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Abstract

Banking, retail, financial, scientific and telecommunications and various other sectors have

all been using data mining technologies, for processing massive amounts of data measured

in zeta bytes. While this massive amount of data is useful, datasets have to be processed

effectively to perform predictive and inferential forecasts for a target population. The Class

imbalance, where there are fewer instances of a class than the number of instances in other

class/classes in a dataset has posed challenges to the traditional classifiers. Traditional

classifiers fail to handle the imbalanced datasets due to inherent assumptions made in

designing them. The distribution of classes within the dataset has a direct impact on the

classifier/model performance. One of the proven practices to address this problem is to

balance the classes in the training data sets. Main goals of the balancing are increasing

sensitivity, selecting representative samples from the majority class, maintaining

trade-off between Majority Class and Minority Class prediction rates.

This thesis aspires to address the inadequacies of data science models caused by class

imbalance problem using data reduction strategies. In order to achieve these goals, five

techniques Ensemble based Classification using Small Training sets (ECST), Centroid

Based Grouping (CBG), Quartile based Under Sampling (QUS), Mahalnobis distance

based Centroid based Undersamplig with Filter (MahalCUSFilter) and Simulated Anneal-

ing based Under Sampling (SAUS) are proposed here. ECST focuses on getting good

sensitivity by generating small balanced training sets and using ensemble classification

to produce outcomes specified in the goals. CBG generates prototypes(artificial samples)

from the original training set and uses the Lp distance metric to classify test set samples

in order to account for neighbourhood space. The QUS algorithm groups each negative

instance with one of the five quartiles. This is how negative samples from the full negative

training distribution are selected to build a balanced training set with minimal information

viii



Abstract ix

loss. MahalCUSFilter creates a balanced training set; the approach’s originality is that

it focuses on variable dependency and scale invariant characteristics, both of which are

critical in multivariate dataset classification. Finally, Simulated Annealing, a metaheuris-

tic works on selecting the best balanced training set among a large number of possible

balanced training sets from an imbalanced one by selecting a set with a low Balanced

Error-Rate, which is used as a cost function in each iteration. The proposed approaches in

this thesis are all Reduction Strategies that effectively address the problem of class imbal-

ance and have been empirically proven to work on par with, and in some cases better than,

existing methods.
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Chapter 1

Introduction

Data has grown at a breakneck pace over the past decade. This vast amount of data offers

tremendous value. Hence, it is required to increase the speed of data processing in order to

produce information quickly. While this massive amount of data is useful, datasets cannot

be processed effectively unless meaning can be accurately extracted from it. Banking,

retail, and telecommunications have all embraced data mining technologies, which are

considered the technologies of choice for processing massive amounts of data measured

in zetta bytes. Some data analytics needs to go through several layers of analysis before a

dataset can be moved into a database for further use by analysts in the organisation who

then use it to perform predictive and inferential forecasts for a target population. In many

real-world application domains, classification, a supervised machine learning algorithm

has aided data analysis and prediction. When learning from imbalanced data distribution

schemes, however, learning algorithms have difficulty assigning correct labels to instances,

which is known as the ’class imbalance problem.’

1.1 Supervised Learning

Insights obtained from existing labelled data is used to categorize the new data in ma-

chine learning is known as Supervised Learning. That is, using labelled dataset to la-

bel(class) unlabelled data is termed as Supervised Learning. The set of labelled instances

is called training set and the set of instances to which labels are to be found is called the test

set. The domain, the set of possible values of an attributes can be discrete or real-valued.

1
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If the domain of class label is real-valued, the supervised learning algorithm is considered

as Regression, and if the range of class label is discrete-valued, the supervised learning

algorithm is called as Classification [62, 125, 96, 66].

To obtain classification using a classifier, the given dataset is usually divided into three

parts, namely training set, validation set and test set. Validation Set is used to tune the

parameters of the classifier to get optimal performance and is applied to label the instances

in the test set. Instead of taking separate validation set, k-fold cross validation can be

applied on the training set to build a classifier. The resultant classifier is used to label the

test set.

There exist several popular classifiers like Decision Trees, Naive Bayes, Lazy learn-

ers, Neural Networks etc, which learn the properties of the known data set and apply the

knowledge to predict the class label of the test(unseen) data. In order to increase the clas-

sification accuracy, ensemble based classification approaches like Boosting, Bagging etc,

are also proposed in the literature.

1.1.1 Models for Classification

Classification Algorithms work in two ways and are categorised as Model Based Clas-

sifiers (MBC) and Instance Based Classifiers (IBC). Model Based Classfiers build a model

from the training set. Uses that model to label the test set instances. These type of classi-

fiers are called Eager-Learners. Instance Based classifiers use the training set instances to

label the test set instances. These are called Lazy-Learners. In either case, the performance

of the classifier depends on the characteristics of the training set. The performance of the

classifier is described by “How well the classifier labels the unseen instances correctly”.

That is the number of instances in the test set that are classified correctly.

1.1.2 Impact of Data Characteristcs

The characteristics of the training set has tremendous impact on the performance of

the classifier. To mention a few are size of the training set, lack of data for one class

and plenty of data for another class, the curse of dimensionality, amount of overlap of
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instances belonging to different classes, the amount of class separability, proportion of

instances lying on and around the class boundary, density of data, noise in the data etc.

1.2 Imbalanced Datasets

In certain applications like credit card fraudulent transactions, rare disease diagnosis,

spam filtering etc, number of instances available on fraudulent transactions, rare diseases,

spam are much less than that of non-fraudulent transactions, non-rare disease, non-spam

instances. These kind of datasets which contain very few instances of one category and

many more instances of another category are termed as Imbalanced Datasets. Imbalance

in class distributions is quite common in many real-world applications. Datasets having

unequal class distributions (imbalanced datasets) require to be handled differently com-

pared to the datasets with equal class distributions.

1.2.1 An Example

Consider the example of an automated inspection system which monitors products for

defects in the products that come off a manufacturing assembly plant. It may find that the

number of defective products is significantly fewer than that of non-defective products.

This is a typical example of an imbalanced set. In any of such imbalanced sets, there is

a disproportionate number of instances that belong to different classes. Sets with only

two classes are known as binary class datasets. The class with less number of instances is

designated as Positive/Minority class and the class with more number of instances is desig-

nated as Negative/Majority class. The degree of imbalance varies from one application to

another. For example, a manufacturing plant operating under the six sigma principle may

discover four defects in a million products shipped to their customers, while the amount

of credit card frauds may be of the order of 1 in 100. Despite their infrequent occurrences,

a correct classification of the rare class in these applications often has greater value than a

correct classification of the majority class [125].
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1.2.2 Issues with Imbalanced data

In order to illustrate the impact of misclassification of the minority samples on the per-

formance of the classifier, consider an example of cancer disease from medical diagno-sis

[83]. If the patient has cancer, then the tests show positive, it is treated as positive class.

If the patient is not suffering from cancer then the test result gives negative, it is treated as

negative class. If the results are correct, showing positive for cancer patient and negative

for non-cancer patient means they are not misclassified. If the penalty is to be assigned

to the misclassification of True Positives (TP), True Negatives (TN), that is, for correct

classification there is no penalty. But giving wrong results, negative for cancer patient,

False Negative (FN), positive for non-cancer patient is misclassification. It is to be noted

that these both misclassifications cannot be treated as the same. False Negative may result

in patient’s death due to the delaly in taking treatment for cancer which is more serious

than False Positive where the patient may go for another test to confirm and/or may take

more care about his/her health. The cost of FN will be more than the cost of FP and the

costs of TP and TN is zero [104]. It is clear that misclassification costs are not equal. They

are unequal and the impact or magnitude of the cost depends upon the application and

situation.

1.2.3 Traditional classifiers for Imbalanced Sets

Many research papers on imbalanced data sets commonly agree that because of this

unequal class distribution, the performance of the existing classifiers tend to be biased

towards the majority class. The reasons for poor performance of the existing classification

algorithms on imbalanced data sets are :

• They are accuracy driven, that is, their goal is to minimize the overall error to which

the minority class contributes very little.

• They assume that there is equal distribution of data for all the classes.

• They also assume that the errors coming from different classes have the same cost.

[74, 131].
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1.2.4 Necessity of Handling Imbalance

Classification of imbalanced datasets is fraught with several issues. In spite of that, still

there is a need to handle this problem, as there are several real life situations which can

result in generating an imbalanced data set. Learning is supposed to become better with

more number of samples in general. But, in practice, the number of training examples used

for learning may get reduced due to the costs associated with procuring the rare samples,

infrequent occurrence of rare events as in imbalanced data sets. Hence, there is a need to

devise methods to handle these kinds of data sets.

1.3 Techniques to handle Imbalanced Data

In literature various methods have been proposed to deal with the imbalance problem in

the datasets. Cost-sensitive learning, ensemble methods are also widely implemented to

address this problem. At algorithmic level, thresholds and parameters in the algorithm are

adjusted in classification methods to handle the imbalance. The data set is processed at the

data level to ensure that the distribution of classes is balanced.

1.3.1 Cost Sensitive Learning

In the case of Cost-Sensitive learning, a cost matrix with unequal costs, more penalty for

false negatives and low penalty for false positives is used. Ensemble learning methods use

subsets of the samples of the data set and several classifiers to improve the classification

rates of imbalanced data sets.

1.3.2 Data Level handling

For addressing imbalanced data sets, data level sampling approaches are divided into two

categories: (i) oversampling methods, and (ii) undersampling approaches.

1.3.2.1 Oversampling

Oversampling is a data preparation technique for balancing a data set by reproducing

minority class examples. Upsampling is another term for it. This method has the advantage
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of not causing data loss, as undersampling does. If the data set is already relatively large

yet imbalanced, oversampling suffers from the disadvantage of causing overfitting and

adding to the computing cost.

1.3.2.2 Undersampling

Undersampling is another flagship data pre-processing method that removes examples

from the majority class to balance the data. This method is usually suitable for large scale

applications, where the number of majority class examples is vast and reducing the train-

ing samples brings down the training time and storage. The drawback of undersampling

method is that it may discard potentially useful information that could be important for

classifiers. To alleviate imbalance in the datasets, undersampling methods reduce the size

of the majority class samples in the following ways:

In Figure 1.1, Taxonomy of Class Imbalance is mentioned.

Figure 1.1: Class Imbalance Taxonomy.

1.4 Research Challenges in Class Imbalance Problem

The research challenges drawn from various popular and latest research papers related

to imbalanced classification problem are discussed here.
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1.4.1 Size of the Dataset

Determining required size of the dataset for training is one of the issues that needs to be

tackled to obtain better classification rates. Oversampling and Undersampling are effective

methods of dealing with the problem of imbalanced data sets classification. However, un-

dersampling(downsizing) approach works better than the oversampling methods on large

domains [65]. Oversampling appears to be best for small data sets [133]. Liu et al. [85],

conducted experiments and show that oversampling clearly appears to be better than un-

dersampling for local classifiers whereas some undersampling strategies outperform over-

sampling when employing classifiers using global learning.

Classifiers produced by sampling and using cost sensitive matrix performance are found

to perform similarly [90]. By focusing exclusively on data sets with more than 10,000

examples, Weiss et al. [134] found that cost sensitive learning algorithm consistently

outperforms the sampling methods. It should be noted that their focus was on using the

cost information to improve the performance on the minority class. The drawbacks of this

method are in deciding the cost for minority and majority classes miscalssification.

1.4.2 Class Distribution

Impact of class distribution on classification is one more factor that requires the attention

of the researchers.

In situations, where the availability of minority samples is restricted, if only equal

training examples can be selected from majority class, training will be less biased. In

what proportion should the classes be represented is the question. It is shown that the

naturally occurring class distribution generally performs well when classifier performance

is evaluated using undifferentiated error rate. When the area under the ROC is used to

evaluate classifier performance, a balanced distribution is shown to perform well. Since,

neither of these choices for class distribution always generates the best performing classi-

fier, a budget-sensitive progressive sampling algorithm is introduced for selecting training

examples based on the class associated with each example.

[86] presents an empirical study which discloses that when the misclassification costs

are equal, cost sensitive classifiers favour natural class distribution. When mis-classification
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costs are unequal, a balanced class distribution is more favourable. Weiss and Provost

[134] discuss the effect of class distribution on tree induction. They surmise that for any

fixed class distribution, increasing the size of the training set always leads to improved

classifier performance. The choice of class distribution may become less important as the

training set size grows. But, in practice, the number of training examples used for learning

will be limited due to the costs associated with procuring, preprocessing and storing the

training samples and the computational costs associated with learning from them.

1.5 Problem Statement

Data Science and its constituent functional component Data Mining strive for establish-

ment of a robust pipeline for converting real-world data generated by the business pro-

cesses into actionable items. The overall aim of these notions is to evolve methodologies

that can uncover salient patterns from the data and tweaking them towards a business

interest. The pipeline involves data collection, cleansing, application specific algorithm

selection, model implementation on the training data and evaluation using test data. How-

ever, the latter two stages are feature sensitive and demand lot of time for obtaining the

expected qualitative results.

The evaluation of a data mining model is a well-addressed aspect with the support

of statistical measures that can conduct meaningful trade-offs over the feature set. Bias-

Variance, sensitivity-specificity, evident-hidden pattern dependencies, and tractability-complexity

of the algorithm are few examples for the trade-offs. Preceding to this high level analysis,

we shall understand the randomness present in the sample data compared to the test data.

Thus, the size of the dataset also has a direct impact on the model performance. One of

the proven practices to address this problem is to balance the training and test data sets.

Important improvements that are desirable in the classification of imbalance data sets are:

• Sensitivity enhancement.

• Handling Information loss by selecting representative samples from the majority

class.

• Maintaining trade-off between majority class and minority class prediction rates.
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1.6 Objective

This thesis aspires to address the deficiencies of data science models caused by class

imbalance problem by isolating the finer statistical issues that hamper the performance of

the selected model. The finer and detailed understanding of the patterns and expressing

the statistical significance and their influence on the model adds an overall advantage to

the classification algorithm. Main goals of this work are:

• Less Information loss

• Computational ease

• Parameter independence

• Low Balanced Error rate, (1-Sensitivity+Speci f icity
2 )

From the perspective of challenges discussed above, attempt is made in this work to

balance the imbalanced data to improve classification accuracy. The main focus of the

work is on undersampling.

Existing under sampling methods to balance the imbalanced data set either apply near-

est neighbour methods or sample based methods.

• Nearest Neighbour Methods

Prototype selection methods mainly are using k-NN (k-Nearest Neighbour) meth-

ods to pick the samples for training. Drawback of these methods is the complexity

involved in choosing the majority class samples. It is high since selection is done

based on the distances of k nearest neighbors, that is, distances of every majority

sample with k nearest neighbors are to be computed, which is an arduous task. Com-

plexity and time consumption of the method increases with the increase in number

of instances or number of attributes of the dataset.

• Sampling Based Methods

Clustering mechanisms are employed to get the training dataset. Once clusters are

formed, this method is simple to implement but to form clusters several issues are to

be addressed viz., i) Which clustering algorithm is to be used? This decision depends

mostly on the size, dimension and type of the dataset. ii) How many clusters are to
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be formed? This can be decided by using cluster validity indices. Again in those,

if external cluster validity indices are chosen, parameters are to be supplied by the

user that is, again quality of the cluster may vary depending upon the parameters.

Even, if internal cluster validity indices are used, which is appropriate and why are

to be known.

In order to overcome these drawbacks, methods are proposed in this work to enhance the

classification accuracy of imbalanced data sets. They are ensemble based classification,

MDSG, MahalCUSFilter, Quartile based undersampling, and similated annealing based

methods. These methods are discussed in detail in the following chapters.

1.7 Contributions

1. Proposed an Ensemble based Classification Method using small training sets(ECST),

which considers the following three point in order to get acceptable classification ac-

curacy with small training sets.

• Only one-third (30%) of the data set is used to represent the whole data set.

• Using these small training sets to improve classification accuracy.

• Considered variations in tiny training sets, such as noise or outliers.

2. Proposed a method, Centroid Based Grouping (CBG) which generates prototypes,

that is synthetic samples representing the original training set and used fractional

distance measure with kNN Classifier to classify test set. The points taken into

consideration in this method are:

• To make use of all the instances in the original training set without discarding

even a single instance.

• To generate a resilient training set, the mean of the group’s instances is picked

from each group to serve as a representative of that group. Since any noise can

be removed in the process of finding the mean of the group occurrences.

• To prepare a very tiny training set with samples that act as representatives of

their respective classes.
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3. Proposed a method, which selects majority class samples based on Quartiles distri-

bution. The points taken into consideration in this method are:

• To pick samples from majority class which spans throughout the distribution.

• Used normalized Euclidean distance measure as the attributes of the datasets

have variance.

• This also eliminates the the issue about the number of clusters and the cluster

centers to be chosen.

4. Proposed a method, MahalCUSFilter, works with the intuition that the real-world

datasets are multi-variate in nature and while considering the similarity of instances

with a group, that is, centroid in this research work needs to consider inter-dependencies

of the attributes. Hence used Mahalanobis distance instead of Euclidean distance

measure. This method handles the following issues in detail.

• Parameter Dependence: The performance of MahalCUSFilter is independent

of the settings chosen by the user, unlike cluster-based and kNN-based under-

sampling approaches, which are dependent on the clustering algorithm, num-

ber of clusters, and other factors.

• Variables inter dependence: Unlike other algorithms that use Euclidean dis-

tance to find distance/similarity between instances which do not consider inter

dependencies, correlations among the variables of a dataset, MahalCUSFil-

ter uses Mahalanobis distance measure to find distance between each majority

class instance with its centroid (Mean of the majority class instances) which

takes into account correlation among variables of a dataset.

• Information loss: The issue of majority class representation is handled by using

a stratified sampling approach, which selects the number of samples from each

group based on its size, ensuring that the samples picked are representative of

the majority class as a whole.

• Scale variant: A dataset’s variables are measured in different units and have a

diverse range of values. Existing algorithms, on the other hand, use Euclidean

distance estimates that ignore these issues. To address this problem, the sug-
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gested method employs the Mahalanobis distance, which renders the method

scale-invariant.

5. Proposed a meta-heuristic method by employing Simulated Annealing to select op-

timal balanced sets among several possible balanced sets that can be formed from

an Imbalanced Data Set. To develop this Undersampling method which is based on

Simulated Annealing the following issues are taken into consideration.

• Balanced set chosen in each iteration should have minimum Balanced Error

Rate.

• Nearest Neighbour of only misclassified majority class instance is found here

unlike many popular undersampling methods which find nearest neighbours of

all the samples.

• Simulated annealing, unlike many other optimization methods such as genetic

algorithms, gradient descent, hill climbing, and so on, avoids getting stuck in a

local optimum.

1.8 Organization of the thesis

The thesis is organized as follows:

• chapter 2: Literature survey

• chapter 3: Ensemble of Small Training sets for Classification (ECST)

• chapter 4: Prototype generation employing the Centroid Based Grouping (CBG)

• chapter 5: Quartiles based UnderSampling(QUS)

• chapter 6: MahalCUSFilter: A Hybrid Undersampling method

• chapter 7: Hybrid Multi Objective Optimization Method (SAUS)

• chapter 8: Conclusions and future directions

Next chapter discusses about the methods proposed in the literature to handle the im-

balanced data set classification.



Chapter 2

Related Work

In the real world, there are cases where the class distributions are unequal, such as oil

spills observed by satellites as photographs, fraudulent credit card transactions, detection

of rare diseases, and so on. In these circumstances, rare (minority) samples are low in

number compared to common/normal (majority) samples. That instance, when it comes to

credit card transactions, fraudulent transactions are significantly less common than regular

ones. The term ”Imbalanced data set” refers to a data set with certain characteristics. In

such instances, calculating the total classification rate of the test set regardless of the class

distribution would result in higher accuracy, even if all of the minority (positives) samples

are misclassified. On data sets with no fatalities, this may not have a significant impact.

However, in rare disease prediction, misclassifying a positive (disease) as a negative (non-

disease) is deemed lethal, because it is presumed that the patient is not suffering from the

disease, and hence inadequate care is not provided, and the disease may deteriorate.

To deal with such imbalances, different approaches at the data and algorithmic levels

have been proposed to limit the influence of imbalance on the classification of minority

instances. Major purpose of this research work is to attain a low Balanced Error rate, (1-
Sensitivity+Speci f icity

2 ), by balancing the training set taken from an imbalanced data set. In

doing so, the probability of an error due to misclassification can be reduced.

13
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2.1 Methods to Handle Imbalance

In the literature, several approaches have been proposed to handle the imbalanced data sets

and for the classification of imbalanced data sets. [65, 66, 99, 13, 16, 29, 131, 97, 55, 121,

104, 58, 110, 17, 74, 67, 76, 69, 109] provide a very good survey on the classification of

imbalanced data sets and on various methods which can handle the imbalance problem.

The latest papers [8, 75] provide a very good review of learning from class imbalance.

The techniques to handle class imbalance are mainly categorized into four classes:

Data level handling techniques, Algorithmic level techniques, Cost sensitive learning meth-

ods and Ensemble methods. Methods at the data level seek to balance class distributions.

Oversampling methods and Undersampling techniques are two types of data level strate-

gies for dealing with imbalanced data sets, according to Barandela [13]. To deal with

the imbalance, algorithmic level techniques strive to adjust the thresholds and parameters

in classification algorithms, according to Batista [16]. According to Haibo [58], cost-

sensitive learning assumes an unbalanced cost matrix with a high penalty for false nega-

tives and a low penalty for false positives. To improve the categorization of imbalanced

data sets, ensemble learning approaches use subsets of the samples of the data set and

different classifiers, according to Galar [50].

2.2 Data Level Handling Techniques

To handle the problem of imbalanced data, sampling approaches are applied on the data

to change the class distribution of data and make it balanced. Sampling approaches are

mainly divided into two categories: Undersampling and Oversampling.

2.2.1 Undersampling

This technique removes examples from the majority class to make the data set balanced.

This method is suitable for large scale applications, where the number of majority class

examples is very large and reducing the training samples reduces the training time and

storage required. Drawback of undersampling method is that it discards potentially useful

information that could be important for classifers [74, 104].
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It can be surmised that most of the methods in undersampling deal with either Ex-

haustive Search based approaches, Sampling based approaches or a combination of these

two approaches. Undersampling methods can also be divided into Random Undersampling

and Informative Undersampling. Random undersampling, removes majority instances ran-

domly till the data set gets balanced. Because of this there is loss of useful information.

Informative undersampling, chooses or discards certain majority instances based on a pre-

specified selection criterion to make the data set balanced. Many solutions are proposed

based on informative undersampling. Informative Undersampling can be passive or active.

Passive selection methods are proposed as preprocessing techniques for selecting informa-

tive samples for a classifer. In Active selection methods, informative samples are queried

during the construction process of the classifier [92].

To mention briefly, popular undersampling methods include CNN, CNNTL, NCL, OSS

etc. SMOTE is one the most extensively used oversampling method. Adacost, a cost-

sensitive method, SMOTEBoost, AdaBoost etc. come under Ensemble based methods.

Kubat and Matwin [14] presented One Sided Selection(OSS) which is an undersam-

pling method. OSS only removes examples from the majority class while leaving the

examples from the minority class untouched. They divided majority(negative) class ex-

amples into four groups like class-label noise, Borderline examples, redundant and safe

examples. The OSS algorithm works as follows: first the number of redundant negatives

is reduced by creating the subset C, consistent with the training set. By definition, C, a

subset of S is consistent with S, if when used by the 1-NN rule, it correctly classifies ex-

amples in S. Then the system removes those negative examples that participate at Tomek

links. Borderline examples and examples suffering from the class-label noise participate

at Tomek links. So, they are eliminated.

[147] describe an application of a simple kNN approach to an imbalanced data classi-

fication problem. They empirically studied the effects of undersampling on the k near-

est neighbour kNN approach and five different methods of choosing negative training

examples, Random Selection, selection of NearMiss examples which is done in three

ways NearMiss-1, NearMiss-2, NearMiss-3 and selection of most distant examples. The

NearMiss-1 selects negative examples that are close to some of the positive examples,

they select negative examples whose average distances to three closest positive examples

are the smallest. The NearMiss-2 selects negative examples that are close to all positive
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examples. In this method, examples are selected based on their average distances to three

farthest positive examples. In NearMiss-3, given number of closest negative examples for

each positive example are chosen. In Selection of most distant negative examples, the

negative examples whose average distances to the three closest positive examples are the

farthest are chosen. They found through experiments that both kNN and C5.0 are sensi-

tive to the percentage of negative examples selected and among the five negative example

selection methods random and NearMiss-2 methods performed the best.

[92] proposed a Majority Filter-based Minority Prediction(MFMP) approach for im-

balanced data sets. The goal of this approach is to achieve good prediction over minority

class by avoiding unnecessary information loss from the majority class. The MFMP adopts

an unsupervised learning technique for selecting samples for supervised learning. The ap-

proach works in two steps: in the first step, minority samples are clustered and majority

class samples that are out of minority classification regions are identified. This improves

minority prediction rate, in the second step, majority samples are randomly selected in in-

dividual clusters and this enhances majority prediction rate. Experimentally, they studied

the behaviour of MFMP approach and found that it outperforms the traditional random

under-sampling approach. In addition to [78, 147, 92], several other undersampling ap-

proaches are available in the literature.

2.2.1.1 Popular Undersampling Techniques

Condensed Nearest Neighbor(CNN) Rule [57], the Condensed Nearest Neighbor Rule

with Tomek Link (CNNTL) [16], Neighborhood Cleaning Rule (NCL) [80], One Sided

Selection(OSS) [78], Tomek Link [128] etc are widely used undersampling techniques.

They select majority class samples based on their distance from minority class samples

using kNN classifier.

Condensed Nearest Neighbor (CNN) [57] initially places all minority class samples

in D, and randomly chooses one majority class sample in ’S’ from ’D’. Then 1-NN is

used to classify the samples from D with respect to contents of ’S’ and every misclassified

sample is moved from ’D’ to ’S’. The idea behind CNN method is to eliminate the majority

class samples that are distant from the decision border as they are considered to be less

relevant for learning.

Tomek links [128] can be used as data cleaning method which eliminates noisy and
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borderline majority class samples only and not minority class samples. Consider two

instances yi and y j that belong to different classes and are separated by a distance d(i, j).

A pair (yi,y j) is a Tomek Link, if there is no sample yl such that d(i,l) < d(i, j) or d( j,l) <

d(i, j).

One Sided Selection(OSS) [78] applies Tomek Links followed by CNN. This method

retains all the ’safe’ (which do not participate in Tomek Link that is other than borderline)

majority class samples and all minority class samples in the data set.

CNNTL [16] is another method similar to OSS but applies TL after CNN as TL is

computationally expensive. First condensed set is formed using CNN and then TL is

applied on the reduced set.

Neighborhood Cleaning rule (NCL) [80] uses Wilson’s Edited Nearest Neighbor rule

[136] to remove majority class samples. ENN eliminates a sample whose class label differs

from the class of at least two of it’s three nearest neighbors. For a two class problem NCL

uses ENN in the following way: For each sample xi in the given training set, its three

nearest neighbors are found. If xi belongs to majority class and is misclassifed by three of

its nearest neighbors then xi is removed. If xi belongs to minority class and is misclassified

by its three nearest neighbors then the three nearest neighbors which belong to majority

class are removed.

Class Purity Maximization(CPM) [145] finds a pair of minority and majority sam-

ples as centers. Using these centers, it partitions all the instances into two clusters C1 and

C2 according to their nearest centers and this process is repeated till at least one subset has

class impurity less than its parent’s impurity. A training set is constructed by adding all

minority instances to each non-pure cluster.

Yen and Lee in [142] proposed a cluster based undersampling techniques (SBC).

In their approach, they cluster the entire data set and the number of majority samples to

be chosen is determined by the number of minority samples in that cluster. Along with

SBC, they proposed five methods namely: sampling based on clustering with NearMiss-

1(SBCNM-1), sampling based on clustering with NearMiss-2 (SBCNM-2), sampling based

on clustering with NearMiss-3(SBCNM-3), sampling based on clustering with Most Dis-

tance(SBCMD) and sampling based on clustering with most far(SBCMF).

Rushi et al. [87] proposed a method wherein majority class samples are clustered

into ‘k’ clusters and select Ri×size(Minority Class) number of samples from each cluster
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so that the total number of selected majority samples equals the size of the minority set

to balance the training set. Ri=Majority samples in Clusteri/Total ma jority samples,

1 ≤ i ≤ k represents the number of majority class samples to be chosen is based on the

ratio of the number of majority samples in each cluster to the total number of majority

samples. The number of majority class samples to be chosen from ith cluster is Si =

Total minority samples×Ri, 1≤ i≤ k.

In [117], a cluster based undersampling along with an ensemble learning is proposed.

Here majority instances are clustered into k clusters where 1 ≤ i ≤ size of the minority

class and size(Minority Class)/k number of samples are selected from each cluster so

that majority class samples are equal to the number of minority samples. m classifiers are

trained using training sets created as described and the final result is obtained by weighted

majority voting, where weight of each classifier is taken as the inverse of its error on the

whole training set.

In [108], majority class samples are clustered into k clusters and k training sets are

formed with each of the majority class clusters combined with all the minority class sam-

ples. Training set that gives the highest accuracy is chosen as the final training set in

classification.

2.2.1.2 Latest Work on Handling Class Imbalance

Papers on imbalanced data sets [132, 148, 19, 103, 91, 14] use other types of data han-

dling. Wang et al. [132] employ an ensemble in addition to weights and information about

sample misclassification to classify imbalanced data. Zhang et al. [148] made a study of

imbalanced data sets of variable imbalance ratio, size and complexity using three classi-

fiers Naive Bayes, c4.5 and SVM. They have concluded that SVM outperforms the other

two classifiers. Other cluster based methods are a cluster based one sided selection method

[14], a hierarchical decomposition method based on similarity [19], diversified sensitivity-

based method [103], ensembles of First Order logical Decision Trees [91], feature weight-

ing to deal with overlap in imbalanced datasets [9], a RandomBalance method that uses

ensembles of variable priors classifiers [41], ensemble method [122]. In [3], Abualigah et

al. proposed Feature selection an enhanced Krill Herd algorithm for text documents.

Recently, in [102], data balancing method using neighbourhood sampling in bagging is

proposed. Jinyan et al. proposed an adaptive multi-objective swarm fusion for imbalanced
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data classification in [82]. Another latest work is by Fernandez et al. [48] wherein the

relationship between F1 and accuracy metrics are used for multi-objective evolutionary

optimization in classification tasks.

Yitian et al. proposed Pin-MMTSM method in the paper [141] which uses SVM for

classification. Pin-MMTSM method works by computing two spheres using quadratic

programming problem (QPP) and a linear programming problem (LPP). Majority of the

majority class samples are placed in the small sphere and the large sphere pushes out most

of the minority samples by enhancing the margin between two spheres.

2.2.2 Oversampling

Like undersampling, oversampling can also divided into two types. Random Oversam-

pling and Informative Oversampling. Random Oversampling is the method which bal-

ances the class distribution by replicating the randomly chosen minority class examples.

Informative Oversampling method synthetically generates minority class examples based

on a pre-specified criterion. Several modifications of SMOTE [28] such as borderline-

SMOTE [62], safe-level SMOTE [23], ADASYN [58] are proposed. Wenhao et al. [140]

have proposed an improved oversampling algorithm. They extracted the support vectors

based on Random-SMOTE algorithm and used them as the parent samples to synthesize

new minority class samples to balance the data.

2.3 Cost Sensitive Learning

Cost Sensitive Learning(CSL) is another commonly used approach to handle the classifi-

cation problem of imbalanced data sets. It is considered to be an algorithmic level solution.

In the cancer detection classification problem, given a dataset, the number of persons

affected by cancer is usually far less than the number of persons not affected by it. Here,

the two classes data distribution is unequal which says that it is imbalanced data set. By

taking into consideration of this fact during the building of a classifier, the problem of

classification of imbalanced data sets can be handled. The type of learning algorithm

which takes misclassification cost into consideration is called Cost Sensitive Learning. It

produces the classifier with minimum total cost. The advantage of this method is that no

data is replicated or eliminated [95].
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Let C(i,j) denote the cost of predicting an example of class i as class j. For a binary

classification, misclassification costs can be presented using cost matrix. Corresponding

to a confusion matrix Table 2.1, cost matrix provides the costs associated with the four

outcomes of the confusion matrix [133]. Here i represents positive(minority) class and

j represents negative(majority) class. C(i,i)=C(j,j)=0. It means, no cost(penalty) is as-

sociated with True Positives and True Negatives. C(i,j)=C(FN), C(j,i)=C(FP). Costs can

be assumed to be constant or example dependent[44]. The goal of cost sensitive learning

method is to choose a classifier with lowest total cost.

Total cost=C(FN)×FN + C(FP)×FP, where FN is the number of positive examples wrongly

predicted as belonging to negative class, FP is the number of negative examples wrongly

predicted as belonging to positive class. C(FN) and C(FP) correspond to the costs asso-

ciated with False Negative and False Positive respectively. Obviously, C(FN) > C(FP) to

ensure that the positive misclassification is minimized.

There are many ways to implement cost sensitive learning. In [?], it is categorized into

three types of techniques. First class of techniques apply misclassification costs to the data

set as a form of data space weighting, second class applies cost-minimizing techniques

to the combination schemes of ensemble methods, and the last class of techniques incor-

porate cost sensitive features directly into classification paradigms to fit the cost sensitive

framework into these classifiers. Various ways to incorporate cost into classifiers are avail-

able in the literature [146, 120] to handle imbalanced data sets efficiently. Zheng et al. in

[149] proposed a cost-sensitive hierarchical classification for imbalance classes.

As mentioned in chapter 1, cost sensitive learning handles imbalanced classification

problem. Let us discuss here, how to incorporate cost into decision tree classification

algorithm which is one of the most widely used and simple classifier. Cost can be incorpo-

rated into it in various ways [125, 104, 58, 44, 42, 84]. First way is that cost can be applied

to adjust the decision threshold, second way is cost can be used in splitting attribute selec-

tion during decision tree construction and the other way is applying cost sensitive pruning

schemes on the tree. [84] proposed a method for building and testing decision trees that

minimizes total sum of the misclassification and test costs. The algorithm used by them

chooses an splitting attribute that minimizes the total cost, the sum of the test cost and the

misclassification cost rather than choosing an attribute that minimizes the entropy. Infor-

mation gain, Gini measure are considered to be skew sensitive [33]. In [85] a new decision
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tree algorithm called Class Confidence Proportion Decision Tree (CCPDT) is proposed

which is robust and insensitive to size of classes and generates rules which are statistically

significant.

[34] analytically and empirically demonstrate the strong skew insensitivity of Hellinger

Distance and its advantages over popular alternative metrics. They arrived at a conclusion

that for imbalanced data it is sufficient to use Hellinger trees with bagging without any

sampling methods. [89] uses different operators of Genetic algorithms for oversampling to

enlarge the ratio of positive samples and then apply clustering to the oversampled training

data set as a data clearning method for both classes, removing the redundant or noisy

samples. They used AUC as evaluation metric and found that their algorithm performed

better.

2.4 Ensemble Methods

An ensemble method with information about sample misclassification along with weights

is proposed by Wang et al. [132]. A cluster based one sided selection method for under-

sampling was proposed by Barella et al. [14]. Beyan et al. [19], proposed a similarity

based hierarchical decomposition method to classify imbalanced data sets. A novel en-

semble method to classify imbalanced datasets is proposed by Sun et al. [121]. [103],

Wing et al. proposed a diversified sensitivity based undersampling method for imbalance

classification. [132, 148, 19, 103, 91, 14] are some of the latest papers on imbalanced

datasets. Some other latest works are [91] which uses ensembles of First Order Logical

Decision Trees to handle Class imbalance problem, feature weighting is used to deal with

overlap in imbalanced datasets in [9] and in [41], RandomBalance method for imbalanced

data which uses ensembles of variable priors classifiers is proposed.

Latest papers on imbalanced data sets include [132, 148, 19, 103, 91, 14] etc. Wang

et al. [132] use an ensemble method along with weights and information about sample

misclassification to effectively classify imbalanced data. Zhang et al. [148] present an

empirical analysis by conducting various experiments on imbalanced data sets of varying

imbalance, size and complexity applying three popular classifiers Naive Bayes, c4.5 and

SVM. Results have shown that SVM outperforms the other two classifers. Barella et al.

in [14] proposed a cluster based one sided selection method for undersampling. In [19],
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a similarity based hierarchical decomposition method is proposed to classify imbalanced

data sets. Wing et al. [103] proposed a diversified sensitivity-based undersampling method

for imbalance classification. Another latest works, [91] uses ensembles of First Order

logical Decision Trees to handle the problem of imbalanced classification, [9] uses feature

weighting to deal with overlap in imbalanced datasets, [41] proposed a RandomBalance

method for imbalanced data which uses ensembles of variable priors classifiers. In [121],

Sun et al. proposed a novel ensemble method to classify imbalanced data sets.

2.5 Heuristic Based Methods

The GP-COACH method incorporates genetic programming and rule-based fuzzy classi-

fication systems to better accommodate complex, high-dimensional problems. Using a

context-free grammar, the GP-COACH will learn disjunctive normal form rules (the rules

are stored as one rule per tree). It’s a genetic cooperative-competitive learning approach

with the population as the rule base. To maintain the diversity of the population, GP-

COACH uses a token competition mechanism, which requires the rules to compete and

cooperate with each other and obtains a compact set of fuzzy rules. Using non-parametric

statistical tests, it has been shown that the results are accurate and interpretable [18]. IN

[31], SNGEIP creates synthetic samples that are placed within a local area of the train-

ing samples and uses the union of original training samples and synthetic neighbourhoods

samples to train the base classifiers. Yitian et al. proposed Pin-MMTSM method in the

paper [141] which uses SVM for classification. Pin-MMTSM method works by comput-

ing two spheres using quadratic programming problem (QPP) and a linear programming

problem (LPP). Majority of the majority class samples are placed in the small sphere and

the large sphere pushes out most of the minority samples by enhancing the margin between

two spheres.

2.6 Performance Metrics

Performance of traditional classification algorithms is evaluated by the metric accuracy

which is defined as the percentage of examples that are correctly classified. This is not

suitable when dealing with imbalanced data sets as the minority class has less number of
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samples. In fact, misclassifying all minority samples and correctly classifying majority

class samples gives a very good accuracy. Performance of a classifier is calculated based

on the confusion matrix.

Table 2.1: Confusion Matrix

Actual Positives Actual Negatives
Predicted Positives True Positives(TP) False Positives(FP)
Predicted Negatives False Negatives (FN) True Negatives (TN)

Various measures used for describing the performance of the classifiers are listed be-

low:

Sensitivity : Sensitivity is the percentage of Positives Correctly Classified. It denotes

the accuracy of the positive class. Recall and True Positive Rate(TP Rate), TPR are other

names of Sensitivity.

Sensitivity = TP Rate = Recall =
T P

T P+FN

Specificity: Sensitivity is the percentage of Positives Correctly Classified. It denotes

the accuracy of the negative class True Negative Rate(TN Rate), TNR are other names of

Specificity.

Specificiy = TN Rate =
T N

T N +FP

FalsePositiveRate: False Positive Rate is the percentage of negatives wrongly classi-

fied.

FP Rate =
FP

T P+FN

FalseNegativeRate: False Negative Rate is the percentage of positives wrongly clas-

sified.

FN Rate =
FN

T N +FP

Accuracy: The percentage of correctly classified instances.

Accuracy =
(T P+T N)

(T P+FN +T N +FP)
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Error Rate: The Percentage of incorrectly classified instances.

Error Rate =
(FP+FN)

(T P+FN +T N +FP)

Precision: Precision is the percentage of correctly classified positives.

Precisiion =
T P

T P+FP

GMean: It is the geometric mean of Sensitivity and Specificity.

Gmean =
√

Sensitivity×Speci f icity

F-Measure: It is the harmonic mean of Precision and Recall.

F-Measure =
2×Precision×Recall

Precision+Recall

Balanced Accuracy: It is the arithmetic mean of Sensitivity and Specificity.

Balanced Accuracy =
Sensitivity+Speci f icity

2

Balanced Error Rate = 1−BalancedAccuracy

AUC: The Receiver Operating Characteristic(ROC) and the Area Under ROC are the

most commonly used evaluation measures for imbalanced data sets. A visual indication of

the classifier superiority over another classifier overa a wide range of operating points is

given by the ROC curve and the area under the ROC curve(AUC) summarizes the perfor-

mance of a classifier into a single metric.

Area Under ROC Curve(AUC) =
(1+T P Rate−FP Rate)

2

AUC and Gmean are the popularly used evaluation metrics for imbalanced data sets

classification. In this work also, these measures are used for comparision of the results.
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2.7 Chapter Summary

This chapter discusses various existing methods available in literature to handle the prob-

lem of class imbalance. Also, mentioned the performance metrics used to evaluate the

classifiers.



Chapter 3

Ensemble of Small Training sets

for Classification (ECST)

Supervised learning methodology trains a model with the majority of the data (e.g. two-

thirds) and then utilises the model created to label the remaining data (one-third) or uses k-

fold cross-validation to classify the data. It is commonly understood that not all instances

of a data set contribute equally to classification. Only a core set of instances may be

required to accurately learn the characteristics of the data. Similarly, to train a classifier,

not all features of the data are required. It’s possible that there is some noise in those

values. The term ”noise” refers to events that vary from the data set’s overall behaviour.

These factors could have a negative impact on overall categorization rates.

However, in cases such as credit card fraud detection, earthquake data, and unusual

disease data, the data for training is insufficient due to imbalance posing a barrier to gen-

eral machine learning methods. These general strategies are unable to effectively adapt

to changes in data distributions. Methods that can learn from limited training sets and

generalise well are essential in such cases. If the classification accuracy is comparable to

that obtained using the complete data set, reducing the size of the training set is always

preferred. This reduction could aid in the removal of unclear occurrences from the training

set. Even when the data collection is big or small, this assumes significance. In such cases,

using an ensemble of classifiers to boost classification accuracy is recommended.

The purpose of this chapter is to generate a small number of core instances or a rep-

resentative collection of instances that may be used to train a classifier without losing

26
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generality.

3.1 Related Work

3.1.1 Ensemble of Classifiers

Ensemble based Learning has received enormous attention in machine learning research

these days. An ensemble of classifiers classify unseen examples by voting using a set of

classifiers. Main idea behind ensemble based learning is that the output is more accurate

than using individual classifiers [115]. An ensemble of classifiers is constructed using

different learning algorithms on either the same set of training samples or on different set

of training samples obtained by processing them as in Kubat. The ensemble combines the

outputs of its group of classifiers and gives an output based on a certain criterion. There

are several ways of constructing the ensembles. Number of ways in which they can be

constructed is mentioned in [70] and are provided below.

• Majority voting of classifiers output

• Processing training samples

• Processing the outputs of base classifiers

• Processing the attributes of the samples

• Hybrid method i.e., combined processing of training samples, attributes, merging of

classifiers output etc.

Bagging and Boosting are two most commonly used ensemble methods. Bagging consid-

ers a series of n classifiers and the output is decided by majority voting of these classifiers.

In Boosting, weighted majority voting is used in finalizing the output class [62]. Some

works [106, 119, 40, 101, 93] give a summary of the research work and make recommen-

dations for ensemble-based strategies that enhance classification accuracy over a single

classifier. Jasmina et al. [68] employed an ensemble of AdaBoost Classifiers. Irenenensz

Czarnowski proposed cluster-based instance selection algorithms [35]. The similarity co-

efficient, stratification strategy, and a modified approach are used to choosing instances

from the clusters for training.
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3.1.2 Small training Sets

The concept of learning from reduced training set sizes using methods like prototype selec-

tion [116], instance selection [64], training set selection [81] are available in the literature.

In this chapter, ideas behind those methods are combined though not directly using those

methods. Additionally filters are also used to improve the quality of small training sets

[22].

Using small training sets, some authors [49, 15] compared the classification perfor-

mance of classifiers. Sebban et al. applied prototype selection strategies for tree simpli-

fication [116]. An ensemble method for imbalanced data sets using tiny training sets is

developed as an application in [127] to categorise the medications used for kinases. To

cope with imbalanced classification, [91] employed ensembles of First Order logical De-

cision Trees, [9] used feature weighting to deal with overlap in unbalanced datasets, and

[41] introduced a Random Balance approach for imbalanced data that uses ensembles of

variable priors classifiers. Sun et al. introduced a novel ensemble approach for classifying

imbalanced data sets [121]. In [69], numerous ensemble-based approaches to dealing with

the issue of imbalanced datasets categorization have been developed. ensemble1 have of-

fered a full analysis of the state-of-the-art ensemble based solutions for the imbalanced

datasets classification problem[50].

In the literature, approaches such as prototype selection [116], instance selection [64],

and training set selection [81] have been used to learn from smaller training sets. In [64],

Nobert et al. compare and contrast several instance selection algorithms. Noise filters, con-

densation algorithms, and prototype selection algorithms were grouped into three groups.

Wilson’s Edited Nearest Neighbour(ENN) method starts with the original training set and

removes instances that do not match the majority class of their neighbours [136]. Noise

filters include Repeated ENN, AllKNN, and ENRBF. The Condensed Algorithm (CNN)

begins by selecting one instance per class at random from the training set[57]. Then, using

the new data, it adds each of the incorrectly identified instances from the training set to

this collection. Another well-known instance-based selection method is Gates’ Reduced

Nearest Neighbor [53]. Salvador et al. [52] delve into more details about the taxonomy

and actual examination of several prototype selection approaches. [64, 135, 6, 105, 94]

describe and compare instance selection techniques. Processing the training samples and
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merging the classifier outputs are included in the proposed work ensemble construction.

3.2 Motivation

The concepts behind ensemble and instance selection methods are merged, but not directly

employed, in this chapter. Furthermore, filters are utilised to increase the quality of small

training sets, according to [22]. Brodley et al. [21] have deleted the misclassified cases

before attempting the actual learning process in order to improve the quality of training

data. Classifiers are also employed as filters to exclude instances that are incorrectly cat-

egorised. There are two ways to use a classifier as a filter, according to [22]. In the first

case, the same classifier serves as both a filter and a learning method. The second method

is to employ one classifier for filtering and another for learning. In addition to these strate-

gies, ensemble filters and consensus filters have been proposed in the literature to improve

training accuracy.

Ensemble-based classifiers are supervised learning techniques that require the training

of sets of labelled data. There is no hard and fast rule to determine the size of the train-

ing set. The number of samples should not be smaller than the number of features, and

the number of samples should be large enough to characterise the problem, allowing the

classifier to learn the nature of the dataset and categorise previously unknown instances.

It also depends on the type of classification learning technique utilised. Whatever the case

may be, it is true that not every instance contributes to classification. The time and space

complexity of a training set grows as it’s size grows. The aim of this work is to illustrate

that it is not the quantity of the training set that improves the classifier’s performance, but

rather the representative samples of a given class that influence classification accuracy.

These days, learning from a simple concept is getting lot of attention. The follow-

ing difficulties must be resolved in order to identify this representative set. These points

demonstrate why the current strategy is being proposed:

1. Whether the data used for training is a representative of the complete data set.

2. Is it possible to get adequate training or equivalent classification accuracy with less

than two-thirds of the data?
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3. Are there any outliers in the training set? Outliers are events in the training set that

deviate from the general characteristics of the full data set.

Three points must be considered in order to get acceptable classification accuracy with

small training sets.

• Only one-third (30%) of the data set should be used to represent the whole data set.

• Using these small training sets to improve classification accuracy.

• Considering variations in tiny training sets, such as noise or outliers.

Three techniques are proposed to overcome the first issue: Divide the cases into ten

bins using the centroid as a reference point, 3/2(min+max) as a reference point, and

a distribution-specific binning. All of these methods use a stratified sampling methodol-

ogy to create training sets, ensuring that the samples chosen are representative of the full

distribution.

The second difficulty is the application of the ensemble-based weighted majority voting

idea to classification.

The third problem is addressed by using four filters on the training sets. Removing out-

liers with the Inter Quartile Range option (included in the Weka toolbox) and removing

misclassified cases with Naive Bayes, IB3, and IB5 filters are the filters employed.

3.3 Framework

Each of the afore mentioned concerns is addressed by proposing a framework that employs

three different methodologies on seven different benchmark data sets.

3.3.1 Choosing representative samples for training

The first point raised in the motivation, namely whether the data chosen for training repre-

sents the complete data set or not, is addressed first. For this experimentation, binary and

multi-class data sets are used. In binary datasets, the minority is considered positive while

the majority is considered negative. In multi-class datasets, one class is considered posi-

tive and the others classes are considered as negative, which is known as one-versus-all.
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Table 3.1: Data sets (b) stands for binary and (m) stands for multiple classes.

Data Set Number
of

Number
of

Number
of

Number
of

Imbalance

Features Instances
(T)

Positives
(P)

Negatives
(N)

Ratio (IR)

Pima India
diabetic (b)

8 768 268 500 1.86

Wisconsin
Diagnos-
tic Breast
Cancer (b)

32 569 212 357 1.684

Haberman
(b)

3 306 81 225 2.68

Vowel0 (m) 13 988 90 898 9.98
LED7digit
(m)

7 443 37 406 10.97

Musk2(b) 168 6598 1017 5581 5.49
Isolet5(m) 617 1559 60 1499 24.98

In this part, a framework for determining the number of training samples and how those

samples are chosen to represent the whole data set is proposed (positive set and negative

set separately). Benchmark data sets from the UCI machine learning repository [11] and

KEEL [7] are used to test the heuristics. Only 10% to 18% of the data set is used for

training, with rest of the portion being used for testing. The data sets used in this study are

listed in Table 3.1.

Training sets can be generated in three ways:

Method 1: Bins are created based on the distance between the instances and the centroid.

Method 2: Bins are created based on the distance between instances and the reference point

3/2(min+max). The minimum and maximum values for each property are calculated, and

3/2 of that is used as the reference point.

Method 3: Bins are created depending on distance distribution.

The Algorithm 3.2 describes the approach for selecting representative samples from

the original data using the centroid as a reference point. In the case of the reference

point 3/2(min+max), the same process as in Algorithm 7 is followed. The method is

termed Centroid based binning (CBB), Min-Max based binning (MMBB), and Distribution

Specific binning (DBB) depending on the reference point used.
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3.4 Algorithm

Algorithm 3.1 Construction of Training Sets for ECST
procedure CONSTRUCTION OF TRAINING SETS FOR ECST(IDS) . IDS, an
Imbalanced Data Set

Let D be a binary class dataset 〈X ,Y 〉,where X = X1,X2, . . . ,Xn, each Xi is a m−
dimensional Vector with m attributes and is associated with a label Y = 0,1
N represents the size o f the total dataset
NMin represents the size o f Positives in the dataset
NMa j represents the size o f Negatives in the dataset
NMin
NMa j

> 1.5
NG = 10,NG Represents Number o f Groups

6: for j ∈ m do
Negcent j = ∑

NMa j
i=1 Xi j/NMa j

Poscent j = ∑
NMin
i=1 Xi j/NMin

end for
for i ∈ 1 to NMin do

Posdisti = (∑
NMin
i=1 [Xi j−Poscent j ]

p)
1
p

12: end for . Distance o f all Positives f rom Poscentroid is Posdist
for i ∈ 1 to NMa j do

Negdisti = (∑
NMa j
i=1 [Xi j−Negcent j ]

p)
1
p

end for . Distance o f all Negatives f rom Negcentroid is Negdist
for i ∈ 1 to NMin do

. Distance is Normalized
18: Posdisti =

Posdisti−min(Posdist)
max(Posdist)−min(Posdist)

end for
for i ∈ 1 to NMa j do . Distance is Normalized

Negdisti =
Negdisti−min(Negdist)

max(Negdist)−min(Negdist)
end for . max() gives maximum− value among the given input distance values

. min() gives minimum− value among the given input distance values
24: S = 30% o f D

n = Negatives o f S
p = Positives o f S

NegGroup = Formationo f NGGroups(NMa j,Neg−dist)
PosGroup = Formationo f NGGroups(NMin,Posdist)

for j ∈ {1 to ntr(= n/p)} do
30: NegTrain[ j]← Strati f iedSampling(NegGroup,NMa j,n)

PosTrain[ j]← Strati f iedSampling(PosGroup,NMin, p)
Balanced−Training[ j] = NegTrain[ j]+PosTrain[ j]

end for
end procedure
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Algorithm 3.2 ECST-Classification
1: procedure ECST-CLASSIFICATION

CALL CONSTRUCTION OF TRAINING SETS FOR ECST(D) . ntr Training
Sets generated from Algorithm-1 are used to generate ntr classification models

2: Testp and Testn are remaining part o f the dataSet,D are used f or Testing
3: Prediction = ∑

ntr
i=1 wtri ∗outcomei .

wtri is the Positive−Predictive−Value(PPV ) = T P/(T P+FP) .
Outcomei is the outcome o f the ith Classi f ier

4: if Prediction≥ T hreshold then
5: test− instance is positive
6: else
7: test− instance is negative
8: end if . T hreshold = PPV/2
9: end procedure

1: function FORMATION OFNG GROUPS(NM,dist) . Instances belonging to
NG groups are determined.

2: for i ∈ {1 to NM} do
3: for j ∈ {1 to NG in steps o f 1} do
4: for k ∈ {0 to 1 in steps o f (1/NG)} do
5: if (disti ≥ k )∧ ( disti ≤ k+(1/NG) then
6: Group j← Xi
7: end if
8: end for
9: end for

10: end for
return Group j

11: end function

1: function STRATIFIEDSAMPLING(Group,N,x)
2: for k ∈ {1 to NG in steps o f 1} do
3: rk = random( size(Groupk)

N x) 1≤ i≤ k . Select rk instances f rom Groupk
4: end for
5: s = Σkrk
6: return s
7: end function
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Figure 3.1: Distribution of distances for Pima using methods 1 and 2

The instances of binary classes are separated into 10 positive bins and 10 negative bins in

the method described by Algorithm 3.1, which correspond to both positive and negative

classes. The number 10 is arbitrary here. Adding to the discussion of bin formation:

In Algorithm 3.1, construction of Traning Sets required for ECST which in turn calls

functions-Algorithm 11 and 7 is given. In Algorithm 3.2, the process of classification with

ECST is provided. The Complexity of the algorithm is O(n*c1*c2) i.e., O(n) where n is

the number of majority class samples. c1 is a constant for fixed number from 0 to 1 ranging

at steps 1/NG.

• Negative Bin1 contains negative occurrences that are between 0 and 0.1 distance

from NegCent . Negative Bin2 is made up of negative examples that are 0.1 to 0.2

distance away from NegCent and so on. Finally, Negative Bin10 comprises negative

instances that are between NegCent and NegCent by 0.9 to 1.00.

Figure 3.1 to Figure 3.5 show the distribution of distances using CBB and MMBB. The left

side of the picture depicts the distribution of distances for positive (top) and negative (bot-

tom) data, while the right side depicts the distribution of distances for CBB and MMBB,

respectively. These distances are calculated for a single run with a high AUC value.

Distribution specific binning: For all data sets, the number of bins do not have to

be 10. Bins can be reduced or increased depending on the number of samples. Also,

the bins are chosen to be equal in this example, but they can be divided into different
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Figure 3.2: Distribution of distances for WDBC using methods 1 and 2

Figure 3.3: Distribution of distances for Haberman using methods 1 and 2
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Figure 3.4: Distribution of distances for Vowel0 using methods 1 and 2

Figure 3.5: Distribution of distances for LED7 using methods 1 and 2
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widths depending on the distribution, such as mean±std, mean±2×std, and so on. Here,

mean±std, mean±2×std, and so on are chosen as the intervals in the distribution-specific

binning approach. The interval is taken as the last interval once the maximum is surpassed.

3.4.1 Criteria to choose the number of samples

The quantity of training instances is the next issue to address. As previously stated, two-

thirds of the data set, or 67%, is utilised for training and one-third of the data, or 33%,

is used for testing. We want to look at it from the opposite perspective and see if we can

reach classification accuracy with minimal training sets, say around 30% of the data.

The fraction of training set is chosen at 30% for implementation purpose. For example,

the sum of p% and n% percentage, which represents positive and negative percentages of

the complete data set, is set to be 30%. The chosen positive and negative examples for

training are shown in the Table Table 3.2, with their total percentage set at 30%. It is

important to note that the overall percentage of the full data set used for training is only

between 10% and 18%.

3.5 Experiments and Results

Experiments are conducted on seven binary and multi-class data sets, with just 6% to 18%

of the total data using for training, and the suggested three approaches are used on the

training sets without any filters for noise and outlier removal. These results are compared

to ada-boost and bagging ensemble techniques, as well as ENN, CNN, and RNN instance

selection approaches. The three proposed techniques produce equivalent classification

results to those available in the literature that use small training sets, according to empirical

study.

3.5.1 Ensemble based majority voting method

The accuracy of classification must be maintained even with small training sets, which

is the third issue in the motivation. The Ensemble Method, one of the most widely used

methods for improving classification performance in the literature is used to solve this

problem.
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Table 3.2: Number of training sets, number of samples in each training set, total num-
ber of positive and negative samples used for training. Positive samples (Pos), Negative
samples (Neg), Percentage of positives (Pos %), Percentage of negatives (Neg%), Number
of positives used for training (pos-train), Number of negative samples used for training
(Neg-train). Total training set varies from 10% to 18%.

Data Set Pos Pos% Pos-
train
(trainp)

Neg Neg% Neg-
train
(trainn)

Overall
Train-
ing%

Pos-
test
(testp)

Neg-
test
(testn)

Pima 268 10 25 500 20 100 16.27 243 400
WDBC 212 10 20 357 20 80 17.57 192 277
Haberman 81 15 12 225 15 36 15.68 79 189
LED7digit 37 20 9 406 10 36 10.15 28 370
Vowel0 90 20 18 898 10 90 10.93 78 802
Musk2 1017 10 102 5581 20 1122 18.55 1015 4459
Isolet5 60 25 15 1499 5 75 5.77 45 1424

As described in Algorithm 3.2, classification is accomplished by constructing an en-

semble using ntr models while keeping train as a positive subset and selecting different

negative instances from negative data for each model. For classification, the Weka toolkit

[138] is used. These data sets are used to build training models. The best model for each

classifier with the highest G-mean is chosen based on the training data’s leave-one-out

cross validation. All of the models are given a common test data set consisting of re-

maining instances from positive and negative classes that have already been set aside. The

weighted voting of the ntr classifiers on the test data is used to classify the data, with the

positive predictive value (PPV) serving as the weight of each classification model.

Note: Decision trees are used as classification models in the ensemble, and the number

of classifiers in an ensemble is determined by computing m/n, where m is the number of

negative instances selected for training and n is the number of positive instances selected

for training. The number of classifiers specify the number of negative training sets to be

generated in this case. If the number of positives in a data set is low and the number of

negatives is high, the same positive subset is used with different negative subsets in the

ensemble classifiers. This method has been tested on data sets with imbalance ratios of

over 10 such as LED7digit and VowelO.



CHAPTER 3. ENSEMBLE OF SMALL TRAINING SETS FOR CLASSIFICATION (ECST)39

Table 3.3: Number of training sets in an ensemble for each data set.

Data Set Pos-
train
(trainp)

Neg-
train
(trainn)

Number of
Classifiers
(ntr)

Pima 25 100 4
WDBC 20 80 4
Haberman 12 36 3
LED7digit 9 36 4
Vowel0 18 90 5
Musk2 102 1122 11
Isolet5 15 75 5

3.6 Discussion

The average G-mean values for 10 runs obtained for training and test sets for all three

methods (CBB, MMBB, and DBB) are reported in the Table 3.4 . According to Table 3.4,

good test results are obtained utilising training sets selected from bins based on distance

from 3/2(min+max) for Pima, WDBC, and LED7digit data sets. For the bins generated

by centroid distance, the Haberman and VowelO results are good. Except for Haberman,

both techniques produce satisfactory classification results on the test set for all other data

sets. The explanation for this could be that Haberman has just three attributes and instances

are chosen from bins over the centroid rather than 3/2(min+max), which is a border

set out of the maximum distance. Because it is a multi-class data set, the one-versus-all

methodology is utilised for Isolet5, which uses one class as positive data and the other 25

classes are considered as negative data to demonstrate that the method is general enough

to handle a larger number of features.

3.6.1 Improving the quality of training sets by removing noise and

outliers

Brodley et al. [22] have summarised that the training set’s quality is increased by removing

mislabeled instances before applying the chosen learning technique. On the training sets,

popular filters such as Naive Bayes, IB3, and IB5 are used, according to [21]. It can be seen

in Table Table 3.5 that the classifier’s performance on the training sets has significantly
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Table 3.4: Classification results using CBB, MMBB and DBB. Average AUC values are
computed for 10 runs.

Data Set Avg GMean Training Avg GMean Test Literature
CBB MMBB DBB CBB MMBB DBB

Pima 0.67 0.73 0.73 0.72 0.72 0.69 0.71-0.76 [50]
WDBC 0.99 0.95 0.93 0.92 0.95 0.93 0.96-0.98 [50]
Haberman 0.73 0.44 0.61 0.61 0.43 0.54 0.56-0.66 [50]
LED7digit 0.72 0.85 0.85 0.79 0.89 0.85 0.89 [50]
VowelO 0.96 0.97 0.93 0.96 0.93 0.93 0.95-0.99 [50]
Musk2 0.84 0.85 0.83 0.88 0.88 0.87 0.9 [126]
Isolet5 0.92 0.92 0.86 0.90 0.92 0.87 NA a

aNot available in the literature

Table 3.5: Classification results of Experiments done with CBB and MMBB removing
noise and outliers.

Data Set Data sets without filters Removing outliers NB IB3 IB5
CBB MMBB CBB MMBB CBB MMBB CBB MMBB CBB MMBB

Pima Train Set 0.67 0.73 0.61 0.75 0.82 0.91 0.75 0.78 0.83 0.93
Test Set 0.72 0.72 0.72 0.72 0.73 0.68 0.68 0.72 0.73 0.71

WDBC Train Set 0.99 0.95 0.99 0.92 1.00 0.97 0.99 0.95 1.00 0.95
Test Set 0.92 0.95 0.92 0.93 0.92 0.92 0.92 0.92 0.92 0.92

Haberman Train Set 0.73 0.44 0.66 0.4 0.85 0.88 0.92 0.83 0.75 -
Test Set 0.61 0.43 0.59 0.48 0.58 0.66 0.59 0.66 0.58 -

LED7digit Train Set 0.72 0.85 0.72 0.85 0.84 0.88 0.97 0.91 0.98 0.91
Test Set 0.79 0.89 0.79 0.89 0.8 0.89 0.83 0.75 0.83 0.75

VowelO Train Set 0.96 0.97 0.96 0.97 0.97 0.98 0.98 0.96 0.97 0.96
Test Set 0.96 0.93 0.96 0.93 0.9 0.91 0.9 0.93 0.9 0.93

Musk2 Train Set 0.84 0.85 0.79 0.81 0.97 0.98 0.90 0.93 0.95 0.81
Test Set 0.88 0.88 0.83 0.72 0.77 0.77 0.82 0.85 0.78 0.72

Isolet5 Train Set 0.92 0.92 0.29 0.34 0.83 0.81 0.88 0.88 0.92 0.96
Test Set 0.90 0.92 0.56 0.69 0.84 0.89 0.64 0.74 0.71 0.49

improved. That is, learning accuracy is improved to the point where little fluctuation in

test set performance is noticeable. This scenario can be seen in both the CBB and MMBB

approaches.

3.6.2 Analysis

Filtering appears to boost performance on the training set but not so much on the test

set. Except for Haberman, classification without filtering produces good G-Mean using

training sets selected from 3/2(min+max) bins. For Haberman, Naive Bayes filtering

improves the results. MMBB produces more significant results without filters than it does
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Table 3.6: Comparison of AUC Test results with other ensemble methods.

Data Set Highest of AdaBoost Bagging Literature
our methods Results

Pima 0.72 0.71 0.72 0.71-0.76 [50]
WDBC 0.95 0.97 0.98 0.96-0.98 [50]

Haberman 0.61 0.55 0.48 0.56-0.66 [50]
LED7digit 0.89 0.91 0.91 0.89 [50]

VowelO 0.96 0.99 0.98 0.95-0.99 [50]
Musk2 0.88 0.97 0.94 0.9 [126]
Isolet5 0.93 0.86 0.82 NA

Table 3.7: Comparison of Test Accuracy results with instance selection methods. Accuracy
values for IS-CNN, IS-ENN, IS-SNN are taken from [2].

Data Set Highest of IS-CNN IS-ENN IS-SNN
our methods

Pima 0.72 0. 66 0.74 0.55
WDBC 0.93 0.94 0.96 0.68

Haberman 0.73 0.64 0.69 0.31
LED7digit 0.85 0.34 0.49 0.36

VowelO 0.92 0.96 0.96 0.90
Musk2 0.88 NA NA NA
Isolet5 0.89 NA NA NA
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with filters. Filters are used to remove particular instances that contribute to the classifier’s

training. When filters are employed, this may result in lowering test accuracy.

When applying the Naive Bayes filter for pre-processing, MMBB produces good train-

ing and test results. According to [135], the percentage of samples kept for training in Pima

using the method CNN is 36.89, with an accuracy of 0.65, and the percentage of samples

retained for SNN is 42.95, with an accuracy of 67.97. However, using only 16.27% of

the data set for training, an accuracy of 0.72 is obtained here in this work. In the case

of WDBC, only CNN reached 0.95 accuracy with 7.09%of training set, whereas SNN

reached 0.93 accuracy with 8.35%. The proposed method uses 17.57% for training and

got 0.93 accuracy with the proposed strategy. For a Vowel data set of 30.05%data, CNN

obtained an accuracy of 0.86, while SNN trained with 19.97% data and obtained an accu-

racy of 0.78. In comparison, in the research work of this chapter, needed 10.93% of the

data for training and reached an accuracy of 0.92. Results employing CNN, ENN, and

SNN for Musk2 and Isolet5 are not available in the literature.

There are numerous training set reduction algorithms, some of which select current

examples from the data set for training and others which add new representative cases. To

retain the samples in the training set, some approaches use incremental search, decremental

search, or batch mode searches. Some strategies prefer to keep border points, core points,

or other groups of points. The proposed method for training uses existing instances from

the data set rather than creating new artificial samples. In [136], decremental reduction

optimization procedure approaches employing 10 fold cross validation acquire accuracies

for data sets: Pima 0.77, Vowel 0.85, whereas the suggested technique obtained an accu-

racy of 0.72 on Pima data sets and 0.92 on Vowel data sets with less than 30% of the total

data for training.

Both the core points and the border points play a role in training in popular instance

selection methods like CNN [57], SNN [112], and others. That is why, in this method,

samples are chosen from the centre of the spread all the way to the fringe points. Good

classification accuracy is attained in [135] utilising roughly the same percentage of samples

as in this work. The suggested strategy focuses on fixing no more than 30% of the data

for training while maintaining equivalent accuracy. Existing algorithms keep a sample

proportion of higher than 30%. When the time required to run the proposed ensemble

algorithm to other ensemble algorithms is compared, it is observed that all the methods
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take about the same amount of time to execute.

3.7 Chapter Summary

To train a classifier, not all cases in a class contribute equally. Two of the presented meth-

ods show that if the chosen samples are representative, even 10% to 18% of the data set

can be used to efficiently train a classifier. The primary benefit of this strategy is that it

only requires calculating Euclidean distances and stratified sampling. Any random sam-

pling method may overlook specific pockets, resulting in incorrect learning. This can be

prevented by dividing the samples into bins and selecting samples proportionally to the

number of samples in each bin. This also demonstrates that even when large amounts of

data is unavailable, comparable conclusions can be obtained by sampling a tiny portion of

the data.

The introduction of ensemble-based ideas and filters in pre-processing helped to im-

prove learning accuracy. The deployment of the filters improves training performance

greatly. However, the test scores have not risen in last step. The ability to generalise is

hampered for the sake of improving training precision. Even for imbalanced data sets, the

approach works fairly effectively. If the positive set is big, different positive subsets for

each training set can be created as in bagging. The presented approaches are used to show

that the method is also general enough to be applied to data sets with many dimensions.

Musk2 and Isolet5, which have 168 and 617 features respectively, are used to demonstrate

this aspect.



Chapter 4

Prototype generation employing

the Centroid Based Grouping

(CBG)

In the data level approach, the samples of the training sets are drawn from original data sets

and are used for classification without necessitating any changes to the existing classifiers.

Prototype Selection (PS) and Prototype Generation (PG) are two Prototype Reduction(PR)

methodologies for shrinking the size of the training set and thus the amount of space and

time required for training. Prototype Selection approaches use existing samples from the

original training set to generate new prototypes, whereas Prototype Generation methods

use existing samples from the original training set to generate new prototypes. The samples

in the new training set in the first technique are already existing samples, whereas new

synthetic samples are generated in the second method.

A synthetic sample generation method based on centroid based grouping is proposed

in this chapter to address the class imbalance issue in a simple, novel and robust way.

4.1 Related Work

The major goal of the proposed study is to create a compact, robust training set that accu-

rately represents the original training set. Unseen imbalanced test sets are classified using

44
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the newly formed tiny training set with newly created prototypes. Prototype generation

methods, class imbalance data-level methods, in particular undersampling, and prototype

selection methods are all presented in the existing literature on small training sets. An

overview of learning from tiny training sets is provided by papers [111, 70].

4.1.1 Prototype generation methods

The papers [129, 39, 130] provide a thorough discussion of prototype generation tech-

niques. The four types of prototype creation methods are (i) Position Adjustment, (ii)

Class Relabling, (iii) Centroid Based, and (iv) Space Splitting based on the generation

mechanism. To acquire new prototype positions, the Position Adjustment method adds or

subtracts some values from the prototype attribute values. This category includes DSM

[54], LVQTC [137], MSE [38], AMPSO [25]. By adjusting the reduction rate in the case

of Class Relabling, the generalisation accuracy of the test data is increased. This approach

modifies the class labels of training set samples that are prone to being incorrect or that

belong to various classes. These strategies deal with samples in the training set that are

mislabeled or noisy. This category includes GENN [73], Depur [124]. With Space Split-

ting, the training set is separated into a few regions that will be replaced with representative

samples to determine the original training set’s decision bounds. These techniques act at

spatial level. This group includes [30], RSP [123]. By combining a group of similar sam-

ples, these techniques create artificial prototypes. During the merging process, the average

of selected subset attribute values, known as the centroid, is calculated. Although the ac-

curacy is lost, this strategy achieves a significant reduction rate. SGA [47], MixtGauss

[88], BTS3 [56], PNN [27], MCA [20], GMCA [98], ICPL [79] and so on are examples of

this category.

The following are some of the most recent prototype generation approaches that in-

volve genetic algorithms, evolutionary approaches and other techniques. Recently, Hu and

Tan in [61], used particle swarm optimization to generate prototypes and provided two

methods: error rank as a fitness function and the multi-objective optimization strategy as

the other. Hugu et al. [46] described a genetic programming-based PG method for build-

ing extremely successful prototypes by merging multiple training samples using arithmetic

operators. Hugo et al. [45] developed MOGP approaches for prototype creation in their

recent study, which focuses on achieving a better trade-off between accuracy and reduction
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by proposing a novel multi-objective evolutionary algorithm.

In [59], Yumilka et al. created prototypes for each similarity class using similarity re-

lations for universe granulation. In [113], the EMOPG approach which uses a tournament

to initiate a subset of training examples based on a weighted term is proposed. And then

the position of initial prototypes are adjusted using the APES multiplicative evolutionary

algorithm. Rash et al. [107] suggested a Similarity Based Imbalanced Classification (SIC)

based on an empirical similarity function to discover patterns in the training set.

4.2 Motivation

Issues that are taken into account when creating the proposed method are:

• Information loss: Handled by considering all of the training scenarios when creating

new prototypes. There is no information loss because all examples in the original

training set are considered to build a new set of synthetic instances. Furthermore,

the centroids created on average represent the instances, therefore there is no infor-

mation loss. By dividing cases into groups based on their similarity, it is possible

to consider the whole range of instances rather than taking samples from a specific

location at random.

• Representative capability: Handled by taking into account all types of data based on

similarity. The samples selected should be reflective of the original dataset. Based

on their degree of resemblance, all the instances are separated into groups. Without

leaving a single instance, all instances in each group are averaged together to repre-

sent that group. As a result, the mean of the group’s instances is picked from each

group to serve as a representative of that group. Since any noise can be removed

in the process of finding the mean of the group occurrences, the averaging method

makes the training set resilient.

On imbalanced data sets, the proposed approach is used. The premise behind this

concept is to show that the prototypes developed are reflective of the training set. The

influence of imbalance on the classifier performance is reduced even when the training set

is very small.
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The methodology of proposed CBG is a data-level class imbalance handling method

that is neither oversampling nor undersampling because the size of the minority set is not

raised, nor is it an undersampling method because the size of the majority class’s subset is

not chosen to be equal to the size of the minority class. CBG, on the other hand, generates

an equal number of prototypes from both classes. It is treated as a prototype generation

method since it reduces the training set size by creating new representative samples, and

it can be considered a novel data level strategy to solve the problem of class imbalance

because it balances the training set. MahalCUSFilter recently presented a hybrid approach

of undersampling based on centroids in [32].

4.3 Framework

The proposed work’s main goal is to build a small training set with low computational

complexity for classifying imbalanced data sets. This attempts to demonstrate that ”the

Quality of the training set determines a classifier’s performance rather than the Quantity

of instances in the training set.” The idea that samples that fall into a bin based on their

similarity to the centroid display almost similar properties and that their mean can repre-

sent them on the whole. After generating bins, the mean of each bin is calculated instead

of selecting a single instance from each bin to minimise the impact of attribute noise, if

any, on classification. As a result, the newly generated smaller training set is thought to be

robust.

Centroid-based classification calculates one centroid per class, that is, the mean of the

attributes of the training set instances in that class. The similarity of a new test to the

centroids is used to classify it. The advantage of centroid-based classification algorithms

is that they are fast, as only a few similarity computations are required for a large number

of classes according to Zehra [24]. Raskar et al. recently adopted Centroid based distance

for signature recognition [100]. A test instance is classified by a similarity-based classifier

based on the similarity between it and a collection of labelled training instances, as well as

the pairwise similarities between the training examples. According to [143], the similarity-

based classification does not necessarily provides direct access to the characteristics of the

instances. Therefore the instance space can be any set, not necessarily a Euclidean space,

as long as the similarity function for any pair of samples is well specified.
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The average behaviour of each instance with regard to its class centroid is examined

in order to generate a smaller training set with an equal number of prototypes from both

classes with less information loss and lower computational complexity. To demonstrate

this, the notion of centroid based grouping (CBG) is used to generate prototypes based on

similarity from the original training set. CBG is a prototype generation method since it

creates prototypes. PNN [27], one of the existing prototype generation methods, is based

on this notion and employs class centroid as a prototype. It only utilises one prototype per

class, but the suggested technique generates n prototypes from each class, regardless of its

size. These n prototypes describe instances that differ from the class centroid. The goal is

to cover the whole range of possible examples without abandoning any of them. The bins

are grouped according to the criterion ”How similar they are to their class centroid.”

Independent of the size, dimensionality, and level of imbalance in the original training

set, the proposed method generates a very small robust training set with less computational

complexity and less information loss. The suggested method is unique in that it employs

the concept of centroid-based categorization to create artificial instances (prototypes) for

use as a training set. In addition, fractional distance measures (L0.1 and L0.5) are utilised

to discover the similarity of training instances with regard to their class centroid. These

measures have a broad coverage of neighbourhood space and are also well suited for mul-

tivariate, high dimensional data. The proposed technique separates the original training

instances into n bins based on how similar they are to their class centroid, and then merges

instances of each bin into a prototype, forming a new smaller training set, that is, 2n pro-

totypes are generated for binary class dataset.

The results show that utilising a very small training set and a kNN classifier, the pro-

posed method accurately classifies imbalanced, large, high-dimensional data sets, and of-

fers comparable results to popular approaches. This means that ”the Quality of the training

set, rather than the Quantity of instances in the training set, determines the performance of

a similarity-based classifier. ” The suggested technique has the following key features: (i)

reduced training time (ii) reduced storage to store the training set (iii) reduced information

loss, and (iv) robustness to noise.
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4.4 Algorithm

Proposed method’s performance is evaluated using a kNN Classifier (k=1). 5 fold cross

validation is carried out and the classifier’s output is the average of the results acquired on

five folds. The prototypes utilised are fixed to a given number n, regardless of the size of

the training set. Three experiments with n=5, 10, and 20 prototypes are conducted. The

algorithm 4.3 shows the steps taken in the pre-processing. The Complexity of Centroid

Based Grouping Algorithm is O(n).

Figure 4.1: Centroid based grouping(CBG).

Using the suggested Centroid Based Grouping approach, Figure 4.1 depicts the process

of forming bins from the original training set and creating prototypes from those bins for a

single class. Both classes follow the same procedure. Origin (0,0), that is, dist(c,c), reflects

the distance between the class centroid to itself as shown in the Figure 4.1. The numbers

x1, x2 and so on reflect the number of instances in each bin. The size of the class is equal

to the sum of x1 to xn. All xi instances of bini are merged into a single prototype, and all

n prototypes per class from n bins form a new smaller training set in the case of binary

classes.
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If each class has five groups, all instances with a normalised distance from the centroid

between 0 and 0.2 are placed in Group 1, between 0.2 and 0.4 in Group 2, 0.4 to 0.6

in Group 3, 0.6 to 0.8 in Group 4, and all instances with a normalised distance between

0.8 and 1.0 are placed in Group 5. Similarly, if the number of groups to be constructed

is 10, the instances with a normalised distance from the Centroid between 0 and 0.1 are

placed in Group 1, and so on, with a normalised distance between 0.9 and 1.0 in Group

10. Furthermore, for 20 Groups, instances with a distance from the Centroid of 0 to 0.05

are placed in Group 1, while instances with a distance of 0.95 to 1.0 are placed in Group

20. As a result, the normalised distance-range (interval) for each bin for groups 5, 10, and

20 is 0.2, 0.1, and 0.05, respectively.

The prototypes created using Euclidean distance measure are used by kNN. Using p=2

in Equation 4.4.1, where P and Q are d dimensional feature vectors, the Euclidean distance

s(P,Q) is calculated. Because of the curse of dimensionality on prototypes creation, the

kNN classifier is coded with p=0.5(L0.5) and 0.1(L0.1) [26, 5]. To produce prototypes,

L0.5 and L0.1 distance measurements, as well as the standard Euclidean distance measure

are employed to build bins. Bins created with the L0.5 distance measure are tested with

the L0.5 kNN classifier, while bins created with the L0.1 distance measure are tested with

the L0.1 kNN classifier as well as the standard kNN classifier that utilises the Euclidean

distance measure.

s(P,Q) = (
d

∑
i=1
|Pi−Qi|p)

1
p (4.4.1)

4.5 Experiments and Results

To assess the effectiveness of the proposed preprocessing methodology, a wide variety of

attribute values and instances for the training set are chosen to account for the effects of

data complexities and attribute complexities and imbalance ratios. They can be broadly

classified as sets with instances (low and high) and attributes (low and high), such as a

small number of features with a large number of instances, large number of features with

a large number of instances, and so on. The details of these data sets can be found in

Table 7.2. Except for the class attribute, all other attribute values in these data sets are
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numeric. The data sets were obtained from the UCI [11] and KEEL[7] data repositories,

and the tests were carried out using the KEEL [7] and weka[138] tools. The percentage

of data used by CBG for training considering 5, 10, 20 sub groups per class is specified

in the Table 4.2. It is clear that very small training sets are used, indicating a considerable

reduction in space and time usage.

Table 4.1: Details of the data sets.

Name of the Dimen- # Fea-
tures

Size of
the

Total # Imba- IR

Data Set sionality Data
Set

Instances lance

Pima low 8 low 768 low 1.89
Haberman low 3 low 306 low 2.78
Musk2 high 166 high 6599 low 5.49
Segment0 low 19 high 2308 low 6.02
Pageblocks0 low 10 high 5472 low 8.79
Vowel0 low 13 low 988 low 9.98
Spectrometer high 93 high 7797 high 10.8
Scene high 294 high 2407 high 12.6
LibrasMove high 90 low 360 high 14
Ecoli4 low 7 low 459 high 14.3
Isolet5 high 617 high 1599 high 24.98
Yeast1289Vs7 low 8 low 947 high 30.57

4.6 Discussion

Test set accuracy, percentage of reduction in the training set, and other criteria are used

to evaluate the performance of PG techniques. The number of prototypes generated for

various CBG variations is fixed based on the number of subgroups employed. It may

differ with other approaches. In the case of [114], the proportion of prototypes is fixed at

5% of the original data.

4.6.1 Comparison of the various variants of CBG method

The proposed method’s performance on bins generated using Euclidean, L0.5, and L0.1

distance measures is verified using three classifiers: 1NN, L0.5NN, and L0.1NN. AUC val-

ues produced by CBG in comparison to the original training set classification are shown in

the tables Table 4.3, Table 4.4, Table 4.5. No-Sampling denotes that data sets are classified
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Table 4.2: Percentage of data used for training by CBG. (5,10,20 bins per class)

Data set Size of
the

% of Tr
Set

% of
Tr Set

% of Tr
Set

Training
Set

5SG(10) 10SG
(20)

20SG(40)

Pima 614 1.6 3.26 6.4
Haberman 245 4.08 8.16 16.32
Musk2 5279 0.18 0.38 0.72
Segment0 1846 0.54 1.08 2.0
PageBlocks0 4377 0.23 0.46 0.92
Vowel0 791 1.2 2.4 4.8
Spectrometer 6237 0.16 0.32 0.64
Scene 1925 0.52 1.04 2.08
LibrasMove 288 3.47 6.94 13.88
Ecoli4 367 2.72 5.44 10.88
Isolet5 1279 0.78 1.56 3.12
Yeast1289vs7 758 1.32 2.64 5.28

using a standard 1NN classifier without any preprocessing, that is, the test set instances are

labelled with 100% of the training set.

• Data sets with low dimensions and low imbalance ratio Pima, Haberman have been

classified better than using the entire training set. Vowel0 is giving lower classi-

fication result because of its complexity. Vowel0 which is actually a multiclass is

converted into binary data set.

• Large data sets Musk2, Segment0, PageBlocks0 are giving acceptable results though

not even 2% of the data is used for training. Increasing number of prototypes some-

what increases the performance but not fully proportionate to the size of the training

set and experimentation is done on three different number of prototypes. In this case,

high reduction is achieved.

• For large data sets with high dimensionality and high imbalance ratio, like Spec-

trometer, Scene, Isolet5, CBG is giving excellent classification results with very tiny

training sets, than using entire 100% training set.

• For high dimensional small data sets with high imbalance ratio CBG variants are

giving the best results compared to undersampling and other prototype generation

methods.
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Table 4.3: AUC Results of CBG Method using 1NN(5bins per class)

Data Set No Sam-
pling

Eucl-
1NN

L0.5-
1NN

L0.1-
1NN

L0.5-
0.5NN

L0.1-
0.1NN

Pima 0.66 0.67 0.67 0.69 0.66 0.62
Haberman 0.57 0.57 0.56 0.52 0.57 0.52
Musk2 0.92 0.58 0.58 0.63 0.51 0.53
Segment0 0.99 0.84 0.87 0.88 0.79 0.66
PageBlocks0 0.87 0.71 0.71 0.72 0.62 0.66
Vowel0 1.00 0.89 0.85 0.84 0.84 0.73
Spectrometer 0.86 0.77 0.76 0.79 0.63 0.72
Scene 0.55 0.69 0.70 0.70 0.67 0.67
LibrasMove 0.85 0.89 0.90 0.91 0.89 0.81
Ecoli4 0.87 0.94 0.92 0.94 0.90 0.72
Isolet5 0.94 0.94 0.92 0.93 0.70 0.59
Yeast1289vs7 0.55 0.75 0.71 0.70 0.62 0.51

• Among the data sets used for experimentation yeast1289vs7 has the highest imbal-

ance ratio 30.57 with 30 minority class instances and 917 majority class instances.

Even this kind of data set with small number of instances and high imbalance ratio

is well classified by CBG.

Friedman analysis is conducted on the variants of CBG and no-sampling. CBG is

implemented by changing distance measures and classifier(i.e., kNN(k=1) with L0.1 and

L0.5 distance), and is giving better results than no-sampling. For comparison with other

methods, one variant of CBG is chosen by conducting Friedman test and it is evident

that from tables Table 4.6, and Table 4.7, 1NN classifier on 20 bins per class using L0.1

distance measure is giving better results. So, this variant of CBG that is, L0.1-1NN-20G

is taken for comparison with few other undersampling methods and prototype generation

methods to test the efficacy of the proposed method.

4.6.2 Comparison with Prototype Generation Techniques

The comparison is made using the methodology described in the [114]. The approaches

under consideration provides high test accuracy but may not be as good at reduction

(GENN,1-NN), and approaches that provide high reduction rate may not be as good at

accuracy (GENN,1-NN) (PSCSA). There is a trade-off between test accuracy and reduc-
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Table 4.4: AUC Results of CBG Method using kNN(10 bins per class)

Data Set No
Sam-
pling

Eucl-
1NN

L0.5-
1NN

L0.1-
1NN

L0.5-
0.5NN

L0.1-
0.1NN

Pima 0.66 0.67 0.68 0.65 0.66 0.62
Haberman 0.57 0.58 0.61 0.5 0.57 0.52
Musk2 0.92 0.55 0.62 0.69 0.51 0.53
Segment0 0.99 0.81 0.85 0.84 0.75 0.67
PageBlocks0 0.87 0.71 0.73 0.76 0.62 0.66
Vowel0 1.00 0.89 0.87 0.85 0.84 0.73
Spectrometer 0.86 0.84 0.84 0.87 0.62 0.72
Scene 0.55 0.71 0.69 0.71 0.67 0.66
LibrasMove 0.85 0.91 0.93 0.93 0.89 0.80
Ecoli4 0.87 0.87 0.93 0.90 0.90 0.72
Isolet5 0.94 0.88 0.93 0.94 0.70 0.59
Yeast1289vs7 0.55 0.68 0.61 0.80 0.62 0.50

tion rates. Others may be able to do both, but it will take a long time for them to converge.

Other prototype generation approaches such as centroid-based, position adjustment, space

splitting, and class relabeling are also considered. Tables Table 4.8 and Table 4.9. CBG-

PG present the findings. When compared to other PG approaches, the categorization can be

deduced as follows. Because GENN has a low reduction rate of roughly 20%, it achieves

better classification results for low IR data sets. LVQTC and MSE produce lower out-

comes than MDSG. Other methods aren’t fast enough to get results in under 300 seconds.

PSO and AMPSO are evolutionary algorithms that require a long time to converge.

When data sets have an imbalance ratio of more than 10, CBG gives substantially better

outcome than other prototype generation methods (popularly used are chosen for compar-

ison) by employing relatively small training sets. ’-’ indicates that a few approaches have

not generated output even after 300 seconds. It’s understandable because execution and

convergence take longer. The proposed method, on the other hand, can run quickly even

on large data sets. The ranking achieved by the Friedman test on CBG and other pro-

totype generation methods for which results are acquired for all data sets is specified in

Table 4.11. Other prototype generating approaches have clearly been outperformed by the

suggested CBG prototype generating approach.
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Table 4.5: AUC Results of CBG Method using kNN(20 bins per class).

Data Set No
Sam-
pling

Eucl-
1NN

L0.5-
INN

L0.1-
1NN

L0.5-
0.5NN

L0.1-
0.1NN

Pima 0.66 0.68 0.71 0.73 0.64 0.54
Haberman 0.57 0.52 0.58 0.52 0.56 0.46
Musk2 0.92 0.57 0.65 0.70 0.55 0.54
Segment0 0.99 0.84 0.87 0.88 0.79 0.66
PageBlocks0 0.87 0.47 0.72 0.80 0.48 0.71
Vowel0 1.00 0.92 0.88 0.89 0.84 0.61
Spectrometer 0.86 0.88 0.86 0.87 0.86 0.86
Scene 0.55 0.69 0.70 0.70 0.67 0.67
LibrasMove 0.85 0.94 0.94 0.94 0.92 0.89
Ecoli4 0.87 0.92 0.92 0.92 0.89 0.81
Isolet5 0.94 0.94 0.93 0.93 0.69 0.55
Yeast1289vs7 0.55 0.70 0.68 0.68 0.68 0.52

4.6.3 Comparison with Undersampling Techniques

Tables Table 4.10, Table 4.8, Table 4.9 show the comparison of AUC results obtained by

executing other undersampling methods and prototype generation methods available in

KEEL with the proposed CBG method. Results of the Table 4.10 except the CBG are

obtained by executing KEEL [7].

The proposed method has the following advantages: (i) faster processing, (ii) less stor-

age, (iii) reduced information loss, and (iv) noise resistance. When the size of the training

is reduced, time and storage are obviously decreased. This strategy does not discard even

a single instance, thus there is little information loss, and because the mean of examples in

each bin are obtained, the impact of noise or outliers on characteristics, if any, on catego-

rization is reduced. Because the training set is balanced and the same number of prototypes

are generated from both classes, regardless of class size, CBG is appropriate for the clas-

sification of imbalanced data sets.

Computational Ease is the novelty of the proposed approach, which falls in the centroid

based PG category. All of the methods listed above work with practically every sample’s

nearest neighbours, however, the suggested method combines samples depending on how

similar they are to their class average behaviour. This results in a higher reduction rate

with less AUC loss.



CHAPTER 4. PROTOTYPE GENERATION EMPLOYING THE CENTROID BASED GROUPING (CBG)56

Table 4.6: Average rankings of the algorithms (Friedman). Friedman statistic (distributed
according to chi-square with 15 degrees of freedom): 90.165441. P-value computed by
Friedman Test: 0.

Algorithm Ranking
No Sampling 6.9167

Eucl-1NN-10G 7.5
L0.5-1NN-10G 5.9167
L0.1-1NN-10G 5.875

L0.5-0.5NN-10G 11.625
L0.1-L0.1NN-10G 14.2083

Eucl-1NN-20G 6.25
L0.5-1NN-20G 4.6667
L0.1-1NN-20G 4.3333
L0.5-L0.5-20G 10.4167
L0.1-L0.1-20G 13.0833
Eucl-1NN-5G 6.4167
L0.5-1NN-5G 7.2917
L0.1-1NN-5G 6.1667
L0.5-L0.5-5G 11.4167
L0.1-L0.1-5G 13.9167

4.7 Summary

The proposed method’s main purpose is to build a small training set with low computa-

tional complexity which could be used to categorise unbalanced data sets. In order to create

this training set, instances of each class are compared to their class-centroid in terms of

their amount/degree/extent of similarity. The key concept here is to prevent information

loss by categorizing instances based on how they behave in comparison to their typical

class. Bin1 contains instances that are more similar to the average class behaviour, bin2

contains instances that are less similar to the class centroid, and so on, while binn contains

instances that are more dissimilar. The importance of distance measurement in this proce-

dure cannot be overstated. In trials, fractional distance measurements L0.5, L0.1, which

are designed for high-dimensional data sets, are utilised along with Euclidean distance

measures. The above-mentioned distance measures are also used in the Nearest Neighbor

classifier method. Bins are constructed using the same distance measurements for these

L0.1 and L0.5 NN classifiers.

The experimental results show that this method produces superior outcomes on datasets

with a high imbalance ratio. Another finding is that the suggested CBG technique works
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Table 4.7: Post Hoc comparison Table for α = 0.05 (FRIEDMAN). Holm’s procedure
rejects those hypotheses that have an unadjusted p-value ≤ 0.005556.

i algorithm z =
(R0 −
Ri)/SE

p Holm

15 L0.1-L0.1NN-
10G

5.080646 0 0.003333

14 L0.1-L0.1-5G 4.930584 0.000001 0.003571
13 L0.1-L0.1-20G 4.501838 0.000007 0.003846
12 L0.5-0.5NN-10G 3.751532 0.000176 0.004167
11 L0.5-L0.5-5G 3.644345 0.000268 0.004545
10 L0.5-L0.5-20G 3.129849 0.001749 0.005
9 Eucl-1NN-10G 1.629237 0.103263 0.005556
8 L0.5-1NN-5G 1.52205 0.127997 0.00625
7 No Sampling 1.329114 0.18381 0.007143
6 Eucl-1NN-5G 1.071866 0.28378 0.008333
5 Eucl-1NN-20G 0.986117 0.324076 0.01
4 L0.1-1NN-5G 0.943242 0.345557 0.0125
3 L0.5-1NN-10G 0.814618 0.415291 0.016667
2 L0.1-1NN-10G 0.793181 0.427672 0.025
1 L0.5-1NN-20G 0.171499 0.863832 0.05

well on datasets with high dimensionality, as well as large datasets. In cases when the

imbalance ratio is more than 10, the proposed technique outperforms the original 100%

training set. The same is true when comparing undersampling strategies. It is easy to

see how CBG reduces the influence of exceptional cases and outliers using the mean of

samples generated by Centroid Based Grouping. Training sets are created by creating an

equal number of samples from both classes, regardless of their cardinality. A reduction in

the size of the training set is obtained, resulting in a reduction in space and time usage.

With those few created prototypes, better AUC is attained for imbalanced data sets.
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Table 4.8: Comparison of AUC results of proposed methods with popular prototype gen-
eration techniques using KNN methods chosen from [114]. (- indicates output didn’t ob-
tained even after 300 seconds.)

Data set AMPSO GENN LVQTC MSE PSCSA PSO CBG
Pima 0.66 0.67 0.68 0.67 0.73 0.72 0.73
Haberman 0.48 0.52 0.53 0.54 0.54 0.52 0.52
Musk2 - - 0.70 0.61 - - 0.70
Segment0 - 0.99 0.88 0.88 0.70 - 0.88
PageBlocks0 - 0.87 0.71 0.76 0.72 - 0.80
Vowel0 - 1.00 0.58 0.91 0.72 - 0.89
Spectrometer - - 0.78 0.85 - - 0.87
Scene - - 0.52 0.49 - - 0.70
LibrasMove - - 0.65 0.89 - - 0.94
Ecoli4 0.86 0.87 0.90 0.94 - - 0.92
Isolet5 - 0.93 0.59 0.78 0.61 - 0.93
Yeast1289vs7 - 0.51 0.53 0.53 0.55 - 0.68
Average of
AUC for
data

- - 0.68 0.728 - - 0.753

sets(IR¡10)
Average of
AUC for
data

- - 0.661 0.746 - - 0.84

sets(IR¿10)
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Algorithm 4.3 Centroid Based Grouping
Let D be a binary class dataset 〈X ,Y 〉, where X = X1,X2, . . . ,Xn, each Xi is a m−
dimensional Vector with m attributes and is associated with a label Y = 0,1
N represents the size o f the dataset
NMin represents the size o f Positives in the dataset
NMa j represents the size o f Negatives in the dataset
NMin
NMa j

> 1.5
NG = 10,NGRepresentsNumbero f Groups GCrepresentsgroupcentroid

1: procedure CENTROID BASED GROUPING(IT S) . ITS, an Imbalanced Training Set
2: for j ∈ m do
3: Negcent j = ∑

NMa j
i=1 Xi j/NMa j

4: Poscent j = ∑
NMin
i=1 Xi j/NMin

5: end for
6: for i ∈ 1 to NMin do
7: Posdisti = (∑

NMin
i=1 [Xi j−Poscent j ]

p)
1
p

8: end for . Distance o f all Positives f rom Poscentroid is pos−dist
9: for i ∈ 1 to NMa j do

10: Negdisti = (∑
NMa j
i=1 [Xi j−Negcent j ]

p)
1
p

11: end for . Distance o f all Negatives f rom Negcentroid is Neg−dist
12: for i ∈ 1 to NMin do . Distance is Normalized
13: Posdisti =

Posdisti−min(Posdist)
max(Posdist)−min(Posdist)

14: end for
15: for i ∈ 1 to NMa j do . Distance is Normalized
16: Negdisti =

Negdisti−min(Negdist)
max(Negdist)−min(Negdist)

17: end for
18: . max() gives maximum− value among the given input distance values
19: . min() gives minimum− value among the given input distance values .

Experimented with p = 0.1and 0.5
20:
21: PosGroup← FORMATION OF GROUPS(NMin,Posdist)
22:
23: NegGroup← FORMATION OF GROUPS(NMa j,Negdist)
24: for l ∈ {NG} do
25: for j ∈ m do
26: NegGC[l] j = ∑

Size(l)
i=1 Xi j/Size(l) .

NegGC[l] is the Centroid o f each Negative Group l
27: end for
28: end for
29: for l ∈ {NG} do
30: for j ∈ m do
31: PosGC[l] j = ∑

Size(l)
i=1 Xi j/Size(l)

32: . PosGC[l] is the Centroid o f each Positive Group l
33:
34: end for
35: end for
36: BalancedTraining = Σ

NG
k=1(PosGC[k])+(NegGC[k])

37: end procedure
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1: function FORMATION OF GROUPS(NM,disti)
2: for i ∈ {1 to NM} do
3: for j ∈ {1 to NG in steps o f 1} do
4: for k ∈ {0 to 1 in steps o f (1/NG)} do
5: if (disti ≥ k )∧ ( disti ≤ k+(1/NG) then
6: Group j← Xi
7: end if
8: end for
9: end for

10: end forreturn Group j
11: end function

Table 4.9: Comparison of AUC results of proposed methods with centroid based prototype
generation techniques and one from each other category using kNN. (- indicates output
didn’t obtained even after 300 seconds.)

Data Set PNN BTS3 MCA GMCAICPL SGP MixtGaussChen DSM GENN CBG
Centroid Based Space

Split-
ting

Positioning
Ad-
just-
ment

Class
Rela-
belling

Proposed
Method

Pima 0.70 0.65 - 0.66 - 0.54 0.68 0.65 0.66 0.67 0.73
Haberman 0.55 0.53 - 0.55 - 0.47 0.58 0.55 0.57 0.52 0.52
Musk2 - 0.86 - - - 0.75 - 0.86 0.84 - 0.70
Segment0 0.84 0.97 - 0.99 - 0.80 0.83 0.99 0.98 0.99 0.88
PageBlocks0 - 0.77 - - - 0.55 0.70 0.87 0.80 0.87 0.80
Vowel0 - 0.77 - - - 0.59 0.67 0.99 0.79 1.00 0.89
Spectrometer - 0.76 - - - 0.86 - 0.86 0.72 - 0.87
Scene - 0.54 - - - 0.57 - 0.51 0.55 - 0.70
LibrasMove - 0.62 - - - 0.74 - 0.69 0.59 - 0.94
Ecoli4 0.94 0.86 - 0.84 - 0.85 0.94 0.84 0.89 0.87 0.92
Isolet5 - 0.80 - - - 0.91 0.91 0.91 0.84 0.93 0.93
Yeast1289vs7 - 0.52 - - - 0.61 0.60 0.59 0.52 0.51 0.68
Average of
AUC for
data

- 0.758 - - - 0.616 - 0.813 0.773 - 0.753

sets(IR¡10)
Average of
AUC for
data

- 0.683 - - - 0.756 - 0.733 0.685 - 0.84

sets(IR¿10)



CHAPTER 4. PROTOTYPE GENERATION EMPLOYING THE CENTROID BASED GROUPING (CBG)61

Table 4.10: Comparison of AUC results of proposed method MDSG with undersampling
techniques using kNN [7].

Data set CNN
(1968)

CNNTL
(2004)

CPM
(2005)

SBC
(2006)

NCL
(2001)

OSS
(1997)

RUS
(2004)

TL
(1976)

CBG

Pima 0.67 0.64 0.64 0.71 0.72 0.66 0.72 0.74 0.73
Haberman 0.63 0.59 0.61 0.57 0.63 0.64 0.61 0.63 0.52
Musk2 0.92 0.88 0.78 0.50 0.92 0.91 0.89 0.92 0.70
Segment0 0.97 0.97 0.94 0.98 0.98 0.98 0.97 0.98 0.88
PageBlocks0 0.94 0.94 0.91 0.93 0.93 0.93 0.94 0.93 0.80
Vowel0 0.92 0.92 0.89 0.95 0.92 0.92 0.94 0.97 0.89
Spectrometer 0.81 0.79 0.83 0.62 0.85 0.81 0.85 0.87 0.87
Scene 0.60 0.58 0.58 0.50 0.60 0.57 0.63 0.58 0.70
LibrasMove 0.84 0.77 0.70 0.50 0.78 0.79 0.73 0.83 0.94
Ecoli4 0.83 0.84 0.81 0.81 0.81 0.84 0.86 0.81 0.92
Isolet5 0.84 0.86 0.57 0.57 0.86 0.86 0.87 0.81 0.93
Yeast1289vs7 0.59 0.61 0.63 0.5 0.53 0.61 0.60 0.54 0.68

Table 4.11: Average Rankings of the algorithms (Friedman). Friedman statistic (dis-
tributed according to chi-square with 5 degrees of freedom): 11.130952.
P-value computed by Friedman Test: 0.048845.

Algorithm Ranking
LVQTC 4.375

MSE 3.7083
BTS3 4.25
Chen 2.6667
DSM 3.5833
CBG 2.4167



Chapter 5

Quartiles based

UnderSampling(QUS)

The major difficulty in learning from imbalanced datasets is that the majority have a big

number of training instances while the positives have a small number. Even if the classifi-

cation rate of positives is greatly reduced, this may result in a pretty good performance of

the classifier (minority class instances).

To choose majority class samples that may be used as a training set, either clustering

or closest neighbour approaches are commonly utilised. There are certain drawbacks to

these procedures. In the case of knn methods, the identification of nearest neighbours, and

the distance measure to be used and so on and in clustering mechanisms the quality of the

majority class samples chosen varies depending on the clustering technique, the number

of clusters, and the difficulty of convergence and so on. In this chapter, a new method

called Quartiles-based Under Sampling (QUS) is proposed, which is simple, unique, and

effective, and can be used on dataset of any size and any number of dimensions.

The issue of class imbalance is tackled in this chapter based on the distribution of the

dataset. To propose a simple undersampling method by considering less loss in data and

to make the method parameter independent.

62
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5.1 Related Work

At data level, the data set is manipulated to balance the class distribution. Data level

sampling methods for handling imbalanced data sets are categorized into (i)Oversampling

methods and (ii) Undersampling methods.

Latest papers on imbalanced data sets include [132, 148, 19, 103, 91, 14] etc. Wang et

al. [132] use an ensemble method along with weights and information about sample mis-

classification to effectively classify imbalanced data. Zhang et al. [148] present empirical

analysis by conducting various experiments on imbalanced data sets of varying imbalance,

size and complexity applying three popular classifiers Naive Bayes, C4.5 and SVM. Re-

sults have shown that SVM outperforms the other two classifers. Barella et al. [14] have

proposed a cluster based one sided selection method for undersampling. In [19], a similar-

ity based hierarchical decomposition method is proposed to classify imbalanced data sets.

Wing et al. [103] have proposed a diversified sensitivity-based undersampling method for

imbalance classification. Other latest works [91] use ensembles of First Order logical De-

cision Trees to handle the problem of imbalanced classification, [9] uses feature weighting

to deal with overlap in imbalanced datasets, [41] proposes a RandomBalance method for

imbalanced data which uses ensembles of variable priors classifiers. In [121], Sun et al.

proposed a novel ensemble method to classify imbalanced data sets.

5.2 Motivation

Since the clustering methods suffer from drawbacks listed earlier, a new method is pro-

posed here to alleviate the problems with those methods. The suggested method balances

the provided training set by selecting negatives from the full distribution with the least

amount of information loss possible. That is, groups are established in such a way that

samples are selected from the entire set of the majority class samples. Applying the strat-

ified sampling approach, which determines the number of samples from each strata based

on its size, the selected negatives operate as representatives of all the negatives in the

training set.

The method’s novelty is in its ability to generate groups with minimal computional

complexity. The primary difference between [117, 142, 87] and the suggested technique is
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that their work use clustering to generate groups, where the number of clusters, the cluster-

ing method, and the number of clusters all influence these strategies, whereas the proposed

method does not use any clustering approach. In fact, the bulk of the majority class sam-

ples are separated according to how far they are from a set of reference point(s). The

suggested method do not require any of these external parameters because all clustering

approaches are based on the ideal number of clusters and cluster quality.

Difference between the proposed method and the other undersampling methods, namely

CNN, CNNTL, NCL, OSS lies in the way of choosing the majority class instances. As all

these methods choose/discard the majority class samples based on their distance from mi-

nority class sample, QUS chooses majority class samples based on their distance from

the five reference points Neg Min, Neg Q1, Neg Median, Neg Q3 and Neg Max in the

case of QUS. kNN classifier is chosen to select the majority class samples in their meth-

ods, whereas the proposed method is not dependent on any classifier. This reduces lot of

computation involved in finding nearest neighbors as the size of the data set increases.

5.3 Framework

Negative samples in the training set are sorted according to their distance from the refer-

ence points in this method. Then stratified sampling is used to select negatives from each

group, with the number of samples selected from each group based on the group’s size and

the total number of negatives selected from all groups equal to the total of positives in the

training set.

Let Nmin be the quantity of Minority class instances in the training set, and Nma j be the

quantity of Ma jority class instances. Using stratified sampling, the number of Ma jority

instances picked after group formation is equal to Nmin. As a result, the training set has an

equal number of minority and majority class instances. In each group groupi, gi instances

are picked so that the total number of Ma jority class samples chosen are equal to the total

number of Minority class samples.

gi =
size(groupi)

Nma j
Nmin 1≤ i≤ k (5.3.1)
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Negative samples subset = Σigi (5.3.2)

The contribution of different instances to classification changes based on their distance

from the decision border. That is, internal(closer) examples have a greater influence than

fringe occurrences (farther). However, more examples aid in a deeper understanding of

the topic. As a result, the samples are picked with varied degree of classification influence

to compensate for the left-over cases from the original training set, that is, the chosen

negative samples should represent the whole negatives in the training set.

5.4 Algorithm

In statistics, quartiles are used to illustrate the distribution of a data collection. These points

are used to identify outliers in machine learning. These are used as reference points, and

the distance between the quartiles is employed to partition the occurrences in the training

set. The idea is that all instances that are close to min are sorted into group1, those that

are close to Q1 are grouped into group 2, those that are close to median are grouped into

group 3, those that are close to Q3 are grouped into group 4, and those that are near to

max are put into group 5. After that, instances equal to the size of the minority class

are picked depending on the size of the groupings. The goal is to select majority class

samples from throughout the distribution that have features that are closer to reference

points. This is an attempt to select examples in a systematic manner rather than at random.

The quartile distances are used to choose majority class samples in this strategy.Forming

four groups out of samples that fall between min, Q1, etc., and Q3 to max, examples are

grouped depending on how close they are to five of the quartiles. As a result, four groups

are formed in QUS. The steps are shown in the 5.4 algorithm.

5.5 Experiments and Results

Pre-processing is done using QUS on the negative sets of the training sets in each fold to

balance the positive and negative sets. The new balanced training sets are used to train the

classifiers for each fold respectively. k-fold cross validation is used to compute efficiency
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of the method. Average of the results combined together on the k test sets of the k-folds

is taken as the output of the classifier. Here 5 folds are used. kNN classifier is chosen to

validate the performance of the proposed undersampling method.

In order to verify the efficacy of the pre-processing technique proposed here, a varied

set of data sets are chosen to take into account the effect of data complexities and attribute

complexities. Broadly they can be categorized as sets with instances (low and high) and

attributes (low and high), like small number of features with large number of instances,

large number of features and large number of instances etc. Table 7.2 lists these data sets.

Datasets considered are both binary and multi-class data sets. Multi-class data sets are

made as binary by taking required class as positive and all other classes put together as

negative. All the values in these data sets are numeric except the class attribute. The

data sets are taken from the UCI [11], KEEL[7] data repositories and used KEEL[7],

weka[138] tools to conduct the experiments. The data sets are chosen based on their

number of attributes, number of instances and imbalance ratio to check the performance

of the proposed method on datasets of different sizes and dimensions and also imbalance

ratios.

5.5.1 Dataset

Table 5.1: Details of the data sets.

Name of the # Features Total # Imbalance
Data Set Instances Ratio
Ecoli4 7 459 14.3
Haberman 3 306 2.78
Iris0 4 150 2
Isolet5 617 1599 24.98
LibrasMove 90 360 14
Musk2 166 6599 5.49
NewThyroid1 5 215 5.14
Pageblocks0 10 5472 8.79
Pima 8 768 1.89
Scene 294 2407 12.6
Segment0 19 2308 6.02
Shuttlec4vsall 9 58000 5.51
Skin-
Segmentation

3 245057 3.82

Spectrometer 93 7797 10.8
Vowel0 13 988 9.98
Yeast1289Vs7 8 947 30.57

The presented undersampling method QUS separates all negatives into five bins based on how

close they are to the five reference points, which are Negmin, NegQ1, Negmedian, NegQ3, and

Negmax. In the next step, a small number of negatives (Nmin) are picked up from each group using
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stratified sampling, which implies the number of examples chosen from each group is proportional

to it’s size. kNN classifier is used test this method, which is then compared to various existing

undersampling, oversampling, ensemble, and cost-based strategies utilising the same classifiers.

Experimentation is carried out after standardising the attribute values in order to attain uniformity

in the varying attribute range. Specifically, we use both regular data without standardisation exper-

imentation and data with standardisation when providing input.

The main goal of the pre-processing strategy provided here is to increase the minority class’s

accuracy or prediction. It is clear from the Table 5.2 that the suggested approach QUS considerably

enhances the accuracy of the Minority class, that is sensitivity. Except for a few data sets where

there is a minor difference, all data sets show an improvement in sensitivity. The classification

results obtained for several data sets using the pre-processing method QUS followed by kNN are

shown in Table 5.2. Average values for the 5-fold cross validation performed on the data sets

are shown in the tables. It has been discovered that the number of groups has little effect on

the outcome. The proposed strategy improves the True Positive Rate (TPR) while simultaneously

providing good AUC findings.

5.6 Discussion

The findings obtained by the proposed method are compared to those produced by various under-

sampling, oversampling, and ensemble approaches in this section.

5.6.1 Scalability

Experiments on large data sets were undertaken to determine the scalability of the approaches, in-

cluding shuttlec4vsall with 58000 instances, 9 attributes, and 5.51 IR, and skin segmentation with

2,45,057 instances, 3 attributes, and IR 3.82. The AUC for both of them is 0.99 using the QUS

approach. It is well established that if there are enough examples for training, the imbalance has

little effect on classification accuracy. This is demonstrated by the two huge data sets mentioned

above. In comparison to the suggested pre-processing method, the existing undersampling ap-

proaches take a long time. For small and medium data sets, the proposed technique and the other

undersampling methods required nearly the same amount of time, however for huge data sets, the

suggested technique took only a few minutes while the other undersampling approaches required

hours altogether.
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5.6.2 Comparison with Other Undersampling Methods

The proposed approach is compared with various undersampling approaches such as CNN, CN-

NTL, CPM, SBC, OSS, RUS, and TL, which are widely used in the literature. Many of these

methods use a kNN classifier to choose the samples, whereas the proposed approach do not utilise

any classifier at all. The findings from Table 5.3 show that the suggested technique beats current

methods in a few data sets while achieving equivalent results in the remaining data sets. The pro-

posed method has never been shown to be inferior to any of the existing popular undersampling

strategies. Among the approaches utilised with kNN, Friedman test gives QUS-stand-Eucl the

lowest ranking meaning that the method has best performance compared to the other methods.

The results produced for the data sets applying the alternative undersampling approaches for

the kNN classifier are presented in the Table 5.3. It turns out that the proposed technique is the

best among the undersampling approaches, including the currently proposed ways employing the

post-hoc approach.

5.6.3 Comparison with Oversampling and Ensemble Methods

The proposed approach is compared against various class imbalance approaches available in KEEL,

such as oversampling, ensemble based, algorithm based, and cost sensitive based, to see how well

they perform. The tables Table 7.15, Table 7.17 demonstrate that the suggested approach is not

inferior to any of the existing approaches and produces comparable results.

5.7 Summary

In this chapter, QUS, a simple and effective undersampling strategy is proposed for balancing the

training set by selecting samples from the majority class that are equal to the number of samples

from the minority class. In selecting majority class samples, the technique does not employ any

particular clustering or classification algorithm. Majority of known undersampling approaches bal-

ance the data set using either (a) prototype selection or (b) clustering algorithms, both of which are

parameter sensitive and difficult to achieve convergence whereas the proposed method is parame-

ter independent and simple.

This method is based on distribution-specific categorization, and issues such as (i) informa-

tion loss and (ii) proper representation of the majority class are also taken into consideration. The

groups are established to prevent information loss by allowing samples to be selected from across

the majority class. The problem of representative samples is solved by using a stratified sampling
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technique, which selects the number of samples from each cluster based on its size, ensuring that the

samples picked are representative of the majority class as a whole. Most undersampling approaches

employ a kNN classifier to select majority class samples, but in this proposed method, majority

class samples are not selected by using kNN Classifier. This reduces the computation required to

find nearest neighbours as the data set grows in size. Furthermore, this approach works even for

big data sets with high dimensionality.

A valuable insight is gained by this method. QUS splits the data set from a global view, as

opposed to kNN or clustering algorithms. Unique to a distribution in the case of Euclidean distance-

based approaches, data grouping is equivalent to a global partition of the neighbour-hood into a

few groups. As a result, when compared to clustering, where a local neighbourhood determines the

clusters and there is a chance of missing some disjuncts entirely, the likelihood of selecting samples

from the spherical global neighbourhood is higher. All kNN-based under-sampling approaches

focus on a small neighbourhood (K=1,3 or 5). This could result in a significant amount of prejudice.

The theory is also supported by empirical evidence. Though other previous approaches produced

better results for specific datasets, the main advantage of QUS is that it is simple to implement and

hence takes less time, O(n), than other undersampling methods. It is also independent of any of the

input parameters and works well with data sets with large instances, large features, small instances,

and small features. To our knowledge, this type of grouping used in the suggested method has

never been applied in undersampling to improve the classification of imbalanced data sets before.

The experimental results show that this method produces superior outcomes on datasets with a

high imbalance ratio. Another finding is that the suggested QUS technique works well on datasets

with high dimensionality, as well as large datasets. In cases when the imbalance ratio is more than

10, the proposed technique outperforms the original 100% training set. The same is true when

comparing undersampling methods.
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Algorithm 5.4 Quartile based UnderSampling
Let D be a binary class dataset 〈X ,Y 〉, where X = X1,X2, . . . ,Xn, each Xi is a m−
dimensional Vector with m attributes and is associated with a label Y = 0,1
N represents the size o f the dataset
NMin represents the size o f Positives in the dataset
NMa j represents the size o f Negatives in the dataset
NMin
NMa j

> 1.5
NegMin = Minimum(dist)
NegQ1 = First Quartile o f (dist)
NegMedian = Median o f (dist)
NegQ3 = T hird Quartile o f (dist)
NegMax = Maximum(dist)

1: procedure QUARTILE BASED UNDERSAMPLING(IT S)
2: for j ∈ NMa j do
3: NegCent j = ∑

NMa j
i=1 Xi j/NMa j

4: end for
5: for i ∈ NMa j do

6: disti =
√

∑
NG
i=1(Xi j−Negcent j)

2

7: end for . Distance o f all Negatives f rom NegCentroid is f ound
8: for i ∈ 1 to NMa j do
9: disti =

disti−min(dist)
max(dist)−min(dist)

10: end for . max() gives maximum− value among the given input distance values
11: . min() gives minimum− value among the given input distance values
12: for i ∈ {1 to NMa j} do
13: for j ∈ {1 to 4} do
14: if ( disti ≥ NegMini )∧ ( disti ≤ (NegQ1i) ) then
15: Group j← Xi
16: else if ( disti ≥ NegQ1i ∧ disti ≤ NegMediani ) then
17: Group j← Xi
18: else if ( disti ≥ NegMediani ∧ disti ≤ (NegQ3i) ) then
19: Group j← Xi
20: else if ( disti ≥ NegMediani ∧ disti ≤ (NegQ3i) ) then
21: Group j← Xi ( disti ≥ NegQ3i ∧ disti ≤ (NegMaxi) )
22: Group j← Xi
23: end if
24: end for
25: end for
26: for j ∈ {1 to 4} do
27: rk = random( size(Groupk)

NMa j
NMin) 1≤ i≤ k . Pick rk instances f rom Groupk

28: end for
29: NMa j−New = Σkrk
30: BalancedTraining = NMin +NMa j−new
31: end procedure
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Table 5.2: AUC results with kNN classifier.Number of groups are 4 (fixed because groups
are formed between reference points are min,Q1,median,Q3,max).

Data Set Measure No Sam-
pling

QUS-
Stand-
Eucl

Ecoli4 Sensitivity 0.75 0.9
Specificity 0.99 0.89
AUC 0.87 0.9

Haberman Sensitivity 0.34 0.54
Specificity 0.80 0.6
AUC 0.57 0.57

Iris0 Sensitivity 1.00 1.00
Specificity 1.00 1.00
AUC 1.00 1.00

NewThyroid1 Sensitivity 0.97 0.99
Specificity 0.98 0.97
AUC 0.97 0.98

Pima Sensitivity 0.52 0.66
Specificity 0.81 0.7
AUC 0.66 0.68

Vowel0 Sensitivity 1.00 1.00
Specificity 1.00 0.96
AUC 1.00 0.98

Yeast1289vs7 Sensitivity 0.13 0.72
Specificity 0.97 0.6
AUC 0.55 0.66

PageBlocks0 Sensivitiy 0.76 0.9
Specificity 0.98 0.92
AUC 0.87 0.91

Skin-Segmentation Sensitivity 0.99 0.99
Specificity 0.99 0.99
AUC 0.99 0.99

Shuttlec4vsall Sensitivity 0.99 0.99
Specificity 0.99 0.99
AUC 0.99 0.99

Segment0 Sensitivity 0.99 0.99
Specificity 0.99 0.98
AUC 0.99 0.99

Isolet5 Sensitivity 0.88 0.99
Specificity 0.99 0.80
AUC 0.94 0.90

LibrasMove Sensitivity 0.70 0.92
Specificity 0.99 0.91
AUC 0.85 0.91

Musk2 Sensitivity 0.87 0.93
Specificity 0.96 0.91
AUC 0.92 0.92

Scene Sensitivity 0.14 0.6
Specificity 0.95 0.67
AUC 0.55 0.63

Spectrometer Sensitivity 0.73 0.87
Specificity 0.99 0.95
AUC 0.86 0.91
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Table 5.3: Comparison of AUC results of proposed methods with other undersampling
techniques using kNN. (- indicate results not obtained even after 300 seconds)

data set CNN
(1968)

CNNTL
(2004)

CPM
(2005)

SBC
(2006)

NCL
(2001)

OSS
(1997)

RUS
(2004)

TL(1976) QUS-Stand-
Eucl

Ecoli4 0.91 0.89 0.69 0.50 0.86 0.88 0.95 0.87 0.9
Haberman 0.54 0.56 0.53 0.59 0.57 0.53 0.62 0.58 0.57
Iris0 1.00 1.00 1.00 0.50 1.00 1.00 1.00 1.00 1.00
Newthryroid1 0.97 0.97 0.94 0.50 0.99 0.96 0.96 0.97 0.98
Pima 0.64 0.65 0.62 0.67 0.70 0.67 0.66 0.70 0.68
Vowel0 0.99 0.99 0.96 0.75 1.00 0.99 0.97 1.00 0.98
Yeast1289vs7 0.56 0.65 0.59 0.50 0.59 0.63 0.62 0.55 0.66
PageBlocks0 0.86 0.88 0.86 0.89 0.91 0.89 0.91 0.89 0.91
Skin-
segmentation

- - - - - - - - 0.99

Shuttlec4vsall - - - - - - - - 0.99
Segment0 0.99 0.99 0.97 0.50 0.99 0.99 0.98 0.99 0.99
Isolet5 0.97 0.96 0.87 0.56 0.94 0.96 0.89 0.94 0.90
LibrasMove 0.85 0.93 0.86 0.50 0.92 0.86 0.93 0.85 0.91
Musk2 0.88 0.83 0.88 0.50 0.83 0.87 0.88 0.83 0.92
Scene 0.58 0.59 0.56 0.50 0.61 0.60 0.65 0.58 0.63
Spectrometer 0.91 0.90 0.90 0.67 0.90 0.88 0.93 0.88 0.91

Table 5.4: Comparison of AUC results of proposed method with OverSampling tech-
niques using kNN. (- indicate results not obtained even after 300 seconds)

Data set ADASYN
(2008)

ADOMS
(2008)

Borderline-
SMOTE
(2005)

ROS
(2004)

SafeLevel-
SMOTE
(2009)

SMOTE-
TL
(2004)

SMOTE
(2002)

QUS-Stand-
Eucl

Ecoli4 0.90 0.91 0.89 0.87 0.87 0.92 0.93 0.9
Haberman 0.54 0.57 0.58 0.54 0.54 0.59 0.58 0.57
Iris0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Newthryroid1 0.97 0.97 0.97 0.97 0.97 0.97 0.95 0.98
Pima 0.67 0.67 0.67 0.66 0.66 0.72 0.66 0.68
Vowel0 0.99 1.00 1.00 1.00 1.00 0.99 0.99 0.98
Yeast1289vs7 0.60 0.58 0.59 0.55 0.55 0.63 0.60 0.66
PageBlocks0 0.89 0.92 0.91 0.87 0.86 0.91 0.91 0.91
Skin-
segmentation

- - - - - - - 0.99

Shuttlec4vsall - - - - - - - 0.99
Segment0 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
Isolet5 0.96 - 0.98 0.94 0.79 0.98 0.97 0.90
LibrasMove - - - - - - 0.91 0.91
Musk2 0.92 - - 0.92 0.91 - 0.91 0.92
Scene - - - - - - - 0.63
Spectrometer - - - - - - - 0.91
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Table 5.5: Comparison of AUC results of proposed methods with some Ensemble Meth-
ods, Cost Sensitive and Algorithm based Methods. (- indicate results not obtained even
after 300 seconds.)

Data set Balance
Cascade
(2009)

Easy En-
semble
(2009)

AdaC2
(2007)

CSVMCS
(2009)

C45CS
(2002)

NNCS
(2006)

QUS-
Stand-
Eucl-
kNN

Ecoli4 0.84 0.85 0.92 0.95 0.86 0.87 0.90
Haberman 0.61 0.65 0.56 0.61 0.57 0.62 0.57
Iris0 0.99 0.99 0.99 1.00 0.99 1.00 1.00
Newthryroid1 0.93 0.93 0.94 0.98 0.97 0.82 0.98
Pima 0.69 0.73 0.70 0.74 0.71 0.69 0.68
Vowel0 0.94 0.94 - 0.97 0.94 0.68 0.98
Yeast1289vs7 0.65 0.65 0.63 - 0.67 0.51 0.66
PageBlocks0 0.95 0.95 0.88 - 0.94 0.76 0.91
Skin-
segmentation

- - - - - 0.85 0.99

Shuttlec4vsall - - - - - - 0.99
Segment0 0.98 0.98 0.98 0.99 0.99 0.50 0.99
Isolet5 - - - - - 0.50 0.90
LibrasMove - - - - - 0.50 0.89
Musk2 - - - - - 0.57 0.92
Scene - - - - - - 0.63
Spectrometer - - - - - - 0.91



Chapter 6

MahalCUSFilter: A Hybrid

Undersampling method

Undersampling is a data-level approach that preprocesses the data set to minimise the number of

the majority class instances, which is one of the approaches for dealing with the problem of class

imbalance. To balance the data set, most existing undersampling methods use prototype selection

or clustering algorithms. Both techniques are efficient and popular, yet they are both complicated.

The disadvantage of prototype selection methods is that they must compare each majority instance

with its k closest neighbours to determine which majority class instance should be selected or

rejected, which is time consuming and difficult to implement for big datasets.

The nature of all real-world datasets is multivariate. As a result, a multivariate dataset distance

metric should take into account not only the variances of the attributes, but also their covariances or

correlations. In some cases, the Euclidean distance between two vectors is ineffective since no ad-

justment for variances or covariances is possible. As a result, a statistical distance, or standardised

measure is used.

6.1 Related Work

Recent papers on imbalanced data sets can be found in [132, 148, 19, 103, 91, 14]. To efficiently

categorise unbalanced data, Wang et al. in [132] employ an ensemble technique, weights, and

information on sample misclassification. Zhang et al. [148] offer empirical study by using three

common classifiers, Naive Bayes, c4.5, and SVM, to conduct numerous tests on unbalanced data

sets with different imbalance, size, and complexity. SVM outperforms the other two classifiers,

74
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according to the results. Barella et al. introduced a cluster-based one-sided selection strategy for

undersampling in [14]. To categorise imbalanced data sets, [19] proposed a similarity-based hierar-

chical decomposition strategy. Wing et al. suggested a diversified sensitivity-based undersampling

approach for imbalance classification in their paper [103].

The proposed undersampling method Mahalanobis Centroid based Undersamping with Fil-

ter(MahalCUSFilter) solves the concerns mentioned above: Parameter dependence, Variables

Interdependece, Scale Invariants and information loss factors. The proposed strategy was found to

enhance the minority class classification rate of all datasets with comparable overall performance

for the entire dataset when used in conjunction with c4.5 and kNN classifiers. This type of grouping

has not been employed in undersampling to increase the classification accuracy of imbalanced data

sets, according to what has been learned from the literature.

The covariance between variables is used to calculate the Mahalanobis distance. It benefits

from the use of group means and variances for each variable, as well as the inherent scale and

correlation issues. In chemometrics and multivariable statistics, the Mahalanobis distance is one of

the most widely used measures. It can be used to see if a sample is an outlier, if a process is under

control, or if a sample belongs to a group or not. The last point mentioned above, namely whether

a sample is a member of a group or not, is applicable in the suggested method.

6.2 Motivation

Mahalanobis distance was first proposed by Mahalanobis in 1936 and is often referred to as Maha-

lanobis distance [26]. In a Mahalanobis distance, a random variable with a higher volatility receives

less weight than others. In the case of mahalanobis distance, two highly correlated variables do not

contribute more than the two less correlated factors. The idea of the Mahalanobis distance measure

is to employ the inverse of the covariance matrix, which has the effect of normalising all variables to

the same variance and eliminating correlations Alvin. Mahalanobis distance is found using dMahal

(Equation 6.2.1)

dMahal =

√
(−→x −−→µ )T S−1(−→x −−→µ ) (6.2.1)

where x is the instance vector, µ is the mean vector and S is the covariance matrix. In the formula

Inverse of covariance matrix is used to calculate Mahalanobis distance.

Mahalanobis Centroid based UnderSampling with Filter (MahalCUSFilter) is a method for cap-

turing majority class samples based on their resemblance to the average behaviour of all majority
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class instances. To compute the distances between the reference point (mean-vector i.e., centroid)

and each majority class instance in the data set, the Mahalanobis distance metric is used. This func-

tion selects majority class samples depending on their distance from their Mean-Vector(Ccent), that

is, samples from closer to farther distances to reflect the distribution of majority class instances.

In the final stage, majority class instances that are close to minority class instances are filtered

out, leaving only the training set. Classifying using the 1NN classifier, misclassified examples are

found within the balanced training set created using the MahalCUS technique. The instances of the

majority class that were misclassified are eliminated from the training set because they are risky,

implying that they are likely to confuse the minority and majority classes.

By removing risky instances, this will attempt to ensure a clear boundary between minority and

majority class instances. The algorithm 6.5 shows the steps taken in the pre-processing. The num-

ber of groupings is picked at random. O(n) is the complexity of MahalCUSFilter algorithm as the

inner loops of the algorithm run for constant number of times.

Existing undersampling approaches have three fundamental shortcomings, which the current

method addresses:

• Parameter Dependence: The performance of MahalCUSFilter is independent of the set-

tings set by the user, unlike cluster-based and kNN-based undersampling approaches, which

are dependent on the clustering algorithm, number of clusters, k-value, and other factors.

Experimenting with different numbers of bins yielded little variance in the results.

• Variables Inter dependence: Unlike other algorithms that use euclidean distance to find

distance/similarity between instances which do not consider inter dependencies, correlations

among the variables of a dataset, MahalCUSFilter uses Mahalanobis Distance measure to

find distance between each majority class instance with its centroid (Mean of the Majority

class instances) which takes into account correlation among variables of a dataset.

• Information loss: The issue of majority class representation is handled by using a stratified

sampling approach, which selects the number of samples from each group based on its size,

ensuring that the samples picked are representative of the majority class as a whole.

• Scale variants: A dataset’s variables are measured in different units and have a diverse

range of values. Existing algorithms, on the other hand, use euclidean distance estimates that

ignore these issues. To address this problem, the suggested method employs the Mahalanobis

distance, which renders the method Scale-Invariant.
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This chapter discusses the method’s novel properties in comparison to other popular and recent

techniques. The primary difference between Parinaz,Lee,Rushi and the proposed technique is that

the former uses clustering to construct groups, whilst the latter does not. Instead, the majority class

samples are divided depending on their distance from the reference point.

6.3 Framework

The classifiers are trained using the new balanced training sets obtained after pre-processing with

MahalCUSFilter. The experimentation employs five-fold cross-validation. The classifier’s output

is the average of the results acquired on five test sets. To test the proposed method’s performance,

two classifiers, C4.5 and kNN are chosen.

MahalCUSFilter separates all instances of the majority class into m bins based on their distance

from their centroid(Negcent). The number of negatives picked in the second phase (NMin) is deter-

mined by stratified sampling, which means that the number of examples chosen from each bin is

determined by the size of the group and the total number of majority class instances chosen from

all groups is equal to the number of minority class examples in the training set. C4.5 and kNN clas-

sifiers are used to test this method, which is then compared against other existing undersampling

strategies using the same classifiers.

Let NMin and NMa j represent the training set’s Minority and Ma jority class instances, respec-

tively. To balance the minority and majority instances, NMin majority examples are selected based

on stratified sampling once the groups are formed. In each group, ri examples are picked so that the

total number of Ma jority class samples chosen equals the total number of Minority class samples.

ri =
size(groupi)

NMa j
NMin 1≤ i≤ k (6.3.1)

Negative samples chosen = Σiri (6.3.2)

6.4 Algorithm

6.5 Experiments and Results

6.5.1 Details of the Datasets

In the experiments, binary class data sets are employed. Multi-class data sets are transformed

to binary class by assigning the required class to the minority class and the remaining classes to
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the majority class. To test the performance of the proposed approaches on small, medium, and

large numbers of attributes, instances, and imbalance ratio, the data sets are chosen based on their

number of attributes, number of instances, and imbalance ratio. The data sets are provided in

Table 7.2. Except for the class attribute, all of the values in these data sets are numeric. The data

sets were obtained from the UCI [11], KEEL[7] data repositories, and the tests were carried out

using the KEEL[7], WEKA[138] tools.

Table 6.1: Details of the data sets.

Name of the # Features Total # Imbalance
Data Set Instances Ratio
Ecoli4 7 459 14.3
Haberman 3 306 2.78
Iris0 4 150 2
LibrasMove 90 360 14
NewThyroid1 5 215 5.14
Pima 8 768 1.89
Scene 294 2407 12.6
Spectrometer 93 7797 10.8
Yeast1289Vs7 8 947 30.57

6.6 Discussion

The proposed MahalCUSFilter method is compared to various undersampling methods in the liter-

ature, such as CNN, CNNTL, CPM, OSS, TL which are common among undersampling methods

in the literature. The proposed method differs from the others in the manner in which the majority

class instances are picked. They select and discard majority class samples based on their distance

from minority class samples, whereas MahalCUSFilter selects majority class samples based on

their distance from the reference point Centroid(NegCent). They choose majority class samples us-

ing a kNN classifier but the proposed approaches do not, lowering the computation required to find

nearest neighbours as the size of the data set grows. Table 6.2, show that the suggested technique

outperforms current methods in a few data sets while achieving equivalent results in the remaining

data sets. In no case, the proposed approach has been shown to be inferior in classifying minority

class cases to any of the existing popular undersampling methods.

6.7 Summary

MahalCUSFilter is a hybrid undersampling method to balance the training set by selecting samples

from the majority class equal to the number of samples from the minority class. To balance the
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Table 6.2: Comparison of Sensitivity, GMean and Balanced Accuracy results with c4.5
classifier with Unprocessed Original training set, MahalCUSFilter and other popular un-
dersampling methods.

Data Set Measure Original MahalCUSFilter CNN
(1968)

CNNTL
(2004)

CPM
(2005)

NCL
(2001)

OSS
(1997)

TL
(1976)

Ecoli4 Sensitivity 0.56 0.94 0.75 0.85 0.70 0.65 0.80 0.65
GMean 0.75 0.87 0.83 0.85 0.81 0.80 0.84 0.80
Balanced-
Accuracy

0.77 0.87 0.83 0.85 0.81 0.81 0.84 0.81

Haberman Sensitivity 0.40 0.48 0.54 0.72 0.46 0.74 0.56 0.46
GMean 0.57 0.57 0.62 0.58 0.59 0.62 0.63 0.61
Balanced-
Accuracy

0.62 0.60 0.63 0.60 0.61 0.63 0.64 0.63

Iris0 Sensitivity 0.98 0.98 0.94 0.94 0.80 0.98 0.94 0.98
GMean 0.99 0.99 0.97 0.97 0.69 0.99 0.97 0.99
Balanced-
Accuracy

0.99 0.99 0.97 0.97 0.70 0.99 0.97 0.99

NewThyroid1 Sensitivity 0.91 0.91 0.94 0.97 0.94 0.91 0.94 0.86
GMean 0.95 0.93 0.94 0.92 0.81 0.94 0.94 0.92
Balanced-
Accuracy

0.95 0.93 0.94 0.92 0.82 0.94 0.94 0.92

Pima Sensitivity 0.62 0.77 0.76 0.89 0.51 0.85 0.78 0.69
GMean 0.70 0.74 0.72 0.62 0.65 0.70 0.66 0.71
Balanced-
Accuracy

0.71 0.74 0.72 0.66 0.67 0.72 0.67 0.71

Spectrometer Sensitivity 0.74 0.83 0.84 0.89 0.82 0.76 0.84 0.78
GMean 0.85 0.84 0.81 0.79 0.83 0.85 0.81 0.87
Balanced-
Accuracy

0.86 0.84 0.81 0.80 0.83 0.86 0.81 0.88

Yeast1289vs7 Sensitivity 0.24 0.57 0.20 0.27 0.27 0.07 0.23 0.10
GMean 0.42 0.51 0.45 0.51 0.52 0.26 0.48 0.31
Balanced-
Accuracy

0.62 0.59 0.60 0.62 0.63 0.53 0.61 0.54

LibrasMove Sensitivity 0.63 0.88 0.88 0.79 0.58 0.58 0.79 0.67
GMean 0.78 0.79 0.84 0.78 0.70 0.75 0.79 0.81
Balanced-
Accuracy

0.80 0.80 0.84 0.78 0.71 0.78 0.79 0.83

Scene Sensitivity 0.23 0.61 0.47 0.55 0.35 0.28 0.41 0.24
GMean 0.47 0.61 0.59 0.59 0.54 0.51 0.30 0.47
Balanced-
Accuracy

0.59 0.61 0.61 0.59 0.50 0.60 0.32 0.59

data set, most known undersampling approaches use either (a) prototype selection or (b) clustering

algorithms, both of which are parameter dependent and difficult to achieve convergence.

In this chapter, Scale-Invariant, Variables-Correlation Inherent and Parameter Indepen-

dent algorithm, MahalCUSFilter is proposed. It focuses on issues such as (i) information loss and

(ii) proper representation of the majority class are also taken into account. Furthermore, even for

high-dimensional and big data sets, the method is straightforward to implement and effective.

MahalCUSFilter splits the data set from a global perspective, unlike kNN or clustering algo-

rithms. Specific to a distribution in the case of Euclidean distance-based approaches, data grouping

is a form of circular neighbourhood. As a result, when compared to clustering, where a local

neighbourhood determines the clusters and there is a risk of missing some disjuncts entirely, the

likelihood of selecting samples from the globular neighbourhood is higher. All kNN-based under-

sampling approaches consider a relatively small neighbourhood (K=1,3 or 5). This could lead to
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Table 6.3: Comparison of Sensitivity, GMean and Balanced Accuracy results with
kNN(k=1) classifier with Unprocessed Original training set, MahalCUSFilter and other
popular undersampling methods.

Data Set Measure Original MahalCUSFilter CNN
(1968)

CNNTL
(2004)

CPM
(2005)

NCL
(2001)

OSS
(1997)

TL
(1976)

Ecoli4 Sensitivity 0.69 1.00 0.85 0.85 0.40 0.75 0.80 0.75
GMean 0.82 0.89 0.91 0.90 0.63 0.85 0.88 0.86
Balanced-
Accuracy

0.84 0.89 0.91 0.90 0.69 0.86 0.88 0.87

Haberman Sensitivity 0.50 0.53 0.46 0.69 0.36 0.68 0.53 0.51
GMean 0.53 0.54 0.54 0.54 0.50 0.56 0.53 0.58
Balanced-
Accuracy

0.53 0.55 0.54 0.56 0.53 0.57 0.53 0.58

Iris0 Sensitivity 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
GMean 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Balanced-
Accuracy

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

NewThyroid1 Sensitivity 0.97 1.00 0.97 1.00 0.91 1.00 0.97 0.97
GMean 0.98 0.99 0.97 0.98 0.95 0.99 0.97 0.98
Balanced-
Accuracy

0.98 0.99 0.97 0.98 0.95 0.99 0.97 0.98

Pima Sensitivity 0.53 0.69 0.64 0.89 0.54 0.83 0.84 0.74
GMean 0.65 0.70 0.65 0.56 0.64 0.70 0.68 0.73
Balanced-
Accuracy

0.67 0.70 0.65 0.62 0.65 0.71 0.70 0.73

Spectrometer Sensitivity 0.74 0.85 0.87 0.89 0.84 0.82 0.80 0.78
GMean 0.85 0.90 0.91 0.90 0.91 0.90 0.88 0.88
Balanced-
Accuracy

0.86 0.91 0.92 0.90 0.91 0.90 0.88 0.88

Yeast1289vs7 Sensitivity 0.14 0.70 0.33 0.67 0.27 0.23 0.47 0.13
GMean 0.32 0.66 0.51 0.65 0.50 0.47 0.61 0.36
Balanced-
Accuracy

0.95 0.65 0.56 0.65 0.60 0.59 0.64 0.55

LibrasMove Sensitivity 0.71 0.67 0.75 0.92 0.75 0.88 0.75 0.71
GMean 0.84 0.80 0.85 0.93 0.86 0.92 0.85 0.84
Balanced-
Accuracy

0.85 0.81 0.86 0.93 0.87 0.92 0.86 0.85

Scene Sensitivity 0.17 0.60 0.37 0.63 0.25 0.34 0.44 0.24
GMean 0.41 0.59 0.54 0.59 0.47 0.55 0.58 0.47
Balanced-
Accuracy

0.56 0.59 0.58 0.59 0.56 0.61 0.60 0.58

a lot of bias. Furthermore, when computing the distance between each sample and its class-mean,

correlation among variables is taken into account (centroid). In the case of multi-variable datasets,

this is really desirable.

Empirical evidence backs up the notion. MahalCUSFilter significantly improves minority class

classification rate on all datasets, compared to unprocessed original imbalanced datasets. When

only a few datasets were compared, other well-known undersampling approaches produced better

results. However, such techniques have a larger time and space complexity than MahalCUSFilter.

The following are some of the benefits of the proposed technique: It is variables-correlation

intrinsic, taking into account inter dependencies of variables in a dataset, which is extremely impor-

tant when working with multi-variate datasets. It is independent of any input parameters; it works

with data sets with large instances, large features, small instances, and small features; and it uses

Mahalanobis distance measure to balance the training set, unlike existing undersampling methods
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that use euclidean distance to find the distance/similarity in the process of selecting or discording

majority class instances to balance the training set. The type of grouping used in the suggested

methodologies hasn’t been used in undersampling to improve the classification of imbalanced data

sets yet, according to the literature.
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Algorithm 6.5 Mahalanobis Centroid based UnderSampling with Filter
Let D be a binary class dataset 〈X ,Y 〉, where X = X1,X2, . . . ,Xn, each Xi is a m−
dimensional Vector with m attributes and is associated with a label Y = 0,1
N represents the size o f the dataset
NMin represents the size o f Positives in the dataset
NMa j represents the size o f Negatives in the dataset
NMin
NMa j

> 1.5
NG = 10, NG Represents Number o f Groups

1: procedure MAHALCUSFILTER(IT S) . IT S,anImbalancedTrainingSet
2: for j ∈ NMa j do
3: Negcent j = ∑

NMa j
i=1 Xi j/NMa j

4: end for
5: DistMahal =

√
(
−→
X −−→µ )T S−1(

−→
X −−→µ ) .

µ is NegCent , S is CoVariance matrix o f Negatives
6: DistMahali =

DistMahali−min(DistMahal)
max(DistMahal)−min(DistMahal) . DistMahal is Normalized .

max() gives maximum− value among the given input distance values
7: . min() gives minimum− value among the given input distance values
8: for i ∈ {1 to NMa j} do
9: for j ∈ {1 to NG in steps o f 1} do

10: for k ∈ {0 to 1 in steps o f (1/NG)} do
11: if (DistMahali ≥ k)∧ (DistMahali ≤ k+(1/NG)) then
12: Group j← Xi
13: end if
14: end for
15: end for
16: end for
17: for k ∈ {1 to NG in steps o f 1} do
18: rk =

size(Groupk)
NMa j

∗NMin

19: groupk = random(Groupk,rk) . Randomly Pick rk instances f rom Groupk
20: end for
21: NMa j−New = Σ

NG
k=1groupk

22: New−Training = NMin +NMa j−new
23: Balanced−Training = NewTraining−MCI . MCI are misclassi f ied instances
24: end procedure



Chapter 7

Hybrid Multi Objective

Optimization Method (SAUS)

The classification process is hugely affected by the training data employed for training. The prob-

lem is determining the appropriate training set. Another key challenge is determining which col-

lection of cases comprises a training set that allows the classifier to generalise well. Traditional

classifiers work under the assumption that the training sets’ classifications are evenly distributed.

As a result, the cost of misclassification is the same for all classes, and accuracy is used to eval-

uate the classifier’s performance, taking into consideration both classes’ correct classification rate

equally. [65, 66]. Traditional classifiers suffer from biased classification towards the majority

class, resulting in a low minority class prediction rate, making learning from imbalanced datasets

a difficult topic in machine learning research. The reasons for this poor performance have been

recognised as the fundamental assumptions of equal class distribution and accuracy-driven evalua-

tion. Furthermore, false negatives are penalised more severely than false positives. To address this

problem, a straightforward logical answer is to create a balanced training set from the imbalanced

one. For a given imbalanced set, however, numerous such balanced training sets can be produced,

from which an ideal balanced training set must be obtained. This is a computationally hard problem

with a high likelihood of local-optimal maxima and minima.

Meta-heuristics can be used to obtain such balanced set. In the case of meta-heuristic ap-

proaches, a candidate solution is improved iteratively using a provided quality metric. While meta-

heuristics do not guarantee an optimal solution, they do aid in the development of near-optimal

solutions. Meta-heuristics look for candidate solutions in very wide spaces and usually make no or

few assumptions about the optimization problem, according to [4].

83
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7.1 Related Work

Zhi et al. presented the SNGEIP technique [31], with the main goal of producing diversity by using

sample generation to create distinct training sets for different base classifiers while also regulating

the quantity of generated samples to balance the class distribution.

Using over-sampling and instance selection strategies to learn from imbalanced data, Ireneusz

et al., [36] presented a hybrid methodology. Pawel combined the Random Subspace approach and

stochastic oversampling to solve the problem of imbalanced data categorization in [77].

The paper [12] describes a multi-objective optimization technique based on simulated anneal-

ing that adds the idea of archive to achieve trade-off solutions to challenges. The article by[10]

discusses several principles and variants of algorithms on multi-objective Simulated Annealing.

7.2 Motivation

To balance the imbalanced data sets, the most of under-sampling approaches use either (i)Exhaustive

Search Methods or (ii) Sampling Methods. The first set of techniques has two flaws. The first is

that, because they are based on nearest neighbour approaches, determining nearest neighbours takes

time. The second is that as the number of instances or attributes in the data set grows, the time it

takes to compute k nearest neighbours for each of the majority class samples grows. The second

group of approaches have some limitations as well, such as cluster formation. This necessitates

decision about clustering methodology, the number of clusters to be produced, and whether or not

external or internal validity indices should be used. Simulated annealing is employed in this study

to address these concerns.

7.2.1 Simulated Annealing: A General Approach

Simulated annealing is based on the physical annealing process, in which metals are melted at high

temperatures and then cooled gradually until they achieve a stable condition [71]. Simulated an-

nealing attempts to settle into a final state with the least amount of energy. The functional form that

captures this is the energy level, which is analogous to valley descent. Physical entities typically

shift from high to low energy levels, hence valley descent is a natural result. However, there is a

chance of a probable transition to a higher energy level.

This probability is given by the function given in (Equation 7.2.1), where ∆E is the positive

change in the energy level, T is the temperature, and K is Boltzmann’s constant.
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P = e−∆E/kT (7.2.1)

where ∆E is the positive change in the energy level, T is the temperature, and K is Boltzmann’s

constant.

As a result, the likelihood of a large uphill motion during annealing is smaller than the proba-

bility of a small downhill motion. In addition, as the temperature drops, the likelihood of an upward

move reduces. As a result, such movements are more likely in the beginning of the process when

the temperature is high, and they become less likely as the temperature drops to lower levels. This

approach can be described as allowing downhill moves at any time. Large upward moves are per-

mitted in the early phases of the process, but as the process proceeds, only relatively tiny upward

moves are permitted until the process converges to a local minimum configuration[71].

7.2.2 Simulated annealing for finding a best solution

To find a good solution to an optimization problem, simulated annealing is performed. Simulated

annealing can be applied in circumstances where an objective function must be maximised or min-

imised. Simulated annealing, unlike many other optimization methods such as genetic algorithms,

gradient descent, hill climbing, and so on, avoids getting stuck in a local optimum. This method

produces a solution that is closer to the optimal answer than any other method, while it is not the

greatest. Typically, an optimization algorithm obtains the optimum solution by producing a ran-

dom initial solution and then searching the neighbourhood. If an adjacent solution is better than the

present one, the existing one is updated or kept. However, this may make it to get stuck in a less-

than-ideal spot, such as the local maximum/minimum. Simulated annealing infuses an appropriate

amount of randomness into objects to allow them to escape local optimums early in the process

without straying too far from the solution later on. This enables it to locate a potential solution

regardless of its starting place.

7.3 Framework

To reduce the rate of misclassification in the event of unbalanced data sets, a balanced training set

must be chosen from the original data set. Simulated annealing is presented to achieve optimised

subset selection consisting of majority examples equal to the number of minority examples.
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Instead of using the error rate as the objective (cost) function, the multi-objective optimization

function is Balanced Error Rate. In the event of imbalanced data sets, accuracy alone may not

yield accurate conclusions because it reflects bias towards the majority class, even if zero minority

class cases are accurately identified. As a result, the Balanced Error Rate is utilised because it is an

effective indicator for imbalanced data issues since it reflects the impact of the imbalance, that is,

it considers both majority and minority classification rates when evaluating performance.

The Balanced Error Rate is used as the cost function in this chapter to achieve multi-objective

optimization of both minority class and majority class classification rates. The cost function Bal-

anced Error Rate= (1-Balanced Accuracy) must be minimized, as specified in the algorithm. Bal-

anced Accuracy is a useful metric for assessing the performance of binary class data sets because it

is calculated as the average of the proportion of true classifications for each class independently. Pa-

rameters of Simulated Annealing used for experimentation are given in the Table 7.1. These values

are picked from the literature [71]. Simulated Annealing based UnderSampling Algorithm (SAUS)

is given in Algorithm 7.6 and diagrammatically represented in the Figure 7.1 and the complexity

of SAUS is O(k ∗n2).

In Figure 7.7, SAUS process is depicted. The process is initialised using initial values shown in

Table 7.1. Figure 7.2 shows the initial training set. To balance the training set, Np negatives from

the majority set are chosen for training, where Np is the number of positives in the training set, as

illustrated in Figure 7.3. currentsol is the name of the first balanced training set, which consists

of all positives and chosen negatives. The cost of currentsol that is currentcost , is calculated using

(Equation 7.3.1)

BalancedErrorRate = (1− Sensitivity+Speci f icity
2

) (7.3.1)

As seen in the images, all of the misclassified majority class samples are replaced with their

nearest neighbour majority class samples determined by neighbor(currentsol) as shown in figures

Figure 7.4 and Figure 7.5. This forms new solution, newsol depicted in Figure 7.6. The cost of new

solution, cost(newsol) is calculated using (Equation 7.3.1). If the cost(newsol), that is Balanced Er-

ror Rate of new solution is less than currentcost then currentsol is replaced by the newsol . Otherwise,

accep prob is calculated using (Equation 7.3.2).

accep prob = e(newcost−currentcost)/temp (7.3.2)

If accep prob is greater than a random number, the current solution is replaced with the new so-

lution, despite the fact that the new solution’s cost is higher. It is important to keep in mind that
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the expense must be kept to a minimum. This phase allows you to accept even a terrible solution,

allowing the process to move forward without being slowed down by a local minimum. These pro-

cedures are continued until the temperature meets the user-defined minimum temperature, as stated

in Table 7.1.

Table 7.1: SAUS Parameters, Description and Values [71]

Parameter Description Value
min temp final temperature 0.00001
alpha Cooling Rate 0.9
Max ite Maximum number of iteratons 100
temp initial temperature 1.0

7.4 Algorithm

Algorithm 7.6 Simulated Annealing based UnderSampling(SAUS)
An Imbalanced Data Set A Balanced Data Set Initialize min temp=0.00001, temp=1.0,
alpha=0.9
To balance the training set, select N p negatives from the majority set for training, where
Np is the amount of positives in the training set. currentsol is the first balanced training set
consisting of all positives and chosen negatives.
currentcost ← cost(currentsol)

while ( temp > min temp) do
while (i ≤ Max ite) do newsol ← neighbor(currentsol) newcost ← cost(newsol) ac-

cep prob← e(newcost−currentcost)/temp

if currentcost < newcost then
if accep prob > random() then currentsol ← newsol i ← i+1 temp ←

temp×alpha return currentsol and currentcost

Algorithm 7.7 cost(Solution set)
Solution set Cost of the solution Use the solution set as the training set for the classifica-
tion. return (1− (Sensitivity+Speci f icity)/2);

Algorithm 7.8 neighbour(Solution set)
Solution set neighbour of the current solution set

for (each misclassifed majority class instance) do neighbour ← nearest-
neighbour(misclassified majority class instance) misclassified majority class instance←
neighbour New Solution ← all minority class instances + correctly classified majority
class instances + nearest neighbours of misclassified majority class instances
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Figure 7.1: Process of Simulated Annealing based UnderSampling
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7.5 Experiments and Results

This section contains information about the data sets that are used as well as the evaluation criteria

that are employed. A diverse group of data sets are chosen to verify the efficacy of the suggested

methodology. These are selected to account for the impact of data complexities, attribute complex-

ity, and imbalance ratios. They can be classified as sets with instances (low and high) and attributes

in general (low and high). That is, a high number of features with a small number of instances, a

small number of features with a huge number of instances, and so on. These data sets are listed

in Table 7.2. Binary and multi-class data sets are both taken into account. Multi-class data sets

are converted to binary by making the needed class positive/minority and the remaining classes

negative/majority. The data sets are detailed in Table 7.2. Except for the class attribute, all of the

values in these data sets are numeric. The data sets were obtained from the UCI [11], KEEL[7]

data repositories, respectively.

KEEL[7], Weka[138] tools are used to conduct the experiments. Parameter Values used for

kNN Classifier in the SAUS Experiment are given in Table 7.3. 5-fold cross-validation is used to

compute the performance metrics. Sensitivity and AUC are calculated before and after applying the

proposed method SAUS and the values are presented in tables Table 7.4, Table 7.5 respectively. It

can be observed that sensitivity has improved for all data sets, particularly for pima, yeast1, vehicle

1,2, and 3, ecoli1, yeast3, ecoli3, yeast2vs4, yeast05679vs4, glass016vs2, glass2, yeast1vs7, and

so on. At the same time, it’s worth noting that the AUC values haven’t changed all that much,

indicating that the specificity part hasn’t been compromised.
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Table 7.2: Details of the data sets considered for experimentation.

Name of the Imbalance Number of Number of Class %pos;%neg
Data Set Ratio Features Instances pos;neg

glass1 1.82 9 214 build-win-non float-proc; remainder 35.51,64.49
wisconsin 1.86 9 683 malignant; benign 35.00,65.00
pima 1.90 8 768 tested positive; tested negative 34.84,66.16
iris0 2.00 4 150 Iris-Setosa; remainder 33.33,66.67
glass0 2.06 9 214 build-win-float-proc; remainder 32.71, 67.29
yeast1 2.46 8 1484 nuc; remainder 28.91,71.09
vehicle1 2.52 18 846 Saab; remainder 28.37, 71.63
vehicle2 2.52 18 846 Bus; remainder 28.37, 71.63
vehicle3 2.52 18 846 Opel; remainder 28.37, 71.63
glass0123vs456 3.19 9 214 non-window glass; remainder 23.83,76.17
vehicle0 3.23 18 846 Ven; remainder 23.64,76.36
ecoli1 3.36 7 336 im; remainder 22.92,77.08
new-thyroid2 4.92 5 215 hypo; remainder 16.89, 83.11
new-thryoid1 5.14 5 215 hyper; remainder 16.28, 83.72
ecoli2 5.46 7 336 pp; remainder 15.48, 84.52
segment0 6.01 19 2308 brickface; remainder 14.26,85.74
glass6 6.38 9 214 headlamps; remainder 13.55,86.45
yeast3 8.11 8 1484 m3; remainder 10.98, 89.02
ecoli3 8.19 7 336 imU; remainder 10.88, 89.11
page-blocks0 8.77 10 5472 remainder; text 10.23, 89.77
yeast2vs4 9.08 8 514 cyt; me2 9.92, 90.08
yeast05679vs4 9.35 8 528 me2;mit,me3,exc,vac,erl 9.66,9.034
vowel0 10.10 13 988 hid; remainder 9.01, 90.99
glass016vs2 10.29 9 192 ve-win-float-proc; build-win-float-proc, build-

win-non float-proc, headlamps
8.89, 91.11

glass2 10.39 9 214 ve-win-float-proc; remainder 8.78,91.22
ecoli4 13.84 7 336 om; remainder 6.74, 93.26
yeast1vs7 13.87 8 459 nuc; vac 6.72, 93.28
shuttle0vs4 13.87 9 1829 Rad Flow; Bypass 6.72, 93.28
glass4 15.47 9 214 containers; remainder 6.07,93.93
page-blocks13vs4 15.85 10 472 graphic; hori.line.picture 5.93, 94.07
abalone9vs18 16.68 8 731 18;9 5.65, 94.25
glass016vs5 19.44 9 184 tableware; build-win-float-proc, build-win-

non float-proc headlamps
4.89,95.11

shuttle2vs4 20.5 9 129 Fpv Open; Bypass 4.65, 95.35
yeast1458vs7 22.10 8 693 vac;nuc,me2,me3,pox 4.33,95.67
glass5 22.81 9 214 tableware; remainder 4.20,95.80
yeast2vs8 23.10 8 482 pox; cyt 4.15, 95.85
yeast4 28.41 8 1484 me2; remainder 3.43, 96.57
yeast5 32.78 8 1484 me1; remainder 2.96, 97.04
ecoli0137vs26 39.15 7 281 pp,imL; cp,im,imU,imS 2.49,97.51
yeast6 39.15 8 1484 exc;remainder 2.49, 97.51
abalone19 128.87 8 4174 19;remainder 0.77, 99.23

Table 7.3: Parameter Values used for kNN Classifier in the SAUS Experiment.

For kNN Classifier
Parameter De-
scriptor

Value

k Value 1
Distance Function Euclidean
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Table 7.4: Sensitivity with kNN classifier.

kNN Classifier
Data Set No Sampling SAUS
glass1 0.67±0.12 0.72 ±0.07
wisconsin 0.93±0.01 0.95 ±0.01
pima 0.53±0.03 0.67 ±0.02
iris0 1±0 1 ±0
glass0 0.81± 0.10 0.86 ±0.11
yeast1 0.49±0.02 0.66 ±0.04
vehicle1 0.42±0.03 0.68 ±0.09
vehicle2 0.92±0.01 0.96±0.02
vehicle3 0.5±0.06 0.74 ±0.06
glass0123vs456 0.86±0.05 0.92 ±0.04
vehicle0 0.88±0.05 0.93 ±0.04
ecoli1 0.68±0.12 0.86 ±0.10
new-thyroid2 0.97±0.06 1 ±0
new-thyroid1 0.97±0.06 0.97 ±0.06
ecoli2 0.85±0.13 0.93 ±0.07
segment0 0.99±0.01 1 ±0.06
glass6 0.75±0.16 0.82 ±0.18
yeast3 0.67±0.03 0.88 ±0.03
ecoli3 0.54±0.06 0.89 ±0.11
page-blocks0 0.77±0.03 0.9 ±0.01
yeast2vs4 0.72±0.18 0.86 ±0.11
yeast05679vs4 0.41±0.07 0.78 ±0.11
vowel0 1±0 1 ±0
glass016vs2 0.23±0.27 0.72 ±0.18
glass2 0.28±0.29 0.6 ±0.30
ecoli4 0.99±0.01 0.99 ±0.01
yeast1vs7 0.33±0.11 0.77 ±0.19
shuttle0vs4 0.99±0.01 0.99 ±0.01
glass4 0.67±0.20 0.83 ±0.23
page-blocks13vs4 0.96±0.08 1 ± 0
abalone9vs18 0.29±0.34 0.62 ±0.18
glass016vs5 0.96±0.08 1 ±0
shuttle2vs4 0.9±0.22 1 ±0
yeast1458vs7 0.17±0.16 0.67±0.26
glass5 0.8±0.44 1 ±0
yeast2vs8 0.55±0.20 0.75 ±0.25
yeast4 0.35±0.13 0.82 ±0.14
yeast5 0.7±0.10 1 ±0
ecoli0137vs26 0.7±0.44 0.9 ±0.22
yeast6 0.51±0.21 0.86 ±0.14
abalone19 0±0 0.7 ±0.27



CHAPTER 7. HYBRID MULTI OBJECTIVE OPTIMIZATION METHOD (SAUS) 92

Table 7.5: AUC with kNN classifier.

kNN Classifier
Data Set No Sampling SAUS
glass1 0.76±0.03 0.78 ±0.07
wisconsin 0.95±0.09 0.96 ±0.01
pima 0.67±0.02 0.69 ±0.02
iris0 1±0 1±0
glass0 0.79±0.06 0.84 ±0.06
yeast1 0.65±0.01 0.66 ±0.02
vehicle1 0.54±0.04 0.54 ±0.02
vehicle2 0.92±0.02 0.94±0.01
vehicle3 0.67±0.02 0.72±0.02
glass0123vs456 0.91±0.02 0.93 ±0.03
vehicle0 0.91±0.02 0.92 ±0.02
ecoli1 0.8±0.06 0.85±0.04
new-thyroid2 0.98±0.02 0.98 ±0.01
new-thyroid1 0.98±0.02 0.97 ± 0.02
ecoli2 0.87±0.02 0.91 ±0.07
segment0 1±0 0.99± 0.02
glass6 0.87±0.08 0.89 ±0.10
yeast3 0.81±0.01 0.87 ±0.02
ecoli3 0.74±0.02 0.87±0.04
page-blocks0 0.88±0.01 0.91 ±0.01
yeast2vs4 0.85±0.08 0.87 ±0.05
yeast05679vs4 0.68±0.04 0.76±0.06
vowel0 1±0 0.98 ±0.01
glass016vs2 0.58±0.15 0.69±0.12
glass2 0.58±0.16 0.6 ±0.16
ecoli4 0.87±0.08 0.95±0.01
yeast1vs7 0.64±0.06 0.71 ±0.09
shuttle0vs4 1±0 1 ±0
glass4 0.82±0.09 0.86 ±0.11
page-blocks13vs4 0.98±0.04 0.96±0.02
abalone9vs18 0.63±0.17 0.67 ±0.11
glass016vs5 0.84±0.22 0.93 ±0.02
shuttle2vs4 0.95±0.11 0.94 ±0.13
yeast1458vs7 0.57±0.07 0.64 ±0.13
glass5 0.89±0.22 0.88 ± 0.02
yeast2vs8 0.77±0.10 0.79 ± 0.09
yeast4 0.67±0.07 0.8 ±0.06
yeast5 0.85±0.05 0.96±0.01
ecoli0137vs26 0.84±0.22 0.86±0.10
yeast6 0.75±0.10 0.83 ±0.04
abalone19 0.5±0.01 0.68 ±0.12

7.6 Discussion

Simulated Annealing is a framework that is not dependent on a specific situation. Metaheuristics

can provide a good solution without compromising the computational time for optimization prob-

lems. The ability of simulated annealing to achieve a global optimal solution despite landing in a

local minimum is one of its advantages. It do not require more computer resources and can deliver

acceptable results in a fair amount of time. The proposed method has the advantage of not requiring

any of the criteria such as cluster creation or locating nearest neighbours to all of the majority class

samples. Instead, this method creates a balanced training set that is close to optimal by selecting

a subset of majority class samples in each iteration and determining if the chosen majority class

samples, combined with all minority class samples, give the lowest balanced error rate. Figures
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Figure 7.8 and Figure 7.9 provide an example of data set ecoli1 before and after SAUS application,

respectively. t-sne [1] was used to capture this visualisation. This shows a clear discriminating

barrier, which aids in the classification of minorities. This pattern may be seen in the vast majority

of data sets.

7.6.1 Sensitivity and AUC Results

It is clear from the SAUS experimental results in Tables Table 7.4 and Table 7.5 that sensitivity

and AUC for practically all datasets have improved after using SAUS. The accuracy of the class of

interest, namely the Minority Class Classification Rate, has improved significantly.

7.6.1.1 Small Data sets

The results in Table 7.4 demonstrate that for data sets with low density and fewer instances, such

as glass1, glass0, glass0123vs456, new-thyroid2, new-thyroid1, glass6, glass016vs2,glass2, glass4,

glass016vs5, shuttle2vs4, glass5, and ecoli0137vs26, the classifier’s sensitivity and overall perfor-

mance have improved.

7.6.1.2 Large data sets

The developed framework SAUS also improves outcomes for datasets with more instances, such as

yeast1, segment0, yeast3, pageblocks0, shuttle0vs4, yeast4, yeast5, yeast6, and abalone19.

7.6.1.3 Data sets with low imbalance ratio

Experiments are carried out on datasets ranging from 1.82 to 128.87 in terms of imbalance ratio.

SAUS enhanced the sensitivity of all datasets as compared to the unprocessed original training sets.

SAUS has no effect on the classifier’s overall performance on these datasets.

7.6.1.4 Data sets with high imbalance ratio

Lack of samples is a problem for datasets with a high imbalance ratio. For example, glass5 and shut-

tle2vs4 have imbalance ratios of 22.81 and 20.5, with 214 and 129 positive examples, respectively.

SAUS improves sensitivity in these circumstances as well, but because to the loss of information

in undersampling, there is little improvement in total performance. However, because Simulated

Annealing do not get stuck in a local optimum and instead seeks to reach the global optimum, the

AUC has not decreased considerably after SAUS undersampling.
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7.6.1.5 Performance of SAUS on Phishing data set

Web service is one of the most important Internet communications software services. One of the

most common security dangers to web services on the Internet is web phishing. By impersonating

a reputable company, web phishing collects personal information such as usernames, passwords,

and credit card numbers. This results in the leaking of information, which may cause harm to the

users, according to [144].

[37, 43, 72] present a survey on Phishing research. The performance of the algorithm presented

in the study [63] is 84% sensitivity and 97% percent specificity, but the approach proposed in this

study, SAUS, obtained 93% sensitivity and 97% specificity.

7.6.2 Comparison with Latest Method(SNGEIP) Results

Table 7.6 provides a comparison of findings with the most recent study on imbalanced datasets

categorization [31]. Even though it is not precisely an undersampling method, this method is

superior. The proposed technique SAUS has got equivalent results with the recent article on unbal-

anced datasets classification, as shown in Table 7.6. Oversampling and ensembles were utilised in

SNGEIP [31], whereas SAUS just employed undersampling and produced comparable results.

Table 7.6: AUC of SAUS kNN classifier and SNGEIP [31].

Comparison with latest paper
Data Set SNGEIP SAUS
pima 0.75 0.69
iris0 0.98 1.00
glass0 0.81 0.84
yeast1 0.71 0.66
vehicle2 0.97 0.94
vehicle3 0.77 0.72
glass0123vs456 0.94 0.93
vehicle0 0.95 0.92
ecoli1 0.89 0.85
new-thyroid2 0.95 0.98
new-thyroid1 0.95 0.97
ecoli2 0.91 0.91
glass6 0.91 0.89
yeast3 0.93 0.87
ecoli3 0.88 0.87
yeast2vs4 0.90 0.87
vowel0 0.99 0.98
glass016vs2 0.70 0.69
glass2 0.74 0.6
ecoli4 0.90 0.95
shuttle0vs4 1.00 1.00
glass4 0.93 0.86
abalone9vs18 0.60 0.67
glass016vs5 0.96 0.93
shuttle2vs4 1.00 0.94

Average 0.88 0.8612
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7.6.3 Data Complexity Measures

Datacomplexity measurements of datasets are taken into account to further analyse how the sug-

gested strategy performs on datasets with diverse properties in addition to class imbalance. These

parameters are used to describe the efficacy of the proposed [60] approach. For analysing the influ-

ence of SAUS before and after data selection, four measures are identified: Fraction of points on

Class Boundary(N1), Ratio of average intra/inter class closest neighbour distance(N2), Error rate

of 1NN Classifier(N3), and Fraction of points with related adherence subsets retained(T1).

7.6.3.1 Definitions

Fraction of points on Class Boundary(N1): The percent of points on the boundary over the

total number of points in the data set is used to calculate N1. This metric is calculated using the

Minimum Spanning Tree idea (MST). The data set’s points are all linked to their nearest neigh-

bours. The number of points in the MST that are connected to the opposite class by an edge is then

counted. These points are thought to be near the class boundary, according to [118].

Ratio of average intra/inter class nearest neighbor distance(N2): This method compares the

intra-class dispersion to the inter-class separability. The average distance to intra-class nearest

neighbour divided by the average distance to inter-class nearest neighbour is the ratio. Smaller

values indicate data that is more discriminating.[118].

Error rate of 1NN Classifier(N3): This method uses the leaving-one-out method to determine the

nearest neighbour classifier’s error rate.[118].

Fraction of points with associated adherence subsets retained (T1): This metric counts how

many samples are required to cover each class, with each sample being centred at a training point

and enlarged to its maximum size before reaching a point from another class. Samples that are fully

redundant in the interior of other samples are eliminated. The total number of points is then used

to normalise the count. Instead of a boundary description, this provides an inner description [118].

KEEL Tool [7] was used to calculate all of the measurements stated above. Table 7.7 provides

a more detailed discussion of these data complexity measures. The complexity of a dataset has a

significant impact on categorization accuracy. As a result, the intricacies of the training sets before

and after SAUS are discovered. The results are provided in Table 7.8.

7.6.3.2 N1 Results

(N1) is the percent of points on the Class Boundary, as defined in Table 7.7. The bulk of the points

were close to the class boundary, as indicated by the high value of the measure.
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Table 7.7: Description of Data Complexity Measures.

DC Mea-
sure

Description Range Analysis

N1 Fraction of points on Class
Boundary

[0,1] Large Values of the measure in-
dicate that the majority points
lay closely to the class bound-
ary

N2 Ratio of average intra/inter
class nearest neighbor distance.
This measure compares the
within-class spread to the size
of the gap between classes.

[0, in f inity] Low values suggests that the
examples of the same class lay
closely in the feature space.
Large ones indicate that exam-
ples of the same class are dis-
perse.

N3 Error rate of 1NN Classifier [0,1] Low value of this metric indi-
cates that there is a large gap in
the class boundary.

T1 Fraction of points with associ-
ated adherence subsets retained

[0,1] Small values of this mea-
sure indicates that the instances
which compose the dataset are
highly grouped and the bound-
aries are clearly defined.

As demonstrated in Table 7.8, the datasets glass1, pima, glass0, yeast1, vehicle1 have sub-

stantial values of N1 in the unprocessed (imbalanced) training set. That suggests there are more

instances near to the class boundary, deceiving the classifier into properly identifying unseen oc-

currences. The proposed method has chosen balanced training sets in each iteration, lowering the

cost function, that is (1-Balanced Accuracy). Internally, it selects training sets with instances that

have a smaller number of occurrences near the class boundary.

7.6.3.3 N2 Results

N2 is a metric that relates the dispersion within classes to the magnitude of the gap between them.

Low values imply that examples of the same class are clustered together, whereas high values

indicate that they are spread. In each iteration, SAUS has chosen a random majority of cases; no

extra processing is done to increase or decrease the spread of the magnitude of the gap between

classes.

However, while the N2 value increased in several datasets, such as Wisconsin, glass0213vs456,

ecoli2, lass6, yeast2vs4, glass2, yeast1458vs7, yeast2vs8, yeast4, yeast5, yeast6, the sensitivity

and AUC of the datasets rose after applying SAUS. It’s worth noting that SAUS had no effect on

the spread of similar-class instances. In these datasets, other dataset factors affect the classifier’s

performance more than this measure.
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7.6.3.4 N3 Results

The N3 data complexity measure represents the error rate of a 1NN classifier. This metric’s low

value indicates a significant gap in the class boundary. A larger gap in the class boundary increases

the classifier’s performance. The classifier utilised to evaluate SAUS’s performance in this paper is

1NN. SAUS has found balanced training sets with a big gap in the class border, as indicated by the

lower values of N3 in the Table 7.8.

7.6.3.5 T1 Results

T1, which indicates the percent of points with related adherence subsets retained, is another data

complexity measure calculated on these datasets. This metric was reduced in virtually all datasets

after applying SAUS, indicating that the instances that make up the dataset are well clustered and

the borders are well defined. This is because, while SAUS chooses the bulk of cases at random, it

focuses on balanced sets, which boost the classifier’s performance. Internally, this means selecting

a balanced set with instances that properly define the boundaries.

Table 7.8: Comparison of Data Complexity Measures.

Data Set Training Set N1 N2 N3 T1

glass1 Original 0.5476 0.3938 0.3095 0.6190

SAUS 0.0819 0.3373 0.0409 0.3032

wisconsin Original 0.0735 0.2037 0.0367 0.1176

SAUS 0.0235 0.2302 0.0157 0.0602

pima Original 0.4901 0.4588 0.3071 0.7124

SAUS 0.1116 0.3771 0.0534 0.3953

iris0 Original 0.0667 0.1380 0 0.0667

SAUS 0.025 0.1155 0 0.025

glass0 Original 0.4285 0.3681 0.2619 0.5714

SAUS 0.0892 0.3057 0.0446 0.2678

yeast1 Original 0.4560 0.4417 0.3243 0.6216

SAUS 0.0537 0.3263 0.0247 0.2427

vehicle1 Original 0.4319 0.4209 0.2366 0.7041

SAUS 0.2068 0.4036 0.1293 0.5948

vehicle2 Original 0.1893 0.3445 0.0828 0.4378

SAUS 0.06 0.3198 0.0228 0.3571
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vehicle3 Original 0.4319 0.4248 0.3076 0.6745

SAUS 0.1970 0.3945 0.0911 0.6323

glass0123vs456 Original 0.0714 0.2272 0.0714 0.2142

SAUS 0.0731 0.2582 0.0243 0.2317

vehicle0 Original 0.1834 0.3013 0. 0887 0.4319

SAUS 0.0562 0.2962 0.0187 0.2906

ecoli1 Original 0.2835 0.3301 0.1641 0.2985

SAUS 0.0645 0.3007 0.0322 0.1451

new-thyroid2 Original 0.1162 0.2667 0.0697 0.1627

SAUS 0.0357 0.2360 0 0.0892

new-thyroid1 Original 0.0930 0.2734 0.0232 0.1162

SAUS 0.0357 0.2460 0 0.0357

ecoli2 Original 0.1641 0.2726 0.0895 0.2238

SAUS 0.1428 0.3345 0.0357 0.2619

segment0 Original 0.0260 0.1557 0.0086 0.0911

SAUS 0.0114 0.1776 0.0019 0.0684

glass6 Original 0.0476 0.1750 0 0.1428

SAUS 0.2083 0.3206 0.0833 0.2291

yeast3 Original 0.0979 0.3250 0.0540 0.2398

SAUS 0.0496 0.3107 0.0267 0.1793

ecoli3 Original 0.1641 0.2568 0.1343 0.2388

SAUS 0.1071 0.3238 0.0357 0.25

yeast2vs4 Original 0.0980 0.3313 0.0784 0.1862

SAUS 0.0609 0.3536 0.0365 0.2560

yeast0567vs4 Original 0.1904 0.3656 0.1047 0.3714

SAUS 0.0853 0.3474 0.0365 0.2560

vowel0 Original 0.1065 0.2327 0.0355 0.1522

SAUS 0.0972 0.2317 0.0208 0.2013

glass016vs2 Original 0.1842 0.3974 0.1315 0.2894

SAUS 0.2142 0.3896 0.0357 0.5357

glass2 Original 0.1904 0.3356 0.0714 0.2380

SAUS 0.25 0.3750 0.0714 0.4642

ecoli4 Original 0.0746 0.2170 0.0447 0.1194
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SAUS 0.0937 0.2967 0.0312 0.1562

yeast1vs7 Original 0.1648 0.3739 0.1208 0.2857

SAUS 0.1041 0.3640 0.0416 0.4583

shuttle0vs4 Original 0.0109 0.0536 0 0.0136

SAUS 0.0101 0.0746 0 0.0202

glass4 Original 0.0952 0.2627 0.0238 0.1667

SAUS 0.1818 0.2987 0.0454 0.4090

yeast1458vs7 Original 0.1086 0.3597 0.0724 0.1667

SAUS 0.3541 0.4032 0.1458 0.625

yeast2vs8 Original 0.1354 0.3343 0.0833 0.1667

SAUS 0.2812 0.3771 0.125 0.5625

yeast4 Original 0.0743 0.2988 0.0506 0.1216

SAUS 0.0731 0.3527 0.0365 0.3170

yeast5 Original 0.037 0.2138 0.0270 0.0608

SAUS 0.0555 0.2938 0.0277 0.1667

yeast6 Original 0.0405 0.2646 0.0236 0.0979

SAUS 0.1428 0.3590 0.0714 0.375

7.6.3.6 Comparison with Other Methods

The proposed technique is compared to several widely used undersampling methods in the litera-

ture, such as CNN, CNNTL, CPM, SBC, OSS, RUS, and TL. Table 7.9 contains parameter values

for alternative undersampling algorithms. The default values in KEEL are as follows. On the parti-

tions generated to evaluate the SAUS algorithm, we ran these algorithms accessible in KEEL. They

haven’t been re-implemented. Many of these methods use a kNN classifier to choose the samples,

however the suggested method do not employ a classifier at all. Table 7.10 demonstrates that the

suggested method outperforms current methods in a few data sets while achieving equivalent re-

sults in the remaining data sets. The proposed method has never been shown to be inferior to any

of the existing popular undersampling strategies.
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Table 7.9: Parameter Values of other Undersampling Methods used in Experiment.

Other Undersampling Methods
Method Parameter Description Value
CNN seed 1

Number of Neighbors 5
CNNTL seed 1
CPM seed 1
NCL seed 0

Number of Neighbors 5
OSS seed 1

Number of Neighbors 5

Table 7.10: Comparison of AUC with Other UnderSampling Method.

data set CNN CNNTL CPM NCL OSS SAUS
glass1 0.78 0.69 0.73 0.74 0.75 0.78
wisconsin 0.95 0.96 0.89 0.96 0.96 0.97
pima 0.64 0.65 0.62 0.70 0.67 0.69
iris0 1.0 1.0 1.0 1.0 1.0 1.0
glass0 0.77 0.74 0.74 0.82 0.80 0.84
yeast1 0.61 0.63 0.60 0.68 0.65 0.66
vehicle2 0.92 0.89 0.92 0.94 0.92 0.94
vehicle1 0.63 0.66 0.61 0.70 0.67 0.68
vehicle3 0.68 0.71 0.67 0.70 0.69 0.72
glass0123vs456 0.91 0.89 0.90 0.95 0.90 0.93
vehicle0 0.91 0.90 0.87 0.92 0.92 0.92
ecoli1 0.79 0.82 0.74 0.87 0.83 0.88
new-thyroid2 0.96 0.96 0.94 0.98 0.96 0.98
new-thyroid1 0.96 0.97 0.94 0.98 0.96 0.98
ecoli2 0.83 0.77 0.88 0.90 0.85 0.91
segment0 0.99 0.98 0.97 0.99 0.99 1.0
glass6 0.85 0.80 0.85 0.88 0.83 0.89
yeast3 0.81 0.84 0.78 0.86 0.85 0.87
ecoli3 0.76 0.80 0.69 0.81 0.81 0.87
page-blocks0 0.86 0.88 0.86 0.90 0.88 0.91
yeast2vs4 0.81 0.84 0.78 0.88 0.86 0.87
yeast05679vs4 0.68 0.73 0.71 0.73 0.71 0.76
vowel0 0.99 0.99 0.96 0.97 0.99 1.0
glass016vs2 0.56 0.62 0.60 0.67 0.66 0.69
glass2 0.65 0.68 0.63 0.65 0.65 0.6
ecoli4 0.90 0.89 0.69 0.70 0.87 0.95
yeast1vs7 0.67 0.67 0.65 0.69 0.68 0.71
shuttle0vs4 1.0 1.0 1.0 1.0 1.0 1.0
glass4 0.82 0.88 0.72 0.70 0.88 0.86
page-blocks13vs4 0.97 0.97 0.89 0.90 0.95 0.98
abalone9vs18 0.64 0.62 0.63 0.64 0.59 0.67
glass016vs5 0.83 0.87 0.88 0.87 0.88 0.93
shuttle2vs4 0.95 0.94 0.95 0.94 0.95 0.95
yeast1458vs7 0.58 0.62 0.61 0.62 0.60 0.64
glass5 0.93 0.96 0.89 0.89 0.92 0.89
yeast2vs8 0.79 0.77 0.72 0.75 0.78 0.79
yeast4 0.67 0.77 0.71 0.73 0.71 0.8
yeast5 0.85 0.91 0.83 0.85 0.89 0.96
ecoli0137vs26 0.84 0.78 0.83 0.84 0.74 0.86
yeast6 0.71 0.77 0.79 0.78 0.77 0.83
abalone19 0.47 0.50 0.54 0.51 0.52 0.68
Average 0.8029 0.8126 0.7856 0.8192 0.8168 0.8497
Average for IR>10 0.78 0.8005 0.7642 0.7737 0.7910 0.8310
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7.6.4 Friedman test

The Friedman test compares three or more matched or paired groups and is a non-parametric test.

Each matched set (each row) is first ranked from low to high by the Friedman test. Each row is

given its own ranking. The ranks in each group are then added up (column). The p value will be

minimal if the sums are considerably diverse. Compare the p-value to the significance threshold

to see if the differences between the medians are statistically significant and to evaluate the null

hypothesis. According to the null hypothesis, all population medians are equal. A significance

level of 0.05 (abbreviated as al pha or alpha) is usually sufficient. A significance level of 0.05

represents a 5% chance of finding that there is a difference when there isn’t one.

Because non-parametric tests are commonly employed, the Friedman test is used to assess

which approach is the best among the undersampling approaches, including the newly presented

approach [51]. It turns out that the strategy proposed is the most effective. It is the lowest ranked

(best). In the case of a non-parametric test, the data does not have to originate from a specific

distribution. Table 7.11 shows the average ranks attained by each procedure in the Friedman test.

Algorithm Ranking
CNN-kNN 4.1585

CNNTL-kNN 3.878
CPM-kNN 4.9268
NCL-kNN 2.8902
OSS-kNN 3.5122

SAUS-kNN 1.6341

Table 7.11: Average rankings of the algorithms (Friedman). Friedman statistic (distributed
according to chi-square with 5 degrees of freedom): 75.74216.
P-value computed by Friedman Test: 0.

Table 7.12 shows the p-values obtained by using Post-hoc comparison methods to the Fried-

man procedure findings. The null hypothesis is rejected if the p-value is less than or equal to the

significance level, indicating that not all group medians are equal. There is insufficient evidence

to reject the null hypothesis that the group medians are all equal if the p-value is greater than the

significance level.

i algorithm z = (R0−Ri)/SE p
5 CPM-kNN 7.968798 0
4 CNN-kNN 6.109412 0
3 CNNTL-kNN 5.430588 0
2 OSS-kNN 4.545166 0.000005
1 NCL-kNN 3.039949 0.002366

Table 7.12: Post-Hoc comparison Table for α = 0.05 (FRIEDMAN)



CHAPTER 7. HYBRID MULTI OBJECTIVE OPTIMIZATION METHOD (SAUS)102

Adjusted P-values obtained through the application of the post-hoc methods (Friedman) are

shown in Table 7.13.

i algorithm unadjusted p
1 CPM-kNN 0
2 CNN-kNN 0
3 CNNTL-kNN 0
4 OSS-kNN 0.000005
5 NCL-kNN 0.002366

Table 7.13: Adjusted p-values (FRIEDMAN)

The AUC values produced using the kNN Classifier and popular UnderSampling methods

CNN, CNNTL, CPM, NCL, OSS, and Simulated Annealing based UnderSampling (SAUS) are

visually depicted in Figure 7.10. As shown in the Figure 7.10, the suggested approach SAUS out-

performs other widely used Under Sampling methods.

Table 7.14: Comparison of AUC results of proposed methods with other undersampling
techniques using C4.5.(- indicate results not obtained even after 300 seconds)

Data set CNN
(1968)

CNNTL
(2004)

CPM
(2005)

SBC
(2006)

NCL
(2001)

OSS
(1997)

RUS
(2004)

TL
(1976)

SAUS

Ecoli4 0.83 0.84 0.81 0.81 0.81 0.84 0.86 0.81 0.84
Haberman 0.63 0.59 0.61 0.57 0.63 0.64 0.61 0.63 0.66
Isolet5 0.84 0.86 0.57 0.57 0.86 0.86 0.87 0.81 0.89
LibrasMove 0.84 0.77 0.70 0.50 0.78 0.79 0.73 0.83 0.80
Newthryroid1 0.93 0.92 0.82 0.94 0.94 0.94 0.91 0.92 0.95
Spectrometer 0.81 0.79 0.83 0.62 0.85 0.81 0.85 0.87 0.85
Vowel0 0.92 0.92 0.89 0.95 0.92 0.92 0.94 0.97 0.94
Yeast1289vs7 0.59 0.61 0.63 0.5 0.53 0.61 0.60 0.54 0.66

7.6.5 Comparison with Oversampling and Ensemble Methods

To know the performance of the proposed methods with respect to other methods of class imbalance

viz., oversampling, ensemble based, algorithm based and cost-sensitive based, it is compared with

each of them available in KEEL. Results shown in the Table 7.17 prove that the proposed method

is not inferior to any of the existing methods and is giving comparable results.

Post-hoc tests decide which groups are significantly different from each other, based upon the

mean rank differences of the groups. Post hoc comparison (Friedman) is done to compare proposed

SAUS with other popular undersampling methods. P-values obtained by applying post hoc methods

over the results of Friedman procedure are shown in Table 7.19.

Adjusted P-values obtained through the application of the post hoc methods (Friedman).
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Table 7.15: Comparison of AUC results of proposed method with OverSampling tech-
niques using kNN. (- indicate results not obtained even after 300 seconds)

Data set ADASYN
(2008)

ADOMS
(2008)

Borderline-
SMOTE (2005)

ROS
(2004)

SafeLevel-
SMOTE
(2009)

SMOTE-
TL (2004)

SMOTE
(2002)

SAUS

Ecoli4 0.90 0.91 0.89 0.87 0.87 0.92 0.93 0.91
Haberman 0.54 0.57 0.58 0.54 0.54 0.59 0.58 0.58
Isolet5 0.96 - 0.98 0.94 0.79 0.98 0.97 0.91
LibrasMove - - - - - - 0.91 0.93
Newthryroid1 0.97 0.97 0.97 0.97 0.97 0.97 0.95 0.94
Spectrometer - - - - - - - 0.93
Vowel0 0.99 1.00 1.00 1.00 1.00 0.99 0.99 0.98
Yeast1289vs7 0.60 0.58 0.59 0.55 0.55 0.63 0.60 0.64

Table 7.16: Comparison of AUC results of proposed methods with other OverSampling
techniques using C4.5. (- indicate results not obtained even after 300 seconds)

Data set ADASYN
(2008)

ADOMS
(2008)

Borderline-
SMOTE
(2005)

ROS
(2004)

SafeLevel-
SMOTE
(2009)

SMOTE-
TL
(2004)

SMOTE
(2002)

SAUS

Ecoli4 0.87 0.90 0.84 0.84 0.89 0.87 0.95 0.84
Haberman 0.63 0.59 0.61 0.55 0.63 0.59 0.63 0.66
Isolet5 0.82 - 0.88 0.84 - 0.89 0.86 0.89
LibrasMove 0.76 0.87 0.89 0.82 0.83 0.83 0.85 0.80
Newthryroid1 0.95 0.95 0.96 0.96 0.95 0.95 0.93 0.95
Spectrometer 0.90 0.87 0.83 0.85 0.86 0.86 - 0.85
Vowel0 0.96 0.98 0.97 0.95 0.95 0.98 0.97 0.94
Yeast1289vs7 0.68 0.66 0.54 0.66 0.64 0.58 0.67 0.66

7.7 Summary

Conventional classifiers are error rate/accuracy driven, which means that they evaluate the classi-

fier’s performance based on an equal distribution of classes. A Simulated Annealing-based Under

Sampling (SAUS) method is presented to resolve these difficulties. Simulated annealing is a promi-

nent meta-heuristic search strategy that uses a novel cost function in terms of Balanced Error Rate

to construct a novel cost function. While analysing the solution at each iteration in the subsampling

process, this cost function strikes a balance between Sensitivity and Specificity measures and is

also free of the local trap.

Table 7.17: Comparison of AUC results of proposed methods with some Ensemble Meth-
ods, Cost Sensitive and Algorithm based methods. (- indicate results not obtained even
after 300 seconds)

Data set Balance
Cascade
(2009)

Easy En-
semble
(2009)

AdaC2
(2007)

CSVMCS
(2009)

C45CS
(2002)

NNCS
(2006)

SAUS-
kNN

SAUS-
c4.5

Ecoli4 0.84 0.85 0.92 0.95 0.86 0.87 0.91 0.84
Haberman 0.61 0.65 0.56 0.61 0.57 0.62 0.58 0.66
Isolet5 - - - - - 0.50 0.91 0.89
LibrasMove - - - - - 0.50 0.93 0.80
Newthryroid1 0.93 0.93 0.94 0.98 0.97 0.82 0.94 0.95
Spectrometer - - - - - - 0.93 0.85
Vowel0 0.94 0.94 - 0.97 0.94 0.68 0.98 0.94
Yeast1289vs7 0.65 0.65 0.63 - 0.67 0.51 0.64 0.66
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Algorithm Ranking
CNN-c4.5 3.6098

CNNTL-c4.5 3.6585
CPM-c4.5 5.5366
NCL-c4.5 2.9268
OSS-c4.5 3.3902

SAUS-c4.5 1.878

Table 7.18: Average Rankings of the algorithms (Friedman).

i algorithm z = (R0−Ri)/SE p Holm
5 CPM-c4.5 8.85422 0 0.01
4 CNNTL-c4.5 4.309054 0.000016 0.0125
3 CNN-c4.5 4.190997 0.000028 0.016667
2 OSS-c4.5 3.659744 0.000252 0.025
1 NCL-c4.5 2.53821 0.011142 0.05

Table 7.19: Post Hoc comparison Table for α = 0.05 (FRIEDMAN)

i algorithm unadjusted p pHolm

1 CPM-c4.5 0 0
2 CNNTL-c4.5 0.000016 0.000066
3 CNN-c4.5 0.000028 0.000083
4 OSS-c4.5 0.000252 0.000505
5 NCL-c4.5 0.011142 0.011142

Table 7.20: Adjusted p-values (FRIEDMAN) (I)

i algorithm unadjusted p
1 CPM-c4.5 0
2 CNNTL-c4.5 0.000016
3 CNN-c4.5 0.000028
4 OSS-c4.5 0.000252
5 NCL-c4.5 0.011142

Table 7.21: Adjusted p-values (FRIEDMAN) (II)
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In comparison to unprocessed imbalanced training sets and other contemporary techniques, the

experimental findings show a significant increase in sensitivity. This methodology also minimises

the trade-off between sensitivity and specificity, resulting in an overall improvement in AUC values.

This research will be expanded to address the issue of multi-class imbalance in the future. It can

also be used in conjunction with dimensionality reduction. This method is more economical in

terms of complexity and yields better sensitivity values than previous undersampling approaches.

SAUS’s experimental results show that the average Sensitivity measure on the test set has improved

from 0.68 to 0.86, demonstrating its efficacy in addressing the dataset’s imbalance issue. The

results of the Area Under the ROC Curve (AUC) show that SAUS outperforms numerous prominent

undersampling approaches. SAUS is on par with cutting-edge solutions to the problem of class

disparity.

The insights obtained from the proposed method is that, SAUS works for high imbalance ratio,

high dimensional datasets and not suitable for large size datasets, as it takes more time to converge.

Hence, it is recommended to use the proposed Simulated Annealing based Under Sampling method

after applying any prototype reduction methods available in the literature. Major contributions of

this work are:

(i) Simulated Annealing is used in a novel approach to improve the True Positive Rate and overall

performance of the classifier. Using either kNN or clustering algorithms, it is shown to overcome

the disadvantages of classic undersampling methods.

(ii) Simulated Annealing, unlike the other metaheuristics, is not susceptible to local minima/maxima,

resulting in a near-optimal solution. The proposed Simulated Annealing based Under Sampling

(SAUS) method outperforms numerous prominent and recent Under Sampling methods such as

CNN, CNNTL, OSS, and others, increasing the average AUC value from 0.80% to 0.84%. Its

performance is comparable to that of the most recent approach, SNGEIP [31]. In comparison to

original data sets meeting the chosen aim, the proposed technique improves the True Positive Rate

by 18%. AUC values suggest that the specificity is not compromised. The proposed technique has

a lower time complexity than the other common approaches with which it is compared.
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.5

Figure 7.2: Imbalanced Training Set

.5

Figure 7.3: Randomly chosen Initial balanced training set, currentsol .

.5

Figure 7.4: Misclassified Majority class Instances in the balanced training set are repre-
sented by©.

.5

Figure 7.5: Choosing nearest majority class samples(represented by 4) of misclassified
majority class samples(represented by ©) of current step from total imbalanced training
set.

.5

Figure 7.6: Balanced Training Set in the current iteration after replacement of misclassified
samples© by their nearest majority class samples4, newsol .

Figure 7.7: Step by Step process of SAUS
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Figure 7.8: Before applying SAUS.

Figure 7.9: After the application of SAUS
Example of ecoli1 data set before and after applying SAUS. ’+’ denotes the positive class

and ’-’ denotes a negative class sample.
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Figure 7.10: SAUS AUC kNN comparision with other undersampling methods



Chapter 8

Conclusions and Future Scope

8.1 Conclusions

This thesis attempts to tackle the issue of classifying datasets that have imbalanced information,

where a majority class of data outnumbers a minority class of data in the two-class classification

problem. Classification methods such as k-Nearest Neighbor, Decision Tree, Neural Networks,

and Naive Bayes suffer when applied on imbalanced datasets. As a solution to the problem, this

thesis presents five solutions: Ensemble-based prototype generation, Quartiles-based distribution,

Mahalanobis distance based undersampling, Simulated annealing, and Centroid-based groupping.

”No Free Lunch Theorem” as described by Wolpert [139], states that no single model can be the

most effective for all the problems. However, the objectives of the proposed work achieved are:

• Increasing Sensitivity

• Parameter Independence

• Information Loss

• Maintaining trade-off between Majority Class and Minority Class prediction rate

Additionally,

• Scale Invariant

• Variable-Independence

Objective 1: Increasing Sensitivity By reducing the impact of majority class on the classifier,

Sensitivity is improved in all the proposed methods.

109
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1. ECST: In this approach, positives and negatives are chosen from the bins using stratified

sampling to balance the training sets. Hence, Sensitivity is improved.

2. CBG: Equal Number of prototypes are generated from both the classes to reduce the impact

of negatives on classification and to increase Sensitivity.

3. QUS: Balanced training set is constructed by selecting negatives equal to the number of

positives from groups formed based on Quartiles. Hence, Sensitivity is increased as the size

of negatives is reduced thereby reducing it’s impact on classification.

4. MahalCUSFilter: Sensitivity is increased as the negatives influence on classifier is reduced

as their size is taken equal to the size of positives by forming Centroid based groups. Again

stratified sampling is used to achieve this.

5. SAUS: Balanced Training Set is generated in each iteration of Simulated annealing approach

which reduces the impact of size of negatives on classification thereby increasing Sensitivity.

Objective 2: Parameter Independence Unlike clustering algorithms, where the number of

clusters and validation mechanism to be used to get appropriate clusters, parameter independence

is achieved by the proposed methods.

1. ECST: It is found that the number of bins are not impacting the sensitivity rates. Hence there

is not much dependence on the parameter values.

2. CBG: In this prototypes are generated from the centroid based groups. These are indepen-

dent of any parameters as in Clustering algorithms.

3. QUS: Number of groups based on each instance distance from quartile reference point is

fixed. This is purely parameter-independent.

4. MahalCUSFilter: Number of groups formed based on centroid is not affecting the classifier.

Default number of groups taken is 10, here. It is not much dependent on the number of

groups(parameters) unlike Clustering algorithms.

5. SAUS: The default values which are set to parameters for Simulated Annealing based Un-

dersampling approach are not affecting the classifier performance, they impact only on com-

plexity.

Objective 3: Information Loss

Selecting representative samples from the majority class from the entire distribution of the samples

without missing the disjuncts is important to enhance the classifier performance.
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1. ECST: Instances selected from Majority class are not chosen randomly. They are chosen

based on their distance from reference point and bins are formed. Hence, they are represen-

tative of the entire negatives distribution. Information loss is restricted through this.

2. CBG: The prototypes generated from groups formed by first partitioning the majority class

instances into groups based on their similarity with their average behaviour(Centroid). No

single negative instance is discarded in this method. This also eliminates the outlier effect

on the classifcation process.

3. QUS: Groups are formed as per Quartiles as reference points. Hence, all the negatives are

partitioned based on their distance from quartiles. Hence, the formed training set resembles

the original training set. Here also, the information loss is restricted.

4. MahalCUSFilter: The majority class instances are chosen using stratified sampling from the

groups formed by their Mahalanobis distance from their centroid. There by taking care of

information loss.

5. SAUS: The concept of choosing an optimal Balanced Set among several possible solutions

i.e., several possible balanced sets from the given imbalanced dataset leads to less informa-

tion loss and gives good classification performance.

Objective 4: Trade-off Between Majority Class and Minority Class prediction rates Using

evaluation measures like G-Mean, AUC, and Balanced-Error Rate in all the proposed methods, the

process of creating Balanced Training Sets from an Imbalanced set .

Objective5: Scalability All the methods proposed here are scalable. They all are of O(n) com-

plexity.

Two more Objectives Additionally, the following two more objectives Scale Invariant and

Variable-Independence are achieved in MahalCUSFilter by using Mahalanobis distance measure.

Figure 8.1: (Comparision of Proposed Methods in RSCI-Thesis)
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The methods proposed in this thesis are compared with respect their AUC values. Figure

Figure 8.1 shows the comparison plot. All the methods are giving good results, however it is clear

that SAUS is predominant giving better results than other methods. Reason for this could be that

SAUS is based on metaheuristics and a better balanced set is obtained through this.

8.2 Future Scope

The findings of this study’s research and experiments suggest that there are many more possibilities

to pursue in order to find more solutions to the problem of class imbalance. This section outlines

the most important future research directions.

• Instead of limiting the training set to 30% of the dataset, the first contribution, ECST might

be extended to include balancing the training set.

• The second proposed approach, CBG, is a prototype-generated method for classifying datasets

that are unbalanced. This research can be used to solve the classification challenge for

attribute-noise datasets.

• The third contribution, QUS, which dealt with quartiles, can be improved by using the Ma-

halonobis distance measure to account for the dataset’s interdependencies of variables.

• In the fourth proposal, MahalCUSFilter, the use of a filter as a last step actually causes the

problem of overfitting. As a result, it’s performance can deteriorate. As a future develop-

ment of this study, it could be used with oversampling methodologies to improve the overall

classification rate’s performance.

• Simulated Annealing based on Fifth Contribution Any of the resampling methods available

in the literature can be extended by combining with the pretreatment procedures of under-

sampling.

This thesis work can be expanded with Principal Component Analysis and collaborate with Dimen-

sionality Reduction techniques, among other things. It’s still a mystery which method works best

for a particular imbalanced dataset with asymmetric misclassification costs. Researchers proposed

a variety of models for addressing the issue of class disparity from various perspectives. However,

undersampling, oversampling, cost-sensitive learning, and other techniques all have benefits and

drawbacks, and there is no clear winner. As a result, more research is needed to determine what

works best for a given dataset and to examine the impact of factors like data size on the solution to

the problem of class imbalances. Furthermore,
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• All the proposed methods can be extended with combination of Feature Reduction methods.

• These methods can be extended for multiclass imbalanced datasets

• Can be effectively implemented in association with Ensemble approaches.

• Can be extended for Big Data



Bibliography

[1] https://lvdmaaten.github.io/tsne/.

[2] http://sci2s.urg.es/pstax.

[3] Laith Abualigah. Feature Selection and Enhanced Krill Herd Algorithm for Text Document

Clustering. 12 2018.

[4] A. Adewole, K. Otubamowo, and T. Egunjobi. A comparative study of simulated annealing

and genetic algorithm for solving the travelling salesman problem. International Journal of

Applied Information Systems, 4:6–12, 2012.

[5] Charu Aggarwal, Alexander Hinneburg, and Daniel Keim. On the surprising behavior of

distance metric in high-dimensional space. First publ. in: Database theory, ICDT 200, 8th

International Conference, London, UK, January 4 - 6, 2001 / Jan Van den Bussche ... (eds.).

Berlin: Springer, 2001, pp. 420-434 (=Lecture notes in computer science ; 1973), 02 2002.

[6] W. Aha, Dennis Kibler, and Marc Albert. Instance-based learning algorithms. Machine

Learning, 6:37–66, 01 1991.
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[123] José Sánchez. High training set size reduction by space partitioning and prototype abstrac-

tion. Pattern Recognition, 37:1561–1564, 01 2004.

[124] J.S. Sánchez, R. Barandela, A.I. Marqués, R. Alejo, and J. Badenas. Analysis of new tech-

niques to obtain quality training sets. Pattern Recognition Letters, 24(7):1015–1022, 2003.

[125] Pang-Ning Tan, Michael Steinbach, Anuj Karpatne, and Vipin Kumar. Introduction to Data

Mining. Pearson Education, 2005.

[126] David Tax and Robert Duin. Learning curves for the analysis of multiple instance classifiers.

volume 5342, pages 724–733, 12 2008.

[127] Sobha Ti and P.V. Soujanya. An ensemble method using small training sets for imbalanced

data sets: Application to drugs used for kinases. pages 516–521, 08 2013.

[128] Ivan Tomek. Two modifications of cnn. IEEE Trans. Systems, Man and Cybernetics, 6:769–

772, 1976.

[129] I. Triguero, J. Derrac, S. Garcı́a, and F. Herrera. Prototype generation for nearest neighbor

classification : Survey of methods 1 prototype generation for nearest neighbor classification

: Survey of methods. 2011.

[130] Isaac Triguero, Joaquı́n Derrac, Salvador Garcia, and Francisco Herrera. A taxonomy and

experimental study on prototype generation for nearest neighbor classification. IEEE Trans-

actions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 42(1):86–

100, 2012.

[131] Sofia Visa and Anca Ralescu. Issues in mining imbalanced data sets - a review paper. Proc.

16th Midwest Artificial Intelligence and Cognitive Science Conference, 01 2005.

[132] C Wang, L Hu, M Guo, X Liu, and Q Zou. imdc: an ensemble learning method for im-

balanced classification with mirna data. Genetics and Molecular Research, 14(1):123–133,

2015.

[133] Gary Weiss, Kate McCarthy, and Bibi Zabar. Cost-sensitive learning vs. sampling: Which

is best for handling unbalanced classes with unequal error costs? pages 35–41, 01 2007.

[134] Gary Weiss and Foster Provost. Learning when training data are costly: The effect of class

distribution on tree induction. J. Artif. Intell. Res. (JAIR), 19:315–354, 07 2003.



BIBLIOGRAPHY 126

[135] D. Wilson and Tony Martinez. Reduction techniques for instance-based learning algorithms.

Machine Learning, 38:257–286, 01 2000.

[136] Dennis L. Wilson. Asymptotic properties of nearest neighbor rules using edited data. IEEE

Transactions on Systems, Man, and Cybernetics, SMC-2(3):408–421, 1972.

[137] Odorico R. Learning Vector Quantization with Training Count (LVQTC). Neural Netw.,

pages 1083–1088, 1997.

[138] Ian H Witten, Eibe Frank, Leonard E Trigg, Mark A Hall, Geoffrey Holmes, and Sally Jo

Cunningham. Weka: Practical machine learning tools and techniques with java implemen-

tations. 1999.

[139] D.H. Wolpert and W.G. Macready. No free lunch theorems for optimization. IEEE Trans-

actions on Evolutionary Computation, 1(1):67–82, 1997.

[140] Wenhao Xie, Gongqian Liang, Zhonghui Dong, Baoyu Tan, and Baosheng Zhang. An im-

proved oversampling algorithm based on the samples’ selection strategy for classifying im-

balanced data. Mathematical Problems in Engineering, 2019:1–13, 05 2019.

[141] Yitian Xu, Qian Wang, Xinying Pang, and Ying Tian. Maximum margin of twin spheres

machine with pinball loss for imbalanced data classification. Applied Intelligence, 48:1–12,

01 2018.

[142] Show-Jane Yen and Yue-Shi Lee. Cluster-based under-sampling approaches for imbalanced

data distributions. Expert Systems with Applications, 36(3):5718–5727, 2009.

[143] M.R. Gupta A. Rahimi L. Cazzanti Y.H.Chen, E.K. Garcia. Similarity -based classification

: Concepts and algorithms. Journal of Machine Learning Research, pages 747–776, 2009.

[144] Ping yi, Yuxiang Guan, Futai Zou, Yao Yao, Wei Wang, and Ting Zhu. Web phishing de-

tection using a deep learning framework. Wireless Communications and Mobile Computing,

2018:1–9, 09 2018.

[145] Kihoon Yoon and Stephen Kwek. An unsupervised learning approach to resolving the data

imbalanced issue in supervised learning problems in functional genomics. In Fifth Interna-

tional Conference on Hybrid Intelligent Systems (HIS’05), pages 6 pp.–, 2005.

[146] B. Zadrozny, J. Langford, and N. Abe. Cost-sensitive learning by cost-proportionate exam-

ple weighting. In Third IEEE International Conference on Data Mining, pages 435–442,

2003.



BIBLIOGRAPHY 127

[147] J. Zhang and I. Mani. KNN Approach to Unbalanced Data Distributions: A Case Study

Involving Information Extraction. In Proceedings of the ICML’2003 Workshop on Learning

from Imbalanced Datasets, 2003.

[148] Shu Zhang, Samira Sadaoui, and Malek Mouhoub. An empirical analysis of imbalanced

data classification. Computer and Information Science, 8(1):151, 2015.

[149] Weijie Zheng and Hong Zhao. Cost-sensitive hierarchical classification for imbalance

classes. Applied Intelligence, 50, 08 2020.





6 1%

7 <1%

8 <1%

9 <1%

10 <1%

11 <1%

12 <1%

13 <1%

rate of positives in Imbalanced Datasets",
2017 Ninth International Conference on
Advances in Pattern Recognition (ICAPR), 2017
Publication

sci2s.ugr.es
Internet Source

www.springerprofessional.de
Internet Source

Submitted to KYUNG HEE UNIVERSITY
Student Paper

Submitted to The Hong Kong Polytechnic
University
Student Paper

Venkata Krishnaveni Chennuru, Sobha Rani
Timmappareddy. "Chapter 5 MahalCUSFilter:
A Hybrid Undersampling Method to Improve
the Minority Classification Rate of Imbalanced
Datasets", Springer Science and Business
Media LLC, 2017
Publication

Lecture Notes in Computer Science, 2006.
Publication

link.springer.com
Internet Source

tutorsonspot.com
Internet Source



14 <1%

15 <1%

16 <1%

17 <1%

18 <1%

19 <1%

20 <1%

Lecture Notes in Computer Science, 2002.
Publication

Submitted to Liverpool John Moores
University
Student Paper

Wibowo Adi, Kosuke Sekiyama. "One double-
stranded DNA probes as classifier of multi
targeting strand", 2014 International
Symposium on Micro-NanoMechatronics and
Human Science (MHS), 2014
Publication

Submitted to Indian Institute of Science,
Bangalore
Student Paper

dar.aucegypt.edu
Internet Source

Lee, Yen-Hsien, Paul Jen-Hwa Hu, Tsang-
Hsiang Cheng, Te-Chia Huang, and Wei-Yao
Chuang. "A preclustering-based ensemble
learning technique for acute appendicitis
diagnoses", Artificial Intelligence in Medicine,
2013.
Publication

www.ijetae.com
Internet Source



21 <1%

22 <1%

23 <1%

24 <1%

25 <1%

26 <1%

27 <1%

28 <1%

29 <1%

Alberto Fernández, Salvador García, Mikel
Galar, Ronaldo C. Prati, Bartosz Krawczyk,
Francisco Herrera. "Learning from Imbalanced
Data Sets", Springer Science and Business
Media LLC, 2018
Publication

www.tdx.cat
Internet Source

"Artificial Neural Networks – ICANN 2006",
Springer Science and Business Media LLC,
2006
Publication

mafiadoc.com
Internet Source

"Hybrid Artificial Intelligent Systems", Springer
Science and Business Media LLC, 2018
Publication

krchowdhary.com
Internet Source

150.214.191.180
Internet Source

www.jcomsec.org
Internet Source

Zhang, Zhiwang, Guangxia Gao, and Yingjie
Tian. "Multi-kernel multi-criteria optimization
classifier with fuzzification and penalty factors



30 <1%

31 <1%

32 <1%

33 <1%

34 <1%

35 <1%

36 <1%

37 <1%

for predicting biological activity", Knowledge-
Based Systems, 2015.
Publication

Submitted to Bournemouth University
Student Paper

Submitted to Tilburg University
Student Paper

"Uncertainty Management with Fuzzy and
Rough Sets", Springer Science and Business
Media LLC, 2019
Publication

repository.tudelft.nl
Internet Source

Maryam Amir Haeri, Katharina Anna Zweig.
"The Crucial Role of Sensitive Attributes in Fair
Classification", 2020 IEEE Symposium Series
on Computational Intelligence (SSCI), 2020
Publication

Submitted to University of Stellenbosch,
South Africa
Student Paper

biomedical-engineering-
online.biomedcentral.com
Internet Source

hal-insu.archives-ouvertes.fr
Internet Source



38 <1%

39 <1%

40 <1%

41 <1%

42 <1%

43 <1%

44 <1%

oro.open.ac.uk
Internet Source

"Evolutionary Multi-Criterion Optimization",
Springer Science and Business Media LLC,
2021
Publication

"New Trends in Computational Vision and Bio-
inspired Computing", Springer Science and
Business Media LLC, 2020
Publication

Cano, José-Ramón. "Analysis of data
complexity measures for classification",
Expert Systems with Applications, 2013.
Publication

Frédéric Galliano. "Variations of the Mid‐IR
Aromatic Features inside and among
Galaxies", The Astrophysical Journal,
05/20/2008
Publication

MaciÃ , NÃºria, Ester BernadÃ³-Mansilla,
Albert Orriols-Puig, and Tin Kam Ho. "Learner
excellence biased by data set selection: A
case for data characterisation and artificial
data sets", Pattern Recognition, 2013.
Publication

Shan Suthaharan. "Machine Learning Models
and Algorithms for Big Data Classification",



45 <1%

46 <1%

47 <1%

48 <1%

49 <1%

50 <1%

51 <1%

52 <1%

Springer Science and Business Media LLC,
2016
Publication

T. Maruthi Padmaja, P. Radha Krishna, Raju S.
Bapi. "Majority filter-based minority
prediction (MFMP): An approach for
unbalanced datasets", TENCON 2008 - 2008
IEEE Region 10 Conference, 2008
Publication

digitalcommons.njit.edu
Internet Source

"Computational Science – ICCS 2021",
Springer Science and Business Media LLC,
2021
Publication

Bay, S.D.. "Nearest neighbor classification
from multiple feature subsets", Intelligent
Data Analysis, 199909
Publication

Lecture Notes in Computer Science, 2011.
Publication

docplayer.org
Internet Source

journals.plos.org
Internet Source

solon.cma.univie.ac.at
Internet Source



53 <1%

54 <1%

55 <1%

56 <1%

57 <1%

58 <1%

59 <1%

60 <1%

Submitted to Auckland University of
Technology
Student Paper

Bart Baesens, Véronique Van Vlasselaer,
Wouter Verbeke. "Predictive Analytics for
Fraud Detection", Wiley, 2015
Publication

Gabriela Oliveira Biondi, Ronaldo Cristiano
Prati. "Setting Parameters for Support Vector
Machines using Transfer Learning", Journal of
Intelligent & Robotic Systems, 2015
Publication

www.wip.opticsinfobase.org
Internet Source

"Advances in Natural Computation", Springer
Science and Business Media LLC, 2005
Publication

"Imbalanced Learning", Wiley, 2013
Publication

Haonan Tong, Shihai Wang, Guangling Li.
"Credibility Based Imbalance Boosting
Method for Software Defect Proneness
Prediction", Applied Sciences, 2020
Publication

Saeed Zeraatkar, Fatemeh Afsari. "Interval–
valued fuzzy and intuitionistic fuzzy–KNN for



61 <1%

62 <1%

63 <1%

Exclude quotes On

Exclude bibliography On

Exclude matches < 14 words

imbalanced data classification", Expert
Systems with Applications, 2021
Publication

Submitted to Symbiosis International
University
Student Paper

Yifeng Zheng, Guohe Li, Wenjie Zhang. "A New
Efficient Algorithm Based on Multi-Classifiers
Model for Classification", International Journal
of Uncertainty, Fuzziness and Knowledge-
Based Systems, 2020
Publication

tel.archives-ouvertes.fr
Internet Source


	Abstract
	Introduction
	Supervised Learning
	Models for Classification
	Impact of Data Characteristcs

	Imbalanced Datasets
	An Example
	Issues with Imbalanced data
	Traditional classifiers for Imbalanced Sets
	Necessity of Handling Imbalance

	Techniques to handle Imbalanced Data
	Cost Sensitive Learning
	Data Level handling
	Oversampling
	Undersampling


	Research Challenges in Class Imbalance Problem
	Size of the Dataset
	Class Distribution

	Problem Statement
	Objective 
	Contributions
	Organization of the thesis

	Related Work
	Methods to Handle Imbalance
	Data Level Handling Techniques
	Undersampling
	Popular Undersampling Techniques
	Latest Work on Handling Class Imbalance

	Oversampling

	Cost Sensitive Learning
	Ensemble Methods
	Heuristic Based Methods
	Performance Metrics
	Chapter Summary

	Ensemble of Small Training sets for Classification (ECST)
	Related Work
	Ensemble of Classifiers
	Small training Sets

	Motivation
	Framework
	Choosing representative samples for training

	Algorithm
	Criteria to choose the number of samples

	Experiments and Results
	Ensemble based majority voting method

	Discussion
	Improving the quality of training sets by removing noise and outliers
	Analysis

	Chapter Summary

	Prototype generation employing the Centroid Based Grouping (CBG)
	Related Work
	Prototype generation methods

	Motivation
	Framework
	Algorithm
	Experiments and Results
	Discussion
	Comparison of the various variants of CBG method
	Comparison with Prototype Generation Techniques
	Comparison with Undersampling Techniques

	Summary

	Quartiles based UnderSampling(QUS)
	Related Work
	Motivation
	Framework
	Algorithm
	Experiments and Results
	Dataset

	Discussion
	Scalability
	Comparison with Other Undersampling Methods
	Comparison with Oversampling and Ensemble Methods

	Summary

	MahalCUSFilter: A Hybrid Undersampling method 
	Related Work
	Motivation
	Framework
	Algorithm
	Experiments and Results
	Details of the Datasets

	Discussion
	Summary

	 Hybrid Multi Objective Optimization Method (SAUS)
	Related Work
	Motivation
	Simulated Annealing: A General Approach
	Simulated annealing for finding a best solution

	Framework
	Algorithm
	Experiments and Results
	Discussion 
	Sensitivity and AUC Results
	Small Data sets
	Large data sets
	Data sets with low imbalance ratio
	Data sets with high imbalance ratio
	Performance of SAUS on Phishing data set

	Comparison with Latest Method(SNGEIP) Results
	Data Complexity Measures
	Definitions
	N1 Results
	N2 Results
	N3 Results
	T1 Results
	Comparison with Other Methods

	Friedman test
	Comparison with Oversampling and Ensemble Methods

	Summary

	 Conclusions and Future Scope 
	Conclusions
	Future Scope


