Enhancing IoT Service Delivery: A Layered
Fog Architecture Approach for Sensing and
Actuating as a Service

A thesis submitted during 2021 to the University of Hyderabad in partial fulfillment
of the award of a Ph.D. degree in the School of Computer and Information Sciences

by

ABDULSALAM ABDO MUSAED ALI ALAMMARI

SCHOOL OF COMPUTER AND INFORMATION SCIENCES
UNIVERSITY OF HYDERABAD
(P.O.) CENTRAL UNIVERSITY
HYDERABAD - 500 046, TELANGANA, INDIA
FEBRUARY, 2021

CERTIFICATE

This is to certify that the thesis entitled ‘“Enhancing IoT Service Delivery: A Layered Fog
Architecture Approach for Sensing and Actuating as a Service” submitted by ABDUL-
SALAM ABDO MUSAED ALI ALAMMARI bearing registration number 14MCPC22 in
partial fulfillment of the requirements for award of Doctor of Philosophy in the School of
Computer and Information Sciences is a bonafide work carried out by him under my super-
vision and guidance.

The thesis is free from plagiarism and has not been submitted previously in part or in full

to this or any other University or Institution for award of any degree or diploma. The student
has the following publication(s) before submission of the thesis/monograph for adjudication
and has produced evidence for the same in the form of acceptance letter or the reprint in the
relevant area of her research:
1. Abdulsalam Alammari, Salman Abdul Moiz, Atul Negi; Internet of Things Sensors and
Actuators Layered Fog Service Delivery Model SALFSD, MIWALI 2019, Springer, pp 15-25
2. TAbdulsalam Alammari, Salman Abdul Moiz, Atul Negi: TOWARDS TRULY SMART
CITY SERVICE PROVIDERS: A VIEW ON ON-DEMAND EVERYTHING AS A SER-
VICES, Journal of Critical Reviews, Vol 7, Issue 7, 2020, pp 428-436

Further, the student has passed the following courses towards fulfillment of coursework

requirement for Ph.D:

| Course Code Name Credits Pass/Fail |
CS 801 Data Structures and Algorithms 4 Pass
CS 802 Operating Systems and Programming 4 Pass
IT 810 Mobile Computing 4 Pass
AI 853 Data Mining 4 pass
Prof. Salman Abdul Moiz Prof. Chakravarthy Bhagvati

Supervisor Dean of SCIS

DECLARATION

I, ABDULSALAM ABDO MUSAED ALI ALAMMARI, hereby declare that this
thesis entitled ‘“Enhancing IoT Service Delivery: A Layered Fog Architecture Ap-
proach for Sensing and Actuating as a Service” submitted by me under the guidance
and supervision of Salman Abdul Moiz is a bonafide research work. I also declare
that it has not been submitted previously in part or in full to this University or any other

University or Institution for the award of any degree or diploma.

A report on plagiarism statistics from the University Library is enclosed.

Date: Name: ABDULSALAM ABDO MUSAED ALI ALAMMARI
Signature of the Student:

Reg. No.: 14MCPC22

Signature of the Supervisor:

1o the soul of my father, to my mother, who
sacrificed many comforts to get a good education

for their children.
To my siblings, my wife, and my children. Without

their support and encouragement, this would not

have been possible.

Abstract

The increasing amount of objects connected to the internet using various
preexisting technologies for communication, storage, ubiquitous and per-
vasive computing, wireless sensor networks etc, are considered as the In-
ternet of Things (IoT). This emerging technology is defined by the inter-
connection of different types of smart objects Things provided with sens-
ing, actuating and communication capabilities to interact with their envi-
ronment and with each other. IoT is the enabler for connecting the physical
devices to the digital world, making numerous physical devices connected
to the internet and allowing remote control and heterogeneous devices col-
laboration. This made such devices to be an essential component for sev-
eral ecosystem applications. Several works have been proposed in the
literature for IoT. These works considered standards, reference models,
architectures, and communication protocols, etc. In this thesis, the focus

in on IoT architectures.

IoT has become the backbone towards realizing smart cities and their
ecosystems. Academia and industry have gone a long way in this a path
that it has become a reality. Smart cities require a different way of thinking
to make several ecosystems, authorities, and ownerships collaborate and
work together smoothly and automatically with less human interactions.
This thesis includes a proposed vision for smart city service providers to-

wards such a goal.

The cloud paradigm has been a revolutionary computing model in the
last decade. It provides a highly virtualized infrastructure with power-

ful computing hardware and software resources in the form of services

11

accessed through the internet. Cloud paradigm is characterized by rapid
elasticity and flexibility, which allows the users to scale in and out eas-
ily on demand. Even though most IoT applications are effectively handled
by the cloud model, its centralized architecture and remote location cannot
deal with time-sensitive applications. Fog Computing is recently proposed
as a new computing paradigm to overcome cloud challenges. Fog comput-
ing consists of a widely distributed architecture which offers processing,
storage, and networking services between the cloud and the network edge.
In other words, fog services can be exploited to process part of tasks closer
to data sources rather than entirely relying on the remote cloud datacenter.
This significantly minimizes the communication in the network and con-
sequently decrease the latency and response time. However, the design
and management of such a distributed environment in combination with

the cloud in IoT applications are still challenging.

Sensing and Actuating as a service (SAaaS) is a paradigm where sev-
eral types of sensors and actuators are provided to the end users as per
their desired composition upon which end users can build their applica-
tion. Typically, SAaaS infrastructure is governed through cloud comput-
ing mechanism. SAaaS is mainly a complex paradigm. The system must
operate under a diversified ecosystem and properly manages the observa-
tions and actuation requests. One of the most critical factors affecting QoS
of IoT application is the wise deployment of the application tasks and en-
tities in the network topology. To this end, we have proposed a layered fog
architecture for sensing and actuating as a service paradigm. Observation
monitoring and decision making are essential for such paradigm, hence
are being taken care in close proximity of the IoT devices. Such mon-
itoring can also be offloaded to upper layers in case fog nodes in lower
layers are overloaded with processing. The proposed architecture is also
equipped with fault resistance mechanism as fog nodes are well known to
be potential points of failure in any fog system network. Further, the IoT
sensors’ observations are being filtered through all fog layers to get rid of

corrupted once and avoid unnecessary bandwidth consumption. We have

v

formally verified the work and simulated it to evaluate the architecture and
the features proposed. The evaluation conducted shows the enhancement

in the metrics tested.

Acknowledgements

First and foremost, I thank Almighty Allah.

While writing is performed in isolation, it’s never a solitary act. This
thesis is the result of several years of continuous research and learning.
It is the culmination of many years of the unending amount of wisdom,
support, and advice from heroes, friends and colleagues. I am indebted in
more ways than I can count to those who lent their wisdom and effort to

elevate me to get the doctorate degree and finish this thesis.

I also would like to express my sincere gratitude to my family mem-
bers for their true, unconditional love and continuous moral support. I will
never forget my idol word’s, my late father, “ You are my long term in-
vestment. If you can’t raise my head, don’t make it down. I am always
prying for Allah to ease all difficulties in your path.” My mother’s words
during my stress times “ Pause research work and free your mind for a
day or two, you will resume stronger. I am praying to Allah to temper
stem hearts for you and grant you his and people acceptance.” And my
sibling’s words “ You are our ambassador, be a good sample of the family
and make us proud of you.” 1 continue to be indebted to my wife and kids
who had to bear the brunt of the stress of research and writing processes.
My wife, you have my deepest love and endless gratitude. My kids, you

are my life, my dream, and my goal.

I would like to extend my gratitude to my supervisor Prof. Salman
Abdul Moiz who had trusted me for this PhD. position and had invested
time and effort guiding me to be on the right track. I really think him
for his invaluable guidance, endless patience and support, his insightful
comments and suggestions, while always being humble that I never felt

like a research scholar working under a professor. Prof. Salman, you were

the captain who granted me the required confidence during my entire PhD.
journey, from the uncertain takeoff, to a safe and smooth landing.

My gratitude also goes to my doctoral committee members Prof. Atul
Negi and Dr. R.P. Lal. for the very long discussions and their helpful sug-
gestions. Prof. Atul, it has been an honour to work under your supervision

in my MTech, and have you by my side till this stage.
I especially thank Prof. Rajeev Wankar and Prof. Hrushikesha Mo-

hanty for the patience they have shown and the time and effort they spent
in listening to my research work and for their constructive remarks. Prof.
Mohanty, the amazing academic and nonacademic discussions we had will
always remain in my mind; you are a unique kind of humble, friendly, and

life-loving person.

I would also like to extend my gratitude to Prof. Appa Rao, Vice Chan-
cellor, and Prof Chakravarthy Bhagvati dean of SCIS school for providing

necessary facilities to carry out my research work.

Dr. Ammar Zahary -my bachelor supervisor- thank you for your con-
tinuous advice and support since then till now. You made me accept that
ups and downs are common doctorate life phenomena, and cope with it.

Thanks for always asking about my research progress.

A lot of beautiful memories and useful discussions with my friends
will remain in my mind forever. In particular, Dr. Hassan Aldheleai, Dr.
Abdo Mahyoub, Dr. Abobakr Alshamiri, Mr. Anwar Qaraah, Mr. Zaid
Alhuda, Mr. Hassan Alshehari, Mr. Ahmed El-Shekeil, Dr. Fahim Bag-
gash, Dr. Mahmoud Altarabin, Mr. Eyad Himdiat, Mr. Majid Alshwafi,
Mr. Abdulbari Albarakani, Mr. Wahieb Albarakani, Mr. Essa Alduais,
Mr. Hasan Salem. Mr. Mohammed Nasher, Mr. Saleem Abbas, Mr.
Amhed Al-Haidari, Mr. Ahmed Alshwafi, Mr. Hamzah Alshamiri, Mr.
Abdul Basit, Ms. Ayangleima, Mr. Omkarendra, Ms Melinda, Mr. Anil
GR, Mr. Manoranjan GR, Mr. Abhaya Kumar, Dr. Vikas Pandey, Dr.
Venkat Kagita, Dr. Venkatesh Pandiri, Mr. Rakaral Rajesh, and Mr. Raghu

Ghanapuram. Thanks for many useful discussions.

I sincerely thank all my teachers for their constant support, suggestions,

motivation and encouragement.

Thanks to all the great hearts around me, without you all, this would
not have been existed. I hope you live life to the fullest, contribute as only

you can, and be self-satisfied.

ABDULSALAM ABDO MUSAED ALI ALAMMARI

Contents

Declaration

Abstracts

Acknowledgements

List of Figures

List of Tables

1 Introduction

1.1
1.2
1.3
1.4
1.5

Motivation
Research Objectives
Contributions of Thesis
Structure of the Thesis

Publications

2 Fundamental Concepts and Literature Review

2.1

2.2

Fundamental Concepts
[oT Building Blocks . . .

2.1.1

2.1.2 Fundamental Technologies and Paradigms

Literature Review

221
222
223
224

Participatory and Opportunistic sensing

Urban Sensing

People-Centric Urban Sensing

Integrating with the Cloud

iX

B B g B o

5 =

SN

[e=)

HEEEHEHoe=

-
o

CONTENTS

2.2.5 Integrating the Cloud with Fog Computing and IoT 22
23 Summary ... e e e e 32

Towards Truly Smart City Service Providers: A View on On-demand Ev-

erything as a Service
3.1 A Vision on Future Smart City Service Providers 33
3.2 Example Architecture
3.2.1 Example Scenario Lo 36)
3.2.2 Example Architectural Design
33 Summary ... e e

Internet of Things Sensors and Actuators Layered Fog Service Delivery

Model SALFSD

4.1 Proposed Architecture (SALFSD)
4.1.1 TopLevel Description

413 Foglayer
414 Cloudlayer

41l
42
4.1.2 Things and Gateway layer 43|
44
46
4.2 Reducing Response Time and Failure Plan 46|

48]

4.3 Comparison with Related Work
4.4 Summary e e e e e 49|

Enhanced Layered fog Architecture for IoT Sensing and Actuation as a

Service
5.1 Proposed Architecture S0
5.1.1 Contributions
5.1.2 Example Scenario 52l
52 SALFSDCloud 53
52.1 CloudGateway v v v v it 33
522 Core Managemento..... 53]
5.2.3 Physical S/A Selection 54
5.2.4 Virtualization Management S6)
5.2.5 Fog G/W Assignment S56)
5.2.6 Specified Cases Manager 59|

CONTENTS

5277 FogNodeManager 60]

5.2.8 Fogs, G/W & S/A Database 60

5.3 SALFSDLayeredFog 60]
5.3.1 FogNodeManager 60]

5.3.2 Specified Cases Manager 60]

5.3.3 Fog, G/W Management Agent 62)

534 MQTT Translator 63|

5.3.5 Observation Database Manager 63|

5.3.6 Fogs, G/W & S/A Database 63

54 GatewayinSALFSD 64]
54.1 MQTT Translator 641

542 Actuator Selector 63]

543 SensorSelector o 6]

5.5 Formal Verification of Architecture Correctness 651
5.5.1 Architecture Invariants and Properties: 631

5.5.2 Connectivity Monitoring and Failure Plan Proof 66)

5.5.3 SCM Monitoring and Offloading Proof [z

5.5.4 Observation Filtering Proof

5.6 Summary e e 76}
6 Experiment Results and Discussion 78]
6.1 YAFS . . . e 78
6.2 Experiment
6.2.1 FailurePlan 0. 80)

6.2.2 ActuationMode 82

6.2.3 Monitoring Offloading 841

6.2.4 Corrupted Observation Filtering 361

6.2.5 Comparing SAaaS with and without Layered Fog 88}

6.3 General Discussiononthe Results 91
6.4 Summary
7 Conclusions and Future Work 94
References 96)

X1

List of Figures

1.1
1.2

3.1
3.2
33

4.1
4.2
4.3
4.4
4.5

5.1
5.2

53
54

55

5.6
5.7
5.8
59

Internet of Things Overview
The convergence of different visions resulting in [oT Paradigm, Adapted
from[9]

Future Smart City Service Providers

High-level Design of the Example Architecture . .

The Operational Procedure of the Example Architecture

Network Layers of the Proposed Architecture . . .
Top Level Diagram
Gateway Architecture L.
Fog Node Architecture
Cloud-side Architecture

SALFSD Topology

Cloud Design with all its Components and Types of Internal Messages

AmongitsModules,
Virtualizing Sensors and Actuators

Fog Node Design with all its Components and Types of Internal Mes-

sages Among its Modules

Gateway Node Design with all its Components and Types of Internal

Messages Among its Modules

Behaviour of Connectivity Monitoring and Failure Plan

State Machine of Connectivity Monitoring and Failure Plan

Behaviour of SCM Monitoring and Offloading . . .

State Machine of SCM Monitoring and Offloading

Xii

LIST OF FIGURES

5.10 Behaviour of Observation Filtering 74
5.11 State Machine of Observation Filtering

5.12 Communication among the Cloud, Parent Fog, Child Fog, and Gateway [77]

6.1 Packets loss due to Failed FogNodes 82
6.2 Actuation Communication Latency for Actuation Modes 84
6.3 Actuation Computing Latency for SCM Monitoring Offloading Modes 86l
6.4 Total Observation Latency Corrupted Messages Modes
6.5 Total Observation Latency, SAaaS with and without Layered Fog . . .
6.6 Actuation Computation Latency, SAaaS with and without Layered Fog
6.7 Actuation Communication Latency, SAaaS with and without Layered

Fog . . . e 92)

Xiil

List of Tables

4.1

6.1
6.2
6.3
6.4
6.5
6.6
6.7

Comparison of Proposed Work with Related Work

General Simulation Setup Parameters

Abbreviations Used in the Equations

Configuration Parameters for Failure Plan Modes

Configuration Parameters for Actuation Modes

Configuration Parameters for SCM Monitoring Offloading Modes
Configuration Parameters for Observation Filtering Modes

Configuration Parameters for Layered Fogs Modes

Xiv

Chapter 1

Introduction

The increasing amount of objects connected to the internet using various preexisting
technologies for communication, storage, ubiquitous and pervasive computing, wire-

less sensor networks etc, are now considered as the Internet of Things (I0T).

This emerging technology is defined by the interconnection of different types of
smart objects “Things” provided with sensing, actuating and communication capabil-
ities to interact with their environment and with each other to be an essential com-
ponent for several ecosystem applications [75]. Hence, IoT refers to a new range of
connecting devices/objects (other than the known networks of computers) watch, cur-
tain, juicer, TV, car, kitchen appliances, health devices and much more. Figure [I.]]

shows an overview of IoT .

10T is defined in [20] as “Interconnection of sensing and actuating devices pro-
viding the ability to share information across platforms through a unified framework,
developing a common operating picture for enabling innovative applications. This is
achieved by seamless ubiquitous sensing, data analytics and information representa-

tion with Cloud computing as the unifying framework.”

IoT paradigm is a result from the convergence of three different visions listed below
[9]], and also depicted in Figure [I.2]

e Things-oriented visions: Concentrates on outfitting objects with smartness to be

/
An\ Thing/Devi ICE

5@
<

7 g \ /‘ .‘\\\

Any Time
AN / N

—r —

'. Internet of Things |

, e \ / . \
/ Any Where / y \
) ’Semce:Busmess
l | | &Q Ly tﬂf |
I‘II". @ _-"‘IK . — — - \ -
. yd . "r'/ \\\ - -~ \:| ()= ui //
— I."'; Any Network el
| p—
\ -ll
AN /

Figure 1.1: Internet of Things Overview

able, for instance, to sense their environment and actuate on it, to communicate
among themselves and connect to the internet, etc. Must of which are based on

microcontrollers that eventually link the real world with the digital world.

e Internet-oriented vision: Concentrates on the smart objects communication-related
aspects like communication protocols and interoperability concepts through in-

ternet and web technologies.

e The unique addressing of the massive amount of connected smart objects, and
the representation and storing the huge amount of data they generate turned to be
the most challenging issue resulting in semantic-oriented visions or perspectives
of IoT. Ontologies and Resource Description Framework (RDF) are supporting
concepts to deal with such an issue. Ontologies are widely used to manage
the object metadata; Web Ontology Language (OWL) is used to define such

ontologies. Where RDF is for data representation.

IoT paradigm has witnessed a spectacular evolution during the last few years; it

Things-Oriented
Visions

Everyday Objects

Wireless Sensors
and Actuators

Connec’mwty for

anwhlng

Communi |cat|ng Semantic
[hmgs Technologies

Reasnnmg
Web of Things

over nata
Internet-Oriented

IPSO (IP for
Smart
Objects)

Smart
Semantic
Middleware

Semantic-Oriented
Visions

Semantic execution
environments
Visions

Figure 1.2: The convergence of different visions resulting in IoT Paradigm, Adapted
from [9]]

is also expected to open new fields of perspectives in research and industry in the
next decade. As the Internet is spreading and the microchips and sensors/actuators are
getting cheaper, more [oT applications come to the reality leading to more types and

number of connected devices.

It was estimated that by 2020 more than 30 billion IoT devices will be connected
worldwide. Hence, this massive 10T deployment will generate an enormous quantity

of data as never before [[65]].

IoT enables such physical objects to communicate, coordinate and share their data
by employing the above mentioned pre-existing technologies. This arrangement is
more suitable for these physical objects and allows them to cope with their constraints
and limitations to make them smart, rather than as traditional passive objects [S]. In
other words, 10T is the enabler for connecting the physical devices to the digital world,

making numerous physical devices to be connected to the internet and allows remote

control and heterogeneous devices collaboration.

IoT devices addressing is satisfied by IPv6, however, according to [4] the increasing
of IPv6 addresses cant keep going hence the NDN (Named Data Networks) raised in
2009. IoT also requires dedicated scheduling models [S3]].

IoT generally uses the existing technologies and paradigms to serve or change the way
services are provided to many application domains like smart home, smart grid, smart
agriculture, smart forest, healthcare etc. and paves the way for new applications and

business opportunities.

IoT aims at connecting people, places, data, and things anywhere anytime to create
a smart world based on smart wearable/room/home/building/parking, wider to smart

sensing and Actuating networks, transport, smart grid, and reaching smart cities.

IoT and pervasive computing are supposed to provide services to the user to meet
their requirement with minimal or no user intervention. In some cases, the require-
ment of users may be fulfilled with an atomic service. However, in IoT world a lot of
services and their sources (usually resource-constrained devices with digital services)
are available, but one key challenge is allowing easy and dynamically composition of
available distributed and heterogeneous services to collaborate and to perform an ad-
vance or complex task which may not be fulfilled using one atomic service. Later, the
composite service may be used to fulfil other users requirements in different scenarios
[39].

IoT devices have well-known limitations and constraints (e.g., limited storage, lim-
ited processing and communication capabilities) which are mainly being overcome
with the help of cloud computing paradigm that acts as a backbone for remote process-
ing and storage of IoT devices generated data. Cloud computing provides 1oT with
virtually unlimited resources [15]. Besides, sensors as essential components of IoT
applications that generate a large amount of data, i.e. Big Data [56]. Big Data has

its associated challenges like storage and communication that IoT constrained devices

cannot address without the great solutions provided by IoT integration with cloud com-
puting. This integration supports storage as a Service [80], Software as a Service and
Platform as a Service [81]. However, the more sensors are connected, more data is
generated and sent to the cloud, leading to increasing transmission overhead, network

congestion, and latency issues [35].

The cloud paradigm has been a revolutionary computing model in the last decade.
It provides a highly virtualized infrastructure with powerful computing hardware and
software resources in the form of services that are accessed through the internet. Cloud
paradigm is characterized by rapid elasticity and flexibility, which allows the users to
scale in and out easily on demand [23]]. Even though most IoT applications are ef-
fectively handled by the cloud model, its centralized architecture and remote location
cannot deal with time sensitive applications. Moreover, the spread of 10T devices in
the coming years will expose the cloud to a high volume of data which may lead to
network saturation, high workload and response time. This is because the cloud envi-
ronments and network infrastructures can not resist the growing data processing load

and communication required by these systems.

Fog Computing is recently proposed as a new computing paradigm to overcome

the cloud challenges; it is consist of a widely distributed architecture which offers
processing, storage, and networking services between the cloud and the network edge
[38]]. In other words, fog services can be exploited to process part of IoT and cloud
tasks in a closer geographically to data sources rather than fully relying on the remote
cloud datacenter. This significantly minimizes the communication in the network and
consequently decrease the latency and response time.
However, the design and management of such a distributed environment in combina-
tion with the cloud is still challenging. Also, the heterogeneous data generated from
different types of sensors adds another layer of complexity. Therefore, the data in the
system need to be carefully designed, or unified communication language need to be
developed to ensure the interoperability among different modules, services, and de-
vices [[105]].

1.1 Motivation

Sensing and Actuating as a service (SAaaS) is a paradigm where several types of
sensors and actuators (Ss/As) -stand-alone or in wireless sensor networks- are pro-
vided to the end users as per their desired composition upon which end users can build
their application. Typically, SAaaS infrastructure is governed through cloud comput-
ing mechanism; devices owners offer the functionality of their devices to the service
provider either free of cost or on rent basis. While the cloud acts as an intermediate
interface which delivers the systems resources as services for the registered users as
agreed in the purchased offer. Thereby, the end users will be charged on the bases of a

pay-as-you-go pricing model which permits them to scale the systems resources easily.

SAaaS is mainly a complex paradigm. Besides that, the system must be able to
operate under diversified ecosystems that properly manages the observations and ac-
tuation requests. Also, the infrastructure needs to be highly virtualized to permit the
exploitation of the same physical layers components by multiple users simultaneously,

which can reduce the cost of the service [59].

1.1 Motivation

The contributions of this thesis are generally motivated by the state of the art devel-
opment in service composition and features provided by cloud and fog computing:

pay-as-you-use, federation, mobility, security, scalability, interoperability, etc.

Integrating cloud and fog computing has led to a breakthrough revolution in the
way IoT applications are thought off and designed, the way devices connect to the
internet and interact with it. This make it possible almost for any kind of devices
to interact with the environment and modify their operational manner and behaviour,
capture heterogeneous and complex information. The same has motivated to suggest
architectures for collaboration among several service providers and for sensing and

actuation as a service, as well as to develop a view of the future smart city.

1.2 Research Objectives

1.2 Research Objectives

The research objectives are:

e To exploit the advancements of the federation, accounting, and composition con-
cepts and suggest a new view of future 10T service providers suitable for the

foreseen smart city visions.

e To enhance the present SAaaS architectures design by empowering it with robust

layered fog able to cope with the sensitivity of [oT applications requirements.

e To suggest better deployment of SAaaS tasks in the network topology aiming to

reduce the observation and actuation latency.

1.3 Contributions of Thesis

The thesis main contributions are listed below.

e Towards future smart city vision, an architecture is proposed which composes/aggregates
different types of services that may belong to different ownerships, architectures,
or application domains. This smart city vision will eventually make cloud ser-
vice provider be as an integration of several services providers which encourages

fast and economically inexpensive innovative 10T applications.

e As we believe that one of the most critical factors affecting QoS of IoT appli-
cation is a good deployment of the application tasks and entities in the network
topology, a layered fog architecture is proposed for sensing and actuating as a
service paradigm. Observation monitoring and decision making are essential for
such paradigm, hence are being taken care in close proximity of the IoT devices.
Also, the architecture is equipped with fault resistance mechanism as fog nodes

are well known to be potential points of failure in any fog system network.

e The proposed layered fog architecture for sensing and actuating as a service
is extended, with enhanced features like observation monitoring offloading and
a new observation filtering scheme that takes care of corrupted observations

throughout the entire network topology. The work is simulated to evaluate the

1.4 Structure of the Thesis

architecture and the features proposed. The evaluation shows enhancement in

the metrics tested.

1.4 Structure of the Thesis

Following is the organization of the thesis. Chapter 2 discusses 10T main building
blocks, fundamental existing concepts and techniques for IoT and both cloud and fog
computing. It also lists several evaluation metrics and parameters as well as the pri-
mary requirements for successful IoT ecosystems, cloud, and fog computing along
with related work in such areas. Chapter 3 presents the vision of future smart city
service providers as well as the proposed architecture for the same. In chapter 4, we
present the theoretical details of layered fog for sensing and actuating as a service pro-
posed along with a feature-wise comparison with some core works in the same area.
The extension of layered fog proposal, details of entire SALFSD components and com-
munication among them, details of added contributions, and formal verification are
presented in chapter 5. This is followed by the experiment analysis and evaluation of
the architecture in chapter 6. Finally, chapter 7 concludes the thesis contributions and

highlights the future works.

1.5 Publications

1. Abdulsalam Alammari, Salman Abdul Moiz, Atul Negi; Internet of Things Sen-

sors and Actuators Layered Fog Service Delivery Model SALFSD, Multi-disciplinary

Trends in Artificial Intelligence, 13th International Conference, MIWAI 2019,
Kuala Lumpur, Malaysia, November 1719, 2019, pp 15-25. (SCOPUS Indexed)

2. Abdulsalam Alammari, Salman Abdul Moiz, Atul Negi: TOWARDS TRULY
SMART CITY SERVICE PROVIDERS: A VIEW ON ON-DEMAND EVERY-
THING AS A SERVICES, Journal of Critical Reviews, Vol 7, Issue 7, 2020, pp
428-436. (SCOPUS Indexed)

3. Abdulsalam Alammari, Salman Abdul Moiz, Atul Negi: Enhanced Layered Fog
Architecture for IoT Sensing and Actuation as a Service. Communicated to

Journal of Wireless Networks.

Chapter 2

Fundamental Concepts and Literature
Review

This chapter begins by briefly going through foundation concepts and several pre-
existing technologies and paradigms on which sensing services and the 10T is built
upon and depends on. These technologies and paradigms are used for communica-
tion, architecture, storage, sensing, arrangement and more. Existing literature that uses
stand-alone sensors/actuators or mobile phone integrated sensors/actuators for some
sensing and actuating applications with and without the IoT are listed. These are fol-
lowed by showing the most famous and widely adopted integrations that is used to
support and cover IoT limitation and increase its acceptance for building IoT-based

applications; i.e. cloud computing and fog computing.

2.1 Fundamental Concepts

2.1.1 IoT Building Blocks

These are the main elements required by any loT-based application to achieve its func-

tionality.

e Identification: There are billions of IoT devices and services; hence IoT needs

to identify them uniquely. There is a difference between object ID (that refer

2.1 Fundamental Concepts

to the object name or the services name like wind speed sensor or D1) and its
unique address in the communication network [5]. Radio Frequency Identifica-
tion (RFID) is one technology used for identification, microships attached to any
object to support its automatic identification [35]. IoT devices addressing is sat-
isfied by IPv6, however, according to aggarwal et. al. [4] the increasing of IPv6
addresses can not keep going, hence the Named Data Networks (NDN) raised in
2009.

Sensing: Sensing means reading the environment data (observations) using the

sensors devices and upload it for analysing or storage [S].

Communication: There are several heterogeneous and resource constrained IoT
devices in which they require low power for operation hence require light weight
communication protocols that support such needs. Some of the communication
protocols used in IoT are, Bluetooth, WiFi, IEEE802.15.4, LTE-Advanced, Z-
wave, RFDI (Radio Frequency Identifier), Ultra-Wide Bandwidth (UWB) and
Near Field Communication (NFC) [5]].

Computation: 10T applications require processing units (hardware and software)
to run and provide the computational mean. Arduino, Raspberry PI, WiSense,
Cubieboard, Z1, BeagleBone, Intel Galileo, FriendlyARM are some examples
of hardware platforms commonly used for running IoT applications. Real-Time
Operating Systems (RTOS) like Contiki RTOS with its simulator -Cooja- is used
to devolve real-time IoT-based applications. TinyOS, LiteOS and Riot OS are

also lightweight operating systems designed to suit for IoT environments [S]].

IoT Services: Services that enable interaction with the physical world. IoT Ser-
vices can be stand-alone as a field on their own. Compared to Internet services,
which run on powerful and rich resources (power and computation ability) com-

puters, [oT services are deployed and run on resource-constrained devices [94]].

Semantics: Refers to the ability of IoT heterogeneous devices to extract knowl-
edge smartly out of the sensed raw data. This takes great support of Semantic
Web technologies like Resource Description Framework (RDF) and the Web On-
tology Language (OWL) that help in describing and representing information in

machine-understandable ways [3]].

10

2.1 Fundamental Concepts

2.1.2 Fundamental Technologies and Paradigms

Some foundational technologies and paradigms shaped IoT and sensing applications

are listed below:

e Cloud Computing: It is the provision of providing several types of services and
resources through the internet. These services are like platform, software, com-
putation, storage. It has become a common choice for individuals and enterprises

as it saves development costs and increases security and performance [67]].

e Infrastructure as a Service (IaaS): Is one form of cloud computing where infras-
tructure components like servers, networking hardware, storage are being hosted
at the cloud of the service provider and made accessible to user over the internet
[67].

e Platform as a service (PaaS): Is the form of cloud computing where the service
provider offers hardware and software tools and make them accessible over the
internet [67]].

e Software as a Service (SaaS): Is the provision that allows users (individuals or
enterprises) to connect to and use cloud-based applications over the Internet.
In SaaS applications are hosted at the third party service provider and made

accessible for user through the internet [67].

e Fog Computing: It is the paradigm that brings some of the cloud capabilities
(computing, storage, and applications) closer to the data sources. The location
of fog nodes is not necessarily fixed; they maybe anywhere between the data

sources and cloud [64]].

e Sensing as a Service (S%aaS): Service providers introduce observations of par-
ticular sensors to end-users as a service either free of cost or on rent basis. The
sensors may belong to the service provides themselves or being rented from de-

vice owners [[78, 89].

e Sensing and Actuating as a Service (SAaaS): It is quite similar to SaaS adding to
it that providers also offer applying forces to particular actuators as per end-users

requirements [26].

11

2.2 Literature Review

2.2 Literature Review

In this section, we list the research issues that were mainly studied and hence fun-
damentally led to this thesis contributions. Issues related to the composition of IoT
services with mobile sensors are listed. Followed by the issues related to the compo-
sition of sensors and actuators. The main focus is to show the types of integrations
and compositions of several technologies and paradigms that resulted in a new view
of sensing and actuating applications and architectural views. To name few, mobile

phones, cloud computing, and fog computing.

Mobile phones are widespread, low in cost, integrated with many sensors like
GPS, light, microphone, accelerometer, motion, camera etc. and able to connect to
external sensors. The same made mobile phones good or first choice to serve as in-
terfaces for many types of applications and provide them with the ability to improve
the performance of IoT- based applications. This is also because such devices are also
equipped with many communication models (Cellular, Bluetooth, NFC, and WiFi)
through which they communicate with sensors and among themselves. Though, the
mobility of mobile phone sensors results in new challenges in designing and managing

sensing applications [76]].

The domain area of mobile computing and IoT was defined Kamilaris et. al. [46]]
as the research area that involves case studies, prototypes, demonstrations, applications
and business cases of the [oT/Web of Things, through mobile phones. In such domain,
the user of the mobile phone interacts with cyber-physical things that are enabled to
the Internet/Web through their phone device, exploiting at the same time the sensing

capabilities of the phone.

2.2.1 Participatory and Opportunistic sensing

Two types of smart phone sensing were identified in [[1, 55} [89]; Participatory sens-
ing and Opportunistic sensing. In participatory sensing users are involved in the tasks
of sensing (where, what and when to sense are determined manually by participants)

and uploading the observation whereas opportunistic sensing it happens automatically

12

2.2 Literature Review

without the intervention of users, which was first intreduced by Goldman et. al. [29]].
However, [35, 47] favoured smart opportunistic over participatory sensing for IoT ap-

plications.

For continuous roaming inside and outside the hospital, two models of data trans-
mission to the server are used for location-aware patient monitoring system [19]. The
first model uses the LAN internet if the body is within the LAN coverage. Otherwise,

the CDMA network is used to transmit data to the server.

Eco-feedback sensing systems was developed by Jacucci et. al. [44] with mobile
phone interface to enable monitoring the power consumption, and with the use of a

mobile cameras (pointing it to the device) by Jahn et. al. [45].

Smart parking system, Park Here [83], take benefit of mobile devices sensors and
short-range communication to find and spread the availability of parking spots. Park
Here uses two modes of parking spot data spreading. Local, device-to-device, using
WiFi Direct to disseminate data around the user locality. Global, to a remote server,
via a 3G/4G network. The availability of spot is identified without geo-locating it as
the system does not use GPS. ParkNet [66] used vehicles GPS to identify the parking
spaces. While [54., 61} [71, [100] used smart phone to automatically identify whether

the parking spot has been vacated.

AndWellnes system (personal data collection system) [40] uses mobile phones to
collects data form participants to conduct surveys and display the participant’s statistics
in real-time for both participants as well as researchers. The participants are prompted
in their mobile at a configured time intervals to answer surveys (time-based, location-
based, or other contextual parameters) where the answers are sent wirelessly to the
server. Besides the configured intervals, the participant’s mobile sensors can be used
to upload continuous data with user location tracking using GPS. Hence, AndWellnes

provides participatory sensing as well as smart sensing

SenSay (a single sensor-based approach) [49] was developed to identify the partic-

ular mobile device context using only the embedded sensors in that device. It realises

13

2.2 Literature Review

the change of context of the mobile user (standing, sitting, walking or running). In
SenSay, there is no cooperation between sensors that belongs to different handsets.
Alternatively to the use of a single sensor, multiple simple sensors in the handset are

integrated to identify the context cooperatively [31, 43].

In SPA [877]] -mobile-based system- a collaboration between body area sensor net-
work and environment sensors is suggested to continuously sense and upload the gath-
ered data to a remote server to be analysed by professional for continuous health mon-

itoring.

CONSORTS-S [84] designed a platform to provide mobile users with context-
aware services by accessing wireless sensor networks in the surrounding. CONSORTS-
S architecture consists of three main parts; 1) The mobile phone to be used as an in-
terface. 2) For overcoming the mobile phone limitations, CONSORTS-S platform has
attached mobile sensor router to the mobile device to help in the communication with
the surrounding wireless sensors. 3) Middleware located in the remote server for man-

agement and sensed data analysis.

2.2.2 Urban Sensing

Urban sensing is the use of digital environmental sensors in urban landscapes like
buildings, vehicles, healthcare etc. It was addressed in several studies. Some of such
works were designed for specific applications. CodeBlue [63] introduced a wireless in-
frastructure for emergency medical care application. CodeBlue integrates low-power,
wireless vital sign sensors, Personal Digital Assistants, and PC-class systems with the

ability to scale to a network of dense devices.

A set of guidelines to establish ideal architecture and platform for industrial ap-
plications were established Kumar et. al. [52]. The work also developed a general
architecture for industrial application to monitor and predict equipment failure. Wis-
den [101] designed a wireless sensor network system for acquisition of structural data

from different locations for identifying damages in surfaces where they are deployed.

14

2.2 Literature Review

The system Identified the damages -if any- and there locations by monitoring changes

in sensed accelerometer parameters.

Similarly, UrbanRadar [47] -location-based application- an application which dis-
covers and communicates with environmental services; provided by Web-enabled ur-
ban sensors. In UrbanRadar, user can create urban mashups, which are satisfied only
when several predefined conditions (from the mashup services) are met. As an exam-
ple, a location-aware environment monitoring approach introduced in UrbanRadar to
make users updated with the current real-time environmental conditions. Their novelty
is that they reduce the direct citizen involvement by reading the data through mobile
devices and share them over the web as a contribution towards real-time digital city
vision supporting urban sensing. Their developed mobile application interacts with
web-enabled sensors deployed in the environment around the user.

Finally, a general purpose framework, AnonySense [21]], to allow participatory
sensing to answer the application’s query about the context. It leverages sensors on

participants mobile phones taking the privacy of participants into account.

2.2.3 People-Centric Urban Sensing

It is a landscape of urban sensing where the importance is given to people’s attributes,
surroundings, and how they interact with their surroundings. People-CentricUrbanSensing
[17] was an attempt to encourage the movement of sensors network from application-
specific - mostly small scale- to the scalable and general purpose network for com-
mercial mainstream which can support a variety of urban application (buildings, cities,
enterprises). Moreover, People-CentricUrbanSensing is designed to extend the general
purpose infrastructure to “new sensing edge for the internet.” People-CentricUrbanSensing
architecture favours the opportunistic sensing-based approach to support its scalabil-
ity. Several issues like (the coordination among static sensors, people-centric mobile
sensors and edge wireless access nodes) that aid opportunistic sensing, tasking and
data collection are identified. Besides, challenges like wide coverage of sensing areas

with numerous mobile sensors, responsibility hand of, sensors coordination, network

15

2.2 Literature Review

performance, privacy and security were also discussed in this work for the support of

the new view.

MetroSense [16] is also based on people-centric sensing approach that follows
three main stages (sense, learn and share). MetroSense sensing is based on three
sources of sensing; mobile phones sensors, fixed sensors in civic infrastructure, and

edge wireless access node which provides the internet gateway.

Participatory sensing for large scale sensing is the evolution as mobile crowd sens-
ing using internet-enabled smart phones . It is an enabler for a broader range of urban

applications like traffic planning, environment monitoring and public safety [48160].

2.2.4 Integrating with the Cloud

IoT is mainly characterized by numerous real word things with the following main lim-
itations; low energy, limited storage and processing, and short-range communications
[79, 182, 95]]. Cloud infrastructures are ubiquitous and provide virtually unlimited, in-
expensive and easily accessible (from anywhere) resources [15, 92]. Integration of the
cloud and IoT is a solution to overcome IoT limitations leveraging the cloud perfor-
mance and always available and scalable cloud resources [58} 162, 90]. Mobile phone

sensing also has taken plenty of benefits when integrated with the cloud.

Besides, Taivalsaari et. al. [93] foresees that by the time IoT platforms reach ma-
turity, the following topics (mostly depend on cloud computing) will take the forefront
in such platforms: 1) Things management, for devices registration and virtualization.
2) Devices remote programming. 3) System-level programming and orchestration. 4)

Edge clouds, local connectivity, and fog computing. 5) Security.

Using smartphones as a source of sensing services was first introduced and termed
as Sensing as a Service (S%aaS) by Sheng et. al. [89], and further elaborated and
detailed by Sheng et. al. [88]. S?aaS concept strongly depends on cloud computing as

an essential computing model with many services offered which can be leveraged by

16

2.2 Literature Review

this concept. The work also details some fundamental requirements for any sensing as

a service via smart phones:

1. Ability to support different mobile platforms serving several types of mobile

phones sensing applications.

2. Having in mind that such devices are power constraint, it is also required that the

system is power efficient.

3. Support for efficient interconnection mechanisms. Sensing request can be han-
dled from different locations with the help of the cloud and the deployment of

sensing server in different locations.

Besides, Sheng et. al. [89] stated the following functionalities to be supported
by S2aaS Cloud. Web interface to be provided for users accesses both from mobile

devices and normal computers:

1. The ability to generate new sensing task (stander format including what data to
be collected, sensors to be used and area of interest) for each new data collection

request.
2. The ability to recruit participants to participate in sensing for each new request.
3. The ability to schedule the sensing activities between mobile participants.

4. The ability to deploy sensors managing applications on the participant mobiles
such that the data sensing and sending them to the server are managed and under

control.

5. Finally, the ability to save data for future use.

Also, Perera et.al. [78] explored the concept of sensing as a service model and how it

can fit into IoT.

Spheres [33]: A web services framework for smartphone sensing as a service.

Spheres introduced (SOA) services oriented architecture based framework integrating

17

2.2 Literature Review

mobile internet, wireless sensor network and cloud to provide smartphone crowdsens-
ing to be shared for both public and private use. Spheres is based on [34] with the
main difference is that in Spheres mobile phone sensors are not in fixed location. In
[34] wireless sensor nodes were connected to a gateway and formed a wireless sensor

network.

In S?aaS [77]], the word sensors refers to physical sensors as well as virtual sensors.
In S?aaS, any sources that generate data, social media accounts and weather APIs, for

example, are considered as virtual sensors.

Mobile phones, as well as standalone sensors/actuators, are being used to actuate
and control physical devices in several domains, and a number of models and archi-
tectures have been suggested in the literature for the same either for specific or general

domain applications.

Internet technology along with IoT are foreseen to be the future standards, partic-
ularly for home automation and control [32, 51], providing interoperability between
heterogeneous types of devices. Applications for monitoring and controlling home ap-
pliances were introduced in [10,/99]]. A general mobile phone application that provides
the ability of creating physical mashups of composition of different smart things was
introduced by Guinard et.al. [36].

Sensing Cloud Infrastructure (SCI) was introduced by Yuriyama et. al. [106] to
provide virtualized (on the cloud) set of physical sensors required by the user on de-
mand. User has control and monitor over the virtual set of sensors on Information
Technology infrastructure and out to destroy them once they are not in need. SCI con-
tains five servers, mainly; portal server, service provider server, resource management

server, monitoring server and virtual server.

SCI was extended to the concept of IoT by Madria et. al. [62] which comprises of
three layers: client-centric, middleware, and sensor-centric.
SCI was optimized in SenseCloud [50], a cloud based solution with unified access

to different sensor networks and a level of abstraction that hides the underlying com-

18

2.2 Literature Review

plexity. SenseCloud proposed a system which exploits the virtualization technology
to manage and share the same IoT infrastructure between different users and allow
dynamic provisioning; the strategy consists of creating virtual sensors for the users,
which corresponds to the requested physical sensors. The management of sensing data
is handled by the service provider through the cloud and shared with users either in
real-time or historically. Moreover, the proposed system is provided with security,

load balancing, multitenancy, failover, high availability and reliability mechanisms.

Abdelwahab et. al. cldassiremsensCARS2014 surveyed the use of cloud com-
puting as to provide remote sensing services (Cloud-assisted remote sensing, CARS
for short) as an enabler of Internet of Everything(IoE); hence, they believe it leads to
prompting smart cloud services. Through real-world application, researchers explained
the benefits of using cloud-based services to empower remote sensing. Besides, a four-
layered architecture (CARS) is proposed in this work: 1) fog layer; 2) stratus layer; 3)
alto-cumulus layer; and 4) cirrus layer.

CARS mainly provides three service models: Sensing and Actuating Infrastructure as
a Service (SAlaaS), Sensing and Actuating Platform as a Service (SAPaaS), and Sens-
ing Data and Analytics as a Service (SDAaaS), which are alike to cloud computing
service models: 1) IaaS; 2) PaaS; and 3) SaaS. It worth mentioning that, in CARS
architecture, sensing and actuating resources are encapsulated in the fog layer. Several
essential design components for Cloud-assisted remote sensing were described in this

work.

Cloud of Things (CoT) [3]] introduced cloud architecture for sensing as a service.
Authors of CoT hypothesis that taking benefit of IoT devices global sensing resources
in cloud platform to support remote sensing is an efficacious way to achieve their
sensing as a service foresight in their previous work, CARS [2].

In contrast to the traditional cloud platforms that collect data for later use, Cloud of
Things processes the data in-network by IoT devices to directly provide meaningful
information. Three main elements form CoT architecture; 1) IoT devices; sensors
devices with the ability to serve specific as well as general purpose remote sensing
applications. 2) First tier clouds; traditional cloud platforms that provide unified user

access interface. 3) Cloud agents; resource reach, trusted, and well connected to the

19

2.2 Literature Review

traditional cloud platforms and to the internet located near the network edge. Cloud
agents are basically edge nodes used for discovery, virtualization, and forming a cloud

network of IoT devices.

Sensing and Actuating as a Service (SAaaS) provides various types of sensors
and/or actuators (S/A) resources from sensor networks and personal mobile devices
to the end user as services. The end user can then build their own application based
on rented composed/aggregated types of resources of their desired locations, func-
tionalities and time. SAaaS also provides the end user with the ability to trigger ac-
tuating commands as per their analysis of the scenarios/real/historical data etc. The
idea of SAaaS was encouraged by the following factors that made robust base for
SAaaS: 1) The globally distributed and wide spread of heterogeneous smarts devices.
2) Smart devices, sensors and actuators that can be categorised location wise or by their

type/functionality. and, 3) The spread of Sensing/Infrastructure/Storage as a service.

In SAaaS owners (being individuals, enterprise, universities, etc.) of sensing/actuating
devices may contribute their devices services for free or provides the same on rent
bases. Device owners may contribute standalone Sensors/Actuators (S/A) devices or
WSN in which they are called contributing nodes which (whether have single or group
of sensors or actuators) must belong to the same administrative domain [26]. End users
(the once will take the benefits of the sensors and actuators) might also be individuals,

enterprises, universities, etc.

The SAaaS provider acts as the mediator between the two parties and manages all
the aspects of the paradigm. Among SAaaS provider responsibilities are device owners
and end user enrolment, Service Level Agreement creation, physical nodes selection,
rent calculation, virtualizatin, etc. SAaaS virtalization has two types. First is the virtal-
ization of the observation data in witch the provider receives the sensors observations
and saves them to provide each end user with the required data at their prespecified
time. Second is the actuator vitrualization where the provider facilitates the end user
access (sending an actuator command) to the previously rented actuator. This con-

cludes that the provider must create a virtual set of desired sensors and actuator for

20

2.2 Literature Review

each end used as per their requirement.

The main concepts and players of SAaaS were identified by Distefano et. al. [26].
The work also introduced an architecture for SAaaS in which they make a Hyervisor in
the nodes to abstract the creation, management and virtualization of sensors and actua-
tors as a virtual instances in the cloud. Even though the Hypervisor works at the device
level, it enables direct communication with sensing and actuating devices through the
Automatic Enforcer which is located between the VolunteerCloud Manager and the

Hypervisor.

Distefano et. al. [28]] used their hypervisor propesed in [26] to introduce more de-
tailed architecture for SAaaS, giving more concentration for management, abstraction
and virtualization of sensing resources. Their proposed architecture allows devices to
provide their sensors as a virtual instance which makes a particular physical device
handles concurrent requests. Besides, the architecture can compose/aggregate a net-
work of resource instances out of simple individual instances. It is worth mentioning
that, since this architecture is based on the hypeovisor, it is a device-oriented approach

but still concurrent requests of the same physical device are ensured.

A further extension to their works in [26] and [28]], authors proposed utility frame-
work [27] for IoT SAaaS approach inside IoT-A reference architecture [[72]]. This work
implemented the earlier proposed idea (implementation for Android mobile) in a real

life IoT scenario to show its feasibility.

Stack4Things [59] adopted the OpenStack [73] (Infrastructure as a Service frame-
work) to propose a framework for Sensing and Actuating as a Service (device-centric
approach). Stack4Things shows the detailed subsystems for resources management

and their observation data, and some use cases were demonstrated.

Sensing and Actuation as a Service Delivery Model (SAaaSDM) [83]] is a novel
model of system management and computing for SAaaS proposed based on cloud
edge centric IoT model. The purpose of SAaaSDM to overcome the issues of cen-

tralized cloud architecture while taking advantage of computing and storing capacities

21

2.2 Literature Review

of both cloud and edge computing. Therefore, the model aims at providing robust
management for the existing [oT sensors and actuators in Cloud Edge-Centric fash-
ion and process their data in the edge node (cloud gateway). Compared with other
works, SAaaSDM brings many benefits to sensing and actuation applications. In ad-
dition to exploiting virtualization and enabling collaboration between various type of
IoT devices, SAaaSDM enhances the performance of the paradigm by decreasing both
bandwidth usage and processing response time as well as improving the network lifes-

pan.

The issue of heterogeneity and interoperability of IoT devices were tackled by Yun
et. al. [105]. Authors designed an IoT platform (nCube) based on oneM2M standard,
which unifies the communication language among IoT devices. To achieve such uni-
fied communication, they developed middleware programs (thing adaptation software
TAS) which enable the translation of sensing value and actuation commands into a

defined oneM2M resources accessible and manageable through a web application.

2.2.5 Integrating the Cloud with Fog Computing and IoT

Cloud computing has led to a breakthrough revolution in the way applications are
thought off and designed, the way devices connect to the internet and interact with it.
The same makes it possible almost for any kind of devices to interact with the environ-
ment and modify their operational manner and behaviour, capture heterogeneous and

complex information etc.

Such revolution has been a milestone and enabler in the emerging of IoT paradigm
and the development of several systems that continuously monitor and interconnect
with the environment and take action automatically in response to certain conditions
or as per users’ command. Notwithstanding the indispensable benefits offered by the
cloud, it is still subject to many challenges, including increased latency of both data
and services, network congestion, and the increased bandwidth and communication

concerns. This is because the cloud environments and network infrastructures can not

22

2.2 Literature Review

resist the growing data processing load and communication required by these systems.

Mostly, IoT applications have rigorous requirements. Plenty of them requires, to
some extent, real time responsiveness, while the privacy and security, the quality of ser-
vice, and the location awareness of the response are achieved. For such requirements,
the (cloud-IoT architecture) can barely support the processing and communication of
such a massive amount of devices and data. Besides, if cloud-IoT devices architecture
could support such applications, this will be with limited response time, scalability,

and quality of service [14].

In highly dynamic and real-time scenarios, data rapidly and continuously change,
and the reciprocated data between IoT and the cloud might not reflect the real time

values or be accurate; the reason is the high latency throughout interactions [[12]].

Several architectures and solutions are proposed attempting to support the require-
ments of 10T applications or/and processing such amount of data. New architectures
that enable integrating the cloud with any type of lightweight sensors are described in
[98, [107]. These architectures tried to enable the integration by getting over the inher-
ited cloud issues: latency, the ability to support periodic events, handling continuous
sensing, the lack of elasticity when data of numerous sensors is transmitted simultane-

ously.

The problems stemmed from continuous sensing was addressed by Lane et. al.
[S5] which propose that devices should collect data and upload them to the cloud. This
occurs only sporadically. This delay-tolerant model of sensor sampling and processing
critically bounds applications effectiveness and the system ability to be aware of its

real time context, adapt and react to timely situations.

Therefore, some questions like, what to process, and where to process, or where
to take a decision based on realtime data streaming are resolved in a more recent
paradigm called Fog computing or mini-cloud. Fog computing is mainly about bring-

ing the processing closer to the data sources. However, what processing is to be pulled

23

2.2 Literature Review

out from the cloud, and where to be placed in the network topology are the main im-

portant issues in defining exactly a fog node and its location [64].

OpenFog Consortium defined fog computing as “A horizontal, system-level archi-
tecture that distributes computing, storage, control and networking functions closer
to the users along a cloud-to-thing continuum.” Hence providing the missing link in
the cloud-to-things continuum. The consortium has also defined eight common pil-
lars of OpenFog reference architecture [74]]: security, scalability, openness, autonomy,
RAS (reliability, availability and serviceability), agility, hierarchy, and programmabil-
ity. Defining standards to ease interoperability and implementation of IoT applications

is one of the main objective of OpenFog Computing consortium.

Fog computing is an extension of the traditional cloud computing where archi-
tecture implementations may be established in several layers in the topology of the
network. Though, fog and cloud work together, and fog extensions must preserve
the cloud benefits: virtualization, containerization, manageability, orchestration and
efficiency. In other words, fog works as an interface between IoT and the cloud; sup-
porting them to communicate. Consequently, fog gathers the best features of each
technology, expanding the application range of cloud computing and growing the re-

source availability in IoT [12}[74].

While the cloud provides global centralization, fog provides localization hence re-
ducing the latency and provides context-awareness. Both; the cloud centralization and
fog localization may be required for many types of applications [14]. And both com-
puting paradigms have their associated pros and cons hence can complete each other,
particularly for supporting IoT applications. Fog provides support for fast response,
mobility, and processing, while the cloud offers processing and storage for necessary
tasks. In short, an effective IoT management system needs both cloud and fog support.
The important factors are what services are to be deployed on the cloud and on the fog,
mostly depending on the IoT application features and characteristics. It is even likely

to replicate some services on both the fog and the cloud [8]].

24

2.2 Literature Review

Also, Bonomi et. al. [13]] discussed how fog could be a useful paradigm to support
the cloud in terms of latency, real-time processing, large scale and location awareness,
particularly for IoT applications. The discussion has also pointed out the aforemen-
tioned benefits for Connected Vehicles, Smart Grid, and Wireless Sensors and Actua-
tors Networks applications with the IoT. Besides, the work listed out some applications
were fog better fits than the cloud paradigm; applications require very low latency,
geo-distributed applications, fast mobile applications, and large scale distributed con-

trol systems.

IoT service delay can also be minimized by service offloading between fog nodes
or from fog nodes to the cloud. A similar concept is workload or tasks assignment to
either fog nodes or to the cloud that is considered a static optimization problem asso-
ciated with high complexity [6, 37]. Though, they did not take offloading from fog to
cloud into consideration. However, fog services and tasks offloading has less complex-
ity and more flexibility: the number of network layers and fog node, their organization,

etc. do not have any restrictions on offloading mechanism [104]].

Several works like [13, 91, [103]] argues that due to its proximity, its mobility sup-
port and dense geographic coverage, for platforms can be utilized to operate IoT appli-
cations and services from the network edge and end devices (access points, road side
units, set top boxs, Machine to machine (M2M) gateways.) Such utilization reduces
the latency, improves QoS, and allows real time data analysis with actuation leading to
consumer centric IoT products [22]. Besides, Botta et. al. [15] explains that the real
time association among loT tools gets the support of fog and cloud computing which

consequently minimizes latency in data processing and analysis.

Satyanarayanan [86] highlighted that proximity helps in: 1) Masking cloud out-
ages; due to cloud failure, network failure, or any attack like a denial-of-service the
cloud services may become unavailable, in such case a fallback serves in the nearest
fog may mask the failure untill the cloud services are restored to normal status. 2)
Security and privacy enforcement [74, |86]; being the first point of contact in the sys-

tem infrastructure for the sensed data, a fog node can enforce the security and privacy

25

2.2 Literature Review

policies prior to forwarding data to the cloud.

Tseng et. al. [96] worked in migrating oneM2M (a global IocT/M2M) to extend its
high scalability from the cloud in their previous works [18, [24] to the fog. Investiga-
tions on scalability of IoT/M2M in the cloud are conducted in [18, 24]]. According to
the IoT traffic load, the resources in the cloud can scale up or down based on such in-
vestigations. Nevertheless, managing such traffic only in the cloud does not ultimately
solve the scalability issues; the traffic must be dealt with before reaching the cloud. In
other words, fog networks between the things and the cloud must offer the scalability
by; 1) dynamically and flexibly scaling the serving instances in/out over fog nodes to
harmonise with the incoming IoT traffic, and 2) devices may join or leave the network

as needed.

Scalability of fog systems in IoT domains is considered among the essential eval-
uation criteria in several surveys and works like [68, 70, [74] and also one of the eight
pillars defined by OpenFog reference architecture [[74]. This is due to the fact that fog
systems are foreseen to be connected to millions of users and [oT devices and may in-
clude a large number of applications, fog nodes and domains. Consequently, this will

raise the amount of data to be generated, gathered, and processed.

Besides, Geodistribution and Big Data are fundamentally related characteristics;
more dense and wide-range the system is, more data to be generated [97]. Therefore,
Bellavista et. al. [12] highlighted the system characteristics to scale relatively with
the quantity of the managed information. Geo-distribution scalability is an underlined
property required of fog computing system so they can manage the distributed, even
highly distributed, applications and devices, as compared to the typical centralized
cloud. In highly distributed systems, fog must be able to efficiently manage a large
number of nodes widespread in geographic areas, plus different degrees of density.
Different distribution configuration and types of topologies are expected to be handled
by fog with the ability to scale and adapt to the [oT applications and their rigorous and

diverse requirements.

26

2.2 Literature Review

Internet of Thing applications are supposed to know their location and the external
context at the place where they are deployed. Such requirement is considered as a core
requirement in some standards and works, like geographical distribution requirement
in [42] and the hierarchy pillar in OpenFog [74].

In fog for IoT solutions, location-awareness will produce systems with a greater con-
sciousness degree, empower 10T applications, consequently, a greater degree of re-
silience to the outside world. Location-awareness helps in the knowledge of the sensed
environment enhancement towards better system adaptability, response accuracy and,
hence, an improvement on the system execution and higher application quality. The
system is accurate as it knows the environment it works at and, hence, its responses are
correct, precise, and applicable as compared with systems without information of their

environment and location [[12].

Mobility is also highlighted as a core requirement for fog computing in several
research works [[11},142,[70]]. With respect to fog computing for IoT and its applications,
most of such applications directly relate to mobility. Mobile Internet of Things (MIoT)
extends the IoT concept with ubiquitous coverage and mobile support [12].

The growing number of mobile devices, their ubiquity, and the dominant role of wire-
less access elevate the need to introduce mobility support in fog computing. Therefore,
for fog nodes to be efficient, they must be able to adapt themselves to handle devices
with high mobility, even fog nodes may be mobile as well. Particularly in data-rich
mobility applications, the ability to locate the correct data in the fog achieves better
data models and local cashing as well as better overall performance. Besides, reli-
able handoff mechanisms are required in fog computing to support the possibility of
mobile devices shifting among fog nodes authorities without interrupting the system

operations [12].

IoT applications and their deplyment in real life secinaros highly require real-time
responsiveness as a main enabler concept [42, [70].
Fog Computing is important to accomplish the low-latency requirement as direct Cloud-
Edge interactions will not be satisfied for several reasons [[12]]:

27

2.2 Literature Review

1. It improves the temporal accuracy as the sensed data are processed and acted
upon (actuation command or decisions making) at real time. Consequently, it

continuously uses data reflecting the instant situation correctly.

2. Fog surpass distance concerns, reducing the number of network hops by moving

computation near the data sources.

3. Sensors generate a tremendous amount of data, if the entire data is sent to the
cloud, this may cause a network to slow down and, consequently, may knock-on

effect throughout the whole system and leads to its slow down.

Fog should offer real time execution for types of tasks that do not require high resource
consumption or long analysis. Also, some systems, the data must be pre-processed in
the fog nodes before being uploaded to the cloud, consequently decreasing the load on

the core network [[12]].

For real world IoT applications, data quality is an important and related require-
ment as they are not only made for sensing but also altering the scenarios; making,
usually irreversible, modification to the physical world [12]. Giving more focus to fog
for IoT, Bellavista et. al. [12] consider data quality as a fundamental requirement to
permit the integration and use of heterogeneous IoT sensors. Also authors of [12] claim
that general purpose fog computing surveys and standards do not express such require-
ment, though, in [42]], it was explained as an element of heterogeneity management.
Authors of [12] also believe that the more the system quality increased, more improve-
ment throughout computation and actuation stages, hence leading to better quality for
the entire system. Data quality stands on the meeting of several techniques, such as:
data filtering, data aggregation, data normalization, etc. The real time proactive main-
tenance and anomaly detection is achieved by the combination of data filtering, data
aggregation, data normalization and data analytics. Faulty data quality is among the
most serious problems in ubiquitous environments as it is hard to be discovered and
concerns both system reliability and performance. Therefore, fog nodes are supposed
to assist data quality and drop the worthless data as close as possible to its source to

reduce the amount of data to be processed or forwarded to the cloud [12].

28

2.2 Literature Review

Interoperability is also amongst the central issues in fog computing agreed upon in
several related surveys and standards [42) 68, [/4]]. As of fog computing for IoT, in-
teroperability issue becomes more serious as IoT itself is an extremely heterogeneous
environment that works in real world scenarios, built upon a wide range of diverse
devices that collect heterogeneous information from the environment [[12]]. Fog nodes
are also heterogeneous and range from end devices like sensors, mobile phones, ve-
hicles, etc. as well as access points, set-top boxes, edge routers, high-end servers.
Furthermore, often, fog computing services and applications must be federated, be
flexible to span with different levels in fog hierarchy as they need the cooperation of
several providers and also to enable multi-vendor ecosystems [14, [74]]. Besides, any
data generated or collected by any particular fog node should be shareable with re-
maining fog nodes in the system hierarchy [74]. Without expensive computations on
a cloud layer, fog environments make a proper position to: 1) Fulfil interoperability
enabling processes. 2) Originate a unique data stream. 3) Present generic Application
Programming Interfaces (APIs) to be used by diverse applications or an initially unique

services federation [12]].

Fog computing involves a significant number of devices operating different tasks
and activities in a distributed manner, therefore, reliability is realised as an essential
requirement. Some works consider reliability as a part of the quality of service man-
agement, usually falling under network or system specifications [68} [70]. In OpenFog,
RAS (reliability, availability and serviceability) pillar is a wide umbrella that encom-
passes many different issues [74].

Concerning fog computing for IoT, reliability is a critical requirement that is supposed
to be provided at the different system layers and also spans several different prospec-
tives [12]:

1. Hardware must be reliable and work as expected ;for instance, a sensor must

provide the expected readings with the frequency set.

2. Communications among all network elements must be reliable, with support for

data transport and message exchange.

3. A reliable scheduling policy, data centre management, and power consumption

model.

29

2.2 Literature Review

4. Fog nodes must generate the expected output ;data processing or distinguishing
the action to be taken.

Fog for IoT must be reliable, regarding several types of failure; failure of any fog
node(s), the failure of the service platform, the entire network failure, the failure of the
users interface to system etc. Achieving such reliability requires using different types

of techniques [12].

The number of 10T devices is increasing as well as their generated data. If such
data is processed on the cloud, this may result in privacy concerns, network delay and
congestion [41]. As a solution, [41]] leveraged the fog computing concept integrating
heterogeneous fog devices, including cloud servers, edge network devices, and end de-
vices. Such utilization of heterogeneous fog devices benefits: 1) location independent,
2) time dependent, 3) massive scale, and 4) latency sensitive applications, which are
suitable to run in the fog.

Besides, Basir et. al. [11] argues that the Industrial Internet of Things (IIoT) re-
quirement can be satisfied by fog computing architectures. Also, they believe that the
integration of fog with the existing communication technology will reshape all sectors

that involve IIoT applications.

Fog Computing, particularly when integrated with cloud computing, has already
presented valuable support for distributed systems, entertainment, and advertising as
well as several other sectors. The concept of fog and Cloud Computing has a great
and recognizable influence on both private and public organizations and has raised
their performance and increased business opportunities. Involvement, collaboration,
and support of communities, industries and standards organizations are required for
the prosperity of such a computing paradigm [74} 86]. Besides, the development and
growth of long-awaited new revenue-generating applications and services will be ear-

lier realised with the support of fog computing [7]].

Fog computing has certainly added several benefits to the cloud paradigm and also
solves some of its challenges. Nevertheless, it still meets several technical and non-
technical challenges. In contrast with the centralised infrastructure of cloud comput-

ing that has low management cost, with fog computing and/or fog with cloud, the

30

2.2 Literature Review

complexity of management is considerably increasing. It is a research priority for fog
computing to develop solutions to address and reduce such complexity. Security in fog
computing is also weaker compared with the cloud; hence, mechanisms to empower
fog computing security are highly required [86]. Though, Firdhous et. al. [30] believes
that the integration of fog and cloud offers the business with a more secure environ-
ment as the risk of data theft or manipulation is reduced because data travels less in the

network.

Also,as fog computing brings some of the cloud-based applications services and
analytics as close as possible to the data source (if not to the edge of the network), the
entire system performance will improve. Fog computing will also allow the system to
adapt better to the traffic patterns changes; performance enhancements happen faster.
However, the massive amount of data created by the connected devices will result in

network congestion and performance challenges at the edge of the infrastructure [[74].

Moreover, as mentioned earlier, fog proximity and integrating it with cloud lead to
reduced latency, the location of application components in the system hierarchy makes
latency varies. Application components placement is not an easy task, and optimal

placement for better latency needs complicated placement algorithms [[102]].

From the literature review conducted, we realized that there are several different
ways to design architectures for IoT sensing as well as sensing and actuation systems.
The emergence of cloud computing and its compensation with fog computing have im-
proved systems quality in many ways resulting in several creative designs. However,
we believe that fog in combination with the cloud should be better organized to sup-
port better tasks deployment; particularly for SAaaS. This requires a different layering
of the architectures than the once followed in most literary works. Besides, services
providers are encouraged for more collaborations towards realizing the true smart cities

visions. In the remaining chapters, we mainly contribute to these directions.

31

2.3 Summary

2.3 Summary

In this chapter, we have presented the foundation concepts and several pre-existing
technologies and paradigms on which sensing services and IoT are built upon and
depend on for communication, architecture, storage, sensing, arrangement and more.
Work in literature of the following sensing services types and applications is listed:
participatory sensing, opportunistic sensing, urban sensing, and People-Centric Urban
Sensing, etc.

This was followed by showing how integrating such services and concepts with the
cloud computing provided remarkable solutions which facilitated and enriched sensing

applications, particularly for the IoT with its sophisticated requirements.

Finally, fog computing integration with the cloud and the IoT, with the tackled
limitations and benefits added were listed. Cloud computing, fog computing as well
as their integration advantages, requirements, evaluation factors, and open challenges
were also explained with reference to the IoT and its applications. The explained ben-

efits and features of fog computing were the primary motivation for our contribution.

32

Chapter 3

Towards Truly Smart City Service
Providers: A View on On-demand
Everything as a Service

In this chapter, we present a view of the future smart city service providers or the way
the future service composition to be performed in IoT and other applications. We also
discuss this with an example scenario of composing services from different providers
and application domains and present a simple example architecture to illustrate the

same.

3.1 A Vision on Future Smart City Service Providers

The future smart city requires a rethinking of the current techniques and come out
with plans for faster service composition to provide ready to use services. Besides,
consumers -that may subscribe to one service provider only- may always be in a fixed
location or mobile and may require new services that in turn may require recomposing
new components. The components of service needed to be composed may belong to
different owners, be in different locations, or are managed through a different manage-

ment authorities or service provides (i.e. WSN, IaaS, or S?aaS, SAaaS).

We emphasise on the services and components that belong to different service

providers that require proper plans to allow a smooth and flexible composition.

33

3.1 A Vision on Future Smart City Service Providers

Any of the services providers can manage the composition; collaborates with other
service providers to use their services along with his own once. Or the composition
can be handled through an independent third party. The vision is depicted in figure|3.1],
and conceptually detailed below:

e There are three connected service providers. The connections show on-demand

collaboration.

e Each service provider is supposed to operate fully in isolation. This indicates

that each service provider must have:

Its own complete architecture of the cloud and IoT devices; architecture

design may vary from service provider to another.

Virtualization mechanism for its linked IoT devices.

Users registration, authentication, and accounting systems.

All required database, etc.

e Each particular service provider (say SP1) can offer its registered end users with
their requires sensors/actuators by virtualizing its own architecture IoT physical

devices.

e SP1 can also request any partner service provider (say SP2 or/and SP2, or both)
for any service/loT device functionality that SP1 does not have in its own archi-

tecture.

e A virtual service of service offered by a partner service provider will be then

added to the virtual set created by SP1 for each end user requesting it.

e End users nither involved with the communications or any arrangements among
partners service providers, nor are they aware of such background details. End
users only request services (sensors/actuators) from the service provider they are

registered with.

34

3.2 Example Architecture

e The IoT physical devices that are the sources of virtual services created for each
end user may not always be the same. Assume that a particular end user regis-
tered with SP1 has among their requested devices a device that is around their
current location with a certain diameter. In such a scenario, selecting the physi-

cal IoT device to provide the service must be dynamic.

e The source [oT device must be changed as and when the end user changes their
location. The new end user location may be in an area of a partner service
provider. This location change results in recomposing the end user’s services

based on the new target [oT devices.

e End user payment for services is always made to the service provider they are

registered with.

The state-of-the-art in the fundamentals technologies like federation, multitenancy,
interoperability, etc. is paving the way toward such vision. Yet there will be several

challenges like security, privacy and other IoT and networking related issues.

We believe that such collaboration among service providers will eventually lead to
widening the area that each independent service provider can cover alone. The same is
particularly useful in IoT SAaaS where, for instance, an environmental specialist may

be interested in a wide area that is not covered by a single SAaaS provider.

An example architecture is given for composing services from different service
providers; i.e. SAaaS provider and mobile applications service provider. This is a

simple example to assist in proving the vision explained above.

3.2 Example Architecture

In this example, we aim at making an intermediate architecture between IoT services
in the locality and mobile applications services such that the integrating happens tem-
porally on-the-go, as a form of advice -search for what can be useful at this time in this

location being IoT services that user can access and use or mobile application services

35

3.2 Example Architecture

Sensor Actuator Sensor ') Sensor Actuator Sensor

Sensor Actuator Sensor

Figure 3.1: Future Smart City Service Providers
or coupon/deal etc- and give advice to the user.

For the purpose of simplicity, we adopt the concept of location-aware recom-
menders for getting mobile applications services in the locality. we did not follow
any specific scheme like publish/subscribe as we will list all available mobile applica-

tions services in the locality besides the 10T services in the locality.

Some context parameters like location, date and time, will be taken into consider-

ation to improve the accuracy of list of advised services.

3.2.1 Example Scenario

For the sake of simplicity, we have selected the Shopping Mall scenario as an example
to illustrate our proposal throughout this paper. In this scenario, a user Sam enters into
a shopping mall, upon his arraival, Sam’s location will be determined using his smart-
phone GPS. A search will be conducted to identify [oT services in the mall like parking

navigation system, or availability of kids tracking devices, etc. And also a search in

36

3.2 Example Architecture

the commercial applications (like the popular applications in India; Paytm, Little, and
nearby,PhonePe, etc.) for any deals to be used in shops, salons, cafe, or restaurants,
etc. at this mall. Sam will get a list of all services from which he may use or buy a
coupon to grab a deal. This may attract the customer to use the services as they are in

physical proximity.

There are many other scenarios in which the idea of composing IoT with mobile
applications services can be implemented. However, in this work, we selected a basic

scenario for the sake of simplicity of delivering and illustrating the idea.

3.2.2 Example Architectural Design

We hereafter explain the example architecture based on the example scenario. The
high-level example architecture is depicted in figure 3.2] And the operational proce-

dure is depicted in figure 3.3

The location manager determines the customers location using their device GPS

and sends it to the Service List Generator.

Service List Generator, in turn, searches the Location IoT Services Data Base and
Stores List Data Base and searches the mobile apps to find any deals -in stores in this

particular mall- which can be used at the current time.
An advised list of services and deals coupons/stores providing deals will be gener-

ated and displayed in the user mobile. The user then may think about what services he

likes or coupons to buy.

37

3.2

Example Architecture

Mobile
apps

get

services
in

location

get
cr;eck stores
ar in
useful location
services names
List Generator
get user location
display the
generated

list

Location Manager

User

Figure 3.2: High-level Design of the Example Architecture

Mobile
apps

—_—

Identify Location

Y

Read loT services in this
location

!

Read the store in this location & =

loT services

Search for mobile apps services

Make list of loT and mobile apps
services

Stores

Figure 3.3: The Operational Procedure of the Example Architecture

38

3.3 Summary

3.3 Summary

Supported by cloud and fog integration features, IoT service providers -particularly
sensing and actuating- are advised to be enhanced. This enhancement such a way to
provides service delivery models which composes several types of services from differ-
ent application domains/service providers. That eventually will make service provider
be viewed as an integration of several services provides. This is feasible if such in-
tegration is designed carefully following the requirements of the IoT application, as
well as cloud fog integration requirement advised by several researchers and standards
towards better IoT support: federation, mobility, security, scalability, interoperability,

etc.

This is also possible with the state-of-the-art accounting concepts like pay-as-you-
use that can govern the relationship among such several service providers as well as
end users. This view is more suitable for fast growth of IoT applications and new
start-ups which don’t have to invest for their own infrastructure as there will be many
competitors service providers offering A to Z hardware and software requirements.
This is a vision towards ready made, on demand, and heterogeneous smart city infras-

tructures wish encourages fast and economically sound innovative applications.

Besides the vision of future smart city service providers, an architecture for inte-
grating IoT services with mobile applications services is proposed in this chapter as an
example. The architecture makes the integration as a form of suggestion/recommendation
of available and attracted services without the involvement of real composing to create

new composite services.

Each service provider in the integrated architecture proposed in this chapter is seen
as SAaaS provider. Throughout the remaining of the chapters we discuss our proposed
architecture design of such service provider, suggest a suitable tasks deployment in the
topology, and simulate the same to clearly show the advantage of such design over the

literature towards the vision of the future smart city service providers proposed.

39

3.3 Summary

The integration/collaboration of service providers proposed in this chapter can be

done as follow:

Chapter 5 details the way a single service provider (say SP1) composes the services
belong to its own architecture. Assuming that SP1 is collaborating with other services
providers (say SP2), SP1 may request a service from SP2 and create a virtual service

and add it to the virtual set created for the end user requesting it.

40

Chapter 4

Internet of Things Sensors and
Actuators Layered Fog Service
Delivery Model SALFSD

In this chapter, we propose adopting layered fog architecture to enhance sensing and
actuating as a service delivery model. The main goal is to take the benefits of fog

computing architecture with built-in failure plan and reduced response time.

4.1 Proposed Architecture (SALFSD)

In this architecture, we follow the layered topology for Sensing and Actuating as Ser-
vice Delivery Model SAaaSDM which was introduced in [85]] adopting Cloud Edge-
centric style. We, however, aim at enhancing the framework by adopting dumb gate-
way nodes besides having layered fog that will enhance the performance, reduce the
latency, and provides more composition flexibility and options. Before explaining our
proposed architecture in details we explain the same scenario used in [85] with some
changes that show the need for our suggested modifications along with a top level de-

scription of our approach.

It is worth to mention here that dumb gateways can be considered as an independent

service provider that is collaborating with the service provider owning the architecture,

41

4.1 Proposed Architecture (SALFSD)

as suggested in chapter 3, or as the managing authority of the IoT devices in case the
service provider is working independently.

4.1.1 Top Level Description

The environment specialist (end user) requires observations of many sensors (perhaps
of same type or different types of sensors) as well as a the ability to trigger/actuate
on actuator(s). To fulfil this request, we may have to hire those devices from different
owners (same type of device may belong to different owners or come under different
networks/gateways) or an average of observation values is required for some location
which require readings from multiple sensors. The Fog Node Manager in the cloud is
in charge of selecting the fog node(s) and the gateway(s) associated with the requited
Sensor(s)/Actuator(s) which may be in different locations. Figure 4.1] shows the net-
work layers and figure shows the top level diagram of the architecture along with

the connections among layers.

The following subsections present a bottom-up layerwise illustrating of the archi-
tecture Followed by general explanation regarding reducing response time and failure

plan taken care in the proposed architecture.

’
.

<

a’ \\‘
. b
e’ ~
Fog layer
2 Fog Node 1 og Node n
. LI]
4
,l s, .
i ~ N
’] \\
’ M .
7 N Ay
’ *. N
Fog layer *
1
Fog Node 1 Fog Node 2 0og Node n
. s .
7 d
'» . \
v ” ‘\
‘ , \

’ \
P .

1

1

i

!

1

’ i
‘ ' '
Ll
1

’
2

Dumb { gateway 1 gateway 2 gateway 3 .. gateway n

Giws

SIA SIA slA SIA SIA SiA s/A SIA SIA sIA SIA SIA

Figure 4.1: Network Layers of the Proposed Architecture

42

4.1 Proposed Architecture (SALFSD)

£ .H "

’ \
Y

L

’

]

]
Commands & | Observations
Communication ! from Fog
'

fromlto Fog

’

L]
1
1
I
I
Ll
Ll
[}

”
~
~

Node

A A
\ #

Commands &
Communication
fromlto GIW

Observations

,
1 K
1 1
1 1
' 1 to Fog
Ll 1]
1]

’d
‘f

.
#

Figure 4.2: Top Level Diagram

4.1.2 Things and Gateway layer

Figure shows the gateway architecture, sensors and actuators are connected to
dumb gateways. The gateways do not do any processing. The Actuator Selector re-
ceives the commands from the fog node (via MQTT message translator that makes it
clear it is an actuating command and also extract the target actuator from the command)
and applies the force on the targeted actuator. Similarly, Sensors and Observation Se-
lector is responsible for sending each sensors observation values to the fog node via
dedicated MQTT channels. The board pins are to connect the board with the physical
sensors and actuators for observation receiving and applying commands respectively.
The reason of having MQTT translator here is that MQTT does not have any fixed mes-
sage forms hence the translator will take care of avoiding any clashes in the sensors
observation, their channels, sensors IDs, time-tamp etc. the same which are agreed

with the fog node.

Assuming the case of collaboration with any other service provider say SPx, then

the above details of the gateway do not hold; SPx is supposed to take care of all man-

43

4.1 Proposed Architecture (SALFSD)

Deamon

|
Queue
g—b MQTT

message
Translator

Commands Observations
from Fog to Fog
r .
H BN
[1
GIw o '
Node = :
L)
1
MQTT !
T
1
1
1
1
1

3

Sensors &

¥
Actuator :
Selector .. E .. E OI:'SS‘;re\:':a:g?n

Figure 4.3: Gateway Architecture

agement aspects and communicate the observations and actuation commands directly

to the cloud of service provider owning this architecture.

4.1.3 Fog layer

Figure .4 shows the fog node architecture. Each fog node is responsible for managing
the gateway(s), sensors and actuators assigned to it by the cloud assignment submod-
ule. Fog node receives observations, convert them into MongoDB and store them in
the observation data base. Figure 4.4] depicts Fog Node architecture. End users may
have some cases with predetermined reaction to be taken, hence the monitoring and
the decision will be done at the Specified Cases Manager in the fog node in which
the sensors and actuators associated with the case are assigned to. For example (in
figure {4.1)), an end user has rented sensors and actuators belongs to gateway 1, then
the specified case monitoring will be assigned to fog node 1 in fog layer 1. If the
sensors and actuators of end user interest are in gateway 2 or gateway 3, or some in

both gateways, then the monitoring must be in fog node 2 in fog layer 1. Assuming

44

4.1 Proposed Architecture (SALFSD)

.
A .
+» = Commands & saen)

! | Communication ! Observations

'
1+ fromito Fog " to Cloud
'

Fog
Node

o
L
s
'
Fog Node L -
Manager Observation

database Observation
Manager database

Specified Cases
Manager

'
'

'

i GIW
' Management vQT?
'

'

'

'

Translator

Agent

|
=

@4_,

Commands & ',' :-4
Communication ~_,
fromlto GIW

Observations
<4 from GIW

Figure 4.4: Fog Node Architecture

the sensors and actuators of end user interest belong to gateway 1 and gateway 3, then
the monitoring must be in fog node 1 in fog layer 2. This monitoring plan holds while
going up in the topology; in case there layer 2 is the last fog layer before the cloud,

then cloud itself will monitor cases of sensors and actuator belong to gateways 1 and n.

Once Cloud assigns gateways, and sensors and actuators (G/W and S/A for short,
respectively) to any fog node, their information is stored in the G/W and S/A database
through the Fog Node Manager which is responsible for communication with the
Cloud. The dashed line around G/W Management Agent and MQTT Translator in
the fog node in figure shows the logical grouping that is to be reassigned to the
nearest fog node in case of failure of current fog node managing the gateway; this is
the main idea of failure plan that will be discussed in a later subsection. Observations
sent from G/W(s) will be received by MQTT translator and enter into the queue in

which the Observation Database Manager is responsible of converting them into Mon-

45

4.2 Reducing Response Time and Failure Plan

goDB and storing them in the observation database. Whereas G/W Manager Agent
receives the commands of applying force on a target actuator from Specified Cases

Manager and sends it to the gateway in which the target actuator is connected.

4.1.4 Cloud layer

In cloud side, as showing in figure 4.5 the Cloud G/W is the gateway between end
users and the service provider. It receives the end user requests and delivers the virtual
set of devices. Cloud G/W is also the gateway for devices owner to register their de-
vices details. Core management send the request details to the Physical S/A Selection
module which in turn is responsible for selecting the optimal devices as per the Service
Level Agreement and previous customers review. We also take the availability of the
device into consideration for selection; for example the end user request for specific
type of sensor (i.e. from 2AM to 11 AM) can not be fulfilled by hiring one phys-
ical device as it is not available for the required duration (available only from 2AM
to 5Am) hence this submodule will select one or more devices (which are available
for the remaining time required) of the same type at the same required location and

compose them for the required duration.

The selected physical devices will be then virtualized to create a virtual set for the
end user, here the virtualization is on data level with respect to sensors observation
which is the responsibility of Virtualization Manager. Fog G/W assignment is respon-
sible for assigning the management of G/W to the nearest fog node and reassignment
to any other node in case of fog node fails. The Specified Cases Manager monitor the

cases that are not assigned to any fog node as per the network topology.

4.2 Reducing Response Time and Failure Plan

The use of fog layer between the cloud and deploying the specified cases monitoring
in fog nodes lead to starting the checking process of the observation and triggering the
desired actuation command on actuators (if any is required as per the specified cases)
faster than having it at the cloud side. This is the main way we reduce the response time

for getting the end user’s actuating command done faster for the prespecified cases; in

46

4.2 Reducing Response Time and Failure Plan

End User

Core
Management

Management

[y

Observation
database

Physical SIA
Selection

Specified
Cases
Manager

h

A

> Fog, GIW
assignment

Commands & 1! "
Communication ! | '
fromito Fog _, L, :

!

Observations
from Fog

Figure 4.5: Cloud-side Architecture

47

4.3 Comparison with Related Work

other words we move the decision to lower level of architecture.

Failure Plan: The main goal of the failure plan is to cope with any fog node failure
situation as fog nodes are known to be potential points of failure. For example, in
figure {1} if Fog Node 2 fails, then Fog G/W assignment manager in the cloud will
reassign the management of gateway 2 to Fog Node 1. That explains the dashed line
around G/W Management Agent and MQTT translator in fog nodes in figure that

shows the units that are supposed to be migrated to the new management fog node.

4.3 Comparison with Related Work

In this section we present feature-wise comparison for our proposed work against the

aforementioned related work with respect to points listed in table
Table 4.1: Comparison of Proposed Work with Related Work

Reference [26] [28] [27] [59] [85]] SALFSD
Topology Node-Cloud | Node- Device- | Node- Cloud G/W-
Cloud Cloud Cloud Edge- Layered
Centric Fog-
Cloud
Processing at No * Mote, Mote, Cloud Edge, Fog,
End User | End User Cloud Cloud
Virtualization Device-level | Device- | Device- | At Cloud | At Cloud | At Cloud
level level (Open-
Stack
based)
Failure Plan No** No** No** No** No Yes
SCM No** No** No** No** No Yes
Monitoring Offloading No** No** No** No** No Yes
Observation Filtering No** No** No** No** No Yes
Working Model/Simulation No No Only For | No No Simulated
Android by YAFS
[S57]

Regarding processing in [26]] (*), the work did not state any thing about data flow or
processing. Also with respect to failure plan (**), works [26} 127, 28, 159] do not adopt

48

4.4 Summary

any concept like Fog or Edge nodes which is where SALFSD has the failure plan,
specified cases monitoring, monitoring offloading, and observation Filtering.
This comparison is based on features (listed in the table) which highlights the main

differences among works involved in the comparison.

4.4 Summary

The most important factor in Sensing and Actuating as a Services, from our point
of view, is best utilizing the network topology in a way that observation processing,
physical nodes selection, virtualization, and realtime decision making etc. to be
made in the correct layer for better enhancement of performance. In Fog computing,
some tasks are offloaded from the cloud to the fog node that significantly reduces the
processing time and communication overhead. This results in better performance than
having all tasks executed centrally at the cloud, such performance enhancement is
significant in domains like healthcare and for SAaaS in general for faster triggering

the actuation commands.

To this end, and to provide multiple sensors and actuators composition options (of
sensors and actuators belonging to different gateways/locations of the end used area
of interest), with reduced response time and in built fault resistance plans, we in this
chapter proposed a layered architecture (Things and gateway layer, Fog layer, and
Cloud layer) SALFSD. The architecture is designing for Sensing and Actuating as
a Service Delivery for Internet of Things. Having fog between the gateway and the
cloud will be a good addition for such architectures as it will have several advantages:
1) Will enhance the performance. 2) Reduce the latency, and 3) Provide more options
for composing the requested types of sensors and actuators belonging to different

gateways/locations under the area(s) of end user interest.

The architecture discussed in this chapter is further extended in chapter 5. The exten-
sion details more features of the architecture, elaborates in the communication among
nodes in the different layers, and details the communication among both the cloud and
fog node internal modules. While chapter 6 details the simulation configuration and

results analysis.

49

Chapter 5

Enhanced Layered fog Architecture
for IoT Sensing and Actuation as a

Service

This chapter presents an extension of architecture introduced in our previous work in
chapter 4 where we theoretically presented a high-level design of SALFSD discussed
our expectations of SAaaA performance enhancement considering SALFSD design.
Besides, this work details entire SALFSD components and communication among
them, and adds some improvements to it by considering the key performance metrics
of SAaaS from network and architecture points of view. Also, formal verification of

architecture correctness is presented.

5.1 Proposed Architecture

SALFSD aims at enhancing the performance of the typical SAaaS paradigm with
several layers of fog nodes between the cloud and the sensing and actuation layer (IoT
layer).

SALFSD is designed to contain several layers of fog nodes; the number of layers and

their deployment depend on the organisation of the geographical area covered by the
service provider and has no technical impact on the design. For instance, it can be as

50

5.1 Proposed Architecture

/ \ .
Fog Layer 3 A\
y
4
/Fog node \ Fog node N
1
£ - Y

\
. A\
Fog Layer 2 /: ° : ﬁ |

7 - / o N’ -
i /“og node 1 /’og node 2 i Fog node n\
™\ ™\ . ™
\ \ N\

\ \ \ p N
Fog Layer 1 <] ~] («)
\ /J /‘ | \rl 7/ ! “r‘ J .k \:})
‘ ’x,,// - ,,// ‘ »\,,// TN 7//
/ Fog node 1 Fog nodeZ\ Fog node\ Fog node n\
Gateways ~|: w G/W1 ”Q G/W2 ”V G/W3 ‘;‘d(;/w4 e o o .;d(‘,/w n
. ~ - b - ' Pa n - l\ ' ® (‘», P
\ A j\ [1 . A : [[4 . A j f ‘ \ A 1 f 4 N A 1 f 4
Sensors & e IR _* o '_\ e @ o _ AV4 N - _ N/ - _‘ '_\ e __‘ '_ A\
Actuators { @ -) N - (o) A& & (o) G & (o) & G & (o) & J

Figure 5.1: SALFSD Topology

organisations, cities, countries and so on as depicted in figure [5.I] IoT devices are
connected to the gateways connected to fog nodes in the lowermost fog layer, which
on turn are connected to the upper fog layer. The uppermost fog layer is connected to
the cloud. There is no collaboration or connection among the fog nodes in the same
layer; all go through the cloud.

To this end, the performance metrics governed SALFSD design are:
1. Scalability and availability of SAaaS provider network.

2. Avoiding observations and actuation commands loos due to fog node(s) failure
while maintaining reduced observation and actuation latency.

This section starts by listing the main contributions, then explaining a general scenario
of SALFSD architecture. Finally it explains SALFSD layers, their components and
communication among them with details.

51

5.1 Proposed Architecture

5.1.1 Contributions

To the best of our knowledge, this work is the first attempt to have multiple layers of

fog nodes in between the cloud and IoT devices in SAaaS with the main contributions

listed below:

1.

Failure Plan: As every fog node is known to be a point of failure in the network,
we have proposed a dynamic reactive failure plan to maintain the connectivity
by reassigning the tasks of the failed fog node to the nearest connected fog node

in the same layer or to the parent of the failed node.

Specified Cases Monitoring (SCM): Typically, in SAaaS, end user receives the
observations and decides upon the desired actuation to be triggered. However,
end user may have pre-specified actions to be triggered in response to some types
of sensor(s) observations thresholds (i.e. acting in certain situations). We deploy

the monitoring of such cases in the fog nodes as well as in the cloud.

. Monitoring Offloading: The default fog node responsible for monitoring the

user specified cases is the one closer to the gateway(s) connected to sensors and
actuators rented by the end user. However, as the specified cases pre-specified
by end user needs actions to be taken fast in response to a certain condition(s),
we may dynamically handle the monitoring task to the parent of the fog node in

case it is overloaded to reduce the actuation latency.

Observations Filtering: Fog nodes also filter the observations before forward-
ing to parents or to the cloud to drop the corrupted messages - if any- to avoid

unnecessary consumption of the bandwidth.

. Sensors and Actuators Selection: We have implemented the Nondominated

Sorting Genetic Algorithm II (NSGA-II) [25] to select the optimal sensors and
actuators of end user interest types at their chosen location. The selection is

bi-objective based on cost and feedback.

5.1.2 Example Scenario

Assume that SALFSD service provider has set up its infrastructure (cloud and

layered fog nodes) which covers a particular geographical area; city(s), country(s),

52

5.2 SALFSD Cloud

or region(s). The service provider has agreements with many sensor/actuator devices
owners (mobile devices, wireless sensor networks, or even standalone devices) that
are linked to gateways. The gateways are connected to fog nodes in the lowermost fog
layer in SALFSD infrastructure. As per the agreement between the services provider
and devices owners, sensor devices must send their observation to the services
provider frequently/continuously as per the time agreed. Also, actuation devices

owners must allow the service provider to send actuation commands to be executed.

Now assume end user (environment specialist, agriculture monitoring agency, forest
monitoring, etc.) is interested in getting observations of type(s) of sensors either com-
ing under one or several network/area. According to the analysis of the received obser-
vations, end user may decide to send actuation command(s) to one or many actuators.
Again, actuators may be under one or several network/area. As explained in [5.1.1]
SALFSD deploys SCM of each end user -if any- in fog nodes as well as in the cloud

where the said node will trigger the actuation command on behalf of the end user.

5.2 SALFSD Cloud

This section details the components of SALFSD cloud and their responsibilities as
depicted in figure [5.2] The communication among the cloud, fog and gateway layers
is depicted in figure [5.12]

5.2.1 Cloud Gateway

Cloud gateway is the interface with the end user for registration, receiving requests
(required sensors and actuators and other details), sending observations to end user,
and receiving end user’s actuation request. End user’s requests are forwarded to Core
Management.

5.2.2 Core Management

Core management extracts the types and numbers of S/A requested by end user and
budget, sends them to Physical S/A Selection model to get the optimal S/A devices of
types requested by end user in his area of interest. Virtualization Management model

is informed about those selected devices.

53

5.2 SALFSD Cloud

- Request ID

- Timestamp

- Time requested
- Time frequency
- Sensors Types

user . llscli REQUEST - Number of Sensors
observation | actuation - Actuators Types
reception request - Number of Actuators

- Area of Intrest
- Budget

Cloud

. 5
'3 user's Gateway

< .
_F observation
7z

Users-
Virtualsets

y ’ Database N
/ l .
yd Virtualization . users-virtualset
// Management actuation storing
A N request
/ user’s Leayesto
// observation \
/ get user’s map user to S/A request

observation S/A

Core
Management

selected S/A
coordinate
assignments jctuation - .

command
observation [
\ Number i
. storin,
\ Timestamp g Fog G/W | assignements
\ Sensors ID Assignement ' &
\ .
\ | storing F/
\ L
\ . | get devices info ¥ 4
\ assignements
\ I
' |
N .
. . e Specified
\
N 03:;‘::;2“ dec.‘sm." N Cases Manager: if
A\ monitoring I

Manager

observation, _

o

actuation
command to fog

¥

Figure 5.2: Cloud Design with all its Components and Types of Internal Messages
Among its Modules

assignements|~

5.2.3 Physical S/A Selection

Physical S/A selection is responsible for selecting the optimal sensors and actuators
requested by end user in their area of interest, the selected sensors/actuators are passed
to virtualization management to create virtual set for each end user.

End user may request a set of sensors/actuators which may be available with different

54

5.2 SALFSD Cloud

feedback ratings and different associated costs. For effective based service, there is a

need for bi-optimization of sensors/actuators cost and feedback as below:

Minimize(Feost) (5.1)

Mazimize(Freeapack) (5.2)

NSGA-II is a well known multi-objective optimization algorithm and has solved

several optimization problems in IoT and many other different areas.

SALFSD strategy adapted NSGA-II method where every task is defined as vector
to be optimized. Comparison of cost and feedback values produces an optimal
sensors/actuators list. Algorithm [l shows SALFSD NSGA-II based algorithm. The
solution list, generation number and sensors/actuators list are initialized (lines 2-4).
Then the list of active sensors/actuators are aggregated and assigned to solution
list(line 5). Each solution is equipped with fitness_1 and fitness_2 functions (line 8).
In order to equate each population sample values with the other solution from the list,
NSGA-II uses a rapid non_dominated_sort() to filter the individual solution list into
some kind of different dominant types (line 8). Then crowding distance is calculated
to find nearby values (line 10). Crossover_Mutation() is used to produce the new
population (line 12). As per the non-dominated strategy, every entity governs another,
even if the dominant term is utilized to break the N-list into a number of fronts (lines
13-15). SALFSD utilizes crowding_distance() to choosing a subset of solutions of
similar domination rank by removing the fronts(line 17). Such phases go on until
the end criterion for completion or stopping. Then the optimal top-N suggestions for
specific solutions are considered. The maximal optimum S/A_id will therefore be
selected (lines 19-22).

_ fm(xi-&-l) - fm<xz‘—1)

CD;y = =2 (-1 s
fm(xmax) - fm(xmm) ! () ()

M
CDi =) CDin (5.4)

m=1

55

5.2 SALFSD Cloud

The crowding distance is calculated as per equations[5.3H5.5] In equation[5.3] in ascent
order of fm, sort and compute all the I’ solution in a pareto front and in equation
reiterate it for every objective and identify the crowding distance of 1 solution. In
equation [5.5] owing to two i and j solutions, the solution i would prefer to solution j
as it is with lower (better) rank than solution j or both may be with the same rank but

solution i is in less crowded region.

Ri < Rjor (Ri = Rj and CDi > CDy) (5.5)

Algorithm [2f selects the optimal sensors/actuators Id(s) based on 3 cases of end user
budget inputs: 1) If there are sensors/actuators in S/A equal to the given budget, then
the specific optimal sensors/actuators Id(s) will be selected line 5. Otherwise, 2) near-
est cost to end user budget in the list of Ss/As with a certain threshold value are consid-
ered for the optimal S/A_id(s) selection line 6. 3) If budget is not taken into account,

all available sensors/actuators are considered for the optimal selection line 7.

5.2.4 Virtualization Management

Once the optimal S/A are selected, the virtualization manager is in charge of creating
virtual sets for each user as per their selected sensors/actuators and handling sensors
observations to the cloud gateway to be sent to the end user. Figure shows sensors

and actuators virtualization.

5.2.5 Fog G/W Assignment

This model takes care of assigning end user specified cases monitoring to the nearest
fog node as per their geographical distribution. For example, in figure [5.1] suppose
that end userl has hired sensors/actuators in G/W1, then fog nodel in fog layerl
will be assigned the monitoring of end userl specified cases. If end user has hired
sensors/actuators from G/W2 and G/W4, then fog node?2 in fog layer2 will be assigned
the monitoring. In case end user sensors/actuators are in G/W1 and G/W4, then fog
nodel in layer fog3 will be assigned the monitoring. Cloud as well may monitor the
end user specified cases in case there is no any fog in the topology that has access to
(parent of) all G/Ws the end user has hired S/A from, G/W1 and G/Wn for instance.
In addition, and in case of fog node(s) failure, Fog G/W Assignment is in charge of

56

5.2 SALFSD Cloud

Algorithm 1: NSGA-II based SALFSD-1 (S/A_list)

—

Initialize population
Ngize < size(S/A list)

G, 0 > Generation_number
S; 0 > Sensor_list
for (S in S/Alist) do

Si < (S, sensor /actuator) > List of active sensors/actuators
S,_list < S > Solution_list

Initialize population for fitness function
while (G,, < max_gen) do

N ® = a Dok e

F, < Computefitness_1, S, list > price Finess function
Fy < Compute fitness_2, S, _list > feedback Finess function
Snp < non_dominated_sort(F,, Fy) > NSGA-II fast non dominated sort
Cp =]
10: for each Syp do
Cp.append(crowding_distance(F,, Fr, Snp)) > Find crowding
L distance

11: S, listl < S, _list
12: for each S,,_listl do
Sp-list2 < Compute_Crossover_Mutation(S,,-list]) >
| Compute Crossover Mutation
13: F,, < Computefitness_1, S, list2
14: Fy, < Computefitness_2, S, list2
15: Snp, < non_dominated_sort(F,,, Fy,)
16: CDl — H
17: for each Syp, do
L Cp, -append(crowding_distance(Fy,, Fy,, Syp,)) > Find crowding
distance
18: Sp_list2 <[]
19: for each Syp, do
front = Sort(Snp,,Cp,) > Sorting the front values
for each wval in front do
Sy -list2.append(val)
if (size(S, list2) == Ny;.. then
L break

21: S,,_list = S,,_list2 > Restore the solution
22: G, =G, +1

57

5.2 SALFSD Cloud

Algorithm 2: SALF S D-2 Optimaization Selection

1: S/A list < update(S/A_id) > Update S/A list
2: Optimal _S/A_id =0 > Initialize S/A_id
3: S/A list=[] > Initialize S/A _list
4: Budget < User_input > Cost Budget of end user
5: if price(S/A_id) == Budget then

Optimal _S/A_id < Optimal_feedback(S/A id) > Optimal

sensors/actuators Id(s) equal to budget
6: else if C'ost(S/A_id) > Budget then
New_Cost(S/Aid) = Cost(S/A_id) + threshold
S/A list.append(new_cost(S/A ids)
Optimal _S/A_id < SALFSD-1(S/A_list) > Optimal sensors/actuators
Id(s) with budget + threshold value
7: else
S/A list.append(S/A_ ids)
Optimal _S/A_id < SALFSD-1(S/A.list) > Optimal sensors/actuators
Id(s) from all available once

. return Optimal _S/A_id

(o]

Sovinual y o 0 vimual Ty S vimual v o/ vinual v
-, Sensor - s Sensor . Actuator “.. Actuator .’
Virtualization
Manager

Cloud Observation
Side Database

.. B B

Physical Physical Physical Physical Physical Physical
Sensor Sensor Sensor Actuator Actuator Actuator

Figure 5.3: Virtualizing Sensors and Actuators

58

5.2 SALFSD Cloud

reassigning children fog nodes and/or G/Ws.

The failure plan algorithm is given in algorithm 3| If a failure occurred, the failed node
id and ids of its children are retrieved, line 2. Line 3 finds the nearest fog node in the
same layer. If there is no such node or it is far from the geographical location of the
failed node, its parent node will be selected; line 4. The reassignment is done for all
children; line 5. If previously failed node reconnected, the original branch path will be

restored by reassignment of children nodes to the reconnected fog node, lines 6-7.

Algorithm 3: Failure Plan

1: topologystate < topologyM onitoring()
2: if topologystate = failureOccurred then
failedNode < get Failed N ode()
// Read Fogs, G/W & S/A Databases
childrenNodes < listChildrenN odes(failed N ode)

3: for each fog node in topology do
L reassignedN ode <+

getNearest NodeInSameLayer(failedN ode)

4: if reassignedNode = Null then

‘ reassignedNode < get ParentNode(failedN ode)
5: for each childNode in childrenNodes do

L newAssignement(childN ode, reassignedN ode)

break

6: else if topologystate = reconnection then
reconnectedN ode < getreconnected N ode()
childrenNodes < listChildrenN odes(reconnected N ode)
: for each childNode in childrenNodes do

L new Assignement(child N ode, reconnected N ode)

5.2.6 Specified Cases Manager

Specified cases manager in the cloud is to monitor the specified cases for end users in
such cases that the cloud is the only parent of all branches of G/Ws where the end user

sensors/actuators are connected to; for instance G/W1 and G/Wn in figure [5.1]

59

5.3 SALFSD Layered Fog

5.2.7 Fog Node Manager

All control messages to be sent from the cloud to fog nodes (e.g. assignments and
actuation commands either form generated by SCM or received from end users) are
sent through Fog Node Manager.

5.2.8 Fogs, G/'W & S/A Database

Being in the cloud, this database stores information about all devices in the entire net-
work; such information is used for S/A physical selection, specified case monitoring,

and assignment.

5.3 SALFSD Layered Fog

This section explains a fog node components, their responsibilities, and communica-
tion among them as depicted in figure

5.3.1 Fog Node Manager

Fog node manager receives control messages from the cloud or from parent fog node.

Two types of control messages are received:

1. Assignment: Either to be forwarded to child fog node or to the node itself. The
former is passed to “Fog, G/W Management Agent” and the later is stored lo-

cally.

2. Actuation Request: Either to the current node itself or to its child node, both are

passed to “Fog, G/W Management Agent.”

5.3.2 Specified Cases Manager

Specified cases manager in each fog node is to monitor the specified cased for end
users whom there hired Sensors/Actuators come under it. For example, fog node 2 in
fog layer 2 monitors of end users hired Sensors/Actuators in G/W 2 and G/W3, fog
node 2 in fog layer 2 monitors for end user of either G/Ws2,3, and G/W4, fog node 1

60

5.3 SALFSD Layered Fog

assignements from

parent fog or cloud
1) actuation
observation command from

- fog or cloud "T==~_

assignements local >
storing >

observation

local storin
2 Fogs, G/W & \ N
S/A Database N

Observation

/ Database Observation

Database
Manager

. devices info
actuation

command

get devices info

Specified
N Cases Manager: if

decision monitoring is

True

decision
.~~~ [‘monitoring

Device type
ID /
Parent ID
en ID /

Number .
\ Timestamp observation

\ Sensors ID /

N Type assignements to
Value .

child fog

Child

actuation 4
command -

MQTT
Translator

Fog, G/'W
Management
Agent

~ send actuation

observation command to
child fog or G/'W

assignements to|
child fog l

Figure 5.4: Fog Node Design with all its Components and Types of Internal Messages
Among its Modules

in fog layer 3 monitors for end users of G/W1 and any of G/Ws2,3, and 4.

The above explained monitoring is the default setup by the cloud as per SALFSD
infrastructure and end users hired Sensors/Actuator. However, to avoid increased
actuation latency, if a particular fog node in any layer is overloaded, it handles the mon-
itoring to its parent node as shown in algorithm 4 For each observation, monitoring
manager checks if the node has previously offloaded the monitoring to its parent but

now it is not overloaded; hence it will retrieve the monitoring from its parent; lines 1-2.

If there was no previous offloading, the fog node makes sure that it has to monitor the
observation either being the default monitoring node or its child node has offloaded
the monitoring task to it; line 3. If so, it checks its monitoring load if it is overloaded,
it offloads the monitoring to its parent node; line 4. Otherwise, it will go ahead with

61

5.3 SALFSD Layered Fog

checking the SCM; line 5. In case SCM generates an actuation command, it is passed
to (Fog, G/W Management Agent.)

Algorithm 4: SCM Monitoring
1: for each Observation do
2: if (Self is defaultMonitoringNode) and (currentMonitoringNode is not Self)

and (monitroingLoad < threshold) then
// Previously offloaded monitoring, but now node is not overloaded.

currentMonitoringNode = Sel f
chechSCM (Observation)
break

3: if Self is defaultMonitoringNode or childOffloadedMonitoring then
monitroingLoad < check M onitroingLoad(Sel f)

4: if monitroingLoad >= threshold then

parentNode < getParentNode(Self)
currentMonitoringNode = parent N ode

of floadM OnitoringToParent(parent N ode)

5: else if monitroingLoad < threshold then
L chechSCM (Observation)

5.3.3 Fog, G/W Management Agent

Fog, G/W Management Agent receives two types of messages:

1. Actuation commands either from Fog Node Manager or from Specified Cases
Manager. In any case, if the current fog node is in the lower fog layer, the com-
mand is passed to the designated G/W where the targeted actuator is connected
to. Otherwise, the actuation command is forwarded to the designated child fog
node.

2. Assignment from Fog Node manager. In such a case, the current fog node is
clearly not in lower fog layer; hence it forwards the assignment to the designated
child fog node.

62

5.3 SALFSD Layered Fog

5.3.4 MQTT Translator

MQTT (Message Queuing Telemetry Transport)[69] is a light weight messaging
transport protocol. MQTT is suitable for IoT devices and machine to machine
communication as it was designed with such devices constraints and requirement in
mind; low power and bandwidth consumption, small and easy code implementation
in devices, low latency, and continuous session awareness. Due to its many-to-many
communication nature, MQTT supports sensor data in real time.

MQTT does not have designated message form; hence SALFSD uses a translator for
avoiding any mixups in the sensors’ observations, sensors’ channels, ids, time-tamp
etc.

MQTT translator is the fog node entry for incoming observations for gateways. Upon
receiving each message from gateways, it first checks the observation if it is corrupted
it will drop it; algorithm [3] lines 1-2. Otherwise, only observation value and required
information in the message will be extracted, and a copy is sent to both specified cases

manager and observation database manager line 3.

Algorithm 5: Observation Filtering

1: observationStatus < checkObservationStatus()
2: if observationStatus is corrupted then

B dropObservation(observation)
3: else
L forwardObservation(observation)

5.3.5 Observation Database Manager

Observation Database Manager forwards all observations received from MQTT Trans-
lator to the parent (fog node or the cloud- replication is guaranteed at a higher level)

and stores a copy locally.

5.3.6 Fogs, G/'W & S/A Database

Being in fog node, this database stores information about all devices that comes under

it in the network topology; such information is used for S/A physical selection and

63

5.4 Gateway in SALFSD

observation .
actuation

command

MQTT
Translator

Sensor Actuator
Selector Selector

Figure 5.5: Gateway Node Design with all its Components and Types of Internal Mes-
sages Among its Modules

assignment.

5.4 Gateway in SALFSD

Gateways in SALFSD are considered dumb gateways as they do not do any form of
data processing; only forward observations from sensors to fog node and apply the ac-
tuation commands received from fog nodes on the sensors. Below subsections explain
SALFSD gateway components and their responsibilities as depicted in figure[5.5]

54.1 MQTT Translator
MQTT Translator is responsible for communication between G/W and fog node.

e Once it receives actuation command messages, it passes only the necessary in-

64

5.5 Formal Verification of Architecture Correctness

formation to the Actuator Selector; Actuator cloud id, actuation period (alarm

actuator for instance.)

e Observations received from Sensors Selector are sent to the fog node via the
dedicated MQTT channel.

5.4.2 Actuator Selector

Actuator Selector in the gateway receives actuation commands from MQTT Translator

and sets the commands in the designated channel of the target physical actuator.

5.4.3 Sensor Selector

Sensor Selector in the gateway receives sensing from the physical sensor, bends them

with the correct sensor cloud id and pass it to MQTT Translator.

5.5 Formal Verification of Architecture Correctness

This section proves the correctness of the failure plan and topology connectivity moni-
toring, SCM offloading, and observation filtering. First, the related architecture invari-

ants and properties are listed below.

5.5.1 Architecture Invariants and Properties:

(i) Architecture Invariants:

1. The architecture is fully connected if all branches are connected.

2. Failure of any fog node in a branch leads to the branch being disconnected, hence
the architecture is partially disconnected.

3. If a branch is disconnected, the dependent entities (Children fog nodes of the
failed fog node, Gateways, and IoT devices) are unreachable.
(i1) Final Objective:

4. Reassignment of dependent entities of the failed node to any other node recon-
nects the branch and make the dependent entities reachable again, and hence the

architect is fully connected again.

65

5.5 Formal Verification of Architecture Correctness

(iii) Functional properties:

5. When failure occurs, all the dependent entities are eventually reachable either

through a neighbouring node of the failed fog node or through its parent node.

6. Any failed fog node may not always reconnect, hence the original branch path

may not always be restored.

7. When a failure occurs, sending messages to dependent entities of the failed fog

node is paused until an alternative path is established by the reassignment.

8. The reassignment can always end correctly either to a neighbouring node or to

the parent node.

5.5.2 Connectivity Monitoring and Failure Plan Proof

This subsection proves the correctness of the failure plan and topology connectivity
monitoring.

Let T represents the topology.

FN Represents the set of N number of fog nodes in the topology.

fxi is a particular fog node i such that

fxie {fzl, fa2, fa3, .., frN}

Fully connected (Fc) Represents the topology when all its branches are connected.
Partially disconnected (Pc) Represent the topology when any fog node fails resulting
on a branch disconnection.

Virtually partially disconnected (Vpd) Represent the topology when any previously
failed node reconnects, this is a temporally state being made to pause sending
messages to dependent entities and do the reassignment to the connected fog node so

that the original path of the branch is restored.

The following scenarios are realised for the failure plan:

e Scenario (1): A fog node fails, and there is no any neighbouring fog node in the

same layer and same location.

— The system topology T is working in the normal state; Fc. Then a fog
node fxi fails. The connectivity monitoring discovers such node failure

66

5.5 Formal Verification of Architecture Correctness

and starts the failure processing. At this moment, the topology has lost
one branch; hence the topology is in Pd due to fxi failure. The dependent
entities (children fog nodes, gateways, and sensors and actuators) on fxi
are identified, then sending messages to such entities is temporally paused.
Then topology will be searched for the nearest neighbouring fog node in
the same layer and same location of fxi; there is no such node. Hence the
dependent entities will be assigned to the parent node of fxi. The topology
is then updated to reflect the new assignment and reconnect the branch,
changing the topology states to Fc. The paused messages are now resumed.

e Scenario (2): A fog node fails, and there is a neighbouring fog node in the same

layer and same location.

— The system topology T is working in the normal state; Fc. Then a fog node
fxj fails. The connectivity monitoring discovers such node failure and starts
the failure processing. At this moment, the topology has lost one branch;
hence the topology is in Pd due to fxj failure. The dependent entities on fxj
are identified, then sending messages to such entities is temporally paused.
Then topology will be searched for the nearest neighbouring fog node in the
same layer and same location of fxj; such node is found say fxj+1. Hence
the dependent entities will be assigned to fxj+ /. The topology is then up-
dated to reflect the new assignment and reconnect the branch, changing the

topology states to Fc. The paused messages are now resumed.

e Scenario (3): A previously failed fog node reconnected.

— The system topology T is working in the normal state; Fc. Then a
previously failed fog node fxi reconnects. The connectivity monitoring
discovers such node reconnection and starts restoring the original path of
Jfxi branch. fxi depending entities are identified and sending messages to
such entities is temporally paused, making the topology to be in Vpd while
the original path is restored. The topology is then updated to reflect the
new assignment and reconnect the branch, changing the topology states to

Fc. The paused messages are now resumed.

67

5.5 Formal Verification of Architecture Correctness

/ Connectivity monitoring ™,

- >| (Failure or reconnection
ANy occurred)

/

//- Pause sending \\

|/Resume paused\| Identify dependent | messages to dependent |

\ entiies /

messages

- /

Failure or Reconnection? %

Reconnection

entities

A S

Failure

@ny neighbouring node \H:\- Yes

-

[

/“Assign dependent ™
| entities to the parent

o

node

MNo

' Assign dependent ™
- entities to the
__reconnected node /

-
!

/“Assign dependent ™
entities to the

‘.neighbouring node_/

iy
|
.

'/u date the topol)
b pdate the topology |< /
I\‘\ jl

Figure 5.6: Behaviour of Connectivity Monitoring and Failure Plan

The above scenarios show that failure plan always succeeds in reconnecting the
affected branch due to fog node failure, and the final objective is always reached.

Figure [5.6|describes the behaviour of the proposed failure plan.

State Transition

The state of the topology is said to be fully connected if all its branches are connected,
a normal state. Failure of any fog node makes the topology enters the partially
disconnected state. Reconnection of any previously disconnected fog node makes the
topology temporally enters virtually partially disconnected state. Figure[5.7] shows the

state machine of the proposed failure plan.

The state machine M of the topology is represented as a pentuple
M= (Q’ E’ 5 »q0, F)

68

5.5 Formal Verification of Architecture Correctness

____ Reconnection
| Fully connected | ey
pt A |f" Virtually pamam.?‘*|
Reassi gnfﬁéﬁtk disconnected
Reassignment done
done Failure
J-occurred
4 Partially N

_ disconnected Y,

Figure 5.7: State Machine of Connectivity Monitoring and Failure Plan

Where Q Represents set of sates.

Y. represents the set of inputs needed for transitions.
0 represents the transition function.

qo represents the initial state.

F represents the final state.

Q = { Fully connected, Partially disconnected, Virtually partially disconnected}.
Y. = {Failure occurred (Fo), Reconnection (R), Reassignment done (Rd)}.

¢o = {Fully connected}.

F = {Fully connected}.

The transitions of the state machines are defined as:

a. 0 (Fully connected, Fo) = Partially disconnected.

b. ¢ (Partially disconnected, Rd) = Fully connected.

c. ¢ (Fully connected, R) = Virtually partially disconnected.
d. ¢ (Virtually partially disconnected, Rd) = Fully connected.

The following cases describe the correctness of the connectivity monitoring and

failure plan of the architecture topology.

e Case (1): A fog node fails and dependent entities will be assigned to other fog

node.

69

5.5 Formal Verification of Architecture Correctness

— ¢ (Fully connected, Fo) = Partially disconnected.

— ¢ (Partially disconnected, Rd) = Fully connected € F, hence accepted.

The topology T state is changed from Fully connected to Partially disconnected
(Failure occurred). When reassignment is successfully done (Rd), it enters into the
Fully connected state which is the accepted final state in the state machine M. The
state transitions are same whether the assignment will be for a neighbouring node or

to the parent node of the failed one; hence this case is applied for both scenarios.

e Case (2): A previously failed node reconnected.

— 0 (Fully connected, R) = Virtually partially disconnected.

— 0 (Virtually partially disconnected, Rd) = Fully connected € F, hence
accepted.

The topology T state is changed from Fully connected to Virtually partially discon-
nected (Reconnection). When reassignment is successfully done (Rd) to restore the
original branch path, it enters into the Fully connected state which is again the ac-
cepted final state in the state machine M.

5.5.3 SCM Monitoring and Offloading Proof

As explained earlier, SCM is assigned by the cloud to the lowermost fog node con-
nected to the gateway(s) from which the end user Ss/As are connected to. However,
this monitoring node can offload the monitoring to its parent if it is overloaded to re-
duce the actuation commands latency. Later, if the fog node is not overloaded, it can
retrieve the monitoring offloaded to its parent.

The following scenarios are realised for the SCM monitoring and offloading, as de-
picted in figure 5.8}

e Scenario (1): A fog node is not overload; hence it will monitor the SCM locally
as assigned by the cloud.

70

5.5 Formal Verification of Architecture Correctness

| Observation |
_ received Y,

Monitoring |
overload? _*

Yes . I-”f Offload SCM K\l
"\ toparent

¢

.ND

Weather previously
uploaded SCM?

Retrieve
monlmnng fmm
g arent /’

p Js
Monitor SCM
LM locally

Figure 5.8: Behaviour of SCM Monitoring and Offloading

— For any observation sent to SCM, the specified cases manager will check
if the node monitoring load is equal to or more than the threshold. If not,
the node will continue monitoring the specified cases assigned to it locally.
Also, if the node is not overloaded, it checks whether it has previously
offloaded the monitoring to its parent. If so, it will retrieve monitoring
from parent and continue monitoring locally.

Note that the threshold may be different from node to node depending on the node
processing capability.

e Scenario (2): Fog node is overloaded.

— If the specified cases manager receives observation during which the

node is overloaded (node monitoring load is equal to or more than the

71

5.5 Formal Verification of Architecture Correctness

Mode is not overloaded

g Yy
| Local monitoring |
p vy

Nodeis | MNode is
not overloaded
overloaded

4 ™
| Offloaded |
A A

Figure 5.9: State Machine of SCM Monitoring and Offloading

threshold), it will offload the monitoring to the parent fog node.

State Transition
The state of SCM monitoring can be either local monitoring or offloaded; this is
governed by the threshold of the node monitoring load. Figure [5.9) shows the state

machine of the proposed SCM monitoring and offloading.

The state machine M of SCM monitoring is represented as a pentuple
M = (Q’ E’ 5 40, F)

Where Q Represents set of sates.

Y] represents the set of inputs needed for transitions.
0 represents the transition function.

qo represents the initial state.

F represents the final state.
Q = { Local monitoring, Offloaded}.

Y. = {Node is not overloaded (Nno), Node is overloaded (No)}.

¢o = {Local monitoring}.

72

5.5 Formal Verification of Architecture Correctness

F = {Local monitoring, Offloaded}.

The transitions of the state machines are defined as:
a. 0 (Local monitoring, Nno) = Local monitoring.
b. ¢ ((Local monitoring, No) = Offloaded.

c. 6 (Offloaded, Nno) = Local monitoring.

The following cases describe the correctness of the specified cases manager for moni-
toring and offloading.

e Case (1): The node monitoring load is less than the threshold; the node is not

overloaded.

— ¢ (Local monitoring, Nno) = Local monitoring.

The state of monitoring will continue to Local monitoring as long as the monitoring
load is less that the threshold. This is an accepted state; € F.

e Case (2): The monitoring load goes equal or more that the threshold. Therefore
the manager will offload the monitoring to the parent node.

— 0 (Local monitoring, No) = Offloaded.

As the node is overloaded, the monitoring will enter an Offloaded state which goes on
as long as the node is load overloaded. This state is also accepted; € F. This way the

monitoring will continue even at the parent node.

e Case(3): The manager has previously offloaded monitoring, but now the node is

not overload.

— 0 (Offloaded, Nno) = Local monitoring.

Once the node is not overloaded, the manager will retrieve the monitoring from the
parent node as assigned by the cloud. This is again the same accepted state; € F.

73

5.5 Formal Verification of Architecture Correctness

|" Observation “|
\ received J

Check status
b corrupted —

""I'-"iléalthy

| Forward |
LY F

e A

Figure 5.10: Behaviour of Observation Filtering

5.5.4 Observation Filtering Proof

The observation received to MQTT will be filtered, and only the healthy once will
be farther forwarded upward. Figure describes the behaviour of the proposed
observation filtering.

The following scenarios are realised for the observation filtering.

e Scenario (1): Received observation is corrupted.

— Upon receiving any observation, MQTT translator checks its state. If it is
corrupted, it will be dropped.

e Scenario (2): If the received observation is not corrupted, a copy will be stored
in the fog observation database, and a copy will be forwarded upward.

State Transition

The state of observation and the transitions of states are depicted in figure
The state machine M of observation filtering is represented as a pentuple
M=(Q, %, 0,0, F)

Where Q Represents set of sates.
Y represents the set of inputs needed for transitions.

74

5.5 Formal Verification of Architecture Correctness

' ™ Check N

" Observation N

l‘a received Corrupted ,fl
Check Drop

' ~,

| Healthy | - -

- / | Deleted }|

i;f;; / g Forward

rd

/

|/ .
R R
Store Forwarde
| d | | ded |

Figure 5.11: State Machine of Observation Filtering

0 represents the transition function.
qo represents the initial state.

F represents the final state.

Q = { Local monitoring, Offloaded}.

Y. = {Observation received , Corrupted, Healthy, Stored, Forwarded, Deleted }.
¢o = {Observation received}.

F = {Stored, Forwarded, Deleted}.

The transitions of the state machines are defined as:
a. 0 (Observation received, Ck) = Healthy.

b. § (Observation received, Ck) = Corrupted.

c. 0 (Healthy, Sc) = Stored.

d. 0 (Healthy, F) = Forwarded.

e. 0 (Corrupted, D) = Deleted.

The following cases describe the correctness of observation filtering .

e Case (1): The received observation is corrupted.

— 0 (Observation received, Ck) = Corrupted.
— 0 (Corrupted, D) = Deleted.

75

5.6 Summary

If the received observation is found to be corrupted, it moves into a Corrupted state

result of checking. Then it ends in the Deleted state as a final accepted state; € F.

e Case (2): The received observation is healthy.

— ¢ (Observation received, Ck) = Healthy.
— ¢ (Healthy, Sc) = Stored.
— ¢ (Healthy, F) = Forwarded.

Upon receiving, the observation enters into received sate, as a result of checking it
enters into Healthy sate. The Healthy observation must be forwarded to the parent
node, and a copy must be stored in the local observation database. Both Stored (locally)
and Forwarded (upward) states are accepted as final states of the healthy observation;
ek

5.6 Summary

The entire proposed architecture is detailed in this chapter. The topology and com-
ponents of each layer, the communication among nodes, and internal communication
among nodes submodules are thoroughly discussed. Besides, the performance metrics
governed the architecture design, the main contributions and the way they are expected
to enhance the performance of SAaaS are also detailed. Finally, formal verification of
the architecture correctness is presented. Experiments methodology and the simulation
results are discussed in the following chapter.

76

5.6 Summary

- Request ID
- mp

- Time requested
- Time frequency
ensors Types

user - y
N N REQUEST - Number of Sensors
observation [actuation - Actuators Types
reception request - Number of Actuators

- Area of Intrest
- Budget

user”

observation

/
1

actuation
request

REQUEST

users-virtualsets
storing User ID
Sensors typ

, user’s
/ observa

get user’s map user to S/A request

observation S/A
Cor
Management
b selected S/A Parent 1D
coordinate . Children 1D
actuation
command
observation |
storing
3 o G/W. !
Assignement | storing
assignements :

. pecificd
Observarion decision Cases Manager. it
S monitoring™ | — | — — gecision monitoring is,
anager True
send
actuation
command _
observationtobe T ~-__ | N ____--—7
nt externall . send actuati
sent externally assignements to be send actuation
sent externally command to
1 fo;
e

assignements local
storing -

. observation
ocal storing

Fe
Observation

- devices i
Databa Obscrvation 9
oatb o) actuation A\
Manager
command

decision

observation _ — monitoring

Device type
D
Parent 1D
Children 1D
Type
actuation Covering Area

assignements to
child fog

~
command -
. Fog, G/W - -
i send
. command to
observation to be hild fog
sent externally R ——————___

assignements local
storing

Fe
Observation
Database

devices info’

‘Observation
Database
Manager actuation

command

get devices infol

Specified

decision —

observation monitoring
7

rif
decision monitoring is

actuation
command

actuation
command

P
/ I
Sensing Actuating
~ é .
~ -
~ -
Sensing_ Actuating

© o

Figure 5.12: Communication among the Cloud, Parent Fog, Child Fog, and Gateway
77

Chapter 6
Experiment Results and Discussion

To evaluate the contributions in SALFSD, the architecture was simulated using YAFS
(Yet Another Fog Simulator)[57]. Several simulations types are conducted to highlight
the different contributions like failure plan, observation filtering, monitoring end users’
specified cases, and offloading specified cases. This chapter explains each simulation

type, modes of each type, compares and discusses the results.

6.1 YAFS

YAFS is a discrete event simulator very similar to iFogSim yet more flexible. It pro-
vides powerful tools to easily design fog computing applications, implementing rout-
ing strategies, and also permit a dynamic resources allocation and topology manage-
ment, which are very useful to implement failure plan scenarios. YAFS is built using
two main Python libraries. 1) Simpy for discrete event simulation, it represents the
core of the simulator which control the different process of the simulation such as the
tasks generation, messages transmission and execution. 2) NetworkX is the graph the-
ory library integrated into YAFS to define system architecture in which nodes represent
the topology device such as sensors, actuators, fog devices, and the cloud, along with
edges which represent the links among system devices.

78

6.2 Experiment

6.2 Experiment

Before explaining the experiments, the general simulation setup parameters for all ex-

periments are specified in table[6.1] and the equations used to calculate latencies with
their abbreviations are listed in table [6.2

Table 6.1: General Simulation Setup Parameters

Parameter Value

Cloud CPU 16 Ghz

Fog CPU 2 to 6 Ghz
Observation/Actuation message instructions | 1 Million Instructions
Observation/Actuation message size 10 Kbyte

Bandwidth 2 to 6 Mbyte

Table 6.2: Abbreviations Used in the Equations

LCP
LCN

Abbreviation | Definition
m Message
n Computing node

Computing latency
Communication latency

Computing latency (LCP):

LCP,, =

LCP actuation messages:

instructions,,
CcPU,

LCOP,ciuation = Z LCP,,(actuation)
0

79

(6.1)

(6.2)

6.2 Experiment

LCP observation messages:

LCPpservation = Z LCP,,(observation)
0

Communication latency (LCN):

S12€,,
LCN,, = ———
CNom bandwidth

LCN actuation messages:

LC Nyetuation = Z LC N, (actuation)
0

LCN observation messages:

LC Npservation = Z LCNm(observation)
0

(6.3)

(6.4)

(6.5)

(6.6)

The different types of experiments, their configuration and results are discussed below.

6.2.1 Failure Plan

As every fog node is known to be a point of failure, failure plan in SALFSD is to mon-

itor the failure of any fog node and reassign its tasks and responsibilities to the nearest

fog node in the same level or its parent fog node. Here we evaluate the benefit of hav-

ing reassignment by comparing average sent and received observation and actuation

commands for the following modes of tests with regards to failure plan:

1. Mode 1: Simulation runs without failing any fog node.

2. Mode 2: Ten fog nodes are randomly failed during simulation without reassign-

ment; reassignment is disabled.

3. Mode 3: Ten fog nodes are randomly failed during simulation and their tasks are

reassigned to other fog nodes.

80

6.2 Experiment

The simulation configuration parameters of failure plan are specified in table [6.3]

Table 6.3: Configuration Parameters for Failure Plan Modes

Parameter | Value

General Parameters for All Tests

Number of Fog Layers 3

Number of Fog Nodes 39

Simulation Time 500

Failure Mode 1,2, and 3

Number of Failed Fog Nodes 10, for modes 2 and 3 only

Actuation Mode Both End User and SCM

Monitoring Mode No Offloading

Corrupted Messages Mode No Corrupted Messages

Number of Areas Per User Random
Parameters for 100 Users Tests

Number of Gateways 80

Number of Sensors 237

Number of Actuators 240
Parameters for 200 Users Tests

Number of Gateways 91

Number of Sensors 265

Number of Actuators 251
Parameters for 300 Users Tests

Number of Gateways 74

Number of Sensors 234

Number of Actuators 224
Parameters for 400 Users Tests

Number of Gateways 79

Number of Sensors 243

Number of Actuators 230
Parameters for 1000 Users Tests

Number of Gateways 73

Number of Sensors 201

Number of Actuators 218

Figure [6.1] presents the results of average observation generated by sensors, average
observation successfully received by cloud, average actuation requests generated, and

81

6.2 Experiment

Average Generated/Received Observation and Actuation Messages

W Mode 1: No Failure [Mode 2: Failure without reassignment @ Mode 3: Failure with reassignment
2000
3500
30001 7788 - 7788 - 7788 7788 7788
7500
7000
6500
6000
5500
5000
4500
4000
3500
3000
2500
2000
1500
1000

Number of Messages

3139.2 3125.4 3139.2 31254 |

2367

1456.6

Avg. Observation Generated Avg Observation Recewved Awg Actuation Generated — Avg Actuation Received

Figure 6.1: Packets loss due to Failed Fog Nodes

average actuation successfully executed; the average is for five tests (i.e. 100, 200,
300, 400, and 1000 users). Results show that mode 3 -reassignment- avoids loss of
observations and actuation requests comparing with mode 2 - no reassignment. In case
of no reassignment, the network topology remains disconnected; could have many
disconnection points depending on the number of failed fog nodes hence leading to a

vast amount of missing messages.

6.2.2 Actuation Mode

In SAaaS, typically end user gets the observations, analyses them and then decide
the proper actuation; if any. However, as explained in [5.1.1} SALFSD deploys users’
SCM in fog nodes as well as the cloud. Here we evaluate the benefit of having SCM
by comparing actuation communication latencies for the following modes of tests:

1. Mode 1: Actuation request is generated by end users only.

82

6.2 Experiment

2. Mode2: Actuation request is generated by SCM only.
3. Mode3: Both end users and SCM generate actuation requests.

The simulation configuration parameters of actuation modes are specified in table

Table 6.4: Configuration Parameters for Actuation Modes

Parameter | Value
General Parameters for All Tests
Number of Fog Layers 3
Number of Fog Nodes 39
Simulation Time 500
Failure Mode Failure With Reassignment
Number of Failed Fog Nodes 10
Actuation Mode 1,2 and 3
Monitoring Mode No Offloading
Corrupted Messages Mode No Corrupted Messages
Number of Areas Per User Random
Parameters for 100 Users Tests
Number of Gateways 79
Number of Sensors 395
Number of Actuators 226
Parameters for 200 Users Tests
Number of Gateways 70
Number of Sensors 350
Number of Actuators 195
Parameters for 300 Users Tests
Number of Gateways 90
Number of Sensors 450
Number of Actuators 257
Parameters for 400 Users Tests
Number of Gateways 70
Number of Sensors 350
Number of Actuators 217
Parameters for 1000 Users Tests
Number of Gateways 73
Number of Sensors 750
Number of Actuators 237

83

6.2 Experiment

Actuation Communication Latency

B Mode 1: Only End User H Mode 2: Only SCM E Mode 3: Both End User and SCM
90
85
80
75
70
65
60
55

g 50
845
o
= 40
35
30
25
20
15 10.26
10— 8.07—— g 9-05
5 | _4.3_301 .
0
100 users 200 users 300 users 400 users 1000 users

Figure 6.2: Actuation Communication Latency for Actuation Modes

Figure [6.2] shows actuation communication latency. In mode 1 and 3, the observations
have to travel to the cloud then to the end user. Then the end user will analyse them
and decide the proper actuation to be taken and sends back the actuation command;
this takes longer time compared to mode 2. Mode 2 always results in less communica-
tion latency, which makes actuation commands generated by SCM in several network

points fits time-sensitive applications.

6.2.3 Monitoring Offloading

As explained in [5.3.2] SCM may be offloaded to parent fog node in case of the fog
node responsible for monitoring is overloaded. To evaluate the benefit of offloading
SCM we conducted and compared actuation computing latencies for two test modes:

1. Mode 1: No offloading; Fog node will keep monitoring even if it is overloaded.

2. Mode 2: Overloaded fog node offloads SCM to its parent.

84

6.2 Experiment

Note that the threshold may be different from node to node depending on the node
processing capability, hence threshold has been set randomly to simulate such

differences among fog nodes.

The simulation configuration parameters of monitoring offloading modes are specified
in table

Table 6.5: Configuration Parameters for SCM Monitoring Offloading Modes

Parameter | Value

General Parameters for All Tests

Number of Fog Layers 3

Number of Fog Nodes 39

Simulation Time 500

Failure Mode Failure With Reassignment
Number of Failed Fog Nodes 10

Actuation Mode Both End User and SCM
Monitoring Mode No Offloading
Corrupted Messages Mode No Corrupted Messages
Number of Users 100

Number of Areas Per User Random

Parameters for 395 Sensors Tests

Number of Gateways 79

Number of Actuators 226

Parameters for 648 Sensors Tests

Number of Gateways 81

Number of Actuators 254

Parameters for 783 Sensors Tests

Number of Gateways 77

Number of Actuators 230

Parameters for 875 Sensors Tests

Number of Gateways 87

Number of Actuators 255

Figure shows that offloading reduces the actuation computing latency in all
conducted tests. Without offloading, monitoring observations is delayed as the node is

85

6.2 Experiment

Actuation Computing Latency

B Mode 1: Without SCM Offloading E Mode 2: With SCM Offloading
5.0

4.7

4.49

4.4

41

29

26

23

2.0
395 Sensors 648 Sensors 783 Sensors 875 Sensors

Figure 6.3: Actuation Computing Latency for SCM Monitoring Offloading Modes

overloaded, and hence the generation of actuation command.

6.2.4 Corrupted Observation Filtering

As explained in[5.3.4) MQTT translator filters all incoming observations and drops the
corrupted once; if any. To evaluate the benefit of such Filtering, we have compared
total observation latencies (communication latency + computing latency) for three test

modes:
1. Mode 1: No corrupted observations are generated.

2. Mode 2: Corrupted observations are generated and forwarded; No filtering and

all incoming observations are forwarded.

3. Mode 3: MQTT translator filters and drops the corrupted observations. Only

86

6.2 Experiment

uncorrupted observations are forwarded.

The simulation configuration parameters of observation filtering modes are listed in

table

Table 6.6: Configuration Parameters for Observation Filtering Modes

Parameter Value
General Parameters for All Tests

Number of Fog Layers 3

Number of Fog Nodes 39

Simulation Time 500

Failure Mode Failure With Reassignment

Number of Gateways 81

Number of Failed Fog Nodes 10

Actuation Mode Both End User and SCM

Monitoring Mode No Offloading

Corrupted Messages Mode 1,2 and 3

Number of Areas Per User Random
Parameters for 100 Users Tests

Number of Sensors 243

Number of Actuators 234
Parameters for 200 Users Tests

Number of Sensors 246

Number of Actuators 243
Parameters for 300 Users Tests

Number of Sensors 255

Number of Actuators 254
Parameters for 400 Users Tests

Number of Sensors 242

Number of Actuators 254
Parameters for 1000 Users Tests

Number of Sensors 222

Number of Actuators 242

Figure [6.4] shows that corrupted observation filtering in mode 3 results in the same

total observation latency as mode 1 -where corrupted messages are not generated- in

87

6.2 Experiment

Total Obgervation Latency

B Mode 1. No Comrupted Obs E Mode 2 Corrupted Obs No Filtering E Mode 3. Corrupted Obs. With Filtermg
550

510 497.78

470

Total Latency (Commumication + Computation)

129.6 132.27 132.27 136.96

126.94 150,37 120.37

100 Users 200 Users 300 Users 400 Users 1000 Users

Figure 6.4: Total Observation Latency Corrupted Messages Modes

all conducted tests. The result also shows the increased total observation latency due

to forwarding the corrupted observations in mode 2.

6.2.5 Comparing SAaaS with and without Layered Fog

To present the value added benefits of layered fogs in SAaaS combined with the cloud,
we have compared total observation latency (communication latency + computing la-

tency), actuation computation, and communication latencies for two test modes:

1. Model: SALFSD with layered fogs. Here only SCM is activated and remaining
FDLFSD contributions are disabled; No offloading, no corrupted observations
are generated, and no failed fog nodes.

2. Mode 2: SALFSD without layered fogs; Only the cloud and gateways with S/A.
In addition, to keep the same distance between the gateways and the cloud, we

88

6.2 Experiment

have placed routers nodes (instead of fog nodes for the same number of layers

in mode 1; i.e. 3 layers.)

The simulation configuration parameters are listed in table

Table 6.7: Configuration Parameters for Layered Fogs Modes

Parameter | Value

General Parameters for All Tests

Number of Fog Layers 3

Number of Fog Nodes 39

Simulation Time 500

Failure Mode No Failure

Actuation Mode Both End User and SCM

Monitoring Mode No Offloading

Corrupted Messages Mode No Corrupted Messages

Number of Areas Per User Random
Parameters for 100 Users Tests

Number of Gateways 80

Number of Sensors 237

Number of Actuators 240
Parameters for 200 Users Tests

Number of Gateways 91

Number of Sensors 265

Number of Actuators 251
Parameters for 300 Users Tests

Number of Gateways 74

Number of Sensors 234

Number of Actuators 224
Parameters for 400 Users Tests

Number of Gateways 79

Number of Sensors 243

Number of Actuators 230
Parameters for 1000 Users Tests

Number of Gateways 73

Number of Sensors 201

Number of Actuators 218

89

6.2 Experiment

Total Latency (Communication + Computing)

Total Obgervation Latency

B Mode 1: SALFSD with Layered Fog E Mode 2: SALFSD without Layered Fog

165
160
155
150
145

—
oy
=

135
130
125
120
115
110
105

144.77

100 Users

200 Users 100 Users3 400 Users 1000 Users

Figure 6.5: Total Observation Latency, SAaaS with and without Layered Fog

Figure [6.5] shows total observation latency for both modes. Despite having the same

distance between the cloud and gateways witch makes the same communication

latency, the reason that makes mode 1 results in increased total observation latency

is having more computing in the layered fog; Fog nodes process the observation for

the sake of SCM - consequently adding more observation computing latency. The

same is also applied to actuation computing latency presented in figure [6.6] which is

considered weak point in SALFSD. However, the trade-off is that mode 1 results in

less actuation communication latency, and hence actuation commands can be triggered

faster than having to be from end user side; as presented figure [6.7]

90

6.3 General Discussion on the Results

Actuation Computation Latency

B Mode 1: SALFSD with Layered Fog E Mode 2: SALFSD without Layered Fog

30
28
26
24 22.8
22
B 20
E‘ 18
3
= 16
g
= 14
=]
g12
(=]
O 10
8
6
T 263
0
100 Users 200 Users 100 Users3 400 Users 1000 Users

Figure 6.6: Actuation Computation Latency, SAaaS with and without Layered Fog

6.3 General Discussion on the Results

The added layered fog to SAaaS basic design and the proposed features implemented
inside fog nodes and the cloud has been simulated and evaluated in terms of the
following metrics: 1) total delivered messages, 2) computing and communication
latencies for observation and actuation messages. The simulation was conducted in
the same environment with different scenarios regarding the number of end users,
number of gateways, number of sensors and actuators in 10T layer, and number of
areas per end user from which their sensors and actuators are selected.

The overall study of the results shows that besides keeping the infrastructure con-

nected, failure reassignment prevents loss of observation and actuation messages,
consequently resulting in 100 per cent messages delivery.

91

6.3 General Discussion on the Results

Actuation Communication Latency

B Mode 1: SALFSD with Layered Fog E Mode 2: SALFSD without Layered Fog

130
125
120
115
110
105
100
95
90
85
80
75
70
65
60
55
50
45 42.67
1 34.16 3643 —
30
25 20.66 — 22-01 —|
20
151—10.13 — 10.69
10 :
5

113.79 __|

Communication Latency

100 Users 200 Users 100 Users3 400 Users 1000 Users

Figure 6.7: Actuation Communication Latency, SAaaS with and without Layered Fog

Also, results show that deploying end users’ SCM in the cloud and fog nodes generally
decreases the actuation latency as the decision of triggering the actuation command is
being taken closer to IoT layer. Furthermore, SCM offloading also prevents increased
actuation latency in case fog nodes are overloaded due to receiving a vast amount of
observation to be monitored (an IoT associated issue; i.e. Big Data [56]). Such a case
is expected with the increased number of IoT devices in SAaaS paradigm. This is

particularly significant in time-sensitive applications.

In addition, dropping the corrupted observations reduces the unnecessary consumption
of network bandwidth. Corrupted observation may be sent from sensors, or being
effected while forwarding by fog node. The former is dropped by the fog node
connected to the gateway in the lower fog layer. The later is dropped by parent fog
node in upper fog layers.

92

6.4 Summary

Comparing SAaaS with and without layered fog presented less actuation communica-
tion latency with layered fog. Adding this point to the benefits of features implemented
inside fog nodes, totally shows the performance enhancement provided by SALFSD to
the basic SAaaS architecture.

6.4 Summary

Adding scalable and fault resistant layered fog architecture in SAaaS and wisely select-
ing tasks to be handled by fog nodes has improved the performance of SAaaS. Also,
the failure plan suggested in SALFSD provides a persistent availability of the services
provides network and hence to its promised services. SALFSD has proved itself in the
evaluation results to be a piece of valuable advice for designing SAaaS architectures

for IoT applications.

93

Chapter 7
Conclusions and Future Work

The primary and broad focus of this thesis is to attempt to come out with architectures
for services composition in IoT toward a vision of the future smart city. These
architectures are mainly concerned with sensing and actuating as a service. To this
end, chapter 2 of the thesis presents a related work of several types of sensing systems
and paradigms were discussed: participatory sensing, opportunistic sensing, urban
sensing, and People-Centric Urban Sensing, etc. The same was preceded with briefly
detailing the primary building blocks of IoT, the existing technologies in which such
systems strongly depend on. Chapter 2 also presents the essential requirements of
IoT systems that any architecture aiming for IoT, mainly based on cloud and fog
computing and their integration, must take into consideration during the design and
implementation stages. Such design and implementation requirements emerge from
IoT systems sophisticated and rigorous requirements. Besides, chapter 2 detailed
the indispensable benefits added to IoT towards overcoming its limitations by cloud

computing, fog computing, and their integration, as well as their challenges.

Chapter 3 details our vision of the future smart city service providers, along with a
high level architecture proposal for integrating several independent providers that may

offer heterogeneous services.
In chapter 4, we present our proposed Internet of Things Sensors and Actuators

Layered Fog Service Delivery Model SALFSD. The architecture is designed with

inbuilt failure plan to maintain the network topology connection against any fog

94

node(s) failure. Also, several features like end user prespecified cases monitoring,
corrupted observation filtering, monitoring offloading are provided in SALFSD. A
feature wise comparison is conducted against related work in literature for sensing and
actuating as a service with respect to the use of topology, failure plan, virtualization,
etc.

Chapter 5 extends the work in chapter 4, detailed with the added contributions.
The entire SALFSD components and communication among them are explained
thoroughly along with formal verification of the correctness of the proposed archi-
tecture. The added layered fog to SAaaS basic architecture design (cloud and IoT
layers), and the proposed features implemented inside fog nodes and the cloud has
been simulated and evaluated in chapter 6 in terms of the following metrics: 1) total
delivered messages, 2) computing and communication latencies for observation and
actuation messages. The simulation is conducted for each feature in SALFSD and
also a comparison of the architecture, including and excluding the layered fog is
conducted. The results depict the latency reduction with the presence of layered fog
in the architecture as well as while including each feature. Besides, results show
that the failure plan prevents network disconnection and packets drop. Further, we
have implemented a bio-optimization algorithm in SALFSD for sensors and actuators

selection base on minimized cost and maximized feedback.

As future work, we are planning to enhance the current work by implementing the
reassignment in fog nodes also beside the cloud to make a distributed failure plan;
meaning that any parent fog node can issue the reassignment to any child node without
having to wait for the same to be received from the cloud. Presently in SALFSD
there is no communication among fog nodes in the same layer, this is also planned for
future work to allow collaboration in the same layer. Besides, more work is required
to improve the current architecture and implement many techniques for authentication,

authorization, and both end users and devices management.

95

References

[1]

(2]

[5]

MAZLAN ABBAS. Sensing-as-a-Service: The New Internet of Things (I0T)
Business Model. In MIMOS Berhad, 2014.

S. ABDELWAHAB, B. HAMDAOUI, M. GUIZANI, AND A. RAYES. Enabling
Smart Cloud Services Through Remote Sensing: An Internet of Everything
Enabler. /EEE Internet of Things Journal, 1(3):276-288, June 2014.

S. ABDELWAHAB, B. HAMDAOUI, M. GUIZANI, AND T. ZNATI. Cloud of
Things for Sensing-as-a-Service: Architecture, Algorithms, and Use Case.
IEEE Internet of Things Journal, 3(6):1099-1112, Dec 2016.

MAYANK AGGARWAL, KUMAR NILAY, AND KULDEEP YADAV. Survey of

named data networks: future of internet. International Journal of Information
Technology, 9(2):261-266, Jun 2017. (]

ALA AL-FUQAHA, MOHSEN GUIZANI, MEHDI MOHAMMADI, MOHAMMED
ALEDHARI, AND MOUSSA AYYASH. Internet of Things: A Survey on En-
abling Technologies, Protocols, and Applications. /[EEE Communications Sur-
veys & Tutorials, 17(4):2347-2376, 2015.

MOHAMMED AL-KHAFAJIY, THAR BAKER, ATIF WARAICH, DHIYA AL-
JUMEILY, AND ABIR HUSSAIN. IoT-Fog Optimal Workload via Fog Offload-
ing. 2018 IEEE/ACM International Conference on Utility and Cloud Computing
Companion (UCC Companion), pages 359-364, 2018. (23]

M. AL YAMI AND D. SCHAEFER. Fog Computing as a Complementary Ap-
proach to Cloud Computing. In 2019 International Conference on Computer
and Information Sciences (ICCIS), pages 1-5, 2019.

96

REFERENCES

[8] H. ALSHAREEF, M. ALMASRI, A. ALBESHER, AND D. GRIGORAS. Towards
an Effective Management of IoT by Integrating Cloud and Fog Computing.
In 2019 IEEE International Conference on Smart Internet of Things (SmartloT),
pages 197-204, 2019. (24)

[9] LUIGI ATZORI, ANTONIO IERA, AND GIACOMO MORABITO. The Internet of
Things: A Survey. Computer Networks, pages 2787-2805, 10 2010.

[10] LYN BARTRAM, JOHNNY RODGERS, AND ROB WOODBURY. Smart Homes
or Smart Occupants? Supporting Aware Living in the Home. In Human-
Computer Interaction — INTERACT 2011, pages 52—-64, Berlin, Heidelberg, 2011.
Springer Berlin Heidelberg. (I8)

[11] RABEEA BASIR, SAAD QAISAR, MUDASSAR ALI, MONTHER ALDWAIRI,
MUHAMMAD ASHRAF, AAMIR MAHMOOD, AND MIKAEL GIDLUND. Fog
Computing Enabling Industrial Internet of Things: State-of-the-Art and Re-
search Challenges. Sensors, 19:4807, 11 2019.

[12] PAOLO BELLAVISTA, JAVIER BERROCAL, ANTONIO CORRADI, SAJAL DAS,
LucA FOSCHINI, AND ALESSANDRO ZANNI. A Survey on fog computing for
the Internet of Things. Pervasive and Mobile Computing, 52, 12 2018.

26} 27} 28, 29} 30)

[13] F. BoNoMI, R. MILITO, P. NATARAJAN, AND JIANG ZHU. Fog Computing:
A Platform for Internet of Things and Analytics. In Big Data and Internet of
Things, 2014. (23]

[14] FLAVIO BONOMI, RODOLFO MILITO, JIANG ZHU, AND SATEESH ADDE-
PALLI. Fog Computing and Its Role in the Internet of Things. In Proceedings
of the First Edition of the MCC Workshop on Mobile Cloud Computing, MCC *12,
page 1316, New York, NY, USA, 2012. Association for Computing Machinery.

@3R4R%

[15] ALESSIO BOTTA, WALTER DE DONATO, VALERIO PERSICO, AND ANTONIO
PESCAPE. Integration of Cloud computing and Internet of Things: A survey.
Future Gener. Comput. Syst., 56(C):684-700, March 2016. (] [16] 25)

97

REFERENCES

[16] A.T. CAMPBELL, S. B. EISENMAN, N. D. LANE, E. MILUZZO, R. A. PETER-
SON, H. LU, X. ZHENG, M. MUSOLESI, K. FODOR, AND G. AHN. The Rise of
People-Centric Sensing. IEEE Internet Computing, 12(4):12-21, July 2008.

[17] ANDREW T. CAMPBELL, SHANE B. EISENMAN, NICHOLAS D. LANE, EMIL-
IANO MILUZZO, AND RONALD A. PETERSON. People-Centric Urban Sensing.

In Proceedings of the 2nd Annual International Workshop on Wireless Internet,
WICON 06, page 18es, New York, NY, USA, 2006. Association for Computing

Machinery.

[18] E. CERRITOS, F. J. LIN, AND D. DE LA BASTIDA. High scalability for cloud-
based Io0T/M2M systems. In 2016 IEEE International Conference on Communi-
cations (ICC), pages 1-6, 2016.

[19] W. CHUNG, CHIEW-LIAN YAU, KWANG-SIG SHIN, AND RAILI MYLLYLA. A
Cell Phone Based Health Monitoring System with Self Analysis Processor us-
ing Wireless Sensor Network Technology. 2007 29th Annual International Con-
ference of the IEEE Engineering in Medicine and Biology Society, pages 3705—
3708, 2007. (13)

[20] ANDREI CIORTEA, OLIVIER BOISSIER, ANTOINE ZIMMERMANN, AND AD-
INA MAGDA FLOREA. Responsive Decentralized Composition of Service
Mashups for the Internet of Things. In Proceedings of the 6th International
Conference on the Internet of Things, 10T’ 16, pages 53—-61, New York, NY, USA,
2016. ACM. (T

[21] CoORY CORNELIUS, APU KAPADIA, DAVID KOTZ, DAN PEEBLES, MINHO
SHIN, AND NIKOS TRIANDOPOULOS. Anonysense: Privacy-Aware People-
Centric Sensing. In Proceedings of the 6th International Conference on Mobile
Systems, Applications, and Services, MobiSys 08, page 211224, New York, NY,
USA, 2008. Association for Computing Machinery.

[22] S. K. DATTA, C. BONNET, AND J. HAERRI. Fog Computing architecture
to enable consumer centric Internet of Things services. In 2015 International
Symposium on Consumer Electronics (ISCE), pages 1-2, 2015.

98

REFERENCES

[23] M. DE DONNO, K. TANGE, AND N. DRAGONI. Foundations and Evolution
of Modern Computing Paradigms: Cloud, IoT, Edge, and Fog. IEEE Access,
7:150936-150948, 2019. (5)

[24] D. DE LA BASTIDA AND F. J. LIN. OpenStack-Based Highly Scalable
IoT/M2M Platforms. In 2017 IEEE International Conference on Internet of
Things (iThings) and IEEE Green Computing and Communications (GreenCom)
and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data
(SmartData), pages 711-718, 2017. (26)

[25] KALYANMOY DEB, AMRIT PRATAP, SAMEER AGARWAL, AND TAMT ME-
YARIVAN. A fast and elitist multiobjective genetic algorithm: NSGA-II. /[EEE
transactions on evolutionary computation, 6(2):182-197, 2002.

[26] S. DISTEFANO, G. MERLINO, AND A. PULIAFITO. Sensing and Actuation as
a Service: A New Development for Clouds. In 2012 IEEE 11th International
Symposium on Network Computing and Applications, pages 272-275, Aug 2012.

(11} 201 211 8)

[27] SALVATORE DISTEFANO, GIOVANNI MERLINO, AND ANTONIO PULIAFITO. A
utility paradigm for IoT: The sensing Cloud. Pervasive and Mobile Computing,

20:127-144, 2015,

[28] SALVATORE DISTEFANO, GIOVANNI MERLINO, ANTONIO PULIAFITO, AND
ALESSIO VECCHIO. A hypervisor for infrastructure-enabled sensing Clouds.
2013 IEEFE International Conference on Communications Workshops (ICC), pages

1362-1366, 2013.

[29] EFFREY GOLDMAN ET AL. Participatory Sensing: A citizen-powered ap-
proach to illuminating the patterns that shape our world. In White Paper,
Woodrow Wilson Int. Center of Scholars, Washington, DC, USA, May 2008. JAG.

(13)

[30] MOHAMED FIRDHOUS, OSMAN GHAZALI, AND SUHAIDI HASSAN. Fog
Computing: Will it be the Future of Cloud Computing? In Proceedings of
the Third International Conference on Informatics & Applications, 10 2014. (31)

99

REFERENCES

[31] HANS W. GELLERSEN, ALBRECHT SCHMIDT, AND MICHAEL BEIGL. Multi-
Sensor Context-Awareness in Mobile Devices and Smart Artifacts. Mobile
Networks and Applications, 7(5):341-351, Oct 2002.

[32] C. GOMEZ AND J. PARADELLS. Wireless home automation networks: A
survey of architectures and technologies. [EEE Communications Magazine,

48(6):92-101, June 2010.

[33] M. A. GRAY. Spheres: A Web Services Framework for Smartphone Sensing
as a Service. In 2015 9th International Conference on Next Generation Mobile
Applications, Services and Technologies, pages 19-28, Sep. 2015.

[34] MARK ALLEN GRAY AND PHILIP NEWSAM SCHERER. Web Services Frame-

work for Wireless Sensor Networks. The Sixth International Conferences on
Advanced Service Computing, 20:15-23, 2014. (18)

[35] JAYAVARDHANA GUBBI, RAJKUMAR BUYYA, SLAVEN MARUSIC, AND
MARIMUTHU PALANISWAMI. Internet of Things (IoT): A Vision, Architec-
tural Elements, and Future Directions. Future Generation Computer Systems,

29, 07 2012. (] [T0,[13)

[36] DOMINIQUE GUINARD. Mashing Up Your Web-Enabled Home. In FLORIAN
DANIEL AND FEDERICO MICHELE FACCA, editors, Current Trends in Web En-
gineering, pages 442-446, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

(18)

[37] X. Guo, R. SINGH, T. ZHAO, AND Z. NIU. An index based task assignment
policy for achieving optimal power-delay tradeoff in edge cloud systems. In
2016 IEEE International Conference on Communications (ICC), pages 1-7, 2016.

(25)

[38] P. HABIBI, M. FARHOUDI, S. KAZEMIAN, S. KHORSANDI, AND A. LEON-
GARCIA. Fog Computing: A Comprehensive Architectural Survey. [EEE
Access, 8:69105-69133, 2020. (9)

[39] SON N. HAN, IMRAN KHAN, GYU MYOUNG LEE, NOEL CRESPI, AND
RocH H. GLITHO. Service composition for IP smart object using realtime

100

REFERENCES

Web protocols: Concept and research challenges. Computer Standards & In-
terfaces, 43:79 — 90, 2016.

[40] JOHN HICKS, NITHYA RAMANATHAN, DONNIE KIM, MOHAMAD MONIBI,
JOSHUA SELSKY, MARK HANSEN, AND DEBORAH ESTRIN. AndWellness: An
Open Mobile System for Activity and Experience Sampling. In Wireless Health
2010, New York, NY, USA, 2010. Association for Computing Machinery. (I3)

[41] HUA-JUN HONG. From Cloud Computing to Fog Computing: Unleash the
Power of Edge and End Devices. 2017 IEEE International Conference on Cloud
Computing Technology and Science (CloudCom), pages 331-334, 2017. (30)

[42] PENGFEI HU, SAHRAOUI DHELIM, HUANSHENG NING, AND TIE QIU. Survey
on Fog Computing: Architecture, Key Technologies, Applications and Open
Issues. Journal of Network and Computer Applications, 98, 09 2017. 28] 29)

[43] TOSHIKI. ISO, NORIHIRO. KAWASAKI, AND SHOJI. KURAKAKE. Personal
Context Extractor with Multiple Sensor on a Cell Phone. In International

Conference on Mobile and Wireless Communications Networks, September 2005.

(14)

[44] GIULIO JAcUCCI, ANNA SPAGNOLLI, LUCIANO GAMBERINI, ALESSAN-
DRO CHALAMBALAKIS, CHRISTOFFER BJORKSKOG, MASSIMO BERTONCINI,
CARIN TORSTENSSON, AND PASQUALE MONTI. Designing Effective Feedback
of Electricity Consumption for Mobile User Interfaces. PsychNology Journal,
7:265-289, 2009.

[45] M. JAHN, M. JENTSCH, C. R. PRAUSE, F. PRAMUDIANTO, A. AL-AKKAD,
AND R. REINERS. The Energy Aware Smart Home. In 2070 5th International
Conference on Future Information Technology, pages 1-8, May 2010.

[46] A. KAMILARIS AND A. PITSILLIDES. Mobile Phone Computing and the In-
ternet of Things: A Survey. IEEFE Internet of Things Journal, 3(6):885-898, Dec

2016.

[47] ANDREAS KAMILARIS, NICOLAS IANNARILLI, VLAD TRIFA, AND ANDREAS
PITSILLIDES. Bridging the Mobile Web and the Web of Things in Urban

101

REFERENCES

Environments. In In Urban Internet of Things Workshop, at 10T 2010, 2010.
15)

[48] S. S. KANHERE. Participatory Sensing: Crowdsourcing Data from Mobile
Smartphones in Urban Spaces. In 2071 IEEE 12th International Conference on
Mobile Data Management, 2, pages 3—6, June 2011.

[49] Y. KAWAHARA, H. KURASAWA, AND H. MORIKAWA. Recognizing User Con-
text Using Mobile Handsets with Acceleration Sensors. In 2007 IEEE Interna-
tional Conference on Portable Information Devices, pages 1-5, May 2007. (13)

[50] MI1HUI KiM, MIHIR ASTHANA, SIDDHARTHA BHARGAVA, KARTIK KRISH-
NAN IYYER, ROHAN TANGADPALLIWAR, AND JERRY GAO. Developing an
On-Demand Cloud-Based Sensing-as-a-Service System for Internet of Things.
Journal Comp. Netw. and Communic., 2016:3292783:1-3292783:17, 2016.

[51] M. KOVATSCH, M. WEISS, AND D. GUINARD. Embedding internet technol-
ogy for home automation. In 2010 IEEE [5th Conference on Emerging Tech-
nologies Factory Automation (ETFA 2010), pages 1-8, Sep. 2010.

[52] LAKSHMAN KRISHNAMURTHY, ROBERT ADLER, PHILIP BUONADONNA,
JASMEET CHHABRA, MICK FLANIGAN, NANDAKISHORE KUSHALNAGAR,
LAMA NACHMAN, AND MARK D. YARVIS. Design and deployment of indus-
trial sensor networks: experiences from a semiconductor plant and the north
sea. In SenSys 05, 2005.

[53] SuMIT KUMAR AND ZAHID RAZA. Using clustering approaches for response
time aware job scheduling model for internet of things (IoT). International
Journal of Information Technology, 9(2):177-195, 6 2017.

[54] KUN-CHAN LAN AND WEN-YUAH SHIH. An intelligent driver location sys-
tem for smart parking. Expert Syst. Appl., 41:2443-2456, 2014.

[55] N. D. LANE, E. MiLUZz0, H. LU, D. PEEBLES, T. CHOUDHURY, AND A. T.
CAMPBELL. A survey of mobile phone sensing. /[EEE Communications Maga-

zine, 48(9):140-150, Sep. 2010.

[56] JAE-GIL LEE AND KANG MINSEO. Geospatial Big Data: Challenges and
Opportunities. Big Data Research, 2,02 2015.

102

REFERENCES

[57] 1. LERA, C. GUERRERO, AND C. Juiz. YAFS: A Simulator for IoT Scenarios
in Fog Computing. /EEE Access, 7:91745-91758, 2019.

[58] F. L1, M. VOEGLER, M. CLAESSENS, AND S. DUSTDAR. Efficient and Scal-
able 10T Service Delivery on Cloud. In 2013 IEEE Sixth International Confer-
ence on Cloud Computing, pages 740-747, 2013.

[59] FRANCESCO LONGO, DARIO BRUNEO, SALVATORE DISTEFANO, GIOVANNI
MERLINO, AND ANTONIO PULIAFITO. Stack4Things: a sensing-and-
actuation-as-a-service framework for IoT and cloud integration. Annals of
Telecommunications, 72:53-70, 2016. (6}

[60] H. MA, D. ZHAO, AND P. YUAN. Opportunities in mobile crowd sensing.
IEEE Communications Magazine, 52(8):29-35, Aug 2014.

[61] SHUO MA, OURI WOLFSON, AND Bo XU. UPDetector: Sensing Park-
ing/Unparking Activities Using Smartphones. In Proceedings of the 7th ACM
SIGSPATIAL International Workshop on Computational Transportation Science,
IWCTS 14, page 7685, New York, NY, USA, 2014. Association for Computing

Machinery.

[62] S. MADRIA, V. KUMAR, AND R. DALVI. Sensor Cloud: A Cloud of Virtual
Sensors. IEEE Software, 31(2):70-77, Mar 2014. (16

[63] DAVID MALAN, THADDEUS FULFORD-JONES, MATT WELSH, AND STEVE
MOULTON. CodeBlue: An Ad Hoc Sensor Network Infrastructure for Emer-
gency Medical Care. In MobiSys 2004 Workshop on Applications of Mobile Em-
bedded Systems (WAMES 2004), June 2004. (14)

[64] EVA MARIN-TORDERA, XAVIER MASIP-BRUIN, JORDI GARCIA ALMINANA,
ADMELA JUKAN, GUANG-JIE REN, JIAFENG ZHU, AND JOSEP FARRE. What
is a Fog Node A Tutorial on Current Concepts towards a Common Definition.
CoRR, abs/1611.09193, 2016.

[65] GEORGE MASTORAKIS, CONSTANDINOS MAVROMOUSTAKIS, JORDI
BATALLA, AND EVANGELOS PALLIS. Convergence of Artificial Intelligence and
the Internet of Things. Springer, 01 2020.

103

REFERENCES

[66] SUHAS MATHUR, TONG JIN, NIKHIL KASTURIRANGAN, JANANI CHAN-
DRASEKARAN, WENZHI XUE, MARCO GRUTESER, AND WADE TRAPPE.
ParkNet: Drive-by Sensing of Road-Side Parking Statistics. In Proceedings of
the 8th International Conference on Mobile Systems, Applications, and Services,
MobiSys 10, page 123136, New York, NY, USA, 2010. Association for Computing

Machinery.

[67] PETER MELL AND TIMOTHY GRANCE. The NIST Definition of Cloud Com-
puting. Technical Report 800-145, National Institute of Standards and Technology
(NIST), Gaithersburg, MD, September 2011. (1))

[68] CARLA MOURADIAN, DIALA NABOULSI, SAMI YANGUI, ROCH GLITHO,
MONIQUE MORROW, AND PAUL POLAKOS. A Comprehensive Survey on Fog
Computing: State-of-the-art and Research Challenges. I[EEE Communications
Surveys & Tutorials, PP, 10 2017. (26]

[69] Message Queuing Telemetry Transport (MQTT). http://mgtt.org/.
(63)

[70] R. K. NAHA, S. GARG, D. GEORGAKOPOULOS, P. P. JAYARAMAN, L. GAO,
Y. XIANG, AND R. RANJAN. Fog Computing: Survey of Trends, Architec-
tures, Requirements, and Research Directions. /EEE Access, 6:47980-48009,

2018. (2627, 29)

[71] ANANDATIRTHA NANDUGUDI, TAEYEON KI, CARL NUESSLE, AND GEOF-
FREY CHALLEN. PocketParker: Pocketsourcing Parking Lot Availability. In
Proceedings of the 2014 ACM International Joint Conference on Pervasive and
Ubiquitous Computing, UbiComp 14, page 963973, New York, NY, USA, 2014.
Association for Computing Machinery.

[72] MARTIN BAUER NEC, MATHIEU BOUSSARD ALBLF, NICOLA BUI
CFR, FRANcCOIS CARREZ UNIS, CHRISTINE JARDAK SIEMENS,
D. LoOF, CARSTEN MAGERKURTH SAP, STEFAN MEISSNER UNIS, AN-
DREAS NETTSTRATER IML, ALEXIS OLIVEREAU CEA, MATTHIAS THOMA
SAP, WALEWSKI, JULINDA STEFA SUNI, AND ALEXANDER SALINAS UNI-
WUE. Internet of Things Architecture IoT-A Deliverable D1.5 Final
architectural reference model for the IoT v3.0. In I07T-A2013, 2013.

104

http://mqtt.org/

REFERENCES

[73] OpenStack. https://docs.openstack.org/stein/. 1)

[74] OpenFog Reference Architecture for Fog Computing, 2017. https://

www.liconsortium.org/index.htm. (24][25] 26| [27] 29 30} 31)

[75] SHENG-LUNG PENG, SOUVIK PAL, AND LIANFEN HUANG. Principles of In-
ternet of Things (IoT) Ecosystem: Insight Paradigm. Springer, 01 2020. (I)

[76] P. P. PEREIRA, J. ELIASSON, R. KYUSAKOV, J. DELSING, A. RAAY-
ATINEZHAD, AND M. JOHANSSON. Enabling Cloud Connectivity for Mobile
Internet of Things Applications. In 2013 IEEE Seventh International Symposium
on Service-Oriented System Engineering, pages 518-526, 2013.

[77] CHARITH PERERA. Sensing as a Service for Internet of Things: A Roadmap.
Leanpub Publishers, 2017.

[78] CHARITH PERERA, ARKADY ZASLAVSKY, PETER CHRISTEN, AND DIM-
ITRIOS GEORGAKOPOULOS. Sensing As a Service Model for Smart Cities Sup-
ported by Internet of Things. Trans. Emerg. Telecommun. Technol., 25(1):81-93,

January 2014. (11}

[79] JAVAD POURQASEM. Cloud-based IoT: integration cloud computing with
internet of things. International Journal of Research in Industrial Engineering,
7(4):482-494, 2018. (16)

[80] B.B. P. RAO, P. SALUIA, NISHA SHARMA NISHA SHARMA, ARPAN MITTAL,
AND S. V. SHARMA. Cloud computing for Internet of Things & sensing based
applications. 2012 Sixth International Conference on Sensing Technology (ICST),
pages 374-380, 2012. (5)

[81] BHASKAR PRASAD RIMAL, EUNMI CHOI, AND IAN LUMB. A Taxonomy
and Survey of Cloud Computing Systems. In Proceedings of the 2009 Fifth
International Joint Conference on INC, IMS and IDC, NCM °09, pages 44-51,
Washington, DC, USA, 2009. IEEE Computer Society. @)

[82] BILJANA RISTESKA STOJKOSKA AND KIRE TRIVODALIEV. A review of In-

ternet of Things for smart home: Challenges and solutions. Journal of Cleaner
Production, 140:14541464, 01 2017. (16)

105

https://docs.openstack.org/stein/
https://www.iiconsortium.org/index.htm
https://www.iiconsortium.org/index.htm

REFERENCES

[83] ROSARIO SALPIETRO, LUCA BEDOGNI, MARCO DI FELICE, AND LUCIANO
BONONI. Park Here! a smart parking system based on smartphones’ embed-
ded sensors and short range Communication Technologies. 2015 IEEE 2nd
World Forum on Internet of Things (WF-I1oT), pages 18-23, 2015.

[84] AKIO SASHIMA, YASUO INOUE, TOMOHIKO IKEDA, TAKAJI YAMASHITA,
AND KEISUKE KURUMATANI. CONSORTS-S: A mobile sensing platform for
context-aware services. 2008 International Conference on Intelligent Sensors,
Sensor Networks and Information Processing, pages 417-422, 2008. (14)

[85] SUCHISMITA SATPATHY, BIBHUDATTA SAHOO, AND ASHOK KUMAR TURUK.
Sensing and Actuation as a Service Delivery Model in Cloud Edge centric
Internet of Things. Future Generation Computer Systems, 86:281 — 296, 2018.

[86] M. SATYANARAYANAN. The Emergence of Edge Computing. Computer,

50(1):30-39, 2017.

[87] KEWEI SHA, GUOXING ZHAN, WEISONG SHI, MARK A. LUMLEY, CLAIRY
WIHOLM, AND BENGT B. ARNETZ. SPA: a smart phone assisted chronic ill-
ness self-management system with participatory sensing. In HealthNet '08,

2008. (T4)

[88] X. SHENG, J. TANG, X. X1AO0, AND G. XUE. Sensing as a Service: Chal-
lenges, Solutions and Future Directions. /EEE Sensors Journal, 13(10):3733—
3741, Oct 2013.

[89] X. SHENG, X. X1AO, J. TANG, AND G. XUE. Sensing as a service: A cloud
computing system for mobile phone sensing. In SENSORS, 2012 IEEE, pages

1-4, Oct 2012.

[90] JOHN SOLDATOS, NIKOS KEFALAKIS, MANFRED HAUSWIRTH, MAR-
TIN SERRANO, JEAN-PAUL CALBIMONTE, MEHDI RIAHI, KARL ABERER,
PREM PRAKASH JAYARAMAN, ARKADY ZASLAVSKY, IVANA ZARKO, LEA
SKORIN-KAPOV, AND REINHARD HERZOG. OpenloT: Open Source Internet-
of-Things in the Cloud. Lecture Notes in Computer Science, 9001:13-25, 03

2015.

106

REFERENCES

[91] I. STOIMENOVIC. Fog computing: A cloud to the ground support for smart
things and machine-to-machine networks. In 2014 Australasian Telecommu-
nication Networks and Applications Conference (ATNAC), pages 117-122, 2014.

@3)

[92] G. Suctu, O. FrRATU, S. HALUNGA, C. G. CERNAT, V. POENARU, AND
V. Suciu. Cloud consulting: ERP and communication application integra-
tion in open source cloud systems. In 2011 19thTelecommunications Forum
(TELFOR) Proceedings of Papers, pages 578-581, 2011. (16)

[93] A. TAIVALSAARI AND T. MIKKONEN. Cloud Technologies for the Internet
of Things: Defining a Research Agenda Beyond the Expected Topics. In 2015

41st Euromicro Conference on Software Engineering and Advanced Applications,

pages 484-488, 2015.

[94] M. THOMA, S. MEYER, K. SPERNER, S. MEISSNER, AND T. BRAUN. On
IoT-services: Survey, Classification and Enterprise Integration. In 2012 IEEE

International Conference on Green Computing and Communications, pages 257—
260, Nov 2012. (10)

[95] PASCAL THUBERT, TiIM WINTER, ANDERS BRANDT, JONATHAN HUI,
RICHARD KELSEY, PHIL LEVIS, KRISTOFER PISTER, RENE STRUIK,
JP VASSEUR, AND ROGER ALEXANDER. RPL: IPv6 Routing Protocol for Low
power and Lossy Networks. /ETF, RFC 6550, 03 2012.

[96] C. TSENG AND F. J. LIN. Extending scalability of IoT/M2M platforms with
Fog computing. In 2018 IEEE 4th World Forum on Internet of Things (WF-1oT),
pages 825-830, 2018.

[97] KOROSH VATANPARVAR AND MOHAMMAD ABDULLAH AL FARUQUE.

Control-as-a-Service in Cyber-Physical Energy Systems over Fog Computing,
pages 123-144. Springer, 05 2018. (26)

[98] W. WANG, K. LEE, AND D. MURRAY. Integrating sensors with the cloud
using dynamic proxies. In 2012 IEEFE 23rd International Symposium on Personal,
Indoor and Mobile Radio Communications - (PIMRC), pages 14661471, 2012.

(23)

107

REFERENCES

[99] MARKUS WEISS, FRIEDEMANN MATTERN, TOBIAS GRAML, THORSTEN
STAAKE, AND ELGAR FLEISCH. Handy Feedback: Connecting Smart Me-
ters with Mobile Phones. In Proceedings of the 8th International Conference
on Mobile and Ubiquitous Multimedia, MUM 09, New York, NY, USA, 2009.
Association for Computing Machinery. (18]

[100] B. XU, O. WOLFSON, J. YANG, L. STENNETH, P. S. YU, AND P. C. NEL-
SON. Real-Time Street Parking Availability Estimation. In 2013 IEEE [4th

International Conference on Mobile Data Management, 1, pages 16-25, June

2013.

[101] NING XU, SUMIT RANGWALA, KRISHNA KANT CHINTALAPUDI, DEEPAK
GANESAN, ALAN BROAD, RAMESH GOVINDAN, AND DEBORAH ESTRIN. A
Wireless Sensor Network For Structural Monitoring. In Proceedings of the
2nd International Conference on Embedded Networked Sensor Systems, SenSys
04, page 1324, New York, NY, USA, 2004. Association for Computing Machinery.

(14)

[102] S. YANGUI, P. RAVINDRAN, O. BIBANI, R. H. GLITHO, N. BEN HADJ-
ALOUANE, M. J. MORROW, AND P. A. POLAKOS. A platform as-a-service
for hybrid cloud/fog environments. In 2016 IEEE International Symposium on
Local and Metropolitan Area Networks (LANMAN), pages 1-7, 2016.

[103] M. YANNUZZI, R. MILITO, R. SERRAL-GRACI, D. MONTERO, AND M. NE-
MIROVSKY. Key ingredients in an IoT recipe: Fog Computing, Cloud com-
puting, and more Fog Computing. In 2014 IEEE [9th International Workshop
on Computer Aided Modeling and Design of Communication Links and Networks
(CAMAD), pages 325-329, 2014.

[104] A. YOUSEFPOUR, G. ISHIGAKI, R. GOUR, AND J. P. JUE. On Reducing IoT
Service Delay via Fog Offloading. /EEE Internet of Things Journal, 5(2):998-

1010, 2018.

[105] JAESEOK YUN, IL-YEUP AHN, JAESEUNG SONG, AND JAEHO KIM. Im-
plementation of Sensing and Actuation Capabilities for IoT Devices Using
oneM2M Platforms. Sensors, 19:4567, 10 2019.

108

REFERENCES

[106] M. YURIYAMA AND T. KUSHIDA. Sensor-Cloud Infrastructure - Physical
Sensor Management with Virtualized Sensors on Cloud Computing. In 2070
13th International Conference on Network-Based Information Systems, pages 1-8,

Sep. 2010. (18)

[107] IVANA ZARKO, ALEKSANDAR ANTONI, AND KREIMIR PRIPUI. Pub-
lish/subscribe middleware for energy-efficient mobile crowdsensing. In Ubi-
Comp 2013 Adjunct - Adjunct Publication of the 2013 ACM Conference on Ubiq-
uitous Computing, pages 1099-1110, 09 2013. (23)

109

Enhancing loT Service Delivery:

A Layered Fog Architecture

Approach for Sensing and
Actuating as a Service

by Abdulsalam Abdo Musaed Ali Alammari

Submission date: 16-Feb-2021 02:59PM (UTC+0530)
Submission ID: 1510643751

File name: abdulsalam_thesis_14MCPC22.pdf (19.37M)
Word count: 22272

Character count: 119191

Enhancing loT Service Delivery: A Layered Fog Architecture
Approach for Sensing and Actuating as a Service

ORIGINALITY REPORT

15. 2. 14 14

SIMILARITY INDEX INTERNET SOURCES PUBLICATIONS STUDENT PAPERS

= S
PRIMARY SOURCES il Somdascty Grdlea : |§"lOf—OS‘/‘ %};}w/

1 Abdulsalam Alammari, Salman Abdul Moiz, Atul 1 O‘V
Negi. "Chapter 2 Internet of Things Sensors and p, zoeesr -

Actuators Layered Fog Service Delivery Model,rofsg“?',{’afocki.;d

SALFSD", Springer Science and Business Central University

a Hyderabad 46. {india)
Media LLC, 2019 This publeaton is by be o "

Publication K })M

Paolo Bellavista, Javier Berrocal, Antonio pgsnun eany
2 Sy - U 0%y N 10y

Corradi, Sajal K. Das, Luca Foschini, S'f.?é?éf&fs

Alessandro Zanni. "A survey on fog computing |

for the Internet of Things", Pervasive and Mobile

Computing, 2019

Publication

"Multi-disciplinary Trends in Artificial <1 o
Intelligence", Springer Science and Business i
Media LLC, 2019
Publication
Submitted to Arizona State Universit

Student Paper y < 1 %

www.openfogconsortium.org

Internet Source

	Declaration
	Abstracts
	Acknowledgements
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Research Objectives
	1.3 Contributions of Thesis
	1.4 Structure of the Thesis
	1.5 Publications

	2 Fundamental Concepts and Literature Review
	2.1 Fundamental Concepts
	2.1.1 IoT Building Blocks
	2.1.2 Fundamental Technologies and Paradigms

	2.2 Literature Review
	2.2.1 Participatory and Opportunistic sensing
	2.2.2 Urban Sensing
	2.2.3 People-Centric Urban Sensing
	2.2.4 Integrating with the Cloud
	2.2.5 Integrating the Cloud with Fog Computing and IoT

	2.3 Summary

	3 Towards Truly Smart City Service Providers: A View on On-demand Everything as a Service
	3.1 A Vision on Future Smart City Service Providers
	3.2 Example Architecture
	3.2.1 Example Scenario
	3.2.2 Example Architectural Design

	3.3 Summary

	4 Internet of Things Sensors and Actuators Layered Fog Service Delivery Model SALFSD
	4.1 Proposed Architecture (SALFSD)
	4.1.1 Top Level Description
	4.1.2 Things and Gateway layer
	4.1.3 Fog layer
	4.1.4 Cloud layer

	4.2 Reducing Response Time and Failure Plan
	4.3 Comparison with Related Work
	4.4 Summary

	5 Enhanced Layered fog Architecture for IoT Sensing and Actuation as a Service
	5.1 Proposed Architecture
	5.1.1 Contributions
	5.1.2 Example Scenario

	5.2 SALFSD Cloud
	5.2.1 Cloud Gateway
	5.2.2 Core Management
	5.2.3 Physical S/A Selection
	5.2.4 Virtualization Management
	5.2.5 Fog G/W Assignment
	5.2.6 Specified Cases Manager
	5.2.7 Fog Node Manager
	5.2.8 Fogs, G/W & S/A Database

	5.3 SALFSD Layered Fog
	5.3.1 Fog Node Manager
	5.3.2 Specified Cases Manager
	5.3.3 Fog, G/W Management Agent
	5.3.4 MQTT Translator
	5.3.5 Observation Database Manager
	5.3.6 Fogs, G/W & S/A Database

	5.4 Gateway in SALFSD
	5.4.1 MQTT Translator
	5.4.2 Actuator Selector
	5.4.3 Sensor Selector

	5.5 Formal Verification of Architecture Correctness
	5.5.1 Architecture Invariants and Properties:
	5.5.2 Connectivity Monitoring and Failure Plan Proof
	5.5.3 SCM Monitoring and Offloading Proof
	5.5.4 Observation Filtering Proof

	5.6 Summary

	6 Experiment Results and Discussion
	6.1 YAFS
	6.2 Experiment
	6.2.1 Failure Plan
	6.2.2 Actuation Mode
	6.2.3 Monitoring Offloading
	6.2.4 Corrupted Observation Filtering
	6.2.5 Comparing SAaaS with and without Layered Fog

	6.3 General Discussion on the Results
	6.4 Summary

	7 Conclusions and Future Work
	References

