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Abstract

Feature selection is one of the data reduction techniques, and it is the process of
selecting a minimal subset of features that provide the same classification ability
as the given whole set of attributes. In 1982, Prof. Pawlak introduced Rough
Set Theory (RST) as Soft Computing paradigm, which has emerged as a robust
mathematical framework for feature selection. Rough sets based feature selection

is known as attribute reduction or reduct computation.

Nowadays, the volume of data is increasing at an unprecedented rate. As the data
grows in object space and/or attribute space in the data set, the attribute reduc-
tion has become an expensive preprocessing step. In the last decade, many rough
set-based parallel /distributed approaches have been proposed using the MapRe-
duce model for scalable attribute reduction. The majority of these approaches are
hindered by the challenges presented by today’s massive data sets. The current
research is motivated by these challenges, which include big dimensionality (huge
attribute space in the data set), variety of the data (different data in decision

systems), and data partitioning strategy used in dividing the input data set.

All the existing MapReduce based reduct computation approaches in categorical
data sets (decision systems with categorical attributes) adopted horizontal parti-
tioning strategy for partitioning the data to the cluster of computers, where the
data set is partitioned in object space. This strategy results in computational
overheads for big dimensional data sets. Because, with this strategy, considerable
amount of data to be communicated across shuffle and sort phase and a complex
reduce phase is involved in any MapReduce framework. Furthermore it presents
an immense problem if the large-scale data set contains missing (incomplete) val-
ues (in incomplete decision systems), or if the data set contains different types of
attributes (in hybrid decision systems). Since extensions to classical rough sets
are used to deal with incomplete and hybrid decision systems, attribute reduction
in these decision systems pose much severe computational challenges and involve

higher space and time complexities in building MapReduce based approaches.

This research focuses on scalable attribute reduction in large-scale data sets us-
ing MapReduce model, with an emphasis on the data set’s big dimensionality.
Along with horizontal partitioning strategy, an alternative strategy known as

“vertical partitioning” is being explored in dealing with big dimensional data

v



sets. Therefore, this thesis aim is to explore MapReduce based parallel/distributed
reduct computation in categorical, incomplete and hybrid decision systems, where
the relevance of horizontal and vertical partitioning strategies are investigated in

partitioning the input data set to the nodes of the cluster.

This thesis proposes a classical rough sets based approach using MapReduce for
attribute reduction. This approach investigates vertical partitioning strategy, that
is used to partition the input data set in the attribute space to the nodes of the
cluster. The applicability of this strategy is explored for attribute reduction in

large-scale categorical data sets with big dimensionality.

Different strategies in MapReduce framework are needed for parallelizing the ex-
isting extensions to classical rough sets for attribute reduction in large-scale in-
complete and hybrid decision systems. Thus, in this thesis, MapReduce based
attribute reduction approaches for incomplete decision systems are proposed us-
ing Novel Granular Framework (NGF) (an extension to classical rough sets) and
adopt horizontal and vertical partitioning strategies for data partitioning. Fuzzy-
rough set model (an extension to classical rough sets) is used to deal with hybrid
decision systems. A fuzzy discernibility matrix based accelerator is introduced,
and based on this accelerator, MapReduce based reduct computation approaches

are proposed using horizontal and vertical partitioning strategies.

The proposed approaches are implemented using Apache Spark. Extensive exper-
imental analysis carried out on different benchmark large-scale data sets with the
variance in object and attribute space. The efficiency of the proposed approaches
are evaluated based on the computational evaluation (Running time, reduct, and
reduct size metrics are used), performance evaluation (Speedup, scaleup and

sizeup metrics are used) and impact of the data partitioning strategy.

It is empirically proved that, the proposed approaches perform better than the
existing state-of-the-art approaches. The experimental results along with theo-
retical validation show that the horizontal partitioning based approaches perform
well for the larger object space data sets with moderate attribute space. And the
vertical partitioning based approaches are relevant and scale well for moderate ob-
ject space data sets with big dimensionality. In future, this research has a scope
to explore viable MapReduce based reduct computation approaches that can si-
multaneously scale in both huge object space and huge attribute space in the data
sets. Since, the proposed approaches deal with volume and variety characteristics
of the big data, this research also has the scope to deal with velocity property
by proposing MapReduce based incremental attribute reduction approaches for

streaming data.
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Chapter 1

Introduction

Recent advances in computing technologies such as Internet, Internet of Things, social net-
works, mobile communication systems, transportation systems have contributed to the in-
creasing amounts of data in size. The data set is a structured collection of the data in the
form of objects (samples) and features (attributes or dimension). The growing data volumes
produce the large-scale data sets with huge object space or/and feature space. Large-scale
data sets are typically affected by a significant amount of redundancy which can hinder knowl-
edge discovery, and is, in fact, misleading.

Knowledge management plays a key role in generating a value from the data. It is nec-
essary to go through a process to induce value from the data. The Knowledge Discovery in
Databases (KDD) process [34), [36] is a general framework that describes the various steps
needed to obtain useful knowledge from a collection of data. The primary goal of the KDD
process is to find relevant knowledge from the data in huge databases. The KDD process has
the steps: (i) Data selection (ii) Data cleaning/preprocessing (iii) Data reduction (iv) Data
mining and (v) Interpretation/Evaluation. The third step, data reduction is the crucial step
in the KDD process. This step deals with dimensionality reduction and feature selection is
one of the prominent ways of doing the same. Feature selection helps in reducing the feature

space and improves the performance of the later steps of the KDD process.

1.1 Feature selection

As given by Guyon et al. [39] 40], feature selection is the process of finding relevant features
and discarding those that are irrelevant and redundant, so as to obtain a subset of features
that accurately describe a given problem with minimum degradation of performance. It is a
widely used preprocessing step for machine learning, data mining, and pattern recognition

[39, I15]. Feature selection exploits the data redundancy to reduce the uncertainty from
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large-scale data sets. It also acts as a solution that helps in mining knowledge from multi-
dimensional large-scale data sets [10, 27]. The aim of the feature selection is: (i) to enhance
the performance of the predictive models; (ii) to build them efficient in terms of their resource
costs and (iii) to provide an insight into the underlying procedure that generated the data.
Furthermore, the feature selection helps to reduce the adverse impact induced by the curse
of dimensionalityf?] [9].

Feature selection methods [40} [63] are divided into three categories according to their

relationship with the learning (classification) algorithms, as filter, wrapper, and embedded.

e Filter: In filter methods, the search in feature space is done prior to the classification
process. That is, filter method performs feature selection independently of any learning
algorithm. As a result, these are the methods take less computing and memory re-
sources. Additionally, filters may be uni-variate or multivariate, based on whether the
feature assessment is performed individually or collectively. Filter methods use differ-
ent metrics for evaluating features, and these metrics are categorised into: information
based, distance based, correlation based and consistency based. Filter based feature

selection methods are fast and scalable, and they are independent of the classifier.

e Wrapper: This method search the feature space depending on the classification accuracy
assessment of the learning algorithm. That is, different subset of features are identified
and evaluated them by using the classifier. Generally, the wrapper method is better in
terms of classification accuracy, but computationally costly since it trains the classifier
multiple times in each step of the feature space search, and subset selected is biased

towards the classifier.

e Embedded: This method searches for an optimal subset of features that is built into the
classifier construction. The advantage of this method is that it is less computationally
intensive than a wrapper method. And, embedded method is computationally slower
than filter method, but some times filter method may fail to select best features. Thus,

embedded method lies in between the filter and wrapper methods.

Each of the above feature selection methods further categorised into the following two sub-

categories depending on the output they produce.

o Feature ranking: Depending on the evaluation metric used, methods in this category
generate an output that consists of an ordered list of features graded by their impor-

tance.

2The curse of dimensionality refers to a set of problems that emerge while working with high-dimensional
data.
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o Feature subset selection: The method in this category produces the output which con-
sists of the subset of features that are considered most important and the remaining

features are removed.

The feature subset selection is performed in four basic steps [53], (i) Feature subset generation
(ii) Subset evaluation (iii) Stopping criterion, and (iv) Validation of results. The feature subset
is generated based on a search strategy [63]. Four search strategies are existed, namely, forward
search, backward search, bidirectional search and random search. The forward and backward

search strategies are prominent and widely used search strategies.

e Forward search strategy: In this strategy, the feature subset generation starts by initial-
izing the subset as an empty set, and features are added incrementally until a specified
stopping criterion is satisfied or number of features in the subset is reached to a thresh-
old value. Since the features are selected sequentially, it is named as Sequential Forward

Selection (SFS) strategy.

e Backward search strategy: In this strategy, the feature subset generation starts from
complete set of features, and the redundant features are removed one by one from the
complete set based on a criterion that checks whether a feature is redundant or not.

This strategy is also called as Sequential Backward Elimination (SBE).

The SFS strategy may results in a subset of features that contain redundant features.
But it is observed that the SBE strategy guarantees minimal subset features without any
redundant features. However the computational efficiency of SFS strategy over SBE makes

it suitable for building scalable feature subset selection approaches for large-scale data sets.

1.2 Rough Set Theory for feature subset selection

In 1982, Prof. Pawlak [77] introduced Rough Set Theory (RST) as Soft Computing paradigm.
In recent years, RST has emerged as a robust mathematical framework for attribute reduction
[78, [79, [80]. It is effective in dealing with uncertainty and vagueness in the data. RST has

become an area of great interest to the researchers for the following reasons.

e Requiring no additional information, by just using the data alone, RST enables the

reduction of the attributes and the discovery of data dependencies in a data set 78], [80].

e Rough sets have been complemented by other soft computing technologies such as neural
networks, fuzzy sets and many successful hybrid models have been generated. Some of
the popular hybrid models include: fuzzy-rough sets and rough-fuzzy sets [32], [33],
rough-neural networks [61], rough-genetic algorithms [43], [62].
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e Several extensions [66], 94, 123] to rough setf] are available to deal with many real-
world problems such as decision analysis, data mining, intelligent control and pattern
recognition. The prominent extensions include: variable precision rough sets, tolerance

rough sets, probabilistic rough sets, fuzzy-rough sets and dominance-based rough sets.

Generally the data in a data set is stored in the form of a table, where the rows represent
objects and columns represent features. In rough sets terminology, this data table is known
as information system. An information system can be extended to decision system by the
inclusion of decision attributes. Feature subset selection using rough sets principles is known
as attribute reduction’] The selected feature subset in the case of information systems is
termed as reduct and relative reduct in the case of decision systems. In the remainder of
the thesis, as the thesis is restricted to decision systems, the term ”reduct” refers to "rela-
tive reduct”, and the reduct computation is considered synonymous to attribute reduction.
Thus the reduct is a minimal subset of conditional attributes that provide the same classifi-
cation ability as the set of conditional attributes in the decision system. In RST, the reduct
computation methods are classified into many categories. However the primary categories
include: (i) Dependency measure, and (ii) Discernibility matriz |44, [53]. In this thesis, the
proposed methods are developed based on both the dependency measure and discernibility
matrix approaches. Theoretical background of these two approaches is provided in the second
chapter.

Due to the exponential growth of data, if the data set is large-volume or/and high dimen-
sional, the traditional (sequential) attribute reduction algorithms can not perform well. These
algorithms face problems from both data storage and computational complexity viewpoints.
Scalability of attribute reduction suffers with the large-scale data sets due to insufficient
memory space available in a single node [42, 103]. Most of the researchers found paral-
lel/distributed computation as the good solution for scalable attribute reduction. Therefore,
researchers try to parallelize the traditional attribute reduction algorithms to improve their

efficiency on large data sets.

1.3 Parallel/distributed computation

Nowadays, the volume of the data is growing at an unprecedented rate [10] 38, [59]. Prior
to the year 2003, mankind generated only 5 exabytes of data, but currently 5 exabytes of

data is produced in just two days, and the rate of the growth continues to rise [10]. As the

L“Rough sets” introduced by Prof. Pawlak termed as “classical rough sets” in the rest of the thesis in
order to distinguish from its extensions and hybrid models.
2The term “feature subset selection” is replaced with “attribute reduction” in the rest of the thesis.
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data volume escalates, knowledge discovery has become a challenging task because of the
uncertainty and inconsistency in the data. Due to the continuous increase in the volume
of the data sets, attribute reduction techniques have become essential in extracting relevant
information from vast amounts of data. Thus, we require parallel/distributed solutions for
attribute reduction in large-scale data sets.

In parallel/distributed computation, several calculations are carried out concurrently in
task and/or data parallel [6]. Task parallelism attempts to run many tasks concurrently, while
data parallelism targets to perform the same task on several data sets. Some of the parallel
attribute reduction methods [87] work on decomposing the entire computation into smaller
sub-tasks, which are processed on separate nodes. Some other parallel attribute reduction
approaches [26] employ data parallelism. Both task and data parallelism are used to perform
parallel attribute reduction [7, [60, 104, 106]. Traditional parallel/distributed computation

models such as MPI, OpenMP, BSP, etc., are used for processing large-scale data sets.
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Figure 1.1: Number of parallel/distributed reduct computation approaches proposed based on
non-MapReduce and MapReduce model

Based on a comprehensive review of the literature of reduct computation over the last two
decades, it is observed that, researchers are more likely to adopt the MapReduce paradigm for
creating parallel /distributed approaches than non-MapReduce (traditional parallel /distributed
computation) models. Figure shows the number of parallel/distributed approaches pro-
posed during the last two decades based on non-MapReduce and MapReduce models. From
this figure, it can be noticed that, with the advancement of the MapReduce model [25], most
of the researchers switched their attention from traditional parallel/distributed computation

to MapReduce based parallel /distributed computation. Because the MapReduce framework
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provides a consistent structure for deriving granular aggregated information in the reduce
phase using constructed partial granules information in the map phase, which is crucial for
achieving rough set based attribute reduction. Thus, in recent years (especially last decade)
several MapReduce based parallel /distributed approaches were proposed for attribute reduc-
tion in large-scale data sets [8, [81], 96} 100, 10T, 102] 114 [124] 125].

MapReduce can be referred as an execution framework for robust and scalable implemen-
tation of parallel/distributed algorithms. The framework has mainly three phases or steps:
Map, Shuffle and Sort, and Reduce. The framework coordinates these phases of processing
over massive amounts of data on large cluster of computing nodes. Hadoop [1], Apache
Spark [121], Twister [35], etc., are some of the existing MapReduce frameworks. MapReduce
model overcomes the drawbacks in traditional parallel/distributed computation, and has the

following significant benefits.

e MapReduce model conceals a number of system-level details from the user and facilitates

parallelization of the computation on large-scale data, across cluster of computers.

e This model is capable of detecting machine failures and coordinating between machines

for optimal use of networks and storage devices (i.e., fault tolerance).

MapReduce has been proven to be helpful to design an effective solution to a complex task
on massive data, and, it is currently being applied in many areas such as data mining [42],
machine learning [I7, [103], 131]. Thus, in this thesis, the approaches are proposed based on

MapReduce programming model.

1.4 Research motivation

Several researchers have been interested in attribute reduction in large-scale data sets, and
many approaches have been proposed. The majority of these approaches are hindered by the
challenges presented by today’s massive data sets. In order to deal with these challenges, the
existing attribute reduction methods must be improved or new ones must be proposed. The
current research is motivated by these challenges, which include, big dimensionality, variety
of the data in the large-scale data sets, and data partitioning strategy used in splitting the

data set.

1.4.1 Big dimensionality

Attribute reduction in large-scale data sets is not only impacted by the number of objects a

data set has but also by the number of attributes. The size of a data set in object space or/and
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in attribute space grows more and more as data increases rapidly. Similarly to big data, the
term “big dimensionality” [10l, [I1] has been invented to describe the enormous amount of
attributes reaching to levels that render existing attribute reduction approaches ineffective.
According to extensively used UCI Machine Learning repository [31], the maximum dimen-
sionality of data set in the years 1980s was only approximately 100. By the 1990s, this number
increased to more than 1500, and by the year 2009, it had risen to more than 3 million. Figure
depicts the number of attributes in the highest dimensionality data sets that have been
added to UCI Machine Learning repository during the previous 12 years. Some of the most
prominent areas that deal with big dimensionality challenges are, microarray analysis [4] [11],
text and image classification [3] [10, [65] 93].
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Figure 1.2: Big dimensionality of the data sets added to UCI repository since the year 2009

To accelerate the attribute reduction in large-scale data sets, in the last decade, many
classical rough set-based methods have been developed using the MapReduce programming
model, and some of them have shown their strengths in comparison to the rest. Despite the
effectiveness of the existing MapReduce based rough set attribute reduction methods, they
are confronted with various issues and are unable to effectively and efficiently handle the large
data sets, especially data sets with big dimensionality. The big dimensionality in the data set

presents a tremendous challenge to the researchers.
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1.4.2 Impact of the data partitioning

All the existing rough set theory based attribute reduction approaches [15, 45 81, [92], 114,
124] using the MapReduce programming model adopted horizontal partitioning strategy for
partitioning the input data to the cluster. With this strategy, the object space of the input
data set is partitioned, and the data partitions are distributed to the nodes of the cluster.
Hence an attribute values of different objects are scattered throughout all the partitions of
the data set, which are located in different nodes in the cluster. Horizontal partitioning
based approaches are proved to be efficient for the data sets having huge object space with
moderate attribute apace. In data sets involving smaller object space and more attribute
space such as many bioinformatical microarray and document classification data sets (i.e.,
big dimensionality data sets), the horizontal partitioning strategy results in computational
overheads. Because with this strategy, considerable amount of data to be communicated
across shuffle and sort phase and a complex reduce phase is involved in any MapReduce
framework.

Because of the horizontal partitioning strategy, researchers concentrated only one aspect
of large-scale data sets, namely large number of objects aspect in the data set in designing
attribute reduction algorithms, while paying little attention to the attributes aspect. This
has inspired us to look into alternative data partitioning strategy that avoid the problems of

horizontal partitioning and efficient in handling the data sets with big dimensionality.

1.4.3 Variety of the data

In addition to the size of the data, the variety of the data has a significant influence on the
reduct computation process. The variety of the data consist of structured, unstructured,
and semi-structured data from various sources. Just as data previously had to be obtained
from spreadsheets and databases, today data is found in various formats, such as categorical,
real, boolean, images, audio, video, and other social media platforms. Attribute reduction
in large-scale data sets poses an immense problem if the data contains missing (incomplete)
values, or if the data contains different types of attributes.

The decision systems with categorical (or discrete) attributes is known as complete sym-
bolic decision systems (also known Categorical Decision Systems (CDS)). The decision sys-
tems that include objects with missing attribute values are referred to as incomplete symbolic
decision systems (also known Incomplete Decision Systems (IDS)). The decision systems with
different types of attributes (e.g., categorical, numerical,...etc.) is known as hybrid decision
systems (HDS). Classical rough set model uses crisp equivalence classes in attribute reduction.

As a consequence, it is suitable to perform the attribute reduction in symbolic (categorical)
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data sets (i.e., CDS). The decision systems, IDS and HDS are frequently occurring data sets in
decision-making problems. Thus, extensions to classical rough sets [57, 58, 99, [112] are avail-
able to deal with IDS for attribute reduction. Various fuzzy-rough set models [19] 32} 86], [117]
are available to handle different types of attributes in data set for attribute reduction.

From the literature, it is observed that, a lot of research works have been done on at-
tribute reduction in IDS [23] [30} 64, 73], [84), 108 129, 134]. But all the existing approaches
are sequential methods and they can not handle the large-scale incomplete data sets. Par-
allel /distributed approaches are not proposed for attribute reduction in large-scale IDS. Be-
cause, the processing of large-scale IDS is difficult due to two challenges, incompleteness
involved in the data, and the large size of the data set. Thus, different strategies in MapRe-
duce framework are needed for parallelizing the existing extensions to classical rough sets for
attribute reduction in large-scale IDS.

From extensive review of current literature [28] [46] 54 [56] [72] [85] [9T], it is observed that,
the approaches for attribute reduction in HDS involve higher space and time complexities
compared to classical rough sets. It is also observed that a substantial decrease in mem-
ory usage is achieved in the discernibility matrix based approach relative to the dependency
measure based approach. Further discernibility matrices are more suitable for performing par-
allel /distributed computation. It is noticed that, the discernibility matrix based accelerators
and the corresponding parallel /distributed approaches do not exist for attribute reduction in
HDS. Thus, MapReduce based parallel/distributed methods using discernibility matrix are

needed to overcome the higher space complexities of dependency measure based approaches.

1.5 Research objectives

This research focuses on scalable attribute reduction in large-scale data sets using MapRe-
duce, with an emphasis on the data set’s big dimensionality. Each of the research problems
mentioned in Section[I.4]form the objectives of this research work. And each of these concerns

are addressed one by one as follows.

e The first objective of this thesis is to investigate an alternative strategy known as
“vertical partitioning”, which is used to partition the input data set in the attribute
space and distribute the data partitions to the nodes of the cluster. The applicability of
this strategy is explored for rough set based attribute reduction in Categorical Decision

Systems (CDS) with big dimensionality.

e The second objective of this thesis is to investigate MapReduce based attribute reduction

approaches for large-scale IDS that use existing Novel Granular Framework (NGF) to



1. INTRODUCTION

handle the incompleteness in the data and adopt horizontal and vertical partitioning

strategies.

e The third and fourth objectives of thesis are to explore discernibility matrix based
attribute reduction in large-scale HDS using MapReduce with the strategies of horizontal

and vertical partitioning.

The summary of aforementioned objectives of this thesis can be enunciated as follows:

“This thesis objective is to explore MapReduce based parallel/distributed reduct
computation in categorical, incomplete and hybrid decision systems, where the
relevance of horizontal and vertical partitioning strategies are investigated in

partitioning the input data to the nodes of the cluster.”

1.6 Contributions and publications

Contributions to this thesis are made in relation to the research objectives outlined in the
preceding section. Therefore, contributions are categorized according to the type of the
decision system, i.e., categorical (CDS), incomplete (IDS), or hybrid (HDS). Each contribution

and its corresponding publication are enumerated below.

1. Contribution 1: A MapReduce based algorithm MR_IQRA_VP is proposed using ver-
tical partitioning strategy for attribute reduction in CDS. Here, the vertical partitioning
strategy partitions the input data set in attribute space to the nodes of the cluster. This

strategy is used alternative to horizontal partitioning strategy.

The work in this contribution is resulted in the following publication.

e Pandu Sowkuntla® and P. S. V. S. Sai Prasad. MapReduce based improved
quick reduct algorithm with granular refinement using vertical par-
titioning scheme. Knowledge-Based Systems, Elsevier, 189:105104, Feb 2020.
https://doi.org/10.1016/j.knosys.2019.105104 (Indexed in SCI, SCOPUS).

2. Contribution 2: MapReduce based parallel /distributed approaches are proposed based
on the Novel Granular Framework (NGF) [73] for attribute reduction in large-scale IDS
using horizontal and vertical partitioning strategies. Briefly, this contribution includes

the following:

e An alternative representation of the NGF is proposed and adopted to develop the
MRIDS_HP algorithm. This algorithm uses the strategy of horizontal partitioning.
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e Algorithm MRIDS_VP is developed by parallelizing the existing NGF based on the

strategy of the vertical partitioning.
The work in this contribution is published as given below.

e Pandu Sowkuntla*, Sravya Dunna and P. S. V. S. Sai Prasad. MapReduce based
parallel attribute reduction in Incomplete Decision Systems. Knowledge-
Based Systems, Elsevier, 213:106677, Feb 2021. https://doi.org/10.1016/j.
knosys.2020.106677 (Indexed in SCI, SCOPUS)

3. Contribution 3: A fuzzy discernibility matrix based attribute reduction accelerator
(DARA) is introduced for scalable attribute reduction in HDS. Based on this accelerator,
a sequential algorithm IFDMFS (Improved Fuzzy Discernibility Matrix based Feature
Selection) is developed. In order to enhance scalability even further, an algorithm
MR_IFDMFEFS is proposed using horizontal partitioning strategy. This algorithm is a
MapReduce based parallel/distributed version of IFDMFS.

The work in this contribution resulted in the following publication.

e Pandu Sowkuntla* and P. S. V. S. Sai Prasad. MapReduce based parallel
fuzzy-rough attribute reduction using discernibility matrix. Applied In-
telligence, Springer, pages 1-20, April 2021.
https://doi.org/10.1007/510489-021-02253-1 (Indexed in SCI, SCOPUS).

4. Contribution 4: Based on DARA accelerator (see contribution 3), an algorithm
MR_VFDMEFS is proposed using vertical partitioning strategy. It is also a MapReduce
based parallel /distributed version of IFDMFS. This algorithm is proposed for achieving
scalability in big dimensional HDS.

The work in this contribution will be communicated soon to the following journal.

e Pandu Sowkuntla and P. S. V. S. Sai Prasad. MapReduce based parallel
attribute reduction in high dimensional hybrid decision systems. Inter-
national Journal of Machine Learning and Cybernetics (to be communicated).

1.6.1 Supplementary Contributions

Throughout my Doctoral research, I also contributed to the following collaborative publica-

tions. They are not acknowledged as contributions in this thesis.
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e Kiran Bandagar, Pandu Sowkuntla*, Salman Abdul Moiz, and P. S. V. S. Sai Prasad.
MR_IMQRA: An Efficient MapReduce Based Approach for Fuzzy Decision
Reduct Computation. In International Conference on Pattern Recognition and Ma-
chine Intelligence (PReMI), pages 306-316. Springer International Publishing, 2019.
https://doi.org/10.1007/978-3-030-34869-4_34 (Indexed in SCOPUS, DBLP).

e Neeli Lakshmi Pavani, Pandu Sowkuntla*, K. Swarupa Rani, and P. S. V. S. Sai
Prasad. Fuzzy Rough Discernibility Matrix Based Feature Subset Selection
With MapReduce. In IEEE Region10 Conference (TENCON), pages 389-394. IEEE,
OCT 2019. DOI:10.1109/TENCON.2019.8929668 (Indexed in SCOPUS, DBLP).

1.7 Organization of Thesis

The thesis is divided into chapters based on the approaches proposed for the decision systems:
CDS, IDS and HDS. Figure[1.3|depicts the structure of the thesis. The present chapter (Chap-
ter (1) provides the introduction to this thesis, where it reviews the feature selection, rough
set theory and parallel/distributed computation. It also presents the research motivation,

objectives and the contributions made to this thesis.

Chapter [2| introduces the fundamental principles of classical rough sets and rough set-
based attribute reduction (or reduct computation). A brief overview of the MapReduce
programming model is given. This chapter also includes a detailed discussion of the Apache
Spark MapReduce framework, which is used to implement the proposed approaches of this
research work.

The contributions made to this research work are discussed in Chapters and In
Chapter [3, we explore into parallel attribute reduction in CDS based on classical rough sets.
This chapter provides a MapReduce-based approach for big dimensional data sets that uses
a vertical partitioning strategy for partitioning the input data set.

In Chapter {4l we investigate at parallel attribute reduction in IDS. Initially, this chapter
discusses the extension of rough sets for IDS. And, the proposed MapReduce-based paral-
lel/distributed approaches employing horizontal and vertical partitioning strategies are dis-
cussed. Both proposed approaches utilize the existing NGF to deal with incompleteness in

the data.
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Chapter [5| presents parallel attribute reduction in HDS. Fuzzy-rough set theory, which
is an extension to classical rough sets is discussed in this chapter. This chapter introduces
a fuzzy discernibility matrix-based attribute reduction accelerator (DARA) to accelerate the
attribute reduction. And, proposes a sequential approach based on DARA, and corresponding
MapReduce based approaches using horizontal and vertical partitioning strategies.

Chapter [6] concludes the thesis, summarizes the research work’s key contributions and

potential future scope.
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Chapter 2

Preliminaries

This chapter provides the theoretical background for the research work provided in this thesis.
A brief overview of classical rough set theory is provided for understanding the approaches
proposed in this thesis. A foundation basis for attribute reduction using classical rough sets
is provided. And the discussion moves on to the core concepts of MapReduce programming
model and one of its framework Apache Spark which is used to implement the approaches
proposed as part of this thesis. It is to be noted that all the preliminary notions relating to

the rough sets are limited to the scope of this thesis.

2.1 Classical rough sets

A set in classical set theory is uniquely determined by its elements. In other words, a set
is well-defined because it does not allow for any ambiguities when it comes to determining
whether or not an element belongs to the set. Thus, a set adheres to a crisp (precise) notion.
That is, the membership value is crisp either 1 (if element belongs to set) or 0 (if element does
not belong to the set). For example, “the set of even numbers” is crisp because every number
is even or not even (odd). But, ambiguity occurs when referring to concept like “attractive
picture”, where clear belongingness is difficult to define for the word “attractive”. We can not
classify all the given set of pictures into “attractive” or “not attractive”. Thus the concept
of “attractive picture” is not crisp (imprecise) but it is vague. Therefore, classical set theory
does not support vague concepts.

Fuzzy sets proposed by Lotfi Zadeh [118] successfully deals with vagueness. In this ap-
proach, a set is defined by partial memberships (that lies between the values 0 and 1), as
opposed to crisp membership used in classical set theory. For example, for the concept of
“attractive picture”, we can give a membership degree 0.7 to a picture of given set of pic-

tures, in other words we can say that the picture is 70% attractive. Fuzzy set theory and its
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applications have grown in popularity over the years, drawing the attention of researchers,
logicians, and philosophers all over the world.

Rough set theory (RST) [34] [77, [78, 97] is another approach to deal with vagueness. It is
an evolution of classical set theory that facilitates approximations in decision-making instead
of using partial memberships. In RST, a vague concept is represented with a pair of crisp
concepts called lower approrimation and upper approximation. The lower approximation
defines the domain objects that are certainly to be part of the subset of interest while a
description of the objects that possibly belong to the subset is the upper approximation.
A vague concept is said to be crisp set (definable set) if its lower approximation is equal
to upper approximation, otherwise it is said to be rough set. For the same example of the
concept “attractive picture”, among the given set of pictures, those that are considered to
be certainly attractive fall into lower approximation, while those that are considered to be
possibly attractive fall into upper approximation.

Prof. Z. Pawlak introduced the classical rough sets in [77] and basics related to reduct
computation are given in [78, [79, [IT5]. Classical rough sets are defined for categorical decision

systems, where a categorical decision system is defined as,
CDS = (U, AU D, {Va, fatacAuD)

Here, U = {x1,x2,....x,} is a finite nonempty set of objects, A = {aq, a9, ....a,} is a finite
nonempty set of conditional attributes, D = {d1,ds, ....d,} is a finite set of decision attributes
that represent classes of objects. In this thesis, we assume D = {d}, where d is a single decision
attribute having different decision values, V, is the domain of attribute a and f, : U — V, is a
function that maps an object x in U to exactly one value in V;,. The notation f,(x) denotes the
object x value of attribute a. In this thesis, for simplicity, the notation a(x) used for referring
fa(x), and the decision system can be represented in short form as CDS = (U, AU {d})

The indiscernibility relation is the main concept for defining approximations.

Definition 2.1. For the given decision system CDS, let P C A, an indiscernibility relation
IND(P) is defined as [77],

IND(P) = {(z,2") € U* | Va € P (a(z) = a(2))} (2.1)

For two objects x,2’ € U and if (z,2’) € IND(P) then x and 2’ are indiscernible (in-
distinguishable) by all the attributes of P. The indiscernibility relation determined by P
is called as P-indiscernibility relation. IND(P) is an equivalence relation as it satisfies the

reflexive, symmetric, and the transitive properties. The equivalence relation I N D(P) induces
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a partitz’onﬂ of the universe of objects U into a family of disjoint subsets called equivalence
classes. The set of equivalence classes of U that are determined by the indiscernibility relation
IND(P) are denoted as U/IND(P) (or U/P), and the equivalence class that includes z is
denoted as [z]p, where [z]p = {y € U|(z,y) € IND(P)}. The set of equivalence classes U/P
is also called as approzimation space or granular space, and each equivalence class in U/P is

also called as a granule. Since U/P is a partition of U, the following properties are satisfied.
1. If gr € U/P is any granule, then gr C U.
2. For any two distinct granules gr,gr’ € U/P, gr N gr’ = ¢.
3. U gr=U
greU/P
According to Prof. Pawlak [77], rough set approximations are defined as given below.
Definition 2.2. For the given decision system C' DS, let P C A and X C U. The concept X

can be approximated using only the information contained in P by constructing the P-lower

and P-upper approzimations of X, denoted by P(X) and P(X) respectively as given below.

P(X)={xeU]|z]p C X} (2.2)
PX)={zcU|[lpnX #¢} (2.3)

Definition states that, the lower approximation P(X) of the concept X (in the space
of P) is a set of objects  which belongs to the equivalence classes contained in X. And, the
upper approximation P(X) of the concept X (in the space of P) is a set of objects x from
the union of all the equivalence classes, which have non-empty intersection with X.

X is said to be definable set if P(X) = P(X) otherwise it is said to be rough set.

From [77, 78] [79], for the given decision system C'DS, the positive region is defined as

given below.

POSp({d}) = |J P(X) (2.4)
XeU/{d}

The positive region POSp({d}) contains the objects of U that are classified certainly into

one of the decision granules of U/{d} using the information of attribute set P.

2.2 Rough set based attribute reduction

As stated earlier, the reduct is a minimal subset of conditional attributes that preserves the

original classification as defined by conditional attribute set. Reduct computation methods

IPartition of a set is the collection of disjoint subsets where it does not contain an empty set, the union of
all the subsets is equal to the given set, and the intersection of any two subsets is an empty set.
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are classified into many categories. However the primary categories include: (i) Dependency
measure based, and (ii) Discernibility matriz based [44], (53], 107, 116, [132]. This section

explains the basic concepts underlying both approaches.

2.2.1 Dependency measure based reduct computation

The dependency measure denotes the classifiability of a decision system, in other words it
represents dependency of decision attribute on the conditional attribute set of a decision sys-
tem. Different dependency measures exist in the literature, however, we use gamma measure
() to propose dependency measure based approaches in this thesis.

For the given decision system C' DS, the dependency measure (gamma measureﬂ) of deci-

sion attribute {d} over the subset of conditional attributes P is given by [78 [79],

_ [POSp({d})]

p({d}) = o (2.5)

(Note: In this thesis, the notation |Z| for any set Z denotes the cardinality of Z)

The gamma measure yp({d}) gives the proportion of objects belonging to the positive
region of P. If yp({d}) = 0 then classification {d} is independent of the attributes in P, and
the information in P is not useful for classification. If yp({d}) = 1 then {d} is completely
dependent on P. And the values in 0 < yp({d}) < 1 indicate the partial dependency. If
~v4({d}) is 1, then decision system is said to be consistent (i.e., all the objects in the decision
system are classifiable) otherwise it is said to be inconsistent.

From Eq. (2.5), an attribute a € P is said to indispensable (useful or essential) attribute,
if vp_1oy({d}) < vp({d}), otherwise it is said to be dispensable (redundant). Note that
the dispensable attributes are superfluous and they do not contribute in the classifiability of
the system, thus these attributes should be removed in the process of reduct computation.

Therefore, based on the dependency measure approach the reduct is defined as given below.

Definition 2.3. For the given decision system CDS, let R be the subset of conditional
attributes (R C A), and R is said to be reduct if and only, if R satisfy the following two

conditions,
1). yr({d}) = va({d}) (jointly sufficient)
ii). yr({d}) < yr({d}) for any R’ C R (individually necessary)

In the above definition, the jointly sufficient condition states that, the gamma measure of

reduct attribute set is collectively sufficient to induce the same gamma measure of conditional

'The terms “dependency measure” and “gamma measure” are used interchangeably in the rest of the
thesis.

17



2. PRELIMINARIES

attribute set (i.e., yr({d}) = v4({d})), and the individually necessary condition states that
none of the reduct attributes can be omitted as each of them are necessary (i.e., vp/({d}) <
vr({d}) for any R’ C R). Note that, the minimal subset of attributes (reduct) is computed
using an attribute reduction algorithm. Quick Reduct Algorithm (QRA) [16] is regarded as

an illustration of dependency measure based reduct computation.

2.2.1.1 Quick reduct algorithm

Algorithm 2.1: Quick Reduct Algorithm (QRA)
Input: Decision sytsem CDS = (U, AU {d})
Output: Reduct R

1 Initial Reduct R = ¢

2 repeat
3 Temp=R
4 for each a € (A — R) do
5 if (Yoo} ({4}) > A7emp({d})) then
6 | Temp=RU {a}
7 end
8 end
9 R=Temp
10 until (va({d}) == va({d}))
11 Return R

Chounchoulas et al. [16] proposed Quick Reduct Algorithm (QRA) for reduct computation
in CDS. The QRA uses search strategy of Sequential Forward Selection (SFS) for generating
the reduct. The pseudo code of QRA is given in Algorithm

In Algorithm the QRA takes decision system CDS as input and produces super reduct
as the output. According to this algorithm, initial reduct R is set as empty set (¢). Initially,
the dependency measure y4({d}) is computed for checking the end condition of the algorithm.
From every iteration, an attribute a € (A — R) is selected for which maximum gamma gain
(i-e., maximum dependency gain Yryq) ({d}) —vr({d})) is obtained. Algorithm is terminated
when gamma measure of the obtained Reduct yr({d}) is equals to the gamma measure of all
attributes set y4({d}). The computation of Yr (q}({d}) ,Va € (A— R) is the main complexity
in each iteration of the algorithm.

From Algorithm it can be observed that the QRA computes the next best attribute
in each iteration that should be added to the reduct set R. The termination condition of the
algorithm satisfies the first condition of the reduct given in Definition (i.e., (yr({d}) =
v4({d}))). But the algorithm may not satisfy the second condition, where the reduct should

not contain dispensable attributes. Because, QRA follows SFS strategy that can not assure
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the addition of only indispensable attribute to the reduct in each iteration. There is no
guarantee that SFS strategy generates minimal reduct, but it generates the reduct with the
size almost close to minimal. Thus, the reduct produced by QRA may contain dispensable
attributes. Therefore, the reduct generated by QRA is a super reduciﬂ In practice, it has
been observed that the redundancy in the reduct of QRA is extremely small and does not

hamper the quality of the reduct in inducing the good classification models.

2.2.2 Discernibility matrix based reduct computation

As previously described, the main idea in dependency measure based attribute reduction
approaches is indiscernibility relation. Alternatively, the complementary relation of indis-
cernibility relation named as discernibility relation is used for reduct computation. This can
be determined by complementing the indiscernibility relation given in Eq. . For the

given decision system CDS, for a subset P C A, the discernibility relation is given as,
DIS(P) = {(z,2') € U* | (z,2') ¢ IND(P)} (2.6)
The above Eq. can be rewritten as given below.
DIS(P) = {(z,2") € U? | 3a € P [a(z) # a(z')]} (2.7)

Eq. (2.6) or (2.7) states that, The discernibility relation DIS(P) contains the pair of objects
which discern on at least one attribute in P. Further, the discernibility relation in a decision
system is constructed for the pair of objects which discern and their decision classes are

different, hence it is decision relative discernibility relation and is given below.
DIS(P) = {(z,2') € U? | 3a € P [a(x) # a(z))] Ad(x) # d(z)} (2.8)

The discernibility relation DIS(P) satisfies the symmetric property, but it does not satisfy
the reflexive and transitive properties.

The discernibility relation of a decision system can be represented with a discernibility
matrix (DM) [98], in which each entry contains a set of attributes that discern a pair of
objects. For the given decision system C'DS, the discernibility matrix is a symmetric matrix
U x U. Thus, we can consider either only lower diagonal or upper diagonal entries. And, the

matrix contains the entries between the objects of different decision classes, the remaining

n the rest of the thesis, super reduct is termed as reduct, as all the proposed approaches follow the SFS
strategy for reduct generation.
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entries are empty. Hence, the matrix is a decision relative discernibility matm’ﬂ [55, 98]. In

the matrix, an entry C,,» between each pair of objects x,2’ € U is given as,

otherwise

G = {24100 £} 1 ) 2 ) 29

An entry C,, in the matrix states that the objects x and 2’ can be distinguished by any
attribute in Cy,r. A discernibility function can be derived from the discernibility matrix.
The discernibility function is a boolean function defined on the power set of attribute set.
If the given attribute set has the ability to discern all the possible pair of objects of the
decision system belonging to different decision classes, then this function evaluates to TRUE;
otherwise, it evaluates to FALSE.

For the given decision system CDS, let aJ, a3, ...a;, be boolean variables correspond to the
attributes aq, ao, ...a, respectively. The discernibility function fopg is defined in terms of

boolean variables as given below.
feps(al,ab,..al) = N{VCE 1 <2’ <z <|U|,Cpyp # 0} (2.10)

Here, C7 , = {a*|a € Cyyr}. The expression VC? , in the above equation denotes the disjunc-
tion of boolean variables associated with the attributes in C,,/. By applying the absorption
and distribution laws, the discernibility function can be simplified, where conjunction of re-
duced disjunctive normal forms are obtained. Every conjunctor in the reduced disjunctive
form is referred to as a prime implicant. The set of prime implicants of discernibility function
is equivalent to the set of all minimal reducts of the given decision system [98]. Based on

discernibility matrix approach [98], the reduct is defined as given below.

Definition 2.4. For the given decision system CDS, let R C A, Cpp (Vx,2’ € U) be an
entry of the discernibility matrix (DM) of the given decision system, and R is said to be
reduct if and only if R satisfy the following two properties,

1). VCypp € DM [Cppr # 0 = RN Cpy # 0] (jointly sufficient)

ii). Va € R, 3Cpp € DM [Cpp # O A ((R — {a}) N Cppr = 0)] (individually necessary)

Property (i) demonstrates that, in the given decision system, the reduct R is jointly
sufficient for distinguishing all discernible object pairs. And, Property (ii) implies that each

attribute in reduct R is individually necessary.

In this thesis, the discernibility matrix is used as synonymous to decision relative discernibility matrix
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Figure 2.1: Overview of MapReduce programming model

2.3 MapReduce programming model

MapReduce framework was first introduced by Google Inc. researchers Jeffrey Dean and
Sanjay Ghemawat [25]. It is a parallel/distributed programming model used for large-scale
data processing. It reduces the amount of work required to write code that can run on a
cluster of computers (nodes) because it provides a simple API that the programmer can use.
The MapReduce system provides an abstraction that allows programmers to use a simple
model while hiding the specifics of parallelization, load balancing, and fault tolerance.

The nodes in the cluster of any MapReduce framework are categorized as master (driver
node), workers (slave nodes). The master is in-charge of assigning jobs to the workers, mon-
itoring the jobs, and re-executing failed tasks. Workers follow instructions from their master
and carry out their assigned tasks. A MapReduce program runs in three phases: map, shuffle
and sort, and reduce. The main code of the MapReduce program runs on the master, the
mapper and reducer codes run on the worker nodes. To accomplish the task given by the mas-
ter, the mappers and reducers run on all the nodes in the cluster in an isolated environment,
that is, they are unaware of each other and their jobs are equal on every node.

The < key, value > pair forms the basic data structure in any MapReduce framework. In
this programming model, the programmer writes the code in the form of mapper and reducer

with the following signatures:(The convention [...] denotes a list.)

map :< keyi,value; >— [< keya, valuey >

reduce :< keya, [values] >— [< keys, values >]
As shown in Figure the execution framework can be summarized as follows.

1. The driver gets input data from the distributed file system and distributes it as partitions
(data splits) to different mappers located in different nodes (workers) of the cluster. The
mapper code is applied on every < key,value > pair and after processing, it produces

an arbitrary number of intermediate < key, value > pairs.
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2. All these intermediate < key, value > pairs are grouped by the key, that can be achieved
by a large-scale distributed shuffling that involves all the nodes that executed map
tasks and all the nodes that will execute reduce task. Hence this intermediate data
must be copied over the network, and lot of communication takes place across the
cluster of nodes, this phase of the framework known as shuffie and sort. A job with
M mappers and R reducers involve maximum M x R distinct copy (data transfer)
operations, this leads to significant burden on the framework, since many disk and
network I/O operations are required to transfer the entire data and lot of communication
happens across the network. Under big data work loads, to get the high performance,

minimizing the shuffle and sort work and distributed coordination is important.

3. Each reducer gets intermediate data in order, that is sorted by key. The reducer is
applied on all values correspond to the same intermediate key to produce output <
key,value > pairs. Now the driver collects this output data and writes it to distributed

file system.
Following are the key advantages of the MapReduce paradigm.

e Horizontal scalability: It is the measure of a system’s ability to increase or decrease
in performance and cost in response to changes in application and system processing
demands. The MapReduce system’s computing power can be increased by adding more
nodes to the cluster. By default, MapReduce splits input data into partitions and
distributes them across the available machines, so having more machines means having

less data to process.

e Fault tolerance: It refers to the ability of a system to keep running even though one of
its components fails. In MapReduce framework, to identify a failure in the system, the
master will ping every worker on a periodic basis. If any worker does not give response
after certain time, then it is set as "failed”, and the task of that worker is rescheduled
to other worker in the cluster. If a machine fails, all map tasks that have completed
must be executed again because their output is stored on the failed machine’s local hard
disk(s) and therefore inaccessible. The reducer tasks that have been completed should

not be re-executed because their output is stored in a distributed file system.

e Simple programming model: MapReduce has simple programming model, where a
programmer needs not look into implementation details of parallelism, distributed data
passing, or any other complexity. In a MapReduce framework, a programmer needs to
write a program in terms of map and reduce functions. MapReduce not only makes the

coding process ease and efficient but it also reduces the time to develop the programs.
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Apache Hadoop [1], Apache Spark [121I], Twister [35], HaLoop [12], etc., are some of
the existing MapReduce frameworks. Even though, Apache Spark and Apache Hadoop are
two different large-scale data processing frameworks, they are alike in many ways. Apache
Spark offers several benefits over Hadoop. It was designed mainly to process iterative tasks
in memory, which was one of Hadoop’s major limitation. Additionally, from authors’ [95]
119, 120] assessments have found that, Spark outperforms Hadoop by running applications
up to 100 times faster in memory and 10 times faster on disk. Further, we can translate
Hadoop programs directly to Spark: i.e., the Spark primitives are a superset of Hadoop. It
should be noted that other frameworks such as Twister [35] and HaLoop [12] have attempted
to address the inefficiency of iterative job handling of Hadoop. Despite favoring iterative
MapReduce jobs, they could be regarded as subsets of Spark functionality [50, 5I]. The
proposed approaches in this thesis are implemented on Apache Spark framework. One of the
reasons to choose Apache Spark is that, it supports iterative and in-memory computations.
Another reason is that, as compared to other iterative in-memory frameworks (such as Twister

[35], HaLoop [12]), Spark provides robust support for fault tolerance [50} [51].

2.4 Apache Spark

Apache Spark [12]] is a fast computing framework which has the compatibility with Hadoop
MapReduce model. Apache Spark is developed at the University of California, Berkeley’s
AMPLab, which published it in the year 2014, and the Apache Software Foundation now
maintains it. Even after all these years, it is currently one of the most popular big data
analysis frameworks. In an increasingly wide range of industries, Apache Spark has become
the standard for large-scale data processing and data science. Spark has built in libraries
such as Spark SQL, Spark Streaming, MLIib (for machine learning) and GraphX (for graph
processing). These libraries are frequently used by businesses and academics throughout all

sectors to handle complex problems.

2.4.1 Resilient Distributed Data set (RDD)

The special feature of Spark, that made it as unique computing framework is its primary
data structure RDD. It is an immutable collection of data items distributed across the nodes
of the cluster, and can be manipulated in parallel. The word immutable meaning is that, RDD
can not be changed once it is created. Each word in the abbreviation of RDD has its own

significance.
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Existir.lg val myRDD=sc.parallelize(List["big", "data"])
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Figure 2.2: Creation of Spark RDD and its operations

e Resilient: This word in RDD represents the fault tolerant, where the missing or damaged

partitions due to node failures can be recomputed.
e Distributed: It denotes that the data is distributed across the nodes of the cluster.
e Data set: It represents the records of the data.

Operations performed on RDD can be classified into two categories, namely transformations
and actions. The transformation operation is used to generate a new RDD from the existing
RDD. The actual results from the RDDs are produced by performing action operation. The
new RDDs can be generated by performing transformations on the existing RDDs or by
loading external data sets or by parallelizing the existing collection. Figure [2.2] shows the
creation of the RDDs and few operations on RDDs with associated code lines given in Scala
programming language.

Spark utilizes RDD and DAG (Directed Acyclic Graph) in achieving important features:
lazy evaluation, fault tolerance, iterative and in-memory computation. DAG contains the
lineage of RDD with all operations (transformations and actions) required to complete a
task. Here, RDD’s lineage refers to the previous RDDs on which it depends. The DAG gives
the logical execution flow of RDDs.

e Lazy evaluation: All transformations performed on RDDs are lazy in nature, meaning
that the actual result is not generated immediately after the operation, but instead a

new RDD is constructed from the old one. All these transformations are added to the
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DAG, and the actual results are obtained when an action operation is invoked. Unless
the action is executed, the input file is not even read into memory. This enables Spark
to make optimization decisions, because all transformations are seen before any action

is taken by Spark. Disk and memory usage is improved with lazy evaluation.

e Fault tolerance: Spark is built to deal with the failure of worker nodes. This fault
tolerance is achieved by using RDD and DAG. Since DAG contains the lineage of RDD,
when a worker node fails, the same results of that node can be obtained by re-executing
the steps of the lineage in the existing DAG. Note that, in lineage of an RDD, it

remembers how it was created from other RDD to recreate itself.

e [terative and in-memory computation: Spark RDDs have in-memory computing facility
as it stores intermediate results in memory (RAM) instead of disk. This feature greatly
boosts Spark performance. Additionally, through RDDs, Spark is capable of caching
the intermediate results to help future iterations. By doing this, Spark gets an added
better performance for iterative and repetitive processes, that can generate results and
data in one step that can be reused later. Another way that a programmer may show
which RDDs should be re-used is with the persist method. Usually, persistent RDDs
are saved to RAM but can be dumped to disk if there is not enough memory. The
programmer may provide additional options in persistence methods, such as saving the

RDD on disk and memory or only on disk or replicating it between nodes.

2.4.2 Operations on RDD

Spark RDD supports two types of operations: transformations and actions. In the definition
of RDD, it is given that the RDD is immutable, that is, RDD can not be changed once it
is created. Here, the meaning of the word “immutable” should be understood correctly. Its
meaning is that, when we perform transformations or actions on RDD, then new RDDs or

results are produced without changing the existing RDD.

2.4.2.1 Transformations

Transformation is a function that generates new RDD from the existing one. Because RDDs
are read-only, the transformation does not affect the original RDD (existing RDD). All the
transformations applied on RDD built an RDD lineage which is represented with a DAG.
As mentioned earlier, transformations are lazy in nature, they are not executed immediately

after their creation, instead they are materialized once action operation is performed. There
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are two types of transformations: narrow transformations and wide transformations. These

two types of transformations are shown in Figure [2.3

e Narrow transformations: The transformations in this category convert each input par-
tition to a single output partition. These transformations occur, if each partition of
the parent RDD is utilized by single partition of the child RDD, or if each child RDD
partition is created by or is dependent on a single parent RDD partition. This type of
transformation is essentially faster, because it does not necessitate any shuffling of data
or data movement through the cluster network. Some of the narrow transformations

frequently used in implementing the approaches in this thesis are: map(), flatMap(),

—RDD2

Partition—1

Y

Partition—2

Partition—3

Y

Figure 2.3: Types of RDD transformations

mapPartitions() and filter().

— map() and flatMap(): These two transformations are similar in functionality. With
map() method, every item in RDD is transformed into one item in the resulting
RDD. That is it performs one-to-one transformation. Where as flatMap() method

transforms every item in RDD into multiple (0 or more) items in the resulting

Wide transformations

—RDD1__

Partition—1

—RDD2

Partition—1

Partition—2

Partition—2

Partition—-3

Partition—-3

RDD. That is, it is a one-to-many transformation.

— mapPartitions(): This method is similar to map(). Using the map() method, we
utilize the function at a per-element level, while using the mapPartitions() method,

we work with partition level. The mapPartitions() transformation is faster because

it calls the function once per partition, rather than once per element.
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— filter(): While executing a filter() transformation, we supply it with a boolean
function that is responsible for identifying RDD elements satisfying the given con-
dition and returns a subset of the RDD containing elements on which the boolean

function returns true.

o Wide transformations: The transformations in this category will have input partitions
contributing to multiple output partitions. These transformations occur, if each par-
tition of the parent RDD is utilized by multiple partitions of the child RDD, or if
each child RDD partition is created by or is dependent on multiple parent RDD par-
titions. This implies that data would be moved between partitions in order to carry
out wider transformations. These are also known as shuffle transformations because
they shuffle the data. These transformations are slow in comparison to narrow trans-
formations when constructing new RDD partitions, it may be necessary to shuffle data
across various nodes, which may have a major impact on processing speed of the frame-
work. Examples for wide transformations include: groupByKey(), aggregateByKey(),
reduceByKey(). One of the frequently used wide transformations in implementing the

proposed approaches is reduceByKey().

— reduceByKey(): This method gets an RDD in the form of < key, value > pair as
input, and aggregates value portions of the same key, and generates the output
RDD in the form of < key,value’ > pair. Here, the data type of value and value’

is same.

— aggregateByKey(): This method is logically equivalent to reduceByKey() but it
allows to return result in different type. It aggregates the values of each key, using

¢

given aggregate, combine functions and a neutral “zero value”. Here, the “zero

value” input argument denotes the start value of an accumulator.

— groupByKey(): Tt creates a single sequence from the values for each key in the RDD.
During this transformation, lots of unnecessary data transfer over the network.
This method receives < key,value > pairs as an input, group the values based on
the key and generates an RDD of < key, [value] > pairs as an output. Here, the

notation [ | indicates list of values.

From the Figure it can be understood that, to make applications run faster when
operating with Spark, it is best to use narrow transformations as much as possible while
reducing the use of wide transformations. Some times usage of wide transformations is un-
avoidable, in that case alternative strategies should be incorporated to reduce the shuffling

of the data or movement of the data (in shuffle and sort phase) in the cluster network.
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2.4.2.2 Actions

Action is a function that produces actual results from the given RDD. Thus, action operation
on RDD returns a non-RDD values. An action is one of the approaches to transfer the data
from executor (worker node) to the driver (master node). The action results are saved to
driver or to an external storage system. The action operations that are frequently used in

implementing the approaches in this thesis are: reduce(), collect() and count().

e reduce(): This action computes the aggregation of an RDD’s elements by repetitively
applying a function that gets two RDD elements as input and returns a new element as

an output. Finally, a single aggregated value is returned.

e collect(): This action returns an array to driver containing all the data items in the
RDD. The driver’s (master machine) maximum memory can be exceeded if care is not

taken when running this action.
e count(): This function returns the number of data items present in the input RDD.

e saveAsTextFile(): This function saves the path of a file and writes the content of the
RDD to that file.

2.4.3 Data partitioning in Apache Spark

Apache Spark framework reads the input file as an RDD and partitions and distributes it
into the cluster of computers using the horizontal partitioning strategy. In this strategy, the
input file is partitioned row wise, and each partition is distributed to a node of the cluster.
Thus, every node in the cluster gets one or more data partitions.

In any MapReduce framework, the data partitioning help in parallelizing distributed data
and processing with minimal network traffic across the cluster of computers. The number
of partitions used in Spark is adjustable, and having too few (which results in reduced con-
currency, data skewing, and inefficient resource usage) or too many (which results in task
scheduling taking longer than real execution time) partitions is undesirable. Hence, making
a decision on selection of the number of data partitions is a crucial step in achieving maxi-
mum performance of MapReduce based algorithm in Apache Spark. As given in the literature
[50, 5], the number of data partitions recommended to be equal to the number of cores (some
times may be 2 or 3 times of available cores) in the cluster to achieve the maximum paral-
lelism. Thus, one or more partitions available in a node. Spark assigns a task per partition,

and each core executes a task.

28



2.4 Apache Spark

Internally, Apache Spark supports two types of partitioners to partition the list of <
key,value > pairs. They are hash partitioner and range partitioner. Depending on how
keys in the data are distributed or sequenced, and the action that is to be performed on
the data, the user can choose the appropriate partitioner. Spark uses HashPartitioner as
its default partitioner. The data will be distributed uniformly across all partitions using
HashPartitioner. The data is distributed to nodes based on the result of the hash function
applied to each key. Hash partitioning has the potential to make distributed data skewed.
With the range partitioning, tuples with keys in the same range will appear on the same
computer. That is, a range partitioner partitions keys depending on the set of sorted range

of keys and key ordering.

2.4.4 Run time architecture of Spark application

Spark follows master/slave run time architecture where, master (driver) acts as central coor-
dinator that coordinate the slaves (workers or executors). The combination of user program,
driver and its executors form a Spark application. The run time architecture of the Spark
application contains three major components: driver, cluster manager and executors. Figure
shows the run time architecture of the Spark application. The role of each component is

given below.

2.4.4.1 Role of driver

The main() method of the user program runs in the driver. In this method the sparkContext
(referred with sc) is created. SparkContext is the core component of any Spark application.
It is an handle to an instance of the Spark execution environment. And it is used to build
RDDs, accumulators, and broadcast variables in Spark, as well as to access and run Spark
services.

The execution is done and actual results are returned if an action is performed on RDD. In
other words, when an action is performed then the driver creates a job from the user program.
Then the driver creates a DAG which is a logical execution plan. After creating the DAG, the
driver converts it into physical execution plan by splitting it into a number of stages. These

stages are then subdivided into smaller tasks, which are then allocated to executors.

e Job: It is a parallel computation that consists of several tasks that are launched in

response to Spark actions.

e Stage: Each job is subdivided into smaller groups of tasks called stages that are inter-

dependent.
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Figure 2.4: Run time architecture of Spark application
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e Tuask: A task is a specific piece of work that is assigned to the executor. For each

partition, a task is created.

Each stage contains the number of tasks which are equal to number of partitions in the cluster.
Thus the number of tasks in a job can be calculated by multiplying the number of jobs with
number of stages. Here, the creation of the stage depends on the shuffling of the data in the
cluster network. When a transformation needs shuffling of the data to other partitions then
driver creates stages for other partitions. If a transformation does not require shuffling then
driver creates a single stage for it. after converting a job into number of tasks, the driver
schedules them to the executors through a cluster manager. And finally, the driver collects

the results from the executors on successful execution of Spark application.

2.4.4.2 Role of cluster manager

After converting the job into tasks, the driver communicates with cluster manager and nego-
tiates for resources. A cluster manager is responsible for obtaining and allocating resources
on the cluster to Spark jobs. Thus a Spark application is launched on a cluster of nodes using
the cluster manager. Spark’s default built-in cluster manager is standalone cluster man-
ager. Apart from its integrated cluster manager, Spark supports other open source cluster

managers, including Hadoop Yarn, Apache Mesos.

2.4.4.3 Role of executors

Executor is a distributed machine that is in control of task execution. An executor can run
multiple tasks in parallel. Here, generally a task is allocated to a CPU core of the executor.
The executor is responsible for all data processing. It interacts with the storage systems. The
executor stores the results of computations in memory, a cache, or on hard disk or can return
to the driver.

One of the primary aims of this thesis work is to examine different strategies
for simplifying the shuffle and sort phase in the design of rough set based at-
tribute reduction algorithms using Apache Spark. In the next chapter (Chapter , we
investigate these alternative strategies for attribute reduction in categorical decision systems.
And, in Chapters {4] and [5, we explore these strategies for attribute reduction in incomplete

and hybrid decision systems.
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Chapter 3

Parallel attribute reduction in

Categorical Decision Systems

This chapter introduces the first contribution for this doctoral thesis. In this chapter, the rel-
evance of vertical partitioning strategy is investigated for classical rough set based attribute
reduction in Categorical Decision Systems (CDS) with big dimensionality. A MapReduce
based parallel/distributed algorithm MR_IQRA_VP is developed in which vertical partition-
ing strategy is used for partitioning the input data set. With the vertical partitioning strategy,
the data set is split over attribute space. It overcomes the problems involved in horizontal
partitioning strategy which partitions the data over object space. The advantages and limi-
tations of the proposed MR_IQRA_VP algorithm is theoretically and experimentally studied,
inferences are obtained through comparative analysis with state-of-the-art horizontal parti-

tioning based algorithms. The work discussed in this chapter has been published in [102].

3.1 Review of existing approaches

Rough set theory [77] has been successfully identified as an effective framework for attribute
reduction in CDS. Several algorithms [16), 24], 47, [48], 67, (68, [69} [74], [83] in rough set theory have
been developed over the previous decades to accomplish efficient reduct computation. Quick
Reduct Algorithm (QRA) [16] is one of the key traditional reduct computation algorithms.
Sai Prasad et al. extended this algorithm to IQRA_IG (Improved QRA) [74] by adding the
features of handling the trivial ambiguous situation, granular refinement, and positive region
remouval.

The amount of data generated each day has increased exponentially during the previ-
ous several years. If the data set is enormous in volume or/and dimension, the aforemen-

tioned classical reduct computing algorithms fail to perform adequately due to their sequen-
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tial nature. For scalable attribute reduction in CDS, the researchers considered that paral-
lel/distributed computation is the optimal method. As a result, researchers [7, 26, [60, 87,
104}, [106] attempted to parallelize standard attribute reduction approaches in order to increase
their efficiency when dealing with large-scale data sets.

In recent years with the proliferation of MapReduce model for parallel/distributed compu-
tation, several scalable reduct computation algorithms [211, [45], 811 [IT4] have been developed
for large-scale CDS using Apache Hadoop MapReduce framework [I]. But implementing iter-
ative parallel algorithms on the Hadoop platform was found to be inefficient. The lapse was
because of the problem of frequent storing/loading of the data into/from distributed memory.

In order to overcome the problems of Hadoop MapReduce framework, many authors
proposed parallel algorithms [15, 29, [92] 96, 124] based on in-memory iterative MapReduce
frameworks such as Apache Spark [2], and Twister [35]. J. Zhang et al. proposed Parallel
Large-Scale Attribute Reduction (PLAR) [124] algorithm based on Apache Spark framework.
Sai Prasad et al. developed a scalable IN.MRIQRA_IG algorithm [92], which is a parallel
version of IQRA_IG [74], and it is implemented on the Twister framework.

Generally, a data set is viewed as a matrix, where rows indicate objects and columns
indicate attributes. In any MapReduce framework, the input data set to the cluster is par-
titioned using the horizontal partitioning strategy. In this partitioning strategy, the data is
partitioned in object space, and each partition is distributed to a node of the cluster (dis-
tributed by samples), as shown in Figure Here, each data partition gets the information
of all the attributes over a subset of objects. This means that if the data set is horizontally
partitioned to the nodes of the cluster, every node has information of all the attributes over
a subset of objects. Thus, in rough set based attribute reduction, the granules or equivalence
classes (refer Section [2.2]in Chapter [2)) construction is dependent on the information available
across the nodes, which results in significant data movement across the nodes of the cluster.
The number of candidate subsets over which the computations need to be performed for
finding the reduct is directly proportional to the number of attributes in the decision system.
From the existing MapReduce based parallel /distributed reduct computation algorithms such
as IN.MRIQRA _IG (based on Twister [35]), PLAR (based on Apache Spark [2]), and PFSPA
(based on Hadoop [1]), we observed that, as attribute space size increases, the running time
of horizontal partitioning based reduct computation algorithm also grows significantly. This
has been especially observed while working with big dimensional data sets of Bioinformatics,

i.e., microarray data sets.
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Figure 3.1: Horizontal partitioning of the input data

From the review of literature, it is observed that, horizontal partitioning based approaches
for attribute reduction in rough set theory are efficient for the data sets with huge number
of objects. Researchers have concentrated on only one aspect of large-scale data sets, namely
massive number of objects, while paying little attention to the attributes aspect. Hence, all
the rough set theory based attribute reduction approaches using the MapReduce programming
model [15 21}, 29, 45, 811, 92 96], 114, 124] adopted horizontal partitioning strategy. Thus,
in the present work, we explore alternate partitioning strategy that perform well for the
large-scale data sets which are big dimensional.

From the literature, we noticed that, two non-rough set based methods [88] [89] used
vertical partitioning strategy to deal with big dimensional data sets. This strategy is an al-
ternative to horizontal partitioning strategy. Authors of these methods demonstrated the
utility of vertical partitioning strategy for feature ranking (but not for feature subset selec-
tion) using MapReduce programming model. Thus, in this chapter the relevance of vertical
partitioning strategy is investigated in rough set based attribute reduction. Here, a MapRe-
duce based algorithm MR_IQRA_VP using vertical partitioning strategy is proposed which
is designed based on the existing Improved Quick Reduct Algorithm (IQRA-IG) [74]. The
proposed MR_IQRA_VP algorithm is implemented and compared using the Apache Spark
MapReduce framework [2]. The relevance and limitations of this algorithm is provided with

extensive experimental analysis along with theoretical validation.

3.2 Related work

This section describes the sequential and parallel version of IQRA_IG algorithm, their sig-
nificant features. It also presents the process of reduct computation involving horizontal

partitioning of the data.
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3.2.1 Sequential IQRA _IG algorithm

Sai Prasad et al. proposed IQRA_IG algorithm [74], which is an improved version of Quick
Reduct Algorithm (QRA) [16]. The significant features of this algorithm are, granular refine-
ment, positive region removal and handling of a trivial ambiguous situation.

By recollecting from Section the QRA algorithm starts its first iteration with the
reduct R as an empty set (¢). For each conditional attribute a € A, the dependency (gamma)
measure () that depends on the positive region has to be computed. To compute the positive
region, the corresponding granular space is formed through sorting. Based on the attribute
values, objects are sorted. The place of transition from one value of the attribute to the
next attribute is identified. This results in the formation of granules. That is, granules
U/{a} are formed for any attribute a € A. For sorting, Quick sort like comparison sorting
based algorithm takes O(|U|log|U|) time and Radix sort like linear sorting algorithm takes
O(|U]) time for forming granules. After the computation of positive region for each conditional
attribute a € A, the gamma measure () is computed. Attribute for which maximum gamma
obtained is included into the reduct set R.

In the subsequent iterations of QRA, when reduct is nonempty, the granules need to be
computed with RU{a}, Va € (A — R). Granules U/(RU{a}) can be computed based on the
values of objects in RU{a}. But this computation becomes redundant since computed granules
U/R are available from the previous iteration. This redundant computation in each iteration
is avoided by using granular refinement (refer Section ) in IQRA_IG algorithm. Thus,
by forming the granules U/(R U {a}), the gamma measure yp (.1 ({d}) is computed. From
the granules of U/(RU{a}), the positive region granules are removed by using positive region
removal (refer Section [3.2.1.2). From the next iteration, the granules are formed based on
the non-positive region granules of U/(RU{a}). An attribute a is selected to the reduct, for
which the gamma gain (Ygu(a) ({d}) —vr({d})) is maximum. The algorithm terminates when
gamma measure of the obtained reduct yr({d}) equals the gamma measure of all conditional

attributes set y4({d}).

3.2.1.1 Granular refinement

Definition 3.1. For a decision system CDS = (U, AU {d}), let Q C P C A, granules U/P
is a refinement over U/Q that denoted by U/P < U/Q where,

Vgr e U/P = 3gr' e U/Q A gr C g1’ (3.1)

The above Eq. (3.1 is the outcome of the indiscernibility relation being an equivalence

relation.
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3. PARALLEL ATTRIBUTE REDUCTION IN CATEGORICAL
DECISION SYSTEMS

Definition 3.2. For a decision system CDS = (U, AU {d}), let R C A, a € (A— R) and
U/R = {gri,gra,....grr }, granular refinement for the computation of U/(RU{a}) is given by,

U/(RU{a}) = GranularRe finement(U/R, a),

r (3.2)
where Granular Re finement(U/R, a) = U gri/{a}
i=1

The granular refinement feature given in Eq. is incorporated into the IQRA_IG
algorithm. As a consequence, the granules U/(RU{a}) are computed by splitting the existed
granules of U/R using the attribute values of a. That is, in each iteration of the algorithm,
instead of newly forming the granules by using all the attributes of R U {a}, only gran-
ules of the previous iteration are refined by using the present attribute a. This results in
huge computational gain for each iteration of the algorithm. Through granular refinement
feature in the algorithm, sorting operation is not required on total objects set U. But ob-
jects in each granule gr € U/R are sorted independently to get the required granules of
U/(R U {a}). Using the Quick sort algorithm to form the granules U/(R U {a}) the time
complexity becomes Y., O(|gri|log|gri|). Granular refinement has the computational gains

since 27—y O(|grilloglgri|) < O(IR[[Ulog|UTY).

3.2.1.2 Positive region removal

In an iteration of IQRA_IG, let R denotes the set of attributes already selected into reduct
set. The granules of U/R are categorized into either positive region granules (P-GR(U/R)) or
non-positive region granules (NP_GR(U/R)). A granule gr € U/R is a positive region granule
when it is pure or consistent, It becomes pure if all the objects of gr belong to a single decision
class, otherwise, gr is categorized as an inconsistent or non-positive region granule. If gr &
P_GR(U/R), then Vgr’ € gr/(RU{a}) for any a € (A—R), we have gr’ € P.GR(U/(RU{a})).
Because, if a granule is pure, then any of its sub granules is also pure. Based on granular
refinement (Eq. ), computations in IQRA _IG in subsequent iterations are performed for
each granule of U/R independently of other granules. Therefore, the omission of objects in
P_GR(U/R) has no effect on future computations. This phenomenon is called positive region

removal [74] or positive approximation [45].

Definition 3.3. For a decision system C'DS, let R C A, and P_.GR(U/R) denotes the positive

region granules, then the positive region removal is given by,

U/R=NP_.GR({U/R) =U/R - P.GR(U/R) (3.3)
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In an iteration of IQRA_IG algorithm, after the removal of positive region, only the non-
positive region granules (NP_GR(U/R)) remain in U/R. In the next iteration, only the
granules of NP_GR(U/R) are used in selecting the next best attribute to the reduct set
by applying granular refinement as GranularRefinement(NP_GR(U/R), attribute). This
shows that the removal of positive region restricts the future computations to granules falling
into the non-positive region. This results in a decrease of space utilization in successive

iterations of the algorithm.

3.2.1.3 Handling trivial ambiguous situation

In an iteration of the algorithm, if there is no gamma gain, then the selection of an attribute
from (A — R) becomes difficult. And it may lead to the inclusion of redundant attribute
into reduct. This situation is called trivial ambiguous situation in QRA. And this situation
handled in IQRA_IG algorithm using the secondary heuristic of information gain. In our
current study, we did not incorporate the trivial ambiguous situation and its resolution,
because, in large-scale data sets, such occurrence is a rarity. Instead, a random selection
from available attributes for inclusion into reduct has been incorporated. Hence a detailed

explanation of this feature of IQRA_IG algorithm is ignored here (for the details refer [74]).

3.2.2 Horizontal partitioning based parallel IQRA 1G: IN.MRIQRA 1G

Sai Prasad et al. proposed MapReduce based parallel version of IQRA_IG algorithm as
IN_MRIQRA _IG [92]. This section provides a summary of IN.MRIQRA _IG algorithm as an
illustration for distributed computation involved in horizontal partitioning based MapReduce
reduct computation algorithm. It should be noted that, IN.MRIQRA_IG algorithm is one of
the few algorithms in the field of MapReduce based reduct computation having the aspect of

positive region removal.

3.2.2.1 Horizontal partitioning based reduct computation

In horizontal partitioning strategy, the data is partitioned over the object space and dis-
tributed to the nodes of the cluster. Through this data distribution, every node has informa-
tion of all the attributes over a subset of objects. Horizontally partitioned decision system

can be formally represented as follows.

Definition 3.4. For a decision system CDS = (U, AU {d}), let CDS = |J}_, CDS" be a
horizontally partitioned system, where CDS’ = (U?, AU {d}) is i'* data split. It satisfies (i)
U=U_, U (i) U'NnUI = ¢, Vi,j € {1,2,...p} and i # j.
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From Definition the decision system C'DS is divided into p sub-decision tables or data
splits (data partitions), which are distributed to the nodes of the cluster.

In the driver, reduct R is initialized to empty set (¢). Each mapper is associated with
a data partition. The current reduct R is broadcasted to all the nodes by the driver. Each

h mapper working on the data partition

mapper can only construct partial granules, that is i’
CDS* and broadcasted R can construct partial granules gr' € U'/(RU{a}) for all competing
attributes a € (A — R). If gr' is consistent, then < key,value > pair is generated with
the key as < a,GS(gr') > and value as < |gr'|,d(gr) >. Here GS(gr') denotes granule
signature that contains attribute’s unique value combination which are satisfied by objects of
grt. Only |grt| without objects information is included in value portion because it is sufficient
for computing vpy(q) ({d}). Notation d(gr') denotes the unique decision value of objects of
gr. And in cases where gr! is inconsistent, the key =< a, GS(gr') > and value =< 0, —1 >
are generated for representing inconsistency.

After shuffle and sort phase, the reducer receives a list of values corresponding to unique
key. The reducer aggregates all the values as single value that results in formation of granule
gr € U/(RU {a}). Here gr = |J;_, gri where, GS(gr') = GS(gr?), Vi,j € {1,2,...p}, and it
follows that GS(gr) = GS(gr'), Vi € {1,2,...p}. If the value of d(gr?) from all the mappers
is same, that is, if the granule is consistent, then corresponding |gr’| are added to the result
as |gr| and it produces a single < key,value >=< a,|gr| > pair. But, if the granule is
inconsistent then < a,0 > pair is generated. The driver computes |POSgyq)({d})], Va €
(A— R) based on < key, value > pairs received from reducers associated with key = a. Since
the granules formed in reducers are same as the granules formed in sequential implementation
such as in IQRA_IG algorithm, the result of IN.MRIQRA_IG algorithm is same as that of
IQRA_IG algorithm. Finally, best attribute is selected, and added to the reduct R and the end
condition is tested. Based on the test result, the driver either returns reduct R or continues

the next iteration of the algorithm.

3.2.2.2 Positive region removal

Positive-region removal in IN.MRIQRA_IG algorithm is incorporated by obtaining positive
granules signature of the current reduct set R in a separate MapReduce job called Posgather.
Driver collects the GS(gr), Vgr € P.GR(U/R) from the Posgather. In the subsequent itera-
tions for attribute selection, the information of GS(gr), Vgr € P_.GR(U/R) is broadcasted.
In the mapper phase, for the partial granule computations, only objects which are not satisfy-
ing any of the positive region granule signatures (i.e., objects that are of the NP_.GR(U/R))

are included. This results in effecting the positive region removal. Thus, in constructing
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< key,value > pairs in mapper phase, attribute information of R U {a}, Va € (A — R) is

required.

3.2.2.3 Granular refinement

The existing MapReduce based reduct computation approaches [15 21], 29, [45] 81 [90] 92|
96, 114, 124, 125] do not incorporate the granular refinement aspect described in Section
In the horizontal partitioning approach, the knowledge of granules is realized at
reducer phase as each has partial granules information only. To correctly obtain U/R, Va € A
in the first iteration requires object id to be placed as part of value portion along with
decision information. This results in |U| * |A| amount of data (equals the original data set
size) movement in shuffle and sort phase. The large amount of data can become a bottleneck
for the realization of specific granular signature and hence have not been incorporated in
existing algorithms. The granular refinement of the proposed work with vertical partitioning

strategy described in Section overcomes this limitation of horizontal partitioning strategy.

3.3 Proposed vertical partitioning of the data

The vertical partitioning strategy partitions the input data set over the attribute space (ver-
tically) and distributed to the nodes of the cluster. With this strategy, all the values of an
attribute are available in one record of one data partition located in a node of the cluster. By
default, any MapReduce framework partitions the input data set by using horizontal parti-
tioning strategy. This strategy divides the data set row wise (in object space), and partitions
are distributed to the nodes of the cluster. Thus, the vertical partitioning strategy is realized
by preprocessing the input data set before supplying it to the algorithm, either locally for
data sets fitting in RAM or by using MapReduce approach otherwise. The given data set
is preprocessed in such a way that all the rows indicate attributes, and the columns show
the objects. Additionally, an entry is included at the beginning of the record for denoting
the attribute id. The microarray data sets used for representing the gene expression data in
Bioinformatics [4] are usually stored in rows represent attributes, and hence preprocessing is
not required.

The preprocessed data is horizontally partitioned over attribute set A, and each partition
represents data pertaining to a subset of A. Each partition requires decision attribute in-
formation for subsequent operations, and therefore the decision attribute {d} is broadcasted
to all the nodes by the driver. The vertical partitioning of a given decision system can be

formally defined as given below.
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Definition 3.5. For a decision system CDS = (U, AU {d},), let CDS = J!_, CDS"’, where
CDS* = (U, A* U {d}) is i'" data split. It satisfies (i) A = (J/_; A® (ii) A'N AT = ¢,
Vi,j € {1,2,..p} and i # j.
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Figure 3.2: Vertical partitioning of the input data

As we can see in Figure [3.2] with vertical partitioning strategy, the decision system C'DS
is divided into p sub-decision tables or data splits (data partitions). A data split CDS® in
a node contains A’ attributes with all the objects U and broadcasted decision attribute {d}
(as shown in Figure . Let t be the number of nodes in the cluster, and p be the number
of data partitions of the given data set. Without loss of generality we assume p > t. In the
experiments, we adopted equal division of the load and each node receives | £ | data partitions.
Therefore proposed algorithm initiates |¥ ] number of mapper tasks per node.

The primary operation of IQRA _IG algorithm [74] is the selection of the next best attribute
to be included into the reduct set. In this section, we discuss the equivalence of attribute
selection (in sequential approach) in a decision system C'DS to parallel attribute selection
over vertically partitioned sub decision tables {CDSi}le. In IQRA_IG algorithm, over the
data set O DS, the selected next best attribute a’*** € (A — R) satisfies the following property.

Yrotarey({d}) = maz Vo) ({d}) (3-4)

Using Eq. (2.5)), canceling the denominator on either side of Eq. (3.4) results in,

| POS ey ({d})] = gz, |POSg () ({d)) (35)

In the proposed approach, as the data set CDS is available as CDS? (i = 1,2, ...p) in the

nodes of the cluster, the next best attribute selection need to be done locally for each sub
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decision table (in mapper phase) in parallel, and globally through reducer phase. Hence, the
selection criteria of IQRA IG is equivalently expressed over CDS’, Vi = {1,2,...p} as,

|POS e (1d1)| = maz |POSpa)({d})] =

mazx <a€@?fm |POSRug({d})] T |POSrugay({d})], o Jmax |POSpuay({d}) }>
(3.6)

Thus, the attribute selection process is equivalent in both sequential and vertical partitioning
based distributed approaches of IQRA_IG algorithm.

3.4 Parallel attribute reduction in CDS using vertical parti-

tioning

In this section, the main (driver) algorithm for proposed approach MR_IQRA_VP is given
in Algorithm The mapper phase algorithm (Algorithm MR IQRA_VP: map()) for
the local best attribute selection is given in Section The reducer phase algorithm
(Algorithm MR_IQRA_VP: reduce()) for the global best attribute selection is described
in Section[3.4.2] And, the computation of v4({d}) for the end condition of the main algorithm
(Algorithm is given in Section [3.4.3

In the driver (Algorithm , initially the data set C'DS is vertically partitioned into
CDS’ (i = 1,2,...p), and decision attribute information is broadcasted to all the nodes of
the cluster. Reduct Red is initialized to empty set (¢), and U/Red contains only {U} which
is also equal to NP_.GR(U/Red). As described in IQRA_IG algorithm, for effective positive
region removal, the attribute selection computations are conducted only on NP_GR(U/Red).
Hence, NP_GR(U/Red) is broadcasted to all the cluster nodes. The variable total_PosCount
(initialized to zero) represents the |POSgeqa({d})|.

The next best attribute best_Attr, and its positive region count best Attr_PosCount are
obtained through invocation of Algorithm followed by Algorithm The next best at-
tribute best_Attr is included into reduct set Red. The variable best Attr_PosCount represents
the number of objects in non-positive region being added into positive region resulting from
the granular refinement of NP_GR(U/Red) with best_Attr. Consequently, the total positive
region count is updated as total_PosCount = total _PosCount + best Attr _PosCount and the
Yrea({d}) is updated accordingly. If the required end condition (ygeq == v4) is reached,
then algorithm returns reduct Red as the result of the algorithm. Otherwise, one needs to

obtain NP_GR(U/Red) for the next iteration. Towards this objective, the record pertaining
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to best_Attr is fetched to the driver using a map only job. The granular space of U/Red is
refined with best_Attr information, and NP_GR(U/Red) is computed by removal of positive
region granules from U/Red. The resulting NP_GR(U/Red) is broadcasted to the nodes of

the cluster.

Algorithm 3.1: MR_IQRA_VP: driver()

Input: Input file: data set CDS = (U, AU {d})

Output: Reduct Red

Distribute input data set C DS with vertical partitioning over A, and broadcast
decision attribute {d} into the nodes of the cluster so that each data partition
becomes CDS! = (U, A*U {d}), Vi € {1,2,...p} where p is the number of data
partitions in the cluster.

2 Broadcast initial reduct Red = ¢, and initial non-positive region granules list:
NP_GR(U/Red) = {U} to all the nodes of the cluster.

Compute 74({d})

=

w

4 total_PosCount =0
5 repeat

/* =========Phase 1: Finding the best attribute=========== */
6 Initiate MapReduce job such that each mapper computes local best attribute

(local Best_Attr) and its positive count (localBest_PosCount) by using

Algorithm and reducer computes global best attribute (best_Attr) and its

positive count (bestAttr_PosCount) by using Algorithm

7 Collect the data < key, value >=< best_Attr, best Attr_PosCount > from the
reducer.

Red = Red U best_Attr

total_PosCount = total_PosCount + best Attr_PosCount

10 Compute YRed = totalJT((lJ;TCount
11| 3 (ied < 74) then
/* ========Phase 2: Updating NP_GR(U/Red) */
12 Fetch the record of best attribute (best_Attr) from the cluster // using map
only operation
13 Compute

U/Red = GranularRe finement(NP_GR(U/(Red — best_Attr)), best_Attr)
// Applying granular refinement

14 NP_GR(U/Red) =U/Red — P.GR(U/Red) // Incorporating positive
region removal

15 Broadcast NP_GR(U/Red)

16 end

17 until (ypeq == 74)
18 Return Red
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Algorithm 3.2: MR IQRA_VP: map()

Input: 1. Data split CDS* = (U, A* U {d}) with each record as
< key,value >=< attrNo, attr_Data >
2. Broadcasted reduct: Red, non-positive region granules: NP_GR(U/Red)
Output: < key',value’ >=< dummyKey, (local Best_Attr, local Best_PosCount) >
where dummyKey is common key for all the values of value’,
local Best_Attr € A’ is local best attribute in the partition, and
local Best_PosCount is its positive count
1 maxPos_Count = 0, local Best_Attr = —1
2 for each record rec € CDS* as < attrNo, attr_Data > do
3 if attrNo ¢ Red then
4 U/(Red U {attrNo}) = GranularRe finement(NP_GR(U/Red), attr No)
5 Compute POSgedu{attrNo}({d}) using U/(Red U {attrNo})
6 pos_Count = |POSRedU{attrNo}({d})|
7
8
9

if pos_Count > maxrPos_Count then
local Best_Attr = attrNo
maxPos_Count = pos_Count

10 end
11 end
12 end

13 Construct < key’,value’ >, where key’ = dummyKey, and
value' = (local Best_Attr,local Best_PosCount)
14 Emit intermediate < key’, value’ >

3.4.1 MR IQRA _VP: map() algorithm

The algorithm MR_IQRA_VP: map() given in Algorithm is invoked in each iteration of
the main algorithm of MR_IQRA_VP: driver() for selection of next best attribute into reduct
Red. The mapper process associated with a data split CDS? receives the current reduct Red,
and the associated non-positive region granules NP_GR(U/Red) through broadcasting from
the driver. For each attribute, attrNo € (A® — Red), the granules U/(Red U {attrNo}) are
computed using GranularRe finement(NP_GR(U/Red), attrNo). The pos_Count is evalu-
ated by summing the cardinalities of positive region granules of U/(Red U {attrNo}). The
local best attribute local Best_Attr is selected from (A? — Red) based on obtaining maximum
pos_Count (as local Best_PosCount). The information of local best attribute is communicated
to MR_IQRA_VP: reduce() job in a single < key, value > pair, where key = dummyKey and
value = (local Best_Attr,local Best_PosCount). In this manner, p number of < key, value >
pairs are generated from decision sub tables CDS® (i = 1,2,...p) and participate in shuffle
and sort phase. As all of < key,value > pairs contain the same dummyKey portion as the

key, only a single reducer will be invoked facilitating global best attribute selection.
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3.4.2 MR_IQRA_VP: reduce() algorithm

Algorithm 3.3: MR_IQRA_VP: reduce()

Input: < key,V > pair where key is a "dummyKey” (common key from all the
mappers), V is a list of values, where each value is
(local Best_Attr,local Best_PosCount) generated from each mapper
Output: < key',value’ >=< best_Attr, best Attr_PosCount) > where best_Attr is
the best attribute and best Attr_PosCount is it’s positive count
best Attr_PosCount = 0, best_Attr = —1
for each value v € V' as (local Best_Attr,local Best_PosCount) do
if local Best_PosCount > best Attr _PosCount then
best_Attr = local Best_Attr
best Attr_PosCount = local Best_PosCount
end

end
Construct < key’, value’ >, where key' = best_Attr, and value’ = best Attr_PosCount
Emit < key’, value’ >

The algorithm MR_IQRA _VP: reduce() given in Algorithm receives < key,V > as the

© W N O oA W N R

input resulting from shuffle and sort phase over outputs of MR_IQRA_VP: map() jobs. Here,
key is the dummyKey, and V is the list of associated values from all mappers. Each value
in V is in the form (local Best_Attr,local Best_PosCount) containing the local best result
of each mapper. The global next best attribute is selected from the local best attributes
having the maximum positive count. The selected best attribute information is communicated
to the driver in the form of < key',value’ > pair, where key' = best_Attr and value’ =

best Attr_PosCount.

3.4.3 Computation of vy,({d})

The computation of y4({d}) requires construction of U/A and categorizing the granules into
P_.GR(U/A), and NP_.GR(U/A). In each mapper, using the decision sub table C DS’ =
(U, A'u{d}), Vi € {1,2,...p}, one can compute U/A?, and the granules can be categorized into
P_GR(U/AY) and NP_GR(U/A?). From the explanation of positive region removal in Section
objects of P.GR(U/A") are the objects in POS4({d}). Here, each mapper commu-
nicates the information of NP_GR(U/A?) to a single reducer. The reducer then computes
refinement of NP_.GR(U/A?), Vi € {1,2,...p} and arrives at NP_GR(U/A). If NP_GR(U/A)
is empty then y4({d}) = 1 otherwise POS4({d}) is computed as, POSs({d}) = U —
Ugrenp.ar(u/a) 9r- Based on this positive region POSA({d}), the value of v4({d}) is com-

puted, and communicated to the driver.
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3.4.4 Complexity analysis of MR_IQRA _VP algorithm

Given that the MapReduce programming model consists of three phases: map, shuffle and

sort, and reduce, the time complexities of the proposed MapReduce based algorithms in

this thesis are determined using these phases along with the driver’s complexity.

In its

theoretical complexity analysis, the MapReduce model also considers communication costs

and barrier synchronization costs. In this thesis, for the complexity analysis, we assume that

the preprocessed data set (transposed data set) is given as the input to the proposed vertical

partitioning based algorithms and the original data set to the proposed horizontal partitioning

based algorithms.

Furthermore, we also assume that the number of data partitions in the

MapReduce cluster is the same as the number of processors (cores).

In the time complexity analysis of MR_IQRA_VP, the following variables are used.

e |U|: the number of objects in the data set

|Al: the number of conditional attributes in the data set

p: the number of processors

t,: the number of time units to transfer one word of memory

e s: the number of time units to complete the synchronization

Table 3.1: Time complexity analysis of MR_IQRA_VP algorithm

Algorithm Step* in Algorithm Time complexity
(phase)
1. Partitioning the data vertically (9( tw)
2. Broadcasting NP_GR and {d} (9(|U\ * )
Driver » 3. v4({d}) computation O (ALxYliegU] |U|log|U|)+O(p*|U\*tw)
(Algorithm 12. Fetching a®®*! record O(JU| * tw)
13. Finding granules based on a"*! record O(|U|log|U|)
Mapper > 4-6. Creating granules and finding posi- (‘A‘ |U|log|U|)
tive region counts
(Algorithm 7-10. Finding la*** and Barrier synchro- O(‘A‘) + 0(s)
nization
Shuffle and Transferring all [a*** and their positive re-  O(p * )
sort > gion counts
Reducer > 2-7. Finding a***' and Barrier synchro- O(p) + O(s)
(Algorithm [3.3)  nization

* Step denotes the line number in the associated algorithm
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Table [3.1] shows the time complexities of each step of the phase in the MR_IQRA_VP
algorithm for one iteration. In the table, from step 12 to step 13 in Algorithm (driver) and
all the steps in Algorithm (mapper), shuffle and sort phase and Algorithm (reducer)
are repeated until (ygeq == v4) condition is satisfied. That is, these steps are repeated |A|

times (in worst case). Hence, by adding up all the complexities, the total time complexity of
the algorithm MR_IQRA_VP is obtained as given below.

AL+ Ul A+ [Ullog|U|

( )+ (JU] * tw) + ( )+ (p* U] tw)+

Al % |U|log|U A
AL L B st pata) +p+s) 1)

AL (1015 02) + (OltoglU +
Above equation can be approximated as, O(w) + O(|A] % ((p*|U| % tyw) + s)). Thus
the time complexity of the MR_IQRA_VP algorithm is O(w) in addition with its
communication cost: O(|A| * ((p * |U| * ty) + 5)).

The entire decision system is required to be present in memory for reduct computation
using MR_IQRA_VP algorithm. Thus, the space complexity of sequential MR_IQRA_VP
algorithm is O(]A| % |U|). But, in MapReduce framework environment, the input decision
system is partitioned and distributed to the nodes of the cluster where the workload is divided
equally into p data partitions. Hence, each partition has the complexity of O('A‘pﬂ).

In the worst-case scenario, the aforementioned theoretical time and space complexities
of the proposed MR_IQRA_VP algorithm are described. However, since the MR_IQRA_VP
algorithm incorporates positive region removal and granular refinement features, the actual

time and space complexities are significantly reduced.

3.5 Salient features and limitations of MR_IQRA _VP

The removal of positive region, granular refinement, and simplification of shuffle and sort
phase are the main features of the proposed MR_IQRA_VP algorithm. In this section, the
main features, and the limitations of proposed MR_IQRA_VP algorithm are discussed.

3.5.1 Positive region removal

In IQRA_IG algorithm, the removal of positive region is done physically, i.e., the rows corre-
sponding to positive region objects are removed from memory. Our experimental simulations
have established that the removal of positive region data from distributed data set incurs
significant computational overhead. Even in horizontal partitioning based IN.MRIQRA_1G

algorithm, positive region data is not physically removed owing to the same reasons. This
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led us to incorporate positive region removal based on the methodology described in Section
Instead of physically removing the positive region data, the computations in mapper
phase were restricted to objects in NP_GR(U/R). As information of each attribute is stored
in random accessible memory unit such as array, we found that performing computation based
on objects present in NP_GR(U/R) resulted in exactly the same amount of computational

time savings as that of post physical removal of positive region.

3.5.2 Granular refinement

The implementation of GranularRe finement(NP_GR(U/R),a) of MR_IQRA_VP algorithm
is identical to that of sequential IQRA_IG algorithm because the proposed algorithm uses ver-
tical partitioning strategy. In contrast to IQRA_IG, the required information of NP_GR(U/R)
is broadcasted from driver to worker nodes. In the implementation of IQRA_IG, the Quick
sort is used in splitting gr € NP_GR(U/R) using attribute values of a. In the implementa-
tion of MRIQRA_VP, HashMap [5] is used for the same. HashMap is a data structure that
maintains records of paired data < key,value >. It manages the retrieval and updation of a
record associated with a key through hashing. Here, each object in a granule of NP_GR(U/R)
is visited in sequence. Using the HashMap, objects associated with unique values based on
attribute a are obtained through updations of HashMap with < key,value > being unique
attribute value. After processing all the objects in gr, HashMap contains |gr/{a}| number
of entries. The key corresponds to unique attribute values of objects in gr based on a. In a
< key, value > pair, value corresponds to list of object ids having the same attribute value of
key based on a. Hence, the required refined granules of U/(R U {a}) resulting from splitting
of gr are extracted from value portions of HashMap entries. Therefore it can be observed
that HashM ap based granular refinement aids in improving the computational performance.

It is to be noted that, in the i mapper, the granules of U/(R U {a}), Va € (A — R)
are utilized for the computation of |[POSg (q}({d})|, Va € (A — R). In order to optimize
the memory utilization, the memory occupied by U/(R U {a}), Va € (A — R) is released
after obtaining the required positive region counts. Even though the driver requires attribute
information of the next best attribute for granular refinement of U/R, in our algorithm
we did not communicate the local best attribute record to the reducer. This decision was
motivated by the objective of simplifying the most complex operation of MapReduce job,
i.e.,shuffle and sort phase. Hence, an additional map only job for extracting the best attribute
information was initiated, so that the required best attribute record is directly transferred

from corresponding worker (slave) node to the driver.
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3.5.3 Simplification of shuffle and sort phase

Without loss of generality, consider a decision system having k distinct values for each at-
tribute. From Section in any horizontal data partitioning based reduct computation
algorithm, it is observed that, in each iteration in a mapper, the size of key space is kI BAal
Va € (A — R). As p denotes the number of data partitions, then a total p % |A — R| * k(FI+1)
size of < key, value > pairs are transferred in the network of the cluster of computers. As a
result, shuffle and sort phase work with data of this order leading to huge bottleneck for the
algorithm.

In the proposed design, as given in the Section of mapper phase, each mapper pro-
duces a single < key,value > pair corresponding to the local best attribute, and the local
best attribute’s positive count. This results in a total p size of < key,value > pairs being
transferred in the network of the cluster, which leads to a considerable reduction in the work
of shuffle and sort phase. This is because only a small size of data is transferred and commu-
nicated when compared to the horizontal partitioning based algorithm. The simplification of
shuffle and sort phase is an essential facet of vertical partitioning based MapReduce reduct

computation algorithm.

3.5.4 Limitations of MR_IQRA_VP

In the proposed MR_IQRA_VP algorithm, the broadcasting decision attribute information (of
size |U|) and granules of NP_GR(U/R) in every iteration (of size < |U|) is needed. And also
fetching the next best attribute information from the worker node to the driver (of size |U])
in every iteration is needed. For very large object spaces, these operations become complex
and computationally expensive.

The time complexity of IQRA_IG algorithm is O(|A|?|U|log|U]), and the complexity of
an iteration is O(|A — R||U|log|U]). In the vertical partitioning strategy, the time complexity
of an iteration in mapper is O(@|U|ZOQ|U|), where p is the number of data partitions.
Therefore, for very large object space data sets the gain obtained through attribute space
division can be compensated by increased computations with respect to object space. In view
of the above reasons, MR_IQRA_VP algorithm is suitable for moderate object space data sets
while being scalable to very large attribute space data sets as the approach is horizontally
scalable in attribute space, i.e., very large-scale big dimensional data sets can be handled
by addition of new nodes to the cluster. Theoretical explanation of this section is validated

experimentally in Section [3.6.4]
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3.6 Experimental analysis

The approaches proposed in this thesis are parallel/distributed methods, therefore the em-

pirical evaluation of these methods are given based on the following criteria.
o Computational evaluation.
e Performance evaluation.
e Impact of the partitioning strategy.

The running time, reduct and reduct size are used in the computational evaluation. And
the performance is measured using three metrics: speedup, scaleup, and sizeup [105]. Since
horizontal and vertical partitioning strategies are investigated in the proposed approaches,
the influence of these strategies is examined.

As stated earlier, the proposed approaches are parallel/distributed versions of the existing
sequential methods. It should be noted that the process of converting sequential algorithms to
parallel /distribute algorithms has only improved scalability, and all of the parallel /distribute
algorithms designed in this thesis produce the same reduct as the corresponding sequential
versions. All the sequential algorithms considered in the thesis are well established in in-
ducing good classification models. As a result, the experimental evaluation in this thesis
focuses on assessing computational improvement as well as the performance evaluation of
parallel /distributed algorithms.

The computational evaluation of proposed MR_IQRA _VP algorithm is presented in Sec-
tion The proposed algorithm’s performance evaluation is provided in Section
Section presents impact of the partitioning strategy that shows the relevance and limi-

tations of the proposed algorithm.

3.6.1 Experimental set up

We carried out the experiments in two stages to evaluate the efficiency of the proposed
MR_IQRA_VP algorithm. In the first stage of experiments, we compared MR_IQRA_VP
algorithm with the existing MapReduce based parallel/distributed reduct computation al-
gorithms, PLAR [124] and PFSPA [45]. Since the source code of these algorithms is not
available, we compared these algorithms with the proposed algorithm based on the data sets
and experimental set up given in respective publication sources of PLAR and PFSPA algo-
rithms. Table gives the details of the experimental set up of PLAR, PFSPA and the
proposed MR_IQRA_VP algorithms. The comparison of the proposed algorithm with the
existing PLAR and PFSPA algorithms is given in Section [3.6.2.1] and [3.6.2.2] respectively.
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Table 3.2: Experimental set up of MR_IIQRA_VP, PLAR, PFSPA and IN.MRIQRA_IG algo-
rithms

MRIQRAVP| PLAR* PFSPA# | IN.MRIQRA_IG
Cluster Size 6 Nodes 19 Nodes 6 Nodes 6 Nodes
RAM Size 8 GB At least 8 GB | 4 GB 8 GB
Cores 4 At least 8 4 4
Operating System | Ubuntu 18.04 Cent OS 6.5 | - Ubuntu 18.04
Framework Spark 2.3.1 Spark 1.x Hadoop Spark 2.3.1

* Experimental set up as reported in [124], and # experimental set up as reported in [45)

In the second stage of experiments, the proposed MR_QRA_VP algorithm is compared
with the existing IN.MRIQRA_IG algorithm. Sai Prasad et al. [92] developed a parallel ver-
sion of IQRA_IG (IN.MRIQRA _IG) algorithm using in-memory iterative MapReduce frame-
work of T'wister. But Apache Spark has better fault tolerance than T'wister. For this reason,
algorithm IN_MRIQRA_IG is re-implemented on Apache Spark framework. The proposed
MR_IQRA _VP algorithm has been compared with Apache Spark version of IN.MRIQRA_IG
algorithm and the results are reported in Section

In Section we have described that the proposed algorithm is suitable for the data
sets having a moderate size of objects with large number of attributes, and the same would
be demonstrated empirically along with theoretical validation. Accordingly, for comparative
analysis, data sets have been considered to meet this criterion. A series of experiments have
been conducted on the benchmark data sets such as Gisette, Gene expression Cancer RNA-
Seq (renamed as Genes), Basehock, KDDcup and Semeion Handwritten Digit (renamed as
Handwritten) data sets. The Basehock data set is available in Arizona State University
feature selection data set repository [109], and the rest of the data sets are available in UCI
data set repository [31]. Details of these data sets are provided along with their object and
attribute space sizes in Table All the data sets with different sizes are chosen according to
limited hardware configuration of the cluster. In the selection of these data sets, we considered
the aspect of variance in sizes of object space and attribute space, and few data sets such
as Genes, Basehock and Gisette are replicated several times in attribute space to illustrate
the efficiency of the proposed MR_IQRA_VP approach in attribute space. For example, the
original ” Genes” data set has 801 objects and 20561 attributes, and after replication, the data
set ”genes-S801-A5000k” contains 801 objects (“S” denotes Samples) and approximately 5
million attributes (“A” denotes Attributes).
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Table 3.3: Data sets used in the experiments of MR_IQRA_VP algorithm

S.No Data set Objects Attributes  Classes
1 Gisette 6000 5000 2

2 Basehock 1993 4864 2

3 Genes 801 20561 5

4 Handwritten 1593 256 10

5 KDDCup 4898431 41 23

6 genes-S801-A 5000k 801 5009564 5

7 gisette-S50k-A50k 50000 50000 2

8 basehock-S2k-A53k 1993 53000 2

The replication of a data set is used throughout the thesis, both in object space and
attribute space, with the goal of analysing the impact of increasing the sizes with respect to
the partitioning strategy used. It should also be noted that replication in object and attribute

space increases computational complexity proportionally, as analysed in complexity analysis

(in Section [3.4.4)).

3.6.2 Computational evaluation of MR_IQRA_VP

The efficiency of the proposed algorithm is shown by comparing the results with existing
MapReduce based parallel/distributed reduct computation algorithms on different data sets.
For reproducible research, obtained reducts and their respective v and g values of proposed
MR IQRA_VP algorithm for different original data sets (the data sets without replication)
are given in Table

Table 3.4: The obtained reduct of MR_IQRA_VP for different data sets

Data set Reduct Yo YR

Gisette {3058, 1523, 4734, 1923, 4165, 4272, 1555, 3708, 4159, 3354, 1.0 1.0
4694, 1408, 3470, 3166, 4958}

Genes {18493, 15864, 15442, 16327, 6917, 17651, 19940} 1.0 1.0

Basehock {3281, 2471, 1193, 577, 3282, 2965, 4052, 2000, 3302, 3756, 1.0 1.0
1791, 369, 1035, 4315,1366, 2005, 356, 1722, 882, 250, 3300,
1275, 3292, 2631, 4345, 3825, 4544, 4355, 4776, 4751, 2219,
4682, 383, 203, 3892, 1188, 3922, 4148, 4757, 1947, 3254,
4706, 3475, 4351, 593}

Handwritten {256, 113, 49, 31, 20, 72, 178, 111, 84, 109, 191, 29, 230, 1.0 1.0
120, 196, 153, 43, 233, 250, 89, 185, 174}

KDDcup {1, 2, 22, 28, 37, 4, 30, 5, 32, 10, 35, 39, 36, 34, 31, 3, 12, 1.0 1.0
16, 8, 33, 19, 23, 6, 40, 17, 29, 38, 26, 24, 13, 11}
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3.6.2.1 MR_IQRA_VP comparison with PLAR

The authors of Parallel Large scale Attribute Reduction (PLAR) [124], have developed dif-
ferent algorithms: PLAR_PR, PLAR_LCE, PLAR_SCE, and PLAR_CCE based on different
heuristic functions. All the algorithms are iterative MapReduce based reduct computation
algorithms, and they are implemented on Apache Spark framework. The results for Gisette
data set obtained by PLAR_SCE are reported in [124]. The authors of PLAR_SCE focused
on calculating computational time per iteration incurred while running the algorithm. They
selected five attributes in five iterations, resulting in a sub reduct. They could not complete
the remaining iterations to get the entire reduct because of high dimensionality of the data
set. For this reason, MR_IQRA _VP is compared with PLAR_SCE in terms of iterations. The
comparison results are shown in Table[3.5] The proposed algorithm computed the reduct with
the length 15 (refer Table . Accordingly, the estimated computational time of PLAR_SCE

for 15 iterations is calculated as 5187 seconds.

Table 3.5: Comparative results of MR_IQRA_VP with PLAR_SCE (Time: Seconds)

Iteration PLAR_SCFE* MR_IQRA_VP
1 350 22.38

2 343 19.70

3 344 18.31

4 344 6.92

5 348 4.81

Time for all iterations  5187# 89.02

* results as reported in [124], and # indicates the estimated time of PLAR_SCE algorithm

The algorithm MR_IQRA_VP completed first five iterations in 72.12 seconds against 1729
seconds incurred in PLAR_SCE algorithm. The MR_IQRA_VP algorithm achieved a signifi-
cant computational gain of 95.82%. MR_IQRA _VP obtained the complete reduct in 89.02 sec-
onds against estimated computational time of 5187 seconds in PLAR_SCE achieving 98.29%
computational gain. Both algorithms used MapReduce framework of Apache Spark for the
implementation. Even though MR_IQRA_VP algorithm is implemented in an inferior cluster
configuration than PLAR_SCE (refer Table [3.2)), we could get better results than PLAR_SCE
algorithm. Therefore, this comparative analysis of MR_IQRA_VP with PLAR_SCE demon-
strates the relevance of MR_IQRA_VP. And, it establishes the relevance of vertical partitioning
strategy for Gisette kind of data sets with larger attribute space.
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3.6.2.2 MR_IQRA_VP comparison with PFSPA

Qing He et al. [45] proposed a MapReduce based parallel algorithm of PFSPA (Parallel Fea-
ture Selection using Positive Approximation). Algorithm PFSPA is implemented on Hadoop
MapReduce framework. MR_IQRA_VP is compared with PFSPA on Handwritten data set.
From the experimental design in [45], data set is replicated several times, and experiments
were conducted on the replicated data set. The comparative results are shown in Table [3.6)

Both PFSPA [45] and MR_IQRA_VP obtained similar length reducts with different sizes of
Handwritten data set. MR_IQRA_VP achieved a significant computational gain over PFSPA
in the order of 85% to 99%. As the number of objects was increased, the computational gain
percentage was reduced indicating MR_IQRA_VP’s computational complexity is proportional
to the size of object space. These significant results are partly because of utilizing the iterative
MapReduce framework of Apache Spark against Hadoop framework in PFSPA | and also partly
due to the proposed methodology.

Table 3.6: Comparative results of MR_IQRA_VP with PFSPA (Time: Seconds)

PFSPA* MR_IQRA_VP
Data set Objects Attributes Running Reduct Running Reduct
time size time size
Handwritten 1593 256 1086 22 10.04 22
Handwritten 3 times 4779 256 1205 22 15.34 22
Handwritten 6 times 9558 256 1282 22 23.84 21
Handwritten 12 times 19116 256 1596 22 67.58 21
Handwritten 24 times 38232 256 2062 22 307.88 22

* results as reported in [45]

3.6.2.3 MR_IQRA_VP comparison with IN.MRIQRA_IG

The experiments of the proposed parallel /distributed approach MR_IQRA _VP, and existing
approach IN.MRIQRA_IG are carried out on a 7-node cluster. In the cluster, one node is
set as master (driver) as well as slave, and the rest are set as workers (slaves). The master
node uses Intel (R) Xeon (R) Silver 4110 CPU @ 2.10GHz processor with 32 cores and 64
GB of main memory. All the worker nodes use Intel (R) Core (TM) i7-8700 CPU@3.20GHz
processor with 12 cores and 32 GB of main memory. All the nodes run on Ubuntu 18.04 LTS
operating system and they are connected via Ethernet (with 1000 Mbps speed). Each node
is installed with Java 1.8.0_171, Apache Spark 2.3.1, and Scala 2.11.4.
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Table 3.7: Comparative results of MR_IQRA_VP with IN.MRIQRA _IG (Time: Seconds)

IN_MRIQRA_IG MR_IQRA_VP
Data set Attributes  Running Reduct Running Reduct
time size time size
Handwritten 256 16.63 22 10.04 22
Basehock 4864 76.68 45 36.23 45
Genes 20561 36.06 07 12.04 07
Gisette 5000 123.63 16 89.02 15
KDDcup 41 4785.60 31 17928.45 31
genes-S801-A5000k 5009564 12065.28 07 264.36 07
gisette-S50k-A50k 50000 1605.77 16 1914.42 16
basehock-S2k-A53k 53000 237.36 45 115.36 45

The proposed MR_IQRA_VP algorithm has been compared with Apache Spark version of
IN_MRIQRA _IG algorithm on all the data sets (original data sets and replicated data sets).
The comparison results are shown in Table

MR_IQRA_VP achieved 52.75% computational gain in Basehock data set, 66.61% in Genes
data set, 39.62% in Handwritten data set, and 27.99% in Gisette data set over IN.MRIQRA _IG
algorithm. The gain percentage is inversely proportional to the size of the object space. The
best computational gains are obtained for Genes data set having smaller object space with
huge attribute space. In contrast, IN.MRIQRA _IG algorithm obtained better computational

gains on KDDcup data set which has huge object space and very less attribute space.

3.6.3 Performance evaluation of MR _IQRA_VP

The performance of MR_IQRA_VP has been evaluated based on Speedup, Scaleup and Sizeup
metrics. The proposed algorithm’s performance is compared with the existing IN.MRIQRA IG
algorithm. The performance evaluation experiments of both the algorithms are performed on

the experimental set up given in Table

3.6.3.1 Speedup

Speedup can be measured by increasing the number of machines in the parallel system while

keeping the data set constant. That is, it refers to the ratio of a job’s running time on the

Running time on one computer
Running time on n computers *

parallel system compared with a single system: Speedup(n) =
Theoretically, a perfect parallel algorithm can demonstrate a linear speedup, a system with
n times the number of computers gets a speedup of n. Due to the serial computing, com-
munication costs and other overheads of the parallel system, it is difficult to achieve linear

speedup. MR_IQRA_VP’s speedup has been evaluated on the data sets with different varied
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Figure 3.3: Speedup of MR_IQRA_VP and IN.MRIQRA_IG for different data sets

nodes from 1 to 6. Figure [3.3] shows the speedup performance results of MR_IQRA_VP and
IN_-MRIQRA_IG algorithms for different data sets.

As shown in Figure MR IQRA_VP has achieved better speedup performance (nearing
expected linear speedup for Gisette data set) over IN.MRIQRA_IG, this is mainly due to
simplified shuffle and sort phase in MR_IQRA_VP as described in Section Algorithm
IN_MRIQRA _IG and other horizontal partitioning based algorithms are effected by elaborate
shuffle and sort phase which hampered the speedup performance. It can be observed that the
speedup achieved for the proposed MR_IQRA_VP algorithm is lower in the basehock data
set than in the other data sets. This is due to the higher reduct size (i.e., 45), which results
in increased sequential computation cost of fetching the best attribute (a?***) record into the

driver and processing, as well as the cost of broadcasting.

3.6.3.2 Scaleup

Scaleup is defined as the ability of an n-times larger cluster to perform n-times larger data set

in the same run time as the original system, i.e., Scaleup(n) = Tim?on}enoft%g T Tl %;Zters )
To find the scaleup of the proposed algorithm, we increased the size of the data set in pro-
portion to the number of computers in the cluster. Here each data set size started from 20%,
40%, 60%, 80%, and 100% of attributes in the data set (that is, data set size is divided in the
attribute space), and the number of nodes are increased from 1 node, 2 nodes, 3 nodes, 4 nodes

and 5 nodes respectively. Figure [3.4] shows the scaleup performance results of MR_IQRA_VP
and IN.MRIQRA_IG algorithms for different data sets.
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Figure 3.4: Scaleup of MR_IQRA_VP and IN.MRIQRA_IG for different data sets

The scaleup analysis results shown in Figure [3.4] demonstrates that, increasing the at-
tribute space results in better scaleup for MR_IQRA_VP than IN.MRIQRA_IG. As we are
keeping object space constant while increasing the attribute space in every data set, the com-
plexity involved in the mapper phase of the proposed algorithm is constant on every data
set. Thus, the proposed algorithm is producing better scaleup for big dimensional data sets
such as “Genes”. In contrast, in IN.MRIQRA_IG algorithm, the complexity of shuffle and
sort phase increases, if attribute space increases in the data sets. Thus, in comparison with
IN_MRIQRA_IG algorithm, our proposed algorithm exhibited better scaleup for the data sets
that have moderate object space and larger attribute space. The scaleup values of more than
or equal to 0.7 indicate that the proposed MR_IQRA_VP scale well in attribute space of the
data set. It is difficult to achieve ideal scaleup values (i.e., 1) due to barriers like reducers,

sequential computations in the driver and broadcast operations.

3.6.3.3 Sizeup

Sizeup measures the time it takes on a given system when the data set is n-times larger than
the original data set. It calculates the increase in computational time based on the size of

data sets. The sizeup is specified as: Sizeup(n) = TlmeT{;); 7?;;?3?55;;;2”;2 data T4 find the

sizeup performance of the proposed algorithm, we kept the number of nodes as constant, and
changed the size of the data set. The number of computers were kept as six nodes. Each data

set size was increased with 20%, 40%, 60%, 80%, and 100% of attributes in the data set.
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Figure 3.5: Sizeup of MR_IQRA_VP and IN.MRIQRA_IG for different data sets

Figure [3.5] shows the sizeup performance results of MR_IQRA_VP and IN.MRIQRA_IG
algorithms for different data sets with varying sizes of attribute space. From the figure, we
can observe that, both the existing and proposed algorithms produce better sizeup results, as

their plots are much lower than the linear plots in the figures for all the data sets.

3.6.4 Impact of the data partitioning strategy

The experimental results have suggested that MR_IQRA_VP algorithm is suitable for data
sets with moderate object space and larger attribute space. Considering IN.MRIQRA_IG as
the representative horizontal partitioning based reduct computation algorithm, we conducted
an experiment between IN.MRIQRA IG and MR_IQRA _VP algorithms. The objective of the
experiment is to determine the nature of data sets relevant for horizontal partitioning and

vertical partitioning based reduct computation algorithms.

In this experiment, Gisette data set (containing almost equal size object space and at-
tribute space) was replicated in object space. The results of both algorithms are reported in
Table [3.8] under the serial number 2, 3 and 4. Similarly, Gisette was replicated in attribute
space and the results are reported in Table under the serial number 5, 6 and 7. Figure
demonstrates the computational time analysis for scalability in object space in Figure

and the attribute space in Figure [3.6b
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Table 3.8: Comparison of MR_IQRA_VP, IN.MRIQRA_IG for varying objects and attributes of
Gisette data set (Time: Seconds)

S.No Objects Attributes IN_.MRIQRA_IG MR_IQRA_VP
Running Time Running Time

1 6000 5000 123.63 89.02

2 12000 5000 248.61 308.90

3 18000 5000 402.35 736.12

4 24000 5000 879.41 1457.87

5 6000 10000 264.27 181.83

6 6000 15000 486.32 249.18

7 6000 20000 644.22 298.98
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Figure 3.6: Behavior of MR_IQRA_VP and IN.MRIQRA _IG for varying object space and at-
tribute space of Mushroom

It is evidently clear from these results that, increase in object space resulted in a consid-
erable increase in computational time of MR_IQRA_VP. And, similarly increase in attribute
space resulted in a more significant increase in computational time of IN.MRIQRA_IG. In
Table [3.8] the details of original Gisette data set are reported in serial number 1. The analysis
of results shows that MR_IQRA_VP is a highly scalable algorithm for scalability in attribute
space. But it is not recommended for data sets of larger object space. The horizontal parti-
tioning based IN.MRIQRA _IG algorithm is found more suitable for scalability in object space.
Hence, the vertical partitioning based algorithms are suitable for big dimensional data sets

with moderate object space frequently found in the areas of Bioinformatics and Web mining.

3.7 Summary

In this chapter, we have proposed and implemented a highly scalable MapReduce based
reduct computation algorithm MR_IQRA_VP using vertical partitioning strategy for cate-

gorical decision systems. With this strategy we have managed a massive reduction in data
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3.7 Summary

transformation and communication in the shuffle and sort phase of the MapReduce framework
of Apache Spark, which is a primary bottleneck of the horizontal partitioning MapReduce
based reduct algorithms. Extensive experimental results showed that MR_TIQRA_VP is a more
suitable and scalable algorithm for the data sets having moderate size object space and larger
size attribute space such as microarray data sets in Bioinformatics.

Vertical partitioning strategy can also be used in designing MapReduce based reduct
computation approaches for large-scale incomplete decision systems (IDS). In the next chapter
(Chapter , the usefulness of horizontal and vertical partitioning strategies are discussed in
designing MapReduce based parallel/distributed approaches for attribute reduction in IDS

using extensions to classical rough sets.
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Chapter 4

Parallel attribute reduction in

Incomplete Decision Systems

The second contribution to this dissertation is provided in this chapter. MapReduce based
parallel /distributed approaches are proposed for attribute reduction in incomplete decision
systems (IDS) based on the existing Novel Granular Framework (NGF). The NGF is used to
deal with incompleteness in the data. One of the proposed approaches adopts an alternative
representation of the NGF and uses a horizontal partitioning of the data to the nodes of the
cluster to handle the incomplete data sets that are large-scale in terms of number of objects.
Another approach embraces the existing NGF and uses a vertical partitioning strategy to
handle the big dimensional incomplete data sets. It is worth to mention that, to the best of our
knowledge, the proposed approaches are the first research of its kind on parallel /distributed
attribute reduction in IDS. The work presented in this chapter has been published in [I00].

4.1 Review of existing approaches

The number of data sources is rising rapidly in this age of big data. The volume of the
data collected at the end of each day has increased to huge levels, resulting in large-scale
data sets. This large size of data presents more difficulties for data processing. Additional
challenges arise if this large-scale data contains missing (incomplete) values. Based on the
data source, missing data can occur due to several reasons such as human mistakes, sensor
malfunctions, operator failures, malformed device, human reluctance to declare private infor-
mation or because of their insufficient knowledge [133]. Decision systems that include objects
with missing attribute values are referred to as the Incomplete Decision Systems (IDS). These

decision systems are frequently occurring data sets in decision-making problems.
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4.1 Review of existing approaches

Classical rough set theory uses crisp equivalence classes (through indiscernibility relation,
which is an equivalence relation) in attribute reduction. In IDS, it is not possible to form
equivalence relation because of the missing values in the decision system. Thus, classical rough
set model is not suitable for attribute reduction in IDS. Therefore, the attribute reduction can
be performed by converting the IDS to complete Categorical Decision System (CDS) with the
imputation of missing values. Grzymala et al. [37] described several approaches for imputing
missing values. And some probabilistic methods [70, [71] also exist for the imputation of
missing values. But, the preprocessing strategy used in imputation methodology determines
the performance of the induced system using the obtained CDS.

Many researchers have used extensions to classical rough sets [57, 58, 99] [112] to deal with
IDS for attribute reduction without performing the imputation of missing values. Attempts
were made in the development of efficient attribute reduction algorithms [23, [30] [64], 129,
134] in IDS by using these extensions. And, few accelerators have also been proposed [73,
84, [10§] to improve the computational efficiency. Sai Prasad et al. [73] have proposed a
“Novel Granular Framework (NGF)” based on the findings of Kryszkiewicz et al. [57] to
handle the complexity involved in the incompleteness of the data. And, the authors have
adopted the NGF to develop the IQRAIG _Incomplete algorithm for attribute reduction in
IDS. This algorithm is one of the efficient algorithms among the existing approaches, along
with approach proposed by Qian et al. [84].

From the literature, it is observed that, a lot of research works have been done on at-
tribute reduction in IDS. But all the existing approaches are sequential methods and they
can not handle the large-scale incomplete data. Parallel/distributed approaches have not
been proposed for attribute reduction in large-scale IDS. Hamed et al. [4I] and Zhang et
al. [126] have developed MapReduce based parallel methods to compute rough set approxi-
mations in IDS. But they did not propose any approaches for attribute reduction. This has
motivated us to investigate MapReduce based parallel/distributed approaches to deal with
massive incomplete data in attribute reduction.

According to review of relevant literature [81], [82] 92 096, 102, 124] and Chapter [3| hor-
izontal partitioning-based methods for attribute reduction in rough set theory are effective
for data sets with a huge number of objects. And the vertical partitioning based approaches
perform well for data sets with big dimensionality. Almost all the rough set theory based at-
tribute reduction approaches using the MapReduce programming model [81], 82, [92] 96, [124]
adopted horizontal partitioning strategy except for the approach in [102]. Thus, in this chap-
ter, we explore the approaches that perform well for the big incomplete data sets with huge

number of objects, and for the big dimensional incomplete data sets.
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This chapter propose MapReduce based parallel/distributed approaches based on the
NGF [73] for attribute reduction in IDS using horizontal and vertical partitioning strategies.

Briefly, the contributions in this chapter include the following;:

1. An alternative representation of the NGF is proposed and adopted to develop the
MRIDS_HP algorithm. This algorithm uses the distributed strategy of horizontal par-

titioning.

2. Algorithm MRIDS_VP is developed by parallelizing the existing NGF based on the
distributed strategy of the vertical partitioning.

Both algorithms are implemented and compared using the Apache Spark MapReduce
framework [2]. The relevance and limitations of both algorithms are provided with extensive

experimental analysis along with theoretical validation.

4.2 Rough sets extension to IDS

The proposed approaches use Kryszkiewicz’s model [57] which is an extension of rough set
theory for IDS. The basic notions of this model are discussed in this section.

A symbolic incomplete decision system is represented as, I DS = (U, AU{d}, {Va, fa}tacaufa})-
Here, U = {x1,x2,...,x,} is a finite non-empty set of objects, A = {aq, az, ..., an,} is a finite
non-empty set of conditional attributes, and {d} is a decision attribute that represent classes
of objects. The notation V, is the domain of attribute a, and f, : U — V, is a function that
maps an object x in U to exactly one value in V,. In this chapter, for simplicity, the notation
a(x) used for referring f,(x), and the decision system can be represented in short form as
IDS = (U, AU{d}). The missing object values of attributes are denoted by a character “*.”
A missing value is treated as an unknown value. It should be noted that, without loss of
generality, it is assumed that the decision attribute {d} does not contain the missing values.
That is, for all the objects, the decision class is known. If the missing object values are not
present, then the decision systems are known as complete decision systems (CDS).

In classical rough set theory, indiscernibility relation [77, [78, [116] is the basic notion for
attribute reduction in CDS. Corresponding to indiscernibility relation for CDS, the “similarity
relation” [57] is the main idea for reduct computation in IDS. The similarity relation is used
based on the assumption that the missing values are indiscernible with all other possible

values in the attribute domain.
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4.2 Rough sets extension to IDS

Definition 4.1. In the given incomplete decision system IDJS, for the subset of attributes

B C A, the similarity relation is defined as,
SIM(B) = {(x,2") € U? | Va € B [a(z) = a(2’) V a(z) = * Va(z') = %]} (4.1)

The similarity relation SIM (B) satisfies the reflexive and symmetry properties, but it
does not meet transitive property in all the cases. Hence it is a tolerance relation. The
similarity relation SIM(B) generates a cover of the universe of the objects U into distinct
similarity classes. The set of similarity classes of U induced by similarity relation SIM (B)
is denoted as U/SIM(B). For an object x, the similarity class is denoted by Sg(x), and is
given as,

Sp(x)={2' €U | (z,2') € SIM(B)}

The set of similarity classes U/SIM(B) are called as approzimation space or granular space,
and each similarity class in U/STM (B) is also called granuldl}
A rough set is formulated by a pair of lower and upper approximations for the given

concept X C U. These approximations are defined below.

Definition 4.2. In the given incomplete decision system IDS, for a concept X C U, let
B C A, the lower approzimation (B(X)) and upper approzimation (B(X)) of X in terms of

similarity class are defined as,

B(X)={ze€U|Sp(x) C X}, B(X) ={xcU]|Splx)NX # ¢} (4.2)

The positive region POSp({d}) represents the objects that are classified with full certainty

as members of decision equivalence class.

Definition 4.3. In the given incomplete decision system IDS = (U, AU {d}), for B C A,

the positive region with respect to B is defined as,

POSp({d}) = U B(X) (4.3)
XeU/IND({d})
The dependency measure (gamma measure) yp({d}) denotes the proportion of objects

that belong to the positive region, and is given by,

_ |[POSB({d})]

1e({d}) = U (4.4)

A minimal subset of conditional attributes R C A is said to be reduct, if R preserves the

original classification as defined by attributes set A.

The term “granule” is used instead of “similarity class” in the rest of the chapter.
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Definition 4.4. For the given incomplete decision system IDS, let R be the subset of con-
ditional attributes (R C A), and R is said to be reduct if and only if,

D). yr({d}) = va({d}) (jointly sufficient)

ii). yr({d}) < yr({d}) for any R’ C R (individually necessary)

4.3 Related work

P. S. V. S. Sai Prasad et al. [73] proposed Novel Granular Framework (NGF) to overcome
the limitations of Kryszkiewicz’s model [57] (discussed in the preceding section). And, this
section also presents the algorithm IQRAIG_Incomplete which uses NGF. This algorithm
achieved a significant computational gain in reduct computation over other approaches for
IDS since the NGF allows the incorporation of the granular refinement and positive region
removal features. Therefore, the MapReduce based proposed approaches are developed by

parallelizing this existing NGF.

4.3.1 Overview of Novel Granular Framework

In any dependency measure-based approach of attribute reduction, the efficiency of the ap-
proach depends on the computation of the positive region, which is calculated based on the
lower approximation of each of the decision classes. With the classical rough set theory in
CDS, the positive region is computed by forming the equivalence classes using indiscernibility
relation. If an object of an equivalence class goes into the positive region, then the remaining
objects of the same equivalence class also go into the positive region, because of the sharing
property of equivalence class. But, in the Kryszkiewicz’s model [57] for IDS, the positive re-
gion is computed by finding the granule of each object separately. This is because the granule
does not support sharing property. Hence, finding granule for each object leads to repeated
computations in attribute reduction.

Sai Prasad et al. [73] developed a Novel Granular Framework (NGF) to overcome the
aforementioned problems in the Kryszkiewicz’s model. In this framework, the structure of
the granule is changed such that it supports sharing property. Thus, a granule is redefined
according to NGF, as given below.

Definition 4.5. In the given incomplete decision system IDS, for B C A, if U/SIM(B)
is the granular space, then a granule gr € U/SIM(B) is defined as the collection of objects
gr C U such that, if z, 2’ € gr then z € Sg(2') and 2’ € Sg(x). And, the granule gr is further

divided into two portions base and tail as,

base = {x € gr | Sp(x) = gr},tail = gr — base, where, base C U, tail C U (4.5)
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The base portion of the granule gr is denoted with gr.base, and it contains all the objects
in gr having the similarity class as gr. And the tail portion of the granule gr is denoted
with gr.tail, and it contains the remaining objects of the similarity class. Note that, for
an empty set of attributes B = ¢, U/SIM(B) = {gr}, where, gr.base = U, and gr.tail =
¢. From the Eq. , it can be ascertained that, all the base portions of the granules
constitute U/IND(B) by assuming that the missing value is considered as a discernible
domain value. Thus, the base portions of the granules correspond to the equivalence classes
of the indiscernibility relation IND(B).

For any subset of attributes B C A, the lower approximation of X C U using U/SIM (B)
based on NGF is given as,

B(X) = gr.base (4.6)
(greU/SIM(B)) A (grCX)

From Eq. (4.6)), the positive region using U/SIM (B) becomes,

POSp({d}) = U BX) (4.7)
Xe U/IND({d})

Egs. (4.6) and (4.7)) are modified versions of Eqgs. (4.2) and (4.3). Here, Eq. (4.7) states

that, the positive region is the union of base portions of the granules U/SIM (B), which have
the same decision class for the objects in gr (i.e., consistent). Thus, the reduct is computed

by using Definition where Eq. (4.7)) is used to compute the dependency measure () in

Eq. .

4.3.2 IQRAIG Incomplete algorithm

Based on IQRA _IG algorithm [74], the IQRAIG Incomplete algorithm [73] is proposed for IDS.
This algorithm is developed using the Sequential Forward Selection (SFS) strategy, and the de-
pendency measure (v measure) [53] approach for reduct computation. And, IQRAIG Incomplete
uses NGF to deal with incompleteness in the data. The description of the procedure for reduct
computation in IQRAIG_Incomplete algorithm is given below.

IQRAIG _Incomplete algorithm starts its first iteration by initializing the reduct set R = ¢
(empty set). As this algorithm uses dependency measure () approach, for each attribute
a € A, dependency measure is computed using Eq. and Eq. . To compute the
positive region, the granular space (granules) U/SIM ({a}) Va € A is formed. The attribute
a’®t for which the maximum dependency measure obtained is included into the reduct set

R. Now the algorithm categorise the granules U/SIM(R) into positive region denoted by
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P_GR(U/SIM(R)) and non-positive region denoted by NP_GR(U/SIM(R)). From Eq.
, a granule gr € U/SIM(R) is said to be positive region granule, if the objects of gr.base
go into positive region (i.e, when the decision class of objects of gr is the same). The granules
of U/SIM (R) which are not in positive region are said to be non-positive region granules.

If gr € P.GR(U/SIM(R)) then Ygr' € gr/SIM(R U {a}) for any a € (A — R), we have
gr' € P.GR(U/SIM(R U {a})). That is, if a granule is going into positive region, then any
of its sub granules can also go into positive region. Thus, the removal of the base portions of
the granules in positive region from U/STM (R) has no effect on future computations. Hence,
the algorithm performs positive region removal where the base portions of the granules of
U/SIM(R) which are part of positive region (P_.GR(U/SIM(R))) are removed. After re-
moval of positive region, only the non-positive region granules (NP_GR(U/SIM(R))) remain
in granular space U/SIM(R).

In the successive iterations of the IQRAIG _Incomplete algorithm, if the reduct is nonempty,
the granules need to be formed for RU {a}, Va € (A — R) to compute the gamma measure.
The granules of U/SIM(R U {a}) are computed based on the objects values of attributes
R U {a}. But this computation becomes unnecessary because we have already computed
granules of U/SIM(R) in previous iteration. Hence, this redundant computation in each
iteration of the algorithm is avoided by using the granular refinement, where the granules
for attribute a are computed based on the existing granules of U/SIM (R). Note that, from
the previous iteration the granular space U/STM (R) contains non-positive region granules
(NP_.GR(U/SIM(R))). Thus, if NP_.GR(U/SIM(R)) = {gr1,9gr2,...g7s}, then by using the
granular refinement, the granules of U/SIM (R U {a}),Va € (A — R) are computed as,

S
U/SIM(RU{a}) = ] gri/SIM({a}) (4.8)
i=1
It should be noted that the process of positive region removal and granular refinement
in IQRAIG Incomplete algorithm is similar to IQRA_IG algorithm given in Section
Hence, in the algorithm, after computation of the granules U/SIM (R U {a}),Va € (A — R)

using Eq. (4.8), the vy, measure is computed using Eq. (4.4) and Eq. (4.7). The best

best wwhich gets maximum gamma gain is added to the reduct set R. And, the

attribute a
positive region removal is performed to remove the positive region granules from U/SIM (R).
The above procedure is repeated until the algorithm stops. The algorithm terminates when
the dependency measure of the reduct attributes (yz({d}) is equal to the dependency measure

of all the conditional attributes (y4({d}).
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partitioning

4.4 Proposed parallel attribute reduction in IDS using hori-

zontal partitioning

Horizontal partitioning of the given IDS can be defined as given below.

Definition 4.6. For the given incomplete decision system IDS = (U, AU {d}), let IDS =
P, IDS!, where, IDS" = (U%, AU {d}) is i'" data partition, and satisfies (i) U = |JI_, U?,
(i) U'NUI =0,Yi,j € {1,2,...,p} and i # j, where p is the number of data partitions.

From Definition |4.6) we can observe that each node gets data partition having subset of

objects’ information of all the attributes.

4.4.1 Alternative representation of the NGF

According to Definition the construction of granule involves the formation of base and
tail portions. Because of these portions, objects in one granule can be repeated in another
granule. In IQRAIG Incomplete algorithm [73], it can be observed that, the base and tail
portions of a granule are represented with object identifiers (ids). By default the row number
of the object in IDS is considered as object id. But, in a parallel /distributed approach with the
horizontal partitioning strategy, the object ids based representation is found not suitable due
to increased shuffle and sort phase complexity. From the existing horizontal partitioning based
attribute reduction algorithms in classical rough sets [811 [82] 92l 96} [124], it is observed that
the granular structure is usually represented with the granular signature instead of object ids.
In this section, the granular signature-based formulation for the NGF is introduced. Here,
this alternative representation of the NGF is discussed in the standalone scenario, and its
parallel /distributed outline is given in subsequent sections. This representation is adopted in
the proposed horizontal partitioning based approach.

If we project the base portions of the granular space for the subset of attributes B C A,
we can notice that the collection of all the base portions are the equivalence classes induced
from the indiscernibility relation (i.e., U/IND(B)) on the information of the attributes B
by considering the missing value also as a known discernible value. Hence, in the alternative
representation of NGF, the base portions are first computed using IND(B), and then the
tail portions are constructed from the existing base portions.

Consider the distinct similarity classes for B C A as U/SIM(B) = {gr1,gr2, ..., g7}, and
U/IND(B) = {gri.base, gra.base, ..., gri.base}. In the alternative representation of NGF, the
base portion of a granule is represented with a pair of < bSig, (decVal, posCount) > instead
of object ids. The bSig represents the unique value combination for attributes in B attained

by objects of granule. While computing base portion, the consistency of the base portion
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is extracted. If the decision class of all the objects in the base portion are the same then
the base portion is consistent, and the corresponding unique decision class label decVal is
preserved, otherwise decV al is represented with —1. If the base portion is consistent, then the
cardinality of the base portion is stored in posCount. Preserving aforementioned information
is sufficient for the computation of the tail portions, positive region count (|POSp({d})]),
and the dependency measure (vg5({d})) as shown below.

From Definition the objects of the tail portion in a granule are similar to the cor-
responding base portion using SIM relation. Hence, the tail portion of a granule can be
viewed as the union of other base portions whose base signature (bSig) is similar to the cur-
rent base signature under the STM relation. The tail portions of the existing base portions

of the granules are computed as given below.

Definition 4.7. In the given incomplete decision system IDS = (U, AU{d}), for B C A, let
U/IND(B) = {gri.base, gra.base, ..., gry.base}. For the base portion of an i*" granule gr;,

the tail portion gr;.tail is computed as,

k
gri.tail = U{grj.base | (i # j) N (SIM(bSig(gri.base),bSig(gr;.base)) == TRUE)}
j=1
(4.9)

Note that, SIM (bSig(gr;.base), bSig(gr;j.base)) becomes T'RU E when the following crite-
ria is satisfied. If bSig(gr;.base) = (ai,az,...ap|) and bSig(gr;.base) = (b1, be,...bp|), then Vk €
{1,2,....|B|}, we have ay, == by, or aj, = * or by, = *.

From Eq. , we say that gr; is a consistent granule if gr;.base and all the base
portions in gr;.tail are consistent and they all have same decVal. Let ConsistentGranules(B)
represents the set of granules of U/STM (B) which are consistent. To find the positive region
count |POSgE({d})|, Eq. in NGF is modified as given below.

|POSp({d})| = Z posCount(gr.base) (4.10)

greConsistentGranules(B)

The dependency measure yg({d}) given in Eq. is computed using Eq. ([4.10).

In this proposed approach, the attribute reduction is performed majorly in two steps.
In the first step, the granules for the given data set are computed based on the alternative
representation of NGF. In the second step, the best attribute to include in the reduct set is
computed based on the granules. Parallelization of these two steps and the incorporation of
the positive region removal facet is described using MapReduce-based parallel /distributed al-

gorithms. These algorithms are given in the form of a driver, mapper, and reducer. The driver
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algorithm MRIDS_HP: driver() is given in Algorithm the mapper algorithm MRIDS_HP:
map() is given in Algorithm and the reducer algorithm MRIDS_HP: reduce() is given in
Algorithm And, the algorithm MRIDS_HP: mapValues() is given in Algorithm This
algorithm is used to find the best attribute.

4.4.2 Parallel computation of the base portions

With the horizontal partitioning strategy, each data partition of a node gets a subset of
objects information of an attribute. So within a node, partial base portions are formed in the
mapper phase, and the complete base portions are realized after the reducer phase. As given
in Algorithm in any iteration, the driver maintains non-positive region base signatures
for the current reduct R in nPosbSig variable. At the beginning, the driver initializes the
variables R = ¢ and nPosbSig[ |[ | = ¢. Before starting its first iteration, the driver assumes
that all the objects of U belong to non-positive base signature of nPosbSig. The driver starts
each iteration by broadcasting R and nPosbSig variables to all the nodes of the cluster. In the
mapper phase, the driver computes the partial base portions U'/IND(RU{a}), Va € (A—R)
by invoking Algorithm

The mapper (Algorithm works on each record of IDSRDD. The mapper computes
the base signature RbSig of all the attributes of current reduct R for the given record.
If RbSig does not belong to nPosbSig, then RbSig is a positive region base signature,
hence that particular record is not considered for further computations. And if RbSig be-
longs to nPosbSig, then that particular record is considered to generate the intermediate <
key', value’ > pair for each attribute attr € (A — R). The key’ contains < bld, attr,objVal >
where the bld is base signature index in nPosbSig, objVal is the object value in the given
record for the attribute attr. And wvalue’ contains < decVal,posCount > where decVal
is the decision value in the record, and posCount is the positive region count, which is
initialized with 1. These < key’,value’ > pairs form the new RDD as parbSigRDD <
(bId, attr,objVal), (decVal, posCount) >. From Algorithm [4.2] it can be noticed that the ob-
jective of the mapper is to generate the requisite information for constructing base portions
U/IND(R U {attr}), Yattr € (A — R). Here for each attr € (A — R), the mapper collates
the base signature information corresponding to U/IN D(R U {attr}) using the combination
of bId and objVal of the attr in the given record and the information pertaining to the R

attributes that can be extracted by using broadcasted variable nPosbSig.
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Algorithm 4.1: MRIDS_HP: driver()

Input: Input data set IDS = (U, AU {d}), Positive threshold: «, Threshold for trivial
iterations: thVal
Output: Reduct R
1 IDSRDD =readAsRDD(IDS) /* Data set is divided using horizontal
partitioning strategy, and distribute to the nodes of the cluster as
IDS* = (U, AU{d}) Vi€ {1,2,...,p} where p is number of data partitions.  */
2 Initialize triviallteration = 0, additional Attrs = ¢, posTh = «
3 Broadcast reduct R = ¢, non-positive region base signatures list nPosbSig[ ][ | = ¢
4 repeat
// Initiate mapper job by invoking Algorithm
5 val parbSigRDD = IDSRDD.map(record => {var m = map()})
// Initiate reducer job by invoking Algorithm
6 val bSigRDD = parbSigRDD.reduce ByKey((x,y) => {var r = reduce()}))
7 Using a map() only operation, transform the < key, value >= pairs of bSigRDD such
that key = attr and value = (bld, 0bjVal,decV al, posCount)
// Aggregate all values of same key as a list of tuples
8 val aggrRDD = bSigRDD.aggregate ByKey()
// aggrRDD gets < key,value > =< attr, List[(bId, objVal,decV al, posCount), ....] >
// Find the best attribute by invoking Algorithm
9 val attrPosRDD = aggr RDD.mapV alues()
/* attrPosRDD gets < attr, (attr PosCount, attrnPosbSig) > pairs */
10 Select attr as a®®*t which gets maximum attr PosCount (denoted as best PosCount),
store its attrnPosbSig into nPosbSig and broadcast.
11 R = RU {a*!}, total PC = total PC + best PosCount

12 Compute yg = %

13 if (yg >= posTh) then

14 Filter the objects from IDSRDD which are not in nPosbSig
15 posTh =a+vr

16 end

17 if (yr <1 AND bestPosCount == 0) then

18 Store ab®st to additional Attrs

19 triviallteration + +

20 end

21 else

22 triviallteration = 0

23 Remove attributes from additional Attrs

24 end

25 if (triviallteration == thValue) then

26 ‘ Remove attributes of additional Attrs from R
27 end

28 until (yg <1 AND triviallteration < thV alue)

20 Return R
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Algorithm 4.2: MRIDS_HP: map()
Input: 1. A record of IDSRDD
2. Broadcasted reduct: R, and non-positive region base signatures: nPosbSig
Output: Partial base portions in the form of < key/, value’ >
1 Construct base signature for the attributes of R based on record and store into RbSig
2 decVal = record[d]
3 posCount = 1
4 if RbSig € nPosbSig then

5 bld=index of RbSig in nPosbSig

6 for each attribute attr € (A — R) do

7 objVal = record|attr]

8 Construct < key', value’ > pair, where key’ = (bId, attr,objVal) and

value' = (decVal, posCount)

9 Generate intermediate < key', value’ > pair

10 end
11 end

In Algorithm the driver performs reduce ByKey() operation on the parbSigRDD.
Each reducer gets a key as < bld, attr,objVal >, and a corresponding list of values V', where
each v € V is < decVal,posCount >. That is, in the reducer phase, the complete form
of the base portion is obtained by collecting all the value portions < decVal, posCount >
of same key =< bld,attr,objVal >. After forming the complete base portions, the con-
sistency of the base portion is checked. As shown in the algorithm, for a base portion
(key), if all the decVals are same and decVall = —1, then that base portion is consis-
tent and the wvalue portion becomes < decVal,sum of all posCount >, otherwise it be-
comes < —1,0 >. Here, —1 indicates inconsistent base portion. Hence, < key’,value’ >
pairs of reducer form complete base portion and results in the formation of new RDD of
bSigRDD < (bld,attr,objVal),(decVal,posCount) >. It should be noted that, with the
reduce ByK ey() operation, internally Spark performs local optimization by applying the op-
eration on local values in mapper phase prior to its global optimization. Additionally, both
in mapper and reducer, it can be observed that, instead of base signature its bld is commu-
nicated in the key portion. With this, the amount of data movement in the shuffle and sort

phase is reduced.
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Algorithm 4.3: MRIDS _HP: reduce()

Input: < key,V > pair where, key is a (bId, attr,objVal) received from all the
mappers, V is a list of values, where each value v is (decV al, posCount)
generated from a mapper

Output: Complete base portion of an attribute in the form of < key’, value’ > pair

1 if (decVal is same in the list of V- AND decVal! = —1) then
2 ‘ value’ =(decVal, sum of all posCounts)

3 end

4 else

5 | wvalue’ =(-1,0)

6 end

7

Construct < key', value’ > pair, where key’ = (bld, attr,objVal), and
value' = (decVal, posCount)
8 Emit < key', value’ >

4.4.3 Parallel computation of the best attribute

Algorithm 4.4: MRIDS_HP: mapValues()

Input: 1. < key,V > pair where, key is an attr, V is a list of tuples, where each
tuple v is (bId, 0bjVal,decV al, posCount)
2. Broadcasted reduct R, non-positive base signatures list nPosbSig
Output: An attribute attr, its positive region count attr PosCount and its non
positive region base signatures list attrnPosbSig
1 For each tuple v € V, construct base signature of base portion of granule in
U/SIM(R U {attr}) with the information of R attributes from nPosbSig[bld] and
information of attr in objVal

2 Compute tail for each base of granule gr € U/SIM (R U {attr}) using Eq.
3 attrPosCount = 0, attrnPosbSig[|[] = ¢

4 for each tuple gr.base € V of attr do

5 if (Consistency(gr.base)! = TRUE) then

6 ‘ attrnPosbSig = attrnPosbSig U bSig(gr.base)

7 end

8 else if (Consistency(gr)! = TRUE) then

9 ‘ attrnPosbSig = attrnPosbSig U bSig(gr.base)
10 end
11 else

12 ‘ attr PosCount = attr PosCount + posCount(gr.base)
13 end
14 end

15 Emit < key', value’ >=< attr, (attr PosCount, attrnPosbSig) >

In an iteration of the proposed algorithm (Algorithm [4.1)), the attribute which gets max-
imum positive region count among the attributes of (A — R) is selected as the best attribute
a®st. To compute the required positive region count of an attribute attr € (A— R), we need to

gather all the base portions of the attr to a particular location. To do this, the driver first per-
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forms map() operation on bSigRDD to transform the < key,value > pair, so that, key =<
attr > and walue =< bld,objVal,decVal,posCount >. And, then the driver performs
aggregate ByKey() for aggregating value portions (< bld, objVal,decV al, posCount >) of a
key =< attr >. The driver gets aggrRDD < attr, List[(bld, objV al,decV al, posCount), ...] >
as the result of aggregate ByKey() operation. That is aggr RDD contains a key as attr, and
all the base portions U/IN D(RU{attr}) as a list of tuples in the value portion Vattr € (A—R).
By performing mapV alues() operation on aggr RDD, the computation of tail portions from
U/IND(R U {attr}) and the computation of the positive region count (|POSg {ar}({d})])

are parallelized.

As given in Algorithm by using Definition the tail portion for each base por-
tion of an attribute is computed. After the formation of tail portions, each granule gets
its base and tail portions so that the granule gr becomes a similarity class in U/STM (R U
{attr}). If the granule gr is consistent then it’s gr.base portion goes to positive region
(using Eq. (4.10)). Otherwise the gr.base portion is added to attrnPosbSig. For the
consistent granules, the positive region count |POSgyaury({d})| is computed by using Eq.
(#.10). For each attribute attr € (A — R), Algorithm generates < key',value’ >=<
attr, (attr PosCount, attrnPosbSig) > that result in attr PosRDD.

As given in Algorithm the best attribute is selected (which gets maximum positive
count) by performing a reduce operation on attr PosRDD. The best attribute a®**! is added
to the reduct set R, and the dependency measure vy is computed. From Definition
the driver algorithm should be terminated when the value of yr({d}) reaches the value of
v4({d}). Here, the computation of v4({d}) may not be feasible for the massive data sets
with the horizontally partitioned data. Hence, an alternative approach is used to terminate
the algorithm. As mentioned earlier, the attribute which gets maximum gamma gain is added
to the reduct set, but in an iteration, if there is no gamma gain, then the algorithm selects
an attribute randomly and added it to the reduct set, and then the next iteration is repeated.
The non-increasing nature of the dependency measure can be because of the data set or the
obtained reduct set already achieved yr({d}) equal to y4({d}). To resolve this ambiguity, the
algorithm continue the iterations for some threshold value (thValue) number of times and
even if there is no increase in yr({d}) then the algorithm safely assumes that the required
reduct is obtained. Note that, the value of thV alue variable is taken as input to the algorithm

based on the number of attributes in the input data set.
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4.4.4 Positive region removal

The driver (in Algorithm incorporates a stage based positive region removal. Without
performing positive region removal it can be observed that in the mapper phase, on each
record, the base signature (RbSig) is computed and verified whether it belongs to nPosbSig
or not. If RbSig does not belong to nPosbSig, then the objects of the RbSig are considered in
the positive region and they are not used in further computations. This verification becomes
an expensive and repetitive operation. But effecting the physical removal of the positive region
in every iteration results in a lot of reorganization of the IDSRDD with filter() operation.
If the number of objects being removed is very small, then the overhead cost incurred with
the reorganization of IDSRDD dominates the benefits obtained by positive region removal.

To avoid the aforementioned problems, a stage based positive region removal is performed
in which a threshold « is taken as input from the user and it is assigned to posT'h variable (in
our implementation « is taken as 0.25). And, the positive region removal is not performed till
vr({d}) >= posTh. If yr({d}) exceeds posTh, then the objects in positive region are filtered
out from the input data set IDSRDD. And posTh is set to yr({d}) + «. In the next stage,

the positive region is removed based on the current posTh value.

4.4.5 Complexity analysis of MRIDS _HP algorithm

Table 4.1: Time complexity analysis of MRIDS_HP algorithm

Algorithm Step* in Algorithm Time complexity
(phase)

Driver » 1. Partitioning the data horizontally O('A‘;wl * toy)
(Algorithm 3. Broadcasting nPosbSig O(|A| % [U/IND(A)| * ty)

Mapper - 4-10. Creating partial base signatures O( w)

(Algorithm

Shuffle and Transferring partial base signatures O(px|A|*|U/IND(A)|*ty)
sortl »

O(p*MI*W/IND(A)\) + O(s)

Reducerl > 1-6. Creating complete base signatures 7

(Algorithm and Barrier synchronization

mapValues() » 4-14. Forming complete granules (based O(W)

P
(Algorithm on alternative NGF)
Shuffle and Transferring data after mapValues() O(p'*|A|*|U/IND(A)|*ty)

sort2 >

Reducer2 > 10. Finding a**** and Barrier synchroniza- O(p") + O(s)
(Algorithm [4.1)  tion

* Step denotes the line number in the associated algorithm
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In the time complexity analysis of MRIDS_HP algorithm, the following variables are used.

o |U|: the number of objects in the data set

|A]: the number of conditional attributes in the data set

p: the number of processors

ty: the number of time units to transfer one word of memory

e s: the number of time units to complete the synchronization

|[U/IND(A)|: the number of granules in granular space formed by A

q: the number of reducers invoked by Algorithm
e p': the number of data partitions after aggregate ByKey() operation

Table shows the time complexities of each step of the phase in the MRIDS_HP algo-
rithm for one iteration. Note that, in the table, all the steps in all the phases (i.e., Al-
gorithm (mapper), shuffle and sortl, Algorithm (reducerl), shuffle and sort2 and
Algorithm (mapValues)) and step 10 of the driver (Algorithm are repeated until
(yr < 1 AND triviallteration < thValue) condition is satisfied. That is, these steps are
repeated |A| (in worst case) times. Hence, by adding up all the complexities, the total time
complexity of the MRIDS_HP algorithm is obtained as given below.

Al = [U]

(p*tw)+(\A|*1U/IND(A)|*tw)+yA,*((VA‘*WZOQW’

)+ (| Al¥|U/IND(A) |[xtw)+

% 2
AL [UJINDAR | A4 0/ TN D(A) xt0) + () +(5))

(4.11)

px|A|*|U/IND(A)]
. )+(s)+( »

(

Above equation can be approximated as: O(w) + O(JA| % (JA| « [U/IND(A)| % (p *
tw + % + W +p, *ty) +p' + ). Thus the time complexity of the MRIDS_HP algorithm
is O(w) in addition with its communication cost: O(|A|* (JA| % |[U/IND(A)| * (p *
by + 2+ RPN 4y at) + 9/ + 5).

The entire decision system is required to be present in memory for reduct computation
using MRIDS_HP algorithm. Thus, the space complexity of MRIDS_HP algorithm is O(|A| %
|U|). Additionally, the driver of MRIDS_HP algorithm has to maintain broadcasting non-

positive region base signatures list, thus it has the complexity of O(|A|*|U/IND(A)|). In the
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MapReduce framework environment, the input decision system is partitioned and distributed
to the nodes of the cluster where the workload is divided equally into p data partitions. Hence,
each partition has the complexity of O(M‘pﬂ).

In the worst-case scenario, the aforementioned theoretical time and space complexities
of the proposed MRIDS_HP algorithm are described. However, since the MRIDS_HP algo-
rithm incorporates positive region removal feature, the actual time and space complexities

are further reduced.

4.5 Proposed parallel attribute reduction in IDS using vertical

partitioning

The horizontal partitioning based attribute reduction algorithm MRIDS_HP is not scalable
for big dimensional data sets. Because, the granular signature representation of granules in
NGF suffers from overheads of data movement across the cluster of nodes in the MapReduce
framework. Furthermore, it does not allow the incorporation of a granular refinement feature
which gives enormous computational gains in parallel/distributed computing as proved in
Chapter Thus, vertical partitioning based approach is required to achieve scalability in
attribute reduction of big dimensional incomplete data sets. With the vertical partitioning
strategy given in Section all the objects’ information of a subset of attributes is available
in a data partition of a node in the cluster. Vertical partitioning of the incomplete data set

is defined below.

Definition 4.8. For the given incomplete decision system IDS, let IDS = (J0_, IDS" be
the vertically partitioned decision system, where, IDS? = (U, A* U {d}) is i data partition,
and satisfies (i) 4 = (J/_; A%, (ii) A'N A7 = 0,Vi,j € {1,2,...,p} and i # j, where p is the

number of data partitions.

Each data partition contains A*U{d} attributes with the information of all the objects of
U. Therefore, adopting the representation of the granules in the existing NGF using object
ids is naturally carried forward from the standalone scenario to vertical partitioning based
parallel approach because all the objects pertaining to the attributes are available at the same
location (within a node). As a result, the proposed MapReduce based method (MRIDS_VP)
adopts vertical partitioning strategy to partition the input data set to cluster nodes, and it
uses the NGF to handle the incompleteness in the data.

In the proposed approach, attribute reduction is performed majorly in two steps. In the
first step, the given data set’s granules are computed based on the NGF'. In the second step, the

best attribute to include in the reduct set is computed based on the granules. Parallelization of
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these two steps and the incorporation of granular refinement and positive region removal facets
are described by using MapReduce based parallel/distributed algorithms. These algorithms
are given in the form of a driver, mapper, and reducer. The driver algorithm MRIDS_VP:
driver() is given in Algorithm the mapper algorithm MRIDS_VP: map() is given in
Algorithm and the reducer algorithm MRIDS_VP: reduce() is given in Algorithm

The driver (Algorithm initializes the reduct R = ¢ (empty set). The initial granules
U/SIM(R) = {{U},{¢}} (when R = ¢) are assigned to non-positive region granules list
NP_GR, where base portion of the granule is initialized with U and tail portion is initialized
with ¢ (empty set). The driver then broadcasts these initialized variables along with the
decision attribute {d} to all the nodes of the cluster.

Algorithm 4.5: MRIDS_VP: driver()
Input: Input data set IDS = (U, AU {d})
Output: Reduct R
1 IDSRDD = readAsRDD(IDS) /* Reads the input data set as RDD, divides
it using vertical partitioning strategy, and distribute to the nodes
of the cluster as IDS' = (U, A'U{d}), Vi€ {l1,2,...,p} where p is
number of data partitions in the cluster. */
Broadcast decision attribute {d}, initial reduct R = ¢, and initial non-positive region
granules list NP_.GR = {{U},{¢}} to all the nodes of the cluster.
Compute v4({d})
repeat
// Initiate mapper job by invoking Algorithm
5 val IBestRDD = IDSRDD.mapPartitions(part => {var mp = map()})
// Initiate reducer job by invoking Algorithm
6 val gBestRDD = [BestRDD.reduce ByKey((z,y) => {var rp = reduce()}))
Collect the data gBestRDD as < key,value >=< a***!, global PC > from the
reducer.
Add the best attribute ! to the reduct set R
Calculate total positive region count |POSg({d})| of reduct set R
10 Compute dependency measure vg using Eq.
11 | if (ygr <y4) then

N

[N

12 Filter the record of the attribute a?®** from the input data set IDSRDD
13 Remove the attribute a**! from the reduct set R

14 Compute U/SIM (R U {a**'}) using Eq. // Granular refinement
15 Perform positive region removal

16 Broadcast non-positive region granules NP_GR(U/SIM (R U {a®*5'})

17 Add the attribute a®*** to the reduct set R

18 end

19 until (yg == 7v4)

20 Return R
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Algorithm 4.6: MRIDS_VP: map()

Input: 1. Data partition IDS? = (U, A’ U {d}), each record read as
< key,value >=< a,aData >
2. Broadcasted reduct: R, non-positive region granules: NP_GR
Output: < key',value’ >=< commonKey, (labeSt, local PC') > here, commonKey is
some common key, la’** € A" is local best attribute within the partition,
and local PC' is its positive region count
1 max = 0, la*t = —1
2 for each record € IDS* as < a,aData > do
3 if a ¢ R then
4 Compute U/SIM(RU {a}) using Eq. // Granular refinement
5 Compute POSpgy.y({d}) using Eq. (4.7)
6 if [POSRutey({d})] > maz then
- labest —a
. maz = [POSp gy ({d})]
9 end

10 end

11 end

12 Construct < key’,value’ > pair, where key’ = commonKey, and
value' = (1a**t local PC), here local PC = max

13 Emit intermediate < key’, value’ >

Algorithm 4.7: MRIDS_VP: reduce()

Input: < key,V >, where key is a commonK ey received from all the mappers, V is
a list of values, where each value is (1a***!, local PC) generated from a mapper
Output: < key',value’ >=< ab**t, global PC') > here, a**! is the best attribute, and
global PC' is it’s positive region count
global PC = 0, ab*st = —1
for each v € V as (1a***!,local PC)) do
if local PC' > global PC' then
abest — labest
global PC' = local PC
end
end
Construct < key', value’ > pair, where key’ = a**t, and value’ = global PC
Emit < key', value’ >

© W N oA W N R

78



4.5 Proposed parallel attribute reduction in IDS using vertical partitioning

4.5.1 Parallel computation of the best attribute

The driver computes the granules by invoking the mapper (Algorithm . A mapper gets
a data partition DS’ as input and broadcasted variables R and NP_GR from the driver.
With the vertical partitioning strategy, for an attribute a € (A* — R), since all the objects’
information is available within the data partition, the complete granules of U/SIM(RU{a})
are formed locally within the node based on Eq. . Thus, each mapper computes the
granules U/SIM(RU {a}), Va € (A’ — R) by using the granular refinement as per Eq. (4.8).
Here, broadcasted granules of NP_.GR(U/SIM(R)) are refined based on the values of the
current attribute a. Based on these granules, the positive region count [POSgy.1({d})],
Va € (A" — R) can also be computed locally within the node using Eq. .

As shown in Algorithm after computation of the granules, the mapper computes
the positive region count for each attribute a € (A* — R) within the data partition I.DS".
The attribute which gets maximum positive region count local PC' is selected as local best
attribute la’®*!. Each mapper generates < key’,value’ > pair that result in [BestRDD <
commonKey, (1a"**, local PC) >. Here, commonKey is a common key from all the mappers
used to invoke a single reducer.

In Algorithm the reducer gets a set of < commonKey, [(1a***!, local PC))] > pairs as the
input from all the mappers located in different nodes of the cluster. Here, [(1a****,local PC)]

represents a list of values. The reducer selects a global best attribute ¢t

which gets maxi-
mum positive region count among the local best attributes received from different mappers.
The reducer generates global best attribute and its positive region count. In the driver,
the best attribute a?®** is added to the reduct set R, and the total positive region count

|POSR({d})] of reduct set R is calculated. The g is computed based on |[POSg({d})|.

4.5.2 Granular refinement and positive region removal

In an iteration of the driver (Algorithm, after adding the best attribute a®*** to the reduct
set R, the end condition (yg == 74) of the algorithm is checked, where 4 is the dependency
measure of all the conditional attributes (refer Section [1.5.3). If the condition is true, then
the algorithm returns reduct set R and terminates. But if the condition is false, then the

best is fetched by using a filter operation on the input data set

record of the best attribute a
IDSRDD. The granules U/SIM(RU{a’*'}) are constructed based on the fetched record of
the best attribute using granular refinement (line number 14 of the Algorithm [4.5). Notice
that we already computed the granules U/SIM (R U {a"*'}) in the mapper phase, but the
granules are not communicated to the reducer to simplify the shuffle and sort phase, which is

most complex phase of the MapReduce framework. Thus, we avoid a lot of data movement in
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the shuffle and sort phase, which is much more expensive than performing a filter operation
to fetch the record of the best attribute in the driver.

The positive region granules P_.GR(U/SIM(R U {a***'})) are removed from the gran-
ules of U/SIM(R U {a***'}), and the remaining non-positive region granules are assigned to
NP_GR(U/SIM(RU {a"*'})). These updated non-positive region granules are broadcasted
to all the nodes of the cluster. And, the best attribute a?®** is added back to reduct set R.
Consequently, in the next iteration of the algorithm, the granules are formed based on these
updated non-positive region granules using granular refinement. Hence, without physically
removing the positive region objects from the data, the positive region removal is incorpo-
rated by restricting the computations of the next best attribute selection to the non-positive
region granules. The positive region removal leads to a reduction of the number of objects
involved in the computations of every iteration in the algorithm. Therefore, both the facets
of granular refinement and positive region removal enhance the efficiency of the proposed

MRIDS_VP algorithm.

4.5.3 Computation of v,({d})

The dependency measure for all the conditional attributes v4({d}) is computed by form-

ing the granules of U/STM(A). For each data partition IDS* = (U, A* U {d}), the mapper
computes the granules of U/SIM(A?), and they are categorised as positive region granules
P_GR(U/SIM(A?)) and non-positive region granules NP_GR(U/SIM(A")). Here, the map-

per removes granules of P_.GR(U/SIM (A?)) from U/STM (A*) (positive region removal), and
communicates the granules of NP_GR(U/SIM(A?)) to the reducer. Now, the reducer per-
forms the refinement of NP_GR(U/SIM(AY)), Vi = {1,2,...,p} and arrives at NP_.GR(U/SIM (A)).
If NP.GR(U/SIM(A)) is empty then y4({d}) becomes 1, otherwise the POS4({d}) is com-
puted as, POSA({d}) = U —Ug,enp aru sy 97-base. The value of y4({d}) is computed
based on POS4({d}).

4.5.4 Complexity analysis of MRIDS_VP algorithm

In the time complexity analysis of MRIDS_VP algorithm, the following variables are used.
e |U|: the number of objects in the data set
e |A]: the number of conditional attributes in the data set
e p: the number of processors

e t,,: the number of time units to transfer one word of memory
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Table 4.2: Time complexity analysis of MRIDS_VP algorithm

Algorithm Step* in the Algorithm Time complexity
(phase)
1. Partitioning the data vertically O( ‘A[;w' * Toy)
2. Broadcasting NP_GR and {d} O(|U] * tw)
Driver » 3. v4({d}) computation (9(‘A‘*lU”og'UlHU/IND(A)‘2) +
O(p *|U] )
(Algorithm 12. Fetching a***! record O(|U| * tw)
14. Finding granules based on a"*! record  O(|U|log|U]|)
Mapper - 5-6. Creating granules and finding posi- O(‘A‘*W'log'UlHU/IND(A)‘2)

tive region counts
(Algorithm 7-10. Finding la’®* and Barrier synchro- O(14l) + 0(s)

nization

best and their positivere-  O(p * t,,)

Shuffle and Transferring all la
sort > gion counts
Reducer » 2-7. Finding a"** and Barrier synchro- O(p) + O(s)
(Algorithm nization

* Step denotes the line number in the associated algorithm

e s: the number of time units to complete the synchronization

e [U/IND(A)|: the number of granules in granular space formed by A

Table shows the time complexities of each step of the phase in the MRIDS_VP algorithm
for one iteration. Note that, in the table, from step 12 to step 14 in driver (Algorithm
and all the steps in mapper (Algorithm and reducer (Algorithm are repeated until
(Yr == 7a) condition is satisfied. That is, these steps are repeated |A| (in worst case)
times. Hence, by adding up all the complexities, the total time complexity of the algorithm
is obtained as given below.

Al U]

Al x |U|log|U U/IND(A)|?
(AL ) 1 0 ) 4 (AL O/INDED)

)+ (p* U ty)+

p
Al % |Ullog|U| + |[U/IND(A)|? A
A1 (10715t + O Yoglo -+ (SIS0, L B )4 )+ 09+ )
(4.12)
Above equation is approximated as, O(w) +O(|Al* (U] +p) *tw+ w—%

s)). Thus the time complexity of the MRIDS_VP algorithm is O(WM) in addition with

|AI+|[U/IND(A)[? +5)).

its communication cost: O(|A| * ((|U| + p) * ty + -
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The entire decision system is required to be present in the memory for reduct compu-
tation using MRIDS_VP algorithm. Thus, the space complexity of MRIDS_VP algorithm is
O(JA| = |U|). Furthermore, the driver of MRIDS_VP algorithm has to maintain broadcast-
ing non-positive region granules list, thus it has the complexity of O(|U|* |U/IND(A)]|). In
MapReduce framework environment, the input decision system is partitioned and distributed
to the nodes of the cluster where the workload is divided equally into p data partitions. Hence,
the complexity of a data partition becomes O(W).

In the worst-case scenario, the aforementioned theoretical time and space complexities
of the proposed MRIDS_VP algorithm are described. However, because the MRIDS_VP

algorithm incorporates positive region removal and granular refinement features, the actual

time and space complexities are significantly reduced.

4.6 Experimental analysis

In this section, the proposed algorithms are evaluated experimentally. The experimental set
up is described in Section Computational time analysis and performance evaluation
are two concerned metrics for parallel/distributed algorithms. Since the proposed work is the
first research of its kind on parallel attribute reduction in IDS, the experimental analysis is
provided only between the proposed approaches. The comparative analysis of computational
time and the results are reported in Section In the experimental analysis, we focused
mainly on the performance evaluation with various metrics such as speedup, scaleup and sizeup
[13] of the proposed parallel algorithms. The results of performance evaluation are reported
in Section The relevance and limitations of the proposed algorithms are evaluated
experimentally in Section [4.6.4]

4.6.1 Experimental setup

The experiments are performed on Apache Spark and they are carried out on a seven node
cluster. In the cluster, one node is fixed as a driver (master) as well as a worker, and the
rest are set as workers (slaves). The master node uses Intel (R) Xeon (R) Silver 4110 CPU
@ 2.10GHz processor with 32 cores and 64 GB of main memory. All the worker nodes use
Intel (R) Core (TM) i7-8700 CPU@3.20GHz processor with 12 cores and the main memory
of 32 GB. All nodes run on Ubuntu 18.04 LTS operating system and they are connected via
Ethernet (with 1000Mbps speed). Each node is installed with Java 1.8.0_171, Apache Spark
2.3.1, and Scala 2.11.4.
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Table 4.3: Data sets used in the experiments of MRIDS_HP and MRIDS_VP algorithms

Data set  Rename Objects  Attributes Classes Missing
%
Genes genes-S801-A5000k-one 801 5009564 5 1
genes-S801-A5000k-two 801 5009564 5 2
genes-S801-A5000k-three 801 5009564 5 3
Gisette gisette-S54k-A55k-one 54000 55000 2 1
gisette-S54k-A55k-two 54000 55000 2 2
gisette-S54k-A55k-three 54000 55000 2 3
Mushroom mushroom-S40k-A40k-one 40620 40590 2 1
mushroom-S40k-A40k-two 40620 40590 2 2
mushroom-S40k-A40k-three 40620 40590 2 3
mushroom-S80k-A40k-one 81240 40590 2 1
mushroom-S120k-A40k-one 121860 40590 2 1
mushroom-S40k- A80k-one 40620 81180 2 1
mushroom-S40k-A120k-one 40620 121770 2 1
KDDcup  kdd-S4900k-A40-one 4898431 41 23 1
kdd-S4900k-A40-two 4898431 41 23 2
kdd-S4900k-A40-three 4898431 41 23 3

For the experiments, we have chosen four data sets from machine learning data repository
UCI [31]. They are “Gene expression Cancer RNA-Seq (Genes),” “Gisette,” “Mushroom,”
and “KDDcup 99 (KDDcup)” data sets. The original “Genes” data set contains 801 objects,
one decision attribute, and 20531 conditional attributes. The “Gisette” data set contains 6000
objects, one decision attribute and 5000 conditional attributes. The “Mushroom” consists
of 8124 objects, one decision attribute, and 22 conditional attributes. And, the original
“KDDcup” data set contains 4898431 objects, 40 conditional attributes and one decision
attribute. The object space and attribute space of the original data sets (except KDDcup)
are replicated several times to check the efficiency of the proposed algorithms on the data sets
with huge number of objects, and on big dimensional data sets. For example the conditional
attribute space of the “Genes” data set is replicated 244 times (i.e., 20531 x 244 = 5009564 )
by keeping the object space constant to create an big dimensional data set. We name this
data set as “genes-S801-A5000k”.

From each of these data sets, three incomplete data sets are generated by randomly setting
the missing values of 1%, 2% and 3% size of |U| x |A|, and they are named accordingly with a
suffix “one,” “two” and “three” respectively. Therefore, each data set is categorised in terms
of its incompleteness percentage, and then the experiments are conducted. The details of the
various data sets after the replication with different incompleteness in the data are given in

Table Note that, in the table a name “gisette-S54k-A55k-two” indicates Gisette data set
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Table 4.4: Running time (seconds) and reduct size of MRIDS_HP and MRIDS_VP for varying
incompleteness percentage in the data sets

MRIDS_HP MRIDS_VP
Data set Running Reduct Running Reduct
time size time size
mushroom-S40k-A40k-one 421.18 05 519.67 05
mushroom-S40k-A40k-two 502.91 05 564.23 05
mushroom-S40k-A40k-three 597.18 05 591.63 05
gisette-S54k-A55k-one 2839.11 18 2891 18
gisette-SH4k-Ab5k-two 3744.09 18 3127.51 18
gisette-S54k-Ab55k-three 3938.50 18 3463.62 18
genes-S801-A5000k-one 76276.71 07 205.63 07
genes-S801-A5000k-two 78532.82 07 213.87 07
genes-S801-A5000k-three 85647.13 07 224.56 07
kdd-S4900k-A41-one 1860.11 35 148050.32 35
kdd-S4900k-A41-two 7664.05 35 151720.26 35
kdd-S4900k-A41-three 61780.53 35 154110.41 35

having 54000 objects and 55000 attributes with 2 % missing values. All the data sets with

different sizes are chosen according to limited hardware configuration of the cluster.

4.6.2 Computational evaluation

The reduct is computed for the data sets given in Table [£.3|using MRIDS_HP and MRIDS_VP
algorithms. And the results of each algorithm are reported separately in Table Com-
putational time and reduct length of the obtained reduct for each data set with different
percentages of incompleteness in the data are reported.

From the results in Table it can be noticed that the different data sets of the “Mush-
room” and “Gisette” have almost equal number of objects and attributes. For these data sets,
both the proposed algorithms produced the reducts in almost similar computational times. It
can also be observed that, when the data sets have massive attribute space (e.g., “Genes”),
the MRIDS_VP algorithm performs well. Whereas, when the data sets have massive object
space (e.g., “KDDcup”), the MRIDS_HP algorithm performs well. In contrast the computa-
tional times incurred by MRIDS_HP for big dimensional data sets, MRIDS_VP for massive
object space data sets are so huge which establishes the need for proposing two approaches
with different partitioning strategies.

By comparing the results of both algorithms, we can observe that MRIDS_VP has pro-
duced the reduct on almost similar time frame for all the incomplete percentages of the data.

But the MRIDS_HP algorithm incurred more computational time when the incompleteness
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percentage is increased. That is, the increase of the missing values in the data has more
influence on the computational time of horizontal partitioning based MRIDS_HP algorithm
than the vertical partitioning based MRIDS_VP algorithm. The reason is that the complexity
in shuffle and sort phase and mapValues() increases with the increase in incompleteness in
the data sets. The resilience of the MRIDS_VP algorithm for increase in the incompleteness
is majorly due to the simplified shuffle and sort phase which is independent of the incomplete-
ness percentage, and iteration wise incorporation of granular refinement and positive region
removal features.

For the reproducible research, the reducts and their v4 and g values obtained for different
original data sets (the data sets without replication) are reported in Table From the
results, it can be noticed that the increase in incompleteness percentage leads to reduction in

the v4 and g values.

4.6.3 Performance evaluation

The performance of the proposed parallel algorithms is evaluated concerning speedup, scaleup
and sizeup metrics. The “Gisette” data sets with all the percentages of incompleteness
(gisette-Sh4k-Ab5k-one, -two, and -three) are used to find the performance metrics of both

algorithms.

4.6.3.1 Speedup evaluation

The speedup of the proposed algorithms have been evaluated on the data sets with different
cores ranging from 20 to 100. Figure. shows the speedup results of the “Gisette” data set
with different percentages of incompleteness in the data.

From Figure. M.1], it can be observed that speedups obtained by both algorithms are
almost close to each other. By observing plots, it is also clear that with an increase in
the percentage of incompleteness in the data, the speedup performance of MRIDS_VP is
better than the MRIDS_HP algorithm. The reason why the MRIDS_VP algorithm is better is
because of its granular refinement feature. And, another reason is that the significant amount
of computations in MRIDS_VP occur in the mapper phase for best attribute selection in each
iteration. The computations in the associated reducer phase are very less. This simplified
synchronization barrier of reducer and parallelizability of mappers through horizontal scaling

produces better speedup to MRIDS_VP than the MRIDS_HP algorithm.
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(a) gisette-S54k-A55k-one

(b) gisette-S54k-A55k-two

(c) gisette-S54k-A55k-three
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Figure 4.1: Speedup of MRIDS_HP and MRIDS_VP for Gisette data set with different percent-
ages of incompleteness
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Figure 4.2: Scaleup of MRIDS_HP and MRIDS_VP for Gisette data set with different percent-
ages of incompleteness

4.6.3.2 Scaleup evaluation

To find the scaleup performance of the proposed algorithms,, the data set size is increased
in proportion to the number of cores in the cluster. Each data set is divided into 20%, 40%,
60%, 80% and 100% sizes of original data set (divided in object space), and the number of
cores in the cluster increased from 20, 40, 60, 80 and 100 respectively. Figure. shows the
scaleup results of the “Gisette” data set with different percentages of incompleteness in the
data.

The higher scaleup value shows the better performance of the algorithms. From the
results shown in Figure. it can be observed that, in each data set, the scaleup value of
MRIDS_HP becomes better while the object space of the data set increases. In contrast, the
scaleup value of MRIDS_VP is better, when the object space in the data set is small in size
(e.g., 20%, 40%). However, the scaleup values of both algorithms are higher than 0.7, that

indicates the proposed algorithms scale well for different percentages of incompleteness in the

data.
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Figure 4.3: Sizeup of MRIDS_HP and MRIDS_VP for Gisette data set with different percentages

of incompleteness

4.6.3.3 Sizeup evaluation

To find the sizeup of the proposed algorithms, we changed the size of data set by keeping the
number of nodes constant. The number of nodes kept are seven, and the object space of the
data set is increased in the order of 20%, 40%, 60%, 80%, and 100%. Figure. shows the
sizeup results of the “Gisette” data set with different percentages of incompleteness in the
data.

From Figure. it is observed that the vertical partitioning based MRIDS_HP algorithm
obtained better sizeup results than MRIDS_VP algorithm. This is because in the MRIDS_VP
algorithm, the computational load in mappers is increasing with the increase in the object
space of the data set. In addition, the computational load in the mapper phase of the next
best attribute selection in each iteration is significantly more than the associated reducer
phase. Hence the sizeup results for MRIDS_HP are expected to be better, and the same
is observed in the results obtained. Figure. also shows that both proposed algorithms
produce better sizeup results, as their plots are much lower than the linear plots in the figures

for all data sets.

4.6.4 Impact of the partitioning strategy

An experiment is conducted to validate the relevance and limitations of the proposed algo-
rithms. In this experiment, the “Mushroom” data set which has almost the same number
of objects and attributes with one percentage of incompleteness in the data is considered.
The first row of Table [4.6] shows this data set. We have increased the size of object space
by keeping the attribute space constant while conducting the experiments. The results are
reported in the 2nd and 3rd rows of the Table Similarly, the size of the attribute space is
increased by keeping the object space constant. The results are reported in the 4th and 5th
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rows of the Table The behavior of both the algorithms with the variation in the size in
object space and attribute space is plotted in Figure. and respectively.

Table 4.6: Comparison of MRIDS_HP and MRIDS_VP with varying object and attribute space
of Mushroom (Time: Seconds)

S.No Data set MRIDS_HP MRIDS_VP
Running time  Running time

1. mushroom-S40k-A40k-one 421.18 519.67

2. mushroom-S80k-A40k-one 818.23 1029.38

3. mushroom-S120k-A40k-one 1427.35 3341.53

4. mushroom-S40k-A80k-one 926.42 850.47

5. mushroom-S40k-A120k-one 1832.48 1402.81
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Figure 4.4: Behavior of MRIDS_HP and MRIDS_VP for varying object space and attribute
space of Mushroom

From the results, it is clear that if the size of the attribute space increases, then the
MRIDS_HP algorithm computed the reduct by incurring more computational times than the
MRIDS_VP algorithm. Because the partitioning strategy (horizontal partitioning) of the al-
gorithm allows enormous data movement between the nodes of the cluster when attribute
space increases. And also this strategy does not allow incorporation of the granular refine-
ment aspect. But, if the size of the object space in the data set is increased, then the vertical
partitioning based MRIDS_VP algorithm incurred a considerable amount of computational
time than horizontal partitioning based MRIDS_HP algorithm. Because with the increase
in object space, the serial computation in the mapper phase within a local node increases.
Even though the algorithm has advantages like granular refinement and simplified shuffle and
sort phase, the serial computation degrades the performance of the MRIDS_VP algorithm.
From the aforementioned analysis, it is established that the horizontal partitioning based

MRIDS_HP algorithm is scalable and ideal for the data sets having huge number of objects
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and moderate number of attributes and it is not recommended for data sets with big di-
mensionality. Likewise, the vertical partitioning based MRIDS_VP algorithm is efficient and

scalable for the big dimensional data sets with moderate number of objects.

4.7 Summary

In this chapter, MapReduce based parallel/distributed attribute reduction approaches are
investigated for large-scale incomplete decision systems. Both the approaches adopted the
Novel Granular Framework for handling the complexity involved in dealing incompleteness
in the data. The MRIDS_HP algorithm was developed based on the horizontal partitioning
strategy by adopting alternative representation of existing NGF. And the MRIDS_VP algo-
rithm was developed based on the vertical partitioning strategy. With extensive experimental
analysis and theoretical validation, the proposed MRIDS_HP algorithm has been proven to
be efficient and more suitable for the incomplete data sets with massive number of objects
and moderate number of attributes. Similarly, the MRIDS_VP algorithm has been shown to
be effective and ideal for the big dimensional data sets having modest object space. The com-
putational and performance evaluation demonstrated that the proposed methods are efficient
in attribute reduction even if we have huge number of missing values in the data.

This chapter discussed MapReduce based attribute reduction in IDS, as well as the impli-
cations of horizontal and vertical partitioning strategy. In the next chapter (Chapter [5)), we
explore MapReduce based attribute reduction approaches for hybrid decision systems (HDS),

where we investigate the relevance of both partitioning strategies.
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Chapter 5

Parallel attribute reduction in

Hybrid Decision Systems

In this chapter, third and fourth contributions to this thesis work are discussed. This chap-
ter introduces a fuzzy discernibility matrix-based attribute reduction accelerator (DARA)
to accelerate the attribute reduction in hybrid decision systems (HDS). The accelerator
DARA is used to build a sequential approach and the corresponding MapReduce based par-
allel /distributed approaches for attribute reduction in large hybrid data sets. The proposed
MapReduce based approaches follow horizontal and vertical partitioning strategies to handle
the data sets that are large in terms of number of objects and attributes respectively. The
experimental study, along with theoretical validation show that the proposed approaches are
effective and perform better than the existing state-of-the-art approaches. The work pre-
sented in this chapter is derived from the article published in [I01], and the manuscript to be

submitted to a reputed journal.

5.1 Review of existing approaches

The classical rough set model uses crisp equivalence classes in attribute reduction. As a
consequence, it is only applicable to perform the attribute reduction in categorical data sets.
For attribute reduction in numerical data sets, this classical model requires the discretization
of numerical attributes. Discretization, however, causes loss of information [49, 52]. And
therefore, classical rough sets are restricted to Categorical Decision Systems (CDS). But the
hybrid decision systems are more frequently occurring data sets in real-time applications. The
decision system with different types of attributes (e.g., categorical, numerical, boolean,...etc.)
is known as Hybrid Decision System (HDS). Therefore, various fuzzy-rough set models [19,

32, 86, [117] have been proposed to handle different types of attributes in attribute reduction.
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Dubois and Prade [32] proposed a fuzzy-rough set model and the generalised version of this
model is given by Radzikowska et al. [86]. Fuzzy-rough set models overcome the limitations
of classical rough sets in being applicable to hybrid data [20), [75, [130].

In classical rough set theory, reduct computation is primarily done in two approaches:
dependency measure approach and discernibility matriz approach [53]. These methods are
generalised to the fuzzy-rough set model, and a number of fuzzy-rough attribute reduction
algorithms [20], 22] [52] [75, 110, 111, 122, 127, 128, 130] are proposed. In addition to these
algorithms, various approaches have been proposed to further improve the efficiency of fuzzy-
rough attribute reduction [14], 54 [72] [R5] OT].

Sai Prasad et al. [91] improved the MQRA (Modified Quick Reduct Algorithm) [20]
to IMQRA (Improved MQRA) by incorporating a simplified computational model, and by
absolute positive region removal. In [54], Jensen et al. developed the nnFRFS (nearest
neighbour Fuzzy Rough Feature Selection) algorithm and the nnFDM (nearest neighbour
Fuzzy Discernibility Matrix) algorithm for scalable fuzzy-rough feature selection. In nnFRFS,
fuzzy-rough membership degree is determined only for the objects that are closest neighbours.
Thus the number of calculations in the algorithm is greatly decreased. Similarly, in nnFDM,
the matrix is constructed only for the objects that are nearest neighbours. Jinkun Chen et
al. [I4] developed an approach for fuzzy-rough attribute reduction based on graphs. They
demonstrated in this approach that the attribute reduction is equivalent to finding the minimal
traversal of a derivative hyper graph. Qian et al. [85] developed an accelerator called forward
approximation (FA-FPR) to improve the process of fuzzy-rough attribute reduction. The
experimental findings have shown that the FA-FPR is much faster than its predecessors.
Later, Peng Ni et al. [72] developed a positive region based attribute reduction accelerator
(PARA) that outperformed FA-FPR. The accelerator PARA is developed by removing object
pairs that have been discerned in the process of attribute reduction. Through carefully
studying all these existing methods, it can be observed that each approach accelerates the
attribute reduction process by ignoring or removing the objects that are no longer useful
or cause redundant computations. Notice that all of these current methods are sequential
approaches. Even with the accelerators, the memory requirements of attribute reduction in
fuzzy-rough sets restrict the applicability to small data sets, requiring parallel/distributed
solutions.

From the review of literature, it is found that there are currently a few parallel /distributed
approaches available in the literature for fuzzy-rough attribute reduction in large numeric
data sets [8, 28] 40, [56l, [76]. Pavani et al. [76] developed an algorithm MR_FRDM_SBE

based on the discernibility matrix. This algorithm uses sequential backward elimination
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(SBE) strategy for reduct generation. Kiran et al. [8] developed an algorithm MR_IMQRA
based on dependency measure approach that uses a vertical partitioning of the input data
to the nodes of the cluster. The algorithm MR_IMQRA has been found to be more effective
for larger attribute space data sets with moderate object space (i.e., big dimensional data
sets). Qinghua Hu et al. [46] proposed an approach for hybrid data, where they developed
a MapReduce based multi modality attribute reduction method based on multi kernel fuzzy
rough sets model. This method has a presumption that entire data set to be available at
each node of the cluster, and in every partition, computation with respect to a subset of
objects is involved. This assumption of availability of data set at each node could hinder
the scalability of the approach. L. Kong et al. [56], developed a distributed fuzzy rough
set (DFRS) method for attribute reduction in cloud computing. The DFRS methodology
involves parallel computation of reducts on overlapping subsets of given data set, and union
of the individual solutions obtained becomes the solution of the approach. This approach
has the advantage of avoiding intermediate data transfer across the nodes but has overheads
with respect to computations over overlapping subsets. W. Ding et al. [28] developed a Multi
granulation Consensus Fuzzy-Rough Attribute Reduction Algorithm (MCFR). This algorithm
is capable of handling granular and structurally-complex large attributes to find the attribute
reduction sets. It can be noticed that the approaches in [8] 46, [76] are MapReduce based,
and the approaches in [28 [56] are non-MapReduce based parallel /distributed approaches.

As mentioned in Chapter[3|and [4, any MapReduce framework uses horizontal partitioning
strategy to partition the object space of the input data set to the cluster. The wertical
partitioning is an alternative strategy that partitions the input data set in attribute space.
From the literature, it is observed that, all the researchers developed MapReduce based
methods in fuzzy-rough set theory [28] 46 56, [76] (except the approach in [§]) using horizontal
partitioning. The approach in [8] uses vertical partitioning strategy, and it is dependency
measure based approach. From the extensive study of the literature and from the findings
of Chapter [3|and [4] it is observed that, horizontal partitioning based approaches are scalable
in larger object space data sets while vertical partitioning based approaches are scalable in
larger attribute space data sets (data sets with big dimensionality).

Except a few discernibility matrix based methods [54] [76], most of the scalable methods
either sequential [72, 85, [O1] or parallel/distributed [8], 28], [46] [56] are developed based on the
dependency measure approach. As specified in [53], 54 [85], in the dependency measure based
approach of attribute reduction, for each attribute, a similarity matrix is constructed that
contains the similarity measure of each pair of objects in the data set. Furthermore, in each

iteration, the similarity matrices should be constructed for different subsets of attributes. If a
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data set contains |U| objects and |A| conditional attributes, then the memory utilization for
constructing similarity matrices is O(JA|* |U|?). In the discernibility matrix based approach,
a matrix is constructed for each pair of objects in the data set. And each entry in the
matrix contains discernible value for each attribute between a pair of objects. Since the
discernibility matrix is symmetric, only the upper diagonal or lower diagonal entries are
computed. And the entries are computed between the objects that are from different decision
classes. Because of the above reasons, the memory utilization of the discernibility matrix based
approach is at most O(|A| * ((JU]?/2) — |U])). As a result, a substantial decrease in memory
usage is achieved in the discernibility matrix based approach relative to the dependency
measure based approach. The advantages of discernibility matrix over dependency measure,
and also non availability of discernibility matrix based accelerators in the literature inspired
us to investigate accelerators and the corresponding parallel /distributed approaches based on
discernibility matrix.

In this chapter, a discernibility matrix based accelerator for scalable fuzzy-rough attribute
reduction is proposed. This accelerator is used to build a sequential approach and the cor-
responding MapReduce based parallel/distributed approaches using horizontal and vertical

partitioning strategies. In summary, the contributions in this chapter include the following.

1) A fuzzy discernibility matrix based attribute reduction accelerator (DARA) is intro-
duced. Based on this accelerator, a sequential algorithm IFDMFS (Improved Fuzzy
Discernibility Matrix based Feature Selection) is developed for scalable attribute reduc-

tion in HDS.

2) The following MapReduce based parallel/distributed versions of IFDMFS are also de-

veloped to further improve the scalability.

— MR_IFDMEFS algorithm is developed using horizontal partitioning strategy.

— MR_VFDMFS algorithm is developed using vertical partitioning strategy.

The merits and limitations of the sequential and parallel/distributed approaches are proved

through extensive experimental analysis along with theoretical validation.

5.2 Related work

In this section, the basics of fuzzy-rough set model are provided. Since the proposed ap-
proaches are based on fuzzy discernibility matrix (FDM), the principles of FDM based at-

tribute reduction are discussed.

94



5.2 Related work

5.2.1 Fuzzy-rough set theory

In this section, the principles of fuzzy-rough set theory are discussed on the basis of [19, 32,
52, [86]. Let HDS = (U, AU {d}) be a hybrid decision system, where, U denotes the set of
objects, A denotes the set of hybrid conditional attributes, and {d} is the categorical decision
attribute. The core principle for the attribute reduction using classical rough set model is
the indiscernibility relation [77], which is an equivalence relation. The idea of indiscernibility

relation is generalised by using a fuzzy similarity relation [32] in fuzzy-rough set model.

Definition 5.1. For a given hybrid decision system H DS, a fuzzy similarity relation S1M,
is a fuzzy relation on U using the knowledge of the attribute a € A. The similarity relation

satisfies the following conditions.
1) Reflexivity: VYo € U, pusin, (z, ) =1
2) Symmetry: Vz, 2’ € U, psim, (x,2") = psiw, (2/, x)
3) T-transitivity: Va,y,z € U, psra, (z,2) > T(psia, (x,9), psia, (Y, 2))

Here, pusra, (x,2’) denotes the similarity measure between the objects z and z’ of the
numeric attribute a. And, T is a fuzzy T — norm [18] which is an associative aggregation
operator T': [0,1] x [0, 1] — [0, 1]. Note that if the fuzzy similarity relation meets the first and
second conditions (Reflexivity and Symmetry), the relation is assumed to be a fuzzy tolerance
relation. And if the relation satisfies all three conditions, the relation is considered a fuzzy
T-equivalence relation.

The similarity measure of an object pair of the fuzzy similarity relation can be computed by
using various methods. In the proposed approaches, the fuzzy similarity measure is calculated

using the following method [52].

a(xz) —a(z") +o(a) a(z') —a(z)+ U(a)> 70> (5.1)

psiv, (@, 2') = max (mm ( o(a) ’ a(a

Here, usrar, (x,2') is the measure of degree to which the objects x and 2’ are similar for
numerical attribute a, and ugsar, (z,2’) € [0,1]. The notation a(z) denotes the value of the
object z for attribute a. And, the notation o(a) represents the standard deviation of the
attribute a. If an attribute a is categorical (qualitative), the classical indiscernibility relation
is adopted and the pgra, (,2") measure is given as follows.

LY 2
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For a subset of attributes P C A, the fuzzy similarity relation is expanded by using the
T — norm (T) specified below.

psivp(z, @) = agp(unga (x,2")),Va,2’ € U (5.3)

As Eq. or are used to find the similarity measure between a pair of objects of a
numerical attribute or categorical attribute, similarly different methods [113], 122] are used to
find similarity measure of different types of attributes such as boolean, set-valued, ...etc. Note
that, the proposed approaches in this chapter mainly focus on HDS having numerical and
categorical attributes, because these HDSs are more frequently occurring decision systems in
real-time applications. However, the proposed approaches are applicable to other types of

attributes in given HDS.

5.2.2 Fuzzy discernibility matrix based attribute reduction

Three approaches to fuzzy-rough attribute reduction were proposed by Jensen et al. [52]. The
approaches are: (i) Fuzzy Lower approximation based Feature Selection (FLFS), (ii) Fuzzy
Boundary region-based Feature Selection (FBFS), and (iii) Fuzzy Discernibility Matriz-based
Feature Selection (FDMFES). This section provides the details of the FDMFS approach with
its algorithm. Table shows the tiny decision system, used to illustrate the basic concepts
and the proposed approaches.

5.2.2.1 Fuzzy discernibility

The discernibility relation is determined with the complement to the indiscernibility relation in
the classical rough set theory model. In the same way, the discernibility relation (DIS,(z,z"))
in fuzzy-rough set model is obtained by performing fuzzy negation on the fuzzy similarity

between the two objects x and 2’ as given below.

upIs, (xa x/) = N(NSIMa (x7 xl)) (5'4)

Here, N represents the fuzzy negation, pgyas, (z, 2') is fuzzy similarity measure and ppyg, (x, ')
is fuzzy dissimilarity (fuzzy discernibility) measure between the objects x and 2’ based on the
knowledge of attribute a. In the proposed works and in literature [20} [52], the standard fuzzy

negation is considered for N and is given below.

N(psin, (x,2") =1 — psra, (x,2) (5.5)

From the above equation, the fuzzy discernibility measure uprg, (z,2') € [0,1].
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Table 5.1: An example decision system

Attributes
Objects a b c d e f
1 359 352 1.8 076 630 1
T2 1.97 431 157 054 369 2
T3 1.51 0.85 754 231 209 2
T4 2.16 050 3.80 179 212 1
x5 3.73 117 568 434 337 1

Example 5.1. For the decision system given in Table psim, (21, 22) = 0.54 is the fuzzy
similarity measure based on Eq. (5.1), by using Eq. (5.4]) the fuzzy discernibility measure is
given as uprs, (z1,22) =1 —0.54 = 0.46.

5.2.2.2 Fuzzy Discernibility Matrix (FDM)

The fuzzy discernibility relation is represented in a fuzzy discernibility matrix (FDM). Each
entry (clause) in the matrix is a vector that includes a fuzzy discernibility measure of each
attribute of A. The FDM contains the entries between the objects of different decision
classes. And the rest of the entries are empty. Therefore, the matrix is a decision relative
fuzzy discernibility matriz. In the matrix, an entry C,, between the objects x, 2’ € U is given

as,

(5.6)

otherwise

{< V1, V2, V4, V)4 >, if d(x) # d(2')
C:)::v’ = @

Here, in an entry C,,s each value v; = uprs,(x,2'),Vi € A.

Example 5.2. From the decision system given in Table using Equations [5.1] and
the fuzzy discernibility measures for all the conditional attributes between the objects x
and xo are computed as, pprs,(x1,22) = 1.0, puprs,(z1,22) = 0.46, uprs.(z1,22) = 0.11,
puprs,(x1,z2) = 0.14 and pprs,(x1,z2) = 1.0. From Eq. , an entry Cy,., in FDM is
represented as Cy,», =< 1.0,0.46,0.11,0.14,1.0 >.

The discernibility measure for a subset of attributes P C A is calculated from discernibility

measure of each individual attribute using the following definition.

Definition 5.2. In a given decision system H DS, the discernibility measure or satisfiability
(SAT) for a subset of attributes P C A in an entry C,,s of FDM is given by,

SATp(Cowr) = | {piprsi (2,2} (5.7)
acP
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In Eq. (5.7), the fuzzy union (|J) is computed by using a specified fuzzy S — norm (T —
conorm) [52]. Here, S — norm is an aggregation operator L : [0, 1] x [0,1] — [0, 1], and for

any fuzzy values of p, q,r, and t, it satisfies the following conditions [52].
1) Identity: L(p,0) = L(0,p) =p
2) Commutativity: L (p,q) = L(q,p)
3) Associativity: L(p, L(g,7)) = L(L(p,q),r)
4) Monotonicity: L(p,q) < L(rt)if p<randq<t

In the implementation of the proposed algorithms, we use the Lukasiewicz T-conorm or S-

norm (L(x,y) = min(1l,z +y)) [52] to evaluate the discernibility measure between the set of
attributes as given in Eq. (5.7)).

Example 5.3. By continuing Example if we select subset P = {b,c}, the resultant
satisfiability of the entry Cy, 4, is SATp(Cyyzy) = 1(0.46,0.11) = min(1,0.46 + 0.11) = 0.57.

In the FDM, the satisfiability of all the entries for a subset of attributes P C A is computed

as,
_ 20,,eFDMAC, 0 SATP(Carr)

X, erpmnc,, 20 SATA(Crr)
By using Eq. (5.8)), the fuzzy-rough reduct is defined as given below.

SAT(P)

(5.8)

Definition 5.3. For a given decision system HDJS, the fuzzy-rough reduct R is a minimal
subset of the conditional attribute set A (R C A) such that,

o SAT(R) = SAT(A) (jointly sufficient)
e SAT(R') < SAT(A) for any R' C R (individually necessary)

Thus, the attributes set R C A is said to be fuzzy-rough reduct, if and only if R is a
minimal subset of A satisfying SAT(R) = 1.

5.2.2.3 Reduct computation using FDM (FDMFS algorithm)

In [52], the authors provided the methodology to compute the reduct by using an FDM.
It is referred to as FDMFS (FDM based Feature Selection). Here, we are providing the
methodology in the form of an algorithm given in Algorithm The FDMFS algorithm
starts with the initialization of the current reduct R to the empty set (0)). At each iteration
of the algorithm, the best attribute a’*** to be added to the reduct R is computed by using
the following equation derived from Eq. (5.8).
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Algorithm 5.1: FDMFS algorithm
Input: 1. Fuzzy discernibility matrix: FDM
2. S-norm: L
Output: Reduct R

1 R=0,SAT(R) =0.0 // Initialize reduct and its satisfiability
2 SATA =) ¢ erpmnc,, 0 9ATA(Canr)

3 repeat

4 Temp =R

5 for each a € (A — R) do

6 Compute SAT(RU {a}) = ZcmlEFDAMCI?::@FEAT(RU{G})(CM/)

7 if (SAT(RU{a}) > SAT(Temp)) then

8 Temp = RU {a}

9 SAT(Temp) = SAT(RU{a})
10 end
11 end
12 R=Temp
13 until (SAT(R) ==1)
14 return R

SAT(RU {ab*'}) = maz (SAT(RU {a})) (5.9)

The denominator value of SAT(R U {a}) is a normalising factor that is calculated as SAT4
and shown in second line of Algorithm m The best attribute a’*** is determined using Eq.
and added to the reduct set R. This procedure is repeated until SAT(R) becomes 1.
When the SAT(R) reaches 1, the algorithm returns reduct set R and terminates.

5.3 Proposed Discernibility matrix based Attribute Reduc-
tion Accelerator (DARA)

The idea behind introducing DARA is explored in this section. The SAT-region removal
which is the main feature of DARA is presented. A sequential IFDMFS (Improved Fuzzy
Discernibility Matrix-based Feature Selection) algorithm is proposed based on the DARA.
The IFDMFS is an improved version of FDMFS [52].

5.3.1 Motivation

From the analysis of literature, it can be observed that the number of objects contained
in the data set prevent the scalability of the fuzzy-rough attribute reduction in large data

sets. From the algorithms of [72] 85, 1], it is noticed that, in each iteration of the reduct
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computation, the algorithms removed the objects which are no longer useful in future compu-
tations. Therefore, the basic principle of any accelerator of fuzzy-rough attribute reduction
is to remove the redundant objects in the data set. In the proposed works, the removal of
the redundant objects is done in two stages. In the first stage, by constructing a decision
relative FDM, the computations are restricted to the objects which are from different decision
classes. In the second stage, we incorporate the SAT-region removal feature (given in Section
into the proposed algorithm. This feature acts as an accelerator, and is called DARA.
This accelerator limit the computations to the subset of entries of FDM in each iteration of
reduct computation to avoid the redundant computations. The following theorem explores
the redundant computations involved in an iteration of the existing algorithm to select an

attribute to the reduct set.

Theorem 5.1. In a given decision system HDS = (U, AU {d}), consider an attribute set
R C A, if Cyp is an entry of FDM for which SATR(Cyyr) = SATA(Cryr) is satisfied, then
VR' O R,

SATR (Crar) = SATR(Cyar)

Where SAT wvalue of an entry Cy,r is computed using a given fuzzy S —norm : L.

Proof.

For any two fuzzy values p, ¢, where 0 < p < 1 and 0 < ¢ < 1, from identity property of
S — norm, we have L (p,0) = p, and L(0,q) = ¢. Similarly, from monotonicity property of
S —norm, we have L(p,q) < L(r,t) whenever p < r, g <t for any 0 < r,¢t < 1. Using identity
property 1(0,q) = ¢, and as 0 < p, ¢ < ¢, we have ¢ = 1(0,q) < L(p,q),

g < L(p,q) (5.10)

Similarly,
p<L(pq) (5.11)

From Eq. for an entry C,s in the discernibility matrix, the satisfiability of a subset
of attributes R C A is given by,

SATR(CM’) = U {NDISatt(Cm’)}
atteR

100



5.3 Proposed Discernibility matrix based Attribute Reduction Accelerator
(DARA)

For any attribute a € (A — R), let R’ be RU {a} then

SATRay(Caw) = | {10180 (Caa)}
atte(RU{a})

= L Cxx’
atte(RU{a})<luD[Satt( ))

:J_(atgéR(uDISatt (Cra))s 11015, (Crar))

:J_(SATR(CJ;J;’)y ,LLDISCL (Cx:v’))

From Egs. (5.10]) and (5.11]),

SATR(CJJ:B’) SJ—(SATR(Cxw’)’ MDIS, (Cx:v’))
:SATRU{a} (Caar)
— S AT (Copa)

For any R’ O R, the same argument can be successfully applied for each addition of attribute
in R’ — R. For any R’ D R, we have,

SATR(Cyar) < SATRI(Cirpr)
And, since R C R’ C A, we have,
SATR(Crer) < SATR (Coar) < SATA(Coar)
But it is given that, SATR(Cyy) = SATA(Cyryr)
o SATR(Cryr) = SATR (Crar)

Hence proved. O

5.3.2 SAT-region removal as an accelerator

From Theorem 5.1} it is established that if an entry (C,,/) reaches its maximum SAT value
(i.e., SATR(Cyry) = SATA(Cyy)) for the attributes subset R C A, then calculating SAT
value for the same entry in selecting the next attribute to R becomes redundant computation.
Therefore, for a given set of attributes R C A, the FDM is divided into two non overlapping
sets FDM_F(R) (FDM Fulfilled) and FDM_UF(R) (FDM Unfulfilled). And they are defined

below.

Definition 5.4. In a given decision system HDS, let R be a set of attributes such that
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R C A, and FDM _F(R) be a set, where it contains the entries of FDM as given below,

FDM_F(R) = {Cyyp € FDM | SATR(Cy) = SATA(Crar)}

From the above equation, F DM _F(R) includes all the entries of FDM, which satisfy the
condition SATR(Cyy) = SATA(Cypyr). That is, FDM _F(R) contains the subset of entries of
FDM, which have already reached the maximum SAT value.

Definition 5.5. In a given decision system HDS, let R be a set of attributes such that
R C A. And, let FDM _UF(R) be a set that contains the entries of FDM as given below,

FDM UF(R) = {Cyy € FDM | SATR(Cyw) < SAT4(Ciur)}

Above equation states that, FDM _UF(R) includes all the entries of FDM, which strictly
satisfy the condition SATR(Cypr) < SATA(Cyyr). That is, FDM UF(R) contains the subset

of entries of FDM, which have not yet reached the maximum SAT value.

Theorem 5.2. The selection of next best attribute a’®* from (A — R) into reduct R in
algorithm FDMFS can be equivalently performed by restricting the computations to only the
entries of FDM _UF(R).

Proof.
In the FDMFS algorithm, the next best attribute a**** from (A — R) is selected based on the

criteria given below.

SAT(R U {ab}) mazx (SAT(RU{a}))

- a€(A—R)
ZCII/ €FDMAC, 170 SAT(RU{@}) (Caza:’)

Here, SAT(R U {a}) = 2.0,,1€FDMAC, 120 S ATA(Cr)

>, ,erDM_FRINC, #0 SATR(Crar)
+ 2 ¢, erpmur(R)AC,, #0 SAT(rRU{a}) (Caar)
>c,, erpmac,, #0 SATA(Caar)
(- FDM = FDM_F(R) U FDM_UF(R))

It is observed that, the expression >« cppy pryac, ,20{SATR(Crer)} is independent of

‘a’ and the expression > ¢ | cppyac. ,2015ATA(Crar)} is constant for all the iterations.

best

Therefore, for the next best attribute a”¢**, we have,
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SAT(R U {a"*}) = aer&a_R)(SAT(R U{a}))

>oc, ,erpM FRINC, ., #0 SATR(Crar)
+ 2 ¢, erpmurrnc,, 20 SAT(rRu{a}) (Caar)
ac(A—-R) Zcmj/GFDM/\sz/;é@ SATA(me/)

From the above equation, it can be noticed that, the expressions

>c,.erDM_F(R)NC,, 20 SATR(Caer) and 32¢  cpprac,,, 20 SATA(Coer) are constants in
computing SAT(RU{a}), Va € (A —R).
Hence, the next best attribute selection based on all the entries of FDM using Eq. (5.9) is

best

same as the next best attribute a which achieves

ae@?_f’fm (ZCm/eFDM,UF(R)/\CmqéQ) SAT(rutay) (Cm/)) .
Therefore, the computations are performed only on FDM U F(R) entries and not on all the

entries of FDM. O

It is obvious from Theorem that in the proposed algorithm, the computations are
carried out only on the entries of FDM _UF(R) in each iteration of the reduct computation.
In other words, the Eq. (5.9) in the existing FDMFS algorithm is updated as given below to

compute the next best attribute abest.

SATUF(RU {ab*t}) = rézAamR) (SATUF(RU{a})) (5.12)
ac(A—
Here SATUF(RU {a}) = ZC’M/EFDM,UF(R)/\C’mqé@ SAT(rufa})(Crar). The SAT-region

removal feature is derived from Theorem [5.2] and is defined below.

Definition 5.6. For a given decision system HDS, in the FDMFS algorithm, let initial
reduct R = ¢, FDM _F(R) = ¢, and initial FDM UF(R) = FDM. Then after adding an
attribute to the reduct set R at i'" iteration of the algorithm, the SAT-region removal is given
by,

FDM UF(R™)= FDM UF(R") — FDM _F(R"™)

Since FDM _F(R) includes the entries that have reached maximum SAT value, the set
of entries of FDM_F(R) is known to be SAT-region. Thus, the removal of the entries of
FDM_F(R) from FDM UF(R) is referred to as SAT-region removal. For each iteration of
the proposed algorithm, the removal of the SAT-region is done such that the reduct computa-

tion is accelerated. Therefore, SAT-region removal serves as an accelerator, and as it is based
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on the discernibility matrix, is referred to as DARA. The proposed IFDMFS algorithm given

in Algorithm [5.2] incorporates DARA.

5.3.3 IFDMFS algorithm

The proposed sequential IFDMFS algorithm is developed based on the following Corollary

[b.1], which is derived from Theorem [5.2)

Corollary 5.1. For a given decision system HDS = (U, Au{d}), if R® = ¢ C R* C R%... C
R C ... C R* C A, where R" is the set of attributes selected into reduct R by the ith iteration
of the proposed algorithm, which computes the final reduct R™ in n iterations, then the fuzzy
discernibility matriz

FDM = FDM _UF(R°) D FDM_UF(R')D> ... D FDM_UF(R") D ... 2 FDM _UF(R") = ¢

Procedure of IFDMFS algorithm is given in Algorithm[5.2} Initially the FDM for the given
decision system is constructed based on the procedure given in Section In the process
of reduct computation, IFDMFS algorithm starts its first iteration by initializing the reduct
R as an empty set ((}), and the satisfiability value is initialized as SATUF(R) = 0.0. The set
which contains the entries with maximum SAT value is initialized to FDM _F(R) = (), and the

set which has the entries that have not yet reached maximum SAT is FDM _UF(R) = FDM.

The next best attribute a®*! is computed by using Eq. , and the attribute is added
to the reduct set R. The entries which have reached maximum SAT value are added to the set
FDM _F(R), and the SAT-region removal is performed. In the subsequent iteration, the next
best attribute is computed by using only the entries of FDM _UF(R) after the SAT-region
removal process is completed. This procedure is repeated until F DM UF(R) becomes empty
(0). From Corollary it is to be noted that, once FDM UF (R) becomes empty (), then
FDM _F(R) set contains all the entries of FDM. That is, all the entries of FDM have fulfilled

the satisfiability, and SAT(R) =1 (i.e., SAT(R) = SAT(A)). Hence the algorithm returns
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the reduct R, and terminates.

Algorithm 5.2: Sequential IFDMFS algorithm
Input: 1. Input file: data set HDS = (U, AU {d})
2. Fuzzy similarity relation: STM, Fuzzy negation: N, and S-norm: L
Output: Reduct R
1 Construct FDM for HDS // Using the procedure given in Section [6.3.2
2 R=(, SATUF(R)=0.0 // Initialize reduct and its satisfiability
3 FDM_F(R)=0, FDM UF(R) = FDM

4 repeat
/* ====== Phase 1: Computation of the best attribute ====== */

5 Temp=R

6 for each a € (A — R) do

7 Compute SATUF(RU{a}) = > ¢ erpmuvrmnc,, 0 SATUFrufay)(Crar)
8 if (SATUF(RU{a}) > SATUF(Temp)) then

9 Temp = RU{a}

10 SATUF(Temp) = SATUF(RU {a})
11 end
12 end

13 R=Temp

/* Phase 2: SAT-region removal */
14 for each C,,» € FDM _UF(R) do
15 if (SATUFR(CQSI/) == SATUFA(Cxx/)) then
16 | FDM_F(R) = FDM_F(R) U Cyy
17 end
18 end

19 FDM UF(R)=FDM UF(R)— FDM _F(R)
20 until (FDM_UF(R) == 0)
21 return R

5.3.3.1 Complexity analysis of IFDMFS algorithm

For a given decision system HDS, let |U| denotes the number of objects and |A| denotes
the number of conditional attributes. If the IFDMFS algorithm gets FDM as the input,
then in the worst case (when the reduct set R is equal to all the attributes set A), the
algorithm has to perform O(]AJ?) number of SAT evaluations for finding the reduct. And
these evaluations are performed against the FDM of size O(|U|?). Thus, the complexity of
the proposed IFDMFS algorithm becomes O((|A|? * |U|?). But the practical time and space
complexities of the algorithm are much smaller, since the FDM is symmetric and decision
relative. In other words, the construction of the FDM is done either for lower diagonal or
upper diagonal entries and are formed only for the objects that are belonging to different

decision classes. Thus if the decision attribute has n decision classes with the cardinalities of
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C1,Ca, -...Cp, then the number of entries in the FDM are reduced to E = 27" ¢; * (> j=iv16)
which is much smaller than |U|%. In addition, the size of the FDM is reduced with DARA
in each iteration that contributes to reduction in the time and space complexities as the
iterations of the algorithm progress. Hence the theoretical time and space complexities of
IFDMFS are O(JA|? * E) and O(|A| * E) respectively, whereas the exact time complexity is
much smaller.

5.3.3.2 Illustrative example

This example is based on the decision system shown in Table and is meant to illustrate
how the IFDMFS algorithm works. For the given decision system, the FDM must be built
on the basis of the fuzzy discernibility shown in Eq. using the standard fuzzy negation
in Eq. and the fuzzy similarity in Eq. (5.1). Each entry C,,s of the FDM is formed on
the basis of Eq. . The computed entries of FDM are given below.

Cayzy 1< 1.0,0.46,0.11,0.14, 1.0 >, Chyzy 1< 1.0,1.0,1.0,1.0,1.0 >,
Clyzy 1< 0.19,1.0,0.88,0.82,0.91 >, ey :< 0.64,0.20,1.0,0.34,0.02 >,

Cloyay 1< 1.0,1.0,1.0,1.0,0.19 >, Chrazs 1< 1.0,0.18,0.73,1.0,0.74 >

Initially reduct R = (), satisfiability of reduct SATUF(R) = 0.0, FDM _F(R) = (),
and FDM_UF(R) = {Cyy2y, Cry25, Crozas Coswgs Casmys Cusas - Based on Eq. (5.7, the
SATUFA(Cyy) value is computed, where SATUFA(Chyr) = Ugealttn1s, (Caar)}. The com-

puted values are given below.
SATUFA(Cyyzy) = 1.0,  SATUFA(Cy,2,) = 1.0,
SATUFA(Cpyy) = 1.0,  SATUF4(Cpyzs) = 1.0,
SATUF4(Cyyz,) = 1.0, SATUF4(Cyyzs) = 1.0

Based on Eq. (5.8]), the SATUF(A) value is computed, and it is given as SATUF(A) = 6.0

First iteration:

Using the line number: 7 in Algorithm the satisfiability values of individual attributes

for all the entries in the FDM are computed and given below.
SATUF ({a}) = 4.83, SATUF ({b}) = 3.84, SATUF ({c}) = 4.72,

SATUF ({d}) = 4.30, and SATUF({e}) = 3.86
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Based on Eq. (5.12), the best attribute a’*** = {a} is selected and added to reduct set,
thus R = {a}. Note that, here R = {a}, and A = {a,b,c,d,e}. Using Eq. (5.7), the
SATUFg(Cy,) value is computed,

SATUFR(Cyyzy) = 1.0,  SATUFR(Cyay) = 1.0,
SATUFR(Cayzy) = 0.19,  SATUFg(Cayes) = 0.64,
SATUFR(Cpyp,) = 1.0,  SATUFR(Cpyes) = 1.0

It can be noticed that, SATUFR(Cyyay) = SATUFA(Cyyay), SATUFR(Cyyas) = SATUFA(Cyys),
SATUFR(Cyyz,) = SATUFA(Cyaz,) and SATUFR(Cyyys) = SATUF 4(Cyazs ). Hence, the
entries {Cy, 29, Cry245 Cusays Casas b g0 into SAT-region, because these entries satisfy the con-
dition in line number: 15 of Algorithm After removal of SAT-region from FDM UF(R),
we get FDM _UF(R) = {Cyyz,, Casas }, and
FDM _F(R) = {Cy,25, Cor0gs Cogwas Cas }-

Second iteration:

After the first iteration, algorithm gets R = {a}, FDM_UF(R) = {Cgysa,,Cryzs}, and
FDM _F(R) = {Czy29,Cr125, Crgzys Caszs ). Now, the entries of FDM_F(R) in FDM are
ignored and the entries of FDM _UF(R) = {Cyyz,, Czyas } are considered in the computation
of the next best attribute a’***. So that, the redundant computations on FDM _F (R) entries
are avoided which leads to a lot of reduction in computations. This reduction in computations
in each iteration accelerate the attribute reduction process. Now, the satisfiability values of

attributes of (A — R) for all the entries in the FDM UF(R) are computed and given below.

SATUF(RU{b}) = 1.85, SATUF(RU {c}) = 2.0,

SATUF(RU {d}) = 1.98, and SATUF(R U {e}) = 1.66

The best attribute a**** = {c} is selected and added to reduct set, thus R = {a,c}. And,
SATUFR(Cyyz,) = 1.0 and SATUFR(Cypye;) = 1.0. The entries Cyyp, and Cyp,yy satisfy
the condition in line number: 15, hence they go into SAT-region, and are removed from
FDM UF(R) and added to FDM _F(R). Now, the set FDM _UF(R) becomes empty (),

then algorithm returns reduct set R = {a, ¢} and terminates.
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5.4 Parallel attribute reduction in HDS using horizontal par-
titioning

With horizontal partitioning strategy, the input data set HDS is partitioned in object space
by MapReduce framework, and the data partitions are distributed to the nodes of the cluster

as defined below.

Definition 5.7. For a given decision system HDS, let HDS = |J\_ HDS', where HDS' =
(U, AU {d}) is i'" data partition and satisfies (i) U = ,_, U?, (ii) U NUJ = 0, Vi,j €
{1,2,....p} and i # j, where p is the number of data partitions.

Here, each data partition which is a sub-table of the form HDS? = (U*, AU{d}) is assigned
to a mapper in the cluster.

The fuzzy-rough attribute reduction in this MapReduce based approach is performed in
two steps. In the first step, DEFDM (Distributed FDM) is constructed, and in the second
step, the reduct is computed using DFDM. In this section, both the steps are discussed in
detail. The equivalence of the reduct generated by both sequential (IFDMFS) and parallel
(MR_IFDMFS) algorithms is discussed at the end of this section.

5.4.1 Distributed Fuzzy Discernibility Matrix (DFDM)

In [76], a MapReduce based parallel MR_FRDM_SBE algorithm is developed, which utilizes
the DFDM in reduct computation. The procedure for the construction of DFDM in [76]
is formulated as Algorithm and Algorithm for completeness and readability of the
proposed work.

The complexity involved in the construction of DFDM for large data sets is handled in
two steps. In the first step, as the discernibility matrix is symmetric, we restrict the creation
of DFDM for lower diagonal entries. And in the second step, since the discernibility matrix
is decision relative, we can only compute the entry C,,s (clause) of DFDM for the pair of
objects x and x’ which are from different decision classes.

The algorithm to construct the DFDM is given in Algorithm and it is written in
pseudo-Spark’s API. Along with input data set HD.S, the algorithm also requires the inputs
of fuzzy negation (N), fuzzy similarity relation (SIM), and S —norm. Here S —norm is used
to find discernibility value for multiple attributes. From the input data set HDS_RDD, the
objects of a particular decision class are filtered into newH DS _dclass and they are removed
from HDS_RDD. Depending on the broadcast size, the objects of newH DS _dclass are
broadcasted as bulk or in chunks. All these broadcasted objects are compared with other

decision class objects in HDS_RDD using mapPartitions() to form the new entries for
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Algorithm 5.3: Construction of DFDM

Input: 1. Input data set: HDS = (U, AU {d})
2. Fuzzy similarity relation: STM, Fuzzy negation: N, and S-norm: L

Output: Distributed Fuzzy Discernibility Matrix (DFDM) as RDD

/* Read the input data set as an RDD, where the data set HDS is
distributed to the nodes with horizontal partitioning and the
decision attribute {d} is broadcasted, such that each data partition
becomes HDS' = (U, AU{d}), Vi€ {1,2,..p}, where p is the number of
data partitions in the cluster. */

1 HDS_RDD = readASRDD(HDYS)
2 DFDM =) // Initialize DFDM as empty
3 for each decisionVal € decisionClasses do
4 newH DS _dclass = HDS_RDD. filter(decisionV al == d).collect()
5 HDS RDD = HDS_RDD. filter(decisionVal! = d)
6 Broadcast(newH DS _dclass)
7
8 dmRDD = HDS_RDD.mapPartitions(data => {
9 dMat =)
10 for z = data do
11 for 2’ = newH DS _dclass do
12 | dmEntry = DFDMEntry(z,a',N,SIM, 1)
13 end
14 end
15 if dmEntry.maxDissVal # 0 then
16 ‘ dMat = dMat.union(dmEntry)
17 end
18 dMat })
19
20 DFDM = DFDM .union(dmRDD)
21 end

return DF DM

N
N

Algorithm 5.4: Computation of DFDM entry: DFDMEFEntry

Input: 1. x and 2’ are two objects in HDS of different decision classes.
2. Fuzzy negation: N, Fuzzy similarity relation: SITM, and S-norm: L
Output: entry =< DissValues, maxDissVal >
1 entry.DissValues = N(usim, (z,2')), Va € A
2 entry.maxDissVal = L(entry.DissValues)
3 return entry
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DFDM. The formation of new entry is done by using Eq. , and . Each entry
is inserted into dmRD D, and then this dmRDD is finally added to RDD of DFDM using
a union operation. This above procedure is repeated to construct DFDM for all decision
classes, except for the final decision class.

From Algorithm it can be observed that, each entry has two parts: DissValues and
maxDissVal. The variable DissValues represents the vector of fuzzy dissimilarity values

of the entry C,,» of x and z’ objects over all conditional attributes A. And, the variable

maxDissVal represents SAT4(C,,) value in Eq. (5.7)).

5.4.2 Parallel reduct computation using DFDM

After the construction of DFDM, the next step in fuzzy-rough attribute reduction is the com-
putation of reduct using DFDM. Like in the sequential approach, in the parallel approach
also, the reduct is computed in two phases: (i) computation of the best attribute, and (ii)
SAT-region removal. The MapReduce based parallel/distributed algorithms for reduct com-
putation are given in the form of a driver (master), mapper, and reducer. The driver algo-
rithm MR_IFDMFS: driver() is given in Algorithm the mapper algorithm MR_IFDMFS:
map() is given in Algorithm [5.6] and the reducer algorithm MR IFDMFS: reduce() is given in
Algorithm All the algorithms are written using pseudo-Spark’s API for better readabil-
ity. Since the proposed method is a parallel/distributed approach, the constructed DFDM is
distributed to the nodes of the cluster as defined below.

Definition 5.8. For a given decision system H DS, let DF DM denotes distributed fuzzy dis-
cernibility matrix, then DEDM® {i = 1,2, ...p} denotes a sub-DFDM, and satisfies (i) DF DM

P DFDM?, (ii) DFDM"N DFDMJ = (), where, i, j = 1,2, ...p, here p is number of par-
titions and i # j.

Each DFDM? is also called as DFDM-split, and each split is given to a mapper located

in a node of the cluster.

5.4.2.1 Computation of the best attribute

The driver (Algorithm invokes Algorithm to construct DFDM. The Algorithm
returns the DFDM as an RDD. The driver initializes the reduct R and FDM_F(R) to an
empty set (()) and computes the best attribute by invoking the mapper (Algorithm , and
reducer (Algorithm . As mentioned earlier, each mapper gets a DFDM-split (DFDM?)
as input along with fuzzy S —norm : L. As shown in Algorithm from each record C,/
(an entry) of DEDM?!, a set of < key,value > pairs are formed Vatt € (A — R). For each
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Algorithm 5.5: MR_IFDMFS: driver()

Input: 1. Input file: data set HDS = (U, AU {d})
2. Fuzzy similarity relation: SIM, Fuzzy negation: N, and S-norm: L
Output: Reduct R
Distribute the input data set HDS into the nodes of the cluster such that each data
partition becomes HDS' = (U*, AU {d}), Vi € {1,2,...p}, where p is the number of
data partitions in the cluster.

=

2 Construct DF DM as an RDD by invoking Algorithm
3 Initial reduct R =0, FDM_F(R) =0
4 repeat

/* ==== Phase 1: Computation of the best attribute ==== */

5 Initiate map job by invoking Algorithm

6 val SATUF(rufany)(Cra)RDD = DF DM .mapPartitions(part => {var mp =

map()})

/* Mapper returns collection of < key,value > pairs for each entry
Cper of DFDM?, where < key,value >=< att, SATUF rugarty)(Crar) >
here att is an attribute, SATUF ryufau})(Crar) is its
satisfiability of entry C,, */

Initiate reduce job by invoking Algorithm

val SATUF(RU {attNo})RDD =

SATUF ruatty)(Crar)RDD.reduce ByKey((z,y) => {var rp = reduce()})

/* Reducer returns collection of
< key,value >=< attNo, SATUF (R U {attNo}) > pairs, where attNo is
attribute number, and SATUF(RU {attNo}) is satisfiability value
of attNo for all the entries of DFDM. x/

9 Collect the attributes and their respective satisfiability values from the reducers.

var SATUF(RU {attNo}) = SATUF(R U {attNo})RDD.collect()

10 Select the best attribute best At No which gets maximum satisfiability value.

11 R = RUbestAttNo

/* ============ Phase 2: SAT-region removal == x/

12 Filter the entries of DF DM into F DM _F(R) which satisfy

(SATUFR(Cyy) == SATUF4(Cy,)) using map() only operation.

13 DFDM = DFDM.filter(if(Cyy not in FDM _F(R)))

14 until (DFDM == 1))

15 return R
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att € (A — R), a < key,value > pair is generated, where key is the attribute identifier (att),
and the value is its satisfiability value (SATUF(ry{at})(Crar)). It should be noted that to
compute the SATU Fgugatt})(Crar) value, the mapper uses fuzzy S —norm : L.

Algorithm 5.6: MR _IFDMFS: map()

Input: 1. DFDM?, each record of DFDM? read as
< key,value >=< entryNo, entryV alues >, where entryNo represents C,
and entryValues represent vector of discernible values of all attributes.
2. S-norm: L
Output: List of < key', value’ >=< att, SATU F(pu{att})(Crar) > pairs, here att is
an attribute and SATUF gufatty)(Crer) 18 its satisfiability value of an entry
Cyryr of DEDM?
1 for each C,,» € DFDM' do
2 for each att € R do
3 ‘ Compute Lo ,(R)
4 end
5 for each att € (A — R) do
6
7
8

SATUF(Ru{att}) (Cxﬂc’) = J—(J-Cm/ (R)v KDISq (CZEIE’))
Construct < key',value’ >=< att, SATUF(py{atty)(Crar) >
Emit intermediate < key', value’ >

end

©

10 end

Algorithm 5.7: MR_IFDMFS: reduce()

Input: < key, [V] >, here, key = attNo and [V] is the list of satisfiability values
received from the mappers

Output: < key',value’ >=< attNo, SATUF(R U {attNo}) >

for each v € V of key = attNo do

SATUF(RU{attNo}) = SATUF(RU {attNo}) +v

end

Construct < key', value’ >=< attNo, SATUF(R U {attNo}) >

Emit < key', value’ >

In Algorithm each reducer gets a set of < att,[SATUF pufatr})(Caer)] > pairs as

s W N =

the input from all the mappers in the cluster, where [SATUF(ry{at})(Crar)] represents the
list of satisfiability values for attribute att. Based on the same key, the reducer adds the
satisfiability values of each attribute received from the different mappers. This sum becomes
SATUF (R U/{att}) value, which is the satisfiability value of an attribute of all the entries in
the matrix. Now, the reducer returns the < key, value > pairs to the driver, where key is an
attribute att, and value is its SATUF (R U {att}) value. The driver collects all the attributes
and their SATUF (R U {att}) values from all the reducers, and selects the best attribute
(best Att No), which has the maximum SATU F(RU{att}) value (i.e., the attribute att, which
satisfies SATUF(R U {att**st}) = attreréféER) (SATUF(RU/{att}))). This best attribute is
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added to the reduct set R.

5.4.2.2 Parallel SAT-region removal
SAT-region removal in the proposed parallel approach is defined below.

Definition 5.9. For the given decision system HDS, let HDS = [J/_, HDS? where HDS' =
(U, Au{d}), and let DFDM = |J;_, DFDM", where each DFDM?* is a DFDM-split. Let
initial reduct R = ¢, FDM _F(R) = ¢ in the proposed parallel algorithm, then after adding

an attribute to R at each iteration of the algorithm, the SAT-region removal is given by,

DFDM = DFDM — FDM _F(R)

After the computation of the best attribute, the SAT-region removal is incorporated in the
second phase of the algorithm as given in Algorithm All the entries of the DF DM, which
satisfy the condition (SATUFR(Cyy) = SATUFA(Cy,)) are added to the set FDM_F(R).
Now, the entries of FDM_F(R) are filtered out from the DF DM, this leads to SAT-region
removal. In the driver algorithm, two phases are repeated until DF DM becomes empty ().
If the DF DM is empty, then no entries are left out in the matrix, the driver returns the

reduct R, and the algorithm terminates.

Theorem 5.3. The reduct generated by the parallel/distributed attribute reduction algorithm

is same as the reduct produced by the corresponding sequential method.

Proof. As mentioned in [53], attribute reduction involves three necessary steps: a subset
of attributes generation, subset evaluation, and stopping criterion. The parallel/distributed
algorithm and the corresponding sequential algorithm differ at the subset evaluation step of
attribute reduction.

For the sequential method, let the decision system be HDS = (U, AU {d}), and fuzzy
discernibility matrix be FDM. The corresponding decision system and distributed F DM for
parallel/distributed method are given by HDS = (J/_; HDS', and DFDM = |J\_, DFDM'"
respectively, where p is the number of partitions. Both sequential and distributed methods
differ in evaluating SATUF(RU {a***'}). From Eq. (5.12)), for the sequential approach, we
have,

SATUF(RU {ab*!}) = e%ag;R)(SATUF(R U{a}))

Where,

SATUF(RU{a}) = > SATUF gy (Cua)
Cw EFDM_UF(R)AC, .1 #0

In parallel approach, since the DF DM is distributed to the different nodes of the cluster (i.e.,
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DFDM =\Jt_, DFDM %), the above equation is expressed as given below.

p
SATUF(RU{a}) = > SATUF g (Cuw)
i=1 \C,,€DFDMNC,+#0

Here, DFDM?' is a DFDM-split, and it should be noted that DFDM in the parallel ap-
proach is same as FDM UF(R) in the sequential approach after the SAT-region is removed.
Therefore, in the computation of SATUF(R U {a"*'}), we have,

SATUF, o] =
Jaz, > (Ru{a}) (Caar)
€, €FDM_UF(R)AC, /70

p

maz > > SATUF g1y (Cuw)
S C,t EDFDMINC, /70

Hence, the reduct generated by both sequential and parallel approaches is the same. O

5.4.2.3 Complexity analysis of MR_IFDMFS algorithm

In the time complexity analysis of MR_IFDMEFS algorithm, the following variables are used.

e |U|: the number of objects in the data set

|Al: the number of conditional attributes in the data set

p: the number of processors

ty: the number of time units to transfer one word of memory
e s: the number of time units to complete the synchronization

e ¢: the number of reducers

e E=Y""leix (3_j=iy1¢j) (vefer Section |5.3.3.1)

Table shows the time complexities of each step of the phase in the MR_IFDMF'S algorithm
for one iteration. Note that, from the table, all the steps in the mapper and reducer are
repeated until (DF DM == ()) condition is satisfied in the driver. That is, these steps are
repeated |A| (in worst case) times. Hence, by adding up all the complexities, the total time

complexity of the proposed MR_IFDMFS algorithm is obtained as given below.
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Table 5.2: Time complexity analysis of MR_IFDMFS algorithm

Algorithm Step* in Algorithm Time complexity
(phase)
Driver » 1. Partitioning the data horizontally O( ‘A[;w' * Toy)
(Algorithm 2. Construct DFDM O(‘AEE)+O((|A|*|U\)*tw)
Mapper > 1-10. Finding  SATgu{auy (Crar)s O(‘AL)*E)
(Algorithm |5.6) Vatt € (A — R)

Barrier synchronization O(s)
Shuffle  and Transferring all attributes and their SAT  O((|A| * p) * ty)
sort -» values of entries of DFDM

Reducer > 1-5. Find SAT(RU{att}) and Barrier syn- O(%) + 0(s)
(Algorithm [5.7)  chronization

* Step denotes the line number in the associated algorithm

A= U],
(F o) +(

A By (4] [U]) 5 )+

1A] (( ALE) )4 (AT p) et + (I <s>) (5.13)
|Alxp

Above equation can be approximated as: O(%) + O(JA] = (( ) * ty + 5)). Since the
time complexity of the sequential IFDMFS algorithm is O(]A|? * E), this is an anticipated
outcome for the proposed MR_IFDMFS algorithm in addition with its communication cost:

O(|A] * ((@) * ty + ). Thus, the time complexity of parallel MR_IFDMFS algorithm is

reduced p times than its sequential counterpart in addition with communication overhead.

The entire DFDM is required for reduct computation using MR_IFDMEFS algorithm. Thus,
the space complexity of MR_IFDMFS algorithm is O(|A|* E). But, in MapReduce framework
environment, the DFDM is partitioned and distributed to the nodes of the cluster where the
workload is divided equally into p data partitions. Hence, each partition has the complexity
of O(LE).

In the worst-case scenario, the aforementioned theoretical time and space complexity of
the proposed MR_IFDMEFS algorithm are described. However, because the MR_IFDMFS
algorithm incorporates accelerator DARA (SAT-region removal), the actual time and space

complexities are significantly reduced.
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5.5 Parallel attribute reduction in HDS using vertical parti-

tioning

In Chapter[3|and [}, it is demonstrated that horizontal partitioning based reduct computation
approaches for CDS and IDS are suitable and scale well for the data sets having large object
space and moderate attribute space. And, the vertical partitioning based approaches scale well
for the data sets having large attribute space with moderate object space. Similarly, in this
section, the relevance of vertical partitioning strategy is investigated for reduct computation
in HDS. In this proposed MapReduce based approach, attribute reduction is performed in
three steps: (i) Vertical partition of the input data set (ii) Parallel construction of the vertical
FDM (vFDM) and (iii) Parallel attribute reduction using vEFDM. This section describes these
steps of the proposed approach.

5.5.1 Vertical partitioning of the input data set

The MapReduce based approach MR_IFDMFS given in Section make use of horizontal
partitioning strategy to partition the input data set. Since the information about all the
objects is distributed around the cluster’s nodes, in the construction of DFDM, broadcasting
the input data is required to make data local to the nodes to form an entry of the matrix.
Thus broadcasting avoids data shuffling in the network. However, if the data set is big
dimensional, broadcasting chunks of data objects becomes complex, resulting in the approach
being inefficient.

In the computation of reduct from DFDM, in each iteration, to compute satisfiability
SAT(R U {attr}) of an attribute attr € (A — R) for all the entries in DFDM, the data
movement is required to get all the entries together which are distributed across the nodes of
the cluster. If the data set has larger attribute space, then a lot of data shuffling is required
in evaluation of all the subsets of attributes of the data set to find the reduct. Thus, this
data movement in shuffle and sort phase of the MapReduce framework becomes a bottleneck
in fuzzy-rough attribute reduction of big dimensional hybrid decision systems.

In the proposed approach, we use alternative vertical partitioning strategy that avoids
drawbacks of horizontal partitioning strategy. With this strategy, all the objects information
of an attribute is available in one node. Since the complete data of an attribute is available at
a location, broadcasting the data is not required for constructing FDM. And, as demonstrated
in Chapter [3|and {4}, this strategy avoids huge data movement in shuffle and sort phase for big
dimensional data sets. The vertical partitioning strategy given in Section of Chapter |3 is
adopted to HDS as given in the following definition.
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Definition 5.10. For the given decision table HDS = (U, AU{d}), let HDS = J!_, HDS",
where, HDS? = (U, A'U{d}) is i'" data partition, and satisfies (1) A = (J/_, A%, (ii) A'NAJ =
0, Vi,j € {1,2,...p} and i # j, where p is the number of data partitions.

5.5.2 Parallel construction of the vertical FDM (vFDM)

Horizontally partitioned FDM (DFDM) Original FDM Vertically partitioned FDM (vFDM)
ay Qo Ay Qe a1 a ~ ~ -
a as oo a; Qi e Am—1 Am (V L 2 - =l = (url,r-z (unvr; ""(’Vl",.l,‘(jvr,,vr, """ (/ervu () T
J o ) ) )i o Im—
C,'”J__) g vy e v v e Une1  Um iz, (U1 U2 Vi Uj Um—1 Um a1 o1 v - v U U1 U1
Crns 1 V2 oo v vy e Um-1  Um Crizy 01 V2 Vi Uj Um—1 Um as v vy e Vg Uy e Uy Uy
Partition-1 : : : Partition-1
Cow 1 vy oo v v e Un_1  Unm C('“‘z . U1 V2 Vi Uj Um—1 Um
pTq ' : ) N a;i |vi v e v v e v v
Clw. U1 Uy e Vi L,V """ Um—1 Um “rpry U1 U2 v; ’Uj Um—-1 Um Vs Vi e Vs v;
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1 2 ! J m—1 m C v, [V1 U2 Ui U_y Um-1 Um .
Partition-z

Partition-z ; )
Note: Each v; represents upys,(z,2')Vi € A

Figure 5.1: Horizontally and vertically partitioned FDM

An FDM is usually made of a row that corresponds to an entry C,, (between two ob-
jects (z,2’) € U) and a column that corresponds to a discernible value for an attribute
(4D1Sypr (z,2")). Conversely, vE' DM is the transpose of an FDM, with each row correspond-
ing to an attribute’s discernibility value and each column corresponding to an entry. The
original FDM and its horizontal (DF DM ) and vertical (vFDM) forms are depicted in the
Figure In comparison to DF DM, the vE' DM has a lot of computational benefits, which
are discussed in the subsequent sections. The process for computing vertical FDM (vEDM)
is described by Algorithm To facilitate better reading, the algorithm is presented in
Apache Spark’s pseudo-code.

The method described in Section is used to construct vFDM. Vertically par-
titioned data simplifies vF DM construction. Since a node contains all the information
about the objects associated with an attribute (attr), the discernibility value is computed
for each object pair, where the objects are from different decision classes. That is, each entry
Crw V(z,2') € U, associated with the attribute attr is computed locally within a node in
the cluster. Thus, within a node, each mapper computes a row of v’ DM for each attribute
attr € A'. Each row in vFDM includes an attribute identifier (attr) and its discernibility
values for all the pairs of objects (i.e., uprs,,,, (z,2') ¥(z,2’) € U) in the given data set. In
Algorithm these rows are computed in parallel by mappers by using mapPartitions()

method in Spark. Each mapper returns < key,value >=< attr, uprs, > pairs, where

attr
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UDIS,.,. denotes the list of discernibility values of all the entries (object pairs) for the at-

tribute attr.
Algorithm 5.8: Parallel construction of vF DM
Input: 1. Input data set: HDS = (U, AU {d})
2. Fuzzy similarity relation: SIM, Fuzzy negation: N, and S-norm: L
Output: Vertical Fuzzy Discernibility Matrix (vVFDM) as RDD
/* Read the input data set as an RDD, where the data set HDS is
distributed to the nodes with vertical partitioning and the decision
attribute {d} is broadcasted, such that each data partition becomes
HDS' = (U, AU {d}) Vi€ {1,2,..p}, where p is the number of data
partitions in the cluster. x/
1 hdsRDD = readASRDD(HDS)
2 val vFDMRDD = hdsRDD.mapPartitions(data => {
3 for each record € data do

4 attr = record(0)
5 for xt =1 to |U| do
6 for 2’ =x+1 to |U| do
7 if (d(z)! =d(2')) then
// Compute similarity measure using Eq. (5.1)
8 USTM iy (2, 2") = FSmeasure(record(x), record(z’), o(attr))
// Compute discernibility measure using Eq. (5.5
9 HDISqttr (z, :E/) =1— pusrMa, (z, l")
10 end
11 end
12 end
13 (attr, uprSye.,)
14 end

15 })
16 Return vF DM RDD

5.5.3 Parallel attribute reduction using vFDM

After the construction of vF DM, the next step is to compute the reduct using vE'DM. The
MapReduce based parallel/distributed algorithms for reduct computation are given in the
form of a driver, mapper, and reducer. The driver algorithm MR_VFDMFS: driver() is given
in Algorithm the mapper algorithm MR_VFDMFS: map() is given in Algorithm
and the reducer algorithm MR_VFDMFS: reduce() is given in Algorithm Computation
of the reduct from vFDM is done majorly in three steps: (i) Computation of SAT4, (ii)
Computation of the best attribute and (ii) SAT-region removal. These steps are explained in

this section.
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5.5.3.1 Computation of SAT,

Computation of SATy is required to check the end condition of the driver, which is (SATr >=
SATy4). As mentioned earlier, with vertically partitioned FFDM, for an attribute, the dis-
cernibility values of all the entries are available within a node. Therefore, by using S — norm
(1), each mapper computes SAT,: for subset of attributes A C A within i** partition of
the vFDM, Vi € {1,2,3,...p}, where p is the number of partitions in the cluster. And,
each mapper communicates < key, value >=< cKey, SAT i > pair to the reducer. Here, a
single reducer is invoked by using the common key (cKey). Now, the reducer performs the
union of all the satisfiability values received from the mappers. That is, reducer computes

SATy = 1% | SAT,i. The reducer returns SAT, value to the driver.

5.5.3.2 Computation of the best attribute

In the driver (from Algorithm [5.9), initially the data set HDS is vertically partitioned into
HDS® (i =1,2,...p), and decision attribute information is broadcasted to all the nodes of the
cluster. Reduct R is initialized to empty set (¢), and initially the variable nonSAT Reg con-
tains the indices of entries of vF DM RDD. The variable nonSAT Reg is used to incorporate
DARA accelerator (to perform SAT-region removal) and in each iteration it is broadcasted
to the nodes of the cluster.

The driver (Algorithm invokes Algorithm to construct vFDM. The Algorithm
returns the vF'DM as an RDD (i.e., vEFEDMRDD). The driver initializes the reduct
R to an empty set () and SAT(R) = 0.0 and computes the best attribute by invoking
the mapper (Algorithm [5.10), and reducer (Algorithm [5.11)). As mentioned earlier, each
mapper gets a vVEDM-split (vFDM?) as input along with fuzzy S — norm : L. As shown
in Algorithm from each record of vF DM' which contains an attribute and its dis-
cernibility values for all the entries, the value of SAT(R U {attr}) is computed by using
S —norm : L. The local best attribute lattr®®* which gets maximum SAT(R U {attr}) is
selected from (A" — R). A single < key,value >=< cKey, (lattr’*®st, SAT(R U {lattr®*s'})) >
pair is generated from each mapper communicated to the reducer. If cluster has p number
of partitions, then all the mappers generate p number of < key,value > pairs. And, since
all the mappers are generating the same key (cKey), only a single reducer is invoked. Thus,
the data movement in the cluster is significantly reduced when compared to horizontal par-
titioning based approach (MR_IFDMFS) given in Section (Note that, in MR_IFDMFS

algorithm, each mapper generates a < key,value > pair for each entry in the DFDM).
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Algorithm 5.9: MR_VFDMFS: driver()

N O o0k wWoN

© o

10
11

12
13
14
15

16
17
18

19
20
21
22

Input: 1. Input data set: HDS = (U, AU {d})

2. Fuzzy similarity relation: STM, Fuzzy negation: N, and S-norm: L

Output: Reduct R

Distribute the input data set HDS with vertical partitioning into the nodes of the

cluster and broadcast decision attribute {d}, such that each data partition becomes
HDS' = (U, A" U {d}) Vic {1,2,...p}, where p is the number of data partitions in
the cluster.

Construct vF DM as an RDD (vFDMRDD) by invoking Algorithm

Initialize reduct R = (), SAT(R) =0

Initial nonS AT Reg gets the list of indices of entries in the vE'DM RDD

Broadcast nonSAT Reg and SATR

Compute SAT(A) using procedure given in Section

repeat

/* All operations are performed on the entries in nonSAT Reg */

Initiate mapper job by invoking Algorithm

val lattrRDD = vF DM RD D .mapPartitions(data => {val mp = map()})

/* Mapper returns < key,value >=< cKey, (lattr*®s*, SAT (lattr*®st)) > pair,
here cKey is a common key, lattr’® is local best attribute and
SAT (lattr®®) is its satisfiability value */

Initiate reducer job by invoking Algorithm

val gattr RDD = lattr RDD.reduce()

/* Reducer returns < key',value’ >=< attr®®st, SAT (attr’**') > pair, where
attr’®st is global best attribute and SAT(attr’®!) is its
satisfiability value */

Collect the data from the reducers

R = R U {attrbst}

Filter attrt®st record from vFDM as < attr®®, up IS, beat >

Compute SATr = L(L(R — attr®®st), up IS,,, bes) USING @ map only operation

// SATR is vector of satisfiability values of attributes in R for
all the entries in vEF'DM

// SAT(R) is satisfiability value of R for all entries in vF DM

if (SAT(R) >= SAT(A)) then

‘ break

end

/% ===SAT-region removal = x/

nonSATReg = vEDMRDD. filter(if(SATR(Cyo)! = SATA(Crar))

Broadcast nonSAT Reg and SATR

until (R.size < A.size)

return R
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Algorithm 5.10: MR_VFDMFS: map()

Input: 1. vFDM? is a partition of vF DM, each record of this partition read as
< key,value >=< attr, uprs,,,. >, where attr represents an attribute and
DI, Tepresent the list of discernible values of the attribute attr.
2. Broadcasted nonSAT Reg, SATg and S-norm: L
Output: A < key',value’ >=< cKey, (lattr®®st, SAT (lattr®**!)) > pair, here cKey is
a common key, lattr®s is an attribute of A* which gets maximum
satisfiability value (SAT(lattr?®*")) within the partition.
1 IMaz = 0.0, lattrbst = —1
2 for each record € vFDM? as (attr,uprs,,, ) do
3 if (attr ¢ R) then
4 ‘ Compute SAT(RU {attr}) = L(SATR, uDIS,10r)
5 end
6
7
8
9

if (SAT(RU {attr}) > [Max) then
lattrbest = attr

IMax = SAT(R U {attr})

end

10 end
11 Construct < key’, value’ >=< cKey, (lattr®®st, SAT (R U {lattrbt}) >
12 Emit intermediate < key', value’ >

Algorithm 5.11: MR_VFDMFS: reduce()

Input: < key, [V] >, here, key is common key and [V] is the list of
(lattrbest, SAT (lattr®est)) pairs received from the mappers
Output: < key',value’ >=< attr®*t, SAT(R U {attr®*'}) >
gMazx = 0.0, attrbst = —1
for each v € V as (lattr®®, SAT (lattr®®")) do
if (SAT(lattr®*st) > gMaz) then
attrbest = attr
gMax = SAT(R U {attr})
end

end
Construct < key',value’ >=< attr®st, SAT(R U {attr®®st}) >
Emit < key’, value’ >

In Algorithm the reducer gets a set of < ckey, [V] > pairs as the input from all the
mappers in the cluster, where ckey is a common key and [V] = [(lattr®®st, SAT(RU{lattr’**'})]

© W N oA W N R

represents the list of pairs of local best attributes and their satisfiability values. The reducer
finds the attribute which gets maximum satisfiability value and returns to the driver as best
attribute attr®®s’ along with its satisfiability value SAT(attr®®*!). In the driver, attr®® is
added to the reduct set R. And the record of attribute attr®®s! is fetched from vEFDM as

< attr®®st uprs >. This record is used to find the satisfiability values of the reduct

attrbest

attributes (SATR) by using S — norm with a map only operation. Note that the notation
S ATp represents the satisfiability values of the attributes in R for all the entries in the vF DM
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and it is broadcasted to all the nodes in the cluster. Now the driver performs SAT-region
removal which is explained in Section and the updated nonSAT Reg is broadcasted.
This above procedure is repeated until the condition (SAT(R) >= SAT(A)) is not satisfied or
the condition (R.size < A.size) is satisfied. The satisfiability value SAT(A) of the conditional
attribute set A for all the entries in the vF'DM is computed by using the procedure given in

Section [5.5.3.3

5.5.3.3 SAT-region removal

The feature SAT-region removal in MR_IFDMFS acts as an accelerator (DARA). According
to MR_IFDMFS algorithm, SAT-region gets the entries of FDM for which maximum satisfi-
ability is reached (i.e., the entry for which (SATR(C;;) == SAT4(C;j)) is satisfied). These
entries are removed from FDM in each iteration to avoid redundant computations in the next
iteration. This feature is incorporated in each iteration of the present MR_VFDMEFS algo-
rithm, by identifying the indices of entries for which maximum satisfiability is not yet reached.
That is, in the driver (Algorithm non-SAT region is computed by using the condition:
(SATR(Ci;)! = SATA(Cyj)). These indices are stored into the variable nonSATReg and
broadcasted to all the nodes, and in the next iteration of the algorithm, all the computations

are performed only on the entries of vF DM for which the indices are present in nonSAT Reg.

5.5.4 Complexity analysis of MR_VFDMFS algorithm

In the time complexity analysis of MR_VFDMFS algorithm, the following variables are used.

e |U|: the number of objects in the data set

|Al: the number of conditional attributes in the data set

p: the number of processors

ty: the number of time units to transfer one word of memory

e 5: the number of time units to complete the synchronization

E=Y"""¢x (3_j=iy1¢j) (vefer Section |5.3.3.1)

Table[5.3]shows the time complexities of each step of the phase in the MR_VFDMFS algorithm

for one iteration. Note that, in the table, from step 1-10 of mapper to step 1-5 of reducer,
the algorithm is repeated until (SAT(R) == SAT(A)) condition is satisfied. That is, these
steps are repeated |A| (in worst case) times. Hence, by adding up all the complexities, the

total time complexity of the algorithm is obtained as given below.
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Table 5.3: Time complexity analysis of MR_-VFDMFS algorithm

Algorithm Step* in Algorithm Time complexity
(phase)
1. Partitioning the data vertically O('A‘;Wl * ty)
Driver » 2. Construct vEDM O(lA]‘:E s typ)
(Algorithm 5. Broadcast nonSAT Reg indices O(E * ty)
6. SAT(A) computation O( |AL*E) + O(p* E xty)
14. Fetch a®** record from vFDM and O(E *t,)
find SATR
Mapper > 1-10. Finding labst attribute O('A‘p*E)
(Algorithmm Barrier synchronization O(s)
Shuffle and Transferring [a"! attributes and their O(p * t,)
sort > SAT(l1a"*") values
Reducer » 1-5. Find SAT(R U {a’**'}) O(p)
(Algorithm’m‘) Barrier synchronization O(s)

* Step denotes the line number in the associated algorithm

| A+ U] Al E
P ) + (=«
(( » )+ ( »

|A| * E

tw) + (B ty) + (

|A| « E
p

)+ (p* Exty)+

1A] + ((E )+ (2B L 4 ) + () + <s>) (5.14)

Above equation can be approximated as: O(@) +O(JA| * ((E+p) *ty) + O(JA| * (p+ s5)).
Since the time complexity of the sequential IFDMFS algorithm is |A|?+ E, the time complexity
of parallel MR_-VFDMFS algorithm is reduced p times (i.e., O(%)) than its sequential
counterpart in addition with communication overhead O(|A|* ((E +p) *ty) + O(JA|* (p+s)).

The entire vEFDM is required for reduct computation using MR_VFDMFS algorithm.
Thus, the space complexity of MR_VFDMFS algorithm is O(|A| * E'). But, in MapReduce
framework environment, the vEDM is partitioned and distributed to the nodes of the cluster
where the workload is divided equally into p data partitions. Hence, each partition has the
complexity of O('AlT*E).

In the worst-case scenario, the aforementioned theoretical time and space complexity of
the proposed MR_VFDMEFS algorithm are described. However, because the MR_VFDMFS
algorithm incorporates accelerator DARA (SAT-region removal), the actual time and space

complexities are significantly reduced.
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5.6 Experimental analysis

We carried out the experiments in two stages to evaluate the proposed MR_IFDMFS and
MR_VFDMFS algorithms. Since both algorithms are MapReduce based parallel/distributed
algorithms, they are implemented in Apache Spark (version: 2.3.1) with the Scala program-
ming language (version: 2.11.4).

In the first stage of the experiments, we run the MR_IFDMFS algorithm on a node uti-
lizing a single core to get a pure sequential version of MR_IFDMFS that is given as IFDMFS
in Algorithm The comparative results of the IFDMFS algorithm are presented by com-
paring with the existing PARA [72] algorithm, which is an accelerator for fuzzy-rough reduct
computation. The PARA algorithm is implemented using C4++ programming language. We
obtained the source code of the PARA algorithm from the authors and conducted the exper-
iments.

In the second stage of the experiments, the MR_IFDMFS and MR_VFDMFS algorithms
are executed on a cluster of nodes. The efficiency of the proposed algorithms is shown by
comparing with the existing state-of-the-art parallel/distributed fuzzy-rough attribute reduc-
tion algorithms: MR_FRDM_SBE [76] (proposed in the year 2019) and DFRS [56] (proposed
in the year 2020). The MR_FRDM_SBE algorithm is implemented in Apache Spark (version:
2.3.1) with the Scala programming language (version: 2.11.4). The DFRS algorithm is a
non-MapReduce parallel /distributed algorithm. The authors of DFRS provided MATLAB
simulation for parallel fuzzy-rough attribute reduction and the source code made available in

GitHub repository: https://github.com/qulOwenhao/DFRS.git.

5.6.1 Experimental setup

The experiments of the proposed sequential IFDMFS approach and the existing PARA ap-
proach [72] are conducted on a system with Intel (R) Core (TM) i7-8700 CPU@3.20GHz
processor with 12 cores and 32 GB of main memory. The system is installed with Ubuntu
18.04 LTS operating system.

The experiments of the proposed approaches MR_IFDMFS, MR_VFDMEFS and existing
approach MR_.FRDM_SBE [76] are carried out on a 7-node cluster. In the cluster, one node
is set as master (driver) as well as slave, and the rest are set as workers (slaves). The master
node uses Intel (R) Xeon (R) Silver 4110 CPU @ 2.10GHz processor with 32 cores and 64
GB of main memory. All the worker nodes use Intel (R) Core (TM) i7-8700 CPU@3.20GHz
processor with 12 cores and 32 GB of main memory. All the nodes run on Ubuntu 18.04

LTS operating system and they are connected via Ethernet (with 1000 Mbps speed). Each
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5.6 Experimental analysis

Table 5.4: Small size data sets used in the experiments of IFDMFS algorithm

S.No Data set Objects  Attributes Classes Attribute type
1 Tonosphere 351 34 2 Numerical
2 Waveform 5000 21 3 Numerical
3 Madelon 2000 500 2 Numerical
4 Satimage 6435 36 7 Numerical
5 Musk 6598 166 2 Numerical
6 Letter 20000 16 26 Numerical
7 Shuttle 58000 09 7 Numerical

Table 5.5: Large size data sets used in the experiments of MR_IFDMFS and MR_-VFDMFS
algorithms

S.No Data set Objects Attributes Classes Attribute type

8 Genes 801 20531 5 Numerical

9 Isolet 7797 617 26 Numerical

10 HAPT 10929 561 12 Numerical

11 Diagnosis 58509 48 11 Numerical

14 Basehock 1993 4862 2 Categorical

15 Thyroid 7200 21 3 Categorical, Numerical
16 Gisette 6000 5000 2 Categorical

17 genes-S801-A101k 801 101320 5 Numerical

18 basehock-S2k-A53k 1993 53482 2 Categorical

19 heart-S270-A60k 270 60000 2 Categorical,Numerical
21 heart-S5k-A5k 5000 5000 2 Categorical,Numerical
22 heart-S10k-A5k 10000 5000 2 Categorical, Numerical
23 heart-S15k-Ab5k 15000 5000 2 Categorical,Numerical
24 heart-Sbk-A10k 5000 10000 2 Categorical,Numerical
25 heart-S5k-A15k 5000 15000 2 Categorical,Numerical

node is installed with Java 1.8.0_171, Apache Spark 2.3.1, and Scala 2.11.4. The experiments
of the existing DFRS algorithm [56] are conducted on a system with Intel (R) Core (TM)
i7-8700 CPU@3.20 GHz processor having 12 cores and 32 GB of main memory. The system
is installed with Ubuntu 18.04 LTS operating system and MATLAB 2017 environment. The
DFRS source code is executed on this node and the results of the simulation in 7 nodes are

obtained.

All the hybrid data sets used in the experimental analysis are selected from the UCI Ma-
chine Learning Repository [31]. These data sets are categorised into two groups: smaller size
and larger size. Smaller size data sets are used in the experimental analysis of sequential ap-

proaches in the first stage of experiments and larger size data sets are used in the experimental
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analysis of parallel /distributed approaches in the second stage of experiments. A detailed de-
scription of smaller size data sets and larger size data sets is given in Table and Table
respectively. Since the existing sequential PARA algorithm works on numerical data sets,
we used numerical data sets in experimental comparison of IFDMFS and PARA algorithms.
Thus, Table contains all the numerical data sets. And, Table contains hybrid data
sets. All the larger size data sets with different sizes are chosen according to limited hardware
configuration of the cluster. In the selection of these data sets, we considered the aspect of
variance in sizes of object space and attribute space to illustrate the relevance and limitations
of the proposed MR_IFDMFS, MR_VFDMFS approaches. Thus, few data sets such as ” Gene
expression Cancer RNA-Seq” (renamed as Genes), ”Basehock” and "Heart” are replicated
several times in object and attribute space, details of these data sets are provided along with
their object and attribute space sizes in Table For example, the original ”"Heart” data
set has 270 objects and 13 attributes, and after replication, the data set ”heart-S5k-A15k”
contains 5000 objects and 15000 attributes.

5.6.2 Experimental results of IFDMF'S algorithm

In this section, the efficiency of the proposed IFDMFS algorithm is shown by comparing its
results with the PARA algorithm [72] based on computational time, reduct size. As IFDMFS
and PARA are sequential algorithms, the experiments are conducted on small data sets given
in Table 5.4

Reduct is computed for the given data sets using the proposed IFDMF'S algorithm and the
PARA algorithm. In PARA, the authors used a threshold value a ( 0 < o < 1) in computing
the reduct. The threshold value « is used to bridge the gap between the dependency measures
of all conditional attributes and reduct attributes. In PARA, therefore the dependency mea-
sure with « is considered as the approximate dependency measure of the reduct set. But we
have not used any threshold value in the proposed IFDMFS. Therefore the reduct generated
by the proposed algorithm is exact. Since we do not use any threshold value, we have taken
the « value as 0.0 for PARA, for appropriate comparison with IFDMFS. In addition, we also
performed experiments on PARA with a value of 0.12, as suggested by the authors of PARA.
The results are reported in Table The running time and the reduct size of the obtained

reduct on each data set are separately reported.

The following observations are made from the results:
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Table 5.6: Running time (Seconds) and reduct size of PARA and IFDMFS algorithms

PARA (a =0.0) PARA (a=0.12) IFDMEFS

Data set Running Reduct | Running Reduct | Running Reduct
time size time size time size

Tonosphere | 6.74 34 1.96 16 2.06 07
Waveform | 996.52 21 316.15 14 86.47 08
Madelon > 259200  * 105341.20 138 231.55 07
Satimage 5993.86 36 345.79 12 286.84 14
Musk 92660.73 166 28531.10 71 554.51 20
Letter 6420.3 16 3558.30 15 2369.03 15
Shuttle 4721.33 09 1520.37 06 2903.80 09

* The run time of the PARA is more than three days. The results are not reported due to manual termination
of the program.

i) The PARA algorithm with threshold value of @ = 0.0 resulted with no dimensionality
reduction, and all the attributes were selected as reduct. Thus, even though the pro-
posed IFDMF'S algorithm did not use a threshold value, it is compared with the PARA
that has a = 0.12.

ii) IFDMFS algorithm achieved a minimum of 17% and a maximum of 99% computational
gains over PARA (o = 0.12) on all the data sets except Shuttle. Both the existing
and proposed algorithms obtained similar computational times for Ionosphere data set.
These significant results of the proposed IFDMFS algorithm over PARA is due to in-
corporated DARA.

iii) The existing PARA (a = 0.12) algorithm obtained 47% computational gain over the
proposed IFDMFS algorithm in the Shuttle data set which has larger object space and
much smaller attribute space. This is due to the increase in the construction time of the
discernibility matrix with the larger object space is not able to compensate the benefits

obtained in the iterations for reduct computation as |A| is much smaller.

iv) It is also noted from the results that the IFDMFS generated the reducts that are sig-
nificantly smaller in size relative to the PARA (a = 0.12) algorithm.

In summary, the comparative study of IFDMFS and PARA has shown experimentally that
the proposed algorithm is useful in achieving shorter length reducts with substantial compu-

tational gains.
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5.6.3 Experimental results of MR_IFDMFS and MR_VFDMFS

In this section, the computational efficiency and performance evaluation of the proposed
parallel algorithms (MR_IFDMFS, MR_VFDMFS) is done by comparing their results with
the existing parallel approaches MR_.FRDM_SBE [76] and DFRS [56]. Since the proposed
and existing algorithms are parallel/distributed methods, experiments are performed on all

the large data sets given in Table

5.6.3.1 Computational evaluation

The proposed MR_IFDMFS and MR_VFDMFS algorithms are numerically compared with
the existing MR_FRDM_SBE and DFRS algorithms based on the computational time and
reduct size. The experiments of proposed MR_IFDMFS, MR_VFDMFS and the existing
MR_FRDM_SBE algorithms are performed on 7-node cluster, and the simulation results of
DFRS algoritm are obtained for 7 nodes. Since MR_FRDM_SBE and DFRS algorithms
are developed for attribute reduction in numerical data sets, in the first step, the compar-
ative analysis of these algorithms with the proposed algorithms is done on numerical data
sets and the results are reported in Table In the second step, the proposed algorithms
MR_IFDMFS and MR_VFDMFS are compared based on different hybrid data sets with vari-
ance in object and attribute space. The comparative results are reported in Table The
observations on the results from Table 0.7 and Table [5.§] are listed as follows.

Table 5.7: Running time (Seconds) and reduct size results of MRIFDMFS, MR_VFDMFS,
MR_FRDM_SBE, and DFRS algorithms on large numerical data sets

MR_IFDMFS MR_VFDMFS | MR_FRDM_SBE DFRS
Data set | Running Reduct| Running Reduct| Running Reduct | Running Reduct

time size time size time size time size
Genes 126.89 06 68.73 06 16742.80 10 525.31 39
Isolet 335.69 09 320.83 09 12549.32 11 3682.13 541
HAPT 467.70 09 300.87 09 8715.97 12 1093.73 347
Diagnosis | 594.99 12 901.36 12 1662.36 21 8083.69 26

i) From the comparison of the running times, we can observe that the MR IFDMFS and
MR_VFDMEFS algorithms performed significantly better than MR_FRDM_SBE algo-
rithm on all the data sets. On all the data sets, the proposed algorithms obtained a
minimum of 26%, and a maximum of 99% of computational gains over MR_FRDM_SBE
algorithm. In specific, the computational gains of MR_VFDMFS are higher than an-
other proposed MR_IFDMFS algorithm for high dimensional data sets such as Genes,
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Table 5.8: Running time (Seconds) and reduct size results of MR_IFDMFS and MR_VFDMFS
algorithms on hybrid data sets

MR_IFDMFS MR_VFDMEFS
Data set Running  Reduct Running Reduct
time size time size
Basehock 263.06 36 68.57 36
Thyroid 21.36 19 49.39 19
Gisette 2268.33 10 5234.83 10
genes-S801-A101k 810.61 06 111.25 06
basehock-S2k-Ab3k  8123.64 36 4962.97 36
heart-S270-A60k 360.02 07 27.16 07

Isolet and HAPT. And, MR_IFDMF'S performs better than MR_VFDMF'S on Diagnosis

data set which has larger object space.

ii) From the comparison of the running times of MR IFDMFS and MR_VFDMFS with
the existing DFRS, it can be noticed that, on all the data sets the proposed algorithms

perform well. Here, computational gains of proposed algorithms varies from 22% to

93%.

iii) It is also noted from the results that for all data sets, the proposed algorithms have
generated smaller size reduct set than the DFRS and MR_FRDM_SBE algorithms. And,

both proposed algorithms generated same size reduct sets.

iv) From the results on hybrid data sets in Table it can be observed that, the vertical
partitioning based MR_VFDMFS algorithm performed better than horizontal partition-
ing based MR_IFDMFS algorithm on the data sets with larger attribute space such as
Basehock, genes-S801-A101k, basehock-S2k-A53k and heart-S270-A60k. And, in con-
trast, MR_IFDMF'S algorithm perform better than MR_VFDMFS for larger object space
data sets such as Thyroid and Gisette.

The significant computational gains achieved by MR_IFDMFS and MR_VFDMFS algorithms
on all the data sets strongly establishes the role of the proposed accelerator DARA in impart-
ing space reduction as the algorithm progresses and there by aiding in reduction of computa-
tional time. And, in specific, the notable achievements of MR_VFDMFS over MR_IFDMFS
on high dimensional data sets illustrate the advantage of vertical partitioning strategy over

horizontal partitioning strategy for such data sets.
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5.6 Experimental analysis

For the reproducible research, obtained reducts of proposed algorithms IFDMFS, MR_IFDMFS
and MR_VFDMFS algorithms for all the given original data sets (the data sets without repli-
cation) are given in Table

5.6.3.2 Performance evaluation

Using speedup, scaleup and sizeup metrics, the performance of the proposed MR_IFDMFS
and MR_VFDMEFS algorithms is evaluated and compared to existing MR_FRDM_SBE and
DFRS algorithms on various data sets. Three data sets are chosen such that the first data set
has large attribute space, the second has large object space, and the third data set has large
object space as well as attribute space. Separate figures are given to show the performance

results of the algorithms on three data sets.

Speedup evaluation:

The speedup of the proposed algorithms have been evaluated on the data sets with different
nodes from 1 to 7. From the experimental setup given in Section [5.6.1] it can be observed
that the master node has 32 cores and the remaining slave nodes have 12 cores each. Since
we have set the master node also as a slave, the number of cores is mismatched with other
slave nodes. Owing to this mismatch, in finding the speedup metric of the system, we took
nodes ratio based on the number of cores in the node. Figure shows the speedup results

of different data sets with a different nodes ratios (number of cores) in the cluster.
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Figure 5.2: Speedup results of MR_IFDMFS, MR_VFDMFS, MR_FRDM_SBE and DFRS algo-
rithms on different data sets

From the findings in Figure [5.2], it can be observed that, on all the data sets, the speedup
of the proposed MR_IFDMFS and MR_VFDMFS algorithms is improved with an increase
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in the number of cores. The efficiency of proposed algorithms is higher than the existing
MR_FRDM_SBE and DFRS algorithms. The plots of both the proposed algorithms are
closer to the linear plot, and MR_VFDMFS performs slightly better than MR_IFDMFS on

Genes data set (big dimensional data set).

Scaleup evaluation

To find the scaleup performance of the proposed algorithms,, the data set size is increased
in proportion to the number of cores in the cluster. Each data set is divided into 20%,
40%, 60%, 80% and 100% sizes of original data set, and the number of cores in the cluster
increased from 20, 40, 60, 80 and 100 respectively. Figure [5.3|shows the scaleup results of the
proposed algorithms in comparison with the existing MR_FRDM_SBE and DFRS algorithms

on different data sets.
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Figure 5.3: Scaleup results of MR_IFDMFS, MR_VFDMFS, MR_FRDM_SBE and DFRS algo-
rithms on different data sets

The higher scaleup value shows the better performance of the proposed algorithms. From
the results shown in Figure the scaleup values of both proposed algorithms are higher
than 0.8 indicates that the proposed algorithms scale well. Note that the existing algorithms

also performing on par with proposed algorithms.

Sizeup evaluation:

To find the sizeup metric of the proposed algorithms, we kept the number of nodes unchanged
with seven nodes, and changed the size of the data set as 20%, 40%, 60%, 80%, and 100%
of objects in the original data set. Figure [5.4] shows the sizeup performance results of the
proposed algorithms in comparison with the existing MR_FRDM_SBE and DFRS algorithms

on different data sets.
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Figure 5.4: Sizeup results of MR _IFDMFS, MR_VFDMFS, MR_FRDM_SBE and DFRS algo-
rithms on different data sets

In Figure for all the data sets, the sizeup performance of the proposed algorithms
increased when the size of the data set was increased. From the figure, we can observe that,
the existing MR_FRDM_SBE and DFRS algorithms are producing better sizeup results than
proposed MR_IFDMFS and MR_VFDMFS algorithms. Figure [5.4]also shows that all existing
and proposed algorithms produce better sizeup results, as their plots are lower than the linear

plots in all data sets.

5.6.3.3 Discussion

It can be observed that the experiments in the cluster for MR_IFDMFS and MR_VFDMFS are
conducted on the large data sets having a few hundred thousands of objects or a few thousands
of attributes. These data sets are categorised as large due to the fact that the resulting space
utilisation for the matrices DFDM and vEDM run into several millions of entries occupying
several Giga bytes of memory space. This is further coupled by the overhead involved in the
Apache Spark maintenance of RDDs across the transformations and for the meta data in
achieving fault tolerance. From the scaleup results shown in Figure [5.3] it is obvious that, in
order to scale data sets to much higher sizes, more nodes need to be added to the cluster. As
the cost of shuffle and sort phase of DFDM and vFDM construction and distributed reduct
computation are minimal, the proposed approaches are scalable to very large data sets under

horizontal expansion of the cluster.

5.6.4 Impact of the data partitioning strategy

The experimental results in Section [5.6.3] have suggested that vertical partitioning based
MR_VFDMEFS algorithm is suitable for high dimensional data sets, and horizontal parti-
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Table 5.10: Comparison of MR_IFDMFS and MR_VFDMFS for varying objects and attributes
of Heart data set (Time: Seconds)

S.No  Data set MR_IFDMFS  MR_VFDMFS
Running Time Running Time

1 heart-S5k-A5k 232.65 190.02

2 heart-S10k-A5k 408.79 416.94

3 heart-S15k-A5k 525.03 736.12

4 heart-S5k-A 10k 452.79 221.83

5 heart-S5k-A15k 603.13 259.57

tioning based MR_IFDMFS algorithm is ideal for the data sets having moderate attribute
space with larger object space. To further investigate the relevance and limitations of the
proposed algorithms, we conducted an experiment between MR_IFDMFS and MR_VFDMFS
algorithms. The objective of the experiment is to determine the nature of data sets relevant
for horizontal partitioning based reduct algorithms and vertical partitioning based reduct
algorithms.
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Figure 5.5: Behavior of MR_IFDMFS and MR_VFDMFS for varying object space and attribute
space of Heart data set

In this experiment, the original Heart data set having 270 objects and 13 attributes
is replicated several times in object and attribute space to get heart-S5k-A5k which has
equal size object space and attribute space. This data set’s object space is replicated by
keeping attribute space constant, and the experiments are conducted, the results of both
algorithms are reported in Table under the serial number 2 and 3. Similarly, heart-S5k-
A5k is replicated in attribute space by keeping object space constant and the experiments are
conducted, the results are reported in Table [5.10| under the serial number 4 and 5. Figure[5.5
demonstrates the computational time analysis for scalability in object space in Figure

and the attribute space in Figure [5.5b
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5.7 Summary

It is evidently clear from these results that, increase in object space resulted in a consid-
erable increase in computational time of MR_VFDMFS. And, similarly increase in attribute
space resulted in a more significant increase in computational time of MR_IFDMFS. That is,
MR_VFDMEFS is more suitable for big dimensional data sets. But it is not recommended for
data sets of larger object space. The horizontal partitioning based MR_IFDMFS algorithm is
found more suitable for scalability in object space. Hence, as shown in Chapter (3| and 4] this
section once again demonstrated that, the vertical partitioning based algorithms are suitable
for big dimensional data sets. And, horizontal partitioning based algorithms are more ideal

for the data sets having larger object space with moderate attribute space.

5.7 Summary

In this chapter, we introduced a fuzzy discernibility matrix-based accelerator. The idea be-
hind the proposed accelerator is the removal of SAT-region. With this feature, the entries
of the discernibility matrix that have reached maximum satisfiability were removed from the
matrix in each iteration and the reduct computation performed on the remaining entries
of the matrix. Therefore, SAT-region removal served as an accelerator and referred to as
DARA. Based on DARA, a sequential IFDMFS algorithm proposed for fuzzy-rough attribute
reduction. To deal with large data sets in attribute reduction, we also proposed MapReduce
based algorithms using horizontal partitioning strategy (MR_IFDMFS) and vertical parti-
tioning strategy (MR_VFDMFS). These two algorithms are parallel/distributed versions of
the IFDMFS algorithm. The experimental results have shown that the proposed algorithms
IFDMFS, MR_IFDMFS and MR_VFDMFS performed better than the existing state-of-the-
art approaches. Extensive experimental analysis along with theoretical validation establishes
the relevance and efficiency of the proposed approaches in handling large hybrid data sets for

attribute reduction.
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Chapter 6

Conclusions and Future work

This chapter highlights the author’s explorations after the research process that resulted
in the development of this thesis. The research process began with the motivation and its
objectives, which formed a basis for carrying out this scientific work. The research work
is motivated by the challenges presented by today’s large-scale data sets, which include,
big dimensionality, variety of the data and data partitioning strategy used in distributed
attribute reduction. Each of these challenges served as the research work’s objectives, which
were discussed in Chapter|[l] Following the formulation of the research objectives, the research
process moved on to Chapter [2|to examine and analyse theoretical principles relating to rough
set theory and the Apache Spark MapReduce framework, which served as the foundation for
this research. The following section summarizes major contributions and achievements of this
thesis. And, Section identifies various directions for further research in rough set-based

scalable attribute reduction.

6.1 Research summary

This research focused on scalable attribute reduction in large-scale data sets using MapRe-
duce, with an emphasis on the big dimensionality of the data set. This thesis objective was
to explore MapReduce based parallel/distributed reduct computation in categorical, incom-
plete and hybrid decision systems, where the relevance of horizontal and vertical partitioning
strategies were investigated in partitioning the input data to the nodes of the cluster. The
contributions to thesis were made in relation to the research objectives. All the significant
contributions were discussed in chapter [3|to[5] Brief summary of each contribution is provided
below.

All the existing MapReduce based reduct computation approaches in categorical data sets

adopted horizontal partitioning strategy for partitioning the data to the cluster of computers,
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6.1 Research summary

where the data set was partitioned in object space. This strategy resulted in computational
overheads for big dimensional data sets. As an initial contribution to this thesis, a classical
rough sets-based approach (MR_IQRA_VP) to attribute reduction using MapReduce was
proposed. An alternative vertical partitioning strategy was examined in this approach, which
was utilised to partition the input data set in the attribute space to the cluster nodes. The
application of this strategy for attribute reduction in large-scale categorical data sets with big
dimensionality was investigated. This vertical partitioning strategy avoided the limitations of
horizontal partitioning strategy and enabled the incorporation of granular refinement feature,
which fetched significant computational gains for the proposed approach.

Different strategies were used in the MapReduce framework to parallelize existing exten-
sions to classical rough sets for attribute reduction in large-scale incomplete data sets. As a
result, as the second contribution of thesis, MapReduce-based attribute reduction approaches
for incomplete decision systems were presented, employing Novel Granular Framework (NGF)
(an extension to classical rough sets) for handling incompleteness in the data set. An alterna-
tive representation of the NGF is introduced and adopted by one of the proposed approaches
(MRIDS_HP). This proposed approach used horizontal partitioning strategy to partition the
input data. Another approach (MRIDS_VP) incorporated the existing NGF and employed
a vertical partitioning strategy. It is worth noting that, to the best of our knowledge, the
presented methods are the first of its kind research on parallel/distributed attribute reduction
in large-scale IDS.

The advantages of discernibility matrix over dependency measure, and also non availability
of discernibility matrix based accelerators in the literature inspired us to investigate accel-
erators and the corresponding parallel /distributed approaches based on discernibility matrix
as part of third and fourth contributions of thesis. Fuzzy-rough set model (an extension to
classical rough sets) used to deal with hybrid decision systems. A fuzzy discernibility matrix
based attribute reduction accelerator (DARA) was introduced for scalable attribute reduction
in hybrid decision systems. Based on this accelerator, a sequential approach IFDMFS (Im-
proved Fuzzy Discernibility Matrix based Feature Selection) and corresponding MapReduce
based parallel /distributed versions of IFDMFS (MR_IFDMFS, MR_VFDMF'S) were proposed.
For input data partitioning, the approach MR_IFDMFS employed a horizontal partitioning
strategy, while the approach MR_VFDMFS used a vertical partitioning strategy.

From all the contributions of this thesis, it was observed that, the horizontal partitioning of
the input data enabled the incorporation of positive region removal and SAT-region removal
features in the approaches (MRIDS_HP and MR_IFDMFS) proposed for parallel attribute

reduction in large-scale incomplete and hybrid decision systems respectively. The horizontal
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partitioning strategy was not suitable for incorporating granular refinement feature. However,
the vertical partitioning strategy allowed all the approaches (MR_IQRA_VP, MRIDS_VP and
MR_VFDMFS) to incorporate all the features: positive region removal, SAT-region removal
and granular refinement. Furthermore, for all the proposed approaches, vertical partitioning
strategy simplified the shuffle and sort phase, which is a complex phase of the MapReduce
framework for large-scale data processing.

Apache Spark framework was used to implement the proposed approaches. Extensive
experimental study was performed on various benchmark large-scale data sets with variations
in object and attribute space. The efficiency of the proposed methods was assessed using
computational evaluation (running time, reduct, and reduct size were used as metrics), per-
formance evaluation (speedup, scaleup, and sizeup were used as metrics), and impact of the
data partitioning strategy for splitting the input data.

It has been experimentally demonstrated that the proposed approaches outperformed
the existing state-of-the-art approaches. The experimental results along with theoretical
validation showed that the horizontal partitioning based approaches performed well for the
larger object space data sets with moderate attribute space. And the vertical partitioning
based approaches were relevant and scale well for moderate object space data sets with big

dimensionality.

6.2 Future directions

Various challenges in developing scalable rough set-based attribute reduction approaches were
addressed in this thesis. However, scalable reduct computation can be enhanced further by
addressing some major concerns that need in-depth analysis and resolution. This section
provides some insight into these problems in preparation for future work in this area.

From the experimental study of all the proposed approaches, it is clear that, the horizontal
partitioning and vertical partitioning-based algorithms scale well for the data sets with either
a huge object space or a huge attribute space (big dimensionality), but they are less effective in
dealing with data sets with both a large object space and a large attribute space. As a result,
this research has the potential to look at viable rough set-based MapReduce approaches that
can simultaneously scale in both huge object space and attribute space.

As stated earlier, the big data is characterised with three V’s, namely wvolume, variety
and wvelocity. Since the proposed approaches are developed for big data, it can be observed
that, all the proposed algorithms are scale well for the data sets with huge object space
or attribute space. As huge object space or huge attribute space signifies the volume of

the data, it is clear that, the proposed approaches are dealing with volume characteristic of
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6.2 Future directions

big data. Furthermore, because the proposed algorithms were developed for the categorical
(CDS), incomplete (IDS) and hybrid decision systems (HDS), it is evident that, the proposed
algorithms are dealing with variety characteristic of big data. Therefore, this research offers
the possibility to investigate suitable rough set-based MapReduce methods that can deal
with the wvelocity characteristic of big data. We can deal with the velocity issue by proposing
MapReduce-based incremental reduct computation approaches for streaming data.

In Chapter 4l MapReduce based approaches were proposed for parallel attribute reduction
in incomplete data sets, where the incompleteness (missing values) percentage used in the data
set was moderate. In a certain scenario in recommender systems, a high percentage of missing
values occurs, resulting in the formation of sparse data sets. Alternative representations and
appropriate MapReduce-based strategies are required for such sparse data sets, which will be
investigated in the future.

We hope that the contributions provided in this thesis will help deliver the benefits of
rough set based attribute reduction for large-scale decision systems and will aid knowledge

engineering in big data scenarios.
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