
Explorations into MapReduce based
Parallel Reduct Computation

A thesis submitted during 2021 to the University of Hyderabad in partial fulfillment of the

award of a Ph.D. degree in School of Computer and Information Sciences

by

PANDU SOWKUNTLA

Reg. No: 15MCPC20

School of Computer and Information Sciences

University of Hyderabad

(P.O.) Central University, Gachibowli,
Hyderabad - 500046

Telangana, India

2021

CERTIFICATE

This is to certify that the thesis entitled “Explorations into MapReduce based

Parallel Reduct Computation” submitted by Pandu Sowkuntla bearing Reg. No:

15MCPC20 in partial fulfillment of the requirements for the award of Doctor of Philos-

ophy in Computer Science is a bonafide work carried out by him under my supervision

and guidance.

The thesis is free from plagiarism and has not been submitted previously in part or in full

to this or any other University or Institution for the award of any degree or diploma.

The student has the following publications before submission of the thesis for adjudication

and has produced evidence for the same in the form of acceptance letter or the reprint in the

relevant area of his research:

1. Pandu Sowkuntla and P. S. V. S. Sai Prasad. MapReduce based improved quick

reduct algorithm with granular refinement using vertical partitioning scheme. Knowl-

edge -Based Systems,189:105104, Feb 2020, Elsevier. https://doi.org/10.1016/

j.knosys.2019.105104 [Indexed in SCI, SCOPUS]. The work reported in this pub-

lication appears in Chapter 3.

2. Pandu Sowkuntla, Sravya Dunna, and P. S. V. S. Sai Prasad. MapReduce based paral-

lel attribute reduction in Incomplete Decision Systems. Knowledge -Based Systems,

213:106677, Feb 2021, Elsevier. https://doi.org/10.1016/j.knosys.2020.106677

[Indexed in SCI, SCOPUS]. The work reported in this publication appears in Chap-

ter 4.

3. Pandu Sowkuntla and P. S. V. S. Sai Prasad. MapReduce based parallel fuzzy-rough

attribute reduction using discernibility matrix. Applied Intelligence, pages 1–20, Apr

2021, Springer. https://doi.org/10.1007/s10489-021-02253-1 [Indexed in SCI,

SCOPUS]. The work reported in this publication appears in Chapter 5.

https://doi.org/10.1016/j.knosys.2019.105104
https://doi.org/10.1016/j.knosys.2019.105104
https://doi.org/10.1016/j.knosys.2020.106677
https://doi.org/10.1007/s10489-021-02253-1

Further the student has passed the following courses towards fulfilment of course work

requirement for Ph.D.

Course
Code

Name of the course Credits Pass/Fail

CS801 Data Structures and Algorithms 4 Pass
CS802 Operating Systems and Programming 4 Pass
CS811 High Performance Computing 4 Pass
AI851 Trends in Soft Computing 4 Pass

(Dr. P. S. V. S. Sai Prasad)

Supervisor

School of Computer and Information Sciences

University of Hyderabad

Hyderabad – 500046, India

(Prof. Chakravarthy Bhagvati)

Dean

School of Computer and Information Sciences

University of Hyderabad

Hyderabad – 500046, India.

iii

DECLARATION

I, Pandu Sowkuntla, hereby declare that this thesis entitled “Explorations into

MapReduce based Parallel Reduct Computation” submitted by me under the guid-

ance and supervision of Dr. P. S. V. S. Sai Prasad is a bonafide research work and is free

from any plagiarism. I also declare that it has not been submitted previously in part or in

full to this University or any other University or Institution for the award of any degree or

diploma. I hereby agree that my thesis can be submitted in Shodganga/INFLIBNET.

A report on plagiarism statistics from the University Librarian is enclosed.

Date :

Signature of the Student

Name: Pandu Sowkuntla

Reg. No.: 15MCPC20

To my daughter, Shanmukha Shree Koumudi, whose presence makes me feel

a great serenity. I love you Siri.

To my supervisor, Dr. P. S. V. S. Sai Prasad, without whose support and

encouragement, this would not have been possible.

Acknowledgements

The journey to become a doctor is lengthy and difficult. It is my school of thought

which inspired me to go on this adventure and to remain intellectually curious,

and I hope it never leaves me. I am grateful to everyone who has assisted me in

my quest to obtain a Ph. D.

First and foremost, I would like to express my sincere gratitude to my supervisor,

Dr. P. S. V. S. Sai Prasad, for his much time, effort, and knowledge in assisting

me in completion of this research work. I can not describe how much time he spent

encouraging me, correcting me, and instilling hope in me. He has fostered in his

students a passion of guidance and assistance via his example. Thank you for your

patience, subject expertise, and being a nice human being.

I would like to convey my heartfelt thanks to RAC members Prof. Rajeev

Wankar and Dr. Y. V. Subba Rao, whose insights and comments aided me in

completing this doctoral research work. I would like to express my appreciation

and thanks to Prof. Chakravarthy Bhagvati, Dean, School of Computer and

Information Sciences (SCIS), for his cooperation, particularly during the COVID

19 pandemic.

I would like to express my gratitude to Prof. C. Raghavendra Rao for allowing

me to attend the Rough Computing course, which sparked my interest in the field

and substantially aided me in learning the fundamental principles of rough set

based attribute reduction.

I would like to show my thankfulness to Prof. Rajeev Wankar for permitting me

to attend the Parallel Computing course, which immensely aided me in grasping

the fundamental concepts of parallel/distributed processing.

I had also encountered difficulties along this journey. A special thanks goes to

Dr. K. Swarupa Rani, Prof. Vineet C Padmanabhan Nair and Prof.

Salman Abdul Moiz for their valuable suggestions and help during these hard

times. I would like to express my sincere thanks to the office and technical staff

of the SCIS, as well as the administration staff of the University of Hyderabad,

for their assistance.

I would like to extend my sincere thanks to Dr. Ni Peng, School of Information,

Renmin University of China, for sharing the source code of the PARA algorithm,

which is used in the experimental study of one of the proposed approaches.

I am grateful to the Ministry of Electronics and Information Technology, Gov-

ernment of India (Digital India Corporation), for funding my research under the

Visvesvaraya Ph. D. scheme with the unique id: MEITY-PHD-1039. I owe

a debt of gratitude to Dr. Y. V. Subba Rao (Coordinator for PhD scheme) who

encouraged me to apply this fellowship and for taking required steps in getting

fellowship on time.

My sincere thanks to all of my Research Scholars Lab friends, whose friendship

helped me a lot on this journey. Special thanks to my co-scholars, Abhimanyu

Bar, Anil Kumar and D. Bheekya for their friendship and support, as well as

for sharing fun, frustration, and companionship. The tea break was the favorite

moment of the day for us along with the supervisor. Not simply for the tea, or

the break, but also for the pleasant company. Thank you very much.

I cannot end without expressing deepest gratitude to my parents (Aagaiah and

Dhanamma) for all of the love, care, support, and prayers they have sent my way

during this journey. I hope you have become proud of me. And to my daughter

Shanmukha Shree Koumudi, thank you for being there for me at the end of

the day. Your presence gives me a sense of calm and refreshment. I love you Siri.

Pandu Sowkuntla

Abstract

Feature selection is one of the data reduction techniques, and it is the process of

selecting a minimal subset of features that provide the same classification ability

as the given whole set of attributes. In 1982, Prof. Pawlak introduced Rough

Set Theory (RST) as Soft Computing paradigm, which has emerged as a robust

mathematical framework for feature selection. Rough sets based feature selection

is known as attribute reduction or reduct computation.

Nowadays, the volume of data is increasing at an unprecedented rate. As the data

grows in object space and/or attribute space in the data set, the attribute reduc-

tion has become an expensive preprocessing step. In the last decade, many rough

set-based parallel/distributed approaches have been proposed using the MapRe-

duce model for scalable attribute reduction. The majority of these approaches are

hindered by the challenges presented by today’s massive data sets. The current

research is motivated by these challenges, which include big dimensionality (huge

attribute space in the data set), variety of the data (different data in decision

systems), and data partitioning strategy used in dividing the input data set.

All the existing MapReduce based reduct computation approaches in categorical

data sets (decision systems with categorical attributes) adopted horizontal parti-

tioning strategy for partitioning the data to the cluster of computers, where the

data set is partitioned in object space. This strategy results in computational

overheads for big dimensional data sets. Because, with this strategy, considerable

amount of data to be communicated across shuffle and sort phase and a complex

reduce phase is involved in any MapReduce framework. Furthermore it presents

an immense problem if the large-scale data set contains missing (incomplete) val-

ues (in incomplete decision systems), or if the data set contains different types of

attributes (in hybrid decision systems). Since extensions to classical rough sets

are used to deal with incomplete and hybrid decision systems, attribute reduction

in these decision systems pose much severe computational challenges and involve

higher space and time complexities in building MapReduce based approaches.

This research focuses on scalable attribute reduction in large-scale data sets us-

ing MapReduce model, with an emphasis on the data set’s big dimensionality.

Along with horizontal partitioning strategy, an alternative strategy known as

“vertical partitioning” is being explored in dealing with big dimensional data

iv

sets. Therefore, this thesis aim is to explore MapReduce based parallel/distributed

reduct computation in categorical, incomplete and hybrid decision systems, where

the relevance of horizontal and vertical partitioning strategies are investigated in

partitioning the input data set to the nodes of the cluster.

This thesis proposes a classical rough sets based approach using MapReduce for

attribute reduction. This approach investigates vertical partitioning strategy, that

is used to partition the input data set in the attribute space to the nodes of the

cluster. The applicability of this strategy is explored for attribute reduction in

large-scale categorical data sets with big dimensionality.

Different strategies in MapReduce framework are needed for parallelizing the ex-

isting extensions to classical rough sets for attribute reduction in large-scale in-

complete and hybrid decision systems. Thus, in this thesis, MapReduce based

attribute reduction approaches for incomplete decision systems are proposed us-

ing Novel Granular Framework (NGF) (an extension to classical rough sets) and

adopt horizontal and vertical partitioning strategies for data partitioning. Fuzzy-

rough set model (an extension to classical rough sets) is used to deal with hybrid

decision systems. A fuzzy discernibility matrix based accelerator is introduced,

and based on this accelerator, MapReduce based reduct computation approaches

are proposed using horizontal and vertical partitioning strategies.

The proposed approaches are implemented using Apache Spark. Extensive exper-

imental analysis carried out on different benchmark large-scale data sets with the

variance in object and attribute space. The efficiency of the proposed approaches

are evaluated based on the computational evaluation (Running time, reduct, and

reduct size metrics are used), performance evaluation (Speedup, scaleup and

sizeup metrics are used) and impact of the data partitioning strategy.

It is empirically proved that, the proposed approaches perform better than the

existing state-of-the-art approaches. The experimental results along with theo-

retical validation show that the horizontal partitioning based approaches perform

well for the larger object space data sets with moderate attribute space. And the

vertical partitioning based approaches are relevant and scale well for moderate ob-

ject space data sets with big dimensionality. In future, this research has a scope

to explore viable MapReduce based reduct computation approaches that can si-

multaneously scale in both huge object space and huge attribute space in the data

sets. Since, the proposed approaches deal with volume and variety characteristics

of the big data, this research also has the scope to deal with velocity property

by proposing MapReduce based incremental attribute reduction approaches for

streaming data.

v

vi

Contents

List of Figures xi

List of Tables xiii

1 Introduction 1

1.1 Feature selection . 1

1.2 Rough Set Theory for feature subset selection 3

1.3 Parallel/distributed computation . 4

1.4 Research motivation . 6

1.4.1 Big dimensionality . 6

1.4.2 Impact of the data partitioning . 8

1.4.3 Variety of the data . 8

1.5 Research objectives . 9

1.6 Contributions and publications . 10

1.6.1 Supplementary Contributions . 11

1.7 Organization of Thesis . 12

2 Preliminaries 14

2.1 Classical rough sets . 14

2.2 Rough set based attribute reduction . 16

2.2.1 Dependency measure based reduct computation 17

2.2.2 Discernibility matrix based reduct computation 19

2.3 MapReduce programming model . 21

2.4 Apache Spark . 23

2.4.1 Resilient Distributed Data set (RDD) 23

2.4.2 Operations on RDD . 25

2.4.3 Data partitioning in Apache Spark . 28

2.4.4 Run time architecture of Spark application 29

vii

CONTENTS

3 Parallel attribute reduction in Categorical Decision Systems 32

3.1 Review of existing approaches . 32

3.2 Related work . 34

3.2.1 Sequential IQRA IG algorithm . 35

3.2.2 Horizontal partitioning based parallel IQRA IG: IN MRIQRA IG . . . 37

3.3 Proposed vertical partitioning of the data . 39

3.4 Parallel attribute reduction in CDS using vertical partitioning 41

3.4.1 MR IQRA VP: map() algorithm . 43

3.4.2 MR IQRA VP: reduce() algorithm . 44

3.4.3 Computation of γA({d}) . 44

3.4.4 Complexity analysis of MR IQRA VP algorithm 45

3.5 Salient features and limitations of MR IQRA VP 46

3.5.1 Positive region removal . 46

3.5.2 Granular refinement . 47

3.5.3 Simplification of shuffle and sort phase 48

3.5.4 Limitations of MR IQRA VP . 48

3.6 Experimental analysis . 49

3.6.1 Experimental set up . 49

3.6.2 Computational evaluation of MR IQRA VP 51

3.6.3 Performance evaluation of MR IQRA VP 54

3.6.4 Impact of the data partitioning strategy 57

3.7 Summary . 58

4 Parallel attribute reduction in Incomplete Decision Systems 60

4.1 Review of existing approaches . 60

4.2 Rough sets extension to IDS . 62

4.3 Related work . 64

4.3.1 Overview of Novel Granular Framework 64

4.3.2 IQRAIG Incomplete algorithm . 65

4.4 Proposed parallel attribute reduction in IDS using horizontal partitioning . . 67

4.4.1 Alternative representation of the NGF 67

4.4.2 Parallel computation of the base portions 69

4.4.3 Parallel computation of the best attribute 72

4.4.4 Positive region removal . 74

4.4.5 Complexity analysis of MRIDS HP algorithm 74

4.5 Proposed parallel attribute reduction in IDS using vertical partitioning 76

viii

CONTENTS

4.5.1 Parallel computation of the best attribute 79

4.5.2 Granular refinement and positive region removal 79

4.5.3 Computation of γA({d}) . 80

4.5.4 Complexity analysis of MRIDS VP algorithm 80

4.6 Experimental analysis . 82

4.6.1 Experimental setup . 82

4.6.2 Computational evaluation . 84

4.6.3 Performance evaluation . 85

4.6.4 Impact of the partitioning strategy . 88

4.7 Summary . 90

5 Parallel attribute reduction in Hybrid Decision Systems 91

5.1 Review of existing approaches . 91

5.2 Related work . 94

5.2.1 Fuzzy-rough set theory . 95

5.2.2 Fuzzy discernibility matrix based attribute reduction 96

5.3 Proposed Discernibility matrix based Attribute Reduction Accelerator (DARA) 99

5.3.1 Motivation . 99

5.3.2 SAT-region removal as an accelerator 101

5.3.3 IFDMFS algorithm . 104

5.4 Parallel attribute reduction in HDS using horizontal partitioning 108

5.4.1 Distributed Fuzzy Discernibility Matrix (DFDM) 108

5.4.2 Parallel reduct computation using DFDM 110

5.5 Parallel attribute reduction in HDS using vertical partitioning 116

5.5.1 Vertical partitioning of the input data set 116

5.5.2 Parallel construction of the vertical FDM (vFDM) 117

5.5.3 Parallel attribute reduction using vFDM 118

5.5.4 Complexity analysis of MR VFDMFS algorithm 122

5.6 Experimental analysis . 124

5.6.1 Experimental setup . 124

5.6.2 Experimental results of IFDMFS algorithm 126

5.6.3 Experimental results of MR IFDMFS and MR VFDMFS 128

5.6.4 Impact of the data partitioning strategy 133

5.7 Summary . 135

ix

CONTENTS

6 Conclusions and Future work 136

6.1 Research summary . 136

6.2 Future directions . 138

References 140

x

List of Figures

1.1 Number of parallel/distributed reduct computation approaches proposed based

on non-MapReduce and MapReduce model 5

1.2 Big dimensionality of the data sets added to UCI repository since the year 2009 7

1.3 Structure of Thesis . 13

2.1 Overview of MapReduce programming model 21

2.2 Creation of Spark RDD and its operations . 24

2.3 Types of RDD transformations . 26

2.4 Run time architecture of Spark application 30

3.1 Horizontal partitioning of the input data . 34

3.2 Vertical partitioning of the input data . 40

3.3 Speedup of MR IQRA VP and IN MRIQRA IG for different data sets 55

3.4 Scaleup of MR IQRA VP and IN MRIQRA IG for different data sets 56

3.5 Sizeup of MR IQRA VP and IN MRIQRA IG for different data sets 57

3.6 Behavior of MR IQRA VP and IN MRIQRA IG for varying object space and

attribute space of Mushroom . 58

4.1 Speedup of MRIDS HP and MRIDS VP for Gisette data set with different

percentages of incompleteness . 87

4.2 Scaleup of MRIDS HP and MRIDS VP for Gisette data set with different per-

centages of incompleteness . 87

4.3 Sizeup of MRIDS HP and MRIDS VP for Gisette data set with different per-

centages of incompleteness . 88

4.4 Behavior of MRIDS HP and MRIDS VP for varying object space and attribute

space of Mushroom . 89

5.1 Horizontally and vertically partitioned FDM 117

xi

LIST OF FIGURES

5.2 Speedup results of MR IFDMFS, MR VFDMFS, MR FRDM SBE and DFRS

algorithms on different data sets . 131

5.3 Scaleup results of MR IFDMFS, MR VFDMFS, MR FRDM SBE and DFRS

algorithms on different data sets . 132

5.4 Sizeup results of MR IFDMFS, MR VFDMFS, MR FRDM SBE and DFRS

algorithms on different data sets . 133

5.5 Behavior of MR IFDMFS and MR VFDMFS for varying object space and

attribute space of Heart data set . 134

xii

List of Tables

3.1 Time complexity analysis of MR IQRA VP algorithm 45

3.2 Experimental set up of MR IQRA VP, PLAR, PFSPA and IN MRIQRA IG

algorithms . 50

3.3 Data sets used in the experiments of MR IQRA VP algorithm 51

3.4 The obtained reduct of MR IQRA VP for different data sets 51

3.5 Comparative results of MR IQRA VP with PLAR SCE (Time: Seconds) . . . 52

3.6 Comparative results of MR IQRA VP with PFSPA (Time: Seconds) 53

3.7 Comparative results of MR IQRA VP with IN MRIQRA IG (Time: Seconds) 54

3.8 Comparison of MR IQRA VP, IN MRIQRA IG for varying objects and at-

tributes of Gisette data set (Time: Seconds) 58

4.1 Time complexity analysis of MRIDS HP algorithm 74

4.2 Time complexity analysis of MRIDS VP algorithm 81

4.3 Data sets used in the experiments of MRIDS HP and MRIDS VP algorithms 83

4.4 Running time (seconds) and reduct size of MRIDS HP and MRIDS VP for

varying incompleteness percentage in the data sets 84

4.5 Reduct obtained by MRIDS HP and MRIDS VP algorithms for varying in-

completeness percentage in the data sets . 86

4.6 Comparison of MRIDS HP and MRIDS VP with varying object and attribute

space of Mushroom (Time: Seconds) . 89

5.1 An example decision system . 97

5.2 Time complexity analysis of MR IFDMFS algorithm 115

5.3 Time complexity analysis of MR VFDMFS algorithm 123

5.4 Small size data sets used in the experiments of IFDMFS algorithm 125

5.5 Large size data sets used in the experiments of MR IFDMFS and MR VFDMFS

algorithms . 125

5.6 Running time (Seconds) and reduct size of PARA and IFDMFS algorithms . 127

xiii

LIST OF TABLES

5.7 Running time (Seconds) and reduct size results of MR IFDMFS, MR VFDMFS,

MR FRDM SBE, and DFRS algorithms on large numerical data sets 128

5.8 Running time (Seconds) and reduct size results of MR IFDMFS and MR VFDMFS

algorithms on hybrid data sets . 129

5.9 Reduct obtained by IFDMFS, MR IFDMFS and MR VFDMFS algorithms for

different data sets . 130

5.10 Comparison of MR IFDMFS and MR VFDMFS for varying objects and at-

tributes of Heart data set (Time: Seconds) . 134

xiv

Notations and Abbreviations

[x]P : Equivalence class of an object x using indiscernibility relation IND(P)

⊥: T-conorm or S-norm

µDISa(x, x′): The measure of degree to which the objects x and x′ are dissimilar for numerical

attribute a

µSIMa(x, x′): The measure of degree to which the objects x and x′ are similar for numerical

attribute a

P (X): Upper approximation of X defined using IND(P)

P (X): Lower approximation of X defined using IND(P)

{d}: Decision attribute

A: Set of conditional attributes

Cxx′: An entry in the discernibility matrix

DIS(P): Discernibility relation of subset of attributes P

fa: Information mapping from set of objects U to set of dommain values Va

FDM F (R): The subset of entries of FDM , which have reached the maximum SAT with

subset of attributes R

FDM UF (R): The subset of entries of FDM , which have not yet reached the maximum

SAT with subset of attributes R

gr: A granule (a set of objects) belonging to granular space

NP GR(U/R): Non positive region granules formed from U/R

P GR(U/R): Positive region granules formed from U/R

xv

NOTATIONS AND ABBREVIATIONS

POS: Positive region

R: Reduct set

SB(x): Similarity class of an object x using similarity relation SIM(B)

SAT (P): Satisfiability value of subset P for all the entries in the matrix

SATP (Cxx′): Satisfiability value of subset P for an entry in the matrix

SATUF (P): Satisfiablity of subset P for all the entries in the matrix after SAT-region removal

SIM(B): Similarity relation of subset of attributes B

T : T-norm

U : Set of objects

U/IND(P) or U/P : Granular space formed using IND(P) on objects set U of CDS

U/SIM(B): Granular space formed using SIM(B) on objects set U of IDS

Va: Set of domain values of attribute a in a decision system

IND(P): Indiscernibility relation of subset of attributes P

CDS: Categorical Decision Systems

DAG: Directed Acyclic Graph

DARA: Discernibility matrix based Attribute Reduction Accelerator

DFDM: Distributed Fuzzy Discernibility Matrix

DFRS: Distributed Feature Selection for Big Data Using Fuzzy Rough Sets

FDM: Fuzzy Discernibility Matrix

FDMFS: Fuzzy Discernibility Matrix based Feature Selection

HDS: Hybrid Decision Systems

IDS: Incomplete Decision Systems

IFDMFS: Improved Fuzzy Discernibility Matrix based Feature Selection

IN MRIQRA IG: MapReduce based IQRA IG

xvi

NOTATIONS AND ABBREVIATIONS

IND: Indiscernibility relation

IQRA IG: Improved Quick Reduct Algorithm using Information Gain

KDD: Knowledge Discovery in Databases

MR FRDM SBE: Fuzzy Rough Discernibility Matrix Based Feature Subset Selection With

MapReduce

MR IFDMFS: MapReduce based Improved Fuzzy Discernibility Matrix Feature Selection

MR IMQRA: An Efficient MapReduce Based Approach for Fuzzy Decision Reduct Com-

putation

MR IQRA VP: MapReduce based Improved Quick Reduct Algorithm with Vertical Par-

titioning technique

MR VFDMFS: Vertically partitioned Fuzzy Discernibility Matrix based Feature Selection

using MapReduce

MRIDS HP: MapReduce based parallel attribute reduction in IDS using Horizontal Parti-

tioning technique

MRIDS VP: MapReduce based parallel attribute reduction in IDS using Vertical Partition-

ing technique

NGF: Novel Granular Framework

PFSPA: Parallel Feature Selection using Positive Approximation

PLAR: Parallel Large-Scale Attribute Reduction

QRA: Quick Reduct Algorithm

RDD: Resilient Distribute Data set

RST: Rough Set Theory

SBE: Sequential Backward Elimination strategy

SFS: Sequential Forward Selection strategy

SIM: Similarity relation

vFDM: Vertically partitioned Fuzzy Discernibility Matrix

xvii

Chapter 1

Introduction

Recent advances in computing technologies such as Internet, Internet of Things, social net-

works, mobile communication systems, transportation systems have contributed to the in-

creasing amounts of data in size. The data set is a structured collection of the data in the

form of objects (samples) and features (attributes or dimension). The growing data volumes

produce the large-scale data sets with huge object space or/and feature space. Large-scale

data sets are typically affected by a significant amount of redundancy which can hinder knowl-

edge discovery, and is, in fact, misleading.

Knowledge management plays a key role in generating a value from the data. It is nec-

essary to go through a process to induce value from the data. The Knowledge Discovery in

Databases (KDD) process [34, 36] is a general framework that describes the various steps

needed to obtain useful knowledge from a collection of data. The primary goal of the KDD

process is to find relevant knowledge from the data in huge databases. The KDD process has

the steps: (i) Data selection (ii) Data cleaning/preprocessing (iii) Data reduction (iv) Data

mining and (v) Interpretation/Evaluation. The third step, data reduction is the crucial step

in the KDD process. This step deals with dimensionality reduction and feature selection is

one of the prominent ways of doing the same. Feature selection helps in reducing the feature

space and improves the performance of the later steps of the KDD process.

1.1 Feature selection

As given by Guyon et al. [39, 40], feature selection is the process of finding relevant features

and discarding those that are irrelevant and redundant, so as to obtain a subset of features

that accurately describe a given problem with minimum degradation of performance. It is a

widely used preprocessing step for machine learning, data mining, and pattern recognition

[39, 115]. Feature selection exploits the data redundancy to reduce the uncertainty from

1

1. INTRODUCTION

large-scale data sets. It also acts as a solution that helps in mining knowledge from multi-

dimensional large-scale data sets [10, 27]. The aim of the feature selection is: (i) to enhance

the performance of the predictive models; (ii) to build them efficient in terms of their resource

costs and (iii) to provide an insight into the underlying procedure that generated the data.

Furthermore, the feature selection helps to reduce the adverse impact induced by the curse

of dimensionality2 [9].

Feature selection methods [40, 63] are divided into three categories according to their

relationship with the learning (classification) algorithms, as filter, wrapper, and embedded.

• Filter : In filter methods, the search in feature space is done prior to the classification

process. That is, filter method performs feature selection independently of any learning

algorithm. As a result, these are the methods take less computing and memory re-

sources. Additionally, filters may be uni-variate or multivariate, based on whether the

feature assessment is performed individually or collectively. Filter methods use differ-

ent metrics for evaluating features, and these metrics are categorised into: information

based, distance based, correlation based and consistency based. Filter based feature

selection methods are fast and scalable, and they are independent of the classifier.

• Wrapper : This method search the feature space depending on the classification accuracy

assessment of the learning algorithm. That is, different subset of features are identified

and evaluated them by using the classifier. Generally, the wrapper method is better in

terms of classification accuracy, but computationally costly since it trains the classifier

multiple times in each step of the feature space search, and subset selected is biased

towards the classifier.

• Embedded : This method searches for an optimal subset of features that is built into the

classifier construction. The advantage of this method is that it is less computationally

intensive than a wrapper method. And, embedded method is computationally slower

than filter method, but some times filter method may fail to select best features. Thus,

embedded method lies in between the filter and wrapper methods.

Each of the above feature selection methods further categorised into the following two sub-

categories depending on the output they produce.

• Feature ranking : Depending on the evaluation metric used, methods in this category

generate an output that consists of an ordered list of features graded by their impor-

tance.
2The curse of dimensionality refers to a set of problems that emerge while working with high-dimensional

data.

2

1.2 Rough Set Theory for feature subset selection

• Feature subset selection: The method in this category produces the output which con-

sists of the subset of features that are considered most important and the remaining

features are removed.

The feature subset selection is performed in four basic steps [53], (i) Feature subset generation

(ii) Subset evaluation (iii) Stopping criterion, and (iv) Validation of results. The feature subset

is generated based on a search strategy [63]. Four search strategies are existed, namely, forward

search, backward search, bidirectional search and random search. The forward and backward

search strategies are prominent and widely used search strategies.

• Forward search strategy : In this strategy, the feature subset generation starts by initial-

izing the subset as an empty set, and features are added incrementally until a specified

stopping criterion is satisfied or number of features in the subset is reached to a thresh-

old value. Since the features are selected sequentially, it is named as Sequential Forward

Selection (SFS) strategy.

• Backward search strategy : In this strategy, the feature subset generation starts from

complete set of features, and the redundant features are removed one by one from the

complete set based on a criterion that checks whether a feature is redundant or not.

This strategy is also called as Sequential Backward Elimination (SBE).

The SFS strategy may results in a subset of features that contain redundant features.

But it is observed that the SBE strategy guarantees minimal subset features without any

redundant features. However the computational efficiency of SFS strategy over SBE makes

it suitable for building scalable feature subset selection approaches for large-scale data sets.

1.2 Rough Set Theory for feature subset selection

In 1982, Prof. Pawlak [77] introduced Rough Set Theory (RST) as Soft Computing paradigm.

In recent years, RST has emerged as a robust mathematical framework for attribute reduction

[78, 79, 80]. It is effective in dealing with uncertainty and vagueness in the data. RST has

become an area of great interest to the researchers for the following reasons.

• Requiring no additional information, by just using the data alone, RST enables the

reduction of the attributes and the discovery of data dependencies in a data set [78, 80].

• Rough sets have been complemented by other soft computing technologies such as neural

networks, fuzzy sets and many successful hybrid models have been generated. Some of

the popular hybrid models include: fuzzy-rough sets and rough-fuzzy sets [32, 33],

rough-neural networks [61], rough-genetic algorithms [43, 62].

3

1. INTRODUCTION

• Several extensions [66, 94, 123] to rough sets1 are available to deal with many real-

world problems such as decision analysis, data mining, intelligent control and pattern

recognition. The prominent extensions include: variable precision rough sets, tolerance

rough sets, probabilistic rough sets, fuzzy-rough sets and dominance-based rough sets.

Generally the data in a data set is stored in the form of a table, where the rows represent

objects and columns represent features. In rough sets terminology, this data table is known

as information system. An information system can be extended to decision system by the

inclusion of decision attributes. Feature subset selection using rough sets principles is known

as attribute reduction2. The selected feature subset in the case of information systems is

termed as reduct and relative reduct in the case of decision systems. In the remainder of

the thesis, as the thesis is restricted to decision systems, the term ”reduct” refers to ”rela-

tive reduct”, and the reduct computation is considered synonymous to attribute reduction.

Thus the reduct is a minimal subset of conditional attributes that provide the same classifi-

cation ability as the set of conditional attributes in the decision system. In RST, the reduct

computation methods are classified into many categories. However the primary categories

include: (i) Dependency measure, and (ii) Discernibility matrix [44, 53]. In this thesis, the

proposed methods are developed based on both the dependency measure and discernibility

matrix approaches. Theoretical background of these two approaches is provided in the second

chapter.

Due to the exponential growth of data, if the data set is large-volume or/and high dimen-

sional, the traditional (sequential) attribute reduction algorithms can not perform well. These

algorithms face problems from both data storage and computational complexity viewpoints.

Scalability of attribute reduction suffers with the large-scale data sets due to insufficient

memory space available in a single node [42, 103]. Most of the researchers found paral-

lel/distributed computation as the good solution for scalable attribute reduction. Therefore,

researchers try to parallelize the traditional attribute reduction algorithms to improve their

efficiency on large data sets.

1.3 Parallel/distributed computation

Nowadays, the volume of the data is growing at an unprecedented rate [10, 38, 59]. Prior

to the year 2003, mankind generated only 5 exabytes of data, but currently 5 exabytes of

data is produced in just two days, and the rate of the growth continues to rise [10]. As the

1“Rough sets” introduced by Prof. Pawlak termed as “classical rough sets” in the rest of the thesis in
order to distinguish from its extensions and hybrid models.

2The term “feature subset selection” is replaced with “attribute reduction” in the rest of the thesis.

4

1.3 Parallel/distributed computation

data volume escalates, knowledge discovery has become a challenging task because of the

uncertainty and inconsistency in the data. Due to the continuous increase in the volume

of the data sets, attribute reduction techniques have become essential in extracting relevant

information from vast amounts of data. Thus, we require parallel/distributed solutions for

attribute reduction in large-scale data sets.

In parallel/distributed computation, several calculations are carried out concurrently in

task and/or data parallel [6]. Task parallelism attempts to run many tasks concurrently, while

data parallelism targets to perform the same task on several data sets. Some of the parallel

attribute reduction methods [87] work on decomposing the entire computation into smaller

sub-tasks, which are processed on separate nodes. Some other parallel attribute reduction

approaches [26] employ data parallelism. Both task and data parallelism are used to perform

parallel attribute reduction [7, 60, 104, 106]. Traditional parallel/distributed computation

models such as MPI, OpenMP, BSP, etc., are used for processing large-scale data sets.

1998-2001 2002-2005 2006-2009 2010-2013 2014-2017 2018-2021
0

5

10

15

20

1

2

1

2

3 3

0 0 0

4

2
1

1
5

N
u

m
b

er
of

ap
p
ro

ac
h

es
p

ro
p

os
ed non-MapReduce

MapReduce

Figure 1.1: Number of parallel/distributed reduct computation approaches proposed based on
non-MapReduce and MapReduce model

Based on a comprehensive review of the literature of reduct computation over the last two

decades, it is observed that, researchers are more likely to adopt the MapReduce paradigm for

creating parallel/distributed approaches than non-MapReduce (traditional parallel/distributed

computation) models. Figure 1.1 shows the number of parallel/distributed approaches pro-

posed during the last two decades based on non-MapReduce and MapReduce models. From

this figure, it can be noticed that, with the advancement of the MapReduce model [25], most

of the researchers switched their attention from traditional parallel/distributed computation

to MapReduce based parallel/distributed computation. Because the MapReduce framework

5

1. INTRODUCTION

provides a consistent structure for deriving granular aggregated information in the reduce

phase using constructed partial granules information in the map phase, which is crucial for

achieving rough set based attribute reduction. Thus, in recent years (especially last decade)

several MapReduce based parallel/distributed approaches were proposed for attribute reduc-

tion in large-scale data sets [8, 81, 96, 100, 101, 102, 114, 124, 125].

MapReduce can be referred as an execution framework for robust and scalable implemen-

tation of parallel/distributed algorithms. The framework has mainly three phases or steps:

Map, Shuffle and Sort, and Reduce. The framework coordinates these phases of processing

over massive amounts of data on large cluster of computing nodes. Hadoop [1], Apache

Spark [121], Twister [35], etc., are some of the existing MapReduce frameworks. MapReduce

model overcomes the drawbacks in traditional parallel/distributed computation, and has the

following significant benefits.

• MapReduce model conceals a number of system-level details from the user and facilitates

parallelization of the computation on large-scale data, across cluster of computers.

• This model is capable of detecting machine failures and coordinating between machines

for optimal use of networks and storage devices (i.e., fault tolerance).

MapReduce has been proven to be helpful to design an effective solution to a complex task

on massive data, and, it is currently being applied in many areas such as data mining [42],

machine learning [17, 103, 131]. Thus, in this thesis, the approaches are proposed based on

MapReduce programming model.

1.4 Research motivation

Several researchers have been interested in attribute reduction in large-scale data sets, and

many approaches have been proposed. The majority of these approaches are hindered by the

challenges presented by today’s massive data sets. In order to deal with these challenges, the

existing attribute reduction methods must be improved or new ones must be proposed. The

current research is motivated by these challenges, which include, big dimensionality, variety

of the data in the large-scale data sets, and data partitioning strategy used in splitting the

data set.

1.4.1 Big dimensionality

Attribute reduction in large-scale data sets is not only impacted by the number of objects a

data set has but also by the number of attributes. The size of a data set in object space or/and

6

1.4 Research motivation

in attribute space grows more and more as data increases rapidly. Similarly to big data, the

term “big dimensionality” [10, 11] has been invented to describe the enormous amount of

attributes reaching to levels that render existing attribute reduction approaches ineffective.

According to extensively used UCI Machine Learning repository [31], the maximum dimen-

sionality of data set in the years 1980s was only approximately 100. By the 1990s, this number

increased to more than 1500, and by the year 2009, it had risen to more than 3 million. Figure

1.2 depicts the number of attributes in the highest dimensionality data sets that have been

added to UCI Machine Learning repository during the previous 12 years. Some of the most

prominent areas that deal with big dimensionality challenges are, microarray analysis [4, 11],

text and image classification [3, 10, 65, 93].

0 0.5 1 1.5 2 2.5 3 3.5

·106

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

3231961(URL Reputation)

5409 (P53 Mutants)

138672 (PEMS-SF)

857 (CNAE-9)

1950000 (Gas sensor open)

150000 (Gas sensor flow)

140256 (Electricity Load Diagrams)

480000 (Twin gas sensor)

2158859 (KASANDR)

43680 (Monitoring hydraulic systems)

8265 (Study of Asian Religious)

200000 (Deepfakes)

Number of attributes

Y
ea

r

Figure 1.2: Big dimensionality of the data sets added to UCI repository since the year 2009

To accelerate the attribute reduction in large-scale data sets, in the last decade, many

classical rough set-based methods have been developed using the MapReduce programming

model, and some of them have shown their strengths in comparison to the rest. Despite the

effectiveness of the existing MapReduce based rough set attribute reduction methods, they

are confronted with various issues and are unable to effectively and efficiently handle the large

data sets, especially data sets with big dimensionality. The big dimensionality in the data set

presents a tremendous challenge to the researchers.

7

1. INTRODUCTION

1.4.2 Impact of the data partitioning

All the existing rough set theory based attribute reduction approaches [15, 45, 81, 92, 114,

124] using the MapReduce programming model adopted horizontal partitioning strategy for

partitioning the input data to the cluster. With this strategy, the object space of the input

data set is partitioned, and the data partitions are distributed to the nodes of the cluster.

Hence an attribute values of different objects are scattered throughout all the partitions of

the data set, which are located in different nodes in the cluster. Horizontal partitioning

based approaches are proved to be efficient for the data sets having huge object space with

moderate attribute apace. In data sets involving smaller object space and more attribute

space such as many bioinformatical microarray and document classification data sets (i.e.,

big dimensionality data sets), the horizontal partitioning strategy results in computational

overheads. Because with this strategy, considerable amount of data to be communicated

across shuffle and sort phase and a complex reduce phase is involved in any MapReduce

framework.

Because of the horizontal partitioning strategy, researchers concentrated only one aspect

of large-scale data sets, namely large number of objects aspect in the data set in designing

attribute reduction algorithms, while paying little attention to the attributes aspect. This

has inspired us to look into alternative data partitioning strategy that avoid the problems of

horizontal partitioning and efficient in handling the data sets with big dimensionality.

1.4.3 Variety of the data

In addition to the size of the data, the variety of the data has a significant influence on the

reduct computation process. The variety of the data consist of structured, unstructured,

and semi-structured data from various sources. Just as data previously had to be obtained

from spreadsheets and databases, today data is found in various formats, such as categorical,

real, boolean, images, audio, video, and other social media platforms. Attribute reduction

in large-scale data sets poses an immense problem if the data contains missing (incomplete)

values, or if the data contains different types of attributes.

The decision systems with categorical (or discrete) attributes is known as complete sym-

bolic decision systems (also known Categorical Decision Systems (CDS)). The decision sys-

tems that include objects with missing attribute values are referred to as incomplete symbolic

decision systems (also known Incomplete Decision Systems (IDS)). The decision systems with

different types of attributes (e.g., categorical, numerical,...etc.) is known as hybrid decision

systems (HDS). Classical rough set model uses crisp equivalence classes in attribute reduction.

As a consequence, it is suitable to perform the attribute reduction in symbolic (categorical)

8

1.5 Research objectives

data sets (i.e., CDS). The decision systems, IDS and HDS are frequently occurring data sets in

decision-making problems. Thus, extensions to classical rough sets [57, 58, 99, 112] are avail-

able to deal with IDS for attribute reduction. Various fuzzy-rough set models [19, 32, 86, 117]

are available to handle different types of attributes in data set for attribute reduction.

From the literature, it is observed that, a lot of research works have been done on at-

tribute reduction in IDS [23, 30, 64, 73, 84, 108, 129, 134]. But all the existing approaches

are sequential methods and they can not handle the large-scale incomplete data sets. Par-

allel/distributed approaches are not proposed for attribute reduction in large-scale IDS. Be-

cause, the processing of large-scale IDS is difficult due to two challenges, incompleteness

involved in the data, and the large size of the data set. Thus, different strategies in MapRe-

duce framework are needed for parallelizing the existing extensions to classical rough sets for

attribute reduction in large-scale IDS.

From extensive review of current literature [28, 46, 54, 56, 72, 85, 91], it is observed that,

the approaches for attribute reduction in HDS involve higher space and time complexities

compared to classical rough sets. It is also observed that a substantial decrease in mem-

ory usage is achieved in the discernibility matrix based approach relative to the dependency

measure based approach. Further discernibility matrices are more suitable for performing par-

allel/distributed computation. It is noticed that, the discernibility matrix based accelerators

and the corresponding parallel/distributed approaches do not exist for attribute reduction in

HDS. Thus, MapReduce based parallel/distributed methods using discernibility matrix are

needed to overcome the higher space complexities of dependency measure based approaches.

1.5 Research objectives

This research focuses on scalable attribute reduction in large-scale data sets using MapRe-

duce, with an emphasis on the data set’s big dimensionality. Each of the research problems

mentioned in Section 1.4 form the objectives of this research work. And each of these concerns

are addressed one by one as follows.

• The first objective of this thesis is to investigate an alternative strategy known as

“vertical partitioning”, which is used to partition the input data set in the attribute

space and distribute the data partitions to the nodes of the cluster. The applicability of

this strategy is explored for rough set based attribute reduction in Categorical Decision

Systems (CDS) with big dimensionality.

• The second objective of this thesis is to investigate MapReduce based attribute reduction

approaches for large-scale IDS that use existing Novel Granular Framework (NGF) to

9

1. INTRODUCTION

handle the incompleteness in the data and adopt horizontal and vertical partitioning

strategies.

• The third and fourth objectives of thesis are to explore discernibility matrix based

attribute reduction in large-scale HDS using MapReduce with the strategies of horizontal

and vertical partitioning.

The summary of aforementioned objectives of this thesis can be enunciated as follows:

“This thesis objective is to explore MapReduce based parallel/distributed reduct

computation in categorical, incomplete and hybrid decision systems, where the

relevance of horizontal and vertical partitioning strategies are investigated in

partitioning the input data to the nodes of the cluster.”

1.6 Contributions and publications

Contributions to this thesis are made in relation to the research objectives outlined in the

preceding section. Therefore, contributions are categorized according to the type of the

decision system, i.e., categorical (CDS), incomplete (IDS), or hybrid (HDS). Each contribution

and its corresponding publication are enumerated below.

1. Contribution 1: A MapReduce based algorithm MR IQRA VP is proposed using ver-

tical partitioning strategy for attribute reduction in CDS. Here, the vertical partitioning

strategy partitions the input data set in attribute space to the nodes of the cluster. This

strategy is used alternative to horizontal partitioning strategy.

The work in this contribution is resulted in the following publication.

• Pandu Sowkuntla* and P. S. V. S. Sai Prasad. MapReduce based improved

quick reduct algorithm with granular refinement using vertical par-

titioning scheme. Knowledge-Based Systems, Elsevier, 189:105104, Feb 2020.

https://doi.org/10.1016/j.knosys.2019.105104 (Indexed in SCI, SCOPUS).

2. Contribution 2: MapReduce based parallel/distributed approaches are proposed based

on the Novel Granular Framework (NGF) [73] for attribute reduction in large-scale IDS

using horizontal and vertical partitioning strategies. Briefly, this contribution includes

the following:

• An alternative representation of the NGF is proposed and adopted to develop the

MRIDS HP algorithm. This algorithm uses the strategy of horizontal partitioning.

10

https://doi.org/10.1016/j.knosys.2019.105104

1.6 Contributions and publications

• Algorithm MRIDS VP is developed by parallelizing the existing NGF based on the

strategy of the vertical partitioning.

The work in this contribution is published as given below.

• Pandu Sowkuntla*, Sravya Dunna and P. S. V. S. Sai Prasad. MapReduce based

parallel attribute reduction in Incomplete Decision Systems. Knowledge-

Based Systems, Elsevier, 213:106677, Feb 2021. https://doi.org/10.1016/j.

knosys.2020.106677 (Indexed in SCI, SCOPUS)

3. Contribution 3: A fuzzy discernibility matrix based attribute reduction accelerator

(DARA) is introduced for scalable attribute reduction in HDS. Based on this accelerator,

a sequential algorithm IFDMFS (Improved Fuzzy Discernibility Matrix based Feature

Selection) is developed. In order to enhance scalability even further, an algorithm

MR IFDMFS is proposed using horizontal partitioning strategy. This algorithm is a

MapReduce based parallel/distributed version of IFDMFS.

The work in this contribution resulted in the following publication.

• Pandu Sowkuntla* and P. S. V. S. Sai Prasad. MapReduce based parallel

fuzzy-rough attribute reduction using discernibility matrix. Applied In-

telligence, Springer, pages 1–20, April 2021.

https://doi.org/10.1007/s10489-021-02253-1 (Indexed in SCI, SCOPUS).

4. Contribution 4: Based on DARA accelerator (see contribution 3), an algorithm

MR VFDMFS is proposed using vertical partitioning strategy. It is also a MapReduce

based parallel/distributed version of IFDMFS. This algorithm is proposed for achieving

scalability in big dimensional HDS.

The work in this contribution will be communicated soon to the following journal.

• Pandu Sowkuntla and P. S. V. S. Sai Prasad. MapReduce based parallel

attribute reduction in high dimensional hybrid decision systems. Inter-

national Journal of Machine Learning and Cybernetics (to be communicated).

1.6.1 Supplementary Contributions

Throughout my Doctoral research, I also contributed to the following collaborative publica-

tions. They are not acknowledged as contributions in this thesis.

11

https://doi.org/10.1016/j.knosys.2020.106677
https://doi.org/10.1016/j.knosys.2020.106677
https://doi.org/10.1007/s10489 -021-02253-1

1. INTRODUCTION

• Kiran Bandagar, Pandu Sowkuntla*, Salman Abdul Moiz, and P. S. V. S. Sai Prasad.

MR IMQRA: An Efficient MapReduce Based Approach for Fuzzy Decision

Reduct Computation. In International Conference on Pattern Recognition and Ma-

chine Intelligence (PReMI), pages 306–316. Springer International Publishing, 2019.

https://doi.org/10.1007/978-3-030-34869-4_34 (Indexed in SCOPUS, DBLP).

• Neeli Lakshmi Pavani, Pandu Sowkuntla*, K. Swarupa Rani, and P. S. V. S. Sai

Prasad. Fuzzy Rough Discernibility Matrix Based Feature Subset Selection

With MapReduce. In IEEE Region10 Conference (TENCON), pages 389–394. IEEE,

OCT 2019. DOI:10.1109/TENCON.2019.8929668 (Indexed in SCOPUS, DBLP).

1.7 Organization of Thesis

The thesis is divided into chapters based on the approaches proposed for the decision systems:

CDS, IDS and HDS. Figure 1.3 depicts the structure of the thesis. The present chapter (Chap-

ter 1) provides the introduction to this thesis, where it reviews the feature selection, rough

set theory and parallel/distributed computation. It also presents the research motivation,

objectives and the contributions made to this thesis.

Chapter 2 introduces the fundamental principles of classical rough sets and rough set-

based attribute reduction (or reduct computation). A brief overview of the MapReduce

programming model is given. This chapter also includes a detailed discussion of the Apache

Spark MapReduce framework, which is used to implement the proposed approaches of this

research work.

The contributions made to this research work are discussed in Chapters 3, 4 and 5. In

Chapter 3, we explore into parallel attribute reduction in CDS based on classical rough sets.

This chapter provides a MapReduce-based approach for big dimensional data sets that uses

a vertical partitioning strategy for partitioning the input data set.

In Chapter 4, we investigate at parallel attribute reduction in IDS. Initially, this chapter

discusses the extension of rough sets for IDS. And, the proposed MapReduce-based paral-

lel/distributed approaches employing horizontal and vertical partitioning strategies are dis-

cussed. Both proposed approaches utilize the existing NGF to deal with incompleteness in

the data.

12

https://doi.org/10.1007/978-3-030-34869-4_34
DOI: 10.1109/TENCON.2019.8929668

1.7 Organization of Thesis

Chapter 2: Preliminaries
-Classical rough sets
-MapReduce programming model
-Apache Spark

Chapter 1: Introduction
 -Research motivation
 -Research objectives
 -Contributions and publications
 -Organization of Thesis

Chapter 3: Parallel attribute reduction in
 Categorical Decision Systems
 -Vertical partitioning of the data
 -Attribute reduction using vertical partitioning
 -Relevance and limitations of proposed algorithm
 -Experimental analysis

Explorations into
MapReduce based

Parallel Reduct
Computation

Chapter 5: Parallel attribute reduction in
 Hybrid Decision Systems
 -Fuzzy-rough sets
 -Discernibility matrix based accelerator
 -Attribute reduction using horizontal partitioning
 -Attribute reduction using vertical partitioning
 -Relevance and limitations of proposed algorithms
 -Experimental analysis

Chapter 4: Parallel attribute reduction in
 Incomplete Decision Systems
 -Extension to classical rough sets
 -Attribute reduction using horizontal partitioning
 -Attribute reduction using vertical partitioning
 -Relevance and limitations of proposed algorithms
 -Experimental analysis

Chapter 6: Conclusions and Future work
 -Summary of Thesis
 -Future directions

Figure 1.3: Structure of Thesis

Chapter 5 presents parallel attribute reduction in HDS. Fuzzy-rough set theory, which

is an extension to classical rough sets is discussed in this chapter. This chapter introduces

a fuzzy discernibility matrix-based attribute reduction accelerator (DARA) to accelerate the

attribute reduction. And, proposes a sequential approach based on DARA, and corresponding

MapReduce based approaches using horizontal and vertical partitioning strategies.

Chapter 6 concludes the thesis, summarizes the research work’s key contributions and

potential future scope.

13

Chapter 2

Preliminaries

This chapter provides the theoretical background for the research work provided in this thesis.

A brief overview of classical rough set theory is provided for understanding the approaches

proposed in this thesis. A foundation basis for attribute reduction using classical rough sets

is provided. And the discussion moves on to the core concepts of MapReduce programming

model and one of its framework Apache Spark which is used to implement the approaches

proposed as part of this thesis. It is to be noted that all the preliminary notions relating to

the rough sets are limited to the scope of this thesis.

2.1 Classical rough sets

A set in classical set theory is uniquely determined by its elements. In other words, a set

is well-defined because it does not allow for any ambiguities when it comes to determining

whether or not an element belongs to the set. Thus, a set adheres to a crisp (precise) notion.

That is, the membership value is crisp either 1 (if element belongs to set) or 0 (if element does

not belong to the set). For example, “the set of even numbers” is crisp because every number

is even or not even (odd). But, ambiguity occurs when referring to concept like “attractive

picture”, where clear belongingness is difficult to define for the word “attractive”. We can not

classify all the given set of pictures into “attractive” or “not attractive”. Thus the concept

of “attractive picture” is not crisp (imprecise) but it is vague. Therefore, classical set theory

does not support vague concepts.

Fuzzy sets proposed by Lotfi Zadeh [118] successfully deals with vagueness. In this ap-

proach, a set is defined by partial memberships (that lies between the values 0 and 1), as

opposed to crisp membership used in classical set theory. For example, for the concept of

“attractive picture”, we can give a membership degree 0.7 to a picture of given set of pic-

tures, in other words we can say that the picture is 70% attractive. Fuzzy set theory and its

14

2.1 Classical rough sets

applications have grown in popularity over the years, drawing the attention of researchers,

logicians, and philosophers all over the world.

Rough set theory (RST) [34, 77, 78, 97] is another approach to deal with vagueness. It is

an evolution of classical set theory that facilitates approximations in decision-making instead

of using partial memberships. In RST, a vague concept is represented with a pair of crisp

concepts called lower approximation and upper approximation. The lower approximation

defines the domain objects that are certainly to be part of the subset of interest while a

description of the objects that possibly belong to the subset is the upper approximation.

A vague concept is said to be crisp set (definable set) if its lower approximation is equal

to upper approximation, otherwise it is said to be rough set. For the same example of the

concept “attractive picture”, among the given set of pictures, those that are considered to

be certainly attractive fall into lower approximation, while those that are considered to be

possibly attractive fall into upper approximation.

Prof. Z. Pawlak introduced the classical rough sets in [77] and basics related to reduct

computation are given in [78, 79, 115]. Classical rough sets are defined for categorical decision

systems, where a categorical decision system is defined as,

CDS = (U,A ∪D, {Va, fa}a∈A∪D)

Here, U = {x1, x2,xm} is a finite nonempty set of objects, A = {a1, a2,an} is a finite

nonempty set of conditional attributes, D = {d1, d2,dq} is a finite set of decision attributes

that represent classes of objects. In this thesis, we assumeD = {d}, where d is a single decision

attribute having different decision values, Va is the domain of attribute a and fa : U → Va is a

function that maps an object x in U to exactly one value in Va. The notation fa(x) denotes the

object x value of attribute a. In this thesis, for simplicity, the notation a(x) used for referring

fa(x), and the decision system can be represented in short form as CDS = (U,A ∪ {d})
The indiscernibility relation is the main concept for defining approximations.

Definition 2.1. For the given decision system CDS, let P ⊆ A, an indiscernibility relation

IND(P) is defined as [77],

IND(P) = {(x, x′) ∈ U2 | ∀a ∈ P (a(x) = a(x′))} (2.1)

For two objects x, x′ ∈ U and if (x, x′) ∈ IND(P) then x and x′ are indiscernible (in-

distinguishable) by all the attributes of P . The indiscernibility relation determined by P

is called as P -indiscernibility relation. IND(P) is an equivalence relation as it satisfies the

reflexive, symmetric, and the transitive properties. The equivalence relation IND(P) induces

15

2. PRELIMINARIES

a partition1 of the universe of objects U into a family of disjoint subsets called equivalence

classes. The set of equivalence classes of U that are determined by the indiscernibility relation

IND(P) are denoted as U/IND(P) (or U/P), and the equivalence class that includes x is

denoted as [x]P , where [x]P = {y ∈ U |(x, y) ∈ IND(P)}. The set of equivalence classes U/P

is also called as approximation space or granular space, and each equivalence class in U/P is

also called as a granule. Since U/P is a partition of U , the following properties are satisfied.

1. If gr ∈ U/P is any granule, then gr ⊆ U .

2. For any two distinct granules gr, gr′ ∈ U/P , gr ∩ gr′ = φ.

3.
⋃

gr∈U/P

gr = U

According to Prof. Pawlak [77], rough set approximations are defined as given below.

Definition 2.2. For the given decision system CDS, let P ⊆ A and X ⊆ U . The concept X

can be approximated using only the information contained in P by constructing the P -lower

and P -upper approximations of X, denoted by P (X) and P (X) respectively as given below.

P (X) = {x ∈ U | [x]P ⊆ X} (2.2)

P (X) = {x ∈ U | [x]P ∩X 6= φ} (2.3)

Definition 2.2 states that, the lower approximation P (X) of the concept X (in the space

of P) is a set of objects x which belongs to the equivalence classes contained in X. And, the

upper approximation P (X) of the concept X (in the space of P) is a set of objects x from

the union of all the equivalence classes, which have non-empty intersection with X.

X is said to be definable set if P (X) = P (X) otherwise it is said to be rough set.

From [77, 78, 79], for the given decision system CDS, the positive region is defined as

given below.

POSP ({d}) =
⋃

X∈U/{d}

P (X) (2.4)

The positive region POSP ({d}) contains the objects of U that are classified certainly into

one of the decision granules of U/{d} using the information of attribute set P .

2.2 Rough set based attribute reduction

As stated earlier, the reduct is a minimal subset of conditional attributes that preserves the

original classification as defined by conditional attribute set. Reduct computation methods

1Partition of a set is the collection of disjoint subsets where it does not contain an empty set, the union of
all the subsets is equal to the given set, and the intersection of any two subsets is an empty set.

16

2.2 Rough set based attribute reduction

are classified into many categories. However the primary categories include: (i) Dependency

measure based, and (ii) Discernibility matrix based [44, 53, 107, 116, 132]. This section

explains the basic concepts underlying both approaches.

2.2.1 Dependency measure based reduct computation

The dependency measure denotes the classifiability of a decision system, in other words it

represents dependency of decision attribute on the conditional attribute set of a decision sys-

tem. Different dependency measures exist in the literature, however, we use gamma measure

(γ) to propose dependency measure based approaches in this thesis.

For the given decision system CDS, the dependency measure (gamma measure1) of deci-

sion attribute {d} over the subset of conditional attributes P is given by [78, 79],

γP ({d}) =
|POSP ({d})|

|U |
(2.5)

(Note: In this thesis, the notation |Z| for any set Z denotes the cardinality of Z)

The gamma measure γP ({d}) gives the proportion of objects belonging to the positive

region of P . If γP ({d}) = 0 then classification {d} is independent of the attributes in P , and

the information in P is not useful for classification. If γP ({d}) = 1 then {d} is completely

dependent on P . And the values in 0 < γP ({d}) < 1 indicate the partial dependency. If

γA({d}) is 1, then decision system is said to be consistent (i.e., all the objects in the decision

system are classifiable) otherwise it is said to be inconsistent.

From Eq. (2.5), an attribute a ∈ P is said to indispensable (useful or essential) attribute,

if γP−{a}({d}) < γP ({d}), otherwise it is said to be dispensable (redundant). Note that

the dispensable attributes are superfluous and they do not contribute in the classifiability of

the system, thus these attributes should be removed in the process of reduct computation.

Therefore, based on the dependency measure approach the reduct is defined as given below.

Definition 2.3. For the given decision system CDS, let R be the subset of conditional

attributes (R ⊆ A), and R is said to be reduct if and only, if R satisfy the following two

conditions,

i). γR({d}) = γA({d}) (jointly sufficient)

ii). γR′({d}) < γR({d}) for any R′ ⊂ R (individually necessary)

In the above definition, the jointly sufficient condition states that, the gamma measure of

reduct attribute set is collectively sufficient to induce the same gamma measure of conditional

1The terms “dependency measure” and “gamma measure” are used interchangeably in the rest of the
thesis.

17

2. PRELIMINARIES

attribute set (i.e., γR({d}) = γA({d})), and the individually necessary condition states that

none of the reduct attributes can be omitted as each of them are necessary (i.e., γR′({d}) <
γR({d}) for any R′ ⊂ R). Note that, the minimal subset of attributes (reduct) is computed

using an attribute reduction algorithm. Quick Reduct Algorithm (QRA) [16] is regarded as

an illustration of dependency measure based reduct computation.

2.2.1.1 Quick reduct algorithm

Algorithm 2.1: Quick Reduct Algorithm (QRA)

Input: Decision sytsem CDS = (U,A ∪ {d})
Output: Reduct R

1 Initial Reduct R = φ
2 repeat
3 Temp = R
4 for each a ∈ (A−R) do
5 if (γR∪{a}({d}) > γTemp({d})) then

6 Temp = R ∪ {a}
7 end

8 end
9 R = Temp

10 until (γR({d}) == γA({d}))
11 Return R

Chounchoulas et al. [16] proposed Quick Reduct Algorithm (QRA) for reduct computation

in CDS. The QRA uses search strategy of Sequential Forward Selection (SFS) for generating

the reduct. The pseudo code of QRA is given in Algorithm 2.1.

In Algorithm 2.1, the QRA takes decision system CDS as input and produces super reduct

as the output. According to this algorithm, initial reduct R is set as empty set (φ). Initially,

the dependency measure γA({d}) is computed for checking the end condition of the algorithm.

From every iteration, an attribute a ∈ (A − R) is selected for which maximum gamma gain

(i.e., maximum dependency gain γR∪{a}({d})−γR({d})) is obtained. Algorithm is terminated

when gamma measure of the obtained Reduct γR({d}) is equals to the gamma measure of all

attributes set γA({d}). The computation of γR∪{a}({d}) , ∀a ∈ (A−R) is the main complexity

in each iteration of the algorithm.

From Algorithm 2.1, it can be observed that the QRA computes the next best attribute

in each iteration that should be added to the reduct set R. The termination condition of the

algorithm satisfies the first condition of the reduct given in Definition 2.3 (i.e., (γR({d}) =

γA({d}))). But the algorithm may not satisfy the second condition, where the reduct should

not contain dispensable attributes. Because, QRA follows SFS strategy that can not assure

18

2.2 Rough set based attribute reduction

the addition of only indispensable attribute to the reduct in each iteration. There is no

guarantee that SFS strategy generates minimal reduct, but it generates the reduct with the

size almost close to minimal. Thus, the reduct produced by QRA may contain dispensable

attributes. Therefore, the reduct generated by QRA is a super reduct1. In practice, it has

been observed that the redundancy in the reduct of QRA is extremely small and does not

hamper the quality of the reduct in inducing the good classification models.

2.2.2 Discernibility matrix based reduct computation

As previously described, the main idea in dependency measure based attribute reduction

approaches is indiscernibility relation. Alternatively, the complementary relation of indis-

cernibility relation named as discernibility relation is used for reduct computation. This can

be determined by complementing the indiscernibility relation given in Eq. (2.1). For the

given decision system CDS, for a subset P ⊆ A, the discernibility relation is given as,

DIS(P) = {(x, x′) ∈ U2 | (x, x′) /∈ IND(P)} (2.6)

The above Eq. (2.6) can be rewritten as given below.

DIS(P) = {(x, x′) ∈ U2 | ∃a ∈ P [a(x) 6= a(x′)]} (2.7)

Eq. (2.6) or (2.7) states that, The discernibility relation DIS(P) contains the pair of objects

which discern on at least one attribute in P . Further, the discernibility relation in a decision

system is constructed for the pair of objects which discern and their decision classes are

different, hence it is decision relative discernibility relation and is given below.

DIS(P) = {(x, x′) ∈ U2 | ∃a ∈ P [a(x) 6= a(x′)] ∧ d(x) 6= d(x′)} (2.8)

The discernibility relation DIS(P) satisfies the symmetric property, but it does not satisfy

the reflexive and transitive properties.

The discernibility relation of a decision system can be represented with a discernibility

matrix (DM) [98], in which each entry contains a set of attributes that discern a pair of

objects. For the given decision system CDS, the discernibility matrix is a symmetric matrix

U ×U . Thus, we can consider either only lower diagonal or upper diagonal entries. And, the

matrix contains the entries between the objects of different decision classes, the remaining

1In the rest of the thesis, super reduct is termed as reduct, as all the proposed approaches follow the SFS
strategy for reduct generation.

19

2. PRELIMINARIES

entries are empty. Hence, the matrix is a decision relative discernibility matrix 1 [55, 98]. In

the matrix, an entry Cxx′ between each pair of objects x, x′ ∈ U is given as,

Cxx′ =

{
{a ∈ A | a(x) 6= a(x′)} if d(x) 6= d(x′)

∅ otherwise
(2.9)

An entry Cxx′ in the matrix states that the objects x and x′ can be distinguished by any

attribute in Cxx′ . A discernibility function can be derived from the discernibility matrix.

The discernibility function is a boolean function defined on the power set of attribute set.

If the given attribute set has the ability to discern all the possible pair of objects of the

decision system belonging to different decision classes, then this function evaluates to TRUE;

otherwise, it evaluates to FALSE.

For the given decision system CDS, let a∗1, a
∗
2, ...a

∗
n be boolean variables correspond to the

attributes a1, a2, ...an respectively. The discernibility function fCDS is defined in terms of

boolean variables as given below.

fCDS(a∗1, a
∗
2, ...a

∗
n) = ∧{∨C∗xx′ |1 ≤ x′ ≤ x ≤ |U |, Cxx′ 6= ∅} (2.10)

Here, C∗xx′ = {a∗|a ∈ Cxx′}. The expression ∨C∗xx′ in the above equation denotes the disjunc-

tion of boolean variables associated with the attributes in Cxx′ . By applying the absorption

and distribution laws, the discernibility function can be simplified, where conjunction of re-

duced disjunctive normal forms are obtained. Every conjunctor in the reduced disjunctive

form is referred to as a prime implicant. The set of prime implicants of discernibility function

is equivalent to the set of all minimal reducts of the given decision system [98]. Based on

discernibility matrix approach [98], the reduct is defined as given below.

Definition 2.4. For the given decision system CDS, let R ⊆ A, Cxx′ (∀x, x′ ∈ U) be an

entry of the discernibility matrix (DM) of the given decision system, and R is said to be

reduct if and only if R satisfy the following two properties,

i). ∀Cxx′ ∈ DM [Cxx′ 6= ∅ ⇒ R ∩ Cxx′ 6= ∅] (jointly sufficient)

ii). ∀a ∈ R, ∃Cxx′ ∈ DM [Cxx′ 6= ∅ ∧ ((R− {a}) ∩ Cxx′ = ∅)] (individually necessary)

Property (i) demonstrates that, in the given decision system, the reduct R is jointly

sufficient for distinguishing all discernible object pairs. And, Property (ii) implies that each

attribute in reduct R is individually necessary.

1In this thesis, the discernibility matrix is used as synonymous to decision relative discernibility matrix

20

2.3 MapReduce programming model

�� �

�� �

�� �

�� �
�
�

�
�

�� �

�
�
��

-
@
@
@@R

-

-

-

-

-

-

ZZ~B
B
B
BN

��>

ZZ~

�
�
���

��>

-

-

-

-

Input
data set

Mappers Shuffle and Sort

Reducers

part-0
output

part-1
output

Output

Data partitions in
different nodes

map()

map()

map()

reduce()

reduce()

Data

Data

Data

partition

partition

partition

Figure 2.1: Overview of MapReduce programming model

2.3 MapReduce programming model

MapReduce framework was first introduced by Google Inc. researchers Jeffrey Dean and

Sanjay Ghemawat [25]. It is a parallel/distributed programming model used for large-scale

data processing. It reduces the amount of work required to write code that can run on a

cluster of computers (nodes) because it provides a simple API that the programmer can use.

The MapReduce system provides an abstraction that allows programmers to use a simple

model while hiding the specifics of parallelization, load balancing, and fault tolerance.

The nodes in the cluster of any MapReduce framework are categorized as master (driver

node), workers (slave nodes). The master is in-charge of assigning jobs to the workers, mon-

itoring the jobs, and re-executing failed tasks. Workers follow instructions from their master

and carry out their assigned tasks. A MapReduce program runs in three phases: map, shuffle

and sort, and reduce. The main code of the MapReduce program runs on the master, the

mapper and reducer codes run on the worker nodes. To accomplish the task given by the mas-

ter, the mappers and reducers run on all the nodes in the cluster in an isolated environment,

that is, they are unaware of each other and their jobs are equal on every node.

The < key, value > pair forms the basic data structure in any MapReduce framework. In

this programming model, the programmer writes the code in the form of mapper and reducer

with the following signatures:(The convention [...] denotes a list.)

map :< key1, value1 >→ [< key2, value2 >]

reduce :< key2, [value2] >→ [< key3, value3 >]

As shown in Figure 2.1, the execution framework can be summarized as follows.

1. The driver gets input data from the distributed file system and distributes it as partitions

(data splits) to different mappers located in different nodes (workers) of the cluster. The

mapper code is applied on every < key, value > pair and after processing, it produces

an arbitrary number of intermediate < key, value > pairs.

21

2. PRELIMINARIES

2. All these intermediate < key, value > pairs are grouped by the key, that can be achieved

by a large-scale distributed shuffling that involves all the nodes that executed map

tasks and all the nodes that will execute reduce task. Hence this intermediate data

must be copied over the network, and lot of communication takes place across the

cluster of nodes, this phase of the framework known as shuffle and sort. A job with

M mappers and R reducers involve maximum M × R distinct copy (data transfer)

operations, this leads to significant burden on the framework, since many disk and

network I/O operations are required to transfer the entire data and lot of communication

happens across the network. Under big data work loads, to get the high performance,

minimizing the shuffle and sort work and distributed coordination is important.

3. Each reducer gets intermediate data in order, that is sorted by key. The reducer is

applied on all values correspond to the same intermediate key to produce output <

key, value > pairs. Now the driver collects this output data and writes it to distributed

file system.

Following are the key advantages of the MapReduce paradigm.

• Horizontal scalability: It is the measure of a system’s ability to increase or decrease

in performance and cost in response to changes in application and system processing

demands. The MapReduce system’s computing power can be increased by adding more

nodes to the cluster. By default, MapReduce splits input data into partitions and

distributes them across the available machines, so having more machines means having

less data to process.

• Fault tolerance: It refers to the ability of a system to keep running even though one of

its components fails. In MapReduce framework, to identify a failure in the system, the

master will ping every worker on a periodic basis. If any worker does not give response

after certain time, then it is set as ”failed”, and the task of that worker is rescheduled

to other worker in the cluster. If a machine fails, all map tasks that have completed

must be executed again because their output is stored on the failed machine’s local hard

disk(s) and therefore inaccessible. The reducer tasks that have been completed should

not be re-executed because their output is stored in a distributed file system.

• Simple programming model: MapReduce has simple programming model, where a

programmer needs not look into implementation details of parallelism, distributed data

passing, or any other complexity. In a MapReduce framework, a programmer needs to

write a program in terms of map and reduce functions. MapReduce not only makes the

coding process ease and efficient but it also reduces the time to develop the programs.

22

2.4 Apache Spark

Apache Hadoop [1], Apache Spark [121], Twister [35], HaLoop [12], etc., are some of

the existing MapReduce frameworks. Even though, Apache Spark and Apache Hadoop are

two different large-scale data processing frameworks, they are alike in many ways. Apache

Spark offers several benefits over Hadoop. It was designed mainly to process iterative tasks

in memory, which was one of Hadoop’s major limitation. Additionally, from authors’ [95,

119, 120] assessments have found that, Spark outperforms Hadoop by running applications

up to 100 times faster in memory and 10 times faster on disk. Further, we can translate

Hadoop programs directly to Spark: i.e., the Spark primitives are a superset of Hadoop. It

should be noted that other frameworks such as Twister [35] and HaLoop [12] have attempted

to address the inefficiency of iterative job handling of Hadoop. Despite favoring iterative

MapReduce jobs, they could be regarded as subsets of Spark functionality [50, 51]. The

proposed approaches in this thesis are implemented on Apache Spark framework. One of the

reasons to choose Apache Spark is that, it supports iterative and in-memory computations.

Another reason is that, as compared to other iterative in-memory frameworks (such as Twister

[35], HaLoop [12]), Spark provides robust support for fault tolerance [50, 51].

2.4 Apache Spark

Apache Spark [121] is a fast computing framework which has the compatibility with Hadoop

MapReduce model. Apache Spark is developed at the University of California, Berkeley’s

AMPLab, which published it in the year 2014, and the Apache Software Foundation now

maintains it. Even after all these years, it is currently one of the most popular big data

analysis frameworks. In an increasingly wide range of industries, Apache Spark has become

the standard for large-scale data processing and data science. Spark has built in libraries

such as Spark SQL, Spark Streaming, MLlib (for machine learning) and GraphX (for graph

processing). These libraries are frequently used by businesses and academics throughout all

sectors to handle complex problems.

2.4.1 Resilient Distributed Data set (RDD)

The special feature of Spark, that made it as unique computing framework is its primary

data structure RDD. It is an immutable collection of data items distributed across the nodes

of the cluster, and can be manipulated in parallel. The word immutable meaning is that, RDD

can not be changed once it is created. Each word in the abbreviation of RDD has its own

significance.

23

2. PRELIMINARIES

RDDs

Action Actual results

Lineage

External
data set

Creating

Loading

Existing

Collection

parallelizing

RDD

val myRDD=sc.parallelize(List["big", "data"])

val wc=wcRDD.collect()

Transformations

val inputRDD=sc.textFile("/path/to/words.txt") val wcRDD=inputRDD.map(word=>(word,1))

Figure 2.2: Creation of Spark RDD and its operations

• Resilient : This word in RDD represents the fault tolerant, where the missing or damaged

partitions due to node failures can be recomputed.

• Distributed : It denotes that the data is distributed across the nodes of the cluster.

• Data set : It represents the records of the data.

Operations performed on RDD can be classified into two categories, namely transformations

and actions. The transformation operation is used to generate a new RDD from the existing

RDD. The actual results from the RDDs are produced by performing action operation. The

new RDDs can be generated by performing transformations on the existing RDDs or by

loading external data sets or by parallelizing the existing collection. Figure 2.2 shows the

creation of the RDDs and few operations on RDDs with associated code lines given in Scala

programming language.

Spark utilizes RDD and DAG (Directed Acyclic Graph) in achieving important features:

lazy evaluation, fault tolerance, iterative and in-memory computation. DAG contains the

lineage of RDD with all operations (transformations and actions) required to complete a

task. Here, RDD’s lineage refers to the previous RDDs on which it depends. The DAG gives

the logical execution flow of RDDs.

• Lazy evaluation: All transformations performed on RDDs are lazy in nature, meaning

that the actual result is not generated immediately after the operation, but instead a

new RDD is constructed from the old one. All these transformations are added to the

24

2.4 Apache Spark

DAG, and the actual results are obtained when an action operation is invoked. Unless

the action is executed, the input file is not even read into memory. This enables Spark

to make optimization decisions, because all transformations are seen before any action

is taken by Spark. Disk and memory usage is improved with lazy evaluation.

• Fault tolerance: Spark is built to deal with the failure of worker nodes. This fault

tolerance is achieved by using RDD and DAG. Since DAG contains the lineage of RDD,

when a worker node fails, the same results of that node can be obtained by re-executing

the steps of the lineage in the existing DAG. Note that, in lineage of an RDD, it

remembers how it was created from other RDD to recreate itself.

• Iterative and in-memory computation: Spark RDDs have in-memory computing facility

as it stores intermediate results in memory (RAM) instead of disk. This feature greatly

boosts Spark performance. Additionally, through RDDs, Spark is capable of caching

the intermediate results to help future iterations. By doing this, Spark gets an added

better performance for iterative and repetitive processes, that can generate results and

data in one step that can be reused later. Another way that a programmer may show

which RDDs should be re-used is with the persist method. Usually, persistent RDDs

are saved to RAM but can be dumped to disk if there is not enough memory. The

programmer may provide additional options in persistence methods, such as saving the

RDD on disk and memory or only on disk or replicating it between nodes.

2.4.2 Operations on RDD

Spark RDD supports two types of operations: transformations and actions. In the definition

of RDD, it is given that the RDD is immutable, that is, RDD can not be changed once it

is created. Here, the meaning of the word “immutable” should be understood correctly. Its

meaning is that, when we perform transformations or actions on RDD, then new RDDs or

results are produced without changing the existing RDD.

2.4.2.1 Transformations

Transformation is a function that generates new RDD from the existing one. Because RDDs

are read-only, the transformation does not affect the original RDD (existing RDD). All the

transformations applied on RDD built an RDD lineage which is represented with a DAG.

As mentioned earlier, transformations are lazy in nature, they are not executed immediately

after their creation, instead they are materialized once action operation is performed. There

25

2. PRELIMINARIES

RDD2 RDD1 RDD2

Narrow transformations Wide transformations

RDD1

Partition−1 Partition−1

Partition−2Partition−2

Partition−3 Partition−3

Partition−1 Partition−1

Partition−2

Partition−3

Partition−2

Partition−3

Figure 2.3: Types of RDD transformations

are two types of transformations: narrow transformations and wide transformations. These

two types of transformations are shown in Figure 2.3.

• Narrow transformations: The transformations in this category convert each input par-

tition to a single output partition. These transformations occur, if each partition of

the parent RDD is utilized by single partition of the child RDD, or if each child RDD

partition is created by or is dependent on a single parent RDD partition. This type of

transformation is essentially faster, because it does not necessitate any shuffling of data

or data movement through the cluster network. Some of the narrow transformations

frequently used in implementing the approaches in this thesis are: map(), flatMap(),

mapPartitions() and filter().

– map() and flatMap(): These two transformations are similar in functionality. With

map() method, every item in RDD is transformed into one item in the resulting

RDD. That is it performs one-to-one transformation. Where as flatMap() method

transforms every item in RDD into multiple (0 or more) items in the resulting

RDD. That is, it is a one-to-many transformation.

– mapPartitions(): This method is similar to map(). Using the map() method, we

utilize the function at a per-element level, while using the mapPartitions() method,

we work with partition level. The mapPartitions() transformation is faster because

it calls the function once per partition, rather than once per element.

26

2.4 Apache Spark

– filter(): While executing a filter() transformation, we supply it with a boolean

function that is responsible for identifying RDD elements satisfying the given con-

dition and returns a subset of the RDD containing elements on which the boolean

function returns true.

• Wide transformations: The transformations in this category will have input partitions

contributing to multiple output partitions. These transformations occur, if each par-

tition of the parent RDD is utilized by multiple partitions of the child RDD, or if

each child RDD partition is created by or is dependent on multiple parent RDD par-

titions. This implies that data would be moved between partitions in order to carry

out wider transformations. These are also known as shuffle transformations because

they shuffle the data. These transformations are slow in comparison to narrow trans-

formations when constructing new RDD partitions, it may be necessary to shuffle data

across various nodes, which may have a major impact on processing speed of the frame-

work. Examples for wide transformations include: groupByKey(), aggregateByKey(),

reduceByKey(). One of the frequently used wide transformations in implementing the

proposed approaches is reduceByKey().

– reduceByKey(): This method gets an RDD in the form of < key, value > pair as

input, and aggregates value portions of the same key, and generates the output

RDD in the form of < key, value′ > pair. Here, the data type of value and value′

is same.

– aggregateByKey(): This method is logically equivalent to reduceByKey() but it

allows to return result in different type. It aggregates the values of each key, using

given aggregate, combine functions and a neutral “zero value”. Here, the “zero

value” input argument denotes the start value of an accumulator.

– groupByKey(): It creates a single sequence from the values for each key in the RDD.

During this transformation, lots of unnecessary data transfer over the network.

This method receives < key, value > pairs as an input, group the values based on

the key and generates an RDD of < key, [value] > pairs as an output. Here, the

notation [] indicates list of values.

From the Figure 2.3, it can be understood that, to make applications run faster when

operating with Spark, it is best to use narrow transformations as much as possible while

reducing the use of wide transformations. Some times usage of wide transformations is un-

avoidable, in that case alternative strategies should be incorporated to reduce the shuffling

of the data or movement of the data (in shuffle and sort phase) in the cluster network.

27

2. PRELIMINARIES

2.4.2.2 Actions

Action is a function that produces actual results from the given RDD. Thus, action operation

on RDD returns a non-RDD values. An action is one of the approaches to transfer the data

from executor (worker node) to the driver (master node). The action results are saved to

driver or to an external storage system. The action operations that are frequently used in

implementing the approaches in this thesis are: reduce(), collect() and count().

• reduce(): This action computes the aggregation of an RDD’s elements by repetitively

applying a function that gets two RDD elements as input and returns a new element as

an output. Finally, a single aggregated value is returned.

• collect(): This action returns an array to driver containing all the data items in the

RDD. The driver’s (master machine) maximum memory can be exceeded if care is not

taken when running this action.

• count(): This function returns the number of data items present in the input RDD.

• saveAsTextFile(): This function saves the path of a file and writes the content of the

RDD to that file.

2.4.3 Data partitioning in Apache Spark

Apache Spark framework reads the input file as an RDD and partitions and distributes it

into the cluster of computers using the horizontal partitioning strategy. In this strategy, the

input file is partitioned row wise, and each partition is distributed to a node of the cluster.

Thus, every node in the cluster gets one or more data partitions.

In any MapReduce framework, the data partitioning help in parallelizing distributed data

and processing with minimal network traffic across the cluster of computers. The number

of partitions used in Spark is adjustable, and having too few (which results in reduced con-

currency, data skewing, and inefficient resource usage) or too many (which results in task

scheduling taking longer than real execution time) partitions is undesirable. Hence, making

a decision on selection of the number of data partitions is a crucial step in achieving maxi-

mum performance of MapReduce based algorithm in Apache Spark. As given in the literature

[50, 51], the number of data partitions recommended to be equal to the number of cores (some

times may be 2 or 3 times of available cores) in the cluster to achieve the maximum paral-

lelism. Thus, one or more partitions available in a node. Spark assigns a task per partition,

and each core executes a task.

28

2.4 Apache Spark

Internally, Apache Spark supports two types of partitioners to partition the list of <

key, value > pairs. They are hash partitioner and range partitioner. Depending on how

keys in the data are distributed or sequenced, and the action that is to be performed on

the data, the user can choose the appropriate partitioner. Spark uses HashPartitioner as

its default partitioner. The data will be distributed uniformly across all partitions using

HashPartitioner. The data is distributed to nodes based on the result of the hash function

applied to each key. Hash partitioning has the potential to make distributed data skewed.

With the range partitioning, tuples with keys in the same range will appear on the same

computer. That is, a range partitioner partitions keys depending on the set of sorted range

of keys and key ordering.

2.4.4 Run time architecture of Spark application

Spark follows master/slave run time architecture where, master (driver) acts as central coor-

dinator that coordinate the slaves (workers or executors). The combination of user program,

driver and its executors form a Spark application. The run time architecture of the Spark

application contains three major components: driver, cluster manager and executors. Figure

2.4 shows the run time architecture of the Spark application. The role of each component is

given below.

2.4.4.1 Role of driver

The main() method of the user program runs in the driver. In this method the sparkContext

(referred with sc) is created. SparkContext is the core component of any Spark application.

It is an handle to an instance of the Spark execution environment. And it is used to build

RDDs, accumulators, and broadcast variables in Spark, as well as to access and run Spark

services.

The execution is done and actual results are returned if an action is performed on RDD. In

other words, when an action is performed then the driver creates a job from the user program.

Then the driver creates a DAG which is a logical execution plan. After creating the DAG, the

driver converts it into physical execution plan by splitting it into a number of stages. These

stages are then subdivided into smaller tasks, which are then allocated to executors.

• Job: It is a parallel computation that consists of several tasks that are launched in

response to Spark actions.

• Stage: Each job is subdivided into smaller groups of tasks called stages that are inter-

dependent.

29

2. PRELIMINARIES

Worker node

Worker node

Worker node

Worker node

Worker node

Worker node

Executor

Executor

Executor

Executor

Task1

Task3 Task4

Task5

Task6

Executor

Executor

Task Task

Task Task

Cluster manager

Task2

Shuffle and Sort phase

Map phase Reduce phase

JOB

submitted through

All tasks

Cluster manager

RDD1 RDD2

Task6

Task1

Task2

Task3

Task4

Task5

Assign Reducers
Submit the code (jar files)

Assign Mappers

SparkContext

rdd=spark.read.textFile()

spark.sparkContext()

rdd.map()

Submit the code (jar files)

(Intermediate data in memory)

JOB is initiated when action() triggers

Master node

rdd.reduceByKey()

rdd.collect() action()

Partition−6

Partition−1

Partition−2

Partition−3

Partition−4

Partition−5

Partition−7

Partition−8

DAG Scheduler

Stage1

Stage2

Stage3

Task Scheduler

Driver program

Input data

RDD3

RDD4

Figure 2.4: Run time architecture of Spark application

30

2.4 Apache Spark

• Task : A task is a specific piece of work that is assigned to the executor. For each

partition, a task is created.

Each stage contains the number of tasks which are equal to number of partitions in the cluster.

Thus the number of tasks in a job can be calculated by multiplying the number of jobs with

number of stages. Here, the creation of the stage depends on the shuffling of the data in the

cluster network. When a transformation needs shuffling of the data to other partitions then

driver creates stages for other partitions. If a transformation does not require shuffling then

driver creates a single stage for it. after converting a job into number of tasks, the driver

schedules them to the executors through a cluster manager. And finally, the driver collects

the results from the executors on successful execution of Spark application.

2.4.4.2 Role of cluster manager

After converting the job into tasks, the driver communicates with cluster manager and nego-

tiates for resources. A cluster manager is responsible for obtaining and allocating resources

on the cluster to Spark jobs. Thus a Spark application is launched on a cluster of nodes using

the cluster manager. Spark’s default built-in cluster manager is standalone cluster man-

ager. Apart from its integrated cluster manager, Spark supports other open source cluster

managers, including Hadoop Yarn, Apache Mesos.

2.4.4.3 Role of executors

Executor is a distributed machine that is in control of task execution. An executor can run

multiple tasks in parallel. Here, generally a task is allocated to a CPU core of the executor.

The executor is responsible for all data processing. It interacts with the storage systems. The

executor stores the results of computations in memory, a cache, or on hard disk or can return

to the driver.

One of the primary aims of this thesis work is to examine different strategies

for simplifying the shuffle and sort phase in the design of rough set based at-

tribute reduction algorithms using Apache Spark. In the next chapter (Chapter 3), we

investigate these alternative strategies for attribute reduction in categorical decision systems.

And, in Chapters 4 and 5, we explore these strategies for attribute reduction in incomplete

and hybrid decision systems.

31

Chapter 3

Parallel attribute reduction in

Categorical Decision Systems

This chapter introduces the first contribution for this doctoral thesis. In this chapter, the rel-

evance of vertical partitioning strategy is investigated for classical rough set based attribute

reduction in Categorical Decision Systems (CDS) with big dimensionality. A MapReduce

based parallel/distributed algorithm MR IQRA VP is developed in which vertical partition-

ing strategy is used for partitioning the input data set. With the vertical partitioning strategy,

the data set is split over attribute space. It overcomes the problems involved in horizontal

partitioning strategy which partitions the data over object space. The advantages and limi-

tations of the proposed MR IQRA VP algorithm is theoretically and experimentally studied,

inferences are obtained through comparative analysis with state-of-the-art horizontal parti-

tioning based algorithms. The work discussed in this chapter has been published in [102].

3.1 Review of existing approaches

Rough set theory [77] has been successfully identified as an effective framework for attribute

reduction in CDS. Several algorithms [16, 24, 47, 48, 67, 68, 69, 74, 83] in rough set theory have

been developed over the previous decades to accomplish efficient reduct computation. Quick

Reduct Algorithm (QRA) [16] is one of the key traditional reduct computation algorithms.

Sai Prasad et al. extended this algorithm to IQRA IG (Improved QRA) [74] by adding the

features of handling the trivial ambiguous situation, granular refinement, and positive region

removal.

The amount of data generated each day has increased exponentially during the previ-

ous several years. If the data set is enormous in volume or/and dimension, the aforemen-

tioned classical reduct computing algorithms fail to perform adequately due to their sequen-

32

3.1 Review of existing approaches

tial nature. For scalable attribute reduction in CDS, the researchers considered that paral-

lel/distributed computation is the optimal method. As a result, researchers [7, 26, 60, 87,

104, 106] attempted to parallelize standard attribute reduction approaches in order to increase

their efficiency when dealing with large-scale data sets.

In recent years with the proliferation of MapReduce model for parallel/distributed compu-

tation, several scalable reduct computation algorithms [21, 45, 81, 114] have been developed

for large-scale CDS using Apache Hadoop MapReduce framework [1]. But implementing iter-

ative parallel algorithms on the Hadoop platform was found to be inefficient. The lapse was

because of the problem of frequent storing/loading of the data into/from distributed memory.

In order to overcome the problems of Hadoop MapReduce framework, many authors

proposed parallel algorithms [15, 29, 92, 96, 124] based on in-memory iterative MapReduce

frameworks such as Apache Spark [2], and Twister [35]. J. Zhang et al. proposed Parallel

Large-Scale Attribute Reduction (PLAR) [124] algorithm based on Apache Spark framework.

Sai Prasad et al. developed a scalable IN MRIQRA IG algorithm [92], which is a parallel

version of IQRA IG [74], and it is implemented on the Twister framework.

Generally, a data set is viewed as a matrix, where rows indicate objects and columns

indicate attributes. In any MapReduce framework, the input data set to the cluster is par-

titioned using the horizontal partitioning strategy. In this partitioning strategy, the data is

partitioned in object space, and each partition is distributed to a node of the cluster (dis-

tributed by samples), as shown in Figure 3.1. Here, each data partition gets the information

of all the attributes over a subset of objects. This means that if the data set is horizontally

partitioned to the nodes of the cluster, every node has information of all the attributes over

a subset of objects. Thus, in rough set based attribute reduction, the granules or equivalence

classes (refer Section 2.2 in Chapter 2) construction is dependent on the information available

across the nodes, which results in significant data movement across the nodes of the cluster.

The number of candidate subsets over which the computations need to be performed for

finding the reduct is directly proportional to the number of attributes in the decision system.

From the existing MapReduce based parallel/distributed reduct computation algorithms such

as IN MRIQRA IG (based on Twister [35]), PLAR (based on Apache Spark [2]), and PFSPA

(based on Hadoop [1]), we observed that, as attribute space size increases, the running time

of horizontal partitioning based reduct computation algorithm also grows significantly. This

has been especially observed while working with big dimensional data sets of Bioinformatics,

i.e., microarray data sets.

33

3. PARALLEL ATTRIBUTE REDUCTION IN CATEGORICAL
DECISION SYSTEMS

-j

.

Part-1

Part-2

Part-p

a1 a2 a3... am d

x3
x4

x1
x2

xn−1

xn

.

.

.

Attributes

x1
x2

x3

xn

b

e

t
s

.

.

.
O

xn−1

Horizontal

Partitioning

a1 a2 a3... am d
a1 a2 a3... am d

a1 a2 a3... am d

.

.c

Figure 3.1: Horizontal partitioning of the input data

From the review of literature, it is observed that, horizontal partitioning based approaches

for attribute reduction in rough set theory are efficient for the data sets with huge number

of objects. Researchers have concentrated on only one aspect of large-scale data sets, namely

massive number of objects, while paying little attention to the attributes aspect. Hence, all

the rough set theory based attribute reduction approaches using the MapReduce programming

model [15, 21, 29, 45, 81, 92, 96, 114, 124] adopted horizontal partitioning strategy. Thus,

in the present work, we explore alternate partitioning strategy that perform well for the

large-scale data sets which are big dimensional.

From the literature, we noticed that, two non-rough set based methods [88, 89] used

vertical partitioning strategy to deal with big dimensional data sets. This strategy is an al-

ternative to horizontal partitioning strategy. Authors of these methods demonstrated the

utility of vertical partitioning strategy for feature ranking (but not for feature subset selec-

tion) using MapReduce programming model. Thus, in this chapter the relevance of vertical

partitioning strategy is investigated in rough set based attribute reduction. Here, a MapRe-

duce based algorithm MR IQRA VP using vertical partitioning strategy is proposed which

is designed based on the existing Improved Quick Reduct Algorithm (IQRA IG) [74]. The

proposed MR IQRA VP algorithm is implemented and compared using the Apache Spark

MapReduce framework [2]. The relevance and limitations of this algorithm is provided with

extensive experimental analysis along with theoretical validation.

3.2 Related work

This section describes the sequential and parallel version of IQRA IG algorithm, their sig-

nificant features. It also presents the process of reduct computation involving horizontal

partitioning of the data.

34

3.2 Related work

3.2.1 Sequential IQRA IG algorithm

Sai Prasad et al. proposed IQRA IG algorithm [74], which is an improved version of Quick

Reduct Algorithm (QRA) [16]. The significant features of this algorithm are, granular refine-

ment, positive region removal and handling of a trivial ambiguous situation.

By recollecting from Section 2.2.1, the QRA algorithm starts its first iteration with the

reduct R as an empty set (φ). For each conditional attribute a ∈ A, the dependency (gamma)

measure (γ) that depends on the positive region has to be computed. To compute the positive

region, the corresponding granular space is formed through sorting. Based on the attribute

values, objects are sorted. The place of transition from one value of the attribute to the

next attribute is identified. This results in the formation of granules. That is, granules

U/{a} are formed for any attribute a ∈ A. For sorting, Quick sort like comparison sorting

based algorithm takes O(|U |log|U |) time and Radix sort like linear sorting algorithm takes

O(|U |) time for forming granules. After the computation of positive region for each conditional

attribute a ∈ A, the gamma measure (γ) is computed. Attribute for which maximum gamma

obtained is included into the reduct set R.

In the subsequent iterations of QRA, when reduct is nonempty, the granules need to be

computed with R∪ {a}, ∀a ∈ (A−R). Granules U/(R∪ {a}) can be computed based on the

values of objects in R∪{a}. But this computation becomes redundant since computed granules

U/R are available from the previous iteration. This redundant computation in each iteration

is avoided by using granular refinement (refer Section 3.2.1.1) in IQRA IG algorithm. Thus,

by forming the granules U/(R ∪ {a}), the gamma measure γR∪{a}({d}) is computed. From

the granules of U/(R∪{a}), the positive region granules are removed by using positive region

removal (refer Section 3.2.1.2). From the next iteration, the granules are formed based on

the non-positive region granules of U/(R ∪ {a}). An attribute a is selected to the reduct, for

which the gamma gain (γR∪{a}({d})−γR({d})) is maximum. The algorithm terminates when

gamma measure of the obtained reduct γR({d}) equals the gamma measure of all conditional

attributes set γA({d}).

3.2.1.1 Granular refinement

Definition 3.1. For a decision system CDS = (U,A ∪ {d}), let Q ⊆ P ⊆ A, granules U/P

is a refinement over U/Q that denoted by U/P � U/Q where,

∀gr ∈ U/P ⇒ ∃gr′ ∈ U/Q ∧ gr ⊆ gr′ (3.1)

The above Eq. (3.1) is the outcome of the indiscernibility relation being an equivalence

relation.

35

3. PARALLEL ATTRIBUTE REDUCTION IN CATEGORICAL
DECISION SYSTEMS

Definition 3.2. For a decision system CDS = (U,A ∪ {d}), let R ⊆ A, a ∈ (A − R) and

U/R = {gr1, gr2,grr}, granular refinement for the computation of U/(R∪{a}) is given by,

U/(R ∪ {a}) = GranularRefinement(U/R, a),

where GranularRefinement(U/R, a) =
r⋃

i=1

gri/{a}
(3.2)

The granular refinement feature given in Eq. (3.2) is incorporated into the IQRA IG

algorithm. As a consequence, the granules U/(R∪{a}) are computed by splitting the existed

granules of U/R using the attribute values of a. That is, in each iteration of the algorithm,

instead of newly forming the granules by using all the attributes of R ∪ {a}, only gran-

ules of the previous iteration are refined by using the present attribute a. This results in

huge computational gain for each iteration of the algorithm. Through granular refinement

feature in the algorithm, sorting operation is not required on total objects set U . But ob-

jects in each granule gr ∈ U/R are sorted independently to get the required granules of

U/(R ∪ {a}). Using the Quick sort algorithm to form the granules U/(R ∪ {a}) the time

complexity becomes
∑r

i=1 O(|gri|log|gri|). Granular refinement has the computational gains

since
∑r

i=1 O(|gri|log|gri|) ≤ O(|R||U |log|U |).

3.2.1.2 Positive region removal

In an iteration of IQRA IG, let R denotes the set of attributes already selected into reduct

set. The granules of U/R are categorized into either positive region granules (P GR(U/R)) or

non-positive region granules (NP GR(U/R)). A granule gr ∈ U/R is a positive region granule

when it is pure or consistent, It becomes pure if all the objects of gr belong to a single decision

class, otherwise, gr is categorized as an inconsistent or non-positive region granule. If gr ∈

P GR(U/R), then ∀gr′ ∈ gr/(R∪{a}) for any a ∈ (A−R), we have gr′ ∈ P GR(U/(R∪{a})).

Because, if a granule is pure, then any of its sub granules is also pure. Based on granular

refinement (Eq. (3.2)), computations in IQRA IG in subsequent iterations are performed for

each granule of U/R independently of other granules. Therefore, the omission of objects in

P GR(U/R) has no effect on future computations. This phenomenon is called positive region

removal [74] or positive approximation [45].

Definition 3.3. For a decision system CDS, let R ⊆ A, and P GR(U/R) denotes the positive

region granules, then the positive region removal is given by,

U/R = NP GR(U/R) = U/R− P GR(U/R) (3.3)

36

3.2 Related work

In an iteration of IQRA IG algorithm, after the removal of positive region, only the non-

positive region granules (NP GR(U/R)) remain in U/R. In the next iteration, only the

granules of NP GR(U/R) are used in selecting the next best attribute to the reduct set

by applying granular refinement as GranularRefinement(NP GR(U/R), attribute). This

shows that the removal of positive region restricts the future computations to granules falling

into the non-positive region. This results in a decrease of space utilization in successive

iterations of the algorithm.

3.2.1.3 Handling trivial ambiguous situation

In an iteration of the algorithm, if there is no gamma gain, then the selection of an attribute

from (A − R) becomes difficult. And it may lead to the inclusion of redundant attribute

into reduct. This situation is called trivial ambiguous situation in QRA. And this situation

handled in IQRA IG algorithm using the secondary heuristic of information gain. In our

current study, we did not incorporate the trivial ambiguous situation and its resolution,

because, in large-scale data sets, such occurrence is a rarity. Instead, a random selection

from available attributes for inclusion into reduct has been incorporated. Hence a detailed

explanation of this feature of IQRA IG algorithm is ignored here (for the details refer [74]).

3.2.2 Horizontal partitioning based parallel IQRA IG: IN MRIQRA IG

Sai Prasad et al. proposed MapReduce based parallel version of IQRA IG algorithm as

IN MRIQRA IG [92]. This section provides a summary of IN MRIQRA IG algorithm as an

illustration for distributed computation involved in horizontal partitioning based MapReduce

reduct computation algorithm. It should be noted that, IN MRIQRA IG algorithm is one of

the few algorithms in the field of MapReduce based reduct computation having the aspect of

positive region removal.

3.2.2.1 Horizontal partitioning based reduct computation

In horizontal partitioning strategy, the data is partitioned over the object space and dis-

tributed to the nodes of the cluster. Through this data distribution, every node has informa-

tion of all the attributes over a subset of objects. Horizontally partitioned decision system

can be formally represented as follows.

Definition 3.4. For a decision system CDS = (U,A ∪ {d}), let CDS =
⋃p

i=1CDS
i be a

horizontally partitioned system, where CDSi = (U i, A ∪ {d}) is ith data split. It satisfies (i)

U =
⋃p

i=1 U
i (ii) U i ∩ U j = φ, ∀i, j ∈ {1, 2, ...p} and i 6= j.

37

3. PARALLEL ATTRIBUTE REDUCTION IN CATEGORICAL
DECISION SYSTEMS

From Definition 3.4, the decision system CDS is divided into p sub-decision tables or data

splits (data partitions), which are distributed to the nodes of the cluster.

In the driver, reduct R is initialized to empty set (φ). Each mapper is associated with

a data partition. The current reduct R is broadcasted to all the nodes by the driver. Each

mapper can only construct partial granules, that is ith mapper working on the data partition

CDSi and broadcasted R can construct partial granules gri ∈ U i/(R∪{a}) for all competing

attributes a ∈ (A − R). If gri is consistent, then < key, value > pair is generated with

the key as < a,GS(gri) > and value as < |gri|, d(gri) >. Here GS(gri) denotes granule

signature that contains attribute’s unique value combination which are satisfied by objects of

gri. Only |gri| without objects information is included in value portion because it is sufficient

for computing γR∪{a}({d}). Notation d(gri) denotes the unique decision value of objects of

gri. And in cases where gri is inconsistent, the key =< a,GS(gri) > and value =< 0,−1 >

are generated for representing inconsistency.

After shuffle and sort phase, the reducer receives a list of values corresponding to unique

key. The reducer aggregates all the values as single value that results in formation of granule

gr ∈ U/(R ∪ {a}). Here gr =
⋃r

i=1 gri where, GS(gri) = GS(grj), ∀i, j ∈ {1, 2, ...p}, and it

follows that GS(gr) = GS(gri), ∀i ∈ {1, 2, ...p}. If the value of d(gri) from all the mappers

is same, that is, if the granule is consistent, then corresponding |gri| are added to the result

as |gr| and it produces a single < key, value >=< a, |gr| > pair. But, if the granule is

inconsistent then < a, 0 > pair is generated. The driver computes |POSR∪{a}({d})|, ∀a ∈
(A−R) based on < key, value > pairs received from reducers associated with key = a. Since

the granules formed in reducers are same as the granules formed in sequential implementation

such as in IQRA IG algorithm, the result of IN MRIQRA IG algorithm is same as that of

IQRA IG algorithm. Finally, best attribute is selected, and added to the reduct R and the end

condition is tested. Based on the test result, the driver either returns reduct R or continues

the next iteration of the algorithm.

3.2.2.2 Positive region removal

Positive-region removal in IN MRIQRA IG algorithm is incorporated by obtaining positive

granules signature of the current reduct set R in a separate MapReduce job called Posgather.

Driver collects the GS(gr), ∀gr ∈ P GR(U/R) from the Posgather. In the subsequent itera-

tions for attribute selection, the information of GS(gr), ∀gr ∈ P GR(U/R) is broadcasted.

In the mapper phase, for the partial granule computations, only objects which are not satisfy-

ing any of the positive region granule signatures (i.e., objects that are of the NP GR(U/R))

are included. This results in effecting the positive region removal. Thus, in constructing

38

3.3 Proposed vertical partitioning of the data

< key, value > pairs in mapper phase, attribute information of R ∪ {a}, ∀a ∈ (A − R) is

required.

3.2.2.3 Granular refinement

The existing MapReduce based reduct computation approaches [15, 21, 29, 45, 81, 90, 92,

96, 114, 124, 125] do not incorporate the granular refinement aspect described in Section

3.2.1.1. In the horizontal partitioning approach, the knowledge of granules is realized at

reducer phase as each has partial granules information only. To correctly obtain U/R, ∀a ∈ A
in the first iteration requires object id to be placed as part of value portion along with

decision information. This results in |U | ∗ |A| amount of data (equals the original data set

size) movement in shuffle and sort phase. The large amount of data can become a bottleneck

for the realization of specific granular signature and hence have not been incorporated in

existing algorithms. The granular refinement of the proposed work with vertical partitioning

strategy described in Section 3.3 overcomes this limitation of horizontal partitioning strategy.

3.3 Proposed vertical partitioning of the data

The vertical partitioning strategy partitions the input data set over the attribute space (ver-

tically) and distributed to the nodes of the cluster. With this strategy, all the values of an

attribute are available in one record of one data partition located in a node of the cluster. By

default, any MapReduce framework partitions the input data set by using horizontal parti-

tioning strategy. This strategy divides the data set row wise (in object space), and partitions

are distributed to the nodes of the cluster. Thus, the vertical partitioning strategy is realized

by preprocessing the input data set before supplying it to the algorithm, either locally for

data sets fitting in RAM or by using MapReduce approach otherwise. The given data set

is preprocessed in such a way that all the rows indicate attributes, and the columns show

the objects. Additionally, an entry is included at the beginning of the record for denoting

the attribute id. The microarray data sets used for representing the gene expression data in

Bioinformatics [4] are usually stored in rows represent attributes, and hence preprocessing is

not required.

The preprocessed data is horizontally partitioned over attribute set A, and each partition

represents data pertaining to a subset of A. Each partition requires decision attribute in-

formation for subsequent operations, and therefore the decision attribute {d} is broadcasted

to all the nodes by the driver. The vertical partitioning of a given decision system can be

formally defined as given below.

39

3. PARALLEL ATTRIBUTE REDUCTION IN CATEGORICAL
DECISION SYSTEMS

Definition 3.5. For a decision system CDS = (U,A ∪ {d},), let CDS =
⋃p

i=1CDS
i, where

CDSi = (U,Ai ∪ {d}) is ith data split. It satisfies (i) A =
⋃p

i=1A
i (ii) Ai ∩ Aj = φ,

∀i, j ∈ {1, 2, ...p} and i 6= j.

-j

.

Attributes

x1
x2

x3

xn

b

e

t
s

a1 a2 a3... am d

.

.

.

.

.

O

xn−1

Part-1 Part-2 Part-p

Vertical
.....

a1 a2 d

x2

x3

x1

x3

a3 a4 d

xn−1

xn xnxn

x3

x2

x1 x1
x2

.
Partitioning

c

am−1 am d

Figure 3.2: Vertical partitioning of the input data

As we can see in Figure 3.2, with vertical partitioning strategy, the decision system CDS

is divided into p sub-decision tables or data splits (data partitions). A data split CDSi in

a node contains Ai attributes with all the objects U and broadcasted decision attribute {d}
(as shown in Figure 3.2). Let t be the number of nodes in the cluster, and p be the number

of data partitions of the given data set. Without loss of generality we assume p > t. In the

experiments, we adopted equal division of the load and each node receives bpt c data partitions.

Therefore proposed algorithm initiates bpt c number of mapper tasks per node.

The primary operation of IQRA IG algorithm [74] is the selection of the next best attribute

to be included into the reduct set. In this section, we discuss the equivalence of attribute

selection (in sequential approach) in a decision system CDS to parallel attribute selection

over vertically partitioned sub decision tables
{
CDSi

}p
i=1

. In IQRA IG algorithm, over the

data set CDS, the selected next best attribute abest ∈ (A−R) satisfies the following property.

γR∪{abest}({d}) = max
a∈(A−R)

γR∪{a}({d}) (3.4)

Using Eq. (2.5), canceling the denominator on either side of Eq. (3.4) results in,∣∣∣POSR∪{abest}({d})∣∣∣ = max
a∈(A−R)

∣∣POSR∪{a}({d})∣∣ (3.5)

In the proposed approach, as the data set CDS is available as CDSi (i = 1, 2, ...p) in the

nodes of the cluster, the next best attribute selection need to be done locally for each sub

40

3.4 Parallel attribute reduction in CDS using vertical partitioning

decision table (in mapper phase) in parallel, and globally through reducer phase. Hence, the

selection criteria of IQRA IG is equivalently expressed over CDSi, ∀i = {1, 2, ...p} as,

∣∣∣POSR∪{abest}({d})∣∣∣ = max
a∈(A−R)

∣∣POSR∪{a}({d})∣∣ =

max

(
max

a∈(A1−R)

∣∣POSR∪{a}({d})∣∣ , max
a∈(A2−R)

∣∣POSR∪{a}({d})∣∣ , max
a∈(Ap−R)

∣∣POSR∪{a}({d})∣∣)
(3.6)

Thus, the attribute selection process is equivalent in both sequential and vertical partitioning

based distributed approaches of IQRA IG algorithm.

3.4 Parallel attribute reduction in CDS using vertical parti-

tioning

In this section, the main (driver) algorithm for proposed approach MR IQRA VP is given

in Algorithm 3.1. The mapper phase algorithm (Algorithm 3.2: MR IQRA VP: map()) for

the local best attribute selection is given in Section 3.4.1. The reducer phase algorithm

(Algorithm 3.3: MR IQRA VP: reduce()) for the global best attribute selection is described

in Section 3.4.2. And, the computation of γA({d}) for the end condition of the main algorithm

(Algorithm 3.1) is given in Section 3.4.3.

In the driver (Algorithm 3.1), initially the data set CDS is vertically partitioned into

CDSi (i = 1, 2, ...p), and decision attribute information is broadcasted to all the nodes of

the cluster. Reduct Red is initialized to empty set (φ), and U/Red contains only {U} which

is also equal to NP GR(U/Red). As described in IQRA IG algorithm, for effective positive

region removal, the attribute selection computations are conducted only on NP GR(U/Red).

Hence, NP GR(U/Red) is broadcasted to all the cluster nodes. The variable total PosCount

(initialized to zero) represents the |POSRed({d})|.
The next best attribute best Attr, and its positive region count bestAttr PosCount are

obtained through invocation of Algorithm 3.2 followed by Algorithm 3.3. The next best at-

tribute best Attr is included into reduct set Red. The variable bestAttr PosCount represents

the number of objects in non-positive region being added into positive region resulting from

the granular refinement of NP GR(U/Red) with best Attr. Consequently, the total positive

region count is updated as total PosCount = total PosCount+ bestAttr PosCount and the

γRed({d}) is updated accordingly. If the required end condition (γRed == γA) is reached,

then algorithm returns reduct Red as the result of the algorithm. Otherwise, one needs to

obtain NP GR(U/Red) for the next iteration. Towards this objective, the record pertaining

41

3. PARALLEL ATTRIBUTE REDUCTION IN CATEGORICAL
DECISION SYSTEMS

to best Attr is fetched to the driver using a map only job. The granular space of U/Red is

refined with best Attr information, and NP GR(U/Red) is computed by removal of positive

region granules from U/Red. The resulting NP GR(U/Red) is broadcasted to the nodes of

the cluster.

Algorithm 3.1: MR IQRA VP: driver()

Input: Input file: data set CDS = (U,A ∪ {d})
Output: Reduct Red

1 Distribute input data set CDS with vertical partitioning over A, and broadcast
decision attribute {d} into the nodes of the cluster so that each data partition
becomes CDSi = (U,Ai ∪ {d}), ∀i ∈ {1, 2, ...p} where p is the number of data
partitions in the cluster.

2 Broadcast initial reduct Red = φ, and initial non-positive region granules list:
NP GR(U/Red) = {U} to all the nodes of the cluster.

3 Compute γA({d})
4 total PosCount = 0
5 repeat

/* =========Phase 1: Finding the best attribute=========== */

6 Initiate MapReduce job such that each mapper computes local best attribute
(localBest Attr) and its positive count (localBest PosCount) by using
Algorithm 3.2 and reducer computes global best attribute (best Attr) and its
positive count (bestAttr PosCount) by using Algorithm 3.3.

7 Collect the data < key, value >=< best Attr, bestAttr PosCount > from the
reducer.

8 Red = Red ∪ best Attr
9 total PosCount = total PosCount+ bestAttr PosCount

10 Compute γRed = total PosCount
|U |

11 if (γRed < γA) then
/* ========Phase 2: Updating NP GR(U/Red) ============= */

12 Fetch the record of best attribute (best Attr) from the cluster // using map

only operation

13 Compute
U/Red = GranularRefinement(NP GR(U/(Red− best Attr)), best Attr)
// Applying granular refinement

14 NP GR(U/Red) = U/Red− P GR(U/Red) // Incorporating positive

region removal

15 Broadcast NP GR(U/Red)

16 end

17 until (γRed == γA)
18 Return Red

42

3.4 Parallel attribute reduction in CDS using vertical partitioning

Algorithm 3.2: MR IQRA VP: map()

Input: 1. Data split CDSi = (U,Ai ∪ {d}) with each record as
< key, value >=< attrNo, attr Data >

2. Broadcasted reduct: Red, non-positive region granules: NP GR(U/Red)
Output: < key′, value′ >=< dummyKey, (localBest Attr, localBest PosCount) >

where dummyKey is common key for all the values of value′,
localBest Attr ∈ Ai is local best attribute in the partition, and
localBest PosCount is its positive count

1 maxPos Count = 0, localBest Attr = −1
2 for each record rec ∈ CDSi as < attrNo, attr Data > do
3 if attrNo 6∈ Red then
4 U/(Red ∪ {attrNo}) = GranularRefinement(NP GR(U/Red), attrNo)
5 Compute POSRed∪{attrNo}({d}) using U/(Red ∪ {attrNo})
6 pos Count = |POSRed∪{attrNo}({d})|
7 if pos Count > maxPos Count then
8 localBest Attr = attrNo
9 maxPos Count = pos Count

10 end

11 end

12 end
13 Construct < key′, value′ >, where key′ = dummyKey, and

value′ = (localBest Attr, localBest PosCount)
14 Emit intermediate < key′, value′ >

3.4.1 MR IQRA VP: map() algorithm

The algorithm MR IQRA VP: map() given in Algorithm 3.2 is invoked in each iteration of

the main algorithm of MR IQRA VP: driver() for selection of next best attribute into reduct

Red. The mapper process associated with a data split CDSi receives the current reduct Red,

and the associated non-positive region granules NP GR(U/Red) through broadcasting from

the driver. For each attribute, attrNo ∈ (Ai − Red), the granules U/(Red ∪ {attrNo}) are

computed using GranularRefinement(NP GR(U/Red), attrNo). The pos Count is evalu-

ated by summing the cardinalities of positive region granules of U/(Red ∪ {attrNo}). The

local best attribute localBest Attr is selected from (Ai−Red) based on obtaining maximum

pos Count (as localBest PosCount). The information of local best attribute is communicated

to MR IQRA VP: reduce() job in a single < key, value > pair, where key = dummyKey and

value = (localBest Attr, localBest PosCount). In this manner, p number of < key, value >

pairs are generated from decision sub tables CDSi (i = 1, 2, ...p) and participate in shuffle

and sort phase. As all of < key, value > pairs contain the same dummyKey portion as the

key, only a single reducer will be invoked facilitating global best attribute selection.

43

3. PARALLEL ATTRIBUTE REDUCTION IN CATEGORICAL
DECISION SYSTEMS

3.4.2 MR IQRA VP: reduce() algorithm

Algorithm 3.3: MR IQRA VP: reduce()

Input: < key, V > pair where key is a ”dummyKey” (common key from all the
mappers), V is a list of values, where each value is
(localBest Attr, localBest PosCount) generated from each mapper

Output: < key′, value′ >=< best Attr, bestAttr PosCount) > where best Attr is
the best attribute and bestAttr PosCount is it’s positive count

1 bestAttr PosCount = 0, best Attr = −1
2 for each value v ∈ V as (localBest Attr, localBest PosCount) do
3 if localBest PosCount > bestAttr PosCount then
4 best Attr = localBest Attr
5 bestAttr PosCount = localBest PosCount

6 end

7 end
8 Construct < key′, value′ >, where key′ = best Attr, and value′ = bestAttr PosCount
9 Emit < key′, value′ >

The algorithm MR IQRA VP: reduce() given in Algorithm 3.3 receives < key, V > as the

input resulting from shuffle and sort phase over outputs of MR IQRA VP: map() jobs. Here,

key is the dummyKey, and V is the list of associated values from all mappers. Each value

in V is in the form (localBest Attr, localBest PosCount) containing the local best result

of each mapper. The global next best attribute is selected from the local best attributes

having the maximum positive count. The selected best attribute information is communicated

to the driver in the form of < key′, value′ > pair, where key′ = best Attr and value′ =

bestAttr PosCount.

3.4.3 Computation of γA({d})

The computation of γA({d}) requires construction of U/A and categorizing the granules into

P GR(U/A), and NP GR(U/A). In each mapper, using the decision sub table CDSi =

(U,Ai∪{d}), ∀i ∈ {1, 2, ...p}, one can compute U/Ai, and the granules can be categorized into

P GR(U/Ai) and NP GR(U/Ai). From the explanation of positive region removal in Section

3.2.1.2, objects of P GR(U/Ai) are the objects in POSA({d}). Here, each mapper commu-

nicates the information of NP GR(U/Ai) to a single reducer. The reducer then computes

refinement of NP GR(U/Ai), ∀i ∈ {1, 2, ...p} and arrives at NP GR(U/A). If NP GR(U/A)

is empty then γA({d}) = 1 otherwise POSA({d}) is computed as, POSA({d}) = U −⋃
gr∈NP GR(U/A) gr. Based on this positive region POSA({d}), the value of γA({d}) is com-

puted, and communicated to the driver.

44

3.4 Parallel attribute reduction in CDS using vertical partitioning

3.4.4 Complexity analysis of MR IQRA VP algorithm

Given that the MapReduce programming model consists of three phases: map, shuffle and

sort, and reduce, the time complexities of the proposed MapReduce based algorithms in

this thesis are determined using these phases along with the driver’s complexity. In its

theoretical complexity analysis, the MapReduce model also considers communication costs

and barrier synchronization costs. In this thesis, for the complexity analysis, we assume that

the preprocessed data set (transposed data set) is given as the input to the proposed vertical

partitioning based algorithms and the original data set to the proposed horizontal partitioning

based algorithms. Furthermore, we also assume that the number of data partitions in the

MapReduce cluster is the same as the number of processors (cores).

In the time complexity analysis of MR IQRA VP, the following variables are used.

• |U |: the number of objects in the data set

• |A|: the number of conditional attributes in the data set

• p: the number of processors

• tw: the number of time units to transfer one word of memory

• s: the number of time units to complete the synchronization

Table 3.1: Time complexity analysis of MR IQRA VP algorithm

Algorithm
(phase)

Step* in Algorithm Time complexity

1. Partitioning the data vertically O(|A|∗|U |p ∗ tw)

2. Broadcasting NP GR and {d} O(|U | ∗ tw)

Driver : 3. γA({d}) computation O(|A|∗|U |log|U |p)+O(p∗|U |∗tw)

(Algorithm 3.1) 12. Fetching abest record O(|U | ∗ tw)
13. Finding granules based on abest record O(|U |log|U |)

Mapper : 4-6. Creating granules and finding posi-
tive region counts

O(|A|∗|U |log|U |p)

(Algorithm 3.2) 7-10. Finding labest and Barrier synchro-
nization

O(|A|p) + O(s)

Shuffle and
sort :

Transferring all labest and their positive re-
gion counts

O(p ∗ tw)

Reducer :
(Algorithm 3.3)

2-7. Finding abest and Barrier synchro-
nization

O(p) + O(s)

* Step denotes the line number in the associated algorithm

45

3. PARALLEL ATTRIBUTE REDUCTION IN CATEGORICAL
DECISION SYSTEMS

Table 3.1 shows the time complexities of each step of the phase in the MR IQRA VP

algorithm for one iteration. In the table, from step 12 to step 13 in Algorithm 3.1 (driver) and

all the steps in Algorithm 3.2 (mapper), shuffle and sort phase and Algorithm 3.3 (reducer)

are repeated until (γRed == γA) condition is satisfied. That is, these steps are repeated |A|
times (in worst case). Hence, by adding up all the complexities, the total time complexity of

the algorithm MR IQRA VP is obtained as given below.

(
|A| ∗ |U |

p
∗ tw) + (|U | ∗ tw) + (

|A| ∗ |U |log|U |
p

) + (p ∗ |U | ∗ tw)+

|A| ∗
(

(|U | ∗ tw) + (|U |log|U |) + (
|A| ∗ |U |log|U |

p
) +
|A|
p

+ s+ (p ∗ tw) + p+ s

)
(3.7)

Above equation can be approximated as, O(|A|
2∗|U |log|U |

p) + O(|A| ∗ ((p ∗ |U | ∗ tw) + s)). Thus

the time complexity of the MR IQRA VP algorithm is O(|A|
2∗|U |log|U |

p) in addition with its

communication cost: O(|A| ∗ ((p ∗ |U | ∗ tw) + s)).

The entire decision system is required to be present in memory for reduct computation

using MR IQRA VP algorithm. Thus, the space complexity of sequential MR IQRA VP

algorithm is O(|A| ∗ |U |). But, in MapReduce framework environment, the input decision

system is partitioned and distributed to the nodes of the cluster where the workload is divided

equally into p data partitions. Hence, each partition has the complexity of O(|A|∗|U |p).

In the worst-case scenario, the aforementioned theoretical time and space complexities

of the proposed MR IQRA VP algorithm are described. However, since the MR IQRA VP

algorithm incorporates positive region removal and granular refinement features, the actual

time and space complexities are significantly reduced.

3.5 Salient features and limitations of MR IQRA VP

The removal of positive region, granular refinement, and simplification of shuffle and sort

phase are the main features of the proposed MR IQRA VP algorithm. In this section, the

main features, and the limitations of proposed MR IQRA VP algorithm are discussed.

3.5.1 Positive region removal

In IQRA IG algorithm, the removal of positive region is done physically, i.e., the rows corre-

sponding to positive region objects are removed from memory. Our experimental simulations

have established that the removal of positive region data from distributed data set incurs

significant computational overhead. Even in horizontal partitioning based IN MRIQRA IG

algorithm, positive region data is not physically removed owing to the same reasons. This

46

3.5 Salient features and limitations of MR IQRA VP

led us to incorporate positive region removal based on the methodology described in Section

3.2.1.2. Instead of physically removing the positive region data, the computations in mapper

phase were restricted to objects in NP GR(U/R). As information of each attribute is stored

in random accessible memory unit such as array, we found that performing computation based

on objects present in NP GR(U/R) resulted in exactly the same amount of computational

time savings as that of post physical removal of positive region.

3.5.2 Granular refinement

The implementation of GranularRefinement(NP GR(U/R), a) of MR IQRA VP algorithm

is identical to that of sequential IQRA IG algorithm because the proposed algorithm uses ver-

tical partitioning strategy. In contrast to IQRA IG, the required information ofNP GR(U/R)

is broadcasted from driver to worker nodes. In the implementation of IQRA IG, the Quick

sort is used in splitting gr ∈ NP GR(U/R) using attribute values of a. In the implementa-

tion of MR IQRA VP, HashMap [5] is used for the same. HashMap is a data structure that

maintains records of paired data < key, value >. It manages the retrieval and updation of a

record associated with a key through hashing. Here, each object in a granule of NP GR(U/R)

is visited in sequence. Using the HashMap, objects associated with unique values based on

attribute a are obtained through updations of HashMap with < key, value > being unique

attribute value. After processing all the objects in gr, HashMap contains |gr/{a}| number

of entries. The key corresponds to unique attribute values of objects in gr based on a. In a

< key, value > pair, value corresponds to list of object ids having the same attribute value of

key based on a. Hence, the required refined granules of U/(R ∪ {a}) resulting from splitting

of gr are extracted from value portions of HashMap entries. Therefore it can be observed

that HashMap based granular refinement aids in improving the computational performance.

It is to be noted that, in the ith mapper, the granules of U/(R ∪ {a}), ∀a ∈ (A − R)

are utilized for the computation of |POSR∪{a}({d})|, ∀a ∈ (A − R). In order to optimize

the memory utilization, the memory occupied by U/(R ∪ {a}), ∀a ∈ (A − R) is released

after obtaining the required positive region counts. Even though the driver requires attribute

information of the next best attribute for granular refinement of U/R, in our algorithm

we did not communicate the local best attribute record to the reducer. This decision was

motivated by the objective of simplifying the most complex operation of MapReduce job,

i.e.,shuffle and sort phase. Hence, an additional map only job for extracting the best attribute

information was initiated, so that the required best attribute record is directly transferred

from corresponding worker (slave) node to the driver.

47

3. PARALLEL ATTRIBUTE REDUCTION IN CATEGORICAL
DECISION SYSTEMS

3.5.3 Simplification of shuffle and sort phase

Without loss of generality, consider a decision system having k distinct values for each at-

tribute. From Section 3.2.2, in any horizontal data partitioning based reduct computation

algorithm, it is observed that, in each iteration in a mapper, the size of key space is k|R∪{a}|,

∀a ∈ (A−R). As p denotes the number of data partitions, then a total p ∗ |A−R| ∗ k(|R|+1)

size of < key, value > pairs are transferred in the network of the cluster of computers. As a

result, shuffle and sort phase work with data of this order leading to huge bottleneck for the

algorithm.

In the proposed design, as given in the Section 3.4.1 of mapper phase, each mapper pro-

duces a single < key, value > pair corresponding to the local best attribute, and the local

best attribute’s positive count. This results in a total p size of < key, value > pairs being

transferred in the network of the cluster, which leads to a considerable reduction in the work

of shuffle and sort phase. This is because only a small size of data is transferred and commu-

nicated when compared to the horizontal partitioning based algorithm. The simplification of

shuffle and sort phase is an essential facet of vertical partitioning based MapReduce reduct

computation algorithm.

3.5.4 Limitations of MR IQRA VP

In the proposed MR IQRA VP algorithm, the broadcasting decision attribute information (of

size |U |) and granules of NP GR(U/R) in every iteration (of size ≤ |U |) is needed. And also

fetching the next best attribute information from the worker node to the driver (of size |U |)

in every iteration is needed. For very large object spaces, these operations become complex

and computationally expensive.

The time complexity of IQRA IG algorithm is O(|A|2|U |log|U |), and the complexity of

an iteration is O(|A−R||U |log|U |). In the vertical partitioning strategy, the time complexity

of an iteration in mapper is O(|A−R|p |U |log|U |), where p is the number of data partitions.

Therefore, for very large object space data sets the gain obtained through attribute space

division can be compensated by increased computations with respect to object space. In view

of the above reasons, MR IQRA VP algorithm is suitable for moderate object space data sets

while being scalable to very large attribute space data sets as the approach is horizontally

scalable in attribute space, i.e., very large-scale big dimensional data sets can be handled

by addition of new nodes to the cluster. Theoretical explanation of this section is validated

experimentally in Section 3.6.4.

48

3.6 Experimental analysis

3.6 Experimental analysis

The approaches proposed in this thesis are parallel/distributed methods, therefore the em-

pirical evaluation of these methods are given based on the following criteria.

• Computational evaluation.

• Performance evaluation.

• Impact of the partitioning strategy.

The running time, reduct and reduct size are used in the computational evaluation. And

the performance is measured using three metrics: speedup, scaleup, and sizeup [105]. Since

horizontal and vertical partitioning strategies are investigated in the proposed approaches,

the influence of these strategies is examined.

As stated earlier, the proposed approaches are parallel/distributed versions of the existing

sequential methods. It should be noted that the process of converting sequential algorithms to

parallel/distribute algorithms has only improved scalability, and all of the parallel/distribute

algorithms designed in this thesis produce the same reduct as the corresponding sequential

versions. All the sequential algorithms considered in the thesis are well established in in-

ducing good classification models. As a result, the experimental evaluation in this thesis

focuses on assessing computational improvement as well as the performance evaluation of

parallel/distributed algorithms.

The computational evaluation of proposed MR IQRA VP algorithm is presented in Sec-

tion 3.6.2. The proposed algorithm’s performance evaluation is provided in Section 3.6.3.

Section 3.6.4 presents impact of the partitioning strategy that shows the relevance and limi-

tations of the proposed algorithm.

3.6.1 Experimental set up

We carried out the experiments in two stages to evaluate the efficiency of the proposed

MR IQRA VP algorithm. In the first stage of experiments, we compared MR IQRA VP

algorithm with the existing MapReduce based parallel/distributed reduct computation al-

gorithms, PLAR [124] and PFSPA [45]. Since the source code of these algorithms is not

available, we compared these algorithms with the proposed algorithm based on the data sets

and experimental set up given in respective publication sources of PLAR and PFSPA algo-

rithms. Table 3.2 gives the details of the experimental set up of PLAR, PFSPA and the

proposed MR IQRA VP algorithms. The comparison of the proposed algorithm with the

existing PLAR and PFSPA algorithms is given in Section 3.6.2.1 and 3.6.2.2 respectively.

49

3. PARALLEL ATTRIBUTE REDUCTION IN CATEGORICAL
DECISION SYSTEMS

Table 3.2: Experimental set up of MR IQRA VP, PLAR, PFSPA and IN MRIQRA IG algo-
rithms

MR IQRA V P PLAR∗ PFSPA# IN MRIQRA IG

Cluster Size 6 Nodes 19 Nodes 6 Nodes 6 Nodes
RAM Size 8 GB At least 8 GB 4 GB 8 GB
Cores 4 At least 8 4 4
Operating System Ubuntu 18.04 Cent OS 6.5 - Ubuntu 18.04
Framework Spark 2.3.1 Spark 1.x Hadoop Spark 2.3.1

∗ Experimental set up as reported in [124], and # experimental set up as reported in [45]

In the second stage of experiments, the proposed MR QRA VP algorithm is compared

with the existing IN MRIQRA IG algorithm. Sai Prasad et al. [92] developed a parallel ver-

sion of IQRA IG (IN MRIQRA IG) algorithm using in-memory iterative MapReduce frame-

work of Twister. But Apache Spark has better fault tolerance than Twister. For this reason,

algorithm IN MRIQRA IG is re-implemented on Apache Spark framework. The proposed

MR IQRA VP algorithm has been compared with Apache Spark version of IN MRIQRA IG

algorithm and the results are reported in Section 3.6.2.3.

In Section 3.4, we have described that the proposed algorithm is suitable for the data

sets having a moderate size of objects with large number of attributes, and the same would

be demonstrated empirically along with theoretical validation. Accordingly, for comparative

analysis, data sets have been considered to meet this criterion. A series of experiments have

been conducted on the benchmark data sets such as Gisette, Gene expression Cancer RNA-

Seq (renamed as Genes), Basehock, KDDcup and Semeion Handwritten Digit (renamed as

Handwritten) data sets. The Basehock data set is available in Arizona State University

feature selection data set repository [109], and the rest of the data sets are available in UCI

data set repository [31]. Details of these data sets are provided along with their object and

attribute space sizes in Table 3.3. All the data sets with different sizes are chosen according to

limited hardware configuration of the cluster. In the selection of these data sets, we considered

the aspect of variance in sizes of object space and attribute space, and few data sets such

as Genes, Basehock and Gisette are replicated several times in attribute space to illustrate

the efficiency of the proposed MR IQRA VP approach in attribute space. For example, the

original ”Genes” data set has 801 objects and 20561 attributes, and after replication, the data

set ”genes-S801-A5000k” contains 801 objects (“S” denotes Samples) and approximately 5

million attributes (“A” denotes Attributes).

50

3.6 Experimental analysis

Table 3.3: Data sets used in the experiments of MR IQRA VP algorithm

S.No Data set Objects Attributes Classes

1 Gisette 6000 5000 2
2 Basehock 1993 4864 2
3 Genes 801 20561 5
4 Handwritten 1593 256 10
5 KDDCup 4898431 41 23

6 genes-S801-A5000k 801 5009564 5
7 gisette-S50k-A50k 50000 50000 2
8 basehock-S2k-A53k 1993 53000 2

The replication of a data set is used throughout the thesis, both in object space and

attribute space, with the goal of analysing the impact of increasing the sizes with respect to

the partitioning strategy used. It should also be noted that replication in object and attribute

space increases computational complexity proportionally, as analysed in complexity analysis

(in Section 3.4.4).

3.6.2 Computational evaluation of MR IQRA VP

The efficiency of the proposed algorithm is shown by comparing the results with existing

MapReduce based parallel/distributed reduct computation algorithms on different data sets.

For reproducible research, obtained reducts and their respective γC and γR values of proposed

MR IQRA VP algorithm for different original data sets (the data sets without replication)

are given in Table 3.4.

Table 3.4: The obtained reduct of MR IQRA VP for different data sets

Data set Reduct γC γR
Gisette {3058, 1523, 4734, 1923, 4165, 4272, 1555, 3708, 4159, 3354,

4694, 1408, 3470, 3166, 4958}
1.0 1.0

Genes {18493, 15864, 15442, 16327, 6917, 17651, 19940} 1.0 1.0

Basehock {3281, 2471, 1193, 577, 3282, 2965, 4052, 2000, 3302, 3756,
1791, 369, 1035, 4315,1366, 2005, 356, 1722, 882, 250, 3300,
1275, 3292, 2631, 4345, 3825, 4544, 4355, 4776, 4751, 2219,
4682, 383, 203, 3892, 1188, 3922, 4148, 4757, 1947, 3254,
4706, 3475, 4351, 593}

1.0 1.0

Handwritten {256, 113, 49, 31, 20, 72, 178, 111, 84, 109, 191, 29, 230,
120, 196, 153, 43, 233, 250, 89, 185, 174}

1.0 1.0

KDDcup {1, 2, 22, 28, 37, 4, 30, 5, 32, 10, 35, 39, 36, 34, 31, 3, 12,
16, 8, 33, 19, 23, 6, 40, 17, 29, 38, 26, 24, 13, 11}

1.0 1.0

51

3. PARALLEL ATTRIBUTE REDUCTION IN CATEGORICAL
DECISION SYSTEMS

3.6.2.1 MR IQRA VP comparison with PLAR

The authors of Parallel Large scale Attribute Reduction (PLAR) [124], have developed dif-

ferent algorithms: PLAR PR, PLAR LCE, PLAR SCE, and PLAR CCE based on different

heuristic functions. All the algorithms are iterative MapReduce based reduct computation

algorithms, and they are implemented on Apache Spark framework. The results for Gisette

data set obtained by PLAR SCE are reported in [124]. The authors of PLAR SCE focused

on calculating computational time per iteration incurred while running the algorithm. They

selected five attributes in five iterations, resulting in a sub reduct. They could not complete

the remaining iterations to get the entire reduct because of high dimensionality of the data

set. For this reason, MR IQRA VP is compared with PLAR SCE in terms of iterations. The

comparison results are shown in Table 3.5. The proposed algorithm computed the reduct with

the length 15 (refer Table 3.4). Accordingly, the estimated computational time of PLAR SCE

for 15 iterations is calculated as 5187 seconds.

Table 3.5: Comparative results of MR IQRA VP with PLAR SCE (Time: Seconds)

Iteration PLAR SCE∗ MR IQRA VP

1 350 22.38
2 343 19.70
3 344 18.31
4 344 6.92
5 348 4.81
: : :
: : :

Time for all iterations 5187# 89.02

∗ results as reported in [124], and # indicates the estimated time of PLAR SCE algorithm

The algorithm MR IQRA VP completed first five iterations in 72.12 seconds against 1729

seconds incurred in PLAR SCE algorithm. The MR IQRA VP algorithm achieved a signifi-

cant computational gain of 95.82%. MR IQRA VP obtained the complete reduct in 89.02 sec-

onds against estimated computational time of 5187 seconds in PLAR SCE achieving 98.29%

computational gain. Both algorithms used MapReduce framework of Apache Spark for the

implementation. Even though MR IQRA VP algorithm is implemented in an inferior cluster

configuration than PLAR SCE (refer Table 3.2), we could get better results than PLAR SCE

algorithm. Therefore, this comparative analysis of MR IQRA VP with PLAR SCE demon-

strates the relevance of MR IQRA VP. And, it establishes the relevance of vertical partitioning

strategy for Gisette kind of data sets with larger attribute space.

52

3.6 Experimental analysis

3.6.2.2 MR IQRA VP comparison with PFSPA

Qing He et al. [45] proposed a MapReduce based parallel algorithm of PFSPA (Parallel Fea-

ture Selection using Positive Approximation). Algorithm PFSPA is implemented on Hadoop

MapReduce framework. MR IQRA VP is compared with PFSPA on Handwritten data set.

From the experimental design in [45], data set is replicated several times, and experiments

were conducted on the replicated data set. The comparative results are shown in Table 3.6.

Both PFSPA [45] and MR IQRA VP obtained similar length reducts with different sizes of

Handwritten data set. MR IQRA VP achieved a significant computational gain over PFSPA

in the order of 85% to 99%. As the number of objects was increased, the computational gain

percentage was reduced indicating MR IQRA VP’s computational complexity is proportional

to the size of object space. These significant results are partly because of utilizing the iterative

MapReduce framework of Apache Spark against Hadoop framework in PFSPA, and also partly

due to the proposed methodology.

Table 3.6: Comparative results of MR IQRA VP with PFSPA (Time: Seconds)

PFSPA∗ MR IQRA VP
Data set Objects Attributes Running

time
Reduct
size

Running
time

Reduct
size

Handwritten 1593 256 1086 22 10.04 22
Handwritten 3 times 4779 256 1205 22 15.34 22
Handwritten 6 times 9558 256 1282 22 23.84 21
Handwritten 12 times 19116 256 1596 22 67.58 21
Handwritten 24 times 38232 256 2062 22 307.88 22

∗ results as reported in [45]

3.6.2.3 MR IQRA VP comparison with IN MRIQRA IG

The experiments of the proposed parallel/distributed approach MR IQRA VP, and existing

approach IN MRIQRA IG are carried out on a 7-node cluster. In the cluster, one node is

set as master (driver) as well as slave, and the rest are set as workers (slaves). The master

node uses Intel (R) Xeon (R) Silver 4110 CPU @ 2.10GHz processor with 32 cores and 64

GB of main memory. All the worker nodes use Intel (R) Core (TM) i7-8700 CPU@3.20GHz

processor with 12 cores and 32 GB of main memory. All the nodes run on Ubuntu 18.04 LTS

operating system and they are connected via Ethernet (with 1000 Mbps speed). Each node

is installed with Java 1.8.0 171, Apache Spark 2.3.1, and Scala 2.11.4.

53

3. PARALLEL ATTRIBUTE REDUCTION IN CATEGORICAL
DECISION SYSTEMS

Table 3.7: Comparative results of MR IQRA VP with IN MRIQRA IG (Time: Seconds)

IN MRIQRA IG MR IQRA VP
Data set Attributes Running

time
Reduct
size

Running
time

Reduct
size

Handwritten 256 16.63 22 10.04 22
Basehock 4864 76.68 45 36.23 45
Genes 20561 36.06 07 12.04 07
Gisette 5000 123.63 16 89.02 15
KDDcup 41 4785.60 31 17928.45 31
genes-S801-A5000k 5009564 12065.28 07 264.36 07
gisette-S50k-A50k 50000 1605.77 16 1914.42 16
basehock-S2k-A53k 53000 237.36 45 115.36 45

The proposed MR IQRA VP algorithm has been compared with Apache Spark version of

IN MRIQRA IG algorithm on all the data sets (original data sets and replicated data sets).

The comparison results are shown in Table 3.7.

MR IQRA VP achieved 52.75% computational gain in Basehock data set, 66.61% in Genes

data set, 39.62% in Handwritten data set, and 27.99% in Gisette data set over IN MRIQRA IG

algorithm. The gain percentage is inversely proportional to the size of the object space. The

best computational gains are obtained for Genes data set having smaller object space with

huge attribute space. In contrast, IN MRIQRA IG algorithm obtained better computational

gains on KDDcup data set which has huge object space and very less attribute space.

3.6.3 Performance evaluation of MR IQRA VP

The performance of MR IQRA VP has been evaluated based on Speedup, Scaleup and Sizeup

metrics. The proposed algorithm’s performance is compared with the existing IN MRIQRA IG

algorithm. The performance evaluation experiments of both the algorithms are performed on

the experimental set up given in Table 3.2.

3.6.3.1 Speedup

Speedup can be measured by increasing the number of machines in the parallel system while

keeping the data set constant. That is, it refers to the ratio of a job’s running time on the

parallel system compared with a single system: Speedup(n) = Running time on one computer
Running time on n computers .

Theoretically, a perfect parallel algorithm can demonstrate a linear speedup, a system with

n times the number of computers gets a speedup of n. Due to the serial computing, com-

munication costs and other overheads of the parallel system, it is difficult to achieve linear

speedup. MR IQRA VP’s speedup has been evaluated on the data sets with different varied

54

3.6 Experimental analysis

1 2 3 4 5 6
1

2

3

4

5

6

Number of nodes

S
p

ee
d
u
p

(a) Gisette

Linear
MR IQRA VP

IN MRIQRA IG

1 2 3 4 5 6
1

2

3

4

5

6

Number of nodes

(b) Genes

Linear
MR IQRA VP

IN MRIQRA IG

1 2 3 4 5 6
1

2

3

4

5

6

Number of nodes

(c) Basehock

Linear
MR IQRA VP

IN MRIQRA IG

Figure 3.3: Speedup of MR IQRA VP and IN MRIQRA IG for different data sets

nodes from 1 to 6. Figure 3.3 shows the speedup performance results of MR IQRA VP and

IN MRIQRA IG algorithms for different data sets.

As shown in Figure 3.3, MR IQRA VP has achieved better speedup performance (nearing

expected linear speedup for Gisette data set) over IN MRIQRA IG, this is mainly due to

simplified shuffle and sort phase in MR IQRA VP as described in Section 3.5.3. Algorithm

IN MRIQRA IG and other horizontal partitioning based algorithms are effected by elaborate

shuffle and sort phase which hampered the speedup performance. It can be observed that the

speedup achieved for the proposed MR IQRA VP algorithm is lower in the basehock data

set than in the other data sets. This is due to the higher reduct size (i.e., 45), which results

in increased sequential computation cost of fetching the best attribute (abest) record into the

driver and processing, as well as the cost of broadcasting.

3.6.3.2 Scaleup

Scaleup is defined as the ability of an n-times larger cluster to perform n-times larger data set

in the same run time as the original system, i.e., Scaleup(n) = T ime of data on one computer
T ime of n−times data on n computers .

To find the scaleup of the proposed algorithm, we increased the size of the data set in pro-

portion to the number of computers in the cluster. Here each data set size started from 20%,

40%, 60%, 80%, and 100% of attributes in the data set (that is, data set size is divided in the

attribute space), and the number of nodes are increased from 1 node, 2 nodes, 3 nodes, 4 nodes

and 5 nodes respectively. Figure 3.4 shows the scaleup performance results of MR IQRA VP

and IN MRIQRA IG algorithms for different data sets.

55

3. PARALLEL ATTRIBUTE REDUCTION IN CATEGORICAL
DECISION SYSTEMS

1 2 3 4 5
0

0.25

0.5

0.75

1

Number of nodes

S
ca

le
u
p

(a) Gisette

Linear
MR IQRA VP

IN MRIQRA IG

1 2 3 4 5
0

0.25

0.5

0.75

1

Number of nodes

b) Genes

Linear
MR IQRA VP

IN MRIQRA IG

1 2 3 4 5
0

0.25

0.5

0.75

1

Number of nodes

(c) Basehock

Linear
MR IQRA VP

IN MRIQRA IG

Figure 3.4: Scaleup of MR IQRA VP and IN MRIQRA IG for different data sets

The scaleup analysis results shown in Figure 3.4 demonstrates that, increasing the at-

tribute space results in better scaleup for MR IQRA VP than IN MRIQRA IG. As we are

keeping object space constant while increasing the attribute space in every data set, the com-

plexity involved in the mapper phase of the proposed algorithm is constant on every data

set. Thus, the proposed algorithm is producing better scaleup for big dimensional data sets

such as “Genes”. In contrast, in IN MRIQRA IG algorithm, the complexity of shuffle and

sort phase increases, if attribute space increases in the data sets. Thus, in comparison with

IN MRIQRA IG algorithm, our proposed algorithm exhibited better scaleup for the data sets

that have moderate object space and larger attribute space. The scaleup values of more than

or equal to 0.7 indicate that the proposed MR IQRA VP scale well in attribute space of the

data set. It is difficult to achieve ideal scaleup values (i.e., 1) due to barriers like reducers,

sequential computations in the driver and broadcast operations.

3.6.3.3 Sizeup

Sizeup measures the time it takes on a given system when the data set is n-times larger than

the original data set. It calculates the increase in computational time based on the size of

data sets. The sizeup is specified as: Sizeup(n) = T ime for processing n−times data
T ime for processing data . To find the

sizeup performance of the proposed algorithm, we kept the number of nodes as constant, and

changed the size of the data set. The number of computers were kept as six nodes. Each data

set size was increased with 20%, 40%, 60%, 80%, and 100% of attributes in the data set.

56

3.6 Experimental analysis

1 2 3 4 5
1

2

3

4

5

Size of data set

S
iz

eu
p

(a) Gisette

Linear
MR IQRA VP

IN MRIQRA IG

1 2 3 4 5
1

2

3

4

5

Size of data set

(b) Genes

Linear
MR IQRA VP

IN MRIQRA IG

1 2 3 4 5
1

2

3

4

5

Size of data set

(c) Basehock

Linear
MR IQRA VP

IN MRIQRA IG

Figure 3.5: Sizeup of MR IQRA VP and IN MRIQRA IG for different data sets

Figure 3.5 shows the sizeup performance results of MR IQRA VP and IN MRIQRA IG

algorithms for different data sets with varying sizes of attribute space. From the figure, we

can observe that, both the existing and proposed algorithms produce better sizeup results, as

their plots are much lower than the linear plots in the figures for all the data sets.

3.6.4 Impact of the data partitioning strategy

The experimental results have suggested that MR IQRA VP algorithm is suitable for data

sets with moderate object space and larger attribute space. Considering IN MRIQRA IG as

the representative horizontal partitioning based reduct computation algorithm, we conducted

an experiment between IN MRIQRA IG and MR IQRA VP algorithms. The objective of the

experiment is to determine the nature of data sets relevant for horizontal partitioning and

vertical partitioning based reduct computation algorithms.

In this experiment, Gisette data set (containing almost equal size object space and at-

tribute space) was replicated in object space. The results of both algorithms are reported in

Table 3.8, under the serial number 2, 3 and 4. Similarly, Gisette was replicated in attribute

space and the results are reported in Table 3.8, under the serial number 5, 6 and 7. Figure 3.6

demonstrates the computational time analysis for scalability in object space in Figure 3.6a

and the attribute space in Figure 3.6b.

57

3. PARALLEL ATTRIBUTE REDUCTION IN CATEGORICAL
DECISION SYSTEMS

Table 3.8: Comparison of MR IQRA VP, IN MRIQRA IG for varying objects and attributes of
Gisette data set (Time: Seconds)

S.No Objects Attributes IN MRIQRA IG
Running Time

MR IQRA VP
Running Time

1 6000 5000 123.63 89.02

2 12000 5000 248.61 308.90
3 18000 5000 402.35 736.12
4 24000 5000 879.41 1457.87

5 6000 10000 264.27 181.83
6 6000 15000 486.32 249.18
7 6000 20000 644.22 298.98

0 6000 12000 18000 24000
0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

0

89
.0

2

3
08
.9

7
36
.1

2

1
,4

57
.8

7

0

1
23
.6

3

24
8.

6
1 40

2
.3

5

87
9
.4

1

R
u
n
n
in

g
ti

m
e

MR IQRA VP
IN MRIQRA IG

(a) Scalability in the object space

0 5000 10000 15000 20000
0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

0

89
.0

2

18
1
.8

3

24
9
.1

8

29
8
.9

8

0

12
3
.6

3 26
4
.2

7

48
6
.3

2 64
4
.2

2

R
u
n
n
in

g
ti

m
e

MR IQRA VP
IN MRIQRA IG

(b) Scalability in the attribute space

Figure 3.6: Behavior of MR IQRA VP and IN MRIQRA IG for varying object space and at-
tribute space of Mushroom

It is evidently clear from these results that, increase in object space resulted in a consid-

erable increase in computational time of MR IQRA VP. And, similarly increase in attribute

space resulted in a more significant increase in computational time of IN MRIQRA IG. In

Table 3.8, the details of original Gisette data set are reported in serial number 1. The analysis

of results shows that MR IQRA VP is a highly scalable algorithm for scalability in attribute

space. But it is not recommended for data sets of larger object space. The horizontal parti-

tioning based IN MRIQRA IG algorithm is found more suitable for scalability in object space.

Hence, the vertical partitioning based algorithms are suitable for big dimensional data sets

with moderate object space frequently found in the areas of Bioinformatics and Web mining.

3.7 Summary

In this chapter, we have proposed and implemented a highly scalable MapReduce based

reduct computation algorithm MR IQRA VP using vertical partitioning strategy for cate-

gorical decision systems. With this strategy we have managed a massive reduction in data

58

3.7 Summary

transformation and communication in the shuffle and sort phase of the MapReduce framework

of Apache Spark, which is a primary bottleneck of the horizontal partitioning MapReduce

based reduct algorithms. Extensive experimental results showed that MR IQRA VP is a more

suitable and scalable algorithm for the data sets having moderate size object space and larger

size attribute space such as microarray data sets in Bioinformatics.

Vertical partitioning strategy can also be used in designing MapReduce based reduct

computation approaches for large-scale incomplete decision systems (IDS). In the next chapter

(Chapter 4), the usefulness of horizontal and vertical partitioning strategies are discussed in

designing MapReduce based parallel/distributed approaches for attribute reduction in IDS

using extensions to classical rough sets.

59

Chapter 4

Parallel attribute reduction in

Incomplete Decision Systems

The second contribution to this dissertation is provided in this chapter. MapReduce based

parallel/distributed approaches are proposed for attribute reduction in incomplete decision

systems (IDS) based on the existing Novel Granular Framework (NGF). The NGF is used to

deal with incompleteness in the data. One of the proposed approaches adopts an alternative

representation of the NGF and uses a horizontal partitioning of the data to the nodes of the

cluster to handle the incomplete data sets that are large-scale in terms of number of objects.

Another approach embraces the existing NGF and uses a vertical partitioning strategy to

handle the big dimensional incomplete data sets. It is worth to mention that, to the best of our

knowledge, the proposed approaches are the first research of its kind on parallel/distributed

attribute reduction in IDS. The work presented in this chapter has been published in [100].

4.1 Review of existing approaches

The number of data sources is rising rapidly in this age of big data. The volume of the

data collected at the end of each day has increased to huge levels, resulting in large-scale

data sets. This large size of data presents more difficulties for data processing. Additional

challenges arise if this large-scale data contains missing (incomplete) values. Based on the

data source, missing data can occur due to several reasons such as human mistakes, sensor

malfunctions, operator failures, malformed device, human reluctance to declare private infor-

mation or because of their insufficient knowledge [133]. Decision systems that include objects

with missing attribute values are referred to as the Incomplete Decision Systems (IDS). These

decision systems are frequently occurring data sets in decision-making problems.

60

4.1 Review of existing approaches

Classical rough set theory uses crisp equivalence classes (through indiscernibility relation,

which is an equivalence relation) in attribute reduction. In IDS, it is not possible to form

equivalence relation because of the missing values in the decision system. Thus, classical rough

set model is not suitable for attribute reduction in IDS. Therefore, the attribute reduction can

be performed by converting the IDS to complete Categorical Decision System (CDS) with the

imputation of missing values. Grzymala et al. [37] described several approaches for imputing

missing values. And some probabilistic methods [70, 71] also exist for the imputation of

missing values. But, the preprocessing strategy used in imputation methodology determines

the performance of the induced system using the obtained CDS.

Many researchers have used extensions to classical rough sets [57, 58, 99, 112] to deal with

IDS for attribute reduction without performing the imputation of missing values. Attempts

were made in the development of efficient attribute reduction algorithms [23, 30, 64, 129,

134] in IDS by using these extensions. And, few accelerators have also been proposed [73,

84, 108] to improve the computational efficiency. Sai Prasad et al. [73] have proposed a

“Novel Granular Framework (NGF)” based on the findings of Kryszkiewicz et al. [57] to

handle the complexity involved in the incompleteness of the data. And, the authors have

adopted the NGF to develop the IQRAIG Incomplete algorithm for attribute reduction in

IDS. This algorithm is one of the efficient algorithms among the existing approaches, along

with approach proposed by Qian et al. [84].

From the literature, it is observed that, a lot of research works have been done on at-

tribute reduction in IDS. But all the existing approaches are sequential methods and they

can not handle the large-scale incomplete data. Parallel/distributed approaches have not

been proposed for attribute reduction in large-scale IDS. Hamed et al. [41] and Zhang et

al. [126] have developed MapReduce based parallel methods to compute rough set approxi-

mations in IDS. But they did not propose any approaches for attribute reduction. This has

motivated us to investigate MapReduce based parallel/distributed approaches to deal with

massive incomplete data in attribute reduction.

According to review of relevant literature [81, 82, 92, 96, 102, 124] and Chapter 3, hor-

izontal partitioning-based methods for attribute reduction in rough set theory are effective

for data sets with a huge number of objects. And the vertical partitioning based approaches

perform well for data sets with big dimensionality. Almost all the rough set theory based at-

tribute reduction approaches using the MapReduce programming model [81, 82, 92, 96, 124]

adopted horizontal partitioning strategy except for the approach in [102]. Thus, in this chap-

ter, we explore the approaches that perform well for the big incomplete data sets with huge

number of objects, and for the big dimensional incomplete data sets.

61

4. PARALLEL ATTRIBUTE REDUCTION IN INCOMPLETE
DECISION SYSTEMS

This chapter propose MapReduce based parallel/distributed approaches based on the

NGF [73] for attribute reduction in IDS using horizontal and vertical partitioning strategies.

Briefly, the contributions in this chapter include the following:

1. An alternative representation of the NGF is proposed and adopted to develop the

MRIDS HP algorithm. This algorithm uses the distributed strategy of horizontal par-

titioning.

2. Algorithm MRIDS VP is developed by parallelizing the existing NGF based on the

distributed strategy of the vertical partitioning.

Both algorithms are implemented and compared using the Apache Spark MapReduce

framework [2]. The relevance and limitations of both algorithms are provided with extensive

experimental analysis along with theoretical validation.

4.2 Rough sets extension to IDS

The proposed approaches use Kryszkiewicz’s model [57] which is an extension of rough set

theory for IDS. The basic notions of this model are discussed in this section.

A symbolic incomplete decision system is represented as, IDS = (U,A∪{d}, {Va, fa}a∈A∪{d}).

Here, U = {x1, x2, ..., xn} is a finite non-empty set of objects, A = {a1, a2, ..., am} is a finite

non-empty set of conditional attributes, and {d} is a decision attribute that represent classes

of objects. The notation Va is the domain of attribute a, and fa : U → Va is a function that

maps an object x in U to exactly one value in Va. In this chapter, for simplicity, the notation

a(x) used for referring fa(x), and the decision system can be represented in short form as

IDS = (U,A ∪ {d}). The missing object values of attributes are denoted by a character “*.”

A missing value is treated as an unknown value. It should be noted that, without loss of

generality, it is assumed that the decision attribute {d} does not contain the missing values.

That is, for all the objects, the decision class is known. If the missing object values are not

present, then the decision systems are known as complete decision systems (CDS).

In classical rough set theory, indiscernibility relation [77, 78, 116] is the basic notion for

attribute reduction in CDS. Corresponding to indiscernibility relation for CDS, the “similarity

relation” [57] is the main idea for reduct computation in IDS. The similarity relation is used

based on the assumption that the missing values are indiscernible with all other possible

values in the attribute domain.

62

4.2 Rough sets extension to IDS

Definition 4.1. In the given incomplete decision system IDS, for the subset of attributes

B ⊆ A, the similarity relation is defined as,

SIM(B) = {(x, x′) ∈ U2 | ∀a ∈ B [a(x) = a(x′) ∨ a(x) = ∗ ∨ a(x′) = ∗]} (4.1)

The similarity relation SIM(B) satisfies the reflexive and symmetry properties, but it

does not meet transitive property in all the cases. Hence it is a tolerance relation. The

similarity relation SIM(B) generates a cover of the universe of the objects U into distinct

similarity classes. The set of similarity classes of U induced by similarity relation SIM(B)

is denoted as U/SIM(B). For an object x, the similarity class is denoted by SB(x), and is

given as,

SB(x) = {x′ ∈ U | (x, x′) ∈ SIM(B)}

The set of similarity classes U/SIM(B) are called as approximation space or granular space,

and each similarity class in U/SIM(B) is also called granule1.

A rough set is formulated by a pair of lower and upper approximations for the given

concept X ⊆ U . These approximations are defined below.

Definition 4.2. In the given incomplete decision system IDS, for a concept X ⊆ U , let

B ⊆ A, the lower approximation (B(X)) and upper approximation (B(X)) of X in terms of

similarity class are defined as,

B(X) = {x ∈ U | SB(x) ⊆ X}, B(X) = {x ∈ U | SB(x) ∩X 6= φ} (4.2)

The positive region POSB({d}) represents the objects that are classified with full certainty

as members of decision equivalence class.

Definition 4.3. In the given incomplete decision system IDS = (U,A ∪ {d}), for B ⊆ A,

the positive region with respect to B is defined as,

POSB({d}) =
⋃

X∈U/IND({d})

B(X) (4.3)

The dependency measure (gamma measure) γB({d}) denotes the proportion of objects

that belong to the positive region, and is given by,

γB({d}) =
|POSB({d})|

|U |
(4.4)

A minimal subset of conditional attributes R ⊆ A is said to be reduct, if R preserves the

original classification as defined by attributes set A.

1The term “granule” is used instead of “similarity class” in the rest of the chapter.

63

4. PARALLEL ATTRIBUTE REDUCTION IN INCOMPLETE
DECISION SYSTEMS

Definition 4.4. For the given incomplete decision system IDS, let R be the subset of con-

ditional attributes (R ⊆ A), and R is said to be reduct if and only if,

i). γR({d}) = γA({d}) (jointly sufficient)

ii). γR′({d}) < γR({d}) for any R′ ⊂ R (individually necessary)

4.3 Related work

P. S. V. S. Sai Prasad et al. [73] proposed Novel Granular Framework (NGF) to overcome

the limitations of Kryszkiewicz’s model [57] (discussed in the preceding section). And, this

section also presents the algorithm IQRAIG Incomplete which uses NGF. This algorithm

achieved a significant computational gain in reduct computation over other approaches for

IDS since the NGF allows the incorporation of the granular refinement and positive region

removal features. Therefore, the MapReduce based proposed approaches are developed by

parallelizing this existing NGF.

4.3.1 Overview of Novel Granular Framework

In any dependency measure-based approach of attribute reduction, the efficiency of the ap-

proach depends on the computation of the positive region, which is calculated based on the

lower approximation of each of the decision classes. With the classical rough set theory in

CDS, the positive region is computed by forming the equivalence classes using indiscernibility

relation. If an object of an equivalence class goes into the positive region, then the remaining

objects of the same equivalence class also go into the positive region, because of the sharing

property of equivalence class. But, in the Kryszkiewicz’s model [57] for IDS, the positive re-

gion is computed by finding the granule of each object separately. This is because the granule

does not support sharing property. Hence, finding granule for each object leads to repeated

computations in attribute reduction.

Sai Prasad et al. [73] developed a Novel Granular Framework (NGF) to overcome the

aforementioned problems in the Kryszkiewicz’s model. In this framework, the structure of

the granule is changed such that it supports sharing property. Thus, a granule is redefined

according to NGF, as given below.

Definition 4.5. In the given incomplete decision system IDS, for B ⊆ A, if U/SIM(B)

is the granular space, then a granule gr ∈ U/SIM(B) is defined as the collection of objects

gr ⊆ U such that, if x, x′ ∈ gr then x ∈ SB(x′) and x′ ∈ SB(x). And, the granule gr is further

divided into two portions base and tail as,

base = {x ∈ gr | SB(x) = gr}, tail = gr − base, where, base ⊆ U, tail ⊆ U (4.5)

64

4.3 Related work

The base portion of the granule gr is denoted with gr.base, and it contains all the objects

in gr having the similarity class as gr. And the tail portion of the granule gr is denoted

with gr.tail, and it contains the remaining objects of the similarity class. Note that, for

an empty set of attributes B = φ, U/SIM(B) = {gr}, where, gr.base = U , and gr.tail =

φ. From the Eq. (4.5), it can be ascertained that, all the base portions of the granules

constitute U/IND(B) by assuming that the missing value is considered as a discernible

domain value. Thus, the base portions of the granules correspond to the equivalence classes

of the indiscernibility relation IND(B).

For any subset of attributes B ⊆ A, the lower approximation of X ⊆ U using U/SIM(B)

based on NGF is given as,

B(X) =
⋃

(gr∈U/SIM(B)) ∧ (gr⊆X)

gr.base (4.6)

From Eq. (4.6), the positive region using U/SIM(B) becomes,

POSB({d}) =
⋃

X∈ U/IND({d})

B(X) (4.7)

Eqs. (4.6) and (4.7) are modified versions of Eqs. (4.2) and (4.3). Here, Eq. (4.7) states

that, the positive region is the union of base portions of the granules U/SIM(B), which have

the same decision class for the objects in gr (i.e., consistent). Thus, the reduct is computed

by using Definition 4.4, where Eq. (4.7) is used to compute the dependency measure (γ) in

Eq. (4.4).

4.3.2 IQRAIG Incomplete algorithm

Based on IQRA IG algorithm [74], the IQRAIG Incomplete algorithm [73] is proposed for IDS.

This algorithm is developed using the Sequential Forward Selection (SFS) strategy, and the de-

pendency measure (γ measure) [53] approach for reduct computation. And, IQRAIG Incomplete

uses NGF to deal with incompleteness in the data. The description of the procedure for reduct

computation in IQRAIG Incomplete algorithm is given below.

IQRAIG Incomplete algorithm starts its first iteration by initializing the reduct set R = φ

(empty set). As this algorithm uses dependency measure (γ) approach, for each attribute

a ∈ A, dependency measure is computed using Eq. (4.4) and Eq. (4.7). To compute the

positive region, the granular space (granules) U/SIM({a}) ∀a ∈ A is formed. The attribute

abest for which the maximum dependency measure obtained is included into the reduct set

R. Now the algorithm categorise the granules U/SIM(R) into positive region denoted by

65

4. PARALLEL ATTRIBUTE REDUCTION IN INCOMPLETE
DECISION SYSTEMS

P GR(U/SIM(R)) and non-positive region denoted by NP GR(U/SIM(R)). From Eq.

(4.7), a granule gr ∈ U/SIM(R) is said to be positive region granule, if the objects of gr.base

go into positive region (i.e, when the decision class of objects of gr is the same). The granules

of U/SIM(R) which are not in positive region are said to be non-positive region granules.

If gr ∈ P GR(U/SIM(R)) then ∀gr′ ∈ gr/SIM(R ∪ {a}) for any a ∈ (A − R), we have

gr′ ∈ P GR(U/SIM(R ∪ {a})). That is, if a granule is going into positive region, then any

of its sub granules can also go into positive region. Thus, the removal of the base portions of

the granules in positive region from U/SIM(R) has no effect on future computations. Hence,

the algorithm performs positive region removal where the base portions of the granules of

U/SIM(R) which are part of positive region (P GR(U/SIM(R))) are removed. After re-

moval of positive region, only the non-positive region granules (NP GR(U/SIM(R))) remain

in granular space U/SIM(R).

In the successive iterations of the IQRAIG Incomplete algorithm, if the reduct is nonempty,

the granules need to be formed for R ∪ {a}, ∀a ∈ (A − R) to compute the gamma measure.

The granules of U/SIM(R ∪ {a}) are computed based on the objects values of attributes

R ∪ {a}. But this computation becomes unnecessary because we have already computed

granules of U/SIM(R) in previous iteration. Hence, this redundant computation in each

iteration of the algorithm is avoided by using the granular refinement, where the granules

for attribute a are computed based on the existing granules of U/SIM(R). Note that, from

the previous iteration the granular space U/SIM(R) contains non-positive region granules

(NP GR(U/SIM(R))). Thus, if NP GR(U/SIM(R)) = {gr1, gr2, ...grs}, then by using the

granular refinement, the granules of U/SIM(R ∪ {a}), ∀a ∈ (A−R) are computed as,

U/SIM(R ∪ {a}) =

s⋃
i=1

gri/SIM({a}) (4.8)

It should be noted that the process of positive region removal and granular refinement

in IQRAIG Incomplete algorithm is similar to IQRA IG algorithm given in Section 3.2.1.

Hence, in the algorithm, after computation of the granules U/SIM(R ∪ {a}),∀a ∈ (A − R)

using Eq. (4.8), the γR∪{a} measure is computed using Eq. (4.4) and Eq. (4.7). The best

attribute abest which gets maximum gamma gain is added to the reduct set R. And, the

positive region removal is performed to remove the positive region granules from U/SIM(R).

The above procedure is repeated until the algorithm stops. The algorithm terminates when

the dependency measure of the reduct attributes (γR({d}) is equal to the dependency measure

of all the conditional attributes (γA({d}).

66

4.4 Proposed parallel attribute reduction in IDS using horizontal
partitioning

4.4 Proposed parallel attribute reduction in IDS using hori-

zontal partitioning

Horizontal partitioning of the given IDS can be defined as given below.

Definition 4.6. For the given incomplete decision system IDS = (U,A ∪ {d}), let IDS =⋃p
i=1 IDS

i, where, IDSi = (U i, A ∪ {d}) is ith data partition, and satisfies (i) U =
⋃p

i=1 U
i,

(ii) U i ∩ U j = ∅, ∀i, j ∈ {1, 2, ..., p} and i 6= j, where p is the number of data partitions.

From Definition 4.6, we can observe that each node gets data partition having subset of

objects’ information of all the attributes.

4.4.1 Alternative representation of the NGF

According to Definition 4.5, the construction of granule involves the formation of base and

tail portions. Because of these portions, objects in one granule can be repeated in another

granule. In IQRAIG Incomplete algorithm [73], it can be observed that, the base and tail

portions of a granule are represented with object identifiers (ids). By default the row number

of the object in IDS is considered as object id. But, in a parallel/distributed approach with the

horizontal partitioning strategy, the object ids based representation is found not suitable due

to increased shuffle and sort phase complexity. From the existing horizontal partitioning based

attribute reduction algorithms in classical rough sets [81, 82, 92, 96, 124], it is observed that

the granular structure is usually represented with the granular signature instead of object ids.

In this section, the granular signature-based formulation for the NGF is introduced. Here,

this alternative representation of the NGF is discussed in the standalone scenario, and its

parallel/distributed outline is given in subsequent sections. This representation is adopted in

the proposed horizontal partitioning based approach.

If we project the base portions of the granular space for the subset of attributes B ⊆ A,

we can notice that the collection of all the base portions are the equivalence classes induced

from the indiscernibility relation (i.e., U/IND(B)) on the information of the attributes B

by considering the missing value also as a known discernible value. Hence, in the alternative

representation of NGF, the base portions are first computed using IND(B), and then the

tail portions are constructed from the existing base portions.

Consider the distinct similarity classes for B ⊆ A as U/SIM(B) = {gr1, gr2, ..., grk}, and

U/IND(B) = {gr1.base, gr2.base, ..., grk.base}. In the alternative representation of NGF, the

base portion of a granule is represented with a pair of < bSig, (decV al, posCount) > instead

of object ids. The bSig represents the unique value combination for attributes in B attained

by objects of granule. While computing base portion, the consistency of the base portion

67

4. PARALLEL ATTRIBUTE REDUCTION IN INCOMPLETE
DECISION SYSTEMS

is extracted. If the decision class of all the objects in the base portion are the same then

the base portion is consistent, and the corresponding unique decision class label decV al is

preserved, otherwise decV al is represented with −1. If the base portion is consistent, then the

cardinality of the base portion is stored in posCount. Preserving aforementioned information

is sufficient for the computation of the tail portions, positive region count (|POSB({d})|),
and the dependency measure (γB({d})) as shown below.

From Definition 4.5, the objects of the tail portion in a granule are similar to the cor-

responding base portion using SIM relation. Hence, the tail portion of a granule can be

viewed as the union of other base portions whose base signature (bSig) is similar to the cur-

rent base signature under the SIM relation. The tail portions of the existing base portions

of the granules are computed as given below.

Definition 4.7. In the given incomplete decision system IDS = (U,A∪{d}), for B ⊆ A, let

U/IND(B) = {gr1.base, gr2.base, ..., grk.base}. For the base portion of an ith granule gri,

the tail portion gri.tail is computed as,

gri.tail =
k⋃

j=1

{grj .base | (i 6= j) ∧ (SIM(bSig(gri.base), bSig(grj .base)) == TRUE)}

(4.9)

Note that, SIM(bSig(gri.base), bSig(grj .base)) becomes TRUE when the following crite-

ria is satisfied. If bSig(gri.base) = (a1, a2, ...a|B|) and bSig(grj .base) = (b1, b2, ...b|B|), then ∀k ∈
{1, 2,|B|}, we have ak == bk or ak = ∗ or bk = ∗.

From Eq. (4.9), we say that gri is a consistent granule if gri.base and all the base

portions in gri.tail are consistent and they all have same decV al. Let ConsistentGranules(B)

represents the set of granules of U/SIM(B) which are consistent. To find the positive region

count |POSB({d})|, Eq. (4.7) in NGF is modified as given below.

|POSB({d})| =
∑

gr∈ConsistentGranules(B)

posCount(gr.base) (4.10)

The dependency measure γB({d}) given in Eq. (4.4) is computed using Eq. (4.10).

In this proposed approach, the attribute reduction is performed majorly in two steps.

In the first step, the granules for the given data set are computed based on the alternative

representation of NGF. In the second step, the best attribute to include in the reduct set is

computed based on the granules. Parallelization of these two steps and the incorporation of

the positive region removal facet is described using MapReduce-based parallel/distributed al-

gorithms. These algorithms are given in the form of a driver, mapper, and reducer. The driver

68

4.4 Proposed parallel attribute reduction in IDS using horizontal
partitioning

algorithm MRIDS HP: driver() is given in Algorithm 4.1, the mapper algorithm MRIDS HP:

map() is given in Algorithm 4.2, and the reducer algorithm MRIDS HP: reduce() is given in

Algorithm 4.3. And, the algorithm MRIDS HP: mapValues() is given in Algorithm 4.4. This

algorithm is used to find the best attribute.

4.4.2 Parallel computation of the base portions

With the horizontal partitioning strategy, each data partition of a node gets a subset of

objects information of an attribute. So within a node, partial base portions are formed in the

mapper phase, and the complete base portions are realized after the reducer phase. As given

in Algorithm 4.1, in any iteration, the driver maintains non-positive region base signatures

for the current reduct R in nPosbSig variable. At the beginning, the driver initializes the

variables R = φ and nPosbSig[][] = φ. Before starting its first iteration, the driver assumes

that all the objects of U belong to non-positive base signature of nPosbSig. The driver starts

each iteration by broadcasting R and nPosbSig variables to all the nodes of the cluster. In the

mapper phase, the driver computes the partial base portions U i/IND(R∪{a}), ∀a ∈ (A−R)

by invoking Algorithm 4.2.

The mapper (Algorithm 4.2) works on each record of IDSRDD. The mapper computes

the base signature RbSig of all the attributes of current reduct R for the given record.

If RbSig does not belong to nPosbSig, then RbSig is a positive region base signature,

hence that particular record is not considered for further computations. And if RbSig be-

longs to nPosbSig, then that particular record is considered to generate the intermediate <

key′, value′ > pair for each attribute attr ∈ (A−R). The key′ contains < bId, attr, objV al >

where the bId is base signature index in nPosbSig, objV al is the object value in the given

record for the attribute attr. And value′ contains < decV al, posCount > where decV al

is the decision value in the record, and posCount is the positive region count, which is

initialized with 1. These < key′, value′ > pairs form the new RDD as parbSigRDD <

(bId, attr, objV al), (decV al, posCount) >. From Algorithm 4.2, it can be noticed that the ob-

jective of the mapper is to generate the requisite information for constructing base portions

U/IND(R ∪ {attr}), ∀attr ∈ (A − R). Here for each attr ∈ (A − R), the mapper collates

the base signature information corresponding to U/IND(R ∪ {attr}) using the combination

of bId and objV al of the attr in the given record and the information pertaining to the R

attributes that can be extracted by using broadcasted variable nPosbSig.

69

4. PARALLEL ATTRIBUTE REDUCTION IN INCOMPLETE
DECISION SYSTEMS

Algorithm 4.1: MRIDS HP: driver()

Input: Input data set IDS = (U,A ∪ {d}), Positive threshold: α, Threshold for trivial
iterations: thV al

Output: Reduct R
1 IDSRDD = readAsRDD(IDS) /* Data set is divided using horizontal

partitioning strategy, and distribute to the nodes of the cluster as

IDSi = (U i, A ∪ {d}) ∀i ∈ {1, 2, ..., p} where p is number of data partitions. */

2 Initialize trivialIteration = 0, additionalAttrs = φ, posTh = α
3 Broadcast reduct R = φ, non-positive region base signatures list nPosbSig[][] = φ
4 repeat

// Initiate mapper job by invoking Algorithm 4.2

5 val parbSigRDD = IDSRDD.map(record => {var m = map()})
// Initiate reducer job by invoking Algorithm 4.3

6 val bSigRDD = parbSigRDD.reduceByKey((x, y) => {var r = reduce()}))
7 Using a map() only operation, transform the < key, value >= pairs of bSigRDD such

that key = attr and value = (bId, objV al, decV al, posCount)
// Aggregate all values of same key as a list of tuples

8 val aggrRDD = bSigRDD.aggregateByKey()
// aggrRDD gets < key, value > =< attr, List[(bId, objV al, decV al, posCount),] >
// Find the best attribute by invoking Algorithm 4.4

9 val attrPosRDD = aggrRDD.mapV alues()
/* attrPosRDD gets < attr, (attrPosCount, attrnPosbSig) > pairs */

10 Select attr as abest which gets maximum attrPosCount (denoted as bestPosCount),
store its attrnPosbSig into nPosbSig and broadcast.

11 R = R ∪ {abest}, totalPC = totalPC + bestPosCount

12 Compute γR = totalPC
|U |

13 if (γR >= posTh) then
14 Filter the objects from IDSRDD which are not in nPosbSig
15 posTh = α+ γR
16 end
17 if (γR < 1 AND bestPosCount == 0) then
18 Store abest to additionalAttrs
19 trivialIteration+ +

20 end
21 else
22 trivialIteration = 0
23 Remove attributes from additionalAttrs

24 end
25 if (trivialIteration == thV alue) then
26 Remove attributes of additionalAttrs from R
27 end

28 until (γR < 1 AND trivialIteration < thV alue)
29 Return R

70

4.4 Proposed parallel attribute reduction in IDS using horizontal
partitioning

Algorithm 4.2: MRIDS HP: map()

Input: 1. A record of IDSRDD
2. Broadcasted reduct: R, and non-positive region base signatures: nPosbSig

Output: Partial base portions in the form of < key′, value′ >
1 Construct base signature for the attributes of R based on record and store into RbSig
2 decV al = record[d]
3 posCount = 1
4 if RbSig ∈ nPosbSig then
5 bId=index of RbSig in nPosbSig
6 for each attribute attr ∈ (A−R) do
7 objV al = record[attr]
8 Construct < key′, value′ > pair, where key′ = (bId, attr, objV al) and

value′ = (decV al, posCount)
9 Generate intermediate < key′, value′ > pair

10 end

11 end

In Algorithm 4.3, the driver performs reduceByKey() operation on the parbSigRDD.

Each reducer gets a key as < bId, attr, objV al >, and a corresponding list of values V , where

each v ∈ V is < decV al, posCount >. That is, in the reducer phase, the complete form

of the base portion is obtained by collecting all the value portions < decV al, posCount >

of same key =< bId, attr, objV al >. After forming the complete base portions, the con-

sistency of the base portion is checked. As shown in the algorithm, for a base portion

(key), if all the decV als are same and decV al! = −1, then that base portion is consis-

tent and the value portion becomes < decV al, sum of all posCount >, otherwise it be-

comes < −1, 0 >. Here, −1 indicates inconsistent base portion. Hence, < key′, value′ >

pairs of reducer form complete base portion and results in the formation of new RDD of

bSigRDD < (bId, attr, objV al), (decV al, posCount) >. It should be noted that, with the

reduceByKey() operation, internally Spark performs local optimization by applying the op-

eration on local values in mapper phase prior to its global optimization. Additionally, both

in mapper and reducer, it can be observed that, instead of base signature its bId is commu-

nicated in the key portion. With this, the amount of data movement in the shuffle and sort

phase is reduced.

71

4. PARALLEL ATTRIBUTE REDUCTION IN INCOMPLETE
DECISION SYSTEMS

Algorithm 4.3: MRIDS HP: reduce()

Input: < key, V > pair where, key is a (bId, attr, objV al) received from all the
mappers, V is a list of values, where each value v is (decV al, posCount)
generated from a mapper

Output: Complete base portion of an attribute in the form of < key′, value′ > pair
1 if (decV al is same in the list of V AND decV al! = −1) then
2 value′ =(decV al, sum of all posCounts)
3 end
4 else
5 value′ = (−1, 0)
6 end
7 Construct < key′, value′ > pair, where key′ = (bId, attr, objV al), and

value′ = (decV al, posCount)
8 Emit < key′, value′ >

4.4.3 Parallel computation of the best attribute

Algorithm 4.4: MRIDS HP: mapValues()

Input: 1. < key, V > pair where, key is an attr, V is a list of tuples, where each
tuple v is (bId, objV al, decV al, posCount)

2. Broadcasted reduct R, non-positive base signatures list nPosbSig
Output: An attribute attr, its positive region count attrPosCount and its non

positive region base signatures list attrnPosbSig
1 For each tuple v ∈ V , construct base signature of base portion of granule in

U/SIM(R ∪ {attr}) with the information of R attributes from nPosbSig[bId] and
information of attr in objV al

2 Compute tail for each base of granule gr ∈ U/SIM(R ∪ {attr}) using Eq. (4.9)
3 attrPosCount = 0, attrnPosbSig[][] = φ
4 for each tuple gr.base ∈ V of attr do
5 if (Consistency(gr.base)! = TRUE) then
6 attrnPosbSig = attrnPosbSig ∪ bSig(gr.base)
7 end
8 else if (Consistency(gr)! = TRUE) then
9 attrnPosbSig = attrnPosbSig ∪ bSig(gr.base)

10 end
11 else
12 attrPosCount = attrPosCount+ posCount(gr.base)
13 end

14 end
15 Emit < key′, value′ >=< attr, (attrPosCount, attrnPosbSig) >

In an iteration of the proposed algorithm (Algorithm 4.1), the attribute which gets max-

imum positive region count among the attributes of (A−R) is selected as the best attribute

abest. To compute the required positive region count of an attribute attr ∈ (A−R), we need to

gather all the base portions of the attr to a particular location. To do this, the driver first per-

72

4.4 Proposed parallel attribute reduction in IDS using horizontal
partitioning

forms map() operation on bSigRDD to transform the < key, value > pair, so that, key =<

attr > and value =< bId, objV al, decV al, posCount >. And, then the driver performs

aggregateByKey() for aggregating value portions (< bId, objV al, decV al, posCount >) of a

key =< attr >. The driver gets aggrRDD < attr, List[(bId, objV al, decV al, posCount), ...] >

as the result of aggregateByKey() operation. That is aggrRDD contains a key as attr, and

all the base portions U/IND(R∪{attr}) as a list of tuples in the value portion ∀attr ∈ (A−R).

By performing mapV alues() operation on aggrRDD, the computation of tail portions from

U/IND(R ∪ {attr}) and the computation of the positive region count (|POSR∪{attr}({d})|)

are parallelized.

As given in Algorithm 4.4, by using Definition 4.7, the tail portion for each base por-

tion of an attribute is computed. After the formation of tail portions, each granule gets

its base and tail portions so that the granule gr becomes a similarity class in U/SIM(R ∪

{attr}). If the granule gr is consistent then it’s gr.base portion goes to positive region

(using Eq. (4.10)). Otherwise the gr.base portion is added to attrnPosbSig. For the

consistent granules, the positive region count |POSR∪{attr}({d})| is computed by using Eq.

(4.10). For each attribute attr ∈ (A − R), Algorithm 4.4 generates < key′, value′ >=<

attr, (attrPosCount, attrnPosbSig) > that result in attrPosRDD.

As given in Algorithm 4.1, the best attribute is selected (which gets maximum positive

count) by performing a reduce operation on attrPosRDD. The best attribute abest is added

to the reduct set R, and the dependency measure γR is computed. From Definition 4.4,

the driver algorithm should be terminated when the value of γR({d}) reaches the value of

γA({d}). Here, the computation of γA({d}) may not be feasible for the massive data sets

with the horizontally partitioned data. Hence, an alternative approach is used to terminate

the algorithm. As mentioned earlier, the attribute which gets maximum gamma gain is added

to the reduct set, but in an iteration, if there is no gamma gain, then the algorithm selects

an attribute randomly and added it to the reduct set, and then the next iteration is repeated.

The non-increasing nature of the dependency measure can be because of the data set or the

obtained reduct set already achieved γR({d}) equal to γA({d}). To resolve this ambiguity, the

algorithm continue the iterations for some threshold value (thV alue) number of times and

even if there is no increase in γR({d}) then the algorithm safely assumes that the required

reduct is obtained. Note that, the value of thV alue variable is taken as input to the algorithm

based on the number of attributes in the input data set.

73

4. PARALLEL ATTRIBUTE REDUCTION IN INCOMPLETE
DECISION SYSTEMS

4.4.4 Positive region removal

The driver (in Algorithm 4.1) incorporates a stage based positive region removal. Without

performing positive region removal it can be observed that in the mapper phase, on each

record, the base signature (RbSig) is computed and verified whether it belongs to nPosbSig

or not. If RbSig does not belong to nPosbSig, then the objects of the RbSig are considered in

the positive region and they are not used in further computations. This verification becomes

an expensive and repetitive operation. But effecting the physical removal of the positive region

in every iteration results in a lot of reorganization of the IDSRDD with filter() operation.

If the number of objects being removed is very small, then the overhead cost incurred with

the reorganization of IDSRDD dominates the benefits obtained by positive region removal.

To avoid the aforementioned problems, a stage based positive region removal is performed

in which a threshold α is taken as input from the user and it is assigned to posTh variable (in

our implementation α is taken as 0.25). And, the positive region removal is not performed till

γR({d}) >= posTh. If γR({d}) exceeds posTh, then the objects in positive region are filtered

out from the input data set IDSRDD. And posTh is set to γR({d}) + α. In the next stage,

the positive region is removed based on the current posTh value.

4.4.5 Complexity analysis of MRIDS HP algorithm

Table 4.1: Time complexity analysis of MRIDS HP algorithm

Algorithm
(phase)

Step* in Algorithm Time complexity

Driver : 1. Partitioning the data horizontally O(|A|∗|U |p ∗ tw)

(Algorithm 4.1) 3. Broadcasting nPosbSig O(|A| ∗ |U/IND(A)| ∗ tw)

Mapper :
(Algorithm 4.2)

4-10. Creating partial base signatures O(|A|∗|U |log|U |p)

Shuffle and
sort1 :

Transferring partial base signatures O(p∗|A|∗|U/IND(A)|∗tw)

Reducer1 :
(Algorithm 4.3)

1-6. Creating complete base signatures
and Barrier synchronization

O(p∗|A|∗|U/IND(A)|
q) + O(s)

mapValues() :
(Algorithm 4.4)

4-14. Forming complete granules (based
on alternative NGF)

O(|A|∗|U/IND(A)|2
p′)

Shuffle and
sort2 :

Transferring data after mapValues() O(p′∗|A|∗|U/IND(A)|∗tw)

Reducer2 :
(Algorithm 4.1)

10. Finding abest and Barrier synchroniza-
tion

O(p′) + O(s)

* Step denotes the line number in the associated algorithm

74

4.4 Proposed parallel attribute reduction in IDS using horizontal
partitioning

In the time complexity analysis of MRIDS HP algorithm, the following variables are used.

• |U |: the number of objects in the data set

• |A|: the number of conditional attributes in the data set

• p: the number of processors

• tw: the number of time units to transfer one word of memory

• s: the number of time units to complete the synchronization

• |U/IND(A)|: the number of granules in granular space formed by A

• q: the number of reducers invoked by Algorithm 4.3

• p′: the number of data partitions after aggregateByKey() operation

Table 4.1 shows the time complexities of each step of the phase in the MRIDS HP algo-

rithm for one iteration. Note that, in the table, all the steps in all the phases (i.e., Al-

gorithm 4.2 (mapper), shuffle and sort1, Algorithm 4.3 (reducer1), shuffle and sort2 and

Algorithm 4.4 (mapValues)) and step 10 of the driver (Algorithm 4.1) are repeated until

(γR < 1 AND trivialIteration < thV alue) condition is satisfied. That is, these steps are

repeated |A| (in worst case) times. Hence, by adding up all the complexities, the total time

complexity of the MRIDS HP algorithm is obtained as given below.

(
|A| ∗ |U |

p
∗tw)+(|A|∗|U/IND(A)|∗tw)+|A|∗((|A| ∗ |U |log|U |

p
)+(p∗|A|∗|U/IND(A)|∗tw)+

(
p ∗ |A| ∗ |U/IND(A)|

q
)+(s)+(

|A| ∗ |U/IND(A)|2

p′
)+(p′∗|A|∗|U/IND(A)|∗tw)+(p′)+(s))

(4.11)

Above equation can be approximated as: O(|A|
2∗|U |log|U |

p) + O(|A| ∗ (|A| ∗ |U/IND(A)| ∗ (p ∗
tw + p

q + |U/IND(A)|
p′ +p, ∗tw) +p′+s). Thus the time complexity of the MRIDS HP algorithm

is O(|A|
2∗|U |log|U |

p) in addition with its communication cost: O(|A| ∗ (|A| ∗ |U/IND(A)| ∗ (p ∗
tw + p

q + |U/IND(A)|
p′ + p, ∗tw) + p′ + s).

The entire decision system is required to be present in memory for reduct computation

using MRIDS HP algorithm. Thus, the space complexity of MRIDS HP algorithm is O(|A| ∗
|U |). Additionally, the driver of MRIDS HP algorithm has to maintain broadcasting non-

positive region base signatures list, thus it has the complexity of O(|A| ∗ |U/IND(A)|). In the

75

4. PARALLEL ATTRIBUTE REDUCTION IN INCOMPLETE
DECISION SYSTEMS

MapReduce framework environment, the input decision system is partitioned and distributed

to the nodes of the cluster where the workload is divided equally into p data partitions. Hence,

each partition has the complexity of O(|A|∗|U |p).

In the worst-case scenario, the aforementioned theoretical time and space complexities

of the proposed MRIDS HP algorithm are described. However, since the MRIDS HP algo-

rithm incorporates positive region removal feature, the actual time and space complexities

are further reduced.

4.5 Proposed parallel attribute reduction in IDS using vertical

partitioning

The horizontal partitioning based attribute reduction algorithm MRIDS HP is not scalable

for big dimensional data sets. Because, the granular signature representation of granules in

NGF suffers from overheads of data movement across the cluster of nodes in the MapReduce

framework. Furthermore, it does not allow the incorporation of a granular refinement feature

which gives enormous computational gains in parallel/distributed computing as proved in

Chapter 3. Thus, vertical partitioning based approach is required to achieve scalability in

attribute reduction of big dimensional incomplete data sets. With the vertical partitioning

strategy given in Section 3.3, all the objects’ information of a subset of attributes is available

in a data partition of a node in the cluster. Vertical partitioning of the incomplete data set

is defined below.

Definition 4.8. For the given incomplete decision system IDS, let IDS =
⋃p

i=1 IDS
i be

the vertically partitioned decision system, where, IDSi = (U,Ai ∪ {d}) is ith data partition,

and satisfies (i) A =
⋃p

i=1A
i, (ii) Ai ∩ Aj = ∅, ∀i, j ∈ {1, 2, ..., p} and i 6= j, where p is the

number of data partitions.

Each data partition contains Ai ∪{d} attributes with the information of all the objects of

U . Therefore, adopting the representation of the granules in the existing NGF using object

ids is naturally carried forward from the standalone scenario to vertical partitioning based

parallel approach because all the objects pertaining to the attributes are available at the same

location (within a node). As a result, the proposed MapReduce based method (MRIDS VP)

adopts vertical partitioning strategy to partition the input data set to cluster nodes, and it

uses the NGF to handle the incompleteness in the data.

In the proposed approach, attribute reduction is performed majorly in two steps. In the

first step, the given data set’s granules are computed based on the NGF. In the second step, the

best attribute to include in the reduct set is computed based on the granules. Parallelization of

76

4.5 Proposed parallel attribute reduction in IDS using vertical partitioning

these two steps and the incorporation of granular refinement and positive region removal facets

are described by using MapReduce based parallel/distributed algorithms. These algorithms

are given in the form of a driver, mapper, and reducer. The driver algorithm MRIDS VP:

driver() is given in Algorithm 4.5, the mapper algorithm MRIDS VP: map() is given in

Algorithm 4.6, and the reducer algorithm MRIDS VP: reduce() is given in Algorithm 4.7.

The driver (Algorithm 4.5) initializes the reduct R = φ (empty set). The initial granules

U/SIM(R) = {{U}, {φ}} (when R = φ) are assigned to non-positive region granules list

NP GR, where base portion of the granule is initialized with U and tail portion is initialized

with φ (empty set). The driver then broadcasts these initialized variables along with the

decision attribute {d} to all the nodes of the cluster.

Algorithm 4.5: MRIDS VP: driver()

Input: Input data set IDS = (U,A ∪ {d})
Output: Reduct R

1 IDSRDD = readAsRDD(IDS) /* Reads the input data set as RDD, divides

it using vertical partitioning strategy, and distribute to the nodes

of the cluster as IDSi = (U,Ai ∪ {d}), ∀i ∈ {1, 2, ..., p} where p is

number of data partitions in the cluster. */

2 Broadcast decision attribute {d}, initial reduct R = φ, and initial non-positive region
granules list NP GR = {{U}, {φ}} to all the nodes of the cluster.

3 Compute γA({d})
4 repeat

// Initiate mapper job by invoking Algorithm 4.6

5 val lBestRDD = IDSRDD.mapPartitions(part => {var mp = map()})
// Initiate reducer job by invoking Algorithm 4.7

6 val gBestRDD = lBestRDD.reduceByKey((x, y) => {var rp = reduce()}))
7 Collect the data gBestRDD as < key, value >=< abest, globalPC > from the

reducer.

8 Add the best attribute abest to the reduct set R
9 Calculate total positive region count |POSR({d})| of reduct set R

10 Compute dependency measure γR using Eq. (4.4)
11 if (γR < γA) then
12 Filter the record of the attribute abest from the input data set IDSRDD

13 Remove the attribute abest from the reduct set R

14 Compute U/SIM(R ∪ {abest}) using Eq. (4.8) // Granular refinement

15 Perform positive region removal

16 Broadcast non-positive region granules NP GR(U/SIM(R ∪ {abest})
17 Add the attribute abest to the reduct set R

18 end

19 until (γR == γA)
20 Return R

77

4. PARALLEL ATTRIBUTE REDUCTION IN INCOMPLETE
DECISION SYSTEMS

Algorithm 4.6: MRIDS VP: map()

Input: 1. Data partition IDSi = (U,Ai ∪ {d}), each record read as
< key, value >=< a, aData >
2. Broadcasted reduct: R, non-positive region granules: NP GR

Output: < key′, value′ >=< commonKey, (labest, localPC) > here, commonKey is
some common key, labest ∈ Ai is local best attribute within the partition,
and localPC is its positive region count

1 max = 0, labest = −1
2 for each record ∈ IDSi as < a, aData > do
3 if a 6∈ R then
4 Compute U/SIM(R ∪ {a}) using Eq. (4.8) // Granular refinement

5 Compute POSR∪{a}({d}) using Eq. (4.7)

6 if |POSR∪{a}({d})| > max then

7 labest = a
8 max = |POSR∪{a}({d})|
9 end

10 end

11 end
12 Construct < key′, value′ > pair, where key′ = commonKey, and

value′ = (labest, localPC), here localPC = max
13 Emit intermediate < key′, value′ >

Algorithm 4.7: MRIDS VP: reduce()

Input: < key, V >, where key is a commonKey received from all the mappers, V is
a list of values, where each value is (labest, localPC) generated from a mapper

Output: < key′, value′ >=< abest, globalPC) > here, abest is the best attribute, and
globalPC is it’s positive region count

1 globalPC = 0, abest = −1

2 for each v ∈ V as (labest, localPC) do
3 if localPC > globalPC then
4 abest = labest

5 globalPC = localPC

6 end

7 end

8 Construct < key′, value′ > pair, where key′ = abest, and value′ = globalPC
9 Emit < key′, value′ >

78

4.5 Proposed parallel attribute reduction in IDS using vertical partitioning

4.5.1 Parallel computation of the best attribute

The driver computes the granules by invoking the mapper (Algorithm 4.6). A mapper gets

a data partition IDSi as input and broadcasted variables R and NP GR from the driver.

With the vertical partitioning strategy, for an attribute a ∈ (Ai − R), since all the objects’

information is available within the data partition, the complete granules of U/SIM(R∪{a})
are formed locally within the node based on Eq. (4.5). Thus, each mapper computes the

granules U/SIM(R ∪ {a}), ∀a ∈ (Ai −R) by using the granular refinement as per Eq. (4.8).

Here, broadcasted granules of NP GR(U/SIM(R)) are refined based on the values of the

current attribute a. Based on these granules, the positive region count |POSR∪{a}({d})|,
∀a ∈ (Ai −R) can also be computed locally within the node using Eq. (4.7).

As shown in Algorithm 4.6, after computation of the granules, the mapper computes

the positive region count for each attribute a ∈ (Ai − R) within the data partition IDSi.

The attribute which gets maximum positive region count localPC is selected as local best

attribute labest. Each mapper generates < key′, value′ > pair that result in lBestRDD <

commonKey, (labest, localPC) >. Here, commonKey is a common key from all the mappers

used to invoke a single reducer.

In Algorithm 4.7, the reducer gets a set of< commonKey, [(labest, localPC)] > pairs as the

input from all the mappers located in different nodes of the cluster. Here, [(labest, localPC)]

represents a list of values. The reducer selects a global best attribute abest which gets maxi-

mum positive region count among the local best attributes received from different mappers.

The reducer generates global best attribute and its positive region count. In the driver,

the best attribute abest is added to the reduct set R, and the total positive region count

|POSR({d})| of reduct set R is calculated. The γR is computed based on |POSR({d})|.

4.5.2 Granular refinement and positive region removal

In an iteration of the driver (Algorithm 4.5), after adding the best attribute abest to the reduct

set R, the end condition (γR == γA) of the algorithm is checked, where γA is the dependency

measure of all the conditional attributes (refer Section 4.5.3). If the condition is true, then

the algorithm returns reduct set R and terminates. But if the condition is false, then the

record of the best attribute abest is fetched by using a filter operation on the input data set

IDSRDD. The granules U/SIM(R∪{abest}) are constructed based on the fetched record of

the best attribute using granular refinement (line number 14 of the Algorithm 4.5). Notice

that we already computed the granules U/SIM(R ∪ {abest}) in the mapper phase, but the

granules are not communicated to the reducer to simplify the shuffle and sort phase, which is

most complex phase of the MapReduce framework. Thus, we avoid a lot of data movement in

79

4. PARALLEL ATTRIBUTE REDUCTION IN INCOMPLETE
DECISION SYSTEMS

the shuffle and sort phase, which is much more expensive than performing a filter operation

to fetch the record of the best attribute in the driver.

The positive region granules P GR(U/SIM(R ∪ {abest})) are removed from the gran-

ules of U/SIM(R ∪ {abest}), and the remaining non-positive region granules are assigned to

NP GR(U/SIM(R ∪ {abest})). These updated non-positive region granules are broadcasted

to all the nodes of the cluster. And, the best attribute abest is added back to reduct set R.

Consequently, in the next iteration of the algorithm, the granules are formed based on these

updated non-positive region granules using granular refinement. Hence, without physically

removing the positive region objects from the data, the positive region removal is incorpo-

rated by restricting the computations of the next best attribute selection to the non-positive

region granules. The positive region removal leads to a reduction of the number of objects

involved in the computations of every iteration in the algorithm. Therefore, both the facets

of granular refinement and positive region removal enhance the efficiency of the proposed

MRIDS VP algorithm.

4.5.3 Computation of γA({d})

The dependency measure for all the conditional attributes γA({d}) is computed by form-

ing the granules of U/SIM(A). For each data partition IDSi = (U,Ai ∪ {d}), the mapper

computes the granules of U/SIM(Ai), and they are categorised as positive region granules

P GR(U/SIM(Ai)) and non-positive region granules NP GR(U/SIM(Ai)). Here, the map-

per removes granules of P GR(U/SIM(Ai)) from U/SIM(Ai) (positive region removal), and

communicates the granules of NP GR(U/SIM(Ai)) to the reducer. Now, the reducer per-

forms the refinement ofNP GR(U/SIM(Ai)), ∀i = {1, 2, ..., p} and arrives atNP GR(U/SIM(A)).

If NP GR(U/SIM(A)) is empty then γA({d}) becomes 1, otherwise the POSA({d}) is com-

puted as, POSA({d}) = U−
⋃

gr∈NP GR(U/SIM(A)) gr.base. The value of γA({d}) is computed

based on POSA({d}).

4.5.4 Complexity analysis of MRIDS VP algorithm

In the time complexity analysis of MRIDS VP algorithm, the following variables are used.

• |U |: the number of objects in the data set

• |A|: the number of conditional attributes in the data set

• p: the number of processors

• tw: the number of time units to transfer one word of memory

80

4.5 Proposed parallel attribute reduction in IDS using vertical partitioning

Table 4.2: Time complexity analysis of MRIDS VP algorithm

Algorithm
(phase)

Step* in the Algorithm Time complexity

1. Partitioning the data vertically O(|A|∗|U |p ∗ tw)

2. Broadcasting NP GR and {d} O(|U | ∗ tw)

Driver : 3. γA({d}) computation O(|A|∗|U |log|U |+|U/IND(A)|2
p) +

O(p ∗ |U | ∗ tw)
(Algorithm 4.5) 12. Fetching abest record O(|U | ∗ tw)

14. Finding granules based on abest record O(|U |log|U |)
Mapper : 5-6. Creating granules and finding posi-

tive region counts
O(|A|∗|U |log|U |+|U/IND(A)|2

p)

(Algorithm 4.6) 7-10. Finding labest and Barrier synchro-
nization

O(|A|p) + O(s)

Shuffle and
sort :

Transferring all labest and their positive re-
gion counts

O(p ∗ tw)

Reducer :
(Algorithm 4.7)

2-7. Finding abest and Barrier synchro-
nization

O(p) + O(s)

* Step denotes the line number in the associated algorithm

• s: the number of time units to complete the synchronization

• |U/IND(A)|: the number of granules in granular space formed by A

Table 4.2 shows the time complexities of each step of the phase in the MRIDS VP algorithm

for one iteration. Note that, in the table, from step 12 to step 14 in driver (Algorithm 4.5)

and all the steps in mapper (Algorithm 4.6) and reducer (Algorithm 4.7) are repeated until

(γR == γA) condition is satisfied. That is, these steps are repeated |A| (in worst case)

times. Hence, by adding up all the complexities, the total time complexity of the algorithm

is obtained as given below.

(
|A| ∗ |U |

p
∗ tw) + (|U | ∗ tw) + (

|A| ∗ |U |log|U |+ |U/IND(A)|2

p
) + (p ∗ |U | ∗ tw)+

|A|∗
(
|U | ∗ tw + |U |log|U |+ (

|A| ∗ |U |log|U |+ |U/IND(A)|2

p
) +
|A|
p

+ (s) + (p ∗ tw) + (p) + (s)

)
(4.12)

Above equation is approximated as, O(|A|
2∗|U |log|U |

p)+O(|A|∗((|U |+p)∗tw + |A|+|U/IND(A)|2
p +

s)). Thus the time complexity of the MRIDS VP algorithm is O(|A|
2∗|U |log|U |

p) in addition with

its communication cost: O(|A| ∗ ((|U |+ p) ∗ tw + |A|+|U/IND(A)|2
p + s)).

81

4. PARALLEL ATTRIBUTE REDUCTION IN INCOMPLETE
DECISION SYSTEMS

The entire decision system is required to be present in the memory for reduct compu-

tation using MRIDS VP algorithm. Thus, the space complexity of MRIDS VP algorithm is

O(|A| ∗ |U |). Furthermore, the driver of MRIDS VP algorithm has to maintain broadcast-

ing non-positive region granules list, thus it has the complexity of O(|U | ∗ |U/IND(A)|). In

MapReduce framework environment, the input decision system is partitioned and distributed

to the nodes of the cluster where the workload is divided equally into p data partitions. Hence,

the complexity of a data partition becomes O(|A|∗|U |p).

In the worst-case scenario, the aforementioned theoretical time and space complexities

of the proposed MRIDS VP algorithm are described. However, because the MRIDS VP

algorithm incorporates positive region removal and granular refinement features, the actual

time and space complexities are significantly reduced.

4.6 Experimental analysis

In this section, the proposed algorithms are evaluated experimentally. The experimental set

up is described in Section 4.6.1. Computational time analysis and performance evaluation

are two concerned metrics for parallel/distributed algorithms. Since the proposed work is the

first research of its kind on parallel attribute reduction in IDS, the experimental analysis is

provided only between the proposed approaches. The comparative analysis of computational

time and the results are reported in Section 4.6.2. In the experimental analysis, we focused

mainly on the performance evaluation with various metrics such as speedup, scaleup and sizeup

[13] of the proposed parallel algorithms. The results of performance evaluation are reported

in Section 4.6.3. The relevance and limitations of the proposed algorithms are evaluated

experimentally in Section 4.6.4.

4.6.1 Experimental setup

The experiments are performed on Apache Spark and they are carried out on a seven node

cluster. In the cluster, one node is fixed as a driver (master) as well as a worker, and the

rest are set as workers (slaves). The master node uses Intel (R) Xeon (R) Silver 4110 CPU

@ 2.10GHz processor with 32 cores and 64 GB of main memory. All the worker nodes use

Intel (R) Core (TM) i7-8700 CPU@3.20GHz processor with 12 cores and the main memory

of 32 GB. All nodes run on Ubuntu 18.04 LTS operating system and they are connected via

Ethernet (with 1000Mbps speed). Each node is installed with Java 1.8.0 171, Apache Spark

2.3.1, and Scala 2.11.4.

82

4.6 Experimental analysis

Table 4.3: Data sets used in the experiments of MRIDS HP and MRIDS VP algorithms

Data set Rename Objects Attributes Classes Missing
%

Genes genes-S801-A5000k-one 801 5009564 5 1
genes-S801-A5000k-two 801 5009564 5 2
genes-S801-A5000k-three 801 5009564 5 3

Gisette gisette-S54k-A55k-one 54000 55000 2 1
gisette-S54k-A55k-two 54000 55000 2 2
gisette-S54k-A55k-three 54000 55000 2 3

Mushroom mushroom-S40k-A40k-one 40620 40590 2 1
mushroom-S40k-A40k-two 40620 40590 2 2
mushroom-S40k-A40k-three 40620 40590 2 3
mushroom-S80k-A40k-one 81240 40590 2 1
mushroom-S120k-A40k-one 121860 40590 2 1
mushroom-S40k-A80k-one 40620 81180 2 1
mushroom-S40k-A120k-one 40620 121770 2 1

KDDcup kdd-S4900k-A40-one 4898431 41 23 1
kdd-S4900k-A40-two 4898431 41 23 2
kdd-S4900k-A40-three 4898431 41 23 3

For the experiments, we have chosen four data sets from machine learning data repository

UCI [31]. They are “Gene expression Cancer RNA-Seq (Genes),” “Gisette,” “Mushroom,”

and “KDDcup 99 (KDDcup)” data sets. The original “Genes” data set contains 801 objects,

one decision attribute, and 20531 conditional attributes. The “Gisette” data set contains 6000

objects, one decision attribute and 5000 conditional attributes. The “Mushroom” consists

of 8124 objects, one decision attribute, and 22 conditional attributes. And, the original

“KDDcup” data set contains 4898431 objects, 40 conditional attributes and one decision

attribute. The object space and attribute space of the original data sets (except KDDcup)

are replicated several times to check the efficiency of the proposed algorithms on the data sets

with huge number of objects, and on big dimensional data sets. For example the conditional

attribute space of the “Genes” data set is replicated 244 times (i.e., 20531× 244 = 5009564)

by keeping the object space constant to create an big dimensional data set. We name this

data set as “genes-S801-A5000k”.

From each of these data sets, three incomplete data sets are generated by randomly setting

the missing values of 1%, 2% and 3% size of |U |× |A|, and they are named accordingly with a

suffix “one,” “two” and “three” respectively. Therefore, each data set is categorised in terms

of its incompleteness percentage, and then the experiments are conducted. The details of the

various data sets after the replication with different incompleteness in the data are given in

Table 4.3. Note that, in the table a name “gisette-S54k-A55k-two” indicates Gisette data set

83

4. PARALLEL ATTRIBUTE REDUCTION IN INCOMPLETE
DECISION SYSTEMS

Table 4.4: Running time (seconds) and reduct size of MRIDS HP and MRIDS VP for varying
incompleteness percentage in the data sets

MRIDS HP MRIDS VP
Data set Running

time
Reduct
size

Running
time

Reduct
size

mushroom-S40k-A40k-one 421.18 05 519.67 05
mushroom-S40k-A40k-two 502.91 05 564.23 05
mushroom-S40k-A40k-three 597.18 05 591.63 05

gisette-S54k-A55k-one 2839.11 18 2891 18
gisette-S54k-A55k-two 3744.09 18 3127.51 18
gisette-S54k-A55k-three 3938.50 18 3463.62 18

genes-S801-A5000k-one 76276.71 07 205.63 07
genes-S801-A5000k-two 78532.82 07 213.87 07
genes-S801-A5000k-three 85647.13 07 224.56 07

kdd-S4900k-A41-one 1860.11 35 148050.32 35
kdd-S4900k-A41-two 7664.05 35 151720.26 35
kdd-S4900k-A41-three 61780.53 35 154110.41 35

having 54000 objects and 55000 attributes with 2 % missing values. All the data sets with

different sizes are chosen according to limited hardware configuration of the cluster.

4.6.2 Computational evaluation

The reduct is computed for the data sets given in Table 4.3 using MRIDS HP and MRIDS VP

algorithms. And the results of each algorithm are reported separately in Table 4.4. Com-

putational time and reduct length of the obtained reduct for each data set with different

percentages of incompleteness in the data are reported.

From the results in Table 4.4, it can be noticed that the different data sets of the “Mush-

room” and “Gisette” have almost equal number of objects and attributes. For these data sets,

both the proposed algorithms produced the reducts in almost similar computational times. It

can also be observed that, when the data sets have massive attribute space (e.g., “Genes”),

the MRIDS VP algorithm performs well. Whereas, when the data sets have massive object

space (e.g., “KDDcup”), the MRIDS HP algorithm performs well. In contrast the computa-

tional times incurred by MRIDS HP for big dimensional data sets, MRIDS VP for massive

object space data sets are so huge which establishes the need for proposing two approaches

with different partitioning strategies.

By comparing the results of both algorithms, we can observe that MRIDS VP has pro-

duced the reduct on almost similar time frame for all the incomplete percentages of the data.

But the MRIDS HP algorithm incurred more computational time when the incompleteness

84

4.6 Experimental analysis

percentage is increased. That is, the increase of the missing values in the data has more

influence on the computational time of horizontal partitioning based MRIDS HP algorithm

than the vertical partitioning based MRIDS VP algorithm. The reason is that the complexity

in shuffle and sort phase and mapV alues() increases with the increase in incompleteness in

the data sets. The resilience of the MRIDS VP algorithm for increase in the incompleteness

is majorly due to the simplified shuffle and sort phase which is independent of the incomplete-

ness percentage, and iteration wise incorporation of granular refinement and positive region

removal features.

For the reproducible research, the reducts and their γA and γR values obtained for different

original data sets (the data sets without replication) are reported in Table 4.5. From the

results, it can be noticed that the increase in incompleteness percentage leads to reduction in

the γA and γR values.

4.6.3 Performance evaluation

The performance of the proposed parallel algorithms is evaluated concerning speedup, scaleup

and sizeup metrics. The “Gisette” data sets with all the percentages of incompleteness

(gisette-S54k-A55k-one, -two, and -three) are used to find the performance metrics of both

algorithms.

4.6.3.1 Speedup evaluation

The speedup of the proposed algorithms have been evaluated on the data sets with different

cores ranging from 20 to 100. Figure. 4.1 shows the speedup results of the “Gisette” data set

with different percentages of incompleteness in the data.

From Figure. 4.1, it can be observed that speedups obtained by both algorithms are

almost close to each other. By observing plots, it is also clear that with an increase in

the percentage of incompleteness in the data, the speedup performance of MRIDS VP is

better than the MRIDS HP algorithm. The reason why the MRIDS VP algorithm is better is

because of its granular refinement feature. And, another reason is that the significant amount

of computations in MRIDS VP occur in the mapper phase for best attribute selection in each

iteration. The computations in the associated reducer phase are very less. This simplified

synchronization barrier of reducer and parallelizability of mappers through horizontal scaling

produces better speedup to MRIDS VP than the MRIDS HP algorithm.

85

4. PARALLEL ATTRIBUTE REDUCTION IN INCOMPLETE
DECISION SYSTEMS

T
a
b

le
4
.5

:
R

ed
u

ct
ob

ta
in

ed
b
y

M
R

ID
S

H
P

an
d

M
R

ID
S

V
P

a
lg

o
ri

th
m

s
fo

r
va

ry
in

g
in

co
m

p
le

te
n

es
s

p
er

ce
n
ta

g
e

in
th

e
d

a
ta

se
ts

M
R

ID
S

H
P

M
R

ID
S

V
P

D
at

a
se

t
R

ed
u

ct
γ
A

γ
R

R
ed

u
ct

γ
A

γ
R

G
en

es
-o

n
e

{6
52

1,
16

21
5,

14
77

1,
11

52
8,

13
3,

10
5
2
6
,
3
3
,

30
00

3,
18

50
0
}

0
.9

9
0
.9

9
{6

5
2
1
,

1
6
2
1
5
,

1
47

7
1
,

1
1
5
2
8
,

1
5
8
6
7
,

3
8
5
9
,

1
8
5
0
0}

0
.9

9
0
.9

9

G
en

es
-t

w
o

{5
58

8,
17

48
5,

16
32

7,
15

86
3,

18
49

3
,

1
6
3
4
1
,

53
8,

16
50

1
}

0
.9

8
0
.9

8
{5

5
8
8
,

1
7
4
8
5
,

1
63

2
7
,

1
5
8
6
3
,

1
8
4
9
3
,

1
6
3
4
1
,

1
5
7
7
6
,

1
4
6
8
4
}

0
.9

8
0
.9

8

G
en

es
-t

h
re

e
{1

68
98

,
15

86
4,

16
91

5,
17

92
5,

42
23

,
2
2
7
8
,

66
02

,
12

77
8,

18
40

0}
0
.9

8
0
.9

8
{1

6
8
9
8
,

1
5
8
6
4
,

16
9
1
5
,

1
7
9
2
5
,

4
2
2
3
,

2
2
7
8
,

2
0
0
8
6
,

1
5
3
6
0
}

0
.9

8
0
.9

8

G
is

et
te

-o
n

e
{1

99
5,

18
51

,
15

5,
55

8,
20

92
,

14
66

,
4
8
3
3
,

39
76

,
13

92
,

46
94

,
12

29
,

33
28

,
47

39
,

3
6
0
6
,

38
28
}

1
.0

0
1
.0

0
{1

9
9
5
,

1
8
5
1
,

1
5
5
,

4
8
7
9
,

3
3
2
8
,

2
5
5
5
,

1
6
6
4
,

3
9
7
6
,
1
1
2
9
,
6
7
,
8
1
9
,
1
3
9
2
,
3
3
5
4
,
4
6
9
4
,
2
3
9
4
,

4
7
3
9
,

3
6
0
6
,

3
8
2
8}

1
.0

0
1
.0

0

G
is

et
te

-t
w

o
{2

01
5,

10
80

,
35

44
,

45
54

,
14

0,
61

7,
1
5
5
9
,

31
98

,
22

23
,

21
5,

15
68

,
33

54
,

44
67

,
1
4
4
5
,

46
94

,
84

0,
43

75
,

45
02
}

1
.0

0
1
.0

0
{2

0
1
5
,

1
0
8
0
,

3
5
4
4
,

4
5
5
4
,

1
5
5
9
,

3
0
8
5
,

3
1
9
8
,

3
9
7
6
,

1
6
0
7
,

2
2
2
3,

2
1
5
,

1
5
6
8
,

4
4
6
7
,

4
6
9
4
,

8
4
0
,

3
6
7
0
,

4
9
3
7
,

4
5
0
2
}

1
.0

0
1
.0

0

G
is

et
te

-t
h

re
e

{9
02

,
30

01
,

15
33

,
13

29
,

39
66

,
27

43
,

1
6
0
0
,

49
50

,
46

17
,

33
54

,
45

71
,

46
94

,
28

93
,

3
4
4
6
,

47
39

,
35

02
,

48
13

,
45

6
}

1
.0

0
1
.0

0
{9

0
2
,

3
0
0
1
,

1
5
3
3
,

1
3
2
9
,

4
9
9
0
,

1
2
2
6
,

3
4
1
5
,

3
9
6
6
,

4
5
6
,

4
2
7
2,

1
0
7
,

2
3
6
7
,

3
3
5
4
,

2
8
9
3
,

4
6
9
4
,

3
4
4
6
,

3
5
0
2
,

4
8
1
3
}

1
.0

0
1
.0

0

M
u

sh
ro

om
-o

n
e

{4
,

19
,

7,
11

,
20
}

1
.0

0
1
.0

0
{5

,
2
0
,

8
,

1
1
,

4
}

1
.0

0
1
.0

0
M

u
sh

ro
om

-t
w

o
{5

,
20

,
19

,
8,

11
}

1
.0

0
1
.0

0
{7

,
2
0
,

1
1
,

8
,

5
}

1
.0

0
1
.0

0
M

u
sh

ro
om

-t
h

re
e
{4

,
19

,
11

,
7,

20
}

1
.0

0
1
.0

0
{4

,
1
9
,

5
,

2
0
,

8
}

1
.0

0
1
.0

0
K

D
D

cu
p

-o
n

e
{1

,
2,

34
,

3,
33

,
22

,
4,

29
,

10
,

5,
31

,
2
3
,

3
5
,

32
,

36
,

37
,

30
,

12
,

39
,

13
,

6,
8,

16
,

1
9
,

2
8
,

26
,

40
,

17
,

38
,

14
,

24
,

11
,

18
,

7,
9}

0
.9

8
0
.9

8
{1

,
2
,

3
4
,

3
,

3
3
,

22
,

4
,

2
9
,

1
0
,

5
,

3
1
,

2
3
,

3
5
,

3
2
,

3
6
,

3
7
,

3
0
,

1
2
,

3
9
,

1
3
,

6
,

8
,

1
6
,

1
9
,

2
8
,

2
6
,

4
0
,

1
7
,

3
8
,

1
4
,

2
4
,

1
1
,

1
8
,

1
5
,

2
0}

0
.9

8
0
.9

8

K
D

D
cu

p
-t

w
o

{1
,

2,
34

,
3,

33
,

22
,

4,
29

,
10

,
5,

31
,

2
3
,

3
5
,

32
,

36
,

37
,

30
,

12
,

39
,

13
,

6,
8,

16
,

1
9
,

2
8
,

26
,

40
,

17
,

38
,

14
,

24
,

11
,

18
,

7,
9}

0
.9

6
0
.9

6
{1

,
2
,

3
4
,

3
,

3
3
,

22
,

4
,

2
9
,

1
0
,

5
,

3
1
,

2
3
,

3
5
,

3
2
,

3
6
,

3
7
,

3
0
,

1
2
,

3
9
,

1
3
,

6
,

8
,

1
6
,

1
9
,

2
8
,

2
6
,

4
0
,

1
7
,

3
8
,

1
4
,

2
4
,

1
1
,

1
8
,

7
,

4
1}

0
.9

6
0
.9

6

K
D

D
cu

p
-t

h
re

e
{1

,
2,

34
,

3,
33

,
22

,
4,

29
,

10
,

5,
31

,
2
3
,

3
5
,

32
,

36
,

37
,

30
,

12
,

39
,

13
,

6,
8,

16
,

1
9
,

2
8
,

26
,

40
,

17
,

38
,

14
,

24
,

11
,

18
,

7,
9}

0
.9

6
0
.9

6
{1

,
2
,

3
4
,

3
,

3
3
,

22
,

4
,

2
9
,

1
0
,

5
,

3
1
,

2
3
,

3
5
,

3
2
,

3
6
,

3
7
,

3
0
,

1
2
,

3
9
,

1
3
,

6
,

8
,

1
6
,

1
9
,

2
8
,

2
6
,

4
0
,

1
7
,

3
8
,

1
4
,

2
4
,

1
1
,

1
8
,

4
1
,

9}

0
.9

6
0
.9

6

86

4.6 Experimental analysis

20 40 60 80 100
1

2

3

4

5

Number of cores

S
p

ee
d
u
p

(a) gisette-S54k-A55k-one

Linear

MRIDS HP

MRIDS VP

20 40 60 80 100
1

2

3

4

5

Number of cores

(b) gisette-S54k-A55k-two

Linear

MRIDS HP

MRIDS VP

20 40 60 80 100
1

2

3

4

5

Number of cores

(c) gisette-S54k-A55k-three

Linear

MRIDS HP

MRIDS VP

Figure 4.1: Speedup of MRIDS HP and MRIDS VP for Gisette data set with different percent-
ages of incompleteness

20 40 60 80 100
0.2

0.4

0.6

0.8

1

Number of cores

S
ca

le
d
u
p

(a) gisette-S54k-A55k-one

Linear

MRIDS HP

MRIDS VP

20 40 60 80 100
0.2

0.4

0.6

0.8

1

Number of cores

(b) gisette-S54k-A55k-two

Linear

MRIDS HP

MRIDS VP

20 40 60 80 100
0.2

0.4

0.6

0.8

1

Number of cores

(c) gisette-S54k-A55k-three

Linear

MRIDS HP

MRIDS VP

Figure 4.2: Scaleup of MRIDS HP and MRIDS VP for Gisette data set with different percent-
ages of incompleteness

4.6.3.2 Scaleup evaluation

To find the scaleup performance of the proposed algorithms,, the data set size is increased

in proportion to the number of cores in the cluster. Each data set is divided into 20%, 40%,

60%, 80% and 100% sizes of original data set (divided in object space), and the number of

cores in the cluster increased from 20, 40, 60, 80 and 100 respectively. Figure. 4.2 shows the

scaleup results of the “Gisette” data set with different percentages of incompleteness in the

data.

The higher scaleup value shows the better performance of the algorithms. From the

results shown in Figure. 4.2, it can be observed that, in each data set, the scaleup value of

MRIDS HP becomes better while the object space of the data set increases. In contrast, the

scaleup value of MRIDS VP is better, when the object space in the data set is small in size

(e.g., 20%, 40%). However, the scaleup values of both algorithms are higher than 0.7, that

indicates the proposed algorithms scale well for different percentages of incompleteness in the

data.

87

4. PARALLEL ATTRIBUTE REDUCTION IN INCOMPLETE
DECISION SYSTEMS

1 2 3 4 5
1

2

3

4

5

Size of data set

S
iz

eu
p

(a) gisette-S54k-A55k-one

Linear
MRIDS HP

MRIDS VP

1 2 3 4 5
1

2

3

4

5

Size of data set

(b) gisette-S54k-A55k-two

Linear

MRIDS HP

MRIDS VP

1 2 3 4 5
1

2

3

4

5

Size of data set

(c) gisette-S54k-A55k-three

Linear

MRIDS HP

MRIDS VP

Figure 4.3: Sizeup of MRIDS HP and MRIDS VP for Gisette data set with different percentages
of incompleteness

4.6.3.3 Sizeup evaluation

To find the sizeup of the proposed algorithms, we changed the size of data set by keeping the

number of nodes constant. The number of nodes kept are seven, and the object space of the

data set is increased in the order of 20%, 40%, 60%, 80%, and 100%. Figure. 4.3 shows the

sizeup results of the “Gisette” data set with different percentages of incompleteness in the

data.

From Figure. 4.3, it is observed that the vertical partitioning based MRIDS HP algorithm

obtained better sizeup results than MRIDS VP algorithm. This is because in the MRIDS VP

algorithm, the computational load in mappers is increasing with the increase in the object

space of the data set. In addition, the computational load in the mapper phase of the next

best attribute selection in each iteration is significantly more than the associated reducer

phase. Hence the sizeup results for MRIDS HP are expected to be better, and the same

is observed in the results obtained. Figure. 4.3 also shows that both proposed algorithms

produce better sizeup results, as their plots are much lower than the linear plots in the figures

for all data sets.

4.6.4 Impact of the partitioning strategy

An experiment is conducted to validate the relevance and limitations of the proposed algo-

rithms. In this experiment, the “Mushroom” data set which has almost the same number

of objects and attributes with one percentage of incompleteness in the data is considered.

The first row of Table 4.6 shows this data set. We have increased the size of object space

by keeping the attribute space constant while conducting the experiments. The results are

reported in the 2nd and 3rd rows of the Table 4.6. Similarly, the size of the attribute space is

increased by keeping the object space constant. The results are reported in the 4th and 5th

88

4.6 Experimental analysis

rows of the Table 4.6. The behavior of both the algorithms with the variation in the size in

object space and attribute space is plotted in Figure. 4.4a and 4.4b respectively.

Table 4.6: Comparison of MRIDS HP and MRIDS VP with varying object and attribute space
of Mushroom (Time: Seconds)

S.No Data set MRIDS HP
Running time

MRIDS VP
Running time

1. mushroom-S40k-A40k-one 421.18 519.67

2. mushroom-S80k-A40k-one 818.23 1029.38
3. mushroom-S120k-A40k-one 1427.35 3341.53

4. mushroom-S40k-A80k-one 926.42 850.47
5. mushroom-S40k-A120k-one 1832.48 1402.81

mushroom-S40k-A40k-one mushroom-S80k-A40k-one mushroom-S120k-A40k-one
0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

42
1
.1

8 81
8.

23

1,
4
2
7
.3

5

51
9
.6

7

1
,0

29
.3

8

3,
34

1
.5

3

R
u

n
n

in
g

ti
m

e

MRIDS HP
MRIDS VP

(a) Scalability in the object space

mushroom-S40k-A40k-one mushroom-S40k-A80k-one mushroom-S40k-A120k-one
0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

42
1
.1

8

92
6.

4
2

1,
83

2.
48

51
9
.6

7 85
0.

47

1,
40

2.
81

R
u

n
n

in
g

ti
m

e

MRIDS HP
MRIDS VP

(b) Scalability in the attribute space

Figure 4.4: Behavior of MRIDS HP and MRIDS VP for varying object space and attribute
space of Mushroom

From the results, it is clear that if the size of the attribute space increases, then the

MRIDS HP algorithm computed the reduct by incurring more computational times than the

MRIDS VP algorithm. Because the partitioning strategy (horizontal partitioning) of the al-

gorithm allows enormous data movement between the nodes of the cluster when attribute

space increases. And also this strategy does not allow incorporation of the granular refine-

ment aspect. But, if the size of the object space in the data set is increased, then the vertical

partitioning based MRIDS VP algorithm incurred a considerable amount of computational

time than horizontal partitioning based MRIDS HP algorithm. Because with the increase

in object space, the serial computation in the mapper phase within a local node increases.

Even though the algorithm has advantages like granular refinement and simplified shuffle and

sort phase, the serial computation degrades the performance of the MRIDS VP algorithm.

From the aforementioned analysis, it is established that the horizontal partitioning based

MRIDS HP algorithm is scalable and ideal for the data sets having huge number of objects

89

4. PARALLEL ATTRIBUTE REDUCTION IN INCOMPLETE
DECISION SYSTEMS

and moderate number of attributes and it is not recommended for data sets with big di-

mensionality. Likewise, the vertical partitioning based MRIDS VP algorithm is efficient and

scalable for the big dimensional data sets with moderate number of objects.

4.7 Summary

In this chapter, MapReduce based parallel/distributed attribute reduction approaches are

investigated for large-scale incomplete decision systems. Both the approaches adopted the

Novel Granular Framework for handling the complexity involved in dealing incompleteness

in the data. The MRIDS HP algorithm was developed based on the horizontal partitioning

strategy by adopting alternative representation of existing NGF. And the MRIDS VP algo-

rithm was developed based on the vertical partitioning strategy. With extensive experimental

analysis and theoretical validation, the proposed MRIDS HP algorithm has been proven to

be efficient and more suitable for the incomplete data sets with massive number of objects

and moderate number of attributes. Similarly, the MRIDS VP algorithm has been shown to

be effective and ideal for the big dimensional data sets having modest object space. The com-

putational and performance evaluation demonstrated that the proposed methods are efficient

in attribute reduction even if we have huge number of missing values in the data.

This chapter discussed MapReduce based attribute reduction in IDS, as well as the impli-

cations of horizontal and vertical partitioning strategy. In the next chapter (Chapter 5), we

explore MapReduce based attribute reduction approaches for hybrid decision systems (HDS),

where we investigate the relevance of both partitioning strategies.

90

Chapter 5

Parallel attribute reduction in

Hybrid Decision Systems

In this chapter, third and fourth contributions to this thesis work are discussed. This chap-

ter introduces a fuzzy discernibility matrix-based attribute reduction accelerator (DARA)

to accelerate the attribute reduction in hybrid decision systems (HDS). The accelerator

DARA is used to build a sequential approach and the corresponding MapReduce based par-

allel/distributed approaches for attribute reduction in large hybrid data sets. The proposed

MapReduce based approaches follow horizontal and vertical partitioning strategies to handle

the data sets that are large in terms of number of objects and attributes respectively. The

experimental study, along with theoretical validation show that the proposed approaches are

effective and perform better than the existing state-of-the-art approaches. The work pre-

sented in this chapter is derived from the article published in [101], and the manuscript to be

submitted to a reputed journal.

5.1 Review of existing approaches

The classical rough set model uses crisp equivalence classes in attribute reduction. As a

consequence, it is only applicable to perform the attribute reduction in categorical data sets.

For attribute reduction in numerical data sets, this classical model requires the discretization

of numerical attributes. Discretization, however, causes loss of information [49, 52]. And

therefore, classical rough sets are restricted to Categorical Decision Systems (CDS). But the

hybrid decision systems are more frequently occurring data sets in real-time applications. The

decision system with different types of attributes (e.g., categorical, numerical, boolean,...etc.)

is known as Hybrid Decision System (HDS). Therefore, various fuzzy-rough set models [19,

32, 86, 117] have been proposed to handle different types of attributes in attribute reduction.

91

5. PARALLEL ATTRIBUTE REDUCTION IN HYBRID DECISION
SYSTEMS

Dubois and Prade [32] proposed a fuzzy-rough set model and the generalised version of this

model is given by Radzikowska et al. [86]. Fuzzy-rough set models overcome the limitations

of classical rough sets in being applicable to hybrid data [20, 75, 130].

In classical rough set theory, reduct computation is primarily done in two approaches:

dependency measure approach and discernibility matrix approach [53]. These methods are

generalised to the fuzzy-rough set model, and a number of fuzzy-rough attribute reduction

algorithms [20, 22, 52, 75, 110, 111, 122, 127, 128, 130] are proposed. In addition to these

algorithms, various approaches have been proposed to further improve the efficiency of fuzzy-

rough attribute reduction [14, 54, 72, 85, 91].

Sai Prasad et al. [91] improved the MQRA (Modified Quick Reduct Algorithm) [20]

to IMQRA (Improved MQRA) by incorporating a simplified computational model, and by

absolute positive region removal. In [54], Jensen et al. developed the nnFRFS (nearest

neighbour Fuzzy Rough Feature Selection) algorithm and the nnFDM (nearest neighbour

Fuzzy Discernibility Matrix) algorithm for scalable fuzzy-rough feature selection. In nnFRFS,

fuzzy-rough membership degree is determined only for the objects that are closest neighbours.

Thus the number of calculations in the algorithm is greatly decreased. Similarly, in nnFDM,

the matrix is constructed only for the objects that are nearest neighbours. Jinkun Chen et

al. [14] developed an approach for fuzzy-rough attribute reduction based on graphs. They

demonstrated in this approach that the attribute reduction is equivalent to finding the minimal

traversal of a derivative hyper graph. Qian et al. [85] developed an accelerator called forward

approximation (FA-FPR) to improve the process of fuzzy-rough attribute reduction. The

experimental findings have shown that the FA-FPR is much faster than its predecessors.

Later, Peng Ni et al. [72] developed a positive region based attribute reduction accelerator

(PARA) that outperformed FA-FPR. The accelerator PARA is developed by removing object

pairs that have been discerned in the process of attribute reduction. Through carefully

studying all these existing methods, it can be observed that each approach accelerates the

attribute reduction process by ignoring or removing the objects that are no longer useful

or cause redundant computations. Notice that all of these current methods are sequential

approaches. Even with the accelerators, the memory requirements of attribute reduction in

fuzzy-rough sets restrict the applicability to small data sets, requiring parallel/distributed

solutions.

From the review of literature, it is found that there are currently a few parallel/distributed

approaches available in the literature for fuzzy-rough attribute reduction in large numeric

data sets [8, 28, 46, 56, 76]. Pavani et al. [76] developed an algorithm MR FRDM SBE

based on the discernibility matrix. This algorithm uses sequential backward elimination

92

5.1 Review of existing approaches

(SBE) strategy for reduct generation. Kiran et al. [8] developed an algorithm MR IMQRA

based on dependency measure approach that uses a vertical partitioning of the input data

to the nodes of the cluster. The algorithm MR IMQRA has been found to be more effective

for larger attribute space data sets with moderate object space (i.e., big dimensional data

sets). Qinghua Hu et al. [46] proposed an approach for hybrid data, where they developed

a MapReduce based multi modality attribute reduction method based on multi kernel fuzzy

rough sets model. This method has a presumption that entire data set to be available at

each node of the cluster, and in every partition, computation with respect to a subset of

objects is involved. This assumption of availability of data set at each node could hinder

the scalability of the approach. L. Kong et al. [56], developed a distributed fuzzy rough

set (DFRS) method for attribute reduction in cloud computing. The DFRS methodology

involves parallel computation of reducts on overlapping subsets of given data set, and union

of the individual solutions obtained becomes the solution of the approach. This approach

has the advantage of avoiding intermediate data transfer across the nodes but has overheads

with respect to computations over overlapping subsets. W. Ding et al. [28] developed a Multi

granulation Consensus Fuzzy-Rough Attribute Reduction Algorithm (MCFR). This algorithm

is capable of handling granular and structurally-complex large attributes to find the attribute

reduction sets. It can be noticed that the approaches in [8, 46, 76] are MapReduce based,

and the approaches in [28, 56] are non-MapReduce based parallel/distributed approaches.

As mentioned in Chapter 3 and 4, any MapReduce framework uses horizontal partitioning

strategy to partition the object space of the input data set to the cluster. The vertical

partitioning is an alternative strategy that partitions the input data set in attribute space.

From the literature, it is observed that, all the researchers developed MapReduce based

methods in fuzzy-rough set theory [28, 46, 56, 76] (except the approach in [8]) using horizontal

partitioning. The approach in [8] uses vertical partitioning strategy, and it is dependency

measure based approach. From the extensive study of the literature and from the findings

of Chapter 3 and 4, it is observed that, horizontal partitioning based approaches are scalable

in larger object space data sets while vertical partitioning based approaches are scalable in

larger attribute space data sets (data sets with big dimensionality).

Except a few discernibility matrix based methods [54, 76], most of the scalable methods

either sequential [72, 85, 91] or parallel/distributed [8, 28, 46, 56] are developed based on the

dependency measure approach. As specified in [53, 54, 85], in the dependency measure based

approach of attribute reduction, for each attribute, a similarity matrix is constructed that

contains the similarity measure of each pair of objects in the data set. Furthermore, in each

iteration, the similarity matrices should be constructed for different subsets of attributes. If a

93

5. PARALLEL ATTRIBUTE REDUCTION IN HYBRID DECISION
SYSTEMS

data set contains |U | objects and |A| conditional attributes, then the memory utilization for

constructing similarity matrices is O(|A| ∗ |U |2). In the discernibility matrix based approach,

a matrix is constructed for each pair of objects in the data set. And each entry in the

matrix contains discernible value for each attribute between a pair of objects. Since the

discernibility matrix is symmetric, only the upper diagonal or lower diagonal entries are

computed. And the entries are computed between the objects that are from different decision

classes. Because of the above reasons, the memory utilization of the discernibility matrix based

approach is at most O(|A| ∗ ((|U |2/2)− |U |)). As a result, a substantial decrease in memory

usage is achieved in the discernibility matrix based approach relative to the dependency

measure based approach. The advantages of discernibility matrix over dependency measure,

and also non availability of discernibility matrix based accelerators in the literature inspired

us to investigate accelerators and the corresponding parallel/distributed approaches based on

discernibility matrix.

In this chapter, a discernibility matrix based accelerator for scalable fuzzy-rough attribute

reduction is proposed. This accelerator is used to build a sequential approach and the cor-

responding MapReduce based parallel/distributed approaches using horizontal and vertical

partitioning strategies. In summary, the contributions in this chapter include the following.

1) A fuzzy discernibility matrix based attribute reduction accelerator (DARA) is intro-

duced. Based on this accelerator, a sequential algorithm IFDMFS (Improved Fuzzy

Discernibility Matrix based Feature Selection) is developed for scalable attribute reduc-

tion in HDS.

2) The following MapReduce based parallel/distributed versions of IFDMFS are also de-

veloped to further improve the scalability.

– MR IFDMFS algorithm is developed using horizontal partitioning strategy.

– MR VFDMFS algorithm is developed using vertical partitioning strategy.

The merits and limitations of the sequential and parallel/distributed approaches are proved

through extensive experimental analysis along with theoretical validation.

5.2 Related work

In this section, the basics of fuzzy-rough set model are provided. Since the proposed ap-

proaches are based on fuzzy discernibility matrix (FDM), the principles of FDM based at-

tribute reduction are discussed.

94

5.2 Related work

5.2.1 Fuzzy-rough set theory

In this section, the principles of fuzzy-rough set theory are discussed on the basis of [19, 32,

52, 86]. Let HDS = (U,A ∪ {d}) be a hybrid decision system, where, U denotes the set of

objects, A denotes the set of hybrid conditional attributes, and {d} is the categorical decision

attribute. The core principle for the attribute reduction using classical rough set model is

the indiscernibility relation [77], which is an equivalence relation. The idea of indiscernibility

relation is generalised by using a fuzzy similarity relation [32] in fuzzy-rough set model.

Definition 5.1. For a given hybrid decision system HDS, a fuzzy similarity relation SIMa

is a fuzzy relation on U using the knowledge of the attribute a ∈ A. The similarity relation

satisfies the following conditions.

1) Reflexivity: ∀x ∈ U, µSIMa(x, x) = 1

2) Symmetry: ∀x, x′ ∈ U, µSIMa(x, x′) = µSIMa(x′, x)

3) T-transitivity: ∀x, y, z ∈ U, µSIMa(x, z) ≥ T (µSIMa(x, y), µSIMa(y, z))

Here, µSIMa(x, x′) denotes the similarity measure between the objects x and x′ of the

numeric attribute a. And, T is a fuzzy T − norm [18] which is an associative aggregation

operator T : [0, 1]× [0, 1]→ [0, 1]. Note that if the fuzzy similarity relation meets the first and

second conditions (Reflexivity and Symmetry), the relation is assumed to be a fuzzy tolerance

relation. And if the relation satisfies all three conditions, the relation is considered a fuzzy

T-equivalence relation.

The similarity measure of an object pair of the fuzzy similarity relation can be computed by

using various methods. In the proposed approaches, the fuzzy similarity measure is calculated

using the following method [52].

µSIMa(x, x′) = max

(
min

(
a(x)− a(x′) + σ(a)

σ(a)
,
a(x′)− a(x) + σ(a)

σ(a)

)
, 0

)
(5.1)

Here, µSIMa(x, x′) is the measure of degree to which the objects x and x′ are similar for

numerical attribute a, and µSIMa(x, x′) ∈ [0, 1]. The notation a(x) denotes the value of the

object x for attribute a. And, the notation σ(a) represents the standard deviation of the

attribute a. If an attribute a is categorical (qualitative), the classical indiscernibility relation

is adopted and the µSIMa(x, x′) measure is given as follows.

µSIMa(x, x′) =

{
0 if a(x) 6= a(x′)
1 if a(x) = a(x′)

(5.2)

95

5. PARALLEL ATTRIBUTE REDUCTION IN HYBRID DECISION
SYSTEMS

For a subset of attributes P ⊆ A, the fuzzy similarity relation is expanded by using the

T − norm (T) specified below.

µSIMP
(x, x′) = T

a∈P
(µSIMa(x, x′)), ∀x, x′ ∈ U (5.3)

As Eq. (5.1) or (5.2) are used to find the similarity measure between a pair of objects of a

numerical attribute or categorical attribute, similarly different methods [113, 122] are used to

find similarity measure of different types of attributes such as boolean, set-valued, ...etc. Note

that, the proposed approaches in this chapter mainly focus on HDS having numerical and

categorical attributes, because these HDSs are more frequently occurring decision systems in

real-time applications. However, the proposed approaches are applicable to other types of

attributes in given HDS.

5.2.2 Fuzzy discernibility matrix based attribute reduction

Three approaches to fuzzy-rough attribute reduction were proposed by Jensen et al. [52]. The

approaches are: (i) Fuzzy Lower approximation based Feature Selection (FLFS), (ii) Fuzzy

Boundary region-based Feature Selection (FBFS), and (iii) Fuzzy Discernibility Matrix-based

Feature Selection (FDMFS). This section provides the details of the FDMFS approach with

its algorithm. Table 5.1 shows the tiny decision system, used to illustrate the basic concepts

and the proposed approaches.

5.2.2.1 Fuzzy discernibility

The discernibility relation is determined with the complement to the indiscernibility relation in

the classical rough set theory model. In the same way, the discernibility relation (DISa(x, x′))

in fuzzy-rough set model is obtained by performing fuzzy negation on the fuzzy similarity

between the two objects x and x′ as given below.

µDISa(x, x′) = N(µSIMa(x, x′)) (5.4)

Here, N represents the fuzzy negation, µSIMa(x, x′) is fuzzy similarity measure and µDISa(x, x′)

is fuzzy dissimilarity (fuzzy discernibility) measure between the objects x and x′ based on the

knowledge of attribute a. In the proposed works and in literature [20, 52], the standard fuzzy

negation is considered for N and is given below.

N(µSIMa(x, x′)) = 1− µSIMa(x, x′) (5.5)

From the above equation, the fuzzy discernibility measure µDISa(x, x′) ∈ [0, 1].

96

5.2 Related work

Table 5.1: An example decision system

Attributes
Objects a b c d e f

x1 3.59 3.52 1.86 0.76 6.30 1
x2 1.97 4.31 1.57 0.54 3.69 2
x3 1.51 0.85 7.54 2.31 2.09 2
x4 2.16 0.50 3.80 1.79 2.12 1
x5 3.73 1.17 5.68 4.34 3.37 1

Example 5.1. For the decision system given in Table 5.1, µSIMb
(x1, x2) = 0.54 is the fuzzy

similarity measure based on Eq. (5.1), by using Eq. (5.4) the fuzzy discernibility measure is

given as µDISb
(x1, x2) = 1− 0.54 = 0.46.

5.2.2.2 Fuzzy Discernibility Matrix (FDM)

The fuzzy discernibility relation is represented in a fuzzy discernibility matrix (FDM). Each

entry (clause) in the matrix is a vector that includes a fuzzy discernibility measure of each

attribute of A. The FDM contains the entries between the objects of different decision

classes. And the rest of the entries are empty. Therefore, the matrix is a decision relative

fuzzy discernibility matrix. In the matrix, an entry Cxx′ between the objects x, x′ ∈ U is given

as,

Cxx′ =

{
< v1, v2, ..vi, ..v|A| >, if d(x) 6= d(x′)

∅ otherwise
(5.6)

Here, in an entry Cxx′ each value vi = µDISi(x, x
′),∀i ∈ A.

Example 5.2. From the decision system given in Table 5.1, using Equations 5.1 and 5.4,

the fuzzy discernibility measures for all the conditional attributes between the objects x1

and x2 are computed as, µDISa(x1, x2) = 1.0, µDISb
(x1, x2) = 0.46, µDISc(x1, x2) = 0.11,

µDISd
(x1, x2) = 0.14 and µDISe(x1, x2) = 1.0. From Eq. (5.6), an entry Cx1x2 in FDM is

represented as Cx1x2 =< 1.0, 0.46, 0.11, 0.14, 1.0 >.

The discernibility measure for a subset of attributes P ⊆ A is calculated from discernibility

measure of each individual attribute using the following definition.

Definition 5.2. In a given decision system HDS, the discernibility measure or satisfiability

(SAT) for a subset of attributes P ⊆ A in an entry Cxx′ of FDM is given by,

SATP (Cxx′) =
⋃
a∈P
{µDISa(x, x′)} (5.7)

97

5. PARALLEL ATTRIBUTE REDUCTION IN HYBRID DECISION
SYSTEMS

In Eq. (5.7), the fuzzy union (
⋃

) is computed by using a specified fuzzy S − norm (T −
conorm) [52]. Here, S − norm is an aggregation operator ⊥ : [0, 1] × [0, 1] → [0, 1], and for

any fuzzy values of p, q, r, and t, it satisfies the following conditions [52].

1) Identity: ⊥(p, 0) = ⊥(0, p) = p

2) Commutativity: ⊥(p, q) = ⊥(q, p)

3) Associativity: ⊥(p,⊥(q, r)) = ⊥(⊥(p, q), r)

4) Monotonicity: ⊥(p, q) ≤ ⊥(r, t) if p ≤ r and q ≤ t

In the implementation of the proposed algorithms, we use the Lukasiewicz T-conorm or S-

norm (⊥(x, y) = min(1, x+ y)) [52] to evaluate the discernibility measure between the set of

attributes as given in Eq. (5.7).

Example 5.3. By continuing Example 5.2, if we select subset P = {b, c}, the resultant

satisfiability of the entry Cx1x2 is SATP (Cx1x2) = ⊥(0.46, 0.11) = min(1, 0.46 + 0.11) = 0.57.

In the FDM, the satisfiability of all the entries for a subset of attributes P ⊆ A is computed

as,

SAT (P) =

∑
Cxx′∈FDM∧Cxx′ 6=∅

SATP (Cxx′)∑
Cxx′∈FDM∧Cxx′ 6=∅

SATA(Cxx′)
(5.8)

By using Eq. (5.8), the fuzzy-rough reduct is defined as given below.

Definition 5.3. For a given decision system HDS, the fuzzy-rough reduct R is a minimal

subset of the conditional attribute set A (R ⊆ A) such that,

• SAT (R) = SAT (A) (jointly sufficient)

• SAT (R′) < SAT (A) for any R′ ⊂ R (individually necessary)

Thus, the attributes set R ⊆ A is said to be fuzzy-rough reduct, if and only if R is a

minimal subset of A satisfying SAT (R) = 1.

5.2.2.3 Reduct computation using FDM (FDMFS algorithm)

In [52], the authors provided the methodology to compute the reduct by using an FDM.

It is referred to as FDMFS (FDM based Feature Selection). Here, we are providing the

methodology in the form of an algorithm given in Algorithm 5.1. The FDMFS algorithm

starts with the initialization of the current reduct R to the empty set (∅). At each iteration

of the algorithm, the best attribute abest to be added to the reduct R is computed by using

the following equation derived from Eq. (5.8).

98

5.3 Proposed Discernibility matrix based Attribute Reduction Accelerator
(DARA)

Algorithm 5.1: FDMFS algorithm

Input: 1. Fuzzy discernibility matrix: FDM
2. S-norm: ⊥

Output: Reduct R
1 R = ∅, SAT (R) = 0.0 // Initialize reduct and its satisfiability

2 SATA =
∑

Cxx′∈FDM∧Cxx′ 6=∅
SATA(Cxx′)

3 repeat
4 Temp = R
5 for each a ∈ (A−R) do

6 Compute SAT (R ∪ {a}) =

∑
Cxx′∈FDM∧Cxx′ 6=∅

SAT(R∪{a})(Cxx′)

SATA

7 if (SAT (R ∪ {a}) > SAT (Temp)) then
8 Temp = R ∪ {a}
9 SAT (Temp) = SAT (R ∪ {a})

10 end

11 end
12 R = Temp

13 until (SAT (R) == 1)
14 return R

SAT (R ∪ {abest}) = max
a∈(A−R)

(SAT (R ∪ {a})) (5.9)

The denominator value of SAT (R ∪ {a}) is a normalising factor that is calculated as SATA

and shown in second line of Algorithm 5.1. The best attribute abest is determined using Eq.

(5.9) and added to the reduct set R. This procedure is repeated until SAT (R) becomes 1.

When the SAT (R) reaches 1, the algorithm returns reduct set R and terminates.

5.3 Proposed Discernibility matrix based Attribute Reduc-

tion Accelerator (DARA)

The idea behind introducing DARA is explored in this section. The SAT-region removal

which is the main feature of DARA is presented. A sequential IFDMFS (Improved Fuzzy

Discernibility Matrix-based Feature Selection) algorithm is proposed based on the DARA.

The IFDMFS is an improved version of FDMFS [52].

5.3.1 Motivation

From the analysis of literature, it can be observed that the number of objects contained

in the data set prevent the scalability of the fuzzy-rough attribute reduction in large data

sets. From the algorithms of [72, 85, 91], it is noticed that, in each iteration of the reduct

99

5. PARALLEL ATTRIBUTE REDUCTION IN HYBRID DECISION
SYSTEMS

computation, the algorithms removed the objects which are no longer useful in future compu-

tations. Therefore, the basic principle of any accelerator of fuzzy-rough attribute reduction

is to remove the redundant objects in the data set. In the proposed works, the removal of

the redundant objects is done in two stages. In the first stage, by constructing a decision

relative FDM, the computations are restricted to the objects which are from different decision

classes. In the second stage, we incorporate the SAT-region removal feature (given in Section

5.3.2) into the proposed algorithm. This feature acts as an accelerator, and is called DARA.

This accelerator limit the computations to the subset of entries of FDM in each iteration of

reduct computation to avoid the redundant computations. The following theorem explores

the redundant computations involved in an iteration of the existing algorithm to select an

attribute to the reduct set.

Theorem 5.1. In a given decision system HDS = (U,A ∪ {d}), consider an attribute set

R ⊆ A, if Cxx′ is an entry of FDM for which SATR(Cxx′) = SATA(Cxx′) is satisfied, then

∀R′ ⊇ R,

SATR′(Cxx′) = SATR(Cxx′)

Where SAT value of an entry Cxx′ is computed using a given fuzzy S − norm : ⊥.

Proof.

For any two fuzzy values p, q, where 0 ≤ p ≤ 1 and 0 ≤ q ≤ 1, from identity property of

S − norm, we have ⊥(p, 0) = p, and ⊥(0, q) = q. Similarly, from monotonicity property of

S−norm, we have ⊥(p, q) ≤ ⊥(r, t) whenever p ≤ r, q ≤ t for any 0 ≤ r, t ≤ 1. Using identity

property ⊥(0, q) = q, and as 0 ≤ p, q ≤ q, we have q = ⊥(0, q) ≤ ⊥(p, q),

∴ q ≤ ⊥(p, q) (5.10)

Similarly,

p ≤ ⊥(p, q) (5.11)

From Eq. 5.7, for an entry Cxx′ in the discernibility matrix, the satisfiability of a subset

of attributes R ⊆ A is given by,

SATR(Cxx′) =
⋃

att∈R
{µDISatt(Cxx′)}

100

5.3 Proposed Discernibility matrix based Attribute Reduction Accelerator
(DARA)

For any attribute a ∈ (A−R), let R′ be R ∪ {a} then

SATR∪{a}(Cxx′) =
⋃

att∈(R∪{a})

{µDISatt(Cxx′)}

= ⊥
att∈(R∪{a})

(µDISatt(Cxx′))

=⊥(⊥
att∈R

(µDISatt(Cxx′)), µDISa(Cxx′))

=⊥(SATR(Cxx′), µDISa(Cxx′))

From Eqs. (5.10) and (5.11),

SATR(Cxx′) ≤⊥(SATR(Cxx′), µDISa(Cxx′))

=SATR∪{a}(Cxx′)

=SATR′(Cxx′)

For any R′ ⊇ R, the same argument can be successfully applied for each addition of attribute

in R′ −R. For any R′ ⊇ R, we have,

SATR(Cxx′) ≤ SATR′(Cxx′)

And, since R ⊆ R′ ⊆ A, we have,

SATR(Cxx′) ≤ SATR′(Cxx′) ≤ SATA(Cxx′)

But it is given that, SATR(Cxx′) = SATA(Cxx′)

∴ SATR(Cxx′) = SATR′(Cxx′)

Hence proved.

5.3.2 SAT-region removal as an accelerator

From Theorem 5.1, it is established that if an entry (Cxx′) reaches its maximum SAT value

(i.e., SATR(Cxx′) = SATA(Cxx′)) for the attributes subset R ⊆ A, then calculating SAT

value for the same entry in selecting the next attribute to R becomes redundant computation.

Therefore, for a given set of attributes R ⊆ A, the FDM is divided into two non overlapping

sets FDM F(R) (FDM Fulfilled) and FDM UF(R) (FDM Unfulfilled). And they are defined

below.

Definition 5.4. In a given decision system HDS, let R be a set of attributes such that

101

5. PARALLEL ATTRIBUTE REDUCTION IN HYBRID DECISION
SYSTEMS

R ⊆ A, and FDM F (R) be a set, where it contains the entries of FDM as given below,

FDM F (R) = {Cxx′ ∈ FDM | SATR(Cxx′) = SATA(Cxx′)}

From the above equation, FDM F (R) includes all the entries of FDM, which satisfy the

condition SATR(Cxx′) = SATA(Cxx′). That is, FDM F (R) contains the subset of entries of

FDM, which have already reached the maximum SAT value.

Definition 5.5. In a given decision system HDS, let R be a set of attributes such that

R ⊆ A. And, let FDM UF (R) be a set that contains the entries of FDM as given below,

FDM UF (R) = {Cxx′ ∈ FDM | SATR(Cxx′) < SATA(Cxx′)}

Above equation states that, FDM UF (R) includes all the entries of FDM, which strictly

satisfy the condition SATR(Cxx′) < SATA(Cxx′). That is, FDM UF (R) contains the subset

of entries of FDM, which have not yet reached the maximum SAT value.

Theorem 5.2. The selection of next best attribute abest from (A − R) into reduct R in

algorithm FDMFS can be equivalently performed by restricting the computations to only the

entries of FDM UF (R).

Proof.

In the FDMFS algorithm, the next best attribute abest from (A−R) is selected based on the

criteria given below.

SAT (R ∪ {abest}) = max
a∈(A−R)

(SAT (R ∪ {a}))

Here, SAT (R ∪ {a}) =

∑
Cxx′∈FDM∧Cxx′ 6=∅

SAT(R∪{a})(Cxx′)∑
Cxx′∈FDM∧Cxx′ 6=∅

SATA(Cxx′)

=

∑
Cxx′∈FDM F (R)∧Cxx′ 6=∅

SATR(Cxx′)

+
∑

Cxx′∈FDM UF (R)∧Cxx′ 6=∅
SAT(R∪{a})(Cxx′)∑

Cxx′∈FDM∧Cxx′ 6=∅
SATA(Cxx′)

(∵ FDM = FDM F (R) ∪ FDM UF (R))

It is observed that, the expression
∑

Cxx′∈FDM F (R)∧Cxx′ 6=∅
{SATR(Cxx′)} is independent of

′a′ and the expression
∑

Cxx′∈FDM∧Cxx′ 6=∅
{SATA(Cxx′)} is constant for all the iterations.

Therefore, for the next best attribute abest, we have,

102

5.3 Proposed Discernibility matrix based Attribute Reduction Accelerator
(DARA)

SAT (R ∪ {abest}) = max
a∈(A−R)

(SAT (R ∪ {a}))

= max
a∈(A−R)


∑

Cxx′∈FDM F (R)∧Cxx′ 6=∅
SATR(Cxx′)

+
∑

Cxx′∈FDM UF (R)∧Cxx′ 6=∅
SAT(R∪{a})(Cxx′)∑

Cxx′∈FDM∧Cxx′ 6=∅
SATA(Cxx′)



From the above equation, it can be noticed that, the expressions∑
Cxx′∈FDM F (R)∧Cxx′ 6=∅

SATR(Cxx′) and
∑

Cxx′∈FDM∧Cxx′ 6=∅
SATA(Cxx′) are constants in

computing SAT (R ∪ {a}), ∀a ∈ (A−R).

Hence, the next best attribute selection based on all the entries of FDM using Eq. (5.9) is

same as the next best attribute abest which achieves

max
a∈(A−R)

(∑
Cxx′∈FDM UF (R)∧Cxx′ 6=∅

SAT(R∪{a})(Cxx′)
)

.

Therefore, the computations are performed only on FDM UF (R) entries and not on all the

entries of FDM.

It is obvious from Theorem 5.2 that in the proposed algorithm, the computations are

carried out only on the entries of FDM UF (R) in each iteration of the reduct computation.

In other words, the Eq. (5.9) in the existing FDMFS algorithm is updated as given below to

compute the next best attribute abest.

SATUF (R ∪ {abest}) = max
a∈(A−R)

(SATUF (R ∪ {a})) (5.12)

Here SATUF (R ∪ {a}) =
∑

Cxx′∈FDM UF (R)∧Cxx′ 6=∅
SAT(R∪{a})(Cxx′). The SAT-region

removal feature is derived from Theorem 5.2, and is defined below.

Definition 5.6. For a given decision system HDS, in the FDMFS algorithm, let initial

reduct R = φ, FDM F (R) = φ, and initial FDM UF (R) = FDM . Then after adding an

attribute to the reduct set R at ith iteration of the algorithm, the SAT-region removal is given

by,

FDM UF (Ri+1) = FDM UF (Ri)− FDM F (Ri+1)

Since FDM F (R) includes the entries that have reached maximum SAT value, the set

of entries of FDM F (R) is known to be SAT-region. Thus, the removal of the entries of

FDM F (R) from FDM UF (R) is referred to as SAT-region removal. For each iteration of

the proposed algorithm, the removal of the SAT-region is done such that the reduct computa-

tion is accelerated. Therefore, SAT-region removal serves as an accelerator, and as it is based

103

5. PARALLEL ATTRIBUTE REDUCTION IN HYBRID DECISION
SYSTEMS

on the discernibility matrix, is referred to as DARA. The proposed IFDMFS algorithm given

in Algorithm 5.2 incorporates DARA.

5.3.3 IFDMFS algorithm

The proposed sequential IFDMFS algorithm is developed based on the following Corollary

5.1, which is derived from Theorem 5.2.

Corollary 5.1. For a given decision system HDS = (U,A∪ {d}), if R0 = φ ⊆ R1 ⊆ R2... ⊆
Ri ⊆ ... ⊆ Rn ⊆ A, where Ri is the set of attributes selected into reduct R by the ith iteration

of the proposed algorithm, which computes the final reduct Rn in n iterations, then the fuzzy

discernibility matrix

FDM = FDM UF (R0) ⊇ FDM UF (R1) ⊇ ... ⊇ FDM UF (Ri) ⊇ ... ⊇ FDM UF (Rn) = φ

Procedure of IFDMFS algorithm is given in Algorithm 5.2. Initially the FDM for the given

decision system is constructed based on the procedure given in Section 5.2.2.2. In the process

of reduct computation, IFDMFS algorithm starts its first iteration by initializing the reduct

R as an empty set (∅), and the satisfiability value is initialized as SATUF (R) = 0.0. The set

which contains the entries with maximum SAT value is initialized to FDM F (R) = ∅, and the

set which has the entries that have not yet reached maximum SAT is FDM UF (R) = FDM .

The next best attribute abest is computed by using Eq. (5.12), and the attribute is added

to the reduct set R. The entries which have reached maximum SAT value are added to the set

FDM F (R), and the SAT-region removal is performed. In the subsequent iteration, the next

best attribute is computed by using only the entries of FDM UF (R) after the SAT-region

removal process is completed. This procedure is repeated until FDM UF (R) becomes empty

(∅). From Corollary 5.1, it is to be noted that, once FDM UF (R) becomes empty (∅), then

FDM F (R) set contains all the entries of FDM. That is, all the entries of FDM have fulfilled

the satisfiability, and SAT (R) = 1 (i.e., SAT (R) = SAT (A)). Hence the algorithm returns

104

5.3 Proposed Discernibility matrix based Attribute Reduction Accelerator
(DARA)

the reduct R, and terminates.

Algorithm 5.2: Sequential IFDMFS algorithm

Input: 1. Input file: data set HDS = (U,A ∪ {d})
2. Fuzzy similarity relation: SIM , Fuzzy negation: N , and S-norm: ⊥

Output: Reduct R
1 Construct FDM for HDS // Using the procedure given in Section 5.3.2

2 R = ∅, SATUF (R) = 0.0 // Initialize reduct and its satisfiability

3 FDM F (R) = ∅, FDM UF (R) = FDM
4 repeat

/* ====== Phase 1: Computation of the best attribute ====== */

5 Temp = R
6 for each a ∈ (A−R) do
7 Compute SATUF (R ∪ {a}) =

∑
Cxx′∈FDM UF (R)∧Cxx′ 6=∅

SATUF(R∪{a})(Cxx′)

8 if (SATUF (R ∪ {a}) > SATUF (Temp)) then
9 Temp = R ∪ {a}

10 SATUF (Temp) = SATUF (R ∪ {a})
11 end

12 end
13 R = Temp

/* ============= Phase 2: SAT-region removal ============= */

14 for each Cxx′ ∈ FDM UF (R) do
15 if (SATUFR(Cxx′) == SATUFA(Cxx′)) then
16 FDM F (R) = FDM F (R) ∪ Cxx′

17 end

18 end
19 FDM UF (R) = FDM UF (R)− FDM F (R)

20 until (FDM UF (R) == ∅)
21 return R

5.3.3.1 Complexity analysis of IFDMFS algorithm

For a given decision system HDS, let |U | denotes the number of objects and |A| denotes

the number of conditional attributes. If the IFDMFS algorithm gets FDM as the input,

then in the worst case (when the reduct set R is equal to all the attributes set A), the

algorithm has to perform O(|A|2) number of SAT evaluations for finding the reduct. And

these evaluations are performed against the FDM of size O(|U |2). Thus, the complexity of

the proposed IFDMFS algorithm becomes O((|A|2 ∗ |U |2). But the practical time and space

complexities of the algorithm are much smaller, since the FDM is symmetric and decision

relative. In other words, the construction of the FDM is done either for lower diagonal or

upper diagonal entries and are formed only for the objects that are belonging to different

decision classes. Thus if the decision attribute has n decision classes with the cardinalities of

105

5. PARALLEL ATTRIBUTE REDUCTION IN HYBRID DECISION
SYSTEMS

c1, c2,cn, then the number of entries in the FDM are reduced to E =
∑n−1

i=1 ci ∗ (
∑n

j=i+1 cj)

which is much smaller than |U |2. In addition, the size of the FDM is reduced with DARA

in each iteration that contributes to reduction in the time and space complexities as the

iterations of the algorithm progress. Hence the theoretical time and space complexities of

IFDMFS are O(|A|2 ∗ E) and O(|A| ∗ E) respectively, whereas the exact time complexity is

much smaller.

5.3.3.2 Illustrative example

This example is based on the decision system shown in Table 5.1 and is meant to illustrate

how the IFDMFS algorithm works. For the given decision system, the FDM must be built

on the basis of the fuzzy discernibility shown in Eq. (5.4) using the standard fuzzy negation

in Eq. (5.5) and the fuzzy similarity in Eq. (5.1). Each entry Cxx′ of the FDM is formed on

the basis of Eq. (5.6). The computed entries of FDM are given below.

Cx1x2 :< 1.0, 0.46, 0.11, 0.14, 1.0 >, Cx1x3 :< 1.0, 1.0, 1.0, 1.0, 1.0 >,

Cx2x4 :< 0.19, 1.0, 0.88, 0.82, 0.91 >, Cx2x5 :< 0.64, 0.20, 1.0, 0.34, 0.02 >,

Cx3x4 :< 1.0, 1.0, 1.0, 1.0, 0.19 >, Cx3x5 :< 1.0, 0.18, 0.73, 1.0, 0.74 >

Initially reduct R = ∅, satisfiability of reduct SATUF (R) = 0.0, FDM F (R) = ∅,
and FDM UF (R) = {Cx1x2 , Cx1x3 , Cx2x4 , Cx2x5 , Cx3x4 , Cx3x5}. Based on Eq. (5.7), the

SATUFA(Cxx′) value is computed, where SATUFA(Cxx′) =
⋃

a∈A{µDISa(Cxx′)}. The com-

puted values are given below.

SATUFA(Cx1x2) = 1.0, SATUFA(Cx1x3) = 1.0,

SATUFA(Cx2x4) = 1.0, SATUFA(Cx2x5) = 1.0,

SATUFA(Cx3x4) = 1.0, SATUFA(Cx3x5) = 1.0

Based on Eq. (5.8), the SATUF (A) value is computed, and it is given as SATUF (A) = 6.0

First iteration:

Using the line number: 7 in Algorithm 5.2, the satisfiability values of individual attributes

for all the entries in the FDM are computed and given below.

SATUF ({a}) = 4.83, SATUF ({b}) = 3.84, SATUF ({c}) = 4.72,

SATUF ({d}) = 4.30, and SATUF ({e}) = 3.86

106

5.3 Proposed Discernibility matrix based Attribute Reduction Accelerator
(DARA)

Based on Eq. (5.12), the best attribute abest = {a} is selected and added to reduct set,

thus R = {a}. Note that, here R = {a}, and A = {a, b, c, d, e}. Using Eq. (5.7), the

SATUFR(Cxx′) value is computed,

SATUFR(Cx1x2) = 1.0, SATUFR(Cx1x3) = 1.0,

SATUFR(Cx2x4) = 0.19, SATUFR(Cx2x5) = 0.64,

SATUFR(Cx3x4) = 1.0, SATUFR(Cx3x5) = 1.0

It can be noticed that, SATUFR(Cx1x2) = SATUFA(Cx1x2), SATUFR(Cx1x3) = SATUFA(Cx1x3),

SATUFR(Cx3x4) = SATUFA(Cx3x4) and SATUFR(Cx3x5) = SATUFA(Cx3x5). Hence, the

entries {Cx1x2 , Cx1x3 , Cx3x4 , Cx3x5} go into SAT-region, because these entries satisfy the con-

dition in line number: 15 of Algorithm 5.2. After removal of SAT-region from FDM UF (R),

we get FDM UF (R) = {Cx2x4 , Cx2x5}, and

FDM F (R) = {Cx1x2 , Cx1x3 , Cx3x4 , Cx3x5}.

Second iteration:

After the first iteration, algorithm gets R = {a}, FDM UF (R) = {Cx2x4 , Cx2x5}, and

FDM F (R) = {Cx1x2 , Cx1x3 , Cx3x4 , Cx3x5}. Now, the entries of FDM F (R) in FDM are

ignored and the entries of FDM UF (R) = {Cx2x4 , Cx2x5} are considered in the computation

of the next best attribute abest. So that, the redundant computations on FDM F (R) entries

are avoided which leads to a lot of reduction in computations. This reduction in computations

in each iteration accelerate the attribute reduction process. Now, the satisfiability values of

attributes of (A−R) for all the entries in the FDM UF (R) are computed and given below.

SATUF (R ∪ {b}) = 1.85, SATUF (R ∪ {c}) = 2.0,

SATUF (R ∪ {d}) = 1.98, and SATUF (R ∪ {e}) = 1.66

The best attribute abest = {c} is selected and added to reduct set, thus R = {a, c}. And,

SATUFR(Cx2x4) = 1.0 and SATUFR(Cx2x5) = 1.0. The entries Cx2x4 and Cx2x5 satisfy

the condition in line number: 15, hence they go into SAT-region, and are removed from

FDM UF (R) and added to FDM F (R). Now, the set FDM UF (R) becomes empty (∅),

then algorithm returns reduct set R = {a, c} and terminates.

107

5. PARALLEL ATTRIBUTE REDUCTION IN HYBRID DECISION
SYSTEMS

5.4 Parallel attribute reduction in HDS using horizontal par-

titioning

With horizontal partitioning strategy, the input data set HDS is partitioned in object space

by MapReduce framework, and the data partitions are distributed to the nodes of the cluster

as defined below.

Definition 5.7. For a given decision system HDS, let HDS =
⋃p

i=1HDS
i, where HDSi =

(U i, A ∪ {d}) is ith data partition and satisfies (i) U =
⋃p

i=1 U
i, (ii) U i ∩ U j = ∅, ∀i, j ∈

{1, 2,p} and i 6= j, where p is the number of data partitions.

Here, each data partition which is a sub-table of the form HDSi = (U i, A∪{d}) is assigned

to a mapper in the cluster.

The fuzzy-rough attribute reduction in this MapReduce based approach is performed in

two steps. In the first step, DFDM (Distributed FDM) is constructed, and in the second

step, the reduct is computed using DFDM. In this section, both the steps are discussed in

detail. The equivalence of the reduct generated by both sequential (IFDMFS) and parallel

(MR IFDMFS) algorithms is discussed at the end of this section.

5.4.1 Distributed Fuzzy Discernibility Matrix (DFDM)

In [76], a MapReduce based parallel MR FRDM SBE algorithm is developed, which utilizes

the DFDM in reduct computation. The procedure for the construction of DFDM in [76]

is formulated as Algorithm 5.3 and Algorithm 5.4 for completeness and readability of the

proposed work.

The complexity involved in the construction of DFDM for large data sets is handled in

two steps. In the first step, as the discernibility matrix is symmetric, we restrict the creation

of DFDM for lower diagonal entries. And in the second step, since the discernibility matrix

is decision relative, we can only compute the entry Cxx′ (clause) of DFDM for the pair of

objects x and x′ which are from different decision classes.

The algorithm to construct the DFDM is given in Algorithm 5.3, and it is written in

pseudo-Spark’s API. Along with input data set HDS, the algorithm also requires the inputs

of fuzzy negation (N), fuzzy similarity relation (SIM), and S−norm. Here S−norm is used

to find discernibility value for multiple attributes. From the input data set HDS RDD, the

objects of a particular decision class are filtered into newHDS dclass and they are removed

from HDS RDD. Depending on the broadcast size, the objects of newHDS dclass are

broadcasted as bulk or in chunks. All these broadcasted objects are compared with other

decision class objects in HDS RDD using mapPartitions() to form the new entries for

108

5.4 Parallel attribute reduction in HDS using horizontal partitioning

Algorithm 5.3: Construction of DFDM

Input: 1. Input data set: HDS = (U,A ∪ {d})
2. Fuzzy similarity relation: SIM , Fuzzy negation: N , and S-norm: ⊥

Output: Distributed Fuzzy Discernibility Matrix (DFDM) as RDD
/* Read the input data set as an RDD, where the data set HDS is

distributed to the nodes with horizontal partitioning and the

decision attribute {d} is broadcasted, such that each data partition

becomes HDSi = (U i, A ∪ {d}), ∀i ∈ {1, 2, ...p}, where p is the number of

data partitions in the cluster. */

1 HDS RDD = readASRDD(HDS)
2 DFDM = ∅ // Initialize DFDM as empty

3 for each decisionV al ∈ decisionClasses do
4 newHDS dclass = HDS RDD.filter(decisionV al == d).collect()
5 HDS RDD = HDS RDD.filter(decisionV al! = d)
6 Broadcast(newHDS dclass)
7

8 dmRDD = HDS RDD.mapPartitions(data => {
9 dMat = ∅

10 for x = data do
11 for x′ = newHDS dclass do
12 dmEntry = DFDMEntry(x, x′, N, SIM,⊥)
13 end

14 end
15 if dmEntry.maxDissV al 6= 0 then
16 dMat = dMat.union(dmEntry)
17 end
18 dMat })
19

20 DFDM = DFDM.union(dmRDD)

21 end
22 return DFDM

Algorithm 5.4: Computation of DFDM entry: DFDMEntry

Input: 1. x and x′ are two objects in HDS of different decision classes.
2. Fuzzy negation: N , Fuzzy similarity relation: SIM , and S-norm: ⊥

Output: entry =< DissV alues,maxDissV al >
1 entry.DissV alues = N(µSIMa(x, x′)), ∀a ∈ A
2 entry.maxDissV al = ⊥(entry.DissV alues)
3 return entry

109

5. PARALLEL ATTRIBUTE REDUCTION IN HYBRID DECISION
SYSTEMS

DFDM. The formation of new entry is done by using Eq. (5.1), (5.2) and (5.5). Each entry

is inserted into dmRDD, and then this dmRDD is finally added to RDD of DFDM using

a union operation. This above procedure is repeated to construct DFDM for all decision

classes, except for the final decision class.

From Algorithm 5.4, it can be observed that, each entry has two parts: DissV alues and

maxDissV al. The variable DissV alues represents the vector of fuzzy dissimilarity values

of the entry Cxx′ of x and x′ objects over all conditional attributes A. And, the variable

maxDissV al represents SATA(Cxx′) value in Eq. (5.7).

5.4.2 Parallel reduct computation using DFDM

After the construction of DFDM, the next step in fuzzy-rough attribute reduction is the com-

putation of reduct using DFDM. Like in the sequential approach, in the parallel approach

also, the reduct is computed in two phases: (i) computation of the best attribute, and (ii)

SAT-region removal. The MapReduce based parallel/distributed algorithms for reduct com-

putation are given in the form of a driver (master), mapper, and reducer. The driver algo-

rithm MR IFDMFS: driver() is given in Algorithm 5.5, the mapper algorithm MR IFDMFS:

map() is given in Algorithm 5.6, and the reducer algorithm MR IFDMFS: reduce() is given in

Algorithm 5.7. All the algorithms are written using pseudo-Spark’s API for better readabil-

ity. Since the proposed method is a parallel/distributed approach, the constructed DFDM is

distributed to the nodes of the cluster as defined below.

Definition 5.8. For a given decision system HDS, let DFDM denotes distributed fuzzy dis-

cernibility matrix, thenDFDM i {i = 1, 2, ...p} denotes a sub-DFDM, and satisfies (i)DFDM =⋃p
i=1DFDM

i, (ii) DFDM i ∩DFDM j = ∅, where, i, j = 1, 2, ...p, here p is number of par-

titions and i 6= j.

Each DFDM i is also called as DFDM-split, and each split is given to a mapper located

in a node of the cluster.

5.4.2.1 Computation of the best attribute

The driver (Algorithm 5.5) invokes Algorithm 5.3 to construct DFDM. The Algorithm 5.3

returns the DFDM as an RDD. The driver initializes the reduct R and FDM F (R) to an

empty set (∅) and computes the best attribute by invoking the mapper (Algorithm 5.6), and

reducer (Algorithm 5.7). As mentioned earlier, each mapper gets a DFDM-split (DFDM i)

as input along with fuzzy S − norm : ⊥. As shown in Algorithm 5.6, from each record Cxx′

(an entry) of DFDM i, a set of < key, value > pairs are formed ∀att ∈ (A − R). For each

110

5.4 Parallel attribute reduction in HDS using horizontal partitioning

Algorithm 5.5: MR IFDMFS: driver()

Input: 1. Input file: data set HDS = (U,A ∪ {d})
2. Fuzzy similarity relation: SIM , Fuzzy negation: N , and S-norm: ⊥

Output: Reduct R
1 Distribute the input data set HDS into the nodes of the cluster such that each data

partition becomes HDSi = (U i, A ∪ {d}), ∀i ∈ {1, 2, ...p}, where p is the number of
data partitions in the cluster.

2 Construct DFDM as an RDD by invoking Algorithm 5.3
3 Initial reduct R = ∅, FDM F (R) = ∅
4 repeat

/* ==== Phase 1: Computation of the best attribute ==== */

5 Initiate map job by invoking Algorithm 5.6
6 val SATUF(R∪{att})(Cxx′)RDD = DFDM.mapPartitions(part => {var mp =

map()})
/* Mapper returns collection of < key, value > pairs for each entry

Cxx′ of DFDM i, where < key, value >=< att, SATUF(R∪{att})(Cxx′) >,
here att is an attribute, SATUF(R∪{att})(Cxx′) is its

satisfiability of entry Cxx′ */

7 Initiate reduce job by invoking Algorithm 5.7.
8 val SATUF (R ∪ {attNo})RDD =

SATUF(R∪{att})(Cxx′)RDD.reduceByKey((x, y) => {var rp = reduce()})
/* Reducer returns collection of

< key, value >=< attNo, SATUF (R ∪ {attNo}) > pairs, where attNo is

attribute number, and SATUF (R ∪ {attNo}) is satisfiability value

of attNo for all the entries of DFDM. */

9 Collect the attributes and their respective satisfiability values from the reducers.
var SATUF (R ∪ {attNo}) = SATUF (R ∪ {attNo})RDD.collect()

10 Select the best attribute bestAttNo which gets maximum satisfiability value.
11 R = R ∪ bestAttNo

/* ============ Phase 2: SAT-region removal =============== */

12 Filter the entries of DFDM into FDM F (R) which satisfy
(SATUFR(Cxx′) == SATUFA(Cxx′)) using map() only operation.

13 DFDM = DFDM.filter(if(Cxx′ not in FDM F (R)))

14 until (DFDM == ∅)
15 return R

111

5. PARALLEL ATTRIBUTE REDUCTION IN HYBRID DECISION
SYSTEMS

att ∈ (A−R), a < key, value > pair is generated, where key is the attribute identifier (att),

and the value is its satisfiability value (SATUF(R∪{att})(Cxx′)). It should be noted that to

compute the SATUF(R∪{att})(Cxx′) value, the mapper uses fuzzy S − norm : ⊥.

Algorithm 5.6: MR IFDMFS: map()

Input: 1. DFDM i, each record of DFDM i read as
< key, value >=< entryNo, entryV alues >, where entryNo represents Cxx′

and entryV alues represent vector of discernible values of all attributes.
2. S-norm: ⊥

Output: List of < key′, value′ >=< att, SATUF(R∪{att})(Cxx′) > pairs, here att is
an attribute and SATUF(R∪{att})(Cxx′) is its satisfiability value of an entry
Cxx′ of DFDM i

1 for each Cxx′ ∈ DFDM i do
2 for each att ∈ R do
3 Compute ⊥Cxx′ (R)
4 end
5 for each att ∈ (A−R) do
6 SATUF(R∪{att})(Cxx′) = ⊥(⊥Cxx′ (R), µDISatt(Cxx′))

7 Construct < key′, value′ >=< att, SATUF(R∪{att})(Cxx′) >

8 Emit intermediate < key′, value′ >

9 end

10 end

Algorithm 5.7: MR IFDMFS: reduce()

Input: < key, [V] >, here, key = attNo and [V] is the list of satisfiability values
received from the mappers

Output: < key′, value′ >=< attNo, SATUF (R ∪ {attNo}) >
1 for each v ∈ V of key = attNo do
2 SATUF (R ∪ {attNo}) = SATUF (R ∪ {attNo}) + v
3 end
4 Construct < key′, value′ >=< attNo, SATUF (R ∪ {attNo}) >
5 Emit < key′, value′ >

In Algorithm 5.7, each reducer gets a set of < att, [SATUF(R∪{att})(Cxx′)] > pairs as

the input from all the mappers in the cluster, where [SATUF(R∪{att})(Cxx′)] represents the

list of satisfiability values for attribute att. Based on the same key, the reducer adds the

satisfiability values of each attribute received from the different mappers. This sum becomes

SATUF (R ∪ {att}) value, which is the satisfiability value of an attribute of all the entries in

the matrix. Now, the reducer returns the < key, value > pairs to the driver, where key is an

attribute att, and value is its SATUF (R∪{att}) value. The driver collects all the attributes

and their SATUF (R ∪ {att}) values from all the reducers, and selects the best attribute

(bestAttNo), which has the maximum SATUF (R∪{att}) value (i.e., the attribute att, which

satisfies SATUF (R ∪ {attbest}) = max
att∈(A−R)

(SATUF (R ∪ {att}))). This best attribute is

112

5.4 Parallel attribute reduction in HDS using horizontal partitioning

added to the reduct set R.

5.4.2.2 Parallel SAT-region removal

SAT-region removal in the proposed parallel approach is defined below.

Definition 5.9. For the given decision system HDS, let HDS =
⋃p

i=1HDS
i, where HDSi =

(U i, A ∪ {d}), and let DFDM =
⋃p

i=1DFDM
i, where each DFDM i is a DFDM-split. Let

initial reduct R = φ, FDM F (R) = φ in the proposed parallel algorithm, then after adding

an attribute to R at each iteration of the algorithm, the SAT-region removal is given by,

DFDM = DFDM − FDM F (R)

After the computation of the best attribute, the SAT-region removal is incorporated in the

second phase of the algorithm as given in Algorithm 5.5. All the entries of the DFDM , which

satisfy the condition (SATUFR(Cxx′) = SATUFA(Cxx′)) are added to the set FDM F (R).

Now, the entries of FDM F (R) are filtered out from the DFDM , this leads to SAT-region

removal. In the driver algorithm, two phases are repeated until DFDM becomes empty (∅).
If the DFDM is empty, then no entries are left out in the matrix, the driver returns the

reduct R, and the algorithm terminates.

Theorem 5.3. The reduct generated by the parallel/distributed attribute reduction algorithm

is same as the reduct produced by the corresponding sequential method.

Proof. As mentioned in [53], attribute reduction involves three necessary steps: a subset

of attributes generation, subset evaluation, and stopping criterion. The parallel/distributed

algorithm and the corresponding sequential algorithm differ at the subset evaluation step of

attribute reduction.

For the sequential method, let the decision system be HDS = (U,A ∪ {d}), and fuzzy

discernibility matrix be FDM . The corresponding decision system and distributed FDM for

parallel/distributed method are given by HDS =
⋃p

i=1HDS
i, and DFDM =

⋃p
i=1DFDM

i

respectively, where p is the number of partitions. Both sequential and distributed methods

differ in evaluating SATUF (R ∪ {abest}). From Eq. (5.12), for the sequential approach, we

have,

SATUF (R ∪ {abest}) = max
a∈(A−R)

(SATUF (R ∪ {a}))

Where,

SATUF (R ∪ {a}) =
∑

Cxx′∈FDM UF (R)∧Cxx′ 6=∅

SATUF(R∪{a})(Cxx′)

In parallel approach, since the DFDM is distributed to the different nodes of the cluster (i.e.,

113

5. PARALLEL ATTRIBUTE REDUCTION IN HYBRID DECISION
SYSTEMS

DFDM =
⋃p

i=1DFDM
i), the above equation is expressed as given below.

SATUF (R ∪ {a}) =

p∑
i=1

 ∑
Cxx′∈DFDM i∧Cxx′ 6=∅

SATUF(R∪{a})(Cxx′)


Here, DFDM i is a DFDM-split, and it should be noted that DFDM in the parallel ap-

proach is same as FDM UF (R) in the sequential approach after the SAT-region is removed.

Therefore, in the computation of SATUF (R ∪ {abest}), we have,

max
a∈(A−R)

 ∑
Cxx′∈FDM UF (R)∧Cxx′ 6=∅

SATUF(R∪{a})(Cxx′)

 =

max
a∈(A−R)

 p∑
i=1

 ∑
Cxx′∈DFDM i∧Cxx′ 6=∅

SATUF(R∪{a})(Cxx′)


Hence, the reduct generated by both sequential and parallel approaches is the same.

5.4.2.3 Complexity analysis of MR IFDMFS algorithm

In the time complexity analysis of MR IFDMFS algorithm, the following variables are used.

• |U |: the number of objects in the data set

• |A|: the number of conditional attributes in the data set

• p: the number of processors

• tw: the number of time units to transfer one word of memory

• s: the number of time units to complete the synchronization

• q: the number of reducers

• E =
∑n−1

i=1 ci ∗ (
∑n

j=i+1 cj) (refer Section 5.3.3.1)

Table 5.2 shows the time complexities of each step of the phase in the MR IFDMFS algorithm

for one iteration. Note that, from the table, all the steps in the mapper and reducer are

repeated until (DFDM == ∅) condition is satisfied in the driver. That is, these steps are

repeated |A| (in worst case) times. Hence, by adding up all the complexities, the total time

complexity of the proposed MR IFDMFS algorithm is obtained as given below.

114

5.4 Parallel attribute reduction in HDS using horizontal partitioning

Table 5.2: Time complexity analysis of MR IFDMFS algorithm

Algorithm
(phase)

Step* in Algorithm Time complexity

Driver : 1. Partitioning the data horizontally O(|A|∗|U |p ∗ tw)

(Algorithm 5.5) 2. Construct DFDM O(|A|∗Ep)+O((|A|∗|U |)∗tw)

Mapper :
(Algorithm 5.6)

1-10. Finding SATR∪{att}(Cxx′),
∀att ∈ (A−R)

O(|A|∗Ep)

Barrier synchronization O(s)

Shuffle and
sort :

Transferring all attributes and their SAT
values of entries of DFDM

O((|A| ∗ p) ∗ tw)

Reducer :
(Algorithm 5.7)

1-5. Find SAT (R∪{att}) and Barrier syn-
chronization

O(p∗|A|q) + O(s)

* Step denotes the line number in the associated algorithm

((
|A| ∗ |U |

p
∗ tw) + (

|A| ∗ E
p

) + ((|A| ∗ |U |) ∗ tw)+

|A| ∗
(

(
|A| ∗ E
p

) + (s) + ((|A| ∗ p) ∗ tw) + (
p ∗ |A|
q

) + (s)

)
(5.13)

Above equation can be approximated as: O(|A|
2∗E
p) + O(|A| ∗ ((|A|∗pq) ∗ tw + s)). Since the

time complexity of the sequential IFDMFS algorithm is O(|A|2 ∗ E), this is an anticipated

outcome for the proposed MR IFDMFS algorithm in addition with its communication cost:

O(|A| ∗ ((|A|∗pq) ∗ tw + s). Thus, the time complexity of parallel MR IFDMFS algorithm is

reduced p times than its sequential counterpart in addition with communication overhead.

The entire DFDM is required for reduct computation using MR IFDMFS algorithm. Thus,

the space complexity of MR IFDMFS algorithm is O(|A|∗E). But, in MapReduce framework

environment, the DFDM is partitioned and distributed to the nodes of the cluster where the

workload is divided equally into p data partitions. Hence, each partition has the complexity

of O(|A|∗Ep).

In the worst-case scenario, the aforementioned theoretical time and space complexity of

the proposed MR IFDMFS algorithm are described. However, because the MR IFDMFS

algorithm incorporates accelerator DARA (SAT-region removal), the actual time and space

complexities are significantly reduced.

115

5. PARALLEL ATTRIBUTE REDUCTION IN HYBRID DECISION
SYSTEMS

5.5 Parallel attribute reduction in HDS using vertical parti-

tioning

In Chapter 3 and 4, it is demonstrated that horizontal partitioning based reduct computation

approaches for CDS and IDS are suitable and scale well for the data sets having large object

space and moderate attribute space. And, the vertical partitioning based approaches scale well

for the data sets having large attribute space with moderate object space. Similarly, in this

section, the relevance of vertical partitioning strategy is investigated for reduct computation

in HDS. In this proposed MapReduce based approach, attribute reduction is performed in

three steps: (i) Vertical partition of the input data set (ii) Parallel construction of the vertical

FDM (vFDM) and (iii) Parallel attribute reduction using vFDM. This section describes these

steps of the proposed approach.

5.5.1 Vertical partitioning of the input data set

The MapReduce based approach MR IFDMFS given in Section 5.4 make use of horizontal

partitioning strategy to partition the input data set. Since the information about all the

objects is distributed around the cluster’s nodes, in the construction of DFDM, broadcasting

the input data is required to make data local to the nodes to form an entry of the matrix.

Thus broadcasting avoids data shuffling in the network. However, if the data set is big

dimensional, broadcasting chunks of data objects becomes complex, resulting in the approach

being inefficient.

In the computation of reduct from DFDM, in each iteration, to compute satisfiability

SAT (R ∪ {attr}) of an attribute attr ∈ (A − R) for all the entries in DFDM , the data

movement is required to get all the entries together which are distributed across the nodes of

the cluster. If the data set has larger attribute space, then a lot of data shuffling is required

in evaluation of all the subsets of attributes of the data set to find the reduct. Thus, this

data movement in shuffle and sort phase of the MapReduce framework becomes a bottleneck

in fuzzy-rough attribute reduction of big dimensional hybrid decision systems.

In the proposed approach, we use alternative vertical partitioning strategy that avoids

drawbacks of horizontal partitioning strategy. With this strategy, all the objects information

of an attribute is available in one node. Since the complete data of an attribute is available at

a location, broadcasting the data is not required for constructing FDM. And, as demonstrated

in Chapter 3 and 4, this strategy avoids huge data movement in shuffle and sort phase for big

dimensional data sets. The vertical partitioning strategy given in Section 3.3 of Chapter 3 is

adopted to HDS as given in the following definition.

116

5.5 Parallel attribute reduction in HDS using vertical partitioning

Definition 5.10. For the given decision table HDS = (U,A∪{d}), let HDS =
⋃p

i=1HDS
i,

where, HDSi = (U,Ai∪{d}) is ith data partition, and satisfies (i) A =
⋃p

i=1A
i, (ii) Ai∩Aj =

∅, ∀i, j ∈ {1, 2,p} and i 6= j, where p is the number of data partitions.

5.5.2 Parallel construction of the vertical FDM (vFDM)

� -

v1 v2 vi vj vmvm−1

v1 v2 vi vj vmvm−1

v1 v2 vi vj vmvm−1

v1 v2 vi vj vmvm−1

v1 vi vm−1v2 vj vm.....

v1 vi vm−1v2 vj vm.....

v1 vi vm−1v2 vj vm.....

v1 vi vm−1v2 vj vm.....

v1 vi vm−1v2 vj vm.....

v1 vi vm−1v2 vj vm.....

..
..

vi

vj

.

vi

vj vm

vm

.....

vm−1

vm−1

v1

v1

v2

v2

..
..

..
..

..
.. ..
..

..
..

..
..

..
..

v1

v2

.....
..
..

..
..

v1

v2

.....

.....

v1 v1

v2 v2

..... v1 v1

..... v2 v2

Partition-1

Partition-k

Vertically partitioned FDM (vFDM)Horizontally partitioned FDM (DFDM)

vi

.....

vj vj

vi vi vi vi vi
vj vj vj vj

.....

.....

vm−1

vm vm vmvm vm vm

..
..

..
..

Original FDM

Note: Each vi represents

Partition-1

Partition-k

vm−1vm−1 vm−1 vm−1 vm−1

Partition-zPartition-z

..... aj

a1

amam−1aia1

a2

ai
aj

am
am−1

a1 a2 ai am−1 am
a2aj

Cx1x2
Cx1x3

Cxpxq
Cxpxr

Cxsxt
Cxsxn

Cx1x2

Cx1x3

Cxpxq

Cxpxr

Cxsxt
Cxsxn

Cx1x2 Cx1x3 Cxpxq CxsxtCxsxnCxpxr

µDISi
(x, x′)∀i ∈ A

Figure 5.1: Horizontally and vertically partitioned FDM

An FDM is usually made of a row that corresponds to an entry Cxx′ (between two ob-

jects (x, x′) ∈ U) and a column that corresponds to a discernible value for an attribute

(µDISattr(x, x′)). Conversely, vFDM is the transpose of an FDM, with each row correspond-

ing to an attribute’s discernibility value and each column corresponding to an entry. The

original FDM and its horizontal (DFDM) and vertical (vFDM) forms are depicted in the

Figure 5.1. In comparison to DFDM , the vFDM has a lot of computational benefits, which

are discussed in the subsequent sections. The process for computing vertical FDM (vFDM)

is described by Algorithm 5.8. To facilitate better reading, the algorithm is presented in

Apache Spark’s pseudo-code.

The method described in Section 5.2.2.2 is used to construct vFDM . Vertically par-

titioned data simplifies vFDM construction. Since a node contains all the information

about the objects associated with an attribute (attr), the discernibility value is computed

for each object pair, where the objects are from different decision classes. That is, each entry

Cxx′ ∀(x, x′) ∈ U , associated with the attribute attr is computed locally within a node in

the cluster. Thus, within a node, each mapper computes a row of vFDM for each attribute

attr ∈ Ai. Each row in vFDM includes an attribute identifier (attr) and its discernibility

values for all the pairs of objects (i.e., µDISattr(x, x′) ∀(x, x′) ∈ U) in the given data set. In

Algorithm 5.8, these rows are computed in parallel by mappers by using mapPartitions()

method in Spark. Each mapper returns < key, value >=< attr, µDISattr > pairs, where

117

5. PARALLEL ATTRIBUTE REDUCTION IN HYBRID DECISION
SYSTEMS

µDISattr denotes the list of discernibility values of all the entries (object pairs) for the at-

tribute attr.

Algorithm 5.8: Parallel construction of vFDM

Input: 1. Input data set: HDS = (U,A ∪ {d})
2. Fuzzy similarity relation: SIM , Fuzzy negation: N , and S-norm: ⊥

Output: Vertical Fuzzy Discernibility Matrix (vFDM) as RDD

/* Read the input data set as an RDD, where the data set HDS is

distributed to the nodes with vertical partitioning and the decision

attribute {d} is broadcasted, such that each data partition becomes

HDSi = (U,Ai ∪ {d}) ∀i ∈ {1, 2, ...p}, where p is the number of data

partitions in the cluster. */

1 hdsRDD = readASRDD(HDS)
2 val vFDMRDD = hdsRDD.mapPartitions(data => {
3 for each record ∈ data do
4 attr = record(0)
5 for x = 1 to |U | do
6 for x′ = x+ 1 to |U | do
7 if (d(x)! = d(x′)) then

// Compute similarity measure using Eq. (5.1)

8 µSIMattr(x, x′) = FSmeasure(record(x), record(x′), σ(attr))

// Compute discernibility measure using Eq. (5.5)

9 µDISattr(x, x′) = 1− µSIMattr(x, x′)

10 end

11 end

12 end
13 (attr, µDISattr)

14 end
15 })
16 Return vFDMRDD

5.5.3 Parallel attribute reduction using vFDM

After the construction of vFDM , the next step is to compute the reduct using vFDM . The

MapReduce based parallel/distributed algorithms for reduct computation are given in the

form of a driver, mapper, and reducer. The driver algorithm MR VFDMFS: driver() is given

in Algorithm 5.9, the mapper algorithm MR VFDMFS: map() is given in Algorithm 5.10,

and the reducer algorithm MR VFDMFS: reduce() is given in Algorithm 5.11. Computation

of the reduct from vFDM is done majorly in three steps: (i) Computation of SATA, (ii)

Computation of the best attribute and (ii) SAT-region removal. These steps are explained in

this section.

118

5.5 Parallel attribute reduction in HDS using vertical partitioning

5.5.3.1 Computation of SATA

Computation of SATA is required to check the end condition of the driver, which is (SATR >=

SATA). As mentioned earlier, with vertically partitioned FDM , for an attribute, the dis-

cernibility values of all the entries are available within a node. Therefore, by using S−norm

(⊥), each mapper computes SATAi for subset of attributes Ai ⊆ A within ith partition of

the vFDM , ∀i ∈ {1, 2, 3, ...p}, where p is the number of partitions in the cluster. And,

each mapper communicates < key, value >=< cKey, SATAi > pair to the reducer. Here, a

single reducer is invoked by using the common key (cKey). Now, the reducer performs the

union of all the satisfiability values received from the mappers. That is, reducer computes

SATA = ⊥p
i=1SATAi . The reducer returns SATA value to the driver.

5.5.3.2 Computation of the best attribute

In the driver (from Algorithm 5.9), initially the data set HDS is vertically partitioned into

HDSi (i = 1, 2, ...p), and decision attribute information is broadcasted to all the nodes of the

cluster. Reduct R is initialized to empty set (φ), and initially the variable nonSATReg con-

tains the indices of entries of vFDMRDD. The variable nonSATReg is used to incorporate

DARA accelerator (to perform SAT-region removal) and in each iteration it is broadcasted

to the nodes of the cluster.

The driver (Algorithm 5.9) invokes Algorithm 5.8 to construct vFDM . The Algorithm

5.8 returns the vFDM as an RDD (i.e., vFDMRDD). The driver initializes the reduct

R to an empty set (∅) and SAT (R) = 0.0 and computes the best attribute by invoking

the mapper (Algorithm 5.10), and reducer (Algorithm 5.11). As mentioned earlier, each

mapper gets a vFDM-split (vFDM i) as input along with fuzzy S − norm : ⊥. As shown

in Algorithm 5.10, from each record of vFDM i which contains an attribute and its dis-

cernibility values for all the entries, the value of SAT (R ∪ {attr}) is computed by using

S − norm : ⊥. The local best attribute lattrbest which gets maximum SAT (R ∪ {attr}) is

selected from (Ai −R). A single < key, value >=< cKey, (lattrbest, SAT (R ∪ {lattrbest})) >

pair is generated from each mapper communicated to the reducer. If cluster has p number

of partitions, then all the mappers generate p number of < key, value > pairs. And, since

all the mappers are generating the same key (cKey), only a single reducer is invoked. Thus,

the data movement in the cluster is significantly reduced when compared to horizontal par-

titioning based approach (MR IFDMFS) given in Section 5.4 (Note that, in MR IFDMFS

algorithm, each mapper generates a < key, value > pair for each entry in the DFDM).

119

5. PARALLEL ATTRIBUTE REDUCTION IN HYBRID DECISION
SYSTEMS

Algorithm 5.9: MR VFDMFS: driver()

Input: 1. Input data set: HDS = (U,A ∪ {d})
2. Fuzzy similarity relation: SIM , Fuzzy negation: N , and S-norm: ⊥

Output: Reduct R
1 Distribute the input data set HDS with vertical partitioning into the nodes of the

cluster and broadcast decision attribute {d}, such that each data partition becomes
HDSi = (U,Ai ∪ {d}) ∀i ∈ {1, 2, ...p}, where p is the number of data partitions in
the cluster.

2 Construct vFDM as an RDD (vFDMRDD) by invoking Algorithm 5.8
3 Initialize reduct R = ∅, SAT (R) = 0
4 Initial nonSATReg gets the list of indices of entries in the vFDMRDD
5 Broadcast nonSATReg and SATR
6 Compute SAT (A) using procedure given in Section 5.5.3.1
7 repeat

/* All operations are performed on the entries in nonSATReg */

8 Initiate mapper job by invoking Algorithm 5.10
9 val lattrRDD = vFDMRDD.mapPartitions(data => {val mp = map()})

/* Mapper returns < key, value >=< cKey, (lattrbest, SAT (lattrbest)) > pair,

here cKey is a common key, lattrbest is local best attribute and

SAT (lattrbest) is its satisfiability value */

10 Initiate reducer job by invoking Algorithm 5.11
11 val gattrRDD = lattrRDD.reduce()

/* Reducer returns < key′, value′ >=< attrbest, SAT (attrbest) > pair, where

attrbest is global best attribute and SAT (attrbest) is its

satisfiability value */

12 Collect the data from the reducers

13 R = R ∪ {attrbest}
14 Filter attrbest record from vFDM as < attrbest, µDIS

attrbest
>

15 Compute SATR = ⊥(⊥(R− attrbest), µDIS
attrbest

) using a map only operation

// SATR is vector of satisfiability values of attributes in R for

all the entries in vFDM
// SAT (R) is satisfiability value of R for all entries in vFDM

16 if (SAT (R) >= SAT (A)) then
17 break
18 end

/* ==================SAT-region removal================== */

19 nonSATReg = vFDMRDD.filter(if(SATR(Cxx′)! = SATA(Cxx′))
20 Broadcast nonSATReg and SATR
21 until (R.size < A.size)
22 return R

120

5.5 Parallel attribute reduction in HDS using vertical partitioning

Algorithm 5.10: MR VFDMFS: map()

Input: 1. vFDM i is a partition of vFDM , each record of this partition read as
< key, value >=< attr, µDISattr >, where attr represents an attribute and
µDISattr represent the list of discernible values of the attribute attr.

2. Broadcasted nonSATReg, SATR and S-norm: ⊥
Output: A < key′, value′ >=< cKey, (lattrbest, SAT (lattrbest)) > pair, here cKey is

a common key, lattrbest is an attribute of Ai which gets maximum
satisfiability value (SAT (lattrbest)) within the partition.

1 lMax = 0.0, lattrbest = −1
2 for each record ∈ vFDM i as (attr, µDISattr) do
3 if (attr /∈ R) then
4 Compute SAT (R ∪ {attr}) = ⊥(SATR, µDISattr)
5 end
6 if (SAT (R ∪ {attr}) > lMax) then
7 lattrbest = attr
8 lMax = SAT (R ∪ {attr})
9 end

10 end

11 Construct < key′, value′ >=< cKey, (lattrbest, SAT (R ∪ {lattrbest}) >
12 Emit intermediate < key′, value′ >

Algorithm 5.11: MR VFDMFS: reduce()

Input: < key, [V] >, here, key is common key and [V] is the list of
(lattrbest, SAT (lattrbest)) pairs received from the mappers

Output: < key′, value′ >=< attrbest, SAT (R ∪ {attrbest}) >
1 gMax = 0.0, attrbest = −1

2 for each v ∈ V as (lattrbest, SAT (lattrbest)) do
3 if (SAT (lattrbest) > gMax) then
4 attrbest = attr
5 gMax = SAT (R ∪ {attr})
6 end

7 end

8 Construct < key′, value′ >=< attrbest, SAT (R ∪ {attrbest}) >
9 Emit < key′, value′ >

In Algorithm 5.11, the reducer gets a set of < ckey, [V] > pairs as the input from all the

mappers in the cluster, where ckey is a common key and [V] = [(lattrbest, SAT (R∪{lattrbest})]
represents the list of pairs of local best attributes and their satisfiability values. The reducer

finds the attribute which gets maximum satisfiability value and returns to the driver as best

attribute attrbest along with its satisfiability value SAT (attrbest). In the driver, attrbest is

added to the reduct set R. And the record of attribute attrbest is fetched from vFDM as

< attrbest, µDIS
attrbest

>. This record is used to find the satisfiability values of the reduct

attributes (SATR) by using S − norm with a map only operation. Note that the notation

SATR represents the satisfiability values of the attributes in R for all the entries in the vFDM

121

5. PARALLEL ATTRIBUTE REDUCTION IN HYBRID DECISION
SYSTEMS

and it is broadcasted to all the nodes in the cluster. Now the driver performs SAT-region

removal which is explained in Section 5.5.3.2 and the updated nonSATReg is broadcasted.

This above procedure is repeated until the condition (SAT (R) >= SAT (A)) is not satisfied or

the condition (R.size < A.size) is satisfied. The satisfiability value SAT (A) of the conditional

attribute set A for all the entries in the vFDM is computed by using the procedure given in

Section 5.5.3.3.

5.5.3.3 SAT-region removal

The feature SAT-region removal in MR IFDMFS acts as an accelerator (DARA). According

to MR IFDMFS algorithm, SAT-region gets the entries of FDM for which maximum satisfi-

ability is reached (i.e., the entry for which (SATR(Cij) == SATA(Cij)) is satisfied). These

entries are removed from FDM in each iteration to avoid redundant computations in the next

iteration. This feature is incorporated in each iteration of the present MR VFDMFS algo-

rithm, by identifying the indices of entries for which maximum satisfiability is not yet reached.

That is, in the driver (Algorithm 5.9) non-SAT region is computed by using the condition:

(SATR(Cij)! = SATA(Cij)). These indices are stored into the variable nonSATReg and

broadcasted to all the nodes, and in the next iteration of the algorithm, all the computations

are performed only on the entries of vFDM for which the indices are present in nonSATReg.

5.5.4 Complexity analysis of MR VFDMFS algorithm

In the time complexity analysis of MR VFDMFS algorithm, the following variables are used.

• |U |: the number of objects in the data set

• |A|: the number of conditional attributes in the data set

• p: the number of processors

• tw: the number of time units to transfer one word of memory

• s: the number of time units to complete the synchronization

• E =
∑n−1

i=1 ci ∗ (
∑n

j=i+1 cj) (refer Section 5.3.3.1)

Table 5.3 shows the time complexities of each step of the phase in the MR VFDMFS algorithm

for one iteration. Note that, in the table, from step 1-10 of mapper to step 1-5 of reducer,

the algorithm is repeated until (SAT (R) == SAT (A)) condition is satisfied. That is, these

steps are repeated |A| (in worst case) times. Hence, by adding up all the complexities, the

total time complexity of the algorithm is obtained as given below.

122

5.5 Parallel attribute reduction in HDS using vertical partitioning

Table 5.3: Time complexity analysis of MR VFDMFS algorithm

Algorithm
(phase)

Step* in Algorithm Time complexity

1. Partitioning the data vertically O(|A|∗|U |p ∗ tw)

Driver : 2. Construct vFDM O(|A|∗Ep ∗ tw)

(Algorithm 5.9) 5. Broadcast nonSATReg indices O(E ∗ tw)

6. SAT (A) computation O(|A|∗Ep) + O(p ∗ E ∗ tw)

14. Fetch abest record from vFDM and
find SATR

O(E ∗ tw)

Mapper : 1-10. Finding labest attribute O(|A|∗Ep)

(Algorithm 5.10) Barrier synchronization O(s)

Shuffle and
sort :

Transferring labest attributes and their
SAT (labest) values

O(p ∗ tw)

Reducer : 1-5. Find SAT (R ∪ {abest}) O(p)
(Algorithm 5.11) Barrier synchronization O(s)

* Step denotes the line number in the associated algorithm

((
|A| ∗ |U |

p
∗ tw) + (

|A| ∗ E
p

∗ tw) + (E ∗ tw) + (
|A| ∗ E
p

) + (p ∗ E ∗ tw)+

|A| ∗
(

(E ∗ tw) + (
|A| ∗ E
p

) + (s) + (p ∗ tw) + (p) + (s)

)
(5.14)

Above equation can be approximated as: O(|A|
2∗E
p) +O(|A| ∗ ((E + p) ∗ tw) +O(|A| ∗ (p+ s)).

Since the time complexity of the sequential IFDMFS algorithm is |A|2∗E, the time complexity

of parallel MR VFDMFS algorithm is reduced p times (i.e., O(|A|
2∗E
p)) than its sequential

counterpart in addition with communication overhead O(|A| ∗ ((E+p)∗ tw) +O(|A| ∗ (p+ s)).

The entire vFDM is required for reduct computation using MR VFDMFS algorithm.

Thus, the space complexity of MR VFDMFS algorithm is O(|A| ∗ E). But, in MapReduce

framework environment, the vFDM is partitioned and distributed to the nodes of the cluster

where the workload is divided equally into p data partitions. Hence, each partition has the

complexity of O(|A|∗Ep).

In the worst-case scenario, the aforementioned theoretical time and space complexity of

the proposed MR VFDMFS algorithm are described. However, because the MR VFDMFS

algorithm incorporates accelerator DARA (SAT-region removal), the actual time and space

complexities are significantly reduced.

123

5. PARALLEL ATTRIBUTE REDUCTION IN HYBRID DECISION
SYSTEMS

5.6 Experimental analysis

We carried out the experiments in two stages to evaluate the proposed MR IFDMFS and

MR VFDMFS algorithms. Since both algorithms are MapReduce based parallel/distributed

algorithms, they are implemented in Apache Spark (version: 2.3.1) with the Scala program-

ming language (version: 2.11.4).

In the first stage of the experiments, we run the MR IFDMFS algorithm on a node uti-

lizing a single core to get a pure sequential version of MR IFDMFS that is given as IFDMFS

in Algorithm 5.2. The comparative results of the IFDMFS algorithm are presented by com-

paring with the existing PARA [72] algorithm, which is an accelerator for fuzzy-rough reduct

computation. The PARA algorithm is implemented using C++ programming language. We

obtained the source code of the PARA algorithm from the authors and conducted the exper-

iments.

In the second stage of the experiments, the MR IFDMFS and MR VFDMFS algorithms

are executed on a cluster of nodes. The efficiency of the proposed algorithms is shown by

comparing with the existing state-of-the-art parallel/distributed fuzzy-rough attribute reduc-

tion algorithms: MR FRDM SBE [76] (proposed in the year 2019) and DFRS [56] (proposed

in the year 2020). The MR FRDM SBE algorithm is implemented in Apache Spark (version:

2.3.1) with the Scala programming language (version: 2.11.4). The DFRS algorithm is a

non-MapReduce parallel/distributed algorithm. The authors of DFRS provided MATLAB

simulation for parallel fuzzy-rough attribute reduction and the source code made available in

GitHub repository: https://github.com/qu10wenhao/DFRS.git.

5.6.1 Experimental setup

The experiments of the proposed sequential IFDMFS approach and the existing PARA ap-

proach [72] are conducted on a system with Intel (R) Core (TM) i7-8700 CPU@3.20GHz

processor with 12 cores and 32 GB of main memory. The system is installed with Ubuntu

18.04 LTS operating system.

The experiments of the proposed approaches MR IFDMFS, MR VFDMFS and existing

approach MR FRDM SBE [76] are carried out on a 7-node cluster. In the cluster, one node

is set as master (driver) as well as slave, and the rest are set as workers (slaves). The master

node uses Intel (R) Xeon (R) Silver 4110 CPU @ 2.10GHz processor with 32 cores and 64

GB of main memory. All the worker nodes use Intel (R) Core (TM) i7-8700 CPU@3.20GHz

processor with 12 cores and 32 GB of main memory. All the nodes run on Ubuntu 18.04

LTS operating system and they are connected via Ethernet (with 1000 Mbps speed). Each

124

https://github.com/qu10wenhao/DFRS.git

5.6 Experimental analysis

Table 5.4: Small size data sets used in the experiments of IFDMFS algorithm

S.No Data set Objects Attributes Classes Attribute type

1 Ionosphere 351 34 2 Numerical
2 Waveform 5000 21 3 Numerical
3 Madelon 2000 500 2 Numerical
4 Satimage 6435 36 7 Numerical
5 Musk 6598 166 2 Numerical
6 Letter 20000 16 26 Numerical
7 Shuttle 58000 09 7 Numerical

Table 5.5: Large size data sets used in the experiments of MR IFDMFS and MR VFDMFS
algorithms

S.No Data set Objects Attributes Classes Attribute type

8 Genes 801 20531 5 Numerical
9 Isolet 7797 617 26 Numerical
10 HAPT 10929 561 12 Numerical
11 Diagnosis 58509 48 11 Numerical
14 Basehock 1993 4862 2 Categorical
15 Thyroid 7200 21 3 Categorical,Numerical
16 Gisette 6000 5000 2 Categorical
17 genes-S801-A101k 801 101320 5 Numerical
18 basehock-S2k-A53k 1993 53482 2 Categorical
19 heart-S270-A60k 270 60000 2 Categorical,Numerical
21 heart-S5k-A5k 5000 5000 2 Categorical,Numerical
22 heart-S10k-A5k 10000 5000 2 Categorical,Numerical
23 heart-S15k-A5k 15000 5000 2 Categorical,Numerical
24 heart-S5k-A10k 5000 10000 2 Categorical,Numerical
25 heart-S5k-A15k 5000 15000 2 Categorical,Numerical

node is installed with Java 1.8.0 171, Apache Spark 2.3.1, and Scala 2.11.4. The experiments

of the existing DFRS algorithm [56] are conducted on a system with Intel (R) Core (TM)

i7-8700 CPU@3.20 GHz processor having 12 cores and 32 GB of main memory. The system

is installed with Ubuntu 18.04 LTS operating system and MATLAB 2017 environment. The

DFRS source code is executed on this node and the results of the simulation in 7 nodes are

obtained.

All the hybrid data sets used in the experimental analysis are selected from the UCI Ma-

chine Learning Repository [31]. These data sets are categorised into two groups: smaller size

and larger size. Smaller size data sets are used in the experimental analysis of sequential ap-

proaches in the first stage of experiments and larger size data sets are used in the experimental

125

5. PARALLEL ATTRIBUTE REDUCTION IN HYBRID DECISION
SYSTEMS

analysis of parallel/distributed approaches in the second stage of experiments. A detailed de-

scription of smaller size data sets and larger size data sets is given in Table 5.4 and Table

5.5 respectively. Since the existing sequential PARA algorithm works on numerical data sets,

we used numerical data sets in experimental comparison of IFDMFS and PARA algorithms.

Thus, Table 5.4 contains all the numerical data sets. And, Table 5.5 contains hybrid data

sets. All the larger size data sets with different sizes are chosen according to limited hardware

configuration of the cluster. In the selection of these data sets, we considered the aspect of

variance in sizes of object space and attribute space to illustrate the relevance and limitations

of the proposed MR IFDMFS, MR VFDMFS approaches. Thus, few data sets such as ”Gene

expression Cancer RNA-Seq” (renamed as Genes), ”Basehock” and ”Heart” are replicated

several times in object and attribute space, details of these data sets are provided along with

their object and attribute space sizes in Table 5.5. For example, the original ”Heart” data

set has 270 objects and 13 attributes, and after replication, the data set ”heart-S5k-A15k”

contains 5000 objects and 15000 attributes.

5.6.2 Experimental results of IFDMFS algorithm

In this section, the efficiency of the proposed IFDMFS algorithm is shown by comparing its

results with the PARA algorithm [72] based on computational time, reduct size. As IFDMFS

and PARA are sequential algorithms, the experiments are conducted on small data sets given

in Table 5.4.

Reduct is computed for the given data sets using the proposed IFDMFS algorithm and the

PARA algorithm. In PARA, the authors used a threshold value α (0 ≤ α ≤ 1) in computing

the reduct. The threshold value α is used to bridge the gap between the dependency measures

of all conditional attributes and reduct attributes. In PARA, therefore the dependency mea-

sure with α is considered as the approximate dependency measure of the reduct set. But we

have not used any threshold value in the proposed IFDMFS. Therefore the reduct generated

by the proposed algorithm is exact. Since we do not use any threshold value, we have taken

the α value as 0.0 for PARA, for appropriate comparison with IFDMFS. In addition, we also

performed experiments on PARA with α value of 0.12, as suggested by the authors of PARA.

The results are reported in Table 5.6. The running time and the reduct size of the obtained

reduct on each data set are separately reported.

The following observations are made from the results:

126

5.6 Experimental analysis

Table 5.6: Running time (Seconds) and reduct size of PARA and IFDMFS algorithms

PARA (α = 0.0) PARA (α = 0.12) IFDMFS
Data set Running

time
Reduct
size

Running
time

Reduct
size

Running
time

Reduct
size

Ionosphere 6.74 34 1.96 16 2.06 07
Waveform 996.52 21 316.15 14 86.47 08
Madelon > 259200 * 105341.20 138 231.55 07
Satimage 5993.86 36 345.79 12 286.84 14
Musk 92660.73 166 28531.10 71 554.51 20
Letter 6420.3 16 3558.30 15 2369.03 15
Shuttle 4721.33 09 1520.37 06 2903.80 09

* The run time of the PARA is more than three days. The results are not reported due to manual termination
of the program.

i) The PARA algorithm with threshold value of α = 0.0 resulted with no dimensionality

reduction, and all the attributes were selected as reduct. Thus, even though the pro-

posed IFDMFS algorithm did not use a threshold value, it is compared with the PARA

that has α = 0.12.

ii) IFDMFS algorithm achieved a minimum of 17% and a maximum of 99% computational

gains over PARA (α = 0.12) on all the data sets except Shuttle. Both the existing

and proposed algorithms obtained similar computational times for Ionosphere data set.

These significant results of the proposed IFDMFS algorithm over PARA is due to in-

corporated DARA.

iii) The existing PARA (α = 0.12) algorithm obtained 47% computational gain over the

proposed IFDMFS algorithm in the Shuttle data set which has larger object space and

much smaller attribute space. This is due to the increase in the construction time of the

discernibility matrix with the larger object space is not able to compensate the benefits

obtained in the iterations for reduct computation as |A| is much smaller.

iv) It is also noted from the results that the IFDMFS generated the reducts that are sig-

nificantly smaller in size relative to the PARA (α = 0.12) algorithm.

In summary, the comparative study of IFDMFS and PARA has shown experimentally that

the proposed algorithm is useful in achieving shorter length reducts with substantial compu-

tational gains.

127

5. PARALLEL ATTRIBUTE REDUCTION IN HYBRID DECISION
SYSTEMS

5.6.3 Experimental results of MR IFDMFS and MR VFDMFS

In this section, the computational efficiency and performance evaluation of the proposed

parallel algorithms (MR IFDMFS, MR VFDMFS) is done by comparing their results with

the existing parallel approaches MR FRDM SBE [76] and DFRS [56]. Since the proposed

and existing algorithms are parallel/distributed methods, experiments are performed on all

the large data sets given in Table 5.5.

5.6.3.1 Computational evaluation

The proposed MR IFDMFS and MR VFDMFS algorithms are numerically compared with

the existing MR FRDM SBE and DFRS algorithms based on the computational time and

reduct size. The experiments of proposed MR IFDMFS, MR VFDMFS and the existing

MR FRDM SBE algorithms are performed on 7-node cluster, and the simulation results of

DFRS algoritm are obtained for 7 nodes. Since MR FRDM SBE and DFRS algorithms

are developed for attribute reduction in numerical data sets, in the first step, the compar-

ative analysis of these algorithms with the proposed algorithms is done on numerical data

sets and the results are reported in Table 5.7. In the second step, the proposed algorithms

MR IFDMFS and MR VFDMFS are compared based on different hybrid data sets with vari-

ance in object and attribute space. The comparative results are reported in Table 5.8. The

observations on the results from Table 5.7 and Table 5.8 are listed as follows.

Table 5.7: Running time (Seconds) and reduct size results of MR IFDMFS, MR VFDMFS,
MR FRDM SBE, and DFRS algorithms on large numerical data sets

MR IFDMFS MR VFDMFS MR FRDM SBE DFRS
Data set Running

time
Reduct
size

Running
time

Reduct
size

Running
time

Reduct
size

Running
time

Reduct
size

Genes 126.89 06 68.73 06 16742.80 10 525.31 39
Isolet 335.69 09 320.83 09 12549.32 11 3682.13 541
HAPT 467.70 09 300.87 09 8715.97 12 1093.73 347
Diagnosis 594.99 12 901.36 12 1662.36 21 8083.69 26

i) From the comparison of the running times, we can observe that the MR IFDMFS and

MR VFDMFS algorithms performed significantly better than MR FRDM SBE algo-

rithm on all the data sets. On all the data sets, the proposed algorithms obtained a

minimum of 26%, and a maximum of 99% of computational gains over MR FRDM SBE

algorithm. In specific, the computational gains of MR VFDMFS are higher than an-

other proposed MR IFDMFS algorithm for high dimensional data sets such as Genes,

128

5.6 Experimental analysis

Table 5.8: Running time (Seconds) and reduct size results of MR IFDMFS and MR VFDMFS
algorithms on hybrid data sets

MR IFDMFS MR VFDMFS
Data set Running

time
Reduct
size

Running
time

Reduct
size

Basehock 263.06 36 68.57 36
Thyroid 21.36 19 49.39 19
Gisette 2268.33 10 5234.83 10
genes-S801-A101k 810.61 06 111.25 06
basehock-S2k-A53k 8123.64 36 4962.97 36
heart-S270-A60k 360.02 07 27.16 07

Isolet and HAPT. And, MR IFDMFS performs better than MR VFDMFS on Diagnosis

data set which has larger object space.

ii) From the comparison of the running times of MR IFDMFS and MR VFDMFS with

the existing DFRS, it can be noticed that, on all the data sets the proposed algorithms

perform well. Here, computational gains of proposed algorithms varies from 22% to

93%.

iii) It is also noted from the results that for all data sets, the proposed algorithms have

generated smaller size reduct set than the DFRS and MR FRDM SBE algorithms. And,

both proposed algorithms generated same size reduct sets.

iv) From the results on hybrid data sets in Table 5.8, it can be observed that, the vertical

partitioning based MR VFDMFS algorithm performed better than horizontal partition-

ing based MR IFDMFS algorithm on the data sets with larger attribute space such as

Basehock, genes-S801-A101k, basehock-S2k-A53k and heart-S270-A60k. And, in con-

trast, MR IFDMFS algorithm perform better than MR VFDMFS for larger object space

data sets such as Thyroid and Gisette.

The significant computational gains achieved by MR IFDMFS and MR VFDMFS algorithms

on all the data sets strongly establishes the role of the proposed accelerator DARA in impart-

ing space reduction as the algorithm progresses and there by aiding in reduction of computa-

tional time. And, in specific, the notable achievements of MR VFDMFS over MR IFDMFS

on high dimensional data sets illustrate the advantage of vertical partitioning strategy over

horizontal partitioning strategy for such data sets.

129

5. PARALLEL ATTRIBUTE REDUCTION IN HYBRID DECISION
SYSTEMS

T
a
b

le
5
.9

:
R

ed
u

ct
ob

ta
in

ed
b
y

IF
D

M
F

S
,

M
R

IF
D

M
F

S
a
n

d
M

R
V

F
D

M
F

S
a
lg

o
ri

th
m

s
fo

r
d

iff
er

en
t

d
a
ta

se
ts

D
at

a
se

t
IF

D
M

F
S

M
R

IF
D

M
F

S
M

R
V

F
D

M
F

S
h

ea
rt

{
0,

9,
2,

7,
3,

11
,

4
}

{
0
,

1
1
,

2
,

7
,

3
,

9
,

4
}

{
0
,

1
1
,

2
,

7
,

3
,

9
,

4
}

Io
n

os
p

h
er

e
{

0,
5,

4,
25

,
14

,
28

,
21
}

{
0
,

5
,

4
,

2
5
,

1
4
,

2
8
,

2
1
}

{
0
,

5
,

4
,

2
5
,

1
4
,

2
8
,

2
1
}

W
av

ef
or

m
{

0,
10

,
20

,
1,

6,
2,

16
,

19
}

{
0
,

1
0
,

2
0
,

1
,

6
,

2
,

1
6
,

1
9
}

{
0
,

1
0
,

2
0
,

1
,

6
,

2
,

1
6
,

1
9
}

M
ad

el
on

{
15

3,
47

5,
28

,
11

8,
45

5,
37

8,
23

9
}

{
1
5
3
,

4
7
5
,

2
8
,

1
1
8
,

4
5
5
,

3
7
8
,

2
3
9
}

{
1
5
3
,

4
7
5
,

2
8
,

1
1
8
,

4
5
5
,

3
7
8
,

2
3
9
}

S
at

im
ag

e
{

0,
10

,
24

,
14

,
6,

9,
13

,
2,

34
,

22
,

16
,

26
,

08
,

30
}

{
0
,

1
0
,

2
4
,

1
4
,

6
,

9
,

1
3
,

2
,

3
4
,

2
2
,

1
6
,

26
,

0
8
,

3
0
}

{
0
,

1
0
,

2
4
,

1
4
,

6
,

9
,

1
3
,

2
,

3
4
,

2
2
,

1
6
,

2
6
,

8
,

3
0
}

M
u

sk
{

5,
12

5,
15

7,
10

6,
28

,
9,

53
,

41
,

10
5,

54
,

86
,

7,
13

5,
35

,
48

,
50

,
87

,
94

,
13

1,
83
}
{

5
,

1
2
5
,

1
5
7
,

1
0
6
,

2
8
,

9
,

5
3
,

4
1
,

1
0
5
,

5
4
,

86
,

7
,

1
3
5
,

3
5
,

4
8
,

5
0
,

8
7
,

9
4
,

1
3
1
,

8
3
}
{

5
,

1
2
5
,

1
5
7
,

1
0
6
,

2
8
,

9
,

5
3
,

4
1
,

1
0
5
,

5
4
,

8
6
,

7
,

1
3
5
,

3
5
,

4
8
,

5
0
,

8
7
,

9
4
,

1
3
1
,

8
3
}

L
et

te
r

{
0,

1,
2,

3,
4,

5,
6,

7,
8,

9,
10

,
11

,
12

,
13

,
14
}

{
0
,

1
,

2
,

3
,

4
,

5
,

6
,

7
,

8
,

9
,

1
0
,

1
1
,

1
2
,

13
,

1
4
}

{
0
,

1
,

2
,

3
,

4
,

5
,

6
,

7
,

8
,

9
,

1
0
,

1
1
,

1
2
,

1
3
,

1
4
}

S
h
u

tt
le

{
0,

5,
1,

6,
2,

7,
3,

8,
4
}

{
0
,

5
,

1
,

6
,

2
,

7
,

3
,

8
,

4
}

{
0
,

5
,

1
,

6
,

2
,

7
,

3
,

8
,

4
}

G
en

es
{9

25
1,

79
49

,1
07

1,
17

18
7,

15
86

5,
10

81
8}

{9
2
5
1
,7

9
4
9
,5

3
9
7
,1

0
7
1
,1

7
1
8
7
,1

5
8
6
5}

{9
2
5
1
,7

9
4
9
,5

3
9
7
,1

0
7
1
,1

7
1
8
7
,1

5
8
6
5}

Is
ol

et
{2

21
,5

93
,5

47
,3

75
,3

70
,1

1,
60

3,
22

7,
36

4}
{2

2
1
,5

9
3
,5

4
7
,6

1
6
,3

7
0
,1

1
,6

0
3
,2

2
7
,3

6
4}

{2
2
1
,5

9
3
,5

4
7
,6

1
6
,3

7
0
,1

1
,6

0
3
,2

2
7
,3

6
4}

H
A

P
T

{5
59

,1
15

,5
38

,3
7,

10
5,

11
8,

19
8,

55
7,

55
5}

{5
5
9
,5

4
8
,5

3
8
,3

7
,1

0
5
,1

1
8
,1

9
8
,5

5
7
,5

5
5}

{5
5
9
,5

4
8
,5

3
8
,3

7
,1

0
5
,1

1
8
,1

9
8
,5

5
7
,5

5
5}

D
ia

gn
os

is
{

2,
3,

4,
10

,
6,

13
,

18
,

14
,

29
,

27
,

42
}

{
2
,

1
7
,

4
,

1
0
,

6
,

1
3
,

1
8
,

1
4
,

2
9
,

2
7
,

4
2
}
{

2
,

1
7
,

4
,

1
0
,

6
,

1
3
,

1
8
,

1
4
,

2
9
,

2
7
,

4
2
}

B
as

eh
o
ck

{
26

30
,

27
78

,
33

99
,

12
90

,
32

85
,

45
43

,
38

91
,
17

92
,
32

80
,
88

1,
41

15
,
43

64
,
33

01
,

12
74

,
13

65
,
49

3,
25

09
,
47

50
,
10

99
,
37

55
,

38
24

,
43

54
,

25
78

,
15

28
,

25
5,

35
5,

32
14

,
32

7,
43

14
,
48

00
,
12

85
,
17

21
,
46

81
,
33

37
,

43
50

,
32

99
}

{
2
6
3
0
,

2
7
7
8
,

3
3
9
9
,

1
2
9
0
,

3
2
8
5
,

4
5
4
3
,

38
9
1
,
1
7
9
2
,
3
2
8
0
,
8
8
1
,
4
1
1
5
,
4
3
6
4
,
3
3
0
1
,

12
7
4
,
1
3
6
5
,
4
9
3
,
2
5
0
9
,
4
7
5
0
,
1
0
9
9
,
3
7
5
5
,

38
2
4
,

4
3
5
4
,

2
5
7
8
,

1
5
2
8
,

2
5
5
,

3
5
5
,

3
2
1
4
,

32
7
,
4
3
1
4
,
4
8
0
0
,
1
2
8
5
,
1
7
2
1
,
4
6
8
1
,
3
3
3
7
,

43
5
0
,

3
2
9
9
}

{
2
6
3
0
,

2
7
7
8
,

3
3
9
9
,

1
2
9
0
,

3
2
8
5
,

4
5
4
3
,

3
8
9
1
,
1
7
9
2
,
3
2
8
0
,
8
8
1
,
4
1
1
5
,
4
3
6
4
,
3
3
0
1
,

1
2
7
4
,
1
3
6
5
,
4
9
3
,
2
5
0
9
,
4
7
5
0
,
1
0
9
9
,
3
7
5
5
,

3
8
2
4
,

4
3
5
4
,

2
5
7
8
,

1
5
2
8
,

2
5
5
,

3
5
5
,

3
2
1
4
,

3
2
7
,
4
3
1
4
,
4
8
0
0
,
1
2
8
5
,
1
7
2
1
,
4
6
8
1
,
3
3
3
7
,

4
3
5
0
,

3
2
9
9
}

T
h
y
ro

id
{

0,
5,

10
,

20
,

1,
9,

13
,

2,
17

,
12

,
7,

3,
18

,
16

,
11

,
8,

19
,

4,
15
}

{
0
,

1
5
,

9
,

1
,

1
6
,

2
,

1
7
,

3
,

1
8
,

1
0
,

4
,

1
1
,

12
,

1
9
,

1
3
,

5
,

2
0
,

7
,

8
}

{
0
,

1
5
,

9
,

1
,

1
6
,

2
,

1
7
,

3
,

1
8
,

1
0
,

4
,

1
1
,

1
2
,

1
9
,

1
3
,

5
,

2
0
,

7
,

8
}

G
is

et
te

{
45

70
,

13
91

,
44

66
,

36
56

,
44

88
,

29
93

,
34

69
,

46
93

,
49

87
,

48
68
}

{
1
3
9
1
,

4
4
6
6
,

4
6
9
3
,

3
6
5
6
,

2
3
9
1
,

4
4
8
8
,

45
7
0
,

3
4
6
9
,

4
9
8
7
,

2
9
9
3
}

{
1
3
9
1
,

4
4
6
6
,

4
6
9
3
,

3
6
5
6
,

2
3
9
1
,

4
4
8
8
,

4
5
7
0
,

3
4
6
9
,

4
9
8
7
,

2
9
9
3
}

130

5.6 Experimental analysis

For the reproducible research, obtained reducts of proposed algorithms IFDMFS, MR IFDMFS

and MR VFDMFS algorithms for all the given original data sets (the data sets without repli-

cation) are given in Table 5.9.

5.6.3.2 Performance evaluation

Using speedup, scaleup and sizeup metrics, the performance of the proposed MR IFDMFS

and MR VFDMFS algorithms is evaluated and compared to existing MR FRDM SBE and

DFRS algorithms on various data sets. Three data sets are chosen such that the first data set

has large attribute space, the second has large object space, and the third data set has large

object space as well as attribute space. Separate figures are given to show the performance

results of the algorithms on three data sets.

Speedup evaluation:

The speedup of the proposed algorithms have been evaluated on the data sets with different

nodes from 1 to 7. From the experimental setup given in Section 5.6.1, it can be observed

that the master node has 32 cores and the remaining slave nodes have 12 cores each. Since

we have set the master node also as a slave, the number of cores is mismatched with other

slave nodes. Owing to this mismatch, in finding the speedup metric of the system, we took

nodes ratio based on the number of cores in the node. Figure 5.2 shows the speedup results

of different data sets with a different nodes ratios (number of cores) in the cluster.

1 1.37 1.75 2.12 2.5 2.9 3.25
1

1.37

1.75

2.12

2.5

2.9

3.25

Nodes ratio

S
p

ee
d

u
p

(a) Genes

Linear

MR IFDMFS

MR VFDMFS

MR FRDM SBE

DFRS

1 1.37 1.75 2.12 2.5 2.9 3.25
1

1.37

1.75

2.12

2.5

2.9

3.25

Nodes ratio

(b) Diagnosis

Linear

MR IFDMFS

MR VFDMFS

MR FRDM SBE

DFRS

1 1.37 1.75 2.12 2.5 2.9 3.25
1

1.37

1.75

2.12

2.5

2.9

3.25

Nodes ratio

(c) HAPT

Linear

MR IFDMFS

MR VFDMFS

MR FRDM SBE

DFRS

Figure 5.2: Speedup results of MR IFDMFS, MR VFDMFS, MR FRDM SBE and DFRS algo-
rithms on different data sets

From the findings in Figure 5.2, it can be observed that, on all the data sets, the speedup

of the proposed MR IFDMFS and MR VFDMFS algorithms is improved with an increase

131

5. PARALLEL ATTRIBUTE REDUCTION IN HYBRID DECISION
SYSTEMS

in the number of cores. The efficiency of proposed algorithms is higher than the existing

MR FRDM SBE and DFRS algorithms. The plots of both the proposed algorithms are

closer to the linear plot, and MR VFDMFS performs slightly better than MR IFDMFS on

Genes data set (big dimensional data set).

Scaleup evaluation

To find the scaleup performance of the proposed algorithms,, the data set size is increased

in proportion to the number of cores in the cluster. Each data set is divided into 20%,

40%, 60%, 80% and 100% sizes of original data set, and the number of cores in the cluster

increased from 20, 40, 60, 80 and 100 respectively. Figure 5.3 shows the scaleup results of the

proposed algorithms in comparison with the existing MR FRDM SBE and DFRS algorithms

on different data sets.

20 40 60 80 100
0.2

0.4

0.6

0.8

1

Number of cores

S
ca

le
d
u
p

(a) Genes

Linear

MR IFDMFS

MR VFDMFS

MR FRDM SBE

DFRS

20 40 60 80 100
0.2

0.4

0.6

0.8

1

Number of cores

(b) Diagnosis

Linear

MR IFDMFS

MR VFDMFS

MR FRDM SBE

DFRS

20 40 60 80 100
0.2

0.4

0.6

0.8

1

Number of cores

(c) HAPT

Linear

MR IFDMFS

MR VFDMFS

MR FRDM SBE

DFRS

Figure 5.3: Scaleup results of MR IFDMFS, MR VFDMFS, MR FRDM SBE and DFRS algo-
rithms on different data sets

The higher scaleup value shows the better performance of the proposed algorithms. From

the results shown in Figure 5.3, the scaleup values of both proposed algorithms are higher

than 0.8 indicates that the proposed algorithms scale well. Note that the existing algorithms

also performing on par with proposed algorithms.

Sizeup evaluation:

To find the sizeup metric of the proposed algorithms, we kept the number of nodes unchanged

with seven nodes, and changed the size of the data set as 20%, 40%, 60%, 80%, and 100%

of objects in the original data set. Figure 5.4 shows the sizeup performance results of the

proposed algorithms in comparison with the existing MR FRDM SBE and DFRS algorithms

on different data sets.

132

5.6 Experimental analysis

1 2 3 4 5
1

2

3

4

5

Size of data set

S
iz

eu
p

(a) Genes

Linear

MR IFDMFS

MR VFDMFS

MR FRDM SBE

DFRS

1 2 3 4 5
1

2

3

4

5

Size of data set

(b) Diagnosis

Linear

MR IFDMFS

MR VFDMFS

MR FRDM SBE

DFRS

1 2 3 4 5
1

2

3

4

5

Size of data set

(c) HAPT

Linear

MR IFDMFS

MR VFDMFS

MR FRDM SBE

DFRS

Figure 5.4: Sizeup results of MR IFDMFS, MR VFDMFS, MR FRDM SBE and DFRS algo-
rithms on different data sets

In Figure 5.4, for all the data sets, the sizeup performance of the proposed algorithms

increased when the size of the data set was increased. From the figure, we can observe that,

the existing MR FRDM SBE and DFRS algorithms are producing better sizeup results than

proposed MR IFDMFS and MR VFDMFS algorithms. Figure 5.4 also shows that all existing

and proposed algorithms produce better sizeup results, as their plots are lower than the linear

plots in all data sets.

5.6.3.3 Discussion

It can be observed that the experiments in the cluster for MR IFDMFS and MR VFDMFS are

conducted on the large data sets having a few hundred thousands of objects or a few thousands

of attributes. These data sets are categorised as large due to the fact that the resulting space

utilisation for the matrices DFDM and vFDM run into several millions of entries occupying

several Giga bytes of memory space. This is further coupled by the overhead involved in the

Apache Spark maintenance of RDDs across the transformations and for the meta data in

achieving fault tolerance. From the scaleup results shown in Figure 5.3, it is obvious that, in

order to scale data sets to much higher sizes, more nodes need to be added to the cluster. As

the cost of shuffle and sort phase of DFDM and vFDM construction and distributed reduct

computation are minimal, the proposed approaches are scalable to very large data sets under

horizontal expansion of the cluster.

5.6.4 Impact of the data partitioning strategy

The experimental results in Section 5.6.3 have suggested that vertical partitioning based

MR VFDMFS algorithm is suitable for high dimensional data sets, and horizontal parti-

133

5. PARALLEL ATTRIBUTE REDUCTION IN HYBRID DECISION
SYSTEMS

Table 5.10: Comparison of MR IFDMFS and MR VFDMFS for varying objects and attributes
of Heart data set (Time: Seconds)

S.No Data set MR IFDMFS
Running Time

MR VFDMFS
Running Time

1 heart-S5k-A5k 232.65 190.02

2 heart-S10k-A5k 408.79 416.94
3 heart-S15k-A5k 525.03 736.12

4 heart-S5k-A10k 452.79 221.83
5 heart-S5k-A15k 603.13 259.57

tioning based MR IFDMFS algorithm is ideal for the data sets having moderate attribute

space with larger object space. To further investigate the relevance and limitations of the

proposed algorithms, we conducted an experiment between MR IFDMFS and MR VFDMFS

algorithms. The objective of the experiment is to determine the nature of data sets relevant

for horizontal partitioning based reduct algorithms and vertical partitioning based reduct

algorithms.

heart-S5k-A5k heart-S10k-A5k heart-S15k-A5k
0

100

200

300

400

500

600

700

800

900

23
2.

65

40
8
.7

9

52
5
.0

3

19
0.

02

41
6
.9

4

73
6
.1

2

R
u
n
n
in

g
ti

m
e

MR IFDMFS
MR VFDMFS

(a) Scalability in the object space

heart-S5k-A5k heart-S5k-A10k heart-S5k-A15k
0

100

200

300

400

500

600

700

800

900

23
2
.6

5

45
2
.7

9

60
3.

13

19
0
.0

2

22
1
.8

3

25
9.

57R
u
n
n
in

g
ti

m
e

MR IFDMFS
MR VFDMFS

(b) Scalability in the attribute space

Figure 5.5: Behavior of MR IFDMFS and MR VFDMFS for varying object space and attribute
space of Heart data set

In this experiment, the original Heart data set having 270 objects and 13 attributes

is replicated several times in object and attribute space to get heart-S5k-A5k which has

equal size object space and attribute space. This data set’s object space is replicated by

keeping attribute space constant, and the experiments are conducted, the results of both

algorithms are reported in Table 5.10 under the serial number 2 and 3. Similarly, heart-S5k-

A5k is replicated in attribute space by keeping object space constant and the experiments are

conducted, the results are reported in Table 5.10 under the serial number 4 and 5. Figure 5.5

demonstrates the computational time analysis for scalability in object space in Figure 5.5a

and the attribute space in Figure 5.5b.

134

5.7 Summary

It is evidently clear from these results that, increase in object space resulted in a consid-

erable increase in computational time of MR VFDMFS. And, similarly increase in attribute

space resulted in a more significant increase in computational time of MR IFDMFS. That is,

MR VFDMFS is more suitable for big dimensional data sets. But it is not recommended for

data sets of larger object space. The horizontal partitioning based MR IFDMFS algorithm is

found more suitable for scalability in object space. Hence, as shown in Chapter 3 and 4, this

section once again demonstrated that, the vertical partitioning based algorithms are suitable

for big dimensional data sets. And, horizontal partitioning based algorithms are more ideal

for the data sets having larger object space with moderate attribute space.

5.7 Summary

In this chapter, we introduced a fuzzy discernibility matrix-based accelerator. The idea be-

hind the proposed accelerator is the removal of SAT-region. With this feature, the entries

of the discernibility matrix that have reached maximum satisfiability were removed from the

matrix in each iteration and the reduct computation performed on the remaining entries

of the matrix. Therefore, SAT-region removal served as an accelerator and referred to as

DARA. Based on DARA, a sequential IFDMFS algorithm proposed for fuzzy-rough attribute

reduction. To deal with large data sets in attribute reduction, we also proposed MapReduce

based algorithms using horizontal partitioning strategy (MR IFDMFS) and vertical parti-

tioning strategy (MR VFDMFS). These two algorithms are parallel/distributed versions of

the IFDMFS algorithm. The experimental results have shown that the proposed algorithms

IFDMFS, MR IFDMFS and MR VFDMFS performed better than the existing state-of-the-

art approaches. Extensive experimental analysis along with theoretical validation establishes

the relevance and efficiency of the proposed approaches in handling large hybrid data sets for

attribute reduction.

135

Chapter 6

Conclusions and Future work

This chapter highlights the author’s explorations after the research process that resulted

in the development of this thesis. The research process began with the motivation and its

objectives, which formed a basis for carrying out this scientific work. The research work

is motivated by the challenges presented by today’s large-scale data sets, which include,

big dimensionality, variety of the data and data partitioning strategy used in distributed

attribute reduction. Each of these challenges served as the research work’s objectives, which

were discussed in Chapter 1. Following the formulation of the research objectives, the research

process moved on to Chapter 2 to examine and analyse theoretical principles relating to rough

set theory and the Apache Spark MapReduce framework, which served as the foundation for

this research. The following section summarizes major contributions and achievements of this

thesis. And, Section 6.2 identifies various directions for further research in rough set-based

scalable attribute reduction.

6.1 Research summary

This research focused on scalable attribute reduction in large-scale data sets using MapRe-

duce, with an emphasis on the big dimensionality of the data set. This thesis objective was

to explore MapReduce based parallel/distributed reduct computation in categorical, incom-

plete and hybrid decision systems, where the relevance of horizontal and vertical partitioning

strategies were investigated in partitioning the input data to the nodes of the cluster. The

contributions to thesis were made in relation to the research objectives. All the significant

contributions were discussed in chapter 3 to 5. Brief summary of each contribution is provided

below.

All the existing MapReduce based reduct computation approaches in categorical data sets

adopted horizontal partitioning strategy for partitioning the data to the cluster of computers,

136

6.1 Research summary

where the data set was partitioned in object space. This strategy resulted in computational

overheads for big dimensional data sets. As an initial contribution to this thesis, a classical

rough sets-based approach (MR IQRA VP) to attribute reduction using MapReduce was

proposed. An alternative vertical partitioning strategy was examined in this approach, which

was utilised to partition the input data set in the attribute space to the cluster nodes. The

application of this strategy for attribute reduction in large-scale categorical data sets with big

dimensionality was investigated. This vertical partitioning strategy avoided the limitations of

horizontal partitioning strategy and enabled the incorporation of granular refinement feature,

which fetched significant computational gains for the proposed approach.

Different strategies were used in the MapReduce framework to parallelize existing exten-

sions to classical rough sets for attribute reduction in large-scale incomplete data sets. As a

result, as the second contribution of thesis, MapReduce-based attribute reduction approaches

for incomplete decision systems were presented, employing Novel Granular Framework (NGF)

(an extension to classical rough sets) for handling incompleteness in the data set. An alterna-

tive representation of the NGF is introduced and adopted by one of the proposed approaches

(MRIDS HP). This proposed approach used horizontal partitioning strategy to partition the

input data. Another approach (MRIDS VP) incorporated the existing NGF and employed

a vertical partitioning strategy. It is worth noting that, to the best of our knowledge, the

presented methods are the first of its kind research on parallel/distributed attribute reduction

in large-scale IDS.

The advantages of discernibility matrix over dependency measure, and also non availability

of discernibility matrix based accelerators in the literature inspired us to investigate accel-

erators and the corresponding parallel/distributed approaches based on discernibility matrix

as part of third and fourth contributions of thesis. Fuzzy-rough set model (an extension to

classical rough sets) used to deal with hybrid decision systems. A fuzzy discernibility matrix

based attribute reduction accelerator (DARA) was introduced for scalable attribute reduction

in hybrid decision systems. Based on this accelerator, a sequential approach IFDMFS (Im-

proved Fuzzy Discernibility Matrix based Feature Selection) and corresponding MapReduce

based parallel/distributed versions of IFDMFS (MR IFDMFS, MR VFDMFS) were proposed.

For input data partitioning, the approach MR IFDMFS employed a horizontal partitioning

strategy, while the approach MR VFDMFS used a vertical partitioning strategy.

From all the contributions of this thesis, it was observed that, the horizontal partitioning of

the input data enabled the incorporation of positive region removal and SAT-region removal

features in the approaches (MRIDS HP and MR IFDMFS) proposed for parallel attribute

reduction in large-scale incomplete and hybrid decision systems respectively. The horizontal

137

6. CONCLUSIONS AND FUTURE WORK

partitioning strategy was not suitable for incorporating granular refinement feature. However,

the vertical partitioning strategy allowed all the approaches (MR IQRA VP, MRIDS VP and

MR VFDMFS) to incorporate all the features: positive region removal, SAT-region removal

and granular refinement. Furthermore, for all the proposed approaches, vertical partitioning

strategy simplified the shuffle and sort phase, which is a complex phase of the MapReduce

framework for large-scale data processing.

Apache Spark framework was used to implement the proposed approaches. Extensive

experimental study was performed on various benchmark large-scale data sets with variations

in object and attribute space. The efficiency of the proposed methods was assessed using

computational evaluation (running time, reduct, and reduct size were used as metrics), per-

formance evaluation (speedup, scaleup, and sizeup were used as metrics), and impact of the

data partitioning strategy for splitting the input data.

It has been experimentally demonstrated that the proposed approaches outperformed

the existing state-of-the-art approaches. The experimental results along with theoretical

validation showed that the horizontal partitioning based approaches performed well for the

larger object space data sets with moderate attribute space. And the vertical partitioning

based approaches were relevant and scale well for moderate object space data sets with big

dimensionality.

6.2 Future directions

Various challenges in developing scalable rough set-based attribute reduction approaches were

addressed in this thesis. However, scalable reduct computation can be enhanced further by

addressing some major concerns that need in-depth analysis and resolution. This section

provides some insight into these problems in preparation for future work in this area.

From the experimental study of all the proposed approaches, it is clear that, the horizontal

partitioning and vertical partitioning-based algorithms scale well for the data sets with either

a huge object space or a huge attribute space (big dimensionality), but they are less effective in

dealing with data sets with both a large object space and a large attribute space. As a result,

this research has the potential to look at viable rough set-based MapReduce approaches that

can simultaneously scale in both huge object space and attribute space.

As stated earlier, the big data is characterised with three V’s, namely volume, variety

and velocity. Since the proposed approaches are developed for big data, it can be observed

that, all the proposed algorithms are scale well for the data sets with huge object space

or attribute space. As huge object space or huge attribute space signifies the volume of

the data, it is clear that, the proposed approaches are dealing with volume characteristic of

138

6.2 Future directions

big data. Furthermore, because the proposed algorithms were developed for the categorical

(CDS), incomplete (IDS) and hybrid decision systems (HDS), it is evident that, the proposed

algorithms are dealing with variety characteristic of big data. Therefore, this research offers

the possibility to investigate suitable rough set-based MapReduce methods that can deal

with the velocity characteristic of big data. We can deal with the velocity issue by proposing

MapReduce-based incremental reduct computation approaches for streaming data.

In Chapter 4, MapReduce based approaches were proposed for parallel attribute reduction

in incomplete data sets, where the incompleteness (missing values) percentage used in the data

set was moderate. In a certain scenario in recommender systems, a high percentage of missing

values occurs, resulting in the formation of sparse data sets. Alternative representations and

appropriate MapReduce-based strategies are required for such sparse data sets, which will be

investigated in the future.

We hope that the contributions provided in this thesis will help deliver the benefits of

rough set based attribute reduction for large-scale decision systems and will aid knowledge

engineering in big data scenarios.

139

References

[1] Apache Hadoop. https://hadoop.apache.org.

[2] Apache Spark. https://spark.apache.org.

[3] Cornell University VIA Databases. http://www.via.cornell.edu/databases.

[4] Gene expression data, NCBI. https://www.ncbi.nlm.nih.gov/gene.

[5] HashMap, Scala 2.11.4 library. https://www.scala-lang.org/api/2.11.4/

#scala.collection.mutable.HashMap.

[6] GS Almasi and A Gottlieb. Highly Parallel Computing Ben-

jamin/Cummings”. New York, 19942, 1994.

[7] Hasan Asfoor, Rajagopalan Srinivasan, Gayathri Vasudevan, Nele Ver-

biest, Chris Cornells, Matthew Tolentino, Ankur Teredesai, and Martine

De Cock. Computing fuzzy rough approximations in large scale information

systems. In 2014 IEEE International Conference on Big Data (Big Data), pages 9–16.

IEEE, 2014.

[8] Kiran Bandagar, Pandu Sowkuntla, Salman Abdul Moiz, and P. S. V. S. Sai

Prasad. MR IMQRA: An Efficient MapReduce Based Approach for Fuzzy

Decision Reduct Computation. In International Conference on Pattern Recognition

and Machine Intelligence, pages 306–316. Springer International Publishing, 2019.

[9] Richard E Bellman. Adaptive control processes: a guided tour. Princeton university

press, 2015.

[10] Verónica Bolón-Canedo, Noelia Sánchez-Maroño, and Amparo Alonso-

Betanzos. Recent advances and emerging challenges of feature selection in

the context of big data. Knowledge-Based Systems, 86:33–45, 2015.

140

https://hadoop.apache.org
https://spark.apache.org
http://www.via.cornell.edu/databases
https://www.ncbi.nlm.nih.gov/gene
https://www.scala-lang.org/api/2.11.4/#scala.collection.mutable.HashMap
https://www.scala-lang.org/api/2.11.4/#scala.collection.mutable.HashMap

REFERENCES

[11] Verónica Bolón-Canedo, Noelia Sánchez-Marono, Amparo Alonso-

Betanzos, José Manuel Beńıtez, and Francisco Herrera. A review of mi-

croarray datasets and applied feature selection methods. Information Sciences,

282:111–135, 2014.

[12] Yingyi Bu, Bill Howe, Magdalena Balazinska, and Michael D Ernst.

HaLoop: efficient iterative data processing on large clusters. Proceedings of

the VLDB Endowment, 3(1-2):285–296, 2010.

[13] Hongmei Chen, Tianrui Li, Yong Cai, Chuan Luo, and Hamido Fujita. Paral-

lel attribute reduction in dominance-based neighborhood rough set. Information

Sciences, 373:351–368, 2016.

[14] Jinkun Chen, Jusheng Mi, and Yaojin Lin. A graph approach for fuzzy-rough

feature selection. Fuzzy Sets and Systems, 391:96–116, 2020.

[15] Mincheng Chen, Jingling Yuan, Lin Li, Dongling Liu, and Tao Li. A fast

heuristic attribute reduction algorithm using Spark. In 2017 IEEE 37th Interna-

tional Conference on Distributed Computing Systems (ICDCS), pages 2393–2398. IEEE,

2017.

[16] Alexios Chouchoulas and Qiang Shen. Rough set-aided keyword reduction

for text categorization. Applied Artificial Intelligence, 15(9):843–873, 2001.

[17] Cheng Chu, Sang Kyun Kim, Yian Lin, YuanYuan Yu, Gary Bradski, An-

drew Y Ng, and Kunle Olukotun. Map-reduce for machine learning on mul-

ticore. Advances in neural information processing systems, 19:281, 2007.

[18] Martine De Cock, Chris Cornelis, and Etienne E. Kerre. Fuzzy Rough Sets:

The Forgotten Step. IEEE Transactions on Fuzzy Systems, 15(1):121–130, feb 2007.

[19] Chris Cornelis, Martine De Cock, and Anna Maria Radzikowska. Fuzzy

Rough Sets: From Theory into Practice. In Handbook of Granular Computing,

pages 533–552. John Wiley & Sons, Ltd, 2008.

[20] Chris Cornelis, Richard Jensen, Germán Hurtado, and Dominik Ślȩzak. At-

tribute selection with fuzzy decision reducts. Information Sciences, 180(2):209–224,

jan 2010.

141

REFERENCES

[21] Michal Czolombitko and Jaroslaw Stepaniuk. Attribute reduction based on

MapReduce model and discernibility measure. In IFIP International Conference

on Computer Information Systems and Industrial Management, pages 55–66. Springer,

2016.

[22] Jianhua Dai, Hu Hu, Wei-Zhi Wu, Yuhua Qian, and Debiao Huang. Maximal-

Discernibility-Pair-Based Approach to Attribute Reduction in Fuzzy Rough

Sets. IEEE Transactions on Fuzzy Systems, 26(4):2174–2187, aug 2018.

[23] Jianhua Dai, Qinghua Hu, Jinghong Zhang, Hu Hu, and Nenggan Zheng.

Attribute selection for partially labeled categorical data by rough set approach.

IEEE transactions on cybernetics, 47(9):2460–2471, 2016.

[24] Manoranjan Dash and Huan Liu. Consistency-based search in feature selec-

tion. Artificial intelligence, 151(1-2):155–176, 2003.

[25] Jeffrey Dean and Sanjay Ghemawat. MapReduce: simplified data processing

on large clusters. Communications of the ACM, 51(1):107, jan 2008.

[26] Dayong Deng, Dianxun Yan, and Jiyi Wang. Parallel reducts based on at-

tribute significance. In International Conference on Rough Sets and Knowledge Tech-

nology, pages 336–343. Springer, 2010.

[27] Weiping Ding, Chin-Teng Lin, Senbo Chen, Xiaofeng Zhang, and Bin

Hu. Multiagent-consensus-MapReduce-based attribute reduction using co-

evolutionary quantum PSO for big data applications. Neurocomputing, 272:136–

153, 2018.

[28] Weiping Ding, Jiandong Wang, and Jiehua Wang. Multigranulation consen-

sus fuzzy-rough based attribute reduction. Knowledge-Based Systems, page 105945,

2020.

[29] U Venkata Divya and P. S. V. S. Sai Prasad. Hashing Supported Iterative

MapReduce Based Scalable SBE Reduct Computation. In International Confer-

ence on Distributed Computing and Internet Technology, pages 163–170. Springer, 2018.

[30] Wen Sheng Du and Bao Qing Hu. Dominance-based rough set approach to

incomplete ordered information systems. Information Sciences, 346:106–129, 2016.

[31] Dheeru Dua and Casey Graff. UCI Machine Learning Repository. http:

//archive.ics.uci.edu/ml. [Accessed online 2020].

142

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

REFERENCES

[32] Didier Dubois and Henri Prade. Rough Fuzzy Sets and Fzzy Rough Sets.

International Journal of General Systems, 17(2-3):191–209, jun 1990.

[33] Didier Dubois and Henri Prade. Putting rough sets and fuzzy sets together.

In Intelligent Decision Support, pages 203–232. Springer, 1992.

[34] Ivo Duntsch and Gunther Gediga. Rough set data analysis: A road to non-invasive

knowledge discovery. Methodos, 2000.

[35] Jaliya Ekanayake, Hui Li, Bingjing Zhang, Thilina Gunarathne, Seung-Hee

Bae, Judy Qiu, and Geoffrey Fox. Twister: a runtime for iterative mapreduce.

In Proceedings of the 19th ACM international symposium on high performance distributed

computing, pages 810–818. ACM, 2010.

[36] Usama Fayyad, Gregory Piatetsky-Shapiro, and Padhraic Smyth. From data

mining to knowledge discovery in databases. AI magazine, 17(3):37–37, 1996.

[37] Jerzy W Grzymala-Busse and Ming Hu. A comparison of several approaches

to missing attribute values in data mining. In International Conference on Rough

Sets and Current Trends in Computing, pages 378–385. Springer, 2000.

[38] Susan Gunelius. The data explosion in 2014 minute by minute–Infographic.

ACI. Retrieved July, 29:2015, 2014.

[39] Isabelle Guyon and André Elisseeff. An introduction to variable and feature

selection. Journal of machine learning research, 3(Mar):1157–1182, 2003.

[40] Isabelle Guyon, Steve Gunn, Masoud Nikravesh, and Lofti A Zadeh. Feature

extraction: foundations and applications, 207. Springer, 2008.

[41] Ahmed Hamed, Ahmed Sobhy, and Hamed Nassar. Distributed approach for

computing rough set approximations of big incomplete information systems.

Information Sciences, 547:427–449, 2021.

[42] Liangxiu Han, Chee Sun Liew, Jano Van Hemert, and Malcolm Atkinson. A

generic parallel processing model for facilitating data mining and integration.

Parallel Computing, 37(3):157–171, 2011.

[43] Yasser Hassan and Eiichiro Tazaki. Combination method of rough set and

genetic programming. Kybernetes, 2004.

143

REFERENCES

[44] Aboul Ella Hassanien, Zbigniew Suraj, Dominik Slezak, and Pawan Lingras.

Rough Computing: Theories, Technologies and Applications: Theories, Technologies and

Applications. IGI Global, 2007.

[45] Qing He, Xiaohu Cheng, Fuzhen Zhuang, and Zhongzhi Shi. Parallel feature

selection using positive approximation based on mapreduce. In Fuzzy Systems

and Knowledge Discovery (FSKD), 2014 11th International Conference on, pages 397–402.

IEEE, 2014.

[46] Q. Hu, L. Zhang, Y. Zhou, and W. Pedrycz. Large-Scale Multimodality At-

tribute Reduction With Multi-Kernel Fuzzy Rough Sets. IEEE Transactions on

Fuzzy Systems, 26(1):226–238, 2018.

[47] Qinghua Hu, Witold Pedrycz, Daren Yu, and Jun Lang. Selecting discrete

and continuous features based on neighborhood decision error minimization.

IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 40(1):137–

150, 2010.

[48] Qinghua Hu, Daren Yu, Jinfu Liu, and Congxin Wu. Neighborhood rough set

based heterogeneous feature subset selection. Information sciences, 178(18):3577–

3594, 2008.

[49] Qinghua Hu, Daren Yu, and Zongxia Xie. Information-preserving hybrid data

reduction based on fuzzy-rough techniques. Pattern Recognition Letters, 27(5):414–

423, apr 2006.

[50] Wissem Inoubli, Sabeur Aridhi, Haithem Mezni, Mondher Maddouri, and

Engelbert Mephu Nguifo. An experimental survey on big data frameworks.

Future Generation Computer Systems, 86:546–564, sep 2018.

[51] Pelle Jakovits and Satish Narayana Srirama. Evaluating MapReduce frame-

works for iterative scientific computing applications. In 2014 International Con-

ference on High Performance Computing & Simulation (HPCS), pages 226–233. IEEE,

2014.

[52] R. Jensen and Qiang Shen. New Approaches to Fuzzy-Rough Feature Selec-

tion. IEEE Transactions on Fuzzy Systems, 17(4):824–838, aug 2009.

[53] Richard Jensen. Rough set-based feature selection: a review. Rough computing:

theories, technologies and applications, pages 70–107, 2008.

144

REFERENCES

[54] Richard Jensen and Neil Mac Parthaláin. Towards scalable fuzzy–rough

feature selection. Information Sciences, 323:1–15, dec 2015.

[55] Jan Komorowski, Zdzislaw Pawlak, Lech Polkowski, and Andrzej Skowron.

Rough sets: A tutorial. Rough fuzzy hybridization: A new trend in decision-making,

pages 3–98, 1999.

[56] L. Kong, W. Qu, J. Yu, H. Zuo, G. Chen, F. Xiong, S. Pan, S. Lin, and

M. Qiu. Distributed Feature Selection for Big Data Using Fuzzy Rough Sets.

IEEE Transactions on Fuzzy Systems, 28(5):846–857, 2020.

[57] Marzena Kryszkiewicz. Rough set approach to incomplete information sys-

tems. Information sciences, 112(1-4):39–49, 1998.

[58] Marzena Kryszkiewicz. Rules in incomplete information systems. Information

Sciences, 113(3):271 – 292, 1999.

[59] Tianrui Li, Chuan Luo, Hongmei Chen, and Junbo Zhang. PICKT: a solu-

tion for big data analysis. In International Conference on Rough Sets and Knowledge

Technology, pages 15–25. Springer, 2015.

[60] Jiye Liang, Feng Wang, Chuangyin Dang, and Yuhua Qian. An efficient

rough feature selection algorithm with a multi-granulation view. International

Journal of Approximate Reasoning, 53(6):912–926, 2012.

[61] Pawan Lingras. Comparison of neofuzzy and rough neural networks. Informa-

tion Sciences, 110(3-4):207–215, 1998.

[62] Pawan Lingras and Cedric Davies. Applications of rough genetic algorithms.

Computational Intelligence, 17(3):435–445, 2001.

[63] Huan Liu and Lei Yu. Toward integrating feature selection algorithms for

classification and clustering. IEEE Transactions on knowledge and data engineering,

17(4):491–502, 2005.

[64] Chuan Luo, Tianrui Li, and Zhang Yi. An Incremental Feature Selection

Approach Based on Information Entropy for Incomplete Data. In 2019 IEEE

Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive In-

telligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on

Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech), pages

483–488. IEEE, 2019.

145

REFERENCES

[65] Zhigang Ma, Feiping Nie, Yi Yang, Jasper RR Uijlings, and Nicu Sebe. Web

image annotation via subspace-sparsity collaborated feature selection. IEEE

Transactions on Multimedia, 14(4):1021–1030, 2012.

[66] Neil Seosamh MacParthaláin and Qiang Shen. On rough sets, their recent

extensions, and applications. Knowledge Engineering Review, 25(4):365–395, 2010.

[67] DQ Miao, Yan Zhao, YY Yao, HX Li, and FF Xu. Relative reducts in consis-

tent and inconsistent decision tables of the Pawlak rough set model. Information

Sciences, 179(24):4140–4150, 2009.

[68] Duo-Qian Miao and Gui-Rong Hu. A heuristic algorithm for reduction of

knowledge. Journal of computer research and development, 36(6):681–684, 1999.

[69] Fan Min, Huaping He, Yuhua Qian, and William Zhu. Test-cost-sensitive

attribute reduction. Information Sciences, 181(22):4928–4942, 2011.

[70] Michinori Nakata and Hiroshi Sakai. Rough sets handling missing values

probabilistically interpreted. In International Workshop on Rough Sets, Fuzzy Sets,

Data Mining, and Granular-Soft Computing, pages 325–334. Springer, 2005.

[71] DV Nguyen, K Yamada, and M Unehara. Knowledge reduction in incom-

plete decision tables using Probabilistic Similarity-Based Rough set Model. In

12thInternational Symposium on Advanced Intelligent Systems (ISIS 2011), pages 147–

150, 2011.

[72] Peng Ni, Suyun Zhao, Xizhao Wang, Hong Chen, and Cuiping Li. PARA:

A positive-region based attribute reduction accelerator. Information Sciences,

503:533–550, nov 2019.

[73] P. S. V. S Sai Prasad and Raghavendra Rao Chillarige. Novel Granular

Framework for Attribute Reduction in Incomplete Decision Systems. In Inter-

national Workshop on Multi-disciplinary Trends in Artificial Intelligence, pages 188–201.

Springer, 2012.

[74] P. S. V. S. Sai Prasad and Chillarige Raghavendra Rao. Extensions to

iQuickReduct. In International Workshop on Multi-disciplinary Trends in Artificial

Intelligence, pages 351–362. Springer, 2011.

[75] Neil Mac Parthaláin and Richard Jensen. Unsupervised fuzzy-rough set-

based dimensionality reduction. Information Sciences, 229:106–121, apr 2013.

146

REFERENCES

[76] Neeli Lakshmi Pavani, Pandu Sowkuntla, K. Swarupa Rani, and P. S. V. S.

Sai Prasad. Fuzzy Rough Discernibility Matrix Based Feature Subset Selection

With MapReduce. In TENCON 2019 - 2019 IEEE Region 10 Conference (TENCON),

pages 389–394. IEEE, oct 2019.

[77] Zdzis law Pawlak. Rough sets. International journal of computer & information

sciences, 11(5):341–356, 1982.

[78] Zdzislaw Pawlak and Rough Sets. Theoretical aspects of reasoning about

data. Kluwer, Netherlands, 1991.

[79] Zdzis law Pawlak and Andrzej Skowron. Rudiments of rough sets. Information

sciences, 177(1):3–27, 2007.

[80] Lech Polkowski. Rough sets. Springer, 2002.

[81] Jin Qian, Duoqian Miao, Zehua Zhang, and Xiaodong Yue. Parallel attribute

reduction algorithms using MapReduce. Information Sciences, 279:671–690, 2014.

[82] Jin Qian, Min Xia, and Xiaodong Yue. Parallel knowledge acquisition algo-

rithms for big data using MapReduce. International Journal of Machine Learning

and Cybernetics, 9(6):1007–1021, 2018.

[83] Yuhua Qian, Jiye Liang, Witold Pedrycz, and Chuangyin Dang. Positive

approximation: an accelerator for attribute reduction in rough set theory.

Artificial Intelligence, 174(9-10):597–618, 2010.

[84] Yuhua Qian, Jiye Liang, Witold Pedrycz, and Chuangyin Dang. An effi-

cient accelerator for attribute reduction from incomplete data in rough set

framework. Pattern Recognition, 44(8):1658–1670, 2011.

[85] Yuhua Qian, Qi Wang, Honghong Cheng, Jiye Liang, and Chuangyin Dang.

Fuzzy-rough feature selection accelerator. Fuzzy Sets and Systems, 258:61–78, jan

2015.

[86] Anna Maria Radzikowska and Etienne E. Kerre. A comparative study of

fuzzy rough sets. Fuzzy Sets and Systems, 126(2):137–155, mar 2002.

[87] Mohammad M Rahman, Dominik Śļezak, and Jakub Wróblewski. Parallel

island model for attribute reduction. In International Conference on Pattern Recog-

nition and Machine Intelligence, pages 714–719. Springer, 2005.

147

REFERENCES

[88] Sergio Raḿırez-Gallego, Iago Lastra, David Mart́ınez-Rego, Verónica

Bolón-Canedo, José Manuel Beńıtez, Francisco Herrera, and Amparo

Alonso-Betanzos. Fast-mRMR: Fast minimum redundancy maximum rele-

vance algorithm for high-dimensional big data. International Journal of Intelligent

Systems, 32(2):134–152, 2017.

[89] Sergio Raḿırez-Gallego, Héctor Mouriño-Taĺın, David Mart́ınez-Rego,

Verónica Bolón-Canedo, José Manuel Beńıtez, Amparo Alonso-Betanzos,

and Francisco Herrera. An information theory-based feature selection frame-

work for big data under apache spark. IEEE Transactions on Systems, Man, and

Cybernetics: Systems, 48(9):1441–1453, 2018.

[90] Muhammad Summair Raza and Usman Qamar. A parallel rough set based

dependency calculation method for efficient feature selection. Applied Soft Com-

puting, 71:1020–1034, oct 2018.

[91] P. S. V. S. Sai Prasad and C. Raghavendra Rao. An Efficient Approach for

Fuzzy Decision Reduct Computation. In Transactions on Rough Sets XVII, pages

82–108. Springer Berlin Heidelberg, 2014.

[92] P. S. V. S. Sai Prasad, H. Bala Subrahmanyam, and Praveen Kumar Singh.

Scalable IQRA IG Algorithm: An Iterative MapReduce Approach for Reduct

Computation. In Distributed Computing and Internet Technology, pages 58–69. Springer

International Publishing, nov 2016.

[93] Changxing Shang, Min Li, Shengzhong Feng, Qingshan Jiang, and Jianping

Fan. Feature selection via maximizing global information gain for text classi-

fication. Knowledge-Based Systems, 54:298–309, 2013.

[94] Qiang Shen and Richard Jensen. Rough sets, their extensions and applica-

tions. International Journal of Automation and Computing, 4(3):217–228, 2007.

[95] Juwei Shi, Yunjie Qiu, Umar Farooq Minhas, Limei Jiao, Chen Wang,

Berthold Reinwald, and Fatma Özcan. Clash of the titans: Mapreduce

vs. spark for large scale data analytics. Proceedings of the VLDB Endowment,

8(13):2110–2121, 2015.

[96] Praveen Kumar Singh and P. S. V. S Sai Prasad. Scalable quick reduct algo-

rithm: Iterative mapreduce approach. In Proceedings of the 3rd IKDD Conference

on Data Science, 2016, page 25. ACM, 2016.

148

REFERENCES

[97] Andrzej Skowron, Jan Komorowski, Zdzislaw Pawlak, and Lech Polkowski.

Rough sets perspective on data and knowledge. In Handbook of data mining and

knowledge discovery, pages 134–149. 2002.

[98] Andrzej Skowron and Cecylia Rauszer. The discernibility matrices and func-

tions in information systems. In Intelligent decision support, pages 331–362. Springer,

1992.

[99] Roman Slowinski and Daniel Vanderpooten. A generalized definition of

rough approximations based on similarity. IEEE Transactions on knowledge and

Data Engineering, 12(2):331–336, 2000.

[100] Pandu Sowkuntla, Sravya Dunna, and PSVS Sai Prasad. MapReduce based

parallel attribute reduction in Incomplete Decision Systems. Knowledge-Based

Systems, 213:106677, 2021.

[101] Pandu Sowkuntla and PSVS Sai Prasad. MapReduce based parallel fuzzy-

rough attribute reduction using discernibility matrix. Applied Intelligence, pages

1–20, 2021.

[102] Pandu Sowkuntla and P. S. V. S. Sai Prasad. MapReduce based improved

quick reduct algorithm with granular refinement using vertical partitioning

scheme. Knowledge-Based Systems, 189:105104, feb 2020.

[103] Ashwin Srinivasan, Tanveer A Faruquie, and Sachindra Joshi. Data and

task parallelism in ILP using MapReduce. Machine learning, 86(1):141–168, 2012.

[104] Tomasz Strakowski and Henryk Rybiński. A new approach to distributed

algorithms for reduct calculation. In Transactions on Rough Sets IX, pages 365–378.

Springer, 2008.

[105] Xian-He Sun and John L Gustafson. Toward a better parallel performance

metric. Parallel Computing, 17(10-11):1093–1109, 1991.

[106] Robert Susmaga. Tree-like parallelization of reduct and construct compu-

tation. In International Conference on Rough Sets and Current Trends in Computing,

pages 455–464. Springer, 2004.

[107] K Thangavel and A Pethalakshmi. Dimensionality reduction based on rough

set theory: A review. Applied Soft Computing, 9(1):1–12, 2009.

149

REFERENCES

[108] Nguyen Ngoc Thuy and Sartra Wongthanavasu. An efficient stripped

cover-based accelerator for reduction of attributes in incomplete decision ta-

bles. Expert Systems with Applications, 143:113076, 2020.

[109] Arizona State University. Feature Selection data

sets:http://featureselection.asu.edu/datasets.php. 2014.

[110] Changzhong Wang, Yang Huang, Mingwen Shao, and Xiaodong Fan. Fuzzy

rough set-based attribute reduction using distance measures. Knowledge-Based

Systems, 164:205–212, jan 2019.

[111] Feng Wang and Jiye Liang. An efficient feature selection algorithm for

hybrid data. Neurocomputing, 193:33–41, 2016.

[112] Guoyin Wang. Extension of rough set under incomplete information systems.

In 2002 IEEE World Congress on Computational Intelligence. 2002 IEEE International

Conference on Fuzzy Systems. FUZZ-IEEE’02. Proceedings (Cat. No. 02CH37291), 2,

pages 1098–1103. IEEE, 2002.

[113] D Randall Wilson and Tony R Martinez. Improved heterogeneous distance

functions. Journal of artificial intelligence research, 6:1–34, 1997.

[114] Yong Yang, Zhengrong Chen, Zhu Liang, and Guoyin Wang. Attribute re-

duction for massive data based on rough set theory and MapReduce. In Inter-

national Conference on Rough Sets and Knowledge Technology, pages 672–678. Springer,

2010.

[115] Yiyu Yao. The two sides of the theory of rough sets. Knowledge-Based Systems,

80:67–77, 2015.

[116] Yiyu Yao, Yan Zhao, and Jue Wang. On reduct construction algorithms. In

Transactions on computational science II, pages 100–117. Springer, 2008.

[117] Jin Ye, Jianming Zhan, Weiping Ding, and Hamido Fujita. A novel fuzzy

rough set model with fuzzy neighborhood operators. Information Sciences,

544:266–297, 2021.

[118] Lotfi A Zadeh. Fuzzy sets. In Fuzzy sets, fuzzy logic, and fuzzy systems: selected

papers by Lotfi A Zadeh, pages 394–432. World Scientific, 1996.

150

REFERENCES

[119] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin

Ma, Murphy McCauly, Michael J Franklin, Scott Shenker, and Ion Sto-

ica. Resilient distributed datasets: A fault-tolerant abstraction for in-memory

cluster computing. In 9th {USENIX} Symposium on Networked Systems Design and

Implementation ({NSDI} 12), pages 15–28, 2012.

[120] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott

Shenker, Ion Stoica, et al. Spark: Cluster computing with working sets.

HotCloud, 10(10-10):95, 2010.

[121] Matei Zaharia, Reynold S Xin, Patrick Wendell, Tathagata Das, Michael

Armbrust, Ankur Dave, Xiangrui Meng, Josh Rosen, Shivaram Venkatara-

man, Michael J Franklin, et al. Apache spark: a unified engine for big data

processing. Communications of the ACM, 59(11):56–65, 2016.

[122] Anping Zeng, Tianrui Li, Dun Liu, Junbo Zhang, and Hongmei Chen. A fuzzy

rough set approach for incremental feature selection on hybrid information

systems. Fuzzy Sets and Systems, 258:39–60, 2015.

[123] Junhai Zhai, Yuanyuan Gao, Mengyao Zhai, and Xizhao Wang. Rough set

model and its eight extensions. In 2011 IEEE International Conference on Systems,

Man, and Cybernetics, pages 3512–3517. IEEE, 2011.

[124] Junbo Zhang, Tianrui Li, and Yi Pan. Parallel large-scale attribute reduction

on cloud systems. arXiv preprint arXiv:1610.01807, 2016.

[125] Junbo Zhang, Tianrui Li, Da Ruan, Zizhe Gao, and Chengbing Zhao. A

parallel method for computing rough set approximations. Information Sciences,

194:209–223, jul 2012.

[126] Junbo Zhang, Jian-Syuan Wong, Yi Pan, and Tianrui Li. A parallel matrix-

based method for computing approximations in incomplete information sys-

tems. IEEE Transactions on Knowledge and Data Engineering, 27(2):326–339, 2014.

[127] Xiao Zhang, Changlin Mei, Degang Chen, and Jinhai Li. Feature selection

in mixed data: A method using a novel fuzzy rough set-based information

entropy. Pattern Recognition, 56:1–15, 2016.

[128] Xiao Zhang, Changlin Mei, Degang Chen, and Yanyan Yang. A fuzzy rough

set-based feature selection method using representative instances. Knowledge-

Based Systems, 151:216–229, jul 2018.

151

REFERENCES

[129] Hua Zhao and Keyun Qin. Mixed feature selection in incomplete decision

table. Knowledge-Based Systems, 57:181–190, 2014.

[130] Suyun Zhao, Hong Chen, Cuiping Li, Xiaoyong Du, and Hui Sun. A Novel

Approach to Building a Robust Fuzzy Rough Classifier. IEEE Transactions on

Fuzzy Systems, 23(4):769–786, aug 2015.

[131] Weizhong Zhao, Huifang Ma, and Qing He. Parallel k-means clustering

based on mapreduce. In IEEE international conference on cloud computing, pages

674–679. Springer, 2009.

[132] Yan Zhao, Yiyu Yao, and Feng Luo. Data analysis based on discernibility

and indiscernibility. Information Sciences, 177(22):4959–4976, 2007.

[133] Bing Zhu, Changzheng He, and Panos Liatsis. A robust missing value im-

putation method for noisy data. Applied Intelligence, 36(1):61–74, 2012.

[134] Huasheng Zou and Changsheng Zhang. Efficient Algorithm for Knowledge

Reduction in Incomplete Information System. Journal of Computational Informa-

tion Systems, 8(6):2531–2538, 2012.

152

