
Application Of Image Blobs And
Illumination Component In Image

Tamper Detection Techniques

A thesis submitted during 2021 to the University
of Hyderabad in partial fulfillment of the award of

a Ph.D. degree in School of Computer and
Information Sciences

by

Niyishaka Patrick

School of Computer and Information Sciences
University of Hyderabad
P.O. Central University
Hyderabad - 500046
Telangana - India
March - 2021

CERTIFICATE

This is to certify that the thesis entitled “Application of Image Blobs and
Illumination Component in Image Tamper Detection Techniques” sub-
mitted by Niyishaka Patrick bearing Reg. No. 14MCPC21 in partial fulfill-
ment of the requirements for the award of Doctor of Philosophy in Computer
Science is a bonafide work carried out by him under my supervision and guidance.

This thesis is free from plagiarism and has not been submitted previously in
part or in full to this or any other University or Institution for the award of any
degree or diploma.

The student has the following publications before submission of the thesis for
adjudication and has produced evidence for the same in the form of acceptance
letter or the reprint in the relevant area of his research:

1. Niyishaka Patrick, Chakravarthy Bhagvati. "Copy-Move forgery detection
using image blobs and BRISK feature". Multimedia Tools and Applications,
https://doi.org/10.1007/s11042-020-09225-6. Work reported in this paper
appears in Chapter 4

2. Niyishaka Patrick, Chakravarthy Bhagvati."Image splicing detection tech-
nique based on Illumination-Reflectance model and LBP". Multimedia
Tools and Applications, https://doi.org/10.1007/s11042-020-09707-7. Work
reported in this paper appears in Chapter 6

and has made the presentations in the following conferences:

1. Niyishaka Patrick, Chakravarthy Bhagvati. "Digital Image Forensics Tech-
nique for Copy-Move Forgery Detection Using DoG and ORB".2018 Inter-
national Conference on Computer Vision and Graphics (ICCVG 2018), War-
saw, Poland, September 17-19, 2018, Proceedings, LNCS 11114, pp. 472-483,
10.1007/978− 3− 030− 00692− 1_41. Work reported in this paper appears
in Chapter 3

Further, the student has passed the following courses towards fulfillment of
coursework requirement for Ph.D.:

Course Code Name Credits Pass/Fail

CS 801 Data Structures and Algorithms 4 Pass
CS 802 Operating Systems and Programming 4 Pass
AI 820 Digital Image Processing 4 Pass
IT 811 Secure Computing 4 Pass

(Prof. Chakravarthy Bhagvati)
Supervisor

School of Computer and Information Sciences
University of Hyderabad

Hyderabad – 500 046, India

(Prof. Chakravarthy Bhagvati)
Dean

School of Computer and Information Sciences
University of Hyderabad

Hyderabad – 500 046, India

iii

DECLARATION

I, Niyishaka Patrick, hereby declare that this thesis entitled “Application
of Image Blobs and Illumination Component in Image Tamper Detec-
tion Techniques” submitted by me under the guidance and supervision of Prof.
Chakravarthy Bhagvati is a bonafide research work which is also free from
plagiarism. I also declare that it has not been submitted previously in part or
in full to this University or any other University or Institution for the award
of any degree or diploma. I hereby agree that my thesis can be deposited in
Shodganga/INFLIBNET.

A report on plagiarism statistics from the University Library is en-
closed.

Date : Name: Niyishaka Patrick

Signature of the Student:

Reg. No.: 14MCPC21

Signature of the Supervisor:

Acknowledgements

I take this opportunity to express my gratitude to everybody who
helped me directly or indirectly during this journey towards the doc-
torate degree.

First and foremost I want to thank my Ph.D. supervisor Prof.
Chakravarthy Bhagvati. I appreciate all his contributions of time,
guidance, ideas, knowledge, expertise and the exceedingly helpful assis-
tance during tough time. His guidance and advice helped brighten my
vocation and help me to overcome the Ph.D. challenges and obstacles.

I would like to thank the members of my Doctoral Review Com-
mittee (DRC) Prof. Siba Kumar Udgata and Dr. Y. V. Subba
Rao. They have contributed immensely to my research work progress
and my professional time at the University of Hyderabad.

I am thankful to each and every faculty member of the school of com-
puter and information sciences, who have whole heartedly contributed
to whatever I have learnt. I am especially thankful to Dr. Wilson
Naik Bhukya andDr. Anjeneya Swami Kare from whom I worked
as teaching assistant. I sincerely appreciated the assistance, collabora-
tion, support and help extended by the international office. My sincere
appreciation and gratitude to Tagore international house for providing
a wonderful accomodation.

A major part of my research work was supported by the Government
of India through Indian Council for Culture Relations (ICCR). I am

especially grateful for the ICCR for providing me the Ph.D. scholarship,
funding my university tuition fees and my stay in India.

I very much appreciated the collaborations, advice, inspirations, mo-
tivations, and friendships from the members and colleagues in the Op-
tical Character Recognition (OCR) lab at the School of Computer and
Information Sciences. I am thankful to my fellow lab mates (Rajesh,
Raghu, Rakesh, Melinda, Deepti, and Salman) for working to-
gether and sharing chai with me at the student canteen.

Finally, my heartfelt thanks to my lovely family, this journey would not
have been possible without your love, support, consideration, guidance,
and encouragement.

Niyishaka Patrick

Abstract

This thesis presents several techniques to detect, localize and estimate
parameters of two major types of tamerping digital images: copy-move
forgery and image splicing forgery. In the former, a portion of an
image is duplicated, sometimes with geometric transformations, and
pasted into another part of the same image. In the latter, a part of a
second image is pasted into an image. Existing methods in literature
generally require a number of parameters that are tuned to various
image characteristics for efficient and robust detection of forgeries. Our
motivation is to find general techniques that minimize the number of
such tunable parameters while overcoming certain other of existing
copy-move and image splicing detection methods.

The problem of photograph manipulation has attracted many researchers
in the field of Digital Image Forensics (DIF) that aims at validating
the authenticity of images by identifying the imaging device that cap-
tured the image or detecting the traces of forgeries. Image tampering,
also called image forgery, is the act of image editing and manipulation
for malicious purposes to modify the semantic meaning of the visual
message. The availability of powerful image editing tools has greatly
simplified the process of malicious manipulation, editing, and creating
tampered images even by lay persons.

In this thesis, we propose the use of image blobs in copy-move forgery
detection algorithms. Image blobs are the regions that differ in proper-
ties such as brightness or color compared to surrounding regions. The
goal of blob detection is to identify and mark these regions. As blobs
are detected in scale-space, we demonstrate through our experiments

iv

on standard benchmark datasets that they present several advantages
over image blocks and segments in copy-move forgery detection.

Image splicing merges the portions of images from different sources
into one composite image. This introduces various artifacts such as
sharp transitions around the pasted area and abnormal transient at
the splicing boundaries; and introduces illumination inconsistencies
because the images are taken from different cameras with different
lighting conditions. It also produces some resample traces because it is
often necessary to downscale or upscale certain portions of an image.
The existing splicing forgery detection techniques exploit the tamper-
ing artifacts and the visual information present in the image to expose
the traces of splicing.

We approach the problem from the perspective of detecting illumi-
nation inconsistencies. The idea is to use the Y CbCr color space to
obtain luminance and chrominance from the input image. To capture
illumination changes as discriminant features, we extract illumination
component using Illumination-Reflectance model of image formation,
which considers the intensity at any pixel as the product of the illu-
mination of the scene and the reflectance of the object(s) in the scene.
Illumination normally varies slowly across the image as compared to
reflectance that can change suddenly at object edges. This difference
is the key to split the illumination component from the reflectance
component. We use the Local Binary Patterns to describe the spatial
arrangement of colors and capture texture information of the image.
Then, all extracted features are fed into different machine learning
algorithms such as a Support Vector Machine, Linear Discriminant
Analysis, etc, to categorize the input image as authentic or forged.

Our results on detecting and localising copy-move forgery regions, pre-
sented in Chapters 3 and 4, show that the use of image blobs results in
performance comparable to the state-of-the-art while requiring only a
few tunable parameters. Image blobs combined with many off-the-shelf
image are capable of extracting geometric transformation information

v

from copy-move forgeries. The results show that the selection of a fea-
ture is not as important when using image blobs. Finally, results on
image splicing forgeries show that illumination inconsistencies are as
useful as image content based features for forgery detection.

vi

Dedicated to my family and friends, without whose support and
encouragement, this would not have been possible.

Contents

List of Figures xiii

List of Tables xvi

1 Introduction 1
1.1 Motivation . 3
1.2 Scope of Work . 4
1.3 Contribution . 7
1.4 Thesis Organization . 7
1.5 Summary . 8

2 Related Work 9
2.1 Introduction . 9

2.1.1 Copy-move forgery . 9
2.1.2 Image splicing . 10
2.1.3 Image/photo retouching . 10

2.2 Related Work: CMFD methods . 11
2.2.1 Block-based approach . 13
2.2.2 Keypoint-based approach . 17
2.2.3 Segment-based CMFD . 21
2.2.4 Hybrid techniques . 22
2.2.5 The main limitations of block-based, keypoint-based, and

segment-based CMFD approaches 22
2.2.6 Conclusion . 22

2.3 Related Work: splicing detection methods 23

viii

2.3.1 Handcrafted features based techniques 25
2.3.2 Deep learning based methods 26
2.3.3 Main limitations of existing techniques 30
2.3.4 Conclusion . 30

2.4 Summary . 30

3 Copy-Move Forgery Detection using DoG Blob Detector and ORB 31

3.1 Introduction . 31
3.2 The use of image blobs in CMFD to tackle the limitations of existing

methods . 31
3.2.1 Advantages of image blobs over image blocks in CMFD . . . 34
3.2.2 Advantages of image blobs over image segments in CMFD . 35
3.2.3 The ideal blob detector for CMFD 36

3.3 Enhanced blob localization using Sobel edge detection 37
3.4 ORB feature extraction . 38
3.5 Feature matching . 38
3.6 Algorithm . 40
3.7 Experimental Results . 41

3.7.1 Evaluation metrics . 41
3.7.2 Experimental platform and operating point settings 41
3.7.3 Robustness tests . 42
3.7.4 Comparative results . 44
3.7.5 Sample input and output . 44
3.7.6 Conclusion . 45

3.8 Where image blobs fail in CMFD? 45
3.9 Summary . 46

4 Copy-Move Forgery Detection using Image Blobs and BRISK Fea-
ture 47

4.1 Introduction . 47
4.2 CMFD using image blobs and BRISK feature 47

4.2.1 Pre-processing . 48
4.2.2 Blob Detection . 48

ix

4.2.3 BRISK Feature Extraction 48
4.2.4 Find BRISK keypoints located within the same blob 49
4.2.5 BRISK feature matching . 50
4.2.6 Reducing the number of keypoints to match. 50
4.2.7 Tackling the use of filtering techniques 51

4.3 Algorithm . 52
4.4 Experiments and Results . 53

4.4.1 Evaluation metrics . 53
4.4.2 Setting the Treshold T for Nearest Neighbor Matching Ratio. 53
4.4.3 Experimental platform and running time analysis 54
4.4.4 CMFD results for multi copy-move regions 55
4.4.5 CMFD results for rotation and scaling operations 55
4.4.6 CMFD results for post-processing operations. 55
4.4.7 Comparative Results . 56
4.4.8 Sample input and output . 57
4.4.9 Conclusion . 58

4.5 Summary . 58

5 Geometric Transformation Parameters Estimation from
Copy-Move Forgery using Image Blobs and Features:
AKAZE, BRISK, ORB, SIFT and SURF 60
5.1 Introduction . 60
5.2 Geometric transformation parameters estimation from CMF 61

5.2.1 Pre-processing and Edge detection 61
5.2.2 Scale-Rotation Invariant Feature Extraction 62

5.2.2.1 SIFT (Scale-Invariant Feature Transform) 62
5.2.2.2 Speeded Up Robust Features (SURF) 62
5.2.2.3 KAZE and Accelerated-KAZE (AKAZE) 63
5.2.2.4 Oriented Fast and Rotated Brief (ORB) 64
5.2.2.5 Binary Robust Invariant Scalable Keypoints (BRISK) 64

5.2.3 Blob Detection . 64
5.2.4 Extract keypoints located within the same blob 65
5.2.5 Feature matching. 65

x

5.2.6 Blob post-processing and 2D affine transformations compu-

tation . 66

5.2.7 Algorithm . 69

5.3 Experimental Results . 69

5.3.1 Dataset and evaluation metrics 70

5.3.2 Threshold T settings, detection performance, and comparison 70

5.3.3 Experimental platform and analysis of running time. 71

5.3.4 Geometric transformations parameters estimation 71

5.3.5 Comparative results . 75

5.3.6 Sample ouputs . 76

5.3.7 Conclusion . 77

5.4 Summary . 77

6 Image Splicing Detection using Illumination Component and LBP 78

6.1 Introduction . 78

6.2 Image splicing detection technique using illumination component

and LBP . 79

6.2.1 Convert input image to YCbCr 80

6.2.2 Extracting illumination component from luma 81

6.2.3 Local Binary Patterns (LBP) 83

6.2.4 Tamper detection . 83

6.3 Algorithm . 85

6.4 Experimental Results . 85

6.4.1 Dataset and evaluation metrics 85

6.4.2 Experimental platform and running time analysis. 86

6.4.3 Experiment results . 86

6.4.4 Comparative Results . 89

6.4.5 Failure cases . 91

6.4.6 Conclusion . 91

6.5 Summary . 92

xi

7 Conclusions and Future Work 93
7.1 Conclusions . 93
7.2 Recommendations and Future Work 93

List of Publications 95

References 96

xii

List of Figures

2.1 (a) Authentic image. (b) Copy-move forged image. 10
2.2 Image splicing forgery . 10
2.3 Image retouching . 10
2.4 Flowchart for Copy Move Forgery Detection (CMFD) 12
2.5 (a) Features from Accelerated Segment Test (FAST) . (b) Oriented

Fast and Rotated BRIEF (ORB). 18
2.6 SIFT-Symmetry based CMFD . 20
2.7 Support vector machines . 25
2.8 Tampered region bounding box. 28
2.9 Overview of the framework based on CNN-LSTM. 29
2.10 Overview of the two-stream faster R-CNN network 29

3.1 (a) Gaussian Filter at σ=2. (b) LoG filter at σ=2. 32
3.2 The Output will be maximum when there is a corner. 32
3.3 DoG blob detection , k = 1.6 . 34
3.4 (a) Forged image. (b) Red circles are blobs detected using DoG. . . 34
3.5 (a)Image blocks. (b)Image blobs . 35
3.6 (a)Image blobs. (b)Image segments 35
3.7 Red rectangles are ground-truth, green rectangle are Difference of

Gaussians (DoG), blue rectangles are Lapracian of Gaussian (LoG),
and black lines show intersection area. 36

3.8 Intersection over Union (IoU) Scores from 20 patches extracted from
dataset MICC-F8multi. DoG has overall score of 0.6. LoG has
overall score of 0.3. 37

3.9 (a) Blob detection. (b) Edge + blob detection. 38

xiii

3.10 (a) Blobs and ORB Feature detection. (b) Feature matching. 40
3.11 First row: tampered images. Second row: CMFD results. 44
3.12 (a) Overlapping CMF areas. (b) Blob detection on overlapping

CMF areas. 45

4.1 CMFD using image blobs and BRISK 48
4.2 (a) Red circles are detected blobs and green circles are BRISK key-

points inside different blobs (b) Green lines indicate BRISK key-
points matching pairs from different blobs. 53

4.3 (a) Copy-move forged image. (b) Output CMFD 57
4.4 CMFD on overlapping cloned and original areas 57
4.5 Authenic images detected as tampered 58

5.1 Flowchart for the proposed technique for geometric estimation from
CMFD . 61

5.2 Approximate LoG with box filters 63
5.3 Big red rings are detected blobs and small rings are detected fea-

tures. First
row: (a)CMF forged image. (b)Blobs+AKAZE. (c)Blobs+BRISK.
Second row : (d)Blobs+ORB. (e)Blobs+SIFT. (f)Blobs+SURF. . . 66

5.4 (a) Feature matching before blobs post-processing. (b) blobs after
post-processing. 67

5.5 Matching keypoints located in different blobs. (a) CMF image.
(b)Feature matching before blobs post-processing. (c)Feature match-
ing after blobs post-processing. 67

5.6 (a) CMF image. (b) Simple CMFD. (c)CMFD θ = 70◦. (d) CMFD

θ = 90◦. 76
5.7 (a)40◦, estimated = 40.03◦. (b)70◦, estimated = 69.94◦. 77

6.1 Flowchart of the present method 80
6.2 Homomorphic filtering . 81
6.3 Illumination estimation . 83
6.4 Local Binary Patterns . 84
6.5 Feature vector (LBP histogram) . 84

xiv

6.6 Data class distribution in dataset CASIA 2.0 86
6.7 ROC feature vector size is 256 . 87
6.8 ROC feature vector size is 512 . 88
6.9 ROC feature vector size is 768 . 89
6.10 Spliced images successfully classified as forged 91
6.11 Authentic images misclassified as tampered images 91

xv

List of Tables

2.1 Summary of recent CMFD methods 13
2.2 The performance of different block sizes 15
2.3 Summary of recent image splicing detection methods 24
2.4 SCNN architecture. 27

3.1 Experimental results on 400 images (100 originals and 300 forged)
from dataset CoMoFoD [132] and T values between 0.1 and 0.9 to
set the proper operating point. 42

3.2 Rotation θ in degrees. Scaling factors Sx, Sy. Images from the
dataset MICC-F220 . 43

3.3 Parameters for post-processing operations. Images from CoMoFoD
dataset . 43

3.4 Processing time in seconds (average per image) per number of ORB
features extracted from image. 43

3.5 Detection results for robustness tests against geometric transforma-
tions, multicopies and post-processing operations. 43

3.6 Comparative results between the present method against other re-
lated methods [39] on 400 images from CoMoFoD dataset. 44

4.1 Reduction of the number of BRISK keypoints to match. 51
4.2 Experimental results to determine the threshold value T 54
4.3 Comparison of running times . 54
4.4 CMFD results on forged images with rotation, scaling, rotation+scaling,

multi copy-move regions, and post-processing operations 55
4.5 Detection results in terms of TPR and FPR on MICC-F220 dataset 56

xvi

4.6 Comparative results between the presented method and existing
methods [110] on 220 images from MICC-F220 56

4.7 Comparative results between the presented method and existing
methods [39, 108] on 400 images from CoMoFoD dataset 57

5.1 Experimental results to determine the threshold value T 70
5.2 Running time analysis on image car from MICC-F220 dataset . . . 71
5.3 Geometric transformations parameters. Rotation θ in degrees and

(Sx, Sy) scale factor in pixels. 72
5.4 Rotation parameters estimation. Images (i) fromMICC-F220 dataset.

For 70◦ and 90◦ images from MICC-F2000 dataset. (-) indicates
that not enough matches are found to estimate the parameters. B
is blob, and 2Da is 2D affine transforms 73

5.5 Translation parameters estimation. Images (i) from MICC-F220
dataset. (-) indicates that not enough matches are found to estimate
the parameters. B is blob and 2Da is 2D affine transformation . . . 74

5.6 Scale parameters estimation. Images (i) from MICC-F220 dataset.
(-) indicates that not enough matches are found to estimate the
parameters. B is blob and 2Da is 2D affine transformation 74

5.7 Rotation and scale parameters estimation. Images (i) from MICC-
F220 dataset. (-) indicates that not enough matches are found to
estimate the parameters. B is blob and 2Da is 2D affine transformation 74

5.8 CMFD results in terms of accuracy on MICC-F220 dataset 75
5.9 Geometric transformation parameters estimation, B is blob, and

2Da is 2D affine transforms . 76

6.1 Analysis of running time. M is minute, and S is second. 12614

images from dataset CASIA v2.0 are used 86
6.2 Accuracy when the feature vector size is 256. 87
6.3 Accuracy when the feature vector size is 512. 88
6.4 Accuracy when the feature vector size is 768. 89
6.5 tn, fp, fn, tp, pr, rc, and f1 score, on 12614 images from CASIA

v2.0. Testsize=0.4. 90

xvii

6.6 Accuracy comparison with other models known in literature on
dataset CASIA v2.0 . 90

xviii

List of Acronyms
AO Adaptive Oversegmentation
ANNSP Approximate Nearest Neighbor Searching Problem
AKAZE Accelerated-KAZE
BRISK Binary Robust Invariant Scalable Keypoints
BRIEF Binary Robust Independent Elementary Features
DIF Digital Image Forensics
DoG Difference of Gaussians
DWT Discrete Wavelet Transform
LoG Lapracian of Gaussian
CMF Copy Move Forgery
CMFD Copy Move Forgery Detection
LBP Local Binary Patterns
IoU Intersection over Union
ORB Oriented Fast and Rotated BRIEF
DCT Discrete Cosine Transform
FT Fourier Transform
SWT Stationary Wavelet Transform
ED Euclidean Distance
EM Expectation Maximization
CPPN Compositional Pattern-Producing Network
MROGH Multi-support Region Order-based Gradient Histogram
MLDD Multi-Level Dense Descriptor
HFM Hierarchical Feature Matching
HD Hamming Distance
PCET Polar Complex Exponential Transform
DRHFM Discrete Radial Harmonic Fourier Moments
2NN 2 Nearest Neighbors
CNN Convolutional Neural Networks
RANSAC Random Sample Consensus
TPR True Positive Rate
FPR False Positive Rate
SVD Single Value Decomposition
LSH Locality Sensitive Hashing
DRHFM Discrete Radial Harmonic Fourier Moments
SVM Support Vector Machine

xix

FAST Features from Accelerated Segment Test
DyWT Dyadic Wavelet Transform
HOG Histogram of Oriented Gradients
QDCT Quaternion Discrete Cosine Transform
GLRLM Grey Level Run Length Matrix
SCNN Shallow Convolution Neural Network
LSTM Long-Short Term Memory
LPT Log Polar Transform
SIFT Scale Invariant Feature Transform
SURF Speed-Up Robust Feature
GPU Graphics Processing Unit
PCA Principal Component Analysis
DT Decision Tree
LR Logistic Regression
LDA Linear Discriminant Analysis
KNN K-Nearest Neighbors
NB Naive Bayes
SPT Steerable Pyramid Transform

LPF Low Pass Filter

xx

Chapter 1

Introduction

Today’s sophisticated computer tools have made it effortless to do image tampering
and the question is “can we trust a digital image content anymore"?

The main purpose of image tampering is to mislead the viewers or public opin-
ion. History shows that Joseph Nicéphore Niépce took the first photograph made
with a camera in 1827 [1, 8, 9], but around 1860 photographs were already being
manipulated [8]. Since then, with the digital era, the manipulation of photographs
has become simpler and easier by computer tools. Since engineer Steven Sasson
[14] invented the first self-contained (portable) digital camera back in 1975, the
digital revolution has changed the way how images are created, consumed and
perceived. In 1987 the photo editing computer program for personal computers
known as Adobe Photoshop was released. Today, it is so popular such that the
term “photoshop" is used to call attention to digital image editing and manipula-
tion [46].

The digital era has propelled the digital image to become an important source
of information in several areas such as the internet, social media, courts of law,
industries, and other several fields. However, today’s technology has made effort-
less to counterfeit both origin and content of digital image and has enabled the
digital image to be manipulated and tampered with low cost to deceive the pub-
lic, as quoted by Hany Farid [74]: “Today’s technology allows digital media to be
altered and manipulated in ways that were simply impossible twenty years ago".
Several tools for digital image editing like Adobe Photoshop, Adobe Illustrator,
Gimp, CorelDRAW, etc., [46] can easily be obtained on the market at low cost

1

or as free and open-source; with such tools, advanced image manipulations have
become simple even for non-experts, and the reliability of digital media (photo
and video) is doubted.

A deliberate modification of images for malicious motives that include adding,
removing, or changing some important features from the image is known as image
tampering or image forgery [119]. Often, this malicious image manipulation is
post-processed to hide any conspicuous trace of tampering [108]. Image forgery
attempts to mislead the viewers by altering the semantic meaning of the visual
message.

According to [23], around 95 million photos are uploaded daily on the social
media platform "Instagram"; and since its creation in 2010, more than 40 billion
photos have been shared. Around 350 million images per day are uploaded to
the social media platform "Facebook" [6, 7]. Now, with the enormous amount of
photographs on social media, the questions arise like in [67, 68], how many of the
images can we trust on social media? How to tell the authentic from the tampered?

Also, the digital image forgery is being made more sophisticated by the recent
advancements in deep learning [93] and computer vision [17]. Computer vision
tools like OpenCV [16] have introduced the “Seamless cloning" feature that allows
the user to seamlessly clone parts of the source image onto a destination image
to create a realistic composition in just ten lines of codes in Python or C++.
Normally, a photoshop editor would spend a few hours and meticulously alter the
brightness on the source image to the brightness of the destination image to fabri-
cate a realistic composition. Another tool called Faceswap [91] is used to recognize
and swap faces in photos and movies. Faceswap utilizes deep learning to trans-
form the input identity into a target identity while preserving facial expression,
brightness and pose.

Several digital image forgery detection algorithms have been proposed. How-
ever, to discriminate forged images from original images has become progressively
challenging [119]. The need for robust, effective, and efficient image tampering
detection techniques is still very significant. Also, image tamper detection tech-
niques pay less attention to image contents (semantic) than to tampering clues
(forgery artifacts). Thus, image forgery detection differs from conventional object
detection (semantic) [111].

2

To restore some trust to digital images, the DIF field has emerged [119]. DIF
aims are:

• To identify the camera that captured the image to validate its authenticity.

• To detect the traces of forgeries.

Generally, DIF categorises digital image forgery detection algorithms into active
and passive or blind approaches [119]. Active approach inserts a digital informa-
tion (watermark or signature) at the source side and it is verified at the destination
side. Passive approach does not consider any prior information that is inserted
beforehand. The active method exhibits a reliable detection accuracy but the pre-
condition of inserting information at the source side is strenuous in some practical
applications. The passive detection approach has attracted more attention as most
of today’s images and videos on social media, web, internet and other fields don’t
have digital information (watermark or signature) embedded [119].

1.1 Motivation

The most common types of digital tampering include[110, 119]:

• Copy-move or image region duplication

• Image/photo splicing

• Image/photo retouching

Hany Farid quoted: “The field of image forensics, however, has made and will
continue to make it harder and more time-consuming (but never impossible) to
create a forgery that can not be detected" [74]. The gap between the image
tampering techniques and image tampering detection techniques is still vast, and
to narrow it was the main drive that directed us in this field .

Numerous image tamper detection methods to combat the Copy Move Forgery
(CMF) and image splicing have been proposed [77, 110, 119]. However, it is
effortless to make sophisticated tampered images even for amateurs, whereas it
requires great effort to make image tampering detection tools even for experts.

3

To narrow the gap between the image tampering techniques and image tamper-
ing detection techniques, the field of DIF has attracted many researchers. Thus,
akin to [79], this study was inspired by the considerable need for powerful im-
age forgery detection techniques to assess image authenticity and to ensure the
credibility of digital image contents.

We focused on tackling the limitations and drawbacks of the existing image
tampering detection techniques that deal with the two common types of digital
image tampering known as the CMF, and the image splicing forgery.

1.2 Scope of Work

The main goal of this study is to determine the limitations of the existing CMFD
and the image splicing forgery detection techniques, then provide digital image
tamper detection techniques to tackle those limitations. The specifications to
achieve our objectives are as follow:

1. Identify the important classifications of image tampering. Chap. 2.

• Basically, DIF enumerates three categories of digital image forgery
known as the copy-move, image/photo splicing, and image/photo re-
touching [110]. Copy-move forgery or cloning : an image is tampered
by copying a region and pasting it into another part of the same image.
This type of image tampering is composed of image regions duplication
from the same image as it is shown in Fig. 2.1. Image splicing or image
composition: splices two or more different images to create a doctored
(spliced) image [37, 53, 86]. This category of image tampering is com-
posed of several different images that are merged into a single doctored
image. Usually, the edges between the spliced regions are visually im-
perceptible to the naked eye [74]. Fig. 2.2 shows image splicing forgery.
Image retouching or airbrushing : is done to intensify or to lessen some
image features to improve the image appearance (polishing). Image
retouching doesn’t alter the semantic features [44].

4

2. Develop detection methods for copy-move and splicing image tampering to
tackle the limitations and drawbacks of existing detection methods. Chapters
3, 4, 5, and 6.

• Detection techniques for CMF are known as aCMFD techniques and
they are generally categorized into block-based, keypoint-based, and segment-
based approaches [109, 110] . Fig. 2.4 shows the general structure for
CMFD.

Block-based approach: image is split into small blocks (overlapping or
non-overlapping). Features are extracted from the blocks and are com-
pared to find which blocks or features that are similar. Block-based
techniques are effective for detecting CMF under noise addition and
image compression [110].

The limitations of block-based techniques include the difficulty of find-
ing the appropriate size of the block. The image blocks are proportional
to the image pixels. Robust features cannot be extracted from small
blocks. The the computational cost is high when using the small blocks.
Large blocks cannot be used to detect small tampered regions. Uniform
areas (e.g., background) can be detected as duplicates [109, 115].

Keypoints-based methods : the keypoints are found in the image. Then
the regions around the keypoints are described to generate the fea-
ture vectors. The feature vectors are analyzed to detect similar re-
gions. Keypoints-based CMFD techniques are effective for detecting
copy-move forgery when tampered regions are scaled or rotated.

The main drawbacks of keypoint-based techniques include the large
number of keypoints to match, the large number of false matches, and
the need for filtering techniques such as Random Sample Consensus
(RANSAC) [71] for reducing of false positives [110].

Segment-based methods : splits an image into irregular non-overlapping
regions (segments or superpixels) [116].

The main drawback of segment-based methods includes the splitting
of a single CMF region into two or more regions (oversegmentation).

5

Also, uniform areas such as the background areas can be detected as
duplicates.

• For image splicing, the regions of the spliced image are obtained from
different original images. It is difficult to achieve proper illuminant
condition (uniform illumination) for the entire spliced image because
different parts of the spliced image are taken from different cameras with
different lighting conditions [112]. Abnormal edges are introduced at
spliced boundaries [143] and it is frequently inevitable to resize certain
portions of an image (resampling images into a new sampling grid) [112].

Existing methods for detecting image splicing try to detect the abnor-
mal edges (boundary-based) [123, 143], or they detect inconsistencies
of the image characteristics (non-uniform illumination, blur estimation,
resampling artifacts) [112].

Most recent techniques consider the image splicing detection problem
as a binary classification problem [66, 142]. They consider two phases
for the splicing detection task:

– Phase 1: extracting features and training the classifier (classify
image as authentic or tampered).

– Phase 2: localizing the spliced areas in the tampered image.

The existing image splicing techniques exhibit some limitations that
need to be tackled [107]:

– The existing methods with high detection accuracy are computa-
tionally expensive. Majority of them are based on complex deep
learning models. They are expensive to train and require a large
amount of data to perform better. They also run on expensive
Graphics Processing Unit (GPU).

– There is no known standard mechanism to localize the spliced areas.

3. In the end, conclusions, recommendations and direction for future work are
detailed in Chap. 7.

6

1.3 Contribution

We proposed the utilization of image blobs [90, 100, 101] in CMFD algorithms.
Since image blobs are regions detected in scale-space, they present certain advan-
tages over image blocks and image segments in CMFD techniques. We proposed
the following three different methods for copy-move forgery detection.

• Copy-move forgery detection using DoG blob detector [101] and ORB fea-
tures [48].

• Copy-move forgery detection using DoG blob detector and Binary Robust
Invariant Scalable Keypoints (BRISK) features [95].

• Geometric transformation parameters estimation from copy-move forgery us-
ing image blobs.

We also proposed utilizing Illumination-Reflectance model [24, 54, 120] in image
splicing to get the illumination component from an image. Assuming that the
image splicing perturbs the spatial arrangement (texture information) of color and
intensity in the image, we use the Local Binary Patterns (LBP) [66] to extract
texture features. To categorize image as tampered or authentic, we used different
classifiers such as Support Vector Machine (SVM) [65], and Linear Discriminant
Analysis (LDA) [129].

1.4 Thesis Organization

The thesis contains 7 chapters. Chap. 2 summarizes the related works from lit-
erature. Copy-Move forgery detection methods using block-based, keypoint-based
and segment-based techniques are presented in detail so that the context of our
work is properly brought out. The major limitations of the existing approaches,
the background material on image blobs and the basic ideas on how they may be
used for forgery detection are presented in Chap. 2. Chap. 3 deals with the first
of our contributions, viz, the use of blobs and their efficacy demonstrated through
the use of ORB features. Chap. 4 continues with techniques for handling CMF
and describes our second contribution, that is, the use of BRISK features which

7

overcome certain limitations of ORB features when used in conjunction with blobs.
Chap. 5 enhances the tamper detection of CMF by extracting the geometric trans-
formation parameters used in making the forged images. A variety of standard
off-the-shelf features are used to show that the blob-based approach is inherently
capable of such forgery parameter estimations.

Chap. 6 deals with Image-Splicing forgeries where a portion of a second image
is pasted into an image. Texture analysis of illumination components, extracted
using edge-preserving smoothing filter is shown to work well for detecting image-
splicing forgeries. Chap. 7 is a brief summary of our main contributions and
presents the main conclusions from our work.

1.5 Summary

An introduction to DIF is given in this chapter. The cases of image tampering
that involve the copy-move forgery and image splicing are discussed. This chapter
also talked about image forgery through history and described the gap between the
image tampering techniques and image tampering detection techniques. Finally,
the need for robust image tampering detection is described, and a brief description
of our contribution to the field was introduced.

8

Chapter 2

Related Work

2.1 Introduction

This chapter covers the different image tampering methods with focus on copy-

move and image splicing. Previous research is described and analysed to identify

gaps and weaknesses. The chapter serves the content for our research and help

in explaining certain algorithmic and design decisions on parameters used in our

work. Copy-move forgery is described in Sect. 2.1.1 and image splicing detection

methods are described in Sect. 2.2. The details of copy-move forgery and the

state-of-the-art of forgery detection methods are discussed in Sect. 2.2. Sect. 2.2.5

discusses the limitations of existing CMFD methods and Sect. 3.2 describes the use

of image blobs in CMFD to tackle the limitations of existing methods. Sect. 2.3

discusses the recent image splicing detection methods and their limitations are

described in Sect. 2.3.3.

2.1.1 Copy-move forgery

Copy-move forgery or cloning refers to copying a region of an image and pasting it

into the same image (see Fig. 2.1 (b) where a white car is copied and pasted into

two different regions, whereas a black car is copied and pasted into one region).

9

2.1.2 Image splicing

Image splicing consists of merging two or more images to produce a tampered
(spliced) image [106] as illustrated in Fig. 2.2.

2.1.3 Image/photo retouching

Photo retouching or airbrushing alters image features to improve image appearance
(polishing) but the semantic features remain the same (see Fig. 2.3) [44].

Figure 2.1: (a) Authentic image. (b) Copy-move forged image.

Figure 2.2: Image splicing forgery

Figure 2.3: Image retouching

10

Our work focuses on copy-move forgery and image splicing because the semantic
features are altered in both forgeries.

2.2 Related Work: CMFD methods

A CMF consists of one or more regions copied and pasted into the same image
[119]. The motivations behind such falsification comprise highlighting a specific
region or object or hiding a specific object or region in the image (steganogra-
phy). Since both copied and pasted areas are from the same image, their image
characteristics like color, noise and contrast will basically be similar. Therefore,
this type of forgery is usually unnoticeable by naked eyes. CMF is often combined
with geometric transformation and post-processing operations to prevent the de-
tection of manipulated regions. Visible clues like sharp edges introduced by CMF
are eliminated by those post-processing operations, whereas geometric transfor-
mation operations provide the uniformity between the tampered region and its
surrounding regions [119]. [119].

A large number of CMFD methods have been proposed to deal with the CMF
[110, 119].

Generally, the workflow of a CMFD technique consists of a pre-processing stage,
feature extraction stage, feature matching stage, and localization stage [119].

Pre-processing aims to enhance image features or to suppress inadvertent dis-
tortions. Image processing techniques such as edge detection, color conversions
and dividing the image into a number of blocks are performed in this stage [108].

Feature extraction aims to select information (image characteristics) that can
lead to expose the CMF. Common methods for feature extraction on image blocks
include 2D-Fourier Transform (FT) [127], Discrete Cosine Transform (DCT) [77],
etc. Common methods for feature extraction on whole image include Scale Invari-
ant Feature Transform (SIFT) [135] and BRISK [95].

Feature matching stage aims to find out the resemblance between different
features in the image. Also, similar image blocks are found at this stage. Match-
ing techniques of image blocks include Euclidean Distance (ED) and correlation,
whereas matching techniques for invariant keypoint features include Hamming
Distance (HD) and ED [110].

11

Finally, the tampered regions in the forged image are localized and visualized.

For image blocks, the region of the matching blocks are colored or mapped for the

visualization. The lines between every matching pairs are used to visualize the

matching invariant keypoint features [108].

Usually, CMFD methods are categorized into three approaches: block-based,

keypoint-based and segment-based [109]. In block-based approach, image is divided

into small overlapping or non- overlapping blocks, the blocks or block features are

matched against each other to determine blocks or features that are similar [134].

In keypoint-based approach, keypoints are detected in the regions/areas with

high entropy in the image without any image partitioning. Then, each keypoint

is described by a feature vector. Finally, the feature vectors are compared against

each other to determine which feature vectors are similar [36].

Some recent techniques have adopted image segments (segment-based) as al-

ternatives to image blocks in CMFD [38, 109, 116]. Image is divided into non-

overlapping regions called segments or superpixels [41], features are extracted in

each segment, and features from different segments are matched to find out which

ones are similar. Fig. 2.4 shows the general structure for CMFD and Tab. 2.1

shows recent CMFD methods.

Figure 2.4: Flowchart for CMFD

12

Table 2.1: Summary of recent CMFD methods

Approach Method Author
Block-based DWT and DCT Hayat et al. [77](2017)

Discrete Cosine Transform Alkawaz et al. [34] (2018)
Color-segmentation with SWT and SVD Dixit et al.[59] (2017)

Circular Harmonic Transforms and PatchMatch Cozzolino et al.[57] (2015)
Color information and its histograms Zhou et al.[145](2016)

First order moment with SWT Mahmood et al.[103] (2017)
Polar representation Fadl et al.[127](2017)

Dense descriptor and feature matching Bi et al. [45](2016)
Polar transform and ANN Emam et al.[62] (2016)

Modified PatchMatch algorithm Cozzolino et al.[56](2014)
DRHFMs and 2NN test Zhong et al. [144](2017)

Trigonometric transforms and deep learning Faten et al. [69](2020)
Keypoint-based Agglomerative hierarchical clustering Amerini et al.[36](2011)

J-Linkage clustering algorithm Amerini et al.[35](2013)
SIFT and symmetry-based matching Warif et al.[135] (2017)

Maximally stable detector and best-matching Li et al.[96](2016)
Harris detector and MROGH Yu et al.[140](2016)

KAZE feature detector Yang et al.[139](2017)
Optimized J-Linkage Jin et al.[85](2017)

Automatic matching with SIFT features Mahdi et al.[102](2020)
Reduced Local Binary Pattern histogram with scale-invariant features Jun et al.[87](2020)

Segment-based Superpixel segmentation and the Helmert transformation Hui et al.[80](2019)
Feature matching with adaptive over-segmentation Pun et al.[116](2015)

2.2.1 Block-based approach

lock-based CMFD methods usually split an image into square or circular blocks

(overlapping or non-overlapping) for analysis. Then, they extract important fea-

tures from each block. The extracted features are matched to find corresponding

image blocks. Various image block descriptors include the 2D-FT [127], DCT [77],

Log Polar Transform (LPT) [127], Discrete Wavelet Transform (DWT) [77], ge-

ometric moment [103], Single Value Decomposition (SVD) [59], histogram [145],

and Principal Component Analysis (PCA) [66], etc. After the corresponding im-

age blocks are found, these image blocks constitute the manipulation of CMF

conducted in the image. Though the block-based methods are effective in CMFD,

often they are not robust to post-processing (compression, noise addition, etc.)

operations [134].

In block-based, often an image of size W ×H is split into small blocks (fixed-

size and overlapping) of wb × hb pixels by sliding the block one pixel at a time

13

resulting in Nb blocks.

Nb = (W − wb+ 1) ∗ (H − hb+ 1) (2.1)

However, Nb is proportional to the number of pixels in the image, and it is

challenging to set the appropriate size of wb and hb [109, 134].

• Nb is proportional to W and H. It increases as image size increases.

• Small blocks don’t give robust features.

• The computational cost is high when using the small blocks.

• Large blocks cannot be used to detect the presence of small tampered areas.

• Uniform areas (e.g., background) can be detected as duplicates.

Alkawaz et al.(2018)[34] studied the effects of different block sizes (4 × 4 and

8 × 8) to investigate the effect of block size in CMFD. Their method uses DCT

coefficients obtained from various block sizes. Tab. 2.2 reports the performance

results on ten selected images from CoMoFoD standard dataset [132]. They con-

cluded that the performance is influenced by the different sizes of tampered region,

distance between two tampered regions and the threshold value.

14

Table 2.2: The performance of different block sizes

Images block size Precision(%) Recall(%)
Image I 4X4 63.52 97.89

8X8 100 97.53
Image II 4X4 42.55 95.54

8X8 95.19 96.25
Image III 4X4 27.44 99.70

8X8 49.80 100
Image IV 4X4 19.30 98.07

8X8 87.62 99.48
Image V 4X4 23.02 92.19

8X8 63.32 88.47
Image VI 4X4 3.52 99.35

8X8 62.53 97.30
Image VII 4X4 10.37 99.62

8X8 59.51 99.86
Image VIII 4X4 59.25 98.68

8X8 9.25 98.68
Image IX 4X4 15.85 95.57

8X8 41.49 93.37
Image X 4X4 1.73 98.60

8X8 26.58 94.85

Dixit et al.(2017)[59] presented a CMFD technique that utilizes the Stationary
Wavelet Transform (SWT) and SVD. Their method uses SWT to produce sab-
bands and LL (low frequency) sub-band is split into blocks (overlapping). Features
are extracted from blocks using SVD. Finally, they use ED to measure similarities
between features.

Zhou et al.(2016)[145] proposed a CMFD technique that uses color-related in-
formation and its histograms. Their method splits the image into blocks (fixed
size overlapping). They clustered the search space based on color distribution.
Blocks from the tampered regions reside within the same cluster because CMF
regions have similar color distributions. For each image block, the algorithm ex-
tracts the color features like color moments, texture histogram and fuzzy color.
These extracted features form a 50-dimensional feature vector which is fed to a
Compositional Pattern-Producing Network (CPPN). Similar feature vectors indi-
cate the forged regions. For images distorted with 33dB noise signal, their method
gives accuracy higher than 83.6%.

15

Mahmood et al.(2018)[103] proposed an efficient CMFD technique that uses the
translation invariant SWT. SWT divides the image in sub-bands, then overlapping
blocks are computed from low frequency sub-band. First order moment from blocks
are matched to indicate the forgery. The accuracy is 97.023% for block size 8× 8.
For block size 4× 4 the accuracy is 96.05%.

Fadl et al.(2017)[127] proposed a robust CMFD using polar coordinate system.
Their technique enhances the block matching by utilization of polar representation
as features for each block. The frequency of each block is the main feature. Their
experiment results on Columbia dataset [106] show the precision rate of 99.9% for
CMF without post-processing operations . For post-processed CMF, the precision
varies from 85.02% to 99.5%.

Bi et al.(2016)[45] presented a CMFD technique that uses a Multi-Level Dense
Descriptor (MLDD) and a Hierarchical Feature Matching (HFM). The MLDD is
used to extract feature (color texture and invariant moment) and HFM method
detects tampered regions using extracted features. Finally, CMF regions are high-
lighted using morphological operations. The experiments carried out on image
manipulation dataset [55] show a precision of 87.20% and 89.68% recall.

Emam et al.(2016)[62] presented an efficient CMFD technique that divides
an image into overlapping circular blocks. For each block, a Polar Complex Ex-
ponential Transform (PCET) is computed. The PCET kernels represent each
block. Similar blocks are identified using the Locality Sensitive Hashing (LSH)
with the Approximate Nearest Neighbor Searching Problem (ANNSP). To make
their method more robust, they used morphological operations small holes and the
wrong similar blocks (false matches).

Zhong et al.(2017)[144] presented a block-based efficient method for CMFD
that uses circular block. Firstly, forged image is pre-processed by a Gaussian filter
to reduce the additive white noise, then overlapping circular blocks are computed.
The Discrete Radial Harmonic Fourier Moments (DRHFM) is computed to extract
features and a 2 Nearest Neighbors (2NN) test is used to search similar feature
vectors. Correlation coefficients and ED are used to reduce the false positives.
Finally, they used morphologic operation to remove the isolated pixels. For an
image of size W ×H, the number of circular blocks (overlapping) CiB is:

16

CiB = (W − 2r) ∗ (H − 2r) (2.2)

r is the radius of the circular block.
Faten et al.(2020)[69] proposed a method that uses deep learning for CMFD.

Their technique uses a Convolutional Neural Networks (CNN) which has convolu-
tion layers, pooling layer and a fully-connected layer. Their method uses a dense
layer to detect (classify) image as original or forged.

2.2.2 Keypoint-based approach

Keypoint-based CMFD methods detect feature (keypoint and its descriptor) in
the image without splitting the image. A descriptor is generated within the re-
gion around the keypoint. Descriptors are matched to find similar regions in the
image. Common feature detection algorithms include Harris corner detector [75] ,
SIFT [135], Speed-Up Robust Feature (SURF) [124], ORB [48], BRISK [95], and
Accelerated-KAZE (AKAZE) [128].

Keypoint-based CMFD techniques are effective for forgeries that include the
geometric transformation (scaling and rotation) [108]. Their limitations consist
of the large number of keypoints to match, matching between neighboring key-
points produce a lot of false matches and the need for filtering techniques such as
RANSAC to reduce the false positives [110]. Also, many detectors are designed
to work on grayscale images where a remarkable color information is disregarded
[134].

Jun et al.(2020)[87] proposed a CMFD that uses a LBP histogram and SIFT
features. Their technique starts by extracting SIFT features in the image. Then,
LBP values are obtained from the local regions around the features and descriptors
are generated. Finally, a matching process is done and false matches are removed
using RANSAC.

Debbarma et al.(2014)[58] analyzed the keypoints-based CMFD using SIFT
and SURF algorithms. Their technique extracts interest points in image using
SIFT then SURF. The feature vector size is 64 for SURF and 128 in case of
SIFT. To find similar keypoints, a matching operation is performed using Eu-
clidean distance. Finally, false positives are reduced using an agglomerative hier-

17

archical clustering. Experiments performed on the MICC-F220 dataset [36] show

the True Positive Rate (TPR) of 91% for SIFT and 88.18% for SURF. False

Positive Rate (FPR) results are 6.36% for SIFT and 5.45% for SURF.

A keypoint-based CMFD technique that uses SIFT, ORB, SVM and Expectation

Maximization (EM) was proposed by Rajdeep et al. (2016)[89]. Features are ex-

tracted in images using SIFT and ORB. Then, SVM and EM are utilized to detect

(classify) an image as original or forged using the extracted features. Their ex-

perimental results show accuracy of 92.5% for ORB+EM and 90.5 for SIFT+EM.

The CMFD tests are performed on the MICC-F600 dataset [36].

ORB is a robust local feature detector and keypoint descriptor (see Fig. 2.5(b))

[64]. It is composed of an oriented keypoint detector called FAST and a ro-

tated binary feature descriptor called Binary Robust Independent Elementary

Features (BRIEF). ORB is recommended for real-time applications because it

is faster than SIFT [101] and SURF [42]. In FAST, a pixel Px is a keypoint if

there is a set of η = 12 connected pixels in the Bresenham circle of 16 pixels which

are either lighter than I(px) + t or darker than I(px)− t . I is intensity and t is

a threshold. Fig. 2.5(a) shows a Bresenham circle of 16 pixels with the radius of 3

units. A high speed test is done to avoid a large number of non-corners, this test

Figure 2.5: (a) FAST . (b) ORB.

examines only the four pixels at 1, 9, 5 and 13. ORB uses the following modifica-

tion for an orientation compensation mechanism since FAST doesn’t compute the

18

orientation. Given image patch I(x, y), the moments of a patch are defined as:

Mpq =
∑
x

∑
y

xpyqI(x, y) (2.3)

With the above moments a centroid is found, the “center of mass” C of the patch
as:

C =
M01

M00

,
M10

M00

(2.4)

The orientation θ of the patch is given by :

θ = tan−1
M01

M00

(2.5)

BRIEF is a binary feature descriptor such as LBP [27], it only performs simple
binary comparison tests. To generate a binary descriptor, intensity between two
pixel positions located around the detected interest points are compared. This
enables to obtain a feature descriptor at very low computational cost. BRIEF
takes a smoothed image region and selects a set of n(x, y) location pairs in that
region. Then the pixel intensity comparisons are done on these location pairs.
Considering a smoothed image region P , a binary test τ is given by:

τ(P ;x, y) :=

{
1 : P(x) < P(y)
0 : P(x) ≥ P(y) (2.6)

Where P (x) is intensity of P at point x and P (y) is intensity of P at point y.
BRIEF uses a bitstring to describe an image patch as a feature. The feature is
defined as a vector of n binary tests (n = 256) [64].

fn(P) :=
∑

1≤i≤n

2i−1τ(p;xi, yi) (2.7)

A CMFD using Gabor filters and Scaled-ORB was proposed by Muzaffer et
al.(2016) [105]. Their technique starts by computing an histogram equalization on
the image, then image is filtered using Gabor filters. Finally, ORB features are
extracted and matched to find the tampered areas.

Zhu et al.(2015)[146] proposed a CMFD using Scaled-ORB. Their method

19

works by establishing a Gaussian scale space. ORB features are extracted in

each scale space and those features are matched using HD to find similar features.

Finally, RANSAC algorithm is used to reduce false matches. Their CMFD method

is effective for geometric transformation but the computational cost is high for high

resolution pictures.

Hashmi et al.(2014)[76] proposed a CMFDmethod that uses the Dyadic Wavelet

Transform (DyWT) and SIFT features. DyWT divides the image in sub-bands,

then SIFT features are extracted from low frequency sub-band because it contains

most of the information. SIFT features are matched to find similar features and to

conclude if some copy-move tampering have been done. Their experiment results

show a precision of 88% and a recall of 80% on images from dataset MICC-F220

[36].

Amerini et al.(2013)[35] presented a CMFD technique that uses the J-Linkage

algorithm with SIFT features. Their method starts by extracting and matching

SIFT features. The corresponding features are clustered using J-Linkage algorithm

in a transformation domain. The original and the duplicated regions share similar

transformations because they have similar conceptual representations.

Warif et al. [135] proposed a CMFD method which uses a symmetry-based

matching and SIFT. The overview of their technique is shown in Fig. 2.6.

Figure 2.6: SIFT-Symmetry based CMFD

20

Their experiment results show an average of 80% value of f1 score for geomet-
rical transformation cases and an average of 65.3% of f1 score for rotation and
reflection cases.

Li et al.(2017)[96] proposed an effective CMFD method that uses the maxi-
mally stable color region detector to extract features in image. Then the Zernike
moments are used to represent these features. To detect multi-copy regions, the
technique uses a matching strategy considering n best-matching features. Finally,
the technique computes an hierarchical cluster algorithm and estimate the trans-
formation matrices. The duplicated regions are located at pixel level using these
matrices. A CMFD method based on Harris detector and Multi-support Region
Order-based Gradient Histogram (MROGH) feature descriptor was proposed by
Yu et al.(2016)[140]. Harris method detects keypoints in both textured and smooth
regions and MROGH is used as feature descriptor. After feature matching, false
positives are filtered and the geometric transformation between CMF regions are
estimated. Finally, forgery detection maps to indicate the cloned regions are gen-
erated.

Yang et el.(2017)[139] proposed a CMFD method based on hybrid features
by combining KAZE and SIFT. Their technique computes KAZE and SIFT to
provide more feature points. These features are matched to find CMF. Finally, an
image segmentation technique is used to reduce false positives and CMF regions
are mapped based on correlation coefficient.

Jin et al.(2017)[85] proposed a CMFD using an improved SIFT and optimized
J-Linkage. Their method enhances the discriminative power of SIFT keypoints
using the OpponentSIFT as feature descriptor. To reduce the high computational
cost of clustering, J-Linkage algorithm is optimized using a matched pair grouping
method.

2.2.3 Segment-based CMFD

Pun et al.(2015)[116] proposed an image forgery detection that segments the image
and extracts the feature points in segments. The Adaptive Oversegmentation (AO)
is used to split the image into segments (non-overlapping and irregular regions).

21

Feature points are extracted and matched to locate similar segments. Different
segments are merged if they have similar features.

2.2.4 Hybrid techniques

The hybrid techniques combine the block-based and keypoint-based CMFD ap-
proaches in a single detection method [110]. A typical Hybrid method that com-
putes the DCT on image blocks and extracts keypoints using SURF was proposed
by Ojeniyi et al.(2018)[110]. The combination of DCT and SURF techniques in a
single method compensates the failures found in each of the two techniques for a
successful detection of CMF. Their experiment results show an accuracy of 95.45%

on images from dataset MICC-F220 [36].

2.2.5 The main limitations of block-based, keypoint-based,
and segment-based CMFD approaches

1. The limitations of block-based techniques include the difficulty of finding the
appropriate size of the block. Small blocks don’t give robust features. The
computational cost is high when using the small blocks. Large blocks cannot
be used to detect the presence of small tampered areas. Uniform areas (e.g.,
background) can be detected as duplicates [108].

2. The limitations of keypoint-based techniques include the large number of
keypoints to match, matching between neighboring keypoints produce a lot
of false matches, and the need for filtering techniques such as RANSAC to
reduce the false positives [109].

3. The main limitations of segments-based methods include the oversegmenta-
tion of a single copy-move region and the uniform areas (e.g., background)
can be detected as duplicates [109].

2.2.6 Conclusion

A copy-move forgery is composed of one or more regions copied and pasted within
the same image. Different methods to detect the copy-move foregry are called

22

copy-move forgery detection techniques. These techniques are based on image
blocks, image keypoints, or image segments. The limitations of existing block-
based, keypoint-based, and segment-based copy-move forgery detection techniques
have been assessed. The CMFD methods that can tackle these limitations need
to be proposed.

2.3 Related Work: splicing detection methods

Image splicing (composition) is the merging of two or more images to produce a
tampered image. This composition introduces the following artifacts into the new
created image:

• Abnormal transient at the splicing boundaries: some sort of disparities (ab-
normal sharp boundaries) will occur in those areas that were copied and
pasted [123, 143].

• Non-uniform illumination (illumination inconsistencies): since images are
captured from different cameras under different lighting effects (distribution
of light), this introduces the illumination inconsistencies in the spliced image
[123].

• Resampling: it is often inevitable to resize certain regions of image while
creating a spliced image. The image is resampled into a new sampling grid.
Thus, spliced image hosts some resampling properties that can be measured
[112].

• Perturbation of the texture information: the spatial arrangement of intensity
or color are modified [107].

And also, some post-processing operations including blurring, noise addition,
brightness change, contrast adjustment, and JPEG compression are applied to
spliced image to hide the traces of forgery.

Existing methods for detecting image splicing try to differentiate the abnormal
edges from the normal ones (boundary-based) [123, 143] or rely on the inconsis-
tencies of the image characteristics (non-uniform illumination, blur estimation,
recompression artifacts) [112].

23

Most recent techniques consider the image splicing problem as a binary clas-
sification problem [66, 142]. They consider two phases for the splicing detection
task:

• Phase 1: extracting features and training the classifier (classify image as
authentic or tampered).

• Phase 2: localizing the spliced areas in the tampered image.

Existing methods for detecting image splicing exhibit some limitations [107]:

• The existing methods with high detection accuracy are computationally ex-
pensive. Most of them rely on complex deep learning models which are
expensive to train, run on expensive GPU, and require a large amount of
data to perform better.

• There is no known standard mechanism to localize the spliced areas.

Table. 2.3 shows most recent image tampering detection techniques for image
splicing forgery detection.

Table 2.3: Summary of recent image splicing detection methods

Methods Author
LBP, DWT, PCA, and SVM Fahime et al. [66](2015)

Edge and Illuminant Color Estimation Youseph et al.[123](2015)
Shallow CNN Zhang et al.[143](2018)

Hybrid CNN-LSTM Bappy et al.[83](2017)
Markov features in QDCT domain Li et al.[52](2017)

GLRLM and SVM Mushtaq et al.[121](2014)
FAST R-CNN Peng et al.[114](2014)

Convolutional Layer Bayar et al.[43](2016)
Resampling Features Bayar et al.[112](2017)

Deep Residual Network Jaiswal et al.[82](2019)
Hybrid feature set Jaiswal et al.[81](2020)

Markov features and PCA Rachna et al.[117](2019)
SURF with ripplet Transform-ii Jeyalakshmi et al.[30](2019)
Deep Learning Local Descriptor Yuan et al.[142](2020)

Deep Learning and Haar Wavelet Transform Eman et al.[63](2019)

24

2.3.1 Handcrafted features based techniques

An image splicing detection method which uses LBP, DWT, and PCA was pro-
posed by Fahime et al.(2015)[66]. Their method uses LBP, DWT, and PCA to
extract features. Then extracted features are fed to a SVM classifier to categorize
the image as authentic or tampered. LBP [84, 133] is used as a robust feature for
image texture classification.

DWT of a function f(k, l) of size W ×H is given by :

wϕ(j0,m, n) =
1√
WH

W−1∑
k=0

H−1∑
l=0

f(k, l)ϕj0,m, n(k, l) (2.8)

wiψ(j,m, n) =
1√
WH

W−1∑
k=0

H−1∑
l=0

f(k, l)ψij,m, n(k, l) (2.9)

i = {H0, Ve, Di}, j0 is arbitrary starting scale, wϕ(j0,mc, nc) coefficients that
define approximation of f(k, l) at scale j0, and wiψ(j,mc, nc) coefficients are hori-
zontal, vertical and diagonal details for ji ≥ j0.

SVM is a machine learning algorithm (discriminative classifier) described by a
separating hyperplane (see Fig. 2.7) [25, 26]. The coordinates of individual obser-

Figure 2.7: Support vector machines

vation are called the support vectors. ~W determines the orientation of hyperplane.

25

b controls the displacement from origin. Margin can be described by using 2 hy-
perplanes : 2

|| ~W ||
. Then solve the optimization problem: max 2

|| ~W ||
or min ||

~W |
2

with
Constraints: W Tx1 + b ≥ 1, W Tx2 + b ≤ −1.

Youseph et al.(2015)[123] presented a method for detecting splicing forged im-
ages of humans using illuminant color estimation. Their technique uses the Pixel
and Edge based method to estimate a map of illuminant color. Then the edges of
the map are detected using Canny edge detector and the gradients of edge points
are computed using Histogram of Oriented Gradients (HOG). Color moments fea-
tures are also extracted. Finally, SVM is used to detect (classify) an image as
original or forged using the extracted features.

Celi et al.(2017)[52] proposed an image splicing detection algorithm based
on Markov chains in Quaternion Discrete Cosine Transform (QDCT) domain.
Their technique works by extracting color information from blocked images. The
QDCT coefficients of quaternion blocked images are obtained. Then, the expanded
Markov features generated from the transition probability matrices in QDCT do-
main capture the intra-block and the inter-block correlation between block QDCT
coefficients. At the end, SVM is used to classify the Markov feature vector as
tampered or not.

Mushtaq et al.(2014)[121] proposed an image splicing detection technique which
uses the Grey Level Run Length Matrix (GLRLM) Their technique calculates the
GLRLM texture features for an image. Extracted features are fed to a SVM to
detect (classify) the forged and non-forged features.

Peng et al.(2017)[112] proposed a technique that detect the forgery resampling
and image resampling. Forgery resampling and image resampling leave interpola-
tion artifacts due to interpolation. Their method attempts to capture the traces
of resampling using the coefficients of the autoregressive model and histograms as
the features. Extracted features are fed to SVM to categorize image as forged or
non-forged.

2.3.2 Deep learning based methods

Yuan et al.(2020)[142] proposed a deep learning based image splicing detection
method. In the first step, their method pre-trains a CNN model on labelled data

26

(original or spliced). The pre-trained CNN focuses on the local statistical arti-

facts and learns the structure for tampered image patches to build a pre-trained

CNN-based local descriptor. The test image is split into blocks. For each block,

the pre-trained CNN-based is applied to extract feature. The feature maps are

obtained from the last convolutional layer and a block pooling technique is used to

obtain the discriminative feature vector. In the final step, SVM is used to detect

(binary classification as authentic or forged) and a localization scheme is devel-

oped. The experimental results show 96.97% accuracy on images from CASIA

image tampering detection evaluation dataset [60].

A boundary-based image forgery detection using Fast Shallow Convolution

Neural Network (SCNN) was proposed by Zhang et al.(2018)[143]. The SCNN is

used to differentiate the boundaries of tampered areas from original edges. SCNN

are CNN with limited number of convolution layers. The CNN extracts low-level

features (e.g., edge information) in the first layers. They limited the number of

convolution layers to two to prevent the SCNN to learn complex spatial features

from image. The pooling layers are also discarded because their SCNN is extremely

shallow. 20% of the convolution kernel filters are initialized with the Laplacian ker-

nel to expose both edge and resampling features. Table. 2.4 shows the architecture

for the SCNN for the model.

Layer (type) shape Parameters
Input (None,32,32,3) -
CbCr channels (None,32,32,2) -
Conv1 (None,30,30,32) 608
Activation1(ReLU) (None,30,30,32) 0
Conv2 (None,28,28,32) 9248
Activation2(ReLU) (None,28,28,32) 0
Dense1 (None,64) 1605696
Activation3(ReLU) (None,64) 0
Dropout (None,64) 0
Dense2 (None,1) 65
Activation4(Sigmoid) (None,1) 0

Table 2.4: SCNN architecture.

27

After training the SCNN, their method uses a Sliding Window Detection

(SWD) of size 32 × 32 to construct a probability map and localize the tampered

regions. Fig. 2.8 shows the process for generating a tampered region bounding

box.

Figure 2.8: Tampered region bounding box.

Bappy et al.(2017)[83] proposed an hybrid method for image forgery detection

using CNN and Long-Short Term Memory (LSTM). The tampered regions exhibit

discriminative features in boundaries shared with neighboring non-tampered pixels

and this model attempts to learn these boundary discrepancies. Using the ground-

truth mask information, the network is trained to learn the parameters through

back-propagation. Their technique is able to detect different types of image forgery

like image splicing and CMF. Fig. 2.9 shows the overview of the framework based

on CNN-LSTM.

28

Figure 2.9: Overview of the framework based on CNN-LSTM.

Peng et al.(2018)[114] used Faster R-CNN (Region Based Convolutional Neu-
ral Networks) network to detect image splicing. Their method uses a two-stream
Faster R-CNN. The first stream is called the RGB stream, it is used to detect
tampering artifacts (e.g., unnatural tampered boundaries and strong contrast dif-
ference) in RGB image. The second stream is called the noise stream, it is used to
find the noise inconsistency between orginal and forged regions. Then they used
a bilinear pooling layer to fuse the features from these two streams. Fig. 2.10
illustrates the overview of their method.

Figure 2.10: Overview of the two-stream faster R-CNN network

Bayar et al.(2016) [43] proposed an image tamper detection technique that uses
deep learning with a new form of convolutional layer. Usually, convolutional neural
networks learn features related to image’s content. To enable the convolutional
neural networks to automatically learn features related to image manipulation from

29

training dataset, they used a constrained CNN that learns the local structural
relationships between pixels. These relationships are independent of an image’s
content.

2.3.3 Main limitations of existing techniques

The existing splicing tamper detection methods with high detection accuracy are
computationally expensive. Majority of these methods are based on complex deep
learning models. They are expensive to train, require a large amount of data to
perform better, and run on expensive GPUs. Also, there is no known standard
mechanism to localize the spliced areas [107].

2.3.4 Conclusion

The literature review for image forgery involving image splicing has been discussed.
Image splicing is the merging of two or more images to produce a tampered image.
Most recent techniques to detect the image splicing are based on machine learning
and deep learning, these techniques categorize an image as authentic or tampered
based on features extracted from the image. We have also highlighted the overall
limitations exhibited by different image splicing detection methods. Thus, new
detection techniques are needed in the field to tackle these limitations.

2.4 Summary

This chapter provides an overview of digital image forgery including the CMF,
image/photo retouching and image/photo splicing. The related works, which are
the state-of-art detection methods for copy-move forgery and image splicing forgery
are discussed. The limitations of existing tamper detection techniques are assessed.
Finally, the needs to propose new methods that can overcome these limitations are
highlighted.

30

Chapter 3

Copy-Move Forgery Detection using
DoG Blob Detector and ORB

3.1 Introduction

This chapter covers the use of image blobs in CMFD techniques. Image blobs
can be seen as variable size and variable shaped blocks that basely approximate
foreground segments. Hence, image blobs can be used to tackle some limitations of
existing CMFD methods. Sect. 3.2 describes the advantages of using image blobs
as alternative to image blocks in CMFD. Sect. 3.3 discusses the enhancement of
blob localization on foreground regions. Interest points extraction stage is detailed
in Sect. 3.4. Feature matching process is discussed in Sect. 3.5. The pseudocode for
CMFD method using image blobs and ORB is shown in Algorithm 1 and Sect. 3.7
shows the experimental results.

3.2 The use of image blobs in CMFD to tackle the
limitations of existing methods

An image blob is a region/area in a digital image that looks different from its neigh-
bors at different scales. Blobs also differ in properties, such as color or brightness,
compared to neighboring regions. A technique that detects these regions (blobs) is
called a blob detector [3, 4]. The LoG and DoG are most common blob detectors.

31

To find blobs, LoG convolves an image with a blob filter at multiple scales and
looks for extrema of filter response in the resulting scale space. This blob filter is
obtained from the second order derivative of a Gaussian filter along x and y−axis
and adding them. The Gaussian blur removes the noise and stabilizes the second
order derivative which is sensitive to noise. Given a Gaussian filter of a standard
deviation σ, with x and y − axis, 2D LoG filter is computed by:

LoG(x, y) = − 1

πσ4

[
1− x2 + y2

2σ2

]
e−(x

2+y2)/2σ2

(3.1)

Fig. 3.1 shows the Gaussian filter and LoG filter.

Figure 3.1: (a) Gaussian Filter at σ=2. (b) LoG filter at σ=2.

When there is a corner in the image, the output of the LoG filter is maximum.
Fig. 3.2 shows the input signals convolved with a Laplacian of σ = 1.

Figure 3.2: The Output will be maximum when there is a corner.

32

To find the characteristic scale of a blob, an image is convolved by a blob filter

with different σs. However, the response of blob filter with image decreases as σ

increases. To reduce this effect a scale normalization is performed by multiplying

the LoG filter by σ2. The Laplacian achieves maximum response for the binary

circle of radius r at σ = 1.414 ∗ r [20]. The following two steps summarize the

whole process for blob filter:

1. Using different scales (different scales means different σ), convolve image

with scale-normalized Laplacian.

2. Extract maxima of squared Laplacian response in scale-space

To detect scale-invariant keypoints , scale-space filtering is used [19]. In it, LoG is

found for the image with different (σ) values. LoG detects blobs in various sizes

due to change of σ. This σ acts as a scaling parameter. Blobs are maxima of the

LoG response in scale-space and the radius of each blob is approximately
√

2σ.

Since it is computationally intensive to compute the second order derivatives, LoG

is costly. Therefore LoG is approximated by a DoG at different scales [21, 101].

g(x, y, σ) =
1

2πσ2
e(

−x2+y2

2σ2) (3.2)

DoG = g(x, y, σk) ∗ I(x, y)˘g(x, y, σ) ∗ I(x, y) (3.3)

g(x, y, σ) is Gaussian filter, * is convolution operator, k is a scale variable, σ is

standard deviation and I(x, y) is image. Blobs are scale-space extrema of DoG

[100, 101]. The Fig. 3.3 shows image blob detection using DoG with different σs,

whereas the Fig. 3.4 shows the image blobs detection using DoG on a copy-move

tampered image.

33

Figure 3.3: DoG blob detection , k = 1.6

Figure 3.4: (a) Forged image. (b) Red circles are blobs detected using DoG.

3.2.1 Advantages of image blobs over image blocks in CMFD

If we split an image I(x, y) of size M ×N in overlapping fixed-size blocks β with
n as slide step size, the number of blocks Nb is given by [69, 103]:

Nb = (M − β + n)(N − β + n) (3.4)

Nb increases as image size increases. It is difficult to find the appropriate size of the
block. The computational cost is high when using the small blocks. Small blocks
don’t give robust features. Large blocks cannot be used to detect the presence
of small tampered areas. Uniform areas (e.g., background) can be detected as

34

duplicates. Whereas, blobs are scale-invariant because they are found in scale-

space, small forged regions are detected in small blobs and large forged regions are

detected in large blobs, blobs separate foreground regions and background, and

uniform areas (e.g., background) cannot be detected as duplicates. Given a σ of

a Gaussian kernel which detected a blob, the radius of that blob is approximately
√

2σ 100. Fig. 3.5 highlights the difference between image blocks and image blobs.

Figure 3.5: (a)Image blocks. (b)Image blobs

3.2.2 Advantages of image blobs over image segments in
CMFD

Segmentation splits a digital image into multiple regions called super-pixels (sets of

pixels) or segments [12]. To group pixels into meaningful atomic regions, superpixel

algorithms are used [31]. Some CMFD techniques use image segmentation [99].

However, blobs exhibit advantages over image segments for CMFD. Blobs separate

foreground and background areas (see Fig. 3.6). Thus, blobs enable to discard or

reduce the false positives from similar background areas.

Figure 3.6: (a)Image blobs. (b)Image segments

35

3.2.3 The ideal blob detector for CMFD

The ideal blob detector should detect the authentic region and its duplicate in

different blobs. Also, the blob detector should attempt to enclose each CMF

region (authentic and its duplicate) within a single blob. To determine the ideal

blob detector, we evaluated the DoG blob detector and LoG blob detector on the

standard dataset MICC-F8multi which includes forged images with multi copy-

move regions. We extracted forged patches as the ground-truths and compared

the detected blobs to the ground-truths using IoU [40]. Fig. 3.7 shows the area

of overlap between the large blob detected and the ground-truth. IoU is used

to evaluate the performance. Specifically, we want to measure the overlap area

between the detected bounding box (green or blue) against the ground-truth (red).

IoU =
Area of overlap

Area of union
(3.5)

IoU is Intersection over Union.

Figure 3.7: Red rectangles are ground-truth, green rectangle are DoG, blue rect-
angles are LoG, and black lines show intersection area.

36

The score for each blob detector is shown in Fig. 3.8. The blob detector with

the high score is considered as the ideal and is selected to be used with the CMFD

techniques.

Figure 3.8: IoU Scores from 20 patches extracted from dataset MICC-F8multi.
DoG has overall score of 0.6. LoG has overall score of 0.3.

3.3 Enhanced blob localization using Sobel edge
detection

An image is pre-processed by edge detector before blob detection. Edge detection

(e.g., Sobel) generates a 2D map of the gradient at each point with the regions of

high gradient (foreground) visible as white lines [51, 126]. Thus, we used a Sobel

image as input of the blob detector to enhance blob localization on foreground

regions. Also, the CMF regions (original region and its duplicate) are detected

in different blobs because edge detection causes objects in the image to become

distinct regions with edges separating them (see Fig. 3.9).

37

Figure 3.9: (a) Blob detection. (b) Edge + blob detection.

From Fig. 3.9(a): no blob localization (e.g., eyes, heads are not detected inside
the blobs). We cannot ensure that the CMF regions (original region and its dupli-
cate) will be detected in different blobs. From Fig. 3.9(b): blob localization (e.g.,
eyes, heads are detected inside the blobs). We are sure that the CMF regions
(original region and its duplicate) will be detected in different blobs because of
edges separating them.

3.4 ORB feature extraction

ORB interest points detection and description [48] is used at this stage. ORB have
been discussed in Sect. 2.2.2

3.5 Feature matching

To find similar ORB features for CMFD, we match features that reside in differ-
ent blobs because the copy-move regions are detected in different blobs. To find
features that reside within the same blob, we extract 2D spatial coordinates for
each blob (xb, yb, r) and 2D spatial coordinates for each ORB keypoint (xk, yk).
The distance (D) from a keypoint location to the center of a blob is given by:

D =
√

(xk − xb)2 + (yk − yb)2 (3.6)

38

The keypoint is inside the blob if D ≤ r. Otherwise the keypoint is outside. r is

the radius of the blob.

HD (Dh) metric is used to determine the similarity between features (ORB

descriptors). Dh between ith and jth descriptors of same length is the number of

positions in which the corresponding symbols are different. Dh can be computed

efficiently using a bitwise XOR operation followed by a bit count [50]. Let vk be

the kth element of the ith descriptor.

Dh(i, j) =
∑
k≤256

XOR(vk(i), vk(j)), (3.7)

vk(i) = vk(j)⇒ 0 (3.8)

vk(i) 6= vk(j)⇒ 1 (3.9)

Then Dh is normalized such that Dh ∈ (0, 1). A match is found between the

keypoint pair if Dh is less than a predefined threshold T .

Dh ≤ T where T ∈ (0, 1) (3.10)

Fig. 3.10(a) shows image blobs with ORB features, whereas Fig. 3.10(b) shows

feature matching between different blobs. The straight lines show the correspond-

ing ORB keypoint pairs. The algorithm 1 shows the pseudocode of the present

method.

39

3.6 Algorithm

Algorithm 1: CMFD based on DoG and ORB feature
Result: Image with CMFD results
I : Input Image;
Gi : Compute grayscale of I ;
Si : Apply sobel edge detector to Gi;
Di(xb,yb,r) : Extract DoG feature and spatial coordinates from Si;
Oi(xk,yk) : Extract ORB feature and spatial coordinates from Gi;
List1 = empty;
for Blob in Di(xb,yb,r) do

List2 = empty;
for Keypoint in Oi(xk,yk) do

if
√

(xk − xb)2 + (yk − yb)2 ≤ r then
list2.append(Keypoint) ;

else
continue;

if list2 != empty then
List1.append(List2);

else
continue;

for i in range(0, len(List1)− 1) do
for desc1 in List1[i] do

for j in range(i+ 1, len(List1)) do
for desc2 in List1[j] do

DH = distance.hamming(desc1, desc2);
if DH ≤ T then

print ’Match found’;
drawline(keypoint(desc1),keypoint(desc2));

else
continue;

Figure 3.10: (a) Blobs and ORB Feature detection. (b) Feature matching.

40

3.7 Experimental Results

3.7.1 Evaluation metrics

To assess the performance of CMFD techniques, the following metrics [55] are used:

Forged images correctly detected are tp (True positives). Images wrongly detected

as forged are termed as fp (False positives). Tampered images that are undetected

and marked as not forged are termed as fn (False negatives), and untampered

images correctly detected are tn (True negatives). tpr is true positive rate and

fpr is false positive rate. Precision (pr) indicates the probability that a detected

forgery is truly a forgery, while Recall (rc) indicates the probability that a forged

image is detected as being forged. f1 score is a measure which combines pr and rc

in a single value and the accuracy termed as acc.

pr =
tp

tp + fp
, rc =

tp
tp + fn

, f1 = 2
prrc
pr + rc

(3.11)

tpr =
tp

forged images
, fpr =

#fp
original images

(3.12)

acc =
tp+ tn

tp + tn + fp + fn
(3.13)

3.7.2 Experimental platform and operating point settings

Experimentation platforms consist of a desktop (Intel Core i5 processor with 8 GB

RAM), UBUNTU OS 16.04 LTS, Python 2.7.12 and OpenCV 3.0. Edge detector

used is Sobel whereas blob detector is DoG.

The running time analysis results are reported in Tab. 3.4. The experiment to

set the operating point value (see Equ. 3.10) is performed on 400 images from Co-

MoFoD dataset and results are reported in Tab. 3.1. The performance comparison

of the present method against other related methods [39] are reported Table. 3.6.

41

Table 3.1: Experimental results on 400 images (100 originals and 300 forged)
from dataset CoMoFoD [132] and T values between 0.1 and 0.9 to set the proper
operating point.

Thleshold (T) tp fp fn pr (%) rc (%) f1 (%)
0.1 97 1 203 98.97 32.33 48.73
0.2 126 2 174 98.43 42.00 58.87
0.3 185 7 115 96.35 61.66 75.19
0.4 253 8 47 96.93 84.33 90.19
0.5 274 10 26 96.47 91.33 93.82
0.6 278 23 22 92.35 92.66 92.50
0.7 283 52 17 84.47 94.33 89.12
0.8 288 89 12 75.06 96.00 84.24
0.9 289 100 11 74.29 96.33 83.88

The results from Tab. 3.1 show that when T = 0.5 the optimal f1 score is

93.82%. Thus, T = 0.5 is the operating point.

3.7.3 Robustness tests

The CMFD results for robustness tests using T = 0.5 are reported in Tab. 3.5.

Test 1 includes simple copy-move regions (see Fig. 3.11) with geometric transfor-

mation parameters reported in Tab. 3.2. 100 images (50 originals and 50 forged)

from the dataset MICC-F220 [36] are used.

Test 2 includes multi copy-move regions (see Fig. 3.11) on 24 images of size

3039 × 2014 from dataset C3− nikon [55]. 12 tampered images and 12 originals.

Other 8 forged images are from dataset MICC-F8multi [36].

Test 3 includes post-processing operations like noise addition and contrast adjust-

ment. 400 images (100 originals and 300 forged) of size 512× 512 from CoMoFoD

dataset [39] are used. Post-processing parameters are reported in Tab. 3.3.

42

Table 3.2: Rotation θ in degrees. Scaling factors Sx, Sy. Images from the dataset
MICC-F220

Attack θ Sx Sy Attack θ Sx Sy

A 0 1 1 F 0 1.2 1.2
B 10 1 1 G 0 1.3 1.3
C 20 1 1 H 0 1.4 1.2
D 30 1 1 I 10 1.2 1.2
E 40 1 1 J 20 1.4 1.2

Table 3.3: Parameters for post-processing operations. Images from CoMoFoD
dataset

Methods Parameters
Jpeg compression factor= [20, 30, 40, 50, 60, 70, 80, 90, 100]
Noise addition µ = 0, σ2 = [0.009, 0.005, 0.0005]

Blurring averaging filter = [3x3, 5x5, 7x7]
Brightness change (lower bound, upper bound) = [(0.01, 0.95), (0.01, 0.9), (0.01, 0.8)]

Contrast adjustment (lower bound, upper bound) = [(0.01, 0.95), (0.01, 0.9), (0.01, 0.8)]

Table 3.4: Processing time in seconds (average per image) per number of ORB
features extracted from image.

Number of ORB features 100 500 1000
CoMoFoD : Time [s] 0.8 2 5.5

MICC-F220, MICC-F8, C3−nikon : Time [s] 1.41 3.45 9.20

Table 3.5: Detection results for robustness tests against geometric transformations,
multicopies and post-processing operations.

Robustness tests tp fp fn pr (%) rc (%) f1 (%)
Test 1 48 1 2 97.95 96.00 97.46
Test 2 14 1 6 93.33 70.00 80.00
Test 3 274 10 26 96.47 91.33 93.82

43

3.7.4 Comparative results

Table 3.6: Comparative results between the present method against other related
methods [39] on 400 images from CoMoFoD dataset.

Feature extraction methods pr (%) rc (%) f1 (%)
DCT[72] 78.69 100 88.07
PCA [115] 84.21 100 93.20
SURF [124] 91.94 89.58 90.53
ACC[39] 95.65 91.67 93.62

Proposed DoG & ORB 96.47 91.33 93.82

3.7.5 Sample input and output

Figure 3.11: First row: tampered images. Second row: CMFD results.

The CMFD results from Tab. 3.5 show that the present method is robust when the

tampered regions include post-processing operations. Also, Tab.3.6 indicates that

the present technique performs better compared to other related CMFD techniques

found in [39].

44

3.7.6 Conclusion

A method for CMFD using DoG blob detector and ORB features is presented. The
present technique uses DoG to detect scale-invariant regions called image blobs. To
enhance blob localization on foreground regions, edges are detected before blobs.
Then ORB keypoints that reside in different blobs are found. Finally, keypoints
from different blobs are matched to find the CMF regions. Various experiments
show that the present method is effective for forgeries that include post-processing
operations.

3.8 Where image blobs fail in CMFD?

There are two potential weaknesses in the use of image blobs in CMFD [109]. If
the authentic and tampered regions overlap in the copy-move forgery, then their
corresponding image blobs overlap too. However, such cases are few in the available
standard datasets (see Fig. 3.12). In such images, if the tampered area is large
enough to contain more than one blob, then they are detected as forgeries because
not all blobs overlap. Second is that if the background is detailed, it can have
blobs too which result in false positives. Again, we found that in the datasets
used there was not a single failure of the present technique due to this effect. The
datasets did contain images with rocks, grass, trees, etc, in the background but
the method appears empirically robust.

Figure 3.12: (a) Overlapping CMF areas. (b) Blob detection on overlapping CMF
areas.

45

3.9 Summary

This chapter has discussed the potential of using image blobs in CMFD. Image
blob detection and the ideal blob detector for CMFD have been discussed. The
advantages of blobs over blocks and segments in CMFD are highlighted. A CMFD
technique that uses DoG blob detector and ORB features is presented to tackle
the limitations of existing CMFD techniques. Finally, potential weaknesses in the
use of image blobs in CMFD are discussed.

46

Chapter 4

Copy-Move Forgery Detection using
Image Blobs and BRISK Feature

4.1 Introduction

In this chapter, we show experimentally that CMFD based on image blobs with

BRISK feature improves the performance of previously studied ORB features (see

chapter 3) in CMFD. Sect. 4.2.6 shows experimentally that the number of key-

points to match is reduced by almost 50% when using image blobs in CMFD.

Sect.4.2.7 discusses the reduction of false matches without requiring a filter algo-

rithm.

4.2 CMFD using image blobs and BRISK feature

There are five main steps in the present technique: a pre-processing stage (Sect. 4.2.1),

blob detection (Sect. 4.2.2), BRISK feature extraction (Sect. 4.2.3), determine

BRISK keypoints located within the same blob (Sect. 4.2.4), and BRISK feature

matching between different blobs (Sect. 4.2.5). Fig. 4.1 illustrates the diagram of

the proposed technique. The pseudocode for the proposed method is shown in

Algorithm 2.

47

Figure 4.1: CMFD using image blobs and BRISK

4.2.1 Pre-processing

This stage involves the edge detection. The edge detection has been discussed in
Sect. 3.3. The output of the edge detector is used as the input to a blob detector
for two main reasons:

1. To enhance the blob localization on foreground regions.

2. To locate the CMF regions (authentic region and its duplicate) in different
blobs. Edge detection causes CMF regions to become distinct regions with
edges separating them.

4.2.2 Blob Detection

The blob detector used in this technique is DoG(Difference of Gaussian) (see
Sect. 3.2).

4.2.3 BRISK Feature Extraction

BRISK technique is used for keypoint detection and binary description in image
[95]. BRISK uses a scale-space to detect keypoints in octave layers of image pyra-
mid. Via a quadratic function fitting, the location and the scale of each keypoint
are obtained.

BRISK descriptor is computed in two steps: first step estimates orientation of
keypoints and assists in creating a rotation-invariant descriptor. Second stage con-
sists of intensity comparisons to result in a descriptor that efficiently and effectively
captures local region properties.

48

BRISK descriptor uses concentric circles as a sampling pattern to define N

locations. The intensity of each point pi in the sampling pattern is smoothed

with a Gaussian filter to avoid aliasing effects. The N sample points are gathered

into pairs (pi,pj) and grouped into short pairs and long pairs. Short pairs if the

distance between (pi,pj) < Tmax and long pairs if the distance is greater than

Tmin. To estimate the rotation, long pairs are used. Short-pairs are used to

build the descriptor after rotation correction. BRISK descriptor local gradients

are computed by:

∇(pi,pj) = (pj − pi)
I(pj, σj)− I(pi, σi)

||pj − pi||2
) (4.1)

∇(pi,pj) is the local gradient between the sampling pair (pi,pj) and I(x, σ) is the

smoothed intensity at x using σ. Rotation angle θ is estimated from the average

gradient in x and y directions. To obtain rotation-invariant descriptor short pairs

are rotated by −θ. Then, to build the descriptor, BRISK uses the set of short

pairs (pj, σj), rotates the pairs by the orientation −θ to get (pθj , σj) and makes

comparisons of smothed intensity (I) such that each bit b corresponds to:

b =

{
1 : I(pθj , σj)> I(pθi , σi)
0 : Otherwise (4.2)

Finally, each keypoint is described by binary descriptor (binary string).

4.2.4 Find BRISK keypoints located within the same blob

To find BRISK keypoints that reside within the same blob (see Fig. 4.3(a)), 2D

spatial coordinates for each blob (xb, yb, σ) and 2D spatial coordinates for each

BRISK keypoint (xk, yk) are extracted. (xb, yb) is the center of the blob and σ is

the standard deviation of the Gaussian kernel which detected the blob. r is the

radius of each blob. r is approximately
√

2σ [100]. The distance D from the center

of the blob to the keypoint is given by :

D =
√

(xk − xb)2 + (yk − yb)2 (4.3)

49

A keypoint is located within the blob if D ≤ r, and outside the blob if D > r

[109].

4.2.5 BRISK feature matching

The feature matching process is done to find similar keypoints (see Fig. 4.3(b)).
Each BRISK keypoint is described by a binary descriptor βD(i) of size Z, the
similarity is the Hamming distance (Hd) between two descriptors βD(i) and βD(j)

which is the number of different bits 146.

Hd =
Z∑
k=1

XOR(βDk(i), βDk(j) (4.4)

Where XOR(i, j) = 0 for i = j and XOR(i, j) = 1 for i 6= j. Then the 2NN
matches and ratio criterion 101 is used to find correct keypoint matches. That
is, for each keypoint in blob bi, find the two nearest neighbors in blob bj whose
distances are d1 and d2. The nearest neighbor is defined as the keypoint with
minimum Hamming distance Hd. Given a predefined threshold T such that T ∈
(0, 1), a match is confirmed if

d1/d2 < T (4.5)

Table 4.2 reports the settings for the threshold T for Nearest Neighbor Matching
Ratio.

The CMFD methods proposed by Amerini et al.(2011)[36] and Ojeniyi et
al.(2018)[110] require a minimum of three matching pairs between different clus-
ters to consider a CMF. Whereas, the present technique requires a minimum of
two matching pairs. This is found empirically by experiments on various datasets.

4.2.6 Reducing the number of keypoints to match.

If a copy-move forgery is detected, the CMF regions (authentic region and its dupli-
cate) are located in different blobs [109]. Therefore, BRISK keypoints that reside
within the same blob are not matched for CMFD. Tab. 4.1 shows experimentally
that the number of BRISK keypoints to match are reduced when image blobs are
used. The experiment is performed on 8 images from the dataset MICC-F8multi

50

[36]. These images are tampered with multi copy-move regions. When blobs are
not used Kpo is the number of keypoints and µto is the number of matches. When
blobs are used Kpb is the number of keypoints and and µtb is the number of
matches. dec(%) shows the number of matches decreased for each image in %.
DoG maxσ =40 and BRISK samples radius = 27. The number of matches µt is
given by:

µt =
n!

(n− k)!k!
(4.6)

n is the number of BRISK keypoints for each image and k=2.

Table 4.1: Reduction of the number of BRISK keypoints to match.

#Blobs #Kpo #Kpb µtb µto dec(%)
281 6438 4256 9054640 20720703 56.3
65 1754 1498 1121253 1537381 27
115 7002 3551 6303025 24510501 74.28
106 851 720 258840 361675 28.43
239 5980 4299 9238551 17877210 48.32
162 6664 4304 9260056 22261116 58.4
408 4435 3377 5700376 9882395 42.31
325 8297 5566 15487398 34415956 54.99
- - - - - 49%

Table 4.1 shows that the present method matches half of all keypoints detected.
Recent techniques [80, 87] match all of the keypoints detected in the image.

4.2.7 Tackling the use of filtering techniques

The main source of the false positives in many earlier methods are matches between
spatially close areas and similar intensities between neighboring pixels. Different
filtering methods like RANSAC have been proposed for reducing the false positives
[110]. The use of filtering method increases the computational costs.

However, when using the image blobs in a CMFD technique, the filtering algo-
rithm is unneeded since the neighboring pixels with similar intensities are detected
within the same blob, and the spatially close areas that look similar at different
scales are also detected within the same blob. Since CMF regions (authentic re-
gion and its duplicate) are detected in different blobs, it is unnecessary to match

51

the keypoints located in the same blob for CMFD [109]. Blobs also separate fore-

ground and background areas which reduces false positives occurring due to similar

background areas. Algorithm 2 shows the pseudocode of the present method.

4.3 Algorithm

Algorithm 2: CMFD using image blobs and BRISK feature
Result: Image with CMFD results
I : Input Image;
Gi : Compute grayscale of I ;
Si : Apply sobel edge detector to Gi;
Blobs(xb,yb,r) : Extract Blobs feature and spatial coordinates from Si;
BRISK(xk,yk) : Extract BRISK feature and spatial coordinates from Gi;
for Blob in Blobs do

sameBlob = empty;
for Keypoint in BRISK do

if
√

(xk − xb)2 + (yk − yb)2 ≤ r then
sameBlob.append(Keypoint) ;

else
continue;

if sameBlob != empty then
Blobs = Blobs− sameBlob;
nn_matches = matcher.knnMatch(Blobs, sameBlob);
nn_match_ratio = 0.43;
for n1, n2 in nn_matches do

L = 0;

if n1.distance < nn_match_ratio ∗ n2 then
L+ = 1 ;

else
if L > 1 then

print(’Match found’);
else

continue;

else
continue;

52

Figure 4.2: (a) Red circles are detected blobs and green circles are BRISK key-
points inside different blobs (b) Green lines indicate BRISK keypoints matching
pairs from different blobs.

4.4 Experiments and Results

This section describes the datasets used for experiments. The evaluation met-
rics, experimental platforms and running time analysis are discussed. Then the
present method is compared with existing CMFD techniques. The datasets used
for experiments are MICC-F8multi[36], MICC-f220 [36] with parameters reported
in Table 3.2, and images from CoMoFoD [132] with parameters reported in Ta-
ble 3.3.

4.4.1 Evaluation metrics

The metrics used to assess the performance of CMFD methods have been discussed
in Sect. 3.7.

4.4.2 Setting the Treshold T for Nearest Neighbor Matching
Ratio.

The proposed technique requires setting the threshold (T in Equ. 4.5). It is em-
pirically determined from tests on 220 images (110 original and 110 forged) from
MICCF-220 dataset. Tab. 4.2 indicates that when T value starts to increase from
0.2 to 0.43, the f1 score also increases. As T value continues to increase to the

53

value of 0.44 to 0.6, the f1 score begins to decrease. This indicates that the best
performance is obtained when T = 0.43.

Table 4.2: Experimental results to determine the threshold value T .

Treshold MICCF-220
T tp fp fn pr(%) rc(%) f1(%)

0.2 25 0 85 100.00 22.72 37.02
0.3 86 2 24 97.72 78.18 86.86
0.4 98 6 12 94.23 89.09 91.58
0.43 103 6 7 94.49 93.63 94.05
0.44 103 7 7 93.63 93.63 93.63
0.5 109 14 1 88.61 99.09 93.55
0.6 110 20 0 84.61 100.00 91.66

Using the procedure described in Tab. 4.2, the implementations of image blobs
and SIFT feature [128] (Blobs+SIFT) gave an f1 score = 92.43% when T = 0.4 and
min_match >= 3, whereas image blobs and SURF feature [128] (Blobs+SURF)
gave f1 score = 86.36% when T = 0.4 and min_match >= 2.

4.4.3 Experimental platform and running time analysis

The experimentation platforms include a desktop computer with Intel Core i5
processor and 8GB RAM, UBUNTU 18.04.2 LTS OS, Python 3.6.7, OpenCV
3.4.2. Sobel edge detector and DoG blob detector are also used. The running time
in seconds is reported in Table 4.3. Images of size 800× 600 from the MICC-F220
dataset are used.

Table 4.3: Comparison of running times

Methods # Blobs # Keypoints Running time(seconds)
DoG+ORB [108] 239 4960 4.65
Blobs+SIFT 239 3027 4.10
Blobs+SURF 239 3467 4.18

Proposed(Blobs+Brisk) 239 5980 6.24

54

4.4.4 CMFD results for multi copy-move regions

Tab. 4.4 reports CMFD results under multi copy-move regions in the same image on
45 images (15 original and 30 forged) from CoMoFoD and MICCF8-multi datasets.
A tp is considered only if all forged areas within image are detected.

4.4.5 CMFD results for rotation and scaling operations

We used images from dataset MICC-F220 with parameters reported in Tab. 3.2 to
evaluate the proposed method on forgeries that include rotation on 44 images(11
original and 33 forged) with angles = {10◦, 20◦, 30◦,40◦}, scaling on 44 images(11
original and 33 forged), and rotation + scaling on 44 images (11 original and 33
forged. CMFD results are reported in Table 4.4.

4.4.6 CMFD results for post-processing operations.

Tab. 4.4 reports CMFD results for post-processed copy-move forgeries. 70 images
used are from CoMoFod dataset with parameters reported in Tab. 3.3. 70 images
(20 originals, 20 forged with jpeg compression, and 30 forged with blur, noise
addition & contrast adjustment).

Table 4.4: CMFD results on forged images with rotation, scaling, rotation+scaling,
multi copy-move regions, and post-processing operations

Rotation scaling
Methods tp fp fn tpr fpr tp fp fn tpr fpr

DoG+ORB [108] 34 2 10 0.77 0.18 24 2 9 0.72 0
Blobs+SIFT 40 0 4 0.9 0 32 0 1 0.96 0
Blobs+SURF 21 1 23 0.47 0.09 26 1 7 0.78 0.09

Proposed(Blobs+BRISK) 42 1 2 0.95 0.09 30 1 3 0.90 0.09
Rotation + scaling Multiple copy-move regions

DoG+ORB [108] 17 2 5 0.77 0.18 24 1 6 0.8 0.06
Blobs+SIFT 20 0 2 0.90 0 24 1 6 0.8 0.06
Blobs+SURF 10 1 12 0.45 0.09 23 2 7 0.76 0.13

Proposed(Blobs+Brisk) 19 1 3 0.86 0.09 25 1 5 0.83 0.06
Jpg compression Blur, Noise add & contrast adj.

DoG+ORB [108] 18 2 2 0.9 0.1 29 2 1 0.96 0.1
Blobs+SIFT 18 2 2 0.9 0.1 29 2 1 0.96 0.1
Blobs+SURF 17 3 3 0.85 0.15 28 2 2 0.93 0.1

Proposed(Blobs+BRISK) 19 2 1 0.95 0.1 29 2 1 0.96 0.1

55

4.4.7 Comparative Results

Tab. 4.6 reports the performance comparison between the present method with

related methods [110] on 220 images (110 authentic and 110 forged) from the

dataset MICC-F220.

Tab. 4.7 reports the comparative results between the present method with methods

[39, 108] on 400 images (100 originals and 300 forged) from CoMoFoD dataset.

The CMFD results obtained on MICC-F220 are tp : 103, tn : 104, fp : 6, fn : 7.

The CMFD results obtained on CoMoFoD are tp : 276, tn : 91, fp : 9, fn : 24.

Table 4.5 reports the detection results in terms of TPR and FPR on MICC-F220

dataset.

Table 4.5: Detection results in terms of TPR and FPR on MICC-F220 dataset

Methods TPR(%) FPR(%)
DoG+ORB [108] 90 9

Blobs+SIFT 90 5.4
Blobs+SURF 86 13

SIFT+Clusters [36] 100 8
SIFT+LBP [87] 99.1 5.4

Proposed(Blobs+BRISK) 93 5.4

Table 4.6: Comparative results between the presented method and existing meth-
ods [110] on 220 images from MICC-F220

Technique used pr (%) rc (%) acc (%)
DyWT+SIFT [76] 88.89 80.00 85.00
PCA+SIFT [88] 93.04 97.27 95.00

DWT+SURF [125] 77.17 64.55 72.60
DyWT+SURF [122] 77.06 76.36 76.71

HDS [110] 93.86 97.27 95.45
DoG+ORB [108] 90.09 82.72 86.24

Proposed Blobs+BRISK 94.49 93.63 94.05

56

Table 4.7: Comparative results between the presented method and existing meth-
ods [39, 108] on 400 images from CoMoFoD dataset

Technique used pr (%) rc (%) f1 (%)
ACC [39] 95.65 91.67 93.62

DoG+ORB [108] 96.47 91.33 93.82
Proposed Blobs+BRISK 96.84 92.00 94.35

From Tab. 4.6, the CMFD results show that the present method offers a com-
parable matching performance to the best-known algorithms [88, 98, 110] that use
filter algorithms to remove false matches. However, the present technique offers
the advantage of reducing keypoints to match by around 50% and avoids the use
of filter algorithm.

4.4.8 Sample input and output

Figure 4.3: (a) Copy-move forged image. (b) Output CMFD

Figure 4.4: CMFD on overlapping cloned and original areas

57

Figure 4.5: Authenic images detected as tampered

Fig. 4.4 shows CMFD when the original and forged areas overlap, then their cor-
responding blobs overlap too, and our CMFD method fails since we don’t match
keypoints located within the same blob. However, if the forged area is large enough
to contain more than one blob (see Fig. 4.4), the proposed method detects the CMF
because not all blobs overlap. Another observation is shown in Fig. 4.5 where au-
thentic images are detected as tampered, those false matches occur because several
small blobs are detected in a single authentic region. In future, to prevent false
matches from authentic images, blobs can be combined with object detection or
semantic segmentation.

4.4.9 Conclusion

A technique that uses image blobs and BRISK feature to detect the copy-move
tampered regions in the image is presented. Image blobs are detected using DoG
and keypoints are extracted using BRISK. Keypoints from different blobs are
matched to detect similar regions. Since CMF regions (original area and its du-
plicate) are detected in different blobs, BRISK keypoints that reside in the same
blob are not matched for CMFD. This reduces the number of keypoints to match
around 50%. The use of filter algorithm is unnecessary because spatially close
areas located in the same blob are not matched for CMFD.

4.5 Summary

This chapter has discussed a CMFD technique that uses DoG blob detector and
BRISK features. An experiment was performed to show that image blobs enable to

58

reduce the number of keypoints to match around 50%. The needless and inessen-
tial of using filter algorithms when image blobs are used in CMFD is discussed.
CMFD results obtained show that image blobs with BRISK features are robust
and effective than previously studied CMFD method based on image blobs with
ORB features.

59

Chapter 5

Geometric Transformation Parameters Estimation from
Copy-Move Forgery using Image Blobs and Features:
AKAZE, BRISK, ORB, SIFT and SURF

5.1 Introduction

In many cases of CMF, post-processing operations including scale, rotation, rota-
tion + scale are applied to the tampered areas to hide the counterfeits in CMFD
methods. If the authentic image is not available and we are asked to recover it
from a copy-move forged image, then the estimation of geometric transformation
parameters between authentic region/area and its duplicate is a key step. However,
the potential weakness of using image blobs in CMFD is that many small blobs
are detected in a single entire CMF region (see Fig. 5.5(b)). In such scenario, the
estimation of geometric transformation parameters between authentic region and
its duplicate is impracticable because several blobs are detected in each region.
Thus, this chapter discusses a blob post-process step with a 2D affine transfor-
mation to enable the blobs-based CMFD to recover the geometric transformation
parameters.

In Sect. 5.2.6 a blob post-processing method to enable the blobs-based CMFD
to be used with a 2D affine transformation to recover the geometric transformation
parameters including rotation, scale, and rotation + scale is described. Tareen et
al.(2018)[128] have shown that when analyzing image transformations that include
scale and rotation changes, feature detectors behave differently. E.g., SIFT [21],
SURF [42] and BRISK [95] are more robust scale-invariant feature detectors over

60

ORB [64] but they are computationally expensive. Therefore, it is reasonable to
enable the algorithm to be flexible and take in different types of features including
AKAZE, ORB, BRISK, SURF, and SIFT for geometric transformation estimation.

5.2 Geometric transformation parameters estima-
tion from CMF

The present technique has five main steps: pre-processing, scale-rotation invariant
features extraction, image blobs detection, matching scale-rotation invariant fea-
tures that are located within different blobs, the blobs with matched keypoints are
post-processed, and 2D affine transformation computation to estimate the geomet-
ric transformations parameters. The present method is wrapper that can use vari-
ous features in separate implementations for each. These different uses are referred
to as: Blobs+SIFT+2D affine, Blobs+BRISK+2D affine, Blobs+AKAZE+2D
affine, Blobs+ORB+2D affine, and Blobs+SURF+2D affine. Fig. 5.1 illustrates
the pipeline for the proposed method.

Figure 5.1: Flowchart for the proposed technique for geometric estimation from
CMFD

5.2.1 Pre-processing and Edge detection

Color image is converted into grayscale and edge detection is performed. The result
is fed as input to the blob detector to enhance the blob localization on foreground
regions and ensure that the CMF regions (original region and its duplicate) are
detected in different blobs [108].

61

5.2.2 Scale-Rotation Invariant Feature Extraction

For effective geometric transformation parameters estimation, it is reasonable to
enable the algorithm to be flexible and take in different types of features to balance
between performance and the computational cost. Most common scale-rotation
invariant features including AKAZE [70], ORB [48], BRISK [95], SURF [42] and
SIFT [101] are used with the present method.

5.2.2.1 SIFT (Scale-Invariant Feature Transform)

SIFT is a technique which extracts keypoints and computes their descriptors [101].
Here are the steps in SIFT:

• Building a scale space

• Approximation of LoG using DoG

• Extract Keypoints

• Discard edges and low contrast areas

• Orientation assignment

• Generate keypoint descriptor (SIFT feature)

SIFT potential keypoint are local extrema extracted in scale and space using
DoG. Regarding different parameters, [13, 101] give some empirical data as optimal
values, 4 octaves , 5 scale levels, initial σ is 1.6 and scale variable k is

√
2. Once

a keypoint is found, SIFT computes a magnitude and orientation for all pixels
around the keypoint. Then, prominent gradient orientation(s) are computed using
histogram. For each keypoint, a 16 × 16 neighbourhood around the keypoint is
used as keypoint descriptor.

5.2.2.2 Speeded Up Robust Features (SURF)

SURF is an algorithm that extracts keypoints and computes their descriptors like
SIFT [42]. SURF uses box filters to approximate LoG (scale space) (see Fig. 5.2).
SURF is fast compared to SIFT because convolution with box filters is computed

62

using integral images and can be computed simultaneously for various scales. The
approximation of both convolution and LoG using box filters is done at a low
computational cost using integral images independently of image size.

Figure 5.2: Approximate LoG with box filters

Integral image (summed-area table) is an algorithm that generates the sum
of values in a rectangular subset of an image region. It accelerates the box type
convolution filters computation. SURF uses the determinant of the Hessian matrix
for scale and location selection. The Hessian at given pixel is given by:

H(f(x, y)) =

∂
2f
∂x2

∂2f
∂x∂y

∂2f
∂x∂y

∂2f
∂y2


To adapt to any scale, an image is filtered by a Gaussian kernel. To analyze the
scale space, SURF upscales the filter size 9×9, 15×15, 21×21, 27×27, etc, rather
than iteratively reducing the image size as in image pyramid. SURF calculates the
Haar-wavelet responses in x and y directions to obtain orientation assignment and
constructs a feature descriptor (region around the keypoint).

5.2.2.3 KAZE and Accelerated-KAZE (AKAZE)

KAZE is an algorithm that extracts keypoints and computes their descriptors using
nonlinear diffusion filtering [33]. The propagation of particles over time within a

63

substance can be described using diffusion theory. One upstanding example is
the heat equation that indicates temperature diffusion in a closed body. KAZE
detector uses the Hessian Matrix which is computed at various scale levels to detect
keypoints (maxima of the filter response). KAZE feature descriptor consists of a
circular neighborhood around the detected keypoint. Nonlinear diffusion filtering
can reduce noise while retaining the boundaries of regions but it is computationally
expensive to build the nonlinear scale space. Thus, AKAZE was proposed as a
speed-up version of KAZE [33, 128]. The standard nonlinear diffusion (SND) is
given by:

SND =
∂Lu

∂t
= dive(cf(x, y, t).∇Lu) (5.1)

Lu is image luminance, ∇ is gradient operator, cf is conductivity function and
dive is divergence.

AKAZE uses Fast Explicit Diffusion (FED) algorithm to compute the nonlinear
scale space fast. The AKAZE feature detector is based on the determinant of
Hessian Matrix and Scharr filters are used to improve the rotation invariance
trait. AKAZE keypoints are maxima of the detector responses in spatial locations.
AKAZE uses a Modified Local Difference Binary (MLDB) algorithm to construct
the keypoint descriptor [33, 128].

5.2.2.4 Oriented Fast and Rotated Brief (ORB)

ORB consists of a keypoint detector and a binary descriptor [48]. Sect. 3.4 discusses
ORB in detail.

5.2.2.5 Binary Robust Invariant Scalable Keypoints (BRISK)

BRISK [95] is composed of a scale-space Keypoint detector and a binary feature
descriptor. Sect. 4.2.3 discusses BRISK in detail.

5.2.3 Blob Detection

DoG blob detector is used in the present method. Sect. 3.2 discusses DoG blob
detector in detail.

64

5.2.4 Extract keypoints located within the same blob

To find which keypoints are located within the same blob, a distance (D) between
2D spatial coordinates for each blob and 2D spatial coordinates for each keypoint
is calculated (see Fig. 5.3). Sect. 4.2.4 discusses the distance (D) in details.

5.2.5 Feature matching.

Keypoints that are located in different blobs are matched to find similar features
(see Fig. 5.5(b)(c)). AKAZE, ORB and BRISK use binary descriptors of size S.
Thus, the similarity is given by the Hamming distance Hd (number of different
bits) between two feature descriptors βD(i) and βD(j).

Hd =
S∑
k=1

XOR(βDk(i), βDk(j) (5.2)

Where XOR(i, j) = 0 for i = j and XOR(i, j) = 1 for i 6= j.
SIFT and SURF do not use binary descriptor. Every keypoint is described by
a vector of size Z. The similarity is the Manhattan distance Md between two
keypoint descriptors υ(i) and υ(j) which is the sum of absolute values.

Md =
Z∑
k=1

|υk(i)− υk(j)| (5.3)

Md and Hd are normalized such that Md, Hd ∈ (0, 1). The 2NN matches and
ratio criterion [101] is used to determine the correct keypoint matches. For each
keypoint in blob bi, find the two nearest neighbors in blob bj whose distances are d1
and d2. The nearest neighbor is defined as the keypoint with minimum Hamming
distance Hd for AKAZE, ORB and BRISK. Whereas for SIFT and SURF, the
nearest neighbor is defined as the keypoint with minimum Manhattan distanceMd

[109]. Given a predefined threshold T such that T ∈ (0, 1), the point pair (i, j) is
a matching pair if the following condition is satisfied:

d1
d2

< T (5.4)

65

The settings for the threshold T for Nearest Neighbor Matching Ratio are discussed
in the Sect. 5.3.2. In [109], a minimum of 2 matching pairs between different
blobs is required to consider a forgery. For the present method a minimum of 3

matching pairs between different blobs is required to consider a forgery. However, a
minimum of 5 matching pairs is required to estimate the geometric transformations
parameters. This is found empirically by experiments on the MICC-F220 [36]
dataset.

Figure 5.3: Big red rings are detected blobs and small rings are detected features.
First row: (a)CMF forged image. (b)Blobs+AKAZE. (c)Blobs+BRISK.
Second row : (d)Blobs+ORB. (e)Blobs+SIFT. (f)Blobs+SURF.

5.2.6 Blob post-processing and 2D affine transformations
computation

The main limitation of using image blobs in CMFD, is that several small blobs are
detected for a single entire CMF region. Then in such cases, we cannot compute
the geometric transformation parameters. To tackle this issue, we performed a
post-process operation on blobs that enclose the matched keypoints pairs. The
blob post-process operation ensures that each entire CMF region (authentic and
its duplicate) is contained within a single large blob. If bi and bj are the blobs that
enclose matched keypoint pairs, we extract the center of each blob (bix, biy) and
(bjx, bjy) (see Sect.4.2.4), then the distance dij between the two blobs is calculated
by:

dij =
√

(bix− bjx)2 + (biy − bjy)2 (5.5)

66

The distance to the center of the dij is:

M = dij/2 (5.6)

The distance ri fromM to (bix, biy) is equal to the distance rj fromM to (bjx, bjy),
i.e, M = ri = rj. Thus, to obtain new large blobs that don’t overlap, we set the
radius of each new blob =M . We obtain large blobs (bix, biy,M) and (bjx, bjy,M),
these two blobs don’t overlap and each entire CMF region (authentic region and
its duplicate) is contained in one of the two blobs. Image blobs that enclose the
matched keypoints pairs before blob post-processing are shown in Fig. 5.4(a) and
Fig. 5.5(b). Image blobs which cover each entire CMF regions (authentic and its
duplicate) after blob post-processing are shown in Fig. 5.5(c) and Fig. 5.6(b)(c)(d).

Figure 5.4: (a) Feature matching before blobs post-processing. (b) blobs after
post-processing.

Figure 5.5: Matching keypoints located in different blobs. (a) CMF image.
(b)Feature matching before blobs post-processing. (c)Feature matching after blobs
post-processing.

67

Image blobs that don’t enclose matched keypoint pairs are not involved in blob

post-processing. They are discarded.

Affine transformation is a transformation expressed by a fusion of a linear

transformation and a vector addition [2]. Therefore, it can be used to express:

• Rotation (linear transformation)

• Scale (linear transformation)

• Translation (vector addition)

Since an affine transformation can represent a relation between two images [28], we

consider to use it to extract the geometric transformation parameters between au-

thentic region and its duplicate. Our technique uses a 2D affine transformation to

recover the geometric transformation parameters between CMF regions (authentic

and its duplicate). The following 2 × 3 matrix is the transformation estimated

using the corresponding keypoints pairs:[
S × cos(θ) − S × sin(θ) tx
S × sin(θ) S × cos(θ) ty

]
Where S is the scaling factor (Sx, Sy are scale in x, y axes respectively). θ is the

rotation angle. tx and ty are translations in x and y axes respectively. To find

translation, rotation, and scale values we solve

[
a b x
c d y

]
=

[
S × cos(θ) − S × sin(θ) tx
S × sin(θ) S × cos(θ) ty

]

Translation : x = tx, y = ty (5.7)

Scale : Sx =
√
a2 + b2, Sy =

√
c2 + d2 (5.8)

Rotation : tanθ = − b
a

=
d

c
(5.9)

Algorithm 3 shows the pseudocode of the present method.

68

5.2.7 Algorithm

Algorithm 3: Geometric transformation parameters estimation from CMFD
Result: CMFD results with estimated geometric transformations

parameters
I : Input Image;
Gi : Compute grayscale of I ;
Si : Apply sobel edge detector to Gi;
Blobs(xb,yb,r) : Extract Blobs spatial coordinates from Si;
FEAT(xk,yk) : Extract feature (AKAZE, BRISK, ORB, SIFT and SURF)
from Gi;
for Blob in Blobs do

sameBlob = empty;
for Keypoint in FEAT do

if
√

(xk − xb)2 + (yk − yb)2 ≤ r then
sameBlob.append(Keypoint) ;

else
continue;

if sameBlob != empty then
Blobs = Blobs− sameBlob;
nn_matches = matcher.knnMatch(Blobs, sameBlob);
nn_match_ratio = T ;
L = empty;
for n1, n2 in nn_matches do

if n1.distance < nn_match_ratio ∗ n2 then
L.append(n1) ;

else
continue;

if L != empty then
print(‘Match found’);
Blobs post-processing;
Compute 2D affine transformation

else
continue;

else
continue;

5.3 Experimental Results

Firstly, this section introduces the dataset used and evaluation metrics. Then,

the settings for the thresholds T in Equation 5.4 are reported. The detection

performance is presented, and the geometric transformation parameters recovery

results are reported.

69

5.3.1 Dataset and evaluation metrics

The images used in the experiments are from the dataset MICC-F220 [36] of size
800 × 599 pixels and images from the dataset MICC-F2000 [36] of size 2048 × 1536
pixels. Tab. 5.3 reports the geometric transformations parameters θ for rotation
in degrees, and (Sx, Sy) scaling factor in pixels. Sect. 3.7 discusses the metrics
which are used to assess the performance of a CMFD method. For geometric
transformation parameters, the absolute error |e| is the difference between original
value of a parameter and its estimated value.

5.3.2 Threshold T settings, detection performance, and com-
parison

This method requires setting the threshold T in Equ. 5.4. Tests on 220 im-
ages (110 authentic and 110 tampered) from MICCF-220 dataset [36] are used
to empirically determine the value of T . Table 5.1 shows the threshold set up
for Blobs+SIFT+2D affine. As the T value begins to increase from the value of
0.1 to 0.4, the Acc (accuracy) also increases. As T value continues to increase to
the value of 0.5 to 0.9, the Acc begins to decrease. This indicates that the best
performance is obtained when T = 0.5.

Table 5.1: Experimental results to determine the threshold value T .

Treshold MICCF-220
T tp fp fn tn Acc%

0.1 5 0 105 110 52.14
0.2 37 0 73 110 66.61
0.3 80 1 30 109 85.90
0.4 100 7 10 103 92.27
0.5 106 12 4 98 92.27
0.6 106 25 4 85 86.81
0.7 110 37 0 73 83.18
0.8 110 85 0 25 61.36
0.9 110 95 0 15 56.81

70

Using the procedure described in Tab. 5.1, T = 0.5 for Blobs+SIFT+2D affine,

T = 0.6 for Blobs+BRISK+2D affine, T = 0.7 for Blobs+AKAZE+2D affine,

T = 0.6 for Blobs+ORB+2D affine and T = 0.6 for Blobs+SURF+2D affine. The

accuracy results are reported in Tab. 5.8.

5.3.3 Experimental platform and analysis of running time.

The experiments are performed using a desktop with Intel(R) Core(TM) i5-5200U

CPU @ 2.20GHz, 64-bit processor with 8GB RAM. The software environments

are Python 3, OpenCV-contrib and Ubuntu 18.04.3 LTS OS. Sobel edge detector

and the DoG blob detector are used. Tab. 5.2 reports the running time in seconds

on images of size 800× 532 pixels belonging to the MICC-F220 dataset.

Table 5.2: Running time analysis on image car from MICC-F220 dataset

Methods # of blobs # of keypoints detected Running time (seconds)
DoG+ORB [108] 239 4960 4.65

Blobs+ORB+2D affine 239 4960 5.9
Blobs+BRISK [109] 239 5980 6.24

Blobs+BRISK+2D affine 239 5980 6.83
Blobs+AKAZE+2D affine 239 1498 2.48
Blobs+SIFT+2D affine 239 2855 4.6
Blobs+SURF+2D affine 239 3299 4.24

The results indicate that this method does not add a significant computational time
to the existing blobs-based CMFD methods.

5.3.4 Geometric transformations parameters estimation

For each attack in Tab. 5.3 the experiment is carried out on 11 images.

71

Table 5.3: Geometric transformations parameters. Rotation θ in degrees and
(Sx, Sy) scale factor in pixels.

Attack θ Sx Sy Attack θ Sx Sy
A 0 1 1 F 70 1 1
B 10 1 1 G 90 1 1
C 20 1 1 H 0 1.2 1.2
D 30 1 1 I 0 1.3 1.3
E 40 1 1 J 10 1.2 1.2

I. Simple copy-move: the translation parameters are described by the attack A

from Tab. 5.3. 11 images are forged by duplicating a random region and pasting it into
the same image (see Fig. 5.6(b)). The estimated translation parameters are reported in
Tab. 5.5.

II. Rotation transformation: the parameters for rotation are described by the
attacks {B,C,D,E,F,G} from Table 5.3. 11 images forged with θ = 10◦, 11 images forged
with θ = 20◦, 11 images forged with θ = 30◦, 11 images forged with θ = 40◦, 11 images
forged with θ = 70◦, and 11 images forged with θ = 90◦. For 70◦, 90◦ images are from
MICC-F2000 [36] with the size 2048 × 1536 pixels (see Fig. 5.6(c-d)). The estimated
parameters are reported in Table. 5.4.

III. Scale transformation: the scale transformation parameters are described by
the attacks {H, I} from Tab. 5.3. The scale parameters are estimated on 11 images
forged with duplicated regions scaled to (Sx = 1.2, Sy = 1.2), and 11 images forged with
(Sx = 1.3, Sy = 1.3). The parameter estimation results are reported in Tab. 5.6.

IV. Rotation + scale transformation: the rotation + scale transformation pa-
rameters are described by the attack J from Tab. 5.3. 11 images forged with rotation
(θ = 10◦) + scale(Sx = 1.2, Sy = 1.2). The estimated parameters are reported in
Tab. 5.7.

72

Table 5.4: Rotation parameters estimation. Images (i) from MICC-F220 dataset.
For 70◦ and 90◦ images from MICC-F2000 dataset. (-) indicates that not enough
matches are found to estimate the parameters. B is blob, and 2Da is 2D affine
transforms

Methods Rotation θ = 10◦

i1 i2 i3 i4 i5 i6 i7 i8 i9 i10 i11
B+AKAZE+2Da 9.7◦ 9.4◦ 10.0◦ - - 10.0◦ - 10.0◦ - 10.0◦ -
B+ORB+2Da - 7.6◦ 10.1◦ 11.3◦ - 9.8◦ −◦ 9.4◦ 9.5◦ 10.4◦ -
B+BRISK+2Da 9.8◦ 10.3◦ 10.1◦ 10.9◦ - 9.6◦ - 9.8◦ 10.1◦ 10.0◦ 9.7◦

B+SURF+2Da - 9.3◦ 9.7◦ - 9.7◦ 9.7◦ - 4.1◦ 9.6◦ 9.7◦ -
B+SIFT+2Da 9.6◦ 10.1◦ 9.9◦ 10.0◦ - 10.0◦ 9.9◦ 10.0◦ 9.4◦ 9.9◦ -

Rotation θ = 20◦

B+AKAZE+2Da - 19.7◦ 19.5◦ - - 20.1◦ - 20.0◦ - 19.9◦ -
B+ORB+2Da - 20.7◦ 20.4◦ 20.8◦ - 20.1◦ 19.0◦ 20.0◦ 19.3◦ - -
B+BRISK+2Da 20.2◦ 18.9◦ 19.7◦ - - 19.9◦ - 19.9◦ 19.2◦ 19.7◦ -
B+SURF+2Da - 17.6◦ 19.4◦ - - 20.0◦ - 4.1◦ 19.9◦ 19.7◦ -
B+SIFT+2Da 19.8◦ 20.1◦ 20.0◦ 20.5◦ - 19.9◦ 20.0◦ 20.0◦ 19.7◦ 19.9◦ -

Rotation θ = 30◦

B+AKAZE+2Da 29.7◦ 30.1◦ 29.9◦ - - 30.0◦ - 29.9◦ - 30.0◦ -
B+ORB+2Da - 30.1◦ 29.9◦ 30.3◦ - 30.2◦ - 30.6◦ 31.1◦ 30.6◦ -
B+BRISK+2Da 30.0◦ 30.4◦ 30.5◦ 29.8◦ - 30.1◦ 27.1◦ 29.9◦ 30.2◦ 29.9◦ -
B+SURF+2Da 30.2◦ 30.0◦ - - - - - 4.1◦ - 29.4◦ -
B+SIFT+2Da 30.0◦ 30.0◦ 30.0◦ - 30.0◦ 29.9◦ 29.8◦ 30.1◦ 29.9◦ 29.9◦ -

Rotation θ = 40◦

B+AKAZE+2Da 39.9◦ 39.9◦ 39.9◦ - - 40.1◦ - 39.8◦ - 40.0◦ -
B+ORB+2Da - 39.8◦ 39.9◦ 41.0◦ - 39.9◦ - 39.7◦ 39.8◦ 40.6◦ -
B+BRISK+2Da 39.8◦ 40.2◦ 40.1◦ - - 40.1◦ 40.6◦ 39.9◦ 39.4◦ 40.1◦ -
B+SURF+2Da - 38.3◦ 39.8◦ - - 39.0◦ - 4.1◦ - 40.4◦ 38.6◦

B+SIFT+2Da 39.8◦ 39.6◦ 40.0◦ - 40.0◦ 39.9◦ 39.8◦ 39.9◦ 40.1◦ 40.0◦ 39.8◦

Rotation θ = 70◦

B+AKAZE+2Da - - 69.9◦ 69.9◦ 69.9◦ 70.0◦ 70.0◦ 70.0◦ 70.0◦ 69.9◦ 69.9◦

B+ORB+2Da 70.2◦ - 69.9◦ 70.5◦ 68.0◦ 70.0◦ 70.1◦ 70.1◦ - 69.1◦ 69.9◦

B+BRISK+2Da 70.9◦ 70.1◦ 69.9◦ - 69.9◦ 69.9◦ 69.9◦ 69.8◦ 70.5◦ 70.1◦ 70.0◦

B+SURF+2Da 70.0◦ - 70.0◦ - 70.2◦ 70.2◦ 69.2◦ 69.9◦ - 69.6◦ -
B+SIFT+2Da - 70.2◦ 69.9◦ - 69.9◦ 70.0◦ 69.9◦ 70.0◦ 69.8◦ 70.0◦ 70.0◦

Rotation θ = 90◦

B+AKAZE+2Da - - 90.0◦ 90.0◦ 90.0◦ 90.0◦ 90.0◦ 89.9◦ 90.0◦ 89.9◦ 90.0◦

B+ORB+2Da 89.8◦ 90.9◦ 90.0◦ 90.2◦ - 90.1◦ 89.6◦ 90.3◦ - 89.8◦ 90.0◦

B+BRISK+2Da - 89.8◦ 90.0◦ 88.9◦ 90.0◦ 90.0◦ 89.9◦ 90.0◦ 90.2◦ 90.1◦ 89.9◦

B+SURF+2Da 89.6◦ 90.0◦ 89.9◦ 89.9◦ 90.0◦ 90.0◦ 90.0◦ 90.0◦ 90.5◦ 89.9◦ 90.1◦

B+SIFT+2Da 90.0◦ 90.0◦ 90.0◦ - 89.9◦ 89.9◦ 90.0◦ 89.9◦ 90.0◦ 89.9◦ 89.9◦

73

Table 5.5: Translation parameters estimation. Images (i) from MICC-F220
dataset. (-) indicates that not enough matches are found to estimate the pa-
rameters. B is blob and 2Da is 2D affine transformation

Methods i1 i2 i3 i4 i5 i6 i7 i8 i9 i10 i11
Translation (tx, ty)

B+AKAZE+2Da 366,22 - 229,43 - 44,2 225,1 127,386 561,10 311,80 - 220,143
B+ORB+2Da - 197,42 231,44 - - - 126,388 553,16 311,76 398,39 222,148
B+BRISK+2Da 366,22 181,47 230,42 116,9 43,3 - 127,388 557,12 309,78 400,37 219,149
B+SURF+2Da 367,22 198,39 229,44 - 39,6 225,2 127,386 560,8 39,60 - 231,140
B+SIFT+2Da 366,23 197,40 230,44 115,8 46,1 225,2 127,385 562,7 311,79 396,39 218,142

Table 5.6: Scale parameters estimation. Images (i) from MICC-F220 dataset. (-)
indicates that not enough matches are found to estimate the parameters. B is blob
and 2Da is 2D affine transformation

Methods i1 i2 i3 i4 i5 i6 i7 i8 i9 i10 i11
Scale (Sx,Sy)=1.2

B+AKAZE+2Da - - 1.20 - - - 1.19 - 1.20 - 1.20
B+ORB+2Da - 1.20 1.20 - - - 1.19 1.17 1.20 1.21 1.17
B+BRISK+2Da 1.20 1.18 1.20 1.22 1.18 1.20 1.20 1.18 1.20 1.21 1.19
B+SURF+2Da 1.20 1.22 1.19 - - 1.19 1.19 - 1.15 - 1.19
B+SIFT+2Da 1.20 - 1.20 1.21 - 1.20 1.20 1.19 1.20 1.20 1.20

Scale (Sx,Sy)=1.3
B+AKAZE+2Da - - 1.21 - - - 1.37 - 1.33 - 1.39
B+ORB+2Da - - - - - - 1.34 1.21 1.29 1.38 1.34
B+BRISK+2Da 1.21 - 1.20 - - 1.20 1.38 1.22 1.33 1.39 1.37
B+SURF+2Da 1.21 1.24 1.19 - - 1.19 1.35 - 1.15 - 1.31
B+SIFT+2Da 1.21 - 1.21 1.33 - 1.20 1.37 1.23 1.32 1.38 1.39

Table 5.7: Rotation and scale parameters estimation. Images (i) from MICC-
F220 dataset. (-) indicates that not enough matches are found to estimate the
parameters. B is blob and 2Da is 2D affine transformation

Methods Rotation(θ = 10◦), Scale (Sx,Sy)=1.2
i1 i2 i3 i4 i5 i6 i7 i8 i9 i10 i11

B+AKAZE+2Da - - 10.0◦ - - - 9.9◦ - 10.2◦ - 10.2◦

- - 1.20 - - - 1.20 - 1.21 - 1.21

B+ORB+2Da - 13.8◦ 11.3◦ - 8.2◦ - 9.5◦ - 9.0◦ 9.7◦ 10.2◦

- 1.21 1.19 - 1.27 - 1.20 - 1.21 1.20 1.19

B+BRISK+2Da 10.4◦ 7.2◦ 9.9◦ - 10.8◦ 10.0◦ 9.6◦ - 9.8◦ 9.7◦ 9.5◦

1.20 1.17 1.20 - 1.19 1.20 1.20 - 1.21 1.19 1.22

B+SURF+2Da - - 9.7◦ - 9.9◦ - 9.4◦ - 4.1◦ - 10.0◦

- - 1.20 - 1.19 - 1.20 - 1.15 - 1.22

B+SIFT+2Da 9.9◦ - 9.8◦ 9.5◦ 10.7◦ 9.8◦ 10.0◦ 9.6◦ 9.9◦ 11.2◦ 9.8◦

1.20 - 1.20 1.20 1.20 1.20 1.20 1.21 1.21 1.22 1.20

74

The results from Tab. 5.5, Tab. 5.6, Tab. 5.7 and Tab. 5.4 show how reliable the
estimates are (the actual values of parameters and their estimated values). The results
indicate that the estimated parameters of the affine transformation are reliable. Tab. 5.9
compare the present method with the method [36], which is the best geometric transfor-
mations estimator CMFD found in literature. The details for tpr and the absolute error
|e| (the difference between original value of a parameter and its estimated value) are
given below.
Tab. 5.5 shows translation (ty, tx) in x, y axes respectively. The actual values of trans-
lation parameters are not provided with the dataset MICC-F220 [36] to calculate the
|e|. However, it is noticeable that the parameters recovered by different methods are
apparently identical. Blobs+SIFT+2Da gives the better results: tpr = 100%.
From Tab. 5.6 (scale) results (Sx, Sy) = 1.2, Blobs+BRISK+2Da gives better results:
tpr = 100% and the overall |e| = 0.1.
For scale (Sx, Sy) = 1.3, Blobs+SIFT+2Da gives the better results: tpr = 81.8% and
the overall |e| = 3.33.

From Tab. 5.7 (rotation + scale) results, Blobs+SIFT+2Da gives better results:
tpr = 90.9%, the overall |e| = 1.6 for scale, and overall |e| = 13.6◦ for rotation.

From Tab. 5.4 (rotation) results, Blobs+SIFT+2Da gives better results: tpr =

84.4% and the overall |e| = 450◦.

5.3.5 Comparative results

Table 5.8: CMFD results in terms of accuracy on MICC-F220 dataset

Methods Accuracy (%)
DoG+ORB [108] 86.24

Blobs+BRISK [109] 94.09
Blobs+ORB+2D affine tranforms 84.54

Blobs+AKAZE+2D affine tranforms 80.0
Blobs+SIFT+2D affine tranforms 92.27
Blobs+SURF+2D affine tranforms 81.81
Blobs+BRISK+2D affine tranforms 92.27

Results from Tab. 5.8 indicate that the present method exhibits a comparable match-
ing performance to the existing blobs-based CMFD that cannot recover the geometric
transformation parameters. To show how reliable the estimates are, the results from
Tab. 5.9 compare the present method with the method [36], which is the best geometric

75

transformation parameters estimator CMFD found in literature.

Table 5.9: Geometric transformation parameters estimation, B is blob, and 2Da
is 2D affine transforms

Methods Rotation θ in degree scale in pixels Rotation + scale
10◦ 20◦ 30◦ 40◦ 1.2 1.3 10◦ 1.2

Amerini et al.[36] 9.963◦ 20.009◦ 30.092◦ 39.932◦ 1.202 1.304 9.910◦ 1.203
B+AKAZE+2Da 10.006◦ 20.088◦ 29.982◦ 39.883◦ 1.204 1.336 10.299◦ 1.215
B+ORB+2Da 9.411◦ 20.041◦ 30.612◦ 39.739◦ 1.209 1.298 9.00◦ 1.215
B+BRISK+2Da 9.811◦ 19.932◦ 29.942◦ 39.959◦ 1.201 1.335 9.832◦ 1.212
B+SURF+2Da 4.143◦ 4.143◦ 4.143◦ 4.143◦ 1.157 1.157 4.143◦ 1.157
B+SIFT+2Da 10.002◦ 20.016◦ 30.192◦ 39.910◦ 1.200 1.327 9.990◦ 1.211

Considering the results from Tab. 5.9, the present method gives better estimates on
rotation: {10◦, 30◦, 40◦} and scale:{1.2, 1.3} with their respective
|e| are 0.002◦, 0.018◦, 0.41◦, 0, and 0.002. The method [36] gives better estimate on {20◦}
with |e|= 0.009◦. For performance comparison, the present method does not match the
keypoints located within the same blob, this reduces the number of keypoints to match
about 50% [109] and does not use filters to remove false matches; whereas method [36]
matches all keypoints in image before clustering and uses filter technique to eliminate
false matches.

5.3.6 Sample ouputs

Figure 5.6: (a) CMF image. (b) Simple CMFD. (c)CMFD θ = 70◦. (d) CMFD θ = 90◦.

76

Figure 5.7: (a)40◦, estimated = 40.03◦. (b)70◦, estimated = 69.94◦.

5.3.7 Conclusion

A CMFD method that detects a copy-move forgery and estimates the geometric transfor-
mation parameters between CMF regions (original region and its duplicate) is presented.
Image blobs are detected using DoG and keypoints are detected using various feature
detectors (AKAZE, ORB, BRISK, SURF, and SIFT). Keypoints from different blobs
are matched to find similar regions. However, the main limitation of using image blobs in
blob-based CMFD is the inability to perform the geometric transformation parameters
estimation because several small blobs are detected in each CMF region. To tackle the
above-mentioned limitation, the present method performs a post-process operation on
blobs that enclose the matched keypoints pairs to ensure that each entire CMF region
(original and its duplicate) is contained within a single large blob. Blob post-process
operation is followed by the computation of a 2D affine transformation bewteen CMF
regions to estimate the geometric transformation parameters. The present method shows
a very high degree of flexibility because it can easily take in various features including
AKAZE, ORB, BRISK, SURF and SIFT to enhance the effectiveness.

5.4 Summary

In this chapter, we have demonstrated that image blobs with various features including
AKAZE, ORB, BRISK, SURF and SIFT can be used to estimate the geometric transfor-
mation parameters (scale, rotation,translation and scale + rotation) from the copy-move
forgery. A blob post-process operation and a 2D affine transformation are used to enable
blob-based CMFD to recover the geometric transformation parameters between original
region and its duplicate. The experimental results show the potential of using image
blobs to recover the geometric transformation parameters in CMFD. The results also
show that the estimated parameters of the affine transformation are reliable.

77

Chapter 6

Image Splicing Detection using
Illumination Component and LBP

6.1 Introduction

Image splicing consists of two or more different images spliced together. Image splicing
introduces sharp edges, changes image structure and introduces illumination inconsisten-
cies [136]. How to discriminate these introduced edges from authentic edges, to capture
the information of texture and structure of colors, and to extract illumination infor-
mation are the important clues in image splicing detection. This chapter describes an
efficient technique for image splicing detection using illumination component and LBP.
Sect. 6.2.1 describes the YCbCr color space. The extraction of the illumination compo-
nent is discussed in Sect. 6.2.2. Sect. 6.2.4 describes the classification stage.
Most recent techniques consider the image splicing problem as a binary classification
problem with two main phases [143]:

1. Phase 1: classify image as tampered or authentic based on features extracted.

2. Phase 2: localize the tampered regions in forged image.

To solve the first phase, various techniques based on deep learning have been proposed
[43, 114]. However, the existing methods with high detection accuracy are computation-
ally expensive. Majority of them are based on complex deep learning models. They
are expensive to train and require a large amount of data to perform better. They also
run on expensive GPUs. Since this increases the cost to the users, the use of a simplis-
tic machine learning model that considers a trade-off between the cost and accuracy is

78

needed. The main goal is to detect spliced images using an efficient model, which has
a very simple structure and uses a small feature vector, yet obtain a plausible accuracy
compared to the performance of deep learning models. The need of large training sets is
thus eliminated.
In Sect. 6.2 an efficient method that uses illumination component, chroma channel fea-
tures and LBP to detect images as spliced (tampered) or authentic is discussed .

6.2 Image splicing detection technique using illu-
mination component and LBP

The present technique starts by converting RGB image to Y CbCr. This conversion
is important because the human visual system is more sensitive to overall intensity Y
(luma) changes than to colour changes (CbCr) [29, 54]. Thus, most tampering clues
which are imperceptible by naked eye are concealed in chromatic channel (CbCr). A
spliced image is composed by two or more images taken from different cameras within
different lighting conditions. Therefore, there is an illumination inconsistency into the
spliced image. The present method uses the Illumination-Reflectance model [54] of image
formation to estimate the illumination component from the image. Illumination is the
lighting condition during image capture. Reflectance is the reflectance of the object(s)
on the scene. Illumination varies slowly (Low-frequency) across the image as compared
to reflectance which change considerably at object edges (High-frequency) [54]. There-
fore, the log domain and Fourier transform are used to separate the illumination and
reflectance, e.g., Homomorphic filter [10]. To achieve efficiency, the present method uses
Y (luma) instead of using the log domain and Fourier transform to extract the illumina-
tion component. It is reasonable because the intensity information Y (luma) is related
to low frequency [66]. An edge-preserving filter, e.g., Bilateral filter [131], should be used
to ensure that clear edges are kept between surfaces under different lighting conditions in
the estimated illumination. Since Bilateral filter is slower compared to other smoothing
filters [22], we can approximate an edge-preserving filter using the max and min filters
because these filters act like dilation and erosion [54]. Therefore, they can locally smooth
the image and keep the important edges. We consider to filter Y from YCbCr with max
and min filters (approximate edge-preserving filter), then retain the output image as the
estimated illumination.

The present method can be summarized as follows in algorithm 5: a max-min fil-
ter is used to approximate edge-preserving filter, then we apply this filter to the lumi-

79

nance channel to estimate the illumination component based on Illumination-Reflectance
model. The LBP normalized histogram computed from the illumination component and
chrominance channel is used as a feature vector. For effective modeling and discrimina-
tion, the present method takes in various machine learning classifiers including Decision
Tree (DT), SVM, Logistic Regression (LR), LDA, K-Nearest Neighbors (KNN) and Naive
Bayes (NB) [18].

The techniques [104] and [118] exhibit a high accuracy in splicing forgery detec-
tion. However, they are computationally expensive, the former uses a Steerable Pyramid
Transform (SPT) that involves multi-scale and multi-orientation image decomposition
[61]. The latter uses CNN with eight hidden layers and requires a large amount of data
samples to train the CNN model. Therefore, the present work introduces a new efficient
method. Fig. 6.1 illustrates the diagram of the proposed method.

Figure 6.1: Flowchart of the present method

6.2.1 Convert input image to YCbCr

Y CbCr isolates luma/luminance, the intensity information, from chroma/chrominance,
the colour information. Y is the luma component, Cb and Cr are the blue-difference and
red-difference chroma components. The authors in [29, 32, 66, 136] showed that Y is
related to low frequency (Y is more sensitive to the human eye); whereas CbCr is related
to high frequency (Cb and Cr are less sensitive to the human eyes). Chrominace channel
is a good feature for splicing detection because tampering clues which are undetectable
by naked eyes are hidden in chromatic channel. The input image is converted from the
RGB to Y CbCr color space [11] by:

Y = 0.299 ∗R+ 0.587 ∗G+ 0.114 ∗B (6.1)

Cb = 0.492(B − Y) (6.2)

Cr = 0.877(R− Y) (6.3)

80

6.2.2 Extracting illumination component from luma

The interaction between light and object surfaces can be described using the Illumination-
Reflectance model (e.g., Homomorphic filter) [10, 54]. This model assumes that the
intensity at any pixel, which is the amount of light reflected by a point on the object,
is the product of the illumination of the scene and the reflectance of the object(s). This
model considers an image as a function F expressed by the product of illumination L

and reflectance R components as follows:

F (x, y) = L(x, y)R(x, y) (6.4)

F is the image, L is illumination of the scene and R is reflectance of object(s) on the
scene. Illumination is low-frequency (varies slowly across the image), whereas reflectance
is high-frequency (changes at object edges). This difference enables to split these two
components. The log (lg) domain is used to transform the multiplicative components to
additive components as follows:

lg(F (x, y)) = lg(L(x, y)R(x, y)) (6.5)

lg(F (x, y)) = lg(L(x, y)) + lg(R(x, y)) (6.6)

The structure of an Homomorphic filter is shown in Fig. 6.2 .

Figure 6.2: Homomorphic filtering

ln is log, DFT is Discrete Fourier Transform, H(u, v) is high-pass kernel, and IDFT
is Inverse Discrete Fourier Transform.

To retain the illumination component, a Low Pass Filter (LPF) can be used to re-
move high frequencies (reflectance) and keep the low frequencies (illumination). However,
Homomorphic filtering requires twice Fourier transform; and the Retinex [137] and Ho-
momorphic methods assume that the illumination component is globally smooth.
However, in practice, if the orientations of the object surfaces differ from each other,
their light-receiving conditions will be also different. Thus, the real illumination com-

81

ponent often has sharp edges, especially at the object boundaries. Chen et al.(2016)[54]
concluded that a proper illumination component should satisfy two conditions:

1. Clear edges are kept between surfaces under different lighting conditions.

2. Details within a single surface are blurred.

Since LPF tends to blur edges, it is logical to utilize an edge-preserving filter to extract
the illumination. Thus, edge-preserving filter such as Bilateral filter [131] can be used
instead of LPF. Bilateral filter is typically effective in image smoothing while keeping
important edges but the operation is slower compared to other smoothing filters.

To make a trade-off between the effeciency and the detail removal ability, it is ideally
suited to approximate a fast edge-preserving filter using the max and min filters [54].
Max and min filters are given by:

f(x, y) = max(i,j)∈Sxy{K(i, j)}, f(x, y) = min(i,j)∈Sxy{K(i, j)} (6.7)

To achieve a high running speed, there are very fast implementations for max and min
filters [54, 141]. Since luma (Y) is related to low frequency in the image, we used Y with
the max and min filters to estimate the illumination component as shown in algorithm 4.
Algorithm 4: pseudocode
Result: Estimated Illumination
Input I:(R,G,B) ← Y CbCr ;
foreach pixel x ∈ Y do

Ma(x)← GetMaxV alueInTheMask

foreach pixel x ∈ Ma do
Mi(x)← GetMinV alueInTheMask

Ill← a ∗ (Mi + t);
R← I/Ill

Ill is estimated illumination, R is reflectance, t = 0.05 is a small positive number
used to prevent zeros in division and a = 1.1 is a small constant slightly larger than 1
used to avoid the resulting image being too bright [54]. Dominant edges are retained
because the max and min filters act like dilation and erosion. Fig. 6.3 illustrates the
illumination component from luma.

82

→ →

Figure 6.3: Illumination estimation
(a) Input image. (b) Luma. (c) Illumination.

Fig. 6.3(b) is luma Y (the intensity information). It is obtained by converting RGB
to YCbCr, then sparate Y from CbCr. Fig. 6.3(c) is the estimated illumination from Y.
It is obtained by filtering Y component using the max and min filters.

6.2.3 Local Binary Patterns (LBP)

LBP provides features (visual descriptors) that are used for image texture classification
[66, 97]. Image texture gives us information about the spatial arrangement of color in
the image. Given pc as a central pixel value, P number of neighborhood pixels and r the
radius of the neighborhood. LBP is calculated by:

LBPp,r =

p−1∑
i=1

S(pi − pc).2i (6.8)

S(pi − pc) =

{
1 : pi ≥ pc

0 : pi < pc
(6.9)

Fig. 6.4 illustrates the LBP.Fig. 6.5 illustrates the feature vector for the present
method.

6.2.4 Tamper detection

Input image is detected as original or forged based on the features extracted. To catego-
rize an input image as authentic or spliced, the present method uses the LBP normalized
histogram as the feature vector for classification. A standard approach is to run multiple
classifiers and compare their performance against one another, then pick the classifier

83

which has the best performance [18]. Pedregosa et al.(2011)[5] provide access to numer-
ous different classification algorithms such as KNN [94], SVM [65], LDA [129], LR [113],
DT [73], Random Forests [49] and NB [15].

Figure 6.4: Local Binary Patterns

Fig. 6.5 illustrates the feature vector.

Figure 6.5: Feature vector (LBP histogram)

Algorithm 5 shows the the pseudocode of the present method.

84

6.3 Algorithm

Algorithm 5: Splicing detection based on illumination and LBP
Result: Classify as authentic or forged
Input I:(R,G,B) ← Y CbCr foreach pixel x ∈ Y do

Ma(x)← GetMaxV alueInTheMask

foreach pixel x ∈ Ma do
Mi(x)← GetMinV alueInTheMask

Ill← a ∗ (Mi + t)

LBP_L′ ← LBP (Ill)

LBP_Cb← LBP (Cb)

LBP_Cr ← LBP (Cr)

LBP_All← merge(LBP_L′, LBP_Cb, LBP_Cr)
Feature_vector ← normalizedHistogram(LBP_All)
All_classify ← SVM, LDA, NB, LR, KNN, DTREE;
All_classify(X,Y)

Ill is the estimated illumination, a = 1.1, t = 0.05[54], X : training data, Y : class
labels of X.

6.4 Experimental Results

In this section, the dataset used is decribed in Sect. 6.4.1, the platform and running time
analysis are discussed in Sect. 6.4.2, and experiment results are reported in Sect. 6.4.3.

6.4.1 Dataset and evaluation metrics

Experiments are performed using 12614 images from the dataset CASIA v2.0 [60]. 5123
are forged colored images, whereas 7491 are authentic colored images. The sizes (width,
height) of these images varie from 240 × 160 to 900 × 600 and they are in different
formats including JPEG, BMP and TIFF. The forgery detection on CASIA v2.0 is more
challenging because this dataset contains mostly low resolution images and tampered
regions are post-processed. The metrics to assess the performance of an image forgery
detection technique have been described in Sect. 3.7. Fig. 6.6 plots the images distribution
in authentic and tampered categories.

85

Figure 6.6: Data class distribution in dataset CASIA 2.0

6.4.2 Experimental platform and running time analysis.

The experiments are performed using a desktop with Intel(R) Core(TM) i5-5200U CPU
@ 2.20GHz, 64-bit processor with 8GB RAM. Python 3.6, Scikit-learn 0.21.2 and Ubuntu
18.04.3 LTS OS software environments are used. Tab. 6.1 reports the running time in
minutes on 12614 images from dataset CASIA v2.0 with classifiers including SVM, KNN,
LDA, DT and NB. Training size = 60% and test size = 40%

Table 6.1: Analysis of running time. M is minute, and S is second. 12614 images
from dataset CASIA v2.0 are used

Feature vector size Feature extraction (M) Training time (M) Prediction time (S)
256 42.18 1.50 13.42
512 55.0 2.0 20.44
768 76.10 3.30 52.61

The reported training time, and prediction time, are for all classifiers combined (SVM,
KNN, LDA, Decision Tree and Naive Bayes).

6.4.3 Experiment results

The experiments are performed on CASIA v2.0 public benchmark dataset for forgery
detection. Different machine learning algorithms including SVM, KNN, LDA, DT and
NB are used with the present model. The detection results (accuracy and the Area under
the ROC Curve(AUC)) [47] are reported. Tab. 6.2 reports the accuracy of the model

86

when the feature vector size is 256, and the Fig. 6.7 is the graphical plot of the ROC
curve.

Table 6.2: Accuracy when the feature vector size is 256.

Classifiers Accuracy (%)
Logistic Regression 62.20

Decision Tree 58.30
K Nearest Nearbor 60.89

Linear Discriminant Analysis 65.83
Naive Bayes 55.52)

Support Vector Machines 59.27

Figure 6.7: ROC feature vector size is 256

The results from Tab. 6.2 show the performance for different classifiers when the
feature vector length is 256. LDA gives better performance with accuracy = 65.83% on
12614 images from CASIA v2.0.

Tab. 6.3 reports the accuracy of the model when the feature vector size is 512, and
the ROC curve is shown in Fig. 6.8.

87

Table 6.3: Accuracy when the feature vector size is 512.

Classifiers Accuracy (%)
Logistic Regression 89.13

Decision Tree 88.58
K Nearest Nearbor 86.08

Linear Discriminant Analysis 92.98
Naive Bayes 76.55

Support Vector Machines 90.22

Figure 6.8: ROC feature vector size is 512

The results from Tab. 6.3 show the performance for different classifiers when the
feature vector length is 512. LDA gives better performance with accuracy = 92.92% on
12614 images from CASIA v2.0.

Tab. 6.4 reports the accuracy of the model when the feature vector size is 768, and
the Fig. 6.9 is the graphical plot of the ROC curve.

88

Table 6.4: Accuracy when the feature vector size is 768.

Classifiers Accuracy (%)
Logistic Regression 90.82

Decision Tree 91.07
K Nearest Nearbor 86.08

Linear Discriminant Analysis 93.79
Naive Bayes 76.93

Support Vector Machines 91.45

Figure 6.9: ROC feature vector size is 768

The results from Tab. 6.4 show the performance for different classifiers when the
feature vector length is 768. LDA gives better performance with accuracy = 93.79% on
12614 images from CASIA v2.0.

6.4.4 Comparative Results

From the results obtained in Sect. 6.4.3, it is noticeable that the present method performs
better when the classifier used is LDA. The accuracy obtained are 94.59% on 4117 images
and 93.79% on 12614 images. Tab. 6.6 compares the performance of the present technique
against other related techniques. Tab.6.5 reports the tn, fp, fn, tp, pr, rc, and f1 score
detection results obtained on 12614 images from dataset CASIA v2.0.

89

Table 6.5: tn, fp, fn, tp, pr, rc, and f1 score, on 12614 images from CASIA v2.0.
Testsize=0.4.

Classifiers tn fp fn tp precision% Recall% F1 score
Logistic Regression 2734 275 192 1845 93 91 92

Decision Tree 2757 252 251 1786 92 92 92
K Nearest Nearbor 2582 427 199 1838 93 86 89

Linear Discriminant Analysis 2789 220 96 1941 97 93 95
Naive Bayes 2268 741 438 1599 84 75 79

Support Vector Machines 2734 275 191 1846 97 90 93
Deep Learning + HWT [63] - - - - 97 99 98
Markov +DCT+DWT [78] - - - - - 92.5 -

The results from Tab. 6.5 show that the method [63] presents better f1 score. How-
ever, this technique uses deep learning (6 convolution layers with 600 kernels). Thus, it
is computationally expensive compared to the present method (see Tab. 6.6).

Table 6.6: Accuracy comparison with other models known in literature on dataset
CASIA v2.0

Models Feature vector: size acc (%)
CNN+RGB [118] Pretrained CNN: 16384 97.83

Feature fusion : 400
Markov features in DCT and DWT domain[78] - 89.76

Fast SCNN[143] SCNN : 25088 85.83
Improved double quantization detection[130] - 79.72

Deep Learning Local Descriptor[142] - 96.97
STP + LBP[104] LBP Histogram: 3,584 to 480 97.33

Deep Learning + HWT [63] HWT: 4,096 to 1,024. 96.36
2D Noncausal Markov Mode[138] 14,240 93.36

Presented Method
LBP Histogram : 256 65.83
LBP Histogram: 512 92.98
LBP Histogram: 768 94.59

The methods [118] and [104] present high accuracy. However, the present method is
computational efficient than these two methods, because the former requires a large data
samples to train the CNN model and the latter uses SPT that involves multiple image
decompositions (scale and orientation) [61]. Fig. 6.10 shows spliced images successfully
classified as forged.

90

Figure 6.10: Spliced images successfully classified as forged

6.4.5 Failure cases

We observed that many cases of misclassification are authentic images categorized as
tampered image. Fig. 6.11 shows authentic images misclassified as tampered images.

Figure 6.11: Authentic images misclassified as tampered images

Failure causes are small image size, photographs taken with background blur effect,
and uniform background. There is no considerable case of tampered images misclassified
as authentic images.

6.4.6 Conclusion

An efficient method for image splicing detection method was presented. The technique
uses the chroma channel, illumination component and LBP to discriminate spliced im-
age from authentic image. The input image is first converted into luminance and chroma
channels; considering the Illumination-Reflectance model, the illumination component is
extracted from luminance using an approximate edge-preserving filter with the max and

91

min filters; then LBP normalized histogram computed from illumination and chroma is
used as a feature vector for classification using different machine learning algorithms. Ex-
tensive experiments demonstrate that the present algorithm is computationally efficient
and effective for splicing forgery detection.

6.5 Summary

In this chapter, we have demonstrated that the illumination component and LBP can be
used for image splicing detection. The combination of illumination component and LBP
enables to construct an image splicing detection technique that uses a small feature vector
and has a simple structure. Images involved in splicing are taken from different cam-
eras within different lighting conditions, this creates illumination inconsistency into the
spliced image. Thus, illumination component is a good feature for image splicing tamper
detection. The experiment results show that the present image splicing tamper detection
technique is computationally efficient and effective for splicing tamper detection.

92

Chapter 7

Conclusions and Future Work

7.1 Conclusions

In this thesis, we presented several techniques for detecting and localizing forged regions
in copy-move and image-splicing forgeries. We also presented a technique to obtain geo-
metric transformation parameters with high accuracy for copy-move forgeries. Our results
in Chapters 3 and 4 demonstrate that image blobs overcome many limitations of block,
keypoint and segment based approaches. Moreover, blobs allowed us to handle one of
the most persistent problems with other approaches – namely that of uniform and back-
ground regions. Blobs ensure that in a majority of cases, the original and forged regions
belong to different blobs. Such a property allowed us to greatly reduce computational
costs. Our results also show that blobs may be used with many standard off-the-shelf
features and do not require many specialized fine-tuned features or parameters.

The use of illumination information makes our work on image-splicing forgery detec-
tion different from most of the existing literature which is based on image content such
as edge inconsistencies and localized blurring near spliced boundaries. We believe that
ours is the first method that used illuminant component via Y CbCr color space, edge-
preserving smoothing filter and local binary patterns. The results reinforce our intuition
that illumination inconsistencies provide generic and vital information about tampering.

7.2 Recommendations and Future Work

While forgery detection results obtained from proposed techniques are on par with the
state-of-the-art, the failures indicate that there is more work to be done in the field.

93

The performance of the deep networks, while higher, is achieved with larger datasets and
greater compute power. The convolution filters in such networks provide learned features
which are highly tuned to the application at hand [92].It will be interesting to explore
such features in combination with blobs and study the performance. Finally, we would
also like to add a localization mechanism in the image-splicing detection algorithms.

On the other hand, it would also be interesting to study if image blob computing
mechanisms may be implemented as a part of a deep network— blob detection is built
from a convolution operation — and combine it with the illumination components to see
the effect on the performance of deep networks.

94

List of Publications

1. Niyishaka Patrick and Chakravarthy Bhagvati.Digital Image Forensics
Technique for Copy-Move Forgery Detection Using DoG and ORB. IC-
CVG 2018, Warsaw, Poland, September 17-19, 2018, Proceedings. 10.1007/978−
3− 030− 00692− 1_41.

2. Niyishaka Patrick and Chakravarthy Bhagvati. Copy-Move forgery
detection using image blobs and BRISK feature. Multimedia Tools and
Applications (MTAP), https://doi.org/10.1007/s11042-020-09225-6.

3. Niyishaka Patrick and Chakravarthy Bhagvati. Geometric transfor-
mation estimation from copy-move forgery using image blobs features
and keypoints. Multimedia Tools and Applications (MTAP), Communicated.

4. Niyishaka Patrick and Chakravarthy Bhagvati. Image splicing detec-
tion technique based on illumination component and LBP. Multimedia
Tools and Applications (MTAP), https://doi.org/10.1007/s11042-020-09707-7.

95

References

[1] 16 Famous First Photographs in History: From the Oldest Photo Ever
to the World’s First Instagram. https://mymodernmet.com/first-photograph-
photography-history/. Accessed: 2019-07-12. (1)

[2] Affine transformation. https://en.wikipedia.org/wiki/Affine_transformation. Ac-
cessed: 2019-08-15. (68)

[3] Blob detection. https://scikit-image.org/docs/dev/auto_examples/features_detection/plot_blob.html.
Accessed: 2019-07-29. (31)

[4] Blob Detection Using OpenCV (Python, C++).
https://www.learnopencv.com/blob-detection-using-opencv-python-c/. Accessed:
2019-07-29. (31)

[5] Classifier comparison. https://scikit-learn.org/stable/auto_examples/classification/plot_classifier_comparison.html.
Accessed: 2020-01-02. (84)

[6] Facebook-Statistics. https://www.brandwatch.com/blog/facebook-statistics/. Ac-
cessed: 2019-07-11. (2)

[7] Facebook Users Are Uploading 350 Million New Photos Each
Day. https://www.businessinsider.com/facebook-350-million-photos-each-day-2013-
9?IR=T. Accessed: 2019-07-11. (2)

[8] First Photograph. https://www.hrc.utexas.edu/exhibitions/permanent/. Ac-
cessed: 2019-07-12. (1)

[9] Heliography. https://en.wikipedia.org/wiki/Heliography. Accessed: 2019-07-12.
(1)

[10] Homomorphic filtering. https://en.wikipedia.org/wiki/Homomorphic_filtering.
Accessed: 2020-01-02. (79, 81)

96

[11] Human Vision and Color. https://biomachina.org/courses/imageproc/121.pdf.
Accessed: 2020-01-20. (80)

[12] Image segmentation. https://en.wikipedia.org/wiki/Image_segmentation. Ac-
cessed: 2019-07-29. (35)

[13] Introduction to SIFT (Scale-Invariant Feature Transform). https://opencv-
python-tutroals.readthedocs.io/en/latest/py_tutorials/py_feature2d/py_sift_intro/py_sift_intro.html.
Accessed: 2019-08-15. (62)

[14] The inventor of the first self-contained (portable) digital camera.
https://en.wikipedia.org/wiki/Steven_Sasson. Accessed: 2020-01-10. (1)

[15] Naive Bayes Classifier. https://en.wikipedia.org/wiki/Naive_Bayes_classifier.
Accessed: 2020-01-02. (84)

[16] OpenCV: Open source computer vision library.
https://github.com/opencv/opencv. Accessed: 2019-07-10. (2)

[17] OpenCV: seamless cloning. https://www.learnopencv.com/seamless-cloning-
using-opencv-python-cpp/. Accessed: 2019-07-09. (2)

[18] Overview of Classification Methods in Python with Scikit-Learn.
https://stackabuse.com/overview-of-classification-methods-in-python-with-scikit-
learn/. Accessed: 2020-01-02. (80, 84)

[19] Scale Space. https://en.wikipedia.org/wiki/Scale_space. Accessed: 2019-07-29.
(33)

[20] Scale-Space Blob Detection. https://medium.com/@nikhilkumar0042/scale-
space-blob-detection-b93a4a0829ba. Accessed: 2019-07-30. (33)

[21] SIFT: Theory and Practice. LoG approximations.
http://aishack.in/tutorials/sift-scale-invariant-feature-transform-log-
approximation/. Accessed: 2019-07-29. (33, 60)

[22] Smoothing images. https://docs.opencv.org/master/d4/d13/tutorial_py_filtering.html.
Accessed: 2019-08-15. (79)

[23] Social-Media-Statistics. https://dustinstout.com/social-media-statistics/. Ac-
cessed: 2019-07-11. (2)

97

[24] Steve on Image Processing and MATLAB: Homomorphic filtering-part 1.
https://blogs.mathworks.com/steve/2013/06/25/homomorphic-filtering-part-1/. Ac-
cessed: 2019-07-13. (7)

[25] Support Vector Machines. https://en.wikipedia.org/wiki/Support-
vector_machine. Accessed: 2019-07-16. (25)

[26] Support Vector Machines. https://scikit-learn.org/stable/modules/svm.html.
Accessed: 2019-07-16. (25)

[27] A tutorial on binary descriptors – part 3 – The ORB descrip-
tor. https://gilscvblog.com/2013/10/04/a-tutorial-on-binary-descriptors-part-3-the-
orb-descriptor/. Accessed: 2020-01-02. (19)

[28] What is an Affine Transformation? https://docs.opencv.org/2.4/doc/tutorials/imgproc-
/imgtrans/warp_affine/warp_affine.html. Accessed: 2019-10-15. (68)

[29] What is YCbCr color space. https://medium.com/breaktheloop/what-is-ycbcr-
964fde85eeb3. Accessed: 2021-02-15. (79, 80)

[30] Jeyalakshmi A. and Chitra D.Ramya. Image splicing detection based on
surf with ripplet Transform-ii. nternational Journal of Recent Technology and
Engineering (IJRTE), 7, 2019. (24)

[31] Radhakrishna Achanta, Appu Shaji, Kevin Smith, Aurelien Lucchi, Pas-

cal Fua, and Sabine Süsstrunk. SLIC superpixels compared to state-of-
the-art superpixel methods. IEEE transactions on pattern analysis and machine
intelligence, 34(11):2274–2282, 2012. (35)

[32] Amani Alahmadi, Muhammad Hussain, Hatim Aboalsamh, Ghulam

Muhammad, and George Bebis. Splicing image forgery detection based
on DCT and Local Binary Pattern. pages 253–256, 12 2013. (80)

[33] Pablo Fernández Alcantarilla, Adrien Bartoli, and Andrew J. Davi-

son. KAZE Features. In Computer Vision – ECCV 2012, pages 214–227, Berlin,
Heidelberg, 2012. Springer Berlin Heidelberg. (63, 64)

[34] Mohammed Hazim Alkawaz, Ghazali Sulong, Tanzila Saba, and Amjad

Rehman. Detection of copy-move image forgery based on discrete cosine
transform. Neural Computing and Applications, 30(1):183–192, Jul 2018. (13, 14)

98

[35] Irene Amerini, Lamberto Ballan, Roberto Caldelli, Alberto

Del Bimbo, Luca Del Tongo, and Giuseppe Serra. Copy-move forgery
detection and localization by means of robust clustering with J-Linkage.
Signal Processing: Image Communication, 28(6):659–669, 2013. (13, 20)

[36] Irene Amerini, Lamberto Ballan, Roberto Caldelli, Alberto

Del Bimbo, and Giuseppe Serra. A SIFT-Based Forensic Method for
Copy–Move Attack Detection and Transformation Recovery. Information
Forensics and Security, IEEE Transactions on, 6:1099–1110, 10 2011. (12, 13, 18,
20, 22, 42, 50, 51, 53, 56, 66, 70, 72, 75, 76)

[37] Roy Aniket, Dixit Rahul, Naskar Ruchira, and Subhra Chakraborty

Rajat. Digital Image Forensics: Theory and Implementation, 755. June 2018. (4)

[38] Anuradha, Singh Baljinder, and Sood Ritika. A Hybrid Algorithm For
Image Forgery Detection. International Journal of Computer Science and Mobile
Computing, 7:122–128, 03 2018. (12)

[39] V. Malviya Ashwini and A. Ladhake Siddharth. Pixel Based Image
Forensic Technique for Copy-move Forgery Detection Using Auto Color
Correlogram. Procedia Computer Science, 79:383–390, 2016. Proceedings of In-
ternational Conference on Communication, Computing and Virtualization (ICCCV)
2016. (xvi, xvii, 41, 42, 44, 56, 57)

[40] Md Atiqur Rahman and Yang Wang. Optimizing Intersection-Over-
Union in Deep Neural Networks for Image Segmentation. 10072, pages
234–244, 12 2016. (36)

[41] Zhihua Ban, Jianguo Liu, and Li Cao. A novel Gaussian mixture model
for superpixel segmentation. CoRR, abs/1612.08792, 2016. (12)

[42] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. SURF: Speeded
Up Robust Features. In Computer Vision -ECCV 2006, pages 404–417, Berlin,
Heidelberg, 2006. Springer Berlin Heidelberg. (18, 60, 62)

[43] Belhassen Bayar and Matthew C. Stamm. A Deep Learning Approach
to Universal Image Manipulation Detection Using a New Convolutional
Layer. pages 5–10, 06 2016. (24, 29, 78)

99

[44] Aparna Bharati, Richa Singh, Mayank Vatsa, and Kevin W. Bowyer.
Detecting Facial Retouching Using Supervised Deep Learning. IEEE Trans-
actions on Information Forensics and Security, 11:1903–1913, 09 2016. (4, 10)

[45] Xiuli Bi, Chi-Man Pun, and Xiao-Chen Yuan. Multi-level dense descrip-
tor and hierarchical feature matching for copy-move forgery detection.
Information Sciences, 345:226–242, 2016. (13, 16)

[46] David Blatner. Photoshop: It’s Not Just a Program Anymore., August
2000. (1)

[47] Andrew P. Bradley. The use of the area under the ROC curve in the
evaluation of machine learning algorithms. Pattern Recognition, pages 1145–
1159, 1997. (86)

[48] G. Bradski, K. Konolige, V. Rabaud, and E. Rublee. ORB: An efficient
alternative to SIFT or SURF. In 2011 IEEE International Conference on Com-
puter Vision (ICCV 2011)(ICCV), 00, pages 2564–2571, 11 2011. (7, 17, 38, 62,
64)

[49] Leo Breiman. Random Forests. Machine Learning, pages 5–32, Oct 2001. (84)

[50] Michael Calonder, Vincent Lepetit, Christoph Strecha, and Pascal

Fua. BRIEF: Binary Robust Independent Elementary Features. 6314,
pages 778–792, 09 2010. (39)

[51] John Canny. A computational approach to edge detection. In Readings in
computer vision, pages 184–203. Elsevier, 1987. (37)

[52] Li Ce, Ma Qiang, Xiao Limei, Li Ming, and Zhang Aihua. Image splicing
detection based on Markov features in QDCT domain. Neurocomputing,
228:29–36, 2017. Advanced Intelligent Computing: Theory and Applications. (24,
26)

[53] Sekhar Chandra and T N Sankar. Review of Image Splicing Forgery
Detection Techniques. Journal of Emerging Technologies and Innovative Research,
3, 2016. (4)

[54] Dongliang Chen, Shanzhen Lan, Pin Xu, and Yongqin Zhang.
Illumination-Reflectance Based Image Enhancement Method for Charac-
ter Recognition. pages 207–211, 10 2016. (7, 79, 81, 82, 85)

100

[55] Vincent Christlein, Christian Riess, Johannes Jordan, Corinna Riess,

and Elli Angelopoulou. An evaluation of popular copy-move forgery
detection approaches. IEEE Transactions on information forensics and security,
7(6):1841–1854, 2012. (16, 41, 42)

[56] Davide Cozzolino, Giovanni Poggi, and Luisa Verdoliva. Copy-move
forgery detection based on patchmatch. In 2014 IEEE International Conference
on Image Processing (ICIP), pages 5312–5316. IEEE, 2014. (13)

[57] Davide Cozzolino, Giovanni Poggi, and Luisa Verdoliva. Efficient dense-
field copy–move forgery detection. IEEE Transactions on Information Forensics
and Security, 10(11):2284–2297, 2015. (13)

[58] S. Debbarma, A. B. Singh, and K. M. Singh. Keypoints based copy-move
forgery detection of digital images. pages 1–5, 11 2014. (17)

[59] Rahul Dixit, Ruchira Naskar, and Swati Mishra. Blur-invariant copy-
move forgery detection technique with improved detection accuracy util-
ising SWT-SVD. IET Image Processing, 11(5):301–309, 2017. (13, 15)

[60] Jing Dong, Wei Wang, and Tieniu Tan. CASIA Image Tampering De-
tection Evaluation Database. pages 422–426, 07 2013. (27, 85)

[61] Fadoua Drira, Florence Denis, and Atilla Baskurt. Image watermark-
ing technique based on the steerable pyramid transform. pages 165–176, 11
2004. (80, 90)

[62] Mahmoud Emam, Qi Han, and Xiamu Niu. PCET based copy-move forgery
detection in images under geometric transforms. Multimedia Tools and Ap-
plications, 75(18):11513–11527, 2016. (13, 16)

[63] Hala H. Zayed Eman I. Abd El-Latif, Ahmed Taha. International Journal
of Computer Network and InformationSecurity(IJCNIS), 5:28–35, 2019. (24, 90)

[64] Rublee Ethan, Rabaud Vincent, Konolige Kurt, and Bradski Gary.
ORB: An efficient alternative to SIFT or SURF. In 2011 International Con-
ference on Computer Vision, pages 2564–2571, Nov 2011. (18, 19, 61)

[65] Theodoros Evgeniou and Massimiliano Pontil. Support Vector Ma-
chines: Theory and Applications. 2049, pages 249–257, 01 2001. (7, 84)

101

[66] Hakimi Fahime, Hariri Mahdi, and GharehBaghi Farhad. Image splicing
forgery detection using local binary pattern and discrete wavelet trans-
form. 2nd International Conference on Knowledge-Based Engineering and Innova-
tion (KBEI), Tehran, pages 1074–107, 2015. (6, 7, 13, 24, 25, 79, 80, 83)

[67] Hany Farid. Digital doctoring: how to tell the real from the fake. 2006.
(2)

[68] Hany Farid. Digital Doctoring : can we trust photographs ? 2007. (2)

[69] Maher Al Azrak Faten, Sedik Ahmed, I. Dessowky Moawad, Ashraf A.

M. Khalaf Ghada, M. El Banby, S. Elkorany Ahmed, and E. Abd. El-

Samie Fathi. An efficient method for image forgery detection based on
trigonometric transforms and deep learning. Multimedia Tools and Applica-
tions, 2020. (13, 17, 34)

[70] Pablo Fernández Alcantarilla. Fast Explicit Diffusion for Accelerated
Features in Nonlinear Scale Spaces. 09 2013. (62)

[71] Martin A. Fischler and Robert C. Bolles. Random Sample Consensus:
A Paradigm for Model Fitting with Applications to Image Analysis and
Automated Cartography. Commun. ACM, 24(6):381–395, 1981. (5)

[72] J Fridrich, D. Soukal, and J Lukas. Detection of copy-move forgery in
digital images. Digital Forensic Research Workshop, Cleveland, OH, pages 19–23,
2003. (44)

[73] Bhumika Gupta, Aditya Rawat, Akshay Jain, Arpit Arora, and Naresh

Dhami. Analysis of Various Decision Tree Algorithms for Classification in
Data Mining. International Journal of Computer Applications, 163:15–19, 04 2017.
(84)

[74] Farid Hany. Image Forgery Detection: A survey. IEEE SIGNAL PROCESS-
ING MAGAZINE, March 2009. (1, 3, 4)

[75] Chris Harris and Mike Stephens. A Combined Corner and Edge Detec-
tor. In Proceedings of the Alvey Vision Conference, pages 23.1–23.6. Alvety Vision
Club, 1988. doi:10.5244/C.2.23. (17)

[76] Mohammad Farukh Hashmi, Vijay Anand, and Avinas G. Keskar. Copy-
move Image Forgery Detection Using an Efficient and Robust Method

102

Combining Un-decimated Wavelet Transform and Scale Invariant Feature
Transform. AASRI Procedia, 9:84–91, 12 2014. (20, 56)

[77] Khizar Hayat and Tanzeela Qazi. Forgery detection in digital images
via discrete wavelet and discrete cosine transforms. Computers and Electrical
Engineering, 62:448–458, 2017. (3, 11, 13)

[78] Zhongwei He, Wei Lu, Wei Sun, and Jiwu Huang. Digital image splicing
detection based on Markov features in DCT and DWT domain. Pattern
Recognition, 45:4292–4299, 2012. (90)

[79] Ordway Hilton. Scientific Examination of Questioned Documents, Revised Edi-
tion. Forensic and Police Science Series. Taylor & Francis, 1992. (4)

[80] Huang Hui-Yu and Ciou Ai-Jhen. Copy-move forgery detection for image
forensics using the superpixel segmentation and the Helmert transforma-
tion. EURASIP Journal on Image and Video Processing, 2019. (13, 51)

[81] A.K. Jaiswal and R. Srivastava. A technique for image splicing detection
using hybrid feature set. Multimed Tools Appl 79, 11837–11860 (2020). (24)

[82] Ankit Kumar Jaiswal and Rajeev Srivastava. Image Splicing Detection
using Deep Residual Network. Proceedings of 2nd International Conference on
Advanced Computing and Software Engineering (ICACSE) 2019, 2019. (24)

[83] Bappy Jawadul H., Roy-Chowdhury Amit K., Bunk Jason, Nataraj Lak-

shmanan, and Manjunath B.S. Exploiting Spatial Structure for Localizing
Manipulated Image Regions. In 2017 IEEE International Conference on Com-
puter Vision (ICCV), pages 4980–4989, 2017. (24, 28)

[84] Mingxing Jia, Zhixian Zhang, Pengfei Song, and Junqiang Du. Research
of Improved Algorithm Based on LBP for Face Recognition. In Biometric
Recognition, pages 111–119. Springer International Publishing, 2014. (25)

[85] Guonian Jin and Xiaoxia Wan. An improved method for SIFT-based
copy-move forgery detection using non-maximum value suppression and
optimized J-Linkage. Signal Processing: Image Communication, 57:113–125, 2017.
(13, 21)

[86] Dong Jing, Wang Wei, and Tan Tieniu. CASIA Image Tampering De-
tection Evaluation Database. In 2013 IEEE China Summit and International
Conference on Signal and Information Processing, pages 422–426, July 2013. (4)

103

[87] Young Park Jun, An Kang Tae, Ho Moon Yong, and Il. Kyu Eom. Copy-
Move Forgery Detection Using Scale Invariant Feature and Reduced Local
Binary Pattern Histogram. Symmetry, 2020. (13, 17, 51, 56)

[88] Harpreet Kaur, Jyoti Saxena, and Sukhjinder Singh. Simulative com-
parison of copy-move forgery detection methods for digital images. Inter-
national Journal of Electronics, Electrical and Computational System, 4:62–66, 2015.
(56, 57)

[89] Rajdeep kaur and Amandeep Kaur. COPY-MOVE FORGERY DETEC-
TION USING ORB AND SIFT DETECTOR. pages 804–8213, 2016. (18)

[90] Hui Kong, Hatice Cinar Akakin, and Sanjay Sarma. A Generalized
Laplacian of Gaussian Filter for Blob Detection and Its Applications. Cy-
bernetics, IEEE Transactions on, 43:1719–1733, 01 2013. (7)

[91] Iryna Korshunova, Wenzhe Shi, J Dambre, and Lucas Theis. Fast Face-
Swap Using Convolutional Neural Networks. pages 3697–3705, 10 2017. (2)

[92] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. ImageNet
Classification with Deep Convolutional Neural Networks. In F. Pereira,

C. J. C. Burges, L. Bottou, and K. Q. Weinberger, editors, Advances in
Neural Information Processing Systems, 25. Curran Associates, Inc., 2012. (94)

[93] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. ImageNet
Classification with Deep Convolutional Neural Networks. Commun. ACM,
60(6):84–90, may 2017. (2)

[94] J. Laaksonen and E. Oja. Classification with learning k-nearest neigh-
bors. In Proceedings of International Conference on Neural Networks (ICNN’96), 3,
pages 1480–1483 vol.3, June 1996. (84)

[95] Stefan Leutenegger, Margarita Chli, and Roland Y. Siegwart.
BRISK: Binary Robust Invariant Scalable Keypoints. In Proceedings of the
2011 International Conference on Computer Vision, ICCV ’11, pages 2548–2555,
Washington, DC, USA, 2011. IEEE Computer Society. (7, 11, 17, 48, 60, 62, 64)

[96] Jingwei Li, Fan Yang, Wei Lu, and Wei Sun. Keypoint-based copy-move
detection scheme by adopting MSCRs and improved feature matching.
Multimedia Tools and Applications, 76(20):20483–20497, Oct 2017. (13, 21)

104

[97] Wang Li and He Dong-Chen. Texture classification using texture spec-
trum. Pattern Recognition, 23(8):905–910, 1990. (83)

[98] Cong Lin, Wei Lu, Xinchao Huang, Ke Zhen Liu, Wei Sun, Hanhui Lin,

and Zhiyuan Tan. Copy-move forgery detection using combined features
and transitive matching. Multimedia Tools and Applications, pages 1–16, 2018.
(57)

[99] Cong Lin, Wei Lu, Wei Sun, Jinhua Zeng, Tianhua Xu, and Jian-Huang

Lai. Region duplication detection based on image segmentation and key-
point contexts. Multimedia Tools and Applications, 77(11):14241–14258, Jun 2018.
(35)

[100] Tony Lindeberg. Scale-space: A framework for handling image struc-
tures at multiple scales. Encyclopedia of Computer Science and Engineering,
4:2495–2504, 2008. (7, 33, 35, 49)

[101] David G. Lowe. Distinctive Image Features from Scale-Invariant Key-
points. International Journal of Computer Vision, 60(2):91–110, Nov 2004. (7, 18,
33, 50, 62, 65)

[102] Muthana Mahdi and Saad Alsaad. Detection of Copy-Move Forgery in Digital
Image Based on SIFT Features and Automatic Matching Thresholds, pages 17–31. 01
2020. (13)

[103] Toqeer Mahmood, Zahid Mehmood, Mohsin Shah, and Zakir Khan. An
efficient forensic technique for exposing region duplication forgery in dig-
ital images. Applied Intelligence, 48(7):1791–1801, Jul 2018. (13, 16, 34)

[104] Ghulam Muhammad, Muneer Al-Hammadi, Muhammad Hussain, and

George Bebis. Image Forgery Detection Using Steerable Pyramid Trans-
form and Local Binary Pattern. Machine Vision and Applications, 25:985–995,
05 2014. (80, 90)

[105] Gul Muzaffer, Ozge Makul, Beste Gençtürk, and Guzin Ulutas. Copy
Move Forgery Detection Using Gabor Filter and Scaled ORB. pages 23–29,
03 2016. (19)

[106] Tian-Tsong Ng and Shih-Fu Chang. AData Set of Authentic and Spliced
Image Blocks. Technical report, Columbia University, June 2004. (10, 16)

105

[107] Bhagvati C. Niyishaka, P. Image splicing detection technique based on
Illumination-Reflectance model and LBP. Multimed Tools Appl, pages 44–51,
2020. (6, 23, 24, 30)

[108] Patrick Niyishaka and Chakravarthy Bhagvati. Digital Image Forensics
Technique for Copy-Move Forgery Detection Using DoG and ORB: International
Conference, ICCVG 2018, Warsaw, Poland, September 17 - 19, 2018, Proceedings,
pages 472–483. 09 2018. (xvii, 2, 11, 12, 17, 22, 54, 55, 56, 57, 61, 71, 75)

[109] Patrick Niyishaka and Chakravarthy Bhagvati. Copy-Move Forgery De-
tection Using image blobs and BRSIK feature. Springer, 2020. (5, 12, 14, 22, 45, 50,
52, 65, 66, 71, 75, 76)

[110] Joseph Ojeniyi, Bolaji O Adedayo, Ismaila Idris, and Shafi’i Abdul-

hamid. Hybridized Technique for Copy-Move Forgery Detection Using
Discrete Cosine Transform and Speeded-Up Robust Feature Techniques.
International Journal of Image, Graphics and Signal Processing, 10:22–30, 04 2018.
(xvii, 3, 4, 5, 11, 17, 22, 50, 51, 56, 57)

[111] Viola Paul and Jones Michael. Robust Real-time Object Detection. In
International Journal of Computer Vision, 2001. (2)

[112] Anjie Peng, Yadong Wu, and Xiangui Kang. Revealing Traces of Image
Resampling and Resampling Antiforensics. Advances in Multimedia, 2017:1–
13, 01 2017. (6, 23, 24, 26)

[113] Joanne Peng, Kuk Lee, and Gary Ingersoll. An Introduction to Lo-
gistic Regression Analysis and Reporting. Journal of Educational Research - J
EDUC RES, 96:3–14, 09 2002. (84)

[114] Zhou Peng, Han Xintong, Vlad I. Morariu, and Davis Larry S.

Learning Rich Features for Image Manipulation Detection. CoRR,
abs/1805.04953, 2018. (24, 29, 78)

[115] A. c. Popescu and Hany Farid. Exposing Digital Forgeries by Detecting
Duplicated Image Regions. 2004. (5, 44)

[116] Chi-Man Pun, Xiao-Chen Yuan, and Xiu-Li Bi. Image forgery detection
using adaptive oversegmentation and feature point matching. IEEE Trans-
actions on Information Forensics and Security, 10(8):1705–1716, 2015. (5, 12, 13,
21)

106

[117] Mehta Rachna and Agarwa Navneet. Image Splicing Detection with
Markov features and PCA. International Journal of Innovative Research inElec-
trical, Electronics, Instrumentation and Control Engineering IJIREEICE, 7, 2019.
(24)

[118] Yuan Rao and Jiangqun Ni. A deep learning approach to detection of
splicing and copy-move forgeries in images. 2016 IEEE International Workshop
on Information Forensics and Security (WIFS), pages 1–6, 2016. (80, 90)

[119] Judith A Redi, Wiem Taktak, and Jean-Luc Dugelay. Digital im-
age forensics: a booklet for beginners. Multimedia Tools and Applications,
51(1):133–162, Jan 2011. (2, 3, 11)

[120] Fries Robert and Modestino James. Image enhancement by stochas-
tic homomorphic filtering. IEEE Transactions on Acoustics, Speech, and Signal
Processing, 27(6):625–637, December 1979. (7)

[121] Mushtaq S. and Mir A. H. Novel method for image splicing detection.
In 2014 International Conference on Advances in Computing, Communications and
Informatics (ICACCI), pages 2398–2403, Sep. 2014. (24, 26)

[122] Gurmeet Kaur Saini and Manish Mahajan. Study of Copy Move Image
Forgery Detection Based On Surf Algorithm. International Journal of Modern
Electronics and Communication Engineering(IJMECE), pages 46–49, 2016. (56)

[123] Youseph Shahana N. and Roy Cherian Rajesh. Pixel and Edge Based
Illuminant Color Estimation for Image Forgery Detection. Procedia Com-
puter Science, 46:1635–1642, 2015. Proceedings of the International Conference on
Information and Communication Technologies, ICICT 2014, 3-5 December 2014 at
Bolgatty Palace & Island Resort, Kochi, India. (6, 23, 24, 26)

[124] B.L. Shivakumar and S. SanthoshBaboo. Detection of region duplica-
tion forgery in digital images using SURF. International Journal of Computer
Science Issues (IJCSI), 8:199–205, 2011. (17, 44)

[125] M Singh and EH Singh. Detection of Cloning Forgery Images using
SURF+ DWT and PCA. International Journal of Latest Engineering Research
and Applications (IJLERA), 1:1–10, 2016. (56)

[126] Irwin Sobel. An Isotropic 3x3 Image Gradient Operator. Presentation at
Stanford A.I. Project 1968, 02 2014. (37)

107

[127] Fadl Sondos and Semary Noura. Robust Copy-Move forgery revealing
in digital images using polar coordinate system. Neurocomputing, 265:57–65,
2017. New Trends for Pattern Recognition: Theory and Applications. (11, 13, 16)

[128] Shaharyar Ahmed Khan Tareen and Zahra Saleem. A comparative
analysis of SIFT, SURF, KAZE, AKAZE, ORB, and BRISK. pages 1–10,
03 2018. (17, 54, 60, 64)

[129] Alaa Tharwat, Tarek Gaber, Abdelhameed Ibrahim, and Aboul Ella

Hassanien. Linear discriminant analysis: A detailed tutorial. Ai Communi-
cations, 30:169–190„ 05 2017. (7, 84)

[130] V. L. L. Thing, Y. Chen, and C. Cheh. An Improved Double Compression
Detection Method for JPEG Image Forensics. In 2012 IEEE International
Symposium on Multimedia, pages 290–297, Dec 2012. (90)

[131] Carlo Tomasi and Roberto Manduchi. Bilateral Filtering for Gray and
Color Images. In ICCV, pages 839–846, 1998. (79, 82)

[132] Dijana Tralic, Ivan Zupancic, Sonja Grgic, and Mislav Grgic. CoMo-
FoD -New Database for Copy-Move Forgery Detection. pages 49–54, 09 2013.
(xvi, 14, 42, 53)

[133] Li Wang and Dong-Chen He. Texture Classification Using Texture Spec-
trum. Pattern Recogn., 23(8):905–910, aug 1990. (25)

[134] Xiang Yang Wang, Li Xian Jiao, Xue Bing Wang, Hong Ying Yang, and

Pan Pan Niu. A new keypoint-based copy-move forgery detection for color
image. Applied Intelligence, 48(10):3630–3652, Oct 2018. (12, 13, 14, 17)

[135] Nor Bakiah Abd Warif, Ainuddin Wahid Abdul Wahab, Mohd Ya-

mani Idna Idris, Rosli Salleh, and Fazidah Othman. SIFT-symmetry:
a robust detection method for copy-move forgery with reflection attack.
Journal of Visual Communication and Image Representation, 46:219–232, 2017. (11,
13, 17, 20)

[136] Wei Wang, J. Dong, and T. Tan. Effective image splicing detection
based on image chroma. In 2009 16th IEEE International Conference on Image
Processing (ICIP), pages 1257–1260, Nov 2009. (78, 80)

108

[137] Alexander Wong, David Clausi, and Paul Fieguth. Adaptive Monte
Carlo Retinex Method for Illumination and Reflectance Separation and
Color Image Enhancement. pages 108–115, 05 2009. (81)

[138] Shenghong Li Xudong Zhao, Shilin Wang and Jianhua Li. Passive
Image-Splicing Detection by a 2-D Noncausal Markov Mode. IEEE Trans-
actions On Circuits And Systems For Video Technology, 25, 2015. (90)

[139] Fan Yang, Jingwei Li, Wei Lu, and Jian Weng. Copy-move forgery
detection based on hybrid features. Engineering Applications of Artificial Intel-
ligence, 59:73–83, 2017. (13, 21)

[140] Liyang Yu, Qi Han, and Xiamu Niu. Feature point-based copy-move
forgery detection: covering the non-textured areas. Multimedia Tools and
Applications, 75(2):1159–1176, 2016. (13, 21)

[141] Hao Yuan and Mikhail Atallah. Running Max/Min Filters Using
1+o(1) Comparisons per Sample. IEEE transactions on pattern analysis and
machine intelligence, 33:2544–2548, 08 2011. (82)

[142] RAO YUAN, NI JIANGQUN, and ZHAO HUIMIN. Deep Learning Local
Descriptor for Image Splicing Detection and Localization. IEEE Access, 8,
2020. (6, 24, 26, 90)

[143] Zhongping Zhang, Yixuan Zhang, Zheng Zhou, and Jiebo Luo.
Boundary-based Image Forgery Detection by Fast Shallow CNN. pages
2658–2663, 08 2018. (6, 23, 24, 27, 78, 90)

[144] Junliu Zhong, Yanfen Gan, Janson Young, Lian Huang, and Peiyu Lin.
A new block-based method for copy move forgery detection under image
geometric transforms. Multimedia Tools and Applications, 76(13):14887–14903,
2017. (13, 16)

[145] Haoyu Zhou, Yue Shen, Xinghui Zhu, Bo Liu, Zigang Fu, and Na Fan.
Digital image modification detection using color information and its his-
tograms. Forensic science international, 266:379–388, 2016. (13, 15)

[146] Ye Zhu, Shen Xuanjing, and Haipeng Chen. Copy-move forgery detec-
tion based on scaled ORB. Multimedia Tools and Applications, 75:3221–3233, 01
2016. (19, 50)

109

	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Scope of Work
	1.3 Contribution
	1.4 Thesis Organization
	1.5 Summary

	2 Related Work
	2.1 Introduction
	2.1.1 Copy-move forgery
	2.1.2 Image splicing
	2.1.3 Image/photo retouching

	2.2 Related Work: CMFD methods
	2.2.1 Block-based approach
	2.2.2 Keypoint-based approach
	2.2.3 Segment-based CMFD
	2.2.4 Hybrid techniques
	2.2.5 The main limitations of block-based, keypoint-based, and segment-based CMFD approaches
	2.2.6 Conclusion

	2.3 Related Work: splicing detection methods
	2.3.1 Handcrafted features based techniques
	2.3.2 Deep learning based methods
	2.3.3 Main limitations of existing techniques
	2.3.4 Conclusion

	2.4 Summary

	3 Copy-Move Forgery Detection using DoG Blob Detector and ORB
	3.1 Introduction
	3.2 The use of image blobs in CMFD to tackle the limitations of existing methods
	3.2.1 Advantages of image blobs over image blocks in CMFD
	3.2.2 Advantages of image blobs over image segments in CMFD
	3.2.3 The ideal blob detector for CMFD

	3.3 Enhanced blob localization using Sobel edge detection
	3.4 ORB feature extraction
	3.5 Feature matching
	3.6 Algorithm
	3.7 Experimental Results
	3.7.1 Evaluation metrics
	3.7.2 Experimental platform and operating point settings
	3.7.3 Robustness tests
	3.7.4 Comparative results
	3.7.5 Sample input and output
	3.7.6 Conclusion

	3.8 Where image blobs fail in CMFD?
	3.9 Summary

	4 Copy-Move Forgery Detection using Image Blobs and BRISK Feature
	4.1 Introduction
	4.2 CMFD using image blobs and BRISK feature
	4.2.1 Pre-processing
	4.2.2 Blob Detection
	4.2.3 BRISK Feature Extraction
	4.2.4 Find BRISK keypoints located within the same blob
	4.2.5 BRISK feature matching
	4.2.6 Reducing the number of keypoints to match.
	4.2.7 Tackling the use of filtering techniques

	4.3 Algorithm
	4.4 Experiments and Results
	4.4.1 Evaluation metrics
	4.4.2 Setting the Treshold T for Nearest Neighbor Matching Ratio.
	4.4.3 Experimental platform and running time analysis
	4.4.4 CMFD results for multi copy-move regions
	4.4.5 CMFD results for rotation and scaling operations
	4.4.6 CMFD results for post-processing operations.
	4.4.7 Comparative Results
	4.4.8 Sample input and output
	4.4.9 Conclusion

	4.5 Summary

	5 Geometric Transformation Parameters Estimation from Copy-Move Forgery using Image Blobs and Features: AKAZE, BRISK, ORB, SIFT and SURF
	5.1 Introduction
	5.2 Geometric transformation parameters estimation from CMF
	5.2.1 Pre-processing and Edge detection
	5.2.2 Scale-Rotation Invariant Feature Extraction
	5.2.2.1 SIFT (Scale-Invariant Feature Transform)
	5.2.2.2 Speeded Up Robust Features (SURF)
	5.2.2.3 KAZE and Accelerated-KAZE (AKAZE)
	5.2.2.4 Oriented Fast and Rotated Brief (ORB)
	5.2.2.5 Binary Robust Invariant Scalable Keypoints (BRISK)

	5.2.3 Blob Detection
	5.2.4 Extract keypoints located within the same blob
	5.2.5 Feature matching.
	5.2.6 Blob post-processing and 2D affine transformations computation
	5.2.7 Algorithm

	5.3 Experimental Results
	5.3.1 Dataset and evaluation metrics
	5.3.2 Threshold T settings, detection performance, and comparison
	5.3.3 Experimental platform and analysis of running time.
	5.3.4 Geometric transformations parameters estimation
	5.3.5 Comparative results
	5.3.6 Sample ouputs
	5.3.7 Conclusion

	5.4 Summary

	6 Image Splicing Detection using Illumination Component and LBP
	6.1 Introduction
	6.2 Image splicing detection technique using illumination component and LBP
	6.2.1 Convert input image to YCbCr
	6.2.2 Extracting illumination component from luma
	6.2.3 Local Binary Patterns (LBP)
	6.2.4 Tamper detection

	6.3 Algorithm
	6.4 Experimental Results
	6.4.1 Dataset and evaluation metrics
	6.4.2 Experimental platform and running time analysis.
	6.4.3 Experiment results
	6.4.4 Comparative Results
	6.4.5 Failure cases
	6.4.6 Conclusion

	6.5 Summary

	7 Conclusions and Future Work
	7.1 Conclusions
	7.2 Recommendations and Future Work

	List of Publications
	References

