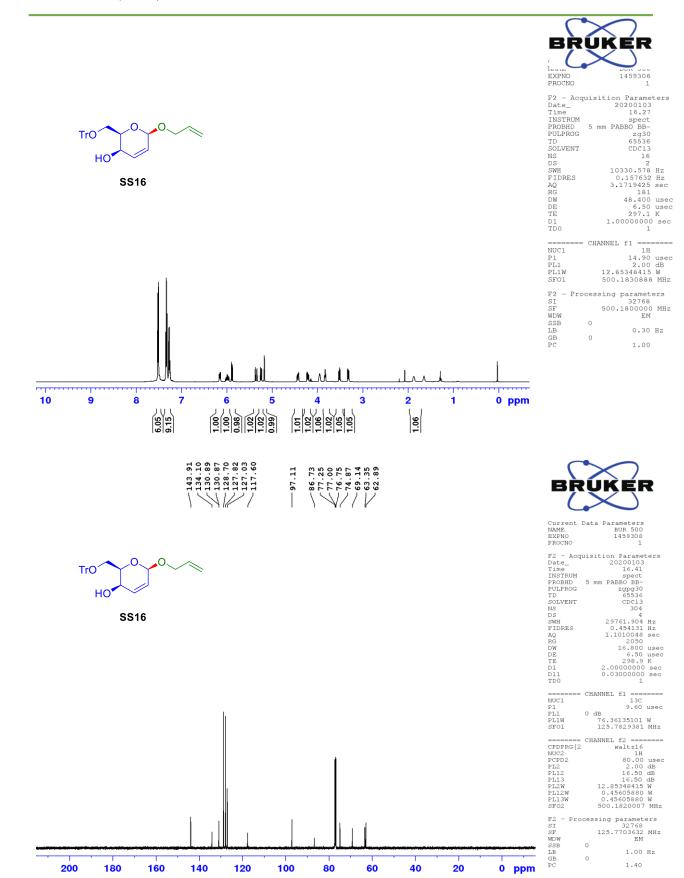


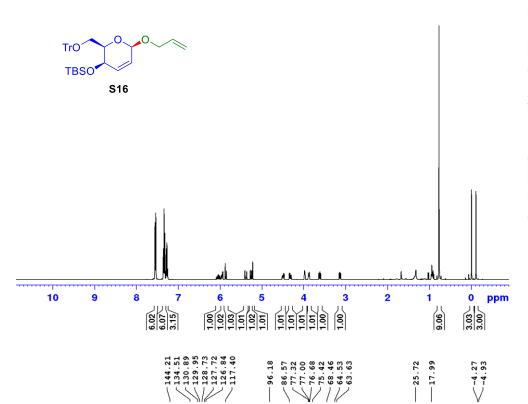

Current I NAME EXPNO PROCNO	Data Parameters BUR PRS ASCEND 37 1	500
F2 - Acm	isition Parame	ters
Date	20190207	0010
Time	17.25	h
INSTRUM	spect	11
PROBHD	Z125331 0034 (
PULPROG	zgpg30	
TD	65536	
SOLVENT	CDC13	
NS	262	
DS	4	
SWH	29761.904	H z
FIDRES	0.908261	
AO	1.1010048	
RG	192.83	
DW	16.800	
DE		usec
TE	298.1	
D1	2.00000000	
D11	0.03000000	
TDO	1	
SFO1	125.8304669	MHz
NUC1	13C	
P1	12.00	usec
PLW1	172.66999817	
SFO2	500.3710015	MHz
NUC2	1 H	
CPDPRG[2	waltz16	
PCPD2	80.00	usec
PLW2	12.18000031	W
PLW12	0.12180000	W
PLW13	0.06126500	W
F2 - Prod	cessing paramet	ers

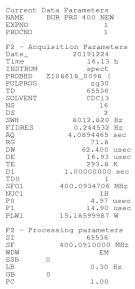



Current	Data Parameters	
NAME	Drisya updated	400
EXPNO	4	
PROCNO	1	
	quisition Parame	
Date_	20201113	
Time	17.41	h
INSTRUM	spect	
PROBHD	Z108618_0098 (
PULPROG	zg30	
TD	65536	
SOLVENT	CDC13	
NS DS	16	
SWH	8012.820	17
FIDRES	0.244532	
AO	4.0894465	
RG	90.5	sec
DW	62,400	1190
DE	16.93	
TE	308.9	
D1	1.00000000	
TDO	1	
SF01	400.0934706	MHz
NUC1	1H	
P0	4.97	used
P1	14.90	
PLW1	15.18599987	W
F2 - Pro	ocessing paramet	ers
SI	65536	
SF	400.0910000	MHz
WDW	EM	
SSB	0	
LB	0.30	Ηz
	0	
GB PC	1.00	

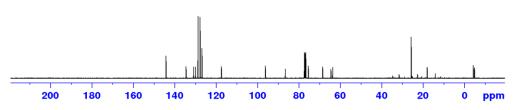


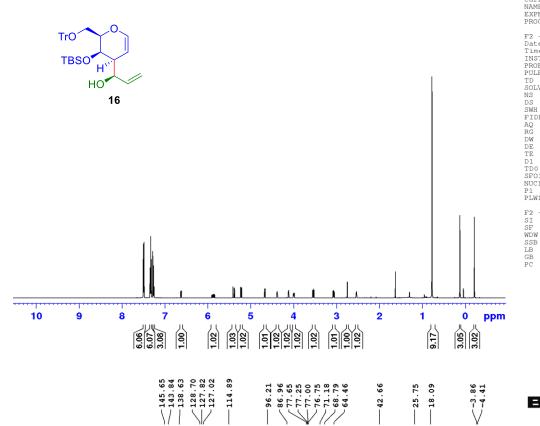



NAME	BUR PRS 400	
EXPNO	12382232	
PROCNO	1	
F2 - Acqu	isition Paramet	cers
Date_	20191113	
Time	16.51	
INSTRUM	spect	
PROBHD	5 mm PABBO BB-	
PULPROG	zgpg30	
TD	65536	
SOLVENT	CDC13	
NS	287	
DS	4	
SWH	24038.461	Hz
FIDRES	0.366798	Hz
AQ	1.3631488	sec
RG	2050	
DW	20.800	usec
DE	6.50	usec
TE	297.8	K
D1	2.00000000	sec
D11	0.03000000	sec
TD0	1	
	CHANNEL fl ===	
NUC1	13C	
D1	10.00	

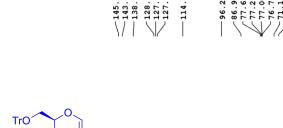

P1	10.00	usec
PL1	2.00	dB
PL1W	49.44866943	W
SFO1	100.6130223	$\mathrm{MH}z$
	CHANNEL f2 ===	
CPDPRG[2	waltz16	
NUC2	1H	
PCPD2	90.00	usec
PL2	1.50	dB
PL12	17.18	dB
PL13	20.18	dB
PL2W	15.18650627	W
PL12W	0.41063678	M
PL13W	0.20580591	W
SFO2	400.0926004	MHz
F2 - Proc	essing paramete	ers

F2 - Processing parameters
SI 32768
SF 100.6029640 MH:
WDW EM
SSB 0
LB 1.00 Hz
GB 0
PC 1.40





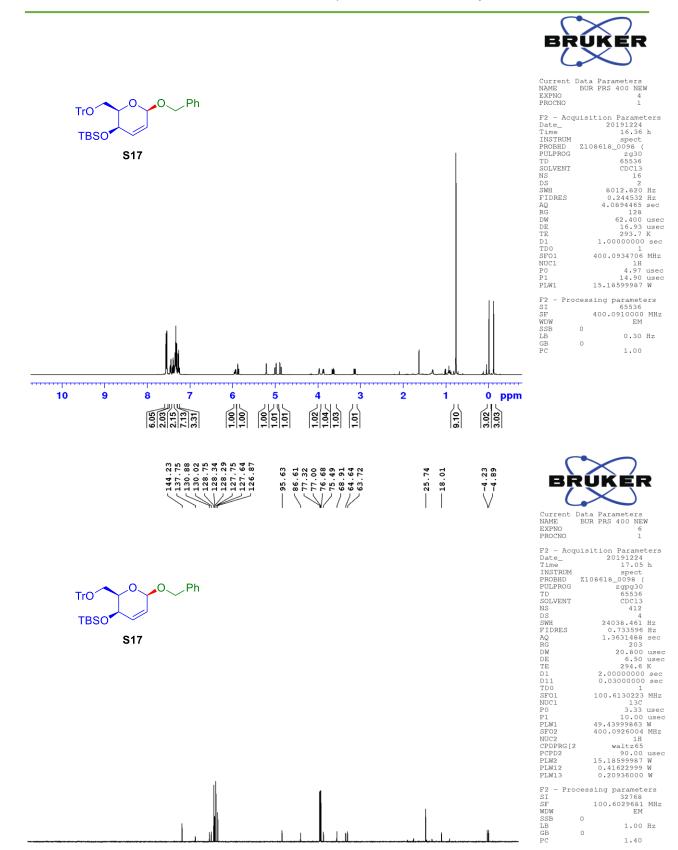
PROCNO	1	
F2 - Acqu	isition Paramet	ters
Date	20191224	
Time	16.32	h
INSTRUM	spect	
PROBHD	Z108618_0098 (
PULPROG	zapa30	
TD	65536	
SOLVENT	CDC13	
NS	132	
DS	4	
SWH	24038.461	Hz
FIDRES	0.733596	
AQ	1.3631488	sec
RG	203	
DW	20.800	
DE	6.50	
TE	294.7	
D1	2.00000000	
D11	0.03000000	sec
TDO	1	
SF01	100.6130223	MHz
NUC1	13C	
P0	3.33	
P1	10.00	
PLW1	49.43999863	
SFO2	400.0926004	MHz
NUC2	1H	
CPDPRG[2	waltz65	
PCPD2	90.00	
PLW2	15.18599987	
PLW12	0.41622999	
PLW13	0.20936000	W



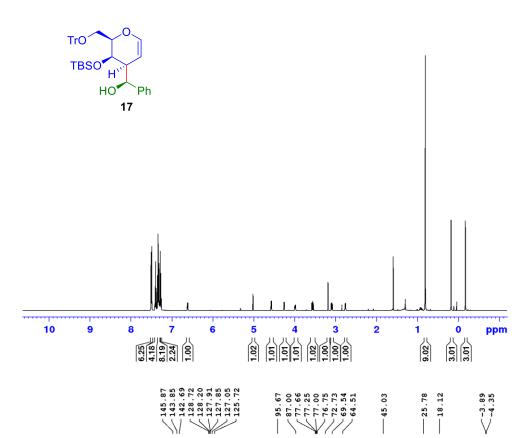
Data	Para	ameters	
BUR	PRS	ASCEND	500
		109	
		1	
uisit	ion	Parame	ters
		15.05	h
		spect	
Z125	5331	_0034 (
		zg30	
		65536	
		CDC13	
		16	
		2	
	100	000.000	Hz
	0	.305176	Hz
	3.2	2767999	sec
		31.25	
		50.000	usec
		6.50	usec
		298.2	K
	1.0	0000000	sec
		1	
	500.		
		1 H	
		8.00	
-	12.1	8000031	W
cess	ing p		ers
į	500.		MHz
_		EM	
0			
	BUR uisit	EUR PRS 20125331 100 0 3.2 1.00 500.	uisition Parame 20191226 2125331_0034 (2330 65536 CDC13 16 2 10000.000 0.305176 3.2767999 31.25 50.000 6.50 298.2 1.000000000 1 500.3720898 1 H8 8.00 12.18000031 cessing paramet 65536 500.3690000 EM

0.30 Hz

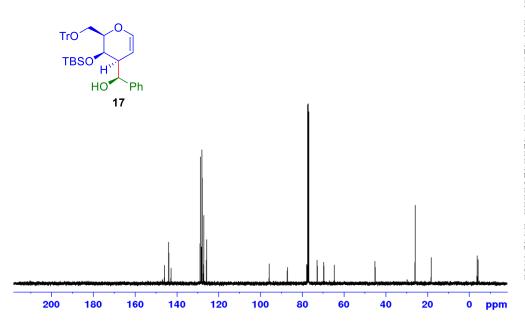
1.00


TBSO'

HO 16

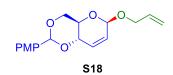

0

200 180 160 140 120 100 80 60 40 20 0 ppm


ppm

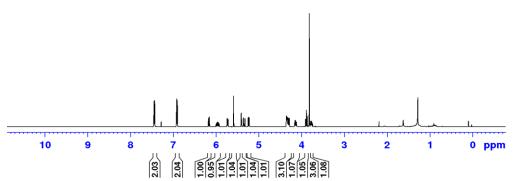
Current NAME EXPNO PROCNO	Data BUR				
F2 - Ac	quisi				cers
Date_		2		L227	
Time			16	5.34	h
INSTRUM				pect	
PROBHD		5331			
PULPROG				:g30	
TD				5536	
SOLVENT			CI	C13	
NS				16	
DS				2	
SWH				.000	
FIDRES				5176	
AQ		з.		999	sec
RG				.79	
DW				000	
DE				5.50	
TE				8.2	
D1		1.0	0000	0000	sec
TDO				1	
SF01		500	.3720	0898	MHz
NUC1				1 H	
P1				.00	
PLW1		12.1	1800	0031	W
EO - Dro		4		. m.e.t.	
F2 - Pro	ocess	THG		амесе 5536	SIS
21		500		0000	MII.

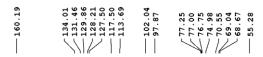
0.30 Hz 1.00



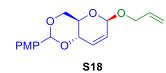
Current	Data Parameters	
NAME	BUR ASCEND 500	
EXPNO	117	
PROCNO	1	
	quisition Parame 20191227	ters
Date_ Time	16.56	h
INSTRUM		11
PROBHD		
PULPROG		
TD	65536	
SOLVENT	CDC13	
NS	336	
DS	4	
SWH	29761.904	Hz
FIDRES	0.908261	Ηz
AQ	1.1010048	sec
RG	192.83	
DW	16.800	
DE	6.50	usec
TE	298.1	
D1	2.00000000	
D11	0.03000000	sec
TDO	1	
SF01	125.8304669	MHz
NUC1	13C 12.00	
P1 PLW1	172.66999817	
SFO2	500.3710015	
NUC2	300.3710013	PILZ
CPDPRG [2		
PCPD2	80.00	11000
PLW2	12.18000031	
PLW12	0.12180000	
PLW13	0.06126500	
	00120000	
F2 - Pro	ocessing paramet	ers
SI	32768	
SF	125.8178899	MHz

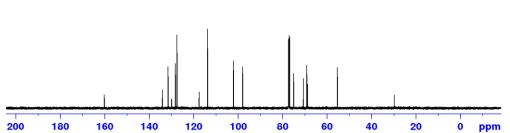
F2 - Processing parameters
SI 32768
SF 125.8178899 MH:
MDW EM
SSB 0
LB 1.00 Hz
SB 0
PC 1.40

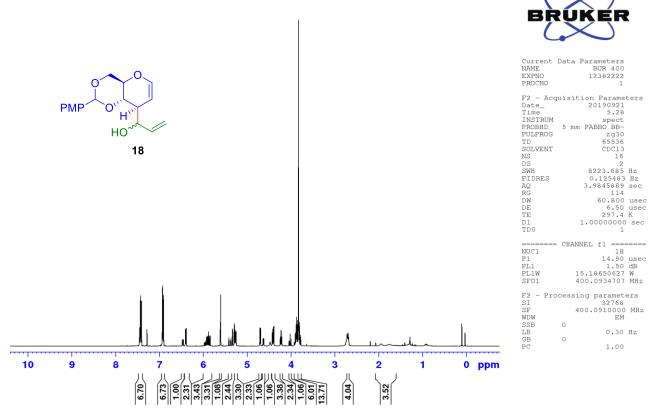




NUC1		1H	
P1		14.90	usec
PL1		2.00	dB
PL1W	12.8	35348415	W
SF01	500	.1830888	MHz
F2 -	Processing	paramete	ers
SI		32768	




NAME	Data Parameters BUR PRS 500	
EXPNO	1459288	
PROCNO	1	
	quisition Paramet	ers
Date_	20190716	
Time	17.23	
INSTRUM	spect	
PROBHD	5 mm PABBO BB-	
PULPROG	zgpg30	
TD	65536	
SOLVENT	CDC13	
NS	112	
DS	4	
SWH	29761.904	Hz
FIDRES	0.454131	Hz
AQ	1.1010048	sec
RG	2050	
DW	16.800	usec
DE	6.50	usec
TE	300.9	K
D1	2.00000000	sec
D11	0.03000000	
TDO	1	

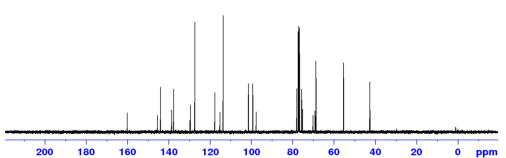

OWII	22/01.201	11.2
FIDRES	0.454131	Ηz
AQ	1.1010048	sec
RG	2050	
DW	16.800	usec
DE	6.50	usec
TE	300.9	K
D1	2.00000000	sec
D11	0.03000000	sec
TDO	1	
	CHANNEL f1 ===	
NUC1	13C	
P1	9.60	usec
PL1	0 dB	
PL1W	76.36135101	W
SF01	125.7829381	MHz

P1	9.60	usec
PL1	0 dB	
PL1W	76.36135101	W
SF01	125.7829381	MHz
	CHANNEL f2 ====	
CPDPRG[2	waltz16	
NUC2	1H	
PCPD2	80.00	usec
PL2	2.00	dB
PL12	16.50	dB
PL13	16.50	dB
PL2W	12.85348415	M
PL12W	0.45605880	M
PL13W	0.45605880	M
SFO2	500.1820007	MHz

F2 -	Process	ina	paramete	rs
SI			32768	
SF		125	.7703641	MH
MDM			EM	
SSB	0			
LB			1.00	Ηz
GB	0			
PC			1.40	

160.14 160.09 143.96 143.96 138.61 127.46 127.36

 Current
 Data
 Parameters


 NAME
 BUR 400

 EXPNO
 12382224

 PROCNO
 1

PMP	HO
	18

PLIM	4.5	0.44	800	943	W
SFO1	1.0	00.6	130	223	MHz
	CHENE	TEST	£2		
	CHMINI				
CPDPRG[2		W	alt		
NUC2				1 H	
PCPD2			90	.00	usec
PL2			1	.50	dB
PL12			17	.18	dB
PL13			2.0	.18	dB
PL2W	1.0	1.0	650		
PL12W			063		
PL13W			5805		
SFO2	40	0.0	926	204	MHz
F2 - Proc	nessin	or n	arar	net e	re
SI		9 1		768	
SF	1.0	00 6	029		MIL
	T	0.0	029		PIH 2
MDM				EM	
SSB	0				
LB			1	.00	Hz
GB	0				
PC			- 1	.40	

Discovery of Novel Methods for the Synthesis of Carbon Branched Sugars from Glycals

	nched Sugars from Glycals ALITY REPORT	
2 SIMILA	0% 4% 21% ARITY INDEX INTERNET SOURCES PUBLICATION	O% STUDENT PAPERS
PRIMAR	RY SOURCES	
1	Perali Ramu Sridhar, Boddu Umar Rao, Gadi Madhusudhan Reddy. ' Carbon-Branched Sugars Involvin Unprecedented 1,5- or 1,6-Alkyl T Reaction", European Journal of Of Chemistry, 2019	'Synthesis of g an √ ⟨αμα ∫η ὶ ζων ransposition Pro P. Pamu Sridha
2	pubs.rsc.org Internet Source	2%
3	www.mdpi.com Internet Source	1%
4	"Glycoscience", Springer Science Media LLC, 2008 Publication	and Business 1 %
5	He, Xuemei M., and Hung-wen Liu of Unusual Sugars: Mechanistic S Biosynthetic Applications", Annual	tudies and

Biochemistry, 2002.
Publication

6	Gadi Madhusudhan Reddy, Boddu Uma Maheswara Rao, Perali Ramu Sridhar. " Stereoselective Synthesis of 2-(β Glycosyl)glycals: Access to Unusual β Glycosides from 3-Deoxyglycals ", The Journal of Organic Chemistry, 2016 Publication	<1%
7	Namakkal G. Ramesh, Kalpattu K. Balasubramanian. "2-C-Formyl Glycals: Emerging Chiral Synthons in Organic Synthesis", European Journal of Organic Chemistry, 2003 Publication	<1%
8	You Yang, Biao Yu. "Recent Advances in the Chemical Synthesis of -Glycosides ", Chemical Reviews, 2017 Publication	<1%
9	www.nature.com Internet Source	<1%
10	M. Manuela A. Pereira. "Rearrangements of Hydroxylamines, Oximes and Hydroxamic Acids", PATAI S Chemistry of Functional Groups, 04/15/2010 Publication	<1%
11	"Organic Synthesis Set", Wiley, 2003 Publication	<1%

12	Éva Bokor, Sándor Kun, David Goyard, Marietta Tóth, Jean-Pierre Praly, Sébastien Vidal, László Somsák. "-Glycopyranosyl Arenes and Hetarenes: Synthetic Methods and Bioactivity Focused on Antidiabetic Potential ", Chemical Reviews, 2017 Publication	<1%
13	Takeshl Nakal, Koichl Mikaml. "The [2,3]-Wittig Rearrangement", Wiley, 2004 Publication	<1%
14	Lewis, David E "Advanced Organic Chemistry", Oxford University Press	<1%
15	"Coupling and Decoupling of Diverse Molecular Units in Glycosciences", Springer Science and Business Media LLC, 2018 Publication	<1%
16	"Carbohydrate-spiro-heterocycles", Springer Science and Business Media LLC, 2019	<1%
17	www.chemistryviews.org Internet Source	<1%
18	"Glycoscience: Chemistry and Chemical Biology I–III", Springer Science and Business Media LLC, 2001 Publication	<1%

Exclude quotes On Exclude matches < 14 words

Exclude bibliography On